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Abstract 

H2B monoubiquitination (H2Bub1) regulation via CDK9-WAC-RNF20/40 axis has 

been well illustrated. It is interesting to determine the upstream regulators which 

dictate the process of monoubiquitination of H2B. On further investigation, histone 

chaperone SUPT6H known to bind P-Ser2 RNAPII was observed to regulate ERα-

dependent signaling through H2Bub1 pathway. Perturbation of SUPT6H led to a 

decrease in H2Bub1 resulting in impaired estrogen-dependent signaling and 

mesenchymal stem cell differentiation due to increase in the H3K27me3 repressive 

mark on the promoters of the genes. Moreover, SUPT6H levels were decreased with 

tumor progression. Together, these data identify SUPT6H as a new epigenetic 

regulator of ERα activity and cellular differentiation. 

Further upstream regulator of CDK9, BRD4 was also examined. For the first time, we 

showed the connection between BRD4 and H2Bub1 pathway. They both regulated 

the gene expression in a similar fashion and had gene expression-dependent 

occupancy on the genes. Interruption of this pathway by BRD4 or H2Bub1 depletion 

resulted in acquisition of EMT and stem cell-like phenotype in mammary epithelial 

cells. The preliminary data for conditional RNF40 KO in mammary gland also 

showed increased mammary branching further emphasizing the critical role of 

H2Bub1 as a tumor suppressor. These important findings could help to harness 

these epigenetic regulators for anti-cancer therapy. 
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1. Introduction 

1.1 Chromatin organization and histone modifications  

The human genome is long and contains approximately 6 billion base pairs of DNA 

which is compacted into fine DNA thread referred to as “Chromatin” (Alberts et al., 

2002). Chromatin is composed of the DNA wrapped around a nucleosome 

containing two of each of the core histones H2A, H2B, H3 and H4. Histones are 

basic proteins having positive charges which associate and stabilize the negatively 

charged DNA. They consist of a globular domain and a flexible N-terminal tail 

(histone tail) projecting out from the nucleosome that undergoes posttranslational 

modifications (Jenuwein and Allis, 2001). Each of the core histone proteins can be 

post-translationally modified in various ways including the acetylation, methylation, 

ubiquitination and sumoylation of the amino terminus of lysine side chains; 

methylation or citrullination of arginine residues; and the phosphorylation of serine, 

threonine and tyrosine residues (Jenuwein and Allis, 2001); (Kouzarides, 2007). The 

specific combination of histone modifications, commonly referred to as the “histone 

code”, is thought to determine the functional outcome probably largely by the 

recruitment of scaffolding proteins such as bromo- and chromodomain proteins 

which specifically recognize acetylated and methylated lysine residues, respectively 

(Jenuwein and Allis, 2001); (James and Frye, 2013). The histone modifications are 

the most important determinants of the transcriptional state of the genome and it is 

well recognized that modifications exclusively associated with constitutively silenced 

regions of the genome constitute “heterochromatin” while other modifications found 

in actively transcribed regions of the genome form “euchromatin” (Lachner and 

Jenuwein, 2002). 
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1.2 Epigenetic control 

Epigenetic regulation of gene expression occurs largely through reversible chemical 

modification of DNA or histone proteins, which do not alter the DNA sequence, but 

instead control its accessibility and/or ability to be read (Dupont et al., 2009). Other 

epigenetic changes in chromatin structure can occur through the exchange of variant 

histones or assembly and disassembly of chromatin structure via histone 

chaperones, or through ATP-dependent chromatin remodeling, for example, by 

members of the Swi/Snf family of proteins (Loyola and Almouzni, 2004);(Peterson 

and Tamkun, 1995). Substantial changes in epigenetic modifications occur to 

different degrees during various developmental processes such as germ cell 

development and stem cell differentiation (Hawkins et al., 2010), as well as during 

pathologic processes such as tumorigenesis (Jones and Baylin, 2007). 

1.3 Epithelial to Mesenchymal Transition 

Metastatic disease accounts for more than 90% of deaths in patients with solid 

tumors (Zajicek, 1996). Our understanding of metastasis has been greatly improved 

by the recognition that cancer cells can acquire the ability to accomplish several 

steps of the metastatic process at once through the engagement of a cellular 

program, Epithelial-Mesenchymal Transition (EMT). EMT plays an important role in 

controlling critical morphogenetic steps during normal embryonic developmental 

processes such as gastrulation and neural crest migration. In the context of cancer, 

EMT has been linked to the acquisition of cancer cell motility and invasiveness. 

During both normal development and tumor progression, EMT is orchestrated by a 

set of pleiotropically acting transcription factors (TFs), such as Twist, Snail, Slug, 

Zeb1/2 that together form an intricate transcriptional circuitry (Scheel and Weinberg, 

2012). Through the action of EMT-TFs, which mainly act as transcriptional 
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repressors, cells lose epithelial traits, such as expression of E-cadherin and ZO-1, 

leading to the dissolution of adherens and tight junctions (Fig. 1). Repression of 

epithelial markers is paralleled by upregulation of mesenchymal adhesion molecules, 

such as N-cadherin and fibronectin. Together, these changes enable epithelial cells 

to switch from an apical-basal polarity and restricted  lateral, collective movement 

confined by the basement membrane to a front-to-back polarity and ability to freely 

migrate and invade as single cells. Thus, in embryonic development, EMT is critical 

for mesoderm formation during gastrulation and overall, EMT affects cellular 

distribution throughout the embryo during processes such as neural crest migration. 

In the context of cancer, EMT enables cancer cells to succeed in the early steps of 

the metastatic process, including local tissue invasion, entry into blood and/or 

lymphatic vessels, survival during transit and exit from the circulation. 

Activation of an EMT program is coupled with the ability of cancer cells to initiate 

experimental tumors in mice with high efficiency (Bos et al., 2010), although the 

exact molecular mechanisms linking EMT and tumor-initiating capacity of cancer 

cells remain to be determined. Given the similarity of experimental tumor initiation 

and establishment of macroscopic metastases, it is quite likely that EMT is involved 

in both the early and late steps of the metastatic cascade. In contrast, recent 

research points to the necessity of the reversal of EMT via a Mesenchymal-Epithelial 

Transition (MET) at the metastatic site to enable the outgrowth of disseminated 

tumor cells (DTC) into macroscopic metastases (Peinado et al., 2011). These 

experimental studies are supported by the clinico-pathological observation that most 

metastases arising from carcinomas display an epithelial phenotype. However, these 

seemingly opposing observations may be reconciled by comprehending EMT as a 

highly dynamic and reversible process. In this scenario, the most aggressive tumor 
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cells would be predicted to be those which display a high degree of cellular plasticity. 

This, in turn, renders inhibition of such plasticity as an attractive approach for 

therapeutic intervention aimed at inhibiting cell-state transitions, rather than targeting 

mutated or otherwise genetically altered gene products. However, the precise 

molecular links between EMT programs and cellular plasticity are only now 

beginning to be unraveled. 

Given the dynamic and drastic transcriptional changes that occur during EMT and 

MET, broad sweeping, reversible changes in epigenetic modifications which affect 

chromatin state represent a central and crucial regulatory component of the 

metastatic process. Changes in gene expression do not depend solely upon the 

availability of appropriate transcription factors, but also upon the degree of 

“openness” or “closedness” of the chromatin since both the binding of a TF to DNA 

as well as its ability to recruit additional transcriptional co-regulatory proteins 

depends upon changes in histone modifications at the target gene. Emerging data 

have shown that EMT also involves epigenetic reprogramming with widespread 

alterations to chromatin modifications at both the DNA and protein level. For 

example, EMT-TFs, such as Twist, Snail, Slug, ZEB1 and ZEB2 recruit various 

histone modifying complexes to chromatin, thereby mediating epigenetic silencing of 

genes. In this section, the interplay between EMT-TFs, transcriptional regulation of 

EMT markers and chromatin modifiers focusing primarily on histone modifications 

largely due to their amenability to therapeutic intervention is described.  

1.3.1 Epigenetics and EMT 

Several signaling networks including hypoxia, TGFβ, Wnt and NOTCH signaling all 

activate EMT by wide-spread transcriptional changes via the activation of specific 

transcription factors which elicit their effects on gene transcription and the epigenetic 
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Fig. 1. The process of EMT and its reversible MET. Epithelial cells having a particular set of 

markers undergo biochemical changes and acquire different set of markers for a mesenchymal 

phenotype.   

 
 
 

landscape by recruiting epigenetic regulatory proteins to specific genes, such as 

those associated with an epithelial or mesenchymal phenotype. Therefore, a better 

understanding of the functional interaction of epigenetic modifiers with EMT-TFs and 

their specificity in the EMT and MET processes may lead to the identification of new 

therapeutic targets for preventing metastasis.  

1.3.1.1 Epigenetic Writers 

Epigenetic modifiers can largely be classified into the categories of “epigenetic 

writers”, “epigenetic readers” and “epigenetic erasers”. The proteins which catalyze a 

specific histone modification are referred to as “epigenetic writers”. Examples of 

epigenetic writers include both DNA and histone/lysine methyltransferases 
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(HMT/KMT), histone/lysine acetyltransferases (HAT/KAT), arginine 

methyltransferases (PRMT), ubiquitin ligases, etc. As mentioned earlier, the EMT 

transcriptional program is controlled both by DNA methylation (Cedar and Bergman, 

2009) and post-translational histone modifications (Campos and Reinberg, 2009). 

In mammalian cells, DNA is methylated at the cytosine residues of CpG 

dinucleotides and is commonly associated with gene repression and 

heterochromatin formation (McCabe et al., 2009). In cancer cells, the genome is 

globally hypomethylated whereas CpG islands are frequently hypermethylated, 

resulting in reduced expression of tumor suppressor genes (Baylin et al., 2001). For 

example, the CDH1 gene encoding E-cadherin is frequently hypermethylated in 

breast cancer cell lines exhibiting an EMT-like phenotype (Lombaerts et al., 2006) 

and is was also shown to be methylated along with several other genes silenced in 

basal-like breast cancers (Dumont et al., 2008). In addition, to methylation of 

cytosine, subsequent hydroxylation of 5mC to 5-hydroxymethyl-cytosine (5hmC) by 

the Ten-Eleven Translocation (TET) family of methylcytosine dioxygenases plays a 

tumor suppressor function in many types of cancers (Hsu et al., 2012); (Huang et al., 

2013); (Yang et al., 2013). Notably, TET1 is frequently down-regulated in breast and 

prostate cancer in cell lines and xenograft models and its downregulation is 

associated with overall poorer patient survival (Hsu et al., 2012). This effect appears 

to be at least partially due to a TET1-dependent demethylation and activation of the 

Tissue Inhibitor of Metalloproteinase (TIMP)-2 and 3 genes, which are established 

suppressors of the EMT phenotype. Thus, alterations in both 5mC and 5hmC caused 

by mutation or repression of the TET proteins may play a role in promoting EMT in 

solid malignancies. A role for the TET proteins in metastasis is also supported by a 

recent study, demonstrating that the micro-RNA miR-22 exerts its prometastatic 
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effects by directly targeting TET proteins (Song et al., 2013). In this way, 

downregulation of the TET proteins prevents demethylation of the miR-200 gene, 

which targets the mRNAs for established regulators of the EMT program such as the 

EMT-TF Zeb1, TGFβ1 and the polycomb protein BMI1, thereby potently 

antagonizing activation of an EMT program and metastasis.  

Histone Acetyltransferases (HATs) – An important and well-studied modification 

responsible for making chromatin accessible to transcription factors is histone 

acetylation (Grunstein, 1997). Histone acetyltransferases such as GCN5, P/CAF and 

p300/CBP transfer acetyl groups to the amino group of lysine side chains of 

histones, thereby altering the charge of the histone, relaxing the chromatin and 

making it more accessible to transcription factors (Imhof et al., 1997). One important 

HAT, p300, affects the regulation of Snail and ZEB1 in colon cancer, thereby 

contributing to EMT and tumor progression (Peña et al., 2006). A different study 

reported that the absence of p300 promotes EMT in HCT116 colorectal cancer cells 

(Krubasik et al., 2006). Other HATs such as the human homolog of males absent on 

the first (hMOF/KAT8) as well as the Steroid Receptor Coactivators-1 and -3 

(SRC1/NCOA1 and SRC3/NCOA3) have been shown to play tumor and metastasis 

suppressor and activator roles, respectively (Jafarnejad and Li, 2012); (Qin et al., 

2009); (Agoulnik et al., 2005); (Zhou et al., 2005); (Lydon and O’Malley, 2011). 

However, whether these or other HATs play specific roles in EMT remains largely 

unknown. 

Histone Methyltransferases (HMTs) – Methyltransferases transfer methyl groups to 

the lysine or arginine residues of histones. They are classified into lysine (KMT) or 

arginine methyltransferases (PRMT) depending on the substrate residue for 

methylation. SET (Su(var) 3-9, Enhancer of Zeste and Trithorax) domain containing 
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enzymes such as G9a, SUV39H1/H2, EZH1/2 and others, transfer one to three 

methyl groups to lysine residues on histones (Miller et al., 2001); (Wang and Shang, 

2013). Expressed genes typically display “active” methylation marks such as 

H3K4me3, H3K36me3 and H3K79me3, while transcriptionally silenced genes 

generally exhibit “repressive” marks such as H3K27me3, H3K9me2 and H3K9me3. 

Upon hypoxia, mesenchymal genes are marked with H3K4me3 by WDR5, part of 

MLL and SET1 HMT complex (Wu et al., 2011a). The Polycomb Repressor 

Complex-2 (PRC2), which contains the methyltransferase Enhancer of Zeste 

Homolog-2 (EZH2) in complex with Suppressor of Zeste-12 (SUZ12) and Embryonic 

Ectoderm Development (EED) (Ringrose and Paro, 2004), plays a key role in 

transcriptional silencing by mediating H3K27me3 (Orlando, 2003). The role of PRC2 

in tumorigenesis and EMT has been well characterized and its interplay with EMT-

TFs is described in more detail below. 

Histone Ubiquitin Ligases – Ubiquitination involves the attachment of one or more 76 

amino acid ubiquitin moieties to the side change of a lysine in a process involving the 

sequential function of three enzymes: E1 ubiquitin-activating, E2 ubiquitin-

conjugating and E3 ubiquitin-ligase enzymes (Hershko and Ciechanover, 1998). 

While polyubiquitination via lysine 48 of ubiquitin frequently targets proteins for 

degradation via the 26S proteasome, monoubiquitination does not usually target 

proteins for degradation, but rather functions like other post-translational 

modifications to serve as a mark for recognition by other proteins or directly alter 

protein structure or function. In the case of chromatin, both histones H2A and H2B 

can be monoubiquitinated in mammals at Lys-119 (H2Aub1) or Lys-120 (H2Bub1), 

respectively. H2Bub1 is generally associated with euchromatin and transcriptional 

elongation (Xiao et al., 2005); (Shukla et al., 2006); Minsky et al. 2008) whereas 
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H2Aub1 is localized to regions of heterochromatin and prevents transcriptional 

elongation (Wang et al. 2004a; (Cao et al., 2005). H2B is monoubiquitinated by the 

obligate RNF20/40 heterodimer in a complex with the ubiquitin conjugating enzyme 

UBE2A (human homolog of yeast Rad6A) (Zhu et al., 2005a). While decreased 

H2Bub1 levels are associated with increased invasiveness and tumor progression, 

its role in controlling EMT has not been described (Johnsen, 2012a); Shema et al. 

2008; (Prenzel et al., 2011). In contrast, components of the Polycomb Repressor 

Complex-1 (PRC1), which ubiquitinates H2A have been shown to promote EMT by 

upregulating Snail via modulation of PI3K/Akt/GSK-3β signaling (Song et al., 2009) 

as well as targeting other important EMT transcription factors such as Twist1 and 

ZEB1 (Yang et al., 2010); Wellner et al. 2009). 

1.3.1.2 Epigenetic Readers 

Once the chromatin has been marked with specific post-translational histone 

modifications, the regulatory output in most cases is achieved by the recognition of 

those marks by epigenetic readers. These chromatin regulators possess specialized 

domains that recognize and bind to various histone modifications and control DNA-

associated functions by recruiting additional regulatory proteins and/or by directly 

affecting chromatin structure (de la Cruz et al., 2005). 

Bromodomains – Bromodomain-containing proteins recognize acetylated lysine 

residues (Haynes et al., 1992); (Jeanmougin et al., 1997). One particularly 

noteworthy subclass of bromodomain proteins is the BET (Bromodomain and Extra 

Terminal) family of proteins which contain two tandem bromodomains at the N-

terminal and an Extraterminal domain (ET) at the C-terminus (Florence and Faller, 

2001). The family contains BRD2, 3, and 4 as well as the testis-specific BRDT 

protein and is implicated in transcription regulation by binding to chromatin by virtue 



10 
 

of the bromodomains (Wu and Chiang, 2007a). In addition to its established role in 

promoting leukemiogenesis by MLL translocation products (Zuber et al., 2011a) and 

its fusion with NUT in NUT midline carcinoma (French et al., 2003); (French et al., 

2004); (French et al., 2007), BRD4 was shown to suppress an EMT phenotype in 

mammary epithelial cells (Alsarraj et al., 2011a). However, additional studies are 

necessary to further characterize the function and molecular mechanisms of BRD4 

and other BET domain proteins in EMT during tumor progression and metastasis. 

Recognition of methylated lysine residues – Analogous to the recognition of 

acetylated lysine residues by bromodomains, a number of different domains have 

been identified which recognize methylated lysine residues including Chromatin 

organization modifier (chromo-), TUDOR, Plant Homeodomain (PHD) and Malignant 

Brain Tumor (MBT) domains (Kim et al., 2006). SFMBT1, a MBT domain containing 

protein and part of LSD1 complex, gets recruited to epithelial genes via SNAI1 

mediated interaction and promotes gene repression by demethylation of H3K4me2 

(Tang et al., 2013). Included in the chromodomain family of proteins are three sub-

families which include the heterochromatin protein (HP1)/chromobox (CBX) proteins, 

the chromodomain helicase DNA binding domain (CHD) subfamily and the chromo 

barrel domain family (Yap and Zhou, 2011). CBX proteins are components of PRC1 

complex which recognizes H3K27me3 to promote H2Aub1 and transcriptional 

repression at PRC2 targets (Levine et al., 2002); (Francis et al., 2004). CBX4 

mediates sumoylation of Smad-interacting protein 1 (SIP1) which along with Zeb2 is 

involved in CDH1 repression and EMT (Long et al., 2005); (Vandewalle et al., 2005). 

Another member, MPP8 (M-phase phosphoprotein 8) recognizes H3K9 methylation 

on the chromatin and interacts with HMTases GLP and ESET as well as DNA 
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methyltransferase, DNMT3A. MPP8 in turn functions to repress CDH1 expression 

thereby promoting EMT (Kokura et al., 2010). 

Chromatin remodeling proteins and histone chaperones – The regulation of 

chromatin organization and structure requires both the ATP-dependent activity of 

chromatin remodeling proteins as well as the ATP-independent functions of histone 

chaperones (Sif, 2004);(Avvakumov et al., 2011). One component of the Swi/Snf 

family of ATP-dependent chromatin remodeling proteins BRG1 was found to be 

mutated in various human tumor cell lines (Wong et al., 2000) and appears to 

function with beta catenin at TCF target gene promoters to facilitate Wnt/β-catenin-

regulated gene transcription in colon carcinoma cells (Barker et al., 2001). 

Importantly, BRG1 also interacts directly with the EMT-TF ZEB1 to repress CDH1 

expression and promote EMT (Sánchez-Tilló et al., 2010). In contrast, Metastasis-

associated gene 3 (MTA3), part of the ATP-dependent NuRD/Mi-2/CHD remodeling 

complex was shown to suppress EMT by directly repressing SNAI1 expression 

(Fujita et al., 2003). Although the activity of histone chaperones has not yet been 

linked to EMT, our recent data identified decreased expression of the human 

Suppressor of Ty Homologue-6 (SUPT6H) during breast cancer progression which 

was associated with decreased H2Bub1 levels, a loss of estrogen responsiveness 

and a shift from a luminal epithelial to myoepithelial phenotype (Bedi et al. 2013, In 

Press Oncogene). Another histone chaperone complex referred to as Facilitates 

Chromatin Transcription (FACT) has been implicated in tumorigenesis (Koman et al., 

2012) and DNA repair (Kari et al., 2011a). Interestingly, an analysis of gene 

expression data from the Cancer Cell Line Encyclopedia (Barretina et al., 2012) 

suggest that higher expression of the FACT subunit, Suppressor of Ty Homolog 16 

(SUPT16H) is more closely correlated with expression of the epithelial markers 
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CDH1, CRB3, PKP3 and CDH3, and inversely correlated with the expression of the 

mesenchymal markers AXL, FN1, SNAI2, VIM, CDH2, TWIST1 and ZEB1 (Fig. 2). 

Thus, whether and how FACT activity is correlated with an EMT phenotype may be 

of particular relevance for the application of molecules targeting FACT activity. 

Future studies will be necessary to determine whether and how SUPT6H, SSRP1, 

SUPT16H and other histone chaperones promote an EMT phenotype. 

 

Fig. 2. SUPT16H, FACT subunit correlates with the epithelial phenotype in human intestinal 

cell lines.  Analysis using data from Cancel Cell Line Encyclopedia indicates increased expression of 

epithelial markers for SUPT16H and decreased expression of mesenchymal markers in intestinal cell 

lines. 

 

1.3.1.3 Epigenetic Erasers 

In contrast to the notion of epigenetic inheritance, most epigenetic modifications, 

including extremely stable modifications such as DNA methylation, are highly 

dynamic and can be added or removed from genes within a matter of minutes, 
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frequently in a cyclic fashion (Métivier et al., 2008); (Kangaspeska et al., 2008); 

(Métivier et al., 2003). After the initial activation or repression of a gene has been 

achieved, cellular and transcriptional plasticity is maintained by the reversibility of the 

epigenetic status of the target genes. In order to achieve this, most histone 

modifications also have specific enzymes which catalyze their removal. This class of 

proteins is broadly referred to as “epigenetic erasers” and exerts an equally 

important function as writers. If the signal is not stopped timely, the results can lead 

to defects in transcription and DNA repair ultimately promoting tumorigenesis of 

tumor progression (Arrowsmith et al., 2012). 

Histone Deacetylases (HDACs) – The acetyl groups added by HATs are removed by 

HDACs in a highly regulated fashion and generally leads to chromatin compaction 

and transcriptional repression. Notably, HDAC1 was found to be important for 

TGFβ1 induced EMT (Lei et al., 2010) and its inhibition suppressed TGFβ1 induced 

EMT (Yoshikawa et al., 2007). HDAC3 also interacts with WDR5, a core component 

of the histone methyltransferase complex responsible for H3K4 methylation and 

induced hypoxia-mediated EMT by regulating acetylation and methylation patterns 

on EMT genes (Wu et al., 2011b). Furthermore, the NAD+-dependent histone 

deacetylase SIRT1 was shown to cooperate with ZEB1 to silence CDH1 expression 

by deacetylating its promoter (Byles et al., 2012). 

Histone demethylases – Finally, histone demethylases revert the effect of 

methylases by removing the repressive marks on histones. The first histone 

demethylase to be identified that removes mono- and di- methyl groups on H3K4 

was, Lysine-Specific Demethylase-1 (LSD1) or KDM1A (Shi et al., 2004). During 

EMT, SNAI1 recruits LSD1 to epithelial gene promoters for repression by removal of 

dimethylation of H3K4me2 on their promoters (Lin et al., 2010a); (Ferrari-Amorotti et 
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al., 2013); (Amente et al., 2013). Two other demethylases belonging to the Jumonji-

domain family, KDM6B (JMJD3) and JMJD2B which remove H3K27me3 and 

H3K9me3, respectively, were both recently shown to promote EMT as well 

(Ramadoss et al. 2012a; (Zhao et al., 2013). 

Histone deubiquitinases (DUBs) – As with essentially all other post-translational 

modifications, the ubiquitin moiety from histone can also be removed in order to 

reverse the effects of ubiquitination. One example is Ubiquitin-specific-protease-22 

(USP22) which deubiquitylates histone H2B (Zhang et al., 2008a) and was found to 

regulate BMI1 mediated INK4a/ARF and Akt signaling (Liu et al., 2012). 

Consistently, USP22 is upregulated in tumors with a stem cell-like phenotype 

exhibiting a poor patient outcome (Glinsky et al., 2005); Zhang et al. 2008; Liu et al. 

2011). While many arrows point in the direction that the positive and negative 

regulation of H2Bub1 could be associated with a tumor stem cell-like phenotype and 

EMT, further work will be needed to address this. The ubiquitination of H2A was 

reported to be reversed by a number of different DUBs including USP3 (Nicassio et 

al., 2007). Notably, USP3 depletion induces scattering of A549 epithelial lung cancer 

cells, possibly reflecting a more mesenchymal cellular phenotype (Buus et al., 2009). 

However, how and whether H2A deubiquitination is involved in controlling EMT must 

be more clearly addressed. 

1.3.2 Epigenetic Regulation of EMT inducing Transcription factors 

The cellular plasticity which allows the interconversion between epithelial and 

mesenchymal phenotypes via EMT and MET requires a complicated network of 

interactions between EMT-TFs, ubiquitous TFs and the epigenetic regulators 

described above. In this case, both the expression and the activity of EMT-TFs are 

controlled at an epigenetic level. The connection between loss of E-cadherin and 
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tumor progression has been well established (Tepass et al., 2000), and studies have 

highlighted the epigenetic regulation of the CDH1 gene encoding E-cadherin to be 

instrumental for cancer cell metastasis (Birchmeier and Behrens, 1994). CDH1 

expression is regulated by EMT-TFs including the Snail transcription factor family 

members Snail (SNAI1) and Slug (SNAI2) (Batlle et al., 2000). Studies have shown 

that Snail recruits several chromatin modifying enzymes, such as LSD1, G9a, 

Suv39H1, HDAC1/2 and PRC2, to the CDH1 promoter for transcriptional repression 

(Dong et al., 2013); (Dong et al., 2012); (Herranz et al., 2008); (Lin et al., 2010b). 

Fig. 3 lists the described interactions of EMT-inducing factors with various epigenetic 

factors to transcriptionally repress epithelial genes during EMT. While the epigenetic 

regulation of EMT markers has been studied for a number of years, only recently has 

the focus been shifted to also investigate the epigenetic control of EMT-TF 

expression. 

SOX4 – an important upstream regulator of the EMT program – SOX4 is a member 

of the Sox (SRY-related HMG-box) family of transcription factors and is frequently 

upregulated in various cancer types (Liu et al., 2006). A recent study demonstrated 

that SOX4 acts early in the induction of the EMT pathway (Tiwari et al., 2013). Upon 

TGFβ1 induction, SOX4 expression is increased, thereby transcriptionally activating 

EZH2 expression, which in turn increases H3K27me3 at specific genes in order to 

promote EMT. In concordance, depletion of either the transcription factor SOX4 or its 

epigenetic regulatory partner EZH2 similarly prevented TGFβ-induced EMT in the 

murine mammary epithelial cell line NMuMG. In contrast, SOX4 overexpression 

induced EMT via modulation of Ezh2-mediated H3K27me3 marks on important EMT 

genes.  Together  these  results  strongly  implicate  SOX4  as  a  critical   upstream  
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Fig. 3. EMT-TFs interact with epigenetic regulators to repress epithelial genes. EMT inducing 

factors activate the EMT-TFs which in turn interact with epigenetic regulators to repress the 

expression of epithelial genes. 

 

regulator of the EMT modulators which carries out its function via epigenetic 

mechanisms involving EZH2. 

SUV39H1 (Suppressor of Variegation 3-9 Homolog 1), is a key methyltransferase 

responsible for H3K9me3. H3K9me3, like H3K27me3, is a histone modification 

associated with gene repression. It was shown recently that upon TGFβ1 induction in 

MCF10A, there was an upregulation of SUV39H1 along with Snail. These factors 

have been shown to interact with each other and establish a repressed state of the 

CDH1 promoter by increasing the levels of H3K9me3 (Dong et al., 2013). 
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ZEB1 and ZEB2 are key factors regulating CDH1 expression and their connection 

with EMT and metastasis of cancer cells has been well established (Spaderna et al., 

2008). In a recent study it has been shown that the ZEB1 promoter exists in a poised 

state containing both markers of activation (H3K4me3) and repression (H3K27me3) 

(Chaffer et al., 2013). In epithelial cells, ZEB1 is not expressed due to the bivalent 

marks on its promoter, but upon EMT induction by factors such as TGFβ1, there is 

removal of H3K27me3 marks on the ZEB1 promoter leading to its expression. 

Similarly, removal of H3K27me3 by KDM6B was also shown to be essential for the 

induction of SNAI1 expression during TGFβ1-induced EMT (Ramadoss et al., 2012).  

Apart from histone methylation, histone acetylation on the genes of the EMT 

transcription factors is also being investigated. In this regard, it was previously 

shown that histone deacetylases (HDACs) modulated the chromatin state upon 

stimulus of extracellular signals like hypoxia (Wu et al., 2011b). Upon hypoxia, a 

well-described inducer of cancer cell aggressiveness and EMT, HDAC3 was 

recruited to epithelial genes like CDH1 leading to decreased H3K4ac, in turn 

increased H3K4me2 and H3K27me3 on their promoters. This led to a repression of 

epithelial genes. On the other hand, mesenchymal genes like Vimentin had 

decreased H3K4ac, increased H3K4me2 but decreased H3K27me3. HDAC3 

interacted with WDR5 which led to methylation of H3K4 in hypoxic cells.  

It was also shown in lung cancer that ZEB1 downregulated its target genes like 

EpCam (epithelial cell adhesion molecule) by decreasing H3K27ac on these genes 

(Roche et al., 2013). These findings are critical in understanding that the epigenetic 

regulation occurs quite upstream of these markers or transcription factors, which 

may lead to the evaluation of these upstream EMT regulators as potential targets in 

anti-metastatic therapy. Fig. 4 demonstrates the cascade of epigenetic events that 
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control the transcriptional regulation of EMT transcription factors in response to EMT 

stimuli. The EMT TFs further execute their task of epigenetically regulating the 

transcription of epithelial and mesenchymal genes. 

As EMT has been well studied in particular for the initial transformation and tumor 

progression, the reversal may be equally important for malignant cells. Depicted in 

Fig. 1, the Mesenchymal to Epithelial transition (MET) certainly must be more 

carefully addressed and characterized at the molecular level as it is considered to 

allow systemically dispersed tumor cells (i.e. DTCs) to regain epithelial 

characteristics, starting to grow and giving rise to clinically overt metastases (K and 

U, 2003). Simplified, it is thought that after the cells have migrated to distant sites, 

they no longer receive the EMT-inducing signals experienced in the primary tumor 

environment, thus allowing them to easily revert back to the epithelial phenotype 

through MET. These transitions are almost certainly based largely on epigenetic 

plasticity. 

1.3.3 Cancer stem cell hypothesis 

Another important aspect of EMT is the acquisition of stem cell-like traits to form so 

called cancer stem cells (CSC) or tumor-initiating cells (TICs). CSCs are recognized 

by their ability to efficiently give rise to tumors when injected into 

immunocompromised mouse models due to their self-renewal properties (Reya et 

al., 2001). Since the first reports in 2008, the molecular connections between EMT 

and stem cell traits have constantly emerged over the past few years. It is thought 

that while undergoing metastasis, cancer cells stem cell characteristics which fuel 

tumor growth at sites of colonization. In doing so, the whole set of EMT master 

regulators may initiate the epigenetic switch that modulates the gene expression of 

stem cell markers. After several years, it is now clear that cancer stem cells can be 
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Fig. 4. Signaling activators induce transcription of EMT-TFs which in turn regulate histone 

modifications on target genes. Upon inducing signal, activating histone modifications on the genes 

of EMT-TFs promote transcription. EMT-TFs then interact with epigenetic regulators to mark the 

target genes for activation or repression. 

 

identified based on their cell surface marker profile, e.g. CD44hi/CD24lo or ALDH+ in 

breast cancer (Al-Hajj et al., 2003a). It was shown that ZEB1 promotes the switch in 

these markers in a given cell population, rendering these cells more stem cell-like 

(Chaffer et al., 2013). Additionally, ZEB1 can also negatively regulate miR200b 

expression which functions to suppress the stemness of cells (Park et al., 2008). The 
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miR200b family further suppresses polycomb protein BMI1 expression, which is 

known to exert stemness regulation (Shimono et al., 2009).  

Based on genome-wide occupancy studies for various histone modifications, it was 

observed that the two cancer cell populations, CD44+ (mesenchymal-like) and 

CD24+ (epithelial-like) had different methylation patterns clearly demonstrating 

epigenetic regulation of epithelial and mesenchymal gene expression (Maruyama et 

al., 2011). An expression-methylation correlation was also shown, implying that the 

methylation pattern could be an important determinant of gene expression in cancer 

cells, especially in terms of EMT and stemness properties (Kamalakaran et al., 

2011).  

1.4 Estrogen signaling and Estrogen Receptor  

The steroid hormone estrogen plays an important role in mammalian reproduction. 

Estrogens regulate several physiological processes, including normal cell growth, 

development, and maintenance of reproductive tract and bone density as well as 

regulation of central nervous and skeletal systems (Couse, 1999); (Pettersson and 

Gustafsson, 2001).  

The biological action of estrogen is mainly mediated by the Estrogen Receptor (ER) 

to which estrogens bind. There are two isoforms of ER, namely ERα and ERβ, each 

encoded by unique genes, ESR1 and ESR2 respectively (Green et al., 1986); 

(Kuiper et al., 1996). In order to study the role of two receptor isoforms in estrogen 

signaling, knockout mice for ER were generated to examine the effects on 

reproductive system. The αERKO female mice having loss of ERα were infertile and 

showed phenotype such as estrogen-insensitive uteri, little sexual behavior and 

underdeveloped mammary glands. The αERKO male mice were also infertile. On the 
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other hand, the ßERKO females were subfertile, producing fewer litters and showed 

normal mammary gland structure. The ßERKO male fertility was unaffected (Couse 

et al., 2000); (Hewitt et al., 2000) (Emmen and Korach, 2009). Since the effects of 

αERKO mice were more pronounced, the ERα is widely studied for the estrogen 

signaling. 

1.4.1 Estrogen Receptor Alpha (ERα) 

The estrogen receptor α (ERα) is one of the key transcriptional regulators of 

proliferation and differentiation in the mammary epithelium(Deroo and Korach, 2006).  

Approximately two-thirds of human breast cancers express ERα. ERα expression is 

associated with a more differentiated luminal tumor phenotype and overall better 

patient survival compared to ERα negative tumors (Ali and Coombes, 2000);(Khan et 

al., 1998). Thus, ERα expression is an important prognostic marker and is predictive 

for tumor response to anti-estrogen treatment. Despite an initial positive response, 

roughly one-third of ERα-positive tumors becomes refractory to anti-hormone 

therapy and develops estrogen-independence. Therefore, an increased 

understanding of the molecular mechanisms controlling ERα-mediated 

transcriptional regulation may help to uncover new molecular targets which may be 

utilized to more effectively treat and eradicate ERα-positive tumors (Theodorou et al., 

2013). 

Recent studies have demonstrated that one of the essential transcriptional regulatory 

steps controlled by ERα is transcriptional elongation (Kininis et al., 2009). ERα 

interacts with the Positive Transcription Elongation Factor-b (P-TEFb) complex 

(Wittmann et al., 2005) which promotes transcriptional elongation in part by 

phosphorylating Ser2 (P-Ser2) within the carboxy-terminal domain (CTD) of RNA 

Polymerase II (RNAPII) (Egloff and Murphy, 2008a). HEXIM1, a negative regulator of 
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P-TEFb activity also interacts with ERα (Ogba et al., 2008) and its overexpression 

leads to a tamoxifen-resistant phenotype in breast cancer cells (Ketchart et al., 

2011). 

ERα-regulated transcription is a highly dynamic process which is associated with the 

recruitment of multiple histone modifying enzymes, changes in histone modifications, 

chromatin remodeling and significant changes in overall chromatin organization 

(Kouzarides, 2007) Li et al. 2007; (Fullwood et al., 2009) (Métivier et al., 2006). 

These changes appear to be required for the efficient expression of estrogen-

regulated genes and may represent new potential therapeutic targets (Johnsen et 

al., 2006). In previous studies, we uncovered a tumor suppressor function for 

H2Bub1 (Prenzel et al., 2011) Shema et al. 2008; (Johnsen, 2012b) where its levels 

decrease during the malignant progression of breast cancer. Interestingly, while 

H2Bub1 is required for ERα-regulated gene transcription, instead of leading to 

impaired cell proliferation, a loss of H2Bub1 instead led to the estrogen-independent 

growth of ERα-positive MCF7 breast cancer cells (Prenzel et al., 2011) possibly 

implicating a loss of H2Bub1 in the transition from an estrogen-dependent to 

hormone-independent growth of breast cancer. 

1.4.2 Mechanism of action of ERα 

ER belongs to the nuclear hormone receptor superfamily. There have been several 

attempts to elucidate the mechanism of action of ER. Earlier studies indicated the 

“two step mechanism” where ER is a cytoplasmic protein and remains associated 

with heat shock proteins. Upon ligand binding, ER dissociates from the protein 

complex and gets localized to the nucleus to regulate transcription of target genes 

(Jensen and DeSombre, 1973); (Parker, 1995). However, over the years, the model 

has evolved from the two step mechanism to “one step mechanism”. In this classical 
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mechanism, estradiol or estrogen diffuses into the cell and binds to nuclear ER 

resulting in conformation change and dimerization of ER. This complex then binds to 

the palindromic sequences, Estrogen Response Elements (ERE) of the target genes 

along with other mediators (White and Parker, 1998); (Tsai and O’Malley, 1994). 

The steroid receptors mediate transcriptional activation by two activation functions, 

AF1 and AF2, located in N-terminal and hormone binding domain respectively (Lees 

et al., 1989); (Tora et al., 1989). AF1 has been shown to be phosphorylated by 

several signaling pathways (Ali et al., 1993); (Bunone et al., 1996). AF2 is induced 

upon hormone binding and is important for the receptor function (Danielian et al., 

1992); (Saatcioglu et al., 1993). 

1.5 Histone H2B monoubiquitination (H2Bub1) 

Ubiquitination is a process of addition of 76 amino acid ubiquitin moiety to the 

substrate proteins (Hochstrasser, 1996) in a stepwise process catalyzed by three 

enzymes, mainly ATP-dependent ubiquitin-activating enzyme or E1, a ubiquitin-

conjugating enzyme or E2, and a ubiquitin ligase or E3 (Glickman and Ciechanover, 

2002). E3 enzymes typically consist of RING-finger domain essential for ubiquitin 

ligase activity.  Substrate proteins can be poly- or mono- ubiquitinated in which 

polyubiquitination marks them for degration by 26S proteasome machinery and 

monoubiquitination is critical for cellular function.  Based on the data from the yeast, 

H2B gets monoubiquitinated at Lysine 123 by the E3 ligase, Bre1 with E2 

conjugating enzyme, Rad6 (Wood et al., 2003); (Hwang et al., 2003). In mammals, 

H2B was found to be ubiquitinated at Lysine 120 by the Bre1 homolog, 

RNF20/RNF40 complex (Kim et al., 2005); (Zhu et al., 2005b). Importantly, both 

RNF20 and RNF40 consist of a RING-finger domain but only RING-domain of 

RNF20 participates in the ubiquitination of H2B in vitro (Kim et al., 2009a). In 
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mammalian cells, RNF20/40 complex interacts with hRAD6 (UBE2A), E2 conjugating 

enzyme as well as hPAF complex and thereby regulates H2B monoubiquitination 

(Kim et al., 2009a). 

H2B monoubiquitination is involved in numerous cellular functions, including 

transcription regulation. 

1.5.1 H2Bub1 and Transcription 

H2Bub1 has been found to play critical role in transcriptional regulation by altering 

the expression of a subset of genes in mammalian cells (Shema et al., 2008b). 

Several independent studies have established the positive role of H2Bub1 in 

transcription. First evidence of H2Bub1 as a transcriptional co-activator was shown 

by (Kim et al., 2005) in which RNF20 interacted with transcription factor, p53 and 

was recruited to MDM2 promoter in a p53-dependent manner. Overexpression of 

both RNF20 and p53 promoted induction of p53 target genes, p21 and MDM2 while 

depletion decreased the activation. In this way, H2Bub1 has a promoter recruitment 

mechanism involving direct activator interactions (Kim et al., 2005). H2Bub1 was 

shown to expedite FACT function thereby enhancing transcription elongation (Pavri 

et al., 2006). FACT is H2A-H2B chaperone and plays an important role in 

nucleosome assembly and resassembly during transcription (Schwabish and Struhl, 

2004).  In yeast cells, H2Bub1 was shown to interact with FACT subunit, Spt16 and 

they both regulated nucleosome density and prevented cryptic transcription initiation 

(Fleming et al., 2008). Its role in transcription elongation has been further 

strengthened due to its association with the transcribed region of highly expressed 

genes in mammalian cells (Minsky et al., 2008b). Moreover, it is well established that 

H2Bub1 is required for H3 methylation, both H3K4 and H3K79 by co-ordinating with 

COMPASS, complex containing Set1 histone methyltransferase (Lee et al., 2007). 
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These marks are considered to be active marks for gene transcription. It was further 

shown that the addition of huge ubiquitin moiety on H2B led to local disruption of 

chromatin structure making the site of addition more open and accessible (Fierz et 

al., 2011a) which facilitates the recruitment of several transcription factors.  

Moreover, H2Bub1 was shown to regulate the histone mRNA 3’end processing and 

critical for correct stem loop-dependent processing of histone genes. CDK9 was also 

shown to regulate H2Bub1 through CTD-dependent PAF-RNF20/40 complex 

(Pirngruber et al., 2009a). Thus, CDK9 and H2Bub1 together played an important 

role in histone mRNA processing. 

H2Bub1 has also been shown to participate in cellular processes such as cell cycle 

checkpoint activation and DNA damage signaling (Chernikova et al. 2012; (Moyal et 

al., 2011) (Kari et al., 2011a) (Nakamura et al., 2011). Like transcription, DNA repair 

also requires extensive chromatin reorganization. As H2Bub1 is known to facilitate 

chromatin remodeling, RNF20/RNF40 mediated H2Bub1 at double strand breaks 

was found to help in chromatin opening and homologous recombination (Nakamura 

et al., 2011); Kari et al. 2011). It was also shown that the E3 ubiquitin ligases RNF20  

and RNF40 were substrates of the ATM and ATR kinases (Mu et al., 2007) (Stokes 

et al., 2007).  

The role of H2Bub1 has been well recognized in cellular differentiation and estrogen 

signaling. It was shown that H2Bub1 promotes differentiation of mesenchymal stem 

cells by resolving the bivalency on differentiation genes and promoting differentiation 

(Karpiuk et al., 2012a). H2Bub1 levels increased in mesenchymal stem cell 

differentiation as well as during embryonic stem cell differentiation (Fuchs et al., 

2012). 
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1.5.2 H2Bub1 and cancer 

The role of RNF20 as a tumor suppressor was first brought into light by Shema et al. 

2008. They showed that RNF20 promoter gets hypermethylated during breast 

cancer. The depletion of RNF20 led to enhanced cell migration and tumorigenesis as 

well as decreased p53 levels, an important tumor suppressor. Later it was also 

shown for RNF40 to regulate estrogen independent cell proliferation and activation of 

certain cell survival signaling pathways in breast cancer cells (Prenzel et al., 2011). 

Direct studies on human breast tissues indicated a decrease in H2Bub1 levels in 

malignant tissues whereas the non-transformed adjacent tissues possessed 

abundant H2Bub1 (Prenzel et al., 2011).  

Recently, RNF20 levels were found to be downregulated in testicular seminomas 

and in the premalignant lesion in situ carcinoma (Chernikova et al., 2012b). They 

proposed that upon RNF20 depletion, there is formation of RNA:DNA hybrids 

referred to as R-loops which are major source of genomic instability. This genomic 

instability due to loss of RNF20 leads to acquisition of malignant and invasive 

phenotypes (Chernikova et al., 2012b); (Chernikova and Brown, 2012). Several 

studies have reported that there is loss of H2Bub1 during carcinogenesis ((Shema et 

al., 2008a)(Prenzel et al., 2011) (Hahn et al., 2012); (Urasaki et al., 2012). 

Collectively, these findings suggest that the loss of H2Bub1 correlates with increased 

cancer progression. 

1.5.3 Histone Deubiquitinases 

Ubiquitination is a reversible process. H2Bub1 is highly dynamic and is maintained 

by the addition as well as active removal from the chromatin by the class of enzymes 

called deubiquitinases (DUBs). 
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In yeast, Spt-Ada-Gcn5-Acetylating complex (SAGA), a novel transcriptional 

regulatory complex was identified. It consisted of acetylating and deubiquitinating 

enzymatic activities (Grant et al., 1997). The SAGA deubiquitination module (DUBm) 

comprises of Sgf11, Sus1 and Ubp8 (Köhler et al., 2006) with corresponding human 

orthologs ATXN7L3, ENY2 and USP22 (as depicted in Fig. 5). H2B deubiquitination 

in yeast was found to be mediated by two deubiquitinating enzymes Ubp8 and 

Ubp10 (Henry et al., 2003);(Daniel et al., 2004)(Emre et al., 2005); (Gardner et al., 

2005). Ubp8 is a part of SAGA complex and functions at promoters of SAGA-

dependent genes while Ubp10 is associated with non-transcribed regions regulating 

telomere silencing. In humans, Ubp8 homolog, USP22 was discovered (Zhao et al., 

2008); (Zhang et al., 2008b) but no Ubp10 ortholog has been described till date.  

Deubiquitination of H2Bub1 in humans is mainly dependent on the SAGA complex 

and perturbation of its subunit, ATXN7L3 leads to a great increase in the H2Bub1 

levels (Lang et al., 2011). No studies have been able to establish the role of USP22 

as the main DUB for H2Bub1. Some indirect studies reveal a potential link between 

the two. USP22 was discovered as part of 11-gene signature associated with poor 

prognosis  determined by transcriptional profiling of tumor cells (Glinsky et al., 2005). 

USP22 was also shown to positively regulate p53-dependent transcription (Zhang et 

al., 2008b). Previously RNF20 was described as a co-activator of p53-dependent 

activation of p21 and MDM2 (Kim et al., 2005). Thus, it was hypothesized that an 

optimal balance between RNF20 and USP22 activities are required for p53-

dependent transcriptional activation.  
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1.6 Upstream regulation of H2Bub1 and transcription  

1.6.1 Regulation via CDK9-WAC-RNF20/40 axis 

RNA polymerase II carboxyl-terminal domain (CTD) is the largest subunit of 

eukaryotic RNAPII consisting of a conserved 52 repeated heptapeptide in humans 

(YSPTSPS) (Egloff and Murphy, 2008b). Previous studies have shown that Ser5 

gets phosphorylated by cyclin-dependent kinase 7 (Glover-Cutter et al., 2009) and 

Ser2 is phosphorylated by Positive Transcription Elongation Factor β (P-TEFb). 

PTEF-b comprises of cyclin-dependent kinase 9 (CDK9) and cyclin T1 or K (Peng et 

al., 1998); (Fu et al., 1999). It is well established that P-Ser2 is involved in 

elongation, splicing and mRNA processing (Egloff and Murphy, 2008b). CDK9 plays 

an important role in transcription elongation. The first step for transcription elongation 

is Ser2 phosphorylation of RNAPII which helps in the recruitment of transcription 

machinery for elongation. Next, CDK9 is known to phosphorylate the factors that 

cause polymerase pausing, negative elongation factor-E (NELF-E) and suppressor 

of Ty homologue 5 (SUPT5H) subunit of DSIF. Phosphorylation of DSIF results in 

conversion into positive elongation factor whereas phosphorylation of NELF-E leads 

to disassociation from the complex. CDK9 phosphorylation events  thereby promote 

transcription elongation (Fujinaga et al., 2004); (Yamada et al., 2006); (Peterlin and 

Price, 2006). 

P-TEFb activity is tightly regulated in the cells. An important mechanism regulating 

P-TEFb is its reversible binding to HEXIM1 and 7SK snRNA which in turn inhibit the 

kinase activity of P-TEFb (Yik et al., 2003); (Michels et al., 2004). 7SK snRNA serves 

as a mediator for HEXIM1 : P-TEFb interaction. HEXIM1 and its related protein, 

HEXIM2 form homo or heterodimers and bind to 7SK snRNA thereby undergoing 

conformational change to finally bind P-TEFb (Egloff et al., 2006) (Li et al., 2005). 
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Upon transcription induction or stress inducing agents, P-TEFb gets released from 

the HEXIM1 complex and gets recruited to the site of active transcription (Yik et al., 

2003). 

For transcription elongation, it was recently identified that WW domain-containing 

adaptor with coiled-coil protein (WAC) acts as an interaction partner of RNF20/40 

complex (Zhang and Yu, 2011a). WAC interacts with P-Ser2 as well as RNF20/40 

complex thereby forming a complex comprising of CDK9, WAC and RNF20/40. This 

provided the mechanistic link between H2Bub1 and RNAPII CTD Ser2 

phosphorylation and CDK9 (Fig. 5) that had been missing for years. This finding was 

further substantiated by independent studies where inhibition or depletion of CDK9 

led to a global decrease in H2Bub1 levels while CDK9 overexpression increased 

H2Bub1 (Pirngruber et al. 2009; Karpiuk et al. 2012). 

 

Fig. 5. The regulation of H2Bub1 through CDK9-WAC-RNF20/40 axis (Johnsen, 2012a).  CDK9 

phosphorylates Ser2 on the YSPTSPS heptapeptide repeat sequence on CTD of RNAPII. This 

recruits WW-domain containing adaptor with coiled coil protein (WAC) which further recruits the 
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RNF20/RNF40 complex. This leads to monoubiquitination of histone H2B at lysine 120. H2Bub1 is 

deubiquitinated by the SAGA complex containing USP22, ATXN7, ATXN7L3 and ENY2. 

 

Cancer is often associated with abnormal protein phosphorylation patterns. Under 

normal conditions, CDK9 was found to phosphorylate an important tumor suppressor 

p53 (Radhakrishnan and Gartel) and likely played a critical role as a tumor 

suppressor. Upon onset of malignancy, CDK9 can deregulate the p53 activation and 

promote tumor progression. Likewise, during AIDS, CDK9 interacted with the HIV 

protein Tat and enhanced viral replication and AIDS progression (Falco and 

Giordano) by phosphorylating RNAPII at Ser2 as well as at Ser5, while latter is 

normally phosphorylated by CDK7.  

CDK9 and its cyclin partners are involved in the regulation of apoptosis in normal 

cells (Foskett et al., 2001) by promoting the expression of anti-apoptotic factors like 

myeloid cell leukemia 1 (MCL-1) (Chen et al., 2005). It is highly likely that 

deregulation of this CDK9-dependent pathway imparts the cells to resist apoptosis 

resulting in malignancy like it is evident in several other pathways such as EGFR 

(Pedersen et al., 2005). 

Moreover, CDK9 was shown to interact with TNF-α and regulated the transcription of 

TNF-α target gene, MMP-9 thereby promoting tumor invasion and metastasis (Shan 

et al., 2005). There are several studies that pointed at CDK9 to play a role in several 

lymphomas (Bellan et al., 2004), rhabdomyosarcoma (Simone and Giordano, 2006) 

and prostate cancer (Lee et al., 2001).  

1.6.2 Regulation by BRD4 

Bromodomain containing protein 4 (BRD4), belongs to the BET (Bromodomain and 

Extra Terminal) family of proteins containing two tandem bromodomains at the N-
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terminal as well as an Extraterminal domain (ET) at the C-terminus (Florence and 

Faller, 2001). The family comprises of BRD 2,3,4 and testis-specific BRDT protein 

regulating transcription (Wu and Chiang, 2007b). Studies have shown that BRD4 

interacts with CDK9 and Cyclin T1, components of P-TEFb (Positive Transcription 

Elongation Factor b) (Yang et al., 2005). BRD4 binds to the P-TEFb which is free 

from the inhibitory complex of HEXIM1 and 7SK snRNA. BRD4 recognizes the 

acetylated chromatin and recruits P-TEFb which leads to CTD phosphorylation of 

RNA Polymerase II and thereby, BRD4 regulates transcription (Jang et al., 2005a). 

There were also reports that BRD4 could directly act as a kinase and phosphorylate 

Ser2 of RNAPII CTD and regulate transcription (Devaiah et al., 2012).  The direct 

connection of BRD4 and H2Bub1 is not yet established but since BRD4 interacts 

with P-Ser2 and CDK9, it could be hypothesized that BRD4 could regulate H2Bub1 

via CDK9-WAC-RNF20/40 axis. 

BRD4 plays a variety of roles in several biological processes. BRD4 has been shown 

to regulate cell growth and BRD4-/- mice are embryonic lethal (Maruyama et al., 

2002) (Houzelstein et al., 2002). Unlike other bromodomain containing proteins that 

get released from the chromatin during mitosis, BRD4 remains bound and implicate 

its role in transmission of transcriptional memory across cell division (Dey et al., 

2000); (Dey et al., 2003) (Kanno et al., 2004). In this way, BRD4 marks the M/G1 

genes for transcription initiation in daughter cells after mitosis (Dey et al., 2009). It 

also functions in the inflammatory response by binding to acetylated lysine-310 

residue on RelA subunit of NF-κB and acting as transcriptional co-activator of NF-κB 

(Huang et al., 2009). BRD4 was found to suppress HIV transcription by 

phosphorylating CDK9 and inhibiting its kinase activity (Zhou et al., 2009). 
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Similar to CDK9, BRD4 regulated pathway is often the common target of 

dysregulation and results in transcriptional abnormalities.  

BRD4 gene was found to be rearranged in aggressive carcinoma (French et al., 

2001). BRD4 activation plays an important role in breast cancer progression 

(Crawford et al., 2008) and promotes epithelial to mesenchymal transition and stem 

cell-like conversion (Alsarraj et al., 2011b). Recently, RNA inhibitor screen identified 

BRD4 as an important factor for acute myeloid leukemia maintenance (Zuber et al., 

2011b). 

1.6.3 Regulation by histone chaperones 

The nucleosome consists of DNA wrapped around proteins called histones. During 

replication or efficient transcription, the nucleosome needs to be disassembled in 

order to open the DNA. Likewise, after replication or transcription, DNA needs to be 

packaged into nucleosomes to prevent cryptic transcription. This is a cumbersome 

task which cannot be achieved without the class of factors called as chromatin 

modifiers which are further classified into two groups: ATP dependent and ATP 

independent. The proteins that require the energy of ATP to unwind the 

nucleosomes are termed as chromatin remodelers whereas the proteins that work 

independent of ATP energy are called histone chaperones. The nucleosome 

assembly is a stepwise process. Crystallographic studies have previously shown that 

H3-H4 tetramer occupies the core of the nucleosome whereas H2A-H2B tetramer 

binds to the peripheral region (Richmond et al., 1984). Several studies then further 

showed that H3-H4 deposition takes place first followed by H2A-H2B and then linker 

histone H1 to form highly organized nucleosomal arrays (Smith and Stillman, 1991); 

(Kaufman, 1996).  



33 
 

The sequential addition of histones to the chromatin is as follows: H3-H4 dimers are 

recruited stepwise to form tetramer termed as tetrasome. The H2A-H2B dimers are 

then recruited in stepwise fashion to form hexasome with single H2A-H2B dimer and 

then finally histone octamer after the addition of another H2A-H2B dimer. Histone 

chaperones are thought to be critical for the careful incorporation of histones into an 

organized octamer (Das et al., 2010). 

1.6.3.1 Yeast SPT6 (Suppressor of Ty 6) 

SPT6 belongs to the SPT family (Suppressor of yeast transposons) of genes in 

Saccharomyces cerevisiae. Based on the genetic screen for mutations in yeast that 

affect the transcription, SPT family was found to restore the gene expression which 

were disrupted by the insertion of transposon Ty (Yamaguchi et al., 2001). It was 

shown that Spt6 along with other Spt proteins binds to RNA Pol II and affects 

transcription elongation (Hartzog et al., 1998). Yeast Spt6 contains SH2 domain 

which is responsible for its binding with RNA Pol II (Dengl et al., 2009). Spt6 was 

found to be H3-H4 chaperone due to its interaction with histone H3 and involved in 

regulating the chromatin structure (Bortvin and Winston, 1996). Moreover, it was 

found to regulate cryptic transcription initiation by regulating the chromatin structure 

after RNA Pol II passage (Kaplan et al., 2003). 

1.6.3.2 SUPT6H (Human homolog of yeast - Suppressor of Ty 6) 

Although a lot was known about yeast Spt6, not much had been known about the 

human homolog of Spt6. The human homolog, SUPT6H also contained SH2 domain 

and features for regulating transcription (Chiang et al., 1996). In recent past, there 

were discoveries that human Spt6 was also coupled with RNA Pol II and 

transcription elongation. SUPT6H stimulated the transcription elongation by 

interacting with RNA Pol II in vitro (Endoh et al., 2004). Despite the wealth of 



34 
 

information, the mechanism by which SUPT6H controlled transcription elongation 

remains largely unknown.  

As mentioned above, H2B monoubiquitination is dependent upon the activity of P-

TEFb and phosphorylation of Ser2 (Pirngruber et al. 2009; (Johnsen, 2012c) where 

the obligate heterodimeric H2B ubiquitin ligase complex RNF20/40 is linked to 

elongating RNAPII via the WW domain containing adaptor with coiled-coil (WAC) 

protein which binds directly to P-Ser2 (Zhang and Yu, 2011b). Like WAC, the histone 

chaperone Suppressor of Ty Homologue-6 (SUPT6H) binds to the elongating Ser2 

phosphorylated form of RNAPII (Yoh et al., 2007); (Diebold et al., 2010). Thus, 

SUPT6H could also regulate H2Bub1 via CDK9-WAC-RNF20/40 axis. 
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1.7 Aim of the project 

H2Bub1 is important for several processes such as gene expression, DNA damage 

and cellular differentiation. However, H2Bub1 is a mark for execution of these events 

but what dictates the placement of this mark needs further investigation. Thus, the 

aim of this study was to investigate the role of H2Bub1 and its upstream regulators, 

histone chaperone SUPT6H and bromodomain protein BRD4 in breast cancer. To 

study the effect of these regulators, SUPT6H was depleted and the influence on 

ERα-dependent signaling, critical for breast cancer was examined. High-throughput 

RNA and ChIP-sequencing was used to study the regulation by BRD4 and H2Bub1 

in suppression of stem cell-like phenotype in mammary cells. 
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2. Materials & Methods 

2.1 Technical equipment  

Agarose gel chamber Harnischmacher Labortechnik, Kassel 

Balance Sartorius AG, Göttingen 

Bandelin Sonoplus Sonicator Bandelin electr. GmbH & Co. KG, Berlin 

Biological Safety Cabinet “Hera Safe” Thermo Fisher Scientific, Waltham, USA 

Bioruptor Plus Diagenode, Belgium, Europe 

Centrifuge (Megafuge 1.OR) Thermo Fisher Scientific, Waltham, USA 

Centrifuge 4°C (5417R) Eppendorf AG, Hamburg 

C1000TM Thermal Cycler Bio-Rad Laboratories GmbH, München 

CFX96TM Optical Reaction Module Bio-Rad Laboratories GmbH, München 

Counting chamber (Neubauer) Brand GmbH & Co. KG, Wertheim 

Confocal microscope LSM510 META Carl Zeiss MicroImaging GmbH, Göttingen 

5100 Cryo 1°C Freezing Container Thermo Fisher Scientific 

Electrophoresis & Electrotransfer Unit Bio-Rad Laboratories GmbH, München 

Freezer -20°C Liebherr GmbH, Biberach 

Freezer -80°C “Hera freeze” Thermo Fisher Scientific, Waltham, USA 

Gel Imager “Gel iX imager” Intas Science Imaging GmbH, Göttingen 

Incubator (bacteria) Memmert GmbH & Co. KG, Schwabach 

Incubator (bacteria culture) Infors AG, Bottmingen 

Incubator (cell culture) “Hera cell 150“ Thermo Fisher Scientific, Waltham, USA 

Inverse Microscope “Axiovert 40 CFL” Carl Zeiss MicroImaging GmbH, 

Göttingen 

Luminometer 2030-100 Turner designs, Sunnyvale, CA, USA 

Magnet stirrer “MR3001” Heidolph GmbH & Co. KG, Schwabach 

Microscope “Axiovert 40 C“ Carl Zeiss MicroImaging GmbH, Göttingen 

Microwave Clatronic International GmbH, Kempen 

Nano Drop® ND-1000 Peqlab Biotechnology GmbH, Erlangen 
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Spectrophotometer 

Pestle Sartorius AG, Göttingen 

pH meter noLab® WTW GmbH, Weilheim 

Pipette Aid® portable XP Drummond Scientific Co., Broomall, 

USA 

Pipettes “Research” Series Eppendorf AG, Hamburg 

Power supply “Power Pack P25T” Biometra GmbH, Göttingen Material 

Qubit® 2.0 Fluorometer Invitrogen GmbH, Karlsruhe 

Refrigerator Liebherr GmbH, Biberach 

Repeat Pipette Gilson Inc., Middleton, USA 

ScanScope XT Aperio, Vista, CA, USA 

Scanner (CanoScan 8600F) Canon GmbH, Krefeld 

Shaker “Rocky” Schütt Labortechnik GmbH, Göttingen 

Table centrifuge (GMC-060) LMS Co., Ltd., Tokyo, Japan 

Test tube rotator Schütt Labortechnik GmbH, Göttingen 

Ultrapure Water System “Aquintus” MembraPure GmbH, Bodenheim 

Vacuum pump 

 

Integra Bioscienc. AG, Zizers,                                                                           
Switzerland 

Vortex mixer Scientific Industries, Inc., Bohemia, USA 

Water bath “TW 20” JULABO Labortechnik GmbH, Seelbach 

X- Ray Cassettes Rego X-ray GmbH. Augsburg 

 

2.2 Consumable materials  

Cellstar 6- and 12-well cell culture plate Greiner Bio-One GmbH, Frickenhausen  

Cellstar PP-tube 15 and 50 ml  Greiner Bio-One GmbH, Frickenhausen  

Cellstar tissue culture dish 100×20 mm   Greiner Bio-One GmbH, Frickenhausen  

Cellstar tissue culture dish 145×20 mm Greiner Bio-One GmbH, Frickenhausen 

Cell scraper (16 cm, 25 cm)  Sarstedt AG & Co., Nümbrecht  

Cryo TubeTM Vial (1.8 ml)  Thermo Fisher Scientific, Waltham, USA  
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Falcon® assay plate, 96 well    VWR Int., LLC, West Chester, USA  

Gel blotting paper (Whatman paper)  Sartorius AG, Göttingen 

Glass coverslips (18 mm) Gebr. Rettberg GmbH, Göttingen 

HybondTM-PVDF Transfer Membrane   GE Healthcare Europe GmbH, München 

Microtube 0,5 ml, 1.5 ml, 2 ml   Sarstedt AG & Co., Nümbrecht 

Microtube 1.5 ml, conical     VWR International GmbH, Darmstadt  

96 Multiply® PCR plate white  Sarstedt AG & Co., Nümbrecht 

96-well Multiplate PCR plate white (low)   Bio-Rad Laboratories GmbH, München  

NORM-JECT Syringes of different 
volume  

Henke Sass Wolf GmbH, Tuttlingen  

 

Parafilm® “M”     Pechiney Plastic Packaging, Chicago,  USA   

PET track-etched cell culture inserts  BD Bioscience, Franklin Lakes, NJ, USA 

Petri dish 92×16 mm   Sarstedt AG & Co., Nümbrecht 

Pipette tips    Greiner Bio-One GmbH, Frickenhausen 

Pipette filter tips      Sarstedt AG & Co., Nümbrecht  

Protan® Nitrocellulose transfer 
membrane  

Whatman GmbH, Dassel 

Shandon Coverplate  Thermo Fisher Scientific, Waltham, USA 

Syringe filter, Ca-membrane, 0,20 m   Sartorius AG, Göttingen  

Tissue microarrays US  Biomax,Inc., Rockville, MD, USA 

Ultra low attachment plates                                  Corning Life sciences, NY, USA 

X-ray films “Super RX”          Fujifilm Corp., Tokyo, Japan 

 

2.3 Chemicals  

2.3.1 General chemicals  

Acetic acid       Carl Roth GmbH & Co. KG, Karlsruhe  

Adefodur WB developing concentrate  Adefo-Chemie GmbH, Dietzenbach 

Adefodur WB fixing concentrate  Adefo-Chemie GmbH, Dietzenbach 

Agarose  Biozym Scientific GmbH, Oldendorf      

Albumin Fraction V (BSA)  Carl Roth GmbH & Co. KG, Karlsruhe 

Ammonium persulfate (APS)   Carl Roth GmbH & Co. KG, Karlsruhe 
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Ammonium sulfate (NH4)2SO4  Carl Roth GmbH & Co. KG, Karlsruhe 

Aprotinin Carl Roth GmbH & Co. KG, Karlsruhe 

Bromophenol blue      Sigma-Aldrich Co., St. Louis, USA 

Calcium Chloride (CaCl2)     Carl Roth GmbH & Co. KG, Karlsruhe 

Charcoal Dextran treated FBS  Thermo Scientific HyClone, Logan, USA 

Chelex (Chelating Ion Exchange Resin)   Bio-Rad Laboratories GmbH, München 

Chloroform   Carl Roth GmbH & Co. KG, Karlsruhe 

Cholera Toxin  Sigma-Aldrich Co., St. Louis, USA 

Co-precipitant Pink  Bioline, Luckenwalde 

Colorless co-precipitant   Bioline, Luckenwalde 

Crystal violet    Sigma-Aldrich Co., St. Louis, USA 

Citric acid     Carl Roth GmbH & Co. KG, Karlsruhe 

DePeX mounting media     VWR International GmbH  

Diaminobenzidine substrate   
ImmPACTTM DAB, SK-4105, Vector,                                                                           
Burlingame, USA 

Diethylpyrocarbonate (DEPC)  Carl Roth GmbH & Co. KG, Karlsruhe 

Dimethyl sulfoxide (DMSO)    AppliChem GmbH, Darmstadt  

Dithiothreitol (DTT)      Carl Roth GmbH & Co. KG, Karlsruhe 

DMEM   GIBCO®, Invitrogen GmbH, Darmstadt 

DMEM/F12   GIBCO®, Invitrogen GmbH, Darmstadt 

dNTPs    Carl Roth GmbH & Co. KG, Karlsruhe 

Ethanol absolute   Th. Geyer GmbH & Co. KG, Renningen 

Ethidium bromide  Carl Roth GmbH & Co. KG, Karlsruhe 

Ethylenediaminetetraacetic acid (EDTA)  Carl Roth GmbH & Co. KG, Karlsruhe 

Epidermal Growth Factor (EGF)   Sigma-Aldrich Co., St. Louis, USA 

Fetal Bovine Serum (FBS)    Thermo Scientific HyClone, Logan, USA 

Formaldehyde    Sigma-Aldrich Co., St. Louis, USA 

Glycerol    Carl Roth GmbH & Co. KG, Karlsruhe 

ß-Glycerolphosphate (BGP)  Sigma-Aldrich Co., St. Louis, USA 

Glycine       Carl Roth GmbH & Co. KG, Karlsruhe 

GlycoBlue  Applied Biosystems/Ambion, Austin, USA 

Hematoxyline  Merck, Darmstadt 
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Horse Serum     Sigma-Aldrich Co., St. Louis, USA 

Hydrochloric acid (HCl)    Carl Roth GmbH & Co. KG, Karlsruhe 

Hydrocortisone   Sigma-Aldrich Co., St. Louis, USA 

Insulin     Sigma-Aldrich Co., St. Louis, USA 

Iodacetamide    Sigma-Aldrich Co., St. Louis, USA 

Isopropanol    Carl Roth GmbH & Co. KG, Karlsruhe 

Leupeptin       Carl Roth GmbH & Co. KG, Karlsruhe  

Lithium chloride (LiCl), 8M      Sigma-Aldrich Co., St. Louis, USA 

Magnesium chloride (MgCl2)    Carl Roth GmbH & Co. KG, Karlsruhe  

MEM, no Glutamine, No Phenol Red   Life Technologies, Carlsbad, USA 

Methanol    M. Baker B.V., Deventer, Netherlands 

N-ethylmaleimide (NEM)    Sigma-Aldrich Co., St. Louis, USA 

Nickel chloride (NiCl2 ) Sigma-Aldrich Co., St. Louis, USA 

Nile Red   Sigma-Aldrich Co., St. Louis, USA 

NonidetTM P40 (NP-40) Sigma-Aldrich Co., St. Louis, USA 

Opti-MEM    GIBCO®, Invitrogen GmbH, Darmstadt 

PBS tablets GIBCO®, Invitrogen GmbH, Darmstadt 

Pefabloc SC Protease Inhibitor    Carl Roth GmbH & Co. KG, Karlsruhe 

Penicillin-Streptomycin solution    Sigma-Aldrich Co., St. Louis, USA 

Peptone   Carl Roth GmbH & Co. KG, Karlsruhe 

Potassium acetate  Carl Roth GmbH & Co. KG, Karlsruhe 

Potassium chloride (KCl)     AppliChem GmbH, Darmstadt 

Potassium dihydrogen phosphate  Carl Roth GmbH & Co. KG, Karlsruhe 

Protein-A Sepharose CL-4B   GE Healthcare, Uppsala, Sweden 

Protein-G Sepharose 4 Fast Flow                        GE Healthcare, Uppsala, Sweden 

RNase inhibitor      New England Biolabs, Frankfurt am Main                           

RNAiMAX       Invitrogen GmbH, Karlsruhe  

Roti®-Phenol Carl Roth GmbH & Co. KG, Karlsruhe 

Rotiphorese® Gel 30 Carl Roth GmbH & Co. KG, Karlsruhe 

Rotipuran® Chloroform Carl Roth GmbH & Co. KG, Karlsruhe 

Rotipuran® Isoamylalcohol Carl Roth GmbH & Co. KG, Karlsruhe 
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SepharoseTM CL-4B   GE Healthcare, Uppsala, Sweden 

Skim milk powder Carl Roth GmbH & Co. KG, Karlsruhe 

Sodium acetate Carl Roth GmbH & Co. KG, Karlsruhe 

Sodium azide    AppliChem GmbH, Darmstadt 

Sodium chloride (NaCl) Carl Roth GmbH & Co. KG, Karlsruhe 

Sodium deoxycholate   AppliChem GmbH, Darmstadt 

Sodium dodecylsulfate (SDS) Carl Roth GmbH & Co. KG, Karlsruhe 

Sodium fluoride (NaF)                                          AppliChem GmbH, Darmstadt 

di-Sodium hydrogen phosphate Carl Roth GmbH & Co. KG, Karlsruhe 

Sodium hydroxide (NaOH) Carl Roth GmbH & Co. KG, Karlsruhe 

Sodium pyruvate (Na-Pyr)    GIBCO®, Invitrogen GmbH, Darmstadt 

SYBR Green I   Roche Diagnostics GmbH, Mannheim 

TEMED Carl Roth GmbH & Co. KG, Karlsruhe 

α,α-Trehalose Dihydrate    USB Corporation, Cleveland, USA 

Tris Carl Roth GmbH & Co. KG, Karlsruhe 

Triton X-100      AppliChem GmbH, Darmstadt 

TRIzol® Reagent    Invitrogen GmbH, Karlsruhe 

Trypsin-EDTA (0.05%)   GIBCO®, Invitrogen GmbH, Darmstadt 

Tween-20       AppliChem GmbH, Darmstadt  

Xylene Carl Roth GmbH & Co. KG, Karlsruhe 

 

2.3.2 Differentiation chemicals 

Ascorbic acid Sigma-Aldrich Co., St. Louis, USA 

Calcitriol (1α,25-dihydroxy Vitamin D3) Cayman chemicals, Ann Arbor, USA 

Dexamethasone Sigma-Aldrich Co., St. Louis, USA 

ß-Glycerolphosphate (BGP) Sigma-Aldrich Co., St. Louis, USA 

Isobuthylmetylxantine (IBMX) Sigma-Aldrich Co., St. Louis, USA 

Troglitazone Sigma-Aldrich Co., St. Louis, USA 
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2.4 Kits and reagents  

Alkaline phosphatase leukocyte kit                      Sigma-Aldrich Co., St. Louis, USA 

Bioanalyzer DNA High sensitivity kit  Agilent, Santa Clara, USA 

Immobilon Western Chemiluminescent               

HRP Substrate 
Millipore, Billerica, USA 

LipofectamineTM 2000    Invitrogen GmbH, Karlsruhe 

LipofectamineTM RNAiMAX Invitrogen GmbH, Karlsruhe 

PureYieldTM Plasmid Midiprep   Promega GmbH, Mannheim 

QIAprep® Spin Miniprep Kit Qiagen GmbH, Hilden 

Qubit dsDNA HS assay   Invitrogen GmbH, Karlsruhe 

SuperSignal® West Dura   Thermo Fisher Scientific, Waltham, USA 

SuperSignal® West Femto Maximum  Thermo Fisher Scientific, Waltham, USA 

 

2.5 Nucleic acids  

2.5.1 siRNA Oligonucleotides 

Target Gene siRNA Target Sequence Source 

Target Gene siRNA sequence 5’-3’ direction 
 

Source 
 

Cat. No. 

siGENOME Nontargeting 

siRNA pool # 1 --- Dharmacon D-001206-13 

CD24 siGENOME (# 5) GAGCAAUGGUGGCCAGGCU Dharmacon D-187156-05 

CD24 siGENOME (# 6) GCAGAUUUAUUCCAGUGAA Dharmacon D-187156-06 

CD24 siGENOME (# 7) CAACUAAUGCCACCACCAA Dharmacon D-187156-07 

CD24 siGENOME (# 8) GGUGGUGCCCUGCAGUCAA Dharmacon D-187156-08 

RNF40 siGENOME (# 1) GAGAUGCGCCACCUGAUUAUU Dharmacon D-006913-01 

RNF40 siGENOME (# 2) GAUGCCAACUUUAAGCUAAUU Dharmacon D-006913-02 

RNF40 siGENOME (# 3) GAUCAAGGCCAACCAGAUUUU Dharmacon D-006913-03 

RNF40 siGENOME (# 4) CAACGAGUCUCUGCAAGUGUU Dharmacon D-006913-04 

RNF20 siGENOME (#1) CCAAUGAAAUCAAGUCUAA Dharmacon D-007027-01 

RNF20 siGENOME (#2) UAAGGAAACUCCAGAAUAU Dharmacon D-007027-02 
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RNF20 siGENOME (#3) 

 
   GCAAAUGUCCCAAGUGUAA Dharmacon D-007027-03 

RNF20 siGENOME (#4) AGAAGAAGCUACAUGAUUU Dharmacon D-007027-04 

BRD4 siGENOME (#2) GAACCUCCCUGAUUACUAU Dharmacon D-004937-02 

BRD4 siGENOME (#3) UAAAUGAGCUACCCACAGA Dharmacon D-004937-03 

BRD4 siGENOME (#4) UGAGAAAUCUGCCAGUAAU Dharmacon D-004937-04 

BRD4 siGENOME (#5) AGCUGAACCUCCCUGAUUA Dharmacon D-004937-05 

SUPT6H siGENOME (#1) GAACAUGACUUCACAGAUG Dharmacon D-010540-01 

SUPT6H siGENOME (#3) CCAGAGACCUUCUACAUUG Dharmacon D-010540-03 

SUPT6H siGENOME (#4) AAAGAAGGCUCAAGACAUU Dharmacon D-010540-04 

SUPT6H siGENOME (#18) GGGGAGAACCUGCGGGAUA Dharmacon D-010540-18 

 

For transfections, the Dharmacon siRNAs (#1 - #4) were pooled in a 1:1:1:1 ratio. 

 

2.5.2 RT PCR primers 

Reverse Transcription primers were ordered from Metabion AG, Martinisried and 

Sigma Aldrich, Hamburg. 

2.5.2.1 Quantitative PCR primers (qPCR) 

Primers mentioned were used in 5’ to 3’ orientation and designed using the NCBI 

primer designing tool (http://www.ncbi.nlm.nih.gov/tools/primer-blast/). 

Gene Forward primer (5’ to 3’) Reverse primer (5’ to 3’) Reference 

18S rRNA AACTGAGGCCATGATTAA GGAACTACGACGGTATCTGA This study 

ACTA2 ACCTTTGGCTTGGCTTGTCA GGAAGCTTTAGGGTCGCTGG This study 

AXL ATCGCCAAGATGCCAGTCAA CACATTGTCACCCCGAAGG This study 

CK19 GAATCGCAGCTTCTGAGACCA CTGGCGATAGCTGTAGGAAGTC This study 

CXCL12 TGCCAGAGCCAACGTCAAGCATC CGGGTCAATGCACACTTGTCTGTTGT 
(Prenzel et 
al., 2011) 

DLL1 GCAAGCGTGACACCAAGTG AAGTTGAACAGCCCGAGTCC This study 

FN1 CCCTGGTGTCACAGAGGCTA GAGAGAGAGCTTCTTGTCCTGTC This study 

GAS6 ACCTGACCGTGGGAGGTATT GTGTCTTCTCCGTTCAGCCA This study 

http://www.ncbi.nlm.nih.gov/tools/primer-blast/
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GREB1 GTGGTAGCCGAGTGGACAAT ATTTGTTTCCAGCCCTCCTT 
(Prenzel et 
al., 2011) 

HNRNPK ATCCGCCCCTGAACGCCCAT ACATACCGCTCGGGGCCACT 
(Karpiuk et 
al., 2012a) 

IL32 AGAAGCTGAAGGCCCGAATG TGTCCACGTCCTGATTCTGC This study 

NFKB2 CTACTGGAGGCCCTGTCTGA CCGTACGCACTGTCTTCCTT This study 

NFKBIZ GATGCTGTCCGCCTGTTGAT CACTGGCTGTTCGTTCTCCA This study 

PGR TCCACCCCGGTCGCTGTAGG TAGAGCGGGCGGCTGGAAGT 
(Prenzel et 
al., 2011) 

PPARG ACCTCCGGGCCCTGGCAAAA TGCTCTGCTCCTGCAGGGGG 
(Karpiuk et 
al., 2012a) 

RELB AGCGGAAGATTCAACTGGGC TGTCATAGACGGGCTCGGAA This study 

RNF40 AGTACAAGGCGCGGTTGA GAAGCAGAAAACGTGGAAGC 
(Prenzel et 
al., 2011) 

ROR1 AAACGGCAAGGAGGTGGTTT TGCACATGCAATCCCTCTGT This study 

RUNX2 GCGGTGCAAACTTTCTCCAG GCAGCCTTAAATGACTCTGTTGG This study 

SERPINE1 GACCTCAGGAAGCCCCTAGA GTGCCACTCTCGTTCACCTC This study 

SLIT2 TTCACCTCTTCGGGCCATTC AGCCACTTGAGATGGCAGTC This study 

SUPT6H GAAAACGCACCTCTTTTGATG CGTCCTCGTCATCTGACATTT This study 

TGFBR2 TCGCTGTAATGCAGTGGGAG TCATGCTTTCGACACAGGGG This study 

TJP3 CAGAGCATGGAGGATCGTGG TCAGGTTCTGGAATGGCACG This study 

TNFSF10 TGCGTGCTGATCGTGATCTT GCATCTGCTTCAGCTCGTTG This study 

TNFSF12 CTGGGAGGAAGCCAGAATCAAC TCATCAAAGTGCACCTGACAGTA This study 

 

2.5.2.2 ChIP primers 

Gene Forward primer (5’ to 3’) Reverse primer (5’ to 3’) Reference 

CXCL12 TSS GCAGTGCGCTCCGGCCTTT CCTCACTGCAGACCGGGCCA 
(Prenzel et al., 

2011) 

CXCL12 TR AAAGAGCCTGTCTGCAGGTG CCTGTCTCTTCTCGGGTTCAC This study 

GAPDH TSS CGGCTACTAGCGGTTTTACG AAGAAGATGCGGCTGACTGT This study 

GREB1 ERE CCTGGGAATGGAGATTTTGATA GAGCTGCGAGTCCCTAACAG 
(Prenzel et al., 

2011) 

GREB1 TSS GCCAAATGGAAGAAGGACAG ACCACCTACCTCCAGTCACC 
(Prenzel et al., 

2011) 

GREB1 TR AGTGCAGGGAGAAAGGCAAG GGAGAGCATGGTGTGCAGAT This study 

PDK4 BV GCGTCGAGGCTCCAGGGCT GCCCAAGCTGGGTCCTAGGGTT 
(Karpiuk et al., 

2012a) 

PGR ERE GGCCAGCAGTCCTGCAACAGTC CCCAAGCTTGTCCGCAGCCTT 
(Prenzel et al., 

2011) 

PGR TSS GTGCGTGTGGGTGGCATTCTC GCGGGAGCACTAGCCGCC This study 
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PGR TR AGTCCGCTGTCCTTTTCTGG TATCTCCCTGGACGGGCTAC This study 

PPARG BV AGCCGCTCCGGGGGAACTT ACAGGGCCTGGCCAGCTACAA 
(Karpiuk et al., 

2012a) 

RASD1 BV CGGCCACCCTCACCTTCTCCT GATCTGCTGCCTGAGCCGCTG 
(Karpiuk et al., 

2012a) 

TFF1 TSS CCTGGATTAAGGTCAGGTTGGA TCTTGGCTGAGGGATCTGAGA 
(Prenzel et al., 

2011) 

TFF1 TR CCACTCCCTAGAAGGACCCA GCTGGCAACCCATATTCCCT This study 

 

2.5.2.3 Primers for ChIP-seq Library preparation 

Protein/ 
Modification 

Primer 5’ – 3’ Sequence Reference 

 
Multi-

Adap1 F 
Phosphate-GATCGGAAGAGCACACGTCT Illumina 

 
Multi-

Adapt1 R 
ACACTCTTTCCCTACACGACGCTCTTCCGATC*T Illumina 

 
Multi-PCR-

1.0 
AATGATACGGCGACCACCGAGATCTACACTCTTTCC

CTACACGACGCTCTTCCGATC*T 
Modified from 

Illumina 

BRD4 -1 Multi-PCR-
Ind5 

CAAGCAGAAGACGGCATACGAGATCACTGTGTGAC
TGGAGTTCAGACGTGTGCTCTTCCGATC*T 

Modified from 
Illumina 

BRD4 - 2 Multi-PCR-
Ind6 

CAAGCAGAAGACGGCATACGAGATATTGGCGTGAC
TGGAGTTCAGACGTGTGCTCTTCCGATC*T 

Modified from 
Illumina 

BRD4 - 3 Multi-PCR-
Ind12 

CAAGCAGAAGACGGCATACGAGATTACAAGGTGAC
TGGAGTTCAGACGTGTGCTCTTCCGATC*T 

Modified from 
Illumina 

H2Bub1 - 1 Multi-PCR-
Ind7 

CAAGCAGAAGACGGCATACGAGATGATCTGGTGAC
TGGAGTTCAGACGTGTGCTCTTCCGATC*T 

Modified from 
Illumina 

H2Bub1 - 2 Multi-PCR-
Ind9 

CAAGCAGAAGACGGCATACGAGATCTGATCGTGAC
TGGAGTTCAGACGTGTGCTCTTCCGATC*T 

Modified from 
Illumina 

H2Bub1 - 3 Multi-PCR-
Ind10 

CAAGCAGAAGACGGCATACGAGATAAGCTAGTGAC
TGGAGTTCAGACGTGTGCTCTTCCGATC*T 

Modified from 
Illumina 

H3K27ac - 1 Multi-PCR-
Ind20 

CAAGCAGAAGACGGCATACGAGATGGCCACGTGAC
TGGAGTTCAGACGTGTGCTCTTCCGATC*T 

Modified from 
Illumina 

H3K27ac - 2 Multi-PCR-
Ind23 

CAAGCAGAAGACGGCATACGAGATCCACTCGTGAC
TGGAGTTCAGACGTGTGCTCTTCCGATC*T 

Modified from 
Illumina 

 

2.6 Proteins 

2.6.1 Molecular weight standards 

 

Gene RulerTM DNA-Ladder   Fermentas GmbH, St. Leon-Rot 

PageRulerTM Prestained Protein Ladder Fermentas GmbH, St. Leon-Rot 
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2.6.2 Enzymes  

Phusion polymerase    New England Biolabs, Frankfurt am Main 

Proteinase K    Invitrogen GmbH, Karlsruhe 

Restriction enzymes New England Biolabs, Frankfurt am Main 

Reverse Transcriptase (M-MuLV) New England Biolabs, Frankfurt am Main 

RNase A     Qiagen GmbH, Hilden 

Taq DNA Polymerase   Prime Tech, Mink, Belarus 

T4 DNA Ligase New England Biolabs, Frankfurt am Main 

 2.6.3 Antibodies  

2.6.3.1 Primary antibodies  

 
Following antibodies were used for ChIP and Western blot analyses in the 
mentioned dilutions. 
 

Name Clone Cat. No. WB ChIP IF IHC Source 

BRD4 (N-term) T2948 1:2000    Epitomics 

BRD4 (N-term)   1 µg   (Wu et al., 2006) 

CK8/18  BP-5007   1:200  Acris  

E- 
Cadherin 

24E10 3195 1:2000    Cell Signaling 

ERα  sc-543 1:1000 1 µg   Santa Cruz 

H2B - 07-371 1:3000 -   Millipore 

H2Bub1 56 05-1312 1:5000 2 μg   Millipore (for WB) 

H2Bub1 7B4    1:200  
(Prenzel et al., 

2011) 

H2Bub1 D11 5546 - 1 μl   Cell Signaling 

H3K4me3  
MAb-152-

050 
 1 µg   Diagenode 

H3K27me3  
pAb-069-

050 
 1 µg   Diagenode 

HSC70 B-6 sc-7298 1:25000 -   Santa Cruz 

IgG (non-
specific) 

- ab46540 - 1 μg   Abcam 

RNF20  
PA5-
19597 

1:1000    Thermo Scientific 

RNF40 KA7-27 R9029 1:1000 -   Sigma 

SUPT6H  
A300-
802A 

1:2000 1 μg   Bethyl Lab.Inc. 
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SUPT6H  ab-32820    1:200 Abcam (for IHC) 

Vimentin V-9 sc-6260 1:1000   1:200 Santa Cruz 

 

2.6.3.2 Secondary Antibodies 

Name Catalog No. WB Dilution Source 

Donkey Anti-Mouse IgG-HRP 715-036-150 1:20000 
Jackson 

ImmunoResearch 

Donkey Anti-Rabbit IgG-HRP 711-036-152 1:5000 
Jackson 

ImmunoResearch 

 

2.7 Cells 

2.7.1 Bacterial Cells 

Escherichia coli DH10BTM     Invitrogen GmbH, Karlsruhe 

 

2.7.2 Human Cell lines 

Cell Line Species Tissue Origin Disease Source 

MCF7 Human 
Mammary 

gland/breast 
adenocarinoma 

ATCC 
(HTB-22) 

MCF10A Human 
Mammary 

gland/breast 
nontumorigenic 

epithelial cell line 

ATCC 
(CRL-10317) 

MSC Human 
Bone marrow 
stromal cells 

TERT-
immortalized 

nontumorigenic 
cells 

Prof. M. Kassem, 
Odense University 
Hospital, Denmark 

T47D Human 
Mammary 

gland/breast 
ductal carcinoma 

ATCC 
(HTB-133) 

 

2.8 Buffers and Solutions 
 

RIPA buffer  

PBS       1X  

NP-40      1%  

Sodium deoxycholate   0.5%  

SDS       0.1% 
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TBS-T  10X (pH 7.6)  

Tris       0.1 M  

NaCl       1.5 M  

Tween-20      0.5%  

 

Western salts 10X  

Tris       0.25 M  

Glycine      0.86 M  

SDS       0.7 mM 

 
PBS-T 10X (pH 7.4)  

NaCl       0.73 M  

KCl       0.027 M  

NaH2PO4 * 7H2O    14.3 mM  

KH2PO4      14.7 mM  

Tween-20     1%  

 

PBS for cell culture 

1 PBS tablet per 500 ml distilled H2O  

PBS-T  

PBS including 0.1% (w/v) Tween-20  

 
PCR-Mix 10X 

Tris-HCl (pH 8.8)    750 mM 

(NH4)2SO4      200 mM 

Tween-20      0.1%  

 
RT-PCR Master Mix  

PCR-Mix      1X  

MgCl2      3 mM  

SYBR Green     1:80000  

dNTPs      0.2 mM  

Taq-polymerase     20U/ml  

Triton X-100      0.25%  

Trehalose      300 mM 

 

Blocking solution  

TBST       1X  

Milk       5%  
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Cell culture freezing medium  

DMEM      42% 

FBS       50%  

DMSO     8% 

 
Chelex (10%)  

Chelex      10% (w/v) in H2O  

Nuclear preparation buffer 

NaCl       150 mM  

EDTA pH 8.0     20 mM  

Tris-HCl pH 7.5     50 mM  

NP-40      0.5%  

Triton X-100      1%  

NaF       20 mM  

 

Sonication buffer-1  

Tris-HCl pH 8.0     50 mM  

EDTA       10 mM  

SDS       1% (w/v)  

 

Sonication buffer-2 

EDTA       20 mM  

Tris-HCl pH 8.0     50 mM  

NaCl                150 mM 

NP-40               1% (v/v)  

NaF               20 mM 

 

Dilution buffer 

EDTA                20 mM  

Tris-HCl pH 8.0              50 mM  

NaCl                150 mM 

NP-40               1% (v/v)  

NaF               20 mM 

Sodium deoxycholate            0.5% (w/v)  

 

IP Buffer 

EDTA                20 mM  

Tris-HCl pH 8.0              50 mM  

NaCl               150 mM 

NP-40              1% (v/v)  
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NaF      20 mM 

Sodium deoxycholate   0.5% (w/v)  

SDS      0.1% (w/v) 

 

Wash buffer  

LiCl       0.5 M  

NP-40      1% (v/v)  

Sodium deoxycholate    1% (w/v)  

EDTA                 20 mM  

Tris-HCl pH 8.5     10 mM  

NaF      20 mM 

 

TE buffer  

Tris-HCl pH 8.0     10 mM  

EDTA      1 mM 

 

Protease, phosphatase and deubiquitinase inhibitors  

Pefabloc      1 mM  

Aprotinin/Leupeptin               1 ng/μl  

BGP       10 mM  

NEM       1 mM  

IAA       10 μM  

NiCl2       1 mM  

 

DMEM cell culture “normal” medium  

Phenol red-free high-glucose DMEM   

FBS       10%  

Penicillin     100 U/ml  

Streptomycin     100 μg/ml  

Sodium pyruvate     1 mM 

 

DMEM/F12 cell culture medium  

Phenol red-free high-glucose DMEM/F12  

Horse serum     5%  

EGF       100 μg/ml  

Hydrocortisone     1 mg/ml  

Cholera toxin     1 mg/ml  

Insulin      10 mg/ml  

Penicillin      100 U/ml  

Streptomycin     100 μg/ml  
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6x Laemmli buffer  

Tris (pH 6.8)                0.35 M  

Glycerol      30%  

SDS       10%  

DTT       9.3%  

Bromophenol blue    0.02%  

 

SDS separating gel (X%)  

Acrylamide      X%  

Tris-HCl (pH 8.8)     375 mM 

SDS       0.1%  

APS       0.1%  

TEMED      0.04%  

 

SDS stacking gel (5%)  

Acrylamide      5%  

Tris-HCl (pH 6.8)     125.5 mM  

SDS       0.1%  

APS       0.1%  

TEMED      0.1%  

 

TAE buffer (50x)  

Tris       2 M  

Acetic acid      1 M  

EDTA                 0.1 M  

 

Transfer buffer  

10x Western salts     10%  

Methanol      15% 

 

Co-IP Lysis Buffer 

Tris–HCl (pH – 7.1)               5 mM 

NaCl        25 mM 

Triton X – 100     0.5% 

NaF        25 mM 

Na3VO4       0.5 mM 

DTT        0.2 mM 
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Ascorbic acid stock solution (1000x) 

0.2 M ascorbic acid in sterile water 

Calcitriol stock solution (1000x) 

10 μM calcitriol in 100% DMSO 

Dexamethasone stock solution (1000x) 

100 μM dexamethasone in 100% EtOH 

β-glycerol phosphate (BGP) stock solution (100x) 

1 M BGP in sterile water 

IBMX stock solution (100x) 

0.45 M isobutyl-methyl-xanthine in 100% EtOH 

Troglitazone stock solution (1000x) 

10 mM Troglitazone in 100% DMSO 

 

MEM cell culture “normal” medium 

Phenol red-free high-glucose MEM  

BGS       10% 

Antibiotic-Antimycotic solution        1X  

 

MEM cell culture “adipocyte” medium 

Phenol red-free high-glucose MEM  

BGS      15% 

Antibiotic-Antimycotic solution  1X 

Dexamethasone    10 nM  

IBMX      0.45 mM 

Insulin                2 μM 

Troglitazone     10 μM 

 

MEM cell culture “osteoblast” medium 

Phenol red-free high-glucose MEM 

BGS      10% 

Antibiotic-Antimycotic solution  1X 

Dexamethasone     10 nM  

β-glycerol phosphate (BGP)  10 mM 

Ascorbic acid               0.2 mM 

Calcitriol     10 nM 
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2. 9 Software 

Name Source 

DAVID analysis http://david.abcc.ncifcrf.gov  

Differential gene expression analysis 
(DESeq) package 

http://www.bioconductor.org/packages/rele
ase/bioc/html/DESeq.html 

Galaxy cistrome http://cistrome.org/ap/root 

Galaxy http://galaxyproject.org/ 

Gene Set Enrichment Analysis (GSEA) 
Broad Institute, 
http://www.broadinstitute.org/gsea/index.jsp 

Image J  http://rsbweb.nih.gov/ij/ 

AxioVision Software  Carl Zeiss MicroImaging GmbH, Göttingen 

Primer designing tool NCBI/Primer-BLAST  www.ncbi.nlm.nih.gov/tools/primer-blast/ 

R statistical software  http://www.r-project.org/ 
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3. Methods 

3.1 Cell culture 

3.1.1 Culturing of Cells 

MCF7 (human breast adenocarcinoma) cells were cultured in phenol red-free high-

glucose Dulbecco’s modified Eagles medium (DMEM) supplemented with 10% fetal 

bovine serum (FBS), 100 units/ml penicillin, 100 μg/ml streptomycin and 1 mM 

sodium pyruvate at 37°C under 5% CO2 atmosphere. MCF10A (human mammary 

epithelial) cells were cultured in DMEM/F12 medium supplemented with 5% horse 

serum, 100 μg/ml EGF, 1 mg/ml hydrocortisone, 1 mg/ml Cholera toxin, 10 mg/ml 

Insulin, 100 units/ml penicillin and 100 μg/ml streptomycin under the same 

conditions. hMSC-Tert20 cells (Simonsen et al., 2002) were cultured in low glucose, 

phenol red-free MEM supplemented with 10% FBS and 1X antibiotic antimycotic. 

T47D (human mammary ductal carcinoma) cells were maintained in RPMI 1640 

medium supplemented with 10% FBS, 100 units/ml penicillin, 100 μg/ml 

streptomycin and 1 mM sodium pyruvate. 

3.1.2 siRNA transfection protocol in 6-well plate  

Reverse-siRNA transfections were performed using LipofectamineTM RNAiMAX 

according to the manufacturer’s instructions. For transfection, 30 pmol of the 

respective siRNA’s were diluted in 500 μl of Opti-MEM medium in a well of a 6-well 

plate. 5 μl LipofectamineTM RNAiMAX was added to each well and incubated for 20 

min at RT. In the meantime, MCF7 or MCF10A cells were trypsinized and diluted in 

medium without antibiotics. Cells were then counted using Neubauer counting 

chamber and nearly 250,000 cells (MCF10A) or 300,000 cells (MCF7) from the 

diluted cells were added to each well already containing the siRNA-LipofectamineTM 
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RNAiMAX complexes. The medium was replaced with medium containing antibiotics 

after 24 h. Cells were harvested in 48 h or 72 h after transfection.  

3.1.3 Migration assay  

Migration potential of cells upon various knockdowns or inhibitor treatments was 

assayed by seeding 50,000 MCF10A cells 48 h after transfection with the respective 

siRNAs into 8.0 μm PET track-etched membrane cell culture inserts. The inserts 

were pre-equilibrated for at least 30 min with serum free medium. After pre-

equilibration, the medium was substituted by normal MCF10A cell culture medium 

and cells were allowed to migrate through the inserts. Cells were grown for another 

48 h and scraped gently from the upper layer of the inserts using a Q-Tip before 

fixation with 100% methanol for 10 min. Migrated cells were stained by crystal violet 

staining (0.1% (w/v) crystal violet, 10% (v/v) formaldehyde) for 10 min. The inserts 

were rinsed twice in distilled water to remove excess staining. The membrane of the 

inserts was then visualized under the microscope. 

3.1.4 Mammosphere formation assay 

Single cells were allowed to grow in non-adherent and non-differentiating conditions 

to determine their in vitro proliferative capacity. Single cell suspensions from 

MCF10A cells 48 h after transfection with respective siRNAs were seeded at a 

density of 10,000 cells per ml in DMEM/F12 medium supplemented with 2% B27 

(serum free supplement), 5 mg/ml insulin, 0.5 mg/ml hydrocortisone, 20 ng/ml basic 

fibroblast growth factor (bFGF) and  20 ng/ml epidermal growth factor (EGF). Cells 

were grown in 6 well plates coated with 1.2% polyhema for 6 days and 

mammospheres formed were counted and images were taken using Zeiss Axiovision 

software. 
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3.2 Molecular Biology 

3.2.1 RNA isolation  

RNA isolation from the cultured cells was performed with QIAzol® reagent according 

to the manufacturer’s instructions. Cells were washed twice with PBS, lysed by 

addition of 500 µl of QIAzol® reagent to each well (6-well format) and scraped into 

1.5 ml tubes. 100 µl of chloroform was added to the samples, vortexed for 20 sec 

and then centrifuged at 10,000g for 20 min (4°C). The aqueous phase was collected 

into a fresh 1.5 ml tube and chloroform extraction was performed again followed by 2 

h or overnight isopropanol precipitation at -20°C. After that, samples were 

centrifuged at maximal speed of 12,000g for 30 min (4°C), pellets were washed twice 

with 70% ethanol, dried on vacuum concentrator and re-dissolved in 40 μl of DEPC 

water. RNA concentration was measured using a NanoDrop.  

3.2.2 cDNA synthesis  

For DNA synthesis 1 μg of total RNA was mixed with 2 μl of 15 μM random primers 

and 4 μl of 2.5 mM dNTP mix and incubated 5 min at 70°C. After that 4 μl of reverse 

transcription master mix containing 2 μl 10x reaction buffer, 10 units of RNAse 

Inhibitor, 25 units of reverse transcriptase and 1.625 μl of DEPC water were added 

to each sample. cDNA synthesis was performed at 42°C for 1 h followed by enzyme 

inactivation for 5 min at 95°C. Finally, samples were brought to 50 μl volume by 

DEPC water. 

3.2.3 Quantitative real-time PCR  

One μl of ChIP or cDNA sample was used for subsequent quantitative real-time PCR 

analysis with a final reaction volume of 25 μl. A PCR reaction was setup as follows: 

75 mM Tris-HCl (pH 8.8), 20 mM (NH4)2SO4, 0.01% Tween-20, 3 mM MgCl2, 200 μM 
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dNTPs, 0.5 U/reaction Taq DNA Polymerase, 0.25% Triton X-100, 1:80,000 SYBR 

Green I, 300 mM Trehalose and 30 nM primers.  

A two-step PCR protocol was used for each primer pair:  

2 min – 95°C  

15 sec – 95°C  

1 min – 60°C          x 40  

The PCR reaction was followed by a melting curve analysis from 60°C to 95°C with 

read every 0.5°C.  

cDNA samples were quantified using a standard curve made from all cDNA samples. 

Prior to statistical analysis all qRT-PCR samples were normalized to 18S ribosomal 

RNA or HNRNPK as an internal reference gene. The expression levels were 

determined relative to the vehicle treated control sample and expressed as “relative 

mRNA expression”.  

ChIP and ChIP input samples were also quantified using a standard curve made 

from ChIP input DNA. ChIP samples were normalized to their corresponding input 

samples and expressed as “% input”.  

3.2.4 RNA-sequencing 

RNA-seq library preparation as well as sequencing was carried out at the 

Transcriptome Analysis Laboratory (TAL), University of Göttingen. 

Library Preparation 

Library preparation for RNA-seq was performed using the TruSeq RNA Sample 

Preparation Kit (Illumina, Cat.No. RS-122-2002) starting from 500 ng of total RNA. 
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Accurate quantitation of cDNA libraries was performed by using the QuantiFluor™ 

dsDNA System (Promega). The size range of final cDNA libraries was determined by 

applying the DNA 1000 chip on the Bioanalyzer 2100 from Agilent (280 bp). cDNA 

libraries were amplified and sequenced by using the cBot and HiSeq2000 from 

Illumina (SR; 1x50 bp; 6 GB ca. 30-35 million reads per sample). 

Sequence images were transformed with Illumina software BaseCaller to bcl files, 

which were demultiplexed to fastq files with CASAVA v1.8.2. Quality check was done 

via fastqc (v. 0.10.0, Babraham Bioinformatics).  

Data Analysis 

The analysis involves detection of differentially expressed genes in various 

conditions. The raw data Fastq files from the sequencer were analyzed using Bowtie 

2.0 on Galaxy and DESeq package in R-script. Bowtie 2.0 is a short read aligner 

which functions to align short DNA sequences (as reads from sequencer) to the 

human genome (transcriptome) – hg19 mRNA. The output provides RPKM values 

that signify number of reads per kilobase of DNA per million mapped reads for each 

gene, for each sample. This output file was used for DESeq package in R-script 

(Anders and Huber, 2010). Heatmaps were generated to visualize the differential 

expression of genes in various knockdowns. The list of differentially regulated genes 

was used for Gene Set Enrichment Analysis (GSEA) as well as DAVID (Gene 

ontology). GSEA is a computational method for determining statistically significant 

differences between two phenotypes. DAVID is a web-based program for analyzing 

the list of genes to their associated biological annotation. 
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3.2.5 Chromatin immunoprecipitation (ChIP)  

Protein–DNA complexes in cells grown in 10 cm plates were crosslinked for 10 min 

by adding 1% formaldehyde in PBS. Glycine to a final concentration of 125 mM was 

added for 5 min in order to quench the formaldehyde. Cells were then washed twice 

with ice-cold PBS and scraped in 1 ml of Nuclear preparation buffer containing 

inhibitor cocktail. All further steps were performed on ice or at 4°C. Nuclear pellet 

was isolated from the lysate by centrifugation at 12,000g for 1 min and pellet was 

washed again with 1 ml of Nuclear preparation buffer. Finally, the nuclear pellet was 

resuspended by gentle pipetting in 150 μl Sonication buffer-1 (with 1% SDS) 

containing inhibitor cocktail and incubated at 4°C on a wheel for 15 min. The SDS 

content was diluted to 0.5% SDS using 150 μl Sonication buffer-2 (no SDS). The 

sonication process was done in a Bioruptor for 30 min with 30 sec on/off cycles. The 

soluble chromatin was then cleared from the debris by centrifugation at 12000g for 

10 min (8°C) and pre-cleared with 100 μl of 50% slurry of Sepharose beads for 1 h. 

After the pre-clearing the chromatin was centrifuged, diluted in Dilution buffer, 

aliquoted, frozen in liquid nitrogen and stored at -80°C. For the immunoprecipitation, 

100 μl of chromatin extract was diluted up to 500 µl with IP buffer (containing 

inhibitor cocktail) and incubated overnight with the indicated amount of antibodies. 

Immunoglobulin bound complexes were precipitated by adding 30 μl of 50% slurry of 

Protein-A or Protein-G Sepharose and incubated for 2 h. Following incubation, the 

samples were centrifuged at 2,000g for 2 min. The beads were washed with series of 

buffers as follows: ice-cold IP buffer twice, wash buffer thrice, IP buffer twice and TE 

buffer twice. The crosslink was reversed by adding 10% slurry Chelex with 

subsequent heating to 95°C for 10 min. The proteins in the samples were eliminated 

by adding 20 μg of Proteinase K and incubating for 30 min at 55° C (800 rpm). 
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Proteinase K was inactivated by heating at 95° C for 10 min. The samples were 

centrifuged at 12,000g for 1 min (4°C) and the supernatant was analyzed by 

quantitative real-time PCR. The background binding was determined by performing a 

ChIP with a non-specific IgG antibody. ChIP inputs preparation: 10 μl (10% relative 

to ChIPs) of chromatin extracts were incubated overnight at -20°C. The inputs were 

processed with Chelex addition as described above for ChIP samples. ChIP samples 

were normalized to input DNA samples, and displayed as “% input”. 

3.2.6 Chromatin immunoprecipitation-sequencing (ChIP-seq)  

ChIP-sequencing involves chromatin immunoprecipitation followed by DNA 

sequencing in order to determine the sites for protein-DNA interactions in the 

genome. The chromatin for ChIP-seq was prepared as mentioned above. For 

sequencing, the DNA was isolated using phenol chloroform extraction.  

DNA isolation using phenol chloroform extraction : For this purpose, 50 μl of 10 mM 

Tris HCl pH 8.0 containing 10 µg of RNAse A was added to the already washed 

chromatin-bound beads as well as the input samples and incubated for 30 min at 

37°C. Then, 50 μl of 2x Sonication buffer -2 and 20 μg of Proteinase K were added 

and the samples were incubated overnight at 65°C with a subsequent centrifugation 

step at 2,000g for 2 min at RT. The supernatant was collected, and the beads were 

rinsed again with 100 μl of 10 mM Tris pH 8.0. The samples were centrifuged and 

the supernatant was added to the first one. For extraction, 10 μl of 8 M LiCl, 4 μl co-

precipitant (linear polyarcylamide) and 200 μl phenol/chloroform/isoamyl alcohol 

(25:24:1) were added, samples were vortexed for 30 sec and centrifuged for 2 min at 

full speed. The aqueous phase was collected and the phenol phase was back 

extracted with 200 μl 10 mM Tris HCl pH 8.0 and 400 mM LiCl. After vortexing and 

centrifugation, the second aqueous phase was pooled with the first one and 
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precipitation was performed by addition of 100% EtOH and incubation for 2 h at -

80°C. After that, samples were centrifuged at maximal speed for 30 min (4°C), 

pellets were washed with 70% ethanol, dried on vacuum concentrator and re-

dissolved in 40 μl of water.  

5 μl of the DNA was used for qRT-PCR to confirm the efficient chromatin 

immunoprecipitation and 35 μl for ChIP-seq. DNA concentration was measured 

using a Qubit dsDNA HS assay on a Qubit® 2.0 Fluorometer.  

Shearing check  

The efficiency of sonication was determined by performing a shearing check. Briefly, 

10 μl of sheared chromatin was used for phenol chloroform extraction. After 

resuspension of the DNA in 15 μl of 10 mM Tris HCl pH 8.0, 100 μg/ml RNAse A 

was added and the mixture was incubated for 1 h at 37°C (700 rpm). The DNA was 

then run on a 1.5% agarose gel and analyzed on the gel documentation. Efficient 

shearing consisted of a smear from about 150 to 1 kb with a maximum around 200-

400 bp.  

Library preparation  

ChIP-seq library preparation was performed using NEBNext Ultra DNA library prep 

kit for Illumina (E7370) as per manual’s instructions. 5 - 50 ng of fragmented DNA 

from ChIP was resonicated for 15 min in Bioruptor to ensure small fragments 

suitable for sequencing. End preparation was performed by adding end prep enzyme 

mix and end repair reaction buffer (10X) to a final reaction volume of 65 µl. Samples 

were placed on a thermocycler with cycles of 20°C for 30 min and 65°C for 30 min 

followed by adaptor ligation with blunt/TA ligase master mix, NEBNext adaptor and 
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ligation enhancer to a final volume of 83.5 µl. Samples were incubated at 20°C for 15 

min, then 3 µl of User enzyme was added and placed at 37°C for 15 min. Adaptor – 

ligated DNA was cleaned up using 0.9x AMPure XP beads on magnetic stand and 

finally DNA was resuspended in 28 µl of 10 mM Tris pH 8.0. From this, 23 µl of DNA 

was used for PCR amplification followed by clean up of PCR amplified product using 

AMPure XP beads. The DNA was resuspended in 33 µl of 10 mM Tris pH 8.0 and 

analyzed on Bioanalyzer. 

Quantitation of cDNA libraries was done on an Invitrogen Qubit 2.0 Fluorometer and 

the size range of cDNA libraries was performed on an Agilent Bioanalyzer 2100 

(High Sensitivity DNA Assay). cDNA libraries were amplified and sequenced by 

using the cBot and HiSeq2500 from Illumina (20-25 million reads per sample). 

Sequence images were transformed with Illumina software BaseCaller to bcl files, 

which were demultiplexed to fastq files with CASAVA v1.8.2. Quality check was done 

via fastqc (v. 0.10.1, Babraham Bioinformatics). 

Data Analysis 

ChIP-seq analysis was performed by Prof. Steven A. Johnsen. The fastq files from 

the sequencer or downloaded from ENA database were mapped to the human 

genome using Bowtie on Galaxy server which involves alignment of short DNA reads 

to the human genome – hg19. The BAM files from Bowtie were used for Model 

Based Analysis of ChIP-seq (MACS), which involves the identification of the peaks 

for the protein binding, commonly referred to as peak calling with peak p-values ≤ 

10e-5. This generated Bed file containing the peak location and Wiggle (Wig) file 

containing signal profile further used to analyze the genome-wide recruitment of 

proteins or histone modifications. Cis-regulatory Element Annotation System (CEAS) 
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and SitePro packages available on Galaxy were used to determine the sites of 

recruitment of proteins or histone modifications as well as average signal intensities 

at various genomic locations. 

3.3 Protein biochemistry  

3.3.1 SDS-PAGE  

SDS-PAGE is used for separating proteins using denaturing agent SDS (sodium 

dodecylsulfate) on a polyacrylamide gel upon electrophoresis (Laemmli, 1970). For 

protein preparation, cells were lysed in RIPA buffer containing 1 mM Pefabloc, 1 

ng/μl Aprotinin/Leupeptin, 10 mM BGP and 1 mM NEM. Genomic DNA was sheared 

by sonication where samples were sonicated for 10 sec at 10% power using a tip 

sonicator. Before loading, protein samples were boiled in Laemmli Buffer for 10 min 

and then subjected to SDS-PAGE. The composition of stacking and resolving gel is 

described in section 2.8. Polyacrylamide gels were run in SDS running buffer at 20 

mA/gel.  

3.3.2 Western blot analysis  

After electrophoresis, proteins were separated according to their molecular weight 

that are later identified (Towbin et al., 1979) using target protein specific antibodies. 

Separated proteins were transferred at 100 V to PVDF membranes using transfer 

buffer for 90 min, depending on the size of the protein. The membranes were 

incubated for 1 h in TBS-T and 5% (w/v) dry milk to block non-specific antibody 

binding. Afterwards the membranes were incubated for 1 h at room temperature or 

overnight at 4°C in the same blocking buffer containing the respective primary 

antibodies, diluted as described in the antibody table (2.6.3.1). After washing thrice 

with TBS-T, the membranes were incubated for 1 h with the corresponding 

horseradish peroxidase-conjugated anti-mouse IgG, anti-rabbit IgG or anti-rat IgG 
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secondary antibodies in appropriate dilutions. Further washing thrice with TBS-T, 

HRP signals were detected using enhanced chemoluminescence and exposed to X-

ray films. 

3.3.3 Immunohistochemistry on paraffin sections  

For immunostaining, paraffin-embedded sections were de-paraffinized and 

rehydrated as stated in established procedures. Sections were incubated in xylene 

for 20 min, followed by rehydration in a 100%, 90% and 70 % EtOH series before 

washing with PBS. Proteins were then unmasked by boiling slides in 10 mM citric 

acid/sodium-phosphate. After washing with PBS, sections were quenched for 

endogenous peroxidase activity with 3% hydrogen peroxide in PBS for 45 min at RT 

and then blocked using 5% FBS diluted in PBS for 1 h at RT. The primary antibody 

diluted in PBS containing 5% FBS was applied and incubated overnight at 4°C in a 

humid chamber. Sections were washed using PBS before adding the biotinylated 

secondary antibody 1:200 diluted in PBS and incubated for 1 h at RT. Sections were 

washed with PBS followed by Avidin-Peroxidase incubation 1:1,000 diluted in PBS 

for 45 min. Staining signals were detected using diaminobenzidine (DAB) substrate. 

Hematoxyline (Mayer’s hemalaun solution) was used for counterstaining. Histological 

slides were digitized with a ScanScope XT (Aperio) at 400x magnification. Color 

intensity quantification was achieved with ImageJ software (Schneider et al., 2012) 

by manually indicating the nuclei as region-of-interests and performing colour 

deconvolution (Ruifrok and Johnston, 2001). 

3.3.4 Micrococcal Nuclease Digestion 

MCF7 cells were scraped in hypotonic lysis buffer (10% sucrose w/v, 10% glycerol 

v/v, 10 mM HEPES pH 7, 10 mM KCl, 2 mM MgCl2 and 50 µg/ml BSA) containing 

protease inhibitors (1 ng/μl aprotinin/leupeptin, 1 mM Pefabloc), deubiquitinating 
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enzyme inhibitors (1 mM N-ethylmaleimide, 10μM iodoacetamide) and 5 mM sodium 

butyrate, pelleted by centrifugation, and resuspended in lysis buffer with 0.1% Triton 

X-100 and incubated 10 min on ice for permeabilization. The nuclei were washed 

once with MNase buffer (50 mM Tris pH 8, 5 mM CaCl2 and 100 µg/ml BSA) and 

resuspended in MNase buffer. MNase (2,000,000 gels units/ml, diluted 1:400, New 

England Biolabs) was added to the nuclei and digestion was stopped after 4 minutes 

by adding 1 volume Stop solution (50 mM EDTA, 1% SDS, 100 mM Tris pH 7.5 and 

200 µg/ml Proteinase K). Proteinase K digestion was performed overnight at 50°C. 

DNA was purified using phenol/chloroform/isoamyl alcohol extraction in presence of 

0.4 M LiCl and ethanol precipitation with 10 µg of linear polyacrylamide as co-

precipitant (Bioline). RNA was digested by 200 µg/ml RNase A for 1 h at 37°C. DNA 

concentration was measured using Nanodrop. Digestion patterns were analyzed on 

2% agarose gel and using a Bioanalyzer with the DNA 1000 kit (Agilent). 

 

3.3.5 Co-immunoprecipitation 

Cells were washed with PBS and scraped in 1.5 ml Co-IP lysis buffer containing 

protease inhibitors, vortexed for 15 sec and incubated for 1 h on a rotator at 4°C. 

The lysate was sonicated for 30 sec three times and centrifuged at 10,000 rpm for 5 

min at 4°C. Supernatant was transferred to a fresh 1.5 ml tube and resonicated 

followed by centrifugation. The supernatant was collected and 100 µl was taken as 

input. Appropriate amount of supernatant was incubated with 2 -3 µg of antibody for 

4h or overnight at 4º C on a rotator. The next day, 30 µl of 50% slurry of Protein A or 

G sepharose was added and incubated for 2 h on a rotator at 4°C. Beads were 

collected by centrifugation at 1000 rpm for 2 min, washed twice with lysis buffer and 
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resuspended in 50 – 100 µl of lysis buffer. Beads were boiled in Laemmli buffer, 

loaded on SDS-PAGE and protein was detected using antibody of interest. 

3.3.6 Immunofluorescence 

Cells grown on chamber slides were washed with PBS and fixed with 4% 

paraformaldehyde for 15 min at RT. Cells were washed twice with PBS and 

permeabilized using 0.1% Triton X-100 for 10 min. After washing twice with PBS, 

cells were blocked with 10% FBS for 10 min followed by overnight incubation with 

primary antibody dilution in 10% FBS. Next day, unbound antibody was washed 

away by washing twice with PBS and incubated with Alexa-488 or Alexa-594 

conjugated secondary antibodies. Cells were washed twice with PBS and stained for 

DAPI and mounted with coverslips using mounting medium. Images were taken 

using LSM 510 META confocal microscope and analyzed using the LSM Image 

Browser. 

3.4 Chemical staining  

3.4.1 Alkaline phosphatase staining  

Osteoblast differentiation efficiency was determined by staining of alkaline 

phosphatase activity. Staining was performed with alkaline phosphatase kit for 

leukocytes according to manufacturer’s instructions. All steps were performed at RT. 

First, cells were washed with PBS and fixed for 30 sec with Citrate fixing solution 

containing (for 98 ml): 66 ml acetone, 25 ml Citrate solution and 8 ml 37% 

formaldehyde. After fixation, cells were washed thrice with distilled water and 

incubated for 15 min with diazonium salt followed by rinsing with distilled water and 

drying. Diazonium salt preparation: 1 ml of FRV-Alkaline solution was mixed with 1 

ml of sodium nitrate solution and incubated for 2 min. Then 45 ml of distilled water 

and 1 ml of Naphtol AS-BI Alkaline solution were added to the mix. Diazonium salt 
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was prepared freshly before each staining. Pictures of the stained plates were taken 

under light microscope using 10x magnification.  

3.4.2 Oil Red O staining  

Lipid drops were stained with Oil Red O staining to determine the adipocyte 

differentiation efficiency. All steps were performed at RT. Oil Red O working solution 

was prepared by mixing 3 parts of Oil Red O stock solution (300 mg/ml of Oil Red O 

powder in 99% isopropanol) with 2 parts of distilled water and incubated for 10 min 

followed by filtration. Cells were washed with PBS, fixed with 10% formaldehyde for 

30 min and incubated with 60% isopropanol for 5 min. Then, cells were stained with 

Oil Red O working solution for 5 min followed by rinsing with distilled water and 

drying. Pictures of the stained plates were taken under light microscope using 10x 

magnification. 

3.4.3 Carmine alum staining for mammary ducts 

Tissues were fixed overnight in 4% paraformaldehyde and then rinsed with PBS. 

Fixed tissues were then pressed between glass slides before staining with carmine 

alum for 4 hours at room temperature. Carmine alum stain was prepared by mixing 

1g of carmine and 2.5 g of aluminum potassium sulfate in 500 ml of distilled water 

and boiled for 20 min, filtered and refrigerated. The stained tissues were then put in 

series of 50%, 70 % and 100% ethanol each for 5 min. The tissues were then 

cleared in xylene overnight. The next day, they were transferred to methyl salicylate 

until the images were taken. 

3.5 RNF40 conditional knockout mouse model 

Cell culture experiments had shown that RNF40 and H2Bub1 were essential for 

cellular differentiation, it was then anticipated that Rnf40 null mouse would most 
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likely be lethal. Thus, a conditional targeting approach was pursued by designing a 

construct in which exons 3 and 4 of the mouse Rnf40 gene were surrounded by loxP 

sites. For selection, the neomycin resistance cassette surrounded by two FRT-

sequences was included in the construct. This approach facilitates deletion of the 

targeted gene in a time and tissue-dependent manner. The inclusion of the FRT-

sites enabled FLP recombinase-mediated excision of the Neomycin-cassette, which 

could otherwise interfere with RNF40 expression in vivo (Pham et al., 1996); (Ren et 

al., 2002); (Scacheri et al., 2001). The deletion of the resistance cassette was 

achieved by crossing the Rnf40loxPNeo mice to a mouse strain expressing the FLP 

recombinase under the control of the Rosa26 promoter (Farley et al., 2000). The 

resulting recombination of the transgene led to a functional Rnf40 gene locus 

carrying two loxP sites surrounding exons 3 and 4 (Fig. 6A). The effect of Rnf40 

deletion on mammary epithelium maintenance was examined by crossing with the 

MMTV-Cre mice. Cre recombinase was under the control of mouse mammary tumor 

virus (MMTV) long terminal repeat (LTR) in order to restrict the expression to 

mammary tissue (Wagner et al., 1997). RNF40loxP/wt mice had been obtained, 

verified and crossed to the MMTV-Cre mouse strains which were further crossed to 

RNF40loxP/loxP. The female mice having RNF40loxP/loxP and Cre expression were 

allowed to develop for 6-weeks to determine the role of RNF40 and H2Bub1 in 

mammary epithelium development and maintenance. (Fig. 6B) 
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Fig. 6. Detailed graphical overview for the Rnf40 conditional knockout mouse construct and 

verification. (A) Graphical overview of the Rnf40-construct. (B) Representative picture on the right 

side of a long-range PCR amplifying a 5382bp fragment of the RNF40 conditional knockout gene 

using one primer placed within the Neomycin-resistance cassette and the other primer outside of the 

construct. The amplification of a product with the correct size verifies that the construct has integrated 

into the correct genomic locus. The right side displays genotyping results using a two primer strategy 

flanking exon 3 and 4. This PCR strategy yields an 803bp product for the wild-type allele while the 

additional sequences of the loxP sites leads to a 936bp fragment.  
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4. Results 

During development, undifferentiated cells receive extracellular signals and undergo 

differentiation to form specialized cells. On the contrary, dedifferentiation is 

considered to be the reversal of the normal development cycle where specialized 

cells regress back to a stem cell state and has been reported in various cancers. 

There is a fine balance between these two states and the shift towards one 

determines the cell fate to undergo differentiation or become dedifferentiated. Our 

group previously addressed the role of H2Bub1 during cellular differentiation 

(Karpiuk et al., 2012b). It is now well characterized that H2Bub1 levels increase 

during differentiation of somatic and pluripotent stem cells (Karpiuk et al. 2012, 

(Fuchs et al., 2012); Chen et al. 2012). Furthermore, it was found that H2Bub1 plays 

a tumor suppressor function (Shema et al. 2008, (Prenzel et al., 2011) and could 

determine tumor malignancy. H2Bub1 levels were found to decrease during tumor 

progression in breast cancer (Prenzel et al., 2011). Consistently, we wanted to 

investigate a potential role of H2Bub1 in suppressing a stem cell phenotype in 

mammary epithelial and breast cancer cells. 

4.1 Estrogen signaling and dedifferentiation 

It is well established that breast cancers having luminal and myoepithelial 

phenotypes display distinct gene expression patterns which correlate with patient 

outcome (Abd El-Rehim et al., 2004). While luminal tumors which express ERα and 

CK19, are generally lower grade and correlate with better overall patient survival, 

tumors with a myoepithelial phenotype generally have a poorer prognosis and are 

characterized by the expression of mesenchymal markers like αSMA (ACTA2). Thus, 

ERα plays a central role in maintaining a luminal epithelial phenotype. Absence of 
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ERα leads to a switch from a luminal to a myoepithelial phenotype thereby promoting 

a more dedifferentiated and aggressive phenotype. It was previously shown that 

H2Bub1 and RNF40 regulated ERα dependent gene transcription and that H2Bub1 

levels in human breast tissue sections decreased with tumor progression (Prenzel et 

al., 2011). The link between H2Bub1 and P-Ser2 RNA Polymerase II mediated via 

CDK9-WAC-RNF40 axis was also established (Pirngruber et al., 2009a). We then 

wanted to investigate the role of histone chaperone, SUPT6H (human homolog of 

yeast Spt6), known to interact with P-Ser2 RNA Polymerase II through its SH2 

domain in estrogen-dependent gene transcription and examine its connection to the 

H2Bub1 pathway.  

4.1.1 SUPT6H is required for ERα activity  

Given the importance of transcriptional elongation in the regulation of ERα activity, 

we hypothesized that the histone chaperone and transcriptional elongation 

regulatory protein, SUPT6H may also be required for estrogen-regulated 

transcription. In order to test this hypothesis, we compared the effects of siRNA-

mediated knockdown of SUPT6H to those of the pure ERα antagonist, ICI 182780 on 

the induction of several estrogen regulated genes in the ERα-positive luminal breast 

cancer cells, MCF7 and T47D. ICI 182780 is a pure antiestrogen which blocks ERα 

nucleocytoplasmic shuttling and nuclear uptake, thereby leading to ERα degradation 

(Dauvois et al., 1993). Treatment of cells with ICI 182780 inhibits ERα dependent 

gene transcription. As expected, ICI 182780 treatment decreased the induction of 

the investigated direct ERα target genes (CXCL12, GREB1 and PGR) in both the cell 

lines (Fig. 7A and B). SUPT6H knockdown also showed similar effects in both the 

cell lines thereby indicating that it plays an essential role in estrogen-regulated 

transcription. 
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Fig. 7. SUPT6H knockdown decreases estrogen-induced gene expression. (A and B) MCF7 and 

T47D cells were transfected with either control or SUPT6H siRNAs or treated with ICI 182780, grown 

for 24 h before switching to hormone-deprived medium and grown for another 24 h. Cells were then 

stimulated with 10 nmol/L 17β-estradiol (E2) for 6 h and the expression levels of CXCL12, GREB1, 

PGR and SUPT6H were analyzed by qPCR. Gene expression levels  were normalized to 18S 

ribosomal RNA, graphed relative to the control sample and expressed as “Relative mRNA 

Expression”; mean values + s.d., n = 3. For statistical significance, ANOVA test was performed and 

indicated by * (p≤0.05), ** (p≤0.01), *** (p≤0.001) and **** (p≤0.0001). 

 

The effect on estrogen-induced gene expression upon SUPT6H knockdown was 

further confirmed using single siRNAs for SUPT6H on two representative estrogen-

regulated genes, CXCL12 and PGR (Fig. 8A). SUPT6H knockdown did not affect the 

ERα expression as validated by qPCR (Fig. 8B) and western blot (Fig. 8C). 

Furthermore, since SUPT6H displays histone chaperone activity and may therefore 

promote the opening of chromatin and binding of ERα, we next tested whether its 

depletion affects ERα recruitment to chromatin at Estrogen Response Elements 

(ERE) on two well characterized estrogen-responsive genes (GREB1 and PGR). 
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Fig. 8. Effect of single siRNA SUPT6H knockdown on estrogen-induced gene expression. 

MCF7 cells transfected with control or single siRNAs for SUPT6H were analyzed by qPCR (A and B) 

and Western blot (C). ESR1 mRNA levels (B) as well as ERα protein levels (C) were not affected with 

SUPT6H knockdown. HSC70 is shown as a loading control.  For RNA experiment, MCF7 cells 

transfected with control or SUPT6H siRNAs, were grown for 8 h and then switched to hormone 

deprived medium for 14 h. Cells were then stimulated with 10 nmol/L 17β-estradiol (E2) for 2 h and 

expression levels were analyzed. Gene expression levels  were normalized to 18S ribosomal mRNA, 

graphed relative to the control sample and expressed as “Relative mRNA Expression”; mean values + 

s.d., n = 3. For protein samples, MCF7 cells transfected with control or SUPT6H siRNA pool or single 

SUPT6H siRNAs were grown for 24 h and then harvested. For statistical significance, ANOVA test 

was performed and indicated by * (p≤0.05) and ** (p≤0.01). 

 

Indeed, chromatin immunoprecipitation (ChIP) analysis revealed less ERα 

recruitment to previously identified distal ERα binding sites (Carroll et al., 2006) of 

the estrogen regulated genes GREB1 (5 kb upstream relative to TSS) and PGR (12 

kb downstream relative to TSS) following SUPT6H knockdown (Fig. 9A). Importantly, 

SUPT6H was recruited both to the distal EREs as well as to the 3’ ends (Fig. 9B and 

C) of these genes and its recruitment was decreased following SUPT6H knockdown. 

This supports a role for SUPT6H in regulating estrogen-dependent gene expression 

at least in part via regulation of ERα recruitment to EREs. 
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Fig. 9. (A and B) Decreased ERα and SUPT6H recruitment to distal EREs of GREB1 and PGR 

upon SUPT6H knockdown. (C) SUPT6H recruitment on the 3’ ends of estrogen target genes, 

GREB1 and PGR. MCF7 cells were transfected and cultured as in Fig. 7A, except that cells were 

stimulated with 10 nmol/L 17β-estradiol (E2) for 2 h. ChIP samples were normalized to input samples 

and expressed as “% Input”; mean values + s.d., n = 3. The dotted line indicates the background 

binding as measured by the average signal of non-specific IgG binding across all samples and sites. 

For statistical significance, ANOVA test was performed and indicated by * (p≤0.05), ** (p≤0.01) and 

*** (p≤0.001). 

 

4.1.2 SUPT6H alters chromatin structure  

SUPT6H interacts directly with histone H3 and promotes chromatin assembly and/or 

disassembly during transcription (Bortvin and Winston, 1996). Micrococcal nuclease 

(MNase) digestion provides information about global chromatin openness based on 

the accessibility to the MNase enzyme. In order to test whether SUPT6H knockdown 

affects global chromatin accessibility, MNase assay was performed on chromatin 
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isolated from control and SUPT6H siRNA transfected cells. The nucleosome profile 

indicated a more open chromatin state following SUPT6H knockdown (Fig. 10A). 

Quantitative analysis (Fig. 10B) showed that the percentage of mononucleosomes 

was significantly higher following SUPT6H knockdown (Fig. 10C) thereby indicating 

a more decondensed state of chromatin in the absence of SUPT6H. Thus, SUPT6H 

likely plays a critical role not only in chromatin disassembly during transcriptional 

elongation but also in reassembling nucleosomes after transcription in order to 

maintain an organized chromatin structure. 

 

Fig. 10. Changes in chromatin structure upon SUPT6H knockdown as determined by 

Micrococcal Nuclease digestion. Nuclei from cells transfected with control or SUPT6H siRNAs for 

48 h were digested with Micrococcal Nuclease for 4 min. (A) A portion of the samples were run on 

agarose gel and stained with ethidium bromide. (B) MNase samples were also analyzed with a 

Bioanalyzer and the nucleosome profile was plotted. (C) The percentage of mononucleosomes was 

calculated from the nucleosome profile using the Bioanalyzer software. For statistical significance, 

ANOVA test was performed and indicated by * (p≤0.05). 
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4.1.3 SUPT6H is required for maintaining H2B monoubiquitination  

During transcription elongation, P-Ser2 RNA Polymerase II plays an important role 

as a platform for recruiting the WAC/RNF20/RNF40 complex (Pirngruber et al. 2009; 

Johnsen 2012; Zhang and Yu 2011). RNF40 is an essential component of the E3 

ubiquitin ligase complex responsible for H2B monoubiquitination in the transcribed 

region of active genes (Kim et al. 2009; Pirngruber et al. 2009).  Since SUPT6H also 

directly interacts with P-Ser2 RNA Polymerase II during transcription elongation, we 

tested whether SUPT6H also influences H2Bub1. Indeed, SUPT6H knockdown led 

to a significant decrease in H2Bub1 levels in ERα-positive MCF7 breast cancer cells 

(Fig. 11A, left panel). Surprisingly, RNF40 protein levels also significantly decreased 

following SUPT6H knockdown. This effect does not appear to be primarily due to a 

decrease in RNF40 gene expression since only a modest effect of SUPT6H 

depletion was observed on RNF40 mRNA levels (Fig. 11A, right panel). To examine 

if the effect of SUPT6H depletion on H2Bub1 was ERα dependent, the ERα-negative 

normal mammary epithelial cell line, MCF10A was used. Similar effects on RNF40 

and H2Bub1 were observed in MCF10A cells following SUPT6H knockdown (Fig. 

11B). In order to determine if SUPT6H is present in complexes with ERα, RNF20 

and RNF40, we performed immunoprecipitation studies in MCF7 cells using 

antibodies against each protein and tested for the (co-)immunoprecipitation of 

RNF40 and SUPT6H. Immunoprecipitation of RNF20, SUPT6H and to a lesser 

extent ERα resulted in a co-immunoprecipitation of RNF40 (Fig. 11C). Importantly, 

SUPT6H was also co-immunoprecipitated with ERα, RNF20 and to a lesser extent 

RNF40 suggesting that these proteins may form functional complexes in vivo. 

Interaction of SUPT6H with ERα is consistent with the recruitment of SUPT6H to 
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distal EREs in an estrogen-dependent manner and could explain the impaired ERα 

recruitment to ERE of ERα target genes upon SUPT6H knockdown (Fig. 9A). 

 

Fig. 11. SUPT6H knockdown decreases RNF40 protein levels and H2Bub1. (A) Decreased 

RNF40 protein and H2Bub1 levels were observed by Western blot upon SUPT6H knockdown in 

MCF7 cells while RNF40 mRNA levels were only modestly affected. MCF7 cells were transfected with 

SUPT6H siRNA for 48 h and then harvested for RNA and protein. (B) SUPT6H knockdown also 

affects RNF40 and H2Bub1 levels in ERα negative breast cancer MCF10A (mammary epithelial) 

cells. RNF40 mRNA levels were modestly affected with SUPT6H knockdown. MCF10A cells 

transfected with control or SUPT6H siRNAs were grown for 48h and then analyzed by Western blot 

and qPCR. Gene expression levels were normalized to 18S ribosomal mRNA, graphed relative to the 

control sample and expressed as “Relative mRNA Expression”; mean values + s.d., n = 3. (C) 

SUPT6H forms complexes with ERα, RNF20 and RNF40. Cell lysates from MCF7 cells grown in 

complete medium were immunoprecipitated using a non-specific IgG as a negative control or 

antibodies against ERα, RNF20, RNF40 and SUPT6H and were detected by Western blot using 

antibodies against SUPT6H and RNF40. 
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To further confirm the regulation of H2Bub1 by SUPT6H, ChIP assay was performed 

for H2Bub1. Consistent with the decreased transcription of these genes, SUPT6H 

silencing in MCF7 cells decreased H2Bub1 levels in the transcribed region of the 

ERα target genes (CXCL12, GREB1, PGR and TFF1) (Fig. 12). These findings are 

also consistent with the role of H2Bub1 in controlling ERα activity in MCF7 cells 

(Prenzel et al., 2011) and support a role for SUPT6H in controlling H2Bub1 levels via 

interaction with the RNF20/40 complex. 

 

Fig. 12. Decreased H2Bub1 on transcribed region of CXCL12, GREB1, PGR and TFF1 upon 

SUPT6H knockdown. ChIP extracts of MCF7 cells from Fig. 9 were used. ChIP samples were 

normalized to input samples and expressed as “% Input”; mean values + s.d., n = 3. The dotted line 

indicates the background binding as measured by the average signal of non-specific IgG binding 

across all samples and sites. For statistical significance, ANOVA test was performed and indicated by 

* (p≤0.05), ** (p≤0.01), *** (p≤0.001) and **** (p≤0.0001). 

 

4.1.4 SUPT6H expression and H2Bub1 levels are inversely correlated with 

breast cancer malignancy  

Previous work from our group identified significantly decreased H2Bub1 levels in 

malignant and metastatic breast cancers in comparison to normal mammary 
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epithelium (Prenzel et al., 2011). Therefore, we performed immunohistochemical 

analysis of SUPT6H expression and H2Bub1 in normal human breast tissue and 

tumor sections as well as SUPT6H expression in the tissue microarrays analyzed in 

the previous study (Prenzel et al., 2011). While normal human breast epithelium 

exhibited detectable H2Bub1 and SUPT6H levels, ERα-positive tumors 

demonstrated a grade-dependent decrease in both H2Bub1 and SUPT6H (Fig. 13A). 

The nuclear staining intensity of SUPT6H and H2Bub1 in these and other tumor 

samples was quantified using digital image analysis. Box plot analysis of the 

intensity of both SUPT6H and H2Bub1 on the basis of various grades also indicated 

a grade-dependent decrease which was further confirmed with the 2D plot of the 

intensity in various grades (Fig. 13B and C). Moreover, both proteins inversely 

correlated with malignancy where normal breast samples showed significant staining 

of both H2Bub1 and SUPT6H while invasive ductal carcinoma samples showed 

significantly reduced levels (Fig. 13D). Box plot analysis further confirmed a 

decreased IHC-staining intensity of both SUPT6H and H2Bub1 in the nuclei of 

invasive ductal carcinoma in comparison to normal mammary epithelium (Fig. 13E). 
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Fig. 13. Immunohistochemical analysis of human breast tissue and breast cancer sections 

suggests an inverse correlation between SUPT6H protein and H2Bub1 levels and malignancy. 

(A) Examples of one representative normal breast specimen and ER-positive tumors of varying 

grades demonstrating decreasing SUPT6H and H2Bub1 protein levels with decreasing tumor 

differentiation status (increased tumor grade). Immunohistochemical detection of SUPT6H and 

H2Bub1 using DAB (brown) and Haematoxyline counterstain (blue), images 200x, magnified inserts. 

(NB, normal breast; G1, Grade 1; G2, Grade 2; G3, Grade 3). (B) Intensity gradient and (C) 2D plot of 

SUPT6H and H2Bub1 and in tissue sections divided into various grades. (D) 2D plot of SUPT6H and 

H2Bub1 relative staining intensity in 35 tissue samples. 15 tissue microarray cores with normal breast 

tissue ('NB') and 20 cores with invasive ductal carcinoma ('IDC') were quantified by digital image 
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analysis (Points: Median values of 50 nuclei per core.). (E) Boxplots summarizing the intensity values 

of the 35 samples quantitated in (D). SUPT6H and H2Bub1 are significantly decreased in IDC 

compared to NB (p<0.001). The analysis was done by Dr. Andreas Scheel, Pathologie Nord Hessen, 

Kassel. 

 

 

However, this effect does not appear to be solely dependent upon ERα status since 

other tumor classes (eg. triple negative and Her2-positive) also showed a correlation 

between increased tumor grade and decreased H2Bub1 and SUPT6H. The nuclear 

staining intensity of SUPT6H and H2Bub1 was determined in individual tissue 

sections with their hormone receptor status (Fig. 14A). Box plot analysis of SUPT6H 

and H2Bub1 intensity in tissue sections based on their hormone receptor status 

showed a similar decrease in SUPT6H and H2Bub1, irrespective of ERα status (Fig. 

14B). In addition, we examined whether SUPT6H mRNA levels are also decreased 

in breast cancer vs. normal samples. Indeed, SUPT6H mRNA levels were 

significantly lower in malignant breast cancer vs. normal samples in three 

independent studies (Finak et al., 2008); (Richardson et al., 2006)(Sørlie et al., 

2001), further supporting that decreased SUPT6H is a common occurrence in breast 

cancer (Fig. 14C). 
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Fig. 14. Immunohistochemical analysis of human breast tissue sections based on hormone 

receptor status. (A) Staining intensities of SUPT6H and H2Bub1 in individual tissue sections with 

hormone receptor status. (B) Overall intensity gradient of SUPT6H and H2Bub1 in tissue sections 

classified on the basis of receptor status. (C) Gene expression analysis using the Oncomine database 

demonstrate decreased SUPT6H mRNA levels in three independent datasets in breast cancer vs. 

normal tissues. 

 

Consistent with a central role for ERα in maintaining a luminal epithelial phenotype, 

treatment of T47D cells with the pure ERα antagonist, ICI 182780 resulted in 

upregulation of the myoepithelial marker, α smooth muscle actin (ACTA2) and 

downregulation of the luminal epithelial marker, cytokeratin 19 (CK19) (Fig. 15A). 
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Importantly, SUPT6H depletion resulted in a similar phenotype in both MCF7 and 

T47D cells (Fig. 15B) suggesting that SUPT6H plays a central role in the ERα-

dependent maintenance of a differentiated mammary luminal epithelial phenotype. 

 

Fig. 15. SUPT6H regulates ERα-dependent luminal epithelial phenotype. (A) Expression levels of 

ACTA2 and CK19 in T47D cells transfected with control or treated with ICI 182780, grown for 24 h 

before switching to hormone-deprived medium and grown for another 24 h. Cells were then 

stimulated with 10 nmol/L 17β-estradiol (E2) for 48 h and the expression levels of ACTA2 and CK19 

were analyzed by qPCR. (B) Expression levels of ACTA2 and CK19 were analyzed in MCF7 and 

T47D cells transfected with control or SUPT6H siRNAs, grown for 24 h before switching to hormone-

deprived medium and grown for another 24 h. Cells were then stimulated with 10 nmol/L 17β-estradiol 

(E2) for 48 h (T47D) and 6h (MCF7) and the expression levels of ACTA2 and CK19 were analyzed by 

qPCR. Gene expression levels were normalized to 18S ribosomal RNA, graphed relative to the 

control sample and expressed as “Relative mRNA Expression”; mean values + s.d., n = 3. For 

statistical significance, ANOVA test was performed and indicated by ** (p≤0.01) and *** (p≤0.001). 

 

4.1.5 SUPT6H is required for cellular differentiation 

Since the decreased levels of H2Bub1 and SUPT6H in poorly differentiated tumors 

compared to normal mammary epithelium and more differentiated low grade tumors 

did not appear to solely depend upon ERα activity, we hypothesized that SUPT6H 
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may be more generally required for establishing or maintaining a differentiated 

phenotype. Consistent with this notion, our group previously showed that H2Bub1 

increases during differentiation in various systems and that perturbation of the 

H2Bub1 regulatory pathway significantly impairs differentiation (Karpiuk et al. 2012; 

(Fuchs et al., 2012) Chen et al. 2012). A survey of gene expression correlations in 

the GeneSapiens database (Kilpinen et al., 2008) identified a significant correlation 

between SUPT6H and RNF40 gene expression in adipose tissue and human 

mesenchymal stem cells (hMSCs) suggesting that SUPT6H may be intimately 

associated with the H2Bub1 regulatory pathway in normal differentiating cells of the 

mesenchymal lineage (Fig. 16A). Given the established role of H2Bub1 in controlling 

multipotent differentiation of hMSCs, we performed siRNA-mediated knockdown of 

SUPT6H in the immortalized hMSC-Tert20 cell line (Simonsen et al., 2002) and 

examined its effects on cellular differentiation. Consistent with a role for SUPT6H in 

controlling H2B monoubiquitination, H2Bub1 levels were decreased in differentiating 

hMSCs following SUPT6H knockdown (Fig. 16B). We further examined the effects of 

SUPT6H depletion on differentiation into the adipocyte and osteoblast lineages. 

Similar to the effects observed following knockdown of components of the H2Bub1 

regulatory pathway (Karpiuk et al., 2012b), SUPT6H knockdown prevented both 

adipocyte and osteoblast differentiation as displayed by a near complete loss of Oil 

Red O and alkaline phosphatase staining, respectively, following the induction of 

differentiation (Fig. 16C and D). Importantly, SUPT6H knockdown also resulted in 

decreased expression of adipocyte- (PDK4, PPARG, RASD1; Fig. 16E) and 

osteoblast-specific (RUNX2; Fig. 16F) marker genes. Thus, SUPT6H is essential for 

hMSC differentiation, probably in part via the H2Bub1 regulatory pathway. 
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Fig. 16. SUPT6H knockdown impairs hMSC differentiation to the adipocyte and osteoblast 

lineages. (A) Correlation between SUPT6H and RNF40 mRNA levels in mesenchymal stem cells and 

adipose tissue as analyzed using the GeneSapiens database. (B-F) hMSCs transfected with control 

or SUPT6H siRNAs were induced to differentiate into adipocytes and osteoblasts for 5 days. (B) 

Protein extracts were analyzed by Western blot using antibodies against SUPT6H, H2Bub1 and H2B 

as a loading control. (C) Differentiation was examined using Oil Red O staining for adipocytes and (D) 

alkaline phosphatase staining for osteoblast following SUPT6H knockdown. (E and F) Decreased 

expression of adipocyte differentiation genes, PDK4, PPARG and RASD1, and RUNX2 for osteoblast 

differentiation was found upon SUPT6H knockdown. The expression levels were normalized to 

HNRNPK, graphed relative to the control sample and expressed as “Relative mRNA Expression”; 

mean values + s.d., n = 2. For statistical significance, ANOVA test was performed and indicated by * 

(p≤0.05), ** (p≤0.01) and *** (p≤0.001). 
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4.1.6 SUPT6H suppresses H3K27me3 on ERα- and differentiation-regulated 

genes 

Gene repression via trimethylation of lysine 27 of histone H3 (H3K27me3) plays an 

important role both in tumorigenesis as well as in the suppression of lineage-specific 

gene expression in stem cells. For example, the expression of the H3K27 

methyltransferase EZH2 is associated with a more aggressive and less differentiated 

phenotype in breast cancer (Collett et al., 2006); (Raaphorst et al., 2003) and with 

tamoxifen resistance in advanced ERα-positive breast cancer (Reijm et al., 2011) 

implicating aberrant H3K27me3 in breast cancer progression. Recent studies have 

uncovered interactions between SUPT6H and both known enzymes which remove 

methylation from H3K27, JMJD3 and UTX (Chen et al., 2012b); Wang et al. 2013). 

Furthermore, SUPT6H and H2Bub1 were shown to control H3K27 demethylation 

during cell differentiation (Wang et al. 2013; Karpiuk et al. 2012). Thus, we 

hypothesized that SUPT6H may play a similar role in suppressing H3K27me3 on 

ERα target genes. Therefore, we performed ChIP analysis for H3K27me3 on various 

direct estrogen-responsive ERα target genes (CXCL12, GREB1, PGR, TFF1) 

following SUPT6H knockdown. In each case, H3K27me3 levels were significantly 

increased following SUPT6H knockdown (Fig. 17A). Since SUPT6H is a histone 

chaperone and interacts with histone H3, it was speculated that the increase in 

H3K27me3 could be due to increased H3 levels. Hence, ChIP analysis for total H3 

was performed on estrogen-target genes (CXCL12, GREB1, PGR and TFF1) 

following SUPT6H knockdown and H3 levels were found to be unregulated (Fig. 

17B). To further validate the increase in H3K27me3 levels on these genes, 

H3K27me3 levels were normalized with H3 levels on respective genes and were 
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found to be significantly increased both in the absence and presence of estrogen 

(Fig. 17C).  

 

Fig. 17. SUPT6H regulates H3K27me3 on genes during transcription. (A) Samples from MCF7 

cells shown in Fig. 9 were examined for H3K27me3 occupancy near the TSS of the estrogen-

regulated genes CXCL12, GREB1, PGR and TFF1. (B) H3 ChIP was performed on the same MCF7 

cell extracts and H3 levels on TSS of various estrogen target genes, CXCL12, GREB1, PGR and 

TFF1 were found to be unregulated. (C) H3K27me3 levels were normalized to total H3 levels. ChIP 

samples were normalized to input samples and expressed as “% Input”; mean values + s.d., n = 3. 

The dotted line indicates the background binding as measured by the average signal of non-specific 

IgG binding across all samples and sites. For statistical significance, ANOVA test was performed and 

indicated by * (p≤0.05) and ** (p≤0.01). 
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Furthermore, similar to our previous results following RNF40 knockdown, SUPT6H 

depletion also resulted in increased H3K27me3 levels on three different H2Bub1-

dependent adipocyte-specific genes (PDK4, PPARG and RASD1) in both 

undifferentiated hMSCs and following adipocyte differentiation (Fig. 18). 

Fig. 18. SUPT6H regulates H3K27me3 on adipocyte-specific genes during transcription. hMSCs 

were transfected with control or SUPT6H siRNA and induced to differentiate to the adipocyte lineage 

for 5 days as in Fig. 10. H3K27me3 occupancy was then examined on adipocyte-specific genes using 

chromatin immunoprecipitation. H3K27me3 levels increase on PDK4, PPARG and RASD1 genes 

upon SUPT6H knockdown which remain high even upon differentiation. ChIP samples were 

normalized to input samples and expressed as “% Input”; mean values + s.d., n = 3. The dotted line 

indicates the background binding as measured by the average signal of non-specific IgG binding 

across all samples and sites. For statistical significance, ANOVA test was performed and indicated by 

* (p≤0.05) and ** (p≤0.01). 

 

The results for the above mentioned data entitled “SUPT6H Controls Estrogen 

Receptor Activity and Cellular Differentiation by Multiple Epigenomic Mechanisms” 

are in press at Oncogene. 

 

4.2 H2Bub1 and Mammary Stem Cell Phenotype 

The link between P-Ser2 RNA Polymerase II and H2Bub1 mediated via CDK9-WAC-

RNF20/40 was well established (Pirngruber et al. 2009; (Pirngruber et al.) Johnsen 
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2012b; (Johnsen, 2012c) Karpiuk et al. 2012). BRD4 recognizes the acetylated 

chromatin and recruits P-TEFb to promote CTD phosphorylation of RNA Polymerase 

II and transcriptional elongation (Yang et al., 2005); Jang et al. 2005). During tumor 

progression, the differentiated cells undergo dedifferentiation and acquire stem cell 

characteristics. Therefore, we further examined the function of H2Bub1 and its 

upstream regulator, BRD4 in controlling epithelial to mesenchymal transition and the 

acquisition of a stem cell phenotype in breast cancer. To address these aspects, we 

investigated the role of H2Bub1 and BRD4 in the regulation of mammary stem cell 

phenotype. 

4.2.1 RNA-sequencing identifies similarities in gene expression profiles 

following perturbation of BRD4, RNF20 or RNF40 

The effect of H2Bub1 deficiency on cells is primarily investigated by knocking down 

the E3 ligases, RNF20 or RNF40 (heterodimeric complex) which are responsible for 

H2Bub1. Likewise, the effect of BRD4 suppression could be examined using BRD4 

siRNA or BRD4 inhibition by JQ1 treatment. Thus, using siRNA-mediated 

knockdown of RNF20, RNF40 and BRD4 for 3 days in MCF10A (normal mammary 

epithelial) cells, RNA and protein were isolated. The knockdown efficiency of all 

siRNAs was confirmed by both Western blot and qPCR before performing high-

throughput sequencing of RNA samples (Fig. 19A and B). As expected, H2Bub1 

protein levels decreased upon RNF20 and RNF40 knockdown (Fig. 19A, left panel). 

The effects of BRD4 depletion on H2Bub1 has never been investigated and for the 

first time, we demonstrate that H2Bub1 levels are decreased upon BRD4 knockdown 

and JQ1 treatment (Fig. 19A, right panel), thereby providing the basis to investigate 

the correlation further.  
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Fig. 19. BRD4 knockdown decreases H2Bub1 levels in MCF10A cells. MCF10A cells were 

transfected with siRNAs for Control, RNF20, RNF40 and BRD4 or treated with 250 nM JQ1 for 3 

days. (A) BRD4 suppression by either BRD4 siRNA or JQ1 inhibition decreases H2Bub1 protein 

levels. H2B was used as a loading control. (B) Knockdown efficiency of siRNAs was confirmed by 

qPCR. Gene expression levels  were normalized to HNRNPK, graphed relative to the control sample 

and expressed as “Relative mRNA Expression”; mean values + s.d., n = 3. For statistical significance, 

ANOVA test was performed and indicated by ** (p≤0.01), *** (p≤0.001) and **** (p≤0.0001). 

 

Thus, the potential link between BRD4 and H2Bub1 was further examined by 

sequencing RNA from these cells and analyzing the genes affected. The genes were 

selected based on fold regulation of greater than or equal to 2 for upregulated genes 

and less than or equal to 0.5 for downregulated genes with p-values of less than or 

equal to 0.05 for statistical significance. To determine significant overlap between 

knockdowns, genes from these subsets were further selected to have regulation of 

1.2 or 0.86 fold in any knockdown. These differentially expressed genes in the 

knockdowns of RNF20, RNF40 and BRD4 are depicted in the heatmap (Fig. 20A) 

and indicate a common trend of gene regulation among all conditions. Moreover, 

Venn diagram demonstrated a large overlap of 374 genes regulated by RNF20, 
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RNF40 and BRD4 (Fig. 20B). Consistent with the function of RNF20 and RNF40 

proteins, there was a huge overlap of 446 genes in their regulated gene sets as 

depicted in the heatmap and Venn diagram (Fig. 20C and D). Thus, the RNA-seq 

analysis substantiated the hypothesis that there is a common trend of gene 

regulation between BRD4 and H2Bub1 pathway. 

 



92 
 

 

Fig. 20. BRD4 and H2Bub1 regulate gene expression in a similar fashion. MCF10A cells were 

transfected with siRNAs for Control, RNF20, RNF40 and BRD4 for 3 days, RNA was harvested and 

used for high-throughput sequencing. Expression values were normalized to the corresponding gene 

in cells transfected with control siRNA. Heat maps were generated from statistically significant (padj-

values ≤ 0.05) up- (red) or down- (green) regulated genes with the cut-off of –1.0 and +1.0 log2fold 

change in all the conditions; mean values, n=2. (A) Heatmap and (B) Venn diagram for RNF20, 

RNF40 and BRD4 regulated genes. (C) Heatmap and (D) Venn diagram for RNF20 and RNF40 

regulated genes. For Venn diagrams, genes from the first cut-off subsets were further selected with 

cut-off of -0.26 and +0.26 log2fold change in any condition. 

 

4.2.2 Overlap between BRD4 and H2Bub1 recruitment sites  

Since BRD4 and H2Bub1 showed similar pattern of gene regulation, we next used 

ChIP-seq to determine whether BRD4 and H2Bub1 play direct roles in regulating 

transcription of target genes. No studies have analyzed the correlation between 

genome-wide recruitment of BRD4 and H2Bub1. Thus, to understand the 

mechanistic link between BRD4 and H2Bub1 in gene regulation, ChIP-sequencing of 

BRD4 and H2Bub1 was performed in MCF10A cells. Using Cis-regulatory Element 

Annotation System (CEAS), part of cistrome package (Liu et al., 2011a), the 

enrichment for BRD4 on specific genomic features (eg. Promoter regions, introns 

etc.) could be determined. It is estimated as the relative enrichment of ChIP regions 

in particular genomic feature with respect to the whole genome. As shown in Fig. 21, 

the pie chart depicts the distribution of BRD4 recruitment on various genomic 
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locations. It was observed that BRD4 is recruited to gene promoters and coding 

exons.  

 

Fig. 21. BRD4 occupancy in the genome. Using CEAS, the enrichment of BRD4 at various genomic 

locations in Human hg19 was determined. 

 

In order to determine the correlation between BRD4 recruitment and overall gene 

expression, genes were categorized based on their absolute expression levels seen 

in RNA-seq in control cells. Gene expression levels were based on RPKM (reads per 

kilobase of DNA per million reads) values where higher RPKM indicates higher 

expression (Mortazavi et al., 2008). The genes were then separated into categories : 

under 500 RPKM, 500-1500 RPKM, 1500-3000 RPKM, 3000-5000 RPKM and 5000-

10,000 RPKM where under 500 indicates the lowest expressed genes and 5000-

10,000 indicates the highest expressed genes. Based on this classification, average 

BRD4 recruitment was determined via aggregate plot analysis (using CEAS) (Liu et 
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al., 2011a) to deduce the average signal profiles around transcriptional start sites of 

genes in the various gene expression-dependent groups. In this case, BRD4 

recruitment near the transcription start site (TSS) (± 3kb relative to TSS) varied 

according to the expression levels of the genes (Fig. 22A). The highly expressed 

genes had more BRD4 recruitment whereas the lowly expressed genes had the least 

BRD4 recruitment. A similar gene expression-dependent pattern was observed for 

H2Bub1, further strengthening the correlation between the two (Fig. 22B). Since 

H2Bub1 is known to be an important histone modification coupled with transcription 

elongation and often associated with the transcribed region (Minsky et al., 2008b), 

H2Bub1 recruitment was also observed across the gene bodies (Fig. 22C). Similarly, 

the highly expressed genes possessed higher H2Bub1 while the lowly expressed 

genes had lower H2Bub1 levels in the transcribed regions. These results are 

consistent with the previously published data for the presence of H2Bub1 in the 

transcribed region (Minsky et al., 2008b). Based on the published ChIP-seq data for 

RNAPII (SRR488765) (Baillat et al., 2012), H3K9/14ac (SRR398030) and H3K4me3 

(SRR398029) (Choe et al., 2012), aggregate plot analyses were performed on the 

genes classified as in Fig. 22A. Consistent with BRD4 and H2Bub1 recruitment, 

there was similar pattern for RNAPII, H3K9/14ac and H3K4me3 on the TSS of these 

genes correlating well with the expression of these genes (Fig. 22D). 
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Fig. 22. BRD4 and H2Bub1 occupancy correlate with the expression of the gene. Genes were 

sorted into various categories based on their RPKM values from RNA seq in siCont sample. Using 

CEAS, the average signal intensity at TSS (3kb upstream and downstream) for the proteins or histone 

modifications correlating with the expression levels was evaluated. (A-B) Average BRD4 and H2Bub1 

recruitment around the TSS of the genes classified on the basis of expression. (C) H2Bub1 signal 

across the gene bodies correlating with the gene expression. (D) Using published data for RNAPII, 

H3K9/14ac and H3K4me3, their occupancy correlated with the determined gene expression list. The 

analysis was performed by Prof. Steven A. Johnsen, UKE, Hamburg. 

 

Heatmap analysis diagrammatically depicts the recruitment signals of ChIP-seq at 

various genomic locations. The genomic locations are clustered together based on k-

means clustering into clusters having similar patterns. The heatmaps illustrating the 

recruitment of BRD4, RNAPII, H3K4me3, H3K9/14ac and H2Bub1 near all known 

TSS (UCSC genes) were analyzed (Fig. 23A). Consistent with the above data, there 

was recruitment of these proteins and histone modifications to the same sites. To 

further validate the data from heatmap, BRD4 binding sites were classified into 

proximal (close to TSS) and distal (greater than 10kb away from any known TSS) 

sites. Aggregate plot analyses of average recruitment to proximal or distal sites for 

BRD4, H3K4me3 and H3K9/14ac showed increased recruitment to proximal sites, 

consistent with their promoter binding. Surprisingly, H2Bub1 as well as substantial 

fraction of BRD4 were highly recruited to the distal sites as compared to proximal 

sites (Fig. 23B). These observations strengthen the role of BRD4 in enhancer 

function and suggest a potential role for H2Bub1 in enhancer activity. To further 
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determine the role of BRD4 and H2Bub1 in enhancer function, the distribution of 

BRD4, H3K4me3, H3K4me1 (SRR398028) (Choe et al., 2012) and H2Bub1 on distal 

BRD4 binding sites were also plotted (Fig. 23C). As depicted in Fig. 23B, the 

aggregate plots of H2Bub1, H3K4me1 and BRD4, all indicate their presence at 

enhancers. However, heatmaps suggest these are different classes, marked by only 

H2Bub1 (transcribed region), both H3K4me3 and H3K4me1 (active genes) and 

absence of H3K4me3 but presence of H3K4me1, BRD4 and H2Bub1 (possible 

enhancer sites). Till date, H2Bub1 has been associated with transcription elongation 

and transcribed region but this novel function of H2Bub1 on enhancer has never 

been determined.  
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Fig. 23. Proximal and distal occupancy of BRD4 and H2Bub1. (A and C) Heatmap depicting the 

occupancy of BRD4 and H2Bub1 at the proximal and distal sites with k-means clustering where k=5. 

(B) Aggregate plot analysis was performed to determine the BRD4 and H2Bub1 occupancy at 

proximal and distal sites (greater than 10kb away from any known TSS).  

 

4.2.3 RNA Sequencing Reveals Regulation of Mammary Stem Cell Gene 

Signature 

Extending further from the differential gene expression, gene ontology and functional 

gene analyses were performed. Using DAVID, a web based Gene ontology 

application, several genes annotated to biological pathways regulating cell migration, 
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adhesion and motility were found upon RNF20, RNF40 and BRD4 depletion or 

following BRD4 inhibition by JQ1 (Fig. 24A). Moreover, the Gene Set Enrichment 

Analysis (GSEA) for the comparison of siCont versus all knockdowns was performed 

with Molecular signature database C2 Curated gene sets. It revealed an enrichment 

of gene signatures associated with a mammary stem cell phenotype (Lim et al., 

2010); (Pece et al., 2010) (Cromer et al., 2004) and EMT pathways (Gotzmann et al., 

2006); (Jechlinger et al., 2003) (Jaeger et al., 2007)(Sarrió et al., 2008) upon 

siRNF20, siRNF40, siBRD4 and JQ1, as depicted in Fig. 24B. The gene expression 

profile for Mammary stem cell phenotype obtained from GSEA is shown in Fig. 24C. 
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Fig. 24. BRD4 and H2Bub1 regulate mammary stem cell gene signature. (A) Gene Ontology 

analysis using DAVID reveals regulation of various pathways involved in cell migration and invasion. 

(B and C) GSEA analysis identifies mammary stem cell and EMT genes regulated upon loss of BRD4 

and H2Bub1. 

 

 

The mammosphere culture in breast cancer has been widely used in order to identify 

the enrichment of stem cell populations in vitro (Grimshaw et al., 2008). The cells 

transfected with control, RNF20, RNF40 or BRD4 siRNAs or treated with JQ1 were 

seeded as single cells into low attachment plates and allowed to grow in non-

adherent and non-differentiating conditions. Consequently, cells possessing stem 

cell characteristics could give rise to 3D spheres originating from single cells. The 

mammospheres formed were counted and it was found that loss of RNF20, RNF40, 
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BRD4 or JQ1 treatment similarly upregulated the mammosphere formation (Fig. 25A 

and B).  

As a result, it could be interpreted that BRD4 and H2Bub1 play an important role in 

suppression of mammary stem cell phenotype. 

 

Fig. 25. BRD4 and H2Bub1 suppress mammary stem cell phenotype in MCF10A. (A) 

Mammosphere images upon knockdown of RNF20, RNF40 or BRD4 and JQ1 treatment. The images 

were taken with the microscope at 5x magnification. (B) Quantification of mammospheres formed 

showed increase with the knockdowns or treatment. The values were normalized to the control and 

represented “relative to the control”; mean values, n=3. 

 

Moreover, in the RNA-seq analysis, CD24, an adhesion molecule and characteristic 

marker of breast cells was downregulated upon H2Bub1 depletion. Loss of CD24 is 

an important characteristic of stem cell-like phenotype in breast cancer cells (Al-Hajj 

et al. 2003; (Ponti et al., 2005). To further confirm the regulation of CD24, H2Bub1 

was depleted using RNF40 knockdown and the effects were observed on CD24 

protein levels and expression (Fig. 26A and B). ChIP-seq analysis of H2Bub1 

indicated presence of H2Bub1 in CD24 gene body (Fig. 26C). For further 
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confirmation, ChIP for H2Bub1 was performed upon RNF40 depletion. A decrease in 

H2Bub1 levels in CD24 transcribed region was observed indicating a direct 

regulation of CD24 transcription by H2Bub1 (Fig. 26D). RNF40 dependent gene, 

GAPDH was used as a positive control. 

 

Fig. 26. H2Bub1 directly regulates CD24 expression. (A and B) RNF40 depletion leads to 

decrease in CD24 protein levels and mRNA expression. The expression levels were normalized to 

HNRNPK, graphed relative to the control sample and expressed as “Relative mRNA Expression”; 

mean values + s.d., n = 3. (C) ChIP-seq profile of H2Bub1 indiactes its presence in CD24 gene body. 

(D) H2Bub1 levels decrease in CD24 TR upon RNF40 knockdown. GAPDH was taken as positive 

control for the presence of H2Bub1. ChIP samples were normalized to input samples and expressed 

as “% Input”; mean values + s.d., n = 3. The dotted line indicates the background binding as 

measured by the average signal of non-specific IgG binding across all samples and sites. For 

statistical significance, ANOVA test was performed and indicated by ** (p≤0.01). 
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4.2.4 Loss of BRD4 and H2Bub1 is coupled with EMT phenotype 

In cancer cells, acquisition of EMT phenotype is often the first step for migration and 

helps transform differentiated cells into a more stem-cell like state (Mani et al., 

2008); (Polyak and Weinberg, 2009). MCF10A normal mammary epithelial cells are 

often used as a model system to study the transition from loss of epithelial state 

characterized by markers like e-cadherin and cytokeratin 8/18 to acquisition of 

mesenchymal markers like vimentin and fibronectin. After identifying EMT and 

mammary stem cell signatures as being specifically enriched in the RNA-seq data 

from knockdowns of RNF20, RNF40 and BRD4 in MCF10A, several genes involved 

in EMT were selected from the RNA-seq analysis and confirmed by qPCR. The 

graphs from the qPCR data as well as heatmap representation of gene expression 

are shown (Fig. 27A and B).  

To further confirm the role of RNF20, RNF40 and BRD4 depletion or JQ1 treatment 

in suppressing EMT in MCF10A cells, the changes in EMT markers was analyzed by 

western blot following their depletion or inhibition by JQ1. It was observed that there 

was downregulation of epithelial marker, e-cadherin and upregulation of 

mesenchymal marker, vimentin (Fig. 28A). Further changes in markers was 

visualized by immunostaining for CK8/18 and vimentin in the cells transfected with 

siRNAs for control, RNF20, RNF40 or BRD4 or treated with JQ1 for 3 days. There 

was a downregulation of the epithelial marker CK8/18 and upregulation of the 

mesenchymal marker vimentin in cells depleted of RNF20, RNF40 or BRD4 or 

treated with JQ1 (Fig. 28B). 
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Fig. 27. BRD4 and H2Bub1 regulate the EMT target genes. (A) EMT genes regulated by BRD4 and 

H2Bub1 in RNA seq were confirmed by qPCR. (B) The fold regulation of these genes obtained in 

qPCR was represented as a heatmap. The expression levels were normalized to HNRNPK, graphed 

relative to the control sample and expressed as “Relative mRNA Expression”; mean values + s.d., n 

=3. 

 

An EMT phenotype often imparts the cells with a more invasive phenotype thereby 

making them more migratory. This could be determined by transwell migration assay 

where cells are allowed to migrate through 8µm membrane pores. The cells 

transfected with control, RNF20, RNF40 or BRD4 siRNAs or treated with JQ1 were 

allowed to migrate through the membrane before staining with crystal violet. It was 
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observed that cells depleted of RNF20, RNF40 or BRD4 or JQ1 treated had 

enhanced migration, an important characteristic of EMT (Fig. 28C). 
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Fig. 28. Loss of BRD4 and H2Bub1 induce EMT phenotype in MCF10A cells. (A) Knockdown of 

RNF20, RNF40 or BRD4 and JQ1 treatment results in decrease in epithelial marker, e-cadherin and 

increase in mesenchymal marker, vimentin. (B) Immunoflourescence staining of CK8/18 and vimentin 

in these cells shows induction of EMT. (C) Transwell migration assay indicates increase in migration 

upon BRD4 and H2Bub1 loss. 

 

Consistent with the effects of RNF40 depletion on CD24 levels, we next wanted to 

investigate if CD24 knockdown also results in EMT phenotype. Indeed, CD24 

depletion using siRNA mediated knockdown resulted in acquisition of EMT 

phenotype (Fig. 29). 
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Fig. 29. CD24 depletion induces EMT in MCF10A cells. (A) siRNA mediated knockdown of CD24 

leads to increase in vimentin and decrease in E-cadherin protein levels. (B) Immunoflorescence 

staining for CK8/18 and vimentin indicates EMT. (C) Transwell migration assay upon CD24 depletion 

shows enhanced migration. 

 

4.2.5 Conditional RNF40 knock-out mice indicates enhanced mammary gland 

branching 

In order to examine the in vivo regulation of RNF40 on mammary gland 

development, conditional mammary gland-specific RNF40 KO mice were generated. 

The mice engineered with RNF40 construct flanked by LoxP on both ends were 

crossed to mice expressing Cre recombinase under the control of the mouse 

mammary tumor virus promoter (MMTV-Cre) to get targeted knock-out of RNF40 in 

the mammary gland. Semi-quantitative PCR analysis revealed decrease in RNF40 

levels in MMTV-Cre-RNF40loxP/loxP as compared to littermate controls (Fig. 30). 

 

 

Fig. 30. Confirmation of RNF40 knockout in the mammary glands. The genotype of the mice was 

confirmed by semi-quantitative PCR for RNF40 and MMTV-Cre. 
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The 6-week old mice were dissected and the mammary gland phenotype was 

observed. Whole mount images with carmine alum stained mammary ducts are 

shown in Fig. 31A. The mammary branching density was also observed at a higher 

magnification (Fig. 31B). The mammary ducts were counted and the branching 

density (no. of branches/mammary gland) between littermates was evaluated (Fig. 

31C). This preliminary data indicates that there could be a phenotype of increased 

mammary branching between 3 independent groups of littermates. This observation 

needs further validation since the n-value (n=3 each) is small. This initial data is 

already a huge finding and substantiates the hypothesis in vivo. 
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Fig. 31. Conditional RNF40 KO mice show increased branching of mammary ducts. (A) The 

representative images of the mammary glands from the control and conditional RNF40 KO mice. (B) 

The terminal buds branching observed at a higher magnification. (C) The branching density was 

determined by dividing no. of branches by the mammary gland. The branches were counted and area 

was determined using ImageJ.  
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5. Discussion 

Transcription is a complex process regulated by the co-ordinated action of several 

proteins and mediators. It involves recruitment of transcription factors and histone 

modifications at target genes coupled with chromatin reorganization (Li et al., 

2007b). One important histone modification known to regulate chromatin structure as 

well as transcription elongation is histone H2B monoubiquitination (H2Bub1). Due to 

its large ubiquitin moiety, H2Bub1 plays an essential function in opening the 

chromatin and facilitating the recruitment of several transcription factors (Fierz et al., 

2011b). It is known to be regulated by the well-established CDK9-WAC-RNF20/40 

axis (Johnsen 2012; (Pirngruber et al., 2009a); Karpiuk et al. 2012). It has also been 

associated with the transcribed regions of genes thereby regulating transcription 

elongation (Minsky et al., 2008b). It is also critical for several cellular processes. It is 

fascinating to study and explore more of the functions associated with this 

modification. 

5.1 Histone chaperone SUPT6H interacts with H2Bub1 for active transcription 

SUPT6H was previously shown to bind to the Ser2-phosphorylated RNAPII CTD and 

promote transcriptional elongation. We have shown here that SUPT6H is required for 

ERα target gene expression and that it promotes the recruitment of ERα to estrogen 

target genes. Consistently, SUPT6H is also present in a complex with ERα and likely 

functions as a co-activator to promote estrogen-induced changes in chromatin 

structure. 

Due to its direct interactions with histones H3 and H4, SUPT6H appears to be 

important for nucleosome disassembly and reassembly in genomic regions 

undergoing extensive chromatin re-organization such as actively transcribed genes. 
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Based on our data from micrococcal nuclease digestion assays, SUPT6H appears to 

control chromatin organization over a substantial portion of the genome since its 

depletion leads to a more open global chromatin. Thus, we hypothesize that 

SUPT6H regulates transcription, at least in part by maintaining proper chromatin 

structural organization, possibly by preventing the improper exposure of regulatory 

sequences or promoter regions. 

 

CDK9-mediated Ser2 phosphorylation of the RNAPII CTD is important for RNF20/40 

recruitment to chromatin by the adaptor protein, WAC which then is required for H2B 

monoubiquitination (Pirngruber et al., 2009a) Zhang and Yu 2011; (Pirngruber et al., 

2009b). H2Bub1 has been linked with transcription elongation based in part on its 

presence in the transcribed regions of active genes (Minsky et al., 2008b). Since 

SUPT6H also interacts with P-Ser2 RNAPII, it is possible that the WAC/RNF20/40 

complex and SUPT6H travel together with the elongating RNAPII. This connection 

between SUPT6H and H2Bub1 had never been reported before. Consistently, our 

co-immunoprecipitation experiments demonstrated for the first time that SUPT6H 

and RNF40 are present in a complex and may co-regulate target gene expression in 

part through H2Bub1. The effect of SUPT6H depletion on H2Bub1 and RNF40 

protein levels further supports that SUPT6H regulates this important histone 

modification. 

 

We previously demonstrated that H2Bub1 levels are inversely correlated with tumor 

malignancy in breast cancer (Prenzel et al., 2011) but no studies had investigated 

the role of histone chaperone, SUPT6H in tumorigenesis. On further examining the 

online Oncomine database, a correlation between SUPT6H expression and 
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malignancy was observed. These studies are consistent with our findings that both 

SUPT6H and H2Bub1 levels decrease with decreased tumor differentiation status. 

Consistent with a role of SUPT6H and H2Bub1 in maintaining a differentiated 

phenotype, we now show that SUPT6H, like H2Bub1 (Karpiuk et al., 2012a), is 

required for maintaining a luminal mammary epithelial phenotype and for multipotent 

stem cell differentiation. Consistently, we observed a strong correlation between 

SUPT6H and RNF40 mRNA levels in both hMSCs and adipose tissue. Thus, it is 

likely that SUPT6H and H2Bub1 act in the same pathway to promote estrogen-

responsive and lineage-specific gene transcription. 

 

During myoblast differentiation, SUPT6H was recently found to interact with the two 

important histone demethylases, KDM6A/UTX and KDM6B/JMJD3 which function to 

remove Polycomb-mediated repressive marks, H3K27me3 on target genes (Chen et 

al. 2012; Wang et al. 2013). Consequently, SUPT6H helps to remove gene 

repression and enables active transcription by interaction with elongating RNAPII. 

We suggest a model for the role of SUPT6H in transcription in which the target gene 

requires SUPT6H in order to suppress H3K27me3-mediated repression. In this 

model, SUPT6H is recruited to estrogen-regulated and lineage-specific genes and 

functions to further recruit additional interaction partners including the H3K27 

demethylases KDM6A/UTX and KDM6B/JMJD3 and the H2B ubiquitin ligase 

complex RNF20/40 to the elongating RNAPII (Fig. 32). This leads to a suppression 

of H3K27me3 and the maintenance of H2Bub1 to sustain an active epigenomic 

status.  
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Fig. 32. Model illustrating the role of SUPT6H in transcription. Red circles marked “27” depict 

H3K27me3 and gray circles with “ub” denote H2Bub1. During transcription, SUPT6H regulates 

H3K27me3 and H2Bub1 on the chromatin via interactions with several factors. 

 

The results presented here are consistent with our findings in primary breast cancer 

and suggest that decreased SUPT6H expression or inactivation of the H2B 

monoubiquitination regulatory pathway may provide an alternative mechanism which 

facilitates Polycomb-mediated repression during malignant progression. Whether 

and how the SUPT6H-RNF40-H2Bub1 pathway can be harnessed to regulate 

estrogen receptor-regulated transcription in breast cancer or to suppress 

differentiation of stem cells for regenerative medicine purposes warrants further 

investigation. 

 

5.2 BRD4 and H2Bub1 act together during transcription 

BRD4 is known to bind highly acetylated histones, H3 and H4 (Wu and Chiang, 

2007b) and recruits P-TEFb to genes for active transcription (Jang et al. 2005; (Yang 

et al., 2005). The regulation of H2Bub1 via CDK9-WAC-RNF20/40 pathway is also 
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known. The next question we addressed was the link between BRD4 and H2Bub1 

during transcription. Our data points out that there is a decrease in H2Bub1 levels 

upon loss of BRD4. This connection was further strengthened by the RNA-seq 

analysis which showed a large overlap in the number of genes regulated by BRD4 

and H2Bub1. In fact, the pattern of gene regulation by BRD4 and H2Bub1 was also 

quite similar. ChIP-seq analysis also highlighted the recruitment of BRD4 and 

H2Bub1 to the same sites. Moreover, we have shown that the overall gene 

expression is correlated with BRD4 and H2Bub1 occupancy on those genes. These 

results highlight that they could be acting together via BRD4-CDK9-WAC-RNF20/40 

axis. 

 

5.3 BRD4 and H2Bub1 “teamwork” suppresses EMT and mammary stem cell 

phenotype  

We have shown in this study that upon loss of BRD4 and H2Bub1, mammary cells 

switch from an epithelial to a mesenchymal phenotype as well as acquire stem cell-

like phenotype. Under normal conditions, there is expression of epithelial genes 

while mesenchymal genes that can impart invasive properties to cells remain 

suppressed. In these circumstances, BRD4 and H2Bub1 could be performing their 

task of gene expression regulation by promoting expression of epithelial genes and 

tumor suppressors. However, upon BRD4 and H2Bub1 depletion, there is a switch in 

gene regulation where mesenchymal genes can no longer be suppressed. Based on 

this, we propose a model for the mechanism of action of BRD4 and its role in 

suppression of EMT phenotype (Fig. 33). 
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Fig. 33. Possible mechanism of H2Bub1 recruitment by BRD4 associated pathway. Red circles 

marked “27” depict H3K27me3, green circles marked “4” represent H3K4me3 and gray circles with 

“ub” denote H2Bub1. During transcription, BRD4 binds to acetylated chromatin and recruits H2Bub1 

on the chromatin via CDK9-WAC-RNF20/40 axis.  

 

In normal cells, histones surrounding the epithelial and tumor suppressor genes get 

acetylated by various acetyltransferases. This is then sensed by BRD4 and helps to 

recruit P-TEFb and RNAPII to the target genes. CDK9 mediates phosphorylation of 

Ser2-RNAPII and recruits adaptor protein, WAC which in turn recruits RNF20/40 
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heterodimer responsible for H2Bub1. Presence of H2Bub1 in the transcribed regions 

indicates active transcription of genes regulating the epithelial phenotype of the cells. 

5.4 Possible mechanisms of regulation by BRD4 and H2Bub1 

Several studies in recent years have highlighted misregulation of epigenetic factors 

during EMT. There are several hypotheses that could explain the possible 

mechanism of regulation by BRD4 and H2Bub1 on EMT target genes. 

5.4.1 Gene Bivalency 

Human and mouse ES cells are enriched with functionally opposite histone 

modifications, H3K27me3 (a repressive mark) and H3K4me3 (an activating mark) 

(Azuara et al., 2006) (Bernstein et al., 2006); (Pan et al., 2007); (Zhao et al., 2007). 

This is referred to as a state of bivalency. H3K4me3 is deposited by proteins of 

Trithorax group while trimethylation of H3K27 is executed by PRC2 

(Schuettengruber et al., 2007). 

One such example of bivalency in EMT genes was illustrated by Wu et al. 2011. 

They had shown that epithelial genes are bivalent and their expression depends 

upon the extracellular signals. Under normal state, epithelial genes are expressed by 

resolution of their bivalency but upon EMT inducing conditions like hypoxia, epithelial 

genes are silenced and remain poised by both activating, H3K4me3 and repressive, 

H3K27me3 marks. 

Our group had previously shown that RNF40 and H2Bub1 were important for 

resolution of bivalency on adipocyte-specific genes (Karpiuk et al., 2012a). On the 

same lines, we speculate that BRD4 could play a role in signal-dependent resolution 

of bivalency through H2Bub1-dependent pathway. Under normal conditions, BRD4 

and H2Bub1 could promote transcription of epithelial genes by removing the 

repressive marks, H3K27me3 and resolving the gene bivalency. This could be 
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achieved by the recruitment of demethylases. The demethylases responsible for the 

removal of H3K27me3 include KDM6A/UTX and KDM6B/JMJD3 (Agger et al., 2007). 

There are no evidences suggesting direct interaction of H2Bub1 and these 

demethylases. However, it is known that UTX and JMJD3 are important for 

transcription elongation (Seenundun et al., 2010); Chen et al. 2012). Thus, it could 

be possible that BRD4 interacts with these demethylases and helps in transcription. 

This proposed mechanism could be true since our data indicates that loss of BRD4 

and H2Bub1 results in repression of epithelial genes which could be due to the 

failure to recruit the demethylases for removal of repressive marks and resolution of 

bivalency. 

The role of BRD4 and H2Bub1 in resolution of bivalency on epithelial genes could be 

determined by comparing ChIP-seq profiles of H3K27me3 and H3K4me3 in control 

and BRD4 or RNF20/40 depleted cells. Moreover, the interaction partners of BRD4 

and H2Bub1 could be determined by performing co-immunoprecipitation 

experiments followed by mass spectrometry. These experiments would be able to 

shed more light in this context. 

It is also important to note that BRD4 and H2Bub1 are likely not responsible for 

resolution of bivalency of mesenchymal genes. In that case, depletion of BRD4 and 

H2Bub1 should result in repression of mesenchymal genes due to the inability to 

resolve the bivalency. However, our data indicates that loss of BRD4 and H2Bub1 

rather increase the expression of mesenchymal genes. This probably indicates the 

repressive function of BRD4 and H2Bub1. 
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5.4.2 Repressive role of BRD4 and H2Bub1 

So far, BRD4 and H2Bub1 have been shown to positively regulate the transcription 

(Jang et al. 2005; (Yang et al., 2005); Minsky et al. 2008). However, there seems to 

be a repressive function of BRD4 and H2Bub1 in suppressing the expression of 

mesenchymal genes. As stated before, in normal cells, there is expression of 

epithelial genes while the mesenchymal genes are repressed and our data highlights 

that depletion of BRD4 and H2Bub1 results in the upregulation of mesenchymal 

genes and other EMT transcription factors. The only explanation could be that BRD4 

and H2Bub1 keep the expression of mesenchymal genes under check by co-

operating with p53 or through PRC2-mediated gene repression. 

This is in concordance with the tumor suppressor role of BRD4 and H2Bub1 

(Crawford et al., 2008); Shema et al. 2008). It was shown previously that RNF20 acts 

as a tumor suppressor by promoting transcription of p53 and repressing transcription 

of proto-oncogenes (Shema et al., 2008b). Loss of H2Bub1 is also coupled with 

tumorigenesis (Prenzel et al., 2011). BRD4 depletion has also been associated with 

tumorigenesis (Alsarraj et al., 2011b) and predicts patient survival (Crawford et al., 

2008). 

 
The above correlation could be confirmed by examining the p53 status and 

H3K27me3 levels in the BRD4 and H2Bub1 depleted cells. Moreover, ChIP-

sequencing of H3K27me3 would help address its repressive function on EMT target 

genes.   

5.4.3 Regulation of tumor suppressor microRNAs  

MicroRNAs (miRNAs) are small (22nt long) non-coding RNAs that regulate the gene 

expression by targeting mRNAs for degradation or suppression of translation (Bartel, 
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2004). They have been recognized as important tumor suppressors by regulating the 

expression of the proto-oncogenes. It is also well established that miRNAs are often 

dysregulated in human cancers. Among several known miRNAs, miRNA-200 family 

is well established in regulating the EMT phenotype and stemness of cells (Wellner 

et al. 2009; (Korpal et al., 2008).  

In our ChIP-seq data for BRD4 and H2Bub1, we found substantial BRD4 and 

H2Bub1 occupancy on the miRNA-200 family genes. This indicates that BRD4 and 

H2Bub1 could directly regulate the expression of tumor suppressor miRNAs and 

prevent expression of mesenchymal genes. Thus, loss of BRD4 and H2Bub1 would 

perturb the regulation and result in decreased expression of miRNA-200 family 

genes. As a result, it would upregulate the expression of several EMT transcription 

factors like ZEB-1 (Wellner et al., 2009b) and promote tumorigenesis.  

 

Fig. 34. Graphical representation of the role of BRD4 and H2Bub1 in miRNA regulation. 

 

This proposed mechanism seems quite convincing and is being investigated further. 

The first step is to examine the expression of miRNA-200 family upon BRD4, RNF20 

and RNF40 knockdowns. For this, we would like to perform high-throughput RNA-

sequencing of miRNA population from the knockdown samples. This would address 

the regulation of miRNA expression and likely provide the mechanistic basis for 

regulation of BRD4 and H2Bub1 in EMT and mammary stem cell phenotype. 
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5.4.4 Role of BRD4 and H2Bub1 in regulation of enhancer RNA expression 

Enhancer RNAs (eRNAs) are relatively short (50-2000 nt long) non-coding RNAs 

that are transcribed from the enhancer elements. Enhancer domains marked by 

histone modification, H3K4me1 have RNAPII binding that leads to bi-directional 

transcription of small eRNAs. These eRNAs seem to play an important role in 

transcriptional regulation of the nearby target genes either by proximal or distal 

regulation (Kim et al., 2010); (Ong and Corces, 2011); (Li et al., 2013). However, not 

much has been known about the mechanism of action of these eRNAs. 

Our ChIP-seq data indicated the presence of BRD4 and H2Bub1 on distal sites 

marked by H3K4me1 (enhancers). This indicates that BRD4 and H2Bub1 could have 

a potential regulation of enhancer activity. All previous studies have identified 

H2Bub1 to be present in transcribed region of genes and associated with 

transcription elongation (Minsky et al., 2008b). However, our ChIP-seq data identifies 

a novel function of H2Bub1 and enhancer RNA regulation. Thus, we hypothesize 

that the expression of epithelial genes or tumor suppressor miRNAs are regulated by 

the eRNAs in the presence of BRD4 and H2Bub1. However, upon depletion of BRD4 

and H2Bub1, these genes are no longer regulated by their eRNAs and are 

repressed. 

This mechanism warrants further investigation which could be confirmed by RNA-

sequencing of short RNAs and then mapping them to the genome to determine their 

target gene regulation. 

5.4.5 Loss of H2Bub1 mimics activation of deubiquitinases (DUBs) 

The mechanism of addition of H2B monoubiquitination and its active removal by 

deubiquitinases is a tightly regulated process. In humans, H2Bub1 is deubiquitinated 
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by the SAGA complex (Lang et al., 2011). Dysregulation of a fine balance between 

ubiquitination and deubiquitination could severely affect the cells. Depletion of 

H2Bub1 would interfere with the balance and result in accumulation of DUBs due to 

absence of substrates for deubiquitination. 

Our data indicates that loss of H2Bub1 results in the acquisition of EMT and 

mammary stem cell phenotype. Overexpression of DUBs like USP22 has been found 

in tumors and likely results in stem cell-like phenotype and poor patient outcome 

(Glinsky et al., 2005); Zhang et al. 2008; Liu et al. 2011). The loss of H2Bub1 could 

be compared to an overexpressed state of deubiquitinases. Thus, the equilibrium 

between H2Bub1 and DUBs could be critical in imparting tumorigenic properties. 

This could be determined by depletion of SAGA complex components and examining 

the effects on gene expression by RNA-seq analysis. A comparison of the gene 

expression profiles upon H2Bub1 and SAGA subunits depletion would help us to 

understand this complex mechanism. 

 

5.5 BRD4 inhibition by JQ1 enriches cancer stem cell pool 

A small molecule inhibitor, JQ1 was described that could bind to the acetyl lysine 

pocket of BET family proteins and prevent their binding to the chromatin 

(Filippakopoulos et al., 2010). BET protein inhibition by JQ1 proved to be an anti-

cancer strategy in Myc-dependent myelomas (Zuber et al., 2011b). This was shown 

to be beneficial due to the role of BRD4 in sustaining Myc expression and disease 

maintenance by Myc target genes (Delmore et al., 2011). However, not all cancers 

are Myc-dependent.  

The data presented in this study demonstrates that depletion of BRD4 or inhibition 

by JQ1 results in induction of mammary stem cell phenotype and enrichment of this 
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stem cell population. The cancer stem cell (CSC) hypothesis has highlighted the 

significance of cancer cells which acquire stem cell-like and self-renewal properties 

(Reya et al., 2001). It has been widely accepted and emphasizes the relapse of 

malignancy due to the cancer stem cell population in tumors. We show here that 

using JQ1 as an anti-tumor drug might not be favourable and would result in 

enrichment of CSC population. There could be tumor regression for the initial phase 

of treatment but would ultimately result in relapse of tumor after the therapy is 

withdrawn, thereby resulting in tumors with enhanced metastatic properties which 

could no longer be treated by chemotherapy. 

 

 

Taken together, this study reveals that H2B monoubiquitination regulates  ERα-

dependent signaling through histone chaperone, SUPT6H possibly via CDK9-WAC-

RNF20/40 axis. Decrease in SUPT6H levels correlated with decrease in tumor 

differentiation status of the breast tissue sections. These data identify SUPT6H as a 

new epigenetic regulator of ERα activity and cellular differentiation. Moreover, this 

study also demonstrated that BRD4 suppresses the stem cell phenotype in 

mammary cells by H2Bub1 pathway. RNA-seq analysis revealed that loss of BRD4 

and H2Bub1 results in the upregulation of mammary stem cell gene signature and 

imparts invasive properties to the cells thereby promoting tumorigenesis and 

metastasis. Suppression of BRD4 by JQ1 resulted in enrichment of mammary 

cancer stem cells which could give rise to more aggressive tumors. Altogether, 

restoration of BRD4 and H2Bub1 by inhibiting their degradation in breast cancer 

might provide useful anti-cancer therapies. 
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