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Summary 

To quantify and evermore qualify carbon in soils have become highly timely task in 

landscape ecology. However, separating soil organic carbon (SOC) into different 

ecologically relevant fractions is difficult. Particularly for landscape approaches needing 

high numbers of samples, it is necessary to find a simple, economic and suitable method that 

can quantify total carbon, organic carbon and inorganic carbon as well as separate SOC 

fractions, preferably with a single method and a single run for each sample. A thermal 

gradient method was modified and tested for this purpose. The objective of the present work 

were to: 

(i) To verify the cost-effective method developed by Chichester and Chaison (1992) 

with a larger set of samples representing a much wider range of soil properties (carbonate 

and noncarbonated soils) and with a new generation of the analyzer. 

(ii) To test the ability to quantify dolomite-derived IC by ThG in dolomite soil 

samples. 

(iii) Assessing the suitability of ThG for the quantification of ecological meaningful 

differences in organic carbon fractions of soil and material samples with different carbon 

stability. 

Topsoil samples were collected from cropland, forest, grassland and wetland in temperate, 

subtropical and tropical regions in order to represent a wide range of soil properties. Standard 

materials with different thermal stabilities were used for testing as well. 

The main findings were: 

(i) All methods (ThG, Calcimeter and acidification methods) were suitable to 

separate soil carbon into SIC and SOC. However, Calcimeter and acidification methods 

resulted in lower estimates of SOC contents due to the use of acid. When comparing soil 

samples with differing carbonate concentrations, the use of the ThG method was more 

reliable. Moreover, ThG was as suitable as standard methods (CN analyser or dry 

combustion) to measure total carbon (TC). 

(ii) Compared to Calcimeter (CALC) and Loss on ignition (LOI) in quantifying OC 

and IC in dolomite soil samples, the ThG method was the most accurate method in the 

reference sample set, especially when dolomite contents were high. On the soil sample set, 

ThG and CALC performed equally, but only when two outliers were eliminated. LOI was 

not satisfactory in any case on the sample set. Overall, ThG was the most reliable method 

for measuring IC and OC in dolomite-containing samples over the wide range of 

concentrations, but the more widespread CALC method is also acceptable. 
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(iii) By using ThG for isolation SOC fractions, four main peaks of organic carbon 

fractions were recorded at the temperature ranges: 140 - 300°C, 300 - 400°C, 400 - 450°C 

and 450 - 600°C. By testing with different materials with different thermal stabilities (e.g. 

grass char, wood char and wheat starch), results showed that the thermal fractions are 

ecologically relevant. Thermal fractions are various with different materials and relevant to 

different turnover rate of SOM. Therefore, thermal gradient analysis can be effectively used 

in routine measurement to determine organic, inorganic and total carbon as well as the 

stability of organic matter in a single analytical run. Care has to be taken when samples with 

high C-concentrations are analysed. In any case, first examples like comparing different land 

use within a region according to their soil organic carbon fraction revealed that much more 

information with a single analysis (i.e. TC, SOC, SIC, thermal fractions of SOM) can be 

achieved from the presented thermal gradient method in comparison to regular bulk C 

measurement (providing only TC value).  

Overall, ThG can be used to quantify TC, IC and OC as a simple, precise and economic 

method without complicated pretreatment. Moreover, it can effectively measure the organic, 

inorganic and total carbon as well as the stability of organic matter in a single analytical run. 

It can be applied to landscape scale, particularly for larger scale analyses on land use systems 

and land use change. 
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I Introduction 

Soil is the largest terrestrial reservoir of carbon (C), which has three times amount of C 

compared to terrestrial plants (Schlesinger. 1990) and twice as much as the atmosphere 

(Jungkunst et al. 2012). Therefore, soil carbon plays a vital role in global carbon cycle and 

climate change (Lal R. 2002), and has a complicated links to the climate system via the 

carbon global cycle (Brevik EC. 2012). The atmospheric CO2 and CH4 concentrations are 

linked to climate warming that may enhance C release from soils (see Fig.I.1).  

Fig. I.1 The global carbon cycle (1990s) (IPCC (2007) Climate change report. chapter 7) 

The increase in greenhouse gases (GHGs) like carbon dioxide (CO2), nitrous oxide (N2O) 

and methane (CH4) in the atmosphere is closely linked to Global warming (IPCC. 2007; 

Jungkunst and Fiedler. 2007). The main sources that enhance the concentration of the 

anthropogenic greenhouse gases are human activities such as burning of fossil fuels and 

biomass, industrial processes and land use changes (e.g. land-clearing, burning, 

deforestation and tillage). About 75 % of the anthropogenic emissions are caused by fossil 

fuel burning (6.4 ± 0.4 GtC yr-1 during 1990s) and the rest of the emissions is due to the land 

use changes (deforestation and agricultural development, around 1.6  GtC) (IPCC. 2007; 

Schimel et al. 2001). Every year, the flux of carbon dioxide (CO2) from the soil surface to 

the atmosphere is approximate ten times more than the CO2 emitted from anthropogenic 

burning of fossil fuels (Cao and Woodward. 1998; IPCC. 2007). Changes in the size of soil 
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carbon pools or their exchange rates will influence significantly the concentration of CO2 in 

the atmosphere (Cao and Woodward. 1998). 

Generally, total soil carbon includes soil organic carbon (SOC) and may include inorganic 

carbon (SIC). SOC includes “residues of animals, plants, or microorganisms at various states 

of decomposition” (Bisutti et al. 2004; Bastjes and Sombroek. 1997) whereas SIC consists 

of carbonates. Carbonate minerals play a vital role in soil quality due to their special 

properties of solubility, alkalinity and pH-buffering; hence they influence strongly the bio-

chemical properties of soils (Bisutti et al. 2004). Quantifying SOC and SIC separately is 

essential for our understanding about carbon cycle from regional to global scales (Chichester 

and Chaison. 1992; Bisutti et al. 2007). 

In most of the soils, SOC is the crucial part of C in soil (Batjes and Sombroek. 1997). The 

changes in SOC can have significant impacts on soil fertility (Brevik. 2012) and climate 

change (Lal. 2004). Since changes in the turnover rate of SOC can influence concentration 

of atmospheric CO2 significantly (Karhu. 2010). Vegetation, dead plant litter, roots and roots 

exudates are carbon inputs to soil carbon. C is mainly cumulated in the soil from plant debris 

decomposed by the oxidation of microorganism (Schmidt et al. 2011). The carbon output of 

soil carbon is respiration of CO2 from decomposition process, soil erosion and leaching of 

dissolved organic carbon (GRDC. 2004; Heimann and Reichstein. 2008). Changes of carbon 

stocks and SOC-composition are dependent on the balance of carbon input and output 

(Karhu. 2010; GRDC. 2004). Therefore, factors that limit the amount of C input or output 

will change the amount of carbon stored in soils. Moreover, the SOC decomposition is more 

sensitive to temperature than net carbon fixation of plants and has much more C than that of 

plants (1550 GtC of SOC and 550 GtC of biotic pool) (Lal. 2004). Therefore, the rise of CO2 

respiration from soil caused by global warming can easily be more than the CO2 uptake of 

plant (Karhu. 2010; Kirschbaum. 2000). Consequently, only a slight change of soil organic 

carbon will affect climate change (Karhu 2010; Kirschbaum. 2006). 

SOC plays several vital ecological functions with strong impacts on “soil structure, storing 

nutrients, cation exchange and water-holding capacity” (van Keulen. 2001). SOC serves as 

nutrients source for plant growth, promotes biological and physical health and the structure 

of soil, and is a strong buffer and binding agent against organic pollutants and non-ionic 

compounds (Murphy. 2014; van Keulen. 2001; Batjes and Somboek. 1997). Furthermore, 

SOC plays a key role in the crop sustainability by enhancing the “fertility and tillage of soil” 
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(Reeves. 1997). Thus, quantification and characterization of OC is important for our 

understanding of soil ecological processes, especial for soil carbon fluxes and storage. 

The following chapter of this introduction will focus on the background knowledge as well 

as with theoretical and methodological consideration of SOC, SOC fractions and its 

measurability. The remaining issues will be covered by the introductions of different 

manuscripts (chapter II, III and IV).  

I.1 Soil organic matter 

There are many different ways to define organic constituents of SOM (GRDC1. 2013). 

According to Baldock and Skjemstad (1999), SOM was defined as “all organic materials 

found in soils irrespective of origin or state of decomposition”. SOM is a mixture of organic 

substances of different forms that have various turnover times from year to thousands of 

years (GRDC1. 2013). It includes a mixture of plant and animal residues at various stages of 

decomposition of substances, synthesized microbiologically and chemically from the 

breakdown products, microorganisms, small animals and their decomposing products’ 

(Schnitzer. 1991; Batjes and Sombroek. 1997). 

According to von Lützow et al (2008), SOM is separated into at least three conceptual pools 

based on the different turnover rates. They include (i) a labile or active pool with turnover 

times of up to 10 years, (ii) a slow or intermediate pool with turnover times between 10 and 

100 years and (iii) a stable or passive pool with slower turnover times (>100 years). SOC 

can also be differentiated in four pools with various properties and turnover rates based on 

the different layers of pools (see table I.1) (GRDC1. 2013). 

SOM is different form SOC because it includes all the elements which are components of 

organic compounds (GRDC1. 2013). Because SOM consists of C, H, O, N, P and S, it is 

challenging to quantify directly the SOM content. It can merely be quantified indirectly by 

measurement of SOC and estimate through a conversion factor. SOM is assumed to contain 

50-58% carbon (Chaudhari et at. 2013). To do so, a factor of 1.72 is regularly used to convert 

organic carbon to organic matter as in equation (1) (Baldock and Skjemstad. 1999)  

SOM = 1.72 * SOC (1) 

SOM is a key indicator for soil quality (Reeves. 1997). It has three main groups of functions. 

They include: (i) Biological functions (e.g. providing source of energy, reservoir of nutrients 
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and contributing to resilience of soil-plant system), (ii) Physical functions (e.g. improving 

structural stability of soils at various scales, influencing water holding capacity of soils and 

altering soil thermal properties), (iii) Chemical functions (e.g. to contribute to the cation 

exchange capacity, to strengthen ability of soil to pH-buffer changes) (GRDC1. 2013). 

Therefore, it plays an important role in the “fertility, productivity and sustainability of 

agricultural and non-agricultural ecosystems” (Crawell and Lefroy. 2001). Moreover, SOM 

acts as a vital key component in the global C balance. Management of SOM can influence 

remarkably on the global C balance and the increased atmospheric CO2 on climate change 

(Crawell and Lefroy. 2001). 

Table I.1 ‘Pools’ of soil organic matter (Broos and Baldock. 2008; GRDC. 2009; PIRSA. 

2010). 

Organic carbon 

pool 

Size Stability Turnover 

time 

Key functions 

Crop residue 

Shoot and root 

residues on and in 

the soil 

 

> 2mm 

 

Labile 

 

Days 

Provide energy and 

nutrients to biological 

processes; readily broken 

down supporting 

microbial life in soils. 

Particulate 

organic matter 

(POM) 

Smaller plant 

debris 
0.05- 2mm 

  These are broken down 

relatively quickly in 

suitable conditions but 

more slowly than crop 

residues. Important for 

soil structure, provision of 

energy for biological 

processes and nutrients. 

Humus 

 

Decomposed 

material 

dominated by 

molecules stuck 

to soil minerals 

 

< 0.05 mm 

   

This plays a role in all key 

soil functions, but is 

particularly important in 

the retention and 

provision of nutrients (e.g. 

the majority of available 

N is found in the humus 

fraction). 

 

Recalcitrant 

organic matter 

Biologically 

stable, dominated 

by pieces of 

charcoal. 

Variable 

Very stable/ 

relatively 

inert 

Hundreds 

of years 

Decomposes very slowly 

and if present in large 

enough quantities can 

contribute to cation 

exchange capacity as well 

as controlling soil 

temperature. 
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I.2  Soil organic matter stabilization – the geo-ecological need for fractionation 

I.2.1  Soil organic matter stabilization 

Sollins et al. (1996) defined SOM stabilization as the “protection of organic matter from 

mineralization”. According to von Lützow et al. (2006), SOM is stabilized by three main 

mechanisms: (i) recalcitrance, (ii) spatial inaccessibility, and (iii) interaction with soil 

minerals and metal ions.  

(i)  Recalcitrance is the selective preservation of SOM because of its structural composition 

or molecular-level characteristics of organic substances (Sollin et al. 1996). It can be 

divided as two kinds of recalcitrance such as primary and secondary recalcitrance. 

Primary recalcitrance is the recalcitrance combined with plant litter and rhizodeposits, 

whereas secondary recalcitrance is the recalcitrance of microbial products, humic 

polymers and charred material that are slowly decomposed by microbes and enzymes 

(Sollins et al. 1996; von Lutzow et al. 2006; von Lutzow et al. 2008; Breulmann. 2011; 

Heitkamp. 2010). However, according to von Lützow (2006), recalcitrance is merely 

significant in active surface of soils and during the beginning decomposition of OM.  

(ii) Spatial inaccessibility refers to various processes that is caused by occlusion of SOM, 

rendering it inaccessible to microbes and degradative enzymes. These include 

interactions with aggregates, intercalation into “phyllosilicates”, “hydrophobicity” and 

“encapsulation” in organic macromolecules (von Lützow. 2006; Breulmann. 2011).  

Occluded OM is spatially protected against decomposition because occlusion of OM 

reduced access for the microorganisms and their enzymes, restricted aerobic 

decomposition owing to reduced diffusion of oxygen and reduced diffusion of enzymes 

into the intra-aggregate space. Intercalation within phyllosilicates of organic ligands 

from enzymes, proteins, fatty acids or organic acids is dependent on the pH values. 

Organic ligands can intercalate within phyllosilicates only at a pH <5. Hydrophobicity 

reduces water providing for living conditions of microorganisms and therefore 

decreases decomposition rates of OM and the accessibility of OM for microorganisms. 

Encapsulation in organic macromolecules is a process, in which labile organic matter 

is protected from decomposition by encapsulation in the network of recalcitrant 

polymers or humic pseudo-macromolecules (von Lützow. 2006). 

(iii) Interactions between the SOM and minerals or metal ions that reduce the ability in 

decomposing SOM by microorganisms and enzymes, and therefore change the 

decomposed rate of SOM. It is suggested that after binding to mineral surface, OM 
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becomes stabilized. It consists of various processes of ligand exchange, polyvalent 

cation bridges and complexation of SOM with metal ions (von Lützow. 2006). Clay 

minerals or amorphous hydroxides or iron (Fe) and aluminum (Al) play an important 

role in interaction between OM and minerals. Because amorphous hydroxides have 

active hydroxyl groups and OM has active groups such as COOH, OH or NH2 that can 

exchange cation or anion and create stabile complex between OM and clay minerals by 

complexation reactions (Sollin et al. 1996; von Lützow. 2006).  

I.2.2  The geo-ecological need for SOM fractionation 

Total organic carbon of soil can only provide the amount of organic carbon in a soil. It does 

not supply information about characteristics, function or stability of SOM (GRDC2. 2013). 

It is necessary to understand how SOM fractions change in soils that can supply important 

information on sequestration potential, carbon balances, nutrient storage, turnover rate, 

biological function, soil properties and carbon dynamics in soils (see figure 2) (GRDC2. 

2013; von Lützow. 2008).  

 

Fig. I.2 A simple diagram of the soil organic carbon cycle in connection with SOC pools. 

(Soil Carbon Management and Carbon Trading. 2009) 

Moreover, SOM fractions also provide a vital contribution to evaluate the changes in land-

use or management practices on soil carbon (Leifeld and Kögel-Knabner. 2004). 

Understanding about the amount and the contribution and of labile and stable OM fractions 
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to total OC would be useful in modeling SOC dynamics, in predicting the SOC changes with 

the changes of environmental and management conditions (Ludwig et al. 2005). Besides, it 

is also helpful to know about labile and stable OC fractions in estimating short-term (labile 

OC) and long-term (stable OC) effects of changes in land use (Helfrish. 2007). It is necessary 

to quantify SOM fractions in order to understand the dynamics of accumulation and turnover 

of organic carbon of SOM and to know more about global C cycle and climate change 

(Trumbore et al. 1996). Therefore, it is important to measure SOM fractions of different 

residence time to understand and predict the sequestration and stabilization of SOC 

(Helfrich. 2006). Thus finding fractionation procedures to isolate and quantify SOM 

fractions is crucial to understand more about landscape ecology. However, quantification 

SOM fractions is challenging since SOM is a continuum of organic substances with turnover 

rate from days to million years and has three main complicated mechanisms as 

aforementioned above. SOM interacts with both inorganic and organic compounds (Sollin 

et al. 1996; von Lützow et al. 2006; Kiem. 2002). One of the challenges in isolation of SOM 

fractions is the considerable variety of the soil environment with its complicated stabilization 

mechanisms. (von Lützow et al. 2006; Helfrich. 2006). SOM fractions change with the 

alteration of environmental conditions. For example, in fired soils, organic matters in the top 

layer were burnt that reduces labile OC fraction and increases recalcitrant OC fraction by 

enhancing mineralization. Moreover, mechanisms of recalcitrance, interaction and 

accessibility operate concurrently. In addition, the mechanisms take place variously in 

different types of soil and soil horizons.  Stabilization of interaction consists of some 

mechanisms such as ligand exchange, polyvalent cation bridges and interaction of metal ions 

with organic substances. These mechanisms operate simultaneously in acid soil, but with 

various intensities in different soil. Ligand exchange operates mainly in acid subsoil soil that 

is rich in oxides when interaction of metal ions with organic substances occurs primarily in 

acid soil, calcareous soil or heavy metals contaminated soil (von Lützow et al.  2006). 

Therefore, it is difficult to find SOM fractionation methods or any procedures that are 

specific enough for all stabilization mechanisms and generate completely homogeneous 

SOM pools (von Lützow et al. 2008; von Lützow et al. 2007; Helfrich. 2006). For more 

detail, see von Lützow et al. (2006, 2007). 
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I.3 Methods to analyze SOM pools and fractions 

The analysis of SOM methodologically can be devided into physical and chemical fractions-

methods (von Lützow et al. 2007). In the following sections, the basic principles of these 

methods will be briefly described. 

I.3.1 Physical methods 

Physical fraction methods are based on the premise that the SOM dynamic is dependent on 

the structure of soil.  Physical fractionation methods established in soil science consist of 

particle size, aggregate and density fractionation (von Lützow et al. 2007). 

a) Aggregate fractions 

Aggregate fractionation is based on the separation of free and protected SOM that is isolated 

from bulk soil by dry or wet sieving and slaking of different mesh size. The purpose of 

having different aggregate fractions is to separate active/labile from intermediate and passive 

SOM pools. (von Lützow et al. 2007). In general, soil aggregates are divided into two 

classifies such as macro- (> 250 μm) and micro-aggregates (< 250 μm) (Oades. 1984). There 

are more SOM in macro-aggregates than in micro-aggregates and the turnover rate of OM 

in macro-aggregates (15-50 years) is faster than that of micro-aggregates (100-300 years) 

(von Lützow et al. 2007; Heitkamp. 2010).  

b) Particle size fractions 

This fractionation technique is based on the concept that SOM associated with particles of 

different sizes, which differ in their structure and function (Christensen. 1992; von Lützow 

et al. 2007). In general, the amount of OC in sand, silt and clay fractions increase in the 

following order sand < silt < clay. In fact, 50–75% of total OC was combined with clay-

sized particles (< 2 µm), about 20–40% with silt-sized particles (2–63 µm) and < 10 % with 

sand-sized particles (> 63 µm) in temperate arable soils (Christensen. 2001; von Lützow et 

al. 2007; Helfrich. 2006). Generally, active OC distributed more in sand fraction, whereas 

more intermediate and passive OC distributed in silt and clay fractions (von Lützow et al. 

2007).  

c) Density fractionation 
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Density fraction is based on the concept that SOM can be divided into light fraction (weakly 

associated with soil minerals) and heavy fraction (organo-mineral complexes). The aim of 

using density fractionation is to isolate active, intermediate and passive OM pools 

individually (von Lützow et al. 2007) by flotation or sedimentation SOM in soils in heavy 

organic liquids or inorganic salt solutions with specific densities ranging from 1.6-2.2 g ml-

1 (Christensen. 1992). The optimal density of the solutions might be dependent on the soil 

types (Gregorich et al. 2006). Comprehensive reviews on density fractionation can be found 

in Lützow et al. (2007) and in Christensen (1992). 

I.3.2 Chemical methods 

According to von Lützow et al. (2007), chemical fractionation procedures rely on the 

extraction of SOM in various solutions such as aqueous solutions (with and without 

electrolytes), inorganic solvents or acids.  Various chemical fractionation procedures have 

been used to isolate stable SOM by extraction with aqueous solvents, hydrolysability (e.g. 

HCl) or oxidizability (e.g. H2O2, NaOCl or Na2S2O8) of SOM (von Lützow et al. 2007; 

Helfrich et al. 2007). 

Oxidative treatment is one of the most common used methods to isolate stable SOM pool. 

Two oxidative treatments, which were most successful in isolating a stable pool of organic, 

were used with hydrogen peroxide (H2O2) and disodium peroxodisulfate (Na2S2O8) 

(Helfrich et al. 2007). By using H2O2, younger SOC was removed effectively and therefore 

achieved more stable SOC fraction. The 14C age of residues (stable SOC) were more than 

10000 years (Helfrich et al. 2007). Nonetheless, using H2O2 has a disadvantage that it might 

dissolve some soil minerals (Mikutta et al. 2005). Besides, it is necessary to isolate light 

fraction (LF) material before using oxidation with H2O2 to soils (von Lützow et al. 2007). In 

contrast to H2O2, oxidation with disodium peroxodisulfate did not dissolve soil minerals. A 

disadvantage of Na2S2O8 oxidation is that it may cause an interference of the NaHCO3 buffer 

with 14C analysis (von Lützow et al. 2007). However, that problem can be solved by using a 

solution of 0.01 M HCl (Helfrich et al. 2007). Generally, both methods have potential for 

isolating a very old and passive pool of SOM (Helfrich et al. 2007; von Lützow et al. 2007). 

I.3.3 Thermal methods 

During the first half of the 20th century, thermal analysis was applied frequently in clay 

mineralogy. Since then, it has been applied widely in analysis SOM, black carbon or charcoal 

in soil science (Plante et al. 2009). Thermal methods have been currently applied to isolate 
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carbon fractions in soils.  According to the International Confederation for Thermal Analysis 

and Calorimetry (ICTAC), thermal methods is a group of techniques programmed to detect 

the change of a physical or chemical property of a sample against temperature of the sample 

in a special atmosphere (e.g. pure N2 or O2) (Plante et al. 2009). Thermal analysis includes 

four major thermal analysis techniques (thermogravimetry (TG), derivative 

thermogravimetry (DTG), differential thermal analysis (DTA) and differential scanning 

calorimetry (DSC)). More detail of these thermal techniques can be found in Plante et al. 

(2009). Thermal analysis has been applied for analyzing the mineral soil and the organic 

carbon fractions, for instance, analyzing humic substances (Provenzano M.R and Senes.N. 

1999; Dell’ Abate et al. 2002), black carbon (Elmquist et al. 2006; Leifeld J. 2007; Nguyen 

et al. 2004) and soil samples (Lopez-Capel et al. 2005; Plante et al. 2011). These thermal 

techniques were also used as a combination with each other or with other devices to separate 

organic carbon fractions in soils such as DSC-TG-MS (Dell’ Abate et al. 2003), TG-DSC 

(Lopez-Capel et al. 2006a), TG-DSC-isotope (Kuzyakov et al. 2006; Dorodnikov et al. 2007) 

and TG-DSC-EGA (evolved gas analysis) (Fernández et al. 2012). However, these 

techniques are quite expensive and unavailable in many labors. Moreover, they are not 

suitable for quantitative analysis of organic carbon (OC), inorganic carbon (IC) and TC.  

I.4 Concept of research and objectives 

Summarizing the findings above, there is neither single physical nor chemical fractionation 

technique that describes sufficiently the complete continuum of SOM existed in nature (Paul 

et al. 2006).  However, there are some thermal analysis techniques, which were applied to 

characterize soil humic substances in the past (e.g., Schnitzer and Hoffman. 1964; Schnitzer 

et al. 1966; Shurygina et al. 1971) and whole soils or physical fractions recently (e.g., Lopez-

Capel et al. 2005; Plante et al. 2005; De la Rosa et al. 2008; Plante et al. 2011). They all 

have shown promising results in isolating SOM fractions. Consequently, the concept of 

research for this thesis was to find a suitable thermal method in quantifying OC, IC, TC and 

separate OC fractions. The main objective of this current dissertation is to find a rapid, cost-

effective, simple thermal method, which can isolate organic carbon (OC) and inorganic 

carbon (IC), as well as organic carbon fractions in soils simultaneously and can be applied 

at the landscape scale, where high sample numbers are needed. To achieve it, a large range 

of soil samples and material with various properties were used to test with ThG. Moreover, 

the results of thermal gradient method were compared to conventional methods (see detail 

of samples and methods in chapter 2, 3 and 4).
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This dissertation specially focuses on the methodology. Therefore, the following 

questions will be considered: 

Objective 1: The first objective was to verify the cost-effective method developed by 

Chichester and Chaison (1992) with a much larger sample set containing a larger 

range of soil properties and with a new generation of the analyser. 

In the second chapter, a thermagradient (ThG) was used to compare with standard 

methods in analyzing total carbon (TC), soil organic carbon (SOC), soil inorganic carbon 

(SIC) in soil samples with and without calcite. Measurements of SOC and SIC contents 

by ThG were compared with (1) the measurement of SIC (calcimeter) and TC (dry 

combustion), SOC content calculation and (2) measurement of SOC (acidification) and 

TC (dry combustion) and quantification of SIC contents. 

Objective 2: To test the ability to quantify dolomite-derived IC by ThG in dolomite soil 

samples. 

In the third chapter, the prior study (Vuong et al. 2013) showed that total carbon, organic 

carbon and inorganic carbon in the form of calcite could be quantified precisely and 

accurate by a thermal gradient method (ThG). In the third chapter, we focus on the ability 

to quantify dolomite-derived IC by ThG. The aims of this study were to compare the 

accuracy of ThG with standard methods such as calcimeter (CALC) and loss on ignition 

(LOI) on a sample set with known proportions of OC and IC present as dolomite. After 

that, we compare the results of the different methods on a set of soil samples.  

Objective 3: Assessing the suitability of ThG for the quantification of ecological 

meaningful differences in organic carbon fractions of soil and material samples with 

different carbon stability. 

In the fourth chapter, ThG was used to test if the presented ThG is suitable for the 

quantification of ecological meaningful differences in organic carbon fractions for both 

soil and material samples of different carbon stability. Moreover, we used a standard 

addition approach to compare ThG method with established methods for measuring labile 

and stable OC. Afterward, we tested the applications of the proposed method for process 

studies and particular landscape and other larger scale approach. 
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II Simultaneous measurement of soil organic and inorganic 

carbon: Evaluation of a thermal gradient analysis 

Truong Xuan Vuong, Felix Heitkamp, Hermann F. Jungkunst, Andreas Reimer, 

Gerhard Gerold 

(Published in Journal of Soil and Sediment, 2013) 

Abstract 

Purpose The best method for determining soil organic carbon (SOC) in carbonate-containing 

samples is still open to debate. The objective of this work was to evaluate a thermal gradient 

method (ThG), which can determine simultaneously inorganic carbon (SIC) and SOC in a 

wide range of soil samples. 

Materials and methods The determination of SOC by ThG (SOCThG) was compared to 

widespread standard methods (1) acidification as pre-treatment and subsequent dry 

combustion (ACI, SOCACI) and (2) volumetric quantification of SIC by a calcimeter and 

subtraction of the total carbon content as determined by dry combustion (CALC, SOCCALC). 

Precision (F-test) and bias (t-test) was tested on a subset of seven samples (n = 3). 

Comparison of the ThG and CALC methods was performed by regression analysis (n = 76) 

on samples representing a wide range of SOC (5.5 to 212.0 g kg-1) and SIC contents (0 to 

59.2 gkg-1). 

Results and discussion: Tests on the replicated subset showed that the precision of ThG was 

not significantly different from ACI or CALC (F values < 39, n = 3) for SOC and SIC 

measurements. However, SOCACI and SOCCALC contents were systematically and 

significantly lower compared to SOCThG contents. The positive bias for SOCThG relative to 

SOCCALC contents appeared also in the regression analysis (given numbers ± standard errors) 

of the whole dataset (y = [4.67 ± 0.70] + [0.99 ± 0.01] x; R2 = 0.99; n = 76). When performing 

a regression with carbonate-free samples, the bias between the methods was negative (-2.90 

± 0.63, n = 29), but positive in the set with carbonate-containing samples (3.95 ± 1.41, n = 

47). This observation corroborated the suspicion that the use of acid for carbonate 

decomposition can lead to an underestimation of SOC. 

Conclusions: All methods were suitable for differentiation between SIC and SOC, but the 

use of acid resulted in lower estimates of SOC contents. When comparing soil samples with 

differing carbonate concentrations the use of the ThG method is more reliable. 

Keywords: Calcimeter, Dry combustion, Soil carbon, Thermal gradient analysis, Carbonate 
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II.1 Introduction 

Soil organic carbon (SOC) has been recognised as an important ecosystem property since 

the late 18th century (Manlay et al. 2007). SOC affects soil structure and most biogeochemical 

cycles and is therefore one of the most important properties determining soil fertility (Lal 

2004). Furthermore, soils act as source or sink of atmospheric CO2, which is stored or 

released from SOC (Heitkamp et al. 2012). 

In the absence of inorganic carbon (SIC) in soils dry combustion (DC) at temperatures above 

900°C is the preferred method for quantification of carbon in soil samples (Skjemstad and 

Baldock. 2008; ISO 10694. 1995). In this case, contents of total carbon (TC) equal those of 

SOC. However, if SIC is present, measurement of SOC is still not straightforward (Kalbitz 

et al. 2012), and especially challenging when the portion of SIC on TC is high (Schmidt et 

al. 2012). Three fundamentally different approaches for measuring SOC in carbonate 

containing soils exist: (1) removing SIC by acid treatments before quantifying TC contents, 

(2) determining TC and SIC contents separately and calculating SOC contents, and (3) 

measuring only the fraction of SOC and leaving the fraction of SIC intact. All of the 

mentioned approaches have their specific drawbacks and advantages. 

(1)  Removing SIC by acid treatments 

Different kinds of acid at various concentrations are used to remove SOC prior to DC. 

Commonly, HCl, H3PO4 or H2SO3 are used for SIC decomposition (Bisutti et al. 2004). For 

soils containing low amounts of CaCO3, while the use of acids is without greater problems 

(Schmidt et al. 2012), some carbonates (e.g. dolomite, magnetite) may decompose 

incompletely or need very long times for removal. For example, Midwood and Boutton 

(1998) reported that it took up to three days to remove SIC with 0.5 M HCl until the δ13C 

signature of SOC was unaffected by presence of SIC. Other concerns are dissolution and 

removal of SOC during the pre-treatment and the effects of the ionic solutions or halides on 

the CO2-detectors (Bisutti et al. 2004; Chatterjee et al. 2009; Midwood and Boutton. 1998). 

These problems were solved in part with the acid fumigation method (Harris et al. 2001; 

Walthert et al. 2010), where samples are exposed to HCl vapour under low pressure. 

Nevertheless, the method is laborious and needs experience and careful handling. Until now, 

removal of SIC by acidification is the only method applicable in mass spectrometry of SOC 

(Midwood and Boutton. 1998). 
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(2)  Calculation of SOC 

The most common method for quantification of SIC is the use of a volumetric calcimeter. A 

soil sample is acidified with HCl; the evolved gas volume is measured and SIC is calculated 

as CaCO3-equivalents (Williams. 1948; Martin and Reeve. 1954; Loeppert and Suarez. 

1996). Problems may arise due to incomplete decomposition of dolomite, evolution of 

different gas volumes from different carbonates or the presence of sulphides which react to 

form H2S (Bisutti et al. 2004). Inaccurate quantification of SIC contents is especially likely 

in highly carbonaceous soils (Schmidt et al. 2012), leading to erroneous calculation of SOC 

contents. Furthermore, the calculation of SOC contents cannot be used in carbon mass 

spectrometry due to different 13C values of SOC and SIC (Harris et al. 2001; Midwood and 

Boutton. 1998). 

(3)  Direct measurement of SOC 

Direct measurement of SOC involves several methodological drawbacks until now. Wet 

combustion of a soil sample by K2Cr2O7 was the standard method for determining SOC since 

the early 20th century. The method is still applied in many laboratories worldwide and there 

are several modifications to it (for details, see Chatterjee et al. 2009). The principle is 

oxidation of SOC, while leaving SIC undecomposed. Problems arise from incomplete 

oxidation of SOC and the exact value of correction factors depend on land-use, soil depths 

and texture (Tivet et al. 2012). Furthermore, most of the fire-derived carbon will not be 

oxidised by wet combustion (Hammes et al. 2007). Therefore, correction factors for SOC 

determination by wet oxidation have to be determined independently for different samples 

sets. This, again, leads to the challenge to determine SOC in carbonate-containing soils. 

Loss-on-ignition (LOI) is another method for determination of organic matter in soils (SOM) 

(Wang et al. 2012). The sample is heated up to a temperature where SOM is oxidised but 

SIC will remain in the sample. The gravimetrically determined mass loss is assumed to be 

SOM, which can be divided by a correction factor (1.72) to obtain SOC values (Chatterjee 

et al. 2009). The choice of the appropriate temperature and duration is open to question, 

since mass losses can occur from different sources. Furthermore, the correction factor of 

1.72 is only a rule of thumb and varies between different samples (Wang et al. 2012). These 

problems were solved by directly measuring CO2 evolution by infrared detection in the same 

sample at different temperatures (Bisutti et al. 2007; Chichester and Chaison. 1992). 

Measuring CO2-evolution across a thermal gradient (ThG) is advantageous, because this can 
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be done subsequently in one sample and losses of other material besides C can be ignored. 

Bisutti et al. (2007) showed that by using mixtures of pure materials, the ThG method is 

suitable for separating organic and inorganic substances. Chichester and Chaison (1992) 

successfully used a similar method with soil samples and showed the comparability with 

standard methods. However, their sample set was relatively small and only three samples 

exceeded SOC contents of 2%. 

The objective of this work was to verify the cost-effective method developed by Chichester 

and Chaison (1992) with a much larger sample set containing a larger range of soil properties 

and with a new generation of the analyser. Measurements of SOC and SIC contents by ThG 

were compared with (1) measurement of SIC (calcimeter) and TC (dry combustion), SOC 

contents were calculated and (2) measurement of SOC (acidification) and TC (dry 

combustion) and quantification of SIC contents. 

II.2 Materials and methods 

II.2.1 Samples and sample preparation 

For the comparisons three sample sets were used: 

(1) Mixtures (C-contents between 0 and 120 g kg-1) of C-free silica-sand (p.a., Merck, 

Darmstadt) and calcium carbonate standard (Leco, part no 501-034, lot 1016; Leco 

Corporation, St. Joseph, MI, USA) were used to quantify precision and bias (see 

2.6) of the CN analyser, the Multiphase Carbon Determinator (MCD) and the 

calcimeter by regression analysis. This was done to test if the methods were able to 

reproduce the “true” C-concentrations of the standard mixtures. 

(2) A replicated (n = 3) subset of seven soil samples was used to compare precision and 

bias of the ThG method against ACI and CALC methods, respectively. A smaller 

number of samples was chosen because we already suspected that the ACI method 

was disadvantageous (see references in the introduction). Furthermore, replication 

of the same samples was necessary to prove general suitability of the methods. The 

subset covers the range of properties of the large sample set.  

(3) After proving the potential suitability of the CALC and ThG methods, for routine 

analysis, a large sample set (n = 76) was used to compare the ThG against the CALC 

method. CALC was chosen as the reference method, because it is most widely used. 
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Soil samples were collected from cropland, forest, grassland and wetland in temperate, 

subtropical and tropical regions in order to represent a wide range of soil properties (Table 

II.1). Contents (measured by ThG) of TC, SOC and SIC were in the range of 5.5 to 212.0, 

5.5 to 212.0 and 0 to 59.2 g kg-1 respectively (Table II.1). Collected soils were air-dried 

(45°C), passed through a 2-mm sieve, and stored at room temperature. Samples were ground 

with a planetary ball mill for homogenisation and to reduce the time needed for full carbonate 

removal with the calcimeter. Subsamples were dried at 105°C to correct results for residual 

water contents. Drying of a subsample is another potential source of uncertainty. However, 

some components of SOC could be lost when drying at 105°C (Bisutti et al. 2004). Soil pH 

was measured in a 1:5 soil-solution (v/v) suspension of the 2 mm-sieved material in 0.01 M 

CaCl2 (ISO 10390. 2005). 

Table II.1 Description of sampling sites with ranges of pH-values and contents of total 

carbon (TC) and the proportion of soil inorganic carbon (SIC) 

Location 

Number 

of 

samples 

pH 
TC 

(g kg-1) 

SIC 

(% of TC) 
Land use/land cover 

Sierra Madre 

Oriental, 

Mexico 

5 5.7-7.7 29.2 – 132.1 0 - 42 

Forest with different 

fire intensities 

 

Aterro Jacare' 

Brazil 
13 8.1-9.2 34.4 – 77.4 16 - 43 

Secondary forest, 

ancient Anthrosol 

 

Drakensberg, 

Republic 

South Africa 

8 4.0-4.3 
135.8 – 

212.0 
0 

Wet- and upland, 

grass/shrub vegetation 

 

Göttingen, 

Germany 
32 6.0-7.6 20.1-110.3 1-77 

Forest, grassland and 

cropland, soil 

developed on 

limestone 

 

Hainich 

Nationalpark, 

Germany 

18 3.5-5.4 5.5 – 75.7 0 

Deciduous forest, 

Luvisol developed on 

loess over limestone 
 

II.2.2 Analysis of the samples for TC  

Dry combustion with a CN analyser (Truspec CHN LECO, St Joseph, MI, USA) was 

conducted for measurement of TC. An amount of 20 to 200 mg of ground sample was scaled 

into a tin foil capsule and combusted in a resistance furnace at 950°C. After passing an 
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oxidising column (CuO) CO2 is measured by an infrared detector (ISO 10694. 1995; 

Skjemstad and Baldock. 2008). Calibration was done with certified standards (Leco, part no 

502-062, lot 1014; Leco Corporation, St. Joseph, MI, USA) over a range of 1 to 17 mg 

carbon. This method will be abbreviated by DC. Contents of TC measured by this method 

will be abbreviated by TCDC. 

II.2.3 Analysis of SIC with the calcimeter 

The calcimeter method is based on the reaction of SIC with HCl to CO2. The volume of 

evolved gas is measured by displacement of a water column. The method is extensively 

described in Horváth et al. (2005) and in ISO 10693 (1995). Between one and 10 g were 

scaled, depending on the reaction of the sample with 10% HCl in a preliminary test. 

Samples were transferred into the glass reaction vessels (250 ml) and were wetted with 20 

ml of distilled water. Wetting was necessary to avoid evolution of entrapped gas, which 

would have led to an overestimation of SIC. A plastic cup was filled with 5 ml of 10% HCl 

and placed into the reaction vessel. The reaction vessel was connected to the water column. 

The volume of displaced water was checked after 15 minutes of stirring. If the volume was 

not constant, stirring was continued until the volume was stable, but not longer than one 

hour. The displaced volume was measured in the calibrated tube with an accuracy of 0.1 ml. 

This corresponds to ca. 0.4 g kg-1 SIC when using 1 g and 0.04 g kg-1 SIC when using 10 g 

in weigh. Calibration was done with calcium carbonate (Reag. Ph. Eur, Merck, Darmstadt, 

Germany). Soil inorganic C (g kg-1) was measured as carbonate equivalents and calculated 

as 

TWPVSIC 1204.0  (1) 

where P is the air pressure (hPa), V the volume of displaced water column (ml), T is 

temperature (K) and W is the weight of the sample (g). The method will be abbreviated by 

CALC. The abbreviations SOCCALC and SICCALC will be used for calculated SOC values 

(TCDC –SICCALC = SOCCALC) and measured SIC values by the CALC method, respectively. 

The standard deviation for SOCCALC contents was calculated by error propagation (van 

Reeuwijk and Houba. 1998). 
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II.2.4 Analysis of TC, SOC and SIC in one subsample 

A Multiphase Carbon Determinator (MCD, RC-412, Leco, St.Joseph, MI, USA) was used 

for simultaneous analysis of TC, SIC and SOC by ThG (Bisutti et al. 2007; Chichester and 

Chaison. 1992). An amount of 10-25 mg of ground sample was scaled. The temperature of 

the MCD rose from 140°C to 900°C during 30 minutes, using O2 as carrier gas. The amount 

of CO2 evolved was measured by infrared detection three times per second. Due to the 

isolated peaks, CO2 evolved above 600°C was assigned as SIC. Calibration was done with 

certified EDTA (Leco, part no 502-012, lot 1035; Leco Corporation, St. Joseph, MI, USA) 

and CaCO3 standards (part no 501-034, lot 1016) over a range of 1 to 4 mg carbon. The 

method will be abbreviated by ThG. Contents of TC, SOC and SIC analysed by ThG will be 

abbreviated by TCThG, SOCThG and SICThG, respectively. 

II.2.5 Acidification 

Because acidification is up to now a required pre-treatment applicable in mass spectrometry 

of SOC (Midwood and Boutton. 1998) and is used as standard method (ISO 10694. 1995) 

we also quantified SOC and SIC contents by this method in a subset of seven samples. 

Carbonate was removed by adding 200 µL of 1 M HCl to the ground samples in a tin foil 

(approximately 25 mg). The acidified sample was dried at 45°C in an oven connected to a 

vacuum. This was repeated one time with 200 µL of 1 M HCl and several times with 100 µL 

of 1 M HCl, depending on the carbonate concentration. After acidification, DC was applied 

and SIC was calculated by subtracting SOC (acidified sample) from TC (not acidified, 

different subsample). Results from the acidification method were compared to the ThG 

method. The contents of SOC and SIC quantified by acidification will be abbreviated by 

SOCACI and SICACI, respectively. The standard deviation for SICACI contents was calculated 

by error propagation (van Reeuwijk and Houba. 1998). 

II.2.6 Data analysis and statistics 

To quantify precision and bias, seven samples out of the whole set were analysed three times. 

The F-test was performed to test if precision (i.e., equal variances) of the ThG method was 

equal to the CALC and ACI methods, respectively. Each of the two methods was tested 

separately against the ThG method. To test for bias (i.e., significant differences of means), a 

Student’s t-test was performed. The F- and t-values were calculated with Excel (Microsoft 

corporation) and compared to the critical F- and t-values (two-sided tests) given by van 
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Reeuwijk and Houba (1998). The null hypothesis assumed no difference in either variances 

or mean values. 

For a large number of samples (n = 76), a comparison of the CALC and ThG methods was 

performed. A linear regression was carried out with values of the CALC method as 

independent and those of the ThG method as dependent variables (van Reeuwijk and Houba. 

1998). T-values were calculated to test if the intercept of the regression was different from 

zero and if the slope was different from one. The following sample sets were compared: (1) 

the whole dataset of SOC values (n = 76), (2) the whole dataset of SIC values (n = 58, the 

acidic Hainich samples were omitted), (3) samples with pH-values < 6 (n = 29, Hainich, 

Drakensberg, parts of the Sierra Madre Oriental set) and (4) samples with pH values > 6 (n 

= 47). Linear regression was performed by using SigmaPlot 10.0 (Systat). A significance 

level of p ≤ 0.05 was used for all statistical calculations. 

II.3 Results and discussion 

II.3.1 Precision and bias of standard material 

Comparing theoretical and measured amounts (range of 0 to 120 mg C kg-1) of the mixtures 

of C-free silica-sand and carbonate standard gave highly satisfactory results for the 

calcimeter, the CN-analyser and the MCD. 

Table II.2 Regression equations with standard errors for the carbonate standards as quality 

control for the used instruments.  

 
Intercept  

 ± SE 

Slope  

± SE  
 df  t-values 

 (g kg-1)     Critical Intercept Slope 

ThG 0.30 ± 0.35 0.99 ± 0.01  4  2.78 0.85 1.55 

DC 0.21 ± 0.77 0.99 ± 0.00  4  2.78 0.28 1.70 

CALC -0.01 ± 0.00 1.07 ± 0.13  4  2.78 1.67 0.49 

The theoretically calculated C-content was used as independent and the measured C-content 

as independent variable. A t-test was performed to check if the intercept was significantly (p 

≤ 0.05) different from zero and the slope from one. Calculated t-values were compared to 

the critical t-value. The null hypothesis assumed no differences. Bold figures were used in 

the case the null-hypothesis was rejected. For abbreviations see text or Fig. II.1 

SE: Standard error; df: Degrees of freedom (n -2) 
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Table II.2 showed the results of the regression and their statistical evaluation. None of the 

intercepts differed significantly (p ≤ 0.05) from zero and neither did the slopes differed 

significantly from one. Therefore, all methods were generally suitable for routine laboratory 

analysis. 

II.3.2 Precision and bias of the replicated subset 

Results of the F-test showed that in soil samples, the determination of SICThG and SOCThG 

contents was as precise as determination of SICCAL, SICACI, SOCCAL and SOCACI contents 

(Table II.3). Only two exceptions occurred, in one case ACI was the less precise and in the 

other case the more precise method as compared to ThG. The CV of sample 1 for SICACI 

contents was unacceptably high (23.1%, Table II.4). This was a consequence of the high 

variation of the SOCACI content (CV = 9.8%), and subsequent propagation of the error to the 

relatively low SICACI content. In general, all methods were precise and could be used to 

reproducibly determine SIC and SOC contents. However, not only precision (i.e., small 

errors), but also accuracy (i.e., representing the “true” value) is essential for high quality 

laboratory analysis.  

Table II.3 Statistics for the comparison of the calcimeter (CALC) and acidification (ACI) 

method against the thermal gradient method (ThG). The F-test is indicative for the precision 

and the t-test for the bias of the methods. The condition for accepting the null-hypothesis 

(i.e., no difference between methods) is given in brackets behind the names of the tests. Bold 

figures indicate significant differences (p ≤ 0.05) between two methods. 

Sample SIC   SOC  

      

 ThG vs. CALC  ThG vs. ACI    ThG vs.   CALC ThG vs. ACI 

F-test (F < 39.0)     

1 3.09 26.96  22.90 3.65 

2 1.59 1.06  5.08 732.00 

3 17.07 39.03  1.65 26.46 

4 1.17 15.20  1.82 4.81 

5 11.05 2.82  1.53 11.27 

6 1.06 13.39  5.16 3.04 

7 1.15 17.58  2.21 6.87 

T-test (t < 2.78)     

1 4.89 1.17  4.20 2.08 

2 3.80 1.66  2.46 3.73 

3 23.42 2.68  5.37 5.98 

4 3.37 1.68  7.41 8.37 

5 0.82 2.56  7.49 18.08 

6 9.50 2.85  2.14 11.78 

7 1.49 3.61  7.68 7.25 
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Results of the student’s t-test showed that most of the SICThG and SOCThG contents were 

significantly different as compared to the corresponding contents determined by the two 

other methods (Table II.3 and Table II.4). Whereas SICCALC and SICThG contents did not 

systematically differ, SICACI contents were higher as compared to the SICThG contents: six 

out of seven mean values differed significantly and in five out of six significant cases the 

SICACI content was higher. Therefore, SICACI contents were likely to be overestimated. The 

case was clearer for determination of SOC contents. In all cases of significantly different 

mean values (five for SOCCALC and six for SOCACI), the SOCThG contents were higher as 

compared to the contents determined by one of the two other methods. This corroborates the 

assumption that a part of SOC can get lost due to the acid treatments (Bisutti et al. 2004; 

Midwood and Boutton. 1998). 

Table II.4 The contents of soil inorganic carbon (SIC) and soil organic carbon (SOC) in 

seven soil samples as determined by three different methods. Mean values of three analytical 

replicates and coefficients of variation (CV) in brackets. Bold figures indicate a significant 

difference (p ≤ 0.05, t-test) to the corresponding figure measured by ThG. For abbreviations, 

see text and Fig.II.1 

Sample SICCALC SICThG SICACI SOCCALC SOCThG SOCACI 

 (g kg-1) 

1 15.7 (2.6) 13.4 (5.3) 15.9 (23.1) 37.6 (1.1) 42.4 (4.5) 37.4 (9.8) 

2 18.5 (3.0) 20.1 (2.2) 19.5 (2.2) 16.8 (4.1) 19.2 (8.1) 15.8 (0.4) 

3 20.3 (1.0) 17.4 (0.3) 17.9 (1.8) 13.2 (10.6) 18.7 (5.8) 14.9 (1.4) 

4 23.3 (1.1) 24.0 (1.0) 25.0 (3.8) 19.0 (2.8) 21.8 (1.8) 17.3 (4.9) 

5 36.1 (0.7) 36.5 (2.4) 38.0 (1.4) 14.9 (3.9) 18.2 (2.6) 13.0 (1.1) 

6 49.0 (0.5) 51.1 (0.5) 52.8 (1.9) 18.1 (4.6) 19.2 (1.9) 14.3 (4.5) 

7 60.2 (2.5) 62.0 (2.3) 74.7 (7.9) 70.7 (2.1) 82.8 (2.7) 56.3 (10.5) 
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II.3.3 Comparison with the large dataset 

The comparison of SOCThG and SOCCALC contents is shown in Fig. II.1a. A high R² value 

(R2 = 0.99) was obtained for the regression and the slope (b = 0.99 ± 0.01) was not 

significantly different from one (Table II.5). Despite the close relation, the intercept of the 

regression between SOCCALC and SOCThG indicated a significant bias of 4.67 g kg-1. This 

bias is more pronounced in samples with low SOC values, such as cropland soils where 

management affects SOC contents only to a small extent (Körschens et al. 1998; Heitkamp 

et al. 2011). Furthermore, changes in the methodology for measuring SOC contents can lead 

to erroneous conclusions for time series.  

The bias between the methods in the whole dataset is shown in Fig. II.1b. In this case, the 

slope of the regression between SICCALC and SICThG contents was significantly lower than 

one (b = 0.91 ± 0.02). Consequently, the gap in measured contents of SICCALC and SICThG 

increased with increasing carbonate contents. This problem also appeared in other studies 

using different methods (Schmidt et al. 2012). Since most samples with high SIC contents 

had SOC contents < 30 g kg-1 the intercept of the regression for SOC contents in Fig. II.1a 

was affected more than the slope. It is likely that the reason for the slope > 1 was incomplete 

decomposition of carbonates by HCl after one hour in samples containing more than 30 g 

kg-1 SICCALC. For instance, Midwood and Boutton (1998) reported that it took up to three 

days to completely remove SIC from samples by acid treatments. The observation that the 

bias of the SICCALC contents depended on the concentration range has important implications 

for studies using e.g. chronosequence approaches (Kabala and Zapart. 2012; Kalbitz et al. 

2012). If SIC contents change over time, e.g., by decalcification, calculation of SOC and 

SIC balance using chronosequence approaches will be erroneous. Of course, the same 

concern applies for any comparison of samples with differing SICCALC concentrations, e.g., 

comparisons of top- and subsoil samples. 
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A: Whole dataset

C: Samples with pH < 6

B: Samples with measured SIC 

D: Samples with pH > 6

 

Fig. II.1 Comparison by linear regressions of total, soil organic and soil inorganic carbon 

contents as measured and calculated by different methods. (a) Soil organic carbon (SOC) 

contents as measured by the thermal gradient (SOCThG) method were compared to calculated 

SOC (SOCCALC) contents: total C was measured by dry combustion (TCDC) and inorganic C 

by a calcimeter (SICCALC), SOCCALC was obtained by difference. (b) Soil inorganic carbon 

contents as measured by the calcimeter (SICCALC) and the ThG method (SICThG). (c) Total 

carbon in acidic, carbonate-free samples (pH < 6) as measured by the CN analyser (TCDC) 

and the ThG method (TCThG). (d) As in (a) but with a set of samples with pH > 6. Parameters 

are given ± standard error. An uppercase asterisk after the parameter indicates that it is 

significantly different (t-test, p ≤ 0.05) from zero (intercept) or one (slope); “ns” denotes no 

significant difference. 
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Table II.5 Regression equations with standard errors for comparison of methods with the 

different dataset. SICCALC or SOCCALC values were used as independent and SICThG or 

SOCThG values were used as dependent variables. A t-test was performed to check if the 

intercept was significantly (p ≤ 0.05) different from zero and the slope from one. Calculated 

t-values were compared to the critical t-value. The null hypothesis assumed no differences. 

Bold figures were used in the case the null-hypothesis was rejected. For abbreviations and 

explanation of the sample subsets, see text or Fig. II.1. 

 

 
Intercept   

± SE 

Slope   

± SE  
 df  t-values   

 (g kg-1)     Critical Intercept Slope 

SIC -0.04 ± 0.40 0.91 ± 0.02  56  2.00 0.11 4.13 

SOC, whole set 4.67 ± 0.70 0.99 ± 0.01  74  1.99 6.71 0.81 

SOC, pH > 6 3.95 ± 1.41 1.04 ± 0.03  45  2.01 2.81 1.10 

SOC, pH < 6 -2.90 ± 0.63 1.01 ± 0.01  27  2.05 4.61 0.76 

SE: Standard error; df: Degrees of freedom (n -2) 

Since the “true” values are unknown, it was necessary to further elucidate reasons for the 

observed bias between the SOC contents measured using the different methods. The dataset 

was divided into subsets containing samples with pH < 6 (carbonate-free) and pH > 6 

(potentially containing carbonate, Walthert et al. 2010). Fig. 1c shows the relation between 

the TCThG and TCDC contents. Since no SIC should be present, the TC contents are regarded 

as being equal to SOC contents. Using the carbonate-free subset still revealed a significant 

bias (intercept of -2.90 ± 0.63 was significantly different from zero, Table II.5). The bias had 

a different sign, but the modulus was not significantly smaller (t-value of the intercept’s 

modulus: 1.45; t-value of the intercept: 6.20; df = 101; critical t-value: 1.98) as compared to 

that of the whole dataset (Fig. II.1a). The significantly negative bias of the carbonate-free 

subset indicated that the source of the positive bias in the whole dataset were the carbonate-

containing samples. Consequently, we presume that SOCCALC values were underestimated, 

when containing carbonate. 

The presumption that the source of the significant positive bias between SOCCALC and 

SOCThG contents was underestimation of SOCCALC contents was corroborated by Figure 

II.1d. In the dataset containing carbonaceous samples (pH > 6) the bias (a = 3.95 ± 1.41) was 

not significantly different from that of the whole dataset (t-value = 0.50; df = 119; critical t-

value = 1.98). It is likely that parts of SOC evolved in gaseous form (as CO2 or volatile 
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organic C) due to the acid treatment (Bisutti et al. 2004). Any evolved gas will be measured 

as carbonate equivalent by the CALC method and will lead to an underestimation of 

SOCCALC contents. 

II.4 Conclusions 

Precision of all tested methods confirmed their potential to be used as standard methods. 

However, use of the thermal gradient method systematically resulted in higher estimates of 

SOC contents. Thus, the suspicion that acid treatments lead to an underestimation of soil 

organic carbon contents was further corroborated by this study. When relative results are the 

focus of the study; e.g., management “A” results in higher C stocks compared to 

management “B”; all methods are suitable, provided the carbonate contents are in the same 

magnitude. Care has to be taken when comparing SOC contents in soil samples with 

markedly different carbonate contents. In this case the thermal gradient method is more 

reliable. The chosen method of SOC or SIC determination has to be taken into account in 

inter-study comparisons and values from different studies should be recalculated by suitable 

functions. 

Acidification of samples is still a required pre-treatment in mass spectrometry when the 

isotopic signal of SOC is of interest. Coupling an MCD with an isotope ratio mass 

spectrometer (IRMS) in order to assign isotopic signatures to SIC and SOC may be a 

valuable future advancement of the thermal gradient method. 
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III  Multaneous measurement of organic and inorganic carbon 

in dolomite-containing soils 

Truong Xuan Vuong, Jörg Prietzel and Felix Heitkamp 
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Abstract 

It is still open to question, which method is the best to quantify organic carbon (OC) and 

inorganic carbon (IC) in soils containing dolomite. Aims of this study were (1) to compare 

the accuracy of a novel thermal gradient (ThG), the classical calcimeter (CALC) and loss-

on-ignition (LOI) methods on a reference sample set with known proportions of OC present 

as soil organic matter (SOM) and IC present as dolomite, and (2) compare the results of the 

different methods on a set of soil samples with different dolomite and SOM contents. The 

CALC and LOI methods rely on separate quantification or removal of IC by acid or heat, 

whereas IC and OC can be quantified in a single run by the ThG analysis. The ThG method 

was the most accurate method in the reference sample set, especially when dolomite contents 

were high. On the soil sample set, ThG and CALC performed equally, but only when two 

outliers were eliminated. LOI was not satisfactory in any case on the sample set. Overall, 

ThG was the most reliable method for measuring IC and OC in dolomite-containing samples 

over the wide range of concentrations, but the more widespread CALC method is also 

acceptable. 

Keywords: Carbonate, Organic carbon, Dolomite, Calcimeter, Thermal gradient analysis, 

Loss on ignition 

  



III.  Simultaneous measurement of soil organic and inorganic carbon in dolomite-containing soils 

 28   

III.1 Introduction 

The differentiation of inorganic carbon (IC) and organic carbon (OC) is still challenging 

(Chatterjee et al., 2009). Accurate quantification of OC, however, is important regarding 

climate change and soil quality (Lal. 2004). Calcite and dolomite are the main forms of 

carbonate in soils (Bisutti et al. 2004). Several methods for the measurement of soil 

carbonate content exist (Loeppert and Suarez. 1996). Most of them base on the reaction of 

carbonate with acid. The most common method to analyse the carbonate content of soil 

samples is to treat the samples with HCl and conduct a volumetric determination of the 

released CO2. This method is called “Scheibler” or calcimeter (CALC) method. CALC is a 

cheap, simple and reliable method to determine inorganic carbon (IC), at least in samples 

containing mainly calcite (Horváth et al. 2005; Tatzber et al. 2007; Vuong et al. 2013). 

Dolomite, however, reacts more slowly than calcite; therefore it needs very long times to be 

removed by acid. Loeppert and Suarez (1996) reported that it takes up to 2 hour for dolomite 

samples to be completely dissolved by HCl. And Midwood and Boutton (1998) reported that 

it took up to 3 days to remove dolomite-derived IC with 0.5 M HCl. Effects of the different 

reaction speed may potentially be minimized by calibrating the CALC system with dolomite 

instead of calcite (Prietzel and Christophel. 2014). This, however, requires knowledge of the 

type of IC present in the sample, which may be critical in some regions lacking detailed 

geological information. Moreover, samples containing sulphide, will volatise H2S and, thus, 

induce an overestimate of CO2 volatilization (Hafner and Bisobni. 2007; Rozzi and Brunetti. 

1981); hence it causes a positive bias in measurement of IC (Hafner and Bisobni. 2007). 

Consequently, calculation of OC as the difference between total carbon (TC) and IC will be 

erroneous, too (Vuong et al. 2013). In some soils, the magnitude of this error may result in 

substantially different estimates for total SOC stocks (Kalbitz et al. 2013). 

Loss-on-ignition (LOI) is another method, which is widely used to determine OC. The total 

carbon concentration of a sample is measured, the sample is exposed to heat and the carbon 

concentration is measured a second time. After correction of weight loss during heating, the 

OC concentration is obtained (Chatterjee et al. 2009; Wang et al. 2011; Wang et al. 2012). 

There is however, no consensus on the appropriate cut-off temperature or duration of heat 

exposure. Temperature between 300 and 550°C and durations between 2 and 18 hours were 

reported (summarised in Chatterjee et al. 2009). Moreover, information about the 

performance of LOI in soils containing dolomite, not only calcite, seem to be missing. 
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In a prior study (Vuong et al. 2013), we could show that total carbon, organic carbon and 

inorganic carbon in the form of calcite could be quantified precisely and accurate by a 

thermal gradient method (ThG). In this study we focus on the ability to quantify dolomite-

derived IC by ThG. The aims of this study were (1) to compare the accuracy of ThG, CALC 

and LOI on a sample set with known proportions of OC and IC present as dolomite, and (2) 

compare the results of the different methods on a set of soil samples.  

III.2 Material and methods 

III.2.1 Samples and sample preparation 

a. Reference mixtures 

Natural dolomite and natural humus of the Bavarian Alps were used for analysis. Dolomite 

samples were retrieved from the Hauptdolomit formation from Guggenauer Koepfl 

(Biermayer and Rehfuess. 1985). Tangelhumus, which was free of inorganic carbon was 

collected for organic carbon samples which originated from the Guggenauer Koepfl as well 

(Prietzel et al. 2013). The recovered dolomite boulder was washed to remove external 

contamination and then crushed, sieved and ground to a particle size of ˂ 0.2 mm. The 

tangelhumus was also ground. Mixtures of dolomite, humus and quartz sand were prepared 

with various fixed mass ratios for artificial samples (see Table III.1). The mixtures were 

weighed and delivered directly in the grinding bowl of a planetary mill and ground to achieve 

good homogeneity and uniform grain size. The C contents of the dolomite (IC) and 

tangelhumus (OC) samples were measured by dry combustion (Euro-EA 3000, HEKAtech 

GmbH, Wegberg, Germany) and are abbreviated as ICREF and OCREF in the following. 

b. Soil samples 

Seventeen soil samples of different sources on dolomitic parent material were collected, air-

dried (45°C) and passed through a 2-mm sieve. Samples were ground with a planetary ball 

mill for homogenisation and to reduce the time needed for complete dolomite removal with 

the calcimeter. Soil samples were dried at 105°C to correct results for residual water 

contents. The samples are described in detail in Prietzel et al. (2013). 
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Table III.1 Mixing ratio of the dolomite-humus mixtures and the resulting theoretical 

concentrations of inorganic and organic carbon. Measured C content of humus and dolomite 

was 419.5 g kg-1 and 129.3 g kg-1, respectively 

Humus Dolomite Quartz  TC  IC  OC 

 (%)    (g kg-1)  

0 100 0  129.3 129.3 0.0 

1 99 0  132.2 128.0 4.2 

5 95 0  143.8 122.8 21.0 

10 90 0  158.3 116.4 42.0 

25 75 0  201.9 97.0 104.9 

33 67 0  225.1 86.6 183.4 

50 50 0  274.4 64.7 209.8 

67 33 0  323.7 42.7 281.1 

75 25 0  347.0 32.3 314.6 

90 10 0  390.5 12.9 377.6 

95 5 0  405.0 6.5 398.5 

99 1 0  416.5 1.3 415.3 

100 0 0  419.5 0.00 419.5 

       

0 75 25  97.0 97.0 0.00 

7.5 67.5 25  118.7 87.3 31.5 

37.5 37.5 25  205.8 48.5 157.3 

67.5 7.5 25  292.9 9.7 283.2 

       

0 50 50  64.7 64.7 0.0 

5 45 50  79.2 58.2 21.0 

25 25 50  137.2 32.3 104.9 

45 5 50  195.2 6.5 188.8 

       

0 25 75  32.3 32.3 0.0 

2.5 22.5 75  39.6 29.1 10.5 

12.5 12.5 75  68.6 16.2 52.4 

22.5 2.5 75  97.6 3.2 94.4 

III.2.2 Calcimeter 

The calcimeter (CALC) method is based on the reaction of carbonates with HCl to CO2. The 

volume of evolved gas is measured by the displacement of a water column. The method is 

extensively described in (Horváth et al. 2005) and in ISO 10693 (1995). A defined amount 

of sample (0.2 to 1.2 g), depending on the estimated carbonate content was transferred into 

the glass reaction vessel and wetted with 2 ml of distilled water. Seven ml of 4 M HCl were 

added. The sample was mixed with the HCl and stirred until the volume of the water column 

remained stable. The water volume displaced by the formed CO2 was measured in the 

calibrated tube. Calibration was done with dolomite, which was collected as described 

above. In the following, the calcimeter method will be abbreviated by CALC and IC 

measured by this method by ICCALC. 
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Total carbon was measured by dry combustion (TCDC) and OC was calculated as the 

difference of ICCALC (TCDC – ICCALC = OCCALC). 

III.2.3 Loss on ignition 

This method is based on the principle that OC is decomposed at lower temperatures as IC. 

One gram of soil sample (m0) with already known total carbon content (TCDC analyzed by 

dry combustion) was placed in a ceramic crucible, heated in a muffle oven at 500 ° C for 

four hours, and left to cool in a desiccator. Afterward, the sample was re-weighed (m500). 

Total carbon of the completely burnt (at 500 °C) sample was measured again and corrected 

by the weight loss obtained by the amount of inorganic carbon: 

 

Organic carbon (OCLOI) content is the difference of total carbon content (TCDC) and 

inorganic carbon (ICLOI) content. 

III.2.4 Thermal gradient analysis 

A multiphase carbon determinator (RC-412, Leco, St. Joseph, MI, USA) was used for 

analysis of IC and OC by ThG (Chichester and Chaison. 1992; Vuong et al. 2013). An 

amount of 10-20 mg of ground sample was scaled in quartz crucibles. The temperature ramp 

was programmed to rise from 140 to 900°C in ca. 20 min using pure O2 as carrier gas. The 

amount of CO2 evolved was measured by infrared detection three times per second (Figure 

1). Due to the isolated peaks, CO2 that evolved at temperatures higher than 600°C was 

assigned to inorganic carbon (Vuong et al. 2013). Calibration was done with certified EDTA 

(Leco, part no. 502-012, lot 1035; Leco Corporation, St. Joseph, MI, USA) and CaCO3 

standards (part no. 501-034, lot 1016) over a range of 1 to 4 mg carbon. The method will be 

abbreviated by ThG. Contents of TC, OC and IC analyzed by ThG will be abbreviated as 

TCThG, OCThG and ICThG, respectively. 

III.2.5  Data analysis and statistics 

Comparisons of the ThG with CALC as well as of LOI methods were performed. Linear, 

bivariate regression analysis was carried out with values of ICCALC, OCCALC, ICLOI, OCLOI, 

ICThG and OCThG as dependent variables and ICREF and OCREF values were used as 

independent variables (Fig. III.2; Webster. 1997). Similarly, linear bivariate regression 

analysis was carried out with values of ICCALC, OCCALC, ICLOI, OCLOI as independent 

500
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variables and ICThG and OCThG were used as dependent variables (Fig. III.3). T-values were 

calculated to test if the intercept of the regression was different from zero and if the slope 

was different from one. Linear regression was performed by using SigmaPlot 10.0 (Systat). 

A significance level of p ≤ 0.05 was used for all statistical calculations. 

III.3 Results and discussion 

III.3.1 Thermograms of humus and dolomite 

Fig. 1 shows the thermograms of humus and dolomite. ThG graphs illustrated that dolomite 

is decomposed at temperatures above 600°C and humus is decomposed in the temperature 

range below 600°C. This is in accordance with results from Plante et al. (2011) and Maharaj 

et al. (2007), who analysed soil samples with thermal analysis and reported that soil organic 

carbon and inorganic mineral carbon generally have been oxidized at temperatures below 

and above 600°C, respectively. There is, however, a small peak at temperatures below 600°C 

in the dolomite samples, which represents 3.8% of TCDC (4.8 g C kg-1) in the sample. It is 

likely, that this amount is OC bound in the Hauptdolomit bedrock. For instance, Köster et 

al. (1988) reported that OC contents of 3-15 g kg-1 are common in carbonaceous rocks of the 

Hauptdolomit formation. The OC value as calculated for the dolomite from the Guggenauer 

Köpfl by ThG is well within this range. That OC in the dolomite sample can be detected by 

ThG is an important advantage, especially compared to the CALC method, where due to the 

lack of commercially available lab-synthesized pure dolomite, bedrock dolomite has been 

used for calibration and assumed to consist exclusively of IC. Similarly, the small peak (2.4 

g C kg-1 or 5.6% of total C) above 600°C in the humus sample probably indicates small 

amounts of dolomite present in the sample. For instance, Mutsch (2001) reported a carbonate 

content of 19 g kg-1 (ca. 2.4 g C kg-1) in a top soil sample with a pH (CaCl2) of 5.8 from the 

Mühlegger Köpfl, which is only two kilometres away from the Guggenauer Köpfl). 
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Fig. III.1 Thermo-gram of humus (long-dash) and dolomite (solid line) samples. The short-

dashed line is the temperature and the vertical grey line indicates the division of inorganic 

and organic carbon. 

III.3.2 Reference mixtures 

For measurements of IC, both CALC and ThG showed a high precision, as indicated by high 

R²-values (0.998 and 0.995 for CALC and ThG, respectively, Fig. III.2). The LOI method 

showed a high scatter, and the R² of 0.848 shows that the method is not suitable to routinely 

analyse IC in dolomite-humus-mixtures with satisfying precision. Furthermore, the high 

intercept (18.28, Table III.2) indicates a strong overestimation of ICLOI contents, particularly 

at low concentrations. An overestimation, but less scatter, was also reported by Wang et al. 

(2012) for soils containing calcite. From the comparison of our reference samples with 

humus and dolomite, we conclude that the CALC and ThG methods are superior over LOI. 

Both methods (CALC and ThG), however, had slopes significantly lower than one (0.82 and 

0.87 for CALC and LOI, respectively) and ICThG had a significantly positive intercept (Table 

III.2). Contents of ICTHG, however, seem to be biased especially above ICREF contents above 

70 g kg-1, whereas deviation from the 1:1 line occurred much earlier for ICCALC (Fig. III.2). 

Therefore, the ThG method should be preferred when dolomite contents are very high. 

However, ICCALC contents did not have a significant intercept, indicating that the method is 

preferable for samples with low dolomite contents (ca. < 20 g C kg-1, Fig. III.2). In many 

studies, however, IC is determined to quantify OC contents in samples (Kalbitz et al. 2013; 

Vuong et al. 2013; Wang et al. 2012). 
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Fig. III.2 Scatter plots of different methods as compared to the reference mixtures (n = 25). 

The dashed line is the 1:1 line and the thick black line is the linear regression. IC: inorganic 

carbon; OC: organic carbon; CALC: calcimeter; LOI: loss-on-ignition; ThG: thermal 

gradient; REF: reference mixtures of humus and dolomite. 

Coefficients of determination for OC measurements were high for all three methods (R² ≥ 

0.978), although lowest for OCLOI (Fig. III.2). Interestingly, the latter method performed 

much better for OC as compared to IC determination. The slope, however, was significantly 

lower than one (0.90, Table III.2). Although there was a significant positive bias (intercept 

= 7.36 g kg-1, Table III.2) in OCThG, this method still showed the highest accuracy. There 

was a positive bias (17.93 g kg-1) for OCCALC and the slope was significantly smaller than 
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one. The very high intercept can probably be attributed, at least in part, to the nature of the 

reference samples: in case OCREF contents were small, ICREF contents were high. As 

discussed above, this causes underestimation of ICCALC and hence overestimation of OCCALC. 

From the reference sample set, we conclude that ThG is the most reliable method for 

measuring OC in dolomite containing samples over a wide range of OC and IC contents. 

The finding that ThG is suitable to quantify OC in reference mixtures was also demonstrated 

by Bisutti et al. (2007) for calcite and magnesite. 

Table III.2 Regression equations with standard errors for comparison of methods in the 

different datasets (reference mixtures: Fig. III.2; soil samples: Fig. III.3). Bold figures were 

used in the case that intercept or slope differed significantly (p ≤ 0.05) from zero or one, 

respectively. For abbreviations and explanation of the sample subsets, see text or Fig. III.2 

and III.3. 

 Intercept  ± SE Slope  ± SE  t-values 

 (g kg-1)  Critical Intercept Slope 

Reference mixtures (df = 23) 

ICCALC vs ICREF -0.99 ± 0.52 0.82 ± 0.01  2.06 1.92 22.75 

ICLOI vs ICREF 18.28 ± 5.34 0.89 ± 0.08  2.06 3.24 1.42 

ICThG vs ICREF 3.34 ± 0.87 0.86 ± 0.01  2.06 3.87 10.64 

OCCALC vs OCREF 17.93 ± 2.61 0.95 ± 0.01  2.06 6.84 4.23 

OCLOI vs OCREF 1.05 ± 5.87 0.90 ± 0.03  2.06 0.18 3.50 

OCThG vs OCREF 7.36 ± 1.82 1.01 ± 0.01  2.06 4.04 1.00 

Soil samples (df = 15) 

ICThG vs ICCALC 16.69 ± 9.11 0.81 ± 0.16  2.13 1.83 1.22 

ICThG vs ICLOI -0.57 ± 1.79 0.88 ± 0.02  2.13 0.32 5.21 

OCThG vs OCCALC 11.60 ± 8.49 0.78 ± 0.10  2.13 1.37 2.31 

OCThG vs OCLOI 7.97 ± 3.33 1.11 ± 0.05  2.13 2.40 2.27 

Soil samples without outliers (df = 13)     

ICThG vs ICCALC 3.67 ± 2.58 0.94 ± 0.04  2.16 1.42 1.60 

OCThG vs OCCALC 4.92 ± 3.25 0.97 ± 0.04  2.16 1.51 0.75 

SE: Standard error; df: Degrees of freedom (n-2) 

III.3.3 Soil samples 

When soil samples are analysed, the “true” values are unknown and, therefore, it can only 

be tested if different methods are consistent with each other. Since CALC and LOI are 

established methods, we compare them to the novel ThG approach. When comparing both 
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thermal methods (LOI and ThG) it became obvious, that for both IC and OC significant 

differences occurred (Fig. III.3, Table III.2). Taking into account the results of the reference 

mixtures, we conclude that the ThG method is more reliable as compared to LOI. Most 

likely, this is the case because evolved gas is measured directly by ThG and scaling and 

repeated measurements are avoided. The relationship between CALC and ThG methods was 

poor (R² of 0.638 and 0.817 for IC and OC, respectively; Fig. III.3) when the whole dataset 

was included in the statistical analysis.  
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Fig. III.3 Comparison of contents of organic (OC) and inorganic carbon (IC) quantified by 

the thermal gradient method (ThG), calcimeter (CALC) and loss-on-ignition (LOI). Set of 

soil samples (n = 17). Long-dashed thin line: theoretical 1:1 line; thick solid line: regression 

with all samples; short-dashed thick line: regression without outliers. 

The strong pronounced difference between CALC and ThG was surprising, since Vuong et 

al. (2013) showed relatively close relationships of these methods when using sample sets 

containing calcite. In our study, the deviation could be attributed mainly to the presence of 

two outliers. Eliminating the outliers yielded close relations, with no significant differences 

to zero (intercept) or one (slope) in the regression equations (Table III.2). Unfortunately, 

there is no explanation why the two outliers occurred in the CALC, but not in the thermal 

(ThG, LOI) methods. Increasing the reaction time may help in this issue (Loeppert and 
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Suarez. 1996; Midwood and Boutton. 1998), but this would be a serious drawback 

concerning the standardisation of the CALC method. 

III.4 Conclusions 

Concerning the reference mixtures, no method was able to determine the theoretical values 

perfectly. The ThG method, however, performed best of all three methods, especially in 

determining organic carbon, where a part of the significant offset may be explained by the 

presence of minor amounts of OC in the investigated dolomite used as reference material for 

IC. When using soil samples, both ThG and CALC performed equally, with the exception 

of two outliers. “Outliers”, however, are an inherent feature of natural samples. Therefore 

and under consideration of the reference mixtures, we conclude that the ThG method is the 

best option when analysing samples containing dolomite, because results were the most 

accurate over the wide range of different contents of OC and IC. Since an RC-412 may not 

be available in many laboratories, use of the CALC method is still a reasonable choice, 

especially when dolomite contents are low or when performing comparisons. In the latter 

case, the relatively small error applies to each treatment, rendering relative values valid. Loss 

on ignition should be avoided when analysing samples containing dolomite. 
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Abstract 

Evolved gas analysis during ramped combustion increased the value of thermal methods, but 

it could not yet be used to quantify carbon contents in soil organic matter and its fractions. 

The presented thermal gradient method overcomes these problems and it was shown by 

means of standard additions and methodological comparisons that it also can be used to 

measure the stability of soil organic matter. Four main peaks of organic carbon fractions 

were recorded at the temperature ranges: 140-300°C, 300-400°C, 400-450°C and 450-

600°C. Indications are shown that the thermal fractions are ecologically relevant. Therefore, 

thermal gradient analysis has the potential to be used in routine measurement to determine 

organic, inorganic and total carbon as well as the stability of organic matter in a single 

analytical run. Care has to be taken when samples with high C-concentrations are analyzed. 

Here, some methodological adjustments are necessary. In any case, small examples like 

comparing different land use within a region according to their soil organic carbon fraction 

revealed that much more information can be withdrawn from the presented thermal gradient 

method in comparison to regular bulk C measurement. The high sample throughput is an 

advantage particularly for larger scale analyses on land use systems and land use change.  

 

Keywords:  Thermal analysis, Soil carbon, Carbon fraction, Labile carbon, Stable carbon, 

Land use change  

  



IV Highly resolved thermal analysis as a tool for soil organic carbon fractionation in landscapes 

 40   

IV.1 Introduction 

Soil organic matter (SOM) is a key component in ecosystems due to its importance for 

nutrient cycling, soil structure, soil fertility and as sink or source of atmospheric CO2 (Lal. 

2004). SOM is a continuum of molecules with different properties regarding chemistry and 

turnover (Amundson. 2001; Baldock et al. 2004). Being the primary source for energy for 

heterotrophic organisms, both the properties of SOM as well as its association to the mineral 

phase are key to biochemical cycling in soils. Therefore, there is demand for fractionation 

methods (von Lützow et al. 2007), particurlarly for larger scales like landscapes that require 

larger numbers of samples (Herbst et al. 2012). 

Physical, chemical, biological, and thermal methods have been proposed to separate 

different SOM fractions (Christensen. 2001; von Lützow et al. 2007; Plante et al. 2009; 

Heitkamp et al. 2012). Generally, at least three fractions are proposed and termed labile, 

intermediate and stable, according to their different turnover times (Amundson. 2001; von 

Lützow et al. 2008). Physical methods include fractionation according to primary particle 

size, specific density and aggregate size. It is assumed that sorption to primary particles and 

physical occlusion within aggregates are relevant mechanisms to stabilise SOM (Baldock  

and Skjemstad. 2000; Heitkamp et al. 2012). Among wet chemical methods, hot water 

extractable carbon (HWC) was shown to be a reliable measurement for labile C (Leinweber 

et al. 1995; Ghani et al. 2003). Various chemicals were tested to isolate stable SOM fractions, 

of which H2O2 and Na2S2O8 proved to be most suitable (Helfrich et al. 2007; Jagadamma et 

al. 2010). von Lützow et al. (2007) recommended to use a combination of different methods, 

but this approach has the drawback that some methods may isolate overlapping fractions. 

Therefore, a single method, which is capable to isolate several SOM fractions will be an 

important advancement for fractionation methods. 

For the latter a group of methods, thermal methods are promising for SOM fractionation. 

Thermal methods and their applicability for SOM fractionation were reviewed in detail by 

Plante et al. (2009) and the potential for using thermograms as a base for SOM modelling is 

dicussed in Bruun et al. (2010). All thermal methods have in common, that properties of a 

certain material are monitored during exposure to heat in a specified atmosphere. The 

underlying principle in SOM research is that the liberation of organic compounds in relation 

to increasing temperature should be directly related to their bioavailability or recalcitrance 

(Rovira et al. 2008), which is directly related to microbial decomposability (Leifeld and von 

Lützow. 2014). One subgroup of thermal methods (differential thermal analysis, DTA and 
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differential scanning calorimetry, DSC) is used to characterise endothermic or exothermic 

reactions at certain temperatures. These methods were often applied in decomposition 

studies to indicate changes in the energy content of organic materials (Rovira et al. 2008; 

Plante et al. 2009). Thermogravimetry (TG) is the continuous measurement of mass loss 

during constant heating. A general challenge for this application encompasses the multiple 

sources of mass loss at different temperatures (water, changes in the mineral matrix). 

Thermal methods were markedly improved by evolved gas analysis (EGA) (Plante et al. 

2009; Fernández et al. 2012; Plante et al. 2013). For this technique, a CO2 analyzer is coupled 

with the combustion unit and, thus, CO2 evolution can be related to mass loss. Fernández et 

al. (2012) coupled TG, DSC and EGA and concluded that especially DSC profiles were 

highly correlated (r > 0.90) with CO2 evolution. The recovery of total C (TC) of samples 

was, however, only slightly higher than 80%. Moreover, the resolution of the thermograms 

is not always suitable to calculate SOM fractions from clearly distinct peaks. This means 

that DSC-EGA provides valuable information on the overall stability of SOM (Peltre et al. 

2013; Marin-Spiotta et al. 2014), but is not suitable for quantitative analysis of organic 

carbon (OC), inorganic carbon (IC) and TC.  

The quantitative determination of TC, OC and IC in a single run by thermal analysis was 

proven by Vuong et al. (2013). They tested a multiphase carbon determination (ramped 

combustion with highly resolved infrared CO2-detection), and concluded that this thermal 

gradient method (ThG) is even advantageous over classical methods for OC and IC 

differentiation and also accurate in quantifying TC. Moreover, the thermograms revealed the 

presence of several peaks below 600°C, i.e. the range where OC was detected. Therefore, 

the ThG measurements may even provide additional information on the stability of SOM, 

potentially resulting in a powerful tool, especially when a high sample throughput is 

required. 

In the present study, our objectives are to (1) test if the presented ThG is suitable for the 

quantification of ecological meaningful differences in organic carbon fractions for both soil 

and material samples of different carbon stability; (2) corroborate the findings by using a 

standard addition approach; (3) compare the ThG method with established methods for 

measuring labile and stable C and (4) test applications of the proposed method for process 

studies and particular landscape and other larger scale approaches. 
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IV.2 Material and Methods 

IV.2.1 Setting of the thermal gradient method 

The used device is a Multiphase Carbon Determinator (RC-412, Leco, St. Joseph, MI, USA), 

which consist of a furnace which can be programmed for ramping (increase of temperature 

per unit of time) and a coupled IR-detector for CO2 quantification (three times per second). 

During the analysis of the thermograms, it was apparent that the region assigned as OC (< 

600°C) consisted of several overlapping peaks (Fig. IV.1), which showed similar patterns 

for different soils and materials. After reviewing the literature (see introduction) and 

deconvolving the peaks (Peakfit 4.12, Saytat Software Inc., San Jose, CA, USA; see 

appendix), temperature ramps were added to divide the most obvious existing peaks. It was 

done to achieve a better separation of the peaks (Fig. IV.1). Organic carbon evolved as CO2 

was classified into four ranges: 140-300°C (C140-300); 300-400°C (C300-400); 400-450°C (C400-

450) and 450-600°C (C450-600), respectively (see also Supplementary Information Table S1 

and Figures S2 and S3). CO2 evolved above 600°C was proven to originate from IC (Maharaj 

et al. 2007; Fernández et al. 2012; Vuong et al. 2013). To convert the signal into C 

concentrations, the total area within each defined temperature range was used. Sometimes, 

less clear peaks were overlapping. To guarantee reproducibility, only the most clearly 

defined peaks which appeared in all tested samples were differentiated.  

Calibration was done with CaCO3 and EDTA standards (Leco Corporation, St. Joseph, MI, 

USA). These standards were also analysed every fifth sample as a quality control. An amount 

of 10 to 20 mg finely ground sample material was scaled into quartz crucibles. The amount 

of sample may affect the results (Fernández et al. 2011). We tested two different soils having 

different C contents with sample amounts in the range of 10-40 mg. In the sample with high 

C-contents. Therefore, the optimal sample weight was in the range of 10-20 mg (supporting 

information, Table S2, Figure S4).  

The parameters of the heating program are given in Table IV.1. The ramp (increase in 

temperature per minute) was tested with 12 and 35°C min-1 (see supporting information). 

Since there was no significant or relevant difference between the results of both ramps, the 

faster setup was chosen to increase sample throughput to be designed for landscape 

approaches. In addition, we tested two setups, having the same heating rate of 35°C min-1 

with and without plateau holds. Again, the results showed that there was no significant 

difference in fraction size between two setups (see supporting information, Table S1, Figures 

S2 and S3). Moreover, the peaks of the setup with heating rate 35°C min-1 with holds were 
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separated better than that of heating rate 35°C min-1 without holds. Therefore, we chose the 

parameter of the heating program as an optimal setup given in table IV.1. With this setup 

analysis time was 20 minutes. Another 20 minutes are needed until the oven cools down, 

increasing analysis time to ca. 40 minutes per sample. 

Analysis of TC, OC and IC was proven to be precise and accurate (Table IV.1; Vuong et al. 

2013). Unfortunately, there are no standards, which can be used for specific temperature 

ranges. To test reproducibility, five different soil samples were measured in three repetitions. 

The pooled coefficient of variation (CV) was 7.9%, 6.4%, 4.8% and 7.2% for the organic 

fractions. The CVs were slightly lower when using relative values (% of TC; Table IV.1).  

Table IV.1 Settings of the temperature profile of the MCD RC-412 with abbreviations of 

the corresponding fractions 

Temperature Abbreviation Ramp Hold  CV 

     absolute relative 

/ °C  / °C min-1 / s  / % / % 

140-300 C140-300 35 100  7.9 6.2 

300-400 C300-400 35 120  6.4 5.3 

400-450 C400-450 35 100  4.8 4.1 

450-600 C450-600 40 120  7.2 5.3 

600-900 IC 60 100  2.5 1.4 

140-600 OC n/a n/a  4.8 1.9 

140-900 TC n/a n/a  3.4 n/a 

CV: coefficient of variation 

IV.2.2 Materials and soil samples 

Three different sample sets were used to indicate the suitability of the method for carbon 

fractionation. The first sample set includes different organic materials and samples differing 

in their decomposability and/or stage of decomposition. We assumed that wood char 

consisted mainly of stable, grass char of intermediate stable and starch of labile material. 

This set is mainly used to explore if the general pattern of the ThG method fits the 

expectations (see descriptions below). The second sample set reflects top soils with different 

properties spiked with fixed amount of reference materials (wood char and wheat starch). 

The set was used to test the recovery rate of wheat starch and wood char in OC fractions of 

different soil samples analysed by the ThG method. The second sample set was also used to 

compare ThG with established laboratory methods in determining labile and stable organic 
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carbon fractions in spiked soil samples. The third sample set was used to give examples for 

application of the method. 

Sample set 1. Starch, charred rice straw (grass char) and charred wood were used as samples 

with different stabilities. Charred straw and wood were obtained from M.W.I. Schmidt, 

University Zürich and were described by Hammes et al. (2008). In addition, three different 

types of soil samples were selected for the present study and for demonstration of the 

thermogram: 

(1) Anthrosol from the Brazilian Pantanal. This soil type is similar to the Amazonian 

“terra preta” (Glaser and Birk. 2012) and developed under influence of 

anthropogenic input of organic material, such as charcoal, manure and bio wastes. 

A high proportion of stable C was expected due to a high degree of humification 

and char addition (Glaser and Birk. 2012). 

(2) Sandy Cambisol with high sand content under cropland use. Due to the land use, 

the labile C pool should be depleted. The stable C pool should be relatively small, 

due to a lack of stabilisation by organo-mineral associations in the sandy soil (for 

a detailed description, see Heitkamp et al. 2011).  

(3) Wetland soil, classified as Histosol. Water logging hampers mineralisation of 

organic matter. Therefore, it is expected that a high proportion of labile C was 

preserved, due to environmental conditions (Krüger et al. 2013). 

(4) Light and heavy fraction material from a density fractionation of the sandy 

Cambisol was used. A major difference between the fractions is the mineral 

association of carbon in the heavy fraction, whereas light fraction material occurs 

“free” in soil. The methodology and origin of the samples is described in 

Heitkamp et al. (2011). Here, the clay and silt fraction (< 53 µm) of the heavy 

fraction was used. We tested if differences between the light and heavy fractions 

occurred. Light fraction material was shown to contain less recalcitrant 

compounds (Helfrich et al. 2006) and this difference should therefore be 

detectable by the proposed ThG method. 

 

Sample set 2. Standard additions are often used to evaluate new methods. In this case, 

however, there is no specific standard for individual fractions available. Therefore, we spiked 

four soil samples with wheat starch and wood char as surrogates for mainly labile and stable 

OC, respectively. To deal with the problem that the spiking materials occurred in all four 
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thermal fractions, both starch and char were added to quartz sand at the same rates as to soil 

samples (see below). The measured distribution among fractions of the sand-starch and sand-

char mixtures were defined as “standard”. Based on the former soil carbon analysis by 

Vuong et al. (2013), four top soil samples (0-10 cm), with different contents of organic and 

inorganic carbon were chosen: 

(1) WE: wetland soil, classified as Histosol. Water logging hamper mineralization of 

organic matter in the Drakensberg mountains, South Africa (for a detailed 

description, see Krüger et al. 2013). 

(2) FOR: forest soil, classified as Rendzic Cambisol developed on limestone near 

Goettingen, Germany. 

(3) CRloam cropland soil classified as clay loam Rendzic Cambisol, developed on 

limestone near Goettingen, Germany. 

(4) CRsand cropland soil classified as sandy Cambisol soil near Darmstadt, Germany 

(Heitkamp et al. 2009). 

(5) CON: quartz sand (p.a. Merck, Darmstadt, Germany). 

Wheat starch and wood char were added with two different rates: 2 and 16 g kg-1 soil 

(amendment with OC: 0.83 and 6.57 g kg-1 , and 1.49 and 11.75 g kg -1 for wheat starch and 

wood char, respectively), as suggested by Roth et al. (2012). All measurements were 

repeated three times. 

The spiked samples were also used to compare ThG with hot water extraction and wet 

oxidation with Na2S2O8. Since starch was completely oxidised by Na2S2O8, whereas wood 

char was not dissolved by the hot water treatment, hot water extraction results are only 

reported for starch and wet oxidation results only for wood char. 

Sample set 3. This sample set was used to demonstrate two potential applications. 

The density fractions described in sample set 1 were derived from a fertilisation experiment. 

These samples were used to test if effects of fertiliser rate and/or type are detectable. Briefly, 

mineral fertiliser with straw incorporation (MSI) was compared with application of farmyard 

manure (FYM), each at low and high rates (50 and 150 kg N ha-1). These treatments were 

applied for 28 years in the long term fertilisation experiment, Darmstadt Germany.  

The effect of the major land use categories (forest, meadow, cropland) on different thermal 

fractions was quantified. Forest (FOR) and cropland (CRloam) samples were already 
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described in sample set 2. Land was differently used, but environmental conditions were 

remarkably equal since climate (mean annual temperature of 8.7°C, 865 mm annual 

precipitation), topography (plateau), geology (limestone) and soil type (mosaic of rendzic 

Cambisols and rendzic Leptosols, texture of loamy clay) were the same. The forest is 

dominated by European beech (Fagus sylvatica L) and was likely used for grazing and fuel 

extraction in the past centuries and is now under extensive management. In the 13th century 

the forest was converted to agricultural use at the meadow site (Müller. 2010). The cropland 

was used as such at least since 1784 (Preutenborbeck. 2009). Since 1980, the area serves as 

experimental station for the Georg-August-Universität Göttingen, Germany.  

Table IV.2 Abbreviations, as well as contents of organic carbon, inorganic carbon and the 

C/N-ratio of the used soil samples and materials 

Sample Abbreviation  OC IC  C/N 

ratio 

   / g kg-1   

Starch -  417.4 nd  316 

Grass char -  586.3 nd  47 

Wood char -  746.8 nd  197 

Anthrosol, 

rainforest 

-  39.9 13.5  8 

Histosol WET  157.1 0.78  17 

Loamy 

Cambisol, 

beech forest 

FOR  94.1 2.60  12 

Loamy 

Cambisol, 

cropland 

CRloam  18.2 50.4  12 

Sandy 

Cambisol, 

cropland 

CRsand  6.7 0.2  12 

Quartz sand CON  0.4 nd  nd 

Nd: not detectable 

IV.2.3 Description of established methods 

To compare our results with established methods, hot water extractable carbon was selected 

as a measure for labile C and a wet oxidation with Na2S2O8 was used as a measure for stable 

C.  
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The hot-water extractable C (HWC) was determined on air dried samples following the 

method of Ghani et al. (2003). Briefly, 3 g of soil were extracted for 16 hours at 80°C with 

30 ml distilled water. The suspension was filtered (0.45 µm) after cooling and the organic 

carbon concentration in the filtrate was determined with a Dima-TOC 100 (Dimatec, Essen, 

Germany). 

Wet oxidation (WOX) with Na2S2O8 was performed according to Helfrich et al. (2007). 

Briefly, 0.5 gram of soil was dispersed in 250 ml distilled water by ultrasound (440 J ml-1). 

Then, 20g Na2S2O8
 buffered with 22 g NaHCO3 were added. The oxidative treatment lasted 

for 48 hours at 80°C on a heated magnetic stirrer. The sample residue was washed twice with 

40 ml distilled water and traces of the carbonate buffer were removed by adding 20 ml 0.01 

M HCl. Afterwards sample was washed until pH 6-7, freeze-dried and analysed for C 

contents (Truspec CHN LECO, St Joseph, MI, USA). The residue represent the oxidation-

resistant and hence most stable fraction of SOM. 

IV.3 Data analysis and statistics 

Probability levels were generally 95% for all statistical analysis, which were performed with 

SPSS 20.0.0. (IBM SPSS Statistics). Homogeneity of variances (F-test) and normal 

distributions (Histograms and Kolmogorov-Smirnoff test) were checked. Pearson correlation 

coefficients were calculated for the comparison of different methods (n = 15). In the case of 

the correlation between HWC and C140-300, both datasets were log-normal distributed and 

were transformed correspondingly before analysis. 

For the standard addition approach of ThG method, comparisons were performed between 

the spiked controls (adjusted for “background” concentrations, i.e. the un-spiked sample) as 

reference and the spiked soil samples (also adjusted for background concentrations). A 

homo- or heteroscedastic t-test (depending on the results of the F-test, see supporting 

information) was used for statistical evaluation (n = 3). For the standard additions of starch 

and char the recovery in the control for the hot water extraction and chemical oxidation was 

not suitable to use the same approach. Here, an ANOVA was calculated. Recovery rates (R) 

of the spikes were calculated as: 

 
A

SS
R A 
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Where SA is the C-concentration (g kg-1) of the spiked sample/fraction, S is the C-

concentration (g kg-1) in the original sample/fraction and A is the amendment rate (g C kg-1) 

rate of the spike. 

The significance of differences between light and heavy fractions was checked by a student's 

t-test (n = 16). Treatment (fertiliser type and rate) effects (n = 4) within light and heavy 

fractions were analysed by a mixed model with SAS 9.1 (SAS Institute Inc., Cary, USA), 

where fertiliser type and rate were fixed effects, whereas the spatial structure of the field 

experiment was included as random effect. Details were described by Heitkamp et al. (2009). 

The effects of land use on thermal fractions was analysed by a one-way ANOVA, followed 

by Fisher’s least significant difference as post-hoc test (n = 9). Detailed results of the 

statistics are provided in the supporting information. 

IV.4 Results and discussion 

IV.4.1 Thermal fractions of material and soil samples 

The individual peak maxima for all tested soils and materials were located at similar 

temperatures having only small deviations (Figure IV.1). These peak positions fit well to 

positions reported by numerous authors (summarised in Plante et al. 2009) and to the 

temperature ranges reported by Dorodnikov et al. (2007) as well. These authors used 

thermogravimetry coupled with differential scanning calorimetry (TG-DSC) to separate OC 

fractions into four temperature ranges (values of this study in brackets, Table IV.1): 190-

310°C (140-300°), 310-390°C (300-400°C) , 390 – 480°C (400-450°C) and 480-600°C 

(450-600°C). The small differences are likely a consequence of different resolutions. Only 

4 out of 13 studies (compiled in Plante et al. 2009) reported starting temperatures below 

200°C, but our data (Figure IV.3) showed a relevant release of carbon below 200°C. Demyan 

et al. (2013) also reported four components of soil organic matter, which they related to 

organic functional groups. The peak temperature of these groups were close to the ones of 

this study (Figure IV.1). Moreover, Plante et al. (2013) reported (local) peak maxima near 

290, 350, 420 and 490°C. Hence, it is likely that these repeatedly reported OC fractions are 

meaningful in terms of the ecological function of soil organic carbon stability. This was 

corroborated by analyzing the chemical composition and the 14C content of these thermal 

fractions (Plante et al. 2013; Demyan et al. 2014). Consequently, we argue here, that the well 

resolved four fractions identified within a single analytical run is a progress for more 

qualitative soil carbon analyses for landscape and other larger scale studies. Wood char 

revealed peaks in all four OC fractions (Figure IV.1). 300°C representing the most labile 
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fraction. Thermo-labile wood char carbon may fit to the finding that charcoal is not entirely 

inert (Hammes et al. 2008; Bruun et al. 2010). Grass char differs in chemical structure to 

wood char and thus different thermal gradient pattern were found (see Fig. IV.1). 

 

Fig. IV.1 Thermograms of material and soil samples. The peak above 600°C was proven 

to be inorganic carbon and is therefore delimited by the dashed grey line. The numbers 

represent the temperatures for peaks and shoulders. 
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The largest peak area of grass char occurred in the range between 300-400°C indicating that 

grass char is more prone to decomposition than wood char, which was recently shown by 

Hilscher and Knicker (2011). Leifeld (2007) analysed the same grass and wood char with 

DSC and reported similar temperature ranges of the highest peaks. Moreover, Fernández et 

al. (2012) showed that CO2- and DSC-profiles were highly correlated. Therefore, the ThG 

method produced reasonable results for the different chars regarding the distribution of C 

among fractions of different thermo-stability. 

According to our expectations, large peak areas were detected for the temperature ranges of 

400-450°C and 450-600°C and lower peak areas in the temperature range of 300-400°C. 

However, small but significant peaks were also detected for the temperature range of 140-

Highest peak areas for starch were found at temperatures < 300°C as expected. However, 

relevant amounts were still detected at higher temperatures, which indicates that analysis of 

highly labile materials may be biased as was shown for wood (Leifeld. 2007). Nevertheless, 

SOM normally does not contain high proportions of such pure and labile materials due to 

their fast turnover and microbial decomposition in any soil environment. 

High proportions of thermo-stable C were expected in the Anthrosol, due to high proportions 

of black carbon and other highly condensed aromatics (humified material) frequently found 

in such soils (Glaser and Birk. 2012). In the cropland soils, especially labile SOM should be 

depleted due to cultivation (Heitkamp et al. 2012). Expectations were met for both soils, 

since highest signals occurred in the range of 450 – 600°C and 300 – 400°C for the Anthrosol 

and the cropland soil, respectively. The cropland soil additionally had a sandy texture (85% 

sand) and, therefore, relatively low amounts of SOM were stabilised in organo-mineral 

complexes (Heitkamp et al. 2011). Consequently, only low signals for stable carbon were 

found (Fig. IV.1). Large amounts of labile organic carbon due to water logging preservation 

were expected for the wetland soil which was basically confirmed (Figure IV.1). 

Additionally, rather high amounts of C were registered for the regions 300 - 400 and 400 - 

450°C. In the Drakensberg of South Africa, the wetlands usually run dry during the dry 

season in winter. Furthermore, surrounding grassland of the sampling location were burnt 

every other year (Hammes et al. 2008). Therefore, relevant amounts of grass char and/or soot 

particles are likely to be present in the wetland sample as well as a higher degree of 

humification, which both explain the high proportion of more stable organic carbon. 

The ability to isolate SOC fractions of different stability was further tested by using density 

fractions from a long-term fertilisation experiment (Heitkamp et al. 2011). Our results show 
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that the heavy fraction contained consistently less carbon, which evolved at temperatures 

below 400°C as compared to the light fractions (Table IV.6). Specifically, proportions of 

C140-300 (34.5 and 41.2% of OC in heavy and light fractions, respectively) and C300-400 (34.4 

and 39.7 in heavy and light fractions, respectively) were significantly lower and proportions 

of C400-450 (15.0 and 10.1 in heavy and light fractions, respectively) and C450-600 (16.1 and 

8.9 in heavy and light fractions, respectively) were significantly higher as compared to light 

fraction carbon (Table IV.6). Carbon in the heavy fraction was shown to be more 

decomposed, as revealed by 13C nuclear magnetic resonance (NMR) measurements (Helfrich 

et al. 2006). Therefore, it is reasonable to assume that the results of the ThG are related to 

the higher degree of decomposition of carbon in the heavy fraction. Both organo-mineral 

association, as well as a higher recalcitrance are likely responsible for the higher thermal 

stability of SOM in the heavy fraction as compared to the light fraction. 

Overall, the measurements indicated that clear and repeated differences in OC of thermal 

fractions in differing soil samples can be detected. The distribution among peaks largely 

fulfilled the expectations in an ecological meaningful sense. This is a first indication, that 

ThG is a suitable tool to identify differences in organic carbon fractions of soil units in a 

landscape. 

IV.4.2 Standard additions 

The thermo-grams of four soil samples and quartz sand added with standard materials (wheat 

starch and wood char) were shown in figure IV.2. The recovery of starch-derived OC was in 

the range of 36 to 189% (Table IV.3). Recovery rates for the low starch spike were poorer as 

compared to the high starch spike (51-102%). Similar results were found for the wood char 

spike (Table IV.4, recovery 55-194%), where results for high char spikes were satisfying 

(79-96%). Roth et al. (2012) reported recovery of TC in spiked samples of 80 to 104%. The 

OC contents of their soil samples, however, had a maximum of 21 g kg-1, whereas OC 

contents of our samples was up to 164 g kg-1 in the WET sample (Table IV.2). The larger OC 

background may explain the poor recovery in some cases. For instance, recovery of starch 

and wood char (spike at high rate) were 83-95 and 87-89% (Table IV.3 and IV.4), 

respectively, when omitting the wetland and forest topsoil. 
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Fig. IV.2. Thermograms of different samples spiked with 16 g kg-1 wheat starch or wood 

char in comparison to the blank samples. The peak above 600°Cwas proven to be inorganic 

carbon and is therefore delimited by the dashed line. 
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Table IV.3 Organic carbon concentrations in thermal fractions of four soil samples and changes in the concentrations in comparison to the unspiked 

sample after starch spiking. Mean values and standard errors (n = 3). 

 130 - 300oC  300- 400oC  400-450oC  450-600oC   

Sample OC content 

/ g kg-1 

p OC content 

/ g kg-1 

p OC content 

/ g kg-1 

p OC content 

/ g kg-1 

p Recovery 

/ % 

WET 54.45 (3.12) - 69.66 (0.59) - 29.06 (2.73) - 10.32 (2.73) -  

∆WET+ 3.91 (5.88) 0.945 1.11 (1.65) 0.996 -2.99 

(6.20) 

0.627 -1.54 (1.54) 0.330 49 

∆WET++ 6.07 (1.46) 0.215 5.57 (1.61) 0.109 -4.10 

(1.71) 

0.113 -0.60 (0.72) 0.290 102 

          

FOR 43.11 (1.35) - 33.82 (1.67) - 9.86 (0.24)  13.30 (0.45)   

∆FOR+ -0.89 (2.98) 0.718 1.90 (3.48) 0.664 -0.04 

(0.75) 

0.926 0.71 (1.08) 0.604 189 

∆FOR++ 3.83 (1.10) 0.765 3.39 (2.03) 0.367 0.59 (0.52) 0.927 0.08 (0.65) 0.651 52 

          

CRloam 6.61 (0.18) - 6.18 (0.32) - 1.66 (0.10)  4.18 (0.33)   

∆CRloam+ 0.54 (0.38) 0.658 0.08 (0.38) 0.888 -0.11 

(0.09) 

0.184 -0.21 (0.31) 0.485 36 

∆CRloam++ 4.34 (0.50) 0.225 1.31 (0.33) 0.632 0.48 (0.12) 0.664 0.21 (0.26) 0.501 95 

          

CRsand 2.54 (0.11) - 2.87 (0.12) - 0.65 (0.04)  0.59 (0.01)   

∆CRsand+ 0.51 (0.12) 0.153 0.06 (0.25) 0.618 0.10 (0.10) 0.341 0.08 (0.02) 0.330 90 

∆CRsand++ 3.23 (0.70) 0.649 1.84 (0.36) 0.08 0.63 (0.03) 0.068 0.64 (0.01) 0.009 95 

          

CON 0.14 (0.01) - 0.14 (0.02) - 0.06 (0.02) - 0.04 (0.02) -  

∆CON+ 0.35 (0.01) - 0.14 (0.04) - 0.04 (0.04) - 0.05 (0.04)  70 

∆CON++ 3.45 (0.16) - 1.12 (0.05) - 0.53 (0.06) - 0.42 (0.03)  83 

∆: difference between the sample and the corresponding control (CON+, CON++); +: spike at low rate; ++ spike at high rate; WET: wetland; 

FOR: forest soil; CRloam: loamy cropland soil; CRsand: sandy cropland soil; CON: control with quartz sand; p-values indicate the probability 

that ∆sample is not different from the corresponding ∆CON. 
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Table IV.4 Organic carbon concentrations in thermal fractions of four soil samples and changes in the concentrations as compared to the unspiked 

sample after wood char spiking. Mean values and standard errors (n = 3). 

 130-300oC   300- 400oC   400-450oC   450-600oC    

Sample OC content 

/ g kg-1 

p  OC content 

/ g kg-1 

p  OC content 

/ g kg-1 

p  OC content 

/ g kg-1 

p  Recovery 

/ % 

WET 54.45 (3.12) -  69.66 (0.59) -  29.06 (2.73) -  10.32 (2.73) -  55 

∆WET+ 5.89 (2.80) 0.174  2.48 (1.13) 0.186  -5.17 (3.07) 0.217  -2.23 (0.78) 0.083  79 

∆WET++ 5.03 (0.90) 0.045  2.59 (2.52) 0.977  -0.55 (1.59) 0.160  2.42 (1.05) 0.264   

              

FOR 43.11 (1.35) -  33.82 (1.67)   9.86 (0.24) -  13.30 (0.45) -   

∆FOR+ -2.45 (2.40) 0.405  2.39 (1.98) 0.393  0.70 (0.22) 0.205  1.92 (0.52) 0.092  194 

∆FOR++ -2.09 (2.21) 0.300  3.39 (2.03) 0.703  2.04 (0.25) 0.055  6.11 (0.65) 0.094  79 

              

CRloam 6.61 (0.18) -  6.18 (0.32) -  1.66 (0.10) -  4.18 (0.33) -   

∆CRloam+ 0.56 (0.41) 0.356  -0.14 (0.26) 0.274  0.23 (0.09) 0.541  0.54 (0.25) 0.463  87 

∆CRloam++ 0.98 (0.19) 0.996  2.32 (0.28) 0.561  3.05 (0.20) 0.507  5.17 (0.12) 0.008  96 

              

CRsand 2.54 (0.11) -  2.87 (0.12) -  0.65 (0.04) -  0.59 (0.01) -   

∆CRsand+ 0.30 (0.44) 0.476  0.28 (0.29) 0.893  0.43 (0.10) 0.162  0.65 (0.08) 0.007  112 

∆CRsand++ 1.17 (0.33) 0.411  2.20 (0.17) 0.08  2.62 (0.08) 0.126  4.68 (0.21) 0.053  89 

              

CON 0.14 (0.01) -  0.14 (0.02)    -  0.06 (0.02) -  0.04 (0.02) -   

∆CON+ 0.07 (0.02) -  0.25 (0.04) -  0.30 (0.01) -  0.31 (0.03) -  63 

∆CON++ 0.98 (0.04) -  2.50 (0.15) -  2.88 (0.21) -  4.06 (0.33) -  87 

              

∆: difference between the sample and the corresponding control (CON+, CON++); +: spike at low rate; ++ spike at high rate; WET: wetland; FOR: 

forest soil; CRloam: loamy cropland soil; CRsand: sandy cropland soil; CON: control with quartz sand; p-values indicate the probability that ∆sample 

is not different from the corresponding ∆CON 
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In most samples (Table IV.3 and IV.4), the distribution of both starch and wood char among 

thermal fractions in soil samples did not differ significantly from the distribution in the 

control (CON). The only significant differences were found for the starch spike, at C300-400 

and C450-600 concentrations of ΔCRsand
++. However, this may be attributed to the higher 

recovery in ΔCRsand
++ (95%) as compared to ΔCON++ (83%). The standard deviations of the 

different thermal fractions for the spiked FOR and WET samples were very high (Table IV.3 

and IV.4). This led to unsatisfying (although not significant) deviations of the mean from the 

reference values, especially for ΔWET (starch and char) and for ΔFOR (mainly char). One 

reason maybe that the baseline between the thermal fractions was not reached due to high 

C-concentrations. This could be overcome by increasing the hold-times (Table IV.1), but 

increasing the ramp may lead to incomplete combustion of labile OC, as reported by Roth et 

al. (2012). In conclusion, the standard additions showed, that highly labile and more stable 

(starch and wood char) materials could be well quantified in loamy and sandy cropland soils.  

IV.4.3 Methodological comparison 

Selected fractions of the ThG method were compared to established methods. It was shown 

that hot water extractable C is mainly composed of carbohydrates and microbial residue 

(Leinweber et al. 1995; von Lützow et al. 2007) and it was often used to measure labile C in 

soils. The correlation between HWC and the C140-300 fraction was highly significant (p < 

0.001, Fig. IV.3). The correlation between C140-300 and HWC was very good (r = 0.885, log-

log transformed data). The recovery of, theoretically well bioavailable, starch (Table IV.5) 

in HWC was very low. 
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Table IV.5 Mean concentrations (with standard errors, n= 3) of hot water extractable carbon 

(with starch spike) and oxidisable carbon (with wood char spike) including the respective 

recovery rates. The letters indicate differences at a level of significance of p ≤ 0.05 and are 

entered for convenience. Results of the ANOVA are given in the supporting information. 

Sample 
Hot water extraction & starch 

spike 

 Wet oxidation & wood char 

spike 

 
HWC 

/ g kg-1 

ΔHWC 

/ g kg-1 

Recovery 

/ % 

 
COX 

/ g kg-1 

ΔCOX 

/ g kg-

1 

Recovery 

/ % 

WET 1.92 (0.04)a    3.40 (0.11)a   

WET+ 2.25 (0.06)b 0.33 40  3.72 (0.09)a 0.32 22 

WET++ 4.04 (0.14)c 2.12 32  4.78 (0.21)b 1.37 12 

        

FOR 5.75 (0.08)a    3.49 (0.12)a   

FOR+ 6.24 (0.90)b 0.49 59  3.69 (0.18)a 0.20 13 

FOR++ 6.99 (0.09)c 1.24 19  5.76 (0.60)b 2.27 19 

        

CRloam 0.65 (0.05)a    3.25 (0.07)a   

CRloam
+ 0.87 (0.07)a 0.22 27  3.81 (0.11)a 0.55 38 

CRloam
++ 1.57 (0.13)b 0.92 14  7.35 (0.68)b 4.10 35 

        

CRsand 0.50 (0.00)a    2.46 (0.07)a   

CRsand
+ 0.57 (0.01)b 0.07 9  2.70 (0.28)a 0.24 16 

CRsand
++ 1.01 (0.03)c 0.51 8  2.74 (0.14)a 0.28 2 

        

CON 0.09 (0.02)a    1.90 (0.07)a   

CON+ 0.23 (0.02)b 0.14 17  2.20 (0.03)b 0.30 19 

CON++ 0.26 (0.02)b 0.18 3  2.71 (0.16)c 0.81 7 

∆: difference between the spiked sample and the control; +: spike at low rate; ++ spike at high 

rate; WET: wetland; FOR: forest soil; CRloam: loamy cropland soil; CRsand: sandy cropland 

soil; CON: control with quartz sand. 

Recovery rates ranged from only 3 to 59% and were lower for a high rate of spiking. 

Therefore, the measure of HWC may not always be well suited to indicate labile C. 

Moreover, the recovery of starch depended on the matrix: it was markedly higher in the 

loamy and wetland soils (WET, FOR, CRloam) as compared to the sandy matrices (CON, 

CRsand). The good correlation between thermally labile C and HWC contradicts the finding 

of Plante et al. (2011). They reported that HWC and indices for thermo-labile C were not 

well correlated. However, thermally labile SOM was defined as mass loss at temperatures < 

400°C, which may well explain the contradictory findings. Our method offers the advantage 

of (1) direct CO2 measurements, instead of mass loss and (2) a better resolution due to 

temperature ramps. Overall, the comparison of C140-300 with hot water extractable carbon 

strongly indicates the suitability of ThG to measure labile C.  
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Fig. IV.3 Scatter plots of spiked samples for comparison of (left) labile carbon evolved 

between 140 and 300°C (C140-300) and hot water extractable carbon (HWC) and (right) stable 

carbon evolved between 450 and 600°C (C450-600) and wet oxidation resistant carbon (COX ). 

A wet oxidation by Na2S2O8 was performed as a measure for the stable SOC fraction. The 

relationship of the oxidation residue (Cox) with the C450-600 fraction was quite good (r = 

0.669). That large amounts of wood char were oxidised (recovery after oxidation: 2- 38%) 

is also fitting to the results of the ThG measurements.  The recovery of wood char seemed 

to depend on the samples matrix, which was not the case for the ThG-method. Therefore, the 

results of the two methods are not very well comparable. 

IV.4.4 Examples for applications 

a. Land use effects.  

These measurements are highly valuable for determining spatial variations particularly at the 

landscape scale where other, maybe more sophisticated methods, fail to produce such 

detailed C analyses at reasonable time. For detecting soil carbon changes in ecosystems 

(Schrumpf et al., 2011), which are an important measure for developing management 

options, information about changes of different fraction rather than solely bulk carbon 

measurements could be both more easy to detect and bear more ecological information (Olk 

& Gregorich, 2006; Heitkamp et al., 2012). Such studies, where spatial explicit information 

will require large sample numbers, are in need for quick and potentially rather inexpensive 

methods. In the end it will be the landscape scale information that determines decision 

making processes (Burt & Pinay, 2005). Therefore, a rationale use of such ThG method will 

probably be for studies at the landscape scale. Most established fractionation methods are 
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time consuming or reveal limited information (e.g. only one or two fractions). In 

consequence, little information on spatial variability of SOM fractions is available 

(Kravchenko and Hao. 2008; Herbst et al. 2012). For example, spatial and temporal 

modelling of soil respiration is still challenging, because there is lack of accompanying 

measurements of available substrate (Ryan and Law. 2005; Herbst et al. 2012). 

 

Fig. IV.4 Land use effects on soil total carbon, inorganic carbon organic carbon and its four 

thermal fractions. Left: absolute values, right: fractions in relation to organic carbon (mean 

values and standard deviations, n = 9). The letters indicate differences at a level of 

significance of p ≤ 0.05 and are entered for convenience. Results of the ANOVA are given 

in the supporting information. 

In this context, we present a small set of results from different land use (forest, meadow and 

cropland on loamy soils near Göttingen, Germany; sample set 3, Figure IV.4). According to 

Guo and Gifford (2002) SOC stocks declined on a global average of 42% when natural 

forests were converted to cropland. The organic carbon concentration differ in a very similar 

magnitude between the forest and the agricultural sites represented by meadow and cropland 

(Figure IV.4). The significant differences in the topsoil to forest topsoil are for C140-300 17.5 

and 30.0 g kg-1 and for C300-400 10.5 and 12.6 g kg-1 for meadow and cropland, respectively. 

A step forward are the results showing the differences in the relative distribution of carbon 

among fractions between the land use types (Figure IV.4). Despite the differences in bulk 
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SOC do forest and meadow reveal a similar distribution of the organic carbon fractions, 

while in cropland there was a strong and significant shift towards more stable fractions 

(Figure IV.4 right side). Depletion of labile C and relative enrichment of stable C by cropland 

cultivation is likely part of the explanation. Moreover, extensive grasslands received no 

fertiliser, whereas the cropland was fertilised with organic manures, which has the effect to 

increase amounts of thermo-stable carbon, as was demonstrated by this study (Table IV.6). 

In any case, this small example of comparing different land use within a region according to 

their soil organic carbon fractions demonstrates how much more information can be 

withdrawn from a thermal gradient method in comparison to regular bulk C measurement. 

b. Management effects in density fractions.  

Different composition and turnover times of carbon between different density fractions were 

often reported and are well known (Baldock and Skjemstad, 2000; von Lützow et al. 2007). 

Differences in the composition of organic matter within one fraction induced by different 

management or vegetation (e.g. farmyard manure and straw; litter of coniferous and broad-

leaf species) are often too subtle to be significant (Randall et al. 1995; Heitkamp et al. 2011). 

These findings fit well to our results for the light fraction, where neither fertiliser type 

(farmyard manure vs. mineral fertiliser) nor rate (50 and 150 kg N ha-1 with manure or 

mineral fertiliser) had significant effects on distribution of OC among thermal fractions 

(Table IV.6). For the heavy fraction however, the ThG method revealed significantly smaller 

proportions of C140-300, a trend to higher proportions in the C300-400 as well as significantly 

higher proportions in the C450-600 fraction in soils receiving farmyard manure as compared to 

those receiving mineral fertiliser and straw (i.e., different types of fertiliser). This fits to the 

results of Heitkamp et al. (2009) who showed for the same site that fertilisation with 

farmyard manure increased the intermediate C pool. By using differential scanning 

calorimetry, Leifeld et al. (2006) showed that SOM depletion in cropland soils (no fertiliser, 

N-fertiliser, manure) led to higher proportions of thermo-stable SOM. From our analysis, we 

argue that such pattern can result either from a depletion of C from the light fraction, which 

was shown to be more thermo-labile and is depleted faster than heavy fraction C 

(Christensen. 2001), or from the application of farmyard manure, which seem to increase 

thermal stability of C in the heavy fraction (Table IV.6) or potentially both. 
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Table IV.6 Thermal characterisation of light (ρ ≤ 2.0 g cm-3) and heavy (ρ > 2.0 g cm-3) 

fractions of soil samples from sites with different fertilisation history. Means of four field 

replicates with standard deviations in brackets (upper part of the table). The lower part of 

the table presents the p-values obtained by the mixed model (factors Type, Rate and their 

interaction) and the t-test (comparison between light and heavy fractions). 

 OC content  140-300°C 300-400°C 400-450°C 450-600°C 

 / g kg-1  / % of OC 

Light fraction       

MSI low 272.8 (15.3)  41.9 (3.3) 39.7 (1.1) 9.8 (1.7) 8.6 (1.4) 

MSI high 265.6 (25.7)  41.7 (0.9) 39.4 (2.3) 10.2 (0.7) 8.7 (1.9) 

FYM low 260.7 (12.4)  41.6 (1.3) 39.2 (0.6) 9.9 (1.0) 9.2 (0.5) 

FYM high 271.5 (15.0)  38.9 (2.2) 41.4 (2.9) 10.6 (0.6) 9.0 (1.0) 

Heavy fraction < 53 µm      

MSI low 26.2 (1.3)  36.0 (1.3) 33.6 (0.8) 14.9 (0.7) 15.5 (1.7) 

MSI high 26.5 (1.8)  36.7 (1.4) 33.4 (1.7) 14.7 (0.5) 15.1 (0.7) 

FYM low 27.5 (2.4)  32.9 (2.9) 35.7 (2.8) 15.0 (0.4) 16.4 (0.9) 

FYM high 27.3 (2.7)  33.8 (2.9) 34.2 (0.6) 15.2 (0.5) 16.8 (1.8) 

Light fraction       

Type 0.736  0.379 0.931 0.543 0.250 

Rate 0.764  0.347 0.582 0.352 0.982 

Type x rate 0.665  0.437 0.244 0.507 0.317 

Heavy fraction < 53 µm      

Type 0.156  0.007 0.062 0.272 0.041 

Rate 0.677  0.866 0.602 0.971 0.716 

Type x rate 0.902  0.610 0.740 0.442 0.348 

Light vs. 

heavy fraction 
< 0.001  < 0.001 < 0.001 < 0.001 < 0.001 

MSI: mineral fertiliser and straw incorporation; FYM: farmyard manure; low: 50 kg N ha1; 

high: 150 kg N ha-1; Type: MSI or FYM; Rate: low or high 

With the ThG approach, we could show that thermal stability of OC in light and heavy 

fractions is not homogeneous. Differences of fertilisation management were not detectable 

by density fractionation (Heitkamp et al. 2011), but ThG analysis revealed differences, which 

were formerly also found, but by a very time consuming approach (incubation for one year, 

wet oxidation and modelling; Heitkamp et al. 2009). Therefore, the use of ThG is a valuable 

addition to laboratory approaches, such as density fractionation. 
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IV.5 Conclusions 

It was demonstrated that ThG can constantly identify four organic carbon fractions in a 

highly diverse set of soil and artificial samples at an adequate precision and without the need 

of applying different methods. It appears likely that these thermally differently stable carbon 

fractions are mirroring ecologically differently stable organic carbon fractions and it is 

proposed to term them labile, intermediate labile, intermediate stable and stable soil organic 

carbon fractions. Separation of fractions in one single analytical run for one specific soil 

sample is appealing and has the potential to be a routine method in addition to bulk C soil 

measurements. The latter is realistic as the used device is a standard machine that can be 

bought and therefore these methods will not be restricted to specialists making their own 

machine. The analysis of one sample is roughly 20 min and other 20 min is needed for the 

next analysis (time to cool down). Consequently it is possible to analyse at least 10 samples 

a day, which allows for larger scaled studies at landscapes and regional scales. An autoloader 

can theoretically increase sample throughput to ca. 36 samples per 24 hours. Consequently 

much more information can be withdrawn from a thermal gradient method in comparison to 

regular bulk C measurement for comparing the effects of different land use systems or active 

land use changes on soil organic carbon and detect soil carbon changes with time in any 

given ecosystem and relationships to other biogeochemical cycles (e.g. greenhouse gas 

fluxes).  
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Supplementary Materials 

Supporting information 

In this appendix, detailed information is provided to underline the validity of the used setup. 

For instance, the effect of (1) different heating rates (ramp), (2) sample amount and (3) of 

including constant temperatures for better peak-separation (holds) was tested. Moreover, 

detailed information on the statistical analysis are given. 

Ramp 

The effect of ramp speed was tested on samples of starch, Histosol, Anthrosol and loamy 

Cambisol from cropland (see main manuscript). Two different ramps were used, one of 12°C 

min-1 and the other of 35°C min-1. Heating was performed from 140°C to 600°C to include 

the whole range of organic carbon. The lower ramp was used because it was the longest 

possible analysis time and close to the most frequently applied value of 10°C. With the ramp 

of 35°C min-1 it would also be possible to include the temperature range needed for inorganic 

carbon determination (600-900°C), as well as the holds (see below). In this test, no holds 

were included. For the calculation of peak areas, the program PeakFit 4.12 (SeaSolve 

Software Inc.) was used. This was done instead of setting fixed temperature (as in the final 

set up), because shifts of the signal among temperature regions may occur (Fernández et al. 

2011). Figure S1 shows, that the shape of the thermograms was remarkable similar. 

Differentiation of peaks is clearer at 35°C as compared to 12°C, especially in the wetland 

sample (Figure S1, left side). The calculated peak areas are compared in Figure S2 (left side). 

Neither intercept nor slope differed significantly from 0 or 1, respectively (Table S1). 

Therefore, the use of the faster ramp is well justified. 

Table S.1 Statistical parameters for the relationship between the peak areas of different 

ramps as well as for hold and continuous ramp. Standard errors of intercept and slope are 

given in brackets. T-statistics show the probability (p-value) that the null-hypothesis (no 

difference) is accepted. 

 Intercept Slope R2 df Intercept Slope 

 (% of peak area)   t-value p-value t-value p-value 

12°C vs. 35°C ramp 0.15 (3.15) 0.996 (0.094) 0.90 12 0.05 0.961 0.04 0.969 

Continuous  

ramp vs. hold 
-1.40 (1.14) 1.081 (0.042) 0.95 30 1.22 0.232 1.90 0.067 
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Fig. S1 Examples for thermograms recorded with different ramps (12°C min-1: dashed line; 

35°C min-1: solid line). Left side: Histosol, right side: Anthrosol. Note that temperature is on 

the x-axis, whereas time is on the x-axis in the main manuscript. 

 

Fig. S2 Relationships between the peak areas of different ramps (left) as well as of hold and 

continuous ramp (right). Comparison of different ramps without hold and comparison of 

hold and continuous ramp at 35°C min-1. The 1:1 line is dashed and 95% confidence intervals 

are visualized. 
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Table S2 Statistical parameters for the relationship between the sample weight and measured 

concentrations for the Histosol and Anthrosol. Measurements with holds and a ramp of 35°C 

min-1. Standard errors of intercept and slope are given in brackets.  

 Histosol      Anthrosol     

 Intercept Slope  R2 p  Intercept Slope  R2 p 

 (g kg-1)      (g kg-1)     

10-40 mg (df = 9) 

Total C 175.1 (1.3) -0.45 (0.05)  0.94 < 0.001  63.2 (0.9) 0.03 (0.04)  0.07 0.466 

140-300°C 60.7 (1.0) -0.12 (0.04)  0.45 0.017  7.7 (0.4) 
-0.01 

(0.02) 
 0.04 0.594 

300-400°C 76.1 (0.7) -0.33 (0.03)  0.93 < 0.001  16.5 (0.2) 
-0.02 

(0.01) 
 0.19 0.214 

400-450°C 28.3 (1.1) -0.02 (0.04)  0.01 0.731  8.9 (0.2) 0.00 (0.01)  0.00 0.865 

450-600°C 9.3 (0.4) 0.01 (0.02)  0.04 0.529  17.3 (0.2) 
-0.05 

(0.03) 
 0.79 0.001 

10-20 mg (df = 5) 

Total C 168.0 (0.6) 0.04 (0.04)  0.16 0.426  65.1 (0.8) 
-0.09 

(0.05) 
 0.43 0.158 

140-300°C 61.0 (2.6) -0.15 (0.16)  0.17 0.417  8.3 (0.4) 
-0.05 

(0.03) 
 0.56 0.088 

300-400°C 73.8 (1.5) -0.16 (0.10)  0.40 0.179  16.5 (0.3) 
-0.01 

(0.02) 
 0.07 0.613 

400-450°C 25.6 (1.6) 0.17 (0.10)  0.42 0.168  8.5 (0.4) 0.03 (0.02)  0.29 0.272 

450-600°C 7.5 (0.6) 0.14 (0.04)  0.80 0.016  17.6 (0.6) 
-0.07 

(0.04) 
 0.45 0.146 

Df: degrees of freedom 

Holds 

When examining a large sample set, it was apparent that peaks were distributed very similar 

across repeating temperature ranges for all samples. This finding was recently 

mechanistically explained by Demyan et al. (2013), who could show, that the given 

temperature ranges could be assigned to certain functional groups. The outcome of peak-

fitting procedures to assign fractions of organic carbon depends strongly on parameter 

settings. To (1) overcome this problem, (2) to make a more wide-spread application possible 

(i.e. for researchers without detailed knowledge about peak fitting) and (3) to enable a clearer 

separation of the peaks, we decided to introduce holds in the temperature profile. Figure S3 

shows the comparison of the thermograms with hold and continuous ramp. The shapes of 

the thermograms were very similar, differences can mainly be attributed to a better 

separation of peaks. This visual impression is corroborated by results shown in Figure S2 

(right side). Intercept and slope of the relationship did not differ significantly from 0 and 1, 

respectively (Table S1). There was a trend for the slope to differ from 1 (p = 0.067). This 

trend, however, can largely be attributed to a single x-y pair, representing data of the first 
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peak of starch (upper left, Figure S2). Deleting this single data pair changes the level of 

significance to p = 0.38. Problems with analyzing samples with high proportions of labile C 

are discussed in the main manuscript. 

 

Fig. S3 Comparison of thermograms with holds (solid line) and continuous ramp (dashed 

line). The ramp was 35°C min-1. The figure is the equivalent of Figure IV.1 in the main 

manuscript, but temperature instead of time is used on the x-axis. This may lead in the hold-

regions to apparently clinched signals. 
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Amount of sample 

The amount of sample material can have an effect on the outcome of thermal analysis 

(Fernández et al., 2011). Therefore, the effect of the sample amount was tested with the 

Histosol and Anthrosol with weights of 10, 15, 20, 25 and 30 and 40 mg. Figure S4 shows, 

that there was an effect of the amount on all fractions and total C in the Histosol. This can, 

however, be attributed to measurements close to the calibration limit. Effects were lower for 

the Anthrosol. Nevertheless, a significant decrease in the fraction 450-600°C was found 

(Table S2). The results shown in Figure S4 and Table S2 indicated that the amount of sample 

may affect the results, but the bias between 10 and 20 mg sample weight was very low 

(Histosol) or not significant (Anthrosol). Therefore, the amount of 10-20 mg sample is 

recommended and used throughout. 

 

Fig. S4 Scatter plots showing results for organic carbon concentrations in different thermal 

fractions as well as total carbon concentrations in relation to sample amount. Analysis with 

hold and ramp of 35°C min-1. Analysis was done in duplicate. 
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Supporting information for statistics 

Table S3 F- and t-statistics (n = 3, 2 degrees of freedom) for Table IV.3 of the main manuscript.  

Sample  F-values     t-values   

 140-300oC 300-400oC 400-450oC 450-600oC  140- 300oC 300-400oC 400-450oC 450-600oC 

∆WET+ 3934 3967 33340 6256  0.078 0.006 0.568 1.276 

∆WET++ 241 3747 2540 1357  1.792 2.770 2.710 1.425 

          

∆FOR+ 205588 27711 1286 2412  0.416 0.505 0.104 0.609 

∆FOR++ 138.6 7832 232 1127  0.341 1.155 0.103 0.526 

          

∆CRloam
+ 108.96 48.46 7.55 2.41  0.514 0.159 0.849 1.604 

∆CRloam
++ 18.37 64.21 3.92 9.97  1.703 0.560 0.468 0.815 

          

∆CRsand
+ 3305   334.4  18.03 196.8   2.258 0.584 1.078  1.161 

∆CRsand
++  28.84  159.3  11.55 183.57   0.530 3.378 2.490  10.49 

Critical F-value = 19 and critical t-value =4.303 for p = 0.05. 
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Table S4 F- and t-statistics (n = 3, 2 degrees of freedom) for Table IV.4 of the main manuscript.  

 

Sample  F-values     t-values   

 140-300oC 300-400oC 400-450oC 450-600oC  140- 300oC 300-400oC 400-450oC 450-600oC 

∆WET+ 34898 1886 160434 2061  2.074 1.979 1.780 3.258 

∆WET++ 1309 811 167 29.98  4.528 0.033 2.187 1.535 

          

∆FOR+ 29318 5840 787.7 921.99  1.047 1.079 1.853 3.072 

∆FOR++ 7962 524 4.03 11.41  1.388 0.440 3.061 3.026 

          

∆CRloam
+ 1716.6  42.11  61.92  7.78   1.191 1.492 0.730 0.901 

∆CRloam
++  58.14 1.18   6.65 2.50   0.006 0.633 0.728 4.874 

          

∆CRsand
+ 861.8 99.69 140.76 217.27  0.870 0.152 2.176  6.571 

∆CRsand
++ 57.07 9.89 2.69 2.43  1.030 2.334 1.929  2.729 

Critical F-value = 19 and critical t-value =4.303 for p = 0.05. 
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Table S5 Results of the one-way ANOVA calculated for the dataset of hot water extractable carbon with starch spike (Table IV.5). 

Sample Source Degrees of 

freedom 

Sum of 

squares 

Mean 

square 

F-value p-value 

WET Between group K-1 = 2 SSB = 7.824 B = 3.912 169.264  < 0.001 

 Within group N-k = 6 SSW = 0.139 W = 0.023   

 Total N-1 = 8 SST = 7.962    

       

FOR Between group K-1 = 2 SSB = 2.327 B = 1.163 52.122  < 0.001 

 Within group N-k = 6 SSW = 0.134 W = 0.022   

 Total N-1 = 8 SST = 2.461    

       

CRcloam Between group K-1 = 2 SSB = 1.385 B = 0.692 28.416 0.001 

 Within group N-k = 6 SSW = 0.146 W = 0.024   

 Total N-1 = 8 SST = 1.531    

       

CRsand Between group K-1 = 2 SSB = 0.465 B = 0.232 298.900 < 0.001 

 Within group N-k = 6 SSW = 0.005 W = 0.001   

 Total N-1 = 8 SST = 0.470    

       

CON Between group K-1 = 2 SSB = 0.036 B = 0.018 32.147 0.009 

 Within group N-k = 6 SSW = 0.002 W = 0.001   

 Total N-1 = 8 SST = 0.038    
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Table S6 Results of the one-way ANOVA calculated for the dataset of oxidisable carbon with wood char spike (Table IV.5). 

Sample Source Degrees of freedom Sum of squares Mean 

square 

F-

value 

p-

value 

WET Between group K-1 = 2 SSB = 0.031 B = 0.016 24.905 0.001 

 Within group N-k = 6 SSW = 0.004 W = 0.001   

 Total N-1 = 8 SST = 0.035    

       

FOR Between group K-1 = 2 SSB = 0.095 B = 0.048 11.498 0.009 

 Within group N-k = 6 SSW = 0.025 W = 0.004   

 Total N-1 = 8 SST = 0.120    

       

CRcloam Between group K-1 = 2 SSB = 0.297 B = 0.148 31.072 0.001 

 Within group N-k = 6 SSW = 0.029 W = 0.005   

 Total N-1 = 8 SST = 0.326    

       

CRsand Between group K-1 = 2 SSB = 0.001 B = 0.001 0.653 0.554 

 Within group N-k = 6 SSW = 0.006 W = 0.001   

 Total N-1 = 8 SST = 0.007    

       

CON Between group K-1 = 2 SSB = 0.010 B = 0.005 15.799 0.004 

 Within group N-k = 6 SSW = 0.002 W = 0.000   

 Total N-1 = 8 SST = 0.012    
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Table S7a Results of the one-way ANOVA calculated for the dataset of absolute C-concentrations under different land-use (Figure IV.4). 

 

Fraction Source Degree of freedom Sum of squares Mean square F-value p-value 

 Between group K-1 = 2 SSB = 26.687 B = 13.344 4.642 0.020 

TC Within group N-k = 24 SSW = 68.992 W = 2.875   

 Total N-1 = 26 SST = 95.680    

       

OC Between group K-1 = 2 SSB = 75.081 B = 37.541 17.326 <0.001 

 Within group N-k = 24 SSW = 52.001 W = 2.167   

 Total N-1 = 26 SST = 127.082    

       

SIC Between group K-1 = 2 SSB = 3130.464 B = 1565.232 13.838 <0.001 

 Within group N-k = 24 SSW = 2714.576 W = 113.107   

 Total N-1 = 26 SST = 5845.040    

       

C140-300 Between group K-1 = 2 SSB = 40.769 B = 20.384 44.192 <0.001 

 Within group N-k = 24 SSW = 11.070 W = 0.461   

 Total N-1 = 26 SST = 51.839    

       

C300-400 Between group K-1 = 2 SSB = 8.177 B = 4.089 14.727 <0.001 

 Within group N-k = 24 SSW = 6.663 W = 0.278   

 Total N-1 = 26 SST = 14.840    

       

C400-450 Between group K-1 = 2 SSB = 0.628 B = 0.314 11.806 <0.001 

 Within group N-k = 24 SSW = 0.639 W = 0.027   

 Total N-1 = 26 SST = 1.267    

       

C450-600 Between group K-1 = 2 SSB = 3.864 B = 1.932 39.238 <0.001 

 Within group N-k = 24 SSW = 1.182 W = 0.049   

 Total N-1 = 26 SST = 5.046    
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Table S7b Results of the one-way ANOVA calculated for the dataset of relative OC-concentrations under different land-use (Figure IV.4). 

 

Sample Source Degree of freedom Sum of squares Mean square F value P value 

C140-300 Between group K-1 = 2 SSB = 4763.382 B = 2381.691 319.758 <0.001 

 Within group N-k = 24 SSW = 178.762 W = 7.448   

 Total N-1 = 26 SST = 4942.144    

       

C300-400 Between group K-1 = 2 SSB = 42.103 B = 21.051 5.016 0.015 

 Within group N-k = 24 SSW = 100.727 W = 4.197   

 Total N-1 = 26 SST = 142.829    

       

C400-450 Between group K-1 = 2 SSB = 426.459 B = 213.229 49.450 <0.001 

 Within group N-k = 24 SSW = 103.488 W = 4.312   

 Total N-1 = 26 SST = 529.946    

       

C450-600 Between group K-1 = 2 SSB = 2837.803 B = 1418.902 197.947 <0.001 

 Within group N-k = 24 SSW = 172.034 W = 7.168   

 Total N-1 = 26 SST = 3009.837    
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V Synthesis of Results and Outlook 

Soil carbon plays a key role in carbon cycling and climate change. It is one of the main five 

C-stores of global carbon cycling, which is a key factor in retaining the balance of ecosystem 

C fluxes   (as aforementioned in chapter I). It is also important in soil quality assessment and 

sustainability of agriculture. Increasing SOC will provide nutrients for soil, increase 

available water capacity, and improve soil structure and soil physical properties that will 

increase agricultural yields significantly (Lal. 2006).  

Carbon modelling has been widely used for understanding soil C dynamic, the relation 

between soil C stock and climate change, and accessing the effect of land use and 

management change on soil C stock. Some researchers used model to explain the effect of 

temperature changes on soil organic carbon amounts (Schimel et al. 1990; Kirschbaum 

1993), humus balance (Brock et al. 2012) and soil respiration (Ryan and Law. 2005). 

Knowledge of humification and mineralization processes in different soil types is essential 

for carbon modelling. Besides, soil organic carbon contains two major components that are 

the inert or recalcitrant carbon fraction and the labile or active carbon fraction. When inert 

carbon fraction depends on climate, soil type and land-use history; labile OC fraction is 

dependent on management and has a strong relation with soil quality. Since labile organic 

carbon fraction is decomposed rapidly, therefore, changes in land use and management 

induce changes in labile OC fraction significantly (Lal. 2006). Knowledge of soil fractions 

and the amount of labile soil fraction (fast pool) is necessary to analyze natural or human 

induced changes in humus horizons. Consequently, it is necessary to find a suitable method 

that is precise, economic and possible to measure and isolate SOM fractions. 

In this study, we used different sets of soil sample and artificial materials, specific methods 

to analyze SOM fractions. The results showed that ThG has potential in quantifying and 

separating SOM fractions. Main task of this research was to prove the suitability of ThG for 

quantifying TC, OC, IC and separating OC fractions. Here are the conclusions: 

V.1 ThG: direct method for soil carbon characterization:  

V.1.1 Advantages  

i ThG is a simple method that does not need complicated pretreatments for 

carbonate, noncarbonated and dolomite soil samples in determining TC, IC and 

OC. Besides, ThG is a precise method compared to other standard methods (Dry 
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combustion, Calcimeter, Acidification and Loss on Ignition) in quantifying TC, 

IC and OC in carbonate, non-carbonate and dolomite soils.  

ii Hot water extraction can separate only LC fraction and wet oxidation can isolate  

SC fraction. Our results demonstrated that ThG can constantly identify four 

organic carbon fractions (labile, intermediate labile, intermediate stable and 

stable carbon fractions at 140-300°C, 300-390°C, 390-450°C and 450-600°C, 

respectively) in a highly diverse set of soil and artificial samples at an adequate 

precision and without the need of applying different methods. It appears that these 

thermally differently stable carbon fractions are mirroring ecologically 

differently organic carbon fractions. For instance, the wetland soil sample with 

high labile carbon, ThG showed that the wetland sample has very high peaks at 

the temperature range of 140-300°C and 300-390°C (labile and intermediate 

labile OC). Wood char that is more thermally stable than normal soil has a low 

peak at the range of 140-300°C, but has high peaks at the ranges of 390-450° and 

450-600°C (intermediate stable and stable OC). Therefore, these thermally 

differently stable carbon fractions of  ThG can be used to identify labile, 

intermediate labile, intermediate stable and stable soil organic carbon fractions.  

iii ThG is a precise and economic method that can analyze many soil samples 

without complicated pretreatment. It can separate SOC fractions in one single 

analytical run for one specific soil sample that is appealing and has the potential 

to be a routine method in addition to bulk-C soil measurements. Moreover, ThG 

can provide not only information of TC, OC, and IC values and SOC fractions 

concurrently, but also information of decomposed temperature range of SOM and 

the shift of peaks of decomposed LC and SC of different samples. Therefore, 

much more information can be obtained from ThG method in comparison to 

regular bulk C measurement for comparing the effects of different land use 

systems or active land use changes on soil organic carbon and detect soil carbon 

changes with time in any given ecosystem and relationships to other 

biogeochemical cycles (e.g. greenhouse gas fluxes). For instance, ThG can not 

only provide the information of TC, OC and IC values, but also the different 

decomposed temperature of SOC fractions of different soil samples with different 

disturbances or environments through themogram. It also can provide valuable 
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information for identification and characterization of SOM change by fire 

impacts. For instances, two soil samples were taken in the same forest and same 

depth, but different fired effects. One sample was taken in a place that had 

intensive fire and the other without fire. When analyzing them with ThG, the 

thermo-gram showed that the intensively fired sample had a peak, which was 

higher than that of the non-fire samples at the temperature range 450-600°C 

(stable OC fraction). It means that SOM in the intensively fired sample were 

burnt and that soil was intensively mineralized by the fire. Therefore, it has more 

stable OC fraction than that in the non-fired sample. 

V.1.2 Limitations 

i ThG can determine TC, OC and IOC simultaneously. However, it cannot provide 

N content and the C/N ratio of soil sample, which are very necessary to estimate 

the quality of soil. It would be better when ThG can provide information of C and 

N contents in a single run. 

ii For inorganic carbon soil samples, ThG has a slightly overestimate of 

determining SOC compared to that of acidification methods, especially for 

carbonate soil samples. Therefore, care has to be taken when comparing SOC 

contents in soil samples with markedly different carbonate contents analyzed by 

ThG. 

iii  For samples that have high organic carbon contents, it is difficult for ThG to 

detect the changes of SOC fractions. This can be explained that the peat or humic 

soils have high C-contents and are rich of labile OC. Therefore, the time to 

increase temperature from 140-300°C was not enough for all labile OC fraction 

to be completely combusted. Consequently, the labile SOC was not completely 

combusted when the temperature increases to the coming temperature range 

(300-390°C intermediate labile). This can be seen in the thermo-gram that after 

the first fraction (labile OC fraction) the curve is still much higher than the 

baseline in these cases. Besides, care has taken when soil samples have high labile 

C content and two high neighbor peaks in the thermo-gram. This can be explained 

that when samples have two high neighbor peaks, they will be overlap and cannot 

be completely separated. Therefore, it might cause some errors in results even 
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peak separation and analysis software was used to separate hide and overlap 

peaks. To solve this problem, we have to separate all neighbor peaks by slowing 

down the ramp speed of the device that will take longer time to analyze samples. 

It will not be optimal for ThG, because of the limitation of analysis time of the 

device. The maximum analysis time of ThG for one sample is only 30 minutes. 

The next generation device might solve this problem. Therefore, care has to be 

taken for the separation of SOC fractions by ThG with samples of high C content 

(above 15%), for examples peat and humic soils. 

iv ThG has limitation to explain the individual peaks of SOC fractions by itself. It 

should be combined with other devices (i.e. carbon isotope analysis, mass 

spectrometry. etc.) to provide more information about the peaks of its thermo-

gram. However, these devices are expensive and not available in many labors. 

V.2 Outlook for future research 

i It is necessary to test ThG with various kinds of soil samples before applying it 

widely in soil analysis. For examples, ThG should be tested for soil samples of 

deferent depths. When the depth of soil increase, the ratios of LC/SC will 

decrease. ThG should be used to test this issue.  

ii ThG can provide many information of IC, OC, TC and SOC fractions in a single 

run without complicated pretreatment. Therefore, ThG should be a useful method 

in landscape scale, where the number of sample is high, to quantify the change 

of SOC with time of different given environments, and to compare the effects of 

different land-use changes on SOC. ThG also can be used to detect the SOC 

changes of long term farm experiments. 

iii Soil respiration plays an important part in the global carbon cycle (Ryan. 2005). 

Labile carbon fraction might contribute an important part in soil respiration 

because of its short turnover rate (Gu et al. 2004). Therefore, finding the relation 

between soil respiration and labile organic carbon fraction is necessary. ThG can 

be used to provide information of LC fraction and thus it might be a useful input 

for finding the relation of soil respiration and LC fraction. 

iv To understand the dynamic of SOM, SOM models should use a continuous 

quality distribution (Bruun et al. 2010). Thermogram of thermal analysis, which 
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provide information of continuous decomposition of SOM with temperature, can 

be useful to identity a continuous distribution of SOM in a distributional model. 

Therefore, ThG can provide useful inputs for distributional SOM modelling 

(Bruun et al. 2010). 

v ThG cannot clarify the peaks of its thermograph by itself. However, radiocarbon 

analysis and mass spectrometry are effective tools in determining turnover rate, 

dynamic and structure of SOM in ecosystem (Plante et al.2013; Trumbore. 2009; 

Dell’Abate et al.2003; Lopez-Capel et al. 2005). Consequently, isotope analysis 

and mass spectrometry have been frequently applied to analyze chemical 

characteristics and turnover rates of SOM (Bernoux et al. 1998; Kujawinski et al. 

2002; Kögel- Knabner. 1997; Schweizer et al. 1999), or connected to thermal 

devices (Lopez-Capel et al. 2005; Kuzyakov et al. 2006; Dorodnikov et al. 2007, 

Dell’Abate et al. 2003). For example, Plante et al. (2013) combined TG and DSC 

with 14C isotope to test if thermal labile carbon fraction has more 14C than thermal 

stable carbon fraction or not. Meanwhile, Doronikov et al. (2007) coupled TG 

and DSC to stable isotope (13C and 15N) to distinguish SOM pools with different 

thermal stability. Therefore it is necessary to combine ThG with these devices 

(e.g. isotope analysis, mass spectrophotometry) to explain all the peaks of ThG 

clearly and to assign isotopic signatures to SIC and SOC that may be a valuable 

future advancement of the thermal gradient method.  
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