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Abstract 

In multiple sclerosis (MS), encephalitogenic T cells are considered to breach distinct cerebral 

barriers in order to gain access to their target tissue, the CNS. However, it remains poorly 

understood exactly how auto-reactive T cells overcome these boundaries and which migratory 

cues guide them on their journey. In the present work, intravital two-photon laser scanning 

microscopy (TPLSM) was employed to examine in detail the migratory behavior of 

adoptively transferred GFP
+
 CD4

+
 MBP-reactive T cells under the influence of chemokine 

signaling during different disease phases of experimental autoimmune encephalomyelitis 

(EAE), an animal model for MS. 

During preclinical EAE, encephalitogenic effector T cells were crawling along the 

intraluminal surface of leptomeningeal blood vessels preferentially against the direction of the 

blood stream. Intravenous administration of pertussis toxin (PTx) or a neutralizing anti-

CXCR3mAb revealed that chemokines play an essential role for this intravascular crawling 

behavior. (1) Intraluminal crawling was almost completely abolished; (2) the remaining 

fraction of cells profoundly changed their motility characteristics, i.e. they crawled for a 

shorter time with increased velocity and reversed their orientation to go with instead of 

against the flow.  

Once myelin-reactive T cells had transgressed the vascular barriers they continued their 

migration throughout the meningeal surface. Interference with chemokine signaling at this 

stage had only a moderate impact on the basal T cell motility. However, chemokines were 

important for stabilizing the contacts between T cells and resident phagocytes and 

furthermore prevented the detachment of T cells from the meningeal surface into the 

cerebrospinal fluid (CSF). 

In sum, the data indicate that encephalitogenic T cells invade the CNS through a well-

coordinated sequence of distinct steps, in which chemokines play a major role. Chemokines 

regulate effector T cell infiltration by controlling adhesion-dependent migratory steps and 

intercellular interactions during CNS inflammation.  
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1. Introduction  

1.1. Immunological Background 

1.1.1. Immune privilege and the central nervous system (CNS)  

The CNS has been traditionally considered as an “immune privileged site”, a term which 

emphasizes its incapability to elicit inflammatory responses towards diverse antigens 

(ENGELHARDT & RANSOHOFF, 2005). However, immune reactions do take place within 

the CNS, as demonstrated by viral infections, ischemia and numerous inflammatory diseases 

of brain and spinal cord including multiple sclerosis (ENGELHARDT & RANSOHOFF, 

2005). This obvious paradox reveals that the privileged status of the CNS is not absolute and 

for several reasons could be described less strictly and more accurately as “immune-

specialized” (GALEA et al., 2007; HOLMAN et al., 2011).   

(1) The immune privileged status of the CNS is mainly restricted to its parenchyma proper, 

since professional antigen-presenting cells like dendritic cells (DCs) and macrophages are 

found within meningeal and choroid plexus tissue (GALEA et al., 2005; 

ANANDASABAPATHY et al., 2011; RANSOHOFF & ENGELHARDT, 2012). Along with 

the observation that microglia express low levels of MHC molecules on the cell surface, these 

studies demonstrate a definite capability of antigen-presentation within the CNS (OUSMAN 

& KUBES, 2012).  

(2) Although the CNS is devoid of classical lymphatic vessels (CSERR & KNOPF, 1992), 

antigen drainage from the CNS parenchyma to cervical lymphnodes is described and occurs 

along the olfactory nerves into the deep cervical lymphnodes (BRADBURY et al., 1981; 

KIDA et al., 1993).  

(3) The CNS is shielded from the periphery by various endothelial and epithelial barriers that 

prevent – to a certain extent - the free exchange of macromolecules, antibodies and the 

transgression of cells (ABBOTT, 2005; ABBOTT et al., 2010). However, to some extent 

peripheral immune cells are able to breach these barriers under non-inflammatory conditions, 

as documented for T lymphocytes (WEKERLE et al., 1986; HICKEY et al., 1991; REBOLDI 

et al., 2009; BARTHOLOMÄUS et al., 2009).  
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1.1.2. Overcoming CNS barriers during T cell-mediated autoimmunity 

Multiple sclerosis (MS) is a demyelinating disease of the central nervous system, 

characterized by inflammatory lesions that consist of T cell and macrophage infiltrates. Since 

these lesions arise within the tissue without any signs of infectious agents MS is considered to 

be an autoimmune disease (FLÜGEL et al., 2011). The origin of the underlying autoimmune 

response seems to be classically T cell-mediated due to several reasons. 

Firstly, genome-wide association studies have identified links between the susceptibility for 

MS with genes involved in T cell function (SAWCER et al., 2011). Secondly, brain antigen- 

reactive T cells can be found within the normal human immune repertoire and these cells are 

potentially capable of inducing autoimmune responses as demonstrated by studies in 

transgenic mice expressing human MHC molecules (FUGGER, 2000). Finally, adoptive 

transfer of T cells reactive against myelin-components is sufficient to induce experimental 

autoimmune encephalomyelitis (EAE) in rodents that shares pathological similarities to MS 

(BEN-NUN et al., 1981). Nevertheless, it remains unclear how and where potential self-

reactive T cells encounter their cognate antigen and get activated.  

According to one possible scenario, autoaggressive T lymphocytes encounter non-self 

antigens in secondary lymphatic organs that share close similarities to self-antigens of the 

CNS (molecular mimicry) (WUCHERPFENNIG & STROMINGER, 1995). Alternatively, 

T cells passing the deep cervical lymph nodes are stimulated by brain-derived antigen that has 

reached the lymphatics of the nasal mucosa via drainage of interstitial fluid through the 

cribriform plate (CSERR & KNOPF, 1992; KIDA et al., 1993). Following activation, 

autoaggressive T cells are thought to leave the periphery, force their way into the CNS and get 

re-activated by local antigen (GOVERMAN, 2009). Consequently, this cascade of events 

leads to local tissue inflammation, demyelination and neuronal damage (LASSMANN et al., 

2007). But how and in which way are self-reactive T cells thought to infiltrate the CNS? At 

least three main routes come into consideration (RANSOHOFF et al., 2003).  

(1) An obvious access point for immune cells is the epithelial blood cerebrospinal fluid barrier 

(BCSFB) of the choroid plexus and circumventricular organs, which forms a physical barrier 

comprised of tight junctions between ependymal cells (ABBOTT et al., 2010). It has been 

postulated that CD4
+
 Th17

+
 cells were able to breach the BCSFB in a CCL20-dependent 

manner under non-inflammatory conditions (REBOLDI et al., 2009).  

(2) The endothelial blood-brain barrier (BBB) of brain and spinal cord parenchymal 
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microvessels allegorizes a second entry port for circulating immune cells (ENGELHARDT & 

RANSOHOFF, 2005). It comprises a close-meshed network of adjacent endothelial cells, 

connected by tight junctions (KNIESEL & WOLBURG, 2000).  

(3) Immune cells can enter the CNS meninges via the blood-leptomeningeal barrier (BLMB) 

which forms a boundary between the blood and the CSF-containing perivascular space 

(ENGELHARDT & RANSOHOFF, 2012).  

1.1.3.  Immune cell interact ions with the vessel endothelium 

Independently of which route leukocytes choose for entering the CNS, they first have to 

breach an endothelial barrier. Notably, the body of knowledge on leukocyte-endothelial 

interactions is mostly based on observations within peripheral blood vessels and high 

endothelial venules (HEVs) within lymphoid organs. According to these studies, interactions 

between leukocytes and the vessel endothelium follows a cascade of sequential adhesion steps 

(Fig.1). Each of these steps is mediated by different molecules on both leukocytes and 

endothelial cells (BUTCHER et a., 1991; LEY et al., 2007). 

During their passage through different blood vessels, leukocytes are in close proximity to the 

vessel endothelium. This phenomenon – most evident in post-capillary venules – is promoted 

by a hemodynamic effect called “margination” (JAIN & MUNN, 2009). Accordingly, 

erythrocytes occupy the center of the blood stream, thereby squeezing circulating leukocytes 

to the vascular walls (SCHMID-SCHÖNBEIN et al., 1980). This positioning facilitates the 

initial step of the interaction cascade, i.e. the capture of circulating leukocytes by the vessel 

endothelium (LEY, 1996). This initial transient interaction is mediated by P-selectin 

glycoprotein ligand 1 (PSGL-1) on leukocytes and members of the selectin family that are 

expressed foremost on endothelial cells (LEY et al., 2007; MCEVER & CUMMINGS., 1997). 

For instance, activated Th1- but not Th2 cells are captured via PSGL-1 to endothelial cells 

expressing P- and E-selectin (AUSTRUP et al., 1997). 

Once captured, leukocytes roll along the vascular endothelium, a locomotion that is 

accompanied by a significantly reduced velocity (ENGELHARDT, 2008). Leukocyte rolling 

has been shown to be dependent on shear stress supporting formation and release of molecular 

bonds between selectins and respective ligands (LAWRENCE et al., 1997; MARSHALL et 

al., 2003). Alternatively, capturing and/or rolling can also be mediated by α4β1 (VLA-4), 

α4β7 (LPAM-1), αLβ2 (LFA-1) integrins and distinct adhesion molecules, VCAM-1, 

MadCAM-1 and ICAM-1, respectively (BERLIN et al., 1995; LEY et al., 2007; SIGAL et al., 
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2000; KERFOOT & KUBES, 2002; VAJKOCZY et al., 2001).  

However, during transient interactions, integrins remain in an intermediate/low-affinity 

conformational mode that prevents a firm interaction between immune cells and the vessel 

endothelium (CONSTANTIN et al., 2000). The situation changes once leukocytes recognize 

glycosaminoglycan (GAG)-bound chemokines (PROUDFOOT, 2006) on the vessel 

endothelium that are either directly produced by endothelial cells or translocated from the 

basolateral to the apical site of the vessel (MIDDLETON et al., 2002). Thereby, chemokines 

can act as homing molecules, guiding circulating immune cells to inflammatory sites or into 

lymphoid organs (KUNKEL & BUTCHER, 2002; MIYASAKA & TANAKA, 2004). 

Chemokine binding to G protein-coupled receptors (GPCRs) on the surface of leukocytes 

triggers an inside–out signal to integrins (SHAMRI et al., 2005; KIM et al., 2003). Thereby, 

integrins undergo conformational changes leading to increased affinity and avidity for their 

corresponding adhesion molecules (KINASHI, 2005). This sequence of events results in a 

firm attachment of leukocytes to the inner vascular walls.  

Following firm adhesion to the endothelium, leukocytes undergo a phenotypical change from 

a spherical to a rather flattened cell shape. Subsequently, the attached leukocytes protrude 

with their leading edges, which results in intraluminal crawling (RIDLEY et al., 2003; 

SHULMAN et al., 2009). Intraluminal crawling of leukocytes has been previously described 

as a prerequisite for the final step, the diapedesis (PHILLIPSON et al., 2006). Diapedesis can 

occur via a paracellular route through endothelial junctions, or via a transcellular pathway 

through the body of endothelial cells (Fig.1) (LEY et al., 2007).  

 

 
 
Figure 1 | Multistep paradigm of leukocyte transmigration. Following capture, leukocytes roll along the vessel 

endothelium until they recognize immobilized chemokines on the vascular wall. Ligand binding to chemokine receptors 
results in a conformational change in integrins resulting in an immediate arrest of the leukocytes. Thereafter, polarization of 
the attached immune cells leads to intraluminal crawling, a putative prerequisite for paracellular and/or transcellular 
diapedesis. 
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1.1.4. Leukocyte migrat ion within the tissue – putative role for chemokines as 

migratory cues 

Once leukocytes have overcome endothelial barriers, it is poorly understood how exactly 

these cells migrate within extravascular spaces. 

It is highly conceivable that the migration pattern of extravasated leukocytes is modulated by 

components of the extracellular matrix (ECM) (NOURSHARGH et al., 2010). Thereby it 

remains unclear whether the cells are guided in such 3D environments by fibrillar structures 

like reticular fibers, since lymphocytes have been reported to migrate along but also 

independently from their substrates (NOURSHARGH et al., 2010; BAJÉNOFF et al., 2006).  

Furthermore, it remains unsolved which cues are necessary for guiding extravasated immune 

cells within distinct tissues, including the interstitium of the CNS.  

Histological analysis of brain samples from MS patients revealed a putative role for 

chemokines in this respect (SØRENSEN et al., 1999; DOGAN & KARPUS, 2004). 

Chemokines represent a group of low molecular weight cytokines that are classified according 

to a common structural characteristic, that is, four highly conserved cysteine residues that 

compose their three-dimensional structure (ZLOTNIK & YOSHIE, 2000). Based on the 

number and the position of the first two residues within the amino-terminal region, 

chemokines can be divided in four subtypes, i.e. C-x-C, C-C, C and C-x3-C (KARPUS & 

RANSOHOFF, 1998).  

It has been shown that chemokine ligands– mainly inflammatory chemokines– are up-

regulated in acute MS lesions (e.g. CCL5, CXCL10), and that mononuclear cell infiltrates 

bear respective chemokine receptors (CCR5, CXCR3) on their surface (TREBST & 

RANSOHOFF, 2001). Moreover, CSF from MS patients contains elevated levels of 

inflammatory chemokines including CCL5 and CXCL10 compared to control samples 

(SØRENSEN et al., 1999). Furthermore, also classical homeostatic chemokines, including 

CCL19 are found to be up-regulated in brain samples and the CSF from MS patients 

(KRUMBHOLZ et al., 2007) as well as CCR7-bearing cells within inflammatory cuffs of 

acute lesions (KIVISÄKK et al., 2004). However, none of these studies provide evidence that 

chemokines may serve as guidance cues for infiltrating leukocytes.  

In general, chemokines are capable of attracting immune cells within tissues by chemotactic 

gradients (KUNKEL & BUTCHER, 2002). For instance, signaling via CCR7 was shown to 

be required for dendritic cells (DCs) to reach intranodal T cell zones (BRAUN et al., 2011). 

Furthermore, chemokines can directly influence the motility of leukocytes within the tissue in 
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a chemokinetic manner (WORBS et al., 2007). 

The induction of chemotaxis and chemokinesis in leukocytes requires a ligand – receptor 

interplay. Upon chemokine binding, the respective GPCR undergoes a conformational change 

leading to a realignment of several membrane helices (WESS et al., 2008). This structural 

rearrangement results in a re-assignation of the α subunit of receptor-associated heterotrimeric 

G Proteins (ROSENBAUM et al., 2009). Thereby, the receptor acts as a guanine nucleotide 

exchange factor (GEF) on the associated G protein α-subunit (MARTY & YE, 2010). As a 

consequence, the newly formed GTP-bound “active” α-subunit dissociates from the βγ dimer 

(βγ-subunit) (MILLAR & NEWTON, 2010). Unfolding their role as second messengers, both 

subunits trigger an entire cascade of events including functional inhibition of adenylate 

cyclase, activation of phosphoinositol 3-kinase (PI3K), phospholipase C, protein kinase C 

(PKC), and protein kinase A, generation of inositol triphosphate, and a transient elevation of 

intracellular calcium levels (MARTY & YE, 2010). 

 

1.2. Experimental/Technical Background  

1.2.1. Experimental Autoimmune Encephalomyelit is- Insights into T cell-

mediated CNS autoimmunity  

A big leap forward in exploring the T cell-mediated pathogenesis of multiple sclerosis was 

achieved by the development of the animal model experimental autoimmune 

encephalomyelitis (EAE). Originally, rodent EAE was actively induced by immunizing 

animals with CNS homogenates combined with adjuvants in order to provoke an adaptive 

immune response against the injected agents (LIPTON & FREUND, 1953). Later it was 

found that EAE can also be induced by adoptive transfer of ex vivo isolated autoaggressive 

CD4
+ 

T cells into healthy recipient animals (BEN-NUN et al., 1981; HOLDA & 

SWANBORG, 1982).  

In the present work, an adoptive transfer model of EAE (tEAE) in LEWIS rats has been used 

to study the different steps leading to T cell-mediated autoimmunity in the CNS. This model 

induces a highly reproducible disease with an incidence of nearly 100%. The transferred 

autoaggressive CD4
+ 

T
 
cells are reactive against myelin basic protein (MBP) and produce 

both IFN-γ and IL-17 (BARTHOLOMÄUS et al., 2009), leading to a strong inflammation 

within the CNS followed by a modest demyelination restricted to ventral and dorsal routes of 
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the spinal cord (MANNIE et al., 2009). The disease is characterized by a monophasic disease 

course manifested by rapid progressive ascending pareses followed by subsequent 

spontaneous recovery (Fig.2).  

A hallmark of LEWIS rat tEAE is an obligatory prodromal phase of 3-4 days prior to 

manifestation of clinical symptoms (preclinical phase) (Fig.2). The underlying mechanism for 

this delay has been extensively investigated over the last years (FLÜGEL et al., 2001; 

ODOARDI et al., 2012). It turned out, that freshly activated T cell blasts are incapable of 

infiltrating the CNS tissue directly after transfer. Instead, the transferred T cells immediately 

disappear from the circulation and accumulate in peripheral organs, mainly within lung and 

spleen parenchyma. Within the periphery, these T cells undergo profound phenotypical 

changes during which they gain a “migratory phenotype”. Thereby, they get licensed to re-

enter the circulation from where they infiltrate the leptomeningeal areas of the dorsal spinal 

cord between days 2 and 3 days post transfer (Fig.3) (FLÜGEL et al., 2001; ODOARDI et al., 

2012). The phenotypical changes in migratory T cells comprise a down-regulation of 

activation markers (e.g. IFN-γ, IL-17) and simultaneously, an up-regulation of cell adhesion 

molecules (e.g. Ninjurin-1) and chemokine receptors compared to T lymphoblasts (Fig.4).  

Notably, the migratory phenotype is not antigen-restricted since ovalbumin-specific T cells 

undergo similar phenotypical changes. As a consequence, TOVA cells are able to enter the 

CNS meninges with similar kinetics compared to their myelin-reactive counterparts, albeit in 

substantially lower numbers (ODOARDI et al., 2012). 

 

 
Figure 2 | Monophasic disease course of adoptive transfer EAE in LEWIS rats. Clinical signs appear only after an 
obligatory delay of approximately 3-4 days post intravenous (i.v.) transfer of MBP-specific T lymphoblasts. Disease 
symptoms reach their peak 1-2 days after disease onset. Animals start to recover around day 7 p.t. Left and right axis display 
clinical disease score and relative weight change over time, respectively. Corresponding disease phases are indicated at the 
top of the graph. 
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Figure 3 | Encephalitogenic effector T cells are licensed in the periphery to enter the CNS tissue. In vitro activated 
TMBP-GFP blast cells are injected intravenously into healthy LEWIS rats, from where they home to peripheral tissues. There, 
they undergo profound changes in their phenotype. After acquiring migratory skills, TMBP-GFP cells re-enter the blood 2-3 days 
post transfer and reach their target organ, the CNS (modified from RANSOHOFF, 2012).  
 

 
 

 

 

 

 
Figure 4 | Migratory T cells have a dissimilar mRNA expression profile compared to T cell blasts. Graphs represent 
mRNA expression profiles of in vitro activated TMBP-GFP blast cells (top) compared to ex vivo isolated migratory TMBP-GFP 

cells from blood 72h p.t. (bottom). Means and s.d.of replicate measurements are shown. Values refer to specific copies in 
relation to β-actin copies. Representative results of at least 3 independent experiments are shown (ODOARDI et al., 2012). 
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1.2.2. Tools for visualizing autoimmune responses in the CNS  

An advantage of tEAE is its susceptibility to manipulation. For instance, defined effector 

T cell populations can be labeled prior to transfer. Originally, this was achieved by 

radioactive tracers (KLINKERT et al., 1987) until the development of genetic transduction 

approaches to label MBP-specific T cells without interfering with their cellular functions 

(FLÜGEL et al., 1999). Thus, the coding sequence of green fluorescent protein (GFP) can be 

retrovirally introduced into the genome of myelin-reactive T cells enabling a stable expression 

of the fluorescent tag in the cytosol without dilution through mitotic events (FLÜGEL et al., 

1999). This technique opened the possibility to trace adoptively transferred GFP
+ 

T cells in 

vivo and allows a functional characterization of ex vivo isolated cells during EAE (FLÜGEL 

et al., 2001; KAWAKAMI et al., 2004; KAWAKAMI et al., 2005 (1)).   

Moreover, retroviral gene transfer can be employed to introduce a variety of molecular 

reporters into cells, e.g. fluorescently-marked NFAT. Nuclear factor of activated T cells 

(NFAT) is an early activation marker localized within the cell’s cytoplasm in a highly 

phosphorylated state (CRABTREE & OLSON, 2002; SHAW et al., 1988). After TCR 

stimulation, calcineurin, a Ca
2+

-dependent phosphatase dephosphorylates NFAT, which in 

turn is transported to the nucleus of the cell (CLIPSTONE & CRABTREE, 1992). There, 

NFAT exhibits its role as transcription factor, promoting the expression of several activation-

linked genes, e.g. IL-2 and IFN-γ (CHOW et al., 1999; KIANI et al., 2001).   

The expression of a fluorescently-labeled NFAT biosensor (e.g. NFAT-YFP) can be utilized 

for real-time monitoring of T cell activation within the living CNS tissue (LODYGIN et al., in 

press). The co-expression of a fluorescently-tagged histone protein (e.g. H2B-mcherry) within 

the same cell opens the possibility of discriminating between cytosolic and nuclear NFAT 

(Fig.5) (LODYGIN et al., in press).  

 

Figure 5 | 3D reconstruction of nuclear NFAT-
translocation. Original snapshots, 3D projections 
and 3D cross-sections of an individual T cell 
bearing either cytosolic NFAT-YFP (green, upper 
row) or nuclear NFAT-YFP (yellow, lower row) 
are depicted. NFAT-translocation was induced 

upon contact with a resident phagocytic cell, 
highlighted by Texas-Red®-dextran labeling. 
Yellow color reflects a co-localization of NFAT-
YFP with the red T cell nucleus (H2B-mcherry). 
Data are published in LODYGIN et al., (in press). 
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Visualization and temporal tracing of genetically engineered T cells in vivo requires a high 

microscopic standard. Up to now, the state of the art is non-linear optical two-photon laser 

scanning microscopy (TPLSM). In conventional, linear microscopy, such as confocal 

microscopy, fluorochromes are excited via single photons with short wavelength, thus high 

energy (DENK & SVOBODA, 1997). As a consequence, the electrons of the fluorescent dyes 

are elevated after photon absorption from a non-excited basal state to an activated, higher 

energy state (HELMCHEN & DENK, 2005). Once they reach this activated level, electrons 

can drop back to the basal state, a process accompanied by fluorescence emission (DENK et 

al., 1990). The emitted light of the fluorochromes can be detected and is of longer wavelength 

than the original excitation wavelength (ZIPFEL et al., 2003). Whenever the density of 

photons in time and space is high enough, the same fluorochromes can be excited with non-

linear light of low energy, usually in the near infrared range (DENK & SVOBODA, 1997). 

TPLSM systems are equipped with powerful lasers (i.e. titanium-sapphire lasers; 3-5W) that 

are capable of providing laser pulses in a femto-second range, a prerequisite for the 

coincidental photon absorption by the fluorochrome (DIASPRO & ROBELLO, 2000).                 

Two-photon excitation has several advantages for in vivo imaging compared to conventional 

one-photon excitation. 

Firstly, due to the high temporospatial density of photons required for the two-photon effect, 

only tissue in the perifocal plane is excited while avoiding excitation of adjacent tissue 

outside the focal plane (POTTER, 1996). Secondly, since fluorescent dyes within the 

specimen are excited with low energy, phototoxic damage to the tissue and bleaching of the 

dye are reduced to a minimum (KAWAKAMI & FLÜGEL, 2010). Thirdly, light with long 

wavelength is less scattered in biological tissues, creating the possibility of deeper penetration 

of the specimen compared to confocal microscopy (RUBART, 2004). Finally, two-photon 

excitation generates a quantum effect, i.e. the generation of higher harmonics (e.g. 2
nd

 

harmonic). The latter makes it possible to visualize non-centrosymmetric structures, like 

extracellular matrix components (ZIPFEL et al.; 2003).  
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1.3. Aims of this work 

In experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis (MS), 

autoaggressive effector T cells infiltrate the CNS, get re-activated and trigger the initiation of 

an inflammatory response towards myelin-components. However, up to now it is not 

completely understood, how these distinct infiltration steps are regulated.  

In this study, intravital two-photon microscopy (TPLSM) was employed in order to examine 

in real-time the invasion process of adoptively transferred GFP
+
 CD4

+ 
MBP-reactive T cells 

during the different phases of EAE. Furthermore, it was to be clarified which factors regulate 

the migration of T cells during the different infiltration steps and how they modulate the 

T cells’ locomotive pattern within the living CNS tissue. Thereby, the focus lay on 

chemokines that had been shown in the past to interfere with the clinical course of EAE.  

In detail, the aim was to ascertain if chemokines contribute to T cell locomotion in vivo and if 

yes, which chemokines are of relevance for distinct T cell infiltration steps. In order to 

achieve this, the plan was to interfere with chemokine signaling at different time points in the 

autoimmune process by applying several blocking agents during intravital imaging of the 

preclinical, acute and recovery phases of EAE.  
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2. Material and Methods 

2.1.  Material 

 

If not otherwise indicated, the buffers were prepared in Milli-Q purified H2O (MILLIPORE 

GmbH, Schwalbach, Germany).  

 

DMEM 66.9g/5l 
Gibco DMEM Powder (52100-021), 
(INVITROGEN, Carlsbad, USA) 

 18.59g/5l 
NaHCO3 (CARL ROTH GmbH, Karlsruhe, 

Germany) 

T cell medium (TCM) 1l 
DMEM 

 

 10ml 
Gibco Non essential Amino Acids, 

(INVITROGEN, Carlsbad, USA) 

 10ml 
Gibco Penicillin / Streptomycin 

(INVITROGEN, Carlsbad, USA) 

 10ml 
Gibco Sodium Pyruvate (INVITROGEN, 
Carlsbad, USA) 

 10ml 
L-Glutamine (PAN BIOTECH GmbH, 

Aidenbach, Germany) 

 10ml 
L-Asparagine Monohydrate (SIGMA 
ALDRICH, Munich, Germany) 

 4µl 
2-β-Mercaptoethanol (13.6mol/l), 

(INVITROGEN, Carlsbad, USA) 

Re-stimulation Medium (RM) 200ml T cell medium 

 2ml  Rat serum 

T cell Growth Factor (TCGF) 425ml T cell medium 

 50ml Horse Serum 

 
    25ml 

 

Conditioned medium from splenocytes treated  

with the mitogen Concanavalin A 

(ROSENBERG et al., 1978) 

Freezing Medium 

40ml  

50ml  
10ml 

 

TCM 

Horse Serum 
DMSO (CARL ROTH GmbH, Karlsruhe, 

Germany) 
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EH Medium 

 
 

375ml DMEM 

 125ml 
Gibco HEPES 1M (INVITROGEN Carlsbad, 

USA) 

ACK buffer 0.15mol/l 
NH4Cl (CARL ROTH GmbH, Karlsruhe, 

Germany) 

 1mmol/l 
KHCO3 NH4Cl (CARL ROTH GmbH, 
Karlsruhe, Germany) 

 0.1mmol/l 
Na2EDTA/Titriplex (CARL ROTH GmbH, 
Karlsruhe, Germany) 

  Adjust to pH 7.2 – 7.4 with 1N HCl 

Isotonic percoll 9x Vol. 
Percoll (GE HEALTHCARE, Munich, 
Germany) 

 1x Vol. PBS 10x 

Underlay percoll 7ml Isotonic Percoll 

 3.9ml PBS 1x 

Complete Freund´s adjuvant  
 

10ml 

 
100mg 

 

Incomplete Freund’s adjuvant (DIFCO 

LABORATORIES, Detroit, USA) 
Mycobacteria (M.Tuberculosis H37Ra, DIFCO 

LABORATORIES, Detroit, USA) 

MBP   
Isolated from guinea pig brains as described 

(EYLAR et al., 1974).  

 

2.2. Methods 

2.2.1. Generat ion of GFP
+
 T cell cultures 

Animals were held under standardized conditions and had free access to water and food. All 

experiments were performed according to local regulations for animal welfare of Bavaria and 

Lower Saxony federal states.  

6-8 week old female LEWIS rats (ANIMAL FACILITY OF THE MEDICAL SCHOOL 

GÖTTINGEN, Göttingen, Germany; ANIMAL BREEDING FACILITIES OF THE MAX-

PLANCK INSTITUTE FOR BIOCHEMISTRY, Martinsried, Germany; JANVIER, Le 

Genest St Isle, France) were immunized with 100µg Guinea Pig Myelin Basic Protein (MBP) 

or Ovalbumin (OVA, albumin from chicken egg white Grade V) (A5503, SIGMA ALDRICH, 

Munich, Germany). Equal volumes of complete Freund´s adjuvant (CFA, 4mg/ml) and 
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respective antigen (1mg/ml) were mixed using tuberculin glass syringes (POULTEN & 

GRAF GmbH, Wertheim, Germany). Thereafter, a total volume of 200µl (4 x 50µl) was 

injected subcutaneously into popliteal cavity and tail base. Animals were sacrificed via CO2 

inhalation 9-10 days after the immunization procedure. Notably, at this time point, animals 

showed no signs of clinical EAE. Draining lymphnodes, namely inguinal, paraaortic and 

popliteal lymphnodes were isolated. Afterwards, the tissue was homogenized. The thus 

obtained lymphocyte suspension was set to 2x10
6
 cells/ml and was immediately co-cultured 

with 1.5x10
5
/ml retro-viral/GFP-cassette (FLÜGEL et al., 1999) containing packaging cells 

GPE86 (MARKOWITZ et al., 1988). Thereafter, cells were transferred to U-bottom 96-well 

plates (THERMOFISHER SCIENTIFIC INC., Braunschweig, Germany) in a total volume of 

100µl RM containing 10µg/ml antigen. During primary culture, cells were held under 10% 

CO2 in humidified atmosphere (Heraeus Heracell 240 incubator, THERMOFISHER 

SCIENTIFIC INC., Braunschweig, Germany). Two days following primary culture, 50µl 

TCGF medium was added to 96-well plates. Thereafter (1-2 days later), 100µl of supernatant 

were discarded and substituted with TCGF containing either 0.4mg/ml Geneticin/G418 (PAA 

LABORATORIES GmbH, Pasching, Austria) or 1µg/ml Puromycin (CARL ROTH GmbH, 

Karlsruhe, Germany). Subsequently, cells were transferred into 96 flat bottom wells 

(THERMOFISHER SCIENTIFIC INC., Braunschweig, Germany). On day 6 or 7 after 

primary culture, cells were stimulated by substitution of 100µl supernatant with RM 

containing 1.4x10
7
 irradiated (30Gy) thymocytes/ml, antigen (10µg/ml) and Geneticin 

(0.4mg/ml) or Puromycin (1µg/ml). Two days later, 50µl TCGF containing 

Geneticin/Puromycin was added to the wells. One day later, retroviral transduction efficiency 

was controlled by using an Axiovert 200M fluorescence microscope (CARL-ZEISS 

MICROIMAGING, Jena, Germany). Wells with the highest transduction rate were pooled 

and transferred to 6cm dishes (SARSTEDT AG & CO., Nürnbrecht, Germany) followed by 

addition of TCGF. 3 days later, GFP
+ 

lymphocytes were re-stimulated by co-culturing of 

3.5x10
6 

T lymphocytes together with 7x10
7
 irradiated lymphocytes in 5ml RM containing 

antigen and antibiotics as described above. The latter procedure was repeated up to 3 times 

following a 6-7 day cycle. In the present study, T cells were frozen two days post re-

stimulation (from 3
rd

 re-stimulation on) as fully activated lymphoblasts. Alternatively, for 

expanding T cell cultures, T lymphocytes were frozen on day 6 or 7 after re-stimulation and 

re-stimulated immediately after thawing.  

 



 

 24 

2.2.2. Adoptive T cell transfer  

CD4
+
 TMBP-not labeled, TMBP–GFP, TOVA–GFP and TMBP/NFAT-YFP/Cherry-H2b cell lines were generated 

and tested for phenotype, cytokine profile and antigen specificity as described (FLÜGEL et 

al., 2001). After thawing, the T lymphoblast suspension was immediately diluted with EH-

buffer containing 10% FCS. Thereafter, cells were centrifuged for 8min at 4°C with 300xg 

(Multifuge Heraeus S 1S-R, THERMOFISHER SCIENTIFIC INC., Braunschweig, Germany) 

and the pellet was re-suspended in EH buffer. Adoptive transfer EAE was induced by 

intravenous injection of 5x10
6
 effector T cells in 1ml EH into the tail vein of healthy LEWIS 

rats that were narcotized with Diethlyether (CARL ROTH GmbH, Karlsruhe, Germany). In 

some experiments 2.5x10
6
 TOVA–GFP cells were co-injected together with 5x10

6 
TMBP-not labeled 

cells. Weight and clinical scores were measured daily (score 0= no disease; 1= flaccid tail; 2= 

gait disturbance; 3= complete hind limb paralysis; 4= tetraparesis; 5 = death). 

2.2.3. Intrathecal inject ion procedure 

Animals were anaesthetized by intra-muscular injection of 10mg kg
-1

 xylazine (ECUPHAR 

GmbH, Greifswald, Germany) combined with 50mg kg
-1

 ketamine (MEDISTAR 

ARZNEIMITTELVERTRIEB GmbH, Ascheberg, Germany). Thereafter, animals were 

fixated within a stereotactic device (NARISHIGE SCIENTIFIC INSTRUMENT LAB., 

Tokyo, Japan). Subsequently, an injection needle (BD ½ cc Tuberculin Syringe, BECTON 

DICKINSON GmbH, Heidelberg, Germany) was placed between level C1 and C2 with 

puncture of the cisterna magna. The syringe was held under negative pressure to ensure 

inflow of liquor cerebrospinalis. Thereby, a correct positioning of the needle was warranted.  

A total volume between 60-80µl was injected during a 15min time period. Afterwards, 

animals were placed on a heating blanket to prevent hypothermia during anesthesia.  

2.2.4. Flow cytometric cell quant ificat ion 

Animals were sacrificed via CO2 inhalation. Single cell suspensions from spinal cord 

meninges and parenchyma were obtained by tissue homogenization. After centrifugation 

(8min, 4°C, 300xg), pellets were re-suspended in a defined volume of EH medium. For 

quantification of cells from spleen, pellets were re-suspended in ACK-buffer to achieve 

erythrocyte-lysis. Afterwards, cells were washed in ice-cold PBS (8min, 4°C, 300xg) and the 

pellet was re-suspended in EH medium.  
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For evaluation of peripheral blood lymphocyte numbers, animals were sacrificed as described 

above. Afterwards, blood was taken with an EDTA (CARL ROTH GmbH, Karlsruhe, 

Germany)-moistened syringe by heart puncture. To isolate lymphocytes from total blood, a 

density gradient separation was performed as following: Blood was mixed with PBS (1x 

volume) at room temperature and carefully laid on top of 0.5 volume lymphocyte separation 

medium (LSM1077, PAA LABORATORIES GmbH, Pasching, Austria). Subsequently the 2 

phases were centrifuged at 836xg at room temperature for 30min with minimal acceleration 

ramp (Multifuge Heraeus 1S-R, THERMOFISHER SCIENTIFIC INC., Braunschweig, 

Germany). The obtained interphase was collected and washed once with ice-cold PBS. 

Thereafter, the pellet was re-suspended in a defined volume of EH medium.  

For quantification of GFP
+
 cells, defined volumes of cell suspension were mixed with a 

definite number of fluorescence beads (BECTON DICKINSON GmbH, Heidelberg, 

Germany) and subsequently acquired via flow cytometry (BD FACSCalibur™, BECTON 

DICKINSON GmbH, Heidelberg, Germany). 

2.2.5. Cell Sorting 

Animals were sacrificed by CO2 inhalation. Spleen and blood cell suspensions were prepared 

as described in 2.2.4. Samples from spinal cord were processed as following: Meninges were 

carefully separated from parenchyma and placed in ice-cold EH buffer. After homogenization 

cell suspensions were washed once with EH buffer (8min at 4°C, 300xg). Thereafter, pellets 

were re-suspended in 25ml EH medium. For lymphocyte separation, suspensions were mixed 

with 10.8ml isotonic percoll solution. Thereafter, 10ml underlay percoll were cautiously laid 

below the mixture. Next, a density gradient was achieved by a 30min centrifuge step with 

minimal acceleration ramp (1616xg, RT). The interface was separated carefully, washed once 

with PBS and the obtained pellets were re-suspended in defined volumes of EH medium. For 

all samples - including spinal cord meninges, parenchyma, blood and spleen - collector tubes 

were moistened with 1ml RM. Thereafter RM medium was substituted with EH buffer. Cell 

sorting was performed by using a BD FACSAria
TM

 III (BECTON DICKINSON GmbH, 

Heidelberg, Germany) with minimum flow speed at 4°C. The obtained fraction of sorted 

GFP
+
 T cells was transferred into E-cups and centrifuged 1min with 800xg at 4°C using a 

Centrifuge 5415 (EPPENDORF VERTRIEB DEUTSCHLAND GmbH, Wesseling-Berzdorf, 

Germany). Subsequently, pellets were re-suspended with a defined volume of QIAzol Lysis 

Reagent (QIAGEN GmbH, Hilden, Germany) and stored at -80°C.  
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2.2.6. Re-transfer of migratory T cells  

TMBP-GFP cells were isolated from spleens of donor animals 2.5-3 days post transfer as 

described in 2.2.4. Cell suspension was depleted from splenic macrophages. In brief, splenic 

cell suspension was washed once in EH buffer and the pellet was re-suspended in TCM. The 

obtained suspension was transferred to 10cm cell culture dishes (SARSTEDT AG & CO., 

Nürnbrecht, Germany) and incubated for 1h in a Heraeus Heracell 240 incubator 

(THERMOFISHER SCIENTIFIC INC., Braunschweig, Germany) at 37°C in humidified 

atmosphere under 10% CO2. Afterwards, macrophages were found attached to the bottom of 

the cell culture plates. Next, the macrophage-depleted cell suspension was carefully 

transferred to 50ml Cellstar
®
 tubes (GREINER BIO-ONE GmbH, Frickenhausen, Germany) 

and washed once with EH medium for 8min at 4°C with 300xg. Finally, cells were re-injected 

intrathecally (total volume= 60µl) or intravenously (total volume= 1ml) into healthy animals.  

2.2.7. Interference with integrin signaling  

In order to block α4β1 integrin signaling, a neutralizing mouse anti-rat monoclonal antibody 

against VLA-4 (anti-CD49d, clone TA-2; HOJO et al., 1998) was injected i.v. The antibody 

was administered at a single dose of 4mg kg
-1 

during intravital TPLSM recordings. The 

antibody was kindly provided by Prof. Thomas Issekutz (GRACE HEALTH CENTER, 

DALHOUSIE UNIVERSITY, Halifax, Canada). After recording, saturated binding of the 

antibody was controlled as described (BARTHOLOMÄUS et al., 2009). 

2.2.8. Interference with chemokine signaling  

For intravital studies focusing on intraluminal T cell migration, 20µg kg
-1

 pertussis toxin A 

oligomer (LIST BIOLOGICAL LABORATORIES, INC., Campbell, USA), 2mg kg
-1 

Met-

RANTES (courtesy of Dr. Peter Nelson, UNIVERSITY HOSPITAL LMU MUNICH, 

Munich, Germany), 4mg kg
-1

 Hamster anti-rat CXCR3mAb (clone XR3.2, courtesy of Prof. 

Thomas Issekutz, GRACE HEALTH CENTER, DALHOUSIE UNIVERSITY, Halifax, 

Canada), 5mg kg
-1

 Plerixafor/AMD3100 (GENZYME GmbH, Neu-Isenburg, Germany) or 

PBS were applied before or during intravital imaging intravenously via an OPS 50ml 

Luerlock infusion set (B.BRAUN MELSUNGEN AG, Melsungen, Germany) with a total 

volume of 1ml. In some experiments, pertussis toxin oligomer B (Olig.-B) (LIST 

BIOLOGICAL LABORATORIES, INC., Campbell, USA) and an Armenian hamster IgG 

Isotype antibody (ABCAM, Cambridge, UK) served as controls. The doses for respective 
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monoclonal antibodies and blocking agents were used according to their blocking efficiency 

in in vitro chemotaxis assays (see 2.2.16) and/or were similar to those described in literature 

(Met-RANTES: GRÖNE et al., 1999, Plerixafor/AMD3100: MATTHYS et al., 2001, anti- 

CXCR3mAb: SPORICI & ISSEKUTZ, 2010). 

For intravital studies on extravasated  T cells, 1µg kg
-1  

pertussis toxin A oligomer, 1mg kg
-1 

 

Met-RANTES, 0.5mg kg
-1

 Plerixafor/AMD3100 or PBS were applied before (4h) or during 

intravital imaging intrathecally (d3 p.t., d8 p.t.) via a micromanipulator into the cisterna 

magna (total volume 60 µl) after stereotactic fixation of anaesthetized animals (see 2.2.3).            

During full inflammation (d5 p.t.), blocking agents were injected intravenously for technical 

reasons. In some experiments, pertussis toxin oligomer B (Olig.-B) (LIST BIOLOGICAL 

LABORATORIES, INC., Campbell, USA) and an Armenian hamster IgG Isotype antibody 

(ABCAM, Cambridge, UK) were used as controls. For re-transfer experiments (see 2.2.6) ex 

vivo isolated migratory T cells were incubated with either 100ng ml
-1

 pertussis toxin A (PTx) 

or B-Oligomer (Olig.-B) (LIST BIOLOGICAL LABORATORIES, INC., Campbell, USA) 

for 1h at 37°C in TCM medium. Afterwards, cells were washed twice with PBS and re-

injected into healthy recipient rats as described in 2.2.6.  

In order to confirm successful treatment, cells were isolated from different organs as 

described. Afterwards, a T cell chemotaxis assay was performed on the respective 

chemokines namely CCL5, CXCL11 and CXCL12 (see 2.2.16). 

2.2.9. Intravital TPLSM: surgical procedure  

Animals were anaesthetized by intra-muscular injection of 10mg kg
-1

 xylazine combined with 

50mg kg
-1

 ketamine. Thereafter, animals were intubated via a small incision of the trachea 

and immediately ventilated with 1.5–2% isoflurane (BAXTER GmbH, Höchstadt a.d. Aisch, 

Germany) using a custom built ventilation system. This system was driven by an Inspira 

Advanced single animal pressure-controlled ventilator (HARVARD APPARATUS, 

Holliston, USA). Medical oxygen (UNIVERSITÄTSMEDIZIN GÖTTINGEN, Göttingen, 

Germany) and pressurized air were routed through an isoflurane vaporizer (UNO 

ROESTVASTSTAAL BV, Zevenaar, Netherlands) and several gas reservoirs (DRÄGER 

MEDICAL DEUTSCHLAND GmbH, Lübeck, Germany). Both inspired and expired air was 

analyzed via OHMEDA 5250RGM devices (GE HEALTHCARE, Munich, Germany).  

During imaging, animals were stabilized in a custom-made microscope stage and their body 

temperature regulated and maintained (37-37.5°C) via a heated pad (TELEMETER 
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ELECTRONIC GmbH, Donauwörth, Germany) connected to a custom-built thermo-

controller (TC-1, TORSTEN NÄGEL, ELEKTRONISCHE WERKSTATT, UNIVERSITÄT 

GÖTTINGEN, Göttingen, Germany). Fluid supply during imaging sessions was warranted by 

using a Perfusor
®

 fm device (B.BRAUN MELSUNGEN AG, Melsungen, Germany). Body 

temperature and heart rate were recorded using Animal Monitor software 7.3x (VOLKER 

STAIGER, MAX-PLANCK INSTITUTE OF NEUROBIOLOGY, Martinsried, Germany). 

For intravital TPLSM recordings of the leptomeninges, a spinal cord window was prepared as 

described previously at level Th12/L1 (BARTHOLOMÄUS et al., 2009). Briefly, a midline 

skin incision of 2–3cm was performed followed by subsequent detachment of the 

paravertebral musculature from the spine. Thereafter, a laminectomy on one of the three 

exposed vertebral bodies was performed. Preparing the dermal blood vessels of the ear 

required a careful separation into a ventral and a dorsal half. Thereafter, blood vessels of the 

ventral half were cautiously exposed. For all preparations, tissue was immediately covered 

with sodium-chloride solution (B.BRAUN MELSUNGEN AG, Melsungen, Germany) after 

exposure in order to prevent dehydration.  

2.2.10. Intravital TPLSM: Technical equipment  

Time-lapse two-photon laser-scanning microscopy was performed using a LSM710/Axio 

Examiner. Z1 confocal microscope (CARL-ZEISS MICROIMAGING, Jena, Germany) 

combined with a >2.5Watts Ti:Sapphire Chameleon Vision II Laser device (COHERENT 

GmbH, Dieburg, Germany). The excitation wavelength was tuned to 880nm or 1010nm and 

routed through a 20x water NA1.0 immersion objective W Plan Apochromat (CARL-ZEISS 

MICROIMAGING, Jena, Germany). Typically, areas of 424.27 x 424.27μm (512 x 512px) 

width were scanned and 50–100μm z-stacks were acquired. The acquisition rate during bi-

directional scanning was approximately 1.3s per z-plane including 2 times line-averaging. 

Importantly, for reproducible motility analyses, the interval time was kept exactly to 32sec 

while varying the numbers of z-sections (usually between 18 and 25) or distances between 2 

z-planes (step-size, typically between 2 and 6µm). For quantification of intraluminal crawling 

T cells, an extended area of 5 adjacent spots of approximately 2121.35 x 424.27µm (2560 x 

512px) was analyzed. To this end, a software-controlled motorized stage was used (PRIOR 

SCIENTIFIC INSTRUMENTS GmbH, Jena, Germany). Typically, extended areas were 

acquired with a rate of approximately 1.3s per plane and 24s per z-stack with only 1x line-

averaging. The resulting interval time varied between ~120 and 170sec depending on the 

number of z-stacks. Emitted fluorescence was detected using non-descanned detectors 



 

 29 

(CARL-ZEISS MICROIMAGING, Jena, Germany) equipped with 442/46nm, 525/50nm, 

550/49nm and 624/40nm band-pass filters (SEMROCK INC., New York, USA). 

2.2.11. Intravital TPLSM: Processing of raw data  

TPLSM time-lapse recordings were acquired and processed by Zen 2009 Software (CARL-

ZEISS MICROIMAGING, Jena, Germany) obtaining 2D movies/images by generating 

maximum intensity projections out of 3D- and 4D stacks. Afterwards, movies and images 

were exported as .avi or .tif files, respectively without any compression algorithm. Thereafter, 

2D data were further processed using ImageJ 1.46i software (NATIONAL INSTITUTE OF 

HEALTH, Bethesda, USA). Brightness and contrast as well as color balance adjustments of 

single RGB channels were performed with implemented plugins. In some cases, movies had 

to be stabilized using the ImageJ StackReg tool. The red channel was set as reference since it 

contained locally fixed objects (e.g. blood vessels). Annotations were made using ImageJ, 

Corel Photo Paint X4 and Corel Draw X4 (COREL CORPORATION, Ottawa, Canada).  

2.2.12. Intravital TPLSM: Analysis of T cell motility  

Imaris 7.1.1 software (BITPLANE, Zurich, Switzerland) was used for 3D reconstructions and 

4D analysis of acquired raw data. Analysis of T cell motility required the automated Imaris 

Track module with subsequent manual revision afterwards. Motility parameters including 

T cell velocity, crawling duration and meandering index were calculated from the obtained x, 

y, z-coordinates using Excel 2010 (MICROSOFT CORPORATION, Washington, USA). 

Average velocities of individual T cells within a 30min recording interval were determined as 

described previously (BARTHOLOMÄUS et al., 2009). Instantaneous velocities of individual 

T cells were determined based on coordinates generated with Imaris 7.1.1 software 

(BITPLANE, Zürich, Switzerland) using a custom-built Excel 2010 script.  Afterwards, single 

displacements were assigned according to the intraluminal crawling direction (up- or 

downstream). Crawling duration was defined as the average time an individual T cell spent 

crawling within a 30min time interval. Notably, cells that were visible for less than 2 frames 

(~1min) were excluded from the analysis. Correlation between intraluminal rolling and 

crawling T cells in different organs was done by calculating absolute numbers of both rolling 

and crawling cells within a 30min acquisition period. Notably, rolling T cells appeared as 

several round shaped dots in the direction of the blood flow as described 

(BARTHOLOMÄUS et al., 2009). The meandering index is defined as a ratio between total 
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T cell path length and the sum of the entire single displacements during a 30min time interval. 

Statistical evaluations were performed with GraphPad 5.0.4 (GRAPHPAD SOFTWARE 

INC., San Diego, USA). Statistical tests for data analysis are mentioned in the figure legends. 

Alpha level was set to 0.05, p values are:  *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 

0.0001. 

2.2.13. Intravital TPLSM: Labeling of phagocyt ic cells and blood vessels  

To label meningeal phagocytes, small molecular (3kDa) Texas Red
®
-conjugated dextran 

(INVITROGEN, Carlsbad, USA) was injected at doses of 40µg/rat via a stereotactic device 

into the cisterna magna of anaesthetized animals 48h p.t. Blood vessel lumen was visualized 

by intravenous infusion of 200µg (2000kDa) Texas Red
®

-conjugated dextran before or during 

intravital TPLSM recordings. For testing the endothelial permeability, small molecular 

(3kDa) Texas Red
®
-conjugated dextran was used. 

2.2.14. Intravital TPLSM: Analysis of T cell interact ions with meningeal 

phagocytes/ Analysis of early T cell act ivat ion 

Meningeal phagocytes were visualized as described in 2.2.13. Notably, only spots with 

similar density of fluorescently labeled phagocytes were considered for analysis. For 

evaluation of single contact durations and contact frequencies, exclusively motile GFP
+ 

T cells were used for examination. Cells were considered motile if they moved more than 

10µm away from their origin during a 30min acquisition interval. Contact durations were 

determined by manually counting the frames between initial attachment and detachment of 

GFP
+ 

T cells to/from meningeal phagocytes. Since not all T cells were visible during the 

entire observation period of 30min, contact frequencies (No. of contacts) were calculated as 

follow: the total number of phagocytes contacted by an individual T cell was divided by the T 

cell’s total number of displacements. The obtained value was extrapolated to 30 minutes. 

Long-lasting contacts (≥ 30min) were evaluated by counting stationary GFP
+ 

T cells that were 

in close vicinity (≤ 1 cell diameter distance) to resident phagocytes. For evaluation of T cell 

activation in vivo, exclusively double fluorescent TMBP/NFAT-YFP/Cherry-H2b cells with clear YFP 

and mCherry signal were considered for 4D analyses. T cells with nuclear (translocated) or 

cytosolic (not translocated) NFAT were defined by analyzing fluorescent overlap between the 

green and red channel. Merged (yellow): translocated; not merged: not translocated. Statistical 

analyses were performed as described in 2.2.12.  
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2.2.15. Quantitative PCR 

For transcriptome analyses ex vivo sorted cells or total tissues were stored in QIAzol Lysis 

Reagent (QIAGEN GmbH, Hilden, Germany). Preparation of mRNA and reverse 

transcription were performed according to standard protocols from SIGMA-ALDRICH and 

INVITROGEN, respectively. For TaqMan
®
 analysis, ABI-Prism 5700 Sequence Detector 

‘TaqMan
®

’ software (APPLIED BIOSYSTEMS DEUTSCHLAND GmbH, Darmstadt, 

Germany) was used. β-actin served as housekeeping gene. Rat primers and probes used for 

detection of activation markers and chemokines receptors/ligands were the following:  

Gene  

(Symbol) 

Forward primer 

5’ - 3’ 

Reverse primer 

5’ - 3’ 

Probe 

FAM-5’ - 3’-TAMRA 

Beta-actin (Bact) 
GTACAACCTCCTTGCAG

CTCCT 

TTGTCGACGACGAG

CGC 

CGCCACCAGTTCGCCATG

GAT 

Interferon gamma 
(Ifng) 

AACAGTAAAGCAAAAA
AGGATGCATT 

TTCATTGACAGCTTT
GTGCTGG 

CGCCAAGTTCGAGGTGA
ACAACCC 

Interleukin-17A 

(Il17a) 

GAGTCCCCGGAGAATTC

CAT 

GAGTACCGCTGCCTT

CACTGT 
ATGTGCCTGATGCTGTT 

Chemokine (C-C 

motif) ligand 5 

(Ccl5) 

CAACCTTGCAGTCGTCT

TTGTC 

GATGTATTCTTGAAC

CCACTTCTTCTC 

AGGAACCGCCAAGTGTG

TGCCAAC 

Chemokine (C-C 

motif) ligand 19 

(Ccl19) 

TAGAGGTGCACAGAGC

TGGTA 

GCCTTCCGCTACCTT

CTTAT 

CCTTAGTGTGGTGAACAC

AACAGCAGG 

Chemokine (C-X-C 

motif) ligand 9 

(Cxcl9) 

TTGCCCCAAGCCCTAAC

TG 

ACCCTTGCTGAATCT

GGGTCTAG 

CATCGCTACACTGAAGAA

CGGAGATC 

Chemokine (C-X-C 
motif) ligand 10 

(Cxcl10) 

CGTGCTGCTGAGTCTGA

GT 

GTCTCAGCGGCTGTT

CAT 

CTCAAGGGATCCCTCTCG

GAAGAAC 

Chemokine (C-X-C 

motif) ligand 11 

(Cxcl11) 

GGTTCCAGGCTTCGTTA

TGTTC 

AACTTCCTTGATTGC

TGCCATT 

CTGTCTTTGCATCGACCG

CGGAGT 

Chemokine (C-X-C 

motif) ligand 12 

(Cxcl12) 

GTCAAACATCTGAAAAT

CCTCAACAC 

GGTCAATGCACACTT

GTCTGTTGT 

ACTGTGCCCTTCAGATTG

TTGCAAGGCT 

Chemokine (C-C 

motif) receptor 5 

(Ccr5) 

GTTCTCCTGTGGACCGG

GTATACG 

ATTGTCAAACGCTTC

TGCAAAC 

AGCTTACACGATCAGGAT

T 

Chemokine (C-C 

motif) receptor 7 

(Ccr7) 

GTGTAGTCCACGGTGGT

GTTCTC 

CTGGTCATTTTCCAG

GTGTGCT 

CCGATGTAGTCGTCTGTG

A 

Chemokine (C-X-C 

motif) receptor 3 

(Cxcr3) 

AGCAGCCAAGCCATGT

ACCTT 

TAGGGAGATGTGCT

GTTTTCC A 

AGGTCAGTGAACGTCAA

GTGC TAGATGCCTC 

Chemokine (C-X-C 

motif) receptor 4 

(Cxcr4) 

GAGGTCATCAAGCAAG

GATGT 

GGGTTCAGGCAACA

GTGGA 

TTCGAGAGCGTCGTGCAC

AA 
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2.2.16. Chemotaxis assay 

Transwell chambers (CORNING COSTAR GmbH, Bodenheim, Germany) with 5µm pore 

size were equilibrated with 235µl TCM medium in the bottom wells over night at 37°C. 

Afterwards, medium was substituted with TCM (+1%BSA) and 0.1µg CCL19 (PEPROTECH 

GmbH, Hamburg, Germany), CCL5 (ABD SEROTEC, Düsseldorf, Germany) CXCL10 or 

CXCL12 (R&D SYSTEMS GmbH, Wiesbaden-Nordenstadt, Germany). TCM (+1% BSA) 

without chemokine ligands served as control. T lymphocytes from spleen, blood and spinal 

cord meninges were isolated ex vivo as described above, quantified via flow cytometry and 

adjusted to 1x10
6 
T cells per ml in TCM (+1% BSA) medium. Thereafter, T cells were put in 

the upper wells and the chamber was kept at 37°C in humidified atmosphere containing 10% 

CO2 for 5h. Numbers of GFP
+ 

T cells in the bottom wells were calculated (see 2.2.4) relative 

to the input.  

2.2.17. Histology 

Animals were sacrificed as described and perfused with 4% PFA in PBS. Following 

explantation, the entire spinal cord was post-fixated for 2 days at 4°C. In order to decalcify 

samples, the tissue was transferred into PBS (+14% EDTA) for 10 days and then into 30% 

sucrose-containing PBS. Thereafter, each spinal cord was embedded in Tissue Tek O.C.T 

Compound (SAKURA FINETEK GERMANY GmbH, Staufen, Germany) followed by  

transversal cutting (15µm slices) using a CM305S cryostat (LEICA MICROSYSTEMS 

GmbH, Wetzlar, Germany) at −20°C. Images of the slices were acquired using an Axio 

Observer Fluorescence Microscope (CARL-ZEISS MICROIMAGING, Jena, Germany).  
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3. Results 

3.1. Infiltrat ion of myelin-react ive T cells into the CNS during tEAE 

 

CNS autoimmune inflammation was induced by intravenous transfer of autoaggressive, 

activated CD4
+
 T lymphoblasts in healthy LEWIS rats. These cells were reactive against the 

main myelin component, myelin basic protein (MBP). Retroviral transduction allowed a 

stable expression of GFP within these T cells (TMBP-GFP cells), opening the possibility of 

tracing them in vivo (FLÜGEL et al., 1999). In the present work, histological and flow 

cytometric examinations of spinal cord tissue during the preclinical (d3 p.t.), acute (d5 p.t.) 

and recovery (d8 p.t.) phases of EAE were combined with intravital TPLSM analyses.  

 

Flow cytometric quantifications of different organs including blood, spinal cord meninges and 

parenchyma revealed that TMBP-GFP cells started to accumulate in the circulation 2 days post 

transfer, reaching a peak in numbers one day later (d3 p.t.) (Fig.6). The increase of T cell 

numbers within the circulation coincided with an infiltration of cells into the CNS meninges 

starting 3 days post transfer (Fig.6). Notably, until this point, animals did not show any signs 

of clinical EAE (see Fig.2). Histological examinations of spinal cord tissue discovered that 

early infiltrating TMBP-GFP cells (d3 p.t.) were restricted mainly to the leptomeninges and to the 

outer layer of the parenchymal white matter (Fig.7a).  

Ongoing T cell infiltration of spinal cord meninges and parenchyma coincided with the onset 

of clinical symptoms around day 4 post transfer (not shown). The peak of clinical symptoms 

was reached one day after disease onset (d5 p.t.) (see Fig.2). In this “acute” phase, TMBP-GFP 

cells appeared in maximum numbers within spinal cord meninges and parenchyma whereas 

they were virtually absent from the circulation (Fig.6). Histologically, TMBP-GFP cells were 

apparently no longer restricted to meningeal and white matter areas but had spread throughout 

the entire spinal cord surface including the parenchymal grey matter (Fig.7b). The animals 

started to recover from disease symptoms around day 7 post transfer (see Fig.2).The reduction 

in clinical disease severity was accompanied by a massive decrease in TMBP-GFP cell numbers 

in spinal cord meninges and parenchyma. Histological examination of spinal cord tissue on 

day 8 post transfer revealed a similar distribution pattern of the remaining TMBP-GFP cells as 

was seen in the acute disease phase, i.e. T cells were spread throughout the entire spinal cord 

tissue including meninges and white and grey matter areas of the parenchyma (Fig.7c).  
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Figure 6 | TMBP-GFP cells do not enter the CNS directly after transfer. Cytofluorometric quantifications of TMBP-GFP cells 
from blood (left), spinal cord meninges and parenchyma (right) are shown. Dots represent absolute TMBP-GFP cell numbers at 

the indicated time points after transfer. Representative results from at least 3 independent experiments per time point are 
depicted.  
 
 
 
 

Figure 7 | Autoaggressive TMBP-GFP cells infiltrate the spinal cord during EAE. Histological analysis of spinal cord cross-

sections reveals the T cell distribution during (a) preclinical (d3 p.t.), (b) acute (d5. p.t.) and (c) recovery phases (d8 p.t.) of 
EAE. WM and GM: White matter and grey matter, respectively. Green: TMBP-GFP cells. Arrows: representative TMBP-GFP cells 
located in the leptomeninges (arrow heads), WM (filled arrows) or GM (open arrows). Scale bars: 500µm. Magnification of 
individual regions (white dotted rectangles) originated from the overviews. Scale bars: 100µm. 

 

 

 

 

 

(b) (c) (a) 
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3.2. Motility of encephalitogenic effector T cells during the different EAE phases  

3.2.1. Motility of encephalitogenic T cells within the leptomeningeal vessel 

lumen during the preclinical phase of EAE 

Intravital TPLSM was employed to study the migratory behavior of effector T cells within 

meningeal blood vessels during the preclinical phase of EAE (d3 p.t.). Surprisingly and 

contrary to findings in peripheral organs including the ear, only a minority of TMBP-GFP cells 

(28%) in the meningeal blood vessels rolled along the vascular walls (Fig.8a,10a). Instead, 

the vast majority of encephalitogenic T cells (72%) were crawling on the intraluminal surface 

of the blood vessels (Fig.8b,10a). On average, T cells spent 15min on crawling (Fig.10b). 

This locomotive pattern was independent of the direction of the blood stream since TMBP-GFP 

cells were able to alter their migratory route within the vessel lumen (Fig.9). Indeed, 

intraluminal crawling revealed a directional bias since TMBP-GFP cells tended to travel 

predominantly against the direction of the blood flow (Fig.10c) with an average velocity of 

10.4µm/min (Fig.10d). The instantaneous velocity of TMBP-GFP cells was unchanged, 

independent of the crawling direction (up-or downstream) within the vessel lumen, suggesting 

a negligible impact of the blood flow on the migration speed (Fig.10e).  

 

 

 

 

 

 

 

 

 

 

 

Figure 8 | Intraluminal locomotive behavior of TMBP-GFP cells in different organs during the preclinical phase of EAE. 
Intravital TPLSM recordings of (a) dermal blood vessels of the ear and (b) spinal cord leptomeninges 3 days p.t. are shown. 
Trajectories of TMBP-GFP cells within a 20min recording period are depicted. Rolling TMBP-GFP cells appear as dots (yellow 
arrows), crawling TMBP-GFP cells appear as green lines (blue arrows).White arrows: Direction of the blood flow. Red: Texas 
Red®-labeled blood vessel and perivascular phagocytes. Scale bars: 50µm. Representative data from at least 3 independent 
experiments are shown. 
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Figure 9 | Direction of the blood flow has no influence on intravascular T cell crawling. A series of snapshots acquired 
with intravital TPLSM during the preclinical phase of EAE (d3 p.t.) reveals the intraluminal locomotive behavior of a TMBP-

GFP cell within a leptomeningeal blood vessel of the spinal cord. White dotted line with arrowhead: Direction of the blood 
flow. Yellow dotted lines: Migration path of an individual TMBP-GFP cell. White arrow: Initial position of the cell. Red: Texas 
Red®-labeled blood vessel. Green: TMBP-GFP cells. Blue: Reticular fibers. Scale bar: 25µm.  

 
 

 

 

 

 

Figure 10 | Motility of encephalitogenic effector T cells within leptomeningeal blood vessels. Motility data of 
intravascular crawling TMBP-GFP cells are shown. Analyses are based on 30min intravital TPLSM imaging data acquired 
during the preclinical phase of EAE (d3 p.t.). Bars represent: (a) Proportion of intraluminal crawling vs. rolling TMBP-GFP 
cells, (b) average track duration of intraluminal crawling TMBP-GFP cells, (c) proportion of TMBP-GFP cells crawling in 
(downstream) or against (upstream) the direction of the blood flow, (d) average velocity of intraluminal crawling cells and (e) 
average velocities of individual TMBP-GFP cells moving downstream or upstream. Statistical significance was determined by 
two-tailed Mann-Whitney test. Means (and s.d. (a-c)) including (a) 135 and (b-e) 300 cells from at least 5 independent 
experiments are depicted.  
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3.2.2. Locomotive behavior of encephalitogenic T cells within the 

meningeal environment during the different phases of EAE 

Following intraluminal crawling, TMBP-GFP cells gained access to the perivascular space by 

transgressing the vascular walls (BARTHOLOMÄUS et al., 2009). Software-based 4D 

analyses (x-y-z-t) of the acquired imaging data revealed that the majority of TMBP-GFP (82%) 

cells that had just overcome the vascular compartment (d3 p.t.) remained in close vicinity to 

leptomeningeal blood vessels for several hours (Fig.11a,12a). Coinciding with disease 

progression, migrating TMBP-GFP cells became less confined to the vascular bed and proceeded 

to explore the entire meningeal surface (Fig.11b,12a). Notably, independently from the 

observation time point, TMBP-GFP cells were scanning their environment not exclusively in an 

x-y-direction but also along the z-axis (not shown). With disease progression, not only the 

cellular distribution changed, but also the migratory behavior of encephalitogenic T cells 

within the meningeal compartment. Firstly, the number of arrested (stationary) cells increased 

while the number of motile cells decreased simultaneously. Thus, during disease recovery (d8 

p.t.), 63% of TMBP-GFP cells were arrested compared to 12% in the preclinical and 31% in the 

acute phase (Fig.12b). Arrested T cells were defined as cells moving less than one cell 

diameter from their origin within a 30min recording interval. Secondly, during disease 

recovery, the velocity of motile cells was significantly higher (12.7µm/min) compared to the 

preclinical (11.1µm/min) and acute (10.7µm/min) disease phases (Fig.13a). Thirdly, 

correlating with EAE progression, the locomotion of TMBP-GFP cells within the leptomeninges 

changed significantly from a non-directed migration during preclinical (0.41) and acute EAE 

(0.40) towards a (more) directed movement throughout disease recovery (0.56; Fig.13b) as 

evaluated by the meandering index.  

 

 

 
 

 

 

 

 

 

 

 

 

 
Figure 11 | Migration pattern of extravasated TMBP-GFP cells during the different phases of EAE. Time projections of 
TMBP-GFP cell tracks within the leptomeninges during (a) preclinical (3d p.t.), (b) acute (5d p.t.) and (c) recovery (d8 p.t.) 
phases of EAE are shown. Trajectories refer to motile TMBP-GFP cells within a 30min TPLSM recording period. Red: Texas 

Red®-labeled blood vessels. White arrows: individual extravasated TMBP-GFP cells. Representative recordings of at least 5 
independent experiments per time point are shown. 

(b) (c) (a) 
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Figure 12 | Migration pattern and motility characteristics of extravasated TMBP-GFP cells during the different phases of 
EAE. (a) Percentages of TMBP-GFP cells found either in close vicinity to leptomeningeal blood vessels (perivascular; distance 
≤1 cell diameter from respective vessels) or spread throughout the leptomeningeal surface (diffuse; distance >1 cell diameter 
from respective vessels) are depicted. Bars represent means and s.d. Data include 3266 extravasated TMBP-GFP cells within 3 
independent experiments. Statistical significance was determined by Kruskal-Wallis ANOVA followed by Dunn’s multiple 
comparison test. (b) Fractions of motile versus arrested (stationary) TMBP-GFP cells are depicted. Means and s.d. are shown. 
Data include 4380 cells within 5 independent experiments. Statistical significance was evaluated by Kruskal-Wallis ANOVA 
followed by Dunn’s multiple comparison test. 

 

 

Figure 13 | Motility of extravasated TMBP-GFP cells within the meningeal environment during the different phases of 

EAE. Data are based on 30min intravital TPLSM recordings of the spinal cord leptomeninges during EAE. Average 
velocities (a) and meandering indices (b) of TMBP–GFP cells during the different phases of EAE are depicted. Red lines: Mean 
values. Statistical significance was determined by Kruskal-Wallis ANOVA followed by Dunn’s multiple comparison test. 
Data include 434 cells within 5 independent experiments. 
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3.3. Impact of chemokines on T cell locomotion in vivo during EAE 

 

The data demonstrated that T cell infiltration into the CNS and their temporospatial 

distribution is a highly regulated process. The next step was to identify key molecules that 

may contribute to this regulation. Transcriptome analysis revealed that chemokine receptors 

were some of the most regulated factors in migratory T cells (see Fig.4) (ODOARDI et al., 

2012). Chemokines and their respective receptors are commonly known to influence immune 

cell migration (STEIN & NOMBELA-ARRIETA, 2005). However, their involvement in 

T cell migration during CNS infiltration is poorly understood.  

The aim of the present study was to dissect the in vivo contribution of chemokine signaling on 

T cell migration within intra-and extravascular CNS compartments during the different phases 

of EAE.  

 

 

3.3.1. Impact of chemokines on T cell locomotion within the lumen of 

leptomeningeal blood vessels during the preclinical phase of EAE 

Migratory TMBP-GFP cells isolated from blood and spleen (d3 p.t.) expressed high levels of 

chemokine receptors including CXCR3, CCR5 as well as CXCR4. In contrast, expression of 

CCR7 was virtually absent (Fig.14). In order to clarify whether this expression pattern has 

functional consequences on T cell migration, in vitro chemotaxis assays on ex vivo isolated 

TMBP-GFP cells were performed. The data revealed that blood- and spleen-derived TMBP-GFP 

cells responded foremost to the inflammatory chemokine CXCL11 whereas CCL5 and the 

homeostatic chemokines CXCL12 and CCL19 did not induce any chemotactic activity 

(Fig.15).  

 

Figure 14 | Chemokine receptor expression 

pattern in TMBP-GFP cells during the preclinical 
phase of EAE. The mRNA expression levels of 
the indicated chemokine receptors within TMBP-

GFP cells were measured using real-time PCR. 
Cells were isolated ex vivo from blood and spleen 
during the preclinical phase of EAE (d3 p.t.). 
Means and s.d. of replicate measurements are 
shown. Values refer to specific copies in relation 
to β-actin copies. A representative result of at 
least 3 independent experiments is shown. 
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Figure 15 | Migratory TMBP-GFP cells 

respond foremost to the inflammatory 
chemokine CXCL11. Chemotaxis assays 

for the indicated chemokines were 
performed on TMBP-GFP cells isolated from 
blood and spleen during the preclinical 
phase of EAE (d3 p.t.). Numbers of TMBP-

GFP cells were quantified via flow cytometry. 
Bars represent x-fold changes in specific 
chemotaxis towards the indicated 
chemokine ligands in relation to the control 

(w/o chemokine ligands (no CC)). Means 
and s.d. of a representative result from at 

least 3 independent experiments are shown. 

 

 

In order to clarify whether these in vitro data were of relevance for T cell migration in vivo, 

pertussis toxin (PTx) (PITTMAN, 1979) was injected intravenously during intravital imaging 

at day 3 p.t. when most T cells were crawling within the lumen of leptomeningeal blood 

vessels (see Fig.6). This bacterial exotoxin interferes irreversibly with the Gαi-mediated 

signaling pathway of G protein-coupled receptors, including chemokine receptors (BURNS, 

1988). 

The effects of PTx on intravascular crawling T cells were clear: after a latent phase of 

approximately one hour, the number of intraluminal crawling T cells decreased rapidly. Two 

hours after infusion of PTx more than 80% of the initial crawling cells had disappeared from 

the intraluminal surface of leptomeningeal blood vessels (Fig.16a-c). In contrast, the number 

of T cells in the extravascular space remained unaltered upon treatment (Fig.16a). Notably, 

global interference with Gαi signaling did not interfere with T cell rolling since the number of 

rolling cells increased within the vessels after treatment (69% vs. 28%) (Fig.17). Together, 

the findings suggest that the PTx-mediated effects, that had led to reduced numbers of 

intraluminal crawling cells, were partially due to a disturbed transition step from rolling to 

crawling (see 1.1.3, Fig.1). 

However, administration of PTx also seemed to interfere directly with intraluminal crawling. 

Analysis of the locomotion characteristics revealed that TMBP-GFP cells spent significantly less 

time on crawling within the vessels after PTx administration compared to the control situation 

(10.4min vs. 15.2min) (Fig.18a,b). This effect was simultaneously accompanied by a higher 

locomotion speed compared to the control (12.3µm/min vs. 10.4µm/min) (Fig. 19). 
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Figure 16 | Interference with chemokine signaling disturbs intraluminal T cell crawling. (a) Intravital TPLSM 
recordings of leptomeningeal blood vessels during the preclinical phase of EAE (d3 p.t.) are shown. Depicted are 

intravascular (yellow lines) and extravasated TMBP-GFP cell trajectories (white lines) before (upper line, 0-30min) and after the 
indicated treatment (lower line, 120-150min) within a 30min time interval. Green: TMBP-GFP cells. Red: Vessel lumen. White 
arrows: Direction of the blood flow. Scale bars: 50µm. Representative recordings of at least 3 independent experiments per 
treatment are depicted. (b) Graph represents relative changes in intravascular crawling TMBP-GFP cell numbers within an 
observation period of 150min. Black arrowhead: Time point of i.v. administration of PBS (Control), PTx (+ PTx), anti-
CXCR3mAb (+ aCXCR3), Met-RANTES (+ Met-RA) and Plerixafor (+ Plerix). Representative data of at least 3 
independent experiments per treatment are shown. (c) Percentages of intraluminal crawling TMBP-GFP cells 2h after treatment 
are depicted. Values for each treatment were determined in relation to the respective starting condition (time point 0). Bars 

represent means and s.d. of at least 3 independent experiments per treatment. Statistical significance was evaluated by 
Kruskal-Wallis ANOVA followed by Dunn’s multiple comparison test. 
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Figure 17 | Interference with chemokine signaling does not inhibit T cell 
rolling. Analyses are based on 30min intravital TPLSM recordings of 
leptomeningeal blood vessels during the preclinical phase of EAE (d3 p.t.). 

Percentages of rolling (black) vs. crawling TMBP-GFP cells (white) before (Control) 
or after i.v. treatment (as indicated) are depicted. Means and s.d. are shown. Data 
refer to at least 5 independent experiments per treatment, including 331 rolling 
and 608 crawling TMBP-GFP cells. Statistical significance was evaluated by 
Kruskal-Wallis ANOVA followed by Dunn’s multiple comparison test.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18 | Chemokine signaling is essential for the duration of T cell crawling in vivo. (a) Intravital TPLSM recordings 
of spinal cord leptomeningeal blood vessels during the preclinical phase of EAE (d3 p.t.) are depicted. Trajectories (multi -
colored lines) represent individual intravascular crawling TMBP-GFP cells within a 30min recording interval before (left) or 2h 
after i.v. PTx-infusion (right). Grey: Vessel lumen (false color). Color scale (bottom line) refers to intraluminal crawling 
duration (interval 0 to 30min). Scale bars: 50µm. Representative images of at least 3 independent experiments are shown.           
(b) Bars represent average track durations of crawling TMBP-GFP cells before (Control) or 2h after i.v. treatment as indicated. 
Analysis is based on 30min intravital TPLSM recordings as described. Means and s.d. are depicted. Data refer to at least 5 

independent experiments including 267 TMBP-GFP cells. Statistical significance was evaluated by Kruskal-Wallis ANOVA 
followed by Dunn’s multiple comparison test. 

 

 

Figure 19 | Interference with chemokine signaling influences the crawling velocity. 
Data are based on 30min intravital TPLSM recordings performed within leptomeningeal 
blood vessels of the spinal cord during the preclinical phase of EAE (3d p.t.). Average 
velocities of intravascular crawling TMBP-GFP cells before (Control) or 2h after i.v. 
treatment are depicted. Red lines: Mean values. Data refer to at least 5 independent 

experiments including 267 intravascular TMBP-GFP cells. Statistical significance was 
evaluated by Kruskal-Wallis ANOVA followed by Dunn’s multiple comparison test.  

 

 

 

(a) 

(b)  

(b) 



 

 43 

In order to clarify whether the effects of PTx were mainly due to interference with Gαi 

signaling in T cells, spleen-derived migratory TMBP-GFP cells were treated in vitro with PTx 

prior to injection into healthy recipient animals. The results were clear: unlike their Olig.-B-

treated counterparts (control), PTx pre-treated T cells were incapable of crawling along the 

intraluminal vessel surface. Instead, they mainly rolled along the vascular walls (Fig.20a-c).  

As mentioned above, encephalitogenic effector T cells crawl predominantly against the 

direction of the blood stream (upstream). Surprisingly, intravenous administration of PTx led 

to a re-orientation of intraluminal crawling, i.e. 2h after treatment, TMBP-GFP cells were 

crawling mainly in the direction of the blood flow (downstream) (Fig.21).  

 

Figure 20 | PTx pre-treated migratory T cells are incapable of intravascular crawling.  (a) Intravital TPLSM recordings 
of spinal cord leptomeninges 4h post transfer of spleen-derived migratory TMBP-GFP cells are shown. Trajectories (yellow) 

represent intraluminal tracks of individual TMBP-GFP cells within a 30min time interval.  Ex vivo isolated TMBP-GFP cells were 
treated with Olig.-B (Control, left) or PTx (PTx-pre, right) prior to transfer. Red: Vessel lumen. White arrows: Direction of 
the blood flow. Scale bars: 50µm. Representative recordings of at least 3 independent experiments are depicted. (b) 
Correspondent quantifications of intraluminal crawling TMBP-GFP cells are depicted. Means and s.d. are shown. Representative 
data from at least 4 independent experiments are shown. (c) Percentages of rolling (black) vs. crawling TMBP-GFP cells (white) 
of Olig.-B (Control) or PTx pre-treated TMBP-GFP cells are depicted. Means and s.d. are shown. Data refer to at least 5 
independent experiments per treatment, including 88 rolling and 227 crawling TMBP-GFP cells. Statistical significance was 
evaluated by Kruskal-Wallis ANOVA followed by Dunn’s multiple comparison test. 

 

 
 

Figure 21 | Chemokines influence the orientation of intravascular crawling. 
Graph represents percentage of intravascular TMBP-GFP cells crawling either in 
(downstream, white) or against (upstream, black) the direction of the blood flow. 
Means and s.d. are shown. Data include 610 TMBP-GFP cells within at least 3 
independent experiments. Statistical significance was determined by Kruskal-
Wallis ANOVA followed by Dunn’s multiple comparison test. 
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In general, chemokines are known to strengthen the adherence of leukocytes (under flow) 

onto the vessel endothelium indirectly, by triggering a high-affinity state of integrins 

(CONSTANTIN et al., 2000). Accordingly, blockage of VLA-4 function (but not of LFA-1; 

BARTHOLOMÄUS et al., 2009) via the administration of neutralizing monoclonal antibodies 

interfered significantly with intraluminal crawling of T cells, similar to the findings achieved 

with PTx. Thus, the total number of intraluminal crawling TMBP-GFP cells decreased after 

treatment (Fig.22a), while the remaining cells changed their intraluminal motility 

characteristics. The latter was demonstrated by a significant increase in the T cells’ crawling 

speed (13.1µm/min vs. 10.3µm/min) (Fig.22b) and simultaneously by a reduction in the time 

T cells spent for crawling (11.9min vs. 15.5min) (Fig.22c) compared to the control situation. 

However, dissimilar to the findings achieved with PTx, anti-VLA-4mAb treatment did not 

change the T cells’ preferred crawling direction against the blood stream (58% vs. 59%) 

(Fig.22d), suggesting that the orientation of intraluminal crawling is not influenced via an 

integrin-mediated effect.  

 

 

Figure 22 | α4 integrins contribute to intravascular T cell locomotion but do not influence the orientation of crawling. 
Data are based on 30min intravital TPLSM recordings performed within leptomeningeal blood vessels during the preclinical 
phase of EAE (d3 p.t.). (a) Graph represents relative changes in intraluminal crawling TMBP-GFP cell numbers within an 
observation period of 150min. Arrowhead: Time point of intravenous infusion of PBS (Control) or anti-VLA4mAb (+ 
aVLA4). Representative data from at least 3 independent experiments are shown. (b) Average velocities of intraluminal 
crawling TMBP-GFP cells before (Control) and after anti-VLA4mAb treatment (+ aVLA4) are depicted. Red lines: Mean values. 
Results include 157 TMBP-GFP cells within at least 3 independent experiments. (c) Bars represent average track durations of 
TMBP-GFP cells before and after treatment. Means and s.d. are depicted. Data refer to 157 TMBP-GFP cells within at least 3 

independent experiments. (d) Mean percentages and s.d. of intraluminal T cells crawling either in (downstream) or against 
(upstream) the direction of the blood flow before and after treatment are shown. Data refer to 222 TMBP-GFP cells (3776 
displacements) from at least 4 independent experiments. Statistical significance was determined by two-tailed Mann-Whitney 
test. 
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The results achieved with PTX suggested a role for chemokine receptors/chemokines on 

intravascular T cell locomotion. The expression data (Fig.14) and functional analysis (Fig.15) 

of ex vivo isolated T cells pointed to CXCR3 (CXCL9-11), CCR5 (CCL5) and CXCR4 

(CXCL12) as potential candidates. Accordingly, specific blocking agents were administered 

intravenously during intravital imaging as described for PTx, i.e. a monoclonal blocking 

antibody against CXCR3 (MOHAN et al., 2005), Met-RANTES, an antagonist of CCR1, 2, 5 

(PROUDFOOT et al., 1996) and Plerixafor (AMD3100) (HATSE et al., 2002), an antagonist 

of CXCR4. Intriguingly, interference with CXCR3 function almost completely reproduced the 

results achieved with PTx: with a delay of approximately 30min, T cells disappeared from the 

blood vessel (~80% after 2h) (Fig.16) while simultaneously the number of rolling cells 

increased (63% vs. 28%) (Fig.17). Moreover, CXCR3 was directly involved in mediating 

T cell crawling: administration of the neutralizing mAb increased the speed (12.7µm/min vs. 

10.4µm/min) (Fig.19) and reduced drastically the duration of intraluminal crawling (9.4min 

vs. 15.2min) (Fig.18b). Furthermore, interference with CXCR3 signaling changed the 

intravascular crawling orientation towards a prevalent downstream direction (Fig.21). 

Interestingly, neither Met-RANTES nor Plerixafor had a significant impact on intravascular 

T cell migration (Fig.16, 17, 19, 18b, 21).  

 

3.3.2. Chemokines influence intraluminal T cell migrat ion under 

inflammatory and non-inflammatory condit ions  

As demonstrated, chemokine signaling plays an essential role in mediating T cell migration 

within leptomeningeal blood vessels during the preclinical phase of EAE (d3 p.t.). Notably, 

although the majority of TMBP-GFP cells were crawling within the vessel lumen, a considerable 

number of cells had already transgressed the vascular walls at this early phase (not shown). 

These extravasated T lymphocytes contact resident antigen-presenting cells leading to a re-

activation of lymphocytes and subsequently, to a release of pro-inflammatory cytokines 

(BARTHOLOMÄUS et al., 2009; LODYGIN et al., in press). Consequently, this series of 

events might lead to an early activation of the leptomeningeal vessel endothelium.  

Indeed, PECAM-1 positive endothelial cells, isolated at day 3 post T cell transfer, displayed a 

clear up-regulation of inflammatory chemokines including ligands for CXCR3 (CXCL9-11) 

as well as for CCR5 (CCL5). Interestingly, this ligand up-regulation in the preclinical phase 

of EAE was similar to that found during acute EAE (Fig.23). In contrast, CXCL12 was highly 

expressed under non-inflammatory conditions (naïve) and during disease recovery.  
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Figure 23 | Expression pattern of chemokine ligands in endothelial cells during the different phases of EAE.   PECAM-
1 positive endothelial cells were isolated at the indicated time points from spinal cord meninges and parenchyma. 
Quantitative real-time PCR was performed afterwards. Naïve= d0 p.t., preclinical= d3 p.t., acute= d5 p.t. and recovery= d8 
p.t. Means and s.d. of replicate measurements are shown. Values refer to specific copies in relation to β-actin copies. 
Representative results of at least 3 independent experiments per time point are shown.  

 

The expression of inflammatory chemokines within endothelial cells during preclinical EAE 

was accompanied by an increased permeability of the meningeal vessels at this stage. 

Accordingly, when small molecular weight Texas Red
®
 dextran (3kDa) was injected during 

intravital imaging at d3 p.t. it came to a massive efflux of dye into the subarachnoideal space, 

where it was taken up by resident phagocytic cells. As a consequence, these cells appeared red 

after several minutes (Fig.24a-d). Expectedly, the disruption of the endothelial integrity was 

even more pronounced during the acute phase of EAE (d5 p.t. not shown). However, both 

leakage and phagocytic uptake of dye were absent when Texas Red
®
 dextran was injected in 

naïve animals (not shown).  

These changes of the endothelial status were dependent on the T cells’ antigen specificity. 

Single transfer of brain antigen-ignorant ovalbumin-reactive T cells (TOVA-GFP cells) did not 

result in a disruption of the endothelial integrity, as demonstrated by an unaltered 

permeability of the vessels (Fig.24e-h) and did not lead to a measurable up-regulation of 

inflammatory chemokines compared to the naïve situation (not shown).  
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Figure 24 | Integrity of meningeal blood vessels is disrupted in the preclinical phase of EAE. Permeability of 
leptomeningeal blood vessels 3 days after transfer of TMBP-GFP cells (left) or TOVA-GFP cells (right) was evaluated by i.v. 
injection of 3kDa Texas Red®-labeled dextran. Intravital TPLSM overviews of extended imaging areas comprised of up to 3 
adjacent spots were acquired before (a,e), at 10 (b,f) and 60min (c,g) post i.v. injection of dye. Scale bars: 120µm. Red: 
Leptomeningeal blood vessels. Green: GFP+ T cells. (d,h) Magnification of individual regions (1-3, white dotted rectangles) 

originated from the overviews. Scale bars: 25µm. White arrowheads: Individual phagocytic cells before (open arrowheads) 
and after dextran-uptake (closed arrowheads). Representative images of at least 3 independent experiments are depicted.  

 

Apparently, crawling (and even extravasation) of TOVA-GFP cells does not induce an 

inflammatory response. Therefore, an examination of the intraluminal migration behavior of 

these cells may provide insight into lymphocyte interactions with an intact meningeal vessel 

endothelium under non-inflammatory conditions. Notably, migratory TOVA-GFP cells follow 

similar migration-kinetics and undergo the same fundamental changes in their expression 

profile licensing them to gain access to the CNS. They up-regulate (compared to TOVA-GFP 

blasts) adhesion molecules and chemokine receptors whereas they down-regulate proliferation 

and activation markers (not shown).  

Consequently, TOVA-GFP cells isolated from blood 3 days post transfer shared a similar 

chemokine receptor expression pattern with their myelin-reactive counterparts (Fig.25a vs. 

Fig.14) and responded equally to respective chemokines (Fig.25b vs. Fig.15).  

 

3 
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Figure 25 | Chemokine receptor expression pattern and chemotaxis of ex vivo isolated migratory TOVA-GFP cells.                 
(a) The mRNA expression levels of indicated chemokine receptors within TOVA-GFP cells were measured using real-time PCR. 
Cells were isolated from blood 3 days p.t. Means and s.d. of replicate measurements are shown. Values refer to specific 
copies in relation to β-actin copies. A representative result of at least 3 independent experiments is shown. (b) Chemotaxis 
assays for the indicated chemokines were performed on TOVA-GFP cells isolated from blood 3 days p.t. Numbers of TOVA-GFP 

cells were evaluated via flow cytometry. Bars represent x-fold changes in specific migration towards the indicated chemokine 
ligands in relation to the control (w/o chemokine ligands (no CC)). Means and s.d. of representative results from at least 3 
independent experiments are indicated. 

 

Hence, in a next step, the role of chemokines on intraluminal T cell crawling was analyzed 

under non-inflammatory conditions. Intravenous administration of PTx or anti-CXCR3mAb 

led to a clear reduction in the number of intraluminal crawling T cells (Fig.26). 

Simultaneously, the numbers of rolling cells were elevated under both treatments (Fig.27a). 

These findings were similar to those achieved with myelin-reactive T cells (see Fig.16,17). 

Under non-inflammatory conditions, interference with chemokine signaling also directly 

affected T cell crawling. Thus, under treatment, the speed of intravascular locomotion was 

moderately increased, whereas the crawling duration was slightly reduced (Fig.27b,c).  

Surprisingly, administration of PTx or anti-CXCR3mAb led to a re-orientation of intraluminal 

crawling. Consequently, 2h after treatment, TOVA-GFP cells were crawling mainly in the 

direction of the blood flow (downstream) (Fig.27d).  
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Figure 26 | Chemokine signaling contributes to crawling of T lymphocytes under non-inflammatory conditions. Data 

are evaluated from 30min intravital TPLSM recordings of leptomeningeal blood vessels performed 3d p.t. of TOVA-GFP cells. 
(a) Graph represents relative changes in intraluminal crawling TOVA-GFP cell numbers within an observation period of 150min. 
Black arrow: Time point of i.v. administration of PBS (Control), PTx (+ PTx) or anti-CXCR3mAb (+ aCXCR3). 

Representative experiments of at least 3 independent approaches per treatment are shown. (b) Quantification of intraluminal 
crawling TOVA-GFP cells 2h after treatment is shown. Values for each treatment were determined in relation to the respective 
starting condition (time point 0). Bars represent means and s.d. of at least 2 independent experiments per treatment. Statistical 
significance was evaluated by Kruskal-Wallis ANOVA followed by Dunn’s multiple comparison test.  

 

 

Figure 27 | Chemokines influence intravascular locomotion pattern of T cells under non-inflammatory conditions. 
Analyses are based on 30min intravital TPLSM recordings of leptomeningeal blood vessels 3d p.t. of TOVA-GFP cells.             
(a) Graph illustrates a comparison between intraluminal rolling and crawling TOVA-GFP cells before (Control) or after 
treatment with PTx (+ PTx) or anti-CXCR3mAb (+ aCXR3). Bars represent means and s.d. of 421 rolling and 306 crawling 
TOVA-GFP cells within at least 5 independent experiments. (b) Dot plot shows average velocities of individual intraluminal 

crawling TOVA-GFP cells before or after treatment. Red lines: Mean values. Data include 206 TOVA-GFP cells of at least 3 
independent experiments per treatment. (c) Graph refers to average track durations of intravascular crawling TOVA-GFP cells 
before or after treatment. Bars represent means and s.d. of 223 crawling TOVA-GFP cells within at least 3 independent 
experiments per treatment. (d) Graph represents percentage of intravascular TOVA-GFP cells crawling either in (downstream) or 
against (upstream) the direction of the blood flow. Means and s.d. are shown. Data include 171 TOVA-GFP cells within at least 3 
independent experiments. Statistical significance was determined by Kruskal-Wallis ANOVA followed by Dunn’s multiple 
comparison test. 

(a) (b) (c) (d) 

(a) (b) 
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Although TOVA-GFP cells were capable of crawling within leptomeningeal blood vessels they 

displayed pivotal discrepancies in their intravascular locomotion behavior compared to 

myelin-reactive T cells. Firstly, they crawled with a higher velocity compared to TMBP-GFP 

cells (11.7µm/min vs. 10.4µm/min). Secondly, the average crawling duration was 

significantly shorter than those of their myelin-reactive counterparts (10.9min vs. 15.2min). 

Thirdly, the number of rolling TOVA-GFP cells was significantly elevated in comparison to 

TMBP-GFP cells (52% vs. 28%). Reasons for these differences might have been either T cell-

intrinsic or due to the activation status of the vessel endothelium. In order to test whether the 

activation status of the endothelium has a potential impact on T cell crawling properties, 

TOVA-GFP cells were co- transferred together with myelin-reactive T cells. Intravital analyses 

were performed 3 days post transfer.  

Now, under inflammatory conditions, TOVA-GFP cells changed their intraluminal locomotive 

behavior towards that of their myelin-reactive counterparts. Thus, more cells were crawling 

within the vessels compared to the single transfer situation (57% vs. 48%) (Fig.28a vs. 

Fig.27a). Furthermore, motility parameters were also assimilated to that of myelin-reactive 

cells: co-transferred TOVA-GFP cells crawled with lower velocity on the endothelium 

(10.5µm/min vs. 11.7µm/min) (Fig.28b vs. Fig.27b) and the crawling duration was 

significantly elevated compared to that of non-inflammatory conditions (14.8min vs. 10.9min) 

(Fig.28c vs. Fig.27c).  

The effects of PTx on TOVA-GFP cells were more pronounced under these inflammatory 

conditions. Thus, in contrast to the single transfer, co-transferred TOVA-GFP cells migrated 

significantly faster (12.6µm/min vs. 10.5µm/min) (Fig.28b) and spent simultaneously less 

time on crawling under treatment (9.1min vs. 14.8min) (Fig.28c). Furthermore, the increase in 

the number of rolling cells was more pronounced when TOVA cells were co-transferred with 

TMBP cells. (Fig.28a). However, interference with Gαi signaling changed the intraluminal 

crawling orientation of co-transferred TOVA-GFP cells in a similar way compared to the single 

transfer (Fig.28d). 
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Figure 28 | Influence of chemokines on intravascular crawling is more pronounced under inflammatory conditions. 
Analyses are based on 30min intravital TPLSM recordings of leptomeningeal vessels 3d p.t. TOVA-GFP cells were transferred 

together with unlabeled TMBP cells. (a) Graph illustrates comparison between intraluminal rolling and crawling TOVA-GFP cells 
before (Control) or under treatment with PTx (+ PTx). Bars represent means and s.d. of 177 rolling and 150 crawling TOVA-

GFP cells within at least 5 independent experiments. (b) Dot plot shows average velocities of individual intraluminal crawling 
TOVA-GFP cells before or after treatment. Red lines: Mean values. Data include 109 TOVA-GFP cells of at least 3 independent 
experiments per treatment. (c) Graph refers to average track durations of intravascular crawling TOVA-GFP cells before or after 
treatment. Bars represent means and s.d. of 142 crawling TOVA-GFP cells within at least 3 independent experiments per 
treatment. (d) Graph represents fractions of intravascular TOVA-GFP cells crawling either in (downstream) or against (upstream) 
the direction of the blood flow. Means and s.d. are shown. Data include 134 TOVA-GFP cells within at least 5 independent 

experiments. (a-d) Statistical significance was determined by Kruskal-Wallis ANOVA followed by Dunn’s multiple 
comparison test. 

 

 

3.4. Impact of chemokines on T cell migrat ion within the extravascular space 

during the different phases of EAE  

3.4.1. Role of chemokines on the motility of extravasated T cells  

Once T cells have transgressed the vascular walls, they migrate in the vicinity of 

leptomeningeal vessels that are embedded in a dense network of extracellular matrix (ECM) 

fibers (Fig.37). Anatomically, the leptomeninges form a boundary between the CNS 

parenchyma and the subarachnoideal space that contains the cerebrospinal fluid. Little is 

known about the migratory cues that guide encephalitogenic T cells through this environment 

or how they influence the migration pattern of these cells during CNS inflammation.  

Quantitative PCR analysis of meningeal tissue from spinal cord suggested a putative role for 

chemokines in this respect. Correlating with a high expression of pro-inflammatory cytokines, 

namely IL-17 and IFN-γ during the preclinical (d3 p.t.) and acute (d5 p.t.) phases of EAE, 

(a) (b) (c) (d) 
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inflammatory chemokines, namely CXCL9-11 and CCL5 were strongly expressed in the 

meninges and up-regulated compared to the naïve situation (Fig.29). Notably, their expression 

levels remained high throughout disease recovery (d8 p.t.). In contrast, signals for CCL19 

were on the border of detection at each of the examined time points. Interestingly, CXCL12  

was differentially regulated since elevated levels were rather found under non-inflammatory 

conditions (naïve) and during disease recovery compared to the preclinical and acute phases 

of EAE.  

 

Figure 29 | Inflammatory cytokines and chemokines are up-regulated during the preclinical and acute phases of EAE. 
The mRNA expression pattern of pro-inflammatory cytokines (upper row) and chemokines (lower row) within spinal cord 
meninges was measured by real-time PCR at the indicated time points. Naïve= d0 p.t., preclinical= d3 p.t., acute= d5 p.t. and 
recovery= d8 p.t. Means and s.d. of replicate measurements are shown. Values refer to specific copies in relation to                
β-actin copies. A representative result of at least 3 independent experiments is shown. 

 

 

TMBP-GFP cells isolated ex vivo from spinal cord meninges displayed high expression levels of 

CXCR4, CCR5 and CXCR3 during preclinical and acute EAE (Fig.30). During disease 

recovery, CXCR3 and CXCR4 expression levels remained high whereas the one of CCR5 

decreased. CCR7 expression was nearly not detectable throughout all the examined time 

points. In vitro chemotaxis assays on ex vivo TMBP-GFP cells isolated from meningeal tissue 

revealed that myelin-reactive T cells responded foremost to CCL5 and CXCL11, whereas 

CCL19 and CXCL12 induced almost no chemotaxis within these cells (Fig.31).   
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Figure 30 | Chemokine receptor expression 

pattern within TMBP-GFP cells during the course of 
EAE. Graphs represent mRNA expression levels of 

the indicated chemokine receptors within TMBP-GFP 

cells isolated from spinal cord meninges at the 
indicated time points. Data were evaluated by real-
time PCR. Preclinical= d3 p.t., acute= d5 p.t. and 
recovery= d8 p.t. Means and s.d. of replicate 
measurements are shown. Values refer to specific 
copies in relation to β-actin copies. A representative 
result of at least 3 independent experiments is shown.  

 

 

Figure 31 | Encephalitogenic effector T cells 

respond mainly to inflammatory chemokines. 
TMBP-GFP cells were isolated from spinal cord 
meninges at different time points during EAE. 
Chemotaxis assays for indicated chemokine ligands 
were performed afterwards and the numbers of TMBP-

GFP cells were quantified via flow cytometry. Time 
points: Preclinical= d3 p.t., acute= d5 p.t. and 
recovery= d8 p.t. Bars represent x-fold changes in 
specific migration towards the indicated chemokine 
ligands in relation to the control (w/o chemokine 
ligands (no CC)). Means and s.d. of representative 
results of at least 3 independent experiments per time 
point are indicated.  

 

In the next step the relevance for chemokine signaling on T cell motility in vivo was tested. 

Consequently, PTx, anti-CXCR3mAb, Met-RANTES and Plerixafor were administered 

during or shortly before intravital imaging. The results were unexpected: None of the 

blocking agents had a measurable influence on the basal velocity of TMBP-GFP cells within the 

meninges during any of the EAE phases (Fig.32a).  

Next, the impact of chemokines on the motility pattern of extravasated encephalitogenic 

T cells was analyzed. As described, myelin-reactive T cells tend to be more directed in their 

movement during disease recovery (~0.6) compared to the preclinical (~0.4) and acute (~0.4) 

phases of EAE as evaluated by the meandering index. Interfering with Gαi/chemokine 

signaling had no measurable effect on the migration pattern of TMBP-GFP cells during the 

preclinical and acute phases of EAE (Fig.32b). However, administration of PTx influenced 

the directionality of T cell migration during disease recovery. Accordingly, myelin reactive 

T cells were less linear in their movement under PTx-treatment compared to the control (0.43 

vs. 0.56).  This effect was not observed with any of the remaining treatments. 
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Figure 32 | Role of chemokines on the motility of extravasated TMBP-GFP cells during the course of EAE. Motility data 

are based on 30min intravital TPLSM recordings of spinal cord leptomeninges during preclinical (d3 p.t., upper line) acute 
(d5 p.t., center line) and recovery phases (day 8 p.t., lower line) of EAE. Dot plots represent (a) average velocities and                 
(b) meandering indices of TMBP-GFP cells 4h after treatment as indicated. PBS-treatment= Control. Red lines: Mean values. 
Data include 2041 TMBP cells from at least 3 independent experiments per treatment and time point. Statistical significance 
was evaluated by Kruskal-Wallis ANOVA followed by Dunn’s multiple comparison test. 

 

 

To test whether antigen-specificity was of relevance for T cell locomotion in the 

leptomeninges, TOVA-GFP cells were injected together with MBP-reactive T lymphocytes in 

healthy recipient rats. When co-transferred, TOVA-GFP cells enter the leptomeninges in high 

numbers and with similar kinetics compared to their myelin-reactive counterparts (not 

shown). However, co-transferred ovalbumin-reactive T cells differed partially in their motility 

compared to encephalitogenic T cells: TOVA-GFP cells migrated significantly faster during 

preclinical (11.9µm/min vs. 11.1µm/min) and acute EAE (12µm/min vs. 10.7µm/min) and did 

not increase their velocity during disease recovery (Fig.33a). However, similar to the findings 

achieved with TMBP-GFP cells, PTx-treatment had no considerable effect on the speed of TOVA-

(a) (b) 
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GFP cells during any of the examined disease phases (Fig.33a). 

A detailed analysis of their locomotion characteristics revealed that the co-transferred T OVA-

GFP cells, similarly to TMBP cells, displayed a more linear migration pattern during disease 

recovery (0.55) than in the preclinical (0.46) and acute (0.44) phases of EAE (Fig.33b). 

Administration of PTx did not affect the motility pattern of TOVA-GFP during preclinical and 

acute EAE but led to a less directed locomotion during disease recovery (0.42 vs. 0.57).   

 

 

Figure 33 | Role of chemokines on the motility of extravasated TOVA-GFP cells during the course of EAE. Analyses are 

based on 30min intravital TPLSM recordings of spinal cord leptomeninges during preclinical (d3 p.t.), acute (d5 

p.t.) and recovery (day 8 p.t.) phases of EAE. (a) Average velocities and (b) meandering indices of TOVA-GFP cells 

that were co-transferred with unlabeled TMBP cells are shown. Red lines: Mean values. Data were evaluated 4h 

after treatment and include (a) 754 and (b) 684 TOVA-GFP cells from at least 3 independent experiments per 

treatment and time point. (PBS-treatment= Control). Statistical significance was determined by Kruskal-Wallis 

ANOVA followed by Dunn’s multiple comparison test. 
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3.5. Impact of chemokines in stabilizing T cells during their migrat ion in the 

extravascular space  

These locomotion studies suggested that chemokines only moderately influence the migratory 

behavior of T cells within the leptomeninges. However, after application of PTx TMBP-GFP cells 

were regularly found to become detached from the meningeal surface and to be dragged along 

with the CSF (intravital data, not shown). This observation suggests that the adhesive forces 

that stabilize T cells during their migration on the meningeal surface may be potentially 

influenced by chemokines. Quantification of TMBP-GFP cells from CSF, spinal cord meninges 

and parenchyma after PTx- or PBS-treatment confirmed this hypothesis: the numbers of TMBP-

GFP cells within the CSF of PTx-treated animals were significantly increased. At the same 

time, the numbers of cells within the meninges were significantly reduced compared to that of 

control animals (Fig.34a). Expectedly, T cell numbers within the spinal cord parenchyma 

were similar in both groups. Administration of PTx in animals that received ovalbumin-

specific T cells together with TMBP cells reproduced all findings, thereby excluding an 

antigen-specific component (Fig.34b). Moreover, anti-CXCR3mAb and Met-RANTES led to 

similar results compared to PTx, whereas application of Plerixafor had no measurable effect 

(Fig.35).  

 

Figure 34 | Administration of PTx reduces 

T cell adhesion to the meningeal surface. 
Flow cytometric quantification of (a) TMBP-

GFP cells or (b) TOVA-GFP cells co-transferred 
with unlabeled TMBP cells from CSF, spinal 
cord meninges and parenchyma are shown. 
Samples were taken from EAE animals 
during the acute phase (d5 p.t.) of the disease 
4h after treatment with either PBS (Control) 

or PTx (+ PTx). Means and s.d. are depicted. 
Results include data from at least 3 
independent experiments per treatment and 
antigen-specificity. Statistical significance 
was evaluated by two-tailed Mann-Whitney 
test. 
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Figure 35 | Inflammatory chemokines 

stabilize T cell adhesion to the 
meningeal surface during EAE. Flow 

cytometric quantification of TMBP-GFP cells 
isolated from CSF, spinal cord meninges 
and parenchyma during the acute phase of 
EAE (d5 p.t.) are shown. Samples were 
taken from EAE animals 4h after injection 
of either PBS (Control), anti-CXCR3mAb, 
Met-RANTES or Plerixafor. Means and 
s.d. are depicted. Results include data from 

at least 3 independent experiments per 
treatment. Statistical significance was 
determined by Kruskal-Wallis ANOVA 
followed by Dunn’s multiple comparison 
test.  

 

 

 

To consolidate these findings, spleen derived-migratory TMBP-GFP cells were treated in vitro 

with PTx prior to injection into the cisterna magna of healthy recipient animals. 24 hours after 

i.th. injection intravital TPLSM imaging of spinal cord leptomeninges was performed. The 

data revealed that PTx-treated T cells obviously failed to adhere to the meningeal surface 

since their numbers there were significantly lower than those of Olig.-B-treated cells (Fig.36).  

 

 

Figure 36 | PTx pre-treated migratory T cells fail to adhere to the leptomeningeal surface after i.th. transfer.                      
(a) Intravital TPLSM recordings of spinal cord leptomeninges were performed 24h after i.th. injection of spleen-derived 
migratory TMBP-GFP cells pre-treated in vitro with either Olig.-B (Control, upper image) or PTx (+ PTx-pre, lower image) in 
healthy recipient rats. White arrows: Positions of individual TMBP-GFP cells. Red: Blood vessels, phagocytes. Green: TMBP-GFP 

cells. Scale bars: 100µm. Representative images of at least 3 independent experiments are depicted. (b) Correspondent 
quantification of TMBP-GFP cells per mm² is shown. Means and s.d. are depicted. Data include 291 cells from at least 3 
independent experiments. Statistical significance was evaluated by two-tailed Mann-Whitney test. 
 

 

(a) 

(b) 
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3.5.1. Role of chemokines on the interact ion between T cells and meningeal 

phagocytes 

Embedded in the reticular fiber network of the leptomeninges are tissue resident phagocytes 

that are distributed throughout the entire meningeal surface and often found collocated in 

close proximity to leptomeningeal vessels (Fig.37). These tissue resident cells scan their 

environment by vividly protruding and retracting their cellular processes and are thought to 

represent the first line of APCs that present CNS-derived antigen to infiltrating T cells 

(BARTHOLOMÄUS et al., 2009). Due to their phagocytic activity, these cells can be 

visualized by applying small molecular fluorescently-labeled dextrans into the cisterna magna 

of animals prior to intravital imaging (Fig.37). 

 

Figure 37 | Extravasated T cells interact with meningeal phagocytes that are embedded in fibrillar ECM structures. 
TPLSM of the dorsal spinal cord leptomeninges reveals interactions between TMBP-GFP cells (green, yellow arrows) and Texas 
Red®-labeled meningeal phagocytes (red, white arrows), embedded in a dense network of reticular fibers (blue, 2nd harmonic 
signal). Original picture and 3D reconstructions with or without 3D trajectories (yellow lines) throughout a 30min time 
interval are depicted. Scale bar: 50µm. Lower right: Magnified region, originated from the picture to the left as indicated by 
the white dotted rectangle. Scale bar: 20µm. 

 

Interactions between these tissue resident phagocytes and encephalitogenic effector T cells 

were frequently observed during all three phases of EAE. Notably, contacts did not appear 

exclusively in close proximity to the vasculature but also over the entire meningeal surface 

(Fig.37). The average time T cells spent on contacting a single phagocyte within a 30min 

observation period was ~5min during both, the preclinical (4.9min) and acute (5.4min)  
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phases of EAE, whereas the contact duration in the recovery phase was significantly shorter 

(3.9min). Apart from these relatively short contacts, T lymphocytes were found to establish 

more intense interactions with resident phagocytes. The T cells remained locally arrested at 

meningeal phagocytic cells throughout the entire observation period. Accordingly, these 

interactions were defined as long-lasting contacts (≥30min).  

Ex vivo isolated meningeal phagocytes expressed MHC class II molecules and integrins that 

were highly up-regulated during the preclinical and acute disease phases compared to the 

naïve situation (not shown). Moreover, inflammatory chemokines, namely CXCL9-11 and 

CCL5 were highly up-regulated during preclinical and acute EAE compared to the naïve 

situation and disease recovery. Vice versa, CXCL12 was up-regulated exclusively under non-

inflammatory conditions and during disease recovery (Fig.38).  

 

Figure 38 | Inflammatory chemokines are up-regulated in meningeal phagocytes during the preclinical and acute 
phases of EAE. Texas Red® dextran-labeled phagocytes were isolated at the indicated time points after TMBP cell transfer 
from spinal cord meninges and parenchyma. Naïve= d0 p.t., preclinical= d3 p.t., acute= d5 p.t. and recovery= d8 p.t. 

Quantitative real-time PCR for the indicated chemokines was performed afterwards. Means and s.d. from replicate 
measurements are depicted. Values refer to specific copies in relation to β-actin copies. A representative result of at least 3 
independent experiments is shown. 
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In order to investigate whether chemokines are involved in forming and/or stabilizing 

interactions between T cells and CNS-resident phagocytes, PTx as well as anti-CXCR3mAb, 

Met-RANTES and Plerixafor were administered prior to intravital imaging during the 

preclinical, acute and recovery phases of EAE.  

Administration of PTx reduced significantly the contact durations between TMBP-GFP cells and 

resident phagocytes in each EAE phase (preclinical: 3 vs. 4.9min, acute: 3.5 vs. 5.4min and 

recovery: 2.5 vs. 3.9min) in comparison with the control situation (Fig.39a). Simultaneously, 

the number of phagocytes contacted by an individual T cell increased significantly within a 

30min observation period compared to the control (Fig.39b). This coincidence might explain 

why T cell velocities remained unaltered under treatment during all three phases of EAE (see 

Fig.32a). Interestingly, both anti-CXCR3mAb and Met-RANTES reproduced all findings 

achieved with PTx (Fig.39). In contrast, administration of Plerixafor had no measurable effect 

on the examined parameters. Interestingly, interference with chemokine signaling had no 

influence on established stable interactions between arrested T cells and local phagocytes 

during any of the three EAE phases (Fig.40). 

 

Figure 39 | Interference with chemokine signaling 

influences short-lasting contacts between TMBP-GFP cells 
and resident meningeal phagocytes. Analysis are based on 
30min intravital TPLSM recordings during preclinical (d3 

p.t.), acute (d5 p.t.) and recovery (d8 p.t.) phases of EAE. 
Animals received either PBS (Control), PTx, anti-
CXCR3mAb, Met-RANTES or Plerixafor 4h prior to 
imaging. (a) Contact durations between motile TMBP-GFP cells 
and meningeal phagocytes within a 30min recording period 
are shown. Means and s.d. are depicted. Results include 
4587 contacts from at least 3 independent experiments per 
treatment and time point. (b) Graphs show the mean 

numbers of phagocytes that were contacted by individual T 
cells within a 30min observation period. (a,b) Statistical 
significance was evaluated by Kruskal-Wallis ANOVA 
followed by Dunn’s multiple comparison test. 

 

 

 

 

(a) 

(b) 
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Figure 40 | Interference with chemokine signaling does not influence long-lasting contacts between TMBP-GFP cells and 

resident meningeal phagocytes. Graphs represent percentages of stationary TMBP-GFP cells either arrested to (+ contact) or 

not in contact with phagocytes (- contact) within a 30min intravital observation period. PBS-treatment= Control. Animals 

were treated 4h prior to imaging. Means and s.d. are depicted. Results include 1765 TMBP-GFP cells from at least 3 independent 

experiments per treatment and time point.  

 

 

In order to investigate whether these results were specific for myelin-reactive cells, 

interactions between ovalbumin-reactive T cells, (co-transferred together with TMBP cells) and 

meningeal phagocytes were examined. Compared with MBP-reactive cells, motile TOVA-GFP 

cells contacted resident phagocytic cells only in a very short, transient manner throughout all 

observation time points (preclinical: 3.8min vs. 4.9min, acute: 3.8min vs. 5.4min and 

recovery: 2.9min vs. 3.9min) (Fig.41a vs. Fig.39a).  

The findings upon PTx treatment were in contrast to that of myelin-reactive cells. 

Administration of PTx did not further reduce the interaction durations between TOVA-GFP cells 

and their phagocytic counterparts. Furthermore, TOVA-GFP cells did not contact significantly 

more local phagocytes under treatment during a 30min observation period (Fig.41b vs. 

Fig.39b).  
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Figure 41 | Interference with chemokine signaling has no impact on interactions between motile TOVA-GFP cells and 
meningeal phagocytes. Analysis are based on 30min intravital TPLSM recordings during preclinical (d3 p.t.), acute (d5 p.t) 

and recovery (d8 p.t) phases of EAE. TOVA-GFP cells were transferred together with unlabeled TMBP cells. Animals were 
injected with either PBS (Control) or PTx (a) Contact durations between motile TOVA-GFP cells and meningeal phagocytes 

within a 30min recording period are shown. Means and s.d. are depicted. Results include 904 contacts from at least 3 
independent experiments per treatment and time point. (b) Graphs show the mean numbers of phagocytes contacted by 
individual T cells within a 30min observation period. Data were evaluated from 249 TOVA-GFP cells within at least 3 
independent experiments.  

 

3.5.2. Role of chemokines during the re-act ivation of encephalitogenic 

T cells within the living CNS t issue   

In order to visualize T cell (re-) activation within the living milieu, myelin-reactive T cells 

were used that co-expressed fluorescent sensors of nuclear factor of activated T cells (YFP-

NFAT) and histone protein H2B (mCherry-H2B). These sensors allow visualization and real-

time tracking of T cell activation in vivo, when cytosolic NFAT is translocated to the nucleus 

upon TCR activation (LODYGIN et al., in press).  

Intravital microscopy revealed that encephalitogenic T cells did not show any signs of 

activation either during their accumulation in the periphery or during intravascular crawling 

before transgressing the leptomeningeal blood vessels (LODYGIN et al., in press). In 

contrast, 20% of extravasated T cells within the meninges were found to bear the NFAT 

sensor in the nucleus, clearly indicating the structural compartment of the CNS where T cell 

activation takes place (LODYGIN et al., in press). Surprisingly, the majority of de novo 

translocation events in effector T cells were evoked by short-lasting contacts with meningeal 

phagocytes. The time-span between an initial phagocyte contact and the translocation of 

NFAT into the T cell’s nucleus was relatively short, ranging between 4 -5 minutes (Fig.42). 

(a) (b) 
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Figure 42 | Short-lasting contacts with resident 

phagocytes prompt de novo NFAT-
translocations in TMBP cells. Series of selected 
single frames of a 60min TPLSM recording during 

the preclinical phase of EAE are shown. A 
myelin-reactive T cell with cytosolic NFAT (open 
arrowhead) establishes a short-lasting contact with 
a Texas Red® dextran-labeled resident phagocyte 
(dotted yellow line), leading subsequently to the 
translocation of NFAT to the T cell’s nucleus. 
Red: Blood vessels and meningeal phagocytes. 
White dotted lines: T cell track; Scale bar: 20μm. 

(Data published in LODYGIN et al., in press). 

 

 

 
 

 

 

 

 

Apparently, short-lasting contacts between T cells and resident phagocytes are sufficient to 

trigger T cell re-activation in vivo. Since interference with chemokine signaling was shown to 

disturb these short-lasting contacts (Fig.39a) the attempt was made to clarify whether this 

“disturbance” had functional consequences for T cell re-activation. Accordingly, PTx and 

anti-CXCR3mAb were injected prior to intravital imaging. Unexpectedly, neither PTx- nor 

anti-CXCR3mAb treatment resulted in a significantly lower fraction of NFAT-translocated 

T cells. In contrast, administration of the calcineurin-inhibitor FK506 (GOTO et al., 1987) or 

local application of soluble MBP (ODOARDI et al., 2007) led respectively to a strong 

decrease or increase of T cells that carried the NFAT sensor within the nucleus (Fig.43).  

To corroborate these findings, the expression of activation markers, i.e. IFN-γ and IL-17 

within TMBP-GFP cells was analyzed by quantitative real-time PCR. Encephalitogenic T cells 

were isolated ex vivo from animals that were treated either with PTx or anti-CXCR3mAb for 

6, 12 and 24h during acute EAE. Compared to control animals neither global interference 

with Gαi signaling nor specific blockage of CXCR3 function led to a measurable reduction in 

T cell activation at any examined time point (Fig.44). Furthermore, flow cytometric 

evaluations did not reveal any changes on the surface expression of activation markers such as 

OX-40 and CD25 within TMBP-GFP cells that were isolated from CNS meninges (not shown). In 

contrast, after administration of FK506, myelin-reactive T cells were significantly less 
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activated compared to cells isolated from control animals. Vice versa, application of soluble 

antigen (MBP) resulted in a massive elevation in T cell activation markers on both mRNA 

(Fig.44) and protein level (not shown). 

 

Figure 43 | Interference with chemokine signaling has no influence on early T cell 

activation. Data are based on 30min intravital TPLSM recordings during the acute 
phase of EAE (d5 p.t.) of MBP-reactive T cells co-expressing the NFAT-YFP/H2B-
Cherry construct. Animals were treated with soluble antigen (+ sol. MBP), FK506 (+ 
FK506), pertussis toxin (+ PTx) or with DMSO (Control) 4h prior to imaging. Bars 
represent percentages of MBP-reactive T cell with either nuclear (translocated) or 
cytosolic NFAT (not translocated). Means and s.d. are depicted. Results include 1605 

cells from at least 3 independent experiments per treatment and time point. 

 

 

 

 

Figure 44 | Inhibition of chemokine signaling does not interfere with T cell activation. Graphs represent mRNA 
expression levels of IFN-γ (left) and IL-17 (right) within ex vivo isolated T cell from spinal cord meninges. Animals were 
treated with DMSO (control), FK506, PTx or with soluble MBP during acute inflammation (day 4.5 p.t.). CNS meninges 

were isolated at 6, 12 and 24h post treatment. Means and s.d. of replicate measurements are shown. Values refer to specific 
copies in relation to β-actin copies. A representative result of at least 3 independent experiments is shown. 
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4. Discussion 

In experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis 

(MS), encephalitogenic T cells breach distinct cerebral barriers in order to gain access to their 

target tissue, the CNS. However, it remains poorly understood how exactly auto-reactive 

T cells overcome these boundaries. The data of the present work displayed in real-time the 

behavior of GFP
+
 CD4

+
 MBP-reactive T cells (TMBP-GFP cells) within leptomeningeal blood 

vessels and provided insights into their migration within the living meningeal environment.  

4.1. Migratory behavior of effector T cells within the lumen of leptomeningeal 

blood vessels  

4.1.1.  Intraluminal crawling of effector T cells  

During tEAE of the Lewis rat the majority of encephalitogenic effector T cells accumulated 

within the CNS only after an obligatory delay of 2-3 days (p.t.). The T cells first arrived at the 

level of leptomeningeal blood vessels of the lumbar/sacral spinal cord. There, they did not roll 

along the vessels walls as expected from observations in peripheral vascular beds but rather 

they crawled extensively in the immediate vicinity of the vessels. Up to this point it was 

unclear whether these cells crawled along the abluminal surface or within the vascular lumen. 

Several pieces of evidence confirmed that the vast majority of these cells were indeed 

crawling along the inner vessel walls (BARTHOLOMÄUS et al., 2009; KAWAKAMI & 

FLÜGEL, 2010). This specific migratory phenotype has been reported for other types of 

leukocytes, i.e. neutrophils (PHILLIPSON et al., 2006), NK-T cells (GEISSMANN et al., 

2005) and monocytes (AUFFRAY et al., 2007) but never before in (auto-reactive) effector 

T cells.  

Morphologically, intraluminal crawling resembles an amoeboid movement, a well described 

phenotype for leukocytes migrating within a 2D environment (FRIEDL & WEIGELIN, 2008; 

LÄMMERMANN & SIXT, 2009). A detailed view on the locomotion characteristics revealed 

that myelin-reactive T cells were not moving in the direction of the blood stream, as might 

have been expected, but rather against the blood flow (Fig.10c). Furthermore, the crawling 

behavior was influenced by the activation status of the vessel endothelium: brain antigen-

ignorant, ovalbumin-specific T cells crawled for a shorter time and with a higher speed 

compared to their myelin-reactive counterparts. However, under inflammatory conditions, 

ovalbumin-reactive T cells assimilated their intraluminal migration pattern to that of myelin-
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reactive T cells.  

Interestingly, intraluminal crawling was apparently a peculiarity of CNS vessels, since it was 

less obvious within the periphery (BARTHOLOMÄUS et al., 2009). Within the latter, 

effector T cells mainly rolled along the vessel endothelium, i.e. T cells appeared as several 

round shaped dots, moving solely in the direction of the blood stream (BARTHOLOMÄUS et 

al., 2009). This discrepant locomotion behavior can hardly be explained by T cell intrinsic 

properties but rather points to different endothelial characteristics between CNS and 

peripheral vessels.  

De novo crawling of effector T cells within CNS vessels resulted regularly from preceding 

rolling, but also occurred immediately after capture from T lymphocytes to the inner vascular 

walls (unpublished data). In this respect it should be noted that crawling of myelin-reactive 

T cells is no peculiarity of LEWIS rat tEAE since the findings were reproduced in SJL mice 

inoculated with PLP-reactive T cells (BARTHOLOMÄUS et al., 2009). Furthermore, this 

new migratory characteristic was no in vitro artifact of T cell culturing since memory T cells 

that had been reactivated by immunizing carriers with MBP (KAWAKAMI et al., 2005 (II)) 

were also capable of crawling (BARTHOLOMÄUS et al., 2009). Intraluminal crawling seems 

to be a singularity of migratory T cells, i.e. T cells that had undergone a profound 

reprogramming in the periphery before they arrive at the CNS vasculature (ODOARDI et al. 

2012). In contrast, in vitro-activated T lymphoblasts that had been injected intraarterially were 

shown to be firmly arrested to spinal cord vessels immediately after transfer (VAJKOCZY et 

al., 2001).  

Up to now, the biological relevance of intraluminal crawling is poorly understood. Most 

likely, it resembles a scanning behavior for T lymphocytes in order to spot special exit ports 

that may facilitate transendothelial migration (SCHENKEL et al., 2004). 

 

4.1.2. Intraluminal crawling of effector T cells is dependent on chemokine 

signaling 

The data of the present work implies a crucial role for chemokines in T cell-mediated 

infiltration of the CNS. Especially, chemokines influenced the intraluminal crawling behavior 

of effector T cells within leptomeningeal blood vessels and thereby the initial step of CNS 

autoimmunity in the context of EAE. In order to clarify how (and which) chemokines 
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influence the behavior of migrating T cells within different CNS compartments and during 

distinct infiltration steps, it became indispensable to use various blocking agents, i.e. Met-

RANTES (PROUDFOOT et al., 1996), Plerixafor/AMD3100 (HATSE et al., 2002), a 

monoclonal blocking antibody against CXCR3 (MOHAN et al., 2005) and pertussis toxin 

(PTx) (PITTMAN, 1979). The effectiveness of the treatment was tightly controlled via 

chemotaxis assays from ex vivo isolated cells. Importantly, any one blocking agent was 

administered only immediately before or during live analyses of effector T cells. Thereby, 

compensatory or unspecific mechanisms that could potential influence the migratory behavior 

of effector T cells were minimized. Furthermore, by treating the animals only in a short-term 

range of less than 3 hours, the reported potential harmful side-effects of PTx on the vessel 

endothelium were circumvented as far as possible (BRÜCKENER et al., 2003; BEN-NUN et 

al., 1997).  

Whereas blocking peptides (Met-RANTES, Plerixafor) and antibodies (anti-CXCR3mAb) 

exhibit their antagonistic/neutralizing activities immediately after binding to the respective 

receptors, PTx, composed of an enzymatic A-subunit and a B-oligiomeric subunit (STEIN et 

al, 1994; TAMURA et al., 1982) needs to get access to the cytosol of a given cell. Thereby, 

the non-enzymatic B-subunit mediates membrane binding via glycoconjugate receptors 

(WITVLIET et al., 1989; BRENNAN et al., 1988). Thereafter, PTx is retrogradely 

transported by endosomal uptake followed by shuttling via the Golgi network and the 

endoplasmatic reticulum (HAZES & READ, 1997; PLAUT & CARBONETTI, 2008). 

Dissociation of the holotoxin and translocation of the enzymatic A-subunit from the 

endoplasmatic reticulum to the cytosol finally leads to the ADP-ribosylation of heterotrimeric 

G proteins (PLAUT & CARBONETTI, 2008). The time period from toxin-uptake to unfold 

enzymatic activity is approximately 1h but depends largely on the responding cell line (EL 

BAYÂ et al., 1999). This may explain why the first measurable reduction in the number of 

intraluminal crawling T cells was evident only after ~60min of PTx treatment (30% 

reduction), whereas anti-CXCR3 blockade led to the same decrease already after 20 minutes. 

Interference with chemokine signaling – non-specifically (via PTx) or specifically (via anti-

CXCR3 mAbs) – affected intraluminal T cell locomotion on several levels: 

(1) Inhibition of chemokine signaling led to a significant reduction of intraluminal crawling 

T cells while simultaneously the number of rolling T cells increased. (2) Interference with 

chemokine signaling also directly affected intraluminal crawling as shown by a reduction in 

the time T cells spent scanning the luminal surface and by an acceleration of the crawling 
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velocity. These findings suggest that chemokines mediate not only the shift from initial 

transient adhesion (rolling) towards firm interaction of T cells with the vessel walls (crawling) 

but also the maintenance of intraluminal crawling. This interpretation is in accordance with 

the general view that chemokine signaling intensifies interactions of leukocytes with 

endothelial cells via integrin-mediated adhesion (CAMPBELL et al., 1998; PELED et al., 

1999; CONSTANTIN et al., 2000; SHAMRI et al., 2005; SHULMAN et al., 2009).             

(3) Inhibition of chemokine signaling led to an alteration of the T cells’ preferred upstream 

crawling direction towards a migration with the blood stream (Fig.21). This phenomenon 

cannot be solely explained by an indirect effect via integrins, since blockage of the integrin 

VLA-4 did not influence the crawling direction. These findings may argue in favor of an 

endothelial chemokine gradient as functional basis for intraluminal crawling. Such gradients 

might emerge from chemokines that are directly produced by endothelial cells (or shuttled via 

transcytosis from the abluminal to the luminal vessel surface (MIDDLETON et al., 1997; 

HUANG et al., 2000). This interpretation is supported by recent observations on 

intraluminally crawling leukocytes that were guided by immobilized chemokine gradients 

within venules of the cremasteric muscle (MASSENA et al., 2010) or within the lumen of 

liver sinusoids in a model of sterile inflammation (MCDONALD et al., 2010).  

Interestingly, the observation that ovalbumin-reactive effector T cells crawl evenly within the 

leptomeningeal vessels in a chemokine-dependent manner implicated a certain involvement of 

chemokine-signaling in mediating endothelial interactions even under non-inflammatory 

conditions. There are two reasons why the endothelium was considered as unprimed within 

this experimental constellation: (1) Crawling and even extravasation of TOVA cells did not lead 

to an elevation of inflammatory chemokines on the vessel endothelium (not shown) and (2) 

there was no measurable disruption of the endothelial integrity, compared to the naïve 

situation. However, it should be emphasized that inflammatory chemokines (CXCL9-11) are 

present at basal levels within naïve meningeal endothelial cells. This fact might explain why 

specific blocking of CXCR3 signaling affected crawling of both TMBP and TOVA cells.  
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4.2. Effects of chemokines on extravasated T cells  

4.2.1. Role of chemokines as chemoattractants for encephalitogenic T cells  

Once myelin-reactive T cells had transgressed the pial vessels they scanned the outer side of 

the vascular walls and distributed throughout the meningeal surface (BARTHOLOMÄUS et 

al., 2009). This milieu is characterized by a network of fibers that can be visualized by second 

harmonic generation imaging (Fig.37). It is well known that stromal cells in the 

leptomeninges produce extracellular matrix (ECM) components e.g. collagen, fibronectin and 

laminin (RUTKA et al., 1986; SILVA et al., 1999). Furthermore, a reticular fiber network has 

been described to occur in inflammatory lesions of the brain during toxoplasmic encephalitis, 

and Toxoplasma gondii-specific T cells were found to move along these ECM structures 

(WILSON et al., 2009). However, the molecular factors that guide these cells within this 

extravascular (interstitial) environment are largely unknown.  

Within the interstitial space, leukocytes are in principle able to migrate via haptokinesis or 

contact guidance along ECM structures without the need of chemoattractant factors (FRIEDL 

& WEIGELIN, 2008). However, during inflammation it is unlikely that lymphocytes move 

irrespective of chemoattractant gradients. Immunohistological examinations provided indirect 

evidence for the contribution of chemokines in leukocyte migration, since levels of 

inflammatory chemokines and their respective receptors on mononuclear infiltrates had been 

detected within acute lesions of MS patients (SØRENSEN et al., 1999) and EAE diseased 

animals (KARPUS & RANSOHOFF, 1998; FIFE et al., 2001). The results of the present 

work are in accordance with these studies, namely the presence of elevated levels of 

inflammatory chemokines (CXCL9-11, CCL5) within the CNS during preclinical EAE and 

disease progression compared to the naïve situation. Furthermore, ex vivo isolated T cells 

from CNS meninges carried the respective receptors (CXCR3, CCR5) and were able to 

respond to chemokine gradients in in vitro chemotaxis assays.  

Chemokine gradients are likely to appear in vivo in a soluble form or immobilized on ECM 

structures (SCHUMANN et al., 2010; YANG et al., 2007; PELLETIER et al., 2000). 

Lymphocytes carrying the respective receptors can respond to soluble gradients via 

chemotaxis or in a haptotactic manner to immobilized chemokines (FRIEDL & WEIGELIN, 

2008). Such a cellular response would result in a directed movement towards the chemokine 

source that can be evaluated by the meandering index. Conversely, blockage of chemokine 
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signaling would disrupt such a directed movement (MCDONALD et al., 2010). 

However, during the preclinical and acute phases of EAE the extravasated effector T cells 

apparently migrated in a non-directed manner that was not changed by chemokine 

interference (Fig.32b). There are several explanations that may justify this seemingly 

“random” locomotive pattern. Firstly, the presence of chemokine ligands within the 

meningeal tissue was evaluated only on a transcriptional level and might therefore not reflect 

the actual protein expression. However, this appears unlikely since chemokines have been 

reported to be expressed at the protein level within the CNS, at least in diseased animals 

(KARPUS & RANSOHOFF, 1998). Secondly, during inflammation, abundant levels of 

ligands may reduce the migrating cell’s responsiveness to chemokines due to cellular adaption 

mechanisms, like receptor desensitization/internalization (FERGUSON & CARON, 1998). 

This hypothesis is questioned by the fact that the ex vivo isolated T cells from the meninges 

readily responded to chemokine ligands in chemotaxis assays (in vitro). Thirdly, and perhaps 

most likely, T cells might not able to detect distinct chemokine gradients due the high spatial 

density of chemokine-producing cells during inflammation. Thus, the meningeal phagocyte 

population that was clearly shown to express pro-inflammatory chemokines densely covers 

the vessels and the meningeal plane (Fig.37). 

 

4.2.2. Chemokines stabilize T cell migrat ion within the meningeal environment  

Upon chemokine blockage, effector T cells became detached from the leptomeningeal surface 

and accumulated in the CSF. This phenomenon was similar to that within the vascular lumen 

where crawling cells became detached from the vessel endothelium. Notably, this detachment 

in the meninges did not reach the level seen in the blood circulation (Fig.34,35). This might 

be due to the specialized composition of the leptomeningeal milieu. Thus, the fibers around 

the vessels and on the meningeal plane form a 3D network that is bathed in the CSF. T cells 

migrating within this ECM network might be protected from being dragged away by the CSF, 

whereas cells crawling on its surface are exposed to the shear forces exerted by the CSF. 

Adhesion might require the induction of high-affinity integrin forces (WOOLF et al., 2007). 

Interference with chemokine signaling by PTx, anti-CXCR3mAb or Met-RANTES would 

then lead to a detachment of T cells from the meningeal surface by interrupting these adhesive 

bonds.  
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4.2.3. Chemokines stabilize interact ions between T cells and meningeal 

phagocytes but do not affect T cell act ivat ion  

It is important to note that meningeal phagocytes not only produce inflammatory chemokines, 

but at least partially also MHC class II molecules on their surface (LODYGIN et al., in press). 

Moreover, these cells were found to be able to present myelin components to the invading 

T cells leading to subsequent T cell activation (BARTHOLOMÄUS et al., 2009; LODYGIN 

et al., in press) and can be therefore considered as potential antigen presenting cells (APCs).  

In general, two different forms of interactions between T lymphocytes and meningeal APCs 

were distinguishable in vivo: dynamic, short-lasting interactions (<10min) between motile 

T cells and their antigen-presenting counterparts or stable, long-lasting contacts (≥30min) 

between arrested T cells and meningeal APCs. 

Stable interactions between T cells and APCs were reported to lead to the formation of a 

specialized contact area that is commonly known as immunological synapse (GRAKOUI et 

al., 1999). The initiation of this interaction requires strong adhesive forces that are believed to 

be mediated predominantly by integrins (DUSTIN, 2009). Chemokines were speculated to 

play a role in strengthening these forces (CONSTANTIN et al., 2000). This view is supported 

by the observation that the durations of short-lasting contacts that might be considered as 

predecessors of the stable synapses, were indeed dependent on chemokines: blockage of 

chemokine signaling by administration of PTx, anti-CXCR3mAb or Met-RANTES 

significantly shortened interactions between motile T cells and resident APCs during all three 

phases of EAE (Fig.39a). In contrast, long-lasting contacts between encephalitogenic effector 

T cells and the meningeal phagocytes were not influenced by chemokine blockage. 

Interestingly, interference with chemokine signaling did not affect the transient contacts 

between brain-ignorant ovalbumin-reactive T cells and the meningeal phagocytes. It is 

important to note that even in the absence of chemokine blockage these interactions were 

significantly shorter than those between myelin-reactive T cells and their antigen-presenting 

partners. From these data a three step model of T cell activation within the meninges during 

EAE can be proposed. 

(1) The first “explorative touches” (duration: ~3.5min) of T cells with their meningeal 

counterparts are antigen and chemokine-independent. This can be observed in brain antigen-

ignorant TOVA cells or in TMBP cells that had been treated with chemokine blockers. Step 1 can 

subsequently lead to a second phase, designated as (2) “priming contacts” (5-6min) where 
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T cells encounter their antigen (antigen-dependent) and get re-activated upon TCR stimulation 

(Fig.42). These priming contacts require chemokine signaling, as demonstrated in myelin-

reactive effector T cells after blockage with PTx, anti-CXCR3mAb or Met-RANTES. Step 2 

can finally proceed to (3) “long-lasting contacts” (≥30min), where both interaction partners 

remain locally arrested. This step is again dependent on the antigen specificity of the T cells 

since only a minority of OVA-reactive cells is found to be arrested (not shown). Interestingly, 

this interaction seems be chemokine independent: neither PTx nor anti-CXCR3mAb nor Met-

RANTES had any effect on the numbers of these stable T cell – phagocyte contacts.   

Surprisingly, interference with chemokine signaling did not influence T cell activation. This 

was demonstrated by similar numbers of NFAT-translocated cells in treated and un-treated 

animals and by similar expression of T cell activation markers within both groups. Obviously, 

the priming contacts between T cells and phagocytes are sufficient to drive T cell activation; 

however, they do not seem to be absolutely required. The reduced contact durations between 

T cells and APCs upon interference with chemokine signaling might be compensated by the 

establishment of significantly more interactions within the same time period compared to the 

control situation (Fig.39b). This explanation would be in agreement with the serial encounter 

model proposed by Friedl and Gunzer (FRIEDL & GUNZER, 2001). 
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5. Summary and Conclusion  

During transfer EAE, effector T cells appear within the CNS only after a latency period of 2-3 

days. This delay is due to a preceding extensive journey through lungs and secondary 

lymphatic organs where the cells undergo profound functional alterations resulting in a 

“migratory” phenotype that allows them to re-enter the circulation and finally arrive at their 

destination, the CNS (FLÜGEL et al., 2001; ODOARDI et al., 2012). The present work 

focuses in detail on factors controlling the locomotion behavior of CD4
+ 

effector T cells 

(FLÜGEL et al., 1999) from their first arrival within pial blood vessels and throughout their 

journey within the meningeal environment at distinct time points during tEAE.  

During the preclinical phase, encephalitogenic effector T cells were crawling along the inner 

surface of leptomeningeal vessels predominately against the direction of the blood stream. 

Intravenous administration of PTx or a neutralizing anti-CXCR3mAb displayed a crucial 

impact of chemokines on intravascular T cell crawling since the cells changed their motility 

properties and their predominant crawling direction upon blockage. Similar observations were 

obtained with brain-antigen ignorant TOVA cells, which suggest that chemokines impact on 

T cell-mediated immune surveillance in a non-inflamed CNS.  

Once myelin-reactive T cells transgressed the vascular barriers they continued their scan 

throughout the meningeal surface. Interference with chemokine signaling at this stage had 

only a moderate impact on the basal T cell motility. However, chemokines were crucial in 

stabilizing the contacts between T cells and resident phagocytic cells in the leptomeningeal 

milieu. Furthermore, administration of PTx, anti-CXCR3mAb or Met-RANTES led to a 

substantial detachment of T cells into the CSF.  

In summary, the data indicate that chemokines regulate the exit of effector T cells from CNS 

blood vessels into the meninges. Furthermore, by stabilizing the cells in the meningeal milieu 

they control the distribution of T cells in the CSF and the CNS parenchyma.  
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