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Abstract

Delay Tolerant networks (DTNSs) are intermittently conmecimobile networks in
which the end-to-end paths do not exist. Data delivery imsoetworks relies
upon the contacts that use “store-carry-and-forward” gigra to forward message
from one node to another. However, such intuitive methagiplencounters low
message delivery ratio and high data transmission delayapplying to different
data routing strategies. The design of effective and effiglata routing strategies
based on limited knowledge of mobile nodes in DTNs is chaglileg.

In this dissertation, we explore several aspects of sogfalmation that can
be applied for data routing in DTNs. We discuss the problefrdata routing in
DTNs and study the using of different social information anatiwork features to
facilitate data routing in DTNs. Specifically, we proposeesthdifferent data routing
strategies relying on different types of social informatiobtained from mobile
nodes: (a) a location-based social routing strategy appldifferent aspects of
location-based social information; (b) an encounter-8as®ial routing strategy
relying on several encounter-based social factors of raagimdes in the network;
(c) acommunity-based routing strategy combining socidlranbile factors as well
as community structure.

The proposed location-based social routing strategy isvatetd by the fact
that location information can provide the geographic diséaand the direction of
information propagation, which can guide the data to thain&son effectively.
The proposed location-based social strategy considengjeatyraphic distance and
user mobility pattern as factors and combines them into d¢ihty dunction for data
forwarding.

We propose the encounter-based social routing strategdbas the fact that
users in DTNs are interactively connected by encounterients. The design
of encounter-based social strategy involves social ciiytend social similarity.
Compared to location-based social strategy, the usage auofuater-based social
information is much less sensitive than location-basedtsodormation. By con-
voluting two social factors into utility function, the proped algorithm can achieve
competitive performance with location-based routingtstyg.



Abstract

The design of the community-based strategy is motivatechbyobservation
that the mobility of people concentrates on a local area aedcommunication
occurs in the form of communities. To apply such charadiessor elevating
data routing performance in DTNs, we propose a Social andilsléware Rout-
ing sTrategy (SMART). It exploits a distributed communitgrptioning algorithm
to divide the DTN into communities regarding user locatiansl interaction rou-
tines. For intra-community communication, a decayed rmutnetric convoluting
social similarity and social centrality is calculated, walhiis used to decide for-
warding node efficiently while avoiding the newly identifibind spot and dead
end problems. Meanwhile, to enable efficient inter-comrnyurommunication, we
choose the fringe nodes which travel remotely as relays pamplose the node-to-
community utilities for routing decision across commugsti

The major contribution of the thesis is to compose compreilrerrouting met-
ric to overcome the situation that is not addressed by usigjesrouting metric,
and then identify and tackle the blind spot and dead end gnoplvhich are severe
but not noticed in the existing studies. The proposed looabiased strategy and
encounter-based strategy are to construct compreheynsouging metric in geo-
graphic and encountering perspectives, and the propose&xRINs to tackle the
blind spot and dead end problems.

Among all three strategies, the objective is to enhance #te delivery ratio,
reduce the average delay and meanwhile maintain the lovara$ata delivery. We
present the simulation results regarding to the performafthe proposed routing
strategies with the state-of-the-art data routing strageigg DTNs. By comprehen-
sively consider multiple aspects of routing metrics, thepased location-based and
encounter-based routing strategies outperforms thequs\atudies around 10% in
terms of different evaluation metrics. Through identifyi@nd solve blind spot and
dead end problems, the proposed SMART resolves both of timehthais outper-
forms previous studies over 20%.
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Chapter 1

Introduction

A delay tolerant network (DTN) is a sparse dynamic wirelestswork where mobile
nodes work on ad hoc mode and forward data opportunistiopliy contacts [27].
Since the DTN is sparse and nodes in the network are dynameiend-to-end path
rarely exists. The communication of nodes can only be careduwhen they are
in the communication range of each other. When a node hasyaafapessage,
it will store the message and carry it until forwarding thessege to a node in the
communication range which is more appropriate for the nggsdalivery.

Since DTNs allow people to communicate without networkasfructure, they
are widely used in battlefield, wildlife tracking, and vell&ar communication etc.
where setting up network infrastructure is hard and co€y L5, 7]. In recent
years, with the proliferation of social network applicatscand mobile devices, peo-
ple tend to share texts, photos and videos with others vialendbvices in DTNs
[8€, 62, 55, 101].

1.1 Delay Tolerant Network

Delay Tolerant Networks (DTNs) are described as a kind oivast where the
nodes in the network are mobile and the connections amongsnaieg changing
over time thus the communication between nodes is oppaiticaily occurs only
when they are in communication range. Due to network straadfi DTNSs, they
are characterized by large delays, frequent disruptioddak of stationary paths
between nodes. Such network can be constructed by humagshéih 34, 37, €6],
wildlife [43, 82], or even vehicles [99, 74, 81].

We use an example to illustrate the main characteristics Tl Fig. [1.1
shows a sample delay tolerant network. It depicts the nétwagology snapshots
over three different time periods, ¢, andt; (t; < ty < t3). The movements of
nodes lead to the positions of them different from one snatpshanother. Node
mobility leads to several pairs of nodes moving into comroation range (e.g.,
nodeA and B cannot communicate &t, but they run into communication range at

1



Chapter 1. Introduction

2 t3

S L]

Figure 1.1: Three snapshots a Delay Tolerant Network. Addole suggests the
connectivity between two nodes.

t5) or moving out of communication range (e.g., n@dend D are in communica-
tion range at,; andi,, but they becomes unreachablegt Therefore, the stable
end-to-end path does not exist between any couple of nodescdmmunications
between a pair of nodes are often disrupted due to unstableections. Besides,
if a node wants to send a message to another node, it may Boffietarge delay.
This is because the data transmission between any pair @snoekeds that they
are in communication range. However, delay tolerant ndéwloes not guarantee
that two nodes are in communication range permanently. ytspand a long time
period for two nodes to move into communication range. Thescbmmunication
delay between two nodes is longer than wired networks likerivet. For instance,
if node A needs to send a message to nade the sample DTN, it can only deliver
the data to nod# att; when they are in communication range at this time period.

1.2 Data Routing Problem in DTNSs: in Social
Perspective

Although the end-to-end path rarely exists in delay toleretworks, the commu-
nication among nodes in such network is still desirable.réfoge, an effective and
efficient data routing strategy is needed to enable the camwuation in the inter-
mittent connected networks. Although there are numerots auting schemes
designed for wireless network, they cannot be directlyiapdb DTNs.

In the well-connected wireless network, the data routinigseon end-to-end
path. Each node maintains routing table according to spewititing policy for
the selection of next data relay. According to a specificinguscheme, the entries
in the routing table can be maintained prior to the arrivatlafa. Also, since the
network is relatively stable, the routing entries are t@kaand data routing in such

2



1.2. Data Routing Problem in DTNSs: in Social Perspective

networks can achieve significantly high data delivery rdtiacontrast, the connec-
tion in DTN is transient. It is difficult to maintain a compéepath during the data
forwarding procedure. Therefore, the probability of swstel data delivery and
time used for data delivery are not guaranteed.

To achieve effective communication without setting up émé&nd communica-
tion paths, data transmission in DTNs employs the “storeygarward” manner,
where a node stores and carries data while moving, forwéelslata to a relay
node on encountering, and propagates the data to furtlagsrenhtil the destination
is reached. The main concern of data routing strategiesdedmle whether to for-
ward the data to the counterpart when two nodes encountier®it schemes are
devised for the relay selection.

The most naive strategy such as Epidemic routing [89] is@sed to send data
epidemically as long as two nodes encounter until the detstimis reached. Based
on such epidemic principle, many routing schemes [83, 59168443, 3] using
limited copies of messages are developed. Such epidemed lpagting strategies
suffer from extremely high network cost.

Since nodes in DTNs are mostly controlled by humans, suchadslephones
and vehicles, there are plenty of social relationships angeyties which may be
used to reveal the network characteristics and facilifa¢edata routing. For ex-
ample, people with similar social properties may spend kimg together, and be
willing to sharing information and resources with each ofj®€]. By exploring
social features in DTNs, the prediction of encounteringarpmities of nodes will
be more effective. Therefore, many routing schemes ard @@ based on social
information. Generally speaking, there are two kinds ofadnformation widely
used for data routing in DTNSs: location-based social infation and encounter-
based social information. The location-based social méiron refers to as the
geographical related data, including the geographicaidinates [87], the distance
between individuals [45] and etc., which represents thesjglayproperty of human
activity. The encounter-based social information is defiae the inferred human
relationship from encountering events. It can be the castaindividuals [55],
social centrality [40], social similarity [24] and etc., i&gh represents the logical
information of human interactions. Accordingly, routirtgegegies in DTNs can be
divided into two categories: the location-based routingtegies [18, 4¢, 45, 37]
and the encounter-based routing strategies |7, 40, 33.428X%.

There are advantages and disadvantages of both kinds téggém On the
one hand, location-based strategies forward data to thesgebgraphically closer

3
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Figure 1.2: Location-based routing vs. Encounter-baseting.

to the destination, which tend to achieve geographicaltskbrouting path. An
example is shown in Fid. 1.2, where nofevants to send a message to ndde
The lower layer indicates the physical locations of the rieobtlevices. Based on
the measurement of geographical distance, it tends to eh®os» A — B —
C — D as the shortest routing path. However, since encounterrappty is not
taken into account, such routing path may not be efficientthadlelivery ratio is
not guaranteed. On the other hand, the encounter-baséeh#tsaforward data to
the nodes logically closer to the destination, which tenddioieve logical shortest
routing path. As in the example of Fig. 1.2, the upper laydiaates the encounter-
based social connections (in solid lines) of nodes. Baseth®@measurement of
their connections$ tends to forward data via the path— F¥ — FF — G — D
(since the number of connections &e< £ < F' < (). Such forwarding strategy
seems to enhance the chance of data delivery, but due to tereega of location, it
may also lead to a longer routing path and higher delay.

Besides, the social structure, such as community, is alporitant for data rout-
ing in DTNs. People from the same community may contact edoér onore fre-
guently. The community-based strategies forward datardosapcommunity struc-
ture based on the fact that people tend to group into comiearty their social
relationships. By dividing the network into multiple comnities, the nodes within
a community have strong connections, while their links sgsroommunities are
weak ties. The community structure favors intra-commuaoaiynmunication where
nodes are closely connected, but also encounters the Hiffmunter-community
communication via weak links.

In this dissertation, we apply different types of sociabmmhation and structure
to devise data routing strategies in DTNs. In each strateggxert different routing

4
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mechanisms to enhance data delivery ratio, reduce aveedgg @nd meanwhile
maintain low cost.

1.3 Our Contributions

In this thesis, we apply social information to enhance penéoce of data routing
efficiency in delay tolerant networks. We firstly propose ealion-based routing
scheme which comprehensively combines multiple factogemgraphic perspec-
tive to elevate routing performance. Considering the pgvaf location-based so-
cial information, we then devise an encounter-based rgutrategy. Since the
encountering event is the fundamental information for flataarding in DTN, the
leverage of encounter information is less sensitive. Tiopgsed encounter-based
routing scheme considers several encounter-based saciaig to achieve compet-
itive performance. Finally, to solve several existing peohs in current DTN data
routing schemes, we propose a new algorithm called SMARTGwtelies on the
social properties and community structure of DTNSs to featiéi data routing in such
networks.

Contributions of this dissertation are summarized as Wto

e To confront the challenge that routing metrics relying oa aapect of node or
network features cannot fully adapt to diverse networkagituns, we devise a
comprehensive location-based data routing scheme in DWdsnodel DTN
using a location-based social graph and define geograptendie and simi-
larity of mobility pattern relying on the graph. The propddecation-based
social strategy utilizes the combination of similarity obhbility pattern and
geographic distance to enhance the data routing efficidrigysimulation re-
sults show that the proposed location-based social syratggerforms other
location-based strategies by around 10%.

e Due to the fact that location-based social information rssg@ve to users in
DTNs, while encounter-based social information is lessisier, the encounter-
based social information is applied for data routing in DM model DTN
using an encounter-based social graph and define socidstgnand social
centrality based on the graph. We propose an encounted-basttng scheme
which comprehensively combines social similarity and albcentrality by
convolution. The proposed strategy outperforms other emes-based rout-

5



Chapter 1. Introduction

ing schemes by 15% and has competitive performance withitochased
routing strategy.

e We identify blind spot and dead end problems that exist introbsitility-
based routing schemes in DTNs. By measuring the blind spbtlead end
problems in several existing routing strategies, we disctivat the propor-
tion of these two problems reaches about 20%.

e We design a distributed community detection algorithm Hase node en-
counters and carry out a community-based routing strategttSMART. It
divides a DTN into several communities, and exploits ddferprinciples for
data routing depending on whether the source and the diéstirae in the
same community. Routing utilities integrating differengétmcs with convo-
lution and decay function are explored to overcome the difies of intra-
and inter-community communications.

1.4 Thesis Structure

The remainder of the thesis is constructed as follows. Wensamze the related
works in literature in Chapterl 2. We classify data routingesues into differ-
ent kinds of groups according to different aspects of saofarmation. Specif-
ically, the routing schemes are categorized into locatiased routing strategies,
encounter-based routing strategies and community-basédg strategies. In Chap-
ter[3, we discuss the motivation and challenges of this $h&ge also depict the ba-
sic approach of this work. In Chapter 4, we devise a locatiased routing strategy
to enhance the efficiency of data routing. In Chapter 5, w@@se an encounter-
based routing scheme based on the fact that encounter-basid information
is less sensitive compared with location-based sociarmm&tion. We study the
problems in existing data routing schemes, carry out aibligeged community de-
tection method and propose a community-based routing seinamed as SMART
in Chapter 6 to elevate the performance of data routing in TN Chaptef 17,
we conduct a comprehensive comparison of three proposeagairategies and
discuss the future works. We conclude the dissertation ep@h 8.



Chapter 2

Related Works

Delay tolerant networks have been proposed for more thardeoade [27]. Re-
searchers focus on the data routing, one primary issue indD@Nd many stud-
ies have been carried out to handle the data delivery in tieennttent connected
environment. This thesis mainly focuses on the routingesgias relying on so-
cial information. Specifically, we divide social informati into three categories:
location-based social information, encounter-basedasaaiormation and social
community. Hence, the corresponding routing strategiesdasided as location-
based routing strategies, encounter-based strategiesoamahunity-based strate-
gies.

2.1 Location-based DTN Routing

Geographic information, as one aspect of social infornmatie® well applied for
data delivery in DTNs. The derived location-based routitrgtegies in wireless
networks were widely studied in the past decade. They makeafding decision
according to the geographic information. Specifically, lisation-based routing
strategies are categorized based on the exerted geogiafdrimation: (1) ge-
ographical distance, and (2) mobility pattern. In the failog, we present two
groups of location-based routing strategies respectively

2.1.1 Geographic distance

As one of the earliest works on wireless routing strategsnagigeographic in-
formation, B. Karp proposed Greedy Perimeter StatelessiRp(GPSR) [45] for

wireless mobile ad hoc networks. It makes greedy forwardsigg the geographic
positions of a router’s neighbors in the network topologpe@fically, a node ob-
tains its neighbors’ positions by information exchangeef it locally chooses the
optimal next hop with the neighbor geographically closeghe packet’s destina-
tion. Forwarding in this regime follows successively clogeographic hops until

7



Chapter 2. Related Works

the destination is reached. When a packet reaches a regenme wheedy forward-

ing is impossible (i.e. packets reaches the local maxinh&) atgorithm recovers

by routing around the perimeter of the region. It exploits tight-hand rule which

traverses the interior of a closed polygonal region in clask edge order to seek
for the next hop. However, the application of GPSR needsgplgraph.

Besides, authors in [57] proposed Greedy Perimeter CoatalifRouting (GPCR)
by taking advantage of the fact that streets and junctioms gonatural planar graph
to handle data routing. It contains a restricted greedy dotmg procedure and a
repair strategy. In the greedy mode, the data packets araifded to a node at a
junction. Then junction node forwards packets by choosmgreighbor which has
the shortest distance to destination. In the perimeter mbalso applies right-hand
rule [28] when the greedy forwarding is impossible. GPCRuas=s that there is
always a node at a junction. When the junction node is missirngquses routing
loops and packet loss.

A work [93] named Mobility-Centric Data Dissemination Algihnm for Vehi-
cle Network (MDDV) applies similar idea for data forwarding exploits Global
Position System (GPS) embedded in each node and the bumdlésnaarded to
neighboring nodes that are geographically closest to dfiemecontaining the des-
tination. There is no route recovery mechanism in this wdtrkloes not consider
the situation that the geographic routing is not applicable

GeOpps![50] takes the advantages of the suggested routesilgyation systems
to seek for the data relay that is likely to move closer to thstidation node. It
calculates the shortest path between the destination matiéhe nearest point of
the path and estimate the time for arriving at the destinatiduring the routing
process, if a node with shorter estimated arrival time afg¢he data packet will
be forwarded to the node. The process is conducted repgatetllthe destination
is reached. Obviously, GeOpps requires navigation inftionand the estimation
of arrival time needs global view of the network. Both of thane difficult to be
accomplished in DTNs.

The hybrid routing strategy GeoDTN+Nawv [21] is proposedhtiiree different
modes: a greedy mode, a perimeter mode, and a DTN mode. dhasibetween
non-DTN mode and DTN mode by evaluating the network conumiggtibased on
the number of hops a packet has traveled, neighbor’s dglipeality and neighbor’s
direction to the destination. To achieve this, it uses \drtNavigation Interface
(VNI) to abstract information from underlying hardware grdvides necessary in-
formation for the strategy to determine its routing modesiBes, VNI provides the
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option to protect nodes’ private information. Such hybwdting strategy brings
the longer delay and higher packet loss issues when it césithe switching oper-
ation.

Locus [87] proposes a location-based overlay for DTNs. ilizes devices
nearby to keep the data in a specific area. To enable the datagpit defines a
utility function based on the geographic distance from a#jgdocation to a data’s
home location, and finds the node having the closest geogrdggtance with the
data item for data forwarding. Locus requires there alwaysesnodes in the data
home location and multiple copies of data are needed.

In summary, the data routing strategies rely on geograpbistance mainly
initiate their relay selection by greedy forwarding. Wheweegly forwarding is
failed, different repair strategies are applied to redtieechance of packet loss.

2.1.2 Mobility pattern

Compared with geographic distance, mobility pattern isnéefiin a more sophis-
ticated manner. It may refer to many different charactessbf user movements,
such as the node trajectories, visiting histories and etc.

The Utility-based Distributed routing algorithm with Musttopies (UDM) [52]
defines “home community” where the nodes passed by or stdgsd to most
frequently. It selects the data relay as the node with thbdsgutility value to
the “home community”. Besides, it exploits binary transsios, which means that
when it finds a proper relay, the node sends half number otit&et copies to the
new node. The process continues until the destination chezh

A similar work named MV routing was proposed n [18]. It alsmposes to
forward data packet to a stationary location. The diffeesis¢chat MV routing uses
the meeting frequencies and visits to the stationary lonab construct the utility
function. Both methods need multiple copies of data packetsthe relays used
for data delivery are also difficult to be determined.

Besides, both MoVe [48] and VeRo |44] apply movement vedimrsiata rout-
ing schemes design. Specifically, MoVe exerts nodes vglaaitl direction to esti-
mate the shortest path to the destination. When two nodesiater, they exchange
the trajectory and bundles decide whether to be forwardetidylirection and dis-
tance between the candidate node and destination. Siynitades in VeRo records
their position and angle changes, and exchange the dataddeathat is moving
away from it. The limitation of both movement vector basedtsgies is that they
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need to exchange the trajectory of nodes and the load bakdiicult to achieve.

Furthermore, CAR [65] uses the probability that two node# ¥ihe same loca-
tion (colocation) combining the degree change of the nodmalculate the proba-
bility that a node can successfully deliver a message totindéisn. However, the
colocation information cannot represent the mobility @attof a node well. For
example, a node may visit a location with time duration onerhwhile another
node only comes to the same location inseconds. Although they are co-located,
the probability for successful data delivery is not high.

To represent mobility pattern more accurately in DTNs, Msgmce [49] calcu-
lates the similarity of mobility pattern by Euclidean diste of two nodes’ visit-
ing history and chooses the node with shorter distance iiere similar mobility
pattern) with the destination node as the relay for datavelsli Specifically, it
considers a node’s visiting history as a vector. Each valube vector represents
the percentage of time that the node stays at the locatioe. didtance between
two nodes is computed by the Euclidean distance between déatons. Although
Mobyspace can represent mobility pattern of nodes morefgggdly, it ignores the
temporal factors that lead to the change of mobility pagenrDTNSs.

Overall, the routing strategies based on mobility patternstruct the utility
value according to statistical results of the mobility @weristics. It may be more
accurate than directly using geographic distance. Howe\ur to its requirement
for detailed location information, the privacy concern stts is still a great con-
cern.

2.2 Encounter-based DTN Routing

Generally, encounter-based routing strategies make fdmgdecision relying on
the encounters of nodes. In this thesis, we investigate ntheumter information
in social perspective. They are also mainly divided into types: (1) directly
encountering, and (2) social information derived from emtering.

2.2.1 Direct encountering

There are some strategies directly using encounter infitomdor data routing.
For instance, Prophet [56], RAPID [7], MaxProp [15] and etere studied in past
years. They forward data items according to node contantschoose the node
with higher contact probability as the relay for data delyve
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The Probabilistic ROuting Protocol using History of Enctars and Transitiv-
ity (Prophet) [55] applies the predictability for data deliy as the metric for relay
selection. Specifically, the predictability is a probadiit metric that is calculated
by encounter patterns. Each node calculates such prediigtédr the specified
destination. There are three major characteristics of tedigtability P. First, the
value of P is iteratively determined by the previous valuerafdenoted by, )
for nodea andb:

Plap) = Pay),,, + (1 = Pap),,) * Pinit, (2.1)

whereP,,,;; is an initialized constant in [0,1]. Second, the valugrfoflecreases if
there is no encounter for a certain time interval, which ecsjeed as:

P(C%b)old = P(avb)old * ’yﬂ7 (22)

wherey € [0,1] is a constant and is the time interval that have been elapsed
from last update. Finally, the transitivity éf is explained as, i, meetsh with pre-
dictability valueF, ;) andb meetc with predictability valueF; ., the predictability
value betweem andc will be:

P(mc) = P(a,c) * P(a,b) * P(b,c) * ﬂ (23)

old

The scheme works as follows. When two nodes encounter, ttehaage pre-
dictability values as well as encounter vectors to evaltreejuality of the node. If
the predictability value of the counterpart is higher forestihation specified by a
piece of data, the data will be transferred to the encourttéen

Jain et al. [42] presented a routing metric named as MinimypeEted Delay
(MED) by assuming future contact periods are known. Theyifydte Dijkstra
algorithm to compute the path for DTN with minimum delay. Hawer, such calcu-
lation can only adapt to certain types of DTNs. To addresslimitation, they pro-
pose a new metric, named as Minimum Estimated Expected DRIB]ED), which
is calculated by past encounter history and then floods thaawalue within the
whole network. It introduces too much control overhead.

Spyropoulos et al. proposed a series of multi-copy dataelglischemes, such
as Spray and Wait [83] and Spray and Focus [84]. Spray and divafily spread
the messages to nodes it encounters and each data cartieuntiit meets des-
tination. Obviously, it has significant waste of data and dle there is no any
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criteria for the selection of data relays. To address tlsigsasthe Spray and Focus
is proposed to limit the data carriers. The spray phase igagias Spray and Wait
and simply forwards the data to nodes encountered. In thesfpbase, a utility
value is used to determine whether the node is a good relajatardelivery. If its
utility value is larger than the data carrier, then the baadVill be forwarded.

The MaxProp [15] is proposed based on prioritizing both ttedule of packets
transmitted to other nodes and the schedule of packets thaevwdeleted from the
buffer. Specifically, the packets are transmitted to otloelas when node meetings
are addressed by ranking the packets. The packets will beedef the buffer is full
according to the packet ranking. The ranking mechanismitialized by a certain
value. When two nodes meet, the ranking value will be in@édsy 1 and it will
be exchanged when nodes encounter. Afterwards, a costdgudbsible path is
calculated, and the path with the lowest cost will be setefitethe data delivery.

The Resource Allocation Protocol for Intentional DTN (RAR[7] is proposed
by taking the constraint resource into account. It cal@dlaitility functions ac-
cording to different resource constraints. The bundlesaxearded to nodes with
higher utility.

In summary, the directly encounter based routing schemesnee the perfor-
mance for data delivery by calculating encounter-basddiesi However it re-
guires exchanging encounter information of nodes in theowdt, which introduces
large amount of control overhead.

2.2.2 Social information derived from encountering

Another group of routing strategies rely on the social infation derived from
encounter-based social graph. Although they do not dyrersté encounter infor-
mation, most of these works are based on the encounter-based graph.

SimBet [24] takes the linear combination of social simtkaand social central-
ity as the forwarding utility to construct the data forwanglipath. Instead of only
considering single social property, the SimBet schemeiders the utility func-
tion as the sum of social similarity and social centralithieh measures both the
social closeness with destination node and social positidhe node in the net-
work. In this work, the social similarity is represented bg humber of common
friends. The social centrality is calculated by local besaweess. Two separated
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utility functions are formulated in the following:

Sim,, (d)

SimUtil,(d) = , 24
imUtila(d) = o+ Simm(d) (24)
Bet
B i, = —— . 2.
etUtil, Bet. - Ber (2.5)
The overall utility is combined as:
SimBetUtil, (d) = aSimUtil,(d) + fBetUtil,, (2.6)

wherea andg are two parameters defined by authors and g = 1. The scheme
chooses the node with higher combination utility value asréay for data for-
warding. The similar idea that uses the concept of socialrakty can also be
found in [ 32].

An et al. believe people with similar interest have morelik@od to access
the same content. Based on this assumption, they proposenchrelation aware
routing protocol [4]. It uses the similarity of users’ ingst as the routing metric
and chooses the node with higher similarity of interest agltita relay to increases
the utilization of content replication in intermediate esd

Zhang et al. proposed a data diffusion strategy based ondpbity” [10C].
The “homophily” phenomenon is explained as the trend thatrtades share com-
mon characteristics (i.e. interest). It utilizes the fdship and “homophily” to
diffuse data pieces. Specifically, it spreads most simitda dkems among friends
and most different data items to strangers. In this way, databe diffused in a
further wide area, thus achieve shorter data delivery delay

Social greedy [41] proposed by Jahanbakhsh et al. makesatadatwarding
decisions by comparing the social distance between twosaddee social distance
is calculated by the similarity of attributes (such as adgyaffiliation, school, city,
country, etc.) between two nodes. Two nodes with more comattoibutes, they
are closer to each other, and more likely to be chosen assridagata delivery.

Social feature-based algorithm [94] takes the multi-disi@m social properties
and chooses the node with most similar social features agetstnation for data
forwarding. Specifically, it conducts hypercube by varicosial properties and
uses the feature distance to measure the closeness betmeandes. The node
with the closest social features will be selected as theg feladata delivery.

Alternatively, PeopleRank [63] tries to ranks nodes in aaagraph in a dis-
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tributed manner. It measures the relative importance ofde mo the network and
the message is forwarded to nodes with same or higher ragsking

Fabbri and Verdone proposed a sociability-based routiragegty in [26]. It
exerts the nodes with high degrees of sociability as datysel The sociability
indicator is defined by counting the number of encounterh wiher nodes in the
network. The message will be forwarded to the node with higbeiability.

A social-aware and stateless routing (SANE) [60] is propdsethe observa-
tion that people with similar interest are more often to nesath other. It uses
k-dimension vector to represent the interests of nodes aludlate the similarity
of interest by a cosine function. The cosine similarity aédtes the interest similar-
ity between data and the node. Data will only be forwardetd¢awde if the cosine
similarity between them is larger than a threshold. Congpavigh state routing
strategies, SANE does not need to store additional infaamdor the calculation
of cosine similarity.

Li and Shen proposed a duration utility-based social rgusoheme named
SEDUM [53]. It exploits both contact frequency and durationode mobility pat-
terns of social networks to define the duration utility. r@ases routing throughput
and reduces routing delay by building an effective bufféresue which maintains
the messages by their life time. Those messages with loifgémle have higher
priority to be sent out from buffers. In this scheme, it digas the minimum num-
ber copies of messages to achieve a desired routing delasitiy an optimal tree
replication algorithm.

In summary, social routing based on different kinds of dqmiaperties derived
from encounter-based graph. It enhances the performaoigesocial perspective.
However, the enhancement is still limited only based ondlsegial properties. In
the last section of this chapter, we will review routing soles relying on another
important structure feature in social networks: commubiged routing strategies.

2.3 Community-based DTN Routing

Community as a very important social structure is appliedribance the perfor-
mance of data routing in DTNs. Community-based strategigsendata forward-
ing decision according to the community structure of thewoek. By dividing

the network into multiple communities, they use differemiting strategies to han-
dle the intra-community and inter-community data delivéng to the fact that the
connections within a community are rich while the connewibetween different
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communities are weak. There are several routing strat¢8¢s210, 33, 51, 13, 1]
exploiting community structure for data routing in DTNs.

One of the earliest works named label routing using commgustiucture for
DTN routing is proposed by Hui and Crowcroft [39]. The datatieg mechanism
is built on Pocket Switched Networks (PSNs) [38], a type of\Difi which the
mobile devices are portable by human beings and two deviEmesommunicate
when the carriers meet each other. The proposed routirtggyraxploits the label
affiliated to people to select forwarding relay. The lab@lgsigned according to the
community where a person belongs. The general idea of tle¢ dabting works as
follows. Each person in the network is assigned with a lalbased on community
structure. When people meet, they exchange the label iafitom For the selection
of the relay, it chooses the node with the same label as thendgsn node until
the destination is reached.

Later, they devised the Bubble Rap algorithm. Bubble Rap ¢d@siders the
data routing in PSN which consists of several communitias there are social
relationships among users. It uses k-clique percolatiothasasic community
detection method. There are two steps of routing in Bubbie. Rde first step is
to forward data to the destination community. It deliversadeems from outside of
the destination’s community according to a node’s globaladaentrality. A node
with higher global social centrality will be selected as tkay for data forwarding.
Within the destination’s community, the forwarding utilis based on a node’s local
social centrality. The data item will be forwarded to a nodéhwigher local social
centrality.

A work related to social-based data multicasting was pregdsy Gao et al.
[33]. It presents multicasting path selection based onas@entrality and social
community. In the case of single data multicasting, it measthe social centrality,
and chooses the node with higher centrality value as theessocfor data forward-
ing. In the case of multiple data multicasting, it takes thenmunity structure into
consideration. It finds the nodes with destination awareaes forwards the data
to the node with highest delivery probability within the comnity. It continues the
forwarding procedure by social properties to find the desitm.

LocalCom [51] uses the degree sum of a node and its neighbdng anetric for
community detection. It considers that nodes with high degrum should belong
to the same community. The intra-community routing takessiingle hop source
routing to forward data. The packet will be directly forwaddalong a proposed vir-
tual link. This scheme is based on the high similarity andtshap-count distance
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within the community. For inter-community data routingjéfines nodes can reach
other communities as bridges. Then the marking and prurchgrees are used:
static pre-pruning schemes and dynamic pruning. In caseéttbaource and desti-
nation nodes of a packet reside in different communities stburce first forwards
the packet to the bridges of the current community by intiadoiunity forwarding
mechanism. Each bridge is decided by the pre-pruning psoaed then further
forwards the packet based on the dynamic information. ltdgseeultiple replicas
for the inter-community data forwarding.

A work taking the friendship community for information pragation was pro-
posed as Friendship-based routing (FER) [13]. It clustegsibdes which can com-
municate with short delays as one community. FBR considherériendship com-
munity of varied periods of time. For intra-community commuation, it sprays
several copies of messages to a number of nodes in the comymurar inter-
community communication, the data is forwarded only whendhstination is in
the same periodical community as the relay, which uses thpdeal direct connec-
tion between communities to tackle the relay selectiorgssu

Homing spread [95] is a zero-knowledge multi-copy routitgpathms. It de-
fines community homes, which are considered as the commatidas visited by a
group of people with same interest. The messages are spreathinunity homes
at the first place. Then the copies of messages are spredwetdoimes and mobile
nodes. The destination fetches the message when it meetsemsage holder.

Community-aware opportunistic routing [97] uses similamenunity home
concept for single-copy routing algorithm design. It chethe community home
by calculating the centrality of nodes. The node with theéhbgj centrality is con-
sidered as the community home. The messages then are fexdvarthose homes.
By maintaining an optimal set of relays, each home detersnine best relay and
meanwhile computes the minimum excepted delivery delaterdards, the home
nodes send the messages to the optimal selected relayshendiéstination home
is reached.

Abdelkader et al. proposed a routing protocol named as SGERsocial
grouping for DTNs[1]. It assumes that there is a global obeewhich can collect
the information from the entire network. SGBR uses sociati@ns to build groups
and spreads message copies to those nodes with higher vadties to the message
carrier. By this manner, it reduces the need of collectirtgvaek wide information,
maximizes the delivery ratio and meanwhile minimizes therbead.

In summary, community-based routing strategies try to oupdata forwarding
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efficiency by community structure. However, most existiognenunity partitioning
is complicated and static when applied to DTNs. Furthermda¢a transmission
between communities is difficult task due to rare efficienttirtg schemes are pro-
posed for inter-community communication.

Overall, the major characteristics of three categoriessaremarized in Table

2.1.

Table 2.1: Comparison of three categories routing stragegi

Metrics Routing Strategies Encounter Location | Feature
Informa- | Informa-
tion tion

Location- GPSR [45], GPCR Yes Yes Forward data tq
based: [57], MDDV [93], node with closer
geographic | GeOpps [50], distance to dest
distance GeoDTN+Nav [21], tination node or,

Locus [87] location
Location- UDM [52], MV [18], | Yes Yes Forward data tq
based: MoVe [4€&], VeRo [44], node with more
mobility CAR [65], Mobyspace] similar mobil-
pattern [49] ity pattern with

destination

Encounter- | Prophet [56], RAPID| Yes No Forward data tq
based: direct [7], MaxProp [15], node with higher
encounter MED [42], Spray and encounter fre-

Focus [84] quency or duration

with destination

Encounter- | SimBet [24], sociall Yes No Forward data tq
based: deq relation aware rout; node more SO
rived social| ing protocol [4], SDM cially similar with
information | [33], Social greedy destination

[41], PeopleRank [6:3]

SANE [60], SEDUM

[58]
Community | LABEL [39], Bubble | Yes No Forward data ac
structure Rap [40], MDM [33], cording to commu-

LocalCom [51], FBR nity structure

[13], Homing spread

[9E], Community-

aware  opportunistic

routing [97], SGBR

[1]
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Chapter 3

Conceptual Framework

In this chapter, we describe the motivation and challengesldta routing in de-
lay tolerant networks. We present the research statemehedhesis and give an
overview of the network model and basic approach that weargetiting strategies
designing.

3.1 Problem Statement

We discuss the motivation and challenges for data disseimimiaa DTNs and out-
line the research statement in this section.

3.1.1 Motivation and challenges

A key problem in DTN is data dissemination. The accomplishihtd data dis-
semination requires effective data routing strategiesdaa address the following
challenges in DTN:

e dynamic network. Nodes in the network are mobile. The movements of nodes
are not controlled. Network topology changes from time moeti The con-
tinuous changing topology leads to arbitrary disconnestidl hus, the end-
to-end path is difficult to be maintained, which results irgéadelays and
unpredictable data dissemination paths.

¢ limited network information. Due to the fact of dynamic network and unstable
connections among nodes, they cannot obtain all netwodtrnmtion from
DTN. It makes the traditional mobile ad hoc routing protedgluch as AODV
[7€], DSDV |75] and etc.) cannot adapt to DTN directly. Thailied network
information leads to the static routes not applicable fanaiyic topologies.
Besides, the lack of updated and whole information of thevagt makes the
calculation of best paths for different destinations beeaimallenging.
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e uncertain connection duration and limited resources. Data dissemination in
DTNs also refers to the size of the data. Due to node movenigson-
nection duration between two nodes is unknown and difficutig predicted.
Long connection duration can help to transmit a large nunobenessages
or messages with large sizes. Therefore, to enhance théibgpaf data
delivery, node needs to decide how much data will be deld/@rewhich
piece of data needs to be delivered when it encounters anudie In delay
tolerant networks, deciding the number of messages andzé®ftdata for
transmission is also affected by the resource of nodes. NwdBTNs are
portable mobile devices (such as mobile phones), which alblyrhave lim-
ited energy supply, storage, CPU and etc. that directlycaffe efficiency of
data dissemination.

We use an example in workplace to show these challenges irsDTHInsider
the DTN scenario that people with mobile devices workinghi@ $ame company.
They move from one place to another, which makes the netweckrne dynamic.
The connection between two nodes may keep connecting whgsty in the same
office while the connection is disrupted when they go to ofif@ces, which makes
the end-to-end path be difficult to maintain. From the poietwof each node, it
only has partial information about other peers. Due to the@enents of nodes,
the changing connection status makes two nodes exist ndacnsute between
them. Any developed routing strategies need to rely on tleewntering events.
Besides, due to the movement of nodes, the encounteringa@urgaunpredictable.
The delivery of data is determined by the size of data anddblerology applied
for data transmission, as well as the routing policy. Mosgpeach mobile device
held by people has limited battery, storage and etc. Wheartbegy or the storage
is about to run out, people will consider which message sheailry for the further
data transmission.

3.1.2 Research statement

In this dissemination, we investigate data routing stiatefpr data dissemination
in DTNs from social perspective. The previous proposedimgustrategies are
proposed to address the above-mentioned challenges in DThsy are divided

into three main categories based on the social informakien tised for data rout-
ing, as explained in Chaptéf 2: location-based, encol@sed and community-
based. Location-based routing schemes make the forwagéicigion based on the
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location-based social information, such as geographtemi®, colocation and etc.
Encounter-based routing schemes construct the sociah graged on encounter
information and the derived social properties for dataingut Community-based
strategies exert community structure to facilitate datding in DTNSs.

The key issue of existing social-based routing schemescis dé& researches
that utilize comprehensive social information for datatimogt Thus, the perfor-
mance needs further enhancement. Specifically, curreaargses construct the
utility metric based on one aspect of information. It may adapt to different
situations of network topologies and dynamics. For exapntple location-based
routing schemes relying on geographic distance (e.g., GJASR only consider
the distance between nodes temporally, which is not efficidren the update of
distance information is not frequent, while location-lzhs®uting strategies relying
on mobility pattern (e.g., Mobyspace [49]) take statidtroability patterns as the
major concern. Due to lack of distance information, thewéli ratio cannot be
guaranteed. Similar situation can also be found in encodo@sed social routing
schemes that only consider one aspect of encounter infamtius cannot fully
represent the situation of the network. In this thesis, veppse two comprehensive
routing strategies from the geographical and encounte@agl perspective.

Furthermore, the existing routing schemes rely on utilityrtake forwarding
decision. That is, for a certain destination, a node calesla utility value based
on network structures or node features. When the node etersusmnother node
in DTN, it compares the utility value with the encounteringde. If the encoun-
tering node has higher utility value, data will be forwardedt. However, such
greedy forwarding schemes run into two issues: blind spdtdead end. Blind
spot results from the utility value of a node so close totytitalues of its neighbors
that the node cannot find the next data relay. Dead end is beaHithe highest
local utility value that the data is stuck into the node uittéxpires. By dividing
the network into multiple communities, the nodes within amcaunity have strong
connections, while their links across communities are wesk [35]. The com-
munity structure favors intra-community communicationendnodes are closely
connected. Although community structure is applied to cedihe chance of blind
spot and dead end, it brings new issue that the communicatimng communi-
ties becomes difficult. We propose a social and mobile awareng strategy that
addresses both blind spot and dead end problem, and mearaghikves efficient
inter-community communication.
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3.2 Network Model

In this section, we provide the basic network model for desifvarious social-
based routing schemes. We also describe the data sets weasghtout the thesis.

3.2.1 Modeling social graph

Delay tolerant networks can be described as a graph acga@ligifferent charac-
teristics of nodes and network structure [61, 42, 19, 73|rbthis dissertation, we
use social features to characterize the network graph. WehaoDTN as a social
graphG = (V, E, W) whereV is the set of mobile nodes in the network, the set of
social links is represented iy and the set of links’ weights is depicted @y. The
social links indicate the social relations between two saated the weight of a link
suggests the social strength.

Delay tolerant networks possess two basic elements: theuatering events
between nodes and the geographic information of each ndueseTltwo elements
describe the fundamental channel for communication as agethe dynamics of
the network. In social perspective, people moves in the ortVeading to encoun-
ters. Both location information and encountering evergschiaracterized as social
information. According to the location-based and encaubésed social informa-
tion, nodes in the network are grouped into different comitnesr This community
structure makes nodes in one community are highly sociateelwhile nodes in
different communities are less socially connected. In #st of the thesis, we dis-
cuss the social graph in aspects of geographical locatimh&@acountering events,
as well as the community structure in the network.

3.2.2 Data sets

We use two types of data sets for evaluating the proposethgostrategies: real
data traces and synthetic data traces.

Real data traces

We use the MIT Reality [25], DieselNet [16] and Cabspottiig@][three real data
traces to characterize delay tolerant networks. The MITiiedata trace consists
of 97 users equipped with smart phones at MIT over the courieed?2004-2005
academic year. It records the information such as call |Bfjsgtooth devices in
proximity, cell tower IDs, application usage and phoneustatOver the whole
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experimental period, it covers more tham thousand cellular towers. DieselNet
logs mobility traces of 34 buses in Amherst, covering an afeaore than350
km?. Each bus is equipped with a computer and a GPS. It record3RiS:logs for
all the buses during the 20 days experiment time period fratolizr to November
in 2007. Cabspotting is a mobility trace of taxi cabs in SaanErsco. Each taxi
is outfitted with a GPS tracking device. It contains GPS coatgs of 536 taxis
collected over 30 days in San Francisco Bay Area, which coweer 2,000:m>.
The statistics of the three mobility traces are summarinethble 3.1. The three
traces cover a large diversity of mobility patterns and emument, from human
movements on campus (MIT Reality) to vehicles mobility ities (DieselNet and
Cabspotting), with experimental periods from a few dayseieesal months. All
three data sets present the human being activity, inclugseglocation information
and encountering events between nodes. We consider theep@sentatives of
delay tolerant networks.

Table 3.1: Statistics of three real data traces

Traces \MIT Reality DieselNet Cabspotting

No. of devices 97 34 536
No. of contacts 54,667 2,284 111,153
Duration (days) 246 20 30
Contact rate 0.024 0.10 0.013
Field size gm?) N/A 358 2,367

Synthetic data traces

To provide general assessing of routing strategies, weuged group of synthetic
data sets to conduct the comprehensive comparisons.

Table 3.2: Parameters of synthetic data traces

No. of nodes 20 to 100

Node speed| 0.5m/st02.5m/s
Duration 14 days
Field size 48 km?

We use SUMO simulator [9] to mimic nodes’ movements by geimggaran-
dom trips during a period of two weeks. The experiment arga@synthetic trace
is chosen as MIT campus and its surroundings with a rectasmlering 48km?
(6km = 8km). The node speed (ns) (by walking) in one trace is constahstarts
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Chapter 3. Conceptual Framework

from 0.5 m/s with a 0.5 m/s increment for each trace. Theegfoe generate 5 syn-
thetic data traces with different node speeds. Meanwhiéegenerate 5 synthetic
data traces with different number of nodes (nn) ranging f&ihio 100. For each
synthetic trace, we record the movements of each node inxfrerienent area and
extract the encounter-based and location-based soamhiation. The parameters
of synthetic data traces are summarized as Table 3.2.

3.3 Basic Approach

In order to cope with intermittent connectivity, and usediceed and opportunistic
connectivity to serve for data routing in Delay Tolerant\eitks, known as Bundle
Protocol [17], we proposed three social-based data rostiragegies. Specifically,
to enhance the performance of DTN routing, we propose twgocehensive rout-
ing strategies with one exploiting location-based socidrimation and the other
one exerting encounter-based social information. Then repgse a third data
routing strategy using community structure to solve blipdtsand dead end prob-
lems as mentioned in the above section, and meanwhile ieeehiefficient inter-
community communication.

The location-based social routing strategy [103], nameldogs combines two
metrics, similarity of mobility pattern and geographictdisce to construct the com-
prehensive location-based data routing scheme. For thgndesLoc, we assume
that each node needs to know the realtime position of its eviich means that
every node in the network is equipped with additional devisich as Geographic
Positioning System (GPS)) to aware of its position. Theyhexge location in-
formation when they encounter. The efficient manner fortiocainformation ex-
change can be found in [36].

However, the utilization of location-based social infotrna must be very care-
ful since it is much sensitive and private concern to userthénnetwork. Using
location information may violate user privacy. Maliciousde can apply the col-
lected location information to realize the mobility patteof others in the network,
which may be used for node tracking. Meanwhile, collectmgation information
needs additional equipments, such as GPS. Compared wétidnebased social in-
formation, encounter-based social information is lessisiga and easy to obtain.
Therefore, we propose the encounter-based social routiategy [103], called
Soc, consisting of two social properties, social cenyradind social similarity as
basic factors for data routing.

24



3.3. Basic Approach

Additionally, blind spot and dead end problems lead to thesage expired
before reaching the destination, which significantly dases the delivery ratio of
routing strategies. To reduce the chance of blind spot aad dad and meanwhile
achieve efficient inter-community communication. We dexascommunity-based
social routing strategy named as SMART [102]. The propossdnsunity-based
strategy works as follows. It first introduces a distributssthmunity partition-
ing method based on the observation that movements of DTNsatk regular
and restricted in local areas where more encounters ocauartttat in remote ar-
eas. With distributed community partitioning, mobile nedmn flexibly adjust
their community IDs to assign with the group they most freglyeencounter, and
the community structure is formed by exchanging only lon&imation, which is
easy to be implemented in DTNs. For intra-community comatins, the rout-
ing utility is calculated by integrating the convolutionsicial similarity and social
centrality with a decay function. For inter-community coommcations, nodes fre-
guently traveling across communities are chosen as “fmmggkes”, and the utilities
of communicating between fringe nodes and communities aasuored for routing
decision, which enhances the delivery ratio effectivebbl® 3.3

Table 3.3: Summary of three proposed routing strategies

Strategy Metric Location or| Blind Spot| Remarks
Encounter | & Dead
End
Loc Geographic | Location No Achieves higher performance
distance + than single location-based utility
Mobility metric
pattern
Soc Social Encounter | Partially Achieves Dbetter performange
centrality than single encounter-based
+ Social utility metric and while less sen-
similarity sitive and easier for collection
than location information
SMART| Social in-| Encounter | Significantly Resolves blind spot and dead
formation + end problems by efficient intra
Community and inter community communi-
cation strategy

We use the following metrics to evaluate the performanceabus data routing
strategies [33, 13].

e Delivery ratio: the ratio of the number of destinations that have received th
delivered data to the total number of destinations.
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Chapter 3. Conceptual Framework

e Average delay: the average time delay used for destinations to receive the
data.

e Average cost:the average number of relays used for the messages success-
fully delivered to destinations.

A good routing strategy is supposed to have high deliveig riaw average delay
and low average cost. The objective of our devised stratagiéo enhance data
delivery ratio, reduce average delay and meanwhile maitai cost.
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Chapter 4

Location-based Routing Strategy

Location-based social information provides accuratetfmosof nodes in the net-
work. If such data is used properly, it can be applied to eobalata routing per-
formance in DTN. In this chapter, we propose a comprehemsivitng metric that
combines several aspects of location-based features. reki@ps literatures con-
sider only one aspect of node characteristics or networtkifesa for constructing
routing metric, which cannot fully describe the networluation along the entire
period of routing process. For example, routing strategeesed on geographic
distance cannot make accurate forwarding decision in tee taat the change of
the network topology is frequent and unpredicted, or it cafiorward data farther
when nodes are with similar geographic distance with dastins. Similarly, rout-
ing strategies relying on mobility pattern also need to @ersthe situation that
the data forwarding choice when nodes with similar mobji&gtern. For instance,
two nodes often stay in the same location do not suggesthibgtmeet each other
frequently. The sole mobility pattern metric cannot repreéghe routing criteria in
such situation.

To overcome above-mentioned problems in location-basatingy the pro-
posed routing scheme combines both geographic distanceahility pattern to
comprehensively select data relay for further data delivEhe detailed design of
the routing scheme is represented in the following sections

4.1 Location-based Social Information

We consider a network consisting of multiple mobile nodes thay travel in dif-
ferent locations. Each node is equipped with GPS device@areness of geo-
graphical coordinates.

4.1.1 Location-based graph

We have presented the basic social graph model in Chapteh&.nddes in the
graph represent the mobile nodes in DTNs. The link betweemivdes suggests
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Chapter 4. Location-based Routing Strategy

the social relationship of them and the weight on the linkdates the strength of
the relationship. The involving of location informationrgres the graph in spatial
aspect. Specifically, the network area is with geographacdinates and we convert
it to a grid with squares. Each square is considered as adoaatd is assigned with
a unique location ID. The network area is represented by [, [, ..., [,, wherel;
means locatiomn.

To describe location information and mobility of nodes, wasider their move-
ments as discrete time-varying events. Each event sugipeskscation of a node
with time label. In particular, an event is described by felements: node ID,
location ID, start time and time duration. The start timehis time when the node
enters the location and the time duration is the time lenigd the node stays at
the location. Based on the event sequences, we can obtagtatiical location
information such as the similarity of mobility pattern whics described as time
proportion that a node stays at a location, and temporatitotanformation like
the distance between two nodes at a certain time. The 8tatiktcation informa-
tion suggests the user mobility pattern. For example, ifex ggays at a location
for a large proportion of time, he will likely to visit the sanfocation in the future.
The temporal location information, on the other hand, regnés the instant user
behavior at a certain time. We describe two types of locatibormation in the
following.

4.1.2 Geographical distance

The geographical distance between two nodes measures their physical separation.
Several schemes [87, 45] take the distance as utility fax ttatvarding based on
the fact that the closer geographical distance two nodes, lag more likely they

will meet with each other. We calculate the distance of a phlocations(z, y)
wheren; andn; have visited as:

Gy = [152 = 8],

wheres, is the GPS coordinates of location andg,, is the distance between
andy. In line with the characteristics of utility value that istharger the better, we

make a conversion as: .

Ty — 1+gxy’
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4.1. Location-based Social Information

The largerg,,, the smallerd,, is. Each node visits several locations. To measure
the distance between two nodes, we use a distance matripresent it. Suppose

noden; has visited a series of locatiods = {/;1,li2,- -, lin}, and noden; has
visited L; = {lj1,l;2,---,l;»}. The distance matrix betweérandj therefore is
written as:
i, iy 15
D;; = :
d d;

4.1.3 Similarity of mobility pattern

The similarity of mobility pattern measures the extent that different nodes visiting
the same places. It is calculated by the time proportionttiainodes spend in the
same locations [49]. The larger time proportion that nodag at the same places,
the more similar their mobility patterns are. We show the sneament of similarity
of mobility pattern as follows.

For each node:;, it spends different proportions of time at various locasio
over a defined time interval. Similar to [49], we use a veetQito present its time
proportions of different locations:

n
m; = (€1, C2,y oy Cny ), With E ek, = 1,
k=1

wherecy, is the time proportion that node; at locationk. The product of time
proportion between node andn; in a pair of locationgz, y) is:

Swiy; = Coy * Cyj-

It suggests that the probability that nodestays at locationr and node; stays at
locationy. Suppose node; has visited a series of locations = {l;1, li2, -+ , lim },
and noden; has visitedL; = {l;1,l;2,---,l;,}, we use a matrix to denote the
product of time proportion between andn; in different locations.

Stidin 0 Slinljn

S1 S1

imslj1 imsljn

The matrix depicts the probability that nodgand node:; stay at various locations.
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It reveals the similarity of their mobility patterns.

4.2 Strategy Design

Location-based data forwarding strategies are usuallgroeted by the location
information among different nodes. In this section, we pg®gpa comprehensive
location-based social routing strategy callext in delay tolerant networks.

Figure 4.1: An example of visiting locations

The design of Loc is inspired by the observation that two squle/sically stay
close to each other and commonly visit same locations are fikaly to meet each
other. Such situation occurs between colleagues, neighduat etc. That is, two
nodes with similar mobility pattern and close in geographiocations (i.e. they
share many common visited places and their visited plaesd@se) are more likely
to meet each other. For example, as shown in[Fid. 4.1, suppuated and B are
possible relays to deliver data to noBe Three squares represent the visiting areas
of three nodes respectively. The circles inside of squaeseveral locations they
visit. Overall, the average distance between visiting tioca of nodeA (circles
in the left square) and visiting locations of nofle(circles in the middle square)
is longer than the distance between ndgig visiting locations (circles in the right
square) and nod®’s visiting locations. Besides, nodé shares one location with
nodeD as shown in grey circle, whereas nableshares 4 locations with node as
shown in black circles. Based on the similarity of mobiligtiern and geographical
distance, nod& will most likely be selected for data delivery to nofle Accord-
ing to this observation, we model Loc scheme by incorpogatite similarity of
mobility pattern and geographical distance to the destinatode.

To measure the similarity of mobility pattern and the gepbieal distance,
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Table 4.1: Table of visiting history

Location | Visiting time | Duration | Time propagation
T t At Cy

each node needs to maintain a list of locations they haveedisis shown in Table
4.1, which contains the time of visiting the location as veallthe time proportion
of staying at it. When two nodes encounter, they exchangdighef locations
and calculate corresponding metrics. From the point vieWocdtion information,
on the one hand, the similarity of mobility pattern only m@&as the extent that
different nodes staying at the common places. It cannotctetfie spatial distance
of nodes. The geographical distance, on the other hand,stialys the temporal
value of distance, which cannot present the geographioakokess of two nodes.
Therefore, we propose Loc scheme by combining similaritynobility pattern
and geographical distance. To present this compound nmerasut, we take the
Hadamard product of the two matrices. The Hadamard prododiuges a matrix
H;; that each elemeny; is the product opq elements irt;; andD;;. The operation
is depicted in the following:

Slil,ljldlil,ljl e Slilyljndlilyljn
H;j = Sijo Dy = : :
1 di d

Slimy imyljl Slimvljn imvljn

The matrix presents both similarity of mobility pattern ahe@ geographical dis-
tance of two nodes. We take the average of the sum of all elsnethe matrix
as the geographical metric between nagendn;. The larger of the average, the
closer geographical relation two nodes have, and theréf@renore chance they
will encounter. When two nodes (i.e,; andn;) encounter, for messages carried
by n; (n;), they decide whether to takeg (n;) as the next relay by comparing their
utilities to the destination, which is the average of the siiglements inf;; (H;4).

If the average value of; (n;) is smaller than that of; (n;), the message will be
forwarded fromn; (n;) to n; (n;). The detail of Loc algorithm is illustrated in
Algorithm/[1.
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Algorithm 1: Loc algorithm

input : visiting location information and encounter events in TN
output: utility and data routing decision

begin

assume the initial time i ;

if n, encounter with n; at time ¢ then

foreachdata x in node : do

updateS;q, ;

updateD;,, ;

Hiq, = Siq, © Diq, ;

updateS;,, ;

updateD,, ;

Hja, = Sja, © Dja, ;

it avg(Hig, (1)) < avg(H,q, (1)) then
| forward data tov; ;

foreachdata y in node j do

updateS;q, ;

updateD;g, ;

Hiq, = Sia, © Dja, ;

updateS;q,;

updateD;, ;

Hjq, = Sja, © Dja, ;

if avg(Hjq,(t)) < avg(Hiq,(t)) then
L forward data toy; ;
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4.3 Performance Evaluation

We conduct experiments to study the performance of locdiased social routing
strategies.

4.3.1 Experiment setup

We use HaggleSim simulator [39] to launch our experimenksclvuses encounter
entries as inputs to estimate data delivery path accordirdifferent data routing
strategies. We extract 14-day session from three readstia@ug synthetic traces.
We utilize the GPS location information as the basic loecat@ased social informa-
tion as the input to construct corresponding location-baseial graph and related
compound location information. The simulator generat€®0 messages for each
round of simulations. Each message is assigned with a rasdomnce and desti-
nation. For each message, we keep three copies in the netovankke the data
delivery with higher chance reach destinations. The meskagps alive until the
experimental session (14 days) is end. We do each simul2@itimes and take the
average value of results for statistical convergence.

To measure the location information of nodes in the netwark,divide the
experiment area of data traces into discrete locations.n€h&ork area is marked
with geographic coordinates. According to the coordinatescalculate the size of
network area and convert it to a grid with multiple blocks.cE®lock in the grid
is defined as a location. It is distinguished by a unique 1DecHally, we divide
the MIT Reality experiment area by cellular towers. Sincel Meality data trace
does not contain the GPS coordinates of node mobility andaditm is marked by
detected cellular tower ID, we consider the area of a cellolaer is a location. In
contrast, we convert the experiment area of the other twa sktis to a grid with
adjacent squares. The size of each squaréis*and each of them is assigned with
a unique ID. If a node’s mobility range falls into a locatiove record the visiting
history of the node. We measure the distance of two locabgrike coordinates of
their centers.

4.3.2 Strategies in comparison

We compare the Loc scheme with other two location-basedrdatang strategies:
Mobyspace [49], and GPSR [45].
Mobyspace calculates the similarity of mobility patternByclidean distance
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Figure 4.2: Performance comparison of location-basedesfies on MIT Reality
data trace

of two nodes’ visiting history and chooses the node with sratistance (i.e., more
similar mobility pattern) with the destination node as tetay for data delivery.
Specifically, it considers a node’s visiting history as ateec Each value in the
vector represents the percentage of time that the node atdipe location. The
distance between two nodes is computed by the Euclideaandistbetween two
vectors.

GPSR routes data based on geographical distance. It mag&egygforward-
ing using the geographic positions of a router’s neighbotsée network topology.
Specifically, a node obtains its neighbors’ positions bginfation exchange. Then
it locally chooses the optimal next hop with the neighborggaphically closest
to the packet’s destination. Forwarding in this regimedet successively closer
geographic hops until the destination is reached. When leepaeaches a region
where greedy forwarding is impossible (i.e. packets reathe local maxima), the
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Figure 4.3: Performance comparison of location-basetkesfies on DieselNet data
trace

algorithm recovers by routing around the perimeter of tiggare It exploits the
right-hand rule which traverses the interior of a closed/gohal region in clock-
wise edge order to seek for the next hop.

4.3.3 Performance analysis

To implement the Loc scheme, we set the period for GPS coatebrefreshment
as one day. We use the same settings as the original papé&efonplementation
of Mobyspace and GPSR.

Fig.[4.2 shows the results of delivery ratio, average deatalycast of Mobyspace
and Loc on MIT Reality data trace. Since MIT Reality trace sloet provide co-
ordinates information, the GPSR scheme cannot be evalaatethe utility of Loc
can only reflect the similarity of mobility pattern on the adtace. The presenta-
tion of Loc expresses the same meaning as Mobyspace, thbegltalculation is
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Figure 4.4: Performance comparison of location-basedesfies on Cabspotting
data trace

slightly different. Therefore, they get very similar parftance in terms of various
aspects.

The performance on DieselNet data trace is shown in[Fig.Fg[4.3a shows
that the Loc scheme has similar delivery ratio with Mobyspan DieselNet data
trace throughout the experiment period. Nevertheless RaiS 20% degradation
compared with the Loc scheme in terms of delivery ratio sihee4th day of the
experiment. This degradation attributes to the distartemty of GPSR algorithm,
which does not show the real time distance between curresi¢ aod the desti-
nation, thus makes the relay selection inefficient. Sinmésults as shown in Fig.
14,30, the average delays of three schemes are similar lettags. Afterwards, the
average delay of the Loc scheme and Mobyspace is around 8tBataf GPSR.
The results of average cost as shown in Fig. |4.3c depict higat bc scheme has
0.1 hops lower cost than Mobyspace. The cost of GPSR is theskpwvhich only
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Figure 4.5: Performance comparison of location-basedesfies on synthetic data
trace

takes 0.1 hops of average cost.

The performance on Cabspotting data trace is depicted ag BigThe result of
delivery ratio is shown in Fig._4.4a. It shows that Loc oufpens Mobyspace by
2% throughout the experiment. The delivery ratio of GPSRIW8% lower delivery
ratio in the first half experiment period and then 5% highdivdey ratio than that
of the Loc scheme. Fid. 4.4b presents the average delay of$fpalce and Loc is
60% of that of GPSR from 6th day of the experiment. Similauitssas shown in
Fig.[4.4¢, the average cost of the Loc scheme is very simildr Mobyspace, and
itis around 0.6 hops lower than that of GPSR throughout tipeement.

In a summary, the experiment results show that Loc outpmgothe other
location-based routing strategies in most cases on tha¢evozld data traces.

Similarly, we conduct the comparison of location-basedingustrategies on
synthetic traces and show the comparison results on ondrdata@s = 1.5m/s,
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nn = 100). The evaluation results are shown in Fig.l4.5. The delivatip of Loc
is 8% higher than that of Mobyspace and 15% higher than th@R8R during the
entire experiment period, as depicted in Fig. 4.5a. Threation-based routing
strategies have similar delay for data delivery as showrignl&5b. Additionally,
as shown in Fig.[ 4.5c the Loc scheme takes 0.1 hops more thényddace at
the end of the experiment. It costs 1 hop less than GPS in theriag of the
experiment, and reaches similar cost in the end. The Locnsehmerforms not
worse than other location-based routing strategies. THenpeance on synthetic
traces confirms our results on the real traces.

4.4 Summary of Contributions

In this chapter, we propose a location-based routing sfyaitecorporating geo-
graphic distance and mobility pattern as two aspects ofilmeanformation to con-
duct routing utility. The comprehensive metric is adapgebl more network situ-
ations compared with the metric relying on sole aspect aitioa information. We
conduct the performance evaluation on both real and syottieta traces. The re-
sults show that the proposed comprehensive location-tsasedl routing strategy
outperforms other location-based strategy around 10%msef delivery ratio. It
takes less decay and cost for data delivery.
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Encounter-based Routing Strategy

We discuss the location-based routing strategy in the laapter. However, the
utilization of location-based social information is vemnsitive and needs more
privacy concern [10, 1.1, 72,98, 47]. In contrast, encoubéeed social information
refers to the fundamental element of DTNs. That is, the delteety in DTNs relies
on the encountering event of nodes. Applying such encotrased information
reveals much less sensitive than location information.

Compared with location-based routing, encounter-baseting has different
characteristics. Location-based strategies forward tdatee nodes geographically
closer to the destination, which tend to achieve geograpblwortest routing path.
In contrast, encounter-based social strategies forwata tdathe nodes logically
closer to the destination. It looks for the logical shortestting path.

Inspired by the motivation of privacy preserving as wellles¢haracteristics of
encounter-based routing strategies, we propose a conmzigheencounter-based
social routing scheme.

5.1 Encounter-based social information

We consider two nodes have an encounter if they are in the comaation range of
each other. The encounter-based social graph is modeléweligltowing method.

5.1.1 Encounter-based social graph

As we described in Chaptér 3, we model DTN as a social gaph (V, E, W)
whereV is the set of mobile nodes in the network, the set of soci&slis rep-
resented by and the set of weights of links is depicted By. The social links
indicate the social relations between two nodes and thehweiga link suggests
the social strength. Involving encountering events, twdeschave a social link if
the number of their encounters exceeds a threshold. Théhtwaighe edges is the
number of encounters between two nodes.
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Social information in an encounter-based social graphsefe the information
that either directly obtained from encounter-based sap@bh, or social analysis
results of contact graph. It indicates the structural stafa node in the constructed
weighted graph. Typical encounter-based social inforomaticludes: social degree
of a node, which is known as the degree of a node in encouast®ebsocial graph,
representing the number of friends (encountering nodes)alsstrength between
two nodes, denoted by the weight of an edge between the paidefs in encounter-
based social graph, and social similarity, which represstbt/ the common friends
of two nodes in encounter-based social graph and etc.

Specifically, we address two widely used social propertiessted from encounter-
based social graph: social similarity and social centralit

5.1.2 Social similarity

Social similarity evaluates the number of common friends of two nodes, which
indicates the trustiness and cohesive of social links [23, /e define the social
similarity as follows:

Sij(1) = L+ |Fi() [ Fy(7) (5.1)

where F;(7) (F;(7)) is the set of friends of node; (n;) at timer and plus 1 is
to avoid 0 values. Thus, the social similarity betwegrand the destination,

is S;4(7). Intuitively, if a node has highes$; ;(7) value, it shares more common
friends with the destination, thus more likely to transrhé message successfully.

5.1.3 Social centrality

Social centrality is the quantification of the relative importance of nodesm$o-
cial network. There are various definitions of centralitycls as edge betweenness
[31,30] or closeness centrality [30], which cannot venyilgdee exploited in DTNs
since they need global information to estimate the cemyraéilue. Therefore, we
use the Freeman’s degree centrality [30], which only neledseighbor informa-
tion, to define social centrality in the context of DTN. For@len;, its centrality

is defined as follows:
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whered;, () = 1 if a direct link exists between; andn, at timer and N is the
number of nodes in the network. Structurally, a central romkestrong connection
with other nodes, and it is suitable to serve as a hub for inébion exchange.
Previous research [80] shows that there is a strong statistependency between
delivery ratio and social centrality.

5.2 Strategy Design

Encounter-based data routing schemes handle data basgdesrdeect encounter
information or various social information derived from enater-based social graph,
such as social degree and the strength of social ties. Wegeapsocial-based rep-
resentative data routing scheme in this section, whichnsagasSoc.

Previous research has shown that the status of nodes ina setwork is un-
even: some nodes are in the central positions of the netwbilke the others are in
the edges [92]. An example is that a small fraction of nodesipg most of degrees
in the social graph structure. Generally speaking, forwardata to the node who
is more social active will increase the probability of da&ivery. Based on this
consideration, we propose the Soc scheme combining saaéladity and social
similarity to find the most feasible social path for data farding.

Table 5.1: Table of encounter history

Encounters | Time | Smilarity | Centrality
n; ti | Sij(t) Ci(t;)

To determine the value of social centrality and social snty, for a noden;, it
records the encounter history for a perioddf’ as shown in Table 5.1, which con-
tains the encounter time and its social properties accgigirMeanwhile, it also
maintains a list of friends. When two nodes encounter, tixep&nge their friend
lists to compute the social similarity. Noticing that sdaiEnilarity and social cen-
trality only reflect the features of network structure, wsoaheed to consider the
dynamics of social networks. Since the encounters of moimdes change dy-
namically, the comprehensive utility should be a time-wagyfunction. To address
the dynamic feature and avoid the accumulative effects, efiae the comprehen-
sive utility as the convolution of social similarity and salcentrality with a factor
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Chapter 5. Encounter-based Routing Strategy

Algorithm 2: Soc algorithm

input : encounter events in DTNs and encounter-based social graph
output: utility and data routing decision

begin

assume the initial time i, ;

if n; encounter with n; at timet then

foreachdata x inn; do

Yia,(t) = Ci(to);
Yja, (t) = Cj(to);
foreach encounter between n; and ng, att; 4, (t;4, < t) do
| Yia,(t) = Yia,(t) + Sia, (tia,) * Ci(tia,)/(t — tia,) ;
foreach encounter between n; and ny, att; 4, (t;4, < t) do
| Yia.(t) =Yia,(t) + Sja.(ta,) * Ci(tja,)/(t = tja,) ;
if Y;de (t) < Y},dm (t) then
| forward data tov; ;

foreachdatay inn; do
Yja,(t) = C;(to);
Yi.a,(t) = Ci(to);
foreach encounter between n; and ng, at t; 4, (t;q4, < t) do
| Yia,(t) = Ya,(t) + Sja, (tia,) * Ci(tia,)/(t = tia,) ;
foreach encounter between n; and ng, att; 4, (t; 4, < t) do
| Yia,(t) = Yia,(t) + Sig,(tia,) * Ci(tia,)/(t —tia,) ;
if Y;de (t) > Y},dy (t) then
L forward data toy; ;
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5.3. Performance Evaluation

decaying as time.

Yia(T) = Sia(T) @ (Ci(7)/T).

— /TTo Si.a(T) * jcf(jz_

The convolution operation provides a time-decaying dpson of all prior val-
ues of social similarity and social centrality. The utilisfupdated each time by
accumulation of social similarity when a new encounter eectfhe decay func-

tion suggests that the most recent encounters typically treeymore influence, and
the impacts of previous encounters decrease as elapsedningocial centrality.
When two nodes (i.e. node andn;) encounter at time, for messages carried by
noden,; and messages carried by nodethey are determined whether to be trans-
mitted ton; (n;) by comparing the utilities of,; andn; to destinations. It 4(¢)
(Y;.a(t)) is smaller thany 4(t) (Y q(t)), the message will be transmitted from
(n;) ton; (n;). The algorithm of Soc is outlined in Algorithim 2.

5.3 Performance Evaluation

We conduct experiments to study the performance of the ettepbased social
strategies.

5.3.1 Experiment setup

We use HaggleSim simulator [39] to launch our experimenksclvuses encounter
entries as inputs to estimate data delivery path accordingjfterent data rout-
ing strategies. We extract 14-day session from three datadrand synthetic data
traces. We utilize the encountering events as the inputistoact corresponding
encounter-based social graph and related social infoomaiihe simulator gener-
atesl, 000 messages for each round of simulations. Each messagegs@dsvith
a random source and destination. For each message, we keepctpies in the
network to make the data delivery with higher chance reactstinations. The
message keeps alive until the experimental session (19 dagad. We do each
simulation 20 times and take the average value of resultsétistical convergence.
To show the social features of composed encounter-baséal goaph, we in-
vestigate the structural properties of the graph from asandelected periodical
social graph. We first measure the cluster coefficient okthlisga traces. The clus-
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Figure 5.1: Cumulative distribution function of shorteatiplengths

tering coefficient for MIT Reality is 0.5137, DieselNet hd® tcoefficient value
0.7365 and the clustering coefficient of Cabspotting is ®#4%Ve also measure the
shortest path length of three composed encounter-based @@phs. By randomly
sampling pairs of nodes in the social graph and calculatieg tverage shortest
path lengths, we draw the cumulative distribution funct{@F) in Fig.[5.1. As
shown in the figure, over 95% of the shortest paths in the tatsesets are below 5
hops. And almost 100% of the shortest paths are below 6 hdpss for a random
pair of nodes in the DTNs, they are connected by a shortelstiatr than 5 hops
with high probability. The two measurements suggest traeticounter-based so-
cial graphs are all small world networks [91] and they are lastered as social
networks [92], which suggests the application of sociaduaproperties, such as
social centrality and social similarity are feasible foceanter-based social rout-
ing strategies.

5.3.2 Strategies in comparison

We compare Soc with two other encounter-based social pstiategies: Bubble
Rap [40] and SimBet [24].

Bubble Rap considers the data routing in pocket switchedar&t(PSN) which
consists of several communities and there are social oektiips among users. It
uses k-clique percolation as the basic community detectietihod. There are two
steps of routing in Bubble Rap. The first step is to forwarcadatthe destina-
tion community. It delivers data items from outside of thetdetion’s community
according to a node’s global social centrality. If a nodehwitgher global social
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Figure 5.2: Performance of encounter-based social schem®&4T Reality data
trace

centrality, it will be selected as the relay for data forwagd Within the destina-
tion’s community, the forwarding utility is based on a na@'cal social centrality.
The data item will be forwarded to a node with higher localialboentrality.

SimBet takes the linear combination of social similaritydaocial centrality
as the forwarding utility to construct the data forwardirgtlp Instead of only
considering single social property, the SimBet schemeidensthe utility function
as the sum of social similarity and social centrality, whickasures both the social
closeness with destination node and social position of tduenn the network. In
this work, the social similarity is represented by the numifecommon friends.
The social centrality is calculated by local betweennedswe §cheme chooses the
node with higher combination utility value as the relay fatalforwarding.
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Figure 5.3: Performance of encounter-based social schem@gselNet data trace

5.3.3 Performance analysis

To implement the Loc scheme, we set the rate for refreshnmfesdaal links as
once per day. We use the same settings as the original pagkefionplementation
of Bubble Rap and SimBet.

The performance of encounter-based social schemes on MlityRis shown
in Fig.[5.2. It shows the dynamics of delivery ratio, averdgky and average cost
as a function of time. Due to the low contact rate in DTNs, tbdenmay not reach
the destination if the time that the data is sent out from thece is short. Thus, the
delivery ratio shows the tight relation with time and inges as time passing. The
average delay changes accordingly. Regarding the perfurenaf delivery ratio on
MIT Reality, as shown in Fid. 5.2a, due to the social chargttes in MIT Reality
trace is apparent, the Soc schemes performs similar as 8Rap. Specifically,
the Soc scheme outperforms Bubble Rap by 4%, but SimBetpesfaot as well
as the others. The Soc scheme achieves more than 15% high&irtiBet in the
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trace

end of the experiment period. Similar results are shown @ in terms of
average delay. The average delay of Soc is a little longer titat of Bubble Rap,
but 40% shorter than that of SimBet in the end of the experim&ocordingly, in
the end of the experiment, Bubble Rap takes the longestgy@ast, which is 1.2
hops longer than that of Soc, while SimBet takes 0.5 hopgahaverage cost than
the Soc scheme.

Fig. [5.3 is the performance on DieselNet trace. AlthoughsBlidet is a bus
trace, it still shows strong social characteristics in is@inter-based social graph.
As shown in Fig. [[5.3a, Soc has slightly lower delivery ratiart Bubble Rap
throughout the experiment, which is about 1%. In contrdst, delivery ratio of
Soc is 10% higher than that of SimBet in the end of the expeariai@eriod. The
comparison of average delay is shown in Fig. 5.3b, wherehtteetschemes take
similar delays before 6 days experiment time. Afterwarils average delay of Soc
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is 2% longer than that of Bubble Rap, but 10% shorter thandh& mBet. Ad-
ditionally, Bubble Rap takes the highest average cost vduole has the lowest, as
shown in Fig.[5.3c. The average cost of Soc is 0.8 hops loveer tihat of Bubble
Rap and 0.3 hops higher than that of SimBet in the end of therexpnt.

The performance of encounter-based social schemes on @abgps shown
in Fig[5.4. Fig.[5.4a shows that throughout the entire expent, the Soc scheme
outperforms SimBet by 10% in terms of delivery ratio, whilet#ble Rap achieves
very low delivery ratio. The poor performance of Bubble Raggests that the so-
cial centrality metric does not opt to Cabspotting datagfac data routing. Similar
results as shown in Fig. 5.4b and Fig._5.4c. The average délhye Soc scheme is
50% of that of SimBet and 25% of that of Bubble Rap respegtirethe end point
of the experiment. The average cost of Soc is almost the sathe @ost of SimBet
throughout the experiment. It has 0.5 hops higher than BuBlb in the first two
days of the experiment. The cost of Bubble Rap keeps growidgtdnas 0.7 hops
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trace

higher than others in the end of the experiment.

Overall, the experiment results show that the Soc schemedmpetitive per-

formance compared with other encounter-based social sshemthree real data
traces.

To provide general assessing for encounter-based sociahgoschemes, we
compare the performance of encounter-based strategigstiresic data traces.

Here we show the comparison results on one instance of tfases 1.5m/s,
nn = 100), as presented in Fig. 5.5. Fig. 5.5a suggests that the ®ecwechas
5% higher delivery ratio than that of Bubble Rap and SimBeirdythe entire ex-
periment period. Similarly, the Soc scheme has outstang@nfprmance in terms
of delay and average cost as shown in Fig. 5.5b and[Fig] Srbpatrticular, Soc
takes 6% lower delay than both Bubble Rap and SimBet in theoétitk experi-
ment. At the same time, throughout the experiment, Soc usggglg higher cost
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Figure 5.7: Performance comparison of Soc and Loc strategieDieselNet data
trace

(less than 0.1 hops) than Bubble Rap. It uses 0.1 hops lesthansSimBet. The
evaluation of encounter-based social routing strategiesyathetic traces is in line
with the results on the real traces that the Soc scheme hgsetitive performance
with other encounter-based social schemes.

5.3.4 Compare with the Loc strategy

In this subsection, we compare Soc to Loc in terms of vari@rBpmance metrics
on three real data traces and synthetic data trace.

The performance comparison of Soc and Loc on MIT Reality @shin Fig.
5.6. Fig.[5.6a presents the comparison of delivery ratievéals that both Soc and
Loc have very close achievement in terms of delivery ratloeiaithe delivery ratio
of Soc is slightly higher (about 1%) than that of Loc throughthe experiment.
Two schemes also perform similarly regarding average datalyaverage cost, as
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Figure 5.8: Performance comparison of Soc and Loc strategéCabspotting data
trace

shown in Fig.[5.6b and Fig. 5.6c, respectively. Loc takestke lhigher average
delay than Soc. Loc take 0.05 hops less cost than Soc.

The delivery ratio on DieselNet as shown in Fig. 5.7a presémt the Loc
scheme has 1% degradation compared with the Soc schemg theaiantire exper-
iment period. Meanwhile, the Soc scheme outperforms thescheme slightly in

terms of average cost as shown in Fig. 5.7c. They have veijesiaverage delay
as shown in Fig. 5.7b.

The performance comparison on Cabspotting is shown in [Fi§. Bhe Loc
scheme outperforms the Soc scheme by 2% in terms of deliaéinyas shown in
Fig. [5.8a throughout the experiment. At the same time, treesBheme takes 2%
higher average delay than that of the Loc scheme as shown.ifb8b. Regarding

the average cost, as shown in Fig. 5.8c, the Soc scheme cbstsyi} less than the
Loc scheme.
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One instance of comparison of Soc and Loc on the synthetoedrfs =
1.5m/s, nn = 100) is shown in Fig.[5.9. Similar as other data traces in the real
world, both Soc and Loc have closely performance. Spedyjcabc outperforms
Loc by about 3% in terms of delivery ratio as shown in Fig. Gthe entire ex-
periment period. The average delay of Loc and Soc as praesanfeig. [5.9b is
twisted together at the beginning of the experiment and therSoc scheme has
lower delay than Loc. The average cost as shown in[Figl 5&gepits that Soc has
0.2 hops higher cost than Loc in the beginning of the expertraad the cost of
Soc is 0.1 hops lower than that of Loc in the end of the expertme

Besides, we conduct a group of experiments on the synthatectdaces with
different node speeds ranging frdibm /s to 2.5m/s (nn = 100). We record the
experimental results in the end of each experiment as shoviigi [5.10. The
delivery ratio of two schemes as a function of node speed othsyic data traces
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is shown in Fig[ 5.10a. The delivery ratio has slightly imoent as the increase of
speed. This attributes to the fact that faster speed ines¢he chance of encounters
among nodes in the network. For each node speed, the Socscugperforms Loc
by about 3% in terms of delivery ratio. The average delay asvahn Fig.[5.10b
suggests that the higher speed leads to the lower averagye ddie Soc scheme
takes 15% less delay than the Loc scheme in all speeds. Simigaerage delay,
the average cost of Soc and Loc is presented in Fig. 5.10ccdsief both schemes
decreases as the increase of the speed. Besides, in eadh Spedias about 0.1
hops less cost than Loc.

Additionally, we compare Soc with Loc in terms of differergtwork size on
the synthetic data traces. The results are recorded in thefezach experiment as
shown in Fig.[5.11. The number of nodes in five different sgtithtraces is 20,
40, 60, 80 and 100 respectivelys( = 1.5m/s). The delivery ratio increases as
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function of network size

the increase of the number of nodes in the network. Accolgitige general trend
of average delay and average cost declines as the numbede$ ncreases. The
delivery ratio of two schemes is shown in Fig. 5.11a. In linthwaur previous re-
sults, the delivery ratio of Soc is 3% higher than that of Lathwespect to different
network sizes. The average delay as shown in[Fig. 5.11b tordmemes suggests
that it is very low in the case of the number of nodes equal tdtd@creases when
nodes number is 40 and then decreases. The Soc scheme takesverage delay
when the network size is small while it uses less when the or&taize becomes
large. The average cost as shown in Fig. 5.11c presentshth&@dc scheme has
slightly (0.1 hops) better performance than the Loc scheme.

Overall, our comparison of the Soc scheme and the Loc schanbeth syn-
thetic traces and real data traces suggests that they maNargperformance in data
routing, whose difference is within 5% in most cases. Nowadser location infor-
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mation is considered to be highly private and people usaa#ynot willing to share

it over the network, while encounter-based social inforaralike social degree is

much less sensitive and easy to obtain. Therefore, the wsagpeounter-based so-
cial information is more privacy preserving than locatimsed social information
for data routing in DTNSs.

5.4 Summary of Contributions

The proposed encounter-based scheme integrates sociasretluding social
centrality and social similarity to calculate a compretamsouting metric. We pro-
vide comprehensive performance comparisons of Soc togsttieother encounter-
based social schemes. The proposed encounter-based)\stoatperforms with
other encounter-based social strategies up to 15% in tefmslivery ratio. Our
experiment results also show that routing strategies Ustagion-based social in-
formation and encounter-based social information havegrafeant difference in
performance: they perform closely in delivery ratio, dedayl cost with a slight dif-
ference within 5% in most cases. Our analysis indicatesldication-based social
information is not critical in designing routing strategji@lthough it can provide
accurate position information and mobility pattern of n@d®ue to the fact that
physical location information is sensitive and hard to et our work suggests
that encounter-based social information could be a goosiute for data routing
in DTNs for the sake of privacy preserving.
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Chapter 6

Community-based Routing Strategy

One characteristic of two proposed social-based routragegies along with other
previous routing schemes in DTN is that they apply a utilitydtion for data for-
warding decision making and choose the nodes with highktyutalues as relays
for data delivery. We call this kind of schemes as utilityséa routing strategies.
The most widely used utility metric is the frequency of nodeaunters, where
messages are forwarded to a node who is more frequentlymgdég destination
than the current node [56, 85, 15]. Another important wtilitetric is the inter-
contact time of node pairs, where massages are forwardbd twtes with smaller
inter-contact time to reduce transmission delay [7, 20, S®&veral strategies con-
sider geographic distance as a metric and try to forward tessages along the
shortest geographic distance path [49, 65, 18]. Inspirethbyresearch of social
network analysis, the utilities such as social similaritg docial centrality are also
proposed to enhance data forwarding via social connecfBi40, 63, 41, C4].
Most existing utility-based routing strategies employ ag or multiple utility
metrics to compose their utility functions. The commonlgdsitilities and their
representative strategies are listed in Table 6.1.

Table 6.1: Routing utilities in DTNs

| Utility metric | Definition | Strategies |
Encountering frequenayNumber of encoun-PROPHET [56], FC [42], Seek and
ters in a period ofFocus [85], MaxProp [15], RAPIL
time [7], and etc.

Inter-contact time The time interval be-RAPID [7], Two-Hop-Relay [20]
tween two contacts | ASBIT [5€], and etc.

Geographic distance | The distance of useMobySpace [[49], CAR [€5], M\,
locations [1€], and etc.
Social centrality The de4{ SDM [33], SimBet [24, 12], Bubt
gree/betweeness |bleRap [40], PeopleRank [63], and
of a node in theetc.
network
Social similarity The common socialSimBet [24, 12], Social-Greedy
features between twd41], Social feature-based [94], ahd
nodes, such as corpetc.
mon friends

A
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Figure 6.1: Proportion of blinds spots and dead ends intyitilased strategies

There are two problems in utility-based routing strategigi®d spot anddead
end. Consider the scenario that the source negdeants to send a message to the
destination node,. In the utility-based routing;; needs to forward the message to
a node with higher utility. However, #f; and all its neighbors have the similar utility
near to zero, it will be difficult to decide which node showdthly the message. Such
problem is called blind spot for the reason that the next looperis hard to be seen
from the current node. The dead end problem occurs whéras a higher utility
value than all its neighbors, in which case the messagedk stw; and not able to
be delivered further.

The blind spot and dead end problems are rarely noticed ipréngous works,
but they commonly exist in utility-based strategies. Fidll $hows the percentage
of blind spot and dead end when applying five utility-basedating strategies in
three DTN datasets (MIT Reality [25], DieselNet [16] and §aditting [77]). Ac-
cording to the figure, in most utility-based strategiesrehee more than 20% of
data transmissions encountering the blind spot and deagreibtems in the MIT
reality trace. Similar percentages are observed in theelNies and Cabspotting
traces, varying from 14% to 27%. Such problems will cleaffe@ the delivery
ratio of DTN routing, and they are not yet well addressed enghst.

The community-based strategies forward data accordingraamty structure
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6.1. Mobile and Social Characteristics of DTN

based on the fact that people tend to group into communitigbdir social rela-
tionships. By dividing the network into multiple commueis, the nodes within a
community have strong connections, while their links asi@smmunities are weak
ties. The community structure favors intra-community camiation where nodes
are closely connected (thus reduces the chance of blincaspgadead end), but also
encounters the difficulty of inter-community communicatioa weak links. Exist-
ing community-based routing strategies employ naive ictenmunity mechanism
such as flooding [51], or rely on complicated operations staler direct links
[13] or overlapping nodes [33] between communities, whiah tane-consuming
and inefficient. Generally speaking, community-basedingustrategies confront
two challenges. On the one hand, the existing communitytjpeaing algorithms
are complicated and static, which is hard to adapt to themymand mobile DTN
environments, thus distributed community partitioning mechanism is desired. On
the other hand, to overcome the blindness of data forwar@ngng communities
via weak ties, it needs to measure thigities across communities for a better rout-
ing decision making.

The above analysis reveals several weakness of existingrDiihg strategies.
In this chapter, we propose a novel community-based rostiragegy called Social
and Mobile Aware Routing sTrategy (SMART) for DTNs. SMARTckdes the
above problems to achieve the following objectives: (1ngigantly alleviating
blind spot and dead end problems; (2) distributed commupatsitioning; and (3)
efficient inter-community communicating.

As we model DTN social graph in Chapter 3, we define the “entatibetween
two mobile devices as the event that they move into each 'stbemmunication
range. We use aeighted social graph to formulate encounters among mobile
devices. Each device is denoted by a node in the social gréptwo devices
encounter, there is agtlge between them, which builds a social link between two
nodes. We consider two nodes with social link as friends. fimaber of friends
that a node has is calletdgree of the node. The weight of an edge corresponds to
the strength of social links, which can be represented bytimeber of encounters
over a fixed time interval.

6.1 Mobile and Social Characteristics of DTN

In this section, we utilize three real DTN data sets as desdrin Chapter 3 to
explore people mobile and social characteristics. The hitypbf DTN users reveals
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(a) Taxi #108 (b) Taxi #352

Figure 6.2: Two taxi trajectories in Cabspotting trace

locality and their interactions reveebmmunity structure.

People movements are not random and appear regularitiestiag in some
geographic areas. For example, people move regularly fromehto office and
vice versa; buses run along stations according to schedaieslrivers tend to pick
up guests in some popular areas, etc. We observe the madhaliggtories of two
taxis (#108 and #352) chosen from the Cabspotting trace;hndie illustrated in
Fig.[6.2. It can be seen that most of the time taxi #108 movesaaA, while taxi
#352 moves in are®. We call such kind of movement of which the trajectory is
mostly restricted in a small area lagality.

To further investigate the locality of movements, we analifze distribution of
human mobility scope. We defirgeographic mass point as the centroid of a node’s
trajectory, which is calculated by averaging the GPS coateis of its trajectory.
We compute the geographic mass points of all nodes in theonketand study the
geographic distance their trajectory coordinates awam ftioeir respective mass
points. Taking Cabspotting data trace as an examplel Bghaws the probability
distribution function (PDF) and cumulative distributiaumiction (CDF) of the tra-
jectory coordinates departing from their mass points intthee. According to the
figure, although the farthest coordinates is 30km away frloenmhass point, most
of the movements are nearby their mass points, e.g., ab8atdQrajectory co-
ordinates within an area 5km from mass points. The majofiithe coordinates
concentrate in areas 2km, 3km, and 4km away from mass poirtiss verifies
the locality property of nodes movements: most movemenEBTi nodes are re-
stricted within a range of small distance, and there are ardynall proportion of

60



6.1. Mobile and Social Characteristics of DTN

0.8

0.6

CDF

— i
0 5 10 15 20 25 30
Distance from mass point [km]

0 5 10 15 20 25 30
Distance from mass point [km]

Figure 6.3: The CDF and PDF of node movements (Cabspotting).

long distant movements.

6.1.1 Distributed community partitioning

Community is defined as a social unit that shares common v#lie a tight and
cohesive social entity. Intuitively, communities are faunbased on locations or
interests [29, 70, &, 68]. People in the same geographiditocar sharing the
same interest are likely to be in the same community. In tméeot of DTNs, we
use geographic locations to study community structure avestigate the relation
between encounters and geographic distances for the @igco’communities. It
is likely that there is correlation between encountering g@@ographic location: the
closer two nodes, the more often they meet each other. Walatdcdhe number
of encounters between node pairs as a function of the distainiheir geographic
mass points in Cabspotting, as shown in Figl 6.4. It illusgdhat the number of
encounters decreases rapidly when the distance incredsiel, implies that when
the distance becomes longer, the number of encounters lescemmaller. There is
no node pair with distance greater thinn having more than00 encounters. This
verifies the strong correlation between location and entesing.

Inspired by the above observation, we propose a dynamic contyrpartition-
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Figure 6.4: The number of encounters vs. distance (Calisgptt

ing algorithm. Unlike existing community partitioning aigthms such as k-clique
percolation [71] and Girvan Newman algorithm [67] etc. whgtobal network
topology information is needed, our algorithm only usesl@ncountering statis-
tics of nodes. It is more suitable for distributed implenagioin in DTNs. The basic
idea is adaptively grouping nodes into communities stgriiom a random parti-
tion (i.e. m communities) of the network. The detailed community piarting
process is described as follows.

The community construction process is divided into two staghe bootstrap
stage and the evolution stage. In the bootstrap stagmdes are randomly selected
and each node is assigned with a uniqgue community ID. Nod®owitcommunity
affiliation will choose one community through encountersiluevery node in the
network is assigned with a community ID. After this stage, letwork hasn com-
munities. In the evolution phrase, each node counts the#fith parameters (APS),
which indicate the number of encounters with nodes in ddfieccommunities. Then
it adjusts the community affiliation according to updatedsAM/e use a vector to
present the affiliation parameters of node

EZ' - {aplwap%u e 7apmi}7
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6.1. Mobile and Social Characteristics of DTN

whereap;, is the AP thatn, connects to community’; denoting the number of
encounters betweem, andC;. Whenn, encounters a node in community;, it
updates its AP value accordingly, and adaptively changesoinmunity affiliation
to the community with maximal AP value in the vector. We calfr @lgorithm
m-partition.

Algorithm 3: m-partition algorithm
input : nodelN; and AP vector
output: the community ID of nodeV;

begin
Assume there are: communities to be detected ;
for Encounter with N; do
if N;.communityl D = null then
L N;.communityl D = N;j.communityl D,
else
y < Nj.communityl D;
x < N;.communityl D,

if y = x then
L APy, = APy, + 11
else

L apy, = apy, + 1,
if ap,, > ap,, then
L N;.communityl D = v,

The algorithm runs dynamically as each encounter occurbennetwork in

a distributed fashion. Therefore, the community structuesy change from time
to time and is maintained dynamically. We show that the compation cost of
m-partition for maintaining community members is low in DINGiven two com-
munitiesA and B, there aren nodes inA andn nodes inB. Suppose a hode; in
community A needs to switch its community fromd to B, it first obtains the new
community list from the encountered node in commurity If we consider the
traffic overhead for transmitting one node IDlashe communication overhead for
obtaining community members will be It then floods its ID to its new community
B to make other nodes in communifyy be aware of;. The communication cost
will also ben. Furthermore, when a node in communitymeets a node in com-
munity B, it checks the community member list to see whether any nbdages
their community identity. In this case, changes frond to B. Suppose there are
k encounters between communityand B. The cost for transmitting node ID of
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n; IS k. The node in communityl floods this information to make the remaining
nodes {n — k nodes) inA exclude the membership af from their local commu-
nity, which needsn — k transmissions of ID of;. Overall, the communication
overhead for maintaining community members caused by omerzmity switch
action isO(m + 2n).

6.1.2 Locality of user contacts

According to the above observation, it has high correlabetween user move-
ments and their encounters. Thus the locality of user mowésris also reflected
to their encounters. To investigate such locality, we defiveetypes of encounters
after community partitioning: when two nodes move into eaitter's communica-
tion range, if both nodes are from the same community, westah encounter a
local contact; if the encountering nodes are from different communiiigs,called
aremote contact. Since a node tends to move in a local area, which resultgin fr
guent local contacts. In contrast, only a small proportibnser movements are
long-distant, which yields remote contacts forming crogsimunity communica-
tions.

()/V Q ///;:ommunity B
}‘\‘ a O /,”“ A/i;/O d Q Q /:
“\\\ ( : /// : \“\ //,/

Figure 6.5: Local contact and remote contact

Fig. [6.5 shows an example of local and remote contacts. Ifighee, arrows
denote the movement of nodes. The pair, b > makes a local contact, and the
pair < ¢, d > makes a remote contact. We calculate the proportion of mmatiacts
and remote contacts of the three DTNs after applying our conityr partitioning
algorithm (withm = 10). The results are shown in Tallle 6.2. It presents that local
contacts are majority for all three traces and remote ctste minor. MIT Re-
ality has 19.7% remote contacts; DieselNet has 7.3%; andpodiing has 9.9%,
which confirms the locality of user contacts. Although reencdntacts only take a
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small fraction, they play an important role for informatiexchange since they are
the “bridges" between communities. The more remote caositéfoe more active a
community interact with others. It enlightens the idea ahgdocal contacts for
intra-community communication and remote contacts fa@ricbmmunity commu-
nication. The detailed approach is presented in the subs¢gaction.

Table 6.2: Proportion of local and remote contacts

\ Traces | MIT Reality | DieselNet | Cabspotting |
Local contact (%) 80.3% 92.7% 90.1%
Remote contact (%)  19.7% 7.3% 9.9%

6.2 Strategy Design

In this section, we introduce the social and mobile awarémgstrategy (SMART)
for DTNs. The basic idea of SMART is to divide the DTN into sesl&€ommunities
using community partitioning algorithms, deliver the neggsin the same commu-
nity via local contacts, and forward the message to othemaonities via remote
contacts. The details are described in the following.

6.2.1 Assumptions

Before presenting the detailed design of SMART, we intr@smme basic concepts
and assumptions.

e Assume a dynamic community partitioning process (irepartition) is ap-
plied to cluster the social graph into a number of commusiitie{C}, Cs, - - - , Cps }.

e Eachnode; is assigned with a community 10; and a setr(C;) = {n;|Vn; in C;}
indicating the members in the same community. The commiidignd com-
munity members are obtained and maintained from the refattramunity
partitioning process.

e Each node records the encounter history for a period of t\hiewhereAT
is a time window representing one day or one week intervalchBade
maintains the history of local contacts that occur withia kibcal community
and remote contacts that occur across different commanitie
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Table 6.3: Local contact table

nl n2 “ee nl “ e nN

Gi | Go |-~ | 1| - | Gn

e Local contacts are recorded intbagal contact table, whose format is shown
in Table[6.3. It records the contact frequency of a node witleionodes in

the same community. In the table; (j = 1,2,---, N) is the ID of a node
in the local community and,; (j = 1,2,---, N) is the contact frequency
betweem,; andn; in AT'. If n; = n;, let(;; = —1 indicating that the contact

with itself is not countable.

The contact frequency is the number of encounters overmine pieriodAT.
It is calculated by:

o Ztho X(t)ij
G = AT ’

whereX (t);; = 1 if two nodes contact at timg otherwise X (¢);; = 0.

Table 6.4: Remote contact table

CLlC TG [ [Cy
mir | M2 | - | L miv

e Remote contacts are recorded intoemote contact table, whose format is
shown in Tablé 6]4. It records the contact frequency of a neite other

communities. In the table}; (j = 1,2,---, M) is the ID of a community
(there areM communities in the network) angl; ( = 1,2,---, M) is the
sum of encounters that with nodes inC; over AT'. Again,n;; = —1 when

C; = C; suggesting that the local contacts is not reflected from eheote
contact table.

When a source node, sends a message to the destinatipm, checks the lo-
cal community members to see whethegris in the same community. H, andn,
are in the same community, we apply iatra-community communication process.
If n, andn, are in different communities, we apply amter-community communi-
cation process. The two processes are described as follows.

6.2.2 Intra-community communication

If a source node, and a destination node, are in the same community by check-
ing local community members, it is possible to apply traatgl utility-based strate-
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gies for data forwarding. However, to avoid the problemslofdospot and dead
end as mentioned before, the intra-community routing seheseds to be carefully
designed.

To against blind spot and dead end, we need a social featm&dg metric that
accumulates encounter effects and decays according tmtieesrsocial status and
time elapsed. We consider each encounter has an effectudiibevalue, which is
positively correlated to the social relation (i.e. socialifarity) between two nodes.
That is, two nodes with closer social relation lead to hightéity increase in each
encounter. Besides, the encounter effect decays depeadiitg social status and
time elapsed. An earlier effect will have less effect rermgjndue to temporal
factor. Meanwhile, a node with high social status will mater further encounters.
To represent this motivation, a node with higher sociabstat the network should
have a slower decaying speed on the encounter effect. Corglimporal and
social factor, each encounter effect decays as the soaiaissbf a node and the
time elapsed. To select a relay, the scheme will evaluatachemulative effects
produced by the encounters and the decaying speed of tlutsefiéle provide the
formulation of our scheme as follows.

As the first step, we give the definition of social relation andial status. The
social relation denotes the social closeness between td@esnand social status
shows the relative importance of nodes in the social netwAtthough the social
relation and social status can be represented in many sigalésl manners [2, 24],
we choose two representative expressions to illustratecheme. Namely, we use
social similarity to represent the social relation, asatial centrality to represent
social status.

Social similarity: itis defined as the number of common friends between a pair
of nodes, indicating the trustiness and cohesiveness adldoes between them
[23, 22]. As explained in Chaptér 5, social similarity can daéculated by the
following equation.

Sii(7) = |Fi(7) [ Fy(r)| + 1, (6.1)

whereF;(7) (F;(7)) is the set of friends of node; (n;) at timer. The intersection
operation is to obtain the common friends between two nodéphus 1 is to elim-
inate the effect 0f. When two nodes encounter, they exchange their friendtbsts
calculate the social similarity.

Social centrality: it is a quantification of the relative importance of nodesia t
social network. There are various definitions of centralitye use the Freeman’s
degree [30] to define social centrality as described in Glréit For a node;, its
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centrality is defined as follows.

N di (T
Ci(r) = “T() (6.2)
whered,;(7) = 1 if a direct link exists between,; andn, at timer and N is the
number of nodes in the community.
Both social similarity and social centrality only requiceal information, and
they can be calculated locally in DTNs by exchanging infarorawith neighbors.
The encounter effect between two nodes is therefore dehgtdte social sim-
ilarity. To model the decaying effect, we introduce a deaaycfion with respect to

social centrality and time as follows.

Di(t—71) = , (6.3)
wherer is the time when the encounter occurs. The decay functigingebn both
social centrality and elapsed time reduces the accumaleafiects of the utility
value.

If an encounter occurs in each time unit, the accumulatifectf of encounters
between two nodes with decay between nogd® destinatiom, can be formulated
as the convolution of Eq. 6.1 and EQq.16.3.

Yia(T) = Sia(T) @ Di(T),

T (6.4)
= / Si.a(T) * Dy(T — 7).

7=0

However, the encounter only occurs in several time uniterdlore, the accu-
mulative effects of encounters are represented by a déscogivolution as:

T
Uia(T) = X(7)ia * Sia(7) * Di(T — 7), (6.5)
=0

whereX (7);, = 1 when an encounter occurs at timer whenr = 0 (to initialize
the utility value), otherwiseX (7);, = 0. The utility function describes that when
each encounter occurs, it yields an encounter effect repted by social similarity.
Each effect occurs at different time decays as a decay fumctmposed by social
centrality and time, indicating the encounter effects ofodenwith higher social
status decays slower than a node with poor connection toettveork and a recent
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encounter effect decays slower than a older encountetteffec

Based on the above utility function, we propose our intrasswnity routing
principle.

I ntra-community routing principle: when two nodes; andn; in the same com-
munity encounter, the routing utility in Ed._6.5 is calceldtand the node with
higher value will be chosen to forward the message. The fatwg path will be
recorded to make it free from loop.

6.2.3 Inter-community communication

If a destination node,; does not belong to the community of source nadewe
need to choose some relay nodes to forward the message aorangaities. The
idea is using “fringe nodes” to bridge the communicationmér-communities.

A fringe node is a node which is capable to remote contactettier communi-
ties. Itis measured by the number of links that it connectghier communities. We
select nodes with higher number of links to outside of lo@hmunity as fringe
nodes. Each fringe node is represented by its ID and the eenurttact table as
mentioned in Tablé 614 to indicate its links to other comntieei In our proposed
scheme, each community maintains a set of fringe ngdebhe setF is randomly
selected initially, and is updated periodically. Duringeaipd AT, each node com-
pares its remote contact table with the fringe nodes. If anodinds that it has
closer connection with outside communities than a fringgeng, it will announce
itself as the new fringe node. The comparison is describéollasvs.

Assumen;i, ni2, - -+, niv 1S the remote contact frequency of, andn;, n;2,
-+, njm 1S the remote contact frequency of. Define a functionp(z,y) = 1 if
x > yande¢(z,y) = —1 for the rest. The selection of fringe node is determined by
the value y
Se = Z¢(77ik, Nik)-
k=1

If 3. is larger than 1, it means; has better connection than, andn; becomes the
new fringe node and announces to the other nodes in the losahanity.

According to the report in [91], a small fraction rewireddghare enough to
create a small world network. Our analysis to the three srabhews that the fraction
of remote contacts varies from 7.3% to 19.7% (as shown ineT@tft), so we set
the number of fringe nodes as 10% of the community size. Ittdmamunity size
is smaller than 10, we set the number of fringe nodes as 1.
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Due to dense network connection in the community, the setingé nodesF
and their remote contact tables can easily spread to nodhe Bame community.
Since there are more than one fringe nodes which can reachéo@mmunities,
it needs to carefully choose the forwarding node for peréoroe consideration.

Assume the source node in communityC' wants to send a message to the
destinationn, in communityC’ (C' # C'). We first decide whethef' andC’ are
directly connected by looking up the sétin C' to check whether there exists a
fringe node connecting t@”. If there is a connection from fringe node set to the
destination community, we s@y andC" are directly connected. Otherwise, we say
they are indirectly connected.

If C'and(C” are directly connected, we need to forward the message togefr
node who can reacti’. There might be more than one fringe nodes directly con-
necting toC”’, and the candidate setis= {n;|V n; € F and (n; connects to C")}.
We need to decide which node in the candidate set as a relaypridgiple is to
send the message to a relay having more connectionsCitBy looking up the
remote contact tables of fringe nodes, the algorithm chots=one with the max-
imal number of encounters td’ as the relay. I andC” are indirectly connected,
we select the fringe node with maximal number of encountéis eutside ofC' by
summing up entries in remote contact tables. The sourcefoodards the message
to the selected fringe node by intra-community routingtetyg. After the data is
forwarded to the dedicated fringe node, the data transom$stween communities
becomes a challenge.

To enable efficient inter-community communication, we ®gpa utility func-
tion extended from intra-community utility to forward ddtam the fringe node
to the destination community. Namely, we extend the utflilgction from node-
to-node to node-to-community for inter-community comnuoation. We build the
utility function between a fringe nodg to the destination community’. To con-
struct such utility, we consider social relation betwegeand C’ as similarity be-
tween the nodg and a set of nodes i6’. However, knowing the friends of all
nodes inC” would suffer too much overhead in DTNs. In this case, we gl®an
estimation that we only count the friends of nodes who haee emcountered with
f. The similarity is defined as:

Spo(T) = |Fp(r) [\ Fer(r)| + 1,
where[(7) indicates the friends of a set of nodeg’ihthat ever encountered with
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f until time .

To formulate the social status of nogie we extend the concept of centrality
from the local community to the entire network. We call it aoomity centrality,
denoted by’r(7), which is defined as the proportion of the number of commesiiti
it connecting with (/.(7)) to the total number of communitied/(7)) at timer. It
is defined as:

~ M(7)
CF(T) - M(T) .
The decay function in the node-to-community utility becare (t — 7) = Ct%(:)

The overall utility function from the nod¢ to communityC” thus is defined as:

T
Uper(T) =Y X(7) jor % Sper(7) * Dr(T = 7), (6.6)

=0
whereX (1) e = 1 when an encounter occurs between ngded communityC’
at timer or whenr = 0 (to initialize Uy - (T')). According the utility function, the
fringe node finds the next relay by choosing a node with highiity value with
destination community. The procedure continues until #ia deaches destination
community.

6.3 Discussion

In this section, we discuss how SMART tackles blind spot agalddend problems,
and the efficiency of inter-community routing by SMART.

6.3.1 Tackling blind spot and dead end problems

The blind spot and dead end problems result from the indecigility value of
utility-based data routing strategies. The blind spot eeevhen utility values of
a node and its neighbors are close and nearly. tét cannot decide which node
should be the next relay. The emergence of blind spot is Isecduese nodes have
rare interaction with the destination, which generateslamtility values close to
0. The dead end arises with all neighbors of a node having lowilgy value than
it. The node cannot conduct the forwarding behavior in tievogk. The existence
of dead end comes from the fact that the utility value of thayreeaches the peak
locally.

We conduct experiments to show the percentage of blind smbtdaad end
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Figure 6.6: Percentage of blind spot and dead end in SMART.

occurring in SMART. By definition, we consider a node enceusniblind spot if it
has similar utility value closing t0 as its neighbors and it cannot find the next relay
until the data is expired. A node runs into dead end if itstytilalue is larger than
all its neighbors and the data is stuck into the node untd épired. We look for
the data routing failures caused by blind spot and dead etidee data sets (MIT
Reality, DieselNet and Cabspotting). We sum the two typefsitires and draw
the curve as a function of time as shown in Fig.] 6.6. Accordinthpe figure, there
is only a tiny percentage of blind spot and dead end appeariS8yIART, most of
the time lower than 1%. Compared to the experiment resutta/stin Fig.[6.1, the
percentage drops dramatically. Thus we claim that SMARMiB@antly alleviates
the blind spot and dead end problems.

6.3.2 Efficiency of inter-community communication

The inter-community communication is a difficult task in aonmity-based strate-
gies since it lacks of strong links between different comities Existing community-
based strategies use naive routing mechanism such as fipf&llh or rely on
discovering the direct links [13] or overlapping nodes [B8fween communities,
which are time-consuming and inefficient.

72



6.3. Discussion

SMART enhances the capability of inter-community commatian by select-
ing fringe node and a node-to-community utility function.herfringe node is
selected by the criterion that has rich connection to theareimg network. To
bridge the communication between the fringe node and theéndéisn commu-
nity, SMART introduces a node-to-community utility funati, which considers the
destination community as an entity. Analogous to intra-camity utility, we com-
pose utility function between fringe node and the destoimatiommunity, and build
routing channels among different communities.

nter-community
= Intra-community

Delivery ratio
S o
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=
.
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Figure 6.7: Delivery ratio of community-based strategies

We compare the performance of SMART with other communityelolstrate-
gies, including Bubble Rap [40] and Friendship Based RogutiBR) [13] to show
its efficiency. The comparison of delivery ratio on threeadaaces (MIT Reality,
DieselNet and Cabspotting) is shown in Fig. 16.7. It is ilfagtd that for inter-
community communication, the delivery ratio of Bubble Rapl &BR is 32% and
33% respectively, while the delivery ratio is improved in ARIT greatly, which
achieves 47%. For delivery ratio of intra-communicatioMART achieves 85%,
which also outperforms the other strategies (with 72% intBalRap and 75% in
FBR) on MIT Reality. The performance comparison on Diesébhel Cabspotting
also show the efficient inter-community communication of &RT. Together with
our distributed community partitioning algorithm, the posed SMART strategy
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shows its effectiveness in dealing with the community-dasating problems.

6.4 Performance Evaluation

In this section, we conduct experiments to evaluate thepadnce of SMART and
compare it with other existing DTN routing strategies.

6.4.1 Experiment setup

We still use HaggleSim simulatar [39] for the experimentlestion. It takes the
discrete sequential encounter events and the corresgpadamal graph as the in-
puts and makes data forwarding decision using variousmgulgorithms. For
each experiment, we emulate 1000 messages sent from a raetkcted source to
destination. In this group of experiments, each messagekeeips one copy in the
network. We run every experiment 20 times for statisticavaogence. We extract
a 2-week session from MIT Reality, DieselNet and Cabspgttespectively and
run the simulator over the selected sessions with unifoigelyerated traffic. The
SMART algorithm is implemented and is compared to otherteagD TN routing
algorithms.

6.4.2 Impact of community numbers

We first investigate the impact of the number of communitieghe performance of
SMART. We apply the proposed m-partition algorithm for coomity partitioning
on the three DTN traces and then use SMART to route messages.

Fig. (6.8, Fig.[6.9 and Fid. 6.10 show the performance me#isca function of
community numberm (varying from 1 to the size of the data sets) and time. The
delivery ratio of MIT Reality trace is shown in Fig. 6/8a. Aeding to this figure,
when no community partitioning algorithm is applied & 1), the delivery ratio is
quite low and it increases slowly with time. As the commumtymber is set to an
appropriate value (e.gn = 10), the delivery ratio increases dramatically, which is
almost 2 times as that when = 1. For10 < m < 90, the delivery ratio becomes
stable and has only small fluctuation. When the communitylremapproaches to
the size of the data set( = 97), the performance drops dramatically since the
impact of community structure disappears. The average deiflustrated in Fig.
[6.80. Itis seen that the average delay is almost the sam#é é@namunity numbers
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Figure 6.8: The performance metrics as a function of comtyiumimber and time
(MIT Reality).

and it only varies with time. The average cost is shown in.6S8milar to delivery
ratio, the average cost is influencedfyand it increases to a stable value when
10 < m < 90. Similar results are also found in DieselNet as shown in B&
and Cabspotting as shown in Fig._6.10. It suggests that SMp&iorms better
when the community structure is outlined, while the perfance of SMART is low
when no community structure is indicated in the network.ldbaeveals that the
proper value ofn is within a wide range. We tend to choose a smaller value of
to reduce the cost of maintaining the community structuteusTin the rest of our
experiments, we fix our community numberto= 10.

6.4.3 Impact of community partitioning algorithms

We will show that the performance of SMART routing schemeebasn different
community partitioning algorithms. We evaluate the perfance of SMART using
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Figure 6.9: The performance metrics as a function of comtyiumimber and time
(DieselNet).

different community partitioning algorithms, includingpartition, k-clique perco-

lation algorithm [71] (which considers the adjacent k-ukgps communities), and
Girvan Newman algorithm [67] (which continues removing eslgvith the highest

betweenness until a certain threshold is reached).

Fig.[6.11 presents experimental results of MIT Realityera&s shown in Fig.
[6.114, the m-partition method outperforms Girvan Newmad® and k-clique
percolation by 2% in delivery ratio. In terms of average geks shown in Fig.
[6.11b, m-partition performs slightly better than the otfwey algorithms. The three
algorithms takes similar average cost as shown in Fig. 6.8lmilar results are
also observed on DieselNet data set as shown i Figl 6.12 albspGtting data set
as shown in Fig. 6.13.

Despite the different algorithms used for community pantiing, the routing
performance is quite similar for all three DTN data setsnéticates that our pro-
posed m-partition community detection method can adapthéarnplementation
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Figure 6.10: The performance metrics as a function of comtypaamber and time
(Cabspotting).

of SMART which performs similar as other sophisticated camity partitioning
algorithms relying on global information. Since Girvan Nean and k-clique per-
colation need global network topology information whiclvesy difficult to obtain
in DTNSs, the proposed m-partition algorithm is more suigdbk distributed imple-
mentation in the real world.

6.4.4 Performance analysis

We compare SMART with five existing DTN routing strategieR@PHET [56],
SimBet [24], Bubble Rap [40], Friendship Based Routing (FEEE], and Epi-
demic routing [89]. PROPHET is a utility-based strategycading to encounter
histories. It forwards data to the nodes with higher dejivate based on contact
history. SimBet is a utility-based strategy according toiglofeatures. It consid-
ers social properties including similarity and centralitymake data forwarding
decision. Bubble Rap is a community-based strategy. It m#pen community
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Figure 6.11: The performance of SMART under different comityupartitioning
algorithms (MIT Reality).

structure and routes data based on rankings calculatedsiooral centrality. FBR
algorithm as another community-based algorithm preseint¢#l3], it constructs
temporal community and use the nodes with direct connet¢tiche destination
community for data delivery. Epidemic routing is a floodinigagegy. It has high
delivery cost, but its delivery ratio and delay approachttie®retical bound.

The performance comparison in three data sets is presanfed.i(6.14, Fig.
and Fig.[6.16. Fig. 6.14 shows the performance of varagorithms as a
function of time on MIT Reality trace. The delivery ratio israpared in Fig._6.14a.
It shows that SMART outperforms PROPHET, SimBet, FBR andiB&iRap. The
delivery ratio of SMART is about 10% higher compared to BebRbap and FBR,
15% higher than that of SimBet and nearly 20% higher thandhBROPHET. The
results also confirm that SMART outperforms utility-basétegies nearly 20%
by solving blind spot and dead end problems. The reason PEDRidrforms the
worst is due to the strong community structure of MIT Realigce. When source
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Figure 6.12: The performance of SMART under different comityupartitioning
algorithms (DieselNet).

and destination are inter-connected by a long path, PRORMEENncounter the

blind spot and dead end problems, which degrade its perfmenéSimBet exploits
social properties to enhance the delivery ratio but it atsmenters high proportion
of blind spot and dead end problems. Bubble Rap and FBR takemtages of
community structure, so they perform better than PROPHET nbt as well as
SMART. Since Epidemic routing represents the theoretippkn bound of delivery
ratio, the performance of SMART is below the upper bound. rAge delay is

compared in Figl_6.14b. Again, the delay of SMART is lowentlilae other four

strategies (most of the time their performance are veryegldsut higher than the
lower bound (Epidemic routing). Average cost is comparefign(6.14¢. The cost
of PROPHET is the highest. This indicates that “transyivin PROPHET is not

accurate enough to predict the relay selection, thus it biager relay path than
others. The SMART is a little higher than others due to theagieg effect, which

makes SMART take more relays for data delivery.
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Figure 6.13: The performance of SMART under different comityupartitioning
algorithms (Cabspotting).

Fig. [6.15 presents the performance results of various ighgos as a function
of time on DieselNet data set. The delivery ratio is depidteeig. [6.15a. SMART
outperforms Bubble Rap by 3%, FBR by 5% and PROPHET by 8%.dtearly
20% higher of delivery ratio than SimBet. Regarding the agerdelay and the
average cost of each strategy as shown in Fig. 6.15b and Hig¢,6SMART has
very close average delay with Epidemic, which is less th&uerostrategies. The
average cost of SMART is about 50% of that of PROPHET and hitjfae FBR and
SimBet. DieselNet has very similar network structure withiTNReality and thus
has similar trend on delivery ratio with MIT Reality. Howeyedue to the regular
and repetition routine of buses in DieselNet, it makes tmeBgit meet dead ends
quite often and takes more time to wait until destinationser€fore, it has lower
delivery ratio and higher average cost. Since DieselNetha® tight clustering
structure, it makes Bubble Rap and FBR perform close to SMAMART has
similar cost with social-related strategies but much loeast than PROPHET.
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Figure 6.14: The performance comparison of various stieéegn MIT Reality
Mining trace

Comparison of different algorithms’ performance on Calbspgtrace is shown
in Fig.[6.16. Fig[ 6.16a depicts the delivery ratio of varadgorithms as a function
of time. The SMART has very similar performance as PROPHE®utperforms
FBR by 5%. Bubble Rap algorithm is impacted by weak commusitycture,
which lowers down its delivery ratio around 10% compared MART. SimBet
has the lowest delivery ratio, which is much lower than osltetegies. In terms of
average delay as shown in Fig. 6.16b, SMART costs as low ageEpc algorithm
delay, which is much lower than others. The average costamwbus algorithms
are similar as shown in Fig. 6.16c.

In a summary, the proposed SMART strategy outperforms they/tliased and
community-based strategies on various DTN data sets in aidke performance
metrics.
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6.5 Summary of Contributions

Data routing in DTNs is challenging due to the fact that naatesconstantly mov-
ing and the opportunity of communication between node psairstermittent. Ex-
isting routing strategies encounter the problems of blipat #nd dead end, and
also lack of efficient implementation in DTNs. In this Chaptee first investi-
gate the characteristics of DTNs by analyzing three dataatected from cell-
phones, buses and taxis. We reveal the social and mobilerésabf DTNs: they
have community structure and their movement shows loc&@iged on these fea-
tures, we propose the social and mobile aware routing giratalled SMART.
In this strategy, a DTN is divided into a number of commusitissing an adap-
tive community partitioning algorithms. Two data routingopesses are intro-
duced: intra-community communication and inter-commuogmmunication. For
intra-community communication, a utility function conutihg social similarity
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Figure 6.16: The performance comparison of various stredegn Cabspotting
trace

and social centrality with a decay factor is used to chookey neodes. For inter-
community communication, the nodes moving frequently s€rmmmunities are
chosen as relays to carry the data to destination efficieftlig shown that such
routing strategy significantly alleviates the blind spotl alead end problems. It
adapts to the community structure by enhancing performtoraater-community
communication. We conduct extensive experiments to coemhar performance of
SMART with other DTN routing strategies. It presents tha groposed routing
strategy works well in various DTN traces.
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Chapter 7

Discussion and Future Works

In this chapter, we have a fair comparison of three proposethlsbased routing
strategies and discuss the future work that can be done iard@of social-based
data routing in DTN.

7.1 A Comparison of Three Strategies

We conduct a comprehensive comparison of three proposeal-based routing
strategies on three real data traces in terms of deliveiy, i@terage delay and av-
erage cost. Similar as previous evaluation setup, we usgletaign for the simula-
tion. 1000 messages are generated with randomly seleatecesaand destinations.
In this group of experiment, each message only keeps oneafapgssage in the
network. We run each simulation 20 times for the result caysece.

Fig.[7.1 shows the performance of three social-based mpatiategies on MIT
Reality data trace. The delivery ratio of three differentiabbased routing strate-
gies is presented in Fig. 7l1a. The location-based routiragegly Loc has simi-
lar performance with the encounter-based routing strase§oc, although Soc has
slightly higher delivery ratio compared with Loc. This isngistent to the results
when comparing location-based strategy and encountedbstisategy in Chapter
B. The delivery ratio of SMART is 50% higher than that of Sod &oc. The aver-
age delay of three social-based routing schemes is showig.itYADb. It suggests
SMART has higher average delay than both Soc and Loc, wh&easnd Loc
perform similar in terms of average delay. The average doSMART, as shown
in Fig. [7.1¢, is 40% higher than both Soc and Loc. The cost cofiSalso higher
than that of Loc. However, the difference between them lisnsit significant.

Fig. [7.2 shows the performance of three proposed soci@ebariting strate-
gies on DieselNet data trace. The delivery ratio is shownim FZ.2a. The
community-based strategy SMART outperforms both the lonabased social strat-
egy Loc and encounter-based routing strategy Soc over 106&performance of
Soc and Loc are nearly the same with the delivery ratio of 8gbts higher. The
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Figure 7.1: Performance comparison of three social-basatkgies on MIT Real-
ity data trace

average delay, presented in Fig. 7.2b, shows differencesguaifferent strategies
as well. Specifically, Loc and Soc has similar average deldéych is consistent
with the comparison between Loc and Soc in Chapter 5. Theageedelay of

SMART is only 10% higher than that of Loc and Soc. Fig. 7.2oshthe average
cost of three social-based routing schemes on DieselN&. clear that SMART

has much higher cost than both Soc and Loc (around 1 hop lprigerontrast, the

cost of Soc and Loc are still similar to each other.

Fig.[7.3 presents the performance of three social-bas¢thgachemes on Cab-
spotting data trace. The delivery ratio of SMART, as showFim [7.3a, reaches
0.7 in the end of the experiment, which is 133% higher thahdh&oc and Soc.
The delivery ratio of Loc and Soc are low and similar to eadtentIn this experi-
ment, Loc has slightly higher delivery ratio than Soc. Fig8b7shows the average
delay of three different routing strategies. In the figurB]ART has higher av-
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Figure 7.2: Performance comparison of three social-basategies on DieselNet
data trace

erage delay, but compared with delivery ratio, the outstapdroportion is much
lower. Soc uses sightly higher average delay compared with The average cost
is shown in Fig[ 7.3c. Again, Soc and Loc have similar cografie second day
of the simulation. The cost of SMART varies from Soc and Lamsicantly. It is
about 30% higher than others.

Overall, the community-based routing strategy SMART hashrhetter perfor-
mance than both location-based routing strategy Loc andustter-based routing
strategy Soc. Whereas, encounter-based routing strateggimmilar performance
with location-based strategy. This is consistent with thiparison results that we
have presented in Chapier 5.
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Figure 7.3: Performance comparison of three social-basaiggies on Cabspotting
data trace

7.2 Future Works

In this thesis, we mainly focus on using social informationthe enhancement of
data routing performance. For the future research, we anfjdt on the following

future research directions: resource utilization andcallion, privacy preserving
and content centric routing.

One key future research direction for data disseminatiateiay tolerant net-
works is the resource utilization and allocation. In a DTBhecially with human
involved, mobile nodes have limited energy, storage andpedimg capability and
etc. All these resources may run out during the routing mec®ne question is
how to allocate different resources. Social relationshiguch case takes a very
important role. People may be willing to share more resowitie his friends, but
unwilling to serve for strangers. Similarly, if the buffef @ node is full, a node
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may first drop the message for those nodes that it is not familith. The other
one is how to save the resource for the consideration ofduttbage of device and
environment concern. People with friendship may be codperfor data storage
and computation sharing. For example, a node with very didstorage may apply
his friend’s storage for those data not urgently used. @instenario can also be
exploited for energy consumption and computing capability

Another important future research direction for data digsation in DTNs is
the privacy preserving. Although we consider locationdohsocial information
may violate user privacy, there are few works targeting awapy preserving in
terms of data routing in DTNs. Especially, different typésacial information also
refer to privacy issue. The study of privacy concern in dawgworks [6, 78, 54,
79] have been prevailing recently. Besides, people witeecfoiendship may have
less privacy issue since people are willing to share parioptivacy information
among friends. However, the privacy preserving bound betvatrangers is much
higher. A person may not share any personal informationananger. Therefore,
the future focus is that how to preserve user privacy durregrouting process in
DTNs from social perspective.

Finally, as the proliferation of content centric networkdelay tolerant net-
works 88, 69, 46, 90], data dissemination needs to adapiicb setwork struc-
ture. In content-centric delay tolerant networks, nodesaioneed to care where
the date is stored. Data is cached on the path for data trasgmi Therefore, the
source-destination data routing schemes cannot adapthdswd of networks. The
main challenges of routing in content-centric delay taiereetwork become to ad-
dress the following two questions: where is the data and loovathe data? Thus,
the routing for content-centric DTNs needs to be in enddtadliagram. Since
the DTN is opportunistically connected, optimal cachingchrenism for content-
centric DTNs also needs to be carried out.
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Chapter 8

Conclusions

In this dissertation, we discuss several social-basedngustrategies for DTNSs.
We pointed out that data dissemination in DTNs is a challesigee the dynamic
network topology, limited network information and intgpted connectivity which
causes the end-to-end communication to become impracfl¢tedre are many of
routing strategies proposed to enhance the routing pedoce in DTNs, which
can be categorized into three groups from social persgedtcation-based rout-
ing, encounter-based routing and community-based routdrge limitation of the
existing routing scheme is that they apply sole node or nét¥eature to construct
the routing metric, which cannot adapt to various situaionthe network. Be-
sides, most utility-based routing strategies meet blirat apd dead end problems
during the routing process. Lastly, rare efficient intemoounity routing schemes
are proposed for community-based routing schemes.

This thesis models social graph based on geographic infammand encounter
pattern. Based on location-based social information asdumter-based social in-
formation, a location-based social routing strategy cahensively incorporating
location information is proposed in Chaplter 4 to adapt téedeint network situa-
tions and thus enhance routing performance, and an enceaaged social routing
strategy combining multiple encounter-based social ptases devised in Chapter
to against sensitive location information and preseriapy in the network.

Specifically, we discussed the location-based socialmguiti Chapter 4. Based
on the observation that the routing strategy relying on asfeect of location infor-
mation cannot adapt to different network situation in DTNe @omprehensively
consider two important geographical aspects, geograptistance and mobil-
ity pattern, to compose the routing utility metric. The eslon results show
that the proposed comprehensive location-based routiaggpgy outperforms other
location-based routing strategies that relying on soleetspf location information
in terms of delivery ratio, average delay and average cost.

Due to the fact that location-based social information issgeve and privacy
concern to nodes in DTN, while encounter-based social méion is less sensi-
tive, we proposed the encounter-based routing strateghaptef 5. The design of
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the scheme combines multiple social properties by conariutt presents the fea-
ture that the most recent encounters have more effects ttitieg utility value.
The utility value decays with respect to social centralityl &lapsed time which
provide different decay speeds for different nodes. Th&ew@n results show that
the proposed encounter-based routing strategy outpesftram other encounter-
based routing schems. Besides, we compared it with theidmechaised routing
strategy, the results suggest that they have very simildoimeance and therefore
encounter-based social information is a good subsituteaaftion-based social in-
formation to route data in DTN for the purpose of privacy presg.

Finally, the thesis carried out a social and mobile awarémgustrategy called
SMART in Chapter 6 that identified the blind spot and dead entllpms and ineffi-
ciency of inter-community communication efficiency. SMARiTroduces a convo-
lutionary routing metric for intra-community routing to@ess blind spot and dead
end problems. It reduces the blind spot and dead end prolilelo® 1%. For effi-
cient inter-community communication, it selects fringela@nd utilize utility func-
tion similar to intra-community routing to improve the iHeommunity communi-
cation efficiency. Overall, SMART achieves significant iioypgment compared
with other utility and community-based routing strategi€sirthermore, compre-
hensive comparisons of our proposed three routing stegdgive been conducted
to outline the benefit of social information applying for @abuting in DTNs.
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