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Introduction

Vector bundles are ubiquitous in many areas of mathematics and theoretical physics. In algebraic
topology or differential geometry many interesting vector bundles are vector bundles associated
to a manifold M. Well known examples are the tangent bundle T'M, the bundle of k-forms
A*(M) or the bundle of (r,s)-tensors T M. With the help of these bundles one can better
understand the geometry of the manifold M. A classical nontrivial vector bundle is the M&bius
strip. This is a one-dimensional vector bundle over the circle S!.

A first question which comes to mind is: how many vector bundles or better isomorphism classes
of vector bundles are there on a manifold M7 If one fixes the dimension of the vector bundles in
question, there is a classifying space BGL(n, C), which classifies isomorphism classes of complex
vector bundles of dimension n.

If one wants to work with an algebraic variety, or more generally a scheme X over an algebraically
closed field k, one can also define vector bundles on X. But since a scheme X comes with a sheaf
of rings Ox, we rather want to work with modules over Ox. Fortunately there is a one-to-one
correspondence:

{isomorphism classes of vector bundles of dimension n over X}

0

{isomorphism classes of locally free sheaves of rank n on X}.

So from now on we will work with locally free sheaves of rank n on a scheme X.

In algebraic geometry there is no immediate classifying space which classifies locally free sheaves
of rank n on a scheme X. And in fact there is a long history in the classification problem for
locally free sheaves on a scheme X.

One of the first results in this direction was a theorem due to Grothendieck in 1957, which states
that if we have a locally free sheaf F of rank n on X = P!, then there are n uniquely determined
locally free sheaves of rank 1, these are also called line bundles on P!, such that F is the direct
sum of these line bundles, that is:

FLi®...0 Ly,

The next big step was done by Atiyah, also in 1957, who proved that isomorphism classes of
indecomposable locally free sheaves of rank n and degree d on an elliptic curve E are classified
by E itself.

But no general method to classify locally free sheaves on a curve C, let alone on a higher
dimensional scheme X, was within sight.

The picture changed drastically in 1965, when Mumford introduced geometric invariant theory
in | |, short GIT. This is a method that constructs quotients of a scheme X by group actions
in algebraic geometry. GIT is based on a paper of Hilbert from 1893 about classical invariant
theory.

The modern view on classification problems in algebraic geometry is via functors on certain
categories. Assume one wants to classify isomorphism classes of some structure. Then one
defines a functor, the so-called moduli functor associated to the classification problem:

M : Schy, —— Sets,

here Schy, is the category of schemes over k and Sets is the category of sets. This functor sends
a scheme S to the set of isomorphism classes of families of such structures over S.
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One says that a k-scheme M is a fine moduli space for M if M represents the functor M, mean-
ing there is a natural isomorphism M = Hom(M, —) between functors.

Often a moduli functor is not representable. In this case one can weaken the notion of repre-
sentability and still get a scheme M which classifies the structures in question. Such a space is
called a coarse moduli scheme.

Fine and coarse moduli schemes have the property that there is a one-to-one correspondece be-
tween the isomorphism classes of the structures one wants to classify and points in the space M.
So in our situation we get moduli spaces of locally free sheaves of rank n on a scheme X. This
space is a replacement for the classifying space BGL(n, C).

One hopes that by understanding the geometrical or topological properties of a moduli space M,
one also gets a better understanding of the structures which are being classified by M.

For the construction of a moduli space of locally free sheaves of rank n one uses Mumford’s GIT.
Usually one also fixes some numerical data of the sheaves one wants to classify, for example the
Hilbert polynomial or, like in our case, the Chern classes.

Unfortunately even with these fixed numerical data there are just too many locally free sheaves
of rank n on a scheme X to expect for a reasonable moduli space M to exist. Instead one has to
restrict to a special class of locally free sheaves of rank n, the so-called stable locally free sheaves.
One can drop the stability condition, but then the moduli space does not exist in the category
of schemes over k, but rather as a so-called Artin stack.

Using Mumford’s GIT one can in fact show that for any n € N and any smooth projective scheme
X there is a moduli space of stable locally free sheaves of rank n and fixed numerical data on X.
Today there are many results about moduli spaces of stable locally free sheaves of rank n on
a projective curve. But already for the case of projective surfaces the study of moduli spaces
of stable locally free sheaves of rank two is really hard, see for example the book | |. More
general results are known if the surface X is a K3 surface. Mukai showed in | | that the
moduli spaces are always smooth in this case and that they admit a symplectic structure.

One example that is very well understood, on projective schemes of any dimension, is that of
line bundles. These moduli spaces are called Picard schemes.

Another classical example of a moduli space is the moduli space M, of algebraic curves of genus
g. It is known for example that this space has dimension 3g — 3 if ¢ > 2. If g = 1, that is for
elliptic curves, it is well known that A! classifies isomorphism classes of such curves.

In this thesis we want to connect the ideas of moduli spaces of stable locally free sheaves of rank
n on a smooth projective surface X for n > 1 and that of Picard schemes.

To do this we define a special sheaf of algebras A on X, a so-called order on X. An order A
on a smooth projective surface is a sheaf of associative Ox-algebras, such that the stalk A, at
the generic point n € X is a division ring, which is finite dimensional over its center k(X), the
function field of X.

We want to study locally free sheaves on which the algebra A acts. We demand that the stalk
at the generic point is a one-dimensional module over the generic stalk A,. This property is a
substitution for stability. By this definition an A-module M can be seen as a module of rank
one over A, an A-line bundle.

But as a locally free sheaf on X such modules have the same rank as A. In our example this
rank is always a square number 72 for some r > 1, so that we work with locally free sheaves of
arbitrary high rank on X.



Introduction 5

This thesis consits of five chapters:

In the first chapter we define all objects that are involved: the algebras A we want to use
and the A-modules that are of interest to us. We will define the moduli functor which
classifies these modules and see that it has a coarse moduli space M 4/x.c, , of rank one
A-modules with fixed Chern classes. Then we will outline the theory of the so-called
noncommutative cyclic covers. This is a theory which produces a lot of explicit examples
of algebras A. Following this we will collect and prove some facts about global Ext-groups
and local Ext-sheaves, for example we will show that there is a version of Serre duality
for A-modules. All these facts are generalizations of the appropriate situations for Ox-
modules. We will define the notion of a relative £xt-sheaf for a morphism of schemes and
as an application we will show that these relative Ext-sheaves satisfy some kind of base
change theorem. Furthermore we will gather some formulas concerning the Chern classes
of the A-modules we want to study. Finally, we will show that quasi-universal families,
that is families that are classified by the moduli space itself, exist as well in our situation.

In the second chapter we will introduce the notion of a so-called Mukai vector for A-
modules. Using this we can investigate moduli spaces of A-modules on K3 or abelian
surfaces of low dimension, especially the moduli spaces of dimension zero and two. We will
construct an explicit example of an algebra A on a product of two elliptic curves and study
moduli spaces of bundles over this algebra.

The third chapter is composed of more general results on moduli spaces of A-modules on
the projective plane P?. Especially we will prove that they are smooth for a certain kind
of algebra A, a so-called del Pezzo order. Then we will go on and study the deformation
theory of the moduli spaces M y4/x,., ,- That is we are interested in how these bundles
behave in families of A-modules. As a consequence we can prove that if we have one
non-empty moduli space we can construct infinitely many other non-empty moduli spaces,
which are of their own interest.

In the fourth and fifth chapter we recollect known explicit examples of moduli spaces and
go on to construct algebras A on P? of rank four respectively nine by using the theory of
noncommutative cyclic covers. Then we will study explicit moduli spaces of A-modules in
these cases. These are by construction moduli spaces of locally free sheaves of rank four
respectively nine. The last two chapters contain a lot of classical geometry, for example
the 27 lines on a cubic surface will arise in the construction of the rank nine algebra.

There is an appendix containing informations about Azumaya algebras and Brauer groups
for the reader who is not that familiar with these concepts. Also there is a short section
about global dimension for a sheaf of algebras. Furthermore we recollect some informations
about the Grothendieck spectral sequence and prove a local-to-global spectral sequence for
A-modules.
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1 Basics

1.1 Orders on surfaces

We start by defining the algebras we are interested in. We will always assume, if not stated
otherwise, that k is an algebraically closed field of characteristic zero.

Definition 1.1:

Let X be a smooth projective surface. An order A on X is sheaf of associative Ox-algebras with
the following properties:

1. A is coherent and torsion-free as a sheaf of Ox-modules;

2. The stalk A, at the generic point n € X is a central division ring over the function field
E(X)=Ox, of X.

Remark 1.2:

If Ais an order on X, then X is sometimes called the center of A, since k(X)) is the center of
A,,. Because a surface X has dimension two, we will call orders on X two-dimensional orders.

We can now look at all orders in A, and order them by inclusion. A maximal element will be
called a maximal order. These are the algebras we are interested in. Maximal orders have some
nice properties, for example:

Lemma 1.3 (| , Proposition 6.3|):

Assume A is a mazximal order on a smooth projective surface X, then A is a locally free Ox-
module.

Furthermore it is well known, that there is an open subset U C X on which A is even an
Azumaya algebra, see for example | , Proposition 6.2]. The complement D := X\U is
called the ramification locus of A and it is the union of finitely many curves C' C X and contains
valuable informations about the order A.

The ramification of a maximal order A can be read from the Artin-Mumford sequence:

Theorem 1.4 (| , Lemma 4.1]):

Let X be a smooth projective surface, then there is a canonical exact sequence

0 —— Br(X) —— Brk(X)) —— @  H'k(C),Q/Z)

irreducible curve

Here the Galois cohomology group H'(k(C),Q/Z) classifies isomorphism classes of cyclic exten-
sions of k(C). More information about Azumaya algebras and Brauer groups can be found in
the appendix.

The ramification curves are exactly the curves where the Brauer class of A, has nontrivial image
in HY(k(C),Q/Z).

Thus every ramification curve C' comes with a finite cyclic field extension L/k(C) and the degree
ec := [L : k(C)] is called the ramification index of A at C. This field extension also defines a

cyclic cover C of the normalization of C. Let D be the disjoint union of the covers.
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Remark 1.5:

We remark that there is no maximal order A on P? ramified only in a curve of degree one or two.
This can be seen for degree one by using the so-called secondary ramification. Basically in this
case this is due to the fact that P! is simply connected, that is it has no nontrivial étale covers.
If the degree of D is two, then either D is smooth and hence isomorphic to P!, or it is the union
of two lines where a similiar argument applies.

This class of algebras is still too wide. We have no control over their homological properties, for
example their global dimension (see (B.7) for the definition of the global dimension of A). So
we put some restraints on the ramification curves and ramification indices, which give maximal
orders with reasonable properties.

Definition 1.6 (] , Definition 2.5|):

A mazimal order A on a smooth projective surface X is called terminal if
e D is a normal crossing divisor,
o the cyclic covers C ramify only at the nodes of D,

e at a node p one cover Cy is totally ramified at p of degree e and the other cover Cy ramifies
at p with index e and has degree ne for some n > 1.

If Ais an Azumaya algebra on X, then it is known that the complete local structure is relatively
easy. If p € X is a closed point and Ox ;, the complete local ring at p, then there is an isomorphism

A’p ®OX,p @Xm = Mr(@Xm)

where rk(A) = r2.

One can ask if the complete local structure of a terminal order A at a closed point p € X can also
be described. This was done in | |, where the authors also prove a minimal model program
for orders on surfaces.

To describe the complete local structure of a terminal order A at a closed point p € X, we
identify the complete local ring Ox,, with R = k[[u,v]] appropriately and define

S := R < x,y > with the relations x¢ = u, y® = v and yxr = (xy

where e € N and ( is a primitive e-th root of unity. Then S if of finite rank over R, Z(S) = R
and K(S) = S ®g K is a division ring, here K denotes the field of fractions Quot(R) of R.
The following theorem describes the complete local structure:

Theorem 1.7 (| , 2.3]):

Let A be a terminal mazimal order and p € X be a closed point. Then there is an @X7p—algebra
isomorphism between A ®o, Ox p and a full matriz algebra over

S .. ... §

xS S C M, (S)

xS - xS S



1.1 Orders on surfaces 11

Knowing the complete local structure we can say even more:
Theorem 1.8 (] , Proposition 2.8]):
Identifying A := A®p, @X,p with the algebra described in (1.7) we have:

e A has global dimension two;
o if n=e=1, then A is unramified,

e ife=1andn > 1 then A is ramified on v = 0 with ramification index n and the cyclic
cover D of D is unramified with degree n;

e if e > 1 then A is ramified on uv = 0, the cyclic cover of u = 0 has degree ne, the cyclic
cover of v =0 has degree e and both are ramified with ramification indez e.

Remark 1.9:

If p € X is a smooth point of the ramification divisor D, then the complete local form simplifies
to a matrix algebra over:

R --- --- R
B_ uR R
uR -+ uR R

More exactly, the displayed ring B lives in M¢(R), where e is the ramification index of A over
the curve C containing p. Then we have A = My (B) for some f > 1.

Remark 1.10:

As a special case we note that a maximal order A with a smooth ramification locus is terminal.

Let R be any commutative ring.

Definition 1.11:

An R-algebra A 1is called Noetherian R-algebra if R is Noetherian and A is a finitely generated
R-module.

Now if M is an A-module, then it is also an R-module, via R — A. This means we can compare
properties of an A-module, when viewed as an A-module or as an R-module.

Lemma 1.12 (] , Proposition 4.2]):

Assume A is a Noetherian R-algebra and let M and N be A-modules. Then we have the following
comparison results:

o M is a finitely generated A-module if and only if M s a finitely generated R-module.
(That is it we can talk about coherence conditions without reference to the base ring!)

o [f M and N are finitely generated A-modules, then Homa(M,N) is a finitely generated
R-module.
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o If M is a finitely generated A-module, then Ends(M) is a Noetherian R-algebra.
o M s of finite length over A if and only if M s of finite length over R.

Next we will list some useful lemmas about modules over orders in codimension one and two:
Lemma 1.13 (| , Proposition 3.5]):

Assume R is a regular local ring of dimension n and A a Noetherian R-algebra, which is free
as an R-module. Then A has global dimension n if and only if every finitely generated R-free
A-module is A-projective.

Lemma 1.14 (| , Proposition 2.2]):

Assume R is a discrete valuation ring and A is a mazimal order, finitely generated and torsion-
free as an R-module. If M is an A-module, finitely generated and torsion-free as an R-module,
then M is A-projective.

Lemma 1.15 (| , Theorem 6.5(a)|):

Assume R is an integrally closed Noetherian domain and suppose A is a maximal R-order in
B := A® K, where K = Quot(R). If M is a finitely generated R-reflexive left A-module, then
Enda (M) is a mazimal order in Endg(V'), where V.= M @ K.

Lemma 1.16 (| , Proposition 2.8|):

Assume R is a Dedekind domain with K = Quot(R). If A is a hereditary R-algebra, which is a
finitely generated and torsion-free R-module, then a finitely generated projective A-module M 1is
indecomposable if and only if M @pr K is a stimple A @ K-module.

Lemma 1.17 (| , Proposition 3.10]):

Assume A is a maximal order over a discrete valuation ring R and M, N are two indecom-
posable A-modules, which are finitely generated and torsion-free over R. Then M and N are
A-isomorphic.

Lemma 1.18 (| , Proposition 3.7]):

Let A be a mazimal R-order in a simple algebra B, R a discrete valuation ring. Then every
indecomposable A-module, which is finitely generated and torsion-free over R, is a cyclic A-
module. If B is a division algebra, then every finitely generated projective A-module is free.

Remark 1.19:

A finitely generated and torsion-free module over a discrete valuation ring R is free of finite
rank. Since R is a regular local ring of dimension one (1.14) implies that a maximal order,
finitely generated and torsion-free as an R-module, has global dimension one by (1.13). In
particular this means that if A is a maximal order on a smooth projective surface X, then for
any point { € X of codimension one A¢ has global dimension one. This especially implies that
Ag¢ is a hereditary, so that we can use (1.16).

Definition 1.20 (| , Definition 4]):

Assume A is a terminal order on a smooth projective surface X. We define the canonical bimodule

of A by:
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wa = Homo, (A, wx).

Here wx = /\2 Qx/ 15 the canonical line bundle of X.

Definition 1.21 (| , Lemma 8]):

Assume A is a terminal order on a smooth projective surface X with ramification curves {C;}
and ramification indicies {e;} fori=1,...,1. Then we define the canonical divisor K 4 of A by:

l
Ki=Kx+> (1- e%)CZ
i=1
Here Kx is the canonical divisor of X, that is wx = Ox(Kx).

Using the canonical divisor of a terminal order A we can define two classes of terminal orders,
which will interest us the most. These are the so-called del Pezzo orders and Calabi-Yau orders.

Definition 1.22:

If A is a terminal order on a smooth projective surface X, then A is called del Pezzo order if
—K 4 is ample.

Remark 1.23:

Since K 4 is a priori just a Q-divisor, we need to define what ampleness means for Q-divisors.
If D is a Q-divisor, then D is ample if and only if there is some n € N such that nD is an integral
divisor and nD is ample.

This definition relies on the fact that on a Noetherian scheme we have the following fact: a line
bundle L is ample if and only if L™ is ample for some m € N, see | , Proposition 7.5].

If Ais a terminal del Pezzo order on P2, then its ramification is rather limited, due to the
following proposition:

Proposition 1.24 (] , Proposition 3.21]):
!

Assume A is a terminal del Pezzo order on P? with ramification locus D = |J C; and ramification
i=1
indices {e;};;«;- Then all ramification indices are equal and the degree of D satifies:

3 <deg(D) <5.
[l , Proposition 3.21]| Furthermore there are more constraints for the ramification index e € N
depending on the degree of D.
Lemma 1.25:
!
Assume A is a terminal del Pezzo order on P with ramification locus D = |J C; and ramification
=1

z:
indez e.

1. If deg(D) = 3 then any e > 2 is possible.
2. If deg(D) = 4 then e =2 or e = 3 are possible.

3. If deg(D) =5 then only e = 2 is possible.
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If A is a terminal del Pezzo order on a smooth projective surface X, then A being del Pezzo also
puts some constraints on X, like the next theorem shows:

Theorem 1.26 (| , Theorem 12]):

Assume A is a terminal del Pezzo order on a smooth projective surface X. Then X is a del
Pezzo surface.

Del Pezzo orders are of special interest to us, because the moduli spaces of A-modules we want
to consider are automatically smooth in this case, see (3.6).

Definition 1.27:

If A is a terminal order on a smooth projective surface X, then A is called numerically Calabi- Yau
if K4 ts numerically trivial. We will call these orders just Calabi- Yau orders.

Remark 1.28:
Here a Q-divisor D is numerically trivial, D = 0, if D.C = 0 for every curve C' C X.

Lemma 1.29 (| |):

Assume A is a terminal Calabi- Yau order on a smooth projective surface X, then X must be one
of the following surfaces:

1. the blow up of P? at at most 9 points in almost general position, P* x P! or the Hirzebruch
surface Fo = P(O & O(-2));

2. a ruled surface P(£) — C, C an elliptic and either € = O @ L with L = O for n €
{1,2,3,4} or & is indecomposable of degree one;

3. a surface of Kodaira dimension zero.

Remark 1.30:

In the last case of the previous lemma, the order A must be unramified. Hence it must be an
Azumaya algebra, see (2.4) for an example of a Calabi-Yau order on a surface with Kodaira
dimension zero. In (5.1) we will see an example of a Calabi-Yau order on P2. Like in the case of
del Pezzo orders one can classify the possible ramification data for terminal Calabi-Yau orders,
see [ | for more information.

1.2 Modules over orders and moduli spaces

Let X be a smooth projective surface and let A be a terminal order on X. Now we want to
study modules over A and their moduli spaces.

Definition 1.31:
If M is a left A-module, then we call M a torsion-free A-module of rank one if:

1. as a sheaf of Ox-modules M is coherent and torsion-free;

2. the stalk M, over the generic point n € X has dimension one over the division ring A,.
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To study moduli spaces one needs to have the notion of a family of A-modules. To define this
we need to understand how A behaves under base change, so let k C K be a field extension and
let Ax be the pullback of A to X := X X Spec(K). Then we have the following lemma:

Lemma 1.32 (| , Lemma 1.2|):

The generic stalk of A is a central division ring over the function field of Xk .

Definition 1.33:

A family of torsion-free A-modules of rank one over a k-scheme S is a sheaf F of left Ag-modules,
where Ag is the pullback of A to X xi S, with the following properties:

1. F 1is coherent over Ox«, s and flat over S;
2. for every s € S, the fiber Fs is a torsion-free Ay (s -module of rank one.

Here k(s) is the residue field of S at s and the fiber is the pullback of F to X xj Spec(k(s)).

Now one can define the following moduli functor:
M yx + Schy, — Sets

which sends a k-scheme S to the set of isomorphism classes of families F of torsion-free A-
modules of rank one over S. The functor classifying modules with fixed Hilbert polynomial P is
denoted by M 4, x.p-

Theorem 1.34 (] , Theorem 2.4]):

There is a coarse moduli scheme M g/x,p for the functor My x.p. My x.p i a projective
scheme of finite type over k.

So there also exists a coarse moduli scheme for M 4, x:
My x = II_D[MA/X;P-

There is another decomposition for M 4,x by fixing the Chern classes, for a smooth projective
surface X this reads:

M.A/X = H M.A/X;cl,CQ'
c1ENS(X)
Cc2€Z

We will work with the spaces with fixed Chern classes.
Remark 1.35:

Similar spaces have been considered by Lieblich and Yoshioka, see for example [ | and

[11e07].

If we fix the first Chern class of the modules in question, the second Chern class can still vary.
If these numbers in Z are bounded from below, then one can choose a minimal second Chern
class. The moduli spaces with minimal second Chern classes are of special interest and will be
denoted by Pic(A)c, ¢, or, if no confusion arises, just by Pic(A). The reason is the following:
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Lemma 1.36:
If for fized first Chern class c1 one can choose a minimal second Chern class ca, then all modules

classified by My, x.c, e, are actually locally projective A-modules of rank one.

Proof:

Assume M has Chern classes as described and M is not a locally projective, but just a torsion-free
A-module of rank one. Then there is a canonical exact sequence

0 M M T 0

with M** the bidual of M, hence ¢;(M) = ¢ (M**), and the quotient T is an Artinian sheaf of
finite length, since M is torsion-free. But then ¢;(7') = 0 and c2(7") < 0 which implies that

CQ(M**) = CQ(M) + CQ(T) < CQ(M).

But M** is also an A-module and the second Chern class of M is the minimal one, so the
assumption was wrong and M = M**. Since M™** is reflexive it is locally free on X, so by (1.56,
still to come) it is a locally projective A-module and so is M. 0O

Lemma 1.37 (| , Proposition 4.2]):

Assume A is a terminal order on a smooth projective surface X. If M is a locally projective A-
module of rank one, then for every closed point p € X we have an isomorphism of Ap,-modules:

M, = A,

1.3 Noncommutative cyclic covers

In this section we want to describe a method that gives us explicit examples of orders on sur-
faces with prescribed ramification data, the so-called noncommutative cyclic covering trick. For
detailed information see | |. To do this we start with a smooth projective scheme X and
define the notion of an invertible O x-bimodule.

Definition 1.38:

An invertible bimodule on X is of the form L,, where L € Pic(X) and o € Aut(X). The bimodule
Lo can be thought of as the Ox-module L where the left action is the usual one o, L = L and
the right action is twisted by the automorphism o, that is Lo, = o*L.

Using this definition one can compute the tensor product of invertible modules using the following
formula:

Le@M; =(L®c*M);s.

The bimodule L, defines an auto-equivalence of Coh(X) by L, ® (=) := L ® o*(—).

Using invertible bimodules one can define so-called cyclic algebras on X.

Let 0 € Aut(X) be an automorphism of finite order e, set G = (o|0® = 1) and pick L € Pic(X).
Assume D is an effective Cartier divisor on X and suppose there is an isomorphism of invertible
bimodules

¢:L¢ =5 Ox(=D).
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Denote by ¢ also the morphism ¢ : L& — Ox(—D) < Ox and consider it as a relation on the
tensor algebra

T(X,L,) = @ L™
n>0

We say that the relation ¢ satisfies the so-called overlap condition, if the following diagram
commutes: y
LeIlrlel, 224 oxeL,

ao0] |-

Lo & OX L} La’
We define the cyclic algebra A(X, Ly, ¢) by:
A(X, Ly, ¢) :=T(X, Ls)/(0).

If ¢ satisfies the overlap condition, then one can show that:

e—1

A(X, Ly, 0) = @ L2

n=0
The multiplication on A(X, L, ¢) is induced by
n+m

L'l —<¢ 7
M {Lg+mﬁ>Lg+me n+m>e.

n+m<e

Example 1.39:

Assume F'is a field and set X = Spec(F'). Pick an automorphism o € Aut(F) of order e and let
G be the cyclic group generated by . Now if K denotes F@, then F/K is a cyclic extension of
degree e.

An invertible bimodule L, can be written as F'z, such that we have za = o(a)z for a € F. The
tensor powers are given by L = (Fz)" = Fz", where we have z"a = ¢"(a)2".

Now suppose there is a relation ¢ : Fz¢ — F, then ¢ is defined by multiplication with some
element b € F such that z¢ = b. Now the overlap condition is equivalent to bz = zb, which
implies o(b) =borbe F¢ = K.

The resulting cyclic algebra A(X, L, ¢) is the well known cyclic algebra F[z,0]/(z¢ — b). Note

that this algebra is a central simple K-algebra of K-dimension €.

Example 1.40:

We look at the previous example and take F' = C and o = () the complex conjugation on C,
thus G = Z/27. As the bimodule we pick L, = Cj with j2 = —1.
Then we have jr = rj for r € R and ji = —ij for i € C. So we see that

A(X, Ly, ¢) =C[j,( )]/(*+1) =CaCj=RoRi®Rj & Rij.

But the last algebra is known as the Hamiltonian quaternions H.

We will be most interested in such examples where D = 0, that is the relation ¢ : LS — Oy is
an isomorphism. In this cases there are some lemmas which are of interest to us:
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Lemma 1.41 (] , Theorem 2.4]):

Assume X and Y are smooth projective surfaces, such that there is a cyclic cover m: X —Y of
degree e with Galois group G =< o >. Let A(X, Ly, ®) be a cyclic algebra coming from a relation
of the form ¢ : LS — Ox. If ¢ satifies the overlap condition then A(X, Ly, ) defines an order
A on'Y (via 7) and its ramification over C CY 1is exactly the ramification of © above C.

Lemma 1.42 (| , Theorem 2.5]):

Assume X and Y are smooth projective surfaces, such that there is a cyclic cover m : X — Y
of degree e, with Galois group G =< o > and totally ramified at D C X. Consider the cyclic
algebra A(X, Ly, ¢) coming from a relation of the form ¢ : L& — Ox. Then the ramification of
A(X, Ly, ¢) along w(D) is the cyclic cover of D given by the e-torsion line bundle Lp.

Lemma 1.43 (| , Lemma 2.8]):

A cyclic algebra A(X, Ly, ¢) is a mazimal order on'Y if for all irreducible components C; of the
ramification divisor, the cover C; is irreducible.

We are interested in relations of the form L¢ —+ Ox. Using the definition of the tensor product
for bimodules, we see that LE = L®p, 0* L0y - .. @0y (0¢71)* L since 0¢ = id by definition. So
if we consider Pic(X) as a G-Set for G =< o >, then we are looking for L € Pic(X) such that
L €ker(l1+0o+...+0°1). So these line bundles can be classified by using group cohomology.
Since G is cyclic, the cohomology of any G-Set M can be read off the sequence

N M D M N M D

where D = (1 —0) and N = (1 4+ 0+ ...+ 0°1). Now l-cocylces of the G-set Pic(X) are
exactly the line bundles with the desired relations. We will also write L for the class of the
line bundle L in H'(G, Pic(X)). Here we have H°(G, Pic(X)) = ker(D) = Pic(X)% and
HY(G, Pic(X)) = ker(N)/im(D). Using the group cohomology we can now see when a certain
relation satisfies the overlap condition.

Lemma 1.44 (| , Proposition 2.10]):

Assume X and Y are smooth projective surfaces such that there is a cyclic cover m: X =Y of
degree e and the lowest common multiple of the ramification indices of w is e. Then all relations
created from elements of H'(G, Pic(X)) satisfy the overlap condition.

Finally, we would like to know if the orders constructed via the noncommutative cyclic covering
trick are generically nontrivial, meaning we want to know if their Brauer classes are nontrivial
in Br(k(Y)). Again using group cohomology this can be checked:

Lemma 1.45 (| , Corollary 4.4]):

Assume X and Y are smooth projective surfaces and suppose that there is cyclic cover m: X — Y
of degree e, with Galois group G =< o > and totally ramified at one irreducible divisor D C X.
Suppose further that D is not torsion in Pic(X). Then there is a group monomorphism

U HY(G, Pie(X)) — Br(k(X)/k(Y))

given as follows: if L € Pic(X) represents a 1-cocycle in H'(G,Pic(X)) then any relation
¢ : LE — Ox satisfies the overlap condition and W(L) = k(Y) ®¢, A(X, Ly, ¢) in Br(k(Y)).
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Here Br(k(X)/k(Y)) = ker(f : Br(k(Y)) — Br(k(X)), where f(A) = A @y k(X).
Lemma 1.46 (| , Proposition 2.6]):

Assume A is a cyclic algebra constructed via the noncommutative cyclic covering trick, that is
A= A(X, Ly, ), then there is a natural isomorphism.:

Exth)(A®x N,—) = Exty, (N, -)
for all p > 0 and all coherent Ox-modules N.

1.4 Hom and Ext for modules over orders
Lemma 1.47:

Assume A is an order on a smooth projective surface X. Let M and N be torsion-free A-modules
of rank one and ¢ € Hom (M, N). If ¢ is nontrivial, then ¢ is injective.
Proof:

The given map induces the following short exact sequence:

¢

0 —— ker(¢) M im(¢p) —— 0.

Since ¢ # 0, we have im(¢p) # 0. As im(¢) is a subsheaf of the torsion-free sheaf N, it is
itself torsion-free. This implies im(¢), # 0. Therefore im(¢), is a nontrivial A,-submodule of
N,,. Since N, is simple, we see that im(¢), = N,. So ¢, is an isomorphism, which shows that
ker(¢), = 0. So ker(¢) is a torsion sheaf, but as a subsheaf of the torsion-free sheaf M it is
torsion-free. So it is torsion and torsion-free, which shows that it must be zero: ker(¢) =0.

Lemma 1.48:

Assume A is an order on a smooth projective surface X. Let M and N be torsion-free A-
modules of rank one with the same Chern classes. If Hom (M, N) is nontrivial, then M and N
are isomorphic A-modules.

Proof:

By (1.47) a nontrivial element in Hom 4(M, N) gives rise to a short exact sequence:

0 M > N T 0. (1)

Since M and N are torsion-free A-modules of rank one, the quotient T is a torsion sheaf with
codim(supp(T)) > 1.
Since ¢1(M) = c1(N), we see that ¢1(T') = 0. Now by (1.80) we have

1 (T) = Z lox,g (TS){g}

codim(&)=1

and we see that we must have loy (T¢) = 0 for all points of codimension one. But this implies
Ty = 0 for all points in codimension one, meaning 7" has no support in codimension one. So
codim(supp(T)) > 2.
Therefore the sheaf 7' is an Artinian sheaf of finite length. Since ca(M) = ca(N) and ¢;(T) =0
we can see that ca(T') = 0 by using the exact sequence (1) and the properties of Chern classes
on exact sequences.
But co(T) = —dim(H®(X,T)) by Hirzebruch-Riemann-Roch, so H(X,T) = 0.
As T has finite length, we know that
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H(X,T)= @ T,
z€supp(T)

This implies T, = 0 for all = € supp(T'). We conclude that 7' = 0, or in other words, by the
exact sequence (1): M = N. 0
Lemma 1.49:

Assume A is an order on a smooth projective surface X and M is a torsion-free A-module of
rank one, then M is simple, that is End (M) = k.

Proof:

As idy € Enda(M) we have End (M) # {0}. Because M is coherent, we see that Enda(M)
is a finite dimensional k-algebra since End (M) = HO(X, End 4 (M)).

The sheaf End (M) is given at the generic point 7 of X by Enda(M), = Enda,(M,) = A7
So End (M) embeds into the division ring A7

This shows that End (M) is a finite dimensional k-algebra without zero divisors, hence it is a
division algebra over k. Since k is algebraically closed this algebra must be k itself. 0O

Remark 1.50:

Considering A as a torsion-free A-module of rank one, the previous lemma (1.49) shows:
HY(X,A) = Enda(A) =k

for every order A on X.

To understand the Emtfél—groups, we need an analogue of the local-to-global spectral sequence in

the case of Ox-modules. See Appendix (C.10) for a proof of the following theorem.

Theorem 1.51:

Assume A is an order on a smooth projective surface X and let M and N be A-modules, then
there is a local-to-global spectral sequence:

By = HP(X,ExtYy (M, N)) = Ext? (M, N)

Lemma 1.52:
Assume A is a terminal order on a smooth projective surface X and let M and N be two coherent
A-modules. Then Ext'y(M,N) =0 for all i > 3.

Proof:

Since A has global dimension two and M and N are coherent, we see that the local Ext-sheaves
Exthl(M, N) vanish for 7 > 3. Using the local-to-global spectral sequence, it is enough to show
that:

1. H*(X,Ext'y (M,N)) =0 for i =1,2

2. HY(X, Ext% (M, N)) = 0.
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This is because these are the only modules who contribute to E:t:tiA—groups for i > 3.
Since A is a division ring at the generic point 7, every module over 4, is projective, which shows
that for all 4 > 1 we have Extf%(Mn,Nn) = 0. So dim(supp(Exty(M,N))) < 1 fori=1,2.

This immediately implies H?(X, 8xtf4(M, N))=0fori=1,2.

If £ is a point of codimension one, then A¢ has global dimension one, so that Eaztil5 (M¢, Ne¢) = 0.
This implies dim(supp(Ext% (M, N))) = 0, which shows that H' (X, Ext% (M, N)) = 0. 0
Lemma 1.53:

Assume A 1s a mazimal order on a smooth projective surface and let M and N be A-modules.
If M is a coherent locally projective A-module, then there is an isomorphism:

A* @0 Homa(M,N) = Homo, (M, N).

Proof:

Writing A* = Homo, (A, Ox) we see there is a natural map
¢:Homo, (A, Ox) o, Homa(M,N) — HomA®0X@X (A®oy M,0x ®0, N).

We can check at the stalk level if this map is an isomorphism. So let p € X be any point, then
we have the following situation:

R = Ox, is a commutative local ring and A = A, is an R-algebra, free of finite rank as an
R-module. M, is a finitely generated projective A-module and N, is an A-module, and we have
to show that the map

Homp(A, R) ®gr Homa(Mp, Np) = Hompg,a(A@r My, R ®@r Np)

is an isomorphism. But this is true, even in more generality, see for example | , 1.2.4].
There is a canonical isomorphism

Homage 0x (A®ox M,0x ®ox N) = Homa(A®o M,N).
Using the tensor-hom-adjunction we see that
Hom (A @0, M,N)=Homo, (M,Hom4(A,N)).

Since N is an A-module Hom4(A,N) = N. Putting all together we see that there is an
isomorphism

A* @0 Homa(M,N) = Homo, (M, N). O

Remark 1.54:

If A is even an Azumaya algebra, then this result is true on any finite-dimensional smooth
projective scheme. This is because Azumaya algebras are by definition coherent and locally free.

Lemma 1.55:

Assume A is a mazximal order on a smooth projective surface X and M is a coherent A-module.
If M is locally projective as an A-module, then it is locally free as an Ox-module
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Proof:

We will show that Homo, (M, —) is an exact functor. Using the A-module structure and the
tensor-hom-adjunction we see that

Homo, (M, —) = Homo, (A®4 M,—)
= HOTTLA(M, %OmOX (Aa —))
But A is a coherent locally free Ox-module, that is Homo, (A, —) is exact, and M is a coherent
locally projective A-module, so Hom 4(M, —) is exact. But then Homo, (M, —) must be exact,
so M is a locally free Ox-module, see | , Exercise I11.6.5 (a)]. 0
Corollary 1.56:

Assume A is a terminal order on a smooth projective surface X and M is a coherent A-module.
Then M 1is locally projective as an A-module if and only if M is locally free as an Ox-module.

Proof:

If M is a locally projective A-module, then by the previous lemma (1.55) M is a locally free
Ox-module. Now if M is an A-module, locally free as an Ox-module, the result follows from
(1.13), since M is coherent and A is locally free and has global dimension two. 0

Remark 1.57:

If Ais an Azumaya algebra, then this result is true for any finite-dimensional smooth projective
scheme. This is because, by [ , Proposition 3.4], an Azumaya algebra has global dimension
dim(X), thus we can use (1.13).

Lemma 1.58:

Assume A is a terminal order on a smooth projective surface X. Let M and N be two coherent
A-modules, then there is the following form of Serre duality:

Exty(M,N) = Ext’ "(N,wa ®4 M)".
Here (=) is the k-dual.

Proof:

If M and N are coherent locally projective A-modules, then by the local-to-global spectral
sequence:

Ext' (M,N) = H (X, Hom (M, N))
Ext’ "(N,wa®a M) = H*"(X, Homa(N,ws @4 M)).
Letting MY := Hom (M, A), we have Hom (M, N) = MY ®4 N since M is a coherent locally

projective A-module and A is an A-bimodule. Now we use the tensor-hom-adjunction to see
that

M* = HomoX(M, Ox) = Homox(.A a4 M, Ox)
= Hom (M, Homp, (A,Ox))
= Hom (M, A¥).
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Using this and the adjunction again we get

Homoy (MY @4 N,0x) = Homa(N, Homo, (M",Ox))
= Homa(N, (M")")
= Hom (N, Hom4(M", A*))
= Homu(N, A* @4 M"Y).
As M is a coherent locally projective A-module, we have MYV = M. All together we get
(Homa(M,N))* = Hom (N, A* @ 4 M).
But this implies
(Hom (M, N))* Royx Wx = Hom 4 (N, A* @4 M) ROy Wx = Homa(N,wa @4 M).
Usual Serre duality on X shows that we have an isomorphism:
HY (X, Hom4(M, N)) = H**(X, Homa(N,ws @4 M))".
This implies that there is an isomorphism
Exty(M,N) = Ext’ "(N,wa ®4 M)’

in this case.
If M and N are not locally projective, then we can choose finite locally projective resolutions
since A has global dimension two and reason like in the proof of | , Proposition 3.5]. 0

Corollary 1.59:
Assume M is a torsion-free A-module of rank one, then Hom 4(M, M**) = k.

Proof:

We look at the exact sequence

0 M M** T 0

and apply Hom4(—, M**).
Since T is an Artinian sheaf and M™** is torsion-free we have Hom (T, M**) = 0.
Using Serre duality shows that

Exty (T, M**) = Exty(M**,ws®4T)'.
By the local-to-global spectral sequence we get
Extly(M**,wa@aT) = H' (X, Homa(M*™*,wa®4T)),

since M™* islocally projective. But T is Artinian so the Hom-sheaf has support only in dimension
zero, so the cohomology group must vanish. This implies Exth(T, M**) =0.
Looking at the long exact sequence shows that

Homa(M**, M**) = Hom_ (M, M**).

But M** is a locally projective A-module of rank one, so Hom o(M**, M**) = k. 0O
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Lemma 1.60:

Assume A is a mazimal order on a smooth projective surface X and I is an injective A-module.
Then I is an injective Ox-module, in other words the forgetful functor Mod(A) — Mod(Ox)
preserves injectives.

Proof:

We have to show that Homo, (—, ) is an exact functor. But since I is an A-module, we have
I =Hom4(A,I). Now using the tensor-hom-adjunction gives

Homo, (—,1) = Homo, (—, Homa(A,I)) = Homa(— ®o, A, I).

Since A is a maximal order, it is locally free, so that ®o, A is exact. Furthermore Homa(—,I)
is exact because I is an injective A-module. So Homo, (—,I) is exact and I is an injective
O x-module. 0O

Lemma 1.61:

Assume A is a mazimal order on a smooth projective surface and let M and N be two coherent
A-modules. Then there are isomorphisms

Ext'y(A®oy M,N) = Ext}, (M,N)
for all i > 0.
Proof:
The functors { Ext'y (A ®o, M, —)}DO are a cohomological d-functor between Mod(A) and Ab.

They vanish on injectives in Mod(A). Similarly the functors {E:z:t%x (M, —) } oo BTea o-functor,
(2

because the forgetful functor Mod(A) — Mod(Ox) is exact (we should have written t(M) and
t(—) here, where ¢ : Mod(A) — Mod(Ox) is the forgetful functor. Since no confusion can arise
we will omit this notation). These functors also vanish on injectives in Mod(.A), since by (1.60)
the forgeful functor Mod(A) — Mod(Ox) maps injectives to injectives. This implies that both
0-functors are universal.

Using the tensor-hom-adjunction shows that there is a canonical natural equivalence:

Ext)(A®oy M, =) = Homa(A®oy M, =) = Homoy (M, —) = Exty (M, —).

So we have two cohomological universal §-functors which are naturally isomorphic for ¢ = 0, so
they are also naturally isomorphic for all ¢ > 1. 0O

Lemma 1.62:

Assume A is a terminal order on a smooth projective surface X and let M and S be coherent
A-modules. If M is locally projective and S is an Artinian module of finite length, then the map

Ext} (S, M) — Ext?gx (S, M),

induced from the forgetful functor Mod(A) — Mod(X), is injective.
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Proof:

Since A is an Ox-algebra, the multiplication map A x A — A gives rise to a short exact sequence
of A-bimodules:

0 K Ao, A A 0.

Here K denotes ker(A®x A — A).
Since A is a free A-module, we have Tor{\(A, S) = 0, so by tensoring over A with S we get the
following short exact sequence:

0 — KRS8 — ARp, A®ApS —— A®sS —— 0.

Using the natural isomorphism of left A-modules A ® 4.5 = S we get the sequence:

0 — K45 —— A®oy S S 0.
Applying Hom 4(—, M) gives the long exact sequence, with the following relevant part:
Exth(K @48, M) —— Ext}(S,M) —— Ext}(A®0y S, M) —— ---. (2)
Using Serre duality shows
Exty (K ®a S, M) = Exth (M, ws®4 K ®4 ).
Denote wy ® 4 K ® 4.5 by N. Since S is of finite length, so is IV, this shows that
Exthi(M,N)= @ Euxtly (M, N,).
zesupp(N)

Since M is a locally projective A-module, for any z € X the module M, is a projective A,-
module, which implies Eact}%(Mx, N,) =0 for all z. This shows that Exth (K ®4 5, M) = 0.
So the sequence (2) gives an injection:

0 —— Eat®(S,M) —— Ext®(A®0y S, M) — -+ . (3)

But by (1.61) there is an isomorphism Ext? (A ®o, S, M) = El‘t%X(M, N). Composing this
isomorphism with the injection (3), shows that there is an injection

Ext?(S, M) — Ext}, (S,M).

Looking at the proof of (1.61) this map is nothing but the induced map from the forgetful functor
from A-modules to Ox-modules. 0

1.5 Relative Ext-sheaves for modules over an Azumaya algebra

In this section we want to define relative Ext-sheaves for modules over an Azumaya algebra A.
Then we are going to show that there is a base change theorem for theses sheaves, like in the
case for Ox-modules. Most of this section is a transfer from the situation of Ox-modules, given
in | , Chapter 1], to our situtaion.

For the rest of this section we assume that f: X — Y is a flat projective morphism of smooth
Noetherian schemes. Furthermore we assume that A is an Azumaya algebra on X flat over Y
as an Ox-module. In addition M and N are coherent A-modules flat over Y as Ox-modules. If
y € Y is a point and M is module on X then the fiber of f over y is given by X, = X xy Spec(k(y))
and M, denotes the induced sheaf, that is the pullback of M from X to the fiber X,,, this should
not be confused with the stalk of a module at y.
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Definition 1.63:

For a flat projective morphism f : X — Y of smooth Noetherian schemes with an Azumaya
algebra A on X and two coherent A-modules M and N we define the i-th relative Ext-sheaf by:

Extfél,f(Mv N) := R{(f,Homa(M,—))(N)

We use that f is projective to define the line bundles Ox(n) on X by fixing a projective em-
bedding X < PJ*. Consider a morphism u : Y/ — Y of smooth Noetherian schemes and let
X’ = X xy Y’ be the fibred product with the projections p and ¢ to X respectively Y.

Lemma 1.64:
There is an integer K(N), such that Ext;*Aq(p*A(—n),N ®y P)=0 foralln > K(N), i >1
and all quasi-coherent Oy -modules P.
Proof:
As X and Y are Noetherian and the question is local we can suppose that Y = Spec(R) and
Y’ = Spec(R’) are affine. The fixed projective embedding is then given by X — P%.
Since

Homp 4(p* A(—n), N @y P) = Homy« A(p* A, p*N(n) ®y+ P) = p*N(n) Qy+ P,
we have to show that

Riq.(p*N(n) @p P) =0

for all n > K(N),7 > 1 and R'-modules P.

Consider N as a coherent sheaf on P} and replace X by PZ. Then the lemma is true for ¢ > m
due to | , Proposition II1.8.5].

In the special case N = A and P = R/, there is some ng € N with R'q.(p*A(n)) =0 for all i > 1
and all n > ng by the theory of higher direct image sheaves, see | , Theorem I11.8.8].

For an arbitrary R’-module P write

0 P’ R P 0.

Tensor the sequence with p*A(n), which is flat over R’ since A is flat over R. Now the long exact
sequence for ¢, and the result for R'q.(p*A(n)) give isomorphisms for ¢ > 1:

Ri+1q*(p*¢4(n) S P/) o Rz‘q*(p*_A(n) ®p P).

Since R 1q.(p*A(n) @ P') = 0 for all i > m and all P’ we can use descending induction to
see that Riq.(p*A(n) @r P) =0 for all i > 1.

Like in the proof of | , Proposition 3.4] there is an exact sequence of the following form for
an arbitrary coherent A-module N:
0 N’ A(=Ek)" N 0.

Since N is flat over Y we have Torf(N, R’) = 0 so that the following sequence is exact
0 —— p*N' —— p*A(—k)" —— p*N —— 0.

Now N is flat over R so p*N is flat over R, this implies Torl (p*N(n),P) = 0 so that the
following sequence is also exact:

0 —— p*N'(n) g P —— p*A(n— k)" @p P —— p*N(n) g P —— 0.

Now the lemma follows by using descending induction one more time. 0O
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Remark 1.65:

Using this lemma we can make the following convention: whenever we have two coherent A-
modules M and N, we always choose a locally projective resolution M, — M for M, where the
M; are of the form A(—n;)" with n; > maz {K(N),G(M)}. Here G(M) is the smallest integer

with the property that for all n > G(M) the coherent sheaf M (n) is generated by a finite number
of global sections. Then by the previous lemma we have €xt;* Avq(p*Mi, N ®y+ P) = 0 for all
i > 1. This property will be used later. We will denote maz {K(N),G(M)} by Iy, -

Definition 1.66:

For two coherent A-modules M and N we define a complexr L* of Oy -modules by
L' = fyHoma(M;, N) = fN(n;)"

where Mo — M is a projective resolution of M with properties described in (1.65).

Corollary 1.67:
L® is a complex of coherent locally free Oyr-modules.

Proof:

Since f is projective and N is coherent we see that the L? are coherent.

It remains to show that each L’ is locally free. To do so it is enough that for every n > Iy, N the
sheaf f,N(n) is locally free on Y. Since this is a local question we may assume that Y = Spec(R)
is affine and consider the functor T': Mod(R) — Mod(R) defined by T(M) := f.(N(n) @r M).
By the previous lemma (1.64) T is exact, which by | , Proposition 111.12.6] implies that
T(R) is a projective R-module, hence f.(N(n)) is a locally free module on Spec(R). 0

Corollary 1.68:
For every quasi-coherent Oyr-module P there is canonical isomorphism
qxHomps 4(p*M;, N ®y P) 2 L' @y P.

Proof:

We have a canonical isomorphism
g Homp= A(p*M;, N @y P) = ¢.(p*N(ni)" @y P).

The functor T': Mod(R') — Mod(R') given by T(P) := q.(p*N(n) @ P) is exact since p*N is
flat over R’ and for i > 1 all the R’q, vanish by the choice of n. As p*N(n) is coherent and flat
over Y/ we can therefore use [ , Proposition I11.12.5] to see that there is an isomorphism
T(P) = T(R') ® P. This implies that we have

q«(P*N ()" @y P) = q.(p*N(n)") @y P,
Now by (1.67) f«(IN(n;)) commutes with base change so we have a canonical isomorphism
¢+(p"N(ni)) = w* (f+N (ns)).
This implies

¢+ (p*N(n;)) @y P =u*L* @y P.



28 1.5 Relative Ext-sheaves for modules over an Azumaya algebra

And, finally, we see that u*L’ ®y+ P = L' ®y P. Putting everything together, there is in fact a
canonical isomorphism

g Hompy-4(p*M;, N @y P) = L' @y P O

Corollary 1.69:
For every quasi-coherent Oyr-module P and every © > 0 there is a canonical isomorphism:

Eath 4 ,(0"M, N @y P) = H'(L* @y P).

Proof:

The elements of a locally projective resolution M, of M are flat over Y. To see this we note that
locally projective over A implies locally free over Ox, because A is Azumaya. Since each M; is
coherent and X is Noetherian this is equivalent to each M; being a flat Ox-module. But X is
flat over Y so by transitivity of flatness, each M; is flat over Y. Using this we will first show
that p*M, is a resolution of p*M. (We will do this in the case of a resolution of length two, the
general case works analogously.)

Assume M has a resolution of the form

0 My My, —2 My —I M 0
Then we get a short exact sequence
0 —— ker(f) My —L M 0,

which shows that ker(f) is flat over Y since M and M are. In addition we get an exact sequence
on X xy Y":

0 —— p*ker(f) —— p*M AN p*M —— 0,
since M is flat over Y. But we have ker(f) = im(g), so that im(g) is also flat over Y. Therefore
the exact sequence:

0 M, M, —2— im(g) —— 0

gives rise to the following short exact sequence
0 —— p*My —— p*My —— p*im(g) —— 0.

Since p*ker(f) = p*im(g) we can glue these short exact sequences back together and get a
resolution of p*M:

0 —— p*MQ —_— p*Ml e p*Mo e p*M — 0.

Now we define I_; := p*M and let I; be the image of the map p*M;11 — p*M; for i > 0. Then
we have

0 Iitq P My I; 0
for all ¢ > —1, which gives us a long exact sequence:
- —— Eatpy (i, N®y P) —— Exty, y (0" Miy1, N ®y P)

—— &ty Ly, N®@y P) —— &)y (I, N®@y P) —— -

But due to the choice of the resolution of M we know that E:L't;*Aq(p*MiH,N ®y P) = 0 for
all ¢ > 1, so there are isomorphisms:
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Exth. g (Tiy1, N @y P) = Ext) ") (I;, N @y P)
for all r > 1. The beginning of the long exact sequnce is
0 —— Hompaq(li, N @y P) —— Hompea4(p* M1, N Qy P)
—— Hompa4(lix1, N @y P) ——  Eatpy (Ii,N @y P)  —— 0.

For r = 0 the result follows from this exact sequence by setting ¢ = —1.
Sxt;*qu(p*M, N ®y P) is the quotient of Homy« 4 4(Io, N @y P) by the image of the map

Hompra,q(p* Mo, N ®y P) = Homp-a4(lo, N ®y P).
The exact sequence p*Ms — p* My — Iy — 0 gives us:

0 —— Homp-aq(lo, N @y P) —— Homp= 44(p* M1, N @y P) —— Homp4,4(p* M2, N @y P)

showing that Homp«4,4(lo, N ®y P) is just the kernel of
Homp«44(p* M1, N @y P) — Homp 44(p* Mz, N @y P).

On the other hand since Homp 4.4(lo, N @y P) — Homp+4,4(p*M1, N ®y P) is injective, the
images of

Hompyx 4 q(p* Mo, N @y P) — Homp 4.4(1o, N ®y P)
and
Homyx A q(p* Mo, N @y P) — Homp4,4(p*M1, N @y P)
are isomorphic. This shows that Sxtll)*A’q(p*M, N ®y P) is the cohomology of the complex
Homp 4.4(p* Mo, N @y P) —— Hompeaq(p* M1, N @y P) —— Homyp 4 4(p* M2, N @y P),
which by the previous lemma is the same as the cohomology of the complex
L@y P —— L1 ®y P —— Ly ®y P.
The same argument works if we replace p*M by Iy and
- = p*My = p*My by - = p* Mo — p* M.
We can continue and replace Iy by I; and so on. Using the isomorphisms
Extr. 4 ,(Tiy1, N @y P) = Extlt) (I;, N @y P) for r > 1,
we reduce by induction to the cases r = 0,1 which have just been proven. O

Definition 1.70:

For any quasi-coherent Oy -module P we define

THP) :=H'(L* ®y P).
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Lemma 1.71 (] , Proposition I11.12.5]):
There is a canonical homomorphism

TH(Oy) ®y P — THP).
Example 1.72:

The homomorphism from the previous lemma yields for every u : Y’ — Y the base change
homomorphism

7 (u) : u*é’xtf@’f(M, N) — €xt;*A7q(p*M7P*N)-

Lemma 1.73:

For every flat morphism u : Y’ — Y of smooth Noetherian schemes and every i > 0 the base
change homomorphism 7' (u) is an isomorphism.

Proof:

Take the locally projective resolution M, — M as always. Then p* M, — p*M is a resolution of
p*M on X Xy Y’ since u is flat. We know that

HI(Q®) = Extl, ("M, p*N)
with Q' = g Homy o(p*M;,p* N). But then
Q" = g Homy A(p* A(—n:)", p* N)
= g, Homy 4(p* A, p*N(n;)")
= ¢ (p*N(ni)").

Now as u : Y/ — Y is flat, f is separated and of finite type (because f is projective) and
N(n;) is coherent, we can use the usual base change formula for flat morphisms. So we have
g«(p*N(n;)) = uw*(fuN(n;)), see | , Proposition I11.9.3]. This gives us:

Q' = u* fN (ny)l.

Using the A-module structure of N this can be written as Q° = u*f,Hom4(M;, N). But the
cohomology of the complex L* = f,Hom 4(M,, N) is by definition just H*(L®) = S:r:ti‘,f(M, N).
Since v is flat, u* is exact and commutes with cohomology. The cohomology of the complex
w*L® = u* f,Hom a(M,, N) is therefore u*EmthLf(M, N). This gives us an isomorphism

u*é’xti\?f(M,N) = Hi(u*L®) =2 H(Q®) = Ea:t;*A,q(p*M,p*N) 0O

Theorem 1.74:

Let y € Y be a point and assume that the base change homomorphism
T (y) : (S’LL't?A’f(M, N)® k(y) — Eactfély(My,Ny)
1s surjective. Then

e there is a neighbourhood U of y such that T(y') is an isomorphism for all y € U;
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o 77 Y(y) is surjective if and only if Sxtfél’f(M, N) is locally free in a neighbourhood of y.

This can be proved like in | , Theorem 1.4], by restricting to an open affine set in Y.
Lemma 1.75:

Assume X is a smooth projective surface and let M and N be two coherent locally free Ox-
modules. If we have M C N, then M = N or codim(supp(N/M)) < 1.

Proof:
Assume M % N and codim(supp(N/M)) = 2. Then the exact sequence

0 M N N/M —— 0

shows that M and N are isomorphic outside a subset U C X of codimension two. That is
M < N is an isomorphism on X\U. But M and N are locally free, so they are especially
reflexive. This implies that we can extend the isomorphism uniquely to an isomorphism to the
whole of X. But this means N/M = 0, respectively M = N. So the assumption was wrong and
we must have codim(supp(N/M)) < 1. 0

Lemma 1.76:

Assume X is a smooth projective surface. Let N be a coherent torsion-free Ox-module and let
M be a locally free Ox-module. If there is a surjection

M ¢

N 0,

then ker(¢) is a locally free Ox-module.

Proof:

Writing K := ker(¢), we get the exact sequence

¢

0 K M N 0.

Since N is torsion-free we have pdo, (N) < 1, see | , Chapter 1.1]. As M is locally free we
moreover have

pdo (K) =maz{0,pdo, (N) — 1}.

which shows that pdp, (K) = 0. Because K is coherent this implies that it is in fact a locally
free Ox-module. 0

Lemma 1.77:
Assume that for all y € Y we have Ea:ti‘y (My, Ny) =0. Then Sa:ti\’f(M, N) wvanishes on Y.

Proof:

Since Exthy (M,, Ny) = 0 the base change theorem gives isomorphisms
Sxtf‘h (M, N) @ k(y) = E:cti\y(My, Ny) =0

for all y € Y. But this implies Sa:tfél’f(M, N) = 0 by the Nakayama lemma. 0O
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Lemma 1.78:

Assume Y is a smooth projective surface and fiv yo € Y. If Exti‘y (My, Ny) =0 for alli > 3 and
ally €Y and furthermore

0 if ¥y # Yo
Hom.a, (My, Ny) = {75 0 ify=uwo
0 if ¥ # Yo
i, My Ny) = {# 0 ify=uyo
0 ify#uyo
Baty, My, Ny) = {kzs if y = Yo

Then we have Sxtil’f(M, N)=0 fori=0,1,7>3 and gxtil,f(M7 N) ® Ek(yo) = k(yo)®.

Proof:

The statement about Eactf47f(M, N) is clear for i > 3 by the previous lemma.

There is a complex of coherent locally free sheaves L® on Y, whose cohomology is Sa:t;\, f(M ,IN),
such that the cohomology of the complex L® ® k(y) is just Exty, (My, Ny), see the proof of the
base change theorem.

Since E:Etf47f(M, N) = 0 for i > 3 the complex L*® is exact at L’ for i > 3.

Now the kernel of the i-th differential is the kernel of a surjection from the locally free sheaf L’
to the image of the i-th differential, which is torsion-free as a subsheaf of Li*!. By (1.76) this
kernel is locally free.

Replacing L? by ker(ds) and using the exactness for i > 3 we may assume that the complex of
locally free sheaves on Y is of the form:

L » Lt L2

By assumption Homy, (M, N) = ker(dy) is a sheaf which is concentrated just at yo. So it is a
torsion sheaf, but also a subsheaf of the locally free sheaf L°, so it must be zero.

We see that ker(dy) is locally free and contains L° and equals it outside of o by the assumptions.
But then by (1.75) these two locally free sheaves must be equal everywhere, so

5act}47f(M, N) = ker(dy)/L° = 0.

For the last statement we use the sequence

0 —— im(dy) L? Eatyy ;(M,N) —— 0
and tensor it with k(yg). This shows that

HA (L) ®k(yo) = (L @k(yo))/ (im(d1) @ k(yo)) = H*(L* @k(yo)) = Ext’y (My, Ny) = k(yo)°.
O
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1.6 Chern class computations

In this chapter we collect some formulas for the Chern classes of the bundles we are interested in.
We see these classes as elements in the cohomology with rational coefficients. For a torsion-free
module M of rank r on a smooth projective surface X we define the associated determinant line

bundle by det(M) := (\ M)**.
Lemma 1.79:

Assume X is a smooth projective surface and let M and N be coherent Ox-modules of rank r
respectively s. If one of these modules is locally free, then the Chern classes of the tensor product
are given by:

o ci(M®o, N)=sci(M)+rci(N);
o o(M ®oy N)=sco(M)+ (5)c1(M)? + (rs — )er(M)er(N) + (5)er(N)? + rea(N).

Lemma 1.80:
Let X be a smooth and projective surface and let T be a torsion sheaf on X, sitting in an ezact
sequence

0 M —25 N T 0 (4)
where M and N are torsion-free coherent Ox-modules of the same rank. Then c1(T) is effective
and one has:

a(T)= ¥ lox(T{E}

codim(§)=1
Proof:
Since M and N are torsion-free, the injection M < N induces an injection det(M) — det(N),
see for example | , Proposition V.6.13]. We get an exact sequence
0 —— det(M) 29 ger() o) 0. (5)

Tensoring this exact sequence with the line bundle det(N)~! shows:
1. det(M) ® Ox (D) = det(N)
2. Q= Op @ det(N)

for some effective Cartier divisor D. This implies ¢;(det(M)®@Ox (D)) = c1(det(N)) or, by using
c1(M) = ¢y (det(M)):

c1(N)—c1(M) = D.

With the exact sequence (4) and the properties of ¢; we get: ¢1(7) = D.
Now effective Cartier divisors are the same as effective Weil divisors on X, and D corresponds
to

Z lox,g((oD)f)@'

codim(&)=1



34 1.6 Chern class computations

Pick a prime divisor C' of D with generic point &, then R := Ox ¢ is a discrete valuation ring
and the exact sequences (4) and (5) give us two exact sequences:

0 —— Mg i Ng 72 0
0 — s det(M)e 2% ger()e 0 0.

The first sequence yields T¢ = coker(¢¢) while the second one gives (Op)e = R/det(¢)¢R.
Since Mg and N¢ are torsion-free, they are in fact free and of the same rank over the principal
ideal domain R, hence coker(¢¢) is of finite length. Using the structure theorem for modules
over a principal ideal domain, one can see that [r(coker(¢¢)) = Ir(R/det(p¢)R). So

D= Y Ig((Op)){¢}
= Z Ir(R/det(¢e)R){E}

codim(§)=1

- Z lR(coker(gbg))@

codim(&)=1

= > (T O

codim(§)=1

Corollary 1.81:

Assume A is a mazimal order on a smooth projective surface X and let M and N be torsion-free
A-modules of rank one. If Hom (M, N) # 0 then c1(N) — c1(M) is effective.

Proof:

By (1.47) a nontrivial element in Hom (M, N) gives rise to a short exact sequence:

0 M N T 0.

Now use (1.80). 0

Lemma 1.82 (| , Chapter 2|):

Assume X is a smooth and projective surface and p € X is a closed point. If I,, denotes the ideal
sheaf of p and k(p) is the skyscraper sheaf at p, then we have an exact sequence

0 I, Ox > k(p) 0
which shows that
er(Ly) = er(k(p)) = 0 and cs(1,) = —ea(k(p)) = 1.

Theorem 1.83:

Assume A is a mazimal order on a smooth projective surface X of rank r?, with ramification
curves {C;} and ramification indices {e;} for i =1,...,l. Then we have:
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Proof:

The trace map tr : A x A — Ox defines an exact sequence

0 A A* Q 0,

which shows that ¢;(A) = —1¢1(Q). Now we can compute ¢;(Q) using (1.80).
We note that if £ is a point of codimension one in X which is not the generic point of a ramification

curve, then A¢ is Azumaya and the trace gives an identification
(A%)e = (Ag)" = Ae

so that Q¢ = 0 for these points. This is basically due to the fact that A¢ gets isomorphic to a
matrix algebra over the completion of the local ring Ox ¢. A matrix algebra M, (R) is self-dual
with respect to the trace and since the trace is compatible with completion, we get the desired
isomorphism.

If £ is the generic point of a ramification curve C' then A is a maximal R-order in A,,, where
R = Ox is a discrete valuation ring with maximal ideal m. It is known that maximal orders
over discrete valuation rings are standard orders, see for example | , Definition 2.13]. As
the length of an R-module is preserved under an étale extension R — S of discrete valuation
rings, we may assume, using Morita equivalence, that A is of the form

R -« .-« R
m R
m .. m R

Here the matrix is an e X e-matrix, where e is the ramification index of A over C. We see that
if rk(A) = r? then e|r and we define f:= L.

The trace pairing then identifies (A¢)* with {x € A,|tr(z.A¢) C R}, which can easily be computed
and is given by:

R e m_l m_l
. R R . m!
(Ae)* =
R -+ ... R
We conclude that Qg is given in this case by:
0 - mwmlYR mR
0 — R(m 0 m_.l/R
R/m R/m .- 0

Now R/m is a simple R-module and since R is a discrete valuation ring, we have m = () for some
uniformizing element 7 € R. This implies m™! = (771) so that m™!/R = m~!/mm~! = R/m,
hence m~!/R is also simple. So we have:
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Ir(R/m) = Ilg(m~'/R) =1.
Counting the entries above and under the diagonal gives
Ir(Q¢) = “SUIR(R/m) + L5 I (m™1/R) = e(e — 1).
Using Morita equivalence shows that, if 7k(A) = 72 = (ef)?, we get
r(Qe) = fPele —1) = f2e2(1— 1) = r2(1 - 1),

l
So we finally get c1(A) = -5 > (1 - 1)Ci. 0O

Lemma 1.84:

Assume A is a terminal order on a smooth projective surface X with ramification curves {C;}
and ramification indices {e;} for i =1,...,1. If M is a torsion-free A-module of rank one and
A* denotes the dual sheaf of A, then we have:

01(./4* XA M) = Cl(M) — 261(./4).

Proof:

Since M is torsion-free, we have an exact sequence:

0 M M Q 0 (6)

where M** is the bidual of M and codim(supp(Q)) = 2. Since A* is locally free, it is a locally
projective A-bimodule by (1.13), particularly it is a flat A-module. So tensoring (6) we get:

0 —— A*QuM —— A QU M™* —— A 490 —— 0
with codim(supp(A* ® 4 Q)) = 2. We conclude:
c1(A @ M) = c1 (A" @4 M*™).

This implies that it is enough to prove the lemma for locally projective A-modules.
The trace pairing
tr: Ax A —— Ox

gives us an embedding A < A* (which is in fact an isomorphism away from the ramification
locus), so there is an exact sequence:

0 A A* R 0

!
with supp(R) C |J C;. Using the flatness of the locally projective A-module M we get an exact

sequence:
0 M A QUM —— R M —— 0.

But by (1.80), we see that ¢1(A* ®4 M) — ¢1(M) must be an effective divisor D and that it has
the form

l
D= Z:l l(’)xygi((R XA M)&')a
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where &; is the generic point of C;.

We are now in the following situation: given a discrete valuation ring R = Ox ¢, with field of
fractions K, a maximal R-order A = A¢ with ramification index e and a projective A-module
N = M¢. We want to compute lg((A* ®4 N)/N).

Since M is a torsion-free .A-module of rank one, we know that M,, = N ®r K is a simple A®Qr K-
module. By (1.16) N is an indecomposable A-module. But then by (1.17) all possible modules
N are A-isomorphic. So it is enough to compute the length for one A-module N and we choose
N = A. We have to find Ig(A*/A), which is r?(1 — 1) by looking at the proof of (1.83). We get

l
D=7r2Y(1- (})CZ
i=1 ’

So by comparison D = —2¢;(A), which proves that ¢;(A* @4 M) = c1 (M) — 2¢1(A). 0O

Lemma 1.85:

Assume X and Y are smooth projective surfaces and A is an Azumaya algebra on X. We have
the projections p and q from X XY to X respectively Y. If M is a coherent A-module and N a
coherent p* A-modules, then the class

ch(Extg*Aq(p*M, N) — 5$t;*A7q(p*M, N)+ Saztg*Aq(p*M, N))
in H*(Y,Q) depends only on the classes of ch(M) and ch(N).

Proof:

Since A is Azumaya on X, we have that p* A is Azumaya on X xY by (A.9). Thusforally € Y
and 7 > 3 we see:

Ext;,*Aq(p*M, N) ® k(y) = Ext'y(M,Ny) =0

due to the base change theorem and (p*M), = M. So Sxt;*qu(p*M,N) =0 for all i > 3.
Therefore we may assume, like in the proof of (1.78) that there is a complex

LY L L?

of locally free sheaves on Y with H!(L®) = 5mt;*A7q(p*M, N).
We see that the class in question is

ch(HO(L®) — HY(L®) + H2(L?)).

Using H!(L®) = ker(d;)/im(d;—1) and the exact sequence

0 —— ker(d;) L im(d;) —— 0,
we see that, by additivity of ch, the class is:
ch(L® — L' + L?).

Now L = g« Homp A(p*M;, N) where M, — M is the locally projective resolution of M. Since
p is flat p* My — p*M is a locally projective resolution of p*M. Now we use additivity of ch again
to get the following class:
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2 .
;}(fl)zch(q*Homp*A(p*Mi, N)).

By assumptions X X Y is projective, so the projection g is proper. We can therefore apply the
Grothendieck-Riemann-Roch theorem for ¢. Since the higher direct images of Homy,« 4 (p*M;, N)
under g, vanish by the choice of the resolution, we get:

ch(gHomps 4(p*M;, N)) = q(ch(Homp= 4(p* M;, N))p*td(X)).

As p*A is an Azumaya algebra, this class can be simplified using the isomorphism given by
(1.53):

(P*A)* ®oy .y Homp-a(p*M;, N) = Homoy,, (p*M;, N).
But as p*A is an Azumaya algebra we have ch((p*A)*) = ch(p*A). So we get:
ch(Homp A(p*M;, N)) = ch(Homo., (p* M;, N))ch(p* A)~L.

Since p*M; is locally projective over p* A, it is locally free over Ox «y by (1.57) so we can further
simplify:

ch(Homoy .y (p* M, N)) = ch((p*Mi)* @ N) = ch((p* M;)*)ch(N).

Now p*M, — p*M is a resolution, so

2 2

;}(—Uich(p*Mi) = Ch(;)(—l)ip*Mz) = ch(p™M)

and as the p*M; are locally projective, we get by | , Lemma I1.6.1.3] :

(S ( 1) (p* My)*) = ch(> (—1)ip* My)Y,

= =0
where ch(—)V is the dual class. Putting everything together, we see that the class is given by
4. (ch(p* M)V ch(N)ch(p"A)~1p*td(X)).
Using ch(p*M) = p*ch(M) shows, that it does depend only on ch(M) and ch(N). 0

1.7 Quasi-universal families

Assume X is a smooth projective surface with a distinguished line bundle Ox (1), so that X is
a polarized projective scheme. As the moduli space M4, x p is a coarse moduli space, there is
no universal family on it. In this section we want to prove that at least a quasi-universal family
exists. We will use the notation from | , Chapter 4.6] and adapt the proof given there to
our situation. If we have a family of A-modules parametrized by a scheme S, then we have the
the projections p: X xS = Sand g: X xS = X.

Definition 1.86:

A flat family € of torsion-free A-modules of rank one on X parametrized by M/ x p is called
quasi-universal, if the following holds: if F is a family of torsion-free A-modules of rank one with
Hilbert polynomial P over S and if o7 : S — My/x p,s v+ [Fs] is the induced morphism, then
there is a locally free Og-module W such that F @ p*W =2 ¢}7X5, where qz5§_-7X = (idx x ¢oF)*.
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Remark 1.87:

By definition for every point y € My, x p the A-module &, on X is isomorphic to M 7 for a
torsion-free A-module M of rank one with Hilbert polynomial P, which defines the isomorphism
class given by y € M 4/x p. Here n is the rank of the stalk of W at y. If M 4,x,., , Is connected
then this number n does not depend on y and is called the similitude of £, see | , Appendix,
Definition A.5].

Let R be the locally closed subscheme in Quot(A(—m)Y, P) used in the construction of M4 p
and let F be the universal quotient on X x R, that is the restriction to X x R of the universal
family on X x Quot(A(—m)N,P). F is a GL(N)-linearized sheaf on X x R and since the
center Z of GL(N) acts trivially on R, see | , Proposition 2.2 (v)], it has the structure of a
Z-representaion and decomposes into weight spaces.

Theorem 1.88:

Quasi-universal families exist.

Proof:

We first prove that there are GL(IV)-linearized locally free sheaves of Z-weight one on R: if n
is sufficiently large A = p,(F ® ¢*Ox(n)) is a locally free sheaf on R of rank P(n) and carries a
natural GL(N)-linearization of Z-weight one, the one induced from F'.

So let A be any GL(N)-linearized locally free sheaf of Z weight one on R. Now Z acts trivially
on Hom(p* A, F'), which therefore carries a PGL(N)-linearization and descends to a family £ on
X X Ma/x,p by | , Theorem 4.2.14], because mp : R — M 4,x p is a principal PGL(N)-
bundle, see | , Theorem 2.4] where it is stated that this morphism is locally trivial in the
fppf-topology, but as PGL(N) is smooth it is also locally trivial in the étale topology.

It remains to show that &£ is quasi-universal.

Suppose F is a family of torsion-free A-modules of rank one on X parametrized by a scheme S
with Hilbert polynomial P. Then p,F(m) is a locally free Og-module of rank P(m) = N. Let

R(F) = Isom(OY, p.F(m)) —— S

be the frame bundle. Then, by | , Example 4.2.6], there is a universal GL(N )-equivariant
trivialization
(’)g(f) —— 7P F(m).

By the relative version of Serre’s theorem we have a surjection

7" Ox(—m) @ p*p.F(m) F 0.

Now apply 7rik7X to this surjection, with 7 x = idx x 71, and use the universal trivialization to
get a quotient
T*Ox(—m)N ® S*OR(]:) — WT,X]: — 0

on X x R(F), where r = gomy x : X X R(F) — X and s : X x R(F) — R(F) are the projections,
and we have pom x = 7 os. More exactly we have:

T xP PeF (M) = (p o mx)"paF (m) = (1 0 5)"peF (M) = 8™ (7ipuF (m))
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and the last module can be replaced using the universal quotient.
We can tensor the quotient with 7] . Ag to get a quotient:

r*Ox(—m)N @ s*Opr) @ 1} x As —— 7} x F @ 1} xAg — 0.

Since tensor products and pullback commute and 77 yAg = 7] y¢" A = r*A, we get in fact the
following quotient:

r*A(—m)N®s*OR(;) E— FT’X(.F@)AS) — 0. (7)

But F is by definition an 4g-module, so we get a surjection

F® Ag F 0

using the Ag-module structure. Applying 71’1"7  to the last equation and combining this with (7),
we get a quotient:
r* A(-m)N ® s*Opiry — T xF —— 0

of A(—m)Y on X x R(F).
As Quot(A(—m)N, P) represents the Quot-functor, this quotient gives rise to a map

or : R(F) = Quot(A(—m)N, P).

Now GL(N) acts on R(F) from the right by composition, so that the frame bundle is in fact a
principal GL(N)-bundle, see || , Example 4.2.3]. The morphism ¢ is GL(N)-equivariant
and by construction we have ¢x(R(F)) C R.

Thus we can consider the commutative diagram

R(F) -2+ R

ml lﬂz

S T Myxp
Since 13 v & = Hom(p* A, ﬁ) we have:
T x O xE = O 5 € = G Hom(p* A, F) = Hom(§% x 0" A, 65  F).

Now by definition: ¢% (F = 75 F and ¢ yp*A =2 s*¢%A.

Since (Z}A is GL(N)-linearized in a natural way and m : R(F) — S is a GL(NN)-principal
bundle, there is a locally free sheaf B on S such that there is an isomorphism 5} = B.
Furthermore we have 3*5*;14 = 7ri xP*B. So we conclude:

T xOF xE = Hom(wiXp*B,ﬂ'iX]:) = 7} xHom(p*B, F)
which is equivariant. Using [ , 4.2.14] we see that this map descends to an isomorphism:
¢% x€ = Hom(p*B, F) = p*BY @ F.

So &€ is in fact a quasi-universal family. 0



2 Moduli spaces over K3 and abelian surfaces 41

2 Moduli spaces over K3 and abelian surfaces

If X is a smooth K3 or abelian surface and E a coherent Ox-module, then Mukai defined in
2

[ ] aclass v(E) € H®(X,Q) = @ H*(X,Q), today called Mukai vector of E, by
=0

v(E) := ch(E)\/td(X).
Here ch(E) is the Chern Character of E and td(X) is the Todd class of X, both classes belong
to H(X,Q). For every u = (a,b,¢) and v’ = (a/,V/,¢) in H*(X,Q) he defined a symmteric
bilinear form (—, —), using the cup product, by:
(u,u/)y =bUb —aUd —d Uc

He observed that (u, ) is equal to the H*(X,Q) component of —u.v/ € H®(X,Q), the usual
product. Writing v = ®u; we can define the dual class u” = @(—1)%u;. So we can write:

(u, ') = — [uV .,
X

where [ means taking the H 4(X ,Q) componenet of the product. For two coherent Ox-modules
X

E and F the product (v(E),v(F)) equals the H* component of —ch(E)Y.ch(F).td(X). Using
the Hirzebruch-Riemann-Roch theorem he proved:

Proposition 2.1:

Assume E and F' are coherent Ox-modules and put
X(E,F) = ﬁ%(—l)idim(Ea:t%X(E, F)).
i=
Then we have x(E, F) = —(v(E),v(F)).
Denote by M (v) the moduli space of stable sheaves on X with Mukai vector v, then it is known
that M (v) is smooth and that the there is canonical isomorphism

T[E]M(U) = E:L't%ox (E,E)

for the tangent space at a point [E] € M (v). Since E is stable it is a simple Ox-module, so we
have Homp, (E, E) = k. Using the fact that wx = Ox and Serre duality gives Eam%x (E,FE) =
Homo, (E, E)" = k. This shows

dim(Exty, (B, E)) =2+ (v(E),v(E)).

So M (v) has dimension (v, v) + 2. Using these results Mukai proved the following two theorems:

Theorem 2.2:

Assume v is a Mukai vector with (v,v) = —2, then M (v) is either empty or a reduced point.

Theorem 2.3:

Assume v is an isotropic Mukai vector, that is (v,v) = 0. If M (v) contains a connected component
M which is compact, then we have:
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1. M(v) is irreducible;
2. every semistable sheaf K with v(K) = v is stable.
In this section we will adapt these definitions to the situation of torsion-free A-modules on a K3

or an abelian surface and obtain similiar results if A is unramified, that is an Azumaya algebra
on X.

2.1 Euler characteristic and Mukai vectors for modules over orders
Definition 2.4:

Assume A is a terminal order on a smooth projective surface and let M and N be coherent
A-modules, then we define the A-FEuler characteristic of the pair (M, N) by:

2 . .
XA(M,N) = > (=1)'dimy(Ext’y (M, N))
i=0
Lemma 2.5:

Assume A is a terminal order on a smooth projective surface X. If 0 — M' — M — M" — 0 is
an exact sequence of coherent A-modules, then we have:

X.A(M>N) = XA(M/>N) +X.A(M//1N)

Proof:
Since the category R— Mod of left R-module has enough injectives for any ring R, we see that we
can adapt the proof of | , Proposition I111.2.2] to see that the category Mod(.A) has enough

injectives. So we choose an injective resolution 0 — N — I°®.
Since the I7 are injective, the functors Hom 4(—, I7) are exact, so we get a short exact sequence
of complexes

0 — Homa(M",I°) — Homa(M,I*) — Hom(M',I*) — 0.

Taking the long exact sequence of cohomology groups gives the long exact Fxt4-sequence. By
(1.52) we have Ext'y(M,N) = 0 for i > 3. Using the fact that Euler characteristic in an exact
sequence is zero and grouping the Ext according to M, M’ and M" shows

XA(M',N) = xA(M,N) + xa(M",N) = 0. O

Lemma 2.6:

Assume A is a terminal order on a smooth projective surface X. Let M be a coherent locally
projective A-module and let N be a coherent A-module. Then we have:

XA(M,N) = x(X,Homa(M,N)) = fX ch(Homy(M,N)).td(X).

Proof:

Since M is locally projective the local-to-global spectral sequence shows that we have

Ext) (M,N) = H (X, Homa(M,N)).
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This implies that the A-Euler characteristic for M and N agrees with the usual Euler charac-
teristic for Hom (M, N), meaning x 4(M, N) = x(X, Hom (M, N)). Now the last assertion is
just the Hirzebruch-Riemann-Roch theorem for Hom 4 (M, N). 0

Definition 2.7:
Let M be a coherent A-module, then we define the A-Chern character by:

cha(M) := ch(M).\/ch(A") .
Remark 2.8:

By +/— we mean the positive square root, that is the degree zero component is positive. Since

rk(A) = r? with r > 1 the class ch(A)i1 is well defined and can be found with a power series
expansion.

Lemma 2.9:

Assume A is a terminal order on a smooth projective surface X. If M is a coherent locally
projective A-module and N is a coherent A-module, then we have:

ch(Homa(M,N)) = cho(M*).cha(N).

Proof:
By (1.53) we have an isomorphism A* ®o, Hom (M, N) = Homo, (M, N). This implies

ch(A* @p, Homa(M,N)) = ch(Homo, (M, N)).

Since A* is a locally free Ox-module, the Chern character is multiplicative with respect to the
tensor product:

ch(A* @0 Homa(M,N)) = ch(A*)ch(Hom (M, N)).

But M is alocally projective A-module, so by (1.55) it is a locally free Ox-module, which implies
that Homo, (M, N) = M* ®p, N. Using again the multiplicativity of ch, we get

ch(Homo, (M, N)) = ch(M*)ch(N).
So, finally, we see:
ch(Hom (M, N)) = ch(Homo (M, N))ch(A*)~!

= ch(M*)\/ch(A%) " ch(N)y/ch(A*)

= chA(M™*)cho(N). 0

Corollary 2.10:

Assume A is a terminal order on a smooth projective surface X. If M is a locally projective
A-module and N is a coherent A-module, then we have:

Xa(M,N) = [y cha(M*).cho(N).td(X).
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Proof:
This follows from (2.6) and (2.9). 0O
Remark 2.11:

By choosing a locally projective resolution for a coherent A-module M, we see that the previous
corollary is in fact correct for all coherent A-modules M and N.

Definition 2.12:

If A is a terminal order on a smooth projective surface X and M is a coherent A-module we
define its A-Mukai vector by:

vA(M) = cha(M).\/td(X).

Example 2.13:

Assume X is a K3 or an abelian surface. If A is an Azumaya algebra with rk(A) = 72, then
A* = A using the trace map. So ¢i(A) = ¢1(A*) = —c1(A) implying ¢;(A) = 0. Thus we have
ch(A) = r? — co(A). Using (vI—2)"! & 1+ 2 shows that

—1

ch(A) =1+ Le(A).
Furthermore since X is abelian or K3 we have Kx = 0 so that td(X) = 1 + x(Ox) and with
Vitzrx1l+ %x this gives
td(X) = 1+ 3x(Ox).

(Here we have to be a little bit careful how to read this: 1 € H%(X, Q) but $x(Ox) € H*(X,Q)!).
Now assume M is a coherent A-module with rk(M) = s as an Ox-module and Chern classes ¢;
and ca, then ch(M) = s+ c1 + 5(c — 2c3).
We compute the A-Mukai vector of M and get:

va(M) = (2, Ler, (¢ — 26+ Sea(A)) + 5 x(Ox)).

2

For example if M is a torsion-free A-module of rank one, then rk(M) = r*, so we get:

va(M) = (r, zer, 5:(cf — 22 + e2(A)) + 5x(Ox).-

If S is an Artinian A-module of length [ 4(S) = n, then rk(S) = 0, ¢;1(S) = 0 and ¢2(S5) = —n
so that

va(S) = (0,0, ).
The last formula is also valid for a terminal order A on a smooth projective surface, since
ch(S) = n only lives in H*(X, Q).
Lemma 2.14:

Assume A is a terminal order on smooth projective surface X. If M and N are coherent A-
modules, then we have

XA(M,N) = —(va(M),va(N)),
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where the bilinear form (—,—) on H*(X,Q) = @ H*(X, Q) is given by (v,w) = — [, vV.w as
described above.

Proof:

If Ais an Azumaya algebra, then, due to (2.10), the left hand side is given by the H* component
of

ch(M)Y.ch(N).td(X).ch(A)~L.

Using td(X).ch(A)™' = & + Lca(A) + 5x(Ox) we see that, if rk(M) = s and rk(N) = ¢, the
left hand side is given by:

ZX(0x) + Zea(A) + Zcha(N) + Leha(M) — Zer(N)er(M).
Here chy = 3(c? — 2¢2). Now writing the Mukai vectors as
va(M) = (2, der, 1 (2cha(M) + Fea(A)) + $x(Ox))

shows that the right hand side is given by the same term.
If A is ramified, then ¢;(.A) # 0 and the computations are tedious but show the same result.

Example 2.15:

Assume A is an Azumaya algebra. We see that if v = (a, b, ¢) then (v,v) = b*> — 2ac. Using the
description of v4(M) from (2.13) for a torsion-free A-module M of rank one with Chern classes
c1 and ¢, we get

(va(M),va(M)) = 75ef = (c] = 2e2) — e2(A) — r*x(Ox).

The term ¢ — (¢f — 2¢2) can be simplified to -5 (2rc, — (r? —1)¢?). So if A = 2r2cy — (r? —1)c}
denotes the discriminant of M we have

(va(M),va(M)) = 5A = e2(A) = r*x(Ox)

Since a torsion-free A-module M of rank one is simple (1.49), we have Hom (M, M) = k and
using Serre duality shows that Ext? (M, M) = Homa(M,M)" = k. So we get

dim(Exty (M, M)) = 2 + (va(M),va(M)),

or dim(Exty (M, M)) = 2+ 5 A —cy(A) —r?x(Ox). Now if we compare this with the dimension
formula for the moduli space M 4/x.c, ¢, given in (3.1), we see that

dim(Ma/x e, er) = 2 + (vaA(M),v4(M))
which is the same type of formula as in the case of stable sheaves.

Example 2.16:

Assume A is a terminal order and S is an Artinian A-module of length n. Then we know that
v4(S) = (0,0,%). So (v4(S),v4(S)) = 0 which implies that x4(S,5) = 0.
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2.2 Zero-dimensional moduli spaces

Using the A-Mukai vector, we will prove a theorem similar to Mukai’s result (2.2).
Theorem 2.17:

Assume X is a K3 or an abelian surface and let A be an Azumaya algebra on X. If vy is a Mukai
vector such that (v4,va) = —2, then either the moduli space is empty or dim(M 4/x.c, c,) = 0. If
M4 x:c, o 15 nOt empty, then the moduli space consists of a single reduced point which represents
a locally projective A-module.

Proof:

Let M and N be torsion-free A-modules of rank one defining points [M] and [N] in M 4/x.c, c,-
By (2.11) we know that x 4(M, N) depends only on the Chern classes of N and not on N itself.
As M and N have the same Chern classes we get:

XAM,N) = xa(M, M) = —(va(M),va(M)) = 2.

Therefore we must have either Hom 4(M, N) # 0, or Hom4(N, M) # 0 by using Serre duality.
Using (1.48) we see that in both cases M and N are isomorphic.

But it is known that M 4, x.c, , is smooth (3.1, still to come) and that every connected component
contains a locally projective A-module (3.28, still to come).

Summing up: M 4/x.c, e, = {[M]}, [M] is a reduced point and M is locally projective. 0O

2.3 Two-dimensional moduli spaces

Now we want to prove a result like (2.3) in our case, by using the .A-Mukai vector and the base
change theorem for modules over an Azumaya algebra A.

Theorem 2.18:

Assume X is a K3 or an abelian surface and let A be an Azumaya algebra on X. If vy is a Mukai
vector such that (va,va) = 0, then either the moduli space is empty or dim(My,x.c, c,) = 2. If
Y is a complete connected component in My x.ci cor then Ma/x.c, e, =Y, the moduli space is
irreducible and all A-modules are locally projective.

Proof:

Since the moduli space is smooth (3.1) and Y is connected, the component must be irreducible
(smooth and connected implies irreducible).

We fix a quasi-universal family £ over Y, that is the restriction of a quasi-universal family on
M4 x:c) e, t0 Y, and denote the similitude by s.

We have the two projections p: X XY - X andg: X XY =Y.

Let [M] be an arbitrary point in the moduli space represented by an A-module M. For any
y € Y we have by (1.48):

0 if M®s ¢,

Homy(M, &) = {k;s O g
=y

Furthermore Serre duality gives

if M5
Ext}(M,&,) = Homa(E,, M) = {0 ' &y

ki MO g,
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Since x 4(M, &) = sxa(M, M) = 0 we see that:

0 if MO 2E,

k% if M =g,

So if [M] ¢ Y, then Ext’y(M,&,) =0 for all y € Y and i = 0,1, 2. Therefore we have
Sxt;*Avq(p*M,é’) =0

for i = 0,1, 2 by the base change theorem (1.77).
If [M] €Y, then for i = 0, 1,2 we have Emtf@(M, Ey) # 0 for just point yp € Y, namely yo = [M].
Then lemma (1.78) applies and says that we have:

o Eatl. 4 (p*M,E) =0 fori=0,1;

ExtY (M, &) = {

. é’xt?,*A,q(p*M,E) ® k(yo) = k(yo)® for yo = [M].

Particularly the sheaf Ext?)* A’q(p*M ,&) does not vanish completely, so it is an Artinian sheaf of
finite length on Y.
Lemma (1.85) computes the class

a(M) = ch(ga:tg*Aq(p*M,S) - Sxt}o*A,q(p*M,é') + €xtg*A7q(p*M,€))
as an element of H*(Y,Q) and shows that it does not depend on M but only on ch(M).
If [M] ¢ Y we have a(M) = 0 since Sa:té*qu(p*M,S) =0 for : =0,1,2 in this case.
If [M] € Y we see that
Jy a(M)4d(Y) = x(Y, Ext2. 4 (0" M, E)) # 0

since Sxt;*Aq(p*M, E)=0fori=0,1and Swt}%*Aq(p*M, £) is nontrivial and Artinian. But this
can only happen if a(M) # 0. So if [M] € Y then a(M) # 0.

Consequently a(N) # 0 for all torsion free A-modules N of rank one with the same Chern classes
as M, since a(N) only depends on these classes. So we must have

MA/X;C1,02 = Y7
because a sheaf N in M y,x,c, ., \Y would have a(N) = 0 which is not possible since all sheaves
in My, x.c e, have the same Chern classes.

For the last assertion, assume M is a torsion-free A-module of rank one with Chern classes ¢y
and co. This module sits in the standard exact sequence:

0 M M** —— M**/M —— 0.

Now M™* is a locally projective A-module of rank one and has Chern classes ¢; and ¢o — [, where
[ is the length of M**/M as an Ox-module. But the length satifies

loy(M** /M) = rls(M**/M).

We see that we have [ = nr for some n € N. If M is not locally projective then n > 1.
The module M™* defines a point in M 4/x,c, c,—1 and we can compute that

dim(M.A/X;cl,cz—l) =2 2l

Because A is nontrivial we have © > 1, so that vl > 1 impliying dim(M4,x.c, c,—1) < 0. But
then M4/ x.c; c,—1 18 @ non-empty smooth projective scheme of negative dimension, which is
impossible. So we must have | = 0, showing that M = M™**.

Summing up: every torsion-free A-module of rank one with Chern classes ¢; and co is locally
projective. 0



48 2.4 The case of an Azumaya Algebra on an abelian surface

2.4 The case of an Azumaya Algebra on an abelian surface

Assume Fq and Es are smooth elliptic curves over C.
Definition 2.19:

An isogeny f : E1 — Es is a morphism of curves which maps the point at infinity 01 in Eq to
the point ot infinity Og in Es.

Remark 2.20:

Since an elliptic curve is also an algebraic group, this definition of isogeny already implies that
an isogeny is a morphism of algebraic groups.

As Fj is a complete nonsingular curve, there are only two possibilities for the image of Fq under
f due to the following proposition:

Proposition 2.21 (| , Proposition I1.6.8]):

Let f: X — Y be a morphism where X is a complete nonsingular curve over C and Y is any
curve over C. Then either f(X) is a point or f(X) = Y. In the second case C(X) is a finite
extension of C(Y'), f is a finite morphism and Y is also complete.

Example 2.22:

Look at the multiplication by n map [n] : By — E1, P — nP. Then we certainly have [n](0;) = 01
so that [n] is a nontrivial isogeny.

Remark 2.23:

If f: E1 — F» is a nontrivial isogeny, then this morphism induces a map
f* : PiCO(EQ) — PiCO(El)

which yields the so-called dual isogeny f : E2 — Ep by noticing that E; & Pic®(E;). With the
help of the dual isogeny one can show that being isogenous is an equivalence relation.

So if F1 and FEs are non-isogenous elliptic curves, there is only the zero isogeny between them,
which maps the whole of Eq to 0y in Fs.
We end this short recollection about isogenies with this lemma, which will be used later.

Lemma 2.24:
Assume Ey and Eo are two non-isogenous elliptic curves, then E1(C(E2)) = E1(C).

Proof:

Assume we have a C(FE»)-valued point on Ejq, that is a morphism f;, : Spec(C(E2)) — Ei, here
n = Spec(C(FE3)) denotes the generic point of Es. We choose a closed point z € Fs, that is =
has codimension one in Es.

Since Ej is proper, the morphism f; extends uniquely to a morphism f, : Spec(Og, ) — E1 by
the valuative criterion of properness. But as these curves are Noetherian and of finite type over
C, there is an open subset U C FEs containing x such the morphism f, extends uniquely to a
morphism fyy : U — Fj.

Consequently there are finitely many points on E5 for which this map is not defined. But then
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fu extends uniquely to a morphism f : Ey — E;, compatible with f,, : Spec(C(E2)) — Ei1, see
[ , Corollary 4.1.17].

Possibly using an appropriate translation, we may assume the map f : Es — Ej preserves the
origins. But then this map is either an isogeny or constant. Since Fj and Es are non-isogenous,
the morphism f constructed from f, must be constant.

That is we have a factorization of f through Spec(C):

Ey; —— Spec(C) —— Fjy,

but then f, also factors through Spec(C). This shows that the C(Ey)-valued point is in fact a
C-valued point. 0

We are interested in the abelian surface defined by X := F; x Fy. We remark that the canonical
line bundle wx is trivial, i.e Kx = 0. The cohomology groups of the structure sheaf are given
by H*(Ox) = H*(Ox) =k and H(Ox) = k2.

Now choose two-torsion line bundles L; € Pic(E;) for i = 1,2, this means L; satisfies L? = Op,.
Define I := ©{L; and J := w3Ly, where m; : X — E; are the projections. Then I, J and
K = I ® J are two-torsion line bundles on X. So we can fix isomorphisms aj : I? — Ox and
ay:J?> =5 Ox. Then we define a locally free sheaf A of rank four on X by:

A=0xdI®JDOK (8)
Using aj and a we can define the structure of a quaternion algebra on A:
o if l1,lo € T'(U,I) we define [y - Iy = as(l1l2) € Ox(U) and do the same for J and K
o for | e T'(U,I) and m € T'(U, J) we define l -m = —m - .

With this definition we have ag = —a; ® a.

To see that A is an Azumaya algebra we note that we can find local sections i and j for I and J
over an open set U in the étale topology such that a7 (i?) = 1 and a;(j2) = 1. Defining k = i®,
we see that {1,4,7,k} with ij = k,ji = —k and i®> = j2 = —k? = 1 is a local basis for A on U.
But then there is an isomorphism

A®oy Oy = My(Oyp).

This can be seen like in the case of a field F', where such an isomorphism is given by mapping a
basis {1, 1, j, k} with the properties described above via

L (L ON (v o oy 0
o 1) "7 \o =1)7 1 0) " -1 0

to Ms(F). One checks that this is indeed an isomorphism and transfers this to the global
situation.

Now we want to see that A is a nontrivial Azumaya algebra on X, which means its Brauer class
[A] € Br(X) is nontrivial. By the sequence (1.4) the map [A] — [A,] from Br(X) to Br(C(X))
is injective, so it is enough to show that [A,] is nontrivial in Br(C(X)). But

Ay =Ox®I®JDK)y,=0x, DI, dJ,d K,

and Ox, = I, = J, = K, = C(X).
If I = Ox(D), then I? = Ox means 2D = div(f) for some f € C(X)*. So
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12 = Ox(dlv(f» = %OX
and a7 is given by multiplication with f, see for example | , Proposition 11.6.13]. Likewise
J? = Ox(div(g)) implies J? = é@x and « is multiplication with g. This shows that A, is the
quaternion algebra (f, )2, that is the C(X)-algebra generated by elements i and j with i = f,
j2 =g and ij = —ji.
It remains to show that [(f, g)2] is nontrivial in Br(C(X)). But this is true, due to the following
proposition:
Proposition 2.25 (| , Proposition 11]):
Assume E; and F5 are non-isogenous elliptic curves and choose f € C(E;)* and g € C(E3)*, f

and g no squares, such that div(f) and div(g) are multiples of two. Then the quaternion algebra
(f,9)2 is nontrivial in Br(C(E; x Es)).

Remark 2.26:

We will outline the basic ideas behind the proof of this proposition:
Assume k is an arbitrary field of characteristic different from two and let E be an elliptic curve
over k whose two-torsion points are rational. Fix an isomorphism « : (Z/2Z)? = E(k)[2].

Now define Br’(E) := ker(Br(E) 4 Br(k)), where € : Spec(k) — E is the inclusion of the
origin O € E, that is € is the restriction of an Azumaya algebra to the origin. Then one has a
canonical isomorphism

BrY(E) = H'(k, E),
where H'(k,—) is Galois cohomology, see | , Lemma 2.1|. The Kummer sequence

(2]

0 — E[2] E E 0,

gives a long exact sequence in Galois cohomology, which can be split in parts to give the following
short exact sequence:

0 —— E(k)/2E(k) —— H'(k,E[2]) —— H'(k, E)[2] —— 0.

Using the isomorphism v, H'(k,Z/nZ) = k* /(k*)" and Br’(E) = H'(k, E) gives the following
sequence
¢

0 —— E(k)/2E(k) —— (K*/k*?)? —— 2Br%(E) —— 0.
where 2 Br?(E) denotes the two-torsion part of Bro(E).
If we take E to be our elliptic curve E; and take k to be the function field C(E2) of the other
curve, then (2.24) says that E(k) = E1(C(E2)) = E1(C). But since C is algebraically closed we
have E;(C) = 2E,(C), implying E(k)/2E(k) = 0.
Furthermore we have Br(C(Es)) = 0, see (A.5), so Br%(E;) = Br(E).
Thus we have an isomorphism

(kx/k‘XQ)Q = QB’I“(El)

where Fj is defined over k = C(FE3). Now any class g € C(F3)* described in the lemma
actually comes from a two-torsion line bundle on Es, which are classified by HY (Fs,Z/2Z). So
restricting to these classes gives an injection (HY (F2,7Z/27))? < oBr(E;). But with the help
of this injection and the map ¢ one can then show that
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Hgt<E1, Z/QZ) ® Hélt(EQ, Z/QZ) = 2B7’(E1 X Eg)
The result then follows because one has an explicit description of the map ¢ involving the algebras

(a,b)2 see | , Proposition 2.2].

Using the Kiinneth formula for X = F; x F3 shows that we have
HY(X,A) = H*(X,A) =k and H'(X, A) = k?,
so the Euler characteristic vanishes: x(X,.A) = 0. Furthermore we have
c1(A) =0 and ¢2(A) = 0.

We would like to study the moduli space M 4/x.c, ¢, of torsion-free A-module of rank one with
Chern classes ¢; = 0 and co = 0. We immediately see that M 4/x,00 is not empty because it
contains A. If M is an A-module with the prescribed Chern classes then we have

va(M) = (2,0,0)
by (2.13) and hence (va(M),va(M)) = 0. Using (2.15) we obtain
dim(M a/x0,0) = 2-

As the space is not empty it contains at least one connected component of dimension two.
Because the space is smooth, see (3.1), this component is in fact irreducible, hence a smooth
projective surface. We would like to describe this component completely and use (2.18) to show
that this component is in fact the whole moduli space. To do this we need the following lemmas
(for the rest of this chapter ® always means the tensor product over Ox):

Lemma 2.27:

Assume G is the Kleinian four-group {Ox,I,J, K} C Pic(X). Then for L € Pic(X) we have:
A® L= A as Ox-modules if and only if L € G.

Proof:

Since A is a direct sum of line bundles as an Ox-module we see:

A=0xdIdJBK
A9 L=Le(I®L)e(JoL)® (K®L).
If L € G we immediately get that A® L = A.
Assume A® L = A holds. Since the Krull-Schmidt theorem is true for locally free sheaves, see

[ , Theorem 5.3], one direct summand of A ® L must be isomorphic to the direct summand
Ox in A. So we must have

LZ20x, I®L=Z20x, JQL=ZOx or K® L= 0Ox.

Since I, J and K are two-torsion line bundles we can multiply each isomorphism with the
respective line bundle and get the desired result. 0

Corollary 2.28:

Assume G is the Kleinian four-group {Ox,I,J, K} C Pic(X) and L; € Pic(X) for i = 1,2.
Then we have A® L1 = A® Ly as Ox-modules if and only if L1 ® L;l € G.
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Proof:
We have A® L; 2 A® Ly if and only if A~ A® (L1 ® Ly ). Now one can use (2.27). 0O

Corollary 2.29:

Assume Ly and Lo are line bundles on X. Then we have A® L1 =2 A® Lo as Ox-modules if
and only if A® L1 =2 A® Ly as A-modules.

Proof:

If these A-line bundles are isomorphic as A-modules, then they are isomorphic as Ox-modules
using the forgetful functor from A-modules to Ox-modules.
Assume A® L} =2 A® Lg as Ox-modules. Then by (2.28) we have

HY X, A® L ® Ly") = H (X, A) = k.
But then we see that

HomA(A® Loy, A® Ly) = HomA(A, A® L1 ® Ly ")
= Homo, (Ox,A® L1 ® Ly ")
=H"(X,A® L1 ® Ly")
= k.

Now (1.48) shows that A® L1 =2 A® Ly as A-modules. 0O

We use lemma (1.79) to see that for any A-module M and any line bundle L € Pic’(X) we have:
o ci(M ®op, L) =c1(M),
o c2(M ®oy L) = ca(M).
Since Fj and FEy are non-isogenous, we deduce from the proof of | , Theorem 11.5.1] that
Pic(X) = 7} Pic(E1) x w5 Pic(E2).

So the group G = {Ox,I,J,K} is given as the product H; x Hy where Hy =< I > and
Hy =< J >.
Furthermore we have

Pic®(X) = nf Pic’(Ey) x w3 Pic’(Es),

which is true for any two curves. So Pic’(X) can be identified with X itself, since Pic’(E) &< E
for an elliptic curve.
We see that in fact H; C 7f Pic’(E;) so that G also acts on Pic’(X) and the action of G is
exactly the product of the actions of the H; on 7} Pic’(E;). The action of G on Pic’(X) is
obviously free.
As a consequence G also acts freely on X. As G is finite and X is projective this implies that
X/G exists and that it is smooth, see | , Appendix to §6]. It is also known that X/G is
again projective, see for example | , Lecture 10].
Since the tensor product with a line bundle in Pic®(X) preserves the Chern classes, we get a
map

Pic®(X) —— Mu/x00
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which maps a line bundle L to the isomorphism class of A ®p, L.
Putting everything together we have a map

X/G —— M a;x:0,0

which sends the equivalence class [L] of a line bundle in X/G to the isomorphism class of
A®o, L. By (2.28) this map is well defined and satisfies the following property: if [Li] # [L2]
then A®(9X I 2 .A®(9X Lo.
Thus we have an embedding

X/G — MA/X;O,O'

So X/G is a complete connected component of the moduli space. But then by (2.18) we have
X/G = Mu/x00-

We can also describe the quotient X /G more explicitly: Since X = E; x E9, G = Hj x Hy and
the action of G is exactly the product of the actions of the H; we see that in fact we have

X/G = (Ey x Ey)/(Hy x Hy) = E1/Hy x Ey/Hs.
Now we use the following proposition:

Proposition 2.30 (] , Proposition I11.4.12]):

Assume F is an elliptic curve and G is a finite subgroup of E. Then there exists a unique elliptic
curve E’ and an isogeny f : E — E’ such that ker(f) = G and deg(f) = |G].

So there are two elliptic curves B} and E) such that E; is isogenous to E/ for i = 1,2. Since
being isogenous is an equivalence relation we see that Ef and E are also non-isogenous like F
and Fo. Summing up everything, we proved the following theorem:

Theorem 2.31:

Assume X is a smooth abelian surface, given as the product of two smooth non-isogneous elliptic
curves E1 and Ey. Let A be the Azumaya algebra on X defined by (8). Then the moduli space
M x.0,0 of torsion-free A-modules of rank one with Chern classes c; = 0 and ca = 0 is a smooth
projective surface, which is itself a product of non-isogenous elliptic curves E} and E) such that
E! is isogenous to E; via an isogeny of degree two for i =1,2.
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3 Moduli spaces over the projective plane: del Pezzo orders

3.1 Smoothness

In | | the following theorem is one of the main results:
Theorem 3.1:

Assume X is o K3 or abelian surface and A is an Azumaya algebra on X. Then the moduli
space Mg x.c, ¢, 15 smooth and one has

dim(M )Xoy ey) = 72 A = ca(A) = X (Ox) +2

where rk(A) =12 and A = 2r?cy — (r? — 1)c? is the discriminant of the A-modules.

In this section we will prove a similar result assuming A is a terminal del Pezzo order on P2
Lemma 3.2:

Assume X is a smooth projective surface and A is a terminal order on X. If M is a torsion-free
A-module of rank one, then so is wq @4 M.

Proof:

Because M and wy are torsion-free A-modules of rank one, the generic stalks M, and w4, are
one dimensional vector spaces over the division ring A;. This shows that w4, ®.4, M, is also a
one dimensional vector space over Ay, so it is a simple A,-module. We conclude that w4 ®4 M
is of rank one.

Since w4® 4 M is coherent, it remains to show that w4® 4 M is a torsion-free O x-module, meaning
we have to show that for every point p € X the Ox p-module (wa ®4 M), = wap @4, M, is
torsion-free.

As M is coherent and torsion-free we know that M, is a torsion-free Ox ,-module for every
p € X. We thus get an embedding:

M, — M, ®ox., K, (9)

where K = Quot(Ox ) is the field of fractions of Ox .
Now w4, is a finitely generated free Ox ,-module, hence it is a projective Ap-module by (1.13).
So it is especially a flat A,-module. We tensor (9) with w4, over A, to get an injection:

WA, p ®Ap MP — WAp ®-’4p (Mp ®OX,p K)
As the tensor product is associative we see:
wAzp ®"4P (Mp ®0X,p K) = (wAJ) ®-Ap Mp) ®OX,1) K'

But the latter module is a vector space over K, hence it is a torsion-free Ox p-module.
This implies that w4, ®4, M) is a torsion-free Ox ,-module as it is a submodule of a torsion-free
module. O

Remark 3.3:

These modules appear when applying Serre duality for A-modules. This lemma shows that all
results from section (1.4) are also true for A-modules of the form w4 ® 4 M for some torsion-free
A-module M of rank one.
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Lemma 3.4:
Assume A is a terminal del Pezzo order on P2. If M and N are torsion-free A-modules of rank
one with ¢(M) = c1(N), then Ext}(M,N) = 0.

Proof:
Using Serre duality we see that:

Ext}(M,N) = Homa(N,wa ®4 M)’

So assume Hom g(N,wq ®4 M) # 0 and pick a nontrivial element f € Hom(N,wq @4 M).
Then by (1.47) f is injective. So we get an exact sequence:

0 N — s wiouM o) 0.

Now D := ¢1(wa®4M)—c1(N) should be an effective divisor, but we can compute this difference.
We first note that:

wa @4 M =Homp, (A, wp2) @4 M = wp2 @0, A* @4 M.
This shows that
c1(wa @4 M) =rk(A)cy(wp2) + c1(A* @4 M).
Using (1.84) we get:
c1(wa ®a M) = rk(A)er(wp2) + c1(M) — 2¢1(A).
Putting everything together gives:

D =rk(A)ci(wp2) + c1(M) — 2¢1(A) — ¢1(N)
=rk(A)ci(wp2) — 2¢1(A)

l
By lemma (1.83) we have ¢1(A) = _rk(A) (11— e%)CZ and as cj(wp2) = Kp2, we finally see:

l
D = rk(A)(Kp + Y _(1— é)Ci)
i=1 !
= T'k(.A)KA.

But A is a del Pezzo order, so the canonical divisor —K 4 is ample. As P? has Picard number
one, every non-zero effective divisor is ample, see | , Example I1.7.6.1].

So D cannot be effective, because if it were it also had to be ample, which is impossible since
—D is ample. Consequently such an element f cannot exist.

We conclude that Hom 4(N,w4 ®4 M) = 0, which implies that Eactil(M, N)=0. 0O

Remark 3.5:

Regarding A as a torsion-free A-module of rank one over itself, the previous lemma (3.4) and
the local-to-global spectral sequence show that for every terminal del Pezzo order A on P?:

H?(P?, A) = Ext% (A, A) = 0.



3.1 Smoothness 57

Theorem 3.6:

Assume A is a terminal del Pezzo order on P2, then the moduli space M g /p2.c, e, 0f torsion-free
A-modules of rank one with Chern classes ¢1 and co is smooth.

Proof:

Assume M is a torsion-free A-module of rank one, which defines a point in M 4/p2., c,-

We have to show that all obstruction classes in Emta(M , M) vanish. But by the previous lemma
(3.4) we even have Ext%(M,M) = 0 in this case. So all obstruction classes must vanish and
M 4p2c, ¢, 18 sMoOOtH. O

Proposition 3.7:

The dimension of the moduli space M 4/p2, at a point depends only on the Chern classes c;

and co.

C1,C2

Proof:

The Kodaira-Spencer map gives an isomorphism for a torsion-free A-module M representing a
point in the moduli space:

ﬂNT]MA/P2;c1,CQ = Ext}A(M) M)
As the moduli space is smooth, its dimension at [M] is the dimension of its tangent space.
2 ) )
The A-Euler characteristic x 4(M, M) = > (—1)'dim(Ext’y(M, M)) can be computed just using

i=0
the Chern classes of M, see (2.14).
We know that:

o Ext%(M,M) = Enda(M) = k from (1.49);
o Ext%(M,M) =0 from (3.4).

So we see that dim (M 4/p2.c, ¢,) = 1+ (va(M),v4(M)) and the last summand only depends on
c1 and cs. 0

Remark 3.8:

One could actually write down an exact formula for the dimension using the theory of .A-Mukai
vectors. But as this is a rather messy formula and it does not bring new understandings of these
spaces, we will omit this formula here and compute some dimensions in special cases later.

Corollary 3.9:

All connected components of the moduli space My /p2.., ., have the same dimension.

Proof:

By the previous proposition, the dimension of the moudli space at a point depends only on the
Chern classes of the bundle which represents that point. But all bundles have the same Chern
classes, so this dimension is the same everywhere. =
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3.2 Punctual Quot-Schemes

Definition 3.10:

Assume A is a terminal order on a smooth projective surface X and M is a torsion-free A-module
of rank one. Furthermore we choose a point p € X in the Azumaya locus of A. Then we call the

moduli scheme classifying quotients M — T, where T is a coherent A-module of finite length [
supported at p, the punctual A-Quot-scheme at p and denote it by:

Quot 4(M, 1, p).

Remark 3.11:

The punctual Quot-scheme depends only on the complete local ring o x,p at p. Over the complete
local ring the stalk .4, is isomorphic to a matrix algebra since A is unramified at p. So we may

use Morita equivalence in local computations. For the existence of Quot-schemes, see for example
[ , Theorem 2.2.4|

Lemma 3.12:

Quot A(M, 1, p) is a projective scheme over k.

Proof:

Every A-quotient of M is also a Ox-quotient of M. If rank(A) = r? we see, using Morita
equivalence, that we have lp, (T') = rla(T).

This shows that Quot 4(M, 1, p) is a subscheme of the projective scheme Quot(M, rl, p) classifying
Ox-quotients of length rl supported at p. But Quot4(M,1,p) is even a closed subscheme.

To see this, we note that every point M — T in Quot(M,rl,p) defines an exact sequence

0 N M T 0.

The condition for this point to be in Quot4(M,l,p) is that N is an A-submodule of M. But
this is equivalent to the vanishing of the map A ®p, N — T'. This map is more explicitly given
as the composition of the following maps:

1. A®Roy N =+ A®o, M using the exact sequence and the flatness of A;
2. A®o, M — M using the A-module structure of M;
3. M — T which is the given surjection.
As a closed subscheme of a projective scheme, Quot 4(M, 1, p) is itself projective over k. 0O

Remark 3.13:

In the same manner one can see that the Flag-scheme Flaga(M,ly,l2,p), classifying iterated
quotients M — T7 — T5 of length [; supported at p, is a projective scheme.

Sending an iterated quotient M — 11 — T5 to M — T} and M — T5 defines two morphisms
i Flaga(M,ly,la,p) — Quot 4(M,1;,p).

We want to show that the punctual Quot-scheme is connected, to do so, we need the following
lemma:
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Lemma 3.14 (| , Chapter 3.3 Excercise 3.12]):

Assume f : X — Y is a surjective proper morphism of schemes. If Y and all fibers f=1(y) are
connected, then X s connected.

Proof:

We note that since f is proper, it is especially a closed morphism, hence it maps closed subsets
to closed subsets.
If X were not connected, there would be two non-empty closed subsets U,V C X satisfying:

UNV=0and UUV = X.

Since f is surjective we have Y = f(UUV) = f(U) U f(V). This shows that Y is the union of
two non-empty closed subsets, since f is closed.

As Y is connected by assumption, we must have f(U) N f(V) # 0. So we pick y € f(U)N f(V)
and let F be the fiber f=1(y) over y.

But then F' decomposes as F' = (FNU)U(FNV). Here FNU and F NV are two disjoint non-
empty closed subsets of F. This contradicts the connectedness of F'. So X must be connected.

Theorem 3.15:

If M s locally projective at p, then the punctual Quot-scheme Quot4(M,1,p) is connected for
any L > 1.

Proof:

We use induction on [. The case | = 1 asks to find all surjections M — T with [4(T") = 1. Thus
T is a simple A-module, so any nontrivial morphism M — T is automatically surjective. Now
multiplying a morphism with a constant in k> gives the same quotient. We see that all these
quotients are classified by (Homa(M,T)\{0})/k*. But this a projective space P" for some
n > 1 and P" is connected for n > 1.

So assume Quot 4(M,1,p) is connected.

We have the two morphisms m; and w2, which give the following diagram:

Flaga(M,1+1,1,p) —— Quot(M,l +1,p)

Quot4(M, 1, p)

First we will show that m; and 79 are surjective.

For a given point (M — T1) € Quot 4(M,l+1, p) we pick a nontrivial element from Hom (S, T1),
where [4(S) =1 and S is supported at p. Such an element exitst as Hom 4(S,T1) # {0}. This
can be seen using Morita equivalence at p and | , Lemma 2].

Since S is a simple A-module, any such nontrivial map must be injective, so we get an exact
sequence

0 S 11 15 0

with [4(T3) = I so that M — Ty — T» maps to M — T under 7, implying that 7 is surjective.
Given (M — Ts) € Quot4(M,1,p), let N be the kernel of this surjection.
Using Morita equivalence at p and | , Lemma 2| again, we see that Hom(N,S) # {0}.
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We choose a nontrivial element from Hom 4(N,S). This element defines the following pushout
diagram:

0 0
0 S 11 Ty 0
H
0 N M b 0
N —— N’
0 0

This pushout defines an iterated quotient (M — Ty — Tb) € Flaga(M,l + 1,1,p) which maps
to (M — Ty) under 7o, thus 7o is also surjective.

This furthermore shows that all possible flags over M — T are parametrized by the projective
space P(Hom4(N, S)). Hence the fiber of 79 over (M — T3) is connected.

As the Flag-scheme is projective, the morphism 7y is projective, so it is especially proper. This
shows that mo : Flaga(M,l+ 1,1,p) — Quot4(M,l,p) satisfies all conditions of lemma (3.14).
We see that Flaga(M,l+ 1,1,p) is connected.

But as 7 is surjective, we conclude that Quot 4(M,1 + 1,p) is connected too. 0

Remark 3.16:

Given a torsion-free A-module of rank one M which is locally projective at p, we have a map
Quot o(M,l,p) - M4 x by sending a quotient to its kernel. Since the punctual Quot-scheme is
connected, the image of this map is contained in one connected component of the moduli space.

3.3 Deformations

Given a terminal del Pezzo order A on P? and a torsion-free A-module M of rank one. Then there
are two possibilities: either M is even a locally projective A-module, or M is just torsion-free.
This fact is captured by the canonical exact sequence

L

0 M M T 0.

Since M is torsion-free, it is in fact free in codimension one so that ¢ is an isomorphism in
codimension one. This implies that T is supported at finitely many points and is therefore an
Artinian sheaf.

We denote supp(T) by sing(M). The points in sing(M) are exactly the points in P? at which
M is not locally projective.

The length n(M) := l4(M** /M) = [4(T) of the Artinian sheaf T" is a measure of deviation of
M from being locally projective.

The idea is now to use deformation theory to find deformations N of M such that n(N) < n(M).
We start with the definition of deformations.
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Definition 3.17:

A deformation M of M over a base scheme B is a family of torsion-free A-modules over B such
that My, = M for some ty € B. For a general t € B we call the A-module N := M; also a
deformation of M.

Remark 3.18:

From now, when we talk about the base scheme B, we will always mean the pointed space (B, t).

Example 3.19:

It is well known that isomorphism classes of deformations of M as a sheaf of Ox-modules over
B = Spec(R) with R := k[e]/(€?) are classified by Emt}QX (M, M).

If we are interested in deformations as a sheaf of A-modules, then these are classified by
Extl (M, M), see | , Lemma 3.1].

Since B comes equipped with a distinguished point tg we can look at the Zariski tangent space
T;, B of B at tp.

Picking a tangent vector v € Tj, B is the same as giving a morphism v : Spec(R) — B which
maps the unique closed point in Spec(R) to ty. This allows us to define a class in E:ct%gx (M, M)
for a given deformation M.

Definition 3.20:
The Kodaira-Spencer map of a deformation M is a map

Om : Ty B — Extéy (M, M)

defined the following way: choose a Zariski tangent vector v € Ty B and identify it with a map
v : Spec(R) — B. Then we can pullback M along the map f = (idx xv) : X x Spec(R) — X xB
and get a deformation f*M of M over the base Spec(R). Its isomorphism class defines an
element in Ea:t}ox (M, M).

Now we want to find deformations N of M which are somehow better than M in the sense
that they are closer to being locally projective than M, meaning n(N) < n(M). To find such
deformations we will use a result of Artamkin in | |, which we will sketch now, as some of
the ideas are used latter.

Assume X is a smooth projective surface and F' is a coherent torsion-free simple Ox-module,
that is Endo, (F') = k.

We have the standard short exact sequence:

0 F Fr* S 0.

Applying Homo, (—, Ox) shows that
Extp, (F,0x) = Eatpy (S, Ox). (10)

This is due to the fact that Sxtlbx (F**,0x) =0 fori=1,2 as F** locally free.
Now pick £ € Emt%ox (F, F'). This element defines an extension

0 F G F 0
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which in turn gives us the dual exact sequence

0 Jos G pr 3G

gwtbx (F, O)(),

by again applying Homo, (—, Ox).

That is j(§) € Hom(F*,SxtéX (F,Ox)). Using (10) shows that j (&) € Hom(F*,Swt%X(S, Ox)).
As I is coherent, the sheaf F* must be reflexive. Because X is a smooth projective surface this
implies that F™* is locally free. By | , Proposition I11.6.7] we get isomorphisms:

Hom(F*,Ext%X(S, Ox)) = Hom((’)x,c‘:xt%X(S, Ox) ® F*) = Hom((’)X,Ext%X(S, F*)).

We conclude that j(€) € HO(X, Exty, (S, F**)).
As S is Artinian we see that in fact we have j(§) € Ea:t?gx (S, F**). Thus we have constructed a
map:

j: Eaty (F,F) = Exty (S, F).
Remark 3.21:

Since we have a decomposition S = Qn} Sp,, we also have a decomposition j(§) = € Jjp, (£)-
Thus there is a map: =
Jp: : Exty (F,F) = Extg (Sp,, F**).
The last Ext-group only depends on p;, that is:
Extd (Sp,, F™) = HO(X, Extyy (Sp,, F*)) = Extyy (Sp, FyY).

So we can also work with the exact sequence

0 F F, Sp

0,

where Fj is given as the kernel of the surjection F™** — @ Sy, — Sp;. We see that F; agrees with
F away from p; and agrees with F** in a nelghbourhood of p;.

Remark 3.22:

The map j : Extbx (F,F) — Ext%X(S, F**) can also be constructed by another way: we start
with the exact sequence

0 F —t F* S 0.

Then we have induced long exact sequences:
1 2 2 ok
. — Eaty (FF) LN Exty, (S, F) —— Euatp (F™,F) —— ...

using Homo, (—, F). Here ¢ is the connecting homomorphism.
By applying Homo, (S, —) we get:

. —— Ext} (8,F) —— Eat} (S, F*) —— Euxt} (5,5) — 0.

Then we have j = 1, 04, see | , Lemma 6.2].
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Remark 3.23:

There are canonical surjective trace maps:
tr': Extyy (F,F)— H'(X,Ox).

If one defines ad’(F) = ker(trt), then ad!(F) corresponds to deformations of F with constant
determinant.

For example if X = P? then we have ad'(F) = Ext}, (F,F).

Definition 3.24:

Assume F is a deformation of F' over a base B, then we define the following function on B:
n:B—Z,t—n(t)=n(F).

Furthermore we define a natural number by:

n? = minn(t).
teB

Remark 3.25:

Similary one has functions n,, and numbers nﬁ_ for the points in sing(F'), so that we have for
example:

Ny, (t0) = loy (Sp;)-
Definition 3.26 (| , Chapter 1]):
A point p; in sing(F') is said to be cancellable in the deformation F if nz],'; < ny,(to). This means
that in the deformation F the order of the singularity p; decreases.
We have the following aforementioned result of Artamkin:
Theorem 3.27 (| , Corollary 1.3]):
If¢ e E:L't%gx (F, F) is the Kodaira-Spencer class of a deformation F of F over a one dimensional
base B with the property j,, (&) # 0, then p; is cancellable in F.
In | | the authors prove the following theorem about deformations:
Theorem 3.28 (| , Theorem 3.6.(iii)]):

Assume X is a smooth K3 or abelian surface and A is an Azumaya algebra on X. If M is a
torsion-free A-module of rank one with Chern classes c1 and co, then there is a deformation N
of M such that N is a locally projective A-module with the same Chern classes as M.

Unfortunately we cannot prove such a strong result in the ramified case.
Using the fact that we have a decomposition P? = DU (P?\D), where D is the ramification locus
of A, we get an induced decomposition sing(M) = HA* U H". Here we have:

HA* = sing(M) N (P?2\D) and H" = sing(M) N D.

So for a point p € sing(M) there are two possibilities: either A is an Azumaya algebra at p or
A is ramified at p. We will consider these cases separately.
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Theorem 3.29:

Assume A is a terminal del Pezzo order on P2. If M is a torsion-free A-module of rank one,
then there is a deformation N of M such that sing(N) C D and N has the same Chern classes
as M.

Proof:

Using remark (3.21) it is enough to show the following: given a torsion-free A-module M of
rank one, which is not locally projective at some point p € sing(M) N (P*\D), then there is a
deformation N of M which is locally projective at p and has the same Chern classes as M. This
implies sing(N) = sing(M)\ {p}.
Because if we have this result, we can simply apply it to the finitely many points belonging to
sing(M) one at a time. Since a deformation of a deformation is still a deformation, we finally
get a deformation N of M with the same Chern classes as M, such that sing(N) N (P?\D) = 0
implying sing(N) C D.
To prove the mentioned result, we start by forming the bidual of M which gives the quotient:

M>*/M=T= & T

pesing(M)

For p € sing(M) N (P?\D) we can look at the quotient M** — T — T),. Let M4 be its kernel.
This shows that we have a short exact sequence:

0 M MA* T, 0. (11)

Here M4# agrees with the bidual M** at p, particularly M## is locally projective at p, and at all
other points M4 agrees with M. This sequence defines an element in the punctual Quot-scheme
Quot 4(MA% 1, p) for some [ > 1. By (3.15) this scheme is connected.

We may assume that this sequence is as simple as possible, meaning it is locally at p Morita
equivalent to an exact sequence of the form:

0 —— Ia0;! oy Op/T —— 0. (12)

Here O, = @X,p is the complete local ring at p and I C O, is an ideal of colength [.

We can do this because the Quot-scheme is connected, that is all other possible kernels M of
MA* — T, lie in the same connected component of the moduli space as M, see remark (3.16).
Since the moduli space is smooth we can choose a smooth connected curve which connects M
and M. This curve defines a deformation of M (to M), which allows us to work with M instead
of M.

Now we modify the argument given in | |, which uses the result of Artamkin. We consider
the diagram, resulting from (11):

Eaxtl (M, M) —2—  Eat®(T,,M) —— Ext%(M"*, M)

[

Ext? (T,, M%)

Since c1(M) = e1(M#%) we have Ext} (M4, M) = 0 by (3.4). This implies that the connecting
homomorphism ¢ is surjective.

Furthermore the map ¢, is nontrivial. To see this we assume the contrary: ¢, = 0. Then the long
exact sequence asssociated to Hom 4(T)p, —) shows that there must be an isomorphism:
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Ext? (T,, MA%) = Ext? (T, Tp).

Using Serre duality, w4, = A, (since A is unramified at p) and Morita equivalence, this isomor-
phism corresponds to the isomorphism:

Homp,(0,/1,0,/1) = Homop((’);,op/f).
But we certainly have:
Hom@p((’)p/l, 0p,/I) = O,/1 and Homop(O;,Op/I) = (O,/1)"

Here O,/I has length [ by assumption. But (O,/I)" has length rl. Since A is nontrivial, we
have r > 2. This shows that there is no such isomorphism as [ # rl, hence ¢, must be nontrivial.
We can thus find & € ExtYy (M, M) whose image in Ext?(T,, M“4?) is non-zero: by the previous
argument we can pick v € Exti(Tp, M) with t.(v) # 0. As ¢ is surjective, we can find a class
¢ € BExtl (M, M) with 6(¢) = ~. This implies 1,(6(£)) # 0 in Bzt (T, M4?).

Now there is a deformation M of M over a smooth connected curve B whose Kodaira-Spencer
class is £&. This can be seen in the following way: we have an isomorphism for the tangent space
at [M]:

iZj[]V[]]\4./4/]19’2;01762 = Emt}A(M, M)

This shows that ¢ correspondends to a morphism v : Spec(k[e]/(€*)) — Mapz.c, o, such that
the unique closed point gets mapped to [M]. The smoothness of the moduli space implies that
we can find a smooth connected curve B with a distinguished point {3 € B and an embedding
J: B = Mype, such that:

c1,e2
e the embedding j maps ty to [M];
e j(B) has tangent vector v at [M].

Then B and j define a deformation M with the desired properties.
For a generic t € B, that is especially t # tg, let N = My be the fiber of M over t. Forming the
bidual we get an exact sequence:

0 N N** S 0.

By construction, S is also supported only at p. Using Lemma (1.62) shows that the forgetful
map:

Bty (Tp, M) — Butp, (T, M*)

is injective.

This implies that the Kodaira-Spencer clags of M, as an element in Ea:t}gﬂﬁ (M, M), has non-
zero image in Ea:t%]P2 (T, MA#). By the theorem of Artamkin (3.27) this implies that N is less
singular at p. That is: the length of S, as an Ops2 j-module is strictly less than [r. But S is an
A-module, so the length at p must be divisible by 7 since A is an Azumaya algebra of rank r2
at this point, implying it has Op2-length less or equal to (I — 1)r so (4(Tp) <1 —1.

Repeating this process finitely many times we end up with a quotient whose length is strictly
less then r but also divisible by r, implying it must be zero. That is N is locally projective at p.
It remains to find the Chern classes of N. But we have:
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ci(N) = ci(My) = ¢;(My,) = ¢;(M),

due to the fact that the Chern classes, as elements of H*(X,Q), are locally constant in a flat
family. Since the base B is connected they must be constant. O

Theorem 3.30:

Assume A is a terminal del Pezzo order on P? and M is a torsion-free A-module of rank one. If
sing(M) C D and every p € sing(M) is a smooth point of D with | 4,(My* /M) = 1, then there
is deformation N of M such that N 1is locally projective and has the same Chern classes as M.

Proof:

Using remark (3.21) again and the same argument as in the previous theorem, we see that it is
enough to prove this for the case sing(M) = {p}.
We have the canonical exact sequence

0 M —— M** T 0.

This sequence induces the following diagram

Extly (M, M) —2— Eaxt}(T,M) —— Ext}(M** M)

|-

Ext? (T, M*)

Since ¢ (M) = ¢1(M**) we have Ext?(M**,M) = 0 by (3.4). This shows that the connecting
homomorphism § is surjective.
We will show that in this case ¢, is nontrivial. Using the following sequence:

Ext}(T,M) —— Ext’(T,M**) —— Ext%(T,T) —— 0, (13)

it is enough to see that Ext%(T,T) = 0.

Since both questions are local at p we may work over the complete local ring R = @XJ, at p.
There A = A, is isomorphic to My (B) for some f > 1, see (1.9). We will distinguish the cases
f=1and f > 1. We start with the case f = 1.

By (2.16) we have x4(7,T) = 0, since T is an Artinian A-module.

As T is a simple Artinian A-module and k is algebraically closed, we must have Hom (T, T) = k
by Schur’s lemma. To see that Ea:tit(T, T) = 0 it is thus enough to show that Emth(T, T)=k.
To do this we begin once more with:

0 M M** T » 0, (14)

and look at the long sequence induced by Homa(—,T):
0 —— Homa(T,T) —— Homa(M*™*,T) —— Homa(M,T)
—— E«tY(T,T) —— Exth(M™*T) ——
Since M** ig locally projective and T is Artinian, we have:

Baty (M, T) = Bat)y (My*,T,) = 0.
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Using (1.37) we see that:
Homa(M**,T) = Homa,(M;*,Ty) = Hom g, (Ap, Ty) =T, = F,

where the last equality uses the complete local structure of T, given by (16).
This shows that there is an isomorphism:

Homy(T,T) = Hom4(M**,T).
The long sequence therefore induces an isomorphism:
Homa(M,T) = Extl (T, T).

Thus we have reduced the problem to show that Hom (M, T) = k.
Using (1.9) and the fact that f = 1, we see that the algebra A is given by:

R --- --- R
uR R (15)
uR -+ uR R

We have an isomorphism M;* =~ A, by (1.37), as T}, is simple we can identify M, with a maximal
left ideal m in A:

(w,v) -+ -+ R
uR R :
uR -+ uR R

We remark that there are other maximal left ideals. These are those ideals with exactly one
(u,v)-term is on the diagonal. Since all the following computations are equivalent for these
ideals, we choose without loss of generality the maximal ideal described above.

We then conclude that T is given locally at p by:

k 0
0 0 (16)
0 0 0

Now we want to determine Hom 4(m, A/m).
First we further reduce to determine: Hom(m/m? A/m): if ¢ : m — A/m is a morphism, then
p(m?) = m - ¢(m) = 0 since ¢ is A-linear. So m? C ker(¢) and ¢ induces a map m/m? — A/m.
From the description given above:

(w,v) -~ - R

uR R :

uR -+ uR R
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it follows that m? is given by:

(u,v)? + (u) R
m2 = ulRk R
ulR ulR R
But as ideals in R we have: (u,v)? + (u) = (u?,uv,v?) + (u) = (u,v?). We conclude:
(w,v)/(u,v®) -+ -+ 0 E over oo 0
m/m? = 0 o ~ |0 0
0 e 0 0 0 --- 0 0

This shows that Homa(m, A/m) = k. So Homa(M,T) = k, implying Ext'(T,T) = k. Putting
everything together shows that Ext%(T,T) = 0.
Thus the sequence (13) degenerates to

Ext%(T,M) —— Ext}(T,M**) —— 0.

This means that ¢, is a surjective map between nontrivial spaces, hence ¢, is nontrivial.
Now assume f > 1, then A = M(B) is Morita equivalent to the algebra B described in (1.9).
The sequence (14) is locally at p Morita equivalent to:

0 —— meB/ft — Bf S 0

where m is the maximal left ideal of B described above and S the associated simple B-module.
Then long exact sequence associted to Homp(—, S) is given by:

0 —— Homp(S,S) —— Homp(B/,8) —— Homp(m® B/~1S)
—— Exty(S,8) —— Exth(B/,S) ——

Again we have Homp(S,S) = k by Schur’s lemma and Exth(B/,S) = 0 since B/ is a free
B-module. Furthermore HomB(Bf,S) = kI and by the previous computations we see that
Homp(m @ B/~ 8) =k/.

As the Euler characteristic of the long sequence must vanish, we conclude that E:L’tlB(S, S) = k.
So by Morita equivalence Ext (T, T) = k and again Ext%(T,T) = 0 so that ¢, is also nontrivial
in this case.

Knowing this we can argue as in the previous theorem: since § is surjective and ¢, is nontrivial
we can pick £ € ExtYy(M, M) with nontrivial image in Ext? (T, M**).

There is a deformation M of M over a smooth connected curve B with Kodaira-Spencer class &.
The fiber N = M, over a general ¢t € B must be locally projective at p using the result of
Artamkin and the fact that the length as an Opz-module must be divisible by f in this case.
Furthermore the Chern classes of NV and M agree for the same reasons as in the previous theo-

rem. U
In the following we denote by ME/X;CLCQ the open subscheme of the moduli space M4, x.c, c,
which classifies only locally projective A-modules of rank one. If A is a maximal order of rank
r2, then for every ramification curve C' with ramification index e, the natural number f := zis

well defined, see | , Definition 2.13|.
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Corollary 3.31:

Assume A is a terminal del Pezzo order on P? with ramification curves {C;}, ramification indices
{e;} and associated numbers {f;} fori=1,...,0. If M ) # () then Mff/X —— # 0 for

A/Xer,c
everyi=1,...,1.
Proof:
It is enough to show this for a fixed ramification curve C' with ramificationd index e and associated
number f.
Since M'P # (), we can pick a locally projective A-module M of rank one with the desired

A/ Xe1,c2
Chern classes.

We choose a point p on C' which is a nonsingular point of the ramification locus. Furthermore
we choose a simple Artinian A-module T' which is supported at p. Using the knowledge of the
complete local structure at p we conclude that lo, (1) = fla(T) = f implying co(T) = —f.
Using (1.37) and T # 0, we see that Hom (M, T) # {0}. Thus we get a short exact sequence:

0 K M T 0,

here K := ker(N — S).
We compute the Chern classes and see that:

c1(K)=c1(M) and co(K) = co(M) — co(T) = co(M) + f.

As T is non-zero the A-module K cannot be locally projective. But by construction M = K**
and [4(K*/K) =1 so we can use (3.30) to see that we can deform K into a locally projective

A-module N with the same Chern classes, so N defines a point in Mi{)/X,cl,CQJrf' 0

Corollary 3.32:

Assume A is a terminal del Pezzo order on P%. If M,lf/x;cl,@ #+ 0 then Mff/xﬁhcﬁnﬁ #+ 0 for
alli=1,...,0 and any n > 1.

Proof:

Use the previous Corollary n-times. 0

The last corollary shows that if the open subscheme of locally projective A-modules of rank one
is nonempty for one pair of Chern classes, then there are infinitely many pairs of Chern classes
for which this subscheme is non-empty. Especially we obtain infinitely many non-empty moduli
spaces. Since A is always a locally projective A-module of rank one, we also have a starting
point for this method.
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4 Examples of del Pezzo orders on the projective plane

4.1 Del Pezzo order ramified on a smooth quartic

The first explicit example of a moduli space of A-line bundles was given in | |. In that
example A should be a maximal order of rank four on P? ramified on a smooth quartic D. The
idea is to use the noncommutative cyclic covering trick defined in (1.3).

This constructs A as a cyclic algebra A = A(Y, Ly, ¢) on a double cover Y of P2. So any A-line
bundle on P? comes from a locally free sheaf of rank two on Y. The problem of studying locally
free sheaves of rank four on P? reduces to the study of locally free sheaves of rank two on Y with
certain properties.

Remark 4.1:

The map 7 : X — Y used in the noncommutative cyclic covering trick is finite. Thus 7 is espe-
cially an affine morphism so that 7, induces an equivalence from the category of quasi-coherent
Ox-modules on X and the category of quasi-coherent 7,0 x-modules on Y, and since 7 is finite
this equivalence maps coherent locally free Ox-modules to coherent locally free m,Ox-modules.
Furthermore we have for all ¢ > 0 and all quasi-coherent sheaves F' on X an isomorphism
H{(X,F) = H(Y,m.F), see | , Excercise I11.4.1]. So all cohomology groups of .A-modules
in question can also be computed on X. Because of this we omit the notation of 7, and will
work completely on X.

We will now summarize the results of | | to see if we can obtain similar results in other
cases:

Assume D is a smooth quartic curve in P2. There is a double cover 7 : Y — P? ramified on D, see
[ , Lemma 17.1]. The Galois group G of 7 is generated by an element o of order 2, the
so-called Geisser involution. Using Ky = 7" Kp2 + R, where R is the ramification divisor in Y,
one can show that K% = 2 so that Y can also be seen as the blow up of P? at 7 points {P;}, ...~
in general position. We have the morphism ¢ : Y — P? which contracts the exceptional divisors.
It is known that Y contains 56 (—1)-curves, they are given by:

e the exceptional divisors F; correpsonding to P; for i =1,...,7,;
e the strict transforms L;; of the lines containing two points P; and P; for 1 <i < j < T,
e the strict transforms C;; of the conics containg all points except P; and Pjfor 1 <i < j <7;

e the strict transforms D; of the cubics passing to all points with a double point at F;.
We have the following facts about Y:
e Pic(Y) = 78 generated by the E; for i = 1,...,7 and H = ¢*] where [ C P? is a line;

7
o Ky = —n*l=-3H + ) E;

i=1
The 56 curves can also be described in the following way:
It is known that the quartic D has 28 bitangents l;, so that the preimage H; = 7~ !(l;) decomposes
into two (—1)-curves. Since moo = 7 we see that each H; is G-invariant, so that the decomposition
must look like H; = C; U o(C;). The 56 curves come in 28 pairs (Cj, 0(C47)). To find the action
of o on Pic(X) we need to determine the images of the exceptional divisors {E;},.,.» and H
under o. To do this the following lemma helps: o
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Lemma 4.2 (]| , Section VIL.4]):

Assume 7 : Y — P2 is a double cover ramified on a smooth quartic. If we denote the (—1)-curves
'Y as described above and let G =< o > be the Galois group of w then we have:
7

O'(El) = Di, O'(Lij) = Cij and O'(H) =8H —3 Z El
=1

Since D; = 3H —2E; — ) E; in Pic(X) we can finally see that the action of G on Pic(Y') with
JF
respect to the basis {H, E1,..., E7} is given by:

s 3 3 3 3 3 3 3
-3 -2 -1 -1 -1 -1 -1 -1
-3 -1 -2 -1 -1 -1 -1 -1
-3 -1 -1 -2 -1 -1 -1 -1
-3 -1 -1 -1 -2 -1 -1 -1
-3 -1 -1 -1 -1 -2 -1 -1
-3 -1 -1 -1 -1 -1 -2 -1
-3 -1 -1 -1 -1 -1 -1 =2

Pic(o) =

Using methods from linear algebra we can deduce the following lemma:
Lemma 4.3 (| , Chapter 6|):
Assume 7 : Y — P? is the double cover ramified on a smooth quartic D. If G =< o > is the
Galois group of w, then:

1. H%(G, Pic(Y)) = Pic(Y)% =< 7%l >= 7* Pic(P?);

2. HY(G, Pic(Y)) = (Z/2Z)® and this group is generated by E; — E; for i # j;

3. if E and E' are exceptional curves in'Y , then E — E' € HY(G, Pic(Y)).
We pick two disjoint exceptional curves E and E’, then L := Oy (E — E’) has the property
that ¢ : L2 —» Oy is an isomorphism and that this relation satisfies the overlap condition. So
A = Oy @ L, defines a terminal maximal order A on P? ramified on D.
Since A-modules are locally free sheaves of rank two on Y, one can look at their Chern classes

on Y. The next proposition will determine the possible first Chern classes of A-line bundles. In
the following H will denote the pullback of a general line I C P? under .

Proposition 4.4 (]| , Proposition 5.1]):
Assume M is an A-line bundle, then there is an n € Z such that ¢;(M) = L ® Oy (nH).

One can show that it is enough to consider the cases n =0 and n = 1, see | , Remark 3.8].
In these cases one can find the minimal cs:

Proposition 4.5 (]| , Proposition 5.2]):

Assume M is an A-line bundle with first Chern class ¢; = L ® Oy (nH) with n = 0 or n = 1,
then the minimal cg is given by 0 respectively 1.
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Theorem 4.6 (| , Proposition 6.10]):

Assume M is an A-line bundle with ¢ = L and co = 0, then M = A. The coarse moduli space
Pic(A) of such line bundles is a point.

Lemma 4.7 (| , Theorem 6.10]):

Assume M is an A-line bundle with ¢, = L ® Oy (H) and cg = 1. Then M sits in an ezact
sequence
0 —— Oy M L,Oy(E+oE) —— 0

or some p € Y. (Here I, is the ideal sheaf of p and E+ocE' = E—FE' +FE' +0cE' = FE—E'+H).
P

The sheaf M in the middle of this sequence is locally free due to the Serre correspondence for

codimension two subsets, see for example | , Theorem 5.1.1]. Using this knowledge, a family
of Oy-modules over a rational curve C' C Y is constructed in | , Lemma 6.8], which exhibits
the moduli space as a double cover of C' ramified at 6 points. This leads to the following result:
Theorem 4.8 (]| , Theorem 6.11]):

The coarse moduli scheme Pic(A) of A-line bundles with Chern classes ¢y = L ® Oy (H) and
co = 1 48 a smooth projective curve of genus 2.

4.2 Del Pezzo order ramified on two conics

The second explicit computation was done in | | for an order A ramified on a union of two
conics, intersecting in four distinct points. So the ramification locus is singular in this case. We
will summarize the result from the mentioned article:

Assume E C P? is a smooth conic and look at the double cover 7 : Y — P? ramified on E. Let
G =< o > be the Galois group of 7.

Then the following facts are well known:

o YV =Pl x Pl
o Pic(Y)=ZdZ;
e o acts on Pic(Y) via 0*(Oy(n,m)) = Oy (m,n).

Let H = 7*] for a general line [ C P2, then H is an ample (1, 1)-divisor.

We choose another smooth conic E’ intersecting F in four distinct points and set D := 7*FE’,
then D is a smooth (2,2)-divisor.

Let L = Oy(—1,-1) and fix a morphism ¢ : L2 5 Oy(—D) < Oy. One can show that ¢
satisfies the overlap condition. Thus A = A(Y, L., ) defines an order A on P? ramified on
E U E’ and one can show that A is maximal and terminal.

To begin, we check the possible first Chern classes of A-line bundles on Y.

Proposition 4.9 (]| , Proposition 3.4]):
Assume M is an A-line bundle, then there is some n € Z such that ¢;(M) = Oy (n,n).

Again one can see that it is enough to consider just two cases, here they aren = —1 and n = —2.
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Proposition 4.10 (] , Proposition 3.6]):

Assume M is an A-line bundle with first Chern class ¢; = Oy (n,n) where n = —1 or n = —2,
then the minimal cg is given by 0 respectively 2.

Theorem 4.11 (| , Theorem 3.11]):

Assume M is an A-line bundle with ¢; = Oy(—1,—1) and ca = 0, then M = A. The coarse
moduli space Pic(A) of such line bundles is a point.

For the second pair of Chern classes one first checks how the Oy-module structure of an A-line
bundle looks like.

Theorem 4.12 (| , Theorem 3.12]):

Assume M is an A-line bundle with ¢; = Oy (—2,—2) and ca = 2. Then we have either

M = Oy(-1,-1) ® Oy(—1,-1)
as an Oy -module, or
M = A®()Y Oy(—F)

as A-modules, where F is either an (1,0)-or a (0,1)-divisor.

Next the so-called Hilbert scheme Hilb(A) of A is constructed in | |. This is the moduli
space of left sided quotients of A with some fixed numerical data. With a lot of work it is proven
that this moduli scheme is connected and hence:

Theorem 4.13 (| , Section 4.2]):

The Hilbert scheme Hilb(A) of left sided quotients with ¢ci = Oy (1,1) and ca = 2 is a smooth
projective surface.

One observes that the kernel of such a quotient is actually an A-line bundle with ¢; = Oy (-2, —2)
and co = 2, so that there is a map from the Hilbert scheme to the coarse moduli space of such
A-line bundles, giving this interesting theorem:

Theorem 4.14 ([ , Theorem 5.1]):

The Hilbert scheme Hilb(A) of left sided quotients with ci = Oy (1,1) and ca = 2 is a ruled
surface over the coarse moduli space Pic(A) of A-line bundles with ¢y = Oy (—2,—-2) and ca = 2.
Then it is finally shown, using the previous theorem, that:

Theorem 4.15 ([ , Theorem 5.2]):

The coarse moduli space Pic(A) of A-line bundles with c; = Oy (—2,—2) and c2 = 2 is a smooth
projective curve of genus 2.
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4.3 Del Pezzo orders ramified on a smooth cubic curve

In the last two sections we have seen moduli spaces of A-line bundles, where A is a terminal
del Pezzo order on P? with a ramification divisor of degree four. Looking at the classification of
terminal del Pezzo orders on P? in (1.25), we see that there should also be del Pezzo orders with
smooth ramification divisor of degree three and five.

Unfortunately it is impossible to construct such an order with ramification divisor of degree five
using the noncommutative cyclic covering trick, since the ramification index e has to be two in
this case and there is no double cover ramified on a quintic.

But we can construct an order ramified on a smooth cubic using the noncommutative cyclic
covering trick. We have to use a triple cover Y of P? leading to locally free sheaves of rank three
on Y and therefore A-line bundles of rank nine on P2,

Assume D C P? is a smooth cubic curve. We pick a triple cover 7 : Y — P? ramified on D. The
Galois group G of 7 is given by G =< 0 >= {idy, o, 02}.

First we compute the canonical divisor of Y:

There is the well known formula:

Ky = " Kp2 + R,

where R C Y is the ramification divisor of 7. Using | , Lemma [.17.1] we see that
R = 27*] for a general line [ C P?. As Kp2 = —3I, we conclude that Ky = —7*l.
Since 7 is a triple cover, m,m* is multiplication by three on divisors, consequently we get:

K% =7l = (mer*l).l = 3.

This shows that K}Q, = KH%Q — 6, and so Y can also be seen as the blow up of P? at 6 points

{P i}1§i§6‘
Such a blow up 9 : Y — P? is known to be a smooth cubic surface. A smooth cubic surface
contains 27 lines which are in fact the 27 irreducible (—1)-curves of the blow up.

Theorem 4.16 (| , Theorem V.4.9)):

The smooth cubic surface Y contains exactly 27 lines, which are the 27 irreducible (—1)-curves.
They are given by:

o the exceptional divisors E; fori=1,...,6;
o the strict transforms Fjy; of the lines in P? containing P; and Pj for 1 <i<j<6;

e the strict transforms G; of the conics in P? containing five P, for i #j, j=1,...,6.

Let L be the pullback of a general line I C P2 under v, then we know the following facts about
Y, see | , Proposition V.4.8]:

e Pic(Y) = 7", generated by the classes of Ey,...,Eg fori=1,...,6 and L;

e the intersection pairing is given by: L? = 1,E? = —1,LE; = 0 and E;E; = 0 for i # j;

6
e the canonical divisor is Ky = —7*l = =3L + ) E;.
i=1
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It is also known that D has 9 inflection points, so there are 9 inflection lines [; tangent to D.
Thus 7 1(l;) decomposes as a union of three irreducible (—1)-curves 7=1(l;) = C% U C} U C4
meeting in one point, a so-called Eckardt point of Y. As 7 is G-invariant the decomposition
must be given by 77 1(l;) = C; Uo(C;) Uo?(C;). So the 27 lines on Y come in nine 3-tuples
(Ci,0(Cy),a*(Cy)).

To find an explicit blow up model for Y starting from the triple cover description and to un-
derstand the behaviour of the lines on Y with respect to the Galois group G we will use the
following proposition:

Proposition 4.17 (| , Proposition 4.10]):

Let Y be a smooth cubic surface and let Eq, ..., Eg be six mutually skew lines on Y. Then there
is a morphism ¢ : Y — P? making Y isomorphic to the blow up of P? in six points P, ..., Pg
(no 3 collinear and not all 6 on a conic), such that E, ..., Eg are the exceptional divisors for ¢.

So assume 7 : Y — P? is the triple cover ramified on D, then we choose 6 mutually skew lines
FEq,...,Eg on Y necessarily lying over distinct inflection lines and use the previous proposition
to obtain a blow up model ¢ : Y — P2,

Remark 4.18:

We can easily deduce the incidence relations among the 27 lines on Y, see | , Remark
V.4.10.1]:

o E;NE; =0ifi# j;

E;NFj, # 0 if and only if i = j or i = k;

E;NG; # 0 if and only if ¢ # j;

F;j N Fyy # 0 if and only if 4, j, k, [ are all distinct;

F;j NGy # 0 if and only if i = k or j = k;
. GiﬂGj:@fOri#j.
Now we want to understand the action of G on Pic(Y). To do that, we need to understand the
six 3-tuples given by (E;, o(E;),0%(E;)) fori =1,...,6.
Lemma 4.19:

Assume FE; is an exceptional divisor of ¢ : Y — P2, then there exists a permutation T € Sg
without fixed points such that:

{o0(E:),0%(Ei)} = {Fir(), Gy } or {o(Es), 0*(Ei)} = {Fr(3)i, Gr(iy |-

Proof:

6
Since 7l = 3L — ) E; we see that E;.7m*] =1, so we have
i=1

Using E? = —1 and E;.07(E;) € {0,1} for j = 1,2 we see that:
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The properties of the intersection pairing then show that o(FE;).0%(E;) = 1.
Accordingly we have:

EiNo(E;) #0 and E; No?(E;) # 0.

The incidence relations and the fact that E;,o(E;) and o?(E;) meet in one point now imply the
following:

{0(E:),0%(Ei)} = {Fij, G} or {o(E;),0%(Ei)} = {Fji, Gi}

for some j and k with j, k # ¢.

But we also know o (E;) N o?(E;) # 0 so that j and k must conincide.

Applying this method to all exceptional divisors F; for i = 1,...,6 we see that there exists an
element 7 € Sg without fixed points such that

{o(E:),0*(Ei)} = {Firt), Gy }
if i <7(1) or
{J(El)v JQ(EZ)} = {F'r(z)za GT(Z)}
if 7(7) < 1. O

Since we now fully understand the set { E;, 0(E;), 0%(E;) }, we can find the action of G on Pic(Y):

Lemma 4.20:

Assume m: Y — P? is a triple cover ramified on a smooth cubic D. If G is the Galois group of
7, then G acts on Pic(Y') via:

By —— Gy —— Fi

Es G F3

Es G Fi3

E4 Fys Gs

E5 Fse Gs

Es Fye Gy
Proof:
The lines Ey, ..., Eg are mutually skew, so the six lines o(E1), ..., 0(FEg) must also be mutually
skew and the six lines 02(E),...,0%(Eg) as well.

By (4.19) we know that:

{o(E:),0%(Ei)} = {Fir), Griay } or {o(Es),0*(Ei)} = {Fr(iyi» Gr(i) }
for a permutation 7 € Sg.
With the help of the incidence relations we see that o(E1),...,0(Eg) and 02(E)),...,02(FEg)

each contain three of the Fj ;) and three of the G;. So up to a permutation of the six lines we
can choose 7 = (123)(456) and see that the map is given as described. 0
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To compute the matrix of Pic(o) with respect to the basis {L, E1, ..., Eg} we need to determine
the image of L under o.
Since Fy5 is the strict transform of the line containing Py and Ps, we know that we have

Fis = L — Ey — Es in Pic(Y).
Consequently we get:
o(Fy5) =0(L—Ey— FE5)=0(L) —0(E4) —o(E5).
Using (4.20) we know o(Fy5),0(Es) and o(Es) in Pic(Y). Putting everything together we get:
o(L)=4L — (E1 + Ey + E3) — 2(E4 + E5 + Eg).
As we have Fj; = L — E; — Ej and G; = 2L — ) Ej in Pic(Y') we see that the action of G on

JFi
Pic(Y') with respect to the basis {L, E1, ..., Eg} is given by:

4 2 2 2 1 1
-1 -1 -1 0 0 0
-1 0 -1 -1 0 0
Piclo)=|-1 =1 0 -1 0 0

—2 -1 -1 -1 -1 0 -
—2 -1 -1 -1 -1 -1
-2 -1 -1 -1 0 -1 -

_ O = O O o =

If we denote the matrix by Z, then one can easily verify that:
e 72 = Pic(c?);
o 73 = Pic(0®) = Pic(idy) = idpicy).

To find a maximal order A on P? ramified on D, we need to find L € Pic(Y) with a relation ¢ :
L3 = Oy which satisfies the overlap condition. For this purpose we compute H!(G, Pic(Y)).
To do this we need the following two matrices:

9 3 3 3 3 3 3
-3 -1 -1 -1 -1 -1 -1
-3 -1 -1 -1 -1 -1 -1
1+Z2+2?=|1-3 -1 -1 -1 -1 -1 -1
-3 -1 -1 -1 -1 -1 -1

1-72=

NN DN
— = = = O
— = =N
_— N O OO O -
N O = OO O
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Using linear algebra we can deduce the following result:
Lemma 4.21:

Assume m : Y — P2 is a triple cover ramified on a smooth cubic curve. If G =< o > is the
Galois group of ™ then:

6
1. H(G, Pic(Y)) = ker(1 — Z) = Pic(Y)% =< 3L — 3. E; >=< 7*l >= m* Pic(P?);
i=1
2. ker(l1+Z+ 2% =< L —3FE,E; — E;yy fori=1,...,5>=175.
So especially the difference of two exceptional divisors is in H'(G, Pic(Y)).

We will only mention that one can compute im(1 — Z) = Z°® and using the Smith normal form
over the principal ideal domain Z, one gets:

HY(G, Pic(Y)) = ker(1+ A+ A?)/im(1 — A) = Z/3Z x Z/3Z.

We recall that the Hirzebruch-Riemann-Roch formula for rank three bundles M on Y is given
by:

xX(M) = 70%_021&/ —ca+3

4.3.1 Construction of an order

Using the results of the previous section, we choose the line bundle L = Oy (E; — Es). Then
we have an isomorphism ¢ : L2 — Oy which satisfies the overlap condition. Thus the algebra
A= 0Oy @ L, ® L? is a cyclic algebra and defines a del Pezzo order of rank nine on P? ramified
on the cubic curve D.

Because we have L2 = (L ®p, 0*L),2, we see that the Chern classes of A are given by:

Cl(A) = 2(E1 — Eg) + U*(El — EQ)
CQ(A) =-1

If we define H := 7*] for a general line [ C IP?, then the ramification divisor R of 7 on Y is given
by 2H. Using this and the result | , Proposition 4.1], we see that the Oy-module associated
to w4 is given by:

wpz ®o,, (A®oy Oy (R)) = Oy (—=3H) ®o, (A ®o, Oy(2H)) = A®o, Oy(—H),

where the first isomorphism is the projection formula for m,.
We note that ¢1(wa) = ¢1(A) — 3H. This result will be needed later.

4.3.2 Possible Chern classes

Since L3 = Oy we can use the argument given in [ , Theorem 3.3| to see the following: if
M is an A-line bundle then we must have L, ® M = M, thus implying:

L ®o, o*M = M. (17)

This observation leads to the following lemma.
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Lemma 4.22:
If M is an A-line bundle, then c1(M) = c1(A) + nH for some n € Z.
Proof:
Using the isomorphism (17) and applying ¢; shows that
3c1(L) 4+ c1(o*M) = e (M)
respectively
c1(M) —o*ci(M) =3(E; — E»).

We see that if we have two solutions to the last equation for ¢; (M), then their difference is an
element of ker(1 — o*) = Pic(Y)%. But we saw that Pic(Y)% = 7* Pic(P?) = ZH.

One solution to this equation is given by c;(M) = ¢1(A) = 2(E1 — E2) + 0*(E) — E»), since
L2 = Oy implies that Fy — Ey is equivalent to —o*(Ey — Fy) — 02" (Ey — Es) in Pic(Y).

So if M is an A-line bundle then there is an n € Z such that ¢;(M) = ¢1(A) + nH. 0

The next lemma gives a vanishing criterion for the second cohomology group of an A-line bundle.
This will be helpful when we are working with the Euler characteristic.

Lemma 4.23:

Let M be an A-line bundle with c1(M) = c1(A)+nH andn > —2. Then we have H*(Y, M) = 0.

Proof:

Since M is an A-module, we have
H2(Y,M) = H*(Y,Homa(A, M)) = Ext% (A, M).
Using Serre duality shows that we have
H?(Y,M) = Hom(M,wa)'.
Now if Homa(M,wy) is non-empty, then by (1.80) ¢1(wa) — ¢1(M) must be effective, but this
divisor is
c1(A) —3H —c1(A) —nH =—(n+3)H.
By the choice of n this divisor cannot be effective, so Homa(M,w4) = 0, which implies that

H?(Y,M) = 0. O

Again it is enough to consider the cases where n € {0,1,2}. For these cases we will now try to
find the minimal ¢s.
Lemma 4.24:

If M is an A-line bundle with ¢y = c1(A), then the minimal second Chern class is co = —1.

Proof:

One first computes c1(A4)? = —6 and ¢1(A).H = 0. So if M is an A-line bundle with ¢; = ¢;(A)
and some ¢y then Hirzebruch-Riemann-Roch shows that:
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X(M) =2 —cs+3=—co.

Now we assume there is an A-line bundle M with co(M) < —1.

Then we must have x(M) > 1. But (4.23) shows that H?(Y,M) = 0 so we must have
dim(HO(Y, M)) > 1.

This implies that there is an embedding A < M, and since ¢1(M) = c¢1(A) this must be an
isomorphism since both bundles are locally free.

But this is impossible since ca(M) # ca(A). We conclude that such an A-line bundle cannot
exist, implying co = —1 is minimal. =

Lemma 4.25:
If M is an A-line bundle with ¢y = ¢1(A) + H, then the minimal second Chern class is ca = 0.

Proof:

Assume there is an A-line bundle M with ¢; = ¢1(A) + H and co(M) =m < 0.
Define a rank three vector bundle N by N := M ®¢, Oy (—0?(Ey)).
We compute the Chern classes of N by using (1.79) and get:

c1(N) = ¢1(M) — 30%(Es) and ca(N) = ca(M) — 2¢1(M).0%(Es) + 3(0%(E»))?
Since we know all possible intersection products we see that:
c1(N)? = =6, c1(M).0%(Es) = —1, ¢1(N).H = 0 and co(N) = m — 1.

So Hirzebruch-Riemann-Roch shows that x(N) = 5> —m+1+3=1—m.
As —m > 0 by assumption we must have dim(H°(Y,N)) > 0 or dim(H?(Y,N)) > 0. But we
see that

H*(Y,N) = Exty (Oy,N) = Extg, (Oy (0%(E)), M) = Ext}y (A ®o, Oy (0*(Ey)), M).
Using Serre duality and wa = A ®p, Oy(—H) shows that the last group is isomorphic to
Homa(M,A®o, Oy(c?(E2) — H)). But as
Cl(A ®(9Y Oy<02<E2) — H)) = Cl(A ®(9Y OY(UQ(EZ))) —3H = Cl(A) +H —-3H = Cl(A) —2H

we conclude that ¢ (A ®p, Oy (0?(E2) — H)) — c¢1(M) = —3H, which is not effective.

So the Hom-group is trivial and thus also H2(Y, N) = 0.

We must have dim(H°(Y, N)) > 0 implying that there is an embedding A®e, Oy (02(E2)) < M,
since

HO(Y,N) = Homop, (Oy,N) = HomOY(Oy(UZ(Eg)),M) = Homa(A ®o, Oy (0%(Er)), M).

As both bundles are locally free and have the same first Chern class, they must be isomorphic.
But since ca(A ®0y Oy (0%(E2))) = 0> m = co(M) we see that this is impossible.

We conclude that no such A-line bundle can exist. So if we have an A-line bundle with ¢; =
c1(A) + H then the minimal second Chern class is given by ¢o = 0. 0

For the case n = 2 we only have partial results:
Lemma 4.26:

If M is an A-line bundle with ¢c1 = c¢1(A) + 2H, then the second Chern class is bounded from
below: co > 3.
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Proof:

The A-line bundle A ®p,. Oy (0(E2) + 0%(E3)) has Chern classes ¢; = ¢1(A) + 2H and ¢y = 4.
Assume there is an A-line bundle M with ¢; = ¢;(A) + 2H and ¢ = m < 2. Define N :=
M ®p, Oy (—0(E2) — 0?(F2)). Then we can compute:

c1(N)? = —12, ¢;(N).H =0 and c(N) =m — 6

Hirzebruch-Riemann-Roch shows that x(N) = 3 — m, but using the same arguments as in the
previous lemma, we see that H2(Y, N) = 0, so that dim(H°(Y,N)) > 0 for m < 2. We thus
have an embedding A ®o,. Oy (0(E2) 4+ 0(E2)) — M which must be an isomorphism, as in the
previous lemma. But these bundles have different second Chern classes, so this impossible. Thus
if M is an A-line bundle with ¢; = ¢1(A) + 2H, then we must have ¢y > 3. 0

Unfortunately we were not able to find an A-line bundle with second Chern class co = 3. Possibly
no such A-line bundle exists, in which case co = 4 would be the minimal second Chern class,
and the corresponding moduli space is not empty, because A ®p, Oy (0(E2) + 02(F>)) defines
an element in it.

4.3.3 Moduli spaces of line bundles with minimal second Chern classes
Lemma 4.27:

Let M be an A-line bundle with c; = c¢1(A) and co = —1, then M = A. The moduli space Pic(A)
of such line bundles is a point.

Proof:

Let M be such an A-line bundle. Then x(M) = x(4) = 1.

By (4.23) we have H2(Y, M) = 0 and so dim(H°(Y, M)) > 1. This gives an embedding A < M
which must be an isomorphism because ¢1(M) = c;(A).

Finally, we see dim(ExtY(A, A)) = dim(H'(Y,A)) = 0, as dim(H°(Y, A)) = 1 by (1.50) and
dim(H?(Y, A)) = 0 since A defines a terminal del Pezzo order on P2, see (3.5).

Thus the moduli space Pic(A) is a point. 0

Lemma 4.28:

Let M be an A-line bundle with c; = c1(A) + H and c2 = 0, then M 2 A®p, Oy (c*(E2)). The
moduli space Pic(A) of such line bundles is a point.

Proof:

Assume M is such an A-line bundle. We define N := M ®¢, Oy (—0?(E2)), like in the proof of
(4.25).

We see that x(N) =1 and H?(Y, N) = 0. So we have an embedding

A®o, Oy(0*(By)) < M

which is in fact an isomorphism by comparing first Chern classes.

It remains to determine Extl (M, M).

But as A®oe, Oy (0%(FE2)) = Oy (02(E3)) ® Oy (E1) ® Oy (Ey — Ex+ o (E1)), we see using (1.46)
that this Fxt-group is actually isomorphic to:

HY(Y,0y) ® HY(Y, Oy (Ey — 0%(E»))) @ HY(Y, Oy (E1 — Bz + 0(E1) — 0%(E»))).
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But certainly H'(Y,Oy) = 0 and the other two summands vanish as well.

We will prove this for K = Oy (E; — 0?(FE3)). Hirzebruch-Riemann-Roch shows that x(K) = 0.
But H°(Y, K) = 0, because if K had a global section, then K = Oy (D) for some nontrivial
effective divisor D linear equivalent to By — o2(E»).

Because H is ample we must have D.H > 0. But since the product only depends on the linear
equivalence class of a divisor, we see D.H = (E; — 02(FE3)).H = 0. So such a divisor D does not
exist and we have H(Y, K) = 0.

A similar argument using Serre duality shows H?(Y,K) = 0, we conclude that we must have
HYY,K) =0.

So Extly(M, M) = 0 and the moduli space Pic(A) is a point. 0O
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5 Moduli spaces on the projective plane: Calabi-Yau orders

5.1 Construction of an order and some cohomological computations

In this chapter we want to study moduli spaces of A-line bundles, where A is a terminal Calabi-
Yau order on P2, We will use the results found in [ | to find a Calabi-Yau order A on P?
of rank four ramified in a smooth sextic D. This order arises as a noncommutative cyclic cover.
To use the noncommutative cyclic covering trick we need to find a double cover 7 : Y — P?
ramified on D. This time we start with Y, find a group of automorphisms G C Aut(Y') such that
Y/G = P? and so that the map 7 : Y — Y/G ramifies over a smooth sextic D. This is possible,
because almost everything we look for is determined by the Picard lattice of the K3 surface.

It is known that for any smooth K3 surface X we have A := H?(X,Z) = Z*2. If we equip this
lattice with the cup product, then it is called the K3 lattice and it is isomorphic to:

A=ElEIH1HLH,

here E is the negative of the usual Eg-lattice and H is a hyperbolic plane. Using the exponential
sequence:
0 Z Oy Oy 0

and the fact that H'(Y,Oy) = 0 show that we have an embedding Pic(Y) < A. Furthermore
we have the following theorem due to Morrison:

Theorem 5.1 (] , Proposition 3.4]):

Assume S — A is a primitive sublattice, that is A/S is torsion-free, with rank p and signature
(1,p—1). Then there exists a K3 surface Y and an isometry Pic(Y) = S.

We set S = Z3 = (51, S2, S3) and define the intersection form on S by the matrix

-2 3 0
3 -2 1
0o 1 =2
In | | it is shown that S < A is a primitive sublattice with signature (1,2). So we can find

a K3 surface Y with S as its Picard lattice. The next step is to see that the automorphism of
S given by:

01 1

1 0 1

0 0 -1
extends to a so-called effective Hodge isometry between H2(Y,Z) and H?(Y,Z). The next theo-

rem, the Strong Torelli theorem, states that this isometry actually comes from an automorphism
of Y:

Theorem 5.2 (]| , Theorem VIII.11.1]):

Assume ¢ : H*(Y,7) — H*(Y',Z) is an effective Hodge isometry between two K3 surfaces Y
and Y'. Then there is a unique biholomorphic morphism o : Y' — Y such that o* = ¢.
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The next result in [ | states that if we put G =< o > then 7 : ¥ — Y/G is a double
cover with Y/G = P2. Furthermore one has H°(G, Pic(Y)) = Pic(Y)® = n*Pic(Y/G) and
HY(G, Pic(Y)) = Z/27. The last group is generated by L = Oy (S; — S3).

Finaly one computes that 7 ramifies over a smooth sextic D with 2 tritangents [; and ls. Espe-
cially we have a decomposition 7=1(I1) = S; U (S1) = S1 U Ss.

We see that ¢ : L2 -~ Oy and that ¢ satisfies the overlap condition. So

A:=0y ® L,

is a cyclic algebra which defines a Calabi-Yau order A on P? ramified on D. This shows that A
is in fact a terminal Calabi-Yau order. As noted in (4.1) we will work completely on Y so that
from now on we will only use A.

Since 7 is a double cover ramified over a smooth sextic, we see that the ramification divisor in Y
is given by 3H where H := 7*[ for a general line [ C P?. We remark that H is an ample divisor
onY.

Using the same method as in | , Proposition 4.1], we see that the Oy-module associated to
w4 is given by:

wp2 ®0,, (A ®oy Oy (R)) = Oy (—3H) ®o, (A®o, Oy(R)) 2 A®o, Oy(-3H + R) = A

The first isomorphism uses the projection formula for ., see | , Exercise 11.5.1 (d)], and
wpz = Op2(—3l). The second isomorphism uses the fact that H is G-invariant, thus implying
Oy(H) @0, A= AR®o, Oy(H). We recall that the Hirzebruch-Riemann-Roch formula for a
rank r vector bundle M with Chern classes ¢; and ¢o on a K 3-surface is given by:

x(M) = é —co+2r.
First we will compute some cohomology groups of line bundles on Y. These results will be needed

later.

Lemma 5.3:

The line bundle L = Oy (S1 — S3) has vanishing cohomology, that is H (Y, L) = 0 for i = 0,1,2.

Proof:

Assume the contrary, that is dim(H°(Y, L)) > 0. Then there is a nontrivial effective divisor D
on Y, linearly equivalent to S; — Ss, such that L = Oy (D).

Now H is ample and (51 — S3).H = 0 so we see that D.H = 0 since the intersection product
only depends on the linear equivalence class of D.

But as D is nontrivial and effective and H is ample, we must have D.H > 0, see | |.

We conclude that H°(Y, L) = 0 and equivalently we see that H?(Y, L) = H°(Y, L~!) = 0 using
Serre duality.

Since ¢1(L) = S1 — S3 and c2(L) = 0 we get

2 =852+2585+852=-2+0-2=—4.

So Hirzebruch-Riemann-Roch gives x(L) = 5 — 0+ 2 = 0.
Using H°(Y, L) = H?(Y, L) = 0 shows that we also must have H'(Y,L) = 0. 0

Lemma 5.4:

The line bundle N = Oy (Sy — S3) has cohomology H (Y, N) = { k, ifi=1

0, ifi=0,2"
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Proof:

As in the previous lemma we see that HO(Y, N) = H2(Y,N) = 0 since (S — S3).H = 0.
We have ¢;1(N) = Sy — S3 and c2(N) = 0 implying:

3 =853 —-258;+53=-2-2-2=—6.

Hirzebruch-Riemann-Roch gives us x (V) = —1.
Using H(Y, N) = H%(Y, N) = 0 shows that we must have H' (Y, N) = k. 0

5.2 Possible Chern classes

In this section we want to find the possible Chern classes of a A-line bundle M as an Oy-module.
To do this we will use the following proposition:

Proposition 5.5 (]| , Proposition 3.6]):

Assume M is an A-line bundle, where A is a cyclic algebra of the form A = Oy ® L, where
¢ : L2 = Oy is an isomorphism. Then M is H-semistable as an Oy-module, where H is an
ample G-invariant divisor on Y.

Since M is an A-line bundle we extract from the proof of | , Theorem 3.3] that the multi-
plication morphism L, ®o, M — M is an isomorphism.
Using these two results we can prove the following lemma.

Lemma 5.6:
If M is an A-line bundle, then c;(M) = L+ nH for some n € Z.

Proof:

By definition we have L, ®o, M = L ®o, 0*M.
So the second fact above shows that we have an isomorphism of Oy-modules:

L ®op, 0*M = M.
Applying ¢; and using the properties of ¢; shows:
2c1(L) + o*ci (M) = c1(M).
Equivalently this can be written as:
c1(M) —oc*ci (M) = 2¢1(L). (18)

If we have two solutions for ¢1(M), then the last equation shows that their difference is an
element of ker(1 — 0*) = Pic(Y)®. As we have seen, we have Pic(Y)® = 7* Pic(P?) = ZH.
Furthermore we know that L ®o, ¢*L = Oy, that is 0*L = —L. This implies that ¢;(M) = L
is a solution to the equation (18).

So if M is an A-line bundle, then as an Oy-module there is an n € Z such that:

c1(M)=L+nH. O

Since ¢1(M ® Oy (H)) = c1(M) + 2H, it is enough to consider the cases n = 0 and n = 1 in
the previous lemma, see | , Remark 3.8]. Since by (5.5) any A-line bundle is a H-semistable
vector bundles of rank 2 on Y, we can use Bogomolov’s inequality on Y to see that we have:
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A(M) = 402(M) - Cl(M)2 Z 0.
This bounds the second Chern class for an A-line bundle from below. We are now interested in
finding the minimal second Chern classes.

Lemma 5.7:

If M is an A-line bundle with ¢1(M) = L, then the minimal second Chern class is ca = 0.

Proof:

We have c1(M) = L, implying ¢} = —4.

Bogomolov’s inequality shows that A(M) = 4cg + 4 > 0, which implies:
CQ(M) > —1.

But this is not the best lower bound, which we will now see.
Assume there is an A-line bundle with ¢; (M) = L and c2(M) = —1, then Hirzebruch-Riemann-
Roch shows:

XM) =L +144=-24144=3

So we must have dim(H®(Y, M)) > 0 or dim(H?(Y,M)) > 0.
If dim(H°(Y,M)) > 0 we have an embedding A < M. To see this, we note that because M is
an A-module, by (1.46), we have:

HY(Y,M) = Homo, (Oy, M) = Homa(A, M).

So we get a nontrivial morphism A — M, which must be injective by (1.47). As A and M are
both locally free and c¢;(A) = ¢1(M), we see that they must already be isomorphic.

However co(A) # co(M), which is impossible if they are isomorphic.

So we must have H°(Y, M) = 0, implying dim(H?(Y, M) > 0.

Since M is an A-module, the last group is by (1.46) just

H?(Y,M) = Ext%y((’)y,M) = Ext’ (A, M).
Using Serre duality and the fact that wq = A shows that:
H2(Y,M) = Ext}(A,M) = Homa(M,w4) = Homa(M, A)'.

So as H%(Y, M) # 0, we get an embedding M < A.

But again ¢1(M) = ¢1(A) so these modules must be isomorphic, which is impossible since they
have diffrent second Chern classes. We conclude H?(Y, M) = 0.

But H°(Y, M) = H%(Y, M) = 0 cannot happen, as x(M) > 0. So no such A-module can exist.
That is if M is an A-module with ¢; (M) = L then:

CQ(M) ZO 0

Lemma 5.8:

If M is an A-line bundle with ¢c1(M) = L + H, then the minimal second Chern class is ca = 1.

Proof:
As ¢i(M) = L+ H, we compute
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d=L*+2LH+H?>=-4+0+2=-2.
By Bogomolov we have A(M) = 4¢o + 2 > 0 and since ¢y € Z we see that
(M) > 0.

Again this is not the best lower bound.
Assume there is an A-line bundle M with ¢;(M) = L + H and c2(M) = 0.
Define N := M ®¢p, Oy (—S1). Then we get by (1.79):

c1(N) = c1(M) — 287 and co(N) = co(M) — c1(M)S; + S
Computing everything gives:
c1(N)=—-51 —S3+ H and ca(N) = —1.
Because c1(N)? = —6 we get x(N) = 2 by Hirzebruch-Riemann-Roch.

This implies that dim(H®(Y, N)) > 0 or dim(H?*(Y,N)) > 0.
If dim(H°(Y,N)) > 0, using (1.46), we see that:

HY(Y,N) = Homp, (Oy,N) = Homp, (Oy(S1), M) = Hom (A ®y Oy (S1), M).
We conclude that there is an embedding A ®y Oy (S1) < M of A-line bundles. But
c(A®y Oy(51)) =L+ H = c1(M)

and A ®y Oy (S1) and M are locally free, so they must be isomorphic. This is not possible,
because c2(A ®y Oy (S1)) =1 # 0= co(M).

We conclude that H(Y, N) = 0 and thus dim(H?(Y, N)) > 0.

In this case we see that

H*(Y,N) = Ext}, (Oy,N) = Extg, (Oy(S1), M) = Ext} (A ®y Oy (S1), M).

Serre duality and wg = A imply that dim(Homa(M, A ®y Oy(S1))) > 0. There must be an
embedding M — ARy Oy(sl)

Again this would imply that M and A ®y Oy (S1) are isomorphic because they have the same
first Chern class. But since their second Chern classes differ, this cannot happen.

Putting everything together we see that there cannot be an A-module with the desired Chern
classes.

So if M is an A-line bundle with ¢y = L + H then we must have co(M) > 1. 0

5.3 Moduli spaces of line bundles for minimal second Chern class
Theorem 5.9:

Let M be an A-line bundle with ¢y = L and co = 0, then M = A. The moduli space Pic(A) of
such line bundles is a point.

Proof:

Hirzebruch-Riemann-Roch gives us xy(M) = =2+ 0+4 =2 > 0. So dim(H°(Y,M)) > 0 or
dim(H?(Y, M)) > 0.

If dim(H°(Y, M)) > 0 then we get an embedding A < M which must be an isomorphism by
comparing their first Chern classes.
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If dim(H?*(Y,M)) > 0 we get, by using Serre duality Ext% (A, M) = Homa(M, A), an embed-
ding M — A, which is an isomorphism.

In both cases we see that M = A.

Finally, we have to compute Ext}(A, A). But

Extl(A,A) = Ewtéy((’)y, A)=HYY,A) = H\(Y,Oy @ L,) = HY(Y,Oy) ® H\(Y, L),
which by (5.3) shows that Ext (A, A) = 0. 0
We see that as in all previous examples, the moduli space of A-line bundles containing A itself

is just a reduced point.
The situation in the second cases seems not that simple:

Theorem 5.10:

Let M be an A-line bundle with c; = L+ H and c3 =1, then M = A ®o, Oy (S1).

Proof:

We look at the vector bundle N := M ®y Oy (—S51), like in (5.8) and we see that:
c1(N) = —(S1+ S3) + H and c2(N) = 0.

Hirzebruch-Riemann-Roch gives us x(V) = -34+0+4=1> 0.
So we have dim(H°(Y,N)) > 0 or dim(H*(Y,N)) > 0.
If dim(H°(Y,N)) > 0, we have:

HY(Y,N) = Homp, (Oy,N) = Homo, (Oy(S1), M) = Hom (A ®y Oy (S1), M)

This gives an embedding A ®y Oy (S1) < M, which must be an isomorphism, by looking at the
first Chern classes.

If HY(Y, N) = 0, then we must have dim(H?(Y,N) > 0.

In this case we see that we have:

H?(Y,N) = E:L't%y(@y, N) = Ewt%y (Oy (S1), M) = Ext’ (A @y Oy (S1), M).

Using Serre duality Ezt} (A ®y Oy (S1), M) = Homa(M, A®y Oy (S1))’ shows that there is an
embedding M — A ®y Oy (S1), which must be an isomorphism. 0

Lemma 5.11:
The dimension of the tangent space of the moduli space at [M] = [A ®o, Oy (S1)] is one.
Proof:
The Kodaira-Spencer map gives an isomorphism:
Ting)Moajp2,c, oy = Baxtly (M, M).

But, using (1.46), we can compute that:

Exth (A®y Oy (S1), A®y Oy (S1)) = HY(Y,Oy) & H(Y, N).
This shows that Extl(M, M) = k. 0O
So the topological space of the moduli space counsits of a single point. But its scheme structure

is harder to find. Since the dimension of the tangent space is one, the moduli space should look
like Spec(k[e]/(e™)) for some n > 2. Unfortunately we were not able to determine this n exactly.
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A Azumaya algebras and Brauer groups

Let k£ be any field.
Definition A.1:

A finite dimensional k-algebra A is called Azumaya algebra, if it is a central simple k-algebra.
Here

o A is a central k-algebra, if the center Z(A) = {a € Alab = ba for allb e A} is k;

o A is a simple k-algebra, if the only two sided ideals of A are (0) and A.

The structure of an Azumaya algebra is well known due to the following theorem of Artin and
Wedderburn:

Theorem A.2:

Assume A is an Azumaya algebra over k. Then there is an n € N and a finite dimensional
division ring D over k such that A is isomorphic to the n X n matriz ring over D, A = M, (D).

Definition A.3:

Let A and B be Azumaya algebras over k, then we say A and B are similar, A ~ B, if there are
n and m in N and an isomorphism A @y M, (k) = B @y M, (k).

Similarity defines an equivalence relation on the isomorphism classes of Azumaya algebras over
k. We write [A] := {B|B ~ A} for an equivalence class.

Definition A.4:

Let [A] and [B] be equivalence classes of Azumaya algebras over k. Define a multiplication
by [A] - [B] = [A ® B|, then this multiplication is well-defined, associative and commutative.
Furthermore [K] is the unit element and [A]™! = [A°P] (here AP is the opposite ring, that is the
same additive group as A but with multiplication perfomed in reverse order). This multiplication
defines a group structure on the set of equivalence classes of Azumaya algebras over k. This
group is called Br(k), the Brauer group of k.

Example A.5:

The matrix ring M, (k) is an Azumaya algebra over k for any n € N. For £ = R the Hamilton
quaternions H, see (1.40), is an Azumaya algebra over R. This algebra also defines a nontrivial
element [H] in Br(R). One can in fact show that Br(R) = {[R], [H]} = Z/27Z. If k is algebraically
closed then every finite dimensional division ring over k is trivial, this implies Br(k) = {[k]} by
(A.2). One famous result due to Tsen states that if k is algebraically closed and k(C) is the
function field of an algebraic curve C over k, then Br(k(C)) = {[k(C)]}.

Now assume X is a noetherian, normal and integral scheme.
Definition A.6:

Assume A is a coherent sheaf of Ox-algebras. Then A is called a sheaf of Azumaya algebras if
A is locally free and for every closed point v € X A®p, k(z) is an Azumaya algebra over the
residue field k(x). We also call A an Azumaya algebra on X.
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Remark A.7:

There are several other definitions for Azumaya algebras on schemes equivalent to the one given
here. For example: a coherent sheaf of Ox-algebras is an Azumaya algebra if there is a covering
(Ui — X) for the étale topology on X such that for each ¢, there is an r; and an isomorphism
A®o, Ou, = M,,(Oy,). See | | for more information.

Example A.8:
If M is a coherent locally free sheaf on X, then A = Endp, (M) is an Azumaya algebra on X.

Lemma A.9:

Assume f : X — Y is a morphism of Noetherian, normal and integral schemes and A is an
Azumaya algebra on'Y. Then f*A is an Azumaya algebra on X.

Proof:

We see that f*A has an obvious structre as an Ox-algebra and it is locally free since A is locally
free. We have to show that f*A®oe, k(z) is an Azumaya algebra over k(x) for every closed point
r e X.

Since the question is local we may assume X = Spec(S) and Y = Spec(R). Then A is given by
an R-algebra A and we see that f*A is given by A®r.S. Now let x € X be a closed point. Then
k(z) is a field extension of k(y) for y = f(x). We conclude:

A®RS®sk(r)=ARr k() = ARRk(Y) () k()

Here A ®p k(y) is an Azumaya algebra over k(y) by assumption.
Since being Azumaya is stable under field extensions, we see that A ®g k(y) ®j(,) k(z) is an
Azumaya algebra over k(y). 0O

As in the case of Azumaya algebras over a field k, we can define similar algebras: A and B
are similar if there are two coherent locally free sheaves M and N on X and an isomorphism
A®oy Endo, (M) = B®o, Endp, (N). Then [A] - [B] = [A @0, B] defines a group structure
on set of equivalence classes of Azumaya algebras on X. This gives the Brauer group Br(X) of
the scheme X.

Example A.10:

The Brauer group of the projective plane over an algebraically closed field is trivial, that is we
have Br(P?) = {[Op2]}.

B Global dimension

Let A be a ring with unit and let M be a left A-module. Since the category Mod(A) of left
A-modules has enough projective objects, there is either an exact sequence, called a projective
resolution of M of length n (for some n € N),

0 P, . P Py M 0

where the left modules P; are projective, or there is no such sequence for any n.
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Definition B.1:
We define the left A-projective dimension of M by

l.pda(M) := min{n € Nl|there exists a projective resolution of M of length n}
and if no such sequence exists for any n we define l.pds (M) := occ.

Definition B.2:
The left global dimension of A is defined by

l.gldim(A) := sup {l.pda(M)|M € Mod(A)}

Remark B.3:

Similiar definitions can be made for right modules and right dimensions. The left and right
global dimension may differ. Fortunately Auslander showed in | |, that if A is Noetherian,
then [.gldim(A) = r.gldim(A) in this case we just write gldim(A) and can talk about the global
dimension.

Remark B.4:

o If pda(M) < n then Ext’;™ (M, N) = 0 for all A-modules N, so Extl,(M,N) = 0 for all
7 >n+ 1 and all A-modules V.

o If gldim(A) < n then Ext";"* (M, N) = 0 for all A-modules M and N, so Extl,(M,N) =0
for all 2 > n + 1 and all A-modules M and N.

Example B.5:

o If A=k[xy,...,x,] for some field k, then gldim(A) = n. This is Hilbert’s famous syzygy
theorem.

e If Ais a commutative Noetherian local ring, then A is regular if and only if gldim(A) < co.
In this case gldim(A) = dim(A), where dim(A) is the Krull dimension of A. This is a
theorem due to Serre.

Assume X is a smooth projective scheme and A is a sufficiently nice sheaf of Noetherian rings
on X. Let M be an A-module, coherent as an O x-module.

Definition B.6:

We define the A-projective dimension of M by pda(M) = sup{pda,(Mz)|x € X}.

Definition B.7:

We define the global dimension of A by gldim(A) = sup{gldim(A;)|x € X}

Example B.8:

o If A= 0Ox and M = k(x) is the skyscraper sheaf at some point = € X, then pdp, (k(z)) =
dim(X)

o If Ais a terminal order, then gldim(A,) = 0 for the generic point n € X, gldim(A¢) = 1 for
points of codimension one and gldim(A;) = 2 for closed points z € X. So gldim(A) = 2.
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C Grothendieck spectral sequence

Assume 2 and ‘B are abelian categories. Let F' : 2 — B be an additive left exact covariant
functor.

Definition C.1:
An object I € Ob(A) is called injective if Homg(—, 1) is an exact functor.

Definition C.2:

An object A € Ob(2l) is called F-acyclic if R"F(A) = 0 for all n > 1, where R"F is the n-th
right derived functor of F.

Theorem C.3:

Assume A, B and € are abelian categories and F : A — B, G : B — € are additive covariant
left exact functors. If A and B have enough injectives and F maps injective objects to G-acyclic
objects, then for every object A in A there is a spectral sequence:

EP = RPG(RIF(A)) = RPTI(GF(A)).

C.1 Local-to-global spectral sequence

Assume A is a maximal order on a smooth projective surface X.
Lemma C.4:

An A-module I is injective if and only if for every injection o : M — N of A-modules and any
map f: M — I there is a map g : N — I such that f =go..

Lemma C.5:

Assume A s an order on a smooth projective surface X and I is an injective A-module. Then
Ly is an injective Aj;-module on U for every open subset U C X.

Proof:

Given an injection ¢ : M < N of Ajy-modules on U and a morphism f : M — I;. We need to
find a map g : N — I|y such that f =go..

Since U C X is open, we can use the exact functor j; (extension by zero).

This functor gives an injection ji(¢) : ji(M) — j(N) and a map j(f) : (M) — H(Ljr) of
A-modules on X.

Now there is a canonical injection ji([j;r) < I on X, see [ , Excercise 11.1.19 (c)]. So by
composing this with j(f) we get in fact a map j;(M) — I of A-modules.

As I is an injective A-module by assumption there is a map h : ji(N) — I with 5(f) = ho 5(¢)
by (C.4).

Now we use the exact functor (=) (restriction to U).

This defines a map Ry : (ji(N))jy — Ijy. But since j; and (=) are a pair of adjoint functors
we see that we have natural isomorphisms:

(N =N, () =f, and (1(1)jv = ¢

We conclude that iy : N — Iy satifies f = by o, so that g := hyy is the desired map. 0
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Lemma C.6:

Assume A is a mazimal order on a smooth projective surface X and I is an injective A-module.
Then Homa(—, 1) is an ezact functor.

Proof:

Since Hom 4(—, I) is a left exact contravariant functor, it is enough to show that if M < N is an
injection, then Hom4(N,I) — Hom4(M,I) is surjective. To do that, it is enough to show that
for every open subset U C X the map HomA‘U(N‘U,IW) — HomA‘U(MW,I‘U) is surjective.
But this follows from the previous lemma (C.5). 0O

Lemma C.7:

Assume A is a mazimal order on a smooth projective surface. If M and I are A-modules such
that M is flat as an Ox-module and I is injective as an A-module, then Hom(M,I) is an
wnjective Ox-module.

Proof:

We have to show that Homo, (—, Hom (M, I)) is an exact functor. But we know from the
tensor-hom-adjunction that

Homo, (—, Homa(M,I)) = Homa(— ®o, M,I)
which is exact, because ®p, M and Hom 4(—, I) are exact. 0

Lemma C.8:

Assume A is a mazimal order on a smooth projective surface X and M is an A-module. Then
there is an exact sequence of A-modules:

0 K F M 0,
where F is flat as an Ox-module.

Proof:

Since M is also an Ox-module and every Ox-module is a quotient of a flat Ox-module, we can
find a surjection:
G M 0,

where G is a flat Ox-module. Applying ®o, A and using that there is a surjection

M ®0, A M 0

as M is an A-module, we get a surjection:

GRo, A M 0.

Then F := G ®p, A is an A-module, which is flat as an Ox-module because G and A are flat
as Ox-modules. Defining K := ker(F — M) gives the desired exact sequence. 0O

Lemma C.9:

Assume A is a mazimal order on a smooth projective surface X. If M and I are A-modules,
such that I is injective, then Hom 4(M, I) is acyclic for I'(X, —).
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Proof:

We have to show that H'(X,Hom4(M,I)) =0 for all i > 1.
By the previous lemma (C.8) there is an exact sequence of A-modules:

0 K F M 0,

where F' is a flat Ox-module. Since [ is injective by (C.6) we get an exact sequence:
0 —— Homa(M,I) —— Homua(F,I) —— Homy(K,I) —— 0.

Using (C.7) shows that H*(X,Hom4(F,I)) = 0 for all i > 1, since injective modules are acyclic
for I'(X, —).
Looking at the long exact cohomology sequence shows that we have isomorphisms

HY(X, Hom(M, 1)) = H (X, Hom (K, I)) (19)
for all 4 > 2 and an exact sequence:
0 —— HOYX,Homy(M,I)) —— H(X,Homu(P,I))
——  H°(Homy(K,I)) —— HYX,Homu(M,I)) — 0.

But HY(X,Homa(—,1)) = Homa(—,I) and since I is injective we know that Hom(—,I) is
exact, which shows that H(X, Hom(F,I)) — H°(Hom(K,I)) is surjective.

This implies H*(X,Homa(M,I)) = 0. Using this result for K, the isomorphisms (19) and
descending induction shows that we have in fact H*(X,Hom(M,I)) =0 for all i > 1. 0O

Theorem C.10:

Assume A is a mazimal order on a smooth projective surface X and let M and N be A-modules.
Then there is a local-to-global spectral sequence

EY? = HP(X, Ext’y(M,N)) = Ext? (M, N).

Proof:

We set A = Mod(A), B = Mod(Ox) and € = Ab in (C.3). Since A and B are categories of
modules they have enough injectives.

Lemma (C.9) shows that F' = Hom 4(M, —) maps injective A-modules to acyclic G = I'(X, —)-
modules.

By definition we have

RPG = HP(X,—), RIF = Ext’y(M, —) and RPYGF = Ext? (M, —).

So (C.3) gives the desired spectral sequence. 0
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