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 Summary 4 

SUMMARY 

Prediction of genomic breeding values has become a popular tool for obtaining reliable 

breeding values of animals without phenotypic information, especially in dairy cattle breed-

ing. The main focus of this thesis was to investigate different factors that influence the accu-

racy of predicted genomic breeding values in real dairy cattle data sets.  

A basic study on cross-validation in dairy cattle is presented in Chapter 2. The study was 

designed to figure out properties of different cross-validation strategies in real data sets. 

Cross-validation implies dividing the available data set into training and validation set, mask-

ing observations of all individuals in the validation set and predicting this information with a 

model trained with individuals in the training set. In the context of genomic breeding value 

prediction, cross-validation can be used to assess the accuracy of genomic breeding values 

for candidates given a specific reference population. The correlation between masked and 

predicted values for the validation individuals then reflects the accuracy of prediction. The 

way of how the data is subdivided may influence the results obtained with cross-validation. 

Thus, this study tried to find an optimal subdivision strategy for different purposes – describ-

ing the accuracy for potential candidates when having the available data set for training on 

the one hand and differentiating between two proposed models on the other hand. A data set 

of around 2’300 Holstein Friesian bulls genotyped with the Illumina BovineSNP50 BeadChip 

(termed 50K Chip in the following) was divided in different ways having around 800 up to 

2’200 individuals in the training and the remaining individuals in the validation set. Two BLUP 

approaches, one containing only a random genomic effect and one containing a random  

polygenic and a random genomic effect, were applied. The highest accuracies could be ob-

tained with the largest training sets, but this also implicates that the validation set was small 

and the standard error of the obtained accuracy was inflated. Hence, if the purpose is to find 

significant differences between approaches, larger validation sets are recommended. A five-

fold cross-validation in most cases appears to be a good compromise. 

Relationship structure between individuals in the training and in the validation set has a big 

impact on the accuracy of genomic prediction. At the moment, there are still enough proge-

ny-tested training bulls that are highly related to the validation set. If genomic selection will 

be consequently applied, there may, however, be a lack of such training individuals. Thus, 

Chapter 3 comprises investigations on how the relationship and age structure influences the 

accuracy of genomic breeding values of young bulls. A study using 5’698 Holstein Friesian 

bulls genotyped with the 50K Chip and born between 1981 and 2005 was designed taking 

always the 500 youngest bulls as a constant validation set over all scenarios. Different train-

ing sets of 1’500 individuals were used to predict genomic breeding values for those candi-

dates: bulls were chosen randomly, were among the oldest or youngest bulls in the remain-
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ing data set, had a maximum relationship of less than 0.25 or 0.5 to the candidates or were 

highest related with the candidates. Compared to the random standard scenario, reduced 

relationship levels led to an apparent decrease of accuracy in prediction. Accuracy of predic-

tion was higher for the scenarios with the highly related individuals and with the youngest 

bulls in the training sets. For practical application in strongly related samples like progeny 

tested Holstein Friesian bulls there is not critical point as long as sires, half or full sibs are in 

the training set. New progeny tested bulls should therefore be continuously added to the 

training set. Otherwise a clear decrease of accuracy of prediction will be observable even 

after only one or two generations. 

Chapter 4 deals with two further factors that may influence the accuracy of genomic predic-

tion, namely the marker density and the method used for prediction. Usually 50K SNPs have 

been used for genomic prediction so far, but lately a new high density (HD) SNP array with 

777K has become available. Thus, the question has arisen whether higher marker density 

will lead to an increase in prediction accuracy. The more markers have to be modeled the 

more important may be the development of prediction approaches that allow a proportion of 

SNPs to be uninformative. Therefore, a new and efficient Bayesian method (BayesR) was 

developed assuming SNP effects are derived from a series of normal distributions that have 

different variances and with the number of SNPs per distribution being not fixed but modeled 

with a Dirichlet distribution. Furthermore, this chapter also addresses the issue of multi-breed 

training sets with different marker densities. In dairy cattle, large training sets are necessary 

to obtain robust estimates of SNP effects, but building large reference sets may be challeng-

ing for smaller breeds. Multi-breed training sets can be an option to overcome this problem. 

With 50K marker sets the increase in accuracy, however, was very limited, probably because 

of a lack of consistent phases between breeds with this marker density. Having a high densi-

ty marker set available should thus be beneficial also for the across breed prediction. Data 

sets of Australian Holstein and Australian Jersey bulls, all genotyped with the 50K Chip and 

imputed to 777K, were used to investigate the changes in accuracy of genomic prediction 

within and between breeds with a GBLUP approach and BayesR. Using imputed high density 

data did not lead to a significant increase of accuracy for the within breed situation and led 

only to a small increase in the multi-breed scenario for the minor breed. BayesR always pro-

duced comparable or better results than the GBLUP approach. An additional feature of 

BayesR is that one can learn more about the architecture of quantitative traits, e.g. by con-

sidering the average number of SNPs in the different distributions. 

The accuracy of genomic prediction when having data available can be calculated using dif-

ferent validation procedures. However, in some situations, it may be useful to assess the 

expected accuracy of prediction in advance of a genomic breeding value prediction study, 
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e.g. because one wants to know the required size of the training set or the SNP density to 

achieve a predefined level of accuracy. Different deterministic equations to predict the accu-

racy level have been suggested in the literature and all rely more or less on the same pa-

rameters. One of these parameters is the number of independently segregating chromosome 

segments (  ) that is normally determined based on theoretical population parameters like 

effective population size (  ) of the underlying population. In Chapter 5, a maximum likeli-

hood approach is presented that allows determining the number of    empirically based on a 

systematic multi-level cross-validation. Based on this, various deterministic prediction equa-

tions were compared and modified to fit best to the data. 5’698 Holstein bulls genotyped with 

the 50K Chip and 1333 Brown Swiss bulls genotyped with the 50K Chip and imputed to 777K 

SNPs were used for cross-validation studies with different k-fold scenarios (k=2, 3, …, 10, 

15, 20) in a genomic BLUP framework. It was thus possible to mimic genomic prediction with 

different sizes of training sets based on different subsets of SNPs (10’000, 20’000, 30’000, 

42’551 SNPs for Holstein Friesian and 2’451, 4’901, …, 627’306 SNPs for Brown Swiss) to 

study the influence of the SNP density. A maximum likelihood approach was then used to 

estimate the best value for the number of    based on the empirical observed data. The 

highest likelihood was obtained when using a modified form of the deterministic equation of 

Daetwyler et al. (2010, Genetics 185:1021-1031) as expected accuracy. The most likely val-

ues for    using all available markers were 1’241 (412) and 1’046 (197) for the traits somatic 

cell score and milk yield in Holstein Friesian (Brown Swiss), respectively. Values of    were 

different in Brown Swiss and Holstein Friesian, while Ne of both populations calculated from 

pedigree and linkage disequilibrium structure was very similar. Having those results at hand 

it seems that    is not a parameter that can be easily modeled by the effective population 

size and the genome length deterministically since it varies between traits within population 

and even between populations with similar structure. The modification of the formula of 

Daetwyler et al. (2010) consists of adding a weighting factor based on the assumption that 

the maximal achievable accuracy with a given SNP set is not one. This was assumed due to 

the fact that not all of the genetic variance can be captured by the available SNP set. Values 

for the squared weighting factor, i.e. the percentage of genetic variance captured, were also 

empirically determined and were between 76% and 82% with SNP subsets of 10’000 up to 

42’551 SNPs for Holstein Friesian and between 63% and 75% with SNP subsets of 2’451 up 

to 627’306 SNPs for Brown Swiss. There is a linear relationship between the weighting factor 

and the logarithm of the marker density up to a population specific marker density (e.g. ~ 

20’000 in Brown Swiss) which ends in a plateau, i.e. adding more SNPs will not change the 

proportion of genetic variance captured.  
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ZUSAMMENFASSUNG 

Die genomische Zuchtwertschätzung ist vor allem im Bereich der Milchrinderzucht in den 

letzten Jahren zu einer beliebten Methode geworden, um sichere Zuchtwerte von Tieren oh-

ne phänotypische Information zu erhalten. Das Ziel dieser Arbeit war es, verschiedene Ein-

flussfaktoren auf die Genauigkeit der genomischen Zuchtwertschätzung in realen Rinderda-

tensätzen genauer zu untersuchen. 

In Kapitel 2 findet sich eine grundlegende Arbeit zur Kreuzvalidierung, in der die Eigenschaf-

ten verschiedener Kreuzvalidierungsstrategien in realen Datensätzen untersucht wurden. 

Kreuzvalidierung bedeutet, dass die verfügbaren Daten in eine Trainings- und eine Validie-

rungsstichprobe aufgeteilt werden, wobei für die Individuen in der Validierungsstichprobe alle 

Beobachtungswerte als nicht vorhanden angenommen werden. Die Werte der Individuen in 

der Validierungsstichprobe werden dann mit einem Modell, das mit Hilfe der Beobachtungs-

werte der Individuen in der Trainingsstichprobe angepasst wird, vorhergesagt. Im Kontext 

der genomischen Zuchtwertschätzung werden Kreuzvalidierungsstrategien benutzt, um die 

Genauigkeit der genomischen Zuchtwertschätzung mit einer bestimmten Trainingspopulation 

abzubilden. Die Korrelation zwischen maskierten und vorhergesagten Werten der Tiere in 

der Validierungsstichprobe spiegelt die Genauigkeit der genomischen Zuchtwertschätzung 

wider. Die Art und Weise, wie der Datensatz in Trainings- und Validierungsstichprobe unter-

teilt wird, kann die Ergebnisse einer Kreuzvalidierung beeinflussen. Das Ziel dieser Studie 

war es deshalb, optimale Strategien für unterschiedliche Zwecke – Beschreibung der Genau-

igkeit der genomischen Vorhersage für mögliche Selektionskandidaten mit dem vorhandenen 

Datensatz oder Vergleich von zwei Methoden zur Vorhersage – zu finden. Ein Datensatz von 

etwa 2‘300 Holstein Friesian-Bullen, die mit dem Illumina BovineSNP50 BeadChip (im Fol-

genden 50K Chip genannt) typisiert waren, wurde unterschiedlich aufgeteilt, so dass sich 

zwischen 800 bis 2‘200 Tiere in der Trainingsstichprobe und die jeweils restlichen Tiere in 

der Validierungsstichprobe befanden. Zwei BLUP-Modelle, eines mit einem zufälligen geno-

mischen Effekt und eines mit einem zufälligen polygenen und einem zufälligen genomischen 

Effekt, wurden zur Vorhersage verwendet. Die höchste Genauigkeit der Vorhersage konnte 

mit der größten Trainingsstichprobe erreicht werden. Eine große Trainingsstichprobe bei ge-

gebenem limitierten Datenmaterial impliziert aber auch, dass gleichzeitig die Validierungs-

stichproben klein und damit die Standardfehler der beobachteten Genauigkeiten sehr hoch 

sind. Falls es das Ziel einer Studie ist, signifikante Unterschiede zwischen Modellen nachzu-

weisen, ist es besser größere Validierungsstichproben zu verwenden. Eine fünffache 

Kreuzvalidierung scheint in vielen Fällen ein guter Kompromiss zu sein. 

Die Verwandtschaftsstruktur zwischen den Tieren in der Trainings- und der Validierungs-

stichprobe hat einen großen Effekt auf die Genauigkeit der genomischen Zuchtwertschät-
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zung. Momentan sind noch genügend nachkommengeprüfte Bullen in den Trainingsstichpro-

ben vorhanden, mit denen die Tiere in der Validierungsstichprobe hoch verwandt sind. Wenn 

die genomische Selektion konsequent angewendet wird, ist es möglich, dass solche Indivi-

duen für die Trainingsstichprobe knapper werden. Deshalb enthält Kapitel 3 eine Studie, die 

untersucht, wie sich die Verwandtschafts- und Altersstruktur auf die Genauigkeit der genomi-

schen Zuchtwerte von jungen Bullen auswirkt. Ein Datensatz mit 5‘698 Bullen der Rasse 

Holstein Friesian, die alle mit dem 50K Chip typisiert wurden und zwischen 1981 und 2005 

geboren wurden, war die Basis dieser Arbeit. In allen Szenarien wurden die 500 jüngsten 

Bullen dieses Datensatzes als Validierungsstichprobe verwendet. Verschiedene Trainings-

stichproben mit je 1‘500 Individuen wurden ausgewählt, um die genomischen Zuchtwerte der 

jungen Tiere (Selektionskandidaten) vorherzusagen: eine zufällige Auswahl an Bullen, die 

ältesten und jüngsten verfügbaren Tiere, Tiere mit Verwandtschaftskoeffizienten kleiner 0.25 

oder 0.5 zu allen Selektionskandidaten, oder Tiere, die am stärksten mit den Selektionskan-

didaten verwandt waren. Verglichen mit dem Szenario mit der zufälligen Auswahl führte eine 

Verringerung der Verwandtschaft zu einer sichtbaren Abnahme der Genauigkeit der genomi-

schen Vorhersage. Die Genauigkeit für die Szenarien mit den hoch verwandten Tieren bzw. 

den jüngsten Tieren in der Trainingsstichprobe war hingegen höher. Für die praktische An-

wendung bedeutet dies, dass in stark verwandten Gruppen wie Elitebullen der Rasse Hol-

stein Friesian keine weiteren Probleme für die Vorhersage junger Tiere zu erwarten sind, 

solange Väter, Voll- und Halbgeschwister in der Trainingsstichprobe vorhanden sind. Neue 

nachkommengeprüfte Bullen sollten deshalb kontinuierlich zur Trainingsstichprobe hinzuge-

fügt werden – sonst wird eine klare Abnahme der Genauigkeit schon nach ein oder zwei Ge-

nerationen zu sehen sein. 

Kapitel 4 beschäftigt sich mit zwei weiteren Faktoren, die die Genauigkeit der genomischen 

Vorhersage beeinflussen können: Markerdichte und Methodenwahl. Bis jetzt wurden norma-

lerweise 50K SNPs für die genomische Zuchtwertschätzung verwendet, aber seit Kurzem ist 

auch ein neues hochdichtes SNP-Array mit 777K SNPs verfügbar. Dies lässt die Frage auf-

kommen, ob die höhere Markerdichte zu einem Anstieg in der Genauigkeit führen kann. Je 

mehr Marker verfügbar sind, umso größer wird auch die Notwendigkeit, Methoden zu entwi-

ckeln, die einen Teil der Marker als nicht informativ (d.h. ohne Effekt auf das untersuchte 

Merkmal) zulassen. Deshalb wurde eine neue und effiziente Bayes’sche Methode (BayesR) 

entwickelt, die annimmt, dass die SNP Effekte aus einer Reihe von Normalverteilungen 

stammen, die unterschiedliche Varianzen haben. Die Anzahl der SNPs pro Verteilung wird 

nicht festgesetzt, sondern mit Hilfe einer Dirichlet-Verteilung modelliert. In Kapitel 4 wird 

außerdem auf die Frage eingegangen, wie sich die Genauigkeit der Vorhersage im Fall von 

Trainingsstichproben mit mehreren Rassen bei unterschiedlicher Markerdichte verhält. Bei 

Milchrinderrassen sind große Trainingsstichproben erforderlich, um robuste Schätzer der 
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SNP-Effekte zu erhalten, aber gerade bei kleinen Rassen kann es schwierig sein, solch gro-

ße Trainingsstichproben aufzubauen. Trainingsstichproben, die Tiere mehrerer Rassen ent-

halten, können deshalb eine Möglichkeit sein, dieses Problem zu umgehen. Mit 50K SNPs 

war der Erfolg solcher Mehrrassen-Trainingsstichproben gering, was darauf zurückgeführt 

wurde, dass die Haplotypenstruktur über die Rassen hinweg bei dieser Markerdichte nicht 

konsistent war. Der hochdichte SNP-Chip könnte hier allerdings Verbesserungen für die 

Vorhersage über Rassen hinweg bringen. Die Veränderungen in der Genauigkeit der geno-

mischen Zuchtwertschätzung innerhalb einer Rasse und über Rassen hinweg wurden mit 

Daten von australischen Bullen der Rassen Holstein Friesian und Jersey, die mit dem 50K 

Chip typisiert und auf 777K SNPs imputet waren, und zwei verschiedenen Methoden 

(GBLUP, BayesR) untersucht. Die Verwendung von imputeten hochdichten Markern führte 

zu keinem signifikanten Anstieg der Genauigkeit innerhalb einer Rasse und nur zu einer ge-

ringen Verbesserung der Genauigkeit in der kleineren Rasse im Mehrrassen-Szenario. 

BayesR lieferte gleichwertige oder in vielen Fällen höhere Genauigkeiten als GBLUP. Eine 

Eigenschaft von BayesR ist außerdem, dass es möglich ist, aus den Ergebnissen Erkennt-

nisse zur genetischen Architektur des Merkmals zu erhalten, z.B. indem man die durch-

schnittliche Anzahl an SNPs in den verschiedenen Verteilungen betrachtet.  

Die Genauigkeit der genomischen Zuchtwertschätzung kann mit verschiedenen Validie-

rungsprozeduren berechnet werden, sobald reale Daten vorhanden sind. In manchen Situa-

tionen kann es jedoch von Vorteil sein, wenn man die erwartete Genauigkeit der Vorhersage 

im Vorfeld einer Studie abschätzen kann, z.B. um zu wissen, welche Größe die Trainings-

stichprobe haben sollte oder wie hoch die Markerdichte sein sollten, um eine bestimmte Ge-

nauigkeit zu erreichen. Verschiedene deterministische Formeln zur Abschätzung der er-

reichbaren Genauigkeit sind in der Literatur verfügbar, die alle auf den mehr oder weniger 

gleichen Parametern beruhen. Einer dieser Parameter ist die Anzahl unabhängig segregie-

render Chromosomensegmente (  ), die normalerweise mit Hilfe von theoretischen Werten 

wie der effektiven Populationsgröße (  ) deterministisch bestimmt wird. In Kapitel 5 wird ein 

Maximum-Likelihood Ansatz beschrieben, der es ermöglicht,    basierend auf systematisch 

angelegten Kreuzvalidierungsexperimenten empirisch zu bestimmen. Darauf aufbauend 

wurden verschiedene deterministische Funktionen zur Vorhersage der Genauigkeit vergli-

chen und so modifiziert, dass sie am besten zu den vorhandenen Datensätzen passten. Mit 

5‘698 Holstein Friesian-Bullen, die mit dem 50K Chip typisiert waren, und 1‘333 Braunvieh-

Bullen, die mit dem 50K Chip typisiert und auf 777K SNPs imputet waren, wurden mit 

GBLUP verschiedene k-fache Kreuzvalidierungen (k=2, 3, …, 10, 15, 20) durchgeführt. So 

konnte eine genomische Zuchtwertschätzung bei unterschiedlichen Größen der Trainings-

stichprobe nachgebildet werden. Weiterhin wurden alle Szenarien mit verschiedenen Sub-

sets der vorhandenen SNPs (10‘000, 20‘000, 30‘000, 42‘551 SNPs für Holstein Friesian, und 
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jeder, jeder zweite, jeder 4., … jeder 256. SNP für Braunvieh) durchgeführt, um den Einfluss 

der Markerdichte erfassen zu können. Der Maximum-Likelihood Ansatz wurde angewendet, 

um    für die beiden vorhandenen Datensätze bestmöglich zu schätzen. Die höchste Like-

lihood wurde erreicht, wenn eine modifizierte Form der deterministischen Formel von 

Daetwyler et al. (2010, Genetics 185:1021-1031) für die Modellierung der erwarteten Genau-

igkeit die Grundlage bildete. Die wahrscheinlichsten Werte für   , wenn alle vorhandenen 

Marker genutzt wurden, waren 1‘241 (412) und 1‘046 (197) für die Merkmale Zellzahl und 

Milchmenge für Holstein Friesian (Braunvieh). Die Werte für    für Braunvieh und Holstein 

Friesian unterschieden sich deutlich, während    für beide Populationen (berechnet auf Ba-

sis des Pedigrees oder über die Struktur des Kopplungsungleichgewichts) sehr ähnlich war. 

Die Schätzungen für    variierten zwischen verschiedenen Merkmalen innerhalb von Popu-

lationen und über Populationen mit ähnlichen Populationsstrukturen hinweg. Dies zeigt, dass 

   wahrscheinlich kein Parameter ist, der sich nur aus    und der Länge des Genoms be-

rechnen lässt. Die Modifizierung der Formel von Daetwyler et al. (2010) bestand darin, einen 

Gewichtungsfaktor hinzuzufügen, der berücksichtigt, dass die maximale Genauigkeit bei ge-

gebener Markerdichte auch mit unendlich großer Trainingsstichprobe nicht 1 sein muss. Dies 

basiert auf der Annahme, dass die vorhandenen SNPs nicht die ganze genetische Varianz 

wiedergeben können. Auch dieser Gewichtungsfaktor wurde empirisch bestimmt. Die qua-

drierten Werte, d.h. der Prozentsatz der genetischen Varianz, die erklärt wird, lagen zwi-

schen 76% und 82% für 10‘000 bis 42‘551 SNPs bei Holstein Friesian und zwischen 63% 

und 75% für 2‘451 bis 627‘306 SNPs bei Braunvieh. Zwischen dem natürlichen Logarithmus 

der Markerdichte und dem Gewichtungsfaktor bestand ein linearer Zusammenhang bis zu 

einer populationsspezifischen Grenze hinsichtlich der Markerdichte (~ 20‘000 SNPs bei 

Braunvieh). Oberhalb dieser Grenze fand sich ein Plateau, was bedeutet, dass das Hinzufü-

gen von weiteren Markern den Anteil der genetischen Varianz, der erklärt wird, nicht mehr 

verändert.  
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GENERAL INTRODUCTION 

The aim of this thesis is to investigate different factors that influence the accuracy of genomic 

breeding value prediction. This chapter therefore provides a short history and description of 

this breeding approach and introduces the relevant methodology.  

 

(Genomic) Breeding value estimation 

A comprehensive system for estimating reliable breeding values is one of the key points of 

an efficient breeding program and a useful selection process. The introduction of best linear 

unbiased prediction (BLUP) (e.g. Henderson, 1975) set a benchmark in the field of animal 

breeding. Based on BLUP systems, individual breeding values with maximum achievable 

reliability can be obtained based on pedigree information across many generations and phe-

notypic information from the individual itself or from any relatives. Besides the traditional  

animal model, different models have been developed that are able to handle different breed-

ing programs and/or data structure, e.g. sire models for reducing computational demands 

when breeding values should be calculated only for sires based on progeny records, multi-

trait models for combining correlated traits in one model (e.g. Henderson & Quaas, 1976) in 

which missing values are not that critical, or random regression models for processing longi-

tudinal and test-day data (e.g. Schaeffer, 2004). At least for the production traits, nowadays 

all conventional evaluation systems in dairy cattle are based on such conventional BLUP 

approaches. Procedures like Multiple(-Trait) Across Country Evaluations (MACE; e.g. 

Schaeffer, 1994) have made it possible to compare conventional breeding values on an in-

ternational scale as well. With the availability of the first genetic markers in the late 80s and 

90s of the 20th century, discussions have started on how this new information could be used 

to improve selection schemes, i.e. introducing a so called marker-assisted selection (MAS). 

Most of the traits studied in livestock breeding have a quantitative genetics background 

which means that the observed phenotypes are on a continuous scale and the observed ge-

netic variance is caused by more than one gene. All gene loci that contribute to the variation 

in a specific trait are called quantitative trait loci (QTL). Often it is not known where in the 

genome they are located and how large their contribution to genetic variance is. Early studies 

have proposed that the number of loci influencing a specific trait will be small to medium (e.g. 

Hayes & Goddard, 2001), but nowadays the general opinion is that most traits are probably 

influenced by hundreds of loci with most of them having a very small effect on the trait (e.g. 

Reed et al., 2008). Since positions of possible QTL are mostly unknown in advance, genetic 

markers with known positions can be used as proxies. If QTL and marker are located near to 

each other, they are often in high linkage disequilibrium which enables a large proportion of 
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the genetic variance caused by the QTL to be captured by the marker. Genetic markers in 

those days were normally a small set (few hundred) of microsatellites or restriction fragment 

length polymorphisms which were thought to be a good basis to find positions of relevant 

QTL. Different statistical approaches have been developed to map QTL positions based on 

effects of markers on phenotypes (e.g. Sillanpää & Corander, 2002; Meuwissen & Goddard, 

2004). However, effects have often been overestimated (e.g. Utz et al., 2000) and could not 

be confirmed in an independent data set which made it impossible to include MAS in a regu-

lar breeding scheme. The success of MAS has never really been stunning across livestock 

species with the only exception in dairy cattle being the discovery of DGAT1 (Grisart et al., 

2004) and France being the only country that really has consequently implemented MAS 

within a breeding program (Guillaume et al., 2008) for a longer time. 

In 2001, the idea of using dense marker sets to predict total genetic values came up (Meu-

wissen et al., 2001) which has revolutionized the field of animal breeding in a way and at a 

speed not shown by many innovations before. The idea behind this approach is that with 

dense marker maps (thousands or tens of thousands of markers) all QTL affecting a specific 

trait will be in high linkage disequilibrium with at least one marker or chromosomal segment. 

This is why it should be possible to capture all or a major part of the genetic variance of a 

trait with a sufficiently dense marker map. Despite looking for particular QTL with large ef-

fects in the previous MAS approach Meuwissen et al. (2001) described statistical approaches 

where effects of many markers spread across the genome or of the respective haplotypes 

are estimated simultaneously. Without applying any significance threshold, all marker or hap-

lotype effects are summed up afterwards to obtain the total genetic value (which will later be 

called “genomic breeding value”) of an individual.  

The advantages of selection based on genomic breeding values over conventional schemes 

are clear: Using genomic information directly makes it possible to capture Mendelian sam-

pling effects which is not possible with pedigree-based approaches. This may have a positive 

effect on the inbreeding rate per generation (Lillehammer et al., 2011) and the accuracy of 

breeding values. Given that a sufficient number of individuals with phenotypes are available 

to estimate the marker effects, genomic breeding values can be obtained also for individuals 

that are not phenotyped, but just genotyped. This means that accurate breeding values for 

young individuals or even embryos are available and selection (“genomic selection”) is pos-

sible based on these genomic breeding values. In the years after this idea had come up, 

many studies used simulated data sets (e.g. Habier et al., 2007; Solberg et al., 2008; de 

Roos et al., 2009) to test different prediction approaches and implementation scenarios and 

ideas on how to integrate genomic selection into existing breeding programs from e.g. an 

economical point of view were based on deterministic considerations (e.g. Schaeffer, 2006) 
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since appropriate data have not yet been available to assess the impact of genomic breeding 

values and genomic selection in real data.  

 

Availability of SNP data  

In 2001, it was not clear when appropriate data would be available to predict genomic breed-

ing values with a level of reliability that is necessary for an application under practical cir-

cumstances in routine evaluations. It has been favorable for this approach that the full se-

quence of the bovine genome became available in 2009 (e.g. Liu et al., 2009; Zimin et al., 

2009) and that the genotyping technology made a great leap forward in the first years of this 

century so that a huge amount of genomic marker data have become available up to now.  

In genomes of mammals, different kinds of sequence variants exist that can be used as 

markers – amongst others microsatellites, copy number variations, insertions, deletions and 

single nucleotide polymorphisms (SNPs). For practical implementation of genomic breeding 

value prediction, genome-wide markers roughly distributed equally over the genome and 

available in large quantity are necessary. SNPs fulfill these criteria and are therefore an op-

timal marker type for genomic prediction approaches. A SNP is a polymorphism that occurs 

at a single base and is normally biallelic. In mammalian genomes, millions of those SNPs are 

available (e.g. 2.44 Mio SNPs have been discovered in a single Simmental bull (Eck et al., 

2009); 15.8 Mio within 133 Holstein Friesian and Simmental bulls (Hayes et al., 2012)). With 

new technologies, it is possible to obtain genotypes for an individual at many thousands of 

SNPs in one step at reasonable costs by using a SNP array within high-throughput genotyp-

ing platforms. Two world-wide acting companies, Illumina Inc. (http//www.illumina.com) and 

Affymetrix Inc. (http://www.affymetrix.com), provide commercial and customized SNP arrays 

of which Illumina’s arrays comprising around 6’000 (Illumina BovineLD BeadChip), 54’000 

(Illumina Bovine50 BeadChip, referred to as “50K Chip” in the following) and 777’000 SNPs 

(Illumina BovineHD BeadChip) are most common in cattle. Up to now, in official genomic 

evaluation, SNPs of the 50K Chip mostly build the basis of genomic breeding values since 

most elite bulls have been genotyped with this SNP array. 

 

Imputation of genotypes 

Two years ago, the new SNP array, the Illumina BovineHD BeadChip (referred to as “HD 

chip” in the following), became available which includes around 777.000 SNPs. Scientists 

awaited this new array eagerly since it was hoped that a more than 10-fold higher marker 
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density compared to the 50K Chip would increase the accuracy of genomic prediction con-

siderably and would have great advantages for small breeds since multi-breed prediction 

would be more successful. Findings with the HD Chip in real data will be discussed in Chap-

ter 4 and in the General Discussion. 

Many individuals, especially many progeny-tested bulls, had been genotyped with the 50K 

chip or low-density SNP chips before the HD chip has become available, so it was clear from 

the beginning that not all of those individuals would be re-genotyped with the HD chip. It was 

thus necessary to follow another strategy which is called “imputation”. Imputation aims at 

reconstructing genotypes of un-genotyped marker loci in silico. The basic steps of an imputa-

tion process are always the same: Assume a sample of individuals genotyped with a marker 

set A is available and these individuals should be imputed to a larger marker set B. First, 

another sample of individuals genotyped with marker set B must be available (“reference”). 

Second, haplotypes are reconstructed (“phased”) based on relationship-based linkage and/or 

populations-wide linkage disequilibrium for individuals genotyped with marker set B and indi-

viduals genotyped with marker set A using an appropriate software tool. Based on those hap-

lotypes, alleles at marker loci not included in marker set A but in B can be reconstructed for 

individuals that have just been genotyped with marker set A. 

Different software for reconstructing haplotypes and imputing missing data has been devel-

oped especially in the human genetics community (e.g. “fastPHASE” by Scheet & Stephens, 

2006; “MaCH” by Li et al., 2010; “ShapeIt” by Delaneau et al., 2012). Many of these pro-

grams, however, have limited ability to process hundreds or thousands of samples with tens 

of thousands of SNPs in an acceptable time frame or they are not able to process data with-

out a reference set with predefined haplotypes. One exception is BEAGLE (Browning & 

Browning, 2007) which is widely used in the human genetics framework as well as in the field 

of livestock genetics and provides all necessary features. To overcome the problems previ-

ously described, further software has been developed in the last years in the livestock breed-

ing sector, too (e.g. “findhap” by VanRaden et al., 2011; “FImpute” by Sargolzaei et al., 2011; 

“AlphaImpute” by Hickey et al., 2011). 

Apart from the choice of the program the size and the composition of the reference set are 

the two factors that mainly influence the accuracy of imputation (e.g. Pausch et al., 2013). 

Larger reference sets and a larger number of near relatives apparently increase the accura-

cy; however, the more animals have to be genotyped with the higher marker density, the 

more costs will be incurred. One of the strategies often used is therefore to select key ances-

tors in a way that the proportion of genes they have contributed to the actual population is 

maximized (Goddard & Hayes, 2009) and to genotype these ancestors with the HD chip. 
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Recently, there have been studies available with real data that assessed the accuracy of 

imputation when imputing up to the HD chip. Erbe et al. (2012) found imputation accuracies 

with “BEAGLE” for Australian Holstein Friesian and Australian Jersey bulls based on around 

100 HD genotyped key ancestors of 97.5% and 95.6%, respectively. Brøndum et al. (2012) 

compared correlations between true and imputed genotypes in different Nordic breeds with 

single breed and multi-breed reference sets and obtained values of around 0.93 (0.95) in 

Danish Red and 0.97 (0.98) in Finnish Ayrshire with single (multi) breed references of around 

200 (556) individuals using “BEAGLE”. A sire in the reference set improved the accuracy and 

decreased the allele error rate in the imputed offspring. With around 1100 individuals geno-

typed with HD VanRaden et al. (2013) showed that more than 99% of the genotypes could 

be imputed correctly with “findhap” in Holstein Friesian bulls genotyped with 50K. Pausch et 

al. (2013) investigated different imputation methods in Simmental data and found imputation 

accuracies of greater than 0.97 with only 100 key ancestors in the reference using a combi-

nation of pre-phasing with “BEAGLE” and imputing afterwards with “MiniMac” (Howie et al., 

2012). 

From these results it can be concluded that imputing genotypes from 50K to HD is feasible 

and accurate so that imputed genotypes can be used for further studies. In this thesis, im-

puted high density genotypes will be the basis for genomic prediction within and between 

dairy cattle breeds in Chapter 4. 

 

Genomic evaluation and selection in dairy cattle 

Why do genomic selection schemes have such a striking success especially in dairy cattle? 

Four parameters determine the genetic gain of a breeding scheme: Genetic standard devia-

tion, selection intensity, accuracy of breeding value estimation and the generation interval. In 

the following, the genetic standard deviation is assumed to be constant. 

With classical progeny testing schemes in dairy cattle the accuracy of breeding values is very 

high in progeny tested bulls (up to 0.99) but high accuracies can only be obtained when 

many performance records of daughters become available (normally >80, Pryce &       

Daetwyler, 2012), i.e. when the bull is already at least 5 years old. For young bulls, a parent 

average can be calculated but this is too imprecise to build a basis for concrete selection 

decisions and just a pre-selection, namely which bull becomes a testing bull, is done at that 

point in time. Therefore, generation intervals on the bulls’ side are quite high and are the lim-

iting factor in classical breeding schemes. A further point is that keeping testing bulls over 

years up to the point where selection will be made based on progeny records is quite expen-
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sive. Genetic gain could thus be increased and costs could be reduced a lot if more accurate 

breeding values of a bull can be obtained earlier in life. Genomic breeding values can be 

predicted for young individuals not as accurately as with progeny performance but accurately 

enough. This will allow two strategies: a more precise pre-selection for testing bulls is possi-

ble and/or young bulls can be directly used without waiting for any progeny records. Fur-

thermore, genomic selection could also be applied in the bull dams’ path allowing the selec-

tion of elite cows taking place earlier in life and being more precise. 

Schaeffer (2006) showed with deterministic considerations that in a classical four path breed-

ing scheme genetic gain can be doubled and costs per bull can be reduced dramatically 

when applying genomic selection consequently in the bulls’ and the bull dams’ path. In actual 

studies with stochastic simulations of genomic breeding schemes, restrained values of 

around 20% (Lillehammer et al., 2011) up to extreme values of over 100% (e.g. de Roos et 

al., 2011) increase in genetic gain can be found depending on selection intensity and genera-

tion interval assumed in the studies. 

A regular and official genomic evaluation which is the basis for genomic selection was first 

introduced for the breed Holstein Friesian in the US and Canada in 2009 and many countries 

have followed since that time (e.g. Germany in 2010, Australia in 2011). But efforts have also 

been made to use genomic breeding values for other dairy breeds (e.g. USA for Jersey and 

Brown Swiss in 2009, Germany for Simmental and Brown Swiss in 2011). Most countries 

have started with small training sets of a few hundred or a few thousands individuals geno-

typed with 50K SNPs, but as the number of individuals in the training set is crucial, various 

cooperation consortia have been established (e.g. EuroGenomics in Holstein Friesian (David 

et al., 2010), Intergenomics in Brown Swiss (Zumbach et al., 2010), etc.) which helps to im-

prove accuracy of genomic prediction.  

Up to now, the procedure to estimate/predict genomic breeding values for bulls in a genomic 

evaluation is a two-step-method, i.e. first a classical breeding value estimation based on  

pedigree information and progeny records is performed for all proven bulls. Outcomes of this 

step are then used as dependent variables in the genomic breeding value estimation. Almost 

all genomic evaluation systems are based on a best linear unbiased prediction system to 

predict genomic breeding values whose basic methodology will be described below. Different 

variables can be used as quasi-phenotypes which all have some advantages and some dis-

advantages: Estimated breeding values themselves, deregressed proofs (Garrick et al., 

2009) or daughter yield deviations (VanRaden & Wiggans, 1991). In this thesis, estimated 

breeding values will be used in Chapter 2, 3 and 5 while daughter yield deviations will be 

used in Chapter 4. 
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Methods in genomic breeding value prediction 

For the following models,   is defined as the number of SNPs,   as the number of all geno-

typed individuals, and    as the number of genotyped individuals with observations. 

BLUP framework 

The simplest best linear unbiased prediction (BLUP) model in the genomic context is the fol-

lowing: 

     
               [1] 

where   is a vector of observations (quasi-phenotypes),   is an overall mean,    is a matrix 

of genotypes of individuals with observations and is of dimension       ,   is a vector of 

random SNP effects and   is a vector of random residual effects.   is assumed to be normal-

ly distributed with    (       
 ) and   is assumed to be normally distributed with 

   (     
 ). This model is often referred to as random regression BLUP, ridge regression 

BLUP or RR-BLUP. In this model, only individuals with observations are used for estimating 

the marker effects directly, but genomic breeding values ( ) can be predicted in the next step 

also for any further genotyped individuals using  

 ̂    ̂ with   [
  
   

] 

and     is a matrix of genotypes of individuals without observations. 

With e.g. 50K SNPs, however, more than 50.000 SNP effects have to be estimated with this 

model. This may be computationally very extensive, especially if a variance component esti-

mation step is included. Furthermore, animal breeders are often less interested in the SNP 

effects themselves, but more in genomic breeding values. Different authors (Habier et al. 

2007; Goddard, 2009; Hayes et al., 2009) have shown that an equivalent model to RR-BLUP 

exists that leads to the solution for genomic breeding values directly. For this, we first have to 

define any genomic relationship matrix   with the form 

  
   

 
 

where   is the same as before and   is a scaling factor.   will be used to model the covari-

ance matrix between individuals. Now, model 

     
              [2] 
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with   
        

 ,   being a vector of genomic breeding values with    (     
 ) and   be-

ing an incidence matrix relating observations to the random effects. Note that   may contain 

individuals without observations. This model is often referred to as genomicBLUP or GBLUP. 

The phenotypic variance covariance matrix of   in [1] is 

          
   

     
      

     
     

  

and the phenotypic variance covariance matrix of   in [2] is 

       
       

  
    

 

 
       

      
     

     
     

Therefore, [1] and [2] will lead to the same solution for fixed effects and genomic breeding 

values. Equation [2] provides many advantages: It is computationally less demanding since 

the number of random effects that have to be estimated equals the number of individuals 

which is usually much smaller than the number of markers. Second, all individuals, those 

with observations and without observations, can be handled in one step and estimates of 

genomic breeding values are obtained directly. Furthermore, even when solving [2] first, SNP 

effects can be calculated afterwards based on the variance components estimates in [2] 

without the necessity of modeling matrices of dimension markers x markers (e.g. Strandén & 

Garrick, 2009): 

 ̂  
 ̂ 
 

 
  

 (    
      ̂ 

 )
  
(     

  ̂)  
 ̂ 
 

 
  

   
  (     

  ̂) 

For all derivations so far,    
  ̂ could be replaced with a general   , i.e. any type of fixed ef-

fects can be modeled, just as well further random effects could be included in the model. In 

many practical applications, a random polygenic effect is added to the model (e.g. Liu et al., 

2011) assuming that the available markers cannot capture all genetic variance (see Dekkers, 

2007). GBLUP models for predicting genomic breeding values will be used in Chapters 2, 3, 

4 and 5 of this thesis. 

Construction of the genomic relationship matrix 

There are different approaches how to build a genomic relationship matrix. The aim is always 

to use all available marker information to describe the covariance structure between geno-

typed individuals. While the pedigree based relationship matrix presents expected relation-

ship coefficients between two individuals, any genomic relationship matrix shows the realized 

values of relationship and is assumed to be more accurate than the one based on pedigree. 

When using realized values, Mendelian sampling effects are accounted for in the relationship 
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coefficients while this is not possible when using expectations. This also means that it is pos-

sible to distinguish further between individuals e.g. within full-sib groups where all members 

always have the same expected value, but may differ in the realized relationships. In dairy 

cattle, the difference between pedigree based and marker based relationships is reflected 

most notably in increased accuracies of prediction for young individuals when predicting ge-

nomic breeding values instead of using the pedigree index (e.g. VanRaden et al., 2009).  

One of the first studies that presented a marker based relationship matrix was Hayes & God-

dard (2008). They calculated the relationship based on the concept of a similarity index    

(Eding & Meuwissen, 2001), a method that has not been used very often afterwards. Many 

further concepts are based on the basic formula           in which the elements in   and 

the scaling factor   differ between approaches.   is always a matrix of marker genotypes of 

all genotyped individuals with individuals in rows and markers in columns. The elements of   

can directly represent the allele counts (e.g. Habier et al., 2007), namely 0, 1 and 2 for AA, 

AB and BB, or allele counts that are centered in a way that the heterozygotes are represent-

ed by 0, i.e. -1, 0 and 1 for AA, AB, BB. VanRaden (2007) stated that correcting the marker 

genotypes by the expected mean would lead to unbiased predictions since then the expected 

value of   is 0. This is why he proposed to calculate   as 

        (

      
  

    
  

  
      

  
    

) 

    [3] 

with   being a matrix of genotypes coded 0, 1, 2 and   being a matrix where each column 

vector    contains two times the allele frequency of the     SNP (  ). For estimates of the 

genomic relationship coefficients and for further calculations of genomic breeding values, it 

does not matter to which of the original alleles the frequency belongs, but it has to be the 

allele frequency of the allele where the homozygous case on a locus is coded with 2.  

In the beginning of genomic breeding value estimation, a common approach for determining 

  was to use      but this does not take the fact into consideration that marker genotypes 

at different markers may have different variances. Habier et al. (2007) and VanRaden (2007) 

proposed to build   as  

   ∑(  (    ))

 

   

                                                                          4  
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where    is the allele frequency at marker locus  . This kind of standardization is based on 

the fact that    (  )     (    ) and makes the pedigree-based relationship and genomic 

relationship comparable on the same scale (VanRaden, 2008). VanRaden (2008) also ar-

gues that minor alleles will get more weight in the genomic breeding values using this cen-

tralization process in [3] and the standardization with [4], but this argument does not hold, 

since it has been shown that the estimated effects do not differ irrespective of the marker 

coding (Strandén & Christensen, 2011) when using this kind of genomic relationship matrix. 

There are other approaches that do not fit to the form             but which standardize 

each marker separately and then add all marker information together (e.g. VanRaden, 2008; 

Astle & Balding, 2009; Yang et al., 2011), so that 

  
 

 
∑

(     )(     )
 

 (  (    ))

 

   

                                                             5  

where    is the     column in a matrix of genotypes coded 0, 1, 2. Vector    is defined as in 

[3] and contains two times the allele frequency   . In praxis, the differences in estimates of 

genomic breeding values obtained with a genomic relationship matrix based on [3] or based 

on [5] are often negligible, however if many low frequency alleles are in the sample, [5] may 

consider them better. 

Goddard et al. (2011) noted that especially in the data sets where the marker density is not 

high, the estimates of the realized values may have high sampling errors and   may be bi-

ased. Goddard et al. (2011) therefore suggested using 
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where   is the pedigree based relationship matrix and   is a regression coefficient that can 

be estimated based on the variance of the non-diagonal values of   from [5].  

The genomic relationship matrix presented in VanRaden (2007) which uses [3] and [4] will be 

used in all analyses in Chapter 2, 3 and 5, and the genomic relationship matrix described in 

[6] will be used in Chapter 4 of this thesis.  

Bayesian methods 

The second group of approaches proposed for the prediction of genomic breeding values is 

the wide field of Bayesian methods. This paragraph will just give a short overview over a few 

well-known approaches, while there are many others around. BayesA and BayesB have 
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been proposed in the initial paper on genomic breeding value prediction (Meuwissen et al., 

2001) while BayesC  (Habier et al., 2011) followed later.  

The general model for BayesA and BayesB is 

     
   ∑    

 

   

   

while for BayesC  it is  

     
   ∑      

 

   

   

where   is a vector of observations,   is an overall mean (which is treated as random in the 

Bayesian framework),    is a vector of genotypes for all individuals at the     marker locus,    

is the random SNP effect of the     marker and   is a vector of random residual effects. For 

BayesC ,    can be 1 (with probability    ) or 0 (with probability  ) and indicates whether 

the     marker is present in the model or not. Since the estimation of the parameters depends 

on other parameters in the model, all these Bayesian models have to be processed using 

MCMC algorithms over tens of thousands of iterations with a long burn-in phase. Genomic 

breeding values can be predicted afterwards as  ̂  ∑    ̂ 
 
    where  ̂  is the estimated SNP 

effect at the     SNP averaged over the values obtained for all post-burn-in cycles. The three 

approaches mentioned above mainly differ (amongst others) in two points, namely in the 

modeling of the variance of the random SNP effects as well as in the values used for param-

eter   and their way to determine these values. With BayesA, the posterior of the variance of 

each SNP effect is modeled by a SNP specific inverse   -distribution and   is set to 0 for all 

markers, i.e. all markers contribute to modeling the genomic breeding values. For BayesB 

the posterior variance of the SNP effect is also SNP specific, but, in contrast to BayesA,   is 

set to a fixed value > 0 that is defined arbitrarily. The parameter   is used for BayesB in the 

following way: 

   
     (   )  with probability     

   
      with probability   

Values for   that are often used are in the range of 0.9 to 0.99 (e.g. Meuwissen et al., 2001; 

Habier et al., 2010) which means that most of the SNPs have no effect and only a few con-

tribute to variation in the genomic breeding values. BayesA is a special case of BayesB with 

    (Gianola et al., 2009). 
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With BayesC  the variance of the distribution for the SNP effects is also drawn from a scaled 

inverse   -distribution, but is assumed to be the same for all markers. The parameter   is not 

set to a specific value, but is modeled with a uniform prior distribution          (   ). If one 

fixes   to be 0, then this special case of BayesC  will be very similar to GBLUP (Habier et 

al., 2010). 

Both BayesB and BayesC  have the advantage that they include a parameter     that 

allows a situation in which not all markers contribute to the model. The weakness of BayesB 

is the long computing time and the fixation of  , while for BayesC  the assumption that all 

markers having an effect come from the same distribution may not be realistic – at least for 

traits where there are a few larger and many small effects. A further Bayesian method takes 

the advantages of the previous methods and avoids the disadvantages: In BayesR (Erbe et 

al., 2012), SNP effects are assumed to be 0 or to come from different normal distributions 

that differ in their variance with specific probabilities: 
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  (    
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  (    
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The entries of vector   (            ) are not fixed but are modeled with a Dirichlet distri-

bution and   
    

  and   
  are defined as specific proportions of the total genetic variance. This 

method will be presented in more detail in Chapter 4 of this thesis. 

 

Accuracy of prediction and Cross-validation 

Different measures can be used for validating results of genomic breeding value prediction 

methods. The most common parameters for model assessment in terms of prediction are the 

correlation between the true and predicted genomic breeding value as proxy for the accuracy 

of prediction and the slope of the regression of true on predicted breeding values to control 

the bias. Accuracy of prediction in genomic BLUP models can also be obtained from theoret-

ical considerations in the mixed model framework, but in this thesis accuracy of prediction 

will always be assessed as the observed correlation from cross-validation studies.  

Cross-validation is a technique of model validation that has its origin in the field of psycholo-

gy. In the early 1930s it was common to use multiple regression approaches to explain be-

havior of persons or other events. The common procedure was using all available data to 

search for the multiple regression equation that explained the depending variable best (e.g. 

expressed by the multiple correlation coefficient). This means that the equation was derived 
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and evaluated in the same data set which led to a decrease in the accuracy when applying 

this model to predict the dependent variable in an independent data set. Larson (1931) was 

one of the first authors who tried to develop a study design for describing the amount of de-

crease of accuracy when having a limited number of observations available. He split a data 

set of school boys into two comparable groups and used one group to find the best multiple 

regression equation that uses test scores of different subjects to predict the score in another 

subject. Then, he tried to predict values for the second group based on the model trained 

with the first group and correlated the predicted scores in the second group with the ob-

served ones. This was the basic idea, for what later would be called “cross-validation”, name-

ly splitting the data set in groups – one for derivation (training) and one for prediction (valida-

tion) – and getting a realistic idea of the prediction ability of the model.  

Kurtz (1948) gave the best example why validation in an independent data set is mandatory: 

The aim of the study was to predict success as life insurance sales managers based on the 

results of the Rorschach Test, which is a psychological test. A scoring system was devel-

oped in a group of 70 sales manager, but it was found to be “completely useless” (Kurtz, 

1948) when applied to a further group. Mosier (1951) gave the first definition of a cross-

validation procedure: “In cross-validation we have weights based on one sample and we de-

termine their effectiveness on a second sample where both samples are representative of 

the population to which the weights will be applied for prediction.” From then on different 

cross-validation strategies have been established and different ways of best splitting the data 

set have been developed. Without claiming to be complete, the following cross-validation 

strategies can be listed (assume   to be the total size of the data set; see e.g. Arlot, 2010; 

Burman, 1989): 

 Leaving-one-out: 

  replicates have to be run in which there is exactly one observation used for validation and 

    observations are used for training. This strategy is almost unbiased, but computation-

ally very demanding.  

 Double cross-validation: 

This strategy implies splitting the data set in two groups of equal size. The first group is used 

for training and the second group for validation and then vice versa. Replicates could be real-

ized by repeating the procedure with a different random splitting of the data. Note that fitting 

of the model is done only with half the data size.  
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 Random drawing with/without replicates: 

A specific proportion of observations (     ) is randomly chosen to be the training set 

while the remaining observations ((   ) ) represent the validation set. There is a stratified 

alternative, namely generating the sets not randomly but based on different criteria. The size 

of sets can be chosen independently of the number of replicates. 

 k-fold replication: 

The whole data set is divided in k subsets so that there are     individuals in each subset. 

There are   replicates so that each subset acts as the validation set once. Accuracies of pre-

diction are averaged over the   replicates. The number of replicates and the size of training 

and validation sets thus depend on the chosen factor  . This strategy guarantees that each 

observation is used for validation exactly one time. A stratified version (e.g. sorted by age) is 

possible. 

Leave-one-out strategies are very popular in other scientific fields like geo-statistics, but in 

the context of genomic data in livestock the size of the data set is normally too large to run 

leave-one-out cross-validations. The usual strategies are thus k-fold or random drawing 

strategies. All these strategies have the aim to describe the prediction ability of a model. The 

evaluation is normally done with one of the two following parameters: One can measure the 

accuracy directly by considering the correlation between predicted and true observations in 

the respective validation set. The second criterion often studied is the error of prediction, e.g. 

by measuring the mean squared error. If the cross-validation design implies replicates, val-

ues can be averaged over folds and/or replicates.  

In animal breeding, cross-validation has become very popular with the appearance of ge-

nomic breeding value estimation. Normally, phenotypes or conventional breeding values are 

not available for the individuals for which genomic breeding values should be predicted. 

However, it is necessary to assess properties of models and to predict the potential accuracy 

of genomic prediction for those individuals. Thus, cross-validation within the set of genotyped 

and phenotyped individuals has become a frequently applied tool and different cross-

validation strategies have been used in studies with real data sets (e.g. Lee et al., 2008; Lu-

an et al., 2009; Habier et al., 2010). Cross-validation strategies in different forms will be used 

in the following chapters: Random drawing with replicates in Chapter 2, stratified validation 

without replicates in Chapter 4 and k-fold replication in Chapter 5. 
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Objectives of this thesis 

The first publication describing genomic breeding value prediction of Meuwissen et al. in 

2001 has presented first ideas of this new methodology. In the following years, different stud-

ies on testing this new approach in simulated and/or first real data sets and different papers 

on theoretical aspects of the methodology have been published. Apart from others some 

important factors have emerged that seems to be crucial for the obtained level of prediction 

accuracy: Meuwissen et al. (2001) themselves showed that there are differences in accuracy 

of prediction caused by the choice of the prediction model. Habier et al. (2007) showed that 

the prediction accuracy can differ between individuals that are related in different degrees to 

the training set. De Roos et al. (2008) demonstrated that a much larger marker density 

(~300K) than available at that time will be necessary to obtain high prediction accuracies 

across breeds. Dekkers (2007) described that there will be a maximal achievable accuracy 

unequal 1 with a specific marker set depending on how much genetic variance can be ex-

plained by the given markers. Many more examples could be given. All of these studies 

make clear that there is a necessity to take a closer look on how accuracy of prediction is 

determined by various criteria. 

The aim of this study was thus to investigate different validation strategies and several fac-

tors that may influence the accuracy of genomic prediction in any way:  

Chapter 2 shows how different cross-validation strategies influence the correlation between 

genomic and true breeding value based on a series of cross-validation runs in real dairy cat-

tle data with random assignment of individuals to folds.  

Chapter 3 deals with the influence of relationship and age structure between training set and 

validation set within a large data set of German Holstein Friesian bulls. A validation set of the 

500 youngest bulls is predicted with various training sets differing in age and relationship 

structure to the validation set. 

Chapter 4 studies the influence of the underlying marker density and investigates possibili-

ties to process data from different breeds in a combined breeding value estimation. Data sets 

from Australian Holstein and Australian Jersey genotyped with 50K SNPs and imputed to 

777K SNPs are used in purebred and multi-breed validation schemes. Furthermore, a new 

Bayesian method (BayesR) is presented and the influence of the model choice is also stud-

ied. 

Chapter 5 presents a method to improve deterministic equations that try to predict the ex-

pected level of accuracy based on population parameters. Holstein Friesian and Brown 

Swiss data sets build the basis for cross-validation runs which themselves are the empirical 
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basis to estimate the number of independently segregating chromosome segments as well 

as the maximal achievable accuracy with a given marker set. Both estimates are then used 

to find an optimal deterministic equation. 

Chapter 6 includes a general discussion on factors affecting the accuracy of genomic predic-

tion. 
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INTRODUCTION 

The basic idea of cross-validation procedures is to divide a data set into a reference and a 

validation set, to omit any kind of information of the validation set and to predict this infor-

mation, e.g. phenotypes, with a model trained exclusively in the reference set. The accuracy 

of prediction can be used to evaluate the underlying model and to compare alternative mod-

els. In the field of genomic selection, cross-validation can be used for assessing the accuracy 

of genomic breeding values (GEBVs) predicted with a specific model (e.g. Blonk et al., 2010; 

Luan et al., 2009) and for comparing the quality of different approaches used for estimation 

of GEBVs (Lund et al., 2009; Goddard and Hayes, 2007). However, the way of subdividing 

the data set is known to influence the results obtained by cross-validation (Luan et al., 2009; 

Lee et al., 2008). Therefore, we studied the changes in results when using different numbers 

of animals for the reference and the validation set and tried to find optimal subdivision strate-

gies for the different objectives of cross-validation. 

 

MATERIAL AND METHODS 

Data 

We used a sample of 2,294 Holstein bulls, which were genotyped with the Illumina 50K SNP 

chip. SNPs with a minor allele frequency lower than 5%, with missing position or a call rate 

lower than 95% were excluded. After filtering, there were 39,557 SNPs remaining for further 

analyses. Missing genotypes at these SNP positions were imputed using fastPHASE (Scheet 

and Stephens, 2006). All bulls had pedigree information and breeding values for somatic cell 

score with an accuracy > 0.87, which were used as quasi-phenotypes for the following  

analyses.  

Methods to predict the GEBVs 

We used two best linear unbiased prediction (BLUP) models for the estimation and prediction 

of the GEBVs. The first model included a random genomic and a random polygenic effect 

(Model A), while the second one included a random genomic component only (Model B). For 

model A, we fitted 

            

where   is a vector of the phenotypes (breeding values for somatic cell score) for all bulls in 

the reference set,   is the overall mean,   is the incidence matrix for the random polygenic 

effect,   is a vector containing a random polygenic effect for each individual,   is the inci-
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dence matrix for the random genomic effect,   is a vector containing a random genomic ef-

fect for each animal and   is a vector of random residual terms.   is assumed to follow 

 (     
 ) where   is the pedigree based relationship matrix.   is distributed    (     

 ) 

where   is a marker based relationship matrix, which was built according to VanRaden 

(2008) based on all available SNPs (        ). In model A, the total breeding value was 

the sum of the polygenic and the genomic breeding value. 

In model B, the polygenic component was omitted, hence the model was  

         

Here, information of only one eighth of all available SNPs (       ) was used to build  . 

The prediction accuracy of model A is expected to exceed the one of model B. As can be 

seen in the model design, we did not estimate an effect for each single SNP, but used the 

genomic relationship matrix to model a genomic effect for each individual. It was thus possi-

ble to estimate variance components in each step in each replicate by using ASReml (Gil-

mour et al., 2009). With the corresponding variance components, effects were estimated and 

GEBVs for the bulls in the validation set were predicted. 

Cross-validation procedure 

The whole data set was divided into a reference and a validation set. Phenotypes of the ani-

mals in the validation set were assumed to be unknown. First, a random sample of 100 ani-

mals was drawn for the validation set while the remaining 2,194 bulls built the reference set. 

In the next step, the size of the validation set was increased by 100 by moving 100 randomly 

chosen individuals from the reference to the validation set. This was done stepwise until 

1,500 bulls were in the validation set. For each step, GEBVs were predicted for the bulls in 

the validation set with the information from the animals in the reference set. The whole pro-

cedure was repeated 60 times.  

Criteria for comparison 

Pearson’s correlation coefficient between the realized and the predicted phenotypes for the 

animals in the validation set was calculated for each step in each replicate. In case the model 

did not converge during the process of variance component estimation, the correlation for 

this step in the particular replicate was considered to be NA.  

The correlation between realized and predicted phenotypes was also used for testing wheth-

er the models differed significantly from each other. Therefore, the correlation coefficients 

were transformed so that they follow approximately a normal distribution and the difference 
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between the correlation coefficient was tested against being zero (Sachs and Hedderich, 

2009). The test of significantly different correlations was applied in each step in each repli-

cate and the obtained p-values were averaged over the replicates.  

 

RESULTS AND DISCUSSION 

Figure 1 shows a Box-Whisker-Plot of the correlations between realized and predicted phe-

notypes for the animals in the validation set. As expected, Model A was found to be more 

accurate than Model B. With both methods, the highest correlations could be found when the 

number of animals in the validation set (  ) was small. With       , the median of the cor-

relations obtained was 0.689 and 0.627 with Model A and B, respectively. The median was 

almost constant with    ranging between 100 and 600 and then decreased continuously with 

both methods. The median of the correlation was 0.577 and 0.536 for         with Models 

A and B, respectively. Due to the design of cross-validation the smaller the validation set, the 

larger is the reference set. A larger reference set will lead to a more accurate estimation of 

the variance components and thus to a better estimation of the effects. Therefore, also a 

better prediction of the phenotypes for the animals in the validation set is possible and higher 

correlations are expected with small validation sets.  

However, variation over the replicates was also highest in the case of very small validation 

sets. For example, with       , the results varied between 0.545 and 0.794 with Model A 

and ranged from 0.509 to 0.786 with Model B. Lee et al. (2008) described similar tendencies 

concerning the accuracy and the variation of prediction of phenotypes.  

Since a higher number of values can be used for calculating the correlation coefficient when 

the number of animals in the validation set is higher, the correlation coefficient is estimated 

better with larger values of   . Therefore, even if the absolute distance between the models 

regarding the correlation coefficients seems to be similar with all sizes of the validation set, a 

significance differentiation between Models A and B was only possible with    ranging be-

tween 700 and 1,300 (Figure 2). 
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Figure 1: Box-Whisker-Plot of the correlations between realized and predicted phenotypes 

for the animals in the validation set.  

 

 

 

Figure 2: -log(p)-values (averaged over the replicates) of the test for a difference in correla-

tion coefficients of Models A and B. The dashed line symbolizes the significance threshold on 

a 5% error level. 
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CONCLUSION 

The optimal subdivision of a data set depends on the objective of cross-validation. The high-

est correlations can be obtained with the size of the reference set being large and therefore 

the validation set being small. A small validation set, however, also leads to a high variation 

in the obtained correlations and results depend strongly on the sample chosen for the valida-

tion set. A five-fold subdivision, using 20 per cent of the data as validation set, seems to be a 

good compromise. Larger validation sets provide more accurate estimation of correlation 

coefficients. Hence, if the aim is to differentiate significantly between two models, larger vali-

dation sets are recommended. 
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SUMMARY 

A dataset of 5698 Holstein Friesian bulls born between 1981 and 2005 was used to study the 

influence of different relationship levels between a training set and the set of candidates for 

whom genomic breeding values (GBV) are to be predicted. Traits studied were milk yield and 

somatic cell score. Different scenarios were modeled while always the GBV of the 500 

youngest bulls of the available data set were predicted. The correlation between true breed-

ing value and GBV was used as evaluation criterion. The prediction of the youngest bulls 

was best when other bulls of the same age or only slightly older or bulls which were especial-

ly highly related to the candidates were used to train the model while there was a decrease 

of accuracy, especially for GBV in somatic cell score, when the oldest bulls formed the train-

ing set. Reducing the maximum relationship between all candidates to the training set to less 

than 0.5 led to a decrease in accuracy. The decrease was even stronger when the maximum 

relationship was limited to less than 0.25. It seems that accuracy of prediction of GBV de-

pends clearly on the relationship and age structure between the validation and the training 

set which is in accordance with some previous studies. Therefore, it is implicitly necessary to 

continuously fill the training sets used for predicting young bulls with new progeny tested 

bulls to avoid the reduction of maximum relationship. 

 

INTRODUCTION 

In the last years, prediction of genomic breeding values has become a popular tool for pre-

dicting reliable breeding values of not yet progeny tested bulls of young age, especially in 

dairy cattle populations. Different studies (e.g. Lund et al. 2009; Habier et al. 2010) have 

shown that accuracy of prediction is clearly influenced by the relationship between bulls in 

the training and in the validation set. Since the methodology of genomic selection is new, 

there are still enough progeny tested bulls available which are strongly related to the candi-

dates and can be used to train the models. However, in a few years, if genomic selection will 

be consequently applied, there may be a lack of such animals. It is thus necessary to further 

investigate how the relationship and age structure influences the accuracy of genomic breed-

ing values of young bulls. 
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MATERIALS AND METHODS 

Data 

We used a sample of 5698 Holstein bulls, which were genotyped with the Illumina 50K Single 

Nucleotide Polymorphism (SNPs) chip. SNPs with a minor allele frequency lower than 1%, 

with missing position or a call rate lower than 95% were excluded. After filtering, there were 

42,551 SNPs remaining for further analyses. Missing genotypes at these SNP positions were 

imputed using Beagle 3.2 (Browning and Browning 2007).  

The bulls were born between 1981 and 2005. The average of the mean pedigree-based rela-

tionship between a random bull and all others was 0.093 while the mean of the maximum 

relationship was 0.459. 1832 bulls had a genotyped father and 1974 had one or both grand-

sires genotyped. There were 77.2% of bulls having at least 10 half or full sibs. The average 

inbreeding coefficient was 0.045. All bulls had pedigree information and breeding values for 

somatic cell score and milk yield. Average accuracy of the breeding values of the validation 

bulls was 0.89 and 0.96 for somatic cell score and milk yield, respectively. For bulls in the 

training sets, it was between 0.92 and 0.96 for somatic cell score and between 0.97 and 0.98 

for milk yield in the different scenarios. 

Method to predict GBV 

Genomic breeding values were predicted using best linear unbiased prediction (BLUP) 

based on the model 

          

where   is a vector of quasi-phenotypes (breeding values of milk yield or somatic cell score, 

respectively) for all bulls in the training set,   is a column vector of ones,   is the overall 

mean,   is the incidence matrix for the random genomic effect,   is a vector containing the 

random genomic effect (i.e. the genomic breeding value) for each animal and   is a vector of 

random error terms.   is assumed to be distributed    (     
 ) and   is assumed to follow 

 (     
 ).   is a genomic relationship matrix which was built based on all SNPs available 

after quality control following VanRaden (2008). Variance components were estimated once 

with the complete data set using ASReml 3.0 (Gilmour et al. 2009) and were then used for all 

runs.  

Validation strategy 

The dataset was used for studying the influence of relationship and age structure on predic-

tion of genomic breeding values (GBV). For this, we ran different scenarios with a constant 
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set of candidates (validation set) whose GBV were predicted using different training sets to 

train the model. Since the usual application of genomic prediction in cattle is the prediction of 

genomic breeding values for young bulls without phenotypes and not yet progeny tested, we 

used the 500 youngest bulls in our data set (all born in 2005) as the validation set for all sce-

narios. For each scenario, 2000 bulls fulfilling scenario specific criteria were chosen from the 

remaining data set. Prediction was then replicated 10 times in each scenario using always a 

random sample of 1500 out of the 2000 bulls at a time. As a standard for comparison to all 

other scenarios the training set comprised first of all completely randomly chosen bulls (ran-

dom). For two further scenarios, the 2000 bulls were the oldest ones (old) and the youngest 

ones (young) of the remaining data set. To study the changes in accuracy of prediction 

when the relationship between training and validation set was reduced, we performed three 

scenarios where the training set contained only animals with a maximum pedigree-based 

relationship less than 0.25 (           ) to all candidates. In the first of these three scenar-

ios, we only controlled the maximum relationship (    ) while in both the others we also con-

trolled the age structure (     : youngest bulls with            ,      : oldest bulls with 

           ). In one further scenario, a maximum relationship of 0.5 was allowed (    ). 

The last scenario (maxrel) tried to maximize the relationship between training and validation 

set by including all available near relatives (i.e. sire, grandsires, full and half sibs) of all can-

didates to the training set and filling the rest with bulls having a relationship of greater than 

0.25 to as many candidates as possible. 

Criterion for comparison 

For the evaluation of the prediction, the correlation (        ) between predicted GBV and 

true breeding value (TBV) was used. For obtaining         , first Pearson’s correlation coeffi-

cient between the estimated breeding values (used as phenotypes) and the predicted GBV 

for the animals in the validation set was calculated in each scenario for each replicate. This 

correlation coefficient was then divided by the mean accuracy of the estimated breeding val-

ues of the animals in the respective validation set. To compare the relationship structure be-

tween different scenarios, the maximum and mean relationship of each of the 500 youngest 

bulls to all animals in the particular training set was calculated as well as the average number 

of animals in the training set to whom each of the candidates was related with a relationship 

coefficient greater or equal 0.25.  
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RESULTS AND DISCUSSION 

Results for all scenarios and both traits regarding the mean accuracy of prediction and the 

key data of the relationship structures are given in Table 1.  

Boxplots of the accuracy of prediction measured by          for all scenarios are shown in 

Figure 1 for milk yield and somatic cell score. For both traits, the prediction was slightly better 

when random samples of young bulls were used to train the model in comparison to a ran-

dom sample of bulls regardless of their age. These samples often contain large groups of 

half sibs of candidates so that the mean and maximum relationship was rather high in com-

parison to other scenarios. This may explain why prediction was better here.  

Table 1: Accuracy of prediction and relationship measurements in different scenarios and 

both traits (milk yield and somatic cell score).  

      
Scenario 

              

milk yield 

              so-

matic cell score 

Maximum 

relationship 

Mean 

relationship 

No of animals  

            

      
random 0.630±0.006 0.667±0.004 0.375 0.098 11 

old 0.568±0.006 0.563±0.016 0.395 0.094 3 

young 0.649±0.005 0.718±0.007 0.334 0.104 25 

     0.543±0.006 0.626±0.006 0.318 0.100 9 

     0.489±0.009 0.524±0.009 0.223 0.090 0 

      0.534±0.005 0.454±0.011 0.221 0.090 0 

      0.543±0.007 0.573±0.006 0.221 0.090 0 

maxrel 0.685±0.005 0.731±0.003 0.430 0.109 28 

      Results for correlations between predicted genomic breeding values and true breeding  
values (        ) were averaged over the ten replicates. Relationship criteria were measured 

between each candidate in the validation set and all animals in the respective training set 
and then averaged over all 500 candidates and the ten replicates. The last column shows the 
average number of animals in the training set a candidate is related to with a relationship 
coefficient greater or equal 0.25. 

 

Including all animals in the training set which were directly related to the candidates (sce-

nario maxrel) led only to a slight increase in accuracy for both traits in comparison to the 

scenario young. This was expected due to the fact that relationship between all young Hol-

stein Friesian bulls is quite high on average. Therefore, candidates and bulls in the training 

sets were related to a large extent even if a random sample of young bulls regardless of the 

relationship structure was used for the training set.  
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An unambiguous trend of reduced prediction ability was observed when the relationship be-

tween training and validation set was limited to a specific maximum value as well as when 

the age difference between training and validation set became greater. For somatic cell 

score, the prediction was lowest when using the oldest available bulls with a maximum rela-

tionship of less than 0.25 to every candidate, while for milk it was lowest with a random sam-

ple with a maximum relationship restricted to less than 0.25 to every candidate. 

We even could find a reduction of accuracy when there were only no more sires (and full 

sibs) of the candidates in the training set (scenario     ). Lund et al. (2009) presented simi-

lar tendencies when excluding sires from the training sets for three different traits in a sample 

of Nordic Holstein bulls. If the maximum relationship was limited to less than 0.25, the reduc-

tion in prediction ability was even worse, especially for somatic cell score.  

This is in accordance with the work of Habier et al. (2010) who showed a continuous de-

crease of accuracy in different traits when reducing the permitted maximum relationship step 

by step in a limited sample of Holstein Friesian bulls. A limitation of             means that 

no sires, grandsires, half and full sibs were used to train the model. From a practical point of 

view, this is a scenario which would become relevant after only two generations when the 

breeders fail to rebuild the training sets with enough new progeny tested bulls.  

 

    

Figure 1: Boxplots of the accuracy of prediction for milk yield and somatic cell score for all 

scenarios. 
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CONCLUSIONS 

Different training sets were used to train the model and to predict genomic breeding values 

for the 500 youngest bulls of the available data set. Different levels of relationship and age 

structure between training and validation set led to differences in accuracy of prediction. Re-

ducing the relationship implicated an apparent decrease of accuracy of prediction. Therefore, 

in all kinds of validation or cross-validation procedures, relationship and age structure of the 

sample should be accounted for to ensure fair assessment of the predictive ability.  

Concerning practical application of GBV prediction, especially in strongly related samples like 

progeny tested Holstein Friesian bulls, there seems to be no critical point as long as sires, 

half or full sibs are included in the training sets. For future prediction, though, a decrease of 

accuracy is expected when maximum and therefore also mean relationship between the 

training individuals and the candidates will decrease. If not enough new progeny tested bulls 

are continuously added to the training set, which may be the case in genomic selection 

schemes minimising the generation interval (Lillehammer et al. 2011), accuracy of prediction 

will deteriorate in perceivable steps even after only one or two generations.  
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ABSTRACT 

Achieving accurate genomic estimated breeding values for dairy cattle requires a very large 

reference population of genotyped and phenotyped individuals. Assembling such reference 

populations has been achieved for breeds such as Holstein, but is challenging for breeds 

with fewer individuals. An alternative is to use a multi-breed reference population, such that 

smaller breeds gain some advantage in accuracy of genomic estimated breeding values 

(GEBV) from information from larger breeds. However, this requires that marker-quantitative 

trait loci associations persist across breeds. Here, we assessed the gain in accuracy of 

GEBV in Jersey cattle as a result of using a combined Holstein and Jersey reference popula-

tion, with either 39,745 or 624,213 single nucleotide polymorphism (SNP) markers. 

 The surrogate used for accuracy was the correlation of GEBV with daughter trait deviations 

in a validation population. Two methods were used to predict breeding values, either a ge-

nomic BLUP (GBLUP_mod), or a new method, BayesR, which used a mixture of normal dis-

tributions as the prior for SNP effects, including one distribution that set SNP effects to zero. 

The GBLUP_mod method scaled both the genomic relationship matrix and the additive rela-

tionship matrix to a base at the time the breeds diverged, and regressed the genomic rela-

tionship matrix to account for sampling errors in estimating relationship coefficients due to a 

finite number of markers, before combining the 2 matrices. Although these modifications did 

result in less biased breeding values for Jerseys compared with an unmodified genomic rela-

tionship matrix, BayesR gave the highest accuracies of GEBV for the 3 traits investigated 

(milk yield, fat yield, and protein yield), with an average increase in accuracy compared with 

GBLUP_mod across the 3 traits of 0.05 for both Jerseys and Holsteins.  

The advantage was limited for either Jerseys or Holsteins in using 624,213 SNP rather than 

39,745 SNP (0.01 for Holsteins and 0.03 for Jerseys, averaged across traits). Even this lim-

ited and nonsignificant advantage was only observed when BayesR was used. An alternative 

panel, which extracted the SNP in the transcribed part of the bovine genome from the 

624,213 SNP panel (to give 58,532 SNP), performed better, with an increase in accuracy of 

0.03 for Jerseys across traits. This panel captures much of the increased genomic content of 

the 624,213 SNP panel, with the advantage of a greatly reduced number of SNP effects to 

estimate. Taken together, using this panel, a combined breed reference and using BayesR 

rather than GBLUP_mod increased the accuracy of GEBV in Jerseys from 0.43 to 0.52, av-

eraged across the 3 traits.  
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INTRODUCTION 

To accurately predict genomic breeding values for selection candidates with no phenotype of 

their own, a very large reference population of genotyped and phenotyped individuals is re-

quired to derive the prediction equation (Goddard, 2009; VanRaden et al., 2009; Brøndum et 

al., 2011). Although this has been achieved for breeds such as Holstein-Friesian dairy cattle 

in some countries (e.g., Wiggans et al., 2011), for smaller breeds, assembling such large 

reference populations is likely to be very challenging (particularly for breeds with limited 

numbers of progeny-tested sires available for use in the reference population). An alternative 

is to use a multi-breed reference population, such that the total number of individuals in the 

reference set is large. For this strategy to actually increase the accuracy of genomic estimat-

ed breeding values (GEBV) within a breed requires 1) sufficiently dense markers such that 

the associations between the marker alleles and the alleles at the QTL affecting the traits are 

consistent across breed and 2) at least a proportion of the QTL segregating in several of the 

breeds.  

de Roos et al. (2008) demonstrated that associations between alleles of pairs of SNP (using 

1 SNP as a surrogate for a QTL) were conserved across Holstein, Jersey, and Angus popu-

lations, provided that markers were <10 kb apart. They concluded that to find markers that 

are in linkage disequilibrium with QTL across diverged breeds, such as Holstein, Jersey, and 

Angus, would require approximately 300,000 markers. The Bovine HapMap Consortium 

(Gibbs et al., 2009) reached a similar conclusion, demonstrating that among Bos taurus 

breeds, associations between alleles at different SNP were 90% conserved across breed 

provided the SNP were less than 10 kb apart. In a simulated data set with the same level of 

linkage disequilibrium both within and across breeds as observed for real Holstein and Jer-

sey populations, de Roos et al. (2009) demonstrated that the most accurate genomic predic-

tions were achieved when phenotypes from all populations were combined in 1 reference 

set, provided the marker density was sufficiently high (equivalent to a marker every 10 kb).  

In real data, marker density has been limited to a marker approximately every 60 kb (approx-

imately 50,000 SNP genome wide, termed 50K). In a multi-breed beef cattle population, Ki-

zilkaya et al. (2010) demonstrated limited across population predictive ability using these 50K 

SNP. Hayes et al. (2009a) and Pryce et al. (2011) both demonstrated very limited or no in-

crease in accuracy of genomic predictions using these SNP with combined Holstein Jersey, 

and Holstein, Jersey and Fleckvieh dairy cattle reference populations, respectively.  

With the recent development of an approximately 777K bovine array [Illumina Bovine high 

density (HD); Illumina Inc., San Diego, CA], the hypothesis that the accuracy of genomic 

predictions for some breeds can be improved by using a multi-breed reference population, 
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provided marker density is sufficiently high, can be tested. One challenge here is that a very 

large number of animals have been genotyped with 50K, and are unlikely to be regenotyped 

with the approximately 777K SNP. In this study, we explore imputation of genotypes (e.g., 

Browning and Browning, 2009; Marchini and Howie, 2010) as an efficient strategy to derive a 

large reference set with 800K genotypes.  

We then explore alternative methods for deriving the SNP prediction equation. A widely used 

method for genomic prediction is genomic BLUP (GBLUP; e.g., VanRaden, 2008; Goddard, 

2009), in which the expected relationship matrix among the animals in the population is re-

placed with the realized relationship matrix (or genomic relationship matrix) derived from 

markers. An approach is outlined for calculating the genomic relationship matrix, which takes 

into account both the inbreeding since the breeds diverged from a common population, and 

the inbreeding that has occurred since the founders of the pedigree used to derive the ex-

pected relationship matrix. This allows the genomic relationship matrix and expected rela-

tionship matrix to be combined to maximize the accuracy of prediction. Further, with such 

dense SNP data, an efficient strategy may be to allow a proportion of SNP to be removed 

from the prediction model. We outline a new computationally efficient method that allows this.  

 

MATERIALS AND METHODS  

Data  

The Illumina Bovine SNP50v2.0 and BovineHD chips were used to genotype the animals. 

The bovine Bead-Chips were processed by following the Infinium protocol from Illumina, and 

the BeadChips were scanned using the iScan scanner. The raw data was analyzed using 

GenomeStudio software.  

Two genotype data sets were used in this study. The first was heifers and bulls genotyped 

with the Illumina High-Density Bovine SNP chip (which we will call the 800K panel). The sec-

ond data set was 2,257 Holstein and 540 Jersey Bulls genotyped with the Illumina Bovine 

50K array (which we will call the 50K panel; Matukumalli et al., 2009). For the first genotype 

data set, 903 Holstein-Friesian heifers from a feed conversion efficiency trial (Pryce et al., 

2012), 93 Holstein-Friesian key ancestor bulls, and 93 key ancestor Jersey bulls were geno-

typed with the Illumina High-Density Bovine SNP chip, which has 777,963 SNP markers. The 

SNP positions used were from UMD 3.1 (University of Maryland, College Park, MD). Strin-

gent quality control procedures were applied to the data. These included the use of the Illu-

mina GenCall score, which describes the performance of genotyping each SNP in each indi-

vidual. From previous experience, genotype calls with GenTrain score (GenCall) >0.6 are 
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high quality; below this value they were excluded. There were 650,934 SNP genotyped at 

GenCall >0.6. Furthermore, 343 mitochondrial SNP, 1,124 Y chromosome SNP, and 1,735 

unmapped SNP were excluded. Some 55 SNP with duplicate map positions were removed 

so 625,925 SNP remained. Forty-eight individuals with fewer than 90% of SNP genotyped at 

GenCall <0.6 were removed. Across the remaining samples, 99.6% of SNP were genotyped 

at GenCall >0.6. Animals with excess heterozygosity (>0.4) were removed, as this is a good 

indicator of sample contamination. Five animals were identified with heterozygosity above 

this threshold; however, all of these had already been removed in the step above (i.e., >90% 

of SNP genotyped). The final stage of filtering was for SNP with very low minor allele fre-

quency (SNP with less than 10 copies of the rare allele in the population were removed). An 

additional filter was imposed to filter SNP with low imputation accuracy; this is described be-

low.  

In the second set of animals (2,797 Holstein and Jersey progeny-tested bulls), genotyped for 

the 50K panel, quality filters were imposed as described in Hayes et al. (2009a). Further, 

SNP that were not on the 800K panel after quality control in the data set were removed, leav-

ing 39,745 SNP of the 50K panel. Mendelian consistency checks were performed on both 

50K and 800K data, and genotypes failing Mendelian consistency checking were set to miss-

ing.  

Phenotype data for the 2,797 bulls were daughter trait deviations (DTD; e.g., VanRaden and 

Wiggans, 1991) for milk yield, fat yield, and protein yield, from single-trait models.  

Imputation  

Imputation of the 50K data set to 800K genotypes was performed with BEAGLE software 

(Browning and Browning, 2009). Prior to this step, cross-validation was used to assess the 

accuracy of imputation that could be achieved. The Holstein heifers that were genotyped for 

the 800K panel were split into 2 subsets at random. In the second split, the genotypes were 

cut down to the 39,745 SNP on the 50K panel. Imputation was then performed, and the ac-

curacy of imputation was taken as the proportion of genotypes that were correctly imputed. 

This process was then repeated, but using the second split to impute into the first split. To 

assess the value of having key ancestors genotyped on the 800K panel for imputation, both 

runs were repeated with the key ancestors 800K genotypes added.  

For the Jerseys, there were only 93 key ancestor bull genotypes for the 800K panel. The 

accuracy of imputation was assessed using cross-validation again, but dropping 20 bulls at 

random as the set with 39,745 SNP. This was performed 5 times. It became obvious as a 

result of imputing 50K to 800K in the Holstein heifer data cross-validations that a small num-
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ber of SNP (1,231) were imputed very inaccurately, with accuracy across animals below 80% 

(Figure 1). Accuracy here is defined as the proportion of genotypes that are correctly imput-

ed. We postulated that these SNP could be mismapped. We attempted to remap the SNP 

using linkage disequilibrium information. For each of the 1,231 SNP, the R2 with all the other 

624,924 SNP was calculated using genotype frequencies as described by Zaykin et al. 

(2008). The weighted (by distance from the center of the window) average R2 was calculated 

in 20 SNP windows across the genome. If the window with the highest average R2 with the 

remapped SNP was greater than 1,000 kb different to the position in the original map file, the 

new position of the SNP being remapped was at the center of the window with the highest 

weighted average R2 value. This algorithm is implemented in ldMapper, a program available 

from the authors.  

The imputation was performed again using the proposed new positions of the SNP. This 

greatly improved the accuracy of imputation for 601 of the SNP; however, 630 of the SNP 

were still poorly imputed (Figure 1). These were removed from the data set, giving a final 

data set of 624,213 SNP for the 800K panel. The cross-validations described above were 

redone to get the final results. The 800K panel genotypes (actually 624,213 SNP) were then 

imputed into the 50K bull data set.  

Finally, as the BEAGLE imputation as implemented here does not use pedigree information, 

we tested for Mendelian inconsistencies in the post-BEAGLE (imputed) 800K genotypes. We 

found that a small proportion of SNP genotypes were inconsistent in sire-son comparisons 

(e.g., opposing homozygotes), amounting to 0.6% of the genotypes. 

Transcriptome Panel  

To test both the hypothesis that mutations affecting quantitative traits reside in exons, in-

trons, and regulatory regions, and to potentially reduce the computational demand when cal-

culating genomic predictions, we tested another panel of SNP that were in the 624,213 

above (800K panel) and also within or near the transcribed part of the genome. The start-

stop positions of the transcribed part of the genome were as defined by L. K. Matukumalli 

(author on the current paper), plus SNP within 1 kb of these stop or start positions. The tran-

scribed part of the genome was identified from a large collection of mRNA transcripts, 

mapped to the UMD 3.0 bovine assembly (http://www.cbcb.umd. 

edu/research/bos_taurus_assembly.shtml). This panel (which we will call the transcriptome 

panel, TRANS) consisted of 58,532 SNP.  

 



4th CHAPTER Influence of Marker Density and Multi-Breed Prediction 52 

 

 

Figure 1: Accuracy of imputation by SNP using BEAGLE software (Browning and Browning, 

2009), before and after remapping 1,231 SNPs with < 80% accuracy of imputation in the 

original data set. Single nucleotide polymorphisms with <80% accuracy of imputation were 

remapped using linkage disequilibrium (LD), with the new position taken as the position that 

gave the highest LD in a window of 20 SNP, with all genome positions considered. 

 

Methods for Genomic Prediction  

The bulls in each breed were split into reference bulls (those progeny tested before 2007) 

and validation bulls (those progeny tested in 2007 or later). There were 1,897, 360, 454, 86 

Holstein reference, Holstein validation, Jersey reference, and Jersey validation bulls, respec-

tively. Unless otherwise described, the reference set combined both the Holstein and Jersey 

reference bulls. The surrogate used for accuracy of GEBV was the correlation of GEBV and 
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DTD in the validation bulls. This surrogate was not corrected for the reliability of the DTD 

(which averaged 0.8 in the validation sets). The regression of GEBV on DTD was also calcu-

lated. For each method, the SNP subsets used were 50K, 800K, and TRANS panels. The 

methods used to predict GEBV were as follows.  

GBLUP 

The following model was fitted to the data  

           

where   is a vector of phenotypes,    is a vector of 1s,   is an overall mean,   is a design 

matrix allocating records to breeding values,   is a vector of genomic breeding values, and    

is a vector of random normal deviates with variance  ( )  (    
 ), where   

  is the error 

variance. The variance of breeding values was  ( )     
 , where   is the genomic relation-

ship matrix derived as in Yang et al. (2010), with no consideration of breed, and   
  is a ge-

netic variance. Then, breeding values for both phenotyped and nonphenotyped individuals 

can be predicted as 

[ ̂]  [       
  
 

  
 ]

  

[  (     ̂)]  

where  ̂ is a vector of EBV,    is the transpose of  , and  ̂ is an estimate of the mean. Vari-

ance components were estimated with ASReml software (Gilmour et al., 2002).  

GBLUP_mod 

Goddard et al. (2011) argued that EBV, and particularly the accuracy derived from the coeffi-

cient matrix from GBLUP, are biased due to sampling errors in elements of the genomic rela-

tionship matrix due to a finite number of markers, where the expectation of  , with   defined 

as above, given the estimate of   ( ̂),  (   ̂)   ̂ . This also means, for example, that infor-

mation from the expected relationship matrix ( ) derived from pedigree and   cannot be 

combined to maximize the accuracy of the EBV in a one-step approach (e.g., Misztal et al., 

2009). Goddard et al. (2011) suggested a new genomic relationship matrix that regressed 

elements of   toward   to account for sampling error in estimating coefficients of   to create 

a new matrix   :  

   [   (   )]       [1] 

where  
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   ( ) [ ( )  
 

 
]      [2] 

and  ( ) is the variance of the nondiagonal elements of   obtained with   markers;  ( ) 

can be obtained simply by taking all of the nondiagonal elements of  , where   is calculated 

as in Yang et al. (2010) and calculating the variance of these elements.  

To derive    for a multi-breed population, an appropriate base population relative to which   

and   are both defined must be chosen. One logical base population in our situation is that 

immediately before the divergence of Holsteins and Jerseys.  

First, a   matrix can be calculated, which records covariances relative to a base that is a 

composite breed ( ) made up of a proportion of   Holsteins and (   ) Jerseys.  

   
   

 
 

where   is a centered matrix calculated as       , with         (   )    , and 

   ∑   (    )
 
   . Here,      and      are the average allele frequencies of the 2 allele in 

Holsteins and Jerseys, respectively;   is a matrix of animals by SNP, with SNP genotypes 

coded            or     ;   
    

         
 with      and      defined below; and    is the 

frequency of the 2 allele for the     SNP. The calculation of    is similar to that described by 

VanRaden (2008) for a purebred population but with a modification to the allele frequencies 

to scale   to the composite base. Our approach is different from that of Harris and Johnson 

(2010), who also derived   for a multibreed population. They used the approach of partition-

ing the diagonals of the matrix into breed fractions to account for different variances among 

breeds and include segregation variances because of different allele frequencies among 

breeds. However, their approach will accommodate crossbred animals; ours would need to 

be extended to do this.  

Then, in our approach    is adjusted for the inbreeding that has occurred in both breeds rela-

tive to the old base (the base at the divergence of Holsteins and Jerseys):  

    (   )      

where   is the inbreeding relative to an    base:  
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∑        (        )
 
   

∑ [      (        )        (        )]
 
   

   

and 

       
∑        (        )
 
   

∑ [      (        )        (        )]
 
   

   

 

The pedigree-derived   must also be converted to the old base (e.g., Powell et al. 2010). For 

the within-Holstein blocks,       [  (      )]   (      ), where      is the amount of 

inbreeding that has occurred since the base of the pedigree within Holsteins; we approximat-

ed this as the average of the off-diagonal elements of     . The within-Jersey block was 

constructed in the same way. All elements of the Holstein × Jersey block of   were 0, as no 

pedigree links existed between the breeds. Note that in practice, the estimate of      and      

could be an underestimate due to the incompleteness of the pedigree. With an incomplete 

pedigree the base is less well defined.  

Once   and   were constructed, the regression of   toward   to account for sampling errors 

in the genomic relationship coefficients (Equation 1) was determined. This was done sepa-

rately for each breed, and the breed × breed block (e.g., Holstein × Jersey) by calculating the 

variance of the off-diagonal elements within each of these blocks.  

BayesR 

The GBLUP approaches assume that all markers have a small effect and that these effects 

are normally distributed (e.g., Habier et al., 2007; Hayes et al., 2009b). Given the large num-

ber of markers, a more appropriate prior may be that some of the markers are not in linkage 

disequilibrium with QTL, so have zero effect, whereas others have a small to moderate ef-

fect. This prior was proposed by Meuwissen et al. (2001). The challenge of implementing a 

method that uses such a mixture prior is computational efficiency – for example, in the 

BayesB of Meuwissen et al. (2001), sampling of SNP variances from their posterior distribu-

tions simultaneously with the SNP effects required a Metropolis Hastings algorithm.  

Verbyla et al. (2009) described a stochastic search variable selection (BayesSSVS) strategy, 

which maintained the same assumptions about the distributions of SNP effects while main-

taining constant dimensionality, which allowed a Gibbs sampling scheme to be used to con-

struct the posterior distributions of the parameters. However, one potential criticism of both 

BayesB and BayesSSVS is that the proportion of SNP in each distribution was not sampled 
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appropriately, such that the means of the posterior distributions of the proportion of SNP with 

a zero or nonzero effect closely reflected the prior values of these proportions (e.g., “lack of 

Bayesian learning”; Habier et al., 2011). Here, both to overcome this drawback of BayesB 

and BayesSSVS, and for computational efficiency, we propose a new method that assumes 

that the true SNP effects are derived from a series of normal distributions, the first with zero 

variance, up to one with a variance of approximately 1% of the genetic variance. The model 

fitted to the data was 

    
           

 where   is a vector of   DTD for each trait;   is the (     ) design matrix allocating records 

to the marker effects described above; vector   is a (     ) vector of SNP effects assumed 

normally distributed [    (    
 )];   is a vector of random deviates, where   

  is the error 

variance;    is the polygenic breeding value of the jth animal,  ( )     
 , where   is the av-

erage relationship matrix;   
  is the polygenic variance; and   is a matrix that allocates rec-

ords to animals.  

The variance of the ith SNP effect had 4 possible values:  

  
      

          
    

         
    

        
   

where   
  is the assumed total genetic variance, which was calculated as   

      
     

 , with 

    
  being the assumed reliability of the DTD, and     

  the variance of the DTD. Using these 

variances results in shrinkage that allows the SNP effects themselves to range from zero 

effect to moderate effect. The proportions of the SNP in each distribution were 

             and      respectively, in a vector   .  

Bayesian estimation of the parameters was used. The prior distribution of the proportions of 

SNP in each distribution    was the Dirichlet distribution, with     (where   is a 4 × 1 vec-

tor of pseudo counts, all with value 1 to give an almost uninformative prior with the numbers 

of SNP used here). The Dirichlet distribution is a convenient choice of prior, as it is a conju-

gate before the multinomial distribution, such that the posterior distribution of    is     (  

 ), where   is a vector containing the number of SNP in each distribution estimated from the 

data. To obtain these estimates, we first calculated 4 likelihoods assuming the considered 

SNP being in 1 of the 4 normal distributions at a time with the respective probability    .  
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The likelihood that SNP   is in distribution   is  

    (   )             
   (           ̂)

  
     (   )  

where    is the vector of phenotypes corrected for all marker effects other than marker  , the 

overall mean, and the polygenic effects ( ̂);    is a column vector containing the SNP geno-

types of all animals for SNP   ;   is the variance-covariance structure of a reduced model, 

including only the effect of the respective SNP and a residual effect; and        was calculat-

ed as     (  
 )     (

  
      

  
   ), where    contains only the information for the current SNP 

effect.1  

Then, the probability that SNP   is in distribution   is  

 

∑    [ (   )   (   )] 
   

   

Based on these probabilities, we selected the normal distribution to sample the SNP effect 

from using a uniform random variate, using the probabilities of the SNP being in each of the 

distributions for the current iteration. Over all the SNP, we thus obtained estimates for the 

elements of  .  

                                                
1 Note that there is an error in the original version of this manuscript. The correct version of 

this paragraph is: 

 

The likelihood that SNP i is in distribution k is             

    (   )             
   (            

 )

  
     (   )  

where    is the vector of phenotypes corrected for all marker effects other than marker  , the 

overall mean and the polygenic effects,   
  is the mean of the posterior distribution of the 

SNP effect when assumed to be in the     distribution,    is a column vector containing the 

SNP genotypes of all animals for SNP  ,   is the variance-covariance-structure of a reduced 

model including only the effect of the respective SNP and a residual effect and        was 

calculated as     (  
 )     (

  
      

  
   ), where    contains only the information for the cur-

rent SNP effect.   
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The posterior of    cannot be estimated directly, as it is conditional on both the estimates of 

the SNP effects (to calculate   ) and estimates of the polygenic effects  ̂. A Gibbs sampling 

scheme was, therefore, used to sample from the posterior distributions of all parameters 

conditional on the other parameters.  

Prior distributions for other parameters were as described by Verbyla et al. (2009). The 

Gibbs sampling scheme was similar to that described by Meuwissen et al. (2001) for 

BayesA, but with the addition of a polygenic effect, and with the SNP variances described 

above. At the end of each iteration, the proportion of SNP in each distribution was sampled 

from the posterior Dirichlet distribution as described above. We also compared 

 (        ) from GBLUP_mod and BayesR to those derived from SNP effects estimated 

by BayesA (Meuwissen et al., 2001). 

 

RESULTS 

Accuracy of Imputation 

In the Holstein heifer data set, the accuracy of imputation of 50K to 800K was similar across 

the 2 cross-validations, with an average of 97.4% (Table 1). Adding the key ancestor 800K 

genotypes improved the accuracy of imputation by 0.5%, despite the limited number of these 

ancestors. The average accuracy of imputation in the Jersey cross-validations was lower, 

likely reflecting the much more limited number of animals genotyped for the 800K panel. 

Comparison of GBLUP and GBLUP_mod 

To check that the proposed modifications to the   matrix and   matrix in the GBLUP_mod 

method resulted in relationship matrices expressed relative to the same base population, 

before    was calculated, we checked the average of the diagonal elements for each breed, 

and the average off-diagonal elements within and across breeds. These were very close 

(Table 2). The regressor  ̂ of   toward  , which accounts for sampling error in estimating the 

coefficients of   is also given for each block. Within a breed, the value of  ̂ was only slightly 

less than 1; however, in the across-breed block, the value of  ̂ was lower at 0.89, reflecting 

the fact that across-breed genomic relationships are smaller in magnitude, and are estimated 

with lower precision than within-breed genomic relationships. However, the value of 0.89 is 

surprisingly high, and may reflect the fact that the Australian dairy herd was upgraded from a 

largely Jersey base, such that relatively large chromosome segments originating from Jer-

seys can still be found in cattle classified as Holstein. 
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Table 1: Accuracy of imputation of 50,000 to 800,000 SNP (50K to 800K) in cross validation 

of 940 Holstein and 93 Jersey genotypes1  

 Cross validation Accuracy of genotype imputation (%) 

Holstein   

Heifers only  1 97.4 

 2 97.9 

 Average 97.7±0.01 

   

Heifers + key ancestors 1 98.0 

 2 98.0 

 Average 98.0±0.05 

Jersey   

 1 96.1  

 2 95.0 

 3 97.0 

 4 95.4 

 5 94.2 

 Average 95.6±0.05 
1 Cross-validation in the Holstein data set involved splitting the 843 heifers in 2 approximately 
subsets, and then in silico reducing the numbers of genotypes to the 50K panel. In Jerseys, 
approximately 20 individuals at each cross-validation were assigned to have their genotypes 
reduced to the 50K panel. 

 

Table 2: Average of elements of expected and realized relationship matrices (  and   re-

spectively), after rescaling to a base which was at the time of divergence of Holsteins and 

Jerseys1  

Statistic Matrix elements Validation      ̂ 

Average Diagonal Holstein 1.09 1.11 - 

Average Diagonal Jersey 1.20 1.22 - 

Average Block Holstein 0.20 0.19 0.96 

Average Block Jersey 0.42 0.39 0.97 

Average Block Across breed 0.00 0.01 0.89 
1 The regressor  ̂ of   toward  , which accounts for sampling error in estimating the coeffi-

cients of   is given for each block. 

 

Next, we evaluated the effect of using GBLUP_mod rather than GBLUP on the accuracy and 

bias of GEBV. For the 800K panel, the accuracy of GEBV [as indicated by the surrogate 

measure  (        )] from GBLUP and GBLUP_mod was similar for the Holstein valida-

tion data set, but, on average, 0.03 higher for GBLUP_mod in the Jersey validation data set 
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(Table 3). Regressions of DTD on GEBV were closer to 1 in the Jersey validation data sets 

with GBLUP_mod than with GBLUP in all traits. 

 

Table 3: Correlations of daughter trait deviations (DTD) and genomic EBV (GEBV) 

[ (        )] and regressions of DTD on GEBV slopes [ (        )] from GBLUP and 

GBLUP_mod methods1 

   Trait   

Method Validation Milk yield Fat yield Protein yield Average 

 (        )      

GBLUP Holstein 0.58 0.58 0.56 0.57 

 Jersey 0.33 0.46 0.40 0.40 

      

GBLUP_mod Holstein 0.58 0.58 0.56 0.57 

 Jersey 0.36 0.49 0.44 0.43 

 (        )      

GBLUP Holstein 1.04 1.19 0.94 1.05 

 Jersey 0.53 0.86 0.71 0.70 

      

GBLUP_mod Holstein 1.04 1.16 0.93 1.04 

 Jersey 0.69 1.00 0.94 0.88 
1 The GBLUP_mod method uses a rescaled genomic relationship matrix, and regresses the 
  matrix towards the   matrix to account for the error in estimating realized relationship coef-
ficients due to a finite number of markers. 

 

Comparison of GBLUP_mod, BayesR, and BayesA for the 800K Panel  

Table 4 shows the results for BayesR, BayesA, and GBLUP_mod for the combined reference 

population and the 800K panel. The BayesR method gave higher  (        )for both milk 

yield and fat yield than GBLUP_mod, whereas  (        ) for protein yield was similar. 

Averaged across the traits, the advantage of BayesR over GBLUP_mod was 0.05 in 

 (        ). This advantage was observed in both the Holstein and the Jersey validation 

data set. The regression of DTD on GEBV (Table 4) was similar for all methods. To compare 

BayesR with a well-known Bayesian method, we also ran BayesA. BayesA gave similar, but 

very slightly lower  (        ) for milk yield than BayesR and similar results in terms of 

slope [ (        )]. 
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Table 4: Accuracy of prediction [expressed as  (        )] and slopes [ (        )] of 

the regression of daughter trait deviations (DTD) on predicted genomic EBV (GEBV) for 

GBLUP_mod, BayesA, and BayesR with a multi-breed reference population and the 

800,000-SNP (800K) panel (the result averaged across traits is also given) 

Method1 Validation Milk yield Fat yield Protein yield Average 

 (        ) 
 

    

GBLUP_mod Holstein 0.58 0.58 0.56 0.57 

 Jersey 0.36 0.49 0.44 0.43 

 BayesA Holstein 0.61 0.66 0.58 0.62 

 Jersey 0.48 0.49 0.46 0.48 

BayesR Holstein 0.62 0.66 0.57 0.62 

 Jersey 0.51 0.49 0.46 0.49 

 (        )      

GBLUP_mod Holstein 1.04 1.16 0.93 1.04 

 Jersey 0.69 1.00 0.94 0.88 

BayesA Holstein 1.04 1.12 0.94 1.03 

 Jersey 0.82 0.91 0.86 0.86 

BayesR Holstein 0.99 1.12 0.91 1.01 

 Jersey 0.84 0.92 0.86 0.88 
1 The GBLUP_mod method uses a rescaled genomic relationship matrix, and regresses the 

  matrix toward the   matrix to account for the error in estimating realized relationship coeffi-
cients due to a finite number of markers; BayesR is a Bayesian method for deriving the pre-
diction equation that assumes SNP effects follow a series of normal distributions; and 
BayesA is a Bayesian method for deriving the prediction equation that assumes SNP effects 
follow a Student’s t distribution. Complete descriptions are given in the text. 

 

Comparison of Different Marker Panels 

For genomic predictions within a pure breed, there was no advantage of either the 800K or 

TRANS panel over the 50K panel when GBLUP_mod was used (Table 5). When BayesR 

was used, there was only a very small advantage (and not significant), given the sample size 

used, in  (        ) of using the 800K or the TRANS panel over the 50K panel in some 

cases (Table 6). This was of the order of 0.01 averaged across traits for Holsteins, compar-

ing the 800K to the 50K panel, and 0.02 for Jerseys comparing the TRANS panel to the 50K 

panel (Table 7).  

Some improvement for prediction across breeds occurred using only the other breed as the 

reference when BayesR was used with either the 50K or the 800K panel, compared with the 

GBLUP_mod results. For the TRANS panel, the accuracy for predicting Jersey GEBV from a 

Holstein-only reference looked promising (0.24 average across traits; Table 7). Interestingly, 

the  (        ) for milk yield was much higher (0.40 and 0.30, respectively) with both 
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methods when the TRANS panel was used compared with both other panels (Tables 5 and 

6).  

When a combined reference set was used, BayesR clearly outperformed GBLUP_mod 

across all scenarios and traits, especially with prediction of fat yield in Holstein (up to 0.08 

higher) and milk yield (0.15 higher) and protein yield (0.05 higher) in Jersey in all panels. The 

best results for predicting the minor breed (Jerseys) were obtained with a combined refer-

ence set, BayesR and the TRANS panel [ (        ) = 0.52; Table 7]. This was 0.09 

higher than that obtained using GBLUP_mod, the combined reference set, and the 800K 

panel (Table 4). 

 

Table 5: Accuracy of genomic prediction [ (        )] from GBLUP_mod1 using different 

marker panels and either single-breed or combined reference populations2 

  Milk yield Fat yield Protein yield 

Reference Validation 50K 800K TRANS 50K 800K TRANS 50K 800K TRANS 

Holstein Holstein 0.61 0.58 0.62 0.58 0.57 0.57 0.57 0.56 0.55 

 Jersey -0.07 -0.01 0.30 -0.24 -0.16 -0.05 -0.31 -0.21 0.05 

Jersey Holstein 0.04 -0.03 0.03 0.16 0.18 0.11 0.14 0.16 0.08 

 Jersey 0.38 0.37 0.39 0.49 0.48 0.47 0.43 0.43 0.42 

Combined Holstein 0.60 0.58 0.62 0.58 0.58 0.57 0.57 0.56 0.55 

 Jersey 0.35 0.36 0.45 0.47 0.49 0.44 0.40 0.44 0.48 

1 The GBLUP_mod method uses a rescaled genomic relationship matrix, and regresses the 

  matrix toward the   matrix to account for the error in estimating realized relationship coeffi-
cients due to a finite number of markers. 
2 GEBV = genomic EBV; DTD = daughter trait deviations; 50K = 50,000-SNP panel; 800K = 
800,000-SNP panel; TRANS = transcriptome panel. 
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Table 6: Accuracy of genomic prediction [ (        )] from BayesR1 using different mark-

er panels and either single-breed or combined reference populations2 

  Milk yield Fat yield Protein yield 

Reference Validation 50K 800K TRANS 50K 800K TRANS 50K 800K TRANS 

Holstein Holstein 0.62 0.63 0.63 0.64 0.65 0.63 0.55 0.57 0.56 

 Jersey 0.27 0.24 0.40 0.12 0.21 0.12 -0.05 0.05 0.21 

Jersey Holstein 0.19 0.03 0.15 0.29 0.29 0.18 0.13 0.10 0.12 

 Jersey 0.49 0.48 0.53 0.48 0.46 0.47 0.42 0.41 0.43 

Combined Holstein 0.61 0.62 0.62 0.65 0.66 0.64 0.56 0.57 0.57 

 Jersey 0.45 0.51 0.57 0.50 0.49 0.45 0.43 0.46 0.53 

1 BayesR is a Bayesian method for deriving the prediction equation that assumes SNP ef-
fects follow a series of normal distributions. 
2 GEBV = genomic EBV; DTD = daughter trait deviations; 50K = 50,000-SNP panel; 800K = 
800,000-SNP panel; TRANS = transcriptome panel. 

 

Distribution of SNP Effects 

For BayesR, we could calculate the number of SNP in each distribution (explaining 0, 0.01, 

0.1, or 1% of the genetic variance). This was achieved by calculating the posterior mean of 

the sampled proportions of SNP in each of the 4 distributions over all post burn-in iterations, 

and multiplying them by the total number of SNP. The results show that, on average, only 

between 7 and 14% (depending on trait) of all SNP contribute to the prediction of genomic 

breeding value with the 50K panel. Similar absolute numbers of SNP were in distribution 2, 3, 

and 4 with the 800K panel; that is, the majority of SNP with this panel (over 99%) were esti-

mated to be in the first distribution, which had zero variance (Table 8). When a combined 

(Holstein and Jersey) reference set was used, for all traits, the number of SNP in the 0.01 

distribution was lower than or similar to the purebred Holstein scenario. For distribution 3, the 

number of SNP was clearly lower than when a single breed reference set was used, whereas 

it was usually higher for distribution 2. Possible reasons for this are proposed in the discus-

sion. In most cases, the number of SNP in distribution 1 and 2 was clearly lower for fat yield 

than for both of the other traits with all SNP panels. With the Jersey reference set, more SNP 

were assumed to explain larger parts of the total variance than with the Holstein reference 

set. For the TRANS panel, the number of SNP in distribution 1 and 2 could be expected to be 

higher, as the SNP for this panel were all located in or near transcribed regions. However, 

we did not observe this trend.  
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Table 7: Accuracy of genomic prediction [ (        )] from BayesR1 using different mark-

er panels and either single-breed or combined reference populations, averaged across traits 

   Panel  

Reference Validation 50K 800K TRANS 

Holstein Holstein 0.61 0.62 0.61 

 Jersey 0.11 0.17 0.24 

Jersey Holstein 0.20 0.14 0.15 

 Jersey 0.46 0.45 0.48 

Combined Holstein 0.61 0.62 0.61 

  Jersey 0.46 0.49 0.52 

1 BayesR is a Bayesian method for deriving the prediction equation that assumes SNP ef-
fects follow a series of normal distributions. 
2 GEBV = genomic EBV; DTD = daughter trait deviations; 50K = 50,000-SNP panel; 800K = 
800,000-SNP panel; TRANS = transcriptome panel. 

 

Table 8: Average number of SNP in the 4 normal distributions modeled with BayesR1  

 Reference 

 Jersey  Holstein  Combined 

Panel2 

Milk 

(kg) 

Fat   

(kg) 

Protein 

(kg) 
 

Milk 

(kg) 

Fat   

(kg) 

Protein 

(kg) 
 

Milk 

(kg) 

Fat   

(kg) 

Protein 

(kg) 

50K            

1
st
 35,730 34,201 36,179  34,991 35,917 35,844  34,245 34,558 34,880 

2
nd

 3,677 5,276 3,268  4,612 3,598 3,798  5,410 5,040 4,820 

3
rd

 315 255 287  134 222 93  81 139 36 

4
th
 24 13 10  8 8 10  9 7 8 

 
           

800K            

1
st
 620,151 620,026 619,488  620,570 620,544 620,151  620,372 619,526 619,650 

2
nd

 3,727 3,828 4,462  3,390 3,528 3,538  3,579 4,467 4,478 

3
rd

 306 339 254  245 227 122  251 210 77 

4
th
 29 20 9  9 13 9  11 10 8 

  
          

TRANS            

1
st
 54,742 54,850 54,242  54,144 55,233 54,953  53,317 54,121 54,272 

2
nd

 3,480 3,210 4,039  4,264 3,064 3,480  5,145 4,257 4,206 

3
rd

 276 455 241  116 225 93  63 143 48 

4
th
 34 17 10  7 11 7  7 11 6 

1 The average number of SNP was calculated as the mean proportion of SNPs in the distri-
bution times the total number of SNP. BayesR is a Bayesian method for deriving the predic-
tion equation that assumes SNP effects follow a series of normal distributions. 
2 50K = 50,000-SNP panel; 800K = 800,000-SNP panel; TRANS =transcriptome panel. 
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DISCUSSION  

In this study, we tested 3 hypotheses: 1) the accuracy of genomic estimated breeding values 

would be increased using denser marker panels, when the validation animals and reference 

animals were the same breed, 2) the advantage of using a denser marker panel would be 

even greater when the validation animals and reference animals were from different breeds, 

or a combined breed reference set was used, and 3) a method for deriving the prediction 

equation that could result in a large number of SNP effects being set to zero (e.g., excluded 

from the prediction model) would result in the greatest advantage from increasing the density 

of the marker panel.  

The support for hypothesis 1) was limited. The  (        ) for the Holstein population did 

increase when the 800K panel was used rather than the 50K panel, but only by 0.01 aver-

aged across traits, and only when BayesR was used. For Jersey (using Jersey reference to 

predict GEBV in a Jersey validation set), the average  (        ) actually decreased by 

0.01 when the 800K panel was used rather than the 50K. In contrast to humans where a very 

large number of SNP are necessary for accurate genomic predictions due to a large effective 

population size (e.g., Wray et al., 2007), in modern dairy cattle breeds effective population 

sizes are sufficiently small that linkage disequilibrium (LD) between SNP and potential QTL is 

captured even with the 50K panel, and increasing this LD by using a denser panel does not 

have much effect. Evidence for this is that the proportion of the genetic variance captured by 

the 50K panel is only slightly lower than that from the 800K panel (Table 9; Haile-Mariam et 

al., accepted), regardless of which method is used. In sharp contrast to what is observed in 

human populations, we were able to capture almost 90% of the heritability of our phenotype 

(DTD) estimated from pedigree with the markers; in human populations this figure is more 

like 56% for a trait such as human height (Yang et al., 2010). Interestingly, the proportion of 

variance unexplained with BayesR was greatest with fat yield. One explanation for this may 

be that the largest distribution from which SNP effects are sampled has a variance of 1%, 

resulting in overshrinking of the effect of DGAT1, such that less variance is explained. 

For Jerseys, we must point out that our reference population was small; therefore, any poten-

tial advantage in using denser panels may be obscured by the estimation error associated 

with the greatly increased number of SNP. Further, for Jerseys, the imputation reference set 

(for imputation of 800K from 50K) comprised only 93 key ancestors, which led to clearly low-

er imputation accuracies than in Holsteins (Table 1). Inaccurate genotype imputation would 

have reduced the possible advantages of using the 800K panel (and a multi-breed reference 

population) for Jerseys. 
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Table 9: Proportion of genetic variance (estimated from pedigree) unaccounted for by SNP 

markers, using the Holstein only reference set1 

   Trait  

Method2 Panel Milk yield Fat yield Protein yield 

GBLUP_MOD 50K 0.12 0.13 0.17 

 
800K 0.11 0.12 0.15 

BayesR 50K 0.08 0.22 0.12 

 
800K 0.08 0.18 0.10 

1 For BayesR, this was calculated as the estimated polygenic variance from the model divid-
ed by the total genetic variance, for GBLUP_mod, it was calculated as the variance ex-
plained by the modified   matrix divided by the genetic variance estimated from a model with 
only a polygenic effect with co(variance) matrix the expected relationship matrix ( ). 
2 GBLUP = genomic BLUP. 

 

Support for hypothesis 2) was a little more convincing; the average of   (        ) across 

traits in the Jersey validation set, with Holsteins used as the reference, increased from 0.11 

(50K) to 0.17 (800K) when BayesR was used (Table 7). With 800K SNP, the persistence of 

phase among SNP and QTL alleles should be consistent across B. taurus breeds (Gibbs et 

al., 2009). However, this assumes the same QTL are segregating in the different breeds, 

whereas our results suggest this is only true in a proportion of cases, as discussed below.  

There was some support for hypothesis 3). The greatest increase in  (        ) from us-

ing the 800K panel rather than the 50K panel were observed when BayesR was used rather 

than GBLUP_mod (for example, for prediction of Jersey GEBV from the combined reference 

population). These results suggest that to take advantage of the increased marker density, 

methods that either explicitly remove SNP from the model or set their effect to zero (2 ways 

of achieving the same thing) are necessary. 

One possible explanation for our results (especially the limited gains in  (        ) from 

using 800K compared with 50K) is that we have greatly increased the number of SNP effects 

to be estimated, without increasing the number of records. Particularly the Jersey population 

is small, so that the effect of the large increase in the number of estimation errors could 

erode the accuracy of GEBV. An alternative to using all 800K SNP would be to select a much 

smaller subset that may be a priori more relevant, thus avoiding the need to estimate a very 

large number of SNP effects. For our TRANS panel, we selected a subset of SNP from the 

800K that was included the transcribed portion of the genome (L. K. Matukumalli, author on 

the current paper). The TRANS panel worked reasonably well for all traits and led to similar 

or even better (e.g., in milk yield with BayesR) results than with both the other SNP panels. 
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The average  (        ) for Jerseys was highest using this panel, and accuracies of 

across breed prediction using the other breed as reference set were quite promising. 

 Our results for the increase in accuracy for the minor breed (Jerseys) using a combined ref-

erence and the 800K panel can be compared with the simulated results from de Roos et al. 

(2009). The simulation those authors used to generate marker associations within and 

across breeds was based on actual LD within and across similar populations to those con-

sidered here. If the divergence time between Holsteins and Jerseys is taken at approximately 

300 generations (e.g., de Roos et al., 2008), then their simulation results would suggest that 

the increase in the accuracy of genomic EBV for Jerseys, as a result of using the 800K panel 

and combining the reference populations, should have been considerably greater than was 

observed here. Some of the explanation may be due to too few records to accurately esti-

mate the 800K marker effects, as described above, and imperfect imputation of 800K from 

50K, particularly in Jerseys. 

 However, de Roos et al. (2009) also simulated QTL that were segregating in both breeds in 

most cases. Our results suggest that only some of the QTL segregate across breed. For ex-

ample, for milk yield, the 9 SNP in Holstein that explained 1% of the genetic variance accord-

ing to their posterior mean from BayesR (Table 8) were tightly clustered in 3 regions, on 

chromosome 14 (DGAT1), chromosome 5, and chromosome 11. Although the QTL on chro-

mosome 14 and chromosome 5 were detected in Jerseys (as evidenced by clusters of SNP 

in the fourth distribution of BayesR, explaining 1% of the variance, using a Jersey-only refer-

ence population), no evidence indicated that the QTL on chromosome 11 was segregating in 

Jerseys. Further, in Jerseys, QTL were affecting milk yield segregating on chromosomes 23 

and 16 (again tracked by SNP with posterior means in the fourth distribution of BayesR), and 

these were not segregating in Holstein. This is a subject for further investigation, but these 

preliminary results suggest that roughly half the QTL explaining 1% of the genetic variance 

segregate across Jerseys and Holsteins. 

An important question, given our results, is whether further increasing marker density (for 

example, through whole genome sequencing) will lead to more accurate genomic predictions 

than from the 50K panel. This question can only be answered once sufficient individual cattle 

genomes have been sequenced. However, a simulation study (Meuwissen and Goddard, 

2010) did show that sequence data, where the actual mutation causing trait variation was 

included in the data set, led to an increase in the accuracy of GEBV of 3 to 5% over the 

densest marker panel they simulated. Perhaps even more importantly, the authors demon-

strated that in their simulation, prediction equations derived from whole-genome sequence 

data will lead to a slower decrease in the accuracy of GEBV as the reference population and 

selection candidates are separated by more generations.  
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This is in contrast to the accuracies of GEBV from the 50K panel in dairy cattle, which de-

crease rapidly with genetic distance of the target population from the reference population 

(Habier et al., 2010). A reduced decay in accuracy may also be achieved with the 800K pan-

el. We do not have the data to test this hypothesis. However, if we divide our validation data 

set into those bulls that do and do not have a sire in the Holstein reference population, and 

then compare  (        ) for milk yield for these 2 sets from the 50K and 800K panels, a 

slightly reduced decay in accuracy for the 800K panel compared with the 50K panel, for bulls 

with and without a sire (Table 10), was only observed when BayesR was used to derive the 

prediction equation. Results were similar for protein yield; however, for fat yield accuracies 

were actually higher for the group of validation bulls without sires in the reference. This could 

have been partially an effect of the DGAT1 mutation – closer inspection showed that the 

SNP tracking this mutation was at more intermediate frequency in the validation bulls with no 

sires in the reference, compared with those with sires in the reference. Our results here are 

only suggestive and would not be significant; more investigation of the effect of increasing 

marker density, with a greater range of relationship to the reference set, on the rate of decay 

of prediction accuracy is required. 

Another potential advantage of using whole-genome resequencing data in prediction of 

GEBV may be the potential to capture low-frequency mutations that contribute to genetic 

variation. Allele frequencies of the SNP on the 50K panel are more or less distributed uni-

formly (i.e., it is a selection where SNP with very low minor allele frequency are underrepre-

sented; e.g., Matukumalli et al., 2009). This is also true for the 800K data (data not shown). 

For high and stable LD between SNP and QTL, similar allele frequencies of the loci are nec-

essary. Quantitative trait loci with low minor allele frequencies may thus not be in sufficient 

LD with a SNP and their variance cannot be captured. This may be one explanation why the 

difference in proportion of unaccounted genetic variance is small between the 50K and the 

800K panel (Table 9). Note that for the 800K panel, animals in the reference set were not 

genotyped themselves, but imputed. Imputation of SNP with low minor allele frequency is 

more difficult than for SNP with moderate allele frequencies, which can also result in less 

accurate estimation of SNP effects and, consequently, missing parts of genetic variance. 

Whether or not resequencing allows some of these low-frequency variants to be captured will 

depend on how many animals are sequenced before imputation of sequence data in the ref-

erence population. 
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Table 10: Accuracy [ (        )] for milk yield from BayesR and GBLUP_mod in the Hol-

stein validation set bulls grouped according to whether or not they had a sire in the Holstein 

reference population1 

 Method 

Panel2 BayesR GBLUP_mod 

50K with sire 0.64 0.61 

50K without sire 0.55 0.56 

800K with sire 0.64 0.60 

800K without sire 0.57 0.51 
1 DTD = daughter trait deviations; GEBV = genomic EBV; GBLUP = genomic BLUP. BayesR 
is a Bayesian method for deriving the prediction equation that assumes SNP effects follow a 
series of normal distributions. The GBLUP_mod method uses a rescaled genomic relation-
ship matrix, and regresses the   matrix toward the   matrix to account for the error in esti-
mating realized relationship coefficients due to a finite number of markers. 
2 50K = 50,000-SNP panel; 800K = 800,000-SNP panel. 

 

Regarding the 50K panel, several authors have presented studies analyzing real data sets 

with different methods for the estimation of the SNP effects. In most studies, accuracies 

achieved with BLUP approaches were very similar to those achieved with Bayesian methods 

(e.g., VanRaden et al., 2009). For prediction of a breed from a multi-breed reference set, 

BayesR performed best in our study. As described in previous studies (e.g., Hayes et al., 

2010), the superiority of Bayesian approaches is generally greater in traits that are strongly 

influenced by a few moderate to large genes, which was also observed in our study (com-

pare fat to protein). With GBLUP_mod, the variance assumed to be explained is the same for 

each SNP. Therefore, if more and more markers are used in the model, the expected vari-

ance per SNP will be smaller. When modeling traits with 1 or more underlying genes with 

larger effects, this can be the disadvantage when using GBLUP_mod in comparison to a 

Bayesian method (Meuwissen and Goddard, 2010). This theory would lead to the assump-

tion that prediction with GBLUP will be even more disadvantageous when even more SNP 

are modeled simultaneously. In our study, we saw clearly better results with BayesR than 

with GBLUP_mod for the traits fat yield and milk yield, for all marker panels. However, we did 

not observe that the difference in accuracy between the methods was larger for the 800K 

panel. 

There were generally fewer SNP in the third and fourth posterior distributions from the 

BayesR analysis, those with the largest variance, when a combined-breed reference was 

used compared with single-breed reference sets (Table 8). This may reflect the fact that 

many SNP are not in the same phase with QTL across breeds. Then, it could be expected 

that only the SNP having the same LD structure with the QTL in both breeds would have a 



4th CHAPTER Influence of Marker Density and Multi-Breed Prediction 70 

moderate effect when the combined reference is used. Pryce et al. (2011) found that a more 

concentrated set of SNP or even a single SNP captured the effect of DGAT1 in a multi-breed 

reference population compared with pure-breed reference sets. Following the results of 

BayesR, which showed a decreased number of SNP explaining moderate parts of the vari-

ance in the multi-breed reference set for all traits, we also investigated the DGAT1 region 

and did find a decreased number of SNP capturing the DGAT1 effect when a combined ref-

erence set was used (Figure 2). Hayes et al. (2009a) concluded that a SNP capturing an 

effect in a multi-breed reference population must be very close to the potential QTL, as they 

have to be in high LD across breeds. Assuming that the more concentrated set of SNP with 

moderate effects implies the SNP are closer located to the QTL, the prediction accuracy will 

be more persistent over generations than with a purebred reference.  

 

 

Figure 2: The effect of SNP on fat yield as estimated by a new method (BayesR), which 

used a mixture of normal distributions as the prior for SNP effects, including one distribution 

that set SNP effects to zero, from different reference populations in the DGAT1 region. 

 

Finally, computer processing times for BayesR were reasonable, at 35 h and 20 min for 

BayesR with the multi-breed reference and the 800K panel (Table 11). Using the TRANS 

panel greatly decreased processing time for all methods, such that this could be applied in 

national evaluations for dairy cattle. A multi-threaded implementation of the construction of 

the   matrix for a GBLUP_mod decreased computing time from several days to 3 min.  
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Table 11: Processing time (clock time) for multi-breed reference population (2,351 bulls) with 

3 SNP panels1  

 SNP Panel3 

Method2 50K 800K TRANS 

GBLUP_mod    

  Build and invert   2 min 39 min 3 min 

  ASREML (1 trait) 20 min 20 min 20 min 

BayesA  30 h 55 min  

BayesR 1 h 54 min 35 h 50 min 3h 5 min 

1 Processors were Intel Xeon X5670. For GBLUP_mod, multi-threading was used in the con-

struction and inversion of the   matrix, across 10 threads. 
2 GBLUP = genomic BLUP; ASReml = ASReml software (Gilmour et al., 2002). The 

GBLUP_mod method uses a rescaled genomic relationship matrix, and regresses the   ma-
trix toward the   matrix to account for the error in estimating realized relationship coefficients 
due to a finite number of markers; BayesR is a Bayesian method for deriving the prediction 
equation that assumes SNP effects follow a series of normal distributions; and BayesA is a 
Bayesian method for deriving the prediction equation that assumes SNP effects follow a Stu-
dent’s t distribution. Complete descriptions are given in the text. 
3 50K = 50,000-SNP panel; 800K = 800,000-SNP panel; TRANS = transcriptome panel. 

 

CONCLUSIONS  

In this study, we investigated different marker panels and methods for prediction of genomic 

breeding values within and across breeds. Two new or modified methods were presented: 

GBLUP_mod, which scales the genomic relationship matrix to an appropriate base and re-

gresses   toward   to account for sampling error in estimation of within- and across-breed 

genomic relationships, and BayesR, which assumes that SNP effects follow a mixture of 

normal distributions, including a distribution with zero variance. Although the GBLUP_mod 

method resulted in less biased breeding values than using an unmodified   matrix, the 

BayesR method performed best in terms of  (        ) in most studied scenarios, and 

gave regressions of DTD on GEBV of close to 1. In addition to having the best predictive 

ability, BayesR also presents the possibility of using the results (splitting of SNP into different 

classes of explained variance) directly for further analyses of, for example, genetic architec-

ture or for SNP selection of less computationally demanding subsets. An additional benefit of 

the denser marker set of the 800K panel could be seen neither for within- nor for across-

breed prediction directly in terms of significant increase of accuracy. However, the 800K 

panel was the basis for an informative subset of SNP in transcribed parts of the genome, 

which may be a good alternative to modeling the large number of SNP directly from the 800K 

panel, balancing the extra genomic information from the 800K with the effect of increased 

estimation errors from a very large number of SNP in our admittedly small data sets. This 
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panel (TRANS) in combination with BayesR and a combined reference set gave the highest 

accuracies of prediction in Jerseys, the minor breed in this study.  
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ABSTRACT 

Prediction of genomic breeding values is of major practical relevance in dairy cattle breeding. 

Deterministic equations have been suggested to predict the accuracy of genomic breeding 

values in a given design which are based on training set size, reliability of phenotypes and 

the number of independent chromosome segments (  ). The aim of our study was to find a 

general deterministic equation for the average accuracy of genomic breeding values that also 

accounts for marker density and can be fitted empirically. Two data sets of 5’698 Holstein 

Friesian bulls genotyped with 50K SNPs and 1’332 Brown Swiss bulls genotyped with 50K 

SNPs and imputed to ~600K SNPs were available. Different k-fold (k = 2-10, 15, 20) cross-

validation scenarios (50 replicates, random assignment) were performed using a genomic 

BLUP approach. A maximum likelihood approach was used to estimate the parameters of 

different prediction equations. The highest likelihood was obtained when using a modified 

form of the deterministic equation of Daetwyler et al. (2010), augmented by a weighting fac-

tor ( ) based on the assumption that the maximum achievable accuracy is    . The pro-

portion of genetic variance captured by the complete SNP sets (  ) was 0.76 to 0.82 for Hol-

stein Friesian and 0.72 to 0.75 for Brown Swiss. When modifying the number of SNPs,   

was found to be proportional to the log of the marker density up to a limit which is population 

and trait specific and was found to be reached with ~20’000 SNPs in the Brown Swiss popu-

lation studied. 

 

INTRODUCTION 

In dairy cattle, prediction of genomic breeding values (GBV) has become a basis for select-

ing young bulls which are not yet progeny tested. Often, conventional estimated breeding 

values, daughter yield deviations or deregressed proofs are used as quasi-phenotypes when 

training genomic prediction models ([1], [2]). The empirical correlation of predicted GBV and 

the (quasi-)phenotypes used that can be obtained via cross-validation or other empirical vali-

dation processes is often used as a measure for the accuracy of prediction (e.g. [2], [3], [4]). 

However, for selection purposes, we are more interested in the correlation of the predicted 

GBV and the true breeding value (TBV) which can be approximated from the obtained corre-

lation of GBV and the quasi-phenotype ([5], [6]). In this study, we will refer to the correlation 

between predicted GBV and TBV (        ) as the accuracy of genomic breeding value pre-

diction.  

For determining e.g. the required size of the training set or SNP density to achieve a prede-

fined level of accuracy, it would be desirable to be able to assess the expected          in 

advance for a GBV prediction study with a given design. Respective deterministic prediction 
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equations have been suggested ([7], [8], [9], [10]). The approaches have been reported to fit 

well when applied to a limited number of data points in empirical studies ([10], [11], [12], [13]) 

and simulated data sets ([9], [10]). In these equations information on the number of animals 

in the training set, the heritability of the quasi-phenotype used, and the effective number of 

independently segregating chromosome segments (  ) are the factors determining the accu-

racy. Daetwyler et al. [9] showed that the accuracy of the GBV obtained with genomic best 

linear unbiased prediction (GBLUP) models is independent from the number of underlying 

QTL. Therefore, this information is not accounted for in the deterministic equations when 

considering only results from GBLUP approaches. While all approaches referred to so far do 

not include information on the marker set used, Goddard et al. [10] suggested the number of 

markers as an additional parameter to account for in the prediction of accuracy.  

Derivations of all these deterministic approaches imply that there are no relationship struc-

tures between the individuals. Wientjes et al. [13] studied the adaptability of such formulas to 

different simulation scenarios where selection candidates are related to the reference set in 

specific manner. They showed that the deterministic equation of [7] as well as the formula of 

[14] produced similar results for the reliability in comparison with reliabilities obtained with 

cross-validation also in scenarios where reference and validation individuals were highly re-

lated. 

The number of independently segregating chromosome segments    is a population param-

eter and is usually estimated based on assumptions of the effective population size (  ) and 

the genetic length of the genome in Morgan ( ). Different formulas ([8], [10], [15]) on how to 

determine    based on theoretical considerations lead to quite different   , which has a ma-

jor impact on the results of the deterministic prediction of the accuracy. Another possibility is 

to define the number of independent chromosome segments to be the reciprocal of the vari-

ance of the difference of the genomic relationship matrix and the numerator relationship ma-

trix when complex family structures are in the data set ([10], [13]).  

By using empirical accuracies obtained via cross-validation in a genomic prediction with real 

or simulated data, it is possible to determine    by rearranging the equation used for predict-

ing of accuracy. With different levels of training set size this may lead to different estimates of 

   (see e.g. [9] with simulated data). Being a population parameter,    should have a con-

stant value within one data set independently of the size of the training set used for its esti-

mation, though. Daetwyler [16] proposed using a regression approach for overcoming this 

problem.  

In our study, we suggest determining    empirically based on a systematic multi-level cross-

validation using a maximum likelihood approach and based on this, we will compare various 
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deterministic prediction equations. We suggest a modified form of the deterministic prediction 

equation of [9] with the maximum accuracy that can be obtained with the given marker set as 

a further parameter, which will be shown to be a function of the natural logarithm of the 

marker density. All equations will be compared using two dairy cattle data sets of relevant 

size, and possible practical implications will be discussed. 

 

MATERIAL AND METHODS 

Data Sets 

To establish and test the methodology, we used a sample of 5’698 Holstein bulls, which were 

genotyped with the Illumina BovineSNP50 BeadChip. Single nucleotide polymorphisms 

(SNPs) with a minor allele frequency lower than 1%, with missing or non-autosomal position 

or a call rate lower than 95% were excluded. After filtering, there were 42’551 SNPs remain-

ing for further analyses. Missing genotypes at these SNP positions were imputed using Bea-

gle 3.2 ([17]). To study the influence of different marker densities, we reduced the number of 

markers to subsets of 30’000, 20’000, or 10’000, respectively. Markers in the subsets were 

chosen at random from the complete set.  

All bulls used for this study had estimated breeding values based on progeny testing for so-

matic cell score and milk yield with an accuracy > 0.84, which were used as quasi-

phenotypes for the following analyses. 

To test the proposed approach in a further data set and with different SNP marker density, 

we used a set of 1’332 Brown Swiss bulls which was partly genotyped with the Illumina Bo-

vineSNP50 BeadChip and partly with the Illumina BovineHD BeadChip with around 777K. 

For the Brown Swiss bulls genotyped with the Illumina BovineSNP50 BeadChip, genotypes 

have been imputed to the Illumina BovineHD BeadChip based on a reference set of 727 

Brown Swiss cows and 153 bulls using a combination of family and population imputation 

implemented in the software FImpute ( 18 ). After quality control, there were 627’306 SNPs 

available for further analyses. To study different marker densities, the set of markers was 

also decreased by using each 2x -th marker where x was 1, 2, …, 8.  

Genotype and phenotype data is available from the authors on request. 

Cross-validation strategy 

Cross-validation was performed in different k-fold scenarios with k = 2, 3, … , 10, 15 or 20. 

This resulted in different sizes of training sets with different values of k. With a k-fold cross-
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validation, k-1 folds are used to predict the remaining fold and this procedure is repeated so 

that each fold is predicted once. Animals were assigned to the folds randomly. For the evalu-

ation of the GBV prediction, the correlation          between predicted GBV and TBV was 

used, which was calculated as          
        

        
 (e.g. [6]), where          is the accuracy of 

the estimated breeding values, which we used as quasi-phenotypes.          was calculated 

for each GBV prediction in a fold and then averaged over the k folds within a k-fold scenario. 

Each k-fold scenario was replicated 50 times, so that there were 50 values of          availa-

ble for each k-fold scenario for further analyses.  

Genomic BLUP: 

Genomic breeding values were predicted using genomic best linear unbiased prediction 

(GBLUP) based on the model 

     
        

where   is a vector of quasi-phenotypes (in our case estimated breeding values of milk yield 

or somatic cell score, respectively) for all bulls in the training set,    
  is a column vector of 

ones of length number of animals in the training set (  ),   is the overall mean,   is the inci-

dence matrix for the random genomic effect,   is a vector containing the random genomic 

effect (i.e. the genomic breeding value) for all animals and   is a vector of random error 

terms.   is assumed to be distributed  (     
 ) and   is assumed to follow  (     

 ).   is 

the genomic relationship matrix following [14]. Since we wanted to study the effect of differ-

ent number of markers, we built   based on different SNP sets. For the basic scenario, we 

used all SNPs available after quality control (i.e. 42’551 SNPs for the Holstein Friesian data 

set and 627’306 for the Brown Swiss data set) while for the further scenarios   was based on 

a subset of the total available number of SNPs, namely on 30’000, 20’000 and 10’000 SNPs 

for the Holstein Friesian and 313’653, 156’827, 78’414, 39’207, 19’604, 9’802, 4’901 and 

2’451 SNPs for the Brown Swiss data set, respectively. Variance components were estimat-

ed once with the respective complete data set in combination with a specific SNP set using 

ASReml 3.0 ([19]) and were then used for all respective runs using a subset of these data, 

but the same SNP set. 

In the following, we will describe available deterministic equations for prediction of the level 

of accuracy from the literature and modifications of these formulas we will conduct: 
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Equation of Daetwyler et al. 

Daetwyler et al. [9] presented an equation (D1) to predict the accuracy of a genome-wide 

genomic breeding value prediction: 

            √
   

 

   
    

 (D1) 

where    is the number of animals in the training set,    is the heritability of the observed trait 

and    is the number of independently segregating chromosome segments. When estimated 

breeding values (EBV) from a conventional breeding value estimation scheme are used as 

quasi-phenotypes for genomic prediction,    can be replaced by the reliability of the EBV. 

This is also true for all further prediction equations that will be described later. Daetwyler et 

al. [9] suggested using the definition of [8] to calculate   , but we will take    as a parameter 

not further determined in our study.  

Equation of Goddard et al. 

Goddard et al. [10] proposed a new equation for predicting the reliability of genomic predic-

tion which also accounts for the number of markers used. The basic formula in this paper is 

           
   

 

   
 

where  

  
     

        
 

and 

  
    

 

  
 

Goddard et al. [10] proposed a slightly different definition of     than [8] but we will not use 

any of them but keep    again as a population parameter to be determined empirically. Us-

ing those definitions, the prediction formula for the accuracy can be expressed as  

            √
     

 

    
    

 √ √
   

 

   
  

  
 

 (G1) 



5th CHAPTER A function to model the average accuracy 81 

which is very similar to the one proposed by [9] but with the variable   included to account for 

the finite number of markers. Note that if    , i.e. for a large number of SNPs and a limited 

number of   , D1 and G1 become identical. Goddard et al. [10] suggested using also a cor-

rection factor due to a smaller error variance when using a multiple marker analysis rather 

than single marker analyses. They refer to [9] and present the optimal prediction equation 

(G2) for predicting the accuracy as   

            √( 
 

   
)(  

( 
 

   )
 

  

  
) (G2) 

Modification of Daetwyler’s equation 

Assuming a finite    D1 will asymptotically approach 1 when    . Daetwyler [16] stated in 

the general discussion of his PhD thesis that it may be useful to modify his prediction equa-

tion to deal with the fact that the marker density of the Illumina BovineSNP50 BeadChip 

might not be high enough to capture all genetic variation.  

According to [20] the accuracy of the GBV as a predictor of the true breeding value compo-

nent that is associated with the available marker set is a product of the square root of the 

proportion of genetic variance associated with the used marker set ( ) and the accuracy of 

genomic breeding values assuming all causal variants are known and considered so that  

                      

The factor       can be interpreted as the maximum accuracy that can be obtained with 

a specific SNP set when the size of the training set is infinite. Using this in model D1 leads to 

the modified equation (D2) of [9]  

              √
   

 

   
    

 (D2) 

Modification of Goddard’s equation 

Equations G1 and G2 of [10] include also a weighting factor which accounts for the fact that 

not all genetic variance can be captured if the number of markers is limited. The authors of 

[10] defined this factor using the number of SNPs and the number of    but this may not be 

the optimal factor. We thus wanted to study the results of prediction when using G2 in a  
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modified form by setting √  equal to our   and avoiding any further definition of  . This leads 

to prediction equation G3 defined as 

            

√
  
  
  
  
  

(  
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 ̃   
)

(
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 ̃   
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with 

 ̃  
   

   

  
 

Maximum Likelihood approach 

A maximum likelihood approach was used to determine the value of    in equations D1, G1 

and G2, or the combination of   and    in equations D2 and G3 that provide the best fit of 

the respective model to our cross-validated data over all different training set sizes. We de-

termined the most appropriate estimate of    or   and   , respectively, by maximizing the 

Likelihood function 

  ∏ ∏ (   )

    

   

     

   

 

where       is the number of different k-fold scenarios,      is the number of replicates within 

one scenario and     is the mean accuracy of prediction obtained by cross-validation in the 

    scenario in the     replicate. We assumed that    was approximately normal distributed 

with  

    ( (  )   
 ) 

and observations were independent.  (  ) was derived from the respective model to predict 

the accuracy (i.e. D1-D2, G1-G3, respectively) and   
  was assumed to be the empirical vari-

ance in the 50 observed values within the     scenario. To ensure that the assumption of 

correlation coefficients being normally distributed random variables is not violated we tested 

all k-fold results with the 42’551 SNPs in the Holstein Friesian data set with a Shapiro-Wilk 

test [21].  

Most of the parameters used in  (  ) were determined by the empirical data, namely the 

heritability, number of animals in the training set and number of markers. Therefore,    and 
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  remain the only parameters in all considered equations to be adjusted. Searching for the 

maximal likelihood was done using the function “optimize” in R  22  for a one-dimensional 

search (i.e. for    in equations D1, G1, and G2) and the function “optim” in R  22  for a two-

dimensional search (i.e. for    and   in D2 and G3).  

Predicting prediction accuracies 

In many applications the prediction accuracy obtained with the data, especially the training 

set size, at hand is not sufficient. In such cases it would be desirable to be able to determine 

accurately the required training set size to achieve a pre-defined level of accuracy of ge-

nomic prediction. We tried to mimic this exercise to compare the usefulness of a model ac-

counting for the fact that the finite marker set does not account for the full genetic variation 

(model D2) with that of a model not doing so (model D1). We used subsets of 4’000 Holstein-

Friesian bulls to derive the optimal number of    (in D1) or    and   (in D2) and then pre-

dicted the accuracies for a training set in the size of the training set used for the 20-fold 

cross-validation runs with the whole Holstein Friesian data set (i.e. 5’413 bulls). For this we 

chose 4’000 bulls randomly out of the whole sample and performed a variance component 

estimation and all k-fold cross-validation runs (k = 2-10, 15, 20) for the different subsets. Af-

terwards, we maximized the likelihood as described above. Since there may be a sampling 

effect when using a random subset of 4’000 bulls, we repeated the whole procedure ten 

times so that we had predictions for ten different subsets of 4’000 bulls. The range of pre-

dicted values for a training set size of 5’413 bulls then was compared with the empirical ac-

curacy from a 20-fold cross-validation with our whole data set, i.e. with a training set size of 

5’413 bulls.  

 

RESULTS 

The mean and standard errors of the empirical accuracies obtained from the different cross-

validation schemes in the Holstein Friesian data are displayed in Figures 1 and 2 for the 

traits milk yield and somatic cell score. The mean accuracies (± standard errors) ranged from 

0.743 ± 0.0005 (0.73 ± 0.0007) with a 2-fold cross-validation and training set size 2’849 to 

0.798 ± 0.0002 (0.808 ± 0.0002) with a 20-fold cross-validation and training set size 5’413 for 

milk yield (somatic cell score).  

Our observed accuracies were far away from the bounds of correlation coefficients (-1 and 1) 

and apparently normally distributed: The results of the Shapiro Wilk test showed that for all k-

fold results with 42’551 SNPs in the Holstein Friesian data set the null hypothesis “normally 

distributed” was not rejected in a single case with p<0.01. Therefore, no further transfor-
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mation of the data was necessary. Other approaches, like the least squares principle used by 

[12] to fit model D1 to sequence-based genomic predictions in Drosophila melanogaster, can 

also be used to estimate the model parameters and in our case would lead to very similar 

results (results not shown). 

In the following, we will first describe the results for the estimates of    obtained based on 

the original equations from the literature [9,10] and then based on the modified versions of 

these equations (i.e. with w added) with different numbers of markers. 

 Table 1 shows the numbers of    obtained by maximizing the likelihood of the empirical 

accuracies under equations D1, G1 and G2 for both traits. The estimates of    were of the 

same magnitude (~ between 2’000 and 2’800) with all methods while the likelihood obtained 

with G1 is highest for both traits. Not surprisingly, the estimates were similar for both traits 

since the empirical accuracies for milk yield and somatic cell score were very similar.  

 

Table 1: Fitted values of the number of independent chromosome segments (  ) and 

weighting factors ( ) with the Maximum-Likelihood approach and the corresponding natural 

logarithm of the likelihoods when using the Holstein-Friesian data set.  

Method1 Trait    fitted   
% genetic vari-

ance captured 
Ln(Likelihood) 

D1 Milk yield 2783.2 - - -3912.5 

D2 Milk yield 1045.6 0.875 76.6 2613.1 

G1 Milk yield 2282.4 - - -1903.9 

G2 Milk yield 2821.9 - - -4367.6 

G3  Milk yield 904.9 0.869 75.5 2611.0 

D1 Somatic cell score 2442.3 - - 495.5 

D2 Somatic cell score 1241.0 0.907 82.3 2512.9 

G1 Somatic cell score 2036.2 - - 1272.7 

G2 Somatic cell score 2506.0 - - 340.2 

G3 Somatic cell score 1128.4 0.897 80.5 2508.7 
1 D1 uses the formula of Daetwyler et al. (2010) to calculate the expected values of accuracy, 
G1 and G2 are based on Goddard et al. (2011) without and with the proposed correction 
factor, respectively. D2 is a modified equation of Daetwyler et al. (2010) while G3 is based on 
Goddard et al. (2011) with the weighting factor not defined like in the original publication but 
like in D2. 

 

In Figure 1 and 2, the best curves of predicted accuracy under equations D1, G1 and G2 

based on the respective maximum likelihood estimates of    in the Holstein Friesian data set 
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are shown for the traits milk yield and somatic cell score. None of these equations provided a 

curve of predicted accuracies that matched the empirical data to a sufficient extent. The re-

sults obtained under equations D1 and G2 are very similar while G1 provided a slightly better 

fit in accordance with the superior likelihood value for this model. Nevertheless, all equations 

led to a downward bias of predicted accuracies for small training set sizes while they showed 

an upward bias for large training set sizes.  

 

 

Figure 1: Empirical values and expected values of          for milk yield in Holstein-Friesian 

data.  

Empirical values of          and expected values using the number of    derived with a  

Maximum-Likelihood approach for the Holstein-Friesian data set in the original equation of 
Daetwyler et al. (2010) (D1) as well as in a modified form (D2) and in the equation of God-
dard et al. (2011) without (G1) and with (G2) the proposed correction factor, respectively, 

and with the factor   not further determined (G3). For the empirical values, the mean and the 
standard deviation over the 50 replicates in each k-fold scenario of the Holstein-Friesian data 
set are shown. 

 

Maximum likelihood estimates for   and    for the Holstein data set with the new equations 

D2 and G3 used for the calculation of the expectations of the accuracy are also presented in 

Table 1. The obtained likelihoods were dramatically higher compared to the conventional 

equations, with D2 slightly outperforming G3 with the present data sets. The estimates of    

were clearly lower with both equations compared with the original equations and were in the 

range of ~900 to ~1’240 depending on method and trait. The optimal weighting factor   was 
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in all cases between 0.87 and 0.91, suggesting that with the given marker set the accuracy of 

prediction will not approach 1 even if a very large training set is used. According to Dekkers 

(2007) the squared value of   represents the proportion of genetic variance associated with 

the markers which in our case would range between 75.5 per cent (milk yield with model G3) 

and 82.3 per cent (somatic cell score with model D2). This indicates that a large proportion, 

but not the complete genetic variation in our data set is captured by the SNP set at hand. 

 

 

Figure 2: Empirical values and expected values of          for somatic cell score in Holstein-

Friesian data.  

Empirical values of          and expected values using the number of    derived with a Max-

imum-Likelihood approach for the Holstein-Friesian data set in the original equation of 
Daetwyler et al. (2010) (D1) as well as in a modified form (D2) and in the equation of God-
dard et al. (2011) without (G1) and with (G2) the proposed correction factor, respectively, 
and with the factor   not further determined (G3). For the empirical values, the mean and the 
standard deviation over the 50 replicates in each k-fold scenario of the Holstein-Friesian data 
set are shown. 

 

Figures 1 and 2 show prediction curves resulting from the optimal fit of the equations D2 and 

G3 for the traits milk yield (Fig. 1) and somatic cell score (Fig. 2) within the Holstein Friesian 

data set. For both traits and with both equations, the predicted accuracies fit the empirical 

data extremely well and in any case much better than with the conventional equations. By 

fitting two parameters (   and   ) the curves could accommodate a different slope of the 
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empirical accuracy values more flexibly than with the one-parameter equations, which are 

bound to have their origin in            and asymptotically have to approach           . 

Since we observed that only a specific fraction of the genetic variance was captured by the 

available SNP set we were interested in studying the effect of different SNP densities on the 

shape of the curve of expected accuracies and the respective parameters. Results of the 

maximum likelihood estimation using equations D2 and G3 with different marker set sizes in 

the Holstein Friesian data set are given in Table 2.  

 

Table 2: Fitted values of the number of independent chromosome segments (  ) and 

weighting factors ( ) with the Maximum-Likelihood approach and the corresponding natural 

logarithm of the likelihoods for different methods and different SNP sets when using the Hol-

stein-Friesian data set. 

Method1 Trait 
No. of 

SNPs 
   fitted   

% genetic vari-

ance captured 
Ln(Likelih.) 

D2 Milk yield 10000 992.3 0.844 71.2 2576.4 

D2 Milk yield 20000 1043.9 0.863 74.5 2600.0 

D2 Milk yield 30000 1068.6 0.868 75.3 2594.4 

D2 Milk yield 42551 1045.6 0.875 76.6 2613.1 

G3 Milk yield 10000 791.6 0.838 70.2 2574.2 

G3 Milk yield 20000 874.1 0.856 73.3 2597.2 

G3 Milk yield 30000 904.1 0.861 74.1 2491.9 

G3 Milk yield 42551 904.9 0.868 75.3 2611.0 

D2 Somatic Cell Score 10000 1201.3 0.868 75.3 2457.8 

D2 Somatic Cell Score 20000 1240.1 0.895 80.1 2496.0 

D2 Somatic Cell Score 30000 1250.8 0.904 81.7 2512.3 

D2 Somatic Cell Score 42551 1241.0 0.907 82.3 2512.9 

G3 Somatic Cell Score 10000 993.5 0.861 74.1 2456.0 

G3 Somatic Cell Score 20000 1093.3 0.885 78.3 2491.9 

G3 Somatic Cell Score 30000 1127.0 0.894 80.0 2508.1 

G3 Somatic Cell Score 42551 1128.4 0.897 80.4 2508.7 
1 D2 is a modified equation of Daetwyler et al. (2010) while G3 is based on Goddard et al. 
(2011) with the weighting factor not defined like in the original publication but like in D2. 

 

We observed a decreasing trend in the weighting factor   when reducing the number of 

SNPs but the extent of the decrease was limited, so that even with 10’000 SNPs a high per-
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centage of the genetic variance (71.2% for milk yield and 75.3% for somatic cell score, both 

with model D2) is captured and not much is gained by applying a more than four-fold SNP 

density. For the optimal number of    the trend was not that clear. It was also not expected 

that the number of    changes systematically in one direction since the same animals were 

used for all analyses. The likelihoods were in the same range for all reduced SNP sets com-

pared to the full SNP set for both methods. 

Based on our previous results, we next tried to describe the relationship between the esti-

mates of w obtained and the underlying marker density.  

We hypothesize that the maximum accuracy that can be obtained,  , is a function of the nat-

ural logarithm of the SNP density. Using the Holstein Friesian data, we found that a function 

     
 

  (       )
 Eq. [1] 

where         is the number of SNPs per Morgan, fitted our empirical data reasonably well 

(Figure 3). With an intercept of         (     ) and a regression coefficient of   

       (      ) for milk yield (somatic cell score), the coefficient of determination of the 

fitted regression line was 0.990 (0.971), and the regression coefficients were significant 

(      ) for both traits. Note that we had only four data points available, but nevertheless 

they showed a very clear trend. An intercept of approximately 1 could suggest that with an 

increasing SNP density (i.e. decreasing values of the reciprocal of the natural logarithm of 

the SNP density) the accuracy of genomic prediction asymptotically approaches 1. This re-

sult also suggested that it will be necessary to use multi-folds of a given marker density to 

obtain a substantial increase of the prediction accuracy. 
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Figure 3: Regression of weighting factor   on the reciprocal of the logarithm of the marker 

density in Holstein-Friesian.  

Regression of the weighting factor   on the reciprocal of the natural logarithm of the marker 
density for the traits milk yield and somatic cell score in the Holstein-Friesian data set. The 
marker density was defined as the number of markers used divided by the length of the used 
parts of the genome in Morgan. The dots mark the values derived with the Maximum likeli-
hood approach using the modified equation of Daetwyler et al. (2010) (D2) to describe the 
expected value of accuracy and the empirical data sets.  

 

As we had cross-validation results based on different marker densities available, we were 

also interested in finding a global function for estimating    and a weighting factor including 

all available empirical results. Eq. [1] made it possible to find a global    and a factor   de-

pending on the marker density using our suggested maximum likelihood approach. We used 

D2 for the expected value with   (   
 

  (       )
) and found the highest likelihood with 

            and        . A comparison between predicted and empirical values is 

shown in Figure 4. It can clearly be seen that the empirical values deviate only slightly from 

the predicted values. Deviations are largest for small training set sizes and/or low marker 

densities. 
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Figure 4: Predicted and empirical values of TBVGBV,r  (grid) for different #SNPs and different 

#animals for Holstein-Friesian.  

Predicted values of          (grid) for different numbers of markers and different number of 

animals in the training set when using the modified equation of Daetwyler et al. (2010) (D2), 
an    of 1’151.55 and a weighting factor of   LSNPS /#ln/853.01 . Empirical results 

obtained with cross-validation experiments with Holstein-Friesian data are symbolized by 
arrows. Orange arrows represent values that were higher than predicted while blue arrows 
indicate that empirical values were lower than the predicted ones. 

 

To check the results in an independent data set, we applied the maximum likelihood ap-

proach based on D2 also on the Brown Swiss data set. Empirical values from the 2- to 20-

fold cross-validation when using the full SNP set are shown in Figure 5. Mean accuracies (± 

standard errors) ranged from 0.757 ± 0.0013 (0.659 ± 0.0015) with a 2-fold cross-validation 

and training set size 667 to 0.802 ± 0.0006 (0.730 ± 0.0007) with a 20-fold cross-validation 

and training set size 1266 for milk yield (somatic cell score).  
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Figure 5: Empirical values and expected values of          for milk yield and somatic cell 

score in Brown-Swiss. 

Empirical values of          and expected values using the number of    for the Brown 

Swiss data set derived with a Maximum-Likelihood approach in the modified equation of 
Daetwyler et al. (2010) (D2). For the empirical values of milk yield and somatic cell score in 
the Brown Swiss data set, the mean and the standard deviation over the 50 replicates in 
each k-fold scenario are shown. 

 

Results of the estimation of the number of    and   with different SNP sets can be seen in 

Table 3. Estimates for the number of    ranged from 148 to 214 for milk yield and from 277 

to 419 for somatic cell score and were thus clearly lower in Brown Swiss than in Holstein 

Friesian. Estimates of the number of    were smaller with milk yield than with somatic cell 

score as was also observed in the Holstein Friesian data set. The weighting factor   kept 

constant in both traits (~0.87 for milk yield, ~ 0.85 for somatic cell sore) when decreasing the 

number of markers up to a point of around 19’000 SNP from where on it decreased consid-

erably. This indicates that the percentage of genetic variance captured with a given SNP set 

did not increase further when using more than 19’000 SNPs in this data set. Figure 5 shows 

the prediction curves with the optimized number of    and an optimized   as well as D2 for 

modeling the expected accuracy for both traits and the full SNP set of 627’306 SNPs. As 

already seen with the Holstein Friesian data, D2 with optimized values for the number of    

and   fitted the shape of the curve of empirical values very well.  
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Table 3: Fitted values of the number of independent chromosome segments (  ) and 

weighting factors ( ) with the Maximum-Likelihood approach and the corresponding natural 

logarithm of the likelihoods for method D2 and different SNP sets when using the Brown 

Swiss data set. 

Trait 
No. of 

SNPs 
   fitted   

% genetic  

variance captured 
Ln(Likelih.) 

Milk yield 2451 148.2 0.791 62.6 2111.2 

Milk yield 4901 157.2 0.821 67.4 2108.2 

Milk yield 9802 192.2 0.849 72.1 2078.3 

Milk yield 19604 213.7 0.868 75.3 2075.8 

Milk yield 39207 202.2 0.868 75.3 2085.4 

Milk yield 78414 199.4 0.868 75.3 2090.9 

Milk yield 156827 197.3 0.868 75.3 2095.2 

Milk yield 313653 196.5 0.867 75.2 2094.0 

Milk yield 627306 196.7 0.866 75.0 2092.2 

Somatic Cell Score 2451 277.2 0.735 54.0 1904.7 

Somatic Cell Score 4901 354.2 0.792 62.7 1910.0 

Somatic Cell Score 9802 378.4 0.824 67.9 1971.9 

Somatic Cell Score 19604 418.9 0.850 72.3 1979.7 

Somatic Cell Score 39207 405.0 0.845 71.4 1978.6 

Somatic Cell Score 78414 411.6 0.849 72.1 1983.0 

Somatic Cell Score 156827 414.2 0.850 72.3 1981.4 

Somatic Cell Score 313653 412.4 0.850 72.3 1982.0 

Somatic Cell Score 627306 412.4 0.851 72.4 1983.9 

 

We also tested the relationship between the weighting factor   and the marker density for 

the Brown Swiss data set (same approach like in the Holstein Friesian data set). The results 

are shown in Figure 6. There seems to be a linear relationship up to a number of markers of 

around 20’000 SNPs (~0.16 when expressed as 
 

  (       )
). A linear regression model 

     (  (       ))   with        and          would lead to a coefficient of deter-

mination    of 0.998 for milk yield, for example. However, with any further increase of the 

marker density (i.e. smaller values on the x-axis), the weighting factor did not increase any-

more but stayed on a constant level      (e.g.           for milk yield). This pattern with a 

linear relationship first and constant values beyond a certain marker density was observed in 

both traits. 
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Figure 6: Regression of weighting factor   on the reciprocal of the logarithm of the marker 

density in Brown-Swiss.  

Regression of the weighting factor   on the reciprocal of the natural logarithm of the marker 
density for the traits milk yield and somatic cell score in the Brown Swiss data set. The mark-
er density was defined as the number of markers used divided by length of the used parts of 
the genome in Morgan. The dots mark the values derived with the Maximum likelihood ap-
proach using the modified equation of Daetwyler et al. (2010) (D2) to describe the expected 
value of accuracy and the empirical data sets.  

 

Next we studied if our approach can be used to extrapolate the accuracy of prediction be-

yond the data set used to determine the model parameters. For this, the maximum likelihood 

approach was applied to ten data sets of 4’000 Holstein Friesian bulls which were the basis 

of cross-validation runs as described above. Figure 7A displays the resulting prediction 

curves obtained with model D1 for the trait somatic cell score, for milk yield the picture was 

very similar (results not shown). The curves varied over the data sets but were reasonably 

consistent in the level of accuracy and its slope over the different sizes of training sets. The 

fitted number of    ranged between 2’000 and 2’356. When extrapolated to the training set 

size 5’413 (the one resulting from a 20-fold CV in the full data set), the expected prediction 

accuracy (averaged over the 10 replicates) was 0.828 ± 0.007. The empirical accuracy ob-

tained from the full data set (0.808±0.002) was clearly outside the range of predicted values 

obtained with the ten replicates. This suggests that model D1 (and similarly G1 and G2, re-
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sults not shown) systematically overestimate the expected prediction accuracy when used for 

extrapolation beyond the training set size at hand. 

 

 

Figure 7A and B: Predicted and empirical values of          when extrapolating the accura-

cy. 

Empirical values of          (black dots) of the ten replicates with different k-fold scenarios 

using 4’000 individuals and of the 20-fold runs of the fifty replicates using 5’698 Holstein-

Friesian animals in total. Expected values (grey lines) use the number of    derived with a 
Maximum-Likelihood approach in the original equation of Daetwyler et al. (2010) (D1, Figure 
7A) and in the modified equation of Daetwyler et al. (2010) (D2, Figure 7B). 

 

In Figure 7B, D2 was used in the maximum likelihood approach to determine the optimal pa-

rameter for the prediction of accuracy based on the cross-validation runs with the ten differ-

ent data sets of 4’000 bulls for the trait somatic cell score. The optimal weighting factor   

ranged between 0.874 and 0.906 for the different data sets while the optimal number of    

was between 979 and 1’195. These numbers were of the same magnitude as the optimal 

values we found when using cross-validation results with the total data set of 5’698 bulls. 

Using the proposed weighting factor made it possible to reflect the increase of accuracy 

when enlarging the number of animals in the training set. The empirical accuracies 

(0.808±0.002) obtained with a training set of 5’413 bulls was clearly within the range of accu-

racies (between 0.793 and 0.815) we would predict when using the parameters optimized for 

the ten data sets of 4’000 bulls and deviated only slightly from the average predicted value 

0.803 ±0.007.  
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DISCUSSION 

The aim of our study was to use empirical data to find a deterministic prediction equation for 

the accuracy of genomic breeding values that accounts for factors like sample size of the 

training set and marker density used that fits our data best. We used a maximum likelihood 

approach to validate different equations to predict the accuracy of GBV. We showed that the 

likelihood of our approach was best when the estimates of    were obtained based on an 

expected value of the accuracy that also included a weighting factor reflecting the marker 

density used.  

There are different possible reasons why the accuracy of genomic prediction with a specific 

SNP set may not reach one even if the number of training animals is infinite. First of all, only 

a fraction of the variance generated by QTL will be tagged by SNPs, i.e. the marker density 

is too low. Furthermore arrays like the Illumina BovineSNP50 BeadChip were designed such 

that the allele frequencies of the markers are more or less uniformly distributed ([23]) which 

leads to an underrepresentation of markers with very low minor allele frequencies. Since  

similar allele frequencies between marker and QTL are mandatory for obtaining high LD val-

ues and capturing the variance of the QTL, QTL with low minor allele frequency may not be 

represented adequately by the markers on a common SNP chip.  

The weighting factor   can be interpreted as the maximum accuracy that can be achieved 

with the specific marker set in the population at hand assuming an infinite training set size. In 

our case, we found   to be in a range of ~ 0.875 to 0.9 while the accuracies we could obtain 

with ~ 5’700 bulls in our Holstein Friesian data set empirically were around 0.8. This means 

that most of the possibly achievable accuracy is already obtained when having ~ 5’000 bulls 

in the training set. Genomic heritability (i.e. heritability in the GBLUP model) may be another 

good indicator of how much genetic variance is captured by the SNPs. Estimates of genomic 

heritability in our data sets (results not shown) were higher than the estimated squared    

(representing the proportion of genetic variance captured by the SNPs), but behaved com-

pletely similar in trend (e.g. no increase in genomic heritability in Brown Swiss with additional 

markers from a number of ~20’000 markers on) compared to   .  

Having the estimates of    and w at hand, one could think about changes in accuracy when 

enlarging the training set size. Using model D2 with         and          (values ob-

tained for milk yield) we would need a training set size of 54’515 (10’246) animals to reach 

99% (95%) of the possibly achievable accuracy with the given SNP density. Duplication of 

the number of animals in the training set from 5’000 to 10’000 would lead to a mean increase 

of accuracy of ~ 0.04 from 0.79 to 0.83, while going from 10’000 to 20’000 animals would 

only lead to an increase of ~ 0.02. Note that these considerations assume that a further ran-
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dom set of bulls (i.e. no specific groups like close relatives etc.) is used to enlarge the train-

ing set. In general, increasing the number of animals in the training set therefore will not add 

enough beyond a certain point when set in relation to the additional costs that incur for geno-

typing and phenotyping the required animals. Reliable knowledge about this case of dimin-

ishing returns is crucial when implementing or optimizing genomic selection programs. 

Daetwyler [16] used a regression approach to estimate the maximum genetic variance cap-

tured by a SNP, which is the squared value of our weighting factor  . He observed four data 

points within US Holstein data sets for different training set sizes. However, he did not use 

different k-fold cross validation but validated his theory by augmenting the training set with 

new animals, including cows, to achieve larger training set sizes. The maximum genetic vari-

ance that is captured by the SNP set depends also on the population studied. Adding cows 

thus may bias the results since a higher genetic variance is expected in the cow population 

compared to the highly selected group of progeny tested bulls. 

 The maximum genetic variance found in his study was     
            in US Holsteins 

for Net Merit with the 50k SNP Chip which equates to a   of ~0.89. This is very close to our 

estimate in a European Holstein data set both for milk yield and somatic cell score. The 

weighting factor   in principle should be trait specific, but if conventional estimated breeding 

values (or equivalently de-regressed proofs or daughter yield deviations) are used as quasi-

phenotypes for genomic prediction differences between traits should not be large as long as 

estimated breeding values are sufficiently accurate and homogeneous. Daetwyler [16] also 

suggested estimating    from model D1 based on results from real data [16] and simulated 

data [9]. For this, they rearranged D1 multiplied by the square root of     
  so that the num-

ber of    could be obtained directly. Their results for US Holsteins were in a range of about 

900 to 1300 for the number of    which is in the same range as the results we obtained with 

our Holstein data. 

All numbers of    we derived in Holstein Friesian with D2 or G3 were similar or somewhat 

smaller than expected compared to the deterministic approach of [10] (                ) 

and clearly smaller than expected compared to the approach of [15] (              ) when 

assuming    being 100 and the length of the autosomal genome being 29 Morgan. For 

Brown Swiss, the approach of [10] would clearly overestimate    in comparison to what we 

found in the empirical data (   from 148 to 412). Hayes et al. [11] showed that expected ac-

curacies were very close to empirical results from US Holstein Friesian cattle when using his 

definition of    and an effective population size of 100, a length of the genome of 30 Morgan, 

and the original equation of [9]. For our data, however, the predicted accuracy using the as-
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sumptions of [15] would severely underestimate the accuracies observed in the cross-

validation study (results not shown).  

Goddard et al. [10] suggested the factor   
     

        
 to estimate the proportion of genetic 

variance that can be explained by the markers, i.e. our factor   squared. With    and       

in the realistic range reflecting current applications in dairy cattle   will approach 1 very fast. 

For example, when          and              ,   would be 0.982 and therefore the 

square root of   (i.e.  ) would be > 0.99, which is clearly higher than found in experiments 

with real data ([2], [24], [25]) including this study. 

We found a clear linear relationship between the reciprocal of the logarithm of the marker 

density and the maximal achievable accuracy ( ) of the form      (  (       ))    

where     and   is a trait-specific regression coefficient. Such a linear relationship has also 

been found by [26] in simulated data. Since the relationship is linear to the log of the marker 

density, it is not surprising that the factor   which can represent the maximal achievable ac-

curacy did not differ much between our runs with different number of SNPs in the Holstein 

data set. We could not study what will happen with further increasing the marker density in 

Holstein Friesian, since we did not have access to a sufficiently large set of individuals with 

high density marker genotypes.  

Current results have shown that the accuracy of genomic breeding value prediction within 

breed did not increase significantly when using imputed 777k SNP marker data rather than 

50k SNP data [24]. It seemed that also the proportion of genetic variance captured by the 

markers was only slightly higher. In our Brown Swiss data set, all bulls had 777k SNP geno-

types and we actually saw a stagnation of the percentage of genetic variance explained 

when the number of markers was greater than ~ 20’000. This means that even with an infi-

nite size of the training set the accuracy of prediction will not be better even if we use 30 

times more markers. In Holstein Friesian,   still increased up to ~40’000 markers roughly 

linearly with the logarithm of the marker density. It thus can only be assumed that the plateau 

has just not been reached for Holstein Friesian with the observed marker density, which re-

mains to be verified once sufficiently large samples with high density genotypes are available 

for the Holstein Friesian breed.  

The highest possible marker density is achieved when using whole genome sequence data 

in genomic prediction. In a data set of 157 inbred lines genotyped for ~ 2.5 million SNPs, [12] 

found that the prediction equation D1 of [9] adapted for the special genetic model of Dro-

sophila melanogaster was a good predictor for the accuracy of sequenced-based genomic 

breeding value estimation looking at different sizes of reference sets. Since the fit of the  
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original equation of [9] to the empirical accuracies was excellent, it can be concluded that this 

massive SNP density (~ 1 Mio SNPs/Morgan) recovers the complete genetic variability 

(i.e.     ) but in contrast to our study the small size of the reference set is the limiting factor 

in that case.  

The results for the estimates of    were very different in the two studied breeds. This was 

surprising because both are modern dairy breeds and rather similar results would have been 

expected. We thus assessed different characteristics of the two populations (Holstein Frie-

sian and Brown Swiss) to identify potential causes for the difference in the pattern of ob-

served accuracy functions. First, we calculated the effective population size    based on 

pedigree information and found values that were very similar for both breeds (     , ob-

tained with POPREP [27], based on [28]). Based on linkage disequilibrium (using markers 

available in both sets and formulas of [29] and [30]), estimates for    in 6 to 9 generations 

back was ~133 in Holstein Friesian and ~125 in Brown Swiss. Both analyses suggest that 

there is no difference between the two breeds regarding   . Furthermore, we studied proper-

ties of the genomic relationship matrix, namely the eigenvectors and eigenvalues of   which 

reflect the degree of population substructure in the sample. To avoid a bias due to the num-

ber of SNPs used, we compared the genomic relationship matrix constructed with 42’551 

SNPs for Holstein Friesian and 39’207 SNPs for Brown Swiss. The first and the second ei-

genvectors explained 14.36% (13.32%) and 6.29% (9.96%) of the variance in the Holstein 

Friesian (Brown Swiss) data set. The first 10 eigenvectors explained around 50% of the vari-

ance in both data sets. The differences between the structures of the eigenvectors in the 

covariance matrix therefore also seem to be negligible. 

These results indicate that further parameters have to be found that can determine the pro-

portion of genetic variance explained and the SNP density at which the plateau is reached.  

They also illustrate that calculating an expected value of    just based on the length of the 

genome and the effective population size may not be sufficient, since empirical values for    

differ between traits within populations and even between populations with similar    and the 

same length of genome. Furthermore, the results may also indicate that interpretability of 

population parameters (like e.g.   ) in such formulas can be limited when they are derived 

with the suggested goodness-of-fit-approach. 

We further showed that model D2 allowed a realistic extrapolation of prediction accuracies 

with increasing training set sizes, while model D1 systematically overestimated the accuracy 

for a training set of 5’413 Holstein Friesian bulls when the model parameters    and   were 

derived with a subset of 4’000 bulls. The overestimation was not dramatic for this example, 

but 5’413 is not that much bigger than 4’000. However, if the difference between the number 
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of individuals used for fitting the curve and the size of the reference set for which the accura-

cy is to be predicted increases, the upward bias will accumulate. Especially, as it is expected 

that number of animals in the training sets will increase in real studies up to ten thousands of 

training animals, it is critical that a prediction equation is able to fit the slope of the increasing 

accuracy correctly. 

Equations to predict the accuracy of genomic breeding values are often derived for the sim-

ple case of a random set of animals that are not related (e.g.  8 ) or show an ‘average’ rela-

tionship. In real cattle data, animals are often highly related and stem from specific selected 

groups, e.g. progeny-tested sires. A general equation, though, should be designed primarily 

as an indicator for a random animal out of a whole population (e.g. modern dairy cattle). Pa-

rameters like the number of    and   can be chosen in a way that they describe the underly-

ing population and trait as good as possible, but it is not the goal to obtain exact predictions 

of accuracies for specific animals in the prediction set. As shown by many studies (e.g. [31]) 

the relationship between candidates and the training set, which also can be seen as a kind of 

population stratification, influences the accuracy in a non-random manner. Goddard et al. 

[10] showed how relationship structures can be used to estimate e.g. the parameter   but 

this works just in the case where animals have already been genotyped. Another idea on 

how to determine the maximum achievable accuracy has been recently proposed by de los 

Campos et al. (2013) [32]. They suggested an approach for the case of imperfect linkage 

disequilibrium between markers and QTL which is not depending on assumptions like unre-

lated individuals or parameters like   . Further approaches still need to be developed for the 

“before data collection” case. 

 

CONCLUSION 

We suggest a comprehensive model for the average accuracy of genomic breeding values 

and demonstrate how the model parameters can be estimated using a systematic cross-

validation based on empirical data. Integrating all results, we suggest the model 

            (   (  (       ))       )√
   

 

   
    

 

with the four parameters          and   , that can be empirically determined via systematic 

cross-validations as described in this study. 

The suggested modification of the original equation of [9] led to a substantially improved fit of 

the predicted accuracies obtained with cross-validated data and showed its good prediction 
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ability in the extrapolation to larger training sets. The maximum likelihood approach used for 

obtaining an estimate of the number of independent chromosome segments led to largely 

consistent values across different SNP sets. We also propose a function linking the maximal-

ly achievable accuracy of genomic prediction to the marker density, suggesting strongly di-

minishing returns when increasing the sizes of the SNP arrays, which confirms results ob-

tained with different SNP densities in practical applications with dairy cattle.  
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GENERAL DISCUSSION 

Preface 

This thesis studied different factors that influence the accuracy of genomic prediction in real 

dairy cattle data sets. The following factors were investigated further in realistic study de-

signs in Chapters 2, 3 and 4: 

 training and validation set size, 

 relationship and age structure between training and validation set, 

 density of the marker panel,  

 composition of the training set and 

 model choice. 

Chapter 5 attempted to represent the accuracy of genomic prediction as a formula based on 

population specific parameters.  

Important questions arising from the results of the previous chapters will be discussed in the 

following. 

 

How valuable is cross-validation accuracy and how does it  

correspond to other parameters assessing the performance of a model? 

In all studies in this thesis, cross-validation accuracies have been used which were meas-

ured as the correlation between the predicted and the true breeding values (or the quasi-

phenotypes). Cross-validation accuracies model an average accuracy over the studied indi-

viduals but they cannot show individual levels of accuracy. For general trends how different 

models work the mean accuracy is usually a good measure.  

In mixed model equation (MME) theory, it is possible to obtain the accuracy (  ) for a specific 

individual i based on the prediction error variance (PEV) so that 

   √  
    

  
        [1] 

where   
  is the genetic variance.  
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To compare the results that would be obtained based on individual accuracies with cross-

validation results, individual accuracies were calculated for all scenarios and replicates from 

Chapter 3 and were averaged within replicates and then over scenarios. Afterwards, mean 

accuracies per scenario obtained with cross-validation and with individual accuracies were 

compared. Figure 1 shows that cross-validation accuracies are slightly lower but the trend 

over scenarios is the same for both measures. Correlations between mean accuracies by 

cross-validation and by MME calculations over scenarios are 0.925 for somatic cell score 

and 0.927 for milk yield. This shows that for a comparison of different scenarios, cross-

validation accuracies are a good measure for evaluation.  

 

Figure 1: Accuracies based on [1] averaged over individuals and cross-validation accuracies 

from different scenarios of Chapter 3.  

 

From cross-validation experiments, it is also possible to calculate an empirical prediction er-

ror for each individual   as 

     (    ̂   ̂ )        [2] 

where  ̂ is the estimated overall mean,  ̂  is the predicted genomic breeding value of individ-

ual   and    is the quasi-phenotype that was masked to obtain  ̂  in the genomic prediction 

model. 



6th CHAPTER General Discussion 107 

To further study the relation between all these parameters a leave-one-out cross-validation 

with a data set of 5’698 Holstein Friesian bulls (which were also the basis for the studies in 

Chapter 3 and 5) for the trait somatic cell score was performed. Leave-one-out means that 

there are 5’698 runs of genomic prediction in which each individual is the validation individual 

exactly one time and all other individuals are used for training. The following statistics were 

calculated for the validation individual in each run: prediction error variance, empirical predic-

tion error between masked phenotype and predicted one as in [2] and accuracy of prediction 

based on the prediction error variance as in [1]. The empirical prediction error could be com-

pared over all runs since  ̂ changed only very slightly between runs.  

The empirical accuracy was also considered by calculating the correlation between pheno-

types and predicted breeding values for all individuals divided by the square root of the ge-

nomic heritability estimated with the whole data set (  
       ). The empirical accuracy was 

0.849 while the mean of the individual accuracies based on [1] was 0.849 and was in the 

range between 0.487 and 0.993. Accounting for inbreeding, namely by calculating  

   √      (     
 )⁄  with     being the diagonal element of the genomic relationship ma-

trix for individual   did not change the accuracy much (0.849 [0.607; 0.992]). 

There was no correlation between the predicted genomic breeding values and the empirical 

prediction error (-0.002) while there was a highly positive correlation between the quasi-

phenotype and the squared empirical prediction error (0.647). Figure 2a shows the relation-

ship between the prediction error variance and the empirical prediction error, whose correla-

tion was 0.04, for all individuals. For Figure 2b, bins of size 5 units of PEV were built and the 

variance of the empirical prediction error (VEPE) within these bins was calculated. Even 

when PEV is defined within an individual and VEPE over random individuals, both are ex-

pected to show the same tendency, namely the higher the theoretical PEV, the higher should 

be the empirical variation in deviations of the predicted values from the observed ones. Only 

results from bins with at least 10 observations are shown in Figure 2b. For low PEV, VEPE 

remains very low at first, and then increases continuously. Applying a linear regression to 

those bins ended in a highly significant regression coefficient ( ̂       with a p-value of 

         ) and a coefficient of determination of 86.5%. Since numbers of observations per 

bin were different, the regression may be slightly biased but there is a clear positive trend. 

Relationships between all those parameters should be studied further to find optimal parame-

ter to describe the assessment of models.  



6th CHAPTER General Discussion 108 

 

Figures 2a and b: Relationship between the prediction error variances of the validation indi-

viduals from 5’698 leave-one-out cross-validation runs and the empirical prediction errors 

(Figure 2a) and between prediction error variance and the variance of the empirical predic-

tion error calculated in bins of 5 units width (Figure 2b). 
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In the past year, different authors (Bijma, 2012; Edel et al., 2012) have considered the ques-

tion on how selection influences the accuracy measures of genomic prediction. Edel et al. 

(2012) stated that the accuracy obtained with cross-validation in a forward-prediction scheme 

(i.e. prediction of the youngest) with underlying selection will underestimate the true predic-

tion accuracy. Bijma (2012) argued the other way round, namely that accuracies based on 

PEV and formulas like [1] are not valuable in populations under selection since they overes-

timate the actual accuracy. Smaller values obtained with cross-validation than with accura-

cies from MME were observed in the evaluation of results of Chapter 3 (see Figure 1 in this 

discussion), while this effect was not present in the leave-one-out cross-validation experi-

ment. Apart from different data sizes and designs (random drawing with replicates vs. leave-

one-out) the difference between these two runs was that the first one was stratified (forward-

prediction) while the latter considered prediction of all bulls in the set. This may have influ-

enced the results in this direction. Further research on these ideas will be necessary.  

Daetwyler et al. (2013) suggest the slope of the regression of a linear regression of observed 

on predicted values should also always be reported. Some authors have done this before 

(e.g. Su et al., 2012) and it was used as a measure of performance of specific models. Slope 

of the regression may be important if different sources are merged afterwards to obtain a 

genomic enhanced breeding value, e.g. by combining pedigree based breeding values and 

direct genomic breeding values. As long as the information level stays on the level of direct 

genomic breeding values, the ranking of the bulls is the most important factor and this is not 

influenced by the slope of the regression. Thus the accuracy of prediction measured as the 

correlation between observed and predicted values is still the more important measure. At 

best this measure is obtained in a study design that allows for (stratified) replications since 

single point estimators are always hard to handle and to interpret. A good overview on further 

parameters regarding the assessment of a model worth to add to a manuscript is found in 

Daetwyler et al. (2013). 

 

What is the impact of relationship structure on accuracy of genomic prediction? 

In Chapter 3 it was discussed that the level of relationship and the age structure between 

validation individuals and the respective training set clearly influences the level of accuracy. 

In this study, the validation set was kept constant to assure that the prediction scenario is the 

one of practical relevance, namely the prediction of the youngest individuals. Not very many 

studies are available which consider the impact of different relationship levels in real dairy 

cattle data sets. Habier et al. (2010) studied the influence of the maximal relationship to the 

accuracy of prediction in training and validation sets that were not structured by age. They 
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also found a decrease in accuracy with lower levels of maximal relationship and they showed 

that the decrease was stronger when the total number of individuals was smaller.  

Clark et al. (2012) used data from ~1’750 Merino sheep to model different levels of relation-

ship in a scenario of unrelated individuals, i.e. individuals for whom pedigree information 

showed no relationship. While in this case no prediction is possible with pedigree BLUP, with 

genomic BLUP they could still see accuracies of 0.18 (0.28) for live weight at ultra-sound 

scanning (ultrasound scanned eye muscle depth). These values show another advantage of 

genomic breeding value prediction, namely that there is at least a good chance to also obtain 

usable breeding values for individuals where no pedigree information is known. This may be 

not as important in dairy cattle with deep and comprehensive pedigrees as in many other 

species. However, this study also shows that unrelatedness within a species of limited effec-

tive population size is not comparable to an unrelatedness e.g. in humans with large Ne, oth-

erwise values of clearly higher than 0 would probably not be obtained with this size of train-

ing set of unrelated individuals.  

What is often shown in recent studies (e.g. Clark et al., 2012) is the correlation between spe-

cific relationship parameters and the individual accuracies based on PEV to explain differ-

ences in the level of accuracies. In most cases, the “top-ten-relationship” (average of 10 

highest relationship coefficients) between validation individual and training set is found to be 

a very good predictor for the MME accuracy. This is correct, but at the same time it is also 

not surprising: For an individual without own performance, the PEV is smaller the more in-

formation from close relatives is available, i.e. the larger the number of high covariance val-

ues with other individuals in the training set. Just a few really high values of covariances 

count more than many small ones, which makes the “top-ten-relationship” a good parameter 

for illustration. 

Pszczola et al. (2012) simulated a dairy cattle population and three traits of different heritabil-

ities. They took two types of relationship in account: The relationship structure between vali-

dation and training set (by letting the validation individuals coming from the same generation 

or from one or two generations further, leading to the same tendencies as discussed before) 

and the relationship structure within the training set, i.e. how related the individuals are that 

are used to estimate the SNP effects. They showed a clear influence of the relationship with-

in the training set, with very diverse training sets showing a low mean accuracy having the 

edge over training sets consisting of highly related individuals.  

Wientjes et al. (2013) performed a comprehensive study based on a real cattle training set 

with simulated validation individuals in a way that the effects of different factors on the accu-

racy of prediction could be studied: For simulating candidates only allele frequency, linkage 
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disequilibrium structure, haplotype structure and/or family structure from real data were in-

cluded, respectively. The authors then checked how the simulated validation individuals 

could be predicted based on marker estimates obtained with the training set of real data. 

Values of accuracy substantially higher than 0 could only be achieved when whole haploid 

chromosomes (segregating in the real population) were used to model the validation individ-

uals. Sharing only allele frequencies, LD pattern or small haplotype segments was not 

enough to predict values for the validation individuals with reasonable accuracy. 

 

What is the ideal training population? 

No clear answer to this question exists since this depends on the underlying population, the 

purpose individuals are genotyped for, and the breeding scheme in the respective popula-

tion, but some general notes can be given:  

Even if probably not the initial idea of genomic breeding value prediction, in the last years it 

has emerged that relationship between individuals in the training and the validation set is one 

of the key points for the level of accuracy that can be achieved. It may be that some genomic 

breeding value approaches are less sensitive to the level of relationship (see e.g. Habier et 

al. (2010) for a discussion), but nevertheless in practical applications mainly simple linear 

genomic BLUP models are used and these are sensitive to different relationship levels. This 

is not at all a disadvantage and this is also not at all something that has to be suppressed, 

because a thoughtful composition of the reference set can compensate this to a high extent.  

In Chapter 3 it was discussed that the elimination of all close relatives of the candidates from 

the training set caused a considerable decrease in accuracy of prediction. This means that 

after one or two generations of not supplementing the training set with younger individuals 

the level of accuracy will erode. Updating the training population can be done by adding for-

mer selection candidates that have obtained progeny records in the meantime. It may be-

come more difficult after a few generations of consequently applying genomic selection when 

bulls will be used directly as young individuals and the regular testing scheme will not be 

maintained anymore. International collaborations to share geno- and phenotypes can play a 

big role to increase the number of individuals for the training set.  

As long as there are still testing bulls, it will be good to also add all those bulls when obtain-

ing progeny records since this may avoid any bias coming up from just adding the elite of the 

elite individuals. Even when the area of testing bulls may be over this must not mean that 

phenotyping of individuals becomes less important. Efforts have to be made to ensure that 

enough progeny records will be available for many individuals so that still a high number of 
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individuals are available to be added to the training sets. Many females have also been gen-

otyped up to now and could be added to the training sets as well.  

Cows that are genotyped are normally elite cows and not a random sample of the cow popu-

lation. This may lead to a potential bias (e.g. Dassonneville et al., 2012; Pryce & Daetwlyer, 

2012) in genomic breeding values when adding only elite cows to the training set, but this is 

a problem that could be solved. In contrast to bulls with many progeny records, cows can 

only provide own performances as phenotypes (for adjustments see e.g. Wiggans et al., 

2012b), but especially in new approaches like the single step methodology (e.g. Legarra & 

Ducrocq, 2012) this should be relatively easy to handle. Cows in the training sets can be-

come much more important in genomic selection schemes in small breeds where only a 

small number of bulls with progeny records can be added per year or as soon as new traits 

just phenotyped in cows will become relevant. 

Individuals within the training set should represent as much of the variation of segregating 

haplotypes in the population as possible. Thus a wide range of different families should build 

the training population. Adding females from the production population to the data set may 

also help to ensure this. Increasing the training set will always help to increase accuracies 

and can be crucial in small breeds. In large breeds with small effective population size like 

Holstein Friesian, increasing the training set will not really provide much higher accuracies 

than already obtained with the actual sizes. Therefore, it may be much more important to 

keep it on the same size, but up to date. 

 

Is it a general trend that there are no significant changes in accuracy of prediction be-

tween 50K and HD SNP Chip? 

The study presented in Chapter 4 was one of the first that investigated the benefit of high 

density (HD) SNP data in different genomic prediction scenarios (purebred vs. multi-breed, 

BLUP methods vs. Bayesian methods). There was no significant increase in accuracy when 

using HD SNPs for within-breed prediction and only a slight increase for the minor breed Jer-

sey when using a multi-breed training set. With the new method BayesR equal or in many 

cases better results could be produced than with GBLUP, but there was no strong tendency 

that Bayesian methods can handle a larger number of markers much better than BLUP 

methods that weight each marker equally. These results did not match any of the expecta-

tions. However, for Jersey there were only 540 bulls available and with larger data sets dif-

ferent results might have been obtained. Further possible reasons for the results with this 

data set were discussed extensively in Chapter 4.  
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A few other studies have now been published which all compare accuracy of genomic predic-

tion with 50K and imputed HD genotypes: Su et al. (2012) used data sets of ~ 4’500 Nordic 

Holstein and 4’400 Red Dairy Cattle (RDC) to compare reliabilities of genomic breeding val-

ues based on 50K and HD SNP chips. Averaged over three traits (protein yield, fertility and 

udder health), reliabilities were only 0.5% (0.7%) higher for Holstein (RDC) when using 

GBLUP and imputed HD SNPs instead of 50K. A Bayesian mixture model produced slightly 

higher reliabilities than GBLUP, but the advantage was not higher with the HD panel. In Aus-

tralian Holstein data accuracy of prediction was at most 0.03 higher for HD data than for 50K 

regardless of whether most probable genotypes or allele dosage from the imputation process 

were used (Khatkar et al., 2012). Around 10’700 Holstein Friesian bulls and 5’000 Holstein 

Friesian cows built the training set in the study of VanRaden et al. (2013). Averaged over 28 

traits, the observed gain in reliability with the HD SNP Chip was only 0.4% with a non-linear 

model while within the HD SNP scenario the gain was 0.8% with a non-linear model com-

pared to a linear model.  

Pryce et al. (2012) studied residual feed intake and 250-day body weight in ~1’800 Holstein 

heifers in Australia and New Zealand within a cross-validation scheme where there were al-

ways Australian and New Zealand heifers in the training set while prediction was done either 

for a subset of Australian or New Zealand heifers. In all cases there was no increase in accu-

racy in both traits compared to a purebred scenario. Predicting Australian heifers with New 

Zealand ones did not work at all with any SNP density, while there was an advantage in pre-

diction accuracy for the Bayesian methods with HD when predicting New Zealand heifers 

with Australian ones. With Holstein Friesian and Jersey to predict Holstein Friesian-Jersey 

crossbreds no increase in accuracy was found with imputed HD data in New Zealand (Harris 

et al., 2011) while there were small improvements when using one breed to predict the other.  

Some other studies (e.g. Solberg et al., 2011) also show the same tendencies. Even with 

much larger training sets than in Chapter 4 no clear benefit of the HD data can be seen. The 

same is true for different methods – none of the different ones used in the studies mentioned 

above showed a real benefit in regard to the accuracy of prediction with HD data. Since only 

production traits (milk, fat, protein) which are all known to be influenced in moderate to large 

parts by DGAT1 were studied in Chapter 4, it was not clear what will happen to other traits 

like fertility or conformation traits. Further traits have been investigated e.g. in VanRaden et 

al. (2011) or Su et al. (2012), but again also for non-production traits there was no obvious 

improvement in accuracy. Data from dairy cattle breeds with small effective population size 

will show strong linkage disequilibrium structures which may just be strong enough with the 

50K Chip and having more SNPs cannot capture more genetic variance (see results in 

Chapter 4 and 5 and e.g. variance components estimated with 50K and 777K in Su et al., 
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2012). This may be different in breeds with different genetic background, e.g. in beef cattle 

breeds or in other farm animal species. 

All these studies completely confirm the results from Chapter 4. In addition, one can draw a 

cautious conclusion: In modern dairy cattle breeds, using data from the HD SNP chip will not 

affect the accuracy of genomic prediction to a great extent regardless of studied trait, the 

training set size and the applied model.  

Up to now, in most studies with dairy cattle data the sample always consisted of imputed 

high density data to large parts, i.e. individuals used in the model were not themselves geno-

typed at high density, but all SNP positions only available at the high density SNP chip had 

been imputed before. Imputed genotypes are very accurate (e.g. Brøndum et al., 2012) but 

nevertheless they may not reflect the truth. Assuming that around 700’000 SNP positions per 

individual have to be imputed from 50K up to the HD SNP Chip, a rate of 97% correctly im-

puted genotypes still means that on average around 21’000 positions within an individual are 

not correctly imputed. Segelke et al. (2012) have nicely shown how the mean allelic error 

rate may fluctuate between different chromosomes when imputing from low density SNP 

chips to 50K. In Chapter 4, it was also shown how possibly misplaced SNPs can influence 

the accuracy of imputation from 50K to HD at specific areas of the genome. These results 

imply that imputation accuracy is not uniform across the genome. If the wrongly imputed po-

sitions were randomly distributed across the genome, this would probably not pose a big 

problem. If these wrong genotypes are clustered at specific positions, this may influence the 

results of genomic prediction. Furthermore, imputation accuracy may not only differ between 

regions in the genome, but also between individuals that are related to the reference panel in 

different degrees or have their parents included or not to the reference panel (see e.g. Brøn-

dum et al., 2012; Wiggans et al., 2012a).  

 

Does the imputation process reduce the potential benefit of HD data? 

Up to now there is no study available with real data comparing accuracies obtained with real 

HD genotypes and imputed HD genotypes. VanRaden et al. (2011) used simulated data 

based on a real pedigree structure and found an improvement in reliability of genomic breed-

ing values in young bulls of 1.6% when all individuals were directly genotyped on 500’000 

SNPs compared to a scenario where all individuals were genotyped with 50’000 SNPs. 

When having only a part of the individuals genotyped with 500’000 (~3’800 and ~1’400, re-

spectively) and the remaining ones imputed with findhap, the gain of reliability was only 1.2% 

(0.9%). Some further studies have investigated the differences between scenarios with im-
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puted and real genotypes in the context of SNPs from low density chips (~3’000 or 7’000 

SNPs) and the 50K chip. Khatkar et al. (2012) found no tendency for a decrease in accuracy 

of prediction when using imputed 50K data instead of real 50K data with imputation done up 

from 7K, while accuracies were slightly lower when imputation was from 3K. Similar conclu-

sions can be drawn from Segelke et al. (2012) who found that correlations of direct genomic 

values between evaluations with real 50K data and imputed data from 6K SNPs were higher 

than between 50K data and imputed data from 3K SNPs in a German Holstein data set. Fur-

thermore, they observed that loss in reliability of genomic breeding values was greater with 

data imputed from 3K (e.g. with Beagle 2% averaged over traits) than from 6K (0.8%) but the 

absolute values of loss were small in both cases. They also showed that there is a large ef-

fect of the software tool used for imputing, with Beagle being the superior one.  

From all these results it can be concluded that there may be some, but no striking loss in 

accuracy of prediction when imputed genotypes are used instead of observed genotypes. 

Even if the loss is negligible on average over traits and individuals, one should be aware that 

this may not be the case for specific individuals with an unfavorable information structure e.g. 

because they do not have close relatives in the reference set. While there are no studies 

based on large sets of observed HD genotypes, there is no reason to believe that the lack of 

superiority of HD-based studies is due to the fact that HD genotypes are only imputed. 

The crucial point is rather the diminishing return from adding more and more markers in high-

ly related populations with a distinctive linkage disequilibrium structure. Results in Chapter 5 

show that in specific breeds (here: Brown Swiss) this threshold can be as low as around 

20’000 markers. Therefore, in the field of genomic breeding values prediction efforts to find 

specific SNP subsets (e.g. based on a biological background or also with new knowledge 

from sequencing data) with reasonable size and pooling of available genomic data together 

to increase the number of individuals used to estimate the SNP effects may have a longer 

lasting success than the increase of marker density. 

 

How can we limit computational demands with high density data? 

One of the major problems arising with larger marker density is that calculations become 

more and more computationally demanding, especially when using Bayesian methods, but 

also in GBLUP approaches, e.g. for the creation of the genomic relationship matrix or when 

calculating SNP effects. Therefore, efforts should be made to reduce the number of SNPs 

without losing information quality.  
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First of all, one should reflect if denser markers are really necessary for the purpose the data 

is used for or if the actual marker density is sufficient. Based on the results so far, for most of 

the genomic prediction scenarios there was no or very little advantage (see paragraph 

above) in using imputed HD genotypes within breed for prediction in modern dairy cattle 

breeds. Given the fact that training sets are refreshed regularly and marker effects are esti-

mated every few months the argument that marker effects from HD genotypes may be more 

stable over generations does not really count either. The situation is different for the across-

breed prediction where some advantages of high-density genotypes have already been 

found for small breeds and may become greater when imputation accuracy can be increased 

because of the availability of more HD reference individuals. The situation may also differ in 

other less related breeds or other species in which 50K genotypes are just not dense enough 

given the underlying linkage disequilibrium structure.  

If high density genotypes are considered useful in a study, the next step should be to check 

which markers contain redundant information. The simplest strategy is to check for SNPs 

that are in complete linkage disequilibrium (LD) with a neighboring SNP and delete one of 

those SNPs (e.g. Su et al., 2012). The search for markers in complete LD could also be ap-

plied to all marker combinations on a chromosome without the restriction that they have to be 

adjacent or LD has to be complete but above a certain threshold. VanRaden et al. (2011) 

checked all pairwise combinations of a marker with the subsequent 349 markers with the 

threshold being the correlation between the genotypes greater than 0.95 to 0.99 depending 

on the underlying minor allele frequency. To decide which marker should be removed within 

a specific pair or groups of markers in high LD, markers with specific properties (e.g. used for 

parental verification) were preferred. Harris et al. (2011) deleted one of a pair of markers 

within an interval of 250 SNPs when the squared correlation was higher than 0.99. With both 

strategies, VanRaden et al. (2011) and Harris et al. (2011) could reduce the high density 

marker set to a subset of less than 350’000 SNPs, which is less than the half of the actual 

marker number of the HD chip.  

Apart from reduction strategies solely based on the observed LD structure other approaches 

are imaginable, e.g. trait-specific subsets may reduce computational time and help to im-

prove prediction in specific traits. Furthermore, more biological aspects and background 

could be used to find a subset that includes all SNPs that are in relevant position within the 

genome structure. In Chapter 4, a subset of all markers located in the transcribed part of the 

genome was selected from all high density SNP markers. In all scenarios, the accuracies of 

genomic prediction with this SNP set were equal or even better than with the full data set 

with the subset always providing better results when genomic prediction was across breeds 
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(0.24 (0.52) with the subset and 0.17(0.49) with all HD SNPs when predicting Jersey using a 

Holstein only (combined) reference set in average over the three studied traits).  

All of these techniques keep the advantages of the larger marker set but can reduce the 

computation time dramatically. 

 

Can higher marker density provide other advantages? 

In the first days of the genomic selection idea, estimation of marker effects was seen a step 

that has to be done once and estimates can then be used for some time – a few years later 

we know better. As shown in Chapter 3 and in many other studies (e.g. Habier et al., 2010), 

relationship between individuals in the training set and in the validation set clearly influences 

the accuracy of prediction. When marker effects are estimated now and are to be applied to 

predict young individuals in 10 years then at least two generations will be in between the 

proven individuals now and the selection candidates in 10 years. Apart from a reduction of 

the overall relatedness of individuals also linkage disequilibrium structures between markers 

and QTL will change or break down which narrow the predictive ability of the estimated 

marker effects. Accuracy of genomic prediction would at any point be so low that it would not 

be worthwhile to apply it.  

At the moment, marker effects in official genomic evaluations are re-estimated several times 

a year to avoid this decrease in accuracy of prediction. Candidates which are selected based 

on genomic breeding values at the moment (G1) normally have sires or very near relatives 

(G0) in the training set. These G0 individuals have been selected on the conventional way, 

have thus very reliable conventional breeding values and can be used in the training set at 

the time bulls of G1 are to be selected. If we think about selection one generation further in 

time, young bulls of the next generation (G2) will have sires from G1 which themselves have 

been largely selected based on their genomic breeding value. Because at the time of selec-

tion of G2 individuals there are hardly any daughter records of G1 sires available, conven-

tional breeding values of these sires are not reliable. The G1 bulls are therefore not available 

for the training set and G2 individuals have to be predicted based on marker effects estimat-

ed with individuals two generations back. It may be that in such cases marker effects from 

high density panels are favorable because markers closer to QTL are available. 

Using imputed HD data, VanRaden et al. (2013) observed the largest effects in many traits 

on markers from the original 50K set (i.e. not imputed ones) which could be due to an infor-

mation loss because of the imputation strategy. The region around DGAT1 was screened 

further for marker effects obtained with 50K and imputed HD data in Chapter 4. In this case, 
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markers being closer to the QTL position took over the larger effects which might help to sus-

tain marker effects as good predictors over a longer period of time. In Chapter 4, it was also 

investigated if the accuracy changed more slightly between “sire in reference” or “sire not in 

reference” scenarios with the HD data and the 50K data but no consistent results could be 

obtained over traits. However, this was also not the perfect data set to discuss these ideas 

intensively. More research should focus on this area in future. 

All ideas discussed above were always based on the fact that high density markers should 

be used for genotype based methods in genomic prediction. Of course, there are many other 

different research approaches that can benefit a lot from higher marker densities. First of all, 

there is the wide field of classical single marker genome-wide association mapping where the 

region of the causative mutations may be narrowed down much more with more markers 

available. Furthermore, all haplotype-based analyses may also profit since haplotypes can 

be reconstructed more accurately with smaller marker intervals. These could be haplotype-

based approaches in the genomic prediction context as well as in genome-wide association 

mapping or in the field of selection signature methods.  

 

What is the potential of using sequence data in genomic prediction? 

Apart from high density data from the common high-throughput genotype technology, se-

quence data of many individuals have become available in the last years with over 130 bulls 

within the 1000 bull genomes project (e.g. Hayes et al., 2012; 

http://www.1000bullgenomes.com). Around 17.4 million variants in the sequence were found 

within those bulls (Hayes et al. 2012), 15.8 million of which are SNPs. Since re-sequencing 

of individuals is still very costly, only selected individuals will be re-sequenced directly. Again, 

imputation will play a big role for obtaining genotypes on all relevant sequence sites also for 

a large sample of genotyped animals. Fries et al. (2012) showed that it is possible to impute 

from 50 over HD genotypes up to sequence data with an accuracy of over 90%. This is a 

good range but still not perfect; probably optimized software tools along with more se-

quenced individuals will lead to an improvement in the next years. 

There are a few differences between SNPs or other variants obtained from sequence data 

compared to data from genotype platforms. This concerns the minor allele frequency distribu-

tion which is normally U-shaped when regarding all possible SNPs but is uniform by design 

for both the 50K and the HD SNP chip selection of SNPs (Matukumalli et al., 2009; 

 VanRaden et al., 2013). Very high linkage disequilibrium can just appear when SNP and 

causative mutation have roughly the same allele frequency, i.e. detecting rare variants with 



6th CHAPTER General Discussion 119 

common SNP chips is almost impossible. Using SNPs directly from whole-genome sequence 

data, a rare variant should also be detectable because it is within the set itself or at least a 

SNP with very similar allele frequency and very close to it can capture its variance to a high 

percentage. Accuracy of prediction should thus increase because more genetic variance can 

be captured. However, many individuals have to be sequenced first to really find such rare 

variants and this may be the crux. 

It is very unlikely that causative mutations are amongst the SNP set on commercial SNP ar-

rays not only because they are not known but also because patents may prevent this. When 

observing all variants in whole genome sequence data with sufficient coverage the causal 

mutation should be included. For genomic prediction, this means that one is not depending 

on specific linkage disequilibrium patterns in the population and the causative mutation can 

reflect the caused genetic variance directly. Including such causative markers in the genomic 

prediction equations should lead to more stable and reliable marker effect estimates. This 

would be favorable for prediction in less related samples or when using estimated marker 

effects over a longer time or even over generations. It should also be favorable for multi-

breed sets or for across breed prediction: At the moment the problem arising here is that 

haplotype phases are not consistent over the range of the given marker densities. Based on 

simulations de Roos et al. (2008) proposed that over 300’000 markers have to be available 

to assure consistent phases in dairy cattle breeds. However, in real data even with over 

600’000 markers from the HD chip accuracy in prediction across breeds was not significantly 

better than with 50’000 markers (see Chapter 4 or e.g. Harris et al., 2011). Apart from the 

even higher marker density, sequence data would provide the advantage of having the  

causative mutation included what renders the existence of consistent phases unnecessary 

and should provide an improvement for the accuracy of genomic prediction. Admittedly, this 

idea assumes that many of the causative mutations explaining genetic variance are the same 

and explain roughly the same proportion of variance in the studied breeds (see Chapter 4 for 

a discussion of this point).  

Methods that allow variable selection (e.g. Bayesian methods) may have a great advantage 

when modeling so many variables with only a few loci being really causative from the scien-

tific point of view, but implementation may become a great challenge in terms of computer 

memory and calculation time. 

Sequence data provide more variants than just SNPs. Copy number variants or insertions 

and deletions may also be a source of genomic variation and should not be forgotten. Their 

proportion of the total genetic variation has to be quantified and if they are of relevant size 

methods have to be developed to include those variants in genomic prediction processes as 

well. 
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Even if it is not a particularly realistic design the simulation of Meuwissen & Goddard (2010) 

is the only one that deals with SNP data from whole genome sequence. The authors’ conclu-

sions are that genomic breeding values will be more consistent over generations after a 

marker estimation time point when using SNPs from sequence data. Furthermore, they found 

that when the causative mutations were included in the SNP set accuracy of prediction was 

2.5-3.7% higher depending on the number of QTL modeled.  

Based on all these theoretical assumptions, having all genetic variation available must influ-

ence the accuracy of genomic prediction in various ways. The next years will show if these 

hypotheses can hold in real dairy cattle data. 

 

How are genetic architecture and accuracy of prediction linked? 

In dairy cattle, different traits are relevant in the breeding schemes. It is known that these 

traits have not the same genetic background. For most of them, it is assumed that they are 

influenced by many small genes. Some QTL have been detected (e.g. Khatkar et al., 2004; 

Muncie et al., 2006; Pausch et al. 2011) for various traits, but most of them can explain only 

a small part of the genetic variance. The only exception is DGAT1 (Grisart et al., 2004) on 

Chromosome 14 that is still segregating in many breeds and determines both performances 

in fat percentage and milk yield to a considerable extent.  

Hayes et al. (2010) studied three traits that are assumed to have different genetic back-

ground: proportion of black coat color (which is assumed to be determined by only a few lo-

ci), fat percentage (determined by the DGAT1 effect but probably many other small QTL) and 

overall type, for which no major genes are known. They showed that a model allowing differ-

ent variances per SNP (BayesA in this case) had advantages for genomic prediction in the 

two traits that were affected by (a) major gene(s). This is a trend that is generally observed 

(e.g. Daetwyler et al., 2010) especially in many simulation studies where the number of QTL 

modeled is often very small and the effects of QTL are often very large compared to what 

was found in real data. It is undisputable that methods allowing different variances have ad-

vantages in these major gene cases, but in real life – except with traits influenced by DGAT1 

– these methods seldom produce significantly higher prediction accuracies, but computation-

al demands are much larger.  

Hayes et al. (2010) also ranked SNPs by their absolute effect on the respective trait and 

used only subsets (x% highest ones) to predict genomic breeding values. For coat color, 

95% of the accuracy obtained with the full SNP set could be reached with very few SNPs. 

For overall type, 2’000 SNPs led to 90% of the potential accuracy with the full SNP set. 
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These results show that different genetic background require different numbers of SNPs for 

accurate prediction. Hayes et al. (2010) selected SNPs based on effects with BayesA and 

afterwards rerun BayesA with the SNP subset to figure out how many SNPs are necessary 

for specific traits. For such studies, BayesR (described in Chapter 4) may provide additional 

information on the genetic architecture and the number of SNPs that will be necessary per 

trait to keep a specific accuracy level. 

Respecting the different genetic architecture, one can hypothesize that lowering the number 

of SNPs randomly may have the opposite effect regarding the accuracy of prediction than 

what Hayes et al. (2010) described. For traits for which only a few SNPs with high effects 

capture a large proportion of the variance, missing a specific effect because of randomly nar-

rowing down the marker density will have a strong impact. This should be in contrast to a trait 

where many loci influence the performance and are distributed over the whole genome.  

To test this hypothesis, an additional study using a data set of 5’024 Holstein Friesian bulls 

with genotypes on 42’551 SNPs was conducted. Two different traits were chosen: fat per-

centage and somatic cell score. Genomic prediction using GBLUP was performed with dif-

ferent SNP densities, namely one SNP per 68, 136, 273 and 545 kb, respectively (i.e. thin-

ning factor 1, 2, 4, 8 in Figure 3). Genomic prediction accuracy measured as the correlation 

between genomic breeding values and conventional breeding values was assessed in a five-

fold cross-validation in three replicates with random assignment to the folds. Figure 3 shows 

that the accuracy drops in both traits, but the factor of decrease is clearly larger with fat per-

centage (strongly influenced by DGAT1) than with somatic cell score (no major genes) what 

may emphasize the hypothesis. Moser et al. (2010) showed genomic prediction results for 

the traits milk traits and overall type. They used a trait-specific subset (SNPs with highest 

effects on the respective trait) and subsets with evenly spaced SNPs. Down to a number of 

3’000 SNPs they did not see a great difference in prediction accuracy when using evenly 

spaced or trait specific SNPs. Below this threshold, the trait specific subset outperformed the 

evenly spaced SNP set, suggesting that at this low marker density evenly spaced SNPs cap-

ture too less genetic variance. 
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Figure 3: Correlation between predicted genomic breeding values and conventional breed-

ing values for different SNP sets for the traits somatic cell score and fat percentage. For thin-

ning factor 1, 42’551 SNPs were used while for thinning factor 2, 4, 8 a half, a quarter and an 

eighth of 42’551 SNPs were used.  

 

For traits with different genetic architecture, it may be that the threshold from which on pre-

diction accuracy decreases with evenly spaced SNPs varies in its absolute value and in the 

marker density it occurs. For Brown Swiss, the values were very similar for milk yield and 

somatic cell score in the study in Chapter 5, but one has to recall that DGAT1 is almost fixed 

in Brown Swiss (e.g. Kaupe et al., 2004). 

In general, it can be directly seen from the results of Chapter 5 that the number of SNPs 

needed to obtain this threshold depends not only on the length of the genome and the effec-

tive population size. Both values were very similar in the studied populations, but the thresh-

old was reached with Brown Swiss with less than 30’000 SNPs while there was no threshold 

observable with Holstein Friesian up to over 40’000 SNPs. Apart from different other factors 

the different total sizes of the data sets and the choice of the studied traits may also have an 

impact on the obtained thresholds. To further determine these factors it will thus be worth-

while to repeat all k-fold cross-validation scenarios with data sets of the same size and same 

total number of SNPs for different traits once the data basis has become available.  
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 Main conclusions from this thesis 

In this thesis, different influence factors on the level of accuracy of genomic prediction in 

dairy cattle were studied. The main conclusions from the previous chapters can thus be 

summarized as: 

1. The choice of the validation schemes clearly influences the obtained level of accuracy 

and should be taken into account when comparing results from different studies. 

2. Relationships between individuals clearly influence the accuracy of genomic predic-

tion and (cross-)validation schemes have to be adapted to mimic this situation cor-

rectly. 

3. The training set size influences the accuracy to a high degree, but the necessary 

number of individuals needed for a pre-defined level of accuracy is different in differ-

ent breeds and for different traits within a breed. 

4. Methods used for genomic prediction produce very similar results at least with the 

marker densities used so far. However, specific Bayesian methods may have ad-

vantages by providing more information about the genetic architecture. 

5. The high density panel has not fulfilled the expectations in the genomic prediction 

context. 

6. The accuracy of prediction is linear to the natural logarithm of the marker density up 

to a population specific threshold. Increasing the marker density beyond this thresh-

old will not lead to higher accuracy of genomic prediction.  

7. Describing the effective number of independently segregating segments in the ge-

nome just based on the effective population size and the genome length is critical 

since it seems to vary between traits within breeds and between breeds with similar 

effective population size. 
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