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Abstract

Existence and regularity of solutions of quasilinear elliptic equations

in nonsmooth domains have been interesting topics in the development

of partial differential equations. The existence of finite-energy solutions

of higher-order equations, also those with degenerations and singularities,

can be shown by theory of monotone operators and topological methods.

There are few results about singular solutions of second-order equations

involving the p-Laplacian with the Dirac distribution on the right-hand

side. So far the existence of singular solutions of higher-order equations

with a prescribed asymptotic behavior has not been investigated.

The aims of my dissertation are to look for finite-energy and singu-

lar solutions of quasilinear equations on manifolds with conic points. We

single out realizations of the p-Laplacian in particular, p ≥ 2, and a cone-

degenerate operator in general, which belong to the class (S )+. Assuming

further coercivity conditions and employing mapping degree theory for op-

erators belonging to the class (S )+, we obtain existence for the prototypical

example of the p-Laplacian and for general higher-order equations.
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Zusammenfassung

Existenz und Regularität der Lösungen der quasilinearen elliptischen

Gleichungen in nichtglatten Gebieten sind interessante Themen in der The-

orie der partiellen Differentialgleichungen. Die Existenz der Lösungen mit

endlichen Energien der Gleichungen höherer Ordnung, sowie Gleichungen

mit Degenerationen und Singularitäten, kann durch die Theorie monotoner

Operatoren und topologische Methoden gezeigt werden. Existenz sin-

gulärer Lösungen der Gleichungen zweiter Ordnung ist nur in dem Fall des

p-Laplace Operators mit Dirac’sche-Distribution als rechten Seite bekannt.

Bisher ist die Existenz singulärer Lösungen der Gleichungen höherer Ord-

nung noch unbekannt.

Die Ziele meiner Dissertation sind die Untersuchungen der Exis-

tenz der Lösungen mit endlichen und unendlichen Energien der Gleichun-

gen auf Mannigfaltigkeiten mit konischen Punkten. Wir betrachten Er-

weiterungen des p-Laplace Operators, p ≥ 2, und eines konischen aus-

gearteten Operators, damit entsprechende Operatoren zu der Klasse (S )+

angehören. Seien weiteren Koerzitivität Bedingungen gegeben und ver-

wendet den Abbildungsgrad der Operatoren der Klasse (S )+, erhalten wir

Existenz für p-Laplace Operator beteiligende Gleichungen und für allge-

meine Gleichungen höherer Ordnung.
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1 Introduction

The present thesis is devoted to the study of the existence of finite-energy and singular so-

lutions of quasilinear elliptic equations on manifolds with conic points. We will use alter-

native functional analysis methods to prove first for second-order equations, in particular

for the prototypical example of the p-Laplacian, and then for higher-order equations.

As mentioned, our consideration takes place on manifolds with conic points. After

blow-up procedure, or equivalently, introducing polar coordinates near those points, one

actually works on a smooth manifold X whose cross-section Y is a smooth manifold with-

out boundary. The geometry of the original object is captured by the type of degeneration

of observed operators. In the present case of a manifold with conic points, the corre-

sponding differential operators are called cone-degenerate differential operators, which

are given in local coordinates in a collar neighborhood (0, 1] × Y of the boundary by

A = t−ν
ν∑

k=0

ak(t)
(
−t
∂

∂t

)k

, (1.1)

where the coefficients ak(t) ∈ C∞
(
[0, 1),Diffν−k(Y)

)
. The cone degeneracy shows up in

the derivative (−t∂t). The analysis on manifolds with conic points, and in more general

stratified spaces, has been established by Schulze [11, 33]. The resulting cone calculus

will play an important role in this work.

We are particularly interested in quasilinear equations of divergence form, that are

equations of the form

A′ F (x, Au) + G(x, Bu) = f in X \ Y , (1.2)

where the operators A ∈ Diffν
c(X; E, F), B ∈ Diffν′

c (X; E,G), (ν, ν′ ≥ 1, ν′ < 2ν), are

cone-degenerate differential operators with real coefficients acting between sections of

real vector bundles E, F and E, G over X \ Y , respectively. The nonlinearities

F : F → F′, G : G → E′



1 Introduction

are fiber-preserving maps. For x ∈ X \ Y , we write F (x, ·) and G(x, ·) in place of the

induced fibrewise maps Fx : Fx → F′x and Gx : Ex → Gx, respectively. Here E′ and F′

are the dual bundles of E and F, respectively. We furnish X with a measure dµ which is

tN−pγ dtdy close to Y , dy is a measure on Y , γ ∈ R is a fix weight, γ < N+1
p , dim X = N + 1.

Then A′ ∈ Diffν
c(X; F′, E′) denotes the adjoint operator of A with respect to the scalar

product in L2(X, dµ).

A prototypical example of quasilinear equations is equation involving the p-Laplace

operator, which in our setting is written as

∆pu = − divg(|∇gu|p−2|∇gu|),

where p > 1, divg ∈ Diff1
c(X,c T X,R), ∇g ∈ Diff1

c(X,R,c T X) are the divergence and the

gradient operators with respect to a cone metric g, g = dt2 + t2gY , when a Riemannian

metric gY on Y is given. These operators act between the trivial bundle and the cone

tangent bundle on X (the latter bundle will be defined in (2.2)). In the following, we will

drop the reference to the metric, that is we write ∇ and div.

Existence and regularity of quasilinear elliptic equations have been of great interest

since the fifties of the last century. The first systematic investigation was the monograph

of Ladyzhenskaia and Ural’tzeva, in which the authors considered second-order equations

in regular domains in Rn. Their approach using Leray-Schauder fixed point theorem, also

presented in the book by Gilbarg and Trudinger ([14]), relies much on interior and bound-

ary estimates. Another approach to second-order equations is the method of sub- and

supersolutions, many fundamental results like Harnack inequality, comparison principle

. . . are developed further for second-order equations with degeneration, we refer to the

book by Heinonen, Kilpeläinen and Martio ([17]) on nonlinear potential theory.

Since the nineteen sixties, there has been a broad development in the study of higher-

order quasilinear elliptic equations. The work of Vishik used a modification of the Galerkin

approximation method. Subsequent progress were connected to the theory of mono-

tone and more general operators in the famous work of Browder [4], Leray–Lions [24]

. . . Quasilinear elliptic equations of divergence form fit well in this framework, especially

when they satisfy the so-called coercivity property. We will utilize existence theorems

by those authors in chapter 3. Solvability of equations involving noncoercive operators

was also investigated, for example odd operators in the work of Pokhozhaev, Browder,

Petryshyn, Skrypnik, see [38, Chapter 1] for more details. These results can also be ob-

tained by using the so-called mapping degree theory for generalized monotone mappings,

2



1 Introduction

which was developed independently by Browder and Skrypnik at the end of the sixties

and the beginning of the seventies. This mapping degree, constructed for the class of

mappings possessing property α (or termed (S )+ by Browder), generalizes the mapping

degree of finite-dimensional operators in the sense that it inherits all the properties of the

Brouwer degree. One has a simple criterion for the existence of solutions of equations

including such operators, namely when this degree is nonzero the equation is solvable,

see theorem 2.30. In particular, this criterion holds for coercive or odd operators. We

refer to the book by Drábek-Milota [10] for a nice introduction to mapping degree theory

and to the monograph by Skrypnik [38] for various general framework for solving opera-

tor equations and fruitful examples of quasilinear and fully nonlinear equations in regular

domains. However, compared to the use of other methods, for example monotone theory,

this method works for nonlinearities having a slightly smaller growth. These functional

analysis methods applied to equations with degeneration and singularity were presented

in the book by Drábek, Kufner and Nicolosi, see [9].

In this work, we will utilize these functional methods to establish existence of solu-

tions to second- and higher-order equations on manifolds with conic points. The proofs

go smoothly at least in the case of finite-energy solutions, with an adaptation to the

nonsmooth situation. We take into account the analysis on manifolds with singularities

presented in the work of Egorov–Schulze ([11]), Schulze ([33]) in L2 case, and Seiler-

Schrohe ([31]) in Lp case. We obtain in chapter 3 section 3.1 and chapter 4, section 4.3

the existence of finite-energy solutions of quasilinear equations of second- and higher-

orders, respectively, namely

Theorem 1.1 (Theorem 3.3). Consider the equation

− divF (x,∇u) − div g1(x, u) + g2(x, u,∇u) = f (x), x ∈ X \ Y. (1.3)

Suppose that the nonlinearities subject to the conditions (3.2), (3.3), (3.4), (3.5), and

furthermore, for almost all (x, u, q) ∈ X × R × cT X, it holds

F (x, q)q + g1(x, u)q + g2(x, u, q)u ≥ C2|q|p + C3|u|p −C4. (1.4)

Given f ∈ H−1,−1
p′ (X; E′), then the equation (1.3) has at least one solution u ∈ H1,1

p (X; E).

Let us emphasize that the mapping degree approach depends much on the ability of

proving that the induced operator satisfies the property α(D) for some subset D of the

3
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function space, which depends on the structure of the nonlinearities appearing in the orig-

inal equation. The p-Laplace operator as the prototype for quasilinear elliptic equations,

however, does not satisfy (1.4). Therefore, we also present related results at the end of

section 3.1, obtained by modifying the structural conditions for the nonlinearities and

verifying the corresponding function spaces in which we look for solutions.

Theorem 1.2 (Theorem 3.5). Suppose that the cone Laplacian ∆g is cone-elliptic with

respect to the weight line <z = 1 and the nonlinearities subject to the conditions (3.2),

(3.3), (3.4), (3.5). Furthermore, assume that for almost all (x, u, q) ∈ X×R× cT X, it holds

F (x, q)q + g1(x, u)q + g2(x, u, q)u ≥ C2|q|p −C4. (1.5)

Given f ∈ H−1,−1
p′ (X) which is perpendicular to Ker∇, there exists a solution u ∈ H1,1

p (X)

of (1.3).

The corresponding result in the case of higher-order equations is

Theorem 1.3 (Theorem 4.33). Consider the equation

A′F (x, Au) + G(x, Bu) = f , x ∈ X \ Y. (1.6)

Assume that the nonlinearities F : X × E → F and G : X × G → E are continuous and

subject to the following growth conditions for almost x ∈ X \ Y, q ∈ Ex, z ∈ Gx:

(F1) ||F (x, q)||F ≤ h1(x) + |q|p−1, where h1(x) ∈ H0,0
p′ (X),

(F2) hF(F (x, q), q) ≥ C0||q||
p
F −C1,

(F3) hF(F (x, q1) − F (x, q2), q1 − q2) > 0 as q1, q2 ∈ Fx, q1 , q2,

(G1) hE(G(x, z), z) ≤ h2(x) + ||z||p−1−ε
G , where h2(x) ∈ H0,0

p′ (X), ε ≥ 0,

(C) hF
(
F (x, q), q

)
+ hE

(
G(x, ξ), u

)
≥ C0||q||

p
F + C2||u||

p
E,

where hE, hF are bundle metrics on E and F, respectively.

Consider a domain D such that

D(Amin) ⊆ D ⊆ D(Amax).

Suppose further that either B : D→ H0,0
p (X; G) is compact or it is continuous and ε > 0.

Then for all f ∈ D′, there exists at least one solution to the equation (1.6).

4



1 Introduction

The next goal of this thesis is to search for singular solutions. Going beyond finite-

energy solutions, there are several sorts of singular solutions, for instance renormalized

solutions ([2, 7]), viscosity solutions ([18]), in which classes the authors obtained the ex-

istence and (partial) uniqueness. The singular solutions we are interested in have infinite

energy in the natural domain of definition of the operator. The first understanding of the

behavior of such solutions was presented in the seminal papers by Serrin [35, 36]. The

author investigated second-order equations in the RN+1 setting which are of the type

N+1∑
i=1

∂

∂xi
Ai(x, u,∇u) = A(x, u,∇u), x ∈ Ω ⊂ RN+1, (1.7)

and in the case the nonlinear growth on the left-hand side dominates the one on the right-

hand side, namely the following structural conditions

|Ai(x, u, z)| ≤ a|z|p−1 + b|u|p−1 + e,

|A(x, u, z)| ≤ c|z|p−1 + d|u|p−1 + f ,

z · A(x, u, z) ≥ a−1|z|p − d|u|p − g,

where p > 1 is a fixed constant, a is a positive constant, and the coefficients b through g

are measurable functions of x belonging to certain Lebesgue spaces. In the case p > N +1

and the solution u is bounded from below or above, then the singularity is removable, u

can be extended to be a continuous solution in the whole domain Ω. Moreover, for such

p, one can prove existence result by using variational methods. We are not interested in

this case. In the case 1 < p ≤ N + 1, and u is bounded from below but not from above,

then it behaves like the singular p-harmonic function µp(x) near the singularity. We recall

these results in the following theorem.

Theorem 1.4 ([35, Theorem 12]). Let u be a continuous solution of the equation (1.7) in

Ω \
{
0
}
. Suppose that u is bounded from below, that is u ≥ L for some constant L. Then

either u has a removable singularity at 0, or else

u(x) ∼ µp(x) =


|x|−

N+1−p
p−1 if p < N + 1,

− log |x| if p = N + 1,
as |x| → 0, (1.8)

up to a positive multiplicative constant.

Concerning existence, Serrin considered in [35] an ideal case in which the problem

could be solved by approximation.

5
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In the reverse case, when the nonlinear growth the right-hand side dominates the one

on the left-hand side, there have been several important existence results about equations

involving the p-Laplace operator and the capillarity equation which were presented in the

book by Véron ([41]). Véron and his collaborators found out the asymptotic behavior of

singular solutions of the two following equations

− div(|∇u|p−2∇u) + g(u) = 0, (1.9)

and

− div(|∇u|p−2∇u) = uq, u > 0, (1.10)

where p − 1 < q <
(N + 1)(p − 1)

N + 1 − p
when 1 < p < N + 1, and p − 1 < q when p = N + 1,

and g(u) subjects to further conditions which corresponds to an absorption term. In the

case of an absorption term (1.9) and in the sub-critical case of a source term (1.10), the

authors showed that singular solutions behave again like the singular p-harmonic function

u(x) ∼ µp(x) as |x| → 0.

Knowledge of the behavior of solutions in this observation is important when it is used

in the approximation scheme and by comparison principle, the approximate solutions are

shown to be uniformly bounded in the space C1,α(Ω \ {0}) and consequently converge. We

recall two existence theorems: one by Friedman–Véron [12] for equations (1.9) and the

other by Kichenassamy–Véron [21] for the p-Laplacian

− div(|∇u|p−2∇u) = δ inD′(Ω).

Concerning the capillarity equation, Véron summarized in [41, Section 5.4] the results of

Concus and Finn, the problem is to find singular solutions of the equation

div

 ∇u√
1 + |∇u|2

 = Kv, K < 0. (1.11)

With the prescribed asymptotic u(r) ∼ −1
r and the search for solutions of the form

u(r) = −
1
r

+
N + 4

2N
r3 + r3v(r),

these authors concluded the existence for the capillarity equation. A simplified proof of

existence of singular solution was considered by Bidaut–Véron, where the author looked

for the function z(r), where

z(r) =
ur(r)√

1 + u2
r (r)

,

6
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in the form

z(r) = 1 −
r4

2
+ r6w(r).

At the end, these solutions were shown to coincide, although in Concus and Finn’s ap-

proach the corresponding z(r) is given in the form

z(r) = 1 −
r4

2
+ r8w(r).

It means that the singular solution is uniquely determined by its singular behavior. Let us

also emphasize that so far there has been no results for singular solutions of higher-order

quasilinear elliptic equations.

We have noticed that the knowledge of the leading behavior of solutions is essential.

We assume the existence of a formal solution of the observed equation. Its leading behav-

ior is found by calculating formally and balancing the leading terms on both sides of the

equation. Let us emphasize that, in case of semilinear equations, one can always subtract

the singular part from the solution and, after finite times of transformation of the equation,

actually looks for a finite-energy one. In the case of a quasilinear equation, we cannot re-

duce to the situation of a finite-energy solution with the same principal part and even in

the procedure of finding the leading order term, one needs to choose the realization of the

operator in use. We make another assumption, namely there are no further resonances,

it means the terms with prescribed coefficients. In other words, only the leading term

must be prescribed, otherwise we have freedom to choose how smooth the remainder is

by choosing an appropriate function space containing it. The existence of the remainder

will result the existence of the singular solution.

We start with equations involving cone p-Laplace operator as a model case and obtain

the following results:

Theorem 1.5 (Theorem 3.10). Let p ≥ 2. Consider the equation

− div(|∇u|p−2∇u) = f (x), x ∈ X \ Y. (1.12)

Define X := H1,γ(X) ∩H1,1
p (X), where γ =

N(p−2)
2(p−1) + 1. Then, given an f ∈ V∗, where V is

a complement of Ker∇ in X, there exists a unique solution modulo Ker∇ to (1.12) which

is of the form e + v, where e ∼ Ct−α is the approximate solution such that ∆pe ∈ V∗, where

α =
N+1−p

p−1 is the Serrin’s exponent, and v ∈ X.

Theorem 1.6 (Theorem 3.11). Let p ≥ 2. Consider the equation

− div(|∇u|p−2∇u) + g(u) = f (x), x ∈ X \ Y. (1.13)

7
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Assume that the nonlinearity g is an increasing function satisfying

0 ≤ g′(s) ≤ C|s|p−2, for all s ∈ R.

Given an f ∈ V∗, there exists at least one solution to (1.13) which is of the form e + v,

where e ∼ Ct−α such that ∆pe ∈ V∗ and v ∈ X.

These theorems will be proved by using Browder and Leray–Lions theorems, respec-

tively. The common assumption in these theorems is the coercivity of the operator. We

will extend the range of our applicable equations by using mapping degree of generalized

monotone operators. We extend the result of Skrypnik about the α property of the p-

Laplacian which is considered in more general function spaces. Here the specific form of

the operator plays a vital role, and we use this model to obtain further results as follows.

Theorem 1.7 (Theorem 3.16). Let p ≥ 2. Assume that the nonlinearities F ,G satisfy

growth conditions (3.22), (3.23), (3.24), (3.25), and for (x, u1, q1), (x, u2, q2) ∈ X×R×cT X,

it holds

〈
F (x, q1) − F (x, q2), q1 − q2

〉
+

〈
g1(x, u1) − g1(x, u2), q1 − q2

〉
+

〈
g2(x, u1, q1) − g2(x, u2, q2), u1 − u2

〉
≥

(
|q1|

p−2 + |q2|
p−2)|q1 − q2|

2.

Then for all f ∈ V∗, the equation

− divF (x,∇u) − div g1(x, u) + g2(x, u,∇u) = f (x), x ∈ X \ Y,

has at least one solution in X.

This result is generalized to higher-order equations in chapter 4.

Theorem 1.8 (Theorem 4.37). Let p > 2. Suppose that A′A is an elliptic operator with

respect to γ, γ + ν, and at least one of the mappings B : W → H0,γ
p (X; G0) ∩ H0,ρ(X; G0)

and C : W → H0,γ
p (X; G1) ∩ H0,ρ(X; G1) is a compact operator. Suppose further that the

nonlinearity F satisfies the growth conditions (4.23), (4.24) andG : X×G0 → G′1 satisfies

||G(x, z1) − G(x, z2)||G′1 ≤ C||z1 − z2||G0

(
||z1||

p−2−ε
G0

+ ||z2||
p−2−ε
G0

)
(1.14)

for all (x, zi) ∈ G0, i = 1, 2, here 0 < ε < p − 2.

Furthermore, let one of the following conditions hold for (x, q1), (x, q2) ∈ F and

(x, z1), (x, z2) ∈ G0:

8
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a) If B = C and G is a nondecreasing function.

b) ||G(x, z1) − G(x, z2)||G′1 ≤ C||z1 − z2||
σ
G0

(
||z1||

p−2−ε
G0

+ ||z2||
p−2−ε
G0

)
, 0 < σ < 1.

c) For (x, z̄1), (x, z̄2) ∈ G1, it holds

〈
F (x, q1)−F (x, q2),q1−q2

〉
+
〈
G(x, z1)−G(x, z2),z̄1− z̄2

〉
≥

(
|q1|

p−2 + |q2|
p−2)|q1−q2|

2

Then for any f ∈ Ξ∗, the equation

A′ F (x, Au) + G(x, Bu) = f in X \ Y (1.15)

has an actual solution u belonging to the affine space e + Ξ provided that it has an ap-

proximate solution e ∼ ϕ(y)t−λ0 that A′ F (x, Ae) + G(x, Be) ∈ Ξ∗.

So far, we have discussed the mathematical interest of solving quasilinear elliptic

equations. Nevertheless, quasilinear equations appear in many problems in mathematical

physics. For instance, we mentioned the capillarity equation (1.11) and the mean curva-

ture equation ((1.11) with K = 0). The second-order equation involving the p-Laplacian,

namely

− div(|∇u|p−2∇u) + λu = 0, p > 1, λ > 0,

appears in the study of non-Newtonian fluids. Different values of p mean different kinds

of fluid media, namely, media with p > 2 are called dilatant, those with p > 2 are called

pseudoplastics, for p = 2 the media is a Newtonian fluid. For further examples, we refer

to the book by Díaz ([8]).

This thesis is divided into four chapters beginning with the introduction and summary

of results. In the second chapter, we present basic, necessary knowledge for the whole

work, including the analysis on manifolds with conic points and functional analysis tools

for solvability of operator equations. In Section 2.3, we recall the mapping degree theory

for generalized monotone mappings constructed by Skrypnik. This chapter ends with

some important inequalities for vectors.

The third chapter is about existence of finite-energy and singular solutions to second-

order equations. Results concerning finite-energy solutions are modified on the singular

manifolds setting. Results concerning singular solutions start with the consideration of the

p-Laplacian. All growth conditions on nonlinearities later are based on this prototypical

example. We obtain existence in functional sense.

9



1 Introduction

In chapter 4, we prove existence results for higher-order equations. The investigation

of finite energy solutions is quite straightforward. Section 4.2 is devoted to the cone

algebra, which provides the basis for working with higher-order equations. The last part

of this chapter contains proofs of some inequalities for functions belonging to weighted

Sobolev spaces and of the existence of singular solutions.

The thesis ends with an appendix, where we recall in detail the construction of the

mapping degree for generalized monotone mappings and descriptions of the minimal and

maximal extensions of an elliptic cone-degenerate operator.

10



2 Preliminaries

In the first chapter, we recall general background for the whole work including the intro-

duction of the observed geometric object and analysis on it: the class of operators, their

mapping properties between appropriate cone Sobolev spaces; we collect some existence

results in the theory of monotone operators, namely the Browder and Leray–Lions theo-

rems, and the degree of generalized monotone mappings. At the end of this chapter, there

are some elementary inequalities for vectors, which will be used to derive properties of

the p-Laplacian.

2.1 Analysis on manifolds with conic points

We begin with describing the geometric objects under consideration together with typical

differential operators on them. Adequate class of functional spaces is introduced and the

mapping properties of operators acting between these spaces are summarized. Ingredients

are taken from the book [11] by Egorov and Schulze in the L2 case, and the paper [31] in

the Lp case.

2.1.1 Manifolds with conic points

Definition 2.1. [11, Section 7.1.2] A finite dimensional manifold B with conic singulari-

ties is a second countable Hausdorff space with a finite subset

B0 = {b1, . . . , bm} ⊂ B

of conic points such that the following properties hold:

i) B \ B0 is a smooth manifold,

ii) every b ∈ B0 has an open neighborhood V in B, such that there exists a dif-

feomorphism φ : V \ {b} → Y(b)∧ for some closed compact C∞ manifold Y(b),



2 Preliminary

and this diffeomorphism is extendable to a homeomorphism φ : V → Y(b)4, here

Y(b)∧ = R+×Y(b) is the open stretched manifold associated with Y(b), and Y(b)4 =

R+ × Y(b)/
(
{0} × Y(b)

)
,

iii) if ψ : V \ {b} → Y(b)∧ is another diffeomorphism, which is extendable to V , then

φψ−1 : Y(b)∧ → Y(b)∧

is the restriction of some diffeomorphism R+ × Y(b)→ R+ × Y(b) to R+ × Y(b).

By definition, we can associate B with its stretched manifold X whose boundary is

a compact smooth manifold Y �
⋃

b∈B0
Y(b) and whose interior is int X � B \ B0. For

simplicity, in this work we consider manifolds with only one conic point. Equivalently, we

work with a smooth, compact manifold X of dimension N + 1 having compact connected

boundary Y . Near Y we fix a collar neighborhood U � [0, 1) × Y and local coordinates

(t, y). We extend t smoothly to a defining function on X and the boundary Y is then given

by {t = 0}.

Example 2.2. Given a closed compact smooth manifold X of dimension N + 1 and fix a

point x0 ∈ X, then X can be considered as a manifold with a conic singularity at x0. The

cross-section Y in this example is the sphere SN .

Let Y be an arbitrary closed compact smooth manifold, then B = Y∆ is a manifold

with conic singularity and its stretched manifold is X = Y∧.

2.1.2 Cone-degenerate differential operators

Considering a manifold X with boundary Y , by a vector bundle E over X we mean that

E is a vector bundle over the interior int X of X and E is also the pullback of a vector

bundle EY over the boundary Y under the canonical projection Π : U � [0, 1) × Y → Y .

For simple notation, we will denote the bundle EY by E
∣∣∣
Y
.

Definition 2.3. Let E and F be two real vector bundles over X. A ν-th order differential

operator A with smooth coefficients acting between sections of E and F is called a cone-

degenerate operator if it has the following form in a neighborhood U of the boundary

A
∣∣∣
U

= t−ν
ν∑

k=0

ak(t)
(
−t
∂

∂t

)k

, (2.1)

12



2.1 Analysis on manifolds with conic points

where the coefficients ak(t) ∈ C∞
(
[0, 1),Diffν−k (Y; E

∣∣∣
Y
, F

∣∣∣
Y

))
are differential operators

acting between sections of E
∣∣∣
Y

and F
∣∣∣
Y
.

We denote by Diffν
c(X; E, F) the class of cone-degenerate differential operators of or-

der ν acting between sections of E and F. For simple notation, we will omit to indicate

these vector bundles.

Example 2.4. Let gY(t) be a t-dependent family of Riemannian metrics on a closed com-

pact C∞ manifold Y which is infinitely differentiable in t ∈ [0, 1), and gY(0) depends only

on y and dy. Then

g := dt2 + t2gY(t)

is a Riemannian metric on X. The gradient and the divergence operators with respect

to this metric are first order operators divg ∈ Diff1
c(X, cT X,R), ∇g ∈ Diff1

c(X,R, cT X),

respectively. Here, cT X is the cone tangent bundle which has a basis expressed in local

coordinates as follows:
∂

∂t
, t−1 ∂

∂y1
, . . . , t−1 ∂

∂yN
(2.2)

This basis has a dual basis in the cone cotangent bundle cT ∗X given by

dt, tdy1, . . . , tdyN .

The p-Laplace operator divg

(
|∇gu|p−2∇gu

)
is a cone-degenerate operator of second-order

acting between sections of trivial bundles X × R and X × R.

In the interior of X, a cone-degenerate differential operator is a differential opera-

tor in the usual sense, therefore, it has a standard interior principal symbol σν
ψ(A) ∈

C∞
(
T ∗ int X \ 0; Hom(π∗E, π∗F)

)
, where π∗E, π∗F are the pullback bundles of E and F,

respectively, by the projection π : T ∗ int X \ 0 → int X from the cotangent bundle with

zero section removed to the first component. Furthermore, we associate with A two other

symbols: the compressed principal symbol σ̃ν
ψ(A) ∈ C∞(cT ∗X \ 0) which is given in local

coordinates by

σ̃ν
ψ(A)(t, y, τ̃, η) =

ν∑
k=0

σν−k
ψ (ak)(t, y, η)(−ĩτ)k, (2.3)

and the principal conormal (or Mellin) symbol is given by

σν
M(A)(z) =

ν∑
k=0

ak(0) zk, z ∈ C. (2.4)

13
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The conormal symbol is a polynomial in z which takes values in the class of differential

operators on the boundary of order at most ν. In particular, the symbol σν
M(A) is an entire

function taking values in L
(
H s

p
(
Y, E

∣∣∣
Y

)
,H s−ν

p
(
Y, F

∣∣∣
Y

))
for any s ∈ R, 1 < p < ∞.

Ellipticity of cone-degenerate differential operators is determined by the invertibility

of these two symbols, as given in the following definition.

Definition 2.5. [11, 7.1.2, Definition 14] An operator A ∈ Diffν
c(X) is called cone-elliptic

(with respect to a weight γ ∈ R) if

1. it is an elliptic differential operator in the interior int X and the compressed principal

symbol σ̃ν
ψ(A) is invertible on cT ∗X \ 0,

2. the operator σν
M(A) : H s

p
(
Y, E

∣∣∣
Y

)
→ H s−ν

p
(
Y, F

∣∣∣
Y

)
are isomorphisms for some s = s0

and all z ∈ Γ N+1
p −γ

, here Γβ :=
{
z ∈ C

∣∣∣ <z = β
}
.

Remark 2.6. In [11] the authors considered L2 spaces. However, by using results in

standard theory of pseudo-differential operators, all statements concerning the action of

the conormal symbol σν
M(A)(z) between L2 spaces can be performed in the setting of Lp

spaces. We will recall the cone calculus in detail in chapter 4.

The following example is to check ellipticity of the Laplace-Beltrami operator with

respect to the cone metric in the example 2.4.

Example 2.7. For a sake of simplicity, we consider X as a straight cone, i.e. gY(t) is

independent of t. Then the Laplace-Beltrami operator is given in local coordinates by

∆gu = t−2


(
−t
∂

∂t

)2

+

{
−N + 1 − tG−1∂G

∂t

} (
−t
∂

∂t

)
+ ∆gY

 u,

here G =
√

det(gY,i j).

The compressed principal symbol of ∆g is

σ̃2
ψ(∆g)(t, y, τ̃, η) = −τ̃2 − |η|2.

The principal conormal symbol is

σ2
c(∆g)(z) = z2 − (N − 1)z + ∆gY .

Therefore, ∆g is cone-elliptic with respect to the weight γ when

N + 1
2
− γ ,

N − 1 ±
√

(N − 1)2 − 4λ j

2
, j = 0, 1, 2, . . . ,

where λ j are the eigenvalues of ∆gY (0) on Y .
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2.1 Analysis on manifolds with conic points

Remark 2.8. Let us note the following relation

σν
ψ(σν

M(A))(y, η, z)
∣∣∣
z=β+ĩτ

= σ̃ν
ψ(A)(0, y, τ̃, η), (2.5)

where the principal symbol σν
ψ on the left-hand side is the parameter-dependent principal

symbol. Therefore, if condition 1) in definition 2.5 is fulfilled, it follows that the conormal

symbol σν
M(A)(z) is invertible for z ∈ <β, |z| large enough.

2.1.3 Function spaces

In this work, we use constantly the notation of cut-off and excision functions. A cut-off

function is a function ω(t) ∈ C∞0 [0, 1) such that ω(t) = 1 when t ≤ ε, and ω(t) = 0 when

t > a for some 0 < ε < a < 1. Given a set A ∈ C, an A-excision function is a function

χ(z) ∈ C∞(C) such that χ(z) = 0 if dist(z, A) ≤ 1/2 and χ(z) = 1 if dist(z, A) ≥ 1.

2.1.3.1 Weighted Sobolev spacesH s,γ
p (X; E)

Let (E, X, πE) be a real smooth vector bundle over X. Denote by hE a bundle metric on E,

which is a non-degenerate bilinear map on each fibre Ex, x ∈ X. This map induces a norm

in each fiber, which we denote by ||s(x)||E for an element s(x) ∈ Ex. Moreover, using this

bundle metric we can identify E with its dual bundle E′. We often drop the notation of

bundles when the meaning is clear.

We fix a positive measure dµ on the stretched manifold X, we have the space of p-

integrable functions on X. Now for two sections s1, s2 ∈ Γ−∞(X; E), their inner product is

given by

(s1, s2)E =

∫
X

hE
(
s1(x), s2(x)

)
dµ, (2.6)

where t(y) is the boundary defining function.

Definition 2.9. For p > 1 and a weight γ ∈ R, the weighted spaceH0,γ
p (X; E) consists of

all sections u ∈ Γ−∞(X; E) such that

||u||
H

0,γ
p (X;E) :=

( ∫
X
||s(x)||pEt−γp(y)dµ

) 1
p
< ∞,

For a natural number m, the weighted Sobolev spaceHm,γ
p (X; E) consists of all sections u

such that

X1 ◦ X2 ◦ . . . ◦ Xku ∈ H0,γ
p (X; E), ∀k ≤ m,

for all smooth vector fields Xi on X which are tangent to the boundary Y .
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The spaceH s,γ
p (X; E) for real s is defined by using complex interpolation and duality

with respect to the inner product (2.6) ofH0,0
2 (X; E). Later we often drop the subscript in

any L2 base function spaces.

Remark 2.10. Having identified E � E′, F � F′, the formal adjoint operator A′ of a cone

operator A ∈ Diffµ
c (X; E, F) is determined by the formula

(Au, v)F = (u, A′v)E,

for sections u ∈ C∞c (X \ Y; E) and u ∈ C∞c (X \ Y; F).

The spaces above can alternatively be described in local coordinates as follows.

Definition 2.11. Given a weight γ ∈ R, 1 < p < ∞, m ∈ N0, the weighted Sobolev space

H
m,γ
p (X; E) consists of all distributions u ∈ Hm

p,loc(int X; E) such that

t−γ(t∂t)k∂αy (ωu)(t, y) ∈ Lp(X; E, tNdtdy)

for all k + |α| ≤ m in a collar neighborhood of the boundary.

The index s describes the smoothness of these distributions, and the index γ describes

their flatness, that is how they vanish or blow up when approaching the boundary.

According to the definition above, a function u ∈ H s,γ
p (X; E) is in the interior of X a

function belonging to H s
p(2X), and in a collar neighborhood of the boundary, its Lp norm

can be written in local coordinates as

||u||p
H

0,γ
p (X)

=

∫
(0,1]×Y

tN−γp||u||pEdtdy.

We recall some important properties of these function spaces, and we write H s,γ
p (X) in-

stead ofH s,γ
p (X; E):

a) Hm,γ
p (X) is a Banach space, and a Hilbert space for p = 2.

b) When γ = 0, we recover the usual Lp space: H0,0
p (X) = Lp(X).

c)
(
H

s,γ
p (X)

)∗
� H

−s,−γ
p′ (X).

d) tγ
′

H
s,γ
p (X) = H

s,γ+γ′

p (X).

e) H s,γ
p (X) is continuously embedded in H s′,γ′

p (X) when s ≥ s′, γ ≥ γ′. This embed-

ding is compact when s > s′, γ > γ′.
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2.1 Analysis on manifolds with conic points

f) H s,γ
p (X) is continuously embedded inH r,γ′

q (X) when γ − γ′ ≥ (N + 1)(1/p − 1/q) and

s − r ≥ (N + 1)(1/p − 1/q). This embedding is compact when these inequalities are

strict.

The properties (a-e) are straightforward by definition. We will prove the last property in

the next subsection.

2.1.3.2 Embedding theorems

In the following, we need several embedding theorems for weighted Sobolev spaces,

namely H s,γ
p (X) ↪→ H r,δ

q (X), where s ≥ r. We will prove such embeddings in the cases

p ≤ q and p > q. The latter case is easier, by using boundedness of the measure on X,

and the embeddings are always compact.

Theorem 2.12. Let 1 ≤ q < p; s, r ∈ N such that s ≥ r and

γ̃ − γ < (N + 1)
(
1
q
−

1
p

)
(2.7)

Then it holds

H s,γ
p (X) ↪→ H r,̃γ

q (X).

Proof. By definition,

H s,γ
p (X) = ωH s,γ

p
(
(0, 1] × Y

)
+ (1 − ω)H s

p(2X)

We apply the usual Sobolev embedding theorems H s
p(2X) ↪→ Hr

q(2X), here s ≥ r, p ≥ q.

It remains to show that H s,γ
p

(
(0, 1] × Y

)
↪→ H

r,̃γ
q

(
(0, 1] × Y

)
, which we will verify by

using expressions in local coordinates and first in the case s = r = 0.

Indeed, given a u ∈ H0,γ
p ((0, 1] × Y), by Hölder inequality we have∫

(0,1]×Y
|t−γ̃u|qtNdtdy =

∫
(0,1]×Y

|t−γu|qtNq/ptq(γ−γ̃)+N(1−q/p)dtdy

≤

(∫ (
|t−γu|qtNq/p

)p/q
dtdy

)q/p (∫ (
tq(γ−γ̃)+N(1−q/p)

)p/(p−q)
dtdy

)(p−q)/p

≤

(∫
(0,1]×Y

|t−γu|ptNdtdy
)q/p (∫

(0,1]×Y
tpq/(p−q)(γ−γ̃)tNdtdy

)(p−q)/p

.

The second integral is bounded because of the condition (2.7) on γ̃ − γ. Therefore, we

obtainH0,γ
p (X) ↪→ H0,̃γ

q (X). We repeat using this embedding for all derivatives (t∂t)k∂αy u,
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k + |α| ≤ s, of a function u ∈ H s,γ
p (X), then we obtain H s,γ

p (X) ↪→ H s,̃γ
q (X). Finally, by

using the embeddings of intermediate spaces

H s,γ
p (X) ↪→ H s,̃γ

q (X) ↪→ H r,̃γ
q (X),

we conclude the general embedding.

Moreover, the embedding H s,γ
p (X) ↪→↪→ H

r,̃γ
q (X) is compact because of the strict

inequality on γ̃ and the results [29, Theorem 7.6]. �

In the case p ≤ q, one needs the Hardy inequality in one dimension.

Lemma 2.13 ([29, Example 6.8]). Let 1 ≤ p ≤ q < ∞. Let f = f (t) ∈ ACR((0, 1)) be a

function defined and differentiable almost everywhere on (0,∞) such that limt→∞ f (t) = 0.

Then the following inequality holds(∫ 1

0
| f (t)|qtαdt

)1/q

≤ C
(∫ 1

0
| f ′(t)|ptβdt

)1/p

if and only if either β > p − 1, α ≥ β q
p −

q
p′ − 1, or β ≤ p − 1, α > −1.

The embedding is as follows.

Theorem 2.14. Let 1 < p ≤ q < ∞. ThenH s,γ
p (X) ↪→ H r,̃γ

q (X) provided that

s − r ≥ (N + 1)
(

1
p
−

1
q

)
,

and either γ ≥ (N+1)
p , γ̃ < (N+1)

q , or γ < (N+1)
p , γ − γ̃ ≥ (N + 1)

(
1
p −

1
q

)
.

Moreover, the embedding is compact if and only if all inequalities above are strict.

Proof. We follow the proof of theorem 2.12. The embedding H s
p(2X) ↪→ Hr

q(2X) holds

due to the condition s − r ≥ (N + 1) (1/p − 1/q). This embedding is compact when this

inequality is strict.

We need to show that H s,γ
p

(
(0, 1] × Y

)
↪→ H

r,̃γ
q

(
(0, 1] × Y

)
. We prove first the case

s = 1, r = 0. Particularly, the embedding holds provided that the following inequality is

true for an arbitrary function u ∈ H1,γ
p

(
(0, 1] × Y

)
:(∫

(0,1]×Y
|t−γ̃u|qdµ

)1/q

≤ C
(∫

(0,1]×Y
|t1−γ∂tu|pdµ

)1/p

.

Indeed, using the one dimensional Hardy inequality, we have(∫ 1

0
tN−qγ̃|u|qdt

)1/q

≤ C
(∫ 1

0
tN−pγ|∂tu|pdt

)1/p

,
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2.1 Analysis on manifolds with conic points

where either γ ≥ (N+1)
p , γ̃ < (N+1)

q , or γ < (N+1)
p , γ − γ̃ ≥ (N + 1)

(
1
p −

1
q

)
.

Integrating both sides over Y , then we obtain the desired embedding.

For general s, r, we repeat utilizing the embedding above for intermediate spaces

H s,γ
p (X) ↪→ H s−1,δ1

p1
(X) ↪→ . . . ↪→ H s−i,δi

pi
(X) ↪→ . . . ↪→ H r,̃γ

q (X),

where for i = 1, . . . , s − r − 1, p0 = p, ps−r = q, δ0 = γ, δs−r = γ̃, other indices are

determined by the formulae

(N + 1)
(

1
pi
−

1
pi+1

)
= δi − δi+1 ≤ 1, (N + 1)

(
1

rs−r+1
−

1
q

)
≤ δ − δs−r.

The compactness of those embeddings are verified by using compact embedding the-

orems for usual Sobolev spaces and compactness of Hardy operators, see [29, Theorem

7.6]. �

2.1.4 Mapping properties of cone-degenerate differential operators

We recall mapping properties of cone-degenerate differential operators when they act as

bounded operators between the scale of cone Sobolev spaces. Following is the statements

about continuity.

Theorem 2.15 ([31, Proposition 2.13]). A ν-order cone-degenerate differential operator

A ∈ Diffν
c(X) induces continuous mappings

A : H s,γ
p (X)→ H s−ν,γ−ν

p (X),

for all s, γ ∈ R.

Ellipticity in the sense 4.22 is equivalent to Fredholm property of the operator acting

between weighted Sobolev spaces and the existence of parametrices. The notion of para-

metrices for cone-differential operators is stated in [31, 7.1.2, Definition 15] when p = 2,

which can be generalized in the Lp spaces as follows.

Definition 2.16. An operator

P ∈
⋂
s∈R

L
(
H s,γ−ν

p (X),H s+ν,γ
p (X)

)
is called a parametrix for A ∈ Diffν

c(X) with respect to a fixed weight γ ∈ R, if there is an

ε > 0 such that

AP − I ∈
⋂
s∈R

L
(
H s,γ−ν

p (X),H∞,γ−ν+εp (X)
)
,

PA − I ∈
⋂
s∈R

L
(
H s,γ

p (X),H∞,γ+ε
p (X)

)
.
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We state now the elliptic regularity theorem.

Theorem 2.17 ([31, Corollaries 3.3, 3.4]). The following conditions for A ∈ Diffν
c(X) are

equivalent:

1. A : H s,γ
p (X)→ H s−ν,γ−ν

p (X) is a Fredholm operator for a certain s ∈ R (and then for

all s ∈ R),

2. A is elliptic with respect to the weight γ.

If A is elliptic with respect to the weight γ, then there exists a parametrix for A. Further-

more,

Au = f ∈ H s−ν,γ−ν
p (X) for some s ∈ R

and

u ∈ H−∞,γp (X) imply u ∈ H s,γ
p (X).

Even more, if f ∈ H s−ν,γ−ν
p,Q (X), then u ∈ H s,γ

p,P(X) for a certain asymptotic type P = P(A,Q)

depending only on A and Q.

Remark 2.18. As in the standard case, cone-degenerate differential operators are special

elements of an algebra of cone-degenerate pseudo-differential operators. Those afore-

mentioned results have their generalizations in the cone calculus which we will present in

chapter 4. We also note that there is another scale of so-called cone Sobolev spaces with

asymptotics, which will provide additional asymptotic information. The full calculus in-

volving such spaces will be essential in regularity problem.

2.2 Existence theorems for monotone operators

Our approach to show existence is to reduce the observed partial differential equations

to operator equations and use tools from nonlinear functional analysis, namely theory of

monotone operators and topological methods to solve the reduced ones.

The present section collects two existence theorems in the theory of monotone op-

erators. The point in common is that they are applied to equations involving coercive

operators. Let us recall some fundamental definitions.

Given a Banach space X and a subset D ⊆ X, we denote by X∗ its dual, by 〈·, ·〉 the

pairing of X and X∗, and by→, ⇀ the strong and weak convergence in a Banach space,

respectively.
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Definition 2.19 ([38, Chapter 1, Definition 1.2]). Given a mapping T : D ⊆ X → X∗.

• T is said to be demi-continuous on D, if for any sequence un ∈ D strongly converg-

ing to u0 ∈ D, it holds Tun ⇀ Tu0 in X∗, or equivalently

lim
n→∞
〈Tun, v〉 = 〈Tu0, v〉, ∀v ∈ X.

• T is said to be bounded if it carries bounded subsets of D into bounded subsets of

X∗.

• T is said to be coercive if

lim
||u||X→∞

〈Tu, u〉
||u||X

= ∞.

Definition 2.20 ([38, Chapter 1, Definition 1.1]). An operator

T : D ⊆ X → X∗

is said to be monotone, if the inequality

〈Tu − Tv, u − v〉 ≥ 0

holds for arbitrary u, v ∈ D.

Now we recall the Browder theorem.

Theorem 2.21 ([10, Theorem 5.3.2]). Let X be a reflexive real Banach space. Moreover,

let T : X → X∗ be an operator satisfying the conditions

(i) T is bounded,

(ii) T is demi-continuous,

(iii) T is coercive,

(iv) T is monotone on the space X.

Then the equation Tv = f ∗ has at least one solution v ∈ X∗ for every f ∗ ∈ X∗.

An extension of this theorem was contributed by Leray and Lions, when the mono-

tonicity condition of the whole operator is relaxed.

Theorem 2.22 ([10, Theorem 5.3.3]). Let X be a reflexive real Banach space. Moreover,

let T : X → X∗ be an operator satisfying the conditions
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(i) T is bounded,

(ii) T is demi-continuous,

(iii) T is coercive.

Moreover, let there exist a bounded mapping Φ : X × X → X∗ such that

(iv) Φ(u, u) = T (u) for every u ∈ X,

(v) for all u, w, and h ∈ X and any sequence {tn}n≥1 of real numbers such that tn → 0,

we have

Φ(u + tnh,w) ⇀ Φ(u,w) ≥ 0,

(vi) for all u, w ∈ X we have

〈Φ(u, u) − Φ(w, u), u − w〉 ≥ 0,

(vii) if un ⇀ u and

lim
n→∞
〈Φ(un, un) − Φ(u, un), un − u〉 = 0,

then we have

Φ(w, un) ⇀ Φ(w, u) for arbitrary w ∈ X,

(viii) If w ∈ X, un ⇀ u, Φ(w, un) ⇀ z, then

lim
n→∞
〈Φ(w, un), un〉 = 〈z, u〉.

Then the equation Tv = f ∗ has at least one solution v ∈ X∗ for every f ∗ ∈ X∗.

These theorems are particularly powerful to be applied to quasilinear equations in

divergence form where the nonlinearities are themselves monotone, because these equa-

tions can be reduced to operator equations where the induced operator possesses a kind

of monotonicity. We notice that these two theorems require a coercive condition on the

operator, however, the Leray–Lions theorem requires only monotonicity in the principal

part, namely property (vi). In the next section, we recall the mapping degree method,

which is helpful also when dealing with noncoercive operators.
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2.3 Mapping degree of generalized monotone mappings

2.3 Mapping degree

Mapping degree theory started with the so-called Brouwer degree constructed for finite

dimensional mappings. It is determined uniquely by three axioms including normaliza-

tion, additivity on a domain and invariance under homotopies. The first generalization to

mappings between Banach spaces was developed by Leray–Schauder in 1934 (see [25]),

where the authors also introduced a way to reduce a nonlinear boundary value problem to

an operator equation of the form (I−F)u = 0. In the case of quasilinear Dirichlet problem,

the operator F is compact. However, the Neumann problem yields a noncompact opera-

tor, to which situation the Leray-Schauder degree theory is not applicable. At the end of

the sixties, Browder and Skrypnik independently constructed the degree for more general

monotone mappings, namely operators of class (S )+ (named by Browder) or operators

having α property (named by Skrypnik). This mapping degree not only helps solving

other boundary value problems, but also relaxes conditions of the coefficients involved.

As mentioned in the introduction of this thesis, this mapping degree gives a simple suffi-

cient criterion for solvability, which covers the class of coercive and odd operators. In this

section, the degree theory for mappings having property α and some general theorems for

existence of solutions to operator equations are summarized. For deeper understanding of

the theory, we refer to the monographs [37, 38] for systematic investigation and various

applications to solving nonlinear boundary value problems.

2.3.1 Generalized monotone mappings

In the following, X is a real separable reflexive Banach space. First, we will recall some

basic definitions concerning monotonicity.

Definition 2.23 ([38, Chapter 2, Definitions 2.1,2.2]). We say that

a) an operator T : F → X∗, F ⊆ X is said to satisfy the condition α0(F) if for any

sequence un ∈ F, un ⇀ u0, Tun ⇀ 0, and

lim sup
n→∞

〈Tun, un − u0〉 ≤ 0,

then un → u.

b) an operator T : D → X∗, D is a bounded, open subset of X, is said to satisfy the

condition α(F), F ⊂ D, if for any sequence un ∈ F, un ⇀ u0, and

lim sup
n→∞

〈Tun, un − u0〉 ≤ 0,

23



2 Preliminary

then un → u.

Remark 2.24. The condition (S )+ coincides with the condition α(D). This property is

stable under compact perturbation. This fact is easily verified by definition, however, it is

of importance when we deal with equations with lower order terms which induce compact

perturbations and the principal parts correspond to operators having (S )+ property.

2.3.2 Degree of generalized monotone mappings

In this part, we summarize some results on the construction of degree of generalized

monotone mappings. The main reference is the monograph of Skrypnik ([38]). For more

details in the development of degree theory, we refer to the book by Drábek and Milota

([10]).

The mapping degree was first defined by Brouwer for finite-dimensional mappings,

we recall an axiomatic definition.

Definition 2.25 ([38, Chapter 2]). Given a continuous mapping f : Ω → Rn, Ω is a

bounded subset in Rn, f (x) =
(
f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)

)
. Assume additionally

that f (x) , 0 for x ∈ ∂Ω. Then we can assign an integer-valued characteristic deg( f ,Ω, 0)

to f , which is uniquely determined by the following properties:

1. If f (x) = x − x0, where x0 ∈ Ω, then deg( f ,Ω, 0) = 1.

2. If Ω1, Ω2 are disjoint open subsets of Ω and f (x) , 0 for x ∈ Ω \ (Ω1 ∪Ω2), then

deg( f ,Ω, 0) = deg( f ,Ω1, 0) + deg( f ,Ω2, 0).

3. If h : [0, 1] × Ω → Rn is a continuous mapping such that h(x, t) , 0 for t ∈ [0, 1],

x ∈ ∂Ω, and

f0 = h(0, x), f1(x) = h(1, x), x ∈ Ω,

then deg( f0,Ω, 0) = deg( f1,Ω, 0).

Now the degree Deg(T,D, 0) of a mapping T on the set D with respect to the origin of

the space X∗ can be introduced under the conditions:

a) T ∈ A0(D, ∂D) the set of all bounded demi-continuous mappings from D to X∗

satisfying condition α0(∂D),
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2.3 Mapping degree of generalized monotone mappings

b) Tu , 0 for any element u ∈ ∂D.

Assume that {vi} is a complete linearly independent system of the separable space X, and

denote by Fn the linear hull of the elements v1, v2 . . . vn. We define for n = 1, 2, . . . the

finite-dimensional approximation Tn of T as follows

Tnu =

n∑
i=1

〈Tu, vi〉vi for u ∈ D ∩ Fn.

The following theorem will give us the definition of the degree of T .

Theorem 2.26 ([38, Chapter 2, Theorems 2.1, 2.2]). Let T be an operator satisfying

conditions a), b) above. Then there exists an N0 ∈ N such that for n ≥ N0 the following

assertions hold:

1. the equation Tnu = 0 has no solutions belonging to ∂Dn;

2. the degree deg(Tn,Dn, 0) is defined and independent of n.

Furthermore, the limit

Dvi = lim
n→∞

deg(Tn,Dn, 0)

does not depend on the choice of the sequence {vi}.

Definition 2.27 ([38, Chapter 2, Definition 2.4]). To an operator T satisfying conditions

a), b) above we can assign the so-called degree of T on the set D with respect to the point

0 ∈ X∗ by

Deg(T,D, 0) := lim
n→∞

deg(Tn,Dn, 0).

For detailed construction of this mapping degree, see Appendix A. Moreover, this

topological characteristic can be constructed for generalized monotone operators acting

on a non-separable space, we refer the readers to the monograph of Skrypnik ([38]).

2.3.3 Properties of the mapping degree

The mapping degree of generalized monotone operators possesses all the properties of

the degree of finite-dimensional mappings. In particular, it is homotopy invariant among

this class of operators, namely A0(D, ∂D). The homotopy invariance is understood in the

following sense.
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Definition 2.28 ([38, Chapter 2, Definitions 4.1, 4.2]). An operator family

Tt : D × [0, 1]→ X∗

is said to satisfy the condition α(t)
0 (∂D), if for any sequences un ∈ ∂D and tn ∈ [0, 1] such

that un ⇀ u0, Ttn(un) ⇀ 0, and

lim
n→∞
〈Ttn(un), un − u0〉 = 0,

then un converges strongly to u0.

Let T ′,T ′′ : D → X∗ be mappings of class A0(D, ∂D) and let T ′u , 0, T ′′u , 0 for

u ∈ ∂D. The mappings T ′ and T ′′ are said to be homotopic on D if there is a one–

parameter family of mappings Tt : D → X∗, t ∈ [0, 1] satisfying condition α(t)
0 (∂D) such

that

a) Ttu , 0 for u ∈ ∂D, t ∈ [0, 1] and T0 = T ′,T1 = T ′′.

b) for any sequences {un} ⊂ D, {tn} ⊂ [0, 1] are such that tn → t0, un → u0, the

sequence Ttnun converges weakly to Tt0u0.

Two operators which are homotopic in this sense will have equal degrees.

Theorem 2.29 ([38, Chapter 2, Theorem 4.1]). Let T ′,T ′′ : D → X∗ be two mappings of

class A0(D, ∂D). Suppose that T ′u , 0,T ′′u , 0 for u ∈ ∂D and that the mappings T ′,T ′′

are homotopic on D. Then

Deg(T ′,D, 0) = Deg(T ′′,D, 0).

2.3.4 Existence theorems

The mapping degree defined above gives an important and simple criterion to determine

whether a mapping is surjective, as stated in the following theorem.

Theorem 2.30 ([38, Chapter 2, Corollary 4.1]). Let T : D → X∗ be a mapping of class

A0(D) and let Tu , 0 for u ∈ ∂D. In order that the equation Tu = 0 has a solution in D,

it is sufficient that Deg(T,D, 0) , 0.

Although this criterion is simple, it is helpful in extending the class of solvable equa-

tions. Indeed, because the general mapping degree is constructed by approximation with

finite-dimensional operators, by choosing and calculating the degrees of those approxi-

mations, we can calculate the mapping degree of specific operators, namely coercive and

odd operators, as in the following lemma.
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Lemma 2.31 ([38, Chapter 2, Theorems 4.4, 4.5]). a) Let T : D → X∗ be a mapping of

class A0(D, ∂D). Suppose that 0 ∈ D \ ∂D and for u ∈ ∂D

Tu , 0, 〈Tu, u〉 ≥ 0.

Then Deg(T,D, 0) = 1.

b) Let BR(0) = {u ∈ X : ||u||X ≤ R} and let T : BR(0) → X∗ be a mapping of class

A(BR, ∂BR). Suppose that for u ∈ ∂BR, Tu , 0 and

Tu
||Tu||∗

,
T (−u)
||T (−u)||∗

.

Then Deg(T, BR, 0) is an odd number.

Using this lemma, the existence holds in cases of coercive and odd operators.

Besides that, utilizing the homotopy invariance property of the mapping degree, an-

other approach is to construct a homotopy with a reference operator, whose mapping

degree is known in advance to be nonzero. We have the second existence theorem:

Theorem 2.32 ([38, Chapter 2, Theorem 7.1]). Let X be a separable reflexive Banach

space, D be a bounded domain in X with boundary ∂D and T : D × [0, 1] → X∗ be a

bounded demi-continuous operator, such that

1. the family of operators Tt = T (·, t) satisfies the condition α(t)
0 (∂D) and the operator

T1 satisfies the condition α0(D),

2. T (u, t) , 0 for u ∈ ∂D, t ∈ [0, 1],

3. Deg(T0,D, 0) , 0.

Then the equation T1u = 0 has at least one solution in D.

Combining this theorem and the results on the mapping degree of coercive and odd

operators, we obtain further existence theorem.

Theorem 2.33 ([38, Chapter 2, Theorem 7.2]). Let X be a separable reflexive Banach

space, t ∈ [0, 1], Tt : X → X∗ be a family of bounded demi-continuous operators satisfying

condition α(X) and such that, for any bounded set B ⊂ X, Tt(u) depends continuously on

t, uniformly with respect to u ∈ B. Suppose that condition 1) as well as one of the three

conditions 2a)-2c) are fulfilled.
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1) there is a continuous functional R : X → R such that Ttu = h, t ∈ [0, 1], imply

‖u‖ < R(h),

2a) the operator T0 is coercive,

2b) the operator T0 is odd,

2c) X and X∗ are uniformly convex spaces and

lim
‖u‖→∞

{
‖T0u‖∗ +

〈T0u, u〉
‖u‖

}
= +∞.

Then the equation T1u = h is solvable for any h ∈ X∗.

Let us illustrate the case of an odd operator by an example.

Example 2.34. [10, Example 5.2.21] Consider the boundary value problem
−(|ẋ(t)|p−2 ẋ(t))̇ − g(x(t)) = f (t), t ∈ (0, 1),

x(0) = x(1) = 0,
(2.8)

where p > 1, f ∈ Lp′(0, 1), and g : R → R is a continuous function. We denote by

0 < λ1 < λ2 < . . . , limn→∞ λn = ∞ are eigenvalues of the eigenvalue problem
−(|ẋ(t)|p−2 ẋ(t))̇ − λ|x(t)|p−2x(t) = f (t), t ∈ (0, 1),

x(0) = x(1) = 0.
(2.9)

We assume further that

lim
s→±∞

g(s)
|s|p−2s

= λ, where λn < λ < λn+1 for some n ∈ N.

Denote by X the space W1,p
0 (0, 1) furnished with the seminorm

||x|| =
(∫ 1

0
|ẋ(t)|pdt

)1/p

.

We already know that this seminorm is an equivalent norm in W1,p
0 (0, 1).

Let us define operators J, G : X → X∗ and an element f ∗ ∈ X∗ by

〈Jx, y〉 =

∫ 1

0
|ẋ(t)|p−2 ẋ(t)ẏ(t)dt,

〈Gx, y〉 =

∫ 1

0
g(x(t))y(t)dt,

〈 f ∗, y〉 =

∫ 1

0
f (t)y(t)dt, for x, y ∈ X.
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Then the equation (2.8) is reduced to the operator equation Jx −Gx = f ∗ ∈ X∗.

We define further an operator S : X → X∗ by

〈S x, y〉 =

∫ 1

0
|x(t)|p−2x(t)y(t)dt for x, y ∈ X.

Constructing a homotopy

Tτx = Jx − (1 − τ)Gx − τλS x + (τ − 1) f ∗

for (τ, x) ∈ [0, 1] × X.

Then it is shown that for a large enough number R > 0, Tτx , 0 for all τ ∈ [0, 1] and

x ∈ ∂B(0,R). Applying theorem 2.29, it implies

Deg(J −G − f ∗, B(0,R), 0) = Deg(J − λS , B(0,R), 0).

The degree on the right-hand side is an odd number by lemma 2.31, as we know J and S

are obviously odd operators in B(0,R). Hence, Deg(J −G − f ∗, B(0,R), 0) is also an odd

number. Therefore, the equation Jx −Gx = f ∗ has at least one solution in x ∈ B(0,R).

2.4 Inequalities for vectors

In the study of the p-Laplacian, we will need upper and lower bounds of the expression

〈|∇u|p−2∇u − |∇v|p−2∇v,∇u − ∇v〉.

Expressing the gradient in local coordinates, it is an estimate for vectors in RN+1. We will

use the following helpful inequalities.

Lemma 2.35. For vectors a, b ∈ RN+1, one has

1. If p ≥ 2, then

〈|b|p−2b − |a|p−2a,b − a〉 ≥ 2−1(|b|p−2 + |a|p−2)(b − a)2. (2.10)

If 1 < p ≤ 2, then

〈|b|p−2b − |a|p−2a,b − a〉 ≤ 2−1(|b|p−2 + |a|p−2)(b − a)2. (2.11)
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2. We have

min
{
p − 1, 1

}
|b − a|2

∫ 1

0
|a + t(b − a)|p−2dt ≤ 〈|b|p−2b − |a|p−2a,b − a〉

≤ max
{
p − 1, 1

}
|b − a|2

∫ 1

0
|a + t(b − a)|p−2dt. (2.12)

Consequently, it holds

〈|b|p−2b − |a|p−2a, b − a〉 ≥ 0. (2.13)

3. For p ≥ 0,

|a + b|p ≤ C(p)(|a|p + |b|p). (2.14)

Proof. The inequalities (2.10) and (2.11) are just consequences of the identity

〈|b|p−2b − |a|p−2a,b − a〉 =
(|b|p−2 + |a|p−2)|b − a|2

2
+

(|b|p−2 − |a|p−2)(|b|2 − |a|2)
2

The inequality (2.12) is shown from the equality

|b|p−2b − |a|p−2a =

∫ 1

0

d
dt
|a + t(b − a)|p−2(a + t(b − a))dt

= (b − a)
∫ 1

0
|a + t(b − a)|p−2dt+

+ (p − 2)
∫ 1

0
|a + t(b − a)|p−4〈a + t(b − a), b − a〉(a + t(b − a))dt

Hence,

〈|b|p−2b − |a|p−2a,b − a〉 = (b − a)2
∫ 1

0
|a + t(b − a)|p−2dt

+ (p − 2)
∫ 1

0
|a + t(b − a)|p−4〈a + t(b − a), b − a〉2dt.

Moreover,

0 ≤
∫ 1

0
|a + t(b − a)|p−4〈a + t(b − a), b − a〉2dt ≤ |b − a|2

∫ 1

0
|a + t(b − a)|p−2dt.

Consequently, one obtains (2.12).

To verify the inequality (2.14), it suffices to prove for one dimensional case because

|a + b|p =
(
|a|2 + |b|2 + 2a · b

)p/2
≤ 2

p
2 (|a|2 + |b|2)p/2

This result is obtained by investigating real function of one variable, one can show (2.14),

where C(p) = max 2p/2{2p−1, 1}. �
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Lemma 2.36. For p > 1 and vectors z,w ∈ Rn, the inequality∫ 1

0
|(1 − t)z + tw|p−2dt ≥ C(|z| + |w|)p−2 (2.15)

holds for some positive constant C.

Consequently, when p ≥ 2 we have

〈|b|p−2b − |a|p−2a,b − a〉 ≥ C(p)|b − a|2(|a|p−2 + |b|p−2), (2.16)

〈|b|p−2b − |a|p−2a,b − a〉 ≥ C(p)|b − a|p. (2.17)

Proof. This inequality is trivial when 1 < p ≤ 2, as we have
∣∣∣(1 − t)w + tz

∣∣∣ ≤ |z| + |w|. We

obtain (2.15) for C = 1.

In the case p > 2, when at least one of |z| = 0 or |w| = 0, the inequality holds obviously

for C ≤ 1/p−1.

Now we consider |z| , 0 and |w| , 0. If (1 − t0)z + t0w = 0 for some t0 ∈ (0, 1), then

we calculate both sides of (2.15), divide them by |w|p−2 and show that the left-hand side is∫ 1

0

|t − t0|
p−2

|1 − t0|
p−2 dt =

1 − t0

p − 1
+

t0

p − 1

(
t0

1 − t0

)p−1

≥
1

2(p − 1)
,

which is obvious as t0 ∈ (0, 1).

In the remaining case, z and w are linearly independent, the vector (1 − t)z + tw never

vanishes when t ∈ [0, 1]. We introduce new variables

ξ =
z

|z| + |w|
, η =

w
|z| + |w|

So |ξ| + |η| = 1. We consider the left-hand side as a function of (ξ, η) on the set

C =
{
(ξ, η) ∈ R2(N+1)

∣∣∣ |ξ| + |η| = 1
}
.

C is a bounded set in a finite-dimensional space, so it is also compact. As p > 2, the

function ∫ 1

0
|(1 − t)ξ + tη|p−2dt

is continuous on C. Therefore, this function attains its minimum on this set, namely at

(ξ0, η0). Furthermore, the minimal value is

C0 =

∫ 1

0
|(1 − t)ξ0 + tη0|

p−2dt.

If C0 = 0, then |(1 − t)ξ0 + tη0| = 0 for all t ∈ [0, 1]. Hence, ξ0 = η0 = 0, which is a

contradiction. So C0 > 0 and substituting z,w in place of ξ, η gives us∫ 1

0
|(1 − t)z + tw|p−2dt ≥ C(|z| + |w|)p−2.

�
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3 Second-order quasilinear elliptic

equations

In this chapter, we will present several existence theorems for second-order quasilinear

elliptic equations. First, we prove the existence of finite energy solutions. The key as-

sumptions are the structural growth of the nonlinearities appearing in the equations. We

show that the induced operator has property α and therefore has a degree on certain sub-

sets of its domain. Under coercivity assumption, this degree is nonzero, the operator

equation is solvable, uniqueness can also be obtained when the operator is monotone.

Second, we show existence of singular solutions to several equations. Starting with

cone p-Laplacian with and without lower order terms as model cases, we use respec-

tively Browder and Leray-Lions theorems. Moreover, while verifying assumptions in

Leray–Lions theorem, we discover that the principal part induces an operator with prop-

erty α. Therefore, equation with lower order terms yielding compact perturbations in the

induced operator equation is solvable by mapping degree theory. We end the chapter with

existence results for general second-order equations. The structural growth of the nonlin-

earities is again important. Another key assumption is the existence of a formal solution

of the equation with certain behavior. The leading order and successive asymptotic terms

of such formal solution in principle can be found out by formal analysis. The result on

singular solutions is generalized to higher-order equations in the last chapter.

3.1 Existence of finite energy solutions

We investigate now second-order equations of the form

− divF (x,∇u) − div g1(x, u) + g2(x, u,∇u) = f (x), x ∈ X \ Y. (3.1)



3 Second-order equations

In the present case, the basic weight γ = 0, the gradient and the divergence operators are

adjoint operators with respect to the Riemannian measure which is in local coordinates of

the form dg = tNdtdy.

We assume that the nonlinearities subject to the following conditions:

(A) F (x, q) : X × cT X → cT X is differentiable with respect to the variables (q1, . . . , qN)

and measurable with respect to the variable x. Moreover,

〈F (x, q), q〉 ≥ C0|q|p −C1, (3.2)

and ∣∣∣F (x, q)
∣∣∣ ≤ h1(x) + |q|p−1. (3.3)

(B) F (x, q) is monotone with respect to the variables q.

(C) g1(x, u) : X × R→ cT X is measurable with respect to the measure dg and∣∣∣g1(x, u)
∣∣∣ ≤ h2(x) + |u|m1−ε. (3.4)

(D) g2(x, u, q) : X × R × cT X → cT X fulfills∣∣∣g2(x, u, q)
∣∣∣ ≤ h3(x) + |u|m2−ε + |q|m3−ε, (3.5)

where 0 < ε < min
{
m1,m2,m3

}
and

m1 =
p∗

p′
=

(N + 1)(p − 1)
N + 1 − p

m2 = p∗ − 1 =
(N + 1)(p − 1) + p

N + 1 − p

m3 =
p

(p∗)′
=

(N + 1)(p − 1) + p
N + 1

(3.6)

In the assumptions (3.2) - (3.5), the product and the norm are taken in the corresponding

fibers of the vector bundles, C0 > 0,C1 ≥ 0 are constants, and the functions h1, h2 ∈

H
0,0
p′ (X) and h3 ∈ H

0,0
(p∗)′(X).

Furthermore, we assume through out this chapter that the Laplace-Beltrami operator

∆g is cone-elliptic and its principal conormal symbol is invertible on the weight lines

γ = 0 and γ + ν = 1. Applying Lemma 4.25, we have

D(∇0,p
min) = H1,0

p,O(X) = H1,1
p (X), (see Section 4.2 for definition)

under the ellipticity assumption and the weight interval Θ = [−1, 0].

We will look for a weak solution of the equation (3.1) in the following sense.
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3.1 Existence of finite energy solutions

Definition 3.1. A weak solution of the equation (3.1) is a function u ∈ H1,1
p (X) satisfying

the identity follows∫
X

(
F (x,∇u)∇v + g1(x, u)∇v + g2(x, u,∇u)v

)
dg = 〈 f , v〉, (3.7)

on the right-hand side is the pairing ofH−1,−1
p′ (X) andH1,1

p (X).

Taking the growth conditions of nonlinearities into account, the left-hand side is esti-

mated by∣∣∣∣∣∫
X
F (x,∇u)∇vdg

∣∣∣∣∣ ≤ ∫
X

(
h1(x)|∇v| + |∇u|p−1|∇v|

)
dg

≤ ||h1||H0,0
p′
|||∇v|||

H
0,0
p

+ |||∇u|||p−1
H

0,0
p
|||∇v|||

H
0,0
p∣∣∣∣∣∫

X
g1(x, u)∇vdg

∣∣∣∣∣ ≤ ∫
X

(
h2(x) + |u|m1−ε

)
|∇v|dg

≤ ||h2||H0,0
p′
|||∇v|||

H
0,0
p

+ |||∇v|||
H

0,0
p
||u||m1−ε

H
0,0
p′(m1−ε)

≤ ||h2||H0,0
p′
|||∇v|||

H
0,0
p

+ |||∇v|||
H

0,0
p
||u||m1−ε

H
1,1
p∣∣∣∣∣∫

X
g2(x, u,∇u)vdg

∣∣∣∣∣ ≤ ∫
X

(
h3(x) + |u|m2−ε + |∇u|m3−ε

)
|v|dg

≤ ||h3||H−1,−1
p′
||v||
H

1,1
p

+ ||v||
H

0,0
p∗
||u||m2−ε

H
0,0
(p∗)′(m2−ε)

+ ||v||
H

0,0
p∗
|||∇u|||m3−ε

H
0,0
(p∗)′(m3−ε)

≤ ||h3||H−1,−1
p′
||v||
H

1,1
p

+ ||v||
H

1,1
p
||u||m2−ε

H
0,0
p

+ ||v||
H

1,1
p
|||∇u|||m3−ε

H
0,0
p

(3.8)

here we have used the embeddings

H1,1
p (X) ↪→ H0,0

m1 p′(X) ↪→↪→ H0,0
p′(m1−ε)(X),

H1,1
p (X) ↪→ H0,0

p∗ (X) ↪→↪→ H0,0
(p∗)′(m2−ε)(X),

H0,0
p (X) = H0,0

(p∗)′m3
(X) ↪→↪→ H0,0

(p∗)′(m3−ε)(X).

(3.9)

Therefore, each integral on the left-hand side of (3.7) determines an operator. Let us

define the operators T , F, and G : H1,1
p (X)→ H−1,−1

p′ (X) by the formulae

〈Fu, v〉 =

∫
X
F (x,∇u)∇vdg,

〈G1u, v〉 =

∫
X

g1(x, u)∇vdg,

〈G2u, v〉 =

∫
X

g2(x, u,∇u)vdg,

Gu := G1u + G2u, Tu := Fu + Gu.
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3 Second-order equations

Using the structural conditions (A), (C), (D), and applying the proposition 4.29 on Ne-

mytskii operator, one concludes that F, G1, and G2 are bounded and continuous operators:

F
(
u(·)

)
: H1,1

p (X)→ H0,0
p′ (X),

g1
(
u(·)

)
: H0,0

p′(m1−ε)(X)→ H0,0
p′ (X),

g2
(
u(·), q1(·), . . . , qN(·)

)
: H0,0

(p∗)′(m2−ε)(X) ×
(
H

0,0
(p∗)′(m3−ε)(X)

)N
→ H

0,0
(p∗)′(X).

(3.10)

Therefore, taking an arbitrary sequence un converging weakly to u in H1,1
p (X), in par-

ticular ∇un ⇀ ∇u in (H0,0
p (X))N . Using the compact embeddings (3.9) then un → u in

H
0,0
(p∗)′(m2−ε)(X) and H0,0

p′(m1−ε)(X), and ∇un → ∇u in
(
H

0,0
(p∗)′(m3−ε)(X)

)N . Continuity of the

operators in (3.10) implies that Gun converges to Gu inH−1,−1
p′ (X). We have checked that

the mapping G is a compact operator.

We will show that F has property α
(
H

1,1
p (X)

)
, then T as its compact perturbation also

possesses this property.

Lemma 3.2. F has property α
(
H

1,1
p (X)

)
and so does T .

Proof. Taking an arbitrary sequence un ⇀ u inH1,1
p (X) such that

lim sup
n→∞

〈Fun, un − u〉 ≤ 0,

we need to verify that un → u inH1,1
p (X).

Because of the compact embeddingH1,1
p (X) ↪→↪→ H0,0

p (X), we obtain that un → u in

H
0,0
p (X). Moreover, D(∇min) = H1,1

p (X), it remains to show ∇un → ∇u in (H0,0
p (X))N+1.

To prove that we will check the following points:

1. the sequence ∇un converges to ∇u in measure,

2. limmeas E→0

∫
E
|∇un|

pdg = 0 uniformly in n, where E ⊂ X.

Indeed, we denote

λn(E) =

∫
E

[
F (x,∇un) − F (x,∇u)

]
(∇un − ∇u)dg.

Because F is monotone with respect to the last N components, the function under integral

sign is non-negative, therefore, 0 ≤ λn(E) ≤ λn(X). Furthermore,

lim sup
n→∞

λn(X) = lim sup
n→∞

〈Fun − Fu, un − u〉 ≤ 0.

Hence, λn(X)→ 0 as n→ ∞.
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3.1 Existence of finite energy solutions

On the other hand, we can also bound λn(E) from below by using the growth condi-

tions (3.2), (3.3):

λn(E) =

∫
E

[
F (x,∇un)∇un + F (x,∇u)(∇u − ∇un) − F (x,∇un)∇u

]
dg

≥

∫
E

(
C0|∇un|

p −C1
)
dg −

∫
E

(
h1(x) + |∇u|p−1)(|∇u| + |∇un|

)
dg−

−

∫
E

(
h1(x) + |∇un|

p−1)|∇u|dg

Putting the negative terms to the left-hand side, we obtain that

C0

∫
E
|∇un|

pdg ≤ C1µ(E) + λn(E) +

∫
E

(
h1(x) + |∇u|p−1)(|∇u| + |∇un|

)
dg+

+

∫
E

(
h1(x) + |∇un|

p−1)|∇u|dg.

Using Young’s inequality to estimate each integral term as follows∫
E

(
h1(x) + |∇u|p−1)(|∇u| + |∇un|

)
dg ≤ (1 + 1/p)

∫
E
|∇u|pdg +

1
p′

∫
E

hp′

1 (x)dg

+
ε−p′

p′

∫
E

(
hp′

1 (x) + |∇u|p
)
dg +

εp

p

∫
E
|∇un|

pdg∫
E

(
h1(x) + |∇un|

p−1)|∇u|dg ≤
1
p′

∫
E

hp′

1 (x)dg +

(
1
p

+
ε−p′

p′

) ∫
E
|∇u|pdg

+
εp

p

∫
E
|∇un|

pdg

By choosing sufficiently small ε > 0 such that 2εp/p < C0, we obtain∫
E
|∇un|

pdg ≤ C
∫

E

(
h1(x)p′ + |∇u|p

)
dg + λn(E) + C1µ(E).

It yields that
∫

E
|∇un|

pdg→ 0 as meas E → 0 uniformly in n.

Now we will show that ∇un converges to ∇u in measure. For ε, δ > 0, set

Fε,n =
{
x ∈ X

∣∣∣ ∣∣∣∇un(x) − ∇u(x)
∣∣∣ ≥ ε}.

Choose two sets E(1)
δ and E(2)

δ such that meas
(
E( j)
δ

)
< δ/4, where E(1)

δ is selected from the

condition

K := sup
X\E(1)

δ

{
|∇u(x)| + |∇un(x)|

}
< ∞,

and E(2)
δ is selected from the condition

kε := inf
{(
F (x, ξ) − F (x, ξ′)

)
(ξ − ξ′)

}
> 0,
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3 Second-order equations

where the infimum is taken over the set{
x ∈ X \ E(2)

δ , |u| ≤ K, |ξ′| ≤ K; |ξ − ξ′| ≥ ε
}
.

From the definition of the sets E( j)
δ , we have

λn(X) ≥ λn

(
Fε,n \

(
∪E( j)

δ

))
≥ kε

(
meas Fε,n −meas E(1)

δ −meas E(2)
δ

)
.

Hence meas Fε,n ≤ δ/2 + λn(X)/kε, and for large enough n, meas Fε,n < δ.

From these two claims and the finiteness of the measure dg, we obtain strong conver-

gence of the sequence ∇un to ∇u in
(
H

0,0
p (X)

)N+1. �

We have shown that the operator T satisfies the property α
(
H

1,1
p (X)

)
. We proceed by

introducing further conditions that allow us to assign to T a mapping degree. Our first

observation requires strict growth condition.

Theorem 3.3. Suppose that the nonlinearities subject to the conditions (3.2), (3.3), (3.4),

(3.5), and monotone condition (B). Furthermore, assume that for almost all (x, u, q) ∈

X × R × cT X, it holds

F (x, q)q + g1(x, u)q + g2(x, u, q)u ≥ C2|q|p + C3|u|p −C4. (3.11)

Given f ∈ H−1,−1
p′ (X), there exists a solution u ∈ H1,1

p (X) to (3.1).

Proof. Now, we use the condition (3.11) to verify the coercivity of T . Indeed, take an

arbitrary element u ∈ H1,1
p (X), we obtain

〈Tu, u〉 =

∫
X

[
F (x,∇u)∇u + g1(x, u)∇u + g2(x, u,∇u)u

]
dg

≥ C2

∫
X
|∇u|pdg + C3

∫
X
|u|pdg −C4

≥ C||u||p
H

1,1
p
−C4.

Therefore,

lim
||u||→∞

〈Tu, u〉
||u||

H
1,1
p

= ∞.

Because of this limit, there exists a value R ∈ R+ such that for all ||u|| > R the following

inequality holds
〈Tu, u〉
||u||

H
1,1
p

≥ || f ||
H
−1,−1
p′

+ 1.
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3.1 Existence of finite energy solutions

Therefore, f does not belong to the image T
(
∂B(0,R)

)
, so the degree of T on the set

B(0,R) with respect to f is well-defined. Moreover, for all u ∈ ∂B(0,R)

〈Tu, u〉 ≥ R
(
|| f ||

H
−1,−1
p′

+ 1
)
> 0,

which implies that Deg(T, B(0,R), f ) = 1. Applying theorem 2.30, there exists a solution

u ∈ H1,1
p (X) to the equation Tu = f ∈ H−1,−1

p′ (X). �

Remark 3.4. We aim at using the mapping degree to prove existence results, therefore,

the approach is first to assume some hypotheses that make the procedure works, and then

to determine which kind of nonlinearities are solvable by this scheme. However, due to

more requirements on the nonlinearities, the range of application is narrow, for example,

the p-Laplace equation does not satisfy the growth condition (3.11). We would like to

relax this condition.

Theorem 3.5. Suppose that the cone Laplacian ∆g is elliptic with respect to the weight

line <z = 1 and the nonlinearities subject to the conditions (3.2), (3.3), (3.4), (3.5).

Furthermore, assume that for almost all (x, u, q) ∈ X × R × cT X, it holds

F (x, q)q + g1(x, u)q + g2(x, u, q)u ≥ C2|q|p −C4. (3.12)

Given f ∈ H−1,−1
p′ (X) which is perpendicular to Ker∇, there exists a solution u ∈ H1,1

p (X)

to (3.1).

Let us recall a result in functional analysis concerning the dual space of a quotient

space of a Banach space. This result will give us necessary, and later turn to be sufficient,

conditions on the right-hand side for the equation to be solvable.

Let X be a Banach space and M be a closed linear subspace of X. The quotient

V = X/M is itself a Banach space with the norm induced from the norm of X, namely, for

v ∈ V ,

||v||V = inf
u∈M
||v + u||.

The annihilator of M in the dual space X′ of X is the subspace

M⊥ =
{
f ∈ V ′ : M ⊂ Ker f

}
.

Then the dual space of the quotient X/M can be identified with M⊥, V∗ � M⊥, and the

dual space of M can be identified with the quotient X′/M⊥, M∗ � X′/M⊥. Therefore, the

constraint that makes an element f ∈ X′ belong indeed to M∗ is that f is perpendicular to
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3 Second-order equations

M. Moreover, in case M has finite dimension, then it has a complement in X, namely V ,

which is isomorphic to X/M.

In Theorem 3.5, the constraint that f ∈ H−1,−1
p′ (X) perpendicular to Ker∇means that f

belongs to the dual subspace M∗ of some subspace M ofH1,1
p (X) which is a complement

of Ker∇ in H1,1
p (X). We will prove by defining an operator T̃ := T

∣∣∣
M

: M → H−1,−1
p′ (X)

and applying mapping degree theory to this restricted operator.

Proof. Applying Corollary 4.27 to the Laplacian, one knows that Ker∇ ∩ H1,1
p (X) has

finite dimension. We call M the topological complement of Ker∇ in H1,1
p (X). Applying

again Corollary (4.27) to the cone gradient ∇, we conclude that for all u ∈ M, a Poincaré-

type inequality holds and consequently,

C1||u||H1,1
p
≤ |||∇u|||

H
0,0
p
≤ C2||u||H1,1

p
.

Hence, it holds for all u ∈ M that

〈Tu, u〉
||u||

H
1,1
p

≥ C|||∇u|||p−1
H

0,0
p
−

C4

||u||
H

1,1
p

We obtain the weak coercivity

lim
u∈M

|||∇u|||→∞

〈Tu, u〉
||u||

H
1,1
p

= ∞.

Restricting the operator T to M, then the operator T̃ := T
∣∣∣
M

: M → M∗ inherits continuity

and the property α. Moreover, T̃ is coercive. Consequently, for a given f ∈ M∗, there

exists an R ∈ R+ such that for all u ∈ M and |||∇u||| > R the following inequality holds

〈Tu, u〉
||u||

H
1,1
p

≥ || f ||
H
−1,−1
p′

+ 1.

It implies that f does not belong to the image T̃ (∂D), and we can assign to T̃ the degree

Deg(T̃ , B(0,R), f ). Moreover, for all u ∈ ∂D

〈Tu, u〉 ≥ C(|| f ||
H
−1,−1
p′

+ 1) > 0

which implies that Deg(T,D, f ) = 1. The existence of a solution u ∈ M ⊂ H1,1
p (X) to the

equation Tu = f ∈ M∗ is obvious by Theorem 2.30. �

Remark 3.6. We have seen that the nonlinearities (3.6) in our assumptions are as gen-

eral as in the non-degenerate case ([10, Section 7.6A], [38, Chapter 1]). What counts

is the adapted embeddings (3.9). We will see that in the case of singular solutions, the

nonlinearities are slightly narrower.
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3.2 Singular solutions to equations involving p-Laplacian

Remark 3.7. If we consider smaller growth of the nonlinearities, then the coercivity on the

subset D can be shown without further assumption (3.11). More precisely, if we require

m̃1, m̃2, m̃3 ≤ p − 1,

and make slight changes in the estimate (3.8) in terms of the norms ||u||
H

1,1
p

, |||∇u|||
H

0,0
p

.

Then we obtain straightforward

〈Tu, u〉
||u||

H
1,1
p

≥ C0|||∇u|||p−1
H

0,0
p
−C|||∇u|||p−1−ε

H
0,0
p

, ε > 0.

Therefore, coercivity holds

lim
||u||→∞

〈Tu, u〉
||u||

H
1,1
p

= ∞.

Existence can be obtained as in theorem 3.5 for all f ∈ M∗.

Remark 3.8. We can repeat verbatim the proofs above to the case of general operators A,

A′. The point is that the ellipticity of A′A yields that D(Amin) is compactly embedded into

H
0,0
p (X), which is essential when verifying the property (S )+ of the induced operator. The

weak coercivity holds consequently as a Poincaré-type inequality holds.

3.2 Singular solutions to equations involving p-Laplacian

We confine ourselves in this part to the question about existence of singular solutions to

equations involving the cone p-Laplace operator. This operator is a prototype of quasilin-

ear elliptic operators whose properties motivate us the choice of the class of nonlinearities

under observation. As we have mentioned in the introduction, we will consider p < N +1.

Moreover, we restrict ourselves to the case p ≥ 2, as we will need some specific inequal-

ities for vectors in this case.

Concerning the question about existence of singular solutions with infinite energy,

there have been several results for quasilinear elliptic equations. We would like to mention

the works of Kichenassamy–Véron [21] on the p-Laplacian

−∆pu = δ,

and of Friedman–Véron [12] on the p-Laplacian with an absorption term

−∆pu + |u|q−1u = δ, p − 1 ≤ q <
(N + 1)(p − 1)

N + 1 − p
,
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3 Second-order equations

in a subset Ω of the Euclidean space RN+1, in which the authors employed approximation

scheme and comparison principle. However, this approach does not work for higher-order

equations. More details, these authors showed the existence of a solution which behaves

like the singular p-harmonic function

µp(x) = Ct−α, α =
N + 1 − p

p − 1
> 0 (3.13)

when approaching the boundary. We classify this equation later as Serrin’s case, meaning

that the nonlinear growth of lower order terms is dominated by the nonlinear growth of

the highest order term. For equations with dominant growth of lower order terms, the

exponent −α is called a weak singularity. There might exist a solution with a strong

singularity, namely u(x) ∼ |x|−p/(q−p+1) as |x| → 0. For example, in the semilinear case,

the equation −∆u + |u|q−1u = 0 on a ball in RN+1 with appropriate boundary condition has

one solution x 7→ lq,N |x|−2/(q−1). However, in the quasilinear case, the existence of such a

strongly singular solution has not yet been known. We are only certain that the coefficient

of the leading term is unique (see [41, Theorem 5.7]):

λN,p,q =

( p
q − p + 1

)p−1( pq
q − p + 1

− (n + 1)
)

1
(q−p+1)

Isolated singularities for the p-Laplacian with a source term were classified in [41, Section

5.3], however without any existence results.

Let me recall the well-known existence results concerning singular solutions. There

have been several approaches to deal with the existence of blow-up solutions. One ap-

proach is to use a truncation method and to renormalize the solution in each finite interval

of the range. To my knowledge the best result in this direction is by Dal Maso, Murat,

Orsina, and Prignet ([7]) where the right-hand side is general measure data. However,

this method cannot be applied to higher-order equations, and in their work, there was also

no information about behavior of solutions. Another approach is to use approximation

method, where the convergence in certain sense of the approximating solutions and the

desired behavior of solutions are checked by using comparison principle, we refer to the

papers [12, 21].

Our approach uses monotonicity and topological methods: first, we will use Brow-

der theorem to study the singular p-Laplacian, second, we will use Leray–Lions theorem

to study equations involving lower order terms. Following these theorems, one requires

a coercivity assumption. We are in the case that the principal part induces a monotone
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3.2 Singular solutions to equations involving p-Laplacian

operator and dominates the lower order part, and we look for solutions with weak singu-

larities.

One essential assumption is the existence of a formal solution of the observed equa-

tion. A formal solution of quasilinear equations will satisfy it to infinite order, therefore,

by formal asymptotic analysis, leading order and successively further asymptotic terms

can be worked out. After finite steps, one can assume to have reached some space of

certain smoothness containing the remainder part. In this function space, later denoted

by X, we control the remainder by two norms, one comes from the singular part. Due to

estimate concerning this norm, we restrict ourselves to the case 2 ≤ p < N + 1.

Provided the existence of formal solutions, one expects to use inverse function the-

orem to obtain local existence. Using nonlinear functional analysis, we obtain global

results. And we will see in the next chapter, our approach using the topological method

can be applied to higher-order equations.

3.2.1 Singular solutions of cone p-Laplacian

Consider the equation 
− div

(
|∇u|p−2∇u

)
= f (x), x ∈ X \ Y,

u ∼ ct−α as x→ Y.
(3.14)

We will prove that there is also a formal solution of (3.14) that demonstrates the same

exponent as in this non-flat metric case.

Lemma 3.9. There is a formal solution e(t, y) ∼ ct−α, c ∈ R, where α > 0 is Serrin’s

exponent.

Proof. Take a section u, then the gradient

∇u =
(∂u
∂t
, t−1 ∂u

∂y1 , . . . , t
−1 ∂u
∂yN

)
with respect to the basis ∂

∂t , t
−1 ∂

∂y1 , . . . , t−1 ∂
∂yN of unit vectors of the cone tangent bundle.

Therefore, the principal conormal symbol is

σ1
M(∇)(z) =

(
z,∇Y(0)

)
∈ Diff1(Y, X × R

∣∣∣
Y
, cT X

∣∣∣
Y
).

We look for a solution u with the leading behaviour u(t, y) ∼ t−αϕ(y). Then

∇u ∼ t−α−1(αϕ(y),∇gY (0)ϕ(y)).
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3 Second-order equations

Moreover, |∇u| = t−α−1
√
α2ϕ2 + |∇gY (0)ϕ|2 =: Φ(y)1/(p−2). Therefore,

|∇u|p−2∇u ∼ t−(p−1)(α+1)Φ(y)(αϕ(y),∇gY (0)ϕ(y))

Generally, given a vector X̂ = (X0, X1, . . . , XN) = (X0, X) expressed in local coordinates

t, y1, . . . , yN then

div X̂ =
1

tN |G|
( ∂
∂t

(tN |G|X0) +

N∑
j=1

∂

∂y j
(tN |G|X j)

)
We already know that

σν
M(A∗)(z) = σν

M(N + 1 − 2γ − z̄ − ν)∗,

where the latter star means the adjoint operator on Y with respect to the measure dy.

Hence,

σ1
M(div)(z) = σ1

M(∇)(N − z̄)∗

As σ1
M(∇)(z) = (z,∇Y(0)), we have

σ1
M(div)(z) = z̄X0 + ∇gY (0) · X.

Therefore, after applying the divergence operator, we obtain

∇ · (|∇u|p−2∇u ∼ t−(p−1)(α+1)−1
{(

N − (p − 1)(α + 1)
)
αΦ(y)ϕ(y) + ∇gY (0) ·

(
Φ(y)∇gY (0)ϕ(y)

)}
The leading behavior of the formal solution will necessarily satisfy the equation{(

N − (p − 1)(α + 1)
)
αΦ(y)ϕ(y) + ∇gY (0) ·

(
Φ(y)∇gY (0)ϕ(y)

)}
= 0.

A sufficient condition is

(N − (p − 1)(α + 1))αΦ(y)ϕ(y) = 0

∇gY (0) · (Φ(y)∇gY (0)ϕ(y))) = 0.

We easily see that a special case is when N − (p − 1)(α + 1) = 0, or α =
N+1−p

p−1 , and

ϕ(y) =const. �

As mentioned above, we will use Browder and Leray–Lions theorems to obtain the

existence for the equation (3.14) and equations with lower order terms. Among the re-

quirement of these theorems is the coercivity. We have experienced in Theorem 3.5 that

one cannot freely set the coercivity assumption. However, this property can be shown
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3.2 Singular solutions to equations involving p-Laplacian

for some restriction of the induced operator. We would expect to work again with a sub-

space in which a Poincaré-type inequality holds. On the other hand, we are working with

solutions whose energy blows up, so integration by part no longer works, the induced op-

erator can only be estimated by evaluating at test functions. Therefore, we will introduce

a function space containing C∞c (X \Y) as a dense subspace, and a reduction to an operator

equation based on the fact that one can find e such that ∆pe vanishes to sufficiently large

order.

Let us define X = H1,γ(X; E) ∩H1,1
p (X; E), where γ = 1 +

N(p−2)
2(p−1) . C∞c (X \ Y) is dense

in X, and X is reflexive. Denote by X∗ its dual space, which is

X
∗ = H−1,−γ(X; E) +H−1,−1

p′ (X; E), p′ =
p

p − 1
.

(recall that we have identified E and E′ via the bundle metric hE).

We require later that the right-hand side f ∈ X∗ satisfying further that f is perpendicu-

lar to Ker∇∩X, which actually means that f ∈ V∗, where V is a topological complement

of Ker∇ in X. In this subspace, we can use the equivalent norm given by the sum of two

seminorms inH1,γ(X) andH1,1
p (X), namely

||v||V ∼ ||v||1 + ||v||2. (3.15)

where

||v||1 =

(∫
X

t2−2γ|∇v|2dg
) 1

2

, ||v||2 = ||∇v||Lp(dg),

Because of the assumption of e, the first seminorm ||v||1 actually is equivalent to

||v||1 =

(∫
X

t2−2γ|∇v|2dg
) 1

2

∼

(∫
X
|∇e|p−2|∇v|2dg

) 1
2

We obtain the following existence theorem:

Theorem 3.10. Let p ≥ 2 and assume that the equation (3.14) has an approximate solu-

tion e(x) ∼ Ct−α such that ∆pe ∈ V∗. Given an f ∈ X∗, such that f is perpendicular to

Ker∇ in X, there exists a solution to (3.14) which is of the form e + v, v ∈ X. The part v is

unique modulo Ker∇.

Proof. Let us define an operator T : X→ X∗ by

Tv = − div
(
|∇(e + v)|p−2∇(e + v)

)
+ div

(
|∇e|p−2∇e

)
.
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3 Second-order equations

The operator T is well-defined. Indeed, for an arbitrary function v ∈ X we show that

Tv ∈ X∗ by taking a test function w ∈ C∞c (X \ Y) and estimating

∣∣∣〈Tv,w〉
∣∣∣ =

∣∣∣∣∣∫
X

[(
|∇(e + v)|p−2∇(e + v) − |∇e|p−2∇e

)
∇w

]
dg

∣∣∣∣∣
≤ (p − 1)

∫
X
|∇v||∇w|

∫ 1

0
|∇e + s∇v|p−2dsdg, use (2.12)

≤ C
∫

X

(
|∇e|p−2 + |∇v|p−2)|∇v||∇w|dg, use (2.14)

≤ C
(∫

X
|∇e|p−2|∇v|2dg

) 1
2
(∫

X
|∇e|p−2|∇w|2dg

) 1
2

+ C|||∇v|||p−1
Lp |||∇w|||Lp

≤ C(||v||X)||w||X.

As C∞c (X \ Y) is dense in X, it holds also for all w ∈ X,

|〈Tv,w〉| ≤ C(||v||X)||w||X. (3.16)

So T is well-defined. We need to check the following points.

(i) T is bounded. This property is obvious by using the estimate (3.16), it holds for

v ∈ X

||Tv||X∗ ≤ C||v||X.

(ii) T is demi-continuous as it is actually continuous. Indeed, given an arbitrary se-

quence {vn} converging to v in X, we repeat the estimate above for vn and v, and

verify for an arbitrary w ∈ C∞c (X \ Y) that

|〈Tvn − Tv,w〉| =
∣∣∣∣∣∫

X

[(
|∇(e + vn)|p−2∇(e + vn) − (|∇(e + v)|p−2∇(e + v)

)
∇w

]
dg

∣∣∣∣∣
≤ (p − 1)

∫
X
|∇v||∇w|

∫ 1

0

∣∣∣∇e + ∇v + s(∇vn − ∇v)
∣∣∣p−2

dsdg

≤ C
∫

X

(
|∇e|p−2 + |∇v|p−2 + |∇(vn − v)|p−2

)
|∇(vn − v)||∇w|dg

≤ C
(
||vn − v||1||w||1 + ||∇(vn − v)||p−2

2 ||∇v||2||∇w||2
)

So the left-hand side 〈Tvn − Tv,w〉 → 0 when n → ∞ for all w ∈ C∞c (X \ Y), this

convergence also holds for all w ∈ X.

All the properties above can be passed to the properties of the restriction T̃ : V →

X∗ of T to the subspace V with the induced topology.
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3.2 Singular solutions to equations involving p-Laplacian

(iii) Moreover, T̃ is a coercive operator. First, testing with a function v ∈ C∞c (X \ Y), we

have

〈Tv, v〉 =

∫
X

(
|∇(e + v)|p−2∇(e + v) − |∇e|p−2∇e

)
∇vdg

≥

∫
X

2−1|∇v|2
(
|∇e|p−2 + |∇(e + v)|p−2

)
dg, (use (2.10))

≥
1
4

∫
X
|∇v|2

(
|∇e|p−2 +

(
|∇e|p−2 + |∇(e + v)|p−2)) dg

≥
1
4

∫
X
|∇v|2

(
|∇e|p−2 + 23−p|∇v|p−2

)
dg, (use (2.10))

≥ C
∫

X

(
|∇v|2|∇e|p−2 + |∇v|p

)
dg

Therefore, for all v ∈ X, this estimate also holds. Restricting to v ∈ V, passing to

the operator T̃ , and using the equivalence of norms (3.15), we obtain

〈T̃ v, v〉
||v||X

≥
C(||v||21 + ||v||p2)
||v||1 + ||v||2

→ ∞

as ||v||X = ||v||1 + ||v||2 → ∞. Hence, T̃ is coercive in V.

(iv) T is monotone, and so is T̃ . Indeed, taking two arbitrary elements u, v ∈ X and two

sequences {un}, {vm} ⊂ C∞c (X \ Y) converging to u, v respectively, whose elements

have compact supports. We have for un, vm:

〈Tun − Tvm, un − vm〉 =

∫
X
∇(un − vm)

(
|∇(e + un)|p−2∇(e + un)−

−|∇(e + vm)|p−2∇(e + vm)
)

dg ≥ 0, (use (2.13))

Actually, this integral is taken over supp un ∩ supp vm and one can use integration

by part. Moreover, one has

〈Tun − Tvm, un − vm〉 = 〈Tu − Tv, u − v〉 + 〈Tun − Tu, u − v〉

+ 〈Tun − Tvm, (un − u) + (v − vm)〉 − 〈Tvm − Tv, u − v〉

Because un → u, vm → v, and T is continuous, we have {Tun} and {Tvm} are

bounded sequences which converge to Tu and Tv respectively. Therefore, the last

three terms in the equality above converge to 0. Finally, we obtain

〈Tu − Tv, u − v〉 = lim
m,n→∞

〈Tun − Tvm, un − vm〉 ≥ 0.

Passing again to T̃ , it yields that T̃ is monotone in V.
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3 Second-order equations

Applying Browder’s theorem, T̃ is surjective, therefore the equation Tu = f ∈ V∗ has a

solution in V. We have assumed that ∆pe ∈ V∗. It implies that the equation

−∆p(e + v) = f − ∆pe ∈ V∗

has at least one solution v for all right-hand side belonging to V∗. It completes the proof

of existence.

Moreover, this solution is unique. Assume the contrary that v,w ∈ X are two solutions

to the equation. There are two sequences {un} and {vm} belonging to C∞c (X \ Y) which

approximate u and v respectively. That T is a continuous operator implies

Tun − Tvm → Tu − Tv in X∗ as m, n→ ∞.

Together with the convergence un − vm → u − v in X, we have

〈Tun − Tvm, un − vm〉 → 〈Tu − Tv, u − v〉 = 0.

as m, n→ ∞.

On the other hand, we already know from (2.17)that

0 ≤ C
∫

X
|∇un − ∇vm|

pdg ≤ 〈Tun − Tvm, un − vm〉.

Passing to the limit as m, n→ ∞, it yields

lim
m,n→∞

∫
X
|∇un − ∇vm|

pdg = 0,

which actually gives us ∫
X
|∇u − ∇v|pdg = 0.

Because X is connected, we conclude that u − v ≡ C almost everywhere. �

3.2.2 Singular solutions of the p-Laplacian with an absorption term

We proceed with an equation having lower order terms which is given by

− div
(
|∇u|p−2∇u

)
+ g(u) = f (x), x ∈ X \ Y. (3.17)

This equation is said to involve an absorption term when g(u) is an increasing function.

An example is g(u) = |u|q−1u, q > 1. Existence of a solution with weak singularity, namely

u(x) ∼ ct−α, where α is as before Serrin’s exponent, has been shown by Friedman–Véron

in Euclidean space setting when p−1 < q < (N+1)(p−1)
N+1−p . Therefore, we expect that a similar

result works for the equation (3.17), namely, we can look for a solution whose regular

part stays in the space X or V.
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3.2 Singular solutions to equations involving p-Laplacian

Theorem 3.11. Let us suppose all assumptions as in Theorem 3.10. Assume further that

the nonlinearity g is an increasing function and satisfies

0 ≤ g′(s) ≤ C|s|p−2, for all s ∈ R.

Given an f ∈ V∗, there exists a solution to (3.17) which is of the form e+v, where e ∼ Ct−α

is the singular part uniquely determined and v ∈ X.

Proof. Let us define the operators T , F, and G : X→ X∗ by

Fv = − div
(
|∇(e + v)|p−2∇(e + v)

)
+ div(|∇e|p−2∇e),

Gv =g(e + v) − g(e),

Hv =(F + G)v.

(3.18)

We already know that F : X → X∗ is a bounded, continuous, and coercive operator. We

prove similarly the continuity of G. Moreover, G is compact.

Indeed, taking w ∈ C∞c (X \ Y), v ∈ X, and estimating∣∣∣〈Gv,w〉
∣∣∣ =

∣∣∣∣∣∫
X

(
g(e + v) − g(e)

)
wdg

∣∣∣∣∣ ≤ C
∫

X

∣∣∣g′(e + λ(x)v)
∣∣∣|vw|dg, where 0 ≤ λ(x) ≤ 1,

≤ C
∫

X

(
|e|p−2 + |v|p−2)|vw|dg ≤ C

(
||v||H0,δ ||w||H0,δ + ||v||p−1

H
0,0
p
||w||

H
0,0
p

)
≤ C

(
||v||X

)
||w||X,

here δ =
(N+1−p)(p−2)

2(p−1) .

Because C∞c (X \Y) is dense in X, the inequality above holds also for w ∈ X. Therefore,

G is well-defined. Furthermore, it is bounded as we have

||Gu||X∗ ≤ C||v||X.

The continuity of G can be proved similarly to the proof of Theorem 3.10.

Taking an arbitrary weakly convergent sequence {vn}, vn ⇀ v in X. Because of the

compact embeddings

H1,1
p (X) ↪→↪→ H0,0

p (X), H1,γ(X) ↪→↪→ H0,δ(X), (3.19)

as δ < γ, we have vn → v inH0,0
p (X) ∩H0,γ−1(X). Hence,

||Gvn −Gv||X∗ = sup
||w||X=1

∣∣∣∣〈Gvn −Gv,w〉
∣∣∣∣ = sup

||w||X=1

∣∣∣∣∣∫
X

(
g(e + vn) − g(e + v)

)
wdg

∣∣∣∣∣
≤ C sup

||w||X=1

∫
X

(
|e|p−2 + |vn − v|p−2

)
|vn − v||w|dg

≤ C
(
||vn − v||H0,δ + ||vn − v||p−1

H
0,0
p

)
.
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3 Second-order equations

Therefore, Gvn → Gv in X∗, so G is compact.

Using the fact that g is increasing, one knows

〈Gu, u〉 ≥ 0,∀u ∈ X.

Furthermore, F is coercive in V. Hence, H = F + G is also coercive in V.

Let us define an operator Φ : X × X→ X∗ which is given by

〈Φ(u,w), v〉 := 〈Fu, v〉 + 〈Gw, v〉 for all u, v,w ∈ X.

Then it is straightforward that Φ(u, u) = Hu.

We verify now all conditions in Leray–Lions Theorem 2.22.

(v) this property holds because Φ(u+tnh,w) ⇀ Φ(u,w) actually means that F(u+tnh) ⇀

F(u). The latter convergence is true due to continuity of F.

(vi) for u,w ∈ X, we have

〈
Φ(u, u) − Φ(w, u), u − w

〉
= 〈Fu − Fw, u − w〉 ≥ 0,

due to monotonicity of F.

(vii) Given a sequence {vn} which converges weakly to v in X, where vn, v ∈ C∞c (X \ Y),

and assume that

lim
n→∞

〈
Φ(vn, vn) − Φ(v, v), vn − v

〉
= 0.

Equivalently,

〈Fvn − Fv, vn − v〉 → 0, as n→ ∞. (3.20)

The latter is

〈Fvn − Fv, vn − v〉 =

∫
X
∇(vn − v)

[
|∇(e + vn)|p−2∇(e + vn)−

−|∇(e + v)|p−2∇(e + v)
]

dg ≥
∫

X
|∇vn − ∇v|pdg use (2.17).

Therefore, ||vn − v||2 → 0 as n→ ∞.

Now we use again (2.10) and (2.14) for vectors that for p ≥ 2:

|∇(e + v)|p−2 ≥ |∇e|p−2 − |∇v|p−2,
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3.3 Second-order equations

which yields

〈Fvn − Fv, vn − v〉 =

∫
X

[
2|∇e|p−2 − |∇v|p−2 − |∇vn|

p−2
]
|∇(vn − v)|2dg

≥ 2
∫

X
|∇e|p−2|∇(v − vn)|2dg − ||v − vn||

2/p

2 ×
(
||v||p−2/p

2 + ||vn||
p−2/p

2

)
.

Because vn ⇀ v in X, the sequence
{
||vn||2

}
is bounded and

lim
n→∞
〈Hv, vn − v〉 = 0.

Passing to the limit in the equality (3.20), one concludes ||v − vn||1 → 0 as n → ∞.

Restricting the operator H to V, using the equivalence of norms (3.15), the fact that

the seminorms ||vn − v||1 and ||vn − v||2 tend to 0 as n→ ∞ implies that vn → v in V.

Next, we use continuity of G to obtain the conclusion.

(viii) Let w ∈ X, un ⇀ u in X, and Φ(w, un) ⇀ z.

Because G is compact, the weak convergence un ⇀ u implies that Gun → Gu in X∗

and {un} is bounded. Therefore, taking an arbitrary function v ∈ X, we have

〈Φ(w, un), v〉 = 〈Fw, v〉 + 〈Gun, v〉 → 〈Fw + Gu, v〉.

By assumption, z = Fw + Gu. Moreover,

〈Φ(w, un), un〉 = 〈Fw + Gun, un〉 → 〈Fw + Gu, u〉 = 〈z, u〉 as n→ ∞.

Applying Leray–Lions theorem to the operator H̃ = H
∣∣∣
V

and Φ̃ = Φ
∣∣∣
V×V

, the equation

H̃ = f has at least one solution for all f ∈ V∗. �

3.3 Second-order quasilinear elliptic equations

In this section, we look for singular solutions of general second-order quasilinear elliptic

equations of the form (3.1):

− divF (x,∇u) − div g1(x, u) + g2(x, u,∇u) = f (x), x ∈ X \ Y. (3.21)

We aim at finding a singular solution to (3.1) under the following structural growth of the

nonlinearities:
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3 Second-order equations

(A) F (x, q) : X × cT X → cT X is differentiable in the variables (q1, . . . , qN), it is mea-

surable in the first component. Moreover, for all (x, qi) ∈ X × cT X, i = 1, 2, it

holds

〈
F (x, q1) − F (x, q2), q1 − q2

〉
≥ C1

(
|q1|

p−2 + |q2|
p−2

)
|q1 − q2|

2 (3.22)

and ∣∣∣F (x, q1) − F (x, q2)
∣∣∣ ≤ C2

(
|q1|

p−2 + |q2|
p−2

)
|q1 − q2| (3.23)

(B) g1(x, u) : X × R→ cT X is measurable with respect to the measure dg and∣∣∣g1(x, u1) − g1(x, u2)
∣∣∣ ≤ C

(
|u1|

m1−1−ε + |u2|
m1−1−ε

)
|u1 − u2|

σ (3.24)

(C) g2(x, u, q) : X × R × cT X → cT X fulfills

∣∣∣g2(x, u1, q1) − g2(x, u2, q2)
∣∣∣ ≤ C

(
|u1|

m2−1−ε + |u2|
m2−1−ε

)
|u1 − u2|

σ

+ (|q1|
m3−1−ε + |q2|

m3−1−ε)|q1 − q2|
σ (3.25)

where
m1 =

N(p − 1)
N + 1 − p

+
1 − σ

2

m2 =
(N + 1)(p − 1)

N + 1 − p
+

1 − σ
2

m3 =
(N + 1)(p − 1)

N
+

1 − σ
2

N + p − 1
N

(3.26)

0 < ε < min
{
m1,m2,m3

}
− 1, and 0 ≤ σ ≤ 1 are arbitrary numbers.

Remark 3.12. There are restrictions on the growth of all nonlinearities in comparison with

the general case of finite energy solutions introduced in [10, 38] due to the fact that the

regular part of the solution is controlled by two norms ofH1,1
p (X) andH1,γ(X).

Assume that we have known the existence of a formal solution e, we will find the regular

part v again in the space X.

Let us recall the embeddings

H1,1
p (X) ↪→ H0,0

p∗ (X), H1,γ(X) ↪→ H0,γ−1
2∗ (X),

and the compact embeddings

H1,1
p (X) ↪→↪→ H0,0

q1
(X), H1,γ(X) ↪→↪→ H0,γ−1

q2
(X),
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3.3 Second-order equations

where

p∗ =
(N + 1)p
N + 1 − p

, 2∗ =
2(N + 1)

N − 1
are the critical Sobolev exponents, and 1 ≤ q1 < p∗, 1 ≤ q2 < 2∗.

We define the following operators F,G : X→ X∗ by the formulae

Fv = − divF (x,∇e + ∇v) + divF (x,∇e),

G1v = − div g1(x, e + v) + div g1(x, e),

G2v =g2(x, e + v,∇e + ∇v) − g2(x, e,∇e),

Gv =G1v + G2v.

For an element w ∈ C∞c (X \ Y), we can rewrite the actions of F and G as follows

〈Fv,w〉 =

∫
X

[
F (x,∇e + ∇v) − F (x,∇e)

]
∇wdg,

〈G1v,w〉 =

∫
X

[
g1(x, e + v) − g1(x, e)

]
∇wdg,

〈G2v,w〉 =

∫
X

[
g2(x, e + v,∇e + ∇v) − g2(x, e,∇e)

]
wdg.

Now we will show that F, G1, G2 are well-defined on X, bounded and continuous. First,

let w ∈ C∞c (X \ Y) be a test function, we have∣∣∣〈Fv,w〉
∣∣∣ =

∣∣∣∣∣∫
X

[
F (x,∇e + ∇v) − F (x,∇e)

]
∇wdg

∣∣∣∣∣
≤ C

∫
X

(
|∇(e + v)|p−2 + |∇e|p−2

)
|∇v||∇w|dg, use (3.23)

≤ C
∫

X
(|∇e|p−2 + |∇v|p−2)|∇v||∇w|dg, use (2.14)

≤ C
(
||∇v||H0,γ−1 ||∇w||H0,γ−1 + ||∇v||p−1

H
0,0
p
||∇w||

H
0,0
p

)
≤ C(||v||X)||w||X

This estimate implies that F : X→ X∗ is well-defined and it is also a bounded operator.

By a similar proof, we can show that F is continuous. Given a sequence {vn} which

converges to v in X, we have for all w ∈ C∞c (X \ Y)∣∣∣〈Fv − Fvn,w〉
∣∣∣v =

∣∣∣∣∣∫
X

[
F (x,∇e + ∇v) − F (x,∇e + ∇vn)

]
∇wdg

∣∣∣∣∣
≤ C

(
||∇(v − vn)||H0,γ−1 ||∇w||H0,γ−1 + ||∇(v − vn)||p−1

H
0,0
p
||∇w||

H
0,0
p

)
Using density argument and convergence of vn to v, we obtain

lim
n→∞
〈Fv − Fvn,w〉 = 0.
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3 Second-order equations

Furthermore, the condition (3.22) guarantees that the operator F has property (S )+ in the

subset V of X. Indeed, taking an arbitrary sequence {vn} which converges weakly to v in

X, and that

lim sup
n→∞

〈Fvn, vn − v〉 ≤ 0.

By approximation we can assume that vn and v belong to C∞c (X \ Y). The weak conver-

gence vn ⇀ v also gives us

lim sup
n→∞

〈Fvn − Fv, vn − v〉 ≤ 0.

The pairing is estimated as follows

〈Fvn − Fv, vn − v〉 =

∫
X

[
F (x,∇e + ∇vn) − F (x,∇e + ∇v)

]
∇(vn − v)dg

≥

∫
X
|∇vn − ∇v|2

(
|∇e + ∇vn|

p−2 + |∇e + ∇v|p−2)dg

Now we use again the facts that

|∇e + ∇vn|
p−2 + |∇e + ∇v|p−2 ≥ |∇vn − ∇v|p−2

which yields that ∇vn → ∇v in
(
H

0,0
p (X)

)N+1 as n→ ∞.

Again we can estimate

|∇e + ∇vn|
p−2 + |∇e + ∇v|p−2 ≥ 2|∇e|p−2 − |∇vn|

p−2 − |∇v|p−2.

Hence,

〈Fvn − Fv, vn − v〉 ≥
∫

X
|∇vn − ∇v|2

[
2|∇e|p−2 − |∇vn|

p−2 − |∇v|p−2
]

dg

≥ ||vn − v||1 − ||vn − v||22
(
||vn||

p−2
2 + ||v||p−2

2
)
.

The last term tends to 0 as n → ∞ because ||vn||
p−2
2 , ||v||p−2

2 are bounded, ||vn − v||22 → 0.

Passing to the limit, we obtain the limit ∇vn → ∇v inH0,γ−1(X)∩H0,0
p (X) componentwise

as n → ∞. Therefore, restricting to functions v ∈ V, we obtain the convergence vn → v

in the topology of X. Hence, we have shown F̃ = F
∣∣∣
V

has property (S )+.

Next, we verify that the operators G1, G2 are continuous and compact. We take arbi-

trary elements v ∈ X and a test function w ∈ C∞c (X \ Y), it holds∣∣∣〈G1v,w〉
∣∣∣ =

∣∣∣∣∣∫
X

[
g1(x, e + v) − g1(x, e)

]
∇wdg

∣∣∣∣∣
≤ C

∫
X

(
|e + v|m1−1−ε + |e|m1−1−ε

)
|v|σ|∇w|dg

≤ C
∫

X

(
|e|m1−1−ε + |v|m1−1−ε

)
|v|σ|∇w|dg

(3.27)
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3.3 Second-order equations

Using Hölder inequality, we have∫
X
|e|m1−1−ε|v|σ|∇w|dg ≤ ||v||σ

H
0,δ1/σ
2σ

|||∇w|||H0,γ−1 ≤ ||v||σH1,γ |||∇w|||H0,γ−1∫
X
|v|m1−1+σ−ε|∇w|dg ≤ ||v||m1−1+σ−ε

H
0,0
p′(m1−1+σ−ε)

|||∇w|||
H

0,0
p
≤ ||v||m1−1+σ−ε

H
0,0
p∗

||∇w||
H

0,0
p

where δ1 =
N+1−p

p−1 (m1 − 1 − ε) − (γ − 1). We have used the embeddings

H1,γ(X) ↪→↪→ H0,δ1/σ
2σ (X), H

0,0
p∗ (X) ↪→↪→ H0,0

p′(m1−1+σ−ε)(X)

as ε > 0. Moreover, these embeddings are compact. It yields that for any sequence

{vn} which converges weakly to v in X, vn converges strongly to v in H0,δ1/σ
2σ (X) and

H
0,0
p′(m1−1+σ−ε)(X). By repeating the estimate (3.27), one has

0 ≤
∣∣∣〈G1vn −G1v,w〉

∣∣∣ =

∣∣∣∣∣∫
X

[
g1(x, e + vn) − g1(x, e + v)

]
∇wdg

∣∣∣∣∣
≤ ||vn − v||σ

H
0,δ1/σ
2σ

|||∇w|||H0,γ−1 + ||vn − v||m1−1+σ−ε

H
0,0
p′(m1−1+σ−ε)

||∇w||
H

0,0
p

Hence, both sides of this inequality converges to 0 as n → ∞, i.e. Gvn ⇀ Gv in X∗. So

G1 is also a compact operator.

It is also true for the operator G2 that∣∣∣〈G2v,w〉
∣∣∣ =

∣∣∣∣∣∫
X

[
g2(x, e + v,∇e + ∇v) − g2(x, e,∇e)

]
wdg

∣∣∣∣∣
≤ C

∫
X

(
|e + v|m2−1−ε + |e|m2−1−ε

)
|v|σ|w|dg+

+
(
|∇(e + v)|m3−1−ε + |∇e|m3−1−ε

)
|∇v|σ|w|dg, use (3.25)

≤ C
∫

X

(
|e|m2−1−ε + |v|m2−1−ε

)
|v|σ|w|dg +

(
|∇e|m3−1−ε + |∇v|m3−1−ε

)
|∇v|σ|w|dg.

Using Hölder inequality, we have∫
X
|e|m2−1−ε|v|σ|w|dg ≤ ||v||σ

H
0,δ2/σ
(2∗)′σ

||w||
H

0,γ−1
2∗
≤ ||v||σ

H1,γ ||w||H1,γ∫
X
|v|m2−1+σ−ε|w|dg ≤ ||v||m2−1+σ−ε

H
0,0
(p∗)′(m2−1+σ−ε)

||w||
H

0,0
p∗
≤ ||v||m2−1+σ−ε

H
1,1
p

||w||
H

1,1
p∫

X
|∇v|m3−1+σ−ε|w|dg ≤ |||∇v|||m3−1+σ−ε

H
0,0
(p∗)′(m3−1+σ−ε)

||w||
H

0,0
p∗
≤ |||∇v|||m3−1+σ−ε

H
0,0
p

||w||
H

1,1
p∫

X
|∇e|m3−1−ε|∇v|σ|w|dg ≤ |||∇v|||σ

H
0,δ3/σ
(2∗)′σ

||w||
H

0,γ−1
2∗
≤ |||∇v|||σ

H0,γ−1 ||w||H1,γ

where

δ2 = (m2 − 1 − ε)
N + 1 − p

(p − 1)
− (γ − 1), δ3 =

(m3 − 1 − ε)N
p − 1

+ 1 − γ,
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3 Second-order equations

which guarantee the embeddings

H1,γ(X) ↪→ H0,δ2/σ
(2∗)′σ (X), H0,γ−1(X) ↪→ H0,δ3/σ

(2∗)′σ (X).

The embeddings used for v are compact, due to the choice of ε > 0, we conclude that G2

is a compact operator.

Because the (S )+ property is stable under compact perturbations, the operator F + G

has also this property on the subset V of X. So we have proved the following result.

Theorem 3.13. Under the conditions (3.22), (3.23), (3.24), (3.25), the operator F +

G : X→ X∗ possesses the property (S )+.

In the next part, we will examine several cases when the mapping degree is non-

zero, hence existence holds. Our consideration here includes the two existence theorems

mentioned at the beginning of this section in the setting of a manifold with conic points.

3.3.1 Serrin’s case

We refer to Serrin’s case the equations with lower order terms whose growth is smaller

than the one of the principal part, namely m1,m2,m3 < p − 1. Moreover, we require that

0 ≤ σ < 1.

Using again the structure assumptions (3.22), (3.25), we estimate first for an element

v ∈ C∞c (X \ Y)〈
(F + G)v, v

〉
≥ C0

(
|||∇v|||p

H
0,0
p

+ |||∇v|||2
H0,γ−1

)
−C1||v||σ+1

H1,γ−

−C2

(
||v||m1+σ−ε

H
1,1
p

+ ||v||m2+σ−ε

H
1,1
p

+ ||v||m3+σ−ε

H
1,1
p

)
(3.28)

This inequality holds also for u ∈ X due to density of C∞c (X \Y) in X. Now we restrict this

estimate to v ∈ V, it is true that〈
(F + G)v, v

〉
≥ C0

(
||v||p
H

1,1
p

+ ||v||2
H1,γ

)
−C1||v||σ+1

H1,γ−

−C2

(
||v||m1+σ−ε

H
1,1
p

+ ||v||m2+σ−ε

H
1,1
p

+ ||v||m3+σ−ε

H
1,1
p

)
(3.29)

We have put assumptions that σ < 1 and m1,m2,m3 < p − 1, therefore, when v ∈ V with

||v||X → ∞, either the norm ||v||
H

1,1
p

or the norm ||v||H1,γ tends to infinity, the first two terms

always dominate the other and dominate also ||v||X. Therefore, we conclude that

lim
v∈V
||v||X→∞

〈
(F + G)v, v

〉
||v||X

= ∞.
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3.3 Second-order equations

There exists a number R > 0 such that for all v ∈ V and ||v||X ≥ R, it holds〈
(F + G)v, v

〉
||v||X

≥ || f ||X∗ .

Consequently, we can assign to the mapping F + G a degree on the ball B(0,R) in V with

respect to f ∈ V∗. Furthermore, by lemma 2.31 this degree Deg(F + G, B(0,R), f ) = 1.

The existence of the equation (3.1) then follows.

We have proved the following result:

Theorem 3.14. Let p ≥ 2 and assume that the nonlinearities F , g1, and g2 satisfy the

conditions (3.22), (3.23), (3.24), (3.25), where m1,m2,m3 < p − 1 and σ < 1. Then given

an f ∈ V∗, the equations (3.1) has a singular solution of the form e + v, where e ∼ ct−α

as t → 0 and v ∈ V.

3.3.2 Equations with an absorption term g(u)

We refer this case to the situation that g1(u) = 0 and g2(x, u,∇u) = g2(u). One example is

the case g2(u) = |u|q−1u, where p − 1 < q < (N+1)(p−1)
N+1−p . Our result extends the one in [12].

Theorem 3.15. Assume that the nonlinearity g is an increasing function with respect to

the second variable. Given an f ∈ V∗, there exists a solution to (3.17) which is of the

form e + v, where e ∼ Ct−α and v ∈ V ⊂ X.

Proof. We will verify that the operator F + G is coercive. Indeed, taking an arbitrary

element u ∈ C∞c (X \ Y), we have

〈Gu, u〉 =

∫
X

(
g2(e + u) − g2(e)

)
udg ≥ 0,

because g2 is an increasing function. Therefore, by density argument we also obtain that

〈Gu, u〉 ≥ 0 for all u ∈ X. Combining with the fact that F is coercive, so is F+G. Then we

repeat the argument in the theorem above and conclude that this mapping has a non-zero

degree on a large enough ball B(0,R) ⊂ V. So existence is obvious. �

3.3.3 General assumption about coercivity

Theorem 3.16. Let p ≥ 2 and assume that for (x, u1, q1), (x, u2, q2) ∈ X × R ×c T X, it

holds〈
F (x, q1) − F (x, q2), q1 − q2

〉
+

〈
g1(x, u1) − g1(x, u2), q1 − q2

〉
+

〈
g2(x, u1, q1) − g2(x, u2, q2), u1 − u2

〉
≥

(
|q1|

p−2 + |q2|
p−2

)
|q1 − q2|

2 (3.30)
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3 Second-order equations

Then for all f ∈ V∗, the equation (3.1) will have at least a solution e + v, where v ∈ V.

Proof. It remains to show that the operator is coercive, which follows from the growth

condition (3.30). Indeed, we estimate first for all u ∈ C∞c (X \ Y)∣∣∣〈Fv, v〉 + 〈G1v, v〉 + 〈G2v, v〉
∣∣∣C ≥ ∫

X

(
|∇e + ∇v|p−2 + |∇e|p−2

)
|∇v|2dg

≥ C
∫

X

(
|∇e|p−2|∇v|2 + |∇v|p

)
dg

Hence, the operator F + G1 + G2 is coercive operator in X, and it induces a coercive

operator in V. Repeating the argument in the two theorems above, this operator has non-

zero degree on a large enough ball B(0,R) ⊂ V. Existence then follows. �
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4 Higher-order quasilinear elliptic

equations

In this chapter, we will be concerned about higher-order quasilinear elliptic equations.

As we have mentioned, in higher-order case, the methods of comparison principle and

truncation no longer work. We will approach existence questions by using nonlinear

functional analysis.

Equations in divergent form have some monotone property. One knows from theory

of monotone operators the fact that we can enlarge the class of lower order terms in in-

vestigation when one requires more general properties of the principal part. For a detailed

and careful look into quasilinear elliptic equations in smooth domains, we refer to the

monograph of Drábek, Kufner, Nicolosi [9]. So far, there have been no existence results

in the singular manifolds setting.

Let us also emphasize our approach to verify existence. We do not follow the usual

procedure, namely start with a problem itself and try to work out in which function spaces

the solutions exist. Instead we will fix in advance a function space V then set up appro-

priate problems (i.e. the operator A and the nonlinearities in consideration) to which the

theory is applicable. Therefore, we verify some important properties of functions belong-

ing to a certain maximal domain D(Aγ,p
max) of a given general cone-degenerate differential

operator A and some embedding theorems.

We begin this chapter with the cone calculus, which is mostly taken from the books

of Egorov-Schulze [11] and of Schulze [33] for L2 theory; and the paper [31] of Seiler-

Schrohe on Lp theory. Using knowledge of parametrices, we can prove that in the case

A′A is an elliptic operator, D(Amin) also has finite codimension in D(Amax). This combines

with the fact that D(Amin) is compacty embedded in H0,γ
p (X) also gives us the compact

embedding D(Amax) ↪→↪→ H0,γ
p (X). We show then the existence of finite energy solutions

and singular solutions. The key point is again the assumption about the existence of



4 Higher-order equations

a formal solution or equivalently the solvability of corresponding nonlinear eigenvalue

problems, see Equation (4.26).

The need for establishing existence of solutions of higher-order equations is certainly

of mathematical interest. Moreover, there are also meaningful models in elasticity which

serve as examples of the equations we are interested in. Let us recall two examples in [38,

Chapter 1]. The first one is the model of the elasto-plastic bending of a rigidly clamped

plate. The deflection of the plate fulfills the equation

∂2

∂x2

[
g
(
H2(u)

)(∂2u
∂x2 +

1
2
∂2u
∂y2

)]
+

∂2

∂x∂y

[
g
(
H2(u)

) ∂2u
∂x∂y

]
+
∂2

∂y2

[
g
(
H2(u)

)(∂2u
∂y2 +

1
2
∂2u
∂x2

)]
= f (x, y), (x, y) ∈ Ω ⊂ R2,

and the boundary conditions

u
∣∣∣
∂Ω

=
∂u
∂n

∣∣∣
∂Ω

= 0,

where

H2(u) =

(
∂2u
∂x2

)2

+

(
∂2u
∂y2

)2

+

(
∂2u
∂x∂y

)2

+
∂2u
∂x2

∂2u
∂y2

and g(t) is a function characterizing the given material.

The second example is the system of equations of strong bending of thin plates. The

deflection u and the stress function F satisfy

D
h

∆2u − L(u, F) =
1
h

q(x, y),

2
E

∆2F + L(u, u) = 0, (x, y) ∈ Ω ⊂ R2,

u
∣∣∣
∂Ω

=
∂u
∂n

∣∣∣
∂Ω

= F
∣∣∣
∂Ω

=
∂F
∂n

∣∣∣
∂Ω

= 0,

where h, E, and D are constants, ∆ is the Laplacian and

L(u, F) =
∂2u
∂x2

∂2F
∂y2 +

∂2u
∂y2

∂2F
∂x2 − 2

∂2u
∂x∂y

∂2F
∂x∂y

.

4.1 Cone algebra with asymptotics Cν(X, g)

We have summarized in chapter 1 the definitions of cone-degenerate differential operators

and of weighted Sobolev spaces, and some properties of these operators acting between

these spaces including continuity and ellipticity. In this chapter, we summarize main

results in the cone algebra with asymptotics. It contains another scale of so-called cone

Sobolev spaces with asymptotics. An operator in this calculus is associated with two
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4.1 Cone algebra with asymptotics Cν(X, g)

symbols whose invertibility is equal to ellipticity of the operator, and the ellipticity is

equivalent to Fredholm property of the operator acting between cone Sobolev spaces with

asymptotics. All statements are correct in the bundle case, however, for simple notation,

we will suspend indicating the bundle in this exposition.

4.1.1 Mellin transformation

Let us recall the form of cone-degenerate differential operator (2.1). The appearance of

the derivative −t∂t in the formula motivates us to use the Mellin transform, which maps

each time derivative with respect to −t∂t to z. Moreover, it is shown in [11, 7.2.3, Propo-

sition 1] that we can employ the Mellin transform to quantize operators on manifolds

with singularities. The following is the Mellin transform for scalar functions belonging to

C∞c (R+).

Definition 4.1. Let u(t) ∈ C∞c (R+), z ∈ C, then the Mellin transform of u is defined by the

following formula

Mu(z) =

∫ ∞

0
tz−1u(t)dt, (4.1)

and the image is an entire functionMu(z) ∈ A(C).

Here are some important properties of this transform:

Proposition 4.2. For t ∈ R+, z, p ∈ C, β ∈ R \ {0}, and u ∈ C∞0 (R+), we have

M(−t∂tu)(z) = zMu(z),

M(t−pu)(z) = (Mu)(z − p),

M((log t)u)(z) = (∂zMu)(z),

M(u(tβ))(z) = β−1(Mu)(β−1z).

The Mellin transform can be extended to more general spaces of distributions on R+,

namely to the weighted space L2,γ(R+) = tγL2(R+) for a weight γ ∈ R. We notice the

following important link between the Mellin and Fourier transforms.

Let us define S γu(t) = e−(1/2−γ)tu(e−t). Then S γ : C∞c (R+)→ C∞c (R) is an isomorphism.

Therefore, S γ extends to an isomorphism

S γ : tγL2(R+)→ L2(R)
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4 Higher-order equations

We already know that the Fourier transform is an isomorphism between the following L2

spaces

F : L2(R, dt)→ L2(R, dρ)

where F v(ρ) =
∫
R

e−itρdt. Composing these maps, we obtain an isomorphism

F S γ : tγL2(R+)→ L2(Rρ).

And simple calculation shows us

(F S γu)(ρ) =Mu (1/2 − γ + iτρ) .

Hence, the Mellin transform is an isomorphism

M : L2,γ(R+)→ L2(Γ1/2−γ).

Restricting the Mellin transform to the line Γ1/2−γ =
{
z ∈ C : <z = 1/2 − γ

}
yields the so-

called weighted Mellin transform

Mγu =Mu|Γ1/2−γ
=

∫ ∞

0
t1/2−γ+iτ−1u(t)dt, (4.2)

which is an isomorphismMγ : L2,γ(R+)→ L2(Γ1/2−γ). Its inverse is given by the formula

M−1
γ g(t) =

1
2πi

∫
Γ1/2−γ

t−zg(z)dz. (4.3)

4.1.2 Cone weighted Sobolev spaces with asymptotics

Besides cone Sobolev spaces, there is another version of those functional spaces which

describes additional information about the behavior of those functions when approaching

t = 0. Solutions to linear elliptic equations on manifolds with conic points are proved to

possess conormal asymptotic expansions

u(t, y) ∼
∑

j

m j∑
k=0

ψ jk(y)t−p j lnk t, as t → 0,

where p j ∈ C are singular exponents. The data (p j,m j) and the space L j containing

ψ jk(y) are determined uniquely from the linear operator. Now we recall how asymptotic

information is organized and attached to functional spaces.

Given a weight γ ∈ R and a closed weight interval Θ = [ζ, 0], −∞ ≤ ζ ≤ 0, then the

weight data (γ,Θ) associates with the following weight strip

Γ(γ,Θ) =

{
z ∈ C

∣∣∣∣ N + 1
p
− γ + ζ < <z <

N + 1
p
− γ

}
.
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4.1 Cone algebra with asymptotics Cν(X, g)

Definition 4.3. (i) An asymptotic type P associated with the finite weight data (γ,Θ),

that is −∞ < ζ ≤ 0, is a sequence

P =

{
(p j,m j, L j)

∣∣∣∣ p j ∈ Γ(γ,Θ), m j ∈ Z+, j = 0, . . . ,N
}

for some N ∈ N0, and L j are subspaces of C∞(X).

In the case of infinite weight ζ = −∞, one requires further that the real part of the

exponents <p j → −∞ as j → ∞. We denote by As(γ,Θ) the set of all discrete

asymptotic types associated with the weight data (γ,Θ).

(ii) Given two asymptotic types P =
{(

p j,m j, L j

)}
and P̃ =

{(
p̃k, m̃k, L̃k

)}
. We will write

P ≤ P̃ if
{
p j

}
⊂

{
p̃k

}
, moreover, if p j = q̃k then m j ≤ m̃k and L j ⊂ L̃k.

(iii) Let P be an asymptotic type and ω(t) be a fixed cut-off function. Let us define

EP =

ω(t)
N∑

j=1

m j∑
k=0

ψ jk(y)t−p j logk t
∣∣∣ ψ jk(y) ∈ L j

 .
This space has the natural topology of a finite-dimensional space.

(iv) Define the weighted Sobolev spaces with asymptotics as

H
s,γ
p,P(X) = H s,γ−ζ

p (X) + EP. (4.4)

The spaceH s,γ
p,P(X) is a Banach space with the topology of non-direct sum of Banach

spaces. At weight γ that the corresponding weight line contains some poles of the

asymptotic type P, one uses interpolation to defineH s,γ
p,P(X).

(v) In case the asymptotic type P associates with an infinite weight interval (−∞, 0], we

define for each l ∈ N a finite weight interval Θl = [−l, 0] and consider all asymptotic

types:

Pl =
{
(p,m, L) ∈ P

∣∣∣ p ∈ Γ(γ,Θl)

}
associated with Θl. Then we define

H
s,γ
p,P(X) =

⋂
l∈N

H
s,γ
p,Pl

(X).

Its has the Fréchet topology of projective limit.
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4 Higher-order equations

Remark 4.4. It is evident that Pl ⊂ Pl+1 and the embedding H s,γ
p,Pl+1

(X) ↪→ H s,γ
p,Pl

(X) is

continuous. Moreover, H s,γ
p,P(X) = H s,γ−ζ(X) when max

{
<p j

}
p j∈P > γ − ζ, the space

H
s,γ
p,P(X) is well-defined and is again a Banach space.

Remark 4.5. In the case s, γ ∈ R, ζ < 0 (which means that one uses open weight interval),

and P ∈ As(γ,Θ) where the weight strip is

Γ(γ,Θ) =

{
z ∈ C

∣∣∣∣ N + 1
p
− γ + ζ < <z <

N + 1
p
− γ

}
,

one also considers the spaces

H
s,γ
p,Θ(X) :=

⋂
ε>0

H s,γ+ζ−ε
p (X).

These scales of spaces are Fréchet with the projective limit topology. The weighted

Sobolev spaces with asymptotics are defined as the sum

H
s,γ
p,P(X) = H

s,γ
p,Θ(X) + EP. (4.5)

The spaceH s,γ
p,P(X) has the natural Fréchet topology of non-direct sum.

Remark 4.6. In the case p = 2, weighted Sobolev spaces with asymptotics are Hilbert

spaces. Their properties are considered in [27, Section 2.4].

Remark 4.7. The weighted space with asymptotic can be defined invariantly on manifolds

when we require further the so-called shadow condition on the asymptotic type, see [19].

An asymptotic type P ∈ As(g) for g = (γ,Θ), γ ∈ R, Θ = (−∞, 0] is said to satisfy the

shadow condition if

(p,m) ∈ P⇒
(
p − j,m( j)

)
∈ P (4.6)

for all j ∈ N and m( j) ≥ m. For finite weight interval Θ = (ζ, 0] and ζ > −∞ then (4.6)

holds for finite number of j ∈ N that<p − j > N+1
p − γ + ζ.

Example 4.8. A function u ∈ C∞0
(
R+,C∞(Y)

)
, ω(t)u ∈ H0,N/2(X) in the case δ = 0, p = 2,

has Taylor expansion, where p j = − j, m j = 0 for j ∈ N.

A function u ∈ C∞0 (X) which vanishes up to infinite order at the boundary possesses

the so-called empty asymptotic, we will denote by O.

We list some properties of the spaces with asymptoticsH s,γ
p,P(X):

Proposition 4.9. Let s, s′ ∈ R, ζ ≤ 0, P ∈ As(γ,Θ). Then

a) H s,γ
p,P(X) = H

s,γ
p (X) when ζ = 0.
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b) H s,γ
p,O(X) = H

s,γ−ζ
p (X).

c) H s,γ
p,P(X) = H

s,γ−a
p,P̃

(X), where a > 0 and the asymptotic type P̃ associates with the

weight data
(
γ − a, [ζ − a, 0]

)
.

d) We haveH s,γ
p,P(X) = H

s,γ
p,O(X) ⊕ EP, provided that<p j ,

N+1
p − γ + ζ for all p j ∈ P.

Descriptions of Mellin images of distributions when p = 2

It can easily be checked that the function

ϕ(t, y) = ωt−α logk tψ(y), t > 0, ψ(y) ∈ C∞(Y)

belongs toH s,γ
p (X) if and only if<α < N+1

p − γ.

The following statements are taken from [11, Section 8.1.1].

The Mellin imageMγ− N
2
EP ⊂ A

(
Γ(γ,Θ) \πCP,C∞(Y)

)
. Each element h(z) ∈ Mγ− N

2
EP is

meromorphic in the weight strip Γ(γ,Θ) with only poles at p j ∈ πCP of multiplicities m j +1.

Furthermore, for any πCP− excision function χ(z), we have that

χ(z)h(z)
∣∣∣
Γβ
∈ S

(
Γβ,C∞(Y)

)
holds uniformly in c ≤ β ≤ c′, for all c, c′ ∈ R.

H
s,γ
2,Θ(X) is the subspace of all u ∈ H s,γ(X) whose Mellin image

h(z) =Mγ− N
2
(ωu)(z)

is first given on the line Γ (N+1)
p −γ and has extension to a holomorphic function on the half

plane {
z
∣∣∣ N + 1

p
− γ + ζ < z

}
.

Moreover, hβ = h
∣∣∣
Γβ

has the following property

(F −1hβ)(t) ∈ H s
p(Rn+1)

uniformly in c ≤ β ≤ c′ for every c < c′ ∈ R.

4.1.3 Green operators

Now we introduce all ingredients for the cone calculus. The residual operators in the

cone algebra are Green operators and smoothing Mellin operators. In particular, one can

invert an elliptic operator in the cone algebra modulo Green operators, or modulo Green

and smoothing Mellin operators. We define these operators by pointing out their mapping

properties.
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4 Higher-order equations

Definition 4.10 ([34, Definition 3.1]). Let g = (γ, δ,Θ) be a weight data, γ, δ ∈ R, Θ =

(ζ, 0],−∞ ≤ ζ < 0. Let P ∈ As(δ, θ) and Q ∈ As(−γ, θ) be two asymptotic types. Then

the space of Green operators CG(X, g)P,Q with asymptotic types P, Q is the space of all

operators

G ∈
⋂
s∈R

L
(
H s,γ(X),H∞,δ(X)

)
which for all s ∈ R induce continuous operators

G : H s,γ(X)→ H∞,δP (X),

G∗ : H s,−δ(X)→ H∞,−γQ (X),
(4.7)

here the adjoint is taken with respect to the inner product ofH0,0
2 (dµ).

The space of Green operators is defined as CG(X, g) =
⋃

P,Q CG(X, g)P,Q.

The subspace CG(X, g)P,Q is furnished with the projective topologies⋂
s∈R

L
(
H s,γ

p (X),H∞,δP (X)
)
,

⋂
s∈R

L
(
H

s,−δ
p′ (X),H∞,−γQ (X)

)
.

Because of property (4.7), every Green operator G ∈ CG(X, g) is a compact operator

belonging to L
(
H s,γ(X),H t,δ(X)

)
for all s, t ∈ R.

Green operators can be characterized by their Schwartz kernels.

Theorem 4.11 ([34, Theorem 4.9]). Given a Green operator G with data as in definition

4.10. Then G has an integral kernel

KG ∈
(
C∞δ,Q(X) ⊗̂π C∞−γ(X)

)
∩ (C∞δ (X) ⊗̂π C∞

−γ,P
(X)),

where by definition, C∞δ,Q(X) is the space of all smooth functions which have asymptotic

behavior described by Q when approaching the boundary and P is the asymptotic type

adjoint to P, namely if P =
{
(p j,m j, L j)

}
then P =

{
(p j,m j, L j)

}
.

In case ζ = ∞ then

KG ∈ C
∞
δ,Q(X) ⊗̂π C∞

−γ,P
(X).

Because of this characterization, the mapping properties of Green operators in (4.7)

are satisfied for all 1 < p < ∞ provided that it holds for some p, that means

G : H s,γ
p (X)→ H∞,δp,P (X), (4.8)

G∗ : H s,−δ
p′ (X)→ H∞,−γp′,Q (X). (4.9)
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4.1 Cone algebra with asymptotics Cν(X, g)

are continuous.

Moreover, this characterization allows us to change the weight data associated with the

prescribed Green operator, as long as we do not interfere with the poles in the asymptotic

types.

We fix from now on the notation of weight data g = (γ, γ − ν,Θ) and Θ = (−k, 0]

for some finite number k, and we are going to define the cone algebra Cν(X, g) of cone

pseudo-differential operators of order ν.

4.1.4 Mellin pseudo-differential operators

On manifolds with conic singularities, Mellin transform is also employed to express

pseudo-differential operators instead of Fourier transform. The symbols of Mellin pseudo-

differential operators turn out to be parameter-dependent pseudo-differential operators on

the boundary Y .

A Mellin symbol of order ν is a symbol a(t, t′, z) ∈ C∞
(
R+ × R+, Lν(Y; Γ 1

2−γ
)
)

tak-

ing values in the space of parameter-dependent pseudo-differential operators Lν(Y; Γ 1
2−γ

).

The Mellin pseudo-differential operator corresponding to a(t, t′, z) is determined by the

formula

opγM(h)u(t) =
1

2πi

∫
Γ 1

2 −γ

t−za(t, t′, z)
{∫ ∞

0
rz−1u(r)dr

}
dz, (4.10)

where u(t) ∈ C∞0 (R+ × Y). One understands here the Mellin transform with respect to the

variable t, and a(t, t′, z) also acts on the imageMu(z) as on a function on the boundary.

For the calculus of general Mellin pseudo-differential operators, we refer to the book

by Egorov–Schulze [11, Section 7.2.3].

Cone-degenerate differential operators in Diffν
c(X) are Mellin pseudo-differential oper-

ators with symbols h(t, z) =
∑ν

j=0 a j(t)z j, which are differential operators on the boundary

of order at most ν. Moreover, this symbol h(t, z) is an entire function in z ∈ C. It is

also natural to consider a special class of symbols, namely holomorphic operator-valued

symbols.

Definition 4.12 ([11, 7.2.4, Definition 5]). Let ν ∈ R, the class Mν
O(Y) of holomorphic

Mellin symbols consists of all operator families h(z) which belong to A
(
C, Lνcl(Y)

)
and

furthermore

h(β + iτ) ∈ Lνcl(Y; Γβ)

for all β ∈ R, uniformly in [β0, β1], for −∞ < β0 < β1 < +∞.
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4 Higher-order equations

Besides cone-degenerate differential operators, another example of holomorphic Mellin

symbols is the image under the kernel cut-off operator, see [33, 7.2.4, Theorem 2]:

H(ψ) : C∞
(
R+ × R+, Lνcl(Y,Γ0)

)
→ C∞

(
R+ × R+,Mν

O(Y)
)

a(t, t′, β) 7→ M 1
2 ,β→z

{
ψ(β)

(
M−1

1
2 ,z→β

a
)
(t, t′, β)

}
,

where ψ(β) ∈ C∞(R+) with ψ(β) = 1 for |β − 1| ≤ ε < 1
2 .

In cone calculus we also want to find parametrix for an elliptic pseudo-differential

operator, in particular, for the one with holomorphic Mellin symbol. Therefore, in the

procedure for inverting those symbols, one encounters a class of meromorphic Mellin

symbols. To describe the meromorphic structure, one needs the notion of asymptotic type

for symbols.

Definition 4.13 ([11, 8.1.2, Definition 1]). A discrete asymptotic type R (for Mellin sym-

bols) is a sequence

P =

{
(r j, n j,N j)

∣∣∣∣ <r j → ±∞ for j→ ∓∞, n j ∈ Z+, j ∈ Z
}
,

where N j ⊂ L−∞(Y) are finite-dimensional subspaces containing finite rank operators.

Definition 4.14 ([11, 8.1.2]). Let R be an asymptotic type for Mellin symbols. The space

M−∞
R (Y) of smooth Mellin symbols consists of all meromorphic functions

h(z) ∈ A
(
C \ πCR, L−∞(Y)

)
which is meromorphic with poles at r j of multiplicities n j + 1 and whose Laurent coef-

ficient at (z − r j)−(k+1) belongs to N j for all 0 ≤ k ≤ n j and j ∈ Z. Moreover, for any

πCR-excision function χ(z) we have

(χh)(β + iτ) ∈ L−∞(Y;Rτ)

uniformly in [β0, β1], for −∞ < β0 < β1 < +∞.

For general order ν ∈ Z ∪ −∞, we set

Mν
R(Y) =Mν

O(Y) +M−∞
R (Y).

The spaceMν
P(Y) then is a Fréchet space with the topology of non-direct sum.

These smoothing Mellin symbols give rise to the class of Mellin smoothing opera-

tors. These operators on one hand improve smoothness with respect to the y variables,

and on the other hand also create some asymptotic as approaching the boundary. Smooth-

ing Mellin operators and Green operators also form an algebra Cν
M+G(X) with symbolic

structure, for details see [33].
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4.1 Cone algebra with asymptotics Cν(X, g)

Definition 4.15 ([11, Section 8.1.2]). Smoothing Mellin operators are finite linear com-

binations M =
∑k−1

j=0 M j of operators of the following form

M j = t−ν+ jωopα j

M (h j)ω̃, (4.11)

where the symbols h j(z) ∈ M−∞
R j

(X) with certain asymptotic types R j such that πCR j ∩

Γ 1
2−α j

= ∅, and

γ +
1
2
−

N + 1
p
− j ≤ α j ≤ γ +

1
2
−

N + 1
p

(4.12)

Remark 4.16. In the case the weight strip is finite Θ = (−k, 0], k < ∞, the operators A j

are Green operators, A j ∈ CG(X, g) for j ≥ k.

The weights α j chosen by (4.12) provide continuity of the operators

A j : H s,γ
p (X)→ H∞,γ−νp (X), j = 0, 1, . . . , k − 1.

Definition 4.17 ([11, 8.1.4, Definition 1]). The cone algebra Cν(X, g) of order ν with

respect to the weight data g is the space of all operators A which is of the following form

A = (1 − ω)Ã(1 − ω̃) + ωt−νopγ−
N
2

M (h)ω̃ + M + G, (4.13)

with symbol h ∈ C∞
(
R+,Mν

O
(Y)

)
, Ã ∈ Lνcl(int X), M =

∑k−1
j=0 M j with M j are as in (4.11),

and G is a Green operator. Here ω, ω̃ are arbitrary cut-off functions.

An immediate consequence of the choice of weight (4.12) and the properties of Mellin

pseudo-differential operators is the continuity of cone pseudo-differential operators be-

tween weighted Sobolev spaces.

Theorem 4.18 ([31, Proposition 2.13]). Each operator A ∈ Cν(X, g) induces a continuous

mapping

A : H s,γ
p (X)→ H s−ν,γ−ν

p (X),

for all s ∈ R. Moreover, for each asymptotic type P, there exists an asymptotic type Q

depending on A and Q such that

A : H s,γ
p,P(X)→ H s−ν,γ−ν

p,Q (X).

Remark 4.19. The minimal asymptotic type Q such that the operator A : H s,γ
p,P(X) →

H
s−ν,γ−ν
p,Q (X) is continuous is called the push-forward of the asymptotic type P under the

action of A and denoted by PA. The existence of the minimal asymptotic type was proved

in [27].
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4 Higher-order equations

With each cone pseudo-differential operator we associate two principal symbols: the

compressed principal symbol which is given in local coordinates by

σν
ψ,b(A)(t, y, tτ, η) = σν

ψ(Ã)(t, y, τ, η),

and the principal conormal symbol

σν
M(A)(z) = h(0, z) + σν

M(M)(z).

The principal conormal symbol is a meromorphic Mellin symbol with meromorphic struc-

ture given by the asymptotic type of the symbol h0(z) of the operator M.

In local coordinates, we also define the sequence of conormal symbols of A of lower

orders

σ
ν− j
M (A)(z) =

1
j!
∂ jh
∂t j (0, z) + σ

ν− j
M (M)(z),

for j = 0, 1, . . . , k − 1.

The symbols of composition of two operators and of the adjoint of an operator are

given in the following theorems.

Theorem 4.20 ([11, 8.1.4, Theorem 6]). Let A ∈ Cν(X, g), g = (γ, γ − ν,Θ) and B ∈

Cµ(X, g̃), g̃ = (γ − ν, γ − ν− µ,Θ). Then their composition BA belongs to Cµ+ν(X, h) where

h = (γ, γ − ν − µ,Θ), and its symbols are given by

σ
µ+ν
ψ (BA) = σ

µ
ψ(B)σν

ψ(A), (4.14)

σ
µ+ν− j
M (BA)(z) =

∑
l+l̃= j

σ
µ−l̃
M (B)(z + ν − l)σν−l

M (A)(z) (4.15)

for j = 0, . . . , k − 1.

Theorem 4.21 ([11, 8.1.4, Theorem 5]). Given an operator A ∈ Cν(X, g), g = (γ, γ−ν,Θ).

Then its formal adjoint operator A∗ with respect to L2(X, dµ) (with fixed weight γ) belongs

to Cν(X, g∗) where g∗ = (−γ + ν,−γ,Θ), and its symbols are given by

σν
ψ(A∗) = σν

ψ(A), σ
ν− j
M (A∗)(z) = σ

ν− j
M (N + 1 − 2γ − z − ν + j)∗,

j = 0, . . . , k − 1, and ∗ on the right-hand side is the formal adjoint in L2(Y, dy).

4.1.5 Ellipticity and regularity with asymptotics

Definition 4.22 ([11, 8.1.5, Definition 1]). An operator A ∈ Cν(X, g) is called cone-elliptic

with respect to the weight γ if
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4.1 Cone algebra with asymptotics Cν(X, g)

(i) the interior principal symbol σν
ψ(A) is an isomorphism on Hom(π∗E, π∗F), π∗E, π∗F

are induced bundles over T ∗(int X), and the compressed principal symbol σν
ψ,b(A) is

an isomorphism up to t = 0.

(ii) the operator σν
M(A)(z) : H s(Y) → H s−ν(Y) is an isomorphism for at least one s =

s0 ∈ R and for all z ∈ Γ N+1
2 −γ

.

It was proved in [31, Section 3.3] that this definition of ellipticity is equivalent to the

two conditions below:

1. the interior principal symbol σν
ψ(A) is an isomorphism on Hom(π∗E, π∗F).

2. the conormal symbol σν
M(A)(z) ∈ Lνcl(Y) is invertible for each z ∈ Γ N+1

2 −γ
and

σν
M(A)(z)−1 ∈ L−νcl (Y; Γ N+1

2 −γ
).

This fact and the results on spectral invariance of pseudo-differential operators allow us

to replace the invertibility of the conormal symbol in the definition 4.22, ii) by:

ii’) the operator σν
M(A)(z) : H s

p(Y) → H s−ν
p (Y) is an isomorphism for z ∈ Γ N+1

2 −γ
and

for any choice of s ∈ R, p > 1.

Elliptic operators admit parametrices in the cone algebra.

Definition 4.23 ([11, 8.1.5, Definition 5]). Given an operator A ∈ Cν(X, g), then a parametrix

for A is an operator P ∈ C−ν(X, (γ − ν, γ,Θ)) such that

PA − I ∈ CG
(
X, (γ, γ,Θ)

)
, AP − I ∈ CG

(
X, (γ − ν, γ − ν,Θ)

)
.

Theorem 4.24 ([11, 8.1.5, Theorem 7], [31, Corollaries 3.3, 3.4]). Given an operator

A ∈ Cν(X, g), then the following conditions are equivalent

a) A is an elliptic operator with respect to the weight γp = N+1
2 −

N+1
p + γ.

b) the operator

A : H s,γ
p (X)→ H s−ν,γ−ν

p (X) (4.16)

is Fredholm for an s = s0 ∈ R.

If A is elliptic with respect to the weight γ then the operator (4.16) is Fredholm for all s ∈

R. There exists a parametrix P for A. Furthermore, if Au ∈ H s−ν,γ−ν
p (X) and u ∈ H−∞,γp (X)

then u ∈ H s,γ
p (X).

And if

Au ∈ H s−ν,γ−ν
p,Q (X)

for some asymptotic type Q, then u ∈ H s,ν
p,P(X) for a certain type P depending on A and Q.
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4 Higher-order equations

4.2 Extensions of cone-degenerate differential operators

In the present work, we require that A′A : E → E′ is elliptic with respect to the weights γ

and γ + ν. We denote by Amin and Amax the minimal and maximal closed extensions of A,

where

D(Amax) = D(Aγ,p
max) =

{
u ∈ H0,γ

p (X; E)
∣∣∣ Au ∈ H0,γ

p (X; F)
}
,

and D(Amin) = D(Aγ,p
min) is the closure of C∞c (int X; E) with respect to the graph norm

||u|| = ‖u‖
H

0,γ
p (X;E) + ‖Au‖

H
0,γ
p (X;F).

In case A is elliptic, these extensions are well understood by Lesch [26] and by Gil-

Mendoza[13] in the L2 base, and by Seiler-Schrohe [32] in Lp base. Generically, the

minimal domain is Hν,γ+ν
p (X; E) and in case A is elliptic, the maximal domain is the sum

of the minimal domain with a finite dimensional space, these results are summarized in

the appendix.

Under the assumption that A′A is elliptic, we can show a similar result, namely

Lemma 4.25. Assume that A′A is elliptic with respect to the weights γ and γ + ν. Then

D(Amax) = H
ν,γ
p,P(X; E), D(Amin) = H

ν,γ

p,O(X; E),

for some asymptotic type P. Consequently, D(Amin) has finite codimension in D(Amax),

and both spaces are compactly embedded inH0,γ
p (X; E).

Proof. Given an element u ∈ D(Amax), by definition Au ∈ H0,γ
p (X; F) (here we have

identified F � F′ via the bundle metric hF). Applying A′ to both sides, it implies that

A′Au ∈ H−ν,γ−νp (X; F). Using ellipticity of A′A with respect to the weight γ + ν and the a

priori knowledge that u ∈ H0,γ
p (X; E), we obtain that u ∈ Hν,γ

p,P(X; E) for some asymptotic

type P to the weight data
(
γ − ν, (−ν, 0]

)
. This implies that Au ∈ H0,γ−ν

p,PA (X). But in fact,

we know that

Au ∈ H0,γ
p (X; F) ⊂ H0,γ−ν

p,PA (X; F).

Therefore, there exists an asymptotic type Q ≤ P such that u ∈ Hν,γ
p,Q(X; E). Hence, we

have shown that D(Amax) = H
ν,γ
p,Q(X; E). Consequently, the minimal domain is D(Amin) =

H
ν,γ

p,O(X; E). Combining these facts, we obtain that

D(Amax)/D(Amin) = H
ν,γ
p,Q(X; E)/Hν,γ

p,O(X; E) ⊂ Hν,γ
p,P(X; E)/Hν,γ

p,O(X; E).
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The latter quotient has finite dimension because A′A is elliptic, and P is the asymptotic

generated by A′A. We conclude that dim D(Amax)/D(Amin) < ∞.

By definition of spaces with asymptotic, Hν,γ

p,O(X; E) has some improvement in the

order γ, therefore,Hν,γ

p,O(X; E) ↪→↪→ H0,γ
p (X; E). We obtain the compact embeddings

D(Amin) ↪→ D(Amax) ↪→↪→ H0,γ
p (X; E).

�

We are now aiming at showing a Poincaré-type inequality, which holds for functions

belonging to certain subspace of the maximal domain of the operator A. First, we check

that A is a semi-Fredholm operator acting between D(Amax) andH0,γ
p (X; F). We need the

following criterion for semi-Fredholm property.

Lemma 4.26 ([30, Lemma 3]). Let X, Y, Z be reflexive Banach spaces, and Y be com-

pactly embedded in X. Assume that T : Y → Z is a continuous linear map. Then the

following are equivalent:

1. T is an upper semi-Fredholm operator, which means that T has closed range and

its nullspace is finite-dimensional,

2. for all u ∈ Y, it holds

||u||Y ≤ C
(
||u||X + ||Tu||Z

)
. (4.17)

Corollary 4.27. Consider a cone-differential operator A : D(Amax) → H0,γ
p (X; E). Then

A is a semi-Fredholm operator. In particular, Ker A has finite dimension in D(Amax).

Furthermore, denote by V an arbitrary complement of Ker A in H0,γ
p (X; E), for all

v ∈ V, it holds

||v||V ≤ C||Au||
H

0,γ
p (X;F). (4.18)

Proof. We apply Lemma 4.26 to the case

X = H0,γ
p (X; E), Y = D(Amax), and Z = H0,γ

p (X; F).

We have proved in Lemma 4.25 that Y is compactly embedded in X. Moreover, Y is

furnished with the graph norm

||u||Y = ||u||
H

0,γ
p (X;E) + ||Au||

H
0,γ
p (X;F) = ||u||X + ||Au||Z.
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4 Higher-order equations

It means condition (4.17) holds for C = 1. Therefore, Lemma 4.26 implies that Ker A ∩

D(Amax) has finite dimension.

If V is an arbitrary complement of Ker A in D(Amax), then the first isomorphism theo-

rem tells us that V and Im A are homeomorphic, in other words, for all v ∈ V

C1|||Au|||
H

0,γ
p
≤ ||v||V ≤ C2|||Au|||

H
0,γ
p
.

�

We also give a proof of the Poincaré-type inequality using functional tools for a space

D such that D ∩ Ker A = {0}.

Proposition 4.28 (Poincaré type inequality). Assume that D is a closed subspace of

H
0,γ
p (X) such that D ∩ Ker A = {0}. Then the following inequality holds

‖u‖
H

0,γ
p (X) ≤ C‖Au‖

H
0,γ
p (X) (4.19)

for all u ∈ D.

Proof. Set

inf
u∈E
‖Au‖

H
0,γ
p (X) = α,

where E =
{
u ∈ D, ‖u‖

H
0,γ
p (X) = 1

}
. We claim that α > 0.

Indeed, assume that {um} ⊂ E is a minimizing sequence of ‖Au‖
H

0,γ
p (X). Because {um} ⊂

E is a bounded sequence in D, there exists a subsequence (we use the same notation)

which converges weakly in to an element u ∈ D. Because D is compactly embedded in

H0,γ(X). Therefore, um converges strongly to u in H0,γ
p (X). Strong convergence yields

that ||u||
H

0,γ
p (X) = 1, u ∈ E. And weak convergence in D gives us that

‖Au‖
H

0,γ
p (X) ≤ lim

m→∞
‖Aum‖H0,γ

p (X) = α,

and thus, we obtain ‖Au‖
H

0,γ
p (X) = α.

Moreover, using D ∩ Ker A = {0}, we conclude that α = ‖Au‖
H

0,γ
p (X) > 0. And the

inequality holds for C = α−1. Furthermore, one obtains

‖u‖ = ‖u‖
H

0,γ
p (X) + ‖Au‖

H
0,γ
p (X) ∼ ‖Au‖

H
0,γ
p (X), ∀u ∈ D.

�
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4.3 Finite energy solutions

4.3 Existence of finite energy solutions

Throughout this chapter, we will be concerned about higher-order equations of the fol-

lowing form

A′F (x, Au) + G(x, Bu) = f , x ∈ X \ Y, (4.20)

where A ∈ Diffν
c(X) is a cone-degenerate differential operator, some weight γ ∈ R is fixed

and A′ is the transpose of A with respect to L2(X, dµ). The measure has the expression

dµ = tN−γpdtdy in local coordinates.

Now we fix a domain D(Amin) ⊂ D ⊂ D(Amax) which corresponds to specified cone

conditions. As D(Amax)/D(Amin) has finite dimension, D is closed in D(Amax), and both

are compactly embedded inH0,γ
p (X; E). Moreover, D is a reflexive space.

We state here without proof a Nemytskii type theorem adapted to weighted Lp spaces.

We use this proposition to obtain the continuity property of nonlinear operators.

Proposition 4.29 ([9, Theorem 1.1]). Let Ω be a measurable set of positive measure in Rn.

Given a real-valued function h(x, u1, u2, . . . , uN) : Ω × RN → R satisfying the following

conditions:

a) h(x, u1, u2, . . . , uN) is a continuous function with respect to u1, . . . , uN for almost all

x ∈ Ω,

b) h(x, u1, u2, . . . , uN) is a measurable function in x for any fixed u1, . . . , uN ,

c) the inequality

∣∣∣h(x, u1, u2, . . . , uN)
∣∣∣ ≤ Cω−1/p

0

N∑
i=1

ω
1/p

i |ui|
pi/p + ω−

1/p

0 g(x)

holds for a positive constant C, some numbers p, p1, . . . , pN belonging to the inter-

val (1,∞) and a function g(x) ∈ Lp(Ω).

Then the Nemytskii operator defined by the equality

H
[
u1(x), . . . , uN(x)

]
:= h

(
x, u1(x), . . . , uN(x)

)
acts continuously from Lp1(ω1dx) × . . . × LpN (ωNdx) to Lp(ω0dx).

Suppose that the nonlinearities F (x, q) : X × E → F and G(x, z) : X × G → E are

continuous and subject to the following conditions for almost x ∈ X \ Y , q ∈ Ex, z ∈ Gx:
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4 Higher-order equations

(F1) ||F (x, q)||F ≤ h1(x) + |q|p−1, where h1(x) ∈ H0,0
p′ (X).

(F2) hF(F (x, q), q) ≥ C0||q||
p
F −C1.

(F3) hF(F (x, q1) − F (x, q2), q1 − q2) > 0 as q1, q2 ∈ Fx, q1 , q2.

(G1) hE(G(x, z), z) ≤ h2(x) + ||z||p−1−ε
G , where h2(x) ∈ H0,0

p′ (X), ε ≥ 0.

Because of the growth of the nonlinearities, in this section we work with γ = 0 and the

corresponding minimal and maximal domains. So in our setting, D(Amin) ⊂ D ⊂ D(Amax).

Definition 4.30. A weak solution of the equation (4.20) is a function u ∈ D satisfying the

identity follows

∫
X

hF(F (x, Au), Av)dµ =

∫
X

hE(G(x, Bu), v)dµ for all v ∈ D. (4.21)

Let us define the following operators F, G : D→ D′ by the formulae

〈Fu, v〉 =

∫
X

hF(F (x, Au), Av)dµ,

〈Gu, v〉 =

∫
X

hE(G(x, Bu), v)dµ.

Lemma 4.31. Assume that the nonlinearities F and G subject to the growth conditions

(F1), (F2), (F3) and (G1). We suppose further that either the mapping B : D→ H0,0
p (X, E)

is compact or it is continuous and ε > 0.

Then the operators F,G : D → D′ are well-defined, bounded and continuous. More-

over, G is compact.

Proof. These operators are well-defined. Indeed, the metric bundle hF : F × F → X × R

considered as a bilinear mapping in each fiber has a norm depending continuously in x.

Moreover, X is a compact manifold, there will be a common bound C such that for all

qi ∈ Fx, x ∈ X

hF(q1, q2) ≤ C||q1||F ||q2||F .
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4.3 Finite energy solutions

So given an element u ∈ D, v ∈ C∞c (X\), we can estimate as follows

|〈Fu, v〉| =
∫

X
hF(F (x, Au), Av)dµ

≤ C
∫

X
||F (x, Au(x))||F ||Av(x)||Fdµ

≤ C
∫

X

(
|h(x)| + ||Au||p−1

F

)
||Av||Fdµ, use (F1)

≤ C
(∫

X

(
|h(x)|p

′

+ ||Au(x)||pF
)

dµ
) 1

p′
(∫

X
||Av(x)||pFdµ

) 1
p

≤ C(‖u‖D)‖v‖D.

This inequality means that Fu ∈ D′ for all u ∈ D. Moreover, it also yields that

||Fu||D′ ≤ C||u||D,

where C depends on the bound of hF in X and the norm ||h1||H0,0
p′

(X;R). Hence F is a

bounded operator. The continuity follows by proposition 4.29.

We prove similarly for G.∣∣∣〈Gu, v〉
∣∣∣ =

∫
X

hE
(
G(x, Bu), v

)
dµ

≤

∫
X

C(x)||G(x, Bu(x))||E ||v(x)||Edµ

≤ C
∫

X

(
h2(x) + ||Bu(x)||p−1

E
)
||v(x)||Edµ

≤ C
(
||h2||H0,0

p′
+ ||Bu||p−1

H
0,0
p (X;E)

)
||v||
H

0,0
p (X;E)

≤ C
(
||h2||H0,0

p′
+ ||u||p−1

D
)
||v||
H

0,0
p (X;E)

≤ C(||u||D)||v||D,

where in the previous line, we have used the continuity of B : D → H0,0
p (X; E). We also

obtain that G is well-defined, bounded and continuous operator.

To check that G : D → D′ is a compact operator, we combine proposition 4.29 and

the property of B. When ε ≥ 0 and B : D → H0,0
p (X; E) is compact, taking an arbitrary

bounded sequence un in D, we will show that Gun has a convergent subsequence. Indeed,

because un is bounded in the reflexive space D, it has a subsequence, also denoted by

un, which converges weakly to some u0 in D. Hence, the sequence Bun converges in

H
0,0
p (X, E). Applying proposition 4.29, we obtain that Gun converges to Gu0 in D′. So G

is compact.
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4 Higher-order equations

When ε > 0 and assuming only continuity of B, applying proposition 4.29, we know

that the operator

G
(
z(·)

)
: H0,0

p−ε(X; G)→ H0,0
p (X; E)

is continuous. We repeat the proof above, the bounded sequence {un} is mapped to a

bounded sequence {Bun}. Therefore, there is a subsequence, which is also indexed by n,

Bun converging weakly to Bu inH0,0
p (X; G). The compact embedding

H0,0
p (X; G) ↪→↪→ H0,0

p−ε(X; G)

implies that Bun → Bu inH0,0
p−ε(X; G) and hence, Gun converges to Gu inH0,0

p (X; E). �

In the next part, we will check that F has property α(D).

Lemma 4.32. The operator F : D→ D′ has property α(D).

Proof. We prove similarly the proof in the second-order case.

Indeed, given an arbitrary sequence un ⇀ u in D and assume that

lim sup
n→∞

〈Fun, un − u〉 ≤ 0,

we need to verify that un → u in D.

By the compact embedding D ↪→↪→ H0,0
p (X), we have un → u inH0,0

p (X). It remains

to show that Aun → Au inH0,0
p (X).

Given a measurable subset E ⊂ X, let us set

λn(E) =

∫
E

hF
(
F (x, Aun) − F (x, Au), Aun − Au

)
dµ.

Because F is monotone with respect to the second component, see (F3), the integrand is

nonnegative. Therefore,

0 ≤ λn(E) ≤ λn(X).

Moreover,

lim sup
n→∞

λn(X) = lim sup
n→∞

〈Fun − Fu, un − u〉 ≤ 0.

This yields

lim
n→∞

λn(X) = 0, and lim
n→∞

λn(E) = 0

for all dµ-measurable subset E ⊂ X.
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4.3 Finite energy solutions

Using conditions (F1) and (F2), we can show

λn(E) =

∫
E

hF

(
F (x, Aun) − F (x, Au), Aun − Au

)
dµ

=

∫
E

[
hF

(
F (x, Aun), Aun

)
− hF

(
F (x, Aun), Au

)
+ hF

(
F (x, Au), Au − Aun

)]
dµ

≥

∫
E

(
C0||Aun(x)||pF −C1

)
dµ −

∫
E

(
h1(x) + ||Aun(x)||p−1

F

)
||Au(x)||Fdµ

−

∫
E

(
h1(x) + ||Au(x)||p−1

F

)(
||Au(x)||F + ||Aun(x)||F

)
dµ

Putting negative terms to the left-hand side, one obtains

C0

∫
E
||Aun(x)||pFdµ ≤ C1µ(E) +λn(E) +

∫
E

(
h1(x) + ||Au(x)||p−1

F

)
(||Au(x)||F + ||Aun(x)||)dµ

+

∫
E

(
h1(x) + ||Aun(x)||p−1

F

)
||Au(x)||Fdµ.

Using Young’s inequality we can estimate∫
E

(
h1(x) + ||Au(x)||p−1

F

)(
||Au(x)||F + ||Aun(x)||F)dµ ≤

∫
E
||Au(x)||pF

)
dµ +

εp

p

∫
E
||Aun(x)||pFdµ

+
ε−p′

p′

∫
E

(
|h1(x)|p

′

+ ||Au(x)||pF
)
dµ∫

E

(
h1(x) + ||Aun(x)||p−1

F

)
||Au(x)||Fdµ ≤

ε−p

p

∫
E
||Au(x)||pFdµ+

+
εp′

p′

∫
E

(
|h1(x)|p

′

+ ||Aun(x)||pF
)
dµ

By choosing appropriate ε > 0, we obtain∫
E
||Aun(x)||pFdµ ≤ C

∫
E

(
h1(x)p′ + ||Au(x)||pF

)
dµ + λn(E) + µ(E).

Therefore,
∫

E
||Aun(x)||pFdµ→ 0 as meas E → 0 uniformly in n.

Now we will show that Aun converges to Au in measure. For ε, δ > 0, set

Fε,n =
{
x ∈ X

∣∣∣ ||Aun(x) − Au(x)||F ≥ ε
}
.

Choose two sets E(1)
δ and E(2)

δ such that

meas(E( j)
δ ) <

δ

4
.

E(1)
δ is selected from the condition

Kδ := sup
X\E(1)

δ

{
||Au(x)||F + ||Aun(x)||F

}
< ∞.

79



4 Higher-order equations

E(2)
δ is selected from the condition

kε := inf
{
hF

(
F (x, q) − F (x, q′), q − q′

)}
> 0,

where the infimum is taken over the set{
x ∈ X \ E(2)

δ , |q
′| ≤ K, |q − q′| ≥ ε

}
.

From the definition of the sets E( j)
δ , we have

λn(X) ≥ λn(Fε,n \ (∪E( j)
δ ))

≥ kε(meas Fε,n −meas E(1)
δ −meas E(2)

δ ).

Hence meas Fε,n ≤ δ/2 + λn(X)/kε, and for large enough n, meas Fε,n < δ.

Since µ(X) > 0, the equi-integrability and convergence in measure imply strong con-

vergence of the sequence Aun to Au in H0,0
p (X) and hence, convergence of un to u in

D. �

Combining the facts in lemma 4.31 and lemma 4.32, we conclude that the operator

F + G also satisfies property α(D). We will make another assumption, which guarantees

that the mapping degree of Deg(F + G, B(0,R), f ) can be well-defined in certain subset

B(0,R) ⊂ D.

We require a stronger growth condition on the nonlinearities

(C) : hF
(
F (x, q), q

)
+ hE

(
G(x, ξ), u

)
≥ C0||q||

p
F + C2||u||

p
E.

This condition guarantees coercivity of F +G. Indeed,

〈Fu +Gu, u〉 =

∫
X

[
hF

(
F (x, Au), Au

)
+ hE

(
G(x, Bu), u

)]
dµ

≥

∫
X

[
C0||Au(x)||pF + C2||u||

p
E

]
dµ

≥ C‖u‖p
D

⇒ lim
‖u‖D→∞

〈Fu +Gu, u〉
‖u‖D

= ∞ as p > 1.

We proceed as in the proof of theorem 3.3. There exists a ball B(0,R) for sufficiently large

R > 0, such that we can assign the mapping degree to F + G on the set B(0,R) ∩ D with

respect to f . Moreover, Deg(F + G, B(0,R) ∩ D, f ) = 1. We conclude that the equation

(F +G)u = f possesses at least one solution.

We have proved the following theorem.
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4.4 Existence of singular solutions

Theorem 4.33. Assume that the nonlinearities F : X × E → F and G : X × G → E are

continuous and subject to growth conditions (F1), (F2), (F3), (G1), and the coercive con-

dition (C). Suppose further that either B : D → H0,0
p (X; E) is compact or it is continuous

and ε > 0.

Then for all f ∈ D′, there exists at least one solution to the equation (4.20).

Remark 4.34. In the case the domain D satisfying Ker A∩D = {0}, then the Poincaré-type

inequality 4.28 holds, consequently ‖u‖D ∼ ‖Au‖
H

0,0
p

, we can relax the coercivity condition

(C) by supposing that

hF
(
F (x, q), q

)
+ hE

(
G(x, ξ), u

)
≥ C||q||pF

for all x ∈ X, ξ ∈ Gx, and q ∈ Fx.

4.4 Existence of singular solutions

In this part, we will work with quasilinear elliptic equations of the following form

A′ F (x, Au) + C′G(x, Bu) = f in X \ Y . (4.22)

Let us recall that we have fixed a weight γ ∈ R and A′ and C′ are the formal adjoint opera-

tors of A and C respectively with respect to the measure dµwhich has form dµ = tN−γpdtdy

in local coordinates in a collar neighborhood of the boundary. The cone-degenerate oper-

ators A ∈ Diffν
c(X; E, F), B ∈ Diffν0

c (X; E,G0), C ∈ Diffν1
c (X; E,G1) are of indicated order,

and ν0 + ν1 < 2ν.

Let us suppose that the nonlinearity F (x, q) : X × F → F is differentiable in the

variables q and measurable in the first component. It subjects to further conditions as

follows for all x ∈ X \ Y and q1, q2 ∈ Fx:

hF

(
F (x, q1) − F (x, q2), q1 − q2

)
≥ C||q1 − q2||

2
F

(
||q1||

p−2
F + ||q2||

p−2
F

)
, (4.23)

and

||F (x, q1) − F (x, q2)||F ≤ ||q1 − q2||F

(
||q1||

p−2
F + ||q2||

p−2
F

)
. (4.24)

Furthermore, assume thatF is homogeneous in the second variable, namely, for (x, q) ∈ F

and a number λ > 0 then

F (x, λq) = λ|λ|p−2F (x, q) in Fx. (4.25)
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4 Higher-order equations

We are looking for a singular solution to (4.22), provided that there exists a formal solu-

tion of the form

e(t, y) ∼ t−λ0ϕ(y) as (t, y)→ Y,

with an exponent λ0 > 0 and ϕ(y) ∈ C∞(Y). This assumption is equivalent to the solvabil-

ity of the nonlinear eigenvalue problem corresponding to (4.22).

Lemma 4.35. The asymptotic data
(
λ0, ϕ(y)

)
is a solution of the following nonlinear

eigenvalue problem

σν
M(A′)

(
(λ0 + ν)(p − 1)

)
F

(
σν

M(A)(λ0)ϕ(y)
)

= 0. (4.26)

Proof. This lemma is proved by calculating formally and forcing the leading asymptotic

term to vanish. Indeed, e(t, y) ∼ t−λ0ϕ(y) gives us

Ae ∼ t−λ0−νψ(y), where ψ(y) = σν
M(A)(λ0)ϕ(y).

The homogeneity of F implies that

F (x, Ae) ∼ t−(λ0+ν)(p−1)F
(
x, ψ(y)

)
.

Applying the operator A′ to both sides, we obtain

A′F (x, Ae) ∼ t−(λ0+ν)(p−1)−νσν
M(A′)

(
(λ0 + ν)(p − 1)

)
F

(
σν

M(A)(λ0)ϕ(y)
)
.

The leading order term on the left-hand side necessarily vanishes, that implies that
(
λ0, ϕ(y)

)
is a solution of the nonlinear eigenvalue problem (4.26). �

Let us denote

L0 = σν
M(A)(λ0), L1 = σν

M(A′)
(
(λ0 + ν)(p − 1)

)
. (4.27)

Both are differential operators of order ν on the boundary Y . We can rewrite L1 as

L1 = σν
M(A)

(
N + 1 − 2γ − (λ0 + ν)(p − 1) − ν

)∗
,

where the ∗ denotes the adjoint operator with respect to L2(Y).

Let us verify now that L0 − L∗1 is a compact operator on the boundary Y by applying

the formular (2.5) to L0 and L∗1. We have

σν
ψ(L0)(y, η) = σ̃ν

ψ(A) (0, y,−iλ0, η)

σν
ψ(L∗1)(y, η) = σ̃ν

ψ(A)
(
0, y, i

(
(λ0 + ν)(p − 1) + ν + 2γ − N − 1

)
, η

)
.
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4.4 Existence of singular solutions

The polynomials σν
ψ(L0)(y, η) and σν

ψ(L∗1)(y, η) in η have the same highest order, namely

σν
ψ

(
ak(0)

)
(y, η), therefore σν

ψ(L∗1)(y, η)−σν
ψ(L0)(y, η) is a polynomial of order at most ν−1.

It means that L∗1 − L0 is a compact operator acting between Sobolev spaces on Y .

We can rewrite the equation (4.26) as

L∗0F
(
L0ϕ(y)

)
+ compact perturbation = 0.

Under certain conditions of the compact perturbation, this equation has a solution ϕ(y).

In this work let us assume that:

Assumption: There exist solutions
(
λ0, ϕ(y)

)
to the equation (4.26).

Let us pick a solution (λ0, ϕ(y)) of the problem (4.26), λ0 > 0, that is e(t, y) ∼ t−λ0ϕ(y)

is a singular formal solution. Further asymptotic terms in e(t, y) can be calculated in prin-

ciple by formal asymptotic analysis. We make a requirement that e(t, y) is manipulated

until a remainder part which belongs to a space of certain smoothness, which we will

define now.

Let us denote W the space of all functions u ∈ H0,γ
p (X; E) ∩ H0,ρ(X; E) such that

Au ∈ H0,γ
p (X; F) ∩ H0,ρ(X; F), where ρ =

(p−2)(λ0+ν)
2 +

pγ
2 . The metric in the affine space

e +W is induced by the metric in W.

We reuse the notations ||v||1, ||v||2 for the seminorms in W, where

||v||1 =

(∫
X
||Av(x)||2F ||Ae(x)||p−2

F dµ
) 1

2

, ||v||2 =

(∫
X
||Av(x)||pdµ

) 1
p

= ||Av||
H

0,γ
p (X;F).

The choice of γ gives us the equivalence ||Av||H0,ρ ∼ ||v||1. And the norm ||v||W is given by

the sum of two graph norms corresponding to two maximal domains.

By definition, C∞c (X \ Y) is dense in W and W is a reflexive space. Denote by W∗ its

dual space.

We will look for a singular solution to (4.22) of the form u = e + v, where v ∈ W, e is

an approximate solution determined by condition

A′F (x, Ae) + C′G(x, Be) ∈ W∗.

Moreover, let us pick a subset Ξ ⊂ W such that Ξ ∩ Ker A =
{
0
}
. Using Corollary 4.27,

the graph norms of functions in D(Aγ,p
max) and in D(Aρ,2

max) are equivalent to the seminorms

||Av||
H

0,γ
p

and ||Av||H0,ρ , respectively. Therefore, it holds for a function v ∈ Ξ

||v||W ∼
(∫

X
||Av(x)||2F ||Ae(x)||p−2

F dµ
) 1

2

+

(∫
X
||Av(x)||pdµ

) 1
p

.
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4 Higher-order equations

Furthermore, because of the condition ν0 + ν1 < 2ν, we can assume that one of the map-

pings B : W → H0,γ
p (X; G0) ∩ H0,ρ(X; G0) and C : W → H0,γ

p (X; G1) ∩ H0,ρ(X; G1) is a

compact operator. We can reduce (4.22) to an operator equation as follows:

Theorem 4.36. Let p > 2. Suppose that A′A is an elliptic operator with respect to

γ, γ + ν, and at least one of the mappings B : W → H
0,γ
p (X; G0) ∩ H0,ρ(X; G0) and

C : W → H
0,γ
p (X; G1) ∩ H0,ρ(X; G1) is a compact operator. Suppose further that the

nonlinearity F satisfies the growth conditions (4.23), (4.24) andG : X×G0 → G′1 satisfies

||G(x, z1) − G(x, z2)||G′1 ≤ C||z1 − z2||G0

(
||z1||

p−2−ε
G0

+ ||z2||
p−2−ε
G0

)
(4.28)

for all (x, zi) ∈ G0, i = 1, 2, here 0 < ε < p − 2.

Then the equation (4.22) can be reduced to an operator equation, where the induced

operator has property α.

Proof. Let us define an operator F̃ : W→ W∗ by

F̃v = A′F
(
A(e + v)

)
− A′F (Ae).

The operator F̃ is well-defined, because for an arbitrary test function w ∈ C∞c (X \ Y) and

v ∈ W, we have

∣∣∣〈F̃v,w〉
∣∣∣ =

∣∣∣∣∣∫
X

hF

(
F

(
A(e + v)

)
− F (Ae), Aw

)
dµ

∣∣∣∣∣
≤ C

∫
X

(
||Ae(x)||p−2

F + ||A(e + v)(x)||p−2
F

)
||Av(x)||F ||Aw(x)||Fdµ, use (4.24)

≤ C
∫

X

(
||Ae(x)||p−2

F + ||Av(x)||p−2
F

)
||Av(x)||F ||Aw(x)||Fdµ, use (2.14)

≤ C
[(∫

X
||Av(x)||2F ||Ae(x)||p−2

F dµ
) 1

2
(∫

X
||Aw(x)||2F ||Ae(x)||p−2

F dµ
) 1

2
+

+
(∫

X
||Av(x)||pdµ

)1− 1
p
×

(∫
X
||Aw(x)||pdµ

) 1
p

]
, use Hölder inequality.

Therefore, by density argument, it holds for all v,w ∈ W that

∣∣∣〈F̃v,w〉
∣∣∣ ≤ C

(
||v||W

)
||w||W. (4.29)

This inequality also implies that F̃ is a bounded operator, because

||F̃v||W∗ ≤ C||v||W.
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We verify the continuity of F̃ by similar proof. Indeed, given an arbitrary sequence {vn}

which converges to v in W, then it holds for arbitrary w ∈ C∞c (X \ Y):

∣∣∣〈F̃vn − F̃v,w〉
∣∣∣ =

∣∣∣∣∣∫
X

hF
(
F (A(e + vn)) − F (A(e + v)), Aw

)
dµ

∣∣∣∣∣
≤ C

∫
X

(
||A(e + v)(x)||p−2

F + ||A(vn − v)(x)||p−2
F

)
||A(vn − v)(x)||F ||Aw(x)||Fdµ

≤ C
∫

X

(
||Ae(x)||p−2

F + ||A(vn − v)(x)||p−2
F

)
||A(vn − v)(x)||F ||Aw(x)||Fdµ

≤ C
[(∫

X
||Ae(x)||p−2

F ||A(vn − v)(x)||2Fdµ
) 1

2
(∫

X
||Ae(x)||p−2

F ||Aw(x)||2Fdµ
) 1

2
+

+
(∫

X
||A(vn − v)(x)||pFdµ

)1− 1
p
(∫

X
||Aw(x)||pFdµ

) 1
p
+

+
(∫

X
||A(vn − v)(x)||pFdµ

)1− 2
p
(∫

X
||Aw(x)||pFdµ

) 1
p
(∫

X
||Av(x)||pFdµ

) 1
p

]

So the left-hand side 〈F̃vn − F̃v,w〉 → 0 when n → ∞ for all w ∈ C∞c (X \ Y). By density

argument, it holds for all w ∈ X. So F̃ is continuous.

The second nonlinearity in (4.22) induces an operator G̃ : W → W∗ which is deter-

mined by the formula

G̃v = C′G(x, Be + Bv) −C′G(x, Be), v ∈ W.

For a test function w ∈ C∞c (X \ Y), the action of this operator can be represented by the

integral

〈G̃v,w〉 =

∫
X

hE

(
G(x, Be + Bv) − G(x, Be),Cw

)
dµ.

For such w, we can estimate

∣∣∣∣〈G̃v,w〉
∣∣∣∣ ≤ ∫

X
|Cw||Bv|

(
|Be + Bv|p−2−ε + |Be|p−2−ε

)
dµ

≤

∫
X
||Cw(x)||G1 ||Bv(x)||G0

(
||Bv(x)||p−2−ε

G0
+ ||Be(x)||p−2−ε

G0

)
dµ

≤

∫
X

(
||Cw(x)||G1 ||Bv(x)||G||Be(x)||p−2−ε

G + ||Cw(x)||G1 ||Bv(x)||p−1−ε
G0

)
dµ.

Applying Hölder inequality to estimate each term, we obtain∫
X
||Cw||G1 ||Bv(x)||p−1−ε

G0
dµ ≤ C||Bv||p−1−ε

H
0,pγ/(p−ε)
p−ε

||w||
H

0,pγ/(p−ε)
p−ε

≤ C||v||p−1−ε
W
||w||W
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4 Higher-order equations

and ∫
X
||Cw(x)||G1 ||Bv(x)||G0 ||Be(x)||p−2−ε

G dµ ≤
(∫

X
||Bv(x)||2G0

||Be(x)||p−2−ε
G dµ

)1/2

×

×

(∫
X
||Cw(x)||2G1

||Be(x)||p−2−ε
G dµ

)1/2

≤ C||Bv||H0,̃γ ||Cw||H0,̃γ ≤ C||v||W||w||W

where γ̃ =
(p−2−ε)(λ0+ν)

2 +
pγ
2 , and we have used the embeddings

H0,γ
p (X; E) ↪→ H0,pγ/(p−ε)

p−ε (X; E),

H0,ρ(X; G0) ↪→ H0,̃γ(X; G0), H0,ρ(X; G1) ↪→ H0,̃γ(X; G1).

We have shown that the operator G̃ is well-defined. Repeating the proof in the part above,

we obtain also the continuity of G̃. Moreover, G̃ : W → W∗ is a compact operator under

the assumption that one of the mappings B : W→ H0,γ
p (X; G0)∩H0,ρ(X; G0) and C : W→

H
0,γ
p (X; G1) ∩H0,ρ(X; G1) is compact, see the proof of Lemma 4.31.

Therefore, the operator F̃ + G̃ satisfies property α, provided that F̃ fulfills such prop-

erty. However, this fact can be proved by repeating the proof in second-order case. What

counts is the special structure of the nonlinearity F . �

Now we require a coercivity condition.

Theorem 4.37. Suppose all assumptions as in Theorem 4.36. Furthermore, let one of the

following conditions hold for (x, q1), (x, q2) ∈ F and (x, z1), (x, z2) ∈ G0:

a) If B = C and G is a nondecreasing function.

b) ||G(x, z1) − G(x, z2)||G′1 ≤ C||z1 − z2||
σ
G0

(
||z1||

p−2−ε
G0

+ ||z2||
p−2−ε
G0

)
, 0 < σ < 1.

c) For (x, z̄1), (x, z̄2) ∈ G1, it holds

〈
F (x, q1)−F (x, q2),q1−q2

〉
+
〈
G(x, z1)−G(x, z2),z̄1− z̄2

〉
≥

(
|q1|

p−2 + |q2|
p−2)|q1−q2|

2

Then for any f ∈ Ξ∗ the equation (4.22) has a solution u belonging to the affine space

e + Ξ.

Proof. This theorem is proved by repeating verbatim the proof of Theorem 3.15 in the

case a), Theorem 3.14 in the case b), and Theorem 3.16 in the case c). �
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5 Conclusion

In my dissertation, I have answered the questions about existence of finite energy and

singular solutions to general second-order and higher-order equations on manifolds with

conic points. I have generalized results on existence of finite energy solutions in Eu-

clidean spaces setting to the singular manifolds setting by adapting functional tools. The

thesis contains the first attempt to use topological methods to prove existence of singu-

lar solutions. To achieve this goal, I have assumed existence of a formal solution with

prescribed singular exponent and looked for remainder part in the intersection of two

weighted Sobolev spaces, whose norms are controlled partly by the leading order of the

formal solution. I have proved a Poincaré-type inequality and embedding theorems. Tak-

ing into account the fact that the formal solution satisfies the equation to infinite order, I

have found a reduction of the original equation to an operator one, which is solvable by

degree theory of generalized monotone mappings.

In this thesis, I dealt with nonlinearities satisfying special growth conditions which

generalize the structure of the p-Laplacian in the case p ≥ 2. Among the growth condi-

tions is the coercivity assumption. My interest in the future will be further deploying the

topological methods to prove existence for p < 2 and when the coercivity assumption is

relaxed. There are examples in the smooth case concerning finite energy solutions, as in

example 2.34. However, there are no examples for singular solutions. The next goal of

my research will be to extend the range of nonlinearity of the lower order terms involved

and to prove existence results of equations on other kind of singular manifolds.





A Appendix

A.1 Degree of mappings of class α

The definition 2.25 actually is based on the approximation of the continuous mapping

f : Ω→ Rn by a continuously differentiable mapping g : Ω→ Rn such that

max
x∈∂Ω
| f (x) − g(x)| < min

x∈∂Ω
| f (x)|

and at the points x ∈ Ω where g(x) = 0, the Jacobian
Dg(x)

Dx
is different from 0. By Sard’s

theorem, such approximation is valid. By definition,

deg( f ,Ω, 0) = deg(g,Ω, 0) =
∑

x

sign
Dg
Dx

(x)

where x ∈ Ω satisfies g(x) = 0.

The degree of generalized monotone mappings was introduced by Browder and Skryp-

nik independently in the late of the nineteen-sixties, which possesses all properties of the

degree of finite-dimensional mappings mentioned in Section 2.3.2. We summarize here

the construction by Skrypnik for mappings from a real separable reflexive Banach space

to its dual. For the case of nonseparable space, we refer to Skrypnik’s monograph [38].

Let {vn}n∈N be a complete system of the space X and suppose that for every n, the

elements v1, . . . , vn are linearly independent. Denote by Fn the linear hull of the elements

v1, . . . , vn. Given a bounded open subset D of X, let us denote Dn := D ∩ Fn, which is a

finite dimensional space. We define finite-dimensional approximations Tn of the mapping

T : D→ X∗ as follows:

Tnu :=
n∑

i=1

〈Tu,vi〉vi, for u ∈ Dn.

Then Tn is a mapping from X to Fn.

Theorem A.1 ([38, Chapter 2, Theorem 2.1]). Let T be an operator satisfying two con-

ditions a), b) in Section 2.3.2. Then there exists a number N such that for n ≥ N the

following assertions are true:



A Appendix

1) the equation Tnu = 0 has no solution belonging to ∂Dn,

2) the degree deg(Tn,Dn, 0) of the mapping Tn with respect to 0 ∈ Fn is well-defined

and independent of n.

Proof. We prove the first assertion by contradiction. Assume that there is a sequence

uk ∈ ∂Dnk such that nk → ∞ as k → ∞ and Tnkuk = 0. Because X is reflexive, passing

to a subsequence, we can consider that uk ⇀ u0 ∈ X. In addition, Tnkuk = 0 implies that

Tuk ⇀ 0.

Taking any sequence ωk ∈ Fnk such that ωk → u0. Then

〈Tuk,uk − u0〉 = 〈Tuk,ωk − u0〉 + 〈Tuk,uk − ωk〉.

Because uk − ωk ∈ Fnk , and Tnkuk = 0, the second term vanishes. The first term also

vanishes due to the boundedness of the operator T and the strong convergence of ωk to

u0. Therefore, limk→∞〈Tuk,uk − u0〉 = 0.

Since T satisfies the condition α0(∂D), we obtain the strong convergence of uk (be-

longing to ∂D) to u0. Therefore, u0 ∈ ∂D and Tu0 = 0. This fact contradicts to the

assumption b).

Once the first assertion is true, the degree deg(Tn,Dn, 0) is well-defined.

We now introduce the mappings T̃n : X → Fn:

T̃nu :=
n−1∑
i=1

〈Tu,vi〉vi + 〈hn,u〉vn,

where hn ∈ X∗ satisfying the conditions 〈hn,vi〉 = 0 for i < n, and 〈hn,vn〉 = 1.

Lemma A.2 ([38, Chapter 2, Lemma 1.1]). [Leray–Schauder lemma] Let f : Ω→ Rn be

a continuous mapping such that

Fn(x1, . . . , xn) ≡ xn, (x1, . . . , xn) ∈ Ω.

Suppose that f (x) , 0 for x ∈ ∂Ω and that the intersection Ω′ = Ω ∩ {x : xn = 0} is non

empty. Then

deg( f ,Ω, 0) = deg( f ′,Ω′, 0),

where f ′ : Ω′ → Rn−1 defined by the equality

f ′(x1, . . . , xn−1) =
(
f1(x1, . . . , xn−1, 0), . . . , fn−1(x1, . . . , xn−1, 0)

)
.
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A.1 Degree of mappings of class α

By the Leray-Schauder lemma, we obtain that

deg(Tn−1,Dn−1, 0) = deg(T̃n,Dn, 0).

It remains to check that

deg(Tn,Dn, 0) = deg(T̃n,Dn, 0).

If it is true, then using homotopy invariance of finite-dimensional mappings, we achieve

that

deg(Tn−1,Dn−1, 0) = deg(Tn,Dn, 0).

Indeed, we will prove that

[tTn + (1 − t)T̃n]u , 0, for u ∈ ∂Dn, t ∈ [0, 1].

We prove this claim by contradiction. Assume that there exist sequences uk ∈ ∂Dnk and

tk ∈ [0, 1], nk → ∞ as k → ∞ such that

[tkTnk + (1 − tk)T̃nk]uk = 0.

This equality implies

〈Tuk,vi〉 = 0 for i ≤ nk − 1, (A.1)

tk〈Tuk,vnk〉 + (1 − tk)〈hnk ,uk〉 = 0. (A.2)

Because of the first assertion and (A.1), (A.2), we obtain that Tuk ⇀ 0 and 0 < tk < 1 for

k large enough. We may assume that the sequence uk converges weakly to some element

ũ0 ∈ X and choose another sequence ω̃k ∈ Fnk−1 which converges strongly to ũ0. We have

〈Tuk,uk − ũ0〉 = 〈Tuk,ω̃k − ũ0〉 + 〈Tuk,uk − ω̃k〉

The first term on the right-hand side tends to zero.

Since ω̃k ∈ Fnk−1, 〈Tuk, ω̃k〉 = 0. Using (A.2), we obtain

〈Tuk,uk〉 = −
1 − tk

tk
〈hnk ,uk〉

2.

Therefore, limk→∞〈Tuk,uk − ũ0〉 = 0. By the condition α0(∂D), we deduce the strong

convergence of uk to ũ0 ∈ ∂D. The identity (A.1) yields Tũ0 = 0, which contradicts

condition b).

Now, the limit limn→∞ deg(Tn,Dn, 0) exists and we denote it by D{vi}. �
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Theorem A.3 ([38, Chapter 2, Theorem 2.2]). Suppose that the conditions a), b) in Sec-

tion 2.3.2 hold. Then the limit

D{vi} = lim
n→∞

deg(Tn,Dn, 0)

does not depend on the choice of the sequence {vi}.

Proof. We will show that D{vi} = D{v′i} for any other sequence {v′i} with the same proper-

ties as the sequence {vi}. We use the notations A′n,D
′
n corresponding to {vn}.

Assume that for each n, the system v1, . . . , vn, v′1, . . . , v
′
n is linearly independent. Other-

wise, we can always construct a third system ṽ1, . . . , ṽn such that the systems v1, . . . , vn, ṽ1, . . . , ṽn

and v′1, . . . , v
′
n, ṽ1, . . . , ṽn are linearly independent. And we will use D{ṽi} as the interme-

diate value to compare D{vi} and D{v′i}.

Let L2n be the linear space spanned by the elements v1, . . . , vn, v′1, . . . , v
′
n and define

the following finite-dimensional mappings:

T2n,tu =

n∑
i=1

{
〈Tu,vi〉vi + [t〈Tu,v′i〉 + (1 − t)〈 f (n)

i ,u〉]v′i
}
,

where u ∈ D ∩ L2n, t ∈ [0, 1] and f (n)
i ∈ X∗ such that

〈 f (n)
i ,v j〉 = 0, 〈 f (n)

i ,v′j〉 = δi j, i, j = 1, . . . , n.

By theorem A.1, we need to show deg(Tn,Dn, 0) = deg(T ′n,D′n, 0) for n large enough.

It suffices to verify that, for n large,

T2n,tu , 0 for u ∈ ∂(L2n ∩ D), t ∈ [0, 1].

If it is true, by using Leray-Schauder lemma, we have

deg(T2n,0, L2n ∩ D, 0) = deg(Tn,Dn, 0).

On the other hand, due to homotopy invariant property, we have

deg(T2n,0, L2n ∩ D, 0) = deg(T2n,1, L2n ∩ D, 0).

We notice that T2n,1 and L2n are defined symmetrically in vi and v′i , therefore, we conclude

that

deg(Tn,Dn, 0) = deg(T ′n,D′n, 0) = deg(T2n,1, L2n ∩ D, 0).
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A.2 Closed extensions of symmetric operators

Assume that the assertion above is not true. Then there are sequences ūk ∈ ∂(L2nk ∩ D)

and t̄k ∈ [0, 1] such that

T2nk ,t̄k ūk = 0, nk → ∞ as k → ∞.

This yields that

〈Tūk,vi〉 = 0, i = 1, . . . , nk, (A.3)

t̄k〈Aūk,v′i〉 + (1 − t̄k)〈 f
(nk)
i ,ūk〉 = 0. (A.4)

By theorem A.1, 0 < t̄k < 1 for k large enough. Moreover, we know ūk ⇀ ū0, t̄k → t̄0,

and Tūk ⇀ 0 as k → ∞. We proceed as in the proof above. Choose a sequence ω̄k ∈ Fnk

which converges strongly to ū0. Using the formula

ūk =

nk∑
i=1

(
c(k)

i vi + c̄(k)
i v′i

)
, c̄(k)

i = 〈 f (nk)
i ,ūk〉,

from the identities (A.3), (A.4), we obtain

〈Tūk,ūk − ū0〉 = 〈Tūk,ω̄k − ū0〉 +

nk∑
i=1

〈Tūk,v′i〉〈 f
(nk)
i ,ūk〉

= 〈Tūk,ω̄k − ū0〉 −
1 − t̄k

t̄k

nk∑
i=1

〈 f (nk)
i ,ūk〉

2.

Therefore, lim supk→∞〈Tūk,ūk− ū0〉 ≤ 0. That T satisfies the condition α0(∂D) implies the

strong convergence of ūk to ū0 ∈ ∂D. The demicontinuity of A and the fact that Auk ⇀ 0

as k → ∞ imply that Tū0 = 0, which contradicts the assumption b). This completes the

proof. �

Definition A.4 ([38, Chapter 2, Definition 2.4]). For an operator T satisfying conditions

a), b) in Section 2.3.2, its degree Deg(T,D, 0) on the set D with respect to the point 0 ∈ X∗

is the number

Deg(T,D, 0) := lim
n→∞

deg(Tn,Dn, 0).

A.2 Closed extensions of symmetric operators

We summarize here descriptions of the minimal and maximal domains of an elliptic cone

differential operator A ∈ Diffν
c(X) considered as an unbounded operator C∞c (X \ Y) ↪→

H
0,γ
p (X)→ H0,γ

p (X). Assume that A is written as

A = t−ν
ν∑

j=0

a j(t)(−t∂t) j, a j ∈ C∞([0, 1),Diffν− j(Y)).
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A Appendix

By definition, considering A as a mapping on H0,γ
p (X), the minimal domain is the

closure of C∞c (X \ Y) with respect to the graph norm

‖u‖ = ‖u‖
H

0,γ
p

+ ‖Au‖
H

0,γ
p
,

and the maximal domain is the set{
u ∈ H0,γ

p (X)
∣∣∣ Au ∈ H0,γ

p (X)
}

We state without proof the following well-known results in [32].

Proposition A.5 ([32, Proposition 2.3]). The minimal domain is

D(Amin) = D(Amax) ∩ε>0 H
ν,ν+γ−ε
p (X)

=
{
u ∈ ∩ε>0H

ν,ν+γ−ε
p (X)

∣∣∣ t−ν
ν∑

j=0

a j(0)(−t∂t) j(ωu) ∈ H0,γ
p (X)

}
.

In particular,

Hν,ν+γ
p (X) ↪→ D(Amin) ↪→ Hν,ν+γ−ε

p (X), ∀ε > 0.

We have D(Amin) = H
ν,ν+γ
p (X) if and only if the principal conormal symbol σν

M(A)(z) is

invertible for all z with<z = N+1
p − γ − ν.

When A is an elliptic operator, the minimal domain has finite codimension in the max-

imal domain. This complementary space can be described by means of singular functions,

whose singular exponents are just poles of the inverse of the principal conormal symbol

lying in the strip
N + 1

p
− γ − ν ≤ <p j <

N + 1
p
− γ.

Indeed, because of ellipticity of A, its principal conormal symbol σν
M(A)(z) is meromor-

phically invertible and its inverse can be written as the sum of a meromorphic Mellin

symbol and a holomorphic one. Let us define recursively

g0 :=
(
σν

M(A)(z)
)−1

and

gl := −(T−lg0)
l−1∑
j=0

(
T− jσ

l− j
M (A)(z)

)
g j, l = 1, . . . , ν − 1.

Moreover, choose an ε > 0 so small that every pole p of one of the symbols g0, g1, . . . , gν−1

either lies on one of the lines<z = N+1
p −γ− ν+ k or lies far from these lines at a distance

larger than ε. Denote γp = γ + N+1
p −

N+1
2 .
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A.2 Closed extensions of symmetric operators

Definition A.6. Let g0, g1, . . . , gν−1 and ε > 0 as above. Set

E = E
γ
A = im G0 + im G1 + . . . + im Gν−1, (A.5)

where the operators Gk =
∑k

l=0 Gkl : C∞c
(
(0, 1) × Y

)
→ H

∞,γ+ε
p (X) are defined by

G0 = G00 = ω
(
opγp+ν+ε−1− N

2
M (g0) − opγp+ν+ε− N

2
M (g0)

)
,

and if 1 ≤ k ≤ ν − 1, 0 ≤ l ≤ k

Gkl = ωtl(opγp+ν+ε−k−1− N
2

M (g0) − opγp+ν+ε−k− N
2

M (g0)
)
,

The space E is a finite-dimensional subspace of C∞,γ+ε(X) consisting of functions of

the form

u(t, y) = ω(t)
N∑

j=0

m j∑
k=0

ψ jk(y)t−p j logk t

where ψ jk(y) ∈ C∞(Y) and

N + 1
p
− γ − ν ≤ <p j <

N + 1
p
− γ.

Proposition A.7 ([32, Theorem 2.8]). The domain of the maximal extension A(max) is

D(Amax) = D(Amin) + E, (A.6)

with E defined in (A.5). The space E does not depend on 1 < p < ∞. Moreover,

D(Amin) ∩ E ⊂ imω
(
opγp+ν−ε− N

2
M

(
σν

M(A)−1) − opγp+ν+ε− N
2

M
(
σν

M(A)−1)).
The sum in (A.6) is direct particularly when σν

M(A)−1 has no poles on the weight line

<z = N+1
p − γ − ν.

Consequently, any closed extension A in H0,γ
p (X) is given by the action of A on a

domain

D(A) = D(Amin) + E,

where E is a subspace of E.
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