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General introduction 

 

Oilseed rape (Brassica napus L. var. oleifera Metzg.) (Brassicaceae) was the fourth biggest 

crop harvested in Europe in 2009 (FAO, 2011). In 1973, fewer erucic acid cultivars were 

established for the market and caused an increase in the cultivation area of oilseed rape in 

Germany (Brauer, 2007). The breeding of cultivars with low glucosinolate content advanced 

the production of oilseed rape for animal food. In addition, it is grown for oil, human 

consumption and renewable energy resources (Brauer, 2007). In 2010, 1.46 Million ha of 

oilseed rape were grown in Germany (UFOP, 2011). With an increasing area cultivated with 

oilseed rape, the reproductive success of oilseed rape pests, including the pollen beetle 

Meligethes aeneus (Fabricius) (Col.: Nitidulidae), have increased as well (Hokkanen, 2000; 

Alford, 2003). The pollen beetle causes high yield losses in oilseed rape, occasionally 

exceeding 80% (Ahuja et al., 2010). From 2007 until 2011 pesticide use has steadily 

increased in oilseed rape crops in Germany, particularly due to insecticide applications 

(Freier et al., 2012). The extensive use of pyrethroids for more than 20 years and the 

overlapping exposure of different oil seed rape pests caused resistance of M. aeneus against 

pyrethroid compounds (Zlof, 2008). Pyrethroid resistance has been recorded in several 

countries in Europe, including Germany (Heimbach et al., 2006), Denmark (Hansen, 2003), 

Sweden (Kazachkova et al., 2007), France (Délos, 2008), Finland (Tiilikainen & Hokkanen, 

2008) and Poland (Wegorek & Zamoyska, 2008) in recent years.  

To reduce the application of synthetic insecticides in oilseed rape integrated pest 

management strategies are needed (Cook & Denholm, 2008). Knowledge on trap cropping 

and conservation biocontrol in oilseed rape has been collected for years (Hokkanen, 1991; 

Cook et al., 2006; Ulber et al., 2010b), but further information including the biology and 

behaviour of the pollen beetle are necessary. Particularly, the influence of locate climate 

conditions, site-specific factors and agricultural methods have to be included for a successful 

pest management strategy (Evans & Scarisbrick, 1994). For this, information about the 

mortality factors including the biology, population development that reduce the damage of the 

pollen beetle will be helpful. Little is known about the influence of different winter oilseed rape 

cultivars on the population growth of the pollen beetle.  

 

The main objectives of this study are: 

(1) to investigate the effect of inflorescence stages and phenology of four winter oilseed 

rape (B. napus) cultivars and parasitism by hymenopterous parasitoids on the 

population growth of M. aeneus 

(2) to investigate the influence of insecticides on population growth and damage of the 

pollen beetle in field experiments 

(3) to analyse site-specific factors and insecticide treatment on parasitism by parasitoids 

as a mortality factor on population growth of the pollen beetle  

(4) to study the effect of trap cropping and insecticide application on spatial-within field 

distribution of the pollen beetle  
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The pest: Meligethes aeneus 

 

M. aeneus occurs on many plants of different families, but mainly on brassicaceous crops 

(Free & Williams, 1978). When the air temperature reaches 12°C the pollen beetles fly short 

distances after hibernation and feed on pollen and nectar from a large variety of plants 

(Fritzsche, 1957b). They fly long distances when temperatures exceed 15°C. The females 

start  maturation feeding on plants of different family or immediately on oilseed rape in 

spring. It takes about 10-14 days at 15°C or 6-10 days at over 20°C for the ovaries of female 

pollen beetles to mature (Fritzsche, 1957b). The adult beetles damage the buds by eating 

anthers and the ovary (Nilsson, 1988a). This can cause blind stalks due to bud abortion 

resulting in yield loss (Winfield, 1961).  

The sex ratio of male to female is mostly 1:1 in fields of winter and spring oilseed rape (Free 

& Williams, 1979). Eggs are laid in the buds of Brassica plants preferably 2-3mm in size 

(Fritzsche, 1957b; Ekbom & Borg, 1996). Total egg production per female of the pollen 

beetle depends on temperature and relative humidity (Fritzsche, 1957b). According to a 

relative humidity of 95% the egg production increases from 78 eggs/female at 15-16°C to 

211 eggs/female at 20-22°C and decreases at 27°C to 206 eggs/female. Nilsson (1988c) 

concluded that during her lifetime a female can produce 200-300 eggs at favourable weather 

conditions. Depending on temperature and relative humidity different development times for 

eggs were reported varying from 2 to 12 days (Scherney, 1953; Fritzsche, 1957b; Bromand, 

1983; Nielsen & Axelsen, 1988).  

Two larval instars occur during M. aeneus development (Osborne, 1965; Nilsson, 1988b). 

The first instar larvae feed on pollen in the bud, and the older larvae feed also on open buds 

and flowers (Williams & Free, 1978). Mobility of older larvae is enhanced by moving from 

flower to flower on one plant. Only at high densities they cause damage by ovary feeding of 

buds. In laboratory experiments, the developmental times for first instar larvae and second 

instar larvae are 2-10 and 3-20 days, respectively, depending on temperature and humidity 

regimes (Scherney, 1953; Fritzsche, 1957b; Bromand, 1983; Nielsen & Axelsen, 1988). By 

the end of the second instar the larvae fall to the ground to pupate in the upper soil layer 

(Fritzsche, 1957b). Development of pupation of pollen beetle takes about 10-18 days (Nolte, 

1954; Fritzsche, 1957b). The optimal conditions for development of egg maturity, oviposition 

and larval development of the pollen beetle lie within a temperature range of  20-27°C and at 

a relative humidity of 95%, as the adult beetles showed the highest activity at these 

conditions as well.  

The newly emerged beetles feed on pollen from brassicaceous and other plant families 

(Müller, 1941a). They start to locate their hibernation sites in August. The pollen beetles 

overwinter in moist mould in the upper 5cm layer under a moderately thick layer of leaves in 

deciduous forests (Müller, 1941b). The overwintering sites are exposed on a hill-site up to 

400m into the forest. The spermatogenesis of male beetles lasts from August until 

November, in contrast to the females, whose ovaries mature after leaving the hibernation 

sites (Müller, 1941b). There is just one generation per year (Fritzsche, 1957b).  
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Factors influencing the population dynamics of pollen beetle  

 

The population dynamics of the pollen beetle depends on several factors: Pollen beetle 

location on host plant, synchronisation of pest and host, available buds for oviposition, and 

abiotic conditions, among many other examples (Nilsson, 1994; Ekbom & Borg, 1996; 

Williams & Cook, 2010).  

Oilseed rape is grown mostly as an annual break crop in a cereal rotation and is sown in a 

different field in each successive autumn or spring (Williams & Cook, 2010). So it is essential 

for the pollen beetle to search for the host plants after emerging from the hibernation sites in 

spring (Fritzsche, 1957b). The pollen beetles are strong flyers and cover distances from 200-

300m in 2 hours and up to 13.5km in 10 days (Taimr et al., 1967). They locate their host 

plants by using upwind-anemotaxis (Williams et al., 2007b). The adult beetles are strongly 

attracted by the colour yellow, for example of yellow water traps, but when the crops begin to 

flower they prefer the flowering plants (Nolte, 1959; Hiiesaar et al., 2003). Petals of flowers 

marked with a small black dot to simulate the presence of adult beetles, stimulate pollen 

beetles to land (Free & Williams, 1978). Plant growth stage influences the spatial distribution 

of pollen beetles within a field (Frearson et al., 2005). In two-choice-tests conducted in a 

polytunnel arena, they prefer plants in early-flower to those in bud stage (Cook et al., 2006).  

In addition to colour stimuli, the adult beetles respond to olfactory cues (Williams & Cook, 

2010). They respond to volatiles of rape leaves, stems and buds, as well as to odours of the 

flower. Many components of the odour of flowering oilseed rape attract the pollen beetle, 

including isoprenoids and derivates of amino acids, such as the isothiocyanates and nitriles, 

and fatty acids (Williams & Cook, 2010). Cook et al. (2002) reported that in a linear track 

olfactometer the males and females were significantly more attracted to the whole oilseed 

rape flowers, anthers and pollen compared with a blank air control, indicating that the beetles 

can locate their host over short distances. Over a longer distance of 20 m, pollen beetles 

were sampled in yellow water traps, baited with extracts of oilseed rape flowers (Evans & 

Allen-Williams, 1994). It seems that they use oilseed rape floral odours as cues in resource 

location over various distances (Cook et al., 2002).  

Another way to influence the population development may be the use of oilseed rape 

cultivars with an early flowering. The phenological stages of the host and insect must 

synchronize (Singh & Singh, 2005). For example, early flowering could provide the best way 

to evade the attack by a pest. It has been shown that the plant development stage 

manipulate the behaviour and the migration of the adult pollen beetle in oilseed rape crops 

(Frearson et al., 2005). The number of buds available oviposition is reduced in an advanced 

development stage of the oilseed rape plant (Nolte, 1954; Ekbom & Borg, 1996), indicating a 

potential impact of the phenology stage of host plant on the population growth of the pollen 

beetle (Nilsson, 1994). Nielsen and Axelsen (1988) assumed that eggs laid late in the 

oviposition period will result in larvae that cannot complete their development until the end of 

flowering. 

Little is known about  the effect of different oilseed rape cultivars on the acceptance as a host 

plant for oviposition by M. aeneus. It has been reported that pollen beetles had, in contrast to 

oviposition, no feeding preference for different cruciferous plant species (Fritzsche, 1957b; 
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Williams & Free, 1978; Ekbom & Borg, 1996) . Sinapis alba is poorly accepted as a host for 

oviposition (Ekbom & Borg, 1996). The crucifers Barbarea verna and Barbarea vulgaris were 

also not preferred for reproduction (Börjesdotter, 2000). Egg production by gravid females of 

pollen beetles varies in relationship to host plant quality (Hopkins & Ekbom, 1996). Hopkins 

and Ekbom (1996) suggested that the beetles are adapted to host plant quality to save 

resources for future egg production or that the oogenesis is arrested or incomplete on a “low-

quality” host plant. Other influences of individual oviposition characteristics, for example 

isothiocyanates, may be responsible for oviposition preference in Brassica spp.. In field 

experiments, more eggs were found in buds of Brassica napus (L.) than in B. juncea and B. 

campestris (Ekbom & Borg, 1996).  

 

 

Possible effects of insecticides on population growth and damage of pollen beetle 

 

The exposure of insects to insecticide spraying is composed by direct topical, residual and 

dietary uptake. Some insecticides were included from plant parts after systemic uptake of the 

sprayed crop (Hallmann et al., 2009). In addition, the effectiveness of insecticide exposure is 

affected i. e. by a biotic environment, the behaviour of the pest and the specific toxicity of the 

insecticide to the different developmental stages of the pest (Winfield, 1961; Sedivy, 1993; 

Charmillot et al., 2007). Insecticides with a wide range of mode of actions are available and 

the neurotoxic insecticides with the targets acetylcholinesterase (organophosphate, 

carbamate), volta-gatest sodium channel (pyrethroids) and acetylcholine receptor 

(neonicotinode) are still dominated the world market (Nauen & Bretschneider, 2002).  

The active ingredients pymetroxin, indoxocarb and thiacloprid achieved an insecticide 

effectiveness up to 80% against adult adult pollen beetles in field experiments in Germany 

(Schroeder et al., 2009). Also repellent effects of insecticides were observed in field 

experiments (Sedivy et al., 1970). The numbers of adult pollen beetles decreased 3 days 

following insecticide spraying, but decreased on an adjacent unsprayed field. However, there 

is little knowledge about the effect of insecticide application on the population growth of the 

pollen beetle. Direct effects of insecticides on adult mortality were found to decrease 

oviposition into buds resulting in a reduced larvae abundance (Winfield, 1961).  

Injury by feeding to small buds cause them to abort, leaving podless stalks (Winfield, 1961). 

Seed yield in insecticide untreated plots in spring oilseed rape was up to 70% less than in 

treated plots (Nilsson, 1994). However, between 1 and 10 treatments of methoxychlor, 

azinphosmethyl, fenvalerate or permethrin were needed to reduce pollen beetle infestation. 

The high compensatory reactions of oilseed rape due to feeding may affect the damage 

potential of pollen beetles (Vietinghoff, 1985, Nilsson, 1994). Further, the damage is 

depended on the temporal occurrence of the adult beetles in oilseed rape, in addition to the 

number of pollen beetles, the effectiveness of insecticide treatment and the weather 

conditions (Fritzsche, 1957b).  
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Parasitoids and parasitisation of pollen beetle 

 

The larvae of the pollen beetle are attractive to several endoparasitoids (Jourdheuil, 1960). In 

Europe, including United Kingdom, Sweden, Estonia, Poland and Germany (Ulber et al., 

2010b), the key parasitoids of the pollen beetle in oilseed rape are the univoltine species 

Phradis interstitialis (Thomson), P. morionellus (Holmgren) and Tersilochus heterocerus 

(Holmgren) (Hym.: Ichneumonidae) (Nilsson, 2003). The multivoltine parasitoid species 

Diospilus capito (Haliday) (Hym.: Braconidae) has also been recorded in northern and central 

Europe. Nilsson & Andreasson (1987) reported that D. capito is more abundant in spring 

oilseed rape, in contrast to the univoltine parasitoids which occur more in winter oilseed rape 

(Ulber et al., 2010b).  

The tersilochine parasitoids of the pollen beetle are koinobionts, i. e. their host larva 

continues to develop with the parasitoid developing inside (Jourdheuil, 1960). The parasitoid 

larva of Phradis spp. emerges from the host larva at temperatures from 18-20°C. It starts 

feeding on the haemolymph immediately. In the following 3-4 days the tersilochine larva 

orientates towards the gut of host larva and stop feeding (Jourdheuil, 1960). The larva of T. 

heterocerus emerges when host larva drop down for pupation (Osborne, 1960). After 

migration of the host larva for pupation in the soil, the histolysis of the host begins 

(Jourdheuil, 1960). Most of the larval growth of the parasitoids takes places in the host pupal 

chamber. The parasitoids have 5 larval instar stages. Pupation and larval development 

depends on temperature and the pupation stage takes 15 to 20 days. The adult parasitoid 

stays in diapause in the cocoon in the pupal chamber until the following spring on the old 

rape field. The complete development from migration of host larvae into the soil to imago of 

the tersilochine parasitoid takes 35 days at 25°C, 50 days at 20°C and 80 days at 15°C 

(Jourdheuil, 1960).  

Parasitoids locate their host-habitat probably by using upwind anemotaxis (Williams et al., 

2007a). They start host searching during the late bud and flowering stages of oilseed rape 

crops (Jönsson et al., 2005; Jönsson et al., 2007). Nilsson and Andreasson (1987) reported 

that T. heterocerus parasitised the larvae of the pollen beetle mostly in the flower and prefers 

the second instar larvae. The parasitoids are more attracted by odours from infested oilseed 

rape plants with host larvae compared to uninfested plants (Jönsson et al., 2005; Neumann, 

2010). In two-choice tests, Phradis spp. preferred the odour of oilseed rape buds and T. 

heterocerus also the odour in the flower stage (Jönsson & Anderson, 2008). In experiments, 

where the odour stimuli were combined with visual stimuli, different behaviours between the 

three key parasitoids of pollen beetle were recorded. When odours of flowering rape were 

combined with the colour yellow, and odours of the bud stage were combined with the colour 

green, P. intersitialis was equally attracted to both combinations, and T. heterocerus showed 

an increased preference for flower odours, while P. morionellus were not affected by the 

visual stimuli (Jönsson & Anderson, 2008). The spatial distribution within the field differs 

between parasitoid species: Phradis intersitialis has, like its host, a patchy distribution, while 

T. heterocerus is evenly spread across the field (Ferguson et al., 2003). 

Parasitism of pollen beetle larvae can be a decisive factor for the population dynamics and 

population growth of this pest (Ulber et al., 2010b). Depending on year, country and 
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meteorological factors, total parasitism rates from 0% to more than 90% were observed in 

Europe (Nilsson & Andreasson, 1987; Nielsen & Axelsen, 1988; Hokkanen, 2000; Büchi, 

2002; Williams, 2006; Thies et al., 2008). The relative abundance of the key parasitoids of M. 

aeneus varies between countries (Ulber et al., 2010b). In Germany, Poland and United 

Kingdom, T. heterocerus and P. interstitialis are predominant, while P. morionellus and D. 

capito were more common in Estonia and in Sweden. An efficient biocontrol agent requires 

the coincidence between the parasitoid and its host (Barari et al., 2005). Adults of T. 

heterocerus emerge later in the season than adults of P. interstitialis (Klingenberg & Ulber, 

1994, Ferguson et al., 2003). Fritzsche (1957a) recorded an increasing parasitism rate from 

30-40% of up to 94% by Phradis spp. and T. heterocerus with an increasing occurrence of 

parasitoid species during plant development.  

Landscape structure has been shown to directly affect antagonists of pollen beetles in field 

experiments where a complex structure with conservation strips and fallows enhanced the 

parasitisation (Thies & Tscharntke, 1999; Büchi, 2002; Thies et al., 2008; Zaller et al., 2009). 

Levels of rape crop areas in a region show contradictory impact on parasitism (Thies et al., 

2008; Zaller et al., 2008).  

Studies on the behaviour and temporal occurrence of parasitoids of pollen beetle indicate 

that insecticide treatment during late bud and flowering stage of oilseed rape crops can be 

very harmful to natural enemies (Jönsson et al., 2005; Jönsson & Anderson, 2008). Mortality 

of parasitoids can occur by direct contact with spray droplets and chemicals residues on a 

plant surface (Ulber et al., 2010a). They can also be affected during their development within 

the host. In addition to lethal effects, sublethal effects of insecticides may have an impact on 

life span, fertility, fecundity and changes in behaviour like feeding, host searching and 

oviposition (Stark & Banks, 2003).  

 

 

Trap cropping in oilseed rape 

 

The knowledge of host location and manipulation of behaviour and migration of the pollen 

beetle in oilseed rape have been used in investigation for trap cropping systems (Hokkanen, 

1991). Trap crops are used to attract the pest population and protect the target crop plants 

from infestation, with the possibility to control the pest on the trap crop with insecticides 

(Hokkanen, 1991; Shelton & Badenes-Perez, 2006). Turnip rape (Brassica rapa L.) crop 

borders reduced Psylliodes chrysocephala infestation of oilseed rape plots (Barari et al., 

2005). The adults of P. chrysocephala showed a feeding preference for turnip rape leaves 

over oilseed rape leaves. In field studies in Finland calabrese, chinese cabbage and oilseed 

rape were used successfully as trap crops, however, chinese cabbage needs to be sown 

early enough to induce flowering (Hokkanen et al., 1986). Mixtures of different plant species 

in combination with insecticide spraying were very effective to protect cauliflower from 

damage by the pollen beetle. Trap cropping in spring oilseed rape was also effective. About 

a 50% reduction in the number of beetles and insecticide use was recorded, when the trap 

crop flowers about 2 weeks earlier than the main crop spring oilseed rape. It was very 

important, that the trap crop was grown in the direction from which the adult beetles had 
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been observed to immigrate into the field (Hokkanen et al., 1986). B. rapa is preferred to B. 

napus by M. aeneus and shows good potential as a trap crop ( Cook et al., 2006, 2007). To 

guarantee that the direction of immigration of pollen beetles into the field does not have an 

effect, the turnip rape was grown on each site of the field (Cook et al., 2004). By surrounding 

the main crop spring oilseed rape with a border strip of turnip rape, the spatial distribution of 

the adult beetles within the field was manipulated. In spring oilseed rape the beetles were 

retained in the turnip rape border and the number of beetles in the centre was reduced 

compared to control plot totally grown with spring oilseed rape. The pollen beetle is attracted 

by the earlier growth development (Cook et al., 2004) and by volatile cues (Cook et al., 

2007). However, B. rapa is also preferred over B. napus when both species were in the bud 

stage. Phenylacethaldehyde, indole and (E,E)-α-farnese were found to be present in air 

entrainment samples of both plant species at the flowering stage, but only in those of B. rapa 

at the bud stage (Cook et al., 2007). It might be possible that the successful use of trap 

cropping in spring oilseed rape crops may show the same results for winter oilseed rape 

crops.   
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Cultivar and phenology of winter oilseed rape affect the abundance and 

reproduction of Meligethes aeneus (Fabricius) 

 

 

Abstract 

 

Host plant phenology and resource availability for oviposition and larval development can 

have important consequences on the abundance of offspring and the new generation of 

herbivorous insects. Pollen beetle, Meligethes aeneus (F.) (Col.: Nitidulidae), causes high 

yield losses in European oilseed rape crops. Integrated pest management strategies 

including the usage of less susceptible cultivars are needed to reduce the extensive 

application of synthetic insecticides. In three years’ field experiments we compared the 

abundance and population growth of pollen beetle on four cultivars of winter oilseed rape, 

Brassica napus (L.): `NK Passion´ (open-pollinated, early flowering), `Elektra´ (hybrid, early 

flowering), `Favorite´ (open-pollinated, late flowering) and `Titan´ (hybrid, late flowering). The 

abundance of adult pollen beetles and eggs was determined in March/April, while numbers of 

larvae and new-generation-beetles was assessed in May to July. We hypothesized that the 

availability of buds and flowers for oviposition and larval development is curtailed on early 

flowering cultivars, leading to a decreased reproduction and development of new-generation 

beetles. Annual weather conditions in spring strongly affected the coincidence between 

pollen beetle immigration and the time period of bud to flowering stage. In 2008, the 

abundance of overwintered pollen beetles on the late flowering cv. `Favorite´ was 

significantly lower, but the population growth rate was significantly higher than on cv. `NK 

Passion´ flowering 6 days earlier. In 2009 and 2010, when the phenological stages of all 

cultivars showed little difference, there was no significant effect of cultivars on population 

growth. In both years, overwintered pollen beetles significantly preferred buds of the hybrid 

cultivars for oviposition, however, this did not increase the abundance of new-generation 

adults compared with open-pollinated cultivars. Results of the field experiment were 

confirmed by results of a semi-field experiment where pollen beetles were released on caged 

plants of cv. `NK Passion´ and cv. `Favorite´ at two different plant growth stages. Our results 

suggest that flowering phenology of host plants and the limitation of resources for oviposition 

and larval development may be influential for reproduction and establishment of new-

generation pollen beetles on different cultivars of oilseed rape. However, this effect is 

dependent on the annual weather conditions. 

 

 

Introduction 

 

The pollen beetle, Meligethes aeneus (Col.: Nitidulidae), is a major pest of oilseed Brassicas 

in Europe (Alford, 2003). In spring, following hibernation, adult beetles feed on pollen from 

various plant families, but oviposition is restricted to brassicaceous plants (Fritzsche, 1957; 

Free & Williams, 1978). Feeding on the anthers and ovaries causes abortion of buds, 

resulting in podless stalks (Winfield, 1961; Nilsson, 1988a). After maturation feeding, females 
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deposit their eggs into medium-sized buds. First instar larvae feed on pollen within buds 

while second instar larvae continue feeding on pollen in open flowers (Fritzsche, 1957; 

Williams & Free, 1978). In May/June the full-grown second instar larvae drop to the ground 

for pupation in the upper soil layer. New-generation beetles emerge in June/July. Before 

entering winter diapause, they feed on pollen from a large variety of plant families (Fritzsche, 

1957). 

Ovipositing females discriminate between different brassicaceous plant species (Ekbom & 

Borg, 1996). Sinapis alba and Barbarea spp. were poorly accepted as hosts for egg-laying 

(Ekbom & Borg, 1996, Börjesdotter, 2000). In field experiments, more eggs were laid into 

buds of Brassica napus (L.) than into buds of B. juncea and B. campestris (Ekbom & Borg, 

1996). So far, the reproduction of  M. aeneus on different cultivars of B. napus have not been 

studied.  

M. aeneus adults locate their host plants using both visual and chemical cues (Williams & 

Cook, 2010). The behavioural response of the beetles to plant oudour, particularly to 

isothiocyanates, the breakdown products of glucosinolates, is modified by the yellow colour 

of the flowers (Mithen, 1992; Giamoustaris & Mithen, 1996; Cook et al., 2002). In polytunnel 

and field experiments, the oilseed rape cv. `Starlight´, which show low emissions of 

isothiocyanates, was less attractive to beetles than the cultivar `Canyon´. But when these 

cultivars were offered in different growth stages pollen beetles were more abundant on the 

cultivar in flower than on the cultivar in the bud stage (Cook et al., 2006b).  

Synchronisation of the phenology of adult beetles with suitable host stages is important for 

the reproductive performance of herbivores (Singh & Singh, 2005). As the number of buds 

available for feeding and ovipositon decreases in the advanced developmental stages of 

oilseed rape plants (Ekbom & Borg, 1996) the phenological stage of the host plant may 

strongly impact the population growth of pollen beetle (Nilsson, 1994). Nielsen and Axelsen 

(1988a) assumed that the eggs deposited late in the oviposition period will result in larvae 

which are not able to complete their development until the end of flowering stage. This study 

aimed to determine the effect of plant phenology of winter oilseed rape on reproduction and 

population growth of pollen beetle. In field experiments, the early flowering cultivars `NK 

Passion´ and `Elektra´ were compared with the late flowering cultivars `Favorite´ and `Titan´. 

To further analyse the influence of different plant growth stages on population growth, pollen 

beetles were released into caged plots at two different growth stages of oilseed rape in semi-

field experiments.   

 

 

Materials and methods 

 

Field experiment 

Experimental design: Three field experiments were conducted at Goettingen (N 

51°33'456.38, E 9°56'56.43), Germany, in 2007-2010. In each year, four cultivars of winter 

oilseed rape were grown in four replicated plots in a randomized block design (plot size 

75m²). Two cultivars were categorized as early flowering and two cultivars were categorized 

as late flowering, each represented by a hybrid (‘Elektra’ vs. ‘Titan’) and an open-pollinated 
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cultivar (‘NK Passion’ vs. ‘Favorite’) were selected for the experiments. To reduce edge 

effects the field experiment was set up within a field grown with a late flowering cultivar of 

oilseed rape.  

Pollen beetle abundance: The overwintered pollen beetles were counted every third day from 

the start of immigration during bud stage until full flowering. In each plot the number of 

beetles on 25 randomly selected plants was counted by beating the main raceme onto a 

plastic funnel (diameter 25cm). Beetles were released after counting to avoid effects on 

beetle density and oviposition. To calculate beetle abundance per square metre the number 

of beetles per plant was related to the plant density of each cultivar which was assessed at 

the end of March. On each occasion, the BBCH growth stage of the cultivars was recorded 

(Lancashire et al., 1991).   

Eggs and first instar larvae (L1): The number of pollen beetle eggs in the buds was assessed 

on 24  April 2008, 8 April and 17 April 2009 and 26 April 2010, respectively. In 2008, the main 

raceme, first and second side raceme (total of 3 racemes/ plant presented in table 2) and in 

2009 and 2010 the main raceme, first, third and fifth side raceme (total of 4 racemes/ plant 

presented in table 2), respectively, were collected from the top of 10 plants per plot and 

stored in plastic bags at 2°C. To compare the egg numbers and the feeding injuries of pollen 

beetles on buds of the four cultivars, all buds were examined under a binocular microscope 

(magnification 25-40x). Feeding injuries were recognized by uneven holes in the bud, while 

oviposition holes were characterized as distinct narrow holes at the base of the buds. The 

bud size (<2mm; 2-3mm; >3mm) was measured and the buds with oviposition holes were 

dissected to count the number of eggs and L1 larvae. The total supply of buds was analysed 

by relating buds with feeding and oviposition injury per main raceme and each of 3 side 

racemes on one sampling occasion in 2009 and 2010, respectively. 

Second instar larvae (L2): Before mature L2 larvae started to migrate to the ground for 

pupation, 15 water traps (17cm x 12.5cm, with detergent) were distributed randomly on the 

ground of each plot. The traps were emptied every fourth day until the end of flowering and 

the larvae caught were stored in 70% Ethanol. First and second instar larvae were separated 

by measuring their head capsule widths (Nilsson, 1988b). To determine the level of larval 

parasitism, 100 L2 larvae per plot were dissected under a binocular microscope 

(magnification 25x). The cuticle of each larva was cut off longitudinal under water and the 

body contents were squeezed out by using a fine needle. Immature stages of the parasitoids 

Phradis spp. and Tersilochus heterocerus were identified morphologically (Osborne, 1960). 

Additionally, subsamples of larvae were transferred to vials containing loamy soil in the 

laboratory  for pupation (Nitzsche, 1998). Adult parasitoids emerging from parasitized hosts 

were identified to species level (Horstmann, 1971, 1981).  

New generation pollen beetle abundance: The emergence of new generation pollen beetles 

was assessed by using two randomly distributed ground photoeclectors (0,25m², ecoTech 

GmbH) per plot. Numbers of beetles caught were checked every third day during the pod 

stage in June and July.  
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Semi-field experiment 

Experimental design: In 2009 and 2010, the open pollinated oilseed rape cultivars `NK 

Passion´ and `Favorite´ were grown on unsprayed fields at Goettingen (N 51°33'456.38, E 

9°56'56.43), Germany. Ten plots of each cultivar were enclosed by gauze cages (2m wide x 

4m long x 2m high; mesh size 0.3mm) to protect the plants from natural beetle infestation. To 

establish two different dates of plant colonization during the bud stage, five beetles/plant 

(150 beetles/m²) were released into the cages at an interval of 7 days in 2009. The “early 

infestation” was on 3 April (`NK Passion´ BBCH 51/ `Favorite´ BBCH 50-51) while the “late 

infestation” was on 10 April (`NK Passion´ BBCH (52) 53-55/ `Favorite´ BBCH 52-53). The 

BBCH growth stages of both cultivars were recorded from April until June. In 2010, 

oviposition of beetles released into the cages was on a very low level and the data could not 

be analysed. 

Adult beetles were collected from hibernation sites in a decidious forest in Mecklenburg-

Western Pomerania in Germany, three days before release into the cages. They were 

maintained at 14°C and a photoperiod of 16L:8D in gauze cages on potted plants of oilseed 

rape (cv. `Miniraps´). The beetles were starved for 24h before releasing them into field 

cages. Larvae dropping to the ground for pupation were caught in 6 water traps (17cm x 

12.5cm; with detergent) per plot. The traps were emptied during the flowering stage every 

four to six days and the L1 and L2 larvae were counted. The emergence of new generation 

beetles was recorded by using one ground photoeclector (0,25m², ecoTech GmbH) per plot 

during the pod stage. Emerging beetles were counted every third day.  

 

Data analyses 

Infestation: To compare numbers of overwintered adult pollen beetles on the four cultivars 

across the bud and flowering period, cumulative beetle-days were calculated by using the 

formula by Ruppel (1983): Cumulative beetle-days = ∑ (Xi+1 – Xi) [(Yi + Yi+1)/ 2],                      

where Xi and Xi+1 are consecutive counting occasions, Yi is the density of individuals on day i 

and Yi+1 is the density of individuals on day i+1.  

Emergence rate: The emergence rate of new generation pollen beetles was calculated by 

relating the accumulated number of emerging beetles in June and July to the accumulated 

number of L2 larvae dropping to the ground for pupation. Because parasitism of larvae 

causes mortality of prepupae in soil, the expected emergence rate of beetles was corrected 

by excluding the number of parasitised L2 larvae from the calculation (Schierbaum-Schickler, 

2005). 

Population growth rate: To estimate the growth of the pollen beetle population within one 

year the abundance of new-generation beetles emerging in summer was related to peak 

abundance of overwintered beetles on the plants in spring. 

Statistical analyses: The software STATISTICA, version 9.1 (StatSoft, Inc., 2010) was used 

for all statistical analyses. Data of each year were treated separately. The influence of 

cultivar on each explanatory variable (cumulative beetle-days, pollen beetle abundance, 

numbers of eggs, larval abundance, new generation beetle abundance, emergence rate, 

corrected emergence rate, parasitism rate, growth rate, numbers of buds and proportion of 

buds used for feeding and oviposition) was analysed by Kruskal-Wallis test. The 
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nonparametric test was used because the data were not normally distributed and not 

determined by homogeneity of variance. 

Simple linear regression models were used to examine the relationship between the length of 

time from the start of pollen beetle immigration to full flowering stage and the emergence 

rate. Correlations between the numbers of first instar larvae dropping to the ground and the 

numbers of second instar larval of all three years were analysed together. In the semi-field 

experiment, the effect of colonization date on numbers of L2 larvae and new-generation 

beetles on each cultivar was tested using Mann-Whitney-U test. Treatment means were 

compared at p ≤ 0.05. 

 

 

Results 

 

Field experiment 

Generally, the infestation level of the four cultivars by pollen beetles increased considerably 

over the three years of study. Mean peak abundance of overwintered pollen beetles 

increased from 63.04 ± 8.02 to 290.76 ± 31.42 and 526.9 ± 33.64 (mean ± SEM) beetles per 

m² in 2008, 2009 and 2010, respectively. In 2008, when the maximum daily temperature 

increased to >20°C not before mid April, the first beetles colonised the plants 16 days later 

than in 2009 and 2010 (Figure 1). In all three years the infestation level showed one or two 

peaks and thereafter declined until the beginning of petal fall. 

In 2008, the overwintered beetles clearly preferred the early flowering cultivars `NK Passion´ 

and `Elektra´ (Figure 1A). The inflorescences of these cultivars developed faster than the 

inflorescences of the late flowering cultivars `Favorite´ and `Titan´ (Figure 1A). Beetle 

abundance on plants peaked on 27 April, when the main racemes of the early flowering 

cultivars had up to 40% open flowers and the late flowering cultivars were in the yellow bud 

stage. The higher attractiveness of cv. `Elektra´ and particularly of cv. `NK Passion´ in 2008 

was also demonstrated by the cumulative beetle-days (Table 1).  

In 2009, forced by rapidly increasing temperatures in March/April, there was little difference 

between the growth stages of the four cultivars across the observation period (Figure 1B). At 

peak abundance of pollen beetles on 14 April, all cultivars were in the green to yellow bud 

stage. Although all cultivars showed the same growth stage pollen beetles were more 

abundant on the hybrids `Elektra´ and `Titan´ than on the open pollinated cvs. `NK Passion´ 

and `Favorite´ (Figure 1B). However, the cumulative beetle-days were not significantly 

different between the four cultivars (Table 1). 

In 2010, the growth of early flowering cultivars was slightly advanced and the cultivars 

`Elektra´ und `NK Passion´ were 5 days earlier in flower than the cultivars `Favorite´ and 

`Titan´ (Figure 1C). At this time pollen beetles were already present on plants since 23 days. 

Plant infestation by pollen beetles increased from 16 April to 19 April and decreased at low 

maximum temperature on 22 April. The ranking of cumulative beetle-days showed the order 

`Elektra´ > `Titan´ > `NK Passion´ > `Favorite´, thereby confirming the higher attractiveness 

of hybrids for pollen beetles compared with open pollinated cultivars (Table 1).  
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Elektra 57 59 60-61 63-64 63-65 65-67 65-67 
Favorite 55 57 59 59 62 63-64 64-65 
Titan 55 57 59 59 62-63 63-64 64-65 
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Figure 1: Abundance of overwintered pollen beetles (mean ± SEM) and BBCH growth stages 
of four winter oilseed rape cultivars in 2008 (A), 2009 (B) and 2010 (C).    
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Table 1: Cumulative beetle-days (mean ± SEM) of overwintered pollen beetles on four 
oilseed rape cultivars in 2008-2010 (upper case letters indicate significant differences 
between cultivars in one year; p ≤ 0.05; Kruskal-Wallis test). 

Cultivar 2008  2009  2010  

 mean  (± SEM) mean  (± SEM) mean  (± SEM) 

NK Passion 706.9  (± 36.2) A 2259.5  (± 153.8) A 6233.5  (± 637.8) AB 

Elektra 682.5  (± 17.7) AB 3706.4  (± 400.5) A 7211.9  (± 436.6) A 

Favorite 328.0  (± 29.8) B 2771.0  (± 453.1) A 4480.8  (± 104.9) B 

Titan 383.3  (± 31.9) AB 3339.8  (± 360.4) A 6775.4  (± 196.1) AB 

 
 
Table 2:  Mean abundance of pollen beetle adults, eggs and larvae on four oilseed rape 
cultivars in field experiments 2008-2010 (PB = pollen beetles; sampling date 1 = 24 April 
2008 and 08 April 2009; sampling date 2 = 17 April 2009 and 26 April 2010) (upper case 
letters indicate significant differences between cultivars in one year; p ≤ 0.05; Kruskal-Wallis 
test).  

Year Cultivar Overwintered 
PB/ m²  
(± SEM) 

Eggs/ m²  
(± SEM) 
sampling date 1 

Eggs/ m²  
(± SEM) 
sampling date 2 

L1 larvae/ m²  
(± SEM) 
sampling date 2 

Mature L2 
larvae/ m²  
(± SEM) 

New-generation 
PB/ m²  
(± SEM) 

2008 NK Passion 97 
(± 2.4) 

A 23  
(± 9.3) 

A -  -  653 
(± 96.2) 

A 214 
(± 13.7) 

A 

Elektra 90  
(± 3.6) 

AB 61 
(± 28.6) 

A -  -  733 
(± 68.7) 

A 285 
(± 16.4) 

A 

Favorite 30  
(± 2.1) 

B 25 
(± 7.4) 

A -  -  605 
(± 51.6) 

A 315 
(± 37.0) 

A 

Titan 35  
(± 3.0) 

AB 44  
(± 10.7) 

A -  -  569 
(± 87.7) 

A 301 
(± 42.9) 

A 

2009 NK Passion 201 
(± 41.6) 

A 41 
(± 20.9) 

A 991 
(± 318.6) 

A 477 
(± 83.7) 

AB 2262 
(± 393.3) 

AB 407 
(± 85.1) 

A 

Elektra 357 
(± 67.1) 

A 177 
(± 38.2) 

A 1958 
(± 632.2) 

A 672 
(± 104.8) 

AB 4130 
(± 375.5) 

A 650 
(± 117.3) 

A 

Favorite 285 
(± 80.7) 

A 45 
(± 21.8) 

A 659 
(± 245.1) 

A 172 
(± 56.2) 

A 1058 
(± 154.2) 

B 272 
(± 54.1) 

A 

Titan 320 
(± 50.2) 

A 115 
(± 41.3) 

A 1711 
(± 395.2) 

A 692 
(± 126.3) 

B 3236 
(± 216.6) 

AB 554 
(± 72.8)   

A 

2010 NK Passion 486 
(± 47.2) 

A -  1361 
(±261.7) 

A 122 
(± 65.4)   

A 3376 
(±640.5) 

A 338 
(± 80.9) 

A 

Elektra 618 
(± 75.6) 

A -  2734 
(± 508.6) 

A 129 
(± 27.4) 

A 4824 
(± 391.8) 

A 298 
(± 19.2) 

A 

Favorite 388 
(± 15.9) 

A -  1288 
(± 153.4) 

A 37 
(± 11.1) 

A 2638 
(± 220.1) 

A 289 
(± 21.6) 

A 

Titan 615 
(± 45.8) 

A -  1829 
(± 359.4) 

A 195 
(± 142.7) 

A 4748 
(± 455.1) 

A 403 
(± 55.5)   

A 

 

In 2008, peak abundance of overwintered pollen beetles in spring was significantly lower on 

cv. `Favorite´ than on cv. `NK Passion´ (Table 2). The number of overwintered beetles was 

not correlated with the number of eggs, L2 larvae and new-generation beetles emerging in 

summer (Table 2). Larval mortality caused by premature larval dropping and by parasitism 

did not differ significantly between cultivars (Table 3). Only the specialist parasitoids T. 

heterocerus and P. interstitials were identified from larvae. The emergence rate of new-
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generation beetles tended to be higher in late flowering cultivars than in early flowering 

cultivars. The corrected emergence rate which was taking only non-parasitised larvae into 

the calculation ranged from 58.4% to 90.3%. The growth rate of the pollen beetle population 

was significantly higher on cv. `Favorite´ and `Titan´ than on the early flowering cv. `NK 

Passion´ (Table 3).  

 

Table 3: Population development and mortality factors of pollen beetle on four oilseed rape 
cultivars in field experiments 2008-2010 (Growth rate = ratio new-generation 
beetles:overwintered beetles) (upper case letters indicate significant differences between 
cultivars in one year; p ≤ 0.05; Kruskal-Wallis test).  

Year Cultivar Premature larval 
dropping 

Parasitism rate Emergence rate Corrected 
emergence rate 

Growth rate 

 L1/ m² 
(± SEM) 

[%] 
(± SEM) 

[%] 
(± SEM) 

[%] 
(± SEM) 

 (± SEM) 

2008 NK Passion 24 
(± 10.4) 

A 41.4 
(± 1.1) 

A 34.3 
(± 4.4) 

A 58.4 
(± 6.9) 

A 2.2 
(± 0.1) 

A 

Elektra 58 
(± 18.4) 

A 42.3 
(± 2.9) 

A 39.4 
(± 2.6) 

A 68.7 
(± 4.9) 

A 3.2 
(± 0.3) 

AB 

Favorite 68 
(± 15.4) 

A 39.1 
(± 1.2) 

A 53.4 
(± 8.6) 

A 87.2 
(± 12.4) 

A 10.9 
(± 2.0) 

B 

Titan 47 
(± 12.4) 

A 41.0 
(± 1.6) 

A 53.2 
(± 2.8) 

A 90.3 
(± 4.5) 

A 8.9 
(± 1.8) 

B 

2009 NK Passion 476 
(± 66.4) 

A 46.3 
(± 5.5) 

A 17.7 
(± 2.0) 

A 33.8 
(± 4.2) 

A 2.1 
(± 0.4) 

A 

Elektra 453 
(± 44.0) 

A 44.2 
(± 3.2) 

A 15.5 
(± 1.9) 

A 27.7 
(± 2.5) 

A 2.0 
(± 0.4) 

A 

Favorite 349 
(± 63.0) 

A 42.2 
(± 4.2) 

A 26.2 
(± 4.1) 

A 46.3 
(± 7.7) 

A 1.2 
(± 0.4) 

A 

Titan 572 
(± 74.3) 

A 45.4 
(± 6.2) 

A 17.2 
(± 2.4) 

A 32.3 
(± 4.4) 

A 1.9 
(± 0.5) 

A 

2010 NK Passion 1461 
(± 175.3) 

AB 72.6 
(± 2.5) 

A 9.8 
(± 0.8) 

AB 36.5 
(± 3.6) 

A 0.7 
(± 0.1) 

A 

Elektra 1661 
(± 82.7) 

A 77.3  
(± 3.9) 

A 6.3 
(± 0.7) 

A 30.2 
(± 6.1) 

A 0.5 
(± 0.1) 

A 

Favorite 960 
(± 124.5) 

B 70.8 
(± 2.1) 

A 11.0 
(± 0.5) 

B 38.6 
(± 4.4) 

A 0.7 
(± 0.1) 

A 

Titan 1478 
(± 134.3) 

AB 71.0 
(± 2.4) 

A 8.4 
(± 0.5) 

AB 29.1 
(± 1.0) 

A 0.7 
(± 0.1) 

A 

 

In 2009, when higher numbers of eggs were laid and higher numbers of L1 and L2 larvae 

developed in hybrid cultivars than in open pollinated cultivars (Table 2), the emergence rate 

and growth rate of pollen beetle populations was considerably smaller than in 2008 and did 

not differ between cultivars (Table 3). In buds of cv. `Titan´ a significantly higher number of 

L1 larvae was recorded compared to cv. `Favorite´. The number of mature L2 larvae was 

significantly higher on cv. `Elektra´ than on cv. `Favorite´.  

In 2010, higher numbers of eggs, L1 and L2 larvae were found in hybrids than in open-

pollinated cultivars, however, the number of individuals was not significantly different 

between cultivars (Table 2). The level of the larval parasitism increased from 42.2-46.3% in 
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2009 to 70.8-77.3% in 2010. The emergence rate of new generation beetles significantly 

differed between cv. `Elektra´ and cv. `Favorite´ (Table 3).  

Premature larval dropping significantly increased with increasing abundance of mature L2 

larvae (r² = 0.7057, p = 0.000, y = -87.0985+0.3001*x, n = 48) over the three years. In each 

year, the emergence rate of new-generation beetles was significantly influenced by the 

length of time from the start of beetle immigration to full flowering of the tested cultivars 

(2008: r² = 0.4453, p = 0.0047; 2009: r² = 0.4175, p = 0.0068; 2010: r² = 0.6352, p = 0.0002) 

(Figure 2). The precipitation during the emergence period differed between the three years. A 

high amount (87mm) and moderate amount (53mm) of rainfall occured in a period of 22 days 

and 28 days in 2008 and 2009, respectively. In 2010, the precipitation decreased drastically 

to only 19mm in 25 days.  
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Figure 2: Effect of the length of time from the beginning of pollen beetle immigration until full 
flowering stage on emergence of adults in three years (2008: -1.5308+2.7424*x, 2009: y = -
19.5782+1.6315*x, : y = -15.9682+0.7764*x). 

 

The dissection of buds sampled from all cultivars showed that females deposited eggs only 

into buds of the size 2-3mm and >3mm. No eggs were found in buds <2mm. In samples 

collected on 26 April 2010, the maximum proportion of buds used for feeding and oviposition 

was 66.1 ± 3.5 % (mean ± SEM) (first side raceme of `Elektra´, bud size > 3mm) and 47.1 ± 

4.9 % (mean ± SEM) (third side raceme of `Elektra´, bud size 2-3mm) (Table 4). Significant 

differences were recorded between cultivars; cv. `Elektra´ was most attractive for oviposition 

and feeding. On 17 April 2009, the rank order of cultivars used for feeding and oviposition 

was `Titan´>`Elektra´>`NK Passion´> `Favorite´ (bud size 2-3mm). On cv. `Titan´ the highest 

percentage of the buds >3mm was used for oviposition and feeding (Table 4).  
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Table 4: Proportion (mean ± SEM [%]) of buds showing feeding and oviposition holes in 
relation to the total number of available buds (size 2-3mm and > 3mm) and mean number (± 
SEM) of eggs per bud on four oilseed rape cultivars in 2009 and 2010 (p ≤ 0.05 = significant 
difference between cultivars within line; Kruskal-Wallis test). 

Samplin
g date 

Bud size Position of 
raceme 

cv. NK Passion cv. Elektra cv. Favorite cv. Titan H 3, 0, 

0.95 

p 

   mean ± SEM mean ± SEM mean ± SEM mean ± SEM   

17 April 
2009 

2-3mm main raceme 11.8   4.4 24.5   2.2 11.6   1.9 32.8   10.0 6.949 0.074 

 side raceme 1 10.5  3.9 28.7  8.1 3.7     1.8 37.8   2.9 10.277 0.016 

 side raceme 3 6.7   3.2 24.2   5.8 3.3    2.1 28.4   1.2 10.863 0.013 

 side raceme 5 7.2     1.3 17.6   5.4 3.3    3.3 19.5   7.1 6.750 0.080 

>3mm main raceme 20.9 4.0 28.6 1.8 35.4 4.2 40.8 4.2 8.559 0.036 

 side raceme 1 40.0 3.9 39.1 5.0 33.2 5.3 56.1 6.2 6.904 0.075 

 side raceme 3 33.9 3.6 47.1 4.9 27.5 6.0 56.9 4.7 9.593 0.022 

 side raceme 5 26.1 4.8 42.5 6.1 15.7 5.0 50.0 6.1 9.420 0.024 

 eggs/bud  1.7  1.9  3.2  3.3    

26 April 
2010 

2-3mm main raceme 18.2 2.8 28.6 5.9 35.4 3.4 30.3 4.1 4.610 0.203 

 side raceme 1 14.8 5.1 39.1 2.9 33.2 4.7 24.0 2.5 3.199 0.362 

 side raceme 3 11.5 2.8 47.1 2.0 27.5 3.8 24.8 4.8 6.772 0.080 

 side raceme 5 6.7 0.5 42.5 3.0 15.7 1.6 19.7 3.1 8.912 0.031 

>3mm main raceme 44.0 6.4 61.9 4.9 47.1 4.8 48.0 3.1 5.537 6.137 

 side raceme 1 40.2 3.9 66.1 3.5 44.1 3.9 51.3 2.7 10.743 0.013 

 side raceme 3 26.3 1.1 55.9 1.3 43.0 5.1 50.9 2.5 11.404 0.010 

 side raceme 5 22.7 3.2 43.3 2.4 34.4 10.0 41.8 6.0 5.272 0.153 

 eggs/bud  1.6  2.0  1.7  1.7    

 

A high proportion of infested buds contained one egg (44.4 ± 4.3%) (mean ± SEM), while two 

eggs and three eggs per bud were found in 32.1 ± 3.54% (mean ± SEM) and 7.9 ± 1.32% 

(mean ± SEM) of buds, respectively. A maximum clutch size of 11 eggs was found in 0.1 ± 

0.05% (mean ± SEM) of buds. In 2009, females in average deposited more eggs into the 

buds of hybrid cultivars. The number of buds per plant did not differ between cultivars in 

2009 (Table 5) while in plants sampled in 2010, the number of buds per plant significantly 

differed between cultivars. 

 

Table 5: Mean number (± SEM) of buds per plant on four oilseed rape cultivars in 2009 and 

2010. 

Sampling 
date 

Bud size cv. NK Passion cv. Elektra cv. Favorite cv. Titan H 3, 0, 

0.95 

p 

  mean ± SEM mean ± SEM mea
n 

± SEM mean ± SEM   

17 April 
2009 

2-3mm 28.5 5.7 39.1 6.9 38.2 4.5 45.6 10.3 2.206 0.531 

>3mm 77.7 5.8 67.7 8.1 49.4 13.1 64.4 3.7 3.507 0.320 

26 April 
2010 

2-3mm 34.1 6.1 34.5 1.9 47.3 4.5 33.3 3.3 8.824 0.032 

>3mm 76.7 10.0 92.2 12.9 51.2 13.6 78.1 12.9 10.478 0.015 
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Semi-field experiment 

In 2009, the accumulated number of second instar larvae and of emerging new-generation 

pollen beetles was significantly higher at early infestation than at late infestation of cv. `NK 

Passion´ by overwintered pollen beetles (second instar larvae: p = 0.022, new-generation 

beetles: p = 0.02) (Figure 3). In cv. `Favorite´ the same trend was observed, however, the 

numbers in early and late infestations were not significantly different.   

Migration of L2 larvae to the ground started on 21 April and increased in the early infestation 

treatment of both cultivars until 12 May 2009. The new generation beetles emerged within a 

period of four weeks. In the early and late infestation treatments of cv. `NK Passion´ 

maximum numbers of emerging beetles occured on 14 June. On cv. `Favorite´ maximum 

numbers occured in early and late infestation treatments three and six days later, 

respectively, than on cv ‘NK Passion’. On both cultivars, maximum numbers of emerging 

beetles were higher in early infestation treatments (`NK Passion´ mean 268.0 ± SEM 59.3 

beetles/m², `Favorite´ mean 215.2 ± SEM 31.8 beetles/m²) than in late infestation treatments 

(`NK Passion` mean 120.0 ± SEM 37.9 beetles/m², `Favorite mean 198.4 ± SEM 52.5 

beetles/m²).  
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Figure 3: Cumulative number of second instar larvae and new-generation beetles in a semi-

field experiment in 2009 (* indicate significant differences with p ≤ 0.05 between treatments; 

Mann-Whitney-U test). 

 

 

Discussion 

 

Adult pollen beetles locate their host plants by odour cues using upwind anemotaxis (Evans 

& Allen-Williams, 1994; Cook et al., 2002; Williams et al., 2007). Host plant volatiles, 

particularly isothiocyanates, are carried downwind from the crop. The yellow and green 

colours of the plants are important cues for orientation. In spring 2008, our field experiment 

showed that winter oilseed rape cultivars in the early flowering stage were preferred by over-
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wintered pollen beetles at the beginning of crop colonization. It has been previously reported 

that the plant growth stage has a significant effect on the colonization behaviour of pollen 

beetles (Free & Williams, 1978). Beetles were more abundant on plants in flower or the 

yellow bud stage than in the green bud stage (Free & Williams, 1978). The host plant 

preference was tested in polytunnel experiments, offering a turnip rape cultivar, a 

conventional cultivar of oilseed rape and a cultivar with low isothiocyanate emissions in the 

flower and bud stage. Irrespective of plant species or cultivar, the numbers of pollen beetles 

on the plants in flowering stage were significantly higher (Cook et al., 2006b). As all four 

cultivars developed to the green and yellow bud growth stage simultaneously in our field 

experiments in 2009 and 2010, we expected that all cultivars might be colonized by similar 

numbers of adult pollen beetles. However, the cumulative beetle-days showed that the 

hyprids `Elektra´ and `Titan´ were more attractive than the open pollinating cultivars when all 

were in a similar growth stage. In earlier studies, oilseed rape cultivars with higher amounts 

of glucosinolates were more attractive to adult pollen beetles compared to cultivars with low 

content of glucosinolates ( Giamoustaris & Mithen, 1996, Cook et al., 2006b). Giamoustaris & 

Mithen (1996) concluded that after biting of adult beetles through the sepals the release of 

isothiocyanates may be repellent or deterrent. Further investigations are necessary to find 

out whether the glucosinolate content of the inflorescences could be deterrent or repellent 

and a factor for low numbers of adult pollen beetles in winter oilseed rape cultivars tested in 

this study.      

Other behavioural responses to chemical cues may have affected orientation and distribution 

and influenced pollen beetle abundance on cultivars in our experiments. Aggregations of 

pollen beetles were observed on individual plants of spring rape (Free & Williams, 1978; 

Nielsen & Axelsen, 1988b). Cook et al. (2006a) found no evidence for pollen beetle male-

produced aggregation pheromones in laboratory experiments. They suggested that visual 

cues may play a more important role for aggregation. Furthermore they identified an 

epideictic pheromone released by females. Pollen beetles significantly moved away from a 

group of 200 females on one plant (Cook et al., 2006a).  

Pollen beetle oviposition in spring depends on the buds available on oilseed rape plants 

(Ekbom & Borg, 1996). Recent studies as well as our experiments have shown that females 

deposit their eggs into B. napus buds with the size of 2-3mm and >3mm (Nilsson, 1988c; 

kbom & Borg, 1996). The mean number of 2-3 eggs per bud was similar to the number 

reported by Nilsson (1988c) from winter rape , but in contrast to 3-4 eggs/bud found in spring 

rape (Hokkanen, 2000). The bud stage is one of the most relevant phenological stages of 

rape plants determining population development of pollen beetles (Nilsson, 1988c; Ekbom & 

Borg, 1996; Hokkanen, 2000). Ekbom and Borg (1996) found the greatest number of eggs in 

plants when more than one third of all buds was medium-sized (2-3mm). Females prefer this 

bud stage because the eggs and first instar larvae are protected within closed buds (Nilsson, 

1988c). The availability of medium-sized buds had no apparent influence on oviposition into 

the four cultivars in our studies. On 17 April 2009, the number of eggs deposited on cv. 

`Favorite´ amounted to only one third of the number of eggs on cv. `Elektra´, the cultivar with 

the greatest number of eggs. However, the supply of buds with the size of 2-3mm was on the 

same level on both cultivars. In 2010, although the number of buds of 2-3mm size was higher 
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on cv. `Favorite´ than on cv. `Elektra´, nearly half of the egg numbers deposited into buds of 

cv. `Elektra´ were found in buds of cv. `Favorite´. There was no evidence that the supply of 

buds influenced the oviposition preference for the hybrids `Elekta´ and `Titan´ in 2009 and 

2010. Obviously, there was no shortage of resources for oviposition: in both years of our field 

experiments, the proportion of buds with oviposition and feeding injuries did not exceed 66%. 

However, this data represents only one single sampling occasion and multiple samples are 

required for precise estimates of the whole number of eggs and feeding injuries during the 

bud stage. In 2009, the four cultivars developed nearly simultaneously and the bud stage 

continued 16 and 18 days after pollen beetle immigration into the early flowering and late 

flowering cultivars, respectively. In 2010, the possible main egg laying period was extended 

to 23 and 28 days of the early flowering and late flowering cultivars, respectively. Increasing 

numbers of eggs, L1 larvae and L2 larvae might result from an extended duration of available 

buds and favourable annual weather conditions (Nilsson, 1988d).  

In our field experiments the larger number of eggs and larvae in hybrids did not result in a 

higher abundance of emerged pollen beetles compared to open pollinated cultivars. It can be 

assumed that intraspecific competition between larvae was a reasonable factor. Second 

instar larvae are very mobile and move from flower to flower to feed on pollen (Williams & 

Free, 1978); they may force the smaller first instar larvae out of the flower (Hokkanen, 2000). 

Mortality due to dropping of pre-mature larvae was also described by Nilsson (1988d). In the 

three years, significant correlations between the numbers of first and second instar larvae 

indicate that higher numbers of second instar larvae cause a higher rate of first instar larvae 

dropping to the ground. Intraspecific competition is a density depending effect that may 

cause high larval mortality.   

Hymenopterous parasitoids and carabid beetles are important mortality factors of pollen 

beetle larval stages and can reduce the emergence rate of new generation beetles (Nilsson, 

1988d; Büchi, 2002). In previous studies parasitism rates exceeding 50% were found 

(Nitzsche, 1998; Billquist & Ekbom, 2001; Büchi, 2002). In our field experiments the 

parasitism ranged between 39.1% and 77.3%. The parasitism rate depends on 

synchronisation between host and parasitoid phenology (Nitzsche, 1998). The abundance 

and phenology of parasitoids is influenced by a large range of factors like landscape 

structure (Thies & Tscharntke, 1999), weather conditions and crop management (Nilsson, 

2003). The field experiments at Goettingen were conducted in a complex landscape structure 

with hedges that may have favoured the occurrence of the parasitoids within the three years. 

In addition, entomopathogenic fungi and nematodes were reported as effective antagonists 

that kill the larvae in soil (Nielsen & Philipsen, 2005; Hokkanen, 2008). However, these 

antagonists in agricultural soils apparently have no relevant effect on pollen beetle mortality 

in Europe (Hokkanen, 2008); this aspect needs to be studied further.  

In 2008, the corrected emergence rate of new-generation beetles with 58.4 to 90.3% was 

very high. In the following two years it decreased significantly. In addition to antagonists, 

mortality during pupation in soil might have been increased by unfavourable weather 

conditions (Ellis et al., 2004; Schierbaum-Schickler, 2005). From 18 June to 12 July 2010, 

the amount of precipitation with 19mm was on a low level. Ellis et al. (2004) assumed that 

larvae of the Nitidulide Aethina tumida died in dry soils because of predrying or suffocation.  



Chapter II 

 24 

In our study, the emergence rate was significantly correlated with the time period available 

for egg-laying and larval development of pollen beetle during the bud and flowering stage. In 

2008 in particular, but also in 2009 and 2010, a short time period caused a low emergence 

rate. The period required for development of eggs, first and second instar larvae depends on 

temperature and relative humidity (Fritzsche, 1957; Nielsen & Axelsen, 1988a). 

Developmental of eggs and larvae takes 20-25 days in winter rape (Nilsson, 1988d). In this 

period their numbers are limited by the supply of buds and flowers as a source of food. If the 

larvae are not mature for pupation at the end of flower and petal fall, a high mortality might 

be caused by premature pupation of larvae (Nielsen & Axelsen, 1988a). Cook et al. (2004) 

confirmed this statement by laboratory experiments, demonstrating the influence of food 

quantity on larval development and pupation: less second instar larvae, prepupae, pupae 

and adult pollen beetles developed after a diet without pollen. Despite the higher adult pollen 

beetle abundance on the early flowering cultivars `NK Passion´ and `Elektra´, the emergence 

rate and population growth rate were on a low level compared to the late flowering cultivars 

in 2008. Thus, a shorter time for development in flower may have increased the risk of larvae 

to suffer from food shortage, preventing successful pupation. The results of the semi-field 

experiment in 2009 confirmed the impact of food quantity on larval development. The delay 

of beetle colonization by 7 days caused significantly lower numbers of second instar larvae 

and newly emerged pollen beetles in the cv. `NK Passion´.  

The growth rate of the pollen beetle population differed widely between years. The ratio 

between the abundance of overwintered beetles and new-generation beetles varied from 

1:0.5 and 1:11. Similar results between 1:1 and 1:10 were reported by Nilsson (1988d). This 

author mentioned that minor changes, for example in crop management, can influence the 

survival during development of pollen beetles. Plant growth characteristics of cultivars, like 

the number of buds and duration of flowering period, are important for the survival of 

immature stages. In 2008, the cvs. `NK Passion´ and `Elektra´ began to flower 6 days after 

beetle immigration and maintained flowering for 13 days. This short time period resulted in a 

limited population growth which was reflected by a lower ratio between the abundance of 

overwintered beetles and their progeny compared to cv. `Titan´ and `Favorite´. 

 

In conclusion, the population growth of pollen beetle can be negatively influenced by early 

flowering winter oilseed rape cultivars. The temperature, the date of colonization and the 

plant growth stage were major restricting factors for larval development and the abundance 

of new-generation beetles. Early flowering cultivars have potential to be used in integrated 

pest management systems for limiting the population outcome in summer and in spring of the 

following year.  
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Effects of insecticides on abundance of pollen beetles (Meligethes aeneus 

Fabricius) and yields in oilseed rape 

 

 

Abstract 

 

Pollen beetle, Meligethes aeneus (Fabricius) (Col.: Nitidulidae), is a major pest of oilseed 

rape throughout Europe. Chemical control is impeded by widespread resistance to pyrethroid 

insecticides and new insecticidal agents are needed for regulating resistant populations and 

control of pest outbreaks. In three-year field experiments, this study investigates the effect of 

synthetic insecticides on the abundance of various life stages of pollen beetle (overwintered 

adults, eggs, first and second instar larvae, new generation beetles) and subsequent bud 

and yield losses in oilseed rape. Two active ingredients, the organophosphate chlorpyrifos-

methyl and the neonicotinoide thiacloprid were applied in a sequence during the bud and 

flowering stage of winter oilseed rape. The abundance of overwintered pollen beetles was 

significantly reduced by insecticide treatments in two years. The efficacy of insecticides on 

adult beetles varied widely between 2.3% and 77.4%, depending on the time of application. 

Likewise, numbers of second instar larvae and new generation beetles were significantly 

reduced by insecticides in all three years. Compared to untreated plots, percentage reduction 

of the abundance of second instar larvae and of emerging new-generation beetles ranged 

from 83.2% to 90.6% and from 82.5% to 95.5%, respectively. Although bud losses caused by 

pollen beetles was significantly higher in untreated plots, there were no significant 

differences between seed yields of oilseed rape in untreated and treated plots. In conclusion, 

our results indicate that adult populations may remain on high levels after repeated 

insecticide applications in spring, whereas the abundance of new generation beetles can be 

strongly inhibited.     

 

 

Introduction 

 

Pollen beetle, Meligethes aeneus (Fabricius) (Col.: Nitidulidae), is a common pest of oilseed 

rape, Brassica napus L. (Brassicaceae) in Europe (Alford et al., 2003). In March/April, during 

the green and yellow bud stage of the crop, adult beetles bite into buds to feed on pollen, 

thereby causing bud abortion and reduced development of pods (Winfield, 1961; Nilsson, 

1988). Yield losses eventually can exceed 80% (Ahuja et al., 2010). Oviposition starts a few 

days after crop colonization and continues as long as buds are available. Females deposit 

one to six eggs into buds of various brassicaceous plants (Ekbom & Borg, 1996). The 

univoltine pollen beetle has two larval instars which develop in 3–4 weeks within the buds 

and later on in open flowers (Williams & Free, 1978; Nilsson, 1994). In May/June the full-

grown second instar larvae drop to the ground for pupation in upper soil layers. New 

generation beetles emerge in June/July to feed on pollen of Brassica plants and many other 

plant species before overwintering (Nilsson, 1994).  
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With increasing areas grown with oilseed rape, the population density and damage potential 

of M. aeneus has increased as well (Hokkanen, 2000). Effective control measures are 

required when beetle numbers exceed the application threshold of 3–8 beetles per plant in 

the green bud stage (Alford et al, 2003; Williams, 2010). In 2010 and 2011, oilseed rape was 

sprayed with insecticides in Germany three times in average per growing period, of which the 

highest intensity was applied on pollen beetle (Freier et al., 2012). Due to the limited choice 

of registered insecticides and the extensive use of pyrethroid insecticides, pollen beetle 

populations have built up widespread resistance to these compounds in recent years across 

Europe (Slater et al., 2011). High levels of resistance to pyrethroids and corresponding high 

levels of plant infestation by pollen beetles have resulted in estimated yield losses of 22-25 

million EUR in 2006 (Zlof, 2008). Following a severe reduction in sensitivity to pyrethroids in 

Germany (Heimbach et al., 2006), alternative insecticides with different modes of action, 

such as organophosphorous and neonicotinoid compounds, were recommended for control 

of pyrethroid-resistant pollen beetles (Slater et al., 2011, Heimbach & Müller, 2013). The 

organophosphate chlorpyrifos-methyl and the neonicotinoid thiacloprid are effective by 

systemic and contact activity, acting as acetylcholinesterase inhibitor and agonist on the 

nicotinic acetylcholin receptor in the central nervous system of insects, respectively (Elbert et 

al., 2008). In addition to direct mortality, sublethal effects of insecticides on beetle physiology 

and behaviour may affect longevity, fecundity and orientation of adults as well as larval 

development (Desneux et al. 2007; Stark and Banks, 2003). Effects of insecticides on the 

abundance of immature stages and new-generation pollen beetles, however, have not been 

studied.  

The objective of the present study was to determine the effects of successive applications of 

thiacloprid and chlorpyrifos-methyl on the abundance of overwintered adults, eggs, first and 

second instar larvae, and new-generation adults of pollen beetles in winter oilseed rape. We 

hypothezised that (i) insecticide applications against adult pollen beetles would reduce their 

reproduction, resulting in lower abundance of new generation beetles emerging in summer, 

and that (ii) repeated insecticide sprays would reduce the damage caused by beetles and 

consequently increase yields of winter oilseed rape.   

 

 

Materials and methods 

 

The study was conducted in the region of Goettingen (N 51°33'456.38, E 9°56'56.43), 

Northern Germany. The effect of insecticide application on pollen beetle abundance and 

plant damage was tested under field conditions from 2008-2010. Each year, four winter 

oilseed rape cultivars (`NK Passion´, `Elektra´, `Favorite´, `Titan´) were grown in a 

randomized block design with four replicated plots. The BBCH code of Lancashire et al. 

(1991) was used for characterizing the growth stages of winter oilseed rape. The data 

obtained from all cultivars have been pooled to examine the main factor insecticide 

treatment. Plot size was 150m² and half of the plots (75m²) was sprayed two to three times 

with insecticides during the bud and early flowering stage (Table 1). The commercial 

insecticides Biscaya (a.i. thiacloprid) and Reldan 22 (a.i. chlorpyrifos-methyl) were applied at 
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recommended dose rates of 0.3L/ha and 1.5L/ha, respectively, in 300L of water per ha. The 

abundance of adult pollen beetles on plants was assessed at seven, eight and eleven 

sampling dates in 2008, 2009 and 2010, respectively, before and following the insecticide 

applications. On each sampling date, the number of pollen beetles was recorded on the main 

raceme of 50 randomly selected plants per plot by beating each raceme onto a white plastic 

funnel (diameter 25cm). Plant density was assessed to calculate the number of beetles per 

square metre. Bud samples of main racemes and of lateral racemes (overall 3 racemes/plant 

in 2008; 4 racemes/plant in 2009 and 2010) of 20 randomly selected plants per plot were 

collected on 24 April 2008, on 8 and 17 April 2009 and on 26 April 2010. Samples were 

stored in plastic bags at 2°C and later dissected under a binocular microscope (magnification 

25-40x) to count the number of eggs and first instar larvae (L1). To collect second instar 

larvae (L2) dropping from plants for pupation in soil, 30 trays (17cm x 12.5cm) containing 

water + detergent were randomly distributed on the ground of each plot. The traps were 

emptied at four-day intervals until the end of flowering (BBCH 69). The larvae were counted 

and their number computed to obtain the total larval abundance per m². The abundance of 

new generation beetles was assessed by four ground photoeclectors (0.25m², ecoTech 

GmbH) per plot during the emergence period of three weeks in June (BBCH 71-85). During 

the pod stage (BBCH 79-83), the number of pods and blind stalks on the main raceme and 

one lateral raceme (2008: second lateral raceme from top; 2009 and 2010: third lateral 

raceme from top) was counted on 20 randomly selected plants per plot. At maturity (BBCH 

97), yields were estimated from a subplot of 50m² per plot. In 2008, a hailstorm caused 

complete loss of harvest. In 2009 and 2010, thousand-seed-weights were additionally 

determined. Seed yield was recorded at 9% water content of seeds. 

 

Table 1: Dates of insecticide applications to winter oilseed rape in field experiments 2008-
2010. 

Year Date of 

application 

Growth stage 

(BBCH) 

Trade  

name 

Active ingredient Application 

rate [l/ha] 

2008 24 April 59-61 Biscaya 240 g/l thiacloprid 0.3  

 6 May 64-67 Biscaya 240 g/l thiacloprid 0.3  

2009 6 April 51-53 Reldan 22 225 g /l chlorpyrifos-methyl 1.5  

 14 April 55-59 Biscaya 240 g/l thiacloprid 0.3  

 21 April 60-64 Biscaya 240 g/l thiacloprid 0.3  

2010 8 April 51-53 Reldan 22 225 g /l chlorpyrifos-methyl 1.5  

 20 April 55-59 Biscaya 240 g/l thiacloprid 0.3  

 26 April 57-60 Biscaya 240 g/l thiacloprid 0.3  

 

Based on the number of adult pollen beetles per m² , cumulative beetle-days were calculated 

across the period of infestation (Ruppel, 1983) to compare the level of infestation in sprayed 

and unsprayed plots. Differences in beetle-days between treated and untreated plots were 

analysed using the nonparametric Mann-Whitney-U test. The efficacy of insecticide 

treatments was calculated according to the formula of Henderson & Tilton (1955). 
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Percentage bud loss resulting from adult beetle attack was calculated as the proportion of 

blind stalks in relation to the total number of mature pods and blind stalks. Differences in bud 

loss, yield, thousand-seed-weight and numbers of immature stages of pollen beetle between 

treated and untreated plots were analysed by the parametric two-sample t-test. All statistical 

tests were performed using the software STATISTICA, version 9.1 (StatSoft, Inc., 2010).   

 

 

Results 

 

In 2008 and 2009, the cumulative beetle-days of adult pollen beetles were significantly lower 

in all plots treated with insecticides (Figure 1) than in untreated plots. The efficacy of 

insecticide applications which was estimated three to five days following insecticide 

applications varied substantially in all years (Table 2). For example, in 2009, treatment with 

thiacloprid showed a very low efficacy at the third application but a high efficacy at the 

second application.  
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Figure 1: Cumulative beetle-days (mean ± SEM) of pollen beetles in insecticide treated and 
untreated plots of winter oilseed rape cultivars in 2008-2010 (* significant differences 
between treated and untreated plots within four cultivars, Mann-Whitney-U test, p ≤ 0.05). 
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Table 2: Mean efficacy (mean ± SEM) of 2 - 3 insecticide applications per year on adult 
pollen beetles (Henderson & Tilton, 1955) of winter oilseed rape in 2008-2010. 

Year Date of 
application 

Active ingredient Days after 
treatment 

Mean (± SEM)  
insecticide efficacy [%] 

2008 24 April  thiacloprid 3 51.2 (± 8.2) 

 6 May thiacloprid 3 56.8 (± 10.3) 

2009 6 April chlorpyrifos-methyl 3 68.1 (± 5.1) 

 14 April thiacloprid 4 77.4 (± 5.1) 

 21 April thiacloprid 3 2.3 (± 2.3) 

2010 8 April chlorpyrifos-methyl 5 68.9 (± 7.9) 

 20 April thiacloprid 3 42.2 (± 4.2) 

 26 April thiacloprid 3 27.3 (± 6.2) 

 
 
Table 3: Abundance of eggs and L1 larvae within buds (3 racemes in 2008, 4 racemes in 
2009 and 2010), abundance of L2 larvae and abundance of new generation beetles (NGB) in 
insecticide-treated and untreated plots during bud stage of winter oilseed rape (data of four 
cultivars pooled, p ≤ 0.05 = significant differences within a row between treatments, two-
sample t-test).  

Year Sampling date Instar Mean no.       
(± SEM) of 
ind./m² in 
untreated plots 

Mean no.    
(± SEM) of 
ind./m² in 
treated plots  

t df p 

2008 24 April  Eggs 38 (± 8.3) 15 (± 2.4) -3.20 28 0.003 

 9 – 23 May  L2 640 (± 38.3) 61 (± 18.3) -13.48 17.9 0.000 

 13 June – 4 July  NGB 279 (± 17.3) 19 (± 5.6) -14.59 17.9 0.000 

2009 8 April  Eggs 95 (± 20.4) 40 (± 11.2) -1.36 27.8 0.186 

 17 April  Eggs 1330 (± 233.0) 707 (± 101.1) -1.88 26.3 0.071 

 L1 503 (± 69.1) 265 (± 52.2) -2.70 28.8 0.011 

 25 April – 13 May  L2 2672 (± 324.5) 461 (± 104.3) -7.32 26.1 0.000 

 5 June – 2 July  NGB 470 (± 53.3) 19 (± 4.0) -14.78 25.7 0.000 

2010 26 April  Eggs 1803 (± 214.8) 497 (± 61.3) -7.66 29.9 0.000 

 L1 121 (± 36.6) 272 (± 34.6) 4.33 23.2 0.000 

 6 May – 1 June  L2 3896 (± 313.5) 400 (± 141.3) -11.65 19.5 0.000 

 18 June – 12 July  NGB 332 (± 25.7) 59 (± 14.1) -10.24 20.1 0.000 

 

In 2008 and 2010, the number of eggs/m² differed significantly between plants collected from 

treated and untreated plots. In 2009, the number of L1 larvae in the buds was significantly 

lower three days after insecticide application. In contrast, in 2010 the number of L1 larvae 

was significantly higher in treated plots than in untreated plots (Table 3). The third insecticide 

treatment was carried out after sampling of buds for dissection (Table 1). In each year, the 

abundance of second instar larvae and new generation beetles was significantly reduced in 

all treated plots (Table 3). The L2 larvae in treated plots accounted only for 10.4 ± 3.5%, 16.8 



Chapter III 

 32 

± 3.3% and 9.4 ± 2.9% (mean ± SEM) in 2008, 2009 and 2010, respectively, compared to the 

number of L2 larvae in untreated plots. The proportion of emerging beetles in treated plots 

was similarly reduced to 7.1 ± 1.9%,  4.5 ± 1.0% and 17.5 ± 3.2% (mean ± SEM) in 2008, 

2009 and 2010, respectively. The last insecticide application in flowering stage was 

conducted three, four and ten days before the first assessment of L2 abundance in 2008, 

2009 and 2010, respectively. (Table 1, Table 3).  

In 2009 and 2010, bud losses on the main and lateral raceme were significantly decreased 

by insecticide applications (Table 4). In 2008, the mature pods were completely destroyed by 

a hailstorm few days before harvest. In 2009 and 2010, seed yield was higher in insecticide 

treated plots but there was no significant difference to untreated plots (Table 4). Similarly, the 

thousand-seed-weight did not differ significantly between insecticide treated and untreated 

plots.  

 

Table 4: Bud loss as percentages of total number of buds set, yields and thousand-seed-
weights (TSW) (mean ± SEM) measured on insecticide treated and untreated plots in three 
consecutive years (MR = main raceme, SR = side raceme; p ≤ 0.05 = significant difference 
between treatments within years, two-sample t-test).  

Year Characteristic Raceme Insecticide 
untreated 

Insecticide 
treated 

t df p 

mean (± SEM) mean (± SEM) 

2008 Bud loss [%] MR 9.7 (± 1.0) 7.9 (± 0.6) -1.38 25.6 0.181 

  SR 16.7 (± 1.5) 16.5 (± 1.4) -0.07 29.8 0.848 

2009 Bud loss [%] MR 26.4 (± 2.5) 18.1 (± 2.3) -2.64 30.0 0.013 

  SR 20.9 (± 2.3) 14.7 (± 2.1) -2.21 30.0 0.035 

 Yield [dt/ha]  32.0 (± 1.1) 33.2 (± 1.3) 0.72 28.9 0.479 

 TSW [g]  5.2 (± 0.1) 5.2 (± 0.1) 0.08 30.0 0.940 

2010 Bud loss [%] MR 25.3 (± 2.4) 14.1 (± 1.3) -4.26 25.7 0.000 

  SR 15.0 (± 1.1) 6.0 (± 0.6) -7.15 28.7 0.000 

 Yield [dt/ha]  40.9 (± 1.2) 42.9 (± 0.8) 1.33 24.4 0.195 

 TSW [g]  4.6 (± 0.1) 4.7 (± 0.1) 0.21 28.9 0.837 

 

 

Discussion 

 

Despite huge variation in the efficacy of insecticides on adult pollen beetle abundance in 

spring, we recorded strong effects on the immature stages and new-generation beetles of 

this pest. According to our expectation, insecticide application reduced oviposition and 

resulted in lowered abundances of larvae and new generation beetles in summer which 

account for the level of infestation in the following spring. Although bud losses caused by 

adult beetles in insecticide treated plots in two years were significantly reduced, seed yields 

were not increased over yields of untreated plots.  

The insecticide treatments significantly decreased the cumulative beetle-days in 2009 and 

2008. Applications of thiacloprid and chlorpyrifos-methyl had no significant effect on 

cumulative beetle-days at very high levels of infestation in 2010. When leading the focus 
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from the cumulative-beetle days to the efficacy of insecticides, a more accurate picture may 

be obtained.  

In 2009 and 2010, Reldan 22 achieved a moderate efficacy of 68-69% three and five days 

after insecticide application, respectively, despite the high infestation of adult beetles. This 

efficacy is in agreement with the manufacturer who claimed a long effectiveness of 

chlorpyrifos-methyl of approximately one week for control of pollen beetle (DowAgro, 2010). 

Following application, the ambient temperatures in both years were below the minimum 

temperature of 15 to 25ºC required for optimum efficacy, which may explain the moderate 

effectiveness of chlorpyrifos-methyl. In 2009, the efficacy of the first application of thiacloprid 

was relatively high ( 77.4%), but dropped considerably at the second application date. In 

2010, exceptionally high numbers of pollen beetles may have resulted in low efficacy of 

insecticides. Furthermore, the effect on adult beetles is influenced by their migratory activity 

and the time they spent on the host plant. Pollen beetles take up the active ingredient 

thiacloprid not only by feeding (Elbert et al., 2008) but also by contact exposure (Thieme et 

al., 2010). Due to the small size of insecticide-treated plots the efficacy may have been 

limited by extensive migratory flights at the time of insecticide application. In field 

experiments, Schroeder et al. (2009) documented a higher effectiveness of thiacloprid in 

large plots of 10ha as compared to small plots of 60m². Migration of adult pollen beetles is 

influenced by temperature. Sedivy (1993) observed a high flight activity at maximum air 

temperatures above 20°C. During the infestation period maximum daily temperatures 

exceeded 20°C on four, seven and four days in 2008, 2009 and 2010, respectively. 

Therefore, we assume that the effectiveness of both insecticides might have been reduced 

by high migratory activity of adult beetles in combination with high population densities of 

pollen beetle. 

Despite a moderate effectiveness of the applied insecticides in our study, the numbers of 

eggs, first instar larvae, second instar larvae and new-generation pollen beetles were 

drastically reduced in insecticide treated plots in all three years. Lower numbers of pollen 

beetles following insecticide treatment may have reduced oviposition into buds, resulting in 

lower numbers of eggs and larvae in treated plots. Besides the direct effect on adult 

mortality, additional toxic effects to the eggs and larvae might have occurred because the 

immature stages were present when the insecticides were applied during the oviposition and 

flowering period. Further, L2 larvae were topically exposed in the open flowers to the final 

treatment of thiacloprid in each year. An ovicidal and larvicidal effect of organophosphorous 

and neonicotinoide insecticides has also been observed in other studies. For example, 

thiacloprid and chlorpyrifos-methyl showed larvicidal and ovicidal effectiveness to the small 

fruit tortrix Grapholita lobarzewskii on apple (Charmillot et al., 2007). In another study, the 

emergence rate of Conotrachelus nenuphar larvae from plums was reduced and only a few 

larvae survived 30 days after treatment with thiacloprid (Hoffmann et al., 2009). In addition to 

lethal effects, sub-lethal effects of insecticides on fertility and fecundity as well as on foraging 

and reproductive behaviour have been reported from various arthropod species (Stark & 

Banks, 2003). Field dose rates of different neonicotinoid insecticides like thiacloprid reduced 

oviposition of spider mites resulting in decreased population growth (Ako et al., 2004).  
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Damage caused by adult pollen beetles to the buds is evident from blind-stalks (Winfield, 

1961). Despite high levels of pollen beetle infestation in 2009 and 2010, the insecticide 

applications led to a considerable reduction of bud losses. In addition to the infestation level, 

yield losses by pollen beetles are mainly determined by the amount of precipitation and the 

temperature (Hansen, 2004). Climatic conditions are particularly important during the bud 

and flowering stage, because the assimilate availability during this period regulates pod 

density and seed set (Habekotte, 1993). Nilsson (1994) reported that a high compensatory 

reaction of oilseed rape may increase the number of side racemes and the thousand corn-

weight following pollen beetle infestation. It can be assumed that conditions for 

compensation were favourable during the study period in all three years. Apparently the time 

of crop colonization and the duration of flowering are major determining factors for pod 

formation (Vietinghoff, 1985). If beetles feed on small buds, damage can be high due to bud 

abortion. The period from crop colonization to full flowering took 20, 21 and 31 days in 2008, 

2009 and 2010, respectively. Particularly in 2008, the beetles colonized the oilseed rape 

fields late in the green bud and the yellow bud stage, and there was only short time for 

feeding on buds. In 2010, the infestation period from colonization to full flowering stage was 

extended and favourable for compensation.  

 

Our results indicate that different life stages of pollen beetle show different susceptibilities to 

the insecticides thiacloprid and chlorpyrifos-methyl. The effect on overwintered adults during 

the bud and flowering stage is highly related to their mobility, which in turn depends on 

abiotic factors, mainly on temperature. In addition to lethal effects on adult pollen beetles and 

immature stages, sublethal effects of the neonicotinoid thiacloprid may have affected 

oviposition and larval fitness. The lower number of immature stages results in a lower 

population outcome of new-generation beetles. More research is needed to determine the 

susceptibility of immature stages to various insecticides and application dates rather than 

focussing only on the target life stage of a pest.   
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Effects of site-specific factors and insecticide application on parasitisation of 

Meligethes aeneus (Fabricius) 

 

 

Abstract 

 

Pollen beetle, Meligethes aeneus (Fabricius) (Col.: Nitidulidae) is a major pest of oilseed 

rape, Brassica napus (L), across Europe. Hymenopteran parasitoids can exert substantial 

natural control on pollen beetle populations. We examined the impact of site-specific factors, 

such as field size, plant density, proportion of crop area grown with oilseed rape, and 

insecticide application during bud and flowering stage on parasitism by the larval parasitoids 

Tersilochus heterocerus and Phradis spp. (Hym.: Ichneumonidae) across Germany. In 2008 

and 2009, the level of parasitism of M. aeneus was determined from 36 and 42 commercial 

crops of winter oilseed rape, respectively, which were distributed from the north to the south 

of Germany. The total parasitism rate ranged from 1.6% to 55.9% in 2008 and from 1.0% to 

81.3 % in 2009. The parasitoids T. heterocerus and Phradis spp. were the most common 

species. In 2008, both were equally abundant while in 2009 T. heterocerus was the 

dominating species. Univariate statistical analyses using a tree model were applied for 

identification of the most influencing factors. The level of parasitism was strongly influenced 

by the geographic location within Germany, the crop area grown with oilseed rape and the 

field size, indicating an impact of climate and site-specific factors. Insecticides applied during 

the main period of parasitoid activity in the bud and flowering stage of oilseed rape reduced 

the parasitism rates. The results show that there is potential to enhance the effectiveness of 

major parasitoids by temporal targeting of insecticides according to pest damage threshold.  

 

 

Introduction 

 

The pollen beetle, Meligethes aeneus (Fabricius) (Col.: Nitidulidae), is one of the most 

destructive pests of brassicaceous crops in Europe (Alford, 2003). Adult beetles cause 

extensive damage by feeding on the buds (Nilsson, 1988). Parasitoids of pollen beetle are 

considered as key natural control agents in integrated pest management systems on oilseed 

rape crops (Williams, 2006; Ulber et al., 2010). Depending on the year, country and 

meteorological factors, total larval parasitism rates can vary from 0% to more than 90% in 

Europe (Nilsson & Andreasson, 1987; Nielsen & Axelsen, 1988; Hokkanen, 2000; Büchi, 

2002; Williams, 2006; Thies et al., 2008, Ulber et al., 2010). Landscape structure has been 

shown to directly affect parasitism of pollen beetles, and a complex habitat structure 

including conservation strips and fallows enhance the parasitisation (Büchi, 2002; Thies et 

al., 2008; Zaller et al., 2009). Studies on the migration and temporal occurrence of 

parasitoids of pollen beetle indicate that insecticide application during late bud and flowering 

stage of oilseed rape crops can be detrimental to these natural enemies (Jönsson et al., 

2005; Jönsson & Anderson, 2008, Neumann, 2010). However, so far no research on the 
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effects of insecticides and site-specific factors in fields under common farming practice has 

been conducted.  

The two larval instars of M. aeneus develop in the closed buds and later in open flowers 

(Fritzsche, 1957). They are hosts to several endoparasitoids (Jourdheuil, 1960). In Europe, in 

winter oilseed rape the most abundant parasitoids of pollen beetle are the univoltine species 

Phradis interstitialis (Thomson), P. morionellus (Holmgren) and Tersilochus heterocerus 

(Holmgren) (Hym.: Ichneumonidae-Tersilochinae) (Nilsson, 2003, Ulber et al., 2010). In 

addition, the multivoltine parasitoid species Diospilus capito (Haliday) (Hym.: Braconidae) 

has been recorded to parasitise M. aeneus in northern and central Europe. The tersilochine 

parasitoids of pollen beetle are koinobionts, i. e. parasitised hosts can complete their larval 

development and are killed after migration to soil for pupation. Adult parasitoids diapause in 

a cocoon within their pupal chamber until the following spring (Jourdheuil, 1960). During the 

diapause, there number can be strongly reduced by inversion tillage techniques. Several 

studies have shown negative effects of ploughing and grubbing after harvest on the 

abundance of emerging parasitoids (Klingenberg & Ulber, 1994; Nitzsche, 1998; Williams, 

2006). In spring, parasitoids locate their host plants by using upwind-anemotaxis (Williams et 

al., 2007). Olfactory and colour cues of oilseed rape flowers can enhance attraction of the 

parasitoid T. heterocerus (Jönsson et al., 2005). Insecticides applied during the bud and 

flowering stage of oilseed rape can be harmful to all three species (Cook and Denholm, 

2008) and T. heterocerus is particularly affected during the flowering stage.  

In the present study, we investigated the effects of geographic location, proportion of oilseed 

rape crop area, field size, plant density and insecticide treatments in the bud and flowering 

stage on the level of parasitism of M. aeneus in the years 2008 and 2009 at 36 and 42 sites, 

respectively, across Germany.  

 

 

Materials and methods 

 

In 2008 and 2009, samples of pollen beetle larvae were collected from 36 and 42 crops, 

respectively, located in major oilseed rape-growing regions of Germany. The sampling sites 

were randomly distributed from the north (N 54°34`08 in 2008, N 54°38`33 in 2009) to the 

south (N 48°21`56 in 2008, N 48°35`00 in 2009) across Germany.  They were not selected 

with regard to distinct crop management and landscape criteria. All winter oilseed rape crops 

were grown in accordance with current farming practices. Larval samples were collected at 

the end of flowering during April and May by farmers and agricultural advisers using a 

standardised sampling protocol. A standardised questionnaire was conceptualized to obtain 

information on site and crop-specific characteristics which might impact the parasitisation of 

M. aeneus. Informations on insecticide application during bud or flowering stage, average 

insecticide usage in previous 5 years, level of pyrethroid resistance of pollen beetle, 

geographical latitude, field size, plant density of the sampled crops and proportion of oilseed 

rape crop area were specified by participating farmers and agricultural advisers. The level of 

pollen beetle resistance to the pyrethroid lambda-cyhalothrin was determined according to 

the standardised pyrethroid sensitivity monitoring method (Müller et al., 2008). The sensitivity 
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of pollen beetle to lambda-cyhalothrin was classified in 5 groups: very sensitive - class 1, 

sensitive - class 2, moderate resistant - class 3, resistant - class 4 and high resistant - class 

5.  

To collect the larvae of pollen beetle, at least 50 randomly selected main inflorescences were 

beaten over a white plastic tray. The larvae were stored in 70% Ethanol. A total number of 

100 (minimum 70) second instar larvae per sample was dissected under a binocular 

microscope (magnification 25-40x). The abdomen and thorax of each larva were cut off 

longitudinally and the body contents were squeezed out by a needle in water. The larvae of 

the parasitoids Phradis spp. as well as D. capito and the eggs of T. heterocerus were 

identified by morphological characters (Osborne, 1960). Larvae of the braconid D. capito are 

characterized by a black, heavily sclerotised head-capsule, a colourless semi-transparent 

body and a characteristically shaped final abdominal segment. In contrast, larvae of Phradis 

spp. have a slightly sclerotised and unpigmented head-capsule and a creamy-white body. As 

morphological separation between the larvae of P. interstitialis and P. morionellus is not 

possible (Rusch et al., 2011), these were assigned to Phradis spp.. The eggs of T. 

heterocerus can be easily identified by their dark brown to black chorion.  

The total parasitism rate, the parasitism by individual parasitoid species, superparasitism and 

multiparasitism were calculated from larval samples collected from individual crops in each 

year. The arcsin root transformed data were analysed by univariate regression tree analyses 

(Breiman et al., 1984). To identify the explanatory variables with the highest impact on 

parasitism and to test for correlations between these variables, the response variables total 

parasitism rate and parasitism rate by individual parasitoids were analysed by using the tree-

package (Ripley, 2010). In the figures transformed data are shown, except for the total 

parasitism rates in 2009 (Figure 2) when analyses using transformed data gave the same 

results as analyses using untransformed data. Correlations between parasitism by T. 

heterocerus and Phradis spp., between parasitism by T. heterocerus and superparasitsm, 

and between parasitism by Phradis spp. and superparasitsm were evaluated using simple 

linear regression models. Statistical analyses were carried out using the software R 2.10.0 (R 

Development Core Team, 2009). 

 

 

Results 

 

In May 2008, total parasitism rates of pollen beetle larvae sampled from 36 sites in Germany 

varied between 1.6% and 55.9%. The parasitoid Phradis spp. was present at all sampling 

sites while T. heterocerus was not determined from 5 sampled oilseed rape crops. The 

braconid D. capito was only recorded with very low parasitism rates from 19.4% of the 

sampling sites. In 2008, the mean parasitism rate by T. heterocerus and Phradis spp. were 

assessed at the same level (Table 1). 

In 2009, total parasitism rates of larvae sampled from 42 sites across Germany varied 

between 1.0% and 81.3%. Overall, the mean parasitism rate was at 25.1% higher than in 

2008 (22.6%). Mean parasitism and superparasitism by T. heterocerus were higher than the 

mean parasitism and superparasitism by Phradis spp. The average mean multiparasitism by 
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T. heterocerus and Phradis spp. was nearly the same in both years with 1.4% and 1.5% 

(Table 1).  Parasitism of larvae by D. capito was found only at few locations, with low 

parasitism rates in both years. Therefore this species was not included in the statistical 

analyses.  

 

Table 1: Frequency and levels of parasitism of M. aeneus larvae collected from 38 and 42 
crops of oilseed rape across Germany in 2008 and 2009, respectively.  

Mortality factor Year Sites with  
parasitism 
[%] 

mean ± SEM 
parasitism 
[%] 

Min-max. 
parasitism 
[%] 

Mean ± 
SEM  
multi-
parasitism 
[%] 

Mean ± 
SEM  
super-
parasitism 
[%] 

Total parasitism 2008 100.0 22.6 ± 2.7 1.6-55.9 1.4 ± 0.4  

 2009 100.0 25.1 ± 3.2 1.0-81.3 1.5 ± 0.5  

T. heterocerus 2008 86.1 11.1 ± 2.2 0.0-50.0  1.4 ± 1.5 

 2009 92.9 17.2 ± 2.9 0.0-79.7  4.6 ± 1.5 

Phradis spp. 2008 100.0 11.1 ± 1.6 1.0-47.5  0.1 ± 0.0 

 2009 64.3 7.6 ± 1.5 0.0-41.0  0.0 ± 0.0 

D. capito 2008 19.4 0.4 ± 0.2 0.0-6.8  0.0 ± 0.0 

 2009 7.1 0.3 ± 0.2 0.0-5.0  0.0 ± 0.0 

 
 

In both years, the mean number of insecticide applications during previous years had no 

effect on the total parasitism rates in Germany. In 2008, the proportion of crop area grown 

with oilseed rape within the region of the sampled crop had a positive effect on the parasitism 

rate (Figure 1). With a threshold exceeding 20% of oilseed rape this was the most influential 

factor. In addition, if the area grown with oilseed rape exceeded 20%, the parasitism rate was 

positively affected by field sizes larger than 18.3ha. If the plant density exceeded 40 

plants/m², parasitism rate was increased compared to lower plant densities (Figure 1).  

In 2009, the most important explanatory variable for the total parasitism rate was the number 

of insecticide applications during flowering. Insecticide application reduced the level of 

parasitisation. On untreated crops, fields smaller than 23.5ha had a negative effect on total 

parasitism, and pyrethroid resistance of pollen beetle populations (>class 4) increased 

parasitism as compared to moderate levels of resistance (Figure 2).  
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Figure 1: Tree-model analyses of factors influencing the total parasitism rate [%] in the year 
2008 (transformed data; threshold values next to explanatory variable; right hand branch of 
the tree indicates the next explanatory variable exceeding the threshold; left hand branch of 
the tree indicates the next explanatory variable smaller than the threshold, mean values of 
parasitism rates are given at the bottom end of branches). 
 

 
Figure 2: Tree-model analyses of factors influencing the total parasitism rate [%] in the year 
2009 (untransformed data; for explanation see fig. 1). 
 

In 2008, parasitism by T. heterocerus was higher in regions north of the geographic latitude 

of 52.5° in Germany and were influenced negatively by field sizes exceeding 19.5ha. In the 

southern regions of Germany (latitude <52.5°), the explanatory variable ‘pyrethroid 

resistance’ was negative associated with parasitism rates by T. heterocerus (Figure 3).  

In 2009, the field size affected the parasitism rate by T. heterocerus at two levels. Fields with 

a size larger than 14.7ha and 39.4ha had a positive impact on parasitism rates by T. 
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heterocerus. Insecticide applications in the bud stage of winter oilseed rape had negative 

effects on the parasitism by T. heterocerus (Figure 4).  

 

 
Figure 3: Tree-model analyses of factors influencing the parasitism rate by T. heterocerus 
[%] in the year 2008 (transformed data; for explanation see fig. 1). 
 

 
Figure 4: Tree-model analyses of factors influencing the parasitism rate by T. heterocerus 
[%] in the year 2009 (transformed data; for explanation see fig. 1). 
 

In 2008, the parasitism by Phradis spp. was influenced by increasing field size both in the 

north and in the south of Germany. In the north the parasitism rate was increased at field 

sizes exceeding 18.3ha and in the south at field sizes exceeding 4.1ha (Figure 5).  
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Figure 5: Tree-model analyses of factors influencing the parasitism rate by Phradis spp. [%] 
in the year 2008 (transformed data; for explanation see fig. 1). 
 

 
Figure 6: Tree-model analyses of factors influencing the parasitism rate by Phradis spp. [%] 
in the year 2009 (tranformed data; for explanation see fig. 1). 
 
In 2009, the most important explanatory variable was the application of insecticides during 

bud stage. Insecticides reduced the parasitism rate by Phradis spp.. Particularly on fields 

exceeding a size of 36.9ha, insecticide application during bud stage caused lower parasitism 

by Phradis spp.. Insecticide treatments during bud stage also reduced parasitism by Phradis 

spp. on fields smaller than 0.6ha (Figure 6).  

Generally, parasitism by T. heterocerus and Phradis spp. was not significantly correlated 

(Table 2). In both years, a significantly positive correlation between the total parasitism and 

the multiparasitsm was recorded. Particularly the superparasitism by T. heterocerus 
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increased with increasing total parasitism. Superparasitism by Phradis spp. increased 

significantly with increasing total parasitism only in 2009 (Table 2). 

 
Table 2: Results of linear regression analyses of parasitism rates, superparasitism and 
multiparasitism by T. heterocerus and Phradis spp. in 2008 and 2009. 

Regression Year Beta  
 

R² F p 

Parasitism by T. heterocerus vs. Phradis 
spp. 

2008 0.192 0.014 0.487 0.490 

2009 0.068 0.014 0.574 0.453 

Total parasitism vs. multiparasitism 2008 0.365 0.612 54.51 <0.0001 

2009 0.301 0.509 41.48 <0.0001 

Total parasitism vs. superparasitism by T. 
heterocerus 

2008 0.302 0.400 22.71 <0.0001 

2009 0.607 0.675 83.14 <0.0001 

Total parasitism vs. superparasitim by 
Phradis spp. 

2008 0.053 0.180 7.454 0.010 

2009 0.009 0.022 0.886 0.352 

 

 

Discussion 

 

The large variability between the parasitism rates of pollen beetle at various sites in Germany 

(1.6% to 55.9% in 2008, 1.0% to 81.3% in 2009) indicates a high susceptibility of parasitoids 

to environmental factors. Average levels of parasitism within the range of 25-50% have been 

reported from several countries in Europe, for example from Austria, Finland, Germany, 

Sweden, Switzerland and the United Kingdom (Ulber et al., 2010). 

The abundance and occurrence of parasitoids can be affected by various factors, such as 

local climate and weather conditions, area of oilseed rape crops grown during previous years 

and cultivation techniques (Nilsson, 2003). In 2008, site-specific factors, such as 

geographical region, proportion of oilseed rape crop area, field size and plant density were 

most influential for levels of parasitism, while the insecticide application in addition to site-

specific factors had a strong impact in 2009. In 2008, a high proportion of oilseed rape on the 

total crop area had a positive effect on the total parasitism rate, if field size exceeded 18.3ha. 

In Austria, the combination of high pollen beetle abundance and high proportions of rape 

crop area and non-crop habitats, like roadside strips and hedges, increased the parasitism of 

pollen beetle (Zaller et al., 2009). Non-crop areas may have a strong effect on parasitisation 

because flowering plants in hedges and roadside strips provide pollen and nectar sources to 

adult parasitoids(Nilsson, 2003). In their investigations on the effect of interannual changes 

of the size of rape crop area on pollen beetle parasitism, Thies et al. (2008) found different 

responses of the parasitoid species. Phradis spp. was more sensitive to interannual changes 

of the rape crop area than T. heterocerus. The total parasitism rate decreased when the size 

of the rape crop area increased between consecutive years. In structurally complex 

landscapes with abundant field margin strips and old fallow habitats the larval parasitism was 

higher, indicating that survival and activity of the parasitoids is affected by the type of 

landscape (Thies & Tscharntke, 1999). In our study, other site-specific factors like field size 
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and geographical region may have influenced the parasitism via their relation to local size of 

rape crop area. 

In our study, in 2008 the parasitism by Phradis spp. increased with increasing field size, 

while the mortality of pollen beetle larvae resulting from parasitism by T. heterocerus 

decreased when the field size increased. In contrast, in 2009 larger fields favoured 

parasitism by T. heterocerus as well. Moreover, parasitism by Phradis spp. on large and 

small fields was influenced by insecticide treatment in 2009. These results show that 

parasitoids may respond very sensitive to environmental influences. Site-specific factors like 

field size and geographical latitude also may determine the level of parasitisation via their 

effects on mobility and migration of parasitoids. After emerging from old rape fields in spring, 

parasitoids migrate to the new rape fields (Jourdheuil, 1960). This migration is affected by 

wind and by the distance between old and new oilseed rape fields. Due to the fact that the 

parasitoids locate the habitat of their hosts by using upwind anemotaxis migration flights 

depend on wind direction (Williams et al., 2007). The spatial distribution within fields was 

found to differ between parasitoid species: Phradis interstitialis similar to pollen beetle larvae 

was patchily distributed, while T. heterocerus was spread evenly across the field (Ferguson 

et al., 2003). As parasitoids of pollen beetle use upwind anemotaxis for locating the rape 

crop (Williams & Cook, 2010) it can be assumed, that in larger fields of oilseed rape the 

hosts and its parasitoids occurred at higher densities at the downwind side of the field and 

that the upwind side is not as representative for taking samples of larvae as the downwind 

side.   

Another site-specific factor which could not be included in our analyses is soil tillage. In 

regions where ploughing is a common tillage practice, the parasitisation of pollen beetle 

larvae may be on a lower level because the abundance of parasitoids emerging from soil in 

spring is strongly reduced by ploughing as compared to no-tillage or conservation tillage 

practices (Nilsson, 1985; Klingenberg & Ulber, 1994).   

In 2009, insecticide application during flowering of oilseed rape reduced the total parasitism 

rates, and application during the bud stage reduced the parasitism rate by both individual 

parasitoid species. In earlier studies at Goettingen, P. interstitialis was found to emerge 

earlier from hibernation fields in spring than T. heterocerus (Ulber & Nitzsche, 2006). 

Depending on temperature in spring, immigration of parasitoids occur in the late bud stage or 

in the flowering stage of the oilseed rape crop (Nilsson, 1994, 2003; Ulber & Nitzsche, 2006). 

Consequently, insecticide application during this time period might cause high mortality of 

parasitoids. It has been shown that adult parasitoids are killed immediately after direct 

exposure to dry residues of insecticides, i. e. gamma-cyhalothrin, bifentrin, lambda-

cyhalothrin and indoxacarb (Haseeb et al., 2004; Carmo et al., 2010). Further, sublethal 

effects of insecticides may have impact on life span, fertility, fecundity and behaviour, like 

feeding, searching and oviposition (Stark & Banks, 2003). These effects might reduce the 

parasitisation in addition to lethal effects. For example, females of Aphidius ervi (Hym.: 

Aphidiinae) showed a reduced oviposition activity when they were exposed to the LD20 of 

lambda-cyhalothrin (Desneux et al., 2003). Insecticide residues can change the 

attractiveness of host plants to parasitoids, leading to a reduced time span for host searching 

and avoidance of sprayed plants by adult parasitoids (Hardin et al., 1995; Neumann, 2010). 
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Repellency of deltamethrin to parasitoids for up to two days after application has been 

reported (Longley & Jepson, 1996). These direct and indirect effects of insecticides in 

combination with large field sizes may have reduced total parasitism rates and parasitism 

rates by T. heterocerus and Phradis spp. in our investigation in 2009.  

At host location, the parasitoids of pollen beetle respond to visual cues, i. e. the yellow flower 

colour and olfactory cues released by the oilseed rape crop (Williams, 2010). In addition to 

oviposition sites, flowering rape provide food resources to adults. In larger fields these cues 

might have stronger effects on immigration and spatial distribution of parasitoids within the 

field.  

The impact of the pyrethroid resistance status of the sampled populations of M. aeneus on 

the level of larval parasitism was contradictory: With increasing level of resistance the 

parasitisation decreased in 2008 and increased in 2009. There is no information in the 

literature indicating that insecticide-resistant larvae might be more susceptible to parasitism 

than insecticide-sensitive larvae. As the mortality and reproduction of adult pollen beetles 

may be affected by the resistance status to widely applied insecticides (Müller et al., 2008), 

the abundance of the larval hosts might be higher at increasing resistance status of the host 

population. Host density was found to directly affect the level of parasitism (Nilsson & 

Andreasson, 1987; Billquist & Ekbom, 2001; Zaller et al., 2009), however, host density on 

sampled crops could not be assessed in this study.  

The main parasitoids Phradis spp. and T. heterocerus occurred at the same level in 2008, 

whereas T. heterocerus was predominant in 2009. In both years, D. capito was rarely 

observed on the winter oilseed rape fields selected across Germany. In studies from France 

and Switzerland, T. heterocerus was also the most frequent species (Büchi, 2002; Rusch et 

al. 2011). Generally, the parasitoids P. interstitialis and T. heterocerus were found to be the 

most abundant species in central Europe, while in northern Europe P. morionellus and D. 

capito are more abundant, particularly on spring oilseed rape (Nilsson & Andreasson, 1987; 

Ulber, 2010). In both years of study, superparasitism by T. heterocerus and multiparasitsm 

significantly increased with increasing levels of total parasitism. These results provide a 

confirmation of previous studies (Nilsson, 1994; Ulber & Nitzsche, 2006). The parasitism by 

T. heterocerus and Phradis spp. was not correlated in our studies. As P. interstitialis is 

occurring within green bud stage, P. morionellus within green bud to flowering stage and T. 

heterocerus within the flowering stage, these parasitoid species minimise interspecific 

competition by niche segregation (Williams, 2010) 

Finally, our results support the hypothesis that the main parasitoid species of the pollen 

beetle are influenced by insecticide and site-specific factors. Therefore, it is essential to 

consider multiple factors, such as in-field habitat management and site-specific factors to 

enhance the potential of conserving the biological control agents of M. aeneus in integrated 

pest management systems on crops of oilseed rape.  
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Effect of trap cropping and spatial targeting of insecticide application on the 

abundance and spatio-temporal distribution of pollen beetle (Meligethes 

aeneus Fabricius) on oilseed rape 

 

 

Abstract 

 

The pollen beetle Meligethes aeneus (Fabricius) (Col.: Nitidulidae) is one of the most 

damaging pests of oilseed rape throughout Europe. Alternative control strategies are needed 

in order to reduce the current extensive use of insecticides. We investigated the potential of 

turnip rape, Brassica rapa, grown as a trap crop on border strips for protecting the main crop 

of winter oilseed rape, Brassica napus, from infestation by pollen beetles. In addition to trap 

cropping, the effect of insecticide sprays targeted to the border strip on pollen beetle 

colonization of the crop was tested. In three-year field experiments, we studied the influence 

of turnip rape trap crop borders in combination with insecticide treatment on the spatio-

temporal distribution and damage of pollen beetles in the main crop. As long as the main 

crop of winter oilseed rape was in bud stage, the turnip rape trap crop was significantly more 

attractive to pollen beetle than oilseed rape. However, the preference of beetles for turnip 

rape in the border strips did not result in lower numbers of pollen beetles on the adjacent 

main crop. In our study the plant development of turnip rape was only 3-4 days in advance of 

the oilseed rape. Insecticide applications to the border strips had no significant effect on 

pollen beetle abundance in the adjacent untreated oilseed rape crop. Pollen beetle numbers 

were only significantly reduced in plots sprayed overall with insecticides. Damage of pollen 

beetles to the buds of oilseed rape was not significantly different between all treatments. The 

results show the importance of the relative growth stage and attractiveness of the turnip rape 

plants to be effective as a trap crop.  

 

 

Introduction 

 

Trap cropping is applied to concentrate or intercept the pest population on the trap crop in 

order to protect the target crop plants from infestation, with the additional option to control the 

pest on the trap crop (Hokkanen, 1991; Shelton & Badenes-Perez, 2006). The principle of 

insect control by trap cropping has been considered since 1860 (Hokkanen, 1991). A trap 

crop in combination with targeted insecticide treatment has proven to provide effective 

control against several pests, for example pepper maggot Zonosemata electa (Dip.: 

Tephritidae) (Boucher et al., 2003) and cabbage seedpod weevil Ceuthorhynchus obstrictus 

(Col.: Curculionidae) (Carcamo et al., 2007). In Finland the pollen beetle colonization of 

cauliflower has been successfully reduced by trap plants treated with insecticides in several 

experiments (Hokkanen, 1991). Recently, the use of trap cropping in oilseed rape became of 

interest to reduce potential negative effects of insecticide application on pest resistance and 

natural pest control (Shelton & Badenes-Perez, 2006). Insecticide resistance of pollen beetle 

to pyrethroids was recorded for the first time and afterwards widely distributed in Europe 
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since 1997  (Hansen, 2003; Heimbach et al., 2006; Kazachkova et al., 2007; Délos, 2008; 

Tiilikainen & Hokkanen, 2008; Wegorek & Zamoyska, 2008). Due to the increase of the pest 

population and the difficulties involved with chemical control, alternative control strategies for 

pollen beetle are needed (Hokkanen, 2000; Cook et al., 2007).  

The pollen beetle, Meligethes aeneus (Col.: Nitidulidae), is a major pest of oilseed rape 

throughout Europe (Alford, 2003). Through damaging the oilseed rape crop in the bud stage, 

the beetle causes substantial yield losses (Winfield, 1961). Pollen beetles are Brassica 

specialists and show preferences for some Brassica species over others (Ekbom & Borg, 

1996; Cook et al., 2006). The adult beetles locate their host plants by using a combination of 

visual cues, i. e. the yellow colour of the flowers, and host plant odours, e.g. the 

isothiocyanates, breakdown products of the glucosinolates (Mithen, 1992; Giamoustaris & 

Mithen, 1996; Cook et al., 2002). Further, the inflorescence growth stage of the plants is 

important for host selection of pollen beetles (Frearson et al., 2005).  

Brassica rapa (turnip rape) is preferred by M. aeneus to B. napus and shows good potential 

as trap crop (Büchi, 1995; Cook et al., 2006, 2007). The spatial distribution of the adult 

beetles within the field can be manipulated by surrounding the main crop with a border strip 

of turnip rape (Cook et al., 2004). In field experiments using spring oilseed rape, beetles 

were retained in the turnip rape border; the number of beetles in the centre was reduced 

compared to the control plot entirely grown with spring oilseed rape (Cook et al., 2004). 

Pollen beetles are attracted by the advanced growth stage of turnip rape (Cook et al., 2004) 

and by volatile cues, including phenylacethaldehyde and indole of turnip rape (Cook et al., 

2007). The economic benefits including reduction of insecticide use may motivate farmers to 

use trap crops (Hokkanen, 1991). So far, trap cropping as control strategy for pollen beetle 

was only investigated in spring oilseed rape in small plot experiments.  

The aim of this study was to investigate the effect of trap cropping on pollen beetle 

infestation of oilseed rape. Field experiments were designed in a block with borders of 

different treatments along large commercial fields of winter oilseed rape. The impact of a 

turnip rape trap crop on the spatio-temporal distribution of pollen beetles on the main crop 

was compared to the distribution and infestation of oilseed rape plots without trap crop. In 

addition, the effect of insecticide application targeted to the borders on spatial distribution of 

the beetles was investigated.  

 

 

Materials and methods 

 

Field experiments were conducted in crops of oilseed rape (B. napus) in the region of 

Goettingen, Germany. In three consecutive years the replicated treatments were distributed 

across multiple locations for reasons of space: four replicates over three, six replicates over 

three and four replicates over two sites in 2008, 2009 and 2010, respectively (Table 1). 

Individual plots were bordered at one side with either a trap crop strip of turnip rape Brassica 

rapa (cv. `Perko´) or by an equally-sized extension of the main crop Brassica napus (L.) as 

control. In 2008 and 2009, the border strips were 6.5m wide, and in 2010 17.5m wide. They 

were 50-100m long according to the plot size of the main crop (Table 1, Figure 1). 
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Depending on the field size, the area of the strips in relation to the total plot area varied from 

8 to 20% (Table 1).  

Different insecticide compounds (Table 1) were applied for targeted control of adult pollen 

beetles either in the plots grown with oilseed rape overall, in border strips of oilseed rape or 

in border strips of turnip rape. The effect of the insecticide treatment on spatial distribution of 

pollen beetle on the main crop was compared with the distribution of pollen beetle on 

untreated oilseed rape plots and on untreated oilseed rape crop bordered with an untreated 

strip with turnip rape (Figure 1).  

 

Table 1: Field characteristics and insecticide application in field experiments 2008-2010 
(OSR = oilseed rape). 

Year Site 
no. 

OSR 
Cultivar 

Plot size  
[m] 

Relative area 
covered by 
border crop [%] 

Field size 
[ha] 

Date of  
insecticide 
application  

Insecticide  dose rate  
[(g) a.i./  
300 l water] 

2008 1 NK Fair 50 x 57 11.6 5.5 24 April thiacloprid 240 

 2 NK Fair 50 x 57 11.6 5.5 26 April thiacloprid 240 

 3 Taurus 50 x 57 11.6 4.0 24 April thiacloprid 240 

2009 1 Visby 70 x 77 8.5 13.5 09 April bifenthrin 80 

      16 April thiacloprid 240 

 2 Visby 50 x 57 11.6 7.0 07 April chlorpyrifos-
methyl 

225 

      15 April thiacloprid 240 

 3 Hybride 
PR031 

70 x 77 8.5 11.5 13 April bifenthrin 80 

2010 1 Dimension 70 x 88 20 13.7 13 April bifenthrin 80 

      21 April thiacloprid 240 

 2 Visby 100 x 118 14.9 9.0 13 April bifenthrin 80 

      21 April thiacloprid 240 

 

Insecticides were applied when the economic threshold for pollen beetle was exceeded. In 

Germany, the economic threshold of pollen beetle is 3-4 beetles/plant, 7-8 beetles/plant and 

>8 beetles/plant at BBCH growth stage 50-51, 52-53 and 55-59, respectively (Williams, 

2010). Cultivation and fertilization was applied in accordance with common farming practice.  

The abundance and spatial distribution of pollen beetles on the plants was assessed six 

times at intervals of 3 to 4 days from the bud to the full flowering stage. On each occasion, 

the number of adult pollen beetles was recorded on the main raceme of 50 plants selected at 

random in a central line in the strip and at a distance of 10m, 20m and 40m from the strip in 

each plot (50 plants x 4 distances). Adult pollen beetles were collected by beating each 

raceme onto a white plastic funnel (diameter: 25cm). On each occasion, the BBCH growth 

stage of winter oilseed rape and turnip rape plants was recorded (Lancashire et al., 1991). 

The numbers of pods and blind stalks of the main raceme was counted on 128  plants (32 

plants x 4 distances) in each plot during the pod stage. 
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Figure 1: Design of field experiments comprising 5 treatments randomly distributed on each 
side of a field grown with winter oilseed rape (TR = turnip rape, OSR = oilseed rape; 
background dark-gray = insecticide treated).  
 

Data of each year and sampling occasion were analysed separately. The average number of 

pollen beetles per plant in the five different treatments was compared at any distance. To 

estimate the bud loss caused by adult feeding the proportion of blind stalks in relation to total 

number of ripen pods and blind stalks was computed. The data of bud loss were compared 

between the five different treatments within each distance. The nonparametric Kruskal-Wallis 

test was used because the data were not normally distributed and not determined by 

homogeneity of variance. Treatment averages were compared at p ≤ 0.05. The software 

STATISTICA, version 9.1 (StatSoft, Inc., 2010) was used to perform all analyses. 

 

 

Results 

 

In 2008 and 2009, the abundance of pollen beetles increased during the first week following 

migration into the crop (Figure 2-3). In 2008, the colonization by pollen beetle started when 

the oilseed rape was in the green bud stage and in the yellow bud stage, while turnip rape 

was in the early flowering stage (Figure 2). On turnip rape the number of beetles remained 

on a higher level than on oilseed rape until the oilseed rape came into flower. However, 

these numbers were not significantly different. Insecticide application following the third 

sampling reduced the number of pollen beetles in the treated strips and in the oilseed rape 

plot totally treated. No significant effect of turnip rape strips or insecticide treated strips on 

spatial distribution of pollen beetles within the main crop, at 10, 20 and 40m distance from 

strips, was observed (Figure 2).   
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Figure 2: Number of pollen beetles per plant (mean + SEM) in plots spatially distributed 
(strip, 10m, 20m, 40m in field) of turnip rape (TR) and oilseed rape (OSR) untreated, strip 
treated or entire plot treated with insecticide treatment after sampling 3 in 2008 (n.s. = not 
significant differences with p ≤ 0.05 between treatments; Kruskal-Wallis test). 
 
 
In 2009, beetle immigration started in the bud stage of turnip rape and oilseed rape (Figure 

3). The turnip rape strip was more attractive to pollen beetles particularly on the second and 

third samplings. After insecticide treatment the turnip rape strip showed significantly higher 

numbers of adult beetles than the strip of the plot oilseed rape treated overall on sampling 3 

(p = 0.008). Following peak abundance in turnip rape the beetles spread evenly over the 

whole plot in oilseed rape. Insecticide application after sampling 4 significantly decreased the 

numbers of pollen beetles in the strip of the treated oilseed rape compared to untreated 

turnip rape strip (strip of oilseed rape treated in strip: p =  0.01, strip of oilseed rape totally 

treated: p = 0.001). In the main crop the direct treatment of oilseed rape showed the lowest 
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number of pollen beetles. Pollen beetle numbers on the inner parts of the field (10, 20 and 

40m distance) were not influenced by turnip rape border from bud to flowering stage (Figure 

3). 
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Figure 3: Number of pollen beetles per plant (mean + SEM) in plots spatially distributed 
(strip, 10m, 20m, 40m in field) of turnip rape (TR) and oilseed rape (OSR) untreated, strip 
treated or entire plot treated with insecticide treatment after sampling 2 (site no. 1 and 2), 3 
(site no. 3) and 4 (site no. 1 and 2) in 2009 (n.s. = not significant differences or *significant 
differences with p ≤ 0.05 between treatments; Kruskal-Wallis test). 



Chapter V 

 55 

B B C H  T R  5 0 -5 1  (5 2 )
B B C H  O S R  5 1 -5 2
              

6  A p ril -  S a m p lin g  1

s tr ip 10  m 20  m 4 0  m

m
e

a
n

 n
o

. 
M

. 
a

e
n

e
u

s
 

p
e

r
 p

la
n

t

0

2

4

6

8

1 0
T R  u n tre a te d  

T R  s trip  tre a te d  

O S R  u n tre a te d  

O S R  s trip  tre a te d  

O S R  tre a te d  

 1 0  A p ril -  S a m p lin g  2

s tr ip 10  m 2 0  m 40  m

0

2

4

6

8

1 0

B B C H  T R  5 1 -5 2
B B C H  O S R  5 2
              

1 4  A p ril -  S a m p lin g  3  ( in se c tic id e  tre a te d )

s tr ip 10  m 20  m 4 0  m

m
e

a
n

 n
o

. 
M

. 
a

e
n

e
u

s
 

p
e

r
 p

la
n

t

0

2

4

6

8

1 0
B B C H  T R  5 3 -5 5
B B C H  O S R  5 3
              

1 7  A p ril -  S a m p lin g  4  

s tr ip 10  m 20  m 40  m

0

2

4

6

8

1 0
B B C H  T R  5 5 -5 7
B B C H  O S R  5 3 -5 5
              

2 0  A p ril -  S a m p lin g  5  

d is ta n ce

s tr ip 10  m 20  m 4 0  m

m
e

a
n

 n
o

. 
M

. 
a

e
n

e
u

s
 

p
e

r
 p

la
n

t

0

2

4

6

8

1 0
B B C H  T R  5 9
B B C H  O S R  5 7 -5 9
              

2 3  A p ril -  S a m p lin g  6  ( in se c tic id e  tre a te d )

d is ta n ce

s tr ip 10  m 20  m 40  m

0

2

4

6

8

1 0
B B C H  T R  5 9 -6 0
B B C H  O S R  5 7 -5 9
              

* n .s . n .s . n .s .
* n .s . n .s . n .s .

* n .s . n .s . n .s .

* n .s . n .s . n .s .

* n .s . n .s . n .s .

* n .s . **

 

Figure 4: Number of pollen beetles per plant (mean + SEM) in plots spatially distributed 
(strip, 10m, 20m, 40m in field) of turnip rape (TR) and oilseed rape (OSR) untreated, strip 
treated or entire plot treated with insecticide spraying after sampling 2, 3 and 5 in 2010 (n.s. 
= not significant differences or *significant differences with p ≤ 0.05 between treatments; 
Kruskal-Wallis test). 
 

 

In 2010, pollen beetles colonized the turnip rape and oilseed rape plots in the early bud stage 

and peak abundance occurred at the fifth assessment (Figure 4). Even though the growth 
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stage of turnip rape strips was similar to the growth stage of oilseed rape, pollen beetles 

were more strongly attracted to the strip of turnip rape during the early bud to early flowering 

stage in April. On the first and second sampling date, pollen beetle abundance was 

significantly different between insecticide untreated turnip rape strips and untreated oilseed 

rape strips (p = 0.04; p = 0.04). The number of pollen beetles differed significantly between 

the strips on sampling dates 3, 4, 5 and 6. Insecticide application to these strips (sampling 3: 

p = 0.005; sampling 4: p = 0.02; sampling 5: p = 0.006; sampling 6:  p = 0.01) and to the 

entire oilseed rape plot (sampling 3: p = 0.01; sampling 4: p = 0.02; sampling 5: p = 0.01; 

sampling 6:  p = 0.02) significantly reduced the number of beetles in oilseed rape strip  

compared to the number of beetles in untreated turnip rape strip. Reduced numbers of adult 

beetles on the main crop (10, 20 and 40 m distance) were only recorded following insecticide 

application on the entire oilseed rape plot (Figure 4).   

No significant difference of bud loss per main raceme was recorded between the treatments 

in 2008 and 2009 (Figure 5). In 2008, the insecticide-treated turnip rape strip showed the 

lowest bud loss, followed by the untreated turnip rape strip. Bud loss of treated oilseed rape 

was decreased at distances of 20m and 40m compared to the other four treatments. In 2009, 

oilseed rape plots treated overall with insecticide showed the lowest bud loss. The unsprayed 

strips of turnip rape and oilseed were more heavily damaged by pollen beetle than the 

sprayed strips (Figure 5).  
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Figure 5: Bud loss per main raceme due to pollen beetle feeding (mean + SEM) in bordering 

and adjacent plots in different distances (strip, 10m, 20m, 40m in field) of turnip rape (TR) 

and oilseed rape (OSR) untreated, strip treated or entire plot treated with insecticide in 2008 

and 2009 (n.s. = not significant differences with p ≤ 0.05 between treatments; Kruskal-Wallis 

test). 
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Discussion 

 

The success of B. rapa as trap crop in spring oilseed rape crops was attributed to more 

advanced plant development and associated volatile cues, including phenylacethaldehyde 

and indole  (Cook et al., 2006, 2007). In our field experiments, pollen beetles were more 

abundant in the turnip rape border compared to oilseed rape from the beginning of 

colonization until the main crop came into flower. Results of several studies indicate that 

turnip rape has potential as a trap crop for pollen beetles (Büchi, 1989, 1995; Hokkanen, 

1991). Pollen beetles were significantly more abundant on turnip rape than on oilseed rape 

when both species were in the bud stage, but no significant preference of adult beetles was 

observed in a polytunnel bioassay when both species were in the flowering stage (Cook et 

al., 2007). Irrespective of Brassica species, the species in flower attracted more pollen 

beetles than the species in bud stage (Cook et al., 2006). Similar to our field experiments, 

the host selection of pollen beetles in many field studies was found to be mainly regulated by 

the plant growth stage, particularly by the high attractiveness of the flowering stage (Büchi, 

1995; Cook et al., 2006; Valentin-Morison et al., 2007). However, the winter turnip rape strips 

did not serve their expected purpose as trap crop in our experiments. The reasons for this 

might be as follows: synchronisation between flowering stage of turnip rape and bud stage of 

winter oilseed rape, immigration and dispersal behaviour of pollen beetles into the crop after 

hibernation and weather conditions.  

The distribution of pollen beetles in the fields is complex and reflects the interplay of location 

and selection of host plants with various environmental factors, such as the distance and 

direction of overwintering sites and the wind direction (Ferguson et al., 2003). Despite the 

preference for turnip rape, the spatial distribution and dispersal of the beetles on the main 

crop was not delayed in our study. The main crop of oilseed rape was also attractive for 

colonization by pollen beetles. Gravid females are attracted by plants of B. napus when the 

bud size suitable for oviposition is available (Ekbom & Borg, 1996). The availability of buds is 

an important parameter for the residence time of pollen beetle on the plant (Frearson et al., 

2005). Triggered by their host plant preference and dispersal behaviour, adult pollen beetles 

rapidly spread over the whole plot in our field experiment. Even when the width of the trap 

crop strips was extended to 18m in 2010, compared to 7m in 2008 and 2009, no effect on the 

spatial distribution of M. aneneus on the main crop was found. 

Free and Williams (1978) reported that pollen beetles initially colonize brassicaceous and 

non-brassicaceous plants in flower growing on verges of oilseed rape fields. However, when 

the crop started to flower they became more abundant at field edges of oilseed rape crops. In 

our studies, during the initial period of immigration, pollen beetle numbers were not increased 

on the oilseed rape margins. Independent of plant species grown in the border strips, similar 

numbers of adult beetles colonized the main crop at distances of 10, 20 and 40m from the 

border. Flight activity of pollen beetles in spring starts at temperatures exceeding 12°C 

(Fritzsche, 1957). Temperatures exceeding 15°C cause mass colonization of oilseed rape 

crops. During the observation period, maximum ambient temperature exceeded 12°C on 14 

of 18 days, 19 of 20 days and 13 of 18 days in 2008, 2009 and 2010, respectively. This 
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supports the observation that temperatures in all years favoured massive flight activity of 

pollen beetle, resulting in abundant immigration of beetles all over the plots.  

The synchronisation of trap crop flowering and initial colonization by pollen beetle depends 

on annual weather conditions like temperature and precipitation (Hokkanen, 1991). Using 

trap crops is only appropriate for crop protection management when the pest is retained on 

the trap crop during the entire sensitive growth stage of the main crop; according to Holden 

et al. (2012), the trap crop retention of the pest is the most important factor in trap cropping. 

In our study the plant development of turnip rape was only 3 to 4 days ahead of the main 

crop. Particularly in 2009 and 2010, the colonization of pollen beetles began in the early bud 

stage of both plant species. Büchi (1995) concluded that it is difficult to find the time frame of 

insecticide spraying of the trap crop border with turnip rape. However, in our study the trap 

crop did not affect the number and spatial distribution of pollen beetles in the centre of the 

plot. In our field experiments, the number of pollen beetles was only reduced by direct 

application of insecticides in the border strips and in the main crop.  

The proportion of blind stalks in relation to the total number of ripen pods and blind stalks 

(`bud loss´) of oilseed rape did not differ between the trap crop treatments. This may have 

resulted from the unsuccessful suppression of pollen beetle abundance on the main crop 

during the bud and flowering stage. Bud loss was slightly, not significantly reduced in the 

insecticide-treated strips and in oilseed rape plots treated overall, compared to the untreated 

parts of the plot. In 2009, the direct application of insecticides decreased the pollen beetle 

abundance below the economic threshold (Williams, 2010) while in 2010 the economic 

threshold was only exceeded in untreated turnip rape. Despite lower numbers of adult 

beetles in 2010, bud loss was higher than in 2009. In 2010, the weather conditions may have 

inhibited plant compensation through production of new buds, leading to high damage 

caused by pollen beetle. When the conditions for assimilate production due to climate 

conditions and nutrition are favourable during the bud and flower stage, pod density will 

increase (Habekotte, 1993). 

The trap crop strategy is only effective when the development stage of the trap crop is well 

advanced to the main crop. Then the main oilseed rape crop might be protected from pollen 

beetle damage during its susceptible bud stage through the flowering trap crop (Frearson et 

al., 2005). Plant growth stage is affected by weather conditions and crop management 

techniques, such as the sowing time (Hokkanen, 1991). In our study, the use of turnip rape 

as a trap crop for reducing beetle infestation and damage was less effective than spraying 

insecticides all over the plot. Turnip rape might be more effective as a trap crop in spring 

oilseed rape because the inflorescence stages of spring turnip rape usually are more 

advanced than spring oilseed rape (Cook et al., 2004). For trap cropping on the abundance 

of pollen beetle an early flowering winter turnip rape cultivar might be more suitable in winter 

oilseed rape crops. 
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General discussion 

 

The pollen beetle Meligethes aeneus (Fabricius) (Col.: Nitidulidae) is one of the most 

important pests during the bud stage of oilseed rape (Alford, 2003). Feeding of adult pollen 

beetles on rape buds causes podless stalks (Winfield, 1961) and yield reductions up to 80% 

(Ahuja et al., 2009). The frequent use of insecticides and the limited supply of registered 

insecticide products for control the pollen beetle populations have resulted in widespread 

resistance to pyrethroids in Europe in recent years (Hansen, 2003; Heimbach et al., 2006; 

Kazachkova et al., 2007; Délos, 2008; Tiilikainen & Hokkanen, 2008; Wegorek & Zamoyska, 

2008). To minimise insecticide exposure of beetles and larvae new ecological approaches 

are required (Cook & Denholm, 2008). To integrate different control strategies in integrated 

pest management systems, a better understanding of the factors governing the relationships 

between the pest and its host plant is fundamental (Schoonhoven et al., 2005). 

In contrast to its wide host range for feeding, M. aeneus on oviposition is specialized on 

various Brassica species (Ekbom & Borg, 1996; Börjesdotter, 2000). There is a strong 

correlation between the oviposition preference and the size of buds of oilseed rape (Ekbom & 

Borg, 1996). Several life stages of pollen beetle are related to the bud and flowering stage of 

Brassica spp. (Fritzsche, 1957). So far, only a few studies have been conducted to 

investigate the impact of host plant phenology on pollen beetle population dynamics (Nielsen 

& Axelsen, 1988; Cook et al., 2004a). The results of our study regarding plant phenology will 

be integrated in the following discussion. The analyses focused on factors regulating the 

reproduction, population growth, population dynamics and damage of pollen beetle. This 

knowledge might be included in integrated pest management strategies in the future.  

 

 

Factors regulating the population dynamics and population growth  

 

There are several factors which potentially have an influence on the population dynamics 

and population growth of M. aeneus. Among these, weather conditions, host location, quality 

and quantity of host plants and natural enemies have major impact.  

The main stimulus for immigration of adult pollen beetles into crops of oilseed rape is 

determined by temperature above 15°C (Fritzsche, 1957). Furthermore, weather conditions 

including air temperature and sunshine duration are influential for the pollen beetle migration 

(Fritzsche, 1957; Sedivy & Kocourek, 1994). In our study, the maximum air temperatures 

increased over 15°C on 21, 1 and 6 April in 2008, 2009 and 2010, respectively. 

Adult beetles locate their host plants by odour and colour cues (Evans & Allen-Williams, 

1994; Cook et al., 2002). Host plant volatiles, particularly isothiocyanates which are carried 

downwind from the crop, and the yellow and green colour of the plant are important cues for 

orientation. In our field experiments, first beetles arrived on the crop on 18 April in 2008 and 

on 2 April in 2009 and 2010, respectively. In 2008, the overwintered pollen beetles preferred 

the winter oilseed rape cultivars in the flowering stage for the first 6 days following 

immigration, compared to the cultivars in the bud stage (Chapter II). This is in agreement 

with other field studies which have shown that flowers provide more important cues than 
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buds for host selection of pollen beetle during flowering (Free & Williams, 1978; Cook et al., 

2002, 2006; Frearson et al., 2005).  

When beetles arrive before crop flowering, they locate their host plants by olfactory stimuli of 

rape leaves, stems and buds in addition to visual stimuli (Ruther & Thiemann, 1997; Williams 

& Cook, 2010). A cultivar with low content of alkenyl glucosinolates in the leaves was less 

attractive for pollen beetles than a conventional cultivar (Cook et al., 2006). In 2009 and 

2010, M. aeneus colonized the cultivars in the early bud stage. Under these conditions, 

beetles were more abundant on the hybrids, particularly on cv. `Elektra´ (Chapter II), which 

may have resulted from a higher glucosinolate content of this oilseed rape cultivar compared 

to the other cultivars. Even though we did not analyse the glucosinolate content of the 

cultivars, the higher number of eggs and first instar larvae in the buds of the hybrids `Elektra´ 

and `Titan´ in comparsion with the open pollinated cultivars `NK Passion`and `Favorite` might 

reflect the preference of adults for cultivars with a higher alkenyl glucosinolate content 

(Chapter II). In addition to odour cues, colour cues might have an influence on the preference 

of adult beetles for the winter oilseed rape cultivars in the bud stage as well. Pollen beetles 

have been shown to aggregate on oilseed rape flowers with simulated pollen beetles drawn 

on them (Free & Williams, 1978).  

Before females start ovipositing into the buds of Brassica plants, they feed on plants of 

different families or on oilseed rape crops in spring. Ovary maturation of females depends on 

weather conditions, such as temperature and humidity, and on the feeding period (Fritzsche, 

1957; Ekbom & Ferdinand, 2003). Field-collected beetles showed variable egg loads after a 

change from cold and rainy to warm and sunny weather conditions. The proportion of gravid 

females was higher at the beginning of the oviposition period than at the end (Ekbom & 

Ferdinand, 2003). Free and Williams (1979) reported that egg-laying of pollen beetle females 

began 3 weeks after their arrival on winter oilseed rape. In comparison, females immigrating 

into spring oilseed rape had fully developed eggs. In our field experiments, we found eggs in 

the buds 6 days after immigration in 2008 and 2009. In 2009 the number of eggs increased 

24 days after immigration. In addition, first larvae were found in the buds at that time 

(Chapter II). This suggests that gravid females are already present at the beginning of crop 

infestation and oviposition increases with increasing abundance of adult pollen beetles in our 

experiments.     

The host plant quality influences not only the herbivore abundance (Bach, 1990) but also 

their reproduction (Preszler & Price, 1988). Hopkins and Ekbom (1999) examined the 

oviposition rate of pollen beetle females on different host plants. Beetles that moved from B. 

napus, a “high-accepted” plant, to Sinapis alba, a “low-accepted” plant, reduced their 

oviposition rate whereas in the opposite case, beetles migrating from S. alba to B. napus, the 

rate of oviposition increased (Hopkins & Ekbom, 1999). This either suggests that beetles 

adapt to host plant quality to save resources for future egg production or that the oogenesis 

is arrested or incomplete on a “low-quality” host plant. An incomplete oogenesis is indicated 

by reduced egg production rates when pollen beetle females are exposed to “low-quality” 

host plants (Ekbom & Popov, 2004). In 2009 and 2010, lower numbers of eggs and second 

instar larvae on the open pollinated cultivars compared to hybrids were recorded from plants 

in the same growth stage (Chapter II). This indicates that there may be other factors 
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influencing the host-quality of winter oilseed rape cultivars for oviposition by pollen beetle 

females.   

Females prefer buds with a length of 2-3mm for egg deposition (Nilsson, 1988a; Ekbom & 

Borg, 1996). In our field experiments, buds >3mm were also used for oviposition and feeding 

(Chapter II). In 2009, all four cultivars showed a similar development, and first flowering 

started 16 and 18 days after pollen beetle invasion in the early flowering and late flowering 

cultivars, respectively. In 2010, the main egg laying period was extended because flowering 

started after 23 days and after 28 days of pollen beetle invasion in the early flowering and 

late flowering cultivars respectively. Due to the extended oviposition period and increased 

number of eggs, the L1 and L2 stages might have been affected positively by the longevity of 

available buds and annual weather conditions (Nilsson, 1988b).  

During the egg and first instar larval stages, several factors may impact the mortality rate. 

Damage to pistils and ovaries within buds lead to bud abortion (Williams & Free, 1978). A 

higher mortality rate of eggs due to bud abortion can occur when high population densities 

are present in the early developmental stage of oilseed rape (Nilsson, 1988b). Nilsson 

(1988b) made this observation primarily in spring oilseed rape where a large proportion of 

buds used for oviposition is smaller than 2mm. In our study in winter oilseed rape no eggs 

were found in buds smaller than 2mm. Not more than 66% of buds >2mm were used for 

oviposition and feeding (Chapter II). The probability of a high egg mortality rate due to an 

insufficient number of sizeable buds apparently was low because high numbers of buds 

larger than 2mm were available on the winter rape plants in our study. 

Premature larval dropping due to competition between larvae, completion of the flowering 

period or parasitoid attack has been observed (Hokkanen, 2000; Nilsson, 1988b). Increased 

larval dropping with increasing numbers of pollen beetle larvae suggest density dependency 

(Chapter II). Competition between larvae in different larval stages was recorded by 

Hokkanen (2000). Second instar larvae are very mobile and can migrate from flower to flower 

(Williams & Free, 1978). During migration, larvae are easily exposed to parasitoids, 

particularly to Tersilochus heterocerus that oviposits into second instar larvae in open flowers 

(Osborne, 1960). Furthermore, larval mortality rates may be enhanced during the last days of 

flowering when larvae are feeding in open flowers. This increases the risk of premature larval 

dropping together with the petals falling to the ground at the end flowering.  

The phenology of host plant and pest needs to coincide for optimal population development 

of the pest (Singh & Singh, 2005). Changes of abiotic factors such as temperature can cause 

a disturbance of this coincidence (Schoonhoven et al., 2005). Earlier flowering of oilseed 

rape resulted in insufficient synchronisation of seed weevil Ceutorhynchus obstrictus and its 

host plant (Haye et al., 2010). In our experiment in 2008, high temperatures in the flowering 

stage increased the number of pollen beetle on the early flowering cultivars `NK Passion´ 

and `Elektra´ (Chapter II). Despite of this, a reduction of overall population growth was 

observed. Even though there was a higher abundance of adult pollen beetles on the early 

flowering cultivars `NK Passion´ and `Elektra´, the emergence rate of new-generation beetles 

and the population growth rate were lower than on late flowering cultivars. The number of 

eggs is strongly correlated with the availability of buds and the growth stage of the host plant 

(Nilsson, 1994; Ekbom & Borg, 1996). In 2008, reproduction of pollen beetles was negatively 
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affected due to an advanced flowering period and a delayed colonization of adult beetles. 

This means that the larvae originating from eggs deposited in the late flowering period had 

not gained maturity at the end of flowering of the early flowering cvs. `NK Passion´ and  

`Elektra´ (Chapter II). Similar results were also obtained in our semi-field experiment: In the 

`late infestation´ treatment, lower numbers of second instar larvae and new-generation pollen 

beetles were recorded than in the `early infestation´ treatment. Poor pollen supply restricts 

the larval fitness and results in incomplete development of the larvae, thus in reduced fitness 

of pollen beetles in the following life stages (Nielsen & Axelsen, 1988; Cook et al., 2004a). 

Nielsen and Axelsen (1988) suggested that delayed oviposition may result in incomplete 

larval development due to advanced flowering. Hence we can assume that early flowering 

winter oilseed rape cultivars have potential to reduce the population growth when the 

colonization of pollen beetles occurs in the late bud stage.  

In 2009 and 2010, the emergence rates of new-generation pollen beetles were on a low level 

(Chapter II). Survival of M. aeneus seemed to be negatively affected by dry soil conditions. 

Similar effects on population dynamics of the Nitidulid Aethina tumida have been reported: 

More beetles died in dry soils because of predrying or suffocation (Ellis et al., 2004). 

Reduced growth rates of pollen beetle populations may also result from attack by natural 

enemies (Bellows et al., 1992). Parasitoids have major impact on the mortality rate of several 

rape pests, particularly of pollen beetle (Ulber et al., 2010b). In our studies, the average 

parasitism rate increased over the years 2008, 2009 and 2010 from 41.0% over 44.5% to 

72.9%, respectively (Chapter II). Similarly, the mortality rate of cabbage seedpod weevil 

Ceutorhynchus obstrictus between larval dropping and emergence of adults varied between 

60-90% (Haye et al., 2010). The author suggested entomopathogenic fungi and polyphagous 

predators such as ground beetles (Coleoptera: Carabidae) as important mortaliy factors. 

Nuss (1999) and Büchi (2002) found 4% and 16-27% mortality, respectively, of pollen beetle 

caused by predators such as ground beetles, spiders and staphylinid beetles on oilseed rape 

crops in Germany and Switzerland. 

The relationship between the abundance of overwintered beetles and new-generation pollen 

beetles can be drastically influenced by weather conditions, host-quality and natural 

antagonists. The population growth rate ranged from 1:0.5 to 1:11 in our field experiments 

(Chapter II). Nilsson (1988b) found similar results between 1:1 and 1:10. This author 

mentioned that small changes, for example growth characteristics of the cultivars, can 

influence the impact of several mortality factors within the development period of pollen 

beetles.  

Population dynamics of M. aeneus may also be influenced by mortality during hibernation. 

Overwintering pollen beetles are adapted to loamy soil in shadowed and moderately humid 

microhabitats of deciduous forests (Müller, 1941). In Finland, a high mortality of pollen beetle 

during hibernation of 85-98% was due to high levels of infection by entomopathogenic fungi 

(Hokkanen, 1993). In addition to the impact of entomopathogenic fungi, the fitness and cold 

tolerance of overwintering beetles is influenced by environmental factors, thereby affecting 

the level of mortality during overwintering (Somme, 1999).  
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Effects of insecticide application on population growth and damage 

 

In two years of our field experiments, the effectiveness of the insecticide chlorpyrifos-methyl 

was on a similar level (68-69%). In contrast, the effectiveness of thiacloprid ranged widely 

between 2.3% and 77.4% (Chapter III). Chlorpyrifos-methyl is active by contact and by 

dietary uptake (Anonymus, 2005). Neonicotinoide insecticides are distributed acropetally and 

have a systemic and translaminar activity in plants. They are widely used for control of 

sucking pests (Elbert et al., 2008). Pollen beetles ingest the active ingredient by feeding. In 

addition, residuals of thiacloprid are toxic through contact activity (Thieme et al., 2010). The 

sensitivity of adult beetles can be influenced by their mobility and the time they spent on the 

host plant. Pollen beetles are very mobile on small plots (Winfield, 1961). A low effectiveness 

of insecticides might result from small plot size (75 m²) and a high dispersal ability of adult 

pollen beetles.  

Insecticide application during the inflorescence stage reduces the abundance of adult pollen 

beetles on oilseed rape which in turn decreases oviposition into buds, resulting in lower 

numbers of larvae (Winfield, 1961; Schroeder et al., 2009, Chapter III). In all three years of 

our field tests, percentage reduction of second instar larvae and of emerging beetles ranged 

from 83.2% to 90.6% and from 82.5% to 95.5%, respectively (Chapter III). Lethal effects of 

topical application of thiacloprid to L2 larvae in open flowers might have caused a high larval 

mortality rate (Williams & Free, 1978). Further, ovicidal and larvicidal effects might be 

responsible for increased egg and larval mortality in our studies. Thiacloprid has shown a 

high larvicidal and low ovicidal effectiveness to the small fruit tortrix Grapholita lobarzewskii 

in apples (Charmillot et al., 2007). In another study, emergence of Conotrachelus nenuphar 

larvae from fruits was reduced and only a few larvae survived 30 days after treatment with 

thiacloprid (Hoffmann et al., 2009). Furthermore, sublethal effects of insecticides may have 

an impact on the longevity, fertility, fecundity and behaviour, such as feeding, searching and 

oviposition of arthropods (Stark & Banks, 2003).  

Following insecticide application during the bud stage and early flowering stage of oilseed 

rape in our experiments, the development of pollen beetle was interrupted (Chapter III). After 

decline of the insecticidal activity, adult beetles are able to re-colonize the treated plots for 

oviposition and feeding. The oviposition period may extend up to 2 months as long as mature 

females are present on the plants (Ekbom & Ferdinand, 2003). However, the plant 

development will proceed following insecticide application, leading to a reduced availability of 

buds suitable for oviposition of re-colonizing females. Oviposition into buds of the size >3mm 

may have resulted in an increased number of larvae which could not complete their 

development until the end of the flowering stage (Nielsen & Axelsen, 1988).  

In 2009 and 2010, the insecticide treatments caused a significant decrease of bud losses 

compared to untreated plots (Chapter III). The insecticides had significant effects on adult 

beetle abundance resulting, in reduced feeding and bud abortion. However, the seed yield 

did not significantly differ in both years. With respect to the pollen beetle, the level of damage 

may originate from several  factors: the number of adult beetles, the temporal occurrence of 

the adult beetles on the crop, the level of plant nutrition, the development stage of the host 

plant, and the weather conditions (Fritzsche, 1957). Oilseed rape shows a high 
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compensatory ability (Nilsson, 1994). After feeding of pollen beetles the number of racemes 

and the thousand seed-weight increased. This is particularly the case on the racemes of 

second order (Vietinghoff, 1985). The compensatory responses are enhanced by favourable 

nitrogen supply and weather conditions (Habekotte, 1993). In an expanded flowering period 

the plants increase the assimilate availability to enhance their pod density and seed set. High 

plant compensation might have been responsible for a high yield in the insecticide treated 

and untreated plots in our investigation (Chapter III).  

 

 

Effects of site-specific factors and insecticide application on parasitisation  

 

Average levels of parasitism by specialised parasitoids of pollen beetle within the range of 

25-50% have been reported from several countries in Europe (Ulber et al., 2010b). In our 

study, the average level of parasitism was 22.6% and 25.1% in 2008 and 2009, respectively 

(Chapter IV). Widely varying levels from 1.6% to 55.9% in 2008 and 1% to 81.3% in 2009 at 

individual locations indicate a high impact of biotic and abiotic factors. The abundance and 

phenology of parasitoids depend, among other factors, on local climate and weather 

conditions, the area of oilseed rape crops grown in previous years and the soil cultivation 

techniques (Nilsson, 2003). In our study, site-specific factors such as the field size, the 

proportion of rape crop area within the region and the geographical location influenced the 

levels of parasitism. This indicates that parasitoids response sensitive to environmental 

factors (Chapter IV). To evaluate the effectiveness of parasitoids as natural control agents 

these factors have to be taken into consideration in future studies. 

In structurally complex landscapes with field margin strips and old fallow habitats the 

parasitism is higher compared to structurally simple landscapes (Thies & Tscharntke, 1999). 

Thies & Tscharntke (1999) suggested that 6 year old and undisturbed field margins near 

hibernation sites may enhance the parasitoid population. Zaller et al. (2009) found similar 

results: The combination of high pollen beetle abundance and high levels of rape crop areas 

and non-crop habitats such as roadside strips and hedges increased the parasitisation of 

pollen beetle.  

In our study, clear effects of insecticide application during the bud and flowering stage on 

parasitism were observed (Chapter IV). In 2009, Insecticide treatment reduced the level of 

total parasitism and of parasitism by T. heterocerus and Phradis spp.. The side-effects of 

insecticides on parasitoids depend on several factors such as mode of action, dosage, 

persistency and temporal and spatial application (Ulber et al., 2010a). Mortality of parasitoids 

can occur through direct contact with spray droplets or through chemical residues on the 

plant surface. Parasitoids of pollen beetle occur during the late bud and flowering stage of 

oilseed rape crops when they search for host larvae (Jönsson et al., 2005; Jönsson et al., 

2007). In an olfactometer experiment, P. morionellus was more attracted by odours emitted 

from oilseed rape plants infested with host larvae than by odours from uninfested plants 

(Jönsson et al., 2007). In two-choice tests, the three tersilochine parasitoids preferred the 

odour of oilseed rape buds. In addition, T. heterocerus preferred the odour of flowers 

(Jönsson & Anderson, 2008). When the odour stimuli were combined with visual stimuli, the 
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three parasitoid species responded differently. When odours of flowering rape were 

combined with the colour yellow, and odours of the bud stage were combined with the colour 

green, P. interstitialis was equally attracted to both combinations, and T. heterocerus showed 

an increased preference for flower odours, while P. morionellus was not affected by the 

visual stimuli (Jönsson & Anderson, 2008). As a result, T. heterocerus is particularly exposed 

to insecticides during host searching in the flowering stage of oilseed rape. Considering 

parasitoids’ behaviour during the flowering stage, the insecticide application against pollen 

beetles in this stage should be avoided to enhance the parasitisation. 

 

 

Effect of trap crops to control pollen beetle  

 

Turnip rape (Brassica rapa) has shown potential as trap crop to decrease the numbers of 

adult pollen beetles (Büchi, 1995; Cook et al., 2004b, 2006). However, a combination of 

turnip rape with spatial targeted insecticide application to the trap crop was not effective 

(Büchi, 1995, Chapter V). A higher number of pollen beetles in the border strips of winter 

turnip rape did not change the spatial distribution in the main crop. Consequently, the 

insecticide spray in the border strip had no effect on the number of pollen beetles in the main 

crop (Chapter V). Even though the adult beetles were attracted by turnip rape until the main 

crop of oilseed rape came into flower. Pollen beetles show a preference for yellow petals of 

flowering oilseed rape (Giamoustaris & Mithen, 1996; Frearson et al., 2005) and respond to 

rape odours (Cook et al., 2002). This visual cue is important for orientation (Williams, 2010). 

Trap cropping might be more successful when the turnip rape plants remain in flower during 

the infestation period of pollen beetles and the main crop is in the susceptible bud stage at 

the same time (Winfield, 1961; Cook et al., 2006). Divergent to a successful control of pollen 

beetles in Finland where the trap crop flowers two weeks earlier than the main crop 

(Hokkanen et al., 1986), our study was influenced by an earlier plant development of turnip 

rape by 3 to 4 days compared to winter oilseed rape. Because of the rapid increase of 

temperatures and the early immigration of pollen beetles in the early bud stage of both plant 

species, the protection of winter oilseed rape from pollen beetle infestation by winter turnip 

rape was insufficient in April in 2009 and 2010 (Chapter V). An early flowering winter turnip 

rape cultivar might be more suitable than winter oilseed rape crops for trap cropping.  

In addition to the phenology of a trap crop cultivar, the design of the trap crop is important for 

an effective control. Accounts need to be taken of the fact that there are different colonization 

types of herbivores into a field (Potting et al., 2005). For a successful control of pollen beetle 

numbers, it is advised to have a trap crop at the surrounding border of a field to intercepts 

the population and reduces the movement to the main crop (Frearson et al., 2005; Potting et 

al., 2005). In our study a trap crop border was grown on two sides of the field in a block-

design. Immigrating beetles might have colonized the main crop from the sides without turnip 

rape borders (Chapter V), but this has not been studied in detail. The colonization of oilseed 

rape depends essentially on two factors in spring: Overwintering location and wind direction. 

After overwintering, the beetles fly upwind towards the fields (Williams et al., 2007). 
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Bordering the whole field with the trap crop may avoid the colonization of adult beetles 

directly in the main crop. 

 

 

Approaches of integrating pest management strategies in oilseed rape 

 

The aim of integrated pest management is to avoid insecticide applications by reducing the 

incidence of damage by herbivores (Börner, 1997). In order to reach this goal, methods such 

as conservation of natural enemies, trap cropping, breeding of resistant varieties and 

cultivation techniques in oilseed rape crop management are used (Evans & Scarisbrick, 

1994). When using insecticides, economic thresholds should be considered. The economic 

threshold is based on the biology of the pest, the potential damage to the crop, the effects on 

yield and its response to insecticides (Evans & Scarisbrick, 1994). It is also affected by the 

plant growth stage. In Germany for example, the application threshold for pollen beetles in 

winter oilseed rape is 3-4 beetles/plant, 7-8 beetles/plant and >8 beetles/plant at growth 

stage 50-51, 52-53 and 55-59, respectively (Williams, 2010). 

Farmers are advised to use active monitoring methods, such as visiting the crop and 

counting pollen beetle numbers per plant, in order to determine the accurate timing of 

insecticide application (Williams, 2010). Knowledge about the spatio-temporal distribution of 

a pest may allow temporal and spatial targeting of insecticides to reduce insecticide 

application and conserve beneficial insects (Warner et al., 2000). The spatial distribution of 

M. aeneus within a field is complex and can be manipulated by host-plant volatiles, trap 

crops or pheromones (Ferguson et al., 2003). In field studies, a turnip rape trap crop in small 

plots of spring oilseed rape was effective to control pests of oilseed rape, including the pollen 

beetle (Ferguson et al., 2003; Cook et al., 2006). However, the turnip rape trap crop strategy 

is only effective when the growth stage of the trap crop is more advanced. The flowering 

stage of the trap crop is only able to protect the main crop in the bud stage against pest 

infestation (Frearson et al., 2005). However, plant development depends on weather 

conditions and cultivation techniques such as the sowing time (Hokkanen, 1991). In our 

study, the trap cropping system was not effective for the control of adult pollen beetles 

because the growth development of turnip rape was only 3-4 days faster compared to the 

main crop winter oilseed rape (Chapter V). Further studies are needed to develop a suitable 

model. 

In contrast, the study including early flowering cultivars of oilseed rape showed potential of 

these cultivars for integrated pest management (Capter II). The population growth of pollen 

beetles can be negatively influenced by early flowering winter oilseed rape cultivars. 

Depending on the temperature, the date of crop colonization and the plant growth stage were 

restricting factors for larval development and the number of new-generation pollen beetles. 

Early flowering cultivars can be used in integrated pest management to achieve a smaller 

population outcome in the summer and for the following year after hibernation. However, this 

effect is largely dependent on the annual weather conditions. 

Parasitoids have no effect on damage by adult beetles at the susceptible plant stage 

because they target only the larval stages. The specialised parasitoids Tersilochus 
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heterocerus and Phradis spp. are univoltine and koinobiont endoparasitoids. They parasitise 

the larvae, thereby causing a significant reduction of newly emerging pollen beetles 

(Jourdheuil, 1960). Farmers might not appreciate the conservation of biological agents in 

integrated pest management strategies because these agents do not have a direct effect on 

the feeding damage of beetles in winter oilseed rape.  

In their native locations, a threshold parasitsm rate by parasitoids of 32% was found to be 

sufficient for successful biological control of several species (Hawkins & Cornell, 1994). 

Parasitism rates of pollen beetles exceeding 50% have been reported from several European 

countries (Ulber et al., 2010b). Parasitism rates differ widely between various sites in 

Germany. In our study, the parasitism even exceeded 81.3% (Chapter IV). This indicates that 

there might be a high potential to act as natural control agents in an integrated pest 

management system in oilseed rape. The avoidance of unnecessary insecticide treatments 

would help to conserve parasitoids (Cook & Denholm, 2008) and increase the parasitism 

rate. If possible, insecticides should only be applied before the main periods of parasitoid 

activity on the oilseed rape crops. 
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Summary 

 

Factors regulating the population dynamics and damage potential of pollen beetle 

(Meligethes aeneus F.) on crops of oilseed rape 

 

The pollen beetle Meligethes aeneus (Fabricius) (Col.: Nitidulidae) is one of the most 

important pests of oilseed brassicas in Europe. Due to extensive use of pyrethroids and the 

limited supply of registered insecticide products pollen beetle populations have built up 

widespread resistance to pyrethroids in recent years. Alternative integrated pest 

management strategies are needed to regulate the population growth and damage caused 

by pollen beetle below threshold levels. In this study, we investigated various factors which 

might have an impact on population development, behaviour, damage potential and natural 

control of this pest. The effect of different cultivars of winter oilseed rape, Brassica napus,  on 

the reproduction and population growth of pollen beetle was studied in field experiments over 

three years. Further, the effectiveness of the alternative insecticides thiacloprid and 

chlorpyrifos-methyl, applied for control of adult beetles in the bud and early flowering stage of 

oilseed rape, on population growth and plant damage was tested in these field experiments.  

As hymenopterous parasitoids can exert substantial natural control of pollen beetle 

populations, we analysed the impact of site-specific factors and insecticide application on the 

level of larval parasitism of M. aeneus in a monitoring study, collecting samples from various 

locations across Germany. In addition, the effect of trap cropping in combination with 

targeted insecticide treatment on the spatio-temporal distribution of adults within the field was 

studied as an integrating pest management strategy for pollen beetle. 

 

Four Brassica napus (L.) cultivars with different flowering behaviour were grown in field 

experiments in 2008-2010. The population growth of pollen beetle on these cultivars was 

determined with respect to the effects of annual weather conditions on the phenology of 

pollen beetle infestation and plant growth stage. In 2008, the early flowering cultivars `NK 

Passion` (open pollinated) and `Elektra´ (hybrid) developed more rapidly than the late 

flowering culivars `Favorite´ (open pollinated) and `Titan´ (hybrid). This delay of flowering by 

6 days significantly reduced the pollen beetle abundance and significantly increased the 

population growth of pollen beetle on cv `Favorite´ compared to cv. `NK Passion´. In 2009 

and 2010, when the phenological growth of the cultivars was nearly synchronously, no 

cultivar effects on population growth could be measured, although the adult beetles 

significantly preferred the buds of the hybrid cultivars for oviposition. The emergence rate of 

the new pollen beetle generation in relation to the abundance of second instar larvae 

migrating to soil for pupation was significantly correlated with the period available for egg 

laying and larval development in the bud and flowering stage in each year.  

The application of the organophosphate insecticide chlorpyrifos-methyl and the 

neonicotinoide insecticide thiacloprid significantly reduced the abundance of adult pollen 

beetles in two of three years of study. However, although the abundance of adult beetles was 

only little affected by insecticide treatment in the third year, the number of second instar 

larvae and of newly emerged beetles was significantly reduced. In 2008, 2009 and 2010, 
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percentage reduction of second instar larvae and emerging beetles by insecticides ranged 

between 83.2% to 90.6% and between 82.5% to 95.5%, respectively. Although the pollen 

beetles caused high bud losses in untreated plots, no significant effect of insecticide 

treatment on yield of oilseed rape was recorded.    

The parasitism rates of pollen beetle larvae by the parasitoids Tersilochus heterocerus and 

Phradis spp. (Hym.: Ichneumonidae) varied widely between locations and years in Germany. 

On the 36 and 42 crops of winter oilseed rape sampled in 2008 and 2009, the total levels of 

parasitism varied from 1.6% to 55.9% and from 1.0% to 81.3%, respectively. The parasitism 

was significantly influenced by site-specific factors like geographical region/latitude, 

proportion of oilseed rape crop and field size. Insecticides applied during the main period of 

parasitoid activity during the bud and flowering stage of oilseed rape significantly reduced the 

parasitism rates. 

Despite the preference of immigrating adult pollen beetles for turnip rape (Brassica rapa), a 

trap crop border strip of turnip rape had no significant effect on the spatio-temporal within-

field distribution of pollen beetles on the main crop of winter oilseed rape, as compared to 

plots with a border strip of oilseed rape. Higher numbers of beetles remained on turnip rape 

until the oilseed rape began to flower. Further, insecticide application targeted to the border 

strip did not significantly reduce the abundance of adult beetles in the centre of the field. 

Plant damage was not significantly different between the treatments. These insignificant 

differences may have occurred because the plant growth stage of the turnip rape trap crop 

was only 3-4 days in advance of the oilseed rape main crop in all three years of the field 

experiments.  

In summary, these results present new approaches for alternative control strategies of pollen 

beetle which might be included in an integrated pest management system. The population 

growth of pollen beetles can be reduced by growing early flowering cultivars of winter oilseed 

rape and by targeted insecticide treatments within the bud and early flower stage. However, 

insecticide applications should be minimised because they can cause high mortality of 

parasitoids which are substantial biological agents of pollen beetle. The use of turnip rape as 

trap crop depends strongly on weather conditions.  
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