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Abstract 
 
The canonical Wnt signaling pathway is known to regulate multiple 

developmental events,including development of the digestive tract. In this study, 

we wanted to systematically analyze the role of the Wnt/β-Catenin signaling 

pathway during early and late phases of endodermal organogenesis. We 

generated a set of putative hormone-inducible activators or repressors of the 

canonical Wnt signaling pathway. Analysis of Wnt target gene expression and 

axis formation assays revealed that only a subset of these GR-fusion proteins is 

indeed inducible. These constructs were overexpressed in the endoderm of 

Xenopus embryos and protein activity was induced before or after specification 

of endodermal precursor cells. Analysis of pancreatic marker gene expression 

revealed that activation as well as repression of canonical Wnt signaling, early 

and late, inhibit exocrine pancreatic development. 

Expression cloning was used to identify novel regulators of early embryonic 

patterning.We indentified Fam132b as a factor that  induces hyperdorsalization 

and secondary axis formation in Xenopus embryos. Analysis of Wnt and BMP 

target gene expression as well as luciferase reporter experiments revealed that 

Fam132b does not regulate Wnt signaling activity, but antagonizes the BMP 

signaling pathway. Fam132b contains a conserved C-terminal C1q domain and 

an N-terminal signal peptide. Overexpression studies in oocytes demonstrate 

that Fam132b is indeed a secreted factor. Analysis of endogenous target gene 

expression and promoter reporter studies indicated that Fam132b selectively 

inhibits BMP and not activin or FGF induced signaling, and that inhibition occurs 

at the extracellular level. Fam132b strongly interacts with BMP type I receptors, 

and weakly with BMP4 itself, as demonstrated by CoIP experiments. Fam132b 

deletion analysis demonstrated that the C1q domain is dispensable for the BMP 

antagonizing activity. Sequence analysis and axis duplication assays revealed 

that Fam132b protein sequence and protein function are only weakly conserved 

in a comparison ofXenopus and other vertebrate species.  

Fam132b is expressed in the ventral blood islands and later in circulating blood 

cells. In animal cap explants Fam132b is induced by Etv2/er71, which is known 

to activate expression of endothelial and hematopoietic genes in this 

system.Analysis of hematopoietic and vascular marker gene expression in 
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Etv2/er71 expressing animal cap explants using multiplex Nanostring nCounter 

analysis revealed that Fam132b can enhance endothelial development at the 

expense of blood cell lineages. 
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1. Introduction 
 

1.1 Wnt signaling pathways 

 

The wnt genes encode a large family of secreted glycoproteins with a highly 

conserved cysteine-rich domain (Angers and Moon, 2009; Croce and McClay, 

2008).The term Wnt is composed of the Drosophila segment polarity gene 

wingless (wg) and the mouse proto-oncogene int-1, two genes that have 

independently been discovered and later shown to encode homologous proteins 

(Baker, 1987; Nusse and Varmus, 1982; Rijsewijk et al., 1987; Sharma and 

Chopra, 1976; van Ooyen and Nusse, 1984).  

The Wnt family of proteins can be subdivided into canonical and non-canonical 

ones, depending on their ability to induce specific Wnt dependent signaling 

pathways. Non-canonical Wnt signaling pathways include different types of cell-

cell communication that are mediated via a Wnt signal, but independent of the 

transcriptional co-activator β-Catenin(Habas and Dawid, 2005). The two most 

intensely studied of the non-canonical Wnt signaling pathways are the planar 

cell polarity (PCP) pathway and the Wnt/calcium (Wnt/Ca2+) pathway. The PCP  

pathway plays an important role  in establishing cell polarity and in the control of 

convergent extension movements of cells, while the Wnt/Ca2+ pathway 

mediates cytoskeletal dynamics and cell adhesion through the regulation of 

intracellular calcium levels (Kohn and Moon, 2005; Seifert and Mlodzik, 2007; 

Semenov et al., 2007). 

 

1.1.1 Wnt/β-Catenin signaling 

 

The first Wnt pathway discovered is also referred to as the canonical Wnt 

signaling pathway and it has been shown to be involved in cell fate decisions, 

proliferation and regeneration. Canonical Wnt signal transduction is mediated 

by the activity of the transcriptional co-activator β-Catenin(Clevers and Nusse, 

2012; MacDonald et al., 2009). In the absence of a Wnt signal, cytoplasmic β-

Catenin is recruited into a destruction complex containingthe scaffoldprotein 
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Axin1/2, adenomatous polyposis coli (APC), glycogen synthase kinase 3 

(GSK3β) andcasein kinase 1ε (CK1ε) (MacDonald et al., 2009).  

 

 
Figure 1. Overview of the Wnt/β-Catenin-mediated signaling pathway. In the 
absence of Wnt, a destruction complex is formed in the cytoplasm, which binds, 
phosphorylates and ubiquitinates cytosolic β-Catenin, leading to its proteasomal 
degradation. Lef/Tcf transcription factors interact with transcriptional corepressors and 
suppress target gene transcription. Wnt binding to the Frizzled receptor recruits the 
destruction complex to the membrane. β-Catenin is not further ubiquitinated, and newly 
synthesizesed β-Catenin accumulates in the cytoplasm, transfers to the nucleus and 
replaces corepressors from Lef/Tcf. Transcriptional coactivators are recruited and 
target gene transcription is induced (after Clevers and Nusse, 2012). 
 

In this way, initial N-terminal phosphorylation of β-Catenin mediated by 

CK1εand GSK3β can occur(Amit et al., 2002; Liu et al., 2002; Yost et al., 1996). 

Consequently, β-Catenin is ubiquitinated by β transducing repeat-containing 

protein (βTrCP) and thereby marked for proteasomal degradation (Aberle et al., 

1997; Yanagawa et al., 2002). In the nucleus, transcription factors of 
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thelymphoid enhancer-binding protein (Lef)/ T-cell factor (Tcf) family associate 

with transcriptional co-repressors, such as Groucho, and prevent prospective 

Wnt/β-Catenin target gene expression (Figure 1), (Cavallo et al., 1998; Roose et 

al., 1998).  

The canonical Wnt signaling pathway can be stimulated by binding of a Wnt 

protein to the extracellular cysteine-rich domain of the seven-transmembrane 

Frizzled receptor(Bhanot et al., 1996; Dann et al., 2001). As a result, Frizzled 

forms a complex with the single-pass transmembrane protein LDL-receptor-

related proteins 5 and 6 (LRP5/6) (Pinson et al., 2000; Tamai et al., 2000). 

Furthermore, the intracellular domain of Frizzled interacts with Dvl, causing the 

recruitment of the destruction complex to the plasma membrane, where Axin 

binds Dvl as well as the cytoplasmic domain of LRP5/6(Chen et al., 2003; 

Fiedler et al., 2011; Mao et al., 2001). The complex becomes saturated by 

phosphorylated β-Catenin and newly synthesized β-Catenin is no longer 

degraded and can accumulate in the cytoplasm(Li et al., 2012). Finally, β-

Catenin transfers into the nucleus, where it displaces Groucho andrecruits other 

transcriptional co-activators, such as histone modifiers CBP and Brg-1 (Stadeli 

et al., 2006). Additionally, BCL9 binds β-Catenin N-terminally and recruits the 

transcriptional co-activator Pygopus 1 and 2, resulting in transcriptional 

activation of Wnt/β-Catenin target genes (Figure 1), (Brack et al., 2009; Schwab 

et al., 2007). 

 

1.2 TGF-β  signaling pathways 

 

The transforming growth factor-beta (TGF-β) superfamily of signaling pathways 

is involved in regulation of many developmental processes, such as 

proliferation, differentiation, and apoptosis (Massague, 1998). More than 40 

signaling proteins, including TGF-βs, Nodal, Activin and bone morphogenetic 

proteins (BMPs), are known to induce canonical Smad-dependent TGF-β 

signaling pathways (Chen et al., 2012; Guo and Wang, 2009). Additionally, 

TGF-β signals can be transmitted Smad-independently by activating the ERK 

MAP kinase (MAPK) signaling pathway (Lee et al., 2007). 

Among the members of the TGF-β family, more than 20 proteins isolated in 

vertebrates and invertebrates have been classified as members of the BMP 



Introduction 

4 
 

subfamily (Chen et al., 2004). Except for BMP1 and BMP3, which function as 

signaling regulators, BMP proteins activate the BMP signal transduction 

pathway (Gamer et al., 2005; Ge and Greenspan, 2006).  

 

1.2.1 BMP signal transduction pathway 
 

BMP ligands are synthesized as large precursor proteins consisting of an 

amino-terminal prodomain and a C-terminal mature ligand domain. In the 

endoplasmatic reticulum, these precursors associate as homo- or hetero-dimers 

that are processed in the Golgi compartment allowing the release of mature 

dimers of the ligand domains into the extracellular space (Constam and 

Robertson, 1999; Cui et al., 1998). 

The secreted BMP ligand forms heterohexameric complexes with type I and 

type II BMP receptors at the cell surface (Ehrlich et al., 2011). The BMP type II 

receptor has an intrinsic kinase activity and it phosphorylates serine and 

threonine residues in the intracellular GS domain of the BMP type I 

receptor(Miyazono et al., 2010);in consequence, the  kinase activity of the BMP 

type I receptor is stimulated (Figure 2). Sma and Mad related proteins (Smad) 

1, 5, and 8 are substrates for the BMP type I receptor kinase and are called 

receptor-regulated Smads (R-Smads), accordingly. These R-Smads are 

phosphorylated at the SSVS motif in the C-terminal Mad homology 2 (MH2) 

domain(Qin et al., 2001). Phosphorylated R-Smads can complex with the 

cooperating Smad 4 (Co-Smad) via their MH2 domain (Figure 2).  

The complex of R-Smads and Co-Smad can then translocate to the nucleus 

and bind BMP-responsive regulatory DNA regions via their MH1 domain(Ramel 

and Hill, 2012). Depending on the availability of additional transcriptional 

regulators, DNA bound Smad complexes regulate target gene expression 

positively or negatively (Blitz and Cho, 2009). 

Similar to BMP proteins, also other members of the TGF-β family can induce 

signal transduction via activation of serine/threonine receptor kinases and Smad 

proteins. In the classical view the type I activin receptor-like kinases Alk1/2/3/6 

specifically phosphorylate the BMP-specific R-Smads 1/5/8, while TGF-β, 

Nodal, and Activin ligands bind and activate Alk4/5/7, causing a selective 
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phosphorylation of R-Smads 2/3 (Massague et al., 2005). However, it has been 

shown that also members of the BMP family have the potential to activate Alk 

4/5/7 (Schmierer and Hill, 2007). Conversely, other studies revealed that TGF-β 

activates both Smad 2/3 and Smad1/5/8 in various cell types (Bharathy et al., 

2008; Daly et al., 2008; Liu et al., 2009). Furthermore, there are 5 known TGF-β 

type II receptors. BMP receptor II (BMPRII) is a receptor that only recognizes 

BMPs, while Activin receptor II (ActRII) and ActRIIb are bound by activin and 

BMPs (Moustakas and Heldin, 2009). Both BMP-mediated and BMP-

independent branches of Smad dependent signaling operate via the common 

Co-Smad 4 (Chen et al., 1997; Liu et al., 1997). 

 

 
Figure 2. BMP signal transduction pathway.The BMP dimer complexes with type I 
and type II BMP receptors. This leads to autophosphorylation of the type I receptor. 
The activated type I receptor phosphorylates BMP receptor-Smad proteins (R-Smads; 
Smad 1, 5, and 8), which then interact with Co-Smad 4 proteins. The Smad complex 
transfers to the nucleus and regulates target gene transcription (after Miyazono et al., 
2010and Walsh et al., 2010). 
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1.2.2 Regulation of BMP signaling activity 
 
BMPs were originally identified as molecules with the potential to induce bone 

and cartilage formation when implanted at ectopic sites in rats (Urist, 1965). In 

addition to their role in bone formation, BMPs have been shown to regulate 

tooth, kidney, skin, hair, muscle, hematopoietic and neural development 

(Botchkarev and Sharov, 2004; Bracken et al., 2008; Rogers et al., 2009; 

Sadlon et al., 2004; Thesleff, 2003; Wang et al., 2010). To ensure appropriate 

levels of BMP signaling activity spatially and temporally, this pathway has to be 

tightly regulated during development. Several mechanisms are known to 

regulate BMP signaling on the intracellular as well as on the extracellular level 

(Ramel and Hill, 2012; Walsh et al., 2010). 

 

1.2.2.1. Extracellular BMP antagonists 

 

Secreted BMP-binding proteins exhibit several functions, including initial 

activation and release of BMPs, transport of BMP proteins through tissues, and 

reception of the BMP signal (Umulis et al., 2009). Active BMP proteins are 

generated via cleavage of the pre-protein into the prodomain and the mature 

ligand domain. In vitro studies have shown that the cysteine-rich 

transmembrane BMP regulator 1 (CRIM 1) binds and reduces cleavage of the 

BMP pre-protein (Wilkinson et al., 2003). The cleaved prodomain itself can also 

act as a BMP binding protein. Correspondingly, Ge and colleagues could show 

that BMP11 forms a noncovalent latent complex with its cleaved prodomain that 

can be reactivated by the secreted zinc metalloproteinase BMP1/Tolloid (Figure 

3 A), (Ge et al., 2005). 

Extracellular BMP antagonists represent several secreted peptides, which bind 

BMP proteins and prevent their interaction with their specific receptors (Figure 3 

B). The protein sequence of these factors is characterized by conserved 

cysteine-rich (CR) domains that are involved in the formation of characteristic 

cystine knot structures, similar to those of the BMP proteins. There are three 

classes of secreted inhibitory proteins: Noggin, the DAN family, and Chordin 

(Gazzerro and Canalis, 2006). Noggin was found to bind several BMP proteins 
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and vegetally localized protein (Vg)-1, but no other members of the TGF-β 

family of proteins (Smith and Harland, 1992; Zimmerman et al., 1996). Similar to 

Noggin, also Chordin Chd, the vertebrate homologue of Drosophila Short 

Gastrulation Sog, specifically binds and inhibits BMP proteins (Gazzerro and 

Canalis, 2006; Piccolo et al., 1996).  

 

 
 
Figure 3. Extracellular mechanisms for modulation of BMP signaling activity. (A) 
The BMP ligand is inactivated by binding to the BMP prodomain and can be reactivated 
by metalloprotease activity of BMP1/Tolloid. (B) Secreted BMP antagonists bind the 
BMP protein and prevent ligand/receptor  interaction. (C) Chordin forms a trimeric 
complex with Tsg and BMP and thereby inhibits BMP/receptor interaction.  The 
metalloproteaseTolloid cleaves Chordin, resulting in a release of the BMP 
protein.Tolloid can be bound by Sizzled or Crescent, preventing Tolloid activity. Tsg 
antagonizes BMP signaling by enhancing the formation of the Chordin/BMP complex. 
But it also acts as BMP activator by facilitating Tolloid-mediated cleavage of Chordin. 
(D) BMP3 and Inhibin bind type II TGF-β receptors inhibit signal transduction into the 
cytoplasm. (E) Follistatin antagonizes BMP signaling by binding the BMP/receptor 
complex.  
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Furthermore, Chd-mediated BMP antagonism is regulated by additional 

secreted factors within a complex network (Figure 3 C). The Twisted 

gastrulation protein can regulate Chordin activity positively as well as 

negatively. On the one hand, it promotes the binding of chordin to the BMP 

protein and thereby the formation of a stable BMP inhibitory complex (Plouhinec 

et al., 2011). But on the other hand, it facilitates BMP1/Tolloid mediated 

proteolysis of Chordin, followed by the release of BMP proteins (Gazzerro and 

Canalis, 2006; Oelgeschlager et al., 2000). In contrast, the secreted Frizzled 

related protein (sFRP) Sizzled as well as Crescent, which both are known to 

antagonize Wnt signaling, can bind and inhibit activity of BMP1 and thereby 

enhance Chordin activity (Lee et al., 2006; Misra and Matise, 2010; Muraoka et 

al., 2006; Ploper et al., 2011; Yabe et al., 2003).  

Another group of extracellular BMP antagonist is the DAN family, including 

Gremelin, Sclerostin, Dan, uterine sensitization associated gene (USAG-1), 

Cerberus, Caronte, Coco, protein related to Dan and Cerberus (PRDC) and 

Dante. In contrast to Noggin or Chordin, these factors antagonize BMP 

signaling as well as Activin-, Nodal-, TGf-β or Wnt signaling (Gazzerro and 

Canalis, 2006; Hsu et al., 1998). 

In addition to BMP interacting proteins, BMP signaling can be modulated by 

receptor interacting factors as well. Inhibin and BMP3 have shown to compete 

with BMP or activin for binding to the corresponding TGF-β type II receptor 

(Figure 3 D). While Inhibin can bind ActRII, ActRIIB, and BMPRII, BMP3 was 

shown to antagonize signaling by complex formation with ActRIIB (Gamer et al., 

2005; Wiater and Vale, 2003). In contrast to Inhibin and BMP3, Follistatin and 

Follistatin-like proteins inhibit BMP and activin signaling via direct interaction 

with the complex of ligand and receptor (Figure 3 E). Follistatin was first 

identiefied as a potent inhibitor of activin, but later was shown also to interact 

with several BMP proteins and myostatin (Geng et al., 2011; Iemura et al., 

1998). Additionally, Thompson and colleagues could show that Follistatin 

interacts with both type I and type II TGF-β receptors (Thompson et al., 2005). 
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1.2.2.2. BMP regulation on the receptor or cytoplasmic level 

 
BMP regulation can occur on the receptor level, involving the activity of 

pseudoreceptors. BMP and activin bound protein (BAMBI) is such a 

pseudoreceptor that is structurally related to type I TGF-β and BMP receptors, 

but it lacks the intracellular kinase domain (Figure 4 A). BAMBI associates with 

type I and type II receptors and inhibits activin as well as BMP signaling 

mediated by these receptor kinases (Miyazono et al., 2010; Onichtchouk et al., 

1999). Additionally, some tyrosine kinases, such as TrkC and Ror2 can bind 

type II or type I BMP receptors and inhibit signal transduction(Jin et al., 2007; 

Sammar et al., 2004). In contrast, cytoplasmic cGMP-dependent kinase I (cGKI) 

causes the stimulation of BMP signaling activity by binding and phosphorylation 

of BMPRII (Figure 4 B), (Schwappacher et al., 2009). 

 

 
Figure 4. Intracellular regulation of BMP signaling activity. (A) The pseudoreceptor 
BAMBI interacts with TGF-β receptors and inhibits signal transduction. (B) cGKI binds 
and phosphorylates BMP type II receptors and thereby enhances BMP signaling. (C) 
Smurfs ubiquitinate BMP receptors and R-Smads, leading to their proteasomal 
degradation. (F) Phosphatases such as PP1 dephosphorylate activated TGF-
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βreceptors and R-Smads. (E) I-Smads bind to activated type I receptors  and prevent 
R-Smad phosphorylation. Additionally, I-Smads antagonize BMP signaling by the 
formation of transcriptionally inactive complexes with R-Smads . (F)  Transcriptional 
cofactors positively or negatively regulate Smad-mediated transcription of target genes. 
While OAZ stimulates expression of Xvent-2, SNIP1 binds the Smad complex in 
inhibits transcriptional activation by CBP/p300. (A-F) Negative regulators are indicated 
in green; positive regulators are indicated in red. 
 

Intracellularly, BMP signaling can be modulated by inhibitory Smads (I-Smads), 

phophatases, E3 ubiquitin-ligases, and transcriptional cofactors. TheI-Smad 

family consists of Smad 6 and 7 in vertebrates (Figure 4 E). These factors 

stably bind to the intracellular domain of activated BMP or TGF-β type I 

receptors and thereby prevent phosphorylation of R-Smads by the receptor 

(Imamura et al., 1997; Souchelnytskyi et al., 1998). Additionally, Smad 6 can 

compete with Smad 4 for Smad 1 binding, leading to the formation of a 

transcriptionally inactive Smad 6/ Smad 1 complex (Hata et al., 1998).  

Smad ubiquitination regulatory factors (Smurfs) are E3 ubiquitin-ligases that 

cause proteasomal degradation of R-Smads or BMP receptors (Figure 4 C). 

Smurf1 has been shown to specifically target Smads 1 and 5 (Zhu et al., 1999). 

Kavsak and colleagues reported that human Smurf 2 mediates proteasomal 

degradation of activated TGF-β and BMP receptors (Kavsak et al., 2000). 

Furthermore several phosphatases, such as PP1 or PP2a inhibit BMP signaling 

by dephosphorylation of both the receptor and R-Smads (Figure 4 D), (Wrighton 

et al., 2009).  

The biological output of BMP signaling can be further modulated by interaction 

of nuclear SMAD complexes with different transcriptional co-activators or co-

repressors (Figure 4 F). Apart from general transcriptional coactivators,such as 

p300 and CBP, also Olf-1/EBF associated zinc fingerOAZ was identified as 

DNA binding cofactor that stimulates expression of the direct BMP target gene 

Xvent-2(Hata et al., 2000; Liu et al., 2008; Pouponnot et al., 1998). In contrast, 

some transcriptional co-repressors, such as SNIP1 or E1A are known to inhibit 

TGF-β signaling by inhibiting the interaction between Smads and CBP/p300 

(Kim et al., 2000; Nishihara et al., 1999). 
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1.3 Development of the blood circulatory system in vertebrates 

 

Vertebrate blood can be classified into three main cell lineages: erythrocytes, 

thrombocytes and leukocytes. These blood cells require a functional vascular 

system in such a way as to enable them to circulate through the body and to 

fulfill their cell-type-specific functions, such as gas transport, blood clotting, and 

immune response, respectively (Hartenstein, 2006). During embryogenesis the 

blood circulatory system is one of the first organ systems to develop. In this 

process blood cells and vessels develop simultaneously in close association 

with each other(Risau, 1995). 

 

1.3.1 Development of blood and vessels during Xenopus 

embryogenesis 
 
Vertebrate blood development occurs in 2 waves, termed primitive and 

definitive hematopoiesis. Early primitive blood cell formation produces primarily 

primitive red blood cells that provide the developing embryo with oxygen. In 

contrast, within the second definitive hematopoietic wave hematopoietic stem 

cells (HSCs) give rise to blood cells of all lineages that are required throughout 

the whole life span of the organism (Kau and Turpen, 1983; Tsiftsoglou et al., 

2009). Ciau-Uitz and colleagues obtained evidence that embryonic and adult 

blood cells have distinct origins in Xenopus (Ciau-Uitz et al., 2000). 

Primitive (embryonic) hematopoiesis occurs first in the ventral blood islands 

(VBI) that are located at the ventral side of the embryo and resemble the 

analogous structure of the mammalian extra-embryonic blood islands on the 

yolk sac (Figure 5 A). In contrast, definitive hematopoiesis originates from the 

dorsal lateral plate(DLP) that resembles the analog of the para-aortic 

slanchnopleura or AGM (aorta, gonads, mesonephros) region in other 

vertebrates (Figure 5 A). 

In addition to blood cell formation, the VBI as well as the DLP contribute to the 

development of vascular structures (Figure 5 B). In a process, termed 

vasculogenesis, blood vessels develop de novo by differentiation of 

mesodermal progenitor cells into endothelial cells, which form a primitive 
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capillary network. Vasculogenesis is followed by angiogenesis, the formation of 

new blood vessels from these pre-existing calillaries(Levine et al., 2003; Pardali 

et al., 2010; Risau, 1995). While the VBI mainly contribute to the development 

of embryonic vitelline vein network, the main body vessels, such as dorsal aorta 

and posterior cardinal vein derive from the DLP(Cleaver and Krieg, 1998; 

Walmsley et al., 2002). 

 

 
Figure 5. The VBI and the DLP contribute to the formation of primitive and 
definitive blood as well as to the vascular system. (A) The formation of embryonic 
and defintive blood cells occurs spatially and temporally separated. While primitive 
hematopoiesis is initiated in the VBI at the end of neurulation, definitive hematopoiesis 
in the DLP is induced later, at late tailbud stage. (B) At stage 36 the the vitelline vein 
network and the main body vessels (green) have formed and the first differentiated 
embryonic erythrocytes (red) have started to circulate within the vascular network (after 
Levine et al., 2003). da: dorsal aorta; h: heart; isv: intersomitic veins; pcv posterior 
cardinal vein; vbi: ventral blood islands; vit: vitelline veins. 
 

Lineage tracing studies in Xenopus have shown that both, ventral (V) and 

dorsal (D) mesoderm (M) contribute to the future ventral blood islands(Ciau-Uitz 

et al., 2010; Tracey et al., 1998). While the DM contributes to the most anterior 

portion of the VBI, the aVBI, the VM gives rise to the posterior portion, the pVBI 

(Figure 6 A and C). As gastrulation proceeds, involuting mesoderm at the dorsal 

blastopore lip migrates under the roof of the blastocoel and finally meets up with 

the ventral mesodermal leading edge (Figure 6 B). At the end of neurulation, a 

colony of precursor cells is located immediately posterior to the cement gland 

(Figure 6 A), where they differentiate into either the endothelial or the 

hematopoietic lineage, as development proceeds (Ciau-Uitz et al., 2010; 

Kumano et al., 1999; Walmsley et al., 2002). 
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While cells of the aVBI give rise to a minority of erythrocytes and a large 

number of myeloid cells, the pVBI produces the main portion of embryonic 

erythrocytes, but also leukocytes and a few short term lymphocytes(Ciau-Uitz et 

al., 2010; Costa et al., 2008; Maeno et al., 2012; Tashiro et al., 2006). Terminal 

differentiation of myeloid cells in the aVBI occurs as early as stage 20 and these 

cells start to migrate throughout the embryo by stage 24, long before the 

circulatory system is established(Maeno et al., 2012; Smith et al., 2002). In 

contrast, first erythrocytes differentiate and express embryonic globin genes in 

the VBI at around stage 30 in ananterior to posterior wave (Tsiftsoglou et al., 

2009). The heart starts beating at stage 33/34 and differentiated erythrocytes 

enter the circulatory system by stage 35/36 (Figure 5 B); (Zon, 1995). 

 

 
Figure 6. Ontogeny of the anterior and the posterior portion of the VBI and the 
DLP . (A) The aVBI derive from the dorsal C1 and D1 blastomeres of the 32-cell stage 
embryo. (B) During gastrulation, mesodermal cells, that will form the aVBI, migrate 
along the blastocoel roof from dorsal to ventral. (C) The ventral D4 blastomere gives 
rise to the pVBI. (D) Cells contributing to the DLP and pronephric tissue derive from the 
C3 blastomere of the 32-cell stage embryo. (A-D) modified after Ciau-Uitz et al., 2010). 
 

The DLP is a derivative of the C3 blastomere of the 32 cell-stage Xenopus 

embryo (Figure 6 D). During tailbud stages this mesodermal compartment is 
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populated by progenitor cells for definitive blood and the main body vessels that 

coexpress endothelial and hematopoietic marker genes (Ciau-Uitz et al., 2000). 

At stage 27, a subpopulation of cells from the DLP that does not express blood 

genes migrates to the midline towards the hypochord where they form the 

dorsal aorta (Cleaver and Krieg, 1998). Later, blood gene expression is again 

detected in cells associated with the floor of the dorsal aorta (Ciau-Uitz et al., 

2000). These hematopoietic cells are thought to be the first adult blood stem 

cells(Ciau-Uitz et al., 2000; Huber and Zon, 1998).  

 

1.3.2 Blood and vascular development from the hemangioblast and 

thehemogenic endothelium 

 

In 1917, Florence Sabin observed that hematopoietic and vascular cells 

develop in close spatial and temporal association with each other in the avian 

model sytem(Sabin, 2002). In 1932, his finding was confirmed by Murray, who 

proposed a model for a common progenitor for both endothelial and 

hematopoietic cell lineages and termed it the hemangioblast(Murray, 1932). 

 

 
Figure 7. Overlapping expression pattern of Xfli-1 and SCL marks hemangioblast 
formation in the VBI and the DLP. At stage 17 SCL and Xfli-1 are coexpressed by a 
cell population immediately posterior to the cement gland (left panel). At stage 26, 
expression of these genes has become mutually exclusivein the VBI, while overlapping 
in the DLP (right panel). Spatial distribution of SCL and Xfli-1 transcripts was 
determined by whole-mount in situ hybridization of stage 17 or stage 26 Xenopus 
embryos, as indicated. Black arrows indicate DLP; red arrows indicate VBI; Green 
arrows indicate vitelline veins (Vit); (modified after Walmsley et al., 2002). 
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Further evidence for the existence of such a bipotential precursor came from 

studies in mouse, showing that endothelial and hematopoietic cells express a 

similar set of genes, includingFlk1, SCL/tal-1, Cbfa2/Runx1/AML1 and 

CD34(Baron, 2001; Walmsley et al., 2002). Consitent with these data, 

Walmsley and colleagues reported that in Xenopusthe endothelial marker Xfli1 

and the hematopoietic marker SCL are coexpressed at the end of neurulation in 

a restricted region posterior to the cement gland, while getting expressed 

mutually exclusive as differentiation into vascular or blood fate proceeds(Figure 

7). At tailbud stage when definitive hematopoiesis gets initiated these factors 

are coexpressed in the DLP (Walmsley et al., 2002). 

 

 

 
Figure 8. Development of hematopoietic and vascular cell types from the 
hemangioblast. The hemangioblast, specified from mesoderm, is the common 
precursor of both hematopoietic stem cells (HSC) and the angioblast. HSCs 
differentiate into mature blood cell types expressing cell-type specific genes, while 
angioblasts give rise to vascular structures. During further specification of the 
hemangioblast growth factors, receptors, or transcription factors, that are originally 
coexpressed in the hemangioblast like fli-1 and SCL get restricted to either the 
hematopoietic or the angiogenic fate, as indicated (after Crosier et al., 2002 and Martin 
et al., 2011).  
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Transient mouse embryonic stem cell (ESC)–derived blast colony forming cells 

(BL-CFCs), give rise to both hematopoietic and vascular cell lineages. 

Therefore it was considered that these cells are the in vitro equivalent of the 

hemangioblast(Choi et al., 1998; Kennedy et al., 2007).  

Furthermore, loss of function studies in mouse revealed that targeted disruption 

of either the endothelial gene Flk1 or the hematopoietic marker SCL in mouse 

caused severe defects in hematopoiesis as  well as in vasculogenesis(Robb et 

al., 1995; Shalaby et al., 1995; Visvader et al., 1998). 

Based on these data, a model has been proposed in which the hemangioblast 

is specified from the mesoderm, followed by angiogenic or hematopoietic 

fatedecision. Factors that are expressed by the hemangioblast become 

restricted to either the hematopoietic stem cell (HSC) or the angioblast, such as 

fli-1 or SCL, respectively (Figure 8), (Walmsley et al., 2002). While the 

angioblast contributes to the formation of the vascular system, hematopoietic 

stem cells can develop into either lymphoid or erythroid-myeloid precursor cells, 

followed by terminal differentiation into the different mature blood cell types, 

such as B-cells, T-cells, myeloperoxidase (mpo) expressing myeloid cells, or 

globin gene expressing erythrocytes (Figure 8), (Crosier et al., 2002; Martin et 

al., 2011). 

While the development of blood cell lineages and vascular cells from the 

common precursor cell, the hemangioblast, appears to be relevant for at least 

primitive hematopoietic events, it is now generally accepted that during 

definitive hematopoiesis HSCs arise from a hemogenic endothelium. The term 

hemogenic endothelium defines specialized vascular endothelial cells that 

aquire blood forming potential (Hirschi, 2012). Using lineage tracing studies in 

mouse, Zovein and colleagues could show that an epithelial VE-cadherin 

expressing cell population in the AGM region gave rise to all blood cell lineages 

in vivo (Zovein et al., 2008). Further evidence came from in vivo dynamic 

imaging studies in mouse and zebrafish that demonstrated the generation 

hematopoietic cells from the aortic endothelium (Boisset et al., 2010; Kissa and 

Herbomel, 2010). 



Introduction 

17 
 

1.4 Aims 

Wnt and BMP signaling pathways play important roles in multiple aspects of 

embryogenesis. The first aim of this study was to investigate Wnt signaling in 

the context of gut tube patterning in Xenopus. The second goal of this study 

was to analyze biochemical and biological activities of a novel regulator of BMP 

signaling, identified by expression cloning. 
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2. Materials and Methods 
 

2.1 Model Organism 

The African clawed frog Xenopus laevis (X. laevis) was used as a model 

organism during this study. Adult frogs were purchased from NASCO (Ft. 

Atkinson, USA). 
 

2.2 Bacteria 

E. coli strain XL1-Blue (RecA1, endA1, gyrA96, thi-1, hsdR17, supE44, relA1, 

lac[F’proAB, ZΔM15, Tn10(Tetr)]c (Stratagene)) was used during this study. 

 

2.3 Chemicals, Buffers, and Media 

 

2.3.1 Chemicals 

The Chemicals were purchased from the following companies: Roth 

(Karlsruhe), Sigma (Munich), Biomol (Hamburg), Applichem (Darmstadt), and 

Biochrom (Berlin). 

 

2.3.2 Buffers and Media 

Buffers were prepared using deionized water (MiliQ). 

 

Alkaline phosphatase buffer (APB) 
100 mM Tris, 50 mM MgCl2, 100 mM NaCl, 0.1 % TWEEN-20; pH 9.0 

 

Bleaching solution 

50 % Formamide, 1 % - 2 % H2O2, in 5 x SSC 

 

Blocking solution 

1 x TBST; 5 % non fat dry milk 
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CoIP buffer 
50 mM Tris-HCl (pH 7.5), 100 mM NaCl, 2 mM EDTA, 1 mM EGTA, 0.5 % (v/v) 

NP-40, 10 %  (v/v) glycerol, 1 mM NaF, 1 mM β-glycerolphosphate, 1 mM 

Sodium orthovanadate, Complete Protease inhibitor mix EDTA free (1 tablet per 

50 ml of buffer, Roche) 

 

color reaction solution (WMISH) 

80 μg/ml NBT, 175 μg/ml BCIP in APB; pH 9.0 
 

Collagenase-buffer 

82.5 mM NaCl, 2 mM KCl, 1 mM MgCl2, 5 mM HEPES; pH 7.5 

 

Cystein solution 
2 % L-Cystein hydrochloride; pH 7.8 

 

500x Dexamethasone (Dex) 

20 mM dexamethasone in ethanol, stored in the dark, stable for up to 3 month 

 

Hybridization Mix (Hyb Mix) 

50% (v/v) Formamide (deionized), 1 mg/ml Torula-RNA (Sigma), 100 μg/ml 

Heparin, 1 x Denhardt’s, 0.1% (v/v) Tween-20, 0.1% (w/v) CHAPS (Sigma), 10 

mM EDTA,  5X SSC 

 

Injection Buffer 
1 x MBS, 1 % Ficoll (Sigma) 

 

Laemmli loading buffer (2 x) 

10 ml 1.5 M Tris (pH 6.8), 12 ml 10 % SDS, 30 ml glycerol, 15 ml β-

mercaptoethanol, 1.8 mg bromphenol blue 

 

Laemmli running buffer (1 x) 
25 mM Tris, 192 mM Glycine, 0.1 % SDS 
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LB-Agar 
1.5 % (w/v) agar (DIFCO) in liquid LB-medium 

 

Luria-Bertani (LB)-Medium 

1 % (w/v) Bacto-Trypton (DIFCO), 0.5 % (w/v) yeast extract (DIFCO), 1 % (w/v) 

NaCl, pH 7.5 

 

MAB (5 x) 

500 mM maleic acid, 750 mM NaCl; pH 7.5 

 

MBS buffer Salts (10 x) 

880 mM NaCl, 10 mM KCl, 10 mM MgSO4, 50 mM Hepes, 25 mM NaHCO3; pH 

7.8 

 

MBS buffer AC (5 x) 

440 mM NaCl, 5 mM KCl, 4.1 mM MgSO4, 50 mM Hepes, 12 mM NaHCO3, 2.05 

mM CaCl2, 1.65 mM Ca(NO3)2; pH 7.4 

 

MBS buffer (1 x) 

1 x MBS buffer Salts, 0.7 mM CaCl2 

 

MEM (10 x) 

1 M MOPS, 20 mM EGTA, 10 mM MgSO4; pH 7.4 

 

MEMFA (1 x) 
1 x MEM, 4 % formaldehyde 

 

Nile Blue Solution 

0.01 % (w/v) Nile Blue chloride, 89.6 mM Na2HPO4, 10.4 mM NaH2PO4; pH 7.8 

 

Oocyte culture medium (OCM) 

8.4 mg/ml Leibovitz’s L-15 powder (Gibco®), 0.4 mg/ml BSA, 1 mM L-

glutamine, 0.1 mg/ml Penicillin/Streptomycin (Biochrom) in autoclaved H2O 
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PBS (10 x) 
1.75 M NaCl, 1 M KCl, 65 mM Na2HPO4, 18 mM KH2PO4; pH 7.4 

 

Ponceau S Solution 

2 g Ponceau S, 30 g trichloracetic acid, 30 g sulfosalicylic acid acid per 100 ml 

 

Ptw buffer 
0.1 % Tween-20 in 1 x PBS 

 

SSC (20 x) 
3 M NaCl, 0.3 M Sodium citrate, pH 7.4 

 

TAE (Tris/Acetate/EDTA) 

40 mM Tris-Acetate (pH 8.5), 2 mM EDTA 

 

TE-Buffer 
10 mM Tris-HCl (pH 8.8), 1 mM EDTA) 

 

TBST (1 x) 

50 mM Tris, 150 mM NaCl, 0.1 % TWEEN-20; pH 7.5 

 

Transfer Buffer 

2.9 g Glycine, 5.8 g Tris, 0.37 g SDS, 200 mL Methanol per 1 L 

 

X-gal 
40 mg/ml 5-Bromo-4-chloro-3-indolyl-b-D-galactosidase (X-gal) in 

formamide; stored in the dark at -20°C 

 

X-gal staining solution 

1 x PBS, 1 mg/ml X-gal, 5 mM K3Fe(CN)6, 5 mM K4Fe(CN)6, 2 mM MgCl2 
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2.4 Constructs 

 

2.4.1 Vectors 

 

pCS2+ 

The multipurpose expression vector pCS2+ contains the simian 

cytomegalovirus IE94 enhancer/promoter sequence, which is suitable for 

overexpression experiments in Xenopus. The viral SP6 promoter, polylinker 

sequence, and SV40 viral polyadenylation signal allow the in vitro transcription 

of sense polyadenylated mRNA for microinjection(Rupp et al., 1994). 

 

MT/pCS2+ 

pCS2+/MT is a derivative of the pCS2+ vector, that contains a hexameric repeat 

of the Myc epitope tag at the 5’-end of the first polylinker(Rupp et al., 1994). 

This vector allows the expression of myc-tagged proteins. 

 

HA/pCS2+ 

pCS2+/HA is a derivative of the pCS2+ vector, that contains the Human 

influenza hemagglutinin (HA) epitope tag inserted via the XbaI site(Damianitsch 

et al., 2009). This vector allows the expression of HA-tagged proteins. 

 

MT-GFP/pCS2+ 
pCS2+/MT-GFP is a derivative of the pCS2+/MT vector, that contains the S65A 

mutant form of GFP, in-frame with the Myc epitope tags. This vector is a 

suitable system for cloning of N- and/or C-terminally tagged constructs, as well 

as for the analysis of promoter and enhancer sequences (Rubenstein et al., 

1997). 

 

MT-GR/pCS2+ 
MT-GR/pCS2+ is a derivative of the MT/pCS2+ vector, that contains the human 

glucocorticoid receptor domain (GR), in-frame with the Myc epitope tags. This 

vector is a suitable system for cloning of N- and/or C-terminally tagged 

hormone-inducible constructs (Yonglong Chen, unpublished). 
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GR/pCS2+ 
GR/pCS2+ is a derivative of the pCS2+ vector, that contains the human 

glucocorticoid receptor domain (GR). This vector is a suitable system for cloning 

of hormone-inducible constructs (Yonglong Chen, unpublished). 

 

5’GR/pCS2+ 

GR/pCS2+ is a derivative of the pCS2+ vector, that contains the human 

glucocorticoid receptor domain (GR). This vector is a suitable system for cloning 

of N-terminally fused hormone-inducible constructs(Damianitsch, 2008). 

 

pCS107 

The pCS107 vector is a modification of the pCS105 vector . The major 

modification is the functional T7 promoterwhich now reads: 5' 

gcctctcgagcctctcgccctatagtgagtcg 3' the only difference from pCS105 is the 

change of cgcc (optimal bluescript motif) from agaa (Grammer et al., 2000). 

 

pGEM®-T Easy 
pGEM®-T Easy vector is a suitable system for the cloning of PCR products. It contains 

single 3´-T overhangs at the insertion site within the multiple cloning region. 

This cloning region is located within the alpha-peptide coding region of the 

enzyme beta-galactosidase, what allows blue/white screening on indicator 

plates. The pGEM®-T Easy vector contains T7 and SP6 RNA polymerase 

promoters (Promega).  

 

pBluescript KS/SK 

pBluescript KS/SK phagemids (plasmids with a phage origin) are a cloning 

vectors that contain the beta-galctosidase coding region, which is interrupted by 

a polylinker and flanked by T7 and T3 RNA polymerase promoters (Stratagene). 

 

pGL3 

The pGL3 vector contains a modified coding region of the firefly luciferase gene 

and was designed for the analysis of promoter and enhancer sequences or 

DNA-binding proteins in the context of transcriptional regulation (Promega). 
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pRL-TK 
The pRL-TK vector contains cDNA encoding Renilla luciferase under control of 

the herpes simplex virus thymidine kinase (HSV-TK) promoter. It is intended for 

use as an internal control reporter in combination with any experimental reporter 

vector (Promega). 

 

pRL-CMV 
The pRL-CMV vector contains cDNA encoding Renilla luciferase under control 

of the cytomegalovirus (CMV) promoter. It is intended for use as an internal 

control reporter in combination with any experimental reporter vector 

(Promega). 

 

2.4.2 Expression constructs and luciferase reporters 

 

The expression construct and luciferase reporters used in this study are 

presented in Table 1. The constructs were linearized and in vitro transcribed as 

indicated in Table 2. 

 

Table 1.Expression constructs and luciferase preporters 

Name Vector Insert Cloning strategy 

βcatS33A -GR GR/pCS2+ 
Human βcatS33A 
fused to human 
GR-LBD 

(Aberle et al., 1997; 
Damianitsch, 2008) 

βcatS33A∆TA-
GR GR/pCS2+ 

Human βcatS33A 
lacking Trans-
activation domain 
fused to human 
GR-LBD 

βcatS33A∆TA sequence was 
amplified from βcatS33A-
GR/pCS2+ (Aberle et al., 
1997; Damianitsch, 2008) 
using primers 
βcatS33A_ClaI_fw  and 
βcatS33A_XhoI_rev. PCR 
product was cut with ClaI and 
XhoI and inserted into the 
same site of GR/pCS2+ vector.  

βcatS33A∆TA-
VP16-GR GR/pCS2+ 

Human βcatS33A 
lacking Trans-
activation domain 
fused to Herpes 
simplex virus 
VP16 and human 
GR-LBD 

VP16 sequence was amplified 
from VP16/pCS2+ using 
primers VP16_XhoI_fw and 
VP16_XhoI_rev. PCR product 
was cut with XhoI and inserted 
into the same site of 
βcatS33A∆TA-GR vector. 
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Name Vector Insert Cloning strategy 

GR- 
βcatS33Y∆TA 5’GR/pCS2+ 

Human β-Catenin 
with a mutation at 
serine 33 site 
lacking Trans-
activation domain 
fused to the 
human GR-LBD. 

βcatS33Y∆TA sequence was 
amplified from βcatS33Y/ 
pClneo (Morin et al., 
1997)using primers 
βcatS33A_ClaI_fw  and 
βcatS33A_XhoI_rev. PCR 
product was cut with ClaI and 
XhoI and inserted into the 
same site of 5’GR/pCS2+ 
vector (Juliane Melchert, 
unpublished). 

βcatS33A∆TA-
EnR-GR GR/pCS2+ 

Human βcatS33A 
lacking Trans-
activation domain 
fused to 
Drosophila EnR 
and human GR-
LBD 

EnR sequence was amplified 
from EnR/pCS2+ (Tiemo 
Klisch, unpublished) using 
primers EnR_XhoI_fw and 
EnR_XhoI_rev. PCR product 
was cut with XhoI and inserted 
into the same site of 
βcatS33A∆TA-GR vector. 

GR-∆NTcf3 5’GR/pCS2+ 

Xenopus Tcf3 
lacking the β-
Catenin binding 
domain fused to 
human GR-LBD. 

∆NTcf3 sequence was 
amplified from ∆NTcf3/pT7T 
(Molenaar et al., 1996) using 
primers dNTCF3_EcoRI_fw 
and dNTCF3_XhoI_rev. PCR 
product was cut with EcoRI 
and XhoI and inserted into the 
same site of 5’GR/pCS2+ 
vector (Juliane Melchert, 
unpublished). 

Tcf3∆C-GR GR/pCS2+ 

Xenopus Tcf3 
lacking the CtBP 
binding domain 
fused to human 
GR-LBD. 

Tcf3∆C sequence was 
amplified from Tcf3∆C/ pCS2+ 
(Pukrop et al., 2001) using 
primers TCF3AdC_EcoRI_fw 
and TCF3-AdC_XhoI_rev. 
PCR product was cut with 
EcoRI/XhoI and inserted into 
the same site of GR/pCS2+ 
vector. 

GR-Tcf3∆HMG 5’GR/pCS2+ 

Xenopus Tcf3 
lacking the C-
terminus 
including DNA 
binding domain 
fused to human 
GR-LBD. 

Tcf3∆HMG sequence was cut 
off from Tcf3∆HMG/pCS2+ 
(Pukrop, unpublished) using 
EcoRI/XhoI and inserted into 
the same site of 5’GR/pCS2+ 
vector. 

Tcf3∆HMG-GR GR/pCS2+ 

Xenopus Tcf3 
lacking the C-
terminus 
including DNA 
binding domain 
fused to human 
GR-LBD. 

Tcf3∆HMG sequence was cut 
off from Tcf3∆HMG/pCS2+ 
(Pukrop, unpublished) using 
EcoRI/XhoI and inserted into 
the same site of GR/pCS2+ 
vector. 

Lef1-GR GR/pCS2+ mouse full-length (Behrens et al., 1996; 
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Name Vector Insert Cloning strategy 
Lef1 fused to 
human GR-LBD. 

Damianitsch, 2008) 

Lef∆BD-GR GR/pCS2+ 

Mouse Lef1 
lacking the β-
Catenin binding 
domain fused to 
human GR-LBD. 

(Behrens et al., 1996; 
Katharina Damianitsch, 
unpublished) 

Lef∆N-VP16-GR GR/pCS2+ 

Chimeric fusion of 
the Lef1 DNA 
binding domain 
fused to Herpes 
simplex virus 
VP16 and human 
GR.LBD 

(Denayer et al., 2008) 

EnR-Lef1-GR GR/pCS2+ 

Full-length Lef1 
fused to 
Drosophila EnR 
and human GR-
LBD. 

(Lyons et al., 2009) 

MT-Dvl MT/pCS2+ 

Full-length 
Xenopus laevis 
disheveled fused 
to MT 

(Sokol, 1996) 

MT-β-Catenin MT/pCS2+ 
Full-length human 
β-Catenin fused 
to MT 

(Behrens et al., 1996) 

lacZ pCS2+ Bacterial β-
galactosidase (Smith and Harland, 1991) 

PDIp pBK-CMV 

Xenopus laevis 
fulllength 
pancreatic protein 
disulfide 
isomerase 

(Afelik et al., 2004) 

TTpA072o12 pCS107 

Xenopus 
tropicalis cDNA 
clone 
TTpA072o12 

(Gilchrist et al., 2004) 

TTpA074b10 pCS107 

Xenopus 
tropicalis cDNA 
clone 
TTpA074b10 

(Gilchrist et al., 2004) 

TTpA074h13 pCS107 

Xenopus 
tropicalis cDNA 
clone 
TTpA074h13 

(Gilchrist et al., 2004) 

TTpA075c05 pCS107 

Xenopus 
tropicalis cDNA 
clone 
TTpA075c05 

(Gilchrist et al., 2004) 

TTpA075j02 pCS107 

Xenopus 
tropicalis cDNA 
clone 
TTpA075j02 

(Gilchrist et al., 2004) 
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Name Vector Insert Cloning strategy 

TTpA075o18 pCS107 

Xenopus 
tropicalis cDNA 
clone 
TTpA075o18 

(Gilchrist et al., 2004) 

TTpA076d05 pCS107 

Xenopus 
tropicalis cDNA 
clone 
TTpA076d05 

(Gilchrist et al., 2004) 

TTpA076k21 pCS107 

Xenopus 
tropicalis cDNA 
clone 
TTpA076k21 

(Gilchrist et al., 2004) 

TTpA077b02 pCS107 

Xenopus 
tropicalis cDNA 
clone 
TTpA077b02 

(Gilchrist et al., 2004) 

TTpA078d11 pCS107 

Xenopus 
tropicalis cDNA 
clone 
TTpA078d11 

(Gilchrist et al., 2004) 

TTpA078h06 pCS107 

Xenopus 
tropicalis cDNA 
clone 
TTpA078h06 

(Gilchrist et al., 2004) 

TTpA078l11 pCS107 

Xenopus 
tropicalis cDNA 
clone 
TTpA078l11 

(Gilchrist et al., 2004) 

TTpA073i18 pCS107 

Xenopus 
tropicalis cDNA 
clone 
TTpA073i18 

(Gilchrist et al., 2004) 

TTpA074b19 pCS107 

Xenopus 
tropicalis cDNA 
clone 
TTpA074b19 

(Gilchrist et al., 2004) 

TTpA074l15 pCS107 

Xenopus 
tropicalis cDNA 
clone 
TTpA074l15 

(Gilchrist et al., 2004) 

TTpA075f20 pCS107 

Xenopus 
tropicalis cDNA 
clone 
TTpA075f20 

(Gilchrist et al., 2004) 

TTpA075l15 pCS107 

Xenopus 
tropicalis cDNA 
clone 
TTpA075l15 

(Gilchrist et al., 2004) 

TTpA076b06 pCS107 

Xenopus 
tropicalis cDNA 
clone 
TTpA076b06 

(Gilchrist et al., 2004) 
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Name Vector Insert Cloning strategy 

TTpA076j03 pCS107 

Xenopus 
tropicalis cDNA 
clone 
TTpA076j03 

(Gilchrist et al., 2004) 

TTpA076l10 pCS107 

Xenopus 
tropicalis cDNA 
clone 
TTpA076l10 

(Gilchrist et al., 2004) 

TTpA077e08 pCS107 

Xenopus 
tropicalis cDNA 
clone 
TTpA077e08 

(Gilchrist et al., 2004) 

TTpA078f11 pCS107 

Xenopus 
tropicalis cDNA 
clone 
TTpA078f11 

(Gilchrist et al., 2004) 

TTpA078k07 pCS107 

Xenopus 
tropicalis cDNA 
clone 
TTpA078k07 

(Gilchrist et al., 2004) 

TTpA078m10 pCS107 

Xenopus 
tropicalis cDNA 
clone 
TTpA078m10 

(Gilchrist et al., 2004) 

XtFam132b pCS2+ 

Xenopus 
tropicalis 
fam132bcoding 
sequence 

XtFam132b sequence was 
amplified from 
TTpA078f11/pCS107(Gilchrist 
et al., 2004) using primers 
fam132b_BamHI_fw and 
fam132b_XhoI_rev. PCR 
product was cut with 
BamHI/XhoI and inserted into 
the same site of pCS2+ vector. 

tBR pSP64T 

Xenopus laevis 
dominant 
negative BMP 
receptor 

(Graff et al., 1994) 

MT-Wnt8 MT/pCS2+ 
Full-length 
Xenopus laevis 
Wnt8 fused to MT 

(Damianitsch et al., 2009) 

Siamois-Luc pGL3 

contains Xenopus 
laevis Siamois 
promoter 
upstream of 
Firefly luciferase 
ATG 

(Brannon et al., 1997) 

Renilla-Luc pRL-CMV 
Contains Renilla 
luciferase under 
control of CMV 
promoter 

promega 

Noggin pGEM5ZF 
5’truncated 
version of 
Xenopus laevis 

(Smith and Harland, 1992) 
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Name Vector Insert Cloning strategy 
Noggin 

BMP4 pSP64T 

Xenopus laevis 
bone 
morphogenetic 
protein 4 

(Nishimatsu et al., 1992) 

BMP2 pSP64T 

Xenopus laevis 
bone 
morphogenetic 
protein 2 

(Clement et al., 1995) 

Vent2b-BRE-
Luc pGL3 

contains Xenopus 
laevis -275/+52-
Vent2b promoter 
upstream of 
Firefly luciferase 
ATG 

(Henningfeld et al., 2000) 

Renilla-Luc pRL-TK 
Contains Renilla 
luciferase under 
control of HSV-
TK promoter 

promega 

eFGF pSP64T 

Xenopus laevis 
embryonic 
fibroblast growth 
factor 

(Isaacs et al., 1994) 

Activin pSP64T Zebrafish 
activinβB (Wittbrodt and Rosa, 1994) 

Fam132b-HA HA/pCS2+ 

Xenopus 
tropicalis 
fam132bcoding 
sequence fused 
to HA tag 

XtFam132b sequence was 
amplified from 
XtFam132b/pCS2+ using 
primers fam132b_EcoRI_fw 
and fam132bΔstop_XhoI_rev. 
PCR product was cut with 
EcoRI/XhoI and inserted into 
the same site of HA/pCS2+ 
vector. 

Su(H)-HA HA/pCS2+ 

Xenopus laevis 
Suppressor of 
Hairless fused to 
HA tag 

(Marie Hedderich, 
unpublished) 

sFRP5-HA HA/pCS2+ 

Xenopus laevis 
secreted Frizzled-
related protein 5 
fused to HA tag 

(Damianitsch et al., 2009) 

caBMPR pSP64T 

Constitutively 
active Xenopus 
laevis Alk3 BMP 
type I receptor 
with the mutation 
Glu228Asp 

(Candia et al., 1997) 

XtFam132b-MT MT/pCS2+ 

Xenopus 
tropicalis 
fam132bcoding 
sequence fused 
to MT 

XtFam132b sequence was 
amplified from 
XtFam132b/pCS2+ using 
primers 
famSP_BamHI_fw and 



Materials and Methods  

30 
 

Name Vector Insert Cloning strategy 
fam132bΔStop_ClaI_rev. PCR 
product was cut with 
BamHI/ClaI and inserted into 
the same site of MT/pCS2+ 
vector. 

XtFam132b-
MT-GR 

MT-
GR/pCS2+ 

Xenopus 
tropicalis 
fam132bcoding 
sequence fused 
to MT and GR-
LBD 

XtFam132b sequence was cut 
off from XtFam132b-
MT/pCS2+ using BamHII/ClaI 
and inserted into the same site 
of MT-GR/pCS2+ vector. 

Alk2-HA HA/pCS2+ 

Xenopus laevis 
Alk2 BMP type I 
receptor fused to 
HA tag 

(Aramaki et al., 2010) 

Alk3-HA HA/pCS2+ 

Xenopus laevis 
Alk3 BMP type I 
receptor fused to 
HA tag 

(Aramaki et al., 2010) 

Noggin-MT MT/pCS2+ 
Xenopus laevis 
Noggin fused to 
MT tag 

Noggin sequence was 
amplified from 
Noggin/pGEM5ZF using 
primers 
Noggin_ClaI_fw and 
Noggin_ClaI_rev. PCR product 
was cut with ClaI and inserted 
into the same site of 
MT/pCS2+ vector. 

BMP4-HA pCS2+ 

Xenopus laevis 
bone 
morphogenetic 
protein 4 fused to 
HA tag 

(Haramoto et al., 2004) 

XtFam132b-
ΔC1q pCS2+ 

Xenopus 
tropicalis 
Fam132blacking 
the C1q/TNF-like 
domain 

XtFam132b∆C1q sequence 
was amplified from 
XtFam132b/pCS2+ using 
primers famSP_BamHI_fw and 
intfam_XhoI_rev. PCR product 
was cut with EcoRI/XhoI and 
inserted into the same site of 
pCS2+ vector. 

XtFam132b-Δint pCS2+ 

Xenopus 
tropicalis 
Fam132blacking 
the internal 
sequence 

XtFam132b∆intern sequence 
was amplified from 
XtFam132b/pCS2+. N-terminal 
signal sequence was amplified 
using primers 
famSP_BamHI_fw and 
famSP_EcoRI_rev. PCR 
product was cut with 
BamHI/EcoRI. C-terminal C1q 
domain was ampliefied using 
primers C1q_EcoRI_fw and 
fam132b_XhoI_rev. PCR 
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Name Vector Insert Cloning strategy 
product was cut with 
EcoRI/XhoI. Both fragments 
were inserted into the 
BamHI/XhoI site of the pCS2+ 
vector. 

XtFam132a pCS2+ 

Xenopus 
tropicalis 
fam132acoding 
sequence 

XtFam132a sequence  was 
ampliefied from 
XtFam132a/pCS108 (Source 
Bioscience Life Science; 
IMAGE ID: 7603110) using 
primers Xtfam132a_EcoRI_fw 
and Xtfam132a_XhoI_rev. 
PCR product was cut with 
EcoRI/XhoI and inserted into 
the same site of pCS2+ vector. 

MmFam132b pCS2+ 
mouse 
fam132bcoding 
sequence 

MmFam132b sequence  was 
ampliefied from 
MmFam132b/pYX-Asc 
(Source Bioscience Life 
Science; IMAGE ID: 5716432) 
using primers 
Mmfam132b_EcoRI_fw and 
Mmfam132b_XhoI_rev. PCR 
product was cut with 
EcoRI/XhoI and inserted into 
the same site of pCS2+ vector. 

DrFam132b pCS2+ 
zebrafish 
fam132bcoding 
sequence 

(AN: XM_002660704; Biomatik 
gene synthesis) 

XlFam132b pCS2+ 
Xenopus laevis 
fam132bcoding 
sequence 

Partial XlFam132b sequence 
was cloned from X. laevis st 
37/38 cDNA using primers 
fam132b_E3_fw and 
fam132b_E5_rev. PCR 
product was cloned into 
pGEM-T®Easy vector. Based 
on sequence analysis of the 
PCR fragment gene specific 
primers 5’RACE_fam132b and 
3’RACE_fam132b were 
generated and used for RACE-
PCR using X. laevis st 37/38 
cDNA. 3’ and 5’RACE 
fragments were inserted into 
pGEM-T®Easy vector. Based 
on sequence analysis of these 
fragments, cloning primers 
fam132b_CDS_EcoRI_fw and 
fam132b_CDS_XbaI_rev were 
generated and used for cloning 
of the XlFam132b coding 
sequence from X. laevis st 
37/38 cDNA. PCR product was 
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Name Vector Insert Cloning strategy 
cutwith EcoRI/XbaI and 
inserted into the same site of 
pCS2+ vector. 

XlFam132b pBluskript SK 
Xenopus laevis 
fam132bcoding 
sequence 

XlFam132b sequence was cut 
off from XlFam132b/pCS2+ 
using EcoRI/XbaI and inserted 
into the same site of pBluskript 
SK vector. 

SCL pGEM-T Xenopus laevis 
SCL (Neuhaus et al., 2010) 

mpo pCMV-Sport6 Xenopus laevis 
myeloperoxidase (Smith et al., 2002) 

LMO-2A pCMV-Sport6 
Xenopus laevis 
LIM domain only 
2 

(Mead et al., 2001) 

α-Globin pSPT18 Xenopus laevis 
α-Globin (Neuhaus et al., 2010) 

ami pBluskript SK 
Xenopus laevis 
Serine protease 
ami 

(Inui and Asashima, 2006) 

5’UTR-
XlFam132b -
MT-GFP 

MT-
GFP/pCS2+ 

Xenopus laevis 
Fam132b 5’UTR 
with 27 
nucleotides of the 
Fam132b CDS 
 

5’UTR-XlFam132b sequence 
was amplified  from 5’UTR-
XlFam132b/pGEM-T®Easy 
using primers 5’UTR-
Xlfam132b_fw_BamHI and 
5’UTR-Xlfam132b_ 
BamHI_rev. PCR product was 
cut with BamHI and inserted 
into the same site of MT-
GFP/pCS2+ vector. 

Etv2/er71 pCS2+ Xenopus laevis 
Etv2/er71 

etv2/er71sequence was cloned 
from Etv2/pBlueskript SK 
(Salanga et al., 2010)using 
primers etv2_ClaI_fw and 
etv2_XhoI_rev. PCR product 
was cut with ClaI/XhoI and 
inserted into the same site of 
pCS2+ vector. 

 

 

Table 2.Linearization of DNA constructs and in vitro transcription 

Name 
sense RNA antisense RNA 

cut polymerize cut polymerize 

βcatS33A-∆TA-GR NotI SP6   
βcatS33A∆TA-VP16-
GR ApaI SP6   

GR- βcatS33AY NotI SP6   
βcatS33A∆TA-EnR-
GR ApaI SP6   
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Name 
sense RNA antisense RNA 

cut polymerize cut polymerize 

GR-∆NTcf3 NotI SP6   

Tcf3∆C-GR NotI SP6   

GR-Tcf3∆HMG NotI SP6   

Tcf3∆HMG-GR NotI SP6   

Lef1-GR NotI SP6   

Lef∆BD-GR NotI SP6   

Lef∆N-VP16-GR XhoI SP6   

EnR-Lef1-GR EcoRV SP6   

PDIp   BamHI T7 

TTpA072o12 NotI SP6   

TTpA074b10 NotI SP6   

TTpA074h13 NotI SP6   

TTpA075c05 NotI SP6   

TTpA075j02 NotI SP6   

TTpA075o18 NotI SP6   

TTpA076d05 NotI SP6   

TTpA076k21 NotI SP6   

TTpA077b02 NotI SP6   

TTpA078d11 NotI SP6   

TTpA078h06 NotI SP6   

TTpA078l11 NotI SP6   

TTpA073i18 NotI SP6   

TTpA074b19 NotI SP6   

TTpA074l15 NotI SP6   

TTpA075f20 NotI SP6   

TTpA075l15 NotI SP6   

TTpA076b06 NotI SP6   

TTpA076j03 NotI SP6   

TTpA076l10 NotI SP6   

TTpA077e08 NotI SP6   

TTpA078f11 NotI SP6   

TTpA078k07 NotI SP6   
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Name 
sense RNA antisense RNA 

cut polymerize cut polymerize 

TTpA078m10 NotI SP6   

XtFam132b NotI SP6   

tBR EcoRI SP6   

MT-Wnt8 NotI SP6   

Noggin NotI SP6   

BMP4 BamHI SP6   

BMP2 EcoRI SP6   

eFGF AccI SP6   

Activin XbaI SP6   

Fam132b-HA NotI SP6   

Su(H)-HA NotI SP6   

sFRP5-HA NotI SP6   

caBMPR NotI SP6   

XtFam132b-MT NotI SP6   

XtFam132b-MT-GR NotI SP6   

Alk2-HA NotI SP6   

Alk3-HA NotI SP6   

Noggin-MT NotI SP6   

BMP4-HA Asp718 SP6   

XtFam132b-ΔC1q NotI SP6   

XtFam132b-Δint NotI SP6   

DrFam132b NotI SP6   

MmFam132b NotI SP6   

XtFam132a NotI SP6   

XlFam132b NotI SP6   

SCL   XhoI SP6 

mpo   SalI T7 

LMO-2A   SalI T7 

α-Globin   PstI T7 

ami   EcoRI T7 
5’UTR-XlFam132b -
MT-GFP NotI SP6   

Etv2/er71 NotI SP6   
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2.5 Oligonucleotides 
 

The oligonucleotides (primers) were purchased from Sigma-Aldrich Chemie. 

 

2.5.1 Sequencing primers 

 
The sequences of sequencing primers used in this study are indicated in 5’→3’ 

direction. 

 

SP6     TTAGGTGACACTATAGAATAC 

T3     AATTAACCCTCACTAAAGGG 

T7 (pCS2+)    TCTACGTAATACGACTCACTATAG 

T7 (pGEM-T)   TAATACGACTCACTATAGGGCGA 

SP6 (pCMV-Sport6)  CTATTTAGGTGACACTATAG 

T7 (pCMV-Sport6)   TAATACGACTCACGTATAGGG 

5’RACE_fam132b_1  GACTGTAACTGTGATGTGTAGCAGGTGC 

5’RACE_fam132b_2  GCAACTGCAGGAAATGATGGA 

 

2.5.2 Cloning primers 

 
The sequences of cloning primers are indicated in 5’→3’ direction (the digestion 

enzyme site is underlined). 

 

EnR_XhoI_fw   CACTCGAGATGGCCCTGGAG 

EnR_XhoI_rev   CTCTCGAGTATGTCGCTTTCCTCCTC 

βcatS33A_ClaI_fw   CATCGATATGGCTACTCAAGCTGACC 

βcatS33A_XhoI_rev  GACTCGAGCTGAGCAAGTTCACAG 

VP16_XhoI_fw   GACTCGAGTTAGCCCCCCCGAC 

VP16_XhoI_rev   CACTCGAGCCCACCGTACTCGTC 

dNTCF3_EcoRI_fw  CTGAATTCATGGCCATCGATG 

dNTCF3_XhoI_rev   CTTCTCGAGGTCACTGGATTTG 

TCF3-AdC_EcoRI_fw  ACGAATTCATGCCTCAGCTCAA 
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TCF3-AdC_XhoI_rev  GTCTCGAGGTTTTCCATCTCAGG 

fam132b_BamHI_fw  GTGGATCCATGGATGCAGAGTACAAG 

fam132b_XhoI_rev   GTCTCGAGTCATTGTCCAAGAAGCAC 

fam132b_EcoRI_fw  GTGAATTCATGGATGCAGAGTACAAGC 

fam132bΔstop_XhoI_rev  GTCTCGAGTTGTCCAAGAAGCAC 

famSP_BamHI_fw   TTGGATCCATGGATGCAGAGTA 

fam132bΔStop_ClaI_rev  GTATCGATGTTGTCCAAGAAGCAC 
Noggin_ClaI_fw   GCATCGATATGGATCATTCCCAGT 

Noggin_ClaI_rev   TTATCGATTGCATGAGCATTTGC 
intfam_XhoI_rev   TTCTCGAGCTATCTGTTGAATGAGC 

famSP_EcoRI_rev   TTGAATTCGTTCTTGTGGGTACAG 

C1q_EcoRI_fw   TTGAATTCTCATTCAACAGAGGAGCAG 

fam132b_E3_fw   ATGTCGCCGTGGCCCTAT 

fam132b_E5_rev   CAATATTCAGTCTTGAATTGAAAGC 

5’RACE_fam132b   GACTGTAACTGTGATGTGTAGCAGGTGC 

3’RACE_fam132b   ACTTGTCTCTGCAACAAACCAGCCAG 
fam132b_CDS_EcoRI_fw  TAGAATTCATGGATGCCGAATACA 

fam132b_CDS_XbaI_rev  TATCTAGATCATTGTCCGAGCAGC 

Xtfam132a_EcoRI_fw  CTGAATTCATGAGGTGTTGGGTA 

Xtfam132a_XhoI_rev  CTCTCGAGTTAAAGACCCATAAG 

Mmfam132b_EcoRI_fw  CTGAATTCATGGCCTCGACCC 

Mmfam132b_XhoI_rev  CTCTCGAGTCACAGGCCCAGG 

5’UTR-Xlfam132b_fw_BamHI GTGGATCCAGGGAAAGTAATTGG 

5’UTR-Xlfam132b_ BamHI_rev TTGGATCCAGGGATCGGCTTG 

etv2_ClaI_fw   CTATCGATATGGATCCCAGTATCTACTACT 

etv2_XhoI_rev   CCCTCGAGTTATTGAATCCTGG 

 

2.5.3 RT-PCR primers 

 

The RT-PCR primers used in this study are listed in Table 3. 
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Table 3.RT-PCR primers 
Target 
gene Primer name Primer sequence 5’→3’ Tan [°C] cycles 

Histone H4 
H4_fw CGGGATAACATTCAGGGTATCACT 

56 25 
H4_rev ATCCATGGCGGTAACTGTCTTCCT 

Xnr3 
Xnr3_fw GACCAGGGGAAAGAGGTT 

59 30 
Xnr3_rev GGGATCAGGTTTAGCATGAG 

Siamois 
Siamois_fw CTCCAGCCACCAGTACCAGAT 

61 34 
Siamois _rev GGGGAGAGTGGAAAGTGGTT 

Fam132b 
Fam132b_fw ATGTCGCCGTGGCCCTAT 

57 32-34 
Fam132b _rev CAATATTCAGTCTTGAATTGAAAGC 

Vent1 
Vent1_fw GCATCTCCTTGGCATATTTGG 

55 36 
Vent1_rev TTCCCTTCAGCATGGTTCAAC 

Vent2 
Vent2_fw CCTCTGTTGAATGGCTTGCT 

57 24 
Vent2_rev TGAGACTTGGGCACTGTCTG 

Msx1 
Msx1_fw GCAGGAACATCACACAGTCC 

57 30 
Msx1_rev GGGTGGGCTCATCCTTCT 

Msx2 
Msx2_fw AGAGACCGGGACCTGTCTA 

57 30 
Msx2_rev TTGAGCAGCGTCTCCTCT 

egr-1 
egr_fw GAGATGTTAGCCTTGTATCTGC 

58 29 
egr_rev GTACTGTTGATAGTCTTGAGGTCC 

Xbra 
Xbra_fw GGATCGTTATCACCTCTG 

56 30 
Xbra_rev GTGTAGTCTGTAGCA 

N-CAM 
N-CAM_fw GCCCCTCTTGTGGATCTTAGTGA 

57 31 
N-CAM_rev ACAGCGGCAGGAGTAGCAGTTC 

Noggin 
Noggin_fw AGTTGCAGATGTGGCTCT 

60 31 
Noggin_rev AGTCCAAGAGTCTCAGCA 

Chordin 
Chordin_fw CTAAGGGCCCATGGTTCACGAT 

56 33 
Chordin_rev ATTGGCACGGATTGGGTTGGTA 

Follistatin 
Follistatin_fw CAGTGCAGCGCTGGAAAGAA 

57 30 
Follistatin_rev GCATACACCTATTTACAGTA 

αGlobin 
αGlobin_fw TCCCTCAGACCAAAACCTAC 

54 31 
αGlobin_rev GACAGCAGTTTGAAGTTTCC 

SCL 
SCL_fw ACTCACCCTCCAGACAAGAA 

56 32 
SCL_rev ATTTAATCACCGCTGCCCAC 
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Target 
gene Primer name Primer sequence 5’→3’ Tan [°C] cycles 

msr 
msr_fw AACTTCGCTCTCGCTCCTCCATAC 

63 31 
msr_rev GCCAGCAGATAGCAAACACCAC 

ami 
ami_fw TAAATGGGTGCTGAGTGCAG 

59 29 
ami_rev GTTCCGGCGATTACAGACAT 

 

2.5.4 Morpholino oligonucleotides 

 

Antisense Morpholino oligonucleotides (Morpholinos, MO) were purchased from 

Gene Tools, LLC (Philomath, USA). Morpholinos were dissolved in RNAse-free 

water to a 1μM concentration. The sequences of the antisense Morpholinos 

used in this study are presented in Table 4. 

 

Table 4. Anisense Morpholino oligonucleotides 

Morpholino name Target gene Sequence 5’→3’ Working 
conc. 

Fam132bMO1 
Xenopus laevis 
Fam132b 

GGATCGGCTTGTAT
TCGGCATCCAT  

Fam132bMO2 
Xenopus laevis 
Fam132b 

GTCTGACTGGCCCA
ACAAAACAAGT 

5–20 ng/ 
embryo 

Fam132bmmMO1 

Mutated 
Fam132bMO1, 
which does not bind 
target sequence 

GGATCGcCTTcTATT
CcGCtTgCAT 

5–20 ng/ 
embryo 

Fam132bmmMO2 

Mutated 
Fam132bMO2, 
which does not bind 
target sequence 

GTgTcACTGcCCCAA
CAAAAgAAcT 

5–20 ng/ 
embryo 

cMO no target CCTCTTACCTCAGTT
ACAATTTATA 

5–20 ng/ 
embryo 

 

 

2.6 Antibodies 

 

The antibodies used during this study are presented in Table 5. 
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Table 5. Antibodies 

Name 
Company, 
catalogue 
number 

Description 
Dilution 

WB IP 

HA.11 
Covance, 
MMS-101P 

Primary mouse 
monoclonal 
antibody, 
recognizes HA 
tag (peptide 
CYPYDVPDYASL). 

1:1000 1:150 

MT 
Abcam 
ab19234 

Primary goat 
polyclonal antibody 
recognizes myc tag 
(peptide 
EQKLISEEDL). 

1:10000 1:250 

α-mouse- 
HRP 

Santa Cruz, 
sc-2005 

Secondary goat 
anti mouse 
IgG coupled with 
HRP. 

1:5000  

α-goat- 
HRP 

Santa Cruz, 
SC-2020 

Secondary donkey 
anti goat 
IgG coupled with 
HRP. 

1:10000  

α-goat- 
IRDye 
800CW 

LI-COR 
926-32214 

Secondary donkey 
anti goat IgG (H + 
L) coupled with 
IRDye 800CW 

1:20000  

α-mouse- 
IRDye 680 

LI-COR 
926-32222 

Secondary donkey 
anti mouse IgG (H 
+ L) coupled with 
IRDye 680 

1:15000  

 

2.7 Chemical transformation and cultivation of bacterial cells 

 
For chemical transformation 200 μl of chemically competent E.coli XL1blue cells 

were thawed on ice, mixed with 10 μl of the ligation mix or 100 ng of plasmid 

DNA, incubated for 30 min on ice and heat-shocked for 90 sec at 42°C, then left 

for 3 min on ice. 800 µl of LB-medium were added to the cells and the culture 

was incubated at 37°C for 30 to 45 h min. Bacterial pellets were seeded on LB 
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agar plates supplemented with 0.1 mg/ml ampicillin (Biomol) for the selection of 

transformed cells. LB-agar plates were incubated overnight at 37°C(Sambrook, 

2001). 

For preparation of a liquid bacterial culture one single bacterial colony was 

isolated from a bacterial plate and transferred into a sterile Erlenmeyer flask 

filled with 100 ml of LB-medium supplemented with ampicillin. The liquid culture 

was incubated overnight in a 37°C shaker at 220 rpm(Sambrook, 2001). 

 

2.8 DNA methods 

 

2.8.1 Plasmid DNA preparations 

 

Isolation of plasmid DNA in analytical amounts was performed using IllustraTM 

Plasmid Prep Mini Spin Kit (GE Healthcare). For the isolation of plasmid DNA in 

preparative amounts IllustraTM Plasmid Prep Midi Flow Kit (GE Healthcare) 

was used. The DNA isolation was performed according to the manufacturer’s 

instructions. DNA concentrations were measured using the ND-1000 

Spectrophotometer, Coleman Technologies Inc. 

 

2.8.2 DNA restriction digestion 

 

DNA restriction digestion was performed using restriction endonucleases 

purchased from MBI Fermentas according to manufacturer’s instructions. 

 

2.8.3 Agarose gel electrophoresis 

 

DNA or RNA fragments were separated in a horizontal electrical field into 

agarose gel(Sharp et al., 1973). Depending on the expected sizes of DNA/RNA 

fragments, 0.8 to 2% (w/v) agarose gels were prepared in TAE buffer. 0.5 μg/ml 

ethidium bromine was added for visualization of nucleic acids. Before loading 

the gel slots, nucleic acid samples were mixed with DNA loading dye (6x, 
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Ambion). The electrophoresis was run in the standard TAE-running buffer at 

100 V in horizontal electrophoresis chamber. After electrophoresis, DNA/RNA 

bands were visualized using the UV-transilluminator (Herolab) and documented 

with the ChemiDoc video documentation system (EASY view). Standard DNA 

ladders were used to determine the sizes of DNA fragments (High, Middle, or 

Low Range, Fermentas). 

 

2.8.4 Purification of DNA fragments from agarose gel or restriction 

digestion mixture 

 

The purification of DNA fragments from agarose gels or restriction digestion 

mixture was performed with the IllustraTM GFX PCR DNA and Gel Band 

Purification Kit (GE Healthcare) according to manufacturer’s instructions. 

 

2.8.5 cDNA synthesis 
 

MuLV Reverse Transcriptase (Roche) was used to synthesize complementary 

DNA (cDNA) from total RNA, extracted from whole embryos or embryonic 

explants. 

 

Reaction mixture:  1 x  Go Taq® Flexi Buffer (Promega) 

5 mM   MgCl2 (Fermentas) 

1 mM   dNTP mix (Thermo Scientific) 

5 ng/µl   Random primers (Invitrogen) 

15 ng/µl  total RNA 

    0.8 U/µl Ribolock RNase Inhibitor (Fermentas) 

    2 U/µl  MulV Reverse transcriptase (Roche) 

     

After an initial incubation for 10 min at 20°C to anneal the Random primers, 

cDNA synthesis was carried out for 1 hour at 42°C and terminated by heating to 

95°C for 5 min. 
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2.8.6 Polymerase chain reaction (PCR) 

 

2.8.6.1. RT-PCR 

 
For semi-quantative RT-PCR, 5 μl cDNA were used in a total volume of 25 μl 

containing 0.2 µM RT primers each, 1.5 mM MgCl2, 0.5 U Go Taq® polymerase 

in 1 x Green Go Taq® Flexi Buffer (Promega). To test for DNA contaminations 

H4 RT-PCR was carried out using total RNA. H4 RT-PCR on cDNA templates 

served as a control for equal cDNA concentrations. 

 

2.8.6.2. Cloning PCR 

 

The High Fidelity PCR enzyme Mix (Fermentas) was used for PCR followed by 

molecular cloning of the amplified fragments 

 
PCR reaction mixture:  

1 x  High Fidelity PCR Buffer with 15 mM MgCl2 

0.2mM  dNTP mix (Thermo Scientific) 

0.75 µM  primers each 

0.1 ng/µl  matrix DNA  

0.1 U/µl  High Fidelity PCR enzyme Mix (Fermentas)  

    add HPLC-water (ROTH) 

 

The following cycling conditions were used for DNA fragments amplification: 

   

Initial denaturation  95°C  5 min 

Denaturation   95°C  45 sec 

Primer annealing  x°C  45 sec  30 cycles 

Elongation   72°C  1 min/1 kb 

Final elongation  72°C  5 min 
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2.8.6.3. 3’ RACE and 5’RACE PCR 

 

For the isolation of 5’- and 3’sequences of target transcripts first-strand cDNA 

synthesis and RACE PCRs were performed using the SMART RACE cDNA 

Amplification Kit (Clontech) according to manufacturer’s instructions. 

 

2.8.6.4. Site directed Mutagenesis 

 

To introduce specific mutations at a target site within one sequence the 

QuikChange® XL Site-Directed Mutagenesis Kit (Stratagene) was used. Design 

of mutagenic primers, mutagenesis reaction, and digest of methylated, 

nonmutated DNA template were performed according to manufacturer’s 

instructions. Afterwards E.coli XL1blue cells were transformed with 20 µl of the 

reaction mix (described in paragraph 2.7). 

 

2.8.7 DNA ligation 

 

To ligate DNA fragments T4 DNA ligase (Fermentas) was used according to 

manufacturer’s instructions. For the ligation a vector and an insert were taken in 

1 to 3 molar ratio. The total amount of vector DNA was 50 ng. For 10 μl of a 

single reaction mixture 5 U T4 DNA ligase were used. The ligation was 

performed overnight at 16°C. E.coli XL1blue cells were transformed with 10 µl 

of the ligation mixture (described in paragraph 2.7). 

 

2.8.8 DNA sequencing analysis 

 

The Dye-termination sequencing method, which is the modification of Sanger 

chain-termination sequencing, was used (Sanger et al. 1977). For preparation 

of the sequencing PCR mixture the Big DyeTM Terminator Kit (Applied 

Biosystems) was used according to the manufacturer’s instructions. 
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Sequencing PCR mixture:  200 - 400 ng DNA matrix  

1.5 μl   Seq mix 

     1.5 μl  Seq buffer 

     8 pmol Seq. primer 

add HPLC water to 10 μl 

 

Sequencing PCR conditions: 95°C  2 min 

     95°C  30 sec 

     56°C  20 sec 25 cycles 

     60°C  4 min 

 

To purify the DNA fragments from the sequencing reaction the following 

components were added to 10 µl of the reaction mixture: 

 

1μl  125 mM EDTA (pH 8.0) 

1μl  3 M sodium acetate (pH 5.4) 

 50 μl   100% ethanol 

 

The samples were incubated for 5 min at room temperature, then centrifuged 

for 15 min at 14000 rpm. The DNA pellets were washed with 70 μl of 70% 

ethanol, air-dried and dissolved in 15 μl of HiDiTM buffer (Applied Biosystems). 

Automated sequencing was carried out by the ABI 3100 Automated Capillary 

DNA Sequencer (Applied Biosystems). 

 

2.9 RNA methods 

 

2.9.1 In vitro synthesis of capped sense mRNA 

 

In vitro synthesis of capped sense mRNAs for microinjections into Xenopus 

embryos and oocytes was performed with using the SP6 or T7 mMessage 

mMachine KitsTM (Ambion) according to the manufacturer’s protocol. 20 μl of 

reaction mixture containing 0.5 - 1 μg of linearized DNA template was incubated 
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for 3 hours at 37°C, followed by template DNA digestion for 30 min at 37°C 

using 5 U of Turbo DNaseI (Ambion). Synthesized RNA was purified using the 

IllustraTM RNAspin Mini RNA Isolation Kit (GE Healthcare). RNA concentrations 

were determined using the ND-1000 Spectrophotometer (Coleman 

Technologies Inc.). 

 

2.9.2 In vitro synthesis of labeled antisense RNA 

 

The following reaction mixture was used for the synthesis of digoxgenin-labeled 

antisense RNA for whole mount in situ hybridization: 

 

1 x  transcription buffer (Fermentas) 

1 mM  rATP (Boehringer) 

1 mM  rCTP (Boehringer) 

1 mM  rGTP (Boehringer) 

0.64 mM rUTP (Boehringer) 

0.36 mM digoxigenin-rUTP (Boehringer) 

0.03 µM DTT 

1.6 U/µl Ribolock RNase Inhibitor (Fermentas) 

2 µg  linearized DNA template 

1.2 U/µl  T3, T7 or Sp6 polymerase (Fermentas) 

add RNase-free water 

 

The reaction mixture was incubated for 3 hours at 37°C, followed by template 

DNA digestion for 30 min at 37°C using 0.2 U/µl Turbo DNaseI (Ambion). 

Synthesized digoxgenin-labeled RNA was purified with the RNeasyTM Mini Kit 

(Quiagen) according to manufacturer’s instructions.The RNA was eluted twice 

with 50 μlRNase-free H2O and stored in Hybridization Mix (see whole mount in 

situ hybridization) at -20°C. 
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2.9.3 Total RNA extraction from whole embryos and embryonic explants 

 

For extraction of total RNA used for cDNA synthesis and RT-PCR 5 whole 

embryos, 10 mesodermal explants, or 50 – 100 ectodermal explants were fixed 

in N2liq and macerated in 400 µl peqGOLD TriFast reagent (peQlab) using a 

sterile Omnican® 40 syringe (Braun). After 30 sec of vortexing 80 µl of 

Chloroform (Roth) were added and the sample was vortexed for 30 sec, 

followed by 10 min of centrifugation. The upper phase was transferred into a 

new tube and mixed with another 200 µl of Chloroform (Roth) by vortexing for 

30 sec. After a second centrifugation step of 5 min the upper phase was 

transferred into a new tube and precipitation of nucleic acids was carried out by 

the addition of 200 µl of 2-Propanol (Roth), vortexing and overnight incubation 

at -20°C. After 30 min of centrifugation the nucleic acid pellet was washed using 

400 µl of 70 % ethanol. The air-dried pellet was dissolved in 12.5 µl of RNase-

free water. For DNA digestion and purification of RNA the RNAqueous-Micro Kit 

(Ambion) was used according to manufacturer’s instructions. After a final 

incubation of the extracted RNA at 70°C, RNA concentrations were determined 

using the ND-1000 Spectrophotometer (Coleman Technologies Inc.) and RNA 

samples were stored at    -80°C. 

For extraction of total RNA used for 3’ RACE and 5’RACE PCR 5 embryos were 

fixed in N2 liq and homogenized in 500 µl 0.2 mg/ml proteinase K/ 1 x extraction 

buffer using a sterile Omnican® 40 syringe (Braun). After 45 min of incubation 

at 45°C RNA extraction was carried by addition of the following reagents:  

 

1 vol Roti®-Aqua-Phenol/C/I (Roth) 

1 vol Roti®-Aqua-Phenol/C/I (Roth) 

1 vol 24/1 Chloroform/Isoamoyl alcohol 

 

Every extraction step was followed by vortexing, centrifugation for 10 min, and 

transfer of the upper aqueous phase into a new tube. 1 vol of 8 M LiCL was 

added to precipitate RNA by vortexing and overnight incubation at -20°C. After 

30 min of centrifugation the pellet was air-dried and dissolved in 100 µl of 

RNase-free water. Another precipitation step was carried out by addition of 0.2 

vol 5 M ammonium acetate and 5 vol of 100 % ethanol, followed by 30 min 
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incubation at -20°C. After 30 min of centrifugation the pellet was washed in 80 

% ethanol, air-dried and dissolved in 40 µl of RNase-free water. To completely 

remove residual genomic DNA 5µl 10 x DNase buffer (Fermentas), 1 µl 1U/µl 

RNase-free DNase I (Fermentas) and 4 µl RNase-free water were added and 

incubated for 30 min at 37°C. After addition of 50 µl RNase-free water 3 RNA 

precipitation steps followed using 1 vol Roti®-Aqua-Phenol/C/I (Roth), 1 vol 

24/1 Chloroform/Isoamoyl alcohol, and 0.2 vol 5 M ammonium acetate and 5 vol 

of 100 % ethanol, as described above. After another washing step using 80 % 

ethanol the air-dried RNA pellet was dissolved in 50 µl RNase-free water. Every 

centrifugation step was carried out at 4°C and 13000 rpm. RNA concentrations 

were determined using the ND-1000 Spectrophotometer (Coleman 

Technologies Inc.) and RNA samples were stored at -80°C. 

 

2.10 Protein methods 

 

2.10.1 Protein isolation from embryos and oocytes 

 

For protein isolation 20 embryos or oocytes were fixed in N2 liq and macerated in 

500 µl CoIP buffer using a sterile Omnican® 40 syringe (Braun). Lysates were 

centrifuged for 15 min at 4°C and 13000 rpm and the supernatant was either 

used for Co-immunoprecipitation, or samles were prepared for SDS-PAGE. 

 

2.10.2 Protein isolation from oocyte culture medium 

 

5 vol of ice cold Aceton were added to the oocyte culture medium and protein 

precipitation was carried out on ice. After centrifugation for 15 min at 4°C and 

13000 rpm the protein pellet was washed in 1 ml ice cold Aceton and dried at 

40°C to 50°C. The pellet was then dissolved in 30 µl of CoIP buffer and the 

protein sample was prepared for SDS-PAGE. 
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2.10.3 Co-immunoprecipitation 

 

Co-immunoprecipitation (CoIP) in Xenopus embryos was performed as 

described. Xenopus embryos were injected with mRNAs coding for tagged 

proteins animally into both blastomeres at the two cell stage and cultured until 

stage 10.5 to 11.5. After protein isolation, described in paragraph 2.10.1, an 

input aliquot was taken from each sample and prepared for SDS-PAGE. Protein 

containing supernatants were incubated for 30 min with 15 μl Protein A 

Sepharose (Amersham) for pre-clearing. After centrifugation supernatants were 

transferred into fresh tubes, antibodies were added, and the samples were 

incubated for two hours, followed by two hours incubation with 15 μl Protein A 

Sepharose (Amersham). Preclearing- and CoIP-pellets were washed 5 times for 

5 min with CoIP buffer, resuspended in 10 µl CoIP buffer, and prepared for 

SDS-PAGE. Every incubation and centrifugation step was carried out at 4°C. 

 

2.10.4 TNT (in vitro transcription and translation) 

 

The In vitro transcription and translation-assay and protein detection were 

performed, using the TNT® Coupled Reticulocyte Lysate System (promega) 

and the TranscendTM Chemiluminescent Non-Radioactive Translation Detection 

System (promega). TNT reactions were carried out in volumes of 12.5 µl 

according the manufacturer’s user manual. 

 

2.10.5 Protein electrophoresis under denaturing conditions (SDS-PAGE) 

 
The proteins were separated by SDS polyacrylamid gel electrophoresis 

(Harlow, 1988; Laemmli, 1970). 10 % - 12 % SDS polyacrylamid gels were used 

for the analysis of proteins with distinct molecular weights. Protein samples 

were diluted 1:1 with 2x Laemmli loading buffer and boiled for 3 min at 95°C, 

then applied on the gel. The gel running was performed in 1x Laemmli running 

buffer. At first voltage of 70 V was applied, and once the bromphenol-blue front 

reached the separating gel, the voltage was raised to 120 V. 
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2.10.6 Western Blotting 

 

After SDS-PAGE proteins were transferred to a nitrocellulose membrane (0.45 

μm, Schleicher & Schuell) using semi-dry blotting system(Harlow, 1988). Protein 

transfer was carried out in transfer buffer for 1 h using a voltage of 40 V. After 

transfer, the membrane was blocked with a blocking solution for 1 hour at room 

temperature. Incubation with primary antibody solution was carried out 

overnight at 4°C in blocking solution. Next day the membrane was washed 3 

times for 10 min in blocking solution and the secondary antibodies coupled with 

horse reddish peroxidase (HRP) or fluorescent IRDyes (LI-COR) were applied 

in blocking solution for 1 h at room temperature. The membrane was washed 

again with blocking solution 2 times for 10 min and 1 time in TBST for 10 min. 

The HRP signals were detected with the ECL Kit Super Signal DuraTM West Kit 

(Pierce) on X-raydetection film (Amersham). Fluorescent signals were 

detetected using LI-COR Odyssey Infrared Imaging system. 

 

2.11 Xenopus embryo culture and micromanipulations 

 

2.11.1 Preparation of Xenopus laevis testis 

 
The Xenopus male frog was sacrificed by submerging it in 0.05% benzocaine 

for 30 min at room temperature. The frog was decapitated, the skin flap was 

removed from the belly and an incision into the muscle was performed. The 

testes were removed through the incision together with fat body and detached 

from it. The testes were washed 3 times with 1 x MBS and stored in the 1x MBS 

buffer at 4°C. 

 

2.11.2 Embryo culture and microinjections 

 
Xenopus laevis female frogs were induced to lay eggs by injection of 1000 units 

human chorionic gonadotropin (hCG, Sigma Aldrich) into the dorsal lymph sac, 

approximately 12 hours before desired egg-laying. Laid eggs were in vitro 
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fertilized with minced testis in 0.1 x MBS. Fertilized eggs were treated with 2% 

cyteine hydrochloride, pH 8.0, to remove the jelly coat.The embryos were 

cultured in 0.1 x MBS at 12.5 - 18°C. Albino embryos were stained with Nile 

Blue vital dye for 10 min prior to injection to allow to distinguish animal and 

vegetal poles, as well as different stages of development. Injections were 

performed in injection buffer on a cooling plate (12.5°C). The solutions for 

microinjections were loaded into the glass needles prepared on Leitz Needle 

puller. The Microinjector 5242 (Eppendorf) was used during this study. For 

different purposes injections at 2-, 4- or 8-cell stages were performed. The 

injection volume was 4 nl of injection mixture per blastomere. Injected embryos 

were kept for at least 1 hour in the injection buffer to allow the heeling of 

injection opening and embryos were then transferred into 0.1x MBS. The 

developmental stages were defined according to Nieuwkoop and Faber Normal 

Table of Xenopus laevis (Daudin). 

 

2.11.3 Oocyte culture and microinjection 

 
To isolate oocytes, adult, female Xenopus laevis were operated on ice under 

anesthesia with 0.25% 3-aminobenzoic acid ethyl ester solution (20 min 

anesthesia). Oocytes were separated by treatment with 1 mg/ml liberase 

blendzyme (Roche) in collagenase-buffer and agitation up to 120 min. Oocytes 

were extensively washed using 1x MBS, incubated at 18°C and staged 

according to Dumont, 1972. Stage VI oocytes were injected in in 1 x MBS into 

the vegetal pole, as described for embryo microinjections (2.11.2). Injected 

oocytes were cultivated for 24 hours in oocyte culture medium (OCM) at 18°C. 

After separation of oocyte and OCM fraction, samples were fixed in liquid 

nitrogen for protein isolation. 

 

2.11.4 Xenopus ectodermal and ventral mesodermal explants 

 
For explantation of embryonic tissues the vitteline membrane of Xenopus 

embryos was removed using forceps. And animal caps were explanted at stage 

8 using a ‘gastromaster tip’. Ventral mesodermal tissue was dissected from 
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stage 10.25 embryos using forceps. Embryonic explants were dissected and 

cultivated on 1% agarose-coated Petri dishes in 0,8 x MBS buffer until control 

sibling embryos reached the desired stage of development, fixed in liquid 

Nitrogen, and stored at -80°C (Sive et al., 2000). 

 

2.11.5 Dexamethasone treatment 

 
Embryos were injected with inducible mRNA constructs. Animal caps and 

embryos were treated with fresh 1 x Dexamethasone (DEX)/0.1 x MBS at 

various stages and continuously kept in solution until fixation. 

 

2.12 Xenopus tropicalis “Full-Length” Library Expression 

Screen 

 

For the Expression-cloning RNA pools of 24 individual RNAs derived from a 

Xenopus tropicalis “Full-Length” cDNA Library were injected animally into both 

cells of Xenopus laevis two-cell stage embryos (Gilchrist et al., 2004). Embryos 

were cultivated to tadpole stage and scored for axis formation defects. To 

identify the active clone within one pool, RNA mixtures containing 12, 6, or 1 

individual mRNA of the original pool of 24 were injected and scored for the 

corresponding phenotype. Depending on the number of individual RNA clones 

contributing to the mixture, different RNA concentrations were injected, as 

indicated in Table 6. 

 

Table 6. Total amounts of injected RNAs with respect to pool size 

number of individual RNAs/injection RNA conc. [pg total RNA/embryo) 

24 1600 

12 800 

6 400 

1 60 and 120 
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2.13 Whole mount in situ hybridization (WMISH) 

 

2.13.1 X-gal staining 

 
Embryos were grown to the desired stage and fixed for 20 min in MEMFA. After 

washing three times for 10 min in 1x PBS, embryos were transferred to X-gal 

staining solution until staining was sufficient, typically 10 to 20 min. The reaction 

was stopped by washing the embryos three times in 1x PBS and afterwards 

fixed in MEMFA for 25 min. For whole mount in situ embryos were dehydrated 

with absolute ethanol and stored at -20°C. 

 

2.13.2 Whole mount in situ hybridization (WMISH) 

 

Whole mount in situ hybridization (WMISH) was performed essentially, as 

described (Harland, 1991; Hollemann and Pieler, 1999)using antisense RNA 

labeled with digoxigenin-11-UTP. All steps were performed at ambient 

temperature with mild shaking. Embryos were rehydrated with the EtOH series 

to PTw, washed three times in PTw for 10 min and subjected to Proteinase K 

treatment to allow better penetration of the RNA probe. Stage 15 embryos were 

incubated for 6 min, later stage embryos were incubated for no longer than 15 

min in Proteinase K. Embryos were washed twice in 0.1 M triethanolamine, pH 

7.5, to stop Proteinase K digestion and acetylated by adding 25 μl acetic 

anhydrite to fresh triethanolamine. After 5 min, another 25 μl acetic anhydrite 

was added. Then embryos were fixed in PTw/MEMFA for 25 min, washed five 

times in PTw, transferred to Hyb Mix and incubated for 5 hr at 65°C in a water 

bath. Hyb Mix was exchanged for the antisense RNA probe and incubated 

overnight at 65°C in a water bath. The next day, the RNA probe was collected 

and stored -20°C for reuse. After washes in Hyb Mix for 10 min at 65°C, three 

times in 2 x SSC for 15 min at 65°C, non-hybridized RNA probe was removed 

by RNase digestion for 1 hour at 37°C in RNase solution. The digested probe 

removed by washing once in 2 x SSC at 37°C and twice 0.2 x SSC at 65°C. 

After exchanging the buffer to MAB, embryos were blocked in MAB/BMB for 20 
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min and MAB/BMB/HS for 40 min to minimize unspecific binding of the 

antibody. The solution was replaced with antibody solution and incubated for 5 

hours. The embryos were washed three times for 10 min with MAB and then 

overnight in MAB. After three rinses with MAB for 5 min, the caps were 

exchanged and the embryos transferred to APB. After three washes in APB for 

5 min each, alkaline phosphatase was detected in color reaction solution. 

Embryos were kept at 4°C in the dark until staining was sufficient. The embryos 

were transferred to 100% Methanol to stop the reaction and to minimize 

background staining. Then embryos were rehydrated with the MeOH series to 

MEMFA and incubated in MEMFA for 30 min followed by bleaching of the 

embryos. 

 

2.13.3 Bleaching 

 
Embryos were washed twice in 5 x SSC and transferred into bleaching solution 

to remove pigmentation of the embryos. Bleached embryos were washed twice 

in 5 x SSC and fixed over night in MEMFA. 
 

2.14 Luciferase assay 

 

Embryos were injected with either 50 pg Siamois-Luc (Brannon et al., 1997) and 

10 pg pRL-TK (Promega) or 8 pg Vent2b-BRE-Luc (Henningfeld et al., 2000) 

and 4 pg pRL-CMV (Promega) reporter DNA in combination with respective 

mRNAs. Gastrula stage embryos were fixed in liquid N2 and stored at -80°C. 

For each sample triplicates of 15 embryos each were analyzed within 1 

independent experiment. The Dual Luciferase Assay Kit (Promega) was used 

for preparation of embryonic lysates and measurement of Firefly and Renilla 

luciferase activity according to the manufacturer's instructions. Measurements 

were performed on a Centro LB 960 luminometer (Berthold Technologies). 
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2.15 Nanostring nCounter analysis 

 
The quantitative multiplexed gene expression analysis using Nanostring nCounter 

was used according to the manufacturer's instructions;500 ng of total RNA from 

Xenopus embryos or ectodermal explants was applied in 5 µl for a total volume of 

30 µl. The genes analyzed by Nanostring nCounter, accession numbers, target 

regions and the reporter probe sequences are shown in Appendix 6.1. Primary 

gene expression data from Nanostring nCounter analysis are shown in Appendix 

6.2. To process the data, the counts were first normalized with respect to the 

geometric mean of the positive control counts using the nSolver software program 

provided by Nanostring nCounter. In a second step, the counts were normalized 

with respect to the geometric mean of ornithine decarboxylase (ODC). Even though 

additional housekeeping genes were present in the Nanostring set, only ODC was 

chosen for normalization as the other genes show developmental regulatory 

effects. Finally, a stringent background correction was performed by subtracting the 

mean and two standard deviations of the eight negative control counts for each 

lane. Values less than 1 were set to 1 as background level. Two independent 

experiments were analyzed. 
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3. Results 
 

3.1 Temporally controlled modulation of canonical Wnt signaling activity 

in Xenopus embryos 

 

Wnt/β-Catenin signalinghas been shown to play important roles during 

embryonic development and deregulation of thissignalingpathway has been 

implicated in tumor development. In order to study the function of canonical Wnt 

signaling during specific developmental processes, tools have to be developed 

that modulate canonical Wnt signaling activity under tight temporal control. For 

this issue, we wanted to generate hormone-inducible constructs that have the 

potential to either stimulate or repress canonical Wnt signaling activity in 

Xenopus embryos. We used modified versions of the transcriptional coactivator 

β-Catenin and the transcription factors Tcf3 and Lef1 (Figure 9 A-C). Wildtype 

β-Catenin protein contains an amino-terminal domain that is responsible for 

protein instability.Mutation of the serine residue 33 in the N-terminal domain of 

β-Catenin results in a stabilized protein that is no longer vulnerable to initial 

phosphorylations leading to β-Catenin destruction(Aberle et al., 1997; Morin et 

al., 1997).This stabilized form of β-Catenin was further modified by substitution 

of the trans-activation domain with either the Herpes simplex virus VP16 

transcriptional activation domain (VP16) or the Drosophila melanogaster 

Engrailed repression domain (EnR), resulting in the predicted constitutively 

active and dominant negative versions of β-Catenin (Figure 9 

A).Trancriptionfactors of the Lef/Tcf family have a similar organization regarding 

their protein domain structure. These proteins contain an amino-terminal β-

Catenin binding domain, a central domain for groucho/TLE interaction, a DNA 

binding HMG box, and a C-terminal tail (Figure 9 B, C). We used an amino-

terminal deletion mutant of Tcf3 that is predicted to interact with β-Catenin, 

while still binding to the target DNA sequence and masking it from binding to 

other transcriptional activating complexes (Molenaar et al., 1996).Additionally, 

another Tcf3 deletion mutant lacking the HMG DNA binding domain was 

employed. This protein should bind and therefore block β-Catenin from 
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interaction with endogenous transcription factors (Figure 9 B). Tcf3∆C is a 

mutant version of Tcf3 lacking the C-terminal domain that is important for CtBP 

binding. CtBP is a transcriptional co-repressor that mediates histone 

modification(Shi et al., 2003). However, this mutant had previously been shown 

to efficiently block Wnt/β-Catenin-mediated signaling activity (Pukrop et al., 

2001). 

 

 
Figure 9. Schematic representation of GR-fusion constructsemployed for 
modulation of Wnt signaling. (A) Overview of wildtype and modified versions of 
human  β-Catenin. Mutations in the nucleotide sequence leading to a single amino acid 
exchange and stabilization of mutant β-Catenin are indicated. (B) Scheme of Xenopus 
Tcf3 and corresponding GR-fused deletion mutants of XTcf3. (C) Overview of GR-
fused wildtype or mutant versions of mouse Lef1. (A-C) Mutant versions of β-Catenin, 
Tcf3, and Lef1 lacking specific protein domains or chimeric constructs containing 
endogenous protein domains and VP16 transcriptional activation or EnR transcriptional 
repression domain. All construct were fused to the human GR ligand binding domain. 
Protein domains are indicated in the corresponding legends. Predicted activities of 
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depicted factors concerning modulation of canonical Wnt signaling are specified: pos, 
positive regulation; neg, negative regulation.  
 

Behrens and colleagues had shown that the full-length transcription factor Lef1 

induces secondary axis formation upon ventral overexpression in Xenopus 

embryos (Behrens et al., 1996). Therefore, this construct was used as canonical 

Wnt signaling stimulating factor in this study (Figure 9 C). In addition a deletion 

mutant of Lef1 lacking the β-Catenin binding domain was included into our set 

of putative canonical Wnt signaling regulating factors (Figure 9 C). 

To gain temporal control of protein activity, one can make use of fusion proteins 

that contain the ligand binding domain (LBD) of steroid-hormone receptors, 

such as the glucocorticoid receptor (GR). GR-fusion proteins are bound and 

inactivated by heat shock proteins in the cytoplasm immediately after 

translation. To induce protein activity, cells are treated with the steroid hormone 

Dexamethasone (DEX), which binds the GR-LBD and causes a release 

fromheat shock proteins. Consequently, the activated GR-fusion protein can 

translocate to the nucleus and modulate target gene transcription.All constructs, 

described above, were fused to the hormone-inducible GR-LBD (Figure 9 A-C). 

Apart from the factors described above, we included2additional GR-fusion 

constructs that had already been described to modulate canonical Wnt signaling 

activity dependent on DEX treatment. EnR-Lef1-GR consists of the Drosophila 

Engrailed repression domain and the mouse Lef1-DNA binding domain fused to 

the human GR-LBD and acts as repressor of canonical Wnt signaling activity 

(Lyons et al., 2009). In contrast, LefΔN-VP16-GR containing mouse Lef1-DNA 

binding domain, the VP16 transcriptional activation domain, and GR-LBD, was 

shown to activate Wnt/β-Catenin signaling(Denayer et al., 2008). 
Formation of the dorsal-ventral body axis in Xenopus embryos is initiated via 

high levels of nuclear β-Catenin in the dorsal endoderm of early cleavage stage 

embryos.As a result, the Spemann organizer is induced in the dorsal mesoderm 

and allows the development of dorsal structures. Ectopic activation of Wnt 

signaling on the ventral side induces the formation of a secondary body axis. 

This system was used to test Wntsignalingpromoting activities and hormone 

inducibilitiy of the generated GR-fusion constructsdescribed above.mRNAs 

coding for predicted canonical Wnt signaling stimulating factors were injected 

marginally into 1 ventral blastomere at the 4-cell stage and, subsequently, 
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treated with DEX  to induce protein activity. At late tailbud stages embryos were 

scored for secondary axis formation (Figure 10 A). All those factors that were 

predicted to stimulate canonical Wnt signaling efficiently induced secondary 

axis formation upon treatment with DEX (Figure 10 C, D; Table 7). Full-length 

Lef∆N-VP16-GR and Lef1-GR induced canonical Wnt signaling activity upon 

DEX-mediated activation (Figure 10 C; Table 7). In contrast, GR-fused mutant 

versions of β-Catenin showed secondary axis induction also in the absence of 

DEX (Figure 10 D, Table 7). 

 

 
Figure 10. GR-fusion constructs were tested for canonical Wnt signaling 
modulating activity and DEX-inducibility using axis duplication or ventralization 
assay. (A) Xenopus embryos were injected into the marginal zone of one ventral 
blastomere, DEX-treated until early tailbud stages and scored for the formation of a 
secondary body axis (C-D). (B) Xenopus embryos were injected into the marginal zone 
of both dorsal blastomeres, DEX-treated until early tailbud stages and scored for a 
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ventralized phenotype (E-F). (C-F) Embryos were injected with different amounts of 
LefΔN-VP16-GR, Tcf3∆C-GR, βcatS33A∆TA-VP16-GR, or Tcf∆HMG-GR mRNA and 
treated with DEX as inicated. (C-D) Lef1-GR and βcatS33A∆TA-VP16-GR both 
stimulate secondary axis formation. (C) LefΔN-VP16-GR activity is DEX-dependent. (D) 
βcatS33A∆TA-VP16-GR-mediated secondary axis induction occurs independently of 
DEX-treatment. (E-F) Ventral overexpression of Tcf3∆C-GR and Tcf∆HMG-GR results 
in the development of reduced dorso-anterior structures. (E) Tcf3∆C-GR-mediated 
ventralization is strongly enhanced by DEX-treatment. (F) Tcf∆HMG-GR strongly 
induces ventralization phenotype independently of DEX.  
 

Dorsal inhibition of Wnt/β-Catenin signaling in Xenopus embryos suppresses 

the induction of the Spemann organizer and results in the formation of a 

ventralized phenotype. These embryos show reduced dorso-anterior structures, 

like cement gland and eye anlage (Figure 10B). In order to analyze activity and 

inducibility of predicted canonical Wnt signaling repressing GR-fusion 

constructs, mRNAs coding for these factors were injected marginally into both 

dorsal blastomeres of 4-cell stage embryos.Injected embryos were treated with 

DEX and cultivated until late tailbud stages for ventralization phenotype analysis 

(Figure 10 B). All of these dorsally expressed GR-fusion constructs induced 

ventralization even without DEX treatment (Figure 10 E, F; Table 7). However, 

TCF3ΔC-GR and EnR-Lef1-GR repress canonical Wnt signaling in a dose-

dependent manner and protein activity was enhanced by addition of DEX 

(Figure 10 E; Table 7). 

To confirm the data gained from axis duplication and ventralization assays, we 

tested signaling activity and inducibility of GR-fusion constructs in the Xenopus 

animal cap system.Stimulation or repression of canonical Wnt signaling can be 

monitored by expression analysis of direct Wnt/β-Catenin target genes, such as 

Nodal-related 3 (Xnr3) or Siamois(Ghogomu et al., 2006).Embryos were 

injected animally with mRNAs coding for GR-fusion proteins and treated with 

DEX immediately after injection. At blastula stage, animal ectodermal tissue 

was dissected and cultivated until mid-gastrula stage for target gene expression 

analysis, using RT-PCR (Figure 11 A).Consistent with the data from axis 

duplication assays, Wnt/β-Catenin target gene expression is induced by Lef1-

GR and βcatS33AΔTA-VP16-GR. While Lef1-GR activity is induced by DEX, 

βcatS33AΔTA-VP16-GR promotes expression of Xnr3 and siamois DEX-

independently (Figure 11 B, D; Table 7). In order to analyze activity of Wnt/β-

Catenin repressing GR-fusion proteins, the corresponding constructs were 
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coexpressed with canonical Wnt signaling stimulating factors, such as 

Dishevelled (Dvl) or β-Catenin (Figure 11 C, D).Tcf3ΔHMG-GR inhibited Dvl-

mediated target gene expression. However, as observed in the ventralization 

assay, Tcf3ΔHMG-GR activity was not induced by DEX (Figure 11 C; Table 7). 

Surprisingly, 2 GR-fusion proteins, namely LefΔBD-GR and βcatS33AΔTA-EnR-

GR, that were predicted to repress canonical Wnt signaling activity, were found 

to induce secondary axis formation and β-Catenin target gene expression 

(Figure 11 D; Table 7). 

 

 
Figure 11. Activity and DEX-inducibilty of GR-fusion constructs as tested by 
gene expression analysis in animal cap explants.(A-D) Xenopus embryos were 
injected animally into both blastomeres at 2-cell-stage, ectodermal animal cap tissue 
was dissected at stage 8 and treated with Dexamethasone (DEX) until stage 11, when 
ectodermal explants were fixed for RT-PCR analysis. (B-D) Embryos were injected with 
50 pg, 100 pg, or 150 pg Lef1-GR, 200 pg MT-Dsh, 50 pg or 100 pg TCF3-AΔHMG-
GR, 400 pg β-Catenin, 25 pg βcatS33AΔTA-EnR-GR, 25 pg βcatS33AΔTA-VP16-GR 
mRNA and treated with Dexamethasone, as indicated. RNA extracts were analysed for 
expression of Xnr3 (B-C) and Siamois (D). RT-PCR for histone H4 was included as 
loading control. (B) Lef1-GR induces Wnt/β-Catenin target gene expression dose-
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dependently upon activation with DEX. (C) TCF3-AΔHMG-GR inhibits MT-Dsh-
mediated target gene expression independently of DEX-treatment. (D) βcatS33AΔTA-
EnR-GR and βcatS33AΔTA-VP16-GR both induce canonical Wnt target gene 
expression in the absence of DEX. CE – uninjected control embryo; CC – control 
animal cap tissue from uninjected embryos. 
 

In summary,we have identified constructs that either inhibit or induce canonical 

Wnt signalingin a DEX dependent manner; these are: Lef1-GR and LefΔN-

VP16-GR (activators) as well as TCF3ΔC-GR and EnR-Lef1-GR (repressors). 

 

Table 7.Summary of canonical Wnt signaling modulating activity and DEX inducibility 
of GR-fusion constructs used in this study. 

GR-fusion construct 
axis phenotype Target gene expression DEX 

inducibility axis 
duplication ventralization activation repression 

βcatS33A-GR yes n.d. n.d. n.d. no 

GR-βcatS33Y yes n.d. n.d. n.d. no 

βcatS33AΔTA-VP16-GR yes n.d. n.d. n.d. no 

Lef1-GR yes n.d. yes no yes 

LefΔN-VP16-GR yes n.d. yes n.d. yes 

LefΔBD-GR yes yes yes yes yes 

TCF3ΔC-GR n.d. yes n.d. n.d. yes* 

EnR-Lef1-GR n.d. yes n.d. n.d. yes* 

βcatS33AΔTA-EnR-GR yes yes n.d. n.d. no 

GR-Tcf3ΔN n.d. yes n.d. n.d. no 

GR-Tcf3ΔHMG n.d. yes n.d. n.d. no 

Tcf3ΔHMG-GR n.d. yes n.d. yes no 

GSK3β-GR n.d. yes n.d. n.d. no 

GR-fusion constructs with confirmed signaling activity and inducibility are highlighted in purple. 
yes* indicates that DEX did not induce but enhance activity of the corresponding GR-fusion proteins.  

 

3.2 Modulation of canonical Wnt signaling activity interferes with 

pancreas specification and differentiation 

 
Previous studies in Xenopus as well as in other model systems had shown that 

canonical Wnt signaling plays important roles during patterning of the primitive 

gut tube, including aspects of specification, differentiation, and proliferation of 

endodermal cells. Different models for Wnt/β-Catenin function during 



Results 
 

62 
 

endodermal organ development have been proposed. While McLin and 

colleaguesdiscuss an anterior-posterior gradient of canonical Wnt 

signalingactivity within the gut tube, other studies suggested a model that is 

defined by temporal modulations β-Catenin stability in respect to the 

corresponding developmental phase(Damianitsch et al., 2009; Dessimoz et al., 

2005; Heiser et al., 2006; McLin et al., 2007; Murtaugh et al., 2005).  

In order to analyze the role of canonical Wnt signaling during pancreatic 

development, mRNAs coding for inducible canonical Wnt signaling activating or 

repressing GR-fusion proteins were injected into the vegetal pole of all 4 

blastomeres of stage 3 Xenopus embryos. Embryos were treated with DEX 

either at stage 12, before the pancreatic anlage is specified, or at stage 30, 

when pancreatic specification is completed, and cultivated until stage 40(Figure 

12 A). Embryos were analyzed for expression of pancreatic protein disulfide 

isomerase (PDIp), which is an earlymarker for differentiation of the exocrine 

pancreatic cell lineage(Afelik et al., 2004).In the control situation, PDIp 

transcripts are detected strongly in the dorsal and ventral pancreatic bud and 

PDIp expression is not altered by DEX treatment (Figure 12 B,C). 

As shown earlier, embryos injected with Lef1-GR are devoid of the dorsal 

pancreas both after early and late activation of the GR-fusion protein (Melchert, 

2007). However, LefΔN-VP16-GR had no effect on PDIp expression (Figure 12 

C). Early and late repression of canonical Wnt signaling using microinjection of 

Tcf3ΔC-GR mRNA caused the loss of both ventral and dorsal pancreatic 

anlage. However, a similar phenotype was observed for embryos that were not 

treated with DEX (Figure 12 B, C). Therefore, reduced XPDIp expression in the 

dorsal and ventral pancreas upon Tcf3ΔC-GR expression might also be a 

secondary effect caused by an impairment of earlier developmental events. 

However, this result is consistent with data from ventralization assays showing 

that Tcf3ΔC-GR is active even in the absence of DEX (Figure 10 E; Table 7). 

While early repression of Wnt/β-Catenin signaling using EnR-Lef1-GR caused 

reduced expression of PDIp in the dorsal pancreas, activation of the protein at 

stage 30 did not interefere with exocrine pancreatic development (Figure 12 B, 

C), (Forchmann, 2009). Furthermore, transcript levels of Insulin that is 

specifically expressed in the endocrine β-cells were neither early nor late altered 

by activation of EnR-Lef1-GR (Forchmann, 2009).  



Results 
 

63 
 

These data show that both repression and hyperactivation of canonical Wnt 

signaling before and after specification of the dorsal pancreatic anlage can 

result in impaired exocrine pancreatic development. In contrast, development of 

the ventral pancreas was not influenced by increased Wnt/β-catenin signaling. 

However, based on these data we cannot definitively conclude a requirement 

for Wnt signaling activity in the context of ventral pancreatic development. 

 

 
Figure 12. Stimulation and Inhibition of canonical Wnt signaling before and after 
pancreatic specification result in a reduced expression of the exocrine 
pancreatic marker XPDIp. (A) Xenopus embryos were injected into the vegetal pole of 
all 4 blastomeres at the 4-cell stage and cultivated either until stage 12 or stage 30 for 
Dexamethasone (DEX) treatment until stage 40. (B) Shown are representative 
embryos exhibiting either normal XPDIp expression (left panel) or reduced XPDIp 
expression only in the dorsal (↓) or in both dorsal and ventral (↓↓) pancreatic anlage. 
XPDIp expression was determined using WMISH. Black arrow heads indicate reduced 
dorsal pancreas; white arrow head indicates reduced ventral pancreas. (C) Summary 
of phenotypes in the context of XPDIp expression observed upon activation (Lef1-GR, 
Lef∆N-VP16-GR) or repression (Tcf3∆C-GR,EnR-Lef1-GR) of canonical Wnt signaling. 
Embryos were injected with 75 pg Lef1-GR, 300 pg Lef∆N-VP16-GR, 100 pg Tcf3∆C-
GR, or 500 pg EnR-Lef1-GR mRNA and treated with DEX at stage 12 or at stage 30, 
as indicated. XPDIp expression was analyzed using WMISH and 2 phenotypes were 
observed: ↓ reduced dorsal pancreas; ↓↓ reduced ventral and dorsal pancreas. 
Percentages of embryos showing the corresponding phenotype and numbers of 
analyzed embryos are indicated. Data shown for Lef1-GR injected embryos are taken 
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from Melchert, 2007; data shown for EnR-Lef1-GR injected embryos are taken from 
Forchmann, 2009. 
 

3.3 Ectopic Fam132b induces formation of a secondary body axis in 

Xenopus embryos 

 

To identify novel regulators of Wnt/β-Catenin signaling, expression cloning was 

carried out, using primary body axis formation in Xenopus embryos as a read 

out system. A Xenopus tropicalis full-length cDNA library, containing more than 

9000 individual cloneswas used(Gilchrist et al., 2004).  

 

 

Figure 13. Schematic illustration of expression cloning. Bacteria containing 
Xenopus tropicalis full-length cDNA clones were cultured in 96-well plates. After DNA 
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extraction cDNA clones were PCR amplified and pooled within rows. After in vitro 
synthesis, 1.6 ng of mRNA  pools were injected animally into both blastomeres of 2-
cell-stage Xenopus laevis embryos. Embryos were cultivated  until stage 30 for 
phenotype analysis. 
 

cDNA clones were amplified by PCR and pools of 24 cDNA clones each were 

transcribed  in vitro(kindly provided by K. Henningfeld). Xenopus laevis embryos 

were injected with these pools of mRNAs animally into bothblastomeres at the 

2-cell-stage and analyzed for axis formation defects at early tadpole stages 

(Figure 13). Embryos expressing one of these mRNA poolsexhibited a 

dorsalized phenotype (Figure 14 A).  

 

 

Figure 14. Expression cloning identifies Fam132b a dorsalizing factor. (A-K) 
Hierarchy of injected mRNA pools and observed phenotypes. mRNA mixtures derived 
from pools of X. tropicalis full-length cDNA clones were injected into both blastomeres 
at the 2-cell-stage. Embryos were cultivated to tailbud stage and screened for axis 
formation. 1.6 ng (A), 800 pg (B, C), 500 pg (D, E) or 120 pg (F-K) of total mRNA were 
injected per embryo. Numbers of individual clones per injected mRNA pool are 
indicated at the left side. Embryos are depicted at lateral view with anterior to the left. 
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Percentages of embryos exhibiting the shown phenotype in respect to the whole 
number of analyzed embryos is shown in the lower right hand corner of each panel. 
 

This phenotype is defined by overrepresentation of very anterior structures, 

such as the cement gland, as well as by a shortened body axis (Figure 14 A, C, 

E, I). In order to identify the active clone, the dorsalization-positive pool was 

subdivided into pools of 12, followed by subdivision into pools of 6individual 

clones. These mRNA pools were microinjected and embryos were analyzed, as 

described above (Figure 14 B-E). Ectopic expression of the 6 remaining 

individual clones lead to the identification of one clone as inducer of the 

observed dorsalized phenotype (Figure 14 F-K). Thisclone TTpA078f11 could 

be assigned to Xenopus tropicalisFam132b (AN: NM_001078919). 

 

 
Figure 15. Fam132b induces secondary axis formation upon ventral 
overexpression.(A) Xenopus embryos were injected at the four-cell stage into the 
marginal zone of one ventral blastomere and cultivated until stage 28 for phenotype 
analysis. VMZ – ventral marginal zone. (B-E) Fam132b induces secondary axis 
formation. (B-D) Representative embryos showing partial or complete secondary axis 
formation and corresponding as indicated. Embryos are depicted in a lateral view with 
anterior to the left (B), in a lateral view with anterior to the top (C) or in a dorsal view 
with anterior to the left (D). Black arrows indicate the anterior tip of a complete body 
axis; white arrow head marks the anterior tip of a partial secondary body axis. (E) 
Quantification of embryos showing partial or complete secondary axis formation after 
ventral overexpression of increasing amounts of Fam132b, as indicated. 30 pg, 60 pg, 
120 pg or 250 of XtFam132b mRNA were injected per embryo. 



Results 
 

67 
 

A dorsalized phenotype similar to that observed after expression of Fam132b 

mRNA could be caused by activation of Wnt/β-Catenin signalingbut also by 

inhibition of BMP signaling in the early embryo(Oelgeschlager et al., 2003; 

Williams et al., 2005). Modulations of these signaling pathways, if restricted to 

the ventral marginal zone of the embryo, can induce secondary axis formation 

inXenopus embryos(Fagotto et al., 1997; Funayama et al., 1995; Graff et al., 

1994; Suzuki et al., 1994). 

To determine if Fam132b can induce axis duplication as well, Fam132b mRNA 

was injected marginally into 1 ventral blastomere at the 4-cell-stage. Indeed, 

Fam132b shows predominantly partial secondary axis inducing activity (Figure 

15 A-C).These data suggest that Fam132b might be a protein with the potential 

to either stimulate Wnt/β-Catenin signaling or negatively regulate BMP 

signaling. 
 

3.4 Fam132b does not activate Wnt/β-Catenin signaling 

 
Since Fam132b exhibits secondary axis inducing activity, we asked ifFam132b 

could act as a Wnt/β-Catenin signaling stimulating factor. For this purpose, 

Fam132b activity was analyzed in the Xenopus animal cap assay. Fam132b 

mRNA was injected into both blastomeres of 2-cell-stage embryos. At blastula 

stage animal ectodermal tissue (animal cap) was explanted and cultivated until 

sibling control embryos had reached gastrula stage.Animal caps, which do not 

show Wnt/β-Catenin signaling activity, were analyzed for direct canonical target 

gene expression using RT-PCR (Figure 16 A). While Wnt8 strongly activates 

the expression of Xnr3, transcriptional induction of Xnr3 was not observed upon 

ectopic Fam132b expression (Figure 16B). 

Furthermore, Fam132b activity was analyzed in the luciferase assay using a 

Wnt-responsive Siamois reporter construct. The siamois reporter construct, 

which contains the firefly luciferase gene under control of the siamois promoter, 

was injected together with a Renilla reporter construct into both blastomeres of 

a 2-cell-stage embryo (Brannon et al., 1997). Since Renilla reporter gene 

activation is independent of Wnt signaling activity, this construct was used for 

normalization of Siamois reporter gene activity. Embryos were cultivated until 
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gastrula stage and analyzed for luciferase activity. While expression of Wnt8 

mRNA dramatically increased Siamois reporter gene activity in the embryo, 

ectopic expression of Fam132b did not influence the level of endogenous 

canonical Wnt signaling (Figure 16 A, C). 

To answer the question, if Fam132b might act as a Wnt/β-Catenin 

signalingenhancing factor, Fam132b was coexpressed together with decreasing 

doses of Wnt8 mRNA in the ectodermal animal cap tissue, as described above. 

RT-PCR analysis revealed that Fam132b does not increase Wnt8 induced Xnr3 

expression (Figure 16 A, D). Hence, a synergistic activity between Fam132b 

and Wnt8 can be excluded. 

 

 
Figure 16. Overexpression of Fam132b does not modulate endogenous or 
ectopicaly activated canonical Wnt signaling activity. (A) Xenopus embryos were 
injected into both blastomeres at the 2-cell stage and cultivated either until stage 11 for 
luciferase assay or until stage 8 for dissection of the animal cap tissue. Ectodermal 
explants were cultivated until stage 11 and analyzed using RT-PCR. (B) Fam132b 
does not induce transcription of Xnr3 in animal cap cells. 30 pg MT-Wnt8, 250 pg tBR 
and 30 pg, 60 pg or 120 pg of XtFam132b mRNA were injected per embryo. (C) 
Fam132b does not stimulate Siamois-Luc reporter gene activity. 10 pg MT-Wnt 8,120 
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pg XtFam132b, and 250 pg tBR mRNA were injected per embryo and 3 samples 
containing 15 embryos each were analyzed. The graphs show the summary of 2 
independent experiments; standard errors are indicated. Siamois-Luc reporter gene 
activity was normalized to Renilla reporter gene activity. Siamois-Luc reporter gene 
activity, induced by endogenous Wnt/β-Catenin signaling, was set to 1. (D) MT-Wnt8-
mediated induction of Xnr3 transcription in animal cap explants is not enhanced by 
Fam132b coexpression. 40 pg, 4 pg or 0.4 pg MT-Wnt 8 and 120 pg XtFam132b 
mRNA were injected per embryo, as indicated. 
 

In addition, expression of Fam132b in the axis duplication assay resulted in the 

formation of predominantly partial secondary body axis, lacking the very anterior 

structures, like cement gland or eye anlage (Figure 15). In contrast, ventral 

overexpression of Wnt/β-Catenin signaling activating factors, such as Wnt8, 

induce the formation of complete secondary axis, exhibiting those anterior 

structures(Fagotto et al., 1997; Funayama et al., 1995). Taken together, these 

data show that ectopic Fam132b neither activates norenhances canonical Wnt 

signaling activity in Xenopus embryos. 

 

3.5 BMP signaling activity is repressed by ectopic Fam132b expression 

 
Apart from activation of canonical Wnt signaling, ventral inhibition of BMP 

signaling can induce secondary axis formation in Xenopus embryos(Graff et al., 

1994; Suzuki et al., 1994). Therefore, we asked if Fam132b exhibits BMP 

antagonizing activity. To answer this question, we ectopically expressed 

Fam132b in animal cap cells, where BMP signaling is active. Xenopus embryos 

were injected with mRNA coding for Fam132b animally into both blastomeres at 

the 2-cell stage and animal caps were dissected at blastula stage (Figure 17 

A).RT-PCR analysis of gastrula stage ectodermal explants revealed that 

transcriptional levels of direct BMP target genes, such as Vent1/2 or Msx1/2 are 

downregulated upon Fam132b expression, as observed for animal cap explants 

expressing the dominant negative truncated BMP receptor (tBR) or the secreted 

BMP antagonist Noggin (Figure17C). It has been shown, that repression of 

BMP signaling activity induces neural differentiation in embryonic ectodermal 

explants (Lamb et al., 1993; Sasai et al., 1995). Correspondingly, we found the 

neural cell adhesion molecule (N-CAM) to be upregulated in Fam132b 

expressing animal cap cells (Figure17 C). 
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Figure 17. Overexpression of Fam132b antagonizes BMP-mediated target gene 
transcription (A) Both blastomeres of 2-cell-stage Xenopus embryos were injected 
animally, ectodermal animal cap tissue was dissected at stage 8 und cultivated until 
stage 12 for RT-PCR analysis. (B) Xenopus embryos were injected marginally into both 
ventral blastomeres at the 4-cell stage, ventral mesodermal tissue was explanted at 
stage 10.25 and cultivated until stage 12 for RT-PCR analysis. (C) Overexpression of 
Fam132b inhibits BMP target gene (Vent1/2, Msx1/2) expression and stimulates 
expression of the neural marker N-CAM in animal cap explants. (D)  BMP target gene 
transcription is downregulated and expression of secreted BMP antagonists is 
stimulated upon overexpression of Fam132b in ventral mesodermal explants. (C-D) 
300 pg tBR, 100 pg Noggin, 100 pg and 200 pg (C) or 250 pg and 500 pg (D) 
XtFam132b mRNA was injected per embryo, as indicated. RT-PCR for histone H4 was 
included as loading control. Overexpression of tBR and Noggin was included as control 
for BMP antagonizing activity. CE – uninjected control embryo; CC – control animal cap 
tissue from uninjected embryos; CVM – control ventral mesoderm from uninjected 
embryos. 
 

Furthermore, we analyzed Fam132b activity in ventral mesodermal explants 

that highly express direct BMP target genes. For this pupose, Fam132b mRNA 

was injected marginally into both ventral blastomeres of 4-cell-stage Xenopus 

embryos. Ventral mesoderm was explanted at stage 10.25 and cultivated until 

gastrula stage for RT-PCR analysis (Figure 17 B). As observed in the animal 
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cap system, Fam132b as well as Noggin inhibits BMP target gene expression in 

ventral mesodermal explants (Fig 17 D). However, expression of tBR did not 

affect expression of Vent2 and Msx2.Inhibition of BMP signaling can induce the 

expression of organizer specific genes in the ventral mesoderm (Dosch and 

Niehrs, 2000). Similarly, Fam132b induces transcriptional activation of the 

organizer genes Noggin, Chordin, and Follistatin(Agius et al., 2000; Yamamoto 

et al., 2000), as observed previously upon expression of tBR (Figure 17 D). 

 

 
Figure 18. Fam132b represses BMP4- and BMP2-mediated BMP signaling 
activity. (A) Xenopus embryos were injected into both dorsal blastomeres at the 4-cell 
stage and cultivated either until stage 11 for luciferase assay or until stage 28 for 
phenotype analysis. (B) Coexpression of XtFam132b rescues the BMP4 induced 
ventralization phenotype. 1 ng BMP4 and 100 pg XtFam132b mRNA were injected per 
embryo, as indicated. (C) XtFam132b represses BMP4- and BMP2 stimulated Vent2b-
BRE-Luc reporter gene activity. 1 ng BMP4, 1 ng BMP2, and 100 pg XtFam132b 
mRNA were injected per embryo and 3 samples containing 15 embryos each were 
analyzed per experiment. The graphs show the summary of 2 independent 
experiments; standard errors are inicated. Vent2b-BRE-Luc reporter gene activity was 
normalized to Renilla reporter gene activity. Vent2b-BRE-Luc reporter gene activity, 
induced by endogenous BMP signaling was set to 1. 
 

The RT-PCR experiments described above have shown that Fam132b inhibits 

endogenous BMP activity. In order to investigate if Fam132b could also 
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antagonize ectopic BMP signaling, Fam123b mRNA was injected together with 

mRNA coding for BMP4 marginally into both dorsal blastomeres of 4-cell-stage 

embryos. These embryos were cultivated until late tailbud stages for phenotype 

analysis (Figure 18 A). While expression of BMP4 by itself induces strong 

ventralization of Xenopus embryos, Fam132b expression results in the 

formation of a dorsalized phenotype, as described above. Coexpression of 

Fam132b together with BMP4 could partially rescue BMP4-mediated 

ventralization (Figure 18 B). 

Additionally, Fam132b activity was analyzed using the luciferase reporter assay. 

The Vent2b-BRE-Luc reporter construct(Henningfeld et al., 2000), containing 

the Firefly luciferase gene under control of the BMP responsive minimal Vent2b 

promoter, was injected together with the Renilla reporter construct into the 

dorsal marginal zone of 4-cell stage embryos. Embryos were cultivated until 

gastrula stage and analyzed for luciferase activity (Figure 18 A). Endogenous 

BMP signaling activity is relatively low in the dorsal embryo, but reporter gene 

activity is significantly upregulated by overexpression of BMP2 and BMP4 

mRNAs. Fam132b coexpression inhibits both, endogenous as well as BMP2- 

and BMP4-mediated reporter gene activation (Figure 18 C). These data indicate 

that Fam132b antagonizes BMP signaling activity. 

 

3.6 Fam132b selectively inhibits BMP signaling 
 

Activity of the TGF-β family of signalingpathways is tightly regulated during 

development and tissue homeostasis. Several factors are known to antagonize 

BMP, activin or Nodalsignaling. Some inhibitors are specific for the BMP 

signaling pathway, such as Noggin or Chordin(Sasai et al., 1994; Smith and 

Harland, 1992),while others antagonize more than one signaling pathway. BMP-

3, Follistatin, or BAMBI were shown to antagonize activin as well as BMP signal 

transduction pathways(Fainsod et al., 1997; Gamer et al., 2005; Hemmati-

Brivanlou et al., 1994; Onichtchouk et al., 1999). To elucidate if Fam132b is a 

BMP-specific inhibitor, we analyzed the effect of Fam132b on either eFGF-, 

activin, or BMP4 induced target gene expression. All these signaling molecules 

can activate the expression of the T-box gene Xbrachyury (Xbra) and the zinc 
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finger transcription factor Early growth response protein 1 (egr-1) upon 

overexpression in animal cap explants(Panitz et al., 1998). Embryos were 

injected into both blastomeres at the 2-cell stage and cultivated until blastula 

stage for dissection of animal ectodermal tissue(Figure19 A). RT-PCR analysis 

reveals that target gene transcription induced via eFGF or activin signaling is 

not influenced by Fam132b, while BMP4-mediated target gene induction is 

completely repressed upon coexpression of Fam132b (Figure19B).These 

results suggest that the antagonizing activity of Fam132b is specific for the 

BMP-mediated signaling pathway. 

 

 
Figure 19. Fam132b selectively antagonizes BMP induced target gene 
transcription(A) Xenopus embryos were injected animally into both blastomeres at the 
2-cell-stage, ectodermal animal cap tissue was dissected at stage 8 und cultivated until 
stage 12 for RT-PCR analysis. (B)  Fam132b interferes with BMP-induced target gene 
expression, while eFGF- and activin-mediated transcriptional induction is not influenced 
by Fam132b. 10 pg eFGF, 1 pg activin, 1 ng BMP4, and 100 pg XtFam132b mRNAs 
were injected per embryo, as indicated, and RNA extracts were analyzed for Xbra and 
egr-1 expression. RT-PCR for histone H4 was included as loading control. CE – 
uninjected control embryo; CC – control animal cap tissue from uninjected embryos. 
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3.7 The BMP antagonizing activity of Fam132b is mediated on the 

extracellular level 

 
BMP signaling activity isregulated by multiple mechanisms, including 

intracellular and extracellular antagonism.Analysis of the predicted Xenopus 

tropicalis Fam132b protein sequence using SMART (Simple Modular 

Architecture Research Tool) reveals that it contains an N-terminal signal peptide 

of 33 amino acids, suggesting that this protein is a secreted factor 

(http://smart.embl-heidelberg.de/). To test this hypothesis hemagglutinin epitope 

(HA)-tagged Fam132b mRNA was injected vegetally into stage VI Xenopus 

laevis oocytes. Oocytes were cultivated for 24 hours, followed by Western Blot 

analysis of either oocyte or oocyte culture medium (OCM) protein extracts 

(Figure20 A). 

 

 
Figure 20. Fam132b is a secreted protein. (A) Stage VI oocytes were injected  into 
the vegetal pole and cultivated for 24 hours. Oocytes  (Oo) and Oocyte Culture Medium  
(OCM) were separated and protein extracts were prepared. (B) Fam132b-HA protein is 
secreted upon overexpression in Xenopus oocytes. 100 pg Su(H)-HA was coinjected 
with either 150 pg Fam132b-HA or 150 pg sFRP5-HA mRNA. Su(H) and sFRP5 served 
as controls for non-secreted and secreted proteins, respectively. The expression of HA-
tagged proteins was analyzed by Western Blot.  
 

An HA-fused version of the transcription factor Suppressor of Hairless (Su(H)) 

was coexpressed as internal control for non-secreted proteins. Within one day 

of cultivation,Xenopus oocytes efficiently translated injected mRNA into HA-
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tagged proteins. As expected, Su(H)-HA protein was exclusively detected in the 

oocyte fraction, while the known secreted factor sFRP5-HA was found in the 

OCM  (Figure20 B). Consistent with the finding that the Fam132b protein 

contains a signal peptide sequence, Fam132b-HA protein was similarly 

detected in the OCM, while being absent from the oocyte fraction (Figure20 B). 

These data indicate that Fam132b is a secreted factor, raising the possibility 

that Fam132b might antagonize BMP signaling activity on the extracellular level. 

 

 
 
Figure 21. Fam132b inhibits BMP signaling activity on the extracellular level.  (A) 
Xenopus embryos were injected at the 4-cell stage into the marginal zone of both 
dorsal blastomeres and cultivated until stage 11 for luciferase assay. DMZ – dorsal 
marginal zone. (B) Fam132b does not inhibit caBMPR induced reporter gene 
activation. The graphs summarize the results of three independent experiments; 
standard errors are indicated. Three samples containing 15 embryos each were 
analysed per experiment. 1 ng caBMPR, 1 ng BMP4 and 200 pg Fam132b mRNA per 
embryo were injected. Vent2b-BRE-Luc reporter gene activity was normalized to 
Renilla reporter gene activity. Vent2b-BRE-Luc Reporter gene activity induced by 
endogenous BMP signaling was set to 1. 
 

To experimentally test this assumption, Fam132b was coexpressedwith either 

the constitutively active BMP receptor (caBMPR) or BMP4. Fam132b activity 

was analyzed in the luciferase assay at gastrula stage, using the reporter 
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construct Vent2b-BRE-Luc (Henningfeld et al., 2000)and the BMP signaling 

independent Renilla luciferase reporter, as described above (Figure21 A, B). 

The caBMPR is a BMP type I receptor containing a mutation in the intracellular 

domain and it stimulates BMP signaling activity independently of the BMP 

protein(Candia et al., 1997). Reporter gene activity that is induced by caBMPR 

is antagonized exclusively by factors that function downstream of the receptor. 

As shown above, Fam132b efficiently inhibits reporter gene activity that was 

induced by BMP4, while caBMPR-stimulated reporter gene activity is not 

significantly affected (Figure21 B). These results show that the secreted protein 

Fam132b antagonizes BMP signaling activity on or upstream of the receptor 

level.  

 

3.8 Fam132b physically interacts with BMP specific type I receptors 

 

Previous studies identified a family of BMP antagonists, containing Noggin and 

Chordin,that function via direct binging to the BMP proteins and thereby 

blocking the interaction of BMPs with their receptors(Piccolo et al., 1996; 

Zimmerman et al., 1996). To investigate if Fam132b is a member of this family 

of BMP antagonistsco-immunoprecipitation (CoIP) experiments with Fam132b 

and BMP4 in Xenopus embryos were carried out. CoIP analysis using Noggin 

and BMP4 served as positive control. mRNAs coding for epitope-tagged 

versions of Fam132b, Noggin, and BMP4 were injected at the 2-cell stage and 

embryos were cultivated until gastrulation (Figure 22 A). Embryonic lysates 

were subjected to CoIP analysis using antibodies against the HAepitope-tag. As 

expected, Noggin-MT strongly interacts with BMP4-HA.CoIP of BMP4-HA 

andFam132b-MT-GR reveals that there is significant albeit weak binding 

between these proteins (Figure22 A, B). 

Unlike BMP antagonists that regulate BMP availability, other factors, such as 

inhibin and BMP-3, have been identified as BMP receptor inhibitors(Gamer et 

al., 2005; Wiater and Vale, 2003). To test, if Fam132b interacts with BMP 

receptors, CoIP experiments between epitope-tagged versions of the BMP-

specific type I receptors Alk2 or Alk3 and Fam132b were carried out (Figure 22 

A). Fam132b-MT was indeed co-immunoprecipitated with HA-tagged Alk2 and 
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Alk3 (Figure22 C), but not with the human TGFβ type I receptor Alk4-HA, which 

is specific for TGF-β ligands different from BMP proteins (data not 

shown),These data suggest that Fam132b antagonizes BMP signaling activity 

primarily via receptor binding.The direct binding to the BMP protein described 

abovecould be the result of trimeric complex formation including signal, receptor 

and antagonist. 

 

 
Figure 22. Fam132b strongly interacts with BMP type I receptors, and weakly 
with BMP4. (A) Xenopus embryos were injected animally into both cells at the 2-cell 
stage and lysed at stage 11 for CoIP using anti-HA antibody (B) or anti-MT antibody 
(C). (B-C) CoIP experiments showing Xenopus lysates used for CoIP in the left panels 
and precipitated or co-precipitated proteins in the right panels. Embryo lysates and 
CoIP samples were analyzed by Western Blot using  anti-HA and anti-MT antibodies, 
as indicated. (B) Fam132b-MT-GR weakly co-precipitates with BMP4-HA. 200 pg 
Fam132b-MT, 200 pg Noggin-MT and 1 ng BMP4-HA mRNA were injected per 
embryo. (C) Fam132b-MT co-precipitates with BMP type I receptors Alk2-HA and Alk3-
HA. Embryos were injected with 200 pg Fam132b-MT, 500 pg Alk2-HA and 1 ng Alk3-
HA mRNA.  
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3.9 The conserved C1qTNF-like domain is dispensable for the BMP 

antagonizing activity of Fam132b 

 

Analysis of the predicted Xenopus tropicalis Fam132b protein sequence using 

NCBI protein BLAST revealed that it contains a conserved C-terminal C1q/TNF-

like domain (http://blast.ncbi.nlm.nih.gov/Blast.cgi). This structure that is related 

to the globular head region of the complement C1q protein is a highly 

conserved oligomerization motif and is known to bind to a variety of 

ligands(Carland and Gerwick, 2010; Kishore et al., 2004). 

 

 

Figure 23. The Fam132b C1q domain is dispensable for Fam132b-mediated BMP 
antagonism. (A) Deletion mutants of XtFam132 lacking either the C1q domain or the 
internal region between signal peptide and C1q domaine were generated. (B) Xenopus 
embryos were injected at the 4-cell stage into the marginal zone of both ventral 
blastomeres and cultivated until stage 11 for luciferase assay. VMZ – ventral marginal 
zone. (C) Reporter gene activity stimulated by endogenous levels of BMP signaling is 
efficiently inhibited by FL-Fam132b and Fam132bΔC1q, but only moderately affected 
by expression of Fam132bΔIntern. The graphs summarize the results of 5 independent 
experiments; standard errors are indicated. Three samples containing 15 embryos 
each were analysed per experiment. 100 pg of either FL-Fam132b, Fam132bΔIntern, or 
Fam132bΔC1q mRNA were injected per embryo, as indicated. Vent2b-BRE-Luc 
reporter gene activity was normalized to Renilla reporter gene activity. Vent2b-BRE-
Luc Reporter gene activity induced by endogenous BMP signaling was set to 1. 
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We asked if the BMP antagonizing function of Fam132b could be mediated via 

this protein domain. For this issue we generated Fam132b deletion mutants, 

lacking either the internal region or the C1q/TNF-like domain, and analyzed 

their activity in the luciferase assay (Figure 23 A). mRNAs coding for full-length 

or mutant versions of Fam132b together with BMP-responsive Vent2b-BRE-Luc 

and BMP-independent CMV-Renilla reporter constructswere microinjected into 

both ventral blastomeres at the 4-cell-stage. Embryos were cultivated until 

gastrula stage and analyzed for luciferase activity (Figure 23B). Reporter gene 

activity, induced by endogenous BMP signaling, was efficiently blocked by 

injectionof either full-length Fam132b or Fam132bΔC1q, but only moderately 

upon injection of Fam132bΔIntern (Figure 23C). 

 

 
Figure 24. Fam132b amino-terminal domain is sufficient to block BMP signalingin 
animal cap cells. (A) Xenopus embryos were injected animally into both blastomeres 
at the 2-cell-stage, ectodermal animal cap tissue was dissected at stage 8 und 
cultivated until stage 12 for RT-PCR analysis. (B) FL-Fam132b and Fam132bΔC1q, but 
not Fam132bΔIntern inhibit BMP4 induced Xbra expression and neuralize animal cap 
tissue. 1 ng BMP4 and 100 pg of either FL-Fam132b, Fam132bΔIntern, or 
Fam132bΔC1q mRNA were injected per embryo, as indicated, and RNA extracts were 
analyzed by RT-PCR for Xbra and N-CAM expression. RT-PCR for histone H4 was 
included as loading control. CE – uninjected control embryo; CC – control animal cap 
tissue from uninjected embryos. 
 

As a second assay, we analyzed the activity of the different Fam132b versions 

in respect to BMP4-mediated induction of Xbra expressionor endogenous BMP 

signaling activity in the animal cap system. Xenopus embryos were injected at 
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the 2-cell stage with mRNAs coding for BMP4 and full-length or mutant versions 

of Fam132b. At blastula stage, animal ectodermal tissue was dissected and 

cultivated until gastrula stage for RT-PCR analysis (Figure 24A). Consistent 

with data from luciferase experiments, BMP4-mediated Xbra induction is 

repressed by expression of FL-Fam132b or Fam132bΔC1q. In addition, 

inhibition of endogenous and ectopic BMP signaling activity mediated by the 

same proteins results in activation of N-CAM expression. In contrast, 

expression of Fam132bΔIntern does neither affect Xbra induction by BMP4 nor 

activate N-CAM expression (Figure 24B).These data suggest that the internal 

region of the Fam132b protein is sufficient to mediate its BMP antagonizing 

activity. 

 

3.10 The BMP antagonizing activity of Fam132b is not highly conserved 

 

The Fam132b protein is conserved within the vertebrate kingdom, according to 

information provided by NCBI database or Ensembl genome browser 

(http://www.ncbi.nlm.nih.gov/gquery/; http://www.ensembl.org).Thus, we asked 

if Fam132b protein function is also conserved in distantly related species. First 

we cloned Xenopus laevis Fam132b using 5’RACE and 3’RACE PCR. 

Sequence comparison between X. laevis and X. tropicalis Fam132b protein 

revealed that both proteins share 86 % identity and therefore are highly 

conserved (Figure 25 C). For comparison of Xenopus Fam132b protein with 

those from other vertebrate species we used a multiple alignment, generated by 

DNASTAR Lasergene/MegAlign. General homology between these different 

vertebrate Fam132b proteins is low. However, conserved residues are 

moderately enriched in the C-terminal C1q/TNF-like domain. Seldin and 

colleagues described a motif of 6 collagenic repeats within the mouse 

myonectin/Fam132b protein (Seldin et al., 2012). This motif is highly conserved 

between human, rat, mouse, and zebrafish Fam132b proteins, but not the 

corresponding Xenopus sequence, where only two copies are present (Figure 

25 A).  

Furthermore, we generated a phylogenetic tree and determined sequence 

identities to compare vertebrate Fam132b proteins (http://multalin. 
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toulouse.inra.f/multalin/;http://imed.med.ucm.es/Tools/sias.html).General 

identities between Xenopus Fam132b proteins and those from other species did 

not exceed 30 %, while identity between mammalian proteins was higher than 

70 % (Figure 25 C). Correspondingly, a phylogenetic analysis illustrates that 

Xenopus Fam132b proteins are not closely related to Fam132b proteins derived 

from other vertebrate species (Figure 25 B). 

Figure 25. Sequence comparison of vertebrate Fam132b. (A) Sequence alignment 
of Fam132b protein sequences from Xenopus laevis, Xenopus tropicalis, zebrafish, 
human, mouse, and rat. The underlined C1q/TNF-like domain is moderately conserved 
in all species, whereas other regions of the protein are more divergent. Sequence 
alignment of putative Fam132b homologues was generated using ClustalW. Conserved 
residues are highlighted in yellow. The red box indicates the short collagen-like 
domain. (B-C) The Fam132b protein sequence is highly conserved between both 
Xenopus species, while highly divergent in comparison with other vertebrate species. 
(B) A phylogenetic tree of vertebrate Fam132b protein sequences was generated using 
MultAlign. (C) Overview of protein sequence identities between Fam132b proteins of 
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different vertebrate species. Percentages were calculated using SIAS. High identity 
scores are highlighted in purple. Abbreviations and accession numbers of protein 
sequences: Xt.pro, Xenopus tropicalis (NP_001072387.1); Xl.pro, Xenopus laevis; 
Dr.pro, Danio rerio (XP_002660750); Hs.pro, Homo sapiens (Q4G0M1.2); Mm.pro, 
Mus musculus (NP_775571); Rn.pro, Rattus norvegicus (XP_002727295). 
 
 

In order to investigate if vertebrate Fam132b proteins are functionally related in 

respect to BMP antagonism, homologous Fam132b proteins were analyzed in 

the axis duplication assay. For this purpose, mRNAs coding for mouse, X. 

laevis, X. tropicalis or zebrafish Fam132b were injected marginally into 1 ventral 

blastomere at the 4-cell stage. At late tailbud stages embryos were scored for 

secondary axis formation (Figure 26 A). Expression of Xenopus Fam132b 

homologues strongly induces axis duplication, while neither zebrafish nor 

mouse Fam132b interfere with primary axis determination (Figure 26 B). 

Taken together, Fam132b protein sequence as well as protein function are only 

weakly conserved between Xenopus and other vertebrate species. 

 

 
Figure 26. Xenopus but not mouse or zebrafish Fam123 can induce secondary 
axis formation. (A) Xenopus embryos were injected into the marginal zone of one 
ventral blastomere and cultivated until early tailbud stages. (B) Xenopus homologues of 
Fam132b induce a secondary body axis in Xenopus embryos. Quantification of 
embryos showing axis duplication phenotype. Graphs show the result of at least 2 
independent experiments; standard errors are indicated. The number of analyzed 
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embryos is indicated for each column. 50 pg Xenopus laevis (Xl) Fam132b, 50 pg 
Xenopus tropicalis (Xt) Fam132b, 500 pg Danio rerio (Dr) Fam132b and 500 pg Mus 
musculus (Mm) Fam132b mRNA were injected per embryo. 
 

3.11 Fam132b is expressed in ventral blood islands and circulating blood 

cells 

 

Fam132b was isolated in from Xenopus tropicalis tadpole stage embryos, but a 

detailed analysis of the spatio-temporal expression pattern during Xenopus 

development had not been performed yet (Gilchrist et al., 2004). Therefore, we 

examined Fam132b expression in Xenopus laevis embryos at various 

developmental stages using whole-mount in situ hybridization (WMISH) andRT-

PCR. 

 

 
Figure 27. Fam132b is expressed in the VBI and in circulating blood 
cells.Transcripts of fam132bwere detected by Whole-mount in situ hybridization. 
Developmental stages of Xenopus laevis embryos are indicated at the lower right of 
each panel.Embryos are shown in a lateral view with anterior to the left. (A-B) fam132b 
transcripts are first detected at stage 34 in the ventral blood island (vbi). (D) The levels 
of fam132b in the VBI increase until stage 36. (E) By stage 38, Fam132b transcripts 
can be detected in circulating blood cells within the heart (h) and vascular structures 
such as the posterior cardinal vein (pcv) and the dorsal aorta (da). 
 

Spatial expression of Fam132b was determined by WMISH. Fam132b 

transcripts were first detected at stage 34 in the anterior region of the ventral 
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blood islands (VBI) (Fig 27 A, B). With further development this ventral 

expression domain expands towards the posterior portion of the ventral blood 

islands (Fig 27C). By stage 38 Fam132b transcripts are detected in circulating 

blood cells within the heart and the main vessels (Fig 27D).Expression of 

Fam132b in Xenopus laevis is consistent with that inXenopus tropicalis(data not 

shown). 

 

 
Figure 28. Fam132b is expressed in differentiated blood cells.(A) Fam132b is 
expressed maternally and later after the onset of αGlobin expression. RT-PCR analysis 
of the developmental stages indicated. Total RNA was harvested from staged embryos 
and subjected to RT-PCR using primer sets for Fam132b, the hematopoietic markers 
SCL and α-Globin, and the vascular markers msr and ami, as indicated. RT-PCR for 
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histone H4 was included as loading control. (B)Comparison of fam132b expression 
with that of hematopoietic and vascular marker genes indicates that Fam132b 
expression resembles the pattern of markers of the erythroid cell lineage, such as SCL, 
LMO2-A, and α-Globin. Fam132b expression is induced significantly later than that of 
α-Globin, indicating that fam132b is expressed in differentiated erythrocytes. 
Transcripts SCL, LMO2-A, α-Globin,mpo and ami were detected by Whole-mount in 
situ hybridization, as indicated. Embryos are shown in lateral view with anterior to the 
left Developmental stages of Xenopus laevis embryos are indicated at the top of the 
panel. 
 

RT-PCR revealed that Fam132b is expressed maternally. Zygotic transcripts 

are first detected at stage 33 and increase by stage 37. Fam132b remains 

expressed until stage 42, the last stage tested in this experiment (Figure 28 A). 

Based on the finding that Fam132b is expressed in the VBI that represents the 

origin of embryonic blood and endothelial structures, we compared temporal 

expression of Fam132b with that of hematopoietic (SCL, α-Globin) and vascular 

(msr, ami) genes. We found that Fam132b is expressed shortly after 

hematopoietic and vascular differentiation marker gene expression, as shown 

by α-Globin and ami (Figure 28 A).Comparing the Fam132b expression pattern 

to those for known myeloid (mpo), erythroid (SCL, LMO2, α-Globin) and 

vascular (ami) marker genes reveals that Fam132b expression resembles more 

the one of the erythroid rather than myeloid or vascular cell lineage (Fig 28 B). 

Taken together, these data reveal that Fam132b is expressed in differentiated, 

non-myeloid blood cells during Xenopus development. 

 

3.12 Etv2 induces Fam132b expression 

 

Etv2/er71 is a member of the ets-family of transcription factors. During Xenopus 

development it is mainly expressed in precursor cells of the hematopoietic and 

vascular lineage. Loss of function studies revealedthat Etv2/er71function is 

required for vasculogenesis, while being dispensable for 

hematopoiesis(Neuhaus et al., 2010; Salanga et al., 2010).Neuhaus and 

colleagues could show that Etv2/er71, overexpressed in Xenopus ectodermal 

explants, can induce the expression of both, hematopoietic and vascular marker 

genesfor specified and differentiated cells(Neuhaus et al., 2010). Fam132b 

expression was detected in the blood cell lineage, implicating a function for 

Fam132b during blood development in Xenopus (Figure 27 A-D). To 
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investigate, if Fam132b is induced by Etv2/er71, we carried out RT-PCR 

analysis for Fam132b using cDNA from Etv2/er71 expressing animal cap 

explants of stage 14 and stage 36 (Figure 29 A). Indeed, Fam132b expression 

was induced by Etv2/er71 at stage 36, as observed for several other 

hematopoietic (SCL and α-Globin) and vascular markers (msr and ami) markers 

(Figure29 B). Consistent with the data gained from the expression analysis, 

Fam132b is not expressed as early as the hematopoietic marker SCL (Fig 29 

B). These data show that, like other factors that function during blood or 

vascular development, Fam132b is induced by Etv2/er71. 

 

 
Figure 29. Overexpression of Etv2/er71 in animal caps induces expression of 
Fam132b. (A) Xenopus embryos were injected animally into both blastomeres at 2-cell-
stage, ectodermal animal cap tissue was dissected at stage 8 und cultivated until stage 
14, 27 or 36 for RT-PCR analysis. (B) Expression of both hematopoietic (SCL and α-
Globin) and vascular (msr and ami) marker genes was induced by Er71/Etv2. 
Furthermore, Er71/Etv2 activates the transcription of Fam132b. 150 pg Er71/Etv2 
mRNA was injected per embryo. RT-PCR for histone H4 was included as loading 
control. 
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3.13 Fam132b promotes vascular and suppresses hematopoietic 

development 

 
As shown above, Fam132b is expressed in the developing blood cell lineage of 

Xenopus embryos and is induced by Etv2/er71 in ectodermalXenopus explants 

(Figure 27 and Figure 29). These results seem to imply a function for Fam132b 

in the context of blood development. In order to test this further, we performed 

loss of function experiments. For this purpose, 2Fam132b antisense morpholino 

oligonucleotides were designed.These morpholinosare complementary to 

ashort sequences within the 5’ untranslated region (UTR) or the coding 

sequence (CDS)of Fam132b mRNA, where they should bind and block 

Fam132b protein synthesis.  
 

 
Figure 30. Fam132b MO1 and MO2 efficiently block reporter protein synthesis. 
(A) To test morpholino oligonucleotide (MO) activity, a reporter construct was 
generated, containing the Xenopus laevis Fam132b-5’untranslated region (UTR) anda 
part of the coding sequence (pCDS), fused to myc-epitope tag (MT) and GFP. Red 
bars indicate binding sites of the Fam132b MOs and mismatch (mm) MOs. (B) 
Xenopus embryos were injected animally into both blastomeres at the 2-cell-stage and 
cultivated until stage 11 for Western Blot analysis. (C) Both Fam132b MO1 and MO2 
block translation of the reporter construct in a dose-dependent manner, while cMO and 
mmMO1 do not affect reporter protein synthesis. 200 pg 5’UTR-XlFam132b-MT-GFP 
mRNA was coinjected with 5 ng, 10 ng, or 20 ng morpholino per embryo, as indicated. 
Embryonic lysates were analyzed by Western Blot using antibodies anti MT. 
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To ensure morpholino specificity, a contol morpholino (cMO) with irrelevant 

sequence or 5-base mismatch morpholinos (mmMO1/2) were used. These 

oligonucleotides should not bind and block translation of the corresponding 

target sequence. To test morpholino activity a reporter construct 5’UTR-

XlFam132b-MT-GFP was generated that contains morpholino binding sites, 

fused to myc-epitope tag (MT) and green fluorescent protein (GFP) (Figure 30 

A). Reporter mRNA was injected together with different doses of morpholino 

oligonucleotides animally into both blastomeres of the 2-cell stage Xenopus 

embryo (Figure 30 B). Western Blot analysis of injected gastrula stage embryos 

revealed that both Fam132b morpholino (MO) 1 and 2 efficiently block 

translation of the reporter protein in a dose-dependent manner, while cMO and 

mmMO1 do not affect protein synthesis (Figure 30 C). Although mmMO2 

contained 5 mismatches, it still blocked reporter mRNA translation albeit at 

reduced efficiency(Figure 30 C). Additionally, we found MO1to block translation 

of a reporter constructthat lacks the morpholino binding sites,indicating that this 

morpholino unspecifically interfereswith protein synthesis (data not shown). 

Thus, MO1 and mmMO2 were not used for further Fam132b loss of function 

studies. 

In order to test if Fam132b is needed for proper blood cell development, 

Fam132b MO2 and mmMO1 were injected ventrally and expression of the 

erythroid differentiation marker α-Globin was analyzed in whole embryos by 

WMISH at developmental stage 37/38. In this experiment, we did not observe 

any alteration in neither the level nor the distribution of α-Globin transcripts 

(data not shown). However, morpholinos were injected at early cleavage stages 

while the onset of zygotic Fam132b expression does not occur before stage 33 

(Figure 27). Thus, morpholino oligonucleotides might become toodiluted over 

time.  

Therefore, we used a second assay for studying Fam132b activity during 

hematopoietic development and analyzed Fam132b loss of function as well as 

Fam132b gain of function in Etv2/er71 expressing animal cap explants. 

Correspondingly, Etv2/er71 mRNA was injected along with either Fam132b 

MO2 or mmMO1, or with Fam132b mRNA animally into both blastomeres of 2-

cell-stage Xenopus embryos. Animal cap tissue was explanted at stage 8 and 

ectodermal explants were cultivated until sibling control embryos reached stage 
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37/38. After isolation of total RNA, gene expression was determined using 

Nanostring nCounter multiplex analysis (Figure 31 A; for a complete list of 

genes analyzed see Appendix 6.1). In this process, individual mRNA transcripts 

are quantified without any amplification by hybridization with target-specific 

antisense RNA-probes, each labeled with a distinct code of fluorophores. Gene 

expression levels are determined by counting transcript-specific fluorescent 

signals (Geiss et al., 2008). 

 

 
Figure 31. Fam132b enhances expression of vascular genes at the expense of 
blood markers. (A) Xenopus embryos were injected animally into both blastomeres at 
the 2-cell-stage, ectodermal animal cap tissue was dissected at stage 8 und cultivated 
until stage 37/38 for RNA isolation. Gene expression was analyzed using Nanostring 
nCounter analysis. (B-C) Shown are graphs of selected hematopoietic (B) and vascular 
(C) marker genes; for a full list see Appendix 6.3. The graphs show the averagedfold 
change over Etv2/er71 overexpressing caps from 2 independent experiments; standard 
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errors are indicated.150 pg Er71/Etv2 and 150 pg Fam132b mRNA, and 10 ng 
Fam132b MO2 or mmMO1 were injected, as indicated. 
 

In this study, we analyzed the transcript levels of a set of genes which are 

expressed in differentiated blood or vascular cells (Figure 31 B and C). As 

described above, overexpression of Etv2/er71 inducesexpression of both 

hematopoietic and endothelial marker genes in animal cap cells (Figure 31 

Aand B). Overexpression of Fam132b caused a strong decrease in expression 

of hematopoietic genes, such as α-Globin, Gata1, EpoR, mpo, and Runx1 

(Figure 31 B). At the same time, vascular markers, such as Aplnr, Flt-1, ami, 

Etv2/er71, and VE-cadherin, were upregulated (Figure 31 C). In contrast, loss of 

Fam132b function using Fam132b MO2 caused a repression of Etv2/er71 

inducedendothelial markers, while expression of hematopoietic genes was not 

significantly altered(Figure 31 B and C). However, mmMO1 also affected 

vascular gene expression similar to MO2, at least partially.Taken together, our 

data suggest that Fam132b supports vascular development at the expense of 

the blood lineage.  
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4. Discussion 

 

4.1 Modification of canonical Wnt signaling using GR-fusion constructs 

 

Previous studies have shown that canonical Wnt signaling activity has to be 

tightly regulated over time and space to allow proper organ development. For 

instance, we have shown that early inhibition of Wnt/β-catenin signaling in the 

ventral pancreas is important to allow organ specification. In contrast, later 

during development proliferative stomach cells need high levels of canonical 

Wnt signaling (Damianitsch et al., 2009). These findings point to the importance 

of a tight temporal control of signaling modulations, if a specific developmental 

process has to be analyzed. For this reason, we generated a set of GR-fused 

putative Wnt/β-Catenin signaling modulating factors and tested these for 

Dexamethosone inducibility as well as for their ability to activate or repress 

canonical Wnt signaling activity (Figure 9, Figure 10, and Figure 11). 

Surprisingly, we found that activity of only a small subset of these fusion 

proteins could be induced by Dexamethasone (Table 7). Multiple reports are 

available that describe the analysis of novel gene functions in the context of 

specific developmental processes using GR-fused proteins(De Rienzo et al., 

2011; Domingos et al., 2001; Szeto et al., 2002; Tada et al., 1997). However, 

our data indicate that a careful functional analysis of GR-fusion protein 

inducibility in a well established and sensitive system is necessary to exclude 

unspecific protein activity. 

To date, several studies have implicated canonical Wnt signaling in pancreatic 

development. Studies in mouse revealed that specification of pancreatic 

precursor cells needs low levels of nuclear β-catenin (Damianitsch et al., 2009; 

Heiser et al., 2006). Correspondingly, we found that early activation of canonical 

Wnt signaling causes a reduction of the dorsal pancreas, pointing to this 

inhibitory role of canonical Wnt signaling during pancreatic specification 

(Figure12), (Melchert, 2007). However, also late stimulation of Wnt signaling, 

that was discovered to enhance proliferation of the exocrine pancreatic 
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compartment in the mouse, caused a loss of dorsal pancreas (Figure 12), 

(Heiser et al., 2006; Melchert, 2007; Murtaugh et al., 2005).  

Additionally, McLin and colleagues postulated a model, in which Wnt/β-Catenin 

signaling activity has to be low in the anterior and high in the posterior gut tube 

to allow specification of foregut and hindgut tissue, respectively (McLin et al., 

2007). Correspondingly they could show that early ectopic activation of 

canonical Wnt signaling in the Xenopus anterior endoderm causes a repression 

of pancreatic marker gene expression in both dorsal and ventral pancreas. In 

contrast, repression of Wnt/β-Catenin signaling in the posterior endoderm 

before neurulation induces ectopic expression of pancreatic genes in the 

hindgut (McLin et al., 2007). Contradictory to these data, we observed that early 

pan-endodermal repression of the Wnt signaling resulted in a reduction of the 

exocrine pancreatic compartment (Figure 12), (Forchmann, 2009). However, it 

is important to mention that we repressed Wnt signaling in the whole endoderm, 

resulting in the same level of signaling activity both anteriorly and posteriorly. In 

contrast, McLin and colleagues targeted Wnt repressors specifically to those 

blastomeres contributing to the posterior gut tissue only (McLin et al., 2007).  

Interestingly, Lyons and colleagues observed that both repression and 

hyperactivation of canonical Wnt signaling in the developing pronephros result 

in impaired pronephric tubulogenesis in Xenopus(Lyons et al., 2009).  

Nevertheless, the observed phenotypes caused by overexpression of Wnt 

signaling modulating GR-fusion constructs were difficult to interpret, making it 

complicated to further analyze the role of canonical Wnt signaling in Xenopus 

endodermal development using these given tools. 

 

4.2 Fam132b, a novel BMP antagonist 

 
In this study, we have identified Fam132b as a novel antagonist of the BMP 

signaling pathway. To date, Fam132b has not been implicated in cell signaling 

and no function for Fam132b during development has been reported. Therefore, 

we are interested in investigating the mechanism by which Fam132b 

antagonizes BMP signaling activity. Multiple proteins are known to regulate 

BMP signaling by several different mechanisms, including those that affect the 
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activity of either intracellular or extracellular mediators of the pathway (Ramel 

and Hill, 2012; Walsh et al., 2010).We could show that Fam132b is a secreted 

protein and that BMP signaling activity mediated by a constitutively active BMP 

type I receptor is not inhibited by Fam132b (Figure 20, Figure 21). Therefore, 

Fam132b most likely represents a novel extracellular BMP antagonist, rather 

than a pseudoreceptor or a cytoplasmic inhibitor of BMP signal transduction. 

BMP signaling is initiated via formation of a heterohexameric complex between 

a BMP ligand dimer and BMP type I and type II receptors (Figure 32 A). To 

date, the most common extracellular mechanism of BMP inhibition is mediated 

by proteins such as Noggin, Chordin or members of the DAN family that directly 

bind to BMP ligands and thereby block BMP/receptor interaction (Gazzerro and 

Canalis, 2006; Piccolo et al., 1996; Smith and Harland, 1992). In this study, Co-

Immunoprecipitation experiments using epitope-tagged versions of Fam132b 

and BMP4 revealed that there is only weak interaction between these proteins, 

compared to the formation of the Noggin/BMP4 complex (Figure 22). Therefore, 

it remains unlikely that Noggin and Fam132b antagonize BMP signaling by the 

same mechanism. 

 

 
Figure 32. Model for Fam132b mediated BMP antagonism via receptor 
interaction. (A) Activation of the BMP signaling pathway. A BMP ligand dimer (purple) 
forms a heterohexameric complex with BMP type I (yellow) and type II receptors 
(orange) and autophosphorylation of the type I receptor is initiated. Activated type I 
receptors transduce the signal into the cell and trigger target gene regulation.(B-C) 
Fam132b (red) can bind to BMP type I receptors, suggesting different modes of action 
for Fam132b mediated BMP antagonism: (B) Fam132b binds the complex of BMP 
proteins and BMP receptors and inhibits signal transduction into the intracellular space. 
(C) Fam132b binds BMP receptors and blocks them from interacting with the BMP 
ligand. 
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In contrast to those BMP binding proteins described above, Follistatin interacts 

directly with BMP but does not prevent BMP/receptor complex formation 

(Iemura et al., 1998). Additionally, it was shown that Follistatin can interact with 

both type I and type II TGF-β receptors (Thompson et al., 2005). We could show 

that Fam132b interacts with the BMP type I receptors Alk2 and Alk3, implying 

that Fam132b might inhibit the BMP pathway in a similar way as reported for 

Follistatin (Figure 22, Figure 32 B). 

However, CoIP experiments revealed only weak interaction between BMP4 and 

Fam132b (Figure 22). Hence, we propose a mechanism for Fam132b 

antagonism in which Fam132b directly binds to the BMP receptor complex, 

blocking it from binding to the BMP ligand (Figure 32 C). A similar mode of 

action has already been described for other BMP antagonists, such as BMP-3 

and inhibin. However, so far these proteins have been reported to interact with 

TGF-β type II receptors (Gamer et al., 2005; Wiater and Vale, 2003). The 

question, if Fam132b interacts with BMP type II receptors as well, remains to be 

answered. 

While Chordin and Noggin were shown to specifically antagonize BMP signaling 

activity, the majority of extracellular BMP antagonists, including BMP and 

receptorinteracting proteins, were shown to interfere with other pathways as 

well (Gamer et al., 2005; Gazzerro and Canalis, 2006; Harrison et al., 2006). 

Interestingly, we found that Fam132b neither inhibits activin nor FGF mediated 

signal transduction, indicating that this protein is a selective BMP antagonist 

(Figure 19).  

 

4.3 Fam132b, a member of the secreted C1q domain containing protein 

family 

 

Analysis of the Fam132b protein sequence revealed that Fam132b contains a 

C-terminal C1q/TNF-like domain (Figure 23). This structure is related to the C-

terminal globular ligand binding domain of the complement factor C1q. The C1q 

protein is a key player in innate immunity and induces the classical pathway of 

the complement system by antigen binding via the globular C1q domain. 

Subsequently, a cascade of proteolytic cleavages is induced, resulting in 
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inflammatory response, phagocytosis or lysis of pathogenic cells (Janeway et 

al., 2001). 

The globular C1q/TNF-like domain is not only found in the C1q protein itself, but 

also in C1q and TNF type protein families (Figure 33). This protein domain is 

characterized by the ability to fold into 5 pairs of anti-parallel β-strands forming a 

jelly roll beta barrel structure (Kishore et al., 2004). C1q- and TNF-like factors 

can be expressed as soluble plasma or membrane bound proteins and were 

shown to form oligomeric complexes with other members of the C1q/TNF-like 

superfamily (Schaffler and Buechler, 2012; Shapiro and Scherer, 1998). 

Members of this protein family exhibt a broad range of biological functions, 

including control of cell proliferation, apoptosis, energy homeostasis, and also 

inflammatory response. 

 

 
Figure 33. Cartoon depicting the structural motifs of the C1q family members. 
Proteins of the C1q family have a C-terminal globular C1q (gC1q) domain and form 
homotrimeric (Adiponectin, Saccular collagen, Type VIII and X collagen, EMELIN-1 and 
multimerin) or heterotrimeric (Hibernation protein, Precerebellin and C1q) complexes. 
The majority of C1q-like proteins contain a collagen-like region, with the exception of  
precerebellin and multimerin. Elastin microfibril interface-located protein (EMELIN) 
contains two leucine zippers, while Multimerin has an RGDS motif. Both EMELIN-1 and 
Multimerin contain a partial epidermal growth factor (EGF)-like motif and are unique in 
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forming coiled-coil structures.  Many C1q-like proteins exhibit cysteine residues as well 
as possible glycosylation sites (from Kishore et al., 2004). 
 

Furthermore, several members of these protein families have been implicated in 

cell signaling pathways, such as the MAPK pathway or NF-κB signaling(Kishore 

et al., 2004).However, a role for any of these factors in BMP antagonism, as 

observed for Xenopus Fam132b in the context of this study, has not been 

reportedso far. Interestingly, we found that the Fam132b C1q domain is 

dispensable for its BMP antagonizing function, suggesting that this structure 

might exhibit functions different from BMP inhibition (Figure 23, Figure 24). 

Xenopus tropicalis Fam132b protein is predicted to share structural similarities 

with the secreted subfamily of C1q domain containing proteins (sghC1q), such 

as Precerebellin (Figure 33). These are the N-terminal signal peptide, the C-

terminal gC1q domain and the lack of an N-terminal collagen-like region (Figure 

33), (Carland and Gerwick, 2010).Several studies in different fish species have 

described an increase in transcription of multiple sghC1q factors following an 

inflammatory stimulus (Carland and Gerwick, 2010; Gerwick et al., 2007; 

Gerwick et al., 2000; Nakamura et al., 2009).If Fam132b has a function during 

innate immune response was not analyzed. 

Regarding database information, Fam132b homologues exist in different 

vertebrate species. But expression and function of this protein during 

development have not been described so far. However, a recent study delivered 

insight into the function of mouse Fam132b, termed myonectin/CTRP15, in 

tissue homeostasis. Seldin and colleagues found that the myokine myonectin is 

expressed and secreted predominantly by skeletal muscle of adult mice. The 

glycosylated protein can complex with other C1q domain containing proteins 

and was shown to regulate fatty acid metabolism (Seldin et al., 2012). In 

Xenopus early embryonic development, Fam132b transcripts are not detected 

in myogenesis, and expression or function of Fam132b in the adult frog was not 

analyzed within this study.  

Sequence comparison of Xenopus Fam132b with related proteins revealed that 

they share only moderate sequence identity, and the most considerable 

difference between these proteins was the presence of an amino-terminal 

collagen-like structure. Different from Xenopus Fam132b proteins, homologues 

from other species contained 5 to 6 repeats of the Gly-X-Y motif which form a 
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collagen helix (Figure 25). Furthermore, both Xenopus laevis and Xenopus 

tropicalis Fam132b, but not homologues from mouse or zebrafish could induce 

secondary axis formation in Xenopus embryos (Figure 26). In conclusion, we do 

not expect the Xenopus Fam132b protein, analyzed in this study, to be the true 

functional homologue of mouse myonectin/Fam132b or the protein referred to 

as zebrafish Fam132b. 

 

4.4 The role of Fam132b during development of blood and vasculature 

 
BMP signaling has been shown to regulate hematopoiesis and development of 

the vascular system (Hartenstein, 2006; Lugus et al., 2005). In this study we 

identified Fam132b as a novel BMP antagonist which is expressed in the ventral 

blood islands and is induced by Etv2/er71, together with other markers of 

hematopoiesis and vasculogenesis (Figure 27, Figure 29). We found that 

coexpression of Fam132b with Etv2/er71 in animal cap explants caused a 

severe downregulation of Etv2/er71 induced hematopoietic genes (Figure 31 B).  

Interestingly, correlating observations have been made upon repression of 

endogenous or ectopic stimulation of BMP signaling activity in Xenopus 

embryos. While ectopic expression of BMP4 in animal cap explants induces 

stable expression of terminal erythroid differentiation markers, ventral 

mesodermal explants as a well as whole Xenopusembryos expressing a 

dominant negative BMP receptor loose the potential to activate the 

hematopoietic program (Maeno et al., 1994; Zhang and Evans, 1996). Initially, 

this loss of hematopoietic lineage was thought to be a result of impaired 

specification of ventral mesoderm, which is induced by high levels of BMP 

signaling and mainly contributes to the primitive erythroid compartment (Dale 

and Wardle, 1999; Dosch et al., 1997). However, using conditional inhibition of 

BMP signaling in Xenopus embryos Schmerer and Evans could show that BMP 

signaling is required for primitive erythroid cell differentiation, independent of 

any early requirement for cell specification (Schmerer and Evans, 2003). 

In this study, we generated hemangioblast like cells by overexpression of 

Etv2/er71 in pluripotent Xenopus animal cap tissue. Given that Fam132b 

considerably antagonizes BMP signaling activity, we suggest a model in which 
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ectopically expressed Fam132b interferes with the pro-hematopoietic activity of 

BMP signaling in the context of hemangioblast development into either 

endothelial or blood cells (Figure 34). 

However, knockdown of Fam132b in Etv2/er71 expressing animal cap explants 

did not cause a significant upregulation of hematopoietic gene expression 

(Figure 31 B). This result correlates with the finding that endogenous Fam132b 

is induced relatively late in Etv2/er71 expressing animal cap explants (Figure 

29).  In addition, Fam132b expression in the whole embryo was first detected 

after blood cell differentiation (Figure28), making it unlikely that regulation of 

hematopoietic or endothelial cell fate decision is indeed the endogenous 

function of Fam132b. Therefore, it would be interesting to analyze 

hematopoietic gene expression in Etv2/er71 expressing animal cap 

tissuetreated with recombinant Fam132b protein at later developmental stages. 

 

 
Figure 34. Model for Fam132b activity in the context of cell fate determination in 
Etv2/er71 expressing animal cap cells. Etv2/er71 induces either hematopoietic or 
vascular cell fate. Fam132b represses blood cell development while promoting 
vascular fate, possibly by inhibition of BMP signaling activity or by using an alternative 
mechanism. 
 

BMP signaling activity does not only regulate the development of the 

hematopoietic cell lineage but is also relevant in the formation of endothelial 

structures. For instance, Walmsley and colleagues could show, that Xfli-1 

expression was activated in the XenopusaVBI, but not maintained in the 
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absence of BMP signaling activity (Walmsley et al., 2002). Consistant with 

these data,studies in mouse revealed that a loss ofthe BMP signal transducer 

Smad5 allows the formation of a primitive vascular plexus but a mature vascular 

network is not established(Chang et al., 1999; Yang et al., 1999). Furthermore, 

recent studies demonstrated that ectopic BMP signaling in endothelial cells 

inhibits the expression of apelin, a secreted factor that signals via its receptor 

APJ/Xmsr and stimulates proliferation and migration of endothelial cells during 

angiogenesis (Ciais and Bailly, 2012; Larrivee et al., 2012; Poirier et al., 2012; 

Ricard et al., 2012). Taken together, these data suggest a biphasic role for BMP 

signaling during vascular development. While the pathway has to be 

downregulated within the early phase of vasculogenesis, BMP signaling activity 

is necessary for proper maturation of the vascular system.  

We could show that Fam132b gain of function in Etv2/er71 expressing animal 

cap cells severely enhanced the expression of endothelial genes (Figure 31 C). 

We conclude that, in this experimental system,  Fam132b promotes the 

development of the vascular compartment at the expense of the hematopoietic 

cell lineage and that this regulatory function could be mediated by its BMP 

antagonizing activity (Figure 34). 

However, although Fam132b loss of function did not significantly alter 

hematopoietic gene expression, transcript levels of vascular markers were at 

least 2 fold decreased upon Fam132b morpholino injection (Figure 31). Given 

thatFam132b induction by Etv2/er71 in animal cap explantsoccurs long after 

endothelial cell specification (Figure 29), we suggest that Fam132b promotes 

endothelial development by a mechanism other than regulation of cell fate 

decision. For instance, Fam132b might be involved in regulation of endothelial 

cell fate maintenance. 

Functional analysis of Fam132b in the context of blood and endothelial 

development was carried out in Etv2/er71 overexpressing animal cap explants 

which reflect an artificial system. However, it is reasonable to study protein 

activity in the whole embryo. But so far, loss of Fam132b function using 

microinjection of morpholino oligotides did not affect hematopoietic or vascular 

development in Xenopus embryos. The absence of a knockdown phenotype 

might be due to the late expression of Fam132b (Figure 27, Figure 28). 

Morpholino mediated knockdown of gene expression represents a satisfying 
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tool for investigation of gene activity during early developmental processes. 

However, this system is limited, if late developmental processes are analyzed, 

since morpholinos are diluted with every cell cleavage. Alternatively, targeted 

gene disruption using engineered transcription activator-like effector nucleases 

(TALENs) was shown to be a very efficient tool for loss of function studies in rat 

and zebrafish, but also in Xenopus(Huang et al., 2011; Lei et al., 2012; Tesson 

et al., 2011). Therefore, TALENs approach will be used in future experiments to 

study the endogenous function of Fam132b in Xenopus development. 
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5. Conclusion 
 

In this study, 13 GR-fusion constructs were tested for their potential to modulate 

canonical Wnt signaling and for hormone-inducibility. However, only 4 of them 

showed the expected phenotype and were used for endodermal 

overexpression. Since both activation and repression of Wnt signaling caused 

the same reduction of exocrine pancreas we proceeded with expression cloning 

to investigate novel regulators of canonical Wnt signaling. Interestingly, in this 

screen we identified Fam132b as a novel extracellular BMP antagonist that 

selectively inhibits BMP signaling probably by binding to the BMP receptor. 

Previous studies have reported that regulation of BMP signaling activity is very 

important for development of the blood circulatory system. We found that 

Fam132b is expressed in the blood and vessel forming compartment during 

Xenopus development and that Fam132b regulates development of 

hematopoietic and endothelial cells in Xenopus tissue culture. Many studies 

have focused on early processes in the context of hematopoiesis and 

vasculogenesis, while later developmental events are only poorly characterized 

in Xenopus. We observed that Fam132b is expressed during this late 

developmental phase and it will be interesting to further investigate the function 

of this putative novel regulator in development of the blood circulatory system in 

Xenopus.
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6. Appendix 
6.1 Genes analyzed by Nanostring nCounter 

 

The nCounter gene expression Code set was purchased from nanoString® 

TECHNOLOGIES (Seattle, USA). Genes analyzed by Nanostring nCounter are 

shown in Table 8. 

 

Table 8. Summary of Gene symbols, Accession numbers, Target regions and 
Target sequences for all genes analyzed by Nanostring nCounter. 
Gene Accession 

number 
Target 
Region Target Sequence 

ami NM_001094
624.1 716-816 GCCTATCGAAGAAGCCAGGCATCTACACACTCATTGCACCTTACAAATCCTGGATAATGGAAACC

ATGTATAATGCTACTCTACTCCCATCCCCTTTGTG 

apelin-a/b NM_001097
784.1 161-261 TGAACCCAAAAATGGTCCGTAACTCTGCACCTCAACGGCAAGCCAACCGGAGAAAACTCATACG

TCAAAGACCCCGTCTTTCACACAAGGGCCCAATGCC 

Aplnr-a/b NM_001090
637.1 155-255 CATGCGATGAAACAGACTGGGATTTCTCCTATTCTCTGCTACCTGTCTTTTACATGATCGTGTTTG

TCCTTGGACTCTCAGGGAATGGAGTGGTCATCTT 

epo NM_001197
281.1 798-898 TTTTTTACGAGGTAAATTGAGACTACTAGTGATGGCAGTGTGCCGGGAGGCTAGTCTACCAACGT

GAGGTCTCCTCGCTTACCCAATCATCCCTACTGAA 

epor NM_001095
704.1 688-788 CATTGTCCCAGCTGCATACACTGTCACAGTAAGATGCAAAGCAGATGGTGTTTCATATAACGGCT

ACTGGAGTGATTGGACGGCACCTATTACCATAGCG 

flk-1 AF007760.1 416-516 GCATGGAGATCCACAACAAAGGCCTGTATTTTCTGAACTAGTAGAGCATTTAGGAAATGTGTTGC
AAGCCAGTGCGCATCAGGACGGAAAAGACTATATT 

GATA-1-a NM_001085
640.1 

1288-
1388 

AAGCAAGCCCTCCTCATATATTGACTTACTCCACAAGGAATATCTCCCTACCAAGCATTCAAGCTT
TAGTGCCATACCTCCATCTTGGTGGGAGGACCAT 

GATA-1-b NM_001085
775.1 389-489 GTACCCCTCAGCTGCATCAGCCTTAGGCTCTATAACTTCTCCTCCTTTGTATAGTGCTACCCCTTT

CTTATTGGGTTCAGCACCTCTAGCAGAACGTGAC 

GATA-2 NM_001090
574.1 192-292 CCAGGACTAACGGGGACAACTCACTTTCACTTTTAACAGCCGAAGCCTTGCTTATAGGAAGGACA

CATATATCTGGCCGATCTCTGGAGAGAACTTTGCT 

GATA-3 NM_001090
866.1 

1119-
1219 

TCACCACCCCATTACCACCTACCCTGACTATTACGGCGCAGGGCTTTTTCAACCTGGTAGCATTT
TGGATGGTTCTCCAACTCACTTCTCCAGTAAGCCA 

LMO-2 NM_001087
643.1 

1237-
1337 

CAAAAAGGGTCAATCTTGCCCTGATCGACTATTGAACTTGACTTGGCACTGAGTGGTAACAGACG
ATTAGTTTGGGAAAGGGACAAGGGAATAAAGATGT 

mpo NM_001087
639.1 

1724-
1824 

GCAATCAGGCCAAGCTGAACAGGCAAAACCAGATTTTGGTGGACGAGTTAAGGGAACATCTTTTT
GAGCTATTCAAGCGTCTCGGCCTCGATCTTGGCGC 

PECAM1 NM_001095
534.1 

2550-
2650 

CCCCTACTTATTACTCCCTCCCACATAGTAAACAATGCACGGAAAGCTTCAACATGACAGGCTGC
TGGTGCCTTTATCTCAACACCACATGTTTTTACCT 

runx1 NM_001086
497.1 

1150-
1250 

CTGACAGCGTTCAGTGATCCTCGAGTTGGCATTGACCGACAGTTCTCCACTCTTCCTTCCATCTC
TGATCCACGTATGCACTACCCAGGGGCTTTTACCT 

SCL NM_001088
277.1 

1236-
1336 

ACTGGACTCCAAGCACAGCAGAAATCTCCATCAAGCCATGCTCCCCATAGATGGCAGTGGGCAG
CGGTGATTAAATGAATATCCGTATCATTCCCAATAG 

VEGF C NM_001095
814.1 658-758 CTCTACCCCGAATCCTGGAAAATGTTTAAGTGCCAACTACGACAAGGAGGCACCACCGGATTTG

ACACCAGGAGGGATGACAGTTTTAAATTTGCAGCTG 

Vegfa-a/b NM_001085
589.1 441-541 GTTACAACATCACCATGCAGATAATGAAAATAAAGCCTCATATAAGCCAACATATAATGGATATGA

GCTTTCAGCAGCACAGTCAGTGTGAATGCAGACC 

VEGFR-1 (Flt1) NM_001085
721.1 

2693-
2793 

ACTCGACTTGAGTGCAAGCGGTTATATCATTCATTGTCACAGATGAATCAGTGTGAATAAGTCACT
CGCTCAGTATCTCCACGTTAGAGAATAATGATCA 

Xhex NM_001085
590.1 

1387-
1487 

AACCCTCGCTATGCTTCAATCTCCTCCCAGGGATGGCAGTCCTAAAGTTTGGGAAGGAGTGCAA
AGGACATTTTATAGGTGACAATGTCTGATCATGGTC 

αT3-Globin NM_001086
328.1 40-140 CAACTAGCTCCCTCTTGTCAAGATGACTCTGACCGACAGTGATAAGGCTGCAGTTGTTGCTCTGT

GGGGCAAAATCGCACCCCAAGCTAATGCCATTGGA 

Cerberus NM_001088
331.1 754-854 CTGGATCTAAGAATGTAGTAAAGGTTGTCATGATGGTAGAGGAATGCACGTGTGAAGCTCATAAG

AGCAACTTCCACCAAACTGCACAGTTTAACATGGA 

chordin NM_001088
309.1 

1455-
1555 

GACGTCCGCAAAGCATGTCAGGCATAATCACAGTCAGAAAATCATGTGACACTTTGCAGAGTGTG
TTATCGGGTGGTGACGCTTTAAATCCCACCAAAAC 

Follistatin NM_001090
590.1 355-455 ATGTAAAATGAACAAGAAGAACAAGCCGAGGTGTGTCTGCGCTCCGGATTGTTCCAACATTACTT

GGAAAGGTTCAGTGTGCGGAATTGATGGCAAAACC 

Noggin NM_001085
644.1 561-661 ACCCAACTCTTATTTTGTGCAGCTGTGTGCAGCATGGATCATTCCCAGTGCCTTGTGACTATATAT

GCTCTGATGGTCTTCTTGGGACTTAGAATAGACC 

Msx1-a NM_001105
270.1 

1187-
1287 

ATACTATAATATGGTACAAACAGGACTGGGAACTTAATCGATTGGAGAAGAGATCCTTTGACCCA
GACTGGGTAAGGGGGAAATAGCATAATTTTGGGTG 

Msx2 NM_001090
898.1 

1065-
1165 

GTTCCAGGTGTCTTGCTCACTACCAGCTTCCCAAGTTCTTATCCCAGTCCATAAAGTATCAGAAC
CGAGGGGATATCTGTAACCTTGAAAGCACCAAACC 

Vent1 NM_001097
921.1 309-409 ACCAGGCTCAGAAGACGACAGTACTGAGAGCTCAGGCAGGAGTTCACAGGAAAATGACACTGAA

CAAAGGGAGAAGAGCCCCAAATCTGATCTCCAGCGC 

Vent2 NM_001087
462.1 

1028-
1128 

GGACTATACTAAATACTGGACTTTTTCAGAAACTTCTGTCTTCGAATATTAGCACTAAACAGTGGC
AAAGTGTCCACAAAGTGACCTTTTTGTATTGGGT 

Siamois NM_001085
836.1 40-140 ATTGTCTCTACCGCACTGACTCTGCAAGATGACTACATCAAATTCACTCCAAGGAACCAAAACAT

GGCCTGCCACGCTGAAATTATTGGGATATTCCATG 

Xnr3 NM_001085
790.1 138-238 AGAAAGTCCATCAGTCCAGATTCTATCCTAAAGGACACATCCACAGATATTGGAGCCAGAGAATT

TCAAGGAAGGAAGTTCCCCAATTTTATGATGCAGC 

epidermal Keratin NM_001086
376.1 323-423 AAGTGAGAGCCTTGGAAGCCGCCAATAACGACCTGGAAGGGAAGATCCGTAACTGGTACGATAA

GCAATCAGATGCAGGCATTGGTGCTGGGTCTAAAGA 

Xbra-a NM_001090
578.1 

1529-
1629 

TGTAGGCCTCCAAAACAACTTAAAGATGTGCTTAGGCAAGTTATATCAGTGTTTACCTGCTTCTAA
AGACTTCATGGGCCCAACCAGGTGTGGGTGGTCT 

Xbra-b NM_001091
696.1 

2210-
2310 

GTATGCTGAAAGACGATCTCTTTTGCCCCACTGAAGTGCAGTGTAAGGTATCTACCAATCTACAC
GTTGATGTGGGGGACCATGTGATGCTTCAATAAAT 
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Gene Accession 
number 

Target 
Region Target Sequence 

NCAMa/b NM_001087
827.1 44-144 CATCTGGACTTTATATTTCATAGGAACTGCAGTGGCGTTGGAAGTGAACATTGTTCCAGATCAAG

GAGAAATAAGCCTTGGGGAGTCCAAATTCTTCCTG 

Sox2 NM_001088
222.1 901-1001 CCGGGCATGTCTCTGGGATCCATGGGCTCGGTAGTCAAGTCGGAATCCAGCTCCAGTCCACCTG

TAGTCACCTCTTCTTCCCATTCGCGGGCTCCGTGCC 

Sox3 NM_001090
679.1 998-1098 GCTCACTCACATATAACACTTTGTGCCCTTTGCTAAAGACGCTTTACTTGCCTGCTGGCAACTATC

AGACTGCCGCATAAAACATTTAAAAAAAAAAATC 

MyT1 NM_001088
192.1 684-784 GAGCTAAACAATGAAAAGCCAACTTCAGTAAAGTCGGGTCAAGCGGAAATAGAACAACTTATGGT

AGAAGAGGCGTGTGAGAAAGAAATCATCATCCAGA 

activin B NM_001090
586.1 

1299-
1399 

TTGAGAGCAGTGGGGTCTGTGTGTCTCCCATCGCAGACTTGTTCCAATACCTAAATAATAATATC
TCATGGGACTGTCAGTGTCAGTAGCCACCTTGGCG 

BMP7.1 NM_001087
397.1 289-389 CAGGTTCTGTTCTCCTTTGGACATACTTCTTGTGGAGGATCATCCTGGCTGACTTCACCTTGGAC

AATGAGGTGCACTCTAGCTTTATCCAGAGGAGGTT 

FGF4a NM_001085
823.1 89-189 TCCAGAGAAACGACACCGTGGAACGGCGATGGGAGACCCTCTTTTCCAGGTCCATGGGGGAAA

AAAAGGATACGAGTCGGGACAGTGACTATTTGCTGGG 

FGF4b NM_001085
824.1 92-192 CCCAGAGAAATGACACCCTGGAACGGAGATGGGAGACCCTCTTTTCCAGGTCCATGGCCAGGAT

CCCGGGGGAAAAAAAGGATATGAGTCGGGAAAGTGA 

TGFβ-1 NM_001087
861.1 

1455-
1555 

GTCCTTACATCTGGAGCATGGATACTCAGTACAGCAAGGTGCTATCACTTTATAATCAGAACAAT
CCCGGTGCATCTATATCTCCCTGCTGTGTTCCTGA 

egr1-a/b NM_001090
393.1 

2326-
2426 

AGTCTCAGTAACTTGGTGCCTTTTTTGTGAAGCCTTGCTGATGTCTCGACACGTGTATCTGCGTG
ACCTGATGCGTTGCATCTAGCCTTAAGGTAAAAGG 

Mix2 X58772.1 62-162 CTGCGCCCCTTTACTCACCGCAATGTCTTCTCCCAGGAGGATCAAAGAGGATTTAAGCTCGGAT
GAAGAGGGCCAAGTGCACCCTACGCTCTCCCCATCT 

angiopoitin (angpt1) NM_001092
334.1 

1644-
1744 

GAATGGAATAAAGTGGCATTACTTCAAAGGCCCTAGTTACTCCTTACGTGCAACAACAATGATGA
TCCGGCCCTTGGAGTTCTAATTCAGCGAGAACCAG 

er71/etv2 NM_001096
131.1 182-282 CAAGTCGCGAAATTCAGCTGTCCAGGGATTCAAAAACTCCTTGAGAGAAGAGATCAGAGATTTGG

TGCAAGCAGAGCCTGTCGCGAAATTCAGCAAGATG 

erg-a (v-ets) NM_001085
840.1 96-196 TAAAATCAGCTAACTGGACCACATCATTTGATTTATCTTCTGACCCGGAGTAGCCAGAAAAACAA

GAGATTTGCTACTAAGGAAGCTGATTGTTTTCTCG 

erg-b NM_001085
841.1 5-105 TAGCCACTCACTCACACGAAGAGATTACACATTCAGACTGGCTGCTGCTCCTGCTGGAGTCACC

ACAACATTCAGTCCAGCCTCCTTCTATCCACCCTCC 

nr2f2 (COUP.TFII) NM_001094
481.1 

1567-
1667 

TTGGCCTTACATGCCCATCCAATGCTCCTAGGGAGCCGCCTTGGGACTCTCACTTGGACCTCATT
TGGCCACACAGCTCTAATGATGCTAGGCTTAATTA 

vegf D (figf) NM_001127
797.1 293-393 TTCTCTTACTCACCATGTCCATTAAAATGGGCATTGGCAGCTGTATCCTCTCTAGTGTTTAACGGC

TGGCAACGCGCTCTACCAATATGATTAGACCGTG 

SPIB-a FJ644945.1 1074-
1174 

TGTGAGCTCCTCAGAAAGAGGAAAGTGACGGAACTTAAATGATGTGGTAGTGATGTTGGTAGAAA
ACCGTAGATTAGGAGTTTAGAGAATGAAGAGGAGA 

SPIB-b FJ644946.1 985-1085 AATCTTGGCCTAAATTTGCACTGAAGACCTTGGAAAGGAGCTTGCACAAAGGACAAGAGTCAAGA
AGGCATCAAATCATTCATCATCAATGGACCCGTGT 

numb GQ214766.
1 625-725 AGGCGATGGATCTGTCACTGCTTCATGACTGTTAAAGATACGGGAGAGAGGCTCAGCCATGCTG

TTGGATGTGCATTTGCCGCTTGTCTGGAGAGGAAGC 

lipase endothelial NM_001090
061.1 298-398 GCTTTCGGACGAAAACGATGTTGTGCCAGAAACGCATCCCCATGTCAAGTTTAACGCCCACTTCT

CCAAACATGACCGTGGGTGCTTTCTATTTCCTGGC 

bmper NM_001095
672.1 208-308 TCCTTGTACCTCTTGTGTGTGCCTGAACAAAGAAGTTACCTGCAAACGAGAGAAGTGCCCAATAC

TGTCCAAGGATTGCGCTTTGGTTATAAAGCAGAGA 

pdgf-a NM_001087
835.1 725-825 GAACTGTTATATACGAGATACCTCGTAGCCAAATTGATCCAACATCTGCCAATTTTCTGATCTGGC

CTCCATGCGTGGAGGTGAAACGATGCACGGGATG 

STAT-5 NM_001090
421.1 844-944 GACTTGTTGCAGACATGGTGTGAAAAGCTTGCGGACATCATCTGGCAGAATCGGCAGCAAATCA

GACGAGCTGAGCACCTTTGTCAGCAGTTCCGCATCC 

Castor EF666978.1 3-103 AAACACACATTTTCCTTTACTTGGAAAGTCACCCAAAGCAGTCCAAGTGCAGAGATTCCAAAAATC
AATCCAATAAAACAAAGATAAGAAGAAAGAACAT 

hand1 NM_001085
659.1 107-207 TGATTGTGGTGCTTCCCTGAGGAGTGATTGCAGAGTAGCTGAGGATGTTCTGATGCCATATCTAA

TGGCTTCCCACTGAGGAGGTGCCAGAAGTTGTTTT 

hand2-a NM_001085
639.1 401-501 TTATTTATGGAGAGCCAGTGATAACCTATTGAACACACGACACCAGCACTGTCTGTTTATACATAG

ATTGTCAGCAGGAGGACAAGAAGCGCCCAGACAA 

nkx2.5 NM_001086
721.1 

1110-
1210 

AAATGTTCTGCACTCGCTCAGTGCTAGGAGTACAGCCCATTAGAGCTACAGTTGGGTGTGTGTG
GTTAATATGGCAATATGCGACGGTCAGATGTCTACT 

wnt11 NM_001093
610.1 229-329 AAAGGACTTATCAGGATATTTACTGGAAAAGTTACCGGGGGATTCACGCAGCATAATGGCACGTT

GCTTACGGCCATAACCCTAAAGGATTAATTTCAAC 

Gli2 AF109923.1 3003-
3103 

GGAGGCACCAAAGCAAAACCTACCAATTGAGTACAACAGTCCAGCACGGAATCTACAAAGCAGC
ATAAAACCTTTCCATCACAACACACCACACAGGGCT 

Gli3 NM_001087
971.1 

1289-
1389 

GCTCTTATGGGCACCTAGCAGCCAGTGCCATCAGTCCAGCTTTGAATTTTGCATACCAGCCTACC
CCAGTGTCTCTTCAGCAAATGCATCAACAGATTAT 

Gli4 U42462.1 3019-
3119 

GCCCCAGAGCAAAACCTACAGACGGAGTACAGCAGTCCAGCCCGGAATCTACAAAGCAACACAA
AATCTTTCCATAACAATACACCAGAACAACCCAGGG 

patched1 NM_001088
613.1 

3586-
3686 

CTGAGCATCCTAGACCGACACAAAATGGGTCGGATTCCTCAGATTCCGAATATAGTTCTCAAACC
TCTGTATCGGGAATCAGTGAAGAGCTCCACCAATA 

patched2 AB037688.1 1469-
1569 

CAAAGAAAGTTTGTAGAGCAAGCACAACAGTCCGTCCCACAGAACTCATCCCAGGACATCCATG
CTTTTTCTACCACCACACTTAATGACATCATGAAGT 

smoothend AF302766.1 1824-
1924 

GATGTCTCGGTAACACCTGTAGCAACTCCAGTTCCACCAGAAGAAAGGGACCAGTGGTTTATTGA
AGGAGATATACCTCAGGGGATGGTTAAGAAAATGT 

sonic hedgehog NM_001088
313.1 152-252 GCGAAGGAGAACATCCTCTGAGCCTTTGATGTAATTGGCTTCGCTCGGACGAGATGCTGGTTGC

GAACTCGAATCTCTGTTGGCTGCTGAGCTTCATCTG 
indian hedgehog 
(bhh) 

NM_001085
793.1 932-1032 AGTAAGGTCAGTAAATACGCAGACAAACTATGGGGCTTATGCTCCTCTAACTCAGCATGGGACAC

TCGTGGTAGATGATGTGGTTGTGTCCTGTTTTGCC 

egln1 (PHD2) NM_001094
234.1 

1443-
1543 

CTTAACTATATGAGTGACGTCGAGGCTGGAGGAGCAACAGTATTTCCTGACTTTGGGGCAGCAA
TTTGGCCCAGAAAGGGTACTGCTGTATTCTGGTATA 

egln2 (PHD1) NM_001090
537.1 

2180-
2280 

TCCTGGCTGGAGCCTGTGACCCATCCTCCAAAAATGCAAATTAACATTTTCTCTGGACAGGAGGA
GGTTTTCAGTAGAATCTGCTTGATTTGTGAAGCAT 

egln3 (PHD3) NM_001112
854.1 

1970-
2070 

TAAGTGTAAAGCTGTGCTGCTGTAATGATTGACATGTTGTGACTCATGGGGAGCCGTGTAATTTG
GCCTCCTGTGCAGGTGGTGAGATTGTCCTGATCTG 

HIF-1a NM_001086
980.1 86-186 TCGTACGGTCGGATTAAACCGGAGGGATTGCGTCGTAAAATATTCCCTGCCGGGGTTGCCGGAG

AGATCTGACCTTGCCAACGAATCGTCTTTCGCGTGT 

HIF-2a (epas1) NM_001092
249.1 

1935-
2035 

GCATTTGCTCGCTCTTCCAGCCGACGACCCCGTCTCCCCAGAATCAATTTCTTCAGCAGAACATC
CTTCAACCGACCGCAGCTAAAAACAATAATGGCAG 

Prox-1 NM_001090
703.1 

2035-
2135 

AGGTTCCGGAGAGATTCCTAGAAGTGGCTCAGATCACGTTACGAGAGTTTTTCAATGCCATTATC
GCAGGCAAAGACGTTGATCCTTCTTGGAAGAACGC 

ctroponin NM_001090
295.1 

1225-
1325 

ATGTAAAAAGCCTTACTCCTGACATTAACCCATTCATGGCTGAAGAGTTCAGAAGAAGTACAATAC
TAAATGCAAGTGTTACAGTGGTCCGGACAAGTGC 

myosin light chain 1 NM_001086
783.1 920-1020 GGAGCACTGTAAAAAATAAAAAAAAGACATGTCAATAAACACCTTTGCTAATTTGGTGGCTACCAA

GTCTATTTATTTCATCTGCCAAAGGCTTTGGGCC 

notch-1 NM_001087
605.1 468-568 ACTGGGGTGTGCCTATGCGGTAATTTGTATTTCGGTGAAAGGTGCCAGTTCCCCAATCCCTGCA

CCATAAAGAATCAGTGTATGAACTTTGGAACCTGCG 
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Gene Accession 
number 

Target 
Region Target Sequence 

jagged-1 NM_001090
307.1 136-236 GTGCATTCAGGATCGGCGTGCCCTACAACAAGAGCCTTGAAAAGTGTGTGTTGTGTTGCAGTCG

TGCATGCTCAAATCGCCTGAGTATATCAGAGGTGCG 

mespa-a/b NM_001085
581.1 

1570-
1670 

TGTGAAAGGCTATGGCATTAAATATACTGTCTTCTGAAAGAATCTTGGCTTCCTAGTGCTTTCTGT
GAAACAATAGGTAATGGCTGCAAATAAAAGGTCC 

BMP2-a/b NM_001085
884.1 

1290-
1390 

GTTGCCCCACCTGGGTATCATGCCTTTTACTGCCACGGGGAATGTCCTTTTCCACTGGCAGACC
ATTTAAACTCTACAAACCATGCAATCGTACAAACTT 

BMP4-b NM_001101
793.1 200-300 AAGAAAGTCGCGGCCGACATTCAGGGAGGAGGTCGCAGGTCGCCTCAGAGCAATGAGCTCTTG

CGGGATTTCGAGGTGACGCTGCTGCAGATGTTCGGAC 

BMP7.2 NM_001086
465.1 607-707 AGAGATGCATGCTGAAGATGTTTCCTACAGCAATAAGCCGATCTCCCTAAATGAAGCTTTTTCACT

GGCCACTGACCAAGAGAATGGCTTTCTTGCACAT 

smad1-a NM_001086
504.1 

2311-
2411 

CTCTGAATGGAATGTTCCCTGCTCAAGGGCATCCAACTCGTGTCCCTTCACCCTCTGGCTGCCA
GGGGAGTCCGGTTATAGTTCAACTGCTGGAGGGCCC 

smad5 (smad4.2-b) NM_001090
989.1 187-287 TCTGGCTTTTTGTACCACTAATTGGTTCAGTCCAATAAACCCCATGGAGGTGTAACAACAAGGGC

AAAAGATGGCGTTTGCCAGCCTAGAGCTCGCCCTG 

bFGF (fgf2) NM_001099
871.1 169-269 GAAAAGTTTGTCAGACTTCCAATTGAATGAACTGTGAGGCCCTGAGCAGGGAAACTGAGGCGAG

ACACAGGGCTATTATCAGAAAACGAACTGCTGCTAC 

fgfr-1 NM_001090
864.1 

2153-
2253 

ACACTCATCAGAGTGATGTCTGGTCGTTTGGCGTGCTGCTGTGGGAGATTTTCACACTTGGGGG
CTCTCCGTACCCTGGTGTCCCTATGGAAGAGCTCTT 

fgfr-2 NM_001090
663.1 

1416-
1516 

AGACAACCCCGTCCCCTATTACATGGAGATTGGTATCTACTCCACTGGTATCTTTATAATCTTCTG
CATGGTAGTGGTCTGCGTGGTGTGCCGAATGCGG 

fgfr-3 NM_001090
701.1 

2202-
2302 

GTTGAAGACCTTGACCGCGTTCTTACTGTAACATCTACTAATGAGTACCTAGACCTCTCGGTAGC
ATTCGAGCAGTATTCTCCACCCAGCCAAGACAGTC 

fgfr-4 NM_001087
718.1 230-330 TTGCTTTCGGTTCGGGGATTTATTTTGTGCCGCTGAGGAACGGAGACTAGTTCTTATGAATGGGA

TCACGAGTAACCTTCTAACGGCACCCGGAGATCCG 

mix1-a NM_001087
825.1 974-1074 AAGAACATCAAACCAGAGGTGTATACTACCAGCCCTCAGATACCTGTATCTACCACTTCAAGCCA

GGTGAGCTTGTTTGCCAACCAAGAGCCGTGTCACA 

mix1-b NM_001087
625.1 58-158 CATTGGGTTTCAGTGAGCCAGAGGTCCAGCCAGTGGCCATGAACTTGGTGCCAACAATACAGAA

GGACATCCAGCAGCAGCCCAACAGGAAAGAAGTCAC 

admp2 NM_001097
118.1 

1134-
1234 

CTGGTGGTGGAACTGTCCAAGAGTCGAAAAATTAGAGACGTTTTCATAGAAAAACAACCACAATG
CCAACGCAGACCGCTTTATGTGGATTTTGAGGAGA 

Lmo4 AJ511277.1 75-175 AGTCTACCACCACGGCGGTGAGCAGTAATGGCAGCCCACCCAAAGCTTGTGCCGGGTGCGGAG
GGAAGATTGGCGACCGCTTCTTGCTCTATTCTATGGA 

ventx1.1-a NM_001088
235.1 932-1032 TAAATACATAGGAAGGCCGGCATTTTTTTCCAGAAAAGGTGGCAACCCTACCCACAACTCTTTGG

GGCTCAGTACATTTGAACTATGAACCACTGTGGAT 

ventx2.1-a NM_001088
138.1 

1098-
1198 

CCCGCAGGACAAACAAAATTGCACTGAATATTGTTATTGACAAGATGTTTACTGAATGGATGGCT
AATATTGGGCCATGTGTTGACATGATTTTATTCAC 

ventx2.1-b NM_001087
981.1 

1075-
1175 

TTCCACAGGACAAAAAATTGCACTGAATGTTGCTATTGGCAAGATGATTACAGAATAGCTGGCTA
CTATTGGCCTATTTGTTATGTATCTTTACATGATT 

wnt8 X57234.1 125-225 GTCAGTCAATAACTTTCTGATGACAGGACCCAAGGCATATCTGACATACTCAGCGAGTGTTGCCG
TGGGTGCGCAGAATGGAATTGAGGAGTGTAAATAT 

Xpo NM_001101
781.1 

1062-
1162 

GTGCCTTGCTTAGAGCATGGCTCCCATATCAGTTGGCTGCAGAACTTAGGCCTCCGGTTGGTAA
GCACATTGGGACATTGTCCAATATCAATGAAAATTG 

Sizzled NM_001088
279.1 406-506 CCAGCTGGGGAAGACATGTGCTTGGACACTCTCAGCAAAGAGTATCAGTACTCCTATAAAGAATT

GCCTAAGCCAAGTTGCCAGGGCTGCCCGCTGATTG 

dkk-1 NM_001085
592.1 770-870 GAGATTTTCCAGCGTTGTCACTGCGGTGCCGGACTCTCGTGCCGGTTACAGAAAGGAGAATTTA

CAACTGTCCCTAAAACATCGAGACTTCACACTTGCC 

dkk-2 BC169368.1 1059-
1159 

GAGAAAGAAAGGATCTCACGGCCTGGAGATTTTTCAAAGATGTGACTGTGCAAAAGGGCTATCTT
GCAAAGTATGGAAAGATGCCACCTACTCTTCAAAG 

dkk-3 NM_001127
818.1 774-874 GTTCACTCAAATCTCCTGTTCCCTGTTTGCACCCCTCTGCCAGTTAAAGGGGAACCTTGCTTCGA

CCCATCCAATAAATTCGTAGACATACTGAACTGGG 

chibby NM_001088
793.1 44-144 AGAGTTTGTGCGGGAAAGGCAGTAAGTTTGGTTGAGACAAAGCGCATAGTGAACTAATCTTCAG

GGAAGATGCCCTTATTCGGGAACACGTTCAGCCCAA 

endoglin XM_002935
487.1 419-519 GGAATAACCTTTGGGGTGTTCATGATTGGAGCGCTGCTTACAGCTGCCTTGTGGTGCATGTACA

CACGCACACGTTTGTCCTTTAAGATGCAGTCAGTAT 
lysocardiolipin 
acyltransferase BJ625879.1 431-531 AGAAAGGAGTGTGATCATCATGAATCATCGTACTAGGCTGGACTGGATGTTCTTGTGGAATTGCT

TGTTGCGCTACAGCTACCTCAGGCTCGAAAAAATC 
phospholipase C 
gamma 1 (plcg1) 

NM_001088
809.1 

3944-
4044 

GATTACATGCTTCAAGTACTTCTGGCAGGTTCTTTGGAAAGATCCAACCTTTGTTCCTCACGTGG
GGGACTGTCCATGAGTTGAAGCCCCATGGTGACCT 

klf2 NM_001086
961.1 283-383 GACAATCTGATTCGGATTTGGGATGGCTCTGAGCGAGACCATTCTCCCTTCTTTCGCTACGTTTG

CAAGCCAAGATAGGTGGAAGTGTGAGTATGAGTCC 

Ferritin (fth1-a)) NM_001090
588.1 453-553 TCTTCTTTCTTTTCAGTTTCATCCACCTCCTCTCTGGCTCTGAGTAGAGTTCTTGCTTCAACAGTG

TTTGAACGGAACCCTCTCTGAGTCTTTTTTAGAC 

Ferroportin (slc40a1) NM_001093
357.1 785-885 GCTACGATAAGAAGAATCGATCAACTGACAAACATTTTAGCTCCACTGGCTGTAGGACAAATAAT

GACCTTTGGTTCCCCAGTCATAGGCTGTGGATTTA 

ODC NM_001086
698.1 855-955 GGATATAATTGGTGTGAGTTTCCATGTTGGCAGTGGCTGCACTGATCCACAGACTTATGTACAAG

CTGTCTCAGATGCACGATGTGTCTTTGACATGGGG 

H4 NM_001094
457.1 655-755 CCACGCCCCTTCTCCCCATAAAATCAGTTACAGGCTCTCGGGCTCTTTTGCTCTTGCCGGATGGA

AATTACTGTTGCTGCTCAGCGTCTCACAGAACTCC 

gapdh NM_001087
098.1 773-873 ACCTGCCGCCTGCAGAAGCCGGCCAAGTACGATGACATCAAGGCCGCCATTAAGACTGCATCAG

AGGGCCCAATGAAGGGAATCCTGGGATACACACAAG 

actb NM_001088
953.1 

1179-
1279 

ATGCTTCTAAAGGACAGACCCTTTCAACATGAACAAATGTACCTGTGCAGGAAGATCACATTGGC
ATGGCTTTACTCTTTTGTTGGCGCTTGGCTCAGAA 

g6pd NM_001086
550.1 862-962 GTGGAGGATACTTTGACGAATTTGGCATCATCCGGGATGTCATGCAAAATCACTTGCTCCAAATG

ATGTGTTTGATGGCTATGGAGAAGCCGGTCTCCAC 

 
 

6.2 Primary gene expression data 

 
Primary gene expression data from Nanostring nCounter analysis are shown for 

two independent experiments in Table 9 and Table 10. 
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Table 9.Primary gene expression data from Nanostring nCounter analysis for 
experiment 1. 
Gene experiment 1 

CE CC Etv2 Etv2/ MO2 Etv2 /mmMO1 Etv2 /Fam132b 

AT3-Globin 29920 16 2326 5449 1568 3 

Aplnr-a/b 1161 38 1266 282 269 2309 

BMP2-a/b 553 203 261 302 245 64 

BMP4-b 115 244 170 70 104 59 

BMP7.1 1051 448 349 286 244 190 

BMP7.2 11 2 5 6 1 1 

Castor 275 43 54 40 23 69 

Cerberus 20 16 15 6 2 4 

FGF4b 18 4 8 9 6 1 

Fam32B 59 4 7 13 5 2532 

Ferritin (fth1-a)) 21740 25564 17750 19039 29781 12265 

Ferroportin (slc40a1) 2642 3226 1887 1761 1810 528 

Follistatin 842 18 82 9 4 191 

Foxc1a 639 52 40 22 26 36 

GATA-1-a 127 11 36 58 22 2 

GATA-2 284 147 142 208 167 147 

GATA-3 647 686 371 347 362 196 

Gli2 509 144 82 76 60 144 

Gli3 321 81 50 48 50 74 

Gli4 348 34 27 19 26 85 

H4 18 26 33 21 14 5 

HIF-1a 1151 742 703 702 603 437 

HIF-2a (epas1) 499 1314 549 574 533 217 

LMO-2 413 1 235 242 134 103 

Lmo4 441 77 132 112 56 109 

Mix2 446 1689 854 848 796 176 

Msx2 1544 2893 1610 1216 1308 682 

MyT1 1448 79 54 60 43 307 

NCAMa/b 1891 3 72 3 1 364 

Noggin 267 22 41 14 15 58 

ODC 28270 8876 6882 8066 5611 6591 

PECAM1 26 1 13 8 2 17 

Prox-1 664 14 50 42 34 30 

SCL 387 4 106 147 64 97 

SPIB-a 150 34 696 1836 1599 42 

STAT-5 758 1661 572 648 660 113 

Siamois 8 7 4 1 4 2 

Sizzled 91 75 84 130 102 33 

Sox2 2630 48 141 62 66 713 

Sox3 852 45 48 22 26 246 

TGFB-1 702 54 139 157 100 139 

VEGF C 254 18 35 42 33 24 

VEGFR-1 (Flt1) 88 3 31 16 9 49 
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Gene experiment 1 

CE CC Etv2 Etv2/ MO2 Etv2 /mmMO1 Etv2 /Fam132b 

Vegfa-a/b 527 69 60 65 54 40 

Vent1 28 14 21 30 15 4 

Vent2 17 13 16 14 8 4 

Xbra-a 41 5 5 6 5 7 

Xbra-b 128 5 5 1 1 1 

Xhex 160 8 327 299 228 216 

Xnr3 9 8 8 8 6 3 

Xpo 985 1104 613 671 544 217 

actb 164684 137150 102995 127872 121969 51702 

activin B 205 32 18 14 18 46 

admp2 9 8 9 7 4 4 

ami 2896 8 5234 2924 1640 10477 

angiopoitin (angpt1) 190 5 7 2 1 15 

apelin-a/b 306 19 29 19 11 24 

bFGF (fgf2) 172 20 20 19 16 20 

bmper 431 53 92 72 47 91 

chibby 8 8 9 8 10 2 

chordin 59 1 9 3 5 7 

ctroponin 144 2 1 4 2 6 

dkk-1 131 84 93 60 68 8 

dkk-2 38 8 12 4 7 1 

dkk-3 297 59 47 31 26 183 

egln1 (PHD2) 719 581 355 196 218 131 

egln2 (PHD1) 29698 40733 23368 23224 22558 6741 

egln3 (PHD3) 88 45 40 51 49 48 

egr1-a/b 168 827 477 508 674 349 

endoglin 87 1 72 42 42 94 

epidermal Keratin 30825 74729 42790 59999 40719 16295 

epo 21 5 18 11 4 5 

epor 114 15 18 28 22 1 

er71/etv2 87 25 310 102 99 612 

erg-a (v-ets) 263 2 97 89 56 68 

fgfr-1 245 52 51 22 24 48 

fgfr-2 909 398 258 279 218 154 

fgfr-3 358 38 41 18 14 62 

fgfr-4 876 54 135 109 70 161 

flk-1 85 8 125 51 30 145 

g6pd 904 417 452 1104 1385 208 

gapdh 8710 16699 8935 4007 5957 463 

hand1 398 3 12 10 5 2 

hand2-a 995 119 72 97 64 52 

indian hedgehog (bhh) 46 3 9 6 3 2 

jagged-1 1068 154 166 99 90 209 

klf2 76 31 102 33 64 152 
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Gene experiment 1 

CE CC Etv2 Etv2/ MO2 Etv2 /mmMO1 Etv2 /Fam132b 

lipase endothelial 66 30 47 37 30 9 

lysocardiolipin acyltransferase 1015 964 552 596 521 233 

mespa-a/b 4 2 1 2 1 1 

mix1-b 6 7 1 9 2 2 

mpo 3911 20 9012 18394 12802 22 

myosin light chain 1 20118 9 255 7 1 10 

nkx2.5 171 13 10 21 13 39 

notch-1 1396 140 235 169 147 459 

nr2f2 (COUP.TFII) 514 22 35 11 11 119 

numb 397 605 363 360 298 124 

patched1 572 46 53 17 20 66 

patched2 2314 7 141 24 24 169 

pdgf-a 185 19 22 11 15 30 

phospholipase C gamma 1 (plcg1) 246 60 85 28 35 87 

runx1 127 128 390 503 292 105 

smad1-a 1176 575 429 401 355 263 

smad5 (smad4.2-b) 57 59 37 21 24 27 

smoothend 478 67 79 45 31 87 

sonic hedgehog 239 7 16 7 2 8 

ve-cadherin 745 10 669 232 170 1414 

vegf D (figf) 51 16 22 18 10 6 

ventx1.1-a 11 4 9 10 4 1 

ventx2.1-b 45 2 13 14 7 2 

wnt11 213 8 11 1 1 21 

wnt8 8 3 2 2 8 2 

NEG_A 3 3 6 3 1 1 

NEG_B 6 3 3 4 3 1 

NEG_C 1 5 5 1 1 1 

NEG_D 4 4 3 5 4 1 

NEG_E 2 1 4 1 2 1 

NEG_F 4 2 3 2 1 4 

NEG_G 3 1 3 1 1 1 

NEG_H 4 4 7 2 2 1 

POS_A 8097 9727 11049 6552 5888 6252 

POS_B 4452 4739 5128 3583 3148 3313 

POS_C 1233 1317 1489 1032 887 872 

POS_D 256 251 323 186 175 165 

POS_E 58 63 64 55 46 31 

POS_F 20 21 18 8 13 17 
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Table 10.Primary gene expression data from Nanostring nCounter analysis for 
experiment 2. 

Gene 
experiment 2 

CE CC Etv2 Etv2/ MO2 Etv2 /mmMO1 Etv2 /Fam132b 

AT3-Globin 24226 11 6300 6879 2375 8 

Aplnr-a/b 965 49 465 109 313 2587 

BMP2-a/b 517 362 568 505 349 138 

BMP4-b 124 282 161 155 255 102 

BMP7.1 952 611 591 638 652 510 

BMP7.2 12 7 3 1 3 4 

Castor 244 27 38 32 26 31 

Cerberus 19 10 11 16 13 10 

FGF4b 10 6 13 6 4 4 

Fam32B 39 11 11 13 5 591 

Ferritin (fth1-a)) 24714 23290 27188 20539 29594 37435 

Ferroportin (slc40a1) 1913 3788 3117 2904 2619 1475 

Follistatin 878 13 25 14 14 307 

Foxc1a 426 41 41 24 68 73 

GATA-1-a 95 22 73 87 41 10 

GATA-2 323 324 387 411 240 117 

GATA-3 672 873 651 646 659 660 

Gli2 479 316 169 192 177 303 

Gli3 218 82 42 56 54 140 

Gli4 338 86 66 64 58 196 

H4 12 25 23 23 24 13 

HIF-1a 1042 634 655 655 553 672 

HIF-2a (epas1) 725 1334 725 685 570 504 

LMO-2 280 3 325 277 222 69 

Lmo4 351 67 114 119 132 118 

Mix2 470 2454 1579 1654 1596 594 

Msx2 1089 4572 2372 2155 2325 1603 

MyT1 1292 55 35 46 48 720 

NCAMa/b 1698 5 3 9 5 754 

Noggin 228 25 34 25 32 278 

ODC 30707 12170 11049 13103 10819 19765 

PECAM1 15 3 11 8 11 35 

Prox-1 582 11 66 52 57 31 

SCL 280 1 158 178 76 106 

SPIB-a 148 54 1469 1009 1256 89 

STAT-5 637 1762 986 997 1546 397 

Siamois 5 7 4 11 5 6 

Sizzled 92 112 299 209 222 75 

Sox2 2661 45 76 85 98 2559 

Sox3 684 26 22 19 36 537 

TGFB-1 627 43 159 146 85 218 

VEGF C 208 42 62 45 39 72 
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Gene 
experiment 2 

CE CC Etv2 Etv2/ MO2 Etv2 /mmMO1 Etv2 /Fam132b 

VEGFR-1 (Flt1) 97 7 25 7 8 135 

Vegfa-a/b 519 75 78 47 54 103 

Vent1 30 19 29 25 37 6 

Vent2 23 13 39 20 35 27 

Xbra-a 37 5 7 3 4 7 

Xbra-b 44 3 1 2 1 1 

Xhex 135 15 278 186 300 151 

Xnr3 8 8 9 4 9 3 

Xpo 1782 1097 1063 863 1336 863 

actb 145623 211552 179180 172366 194719 128701 

activin B 198 24 36 26 20 114 

admp2 9 7 7 9 8 9 

ami 2403 4 2431 401 801 13017 

angiopoitin (angpt1) 143 5 12 4 1 28 

apelin-a/b 322 6 38 15 30 47 

bFGF (fgf2) 156 22 19 12 24 68 

bmper 377 101 127 96 153 198 

chibby 8 7 9 6 6 2 

chordin 37 2 1 3 4 11 

ctroponin 147 11 3 11 5 7 

dkk-1 115 39 99 94 87 53 

dkk-2 43 15 6 15 10 16 

dkk-3 232 92 59 53 49 369 

egln1 (PHD2) 532 1026 345 274 473 165 

egln2 (PHD1) 26112 35713 30931 33722 27580 26829 

egln3 (PHD3) 58 54 74 63 57 60 

egr1-a/b 508 2098 1196 1636 1081 622 

endoglin 84 5 57 30 67 102 

epidermal Keratin 31658 112133 100861 104344 84504 68498 

epo 16 11 3 7 9 15 

epor 112 15 35 44 17 7 

er71/etv2 37 15 53 22 29 246 

erg-a (v-ets) 276 7 113 61 65 158 

fgfr-1 244 45 29 26 49 101 

fgfr-2 768 587 392 466 385 294 

fgfr-3 285 51 34 29 23 90 

fgfr-4 706 89 187 162 153 256 

flk-1 78 5 54 16 36 170 

g6pd 719 361 822 702 701 608 

gapdh 8700 7347 4923 5341 9563 886 

hand1 274 7 9 15 3 4 

hand2-a 753 251 142 164 141 130 

indian hedgehog (bhh) 65 5 5 3 5 4 

jagged-1 925 164 188 139 227 445 
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Gene 
experiment 2 

CE CC Etv2 Etv2/ MO2 Etv2 /mmMO1 Etv2 /Fam132b 

klf2 153 35 85 41 71 144 

lipase endothelial 92 77 48 67 51 23 

lysocardiolipin acyltransferase 1096 1277 969 1052 1263 618 

mespa-a/b 2 1 3 2 1 1 

mix1-b 3 6 6 7 1 2 

mpo 3680 2 15121 13637 14872 8 

myosin light chain 1 7045 2 2 3 1 4 

nkx2.5 116 25 30 43 31 249 

notch-1 1329 192 211 165 235 668 

nr2f2 (COUP.TFII) 569 22 23 13 14 136 

numb 335 553 415 438 596 245 

patched1 489 41 24 27 22 78 

patched2 1635 14 47 24 39 109 

pdgf-a 150 30 17 21 21 69 

phospholipase C gamma 1 (plcg1) 197 108 74 48 92 105 

runx1 97 179 639 416 530 106 

smad1-a 808 594 491 454 601 491 

smad5 (smad4.2-b) 58 75 25 28 32 31 

smoothend 464 123 78 66 68 163 

sonic hedgehog 173 2 7 5 10 4 

ve-cadherin 670 14 298 67 216 1499 

vegf D (figf) 91 23 28 20 27 11 

ventx1.1-a 8 17 13 15 14 1 

ventx2.1-b 64 21 56 35 50 32 

wnt11 201 3 2 1 2 59 

wnt8 10 4 3 7 6 6 

NEG_A 1 4 3 2 4 2 

NEG_B 2 1 1 1 2 1 

NEG_C 4 4 1 2 2 4 

NEG_D 1 5 5 4 3 4 

NEG_E 2 1 3 2 1 1 

NEG_F 2 4 3 2 1 3 

NEG_G 2 3 2 1 2 2 

NEG_H 6 5 4 3 2 3 

POS_A 7135 8574 5711 6265 7757 6373 

POS_B 3824 4561 3125 3602 3900 3954 

POS_C 1034 1246 884 974 1095 1094 

POS_D 200 255 143 177 207 210 

POS_E 52 48 39 46 47 27 

POS_F 26 29 18 14 20 17 
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6.3 Processed data from Nanostring nCounter analysis 

 
Fold Changes over Etv2 for experiment 1 and experiment 2 were calculated. 
Averaged Fold Changes over Etv2 and standard errors for each sample and 
gene are shown in Table 11 and Table 12. 
 
Table 11.Averaged fold changes over Etv2 of two independent experiments. 

Gene 
averaged Fold Change over Etv2 

CC Etv2 Etv2/ MO2 Etv2 /mmMO1 Etv2 /Fam132b 

AT3-Globin 0,00 1 1,46 0,61 0,00 

Aplnr-a/b 0,05 1 0,19 0,47 2,52 

BMP2-a/b 0,59 1 0,87 0,90 0,19 

BMP4-b 1,36 1 0,57 1,20 0,35 

BMP7.1 0,97 1 0,81 1,00 0,52 

BMP7.2 1,17 1 1,00 1,00 1,00 

Castor 0,58 1 0,66 0,61 0,93 

Cerberus 0,72 1 0,83 0,82 0,18 

FGF4b 0,45 1 1,28 1,60 0,45 

Fam32B 0,86 1 3,89 1,39 1452,73 

Ferritin (fth1-a)) 0,95 1 0,78 1,59 0,75 

Ferroportin (slc40a1) 1,22 1 0,79 1,02 0,28 

Follistatin 0,22 1 0,22 0,27 5,38 

Foxc1a 0,96 1 0,44 1,33 1,02 

GATA-1-a 0,16 1 1,27 0,68 0,03 

GATA-2 0,78 1 1,09 1,06 0,64 

GATA-3 1,33 1 0,82 1,12 0,56 

Gli2 1,56 1 0,88 1,00 1,48 

Gli3 1,59 1 1,00 1,36 1,85 

Gli4 1,11 1 0,69 1,15 2,98 

H4 0,75 1 0,68 0,83 0,13 

HIF-1a 0,85 1 0,85 0,96 0,61 

HIF-2a (epas1) 1,77 1 0,85 1,00 0,40 

LMO-2 0,00 1 0,80 0,70 0,28 

Lmo4 0,47 1 0,80 0,86 0,72 

Mix2 1,48 1 0,87 1,09 0,21 

Msx2 1,57 1 0,71 1,00 0,41 

MyT1 1,32 1 1,07 1,27 9,89 

NCAMa/b 0,51 1 2,68 1,13 262,77 

Noggin 0,47 1 0,40 0,71 3,40 

ODC 1,00 1 1,00 1,00 1,00 

PECAM1 0,14 1 0,41 0,68 2,37 

Prox-1 0,10 1 0,69 0,89 0,43 

SCL 0,01 1 1,09 0,62 0,67 

SPIB-a 0,03 1 1,42 1,86 0,05 

STAT-5 1,95 1 0,91 1,52 0,21 
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Gene 
averaged Fold Change over Etv2 

CC Etv2 Etv2/ MO2 Etv2 /mmMO1 Etv2 /Fam132b 

Siamois 1,17 1 4,22 1,72 1,00 

Sizzled 0,51 1 0,98 1,17 0,27 

Sox2 0,37 1 0,66 0,96 12,73 

Sox3 0,88 1 0,53 1,29 11,52 

TGFB-1 0,25 1 0,88 0,72 0,92 

VEGF C 0,44 1 0,85 0,97 0,70 

VEGFR-1 (Flt1) 0,05 1 0,24 0,27 2,73 

Vegfa-a/b 0,88 1 0,72 0,94 0,73 

Vent1 0,44 1 1,09 1,22 0,05 

Vent2 0,35 1 0,58 0,80 0,21 

Xbra-a 0,66 1 0,66 1,41 2,36 

Xbra-b 1,00 1 1,00 1,00 1,00 

Xhex 0,02 1 0,67 0,98 0,49 

Xnr3 0,62 1 0,89 2,19 0,49 

Xpo 1,17 1 0,81 1,19 0,41 

actb 1,05 1 0,94 1,28 0,46 

activin B 1,13 1 0,61 1,09 2,96 

admp2 0,43 1 1,07 1,21 0,44 

ami 0,00 1 0,31 0,36 2,54 

angiopoitin (angpt1) 0,55 1 0,55 0,55 7,50 

apelin-a/b 0,22 1 0,39 0,63 0,83 

bFGF (fgf2) 0,89 1 0,66 1,33 1,84 

bmper 0,56 1 0,65 0,94 0,97 

chibby 0,33 1 0,62 2,28 0,30 

chordin 0,72 1 0,72 1,04 2,33 

ctroponin 3,43 1 4,22 1,63 2,14 

dkk-1 0,51 1 0,67 0,91 0,17 

dkk-2 2,76 1 3,08 2,68 1,70 

dkk-3 1,22 1 0,65 0,78 4,19 

egln1 (PHD2) 2,00 1 0,57 1,08 0,32 

egln2 (PHD1) 1,20 1 0,88 1,05 0,39 

egln3 (PHD3) 0,76 1 0,94 1,24 0,92 

egr1-a/b 1,47 1 1,03 1,34 0,53 

endoglin 0,01 1 0,45 0,99 1,23 

epidermal Keratin 1,18 1 1,03 1,01 0,39 

epo 2,97 1 1,82 3,72 2,86 

epor 0,42 1 1,40 1,27 0,05 

er71/etv2 0,11 1 0,29 0,46 2,42 

erg-a (v-ets) 0,01 1 0,62 0,65 0,76 

fgfr-1 1,12 1 0,54 1,24 1,60 

fgfr-2 1,28 1 0,97 1,03 0,52 

fgfr-3 1,05 1 0,51 0,54 1,69 

fgfr-4 0,35 1 0,71 0,74 1,02 

flk-1 0,01 1 0,27 0,48 1,55 
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Gene 
averaged Fold Change over Etv2 

CC Etv2 Etv2/ MO2 Etv2 /mmMO1 Etv2 /Fam132b 

g6pd 0,55 1 1,41 2,34 0,45 

gapdh 1,40 1 0,65 1,40 0,08 

hand1 0,21 1 1,37 0,31 0,18 

hand2-a 1,48 1 1,09 1,08 0,64 

indian hedgehog (bhh) 0,72 1 0,72 1,34 0,72 

jagged-1 0,75 1 0,56 0,96 1,34 

klf2 0,26 1 0,32 0,82 1,29 

lipase endothelial 0,96 1 0,94 0,97 0,18 

lysocardiolipin acyltransferase 1,28 1 0,92 1,25 0,40 

mespa-a/b 1,00 1 1,00 1,00 1,00 

mix1-b 0,76 1 2,29 0,76 0,76 

mpo 0,00 1 1,25 1,37 0,00 

myosin light chain 1 0,50 1 0,50 0,50 0,51 

nkx2.5 1,09 1 2,70 2,48 8,61 

notch-1 0,64 1 0,63 0,96 1,94 

nr2f2 (COUP.TFII) 0,60 1 0,28 0,47 4,09 

numb 1,26 1 0,87 1,25 0,34 

patched1 1,15 1 0,60 0,71 1,73 

patched2 0,09 1 0,26 0,52 1,32 

pdgf-a 1,18 1 0,72 1,20 2,31 

phospholipase C gamma 1 (plcg1) 0,93 1 0,39 0,90 0,95 

runx1 0,25 1 0,83 0,89 0,18 

smad1-a 1,07 1 0,79 1,14 0,60 

smad5 (smad4.2-b) 2,20 1 0,71 1,14 0,74 

smoothend 1,05 1 0,59 0,69 1,20 

sonic hedgehog 0,21 1 0,23 1,40 0,44 

ve-cadherin 0,01 1 0,24 0,52 2,53 

vegf D (figf) 0,56 1 0,63 0,79 0,15 

ventx1.1-a 0,81 1 1,38 0,90 0,26 

ventx2.1-b 0,21 1 0,82 0,85 0,21 

wnt11 0,61 1 0,61 0,61 20,33 

wnt8 1,00 1 2,12 5,00 1,00 

 

Table 12. Standard errors of the fold change over Etv2 shown in Table 11. 

Gene 
standard error 

CC Etv2 Etv2/ MO2 Etv2 /mmMO1 Etv2 /Fam132b 

AT3-Globin 0,00 0 0,54 0,22 0,00 

Aplnr-a/b 0,03 0 0,00 0,21 0,61 

BMP2-a/b 0,01 0 0,12 0,27 0,06 

BMP4-b 0,24 0 0,24 0,44 0,01 

BMP7.1 0,03 0 0,11 0,13 0,05 

BMP7.2 0,17 0 0,00 0,00 0,00 

Castor 0,01 0 0,04 0,09 0,53 

Cerberus 0,14 0 0,72 0,70 0,07 
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Gene 
standard error 

CC Etv2 Etv2/ MO2 Etv2 /mmMO1 Etv2 /Fam132b 

FGF4b 0,36 0 1,07 1,50 0,36 

Fam32B 0,14 0 2,72 1,11 1402,95 

Ferritin (fth1-a)) 0,17 0 0,14 0,47 0,02 

Ferroportin (slc40a1) 0,11 0 0,01 0,16 0,01 

Follistatin 0,10 0 0,19 0,26 2,77 

Foxc1a 0,09 0 0,02 0,48 0,01 

GATA-1-a 0,05 0 0,25 0,12 0,00 

GATA-2 0,02 0 0,19 0,43 0,48 

GATA-3 0,11 0 0,02 0,09 0,01 

Gli2 0,15 0 0,08 0,07 0,48 

Gli3 0,25 0 0,17 0,02 0,13 

Gli4 0,07 0 0,13 0,24 1,26 

H4 0,19 0 0,19 0,32 0,05 

HIF-1a 0,03 0 0,00 0,10 0,04 

HIF-2a (epas1) 0,10 0 0,05 0,20 0,01 

LMO-2 0,00 0 0,08 0,00 0,17 

Lmo4 0,04 0 0,08 0,34 0,16 

Mix2 0,06 0 0,02 0,06 0,00 

Msx2 0,18 0 0,06 0,00 0,03 

MyT1 0,14 0 0,09 0,23 3,16 

NCAMa/b 0,49 0 2,66 1,12 256,98 

Noggin 0,12 0 0,20 0,28 1,72 

ODC 0,00 0 0,00 0,00 0,00 

PECAM1 0,01 0 0,11 0,53 0,01 

Prox-1 0,03 0 0,03 0,01 0,22 

SCL 0,00 0 0,13 0,13 0,31 

SPIB-a 0,00 0 0,84 0,98 0,01 

STAT-5 0,32 0 0,06 0,09 0,01 

Siamois 0,17 0 3,22 0,53 0,00 

Sizzled 0,18 0 0,39 0,41 0,14 

Sox2 0,13 0 0,30 0,39 7,20 

Sox3 0,16 0 0,19 0,61 5,36 

TGFB-1 0,03 0 0,10 0,18 0,16 

VEGF C 0,13 0 0,25 0,33 0,07 

VEGFR-1 (Flt1) 0,01 0 0,12 0,03 0,75 

Vegfa-a/b 0,03 0 0,23 0,23 0,00 

Vent1 0,05 0 0,37 0,19 0,02 

Vent2 0,16 0 0,18 0,14 0,11 

Xbra-a 0,34 0 0,34 1,09 2,04 

Xbra-b 0,00 0 0,00 0,00 0,00 

Xhex 0,01 0 0,11 0,12 0,20 

Xnr3 0,19 0 0,72 0,90 0,32 

Xpo 0,23 0 0,13 0,10 0,04 

actb 0,02 0 0,12 0,17 0,06 
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Gene 
standard error 

CC Etv2 Etv2/ MO2 Etv2 /mmMO1 Etv2 /Fam132b 

activin B 0,61 0 0,02 0,55 1,06 

admp2 0,01 0 0,61 0,70 0,01 

ami 0,00 0 0,17 0,02 0,45 

angiopoitin (angpt1) 0,45 0 0,45 0,45 5,95 

apelin-a/b 0,20 0 0,11 0,19 0,16 

bFGF (fgf2) 0,12 0 0,19 0,13 0,50 

bmper 0,14 0 0,01 0,31 0,10 

chibby 0,10 0 0,24 1,66 0,13 

chordin 0,28 0 0,28 0,04 0,43 

ctroponin 2,43 0 3,22 0,63 1,14 

dkk-1 0,19 0 0,13 0,01 0,11 

dkk-2 2,58 0 2,90 1,75 1,52 

dkk-3 0,21 0 0,11 0,08 0,49 

egln1 (PHD2) 0,72 0 0,10 0,33 0,06 

egln2 (PHD1) 0,15 0 0,04 0,14 0,09 

egln3 (PHD3) 0,13 0 0,22 0,45 0,49 

egr1-a/b 0,12 0 0,12 0,41 0,24 

endoglin 0,00 0 0,03 0,25 0,22 

epidermal Keratin 0,17 0 0,16 0,16 0,01 

epo 2,89 0 1,42 3,62 2,69 

epor 0,15 0 0,30 0,81 0,03 

er71/etv2 0,06 0 0,02 0,08 0,33 

erg-a (v-ets) 0,00 0 0,17 0,07 0,01 

fgfr-1 0,33 0 0,22 0,66 0,54 

fgfr-2 0,08 0 0,04 0,02 0,11 

fgfr-3 0,34 0 0,21 0,15 0,12 

fgfr-4 0,06 0 0,02 0,10 0,26 

flk-1 0,00 0 0,06 0,20 0,29 

g6pd 0,16 0 0,69 1,47 0,03 

gapdh 0,05 0 0,27 0,58 0,02 

hand1 0,03 0 0,68 0,14 0,00 

hand2-a 0,14 0 0,11 0,06 0,14 

indian hedgehog (bhh) 0,28 0 0,28 0,91 0,28 

jagged-1 0,03 0 0,06 0,29 0,01 

klf2 0,07 0 0,07 0,04 0,34 

lipase endothelial 0,52 0 0,28 0,15 0,03 

lysocardiolipin acyltransferase 0,08 0 0,00 0,08 0,04 

mespa-a/b 0,00 0 0,00 0,00 0,00 

mix1-b 0,24 0 0,62 0,24 0,24 

mpo 0,00 0 0,49 0,37 0,00 

myosin light chain 1 0,50 0 0,50 0,50 0,49 

nkx2.5 0,41 0 1,41 1,37 3,32 

notch-1 0,18 0 0,02 0,19 0,15 

nr2f2 (COUP.TFII) 0,19 0 0,13 0,12 0,21 
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Gene 
standard error 

CC Etv2 Etv2/ MO2 Etv2 /mmMO1 Etv2 /Fam132b 

numb 0,05 0 0,02 0,23 0,02 

patched1 0,49 0 0,39 0,27 0,30 

patched2 0,08 0 0,14 0,33 0,02 

pdgf-a 0,56 0 0,43 0,24 0,45 

phospholipase C gamma 1 (plcg1) 0,40 0 0,15 0,40 0,17 

runx1 0,00 0 0,28 0,04 0,10 

smad1-a 0,03 0 0,01 0,12 0,04 

smad5 (smad4.2-b) 0,86 0 0,28 0,29 0,09 

smoothend 0,40 0 0,12 0,21 0,01 

sonic hedgehog 0,11 0 0,13 1,30 0,12 

ve-cadherin 0,01 0 0,06 0,22 0,31 

vegf D (figf) 0,10 0 0,05 0,24 0,05 

ventx1.1-a 0,38 0 0,28 0,39 0,17 

ventx2.1-b 0,06 0 0,31 0,07 0,06 

wnt11 0,39 0 0,39 0,39 15,83 

wnt8 0,00 0 1,12 1,48 0,00 
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