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“On any possible, reasonable or fair criterion, bacteria are – and always have been – 

the dominant forms of life on Earth. “ 

 

S. J. Gould (1941–2002) 

(paleontologist and evolutionary biologist) 

 

A. General introduction 

1. Biodiversity and ecosystem functioning as important global issues 

Biodiversity was defined within the third Global Biodiversity Outlook (2010) as the 

variability among living organisms from all sources including, inter alia, terrestrial, 

marine and other aquatic ecosystems and the ecological complexes of which they are 

part. This includes diversity within species, between species and of ecosystems. 

Biodiversity can be measured as richness, evenness and heterogeneity. Richness is a 

measure of the number of unique life forms, evenness is a measure of the equitability 

among life forms, and heterogeneity is the measure of the dissimilarity among life 

forms (Cardinale et al. 2012). Biodiversity and ecosystem functioning are closely 

related. Ecosystem functions are processes that control energy, nutrient and organic 

matter fluxes such as the decomposition of dead plant material and the recycling of 

essential nutrients within an environment (Cardinale et al. 2012).  

Consequences of changes in biodiversity, especially loss in biodiversity, were mainly 

studied with respect to plant and animal diversity (Chapin et al. 2000; Loreau et al. 

2001; Petchey and Gaston 2002; Ives and Carpenter 2007; Hooper et al. 2012). Species 

diversity affects the function of ecosystems as well as the resilience and resistance of 

ecosystems to environmental changes (Chapin et al. 2000). Furthermore, biodiversity 

buffering environmental variations such as climate changes, increasing nitrogen 

depositions and carbon dioxide emissions enhances the efficiency and stability of 

ecosystem processes with time (Cardinale et al. 2012). A decrease in species diversity 

might force populations to a point where they become more and more vulnerable until 

they finally collapse. As a consequence, ecosystem functions could also collapse, when 

lost activities of particular organisms cannot be buffered, recovered or replaced by other 

species. Balvanera et al. (2006) found in a meta-analysis of 103 publications 

biodiversity effects to be weaker at the ecosystem than the community level and further 

to be negative at the population level. Within numerous experiments on effects of 

biodiversity loss, artificial gradients with respect to grassland plant diversity were 
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analyzed (Tilman et al. 1996; Palmborg et al. 2005; Spehn et al. 2005; Tilman et al. 

2006), but so far only a few studies explored artificial or natural gradients in forest tree 

diversity (Hooper et al. 2005; Leuschner et al. 2009; Jacob et al. 2010a). Furthermore, 

investigations on the relationship between biodiversity and ecosystem functions mainly 

focused on aboveground systems. Significant effects of biodiversity on the decomposer 

fauna were found by analyzing aboveground and belowground systems in grasslands 

(Scherber et al. 2010; Eisenhauer et al. 2012). The linkage between aboveground and 

belowground systems was rarely studied, especially with respect to forests and forest 

soils. 

2. The role of forest soils as ecosystem and microbial habitat 

The habitat soil, the so called pedosphere, is known as probably the most complex 

habitat on earth. It represents an enormously diverse, multifunctional and 

multicomponent system. Soils differ in organic and inorganic compounds, pore size, 

texture, and pH. They are composed of mineral particles differing in size, shape and 

chemical composition, various stages of decomposed soil organic matter (SOM), soil 

gases and water, as well as dissolved minerals and dissolved organic matter (DOM) 

(Brady and Weil 2002). Soils are inhabited by plant roots, soil fauna and microbiota. 

Furthermore, soils are important contributors to the global nutrient cycle, and represent 

sources as well as sinks of methane (CH4), nitrous oxide (N2O) and carbon dioxide 

(CO2). Especially forest soils play a key role in the global nutrient cycle, as they have a 

considerable influence on the global greenhouse gas balance (Mosier 1998; Luyssaert et 

al. 2010). Carbon dioxide is removed from the atmosphere and converted to organic 

carbon by plants and microorganisms. Elevated CO2 concentrations stimulate plant 

growth which can only be sustained if sufficient N is available (Oren et al. 2001; Norby 

et al. 2010; Macdonald et al. 2011). Additionally, plants deposit C into soils through 

rhizodeposition and litter fall, which affects microbial activity and soil C sequestration. 

In return, microbial activity directly affects soil organic carbon concentrations and 

indirectly influences plant C accumulation by controlling the N cycle (Drake et al. 

2011; Macdonald et al. 2011; Phillips et al. 2011). Important processes driving the C 

and N cycles are microbial mineralization activity, methanogenesis, CH4
 
consumption, 

CO2 fixation, N fixation, nitrification and denitrification (see Figure 1.). More precisely, 

nitrification and denitrification evoke the lion´s share of N2O release (Bremner 1997; 

Bateman and Baggs 2005; Baggs 2008).  
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Figure 1. A simplified diagram of above- and belowground processes driving the global carbon 

(C) and nitrogen (N) cycles. Summarized according to Brady and Weil (2002). 

 

Beside agricultural soils, temperate forest soils are relevant natural sources of 

atmospheric N2O (Kesik et al. 2005). Parameters controlling denitrification in soils are 

nitrate (NO3
-
) concentration, soil aeration and the labile C availability serving as energy 

source for NO3
-
 catabolism (Firestone and Davidson 1989; Wrage et al. 2001; Ruser et 

al. 2006; Ciarlo et al. 2008). Nitrogen interacts strongly with the C cycle and thereby 

affects the CO2 and CH4 balance (Hungate et al. 2003; Gruber and Galloway 2008). 

Forests and forest soils are important sinks of carbon originating from CO2 and CH4. 

The stored C in aboveground biomass by European forests increased over the past 

decades, as harvesting was lower than growth (Ciais et al. 2008a; Ciais et al. 2008b). In 

contrast, likely due to higher belowground C allocation, root turnover and N 

fertilization grassland soils sequester more C than forest soils (Schulze et al. 2010). 
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Furthermore, with approximately 3-5.7 Tg CH4 yr
-1

 temperate forest soils represent one 

of the most important terrestrial sinks for atmospheric CH4, (Dutaur and Verchot 2007; 

Curry 2009; Ishizuka et al. 2009). The atmospheric concentration of CH4 increased over 

the last 150 years by 248%, from 715 ppb in pre-industrial times to 1774 ppb nowadays 

(Forster 2007). Methane reacts with hydroxyl radicals in the atmosphere and is 

consumed in aerobic soils by methylotrophic and methanotrophic soil microorganisms, 

and in anaerobic micro sites by nitrifying soil microorganisms (Mosier et al. 1991; 

Mosier 1998; Le Mer and Roger 2001).  

Forest soils exhibit surface layers of varying thickness, so called O horizons, constituted 

of dead organic materials in various decomposition stages (Brady and Weil 2002). The 

A horizon of forest soil, containing some of the surface litter, is thinner compared to 

grassland soil (Brady and Weil 2002). Furthermore, a higher soil pH, temperature, 

respiration, amoeba abundance, C:N ratio, and NO3
-
 concentration, as well as an 

increased phosphorus (P), C, N and NH4
+
 content, was detected in forest soils (Saviozzi 

et al. 2001; Alt et al. 2011; Nacke et al. 2011; Naether et al. 2012). A higher net uptake 

of greenhouse gases by forest soil than by grassland, peatland and cropland soils was 

shown (Schulze et al. 2010). 

Soil is considered to harbor an extraordinarily diverse variety of microbial species. It 

probably represents the environment with the highest level of prokaryotic diversity on 

earth (Delmont et al. 2011). A few grams of soil can contain billions of microorganisms 

and thousands of different species (Knietsch et al. 2003). This enormous species pool is 

enabled through the remarkable range of niches and habitats present in soil. Aerobic and 

anaerobic micro-zones exist close to each other within soil and pH, temperature, water 

and nutrient content can vary widely in an area of only a few square millimeters (Brady 

and Weil 2002). Furthermore, hot spots of decaying organic materials may be present 

within soils (Brady and Weil 2002). Forest soils are known to be phylum rich but 

species poor at the bacterial level whereas agricultural soils are phylum poor but species 

rich (Roesch et al. 2007). Furthermore, soil bacterial diversity and community structure 

differs significantly between forest and grassland soils (Nacke et al. 2011).  

3. Parameters influencing soil microbial community composition and activity 

Biotic and abiotic factors influencing the composition, activity and interaction of soil 

microbial communities are complex and still poorly understood. The knowledge on 

factors altering microbial diversity, abundance and distribution builds the basis to 
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predict ecosystem responses to environmental changes and allows deciphering the role 

of single microbial taxa (Griffiths et al. 2011). 

Numerous studies focusing on the role of microbial diversity for ecosystem functions 

are available (Torsvik and Øvreås 2002; Fierer and Jackson 2006; Wertz et al. 2006; 

Cuhel et al. 2010; Philippot et al. 2013). Wertz and his colleagues pointed out that the 

biogeochemical cycles analyzed in their studies will be more or less unaffected by loss 

in soil bacterial diversity, if not all functional groups are eliminated and the abundance 

of these groups can be recovered (Wertz et al. 2006; Wertz et al. 2007). This 

assumption is based on the high levels of functional redundancy which they observed 

for the analyzed functional groups. However, most of the studies concentrated on 

cataloguing bacterial diversity and changes in bacterial diversity affected by 

environmental disturbance. The outcome is that bacterial diversity in soils was 

underestimated so far and the perspective for future discoveries is overwhelming 

(Dunbar et al. 2002; Tringe et al. 2005). It is also well known that a huge variety of 

biotic and abiotic factors influence the composition and diversity of soil bacterial 

communities. Influencing abiotic factors are amongst others soil temperature, water 

content, pH, nutrient content, soil aeration, soil texture, fertilization, and pesticide 

treatment. Biotic factors determining soil microbial communities include plant species 

identity and diversity, as well as animals of different trophic levels. Fierer and Jackson 

(2006) observed that soil pH represents a major predictor of bacterial richness, diversity 

and overall community composition. They detected the lowest level of diversity and 

richness in acidic soils. These results were supported by pyrosequencing data from 

Lauber et al. (2009), a wetland soil study by Hartman et al. (2008) and a pH gradient 

analysis of an arable soil conducted by Rousk et al. (2010). The extensive study of soil 

property influences on bacterial community structure conducted by Nacke and 

coworkers (2011) revealed that pH had the strongest effect, while management type and 

other soil properties had a minor impact. Furthermore, an influence of tree species on 

bacterial diversity was indicated, as diversity and richness estimates were different for 

the analyzed spruce and beech sites (Nacke et al. 2011). Other parameters which were 

shown to affect soil microbial communities comprise soil type, soil texture, C:N ratio, 

as well as mineral, carbon and nitrogen content (Sessitsch et al. 2001; Girvan et al. 

2003; Fierer et al. 2007; Ge et al. 2010a; Ge et al. 2010b; Uroz et al. 2011). Hansel et al. 

(2008) found that bacterial community structure changed significantly along a soil depth 

profile, due to changes in carbon availability, water content, and pH.  
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3.1. Effect of plant species identity and diversity on soil microbial communities  

The long discussed hypothesis that aboveground plant diversity drives the belowground 

microbial diversity was not answered sufficiently yet. Several studies found no clear 

relationship between soil bacterial diversity and plant diversity (Felske et al. 2000; 

Buckley and Schmidt 2001; Kowalchuk et al. 2002; Fierer and Jackson 2006; Zul et al. 

2007). Contradictorily, it has been shown that plant diversity levels in grassland soils 

affect the bacterial community composition and diversity (Grüter et al. 2006). Two 

studies, both focusing on grassland soils, revealed a weak effect of plant composition on 

belowground bacterial community composition (Kennedy et al. 2004; Nunan et al. 

2005). Furthermore, it has been shown that plant species such as clover, bean, or alfalfa 

impact bulk soil, rhizosphere and rhizoplane inhabiting microbial communities and also 

soil patterns (Wieland et al. 2001). However, whether these plant driven changes in 

community composition are direct or indirect effects remains unclear. Several studies 

reported on plant-dependent rhizosphere bacterial communities, which are directly 

affected by plant rhizodeposits and the thereby created microenvironment (Smalla et al. 

2001; Kowalchuk et al. 2002; Kuske et al. 2002; Barea et al. 2005; Costa et al. 2006). 

This coupling is explained by close mutualistic interactions in this unique habitat. 

Nevertheless, these effects are limited to the rhizosphere and do not appear in microbial 

communities inhabiting bulk soil (Kennedy et al. 2004).  

Roots release rhizodeposits into the rhizosphere which are available only in a limited 

area around the respective root. Rhizodeposits comprise mucilage, exudates and cells 

serving as C and nutrient source for microorganisms (Dennis et al. 2010). Plant species 

differ in their traits, which are reflected by root morphology, mycorrhizal symbiosis and 

litter quality. Beside the complex plant root system, litter is another C and nutrient 

source supplied by plants. Leaf litter builds the upper part of the soil horizon and is 

decomposed by a specialized fungal, archaeal and bacterial community and leaching. 

Different litter qualities are decomposed by particular decomposer species at different 

rates, as leaf litter with a low C:N ratio and lignin content is preferred and its 

decomposition rates are higher (Jacob et al. 2010b). Additionally, the amount of litter 

present on soil and its interactions with abiotic factors such as temperature and moisture 

influence soil and litter bacterial community structures (Chemidlin Prevost-Boure et al. 

2011). A complex cocktail of sugars, vitamins, ions, organic polymers (lignin), amino 

acids, organic acids, fatty acids and other primary and secondary metabolites is released 
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from root exudation, decaying roots, or litter leaching and decomposition (Dennis et al. 

2010; Gessner et al. 2010).  

Root exudates are known to exhibit stimulatory or inhibitory effects on rhizosphere 

microbial communities (Uren 2007). Hartmann et al. (2009) were able to show this 

plant-driven alteration in bacterial community structures in the rhizosphere of 

herbaceous plants. Another effect of root exudation, nutrient uptake and N2 assimilation 

by plants is an acidification of soil, and thus an indirect impact of plant activity on soil 

microbial communities via pH changes (de Schrijver et al. 2012; Langenbruch et al. 

2012). Nacke et al. (2011) found significant differences in bacterial community 

structure by comparing grassland and forest soils. Within a study conducted in Austria, 

soil bacterial communities in pine, oak-hornbeam and spruce-fir-beech forests were 

investigated. In comparison with other study sites the analyzed pine forest harbored 

distinct bacterial communities (Hackl et al. 2004). Nevertheless, only few surveys 

explored the impact of tree species identity and tree species diversity on soil-inhabiting 

bacterial communities and datasets allowing a robust statistical analysis are rare.  

3.2. Impact of ants on soil microbial community composition 

Another factor altering diversity, distribution, abundance, and activity of soil microbial 

communities are ecosystem engineers. Ecosystem engineers are organisms that directly 

or indirectly change resource availability by shifting the physical states of biotic or 

abiotic materials and thereby modify, maintain or create habitats (Jones et al. 1994). 

Ants are known to be ecosystem engineers, as they significantly alter physical, chemical 

and biological properties of their environment (Frouz et al. 2003; Frouz et al. 2005). 

Ants assigned to the family Formicidae within the order Hymenoptera are colonial 

insects which actively shape and use soil as a habitat. Nest construction activity alters 

soil properties such as pH, water holding capacity, soil structure, and organic matter 

content, as well as exchangeable calcium (Ca), magnesium (Mg), kalium (K) and 

phosphate (PO4) (De Bruyn and Conacher 1990). Furthermore, it has been shown that 

ants affect the microorganism-driven C and N turnover as well as other microbial 

activities, as they are responsible for increased active respiration, denitrification, and 

methanogenesis in soil due to additional input of N-rich organic compounds and the 

inhibition of nitrogen fixation (Golichenkov et al. 2009).  

Ants utilize resources efficiently due to their social behavior and affect as mutualistic 

partners and predators the structure of food webs (Letourneau and Dyer 1998; 
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Schumacher and Platner 2009). Ants and aphids are common mutualistic partners. Ants 

collect honeydew produced by aphids and in return, protect aphids, provide shelter, 

brood care and remove exuviae and dead aphids (Banks 1962; Stadler and Dixon 2005; 

Matsuura and Yashiro 2006). Ant-tended aphids excrete smaller honeydew droplets 

containing a significantly higher concentration of amino acids, sucrose, and trehalose at 

a higher rate (Yao and Akimoto 2001; Yao 2002.). The honeydew collected and 

transported to ant nests can be used as C source by soil microbes and thereby affects 

soil microbial activity and community structure.  

4. 16S rRNA and 16S rRNA genes as molecular markers in microbial ecology 

studies 

Culture-based approaches enabled the isolation, description and classification of several 

bacterial species. However, more than 99% of the expected bacterial species are not 

cultivable and the cultured bacteria are not representative for the soil environment 

(Amann and Ludwig 2000; Griffiths et al. 2011). The development of culture-

independent metagenomic techniques and the use of 16S rRNA genes as phylogenetic 

marker contributed to overcome the drawbacks of culture-dependent approaches.  

The 16S rRNA is part of the small subunit of the ribosome and thus is present in each 

prokaryotic cell. Furthermore, the 16S rRNA gene contains highly conserved as well as 

variable regions which allow the determination of phylogenetic relashionships of the 

prokaryotic world. The construction of 16S rRNA gene libraries and subsequent 

sequencing of derived clones improved our knowledge on soil bacterial populations in 

different habitats (Chandler et al. 1997; Brümmer et al. 2003; Heijs et al. 2007). A 

relatively new sequencing method, pyrosequencing, improved the assessment of the 

metagenomic diversity, avoiding biases introduced by the use of clone libraries 

(Shendure and Ji 2008). Although the use of 16S rRNA and 16S rRNA genes as 

phylogenetic marker exibits some drawbacks, it is so far the best way to analyze 

prokaryotic community structures and ecological interactions. Microbial community 

analysis based on rRNA genes includes DNA from dead or dormant populations, while 

rRNA-based community analysis reveals information on a microbial community that is 

or recently has been active (Griffiths et al. 2000; De Nobili et al. 2001; Lennon and 

Jones 2011). Therefore, the combination of RNA-based and DNA-based approaches 

may reveal the portion of the microbial community that is either active or primed to 

become active (DeAngelis and Firestone 2012).  
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5. Objectives of this thesis 

This study is intended to analyze the influence of different factors influencing soil 

microbial diversity, community composition and activity, such as tree species identity, 

tree species diversity, leaf litter overlay, N fertilization and ant activity. In order to 

estimate the contribution of single factors, most of the experiments were conducted 

under controlled field and laboratory conditions. Additionally, some studies analyzed 

the natural conditions to evaluate the adaptability of the results obtained under artificial 

conditions. Chapter B.I comprises three studies analyzing the influence of single tree 

species, tree species diversity, leaf litter and seasons on the soil inhabiting microbial 

community structure and activity. Chapter B.II includes three surveys assessing the 

influence of high NO3
- 
depositions into soils on CH4 and N2O gas fluxes, and the soil 

inhabiting active microbial community in temperate broad-leaved forests. Chapter 

B.III consists of two studies analyzing the impact of ants and their activity on soil 

microbial communities. Furthermore, microbial communities present in biological soil 

crusts, sampled at two sites in extrazonal mountain dry steppes in northern Mongolia, 

were compared (Chapter B.IV). A schematic summary of the study concept is depicted 

in Figure 2. 
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B.I Effect of tree species identity, tree species diversity, leaf litter 

presence, and sampling time on soil microbial communities 

To analyze the influence of single tree species, tree species diversity and leaf litter on 

the soil-inhabiting bacterial community structure and activity a mesocosms experiment 

was established. Therefore, soil with high natural carbonate content, which buffered the 

soil acidification caused by rhizodeposits, was used to exclude soil pH as influencing 

factor. The following hypotheses were tested applying denaturing gradient gel 

electrophoresis and amplicon-based sequencing of 16S rRNA as molecular approach: 

(1)  Tree species, differing in physiology, leaf litter quality and type of mycorrhiza, 

affect soil bacterial community composition, diversity and activity. 

(2) Leaf litter presence, acting as nutrient source and meliorating both temperature 

and water budget of the underlying mineral soil, influences the soil bacterial 

diversity and activity. 

The impact of Fagus sylvatica L. (beech) and Fraxinus excelsior L. (ash) roots on the 

soil microbial community composition and carbon dynamics was assessed using 

double-split-root rhizotrons, distinguishing between root-induced and leaf litter-

mediated effects. The following hypotheses were tested: 

(1)  Beech and ash differentially affect the structure of the microbial community 

thereby modifying soil processes and plant nutrient capture.  

(2) Differences in microbial community structure are expected to result in 

differential decomposition of labeled ash litter and differential mobilization of 

nutrients from the litter.  

(3)  Further, we expected modifications of the soil microorganism community and 

soil processes to be most pronounced in the mixed treatment with both tree 

species present due to complementary effects of the two tree species. 

Furthermore, the effects of tree species, sampling distance from the tree trunk at 

different soil depth, and season on the diversity and composition of soil bacterial and 

fungal communities was analyzed. Therefore, mineral soil samples were collected in 0-

10 cm and 10-20 cm depth and 0.5 m, 1.5 m, 2.5 and 3.5 m distance to the trunk of 

selected Fagus sylvatica L. and Picea abies L. trees. Pyrosequencing of the V3-V5 16S 

rRNA and the ITS rRNA gene regions was applied to assess the diversity and structure 

of soil bacterial and fungal communities.  
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a b s t r a c t

The rhizosphere and the surrounding soil harbor an enormous microbial diversity and a specific com-
munity structure, generated by the interaction between plant roots and soil bacteria. The aim of this
study was to address the influences of tree species, tree species diversity and leaf litter on soil bacterial
diversity and community composition. Therefore, mesocosm experiments using beech, ash, lime, maple
and hornbeam were established in 2006, and sampled in October 2008 and June 2009. Mesocosms were
planted with one, three or five different tree species and treated with or without litter overlay.

Cluster analysis of DGGE-derived patterns revealed a clustering of 2008 sampled litter treatments in
two separated clusters. The corresponding treatments sampled in 2009 showed separation in one cluster.
PCA analysis based on the relative abundance of active proteobacterial classes and other phyla in beech
and ash single-tree species mesocosm indicated an effect of sampling time and leaf litter on active bacte-
rial community composition. The abundance of next-generation sequencing-derived sequences assigned
to the Betaproteobacteria was higher in the litter treatments, indicating a higher activity, under these con-
ditions. The Deltaproteobacteria, Nitrospira and Gemmatimonadetes showed an opposite trend and were
more active in the mesocosms without litter. The abundance of alphaproteobacterial sequences was
higher in mesocosms sampled in 2009 (P = 0.014), whereas the Acidobacteria were more active in 2008
(P = 0.014). At the family level, we found significant differences of the litter vs. non-litter treated group.
Additionally, an impact of beech and ash as tree species on soil bacterial diversity was confirmed by the
Shannon and Simpson indices. Our results suggest that leaf litter decomposition in pH-stable soils affect
the soil bacterial composition, while tree species influence the soil bacterial diversity.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Mankind has increased plant and animal extinction rates dras-
tically by altering environments and transforming landscapes. The
consequences of loss or changes of biodiversity, especially of vascu-
lar plant and animal diversity, have been analyzed in many studies
(Chapin et al., 2000; Ives and Carpenter, 2007; Loreau et al., 2001;
Petchey and Gaston, 2002; Reich et al., 2012). Chapin et al. (2000)
pointed out that plant and animal species diversity affects the
function of ecosystems as well as the resilience and resistance
of ecosystems to environmental changes. A higher vulnerability
caused by a decrease in species diversity might finally lead to
population collapses. Therefore, predominantly provident environ-
mental resource utilization is practiced in forestry management in

∗ Corresponding author. Tel.: +49 551 393827, fax: +49 551 3912181.
E-mail address: rdaniel@gwdg.de (R. Daniel).

Central Europe. Increasingly, mono-specific stands are being trans-
formed into diverse and therefore, most likely, more stable stands.
Although soil microorganisms mediate nearly all biogeochemical
cycles in terrestrial ecosystems and are responsible for most nutri-
ent transformations in soil (van der Heijden et al., 2008), the effect
of above-ground plant diversity on soil microbial community com-
position and diversity is poorly understood (Fierer and Jackson,
2006; Torsvik and Øvreås, 2002; Wertz et al., 2006). Biogeochem-
ical cycles, such as denitrification and nitrite oxidation are more
or less unaffected by reduction of soil bacterial diversity (Wertz
et al., 2007). This is due to high levels of redundancy for many gene
families encoding enzymes and functions driving biogeochemical
processes across different soil microbial groups. Thus, small-scale
environmental perturbations that alter some microbial groups will
not necessarily alter overall biogeochemical functioning of micro-
bial communities (Cubbage et al., 2007; Fitter et al., 2005). However
a tree species specific effect on both C (CH4) and N (N2O) gas fluxes
from soil, which are microbial mediated, has been shown (Fender

0929-1393/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
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et al., 2012). Therefore a complete redundancy of microbial com-
munity structure appears not likely if the effects on net gas fluxes
from soils can be attributed to direct tree species impact.

Biotic and abiotic factors are also drivers of composition and
diversity of soil bacterial communities. Fierer and Jackson (2006)
demonstrated that the soil pH is a major factor driving bacterial
richness, diversity and overall community composition by analyz-
ing soils from across North and South America. They observed the
lowest level of bacterial diversity and richness in acidic soils, which
is in accordance with the low decomposition rates in acidic soils
(Motavalli et al., 1995; van Bergen et al., 1998). The strong influence
of soil pH on the soil bacterial community structure and diversity
was also shown by 16S rRNA gene sequence data from Lauber et al.
(2009), a wetland soil study by Hartman et al. (2008) and a pH gra-
dient analysis in an arable soil by Rousk et al. (2010). Furthermore,
it is known that trees have a specific impact on the development
of soil pH, and therefore should have a differentiating impact on
its associated soil microbial communities (de Schrijver et al., 2012;
Holzwarth et al., 2011; Langenbruch et al., 2012).

In addition, Fierer and Jackson (2006) discovered no significant
relationship between soil bacterial diversity and plant diversity.
Other studies analyzing grassland and agricultural sites confirmed
these results (Buckley and Schmidt, 2001; Felske et al., 2000;
Kowalchuk et al., 2002). It has been shown that plant diversity
levels in grassland soils significantly affect the below-ground bac-
terial community composition but not bacterial richness (Grüter
et al., 2006). Two studies focusing on grassland soils showed a direct
effect of plant composition on below-ground bacterial community
structure, but also a more pronounced effect of physic-chemical
factors (Kennedy et al., 2004; Nunan et al., 2005). Several grass-
land soil and agricultural crop studies focused on plant-dependent
rhizosphere bacterial communities, which are directly affected by
plant root exudates and other rhizodeposits (Barea et al., 2005;
Costa et al., 2006; Kowalchuk et al., 2002; Kuske et al., 2002; Smalla
et al., 2001). However, most of the surveys analyzing plant species
and diversity effects on soil or rhizosphere bacterial communities
were conducted in grassland or agricultural soils and so far, lit-
tle is known about the influence of tree species and varying tree
diversity levels on soil bacterial communities. Several studies ana-
lyzing the effect of leaf litter quality and species mixture on the
decomposition rates and the decomposing bacterial community
were performed (Aneja et al., 2006; Jacob et al., 2010; Kooijman,
2010). However, to our knowledge the influence of leaf litter on
the soil-inhabiting bacterial community was not analyzed so far.

The aim of this study was to investigate the effect of tree species,
tree species diversity and leaf litter on soil microbial diversity,
abundance and activity using DGGE-based community profiling.
For a more comprehensive analysis of tree species and leaf lit-
ter impact on the community composition of active soil bacteria,
next-generation sequencing of 16S rRNA amplicons was used. We
hypothesized (a) that tree species, differing in physiology, leaf lit-
ter quality and type of mycorrhiza, affect soil bacterial community
composition, diversity and activity; (b) that leaf litter presence,
acting as nutrient source and meliorating both temperature and
water budget of the underlying mineral soil, influences soil bac-
terial diversity and activity. The thickness of the forest floor (leaf
litter horizons upon the soil) may vary considerably (from several
decimeter to non-existent) depending on season, exposition (to the
wind) or decomposition conditions. The variation of a leaf litter
layer up to existing or non-existing is therefore realistic in natural
forest ecosystems and may differentiate its soil microbial commu-
nities. To investigate this, a mesocosm experiment in which tree
diversity ranged from a single species treatment to a five species
treatment was established. The mesocosms resembled the present
tree diversity in the national park Hainich in Thuringia, Germany.
Additionally, treatments with and without leaf litter overlay were

installed to unravel litter layer impact on total and active bacterial
communities.

2. Material and methods

2.1. Experimental set up and soil sampling

In this study, the influence of tree species and tree species
diversity on bacterial community composition in soil habitats was
analyzed. Mesocosms (diameter, 60 cm) were filled with 60 l of silty
soil, which had a pH (CaCl2) of 7.4 (Schlichting et al., 1995). The soil
contained 2.56% humus, 0.14% nitrogen, and 1.48% organic carbon
(supplemental Table S1). The established mesocosms simulated the
soil conditions of most areas in the Hainich National Park, which
is a common research site of some larger collaborative projects.
The Hainich is a large deciduous forest (16,000 ha) in Germany. It is
located in the west of Thuringia and partly a national park (7500 ha),
which was declared a World Natural Heritage site in 2011 by the
UNESCO. In the past decades, this area underwent a transformation
from a military training area to a mainly undisturbed deciduous for-
est. The dominant tree species are Acer pseudoplatanus L. (maple),
Fagus sylvatica L. (European beech), Fraxinus excelsior L. (European
ash), Carpinus betulus L. (hornbeam) and Tilia cordata P. Mill (lime).
To set up the mesocosms experiments single-tree species, three-
tree species and five-tree species treatments were established in
summer 2006. Each of these treatments was replicated 10 times.
After litter fall, the litter was removed from five of these replicates
randomly to establish the treatments without leaf litter overlay.
Additionally, controls without tree species, and without litter were
established. The single-tree species treatment contained 10 indi-
viduals of beech, ash or hornbeam per mesocosm. The three-tree
species treatment contained mixtures of three individuals of three
different tree species. The five-tree species treatment was planted
with two individuals of maple, beech, ash, hornbeam and lime (sup-
plemental Table S2 and Figure S1). These mesocosms were placed
in the open field in the Experimental Botanical Garden of the Uni-
versity of Göttingen, completely randomized in three blocks, each
containing three rows of 23 mesocosms. The area was sheltered
against strong winds by a hedge and covered by a shading net
(Wunderlich, Osterrode, Germany) to simulate light conditions in
forests by the reduction of the solar radiation to 50–60% of the
irradiance in the open field (supplemental Figure S2). Deciduous
trees (approximately three years of age) were derived from a tree
nursery and were barely colonized by mycorrhiza. The trees had
grown for two growth periods before the first samples were taken
to develop and establish their influence on soil microbial commu-
nities. During the growing season the mesocosms were watered
three times a week to prevent drought stress as an influencing fac-
tor. The climatic conditions recorded between the two samplings
in October 2008 and June 2009 are shown in supplemental Figure
S3. The upper 10 cm of the soil were sampled from three of the
five replicates and pooled to minimize potential heterogeneity of
the sample and describe the average bacterial community com-
position of each treatment. The samples were immediately frozen
in liquid nitrogen and stored at −80 ◦C prior to extraction of DNA
and RNA. Since the mesocosms were almost completely filled with
roots at the time of harvest, the analyzed “bulk” soil samples have
been considered as rhizosphere, which is directly influenced by root
exudates.

2.2. Extraction of nucleic acids

Genomic DNA was isolated from 250 mg of soil per sample by
employing the PowerSoilTM DNA isolation kit (MO BIO Laborato-
ries Inc., Carlsbad, CA, USA). The final DNA elution step was carried
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out with 100 �l sterile water. RNA was isolated from 2 g of soil
per sample using the RNA PowerSoilTM total RNA isolation kit (MO
BIO Laboratories Inc.) as indicated by the manufacturer. The result-
ing RNA pellet was dissolved in 100 �l RNase-free water. For the
removal of residual DNA contamination, the TURBO DNA-freeTM

kit (Life Technologies, Carlsbad, CA, USA) was used as described
by the manufacturer. Subsequently, DNase-treated RNA was puri-
fied and concentrated using the RNeasy MinElute cleanup kit
(Qiagen GmbH, Hilden, Germany). The concentration of DNA and
RNA extracts was quantified using a NanoDrop ND-1000 spec-
trophotometer (NanoDrop Technologies, Wilmington, DE, USA).
Additionally, RNA integrity and concentration were analyzed using
the Agilent 2100 Bioanalyzer and the Agilent RNA 6000 Nano kit
(Agilent Technologies, Inc., Santa Clara, CA, USA).

2.3. Denaturing gradient gel electrophoresis (DGGE)

To analyze the bacterial communities present in the soil of the
mesocosms by denaturing gradient gel electrophoresis (DGGE) a
550 bp-fragment comprising the V2–V3 region of the 16S rRNA
gene was amplified using the primers 5′-CCTACGGGAGGCAGCAG-
3′ (BAC 341F) and 5′-CCGTCAATTCCTTTRAGTTT-3′ (BAC 907R)
(Muyzer and Smalla, 1998; Muyzer et al., 1995). A GC
clamp (5′-CGCCCGCCGCGCCCCGCGCCCGTCCCGCCGCCCCCGCCCG-
3′) was attached to the 5′ terminus of the primer BAC 341F (Muyzer
et al., 1995). The PCR reaction mixture (50 �l) contained 5 �l Mg-
free polymerase buffer (Thermo Fisher Scientific, Inc., Waltham,
MA, USA), 200 �M of each of the four deoxynucleoside triphos-
phates, 2 mM MgCl2, 2 �M of each of the primers, 1 U of Taq DNA
polymerase (Thermo Fisher Scientific, Inc.), and 20 ng of isolated
DNA as template. For the touchdown PCR, the following thermal
cycling scheme was used: initial denaturation at 95 ◦C for 2 min,
13 cycles of denaturation at 94 ◦C for 1 min, annealing for 1 min
at a decreasing temperature gradient ranging from 64 ◦C to 51 ◦C
(1 ◦C decrease per cycle), and extension at 72 ◦C for 3 min. Subse-
quently, 12 cycles of denaturation at 94 ◦C for 1 min, annealing for
1 min at 51 ◦C, and extension at 72 ◦C for 3 min were performed. A
final extension period at 72 ◦C for 10 min was carried out. Resulting
PCR products were purified using the CyclePure PCR purification
kit (Peqlab Biotechnologie GmbH, Erlangen, Germany) as recom-
mended by the manufacturer.

To analyze RNA-based active soil bacterial communities the
same primers as described above were used. Reverse transcrip-
tion (RT) of isolated RNA and subsequent PCR of the resulting
cDNA was performed with the OneStep RT-PCR kit (Qiagen GmbH,
Hilden, Germany). The RT-PCR reaction mixture (50 �l) was pre-
pared as recommended by the manufacturer and supplemented
with 50 ng of isolated RNA as template. The thermal cycling scheme
was used as described above, except the replacement of the initial
denaturation with a reverse transcription at 50 ◦C for 30 min and a
subsequent denaturation at 95 ◦C for 15 min.

DGGE analysis of 16S rRNA genes and transcripts was performed
using the Ingeny phorU system (Ingeny International BV, The
Netherlands). Approximately 500 ng of purified amplicons were
loaded onto a 9% (w/v) polyacrylamide gel containing a 45% to
60% denaturing gradient (100% denaturant consisted of 7 M urea
and 40% formamide). Electrophoresis was performed at 60 ◦C and
100 V for 16 h in Tris–acetate-EDTA (TAE) buffer, containing 40 mM
Tris, 20 mM acetic acid, and 1 mM EDTA. Subsequently, the gels
were stained with SYBR Gold (Life Technologies, Carlsbad, CA, USA).
Randomly selected bands were excised from the gel and DNA was
eluted by incubation in 100 �l of TAE buffer at 4 ◦C over night. A vol-
ume of 1 �l resulting DNA solution was employed as template for
reamplification of 16S rRNA genes and transcripts, respectively. The
above-described PCR reaction conditions, solutions and primers
were employed, but primer 341F was used without the attached GC

clamp. Resulting PCR-products were purified, ligated into pCR2.1-
TOPO vector (Life Technologie,) and used to transform E. coli DH5�
cells according to the manufacturer’s instructions. To estimate the
number of different 16S rRNA gene fragments co-migrating within
the same DGGE band, plasmids derived from 12 clones per DGGE
band were sequenced by the Göttingen Genomics Laboratory (Uni-
versity of Göttingen, Germany). The generated sequence data were
edited using the gap4 program of the Staden Package (Bonfield
et al., 1995). Taxonomic classification was performed by compar-
ing the edited sequences to the most recent SILVA ribosomal RNA
database (Pruesse et al., 2007) using BLAST (Altschul et al., 1990).
Nucleotide sequences of the recombinant plasmids harboring 16S
rRNA genes have been submitted to GenBank under accession num-
bers JX985790 to JX986515.

The resulting DGGE profiles were analyzed with the GelCompare
II software (Applied Maths, Kortrijk, Belgium). Therefore, contours
of distorted gels were defined, densitometric curves were extracted
and background subtraction was applied. Each sample lane was
marked and delineated, indicating the present lane deformation
and width. In the next step, densitometric curves were defined and
the universal marker patterns were used as external reference to
straighten and normalize each lane. Clustering was performed by
using the unweighted pair group method with arithmetic mean
(UPGMA) and the Jaccard coefficient of similarity, which takes only
the presence or absence of a band into account. Position tolerance
was set at 1%.

2.4. Pyrosequencing of 16S rRNA gene transcripts

To analyze the active bacterial community of beech and ash
treated single-tree species mesocosms, the V2–V3 region of 16S
rRNA gene transcripts was reverse transcribed, amplified and
the resulting PCR products were applied to pyrosequencing. The
cDNA synthesis was performed using the SuperScriptTM III reverse
transcriptase (Life Technologies). For initial denaturation and
primer annealing, a mixture (14 �l) containing 100 ng of isolated
DNA-free RNA, as well as 2 �M of the primer V3rev (see below) and
10 mM dNTP mix was incubated for 5 min at 65 ◦C and chilled on
ice for at least 1 min. The cDNA synthesis mixture (6 �l) harboring
4.0 �l 5-fold first strand buffer, 0.1 M DTT, 40 U RiboLock RNase
inhibitor (Thermo Fisher Scientific, Inc.) and 200 U SuperScriptTM

III reverse transcriptase was added and incubated at 55 ◦C for
90 min. The reaction was terminated at 70 ◦C for 15 min. For the
amplification of cDNA fragments, Phusion® hot start high-fidelity
DNA polymerase (Thermo Fisher Scientific, Inc.) was used. The PCR
reaction mixture (50 �l) contained 10 �l of five-fold Phusion HF
buffer (Thermo Fisher Scientific, Inc.), 200 �M of each of the four
deoxynucleoside triphosphates, 1.25% DMSO, 2 �M of each of the
primers, 0.5 U of DNA polymerase and 0.25 �l of the previously
synthesized cDNA. The thermal cycling scheme was as follows:
initial denaturation at 98 ◦C for 3 min, 25 cycles of denaturation at
98 ◦C for 15 s, annealing and extension at 72 ◦C for 20 s, followed
by a final extension period at 72 ◦C for 2.5 min. The primer set
V2for (5′-CGTATCGCCTCCCTCGCGCCATCAG-MID-AGTGGCGGACG-
GGTGAGTAA-3′) and V3rev (5′-CTATGCGCCTTGCCAGCCCGCTCAG-
MID-CGTATTACCGCGGCTGCTG-3′), containing pyrosequencing
adaptors (underlined) and different standard multiplex identifiers
(MID) was used for cDNA synthesis and amplification (modified
from Schmalenberger et al., 2001). All samples were amplified in
triplicate, pooled and purified using the peqGold gel extraction kit
(Peqlab Biotechnologie GmbH, Erlangen, Germany). The PCR prod-
ucts were quantified using the Quant-iT dsDNA BR assay kit and
a Qubit fluorometer (Life Technologies). The Göttingen Genomics
Laboratory determined the sequences of the partial 16S rRNA
gene transcripts by using a Roche GS-FLX 454 pyrosequencer and
Titanium chemistry (Roche, Mannheim, Germany). The resulting
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sequence data have been deposited in the NCBI sequence read
archive under accession number SRA060044.

2.5. Processing and analysis of pyrosequencing-derived data sets

Forward and reverse primer sequences, as well as sequences
shorter than 300 bp were removed from the pyrosequencing-
derived dataset using the QIIME software package (Caporaso et al.,
2010a). In addition, sequences containing long homopolymers
(>8 bp), unresolved nucleotides, or nucleotides with an average
quality score lower than 25 were removed. In addition, denoising
was carried out using the denoiser program version 0.91 (Reeder
and Knight, 2010). Operational taxonomic units (OTUs) were deter-
mined by Uclust OTU picker 1.2.22q (Edgar, 2010) at 3%, 5%, 10% and
20% genetic distance according to (Schloss and Handelsman, 2005).
Potential chimeric sequences were removed by aligning represen-
tative sequences of each OTU using PyNast 1.1 (Caporaso et al.,
2010b) and subsequent analysis using ChimeraSlayer 4.29 (Haas
et al., 2011). Rarefaction curves and diversity indices (Shannon,
ACE, Simpson, Chao1 and Michaelis-Menten fit) were calculated
by employing the QIIME software package. To allow compari-
son to non QIIME-based analysis we corrected the Shannon index
by multiplying it with ln 2. Taxonomic classification was per-
formed by comparing the preprocessed sequences to the most
recent copy of the SILVA ribosomal RNA database using BLAST
(SSURef 106 tax silva trunc.fasta) (Altschul et al., 1990). To com-
pare the bacterial communities of different treated samples we
tested for normal distribution of all identified phyla within the
samples using the Shapiro–Wilk test. Furthermore, the influence
of tree species, litter overlay and sampling time were analyzed by
grouping data derived from identical treatments, together. To iden-
tify significant differences between the different treatment-groups,
the t-test and for not normal-distributed data, the Mann–Whitney-
test was applied using Sigma-Plot (Systat Software GmbH, Erkrath,
Germany). A principal component analysis (PCA), based on the rel-
ative abundance of bacterial phyla and proteobacterial classes was
performed using Canoco 4.5 (Microcomputer Power, Ithaca, NY,
USA).

3. Results and discussion

3.1. Fingerprints of bacterial community

To analyze the effect of tree species and tree species diversity on
soil microbial community composition, mesocosms experiments
were established. The mesocosms contained single-tree species, as
well as mixtures of three and five different tree species. Each treat-
ment was replicated ten times. Additionally, the leaf litter layer
was removed from five of the replicates. To analyze the micro-
bial community composition derived from the different treatments,
DGGE fingerprinting was performed. DNA was extracted from the
different soil samples to analyze the whole bacterial community
present in the mesocosms. To analyze the active bacterial com-
munity present in the differently treated mesocosms RNA was
extracted and reverse transcribed. The 16S rRNA-based fingerprints
revealed more distinct bands per lane, than the 16S rRNA gene-
based fingerprint (20 bands per lane), but no differences between
the treatments were observed for the 16S rRNA-based DGGE pat-
terns (data not shown). Norris et al. (2002) also encountered an
almost identical DGGE fingerprint based on 16S rRNA and 16S rRNA
genes from soil microbial communities across a thermal gradient.
Thus, the 16S rRNA-based results were not analyzed in detail.

In this study, 20 distinct bands were detected in each soil sam-
ple. Sixty-eight of these were selected randomly and excised from
the DNA-based DGGE profiles (supplemental Figures S4 to S7).

Fig. 1. Sequence assignment to proteobacterial classes, and other bacterial phyla
of the excised, reamplified, cloned and sequenced DGGE-derived bands. Upper case
letters indicate the different tree species used in this study (maple (A), beech (B),
lime (C), hornbeam (D) and ash (E). The five tree species treatments are marked
with All and the treatments without tree species and litter are marked with (Co).
Additionally, litter treated samples are marked in grey. Numbered upper case letters
indicate the excised and cloned bands and identical letters indicate bands excised
at equal heights from different samples and DGGE-replicates.

These bands were reamplified, cloned into vectors, and sequenced
to gain insight into the bacterial phyla captured by the 16S
rRNA gene DGGE approach (Fig. 1). In total, 726 16S rRNA gene
sequences were obtained of which 44.7% were affiliated to the
Proteobacteria. The proteobacterial class Betaproteobacteria rep-
resented 28.1% of all sequences obtained. Other proteobacterial



154 B. Pfeiffer et al. / Applied Soil Ecology 72 (2013) 150–160

classes identified were the Deltaproteobacteria (6.9%), Alphapro-

teobacteria (6.9%) and Gammaproteobacteria (2.8%). Members of
the phyla Acidobacteria and Bacteroidetes accounted for 23.7%
and 9.4% of all sequences, respectively. In addition, Actinobacte-

ria, Gemmatimonadetes, Chlorobi, Firmicutes Nitrospirae, Chloroflexi,
Planctomycetes and Fibrobacteres, as well as some unclassified
members of Bacteria were detected (less than 12.3% of all identified
sequences). These phylogenetic groups were also identified in other
surveys analyzing soil bacterial community structures (Janssen,
2006; Lauber et al., 2009; Nacke et al., 2011; Rousk et al., 2010;
Will et al., 2010). Most DGGE bands occurred with different inten-
sities in all treatments. Furthermore, all bands contained diverse
co-migrating sequences. For example, band D and F, which occurred
in all treatments, but were less intense in the ACD-Ex sample from
2009. DGGE bands D and F were dominated by the Gammapro-

teobacteria. DGGE band K, which appeared exclusively in sample
ACD-Ex from 2009 was dominated by the Bacteroidetes (Fig. 1).

Cluster analysis of the DNA-based DGGE fingerprints revealed
two main clusters (Fig. 2). One cluster contained two single-tree
species and seven of the three-tree species treated samples from
2009 with litter overlay. The second cluster comprised four sub-
clusters (A, B, C and D). Subcluster A contained single-tree species,
three-tree species and five-tree species samples, which were
mainly without litter treatment. The hornbeam single-tree species
sample treated with litter cluster separately from all other samples
in subcluster A. Subcluster B encompassed two separate groups,
of which one contained three single-tree species and litter-treated
soil samples from 2008 and a second, which contained the control,
the three-tree and the five-tree species samples without litter over-
lay, sampled in 2009. Subcluster C comprised only samples taken
in 2008, whereas six of the three-tree species and litter-treated
samples clustered separately from the other treatments. Subcluster
D contained the remaining three and five-tree species treatments
without litter overlay and the control. Thus, the cluster analysis
indicated a combined effect of sampling time, and the presence or
absence of a litter layer. A comparative cluster analysis of all three
DGGE-replicates confirmed these results (supplemental Figure S8).
A microcosm study conducted by Stres et al. (2008) detected no
significant changes in bacterial community structure in response
to seasonal changes in soil temperature and water content. An
increase in forest topsoil temperature by 4 ◦C had no influence on
bacterial community composition and biomass, but an increased
microbial metabolic activity was observed (Schindlbacher et al.,
2011). Therefore, an adaptation of the soil microbial community
present in our mesocosms, with time to the presence or absence of
a leaf litter layer and the leaf litter quality probably occurred. Leaf
litter acts as a nutrient source, whereas different leaf litter species
differing in their litter quality serve as fast or slow degradable nutri-
ent resource. Litter derived from hornbeam posses a lower C/N
ratio and lignin content than beech, and thus is degraded faster
and disappears in a relatively short time (Kooijman, 2010). Conse-
quently, hornbeam leaf litter has only a minor impact on the soil
bacterial community. The distant clustering of the litter-treated
hornbeam single-tree species sample from 2009 compared to all
other litter-treated samples supports this hypothesis. Five of the six
litter-treated three-tree species samples from 2008 grouped sepa-
rately in subcluster C. The respective samples were also identified in
the litter-treated group from 2009, which clustered distinctly from
all other treatments sampled in 2008 and 2009. Additionally, the
beech and ash, litter-treated single-tree species mesocosms that
grouped separately in 2008 were also identified in the litter-treated
cluster from 2009. Aneja et al. (2006) observed a strong effect of
litter quality on the litter decomposing bacterial community by
comparing decaying beech and spruce leaf litter by DGGE. They
also recorded a 65% similarity between the leaf litter-decomposing
bacterial community and the soil-inhabiting bacterial community.

Furthermore, the amount of litter covering the soil affects the bacte-
rial community inhabiting the respective litter and soil (Chemidlin
Prevost-Boure et al., 2011). Although the increased litter layer
quantity was not measured, the amount of litter deposited by the
growing trees was likely to increase over time. Taking the cluster-
ing of the controls into account, a slowly establishing and persistent
influence of the litter layer on the soil-inhabiting bacterial commu-
nity is indicated. Furthermore, an impact of tree species on the soil
microbial community is unlikely, as the controls containing no tree
species, cluster among the tree species treated samples, indicating
no root-specific influence. To analyze tree species, seasonal and lit-
ter effects on active soil bacterial communities comprehensively at
a higher taxonomic resolution, the single-tree species treatments
covering the dominant tree species in the national park Hainich
(beech and ash) were selected for a detailed analysis employing
large-scale amplicon-based sequencing of 16S rRNA.

3.2. Amplicon-based analysis of beech and ash single-tree species

mesocosms

The rRNA from beech-treated and ash-treated single-tree
species mesocosms with and without litter layer were extracted,
and the V2–V3 region of the 16S rRNA was amplified and
sequenced. A total of 168,974 16S rRNA sequences were gener-
ated (Table S3). After preprocessing, including quality filtering and
denoising, 117,312 high-quality sequences with an average read
length of 415 bases were recovered and analyzed. We were able to
assign all sequences to the domain Bacteria and classify all of them
at phylum level.

3.2.1. Bacterial diversity and richness

Operational taxonomic units (OTUs) were identified at 3%, and
20% sequence divergence and the same level of surveying effort
(10,200 randomly selected sequences per sample). Subsequently,
rarefaction curves, richness and diversity indices were determined
for the analyzed active bacterial community. At 20% genetic dis-
tance (phylum level), rarefaction curves were almost saturated,
indicating that the surveying effort covered almost the full tax-
onomic diversity. Comparison of the number of observed OTUs
with the number of OTUs predicted by Chao1 and ACE rich-
ness estimators revealed that 74.1% to 83.0% of the estimated
taxonomic diversity at 20% genetic distance was covered (Table
S4). At 3% genetic distance, rarefaction curves were not satu-
rated, and the richness estimators indicated a coverage of 32.0%
to 77.0%, respectively. Additionally, the maximal number of OTUs
expected was determined by non-linear regression based on the
Michaelis–Menten fit metrics. Estimates of the diversity coverage
using Michaelis–Menten fit ranged from 87.5% to 90.2% at 20%
genetic distance and from 72.5% to 83.1% at 3% genetic distance.
Thus, we did not survey the full extent of taxonomic diversity at 3%
genetic distance, but a substantial fraction of the bacterial diversity
was assessed by the surveying effort. The observed values were in
the range of other amplicon-based 16S RNA gene studies in which
different forest and grassland soils were analyzed (Nacke et al.,
2011; Will et al., 2010).

Haegeman et al. (2013) recently recommended the use of Shan-
non and Simpson indices of diversity for sample comparisons, as
the estimation of species richness is problematic, due to missing or
insufficient information on the real number of rare species. Com-
parison of the diversity indices revealed a similar level of bacterial
diversity in all analyzed samples. The Shannon indices of diversity
at 20% sequence divergence were 2.66, 2.74, 2.89 and 2.78 for the
beech and ash treated samples from 2008 with litter and without
litter overlay, and 2.51, 2.24, 2.97 and 2.20 for the correspond-
ing samples from 2009 (supplemental Table S4). At 3% sequence
divergence the Shannon indices were 5.86, 5.89, 6.56 and 5.66 for
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Fig. 3. Relative abundance of the most abundant (>1%) proteobacterial classes and
bacterial phyla occurring in the analyzed soil mesocosms. Sample numbers indi-
cating the different treatments with beech (B) and ash saplings (E), with (Ex) and
without litter removal (Li) and the sampling in October 2008 (08) and June 2009 (09).

samples taken in 2008, and 6.11, 5.64, 6.27 and 5.73 for samples
taken in 2009 (supplemental Table S4). These values were in same
range as in other studies employing the RDP database for analy-
sis of amplicon-based 16S rRNA gene data (Nacke et al., 2011; Will
et al., 2010). The Simpson index pointed to a high bacterial diver-
sity within the analyzed soil samples, with little variation of D for
the beech-treated samples. The Simpson index was 0.990, 0.996,
0.992 and 0.993 for the beech-treated samples with and without
litter layer sampled in 2008 and 2009, respectively. The Simpson
index for the ash-treated samples varied more widely, with 0.991,
0.984, 0.972 and 0.983 for treatments with and without litter layer
sampled in 2008 and 2009, respectively. The diversity index calcu-
lations for RNA-based and DNA-based surveys are comparable, with
the exception that 16S rRNA-based studies depict the active com-
munities whereas the 16S rRNA gene-based studies reflect total
bacterial communities. Active bacteria transcribe 16S rRNA from
the 16S rRNA genes and therefore analysis from these molecules
can be correlated to bacterial diversity in the respective environ-
ment. In addition, studies based on 16S rRNA or 16S rRNA genes are
not perfect, as taxa can contain different and genetically diverse
operons (Klappenbach et al., 2000). Thus, the relative abundance
of taxa with low operon copy numbers tend to be underestimated,
while the abundance of taxa with high copy numbers might be
overestimated (Větrovský and Baldrian, 2013). A study comparing
bacterial community composition in forest soil based on RNA and
DNA showed that several active bacterial OTUs were considerably
underrepresented in the DNA-based survey (Baldrian et al., 2012).

3.2.2. Distribution of phylogenetic groups.

The active bacterial communities across all analyzed soils com-
prised 19 phyla and 13 candidate phyla (Fig. 3). The dominant
phyla, were Proteobacteria, Chloroflexi, Actinobacteria, Acidobacteria,

Cyanobacteria, Planctomycetes, Firmicutes and Nitrospirae account-
ing for 53.9%, 12.6%, 10.6%, 7.2%, 6.4%, 2.5%, 2.1% and 1.7% of
all sequences, respectively (Fig. 3). The dominant classes of the

Fig. 2. Cluster analysis of DNA-derived DGGE profiles. Clustering was performed
by the unweighted pair group method with arithmetic mean (UPGMA) using the
Jaccard coefficient of similarity, which takes only the presence or absence of a band
into account. Upper case letters indicate the different tree species used in this study
(maple (A), beech (B), lime (C), hornbeam (D) and ash (E)). The five tree species
treatments are marked with All. The control (Co) contained no tree species and no
litter. The removal of litter is indicated by (Ex) and the presence of a litter layer
is indicated by (Li). Samples marked in dark grey were taken in October 2008 and
samples marked with light grey were sampled in Jun 2009.
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Proteobacteria were the Alphaproteobacteria, Betaproteobacteria,
Gammaproteobacteria and Deltaproteobacteria, representing 19.5%,
12.8%, 11.9% and 9.5%, of all classified sequences, respectively.
Despite different soil characteristics and survey methods, all above-
mentioned phylogenetic groups were also identified in DNA-based
studies targeting soil bacterial community composition (Nacke
et al., 2011; Janssen, 2006; Will et al., 2010). The Acidobacteria

were identified as the predominant phylum in German grassland
soil samples, representing 27.0% of all analyzed sequences (Will
et al., 2010). Furthermore, a high relative abundance (19.6%) of
this phylum was observed in forest and grassland soil samples
that vary in management type (Nacke et al., 2011). Several sur-
veys have shown that soil pH is one of the main drivers of bacterial
community composition (Fierer and Jackson, 2006; Lauber et al.,
2009; Nacke et al., 2011; Rousk et al., 2010). Thus, the relatively
low abundance of Acidobacteria in this RNA-based study indicated
a reduced activity. This may result from the high soil pH (pH (CaCl2)
7.4) compared to the soils (pH (CaCl2) 3.0–7.4) in the studies by
Will et al. (2010) and Nacke et al. (2011). Dimitriu and Grayston
(2010) determined a linear decline in the relative abundance of
Acidobacteria with increasing soil pH values. The comparison of
16S rRNA gene libraries derived from a variety of soils includ-
ing forest, grassland and arid woodland soils revealed an average
abundance of this phylum ranging from 5% to 46% (Janssen, 2006).
Thus, the relative abundances of 5.20% to 9.48% for Acidobacteria

recorded in this survey were comparable to those derived from the
DNA-based approach. The remaining 24 rare phyla and candidate
phyla included Bacteroidetes, Chlorobi, Fibrobacteres, Verrucomi-

crobia, Armatimonadetes, TM7 and WS3 (>0.5% of all sequences,
Fig. 4).

The most abundant and thus, most active family across all
analyzed samples were the Rhodospirillaceae (Alphaproteobacteria),
representing 7.5% of all sequences. Members of this
photosynthetically-active family are known to fix nitrogen
via nitrogenase reaction (Madigan et al., 1984), and thus play a role
in the nitrogen cycle. Several species belonging to the Rhodospir-

illaceae were isolated from soil (An et al., 2009; Ishii et al., 2011;
Jung et al., 2011), indicating that this family is common in soil.
Additionally, Rhodospirillaceae are known to grow anaerobically in
the light as well as aerobically in the dark (Saunders, 1978), which
accounts for their high activity in our mesocosms. Other highly
abundant and active phylotypes were the Comamonadaceae (6.7%),

Fig. 4. Relative abundance of rare bacterial phyla (<1%) occurring in the analyzed
soil mesocosms. Sample numbers indicating the different treatments with beech (B)
and ash saplings (E), with (Ex) and without litter removal (Li) and the sampling in
October 2008 (08) and June 2009 (09).

Anaerolineaceae (3.6%), Nannocystineae (3.3%), Sinobacteraceae

(3.0%) and the Xanthomonadaceae (3.9%).
Some of the recovered 16S rRNA sequences exhibited ≥99 iden-

tities to those of isolated soil-derived species such as Kribbella alba

(0.2%, Li et al., 2006), Nocardioides terrigena (0.06%, Yoon et al.,
2007) and Humibacillus xanthopallidus (0.05%, Kageyama et al.,
2008). Additionally, some sequences could be assigned to the type
I methanotrophic bacterium Methylobacter luteus (0.23%, Bowman
et al., 1993) and the ammonia-oxidizing bacterium Nitrosospira sp.
Nsp17 (0.05%, Aakra et al., 2001). Other identified bacterial species
such as Pseudomonas sp. SHF7 (0.85%), Nostocaceae cyanobac-

terium SAG B11.82 (0.55%), Bacillus simplex (0.1%), Lysobacter sp. 8L
(0.31%), Clostridium favososporum (0.1%) and Azotobacter chroococ-

cum (0.1%) (supplemental Table S5) were also found within the
analyzed samples.

3.2.3. Tree species and litter overlay affect the composition and

diversity of active soil bacterial communities.

To analyze the differences between the analyzed single-tree
species mesocosms, a principal component analysis (PCA) based on
active bacterial phyla and proteobacterial classes was conducted
(Fig. 5). The PCA confirmed differences between samples taken

Fig. 5. Principal component analysis (PCA) of proteobacterial classes and bacterial phyla inhabiting the analyzed beech and ash single tree species treated mesocosms, with
and without litter layer. Part (A) depicts the first and second axis (A) of the PCA and the present tree species are highlighted in yellow (beech) and blue (ash). Part (B) depicts
the second and the third axis of the PCA, litter (red) and not litter (green) samples are highlighted.(For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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Table 1

Mean relative abundance (in%) and standard deviation of phyla and proteobacterial classes occurring in the different treatments. Samples were grouped and analyzed
according to the time of sampling and the applied treatment. Different lower case letters indicate differences between samplings of 2008 and 2009, upper case letters show
differences between beech and ash and Greek letters indicate significant differences between the saplings with and without litter. Paired t-test with P < 0.05.

2008 2009 beech ash litter no litter

Alpha-proteobacteria 14.15 ± 1.67a 24.91 ± 6.00b 16.67 ± 5.11 22.38 ± 8.25 21.11 ± 7.78 17.94 ± 6.98
Beta-proteobacteria 13.45 ± 3.18 12.18 ± 3.55 14.02 ± 2.60 11.61 ± 3.62 15.06 ± 1.94� 10.58 ± 2.57�
Gamma-proteobacteria 11.54 ± 3.23 12.32 ± 3.66 11.67 ± 2.04 12.19 ± 4.46 12.58 ± 3.25 11.28 ± 3.54
Delta-proteobacteria 9.80 ± 2.41 9.12 ± 3.12 10.76 ± 2.66 8.16 ± 2.05 7.59 ± 1.58� 11.33 ± 2.00�
Other Proteobacteria 0.22 ± 0.12 0.15 ± 0.03 0.24 ± 0.09 0.14 ± 0.06 0.18 ± 0.07 0.19 ± 0.12
Acidobacteria 8.41 ± 1.13a 6.08 ± 0.76b 7.87 ± 1.41 6.62 ± 1.57 7.35 ± 1.68 7.14 ± 1.63
Nitrospirae 1.63 ± 1.74 1.87 ± 2.43 1.98 ± 2.39 1.52 ± 1.77 0.48 ± 0.09� 3.02 ± 2.17�
Firmicutes 2.48 ± 1.82 1.78 ± 0.97 1.71 ± 0.93 2.55 ± 1.80 1.63 ± 1.07 2.63 ± 1.66
Chloroflexi 14.86 ± 4.18 10.32 ± 3.29 11.67 ± 2.62 13.51 ± 5.74 10.22 ± 3.16 14.95 ± 4.14
Actinobacteria 11.97 ± 5.08 9.24 ± 3.04 11.4 ± 2.99 9.81 ± 5.42 13.00 ± 2.86 8.22 ± 4.07
Gemmatimonadetes 0.94 ± 0.26 0.84 ± 0.3 0.92 ± 0.24 0.87 ± 0.32 0.71 ± 0.22� 1.08 ± 0.16�
Planctomycetes 2.61 ± 1.01 2.41 ± 0.76 2.59 ± 0.87 2.43 ± 0.93 2.77 ± 0.65 2.26 ± 1.02
Cyanobacteria 5.79 ± 3.65 6.98 ± 5.67 6.41 ± 2.37 6.36 ± 6.39 5.45 ± 1.58 7.32 ± 6.45
Bacteroidetes 0.18 ± 0.08 0.23 ± 0.12 0.21 ± 0.11 0.20 ± 0.10 0.26 ± 0.09 0.15 ± 0.07
Chlorobi 0.06 ± 0.01 0.08 ± 0.04 0.07 ± 0.02 0.07 ± 0.04 0.06 ± 0.02 0.09 ± 0.04
Fibrobacteres 0.41 ± 0.19 0.35 ± 0.16 0.36 ± 0.16 0.4 ± 0.19 0.33 ± 0.14 0.42 ± 0.20
Verrucomicrobia 0.32 ± 0.16 0.2 ± 0.09 0.31 ± 0.09 0.21 ± 0.17 0.34 ± 0.15 0.18 ± 0.07
Armatimonadetes 0.05 ± 0.04 0.01 ± 0.01 0.01 ± 0.01 0.05 ± 0.05 0.02 ± 0.02 0.04 ± 0.05
Spirochaetes 0.04 ± 0.01 0.04 ± 0.04 0.05 ± 0.03 0.03 ± 0.02 0.04 ± 0.04 0.04 ± 0.01
Candidate division BHI80-139 0.18 ± 0.06 0.07 ± 0.07 0.14 ± 0.07 0.11 ± 0.1 0.08 ± 0.06 0.16 ± 0.09
Candidate division TM7 0.06 ± 0.04 0.1 ± 0.06 0.07 ± 0.03 0.09 ± 0.06 0.12 ± 0.04� 0.04 ± 0.02�

Candidate division WS3 0.4 ± 0.09 0.41 ± 0.19 0.51 ± 0.08A 0.29 ± 0.09B 0.37 ± 0.14 0.44 ± 0.15
Candidate division WCHB1-60 0.08 ± 0.03 0.05 ± 0.04 0.07 ± 0.03 0.06 ± 0.04 0.05 ± 0.04 0.08 ± 0.02
Candidate division TA06 0.32 ± 0.26 0.15 ± 0.09 0.19 ± 0.05 0.28 ± 0.3 0.16 ± 0.07 0.31 ± 0.28
Candidate division TM6 0.05 ± 0.06 0.09 ± 0.11 0.09 ± 0.12 0.05 ± 0.06 0.02 ± 0.03 0.12 ± 0.11
other rare bacterial phyla 0.06 ± 0.04 0.05 ± 0.03 0.05 ± 0.01 0.05 ± 0.05 0.06 ± 0.04 0.04 ± 0.02

in 2008 and 2009, except for one ash and one beech single-tree
species sample without litter sampled in 2008 and 2009, respec-
tively. A second grouping according to the presence or absence of
a leaf litter layer was observed. Additionally, the analyzed samples
were grouped according to the applied treatment (2008 vs. 2009,
beech vs. ash and litter vs. no litter) to analyze the differences
between each treatment group. The Shapiro–Wilks tests for normal
distribution indicate that Nitrospirae, Armatimonadetes and Candi-
date phyla TA06 and TM6 were not normally distributed among the
analyzed soil samples, (P values < 0.05). Comparison of the relative
abundances of active taxonomic groups, detected in soil sampled
in 2008 and 2009, revealed significant differences for Alphapro-

teobacteria (P = 0.014) and Acidobacteria (P = 0.014) (Table 1 and
supplemental Table S6). The relative abundance of Alphapro-

teobacteria was higher in 2009, while the relative abundance of
Acidobacteria was higher in 2008 (Table 1). Sheik et al. (2011) found
that the warming treatment and soil water budget applied in their
grassland soil study strongly influenced the soil bacterial popula-
tion size and diversity. In addition, a increase in soil temperature
by 4 ◦C increased microbial metabolic activity, although the bacte-
rial community composition was not affected (Schindlbacher
et al., 2011). Thus, the higher temperatures in May 2009
(15.6 ± 3.4 ◦C) compared to October 2008 (10.4 ± 3.4 ◦C) influenced
the community composition of active soil bacteria (supplemental
Figure S3).

The comparison of beech-treated and ash-treated mesocosms
indicated an influence of tree species on the activity of candidate
phylum WS3 (Table 1). The first representatives of this candidate
phylum were discovered in a methanogenic aquifer-derived 16S
rRNA gene clone library (Dojka et al., 1998). Members of this group
were also found in bulk soil, on rice roots of flooded rice microcosms
and in the suboxic zone of the Black Sea (Derakshani et al., 2001,
Kirkpatrick et al., 2006). Beech had a positive effect on the relative
abundance of candidate phylum WS3 (0.46% to 0.63%) compared
to ash (0.17% to 0.36%; P = 0.012). For all other phyla a significant
effect of tree species on distribution of active bacterial phyla was
not found (Table 1). Comparison of the rarefaction analyses of all
beech with all ash-treated soil samples pointed to a higher diversity
of active bacteria in the beech-treated mesocosms at 10%, 5% and
3% genetic distance (supplemental Figure S9). The mean Shannon
as well as the mean Simpson index of diversity revealed a signif-
icantly higher (P < 0.05) diversity of active bacteria for the beech
treatments at these genetic distances (Table 2), indicating an
impact of tree species on the diversity of active soil bacterial com-
munities. It is possible that these differences were induced through
rhizodeposition, the release of carbon compounds, cell material and
other substances from beech and ash roots to the rhizosphere and
the surrounding soil. Beech and ash differ strongly in their traits,
which is reflected by their root morphology, litter quality and myc-
orrhizal symbiosis. Beech has a higher specific root tip abundance,

Table 2

Mean bacterial diversity and standard deviation of the different treatment groups as assessed by the Shannon index (H′) and the Simpson index (D). The samples were
grouped and analyzed according to the applied treatment, beech vs. ash and litter vs. no litter. Different upper case letters indicate significant differences between the two
groups analyzed. Tested with paired t-test (P < 0.05).

Index Genetic distance (%) Beech Ash Litter No litter

H′ 3 6.198 ± 0.295A 5.732 ± 0.112B 5.874 ± 0.189 6.057 ± 0.432
5 5.835 ± 0.268A 5.413 ± 0.087B 5.528 ± 0.170 5.720 ± 0.380
10 4.878 ± 0.218A 4.540 ± 0.142B 4.605 ± 0.171 4.813 ± 0.293
20 2.754 ± 0.210 2.489 ± 0.311 2.536 ± 0.217 2.707 ± 0.349

D 3 0.993 ± 0.003A 0.984 ± 0.005B 0.988 ± 0.006 0.989 ± 0.006
5 0.991 ± 0.003A 0.981 ± 0.004B 0.985 ± 0.005 0.986 ± 0.008
10 0.980 ± 0.005A 0.966 ± 0.008B 0.971 ± 0.010 0.975 ± 0.011
20 0.825 ± 0.037 0.755 ± 0.081 0.787 ± 0.049 0.793 ± 0.094
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Table 3

Mean relative abundance in percent and standard deviation of bacterial families occurring in the different treatments. Samples were grouped and analyzed according to the
time of sampling and the applied treatment. Different Greek letters indicate significant differences between the saplings with and without litter. Paired t-test with P < 0.05.

Phylum Family 2008 2009 Beech Ash Litter No litter

Actinobacteria Mycobacteriaceae 1.50 ± 1.49 1.48 ± 1.07 1.05 ± 0.48 1.93 ± 1.63 2.35 ± 1.17� 0.63 ± 0.17�

Nocardioidaceae 2.38 ± 1.48 1.65 ± 1.30 2.38 ± 1.24 1.65 ± 1.53 2.9 ± 0.98 1.13 ± 1.08
Chloroflexi Anaerolineaceae 4.03 ± 1.89 3.10 ± 0.83 3.73 ± 1.78 3.40 ± 1.25 4.63 ± 1.23� 2.50 ± 0.54�

Proteobacteria

Caulobacteraceae 1.25 ± 0.33 4.23 ± 2.72 1.70 ± 0.64 3.78 ± 3.19 3.15 ± 2.7 2.33 ± 2.39
Hyphomicrobiaceae 1.38 ± 0.59 1.58 ± 1.00 1.63 ± 0.88 1.33 ± 0.73 2.00 ± 0.71� 0.95 ± 0.38�

Rhodospirillaceae 6.90 ± 2.37 11.18 ± 3.74 6.68 ± 2.17 11.40 ± 3.49 9.80 ± 3.84 8.28 ± 3.94
Comamonadaceae 7.55 ± 3.32 5.85 ± 2.10 7.80 ± 2.66 5.60 ± 2.65 8.53 ± 2.26� 4.88 ± 1.82�

Oxalobacteraceae 0.80 ± 0.39 1.13 ± 0.78 1.03 ± 0.31 0.90 ± 0.85 1.38 ± 0.51� 0.55 ± 0.34�

Nitrosomonadaceae 2.53 ± 0.31 2.38 ± 0.59 2.53 ± 0.36 2.38 ± 0.56 2.65 ± 0.42 2.25 ± 0.42
Bdellovibrionaceae 2.13 ± 1.44 1.65 ± 0.21 2.40 ± 1.16 1.38 ± 0.46 1.98 ± 1.38 1.80 ± 0.58
Nannocystineae 3.40 ± 1.93 3.13 ± 2.36 3.60 ± 2.44 2.93 ± 1.77 1.63 ± 0.25� 4.90 ± 1.47�

Sorangiineae 1.38 ± 0.60 1.30 ± 0.54 1.55 ± 0.58 1.13 ± 0.43 1.63 ± 0.3 1.05 ± 0.58
Methylococcaceae 2.63 ± 4.39 0.93 ± 0.39 0.73 ± 0.51 2.83 ± 4.26 0.50 ± 0.34 3.05 ± 4.11
Pseudomonadaceae 0.55 ± 0.39 1.85 ± 1.16 0.83 ± 0.54 1.58 ± 1.39 1.68 ± 1.3 0.73 ± 0.57
Sinobacteraceae 3.03 ± 0.55 2.90 ± 0.92 2.40 ± 0.18 3.53 ± 0.53 3.13 ± 0.89 2.80 ± 0.55
Xanthomonadaceae 3.68 ± 1.98 4.13 ± 3.38 5.10 ± 2.32 2.70 ± 2.50 5.58 ± 2.10 2.23 ± 1.90

specific fine root surface area (SRA) and specific fine root length
(SRL) than ash (Meinen et al., 2009). Ash roots are characterized by
higher fine root diameter than beech roots (Meinen et al., 2009).
The roots of beech are colonized by ectomycorrhizal (EM) fungi
whereas the roots of ash are inhabited by arbuscular mycorrhizal
(AM) fungi (Smith and Read, 2008). Beech litter has a high C/N
ratio (>50) and lignin content whereas ash litter is regarded as high
quality litter due to its low C/N ratio (approximately 28) and lignin
content (Jacob et al., 2010). Fender et al. (2013) found in a labora-
tory experiment a higher release of organic acids and lowered pH
in the proximity of beech roots compared to ash roots. In our study,
the soil acidification caused by beech rhizodeposits was buffered by
the high natural carbonate content of the soil used. Thus, the effect
of pH, which was shown in several studies as the main driver on soil
microbial community structure, was excluded in our experiment.

Significant differences in the mean relative abundance of sev-
eral active phyla and proteobacterial classes were determined
by comparing litter-treated with litter-free ash and beech sam-
ples (Table 1). Betaproteobacteria were positively influenced by
the litter layer (P = 0.032) whereas, Deltaproteobacteria (P = 0.026),
Nitrospirae (P = 0.029), Gemmatimonadetes (P = 0.037) and Candi-
date phylum TM7 (P = 0.020) were negatively influenced by the
litter overlay. Fierer et al. (2007) showed a positive correlation
of betaproteobacterial abundance and carbon availability in soils,
which is in accordance with our findings. They also observed a
negative effect of carbon amendments on the relative abundance
of Acidobacteria. In an additionally conducted meta-analysis, they
found that Acidobacteria tended to be more abundant in rhizo-
sphere and bulk soils with low C availability. These results are in
accordance with a survey from Eilers et al. (2010), who analyzed the
effect of low molecular weight carbon substrates on total soil bac-
terial communities. However, the active acidobacterial community
present in our study showed no significant differences while com-
paring litter vs. no litter treated and beech vs. ash planted samples.
Furthermore, rarefaction curves calculated based on the relative
abundance of active OTUs indicated a higher diversity of the active
bacterial community in samples without leaf litter layer compared
to the litter-treated samples. Thus, a litter decomposition-related
shift and specialization of the active microbial community, which
is reflected in a decrease of bacterial diversity, was expected. How-
ever, this litter treatment-related effect was not confirmed by the
mean Shannon and the mean Simpson index of diversity (Table 2).

Frequently occurring bacterial families were also tested with
respect to significant differences in their relative abundance
between the different treatments (Table 3). Mycobacteriaceae

(P = 0.029), Anaerolineaceae (P = 0.019), Hyphomicrobiaceae

(P = 0.040), Comamonadaceae (P = 0.046), Oxalobacteraceae

(P = 0.037) and Nannocystineae (P = 0.005) showed significant differ-
ences with respect to the present litter layer (supplemental Table
S7). The litter layer had a positive effect on the relative abundance
of active Mycobacteriaceae, Anaerolineaceae, Hyphomicrobiaceae

and Oxalobacteraceae, whereas the Nannocystineae were positively
influenced by litter removal. Bacteria encounter a complex cocktail
of sugars, vitamins, ions, organic polymers (lignin), amino acids,
organic acids, fatty acids and other primary and secondary metabo-
lites from root exudation, decaying roots, or leaf litter leaching
and decomposition (Dennis et al., 2010; Gessner et al., 2010). Root
exudates are known to have stimulatory or inhibitory effects on
microbial communities inhabiting the plant rhizosphere (Uren
2007). Hartmann et al. (2009) showed this plant-driven selection of
bacterial communities in the rhizosphere of different herbaceous
plants. A more severe influence of other C and nutrient sources as
decaying roots, litter leaching and decomposition, compared to the
readily available and fast degradable nutrient and energy sources
supplied by root exudates was suggested by Dennis et al. (2010).
Leaf litter decomposition is mainly influenced by its chemical com-
position and the leaf litter species mixture (Jacob et al., 2010). This
is in accordance with the cluster analysis of the DGGE fingerprints,
in which three-tree species litter treatments cluster separately
from the other treatments. Diverse leaf litter species build a more
balanced nutrient source for microbial communities and is thereby
degraded faster than mono-species leaf litter. During the summer,
tree species-rich stands in the Hainich possess just a small or no
litter layer, while mono-species or species poor stands have a thick
leaf litter layer. These observations were supported by a study on
seasonal dynamics of bacterial communities under different leaf lit-
ter quantities conducted by Chemidlin Prevost-Boure et al. (2011).

4. Conclusions

Our study suggests a slowly establishing and persistent influ-
ence of the litter layer on the soil-inhabiting bacterial community,
which supports the hypothesis that (b) leaf litter presence
influences soil bacterial diversity and activity. Furthermore, the
Simpson and Shannon indices showed significant difference in
the diversity of active bacterial communities inhabiting beech and
ash single-tree species mesocosms, which supports partially the
hypothesis (a) that tree species affect soil bacterial community
composition, diversity and activity. Nevertheless, litter presence in
pH stable soils affected the analyzed bacterial communities more
pronounced than the time of sampling and the tree species. Litter
leaching and decomposition, which act as a constant long-term C
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and nutrient source in soils, exhibited a stronger influence on soil
bacterial community composition than fast degradable rhizode-
posits or decaying roots. Thus, different tree species and tree species
diversity levels, and seasonal fluctuations have a minor effect on
bacterial community composition. We conclude that leaf litter is
the major driver of bacterial community composition in the rhi-
zosphere of beech and ash. Therefore, a “feedback loop” between
faster decomposing litter, and soil microbial composition and activ-
ity can be expected in forest soil.
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1.1. Supplementary data 

 

Figure S1 Mesocosm design. The control (a.) contained no trees. The maple one-tree 

treatment (b.), the maple/beech/lime three-tree treatment (c.) and the five-tree species 

treatment (d.) containing all selected tree species (maple (A), beech (B), lime (C), 

hornbeam (D) and ash (E)) are shown exemplarily.  

Figure S2 Sample area in late summer 2008 (A), winter 2009 (B) and mesocosm set up 

(C). The sample area was located in the experimental botanical garden of the Georg-

August University of Göttingen. The different treated mesocosms containing one-tree, 

three-tree and five-tree species were randomly distributed. The litter application was 

randomly performed amongst the depicted mesocosms. 

Figure S3 Climate data. Overview of the climatic conditions in the time between the 

two samplings took place, obtained by a weather station located next to the sampling 

area. 

Figure S4 DNA-based DGGE profile obtained from samples taken in June 2009. The 

marked bands were excised, reamplified and cloned to determine the underlying 

sequences. Equal upper case letters indicate bands excised from the same running height 

on the DGGE-Gel. Blast results of the underlying sequences are depicted in Figure 1. 

Figure S5 Second replicate of the DNA-based DGGE profile obtained from samples 

taken in June 2009. The marked bands were excised, reamplified and cloned to 

determine the underlying sequences. Identical upper case letters indicate bands excised 

from the same running height on the DGGE-Gel. Blast results of the underlying 

sequences are depicted in Figure1. 

Figure S6 Third replicate of the DNA-based DGGE profile obtained from samples 

taken in June 2009. The marked bands were excised, reamplified and cloned to 

determine the underlying sequences. Equal upper case letters indicate bands excised 

from the same running height on the DGGE-Gel. Blast results of the underlying 

sequences are depicted in Figure1. 
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Figure S7 Three times replicated DNA-based DGGE profile obtained from samples 

taken in June 2009. The marked bands were excised, reamplified and cloned to 

determine the underlying sequences. Blast results of the underlying sequences are 

depicted in Figure1. 

Figure S8 Cluster analysis of the three replicates of each DNA-derived DGGE profiles. 

Depicted are the litter-treated samples taken in 2008 (light green) and 2009 (dark green), 

and samples without litter overlay taken in 2008 (orange) and 2009 (red). Clustering 

was performed by the unweighted pair group method with arithmetic mean (UPGMA) 

using the Jaccard coefficient of similarity, which takes only the presence or absence of a 

band into account. Position tolerance was set at 1%. 

Figure S9 Rarefaction curves indicating the number of all observed OTU’s within the 

beech and ash treated single-tree species mesocosms (A) and the single-tree species 

mesocosms treated without and with litter overlay (B). Depicted is the mean and the 

standard deviation of the sum of all OTU’s observed for the beech-treated and ash-

treated mesocosms without and with litter overlay at different levels of sequence 

divergence (3, 10 and 20%). 
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Table S1 Parameters of the soil used in mesocosms. Shown are the mean values and the 

standard deviation (SD) of the replicates in percent of dry weight (dw).  

Table S2 Diversity levels and treatment of the soil mesocosms sampled in autumn 2008 

and summer 2009, with (Ex) and without litter removal (Li). 

Table S3 Sampling time, treatment and number of 16S rRNA gene sequences derived 

from the analyzed soil samples, before and after the removal of reads shorter than 300 

bp, low quality reads, reads containing homopolymers longer than 8 bp and primer 

mismatches and potential chimeras, and denoising. 

Table S4 Bacterial diversity assessed by Shannon index (H´), Simpson index (D) and 

species richness estimation in the beech-treated and ash-treated soil samples, with (Ex) 

and without (Li) litter removal.  

Table S5 Number of sequences and identity to known species of the most abundant 

species identified in the amplicon-based dataset. 

Table S6 Differences in the relative abundance of proteobacterial classes and other 

phyla occurring between different treatment groups. Samples were grouped according to 

treatment and differences in relative abundance of proteobacterial classes and phyla 

between each group and tested for significance. Tested with paired t-test (P <0.05).  

Table S7 Differences of frequently occurring phylotypes between different treatment 

groups. Samples were grouped according to treatment and differences in relative 

abundance of frequently occurring families between each group and tested for 

significance. Tested with paired t-test (P <0.050).  
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Figure S1. Mesocosm design. The control (a.) contained no trees. The maple one-tree 

treatment (b.), the maple/beech/lime three-tree treatment (c.) and the five-tree species 

treatment (d.) containing all selected tree species (maple (A), beech (B), lime (C), 

hornbeam (D) and ash (E)) are shown exemplarily.  
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Figure S2. Sample area in late summer 2008 (A), winter 2009 (B) and mesocosm set 

up (C). The sample area was located in the experimental botanical garden of the Georg-

August University of Göttingen. The different treated mesocosms containing one-tree, 

three-tree and five-tree species were randomly distributed. The litter application was 

randomly performed amongst the depicted mesocosms. 
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Figure S7. Three times replicated DNA-based DGGE profile obtained from 

samples taken in June 2009. The marked bands were excised, reamplified and cloned 

to determine the underlying sequences. Blast results of the underlying sequences are 

depicted in Figure1. 
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Figure S8. Cluster analysis of the three replicates of each DNA-derived DGGE 

profiles. Depicted are the litter-treated samples taken in 2008 (light green) and 2009 

(dark green), and samples without litter overlay taken in 2008 (orange) and 2009 (red). 

Clustering was performed by the unweighted pair group method with arithmetic mean 

(UPGMA) using the Jaccard coefficient of similarity, which takes only the presence or 

absence of a band into account. Position tolerance was set at 1%. 



                                                                                   B.I  Tree species effects  

47 

 

 

 

Figure S9. Rarefaction curves indicating the number of all observed OTU’s within 

the beech and ash treated single-tree species mesocosms (A) and the single-tree 

species mesocosms treated without and with litter overlay (B). Depicted is the mean 

and the standard deviation of the sum of all OTU’s observed for the beech-treated and 

ash-treated mesocosms without and with litter overlay at different levels of sequence 

divergence (3, 10 and 20%). 
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Table S1. Parameters of the soil used in mesocosms. Shown are the mean values and 

the standard deviation (SD) of the replicates in percent of dry weight (dw)  

 

Soil parameters Mean ± SD  

Stones (> 2000µm)   3.7±2.3  % of dw 

Fine earth (<2000µm)  

Sand (63-2000µm) 10.6±0.6 % of fine earth dw 

Silt (2-63µm) 71.3±0.9 % of fine earth dw 

Clay (0-2µm) 18.1±0.5 % of fine earth dw 

Ntotal   0.14±0.01 % of dw 

Corg.  1.48±0.19 % of dw 

Humus  2.56±0.32% of dw 

pH CaCl2  7.4±0.07 

pH KCl  7.6±0.04 
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Table S2. Diversity levels and treatment of the soil mesocosms sampled in autumn 

2008 and summer 2009, with (Ex) and without litter removal (Li). 

 

 

  

Sample 
Diversity 

level 

Treatment 

Litter 
 

Maple 
(A) 

Beech 

(B) 
Lime 
(C) 

Hornbeam 
(D) 

Ash  
(E) 

Co 0 0 0 0 0 0 0 

B-Li 1 1 0 1 0 0 0 

D-Li 1 1 0 0 0 1 0 

E-Li 1 1 0 0 0 0 1 

ABC-Li 3 1 1 1 1 0 0 

ABD-Li 3 1 1 1 0 1 0 

ABE-Li 3 1 1 1 0 0 1 

ACD-Li 3 1 1 0 1 1 0 

ACE-Li 3 1 1 0 1 0 1 

ADE-Li 3 1 1 0 0 1 1 

BCD-Li 3 1 0 1 1 1 0 

BCE-Li 3 1 0 1 1 0 1 

BDE-Li 3 1 0 1 0 1 1 

CDE-Li 3 1 0 0 1 1 1 

All-Li 5 1 1 1 1 1 1 

B-Ex 1 0 1 0 0 0 0 

D-Ex 1 0 0 0 1 0 0 

E-Ex 1 0 0 0 0 1 0 

ABC-Ex 3 0 0 0 0 0 1 

ABD-Ex 3 0 1 1 1 0 0 

ABE-Ex 3 0 1 1 0 1 0 

ACD-Ex 3 0 1 1 0 0 1 

ACE-Ex 3 0 1 0 1 1 0 

ADE-Ex 3 0 1 0 1 0 1 

BCD-Ex 3 0 1 0 0 1 1 

BCE-Ex 3 0 0 1 1 1 0 

BDE-Ex 3 0 0 1 1 0 1 

CDE-Ex 3 0 0 1 0 1 1 

All-Ex 5 0 1 1 1 1 1 
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Table S3. Sampling time, treatment and number of 16S rRNA gene sequences derived 

from the analyzed soil samples, before and after the removal of reads shorter than 300 

bp, low quality reads, reads containing homopolymers longer than 8 bp and primer 

mismatches and potential chimeras, and denoising 

 

 

Sample 
Sampling 

time 

Treatment No. of 

initial 

sequences 

No. of 

sequences 

≥ 300bp 

Final no. 

of  

sequences  
Litter 

(Li) 

Beech 

(B) 

Ash 

(E) 

B-Li08 21.10.2008 1 1 0 15619 12030 11452 

E-Li08 21.10.2008 1 0 1 13984 10906 10257 

B-Ex08 21.10.2008 0 1 0 33568 22961 20194 

E-Ex08 21.10.2008 0 0 1 14947 11166 10811 

B-Li09 02.06.2009 1 1 0 20565 15952 14722 

E-Li09 02.06.2009 1 0 1 16543 12976 11837 

B-Ex09 02.06.2009 0 1 0 22316 16464 15706 

E-Ex09 02.06.2009 0 0 1 31432 23143 22333 
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Table S4. Bacterial diversity assessed by Shannon index (H´), Simpson index (D) and 

species richness estimation in the beech-treated and ash-treated soil samples, with (Ex) 

and without (Li) litter removal.  

 

 

Sample 
Genetic 

distance 
(%) 

H´ D 

No. of operational taxonomic units 

Observed 

species 
Chao1 ACE 

Michaelis- 

Menten Fit 

 

B-Li08 

3 5.856 0.990 1093 1747 1482 1309 

5 5.522 0.987 917 1465 1295 1097 

10 4.662 0.977 552 843 831 661 

20 2.658 0.817 158 204 203 178 

E-Li08 

3 5.890 0.991 1104 1792 1590 1329 

5 5.531 0.987 927 1428 1324 1112 

10 4.679 0.976 565 845 876 680 

20 2.735 0.831 161 198 211 179 

B-

Ex08 

3 6.559 0.996 1823 5052 3439 2515 

5 6.148 0.994 1557 4028 3177 2197 

10 5.113 0.986 925 1694 1739 1336 

20 2.887 0.85 183 218 225 210 

E-

Ex08 

3 5.662 0.984 1209 2255 1894 1545 

5 5.399 0.979 1053 1816 1596 1330 

10 4.610 0.965 675 1107 1046 856 

20 2.780 0.809 184 222 218 205 

B-Li09 

3 6.105 0.992 1456 3613 2615 1931 

5 5.737 0.989 1241 2649 2232 1662 

10 4.727 0.974 775 1599 1630 1077 

20 2.507 0.775 182 224 230 210 

E-Li09 

3 5.644 0.979 1314 4214 2902 1802 

5 5.321 0.977 1142 2975 2510 1596 

10 4.352 0.956 703 1433 1516 1000 

20 2.242 0.723 167 231 224 191 

B-

Ex09 

3 6.274 0.993 1471 2375 2035 1865 

5 5.933 0.992 1216 1826 1673 1531 

10 5.011 0.983 721 1113 1083 898 

20 2.966 0.856 185 217 217 205 

E-

Ex09 

3 5.733 0.983 1216 1694 1554 1544 

5 5.400 0.98 1006 1551 1404 1265 

10 4.517 0.967 578 910 880 709 

20 2.197 0.656 144 190 185 161 
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Table S5. Number of sequences and identity to known species of the most abundant 

species identified in the amplicon-based dataset. 

 

Phylum Genus/ Species 
Number of 

sequences 

Identity 

(%) 

Actinobacteria Kribbella alba 230 99.03 

Mycobacterium sp. 113 99.06 

Pseudonocardia sp. ACT-0146 83 99.68 

Nocardioides terrigena 71 99.51 

Humibacillus xanthopallidus 59 99.27 

Rhodococcus sp. 47 99.27 

Mycobacterium neglectum 28 99.51 

Lechevalieria aerocolonigenes 22 99.37 

Streptomyces scabiei 20 99.03 

Cyanobacteria Nostocaceae cyanobacterium SAG B11.82 616 99.49 

Phormidium sp. SAG 37.90 33 99.74 

Cylindrospermum stagnale PCC 7417 25 99.24 

Firmicutes Clostridium favososporum 117 99.76 

Bacillus simplex 112 99.54 

Paenibacillus sp. BG5 58 99.77 

Sporacetigenium mesophilum 21 99.02 

Proteobacteria Afipia sp. Sptzw29 22 99.48 

Caenimonas sp. TSX9-5 216 99.77 

Nitrosospira sp. Nsp17 57 99.30 

Acidovorax sp. GW2 24 99.48 

Pseudomonas sp. SHF7 992 99.77 

Lysobacter sp. 8L 360 99.53 

Methylobacter luteus 266 99.29 

Azotobacter chroococcum 112 99.30 

Xanthomonas sp. BRT8 67 99.77 
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Table S6. Differences in the relative abundance of proteobacterial classes and other 

phyla occurring between different treatment groups. Samples were grouped according to 

treatment and differences in relative abundance of proteobacterial classes and phyla 

between each group and tested for significance. Tested with paired t-test (P <0.05).  

 

 
2008 vs. 2009 Beech vs. ash Litter vs. no litter 

 
P P P 

Alphaproteobacteria  0.014* 0.283 0.566 

Betaproteobacteria  0.615 0.322 0.032* 

Gammaproteobacteria  0.761 1.000
a
 0.609 

Deltaproteobacteria
 
 0.744 0.172 0.026* 

other Proteobacteria  0.372 0.110 0.945 

Acidobacteria  0.014* 0.280 0.856 

Nitrospirae  0.886
a
 0.886

a
 0.029

a,
* 

Firmicutes  0.527 0.440 0.347 

Chloroflexi  0.139 0.581 0.119 

Actinobacteria  0.392 0.626 0.200
 a
 

Gemmatimonadetes  0.635 0.785 0.037* 

Planctomycetes  0.762 0.812 0.427 

Cyanobacteria  0.735 0.989 0.886
a
 

Bacteroidetes  0.546 0.919 0.084 

Chlorobi  0.486
a
 0.909 0.183 

Fibrobacteres  0.629 0.794 0.481 

Verrucomicrobia  0.269 0.343
a
 0.112 

Armatimonadetes  0.116 0.249 0.663 

Spirochaetes  0.932 0.229 0.919 

Candidate division 

BHI80-139  
0.073 0.606 0.182 

Candidate division TM7  0.337 0.675 0.020* 

Candidate division WS3  0.946 0.012* 0.543 

Candidate division 

WCHB1-60  
0.262 0.772 0.144 

Candidate division TA06  0.266 0.886
a
 0.332 

Candidate division TM6  0.486
a
 0.607 0.152 

other rare bacterial phyla  0.542 0.946 0.636 
a
 Normality test and/or equal variance test failed. Mann-Whitney rank sum test 

was alternatively applied. 

* Significant at the 0.05 probability level. 
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Table S7. Differences of frequently occurring phylotypes between different treatment 

groups. Samples were grouped according to treatment and differences in relative 

abundance of frequently occurring families between each group and tested for 

significance. Tested with paired t-test (P <0.050).  

 

 

2008 vs. 2009 Beech vs. ash Litter vs. no 

litter 

P P P 

Mycobacteriaceae 0.979 0.886
a
 0.029

a,
 * 

Nocardioidaceae 0.489 0.489 0.051 

Anaerolineaceae 0.686
a
 0.775 0.019* 

Caulobacteraceae 0.057
a
 0.886

a
 0.343

a
 

Hyphomicrobiaceae 0.743 0.620 0.040* 

Rhodospirillaceae 0.102 0.061 0.599 

Comamonadaceae 0.420 0.286 0.046* 

Oxalobacteraceae 0.485 0.792 0.037* 

Nitrosomonadaceae 0.669 0.669 0.227 

Bdellovibrionaceae 1.000
a
 0.152 0.823 

Nannocystineae 0.863 0.670 0.005** 

Sorangiineae 0.858 0.200
a
 0.128 

Methylococcaceae 0.686
a
 0.686

a
 0.057

a
 

Pseudomonadaceae 0.077 0.355 0.229 

Sinobacteraceae 0.823 0.007 0.556 

Xanthomonadaceae 0.826 0.209 0.056 
a
 Normality test or equal variance test failed. Mann-Whitney rank sum test 

was alternatively applied. 

* Significant at the 0.05 probability level. 

** Significant at the 0.01 probability level. 
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a b s t r a c t

Knowledge about the influence of living roots on decomposition processes in soil is scarce but is needed
to understand carbon dynamics in soil. We investigated the effect of dominant deciduous tree species of
the Central European forest vegetation, European beech (Fagus sylvatica L.) and European ash (Fraxinus
excelsior L.), on soil biota and carbon dynamics differentiating between root- and leaf litter-mediated
effects. The influence of beech and ash seedlings on carbon and nitrogen flow was investigated using
leaf litter enriched in 13C and 15N in double split-root rhizotrons planted with beech and ash seedlings as
well as a mixture of both tree species and a control without plants. Stable isotope and compound-specific
fatty acid analysis (13C-PLFA) were used to follow the incorporation of stable isotopes into microor-
ganisms, soil animals and plants. Further, the bacterial community composition was analyzed using
pyrosequencing of 16S rRNA gene amplicons. Although beech root biomass was significantly lower than
that of ash only beech significantly decreased soil carbon and nitrogen concentrations after 475 days of
incubation. In addition, beech significantly decreased microbial carbon use efficiency as indicated by
higher specific respiration. Low soil pH probably increased specific respiration of bacteria suggesting that
rhizodeposits of beech roots induced increased microbial respiration and therefore carbon loss from soil.
Compared to beech d13C and d15N signatures of gamasid mites in ash rhizotrons were significantly higher
indicating higher amounts of litter-derived carbon and nitrogen to reach higher trophic levels. Similar
d13C signatures of bacteria and fine roots indicate that mainly bacteria incorporated root-derived carbon
in beech rhizotrons. The results suggest that beech and ash differentially impact soil processes with
beech more strongly affecting the belowground system via root exudates and associated changes in
rhizosphere microorganisms and carbon dynamics than ash.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Soils store twice as much carbon as plants and the atmosphere
together thereby forming an important component of the global
carbon cycle (Schlesinger and Andrews, 2000). However, the way
carbon is processed and how carbon dynamics are controlled still is
not well understood. Knowledge on factors changing the flux of
carbon from plants into the soil and controlling its turnover is of

significant importance especially in face to global warming
(McKinley et al., 2011).

In terrestrial ecosystems 90% of the annual biomass produced by
plants enters the dead organic matter pool forming the basis of the
decomposer system in soil (Gessner et al., 2010). Plant carbon en-
ters the soil via two pathways, dead organic matter (leaf litter and
dead roots) and root exudates. Soil chemical properties are mainly
influenced by parent material and mineralogy but also by leaf litter
forming the major resource of soil biota responsible for decompo-
sition processes (Reich et al., 2005; Jacob et al., 2009; Langenbruch
et al., 2012). Litter quality strongly influences soil pH, as calcium
and magnesium of the litter compete with Hþ and Al3þ for ex-
change sites on soil particle surfaces or organic matter (Reich et al.,
2005). As a consequence, high pH often promotes higher microbial
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biomass resulting in higher soil respiration, mineralization and
decomposition (Swift et al., 1979; Wardle, 1998). Low mineraliza-
tion and decomposition rates are associated with high C-to-N ratios
and high lignin contents as it is typical for recalcitrant litter. In
contrast, Pollierer et al. (2007) highlighted that in temperate forests
carbon does not enter the soil foodweb predominantly via litter but
rather via roots. Rhizodeposits comprise labile exudates (e.g.,
sugars, amino acids and organic acids), but also complex molecules
(e.g., polysaccharides, mucilage and proteins). Labile exudates
control both community structure and activity of rhizosphere mi-
croorganisms (Paterson et al., 2009). Summarizing results of 95
plant 14C labeling studies, Jones et al. (2004) estimated the loss of
carbon by exudation to be equivalent to 5e10% of the net carbon
fixed by plants and 25% of the carbon plants allocate to root
growth. This supply of energy increases microbial biomass (Butler
et al., 2004), acts as soil organic matter (SOM) priming agent
(Bird et al., 2011) and alters the physical and chemical soil envi-
ronment (Gregory, 2006). Microbial communities in rhizosphere
and bulk soil are therefore responsible for root exudate-mediated
changes in soil processes (Söderberg et al., 2004; Paterson et al.,
2007). Since plant species differ in the quality and quantity of ex-
udates (Jones et al., 2004), soil carbon dynamics are likely affected
by plant species identity and diversity (Grayston et al., 1998;
Steinbeiss et al., 2008).

Decomposition studies report both effects of individual plant
species (Jacob et al., 2009) and positive mixing effects (Gartner and
Cardon, 2004; Hättenschwiler et al., 2005). Until today, however,
studies investigating the influence of plant diversity on below-
ground dynamics in forests are scare (but see Meinen et al., 2009)
and most often only consider the effect of aboveground plant res-
idues (Hättenschwiler and Gasser, 2005; Jacob et al., 2009, 2010). To
what extent belowground processes mediated by roots and root
exudates affect soil organisms and thereby carbon dynamics re-
mains largely unknown. This lack of knowledge is unfortunate as
60% of the terrestrial carbon is bound in forests and its contribution
to global carbon cycling is of fundamental importance (McKinley
et al., 2011).

To improve knowledge on carbon dynamics in forest soils from a
root perspectivewe used the common temperate broad-leaved tree
species European beech (Fagus sylvatica L.) and European ash
(Fraxinus excelsior L.) to differentiate between general and species-
specific effects of living roots on soil organisms and decomposition
of litter material in soil. Beech is the dominant tree species in many
Central European deciduous forests. Ash often is associated with
beech and is expected to increase in dominance in a warmer and
drier climate (Broadmeadow and Ray, 2005). Life history traits of
beech and ash differ strongly, e.g., speed of growth, root
morphology, litter quality, mycorrhizal association, and nutrient,
water and light use efficiency (Grime et al., 1997; Emborg, 1998).
Beech has higher specific root tip abundance, specific fine root
surface area (SRA) and specific fine root length (SRL), whereas ash
roots are characterized by higher mean fine root diameter (Meinen
et al., 2009). Roots of beech are colonized by ectomycorrhizal (EM)
fungi and those of ash by arbuscular mycorrhizal (AM) fungi which
differ in nutrient acquisition strategies (Smith and Read, 2008).
Beech tolerates soil pH from acid to highly alkaline, while ash is
restricted to soils of high base saturation (Weber-Blaschke et al.,
2002). Litter of beech at more acidic sites has high C-to-N ratio
(>50) and high lignin content, while ash litter is regarded as high
quality litter due to its low C-to-N ratio of about 28 and low lignin
content (Jacob et al., 2010).

For allowing access to the root system and to investigate in-
teractions between both tree species, beech and ash seedlings were
planted into double split-root systems. The systems allowed dis-
secting root associated processes and belowground interactions

between beech and ash. Carbon and nitrogen fluxes in soil were
traced following the incorporation of 13C and 15N from labeled ash
litter into soil, bacteria, fungi, soil animals and plants. Ash litter was
used to follow the uptake of resources from high quality litter
materials by beech and ash as compared to more recalcitrant soil
resources.

We hypothesized that (1) beech and ash differentially affect the
structure of the microbial community thereby modifying soil pro-
cesses and plant nutrient capture. Differences in microbial com-
munity structure are expected to (2) result in differential
decomposition of labeled ash litter and differential mobilization of
nutrients from the litter. Further, we expected (3) modifications of
the soil microorganism community and soil processes to be most
pronounced in the mixed treatment with both tree species present
due to complementary effects of the two tree species.

2. Material and methods

2.1. Rhizotrons

Double split-root rhizotrons were used to separate root systems
of two tree seedlings into compartments with root strands of one
individual seedling at each side and a shared root compartment in
the center where root strands of both tree seedlings could interact
(Fig. 1). We focused on the middle compartment where the two
root strands grew together. The central compartment had a volume
of 7.6 l and side compartments half the volume. Rhizotrons were
90 cm high and 64 cm wide, and were built from anodized
aluminum covered at the front with a 10-mm Perspex plate. They
were tilted at 35� to direct roots growing along the Perspex plate.
The Perspex platewas coveredwith black scrim to ensure that roots
grow in darkness. Rhizotrons were divided into six soil depth sec-
tions (IeVI). Each soil depth contained four experimental sites (ES),
two in the center and two at the sides (Fig. 1). The back side of the
rhizotrons was equipped with a cooling system keeping the tem-
perature at a constant level of 20 �C over the whole soil column.
Climate conditions were set to 20 �C air temperature, 70% relative
air humidity and 10 h daylight in winter and 14 h in summer. The
tree seedlings were illuminated (EYE Lighting, Clean Ace, Mentor,
OH, USA) ensuring aminimum PPFD of 200� 10 mmolm�2 s�1 from
June 2009 to October 2010. The experiment lasted for 475 days, i.e.,
plants were harvested after the second season.

2.1.1. Soil and plants

The soil was taken from a mixed temperate broadleaf forest
dominated by F. sylvatica, F. excelsior and Tilia cordata in Central
Germany (Hainich forest, 51�040 N 10�300 E, about 350m a.s.l.) from
a depth of 0e10 cm after removing the litter. The soil type was a
Stagnic Luvisol (IUSS Working Group WRB, 2007; 1.8% sand,
80.2% silt and 18.1% clay) and free of carbonate (<0.02% of total
carbon) with a pH (H2O) of 4.56 � 0.03 and a gravimetric water
content at date of sampling of 22.7%. Initial total carbon
amounted to 19.2 � 0.3 g kg�1 dry weight, initial total nitrogen
averaged 1.56 � 0.01 g kg�1 dry weight and base saturation was
22.9 � 1.3%. Each rhizotron was filled with 15.2 L of sieved soil
(1 cm mesh) containing soil microflora and fauna. Volumetric soil
water content was monitored three times a week with a TDR
measurement device (Trime-FM, IMKO, Ettlingen, Germany), and
kept at constant level by adding distilled water. Soil temperature
was measured with NTC thermistors (Epcos, Munich, Germany),
arranged vertically in the center of the rhizotrons at soil depths
of 8, 20, 42.5 and 70.5 cm at a distance of 2 cm from the Perspex
plate. Data were recorded in 15-min intervals with a CR1000 data
logger (combined with two AM416 Relay Multiplexer, Campbell
Scientific Inc., Utah, USA).
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In spring 2009 beech (F. sylvatica) and ash (F. excelsior) seedlings
with comparable root biomass were excavated in the Hainich forest
with intact soil cores to preserve the root system. Initial shoot
height was 23.1 � 1.2 and 17.9 � 1.1 cm, and root length was
12.1 � 0.7 and 15.4 � 1.2 cm for beech and ash seedlings, respec-
tively. At the start of the experiment, ash had significantly higher
fine root biomass than beech, but tree species did not differ
significantly in total root and total aboveground biomass (Table 1).
Before planting, the soil material adhering to the root systems was
removed by watering. The remaining soilewater mixture was used
to equilibrate microbial communities in soil.

Fifty-three days after planting, 1.5 g labeled ash litter was added
to ES of each of the treatments, i.e., the control, beech, ash andmixed
rhizotrons at every second soil depth (II, IV, VI; see Fig.1). Therefore,
tubes were withdrawn and the empty space filled with soil or soile
littermixture. Prior to adding ash leaves (air dried, crushed to pieces
<1 cm) were mixed with 40 g soil (air dried). The litter was labeled

with 13C and 15N by incubating ash trees in the green house for one
vegetation period with the CO2 concentration in air elevated by
adding 13CO2 (maximum concentration 1200 ppm) and bywatering
the soilwithnutrient solution containing 15NO3

15NH4 (both99atom
%; Euriso-top, Saint-Aubin, Essonne, France). The solution contained
0.6mMCaCl2, 0.4 mMMgSO4, 0.01mM FeCl3, 0.4 mMK3PO4, 1.8 mM
MnSO4, 0.064 mMCuCl, 0.15 mMZnCl2, 0.1 mMMoO3, 5 mMNO3NH4

and0.01mMH3BO3. The stable isotope signatureof theash litterwas
146.8 � 0.3& for d13C and 13,139 � 60& for d15N (Table 2, see
Table S1 for atom% values).

2.2. Experimental design

The experiment was set up in a factorial design with the factors
beech (absence and presence) and ash (absence and presence),
resulting in the following treatments with four replicates each: (a)
two beech seedlings (BB), (b) two ash seedlings (AA), (c) a mixture
with one beech and one ash seedling (BA or AB, depending on target
tree species), and (d)anunplantedcontrol (Co), resulting inrhizotrons
without (B�: Co and AA) and with beech (Bþ: BB and BA), as well as
rhizotrons without (A�: Co and BB) and with ash (Aþ: AA and AB).

Fig. 1. Scheme of double split-root rhizotrons. (a) Front view of mixed species treatments with ash (left) and beech (right) roots interacting in the central compartment. Circles
represent experimental sites (ES) with soil (open circles) or soilelitter mixture (gray circles). The shaded area refers to the surrounding sampling site (SS). Roman numerals indicate
soil depths (IeVI). The bold rim in the central compartment from soil depth II to VI represents the sampling area. Black dots along the central dashed line refer to the position of
temperature sensors. Dashed lines mark the sampling grid. (b) Side view of the double split-root rhizotron and assembly of ES. Tubes inside ES were withdrawn and the empty
space filled with soil or soilelitter mixture allowing roots to grow into ES. Awater flux based cooling system is installed at the back panel. A valve allowed drainage of the rhizotrons.

Table 1

Means � 1 SE and t- and P-values of plant biomass of beech and ash seedlings at the
start of the experiment (g dry weight plant�1; n ¼ 5). Significant effects are given in
bold (P < 0.05).

Initial biomass

Beech Ash t P

Mean � SE Mean � SE

Biomass [g dw] per plant
Total 2.04 � 0.46 2.13 � 0.22 0.15 0.7122
Total aboveground 1.26 � 0.27 1.25 � 0.15 0.01 0.9294
Total belowground 0.78 � 0.20 0.88 � 0.08 0.81 0.3933
Shoots 0.88 � 0.22 0.74 � 0.09 0.27 0.6190
Leaves 0.38 � 0.05 0.52 � 0.07 2.49 0.1530
Fine roots 0.16 � 0.05 0.41 � 0.08 6.49 0.0343

Coarse roots 0.64 � 0.17 0.56 � 0.06 0.08 0.7866

Table 2

Isotopic signatures of the soil, labeled ash litter and soilelitter-mixture at the start
and end of the experiment after 422 days [means � 1 SE; n ¼ 5 except for samples
taken at the end of the experiment which are pooled across treatments (n ¼ 16)].

Start End

Soil Litter Soilelitter
mixture

Soilelitter
mixture

Mean � SE Mean � SE Mean � SE Mean � SE

d13C [&] �26.20 � 0.10 146.80 � 0.32 69.00 � 0.60 �17.44 � 1.86
d15N [&] 1.60 � 0.16 13139.30 � 59.10 6153.80 � 0.40 577.38 � 124.88
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2.3. Sampling

After 475 days rhizotrons were harvested. They were opened in
horizontal position and a sampling grid was used to identify loca-
tions for sampling, i.e., at ES and the surrounding of these sites (SS;
see Fig. 1). Samples from the depth layers II, III, IV and V of the
central compartment were analyzed. As we were not interested in
effects of soil depth we pooled the data from the four layers. In
addition to soil samples, plant shoots and roots from each of the soil
layers were taken for measuring plant biomass. Details on root
biomass distribution along the soil depth gradient as well as on gas
emissions are presented elsewhere (Fender et al., 2013).

2.3.1. Plants

At harvest shoot length and root collar diameter of seedlingswere
measured. Roots were separated from soil, washed and cleaned from
adhering soil particles. To obtain overall plant biomass fine root
biomass estimated from ES for mycorrhizal analysis were combined
with plant biomass data fromSS.Whenever possible three intact root
strands of ca 7 cm length from each tree species per compartment
and soil depths were taken and digitized on a flat-bed scanner for
image analysis carried out using WinRhizo 2005c software (Régent
Instruments Inc., Québec, QC, Canada) to determine specific fine root
area (SRA; cm2 g�1 dry matter), specific fine root length (SRL;
cm g�1 dry matter) and total fine root surface. Thereafter, samples
were oven-dried (70 �C, 48 h), weighed andmilled for measurement
of organic carbon (Corg), total nitrogen (Ntotal) aswell as d13C and d15N
signatures (Delta C, Finnigan MAT, Bremen, Germany).

2.3.2. Mycorrhiza

Colonization of roots at ES by mycorrhiza-forming fungi was
determined. Fine roots were stored in Falcon tubes with moist
tissue paper at 4 �C until analysis. Fine roots of beechwere analyzed
with a stereomicroscope (Leica M205 FA, Leica Microsystems,
Wetzlar, Germany). The percentage of EM fungi colonization was
calculated using the following equation:

EM fungi colonization
�

%
�

¼

�

nmycorrhizal root tips
n vital root tips

�

� 100

(1)

Fine roots of ash were stored in 70% EtOH at room temperature.
For determining the colonization by AM fungi roots were stained
with lactophenole-blue (Schmitz et al., 1991) and stored at room
temperature in 50% glycerol until microscopic inspection at 200�
magnification. AM fungi colonization was calculated with the
magnified intersection method of McGonigle et al. (1990) using a
10 � 10 grid. The abundance of vesicles, arbuscles and hyphae was
calculated as percentage of mycorrhizal structures of the total num-
ber of intersections. The percentage of vesicles was taken as relative
colonization rate of AM fungi and used for further calculations.

2.3.3. Soil properties

Soil pH was measured in a suspension of 10 g soil and 25 ml
H2O with a Vario pH meter (WTW GmbH, Weilheim, Germany).
Soil water content was measured gravimetrically after drying at
105 �C for 24 h. Nitrate and ammonium concentrations were
measured by extracting soil samples in 0.5 M K2SO4 solution (1:3
wet soil mass-to-solution ratio). Samples were shaken for 1 h and
filtered through Sartorius folded filters (Sartorius Stedim,
Aubagne, France). Nitrate and ammonium concentrations of
filtered extracts were analyzed using continuous flow injection
colorimetry (SANþ Continuous Flow Analyzer, Skalar Instruments,
Breda, Netherlands). Nitrate was determined by copper cadmium
reduction method (ISO method 13395) and ammonium was

quantified by Berthelot reaction method (ISO method 11732). Corg,
Ntotal as well as d13C and d15N values were measured after grinding
soil samples with a disc mill. Samples were analyzed with a
coupled system consisting of an elemental analyzer (NA 1500,
Carlo Erba, Mailand) and a mass spectrometer (Delta C, Finnigan
MAT, Bremen, Germany).

2.3.4. Microbial respiration

Basal respiration (BAS), microbial biomass (Cmic), and specific
respiration (qO2) were measured by substrate-induced respiration
(SIR), i.e., the respiratory response of microorganisms to glucose
(Anderson and Domsch, 1978). Before measurement, roots were
removed and soil samples were sieved (2 mm). Measurements
were done using an automated O2 microcompensation system
(Scheu, 1992). BAS of microorganisms reflected their averaged ox-
ygen consumption rate without the addition of glucose within 10e
30 h after attachment of the samples to the analysis system. Sub-
sequently, 4 mg glucose g�1 soil dry weight was added as aqueous
solution to the soil samples. The mean of the three lowest hourly
measurements within the first 10 h was taken as the maximum
initial respiratory response (MIRR). Cmic (mg C g�1) was calculated as
38 � MIRR (ml O2 g�1 soil dry weight h�1) according to Beck et al.
(1997). Microbial specific respiration qO2 (ml O2 mg�1 Cmic h�1)
was calculated as BAS/Cmic.

2.3.5. Fatty acid analysis

Before extraction of lipids, soil samples were sieved (2 mm) and
root and litter pieces were removed. Lipid extraction followed
Frostegård et al. (1991). Bacterial biomass was estimated using the
following PLFAs: a15:0, i15:0, i16:0, 16:1u7, i17:0, cy17:0 and
cy19:0; the PLFA 18:2u6,9 was used as fungal biomarker (Ruess and
Chamberlain, 2010). A gas-chromatography-combustion-isotope-
ratio-monitoring-mass spectrometer (GC-C-IRM-MS) using
Thermo Finnigan Trace GC coupled via a GP interface to a Delta Plus
mass spectrometer (Finnigan, Bremen, Germany) was used to
determine the isotopic composition of individual PLFAs. Fatty acid
identification was verified by GCeMS using a Varian CP-3800
chromatograph coupled to a 1200 L mass spectrometer and a
fused silica column (Phenomenex Zebron ZB-5MS, 30 m, 0.25 mm
film thickness, ID 0.32 mm) and helium as carrier gas.

2.3.6. Pyrosequencing

16S rRNA aswell as the 16S rDNAwere co-isolated to capture the
active and the present microbial community; 2 g soil were
extracted from control, beech and ash treatments using the RNA
PowerSoil� Total RNA Isolation Kit and DNA Elution Accessory Kit
(MO BIO Laboratories Inc., Carlsbad, CA, USA). Residual DNA con-
taminations in RNA extracts were removed using the TURBO DNA-
free� Kit (Ambion Applied Biosystems, Darmstadt, Germany). RNA
was concentrated using the RNeasy MiniElute Kit (QIAGEN, Hilden,
Germany). The nucleic acid concentration was estimated using a
NanoDrop ND-1000 spectrophotometer (Peqlab Biotechnologie
GmbH, Erlangen, Germany).

The V2-V3 region of the 16S rRNA was reverse transcribed using
the SuperScript� III reverse transcriptase (Invitrogen, Karlsruhe,
Germany). As template 100ngof theDNA-freeRNAwere applied. The
resulting cDNA as well as the extracted DNAwas amplified in tripli-
cate using the Phusion� Hot Start High-Fidelity DNA polymerase
(FINNZYMES, Espoo, Finland) as described by Nacke et al. (2011).

The following barcoded primer set was used for reverse tran-
scriptionandamplification, containing theRoche454pyrosequencing
adapters (underlined): V2for 50-CTATGCGCCTTGCCAGCCCGCTCA-
GAGTGGCGGACGGGTGAGTAA-30 and V3rev 50-CGTATCGCC
TCCCTCGCGCCATCAGCGTATTACCGCGGCTGCTG-30 modified from
Schmalenberger et al. (2001).
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The PCR products were treated and purified as described by
Nacke et al. (2011). All kits were used as described in the manu-
facturer’s instructions. The Göttingen Genomics Laboratory deter-
mined the sequences of the partial 16S rRNA genes using a Roche
GS-FLX 454 pyrosequencer (Roche, Mannheim, Germany) accord-
ing to the manufacturer’s instructions for amplicon sequencing.

Sequences shorter than300bpwere removed fromthedataset. To
minimize the bias introduced by pyrosequencing due to decreasing
read precision at the end of the reads denoisingwas carried out using
Denoiser 0.91 (Reeder and Knight, 2010). OTU determination was
performed using uclust OTU picker 1.2.22q (Edgar, 2010) at genetic
divergence of 3%, 5% and 20% according to Schloss and Handelsman
(2005). The resulting datasets have been deposited in the GenBank
short-read archive under accession number SRA050002.

2.3.7. Soil animals

Soil not needed for other analysis was taken to extract soil an-
imals by heat (Kempson et al., 1963). Animals were preserved in
saturated NaCl solution and kept at �10 �C until analysis. The
gamasid miteHypoaspis aculeifer (G. Canestrini, 1884) was taken for
stable isotope analysis as it occurred in sufficient numbers. Twenty
adult mites were weighed into each tin capsule and dried at 40 �C
for 24 h. Samples were analyzed as described above.

2.4. Statistical analysis

Two-way ANOVA was used to test for main effects of beech (B�
andBþ), ash (A� andAþ) and their interactionswithdata of the four
soil depths pooled. To detect differences in plant biomass and
mycorrhizal colonization contrasts were calculated in a GLM using
pairwise t-test to account for dependence in mixed rhizotrons. U-
Test was used for analyzing the number of root tips. Treatments in
beech-only rhizotrons (BB) were compared to ash-only (AA) and
beecheash mixture (BA). Ash (AA) was also compared with beeche
ash mixture (AB). Statistical analyses were done using SAS 9.2 (SAS
Institute; Cary, NC, USA).

Discriminant function analysis (DFA) was used to analyze
pyrosequencing data as well as fatty acid patterns combined with
microbial respiration and soil chemical data. Differences of the
bacterial composition in beech and ash rhizotrons and the control
were calculated using non-multidimensional scaling (NMDS) to
reduce dimensions in the dataset. DFA and NMDS were calculated
using STATISTICA 7.0 for Windows (StatSoft, Tulsa, USA, 2001).

Means were compared using Tukey’s Honestly Significant Differ-
ence test (P < 0.05). Data on plant biomass, isotopic signatures, SRA,
SLR, number of fine root tips, NO3

�, NH4
þ, Corg, Ntotal, microbial respi-

ration and PLFA content were log-transformed and percentage data,
i.e., colonization rate of mycorrhiza, were arcsine-square root trans-
formed prior to statistical analyses to improve homogeneity of vari-
ance. Means given in text and tables are based on non-transformed
data.

3. Results

3.1. Plants and mycorrhizae

After 475 days, total biomass of tree seedlings in BB rhizotrons
was significantly lower than in AA and BA rhizotrons (Table 3). Fine
and coarse root biomass were significantly lower in BB rhizotrons
compared to that of seedlings in AA (�69%) and BA rhizotrons
(�62%) resulting in significantly lower total root biomass. Total
biomass, total root biomass and coarse root biomass of seedlings in
mixtures exceeded that of seedlings in monocultures, but this in-
crease was only significant for beech (60%, 62%, 70%, respectively);

biomass of ash seedlings in mixture increased by 11%, 17% and 23%,
respectively.

d13C and d15N signatures in fine roots were significantly lower in
BB than those in AA rhizotrons (Table 3; see Table S2 for atom%
values). SRA and SRL did not differ significantly between tree spe-
cies but tended to be higher in beech (BB vs AA: þ6% and þ68%,
respectively), especially in the mixture (BA vs AB: þ24% and þ79%,
respectively). Generally, fine root tips of tree seedlings increased in
mixed rhizotrons, especially beech in mixed rhizotrons had a
significantly higher number of root tips than beech in monoculture
by þ89% compared to ash in mixed rhizotrons and by þ54%
compared to ash in monoculture. Mycorrhizal colonization of roots
of beech in BB rhizotrons was significantly lower than that of roots
of ash in AA rhizotrons, however, as beech and ash are colonized by
different types of mycorrhiza the differences have to be interpreted
with caution. Beech did not influence the colonization rate of ash by
arbuscular mycorrhiza (AA vs AB; þ2%), whereas ash increased the
colonization of beech by ectomycorrhiza (BB vs BA;þ45%) although
the effect was not significant (Table 3).

3.2. Soil properties

In general, the studied soil properties were strongly affected by
beech and not by ash with interactions between tree species also
being not significant (Table 4). Soil pHwas significantly lower in Bþ
(4.54 � 0.08) than in B� rhizotrons (4.80 � 0.06). In presence of
beech Corg and Ntotal were significantly decreased by �7% and �6%,
respectively, but NO3

� and NH4
þ concentrations remained unaffected

(Table 4, see Table S3 for atom% values). Further, d13C and d15N of
bulk soil were significantly lower in Bþ (�24.46 � 0.32& and
127.04 � 19.95&, respectively) compared to B� rhizotrons
(�22.24 � 0.78& and 265.25 � 48.79&, respectively). Generally,
after 422 days of litter incubation, the signatures of d13C and d15N
within the soilelitter-mixtures decreased strongly by 86 and 5576
delta units, respectively (Table 2; see Table S1 for atom% values).

3.3. Microorganisms

Cmic was not significantly affected by tree species and averaged
over all treatments 141.25 � 4.93 mg C g�1. However, qO2 was signif-
icantly higher in Bþ (0.0101� 0.003 ml O2 mg�1 Cmic h

�1) than in B�
rhizotrons (�16%, Table4),whichwasdue tomarginallyhigherBAS in
Bþ (1.39� 0.08 ml O2 h

�1 g�1) as compared to B� rhizotrons (�15%).
The ratio of fungal-to-bacterial marker PLFAs was significantly

higher inBþ (0.061�0.007) than inB� rhizotrons (�53%)as the fungal
biomasswashigher inBþ (0.43�0.08nmolg�1dryweight) than inB�
rhizotrons (�47%), whereas bacterial biomass remained unaffected.

Bacterial and total PLFA contentwere not significantly affected by
the treatments and averaged 6.67 � 1.67 and 7.00 � 0.53 nmol g�1

dry weight, respectively. The d13C values of the fungal marker PLFA
18:2u6,9 were significantly lower in Bþ (�29.93 � 2.00&) than in
B� rhizotrons (�18.75 � 3.60&). Also, weighted d13C values of
bacterial PLFAs were lower in Bþ (�26.28 � 0.97&) than in B�
rhizotrons (�24.40 � 0.84&), whereas in Aþ rhizotrons
(�24.87 � 1.01&) they tended to be higher than in A� rhizotrons
(�25.82� 0.89&). In general, ashdidnot significantly influence d13C
values of marker PLFAs (Table 4; see Table S3 for atom% values).

DFA suggested strong similarity in the composition of PLFAs in
BB and BA rhizotrons. Both treatments differed strongly from AA
and control treatments (Fig. 2). Differences were mainly due to low
amounts of gram-negative (cy17:0) and gram-positive bacteria
(i17:0) in beech rhizotrons. Higher fungal biomass and low pH in
beech and mixed rhizotrons also contributed to the separation of
these treatments but to a lower extent (Tables 5 and 6). Pyrose-
quencing of the bacterial community revealed high overlap of
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Table 4

ANOVA table of F- and P-values on the effect of beech and ash on soil and microbial parameters, and signatures in gamasid mites as well as means � 1 SE of the respective
parameters in rhizotrons planted with beech (B) and ash (A) after 475 days (n ¼ 4). Significant effects are given in bold (P < 0.05). Atom% values of soil C and N, PLFA and
gamasid mites are given in Table S3.

Beech Ash Beech � ash B� Bþ

A� (Control) Aþ (Ash) A� (Beech) Aþ(Mixture)

F P F P F P Mean � SE Mean � SE Mean � SE Mean � SE

Soil data
pH (H2O) 5.77 0.0334 0.11 0.7436 0.02 0.8944 4.78 � 0.12 4.83 � 0.05 4.53 � 0.14 4.55 � 0.11
NeNO3

� [mg kg�1 dw] 1.00 0.3387 0.04 0.8532 0.62 0.4487 41.31 � 4.96 42.88 � 3.20 39.32 � 3.83 35.14 � 5.93
NeNH4

þ [mg kg�1 dw] 0.01 0.9422 0.41 0.5360 0.38 0.5477 2.46 � 0.93 1.47 � 0.63 1.88 � 0.72 1.86 � 0.69
Corg [mg kg�1 dw] 15.02 0.0022 0.08 0.7829 0.02 0.8980 1.89 � 0.04 1.91 � 0.05 1.76 � 0.03 1.77 � 0.02
d13C soil [&] 7.54 0.0177 1.73 0.2129 1.40 0.2604 �23.27 � 0.58 �21.21 � 1.35 �24.51 � 0.57 �24.41 � 0.40
Ntotal [mg kg�1 dw] 7.82 0.0162 0.24 0.6297 0.00 0.9687 0.18 � 0.00 0.17 � 0.00 0.17 � 0.00 0.16 � 0.00
d15N soil [&] 7.42 0.0185 0.83 0.3816 0.31 0.5907 212.18 � 55.44 318.33 � 78.47 126.29 � 37.64 127.79 � 20.99
C-to-N ratio 0.56 0.4677 0.98 0.3406 0.00 0.9932 10.78 � 0.24 10.94 � 0.08 10.66 � 0.16 10.82 � 0.14
CEC [mmolc g�1 dw] 0.06 0.8162 1.33 0.2726 0.06 0.8109 189.78 � 3.98 185.12 � 2.33 191.98 � 9.94 201.36 � 7.84
Base saturation [%] 1.39 0.2638 0.04 0.8518 1.13 0.3108 20.21 � 0.29 20.80 � 0.65 19.90 � 0.99 20.92 � 0.47

Microbial parameters
BAS [ml O2 h�1 g�1]a 4.04 0.0674 0.09 0.7674 0.19 0.6701 1.18 � 0.09 1.18 � 0.05 1.41 � 0.07 1.36 � 0.15
Cmic [mg C g�1]a 0.03 0.8643 0.48 0.5019 0.40 0.5365 150.03 � 13.65 134.32 � 5.93 139.79 � 6.62 140.86 � 13.38
qO2 [ml O2 mg�1 Cmic h

�1]a 9.00 0.0111 0.14 0.7178 1.59 0.2311 0.008 � 0.001 0.009 � 0.000 0.010 � 0.001 0.010 � 0.001
PLFA [nmol g�1 dry weight]
Total 0.75 0.4025 0.00 0.9619 1.11 0.3130 7.22 � 1.32 6.03 � 1.36 6.57 � 0.55 8.19 � 0.97
Bacteria 0.53 0.4801 0.01 0.9377 1.05 0.3262 6.95 � 1.20 5.85 � 1.29 6.25 � 0.52 7.66 � 0.95
Fungi 3.36 0.0916 0.18 0.6757 1.20 0.2955 0.27 � 0.16 0.18 � 0.07 0.33 � 0.05 0.53 � 0.15
Fungi-to-bacteria ratio 5.17 0.0422 0.33 0.5755 0.85 0.3752 0.032 � 0.017 0.026 � 0.010 0.050 � 0.008 0.073 � 0.019

PLFA d13C [&]
Total 2.43 0.1454 1.40 0.2590 0.30 0.5944 �22.80 � 2.37 �21.49 � 2.09 �27.14 � 0.60 �23.55 � 2.51
Bacteria 2.01 0.1818 0.49 0.4960 0.51 0.4871 �24.38 � 1.47 �24.43 � 1.05 �27.25 � 0.45 �25.31 � 1.89
Fungi 7.48 0.0181 0.08 0.7807 0.16 0.6941 �21.01 � 6.61 �17.06 � 4.53 �31.59 � 0.92 �28.27 � 4.01

Gamasid mites
d13C [&] 20.59 0.0008 159.43 <0.0001 7.80 0.0175 �23.37 � 0.86 �13.89 � 0.31 �20.19 � 1.40 �8.78 � 0.43
d15N [&] 25.75 0.0004 148.88 <0.0001 11.93 0.0054 130.14 � 23.08 713.33 � 43.37 339.07 � 37.35 1121.26 � 26.97

a BAS, basal respiration; Cmic, microbial biomass; qO2, specific respiration.

Table 3

GLM table of contrasts between rhizotrons planted with beech (BB), ash (AA), beech mixed with ash (BA) and ash mixed with beech (AB) for plant parameters of rhizotrons
plantedwith beech, ash or both after 475 days as well as means� 1 SE of the respective parameters (n¼ 4). Significant effects are given in bold (P< 0.05). Atom% values of plant
compartments are given in Table S2.

BB vs AA BB va BA AA vs AB BB (pure beech) AA (pure ash) BA (beech in mixture) AB (ash in mixture)

F P F P F P Mean � SE Mean � SE Mean � SE Mean � SE

Biomass [g dw] per plant
Total 8.82 0.0117 6.39 0.0266 0.00 0.9518 4.52 � 0.79 12.08 � 1.69 11.33 � 2.03 13.50 � 2.33
Total aboveground 4.20 0.0629 2.91 0.1138 1.11 0.3128 1.85 � 0.38 3.34 � 0.86 4.29 � 1.01 3.03 � 0.43
Total root 9.52 0.0094 6.96 0.0217 0.28 0.6035 2.67 � 0.50 8.74 � 1.08 7.04 � 1.08 10.47 � 2.15
Shoot 1.24 0.2876 3.43 0.0889 0.12 0.7300 1.38 � 0.25 1.78 � 0.32 3.20 � 0.73 2.64 � 0.41
Leaves 5.14 0.0426 0.53 0.4809 7.50 0.0180 0.46 � 0.14 1.56 � 0.56 1.08 � 0.34 0.39 � 0.22
Fine roots 9.14 0.0106 4.60 0.0532 0.09 0.7669 0.78 � 0.18 2.38 � 0.30 1.80 � 0.27 2.27 � 0.44
Coarse roots 7.95 0.0154 6.50 0.0255 0.59 0.4557 1.89 � 0.35 6.36 � 0.87 5.24 � 0.82 8.21 � 1.91

d13C [&] plant compartments
Shoot 5.14 0.0426 7.00 0.0214 2.12 0.1708 �29.09 � 0.32 �28.07 � 0.28 �27.90 � 0.22 �27.40 � 0.26
Leaves 0.30 0.5955 0.25 0.6287 0.75 0.4029 �29.62 � 0.56 �29.26 � 0.27 �29.29 � 0.44 �29.83 � 0.20
Fine roots 8.27 0.0139 0.04 0.8402 0.01 0.9395 �27.64 � 0.34 �25.60 � 0.85 �27.49 � 0.19 �25.56 � 0.23
Coarse roots 12.86 0.0037 2.78 0.1215 0.06 0.8162 �28.35 � 0.31 �25.74 � 0.76 �27.15 � 0.31 �25.92 � 0.32

d15N [&] plant compartments
Shoot 0.87 0.3701 0.07 0.8018 2.15 0.1682 171.27 � 30.67 260.05 � 66.16 154.54 � 18.34 154.40 � 26.76
Leaves 5.34 0.0394 0.55 0.4741 1.98 0.1853 192.42 � 32.67 316.50 � 43.37 166.67 � 23.49 228.28 � 15.10
Fine roots 4.77 0.0496 1.35 0.2674 4.07 0.0666 209.02 � 41.75 396.07 � 99.34 148.85 � 17.63 214.48 � 22.80
Coarse roots 9.34 0.0100 0.10 0.7630 2.81 0.1196 193.66 � 27.78 390.78 � 78.87 178.50 � 12.60 257.86 � 19.23

SRAa [m2/g]
Fine roots 0.23 0.6385 0.05 0.8271 0.78 0.3950 485.16 � 15.36 456.49 � 42.70 509.00 � 54.07 410.65 � 64.00

SRLa [m/g]
Fine roots 2.89 0.1150 0.50 0.4947 0.20 0.6596 2374.80 � 221.17 1414.42 � 168.82 3235.44 � 848.14 1810.83 � 450.85

Fine root tips
Number �0.48 0.9970 L13.16 0.0000 2.13 0.1750 1623.50 � 230.01 2299.00 � 419.58 3072.50 � 207.37 3543.75 � 107.79

Mycorrhiza [%]
Colonizationb 27.50 0.0002 3.07 0.1053 0.04 0.8481 37.81 � 8.58 81.82 � 5.17 54.80 � 6.51 83.54 � 2.87

a SRA, specific root area; SRL, specific root length.
b Note that the different type of mycorrhiza in beech and ash demanded for special counting techniques, thus direct comparisons have to be treated with caution but allow

comparison with trees in mixture.
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bacterial phyla and species with little differences between the
treatments (Fig. 3).

3.4. Soil fauna/gamasid mites

The d13C and d15N from the added ash litter was incorporated
into basal species of the soil food web as indicated by the label in
the predatory mite H. aculeifer (Table 4; see Table S3 for atom%
values). The signatures suggest that incorporation of label wasmost
pronounced in mixed rhizotrons (significant interaction between
beech and ash) followed by AA, BB and control rhizotrons. Abun-
dances of soil animal taxa extracted by heat, i.e., collembolans,
gamasid and oribatid mites as well as earthworms, generally did
not differ between treatments (Table S4).

4. Discussion

4.1. Changes in the microbial community due to rhizodeposition

Lower pH in the rhizosphere of beech likely contributed to fa-
voring soil fungi supporting our hypothesis (1) that beech and ash
differentially affect the structure of the microbial community.
Acidification of the soil by beech is well known (Holzwarth et al.,
2011; Langenbruch et al., 2012), however, commonly it has been
ascribed to low concentrations of calcium andmagnesium and high
concentrations of recalcitrant compounds such as lignin in beech
leaf litter (Reich et al., 2005; Hobbie et al., 2006; Hansen et al.,
2009). As we excluded leaf litter fall from seedlings to the rhizo-
tron soil surface and uniformly placed high quality ash litter in each
of the treatments, the observed differences must have been due to
the activity of beech roots. Indeed, in the vicinity of beech roots
concentrations of formate and acetate were increased as compared
to control rhizotrons in the same experiment, whereas in the vi-
cinity of ash roots only the concentration of acetate increased
(Fender et al., 2013). The release of organic acids increases nutrient

Fig. 2. Discriminant function analysis (DFA) of microbial PLFAs, microbial respiration
and soil properties in rhizotrons without trees (control), with beech, ash and a mixture
of beech and ash. Wilks’ Lambda 0.0165, F(54,33) ¼ 1.85, P ¼ 0.0296. Ellipses represent
confidence intervals at P ¼ 0.05.

Table 5

Summary of input variables of the discriminant function analysis (DFA), i.e., data on
PLFA markers (nmol g�1 dry weight), soil properties and microbial respiration.
Significant effects are given in bold (P < 0.05).

Wilks’ lambda F (3,11) P

Gramþ bacteria
i15:0 0.0175 0.2171 0.8825
a15:0 0.0242 1.7284 0.2188
i16:0 0.0237 1.6062 0.2441
i17:0 0.0430 5.8991 0.0119

Gram� bacteria
cy17:0 0.0390 5.0135 0.0198

cy19:0 0.0239 1.6448 0.2358
Unspecified bacteria
16:1u7 0.0250 1.8939 0.1891

Fungi
18:2u6,9 0.0298 2.9597 0.0792

Microbial respiration
BASa 0.0178 0.2972 0.8267
Cmic

a 0.0179 0.3145 0.8146
qO2

a 0.0175 0.2325 0.8719
Soil properties
pH 0.0320 3.4554 0.0549
NO3

� 0.0211 1.0298 0.4170
NH4

þ 0.0188 0.5116 0.6825
Corg 0.0182 0.3726 0.7745
Ntotal 0.0261 2.1450 0.1524
d13C 0.0221 1.2510 0.3384
d15N 0.0173 0.1733 0.9122

a BAS, basal respiration; Cmic, microbial biomass; qO2, specific respiration.

Table 6

Means� 1 SE of PLFA markers (nmol g�1 dry weight) of the microbial community in
rhizotrons planted with beech (B) and ash (A) after 475 days (n ¼ 4).

Beech absent (B�) Beech present (Bþ)

Ash absent
(A�) (Control)

Ash present
(Aþ) (Ash)

Ash absent
(A�) (Beech)

Ash present
(Aþ) (Mixture)

Mean � SE Mean � SE Mean � SE Mean � SE

Gramþ bacteria
i15:0 0.92 � 0.22 0.81 � 0.36 1.05 � 0.21 1.59 � 0.35
a15:0 1.41 � 0.29 1.04 � 0.34 1.40 � 0.24 1.93 � 0.24
i16:0 0.70 � 0.08 0.66 � 0.12 0.80 � 0.06 0.87 � 0.06
i17:0 0.62 � 0.05 0.74 � 0.14 0.42 � 0.04 0.70 � 0.09

Gram� bacteria
cy17:0 0.72 � 0.16 0.77 � 0.13 0.63 � 0.06 0.84 � 0.16
cy19:0 1.22 � 0.58 1.13 � 0.46 1.13 � 0.22 0.74 � 0.26

Unspecified bacteria
16:1u7 1.35 � 0.37 0.70 � 0.35 0.81 � 0.21 0.98 � 0.44

Fungi
18:2u6,9 0.27 � 0.16 0.18 � 0.07 0.33 � 0.05 0.53 � 0.15

Fig. 3. Discriminant function analysis (DFA) of bacterial phyla based on pyrose-
quencing of 16S rRNA in rhizotrons without trees (control) and with beech and ash
seedlings after reducing data to six dimensions by multi dimensional scaling to ‘non-
multidimensional scaling (NMDS). Wilks’ Lambda 0.4996; F(12,60) ¼ 2.07; P ¼ 0.0325.
Ellipses represent confidence intervals at P ¼ 0.05.
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availability and this is facilitated by low pH (Jones et al., 2004);
presumably, beech employs this strategy to increase nutrient
mobilization and uptake. Low pH in the soil, however, predomi-
nantly is caused by the release of Hþ by roots rather than by
dissociation of organic acids (Neumann and Römheld, 1999).
Notably, acidification of the soil by beech roots occurred despite a
comparatively lower root biomass in beech than ash rhizotrons.
However, SRA and SRL were higher in Bþ rhizotrons as compared to
Aþ rhizotrons. This suggests that the observed modifications were
partly due to changes in root physiology rather than root biomass
and number of fine root tips (Lehmann, 2003). Differences in the
release rates of specific exudates of the two species presumably
also contributed to the observed changes.

Bacterial community composition was little affected by tree
roots as indicated by analysis of 16S rRNA. The ratio of fungal-to-
bacterial biomass measured via fatty acid analysis increased in
Bþ rhizotrons and reflected the general pattern of increasing fungal
dominance at low pH accounting for differences in soil processes
(Aciego Pietri and Brookes, 2008; Rousk et al., 2009). Fungal
biomass was measured using 18:2u6,9 as marker PLFA (Ruess and
Chamberlain, 2010; Frostegård et al., 2011) which includes EM and
saprotrophic fungi (Kaiser et al., 2010). We suggest the change in
fungal biomass to refer not to AM fungi since the PLFA 18:2u6,9 is
only found in very low densities in this type of fungi (Olsson and
Johansen, 2000) and since the AM colonization rate did not
change. Colonization by EM fungi in beech was relatively low
(46� 6%, pooled data from BB and BA rhizotrons). This corresponds
to low colonization rates in other greenhouse and rhizotron ex-
periments (Du�ci�c et al., 2009; Reich et al., 2009; Winkler et al.,
2010) when compared to field data (Leuschner et al., 2004; Lang
et al., 2011). Low EMF colonization rate and a stronger depletion
of d13C of PLFA 18:2u6,9 in Bþ rhizotrons point to SOM decompo-
sition suggesting that saprotrophic rather than EM fungi increased
in beech rhizotrons as fine root tips and mycorrhiza were shown to
have relatively similar signatures, whereas soil is stronger depleted
in d13C (Eissfeller et al., in press). We therefore suggest saprotrophic
fungi to substantially contribute to changes in the fungal PLFA
marker.

Combined data on PLFAs, soil properties and microbial respira-
tion revealed high similarity of beech and mixed rhizotrons in DFA
with these differing significantly from ash and control rhizotrons.
The fatty acids i17:0 and cy17:0 contributed most to this separation,
with lesser contribution by pH and fungal biomass. The fatty acid
i17:0 is regarded as marker for gram-positive bacteria whereas
cy17:0 characterizes gram-negative bacteria, the former considered
to dominate in microorganisms being present in bulk soil whereas
the latter in rhizosphere soil processing labile root derived carbon
(Söderberg et al., 2004; Paterson et al., 2007). The relative abun-
dance of both was lowest in BB rhizotrons suggesting that both
suffered from the presence of beech roots, presumably due to beech
increasing the competitive strength of saprotrophic fungi.

4.2. Changes in decomposition due to different tree species

Hypothesis (2) assuming that litter decomposition is differen-
tially affected by tree species was supported by our data. Generally,
stable isotope values of the litteresoil mixture in ES decreased
strongly during incubation. Ash litter is known to decompose fast;
in the field it disappears entirely after two years (Jacob et al., 2009).
High and constant temperatures within the climate chambers
(20 �C) contributed to fast decomposition of the litter in the rhi-
zotrons. Data on higher qO2 (this study) and higher cumulative
heterotrophic CO2 production in beech as compared to ash rhizo-
trons (Fender et al., 2013) suggest an overall higher stimulation of
litter decomposition in beech root affected soil, i.e., higher carbon

loss due tomicrobial respiration. High Hþ concentrations have been
shown to limit bacterial growth, while low concentrations limit
fungal growth (Rousk et al., 2009). The fact that qO2 increased
whereas bacterial biomass did not change suggests that the
metabolic costs of rhizosphere bacteria increased at least at the end
of the experiment. Presumably, lower soil pH in beech rhizotrons
decreased the efficiency of bacteria to use carbon for biomass
production by increasing respiratory losses.

d13C values in fungal and bacterial PLFAs were depleted most in
Bþ rhizotrons suggesting that bacteria and fungi incorporated less
litter carbon in presence of beech roots than of ash also indicating a
faster turnover of litter carbon. Further, the more depleted d13C
values in fungi compared to beech fine roots suggest that fungal
carbon originated from soil organic matter in beech rhizotrons,
whereas higher d13C values in bacteria rather suggest bacteria to
depend on root-derived carbon as their signatures resembled that
of beech fine roots (Bowling et al., 2008).

Several studies found plant species identity to have stronger
effects than plant diversity (De Deyn et al., 2004; Hättenschwiler
and Gasser, 2005; Ball et al., 2009), with certain plant species
acting as key species (Jacob et al., 2009). The strong effect of beech
in this study is mediated by roots whereas ash had no effect sug-
gesting that rhizodeposition in ash is of minor importance. Despite
this low rhizosphere changes ash incorporated more litter nitrogen
than beech (Lang and Polle, 2011; Schulz et al., 2011); potentially,
ash is more effective in exploiting resources from fast decomposing
litter such as ash leaves or by virtue of the higher root biomass
production of ash in our experiment. Notably, ash seedlings incor-
porated more litter 15N than beech seedlings supporting the
conclusion that the reduced Ntotal in Bþ rhizotrons was due to
increased SOM decomposition and not due to plant uptake by
beech. Notably, the uptake of 15N declined in mixture with ash. This
corresponds to field observations where the N concentrations in
ash declined in mixtures with other tree species and their ecto-
mycorrhizal diversity (Lang and Polle, 2011). A higher uptake of N
by ash roots was also found in a 15N tracer study in the Hainich
forest where ash fine roots showed a significantly higher mass-
specific uptake of labeled NH4

þ and glycine (but not of NO3
�) than

beech roots (A. Jacob, unpubl. results).

4.3. Channeling of litter-derived carbon into higher trophic levels

Hypothesis (3) assuming that mixing of both tree species
beneficially affects microorganisms thereby stimulating carbon
turnover is supported in part by our data. Generally, mixing of tree
species increased plant biomass, fine root tips, SRA, SRL and
mycorrhizal colonization especially that of beech seedlings but did
not affect soil chemistry and microbial biomass. However, soil
chemistry and microbial data are point measures and do not
reflect fluxes over the whole period of the experiment. As the
plants are sinks for resources made available over the whole
experimental time higher plant growth in mixed rhizotrons sug-
gests that the gross flux of resources was greater in mixed
rhizotrons.

Isotope analyses of food web components are a net measure
over the long experimental period. Here, we measured d13C and
d15N being incorporated within the predatory mite H. aculeifer. d13C
and d15N values of H. aculeiferwere significantly increased in mixed
and ash rhizotrons suggesting that more litter-derived carbon and
nitrogen entered basal species of the soil food web which served as
prey for gamasid mites, such as nematodes and collembolans
feeding on bacteria and fungi. In contrast, in control and beech
rhizotrons d13C values of H. aculeifer resembled those in Hainich
beech forests (d13C: �23.9 � 0.76&; d15N: þ2.0 � 2.11&; Klarner
et al., 2013) suggesting low incorporation of litter-derived carbon
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(and nitrogen) into the prey ofH. aculeifer. However, the turnover of
belowground C in unplanted soil, i.e., the control, was numerously
shown to be lower compared to planted soil (Kuzyakov, 2010; Bird
et al., 2011), i.e., soil with beech trees. Low incorporation of litter
resources in BB rhizotrons may point to the fast decomposition of
ash litter and to the dominance of root derived resources as basis of
the soil animal food web in beech forests as suggested earlier
(Pollierer et al., 2007). Of course, measurements of a single species,
i.e., H. aculeifer, do not allow to predict carbon and nitrogen cycling
through the whole soil food web. However, since the soil fauna
composition within the rhizotrons did not differ, we suggest tree
species to significantly affect the amount and the way carbon is
channeled through the soil food web.

5. Conclusions

The results suggest that the effect of living roots on litter
decomposition, SOM dynamics and energy channels varies with
tree species identity. Rhizodeposits have the potential to change
soil pH with the potential to affect the metabolic activity of mi-
croorganisms. This propagates to higher trophic levels as tree
species can impact the amount of litter-derived resource entering
the soil food web and on energy channels. Effects of living roots are
notoriously understudied and have to be included into studies on
soil C dynamics to understand carbon and nutrient cycling as well
as soil food web functioning of forests.
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2.1. Supplementary data 

  

Table S1 Atom% values of the used soil, labeled ash litter and of the soil-litter mixture 

in experimental sites at the start of the experiment and at the end after 422 days of litter 

incubation (means ± 1 SE). Soil, litter and the soil-litter mixture samples at the start 

were replicated n=5, whereas soil-litter mixture samples of the end were pooled across 

all treatments (n=16). 

Table S2 Means ± 1 SE of atom% values of plant parameters influenced by beech (B) 

and ash (A) in rhizotrons after 475 days (n=4). 

Table S3 Means ± 1 SE of atom% values of soil C and N, PLFA and gamasid mites as 

influenced by beech (B) and ash (A) in rhizotrons after 475 days (n=4). 

Table S4. ANOVA table of F- and P-values as well as means ± 1 SE for soil animal 

taxa extracted by heat from rhizotrons influenced by beech (B) and ash (A) after 475 

days (n=4). Means refer to densities in the middle part of the microcosms. 
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Introduction 

Soil physical, chemical and biological properties can be altered by tree species-specific 

litter, root exudates and nutrient uptake (Priha and Smolander, 1999; Augusto et al., 

2002; Ayres et al., 2009; Cesarz et al., 2013). It has been indicated that different tree 

species such as Fagus sylvatica L. (European beech) and Picea abies L. (Norway 

spruce) can directly or indirectly (e.g., by modification of soil characteristics) evoke soil 

microbial community shifts (Lejon et al., 2005; Thoms et al., 2010; Nacke et al., 2011). 

Nevertheless, a number of available studies aiming to describe drivers of soil microbial 

diversity and community structure focused on impacts of agricultural plants, whereas 

effects of tree species have been rarely explored (Priha and Smolander, 1997; Acosta-

Martínez et al., 2008; Haichar et al., 2008; Li et al., 2012; Wubet et al., 2012). 

Beech and Norway spruce represent dominant trees in European forests and exhibit high 

commercial importance (Cesarz et al., 2013; Hanewinkel et al., 2013). Since the 19th 

century planting of Norway spruce to reforest devastated forest sites in Central Europe 

was very common (Berger and Berger, 2012). It has been reported that replacement of 

beech by spruce species is associated with changes in soil structure, acidity and humus 

form (e.g., Berger and Berger, 2012). The constitution as well as decomposability of 

leaf and needle litter originating from these broad-leaved and coniferous tree species, 

respectively, varies significantly (Priha and Smolander, 1997). Needle litter waxes and 

phenolic compounds are highly recalcitrant towards biological degradation, whereas 

leaf litter contains higher amounts of more easily decomposable substances (Nykvist, 

1963; Priha and Smolander, 1997). Furthermore, root system and exudation differs 

significantly between beech and spruce species. Spruce is typically shallow rooted, 

whereas beech is able to acquire nutrients from a wide range of soil horizons through its 

deep root system (so called ‘base-pump’). The root exudates released by these trees can 

vary seasonally in quantity as well as in composition (Geßler et al., 1998) thereby 

influencing the microbial community structure. 

To evaluate the importance of beech and spruce in shaping forest ecosystem 

characteristics, an improved knowledge about the impacts of these trees is required. 

Currently, detailed information on soil bacterial and fungal community composition and 

the factors shaping it in beech and spruce dominated forests is lacking. In many 

previous studies, methods providing coarse phylogenetic information were used to 

identify effects of tree species on soil microbial communities. Differences in genetic 

structures of soil bacterial and fungal communities in spruce, Douglas-fir, oak and 
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beech plots in France were indicated by automated ribosomal intergenic spacer analysis 

(ARISA) profiles (Lejon et al., 2005). Furthermore, Jiang et al. (2012) found distinct 

bacterial and fungal communities in soil beneath broad-leaved and coniferous species 

based on DGGE profiles. To unravel statistically significant effects of tree species, 

sampling distance from the tree trunk at different soil depth, and season on the diversity 

and composition of groups of ecologically important soil bacteria and fungal 

communities the use of high throughput sequencing methods is required. Thus in this 

study, we applied pyrosequencing of the V3-V5 16S and the ITS rRNA gene region to 

assess diversity as well as structure of soil bacterial and fungal communities, 

respectively, under Fagus sylvatica L. and Picea abies L. These marker genes have 

been chosen, as they allow a taxonomic resolution up to the genus level (Wubet et al. 

2012; Schneider et al., 2013). 
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Materials and Methods 

 

Sampling, soil properties and DNA extraction 

All soil samples were derived from forest sites located within the German Biodiversity 

Exploratory Hainich-Dün (Fischer et al., 2010). The effects of Fagus sylvatica L. and 

Picea abies L. on soil bacterial and fungal communities within samples from 4 transects 

per tree species were analyzed. Mineral soil samples were collected in 0-10 cm and 10-

20 cm depth using split tubes with a diameter of 5 cm (Eijkelkamp Agrisearch 

Equipment, Giesbeck, Netherlands). Samples were taken in a distance of 0.5 m, 1.5 m, 

2.5 m and 3.5 m away from the trunks of the selected trees. This allows the 

identification of potential gradients in bacterial and fungal community structure and 

diversity within the tree crown. The life cycle of microbes inhabiting forest soil can be 

strongly affected by seasons through changes in abiotic and biotic factors (Thoms et al., 

2013). Therefore, sampling was performed within two seasons, early summer and 

autumn. Subsequently, a total of 128 composite soil samples (derived from two seasons, 

eight trees, four sampling distances and two soil depths), were sieved (2-4 mm mesh 

size), homogenized and subsamples were frozen for nucleic acids extraction. 

An aliquot of 50 g fresh soil was used for pH and CN analysis. The aliquots were air-

dried and sieved to <2 mm in order to isolate the fine earth, which is free of coarse 

stones and roots. The pH was measured in duplicate with a glass electrode in the 

supernatant of 1:2.5 mixtures of soil and 0.01 M CaCl2. The remaining soil was ground 

to <100 μm. Ground samples were analyzed for total carbon and nitrogen by dry 

combustion with the CN analyzer ‘Vario Max’ (Elementar Analysensysteme GmbH, 

Hanau, Germany). Inorganic carbon (IC) concentrations were determined with the same 

analyzer after ignition of samples for 16 hours at 450°C. The organic carbon 

concentrations equaled the differences between total carbon concentration and inorganic 

carbon concentration. 

Total microbial community DNA was extracted from approximately 2 g of the frozen 

soil per sample by employing the PowerSoil total RNA isolation kit, the PowerSoil 

DNA elution accessory kit, and the PowerClean DNA Clean-Up kit (MoBio 

Laboratories, Carlsbad, CA, USA) according to the manufacturer’s instruction. DNA 

concentrations were quantified by using a NanoDrop UV-Vis spectrophotometer 

(Peqlab Biotechnologie GmbH, Erlangen, Germany) according to the manufacturer’s 

protocol. 
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Amplification and pyrosequencing of partial 16S rRNA genes and ITS rDNA 

The V3-V5 region of bacterial 16S rRNA genes was amplified by PCR. The PCR 

reaction mixture (50 µl) contained 10 µl fivefold reaction buffer (Phusion HF buffer, 

Thermo Fisher Scientific Inc., Germany), 200 µM of each of the four deoxynucleoside 

triphosphates, 5% DMSO, 1 U Phusion high fidelity DNA polymerase (Thermo Fisher 

Scientific Inc.), approximately 25 ng DNA as template, and 4 µM of each of the 

primers. Primers used were 343F (Liu et al., 2007) containing a sample-specific MID 

(Extended Multiplex Identifier, size: ten nucleotides) and Roche 454 pyrosequencing 

adaptor A (underlined), and 907R (Cuesta Garrote et al., 2011) containing Roche 454 

pyrosequencing adaptor B (underlined) (343F, 5’-

CCATCTCATCCCTGCGTGTCTCCGACTCAG-MID-TACGGRAGGCAGCAG-3’; 

907R, 5’-

CCTATCCCCTGTGTGCCTTGGCAGTCTCAGCCGTCAATTCMTTTGAGT-3’). 

The PCR reactions were initiated at 98°C (2 min), followed by 25 cycles of 98°C (45 

sec), 58°C (45 sec) and 72°C (40 sec), and ended with incubation at 72°C for 5 min. 

To produce fungal ITS rDNA amplicon libraries primer ITS1F (Gardes and Bruns, 

1993) containing Roche 454 pyrosequencing adaptor B and a sample-specific MID, as 

well as primer ITS4 (White et al., 1990) containing Roche 454 pyrosequencing adaptor 

A have been used (see also Wubet et al., 2012). The PCR reactions were performed in a 

total volume of 50 µl reaction mix containing 1 µl DNA template (7-15 ng), 25 µl Go 

Taq Green Master mix (Promega, Mannheim, Germany) and 1 µl 25 pmol of each of the 

ITS region-specific primers. Touchdown PCR conditions as described by Wubet et al. 

(2012) were used to amplify fungal ITS rDNA. 

All samples were amplified in triplicate, purified using the peqGold gel extraction kit 

(Peqlab Biotechnologie GmbH) and the Qiagen gel extraction kit (Qiagen, Hilden, 

Germany) as recommended by the manufacturer, and pooled in equal amounts. 

Quantification of PCR products was performed using the Quant-iT dsDNA BR assay kit 

and a Qubit fluorometer (Life Technologies GmbH, Karlsruhe, Germany). Sequences of 

partial 16S rRNA genes and fungal ITS rDNA were decoded at the Göttingen Genomics 

Laboratory and the Department of Soil Ecology (UFZ-Helmholtz Centre for 

Environmental Research, Halle, Germany), respectively, by using a Roche GS-FLX 454 

pyrosequencer (Roche, Mannheim, Germany) and Titanium chemistry as recommended 

by the manufacturer. 
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Pyrosequencing data processing and analysis 

All generated sequences were reassigned to single samples based on the different MIDs. 

Quality filtering of 16S rRNA gene and ITS rDNA sequences was performed using 

QIIME (Caporaso et al., 2010) and mothur (version 1.29.2) (Schloss et al., 2009), 

respectively. Bacterial and fungal sequences shorter than 200 and 300 bp, respectively, 

as well as those exhibiting low quality values (bacteria, <25; fungi, <20) or long 

homopolymers (>8 bp) were removed. In addition, 16S rRNA gene and ITS rDNA 

sequences containing more than two and eight primer mismatches, respectively, were 

sorted out. Removal of pyrosequencing noise and potential chimeric sequences was 

performed using Acacia (Bragg et al., 2012) and UCHIME (Edgar et al., 2011), 

respectively. UCLUST (Edgar, 2010) and Cd-hit (version 4.5.4) (Li and Godzik, 2006) 

were applied to determine bacterial and fungal OTUs, respectively. To taxonomically 

classify OTUs, partial 16S rRNA gene sequences were compared with the SILVA SSU 

database release 111 (Pruesse et al., 2007) and ITS rDNA sequences were queried 

against the UNITE database for molecular identification of fungi (Abarenkov et al., 

2010) using BLAST. Subsequently, the Shannon index (Shannon CE, 1948) as well as 

the Chao1 index (Chao and Bunge, 2002) were calculated. 

 

Statistical analyses 

Effects of tree species (Fagus sylvatica L. and Picea abies L.), sampling distance to the 

trunks of the selected trees, season, and soil properties on fungal and bacterial 

communities were identified using R packages based on relative abundances of the 

microbial taxa, OTUs and diversity indices. 
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Preliminary Results 

General characteristics of the soil samples and the pyrosequencing-derived dataset 

Within this study, data on diversity and structure of bacterial and fungal communities 

present in 128 soil samples derived from the German Biodiversity Exploratory Hainich-

Dün (Fischer et al., 2010) has been gathered by applying pyrosequencing of 16S rRNA 

genes and the ITS region. Soil (0-10 and 10-20 cm depth) has been collected in two 

different periods of the year, early summer and autumn, under four Fagus sylvatica L. 

and Picea abies L. trees, respectively. The soils (soil type: luvisol) have been removed 

in varying sampling distance (0.5 m, 1.5 m, 2.5 m and 3.5 m) to the trunks of the eight 

selected trees. 

Pyrosequencing of the V3-V5 region of bacterial 16S rRNA genes and fungal ITS 

rDNA yielded approximately 1,520,000 and 480,000 reads, respectively. In a 

preliminary analysis of quality filtered sequencing data, diversity and community 

structure of soil bacteria and fungi within samples collected in autumn has been 

assessed. A total number of 13,600 and 791 bacterial and fungal operational taxonomic 

units (OTUs), respectively, were identified at a genetic distance of 3%. The dominant 

bacterial phyla across all autumn samples were Acidobacteria (38%), Proteobacteria 

(34%), Actinobacteria (11%), Chloroflexi (5%), Gemmatimonadetes (4%), 

Bacteroidetes (2%), Nitrospirae (2%) and Cyanobacteria (1%). Soil fungi were 

dominated by the phyla Basidiomycota (48%) and Ascomycota (36%). 

 

Community profiles of bacteria and fungi inhabiting beech and spruce surrounding soil 

Overall bacterial diversity as assessed by the Shannon index was, as expected, 

significantly higher than fungal diversity in soil beneath beech (Fagus sylvatica L.) and 

spruce (Picea abies L.) trees (Fig. 1). The fungal diversity within 10-20 cm soil depth 

was significantly higher at the spruce site compared to the beech forest (Fig. 1). 

Furthermore, overall bacterial and fungal diversity was largely driven by soil pH within 

spruce forest soil (Fig. 2). 
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Figure 2. Correlations between pH and Shannon diversity in soil (0-10 and 10-20 cm depth) 

beneath beech and spruce trees (season: autumn). Abbreviations in figure: bac, bacteria; fun, 

fungi. 

 

The comparison of OTUs determined in soil under Fagus sylvatica L. and Picea abies 

L. using Non-metric Multidimensional Scaling (NMDS) ordination analysis revealed a 

significant tree species impact on bacterial and fungal community composition (P = 

0.0001) (Fig. 3). 
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Outlook 

Data derived from soil samples collected in early summer, comprising 16S rRNA gene 

and ITS sequences as well as soil characteristics, will be included to complete analysis 

of seasonal effects on bacterial and fungal diversity and community structure. A nucleic 

acids co-extraction method has been used to isolate DNA as well as RNA from the 128 

soil samples. Metatranscriptomes of selected samples will be analyzed by shotgun 

pyrosequencing of cDNA generated from enriched mRNA. This approach allows 

assessment of tree effects on gene expression patterns of different taxa as well as 

investigation of microbial functional traits in Fagus sylvatica L. and Picea abies L. 

dominated forest soils. 
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B.II Impact of N fertilization on soil microbial communities and 

greenhouse gas fluxes 

To unravel the influence of NO3
-
 soil depositions on CH4 and N2O gas fluxes and the 

soil-inhabiting active microbial community in temperate broad-leaved forests, a 

laboratory experiment was conducted. We analyzed the effects of NO3
-
 fertilization in 

combination with limited and unlimited labile C supply on the CH4 uptake of a 

deciduous forest soil. The following hypotheses were tested: 

(1)  High NO3
-
 input leads to a relevant reduction in CH4 uptake of the forest soil. 

(2) Glucose neither enhances nor inhibits CH4 uptake when added alone. 

(3)  Glucose addition incombination with NO3
-
 increases the inhibiting effect of 

NO3
-
 on CH4 uptake.  

Furthermore, the influence of high NO3
-
 inputs on the diversity and composition of the 

active bacterial and archaeal community present in these incubated soils was analyzed. 

Pyrosequencing based on 16S rRNA was applied to test the following hypotheses: 

(1)  The N fertilization reduces the diversity and shapes the community structure of 

active soil microbia by promoting a denitrifying bacterial and archaeal 

community.  

(2) The addition of high concentrations of N (200 kg N ha
-1

 yr
-1

) forces the bacterial 

diversity and community composition to a point, where the lost bacterial 

diversity cannot be recovered and the microbial-driven biogeochemical 

processes collapse.  

Subsequently, the impact of high NO3
- 

amounts added to a temperate forest soil, in 

combination with limited and unlimited C availability, on N2O emissions was analyzed. 

The following hypotheses were tested: 

(1) Even though many forest soils contain large stocks of C, the availability of labile 

C for N2O emissions is limited, with the consequence that repeated high N 

inputs do not result in a corresponding additive increase of the N2O release rate. 

(2) High amounts of labile C in forest soils lead to similar N2O emission rates as the 

application of high N amounts.  

(3) The addition of labile C to forest soil affected by chronic N addition must result 

in very high N2O emissions exceeding the sum of rates measured in soils treated 

with N or C sources alone.  
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Abstract Upland soils are the most important terrestrial
sink for the greenhouse gas CH4. The oxidation of CH4 is
highly influenced by reactive N which is increasingly added
to many ecosystems by atmospheric deposition and thereby
also alters the labile C pool in the soils. The interacting
effects of soil N availability and the labile C pool on CH4

oxidation are not well understood. We conducted a labora-
tory experiment with soil columns consisting of homoge-
nised topsoil material from a temperate broad-leaved forest
to study the net CH4 flux under the combined or isolated
addition of NO3

− and glucose as a labile C source. Addition
of NO3

− and glucose reduced the net CH4 uptake of the soil
by 86% and 83%, respectively. The combined addition of
both agents led to a nearly complete inhibition of CH4

uptake (reduction by 99.4%). Our study demonstrates a
close link between the availability of C and N and the rate
of CH4 oxidation in temperate forest soils. Continued depo-
sition of NO3

− has the potential to reduce the sink strength
of temperate forest soils for CH4.

Keywords CH4 uptake . NO3
− . Glucose . Soil moisture .

Interaction of C and N cycles . N deposition

Introduction

Methane (CH4) has a 25 times higher global warming po-
tential than carbon dioxide (CO2). Its present concentration
in the atmosphere has more than doubled from 715 to
1774 ppb since pre-industrial times over the past 150 years
(Forster et al. 2007). Hence, CH4 contributes about 15% to
the present greenhouse effect of the long-lived greenhouse
gases (Forster et al. 2007). Beside chemical oxidation in the
troposphere (Crutzen 1991; Denman et al. 2007), biological
oxidation in aerobic soils by methanotrophs and nitrifiers
represents the second strongest absorber of atmospheric
CH4 (Smith et al. 2000; Le Mer and Roger 2001; Denman
et al. 2007). In a recent study, Dutaur and Verchot (2007)
calculated the global CH4 sink of soils to 22.4 Tg year−1.
The CH4 uptake of soils in the temperate zone accounts for
nearly half of this global sink (10.4 Tg CH4 year −1). It is
estimated that temperate forest soils contribute between 3
and 5.7 Tg CH4 year

−1 to this sink (Curry 2007; Dutaur and
Verchot 2007; Ishizuka et al. 2009). Therefore, any change
in the CH4 sink strength of temperate forest soils as resulting
from nitrogen (N) deposition, liming or fertilisation activi-
ties, altered forest management or forest conversion is of
global interest.

Over the past 200 years, temperate forest ecosystems
have already received more than ten times higher anthropo-
genic N inputs through atmospheric deposition than in pre-
industrial times (Holland et al. 1999; Nadelhoffer et al.
1999; Galloway and Cowling 2002; Holland et al. 2005;
Magnani et al. 2007). Many studies reported N deposition to
be an important factor in the control of CH4 uptake by forest
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soils (Kasimir-Klemedtsson et al. 1997; Butterbach-Bahl et
al. 1998). Liu and Greaver (2009) assumed that anthropo-
genic N addition reduces CH4 uptake by 3.9 to 9.1 Tg
CH4 year

−1 at the global scale. These figures compare well
with the estimate of Dutaur and Verchot (2007) of a reduc-
tion by 17% to 40% of the CH4 sink strength. Due to the
strong impact of N addition on CH4 uptake, intensive re-
search in the laboratory and the field has addressed this topic
(Goldman et al. 1995; Bradford et al. 2001b, 2001a; Jang et
al. 2006; Borken and Brumme 2009; Bodelier 2011b). In
various field studies (King and Schnell 1994a; Dobbie and
Smith 1996; Steinkamp et al. 2001) and laboratory experi-
ments (Adamsen and King 1993; Bender and Conrad 1994;
Priemé and Christensen 1997; MacDonald et al. 1997),
evidence was found for an inhibiting effect of ammonium
(NH4

+) fertilisation on CH4 oxidation in forest soils. A
reduction of CH4 oxidation by NH4

+ addition has been
explained by substrate competition between NH4

+ and
CH4 at the binding sites of the catalysing enzyme CH4

monooxygenase (MMO) in the first step of the CH4 oxida-
tion pathway (Bédard and Knowles 1989; Topp and Pattey
1997) resulting in enhanced NH4

+ oxidation. Other explan-
ations are non-competitive effects exerted by the side-
product hydroxylamine during NH4

+ oxidation (Mancinelli
1995), the production of toxic nitrite (NO2

−) during NH4
+

oxidation (King and Schnell 1994b) and osmotic effects
resulting from the formation of salts in the course of fertil-
isation (Dunfield and Knowles 1995; Gulledge and Schimel
1998). Furthermore, several studies reported a negative ef-
fect of oxidised N (NO3

−) on the CH4 oxidation in soil
(Priemé and Christensen 1997; Wang and Ineson 2003;
Reay and Nedwell 2004; Xu and Inubushi 2004; Ishizuka
et al. 2009). This inhibiting effect has been explained by (a)
the production of toxic concentrations of NO2

- in anaerobic
microsites (Adamsen and King 1993; Whalen 2000; Wang
and Ineson 2003) or (b) the osmotic effect of salts (Dunfield
and Knowles 1995; Gulledge and Schimel 1998). However,
the underlying mechanisms of these non-competitive inhib-
iting effects of oxidised N on CH4 uptake are not yet
sufficiently understood.

There is a recent debate on the influence of N addition on
carbon (C) turnover and C stocks in forest soils (Magnani et
al. 2007; Dezi et al. 2010; Janssens et al. 2010). According
to de Vries et al. (2009), the C sequestration in European
forest soils has increased as a consequence of the N depo-
sition in the range of 5 to 23 kg C per kg N added. Thus, it is
likely that a continuing high N input into forest soils will
further increase the amount of labile C. There is a need to
study the consequences of increasing amounts of labile C
and N in forest soils and their interaction on CH4 oxidation
which is not well understood. Schnell and King (1995)
studied the influences of C compounds as glucose, starch,
yeast extract, methanol, ethanol, formate, acetate, malate

or lactate on the CH4 oxidation of incubated forest soil.
According to their results, these C compounds neither in-
hibit nor stimulate CH4 oxidation. However, the applied
concentration may have not been high enough to influ-
ence the physiology and activity of the CH4 oxidising
community; moreover, the interaction with N availability
was not addressed.

In this study, we focused on the effects of NO3
− fertilisation

in combination with the application of labile C (glucose) on
the CH4 uptake of a deciduous forest soil. We tested the
hypotheses that (1) high NO3

− input leads to a relevant reduc-
tion in the CH4 uptake of the forest soil, (2) glucose neither
enhances nor inhibits CH4 uptakewhen added alone, but (3) in
combination with NO3

−, it increases the inhibiting effect of
NO3

− on CH4 uptake.

Materials and methods

Soil characteristics and soil sampling

The soil used for the experiment was sampled in a mixed
broad-leaved temperate forest in Hainich National Park,
Thuringia, Germany (51°04' N 10°30' E) and was immedi-
ately prepared for incubation. At the sampling site, the
dominating tree species are Fagus sylvatica L., Fraxinus
excelsior L., Tilia cordata Mill., Tilia platyphyllos Scop.,
Carpinus betulus L., Acer pseudoplatanus L. and Acer

platanoides L. The soil type is a Stagnic Luvisol (IUSS
Working Group WRB 2007) of silty texture containing
1.8% sand, 80.2% silt and 18.1% clay. The sampled soil
was free of carbonate (<0.02% of Ctotal), had a pH (KCl) of
3.8 and a base saturation of 22.9%. Material of the upper 0
to 10 cm of the mineral soil was collected, excluding litter
material. After collecting the soil material, it was homoge-
nised by passing it through a 5-mm sieve.

Experimental setup

For the main experiment, 16 Plexiglass cylinders (50 cm in
height, 17 cm in diameter) were used and each filled with
4 kg of the freshly sieved soil. The water content at the start
was 22.7% of the fresh weight. The columns were placed in
a random arrangement in the laboratory. A supplementary
experiment with 16 additional soil columns of the same
dimensions and treated alike was conducted to (1) repeat
the findings of the main experiment as well as to (2) exclude
possible other effects like proposed inhibitory effects of salt
addition and to (3) to have a control without labile C
addition. Before the start of the main experiment, we kept
the incubated soil for a period of 62 days under laboratory
conditions to equilibrate the microbial soil community to the
climatic conditions and to balance the gas exchange after

Biol Fertil Soils



disturbing the natural soil structure. After this pre-experimental
phase, the experiment with two treatments (addition of NO3

−

and glucose) lasted for another 62 days with three experimental
phases (first, second and third N-fertilisation phase) being
distinguished (days 1–20, 21–41 and 42–62, respectively). In
the main experiment, the N treatment was replicated eight
times. The effect of C addition on CH4 was interpreted in
comparison to the fluxes of the respective N treatment before
C addition. At day 0 of the experiment (start of first N-
fertilisation phase), day 20 (start of second N-fertilisation
phase) and day 41 (start of third N-fertilisation phase),
eight randomly chosen soil columns were fertilised with a
KNO3 solution in deionised water with an equivalent of
200 kg N ha−1. The amount of added water was adjusted to
reach a water-filled pore space (WFPS) level of 80%. At day
42 (start of third N-fertilisation phase), all 16 soil columns
were additionally treated with a glucose solution (equivalent
to 9,419 kg C ha−1) to simulate unlimited supply of labile C in
the soil (both in the N-fertilised and the untreated control
columns). The addition of N and C increased the total N
(Ntotal) and organic C (Corg) pools in the soil columns in
comparison to the initial Ntotal and Corg contents by absolute
amounts of 7.7% and 8.0% (N) and by 33.8% and 36.0% (C)
on day 42 of the experiment in the control and the N-fertilised
columns, respectively.

In the supplementary experiment with fourfold repli-
cation, we examined the response of CH4 uptake to the
addition of either KNO3 (NO3

− source), K2SO4 (to test
for effects of high K concentrations) or glucose (as a
labile C source) using the same amounts of N, K and C
(200 kg N ha−1, 552 kg K ha−1, 9,419 kg C ha−1,
respectively) and the same soil and cultivation conditions
as in the main experiment. Furthermore, the initial soil
conditions (apart from a higher Corg concentration,
Table 2) and all analytical procedures were identical to
those in the main experiment. The goal of the supple-
mentary experiment with duration of 21 days was to
compare the effects of KNO3 and K2SO4 and to study
the effect of a labile C source independent from the
NO3

− effect. This additional experiment also served for
measuring the NH4

+ concentrations in the soil after NO3
−

addition because these data were lost in the main exper-
iment due to technical shortcomings.

The soil columns were installed in a greenhouse with
14 h of low daylight (100 μmol m−2 s−1 PPFD; OSRAM
cool white, Lightcolor 840, Munich, Germany). The water-
filled pore space was measured every week by weighing the
soil columns. The pore volume and the water-filled pore
space were calculated by assuming a particle density of
2.65 g cm−3 (Schlichting et al. 1995) and by referring to
the measured soil bulk density at the experiment’s begin-
ning. The soil temperature of each soil column was mea-
sured at a depth of 7.5 cm and a horizontal distance to the

column edge of 3 cm using NTC thermistors (Epcos,
Munich, Germany) that were logged in 15-min intervals
with a CR10 data logger (Campbell Scientific Inc., UT,
USA). The soil temperature did not differ between the treat-
ments, but decreased slightly by 3°C over the course of the
experiment (mean of 22.8±0.2°C in the N-fertilised and the
control treatment).

Chemical soil analysis

Before the start of the experiment, we analysed five replicate
samples for the chemical properties of soil (Table 1). The pH
(KCl) was analysed in a suspension of 10 g soil in 1 M KCl
solution using a Vario pH meter (WTW GmbH, Weilheim,
Germany). The cation exchange capacity (CEC) of the soil
was measured by percolating five samples of 2 g fresh soil
with 0.2 M BaCl. The percolates were analysed with an
ICP-AES (Optima 3000 XL, PerkinElmer, MA, USA). The
base saturation was calculated as the percentage of base
cations (Na, K, Ca and Mg) in CEC. The bulk density of
the soil material in the columns was determined using steel
cores with a defined volume of 100.93 cm3. Before and after
drying the soil cores at 105°C for 24 h, the soil was
weighed, and the bulk density of the dry material was
calculated. At day 0 of the fertilisation experiment, the bulk
density of the homogenised material was 1.05±0.02 g cm−3.
The particle size distribution was determined with the siev-
ing and pipette method (Schlichting et al. 1995). The con-
centrations of organic C (Corg) and total N (Ntotal) were
analysed with a C/N analyzer (Vario EL, Elementar,
Hanau, Germany). The concentrations of N–NO3

− and N–
NH4

+ in mg kg−1 dw were measured by extracting 8 g fresh
soil with 0.5 M K2SO4 solution (ratio of wet soil mass to
solution, 1:3) within the following 2 to 3 h after collecting
the soil. The samples were shaken for 1 h and passed
through folded filters (FT-4-303-150, Sartorius Stedim,
Aubagne, France). The NO3

− and NH4
+ concentrations of

the filtered extracts were analysed by continuous flow in-
jection colorimetry (SAN+Continuous Flow Analyzer,
Skalar Instruments, Breda, The Netherlands). The NO3

−

concentrations were determined with the copper–cadmium-
reduction method (ISO method 13395), and those of NH4

+

with the Berthelot reaction method (ISO method 11732).
At day 0 and at the end of the experiment, soil solution

was sampled from the soil column by irrigating the soil with
500 ml of distilled water. The percolating water was passed
through filter papers (MN 85/70 BF, Macherey-Nagel,
Düren, Germany) and the soil solution analysed with the
DOC analyser (Dimatoc 100, Dimatec, Essen, Germany) to
measure the concentration of dissolved organic C. The con-
centration of NO3

– in the soil solution was analysed by ion
chromatography (761 Compact IC, Metrohm, Herisau,
Switzerland).
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Gas flux analysis

Gas fluxes of CH4 at the soil surface were measured three
times per week in the headspace volume of soil columns.
The headspace volume in the Plexiglass columns was 8.6 L.
The chambers were closed for 1 h. At 0, 20, 40 and 60 min
elapsed time after lid closure, gas samples were taken from
the chamber headspace by flushing gas-tight 50-ml sample
syringes with headspace air, using a needle and two three-
way valves. The gas concentrations were analysed by a
computer-controlled gas chromatographic system with a
flame ionization detector for CH4 (Shimadzu GC-14B,
Kyoto, Japan). A detailed description of the gas chromato-
graph was given by Loftfield et al. (1997). The gas fluxes
were calculated from the linear increase of gas concentra-
tion, which was measured during the chamber emplacement.

Data analysis

Statistical analyses were performed using SAS 9.1 software
(Statistical Analysis System, SAS Institute Inc., Cary, USA).
Cumulative gas fluxes were calculated by summing up all
measurements for each column considering the number of
measurements and the corresponding duration of the measur-
ing phase. Frequency distributions were tested for normality
with the Shapiro–Wilk test. One-way GLM with the Tukey–
Kramer test was used to identify significant differences among
the N-treatment means for cumulative CH4 fluxes and soil
properties showing normal distribution. Not normal-
distributed soil parameters were analysed with the Wilcoxon
U-test. Differences among normal-distributed CH4 flux data
of the different C treatments were assessed with the paired
t test. The Wilcoxon signed rank test was used to identify

differences between the C treatments in not normal-distributed
soil parameters (this single test was carried out with the R
statistical package, version 2.11.1, R Foundation for Statistical
Computing, Vienna, Austria). Linear regression analysis was
conducted to relate CH4 flux to WFPS. For all analyses, signif-
icance was determined at P<0.05.

Results

Physical and chemical soil characteristics

Important chemical properties of the soil in the columns
before the start of the experiment (day 0), at the end of the
second N fertilisation phase (day 41) and 3 weeks after the
combined application of N and C (day 62) are listed in
Table 1. At the end of the second N fertilisation (day 41)
and the end of the third experimental phase (combined addi-
tion of N and glucose, day 62), the pH (KCl) in the N-fertilised
columns was significantly higher (by 0.4 and 1.1 pH units,
respectively) than in the unfertilised control. The glucose
application strongly increased the pH by 0.7 (control) and
1.4 units (N-fertilised) compared with the corresponding N
treatment before glucose was applied. At the 21st and 42nd day
of the experiment (with the addition of N or N and C), the
WFPS was adjusted to approximately 80% (Fig. 1a).
Subsequently, WFPS gradually declined due to soil evapora-
tion with a slope of −1.53±0.22% d−1 in the unfertilised soil
columns and −1.53±0.24% d−1 in the fertilised columns.

The effect of NO3
−, glucose and K2SO4 on Corg and the

mineral N concentration in the soil was investigated in the
supplementary experiment (Table 2). The addition of KNO3

increased the NO3
− and NH4

+ concentrations in the soil

Table 1 Selected chemical parameters in the soil solution of the columns of the N-fertilised and the unfertilised control treatment in different
phases of the experiment (means±1 SE of each eight columns)

Experimental phase Day 0 Unfertilised control (N0) N-fertilised (N1) Unfertilised control (N0) N-fertilised (N1)

Day 41 (without glucose) Day 62 (glucose added)

pH (KCl) 3.82±0.03 3.84±0.08aA 4.23±0.06bA 4.49±0.07aB 5.63±0.16bB

Corg [g kg−1 dw] 19.84±0.44 20.44±0.37aA 19.20±0.25bA 22.99±0.58aB 22.62±0.28aB

Ntotal [g kg−1 dw] 1.89±0.03 2.08±0.03aA 2.40±0.08bA 1.99±0.01aA 2.42±0.09bA

C/N [g g−1] 10.50±0.19 9.85±0.10aA 8.02±0.17bA 11.52±0.18aB 9.41±0.30bB

NO3
− [mg Nkg−1 dw] 6.39±0.28 ND ND 0.60±0.80a 35.78±5.70b

NH4
+ [mg Nkg−1 dw] 7.85±0.28 ND ND 1.53±0.32a 34.50±4.59b

DOC [mg l−1] 19.4±1.91 ND ND 515.3±89.9a 273.2±51.7b

NO3
− [mg l−1] 9.6±3.50 ND ND 30.5±23.6a 363.35±114.7a

Day 0 refers to the start of the experiment; day 41 is 6 weeks after the first N fertilisation and day 62 is 3 weeks after the third N fertilisation
combined with glucose addition. Lower case letters indicate significant differences between the N-fertilised and the control treatment within a given
experimental phase (P<0.05, Wilcoxon U-test); different upper case letters indicate significant differences between columns before and after
glucose addition (P<0.05, Wilcoxon signed rank test)

ND parameter not detected
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columns by 891% and 244%, respectively. K2SO4 increased
the NO3

− and NH4
+ concentrations in the soil by 243% and

134%, respectively. Glucose led to a significant increase of Corg

and a decline by 81% and 47% of NO3
− and NH4

+,
respectively.

CH4 fluxes

During the first phase of the main experiment, the unfertilised
control columns showed enhanced uptake of CH4 with declin-
ing WFPS. Max imum up take (33 .31 ± 1 .36 μg
C m−2 h−1) was measured at day 17 when WFPS had dropped
to 49.50±1.64%. In contrast, NO3

− fertilisation reduced CH4

uptake considerably (Fig. 1). The CH4 uptake of the fertilised
soil remained constantly low at 3.23±0.14 μg Cm−2 h−1 during
the first experimental phase. In the second phase of the exper-
iment, the maximum uptake of the unfertilised soil was 22.45±
0.74 μg C m−2 h−1. In the N-fertilised soil columns, the second
N application led to an even stronger inhibition of CH4 uptake
than during the first phase. The first and second NO3

− addition
significantly reduced the cumulative CH4 uptake of the N-

fertilised soil columns by 86% in the first and by 97% in the
second phase compared with the unfertilised columns (Fig. 2).

Glucose application also led to a large reduction in CH4

uptake with average rates of only 2.41 ± 1.70 μg
C m−2 h−1 during the third phase. The cumulative CH4

uptake after glucose application was significantly lower in
both the unfertilised control and in the N-fertilised columns
than in the first and second experimental phases before
glucose application (Fig. 2). The glucose addition inhibited
CH4 uptake to a similar extent (by 83%) as did the first NO3

-

addition. After combined NO3
− and glucose addition in the

third phase, the CH4 uptake was almost completely sup-
pressed (reduction by 99.4% compared with the uptake of
the control during the first phase, Fig. 2).

In the unfertilised control treatment of the main experi-
ment, we found a strong negative correlation between CH4

uptake and WFPS with a large slope factor (higher CH4

uptake at lower soil moisture) in the first and second phase
of the experiment (R2

00.679 and 0.788, respectively,
Fig. 3). After adding NO3

− in the fertilised treatment, this
relationship had a much smaller slope (first phase R2

00.14),

Fig. 1 CH4 uptake and water-
filled pore space of the soil
(WFPS) in soil columns con-
taining forest soil, either fertil-
ised with NO3

− or unfertilised
control during the experiment
of 62 days duration. Given are
mean values±1 SE of each
eight columns per N-treatment.
The N-fertilization consisted of
a total addition of 200 kg N
ha−1 year−1 given as KNO3 on
three occasions (first to third
fertilisation). On day 41 of the
experiment, all columns re-
ceived additionally a glucose
solution (equivalent to
9,419 kg C ha−1) as a labile
C source

Table 2 Chemical properties of the soil before (Day 0) and 21 days after the addition of KNO3, K2SO4 or glucose compared with the control
treatment in the supplementary experiment (means±1 SE, n04)

Day 0 Control KNO3 K2SO4 Glucose

pH (KCl) ND 4.32±0.11a 4.15±0.09a 4.12±0.07a 4.20±0.04a

Corg [g kg−1 dw] 29.20±0.55 29.00±0.23ab 27.61±0.54a 29.00±0.23ab 32.8±1.76 b

Ntotal [g kg−1 dw] 2.00±0.02 1.95±0.03a 2.02±0.05a 1.96±0.01a 1.89±0.02a

C/N [g g−1] 14.69±0.32 14.91±0.15a 13.70±0.16a 14.80±0.08a 17.32±0.89b

N–NO3
− [mg kg−1 dw] 3.27±0.61 5.07±3.00ab 45.15±2.44c 12.34±1.07b 0.94±0.81a

N–NH4
+ [mg kg−1 dw] 4.79±0.25 3.96±1.86a 9.65±0.85b 5.29±0.77a 2.10±1.50a

Lower case letters indicate significant differences between the four treatments (P<0.05, Wilcoxon U-test)

ND parameter not detected
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or disappeared entirely (second phase). After glucose addi-
tion, no correlation between CH4 uptake and WFPS was
observed irrespective of the N treatment.

The supplementary experiment with KNO3, K2SO4 or
glucose addition showed after 20 days a cumulated CH4

uptake of only 2.86±0.21 mg C m−2 in the KNO3 treatment,
which is equivalent to about half the rate of the control (5.84±
1.2 mg C m−2). In contrast, the columns treated with K2SO4

exhibited an enhanced uptake of 7.22±0.18 mg C m−2, which
was significantly higher than the control (Fig. 4). The glucose
application resulted in the smallest cumulated CH4 fluxes of
the three treatments (−0.04±0.27 mg C m−2, difference sig-
nificant to the other treatments).

Discussion

Our study showed that KNO3 relevantly inhibits the CH4

uptake of a temperate deciduous forest soil. We found a
significant reduction of the cumulative CH4 uptake by 86%
after a first addition of KNO3 equivalent to 200 kg N ha−1

(10.4 μmol N g−1 dry soil). A second addition of the same
amount of N induced a further decline to a rate of only 3% of
the control (i.e., a reduction by 97%). The effect of NO3

− on
CH4 uptake was quite variable in earlier field studies and
laboratory experiments. Rigler and Zechmeister-Boltenstern
(1999) found a stimulation of the CH4 uptake of an acidic
spruce forest soil after low inputs of 0.71 μmol N g−1 dry soil
under laboratory conditions (which is a 15th of the
10.4 μmol N g−1 dry soil applied in our study). The authors

assumed that CH4 oxidising bacteria may benefit from low N
inputs, overcoming N limitation of bacterial growth. In
contrast, repeated high inputs of a total of 140 and
530 kg N–NO3

- ha−1 showed no effect on CH4 uptake of a
boreal spruce forest soil under field conditions (Whalen and
Reeburgh 2000). Other field and laboratory approaches sup-
port our finding of reduced CH4 uptake as a response to NO3

−

addition (Butterbach-Bahl et al. 1998; Reay and Nedwell
2004; Ishizuka et al. 2009). Nitrate amendments from 0.17
to 29.96 μmol N g−1 to soils of temperate mixed hardwood
and coniferous forests resulted in a reduction by 10–50% of
the initial CH4 consumption (Wang and Ineson 2003; Xu and
Inubushi 2004). A reduction by 86% and 97%measured in our
study indicates an even more pronounced inhibition of CH4

uptake after two consecutive additions of 10.4 μmol N g−1 dry
soil than reported in earlier studies.

Previous studies suggested that the mechanisms of CH4

uptake inhibition in the course of NO3
− addition are linked

to (a) substrate competition at the enzyme level and (b) non-
competitive effects by the formation of suppressing com-
pounds. High concentrations of NO2

− formed after the ad-
dition of NO3

− are a well-studied inhibiting factor of
microbial activity (Bancroft et al. 1979). Principally, the
activity of NO2

− is relatively high under alkaline pH con-
ditions, at low temperatures or under anaerobic conditions
(van Cleemput and Samater 1995). The forest soil used in
this study had a low pH value of 4.8, an average temperature
of 23°C, a moisture content of less than 80% WFPS and
contained an O2 concentration close to 210 hPa (data not
shown; measured with O2-sensitive micro-optodes, sensor
type PSt1 with a resolution between ±0.1 hPa O2 at concen-
trations of 2 hPa O2 and ±0.87 hPa O2 at concentrations of
207 hPa O2, with a measurement range between 0 and
500 hPa, Oxy-10 mini and Microx TX3 devices, PreSens
GmbH, Regensburg, Germany). Hence, high levels of NO2

-

are not very likely as an inhibiting factor of CH4 oxidation
in our study. Several authors suggested that low osmotic
potentials or salt effects caused by high cation concentra-
tions might be another possible non-competitive inhibiting
factor associated with N fertilisation (Crill et al. 1994;
Hütsch et al. 1994; Bradford et al. 2001a, Bodelier and
Laanbroek 2004). A desorption of NH4

+ from cation ex-
change sites by high activities of H+, Na+ and K+ cations is
one possible mechanism reducing CH4 oxidation (King and
Schnell 1998), while other authors suggested that a lowered
soil water potential is responsible for the inhibiting effect of
these cations on CH4 uptake (Nesbit and Breitenbeck 1992;
Schnell and King 1996). Wang and Ineson (2003) showed
that the effect of K2SO4 on CH4 uptake by a forest soil was
only weak (7.0 to 56.1 μmol K g−1 dw), whereas the same
concentration of KNO3 strongly depressed consumption
rates (7.1 to 56.2 μmol g−1 dw of N and K, respectively).
In our supplementary experiment, CH4 uptake remained

Fig. 2 Calculated cumulative CH4 uptake in the different treatments
during 20 days in the first, second or third phase of the experiment.
Treatment acronyms are: N00no NO3

− fertilisation, N10NO3
− fertil-

isation (200 kg N ha−1 as KNO3), C00no glucose addition,
C10glucose addition (9,419 kg C ha−1). Given are means±1 SE
(n08 columns per treatment). Asterisks mark significant differences
between the N-fertilised and the respective control treatment for each
phase (P<0.05, Tukey–Kramer test), different lower case letters indi-
cate significant differences between the first and third experimental
phases for the columns of the C1 and C0 treatments, and capital letters
mark such differences between the second and the third phases
(P<0.05, paired t test)
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high after the addition of 10.4 μmol K g−1 dw in the form of
K2SO4, while the addition of KNO3 with the same amount
of K reduced CH4 uptake by 51%. Thus, a co-determining
effect of K on the reduction of CH4 uptake appears unlikely.
The aerobic methanotrophs are a group of methylotrophic
bacteria, which are able to use CH4 and other C1 com-
pounds as their sole energy and C source (Trotsenko and
Murrell 2008; Dedysh and Dunfield 2011). Recent studies
also showed the existence of facultative methanotrophy in
the generaMethylocystis (Belova et al. 2011; Im and Semrau
2011), Methylocapsa (Dedysh et al. 2005; Dunfield et al.
2010) and Methylocella (Dedysh et al. 2005; Theisen et al.
2005). First analysis of the bacterial community within our
soil columns derived from the first phase of the experiment
shows the presence of the facultative methanotroph genera
Methylocystis, as well as Methylocella and Methylocapsa,
but in very low abundances (data not shown). We found
Nitrosospira in the unfertilised soils, but not in the fertilised
soil indicating another option of CH4 oxidation using NH4

+

monooxygenase (Holmes et al. 1995; Kolb et al. 2005, data

Fig. 4 Calculated cumulative CH4 uptake after the addition of KNO3,
K2SO4 or glucose compared with the control treatment in the supplemen-
tary experiment (means±1 SE, n04). Lower case letters indicate signifi-
cant differences between the four treatments (P<0.05, Tukey–Kramer test)

Fig. 3 Dependence of CH4

uptake rate on the water-filled
pore space in the soil (WFPS) in
N-fertilised and unfertilised
control columns in the first,
second and third phase of the
experiment (seven up to 14
measurements per phase in each
eight columns per treatment).
Nitrogen was added as
200 kg N ha−1 (KNO3) at the
beginning of the three phases;
in the third phase, glucose
(9,419 kg C ha−1) was
additionally added as a
labile C source
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not shown). In our main experiment, the NH4
+ concentra-

tions increased by 340% compared with the initial concen-
tration after N and C addition and consequently, fertilised
columns showed significantly higher NH4

+ concentrations
than the control columns. Similarly, in our supplementary
experiment, a single addition of NO3

− resulted in by 244%
higher NH4

+ concentrations. These increases indicate that
the frequently observed inhibition by NH4

+ must also play a
key role for the reduction of CH4 uptake in our experiments.
Why NO3

− addition led to the strong increase in NH4
+ con-

centrations remains unclear. Among the possible mechanisms
are a stimulation of N mineralisation by the NO3

− pulse
(Kuzyakov et al. 2000), the assimilation of NO3

− in bacterial
biomass and the subsequent release of NH4

+ after cell death
(Cabello et al. 2009), or perhaps dissimilatory NO3

− reduction
to NH4

+ in anoxic micro-patches by bacteria.
In general, the WFPS and the O2 content of the soil are

recognised to be the main controlling factors of the temporal
variation in CH4 uptake (Castro et al. 1995; Bowden et al.
1998). Increased soil water content functions as a physical
barrier for CH4 diffusion into the soil, thereby reducing
CH4 uptake (Nesbit and Breitenbeck 1992; Castro et al.
1995). In a field study under natural N supply, Guckland
et al. (2009) confirmed the tight negative correlation of CH4

uptake and WFPS in the soil of the Hainich forest, where the
soil material of our experiment was collected. This negative
relation was also found in our experiment under the unfer-
tilised control conditions, but it disappeared with NO3

−

addition and its dominant effect on CH4 oxidation (Fig. 3).
Guckland et al. (2009) measured hourly CH4 uptake rates of
10 to 30 μg C m−2 h−1 in the National Park Hainich, where
our soil material was collected, during midsummer 2007,
when soil temperature was 12–14°C and WFPS ranged from
40% to 70%. Although in our study CH4 uptake of the soil
was not investigated under natural conditions, the same
range of CH4 uptake was observed (13–33 μg C m−2 h−1,
when WFPS ranged from 40% to 70% as well).

Our experiment evidenced not only the strong inhibiting
effect of NO3

− on CH4 oxidation but also a negative effect
by an added labile C compound. With the addition of
576 μmol C g−1 dw soil in the form of glucose, the CH4

uptake of unfertilised soil declined by 83%; adding glucose
to NO3

−-fertilised soil caused a reduction by 54% of the
initial cumulative CH4 uptake under NO3

− fertilisation in
the second phase. The repression of CH4 uptake by the
combined action of added N and C was in its absolute
amount even larger than the single effects of N and C.
Compared with the control of the second experimental
phase with no addition of N and C, the cumulative CH4

uptake of the soil treated with NO3
− and glucose was re-

duced by 99.4%, more than the 86% by N and 83% by C
addition. To our knowledge, only few studies so far have
dealt with the underlying mechanisms of the effect of

alternative labile C sources on CH4 oxidation (i.e., Schnell
and King 1995; Benstead et al. 1998). One possible expla-
nation for the inhibition of CH4 uptake by added labile C
sources is the stimulation of heterotrophic microbial pro-
cesses. We measured an increasing rate of N cycling after
the addition of glucose, especially in the treatment with
NO3

− addition where the emission of N2O was strongly
enforced. Nitrate-reducing microorganisms must have been
abundant in the soil microbial community in the N1C1
treatment while other processes such as methanotrophy were
apparently suppressed. Facultative CH4 oxidizers are capa-
ble of utilising multicarbon compounds, as acetate, succi-
nate, pyruvate, malate or ethanol as their sole C and energy
source (Dedysh and Dunfield 2011). Thus, the obvious
suppression of CH4 uptake in the last phase of our experi-
ment could be the consequence of a shift in preference of the
methylotrophic bacteria from CH4 to another multicarbon or
C1 substrate, as acetate, pyruvate, ethanol or other side-
products of glucose-utilising bacteria. The two enzymes
responsible for the oxidation of CH4 are the particulate
and the soluble CH4 monooxygenase (pMMO and
sMMO). The genus Methylocella owns only sMMO, which
is repressed in the presence of preferred C sources as ace-
tate, malate or other multicarbon substrates (Theisen et al.
2005). In the case of the genera Methylocapsa and
Methylacystis, which prefer CH4, pMMO and sMMO are
present and not repressed in the presence of other C com-
pounds (Dedysh and Dunfield 2011). Finally, we cannot
exclude that the apparent low CH4 uptake rate observed in
the N1C1 treatment is partly caused by enhanced CH4

production because the addition of suitable C substrates
may increase methanogenesis under anaerobic conditions
(Topp and Pattey 1997; Dalal et al. 2007, Win et al. 2010,
Sasada et al. 2011). In fact, the soil moisture conditions in
our experiment (40–80 % WFPS) do not exclude the possi-
bility that methanogenesis took place in anaerobic micro-
sites of the not water-saturated soil (Kotiaho et al. 2010). In
conclusion, our results suggest that NO3

− and labile C
compounds are agents that may significantly affect CH4

uptake in temperate forest soils, in addition to the known
factors temperature, WFPS and NH4

+.
For the coming decades, a significant rise in temperatures

and in the precipitation extremes is predicted for the tem-
perate zone (IPCC 2007). Another important factor will be
atmospheric N deposition, which is expected to remain
relatively high in large regions of Central Europe and east-
ern North America (Galloway et al. 2008). How these
expected trends will affect the biogeochemical cycles in
forest ecosystems and the chemical state of forest soils is a
matter of recent discussion. Much current research focused
on alterations of soil C storage and decomposition processes
under changed temperature and N immission climates
(Janssens et al. 2010), but the interaction between CH4
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uptake and the C and N dynamics in forest soils as sche-
matically described in Dubbs and Whalen (2010) has not
received much attention yet (Thornton et al. 2007). The
suppression of the CH4 oxidising community by increasing
N may last for decades caused by the narrow and slow-
growing community (Bodelier 2011a), so that the CH4 sink
of forest soils might be changed in the long-term. For a
number of structurally different forest sites in the Hainich
forest, Guckland et al. (2009) reported relatively high CH4

uptake rates in the range of 2.0 to 3.4 kg C ha−1 year−1.
Guckland et al. (2009) detected no significant correlation
between CH4 uptake and the soil content of Corg and NO3

−.
However, N deposition is rather low in the region with
13 kg N ha−1 year−1 (Mund 2004) and complementary
studies in forest stands with higher N input are needed to
analyse the interaction between soil C and N availability and
CH4 oxidation under field conditions.

Conclusions

Our study supports the hypothesis of an inhibition of CH4

uptake by NO3
− in a biologically active deciduous forest

soil. The inhibition by NO3
− was shown to be linked to

increasing NH4
+ concentrations. The hypothesis of un-

changed CH4 uptake after addition of high amounts of labile
C was disproved. In contrast, we found a strong inhibiting
influence of a labile C source (glucose) on CH4 uptake. The
simultaneous addition of NO3

− and a labile C source
showed that the inhibiting effects of N and C are more than
additive, and the suppression of CH4 uptake by high soil
moisture contents is masked by the dominant N and C
influence on this process. These findings underpin the need
to investigate the interactions between the availability of
NO3

− and labile C sources on the process of CH4 oxidation
in forest soils. Clearly, our results cannot simply be extra-
polated to the field situation because we conducted our
experiment with N loads >200 kg ha−1, which is much more
than the 10 to 70 kg N ha year−1 of N deposition measured
currently in temperate European forests (Dise et al. 1998;
Holland et al. 2005; Simpson et al. 2006). However, we
used artificially high doses of N and labile C to demonstrate
that the process of CH4 uptake in soils is controlled by a
number of additional factors that mostly have been ignored
so far. Thus, this process is more difficult to predict under
changing climatic and chemical conditions in future than
previously thought.
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Abstract 

The anthropogenic input of nitrogen species into soil alters the labile carbon pool and 

thereby enhances the microbial-driven release of nitrous oxide and inhibits microbial-

driven methane uptake. To study the influence of highly elevated nitrogen inputs (200 

kg N ha
-1

 yr
-1

) on the active prokaryotic community a microcosm experiment was 

carried out using topsoil from a temperate broad-leaved forest. Diversity and 

composition of the active prokaryotic soil community (Bacteria and Archaea) were 

assessed by pyrosequencing-based analysis of 16S rRNA amplicons generated from 

environmental RNA. The soil bacterial communities were dominated by 

Proteobacteria, Acidobacteria, Chloroflexi, Actinobacteria and Firmicutes, and the 

archaeal community by Thaumarchaeota. 

Fertilization reduced the diversity of active soil bacterial communities significantly at 

all levels of genetic divergence. Furthermore, the bacterial community structure 

changed over time towards a denitrifying bacterial community. We observed a 

significant increase of the genus Rhodanobacter, which is capable of complete 

denitrification, from 2.36 ±0.9 % in non-fertilized samples to 46.87 ± 20.3% in 

fertilized samples. The archaeal community composition was not significantly affected 

by fertilization. Furthermore, it was indicated that low-abundant methanotrophic 

bacteria contributed significantly to the uptake of methane in the analyzed forest soil. 

Thus, fertilization shaped the present active bacterial community and resulted in 

reduction of bacterial diversity. Greenhouse gas fluxes were influenced negatively by 

fertilization, potentially causing a higher global warming feedback due to inhibited 

methane uptake and higher N2O emissions. 
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Introduction 

Human activity considerably altered the nitrogen (N) cycle by an increased N release 

into the atmosphere, which is followed by increasing N deposition into soils, ground 

water and surface water [1-3]. The anthropogenic sources leading to an increased 

release of nitrogen in the form of nitrogen oxides (NOx), nitrous oxide (N2O) and 

ammonia (NH3) are animal breeding, crop production, N fertilization of agricultural 

sites, fuel combustion, biomass burning, and industrial processes [4]. Consequently, 

atmospheric anthropogenic N deposition into forest soils increased more than ten-fold 

over the past two centuries [5-8]. N deposition rates of 10 to 70 kg N ha
-1

 yr
-1

 were 

measured in temperate European forests [6,9-11]. As the structure and function of soil 

microbial communities are affected by N and carbon availability, the anthropogenic 

depositions of nitrogen in form of NH4
+
 and NOx shape soil bacterial community 

composition [12-14]. Microbial biomass in forest soil is influenced negatively by N 

fertilization [15,16]. Soil microbial communities play an essential role in environmental 

key processes, such as organic material breakdown, mineralization and nutrient cycling 

and are the main drivers of the global N and C cycle [17,18]. Moreover, biologically 

driven processes as nitrogen (N2) fixation, nitrification and denitrification are key 

reactions of the global N cycle [19]. Soil processes, releasing N2O to the atmosphere are 

nitrification and denitrification. The latter contributes most to the release of N2O [20-

22]. Parameters controlling denitrification in soils are NO3
-
 concentration, soil aeration 

and the availability of labile C, which serves as energy source for NO3
-
 catabolism [23-

26]. 

Forests are important constituents of the global C and N cycle. Large fractions of C and 

N are stored in forest soil [3,27]. Furthermore, forests are considered to be an important 

sink of CH4 and a relevant source of N2O emission [28,29]. Both processes are in terms 

of global warming influenced negatively by N depositions, as CH4 uptake is inhibited 

and N2O emissions are enhanced [30,31]. Nitrogen interacts strongly with the C cycle 

and thereby affects the carbon dioxide (CO2) and methane (CH4) balance [30,31]. 

Methane is in addition to N2O and CO2 an important greenhouse gas. The atmospheric 

concentration of CH4 increased over the last 150 years from 715 ppb in pre-industrial 

times to 1774 ppb nowadays [32]. Main sinks of atmospheric CH4 are the oxidation to 

CO2 by hydroxyl radicals in the atmosphere, the consumption in aerobic soils by 

methylotrophic and methanotrophic soil microorganisms and nitrifying soil 
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microorganisms in anaerobic soil microenironments [33-35]. Dutaur and Verchot [29] 

found higher CH4 uptake rates in forests than in other ecosystems such as grassland or 

tundra 

In addition, N in its various forms impacts directly or indirectly four of the most 

reactive greenhouse gases (CH4, N2O, CO2 and O3) [30-32]. Thus, it is crucial to 

understand the impact of elevated N deposition into soils on the active microbial 

community and the resulting influence on greenhouse gas fluxes. The aim of this study 

was to increase the understanding of the influence of high NO3
-
 inputs on the diversity 

and community composition of active bacterial and archaeal groups present in forest 

soils. We hypothesized (1) that N fertilization reduces the diversity and shapes the 

community structure of active soil microbiota by promoting denitrifying bacterial and 

archaeal communities. Furthermore, we hypothesized (2) that the addition of high 

concentrations of N (200 kg N ha
-1

 yr
-1

) leads to a irreversible loss of bacterial diversity 

and as a consequence to a collapse of microbial-driven biogeochemical processes. 
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Material and Methods 

Soil Sampling, Soil Characteristics and Experimental Set-up 

To analyze the changes of microbial community composition under ambient and 

elevated N supply soil material was collected from the upper 0-10 cm of the soil profile 

from a mixed broad-leaved temperate forest in the Hainich National Park, Thuringia, 

Germany (51°04' N 10°30' E). Permits were kindly provided by the state environmental 

office responsible for the National Park Hainich (Nationalpark Verwaltung Hainich, 

Bad Langensalza, Germany). The samples were frozen in liquid nitrogen and stored at -

80°C prior to extraction of RNA.The soil type was characterized as Stagnic Luvisol 

(IUSS Working Group WRB, 2007), which was composed of 1.8% sand, 80.2% silt and 

18.1% clay. The pHKCl value was 3.8 and base saturation 22.9%. The soil contained 

19.84 ± 0.44 g kg
-1

 dry weight organic C (Corg) and 1.89 ± 0.03 g kg
-1

 dry weight total 

nitrogen (Ntotal). The C:N ratio was 10.5 ± 0.19 g g
-1

. The soil was free of carbonate (< 

0.02% of total C).  Acrylic glass columns (n = 16) with a height of 0.5 m and a diameter 

of 0.17 m were filled each with 4 kg of freshly sieved and homogenized soil. These soil 

microcosms were placed randomly in a laboratory and kept untreated for 62 days to 

allow the microbial community to adapt to the soil and climatic conditions, and 

establish a stable gas exchange after disturbance of the natural soil structure. At starting 

day of the experiment, eight randomly selected microcosms were fertilized using a 

solution of KNO3 in deionized water, equivalent to 200 kg N ha
-1

. The volume of water 

added to the soil was adjusted to establish a water-filled pore space (WFPS) of 80%.  At 

day 20, a second N application was conducted. At day 3 and day 41 of the experiment, 

soil samples were taken directly after gas flux measurements from the upper 10 cm of 

each of the 16 microcosms. The samples were used for analyses of the soil-inhabiting 

microbial community and soil parameters. Soil characteristics were obtained at the 

beginning and end of the experiment as described by Fender and co-workers [36].  

Gas Flux Analysis 

The CO2, CH4 and N2O gas flux analyses were performed three times per week in the 

headspace of the soil microcosms. The headspace volume in the acrylic glass columns 

was 8.6 L. The columns were closed during the gas sampling for 1 h. After 0, 20, 40 and 

60 min, gas samples were taken from the columns headspace by flushing gas-tight 50-

ml sample syringes with headspace air using a needle and two three-way valves. The 
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gas concentrations were analyzed by a computer-controlled gas chromatographic system 

with a 
63

Ni electron capture detector for CO2, CH4 and N2O (Shimadzu GC-14B, Kyoto, 

Japan). The gas fluxes were calculated from the linear increase of the gas concentration 

recorded during lid closure. 

Statistical analyses were performed using SAS 9.1 software (Statistical Analysis 

System, SAS Institute Inc., Cary, USA). Cumulative gas fluxes were calculated by 

summing up all measurements for each column considering the number of 

measurements and the corresponding duration of the measuring phase. Frequency 

distributions were tested for normality with the Shapiro-Wilk test. One-way GLM with 

a Tukey-Kramer post hoc test was used to identify significant differences among the N 

treatment means for cumulative N2O, CH4 and CO2 fluxes and soil properties in the 

datasets with normal distribution. Non-normally distributed soil parameters were 

analysed with the Wilcoxon U-test. Linear regression analysis was conducted to relate 

CH4 flux to WFPS. For all analyses, significance was determined at P <0.05. 

Extraction of RNA 

Total RNA was isolated from 2 g of soil per sample using the RNA PowerSoil
TM

 total 

RNA isolation kit as recommended by the manufacturer (MO BIO Laboratories Inc., 

Carlsbad, CA, USA). The resulting RNA pellet was dissolved in 100 µl RNase-free 

water. Residual DNA contaminations were removed using the TURBO DNA-free™ kit 

(Ambion Applied Biosystems, Darmstadt, Germany) as described by the manufacturer. 

Subsequently, DNase-treated RNA was purified and concentrated using the RNeasy 

MinElute cleanup kit (Qiagen GmbH, Hilden, Germany). The concentration of the RNA 

extracts was quantified using a NanoDrop ND-1000 spectrophotometer (Peqlab 

Biotechnologie GmbH, Erlangen, Germany). Additionally, the RNA integrity and 

concentration was checked using the Agilent 2100 Bioanalyzer and the Agilent RNA 

6000 Nano kit (Agilent Technologies, Inc., Santa Clara CA, USA) as recommended by 

the manufacturer. 

Amplification and Sequencing of 16S rRNA and Other Transcripts 

To analyze the active bacterial community within soil columns, the V2-V3 region of 

16S rRNA gene transcripts was reverse transcribed, amplified and the resulting PCR 

products were applied to pyrosequencing. Additionally, the active archaeal and 

methanotrophic community was analyzed by amplicon-based approaches. The used 
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specific primer sets contained the Roche 454 pyrosequencing adaptors (underlined) and 

different GS FLX Standard Multiplex Identifiers (MID) consisting of ten bases. For 

Bacteria the forward primer used was V2for CGTATCGCCTCCCTCGCGCCATCAG-

MID-AGTGGCGGACGGGTGAGTAA and the reverse primer used was V3rev 

CTATGCGCCTTGCCAGCCCGCTCAG-MID-CGTATTACCGCGGCTGCTG 

(modified from [37]). For amplification of archaeal 16S rRNA genes the forward primer 

Arch8F CGTATCGCCTCCCTCGCGCCATCAG-MID-TCCGGTTGATCCTGCCGG 

[38] and the reverse primer Arch958R CTATGCGCCTTGCCAGCCCGCTCAG-MID-

YCCGGCGTTGAMTCCAATT [39] were used. The methanotrophic community was 

analyzed using the following primer sets specific for type I and type II methanotrophs: 

Type I CGTATCGCCTCCCTCGCGCCATCAG-MID-

ATGCTTAACACATGCAAGTCGAACG [40] and 

CTATGCGCCTTGCCAGCCCGCTCAG-MID-CCATGGTGTTCCTTCMGAT 

(modified from [40]), and type II CGTATCGCCTCCCTCGCGCCATCAG-MID-

GGGAMGATAATGACGGTACCWGGA [40] and 

CTATGCGCCTTGCCAGCCCGCTCAG-MID-GTCAARAGCTGGTAAGGTTC [40].  

The cDNA synthesis was performed using the SuperScript
TM

 III reverse transcriptase 

(Invitrogen, Karlsruhe). For initial denaturation and primer annealing, a mixture (14 µl) 

containing 100 ng of isolated DNA-free RNA, as well as 2 µM of the reverse primer 

and 10 mM dNTP mix was incubated for 5 min at 65 °C and chilled on ice for at least 1 

min. The cDNA synthesis mixture (6 µl) containing 4.0 µl 5-fold first strand buffer, 0.1 

M DTT, 40 U RiboLock RNase inhibitor (MBI Fermentas, St. Leon-Rot, Germany), 

and 200 U SuperScript
TM

 III reverse transcriptase was incubated at 55 °C for 90 min. 

The reaction was terminated at 70 °C for 15 min. For the amplification of the cDNA 

fragments, the Phusion
®
 hot start high-fidelity DNA polymerase (FINNZYMES, Espoo, 

Finland) was used. The PCR reaction mixture (50 µl) contained 10.0 µl 5-fold Phusion 

HF buffer (FINNZYMES,), 200 µM of each of the four deoxynucleoside triphosphates, 

1.25 % DMSO, 2 µM of each primer, 0.5 U DNA polymerase and 0.25 µl of the 

previously synthesized cDNA. The thermal cycling scheme was applied as follows: 

initial denaturation at 98 °C for 3 min, 25 cycles of denaturation at 98 °C for 15 s, 

annealing and extension at 72 °C for 20 s, followed by a final extension period at 72 °C 

for 2.5 min. All samples were amplified in triplicate, pooled and purified using the 

peqGold gel extraction kit (Peqlab Biotechnologie GmbH, Erlangen, Germany). The 

PCR products were quantified using the Quant-iT dsDNA BR assay kit and a Qubit 
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fluorometer (Invitrogen). The Göttingen Genomics Laboratory determined the 

sequences of the partial 16S rRNA gene transcripts using a Roche GS-FLX 454 

pyrosequencer and Titanium chemistry (Roche, Mannheim, Germany). The resulting 

sequence data have been deposited in the NCBI sequence read archive (SRA) under 

accession number SRA061821. 

Processing of Pyrosequencing-derived Datasets 

Forward and reverse primer sequences as well as sequences shorter than 300 bp were 

removed from the pyrosequencing-derived datasets using the QIIME software package 

[41]. In addition, sequences containing long homopolymers (>8 bp), unresolved bases 

or bases with an average quality score below 25 were removed using the QIIME script 

split_libraries.py (supplemental Table S1). Denoising of the remaining sequences was 

carried out using the denoiser program version 0.91 [42]. Additionally, we removed 

unclipped reverse primer sequences, which were not detected by split_library.py, using 

cutadapt with default settings [43]. Operational taxonomic units (OTUs) were 

determined by UCLUST OTU picker 1.2.22q [44] at 3, 5, 10 and 20% genetic 

divergence according to Schloss and Handelsmann [45]. Potential chimeric sequences 

were removed by aligning representative sequences of each OTU using PyNast 1.1 [46] 

and subsequent analysis using ChimeraSlayer 4.29 [47]. Rarefaction curves and 

diversity indices (Shannon, ACE, Chao1 and Michaelis-Menten fit) were calculated by 

employing the QIIME script alpha_diversity.py at the same level of surveying effort. To 

allow comparison to non-QIIME-based analysis, we corrected the Shannon index by 

multiplying it with ln2. Taxonomic classification was performed by comparison of the 

OTUs clustered at 3% genetic divergence with the most recent copy of the SILVA 

ribosomal RNA database using BLAST [48]. To compare the bacterial and archaeal 

communities and the calculated diversity indices of non-fertilized and fertilized soil 

samples, and identify significant differences between these treatment groups the t-test 

and for not normal-distributed data the Mann-Whitney-test was applied using Sigma-

Plot (Systat Software GmbH, Erkrath, Germany). Additionally, a redundancy analysis 

(RDA) was performed using Canoco 4.5 (Microcomputer Power, Ithaca, NY, USA). 
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Results and Discussion 

Diversity and General Characteristics of the Analyzed Bacterial 

Communities 

To identify the dominant active bacterial taxa and analyze the active bacterial 

community derived from N-fertilized and non-fertilized soil samples the V2-V3 region 

of the 16S rRNA was amplified and sequenced. After preprocessing including quality 

filtering and denoising, 87,610 high-quality sequences with an average read length of 

404 bases were recovered and analyzed (supplemental Table S1). We were able to 

assign all sequences to the domain Bacteria and classify them all below the domain 

level. Operational taxonomic units (OTUs) were identified at 3, 5, 10 and 20% sequence 

divergence and the same level of surveying effort (3,800 randomly selected sequences 

per sample). Subsequently, rarefaction curves, richness and diversity indices were 

determined. 

At phylum level (20% genetic divergence), rarefaction curves of all samples were 

almost saturated, indicating that the survey effort covered almost the full taxonomic 

diversity present in the analyzed soil samples. Estimates of the bacterial diversity using 

Michaelis-Menten fit indicated that 84 to 92% of the expected taxonomic diversity at 

phylum level was covered by the surveying effort (supplementary Table S2 and Table 

S3). At 3, 5 and 10 % sequence divergence rarefaction curves were not saturated. Using 

Michaelis-Menten fit coverages of 71 to 80% were estimated. Thus, at higher 

taxonomic resolutions a substantial fraction, but not the full extent of taxonomic 

diversity was covered by the surveying effort. Other amplicon-based studies, which 

analyzed different forest and grassland soils, observed a similar coverage [49, 50,51]. 

The Shannon index of diversity (H´) was used to quantify and compare bacterial 

diversity in the soil microcosms, as suggested by Haegeman et al. [52]. At 3% sequence 

divergence, the values ranged from 2.4 to 5.32, suggesting that the diversity in the 

analyzed fertilized and non-fertilized microcosms varies strongly (supplementary 

Tables S2 and S3). 
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Figure 1. Relative abundance of proteobacterial classes and other abundant phyla. The 

fertilized (f) and non-ferilized (nf) soil columns were sampled 3 and 41 days after the first 

fertilization.  

 

The active bacterial communities across all analyzed soil samples comprised 18 phyla 

and 8 candidate phyla (Figure 1 and supplemental Figure S1). The Proteobacteria, 

Acidobacteria, Chloroflexi, Actinobacteria and Firmicutes were the dominant phyla 

accounting for 64.6, 16.6, 7.3, 5.2 and 4.3% of all classified sequences, respectively. 

The Cyanobacteria and Planctomycetes represented 0.7 % of all sequences.  Baldrian et 

al. [53] identified the Proteobacteria, Acidobacteria, Actinobacteria and Firmicutes as 

the dominating phylogenetic groups in unmanaged spruce forest soil by using RNA-

based and DNA-based amplicon approaches. Applying terminal restriction fragment 

length polymorphism (T-RFLP), Hackl et al. [54] identified the Proteobacteria, the 

Holophaga/Acidobacterium division, Verrucomicrobia, Planctomycetes and the 

Cytophaga/Flexibacter/Bacteroides group (CFB) as the dominant bacterial groups in 

the analyzed forest soils. Thus, the dominant active phyla identified in this study were 

also identified in other 16S rRNA gene-based field studies. In this study, the 

Alphaproteobacteria, Gammaproteobacteria, Betaproteobacteria and 

Deltaproteobacteria representing 38.7, 17.2, 5.2 and 3.4% of all classified sequences, 

respectively, were the dominant classes within the Proteobacteria. These 

proteobacterial classes were predominant in oak-hornbeam, spruce-fir-beech and pine 

forest soils analyzed by Hackl et al. [54]. The remaining 19 rare phyla and candidate 

phyla including the Nitrospirae (0.23%), Bacteroidetes (0.05%), Gemmatimonadetes 

(0.05%), Verrucomicrobia (0.05%), Armatimonadetes (0.05%) and TM6 (0.09%) 
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accounted for 0.7% of all analyzed sequences (supplemental Figure S1). By comparing 

thirty-two libraries based on 16S rRNA and 16S rRNA gene extracts derived from 

different soils, Janssen [55] identified the Proteobacteria, Acidobacteria, 

Actinobacteria, Verrucomicrobia, Bacteroidetes, Chloroflexi, Planctomycetes, 

Gemmatimonadetes and Firmicutes as the dominant phyla. Thus, the active bacterial 

community present in our incubated forest soil was comparable to bacterial 

communities derived by DNA-based and RNA-based analyses of 16S rRNA genes from 

open land and natural forest soils. DNA-based analyses of the microbial community 

assess the potential of the entire soil-inhabiting community, as the active, dormant and 

dead populations are captured, while RNA-based analyses reveal the microbial 

community which is active at the time of sampling [56-58]. Although, studies based on 

16S rRNA gene analysis are not perfect, as taxa can contain different and genetically 

diverse 16S rRNA operons. Thus, the relative abundances of taxa with low operon copy 

numbers tend to be underestimated and those with high copy numbers might be 

overestimated [59,60]. Furthermore, the bacterial diversity might be overestimated due 

to the intragenomic heterogeneity of 16S rRNA genes [61]. A study, comparing 

bacterial community composition in forest soil based on RNA and DNA showed that 

several active bacterial OTUs were considerably underrepresented in the DNA-based 

survey [53]. The comparison of phylogenetic clustering of RNA-based and DNA-based 

microbial communities suggested a function-driven clustering of RNA-based assessed 

communities in response to dynamic environmental conditions, which was not observed 

for DNA-based assessed communities [62]. Furthermore, RNA-based studies reflect 

past, current and future activities and provide a basis for generating and testing 

important hypotheses [63].  

Impact of NO3
-
 Fertilization on Active Forest Soil Bacterial Communities 

To analyze the effect of NO3
-
 fertilization on bacterial diversity, we calculated the mean 

Shannon index of diversity. The t-test revealed significant differences between the 

fertilized and non-fertilized samples taken at day 41 of the experiment (Table 1). The 

comparison of the fertilized samples taken at day 3 with fertilized samples taken at day 

41 of the experiment revealed a significant decrease in Shannon index. A decline in 

phylogenetic diversity of the active bacterial community over time and duration of 

fertilization was found independently from the level of genetic divergence. This decline 

in diversity was also shown by the average rarefaction curves (supplementary Figure 
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S2). The average number of OTUs was lower in fertilized samples taken at day 41 than 

in all other analyzed samples. 

 

Table 1. Mean bacterial diversity and standard deviation of the different treatment groups 

as assessed by the Shannon index (H´) of diversity. Lower case letters indicate significant 

differences between the different fertilization treatments. Upper case letters mark significant 

differences between the time of sampling. Tested with paired t-test (P <0.05, n = 3). 

Genetic 

divergence  
Day 3                       Day 3 Day 41                    Day 41 

non-fertilized  fertilized non-fertilized fertilized 

3% 5.186 ±0.142
aA

 5.039 ±0.246
aA

 4.918 ±0.135
aA

 3.280 ±0.823
bB

 

5% 4.781 ±0.107
aA

 4.679 ±0.222
aA

 4.551 ±0.168
aA

 2.995 ±0.757
bB

 

10% 3.802 ±0.139
aA

 3.706 ±0.146
aA

 3.469 ±0.151
aB

 2.281 ±0.606
bB

 

20% 2.472 ±0.0845
aA

 2.401 ±0.0574
aA

 2.281 ±0.103
aA

 1.413 ±0.377
bB

 

 

To expose relationships between the community compositions a redundancy analysis 

(RDA) was performed. RDA was based on the relative abundance of active 

proteobacterial classes and other bacterial phyla, the applied treatment, CH4 uptake, 

N2O and CO2 emissions and WFPS values measured (Figure 2). The P value of all 

canonical axes depicted was 0.008, indicating that the observed pattern was non-

random. All samples grouped according to the applied treatment and time of sampling. 

Fertilized samples taken at day 41 clustered separately from all other samples, 

indicating a strong impact of fertilization on the inhabiting bacterial community. The 

three fertilized samples taken 3 days after the first fertilization grouped together, but 

closer to the non-fertilized than to the fertilized samples taken 41 days after the first 

fertilization. The RDA revealed a strong response of Gammaproteobacteria to 

fertilization. Clustering of Bacteroidetes and Actinobacteria also indicated a positive 

effect of fertilization on the activity of these phyla, whereas the clustering of the 

remaining identified phyla indicated a higher activity of these phyla (e.g. Acidobacteria, 

Planctomycetes and Verrucomicrobia) in non-fertilized samples. 

We observed a significant increase of the relative abundance of Alphaproteobacteria 

and Gammaproteobacteria in the non-fertilized samples taken at days 3 and 41 of the 

experiment, which ranged from 35.7 ±5.09% to 48.6 ±6.09% and 2.9 ±0.45% to 4.83 

±1.39%, respectively. The relative abundance of Firmicutes, Cyanobacteria and 

Bacteroidetes showed an opposite behavior (Table 2). In fertilized samples, the relative 

abundance of Gammaproteobacteria increased significantly (P = 0.012, supplemental 
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Table S4) whereas the relative abundances of Gemmatimonadetes and Verrucomicrobia 

decreased in samples taken at day 3 and day 41 of the experiment (Table 2). 

 

 

Figure 2. Redundancy analysis (RDA) based on the relative abundance of proteobacterial 

classes and other bacterial phyla. Fertilized (f) samples taken at day 3 and day 41 of the 

experiment were highlighted in orange and light green, while non-fertilized  (nf) samples at the 

respective days were highlighted in red and dark green. 

 

Furthermore, we recorded significant differences in community composition between 

non-fertilized and fertilized samples taken at day 3 and day 41. At day 3, the relative 

abundance of Acidobacteria was significantly higher (P = 0.037) in non-fertilized 

samples (21.1 ±4.88%) than in fertilized (4.37 ±2.42%). In contrast, the relative 

abundance of Actinobacteria was significantly higher in fertilized samples (P = 0.006). 

Comparison of non-fertilized and fertilized samples taken at day 41 revealed a 
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significant decrease of Acidobacteria, Deltaproteobacteria, other Proteobacteria, 

Planctomycetes, Cyanobacteria and Verrucomicrobia in fertilized samples (Table 2). 

The opposite was found for the abundance of Gammaproteobacteria, which was 

significantly higher in fertilized than in non-fertilized samples (P < 0.001, Table 2).  

 

Table 2. Mean relative abundance and standard deviation of abundant soil bacterial phyla 

in non-fertilized and fertilized microcosms. Lower case letters indicate significant differences 

between the different fertilization treatments. Upper case letters mark significant differences 

between sampling dates. Tested with paired t-test (P < 0.05, n = 3). 

Phylogenetic group Day 3  

non-fertilized 

(%) 

Day 3 

fertilized  

(%) 

Day 41  

non-fertilized 

(%) 

Day 41 

fertilized  

(%) 

Alphaproteobacteria 35.71 ±5.09
aA

 41.21 ±6.12
aA

 48.6 ±6.09
aB

 29.29 ±13.94
aA

 

Betaproteobacteria 7.96 ±0.3
aA

 5.69 ±2.59
aA

 4.76 ±2.01
aA

 2.22 ±0.31
aA

 

Deltaproteobacteria 5.23 ±0.63
aA

 5.06 ±1.75
aA

 2.59 ±0.15
aA

 0.61 ±0.28
bB

 

Gammaproteobacteria 2.9 ±0.45
aA

 11.51 ±4.06
aA

 4.83 ±1.39
aB

 49.43 ±21.06
bB

 

Other Proteobacteria 0.27 ±0.06
aA

 0.37 ±0.1
aA

 0.34 ±0.17
aA

 0.03 ±0.01
bA

 

Acidobacteria 25.19 ±1.12
aA

 15.79 ±5.18
bA

 21.06 ±4.88
aA

 4.37 ±2.42
bB

 

Firmicutes 11.02 ±5.6
aA

 3.16 ±3.6
aA

 1.38 ±0.1
aB

 1.64 ±0.6
aA

 

Chloroflexi 6.17 ±1
aA

 7.65 ±3.06
aA

 8.63 ±1.9
aA

 6.75 ±2.84
aA

 

Actinobacteria 3.05 ±0.3
aA

 6.89 ±1.19
bA

 5.94 ±2.2
aA

 5.11 ±2.24
aA

 

Planctomycetes 0.62 ±0.06
aA

 0.49 ±0.41
aA

 0.6 ±0.23
aA

 0.09 ±0.09
bA

 

Cyanobacteria 0.99 ±0.13
aA

 1.23 ±0.68
aA

 0.55 ±0.13
aB

 0.17 ±0.1
bA

 

Bacteroidetes 0.08 ±0.02
aA

 0.03 ±0.03
bA

 0.01 ±0.012
aB

 0.09 ±0.14
aA

 

Nitrospirae 0.24 ±0.12
aA

 0.32 ±0.21
aA

 0.263 ±0.12
aA

 0.08 ±0.02
aA

 

Gemmatimonadetes 0.06 ±0.02
aA

 0.10 ±0.05
aA

 0.06 ±0.04
aA

 0.01 ±0.01
aB

 

Verrucomicrobia 0.05 ±0.03
aA

 0.08 ±0.03
aA

 0.09 ±0.01
aA

 0 ±0
bB

 

Armatimonadetes 0.10 ±0.08
aA

 0.05 ±0.04
aA

 0.04 ±0.02
aA

 0.003 ±0.006
aA

 

 

Impact of NO3
-
 Fertilization on Gammaproteobacteria 

The Gammaproteobacteria responded strongly to the applied fertilization. To analyze 

the relationship of Gammaproteobacteria and the applied treatment RDA based on the 

relative abundance of all identified gammaproteobacterial orders was performed (Figure 

3). The P value for all canonical axes depicted was 0.008, indicating that the observed 

pattern was non-random. The Xanthomonadales was the most abundant 

gammaproteobacterial order, which also showed the strongest response to NO3
-
 

fertilization. The fertilized samples grouped together and distantly from the non-

fertilized samples. 
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Figure 3. Redundancy analysis (RDA) based on the relative abundance of 

gammaproteobacterial classes. Fertilized samples taken at day 3 and day 41 of the experiment 

are highlighted in orange and light green, while non-fertilized (nf) samples are highlighted in 

red and dark green. 

 

We found a significant increase in the relative abundance of Xanthomonadales by 

comparing non-fertilized and fertilized samples taken at days 3 (P = 0.018, 02.16 ±0.2% 

vs. 10.1 ±03.57%) and 41 of the experiment (P = 0.021, 3.99 ±1.23% vs. 49.1 ±21.2%). 

Additionally, a significant increase of relative abundance was found between fertilized 

day 3 samples and day 41 samples (P = 0.035, 10.1 ±3.57% vs. 49.1 ±21.2%). The 

predominant genus within Xanthomonadales was Rhodanobacter, accounting for up to 

69.8% of the entire bacterial community (Figure 4). Correspondingly, we found a 

significant increase in the relative abundances of this genus in fertilized samples 

compared to non-fertilized samples taken at day 3 (P = 0.013, 1.26 ±0.24% vs. 8.17 

±2.8%) and day 41 (P = 0.019, 2.36 ±0.9% vs. 46.87 ±20.3%).  
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Figure 4. Box Plot (A) and relative abundance (B) of the genus Rhodanobacter present in 

fertilized (f) and non-fertilized (nf) mesocosms. Lower case letters indicate significant 

differences between the different fertilization treatments. Upper case letters mark significant 

differences between the time of sampling. Tested with paired t-test (P <0.05; n = 3). 

 

Furthermore, comparison of the fertilized samples taken at day 3 and day 41 of the 

experiment revealed that the relative abundance of this genus increased significantly (P 

= 0.031). Thus, we assume a strong but temporarily delayed impact of NO3
-
 fertilization 

on the activity of the genus Rhodanobacter, as the abundance increased in fertilized 

samples with time (Figure 4). Members of the genus Rhodanobacter such as 

Rhodanobacter denitrificans sp. [64], Rhodanobacter panaciterrae sp. [65], 

Rhodanobacter soli [66], Rhodanobacter ginsengisoli sp. and Rhodanobacter terrae sp. 

[67] were isolated mainly from soil samples. The facultative anaerobic Rhodanobacter 

denitrificans sp. is capable of complete denitrification whereas Rhodanobacter 

ginsengisoli sp. and Rhodanobacter terrae sp. were tested negative for nitrate reduction 

[64,67]. Van den Heuvel et al. [68] showed that Rhodanobacter thiooxydans is capable 

of denitrification, also at the rather low pH values present in our soil microcosms 

(approximately 3.83 in non-ferilized columns and 4.23 in fertilized columns). In this 

study, some 16S rRNA sequences showed high identities to Rhodanobacter sp. DCY45 

(970 sequences, 98.15% identity) and Rhodanobacter ginsengisoli (886 sequences, 

98.15% identity), but the main fraction showed lower identities (< 97%) to 16S rRNA 

gene sequences of known and characterized  Rhodanobacter members. It has been 
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shown that Rhodanobacter is the dominating gammaproteobacterial genus in soils and 

groundwater with low pH values and elevated nitrate content [68,69]. In accordance 

with these results, the relative abundance of Rhodanobacter increased with fertilization 

and time, indicating an increased activity of that genus and a major contribution to the 

denitrification process. This was also supported by the measured nitrous oxide emission 

rates, which increased from 130.81 ±21.59 µg N m
-2 

h
-1

 at day 0 (measured before the 

first fertilization) to 1544.87 ±402.53 µg N m
-2

 h
-1

 at day 3 and then dropped to 15.13 

±0.92 µg N m
-2

 h
-1

 at day 21 of the experiment (Figure 5). The second fertilization had a 

less pronounced influence on the nitrous oxide emission rates. This effect could be 

explained by (a) higher activity of bacterial species capable of complete denitrification 

and (b) less available carbon as substrate for denitrification at the time of the second 

fertilization. The total N concentration was significantly higher in fertilized soil 

microcosms, due to the additional N supply but total C concentration was significantly 

lower in these microcosms. This indicated a consumption of this essential element (C) 

by growth and activity of the soil microbiota. Thus, C/N ratios dropped throughout the 

experiment in N-fertilized and also in non-fertilized microcosms from 10.50 ±0.19 g g
-1

 

to 8.02 ±0.17 g g
-1

 and 9.85 ±0.10 g g
-1

, respectively [36]. In general, a lower C/N ratio 

indicates a higher bioavailability of C but in our experiment limitation of available C is 

likely, as no additional C sources were added in the course of the experiment. 

Accordingly, CO2 emission rates measured in fertilized and non-fertilized microcosms 

decreased with time and indicated a reduction of available C concentration in the 

analyzed soil samples over time (Figure 5).  
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Figure 5. Gas fluxes in the fertilized and non-fertilized soil microcosms. Depicted are the 

water filed pore space (WFPS), nitrous oxide (N2O) and carbon dioxid (CO2) emissions, as well 

as the methane (CH4) uptake measured in fertilized and non-ferilized soil microcosms (n =8). 

 

Shifts in Methanotrophic Bacterial Communities 

To analyze the observed impact of N fertilization on CH4 gas fluxes in detail, the 

methanatrophic bacterial community was analyzed using specific primers targeting type 

I and type II methanotrophs. After preprocessing of the dataset 131,142 (type I) and 

285,962 (type II) high-quality sequences were recovered and analyzed (supplementary 

Table S7). The datasets derived using type II-specific primers included sequences 

closely related to the facultative methanotrophic genus Methylocella (Beijerinckiaceae) 

and the facultative methylotrophic genus Methylovirgula (Beijerinckiaceae) [71,72]. 

Other genera capable of using methane as C source identified were the type I 



                                                                                B.II  N fertilization effects 

117 

 

methanotroph Methylophaga and the type II methanotrophs Hyphomicrobium (3.25% 

and 4.67% of the sequences), Methylovirgula (up to 0.2% of all sequences) and the  

Methylocystaceae, Methylococcaceae and Methylobacteriaceae (up to 0.14% of all 

sequences). Significant differences in the relative abundance of these genera between 

fertilized and non-fertilized microcosoms were not found. Thus, alteration of the 

abundance of these genera does not explain the significantly higher methane uptake 

rates of non-fertilized soil microcosms observed by Fender et al. [36] (Figure 5). 

Furthermore, we identified the genus Nitrosospira in low abundance in the bacterial 

dataset. Nitrosospira accounted for 0.12 and 0.14% of the analyzed bacterial sequences 

in non-fertilized samples, and 0.03 and 0.02% in fertilized samples taken 3 and 41 days 

after the first fertilization, respectively. Another explanation for the increased CH4 

consumption in non-fertilized mesocosms could be the ammonia monooxygenase 

(AMO) activity of genus Nitrosospira. It was shown that the AMO is closely related to 

the membrane-bound particulate methane monooxygenase (pMMO) and both enzymes 

are capable of oxidizing methane to methanol [73,74]. Thus, the bacterial genus 

Nitrosospira and the archaeal genus Candidatus Nitrosotalea (see below), potentially 

contribute to the methane uptake observed in non-fertilized samples [74-76]. 

Additionally, N fertilization increased the NH4
+
 concentration, which could inhibit 

methane oxidation by methane and ammonia monooxygenases [77,78]. 

Shifts in Archaeal Communities  

Active archaeal communities inhabiting the fertilized and non-fertilized soil 

microcosms were also analyzed. After sequence processing 28,780 high-quality 

archaeal 16S rRNA gene sequences were recovered (supplemental Table S5). 

Calculation of rarefaction curves revealed that the full taxonomic diversity present in 

the soil samples was covered by the surveying effort at 20 and 3% genetic divergence 

(supplementary Figure S3). Estimates of the archaeal diversity using Michaelis-Menten 

fit indicate that 64 to 86% and 85 to 98% of the expected taxonomic diversity at 20 and 

3% genetic divergence, respectively, were covered by the surveying effort 

(supplementary Table S6). The archaeal communities were predominated by 

Thaumarchaeota accounting for 94.4 to 100% of all archaeal sequences. The second 

most abundant phylum was Euryarchaeota, which comprised 0.16 to 5.56% of all 

archaeal sequences. The Thaumarchaeota assigned sequences were furthermore 

classified as Soil Crenarchaeotic Group (SCG), South African Gold Mine Gp 1 
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(SAGMCG-1) and terrestrial group. The identified Euryarchaeota comprised only 

Halobacteria and Thermoplasmata. Interestingly, significant differences of the active 

archaeal classes inhabiting the fertilized and non-fertilized soil columns were not 

observed (Table 3). At genus level, the relative abundance of the Candidatus 

Nitrosotalea belonging to the Thaumarcheota was higher in non-fertilized (40.4 ±4.12% 

at day 3 and 45.3 ±13.7% at day 41) than in fertilized soil columns (28.0 ±6.4% at day 3 

and 17.3 ±27.4% at day 41). The eponym of Candidatus Nitrosotalea, the archaeon 

Nitrosotalea devanaterra is a chemolithotrophic, obligately acidophilic ammonia 

oxidizer [70].  

 

Table 3. Mean relative abundance and standard deviation of archaeal classes in non-

fertilized and fertilized microcosms. Lower case letters indicate significant differences 

between the different fertilization treatments. Upper case letters mark significant differences 

between sampling dates. Tested with paired t-test (P < 0.05). 

Archaeal class Day 3  

non-fertilized 

(%) 

Day 3  

fertilized 

(%) 

Day 41  

non-fertilized 

(%) 

Day 41 

fertilized 

(%) 

Soil Crenarcheotic 

Group (SCG) 
58.3 ±11.2

aA
 57.3 ±3.22

aA
 51.2 ±8.81

aA
 59.9 ±27.7

aA
 

South African Gold 

Mine GP 1 

(SAGMCG-1) 

40.2 ±11.0
aA

 40.9 ±2.91
aA

 46.1 ±8.18
aA

 31.6 ±31.1
aA

 

Terrestrial group 1.21 ±0.299
aA

 1.43 ±0.729
aA

 1.97 ±0.729
aA

 5.86 ±3.32
aA

 

Halobacteria 0.0799 ±0.092
aA

 0 ±0
aA

 
0.0089 

±0.0178
aA

 
0 ±0

aA
 

Thermoplasmata 0.125 ±0.179
aA

 0.345 ±0.335
aA

 0.64 ±0.275
aA

 2.62 ±2.65
aA
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Conclusions 

Our study revealed a significant reduction of active soil bacterial community diversity 

in fertilized soil microcosms, as shown by the Shannon indices and rarefaction curves. 

Furthermore, functional groups could be related to significantly different green house 

gas fluxes (elevated N2O release and reduced CH4 uptake). The relative abundance of 

the genus Rhodanobacter increased significantly in fertilized microcosms. The archaeal 

community composition was not affected significantly by N fertilization, although a 

shift in the relative abundance of the nitrifying, archaeal genus Nitrosotalea was 

observed. Furthermore, our results indicate that low-abundant methylotrophic, 

methanotrophic, and nitrifying species considerably contribute to the uptake of methane 

in the forest soil-containing microcosms. N fertilization changed the community 

composition of active soil bacteria over time by promoting denitrifying bacterial 

species. These results supported our hypothesis (1) that the N fertilization reduces the 

diversity and shape the community structure of active soil prokaryotic communities. A 

collapse of the active bacterial community after the addition of 200 kg N ha
-1

 yr
-1

 was 

not observed, although the bacterial diversity was reduced and the bacterial community 

composition shifted towards a denitrifying community. The remaining question is how 

much N deposition to soils can be buffered by the present bacterial community. 
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Figure S1. Relative abundance of rare bacterial phyla occurring in fertilized (f) 

and non-ferilized (nf) soil microcosms. The soil columns were sampled 3 and 41 days 

after the first fertilization.  
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Figure S2. Mean rarefaction curves indicating the number of observed bacterial 

OTUs in fertilized and non-fertilized soil columns at day 3 and 41 of the 

experiment. Depicted are the mean and the standard deviation of the sum of all OTUs 

observed at 20 (A), 10 (B), 5 (C) and 3% (D) genetic divergence. 
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Figure S3. Mean rarefaction curves indicating the number of observed archaeal 

OTUs in fertilized and non-fertilized soil columns at day 3 and 41 of the 

experiment. Depicted are the mean and the standard deviation of the sum of all OTUs 

observed at 20 (A) and 3% (B) genetic divergence. 
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Table S1. Number of bacterial 16S rRNA gene sequences derived from the 

analyzed non-fertilized (nf) and fertilized (f) soil samples. The final number was 

recovered after removal of sequences with low quality (quality score <25), containing 

homopolymers longer than 8 bp and primer mismatches. In addition, denoising and 

removal of potential chimeras were performed. 

 

 

  

Sample 
No. of initial 

sequences 

No. of sequences 

≥ 300 bp 

Final no. of 

sequences 

Day 3_nf01 10547 8331 7613 

Day 3_nf02 9324 7483 6974 

Day 3_nf03 11747 9182 8549 

Day 3_f01 7368 5956 5416 

Day 3_f02 12219 9739 9140 

Day 3_f03 5342 4389 4043 

Day 41_nf01 12721 10127 9335 

Day 41_nf02 8881 6856 6374 

Day 41_nf03 9407 7388 6863 

Day 41_f01 9185 7414 6962 

Day 41_f02 11979 10112 9384 

Day 41_f03 8807 7479 6957 
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Table S2. Bacterial diversity as assessed by the Shannon index (H´) and species 

richness estimation in non-fertilized (nf) and fertilized (f) microcosms at day 3. 

Each treatment was replicated three times and sampled 3 days after the first fertilization. 

Sample Genetic 

divergence   

(%) 

H´ No. of operational taxonomic units (OTUs) 

Observed 

(doubles/singles) 

ACE Chao1 Michaelis- 

Menten Fit 

Day 3_nf01 3 5.319 532 (76/192) 742 775 682 

Day 3_nf01 5 4.884 437 (61/172) 649 680 566 

Day 3_nf01 10 3.911 278 (42/118) 447 444 366 

Day 3_nf01 20 2.490 81 (9/20) 97 103 90 

Day 3_nf02 3 5.203 505 (64/178) 684 751 639 

Day 3_nf02 5 4.788 407 (53/147) 565 611 513 

Day 3_nf02 10 3.850 259 (37/103) 398 404 328 

Day 3_nf02 20 2.546 84 (13/21) 105 101 94 

Day 3_nf03 3 5.036 508 (66/193) 724 789 660 

Day 3_nf03 5 4.670 417 (56/163) 610 649 538 

Day 3_nf03 10 3.646 268 (36/112) 423 437 348 

Day 3_nf03 20 2.380 85 (10/25) 115 113 96 

Day 3_f01 3 4.939 463 (34/205) 745 1077 587 

Day 3_f01 5 4.535 387 (37/181) 684 819 503 

Day 3_f01 10 3.603 265 (38/114) 434 433 351 

Day 3_f01 20 2.389 88 (12/26) 113 116 102 

Day 3_f02 3 5.319 583 (78/207) 780 859 768 

Day 3_f02 5 4.935 463 (63/168) 637 684 595 

Day 3_f02 10 3.873 267 (37/103) 398 406 335 

Day 3_f02 20 2.463 88 (10/28) 124 124 99 

Day 3_f03 3 4.858 507 (52/279) 1183 1239 716 

Day 3_f03 5 4.569 443 (51/231) 932 957 615 

Day 3_f03 10 3.643 298 (44/137) 523 508 408 

Day 3_f03 20 2.350 87 (10/18) 100 101 97 
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Table S3. Bacterial diversity as assessed by the Shannon index (H´) and species 

richness estimation in non-fertilized (nf) and fertilized (f) microcosms at day 41. 

Each treatment was replicated three times and was sampled 41 days after the first 

fertilization. 

Sample Genetic 

divergence   

(%) 

H´ No. of operational taxonomic units (OTUs) 

Observed 

(doubles/singles) 

ACE Chao1 Michaelis- 

Menten Fit 

Day 41_nf01 3 4.762 514 (75/190) 706 754 689 

Day 41_nf01 5 4.389 413 (58/157) 586 625 546 

Day 41_nf01 10 3.342 253 (36/101) 378 393 330 

Day 41_nf01 20 2.197 77 (10/22) 101 100 87 

Day 41_nf02 3 4.993 487 (56/174) 657 754 619 

Day 41_nf02 5 4.539 390 (51/145) 551 597 498 

Day 41_nf02 10 3.428 237 (36/87) 343 341 299 

Day 41_nf02 20 2.251 71 (9/16) 84 84 79 

Day 41_nf03 3 4.998 490 (62/177) 677 741 625 

Day 41_nf03 5 4.725 414 (54/151) 586 623 519 

Day 41_nf03 10 3.636 250 (33/98) 383 401 313 

Day 41_nf03 20 2.396 79 (10/20) 98 99 87 

Day 41_f01 3 4.038 355 (40/119) 460 531 449 

Day 41_f01 5 3.749 291 (34/108) 409 462 369 

Day 41_f01 10 2.815 185 (23/66) 258 278 230 

Day 41_f01 20 1.759 55 (8/14) 70 67 60 

Day 41_f02 3 3.398 272 (29/103) 381 449 347 

Day 41_f02 5 3.001 223 (29/88) 331 355 286 

Day 41_f02 10 2.406 149 (18/63) 239 253 190 

Day 41_f02 20 1.469 51 (8/18) 76 71 58 

Day 41_f03 3 2.404 212 (22/94) 338 418 285 

Day 41_f03 5 2.235 187 (21/88) 321 363 258 

Day 41_f03 10 1.623 134 (19/63) 240 233 187 

Day 41_f03 20 1.011 54 (7/19) 77 77 64 
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Table S4. Differences of the relative abundance of proteobacterial classes, and 

other bacterial phyla present in the non-fertilized (nf) and fertilized (f) 

microcosms. The respective soil columns were sampled 3 and 41 days after the first 

fertilization. Tested with paired t-test (P <0.05, n =3). 

  

Day 3_nf vs. 

Day3_f 

Day41_nf vs. 

Day41_f 

Day3_nf vs. 

Day41_nf 

Day3_f vs. 

Day41_f 

 P P P P 

Alphaproteobacteria 0.298 0.093 0.048* 0.247 

Betaproteobacteria 0.206 0.096 0.053 0.082 

Deltaproteobacteria 0.100 0.022* 0.085 0.038* 

Gammaproteobacteria 0.886 <0.001*** 0.002** 0.012* 

Other Proteobacteria 0.237 0.034* 0.582 0.100 

Acidobacteria 0.037* 0.006** 0.226 0.026* 

Firmicutes 0.110 0.700 0.041* 0.509 

Chloroflexi 0.472 0.396 0.119 0.730 

Actinobacteria 0.006** 0.670 0.100 0.289 

Planctomycetes 0.607 0.022* 0.886 0.172 

Cyanobacteria 0.700 0.015* 0.015* 0.100 

Bacteroidetes 0.034* 0.365 0.005** 0.477 

Nitrospirae 0.602 0.053 0.845 0.125 

Gemmatimonadetes 0.277 0.115 0.986 0.042* 

Verrucomicrobia 0.202 <0.001*** 0.058 0.008** 

Armatimonadetes 0.366 0.071 0.226 0.083 

* Significant at the 0.05 probability level. 

** Significant at the 0.01 probability level. 

*** Significant at the 0.001 probability level. 
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Table S5. Number of archaeal 16S rRNA gene sequences derived from the 

analyzed non-fertilized (nf) and fertilized (f) soil samples. The final number was 

recovered after removal of sequences with low quality (quality score <25), containing 

homopolymers longer than 8 bp and primer mismatches. In addition, denoising and 

removal of potential chimeras were performed. 

 

 

  

Sample No. of 

initial 

sequences 

No. of 

sequences  

≥ 200 bp 

Final no. of 

sequences 

Day 3_nf01 1317 590 520 

Day 3_nf02 2124 945 855 

Day 3_nf03 8443 3608 3215 

Day 3_nf04 3673 1620 1434 

Day 3_f01 1397 625 540 

Day 3_f02 1658 666 608 

Day 3_f03 1665 840 632 

Day 3_f04 1828 828 713 

Day 41_nf01 5676 2417 2124 

Day 41_nf02 3342 1576 1385 

Day 41_nf03 16108 7155 6534 

Day 41_nf04 5687 2787 2466 

Day 41_f01 14561 6154 5635 

Day 41_f02 2632 1142 927 

Day 41_f03 2227 1490 1192 
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Table S6. Archaeal diversity as assessed by the Shannon index (H´) and species 

richness estimation in non-fertilized (nf) and fertilized (f) microcosms. Samples 

were taken 3 and 41 days after the first fertilization. 

Sample Genetic 

divergence   

(%) 

H´ No. of operational taxonomic units  

Observed 

(doubles/singles) 

Chao1 Michaelis-Menten 

Fit 

Day 3_nf01 3 2.136 18 (2/7) 24 21 

Day 3_nf01 20 n.d. 8 (0/4) 13 10 

Day 3_nf02 3 2.255 18 (2/8) 29 21 

Day 3_nf02 20 n.d. 7 (1/5) 15 14 

Day 3_nf03 3 2.145 17 (2/7) 27 20 

Day 3_nf03 20 n.d. 7 (1/4) 12 12 

Day 3_nf04 3 2.054 12 (1/4) 16 13 

Day 3_nf04 20 n.d. 5 (1/2) 6 6 

Day 3_f01 3 1.757 10 (0/3) 13 10 

Day 3_f01 20 n.d. 4 (0/3) 6 5 

Day 3_f02 3 2.2 12 (0/3) 17 13 

Day 3_f02 20 n.d. 4 (0/2) 6 6 

Day 3_f03 3 2.404 13 (0/3) 16 13 

Day 3_f03 20 n.d. 4 (0/2) 5 4 

Day 3_f04 3 2.112 10 (2/1) 10 10 

Day 3_f04 20 n.d. 5 (1/1) 5 6 

Day 41_nf01 3 2.167 19 (4/6) 23 24 

Day 41_nf01 20 n.d. 8 (1/3) 10 11 

Day 41_nf02 3 2.087 14 (3/4) 16 16 

Day 41_nf02 20 n.d. 7 (2/2) 8 9 

Day 41_nf03 3 1.926 13 (2/4) 15 14 

Day 41_nf03 20 n.d. 2 (0/1) 3 3 

Day 41_nf04 3 1.688 12 (2/3) 15 14 

Day 41_nf04 20 n.d. 5 (2/2) 6 8 

Day 41_f01 3 2.218 15 (2/4) 18 16 

Day 41_f01 20 n.d. 4 (1/1) 4 4 

Day 41_f02 3 1.738 17  19 20 

Day 41_f02 20 n.d. 7 (1/2) 8 8 

Day 41_f03 3 2.468 17 19 18 

Day 41_f03 20 n.d. 8 (1/3) 10 10 

n.d., not determined 

  



                                                                                B.II  N fertilization effects 

137 

 

Table S7. Number of 16S rRNA gene sequences derived from the analyzed non-

fertilized (nf) and fertilized (f) soil samples using primers specific for 

methanotrophic bacteria of type I and type II. The final number was recovered after 

removal of sequences with low quality (quality score <25), containing homopolymers 

longer than 8 bp and primer mismatches. In addition, denoising and removal of potential 

chimeras were performed. 

 

  

 Type I Type II 

Sample 
No. of 

initial 

sequences 

No. of 

sequence

s  

≥ 300 bp 

Final no. 

of 

sequences 

No. of 

initial 

sequences 

No. of 

sequences  

≥ 300 bp 

Final no. 

of 

sequences 

Day 3_nf01 16206 11878 10732 11891 10379 9232 

Day 3_nf02 12888 9336 8524 33499 28611 25332 

Day 3_nf03 12203 9005 8165 21517 18289 16253 

Day 3_nf04 9734 7267 6400 12574 9516 8406 

Day 3_f01 15678 11985 10630 25816 22037 19270 

Day 3_f02 16269 15831 10433 44762 38283 33863 

Day 3_f03 13109 9561 8567 44589 38025 33978 

Day 3_f04 15494 11278 10047 16162 14155 12335 
Day 

41_nf01 
14657 10946 9887 26013 22051 19795 

Day 

41_nf02 
12561 5789 5235 28428 23873 21651 

Day 

41_nf03 
10013 7381 6543 9677 8384 7651 

Day 

41_nf04 
16152 12268 10801 11291 9744 8716 

Day 41_f01 12613 9702 8524 41591 35195 31958 

Day 41_f02 21613 8515 7643 37318 31197 27530 

Day 41_f03 13415 10287 9011 12872 11057 9992 
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Abstract 

Temperate forest soils have the potential to significantly increase atmospheric N2O 

concentrations when receiving high nitrogen deposition from the atmosphere. Since 

most of the N2O released is a by-product of heterotrophic microbial activity, a 

sufficiently large labile C pool is a perquisite for elevated N2O net release. In a two-

factorial laboratory experiment we tested the combined effects of high N addition and 

unlimited labile C availability on the N2O emission from a temperate deciduous forest 

soil. The N2O emissions were increased eightfold after a single addition of 200 kg N ha
-

1
 as KNO3, while a second N addition resulted in no further increase. Addition of high 

amounts of labile C (glucose, 9419 kg C ha
-1

) increased the cumulative N2O emissions 

39-fold in unfertilised soil in the 41 d following application. The combination of N and 

C addition led to a 70-fold increase in the N2O emission related to untreated soil. Our 

results warrant that the role of labile C and its interaction with N availability has to be 

considered in future predictions of N2O emissions from temperate forest soils. 

 

Key Words: decomposition, nitrogen availability, nitrous oxide, organic carbon, trace 

gas emission 
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Introduction 

The atmospheric concentration of N2O, one of the most important anthropogenic 

greenhouse gases with a global warming potential 298 times larger than that CO2, has 

increased by 19% since pre-industrial times (Forster et al., 2007). Main sources of N2O 

are agriculture, land-use changes and biomass burning; it is predicted that globally 

increasing reactive nitrogen (Nr) deposition and higher temperatures will further 

increase the atmospheric N2O concentrations (De Vries et al., 2006; Denman et al., 

2007; Galloway et al., 2008; Janssens et al., 2010). N2O is mainly produced by 

heterotrophic microorganisms that depend on the availability of labile carbon (C). 

Forests are important components in the cycles of C and N on earth (Mosier, 1998; 

Luyssaert et al., 2010); a large part of the ecosystem C and N pools of forests is 

typically stored in the soil (Galloway et al., 2003; Luyssaert et al., 2010). Beside 

agricultural soils, upland forest soils are considered as main sources of N2O in Europe 

(Butterbach-Bahl et al., 2002; Kesik et al., 2005; Jungkunst et al., 2006). However, the 

contribution of European forests to the global N2O emissions is still not entirely clear 

(Pihlatie et al., 2005). Nevertheless, it is undisputed that, on a global scale, forests have 

the greatest source potential for the expected increase in N2O emissions in future (Reay 

et al., 2008). 

Processes in upland soils that may lead to N release in the atmosphere are 

denitrification, dissimilatory nitrate reduction to ammonium (DNRA), and nitrification 

(Bremmer, 1997; Bateman and Baggs, 2005), all of which are biologically driven and 

producing N2O as an intermediate by-product. Denitrification and DNRA are more 

important than nitrification in moist soil with a water-filled pore space (WFPS) > 60% 

(Ciarlo et al., 2008; Baggs, 2011). There is a general consensus that atmospheric N2O 

originating from soils is mainly produced in the course of denitrification (Baggs, 2008). 

Important controlling factors of denitrification are soil aeration and soil NO3
-
 

concentration (Firestone and Davidson, 1989), which have been intensively studied in 

their effect on the N2O emissions from soil (Fazzolari et al., 1998; Williams et al., 

1998; Vor et al., 2003; Ruser et al., 2006; Ciarlo et al., 2008). 

For more than 30 years it has been recognised that beside the N availability labile C is 

an important regulator of denitrification and N2O emissions from soils ecause 

denitrification depends on labile C as energy source for catabolising NO3
-
 (Smith and 

Tiedje, 1979; Firestone and Davidson, 1989; Wrage et al., 2001). How different C 

compounds and quantities are affecting denitrification and N2O emissions has been 



                                                                                B.II  N fertilization effects 

141 

 

investigated in laboratory studies (Fazzolari et al., 1998; Murray et al., 2004; Wang et 

al., 2005; Henry et al., 2008; Morley and Baggs, 2010). Most studies that compared the 

effects of C and N addition on N2O emissions observed a similarly large stimulation by 

the two agents (Weier et al., 1993; Gillam et al., 2008). However, the interaction 

between enhanced N and labile C availability on N2O emissions has only rarely been 

studied (Azam et al., 2002; Gillam et al., 2008) and thus is still not completely 

understood. We are not aware of a study where the effects of added C and N compounds 

on the N2O emission of a forest soil were studied under controlled laboratory 

conditions. More research is needed in particular for assessing the complex interacting 

effects of increasing amounts of N, elevated atmospheric CO2, and higher temperatures 

in future climates on the N2O emissions from forest soils. A first step is to investigate 

the influence of unlimited C availability and high N supply on the N2O emissions of soil 

columns under controlled laboratory conditions. 

While many forest soils contain relatively large organic C stocks, the amount of labile C 

can still be high or low (Magill and Aber, 2000; Tiunov and Scheu, 2004; Milcu et al., 

2011). Under future climatic conditions, labile C might be an important regulator either 

mitigating or accelerating the emissions of the greenhouse gas N2O (Murray et al., 

2004; Morley and Baggs, 2010). Rising temperatures and the expected increase in 

atmospheric CO2 may increase the availability of labile C for N2O-producing organisms 

(Denman et al., 2007), which is mainly released to soil through rhizodeposits and in the 

course of heterotrophic decomposition processes (Kirschbaum, 2004; Allison et al., 

2010; Kuzyakov, 2011). However, enhanced microbial activity may simultaneously 

reduce the pool of labile C available for N2O production when organic matter is more 

rapidly decomposed to CO2 (Blagodatskaya and Kuzyakov, 2008). It is not yet clear, 

how increased or reduced availability of labile C in soils is affecting the release of N2O. 

If higher temperatures and N deposition increase the availability of labile C, a large 

increase in N2O emissions from forest soils can be expected. If C availability is not 

increased or even decreased, no dramatic increase in N2O release should occur.  More 

available labile C has been found to promote denitrification with the possible result that 

a higher proportion of nitrate (NO3
-
) is reduced to the end-product N2 instead of the 

intermediate by-product N2O (Morley and Baggs, 2010). However, N2 is only produced 

when O2 is lacking in anaerobic microsites. Climate change scenarios predict warmer 

summers and, for many regions of Central Europe, also reduced summer rainfall 
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(Werner and Gerstengarbe, 2007), which makes it unlikely that hypoxia and anoxia will 

be more widespread in temperate forest soils in future. 

We experimentally examined the influence of large amounts of added NO3
-
, simulating 

high atmospheric deposition scenarios, on the N2O emissions of a temperate forest soil 

under conditions of potentially limited or unlimited labile C availability (glucose 

addition). Therefore, our study focused on the potential of C and N availability and their 

interactive effects to change the N2O emissions of this soil under controlled constant 

soil and climatic conditions. We hypothesised that (1) even though many forest soils 

contain large stocks of C, the availability of labile C for N2O emissions is limited, with 

the consequence that repeated high N inputs do not result in a corresponding additive 

increase of the N2O release rate, and (2) high amounts of labile C in forest soils lead to 

similar N2O emission rates as the application of high N amounts, as it was found in 

studies on non-forest soils (Weier et al., 1993; Bateman and Baggs, 2005). We further 

hypothesised (3) that the addition of labile C to forest soil affected by chronic N 

addition must result in very high N2O emissions exceeding the sum of rates measured in 

soils treated with N or C sources alone. 
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Materials and Methods 

 

Soil characteristics and soil sampling 

The soil was sampled in a mixed broad-leaved temperate forest in the Hainich National 

Park, Thuringia, Germany (51°04' N 10°30' E). The soil type is a Stagnic Luvisol (IUSS 

Working Group WRB, 2007) of silty texture composed of 1.8% sand, 80.2% silt and 

18.1% clay. The soil contained no carbonate (< 0.02% of total C), 19.84 ± 0.44 g kg-1 

dw organic C (Corg) and 1.89 ± 0.03 g kg
-1

 dw total nitrogen (Ntotal, Table 1). The pH 

(KCl) was 3.8 and base saturation was 22.9%. The soil material was taken from the 

upper 0-10 cm of the soil profile, passed through a 5 mm-sieve and homogenised before 

insertion into the soil columns. 

 

Table 1. Selected chemical parameters in the soil solution of the columns of the N-fertilised and 

the unfertilised control treatment in different phases of the experiment 

   
Unfertilised 

control (N0) 

N-fertilised 

(N1) 

Unfertilised 

control (N0) 

N-fertilised 

(N1) 

Experimental 

phase 
Day 0

 a)
  Day 41 after N addition Day 41 after N addition 

pH (KCl) 
3.82 

±0.03 
 3.84aA

b)
 ±0.08 4.23bA ±0.06 4.49aB ±0.07 5.63bB ±0.16 

Corg  

[g kg
-1 

dw] 

19.84 

±0.44 
 20.44aA  ±0.37 19.2bA ±0.25 22.99aB ±0.58 22.62aB ±0.28 

Ntotal 

[g kg
-1 

dw] 

1.89 

±0.03 
 2.08aA ±0.03 2.4bA ±0.08 1.99aA ±0.01 2.42bA ±0.09 

C:N  

[g g
-1

] 

10.5 

±0.19 
 9.85aA ±0.10 8.02bA ±0.17 11.52aB ±0.18 9.41bB ±0.30 

NO3
-
  

[mg N kg
-1

 dw] 

6.39 

±0.28 
 n. d. n. d. 0.6a ±0.80 35.78b ±5.70 

NH4
+  

[mg N kg
-1

 dw] 

7.85 

±0.28 
 n. d. n. d. 1.53a ±0.32 34.5b ±4.59 

a)
Given are means ± 1 SE of each eight columns. Day 0 refers to the start of the experiment, day 

41 is six weeks after the first N fertilisation and day 62 is three weeks after the third N 

fertilisation combined with glucose addition. 

b)
Lower case letters indicate significant differences between the N-fertilised and the control 

treatment within a given experimental phase (P < 0.05, Wilcoxon U-test); different upper case 

letters indicate significant differences between columns before and after glucose addition (P < 

0.05, Wilcoxon signed rank test). n. d. = parameter not determined 
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Experimental setup 

A main experiment was established with 16 acrylic glass columns (0.50 m in height, 

0.17 m in diameter), to test the effect of adding two substances, (1) NO3
-
 and (2) 

glucose. The NO3
-
 (N) treatment was studied in eight replicate soil columns (eight N-

treated and eight control columns). The effect of glucose (C) addition was examined in 

all 16 columns by comparing the measured trace gas fluxes before and after adding the 

C source. A supplementary two-factorial experiment with 12 additional soil columns of 

the same dimensions and treated alike was conducted in which N and C addition were 

independent treatments and not subsequently added as the C source in the main 

experiment (n = 4, Table 2). Each of the acrylic glass cylinders was filled with 4 kg of 

fresh sieved soil; the water content at the experiment’s start was 22.7 % of the fresh 

weight. The soil columns were placed in a random arrangement in the laboratory. 

Before starting the experiment, we kept the cylinders filled with soil for 62 d under 

laboratory conditions. This was for allowing the soil microbial community to adapt to 

the new soil and climatic conditions and reach a steady-state gas exchange after 

disturbing the natural soil structure. The experiment was divided into four periods (day 

0 -- 20, 21 -- 41, 42 -- 62 and 63 - 83, respectively). On all three dates with N addition, 

the same eight randomly chosen soil columns were fertilised with a KNO3 solution in 

deionised water with an equivalent of 200 kg N ha
-1

, i.e., on day 0 of the experiment 

(first N application), day 20 (second N application) and day 41 (third N application). 

The amount of water added was adjusted to a WFPS level of 80% on day 0, day 20, 41 

and 62. On day 41 (start of the third N fertilisation phase), all 16 soil columns were 

additionally treated with a glucose solution (equivalent to 9419 kg C ha
-1

) to simulate 

unlimited supply of labile C in the soil in both the N-fertilised and the untreated control 

columns. The addition of N increased the Ntotal pool in the soil columns in comparison 

to the initial Ntotal content by 7.7% after the first N addition (measured on day 20) and 

8.0 % N after the second N addition (measured on day 41); the Corg pool increased by 

33.8% and 36.0 % (measured on day 62) due to the glucose addition in the control and 

the N-fertilised columns, respectively. 
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Table 2. Selected chemical parameters of the soil before (day 0) and 20 d after the addition of 

KNO3 or glucose compared to the control treatment in the supplementary experiment 

  Day 0  Control KNO3 Glucose 

pH (KCl)  n.d.    4.32a
 a)

 ± 0.11 4.15a ± 0.09 4.20a ± 0.04 

Corg 

[g kg
-1 

dw] 

 29.20 ± 0.55  29.00ab ± 0.23 27.61a ± 0.54 32.8b ± 1.76 

Ntotal 

[g kg
-1 

dw] 

 2.00 ± 0.02  1.95a ± 0.03 2.02a ± 0.05 1.89a ± 0.02 

C:N 

[g g
-1

] 
 14.69 ± 0.32  14.91a ± 0.15 13.70a ± 0.16 17.32b ± 0.89 

NO3
- 

[mg N kg
-

1
 dw] 

 3.27 ± 0.61  5.07a ± 3.00 45.15b ± 2.44 0.94a ± 0.81 

NH4
+ 

[mg N kg
-

1
 dw] 

 4.79 ± 0.25  3.96a ± 1.86 9.65b ± 0.85 2.10a ± 1.50 

a)
Given are means ± 1 SE of each four columns. Lower case letters indicate significant 

differences between the three treatments (P < 0.05, Wilcoxon U-test) n.d. = not determined 

 

In the supplementary experiment, we examined the response of the N2O and CO2 fluxes 

to the addition of either KNO3 (as N source) or glucose (as labile C source) using the 

same amounts of N and C (200 kg N ha
-1

 and 9419 kg C ha
-1

, respectively) compared to 

a control treatment each with n = 4 columns, and the same cultivation conditions as in 

the main experiment. Further, the initial soil conditions (except for a higher Corg 

concentration of 29.2 vs. 19.8 g C kg
-1

, Table II) and all analytical procedures were 

identical to those in the main experiment. Apart from separating the N and C effects, 

this additional experiment also served for measuring the ammonium (NH4
+
) 

concentrations in the soil after NO3
-
 addition because these data were lost in the main 

experiment due to technical shortcomings. 

The soil columns of both experiments were installed in a greenhouse with 14 h of 

daylight with low intensity (100 µmol m
-2

 s
-1

 PPFD; OSRAM cool white, lightcolor 

840, Munich, Germany). The WFPS was measured every week by weighing the soil 

columns. The pore volume and the WFPS were calculated by assuming a particle 

density of 2.65 g cm
-3

 (Schlichting et al., 1995) and by referring to the measured soil 

bulk density at the beginning of the experiment. The soil temperature of each soil 

column was measured at a depth of 7.5 cm and a horizontal distance to the column edge 
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of 3 cm using NTC thermistors (Epcos, Munich, Germany) that were logged in 15 min-

intervals with a CR10 data logger (Campbell Scientific Inc., Utah, USA). The soil 

temperature did not differ between the treatments, but decreased by 3°C over the course 

of the experiment (mean of 22.8 ± 0.2°C in the N-fertilised and the control treatment). 

 

Gas flux analysis 

The fluxes of CO2 and N2O at the soil surface were measured three times per week in 

the headspace of the soil columns. The headspace volume in the acrylic glass columns 

was 8.6 L. The chambers were closed for 1 h. After 0, 20, 40 and 60 min, gas samples 

were taken from the chamber headspace by flushing gas-tight 50-ml sample syringes 

with headspace air, using a needle and two three-way valves. Due to extremely high 

CO2 and N2O fluxes, the time intervals had to be reduced to 1.5 min directly after C 

addition. The gas concentrations were analysed by a computer-controlled gas 

chromatographic system with a 
63

Ni electron capture detector for CO2 and N2O 

(Shimadzu GC-14B, Kyoto, Japan). A detailed description of the gas chromatograph is 

given by Loftfield et al., (1997). The gas fluxes were calculated from the linear increase 

of the gas concentration recorded during lid closure. 

 

Soil analysis 

Before the start of the experiment, we analysed five soil samples for their chemical 

properties (Table 1). The pH (KCl) was measured in a suspension of 10 g soil in 1 M 

KCl solution using a Vario pH meter (WTW GmbH, Weilheim, Germany). The cation 

exchange capacity (CEC) of the soil was investigated by percolating 2 g fresh soil with 

0.2 M BaCl. The percolates were analysed with an ICP-AES (Optima 3000 XL, 

PerkinElmer, Massachusetts, USA). The base saturation at the cation exchangers was 

calculated as the percentage of base cations (Na, K, Ca and Mg) in CEC. The bulk 

density of the soil material in the columns was determined using steel cores with a 

defined volume of 100.93 cm3 and drying the soil at 105°C for 24 hours. On day 0 of 

the fertilisation experiment, the bulk density of the homogenised material was 1.05 ± 

0.02 g cm
-3

. The particle size distribution was determined with the sieving and pipette 

method (Schlichting et al., 1995). The concentrations of Corg and Ntotal were analysed 

with a C/N analyzer (Vario EL, Elementar, Hanau, Germany). The concentrations of 

NO3
-
 and NH4

+
 (both in mg N kg

-1
 dw) were measured by extracting 8 g fresh soil with 

0.5 M K2SO4 solution (ratio of wet soil mass to solution: 1:3) directly after collecting 
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the soil. The samples were shaken for 1 h and passed through folded filters (FT-4-303-

150, Sartorius Stedim, Aubagne, France). The NO3
-
 and NH4

+
 concentrations of the 

filtered extracts were analysed by continuous flow injection colorimetry (SAN+ 

Continuous Flow Analyzer, Skalar Instruments, Breda, The Netherlands). The NO3
-
 

concentrations were determined with the copper-cadmium-reduction method (ISO 

method 13395), those of NH4+ with the Berthelot reaction method (ISO method 

11732). On day 0 and at the end of the experiment, soil solution was sampled from the 

soil columns by irrigating the soil with 500 ml of distilled water. The percolating water 

was passed through filter papers (MN 85/70 BF, Macherey-Nagel, Düren, Germany) 

and the soil solution was analysed with a DOC analyser (Dimatoc 100, Dimatec, Essen, 

Germany) for the concentration of dissolved organic C. The concentration of NO3
-
 (mg 

L
-1

) in the soil solution was analysed by ion chromatography (761 Compact IC, 

Metrohm, Herisau, Switzerland). 

 

Data analysis 

Statistical analyses were performed using SAS 9.1 software (Statistical Analysis 

System, SAS Institute Inc., Cary, USA). Cumulative gas fluxes were calculated by 

summing up all measurements for each column considering the number of 

measurements and the corresponding duration of the measuring phase. Frequency 

distributions were tested for normality with the Shapiro-Wilk test. One-way GLM with 

a Tukey-Kramer post hoc test was used to identify significant differences among the N 

treatment means for cumulative N2O and CO2 fluxes and soil properties in the datasets 

with normal distribution. Not normal-distributed soil parameters were analysed with the 

Wilcoxon U-test. Differences among normal-distributed N2O and CO2 flux data of the 

two C treatments were assessed with the paired t-test. The Wilcoxon signed rank test 

was used to identify differences between the C treatments in not normal-distributed soil 

parameters (this single test was carried out with the R statistical package, version 

2.11.1, R Foundation for Statistical Computing, Vienna, Austria). For all analyses, 

significance was determined at P < 0.05.  
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Results 

 

N2O fluxes 

In the main experiment, the cumulative N2O emissions during the first 41 d (two 

fertilisation periods) were significantly higher in N-fertilised soil compared to the 

unfertilised control (Fig. 1a). The first N addition led to significantly higher cumulative 

N2O emissions (278.1 ± 80.0 mg N m
-2

 20 d
-1

, day 0 -- 20) than the second N addition 

(38.4 ± 18.3 mg N m
-2

 20 d
-1

, day 21 -- 41). During the first N fertilisation period, 

maximum N2O effluxes of 1642.4 ± 461.6 µg N m
-2

 h
-1 

were measured, whereas the 

second N addition only led to maximum values of 243.7 ± 135.6 µg N m
-2

 h
-1

. Both 

maximum values were recorded
 
four days after the N application (Fig. 2a). During day 

21 -- 41, the unfertilised soil columns showed lower N2O emissions than during day 0 -- 

21 as well (34.5 ± 4.9 mg N m
-2

 20 d
-1

 vs. 5.3 ± 0.3 mg N m
-2

 20 d
-1

). 

The application of glucose induced significantly higher cumulative N2O emissions 

(between day 42 and 83) in both the unfertilised control and the N-fertilised soil than in 

the reference period before C addition in the main experiment (Fig 1a). The combined 

addition of C and N compounds on day 41 resulted in significantly higher cumulative 

N2O fluxes than the single C and N additions. After the addition of glucose, the 

unfertilised control (treatment C1N0) and the N-fertilised treatment (C1N1) reached 

similarly high maxima of N2O emissions (13221.2 ± 3253.4 µg N m
-2

 h
-1

 on day 43 and 

11169.8 ± 1320.4 µg N m
-2

 h
-1

 on day 49, respectively). After adding irrigation water on 

day 62, the N2O emission of the N-unfertilised control remained constant at a relatively 

low level, whereas the emissions of the N-fertilised columns climbed to a very high 

maximum (24135.6 ± 4028.1 µg N m
-2

 h
-1

, on day 65). 

In the supplementary experiment, the N addition led to 2.3 times higher cumulative N2O 

emissions than the control soil during the 41 d-period (P > 0.05, Fig. 1b), whereas the 

cumulative N2O efflux of the soil with C addition was even significantly 3.1-fold higher 

than in the control. Compared to the main experiment, the peaks in N2O emissions were 

lower in all treatments (Fig. 3a). 
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Fig. 1. Cumulative N2O (a, b) and CO2 emissions (c, d) in the four different treatments of the 

main experiment (a, c) or the three treatments of the supplementary experiment (b, d) in the 41 d 

following N and C addition. Treatment acronyms are: N0 = no nitrate fertilisation, N1 = nitrate 

fertilisation (200 kg N ha
-
1 as KNO3), C0 = no glucose addition, C1 = glucose addition (9419 

kg C ha
-1

). Given are means ± 1 SE. Main experiment: n = 8 columns per treatment; asterisks 

mark significant differences between the N-fertilised and the respective control treatment for 

each phase (P < 0.05, Tukey-Kramer test), different lower case letters indicate significant 

differences between the columns of the C1 and C0 treatments (P < 0.05, paired t-test). 

Supplementary experiment: Different lower case letters indicate significant differences between 

the treatments (n = 4, P < 0.05, Tukey-Kramer test). 
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Fig. 2. a) N2O emissions of the soil columns with forest soil that was either fertilised with NO3

-
 

or unfertilised (control) during the main experiment of 83 d duration. b) CO2 efflux and water-

filled pore space (WFPS). Given are mean values ± 1 SE of each 8 columns per N-treatment, the 

y axis is depicted in logarithmic scale. The N fertilisation consisted of a total addition of 200 kg 

N ha
-1

 year
-1

 given as KNO3 on three occasions (first to third fertilisation). On day 41 of the 

experiment, all columns received additionally a glucose solution (equivalent to 9419 kg C ha
-1

) 

as a labile C source. 
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Fig. 3 a) N2O emissions of the soil columns with forest soil that was either fertilised with NO3
-
, 

glucose or unfertilised (control) during the supplementary experiment of 41 d duration. b) CO2 

efflux of the same soil columns. Given are mean values ± 1 SE of each 4 columns per treatment. 

The N fertilisation consisted of a total addition of 200 kg N ha
-1

 year
-1

 given as KNO3 on three 

occasions (first to third fertilisation). The glucose treated soil columns received a glucose 

solution (equivalent to 9419 kg C ha
-1

) as a labile C source. 
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CO2 fluxes 

The glucose addition resulted in 11-fold and 13-fold increases of cumulative CO2 

emissions in the unfertilised (C1N0) control and N-fertilised treatment (C1N1), 

respectively (Fig. 1c). The cumulative CO2 emission measured at the soil surface was 

significantly higher in the unfertilised soil columns (C0N0) in comparison to the 

fertilised columns (C0N1) during the first 41 d. For the second 41 d, N fertilisation 

combined with glucose addition (C1N1) increased the CO2 emission not significantly 

compared to the columns without N addition (C1N0). The combined effect of C 

addition and N fertilisation was negligible compared to the single effect of glucose 

addition. After the first and second NO3- addition of each 200 kg N ha
-1

 (on day 0 and 

day 20), the CO2 efflux tended to decrease in both treatments with time (Fig. 2b). The 

addition of glucose led to a dramatic stimulation of soil respiration with maximum 

peaks of CO2 efflux of 842.0 ± 58.3 mg C m
-2

 h
-1

 (on day 49) and 1191.1 ± 51.6 mg C 

m
-2

 h
-1

 (on day 52) in the unfertilised control and the N-fertilised columns, respectively. 

As in the main experiment, the cumulative CO2 emissions in the supplementary 

experiment were significantly (6-fold) higher after adding a high concentration of labile 

C than in the control soil without C addition, whereas the N treatment without glucose 

addition led to no CO2 flux stimulation (Fig 1d). Compared to the main experiment, the 

CO2 emissions of all treatments were lower in the supplementary experiment (Fig. 3b). 

 

Soil chemical and physical characteristics 

The chemical properties of the soil in the columns before the start of the experiment 

(day 0), at the end of the second N fertilisation phase (day 41), and after the combined 

application of C and N (day 62) are listed in Table I. After the second N fertilisation 

(day 41) and at the end of the third experimental phase (combined addition of C and N, 

day 62), the total N concentration in the N-fertilised columns was significantly higher 

(by 0.32 and 0.43 g N kg
-1

 dw, respectively) than in the unfertilised columns. After N 

addition, the Corg content of the N-fertilised soil columns was significantly lower than 

that of the control soil. The glucose application did not alter the Ntotal content compared 

to the columns’ N content before glucose application. The addition of C enhanced the 

Corg content significantly by 2.55 g C kg
-1

 dw and 3.42 g C kg
-1

 dw in the unfertilised 

control and N-fertilised soil, respectively. The soil moisture in the columns was 

adjusted to 80% WFPS on day 20, 41 and 62 of the experiment and showed a more or 

less continuous decrease due to evaporation at a rate of -1.53% d
-1

 in all treatments to 
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approach approximately 40% moisture content before the start of the next manipulation 

event (Fig 2a, 2b). 

The independent effect of NO3
-
 and glucose on the NO3

-
 and NH4

+
 concentrations in the 

soil was investigated in the supplementary experiment (Table II). The NO3
-
 and NH4

+
 

concentrations in the soil columns increased significantly by 891% and 244%, 

respectively, after the addition of 200 kg N ha
-1

 in the form of KNO3. The addition of 

9419 kg C ha
-1

 (glucose) decreased the NO3
-
 and NH4

+
 concentrations non-significantly 

by 81% and 47%, respectively. 
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Discussion 

While the first amount of NO3
-
 added (200 kg N ha

-1
 equivalent to 145 mg N kg

-1
) 

increased the N2O emissions 8-fold, a same dose applied 20 d later led to no further 

stimulation of N2O release despite improved NO3
-
 availability. The insensitivity of the 

N2O emissions to further substrate addition points toward C limitation of NO3
-
 

reduction in our experimental system as it was assumed in earlier studies (Weier et al., 

1993; Gillam et al., 2008). Further support for our first hypothesis assuming limitation 

of N2O emissions by labile C in the soil is provided by the tremendous stimulation of 

emissions observed after adding glucose at saturating amounts. In fact, adding 9419 kg 

C ha
-1

 (equivalent to 6.9 g C kg
-1

 soil) had, with a 39-fold increase in emissions 

compared to the control, a larger effect on N2O emission than applying 200 kg N ha
-1

. 

Thus, hypothesis 2 is falsified. Clearly, we added glucose at a saturating dose; the 

stimulation of N2O emission might have been similarly large by C and N if both 

elements had been added in a ratio of about 20:1, simulating a biomass C/N ratio of 20. 

In earlier studies, the response of N2O emission to N application ranged from no change 

to a fivefold stimulation of N2O emission after KNO3 addition at doses of 10 to 277 mg 

N kg
-1

 soil (Weier et al., 1993; McKenney et al., 2001; Gillam et al., 2008; Jäger et al., 

2011); the largest increase in N2O efflux was measured after adding 63.4 mg N kg
-1

 soil, 

i.e. half the amount added in our study (Ciarlo et al., 2008). Table 3 compiles the 

existing literature data on the effect of glucose and KNO3
-
 on N2O emissions from 

agricultural soils. For glucose addition, two- to tenfold increases of the N2O emissions 

have been reported (Azam et al., 2002; Murray et al., 2004; Gillam et al., 2008), which 

was comparable to the effect of N addition (Weier et al., 1993; Bateman and Baggs 

2005). While our N effect is well in the range of literature data, this is not the case with 

our very large labile C effect (Table 3). 
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The relatively high soil moisture in our soil columns (40 -- 80% WFPS) suggests that 

much of the N2O released was produced in the course of dissimilatory processes. 

Fazzolari et al., (1998) assumed that DNRA dominates over denitrification when 

glucose and NO3
-
 are added at C/N ratios > 4. Thus, the glucose-C/NO3

-
-N ratio of 48 in 

our experiment suggests that DNRA was the main N2O-producing process in the soil 

columns after adding N and C sources. The increase in the soil NH4
+
 concentration after 

NO3
-
 and glucose addition is another indication that DNRA was much more important 

than denitrification under these soil conditions, supporting the recently formulated 

assumption that the potential of DNRA to release N2O after C and N addition may have 

been underestimated (Morley and Baggs 2010; Baggs, 2011). 

The large effect of C availability on overall soil microbial activity is clearly visible from 

the fact that the CO2 efflux from both the control and N fertilisation treatments were 4- 

to 6-fold higher in the supplementary experiment with 30% higher Corg concentrations 

than in the respective treatments of the main experiment (29.2 g C kg
-1

 soil compared to 

19.8 g C kg
-1

). However, not only soil respiration was higher in the supplementary 

experiment but the N2O emissions of the control and the N treatments as well. The 

higher CO2 and N2O emissions without C addition in the supplementary experiment 

might be caused by more readily bio-available C in the soil compared to the main 

experiment. 

It is known that elevated concentrations of labile C as a readily available energy source 

may have priming effects either on soil organic matter (SOM) mineralisation by 

increasing the activity of decomposing microorganisms (real priming effect) or on 

higher microbial metabolic activity and microbial biomass turnover (apparent priming 

effect; Blagodatskaya and Kuzyakov, 2008). In our study, the high C availability led to 

a tremendous increase in heterotrophic microbial activity as indicated by 10- and 5-fold 

higher CO2 emission rates compared to the control in the main and supplementary 

experiments, respectively. Furthermore, the addition of glucose in the supplementary 

and the main experiment resulted in similarly high cumulative N2O emissions during 

the 41 d-experimental period despite differences in initial Corg indicating that the large 

increase in the availability of labile C superimposed any differences in initial C 

availability in the soils of the two experiments. The negligible effect of the second N 

addition and the large increase of the N2O and the CO2 emissions after the C addition in 

the main experiment allow the conclusion that the SOM in the soil columns contained 
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only a relatively small proportion of readily available C that could be utilised for 

microbial C and N turnover processes. 

When our results are compared to other published data (see Table 3), the stimulation of 

N2O emission by the first N addition is nevertheless large, despite the dominating effect 

of labile C in our experiment. Thus, the limitation of NO3
-
 reduction by low substrate 

availability must have been more severe in our study than in many other experiments 

that were conducted with agricultural soils. For example, Gillam et al., (2008) added 1 g 

N kg
-1

 soil, i.e. 7 times more N than we did, and found only a doubling of N2O 

emissions compared to the control. According to pyrosequencing analysis, 

Rhodanobacter spec. occurred in significantly higher densities in N fertilised soil than 

in unfertilised soil after the second N addition (2.36 ± 0.52% vs. 46.87 ± 11.72% on day 

41). Since these gammaproteobacteria are known to be denitrifying microorganisms, it 

is very likely that they largely contributed to the high N2O emissions from the N-

fertilised soil (Prakash et al. 2011; Green et al. 2012; Kostka et al. 2012). 

Our data indicate that the addition of high doses of labile C and NO3
-
 may act in a 

synergistic way on the N2O production because combined C and N addition increased 

N2O emissions 70-fold while the separate effects of C and N led only to 39- and 8-fold 

increases of N2O release supporting our hypothesis (3). This is pointing to a positive 

interaction between large labile C and NO3
-
 in their effect on N2O emission. In a 

laboratory experiment with silty clay, a combined NO3
-
 and glucose application led to a 

100 times higher emission than a glucose application alone (Azam et al., 2002). 

Similarly, in an experiment of eight days duration, Gillam et al. (2008) found 

cumulative N2O emissions of 4.75 mg N kg-1 soil after combined C and N addition, 

whereas N addition alone led to a N2O emission rate not higher than the unfertilised 

control (0.05 mg N kg
-1

 soil) and to an emission of 1.48 N kg
-1

 soil when only C was 

added. The latter experiment with no significant stimulation of N2O emission by NO3
-
 

addition was conducted with agricultural soil where C limitation of microbial activity 

may have been stronger than in forest soil. Despite this difference to our study, the 

experiments with agricultural and forest soils have in common that labile C and N 

availability seem to interact and that the labile C concentration is exerting a major 

control on the N dynamics in the soil. 

The present study aimed at characterising the potential of altering N2O emissions from 

forest soils by adding C and N sources in high doses. It is clear that labile C and NO3
-
 

were available in concentrations that exceed the natural levels in temperate deciduous 
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forest soils by far. However, for a better understanding of possible changes in 

greenhouse gas emissions under altered climate conditions, it is important to know how 

higher concentrations of labile C and NO3
-
 would change N2O emissions at clearly 

detectable levels. A likely scenario for the coming decades is that temperature, 

atmospheric CO2 concentration and precipitation extremes are all increasing on a global 

scale (IPCC, 2007), while atmospheric N deposition will remain high in Central Europe 

and eastern North America (Galloway et al., 2008). It is not yet clear whether the SOM 

pool of temperate forests will decrease or increase under these predicted alterations. The 

major fraction of SOM consists of complex recalcitrant C compounds that are difficult 

to catabolise. However, at higher temperature and elevated CO2, the decomposition of 

complex C compounds could be accelerated (Davidson and Janssens, 2006; Allison et 

al., 2010; Kuzyakov, 2011). Further, the rhizodeposition of C compounds may increase 

under elevated CO2 (Kuzyakov, 2011, Phillips et al. 2011). How much labile C would 

be released under higher temperature and elevated CO2 concentration is not yet known, 

but it could largely exceed the current C availability as Phillips et al. (2011) found by 

50% higher exudation rates of C. In this study, we highlighted that such an increase of 

labile C may offset a C limitation of N cycling in forest soils. Thus, the currently low 

N2O emission rates of < 10 µg N m
-2

 h
-1

, as they were measured under field conditions 

in the temperate broad-leaved Hainich forest (Guckland et al., 2010), where the soil of 

our experiments was collected, might substantially increase in future decades. 
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Conclusion 

Our study showed that the availability of labile C can be a key factor controlling the 

N2O emissions from forest soils. Additionally, our laboratory experiment gave hints on 

the potential of continued high N deposition in combination with higher temperatures 

and elevated CO2 to largely alter N2O emission mainly when changes in C availability 

in forest soils occur simultaneously. Although our experiment could not answer the 

question how moderate changes in C and N amounts alter the N2O emissions of a 

temperate forest soil, the importance of C and N could be clearly shown. The crucial 

question is whether the climatic and chemical changes will increase or decrease the 

availability of labile C for soil microorganisms; this topic deserves further research. It is 

clear, however, that the role of labile C and its interaction with N availability has not 

been considered sufficiently enough in predictions of N2O emissions under a variable 

climate in different ecosystems. 
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B.III Influence of Lasius ants acting as ecosystem engineers  

To analyze the impact of ants and their activity on soil microbial communities, two 

experiments were conducted. A microcosm survey analyzed the influence of ant activity 

on the nitrogen flow between aboveground and belowground systems and soil microbial 

community composition. We applied stable isotope techniques to track theant driven 

nitrogen distribution and DGGE as molecular approach to analyze the soil bacterial 

community. The following hypotheses were tested:  

(1) Aphid honeydew will increase nutrient availability for microbes in the litter 

layer and will lead to higher microbial biomass.  

(2)  Contrastingly, tending ants will reduce the amount of honeydew dropping onto 

the litter what will decrease microbial biomass in return.  

(3)  Ants are suggested to increase the nitrogen flux from aboveground to 

belowground system. This will affect the soil microbial biomass and the 

community structure of bacteria.  

The functional diversity and community composition of microbial communities in 

Lasius ant nests and the surrounding soil from two different grassland habitats (Leptosol 

and Cambisol) was studied in the second survey. Microbial community functioning was 

analyzed by measuring the response of microorganisms to an array of different 

substrates added to soil samples from Lasius ant nest mounds and the surrounding soil. 

The microbial community structure present in the nests of the two different ant species 

(Lasius niger and L. flavus) and in the surrounding soil was compared using DGGE as 

molecular approach. 
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Abstract  

In a microcosm experiment, we studied the interaction between ants (Lasius niger), 

aphids (Aphis fabae), and the soil microbial community. We addressed the question 

whether ants alter the nitrogen flow between aboveground and belowground systems 

using stable isotope techniques and whether ants change the soil microbial community 

using DGGE. The common bean, Phaseolus vulgaris, was labeled with 
15

N and served 

as host plant for aphids. Consequently, the δ
15

N content in aphids increased (to 136.1 

‰) In addition, the flow of nitrogen via honeydew and ant movement to neighboring 

Arrhenaterum elatius plants was quantified.  

After eight weeks, 2.7 % of the nitrogen in ant larvae originated from the plant/aphid-

system, and δ
15

N values in adult ant workers increased strongly from 2.4 ‰ to 16.9 ‰. 

The presence of aphids increased microbial biomass in the litter layer and increased the 

abundance of bacterial populations in soil. The presence of ants reduced the amount of 

honeydew dropping on the litter surface, which led to lower microbial biomass in the 

litter layer. On the contrary, ants promoted the transport of material from the 

aboveground to the belowground system resulting in increased δ
15

N signature in soil as 

compared to litter and increased basal respiration and microbial biomass in soils, 

presumably due to faeces deposition and dropping of food remains. Further, ants altered 

the structure of bacterial populations in soil promoting a more balanced community 

structure. 
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Formicidae, delta N-15, nitrogen, microbial activity 
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Introduction 

Ants form a dominant component of the invertebrate food web in many terrestrial 

ecosystems and exert major impacts on the aboveground and belowground system 

(Hölldobler and Wilson, 1990; Letourneau and Dyer, 1998; Pêtal, 1998). Due to 

communication and cooperation, ants strongly influence their environment (Brian, 

1983; Hölldobler and Wilson, 1990). In addition, ants act as ecosystem engineers 

(Jones, 1994) influencing soil properties, such as soil structure, soil pH, water holding 

capacity, organic matter content, and exchangeable Ca, Mg, K, and PO4 by nest 

construction (Lobry de Bruyn and Conacher, 1990). The transport of honeydew, prey 

and organic substances into their nest and the addition of secretions and excreta affect 

the nutrient distribution in soil. Furthermore, ants also affect the structure of food webs 

(Letourneau and Dyer, 1998) by acting as mutualistic partners and predators 

(Schumacher and Platner, 2009). Mutualistic relationships between ants and aphids are 

common. Aphids provide honeydew to ants and in return the ants provide services to 

aphids such as protection against enemies (Way, 1954 and 1963; Stadler and Dixon, 

2005) and removing dead bodies and exuviae (Banks, 1962). The intensity of ant-aphid 

mutualism increases with honeydew quality and quantity (Bristow, 1984; Fischer et al., 

2001). Due to ant presence, aphids alter the quantity and quality of their honeydew. In 

presence of ants, aphids excrete smaller droplets of honeydew at a higher rate, and 

honeydew containing a significantly higher concentration of amino acids (Yao and 

Akimoto, 2002) sucrose, and trehalose (Yao and Akimoto, 2001).  

Ants directly influence soil fertility, as they alter the amount of honeydew dropping to 

soil by collecting it. Furthermore, they change the physical soil conditions by 

constructing chambers and galleries. Through these processes, ants alter the flux of 

carbon and nitrogen through ecosystems. 

Approximately one-third of the honeydew produced by aphids may fall to the ground 

(Wellenstein, 1980), forming an important component of soil fertility (Choudhury, 

1985). Stadler (2006) analyzed the effects of ants and aphid honeydew on spruce litter. 

Addition of honeydew significantly increased dissolved organic carbon (DOC) as a 

direct result of honeydew leaching, and decreased inorganic N concentrations in 

leachates. The author proposed that the dropped honeydew fuels the growth of 

microorganisms on the spruce needles resulting in the immobilization of N, thereby 

increasing plant nutrient limitation.  
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We used stable isotopes to identify food sources of ants (Post, 2002), building on a 

previous laboratory and field study (Sanders and Platner, 2007; Schumacher and 

Platner, 2009). In microcosms seedlings with Phaseolus vulgaris L. were labeled with 

15
N and infested with Aphis fabae Scopoli to follow the flux of nitrogen from plants to 

aphids to the soil system. Moreover, we wanted to gain insight into the effect of ants on 

nitrogen flow between aboveground and belowground systems and on the soil microbial 

community studied by molecular analyses and respiration measurements. We 

hypothesize that (1) aphid honeydew will increase nutrient availability for microbes in 

the litter layer and will lead to higher microbial biomass. (2) In contrast, tending ants 

will reduce the amount of honeydew dropping onto the litter what will decrease 

microbial biomass. (3) Ants are suggested to increase the nitrogen flux from above- to 

belowground system, what will affect the soil microbial biomass and the community 

structure of bacteria.  
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Material and Methods 

 

Labeling procedure and microcosm set-up 

The experiment was set up in microcosms (aluminum pot, 20 cm id, 19 cm height) filled 

with 2.4 kg autoclaved loamy sand soil (LUFA Standard Soil Type 2.2; 2.36 ± 0.29 % 

organic C, pH [0.01 M CaCl2] 5.6 ± 0.4, cation exchange capacity 11 ± 2 mval/100 g). 

To establish diverse microbial communities, we added 100 ml of an inoculant to every 

microcosm. For the inoculant, 1 kg fresh soil from a dry hillside of the Werra valley 

(Witzenhausen Freudenthal, Northern Hesse, Germany; for details see Platner 2006) 

was mixed with 1 l of 0.9 % NaCl solution and shaken for half an hour. The soil for the 

inoculant was a shallow Pararendzina (Leptosol) on Triassic limestone with a diverse 

herb layer dominated by Brachypodium pinnatum (L.). 

A layer of 10 g dry autoclaved grass litter was added to each microcosm. The 

microcosms were closed by a transparent perspex cylinder (19 cm id, 25 cm height) 

with removable gauze (2 µm) on top (supplementary Figure S1). In each cylinder a 2 

µm gauze was inserted to create two compartments within the microcosm. Outside each 

microcosm, a pot with labeled Phaseolus vulgaris was fixed, only their shoot hanging in 

compartment one of the cylinder (=P. vulgaris side) (supplementary Figure S1). During 

the experiment P. vulgaris served as host plants for aphids (Aphis fabae). In 

compartment two, five Arrhenatherum elatius (L.) seedlings were planted (=A. elatius 

side) to quantify the 
15

N flow from honeydew to the neighboring plants. P. vulgaris 

seeds (breed Solido) were sown six weeks before the start of the experiment. The plants 

were labeled with urea solution (2 atom % 
15

N) for 23 days (Schmidt and Scrimgeour, 

2001) by brushing seedling-shoots daily once the shoots reached the two-leave stage. In 

summary, every plant was labeled with approximately 4 mL of urea solution (2 g L
-1

). 

Each P. vulgaris shoot was infested with 25 apterous A. fabae individuals of similar 

size. Aphids were reared on unlabeled P. vulgaris before adding them to the 

experimental containers. Aphid colonies were allowed to develop for two days before 

ant colonies were added to respective treatments. Each ant colony consisted of 100 

Lasius niger (L.) workers and 80 larvae. Ant colonies originated from a single mother 

that was collected from dry grassland located near Göttingen, Germany, in September 

2007.  

In the absence of ants, the honeydew fell on the ground or became attached to bean 

leaves, whereas in presence of ants the honeydew was collected by ant workers. In 
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treatments with honeydew exclusion, the experimental microcosms included an 

additional Perspex pane beneath the P. vulgaris shoot to prevent honeydew from falling 

onto the ground. During the experiment, the panes were changed every five days. The 

following treatments were established: (1) without ants and without honeydew (A- H-) 

(honeydew excluded by pane), (2) without ants and with honeydew (A- H+) (honeydew 

falling to the ground), (3) with ants and without honeydew (A+ H-), and (4) with ants 

and with honeydew (A+ H+). Control microcosms were established without aphids and 

ants. 

The experiment was conducted in a greenhouse in Göttingen from September to 

November 2007. Additional lighting was provided by Osram lamps (36 W/21-840 

Lumilux plus) to allow a 12 h period of light.  

We used a blocked, two-factorial design with the factors ‘ants’ (with and without) and 

‘honeydew’ (with and without). In total 32 experimental microcosms were divided into 

eight blocks; we arranged the four treatments randomly within each block. Four control 

microcosms were established between every second block. Microcosms within blocks 

were rotated every third day.  

 

Data collection and statistical analyses 

At the end of the experiment, living aphids, L. niger workers and larvae were collected 

by hand and frozen at –20 °C. Then, samples were freeze-dried and biomass (dry 

weight) was quantified. P. vulgaris shoots were clipped at the point where shoots 

reached into the microcosm. Plant material was dried at 105 °C for three days before 

biomass was determined.  

We measured stable isotopes (
15

N) and total nitrogen from pulverized plant material, 

litter, soil, frozen ants and aphids, with two replicates for each sample. We analyzed 

ants in total to avoid skew results due to different isotopic signatures among tissues 

(Tillberg et al., 2006). Bean shoots with the aphid colonies were removed 5 days before 

the ants were collected. This 5 day period without food for ants will empty the crop 

content to a marginal rate. Ratio of 
15

N/
14

N was measured by a coupled system 

consisting of an elemental analyzer (Carlo Erba NA 2500) and a gas isotope mass 

spectrometer (Finnigan Deltaplus). Isotope ratio was expressed in δ units as δ
15

N [‰] = 

(RSample – RStandard)/RStandard x 1000, where R is the ratio of 
15

N/
14

N, respectively. The 

standard for 
15

N is atmospheric nitrogen. Acetanilide (C8H9NO, Merck, Darmstadt) 

served for internal calibration; the mean standard deviation of samples was <0.1‰. 
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Grass litter was removed by hand. In each microcosm, three soil samples were 

collected: one from the surface (3 cm) of the P. vulgaris compartment (P. vulgaris side), 

one from the surface (3 cm) of the A. elatius compartment (A. elatius side), and one 

between the compartments at a depth of about 10 cm (ground soil) (supplementary 

Figure S1). Litter and soil samples were homogenized by stirring. Subsamples were 

taken to analyze microbial basal respiration, microbial biomass (substrate-induces 

respiration, SIR; Anderson and Domsch, 1978; Scheu, 1992), and soil water content 

(gravimetrically).  

The effect of ‘ants’ and ‘honeydew’ on the bacterial soil community was assessed by 

denaturing gradient gel electrophoresis (DGGE) of soil DNA derived from samples of 

eight replicated microcosms per treatment. Soil samples for molecular analyses were 

stored at -80 °C until analysis. Genomic DNA was isolated from 250 mg of soil by 

employing the UltraClean PowerSoil
TM

 DNA Isolation Kit (MO BIO Laboratories Inc., 

Carlsbad, CA, USA) according to the manufacturer´s protocol. The final DNA elution 

step was carried out with 100 µl sterile H2O.  

For DGGE, 560 bp fragments of the 16S rRNA gene including the variable regions V3, 

V4 and V5 were amplified by employing the primers 5´- CCTACGGGAGGCAGCAG-

3´ (BAC 341F) and 5´-CCGTCAATTCCTTTRAGTTT-3´ (BAC 907R) (Muyzer et al., 

1995; Muyzer and Smalla, 1998). Additionally, a GC clamp (5´-

CGCCCGCCGCGCCCCGCGCCCGTCCCGCCGCCCCCGCCCG-3´) was attached at 

the 5’ terminus of primer BAC 341F (Muyzer et al., 1995). The PCR reaction mixture 

(50 µl) contained 5 µl Mg-free polymerase buffer (MBI Fermentas, St. Leon-Rot, 

Germany), 200 µM of each of the four deoxynucleoside triphosphates, 2 mM MgCl2, 2 

µM of each of the primers, 1 U of Taq DNA polymerase (MBI Fermentas), and 20 ng of 

isolated DNA as template. The following thermal cycling scheme was used: initial 

denaturation at 95 °C for 2 min, 13 cycles of denaturation at 94 °C for 1 min, annealing 

for 1 min at a decreasing temperature gradient ranging from 64 °C to 51 °C (1 °C 

decrease per cycle), and extension at 72 °C for 3 min. Subsequently, 12 cycles of 

denaturation at 94 °C for 1 min, annealing for 1 min at 51 °C, and extension at 72 °C for 

3 min were performed. A final extension period at 72 °C for 10 min was carried out. 

The size of the resulting PCR products was controlled by agarose gelelectrophoresis. 

Subsequently, the PCR products were purified by using CyclePure PCR purification kit 

(Peqlab Biotechnologie GmbH, Erlangen, Germany) as recommended by the 
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manufacturer. The concentration of purified PCR products was quantified using a 

NanoDrop ND-1000 spectrophotometer (Peqlab Biotechnologie GmbH).  

DGGE analysis of 16S rRNA genes was performed using the INGENY phorU system 

(Ingeny International BV, The Netherlands). Purified bacterial amplicons (500 ng) were 

applied to a 9 % (wt/vol) polyacrylamide gel containing a 45 % to 60 % denaturing 

gradient (100 % denaturant consisted of 7 M urea and 40 % formamide). 

Electrophoresis was performed at 60 °C and 100 V for 16 h in Tris-Acetate-EDTA 

(TAE) buffer, which consisted of 40 mM Tris, 20 mM acetic acid, and 1 mM EDTA. 

Subsequently, the gels were stained with SYBR Gold (Invitrogen, Karlsruhe, Germany). 

The obtained DGGE fingerprints (see supplementary material Figure S4A and B) were 

digitalized and a cluster analysis using the GelCompare II software (Applied Maths, 

Kortrijk, Belgium) was performed. Clustering was performed using the unweighted pair 

group method with mathematical averages (dice coefficient of similarity). Background 

subtraction was applied and position tolerance was set to 1 %. 

Prominent bands were excised and stored in 100 µl TAE buffer overnight. 

Subsequently, 1 µl of the resulting DNA-containing buffer solution was used as 

template for reamplification by employing the above mentioned primers BAC 341F 

without attached GC-clamp and BAC 907R. The PCR was performed as described 

above. Subsequently, purified PCR products were ligated into pCR2.1 vector using 

TOPO TA Cloning Kit and resulting plasmids were transferred to E. coli DH5α cells, 

according to the manufacturer´s protocol (Invitrogen GmbH, Darmstadt Germany). 

Plasmids have been isolated from recombinant clones and the insert sequences were 

determined by the Göttingen Genomics Laboratory. Classification of the sequences was 

performed by similarity searches using BLAST (Altschul et al. 1990) against the most 

recent SILVA database 108 (Pruesse et al., 2007). Nucleotide sequence accession 

numbers of the excised, reamplified, cloned and sequenced DGGE-bands have been 

deposited in the GenBank database under accession numbers JQ582986 to JQ583188.  

Statistical analyses of biomass and isotope data were done by two factor analyses of 

variance (SAS 8.1, SAS Institute Inc., Cary, USA), and differences between means 

were inspected by Tukey’s honestly significant difference test (Sokal and Rohlf, 2001). 

The effect of ‘aphids’ was analyzed using one-way GLM comparing the control with 

the treatment witout ants and with honeydew (A-H+; supplementary Figure S2). Data 

on basal respiration and microbial biomass were analyzed by a MANCOVA (Scheiner, 

2001) with the mean soil water content as co-variable.  



                                                                                B.III  Ant mediated effects 

177 

 

Results 

 

Plant and aphid biomasses 

Aboveground biomass of P. vulgaris did not differ between treatments, but 

aboveground biomass in experimental microcosms with aphids (mean ±SE, n=8: 

1112.2±533.1 mg dry weight beans and shoot within microcosm) was significantly 

higher than in the control without aphids (mean ±SE, n=4: 527.5±79.2 mg; Table 1, 

supplementary Figure S2). Plants without aphids produced almost no beans (one plant 

with a yield of 100 mg dry weight), whereas aphid infested plants produced a mean 

yield of 564.1±72.4 mg dry weight (n=32). Ants significantly increased the number of 

living alate aphids in A. fabae colonies (8.6±5.4 individuals without ants, 25.1±7.5 ind. 

with ants, n=16; F1,21=4.48, p=0.0464, supplementary Figure S3). Biomass of A. elatius 

shoots and roots were not affected by treatments (supplementary Figure S3).  

 

Table 1. Effects of ‘aphids’ on the biomass (dry weight), δ
15

N content (‰), H2O of soil dry 

weight (%), basal respiration (µg O2 g
-1

 dry wt h
-1

)
 
and microbial biomass (µg Cmic g

-1
 dry wt). 

All comparisons were made using a one-way GLM. P-values of marginal significant effects – p 

< 0.1 – are presented with three decimal places. df=degree of freedom. 

 df F p 

Biomass P. vulgaris shoot 1 18.29 0.0008 

Biomass A. elatius shoot 1 1.84 0.20 

Biomass A. elatius root 1 0.90 0.36 

δ
15

N P. vulgaris shoot 1 5.28 0.0375 

δ
15

N A. elatius shoot 1 3.44 0.085 

δ
15

N A. elatius root 1 3.72 0.074 

δ
15

N litter 1 6.29 0.0250 

δ
15

N soil P. vulgrais side 1 3.70 0.075 

δ
15

N soil ground 1 11.29 0.0047 

δ
15

N soil A. elatius side 1 1.08 0.32 

Litter moisture 1 6.61 0.0222 

Soil moisture P. vulgrais side 1 4.98 0.0426 

Soil moisture ground 1 11.31 0.0046 

Soil moisture A. elatius side 1 9.99 0.0069 

Basal respiration litter 1 3.77 0.073 

Basal respiration P. vulgaris side 1 0.02 0.88 

Basal respiration ground 1 3.55 0.080 

basal respiration A.elatius side 1 4.74 0.0470 

Microbial biomass litter 1 128.90 <0.0001 

Microbial biomass P. vulgaris side 1 0.70 0.42 

Microbial biomass ground 1 8.59 0.0109 

Microbial biomass A.elatius side 1 0.12 0.74 
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Stable isotopes, basal respiration and microbial biomass 

The δ
15

N isotope signature of unlabeled P. vulgaris shoots inhabited by aphids was 4.5 

‰. δ
15

N values in labeled aphid-infested P. vulgaris shoots (n=8) were significantly 

lower than in control microcosms without aphids (-34 %, n=4, Table 1, Figure 1 and 

supplementary Figure S2). On average, δ
15

N values of aphids were 8 % lower than 

those of P. vulgaris shoots (Figure 1). The δ
15

N values of ants and ant larvae increased 

during the experiment (on average 7-fold and 2.5-fold, respectively, Figure 1). At the 

end of the experiment 2.7 % of the nitrogen in ant larvae originated from plant nitrogen. 

This incorporation originated from the plant/aphid-system and represents the material 

flow from aphids to ants and a proportion of 10.8 % nitrogen gained from this flow. 

Aphids in microcosm increased the δ
15

N values in shoots and roots of A. elatius 

compared to controls (32 % and 37 %, respectively; Table 1, Figure 1 and 

supplementary Figure S2), but stable isotope incorporation of roots and shoots were not 

affected by ‘ants’ or ‘honeydew’.  

Water content did not differ significantly between treatments in any of the soil or litter 

samples. In the litter layer aphid presence significantly increased moisture, δ
15

N values, 

microbial biomass (Cmic) and marginally basal respiration (BAS) compared to control 

without aphids (Table 2, Figure 2, supplementary Figure S2). When aphids were tended 

by ants, Cmic in the litter decreased significantly (-22 %, Table 4, Figure 3a and 

supplementary Figure S3). Only without ants honeydew droppings lead to higher BAS 

and Cmic in the litter, but when ants inhabited the microcosm this was not the case 

(interaction between ‘ants’ and ‘honeydew’; Table 3, b, Figure 2a, 3a).  

When honeydew dropped to the soil, BAS and Cmic in soil taken beneath the P. vulgaris 

shoots decreased (- 18 % and - 34 %, respectively), but both parameters increased in 

presence of ants (+ 20 % and + 8 %, respectively; Table 3, Figure 2b, 3b and 

supplementary Figure S3).  

Ants significantly increased BAS in soil samples from microcosm ground (+ 20 %, 

Table 3a, Figure 2c and supplementary Figure S3). Moreover ant presence resulted in 

significant higher δ
15

N values in soil samples from both the P. vulgaris (+ 38 %) and 

the A. elatius side (+ 21 %; Table 2, supplementary Figure S3).In all soil samples, BAS 

and Cmic differed significantly between blocks (Table 3 and 4). 

A summary of the effect of aphid honeydew (comparison between A-H+ treatments and 

controls) as well as the effect of ‘ants’ and ‘honeydew’ between experimental 

treatments can be found in Figures S2 an S3 of the supplementary material. 
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Figure 1. δ
15

N content (‰) in P. vulgaris, A. fabae, L. niger and A. elatius, as well as in litter 

and soil samples of the different microcosm treatments. The different treatments are indicated as 

follows: A- = without ants; A+ = with ants; H- without honeydew; H+ with honeydew; control 

= without any treatment. 
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Figure 2. Basal respiration in the litter layer (A.), the soil of the P. vulgaris sides (B.), 

the ground soil (C.) and the soil of A. elatius sides (D.). The different treatments are 

indicated as follows: A- = without ants; A+ = with ants; H- without honeydew; H+ with 

honeydew; control = without any treatment. 
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Figure 3. Microbial biomass in the litter layer (A.), the soil of the P. vulgaris sides (B.), the 

ground soil (C.) and the soil of A. elatius sides (D.). The different treatments are indicated as 

follows: A- = without ants; A+ = with ants; H- without honeydew; H+ with honeydew; control 

= without any treatment.  
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Table 2. Effects of ‘ants’ and ‘honeydew’ on the δ
15

N contents. All comparisons were made 

using a two-way ANOVA. P-values of marginal significant effects – p < 0.1 – are presented 

with three decimal places. df=degree of freedom. 

  δ
15

N aphid log δ
15

N 

litter 

δ
15

N soil P. 

vulgaris side 

δ
15

N ground 

soil 

δ
15

N soil A. 

elatius side 

 df F p F p F p F p F p 

ants 1 0.39 0.54 3.19 0.092 4.73 0.0411 0.03 0.86 5.27 0.0320 

honeydew 1 2.37 0.14 3.22 0.091 0.08 0.78 0.62 0.44 0.06 0.82 

block 7 2.21 0.087 0.44 0.87 6.55 0.0004 6.06 0.0006 9.35 <0.0001 

ants*ho 1 0.09 0.77 0.53 0.48 0.23 0.64 0.03 0.87 1.26 0.27 

 

Table 3. Effects of ‘ants’ and ‘honeydew’ on basal respiration (BAS, µg O2 g
-1

 dry wt h
-1

). All 

comparisons were made using a MANOVA with the mean soil water content as covariable. P-

values of marginal significant effects – p < 0.1 – are presented with three decimal places.  

df=degree of freedom. 

  soil P. 

vulgaris side 

ground soil soil A. 

elatius side 

litter  

 df F p F p F p F p Wilks’ 

Lambda 

F p 

Mean soil 

moisture 

1 3.80 0.065 0.45 0.51 5.64 0.0277 3.69 0.069 0.5466 3.53 0.0286 

block 7 2.76 0.0351 6.50 0.0004 5.95 0.0008 1.23 0.33 0.0752 2.35 0.0026 

ants 1 5.67 0.0273 5.63 0.0278 0.36 0.56 0.20 0.66 0.5874 2.99 0.0489 

honeydew 1 3.46 0.078 2.45 0.13 3.19 0.090 0.81 0.38 0.6595 2.19 0.11 

ants*ho 1 1.80 0.20 1.78 0.20 0.74 0.40 4.30 0.051 0.5394 3.63 0.0259 

 

Table 4. Effects of ‘ants’ and ‘honeydew’ on microbial biomass (Cmic, µg Cmic g
-1

 dry wt). All 

comparisons were made using a MANOVA with the mean soil water content as covariable. P-

values of marginal significant effects – p < 0.1 – are presented with three decimal places. 

df=degree of freedom. 

  soil P. vulgaris 

side 

ground soil soil A. 

elatius side 

litter  

 df F p F p F p F p Wilks’ 

Lambda 

F p 

Mean soil 

moisture 

1 0.22 0.65 1.62 0.22 6.76 0.0171 5.82 0.0255 0.5230 3.88 0.0205 

block 7 7.56 0.0002 4.90 0.0024 3.20 0.0194 2.26 0.073 0.0259 3.93 <0.0001 

ants 1 3.47 0.077 0.29 0.60 3.57 0.073 12.87 0.0018 0.4624 4.94 0.0079 

honeydew 1 28.62 <0.0001 1.07 0.31 2.94 0.10 0.37 0.55 0.3015 9.85 0.0003 

ants*ho 1 0.56 0.46 1.23 0.28 1.96 0.18 4.38 0.0493 0.75 1.38 0.28 

 



                                                                                B.III  Ant mediated effects 

183 

 

Bacterial community analysis 

The dendrograms obtained from DGGE analysis (Figure 4) did not show a distinct 

clustering of the ‘ant’ and ‘honeydew’ treatments. This is due to the high variation of 

the banding patterns within ‘ant’ treatments. Correspondingly, bacterial communities 

from control soil samples did not cluster in one group, which is separated from the 

different treatments. 

Twenty six dominant bands (marked in supplementary Figure S4A and B) were excised 

from the gels, cloned and sequenced. Phylogenetic analysis of the 16S rRNA gene 

sequence data showed that the Proteobacteria were most abundant, representing 57 % 

of the analyzed sequences. Firmicutes accounted for 25 %, Actinobacteria for 11%, 

Gemmatimonadetes for 2.5 % and Acidobacteria for 3 % of the analyzed 16S rRNA 

gene sequences. Within Proteobacteria, Betaproteobacteria (43 %) were the 

predominant class followed by Gammaproteobacteria (38 %) and Alphaproteobacteria 

(17 %). Among the most frequently occurring Phyla, 98 % of the betaproteobacterial 

sequences were attributed to the order of Burkholderiales (97 - 100 % identity) and 78 

% of these sequences could be ascribed to the Oxalobacteracea. Of the 

gammaproteobacterial sequences, 90 % belonged to the Xanthomonadales (92 - 100 % 

identity) amongst which the Xanthomonadaceae accounted for 86 % (99 - 100 % 

identity). Arenimonas was the main representative of the Xanthomonadaceae, 

representing 64.5 % of the sequenced clones. About 96 % of the sequences attributed to 

the Firmicutes belong to the class Bacilli (96 – 100 % identity). The Bacilli-assigned 

sequences belonged to the Paenibacillaceae (16 % of the sequences; 96 – 98 % 

identity), the Bacillaceae (32.6 % of the sequences; 99 – 100 % identity) and the 

Alicyclobacillaceae, all of the genus Tumebacillus (51 % of the sequences; 97 - 100 % 

identity).  

The analysis of bands G, H, and T revealed that these representative picked bands, 

occurring at the same height and in every treatment, mainly represented 

Betaproteobacteria and Gammaproteobacteria (Figure 5). Some clones could also be 

attributed to the Firmicutes and Alphaproteobacteria. The sequences, which were 

determined for band D and W, which occur randomly, were all affiliated to the genus 

Tumebacillus. Bands B, C and V occurred also at the same height and in every 

treatment, but with different intensities. These bands were dominated by 

Gammaproteobacteria. In summary, no distinct separation of the different treatments 

was visible in the DGGE banding patterns and the cluster analysis.  
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Figure 4. Dendrogram showing the cluster analysis of the digitized bacterial DGGE 

fingerprints. The UPMGA method was applied, which takes the presence or absence of bands at 

certain positions in each lane into account. The different treatments are indicated as follows: A- 

= without ants; A+ = with ants; H- without honeydew; H+ with honeydew; control = without 

any treatment. 
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Discussion 

Aphids feed on the labeled plant phloem sap and the uptake of the 
15

N isotopes by 

aphids was measured in aphids’ tissue. The labeling procedure of plants increased the 

δ
15

N content in aphids by 97 %, but the infection of P. vulgaris by aphids reduced δ
15

N 

values of shoots by 34 %, suggesting that aphids reduced uptake of 
15

N added. 

Altogether, labeling the host plant of aphids allowed us to follow the nitrogen flow via 

honeydew, litter, and soil between the different compartments within the microcosms. 

Ants collect the honeydew to cover their demand on carbohydrates. The initial value of 

ants and larvae at the start of the experiment was nearly equal between ants (2.4 ‰) and 

their larvae (2.3 ‰). At the end of the experiment larvae and adult workers had 

incorporated the δ
15

N isotope into their tissue (5.6 ‰ and 16.9 ‰, respectively). The 

crop content of workers could not be responsible for isotope signature, because plants 

and aphids were removed five days before ants were collected and the crops should 

have been empty. The increase of δ
15

N in workers may reflect the larval diet, as ants are 

holometabolous insects, which obtain their biomass mainly during the larval stage 

(Blüthgen et al., 2003). 

In our study, no changes in aphid colony biomass were detected due to ant presence, but 

attendance led to the development of significantly more alate aphids. This result 

indicated that ants promoted aphids’ spreading during the experiment. Contrary to our 

results, recent studies have found that the occurrence of winged adults is negatively 

associated with ant attendance (Dixon, 1998; Kindlmann et al., 2007). During the 

experiment 61 % of the workers died and 56 % of the larvae died or developed to adult 

workers, what lead to lower honeydew and protein demand of ant colonies and 

consequently to less tending on aphids Decreasing ant activity on previously tended 

aphid colonies could have stimulated the production of winged individuals. 

Microbial biomass and basal respiration in the litter layer depended on aphid and ant 

activity. Compared to the control, aphid presence led to significantly higher microbial 

biomass in the litter layer suggesting that honeydew dropping to the ground beneficially 

affected litter microorganism. Presence of ants annihilated this link between aphids and 

litter microorganisms. Presumably, this was due to collection of honeydew by the ants 

thereby reducing the amount of honeydew dropping to the ground. When aphids are 

tended by ants, they often increase the frequency of honeydew excretion to increase 

attractiveness to ants. Moreover, the honeydew of tended aphids contains significantly 

higher concentration of amino acids (Yao and Akimoto, 2002), sucrose and trehalose 
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(Yao and Akimoto, 2001). Llewllyn and Leckstein (1978) reported that unattended 

larval A. fabae reared on broad beans utilized 54 % of their energy intake for growth, 4 

% was lost during respiration and 42 % was excreted as honeydew. Wellenstein (1980) 

reported that under natural conditions approximately 1/3 of the honeydew produced by 

aphids is falling to the ground with ants reducing the amount of honeydew dropping to 

the soil by about 50 % (Seeger and Filser, 2008). Honeydew and its varying amounts 

and ingredients due to ant attendance can also have effects in the belowground system. 

The presence of ants significantly increased δ
15

N content (P. vulgaris side and A. elatius 

side) and basal respiration (P. vulgaris side and ground samples) in the soil, indicating 

that ant activity increase the transport from the aboveground to the belowground 

system. Significantly increased microbial biomass and basal respiration in natural L. 

flavus nests in comparison to the surrounding soils were reported in a study carried out 

by Platner (2006) in a calcareous grassland. The increase of these soil parameters due to 

ant presence might be caused by the intake of prey and mixing soil and litter due to nest 

construction (Skinner, 1980).  

Further molecular analysis to investigate the bacterial community composition using 

PCR-DGGE and cluster analysis of the obtained fingerprints revealed no clear 

differences among the different treatments, as well as among the control. Patterns D and 

W, which appeared at the same height, predominantly occur in treatments with 

honeydew. Sequence analysis revealed that the obtained sequences could be attributed 

to the type strain Bacillales bacterium Gsoil 1105
T
 of the genus Tumebacillius 

(Firmicutes), that is known to assimilate sucrose, among other sugars (Baek et al., 

2011). We also identified the family Oxalobacteraceae (Burkholderia), which is 

metabolic divers and has some nitrogen fixing members. Most of these sequences 

showed identities between 98 – 100 % to the genus Massilia, which is known to utilize 

the amino acid L-alanin as well as some sugars as L-arabinose, cellobiose, maltose and 

mannose (La Scola et al., 1998). Additionally the genus Arenimonas was identified 

within our microcosms, as well as in the controls. Kwon et al. (2007) proposed this 

genus, belonging to the family Xanthomonadaceae. It was shown that members of the 

genus Arenimonas are able to hydrolyze the amino acids, arginine and phenylalanine 

(Kwon et al., 2007; Aslam et al., 2009). Sugar-rich honeydew is a readily available 

resource that also provides amino acids for microorganisms and that can be consumed 

rapidly. It has been assumed that beside other substrates, the most common limiting 

factor for microbial growth in soils is the lack of carbon (Scheu and Schaefer, 1998). 
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The additional input of sugars and nitrogen-rich organic compounds into the soil, 

promoted by ants supports prokaryotic organisms, which degrade these substances. 

Thus the ant effect on soil bacterial communities can be more pronounced in natural 

systems, where the ants` impact is longer established.  
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Conclusions 

The δ
15

N signal of plants spread from aphids to honeydew to ants. We followed the 

δ
15

N trace from the aboveground to the belowground system into the litter and, into the 

soil in the presence of ants. Without ants, honeydew increased the biomass of litter 

microorganisms, whereas ant presence altered honeydew amounts in the litter and 

consequently biomass of litter and also soil microorganisms. In ground soil, honeydew 

increased the abundance of the already existing soil bacterial populations, whereas ants 

promoted a more balanced structure between populations, but with different patterns. In 

this experiment, we could show, that aphids can increase nutrient availability for 

microorganisms inhabiting the litter and that ants alter the nutrient flow within the 

system and transfer of nutrients into soil. Thus, aphids have a strong impact on the 

belowground system, nutrient availability and microbial communities, and this effect is 

highly dependent on the tending activity of ants.  
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1.1. Supplementary data 
 

Figure S1 Experimental set-up, showing the microcosm harboring the ant population 

(=A. elatius side) and the pot harboring the Phaseolus vulgaris L. seedlings infested 

with Aphis fabae Scopoli (=P. vulgaris side). 

Figure S2 Illustration of the effects of aphids and aphid honeydew on the litter and the 

soil of the P. vulgaris side, the A. elatius side and the ground soil, as well as on the P. 

vulgaris and A. elatius plants. Effects determined by comparison of external ‘control’ 

without aphids and treatment with aphids and without ants and pane (‘A-H+’). 

Figure S3 Graphical summary of the effects of ants and aphid honeydew on the soil of 

the P. vulgaris and A. elatius sides, as well as the ground soil of experimental 

treatments. 

Figure S4 DGGE profiles (A. and B.) derived from the bacterial community of the 

ground soil of the four different treatments. For each sample 500 ng of PCR product 

were applied to a DGGE gel containing 9 % acrylamide and 45 to 60 % denaturant. The 

excised and sequenced banding patterns (Fig. 5) are marked. The different treatments 

are indicated as follows: A- = without ants; A+ = with ants; H- without honeydew; H+ 

with honeydew; control = without any treatment.  



                                                                                B.III  Ant mediated effects 

196 

 

 
Figure S1. Experimental set-up, showing the microcosm harboring the ant population 

(=A. elatius side) and the pot harboring the Phaseolus vulgaris L. seedlings infested 

with Aphis fabae Scopoli (=P. vulgaris side). 
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Figure S3. Graphical summary of the effects of ants and aphid honeydew on the soil of 

the P. vulgaris and A. elatius sides, as well as the ground soil of experimental 

treatments. 



                                                                                B.III  Ant mediated effects 

199 

 

 

Figure S4. DGGE profiles (A. and B.) derived from the bacterial community of the 

ground soil of the four different treatments. For each sample 500 ng of PCR product 

were applied to a DGGE gel containing 9 % acrylamide and 45 to 60 % denaturant. The 

excised and sequenced banding patterns (Fig. 5) are marked. The different treatments 

are indicated as follows: A- = without ants; A+ = with ants; H- without honeydew; H+ 

with honeydew; control = without any treatment. 
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Graphical Abstract 

 

 

Abstract 

Ants are recognized as one of the most functionally important and ecologically 

dominant animal groups in soils, but their influence on microbial diversity remains 

under-explored. We studied functional diversity of microorganisms in Lasius ant nests 

and surrounding soil from two different grassland habitats (Leptosol and Cambisol) by 

in situ respiration response. The degree of substrate usage of microorganisms varied 

with ant presence. Soil microorganisms present in ant nests preferred using ant-related 

substances such as melecitose, formic acid and phenylic acid. The enhanced initial 

respiratory response and cumulative respiration in nests compared to surrounding soil 

after addition of most substrates was more pronounced at the Cambisol site than at the 

Leptosol site. Denaturing gradient gel electrophoresis (DGGE) indicated differences in 

bacterial community composition. The results indicate that ants affect the structure and 

functioning of bacterial communities in grassland by nest building and providing 

organic substances. Furthermore, soil-nesting ants intensify differences in soil 

conditions and thereby enhance the overall habitat diversity for the microbial 

community. Variations in the impact of Lasius ants on soil microorganisms were more 

pronounced between grassland habitats than between ants of different life form (Lasius 

niger and L. flavus).  

 

Keywords 

Formicidae; Ant mounds; Microbial activity; Physiological profile; Substrate-induced 

respiration; Soil bacterial communities 
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Introduction  

Soil organisms are embedded in complex food webs that are fuelled by dead plant 

matter (detritus) and living plant roots (Wardle et al., 2004). These organisms are 

important structuring forces of belowground terrestrial ecosystems and drive 

decomposition, nutrient cycling and plant nutrition (Bardgett et al., 2005), thereby 

affecting plants and their consumers. Soil microorganisms form the base of soil food 

webs and they provide nutrients for plants and regulate populations of other soil 

organisms. Therefore, they are crucial for carbon (C) and nitrogen (N) cycling. Shifts in 

the activity of microbial communities due to environmental changes (e.g., soil 

management and climate change) have lasting effects on ecosystem functioning 

(Emmerling et al., 2002). Ants are important ecosystem engineers changing their habitat 

through nest building (Jones et al., 1994; Dauber and Wolters, 2000). Uptake of organic 

substances and foraging activities lead to the accumulation of nutrients within their 

nests (Wagner et al., 1997; Nkem et al., 2000). Thus, ants alter the resource availability 

of organisms that are less mobile and dependent on nutrients in their immediate vicinity. 

High nutrient availability in ant nests generates 'hot spots' for microbial activity that 

enhance nutrient turnover, soil fertility, primary productivity as well as plant and 

herbivore biomass. Bottom-up effects via increased nutrient input have been found to 

increase the number of juvenile Collembola and changed the community composition of 

spiders (Fountain et al., 2008). Thus, ants can induce a nutrient-based bottom-up effect 

on higher trophic level in aboveground as well as in belowground systems (Platner, 

2006).  

In this study, we analysed microbial community functioning by measuring the response 

of microorganisms to an array of different substrates added to soil from Lasius ant nest 

mounds and surrounding soil (physiological profiles). Further, microbial community 

structure was assessed by denaturing gradient gel electrophoresis (DGGE).soil from 

Lasius ant nest mounds and surrounding soil (physiological profiles). Further, microbial 

community structure was assessed by denaturing gradient gel electrophoresis (DGGE).   
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Material and Methods 

 

Sampling sites 

We chose two sampling locations with different soil characteristics and sampled Lasius 

ant nests and surrounding soil. A total of 10 Lasius ant nests were sampled in 

September 2007. The first sampling site (site 1) was located on the southwest facing 

slope of the Werra valley (Witzenhausen Freudenthal, Northern Hessen, Germany). The 

site is characterised by dry calcareous grassland at 180 m a.s.l. Three Lasius niger nests 

and three Lasius flavus nests were sampled. The former pasture at site 1 was abandoned 

20 years ago and the soil is now a shallow Rendzina (Leptosol) on Triassic limestone 

with a diverse herb layer dominated by Brachypodium pinnatum L. with a soil pH of 

7.4, mean annual temperature of 9 °C and average annual precipitation of 700 mm 

(Platner, 2006).  

The second sampling site (site 2) was located 3 km south of Göttingen (Lower Saxony, 

Northern Germany) near the river Leine at 160 m a.s.l. Only Lasius niger nests were 

present at this site, of which four were chosen randomly. The area was an abandoned 

grassland site dominated by Picris hieracioides L. The soil was a Cambisol on a loamy 

floodplain consisting on clayey silt of a soil pH of 7.5, mean annual temperature of 8.7 

°C and average annual precipitation of 639 mm (Schuch et al., 2009).  

Nest samples were taken to a depth of 10 cm from the middle of nest hill; control soil 

samples were taken at a distance of 1 m from the nest. Samples were sieved (4 mm) and 

stored at field moisture at 5 °C. 

 

Microbial metabolism 

The microbial community response to eight different substrates, belonging to four 

groups of organic compounds was investigated. Carbohydrates were added as D(+)-

glucose and D(+)-melecitose-monohydrate. Carboxylic acids were added as glutaric-, 

ascorbic-, formic-, and phenylacetic acid. Additionally, the amino acid L-tyrosine and 

the polymer α-cyclodextrine were used. Substrates were added as aqueous solution 

adjusting the water content to 70 % (dry weight) and were added equivalent to 3.2 mg C 

g
-1

 soil dry weight. Glutaric acid and cyclodextrine were added together with nitrogen 

(ammonium sulphate) at a mass ratio of 10:2 (Anderson and Domsch, 1980). We 

measured physiological profiles of microbial communities of all substrates using an O2-

microcompensation apparatus (Scheu, 1992) at 22 °C for 48 h. We distinguished the 
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maximum initial respiratory response (MIRR) and the cumulative respiration response 

(CRR) during microbial growth, which reflects the potential catabolic activity of soil 

microorganism (Scheu et al., 2002). Values for MIRR and CRR were calculated as the 

difference between samples with substrate addition and the control (no substrate 

addition; basal respiration, BAS). Microbial biomass (Cmic) and specific respiration 

(BAS/Cmic) was calculated according to the formula given by Beck et al. (1997) for 

substrate induced respiration. 

Lasius flavus and L. niger nest and control soil from site 1 were tested for species effect 

using a GLM, employing ‘ants’ to compare nest and control, and ‘species’ (testing L. 

niger vs. L. flavus) as factors.  

We inspected differences in soil conditions between sample sites by comparing control 

soil from site 1 with site 2 using analysis of variances with ‘site’ as factor. Basal 

respiration (BAS), microbial biomass (Cmic), initial respiration response (MIRR) and 

cumulative respiration (CRR) were analyzed employing GLM with ‘ants’ and ‘site’ as 

factors (Sokal and Rohlf, 2001). Statistical analysis was carried out using the software 

SAS 8.1 (SAS Institute Inc., Cary, NC). 

 

Microbial community structure 

Microbial community structure was analyzed by denaturing gradient gel electrophoresis 

(DGGE) of the bacterial community in each nest and the corresponding surrounding 

soil. Soil samples were stored at -80 °C until use. Genomic DNA was isolated from 250 

mg of soil by employing the UltraClean PowerSoil
TM

 DNA Isolation Kit (MO BIO 

Laboratories Inc., Carlsbad, CA, USA) according to the manufacturer´s protocol. The 

final DNA elution step was carried out with 100 µl water. The 16S rRNA gene was 

amplified with the universal bacterial primers BAC 341F (5´- 

CCTACGGGAGGCAGCAG-3´) and BAC 907R (5´-CCGTCAATTCCTTTRAGTTT-

3) according to Muyzer et al. (1995) and Muyzer and Smalla (1998). A 40 bp GC clamp 

(5´-CGCCCGCCGCGCCCCGCGCCCGTCCCGCCGCC-CCCGCCCG-3´) was 

attached at the 5’ end of the forward primer BAC 341F (Muyzer et al., 1995). The PCR 

mixture (50 µl) contained 5 µl 10-fold polymerase buffer (MBI Fermentas, St. Leon-

Rot, Germany), 200 µM of each of the four deoxynucleoside triphosphates, 2 mM 

MgCl2, 2 µM of each primer, 1 U of Taq DNA polymerase (MBI Fermentas, St. Leon-

Rot, Germany), and 20 ng soil DNA as template. The following thermal cycling scheme 

was used: initial denaturation at 95 °C for 2 min, 13 cycles of denaturation at 94 °C for 
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1 min, annealing for 1 min at a decreasing temperature gradient ranging from 64 °C to 

51 °C (1 °C decrease per cycle), and extension at 72 °C for 3 min. Subsequently, 12 

cycles of denaturation at 94 °C for 1 min, annealing for 1 min at 51 °C, and extension at 

72 °C for 3 min were performed. Finally, an extension period at 72 °C for 10 min was 

carried out. The PCR products were seperated on 1.5 % Agarose gels and purified using 

the CyclePure PCR purification kit (Peqlab Biotechnologie GmbH, Erlangen, Germany) 

following the manufacturer’s instructions. The concentration of the purified PCR 

products was quantified using a NanoDrop ND-1000 spectrophotometer (Peqlab 

Biotechnologie GmbH, Erlangen, Germany). Subsequently, approximately 500 ng of 

purified amplicons were separated by electrophoresis using the INGENY phorU system 

(Ingeny International BV, The Netherlands) applying a 9 % (wt/vol) polyacrylamide gel 

containing a 45 % to 60 % denaturing gradient (100 % denaturant consisted of 7 M urea 

and 40 % formamide). Electrophoresis was performed at 60 °C and 100 V for 16 h in 

one-fold TAE buffer (0.04 M Tris, 0.02 M sodium acetate and 0.001 M disodium), and 

afterwards the gels were stained with SYBR Gold (Invitrogen, Karlsruhe, Germany) for 

30 min. The resulting DGGE profiles were analyzed by using the GelCompare II 

software (Applied Maths, Kortrijk, Belgium). Patterns were converted into a presence-

absence matrix, and samples were grouped using the UPGMA method. Background 

subtraction was applied and position tolerance was set at 1 %.  
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Results and discussion 

 

Microbial metabolism 

Neither basal respiration and microbial biomass nor the cumulative respiration after 

addition of the different substrates differed significantly between mount materials of the 

two ant species. Thus, samples from both ant species were pooled for further analyses.  

Basal respiration in ant nests was significantly lower than in surrounding soil (2.37 and 

3.45 µg O2 g
-1

 soil dry wt h
-1

, respectively; F1,16=13.01, p=0.0024, factor ‘ants’ in GLM; 

Figure 1), whereas microbial biomass was not generally significant affected by ants 

(F1,16=1.53, p=0.2333, Figure 2). Basal respiration and microbial biomass differed 

significantly between the two sampling sites, (BAS: F1,16=38.31, p=<0.0001, Cmic: 

F1,16=9.42, p=0.0073, factor ‘site’ in GLM in each case; Figure 1 and 2). A marginal 

significant ‘ants’ × ‘site’ interaction for microbial biomass (F1,16=4.02, p=0.0622, ‘ants’ 

× ‘site’ in GLM) indicates that differences between sites were predominantly attributed 

to an increase in nest microbial biomass in Cambisol soil (site 2) and that the ant effect 

on soil microorganisms depended on nest site location.  

 

 

Figure 1. Influence of ants on basal respiration. Control soils are represented by grey bars and 

ant nests by black bars. Error bars depict standard deviations.  
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Figure 2. Influence of ants on microbial biomass. Control soils are represented by grey bars and 

ant nests by black bars. Error bars depict standard deviations. 

 

A separate one-factorial GLM revealed significant differences in microbial biomass 

between nest and surrounding soil in site 2 (F1,6=11.95, p=0.0135) The same trend was 

also recorded for the specific respiration: microbial biomass comparison between nest 

and surroundings in site 1 (nest 4.1, surrounding 4.8) revealed no difference, whereas in 

site 2 a strong decrease was found in ant nests (nest 0.8, surrounding 2.6). The lower 

specific respiration (BAS/Cmic) in control soil of site 2 (2.6 µg O2 h
-1

 mg
-1

 Cmic) 

compared to site 1 (4.8 µg O2 h
-1

 mg
-1

 Cmic) indicates higher resource use efficiency at 

site 2 (Anderson and Domsch, 1978). Out of the tested soil samples nests in site 2 

provide the best conditions for soil microbial development. 

Ants can affect the soil microbial community by altering soil conditions and nutrient 

availability. Accumulation of substances by ants generate 'hot spots' for microorganism 

by increasing NO3-N and PO4-P concentrations in nests (Nkem et al., 2000; Platner et 

al., 2001), but the effect varies with the nutrient status of the soil in which the nests are 

located (Frouz et al. 2003). For example, pH values in nests increased in acidic soil but 

decreased in alkaline soil. Additionally, as the content of available phosphorus (P) in the 

surrounding soil increased the enrichment of P in the nest was higher than outside the 

nest.  

In ant nests, the initial (MIRR) and cumulative respiratory response (CRR) were higher 

for each of the substrates, except cyclodextrine, compared to the control soil [MIRR 

increased by factors of 1.2 (glucose, ascorbic acid), 1.3 (glutaric acid, tyrosine), 1.4 

(formic acid) and 1.6 (melecitose, phenylic acid); CRRby factors of 1.3 (glucose, 
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tyrosine), 1.4 (formic acid), 1.5 (ascorbic acid, glutaric acid), 2.1 (melecitose) and 2.2 

(phenylic acid); Figure 3].  

  

 

Figure 3. Initial respiration response (MIRR; A.) and integral of respiration response (CRR; B.) 

after addition of eight different substrates in nests (black bars) and control soils (grey bars). 

Glc=glucose, mel=melecitose, asc=ascorbic acid, glu=glutaric acid, tyr=tyrosine, 

cyc=cyclodextrine, for=formic acid, phe=phenylic acid, +N=added together with ammonium 

sulphate. 

 

The initial and cumulative respiratory responses to most substances were significantly 

affected by sampling site (Table 1). The ant effect on MIRR to melecitose, tyrosine, 

ascorbic and phenylic acid, and the ant effect on CRR toascorbic and phenylic acid was 

dependent on ant nest location (significant interaction between ‘ants’ × ‘site’ for MIRR 

and CRR to the different substrates, Table 1). This site effect was predominantly caused 

by strong response in site 2 and less by changes in site 1. The strong response of MIRR 

and CRR in Cambisol soil (site 2) was associated by the high microbial biomass in ant 

nests at this site. 
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The tested substances included three ant-related substances: melecitose, as the dominant 

sugar in aphid honeydew (Fischer et al., 2005) to attract ants (Kiss, 1981); and phenylic 

acid and formic acid, excreted by ants and suspected to have antibiotic properties 

(Hölldobler and Wilson, 1990). Respiration was highest after addition of these ant-

related substrates in ant nest soil from site 2. MIRR increased for melecitose, formic 

acid, and phenylic acid 2.4-, 2.3-, and 2.1-fold, compared to surrounding soil at site 2, 

for CRR 2.4-, 1.3-, and 2.7-fold, respectively. Melecitose accounts for 40.5 % of 

carbohydrates in honeydew of lime aphids (Dighton, 1978). Ants actively tend the 

aphids and collect their sugar-rich droppings reducing the amount of honeydew that 

reaches the soil surface by 50 % (Seeger and Filser 2008). Tending activity, the 

accumulation of prey, organic substances, and the bioturbation by nest building can 

increase carbon availability for microorganisms in nests and consequently promote 

microbial biomass. Formic acid and phenylic acid were expected to reduce microbial 

respiration because of their antibiotic activity, but in our study they increased microbial 

respiration, which indicates an active utilization by microorganism. 

Higher respiration response to substrates and lower basal respiration in ant nests, in 

particular at site 2, compared to surroundings can be explained by ants` activity as 

ecosystem engineers (Jones, 1994; Dauber and Wolters, 2000), which influence 

physical and chemical properties of soils by nest construction, and foraging and 

consumption of food (Nkem et al., 2000; Frouz et al., 2003).  

The accumulation of ammonium, nitrate and phosphate in ant nests is well documented 

(Wagner et al., 1997; Nkem et al., 2000; Platner et al., 2001) and microorganisms in soil 

are controlled by energy and nutrient availability. Commonly microbial growth in soils 

is primarily limited by carbon, but the utilization of different C resources depends on 

the availability of other nutrients (Scheu and Schaefer, 1998). The site-dependent 

nutrient availability for soil microorganisms can explain the differences in substrate 

utilization between sites. The shallow Leptosol of site 1 has severe limitations to rooting 

and the excessive internal drainage. Combined with the warm microclimate on the south 

exposed hill slope, severe droughts in the summer can occur (Platner, 2006), which 

inhibit microbial development. In contrast, moderately developed and base-saturated 

Cambisols of temperate regions (“Braunerden”), which derived from floodplain loess 

(as found at site 2), are productive soils. Thus, different nutrient limitations in habitats 

can mask ant effects, especially, when different sites or seasonal changes are compared 

(Frouz et al., 2003; Platner, 2006).  
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In control soils, differences between site 1 and site 2 were relatively low for MIRR in 

the case of following substrates: melecitose 0.58, ascorbic acid 1.88, tyrosine 0.19 and 

phenylic acid 1.85 µg O2 g
-1

 soil dry wt h
-1

. This was in contrast to nest soils, where 

strong differences between sites were detected in response to these substrates: 

melecitose 14.54, ascorbic acid 15.71, tyrosine 12.89 and phenylic acid 9.21 µg O2 g
-1

 

soil dry wt h
-1

. 

Similar to the MIRR, local differences of CRR were stronger in nests (glucose 525, 

melecitose 297, ascorbic- 436, formic- 403 and phenylic acid 973 µg O2 g
-1

 soil dry wt 

h
-1

) than in controls (glucose 222, melecitose 43, ascorbic- 66, formic- 390 and phenylic 

acid 231 µg O2 g
-1

 soil dry wt h
-1

). These results indicated that ant presence in site 2 had 

a stronger impact on soil microbial communities than in site 1. This might be a result of 

differences in nutrient availability and initial species diversity between sampling sites, 

at least during summer. In spring and late summer, Platner (2006) could detect a 

significantly higher microbial biomass in ant nests from site 1 compared to the 

surrounding soil, but not in very dry time periods or soil horizons. These observations 

and experimental results are consistent with our results. 

Changes in microbial community composition can influence higher trophic levels 

because microbes represent the basis of the belowground food web (Pokarzhevskii et 

al., 2003). At our study site 2, Schuch et al. (2008) detected up to four times higher 

densities of Collembola next to nest mounds of L. niger than at a distance of 2 m. 

Laakso and Setälä (1998) detected that bacteria-feeding nematodes were more frequent 

in nests of Formica aquilonia compared to surrounding forest soil, indicating changes in 

the composition of bacterial based food web. Thus, knowledge on community 

composition of microorganisms and their range of substrate utilization is important for 

understanding key ecological processes. The use of physiological profiles is a promising 

tool to study differences in the functional diversity of soil microbes. Nevertheless, to 

understand key ecological processes, information on microbial community structure is 

important, which we obtained by molecular approaches.  
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Figure 4. Dendrogram showing cluster analysis of the digitized DGGE bacterial profile. The 

UPMGA method was applied, which takes the presence or absence of bands at certain positions 

in each lane into account. 

 

Bacterial community structure  

In order to provide robust assessment of patterns, three independent PCR reactions were 

performed for each sample. The average number of bands per sample was 14.2 ± 3.5.  

The DGGE patterns of nests for the two ant species, L. niger and L. flavus were similar 

to those of the respective surrounding soil for both sampling sites. Nevertheless, a 

higher species abundance within the bacterial communities of the nest samples was 

indicated, as the bands from the nest samples showed a greater intensity than those 

derived from the surrounding soils. The UPGMA dendrogram derived from the cluster 

analysis of the obtained DGGE patterns showed two clearly separated groups (Figure 

4). All nest bacterial communities grouped together and were separated from the 

surrounding soil communities. Two surrounding soil samples of Lasius niger nests from 

site 2 grouped outside and were separated from the surroundings soil and the nest 

bacterial communities. Within the nest cluster, matches to site occurred more often than 
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matches to different Lasius species, indicating that site differences affected bacterial 

communities in nests stronger than differences in ants’ life strategy. A similar trend was 

shown during cluster analysis. 

Correspondingly, the DGGE patterns of bacterial communities showed site-dependent 

differences of the ant nests. In site 1, DGGE band patterns differed only slightly 

between nests and surrounding soil, in particular one band, which occurred in the profile 

of Lasius niger mound of site 1 (see arrow in supplementary Figure S1). The pattern of 

site-dependent differences was observed for microbial biomass as well as in the 

physiological profiles.  

The DGGE profile of the nest samples showed a larger number of bands, which were 

also more defined and intense compared to the surrounding soil samples. This indicates 

a higher abundance of species represented by these more intense patterns. Taking the 

limitation of the DGGE technique into account, that one band may represent more than 

one species (Muyzer, 1999), therefore we avoided the calculation of richness and 

diversity indices. However, these more intense DGGE patterns of the nest samples may 

reflect the ant activity, which led to changes in microbial biomass. Gronli et al. (2005) 

pointed out that the most consistent parameter for the variation in microbial soil 

community was the ´block`, suggesting a strong spatial structure in the soil microbial 

community. Conditions for microbial development can differ between sites and the 

initial species diversity of soil organism strongly depends on previous land use 

(Hedlund et al., 2003). The influence of ant activity on the microbial community can be 

dependent on the site specific initial diversity of microorganism, soil nutrients, soil 

water content, soil structure, and other characteristics of the respective habitats. Nutrient 

limitation for microorganisms can differ between environments, in some soils nutrients 

are already available for microorganisms, but in nutrient-poor soils ants can provide the 

limiting resources. In the latter case, the effects of ants on the microbial community 

structure and activity are strong. However, the clear ant effect on bacterial community 

structure, superposing site and ant species effects, as revealed by the cluster analysis of 

the digitized DGGE profiles, confirm the strong bottom-up effects of these ecosystem 

engineers.  
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Conclusions 

Ant activity led to changes in bacterial communities and physiological profiles, but the 

degree of the ants’ impact on microbial communities and their activity depended on nest 

site. This general effect was demonstrated by PCR-DGGE as well as by respiration 

analysis. The strong variation in the physiological activity between different habitats 

can mask the ant effect and make comparisons between sites or other studies difficult. 

In our study, site more strongly affected microorganisms than the ant species that 

inhabit the nest.  

In ant nests from site 2 in Reinhausen (Lower Saxony, Germany) we detected high 

microbial biomass and respiration response, which was reflected in DGGE analyses by 

more diverse bacterial community patterns and higher abundance of bacterial soil 

community members. Similar patterns of physiological and DGGE profiles suggest that 

respiration response to the different substrates predominantly reflected activity of 

bacterial communities. The structures of these bacterial communities were clearly 

separated between soil from ant nest mounds and surrounding soil. In summary, the 

results indicated that ants affect both the structure and functioning of soil 

microorganisms in their nests by nest building activity and accumulation of organic 

substances with the effect varying with soil fertility.  
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B.IV Microbial communities inhabiting biological soil crusts 

An additional project was the assessment and comparison of microbial communities 

present in biological soil crusts. The respective soil crusts were sampled at two sites in 

extrazonal mountain dry steppes in northern Mongolia. The two sampling sites differed 

in their disturbance history and thus differed in the development stages of the specific 

biological soil crusts. To analyze the microbial community structure of these soil crusts 

16S rRNA-gene libraries were constructed and sequenced. 
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Bacterial diversity in biological soil crusts from  
extrazonal mountain dry steppes in northern Mongolia 

A. Kemmling, B. Pfeiffer, R. Daniel & M. Hoppert

Abstract
Biological Soil Crusts (BSCs), consisting of prokaryotes, microalgae, lichens, mosses and even-
tually small vascular plants, cover wide areas in arid and semi-arid environments. In the present 
study, the microbial diversity of these crusts was explored at extrazonal mountain steppe sites 
in the western Khentej (Northern Mongolia). At the study site the Siberian taiga borders on the 
Mongolian-Daurian forest steppe, resulting in a unique intermixture of the dark taiga, the light 
taiga, and forest steppe (DULAMSUREN 2004). Due to the presence of boreal, temperate and 
dauric elements the forest steppe is eminently rich in species (MÜHLENBERG et al. 2004).

BSCs in the western Khentej only occur in mainly non-forest areas of the Carex amgunensis-, 
Festuca lenensis-, Pulsatilla ambigua- and Artemisia frigida-mountain-dry-steppe and Ulmus 
pumila-open woodland (DULAMSUREN 2004). BSCs at these sites contain small vascular plants, 
mosses, lichens, and different microorganisms in varying ratios. In this communication, the diver-
sity of BSCs, especially with respect to bacterial phylotypes in two different sites with a diverging 
degree of disturbance is presented. According to results based on 16S rDNA analysis, the relative 
abundance of Cyanobacteria decreases on disturbed sites, whereas abundances of other large 
groups increase. Generally, the more disturbed site appears to be more diverse. 

Key words: biological soil crusts, biodiversity, arid environment, western Khentej, Mongolia

Introduction
Biological soil crusts (BSCs), also known as microbiotic, cryptogamic, cryptobiotic or biogenic soil 
crusts, are highly complex systems. Intriguingly, crust structure and morphology is determined by 
prokaryotes, eukaryotic microalgae and multicellular cryptograms. They occur on the upper soil 
layer and are some millimeters to several centimeters thick. BSCs of this study are composed 
by mosses, microfungi, lichen, diatoms, green algae, cyanobacteria, and other prokaryotes. In 
addition, the BSCs provide a habitat for higher organisms like small vascular plants and insects. 
They are ubiquitous and appear generally at locations where higher vegetation is disturbed or 
is completely lacking (e.g. parts of cold and hot deserts, dunes and mountain dry steppe sites). 

Climate in Mongolia is marked by extreme continentality as the region is surrounded by mountain 
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period lasts just 90–120 days. Frost may occur as late as May and as early as August, snowfall in 
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75-90 % of the annual precipitation occurs as summer rain, especially in July and August. Thus, 
the main growing season is in summer. Winters are cold and dry; the thickness of the snow cover 
does not exceed 10-15 cm.

Khan Khentej is a low mountain range that occupies 48.000 km2 and borders to Siberia in the 
North. It is part of the transbaicalic mountain system, which mostly consists of proterozoic and 
paleozoic geological formations, mainly granite. The elevations range from about 2800 m above 
sea level in the Central Khentej to about 600 m in the Northeastern foothills. Khonin Nuga is 
located Northwest of the center. The river valleys are approximately 900 m above sea level, the 
highest elevations are at around 1600 m. The soils in Khentej are strongly affected by permafrost. 
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The climatic factors and the resulting cryogenic processes lead to soil podzolization (SCHEFFER 
& SCHACHTSCHABEL 1995, WYSS 2006). Generally, it should be expected that the podzolic 
soils, depleted in organic carbon, favor development of BSCs. 

Valleys of the Khan Khentej mountain range are mostly oriented from East to West, the moun-
tain ridges are mostly even or rounded. The main wind direction perpendicular to the mountain 
ridges (north to northwest) leads to a multitude of mesoclimatic conditions, with considerable 
variations depending on elevation and exposition. There are big differences in the mesoclimate 
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Slowdown and cooling down of the ascending air masses lead to increased precipitation at the 
northern slopes. The lee side (southern slopes) accumulates less precipitation (OGORODNIKOV 
1981). With the distance to the mountain ridge at the southern slope the temperature increases, 
precipitation and air moisture decrease (VIPPER 1953). The exposition also affects radiation. The 
northern slopes are normally afforested, while on southern slopes the different types of mountain 
dry steppe occur (DULAMSUREN 2004). Between the sparse cover of mostly low vascular plants 
is enough space for the settlement of BSCs.

The appearance of a BSC strongly depends on its degree of succession. In many regions, even 
in temperate latitudes, initial states of BSCs form after a disturbance by destruction of the original 
vegetation. Just in moist sites, the BSCs are overgrown by fast growing and more competitive 
ruderal plant species. The BSC in its initial state is often dominated by Cyanobacteria, which in 
many cases are mobile by gliding. These Cyanobacteria secrete polysaccharide sheaths, and 
spread quickly due to their mobility, often leaving behind the empty sheaths (MAZOR et al. 1996). 
These sheaths are holdfasts and organic substrate for other microorganisms. The polysaccha-
ride absorbs and stores water for longer time periods (KEMMLING et al. 2001). Based on the 
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settle in this microhabitat. Over time, horizontally layered structures may develop within complex 
BSCs, including anaerobic zones (e.g. GARCIA-PICHEL & BELNAP 1996). More complex crusts  
that contain mosses or lichens, may only form where BSCs are not outcompeted by faster grow-
ing vascular plants. In their initial stages, BSCs are often pioneer settlers at disturbed locations, 
but their further development depends on the existence or absence of disturbances like natural 
<�%�	���� ���	�"� �� X��������� \]��� ��%� ��� ���	$���$� ��� 	�$	��
��� ��� ���
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systems. 

Little knowledge on BSCs or prokaryotic diversity of dryland soils for Northern Asia is available, 
including the Mongolian steppe (BELNAP et al. 1999, rev. by BÜDEL 2001), which differs greatly 
from Khan Khentej. For Siberia, only a few observations were documented, implying the pres-
ence of diverse BSCs. Studies by NOVICHKOVA-IVANOVA (1977, 1980,1988) dealt with the di-
versity of soil algae in several deserts and steppes of Turkmenistan and the Gobi desert. All in all, 
more than 400 species of algae were discovered and it was observed that the microbial biomass 
strongly depends on soil conditions and moisture content of the soil. 
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the microbial communities of BSCs at two different sites (cf. AMANN et al. 2003).

Material and methods
Sample collection and DNA extraction
The samples were collected in July�'��}��
�
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sites, dry specimens of BSCs were collected at three different sampling sites. The specimens of 
each site were combined, macerated and intensively mixed by shaking. 0.25 g of the resulting 
powder was used for the following DNA extraction. DNA was extracted with the Power SoilTM 
DNA-Kit according to the manufacturers protocol (MoBio, Carlsbad, California, USA). 
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Clone library construction
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tained 5 μl of Mg-free polymerase buffer (MBI Fermentas, St. Leon-Rot, Germany), 200 μM of 
each of the four deoxynucleoside triphosphates, 1.75 mM MgCl2, as well as 2 μM of each of the 
primers, 1 U of Taq DNA polymerase (MBI Fermentas), and 25 ng of isolated DNA as a tem-
plate. The PCR was performed in a Mastercycler Gradient thermal cycler (Eppendorf, Hamburg, 
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primer 8F (see table 1). 

Table 1:  PCR-primers

primer sequence (5`-3‘) �������	 reference

8F GGATCCAGACTTTGATYMTGGCTCAG Bacteria BEN-DOV et al. (2006)

1114R GGGTTGCGCTCGTTRC Bacteria �$	X��
�$��������]�@-
BACH & PACE (1995)
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agarose gel. DNA fragments of expected sizes were excised and recovered from the agarose 
using the PeqGold Gel Extraction Kit TM (PeqLab Biotechnologie GmbH, Erlangen, Germany) 
according to the manufacturers protocol. 100 μg DNA was ligated with a topoisomerase into 
the vector pCR2.1-TOPO® (Invitrogen, Karlsruhe, Germany) and afterwards cloned into heat 
shock-competent E.coli-TOP10®-cells according to the manufacturers protocol. After plating on  
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Qiagen Plasmid Midi Kit (Qiagen, Hilden, Germany) was conducted. Plasmids were checked 
for inserts by digestion with EcoRI restriction endonuclease (MBI Fermentas, St. Leon-Rot, 
Germany). 

Sequencing and phylogenetic analysis of bacterial libraries

16S rRNA gene sequencing was performed by the Göttingen Genomics Laboratory (Göttingen, 
Germany). The Sanger sequencing reaction was conducted with the primer pair 8F and 1114R. The 
raw sequences were then edited with the Staden Package (STADEN et al., 2000). Initially, Pregap4 
(BONFIELD et al., 1995) was applied to remove vectorial contaminations and less-quality se-
quences. After Pregap4 processing the sequences were assembled with the program Gap4. This 
was done via the PHRAP algorithm (http://bozeman.mbt.washington.edu/phrap.docs/phrap.html), 
for detection of sequence overlaps. Assembly mistakes were corrected manually. Afterwards all 
sequences were adjusted into sense-direction with Orientation Checker (http://www.bioinformat-
ics-toolkit.org/). Chimera were detected with Bellerophon chimera detection program (http://foo.
maths.uq.edu.au/~huber/bellerophon.pl.; HUBER et al. 2004) and Mallard (ASHEL-FORD et 
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HANDELSMANN 2005) were determined using DOTUR. For species-level phylotypes, genetic 
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Shannon-Weaver and Simpson indices (as a description of the diversity within a dataset), abun-
dance-based coverage estimator (ACE) as well as nonparametric abundance estimator based 
on one- and two-elemental masses (Chao1) and rarefaction curves were also calculated with 
DOTUR. Sequences generated in this study have been deposited to GenBank under the acces-
sion numbers JX254918-JX255375.
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Soil chemistry and other habitat conditions

50 g samples of dry soil taken from the O-horizon were collected at three different sampling sites 
within the two sites and mixed afterwards. The soil samples were sieved with a 2-mm-sieve.  
The soil chemical parameters (pH, pHKCl, C/N) were determined according to FENDER et al. 
(2012). 

The maximum water holding capacity (WHCmax) was measured gravimetrically using 20 g dry soil. 
The soil was saturated for 30 hours with water and was weighted again. The resulting mass dif-
ference represents WHCmax in grams stored water per gram dry soil. 

The mean temperature of the ground was measured according to PALLMANN (1940) for 10 days 
during the sampling period on topsoil, on the basis of sucrose hydrolysis to “invert sugar” (glucose 
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stages in development of BSCs dominated by cyanobacteria. For this they used the observation 
that the cyanobacterial crust progressively darkens during succession (HOUSMAN et al. 2006), 
thereby providing UV protection for less pigmented species (BOWKER et al. 2002). In some 
regions, instead of Cyanobacteria, mosses are the important colonizers of the BSCs (e.g. READ 
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Cyanobacteria and mosses. Lichen-containing BSCs were interpreted as later stages in crust 
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��X��
��	���������#���<��[	
%��	O��Collema sp., then assumedly Cladonia sp. and 
Psora sp. and later the complex leafy lichen Xanthoparmelia sp. Based on this, we assume that 
the BSCs in site A in average are older, because they contain complex leafy lichens like Xan-
thoparmelia spec. We also found thinner crusts of the initial type.

It should be expected that the BSCs are particularly affected by trampling of livestock. Non-
anthropogenic effectors are erosion by wind, rain, wild animals or slope movement. The last 
one especially applies at the study site B. Crust damage through trampling cause loss of crust 
biomass and a reduction of the cryptogamic species diversity (rev. by ELDRIDGE & KOEN 1998). 
Other factors such as air pollution, application of herbicides or motor vehicles may be excluded 
for our particular site.

The capacity of regeneration for BSCs varies, depending on species composition, season, and 
organic carbon contents. Dry BSCs are mostly brittle and heavily affected by mechanical com-
pression and shear forces, other than moistened BSCs (HARPER & MARBLE 1988). Moreover, 
the crust-building organisms are only active in a wet state; regeneration of the dry crust is not pos-
sible (LANGE 2001), which restricts the metabolic activity, crust regeneration and growth mainly 
to July and August. 
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chemical parameters were determined. Table 2 shows an overview of the topological, soil chemi-
cal and plant ecological differences of both study sites. The soil pH value of the O-horizon of site A 
is between 6.7 and 6.8 and that of site B at 7.7 (neutral – slightly alkaline). The pHKCl as indicator 
for the potential acidity of the soil is quite low for both sites (-0.39 [A] and -0.17[B]). The C/N-ratio 
of site A is between 11.24 and 11.64 and of site B at 10.98. Reference values for the C/N-ratio 
are approximately 11 for grassland, 14 for farmland soils, and 28-50 for forests (SCHEFFER & 
SCHACHTSCHABEL 1992). The maximum water holding capacity of the organic soil compo-
nents (WHCmax) depends on the width of the pores (compaction parameters) and therefore on 
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1997). The maximum water holding capacities of the upper soil of the both sites are equal.
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Fig. 1:  Study sites and appearance of BSCs. 
A: Site A, B: Site B, C: Typical moss-
cyano-bacteria-dominated BSC in site 
B, D: Typical mixed BSC with Psora 
luridella, Cladonia furcata and different 
mosses in site A, E: Xanthoparmelia- 
dominated BSC in site A in situ, F: Mi-
crocoleus-like Cyanobacteria cultured 
from samples of site B (micrograph 
$�<	�
	�������<�%�����
������������
bar represents 5 μm).
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At slope A there is a wide range of different expositions, (SE - SW). The exposition of slope B is 
orientated south to southwest; this slope is, on average, steeper. 

Table 2:  Characteristics of the sites

characteristics slope A slope B

disturbance low high

location UTM: 48U0667396 5438800 UTM: 48U0666979 5440021

height 1002 m above sea-level 954 m above sea-level

exposition `=����'��� `�����''��

inclination '������� =�������

position in the land-
scape

wooded at the foot of the hill, 
but no shading in the BSC 
X��$

unforested, oriented 
towards the river valley

number of characteristic species for 

 Artemisia frigida - MDS 4 2

 Carex amgunensis - MDS - -

 Festuca lenensis - MDS 1 1

 Pulsatilla ambigua - MDS - -

 Ulmus pumila - OWL 2 2

Plant cover 

��������������� 60 – 95 10 – 40

BSC type dominating
 Xanthoparmelia spec., 
 Cladonia spec., Psora luridella,
 Catapyrenium lachneum

  Catapyrenium lachneum, 
  Collema spec., mosses,
  initial crusts with algae

BSC coverage 10 – 70 % 0 –10 %

Number of 
cryptogamic species 18 6

pH 6.74 7.67

����
��������������� -0,39 -0.17
Quantities of heat % 
inverted (100 % = com-
pletely shaded)

40.28 (34.69-50.68) 49.15

WHCmax (g water/g soil) 0.6 0.6

Ctotal (mmol/g) 2.93 2.2

Ntotal(mmol/g) 0.26 0.19

Corg (mmol/g) 2.91 2.09

Corg/Ntotal (mol/mol) 11.43 10.98
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Fig. 2a:  Rarefaction analyses by the program DOTUR for site A.

Fig. 2b:  Rarefaction analyses by the program DOTUR for site B.
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Site A however is situated behind a forested hill and less affected by grazers than site B, as es-
timated by the amount of hoofprint and feces. Lichens of the genera Psora and Cladonia were 
dominant, Xanthoparmelia and Collema were frequent. The cover with phanerogams was consid-
erably higher than at site B.

For phylogenetic analysis, a total of 259 (site A) and 258 (site B) high-quality 16S rRNA gene 
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bacterial diversity at phylum level is near saturation, whereas the bacterial diversity on species 
level is even after the evaluation of 260 sequences far away from saturation.

Table 3: Detected OTUs (operational taxonomical units) compared with 
estimated values

site distance number of OTUs ACE* Chao1 ** Shannon-Weaver***

A
0.03 104 304 282 3.93

0.2 23 26 25 2.12

B 
0.03 168 483 494 4.93

0.2 26 33 30 2.64

* abundance based coverage estimator (ACE), not parametric abundance estimator based on 
abundance (> 10) and rareness (< 10) of OTUs; ** not parametric abundance estimator based on one- 
and two-elemental masses; *** Shannon-Weaver-index of diversity; as higher as more diverse

The amount of OTUs detected via DOTUR analysis at a genetic distance of 0.03 (at least 97 % 
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via the coverage estimators (ACE) and of Chao1. For site A, at a distance of 0.03 (species level) 
coverage of approximately 35 % was achieved. For a genetic distance of 0.2 (phylum level) 
25 to 26 OTUs were expected by the richness estimators and 23 were in fact detected. This 
corresponds to a coverage of approximately 90 %. For the site B, similar values were determined 
(35 % at species level, 80 % to 85 % at phylum level). Differing values result from the two different 
estimation methods ACE and Chao1. It has to be pointed out that for genetic distances below 
5 % the rarefaction analyses rather underestimates bacterial diversity whereas Chao1 rather 
overestimates it (ROESCH et al. 2007). The Shannon-Weaver index, describing the biodiversity 
	�� �� �<��	X�� ���<��� �� �	
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bacterial diversity of BSCs, values between 2 and 5 were frequently found (e.g. NAGY et al. 
2005, FIERER & JACKSON 2006, BACHAR et al. 2010, ABED et. al. 2010), although the different 
methods used by various authors have to be taken into account. Furthermore, the Shannon-
Weaver index depends on the amount of samples; for direct comparison, this amount should be 
approximately equal. Concerning our own study, it is obvious that the bacterial diversity on site B 
is higher than on site A. This was not expected, as at site A an older and higher developed crust 
cover was observed. Generally, disturbance reduces biodiversity in BSCs with respect to higher 
cryptogams (mosses, lichens) and vascular plants (ELDRIDGE & KOEN 1998). KUSKE et al. 
(2012) also observed after 10 years of human foot trampling a decline in the number of individuals 
of the Cyanobacterium Microcoleus vaginatus, besides the decrease in higher cryptogams (see 
also below). In contrast, the intermediate disturbance hypothesis (CONNELL 1978) points out 
that site with intermediate rates of disturbance will show highest species diversities. Supporting 
observations were made in various studies (HUANG et al. 2011, MARILLEY & ARAGNO 
1999). According to our example, disturbance may lead to an increase in diversity of bacterial 
communities.
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overinterpreted. Low abundant phyla (Planctomycetes, Firmicutes) may have escaped from 
analysis or may be underestimated due to technical limitations during DNA extraction. Five phyla 
(Bacteriodetes, Actinobacteria, Cyanobacteria, Acidobacteria and Proteobacteria) are highly 
abundant in both sites, but at different proportions. Bacteroidetes represent at site B 18.6 % of 
all sequences, while they are less abundant at site A (9.6 %). The abundances of Actinobacteria 
(6.6 % at B and 8.7 % at A), and the largely unknown Acidobacteria (14.4 % in B, 10.6 % in A) 
are similar at both sides. Proteobacteria are a phylogenetically diverse group of Gram negative 
bacteria, among them typical soil inhabitants, representing 25.3 % of all sequences at site B 
and 33 % of all sequences at site A. It has to be noted that the subgroup of Deltaproteobacteria 
within the Proteobacteria is completely missing at site A. For Cyanobacteria the differences in 
abundance were highest among all groups (9 % in B, 24 % in A). 

Fig. 3: Phyla distribution of the 16S rRNA gene sequenc-
����
��	
�������$�\"�����$����|8������	X��
	��
(MAIDAK et al. 1994).

It is obvious that the sites differ 
in diversity of the bacterial com-
munities, but also in the propor-
tions of abundant groups This is 
particularly the case for Cyano-
bacteria. Though the dominance of 
�%�����
��	�� 	�� \]���� ����$� ��
�	����<	�� 	$��
	X��
	�� ��$���
spectrometry is widely known (see 
above), analysis based on environ-
mental rRNA gene sequences are 
still rare. ABED et al. (2010) de-
scribed bacterial diversity of desert 
BSCs from the Sultanate Oman 
where Cyanobacteria were found to 
be dominant, representing 80 % 
of all sequences, and Proteobac-
teria are the second largest group. 
BACHAR et al. (2010) showed that 
the abundance of Cyanobacteria 
increased with aridity of sites in the 
Negev desert (Israel). However, 
in their study, Actinobacteria were 
dominant, followed by Proteobacte-
ria and Acidobacteria. 

Many authors, who examined fac-

��� 	������	��� 
��� ���
��	��� ��-
munity in soil found the pH to be 
important, sometimes it was de-
scribed as most important factor 
(LAUBER et al. 2009, JONES et al. 
2009). NACKE et al. (2011) detect-
ed a positive correlation between 
the phyla Bacteroidetes and Ac-
tinobacteria, and soil pH, but at a 
much broader pH range as on the 
sites described here. 
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2003) or texture (SESSITSCH et al. 2001), nitrogen availability (FREY et al. 2004) or surrounding 
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ZUL et al. (2007) observed that the presence of higher plants may affect the species composition 
of bacteria even outside the rhizosphere. 

KUSKE et al. (2012) reported a reduction of cyanobacterial species and an increase in other 
bacterial phyla in Colorado Plateau BSCs after disturbance by trampling, which is in accordance 
with our observations. Under stress conditions other phyla may then replace Cyanobacteria in 
the crust cover and diversity may increase. Thus, the abundances of phylogenic groups may be 
���	��	X���
�<�����
������$	�
��������#	
�����<��
�
�\]����
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 “When things get too complicated, it sometimes makes sense to stop and wonder: Have 

I asked the right question?” 

 Enrico Bombieri (*1962) 

(Author and Journalist) 

 

 

C. Discussion  

Microbial diversity, abundance, and activity in soils depend on physiochemical 

conditions and resources, such as pH, temperature, salinity, availability of minerals, and 

nutrient content. Soil-inhabiting microorganisms are metabolically diverse and play a 

key role in nutrient cycles. Thus, microorganisms in return influence the 

physiochemical conditions of the soil habitat, and impact ecosystem functioning. The 

main objective of this project was to assess the impact of tree species identity, tree 

species diversity, leaf litter overlay, N fertilization, and ant activity on soil prokaryotic 

diversity, community composition, and activity. Therefore, eight studies were 

conducted in the laboratory, in climatic chambers, and in the field. These studies can be 

devided into three major topics:  

 

1) Effect of tree species identity, tree species diversity, leaf litter presence and 

sampling time on soil microbial communities  

2) Impact of N fertilization on soil microbial communities and greenhouse gas fluxes  

3) Influence of Lasius ants acting as ecosystem engineers  

 

For the analyses of prokaryotic community composition and diversity, amplicon-based 

sequencing and denaturing gradient gel electrophoresis (DGGE) were employed. 

Diversity and richness estimations were calculated and the impact of the respective 

influencing factor was investigated by statistical analyses.  
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1. Effect of tree species identity, tree species diversity, leaf litter presence, and 

sampling time effects on soil microbial communities 

The soil microbial communities analyzed in Chapter B.I were influenced directly and 

indirectly by differences related to tree species, such as leaf litter or root exudation. The 

DGGE-based cluster analyses, as well as the amplicon-derived data of the first study, 

suggest that leaf litter decomposition and its presence as a covering layer affects soil 

bacterial community composition in pH-stable soils (Pfeiffer et al. 2013). It was shown 

that tree litter affected the nutrient status and the soil pH in the upper soil horizon 

(Guckland et al. 2009; Jacob et al. 2009; Thoms et al. 2010). Leaf litter differs in its 

nutrient composition depending on the tree species and thus differentially affects soil 

nutrient pools. Litter originating from Fagus sylvatica has the lowest and Fraxinus 

excelsior the highest N and P concentrations compared to Tilia spp., Carpinus betulus, 

Acer pseudoplatanus, and Acer platanoides (Jacob et al. 2009). Additionally, it was 

shown that the C:N ratio, an indicator of tissue quality and N availability, and the C:P 

and lignin:N ratio were negatively correlated with leaf litter decomposition (Jacob et al. 

2010). Beech litter has a higher C:N ratio and litter content than ash litter and is 

regarded as low-quality litter (Jacob et al. 2010). High-quality ash litter is decomposed 

fast and disappears after two years in the field (Jacob et al. 2009). A study revealed that 

the microbial community structure in autumn, assessed by phospholipid fatty acid 

analysis (PFLA), was primarily influenced by beech litter and the effect of this tree 

species on soil pH values (Thoms and Gleixner 2013). In early summer, the microbial 

community was influenced more directly by tree species, as higher microbial 

abundances occurred in sites with increased amounts of high-quality litter, such as ash 

litter (Thoms and Gleixner 2013).  

Nutrients originating from litter are channeled to soil via litter leaching and microbial 

driven decomposition. As microorganisms need C and N for their growth, the nutrient 

availability in soils has the greatest effect on microbial abundance and community 

composition (Thoms et al. 2010). Litter species qualities differently affect soil nutrient 

stocks, in which repeated input of low-quality litter results in significantly lower soil 

nutrient stocks (Guckland et al. 2009; Thoms and Gleixner 2013). Moreover, the 

decomposition and leaching of different litter qualities influences the rate of soil 

acidification (Guckland et al. 2009). Soil acidification was excluded as an influencing 

factor in the first survey, as the investigated soil had a high natural carbonate content 
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buffering soil acidification (Pfeiffer et al. 2013). Another factor indirectly influencing 

soil microbial communities indirectly is the amount of leaf litter present as a cover layer 

on the forest floor which influences abiotic factors such as soil temperature and 

moisture (Chemidlin Prevost-Boure et al. 2011). This is in accordance with the results 

from the first study, which suggests a growing and persistent influence of the leaf litter 

layer on the soil-inhabiting bacterial community over time (Pfeiffer et al. 2013). The 

amount of litter deposited by the growing young tree presumably increased during the 

study. 

Although no influence of tree species diversity on soil microbial community structure 

and diversity was observed, an impact of young tree species on the diversity of the 

active soil bacterial community was indicated (Pfeiffer et al. 2013). Nacke et al. (2011) 

found statistically significant effects of tree species on soil bacterial diversity, richness, 

and community composition in forest soils. These findings are partially supported by 

the results obtained in the second survey. The obtained data point out that beech and ash 

interact differentially with the soil microbial community (Cesarz et al. 2013). Beech 

roots affected the belowground system by their exudates and thus influence microbial 

communities in the rhizosphere and soil C dynamics (Cesarz et al. 2013). The tree 

species Fagus sylvatica L. (European beech) and Fraxinus excelsior L. (European ash), 

used in both surveys, differ strongly in their litter quality and root morphology. Beech 

has a higher specific root tip abundance, specific fine root surface area, specific fine 

root length and a lower fine root diameter than ash (Meinen et al. 2009). Moreover, both 

tree species have different mycorrhizal colonization pattern, as beech roots are 

colonized by ectomycorrhizal fungi, while ash roots are inhabited by arbuscular fungi 

(Smith and Read 2008). Fender et al. (2013) found increased concentrations of formate 

and acetate close to the roots of beech whereas, acetate concentrations were higher in 

the vicinity of ash roots. It has been shown that organic acids released by roots caused 

significant increases in soil bacterial community richness and shifts in the community 

structure (Shi et al. 2011).  This might be attributed to higher amounts of added carbon, 

soil organic matter solubilization, or induced soil pH shifts (Shi et al. 2011). 

Different taxa within the orders Azospirillales, Bradyrhizobiales, Caulobacterales, 

Rhizobiales, Sphingomonadales, Burkholderiales, Nitrosomonadeles and 

Pseudomonadales were affected positively by root-derived organic acids (Shi et al. 

2011). Furthermore, it has been shown that the low molecular weight C compounds 

(glucose and citric acid), released by tree roots significantly affect the relative 
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abundance of bacterial phyla and proteobacterial classes, such as Alpha-, Gamma- and 

Betaproteobacteria, as well as the Bacteroidetes and Actinobacteria (Eilers et al. 2010). 

In conclusion, tree species actively shape soil bacterial communities by their root 

exudates, including organic acids, amino acids, sugars, fatty acids, growth factors, and 

dead cells (Uren 2007; Dennis et al. 2010). 

Soil acidification by beech saplings observed in the second study, was also shown by 

Holzwarth et al. (2011) and Langenbruch et al. (2012). Organic acids released by plants 

increase nutrient availability, which is also supported by plant-driven soil acidification 

(Jones et al. 2004). As a consequence, beech shapes soil bacterial communities more 

strongly than ash, indirectly by soil acidification and directly by the release and 

allocation of nutrients. Thoms et al. (2010) concluded that microbial diversity is driven 

by indirect interactions with specific plant traits rather than by tree species diversity 

itself. Although the comparison of the total and active bacterial community inhabiting 

the analyzed rhizotrons revealed differences, the soil bacterial community composition 

was not affected significantly by tree saplings or inserted ash litter (Cesarz et al. 2013,  

Figure 3 and 4).  

 

 
Figure 3. Relative abundance of the most abundant proteobacterial classes and bacterial phyla 

identified in the analyzed soil samples, based on 16S rRNA gene analysis. Taxa accounting for 

less than 1% of all analyzed sequences are summarized as rare phyla. Numbers indicate 

replicates of the control rhizotrons without tree saplings (NT) and the rhizotrons planted with 

ash (A) and beech (B) saplings. 
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Figure 4. Relative abundance of the most abundant proteobacterial classes and bacterial phyla 

identified in the analyzed soil samples, based on 16S rRNA analysis. Taxa accounting for less 

than 1% of all analyzed sequences are summarized as rare phyla. Numbers indicate replicates of 

the control rhizotrons without tree saplings (NT) and the rhizotrons planted with ash (A) and 

beech (B) saplings. 

 

Phospholipid fatty acid analysis (PFLA) exhibited an increased fungal dominance, 

presumably of saprotrophic fungi, as low colonization rates (46 ±6%) of 

ectomycorrhizal fungi were determined for beech rhizotrons (Cesarz et al. 2013). PFLA 

data also revealed a suppression of Gram-negative and Gram-positive bacteria in the 

presence of beech saplings (Cesarz et al. 2013). Thus, the soil pH adjusted by beech 

root exudation inhibited bacterial growth but facilitated fungal growth, which was 

shown recently (Rousk et al. 2009). Preliminary results of the third survey indicate that 

bacterial and fungal diversity in natural spruce forest soil were largely driven by the soil 

pH (Goldmann et al. unpublished). The influence of pH on soil bacterial communities 

has been shown repeatedly (Fierer and Jackson 2006; Hartman et al. 2008; Lauber et al. 

2009; Rousk et al. 2009; Dimitriu and Grayston 2010; Nacke et al. 2011; Yamamura et 

al. 2013). Nevertheless, if the soil pH affects the soil microbial community directly or 

indirectly remains unclear, as a number of soil properties are directly or indirectly 

related to pH (Brady and Weil 2002).  

However, it was shown that specific bacterial genera such as Amaricoccus, 

Nocardioides, and Leptothrix were significant more abundant in beech forest soils, 

while Methylocapsa and Burkholderia showed significant higher abundances in spruce 

forest soils (Nacke et al. 2011). Deltaproteobacteria were less abundant in spruce forest 

than in beech forest soils (Nacke et al. 2011). So far, statistically reliable data are rare, 
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as replicates are often missing, and due to the complexity of soil, single factors 

influencing the microbial community are often difficult to identify.  

First results of the third study revealed a significant impact of the analyzed tree species 

on soil bacterial and fungal community composition (Goldmann, K., Nacke, H., 

Schöning, I. et al. unpublished data). In addition, it has been shown that the genetic 

diversity of Populus spp., determining functional plant traits, strongly affects soil 

microbial communities and soil processes (Schweitzer et al. 2011).  

A recent survey suggests that plant-induced variations in resource availability in beech 

forests led to seasonal variations in functional properties of soil microorganisms. These 

patterns are attributed to seasonal changes in microbial community structure and 

physiological adaptations of microorganisms. Koranda et al. (2013) observed different 

microbial patterns reflecting distinct physiological capacities of winter and summer 

communities. The winter community revealed a higher capacity for degradation of 

complex C substrates such as cellulose and plant cell wall constituents, and a lower 

utilization capacity for labile C sources than the summer community (Koranda et al. 

2013). These results were supported by the findings of the first survey, in which a 

sampling time effect (autumn vs. spring) on the soil inhabiting bacterial community was 

observed (Pfeiffer et al. 2013). It has been suggested that tree species identity may 

substantially alter the soil source and sink strength for greenhouse gases through root-

related processes (Fender et al. 2013). The measured CH4 uptake was significantly 

lower and N2O gas emission was higher in beech rhizotrons than in ash treatments 

(Fender et al. 2013). This supports the assumption made in this study, that tree species 

and their specific activity affects soil bacterial diversity, richness, and community 

composition in forest soils (Pfeiffer et al. 2013). Furthermore, the results suggest that 

tree species developmental stage influences soil microbial communities, as old and big 

trees release more root exudates and deposit a higher litter amount compared to young 

trees.  

2. Impact of rising Nitrogen deposition into forest soils on bacterial activity and 

community composition 

Another factor influencing soil microbial community composition and activity are the 

rising soil N deposition rates (Duce et al. 2008; Galloway et al. 2008). Th effect of high 

soil N deposition was analyzed in Chapter B.II. To simulate the impact of high N 
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depositions into soils on the greenhouse gas emission and forest soil bacterial 

communities, a mesocosms study was established under controlled laboratory 

conditions (Figure 5). An additional experiment analyzed the effect of a labile C source 

on N2O and CH4 gas fluxes in forest soils (Fender et al. 2012; Fender, AC., Leuschner, 

C., Pfeiffer, B., Daniel, R. and Jungkunst, HF. unpublished data). The greenhouse gas 

fluxes and the soil properties were analyzed. Furthermore, the structure and diversity of 

the active soil microbial community was determined 3 days after the first fertilization 

and at the end of the first study phase on day 41 using 16S rRNA-based 

pyrosequencing. 

 

 

Figure 5. Experimental set-up of the fertilized and non-fertilized soil columns analyzed in 

Chapter B.II. 

 

The comparison of CH4 uptake rates in fertilized and non-fertilized soil columns 

showed a significant decline of 97% in NO3
-
 fertilized mesocosms, indicating an 

inhibitory effect of NO3
-
 fertilization on CH4 oxidation (Fender et al. 2012). In contrast, 

low doses of NO3
-
 stimulated CH4 uptake rates and bacterial growth (Rigler and 

Zechmeister-Boltenstern 1999). The latter presumably benefits from the thus created 

higher N availability in N limited soils.  Another survey showed that high doses of NO3
-
 

had no effect on the CH4 uptake in a boreal spruce forest soil (Whalen and Reeburgh 

2000). Other surveys support our findings of a negative effect of NO3
-
 application on 

CH4 uptake rates (Butterbach-Bahl et al. 1998; Ishizuka et al. 2009). It was shown that 

the suppression of CH4 oxidation in soils by high doses of nitrogenous fertilizers is 
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contradictory, as long lasting as well as short time effects were observed (Hütsch et al. 

1993; 1994). The observed reduction of CH4 uptake rates by NO3
-
 can be explained by a 

competitive substrate inhibition of the CH4 oxidizing enzyme methane monooxygenase 

(Dunfield and Knowles 1995). Nitrate is either reduced to N2O or N2 by denitrifying 

microorganisms or to NH4
+
 by microorganism capable of dissimilatory NO3

-
 reduction 

to ammonium (DNRA). The latter is supported by the observed increased NH4
+
 

concentration within the analyzed fertilized soil samples. Methanotrophs, a subgroup of 

the methylotrophic bacteria, utilize CH4 and other mono-carbon compounds as their 

sole energy and C-source (Trotsenko and Murrell 2008; Dedysh and Dunfield 2011). 

Thereby, the oxidation of CH4 to methanol (CH3OH) is catalyzed by the particulate or 

soluble methane monooxygenase (pMMO or sMMO, respectively) (Dedysh and 

Dunfield 2011). The particulate methane monooxygenase (pMMO) is closely related to 

the ammonium monooxygenase (AMO) and has the ability to oxidize ammonia to 

nitrite, which competitively inhibits the CH4 uptake in soils (Mosier et al. 1991; 

Dunfield and Knowles 1995; Klotz and Norton 1998). In conclusion, nitrifiers 

possessing the AMO that oxidize ammonium to hydroxylamine are able to oxidize CH4 

(Hyman and Wood 1983; Jones and Morita 1983; Ward 1987; Bédard and Knowles 

1989; Holmes et al. 1995). In this study, the relative abundance of the archaeal genus 

Candidatus Nitrosotalea increased in non-fertilized soil columns compared to fertilized 

columns (Pfeiffer, B., Fender, AC., Jungkunst. HF. and Daniel, R. submitted for 

publication). The eponym of Candidatus Nitrosotalea is the chemolithotrophic and 

obligately acidophilic ammonia-oxidizing archaeon Nitrosotalea devanaterra 

(Lehtovirta-Morley et al. 2011). Moreover, the bacterial genus Nitrosospira was 

identified in the amplicon-derived data-set, accounting for 0.14% of the analyzed 

sequences in non-fertilized samples and 0.03% in fertilized samples (Pfeiffer, B., 

Fender, AC., Jungkunst. HF. and Daniel, R. submitted for publication). Although 

identified only in low abundances, both genera may contribute considerably to the 

observed CH4 uptake rates in non-fertilized samples. Surprisingly, the active 

methanotrophic community analyzed using specific primers showed no difference in the 

relative abundance of the identified methanotrophic genera in both, fertilized and non-

fertilized, soil samples (Pfeiffer, B., Fender, AC., Jungkunst. HF. and Daniel, R. 

submitted for publication). This accounts for the competitive substrate inhibition of the 

CH4 oxidizing enzyme by the observed increased NH4
+
 concentration within the 

analyzed fertilized soil samples (Fender et al. 2012). Furthermore, hydroxylamine and 
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nitrite built up during methanotrophic ammonia oxidation and nitrification can be toxic 

to methanotrophic bacteria and thus lead to a reduced methane consumption in fertilized 

soil columns (Schnell and King 1994). Nitrite-dependent anaerobic methane oxidation 

possibly contributed to the remaining CH4 emission of 3.23 ±0.14 µg C m
-2 

h
-1

 in 

fertilized soil columns (Ettwig et al. 2008; Ettwig et al. 2010).  

 

 

Figure 6. Coupling of microbial processes contributing to N2O and CO2 emissions, and the 

uptake of CH4 in forest soils. Adapted from Wrage et al.(2001), Baggs (2008) and Ettwig et al. 

(2010).  

 

The coupling of the soil microbial processes responsible for the observed patterns in 

CH4 and N2O gas fluxes is depicted in Figure 6. Within the fertilized soil columns the 

bacterial diversity was reduced and the bacterial community shifted towards a 

denitrifying community (Pfeiffer, B., Fender, AC., Jungkunst. HF. and Daniel, R. 

submitted for publication). The latter was supported by the increased N2O emission 

rates measured in the course of the survey (Fender, AC., Leuschner, C., Pfeiffer, B., 

Daniel, R. and Jungkunst, HF. unpublished data). The relative abundances of the 

Deltaproteobacteria, Acidobacteria, Gemmatimonadetes, and Verrucomicrobia 

decreased significantly whereas, the relative abundance of the Gammaproteobacteria 
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increased significantly (Pfeiffer, B., Fender, AC., Jungkunst. HF. and Daniel, R. 

submitted for publication). The bacterial community of the fertilized soil columns was 

dominated by the genus Rhodanobacter (Gammaproteobacteria), accounting for 46.9 

±20.3% of the analyzed sequences. Members of this genus such as Rhodanobacter 

thiooxydans or Rhodanobacter denitrificans sp. are capable of denitrification (van den 

Heuvel et al. 2010; Prakash et al. 2012). The latter was shown to be capable of complete 

denitrification (Prakash et al. 2012). Recently, it has been shown that the genus 

Rhodanobacter dominates bacterial communities inhabiting soils and groundwater with 

low pH and high NO3
-
 concentrations (van den Heuvel et al. 2010; Green et al. 2012). 

Furthermore, the decline in bacterial diversity may also partially be attributed to 

changes in the soil pH, although this is not very likely as the fertilized soil columns 

exhibited a higher pH (4.23 ±0.06) compared to the non-fertilized (3.84 ±0.08). 

The examined archaeal community was not influenced significantly by the applied 

fertilization, but differences in the relative abundance of the Candidatus Nitrosotalea 

(Thaumarchaeota) were observed (Pfeiffer, B., Fender, AC., Jungkunst. HF. and 

Daniel, R. submitted for publication). Additionally, the significantly higher CO2 

emission rates in non-fertilized soil columns compared to fertilized columns indicate a 

reduced bacterial activity. The decreased CO2 emission rates measured in both 

treatments indicated a reduction of available C in C-limited soil samples over time. The 

C limitation is caused by microbial activity which in return reduced bacterial activity. 

This was also supported by soil C:N ratio, which dropped throughout the experiment 

more strongly in N fertilized than in non-fertilized microcosms. Gillam et al. (2008) 

also showed that the C availability affects the NO3
-
 reduction in soils and thus controls 

N2O emissions.  

The second phase of the survey revealed that the addition of glucose as a labile C 

source, overcoming the C limitation in the soil, resulted in significantly increased CO2 

emission rates in fertilized and non-fertilized soil columns (Fender, AC., Leuschner, C., 

Pfeiffer, B., Daniel, R. and Jungkunst, HF. unpublished data). Furthermore, N2O 

emission rates increased significantly in both treatments after the addition of labile C, 

indicating a higher bacterial activity due to a more balanced and favorable C:N ratio. 

The addition of labile C inhibited the CH4 uptake in non-fertilized soil columns 

presumably due to another easily available C source. 
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3. Influence of Lasius ants acting as ecosystem engineers  

The impact of Lasius ants on nutrient flows from aboveground systems into 

belowground systems and on the soil-inhabiting microbial communities was analyzed in 

Chapter B.III. In the first study, the interaction between ants (Lasius niger), aphids 

(Aphis fabae), and the soil microbial community was investigated in soil mesocosms 

using DGGE as a molecular approach. Furthermore, stable isotope techniques were used 

to follow the N flow from Phaseolus vulgaris plants inhabited by aphids into soil and 

the soil microbial community. The amount of honeydew dropping on the litter surface is 

reduced by ants which consume it as a reward for protection (Gerund, E., Pfeiffer, B., 

Daniel, R. and Platner, C. (a) unpublished data). In this way, the microbial biomass in 

the litter layer is reduced due to the decrease of this additional carbon source (Gerund, 

E., Pfeiffer, B., Daniel, R. and Platner, C. (a) unpublished data). It has been reported 

that the amount of honeydew reaching the soil ground was reduced by approximately 

50% due to ant activity (Seeger and Filser 2008). In addition, the reallocation of 

honeydew into ant nests and the surrounding soil increased the basal respiration and 

microbial biomass in comparison to the control, indicating a higher activity of the 

microbial community (Gerund, E., Pfeiffer, B., Daniel, R. and Platner, C. (a) 

unpublished data). In contrast, the cluster analysis of the derived DGGE profiles 

revealed no distinct separation of the different treatments, possibly due to other, more 

influential soil parameters (Gerund, E., Pfeiffer, B., Daniel, R. and Platner, C. (a) 

unpublished data). Another explanation might be that the microbial community 

inhabiting the artificial microcosms was not fully adapted to the influence of ant 

activity. Nevertheless, it was assumed that C-limitation is the most important factor 

influencing microbial growth and activity in soils (Scheu and Schaefer 1998). 

Honeydew is an easily available and rapidly consumable resource for microorganisms, 

providing sugars and amino acids. Thus, the input of additional sugars and nitrogen-rich 

organic compounds into the soil promoted by ants supports prokaryotic activity and 

increases microbial biomass.  

The second survey analyzed differences in bacterial community structure in Lasius 

niger and Lasius flavus ant nests, and the surrounding soil in two different grassland 

sites. The functional diversity of microorganisms was analyzed by in situ respiration 

response. The obtained results showed that ant activity led to shifts in structure and 

functioning of microbial communities in ant nests compared to the surrounding soil 
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(Gerund, E., Pfeiffer, B., Daniel, R. and Platner, C. (b) unpublished data). Lasius ants 

increase nutrient concentrations such as NO3
-
, phosphate, potassium and calcium in nest 

mounts by the accumulation of food such as honeydew or other organic substances 

(Nkem et al. 2000; Frouz et al. 2003; Frouz et al. 2005). Furthermore, ants adjust the pH 

in their nest mounts. It was shown that pH values in ant nests on acidic soils increase 

compared to the surrounding soil, while the pH in nests on alkaline soils decrease 

(Frouz et al. 2003). In mounts ant activities increase soil porosity into a depth of about 

200 cm (Nkem et al. 2000).  

The observed variations in microbial community structure and functioning were more 

pronounced between the grassland sites than between the different ant species (Gerund, 

E., Pfeiffer, B., Daniel, R. and Platner, C. (b) unpublished data). This indicates a higher 

impact of site specific properties, such as C:N ratio, organic C content, pH or water 

content. As mentioned previously, it was shown that soil properties such as pH, 

moisture, and nutrient availability influence soil microbial communities (Thoms et al. 

2010; Nacke et al. 2011; Brockett et al. 2012). Both sites differed in the soil type 

(Leptosol vs. Cambisol), but had a comparable pH (7.4 vs. 7.5), annual temperature and 

precipitation (Gerund, E., Pfeiffer, B., Daniel, R. and Platner, C. (b) unpublished data). 

Thus, the observed variations might be attributed to differences in the nutrient content 

and soil type of the two sites studied. Higher microbial biomass and respiration 

response, as well as more diverse bacterial community patterns were observed in the 

Cambisol site (Gerund, E., Pfeiffer, B., Daniel, R. and Platner, C. (b) unpublished data). 

Furthermore, the cluster analysis of the obtained DGGE profiles revealed a clear 

separation of soil microbial communities inhabiting ant nests and surrounding soils 

(Gerund, E., Pfeiffer, B., Daniel, R. and Platner, C. (b) unpublished data).  

4. Conclusion  

The studies presented in the first chapter of this thesis revealed a direct and indirect 

impact of tree species related traits such as leaf litter and root exudation on the diversity 

and structure of soil microbial communities. Leaf litter acting as a long-term C and 

nutrient source as well as tree species specific root exudation affected soil bacterial 

community composition and diversity. The obtained data further indicated that tree 

species diversity and seasonal fluctuations had only a minor effect on soil microbial 

communities compared to the effect of leaf litter and root exudation. The synthesis of 
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the different studies suggested that increasing tree species developmental stages result 

in a higher deposition of leaf litter and root exudates. Thus, the intensity of tree species 

influence on soil microbial communities was rising with plant age. However, there is 

still a knowledge gap about the dynamics between tree developmental stages and 

microbial community structure as well as function. As this question has not been fully 

answered yet, further studies have to be conducted addressing this issue in more detail. 

Surveys presented in the second chapter analyzed the effect of high N depositions on 

soil prokaryotic communities and revealed a shift in the bacterial community structure 

towards a denitrifying community with reduced bacterial diversity. These studies 

provided a detailed insight into the coupling of greenhouse gas fluxes and N fertilization 

with the soil prokaryotic community structure and diversity. As forests are highly 

important CH4 sinks and sources of N2O, knowledge about this coupling is crucial for 

estimating the effect of rising N depositions on global greenhouse gas balance and, 

consequently, life on Earth. 

Studies in the third chapter were aimed at investigating the effect of ants on the 

aboveground and belowground system under natural and artificial conditions. In 

mesocosm experiments, it was shown that ants collecting aphids honeydew increased 

basal respiration and microbial biomass in the soil. However, distinct differences in soil 

microbial community structures were not observed. In contrast to this finding, ant 

activity in natural grassland habitats induced changes in microbial community 

composition as well as basal respiration and microbial biomass. Ants are important 

players in maintaining ecosystem functioning. They are modifying newly colonized 

ecosystems to match their needs and, additionally, stabilize conditions in already 

occupied ones. However, their complex interaction with these ecosystems especially 

with soil microbes, the other group of ecosystem engineers, is not fully understood as 

large comparative studies are missing. Thus, the studies presented in this thesis helped 

to close this fundamental knowledge gap. 

The conducted studies emphasized the assumption that the complexity of soil and the 

diverse interactions taking place in this habitat make it difficult to identify and assess 

single influencing factors. Nevertheless, taking all the studies conducted in the term of 

this thesis into account soil pH seems to be the strongest manipulator of soil microbial 

community structure and diversity.  
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D. Summary 

Soil microbial communities are directly and indirectly influenced by a complex system 

of cross-interactions between different biotic and abiotic factors influencing each other, 

such as plant species and their respective traits, soil nutrient content, and pH. 

Microorganisms shape their environment, as important drivers of the C and N cycle. 

Within the present thesis, several studies were conducted under controlled field and 

laboratory conditions as well as under natural conditions to unravel the contribution of 

different influencing factors. The soil prokaryotic community composition of the 

different soil samples was analyzed DNA-based and RNA-based using 16S rRNA genes 

and 16S rRNA as phylogenetic marker. The amplicon-based data were processed and 

diversity and richness estimates were calculated. Betadiversity analyses were conducted 

to assess overall differences between the different treatments. The obtained DGGE 

profiles were used for cluster analyses to reveal similarities or differences in the 

bacterial community structure. 

The present thesis provided insight into the impact of tree species, tree species diversity, 

leaf litter and sampling time on the composition and diversity of soil bacterial 

communities. The obtained data revealed that the leaf litter layer was the major driver of 

the bacterial community composition in the rhizosphere of young beech and ash trees. It 

was indicated that different tree species and tree species diversity levels as well as 

seasonal differences have a minor effect on bacterial community composition. The 

results revealed that the microbial community composition was not affected 

significantly by beech and ash saplings, possibly due to the early developmental stage 

of the tree saplings. Nevertheless, the obtained data revealed that beech saplings 

inhibited bacterial growth and promoted fungal growth by a root exudation induced soil 

pH shift. Tree species, differing in their morphology differentially impact soil microbial 

communities. The analysis of the soil bacterial and fungal communities in natural forest 

soils under adult beech and spruce trees revealed a significant impact of the analyzed 

tree species on soil bacterial and fungal community composition. It was indicated that 

the bacterial and fungal diversity in the analyzed spruce forest soil was driven by soil 

pH.  

The impact of high NO3
- 
depositions on CH4 and N2O gas fluxes, and the soil-inhabiting 

active bacterial and archaeal communities was studied in mesocosms containing soil 

from a temperate broad-leaved forest. Strong impacts of NO3
-
 fertilization on CH4 
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uptake rates and N2O emissions in fertilized soil columns were recorded. N fertilization 

inhibited the CH4 uptake, while the N2O emission increased. The soil bacterial 

community shifted over the course of the survey towards a denitrifying community, 

which was dominated by the genus Rhodanobacter. Furthermore, the bacterial diversity 

and CO2 emissions were reduced within the N-fertilized soil columns. Moreover, CO2 

emission rates dropped in both treatments throughout the experiment. This indicated a 

reduced activity of soil microorganisms, which might be due to C limitation in the used 

forest soil. Although a shift in the relative abundance of the nitrifying archaeal genus 

Nitrosotalea occurred, a significant shift in the archaeal community composition was 

not observed. The results indicate a considerable contribution of methylotrophic, 

methanotrophic and nitrifying bacterial species, occurring in low abundance, to the 

observed CH4 uptake. 

The impact of ants and their activity on the activity and diversity of soil microbial 

communities were studied. Ant activity channeled honeydew into soils and thereby 

reduced the microbial biomass in the litter layer. The δ15N signature, the basal 

respiration and microbial biomass increased in the soil. In contrast, the cluster analysis 

of the derived DGGE profiles revealed no distinct differences of the microbial 

community structure in response to the different treatments. Ant activity affected the 

structure of bacterial communities in grasslands, due to nest building activity and the 

input of organic substances. Cluster analysis of the obtained DGGE profiles revealed 

differences in bacterial community composition in response to the sampling site and ant 

activity. In addition, bacterial community structures in ant nests differed from the 

surrounding soil.  

 

A secondary project of this thesis was the assessment and comparison of microbial 

communities present in biological soil crusts, sampled at two sites in extrazonal 

mountain dry steppes in northern Mongolia. The study revealed clear differences in 

microbial community structure of the two sampling sites differing in their disturbance 

history. 
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