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Zusammenfassung 

Der hochkonservierte Wnt/ß-Catenin-Signaltransduktionsweg spielt eine wichtige Rolle 

während der Embryonalentwicklung, der Homöostase und der Tumorgenese in Adulten.  Die 

BCL9 Proteine wurden zunächst als Kofaktoren dieses Signalweges identifiziert. Entsprechend 

agiert BCL9/Legless als essentieller Wnt/ß-Catenin-Kofaktor in Drosophila. Jedoch scheint die 

Rolle von BCL9 und BCL9-2,  der Orthologe von Legless, in Vertebraten komplexer zu sein. Des 

Weiteren wurden die genauen Funktionen der BCL9 Proteine während der intestinalen 

Homöostase und Tumorgenese bislang wenig untersucht. Es konnte jedoch bereits gezeigt 

werden,  dass BCL9-2 in intestinalen und Mammakarzinomen verstärkt expremiert wird. 

Diese Arbeit beschreibt erstmalig den Einfluss und die Funktion von BCL9-2 während der 

intestinalen Tumorgenese. BCL9-2 beinflusst die Tumorprogression positiv durch Verstärkung 

des Wnt/ß-Catenin-Signaltransduktionsweg und der Expression von Zielgenen, die 

Tumorwachstum und -invasion vermitteln. Zudem aktiviert BCL9-2 die Transkription von ß-

Catenin-unabhängigen Genen durch einen neuartigen  Mechanismus.  

Im Gegensatz zu BCL9, welches in allen humanen und murinen intestinalen Zelltypen 

expremiert wurde, beschränkte sich die BCL9-2 Expression auf die Zotten des Darmes. Die 

Wnt/ß-Catenin-positiven Krypten hingegen zeigten keinerlei BCL9-2-Expression auf, was darauf 

hinweist, dass BCL9-2 für den Wnt/ß-Catenin-Signalweg bei der intestinalen Homöostase 

entbehrlich ist. Während jedoch BCL9 Proteinlevel in Kolontumoren, im Vergleich zum 

normalen Epithel, unverändert blieben, wurde BCL9-2 bereits in frühen Stadien der 

Tumorgenese und in 90% aller Kolonkarzinome stark expremiert. Darüber hinaus führte 

transgene Überexpression von BCL9-2 im Darm von K19-BCL9-2;APCMin/+ Mäusen zu einer 

verstärkten Formation von Adenomen, deren Invasion und einem verringerten Überleben der 

Versuchstiere.  

Wie anhand von TOP/FOP Luciferase Reportergen-Versuchen gezeigt werden konnte, 

korrelierte die Stärke der BCL9-2-Proteinexpression mit der Aktivität des Wnt/ß-Catenin-

Signalweges in Kolonkarzinomzellen. Zudem regulierte BCL9-2 die Transkription einiger ß-

Catenin-abhängiger und darüber hinaus ß-Catenin-unabhängiger Zielgene, die bei der 

Tumorentstehung eine wichtige Rolle spielen.  Des Weiteren zeigt diese Arbeit, dass in 

Kolonkarzinomzellen die BCL9-2 abhängige Transkription von CDX1 und CDX2 durch SP1-

bindende Elemente über deren proximale Promotoren vermittelt wurde. Mittels 

Immunpräzipitation konnte zudem eine Interaktion zwischen BCL9-2 und SP1 in 

Kolonkarzinomzellen bestätigt werden.   

Zusammenfassend zeigt diese Arbeit, dass BCL9-2-Überexpression in frühen Phasen der 

intestinalen Tumorgenese die Progression von benignen Tumoren in invasive Karzinome 
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fördert. Diese Eigenschaft wird durch verschiedene Mechanismen vermittelt: Zum einen 

verstärkt BCL9-2 die Expression einiger Wnt/ß-Catenin-abhängiger Zielgene; zum anderen 

reguliert BCL9-2 ß-Catenin-unabhängige Gene, die für die Tumorgenese eine wichtige Rolle 

spielen. Diese Funktion wird vermutlich durch die Bindung an SP1 Transkriptionsfaktoren und 

damit an die Promotoren von BCL9-2 Zielgenen vermittelt, was zu der verstärkten Expression 

von Genen  führt, die die Tumorprogression und Invasion fördern. 
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Abstract 

The Wnt/ß-catenin signaling pathway is highly conserved and plays an important role during 

embryonic development, in adult homeostasis and tumorigenesis. The members of the novel 

BCL9 family were characterized as co-activators of canonical Wnt-signaling. BCL9/Legless was 

found to be absolutely essential for Wnt/ß-catenin signaling in Drosophila. However, the role 

of BCL9 and the second homolog, BCL9-2, seems to be more complex in vertebrates.  BCL9-2 

was shown to be overexpressed in colon and breast cancers. However, detailed analyses of the 

BCL9 proteins and their function in normal intestines and during the multistep model of 

carcinogenesis were missing. Here, we show that BCL9-2 promotes intestinal tumor 

progression through the enhancement of Wnt/ß-catenin signaling and the regulation of target 

genes which trigger tumor growth and invasion. Moreover, we demonstrate that BCL9-2 

activates the transcription of ß-catenin-independent genes by a novel mechanism.  

Using Immunohistochemistry BCL9 was found to be expressed in all intestinal cell types and 

unchanged in colon cancer cells. In contrast, BCL9-2 protein expression was restricted to the 

villi in normal intestines, and absent in the crypts where Wnt-signaling is active, indicating that 

BCL9-2 is dispensable for Wnt/ß-catenin signaling in intestinal homeostasis. In addition, we 

found that BCL9-2 overexpression occurs early during intestinal tumorigenesis and is 

overexpressed in approximately 90% of human adenocarcinomas. Moreover, transgenic 

overexpression of BCL9-2 in the intestine of transgenic K19-BCL9-2;APCMin/+ mice led to 

increased adenoma formation accompanied with local invasion which resulted in reduced 

survival.  

Using TOP/FOP Luciferase reporter-gene assays, we found that BCL9-2 protein expression 

correlated with the level of Wnt/ß-catenin signaling activity in colon cancer cells. Moreover, 

BCL9-2 regulated the transcription of a subset of ß-catenin-target genes. In addition, we 

identified a set of BCL9-2 target genes which was apparently independent of ß-catenin 

signaling which have been implicated in tumorigenesis. Here, we demonstrate that the 

activation of CDX1 and CDX2 gene transcription by BCL9-2 was dependent on SP1-binding 

elements in their proximal promoters in colon cancer cell lines. This was corroborated by the 

novel finding that BCL9-2 associated with the specific protein 1 (SP1) in cancer cells. 

In conclusion, this work demonstrates that BCL9-2 overexpression promotes early phases of 

intestinal tumorigenesis and contributes to the progression of tumors into invasive 

carcinomas. We showed that BCL9-2 enhances the activation of certain Wnt/ß-catenin target 

genes. Moreover, BCL9-2 regulates its own set of target genes apparently independent of ß-

catenin. This function is mediated through binding to SP1 transcription factors and thereby to 

the promoters of BCL9-2 target genes, which results in aberrant expression of proteins that 

trigger the promotion of tumor progression and invasion.  
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1 Introduction 

1.1 The Wnt/ß-catenin-signaling pathway in intestinal development, 

homeostasis and tumorigenesis 

Wnts are a family of secreted proteins which activate several signaling pathways through 

binding to Frizzled and therefore,  inducing the canonical (Wnt/ß-catenin)-, the non-canonical 

(planar-cell-polarity)-  and the Wnt-Ca2+- pathway (Habas and Dawid, 2005).  

The Wnt/ß-catenin signal transduction pathway is highly conserved between all animals (Logan 

and Nusse, 2004;Nusse et al., 1997;van and Clevers, 2002;Wodarz and Nusse, 1998). It plays an 

important role during embryonic development (Grigoryan et al., 2008;Logan et al., 

2004;Niehrs, 2010) and adult tissue maintenance (Logan et al., 2004;Nusse et al., 2008;Polakis, 

2012;van et al., 2002) by modulating different cellular processes including proliferation, 

survival, cell migration, differentiation and patterning. In addition, canonical Wnt-signaling is 

implicated in various diseases, in particular in tumorigenesis (Bienz and Clevers, 2000;Logan et 

al., 2004).  

1.1.1 The role of ß-catenin in canonical Wnt-signaling  

ß-catenin was first described as the segment polarity gene product, Armadillo,  in Drosophila 

(Wieschaus and Riggleman, 1987). It harbors dual functions: as a component of adherence 

junctions it is necessary for regulating cell growth and adhesion (Brembeck et al., 2006) and in 

addition, as a modulator of transcription as the key component of canonical Wnt-signaling. In 

the absence of extracellular Wnt signals, cytoplasmic ß-catenin is recruited to the destruction 

complex which consists of AXIN1/2, Adenomatous-polyposis-coli (APC), Glycogen synthase 

kinase 3ß (GSK3ß) and Casein kinase 1ɛ (CK1ɛ) (Golan et al., 2004). ß-catenin is initially N-

terminally phosphorylated by CK1ɛ at serine 45 (S45), followed by serine 33 (S33), serine 37 

(S37) and tyrosine 41 (Y41) phosphorylation by GSK3β (Liu et al., 2002a). This phosphorylation 

primes β-catenin for ß Transducing repeat containing protein (ß-TRCP) mediated ubiquitination 

and its subsequent degradation by the proteasome (He et al., 2004a). Binding of extracellular 

Wnt ligands to the Frizzled (FZ) - lipoprotein receptor-related protein 5/6 (LRP5/6)-complex 

leads to activation of Dishevelled (DSH) and disassembly of the destruction complex. 

http://en.wikipedia.org/wiki/Cell_adhesion
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Consequently, ß-catenin is stabilized and trans-locates to the nucleus where it binds to 

lymphoid enhancer factor/T cell factor (LEF/TCF) transcription factors (Behrens et al., 1996). 

The function of β-catenin involves the recruitment of additional co-factors, including 

chromatin modifying and remodeling factors (Parker et al., 2002), p300/ CREB-binding protein 

(CBP) (Hecht et al., 2000), brahma-related gene 1 (BRG1) (Barker et al., 2001) and TATA-

binding proteins (TBP) (Bauer et al., 1998;Hecht et al., 1999) (see 1.4).  

 
 
Figure 1: Schematic overview of the Wnt/ß-catenin-signaling pathway 
Without extracellular stimuli, ß-catenin is phosphorylated by the destruction complex consisting of 
Axin1/2, APC, GSK3ß and CK1ɛ, ubiquitinylated by ß-TRCP and subsequently degraded by the 
proteasome. When Wnt signals bind to LRP/Fz receptors Dsh becomes activated which inhibits the 
destruction complex. Stabilized ß-catenin enters the nucleus and binds to LEF/TCF transcription factors 
and additional co-activators like the BCL9 and Pygopus proteins. This activates the transcription of ß-
catenin-dependent target genes. (adapted from Brembeck et al., 2006)  

In addition, BCL9 proteins bind to ß-catenin and further recruit other co-activators like 

Pygopus1 and 2 which lead to enhanced ß-catenin target gene transcription (Belenkaya et al., 

2002;Brembeck et al., 2004;Jessen et al., 2008) (Figure 1) (see 1.4.2 and 1.4.3). In the absence 

of stabilized ß-catenin, TCF transcription factors are bound to Groucho as well as histone 
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deacetylases. This complex consequently acts as a transcriptional repressor of Wnt/ß-catenin 

target genes (Cavallo et al., 1998;Chen and Struhl, 1999;Daniels and Weis, 2005)(see 1.4.2). 

1.1.2 The Wnt/ß-catenin signaling pathway in intestinal development 

Development of the intestine occurs early during embryogenesis.  In mice, during E10 to E13, 

the endodermal germ layer gives rise to the primitive gut tube, whose inner endodermal core 

differentiates to the epithelium of the mature gastrointestinal tract. After this transition the 

different specific intestinal cell types develop (see 1.1.3.). In the post-natal period the small 

intestinal villi elongate and the crypts are formed. The development of the colon is delayed 

relative to the small intestine. In addition, no villis are formed in the colon, while the crypts 

merge into a surface epithelial layer (Gao et al., 2009;Sherwood et al., 2011;van der Flier and 

Clevers, 2009;van der Flier et al., 2009).  

These developmental processes require the expression of intestine-specific genes, which are 

regulated by the key-regulatory ParaHox genes. Those include the caudal related 

homeodomain proteins CDX1 and CDX2 (Gao et al., 2009). These core-transcription factors are 

responsible for the activation of general intestine specific genes, such as Mucin 2 (MUC2), gut-

enriched Krüppel-like factor 4 (KLF4) and Liver-Intestine cadherin (LI-cadherin), genes specific 

for the small intestine (e.g. sucrose isomaltase (SI), lactase (LCT) and A/lyso-phospholipase 

(A/LysoPLA)) and colonic epithelial genes (e.g. carbonic anhydrase 1 (CA1)) (Guo et al., 2004) 

through evolutionarily conserved DNA promoter elements (Suh et al., 1994). The activation of 

CDX1 and CDX2 target genes is highly dependent on the phosphorylation status of these 

proteins  (Taylor et al., 1997). The initial expression of CDX2 is induced by canonical Wnt-

signaling between E7.5 and E8.5, while after E8.5 Wnt-signaling is no longer sufficient to 

activate CDX2 (Sherwood et al., 2011). CDX2 protein expression in the posterior endoderm 

induces the expression of further intestinal Hox genes, including CDX1 and as a target gene of 

CDX2 and ß-catenin expression (Mutoh et al., 2009; Lickert et al., 2009). CDX1 protein 

expression appears after a short delay compared to CDX2 at E9.5 predominantly in the distal 

part of the developing intestine. CDX1 and CDX2 expression become restricted to the intestinal 

epithelium. As a consequence, a sharp anterior boundary is formed marking the transition 

from stomach to duodenum (Hu et al., 1993;James et al., 1994). Thus, the gradients of CDX2 

and CDX1 define the three major parts of the intestine: the foregut which gives rise to the 

epithelia of esophagus, stomach, and duodenum, the midgut which becomes the small 

intestine and the hindgut, which develops into the cecum and colon. A gradient of CDX1 and 
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CDX2 forms the crypt-villus axis, with CDX1 expression primarily in the crypt and CDX2 in the 

villus region (Sherwood et al., 2011).  

In addition, Wnt-signaling contributes to the proper development of the intestine by 

modulating key-epithelial signals which define the epithelial integrity to the underlying 

mesenchyme by regulating the expression of e.g. Indian Hedgehog (IHH) (Buller et al., 

2012;Sherwood et al., 2011). According to this, TCF1/TCF4 mutants display severe embryonic 

intestinal defects (Gregorieff et al., 2004). In addition, ablation of ß-catenin in the node, 

notochord and anterior primitive streak abrogates definitive endoderm formation (Imai et al., 

2000;Lickert and Kemler, 2002). In summary, development of the gastrointestinal tract is 

governed by the cooperation of different core-factors including ß-catenin, which activates the 

expression of canonical Wnt-target genes, and the major specification transcription factor 

CDX2.  

1.1.3 The Wnt/ß-catenin-signaling pathway and ß-catenin target genes in intestinal 

homeostasis and tumorigenesis 

The intestine is covered by a single layer of epithelial cells surrounding the finger-like villi. 

These invade into the crypts of Lieberkühn consisting of non-differentiated, proliferating cells 

(Figure2). The crypts harbor the intestinal stem-cells, which give rise to transient-amplifying 

cells that divide 4-5 times before they differentiate into the absorptive enterocytes, mucous-

secreting goblet cells, lysozyme producing Paneth cells and hormone-secreting 

enteroendocrine cells. The structural organization of the intestine leads to an extreme 

enlarged surface. In addition, the cellular organization conveys the major functions of the small 

intestine including digestion and absorption of nutrients and the formation of a barrier against 

luminal pathogens. In contrast, the colon lacks the constitution of villi. Consequently, the main 

function of the colon is the absorption of water and thus the compaction of stool mass. 

(Sancho et al., 2003) 

The bottom of the crypts consists of multipotent intestinal stem-cells (ISCs), which are 

bordered by single Paneth cells. The ISCs have a cell cycle period of 24h and reside in the lower 

part of the crypt. They give rise to the transient amplifying (TA) cells which reside in the crypts 

for up to six cell divisions with a cell cycle period of around 12h (Marshman et al., 2002). When 

the TA-descendants reach the crypt–villus junction they undergo cell cycle arrest and 

differentiate into the four specific, epithelial intestinal cell types. While the intestinal cells 

differentiate they migrate along the crypt-villus axis. In mice the tip of the villus is reached by 
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the cells 3 days after their terminal differentiation, where they undergo apoptosis and are 

shed into the lumen (Hall et al., 1994)(Figure 2). Paneth cells represent an exception. They 

move towards the bottom of the crypts upon differentiation and exhibit an enlarged life span 

of 20 days compared to the three other intestinal, epithelial, mature cell types (Garabedian et 

al., 1997).  

 
 
Figure 2: Intestinal homeostasis and adenoma formation 
Overview of the organization of the crypt-villus organization of the small intestine and the activity of 
Wnt/ß-catenin-signaling in homeostasis (normal intestine) and tumorigenesis (adenoma formation). ß-
catenin is transcriptional active in the crypts in normal intestine and controls the proliferation of 
intestinal stem-cells (ISCs) and transient amplifying cells (TA). Upon aberrant ß-catenin activation 
adenomas arise due to uncontrolled proliferation (Barker et al., 2009). 

For controlled homeostasis which includes the division of intestinal stem-cells and transient 

amplifying cells Wnt/ß-catenin signaling activity is indispensable. Accordingly, ablation of TCF4, 

ß-catenin, or ectopic expression of the inhibitor Dickkopf 1 (DKK1) lead to loss of proliferative 

epithelial cells in adult and embryonic intestine (Korinek et al., 1998a;Korinek et al., 

1998b;Pinto et al., 2003). In contrast, the initiation of cell cycle arrest at the crypt-villus border 

is of importance for the differentiation into mature epithelial, intestinal cell types. 

Consequently, a gradient of active Wnt-signaling is formed, with the highest activity in the 

bottom of the crypts accompanied with high nuclear ß-catenin, which gradually decreases to 

the interface of the villus. Thus, only membrane-bound ß-catenin is present in the villus 

resulting in the complete absence of Wnt-signaling in the tip of the villus (Figure 2, left) (Pinto 

et al., 2003;van de Wetering et al., 2002). In contrast, the Wnt-antagonizing bone 
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morphogenic protein (BMP) pathway is active in the mesenchyme of the villi and thereby 

inhibits canonical Wnt-signaling in the intestinal epithelium (Figure 2, left)(Crosnier et al., 

2006;Hartenstein et al., 2010;He et al., 2004b). In addition, canonical Wnt-signaling regulates 

the intestinal homeostasis by controlling the expression of other factors, including the ephrin 

ligands (ephrin) and receptors (EPH).  A complex expression pattern of EPH/ephrin determines 

the position of differentiated cells along the crypt-villus-axis. EPHB2/3 receptors are strongly 

expressed in the crypts, ephrinB1 ligands in the villi. Consequently, a gradient of receptors and 

ligands is formed, which creates a unidirectional migration of differentiating cells from the 

crypt to the villus (Batlle et al., 2002). Moreover, transforming growth factor ß (TGFß) and 

bone morphogenic protein (BMP) signaling in the villus inhibit Wnt/ß-catenin signaling and 

function as growth repressors in differentiated epithelial cells  (Haramis et al., 2004;Hardwick 

et al., 2004;Sancho et al., 2004) Thus, active and a well-defined dosage of Wnt/ß-catenin-

signaling is indispensable in intestinal homeostasis.  

To that effect, the majority of intestinal sporadic and hereditary adenomas derive from cells 

with aberrant stabilization of ß-catenin due to truncating mutations in Adenomatous-

polyposis-coli (APC) (80%) (Ichii et al., 1993;Nagase and Nakamura, 1993). Less colorectal 

carcinomas (CRC) occur upon stabilization of ß-catenin by mutations in Axin2 or ß-catenin 

itself, which abolish the phosphorylation and subsequent degradation of ß-catenin (Ilyas et al., 

1997;Liu et al., 2000). Taken together, APC and ß-catenin mutations are the initial events in 

more than 90% of intestinal tumors (Fearon and Vogelstein, 1990). Increased ß-catenin 

activation leads to uncontrolled proliferation which results in a well-known sequence of 

histopathological changes. Dysplastic/hyperplastic crypts grow consequently out into 

microadenomas, which give rise to adenomas, carcinomas and subsequently invasive tumors 

(Fearon et al., 1990;Fodde et al., 2001)(Figure3).  

 
Figure 3: Gene mutations during the adenoma-carcinoma sequence 
Development of intestinal adenomas occur following ß-catenin stabilization due to APC truncations or 
mutations of ß-catenin itself and mutations of KRAS. Additional mutations resulting in loss-of-function of 
tumor suppressors, like SMAD2/4, p35 and Bambi induce the transformation into aggressive 
carcinomas. (adapted from Vogelstein and Kinzler, 1993) 
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It has been shown, that deletion of APC in Leucine-rich repeat-containing G-protein coupled 

receptor 5 (LGR5) positive stem-cells leads to transformation of these cells to growing 

microadenomas that develop into macroscopic adenomas within three to five weeks (Barker et 

al., 2009). 

However, stabilized ß-catenin is not sufficient to induce the progression of adenoma into 

carcinoma. Additional mutations resulting in loss-of-function of tumor suppressors (e.g. sisters 

and mothers against decapentaplegic (SMAD), p35 or Bambi or activation of V-Ki-ras2 Kirsten 

rat sarcoma viral oncogene homolog (KRAS) are necessary to drive the progression of 

adenomas into aggressive carcinomas (Figure3) (Fearon et al., 1990;Fodde et al., 

2001;Vogelstein and Kinzler, 1993;Vogelstein and Kinzler, 2004;Wang et al., 2004).  

Despite its fundamental role during canonical Wnt-signaling, ß-catenin acts as in processes of 

intracellular adhesion (Polakis, 2000). For cell-cell adhesion, cytosolic ß-catenin is recruited to 

the plasma membrane where it associates with E-cadherin. Consequently, adherence junctions 

are formed and stabilized which promotes a functional tissue architecture and morphogenesis 

(Gumbiner, 2000;Jamora and Fuchs, 2002). In tumorigenesis both functions of ß-catenin are 

often deregulated, which leads to aberrant ß-catenin accumulation, increases target gene 

expression and to loss of cell-cell adhesion (Brembeck et al., 2006). These transformations 

promote enhanced migration and proliferation leading to invasion and metastasis (Perl et al., 

1998). 

1.2 The BCL9 proteins  

1.2.1 BCL9 and BCL9-2 encode the vertebrate orthologue of Drosophila Legless 

In 1998 B-cell CLL/lymphoma 9 protein (BCL9) was found to be overexpressed in B-cell 

lymphomas caused by a t(1;14)(q21;q32) trans-location of the B-cell lymphoma gene locus 

(Willis et al., 1998). More than 10 years later the orthologue of BCL9, Legless (lgs), was 

discovered in Drosophila in a genetic screen for dominant suppressors of the classical Wnt-

phenotype. Rescue experiments in lgs-/- mutants revealed that the function of the segment 

polarity gene lgs/BCL9 is that of an absolutely required co-factor in Wnt/ß-catenin signaling in 

Drosophila. Maternal replacement of BCL9 in lgs-/- mutants was sufficient to achieve a 

complete rescue (Kramps et al., 2002). BCL9-2, the vertebrate orthologue of BCL9 was 
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discovered as a ß-catenin related protein from a yeast-two-hybrid screen of a mouse cDNA 

library using a ß-catenin armadillo repeat domain as bait (Brembeck et al., 2004;Kramps et al., 

2002). Seven domains of the BCL9 proteins are highly conserved with 90% amino acid 

sequence identity (Brembeck et al., 2004;Kramps et al., 2002)(Figure 4). Whereas vertebrate 

BCL9 proteins share only 35%, vertebrate BCL9-2 proteins share 60% overall amino acid 

sequence identity (Brembeck et al., 2006).  

 
 
Figure 4: Schematic overview of the BCL9 proteins including seven evolutionary conserved domains 
The vertebrate BCL9, BCL9-2 proteins and the Drosophila homolog Legless contain seven domains, 
which share up to 90% amino acid sequence homology: a N-terminal homology domain (N-HD), a 
Pygopus binding domain (PyBD), a ß-catenin binding domain (bcatBD), a classical nuclear localization 
signal (NLS) and three C-terminal homology domains (C-HD1, C-HD2 and C-HD3). (Brembeck et al., 2006) 

The N-terminus harbors an N-terminal homology domain (N-HD), which contains a putative 

sumoylation motif (K*K*KXE/D) (Melchior, 2000). All BCL9 family members also harbor a ß-

catenin binding domain (bcatBD), a Pygopus binding domain (PyBD), a domain containing an 

un-functional classical nuclear localization signal (NLS, KRRK) and three C-terminal homology 

domains (Figure 4). In addition, the N-HD domain of BCL9-2 contains a functional nuclear 

localization signal (PRSKRRC). Consequently, deletion of the N-HD of BCL9-2 and therefore the 

NLS leads to cytoplasmatic de-localization (Adachi et al., 2004;Brembeck et al., 2004;Hicks and 

Raikhel, 1995). In contrast, BCL9 and Legless are no nuclear proteins. Both require Pygopus2 to 

be trans-located into the nucleus (Adachi et al., 2004;Brembeck et al., 2004;Townsley et al., 

2004). 

1.2.2 The BCL9/Legless proteins are co-factors of the Wnt/ß-catenin signaling 

pathway 

Legless and BCL9 are essential for canonical Wnt-signaling in Drosophila. They recruit Pygopus 

(PYGO) to the ß-catenin/TCF complex to transactivate ß-catenin-dependent target genes. The 

Pygopus protein family consists of the two homologs Pygo1 and Pygo2 in vertebrates which 

contain two highly conserved domains: an N-terminal homology domain (N-HD) interacting 
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with BCL9/Legless proteins and a C-terminal PHD (plant homeo-domain) zinc finger motif 

(Belenkaya et al., 2002;Kramps et al., 2002) which was shown to mediate trans-activatory 

properties. Moreover, Pygopus contributes to the activation of gene expression by recruiting 

chromatin remodeling factors and by modulating Histone modifications (see 1.4.3)(Belenkaya 

et al., 2002;Kessler et al., 2009;Kramps et al., 2002;Nakamura et al., 2007;Stadeli and Basler, 

2005).  

In vertebrates Pygopus binding to BCL9-2 is not absolutely required to co-activate gene 

transcription of Wnt/ß-catenin target genes (Adachi et al., 2004). In addition, BCL9-2 binding 

promotes the trans-location of ß-catenin into the nucleus and therefore the expression of 

target genes. The switch between the adhesive and transcriptional function of ß-catenin is 

modulated by phosphorylation of thyrosine142 (Y142) of ß-catenin, which leads to preferred 

binding of the protein to BCL9-2 instead of α-catenin (Brembeck et al., 2004).  

BCL9-2 enhances Wnt/ß-catenin activity. For this function the C-terminus harboring the three 

C-HD is indispensable. In addition, BCL9 transcriptional co-activity requires the C-terminal 

region as well, although the mechanism is still unknown (Adachi et al., 2004;Sustmann et al., 

2008).   

1.2.3 BCL9 proteins in development, regeneration and tumorigenesis  

Wnt/ß-catenin signaling is crucial for the dorsal-ventral mesoderm patterning in early, and 

organ specification in late embryonic development of Danio rerio (Huelsken and Birchmeier, 

2001;Moon et al., 2002). For Wnt8/ß-catenin signaling mediated mesoderm patterning in 

Danio rerio BCL9-2, but not BCL9/Legless is indispensable (Brembeck et al., 2004). Moreover, 

other Wnt/ß-catenin-dependent developmental processes, like the posteriorization of anterior 

neuroectoderm (Lekven et al., 2001) are BCL9-2 independent (Brembeck et al., 2004). In 

contrast, BCL9 and BCL9-2 are required for the activation of Wnt/β-catenin signaling in adult 

mammalian myogenic progenitors during skeletal muscle regeneration. Under physiological 

conditions, Wnt1/3A/ß-catenin signaling promotes differentiation of proliferating myogenic 

progenitors in mice (Brack et al., 2008;Rochat et al., 2004). Reduction of BCL9/BCL9-2 

abrogates myogenic differentiation (Brack et al., 2009). Thus, the BCL9 proteins function as 

activators of Wnt/ß-catenin signaling in a temporal and cellular context dependent manner in 

vivo.  
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Conditional ablation of BCL9/BCL9-2 in mouse intestinal epithelium leads to decreased 

expression of intestinal stem-cell markers like SRY-related HMG-box gene (SOX6) and LGR5. 

Moreover, knockout of the BCL9 proteins impaired the regeneration capacity of ulcerated 

colonic epithelia. Induction of dysplastic adenomas by dimethylhydrazine and DSS led to 

increased Wnt/ß-catenin signaling activity associated with nuclear β-catenin accumulation in 

wild-type and BCL9/BCL9-2 ablated tumors. Here a subset of the Wnt/ß-catenin target genes 

was reduced in knockout mice compared to wild-type tumors including Axin2, prospero-

related homeobox 1 (Prox1), Lef1 and Tcf1 (Deka et al., 2010) . Moreover, carcinomas occurred 

with similar incidence, although the size of mutant tumors was generally smaller. Comparative 

transcriptional expression profiles of wild-type and mutant carcinomas further revealed a role 

of BCL9/BCL9-2 in the control of epithelial-mesenchymal-transition (EMT) indicated by 

reduction of fifteen EMT-marker genes coding for proteins like Slug (Snail2) , Snail (Snail1), 

Vimentin (Vim), Zeb1 and Zeb2. Moreover, fifty stem-cell related genes like Lgr5 and Sox6 were 

decreased in the gene set of BCL9/BCL9-2 conditional knockout mice indicating a role of the 

BCL9 proteins in modulating stem-cell-like traits in colon cancers (Deka et al., 2010). Thus, 

Deka et al. pointed out that the function of BCL9/BCL9-2 function in intestinal regeneration 

and further, in colonic tumorigenesis by controlling a subset of Wnt/ß-catenin target genes 

that are implicated in EMT and stem-cell traits. However, the mouse model used by Deka et al. 

did not provide any information about the particular role of each of the BCL9 proteins. Thus, 

the observed effects on regeneration and tumorigenesis could have been mediated by BCL9, 

BCL9-2 or both. In contrast, Matsuura et al. investigated the particular function of BCL9-2. 

Complete knockout of BCL9-2 lead to growth arrest due to placental defect at around E10 

resulting in embryonic lethality at E10.5 to E11.0, whereas heterozygous BCL9+/- mice were 

healthy and fertile. Those placental phenotypes are reminiscent of those resulting from cell 

fusion pathway defects (Matsuura et al., 2011). Moreover, intestinal stem-cells with high 

Wnt/ß-catenin signaling are fusion partners of transplanted bone marrow-derived cells in 

tissue regeneration in the intestine. Transformed intestinal cells of APCMIN/+ mice exhibit an 

increased frequency of fusion with bone marrow-derived cells (Lu and Kang, 2009).  

The BCL9 proteins were described to play a role during tumorigenesis in different tumor 

entities. BCL9 and BCL9-2 overexpression was found in colorectal cancers tumors (Adachi et 

al., 2004;Brembeck et al., 2011;de la Roche et al., 2008). Also, BCL9-2 mRNA expression 

correlated with the progressive grades of colorectal neoplasias (Sakamoto et al., 2007). In this 

context BCL9 proteins induce canonical Wnt-signaling and thereby increase the ß-catenin 

mediated tumorigenic potential of tumor cells by contributing to stem-cell straits and EMT 

http://omim.org/entry/601546?search=prox&highlight=prox
http://omim.org/entry/601546?search=prox&highlight=prox
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(Matsuura et al., 2011).  Disruption of the BCL9 and ß-catenin interaction leads to decreased 

oncogenic Wnt-signaling activity and is therefore believed to be a promising therapeutic 

approach for treating Wnt-dependent cancers (de la Roche et al., 2012a;Takada et al., 2012).  

BCL9-2 overexpression was found in breast cancers (Zatula and Brembeck, unpublished)(Mani 

et al., 2009;Toya et al., 2007). Human breast cancer tissue arrays revealed a correlation 

between high BCL9-2 and the expression of the hormone receptors of Estrogen (ER), 

Progesterone (PR), the human epidermal growth factor receptor 2 (HER2) (Zatula and 

Brembeck, unpublished) and of the proto-oncogene c-myc and p53 (Toya et al., 2007). 

Moreover, high BCL9-2 expression was found during the ß-catenin/Wnt-dependent ductal 

outgrowth and during pregnancy in mouse mammary glands (Boras-Granic and Wysolmerski, 

2008) suggesting the contribution of BCL9-2 to ß-catenin/Wnt activity dependent proliferation 

during these stages of development (Zatula and Brembeck, unpublished). 

Investigations regarding the BCL9 proteins mainly focused on their ß-catenin associated 

function as activators of canonical Wnt-signaling (Adachi et al., 2004;de la Roche et al., 

2008;Kramps et al., 2002;Sakamoto et al., 2007;Sustmann et al., 2008). BCL9-2 plays an 

important role in Wnt/β-catenin pathway-mediated cell fusion, during embryonic 

development, tissue regeneration and cancer development but appears to be dispensable in 

intestinal homeostasis (Adachi et al., 2004;Brembeck et al., 2011;de la Roche et al., 2008;Deka 

et al., 2010). The gene locus of BCL9 was shown to be trans-located in B-cell lymphomas 

leading to aberrant BCL9 protein expression, but nothing is known about the mechanisms 

which lead to overexpression of BCL9-2 in cancers so far. However, the particular function of 

BCL9 and BCL9-2 in tumorigenesis is not well understood. Until now, only the impact of the 

BCL9 proteins regarding their Wnt/ß-catenin-dependent function had been investigated in 

detail (Adachi et al., 2004;Brack et al., 2009;Brembeck et al., 2006;Brembeck et al., 

2004;Kramps et al., 2002). Moreover, a mechanism which explains the molecular ß-catenin-

dependent or/and independent capacity of BCL9 and BCL9-2 is still to be found.  

1.3. K19 dependent BCL9-2 overexpression in vivo 

Since BCL9-2 is overexpressed in many human and mouse tumors we established a BCL9-2 

overexpression mouse model to further investigate the function of this protein (Brembeck et 

al., 2011)(Zatula and Brembeck, unpublished). In our mouse model ectopic expression of flag-

tagged BCL9-2 was induced by the promoter of the epithelial specific Keratin 19 gene (K19)(for 
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detailed information see Materials and Methods 3.9.1). Flag-tagged BCL9-2 is consequently 

expressed in all simple epithelia including the stomach, intestine, liver, kidney, pancreas and 

mammary glands (Brembeck et al., 2001;Brembeck and Rustgi, 2000).  

Aged transgenic mice (more than 15 months of age) developed macroscopic tumors in the 

pancreas, the intestine and in mammary glands. In contrast to undifferentiated pancreatic and 

intestinal tumors, mammary gland tumors were well differentiated and composed of ductal-

like and myoepithelial-like structures. Interestingly, mammary gland tumors were positive for 

nuclear Estrogen- (ERα) and Progesterone- (PR) receptors. Accordingly, primary cell cultures of 

K19-BCL9-2 tumors were dependent on Estrogen. Knockdown of BCL9-2 in MCF7 breast cancer 

cells lines led to a transient reduction of ERα (Esr1) and ERα target gene expression, indicating 

a regulatory role of BCL9-2 in Estrogen receptor signaling. Interestingly, MCF7 cells contain no 

transcriptionally active ß-catenin although BCL9-2 is highly expressed. This suggests a novel ß-

catenin-independent mechanism (Zatula and Brembeck, unpublished).  

1.4. Transcriptional regulatory mechanisms 

The complex regulation of gene expression is accomplished by the collective activity of diverse 

transcriptional regulatory proteins. Transcription factors (TF) modulate the action of RNA 

polymerases through binding to specific cis-regulatory sequences within the promoter of a 

gene (Matsui et al., 1980;Segall et al., 1980).  

1.4.1 Basal transcriptional regulatory mechanisms  

1.4.1.1 Basal transcriptional activation 

To initiate gene transcription RNA polymerase II requires the binding of specific transcription 

factors to attach to core promoter regions. The pre-initiation complex (PIC), consisting of 

general transcription factors (GTFs), transcription factor II D (TFIID) and polymerase II 

subsequently initiates transcription supported by variable co-factors (for example, see 1.4.2 

and 1.4.3)(Blackwood and Kadonaga, 1998). Commonly, eukaryotic genes such as CDX1 harbor 

a transcription initiation site located in a region of approximately -30bp from the transcription 

start (TS) site, called canonical TATA box that binds the pre-initiation complex PIC trough 

transcription factor II D (Burley and Roeder, 1996;Nikolov et al., 1996;Suzuki et al., 2001). 
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However, approximately 76% of all human promoters transcribed by RNA polymerase lack 

TATA-like elements (TATA-less promoters) and even initiator elements (Weis and Reinberg, 

1992). Initiator elements, downstream core promoter elements (DPE) and TBIID recognition 

element (BRE) comprising the transcription start site and are able to facilitate the binding of 

TBP in TATA-less promoters with or without the participation of additional cis-acting elements  

(Bucher, 1990;Javahery et al., 1994;Smale and Baltimore, 1989) (Figure 5). Among others, 

motifs corresponding to specificity protein 1 (SP1) binding sites can be present instead of TATA 

or initiator elements and are therefore enriched in TATA-less promoters.  

 
 
Figure 5: Transcriptional enhancers cooperating with the pre-initiation complex and initiating gene 
transcription through a variety of core promoters 
The pre-initiation complex (PIC) and additional transcriptional enhancers participate in RNA polymerase 
II mediated transcription by binding to core promoter elements. Each of the regulatory elements is 
present in a subset of core promoters in different distributions, as indicated. (adapted from Blackwood 
et al., 1998)  

 

1.4.1.2 Transcriptional activation through Specific protein (SP) transcription factors in 
normal homeostasis and tumorigenesis 

SP proteins belong to the family of SP/KLF transcription factors and can either enhance or 

repress the transcription of target genes. The family of SP/KLF factors includes the SP proteins 

(SP1 to SP9) and the krüppel-like factors (KLF1 to KLF16) (Simmen et al., 2010; Black et al., 

2001; Suske, 1999). The different family members have been shown to preferentially, but not 

exclusively bind to different sequence motifs. Accordingly, KLFs prefer CACCC-boxes (Shields 

and Yang, 1998), whereas SPs preferentially bind to GC-boxes (Suske, 1999). SP motifs are 

frequently present in CpG islands (see 4.2.1) which are often un-methylated, GC-rich 
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sequences (Adachi and Lieber, 2002). CpG islands are commonly overrepresented in cis 

transcription factors  (Brandeis et al., 1994). Moreover, binding of SP1 to GC-rich elements can 

activate gene transcription without or in combination with initiator elements (INR) in absence 

of any TATA or downstream core promoter elements (Smale et al., 1989;Smale et al., 1990) 

(Figure 5). 

SP1 was one of the first identified basal mammalian transcription factor (Kadonaga et al., 

1987). SP1-knockout mice are early embryonic lethal at E10.5. In contrast, knockout of its 

closest relative, SP3, causes postnatal death (Kruger et al., 2007). SP1 and SP3 share over 90% 

DNA sequence homology in their DNA binding domain which consists of three adjacent 

Cys2His2-type zinc fingers (Suske et al., 2005). SP1 and SP3 have different isoforms, which are 

generated through alternative splicing of SP1 and alternative translational initiation sites in 

SP3 (Li et al., 2004;Sapetschnig et al., 2004). SP1 and the longest SP3 variant contain two trans-

activation domains (AD1 and AD2) and a domain, which is used for synergistic activation (SAD). 

In contrast to SP1, SP3 contains an additionally inhibitory domain (ID) (Figure 6). In addition, 

both transcription factors are post-translationally modified. SP1/3 can be sumoylated - which 

represses SP1 activity - or acetylated and phosphorylated, which results in increased 

transcriptional activity (Li and Davie, 2010;Li et al., 2004). 

 
Figure 6: Schematic overview about the protein structure and modification motifs of SP1 and SP3  
SP1 and SP3 contain an SP-box, a highly conserved DNA-binding domain consisting of three Zink-fingers 
two trans-activation domains (AD) and a C-terminal synergistic activation-domain (S-AD). In addition, 
SP1 contains an inhibitory-domain. (adapted from Bouwman et al., 2002) 

SP1 and SP3 can either induce or inhibit gene transcription, in dependency on their protein 

variant and post-translational modification. To this end, SPs directly interact with proteins in 

the pre-initiation complex and other nuclear cofactors which comprise the basal transcription 

factors and consequently initiate transcription. SP1-binding sites are commonly present in the 

promoters of TATA-less house-keeping genes such as acetyl-CoA synthetase 1 (Ikeda et al., 

2001;Lin et al., 1996;Zhu et al., 2008). SP1 and SP3 target gene products are involved in 

processes such as differentiation and cell cycle progression (Davie et al., 2008). Moreover, 

overexpression of SP1 proteins in colon-, breast-, pancreatic- and gastric- and lung -cancers (Li 

et al., 2010) results in increased expression of tumorigenesis-related genes. SP1 was shown to 
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interact with several transcription factors such as SMAD2/3/4 (Feng et al., 2000), wild-type or 

mutated p53 (Schavinsky-Khrapunsky et al., 2003) and OCT1 (Strom et al., 1996), respectively. 

For example, in breast cancer cells SP3 plays a role for the ERα dependent trans-activation of 

the promoter of the vascular endothelial growth factor receptor 2 (VEGFR2) (Higgins et al., 

2006a;Higgins et al., 2006b). In addition, transcription of VEGF is regulated by SP1 in 

pancreatic tumors (Safe and Abdelrahim, 2005). Moreover, it has been shown that 

mithramycinA mediated inhibition of SP1 expression is correlated with anti-angiogenic effects 

in human pancreatic cancers, suggesting that SP1 might be a useful therapeutic target (Jia et 

al., 2007;Yuan et al., 2007). 

1.4.2 Mechanisms of ß-catenin dependent transcriptional regulation of Wnt/ß-

catenin target genes 

Upon Wnt-stimulation, ß-catenin trans-locates to the nucleus (see 1.1.1) and binds to LEF/TCF 

transcription factors (Behrens et al., 1996). LEF/TCF transcription factors require specific 

consensus sequences in the promoters of target genes, also known as Wnt responsive 

elements [(a/t)(a/t)CAA(a/t)G] (Roose and Clevers, 1999). The LEF/TCF transcription factor 

family consists of LEF1, TCF1 (TCF7), TCF3 (TCF7L1) and TCF4 (TCF7L2). Of note, phenotypic 

rescue experiments revealed that the function of LEF/TCFs is not redundant (Mao and Byers, 

2011). Moreover, also opposite effects of the transcription factors had been determined; TCF3 

mainly, but not exclusively, acts as a repressor, while LEF1 primary exerts transcriptional 

activatory functions (Yi et al., 2011). In addition, LEF/TCFs are expressed in diverse isoforms. 

Dependent on the experimental system and isoform which is used, TCF1 and TCF4 exert dual 

functions (Mao et al., 2011).  

Binding of ß-catenin displaces repressors like Groucho/TLE which subsequently promotes the 

interaction of ß-catenin with the TATA-binding protein (TBP) and the basal transcription 

machinery (see section 1.4.1.1)(Bauer et al., 1998;Daniels et al., 2005). The activation of ß-

catenin-dependent gene transcription additionally requires the de-condensation of chromatin 

(Figure 7). Therefore, chromatin remodeling factors have been identified which bind to ß-

catenin (Novak and Dedhar, 1999), such as the histone acteylase CBP/p300 (CREB-binding 

protein)(Greaves et al., 1999), histone methyltransferase MLL2 (mixed-lineage-leukemia 

2)(Willert and Jones, 2006) and BRG-1 (brahma related gene 1) which is a component of a 

nucleosome remodeling complex (Barker et al., 2001). In addition, ß-catenin binds to DNA 

helicasess such as Pontin52 (Pon) via its armadillo repeats (Bauer et al., 1998), which further 

http://www.ncbi.nlm.nih.gov/pubmed/17973266
http://www.ncbi.nlm.nih.gov/pubmed/17973266
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supports the transcriptional activation of ß-catenin target genes (Figure 7). Co-factors, such as 

BCL9 and Pygopus, additionally promote the transcriptional activity (see 1.4.4). 

Without Wnt-stimulation, ß-catenin is degraded and the expression of target genes is 

transcriptionally inhibited by different mechanisms (Figure 7). TCF transcription factors reside 

in the nucleus, bound to the promoters of target genes. Thus, in the absence of ß-catenin, TCFs 

act as transcriptional inhibitors (Gregorieff and Clevers, 2005;Gregorieff et al., 2004). 

Transcriptionally inactive TCFs bind to repressive nuclear factors such as Groucho/TLE (Cavallo 

et al., 1998;Levanon et al., 1998), which then recruit histone deacetylases such as HDAC1 

(Chen et al., 1999). De-acetylation of histones subsequently results in condensation of the 

chromatin which represses transcription.  

 
Figure 7: Transcriptional regulation of Wnt/ß-catenin target genes  
(A) Transcriptionally active ß-catenin binds to LEF/TCF and recruits the helicase Pontin52 (Pon) and 
different chromatin remodeling factors like BRG-1 or CBP and MLL2 (MLL) which acetylate (Ac) and 
methylate (Me3) histones, respectively. (B) TCF represses gene transcription in the absence of ß-catenin 
through the interaction with different co-repressors such as Groucho/TLE and CtBP which recruit 
chromatin remodeling factors like histone deacetylases (HDAC). Additionally, TCF is modified by CBP 
acetylases and Nemo phosphatases which inhibit binding to the DNA and ß-catenin, respectively. 
(adapted from Parker et al., 2007) 

Binding of CtBP to TCF leads to epigenetic chromatin modifications including histones de-

methylation through the interaction with additional co-repressors (C-terminal binding protein) 

(Arce et al., 2006;Brannon et al., 1999;Chinnadurai, 2002). In addition, modifications of TCF 

promote the repression of target genes. NLK/Nemo kinases inhibit the DNA-binding affinity of 

the transcription factor through phosphorylation of TCF (Ishitani et al., 2003). Moreover, CBP 

interacts with the TCF-DNA-binding domain (HMG-box) and acetylates TCF at its N-terminal ß-

catenin binding domain which prevents binding to ß-catenin and consequently the activation 

of transcription (Figure 7)(Waltzer and Bienz, 1998). 
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1.4.3. Crosstalk of LEF/TCF and SP1 in the transcriptional control of target gene 

expression 

A crosstalk between LEF/TCF transcription factors and the function of SP transcription factors 

has been described (Clements et al., 1996;Rossi et al., 2006;Sheridan et al., 1995;Thorpe et al., 

2005;Weidinger et al., 2005;Yamaguchi et al., 1999).  

During central nervous system development Wnt/ß-catenin signaling activates the expression 

of SP5, which appeared to repress the transcriptional activation of SP1 target genes (Fujimura 

et al., 2007).  

Moreover, SP5 and the homologue SP5like mediate the function of Wnt8 in neuroectoderm 

and mesoderm patterning during zebrafish gastrulation (Thorpe et al., 2005;Weidinger et al., 

2005). In mouse primitive steak and tailbud development Wnt responsive elements act in 

cooperation with SP1 binding sites in the promoter of T (Brachyury) to activate the expression 

of this gene (Clements et al., 1996;Yamaguchi et al., 1999). In addition, in vitro analyses 

suggest that LEF1 dependent transcription of the HIV-1 promoter requires the participation of 

SP1 in Jurkat T cells (Sheridan et al., 1995). However, in human astrocytic cells TCF4 decreases 

the SP1 mediated transcription of the HIV-1 promoter through the prevention of SP1-DNA 

association. In this regard, interaction of TCF4 and SP1 leads to de-phosphorylation of SP1, 

which results in inhibited transcriptional activity (Rossi et al., 2006). 

The interaction of SP1 and LEF/TCF transcription factors and their modulation of each other’s 

transcriptional functions had been described in many different systems (Clements et al., 

1996;Pesce et al., 1999;Rossi et al., 2006;Sheridan et al., 1995;Thorpe et al., 2005;Weidinger et 

al., 2005;Yamaguchi et al., 1999). The influence of SP1 on the function of TCF and LEF 

transcription factors differs in dependence of the genetic background. However, the authors 

pointed, that the specific functions of these interactions are highly context dependent (Rossi et 

al., 2006;Sheridan et al., 1995). Thus, the consequence of an interaction of SP and LEF/TCF 

could differ in dependence of the molecular background.  
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1.4.4 Transcriptional regulatory mechanism of Wnt/ß-catenin target genes by the 

BCL9 and Pygopus co-factors  

In addition to basal transcriptional regulators and chromatin remodeling factors, the 

transcription of Wnt/ß-catenin target genes requires the co-activation by BCL9 and Pygopus 

proteins.  

Nuclear ß-catenin, bound to LEF/TCF, interacts with BCL9/BC9-2, which further recruits 

Pygopus1/2 proteins (Figure 8)(Belenkaya et al., 2002;Kramps et al., 2002). Studies in 

Drosophila suggested that BCL9/Legless functions as an adaptor protein which mediates the 

recruitment of Pygopus to the basal transcriptional machinery. However, many studies 

demonstrated, that BCL9 and BCL9-2 themselves act as transcriptional co-activators in 

vertebrates (Adachi et al., 2004;Brembeck et al., 2011;Deka et al., 2010;Sustmann et al., 2008). 

In this regard, the C-terminus of the BCL9 proteins was shown to be essential for their co-

activatory function, although the underlying mechanism is still unknown (Adachi et al., 

2004;Sustmann et al., 2008). In contrast, Pygopus mediated transcriptional activity has been 

studied in more detail:   

 
Figure 8: BCL9/Pygopus dependent transcriptional activation of Wnt/ß-catenin target genes 
LEF/TCF transcription factors bind to ß-catenin, which is recruited by BCL9/Legless through its ß-catenin 
binding domain (bcat-BD). The Pygopus binding domain (Py-BD) of BCL9/Legless recruits Pygopus which 
is bound to the MLL2 methyltransferase through its PHD domain (PHD). Pygopus’ NHD domain binds to 
CBP/p300 acetyltransferase which additionally interferes with ß-catenin which consequently activates 
gene transcription. (adapted from Andrews et al., 2009) 

Pygopus proteins modulate transcription through their C-terminal PHD plant homeo-domain 

(PHD) zinc finger motif and through their N-terminal homology domain (NHD). The PHD 

interferes with MML2 histone methyltransferases (HMT) which promotes transcription 

through trimethylation of histone 3 lysine residues (H3K4Me3) (Chen et al., 2010;Gu et al., 

2009). In addition, Pygopus 2 had been shown to bind to the histone acetyltransferase 
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CBP/p300 (CREB binding protein). This interaction might promote the acetylation of histone 3 

which subsequently results in de-condensation of chromatin and therefore transcriptional 

activation of Wnt/ß-catenin target genes (Figure 8)(Andrews et al., 2009).  

Interestingly, previous studies from our group indicated, that not all BCL9-2 dependent Wnt/ß-

catenin target genes require the participation of Pygopus proteins. Consequently, BCL9-2 

possibly co-activates the expression of Wnt/ß-catenin target genes independently of Pygopus 

interaction.  
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2 Aim of this work 

The role of BCL9/Legless and Pygopus in Drosophila has been well described. However, little is 

known about the role of the BCL9 and Pygopus proteins in vertebrates. Our group has 

previously identified BCL9-2, the orthologue of BCL9/Legless, which also acts as a co-activator 

in the canonical Wnt/ß-catenin pathway. This study was carried out in regard to the function of 

BCL9 and Pygopus proteins 2 proteins during intestinal carcinogenesis. This work presented 

here will focus on the function of the BCL9 proteins 

The aim of this study was to investigate the role of BCL9 and Pygopus proteins in intestinal 

homeostasis and during intestinal carcinogenesis. De-regulation of BCL9-2 in tumors might be 

further associated with de-regulation of other genes, which may contribute to tumor 

development and progression. We hypothesize that BCL9-2 in vertebrates acts not as a general 

enhancer of Wnt/ß-catenin-dependent transcription, but rather regulates a specific subset of 

target genes, possibly also independent of Wnt/ß-catenin signaling by a ß-catenin independent 

mechanism. 

To address the role of BCL9 proteins during the multistep-model of intestinal tumorigenesis, 

the expression of BCL9/BCL9-2 was examined in normal, intestinal epithelia and during 

different stages of carcinogenesis using immunohistochemistry. In addition, adenoma 

formation of K19-BCL9-2/APCMIN/+ compound mutant mice was followed to investigate the 

influence of BCL9-2 overexpression on tumor development.   

We further investigated the specific gene signature that is induced by the BCL9 and BCL9-2 co-

activators in comparison to known Wnt/ß-catenin target genes. To this end, qPCR, Luciferase 

reporter gene assays and microarray analyses were performed following knock down of the 

proteins. 

In addition, this study addressed the regulatory mechanism concerning BCL9-2 mediated 

transcriptional regulation. A model system was used to dissect the ß-catenin-dependent and -

independent functions of BCL9-2. For this purpose, two Luciferase-reporters containing the 

proximal promoter of a BCL9-2/ß-catenin-dependent- and a ß-catenin independent- BCL9-2 

target gene were studied in detail. Finally, transcription factor binding elements which were 

present in both promoters were mutated. The activity of mutated Luciferase-reporters was 

analyzed in colon cancer cell lines following knockdown of BCL9-2. To identify a transcription 

factor that acts as putative BCL9-2 interaction partner from mediating a ß-catenin-

independent co-activatory function of BCL9-2 co-immunoprecipitations were performed. 
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3 Materials and Methods 

Unless stated otherwise, standard protocols were followed (Michael R.Green and Joseph 

Sambrook, 2012). Likewise, standard buffers and solutions were prepared and used as 

described in Sambrook, 2012. 

3.1 General materials and chemicals 

Disposables and basic material (Table 1), instruments and equipment (Table 2), chemicals and 

reagents (Table 3), commercial kits (Table 4), enzymes (Table 5) as well as antibodies (Table 6, 

Table 7 and Table 8) were obtained from the manufactures listed below. 

Table 1: Disposables and basic material 

Materials manufacturer 

Cryovials Nunc  

Culture plates (50 mm and 100 mm ) Nunc  

Cuvettes Roth 

Filters for solutions (0.2 μm and 0.45 μm) Sartorius 

Flasks for cell culture (75 cm2 and 175 cm2) Sarstedt 

Gloves (nitrile, latex) Sempermed 

Hybond-P PVDF membrane GE Healthcare 

Hypodermic needle (23 G) Braun 

Parafilm Pechiney Plastic Packaging 

Pasteur pipettes Peske OHG 

Petri dishes Falcon 

Pipette filter tips (10, 200 and 1000 μl) Biozym 

Pipette tips (10, 200 and 1000 μl) MbP 

Pipettes (2, 5, 10 and 25 ml) Eppendorf 

Plates for cell culture (6-well, 24-well and 96-well) TPP, Nunc 



MATERIALS AND METHODS 

22 
 

Scalpels  Technic cut 

Tubes for cell culture (polypropylene, 15 ml and 50 ml) Falcon 

Tubes for cell culture (polystyrene, 15 and 50 ml) Falcon, Sarstedt 

Tubes for molecular biology, Safelock (1.5 ml and 2 ml) Eppendorf, Sarstedt 

Whatman paper Whatman 

freezing boxes for cell cultures Nalgene 

Table 2: Instruments and equipment 

Instrument manufacturer 

Camera DC 300 FX/Camera DFC 290 Leica 

Cell counting chamber Neubauer Brand 

Cell culture incubator BBD 6220 Heraeus 

Cell culture sterile bench LaminAir HB 2448 Heraeus 

Refrigerated Microcentrifuge  Eppendorf 

Microcentrifuge Eppendorf 

Refrigerated Bench-Top Hood Centrifuge Eppendorf 

Microcentrifuge MCF 2360 MS Co. LTD 

Controlled-freezing box Nalgene 

Electrophoresis chambers for agarose gels Peqlab 

Electrophoresis chambers for SDS-PAGE BioRAD 

ELISA Reader SUNRISE A-5082 TECAN 

Freezer (-150 °C) Ultra low temperature freezer MDF-
C2156VAN 

Sanyo 

Freezer (-20 °C) PremiumNoFrost Liebherr 

Freezer (-80 °C) Ultra low temperature freezer U725 New Brunswick Scientific GmbH 

Fridge (+4 °C) Electrolux SANTO AEG 

Gel documentation BioDocAnalyze Biometra 

Heating block - Thermostat plus Eppendorf 
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Ice machine ZBE 70-35 Ziegra 

Incubator Memmert 

Multimode Reader TriStar LB 946  Berthold 

Micropipettes (2, 10, 100, 200, 1000 µl) Eppendorf 

Microscope DM 500 Leica 

Microscope inverted DM IRB Leica 

Microwave oven Powerwave 

PCR cycler T3 Thermocycler Biometra 

Pipetting assistant MATRIX Thermo Scientific 

Power supplier EV231 Peqlab 

Printer Mitsubishi 

Pump VDE0530 Adam.Baumüller GmbH 

7900HT Fast Real-Time PCR System Applied Biosystems 

Rotator GLW 

IKA- Shaker  MTS4 W.Krannich GmbH+Co.KG 

Sonifier Dr. Hielscher GmbH 

Spectrophotometer ND-1000 NanoDrop 

Stereomicroscope MZ FL III Leica 

Transilluminator UV Star Biometra 

UV lamp EBQ100 isolated Leica 

IKA ® Vortex IKA 

Water bath GFL 1003 W.Krannich GmbH+Co.KG 

Water purification system Millipore 

Western Blot Documentation LAS-4000 Fujifilm 

Wet Transfer Apparatus Biorad 

Shaker for bacteria Sartorius 

NanoDrop-Spektrophotometer Thermo Scientific 
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Inkubator BBD 6220 Thermo Scientific 

Rotator RM5 Assistant 348 

Table 3: Chemicals and reagents 

chemical/reagent manufacturer 

Acetic acid Roth 

Agarose Invitrogen 

APS (Ammonium persulfate) Roth 

benzyl-coelenterazine SYNCHEM 

Bradford reagent BioRAD 

BrdU (Bromdesoxyuridin) Roche 

Bromphenol Blue Roth 

Chloroform Roth 

Collagen Sigma 

Collagenase/Hyaluronidase Cocktail Stemcell 

D(+)-trehalose dihydrat  Roth 

DAPI (4',6-diamidino-2-phenylindole) Sigma 

DEPC (diethyl pyrocarbonate) Roth 

Dexamethasone Sigma 

Dispase Sigma 

D-Luciferin potassium salt, 99% Synchem 

DMEM  GlutaMAX™ Invitrogen 

DMSO (dimethyl sulfoxide) Roth 

DTT (DL-Dithiothreitol) Sigma 

EDTA (ethylenediaminetetraacetate) Roth 

EGTA (ethylene glycol tetraacetic acid) Roth 

EtBr (ethidium bromide) Roth 
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Ethanol Chemie Vertrieb Hannover 

FBS (Fetal bovine serum) Invitrogen, Sigma 

GeneRuler™ 1 kb DNA Ladder Fermentas 

Glycerol Sigma 

Glycine Roth 

H2O2  (Peroxygen) Roth 

HCl (Hydrochloric acid) Roth 

HEPES Roth 

Immu-Mount ThermoScientific 

Isopropanol J.T.Backer 

KAlS2O2 • 12H2O (Potassium aluminium sulfate) Sigma 

KCl (potassium chloride) Sigma 

L-glutamine Invitrogen 

Lipofectamin 2000 Invitrogen 

Luminol Sigma 

Methanol J.T.Backer, Merck 

MgCl2 (Magnesium chloride) Roche 

MgSO4 (Magnesium sulfate) Roth 

Na2SO4 (Sodium sulfate) Roth 

Na4PPi  (Sodium pyrophosphate) Roth 

NaCl (Sodium chloride) Roth 

NaHCO3 (Sodium hydrogen carbonate) Merck 

NaOH (Sodium hydroxide) Sigma 

Nicotinamid Sigma 

Nonidet-P40 (NP40)  Sigma 

Opti-MEM® Invitrogen 

PageRuler™ Prestained Protein Ladder Invitrogen 



MATERIALS AND METHODS 

26 
 

p-Coumaric acid Sigma 

Penicillin / streptomycin Invitrogen 

PFA (Paraformaldehyde) Merck 

phenyl-benzothiazole City Chemicals 

PMSF (Phenylmethanesulfonylfluoride) Sigma 

Polyacrylamide (30% Acrylamide / Bis) Roth 

Powdered milk Roth 

Protease Inhibitor cocktail tablets, EDTA free Roche 

restriction buffer O Fermentas 

restriction buffer R Fermentas 

restriction buffer XXX Fermentas 

RNA sample buffer Fermentas 

RNase Inhibitor Fermentas 

Roti®-Histokitt Roth 

Roti®-Phenol/Chloroform/Isoamylalkohol Roth 

SDS (Sodium dodecyl sulfate) Sigma 

Streptavidin-biotinylated HRP GE Healthcare 

SYBR GREEN I Sigma Aldrich 

TEMED (N,N,N′,N′-Tetramethylethan-1,2-diamin) Roth 

Tris Roth 

Triton X-100 Sigma 

Trypan blue Sigma 

Tween 20 Sigma 

Xylene Cyanol Roth 

Xylol Roth 

β-Mercaptoethanol Roth 

Dako EnVision Kit DAKO 
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Glycerin Roth 

Ampicillin Roth 

Bacto yeast extract Roth 

CaCl2 (Calcium chloride) Sigma 

Bacto tryptone Becton Dickinson  

Agar-agar Roth 

5 x Passive lysis buffer Promega 

A-Sepharose Sigma-Aldrich 

Flag-M2 Agarose from mouse Sigma-Aldrich 

Table 4: Commercial kits 

System manufacturer 

CloneJET™ PCR Cloning Kit Fermentas 

Fast Start Taq DNA Polymerase (dNTPs pack)  Roche 

GeneJET™ Gel Extraction Kit Fermentas 

Plasmid Plus Midi Kit Qiagen 

Rapid DNA Ligation Kit Fermentas 

TRI Reagent RNA Isolation Kit Ambion 

GeneJET Plasmid Miniprep Kit Thermo Scientific 

SYBR Green Sigma-Aldrich 

Dako EnVision+ System HRP labeled Dako EnVision+ System HRP labeled 

Human 4 × 44 K design array 026652 Agilent Technologies 

RNA Spike-In Kit for One color Agilent Technologies 

Low RNA Input linear Amplification Kit Plus, One Color Agilent Technologies 
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Table 5: Enzymes 

Enzyme manufacturer 

coenzyme A AppliChem 

DNase I, RNase-free  Fermentas  

HindIII Fermentas 

HOT FIREPol DNA Polymerase Solis BioDyne 

Luciferin  SYNCHEM 

PstI Fermentas 

EcoRI Fermentas 

Phusion High-Fidelity DNA Polymerases Thermo Scientific 

Proteinase K  Roche 

Reverse transcriptase, MMLV-RT Fermentas 

RNase A  Roche 

Trypsin / EDTA Invitrogen 

XhoI Fermentas 

Shrimp Alkaline Phosphatase (SAP) Fermentas 

BigDye® Terminator v1.1 Cycle Sequencing Kit Applied Biosystems 

 

Table 6: Antibodies for Western Blots 

antibody origin dilution product no. source 

anti-Flag-HRP  mouse  1:500  A8592 Sigma  

anti-BCL9-2  rabbit  1:100  self-made 
self-made (Brembeck et 
al., 2011) 

anti-β-catenin  rabbit  1:1000  self-made 
self-made (Brembeck et 
al., 2011) 

anti-CypA rabbit 1:1000 2175S Cell Signaling 

anti-α-tubulin  mouse  1:10000  T9026 Sigma  
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anti-β-actin mouse 1:10000  A3853 Sigma 

anti-laminB1  goat  1:100  sc-6216 Santa Cruz  

anti-CDX2 rabbit 1:300 IHC-00126 Bethyl 

anti-rabbit IgG HRP goat 1:5000 111-035-144 
Jackson 
Immunoresearch 

anti-mouse IgG HRP goat 1:5000 115-035-062 
Jackson 
Immunoresearch 

Table 7: Antibodies for  immunohistochemistry (IHC) 

antibody origin dilution product no. manufacturer 

anti-bromodeoxyuridine rat 1:100 ab6326 Abcam 

anti-Flag rabbit 1:250 F7425 Sigma 

anti-ß-catenin rabbit 1:2000 self-made 
self-made (Brembeck et 
al., 2011) 

anti-EPHB2 goat 1:300 AF467 R&D Systems 

anti-EPHB3  goat 1:300 AF432 R&D Systems 

anti-EPHB4 goat 1:300 AF446 R&D Systems 

anti-Bambi rabbit 1:250 self-made 
self-made (Brembeck et 
al., 2011) 

anti-mouse IgG Cy2 donkey 1:500 715-226-150 
Jackson 
Immunoresearch 

anti-rabbit IgG Cy3 donkey 1:1000 711-166-152 
Jackson 
Immunoresearch 

anti-panCK      mouse   1:300 C2562 Sigma 

anti-αSMA  rabbit   1:1500   A2547   Sigma 

anti-Cleaved caspase 3 rabbit 1:50 9661L Cell Signaling 

anti-rat Biotin IgG goat 1:100 B7139 Sigma 
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Table 8: Antibodies for Immunoprecipitation (IP) 

antibody origin dilution product no. manufacturer 

anti-BCL9L (BCL9-2) rabbit  A303-152A Biomol/Bethyl 

anti-SP1* rabbit 1:1000 07-645 millipore 

anti-PYGO2* rabbit 1:1000 self-made 
self-made          
(Brembeck et al., 2011) 

* also used for Western Blot  

3.2 Oligonucleotides and siRNA 

Oligonucleotides were synthesized by ©IBA, Göttingen (Table 9 to Table 12). Restriction site 

sequences were introduced close to the 5’ end of primers used for cloning applications to flank 

the resulting product with restriction sites, if required. Oligonucleotides for quantitative real-

time PCR were designed using PrimerQuestSM (Integrated DNA Technologies, Inc) or 

NCBI/Primer-BLAST, respectively. Primers were designed to span exon junctions when possible 

and to target all isoforms of one gene, if necessary and possible. The primer specificity was 

verified by nucleotide BLAST® from NCBI. Self-dimerization, hetero-dimerization and hairpin 

structures of the oligos were analyzed using OligoAnalyzer 3.1 (Integrated DNA Technologies, 

Inc). 

ON-TARGETplus siRNAs were obtained from Dharmacon, Bonn (Table 13). 

Table 9: Oligonucleotides for mutagenesis PCR 

oligonucleotide/target forward primer sequence (5’-3’) 

-386bp hCDX1 XhoI for ACTCGAGGTGAAGTTGGCCTAGAATCCCC   

+73bp hCDX1 HindIII rev GATAAGCTTGCTGGGCCCTGGAGC 

-386bp hCDX1 XhoI -367bp BCL9 mt for TAGCTCGAGGTGAAGTTGGCAGTGAATCCC 

hCDX1 -112bp NFĸB mt for CGACGGGTAGACCCCTTTGATTCG 

hCDX1 -112bp NFĸB mt rev CGAATCAAAGGGGTCTACCCGTCG 

hCDX1 -105bp TCF4 mt for GTTTCCCCAGCTGATTCGCGG 
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hCDX1 -105bp TCF4 mt rev CCGCGAATCAGCTGGGGAAAC 

hCDX1 -66bp OCT4 mt for CCGCTTTGAAATAGCAACCCGCCTC 

hCDX1 -66bp OCT4 mt rev GAGGCGGGTTGCTATTTCAAAGCGG 

hCDX1 -74bp TCF4 mt for CTTCCCCCCGAGCTGAAATGC 

hCDX1 -74bp TCF4 mt rev GCATTTCAGCTCGGGGGGAAG 

hCDX1 -8bp SP1-B for TGGGTGGGGCAAGCGCGGC 

hCDX1 -8bp SP1-B rev GCCGCGCTTGCCCCACCCA 

hCDX1 -137bp SP1-A for CTTTTGAACCCCTTGCCCCCGAC 

hCDX1 -137bp SP1-A rev GTCGGGGGCAAGGGGTTCAAAAG 

-456bp hCDX2 XhoI for TAGCTCGAGGCCCGTTTCCAAACCCAGCTTC 

+142bp hCDX2 HindIII rev GTAGGAGATCTTCTAGAAAGATAAGCTTGCTGC 

hCDX2 -367bp LEF mt for TGATTTCATTAGCTGAACCTGTGATTGG 

hCDX2 -367bp LEF mt rev CCAATCACAGGTTCAGCTAATGAAATCA 

hCDX2 -234bp OCT4 mt for TCCCCTTTATCTTTTAAAATTAGAATTATGTTTCGAG 

hCDX2 -234bp OCT4 mt rev CTCGAAACATAATTCTAATTTTAAAAGATAAAGGGGA 

hCDX2 -219bp BCL6 mt for TTAAAATGCAAATTATGAGCAGCGGGTTGTGCGTA 

hCDX2 -219bp BCL6 mt rev TACGCACAACCCGCTGCTCATAATTTGCATTTTAA 

hCDX2 -170bp SMAD mt for ACGTCTCCAACCATTGGTGAGCGTGTCATTACTAATA 

hCDX2 -170bp SMAD mt rev TATTAGTAATGACACGCTCACCAATGGTTGGAGACGT 

hCDX2 -258bp NFĸB mt for CCTCTCACGAGCCAGACTCCCCTTTATCTT 

hCDX2 -258bp NFĸB mt rev AAGATAAAGGGGAGTCTGGCTCGTGAGAGG 

hCDX2 +95bp SMAD4 mt for TGGGGCGCATGAACCCGCCGCT 

hCDX2 +95bp SMAD4 mt rev AGCGGCGGGTTCATGCGCCCCA 

hCDX2 -133bp CDX2 mt for TCTTGTAAACACTCGTTCCTCACGGAAGG 

hCDX2 -133bp CDX2 mt rev CCTTCCGTGAGGAACGAGTGTTTACAAGA 

hCDX2 -30bp SP1 mt for  GAAGAAAGGGATTGAGGGAGGAGGCAG 

hCDX2 -30bp SP1 mt rev CTGCCTCCTCCCTCAATCCCTTTCTTC 
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hCDX2 -266bp SP1 mt for  CTCTCACGAGCCTAACTCCCCTTTATC 

hCDX2 -266bp SP1 mt rev GATAAAGGGGAGTTAGGCTCGTGAGAG 

hCDX2 -89bp SP1 mt for  CCTGTGGCTTGTCTTCCAAGCCTCTGCAG 

hCDX2 -89bp SP1 mt rev CTGCAGAGGCTTGGAAGACAAGCCACAGG 

hCDX2 -121bp SP1 mt for  GTTAATCACGGAAGGCCGAAGGCCTGG 

hCDX2 -121bp SP1 mt rev CCAGGCCTTCGGCCTTCCGTGATTAAC 

hCDX2 +65bp SP1 mt for  GCAGCCACAAGCCGCTCCTCGAGATCT 

hCDX2 +65bp SP1 mt rev AGATCTCGAGGAGCGGCTTGTGGCTGC 

 

Table 10: Oligonucleotides for sequencing reactions of Luciferase constructs 

oligonucleotide/target primer sequence (5’-3’) reference/source 

pGL2Basic LUC intern rev  TGTAAAAGCAATTGTTCCAGGAACCAG self-made 

pGL3Basic rev CTTTATGTTTTTGGCGTCTTCCA  Promega 

pGL2Basic for TGTATCTTAAGGTACTGTAACTG  Promega 

pJET for CGACTCACTATAGGGAGAGCGGC Fermentas 

pJET rev AAGAACATCGATTTTCCATGGCAG Fermentas 

Table 11: Oligonucleotides for qPCR 

oligonucleotide/ 
target 

 forward and reverse primer sequences (5’-3’)  reference 

hAXIN2 
TCAAGTGCAAACTTTCGCCAACCG 

self-made 
TGGTGCAAAGACATAGCCAGAACC 

hBAMBI 
ATTCGATGCTACTGTGATGCTGCC 

self-made 
ATTCCAATGTGGGTATGGTGGTGC 

hBMP4 
TCTATGTGGACTTCAGCGATGTGG 

self-made 
AATTGACCAGGGTCTGCACAATGG 
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hCD44 
ATCCCTCGGGTGTGCTATGGATGG 

self-made 
CCTCAGTGGAAAGCAATGCCCAGG 

hCDX1 
TAAGACTCGGACCAAGGACAAGTACC 

self-made 
CTTGTTCACTTTGCGCTCCTTTGC 

hCDX2 
TGGAGAAGGAGTTTCACTACAGTCGC 

self-made 
TCTGGGACACTTCTCAGAGGACC 

hMYC 
TCTCCACACATCAGCACAACTACG 

self-made 
TGTGTTCGCCTCTTGACATTCTCC 

hEFNB3 
GGAGGTGGATGGTTCTTATTCTGTGG 

self-made 
ACATGGCAGTCATCTTAGCTGTCC 

hEFNB2 
TTTGCAGGGATTGCTTCAGGATGC 

self-made 
TTAGCGGGATGATAATGTCACTGGGC           

hEFNB1 
TGATGATGAGCAGGAAGATGACGC 

self-made 
ATGGCAAGCATGAGACTGTGAACC 

hEPHB2 
CGCCATCTATGTCTTCCAGGTGCG 

self-made 
CTCCGAGTCAGCACGCTCAAACC 

hEPHB3 
TGGTGCTGTCATAAAAGGGCAGGC 

self-made 
CCTTTATTCTGCTGTCGGCCCAGC 

hEPHB4 
GCCAGTGTCCAGCACATGAAGTCC 

self-made 
AAATTGCCAACTCCTCACCCCACG 

hLEF1 
ACCTCAGGTCAAACAGGAACATCC 

self-made 
AGTACACTCAGCAACGACATTCGC 

hTCF1 
GAACATTTCAACAGCCCACATCCC  

self-made 
ACCAGAACCTAGCATCAAGGATGG 

mBcl9-2 
AATCATGGCAAGACAGGGAATGGC 

self-made 
TCTTCAGACTTGAGTTGCTAGGCG 
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hCTNNB1            

(ß-catenin) 

TTCGAAATCTTGCCCTTTGTCCCG 
self-made 

AATTCGGTTGTGAACATCCCGAGC 

hACTB/hAcbt              

(ß-actin) 

ATAGCACAGCCTGGATAGCAACGTAC 
(West et al., 2004) 

CACCTTCTACAATGAGCTGCGTGTG 

hBCL9 
ACCACATAAAGTCCCAGGATTCCC 

self-made 
AAACACGTACACCACTTTGGCTGG 

hMSX2 
AAATCTGGTTCCAGAACCGAAGGG 

(Diecke et al., 2008) 
ATGGGAAGCACAGGTCTATGGAACG 

hSOX9 
CAGCGAACGCACATCAAGACGGA 

self-made 
GCTGGAGTTCTGGTGGTCGGTGTA 

hSOX6 
GCAACTACCACACCATCGCCTC 

self-made 
TAGGCTTCCGCCATCTGTCTTC 

hSOX4 
CCCGGACTACTGCACGCC 

self-made 
CGAGAACGCGGGCGAACGA 

hOCT4 
GAGAACCGAGTGAGAGGCAACC 

(Willems et al., 2006) 
CATAGTCGCTGCTTGATCGCTTG 

hCYPA 
CCCACCGTGTTCTTCGACAT  

(Murphy et al., 2003) 
CCAGTGCTCAGAGCACGAAA 

hSDNSF 
TCAACAAACCAGAGGCGGAGATGT 

self-made 
TTAGTGGTGCCTGTTCACTCCCTT 

hLGR5 
ACACATTGCCCTGTTGCTCTTCAC 

self-made 
TTTCTCAGGCTCACCAGATCCTCC 

hBCL9-2 
ATCCCTCCAAACCATAAAGCACCC 

self-made 
TGGAACTGGGCATTGCAAACTTGG 

hCCND1 

(CyclinD1) 

TGGTGAACAAGCTCAAGTGGAACC 
self-made 

ATGGAGGGCGGATTGGAAATGAAC 
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hPROX1 
AGAGCCTCCCATTACTCAGACCCG 

self-made 
TGGTCAGGCATCACTGGACGGT 

Table 12: Oligonucleotides for conventional PCR 

oligonucleotide/target primer sequence    (5’-3’)  

BCL9-2 intron-TG for CTGGTCATCATCCTGCCTTT self-made 

BCL9-2 exon1 for TCCTGGCTAACAAGACAAGG self-made 

BCL9-2 exon2 rev CTCTGAATCGAGGGATGGAG self-made 

MIN-wt for GCCATCCCTTCACGTTAG self-made 

MIN-wt rev TTCCACTTTGGCATAAGGC self-made 

MIN-mt for TTCTGAGAAAGACAGAAGTTA self-made 

ß-actin for TGGCACCACACCTTCTACAATGAGC self-made 

ß-actin rev GCACAGCTTCTCCTTAATGTCACGC self-made 

Table 13: ON-TARGETplus siRNA (Dharacon) 

siRNA/target ID-No. sequence    (5’-3’) 

ON-TARGETplus Non-targeting Pool 
 not provided 

Human CTNNB1 (ß-catenin) 

003482-09 GAUCCUAGCUAUCGUUCUU 

003482-10 UUAAUGAGGACCUAUACUUA 

003482-11 GCGUUUGGCUGAACCAUCA 

003482-12 GGUACGAGCUGCUAUGUUC 

Human BCL9L (BCL9-2) 

010858-05 GCUCAUGCCUUCACAGUUU 

010858-06 GAAAGCCUCCCUCGCAGUU 

010858-07 CACCCACAAUUGUAAUGUA 

010858-08 AACCAGAUCUCGCCUAGCA 
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Human BCL9 

007268-05 CUACUGAGUAGGCCAAUAA 

007268-06 CCAAAGUGGUGUACGUGUU 

007268-07 GCGGAAGCCCUUGGAUAUA 

007268-08 UUUGAUCUAUCCCGCAUUA 

3.3 Cell biology 

3.3.1 Bacterial strains 

For cloning procedures and plasmid preparation the chemo-competent E. coli strain One Shot® 

Top10F` (Invitrogen, Darmstadt) with the following genotype was used:  

F´{lacIq Tn10 (TetR)  mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 ΔlacX74 recA1 araD139 Δ(ara-

leu)7697 galU galK rpsL endA1 nupG. 

3.3.2 Cell lines and mouse strains 

Cell lines were obtained from ATCC and LGC (LGC Standards GmbH, Wesel) and listed in Table 

14. Utilized mouse strains are listed in Table 15. 

Table 14: Cell lines  

cell line Description 

SW480 
Colon cancer cell line established from a primary adenocarcinoma of the 
colon of a 50 years old Caucasian male (Leibovitz et al., 1976). 

SW620 
Colorectal adenocarcinoma isolated from the tissue (lymph node metastasis) 
of a 51 years old Caucasian male as was SW480 (Leibovitz et al., 1976). 

CACO2 
Colorectal adenocarcinoma cell line derived from a 72 years old Caucasian 
male (Fogh et al., 1977b). 

CT26 
N-nitroso-N-methylurethane-(NNMU), undifferentiated induced colon 
carcinoma cell line derived from BALB/c mice (Wang et al., 1995). 

HT29 
Epithelial colorectal adenocarcinoma cell line from a 44 years old Caucasian 
woman (Fogh et al., 1977a). 
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DLD1 
Epithelial colorectal adenocarcinoma derived from an adult female (Dexter 
et al., 1979). 

HCT116 
Colorectal carcinoma cell line obtained  from an adult male (Brattain et al., 
1981). 

WiDr 
Colon adenocarcinoma line from a 78 year old female, derivative of HT-29 
(Chen et al., 1987;Noguchi et al., 1979). 

SW48 
Colon cancer cell line established from a primary adenocarcinoma of the 
colon of a 82 years old Caucasian female (Leibovitz et al., 1976). 

Lovo 
initiated in 1971 from a fragment of a metastatic tumor nodule in the left 
supraclavicular region of a 56 years old Caucasian male patient with a 
adenocarcinoma of the colon (Drewinko et al., 1976). 

Ls174T 
variant of LS 180, which is a colorectal adenocarcinoma cell line from a 58 
years old Caucasian woman (Tom et al., 1976). 

HEK293 Human embryonic kidney cell line (Graham et al., 1977). 

MCF7 
Breast cancer cell line isolated in 1970 from a 69 years old Caucasian woman 
(Soule et al., 1973). 

Table 15: Utilized mouse strains 

mouse strain Description 

APCMin/+ 

Derived from an N-ethyl-N-nitrosourea (ENU) treated founder C57BL/6J 
mice, that induced a point mutation (T to A transversion of nucleotide 2549) 
in the APC gene. Already young mice are highly susceptible to spontaneous 
intestinal adenoma formation (Su et al., 1992). (Jackson Laboratories) 

K19-BCL9-2  

 

Transgenic mice express BCL9-2 under control of a K19 promoter in simple 
epithelia, including the intestine, mammary glands and pancreas (Brembeck 
et al., 2011). 
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3.4 Plasmids 

Table 16: Luciferase-reporter plasmids  

Plasmid source /reference 

ptkRenilla Promega 

TOPflash/FOPflash 
R.T Moon,  Seattle              
(Korinek et al., 1997) 

pGL2Basic  Promega 

pGL3Basic  Promega 

pGL3Basic -5,6kb Axin2  
F. Constantini, New York         
(Jho et al., 2002) 

pA3 LUC Cyclin D1 
R. Pestell, Philadelphia 
(Shtutman et al., 1999) 

pGL2Basic -3189bp CDX1 
J. Lynch, Philadelphia              
(Suh et al., 2002) 

pGL2Basic -386bp CDX1 
J. Lynch, Philadelphia             
(Suh et al., 2002) 

pGL2Basic -1434bp CDX2  
J. Lynch, Philadelphia 
(unpublished) 

pGL2Basic -456bp CDX2  
J. Lynch, Philadelphia 
(unpublished) 

pGL2Basic -281bp CDX2  
J. Lynch, Philadelphia 
(unpublished) 

pGL2Basic -386bp CDX1 -377BCL6-BS mt this work 

pGL2Basic -386bp CDX1 -122NFĸB-BS mt this work 

pGL2Basic -386bp CDX1 -113LEF-BS mt  this work 

pGL2Basic -386bp CDX1 -81OCT4-BS mt  this work 

pGL2Basic -386bp CDX1 -82LEF-BS mt  this work 

pGL2Basic -386bp CDX1 -82LEF-TF /-113LEF-BS mt this work 

pGL2Basic -386bp CDX1 –8SP1-BS mt this work 
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pGL2Basic -386bp CDX1 –137SP1-BS mt this work 

pGL2Basic -386bp CDX1 –8SP1-BS mt/-137SP1-BS this work 

pGL2Basic -456bp CDX2 -229BCL6-BS mt this work 

pGL2Basic -456bp CDX2 -373LEF-BS mt this work 

pGL2Basic -456bp CDX2 -240OCT4-BS mt this work 

pGL2Basic -456bp CDX2 -264NFĸB-BS mt this work 

pGL2Basic -456bp CDX2 -175Smad-BS mt this work 

pGL2Basic -456bp CDX2 +62Smad-BS mt this work 

pGL2Basic -456bp CDX2 -132CDX2-BS mt this work 

pGL2Basic -456bp CDX2  -30bp SP1-BS mt this work 

pGL2Basic -456bp CDX2 -266bp SP1-BS mt this work 

pGL2Basic -456bp CDX2 -89bp SP1-BS mt this work 

pGL2Basic -456bp CDX2 -121bp SP1-BS mt this work 

pGL2Basic -456bp CDX2 +65bp SP1-BS mt this work 

pGL2Basic -456bp CDX2 -30bp SP1-BS mt/-266 SP1-BS mt this work 

Table 17: Eukaryotic overexpression plasmids 

Plasmid source/reference 

pcDNA-flag Self-made (Brembeck et al., 2004) 

pcDNA-HA hOCT4 
S. Monecke / R. Dressel, Göttingen 
(unpublished)  

3.5 Buffers and solutions 

Standard buffers and solutions were prepared as described in (Michael R.Green et al., 2012). 

The compositions of additional buffers and solutions are listed in the corresponding method 

sections. For sterilization, solutions were autoclaved (120°C for 60 min, 2 bar) or filtrated with 

a 0.2 μm sterile filter. 

 



MATERIALS AND METHODS 

40 
 

3.6 Microbiology 

3.6.1 Cultivation and storage of E. coli 

For glycerin stocks and low scale plasmid preparations which required small volumes of E. coli 

bacterial suspensions 2 ml, for large scale plasmid preparations 250 ml LB medium was 

supplemented with Ampicillin antibiotics. E. coli bacterial suspensions were cultured o/n at 

37°C in an incubator shaker at 220 rpm. 

For long-term storage 700 μl E. coli suspension was vigorously mixed with 300 μl 100 % 

glycerin and stored at -80 °C. 

3.6.2 Generation of chemo-competent E. coli 

200 ml LB-medium was inoculated with 5 ml of an o/n E. coli suspension. The culture was 

incubated until an OD600 of 0.5 to 0.6 was reached. The bacterial suspension was incubated on 

ice for 10 min and afterwards centrifuged for 10 min at 4°C with 4600 rpm. The resulting 

pellets were resolved in 80 ml 100mM CaCl2 and incubated on ice for further 10 min. Following 

an additional centrifugation step E. coli pellets were resolved in 8 ml 100 mM CaCl2, 

supplemented with 600 µl glycerin and incubated on ice for 15 min. Aliquots of 100 µl 

competent bacterial suspensions were frozen in liquid nitrogen and stored at -80°C. 

3.6.2 Transformation of E. coli 

Plasmid DNA was introduced in E. coli bacteria using heat shock. Therefore, 10 µl ligation 

reaction was added to 50 µl of chemo-competent E. coli bacterial solution. Following 45 min of 

incubation on ice the transformation mix was set to 42°C for 60 s. After the solution was 

cooled down on ice 500 µl SOC medium were added and incubated at 37°C and 330 rpm for 60 

min. The mixture was then plated on LB agar plates and cultivated o/n at 37°C.  
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3.7 Molecular biology 

3.7.1 Isolation of nucleic acids 

3.7.1.1 Isolation of genomic DNA from tails of transgenic mice 

 Genomic DNA from mouse tails was used for genotyping transgenic mice. 2 mm of a severed 

mouse tail tip was lysed by adding 50 µl Lysis buffer followed by o/n incubation at 65°C and 

500 rpm. The mixture was diluted to a final volume of 500 µl and centrifuged with maximum 

speed. 1 to 2 µl supernatant was used for genotyping PCR (2.7.3.1). 

3.7.1.2 Isolation of total RNA  

Cells were seeded in 6-well plates (according to Table 18) for RNA isolation from cell cultures 

and transfected and incubated as described in 3.9.3.2. Cells were lysed by adding 1 ml TRI 

Reagent (Ambion, Darmstadt). For isolation of RNA from mouse tissues TRI Reagent was added 

to fresh tissues according to manufacturer’s instructions. Cells and tissues were frozen in liquid 

nitrogen for storage at -80°C or homogenized, respectively. Total RNA was isolated using the 

TRI Reagent RNA Isolation Kit according to manufacturer’s instructions. To avoid 

contamination of RNA with genomic DNA, RNA isolated from mouse tissues was digested with 

DNaseI (Fermentas, St. Leon-Rot) for 1.5 h according to manufacturer’s instruction. RNA was 

then purificated according to 3.2.2.2. The quality and quantity of RNA was determined using 

NanoDrop and Agarose gel electrophoresis. 

3.7.1.3 Isolation of plasmid DNA from E. coli 

Plasmid DNA was isolated from o/n E.coli bacterial suspensions (2.6.1). The GeneJET Plasmid 

Miniprep Kit (Fermentas, St. Leon-Rot) was used for cloning procedures, the Plasmid plus Midi 

Kit (Qiagen, Hilden) for isolation of large amount of plasmid DNA according to manufacturer’s 

instructions. DNA was dissolved in dH2O and stored at -20 °C. 

Lysis buffer  100 mM Tris-HCl pH 8.5, 5 mM EDTA pH 8.0, 200 mM NaCl, 0.2 % 

(w/v) SDS, 200 μg/ml Proteinase K  
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3.7.2 Purification and extraction of nucleic acids 

3.7.2.1 Extraction of nucleic acids from agarose gels 

DNA fragments were extracted and purified from agarose gels using the GeneJET™ Gel 

Extraction Kit (Fermentas, St. Leon-Rot) according to the manufacturer's instructions. 

3.7.2.2 Phenol chloroform extraction 

After DNase digestion (3.7.1.2) RNA solutions were purified from proteins and other 

contaminants using phenol chloroform extraction. Therefore 1 volume of RNA solution was 

consecutively mixed thoroughly with 1 volume phenol chloroform isoamylalcohol solution. The 

solution was centrifuged at 4°C with 10500 rpm and the aqueous phase was transferred into a 

new reaction tube. Phenol remains were removed by adding ammonium acetate to a final 

concentration of 2.5 M and precipitated with 100% Ethanol (70% final) and a subsequent 

washing step with 1.5 ml 70 % Ethanol. 

2.7.3 Amplification of nucleic acids 

2.7.3.1 Detection of genomic DNA and transcripts by Polymerase chain reaction (PCR) 

Genotypes of transgenic mice and the expression of transgenic BCL9-2 and ß-actin were 

examined by PCR using specific primers (Table 12) and the following cycling conditions 

 

for genotyping of K19-BCL9-2 mice, 

expression of  TG-BCL9-2 and ß-actin mRNA  

for genotyping of APCMIN/+  mice 

95°C   10 min 
95°C  30 s 
60°C  30 s            35 x 
72°C 150 s   
72°C  10 min 

95°C   10 min 
95°C  30 s 
45°C  30 s            40 x 
72°C 150 s   
72°C  10 min 

 

For analytical proposes a reaction was set up as follows:  

1x Taq buffer, 2.5 mM MgCl2, 0.2 μM primer each, 0.2 mM dNTPs each, 0.6 units FastTaq DNA 

Polymerase and in a final volume of 15 μl per reaction. 1 µl of genomic mouse tail DNA (see 

3.2.1.1) or 10 ng (for ß-actin) to 500 ng (transgenic BCL9-2) cDNA from mouse tissues (see 
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3.2.3.2.) were used as templates. Instead, addition of H2O was served as negative control. The 

resulting products were analyzed in 1 % agarose gels. 

3.7.3.2 Mutagenesis Polymerase chain reaction (mt-PCR) 

Single mutations were introduced in the promoters of Luciferase-reporters by mutagenesis 

PCR. Therefore forward and reverse oligonucleotides were used, which carry the final 

mutation. In a first step 2 PCR reactions were performed to introduce the mutated 

transcription factor binding site. To this end, forward mutagenesis primers and reverse primers 

targeting the 5’ end of the promoter were used. The second PCR reaction was performed with 

forward primers targeting the 3’ end of the promoter and reverse mutagenesis primers (Figure 

9A). In a second step the amplified products of step 1 were used as templates for PCR. In 

addition, forward primers targeting the 3’ - and reverse primers targeting the 5’ end of the 

promoter were added to amplify the final product (Figure 9B).  

 
 
Figure 9: Scheme of mutagenesis PCR to indroduce mutations in the promoters of CDX1 and CDX2. 

 

For preparative proposes Phusion polymerase was used, since this enzyme exhibits proof 

reading activity. Phusion driven reactions were set up as follows:  

1 x Phusion PCR buffer, 0.8 mM dNTP-Mix, 10 pmol primers each, 2 U Phusion polymerase and 

100 ng template in a final volume of 50 µl. 
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Cycle conditions for mutagenesis PCR were set as shown in the following. Thereby the melting 

temperature TM of the used oligonucleotides (Table 9) was calculated as described in 2.2 

95°C   10 min 

92°C  15 s 
50 °C  15 s            5 x 
72°C 30 s   

95°C  15 s 
60 °C  15 s            35 x 
72°C 30 s   

72°C  10 min 
 

2.7.3.3 Synthesis of copy DNA (cDNA) 

RNA samples were transcribed into cDNA for qPCR and PCR. To this end, the Reverse 

transcriptase (RT), MMLV-RT system (Fermentas, St. Leon-Rot) was used and adapted as 

described.  

For cDNA synthesis 2.5 µg RNA derived from cell cultures or 7.5 µg RNA isolated from mouse 

tissues were added to 3 pmol random hexamer primer in a total volume of 31 µl. 30 µl were 

used as cDNA sample, 1 µl was saved as –RT control. After an initial incubation of the samples 

at 65°C for 5 min the following master mix was added to a final volume of 60 µl: 1x MMLV 

RTase buffer, 20 mM DTT, 60 U RNase Out, 10 mM dNTPs, 150 U MMLV reverse transcriptase. 

The samples were subsequently incubated for 10 min at 25°C, followed by 60 min at 37°C and 

10 min at 70°C. The resulting cDNA was stored at -20°C. 

3.7.3.4 Quantitative real-time PCR (qPCR)   

Depending on the expression level of the transcript of interest 15 ng to 30 ng of cDNA was 

used per sample. The cDNA was added to 3 pmol oligonucleotides and 7,5 µl SYBRGreen PCR 

Master Mix to a final volume of 10 µl. To investigate the transcription of specific mRNAs 

oligonucleotides with and efficiency of 2 ± 0.08 and an annealing temperature of 60°C ± 1°C 

were used, which resulted in the following cycle conditions: 12 min 95°C, followed by 40 cycles 

of 30 s at 95°C, 30 s at 60°C, 30 s at 72°C and subsequently 10 min at 72°C. A melting curve was 

added consisting of an initial 95°C denaturation step for 15 s, followed by 60°C for 30 s and a 

gradually heating step to 95°C. 

SYBR Green PCR 

Master Mix 

75 mM Tris-HCl pH 8.8, 20 mM (NH4)2SO4, 0.01% Tween-20, 3 mM 

MgCl2, 0.2 mM dNTP’s, 20 U/ml HOT FIREPol DNA Polymerase, 0.25% 

TritonX-100, 500 mM D(+)-Trehalose Dihydrat, 1:80000 (v/v) Cybr 
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Green  

Finally, the relative expression of target genes was calculated by 2-∆∆Ct (Fleige et al., 2006). The 

composition of the SYBR Green PCR Master Mix was kindly provided by Prof. Dr. Steven 

Johnsen, Dept. of Molecular Oncology, Georg August University Göttingen, Germany. 

3.7.4 Molecular cloning 

The purified CDX1 and CDX2 promoter fragments generated by mutagenesis PCR (3.7.3.2) 

were digested using the added restriction sites XhoI and HindIII (3.7.4.1) and subsequently 

subcloned into pJET2.1 (Fermentas, St. Leon-Rot) (3.7.4.3). Finally, the promoter fragments 

were cloned from pJET2.1 into pGL2Basic. For CDX1 promoters, XhoI/HindIII were used, while 

for CDX2 promoter fragments XhoI was used. In parallel, pGL2Basic vectors were restricted 

with respect to their prospective insert and dephosphorylated. The linear fragments were 

separated from the vector backbone or non-digested vector remains, respectively, by gel-

electrophoresis and purified from the gels (3.7.2.1). After ligation (3.7.4.3) the successful 

insertion of the mutated CDX1 and CDX2 promoter fragments in pGL2Basic was finally checked 

by sequencing using the BigDye® Terminator v1.1 Cycle Sequencing Kit (Applied Biosystems, 

Carlsbad, California) according to manufacturer’s instructions using specific primers listed in 

Table 10 and test restriction (3.7.4.1). 

3.7.4.1 Restriction of nucleic acids with restriction endonucleases 

DNA-fragments and plasmids were restricted according to DoubleDigest™ standard protocols 

available from the Fermentas web page 

(http://www.thermoscientificbio.com/webtools/doubledigest/). CDX1 promoter containing 

pGL2Basic plasmids were resticted in R-buffer with EcoRI and XhoI, CDX2 promoter containing 

pGL2Basic vectors were restricted in O-buffer with EcoRI and XhoI (Fermentas, St. Leon-Rot). 

3.7.4.2 Dephosphorylation of nucleic acids 

Phosphate residues were removed from pGL2Basic vectors using calf intestine phosphatase 

(CIP). To this end, 10 U of Shrimp Alkaline Phosphatase (SAP) was added to 10 µg restriction 

digest and incubated for 60 min at 37 °C.  

3.7.4.3 Ligation of DNA fragments 

For sub-cloning of mutated CDX1 and CDX2 promoter fragments into pJET2.1 the CloneJET™ 

PCR Cloning Kit (Fermentas, St. Leon-Rot)  was used according to manufacturer’s instructions. 

http://www.thermoscientificbio.com/webtools/doubledigest/
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Digested and purified CDX1/CDX2 promoter fragments and pGL2Basic vectors were ligated 

using the Rapid DNA Ligation Kit (Fermentas, St. Leon-Rot). 100 ng vector DNA and 200 ng 

promoter fragments were incubated with 1 µl T4 Ligase in 1 x Rapid ligation buffer for 10 min 

at 22°C.  

The resulting ligation reaction was used for transformation of competent E. coli (3.6.2). 

3.7.5 Microarray analysis 

Biological triplicates of HCT116, SW480 and MCF7 cells were transfected with 2 specific siRNAs 

for ß-catenin, BCL9 and BCL9-2 knockdown and 4 unspecific non-targeting siRNAs as controls,  

with a final concentration of 50 nmol for 48h according to standard protocols. Extraction of 

RNA was performed using TRI Reagent (Ambion, Darmstadt) according to manufacturer’s 

instructions (3.7.1.2).  

cDNA synthesis, in vitro transcription, hybridization and initial analyses of expression data 

were performed in the “Transkritomanalyselabor” (TAL), Göttingen. cDNA synthesis and in 

vitro transcription (IVT) were performed according to the manufacturer's recommendation 

using "Low RNA Input linear Amplification Kit Plus, One Color" protocol  (Agilent Technologies, 

Böblingen) and the RNA Spike-In Kit for One color (Agilent Technologies, Böblingen). Global 

gene expression analysis was done using the Human 4 × 44 K design array 026652 (Agilent 

Technologies, Böblingen). Hybridizations were performed for 17 hours at 10 rpm and 65°C in 

the Hybridization Oven (Agilent Technologies, Böblingen). Cy3 intensities were detected by 

one-color scanning using an Agilent DNA microarray scanner at 5 micron resolution. Intensity 

data were extracted using Agilent's Feature Extraction (FE) software (version 10.7.3.1) 

including a quality control based on internal controls using Agilent's protocol GE1_107_Sep09. 

All chips passed the quality control and were analyzed using the Limma package (1) of 

Bioconductor (2).  
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3.8 Biochemistry 

3.8.1 Isolation of proteins from cell cultures 

3.8.1.1 Isolation of whole cell protein lysates for SDS-polyacrylamide gel electrophoresis 
(SDS-PAGE) 

Whole cell protein lysates were obtained from confluent cell cultures grown in 10 cm culture 

dishes. After 2 washing steps with ice-cold 1 x PBS, cells were lysed with 1 x RIPA buffer 

supplemented with protease inhibitors, harvested with a cell scraper and transferred into a 

new reaction tube. Lysates were centrifuged with maximum speed at 4°C after incubation on 

ice for 10 min. The supernatant was transferred into a new reaction tube and stored at -80°C 

or immediately used for SDS-PAGE.  

Protein concentrations were determined according to Bradford standard protocol (Bradford, 

1976). To the appropriate amount of protein, 4 x Laemmli probe puffer (LPP) was added. It was 

thenboiled for 5 min at 95°C and stored at -20°C. 

3.8.1.2 Isolation of nuclear and cytoplasmatic proteins for SDS-PAGE 

To separate nuclear and cytoplasmatic protein fractions, confluent cell cultures grown in 6 well 

culture plates were immediately lysed in 100μl of buffer A supplemented with protease 

inhibitors, scabbed off and transferred into a new reaction tube. After 15 min incubation on ice 

5µl of 10% NP40 were added. The samples were vortexed for 20 s and centrifuged for 2 min at 

3000 rpm at 4°C. An appropriate amount of 4 x LPP was added to the supernatant containing 

the cytoplasmatic fraction. The remaining nuclear pellet was resuspended in 60 μl ice-cold 

buffer C (supplemented with protease inhibitors) and incubated for 15 min at 4°C while 

rocking. After centrifugation for 5 min at 3000 rpm 4°C the supernatant was supplemented 

with an appropriate amount of 4 x LPP. All samples were boiled for 5 min at 95°C and stored at 

-20°C. 

3.8.1.3 Isolation of protein lysates for immunoprecipitation 

Proteins for immunoprecipitations were isolated according to 2.8.1.2 and 2.8.1.3. For 

generation of whole cell lysates, in contrast, MS buffer was used to lyse the cells. For 

generation of nuclear lysates 10 cm culture dishes containing confluent cells were lysed with 

500 µl buffer A. Finally, solubilisation of nuclear pellets was achieved with 100 µl buffer A. For 

immunoprecipitation 400 µl MS buffer was added to the nuclear protein lysate.  
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75 µl of cell lysates served as INPUT-control. To these, 25 µl 4 x Laemmli probe buffer (LPP) 

was added. They were stored at -20°C. 

MS buffer 20 mM Tris pH7.4, 150 mM NaCl, 1% NP-40, 0.5% Sodium Deoxychelate, 

1mM EDTA, 0.1% SDS , 20 mM NaF, Protease Inhibitor Cocktail (Roche) 

MSW buffer 50 mM Tris pH7.4, 150 mM NaCl, 20 mM NaF 

Buffer A  10 mM Hepes, pH 7.9, 10 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA  

Buffer C  20 mM Hepes, pH 7.9, 400 mM NaCl, 1 mM EDTA, 1 mM EGTA  

 

3.8.1.4 Isolation of proteins for Luciferase assays 

Whole cell lysates for Luciferase assays were obtained from cells previously transfected with 

Luciferase-reporters as described in 3.9.3.2. 

For isolation of Luciferase proteins the medium was removed and 50 µl of 1 x passive lysis 

buffer (Qiagen, Hilden) was added to the confluent cells. The reaction was incubated for 60 

min at RT. Cell lysates were transferred into reaction tubes and centrifuged for 2 min with 

maximum speed. Measurement of Luciferase activity was performed as described in 3.8.4.  

3.8.2 SDS-PAGE and Western Blot  

Protein samples from whole cell lysates or nuclear/cytoplasmatic fractions were used for SDS-

PAGE and subsequent Western blotting to determine the expression of specific proteins in cell 

cultures per se or after treatment with siRNAs. The molecular weight of the separated proteins 

was determined by comparison with a pre-stained protein ladder. 

Proteins were concentrated in the stacking gel at 100 V, followed by separation at 150 to 200 

V. Subsequently, proteins were transferred onto methanol-activated Hybond-P PVDF 

membranes at 4°C using a wet blot system. Depending on the size of proteins 0.5 mA were 

applied for 1.25 h to 1.5 h. For immunostaining the membranes were previously blocked with 

blocking solution to avoid unspecific binding of the primary antibody (Table 6) which was 

incubated o/n at 4°C with dilution according to the instructions of the manufacturer. After the 

membranes were washed 3 times with TBST, the horseradish peroxidase (HRP) coupled 

secondary antibody diluted in TBST with 5 % powdered milk was added. The membranes were 

then incubated for 45 min at RT. The membranes were again washed 3 times with TBST. 
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Proteins bound to antibody-complexes were visualized after incubation with 1:1 (v/v) ECL 

solution A and B for 60 s. The resulting chemo-luminescent signals were detected with LAS-

4000 imaging system. Finally, the membranes were washed with TBST to remove ECL solution 

residues and air-dried for storage at 4°C.  

SDS transfer buffer  2.5 mM Tris, 19.2 mM Glycine, 0.01% (w/v) SDS  

Stacking gel  12 % Acrylamid/Bis (10%), 25 % (v/v) Stacking buffer,    

0,01 % (v/v)   TEMED, 0,1 % (v/v) APS  

Separating gel        

(10 %) 

33 % Acrylamid/Bis (30 %), 25 % Separating buffer, 0.01 % (v/v)   

TEMED, 0.1 % (v/v) APS (10 %) 

Separating gel             
(10 %)  

10%  Acrylamide/Bis, 2.5 ml Separating Buffer (4 x), 5 ml water, 100 μl 

APS (10%), 10 μl TEMED  

TBST  50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 0.05% (v/v) Tween 20 

Blocking Solution  5% powdered milk in TBST  

ECL solution A  2.5 mM Luminol, 0.4 mM p-coumaric acid, 0.1 M Tris-HCl (pH 8.5) 

ECL solution B  0.05% (v/v), 35% H2O2, 0.1 M Tris-HCl (pH 8.5)  

Stacking buffer     

(pH 6.8) 

0.5 M Tris, 0.4% (w/v) SDS 

Separating buffer 

(pH 8.8) 

1.5 M Tris, 0.4%  (w/v) SDS 

 

3.8.3 Immunoprecipitation 

Protein lysates used to identify specific protein-protein-complexes were obtained according to 

3.8.1.3.  

To couple specific proteins to sepharose beads 2 µg of respective antibodies were added to the 

cell lysates and incubated for 30 min at 4°C followed by addition of 100 µl pre-swollen A-

sepharose beads (50% slurry) in MS buffer. The protein-antibody-bead-complexes were 

generated during incubation of the sample o/n at 4°C rotating. Loaded beads were pelleted 

and centrifuged with 2000 rpm at 4°C. After washing the complexes 6 times with MS wash 

buffer the pellets were resuspended in 40 µl MS buffer and directly used for mass-

spectrometric analyses. For Western Blot analyses 25 µl 4 x Laemmli probe buffer (LPP) was 

added. Samples were stored at -20°C. 
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3.8.4 Luciferase assays 

Luciferase assays were performed in duplicates according to the protocols published by Hampf 

(Hampf and Gossen, 2006).  

40 µl of the supernatant of lysed cells (as described in 2.8.1.4) was transferred into 96-well 

luminometer plates. Luminescence intensity was measured with the Berthold Multimode 

Reader TriStar LB 946. Injectors were washed before and after usage with 20 cycles of H2O, 20 

cycles of ethanol, 20 cycles of H2O and 20 cycles of air.  

Firefly Luciferase activity was determined by injecting 100 µl P/Fluc-A solution, followed by 0.5 

s delay and 10 s measurement of luminescence. Accordingly, Renilla Luciferase activity was 

quantified by injecting 75 µl P/Rluc-B solution followed by 0.5 s delay and 10 s measurement of 

luminescence. Firefly Luciferase activity was normalized to the respective Renilla Luciferase 

activity. In addition, Luciferase (LUC)-promoter-reporter activities were relativized to their 

empty control LUC-reporters. Mean values of at least 3 independent experiments and their 

standard deviations were calculated and displayed graphically using Microsoft Excel. Statistical 

significances were based on conventional students t-tests.  

 P/Fluc-A solution 

(pH 8.0) 

15mM MgSO4, 0.1mM EDTA, 25mM DTT, 1mM ATP, 200 µM coenzyme A, 

200 µM luciferin, 200 mM Tris-HCl   

P/Rluc-B solution 

(pH 5.0) 

0.05% (v/v), 35% H2O2, 0.1 M Tris-HCl (pH 8.5) 10mM NaAc, 15mM EDTA, 

500mM NaCl, 50 µM phenyl-benzothiazole, 4 µM benzyl-coelenterazine, 

500mM Na2SO4, 25mM Na4PPi   

3.9 In vivo model systems 

3.9.1 Mouse model systems 

To investigate the role of BCL9-2 in vivo a mouse model has been established (Brembeck et al., 

2011).  To this end the 2.1-kilobase mouse keratin 19 promoter (Brembeck et al., 2001) was 

linked to a rabbit ß-globin intron and the flag tagged, full-length cDNA of mouse BCL9-2 and a 

BGH-polyA. Genotypes of K19-BCL9-2 transgenic offspring were determined by conventional 

PCR (as described in 2.7.3.1) using specific oligonucleotides targeting the BCL9-2 transgene 

(Table 12).  
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Transgenic K19-BCL9-2 mice were bred with APCMin/+ mice (Table 15) to investigate the 

influence of transgenic BCL9-2 expression on tumor formation. APCMin/+;K19-BCL9-2 mice were 

followed up to 5.5 month of age or until mice showed severe tumor-related diseases before 

they were dissected. Macroscopic tumors of the intestine (≥0.5 mm2) were identified with a 

dissection lens. The number and size of adenomas was determined in the small intestine and 

the colon. To secure accurate analyses counted numbers of adenomas were regularly re-

checked by additional counting and measuring by a second person. Box Plot analyses were 

evaluated and graphically visualized by SPSS 19.0. Significances were calculated using the 

Whitney-U test. The significance for survival analysis was defined according to P log-rank test. 

To label proliferating cells in the intestine 0.1 mg/g of bodyweight bromo-deoxyuridine in 1 x 

PBS (Table 3) was injected intraperitoneally 2h before the mice were dissected. Mice were 

raised by the ENI animal facility, Göttingen with the approval by governmental authorities.  

3.9.2 Tissue processing for immunohistochemistry and Immunofluorescence 

Tissue of transgenic and control mice were fixed in 4% paraformaldehyde in 1 x PBS at 4°C 

overnight and washed with cold 1x PBS. For long-term storage, tissue samples were 

transferred into 70% ethanol or dehydrated according to standard protocols (75% Ethanol, 

80% Ethanol, 90% Ethanol, 96% Ethanol and 2 times 100% Ethanol for 1.5 h each). For 3 µm 

serial sections samples were incubation in xylol 2 times 1.5 h and paraffin for 1.5 h to 12 h and 

stored at RT or processed according to 3.3.5. 

3.9.3 Immunostaining of tissues 

For Hematoxylin and Eosin (H&E) staining and immunostaining 3 µm serial tissue sections 

(3.9.2) from transgenic and control mice were rehydrated. Tissue sections were incubated 3 

times for 5 min in Xylol, for 3 min in 100 %, 96 %, 80 % and 70 % ethanol each and finally 

washed in dH2O.  

3.9.3.1 Hematoxylin and Eosin staining (H&E)  

De-waxed and rehydrated tissue sections were incubated in Hematoxylin for 2 min and rinsed 

with dH2O for 5-10 min followed by 2 min incubation in Eosin. Hematoxylin stained sections 

were dehydrated in a rising ethanol-series (70 % for 10 sec, 80 % for 10 sec, 96 % for 3 min and 
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twice in 100 % for 3 min), followed by 3 times incubation in xylol for 3 min. They were finally 

mounted with Roti®-Histokitt (Roth, Karlsruhe). 

3.9.3.2 Immunohistochemistry 

The expression of proteins was examined by staining of de-waxed and rehydrated tissue 

sections with the corresponding specific antibodies (Table 7). To this end, samples were boiled 

in pre-heated Antigene retrieval buffer for 20 min and cooled down to RT in a water bath. The 

sections were incubated with 1 % H2O2 for 10 min at RT and then washed once in dH2O for 5 

min and twice in 1 x PBS for 5 min each. Endogenous peroxidases were blocked by incubation 

in IHC blocking solution for 30 min at RT. Tissue sections were incubated o/n at 4°C with the 

specific primary antibody diluted in IHC blocking solution in a humidified atmosphere. After 

washing for 3 times 5 min in 1 x PBS the samples were incubated for 30 to 45 min at RT with 

the secondary HRP-conjugated antibody (Dako EnVision Kit, Dako, Hamburg) and then washed 

3 times in 1 x PBS for 5 min. Antibody complexes were detected according to manufacturer`s 

instructions. For counter-staining, sections were incubated for 10 sec with Hematoxylin and 5 

to 10 min rinsed in dH2O. For imaging, stained sections were dehydrated and mounted with 

Roti®-Histokitt (Roth, Karlsruhe). 

Antigene retrieval buffer  10 mM Tris, 1mM EDTA, pH 9.0  

IHC Blocking Buffer  10% rabbit serum, 1% BSA in 1x PBS  

 

3.9.3.3 Immunofluorescence staining on paraffin embedded tissues  

Protein expression, corresponding specific antibodies (Table 10) and the indirect fluorescent 

staining were used. The paraffin sections were rehydrated by incubation in xylol (3 x 5 min), 

ethanol (100%, 96%, 80% and 70% for 3 min each step) and then washed in dH2O. Following 

rehydration, the antigene retrieval was performed by boiling the samples in preheated 

Antigene retrieval buffer (Table 5) for 20 min. The samples were cooled down to RT in a cold 

water bath. After 30 min (RT) blocking in AB buffer (Table 5), the sections were incubated 

over-night (4°C) with the specific primary antibody (diluted in blocking solution) in a humidified 

atmosphere. After washing (3 x 20 min in PBST) the samples were incubated for 30 to 45 min 

(RT, humidified atmosphere) with the secondary fluorophore-conjugated antibody (diluted in 

AB buffer) and then washed again in PBST (3 x 20 min).The counter-staining with DAPI was 

performed in the penultimate washing step by diluting DAPI stock solution to 0.1 μg/ml in 
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PBST. For microscopy the sections were mounted in Immu-Mount (ThermoScientific, Bonn) 

and stored at 4°C in the dark. 

AB buffer  0.1% Tween, 10 % horse serum in 1x PBS  

PBST  1 x PBS supplemented with 0.05% (v/v)Tween  

Blocking Solution  1 x PBS supplemented with 0.5% (v/v) Triton X-100, 0.5% (w/v) BSA 

3.9.4 Scoring of human tissue microarray  

Colorectal cancer tissues were obtained from the Tumor Bank of the Department of Surgical 

Oncology, Charité Medical School Berlin. All patients underwent surgery followed up for a 

minimum of three years. Specimens were transferred to a paraffin array block and 1 µm tissue 

sections subjected to immunohistochemistry.  ß-catenin, BCL9 and BCL9-2 stainings were 

scored by three independent investigators using the expression score according to (Sinicrope 

et al., 1995). The immunoreactive score (0 to 9) was calculated as the product of the staining 

intensity and the percentage of positive epithelial cells. The staining intensity was defined as 0 

(negative), 1 (low), 2 (moderate) and 3 (strong).The percentage of positive epithelial cells was 

scored as 0 (0%), 1 (<30%), 2 (30%-60%) and 3 (>60%). Statistics were evaluated using the 

Mann-Whitney-U test. 

3.9.5 Cell culture model systems 

3.9.5.1 Cultivation and storage of cell cultures 

Cell cultures were stored in 1 x culture/trasnfection medium supplemented with 10% DMSO in 

cryo tubes. To this end, cells were slowly frozen o/n at -80°C in freezing boxes followed by 

long-time storage at -150°C. For cultivation, cells were thawed in a water bath at 37 °C and 

transferred into 10 ml 1 x PBS. After centrifugation at 1000 rpm for 3 min, cell-pellets were 

resuspended in culture medium, supplemented with 10% FCS as recommended by the 

suppliers and transferred into a 75 cm2 or 175 cm2 flasks and cultivated at 37°C in a 5% CO2 / 

95 % humidity atmosphere. Depending on their confluence cells were split 1:5 to 1:10 every 3 

to 5 days. Therefore, cells were detached with 1ml trypsin after washing with 1 x PBS. 

Detached cells were resuspended in culture medium and spread into new culture flasks. 
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3.9.5.2 Transfection 

Cell lines were transfected with siRNA (Table 13) or endotoxin-free, highly pure plasmid DNA 

(Table 16) using Lipofectamine2000 (Invitrogen, Darmstadt) according to manufacturer’s 

instructions. 100 ng TOP/FOP-, -136 bp CyclinD1- and -5600 bp Axin2-reporters or 200 ng of 

CDX1 and CDX2 promoter LUC-reporters were used for transfection. In addition, 25 ng Renilla 

Luciferase was added to normalize Luciferase-reporters activities. 

Cells were seeded 12 h - 16 h prior to transfection. The used cell numbers of different cell lines 

were summarized in Table 18.  

Table 18: Cells / ml used for transfection with siRNA and with overexpression-plasmids (oe) 

cell line 
cells/ml (siRNA)                        

in 24 well plates  
cells/ml (siRNA)                     

in 6 well plates  
cells/ml (oe)                             

in 10 cm dishes  

HEK293   1.25 x 105 

SW480 1.875 x 105 1.25 x 105  

DLD1 1.875 x 105 1.25 x 105  

HCT116 1.25 x 105 1.67 x 105  

SW48 1.875 x 105   

 

For over-expression of proteins in vivo in addition to Luciferase-reporters (LUC-reporters) or 

for protein isolation, cells were transfected with transfection mixes according to Table 19. 

Transfection mix A including OptiMEM and siRNA/plasmids and Transfection mix B including 

OptiMEM and Lipofectamine2000 were incubated for 5 min before they were mixed and 

further incubated for 20 min at RT. Consequently, the mix was added to the cells. In analytical 

approaches, the plates were centrifuged for 10 min at 300 rpm to increase the transfection 

efficiency.  

After siRNA transfection cells were incubated for 48h followed by transfection of LUC-

reporters and further incubation of 36h. For overexpression with and without LUC-reporter 

transfection cells were incubated for 48 h. Cells were harvested according to 3.8.4.  
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Table 19: Components of Lipofectamine based transfection mixes 

detergents  in 24 well plates  in 6 well plates  in 10 cm dishes  

OptiMEM Mix A and B 50 µl each/well 250 µl each/well 2,5 ml each/well 

Lipofectamine2000 0.5 µl X 15 µl 

Overexpression and 
LUC-Firefly plasmids  

100 – 200 ng X 15 - 20 µg 

LUC-Renilla plasmid 25 ng X  

Lipofectamine2000 1 µl 5 µl X 

siRNA 1 µl (25 pmol each) 5 µl (25 pmol each) x 

3.10 Software 

Table 20: Software 

software developer/manufacturer 

Microsoft Office 2010 Microsoft 

GENtle University of Cologne, Germany 

SPSS 19.0 SPSS Inc. 

Transfac® 
(MATCH/PATCH) 

Transfac Professional 2008.4 (Kel et al., 2003;Matys et al., 2003) 

T-COFFEE® T-Coffee Home Page (Di et al., 2011;Notredame et al., 2000) 

Scaffold3 Proteome Software, Inc. 

Leica Application Suite Leica 

3.11 Statistics  

Statistical significances of qPCR and Luciferase-reporters gene assays were calculated by the 

conventional two sided t-test using Microsoft Excel. Significances of adenoma development 

were calculated by P log-rank test, significances of nuclear expression scores by the Mann-

Whitney U Test using SPSS 19.0 software. 
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4 Results 

4.1 BCL9 and BCL9-2 expression in normal intestine and during intestinal 

tumorigenesis 

So far, the expression of the Wnt/ß-catenin co-factors BCL9 and BCL9-2 normal intestinal 

epithelia and tumors of mice and humans were not characterized. Recent studies described 

that BCL9 proteins are deregulated in different tumor entities (Brembeck et al., 

2004;Sakamoto et al., 2007;Toya et al., 2007). However, detailed investigations were missing. 

4.1.1 BCL9-2 expression is restricted to the villi of the normal intestine and is up-

regulated in early stages of intestinal tumorigenesis 

To get an insight into the distribution and expression of the BCL9 proteins, intestinal tissue 

sections from late embryonic and adult mice were subjected to immunohistochemistry (Figure 

10A). Antibodies were generated that specifically recognize BCL9 and BCL9-2 and ß-catenin 

(Brembeck et al., 2011). In addition, the expression of the proteins in adenomas from APCMIN/+ 

mutant mice was determined (Figure 10). Immunohistochemical stainings of tissue microarrays 

from human normal mucosa and adenomas were scored for the nuclear expression of the 

three proteins (Figure 10C). 

In the intestines of embryonic and adult mice, nuclear BCL9 was strongly expressed in all 

mesenchymal and epithelial cells in the crypts and villi the intestine (Figure 10A, left panel). In 

contrast, BCL9-2 expression was restricted to the villi of late embryonic and adult intestines 

(Figure 10A, right panel, black arrowheads) but was absent in the crypts of the small intestine 

and in the colon (Figure 10A, right panel, white arrowhead), where ß-catenin/Wnt-signaling is 

active. Adenomas of APCMIN/+ mice were highly proliferative as indicated by BrdU staining. 

Increased nuclear ß-catenin expression was determined suggesting actived Wnt/ß-catenin 

signaling in adenomas (Figure 10B and C). Interestingly, adenomas of APCMIN/+ mice and human 

specimen also exhibited increased BCL9-2 expression (Figure 10B, black arrow) compared to 

adjacent crypts of the normal mucosa (Figure 10C). In contrast, BCL9 protein expression 

remained unchanged in adenomas of APCMIN/+ mice and human specimen (Figure 10B and C).  
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Figure 10: Expression of BCL9 and BCL9-2 in normal embryonic and adult intestines and in adenomas 
Immunohistochemistry on serial sections of (A) normal intestines of late embryonic and adult mice and 
(B) a representative adenoma of an APC

MIN/+ 
mouse. Specific antibodies targeting the indicated proteins 

were used. (C) nuclear expression score of ß-catenin, BCL9 and BCL9-2 obtained from human normal 
mucosa and adenomas  (*p≤0.05). (Brembeck, Wiese et al., 2011) 

4.1.2 BCL9-2, but not BCL9, is highly expressed in human colon cancers 

The distribution and expression of ß-catenin, BCL9 and BCL9-2 was further investigated in 

different stages during colon carcinogenesis. Therefore a human tissue microarray of paired 

samples from 105 patients was established containing normal mucosa, adjacent transitional 

mucosa and colorectal cancers without (stage I, n=58) or with metastases (stage III/IV, n=47). 

The nuclear expression score was defined as the product of the presence of immunopositive 

cells and intensity of the staining. 

Highly significant increased expression of BCL9-2 was found in more than 90% of human colon 

tumors. Comparison of the nuclear expression score of stage I (without metastasis) and stage 

II/IV (with metastasis) cancers revealed that BCL9-2 was strongly expressed in all cancers, 

independently of the presence of metastasis (Figure 11A and B). Strong ß-catenin expression 

was only found in approximately 60% of the tumors (Figure 11A). In contrast, no significant 

changes were detected for the BCL9 protein (Figure 11B). 
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Figure 11: BCL9-2 is up-regulated in human adenocarcinomas 
Immunohistochemistry and scoring of human tissue microarrays of matched specimens from patients 
with stage I, III and IV colon cancer (A) Immunostainings depict the protein expression of ß-catenin and 
BCL9-2 on matched, representative tumor samples. Pie charts show the relative frequency of the 
immunoreactive score for BCL9-2 and ß-catenin expression in adenocarcinomas and normal mucosa, (B) 
Boxplot analyses of the nuclear expression score of ß-catenin, BCL9 and BCL9-2 in normal and transient 
mucosa,  non-metastatic(stage I) and metastatic cancer (stage II/IV) (p<0.01). (Brembeck, Wiese et al., 
2011) 

Thus, intestinal BCL9-2 expression is restricted to the villi and not present in the crypts, where 

Wnt-signaling is active. Moreover, up-regulation of BCL9-2 protein expression occurs early 

during intestinal tumorigenesis, culminating in 90% of highly BCL9-2 positive human 

adenocarcinomas. In contrast, BCL9 expression is not changed during early and even late 

stages of intestinal tumorigenesis compared to normal mucosa. These data indicate that BCL9-
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2 might contribute to tumor progression already in early stages of intestinal tumorigenesis. 

Further, BCL9-2 might be a useful marker, which indicates tumor progression. 

4.2 BCL9-2 overexpression promotes intestinal tumor development 

4.2.1 BCL9-2 expression in compound APCMin/+; K19-BCL9-2 transgenic mice 

To investigate the tumorigenic potential of BCL9-2 in vivo, a transgenic mouse model was 

analyzed (Brembeck et al., 2011). In this model, BCL9-2 overexpression was induced by a K19 

promoter which is active in simple epithelia, including the intestine (Brembeck et al., 2000). 

Ectopic expression of BCL9-2 on a pure C57BL/6 background led to infrequent, 

undifferentiated intestinal tumor formation in aged mice (>15 month)(Brembeck et al., 2011). 

To induce tumorigenesis K19-BCL9-2 transgenic mice were further crossed with C57BL/6-

APCMin/+- mice, which displayed spontaneous development of adenomas in the small intestine 

and colon (Su et al., 1992). The specific expression of ectopic BCL9-2 in compound transgenic 

mice was verified RT-PCR (Figure 12A) and immunohistochemistry (Figure 12B).  

Endogenous BCL9-2 protein was expressed in adenomas of APCMin/+ control mice (Figure 12B, 

left) and strongly increased in adenomas of compound APCMin/+; K19-BCL9-2 mice (Figure 12B, 

right). Moreover, transgenic expression of flag tagged BCL9-2 was found in intestinal tissue 

sections of adenomas of compound APCMin/+; K19-BCL9-2 mice (Figure 12A+B).   
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Figure 12: Transgenic BCL9-2 expression in compound APC

Min/+
; K19-BCL9-2 intestinal adenomas and 

adjacent normal tissues compared to non-transgenic APC
Min/+ 

littermate controls 
(A) Transgenic RNA expression in adenomas (Ad), normal tissues of the small intestine (s.i.) and colon 
was analyzed by RT-PCR. Specific primers were used to target the 3’ flag tagged BCL9-2 transgene and ß-
actin as internal control. Templates without reverse transcription were used as controls (-RT).   (B) 
Transgenic and endogenous BCL9-2 protein expression was visualized by Immunohistochemistry on 
representative adenomas of the indicated genotypes using specific antibodies directed against BCL9-2 
and the flag-tagged transgenic protein. (Brembeck, Wiese et al., 2011) 
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4.2.2 BCL9-2 overexpression promotes tumor formation and local invasion 

K19-BCL9-2 transgenic mice were crossed to C57BL/6-APCMin/+ mice to investigate the impact 

of BCL9-2 on tumor development and progression. Overexpression of BCL9-2 resulted in a 

significant decrease of survival of compound APCMin/+; K19-BCL9-2 mice compared to non-

transgenic APCMin/+ littermates (Figure 13). To follow the development of intestinal tumors due 

to aberrant BCL9-2 expression adenoma formation in the small intestine and colon of 5.5 

month old compound APCMin/+; K19-BCL9-2 mice and non-transgenic APCMin/+ littermates were 

investigated in detail. H&E staining and box plot analysis showed that transgenic mice 

exhibited significant increase both in  number and in size of  adenomas  in the small intestine 

compared to age matched non-transgenic APCMin/+ littermates (Figure 14A and B). A similar 

trend of tumor progression was observed in the colon, although APCMin/+ mice do not 

frequently develop adenomas in the colon: APCMin/+; K19-BCL9-2 formed a slight, but not 

significantly higher number of larger adenomas than APCMin/+ mice (Figure 14B).  

 

 
Figure 13: BCL9-2 overexpression leads to impaired survival of compound APC

Min/+
; K19-BCL9-2 mice 

Kaplan–Meier survival analysis of compound mutant (n=31) and of littermate APC
Min/+ 

control mice 
(n=29). The survival was defined as the time point of death or the time point at which mice were 
sacrificed due to severe tumor-related disease. Statistics were evaluated by the P log-rank test. 
(Brembeck, Wiese et al., 2011) 
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Figure 14: BCL9-2 overexpression promotes adenoma formation in number and size in compound 
APCMin/+; K19-BCL9-2 mice 
(A) H&E staining of representative small intestines of APCMin/+; K19-BCL9-2 and non-transgenic 
controls show an overview of the severe formation of adenomas in transgenics, (bar – 1mm). (B) Box 
blot analyses showing the total number of adenomas (left) and adenoma formation for the indicated 
sizes in the small intestine and colon (right) of 5,5 ± 0,5 month old transgenic (n=13) and non-transgenic 
littermates (n=13). For calculation of statistical significances the Whitney-U test test was used (*p≤0.05). 
(Brembeck, Wiese et al., 2011) 

APCMin/+ mice are known to develop benign tumors with well-formed boundaries (Moser et al., 

1990). In contrast, adenomas from compound K19-BCL9-2 mutant mice already showed local 

invasion with an incidence of 14%, which was never observed in control mice. Co-

Immunofluorescence of APCMin/+; K19-BCL9-2 intestinal sections with pan-cytokeratin and 

smooth muscle actin monitored invasive tumors that disrupted the basal membrane. Invasive 

tumors grew beyond the mucosa into the submucosa (Figure 15A, middle) or even into the 
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muscularis (Figure 15A, right). In contrast, adenomas of ApcMin/+ mice were restricted to the 

mucosa with an intact basal membrane (Figure 15A, left). Immunohistochemical analyses on 

sections of invasive tumors of compound APCMin/+; K19-BCL9-2 revealed high expression of 

BCL9-2 and of nuclear ß-catenin at the invasive front (Figure 15B). 

 
 
Figure 15: BCL9-2 overexpression induced invasion in compound APC

Min/+
; K19-BCL9-2 mice 

(A) Co-immunofluorescence staining of smooth muscle actin (SMA, red) and pan-cytokeratin (CK, green) 
on representative adenomas of an APCMin/+ control mice (left) and  of compound APCMin/+; K19-BCL9-
2 mice (middle, right). Arrowheads indicate the invasion into the basal membrane (200 x magnification). 
(B) H&E (left) staining and immunohistochemistry (middle and right) on an invasive adenoma of 
compound APCMin/+; K19-BCL9-2 mice of BCL9-2 and ß-catenin, as indicated (400 x magnification). 
(Brembeck, Wiese et al., 2011) 

These data demonstrate that overexpression of BCL9-2 in vivo promotes tumor progression in 

the intestine. 

4.3 BCL9 and BCL9-2 protein expression in colon cancer cell lines 

The majority of human colorectal carcinomas exhibited BCL9-2 overexpression (Figure 11) 

(Brembeck et al., 2011). To investigate the molecular function of BCL9 proteins for colorectal 
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carcinogenesis, different colon carcinoma cell lines were analyzed for endogenous expression 

of BCL9-2 and the homologue BCL9. Therefore, our newly developed antibodies were analyze 

endogenous BCL9 and BCL9-2 protein expression. Using Western Blot analysis the proteins 

were detected at approximately 180kDa. Highest protein expression of BCL9-2 was observed in 

cell lines with mutant APC (Rowan et al., 2000), e.g. in human SW480,  CaCo2, HT29, DLD1 cells 

or the murine CT26 cell line.  Absence or lower BCL9-2 protein expression was detected in cell 

lines with ß-catenin stabilizing mutation (Kim et al., 2003), e.g. HCT116, SW48 and the cell line 

LS174T with mutated E-cadherin (Efstathiou et al., 1999) (Figure 16, upper panel).  However, 

BCL9 was ubiquitously expressed at approximately equal levels in all analyzed cell lines (Figure 

16, middle panel). 

Figure 16: Expression of BCL9 proteins in different colon cancer cell lines 
Western Blot analyses were performed with 60 µg whole cell lysate obtained from the indicated cell 
lines, using specific antibodies for endogenous BCL9 and BCL9-2, respectively. As loading control α-
tubulin was used. Whole cell lysates obtained from transiently transfected HEK293 cells with BCL9 or 
BCL9-2 cDNA served as positive controls (indicated by an asterisk). (Brembeck, Wiese et al., 2011) 

4.4 Analysis of the dependency of the transcriptional control of ß-

catenin, BCL9 and BCL9-2 on RNA Interference 

Colon cancer cell lines revealed high levels of ß-catenin caused by a mutation in APC and high 

levels of BCL9-2 (Figure 16). To investigate the transcriptional function of BCL9 proteins 

compared to the function of ß-catenin, RNA interference was used. A pool of 4 different non-

targeting siRNAs was used as control.  To cause minimal, unspecific effects 50 pmol of 

modified Dharmacon® ON-TARGET plus™ siRNAs were used which were modified to reduce 

off-targeting caused by either sense or antisense strands. Further, off-target effects were 

minimized by the usage of a pool of two different siRNAs resulting in a minimal concentration 

of 25 pmol per siRNA. The potency of 4 single and pooled siRNAs to reduce the expression of 

BCL9, BCL9-2 and ß-catenin transcripts in SW480 cells was investigated by qPCR. 



RESULTS 

65 
 

      

Figure 17: Knockdown efficiency of 4 single and pooled siRNAs targeting BCL9, BCL9-2 and ß-catenin in 
SW480 cells 
Quantitative real time PCR of SW480 showing the mean of least 3 independent experiments and their 
standard deviation after 48h siRNA treatment. The relative expression of the indicated transcripts is 
shown as % of control siRNA-treated cells  (*p≤0.05). 

Pools containing four single siRNAs reduced the mRNA expression of ß-catenin to 20 %, of 

BCL9 to 30 % and of BCL9-2 to 50 % compared to control siRNA treated cells. RNA interference 

using te single siRNAs targeting ß-catenin, BCL9 and BCL9-2, revealed that only three of the 

four single siRNAs efficiently reduced the respective transcript (Figure 17). To increase the 

knockdown efficiencies, a pool of the two most efficient single siRNAs was used for further 

investigations (#09 and #12 for ß-catenin, #06 and #08 for BCL9 and #06 and #08 for BCL9-2 

knockdown). The knockdown efficiency induced by these 2 pooled siRNAs targeting each 

transcript was further investigated on the mRNA and protein level (Figure 18). Treatment of 

SW480 cells with 2 specific siRNAs strongly reduced the RNA- and protein-levels of the 

respective targets (Figure 18A and B) to at least 25% compared to treatment of the cells with a 

pool of all 4 siRNAs. 
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Figure 18: BCL9, BCL9-2 and ß-catenin knockdown in SW480 cells 
(A) Quantitative real time PCR of SW480 showing the mean of least 3 independent experiments and 
their standard deviation after 48h siRNA treatment. The relative expression of the indicated transcripts 
is shown as % of control siRNA-treated cells  (*p≤0.05). (B) Western Blot analysis of SW480 cells 
followed by 72h RNA interference. Nuclear extracts were used for BCL9, BCL9-2, whole cell lysates for ß-
catenin detection.  LaminB1 and α-tubulin served as internal controls. (Brembeck, Wiese et al., 2011) 

Further investigations with these pools of specific siRNAs were carried out using different 

colon cancer cell lines such as SW480, DLD1, HCT116 and SW48. In addition, the breast cancer 

cell line MCF7 was used, which contains high levels of BCL9-2 protein (Zatula and Brembeck, 

unpublished). 

4.5 BCL9 and BCL9-2 knockdown revert the mesenchymal malignant 

phenotype of cancer cell lines  

The investigated cancer cell lines showed a characteristic change of the morphology after 

treatment with siRNA targeting BCL9 and BCL9-2 or ß-catenin after 72h. In comparison to the 

more mesenchymal-like morphology of control siRNA treated cells (Figure 19, upper panel), 

cells in which BCL9-2 was knocked down showed a more epithelial-like phenotype 

characterized by a flattened appearance and tight cell-cell contacts. This phenotype was also 

observed for MCF7 breast cancer cells, which are highly positive for BCL9-2 (Zatula and 

Brembeck, unpublished). Treatment with BCL9 siRNA led to similar, but less pronounced 

morphological changes like BCL9-2 knockdown (Figure 19, middle panels).  In contrast, 

knockdown of ß-catenin enhanced the mesenchymal-like, spindle-shaped morphology of the 

cells that did not form tight cell-contacts (Figure 19, bottom panel).  
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These data indicate that BCL9-2 overexpression enhances the mesenchymal phenotype in 

colon and breast cancers possibly mediated by the promotion of epithelial-mesenchymal 

transition. 

 
 
Figure 19: Knockdown of BCL9 and BCL9-2 induces characteristic morphological changes 
Bright field images of human colon (SW480, DLD1, HCT116, and SW48) and breast (MCF7) cancer cells 
that were treated with a pool of 2 specific siRNAs against β-catenin, BCL9, BCL9-2 for 72 hours and non-
targeting control siRNA (200x magnification). 

4.6 BCL9 and BCL9-2 are not target genes of ß-catenin  

To investigate, if BCL9 and BCL9-2 gene expression is regulated by Wnt/ß-catenin signaling, 

SW480 were treated with the respective siRNAs for 48h. The target gene transcription was 

determined by quantitative real-time PCR.   

ß-catenin knockdown did not reduce BCL9 or BCL9-2 expression (Figure 20A) and neither, BCL9 

nor BCL9-2 had an influence on each other’s transcription.  Interestingly, BCL9-2 expression 

was significantly induced after knockdown of ß-catenin (Figure 20A).  

These results show that BCL9 and BCL9-2 are not target genes of ß-catenin signaling in colon 

cancer cells. Moreover, ß-catenin appears to negatively regulate BCL9-2 expression. 
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Figure 20: BCL9 and BCL9-2 are not target genes of ß-catenin 
Expression of BCL9 and BCL9-2 was assessed as % of control siRNA-treated cells following knockdown of 
(A) ß-catenin, (B) BCL9 and BCL9-2 for 48h. Quantitative real time PCRs show the mean of at least 3 
independent experiments and their respective standard deviation  (*p≤0.05). (Brembeck, Wiese et al., 
2011) 

4.7 ß-catenin/Wnt-signaling activity correlates with the expression level 

of BCL9-2 in human colon cancer cells 

BCL9-2 co-activates the Wnt/ß-catenin signaling pathway in HEK293 cells (Brembeck et al., 

2004). For that reason, Luciferase assays with different ß-catenin-dependent reporters were 

performed in colorectal cancer cell lines to examine the dependency of the ß-catenin/Wnt-

signaling activity on the BCL9 proteins in colon cancer cells. 

Colorectal cancer cell lines with different levels of BCL9-2 were examined (Figure 16): SW480 

cells with high, DLD1 cells with moderate, HCT116 cells with low and SW48 cells with no BCL9-

2 expression. BCL9 was equally expressed in the cell lines (Figure 16). The cell lines were 

treated for 48 h with siRNAs targeting ß-catenin, BCL9 and BCL9-2, respectively, before they 

were transfected with 3 different Luciferase-reporters for further 36h. Since the promoters of 

the synthetic TOP/FOP reporter harbors three optimal, functional (TOP) or mutated (FOP) 

LEF/TCF binding sites (Molenaar et al., 1996) that serve as a direct readout for canonical Wnt-

signaling. The regulation of well-known Wnt/ß-catenin signaling target genes was determined 

using a LUC-plasmid containing 5600 bp of the Axin2- (Jho et al., 2002) or -136pb of the 

CyclinD1- (Shtutman et al., 1999) promoter  that consequently control the Luciferase-reporters 

gene expression. 
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SW480 cells expressing highest levels of BCL9-2 showed also highest Wnt/ß-catenin activity, as 

determined by the TOP/FOP Luciferase-reporters. The level of TOP/FOP and Axin2 reporter 

activity was significantly decreased after knockdown of BCL9 and BCL9-2. Interestingly, the 

CyclinD1 reporter was only dependent on ß-catenin, but not on the BCL9 proteins (Figure 21, 

left panel). 

In DLD1 cells which contain moderate levels of BCL9-2 the TOP/FOP Luciferase-reporters was 

expressed with moderate levels and only knockdown of BCL9-2 and not BCL9 inhibited the 

Axin2 and TOP/FOP Luciferase-reporters. 

In contrast, HCT116 with low and SW48 cells with absent BCL9-2 expression showed the lowest 

Wnt-activity. Accordingly, knockdown of neither, BCL9 or BCL9-2 had any influences on Axin2 

and TOP/FOP reporter gene expression.  

 In conclusion, BCL9-2 expression levels correlate with ß-catenin/Wnt signaling activity in colon 

cancer cell lines. In addition, these data indicate that promoters with core Wnt-responsive 

elements such as the synthetic TOP/FOP and the Axin2 promoter are dependent on BCL9-2, 

but not the CyclinD1 promoter. 
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Figure 21: BCL9-2 expression levels correlates with canonical Wnt signaling activity and reporter gene 
expression in different colon cancer cell lines 
(A-C) For Luciferase assays the indicated cell lines were pretreated with siRNA targeting ß-catenin, BCL9 
or BCL9-2 for 48h, followed by 36h transfection with LUC-reporters: (A) TOP/FOP, (B) -5600 bp Axin2-Luc 
and (C) 136 bp CyclinD1-Luc. (D) The cell lines harbor different mutations and BCL9 protein levels, as 
indicated (MT-mutated, WT-wild-type). Graphs show the fold change of empty control plasmid of the 
mean of at least four independent experiments with the respective standard deviation  
(*p≤0.05).(Brembeck, Wiese et al., 2011) 



RESULTS 

71 
 

4.8 BCL9-2 regulates ß-catenin-dependent and -independent target 

genes  

To further understand the role of BCL9-2 and its homolog BCL9 in Wnt/ß-catenin signaling 

during tumorigenesis it is crucial to characterize the dependency of known Wnt/ß-catenin 

target genes on the BCL9 proteins. (Canonical Wnt-target genes are listed on the Wnt 

Homepage: http://www.stanford.edu)).  

4.8.1 BCL9-2 is not required for the expression of all canonical Wnt target genes and 

regulates ß-catenin independent genes in colon cancer cells 

To study the impact of the BCL9 proteins in colon cancer in detail, endogenous BCL9, BCL9-2 

and ß-catenin expression was silenced in SW480 colon cancer cells for 48h by RNA 

interference. The dependency of known Wnt/ß-catenin target genes and the ephrin B ligands 

on ß-catenin and the co-factors was determined by qPCR. The ephrin B receptors (EPHB2/B3 

and B4) are known to be expressed in intestinal crypts as Wnt-target genes in normal intestinal 

homeostasis. The ephrin B ligands (ephrinB1/B2 and B3) are no target genes of ß-catenin and 

expressed in normal intestinal villi where BCL9-2 protein is expressed. Therefore we tested 

whether the ephrin B ligands and receptors are target genes of ß-catenin and BCL9-2.  

Different subsets of target genes of BCL9-2 and ß-catenin were identified (Figure 22):  

The first set of genes was strongly down-regulated after knockdown of ß-catenin and BCL9-2 

(Figure 19A), e.g. Axin2, EPHB2, CD44, TCF1, c-myc, BMP4 and Bambi. BCL9 knockdown also 

reduced the mRNA expression of this gene set with the exception of BMP4, while Bambi was 

reduced only slightly, but still significant.  

The second set of Wnt/ß-catenin target genes was not regulated by BCL9 or BCL9-2 (Figure 

19B). ß-catenin knockdown led to strongly reduced mRNA levels of LEF1, MSX2 and CyclinD1. 

Knockdown of BCL9-2 and BCL9 had no effect on the expression of the ß-catenin target genes 

LEF1, MSX2 and CyclinD1. This further supports our previous using a minimal Luciferase-

reporter - CyclinD1. Interestingly, LGR5 mRNA was slightly, but significantly reduced after 

BCL9, but not BCL9-2 knockdown.   

The third set of genes consists of genes of the ephrin/EPHB family which was differentially 

regulated by ß-catenin and BCL9-2 (Figure 19C). Knockdown of BCL9-2 resulted in reduced 

http://www.stanford.edu/
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expression of the analyzed genes, while ß-catenin knockdown had no influence or even 

increased the mRNA expression of the ephrin receptors EPHB3/B4 and the ephrin ligands B1, 

B2 and B3. In contrast, RNA Interference against BCL9 only led to a reduced mRNA expression 

of EPHB2, B3 and B4.  

 
 

Figure 22: BCL9-2 regulated its own subset of target genes, apparently independent of ß-catenin 
Expression of the indicated genes was determined following knockdown of ß-catenin, BCL9 and BCL9-2 
for 48h relative to control siRNA-treated cells. Quantitative real time PCRs show the mean of least 3 
independent experiments and their respective standard deviation (* p<0.05). (A) Target genes of BCL9-2 
and ß-catenin. (B) BCL9-2 independent ß-catenin target genes. (C) BCL9-2 and ß-catenin differentially 
regulated genes (*p≤0.05). (Brembeck, Wiese et al., 2011) 

In summary, BCL9 and BCL9-2 regulate only a subset of Wnt/ß-catenin target genes. Moreover, 

these data demonstrate that BCL9-2 also regulates ß-catenin independent target genes.  

4.8.2 ß-catenin-dependent and -independent BCL9-2 target genes are expressed at 

the invasive front of adenomas of compound K19-BCL9-2; APCMin/+ mice 

BCL9-2 contributes to adenoma formation from compound K19-BCL9-2; APCMin/+ mice and 

induces locally invasive tumors which invade beyond the basal membrane into the submucosa 
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or even into the muscularis (Figure 14 and Figure 15). Therefore, accumulation of ß-catenin in 

APCMin/+ mice alone appears not to be sufficient to induce local invasions. However, BCL9-2 

activates its own gene cluster independently from ß-catenin (Figure 19). Thereby some of 

these genes might be responsible for the development of invasive tumors in compound K19-

BCL9-2; APCMin/+ mutant mice. To investigate whether BCL9-2 targets are expressed in the 

invasive areas of BCL9-2; APCMin/+ derived adenomas immunohistochemistry was performed 

using specific antibodies which detect the ß-catenin/BCL9-2 target genes Bambi and EPHB2 

and the BCL9-2 target genes EPHB3 and B4.  The invasive areas were previously stained 

positive for nuclear ß-catenin and BCL9-2 (Figure 15B) indicating high transcriptional activity. 

 
  
Figure 23: Expression of BCL9-2 targets in invasive areas of compound K19-BCL9-2; APC

Min/+
 mice 

(A-D) Immunohistochemistry of (A) Bambi, the ephrin receptors (B) EPHB2, (C) EPHB3 and (D) EPHB4 on 
an invasive adenoma of compound APC

Min/+
; K19-BCL9-2 mice (400x magnification). 

Strong protein expression of the ß-catenin/BCL9-2 target genes Bambi and EPHB2 was 

observed in the invasive area compared to the central tumor area (Figure 23A and B). In 

addition, the ß-catenin independent BCL9-2 targets EPHB3 and EPHB4 (Figure 23C and D) were 

expressed in the invasive areas and in the central tumor. 

In summary, BCL9-2 contributes to tumor formation and invasion probably by the regulation of 

an own set of target genes, which is partially independent of ß-catenin. 

4.9 Whole genome microarray analyses demonstrate that BCL9, BCL9-2 

and ß-catenin activate different gene expression profiles 

BCL9-2 is up-regulated in the majority of colon cancers (Figure 11 and Figure 16) and 

contributes to cancer progression by promoting tumor growth (Figure 14) and invasion (Figure 

15 and Figure 19). In addition, BCL9 and BCL9-2 regulate the expression of target genes 
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independently from ß-catenin (Figure 22). To understand the impact of BCL9-2 and its homolog 

BCL9 in comparison to ß-catenin during these processes, it is important to analyze the gene 

cluster which is affected by these proteins in comparison to known ß-catenin target genes. (A 

list of described canonical Wnt-target genes is available from the Wnt Homepage 

http://www.stanford.edu) 

To explore the gene signature of BCL9 proteins and ß-catenin in tumorigenesis human whole 

genome microarrays were analyzed. Colon cancer cell lines with different levels of BCL9-2 were 

examined. Expression data from previous unpublished human whole genome microarrays of 

SW480 cells, which exhibit the highest BCL9-2 protein level, were already available (Brembeck, 

unpublished). These data were completed for DLD1 colon cancer cells with moderate and 

HCT116 cells with low BCL9-2 protein levels. In addition, our current studies MCF7 breast 

cancer cells to express also very high levels of BCL9-2 protein (Zatula and Brembeck, 

unpublished). Since, MCF7 cells did not show measureable active canonical Wnt signaling, as 

determined by TOP/FOP reporter gene assays, these breast cancer cells served as an additional 

model to investigate ß-catenin independent functions of BCL9-2. 

The gene expression profile of the described cell lines was determined in triplicates after 

knockdown of endogenous BCL9, BCL9-2 and ß-catenin for 48h using a pool of two different 

siRNAs, respectively, and normalized to cells treated with a pool of four non-targeting control 

siRNAs. The efficacy of all siRNAs was previously tested in all used cell lines by qPCR (data not 

shown). The gene signatures in the identified whole genome micro arrays resulting from knock 

down of ß-catenin, BCL9 and BCL9-2 in the different cell lines, were subsequently analyzed. 

Each data set consisted of biological triplicates. The data sets for each treatment (siß-catenin, 

siBCL9 and siBCL9-2) were relativized to the data set originated from sicontrol treated cells. For 

further analyses only genes were used, which were expressed with fold discovery rate (FDR ≙ 

adjusted p-value) ≤ 0.05. In addition, only genes which were expressed with a minimum of a 

moderate expression level of 7 from total 15 were further analyzed.  

4.9.1 ß-catenin and BCL9/BCL9-2 induce different gene sets in cancer cells 

To investigate, whether BCL9 and BCL9-2 regulate specific sets of target genes independently 

of ß-catenin, Venn diagram analyses were performed. These illustrated the overlap of all genes 

that were significantly reduced ≥1.5 fold following knockdown of ß-catenin, BCL9 and BCL9-2 

in SW480, DLD1 and MCF7 cells (Figure 24). In addition, heat map analyses compared all genes 

by a color coded expression score. To this end all genes were included, that showed ≥2 fold 

http://www.stanford.edu/
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down-regulation following knockdown of ß-catenin and of BCL9-2 in SW480 and MCF7 cells 

(Figure 25).  

The microarray analyses confirmed the distinct transcriptional roles of ß-catenin and of 

BCL9/BCL9-2. The induced gene sets of BCL9 and BCL9-2 were only in part overlapping with the 

gene cluster of ß-catenin (Figure 24 and Figure 25). Only 4% of BCL9-2 and 6% of BCL9 

dependent genes were present in the gene set regulated by ß-catenin in SW480.  In DLD1 cells 

13% of BCL9-2 and 14% of BCL9 target genes were regulated by ß-catenin. In addition, BCL9 

and BCL9-2 itself shared almost 10% of their target genes in SW480 and DLD1 (Figure 24, left 

and middle). 

 
 
Figure 24: ß-catenin and BCL9/BCL9-2 induce different gene sets in cancer cell lines 
Venn diagrams illustrating the overlap of ≥1.5 fold down-regulated genes in SW480, DLD1 and MCF7 
cells following knockdown of the proteins for 48h, as indicated (FDR≤0.05). 

Moreover, knockdown of ß-catenin in MCF7 led to reduction only one gene covered by two 

oligonucleotides and which represented ß-catenin itself. In addition, BCL9 knockdown in MCF7 

appeared to be less effective in transcriptional modulation compared to BCL9-2, since only 

nine genes were regulated by BCL9 compared to 49 genes which appeared in the BCL9-2 gene 

set (Figure 24 and Figure 25, right).  In contrast, knockdown of BCL9 in DLD1 cells resulted in 

more than 1500 differentially regulated genes, while BCL9-2 knockdown led to reduction of 

only 78 genes.  Since DLD1 cells contain moderate levels of BCL9-2, BCL9 appeared to have a 

stronger impact on gene transcription than BCL9-2 (Figure 24, middle).  

The heat map analyses for all highly significant regulated genes revealed that BCL9-2 indeed 

shares many genes with the cluster of ß-catenin in SW480 colon cancer cells. However, BCL9-2 

significantly regulates several additional target genes independently of ß-catenin (Figure 25, 

left).  
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Moreover, heat map analyses showed that there is almost no detectable transcriptional 

function of ß-catenin in MCF7 cells. In contrast, BCL9-2 appeared to be a potent transcription 

factor for the regulation of target genes in breast cancer cells (Figure 25, right).  

These results demonstrate that BCL9-2 dependent transcriptional regulation in different 

cancer cells does not rely completely on ß-catenin and that BCL9 and BCL9-2 are able to 

transactivate a gene set independently of ß-catenin/Wnt signaling.  

 

Figure 25: BCL9-2 regulates target genes independently of ß-catenin. 
Heat maps show all ≥2 fold down-regulated genes in SW480 and MCF7 cells after knock down of ß-
catenin and BCL9-2 (FDR≤0.05). The expression of genes is shown in comparison to non-targeting siRNA 
treated samples and depicted by a color coded expression score. 

In summary, the induced gene signature resulting from knockdown of BCL9 and BCL9-2 in 

different cancer cells are only in part overlapping with the gene cluster of regulated by ß-

catenin. In addition, the number of BCL9-2 regulated genes correlated positively with the 

expression level of BCL9-2 in the different cancer cell lines. 
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4.10 Novel BCL9-2 target genes in cancer cells identified by microarray 

analyses 

4.10.1 Comparison of the gene expression profile of cancer cell lines and of tumors 

from the intestine specific double knock out of VilCre;BCL9-/-/ BCL9-2-/- mice  

Deka and colleagues developed a intestine specific BCL9-/-/BCL9-2-/- knockout mouse model in 

which they chemically induced dysplastic colon adenomas (Deka et al., 2010). Tumors deriving 

from wild-type and BCL9-/-/BCL9-2-/- mice were analyzed by comparative gene expression 

profiling and the regulated genes were publicly available for our further analyses. This model 

reflects the in vivo situation which is mimicked by siBCL9 and siBCL9-2 treatment of our colon 

cancer cell lines. We compared the gene expression profile of BCL9-/-/BCL9-2-/- derived tumors 

and siBCL9, siBCL9-2 and siß-catenin treated SW480 cells to investigate the regulatory 

functions of BCL9 and BCL9-2 in comparison to ß-catenin in colon cancer.  

We compared target genes of BCL9 and BCL9-2, which were significantly ≥1.5 fold down-

regulated in SW480 cells and target genes, which displayed ≥2 fold decreased transcription, 

originating from the expression profile of BCL9-/-/BCL9-2-/- mice derived tumors. The graphs 

show the fold change of the respective genes compared to SW480 cells treated with non-

targeting siRNA treated or tumors derived from wild-type mice, respectively (Figure 26).  

From 1200 genes, which appeared in the expression profile of BCL9-/-/BCL9-2-/- mice derived 

tumors, 28 were also present in the gene sets of siBCL9/siBCL9-2-treated SW480 cells. Out of 

these 28 genes, only knockdown of BCL9 resulted in reduction of 5 specific genes, like the gene 

of ras-related protein 2b (RAP2B) (Figure 26C), whereas only knockdown of BCL9-2 led to the 

reduction of 19 genes such as the gene of transforming growth factor beta 3 (TGFB3) (Figure 

26D). Interestingly, only 4 genes appeared in the gene set of siß-catenin-treated SW480 cells, 

such as Axin2 (Figure 26A and B).  
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Figure 26: Comparative gene expression profiles from VilCre;BCL9
-/-

/ BCL9-2
-/-

 and microarrays from 
siRNA treated SW480 cells identified new target genes of the BCL9 proteins 
Comparative gene expression profiles from tumors of VilCre;BCL9

-/-
/ BCL9-2

-/-
 and SW480 cells treated 

with siRNA targeting ß-catenin, BCL9 and BCL9-2, as indicated. The graphs show the log fold change 
(logFC) of target genes of (A) BCL9, BCL9-2 and ß-catenin, (B) BCL9-2 and ß-catenin, (C) BCL9 and (D) 
BCL9-2 as % of control siRNA-treated cells and tumors of non-transgenic mice, respectively. Asterisks 
indicate a fold discovery rate (FDR<0.05).  

In summary, based on the expression profiles obtained from our microarray analyses in SW480 

cells, the impact of BCL9-2 knockout in BCL9-/-/BCL9-2-/- mice appeared to be more severe in 

comparison to BCL9 knockout. Moreover, ablation of BCL9-2 had a dramatic influence on gene 

expression in the induced tumors. Remarkably, this influence was not observed after 
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knockdown of ß-catenin in SW480 cells. This indicates a partially ß-catenin-independent 

influence of BCL9-2 on gene transcription in colon cancer. 

Comparison of the differentially regulated genes from our microarray analyses in SW40 cells to 

those from the tumors derived from BCL9/BCL9-2 knockout mice, we found the HOX gene 

SOX4 which appeared in both analyses. Moreover, Deka et al. identified SOX6 and PROX1 as 

putative target genes of the BCL9 protein in vivo. An additional HOX gene, SOX9, was present 

in the BCL9-2 mediated gene set in SW480 cells. 

However, determination of differentially regulated genes in BCL9-/-/BCL9-2-/- mice does not 

dissect the dependency on BCL9 or BCL9-2, since the arrays were performed from double 

mutant animals. To analyze the dependency of the HOX genes in colon cancer cells on BCL9-2 

or/and BCL9 in comparison to ß-catenin, qPCRs were performed following knockdown of the 

proteins in SW480 cells (Figure 27A and B).  

 
 
Figure 27: BCL9-2 regulates the expression of HOX genes  
Expression of the indicated genes was determined following knockdown of ß-catenin, BCL9 and BCL9-2 
for 48h relative to control siRNA-treated SW480 cells. Quantitative real time PCRs show the mean of 
least 3 independent experiments and their respective standard deviation (*p≤0.05).  

The mRNA expression of the HOX genes SOX4, SOX9 and PROX1 in SW480 cells was strongly 

down-regulated after knockdown of all three proteins. In contrast, SOX6 expression was only 

regulated by BCL9-2, but not by BCL9 or ß-catenin.  

In summary, BCL9-2 transcriptionally regulates different genes of the HOX gene family, which 

are implicated in cancer progression (Petrova et al., 2002), and which might further trigger the 

oncogenic potential of BCL9-2 during intestinal tumorigenesis. 
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4.10.2 Cyclopholin A (CypA) and the stem-cell-derived neural stem/progenitor cell 

supporting factor (SDNSF) are newly identified BCL9-2 core target genes in cancer cell 

lines 

Venn diagrams were used to compare all genes that were significantly down-regulated ≥1.5 

fold in MCF7, SW480, DLD1 and HCT116 cancer cells. The number of BCL9-2 regulated genes 

correlated well with the expression level of BCL9-2 in the cell lines (Figure 16 and Figure 28). 

BCL9-2 knockdown in SW480 showed the strongest effects with 605 affected genes. In 

contrast, BCL9-2 knockdown was less effective with 18 transcriptional reduced genes in 

HCT116 cells, with low BCL9-2 protein levels (Figure 28). Moreover, these analyses identified 

two novel core target genes which were only regulated by BCL9-2 in all analyzed cancer cell 

lines (Figure 28): Cyclophilin A (CypA) and stem-cell-derived neural stem/progenitor cell 

supporting factor (SDNSF).  

 
 
Figure 28: Microarray analysis identified 2 genes as new BCL9-2 core target genes in cancer cell lines 
Venn diagram showing the overlap of 1.5 fold down-regulated genes upon BCL9-2 knock-down in 
various cancer cell lines, as indicated (p≤0.05). 

Quantitative real time PCRs and Western Blot analyses were performed, to validate the 

dependency of CypA and SDNSF on BCL9-2. Only knockdown of BCL9-2 resulted in strong 

reduction of mRNA levels of the new core target genes in all tested cell lines (Figure 29A, B and 

C). Accordingly, protein levels of CypA were reduced after treatment of SW480 and HCT116 

cells for 72h with siRNA targeting BCL9-2 (Figure 30A, upper panel). ß-catenin and BCL9 

knockdown had no effect on CypA and SDNSF expression (Figure 29A).   
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Figure 29: BCL9-2 but not BCL9 and ß-catenin regulates the mRNA and protein expression of 
Cyclophilin A (CypA) and stem-cell-derived neural stem/progenitor cell supporting factor (SDNSF) in 
cancer cell lines 
(A, B and C) qRT-PCR determined mRNA levels of SDNSF and CypA following knockdown of ß-catenin, 
BCL9 and BCL9-2 for 48h in different cancer cell lines, as indicated. Graphs show the mRNA expression 
as % of control siRNA treated cells (*p≤0.05). 

In summary, BCL9-2 regulates a subset of core target genes in colon cancer cells which might 

trigger the oncogenic role of BCL9-2 independent of ß-catenin. First, Cyclophilin A, which has 

already been shown to play a role in different tumor entities, might also mediate the 

oncogenic role of BCL9-2 (Obchoei et al., 2009). Second, SDNSF, which regulates cell-survival 

(Toda et al., 2003) could also be implicated in BCL9-2 induced tumorigenesis.  
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4.11 Dissecting the ß-catenin-dependent and -independent functions of 

BCL9-2 

Dissection of the ß-catenin-dependent and -independent function of BCL9-2 is important to 

characterize the molecular mechanisms for the role of this co-factor for the control of specific 

target genes. BCL9-2 itself does not contain a classical DNA-binding domain, but might act a co-

factor for several transcription factors besides ß-catenin/LEF/TCFs. Therefore, we analyzed the 

promoters of BCL9-2 regulated genes to identify putative BCL9-2 responsive elements and to 

characterize a nuclear binding partner of BCL9-2. In this regard, we analyzed the 

transcriptional regulation of the promoters of the ß-catenin/BCL9-2 target gene CDX1 and of 

the BCL9-2 target gene CDX2. 

4.11.1 BCL9-2 regulates the endogenous expression of caudal type homeobox 1 and 2 

(CDX1/2)  

The homeodomain transcription factor caudal type homeobox 1 and 2 proteins (CDX1 and 

CDX2) have been previously identified as Wnt/ß-catenin target genes during embryonic 

intestinal development in mice (Hryniuk et al., 2012;Lickert et al., 2000;Lickert et al., 2002). 

However, it was shown, that CDX2 expression is not activated by canonical Wnt-signaling after 

E10.0 in mice (Gao et al., 2009). Moreover, CDX1, but not CDX2, is a well characterized Wnt/ß-

catenin target gene in the adult intestine (Hryniuk et al., 2012). 

We have analyzed whether BCL9, BCL9-2 and ß-catenin regulate the expression of these two 

homeodomain transcription factors, and performed qPCRs were performed after treatment of 

SW480 cells with siRNA for 48h targeting BCL9, BCL9-2 and ß-catenin. BCL9 knockdown had no 

influence on CDX1 and CDX2 expression. In contrast, CDX1 mRNA was reduced after 

knockdown of ß-catenin and BCL9-2 in SW480 cells. Remarkably, CDX2 was only affected by 

BCL9-2, but not by ß-catenin knockdown (Figure 30B). Accordingly, BCL9-2 knockdown for 72h 

reduced the CDX2 protein level in HCT116 and SW480 cells as analyzes by Western Blot 

analysis (Figure 30A).  

http://www.ncbi.nlm.nih.gov/gene/12590
http://www.ncbi.nlm.nih.gov/gene/12590
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Figure 30: The Wnt/ß-catenin target gene CDX1 and the ß-catenin-independent gene CDX2 are 
regulated by BCL9-2 in colon cancer cell lines 
(A) 30µg of nuclear protein lysates were used in Western Blot analysis to determine CDX2 and CypA 
protein expression following knockdown of BCL9-2 for 72h (second panel) in SW480 and HCT116 cells. β-
actin (bottom panel) and ß-catenin (third panel) served as controls for equal protein loading. (B) qPCR of 
CDX1 and CDX2 following knockdown of ß-catenin, BCL9 and BCL9-2 in cancer cell lines, as indicated. 
Graphs show the mRNA expression relative to control siRNA treated cells (*p≤0.05). 

In summary, BCL9-2 regulates the endogenous expression of CDX1 and CDX2, which had been 

shown to be up-regulated during early stages of tumor development (Bakaris et al., 

2008;Phillips et al., 2003). Remarkably, only BCL9-2, but not ß-catenin or BCL9, regulates the 

mRNA and protein expression of CDX2 in colon cancer cell lines. In contrast, endogenous 

expression of CDX1 is dependent on ß-catenin and BCL9-2.  

5.11.2 Transcriptional activation by the proximal promoters of the homeodomain 

transcription factors CDX1 and CDX2 requires BCL9-2, but not ß-catenin in colon 

cancer cell lines 

To identify a promoter region, which is responsible for BCL9-2 mediated transcriptional 

activation, Luciferase assays were performed in SW480 and HCT116 colon cancer cell lines 

following knockdown of ß-catenin and BCL9-2. To this end, Luciferase-reporter constructs, 

containing different length of the proximal promoter of the human CDX1 (Suh et al., 2002) and 

CDX2 were used. All Luciferase constructs contained different fragments of the upstream CDX1 

and CDX2 promoter regions and +73bp of the CDX1- and +76bp of the CDX2-3’UTR, 

respectively, relative to the transcription start site (Figure 31and Figure 32).    
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Figure 31: BCL9-2, but not ß-catenin knockdown reduces the activity of CDX1 and CDX2 Luciferase-
reporters  
For Luciferase assays (A) SW480 and (B) HCT116 cells were pretreated with siRNA for 48h targeting ß-
catenin, or BCL9-2 and non-targeting siRNA, followed by 36h transfection of CDX1 and CDX2 Luciferase-
reporters containing different length of each of their proximal promoters, as indicated. The graphs show 
the fold change of empty control plasmids with their respective standard deviation (*p≤0.05).   

CDX1 and CDX2 promoter driven Luciferase expression was independent of ß-catenin in both 

colon cancer cell lines, although all CDX1 reporters and the -1434bp and -456bp CDX2 

reporters contain LEF/TCF responsive elements. Compared to the control, knockdown of BCL9-

2 reduced the activity of the -3189bp and the smaller -386bp CDX1 Luciferase-reporter to 50% 

(Figure 31A and B, left). Moreover, knockdown of ß-catenin even slightly induced all CDX2 

Luciferase-reporter in SW480 (Figure 31A, right).  This tendency was already observed on CDX2 

mRNA level after knockdown of ß-catenin in qPCR (Figure 30A and B). BCL9-2 knockdown 

significantly inhibited the activities of the -1434bp and the -456bp CDX2 reporters in SW480 

and HCT116. The -281bp proximal promoter fragment of CDX2 still responded to BCL9-2 

knockdown in both cell lines, but to a lesser extent compared to the larger -456bp CDX2 

reporters (Figure 31A and B, right).   
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In conclusion, CDX2 and the Wnt/ß-catenin target gene CDX1 is regulated by BCL9-2 through a 

responsive element in the proximal promoter of -386/+73bp CDX1 and of -456/+76bp CDX2. 

Moreover, both CDX reporters were independent of ß-catenin indicating that the LEF/TCF 

binding elements (Wnt responsive elements - WRE) in the proximal promoters of the CDX 

genes are not responsive to ß-catenin in colon cancer cell lines. 

4.11.3 Identification of putative transcription factor binding sites in the proximal 

promoters of CDX1 and CDX2  

The promoters of CDX1 and CDX2 were further analyzed in more detail, to evaluate the BCL9-2 

mediated transcriptional regulation of the ß-catenin/BCL9-2 target gene CDX1 compared to 

the BCL9-2 target gene CDX2.  TRANSFAC® MATCH/PATCH (Transfac Professional 2008.4 (Kel et 

al., 2003;Matys et al., 2003)) was used to identify putative transcription factor binding 

elements (BE), which were present in  the -386/+73bp CDX1 and the -456/+76bp CDX2 

promoter. TRANSFAC® MATCH identifies predicted transcription factor binding elements by 

using a library of positional weight matrices, while TRANSFAC® PATCH identifies pattern-based 

transcription factors. Both applications use a set of binding sites provided from TRANSFAC® 

Public 6.0 (http://www.gene-regulation.com/pub/databases.html#transfac). 

TRANSFAC® MATCH analyses identified various putative binding elements (BEs) in both 

proximal promoters: Binding elements for LEF/TCF, OCT4 (octamer-binding transcription factor 

4), NFĸB (nuclear factor kappa-light-chain-enhancer of activated B cells), BCL6 (B-Cell 

Lymphoma 6 protein) and also for CDX2 were present in both promoters (Figure 32A and B).  

Of note, CDX2 itself was shown to bind to the TATA box of the CDX1 promoter and thereby 

activate CDX1 expression (Mutoh et al., 2009) . The two LEF/TCF binding sites in the CDX1 

promoter were previously described as functional elements in early mouse embryonic 

intestines (Lickert et al., 2000;Lickert et al., 2002).  In addition, the CDX2 promoter contains a 

previously identified SMAD-binding element, which is activated by BMP2/4 in intestinal 

metaplasia (Barros et al., 2008). An second SMAD-binding element was identified in the 

proximal promoter of the CDX2 gene close to the transcription start site by TRANSFAC® 

MATCH (Figure 32B).  

Moreover, both promoters harbor multiple SP1-binding elements (Specificity Protein 1), which 

are very common in GC-rich promoters. TRANSFAC® MATCH identified two SP1-binding 

elements in the proximal promoter of the CDX1 gene. In the TATA-less promoter of CDX2 SP1 

http://www.gene-regulation.com/pub/databases.html#transfac
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binding elements (BEs) were randomly distributed as identified by TRANSFAC® PATCH. In 

addition we found three suboptimal SP1-BEs the CDX2 proximal promoter (Figure 32A and B). 

To investigate whether the identified TF-binding elements are conserved between Mus 

musculus and Homo sapiens, T-COFFEE® was used (Di et al., 2011;Notredame et al., 2000). This 

tool allows the combination of multiple sequence alignment including the determination of the 

degree of conservation between sequences. To this end, the proximal promoter sequences of 

human and mouse CDX1 and CDX2 were analyzed (Figure 32A and B). The proximal promoter 

of the CDX1 gene showed overall less conservation compared to that of CDX2. Previously 

identified transcription factors binding sites for LEF, OCT4 and CDX2 in the -386bp CDX1 and -

456bp CDX2 promoter were highly conserved in humans and mice. Both SMAD-binding 

elements were highly conserved in mouse and human CDX2 promoters and a conserved NFĸB-

binding element was present in the proximal promoter of CDX1 while only human species 

harbor this element in the CDX2 promoter. BCL6-binding elements were found in both CDX 

promoters of Homo sapiens, but not in the proximal promoter of rodent CDX1, suggesting a 

less important role of BCL6. However, SP1-binding elements were present in all promoters of 

the CDX genes, but only the very proximal SP1-elements located very close to the transcription 

start were conserved in the promoters of both species. In contrast, the more distal SP1-binding 

elements were only present in the human CDX1 and CDX2 promoters (Figure 32B).           

Thus, multiple similar binding elements were present in the proximal promoters of CDX1 and 

CDX2 which are highly conserved between human and mouse including the binding sites for 

BCL6, NFĸB, OCT4, CDX2, LEF/TCF and SP1 transcription factors.  
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Figure 32: Transcription factor binding elements in the CDX1 and CDX2 proximal promoter 
Proximal promoters from Homo sapiens, Mus musculus and Rattus norwegicus (A) of CDX1 and (B) CDX2 
including trough TRANSFAC® identified putative transcription factor binding elements (TF-BE) on the 
indicated position from the transcription start (TS). The degree of conservation between the organisms 
is indicated by a color code. 
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4.11.4 BCL9-2 modulates CDX1 and CDX2 reporter activity by Specificity Protein 1 

(SP1)-binding elements in their proximal promoter in colon cancer cell lines 

To identify a binding site which is responsible for BCL9-2 transcriptional regulation, all binding 

elements as identified above (see 4.11.3) were mutated using mutagenesis PCR to disrupt the 

binding of the respective transcription factors. The activities of the mutated Luciferase-

reporters were analyzed in SW480 and HCT116 which were pretreated for 48h with siRNA 

targeting BCL9-2 and compared to control siRNA treated cells.   

A) Transcriptional regulation of CDX1 (Figure 33) 

In general, mutation of all TF-binding elements in the promoter of CDX1 only slightly reduced 

the reporter activities in SW480 cells. In HCT116 mutation of the binding motif for LEF, NFĸB, 

OCT4 and SP1 led to a reduction of reporter activities of approximately 45-60%. However, each 

of the mutated reporters was still expressed with well detectable levels (Figure 33). 

Remarkably, single and double LEF mutated CDX1 Luciferase-reporters still responded to 

knockdown of BCL9-2 in SW480 and HCT116 cells (Figure 33), indicating that BCL9-2 regulated 

their expression independently of these LEF-binding elements. 

Also the mutations of the BCL6-, NFĸB- or OCT4-binding elements still showed a reduced CDX1 

reporter activity following BCL9-2 knockdown (Figure 33).  

Mutation of the CDX2-binding element in the proximal CDX1 promoter (Figure 32A) was not 

investigated since this binding site is located close to the transcription start site and mutation 

will lead to a complete loss of reporter activity (Mutoh et al., 2009).  

The distal SP1-binding element mutant still responded to BCL9-2 knockdown. However, 

mutation of the very proximal SP1-binding element lost the response to knock down of BCL9-2. 

Similarly, CDX1 reporter containing SP1-binding element-double mutations also did not 

respond to BCL9-2 knock down (Figure 32A and Figure 33). 

These data demonstrate that BCL9-2 regulates CDX1 gene transcription through a newly 

identified SP1 binding element in the proximal promoter region close to the transcription start 

site. 
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Figure 33: BCL9-2 regulates CDX1 reporter gene expression by an SP1 responsive element in the 
proximal promoter 
For Luciferase assays SW480 and HCT116 cells were pretreated with siRNA targeting BCL9-2 and non-
targeting siRNA for 48h, followed by 36h transfection of -386bp/+73bp CDX1 Luciferase-reporters 
containing different mutations of TF-responsive elements, as indicated (left). The graphs show the 
relative Luciferase-reporter activity to the CDX1-Luciferase wild-type (WT) activity and their standard 
deviation. Significances were calculated to the respective control siRNA treated cells (*p≤0.05). 

B) Transcriptional regulation of CDX2 (Figure 34) 

Mutation of LEF-, BCL6- and CDX2-binding elements had just minor effects on the -456bp CDX2 

Luciferase-reporter activity in HCT116 and SW480 cells Figure 34). In SW480 cells, only 

mutation of the SMAD- and NFĸB-binding elements decreased the activity to a greater extent 

to approximately 50-60%. In HCT116 cells, mutation of NFĸB- and the distal SMAD-binding 

elements reduced the -456bp CDX2 Luciferase-reporter activity to approximately 40-70%. 

However, each of the mutated -456bp CDX2 Luciferase-reporters was still expressed with well 

detectable levels in SW480 and HCT116 cells (Figure 34). 
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Similar to our results for the CDX1 promoter, mutation of the LEF-binding element in the CDX2 

reporter also had no influence on the repressive function of BCL9-2 knockdown. In addition, 

also mutations of the BCL6-, NFĸB- or CDX2-binding elements did not change the capability of 

BCL9-2 knockdown to further reduce these CDX2 reporter activities (Figure 34).  

Interestingly, one of each mutant for the two SMAD-binding elements was potent to inhibit 

the BCL9-2 effect in either, HCT116 or in SW480 cells, respectively (Figure 34). This indicates 

that the SMAD pathway is efficient to modulate CDX2 reporter activity in these cells. 

Like many TATA-less genes, the CDX2 promoter harbors multiple putative SP1-binding 

elements. SP1-MT(2) and -MT(5) are mutated optimal SP1 sites, while SP1-MT(1), -MT(3) and -

MT(4) are mutations of suboptimal SP1 binding sites (Figure 32B). 

In HCT116, the basal activity of the CDX2 reporters containing the mutation of the four 

proximal SP1-binding elements (MT1-4) was reduced to approximately 60- 40 % of the 

unmutated promoter, while in SW480 mutation of these SP1-binding elements (MT1-4) had no 

influence on the reporter activities. In addition, the most distal SP1-binding element (MT5) did 

not affect the basal CDX2 reporter activity in both cell lines. However, double mutation (dMT) 

of the two optimal SP1-binding elements (dMT2+5) strongly reduced the reporter activity in 

HCT116 and SW480 cells (Figure 34).  

In SW480 cells, single mutations of the distal SP1-binding elements (MT4 and 5),) and the 

proximal SP1-binding element (MT2) still showed significantly reduced reporter activity 

following BCL9-2 knockdown. In contrast, mutation of two SP1 sites in the proximal promoter 

(MT1 and 3), completely lost the inhibition of promoter activity after knockdown of BCL9-2 

(Figure 34). 

Remarkably, all mutated SP1-binding elements (MT1-5) of the CDX2 promoter did not further 

respond to BCL9-2 knockdown in HCT116 cells. In both cell lines, double mutations of SP1 sites 

(MT2+5) also did not respond to BCL9-2 knockdown (Figure 34).  

These results clearly demonstrate that the BCL9-2 mediated transcriptional regulation of the 

CDX2 promoter requires the presence of several functional SP1 binding elements in both cell 

lines.  
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Figure 34: SP1 binding elements mediate the BCL9-2 dependent regulation of the CDX2 promoter 
For Luciferase assays SW480 and HCT116 cells were pretreated with siRNA targeting BCL9-2 and non-
targeting siRNA for 48h, followed by 36h transfection of -456bp/+76pb CDX2 LUC-reporters containing 
different mutations of TF-BSs, as indicated. The graphs show the relative LUC-reporter activity to the 
CDX2-LUC wild-type (WT) activity and their standard deviation. Significances were calculated to the 
respective control siRNA treated cells (*p≤0.05). 

In addition, the CDX2 reporter activity was strongly reduced after mutation of the OCT4-

binding element, indicating the importance of this element for the transcription of CDX2 in 
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colon cancer cell lines. Moreover, BCL9-2 knockdown did not further significantly reduce the 

OCT4 mutated reporter in HCT116 and SW480 cells (Figure 34). 

Because CDX1 and CDX2 reporter activities were dependent on the presence of an OCT4 

binding element, OCT4 was overexpressed in SW480 cells to determine whether the reporters 

are inducible by OCT4 or if the OCT4 binding element generally exhibits some activating 

function independently from OCT4 protein expression (Figure 35).  

 
Figure 35: OCT4 induces the CDX1 and CDX2 reporter activities through a newly identified OCT4 
binding element 
For Luciferase assays SW480 were transfected with 200ng OCT4 overexpression plasmid and -456bp/+76 
pb CDX2 or -386bp/+75bp CDX2 Luciferase-wild-type (WT) or OCT4-binding element mutated (OCT4-
BEmt) reporters, as indicated. The graphs show the absolute Luciferase-reporter activities and their 
standard deviation. Significances were calculated to the activity of the respective WT reporters without 
OCT4 overexpression (*p<0.05). 

Interestingly, overexpression of OCT4 resulted in significant induced CDX1 and CDX2 activity of 

wild-type (WT) reporters in SW480 cells. As shown previously, mutation of the OCT4-binding 

elements in both promoters led to a significant inhibition of reporter activities. Accordingly, 

OCT4 overexpression showed no longer any activating effects (Figure 35). 

In summary, LEF-binding elements in the proximal promoter of CDX1 and CDX2 are 

dispensable for BCL9-2 mediated gene transcription, indicating that BCL9-2 acts independently 

from ß-catenin in the regulation of these target genes. However, the proximal promoter of 

CDX1 and CDX2 contain novel OCT4 responsive elements which mediate the transcriptional 

activation of the CDX1 and CDX2 reporters.  

The most important results of these studies reveal that the cis-regulatory elements of both, 

the CDX1 and CDX2 gene, harbor multiple SP1-binding elements, which are essential for the 

activation of the proximal promoters in dependence of BCL9-2. Interestingly, the proximal SP1 

binding elements close to the transcription start site are most important for the BCL9-2 

mediated CDX1- and CDX2-gene transcription. 



RESULTS 

93 
 

4.12 BCL9-2 interacts with the transcription factor SP1 in colon cancer 

cell lines 

BCL9-2 regulated the expression of the CDX1- and CDX2-Luciferase reporters through SP1-

binding elements in their proximal promoters. To determine whether BCL9-2 regulates gene 

expression by binding to SP1 and thereby probably to the promoter of target genes, co-

immunoprecipitations were performed in HCT116 and SW480 colon cancer cell lines. Specific 

antibodies (Table 8) were used to precipitate BCL9-2 and SP1, respectively. In addition, 

Pygopus 2 was precipitated as known interaction partner of BCL9-2, rabbit serum (IgG) served 

as negative control.  

The specific antibody recognizing BCL9-2 only precipitated its targeted protein, but not BCL9 

(Figure 36, bottom panel). Moreover, binding to Pygo2 was confirmed by precipitation of 

BCL9-2 and vice versa (Figure 36, third panel).  

 
 
Figure 36: Co-Immunoprecipitation identified SP1 as a new interaction partner of BCL9-2 
Co-Immunoprecipitations (Co-IPs) were performed from SW480 and HCT116 using specific antibodies, 
as indicated (IP). IgG rabbit serum served as negative control. 10% of IPs and 5% of the respective inputs 
were used for SDS-PAGE in addition to specific antibodies detecting the indicated proteins/interaction 
partners (left). 

Of particular note, co-Immunoprecipitation identified BCL9-2 as interaction partner of the 

transcription factor SP1 in SW480 and HCT116 cells. After immunoprecipitation of BCL9-2, SP1 
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was identified by Western blotting in the precipitated complexes in both cell lines. The reverse 

experiment using a SP1-antibody was not successful. HCT116 cells express lower levels of 

BCL9-2 compared to SW480 cells (Figure 16, upper panel and Figure 36, upper panel). 

According to this, less SP1 protein was detected in the BCL9-2-IP in HCT116 cells compared to 

SW480 cells.  

In conclusion, the co-immunoprecipitation experiments show that BCL9-2 can be found in a 

complex not only with Pygopus 2, but also with SP1 in colon cancer cells. 

These completely novel results uncover a mechanism which explains the transcriptional 

regulation of BCL9-2 target genes which are ß-catenin-dependent and -independent. 



DISCUSSION 

95 
 

5 Discussion 

The role of BCL9/Legless in Drosophila has been studied intensively (Kessler et al., 

2009;Kramps et al., 2002;Townsley et al., 2004). BCL9/Legless was shown to be essential for 

canonical Wnt signaling during embryogenesis in Drosophila (Kramps et al., 2002). In this 

context BCL9/Legless mediates the recruitment of the segment polarity gene Pygopus which 

recruits and modulates components of the chromatin remodeling machinery (Chen et al., 

2010;Fiedler et al., 2008;Kessler et al., 2009;Nakamura et al., 2007). The function of the 

vertebrate BCL9 proteins was shown to be primarily context-dependent (Brembeck et al., 

2006;Brembeck et al., 2004;Sustmann et al., 2008). However, the role of the vertebrate BCL9 

and BCL9-2 seems to be more complex than in Drosophila. BCL9-2 double knockout mice are 

early embryonic lethal (Matsuura et al., 2011) while conditional ablation of BCL9/BCL9-2 in the 

intestine caused no obvious phenotype (Deka et al., 2010). This indicates that the BCL9 

proteins are not necessary for normal homeostasis while at least BCL9-2 exerts important 

functions during embryonic development. BCL9-2 is overexpressed in cancers (Zatula and 

Brembeck, unpublished)(Adachi et al. 2004; Deka et al. 2010; Sakamoto et al. 2007; Toya et al. 

2007b). These findings provide further evidences for BCL9-2 to act as a proto-oncogene in 

colon tumorigenesis. 

However, a complete investigation of the BCL9 proteins and their function in normal intestines 

and during the multistep model of carcinogenesis was still missing.  Here, their expression and 

transcriptional function in normal and tumorigenic epithelia in mice and humans was 

examined. Moreover, for the first time, this study provides evidence for a ß-catenin 

independent function of BCL9-2 and defines a novel mechanism how BCL9-2 might act as 

transcriptional co-activator independently of ß-catenin. 

5.1 The role of BCL9 and BCL9-2 in intestinal homeostasis  

The Wnt/ß-catenin pathway is crucial for intestinal homeostasis and diverse developmental 

processes such as specification of the mesoderm and neuroectoderm, body axis formation and 

intestinal specification during embryogenesis (Gadue et al., 2006;Kemp et al., 2005;Mohamed 

et al., 2004;Nostro et al., 2008;Sherwood et al., 2011), as well as intestinal homeostasis in the 

adult organism (Pinto et al., 2003). In addition, BCL9 and BCL9-2 have been shown to be 

essential for different ß-catenin-dependent developmental processes such as mesoderm 
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patterning in zebrafish, myogenic differentiation and for proper placenta development in mice 

(Brack et al., 2009;Brembeck et al., 2004;Matsuura et al., 2011), while it appears, that other 

processes  do not require the participation of the BCL9 proteins, like the formation of the 

dorsal organizer or the posteriorization of the anterior neuroectoderm (Brembeck et al., 2004).  

We addressed the question whether BCL9 and BCL9-2 participate in the Wnt/ß-catenin 

signaling-dependent maintenance of intestinal homeostasis. To this end, we characterized the 

expression of BCL9 and BCL9-2 in intestinal tissues of mice using specific antibodies (Brembeck 

et al., 2011). BCL9 protein expression was found in all intestinal cell types including the crypts. 

Canonical Wnt signaling in the intestinal crypt compartment and the subsequent expression of 

ß-catenin target genes is required for the maintenance of the proliferative capacity of 

intestinal stem cells (Korinek et al., 1998a). Our results showed that intestinal ß-catenin target 

genes such as TCF1, EPHB2 and PROX1 depend on BCL9 expression in colon cancer cells. 

Possibly, BCL9 might also play a role in the transcriptional regulation of these target genes in 

intestinal homeostasis.  

In contrast, BCL9-2 expression was restricted to the mature differentiated epithelial cells, 

which reside in the villi. In the villi TGFß and BMP-signaling inhibit Wnt/ß-catenin signaling and 

function as growth repressors in differentiated epithelial cells (Haramis et al., 2004;Hardwick 

et al., 2004;Sancho et al., 2004). This inhibition through paracrine factors like BMPs is 

necessary for the differentiation of the cells into mature specialized cells (Crosnier et al., 

2006;Hartenstein et al., 2010;He et al., 2004b). Interestingly, our studies in colon cancer cell 

lines showed that BMP4 gene expression is regulated by BCL9-2. Probably, BCL9-2 contributes 

to the expression of Wnt/ß-catenin signaling repressive genes. Expression of the paracrine 

factor BMP4 could therefore be activated in intestinal epithelial cells. BMP4 leads to activation 

of BMP signaling in the mesenchyme that consequently inhibits Wnt signaling in the villi 

(Haramis et al., 2004;He et al., 2004b). BCL9-2 is not expressed in the crypts, where Wnt/ß-

catenin signaling is active. Thus, BCL9-2 appears to be dispensable for intestinal Wnt/ß-catenin 

signaling which is restricted to the proliferative crypt compartment, although it might function 

in a ß-catenin-independent mechanism in the mature epithelial cells residing in the villi. 

In accordance to our findings, Deka et al. showed that conditional ablation of both BCL9 

proteins in intestinal epithelia did not disturb the normal intestinal homeostasis (Deka et al., 

2010). The distribution and differentiation of intestine-specific cell lineages remained 

unaltered, although the expression of the stem-cell marker Leucine-rich repeat containing G 

protein-coupled Receptor 5 (LGR5) and other intestinal epithelial genes, e.g. SOX6, were 
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significantly reduced in intestinal epithelia of BCL9/BCL9-2 deficient animals (Deka et al., 

2010). However, these studies do not provide detailed information about the particular 

function of BCL9 or BCL9-2, since the changes in the gene expression pattern of conditional 

BCL9-/-/BCL9-2-/- knockout mice may have been caused by both or just one of the proteins.  

In our studies on colon cancer cells LGR5 mRNA expression was only dependent on ß-catenin 

and BCL9, while SOX6 expression was regulated by BCL9-2, suggesting diverse functions of 

BCL9 and BCL9-2 in malignant intestinal cells. Other intestinal canonical Wnt target genes such 

as SOX9 and PROX1 (Blache et al., 2004;Karalay et al., 2011;Petrova et al., 2002;Petrova et al., 

2008) are dependent on ß-catenin and the BCL9 proteins. We found other differentially 

expressed genes in SW480 colon cancer cells after knockdown of ß-catenin and BCL9/BCL9-2. 

These genes are known to be important for intestinal homeostasis: the EPHB receptors and 

ephrin ligands were only partially dependent on ß-catenin in colon cancers (this work). Other 

studies have shown that EPHB receptors as Wnt/ß-catenin target genes are key-regulators of 

migration and proliferation in the intestinal stem-cell niche (Holmberg et al., 2006). Further 

intestinal proteins like LGR5 (van der Flier et al., 2007) and SOX9 (Blache et al., 2004) have 

been shown to be expressed in the crypts in dependency of ß-catenin , while BCL9-2 regulated 

proteins reside in the villi, e.g. CDX2 (Guo et al., 2004).  

In summary, since previous investigations showed that knockout of BCL9 and BCL9-2 causes no 

obvious intestinal phenotype (Deka et al., 2010), it is conceivable that they are dispensable for 

normal intestinal homeostasis. However, the gene expression pattern of BCL9-/-/BCL9-/- mutant 

epithelia was changed indicating that BCL9 and BCL9-2 regulate the expression of intestine 

specific genes whose functions are particular important for tumorigenesis (see 

below)(Brembeck et al., 2011;Deka et al., 2010). BCL9-2 might therefore participate in the 

regulation of the ephrinB ligands and CDX2 in a ß-catenin independent manner outside of the 

crypts. Additionally, canonical Wnt-signaling exerts a role in normal crypts by activating the 

expression of the EPHB receptors, CDX1, SOX9 and LGR5 probably with or without the 

contribution of BCL9 (Figure 37)(Batlle et al., 2002). 
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Figure 37: BCL9-2 expression and Wnt/ß-catenin signaling in the intestine 
BCL9-2 is expressed in the villi of the intestine, apart from active Wnt/ß-catenin signaling in the crypts. 
Therefore BCL9-2 might contribute to the intestine specific gene expression pattern along the crypt-
villus axis independently of ß-catenin. BCL9, in contrast, is expressed in all intestinal cells and has the 
spatial ability to contribute to ß-catenin-dependent gene transcription in the crypts.   

5.2 BCL9-2 is up-regulated independently of Wnt/ß-catenin signaling in 

early stages of intestinal tumorigenesis  

Previous analyses mainly focused on the overexpression of BCL9-2 in advanced tumors (Adachi 

et al., 2004;Sakamoto et al., 2007;Toya et al., 2007) while comprehensive analyses regarding 

early stages of tumorigenesis were still lacking. We found that early stages of tumor 

development, represented by adenomas of APCMin/+ mice, exhibited high nuclear BCL9-2 

protein expression. In contrast, BCL9-2 protein was absent in adjacent crypts. As already 

shown in mice, human tissue microarrays revealed significantly increased nuclear BCL9-2 

protein in human adenomas whereas BCL9 protein expression remained unchanged compared 

to normal mucosa. Moreover, 90% of human colon cancers contained elevated or high BCL9-2 

protein while high and elevated nuclear ß-catenin was present in only 59% of the colon cancer 

samples. In addition, we found that colon cancer cell lines carrying APC-mutations (Rowan et 

al., 2000) contain high levels of BCL9-2. In contrast, most cell lines with a ß-catenin stabilizing 

mutation (Kim et al., 2003) exhibited low or absent BCL9-2 protein expression. As already 

observed in APCMin/+ tumors, BCL9 was ubiquitously expressed in colon cancer cell lines at 

approximately equal levels compared to normal mucosa. Here, we show that BCL9-2 protein 

expression is significantly increased in early stages of tumorigenesis and highly expressed in 

tumors harboring an APC mutation while BCL9 expression is not altered.  
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Previous studies provide evidences for a dependency of BCL9-2 expression on Wnt/ß-catenin 

signaling (de la Roche et al., 2008). De la Roche et al. found increased BCL9 and BCL9-2 mRNA 

expression following Wnt3a stimulation of HEK293 cells. However, we did not observe any 

reduction of BCL9/BCL9-2 mRNA or protein levels after knockdown of ß-catenin in SW480 

colon cancer cells indicating that the expression of BCL9 and BCL9-2 in colon tumorigenesis 

does not depend on Wnt/ß-catenin signaling. Moreover, BCL9-2 mRNA and protein expression 

was even significantly induced in SW480 cells after knockdown of ß-catenin. These data 

suggest that BCL9 and BCL9-2 are not targets of ß-catenin and that Wnt/ß-catenin signaling 

might negatively regulate the expression of BCL9-2. It has been shown that LEF1 is activated 

through binding of ß-catenin that consequently results in suppression of E-cadherin gene 

transcription in keratinocytes (Jamora et al., 2003). Possibly ß-catenin negatively regulates 

BCL9-2 expression in colon cancer cells through a similar mechanism. However, the precise 

undelaying mechanism remains to be discovered.  

Further findings in vivo support our hypothesis that ß-catenin negatively regulates BCL9-2 

expression. The crypt compartment in normal intestine lacks BCL9-2, which is probably due to 

the negative influence of ß-catenin on BCL9-2 transcription. In the villi, ß-catenin resides at the 

cell membrane and therefore exerts no transcriptional function. Thus, BCL9-2 expression is 

restricted to the villi.  

The negative effect of ß-catenin on BCL9-2 expression might be overcome by other 

mechanisms, which lead to overexpression of BCL9-2. For instance, we found elevated levels of 

BCL9-2 protein in adenomas of APCMin/+ mice (this study). Loss of function mutations in APC are 

associated with chromosomal instability (CIN) (Alberici and Fodde, 2006;Caldwell and Kaplan, 

2009;Fodde et al., 2001). CIN is a common event in tumorigenesis often resulting in the trans-

location of genetic loci e.g. of oncogenes (Caldwell et al., 2009;Dikovskaya et al., 

2007;Radulescu et al., 2010). Also, BCL9 overexpression was linked to trans-location of its gene 

locus in B cell malignancies (Willis et al., 1998). It is possible that the gene locus of BCL9-2 

could be also rearranged likewise resulting in increased transcription levels. Indeed, the 

chr11q22 which harbors the gene locus of BCL9-2, was found to be altered in 64% of colon 

cancers (Knosel et al., 2002). Accordingly,iIt might be possible that gene re-arrangement of the 

BCL9-2 gene locus occur due to chromosomal instability induced by APC mutations. 



DISCUSSION 

100 
 

5.3 BCL9-2 promotes intestinal tumorigenesis  

5.3.1 BCL9-2 expression enhances Wnt/ß-catenin signaling activity in intestinal 

tumorigenesis 

The majority of colon cancers show high levels of canonical Wnt-signaling due to mutations 

causing ß-catenin stabilization or APC truncation, since these mutations lead to aberrant 

transcriptional activity of ß-catenin (Nagase et al., 1993;Polakis, 2000;Reya and Clevers, 

2005;van der Flier et al., 2007). We analyzed the level of Wnt/ß-catenin signaling in different 

colon cancer cell lines that contain high, moderate or low levels of BCL9-2 and found that 

BCL9-2 protein levels correlated with the level of Wnt/ß-catenin signaling activity in these cell 

lines.  

The dosage of Wnt/ß-catenin signaling is crucial for many different events, including normal 

developmental processes, such as the maintenance of pluripotency and intestinal specification 

(Gadue et al., 2006;Kemp et al., 2005;Mohamed et al., 2004;Nostro et al., 2008;Sherwood et 

al., 2011). In addition, adult tissues require a well-defined dosage of canonical Wnt-signaling: 

intestinal homeostasis (Pinto et al., 2003) and pathological events like the formation of 

intestinal tumors and breast cancers (Mohinta et al., 2007;Reya et al., 2005).  

Since the level of Wnt/ß-catenin activity is critical for cell renewal and differentiation, many 

regulatory mechanisms exist which control the Wnt/ß-catenin-dependent activation of target 

genes. In embryonic development and homeostasis paracrine signaling molecules form 

concentration gradients. These lead to different signaling responses which subsequently define 

the resulting tissues. For example, in the adult intestine APC is inversely expressed to active ß-

catenin along the crypt villus which results in a gradient of canonical Wnt-signaling activity 

(Gaspar and Fodde, 2004). In addition, nuclear repressors and activators modulate the 

function of ß-catenin: Groucho generally represses ß-catenin dependent transcription through 

the recruitment of repressive chromatin (Fisher and Caudy, 1998;Palaparti et al., 1997), while 

other transcriptional co-regulators like CBP/p300 can either activate or repress canonical Wnt 

signaling in dependency of the recruited co-factors  (Li et al., 2007).  

Additionally, BCL9-2 modulates the activity of canonical Wnt-signaling in different ways.  

Our group previously showed that BCL9-2 promotes the trans-location of ß-catenin to the 

nucleus that enhances Wnt/ß-catenin-dependent target gene transcription (Brembeck et al., 
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2006;Brembeck et al., 2004). In addition, BCL9-2 modulates the switch between ß-catenin´s 

transcriptional and adhesive function due to the preferred binding of Y142 phosphorylated ß-

catenin to BCL9-2 instead of α-catenin (Brembeck et al., 2004).  Moreover, several studies 

showed that BCL9 and BCL9-2 co-activate the transcription of ß-catenin target genes (Adachi et 

al., 2004;Brembeck et al., 2004;Brembeck et al., 2011;Deka et al., 2010;Sustmann et al., 2008).  

Because BCL9-2 appears to be redundant for normal intestinal homeostasis but exerts 

tumorigenic properties, some studies aimed to target the interaction between ß-catenin and 

BCL9/BCL9-2 to inhibit tumor growth. Takada and colleagues developed a stabilized α helix of 

BCL9 (SAH-BCL9), which interferes with its ß-catenin binding domain. This resultes in an 

impaired binding to ß-catenin. Remarkably, SAH-BCL9 led to the suppression of tumor growth, 

angiogenesis, invasion and metastasis formation in mouse xenografts. In addition, de la Roche 

et al. identified carnosic acid to inhibit β-catenin binding to the BCL9 co-factors (de la Roche et 

al., 2012b). Their study demonstrated that binding to BCL9 proteins protect un-

phosphorylated β-catenin against degradation. Thus, treatment of colon cancer cells with 

carnosic acid lead to destabilization of oncogenic β-catenin and consequently to transcriptional 

inactive oncogenic ß-catenin (de la Roche et al., 2012b).  

In summary, the function of BCL9-2 in canonical Wnt-signaling is most likely the enhancement 

of a critical signaling threshold which results in the activation of certain Wnt target genes in 

pathologic processes. The Wnt/β-catenin signaling pathway plays a crucial role for the balance 

of stemness and differentiation in the intestinal crypts (Fodde and Brabletz, 2007). However, 

Fodde and colleagues resumed that ß-catenin stabilizing APC mutations alone might not be 

sufficient to cause aberrant ß-catenin transcriptional activation. Additional factors appear to 

be necessary to induce a pathological transcription level, which leads to tumorigenesis (Gaspar 

et al., 2004), for instance, BCL9-2, which enhances the ß-catenin signaling output. Our studies 

support this role, since Wnt/ß-catenin activity correlates with the protein level of BCL9-2 in 

colon cancer cell lines. Overexpression of BCL9-2 results in the transcriptional co-activation of 

Wnt/ß-catenin target genes. This might be promoted by BCL9-2 mediated nuclear retention of 

ß-catenin and the regulation of ß-catenin´s transcriptional function. Although BCL9/BCL9-2 

appear to be dispensable for intestinal homeostasis, they play an important role in pathologic 

processes.  
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5.3.2 BCL9-2 is not required for the expression of all canonical Wnt target genes and 

regulates additional ß-catenin-independent genes implicated in tumorigenesis 

BCL9-2 and BCL9 are potent co-activators of canonical Wnt-signaling. We addressed the 

question whether the proteins are essential or just partially required co-factors for Wnt/ß-

catenin signaling or whether they regulate target genes independently of ß-catenin. We 

analyzed different Wnt/ß-catenin-dependent Luciferase-reporters and the endogenous 

expression of known ß-catenin-target genes and other genes implicated in colon cancer. To 

this end, the expression of the target genes was analyzed after knockdown of BCL9 and BCL9-2 

in comparison to the knockdown of ß-catenin in colon cancer cells.  

Knockdown of BCL9-2 and BCL9 resulted in strong reduction of Axin2 and TOP/FOP Wnt 

reporter activities in cell lines with high levels of BCL9-2. In addition, we found several 

endogenous Wnt target genes which were highly dependent on BCL9-2 and BCL9, e.g. Bambi, 

TCF1 and EPHB2. But not all ß-catenin target genes were regulated by the BCL9 proteins. The 

CyclinD1 reporter was not affected by BCL9 or BCL9-2 knock down. In line with these findings, 

CyclinD1 mRNA was not changed after knock down of the BCL9 proteins. In addition, genes 

such as LEF1 and MSX2 also not responded to BCL9 and BCL9-2. Thus, BCL9-2 promotes only a 

subset of Wnt/ß-catenin target genes (Figure 38).  

Interestingly, Clarke and Clevers recently postulated that CyclinD1 is not a direct target gene of 

ß-catenin. They found that endogenous CyclinD1 expression was not altered following 

antagonism of the Wnt pathway in vitro or even was not induced by conditional loss of APC in 

vivo (Sansom et al., 2005). In consequence it is possible that also BCL9-2, as co-factor of 

canonical Wnt-signaling, is not able to induce CyclinD1 expression. Thus, secondary effects 

appear to be required for CyclinD1 overexpression in cancers. For example, p53 mutations lead 

to activation of NFĸB, which positively regulated CyclinD1 transcription (Rocha et al., 2003).  

Therefore, it is likely that ß-catenin regulates the expression of CyclinD1 by a BCL9-2-

independent activation of an inhibitor or by inhibition of a suppressor such as p53. However, 

the underlying mechanism is still unknown and needs to be investigated.  

BCL9-2 independent ß-catenin target genes are co-regulated by other factors and obviously do 

not require the co-activation through the BCL9 proteins. For example, MSX2 was shown to be 

co-regulated by cooperative binding of SMAD4 and LEF1 in murine embryonic stem cells 

(Hussein et al., 2003). Interestingly, Hussein and colleagues found, that Wnt/ß-catenin-

dependent activation of MSX2 required the presence and functionality of SMAD binding 
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elements. Moreover, we found that the mRNA expression of Bambi was highly dependent on 

BCL9-2 in colon cancer cells. Expression levels of Bambi, an inhibitor of TGFß-signaling, were 

shown to correlate with the metastasis-free survival time of colon cancer patients. In addition, 

Fritzmann et al. found that overexpression of Bambi increases migration of colon cancer cells 

and subsequently metastasis formation (Fritzmann et al., 2009). 

BCL9-2 and BCL9 are not required for all ß-catenin target genes, as our studies demonstrated. 

Microarray analyses and qPCR of different cancer cell lines supported these observations. Each 

of the BCL9 proteins mediated its own set of ß-catenin- target genes (Figure 38). Thus, genes 

like LGR5 were dependent on ß-catenin and BCL9 but not on BCL9-2 levels. In addition, CDX1 

and BMP4 were co-regulated by ß-catenin and BCL9-2, and independent of BCL9 in colon 

cancer cells.  

 

 
Figure 38: BCL9-2 and BCL9 regulate a subset of Wnt/ß-catenin target genes and regulate the 
expression of distinct genes independently of ß-catenin  
Venn diagram showing the different genes which were identified in this study to be transcriptionally 
regulated by BCL9, BCL9-2 or ß-catenin, as indicated. 
 

Interestingly, BCL9-2 induced an additional set of target genes which was apparently 

independent of ß-catenin indicating that BCL9-2 controls the expression of ß-catenin 

independent genes in colon and breast cancer. This gene set includes CDX2, the EPHB3/4 

receptors and ephinB1/2/3 ligands (Figure 38). 

http://europepmc.org/abstract/MED/19328798/?whatizit_url=http://europepmc.org/search/?page=1&query=%22metastasis%22
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These BCL9-2 target genes might further trigger intestinal tumorigenesis.  As we have shown 

for BCL9-2, the ephrinB1, B2 and B3 ligands and EPHB3 and B4 (Hafner et al., 2004;Lugli et al., 

2005) receptors, as well as CDX1 and CDX2 (Ee et al., 1995;Ren et al., 2000;Silberg et al., 1997) 

have been described to be up-regulated in early phases of intestinal tumorigenesis.  

Investigations regarding the function and expression of CDX1 and CDX2 are partially 

controversial. Both proteins have been described to exert tumor-promoting and -repressing 

functions. However, CDX1 and CDX2 are up-regulated in intestinal adenomas (Ee et al., 

1995;Ren et al., 2000;Silberg et al., 1997) and to some extent silenced in carcinomas. For 

example, CDX2 expression might be maintained in most colon cancers and lost in tumors with 

a high frequency of microsatellite instability (Hinoi et al., 2001).  

The underlying mechanisms which lead to the repression of the proteins are not completely 

understood yet. It has been suggested that hypermethylation of the CDX1 promoter causes 

transcriptional silencing (Suh et al., 2002). In addition, CDX2 silencing was shown to be in part 

mediated by a dominant negative transcriptional repressor (Hinoi et al., 2003). CDX1 was 

hypothesized to promote proliferation in different colon cancer cell lines (Di Guglielmo et al., 

2001;Soubeyran et al., 2001), whereas other studies claimed that CDX1 inhibits Wnt/ß-catenin 

signaling and thereby exerts anti-proliferative functions (Lynch et al., 2003).  

However, our results show that CDX1 and CDX2 are expressed in different colon cancer cell 

lines in dependency of BCL9-2 expression. Some studies determined a tumor-suppressive 

function of CDX2 (Lorentz et al., 1997;Mallo et al., 1998). In contrast, others claimed that CDX2 

exerts tumor promoting functions (Bonhomme et al., 2003;Oshima et al., 1995), which to 

some extent reflect the influences we observed after BCL9-2 overexpression in our transgenic 

mouse model. For example, Salari et al. demonstrated that CDX2 is de-regulated in colorectal 

cancers through chromosomal focal amplification and acts as a lineage-survival oncogene. 

Thus, cancer cells deriving from the CDX2-lineage require the presence of this oncogene for 

continued growth and survival. Moreover, the study of Salaris et al. claimed that CDX2 is 

implicated in Wnt/β-catenin signaling and therefore contributes to colorectal tumorigenesis 

(Salari et al., 2012). In addition, it was recently shown that CDX2 regulates claudin1 expression 

(Bhat et al., 2012),which has been linked to tumor progression and metastasis in association 

with EMT (Dhawan et al., 2005). Thus, BCL9-2 dependent activation of CDX2 might further 

promote the epithelial-mesenchymal transition of cancer cells.  

In conclusion, the function of CDX1 and CDX2 depends on their temporally and locally 

expression. It is likely that, depending on the genetic background, the proteins exert different 
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functions. Further investigation will provide more insights into the complex role of the CDX 

proteins by dissecting the tumor-promoting and -repressing functions in dependency on the 

cellular context.  

In addition to CDX proteins, the expression of the EPHB receptors and ephrinB ligands were 

strongly dependent on BCL9-2. In intestinal homeostasis, the EPHB/ephrins have been shown 

to regulate cell migration and intestinal cell fates through contact-mediated cell repulsion 

(Sancho et al., 2003;Sancho et al., 2004). This function suggests a role of the proteins for 

tumor invasion. Many studies have shown that the EPHs and ephrins are overexpressed in 

early stages of tumorigenesis and silenced in advanced stages due to hypermethylations of 

their promoters (Hafner et al., 2004;Lugli et al., 2005). Although overexpression of the Wnt/ß-

catenin target EPHB2 is mainly associated with loss of cancer progression, further studies 

provided evidence that aberrant expression of the ß-catenin independent BCL9-2 target gene 

products EPHB4 and ephrinB2 give rise to metastases (Liu et al., 2002b;Liu et al., 

2004;Stephenson et al., 2001). However, up-regulation in particular of the BCL9-2 regulated 

EPHB/ephrins was shown to promote tumor invasion which was also observed as a 

consequence of BCL9-2 overexpression. 

Moreover, using microarray analyses we identified the new BCL9-2 core target genes 

Cyclophilin A (CypA) and the stem-cell-derived neural stem/progenitor cell supporting factor 

(SDNSF) which were independent of ß-catenin and BCL9 in cancer cell lines (Figure 38). SDNSF 

and CypA are novel candidates which could further trigger tumor progression by 

overexpression of BCL9-2. Both proteins had been previously shown to be implicated in 

tumorigenesis (Gashaw et al., 2007;Mosca et al., 2010;Obchoei et al., 2009). 

The physiological function of SDNSF is the transport of selected proteins as component of a 

receptor which is important for the endoplasmatic reticulum (ER) - Golgi apparatus (Zhang et 

al., 2003). SDNSF supports the survival and multipotency of neuronal stem/progenitor cells 

without the addition of fibroblast growth factor (FGF) or epidermal growth factor (EGF) in 

vitro, which are indispensable for retention of the potential to self-renew under physiological 

conditions (Toda et al., 2003). The EGF-signaling pathway was shown to regulate colon cancer 

stem-cell proliferation and apoptosis (Feng et al., 2012). Possibly, SDNSF promotes the 

maintenance of pluripotency of cancer cells, which is a common event in tumorigenesis (Abdul 

Khalek et al., 2010). In this regard SDNSF might contribute to the autonomy and independence 

of tumor cells on self-renewing promoting factors like FGF or EGF. However, detailed studies 

regarding the expression and role of SDNSF in tumorigenesis are still missing: Gashaw and 
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colleagues postulated SDNSF to be marker for testicular germ cell tumors (Gashaw et al., 

2007).  Moreover, some studies provided evidences that SDNSF is up-regulated in breast 

cancers (Mosca et al., 2010). 

Cyclophilin A (CypA), the second newly identified BCL9-2 target gene is a peptidylprolyl cis-

trans-isomerase (PPI) which accelerates the folding of proteins and is involved in intracellular 

protein trafficking (Andreeva et al., 1999. CypA is overexpressed in many tumor, e.g. in 

pancreas, breast and colon cancer (Obchoei et al., 2009). Importantly, overexpression of CypA 

prevents hypoxia- and cisplatin-induced apoptosis in HCT116 colon cancer cells but has no 

influence on cell proliferation (Choi et al., 2007). In addition, it has been shown that the new 

BCL9-2 target gene is a promising candidate for treatment and early diagnosis of diverse 

cancers like hepatocyte and endometrial tumors (Lee, 2010a;Lee, 2010b;Obchoei et al., 2009).  

However, detailed analyzes for the role of SDNSF and CypA in intestinal tumors are missing.  

Further investigations regarding their function and expression during intestinal tumorigenesis 

could further shed light on the role of BCL9-2 in colon cancer.  

In summary, this study revealed that BCL9-2 plays a more prominent role than BCL9 for the co-

activation of tumorigenesis-related genes. Interestingly, both co-factors mediate a gene 

signature which is apparently independent of ß-catenin in cancer cells. In addition, we 

identified CypA and SDNSF as new BCL9-2 target genes. SDNSF and CypA were both shown to 

be overexpressed and to some extent implicated in the maintenance of tumor-related 

properties. This supports our hypothesis that target gene products of BCL9-2 trigger the ß-

catenin independent, oncogenic role of this protein. 
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5.3.3 BCL9-2 promotes tumor development and local invasion 

BCL9-2 is up-regulated in the majority of colon cancers. It has been shown, that the 

phenotypes of aberrant expressed BCL9-2 target genes result in severe phenotypes (see above 

and the following text). We used a BCL9-2 transgenic mouse model, to investigate whether 

BCL9-2 overexpression is involved in tumor development and progression in vivo. In our model, 

BCL9-2 overexpression in mice was achieved by a keratin 19 (K19) promoter which leads to 

expression of the transgene in simple epithelia including the intestine (Brembeck et al., 2011).  

BCL9-2 overexpression alone induced the development of undifferentiated tumors in the small 

intestine in aged mice (>15 month) with a relatively low incidence of 20%. To analyze whether 

BCL9-2 overexpression contributes to tumor formation in combination with other genetic 

alterations in vivo, adenoma development was analyzed in compound APCMin/+;K19-BCL9-2 

mice.  

Remarkably, overexpression of BCL9-2 in compound APCMin/+;K19-BCL9-2 mice resulted in 

significantly increased adenoma formation in the small intestine with regard to number and 

size compared to APCMin/+  non-transgenic littermates. The same tendency was observed in the 

colon, although the changes were not significant due to the rare development of colonic 

tumors in APCMin/+ mice per se. The life span of APCMin/+ mice is generally shortened due to 

anemia resulting from the intestinal adenomas (Moser et al., 1990).  

Our results are in agreement with studies by Deka et al. for intestinal tumorigenesis in 

BCL9/BCL9-2 mutant animals: Induction of dysplastic adenomas by dimethylhydrazine in 

BCL9/BCL9-2 knockout mice led to tumor formation with similar incidences in knockout and 

wild type mice. However, the size of BCL9-/-/BCL9-2-/- derived tumors was significantly 

decreased in comparison to wild type mice. Thus, loss of BCL9/BCL9-2 suppresses tumor 

growth. Accordingly, APCMin/+;K19-BCL9-2 animals developed huge adenomas, indicating that 

BCL9-2 overexpression leads to tumor development under supra-pathological conditions. APC 

mutation resulting in ß-catenin stabilization alone were suggested to be not sufficient to cause 

aberrant ß-catenin transcriptional activation (Gaspar et al., 2004). Thus, our studies reveal that 

BCL9-2 overexpression induces an increased supra-pathological transcription level of ß-

catenin-dependent and -independent target genes, which further promote tumor progression.  

Remarkably, adenomas of APCMin/+;K19-BCL9-2 mice were locally invasive with tumor cells 

growing invading the submucosa and muscularis, which was never observed in APCMin/+ control 
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mice.  APCMin/+  mice develop benign tumors with well-formed boundaries (Moser et al., 1990). 

Thus, canonical Wnt-signaling requires the co-activation of genes by additional factors to 

induce invasion, as observed in our compound mutant mice (see 5.3.1).  

This study identified the Wnt/ß-catenin target gene PROX1 to be highly dependent on BCL9-2. 

Indeed, it has been shown that ß-catenin alone is not sufficient to activate PROX1 gene 

expression in colon cancer cells (Petrova et al., 2008). Petrova and colleagues demonstrated 

that PROX1 is a dose-dependent target gene of Wnt/ß-catenin signaling. Moreover, a yet 

unknown factor is required for transcriptional activation of PROX1 in addition to nuclear ß-

catenin. Our study suggests that BCL9-2 might be the missing link to induce the specific 

activation of target genes like PROX1. Accordingly, high PROX1 expression was found in SW480 

and HT29 (Petrova et al., 2008) which contain high levels of BCL9-2 (this study). In contrast, 

DLD1, WiDr and HCT-116 cells with no or moderate BCL9-2 protein expression (this study) 

were negative for PROX1 (Petrova et al., 2008). According to BCL9-2, overexpression of PROX1 

promotes intestinal tumor progression and invasion (Petrova et al., 2008). Overexpression of 

PROX1 correlates with poor prognosis in colon cancer patients (Skog et al., 2011).  Elyada et al. 

provided evidence, that PROX1 mediates invasion through the alteration of cell-polarity and -

adhesion in a TP53-dependent manner (Elyada et al., 2011). However, the detailed underlying 

mechanism has not been described so far. Future experiments are required to investigate the 

dependency of PROX1 on BCL9-2 in more detail. 

We already showed, that invasive areas of APCMin/+;K19-BCL9-2 mice derived tumors express 

the ß-catenin/BCL9-2 regulated EPHB2 and Bambi as well as the BCL9-2 dependent EPHB3 and 

B4  proteins, which were differentially regulated by ß-catenin. The expression of the ephrinB3 

and EPHBB4 receptors was negatively regulated by ß-catenin in SW480 suggesting that ß-

catenin overexpression might cause inhibition of these genes in colon tumors. Moreover, 

deregulation of EPHB4 and ephrinB2 was shown to correlate with metastases formation (Liu et 

al., 2002b;Liu et al., 2004;Stephenson et al., 2001). This findings support the hypothesis that 

BCL9-2 is capable of regulating the transcription of target genes independently from ß-catenin 

which promote tumorigenesis. In addition, BCL9-2 might be essential for the expression of ß-

catenin target genes like PROX1, which further contribute to invasion.  

Invasion is a process which requires the activity of proteins that contribute to the disruption of 

the extracellular matrix and proteins which induce a motile, epithelial phenotype of the cancer 

cells (reviewed in (Kong et al., 2011;Yilmaz and Christofori, 2009). Our studies provide 

evidences that BCL9-2 overexpression contributes to the malignant phenotype of cancer cells 
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through the promotion of epithelial-mesenchymal transition (EMT).  Accordingly, we observed 

a transition of the mesenchymal-like phenotype of cancer cells to a more epithelial-like 

morphology after knock down of BCL9-2 and to a lesser extend after BCL9 knockdown. Earlier 

studies from our group showed that BCL9-2 negatively regulates the mRNA expression of the 

epithelial marker E-cadherin, which supports our hypothesis that BCL9-2 contributes to EMT. 

Also in zebra fish embryos, BCL9-2 was shown to trigger EMT (Brembeck et al., 2004). In 

agreement with our findings, Deka and colleagues found that BCL9-/-/BCL9-2-/- mutant tumors 

exhibited a reduced expression of target genes which had been associated with EMT (e.g., 

Branchury (T) and Vimentin (Vim)), intestinal stem-cell traits (e.g. LGR5) (Deka et al., 2010). 

Moreover, in addition to Wnt/ß-catenin-dependent mesenchymal markers, further 

characteristic EMT-key player genes were reduced in the gene set of BCL9-/-/BCL9-2-/- mutant 

tumors, e.g. snail homolog 2 (SLUG), TWIST1 and zinc finger E-box binding homeobox 1 and 2 

(ZEB1/2). Until now it is not clear whether BCL9-2 itself participates in the transcriptional 

regulation of EMT key components like SLUG and SNAIL, or whether only an indirect process 

underlies the promotion of EMT like the activation of PROX1 or the inhibition of E-cadherin 

expression. Therefor future experiments need to examine the influence of BCL9-2 on the 

regulation of EMT marker genes in cancer cells.  

Taken together, our findings indicate that BCL9-2 overexpression promotes invasion through 

the contribution to epithelial-mesenchymal transition (EMT) directly or indirectly through the 

activation of EMT-promoting factors. In line with these results, Deka et al. claimed that 

BCL9/BCL9-2 expression is associated with LGR5-positive intestinal multipotent stem-cells and 

consequently with cancer stem-cells that exert stem-cell like properties (Deka et al., 2010). 

In summary, BCL9-2 promotes intestinal tumorigenesis and local invasion. These features are 

obviously mediated by two different mechanisms: First, aberrant expression of BCL9-2 

increases canonical Wnt signaling and many of the Wnt/ß-catenin/BCL9-2 target gene products 

have been described by to mediate tumor promoting properties like invasiveness (Han et al., 

2012). Second, BCL9-2 activates its own gene set and thereby triggers tumor development and 

invasion and that BCL9-2 further promotes epithelial-mesenchymal transitions. 

http://www.dict.cc/englisch-deutsch/obviously.html
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5.4 A novel mechanism for BCL9-2 to regulate target gene transcription 

independently of ß-catenin 

Here we identify a mechanism which is responsible for the ß-catenin independent activation of 

BCL9-2 target genes. We used a system which allows the comparison of the transcriptional 

regulation of a ß-catenin/BCL9-2-dependent- (CDX1) and a ß-catenin independent BCL9-2 

target gene (CDX2) in colon cancer cell lines. Similar to BCL9-2, the caudal related homeobox 

genes CDX1 and CDX2 are up-regulated in early stages of intestinal carcinogenesis (Ee et al., 

1995;Ren et al., 2000;Silberg et al., 1997). We found that BCL9-2 regulates the expression of 

CDX1 and CDX2. Interestingly, only CDX1 was dependent on the expression of ß-catenin while 

CDX2 appeared to be negatively regulated.  

5.5.1 BCL9-2 regulates the expression of CDX1 and CDX2 independently of ß-catenin 

in colon cancer cells  

During mouse embryonic development, the initiation of CDX2 transcription is induced by 

canonical Wnt-signaling at around E8.0. However, CDX2 expression was suggested to be 

independent of ß-catenin in later stages and adults (Sherwood et al., 2011). These 

observations are in line with our studies in colon cancer cells: ß-catenin knockdown had no 

influence on the CDX2 mRNA expression in colon cancer cells. Moreover, our studies suggest, 

that the LEF binding elements also known as Wnt responsive elements (WRE) in the proximal 

promoter of CDX2 are dispensable for BCL9-2 mediated reporter gene activity. This indicated 

that BCL9-2 acts independently of ß-catenin in the regulation of these target genes.  

Further studies showed that the -3600bp proximal promoter of CDX1 harbors four Wnt 

responsive elements which are essential for embryonic development (Lickert et al., 2000). 

However, the Wnt responsive elements in the -386bp promoter of CDX1 were shown to be not 

necessary for the activation of CDX1 expression in later stages than E8.5 (Lickert et al., 2000). 

Our study confirmed that the Wnt responsive elements in the CDX1 proximal promoter are not 

functional colon cancer cells. In contrast, endogenous CDX1 expression was dependent on ß-

catenin, obviously through more distal Wnt responsive elements. Lickert and colleagues 

showed that Wnt/ß-catenin signaling regulates CDX1 expression in intestinal tumors in mice 

(Lickert et al., 2000). Our results support this observation.  
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In conclusion, only BCL9-2, but not ß-catenin, regulates the endogenous expression of CDX2 in 

colon cancer cells. Moreover, we found that BCL9-2 regulates the expression of CDX1 through 

the proximal promoter probably independent from ß-catenin. 

However, since BCL9-2 mediates the transcriptional activation of diverse Wnt/ß-catenin target 

genes we cannot exclude that BCL9-2 acts also on more distal Wnt responsive elements in the 

promoter of target genes. Here we focused on the proximal promoters of CDX1/2 and suggest 

a ß-catenin independent function of BCL9-2 to regulate the basal transcription of these genes. 

(Figure 40). 

5.5.2 Identification of a new OCT4 responsive, transcription factor binding element in 

the proximal promoters of CDX1 and CDX2 

Here, we identified OCT4 as a novel transcriptional activator of CDX1 and CDX2 gene 

expression. OCT4 and CDX2 are key transcription factors together with NANOG, SRY (sex 

determining region Y)-box 2 (SOX2) and gut-enriched Krüppel-like factor (KLF4) in early 

embryonic development where they define the lineage decisions in the mouse blastocyst 

(Niwa et al., 2000;Pesce and Scholer, 2001;Wei et al., 2009;Zhang et al., 2010). CDX2 

expression leads to trophoblast lineage differentiation, whereas OCT4, NANOG, SOX2 and KLF4 

expression are necessary for the self-renewing potential of pluripotent stem-cells (Niwa et al., 

2000). In this context  both, OCT4 and NANOG are necessary to inhibit CDX2 expression 

through binding to cis-regulatory elements in the CDX2 promoter (Chen et al., 2009). CDX1 is 

expressed in later stages during embryonic development and not correlated with OCT4 

expression (Lickert et al., 2002). 

None of the already described OCT4-binding elements are present in the proximal promoter 

constructs used in our studies. Surprisingly, mutation of a newly identified OCT4 binding 

element in the proximal promoter of CDX2 led to strong reduction of reporter activity. 

Moreover, OCT4 overexpression activated CDX1 and CDX2 reporter activities through the 

novel OCT4 binding element in each of the promoters. This indicates that OCT4 is an essential 

transcription factor for CDX2 reporter activity. Thus, our analyses revealed that OCT4 exerts 

distinct functions in intestinal tumorigenesis and embryonic development.  

We found that BCL9-2 driven CDX2 reporter activity requires the functionality of the novel 

OCT4 binding element in colon cancer cell lines. Further analyses are required to analyze the 

putative interaction of OCT4 and BCL9-2 (Figure 39A). Our preliminary studies showed that 
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overexpressed BCL9-2 did not bind to exogenous expressed OCT4 in HEK293 cells, suggesting 

an indirect binding of BCL9-2 to OCT4. In addition, BCL9-2 might modulate the expression of 

CDX2 by binding to the OCT4 responsive element through another DNA-binding protein such 

as OCT1 (Figure 39A) or OCT4 mediated transcription requires a co-factor which is dependent 

on BCL9-2 expression (Figure 39B). Thus, we will further investigate the BCL9-2 dependent 

function of OCT4 in colon cancer cell lines. Consequently, the expression of other OCT4 known 

target genes, e.g. NANOG and SOX2 (Jung et al., 2010) will be analyzed. Furthermore, BCL9-2 

might also modulate the expression of OCT4 itself or of another related transcription factor 

(Figure 39B), which mediates the transcriptional activation of CDX2 through the novel OCT4-

binding element. 

 
Figure 39: Overview about putative mechanisms for BCL9-2/OCT4 transcriptional activation of CDX2. 
BCL9-2 might either act through (A) direct interaction with OCT4 or an related transcription factor or (B) 
secondary, through the transcriptional regulation of OCT4, of an OCT4-required co-factor, or of a 
transcription factor, which binds to the OCT4-binding element (OCT4-BE).   

OCT4 is only expressed in embryonic stem-cells and primary silenced in adults with rare 

exceptions of some adult stem-cells such as breast- and skin-stem-cells (Pesce et al., 2001;Tai 

et al., 2005). However, the function of OCT4 in cancer cells appears to be different to its 

function in embryonic stem cells (this study). Overexpression of CDX2 in mESCs induces 

trophoblast differentiation (Tolkunova et al., 2006), while knockdown of OCT4 results in 

endoderm and trophoblast differentiation (Hay et al., 2004). Interestingly, several publications 

reported that OCT4 is expressed in different breast cancer and colon cancer cell lines (Jin et al., 

1999;Steingart et al., 2002;Wang et al., 2003). Overexpression of OCT4 induces the 

reactivation of pluripotency associated factors which contribute to tumorigenesis 

(Hochedlinger et al., 2005). Moreover, it was shown that OCT4 overexpression resulted in 

dedifferentiation of melanoma cells into “cancer stem-cells” (CSC). These cells acquired the 
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typical CSC characteristics such as the ability to form tumor spheroids and the ability to resist 

chemotherapeutics and hypoxia (Kumar et al., 2012). Moreover, we found that OCT4 and 

moderate levels of BCL9-2 are co-expressed in mouse embryonic stem cells (mESCs) (data not 

shown). Probably, also in cancer cells, which to some extent recapitulate similar processes as 

during early embryogenesis, OCT4 and BCL9-2 may contribute to stem-cell like properties, 

either in cooperation or independently of each other. Future studies will therefore be 

extended to mouse embryonic stem-cells to analyze their function in stem cells. To this end, 

the expression of BCL9-2 in pluripotent and differentiating mESCs will be examined. 

Furthermore the phenotypes of mESCs following overexpression or downregulation of BCL9-2 

and their pluripotency and differentiation potential will be analyzed. On the other hand, it is 

important to investigate whether OCT4 overexpression or downregulation in colon cancer cell 

lines with different levels of BCL9-2 changes their stem cell characteristics, motility and ability 

to proliferate.  

5.5.3 CDX1 and CDX2 expression is regulated by BCL9-2 through newly identified SP1 

binding elements in their proximal promoter 

BCL9-2 does not contain a DNA-binding motif and is therefore not able to bind to cis-

regulatory elements in the promoters of target genes itself (Brembeck et al., 2004). Therefore 

the co-activator requires an adaptor protein, which links BCL9-2 to the transcription machinery 

where it exerts transcriptional activating functions. Here we describe a novel interaction for 

this factor. BCL9-2 binds to specificity protein 1 (SP1) transcription factors (TF) in colon cancer 

cell lines, while this interaction was not detected for Pygopus 2. Thus, Pygopus 2 plays a role in 

the BCL9-2 dependent activation of target genes but appears to be dispensable for BCL9-2/SP1 

complex formation. 

In addition, multiple SP1 binding elements in the proximal promoters of CDX1 and CDX2 were 

identified in this work. Moreover, expression of CDX2 was independent of the presence of a 

TATA box or even a TATA like element. Therefore it is likely that the initiation of transcription is 

mediated trough GC-rich elements located closely to the transcription start site, as shown for 

other TATA-less genes (Davie et al., 2008;Lu and Archer, 2010;Singh et al., 2012;Suske, 1999). 

Investigations regarding the transcriptional regulation of the CDX2 gene primarily focus 

general transcription factors, which activate the expression of CDX2 such as FGF signaling 

through SMADs (Barros et al., 2008;Camilo et al., 2012). So far, studies investigating the TATA-

less transcriptional activation of the CDX2 gene were still missing. We did not found common 
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elements in TATA-less promoters such as downstream core promoter elements, TBIID 

recognition element or initiator elements in promoter of the CDX2 gene. However, our study 

revealed that the activity of CDX1 and CDX2 Luciferase reporters containing the proximal 

promoters of the genes were highly dependent on SP1-binding elements (BEs). Moreover, the 

very proximal SP1 binding elements close to the transcription start site were essential for the 

BCL9-2-dependent transcriptional regulation of both reporters. These results suggest that SP1 

in dependence of BCL9-2 initiate the transcription of CDX1 and CDX2 genes.  

Our results indicate that BCL9-2 exerts co-activatory functions through binding to SP1 and 

thereby to the DNA of target genes. Moreover, the transcriptional regulation of CDX1 and 

CDX2 by BCL9-2/SP1 appeared to be independent of ß-catenin, since knockdown of the protein 

had no effect on CDX reporter activity.  

Further investigations will determine whether SP1/BCL9-2 complex formation is specific for 

BCL9-2 or if also its homologue BCL9 binds to SP1. To proof the SP1-mediated recruitment of 

BCL9-2 to specific cis-acting elements in the promoters of CDX1, CDX2 and other target genes, 

chromatin-immunoprecipitation (ChIP) and electrophoretic mobility shift assays (EMSA) will be 

performed. These studies will further compare known Wnt-responsive elements bound by ß-

catenin (WRE) and putative BCL9-2 bound elements in the promoters of these target genes.  

Interestingly, LEF/TCF transcription factors had been shown to interact with SP1/SP5 in 

different biological systems. For example, as previously shown for BCL9-2, SP5 is important for 

Wnt8-dependent transcriptional regulation of Wnt/ß-catenin target genes in zebrafish 

mesoderm specification. In this regard, SP5 dependent transcription might be dependent on 

BCL9-2. Possibly, SP1 binding elements are further important to mediate the BCL9-2 

dependent transcriptional regulation of target genes in dependency of Wnt responsive 

elements, which are bound by LEF/TCF in intestinal carcinogenesis (Figure 40, left). Since the 

impact of SP/LEF/TCF complexes on gene transcription differs in dependence on the genetic 

and biological background, detailed analyses in colon cancers are necessary to determine the 

consequence of the putative SP1/BCL9-2/LEF/TCF complex formation. 

To identify a BCL9-2 protein domain, which is responsible for the binding of SP1, binding of the 

SP transcription factors to different truncated versions of BCL9-2 will be analyzed. These 

analyses will provide information about the dependency of this complex formation on 

different domains in the BCL9 proteins, e.g. whether ß-catenin binding or the BCL9-2 C-

terminus is required for an interaction with SP1. The C-terminus of BCL9 was previously 

described by Sustmann and colleagues to harbor a transactivation domain (Sustmann et al., 
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2008). The three C-terminal domains of BCL9-2 and BCL9 show high similarities (Brembeck et 

al., 2004;Kramps et al., 2002) and are important for the co-activatory function of BCL9 and 

BCL9-2 in Wnt/ß-catenin signaling (Brembeck et al., 2004;Sustmann et al., 2008). In addition, 

the C-terminal domains might play a role in the SP1/BCL9-2 complex mediated transcriptional 

activation due to the facilitation of the SP1-BCL9-2 interaction. Moreover, until now it is 

unclear whether SP1/BCL9-2 complexes are a feature of cancer cells or a general mechanism in 

many cell types including untransformed, normal epithelial cells. Thus, future studies will be 

extended to other cell types such as additional breast cancer-, colon cancer- and 

untransformed- cell lines like the human embryonic kidney cell line HEK293. 

SP1 transcription factors are ubiquitously expressed in all mammalian cells and belong to the 

highly conserved Protein/Krüppel-like Factor (SP/KLF) transcription factor family. SP/KLF 

factors contain a DNA binding domain and three Zink finger domains (Brandeis et al., 

1994;Davie et al., 2008;Smale et al., 1990). SP1 proteins contain two trans-activation domains 

and serine/threonine-rich subregions which can be post-translational modified which primary 

results in inhibited transcriptional activity (Yang et al., 2001). The protein structure of SP1/KLF 

proteins is highly conserved. Thus, BCL9-2 might also bind to other SP1/KLF proteins. The 

closest structural relative of SP1 is SP3, which recognizes the same promoter binding elements. 

Like BCL9-2 knockout mice, SP1 knockout mice are embryonic lethal at E10.5, whereas SP3 

knockout causes postnatal death suggesting a more prominent role of SP1 during embryonic 

development.  In addition, BCL9-2 and SP1 knockout resulted in placental defects (Kruger et 

al., 2007). Interestingly, similar to BCL9-2, SP1 and SP3 are overexpressed in breast, colon and 

other tumor entities (Li et al., 2010).  

Future studies will investigate whether BCL9 proteins interact with other SP related such as 

KLF4. Like OCT4, KLF4 is an important transcription factor in mouse embryonic stem-cells 

(ESCs). In addition, many studies claimed a dependency of SP1-TF and KLF4-TF on each other 

regarding their potential to activate transcription (Black et al., 2001;Brembeck et al., 2000;Shie 

et al., 2000). For example, CyclinD1 gene regulation is mediated by KLF4 which is in part 

dependent by binding to SP1 in gastric cancer cells (Shie et al., 2000). In addition, Brembeck et 

al. showed that the K19 promoter is active in gastrointestinal cancer cells through the 

transcriptional regulation by KLF4 and SP1. This study further claimed that the functional 

interaction of ubiquitous (SP1) and tissue-restricted (KLF4) transcription factors determines 

tissue- and neoplasm-specific patterns of gene expression (Brembeck et al., 2000). In this 

regard, BCL9-2 might play a tissue specific role for the induction of SP/KLF target genes. Thus, 

BCL9-2 transcriptional activity is dependent on SP1 and probably on OCT4. Therefore, we will 
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address the question whether KLF4 plays a BCL9-2 dependent role in colon cancer and stem-

cell maintenance.  

Moreover, SP1, SP3 as well as KLF4 transcription factors have been shown to be implicated in 

the transcriptional regulation of pluripotency genes such as OCT4 and NANOG in mESCs (Pesce 

et al., 1999;Wu and Yao, 2006). Possibly, BCL9-2 and SP proteins might further function in a 

complex in embryonic stem cells which activate pluripotency genes in ESCs (see section 5.4.2). 

BCL9-2 might additionally exert a function in a SP1/SP3 mediated co-regulation of OCT4 in 

cancer cells. BCL9-2 and SP transcriptional complexes in colon cancers might contribute to the 

expression of genes which are essential for the development of stem-cell like features. As it 

was already shown for many BCL9-2 target genes, SP1 target gene products are also implicated 

in tumorigenesis where they act in different cancer-related processes like cell cycle 

progression/arrest, proliferation, invasion, metastasis and angiogenesis (Li et al., 2010). 

Subsequently, the SP1/BCL9-2 complex dependent transcription might activate the expression 

of cancer-related genes that trigger the oncogenic function of BCL9-2 

 
Figure 40: BCL9-2 regulates canonical Wnt-target genes and ß-catenin independent genes 
BCL9-2 is important for the regulation of (A) Wnt/ß-catenin target gene and binds to LEF/TCF trough ß-
catenin, which is activated by paracrine WNT signals. In this regard, BCL9-2 links Pygopus 2 to the 
complex. (B) BCL9-2 activates ß-catenin-independent target genes through complex formation with SP1 
transcription factors. In addition BCL9-2 or/and SP1 might be recruited to LEF/TCF transcription factors 
and possibly exerts ß-catenin-independent function trough Wnt-responsive elements (WRE) in the 
promoters of target genes. 
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6 Summary and Conclusion 

The function of B-cell CLL/lymphoma 9 protein (BCL9)/Legless in Drosophila has been 

investigated intensively (Kessler et al., 2009;Kramps et al., 2002;Townsley et al., 2004). 

However, the role of the vertebrate orthologs in Wnt/ß-catenin signaling and in further 

processes seems to be more complex than in Drosophila. This work investigated the ß-catenin-

dependent and -independent functions of BCL9 and BCL9-2 in normal intestine and 

tumorigenesis.  

BCL9 was expressed in all intestinal cell types and unchanged in colon cancer cells. In contrast, 

BCL9-2 protein expression was restricted to the villi in untransformed, normal intestines, and 

absent in the crypts where Wnt-signaling is active, indicating that BCL9-2 is dispensable for 

Wnt/ß-catenin signaling in intestinal homeostasis. However, BCL9-2 overexpression enhanced 

ß-catenin mediated transcription of a subset of target genes and correlated with the level of 

Wnt/ß-catenin signaling activity in colon cancer cells. Moreover, BCL9-2, and partially BCL9, 

regulated the expression of ß-catenin independent genes which have been implicated in 

tumorigenesis. Moreover, BCL9-2 was already overexpressed in early stages of intestinal 

tumorigenesis and additionally elevated in approximately 90% of human adenocarcinomas 

independent of metastases formation. Ectopic overexpression of BCL9-2 in the intestine of 

transgenic K19-BCL9-2;APCMin/+ mice led to increased adenoma formation accompanied with 

local invasion which resulted in reduced survival. In cancer cells BCL9-2 associates with specific 

protein 1 (SP1). Moreover, BCL9-2 mediated activation of CDX1 and CDX2 reporter gene 

transcription was dependent on SP1-binding elements in their proximal promoters in colon 

cancer cell lines.  

In conclusion, this work demonstrates that BCL9-2 promotes early phases of intestinal tumor 

development and contributes to the progression of tumors into invasive carcinomas. These 

features are obviously triggered by the transcriptional regulation of partially ß-catenin-

independent target genes. Moreover, BCL9-2 mediates its co-activatory function ß-catenin-

independently through binding to SP1 transcription factors and thereby to the promoters of 

target genes which are implicated in early phases of tumor progression.  

Future studies will also focus the implication of other SP/KLF transcription factors in the BCL9-2 

mediated transcriptional regulation of target genes. In addition, the recruitment of BCL9-2 to 

ß-catenin-dependent and -independent cis-acting elements will be proofed in cancer- and 

untransformed- cell lines. 
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