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Summary 

 During the cell cycle progression, synthesis of new histones is important to pack 

newly synthesized DNA and to maintain proper chromatin structure. Unlike normal mRNAs, 

mRNAs from replication-dependent histone genes that are expressed in the S phase of the 

cell cycle are not polyadenylated at the 3‘end. They contain a conserved stem-loop 

sequence which forms a stem-loop structure which is required for the proper processing of 

the 3’ end, translation and degradation of histone mRNAs. However, a number of studies 

show that replication-dependent histone genes can produce mRNAs which have a polyA tail 

at the 3’ end under certain conditions the physiological function of polyadenylated histone 

mRNAs is not clear. In the present study, we analyzed the expression of polyadenylated 

histone mRNAs from the replication-dependent histone H2B genes. Furthermore, the 

expression of polyadenylated mRNAs from HIST1H2BD and HIST1H2AC genes are up-

regulated during differentiation and up on induction of DNA damage. We showed that 

polyadenylated HIST1H2BD and HIST1H2AC mRNAs are transported to the cytoplasm and 

can form polysomes suggesting that theses transcripts can be translated into proteins.  

 In addition to new synthesis of histone proteins, post-translational histone 

modifications, ATP-dependent chromatin remodelers and histone chaperones play 

important roles in maintaining genome structure and controlling DNA associated processes 

such as replication, transcription and DNA repair. Here we showed that one of the post-

translational histone modifications, the H2B monoubiquitination (H2Bub1) which was 

shown to be associated with actively transcribed genes, is important for DNA double strand 

break (DSB) repair. H2Bub1 is carried out by an E3 ubiquitin ligase complex RNF20/40 and 

knockdown of RNF40 leads to the loss of checkpoint activation. In addition, RNF40 also 

regulates the recruitment of the histone chaperone complex FACT to chromatin and is 

required for the chromatin dynamics at the DSB site. Further, we showed that CHD1 an ATP-

dependent DNA helicase is recruited to the site of DSB and regulates the binding of CtIP to 

chromatin. Depletion of CHD1 causes a decrease in homologous recombination-mediated 

repair efficiency and an increase in the cellular sensitivity to Mitomycin C treatment.  

 In summary, the data imply that E3 ubiquitin ligase RNF40 and chromatin remodeler 

CHD1 mediate DNA DSB repair through chromatin remodeling at the site of DNA damage. 
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1. General Introduction 

1.1 Chromatin structure and organization 

Chromatin is composed of negatively charged DNA, positively charged histones and 

other proteins which regulate the functions of DNA. The basic unit of chromatin is a 

nucleosome which consists of 147 base pairs of DNA wrapped around a histone octamer 

including two copies of each H3-H4 heterodimer and two copies of core H2A-H2B dimer 

(Kornberg, 1974). Nucleosomes are connected by linker DNA which is around 10-80 bp in 

length based on species and tissue and with linker histone H1. Nucleosomes associated with 

histone H1 tend to form higher order chromatin structure referred to as 30 nM fibers (Allan 

et al., 1981; Thomas, 1999). However, the existence of the 30 nM chromatin fiber structure 

in vivo is still debated. Histones are highly evolutionary conserved small basic proteins. The 

amino terminal (N-terminal) portion of histones is unfolded and protrudes away from the 

nucleosome where the central carboxyl terminal domains form the nucleosome scaffold 

(Hacques et al., 1990; Kornberg and Lorch, 1999; Luger et al., 1997). Chromatin is highly 

heterogeneous and broadly divided into two categories referred to as heterochromatin and 

euchromatin, based on the level of condensation and the accessibility of DNA (Mello, 1983). 

Heterochromatin is highly condensed and considered to be less active and contains fewer 

genes. In contrast to heterochromatin, euchromatin is less condensed and contains a higher 

density of genes either transcribed or repressed. However recent findings suggest that 

chromatin can also be categorized into different types based on other factors including 

structure, function and epigenetic makeup (Bickmore and van Steensel, 2013; Grewal and 

Elgin, 2007; Talbert and Henikoff, 2010). 

1.2 Histone genes  

In most of the eukaryotes two classes of histone genes are found 1) replication-

dependent histone genes whose expression is regulated according to the cell cycle and 2) 

less abundant replication-independent histone genes that encode the minor histone 

variants and whose expression occurs at a basal level throughout the cell cycle (Wu and 

Bonner, 1981a).  
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1.2.1 Replication-dependent histone genes  

 In metazoans, the five canonical histone genes are organized in clusters that contain 

multiple copies of each in the genome (Marzluff et al., 2008). In mammals, replication-

dependent histone genes are present in three clusters. The largest cluster called HIST1 

located on chromosome 6 (6p21-6p22) in humans and chromosome 13 in mice, HIST2 

located on chromosome 1 (1q21) and HIST3 located on chromosome 1 (1q42) in humans 

(Marzluff et al., 2002). Histone gene loci were found to be associated with Cajal bodies 

(CBs), subnuclear organelles that contain factors involved in 3’ processing of histone mRNAs 

(Frey and Matera, 1995; Wu and Gall, 1993). However, recent studies have revealed that 

histone gene clusters, as well as regulators of the histone expression and mRNA 3’ end 

processing are concentrated at subnuclear compartments called histone locus bodies (HLBs) 

(Ghule et al., 2008; Liu et al., 2006; Matera, 2006). HLBs are associated with replication-

dependent histone gene clusters and their colocalization with CBs depends on the cell cycle 

phase (Bongiorno-Borbone et al., 2010). 

1.2.2 Transcription of replication-dependent histone genes  

 Histones are essential for correct packing of DNA into chromatin. Thus, histones are 

produced rapidly in a high amount during S-phase in order to completely pack newly 

synthesized DNA into organized chromatin structure. Replication-dependent histone mRNA 

levels increase up to 10-fold at the beginning of S phase and come back to normal levels at 

the end of S phase. The rapid increase in the histone mRNA levels at the beginning of S 

phase is due to an increased transcription rate of histone genes while subsequent decrease 

is due to mRNA degradation at the end of S phase (DeLisle et al., 1983; Marzluff et al., 2008; 

Osley, 1991). Entry into S phase is the trigger for increased transcription rate of histone 

genes. Several proteins are involved in regulation of replication-dependent histone 

transcription. One such protein is NPAT (nuclear protein ataxia-telangiectasia locus), which 

was shown to be essential for S phase entry and stimulation of histone gene transcription 

(Ye et al., 2003; Zhao et al., 2000). Cyclin E–CDK2 (cyclin-dependent kinase 2) 

phosphorylates NPAT at the beginning of S phase in the CBs and this results in increased 

transcription of canonical histone genes (Ma et al., 2000; Wei et al., 2003). The expression 

of the NPAT gene is regulated by E2F transcription factor family members where E2F1 and 
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E2F4 play opposing roles to activate and repress NPAT transcription, respectively (Gao et al., 

2003; Zhao et al., 1998). Another protein which is involved in histone mRNA transcription is 

OCT1 (octamer-binding protein 1) that binds directly to histone H2B promoters and 

activates transcription (Zheng et al., 2003).  

1.2.3 Replication-dependent histone mRNA processing 

Genetic information from DNA is transcribed into different forms of RNA molecules 

through RNA polymerases. Three types of RNA polymerases are known in eukaryotic cells. 

They are RNA polymerase (Pol) I which transcribes ribosomal RNAs (rRNAs), RNA Pol II which 

transcribes messenger RNAs (mRNAs) and as well as small regulatory RNAs and RNA Pol III 

which transcribes small RNAs such as transfer RNAs (tRNAs). Among these only mRNA 

molecules can be translated into proteins. A typical eukaryotic mRNA which is transcribed 

by RNA polymerase II contains a 5’ cap, 5’ untranslated region (UTR), coding region, 3’ UTR 

and polyadenosine (polyA) tail. However, canonical replication-dependent histone mRNAs 

which are transcribed by RNA pol II are exceptional since they lack introns and are not 

polyadenylated (Dominski and Marzluff, 2007). In contrast, constitutively expressed histone 

mRNAs which encode histone variants are not cell cycle regulated, are polyadenylated and 

some even contain introns (Brush et al., 1985; Wells and Kedes, 1985).  

Instead of a polyA tail at the 3’ end, replication-dependent histone mRNAs contain a 

highly conserved 16 nucleotide long sequence which forms stem-loop structure. Upstream 

to the stem-loop there is a cleavage site which is 4-5 nt and followed by a purine-rich 

histone downstream element (HDE) (Birnstiel et al., 1985; Dominski and Marzluff, 2007; 

Marzluff, 1992) (Fig. 1). Processing of 3’ end requires the binding of stem-loop binding 

protein (SLBP) to the conserved stem-loop sequence and U7 snRNA (small nuclear RNA), 

component of snRNP (small nuclear ribonucleoprotein) with HDE (Dominski and Marzluff, 

2007; Mowry and Steitz, 1987). SLBP and the U7 snRNP together recruit a cleavage factor 

complex that contains CPSF73 (cleavage and polyadenylation specificity factor 73), CPSF100 

and Symplekin1 that also processes the 3' end of polyadenylated mRNAs (Kolev and Steitz, 

2005; Kolev et al., 2008). Structure of 3’ histone mRNA and its processing factors are 

illustrated in Figure 1. 
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Fig 1. The structure of a metazoan canonical histone mRNA. A) The structure of typical histone 
mRNA that lack introns and have short 5' and 3' UTRs. B) Processing of mammalian canonical histone 
pre-mRNA. Histone pre-mRNAs contain a conserved stem–loop sequence that binds stem–loop 
binding protein (SLBP) followed by the histone downstream element (HDE), which base-pairs with 
U7 small nuclear RNA (snRNA). A cleavage complex containing CPSF73 (cleavage and polyadenylation 
specificity factor subunit 73), CPSF100 and Symplekin is recruited to cleave the pre-mRNA. The 
cleavage (arrow), which occurs at five nucleotides downstream of the stem–loop and upstream of 
the HDE (Marzluff et al., 2008).  

1.2.4 Histone mRNA export, translation and degradation 

Like other mRNAs, replication-dependent histone mRNAs are exported from the 

nucleus to cytoplasm for translation into proteins by antigen peptide transporter (Erkmann 

et al., 2005; Huang and Steitz, 2001). The SLBP protein, which binds to stem-loop structure, 

also helps in the transport of histone mRNA and in the initiation of translation. It was shown 

that SLBP interacting protein 1 (SLIP1) interacts with eukaryotic translation initiation factor 

4-γ (EIF4G) to bring the 3’ end proximal to the 5’ cap to initiate and allow efficient 

translation (Cakmakci et al., 2008). When cells approach the end of S phase, the level of 

replication-dependent histone transcripts starts decreasing which is achieved by a rapid 

reduction in mRNA half-life in mammals. SLBP is also involved in the process of degradation 

by recruiting proteins responsible for a adding short oligo (U) tail to the histone mRNA that 

is being translated (Mullen and Marzluff, 2008; Osley, 1991). Then the LSM1–7 heptamer is 
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recruited and promotes the degradation of histone mRNAs similar to polyadenylated 

mRNAs (Tharun et al., 2000).  

1.2.5 Polyadenylated replication-dependent histone mRNAs 

 The existence of polyadenylated histone mRNAs from replication-dependent histone 

genes has been reported. Using a computational approach it was shown that many histone 

mRNAs contain both polyadenylation signal as well as stem-loop sequences (Dávila López 

and Samuelsson, 2008).  Moreover, the loss of normal histone mRNA 3’ end processing by 

depletion of SLBP or U7 snRNP can result in the production of polyadenylated histone 

mRNAs (Sullivan et al., 2009). Similarly, depleting CDK9, CBP80 (Cap Binding Protein) or 

NPAT  also results in the production of polyadenylated histone mRNAs (Narita et al., 2007; 

Pirngruber et al., 2009a). Earlier studies have shown that during differentiation and cell 

cycle arrest levels of polyadenylated histone mRNAs increased (Abba et al., 2005; Kirsh et 

al., 1989; Zhao et al., 2004). Moreover, microarray based studies indicate that the 

expression of several histone genes are upregulated during tumor progression since these 

studies were based on an initial polyT reverse transcription they probably indicate changes 

in histone mRNA polyadenylation rather than transcriptional changes. Tumor suppressor 

protein p53-mediated G1 cell cycle arrest also increases the fraction of polyadenylated 

histone transcripts in the cells (Pirngruber and Johnsen, 2010). However, whether 

polyadenylated histone mRNAs produced from normally replication-dependent histone 

genes are transported from the nucleus to the cytoplasm and engaged by ribosome remains 

unclear. 

1.2.6 Post-translational histone modifications and histone code 

In the cell, chromatin is dynamic and undergoes structural changes to facilitate 

various DNA associated processes. Chromatin associated processes are partially regulated 

by post-translational histone modifications (PTMs) which occur largely at the N-terminal tail 

of histones. These include acetylation, phosphorylation, ubiquitination, methylation, 

sumoylation and ADP ribosylation (Cosgrove and Wolberger, 2005; Fischle et al., 2003; 

Kouzarides, 2007) (Figure 2).  
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Fig 2. Post-translational modifications of core histones. Histone tails can be post-

translationally modified defining the state of chromatin (Bhaumik et al., 2007). ac – 

acetylation,  me – methylation, ph – phosphorylation, ub – ubiquitination. 

Histone PTMs influence the chromatin state in mainly two ways, either by changing 

the electrostatic charges between DNA and histone (e.g. acetylation or phosphorylation) or 

by creating a platform for chromatin binding proteins (Berger, 2007; Strahl and Allis, 2000). 

The type of histone modification, number, combination, position on the histone dictates the 

outcome of DNA associated processes, referred to as the “histone code” (Berger, 2002; 

Jenuwein and Allis, 2001). Histone modifications can also influence each other by “histone 

crosstalk”. Importantly, some marks are generally associated with active chromatin whereas 

some with a repressed state.  
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1.3 DNA damage and repair process 

Genetic information is stored and transferred to generations in the form of DNA, 

maintaining its integrity and stability which is essential for life. DNA constantly undergoes 

alterations by cellular pathways and is exposed to number of agents that cause damage to 

the DNA. DNA damage could occur by both endogenous processes and exogenous agents, 

which may cause deletions, mutations and chromosomal translocations in the genome. DNA 

damage may trigger a cascade of events including the sensing the DNA damage, activation 

of cell cycle checkpoint pathways, DNA repair and termination of DNA damage response 

signaling. If a cell is not able to repair the breaks an alternative apoptosis pathway becomes 

activated. Any defects in these processes can lead to genomic instability, aging and diseases 

such as cancer.  

1.3.1 Types of DNA damage and repair process 

DNA damage can be caused by endogenous processes that deal with the DNA such 

as replication, transcription and by exogenous agents including chemical compounds, UV 

rays and X rays.  For example, intrinsic processes like replication may lead to mismatches 

and strand breaks; chemical agents like Cisplatin cause inter and intra strand crosslinks, UV 

exposure creates pyrimidine dimers and base modifications; ionizing radiation exposure 

leads to abasic sites, single and double strand breaks. Both prokaryotic and eukaryotic cells 

have evolved different types of DNA repair mechanisms to repair a variety of DNA adducts 

and damage (Ciccia and Elledge, 2010; Lord and Ashworth, 2012; Shiloh, 2003) and most of 

the processes are evolutionary conserved. Single strand breaks (SSB) are repaired by the 

base excision repair (BER) pathway; bulky adducts created by exposure to UV are repaired 

through nucleotide excision repair (NER); mismatches, insertions or deletions are removed 

by the mismatch repair pathway; most lethal DNA double strand breaks are repaired by a 

homology mediated repair pathway called homologous recombination (HR) or by an error-

prone non-homologous end joining (NHEJ) pathway (Jiricny, 2006; Lindahl and Barnes, 2000; 

Moldovan and D’Andrea, 2009; West, 2003). Well studied types of DNA damage and their 

repair mechanism and proteins involved in that pathways are shown in Figure 3.  
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1.3.2 DNA double stand break repair pathways 

DNA double strand breaks (DSBs) caused by endogenous processes or exogenous 

agents can promote genomic rearrangements and apoptosis. To repair DSBs multiple 

pathways have evolved. Two major pathways that have been studied well are non-

homologous DNA end-joining (NHEJ) and homologous recombination (HR) and other 

pathways like, alternative-NHEJ (alt-NHEJ) and single-strand annealing (SSA) (Ciccia and 

Elledge, 2010).   

 

 

Fig 3. Types of DNA repair mechanisms maintain genomic stability. DNA is continually exposed to a 
number of agents that cause different types of damages, from single-strand breaks (SSBs) to base 
alkylation events. The choice of repair mechanism is largely based on the type of damage, but 
factors such as the stage of the cell cycle also have a role. BER, base excision repair; NER, nucleotide 
excision repair; NHEJ, non-homologous end joining. (Modified from (Lord and Ashworth, 2012)). 

 



Introduction 

 

9 
 

1.3.3 Non-homologous DNA end-joining (NHEJ) 

NHEJ repairs double strand breaks with little or no homology mediated pathway. In 

NHEJ, the two broken ends of DNA are held together with a DNA binding heterodimer 

protein complex called Ku70/80 and this recruits the catalytic subunit of DNA dependent 

protein kinase (DNA-PKcs) to the damage site (Gottlieb and Jackson, 1993). Upon binding 

DNA-PKcs is autophosphorylated which in turn promotes phosphorylation of its targets 

including NHEJ factors (Chan et al., 1999; Goodarzi et al., 2006; Leber et al., 1998). DNA-PKcs 

has an important role in stabilizing the ends of the DNA and preventing excessive end 

resection (Mahaney et al., 2009; Meek et al., 2008). The ends can be trimmed by a nuclease 

called Artemis and gaps are filled by DNA polymerases such as Polμ or Polλ and allow the 

joining of the ends by the ligase complex including DNA ligase IV, X-ray cross-

complementation group 4 (XRCC4) and Xrcc4 like factor (XLF)/Cernunnos ligase (Critchlow 

and Jackson, 1998). The NHEJ pathway is active throughout the cell cycle but is favored in 

G1 cells and seals the ends very quickly. However, this pathway is error-prone and 

frequently results in insertions, deletions and substitutions. This pathway is also involved in 

V(D)J recombination, the process required for the generation of antibody diversity in 

immune cells (Bassing et al., 2002). NHEJ is also responsible for chromosomal translocations 

if two different chromosome parts are joined together (Brandsma and Gent, 2012; Lieber, 

2010; Ma et al., 2005).  

1.3.4 Homologous recombination (HR) pathway  

 The HR pathway requires homologous sequences or a homology partner to repair 

DNA double strand breaks. This pathway is active in both S and the G2 phases of the cell 

cycle (Mao et al., 2008; Sung and Klein, 2006). Briefly, HR starts with resection of DNA ends 

by MRE11/RAD50/NBS1 (MRN complex) together with CtIP and exonucleases by generating 

3’ single-strand DNA (ssDNA) (Heyer et al., 2010; Limbo et al., 2007; Stracker and Petrini, 

2011). Then the ssDNA is coated with ssDNA binding proteins replication protein A (RPA1) 

and RAD51 (Sugiyama et al., 1997) which recognizes homology and promotes strand 

invasion in order to copy information from the donor chromosome.  The central part of HR 

is the formation of Holliday junction (Collins and Newlon, 1994; Sung and Klein, 2006).  
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After recognizing DSBs the MRN complex promotes activation of ATM (ataxia 

telangiectasia mutated) kinase. The MRN complex includes structural maintenance of 

chromosome (SMC) family member RAD50 which further interacts with MRE11 and 

associates with DSBs to stabilize the ends. MRE11 also has both endonuclease and 

exonuclease activity important for the initial end resection process (Williams et al., 2007). 

The third member of the MRN complex is NBS1, which interacts with MRE11 as well as with 

other proteins involved in the DNA damage response (DDR) pathway such as ATM, CTBP-

interacting protein (CtIP) and mediator of DNA damage checkpoint 1 (MDC1) (van den Bosch 

et al., 2003). ATM was shown to regulate end resection process through CtIP, which 

interacts with BRCA1 and MRN complex in S and G2 phase of cell cycle (Huen et al., 2010). 

Further end resection process is carried out by EXO1 which is also phosphorylated by ATM 

(Bolderson et al., 2010). It is reported that DNA Polymerase δ is required for HR mediated 

DNA synthesis (Maloisel et al., 2008). 

1.3.5 Alternative DSB repair pathways 

 Apart from the two major pathways to repair DSBs (HR and NHEJ), there are other 

pathways which have been reported such as the single strand annealing (SSA) pathway 

which uses directly repeated stretches of homology to repair DSBs and the alternative NHEJ 

pathway (A-NHEJ). The later was reported to be active when the classical NHEJ is inactive 

and is similar to the NHEJ pathway in that it is also an error-prone. Proteins involved in this 

pathway are DNA ligase III, XRCC1 and PARP1 (Audebert et al., 2004; Wang et al., 2006). 

While a number of pathways to repair DSBs have been reported, recent studies indicate that 

all the repair pathways are interconnected with each other. The pathway of choice depends 

on cell cycle phase and availability of regulatory proteins.  
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Fig 4. Mammalian double-strand break (DSB) repair pathways. DNA DSBs are predominantly 
repaired by either non-homologous end-joining (NHEJ) or homologous recombination (HR) (Lans et 
al., 2012). 

1.4 DNA damage response (DDR) 

Cells have evolved sophisticated mechanisms to recognize different types of DNA 

damage and activate cell cycle checkpoints to transduce signals to repair the DNA damage. 

The DNA damage response (DDR) pathway involves sensing the DNA damage by sensors and 

mediates a cascade of events to protect cells (Harper and Elledge, 2007; Jackson and Bartek, 

2009) from damage. Following sections will introduce the molecules involved in the DNA 

damage response. 
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1.4.1 DNA damage sensors and mediators 

 Once DNA is damaged in the cell, the first step is the recognition of DNA damage to 

initiate the checkpoint activation and repair. Studies from both yeast and mammals 

demonstrated that Rad9, Rad1, Hus1 (9-1-1) and Rad17 are the essential factors that 

activate checkpoint signaling (Longhese et al., 1998; Parrilla-Castellar et al., 2004). The 9-1-1 

complex facilitates the activation of the ATM/ATR kinases (Kondo et al., 2001). DNA damage 

mediators are BRCA1 C-terminus repeat domain (BRCT) containing proteins that mediate 

protein-phosphoprotein interactions including p53 binding protein 1 (53BP1), MDC1, MRN 

complex, topoisomerase binding protein 1 (TopBP1) and breast cancer susceptibility gene 1 

(BRCA1) (Goldberg et al., 2003; Schultz et al., 2000; Wang et al., 2002; Yamane et al., 2002). 

Recruitment of mediators is mostly dependent on phosphorylation of H2AX (γH2AX) 

modification which occurs on both sides of DNA damage site by Phosphatidylinositol 3-

kinase-like protein kinase (PIKK) family members ATM and ATR (Rogakou et al., 1998a). 

1.4.2 DNA damage transducers 

The DNA damage response is mediated primarily by kinases that belong to 

phosphatidylinositol 3-kinase-like protein kinase (PIKKs) family which includes ataxia 

telangiectasia mutated (ATM), ataxia telangiectasia and Rad3-related protein (ATR) and 

DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Recently it was also shown that 

proteins belonging to the poly ADP ribose polymerase family (PARP1 and PARP2) (Cimprich 

and Cortez, 2008; Savitsky et al., 1995; Schreiber et al., 2006; Walker et al., 1985) are also 

required for DNA damage response. The ATM/ATR-mediated DNA damage response 

pathway is very well studied. ATM is a large (∼350-kDa), evolutionarily conserved 

serine/threonine protein kinase and is activated in response to DNA double strand breaks 

(DSBs). The DNA damage sensor MRN complex consisting of MRE11, RAD50 and NBS1 has 

been implicated as one of the initial activators of ATM (Cerosaletti and Concannon, 2004; 

Lee et al., 2013; Uziel et al., 2003). Other proteins are also implicated in ATM activation 

including RNF8 (ring finger protein 8) an E3 ubiquitin ligase and BRCA1-associated ATM 

activator 1 (BAAT1) (Ouchi and Ouchi, 2010; Wu et al., 2011). ATM exists as a dimer which is 

inactive, once it is recruited to the damage site it becomes a monomer and is 

autophosphorylated at multiple sites (Ser367, Ser1893, Thr1885, Ser1981 and Ser2996). This 
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is thought to be important for further activation and retention of ATM at the damage site 

(Bakkenist and Kastan, 2003; Kozlov et al., 2011; You et al., 2007). Once ATM is activated in 

response to DNA damage, it phosphorylates a number of proteins involved in cell cycle 

checkpoint control, DNA repair and apoptosis such as H2AX, CHK2, NBS1, BRCA1, p53, 

MDM2, SMC1 and others (Banin et al., 1998; Lim et al., 2000; Matsuoka et al., 2007; 

McKinnon, 2012). Downstream of these proteins are checkpoint kinases (CHK) CHK1 and 

CHK2 and their homologues. Mutations in the ATM gene cause an autosomal recessive 

neurodegenerative disease called A-T (Ataxia-telangiectasia). These patients exhibit 

hypersensitivity to radiation, immune dysfunction and early onset of cancer development 

(Gatti et al., 2001; Taylor and Byrd, 2005). ATR with its regulator ATRIP (ATR-interacting 

protein) senses single strand DNA (ssDNA) breaks generated by exposure to UV radiation or 

stalled replication fork. Though the main substrate of ATR is CHK1, most of the ATR 

substrates overlap with ATM including H2AX, BRCA1 and p53 (Cimprich and Cortez, 2008; 

Matsuoka et al., 2007; Tibbetts et al., 1999). DNA-PKcs is also autophosphorylated at 

different sites in response to DSBs and is mostly implicated in DNA repair through the NHEJ 

pathway rather than DNA damage response pathway (Meek et al., 2008). 

1.5 Histone modifications in DNA damage response (DDR) 

and repair 

Post-translational histone modifications (PTMs) not only regulate gene transcription, 

but are also involved in DNA damage recognition and repair pathway (Altaf et al., 2007; 

Rossetto et al., 2010).  

1.5.1 Phosphorylation 

An important histone modification involved in DNA repair is phosphorylation of 

H2AX (γH2AX) at Ser139 by ATM, ATR and DNA-PKcs in response to DNA damage. This 

modification can spread around the damage site more than 50 kb (Downs et al., 2004; 

Rogakou et al., 1998a; Stiff et al., 2004). Cells lacking H2AX show sensitivity to ionizing 

radiation and genomic instability (Bassing et al., 2002; Celeste et al., 2002). γH2AX is not 

only a DNA damage sensor but is also required for the binding of a number of proteins to 

the damage site including the MRN complex, MDC1, 53BP1 and others by directly 
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interacting with them. Histones are also phosphorylated at other sites in response to DNA 

damage such as phosphorylation of H2A at Ser119, H2B at Ser14 and H4 at Ser1 (Cheung et 

al., 2005; Fernandez-Capetillo et al., 2004; Harvey et al., 2005). However, the functions of 

these in this process remain largely unknown. 

1.5.2 Methylation 

While histone methylation is thought to be important for transcriptional regulation 

recent studies have implicated numerous histone methylations in the DNA damage repair 

processes. Studies on the histone methyltransferase SET8, which mediates H4K20 

methylation, revealed the role of this modification in maintaining genomic stability. Loss of 

SET8 leads to accumulation of DSBs and checkpoint activation (Jørgensen et al., 2007; Oda 

et al., 2009). The DNA damage mediator protein, 53BP1 can also interact with H3K79me 

which is mediated by DOT1-like (Dot1L) and H4K20me at site of the DNA damage through its 

TUDOR domains (Sanders et al., 2004). 

1.5.3 Acetylation 

Acetylation of histones seems to play a major role both in recruiting proteins to 

damage site and restoration of chromatin structure after the repair. A multi subunit 

complex containing the histone acetyltransferase TIP60 was shown to acetylate H2AX at 

Lys5 in response to DNA damage and ATM activation (Ikura et al., 2000). Acetylation and 

deacetylation of H4K16 plays a key role in the regulation of the DDR and is directly linked to 

the unfolding of higher-order chromatin structures (Shogren-Knaak et al., 2006). However, 

some histone acetylation marks were shown to decrease in response to DNA damage such 

as H3K9 and H4K16 acetylation. There are some controversial observations in case of H3K56 

acetylation where some studies show that it is increased upon DNA damage others showing 

the opposite results (Tjeertes et al., 2009; Vempati et al., 2010).   

1.5.4 Ubiquitination  

Ubiquitination is a covalent modification involving the addition of ubiquitin to the 

target proteins. While polyubiquitination of proteins generally leads to protein degradation, 

monoubiquitination of a protein may change its function, localization or interacting partners 

(Bergink and Jentsch, 2009). Ubiquitination is carried out in a step wise process by three 
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enzymes known as E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme and E3 

ubiquitin ligase (Jackson and Durocher, 2013). Like other modifications ubiquitination is 

reversed by deubiquitinating (DUBs) enzymes. Ubiquitination of histones is not only 

important for gene regulation but also required for DDR pathway. For example the E2 

conjugating enzyme Rad6 and the E3 ligase Rad18 are involved in post-replication repair 

(PRR) and translesion synthesis (TLS) by mono or poly ubiquitinating PCNA (Bergink and 

Jentsch, 2009; Ulrich, 2011). Monoubiquitination of histones and polyubiquitination of 

DDB2 and XPC is important for NER mediated repair pathway (Scrima et al., 2011). Most 

importantly, ubiquitination of histones during DNA double strand break response and repair 

play a major role in maintaining genomic stability. RNF8 and RNF168 mediated 

ubiquitination of histone H2AX and H2A at K119 is required for retention of DSB repair and 

signaling factors such as 53BP1, RAD18, BRCA1, the RAP80 complex (also known as BRCA1-

A), HERC2, BMI1, RIF1, RNF169, NPM1, FAAP20, and NIPBL (Lukas et al., 2011). We and 

others have shown that H2B monoubiquitination at Lys 120 (H2Bub1) mediated by 

RNF20/40 E3 ligase regulates the chromatin remodeling at DNA damage site (Kari et al., 

2011; Moyal et al., 2011; Nakamura et al., 2011). More details about H2B 

monoubiquitination will be discussed in further sections. 

1.5.5 RNF20/40 and H2B mono-ubiquitination (H2Bub1) 

H2B monoubiquitination is mediated by the RNF20/40 E3 ubiquitin ligase complex at 

Lys120 (K120) in mammals and by Bre1 at Lys123 in yeast. H2Bub1 is preferentially found in 

the transcribed region of highly expressed genes and at the promoter regions of some genes 

(Minsky et al., 2008) and the occupancy is overlapped with Ser2 phosphorylated form of 

RNAPII at p21 gene locus (Pirngruber et al., 2009a). In both yeast and human, it is linked 

with transcriptional elongation (Fleming et al., 2008; Minsky et al., 2008). During 

transcription RNF20/40 is recruited through interaction with WAC protein which directly 

interacts with Ser2 phospho RNA pol II (Zhang and Yu, 2011). Moreover, H2Bub1 is required 

to remove the repressive mark H3K27me3 at differentiation regulated genes (Karpiuk et al., 

2012). Yeast Bre1 was shown to be recruited to chromatin via interaction with Paf1 complex 

(Henry et al., 2003; Xiao et al., 2005; Zhang and Yu, 2011). Furthermore, Paf1 interaction 

with facilitates chromatin transcription (FACT) complex facilitates removal of H2A-H2B 

dimer from core nucleosomes (Belotserkovskaya et al., 2003; Kireeva et al., 2002; Laribee et 
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al., 2007).  H2Bub1 has been shown to promote the activity of the histone 

methyltransferases Set1 and Dot1L to di- and trimethylate H3K4 and H3K79 thereby 

facilitating histone crosstalk in yeast and mammals (Kim et al., 2009; Sun and Allis, 2002). 

Furthermore, H2Bub1 was shown to be required for correct processing of stem-loop 

dependent histone gene transcription (Pirngruber et al., 2009a).  

Apart from the role in transcription, recent studies show that H2Bub1 is required for 

the DSB repair pathway. This modification was shown to increase following DNA damage in 

an ATM dependent manner (Moyal et al., 2011; Nakamura et al., 2011). RNF20 and RNF40 

are phosphorylated by ATM in response to DNA damage and loss of this complex leads to 

decreased cell cycle checkpoint activation and chromatin accessibility (Chernikova et al., 

2010; Kari et al., 2011; Moyal et al., 2011; Nakamura et al., 2011). Moreover, depletion of 

these two proteins leads to decreased efficiency of NHEJ and HR pathway (Moyal et al., 

2011; Nakamura et al., 2011). 

1.6 ATP dependent chromatin remodeling complexes 

 Like most of the DNA-associated processes in eukaryotes to access the DNA, DSB 

repair pathway also must deal with chromatin structure. The impact of chromatin on DNA 

repair was initially described in the “access-repair-restore” model (Smerdon, 1991). 

Modulation of chromatin compaction can be regulated by post-translational histone 

modifications, ATP-dependent chromatin remodeling complexes and histone chaperones. 

ATP-dependent chromatin remodeling complexes namely SWI/SNF, ISWI, CHD and INO80 

are multi-protein complexes which use ATP as a source of energy to induce changes in the 

chromatin. Chromatin remodelers allow proteins to access DNA either by removing 

nucleosomes from chromatin to increase DNA accessibility shift the position of nucleosomes 

or exchange histones (Price and D’Andrea, 2013). In yeast, all four families of proteins have 

been shown to be involved in remodeling chromatin around the DSB site (Chai et al., 2005; 

Downs et al., 2004; Tsukuda et al., 2005). In humans, a well-studied chromatin remodeling 

complex at DSB site is hNuA4 which belongs to the INO80 family, consists of at least 16 

subunits including the Tip60 acetyltransferase, p400 motor ATPase, Ruvbl1 and Ruvbl2 

helicase-like proteins etc., (Jha et al., 2008; Sun et al., 2005; Xu et al., 2010). Tip60 acetylates 

chromatin and DDR proteins including ATM and p53 (Bird et al., 2002; Ikura et al., 2000; Sun 
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et al., 2005). In mammals, hNuA4 can also promote the rapid exchange of H2A for H2A.Z at 

DSBs (Xu et al., 2012). Furthermore, it was shown that inactivation of hNuA4 components can lead 

to defects in the recruitment of other DDR proteins including RNF8/RNF168, 53BP1 and Rad51 to 

chromatin (Courilleau et al., 2012; Murr et al., 2007). 

 Another ATP-dependent chromatin remodeling SWI/SNF complexe belongs to the 

family of swi2/snf2 and it is also known to regulate chromatin structure in DNA repair. In 

mammals, it is recruited to DNA damage site via interaction with γH2AX. Down-regulation of 

its components BRG-1, results in inefficient DSB repair and increased damage sensitivity 

(Lee et al., 2010; Park et al., 2006). 

1.6.1 Chromodomain helicase DNA-binding (CHD) proteins in DNA repair 

 Chromodomain helicase DNA-binding (CHD) proteins belong to ATP-dependent 

chromatin remodelers and contain a tandem domain at the N terminal region and SNF2 like 

ATPase domain (Delmas et al., 1993; Woodage et al., 1997). A number of CHD proteins were 

known from different studies including CHD1 to CHD9 (Marfella and Imbalzano, 2007).  

CHD1 was initially identified in mouse (mChd1) and is co-purified along with SSRP1 the 

subunit of the FACT complex (Kelley et al., 1999). A recent study in yeast identified chd1 as a 

part of the SAGA and SAGA-like (SLIK) complexes required for proper histone 

acetyltransferase (HAT) activity (Pray-Grant et al., 2005). CHD1-like protein (CHD1L) was 

shown to be involved in DNA repair (Ahel et al., 2009). CHD4 is a part of hNuRD complex 

identified as a target for ATM/ATR-mediated phosphorylation and interacts with ATR 

(Matsuoka et al., 2007; Schmidt and Schreiber, 1999). Further, CHD4 was shown to be 

recruited to laser-induced DNA damage site and loss of CHD4 increased sensitivity of cells to 

IR (Larsen et al., 2010). 

 In this study, we show that CHD1 is recruited to DSB sites and required for end 

resection process. Moreover, depletion of CHD1 leads to inefficient repair of DSB through 

the homologous recombination repair pathway and affects cell survival.   

 

 



Introduction 

 

18 
 

1.7 Histone chaperones in DNA double stand beak repair  

 Histone chaperones are proteins that allow ordered formation of nucleosomes and 

shield nonspecific interactions between histones and nucleic acids. During the assembly of 

nucleosomes, H2A-H2B dimers deposited on DNA only after the deposition of two H3-H4 

dimer. During chromatin disassembly H2A-H2B dimers are removed from the nucleosomes 

prior to H3-H4 dimer eviction. The role of DNA histone chaperones is well studied during the 

replication. Recent studies showed that histone chaperones are also involved in both 

chromatin assembly and disassembly during the DNA damage response and repair pathway 

and are mostly important in restoration of chromatin after repair (Ransom et al., 2010; 

Rossetto et al., 2010).  

 

Fig 5. Chromatin restoration after DNA break repair. Upon completion of repair of the DSBs, the 

chromatin needs to be restored, and the repair-specific histone marks need to be removed in order 

to release repair factors and cell-cycle checkpoints. Thus, γ-H2AX has to be removed from the 

repaired site. During chromatin restoration, new histones are deposited onto the DNA. Histone 

chaperones such as FACT and CAF1 have been implicated in this process. Moreover, H3-H4 histones 

deposited by CAF1 are first acetylated by Hat1, and then by CBP/p300/Rtt109-Asf1, as marks of new 

synthesized histones (Rossetto et al., 2010).  
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The histone H3-H4 chaperones Asf1 (anti silencing function 1) and CAF-1 (chromatin 

assembly factor 1) were initially shown to be involved in nucleotide excision repair (Gaillard 

et al., 1996; Mello et al., 2002). Recent studies have uncovered the role of these chaperones 

in the DSB repair process. As in the replication process, Asf1 and CAF-1 are required for the 

incorporation of newly synthesized histones marked with H3K56 acetylation during DNA 

repair (Chen et al., 2008; Li et al., 2008; Ransom et al., 2010). Asf1, in association with yeast 

Rtt109 and human CBP/p300 or Gcn5 HAT, is essential for H3K56 acetylation (Das et al., 

2009; Hyland et al., 2005; Tjeertes et al., 2009) (Figure 5). The FACT histone chaperone 

complex is associated with transcription, and its binding to chromatin was shown to be 

increased in response to DNA damage and depletion of the SUPT16H subunit of the FACT 

complex can compromise the DNA DSB repair efficiency (Kari et al., 2011). In vitro studies 

have shown that the FACT complex can exchange H2AX-H2B dimers and its activity is 

regulated by PARP activity (Heo et al., 2008). Another histone chaperone Chz1 appears to be 

involved in exchange of H2A.Z/H2B dimers for H2A/H2B dimers to promote DNA repair 

process and inactivation of Chz1 leads to DNA damage sensitivity (Luk et al., 2007). 

 In the present study we analyzed the production of polyadenylated histone mRNAs 

from replication-dependent histone genes specifically Histone H2B genes, and their 

physiological role in the cell. Further we studied the role of H2B monoubiquitination in DNA 

damage response and repair. We showed that ATP-dependent chromatin remodeler CHD1 is 

recruited to DNA damage site and involved in the repair of DNA DSB through HR pathway. 
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Abstract 

Unlike other metazoan mRNAs, replication-dependent histone gene transcripts are 

not polyadenylated but instead have a conserved stem-loop structure at their 3’ end. Our 

previous work has shown that under certain conditions replication-dependent histone genes 

can produce alternative transcripts that are polyadenylated at the 3’ end and, in some 

cases, spliced. A number of microarray studies examining the expression of polyadenylated 

mRNAs identified changes in the levels of histone transcripts e.g. during differentiation and 

tumorigenesis. However, it remains unknown which histone genes produce polyadenylated 

transcripts and which conditions regulate this process. In the present study we examined 

the expression and polyadenylation of the human histone H2B gene complement in various 

cell lines. We demonstrate that H2B genes display a distinct expression pattern that is varies 

between different cell lines. Further we show that the fraction of polyadenylated 

HIST1H2BD and HIST1H2AC transcripts is increased during differentiation of human 

mesenchymal stem cells (hMSCs) and human fetal osteoblast (hFOB 1.19). Furthermore, we 

observed an increased fraction of polyadenylated transcripts produced from the histone 

genes in cells following ionizing radiation. Finally, we show that polyadenylated transcripts 

are transported to the cytoplasm and found on polyribosomes. Thus, we propose that the 

production of polyadenylated histone mRNAs from replication-dependent histone genes is a 

regulated process induced under specific cellular circumstances. 

 

Introduction 

Histones are the major protein component of the eukaryotic chromatin and the 

transcription of the histone genes is tightly regulated. Histone mRNA levels increase up to 

35 fold during the S phase of the cell cycle compared to the G1 phase and back to the basal 

expression level at the end of the S phase  (Osley, 1991). Unlike the majority of protein-

coding mRNAs, replication-dependent histone mRNAs are not spliced and lack polyA tails. 

Instead their 3’ end contains a highly conserved 16 nucleotide stem-loop sequence and a 

histone downstream element (HDE) which is recognized by the stem-loop binding protein 

(SLBP) and U7 snRNPs respectively (Marzluff et al., 2008). In addition to facilitating histone 

mRNA 3’ end processing, SLBP also facilitates their transport to cytoplasm and stimulates 

their degradation at the end of the S phase. In some cases, non-replication dependent 

histone variants such as H3.3, H2A.X and others are expressed throughout the cell cycle, 
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often in a cell type-specific manner, and display the 3’ end polyadenylation instead of a 

stem loop (Talbert and Henikoff, 2010). Studies from our lab and others have shown that 

the loss of correct 3´end processing can result in the production of polyadenylated (polyA+) 

histone transcripts from replication-dependent histone genes (Kirsh et al., 1989; Pirngruber 

et al., 2009a, 2009b; Sullivan et al., 2009; Tan et al., 2013). Depletion of various proteins 

including Cyclin Dependent Kinase 9 (CDK9), RING finger protein 20 (RNF20), RNF40, Nuclear 

Protein, Ataxia-Telangiectasia Locus (NPAT/p220), Negative Elongation Factor-E (NELF-E), 

members of the Cap Binding Complex (CBC), or SLBP itself results in the production of 

polyA+ histone transcripts from replication-dependent histone genes (Narita et al., 2007; 

Pirngruber et al., 2009a, 2009b; Sullivan et al., 2009). Importantly, several studies indicate 

that polyA+ histone mRNA levels may increase during various cellular processes including G1 

arrest caused by p53 accumulation (Pirngruber and Johnsen, 2010) as well as during 

differentiation and tumorigenesis (Abba et al., 2005; Collart et al., 1991; Kirsh et al., 1989; 

Martinez et al., 2007; Zhao et al., 2004). Finally, up-regulation of polyadenylated histone 

transcripts can be stimulated by chemical agents such as hydroxyurea (HU) (Pirngruber and 

Johnsen, 2010). 

Despite a number studies reporting the production of polyadenylated histone 

mRNAs, the functional relevance of these transcripts remains unclear. It remains unknown 

which of the replication-dependent histone genes can give rise to polyA+ transcripts. 

Furthermore, although it has been reported that polyadenylated histone transcripts 

produced following SLBP knockdown accumulate in the nucleus (Sullivan et al., 2009), it is 

unclear whether the polyA+ histone transcripts produced from the normally replication-

dependent genes under normal cellular conditions are exported to the cytoplasm and are 

actually translated into proteins. 

In this study we examined the expression profiles of polyA+ and total histone 

transcripts produced from the entire repertoire of H2B genes and compared these in 

proliferating and differentiated as well as in primary normal breast and breast cancer 

tissues. We report that a subset of histone H2B genes also produces polyadenylated mRNA 

transcripts. Importantly, we also show that polyadenylated mRNA transcripts of H2B 

(HIST1H2BD) as well as H2A (HIST1H2AC) are transported to the cytoplasm where they are 

also found in the polyribosomal complexes. Importantly, we also show that levels of the 
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polyA+ histone transcripts increase during cellular differentiation as well as following the 

induction of double-strand DNA breaks via gamma-irradiation. Thus, we provide the first 

evidence that alternative 3’ end processing of histone mRNA transcripts is regulated under 

specific conditions and that these may lead to functional protein products.  

Results 

Expression of replication-dependent histone H2B gene transcripts in different cell lines 

The metazoan core histone genes are clustered together in the genome. In 

mammals, there are two major histone gene clusters on chromosome 6p21-p22 (HIST1) and 

1q21 (HIST2) as well as one minor cluster on 1q42 (HIST3) (Marzluff et al., 2002). Each of the 

histone proteins is encoded by several histone genes and there are 18 histone H2B genes 

reported for human. To date it is unclear to what extent each of the individual histone genes 

are actually expressed, and whether this expression varies between tissues, cell types or 

under different physiological conditions. Since the expression levels of the various H2B 

genes remain largely unknown, we examined the expression levels of replication-dependent 

H2B transcripts in different cell lines including H1299, MCF7, MCF10A, U2OS and hMSCs via 

real time quantitative PCR (qRT-PCR) (Fig I.1 A-E). The expression of individual H2B gene 

transcripts was represented as relative genomic DNA units (Rel. gDNA) as described in 

materials and methods to enable the quantitative comparison between different genes. For 

each cell line tested we observed distinct H2B gene expression profiles. While many genes 

were either consistently expressed at medium to high levels (HIST1H2BC, HIST1H2BD, 

HIST1H2BE, HIST1H2BJ, HIST1H2BK, HIST1H2BL, HIST1H2BM and HIST1H2BN) and others 

were very low or undetectable in all cell lines tested (HIST1H2BA, HIST1H2BB, HIST2H2BF 

and HIST2H2BB) other genes displayed cell line-specific expression. For example, while 

HIST1H2BM is expressed at medium levels in H1299, MCF10A, U2OS and hMSC cells, it 

represents one of the major expressed H2B genes in MCF7 cells. Similarly, while HIST2H2BE 

expression was nearly undetectable in H1299, MCF10A and U2OS cell lines, moderate 

expression was observed in MCF7 and hMSCs. The HIST1H2BG and HIST1H2BI genes also 

showed cell line-specific expression in which they were moderately expressed in H1299, 

MCF7 and hMSCs, but very low in U2OS and MCF10A cells. HIST1H2BF was also broadly 
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expressed in the cell lines except in MCF10A where expression was very low. Thus, the 

repertoire of H2B genes expressed appears to be regulated in a cell context-specific manner. 
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Fig I.1: Expression of the histone H2B gene complement in different cell lines. Expression of 
different H2B genes in the indicated cell lines was analyzed by qRT-PCR. Relative expression values 
between the individual genes were normalized using diploid genomic DNA (see materials and 
methods) and indicated as “Rel. gDNA units”. Mean ±SD, n = 3.  

H2B mRNAs are differentially polyadenylated upon p53-induced cell cycle arrest 

In our previous studies, we demonstrated that the manipulation of epigenetic 

regulatory pathways (Pirngruber et al., 2009a, 2009b) or the induction of a G1 cell cycle 

arrest (Pirngruber and Johnsen, 2010) results in an increase in the production of spliced and 

polyadenylated transcripts from the HIST1H2BD and HIST1H2AC genes. Thus, after 

comparing the overall expression levels of different histone genes in various cell lines, we 

next examined which of them give rise to polyA+ transcripts. In order to do this, we purified 

total and polyA+ mRNA from HCT116 cells  
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Fig I.2: Nutlin-3a treatment down-regulates the expression of normal replication-dependent 
histone H2B genes and up-regulates the expression polyA+ transcripts. (A) Total expression of 
different replication-dependent histone H2B genes in control and Nutlin-3a treated HCT116 cells. 
Total RNA was reverse transcribed using random primers and analyzed by qRT-PCR for H2B genes as 
in Fig. 1. Mean ±SD, n = 3. (B) Expression of polyA+ histone H2B transcripts in HCT116 cells upon 
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Nutlin-3a treatment. PolyA+ mRNA was purified as described in materials and methods and reverse 
transcribed using random primers. Transcript levels of polyA+ H2B genes were analyzed by qRT-PCR. 
Mean ±SD, n = 3. (C) Levels of polyA+ H2B transcripts normalized to the total H2B levels from (B). 
Mean ±SD, n = 3. 

treated for 24 hours with Nutlin-3a, a small molecule inhibitor of the p53 ubiquitin ligase 

MDM2 (Vassilev et al., 2004) which induces a G1 cell cycle arrest in p53-proficient HCT116 

cells (Pirngruber and Johnsen, 2010), and examined the expression of each of the H2B genes 

via qRT-PCR analysis. To validate the purity of polyA+ mRNA purified from control and 

Nutlin-3a treated cells, we analyzed for the presence of ribosomal rRNA transcripts (5.8S 

rRNA and 18S rRNA) which are not polyadenylated (Fig I. S1A). Consistent with the earlier 

reports Nutlin-3a treatment decreased the overall expression of all detectable H2B 

transcripts (irrespective of polyadenylation status) (Fig I.2A). Interestingly, many H2B genes 

demonstrated a significant increase in the amount of polyA+ transcript production following 

Nutlin-3a treatment (Fig I.2B).  

Notably, the HIST1H2BD, HIST1H2BE, HIST1H2BJ, HIST1H2BK genes were highly 

expressed and also showed a significant increase in the fraction of polyadenylated 

transcripts (Fig I.2B, 2C). Normalization of polyA+ H2B mRNA levels to total H2B expression 

revealed that the fraction of polyadenylated transcripts is similarly up-regulated upon 

Nutlin-3a treatment for several genes irrespective of their overall expression levels. For 

example, the levels of polyadenylated transcripts from the HIST1H2BG, HIST1H2BH, and 

HIST1H2BI genes are upregulated to a similar extent as the more highly expressed genes 

HIST1H2BD and HIST1H2BK (Fig I.2C). Importantly, not all transcribed H2B genes 

demonstrated these effects. For example, HIST1H2BC, HSIT1H2BF, HIST1H2BM and 

HIST1H2BO are all expressed at significant levels, but show only very little or no evidence of 

polyA+ transcripts (Fig I.2). Thus the production of polyadenylated mRNAs from histone H2B 

genes is regulated in a gene-specific manner. Recent studies using a transcriptome-wide 

direct RNA sequencing (DRS) approach enable the precise mapping and quantification of 

polyadenylation sites as well as the identification of differentially polyadenylated RNA 

transcripts (Lin Y, Ozsolak F). We used the recently developed xPAD server genome browser 

(http://johnlab.org/xpad/) to map the DRS reads on histone H2B genes for the breast cancer 

cell line MCF7 (Fig I.3A), as well as the normal mammary epithelial cell line MCF10A (Fig 

I.3B). Consistent with the data in HCT116 cells, the mapping of DRS reads demonstrated that  

http://johnlab.org/xpad/
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Fig I.3: Polyadenylation of histone H2B genes assigned using polyadenylation and alternative 
polyadenylation (APA) map. Number of reads at polyA sites on different replication- dependent 
histone H2B genes which are mapped using xPAD server (http://johnlab.org/xpad/) in (A) MCF7 
(human breast cancer cell line), (B) MCF10A (immortalized human mammary epithelial cell line) cells 
and (C) normal and breast tumor tissues. 

http://johnlab.org/xpad/
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only a subset of H2B genes has detectable polyadenylation sites in MCF7 and MCF10A cells 

(Fig I.3, Supplementary Fig I.S3). Moreover, H2B transcripts identified as being highly 

polyadenylated in HCT116 cells (e.g., HIST1H2BD and HIST1H2BK; Fig I.2B) were also found 

to possess polyadenylation sites in MCF7 and MCF10A cells. Interestingly, using a further set 

of DRS mapping data, we observed that the number of reads identified for polyA+ histone 

transcripts increased in tumor breast samples compared to normal breast epithelium (Fig 

I.3C) possibly suggesting that increased levels of polyA+ histone transcripts may provide an 

advantage to tumor cells. 

Polyadenylated histone H2B transcripts are transported to the cytoplasm and found on 

polyribosomes 

Metazoan replication-dependent histone mRNAs are single exonic and are not 

spliced. Importantly, the inclusion of an intron prevents proper stem loop-dependent mRNA 

3’ end processing suggesting, that stem loop-directed 3’ end processing of histone mRNAs is 

mutually exclusive with splicing and polyadenylation (Pandey et al., 1990). We have 

previously shown that some histone genes (e.g. HIST1H2BD and HIST1H2AC) produce both 

canonically processed replication-dependent mRNAs as well as longer, spliced replication-

independent mRNAs produced using a downstream second exon (Pirngruber and Johnsen, 

2010; Pirngruber et al., 2009a). Due to the size of the primary transcript and the distance 

between the canonical 3’ end processing site and the polyadenylation site, these two 

transcripts can more easily be distinguished from their non-polyadenylated counterparts 

than transcripts produced from polyadenylation sites located immediately downstream of 

the canonical stem loop-directed 3’ end processing site (e.g., HIST1H2AA).  

Thus, we verified the expression of total and polyadenylated HIST1H2BD and 

HIST1H2AC transcripts in HCT116 cells arrested in G1 phase by Nutlin-3a treatment (Fig 

I.4A). Consistent with our previous results, Nutlin-3a treatment increased the levels of 

polyA+ HIST1H2BD and HIST1H2AC transcripts while decreasing their overall levels (i.e., 

canonically processed and polyadenylated together). These results were further verified in 

polyA+ purified mRNA (Fig I.4B). 
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Fig I.4: Expression of normal and PolyA+ HIST1H2BD and HIST1H2AC transcripts in HCT116 cells. (A) 
Cells were treated with Nutlin-3a as in Fig. 2. RNA was reverse transcribed into cDNA using both 
random and poly-T primers to check the mRNA levels of HIST1H2BD and HIST1H2AC, total and 
polyadenylated transcripts respectively. Values were normalized to RPLP0 expression. Mean ±SD, n = 
3. (B) Enrichment for polyadenylated histone transcripts using PolyATtract® mRNA Isolation System 
III. Total RNA was used to isolate polyadenylated RNA and reverse transcribed using poly-T primers. 
Expression of total and polyA+ HIST1H2BD and HIST1H2AC transcripts was analyzed by qRT-PCR. 
Values were normalized to RPLP0 expression. Mean ±SD, n = 3. P-values were calculated and 
statistical significance was represented as follows (** P ≤ 0.01; *** P ≤ 0.001). 

Although a number studies examined the “expression” of polyA+ histone transcripts 

(primarily through microarray analysis), whether or not these transcripts are actually 

exported from the nucleus and translated was unclear. We hypothesized that polyA+ histone 

mRNAs may be translated and give rise to proteins. To examine whether polyA+ histone 

mRNA is transported to the cytoplasm we isolated cytoplasmic RNA from HCT116 cells and 

examined it for the presence of spliced and polyadenylated histone HIST1H2BD and 

HIST1H2AC mRNA. qRT-PCR analysis with the cytoplasmic RNA confirmed the presence of 

HIST1H2BD and HIST1H2AC spliced transcripts, indicating that polyA+ histone mRNAs are 

indeed transported to the cytoplasm (Fig I.5A). To further determine whether these polyA+ 

histone mRNA transcripts are actually translated, we isolated polyribosomes from control 

and Nutlin-3a treated HCT116 cells. The representative polyribosome profiles are shown in 

Fig I.5B. qRT-PCR analyses of polyribosome-bound RNA clearly demonstrated the presence 

of polyA+ histone gene transcripts, supporting the conclusion that polyA+ transcripts may 
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give rise to proteins and thereby contribute to the maintenance of histone protein levels. 

Furthermore, we also observed a Nutlin-3a-induced increase of the polyribosome-bound 

polyA+ fraction vs. a decrease in polyribosome-bound total histone mRNA levels (Fig I.5C).  
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Fig I.5: Spliced HIST1H2BD and HIST1H2AC transcripts are transported to the cytoplasm and found 
on polyribosomes. (A) Polyadenylated HIST1H2BD and HIST1H2AC mRNA is transported to the 
cytoplasm. Cytoplasmic RNA was isolated from HCT116 cells treated either with DMSO or Nutlin-3a 
for 24 hours. RNA was reverse transcribed using random primers and analyzed for spliced 
HIST1H2BD and HIST1H2AC transcript by qRT-PCR. Values were normalized to 18S rRNA. Mean ±SD, 
n = 3. (B) Representative polyribosome profiles obtained after sucrose gradient fractionation from 
DMSO and Nutlin-3a treated HCT116 cells. The x-axis represents the time of elution and y-axis 
represents the absorbance at 254 nm, indicating the RNA content. Polysome profiles were indicated 
in the figure. (C) RNA was extracted from the indicated polyribosome fractions of DMSO and Nutlin-
3a treated cells and reverse transcribed using random primers. Expression of total and spliced 
HIST1H2BD and HIST1H2AC mRNA was analyzed by qRT-PCR and values were normalized to 18S 
rRNA. Mean ±SD, n = 2. P-values were calculated and statistical significance is represented as follows 
( * P ≤ 0.05; ** P ≤ 0.01). 

Radiation-induced expression of polyA+ gene transcripts 

After establishing that polyA+ transcripts can be transported to cytoplasm and 

translated, we investigated whether the levels of polyA+ histone transcripts may be 

regulated under physiological circumstances. Initially, we tested whether exposure of A549 

lung carcinoma cells to γ-radiation (6 Gy) affects the levels of polyA+ histone mRNAs. 

Consistent with the effects of Nutlin-3a-induced cell cycle arrest, 24 h after irradiation the 

mRNA levels of spliced HIST1H2BD and HIST1H2AC (Fig I.6A) were significant elevated 

despite an overall decrease in total histone transcript levels (Fig I.6B).  

PolyA+ histone mRNA expression is up-regulated during cellular differentiation 

We previously hypothesized that terminal cellular differentiation may result in 

changes in histone mRNA polyadenylation (Pirngruber and Johnsen, 2010). To test this 

hypothesis, we utilized an immortalized human mesenchymal stem cell (hMSC) line which 

can be differentiated to the osteoblast, adipocyte or chondrocyte lineages (Simonsen et al., 

2002). We differentiated hMSCs into either adipocytes or osteoblasts for 5, 10 or 15 days 

and confirmed the expression of differentiation-specific genes PPARG (Fig I.7A) for the 

adipocyte lineage and BGLAP for the osteoblast lineage (Fig I.7B) before analyzing the 

expression of spliced HIST1H2BD and HIST1H2AC transcripts Fig I.7C, D). Consistent with our 

hypothesis, the expression of spliced HIST1H2BD (Fig I.7C) and HIST1H2AC (Fig I.7D) mRNAs 

was significantly increased in differentiated adipocytes and osteoblasts compared to 

undifferentiated hMSCs irrespective of the differentiation lineage.  
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Fig I.6: Radiation induced elevated expression of spliced histone transcripts. A549 cells were 
exposed to gamma-irradiation (6 Gy) and incubated for 24 hours. RNA was extracted and analyzed 
by qRT-PCR for (A) spliced and (B) total HIST1H2BD and HIS1H2AC. Values were normalized to RPLP0. 
Mean ±SD, n = 3. (C) Expression of spliced HIST1H2BD and HIST1H2AC transcripts was normalized to 
the total HIST1H2BD and HIST1H2AC levels. P-values were calculated and statistical significance is 
represented as follows ( * P ≤ 0.05; **- P ≤ 0.01). 
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Fig I.7: Differentiation of uncommitted mesenchymal stem cells results in elevated expression of 
spliced up to histone transcripts. (A, B) hMSCs were differentiated into (A) adipocytes or (B) 
osteoblasts for 15 days. Expression of marker genes PPARG for adipocytes and BGLAP for osteoblasts 
was analyzed by qRT-PCR. Values were normalized to HNRNPK expression. Mean ±SD, n = 3. (C, D)  
The expression of (C) spliced HIST1H2BD or (D) spliced HIST1H2AC was analyzed by qRT-PCR using 
same samples as in (A) and (B). To obtain relative amounts of spliced transcript its expression was 
normalized to (C) total HIST1H2BD or (D) HIST1H2AC expression. Mean ±SD, n = 3. P-values were 
calculated and statistical significance is represented as follows (ns P > 0.05; * P ≤ 0.05; ** P ≤ 0.01; 
*** P ≤ 0.001). 
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Fig I.8: Expression of spliced histone transcripts are increased during committed osteoblast 
differentiation. (A) hFOB 1.19 cells were differentiated into osteoblasts for 7 days. Alkaline 
phosphatase (ALPL) expression in undifferentiated (undiff.) and differentiated (OB) cells was 
analyzed by qRT-PCR. Values were normalized to HNRNPK expression. Mean ±SD, n = 3. (B, C) 
Samples shown in (A)  were examined for (B) spliced HIST1H2BD and (C) HIST1H2AC expression. 
Values were normalized to total HISTH2BD and HISTH2AC respectively. Mean ±SD, n = 3. P-values 
were calculated and statistical significance is represented as follows (* P ≤ 0.05; ** P ≤ 0.01). 

 

Fig I.9: Comparison of stem-loop sequences in H2B genes. Alignment of the stem-loop sequences of 
H2B genes performed with ClustalW2 multiple sequence alignments tools (http://www.ebi.ac.uk/ 
Tools/msa/clustalw2/). Highly expressed histones are marked in grey. Stem loop sequence is shown 
in orange, bases that are different from canonical are underlined. 

  

http://www.ebi.ac.uk/%20Tools/msa/clustalw2/
http://www.ebi.ac.uk/%20Tools/msa/clustalw2/
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Discussion 

In proliferating metazoan cells most histone synthesis is coupled to DNA replication 

and occurs during the S phase of the cell cycle. While the transcription of replication-

dependent histone mRNAs is cell cycle regulated, the histone mRNAs themselves also have 

several specific features. First of all, they are not polyadenylated at their 3’ ends, but instead 

possess a specific stem-loop structure that is recognized by a unique 3’ end processing 

machinery and aids both in the 3’ end cleavage as well as in nuclear export and translation. 

Secondly, replication-dependent histone transcripts contain only one exon and, unlike most 

mRNAs, are not spliced. Despite significant transcriptional regulation during S phase, a 

certain degree of basal level histone synthesis was also observed throughout the cell cycle, 

independently of replication (Wu and Bonner, 1981b). Since stem-loop processing is coupled 

to the S phase, this phenomenon may be explained by mRNA processing events 

independent of the cell cycle. This hypothesis was supported by the identification of 

replication-independent histone mRNAs that are produced from the same histone genes as 

replication-dependent transcripts, but additionally contain a polyadenylation site 

downstream of their stem loop sequence (Kirsh et al., 1989; Pirngruber and Johnsen, 2010). 

Interestingly, polyA+ histone transcripts from replication-dependent histone genes were also 

detected in C. elegans (Mangone et al., 2010) as well as in mouse ES cells and post mitotic 

neurons (Shepard et al., 2011)) via direct RNA sequencing, suggesting that polyA+ transcripts 

may have emerged early during evolution to facilitate the basal histone production. 

Increased production of polyA+ histone transcripts was shown to be induced by a 

wide range of factors including depletion of epigenetic regulators, induction of DNA damage 

or serum starvation (Pirngruber and Johnsen, 2010; Pirngruber et al., 2009a, 2009b). 

Furthermore, numerous microarray-based studies have observed changes in the 

“expression” of replication-dependent histone mRNA transcripts during tumorigenesis and 

differentiation (Martinez et al., 2007; Yan et al., 2007). Given the fact that these studies 

were based on poly-T reverse transcription, it seems likely that histone mRNA 

polyadenylation is a process regulated under diverse conditions. Tumor suppressor p53 

mediated cell-cycle arrest, implicated in the regulation of proliferation and tumorigenesis, 

also controls the expression of polyA+ histone transcripts via p21-dependent cell cycle arrest 

(Pirngruber and Johnsen, 2010). Despite numerous studies reporting the expression of 
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polyA+ histone mRNAs from the replication-dependent histones genes, the functional 

importance of these transcripts remains unknown and has been refuted (Sullivan et al., 

2009). In this study we examined the expression of polyA+ histone transcripts from 

replication-dependent histone genes which normally primarily produce 3´stem-loop 

containing mRNAs, under various cellular conditions.  

First of all, using the histone H2B gene complement as a model system for our 

studies, we compared the expression of different H2B genes. Surprisingly, we observed a 

wide range of expression of the individual genes, suggesting that the regulation of histone 

transcription and mRNA processing is gene-specific and more complex process than may 

have been previously assumed. Moreover, we demonstrated that different cell lines exhibit 

distinct expression patterns of total and polyadenylated H2B mRNA. The efficiency of 

transcription might be dependent on promoter context and/or mRNA 3’ UTR sequence. A 

pervious study demonstrated that minor changes in the stem loop sequence can 

significantly affect 3’ end processing efficiency (Pandey et al., 1990). Interestingly, a recently 

published study shows that the structure, rather than the sequence of the stem loop is 

essential for proper SLBP binding (Tan et al., 2013). Furthermore, the human 3’ exonuclease 

(3’hExo) involved in trimming of histone mRNAs cleaved in an SLBP-directed manner binds 

to specific sites within the 3’ stem loop including C15 within the loop sequence. Surprisingly, 

a number of H2B mRNAs depart from the stem loop consensus sequence (Fig. 9). 

Interestingly, we observed that 4 out of 5 highly expressed H2B histone genes (HIST1H2BC, 

HIST1H2BD, HIST1H2BJ and HIST1H2BK) possess a single nucleotide mutation at C15 (C to A) 

within the loop sequence (Fig I.9). In addition, the 5 nucleotides 5’ to the stem loop (CCAAA) 

are also recognized by SLBP (Tan et al., 2013). Interestingly, the HIST1H2BJ RNA departs 

from the consensus 3’ end processing sequence and has a C at position -1 relative to the 

stem loop sequence. Consistent with its consensus stem loop composition, the highly 

expressed H2B gene, HIST1H2BM, was not found to be significantly polyadenylated in our 

studies in HCT116 cells or in DRS data for MCF7 or MCF10A cells. Thus, it appears likely that 

a canonical stem loop sequence promotes efficient histone mRNA 3’ end processing in vivo 

while single nucleotide changes in the loop or 5’ sequences may be sufficient to allow for 

alternative mRNA 3’ end processing via polyadenylation. 
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 In addition to expanding upon our previous observations that polyA+ transcripts are 

produced from H2B genes, we have demonstrated that not all the H2B genes give rise to 

polyA+ mRNAs. While the expression levels of the individual H2B genes frequently correlate 

with the amount of polyA+ transcripts produced, additional factors, including the 

composition of the 3’ stem loop sequence appear to influence the mode and efficiency of 3’ 

end processing. Given our recent findings that NPAT not only supports transcriptional 

regulation of histone genes, but also promotes proper 3’ end processing (Pirngruber and 

Johnsen, 2010), it is likely that sequences within the proximal promoter regions of the 

histone genes may also promote 3’ end processing. 

Whether or not polyA+ histone mRNAs play a physiological role remains unclear. 

However, since polyA+ transcripts have longer half-lives compared to their S phase 

counterparts (Kirsh et al., 1989), their expression may be necessary to compensate for 

decreased histone synthesis, for example in non-proliferating, terminally differentiated cells. 

Indeed, our results demonstrate that the levels of polyadenylated histone mRNAs 

significantly increase during cellular differentiation. Since in mRNA levels may not 

necessarily result in the production of a functional protein, we also performed polyribosome 

purification in cell cycle arrested cells and demonstrated for the first time that polyA+ 

transcripts are indeed polyribosomal and therefore likely give rise to functional histone 

proteins. However, whether the translated histone proteins produced from these 

transcripts are indeed incorporated into chromatin remains to be elucidated. 

Since p53 accumulation following Nutlin-3a treatment mainly results in a prominent 

cell cycle arrest, we hypothesized that polyA+ transcript production is generally activated 

upon cell cycle arrest, when replication-dependent histone synthesis in not possible 

(Pirngruber and Johnsen, 2010). Moreover, we further hypothesized that conditions such as 

double-strand DNA break repair, which require massive changes in chromatin structure and 

histone exchange (Kari et al., 2011), may be particularly dependent upon polyA+ histone 

transcripts for the generation of new histone proteins. In support of this hypothesis we 

observed an up-regulation of polyA+ transcripts following γ-radiation. Based on these 

findings, we propose that induction of polyA+ histone transcripts may be a general 

mechanism to overcome a deficit in replication-dependent histone transcripts cause by cell 

cycle alterations. These transcripts may be essential for maintaining proper DNA packing 
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and chromatin in the absence of replication where there is no expression of replication-

dependent histone genes. Further studies are required to investigate the role of polyA+ 

histone transcripts in cells or tissues like neurons or cardiomyocytes, which are terminally 

differentiated and no longer divide. Such studies will require the further elucidation of 

which genes encoding the other core histones are expressed and which of these are 

polyadenylated. In conclusion, our data demonstrate that production of polyA+ histone 

transcripts is subject to specific regulation and becomes induced during differentiation, DNA 

damage or cell cycle arrest most likely in order to maintain histone protein levels. 
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Materials and Methods    

Cell culture and Nutlin-3a treatment 

HCT116 cells (human colon cancer cells) were grown in McCoy´s medium containing 10% 

bovine growth serum (BGS; HyClone, USA) and 1x penicillin–streptomycin (Sigma, St. Louis, USA). 

Cells were either treated with vehicle (DMSO) or 8 µM of Nutlin-3a (Sigma) for 24 hours and RNA 

was isolated. H1299 (human non-small cell lung carcinoma cell line), U2OS (human osteosarcoma 

cell line) and A549 (human alveolar adenocarcinoma cell line) cells were obtained from ATCC and 

grown in DMEM with high glucose medium containing 10% BGS, sodium pyruvate and 1x penicillin–

streptomycin. Tert-immortalized human mesenchymal stem cells (hMSCs) (Simonsen et al., 2002) 

were kindly provided by M. Kassem, Odense University Hospital, Denmark. Cells were cultured in low 

glucose Minimum Essential Media (MEM) (Life Technologies, Carlsbad, USA) without glutamine and 

phenol red, supplemented with 10% BGS and 1x antibiotic-antimycotic (Life Technologies). hFOB 

1.19 cells were provided by Tom Spelsberg (Mayo Clinic, Rochester, Minnesota) and cultured at the 

permissive temperature (34 C) in high glucose, phenol red free DMEM/F12 (Invitrogen) 

supplemented with 10% BGS (Hyclone) and 1X penicillin-streptomycin (Invitrogen). Osteoblast 

differentiation was induced by shifting to the restrictive temperature (39 C) and growing for 7 days. 

Adipocyte differentiation of hMSCs was induced as previously described (Karpiuk et al., 2012) by 

culturing cells in the presence of 15% BGS, 10 nM dexamethasone (Sigma), 0.45 mM isobutyl-

methyl-xanthine (Sigma), 2 µM insulin (Sigma), 10 µM Troglitazone (Sigma) and 1x antibiotic-

antimycotic solution. For osteoblast differentiation of hMSCs medium contained 10% BGS, 10 nM 

dexamethasone, 10 mM β-glycerol phosphate (BGP) (Sigma), 0.2 mM ascorbic acid (Sigma), 10 nM 

calcitriol (Cayman Chemicals, Ann Arbor, USA) and 1x antibiotic-antimycotic solution. 

 

Isolation of total RNA and cDNA preparation 

Total RNA was isolated from cells using TRIzol (Invitrogen) reagent according to the 

manufacturer’s instructions. Polyadenylated mRNA was isolated from 100 µg of total RNA using the 

PolyATtract® mRNA Isolation System III (Cat. No. Z5300, Promega, Wisconsin) according to the 

manufacturer’s instructions. Total or polyA+ RNA was reverse transcribed using either random 

nonamers or polyT primers as indicated in the figure legends. cDNA samples were analyzed by SYBR 

Green based quantitative real time PCR (qRT-PCR) as described (Pirngruber and Johnsen, 2010). The 

expression of individual H2B genes was measured in various cell lines using a linear dilution curve of 

genomic DNA (gDNA) with known concentrations from a normal, diploid cell line (hMSCs). Finally, 

relative H2B expression from each gene in different cell lines was normalized to the genomic DNA 

dilution curve (assuming that each gene is equally represented in a diploid cell) and indicated as 
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“Rel. gDNA units”. The sequences of primers utilized in this study are listed in Supplementary Table 

S1. 

 

Cytoplasmic RNA preparation 

For the examination of nuclear and cytoplasmic RNA, HCT116 cells were treated with DMSO 

or Nutlin-3a for 24 hours and lysed in buffer containing 50 mM Tris HCl (pH 8.0), 140 mM NaCl, 1.5 

mM MgCl2, 0.5% v/v Igepal and 1000 U/ml RNase Inhibitor. Cytoplasmic and nuclear fractions were 

separated by centrifugation at 900 RPM for 10 minutes. RNA was isolated from the cytoplasmic 

fraction using standard TRIzol extraction method. Unprocessed rRNA and spliced RPLP0 were used as 

positive controls for the nuclear and cytoplasmic fractions, respectively (Supplemental Figure S2). 

 

Polyribosome purification 

Polyribosome purification was carried out essentially as reported with slight modifications 

(Mašek et al., 2011). Briefly, HCT116 cells were treated with DMSO or Nutlin-3a for 24 hours and 

cells were treated with cycloheximide at 37° C for 30 min brought to the final concentration of 100 

µg/ml. Cell lysates were prepared in lysis buffer containing 20 mM HEPES (pH 7.5), 125 mM KCl, 5 

mM MgCl2, 2 mM DTT, 0.5 % NP-40, 100 µg/ml of cycloheximide and 100 U/ml of RNase inhibitor 

along with protease inhibitors. Cleared lysates were loaded on to the sucrose gradient 8-50 % in lysis 

buffer and centrifuged at 34,000 RPM for 130 minutes. Fractions were collected from the gradients 

and RNA was extracted from polyribosome fractions. 
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2.I.1 Supplementary Figures 

 

 

 

Supp Fig I.S1: (A) Quality of polyA+ mRNA purified using PolyA Ttract® mRNA Isolation System III. 
To analyze the relative enrichment of polyA+ RNA, 100 ng of total and polyA+ RNA from control and 
Nutlin-3a treated cells was reverse transcribed using random nonamers and analyzed for 5.8S and 
18S rRNA transcripts by qRT-PCR. (B) qRT-PCR analysis for HNRNPK mRNA expression in polyA+ 
purified mRNA from control and Nutlin-3a treated cells. 

 

 

 

 

Supp Fig I.S2: Purity of cytoplasmic and nuclear RNA. To check the purity of cytoplasmic and nuclear 
fractions RNA was analyzed by qRT-PCR for (A) un-spliced 5.8 S rRNA (specific for nuclear), (B) RFLP0 
(cytoplasmic) from control and Nutlin-3a treated cells. 
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Supp Table I.S1: Primers used in this study 5’ to 3’ orientation. 

 
Name Sequence (5’-3’) Reference (if present) 
ALPL F  TGGGCCAAGGACGCTGGGAA (Karpiuk, 2012) 
ALPL R AAGGCCTCAGGGGGCATCTCG (Karpiuk, 2012) 
BGLAP F  GCCCTCACACTCCTCGCCCT (Karpiuk, 2012) 
BGLAP R CGGGTAGGGGACTGGGGCTC (Karpiuk, 2012) 
HIST1H2BA 145 F CAGGTCCATCCGGACACTGGCA This study 
HIST1H2BA 246 R CAAACGTGATGCCTCGCTCGCT This study 
HIST1H2BB 151 F CCCGACACCGGCATCTCATCCA This study 
HIST1H2BB 352 R CCTTAGTGCCCTCGGACACAGCA This study 
HIST1H2BC 47 F AGAAGGCAGTGACCAAAGCGCAG This study 
HIST1H2BC 183 R GCCCATGGCCTTGGAAGAGATGC This study 
HIST1H2BD 47 F ACGATGCCTGAACCTACCAA This study 
HIST1H2BD 115 R AGCCTTAGTCACCGCCTTCT This study 
HIST1H2BE 55 F GTGACCAAGGCGCAGAAGAAGGAC This study 
HIST1H2BE 174 R TTTAGAGGAGATGCCGGTGTCGGG This study 
HIST1H2BF 157 F ACCGGCATCTCATCCAAGGCCA This study 
HIST1H2BF 340 R TGACACGGCGTGCTTAGCCAG This study 
HIST1H2BG 84 F AGAAGCGCAAGCGCAGTCGT This study 
HIST1H2BG 252 R TAGTGGGCCAGACGGGAAGCC This study 
HIST1H2BH 87 F GCGTAAACGCAGCCGCAAGG This study 
HIST1H2BH 323 R GCCAGTTCCCCAGGCAGCAG This study 
HIST1H2BI 278 F GGGAGATCCAAACGGCTGTGCG This study 
HIST1H2BI 421 R GAGCCTTTGGGTCGTTAGCGCTTT This study 
HIST1H2BJ 55 F GCCAGCGAAGTCTGCTCCCG This study 
HIST1H2BJ 156 R CTCTCCTTGCGGCTGCGCTT This study 
HIST1H2BK 8F TGCTGCTCGTCTCAGGCTCGT This study 
HIST1H2BK 152 R CTCTCCTTGCGGCTGCGCTT This study 
HIST1H2BL 69 F CCAAGAAGGCGGTGACCAAGGC This study 
HIST1H2BL 196 R AGAAGAGATGCCGGTGTCGGGG This study 
HIST1H2BM 291 F GGCCGTGCGCCTACTGCTAC This study 
HIST1H2BM 320 R GGTGTGGGTCACGGCGGAAC This study 
HIST1H2BN 61F CAAAGTCCGCTCCTGCCCCG This study 
HIST1H2BN 162R TGACCGAACGTTCCGCGGTG This study 
HIST1H2BO 23 F TTCACTCTCCTCCGCCATGCCC This study 
HIST1H2BO 146 R CTCTTTGCGGCTGCGCTTGC This study 
HIST2H2BE 767 F CCTGGTGGCTCCTTGGGTCTGT This study 
HIST2H2BE 958 R TATCCACAGGAGGCCCCATCGC This study 
HIST2H2BF 241 F CCTCCACCCCACCACCCCTC This study 
HIST2H2BF 397 R ATGGACTCGGGAACCGCCGA This study 
HIST3H2BB 232 F TCTTCGAGCGCATCGCCAGC This study 
HIST3H2BB 423 R CAGGACGCCGAGGAACGCC This study 
HIST1H2BD PolyA F CCAACTCATCCTGGTTTGCT (Pirngruber et al., 2009) 
HIST1H2BD PolyA R  TCCCCTCGGTAACCTTCTTT (Pirngruber et al., 2009) 
HIST1H2AC Total F GACGAGGAGCTCAACAAACTG (Pirngruber et al., 2009) 
HIST1H2AC Total R ACCTGTCAAATCACTTGCCC (Pirngruber et al., 2009) 
HIST1H2AC PolyA F  CCTGTCCACTGTTGGTAGGC (Pirngruber et al., 2009) 
HIST1H2AC PolyA R TTCACTTACCACCATTCCAGC (Pirngruber et al., 2009) 
HIST1H2BD Spl 402 F CCGTCACCAAGTACACCAGTT This study 
HIST1H2BD Spl 614 R TCCCCTCGGTAACCTTCTTT  This study 
HIST1H2AC Spl 505F CCCCTACCGTTTCAAAGGA  This study 
HIST1H2AC Spl 632R ATTGGTAAGTTTGGCAGGCA  This study 
HNRNPK F  ATCCGCCCCTGAACGCCCAT (Karpiuk, 2012) 
HNRNPK R  ACATACCGCTCGGGGCCACT (Karpiuk, 2012) 
PPARG F  ACCTCCGGGCCCTGGCAAAA (Karpiuk, 2012) 
PPARG R TGCTCTGCTCCTGCAGGGGG (Karpiuk, 2012) 
RPLP0 F  GATTGGCTACCCAACTGTTG (Fritah et al., 2005) 
RPLP0 R CAGGGGCAGCAGCCACAAA (Fritah et al., 2005) 
rRNA ITS1/5.8S F GGCCTGAGGCAACCCCCTCT This study 
rRNA ITS1/5.8S R GACGCACGAGCCGAGTGATCC This study 
rRNA 5.8S F GCGGTGGATCACTCGGCTCG This study 
rRNA 5.8S R CGTAGCCCCGGGAGGAACCC This study 
h18S rRNA F AACTGAGGCCATGATTAAGA This study 
h18S rRNA R GGAACTACGACGGTATCTGA This study 
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Abstract 

Many anti-cancer therapies function largely by inducing DNA double-strand breaks (DSBs) or 

altering the ability of cancer cells to repair them. Proper and timely DNA repair requires 

dynamic changes in chromatin assembly and disassembly characterized by histone H3 lysine 

56 acetylation (H3K56ac) and phosphorylation of the variant histone H2AX (γH2AX). 

Similarly, histone H2B monoubiquitination (H2Bub1) functions in DNA repair, but its role in 

controlling dynamic changes in chromatin structure following DSBs and the histone 

chaperone complexes involved remain unknown. Therefore, we investigated the role of the 

H2B ubiquitin ligase RNF40 in the DSB response. We show that RNF40 depletion results in 

sustained H2AX phosphorylation and a decrease in rapid cell cycle checkpoint activation. 

Furthermore, RNF40 knockdown resulted in decreased H3K56ac and decreased recruitment 

of the Facilitates Chromatin Transcription (FACT) complex to chromatin following DSB. 

Knockdown of the FACT component Suppressor of Ty Homologue-16 (SUPT16H) 

phenocopied the effects of RNF40 knockdown on both γH2AX and H3K56ac following DSB 

induction. Consistently, both RNF40 and SUPT16H were required for proper DNA end 

resection and timely DNA repair suggesting that H2Bub1 and FACT cooperate to increase 

chromatin dynamics which facilitates proper checkpoint activation and timely DNA repair. 

These results provide important mechanistic insights into the tumor suppressor function of 

H2Bub1 and provide a rational basis for pursuing H2Bub1-based therapies in conjunction 

with traditional chemo- and radiotherapy. 

Introduction 

The induction of DNA double-strand breaks (DSBs) from exogenous and endogenous 

sources poses a significant threat to genomic integrity. The improper recognition and repair 

of DSBs increases the probability of tumorigenesis but may also be exploited for the 

treatment of cancer in combination with radio- or chemotherapy. Like other DNA-associated 

processes such as transcription and DNA replication, the winding of the DNA around the 

histone octamer and packaging into higher order chromatin structures represents a 

significant barrier for DNA repair (Rossetto et al., 2010). In order to perform these processes 

rapid and highly dynamic alterations in chromatin must occur including changes in the 

posttranslational modification of core histones and rearrangement of chromatin structure 
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by histone chaperones and chromatin remodeling complexes. It has been proposed that DSB 

repair in the context of chromatin occurs in a step-wise fashion including: (1) recognition of 

the DSB, (2) rearrangement of chromatin to allow access of repair enzymes to the damaged 

site, (3) repair of the DSB, and (4) re-establishment of chromatin structure (Ransom et al., 

2010). The role of chromatin dynamics, post-translational histone modifications and their 

mechanisms of action during the DNA damage response (DDR) and DNA repair is an 

intensively studied and highly interesting area of cancer research which remains poorly 

understood. 

A number of histone modifications have been identified which may play roles during 

DDR and DNA repair in mammals. For example, the variant histone H2AX is modified at 

multiple residues following ionizing radiation (Xie et al., 2010). Importantly, Ser139 

phosphorylation (γH2AX) by the phosphatidyl-inositol-3-kinase family members DNA-PK, 

ATM and ATR in humans is perhaps one of the most widely used and important biomarkers 

of DNA damage (Redon et al., 2011). Phosphorylation of H2AX accompanies dynamic 

alterations in chromatin structure (Dellaire et al., 2009; Massip et al., 2010), at least in part 

by recruiting BRCT domain-containing proteins such as the Mediator of DNA Checkpoint-1 

(MDC1) which are involved in DNA repair (Ciccia and Elledge, 2010) and induce chromatin 

relaxation (Nakamura et al., 2010). The recruitment of MDC1 serves to recruit additional 

DNA repair proteins and propagate γH2AX across a larger region surrounding the DSB.  

The phosphorylation of H2AX occurs simultaneously with the acetylation of histone 

H3 lysine 56 (H3K56ac) in response to genotoxic stress (Das et al., 2009; Vempati et al., 

2010; Yuan et al., 2009). In vitro studies using a synthetic biology approach are beginning to 

unravel the molecular details of how this modification functions during chromatin assembly 

and disassembly (Neumann et al., 2009). In vivo, H3K56 is acetylated by Rtt109 in yeast 

(Burgess and Zhang, 2010; Chen et al., 2008; Li et al., 2008) and p300 (Das et al., 2009; 

Vempati et al., 2010) and/or CBP (Das et al., 2009) in mammalian cells and deacetylated by 

the Sirtuin family members Hst3 and Hst4 in yeast (Celic et al., 2006; Maas et al., 2006) and 

Sirt1 (Das et al., 2009; Yuan et al., 2009), Sirt2 (Das et al., 2009; Vempati et al., 2010) and/or 

Sirt3 (Vempati et al., 2010) in mammalian cells. Interestingly, another mammalian Sirtuin 

family member Sirt6 is also involved in DNA repair by interacting directly with DNA-PK 

(McCord et al., 2009). H3K56ac is required for chromatin reassembly both during DNA 



Publications 

 

47 
 

replication and after DNA damage in yeast (Burgess and Zhang, 2010; Chen et al., 2008). 

Similarly, the presence of H3K56ac in chromatin in humans occurs only after nucleosome 

reassembly and reflects recent changes in chromatin dynamics following DNA damage (Das 

et al., 2009; Ransom et al., 2010). 

Another histone modification which was recently shown to be essential for proper 

DNA repair is the monoubiquitination of histone H2B at lysine 120 (H2Bub1) by the ubiquitin 

ligase RNF20 (Chernikova et al., 2010; Moyal et al., 2011; Nakamura et al., 2011). A loss of 

H2Bub1 resulted in a prolonged DNA damage response (e.g., H2AX phosphorylation), 

decreased formation of RAD51 foci and decreased DNA repair without inhibiting the rapid 

induction of H2AX phosphorylation (Moyal et al., 2011; Nakamura et al., 2011). In mammals 

H2B is monoubiquitinated by the obligate heterodimeric ubiquitin ligase complex containing 

both RNF20 and RNF40 (Kim et al., 2009; Pavri et al., 2006; Zhu et al., 2005) and is 

associated with the transcribed regions of active genes (Minsky et al., 2008). Our previous 

work revealed a tumor suppressor role for RNF20 and demonstrated an essential function of 

cyclin-dependent kinase-9 (CDK9) in maintaining H2Bub1 (Pirngruber et al., 2009a, 2009b; 

Shema et al., 2008). The tumor suppressor function of H2Bub1 was also supported by our 

recent demonstration that a decrease in H2Bub1 levels strongly correlates with breast 

cancer progression (Prenzel et al., 2011). However, a mechanistic role for H2Bub1 during 

tumorigenesis and DNA repair has remained unclear.  

H2Bub1 likely functions during both transcription and DNA repair by altering the 

dynamics of histone exchange. One potential mediator of these effects is the histone 

chaperone complex FACT (Facilitates Chromatin Transcription) which contains the Structure 

Specific Recognition Protein-1 (SSRP1) and Suppressor of Ty Homologue-16 (SUPT16H). 

Importantly, H2Bub1 and FACT were shown to cooperate during transcriptional elongation 

in vitro (Pavri et al., 2006) and a decrease of H2Bub1 following proteasome inhibitor 

treatment led to a loss of chromatin-bound SSRP1 and decreased histone exchange (Prenzel 

et al., 2011). Furthermore, the induction of DSB by γ-irradiation increases the nucleoplasmic 

pool of histone H3, and this effect is lost following RNF20 knockdown, suggesting that 

H2Bub1 may be essential for DSB-induced nucleosome dynamics (Nakamura et al., 2011).  

Like H2Bub1, FACT may also play a role in DNA repair. For example, SSRP1 recognizes 

cisplatin DNA adducts (Dejmek et al., 2009; Yarnell et al., 2001) and is recruited to sites of 
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DNA microirradiation (Sand-Dejmek et al., 2011). Furthermore, FACT catalyzes the exchange 

of γH2AX-containing H2AX-H2B dimers on nucleosomes in vitro (Heo et al., 2008). However, 

the roles and interaction of H2Bub1 and FACT in DSB repair, and their effects on damage-

induced nucleosome dynamics in vivo remain unexplored. In this manuscript we 

investigated the roles and interactions of RNF40 and SUPT16H during the cellular DNA DSB 

response and provide the first in vivo evidence that FACT plays an essential H2Bub1-

dependent role in causing dynamic changes in chromatin structure which are required for 

cell cycle checkpoint activation and DNA repair. 

Results 

RNF40 knockdown leads to a prolonged DNA damage response 

Recent work from a number of laboratories uncovered a critical role for H2Bub1 and 

the H2B ubiquitin ligases RNF20 and RNF40 in DNA DSB repair (Chernikova et al., 2010; 

Moyal et al., 2011; Nakamura et al., 2011). Given the importance of H2AX phosphorylation 

in the DNA damage response, we performed siRNA-mediated knockdown of the H2B 

ubiquitin ligase RNF40 and analyzed γH2AX levels by Western blot in the chromatin-bound 

fractions of cells treated with the radiomimetic compound neocarzinostatin (NCS) for 

various time points. As shown in Fig II.1A, we observed no effect of RNF40 knockdown on 

the induction of γH2AX levels at 30 minutes after DSB induction suggesting an intact DNA 

damage response. 
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Fig II.1: RNF40 knockdown leads to the prolonged γH2AX accumulation and loss of H3K56ac 
increase after NCS treatment. (A) U2OS cells were transfected with RNF40 siRNA or mock for 48 
hours and treated with 100 ng/ml NCS for the indicated times. Chromatin fractions were prepared 
and analyzed by Western blot for γH2AX, H2Bub1 and H2B. (B) U2OS cells were transfected and 
immunohistochemically stained against γH2AX at the indicated time points following NCS treatment. 
(C) RNF40 is required for rapid histone exchange after DNA damage. U2OS cells were transfected 
with RNF40 siRNA or mock for 48 hours and treated with NCS as in (a) for the indicated time points 
and whole cell lysates were immunoblotted for H3K56ac and H3. (D) Similar to (B) cells were 
immunostained with an H3K56ac antibody at the indicated time points following NCS treatment. 

However, while γH2AX levels significantly declined at 4 and 6 hours following NCS 

treatment of control transfected cells, they remained elevated in RNF40 depleted cells. In 

order to test whether the increased γH2AX levels were contributed by a subpopulation of 

cells or the whole population of cells displayed a uniform increase we performed confocal 

immunofluorescence analyses.  As shown in Fig II.1B, the increase in γH2AX staining 6 hours 

after NCS treatment was uniformly higher in RNF40-depleted cells. Thus we conclude that 

RNF40 knockdown results in a prolonged DNA damage response following DSB. 

The induction of H3K56ac is impaired following RNF40 knockdown 

Recent studies demonstrated that histone H3 is rapidly acetylated at lysine 56 

following DNA damage with similar kinetics and overlapping localization with γH2AX (Das et 

al., 2009; Vempati et al., 2010). Furthermore, H3K56ac is coupled to transcription-

associated chromatin reassembly (Vempati et al., 2010). Therefore, we also tested whether 

H3K56ac is affected by a loss of H2Bub1. Surprisingly, in contrast to γH2AX, whose rapid 

induction was not affected by RNF40 knockdown, we observed a dramatic decrease in both 

the basal and DSB-induced levels of H3K56ac at all-time points (Fig II.1C). These results were 

corroborated by immunofluorescence analyses (Fig II.1D). Thus, we demonstrate the first 

example of divergent effects of DNA-damage on the induction of γH2AX and H3K56ac and a 

dependence of both DSB-induced and transcription-coupled H3K56ac on RNF40 activity. 

RNF40 knockdown decreases cell cycle checkpoint activation 

Following the induction of DSB, cells normally activate cell cycle checkpoints which 

prevent DNA replication and/or entry into mitosis before repair has been completed. Since 

defects in cell cycle checkpoints can lead to genomic instability and ultimately to 

tumorigenesis, we analyzed the effects of RNF40 depletion on the activation of cell cycle 

checkpoints after the induction of DSB. One of the essential mediators of cell cycle 
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checkpoint activation is the CHK2 kinase which is phosphorylated and activated by ATM 

following DSB (Antoni et al., 2007). Therefore, we investigated whether RNF40 depletion 

influenced CHK2 activation following NCS treatment. Indeed, knockdown of RNF40 

decreased CHK2 phosphorylation already 15 minutes after NCS treatment without 

significantly affecting H2AX phosphorylation (Fig II.2A). Moreover, CHK2 activation was 

potentiated by RNF40 overexpression and the effects of RNF40 knockdown could be 

rescued by RNF40 overexpression (Supp Fig II.1). 
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Fig II.2: RNF40 is critical for cell cycle checkpoint activation. (A) U2OS cells were transfected with 
two different RNF40 siRNAs or mock control for 48 hours and were treated with 100 ng/ml NCS for 
15 min. Whole cell lysates were analysed by Western blot for RNF40, γH2AX, p-CHK2 and HSC70. (B - 
D) HCT116 cells were transfected with RNF40 siRNA or mock for 48 hours before treatment with 100 
ng/ml NCS for an additional 12 hours as indicated followed by processing for propidium iodide and 
BrdU-based flow cytometry. (B-C) The ratio for the G2/M to G1 fraction is graphically represented 
based in the bar graph (B) and the propidium iodide profile of cells examined is shown in (C). (D) 
BrdU incorporation based cell profile examined in (B). 

 
Based on the effects on CHK2 activation we investigated whether RNF40 knockdown 

also affected DSB-induced changes in the cell cycle profile. Indeed, while NCS induced a 

significant increase in the G2/M fraction in control cells, RNF40 knockdown decreased the 

G2/M to G1 ratio from 5.02 in control cells to only 2.29 in RNF40 depleted cells following 

NCS treatment (Fig II.2B and C). Furthermore, consistent with cell cycle checkpoint 

activation, NCS treatment led to a significant reduction in the S phase fraction of cells 

(14.76% to 2.93%) in control cells as assessed by BrdU-based flow cytometric analyses. 

Knockdown of RNF40 impaired the G1/S cell cycle checkpoint activation where RNF40-

depleted cells demonstrated a higher fraction of S phase cells following NCS treatment 

(5.66% compared to 2.93% in control transfected cells; Fig II.2D). RNF40 knockdown had 

little effect on the S phase fraction of normally cycling cells (14.76% compared to 15.82%). 

Thus we conclude that RNF40 expression is essential for the induction and maintenance of 

cell cycle checkpoint activation following DSB induction. 

RNF40 expression is essential for FACT recruitment to chromatin 

The presence of H3K56ac following DNA damage marks chromatin which has 

undergone dynamic disassembly and reassembly since it is dependent upon the H3-H4 

histone chaperone activity of Anti-silencing Factor-1a (ASF1a) (Das C, Ransom M). 

Chromatin assembly in vivo occurs in an ordered chaperone-dependent process in which 

two H3-H4 dimers initially form a tetramer to which two H2A-H2B dimers are subsequently 

added to form the intact nucleosome octamer (Ransom et al., 2010). Similarly, during 

chromatin disassembly, the two H2A-H2B dimers must also be displaced before the H3-H4 

dimers can be removed. Therefore, we hypothesized that H3K56ac may also require the 

activity of an H2A-H2B chaperone. Consistent with a potential role in DNA repair, the FACT 

complex was shown to catalyze the exchange of γH2AX-H2B dimers in vitro (Heo et al., 

2008) and also interacts with H3K56ac in yeast (Nair et al., 2011). Furthermore, H2Bub1 was 
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shown to cooperate with FACT during transcriptional elongation (Pavri et al., 2006) whereby 

it was proposed that FACT catalyzes an exchange of histone H2A-H2B dimers in an H2Bub1-

dependent manner (Laribee et al., 2007). Based on the effects of RNF40 knockdown on 

H3K56ac, we hypothesized that a loss of H2Bub1 may lead to impaired histone exchange 

following DNA damage through decreased FACT recruitment. However, whether H2Bub1 is 

required for FACT recruitment to chromatin in humans remains unknown. Therefore, we 

first analyzed the recruitment of the FACT components SUPT16H and SSRP1 to chromatin in 

the presence and absence of DSB. Consistent with its role in transcriptional elongation and 

its proposed role in the DDR, we observed an increased FACT binding to chromatin following 

NCS treatment (Fig II.3A). Importantly, the binding of both FACT components (SSRP1 and 

SUPT16H) after NCS treatment was decreased following RNF40 knockdown. Importantly, 

RNF40 knockdown did not affect the expression of FACT components or vice versa (Supp Fig 

II.2). 

 We next tested whether the FACT complex is essential for mediating the effects of 

H2Bub1 during the DDR. Therefore, we performed siRNA-mediated knockdown of SUPT16H 

and analyzed the effects on γH2AX and H3K56ac. Similar to the results with RNF40 

knockdown, we observed no effect of SUPT16H knockdown on the induction of γH2AX at 30 

minutes, but rather a sustained induction up to 6 hours following NCS treatment (Fig II.3B). 

These results were confirmed by confocal immunofluorescence analyses in which a uniform 

increase in γH2AX was observed 6 hours after NCS treatment in SUPT16H knockdown cells 

(Fig II.3C). Similar to the effects observed following RNF40 knockdown, both basal and DSB 

induced levels of H3K56ac were significantly reduced following NCS treatment of SUPT16H-

depleted cells (Fig II.3D and E). Thus these results suggest that, like RNF40, SUPT16H is 

required for termination of the DDR and increased chromatin dynamics following DSB 

induction. 
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Fig II.3: RNF40 knockdown decreases the binding of SUPT16H and SSRP1 to chromatin. (A) U2OS 
cells were transfected with RNF40 siRNA or mock for 48 hours and treated with NCS 100 ng/ml for 
the indicated times. Chromatin fractions were prepared and analysed by Western blot for SUPT16H, 
SSRP1 and H2B. (B) SUPT16H depletion phenocopies the effects of RNF40. Knockdown of SUPT16H 
led to prolonged γH2AX, and decreases in H3K56ac after DSB induction similar to RNF40 knockdown.  
(B) U2OS cells were transfected with SUPT16H or mock siRNA for 48 hours and treated with 100 
ng/ml NCS for the indicated times. Chromatin fractions were analysed by Western blot for γH2AX 
and H2B.  (C) U2OS cells transfected and treated similar to (B) for indicated time points and 
immunostained for γH2AX. (D) Whole cells lysates from (B) were immunoblotted for H3K56ac and 
H3. (E)  U2OS cells were transfected and treated with NCS similar to (B) and immunostained for 
H3K56ac after the indicated times. 

RNF40 and SUPT16H are required for DNA repair 

One of the essential steps in both the homologous recombination and non-

homologous end joining pathways of DNA repair is the resection of the ends of the damaged 

DNA (Ciccia and Elledge, 2010). In order for DNA end resection to occur, dynamic changes in 

chromatin structure are required to make the damaged regions accessible to the DNA repair 

proteins (Ransom et al., 2010). DSB end resection results in the production of single-

stranded DNA (ssDNA) which becomes bound by the ssDNA-binding proteins RPA1 and 

RAD51. Therefore, based on the known histone chaperone function of SUPT16H and the 

effects of RNF40 and SUPT16H knockdown on H3K56ac we investigated whether RNF40 and 

SUPT16H knockdown may also affect DSB end resection. Indeed, while the binding of RPA1 

and RAD51 to chromatin increased following the induction of DSBs in control cells, the 

knockdown of either RNF40 (Fig II.4A) or SUPT16H (Fig II.4B) resulted in decreased RPA1 and 
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RAD51 recruitment to chromatin. Furthermore, the knockdown of either also resulted in 

decreased formation of discrete DSB-induced RPA1 foci (Fig II.4C and D; Supp Table II.1). The 

formation of DNA DSBs can be visualized using the neutral comet assay. Based on the 

sustained induction of γH2AX, decreased recruitment of RPA1 and RAD51 to chromatin, and 

decreased RPA1 focus formation following RNF40 and SUPT16 knockdown, we hypothesized 

that knockdown of either protein may result in decreased DNA repair. Therefore we 

performed neutral comet assays in control cells or cells in which RNF40 or SUPT16H were 

knocked down. In control cells, DNA damage was clearly present based on the formation of 

comets at both 30 minutes and 2 hours following NCS treatment but returned to nearly 

basal levels at 6 hours after treatment (Fig II.4E). In contrast, comets were still clearly visible 

in both RNF40 and SUPT16H-depleted cells 6 hours after the induction of DSB. Therefore, 

we conclude that both proteins are essential for proper DNA DSB repair. 
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Fig II.4: RNF40 and SUPT16H are essential for RAD51 and RPA1 recruitment to chromatin and DNA 
repair. U2OS cells were either mock transfected or with siRNAs against RNF40 (A) or SUPT16H (B) for 
48 hours and treated with 100 ng/ml NCS for the indicated times. Chromatin fractions were 
prepared and analyzed by Western blot using the indicated antibodies. (C) Loss of RPA1 focus 
formation following RNF40 or SUPT16H knockdown in U2OS cells upon DSB induction. (D) Graphical 
representation of the number of cells having RPA1 foci. % cells with clear foci from the experiment in 
(C) were counted and plotted on a graph.  Four fields, each containing 6-12 cells, were counted per 
treatment and knockdown. (E) RNF40 and SUPT16H knockdown cells display prolonged DNA damage 
after 6 hours of NCS treatment. DSBs were observed using the neutral comet assay 48 hours after 
transfection of U2OS cells with RNF40, SUPT16H siRNA or mock followed by 100 ng/ml NCS 
treatment for the indicated times. Representative images are shown. 

Discussion 

The proper regulation of DNA repair plays an essential role in maintaining genome 

integrity following the induction of DSBs. Dynamic changes in chromatin structure involving 

changes in histone modifications and the recruitment of specific chromatin-associated 

proteins to sites of DNA damage are required for DNA repair proteins to gain access to 

damaged sites (Misteli and Soutoglou, 2009; Ransom et al., 2010; Rossetto et al., 2010) and 

for the activation of DNA damage signaling (Ayoub et al., 2008, 2009; Ciccia and Elledge, 

2010; Sun et al., 2010). Following DNA repair, reassembly of chromatin appears to be 

necessary for the attenuation of the DDR (Ransom et al., 2010). Thus both chromatin 

disassembly and reassembly have important consequences for the cellular response to DNA 

damage. However, the mechanistic role of specific histone modifications, modifying 

enzymes, histone chaperones and chromatin remodeling enzymes in the DNA damage 

response and DNA repair remains poorly understood. In this study we sought to determine 

the role of H2Bub1 in controlling chromatin dynamics during the DNA damage response and 

DNA repair. Our results suggest that expression of the H2B ubiquitin ligase RNF40 is 

essential not only for the attenuation of the DNA damage response, but also for the 

induction of chromatin disassembly and reassembly following DNA DSB. These results are 

consistent with recent findings where the knockdown of RNF20 resulted in decreased DSB-

induced chromatin disassembly (as judged by the induction of non-chromatin bound histone 

H3 after γ-irradiation) (Nakamura et al., 2011). Although knockdown of the ATP-dependent 

Snf2 chromatin remodeling enzyme was shown to elicit similar effects on DNA repair as 

RNF20 knockdown, whether and how these two pathways are mechanistically connected 

remains unclear. 
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 We propose that the FACT histone chaperone complex plays a central role in 

mediating the effects of H2Bub1 on chromatin dynamics following DSB. This hypothesis was 

based on the ability of FACT to catalyze the exchange of γH2AX-containing H2AX-H2B dimers 

in vitro (Heo et al., 2008) as well as the established connection between FACT activity and 

transcriptional elongation in vitro (Pavri et al., 2006). The functional co-operativity between 

FACT and H2Bub1 is further supported by their overlapping localization on active genes 

(Gomes et al., 2006; Minsky et al., 2008) and the common requirement of CDK9 activity for 

their presence in the transcribed regions of active genes (Gomes et al., 2006; Pirngruber et 

al., 2009a). However, neither a dependence of FACT on H2Bub1 for its chromatin 

recruitment, nor a role for FACT in DSB repair has been demonstrated in mammalian cell-

based systems. Thus, this study provides the first evidence of a common role for the FACT 

component SUPT16H and the H2B ubiquitin ligase RNF40 in the induction of chromatin 

dynamics (as assessed by H3K56ac) and subsequent DNA end resection (based on the 

impaired recruitment of RAD51 and RPA1). In support of the essential roles of RNF40 and 

SUPT16H following DSB induction, we observed decreased DNA repair after DSB induction 

following their depletion. 

These results not only provide important insights into the biological function of FACT 

and H2Bub1 during DNA repair, but they also suggest that H2Bub1 may serve as a diagnostic 

marker for cancer treatment and/or prognostic marker for patient survival. Chemo- and 

radiotherapy function to induce cytotoxicity in tumors primarily by causing DNA damage. 

Treatments such as poly-ADP-ribose polymerase (PARP) inhibitors increase chemo- and 

radiosensitivity in cancers by interfering with DNA repair (Bryant et al., 2005; Farmer et al., 

2005). It is imaginable that new therapies which specifically target H2Bub1 may also be 

combined with standard radio- or chemotherapies to increase their effectiveness. One such 

therapeutic target may be CDK9, whose activity we recently showed is essential for the 

global maintenance of H2Bub1.26 Consistent with this hypothesis, a recent study identified 

CDK9 in a screen for proteins whose knockdown sensitizes cells to DNA damage (Yu and 

Cortez, 2011; Yu et al., 2010). Another potential target may be the proteasome. Our recent 

data demonstrated that treatment with the clinically utilized proteasome inhibitor 

Bortezomib results in decreased H2Bub1 and a concomitant decrease in chromatin-bound 

FACT (Prenzel et al., 2011). Consistent with the potential utility of H2Bub1-decreasing 
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agents in combination with radiotherapy, both Bortezomib and the CDK9 inhibitor 

flavopiridol significantly increase radiosensitivity in xenograft models (Camphausen et al., 

2004; Jung et al., 2003; Pervan et al., 2001; Russo et al., 2001). To what extent decreases in 

H2Bub1 are involved in these effects will still need to be determined. 

Based on these results we propose that the maintenance or loss of H2Bub1 may play 

an important role in determining both the cellular DDR and DNA repair in response to DSB 

as well as metastatic potential during tumor progression. Thus H2Bub1 may serve both as a 

diagnostic marker during tumor progression and a prognostic indicator for tumor 

responsiveness to radiotherapy. Similar to Metastasis-Associated Protein-1 (MTA1), which 

probably plays a role in metastasis (Nicolson et al., 2003; Toh et al., 1994) through its 

interactions with multiple histone modifying enzymes and histone chaperones, a loss of 

H2Bub1 also correlates with tumor progression and metastasis in breast cancer (Prenzel et 

al., 2011). Interestingly, MTA1 and RNF40 control estrogen receptor-regulated transcription 

in opposing manners (Mazumdar et al., 2001; Prenzel et al., 2011). Furthermore, while 

depletion of MTA1 decreases metastatic properties (Toh et al., 1994), knockdown of either 

RNF20 or RNF40 increases cellular migration (Prenzel et al., 2011; Shema et al., 2008). These 

results suggest that MTA1 and RNF20/40 may play opposing roles in metastasis and DNA 

repair, but whether and how they functionally or physically interact must be clarified. Based 

on the results presented here, we hypothesize that the loss of H2Bub1 and a subsequent 

reduction in FACT recruitment to chromatin may represent an important step during 

tumorigenesis. These changes appear alter both the propensity of a tumor cell to 

metastasize as well as its responsiveness to chemotherapeutic treatment. In this manner, it 

may be possible to individualize patient treatment based on the H2Bub1 status of a tumor, 

so that pathways controlling H2B monoubiquitination and deubiquitination may be utilized 

as therapeutic targets to enhance or induce radiosensitivity in radioresistant tumors. 

Additional cell-based, xenograft and in vivo transgenic mouse studies will help allow this 

model to be tested and determine the importance of RNF20, RNF40 and FACT function 

during tumorigenesis, tumor progression, metastasis and chemotherapeutic responsiveness. 
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Materials and Methods 

siRNAs 

The RNF40 siRNAs used in this study were RNF40 #1, 5’-GAT GCC AAC TTT AAG CTA ATT-3’; 

RNF40 #2, 5’-CAA CGA GTC TCT GCA AGT GTT-3’; RNF40 #3, 5’-GAG ATG CGC CAC CTG ATT 

ATT-3’; RNF40 #4, 5’-GAT CAA GGC CAA CCA GAT TTT-3’# and were purchased from 

Dharmacon (Lafayette, CO). These were normally utilized as a SmartPool (Cat. M-006913-

00) unless otherwise indicated. The siRNA targeting the RNF40 3’ untranslated region 

contained the sequence 5' -GGG CCA ACT TCC AAT CAT TTT- 3’ and was purchased from 

Dharmacon. The SUPT16H siRNA (5’-AAG GAA TTA AGA CAT GGT GTG-3’) was purchased 

from Qiagen (Valencia, CA) and was described previously 55. 

Cell culture and transfection 

U2OS cells were grown in high-glucose DMEM (Invitrogen, Carlsbad, CA) containing 10% 

bovine growth serum (BGS; Thermo Scientific, Waltham, MA), 1X sodium pyruvate 

(Invitrogen) and 1X penicillin–streptomycin (Sigma, St. Louis, Missouri). HCT116 cells were 

grown in McCoy's medium with 10% FBS and 1X penicillin–streptomycin. For generation of 

the tetracycline-inducible RNF40 overexpressing cells, the human RNF40 cDNA sequence 

was amplified by PCR and cloned into the pcDNA4/TO vector (Invitrogen) containing a FLAG 

epitope tag. The resulting vector was linearized, transfected into a U2OS cell line containing 

the Tet-repressor 56, and individual clones were selected in medium containing 500 mg/L 

Zeocin (InvivoGen, San Diego, CA) and 5 mg/L of Blasticidin S (Invitrogen). Transfections 

were carried out using Lipofectamine 2000 or Lipofectamine RNAiMAX (Invitrogen) 

according to the manufacturer’s instructions. Cells were treated with neocarzinostatin 

(Sigma) as indicated. 

Chromatin fractionation, western blots analysis and primary antibodies 

Chromatin fractionation was performed as previously described (Pirngruber et al., 2009a). 

Protein samples were analyzed by Western blot analysis using the following antibodies: 

RNF40 (R9029; Sigma); RNF20 (ab33500) and Histone 3 (ab1791) antibodies were purchased 

from Abcam (Cambridge, England); HSC70 (sc-7298), RAD51 (sc-8349) and SUPT16H (sc-

28734) antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz, California); 
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anti-H2B (07-371), H2Bub1 (05-1312), γH2AX (05-636), H3K56ac (07-677) antibodies were 

purchased from Millipore (Billerica, MA); RPA1 (NA13) was from Calbiochem (Darmstadt, 

Germany); p-CHK2 (Thr68) (2661) was purchased from Cell Signaling Technology (Danvers, 

MA); the SSRP1 antibody (609801) was purchased from Biolegends (San Diego, California); 

and the anti-BrdU antibody (556028) was purchased from BD Biosciences (Franklin Lakes, 

N.J.). 

Immunohistochemical staining 

Cells were fixed for immunohistochemical staining in PBS containing 4% paraformaldehyde 

and permeabilized with 0.1% Triton X-100. After blocking with PBS containing 10% serum, 

cells were incubated in the same buffer with the appropriate primary antibodies (see above) 

followed by incubation with Alexa-488 (A21202) or Alexa-594 (A11012) conjugated 

secondary antibodies (Invitrogen, Oregon, USA). Images were captured using a LSM 510 

META confocal microscope (Zeiss, Oberkirchen, Germany) and analyzed using the LSM 

Image Browser (Zeiss). 

Flow cytometry 

U2OS and HCT116 cells were grown and transfected with siRNA as indicated. For the 

analyses of cell cycle checkpoint activation, 48 hours after transfection cells were treated 

with NCS 100ng/ml for 12 hours and labeled with BrdU for the final 1.5 hours and processed 

as described. 

Comet assay 

U2OS cells were transfected with mock or RNF40 or SUPT16H siRNAs and after 48 hours of 

transfection cells were treated with 100 ng/ml NCS. The neutral comet assay was performed 

as described (Tsai et al., 2008). Briefly, cells were harvested and mixed with low-melting 

agarose and lysed with lysis buffer. Electrophoresis was performed at 1 V/cm for 20 minutes 

in neutral buffer. After staining the slides with propidium iodide for 10 minutes, images 

were captured by using a Zeiss LSM 510 META confocal microscope. 
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Supplementary Figures 

 

Supp Fig II.1: Loss of CHK2 activation can be partially rescued by overexpression of Flag-RNF40 in 
U2OS cells. Tetracycline-inducible Flag-RNF40 U2OS cells were transfected with siRNAs targeting the 
3' UTR of endogenous RNF40. After 24 hours of transfection, cells were treated with 1 µg/ml of 
doxycycline as indicated to induce the expression of Flag-RNF40. After 24 hours cells treated with 
100 ng/ml NCS for 15 minutes as indicated and cell lysates were analyzed by western blot for p-
CHK2, H2Bub1, RNF40 and HSC70. 

 

Supp Fig II.2: RNF40 and SUPT16H knockdown do not affect the expression of one another or of 

the DNA repair proteins RPA1 and RAD51. U2OS cells were transfected with mock or RNF40 or 

SUPT16H siRNAs for 48 hours and whole cell extracts were analyzed by western blot for RNF40, 

RNF20, SUPT16H, SSRP1, RPA1, RAD51 and H2B as indicated.  
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Abstract 

 Chromodomain helicase DNA-binding protein 1 (CHD1) belongs to the ATP-

dependent chromatin remodeling enzymes implicated in many biological functions including 

transcription, nucleosome positioning and maintaining an open chromatin status. Recent 

studies showed that the CHD1 gene is frequently deleted in prostate cancer. Here we 

examined the role of CHD1 in the DNA double strand break repair pathway in prostate 

cancer cells. We show that CHD1 is recruited to DNA double strand break sites and is 

important for cell cycle checkpoint activation. Further, we show that CHD1 depletion 

decreases CtIP binding to chromatin and end resection upon double strand breaks. Loss of 

CHD1 specifically affects homologous recombination-mediated DNA repair but not non-

homologous end joining and sensitizes cells to Mitomycin C treatment. Altogether, for the 

first time we provide evidence for the role of CHD1 in repair of DNA double strand breaks 

and possible explanation for its tumor-suppressive role by maintaining genomic stability. 

Introduction 

The eukaryotic genome is compacted into chromatin composed of DNA, histones 

and other proteins that regulate chromatin-associated processes including DNA replication, 

transcription and repair (Kornberg and Lorch, 1999). Most of the DNA-associated processes 

requires unwinding of chromatin to get access to the DNA where by post-translational 

histone modifications and chromatin modifiers play key regulatory roles (Jenuwein and Allis, 

2001; Strahl and Allis, 2000). DNA damage occurs by both endogenous processes and 

exogenous agents which trigger the DNA damage response (DDR) in the cell. However, 

eukaryotic cells have evolved different repair mechanisms to repair different types of breaks 

at different stages of the cell cycle (Bont and Larebeke, 2004; Shiloh, 2003). Among the 

different types of DNA damage, DNA double strand breaks (DSBs) are the most common 

cause of genomic instability and tumor formation. Eukaryotic cells repair DSBs mainly by 

two different mechanisms including an error prone non-homologous end-joining (NHEJ) and 

high-fidelity homologous recombination repair (HRR), which requires DNA end resection 

process (Chapman et al., 2012; Critchlow and Jackson, 1998; Sancar et al., 2004). Upon DNA 

damage, cells activate DNA damage response (DDR) pathway to induce cell cycle arrest and 

undergo a cascade of events which allows cells to repair the breaks. DDR pathway involves a 
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number of histone modifications which play major roles in recruiting chromatin remodeling 

and repair proteins. A well characterized histone modification is the phosphorylation of 

histone variant H2AX at ser139 by ATM, ATR and DNA-PKcs which helps in the further 

recruitment of DNA damage response mediators and repair proteins such as 

MRE11/RAD50/NBS1 complex, MDC1, 53BP, CtIP and BRCA1 (Ciccia and Elledge, 2010; 

Harper and Elledge, 2007). Recent studies on histone chaperone complexes such as CAF-1 

and FACT indicate that they also play central role in repair and restoration of chromatin 

structure after repair (Heo et al., 2008; Kari et al., 2011; Ransom et al., 2010). ATP-

dependent chromatin remodeling complexes including SWI/SNF, INO80 and ISWI are also 

involved in the repair of DSBs (Chai et al., 2005; Lans et al., 2012; Morrison et al., 2004; 

Narlikar et al., 2002; Park et al., 2006). Chromodomain helicase DNA binding protein 1 

(CHD1) belongs to the family of ATP-dependent chromatin remodeling factors containing a 

SNF2-like helicase domain which was shown to recognize and binds to H3K4me2 or me3 

through its two chromodomains in humans (Delmas et al., 1993; Lusser et al., 2005; Sims et 

al., 2005). Studies in Drosophila, yeast and humans have shown that CHD1 is associated with 

decondensed chromatin (Stokes and Perry, 1995) and interacts with SSRP1, a subunit of the  

Facilitates Chromatin Transcription (FACT) complex as well as Rtf1 and Spt5 (Kelley et al., 

1999; Simic et al., 2003) and maintains chromatin structure during transcription (Smolle et 

al., 2012). Recent studies have revealed another important function of Chd1 in the 

positioning of nucleosomes and repression of cryptic transcription in yeast (Gkikopoulos et 

al., 2011; Hennig et al., 2012; Pointner et al., 2012). Another study has also implicated Chd1 

in maintaining the open chromatin status in pluripotent mouse embryonic stem cells with 

down-regulation of Chd1 leading to accumulation of heterochromatin (Gaspar-Maia et al., 

2009).  More importantly, CHD1 is the second most deleted or mutated gene in prostate 

cancer and has been implicated in cancer invasiveness (Burkhardt et al., 2013; Grasso et al., 

2012; Huang et al., 2012). 

A number of studies have investigated the function of CHD1 in transcription and 

nucleosome positioning. In the present study, for the first time we show that CHD1 is 

recruited to DNA DSB site and is required for chromatin remodeling at the site of DNA 

damage. The loss of CHD1 affects the end resection process by inhibiting the recruitment of 

RAD50 and CtIP thereby resulting in decreased generation of single strand DNA (ssDNA) as 
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indicated by decreased binding of RPA1 and RAD51 to chromatin. Importantly, depletion of 

CHD1 only affects the homologous recombination mediated DNA DSB repair process but not 

the non-homologous end joining pathway. Consistently, CHD1 depleted cells are 

hypersensitive to Mitomycin C (MMC) treatment which primarily induces beaks which are 

repaired by HR pathway. 

Results  

CHD1 is recruited to the DNA double strand break site 

 Most proteins involved in the DNA damage response and DSB repair are recruited to 

the chromatin, accumulate at the DNA damage site and form foci in the nucleus. We sought 

to analyze whether CHD1 is also recruited to chromatin and forms foci at the site of DNA 

damage. In order to do so, we utilized different methods. First we used U2OS19 ptight13 

GFP-LacR cell line which has stably integrated I-SceI cleavage site in the genome and the 

cleavage site is flanked by repeats of lac operator (lacO) at one side and tetracycline 

responsive element on the other side (tetO). In addition, these cells constitutively express a 

GFP-lac repressor fusion protein and doxycycline (doxy), inducible expression of the I-SceI 

endonuclease. Upon doxy treatment I-SceI site cleaved into a DSB and can be visualized by 

binding of GFP-lac repressor to lacO (Lemaître et al., 2012; Mund et al., 2012). 

Immunofluorescence studies using U2OS19 ptight13 cells demonstrated that CHD1 is co-

localized with GFP-LacR and phosphorylation of H2AX variant at ser139 (γH2AX) which is a 

well-known histone modification that occurs at the site of DNA damage within 16 h of I-SceI 

induction (Fig. III.1A). The CHD1/GFP-LacR/γH2AX co-localization is not observed in the case 

of uninduced cells (-I-Sce1) where the I-SceI site is not cleaved. 53BP1 was used as a further 

positive control which co-localizes with γH2AX in response to DNA damage (Fig. III.1B).  

 Further, we could also show that CHD1 is recruited to the sites of DNA DSBs which 

are induced by the radiomimetic drug Neocarzinostatin (NCS). CHD1 is associated with DNA 

damage sites or form foci within 4 h of treatment. Moreover, CHD1 is also associated with 

the foci which show slower repair kinetics (Goodarzi et al., 2010). Suggesting that CHD1 is 

recruited to the DNA damage sites in both euchromatic and heterochromatic regions (Fig. 

2). To check the kinetics of CHD1 binding to chromatin, chromatin fractionations were 

prepared from different cell lines which were treated with NCS for different time points.  
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The fractions were analyzed by Western blot for CHD1 recruitment to chromatin. In all three 

cell lines studied including PC3 (Fig. 3A), VCaP (Fig. III.3B) and U2OS cells (Fig. 3C), it is clear 

that the binding of CHD1 to chromatin is increased in response to DNA DSBs. The binding of 

CHD1 reaches a maximum at the 6 h time point (Fig. III.3) and this binding is abolished when 

CHD1 was depleted either by shRNA or siRNA knockdown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig III.1. CHD1 is recruited to I-SceI-induced DSB site and is co-localized with γH2AX. (A) 
Immunofluorescence studies using U2OS19 ptight13 GFP-LacR cells which have a stably integrated I-
SceI cleavage site flanked by 256 copies of lac operator (lacO) on one side and 96 copies of the 
tetracycline response element on the other side (tetO). The localization of the GFP-lac repressor 
protein (GFP-LacR) at the lac-operator DNA sequences in the nucleus before (−I-SceI) and 16 h after 
I-SceI-induced (+ I-SceI) DSB. To create DSBs, I-SceI expression was induced by Doxycyclin (Dox) 
treatment for 16 h. After 16 h, CHD1 and γH2AX co-localize at I-SceI cleavage site, along with DNA-
bound GFP-LacR but not in uninduced cells (−I-SceI). (B) 53BP1 and γH2AX staining of cells before 
and after doxy treatment was used as control. 
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Fig III.2. CHD1 is localized to NCS-induced DNA double strand break sites. Immunofluorescence (IF) 
studies were performed using PC3 cells to check the co-localization of CHD1 with γH2AX at DNA 
damage site. PC3 cells were grown on coverslips and treated with NCS for indicated time points and 
processed for IF staining as mentioned in methods. CHD1 is stained in green and γH2AX in red. 
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Fig III.3. CHD1 is recruited to the chromatin upon DNA double strand break induction. To look at 
the recruitment of CHD1 to chromatin upon DNA damage induction, chromatin fractions were 
analyzed by Western blot at various time points after DSB induction. (A)PC3 cells with stable control 
and shCHD1 shRNA expression, (B) VCap or (C) U2OS cells transfected either mock or with CHD1 
siRNA were treated with NCS for indicated time points and chromatin fractions were immunoblotted 
with CHD1 and γH2AX antibodies, respectively. Whereas, H2B detection was used as a loading 
control. 

CHD1 regulates the cell cycle checkpoint activation pathway 

 Phosphorylation of H2AX is the initial step in processing of DNA damage and triggers 

a cascade of events to repair the breaks (Rogakou et al., 1998b). DNA damage in the cell 
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activates checkpoint kinases required for the DNA damage response and arrests cells at 

specific points in the cell cycle. It is well established that the phosphatidyl inositol-3-kinase 

(PI3) family member ATM is important for the activation of checkpoint pathway during DNA 

DSB repair (Lavin, 2008; Shiloh, 2003). ATM is autophosphorylated at different sites in 

response to DNA damage. A well-studied autophosphorylation site is serine 1981 which is 

required for further activation and retention of ATM at the damage site (Kozlov et al., 2011). 

Activated ATM phosphorylates downstream effectors including checkpoint kinase protein 2 

(CHK2). We tested whether CHD1 is required for checkpoint activation upon DSB induction. 

For this purpose, PC3 cells which stably express control or CHD1 shRNA were treated with 

NCS for 30’ and analyzed by western blot for pATM, pCHK2 and pNBS1. We could show that 

loss of CHD1 in PC3 cells is deficient in activation of ATM and CHK2 in response to DSB 

induction (Fig. III.4). The total protein levels of these proteins did not change in CHD1 

depleted cells.  

 

Fig III.4. CHD1 mediates cell cycle checkpoint activation in response to DNA double strand breaks. 
PC3 cells stably expressing control or CHD1 shRNA were treated with NCS for 30 min and whole cell 
lysates were analyzed for cell cycle checkpoint activation by Immunoblotting with pATM, pCHK2 and 
pNBS1 antibodies or antibodies against total protein of the same. The efficiency of knockdown is 
also shown by western blot against CHD1. HSC70 was used as a loading control. 

CHD1-depleted cells show a defect in HR but not in NHEJ repair efficiency and are 

hypersensitive to Mitomycin c (MMC) treatment 

 Since CHD1 is recruited to DNA DSB sites, we tested whether CHD1 depletion can 

affect DSB repair mechanisms including homologous recombination (HR) and non-

homologous end joining (NHEJ) pathways. For this purpose we used well established 

plasmid based GFP reporter assays. HeLa cells harboring a single copy of HR or NHEJ repair 
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substrates were subjected to DSB by transiently expressing the I-SceI endonuclease. The 

cells were transfected with CHD1 siRNA and repair efficiency was calculated based on the 

fraction of GFP-positive cells analyzed by flow cytometry. Depletion of CHD1 led to 

deficiency only in the HR-mediated repair pathway but not in NHEJ (Fig. III.5A-B). As defects 

in HR pathway in CHD1 depleted cells became apparent, we hypothesized that CHD1 

depletion may also affect cell survival after Mitomycin C treatment, which creates DNA 

breaks that are primarily repaired by the HR pathway. CHD1-depleted PC3 and BHP1 cells 

treated with different dsoes of MMC displayed significantly decreased survival compared to 

control cells (Fig. III.5C-D). 

 

Fig III.5. CHD1 is required for homologous-recombination (HR) repair but not non- homologous 
end joining (NHEJ) pathway and cell survival after Mitomycin C treatment. (A) HR repair efficiency 
is decreased in CHD1 depleted cells. (B) NHEJ repair efficiency is not affected by CHD1 depletion. 
HeLa cells harboring single copies of HR (pGC) or NHEJ (pEJ) repair substrates were either mock 
transfected or with siRNA targeting CHD1. After 24 h of transfection DSB was induced by transfecting 
cells with I-Sce-I-expressing vector (pCMV-I-SceI-3xNLS). After 48 h of transfection, HR or NHEJ 
efficiency was calculated based on the fraction of GFP-positive cells. (C) and (D) CHD1-depleted cells 
show hypersensitivity to Mitomycin C (MMC) treatment. For colony formation assay PC-3 (C) and 
BHP1 (D) cells which stably express control or CHD1 shRNAs were treated with the indicated doses 
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of MMC for 4 h and surviving fractions were measured by counting colonies after 3 weeks. The mean 
values of three independent experiments are shown. Data were normalized to the plating efficiency. 

CHD1 is required for the binding of CtIP to chromatin and the end resection process 

 To elucidate the function of CHD1 in the repair of DNA DBS through HR mediated 

repair, we first tested for the effects of CHD1 depletion on DNA end resection process. The 

resection of ends of the DNA is a key step in the HR process and is mediated by the MRN 

complex and  resulting the recruitment of the C-terminal binding protein-interacting protein 

(CtIP) (van den Bosch et al., 2003; Sartori et al., 2007; Yu and Chen, 2004). The resulting 

ssDNA subsequently is bound by the ssDNA binding proteins RAD51 and RPA1 (Symington, 

2002).  
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Fig III.6. Depletion of CHD1 affects the end resection and the binding of RPA1 and RAD51 to 
chromatin in response to DNA DSB induction. (A) PC3 cells with stable expression of either control 
or CHD1 shRNA were treated with NCS (100 ng/ml) for indicated time points and chromatin fractions 
were prepared as mentioned in the methods. Western blot analysis with chromatin fractions for 
RPA1, RAD51, RAD50 and CtIP are shown. (B) VCap and (C) U2OS cells were transfected either mock 
or with CHD1 siRNA, after 48 h of transfection cells were treated with NCS and chromatin fractions 
were prepared. Western blots showing RPA1 and RAD51 binding to chromatin after DNA damage 
induction. H2B was detected as a loading control. 

In order to test the requirement for CHD1 in end resection, PC3 cells stably 

expressing CHD1 or control shRNA were treated with NCS for different time points and 

analyzed for the recruitment of CtIP to chromatin. CtIP recruitment to chromatin increased 

with the time of treatment, but this increase was not observed in CHD1-depleted cells (Fig. 

III.6A). Based on the decreased recruitment of CtIP CHD1 cells, we further investigated the 

effects of CHD1 depletion on the recruitment of ssDNA binding proteins RAD51 and RPA1 to 

chromatin in control and CHD1 depleted cells treated with NCS for different time points. 

Consistent with the role of CHD1 in end resection western blot data show that CHD1 

depletion also affects the binding of RAD51 and RPA1 to chromatin (Fig. III.6A). This clearly 

suggests that CHD1 controls HR-mediated DSB repair pathway by regulating the binding of 

CtIP to chromatin. Similar results were obtained with VCaP and U2OS cells where the 

binding of RPA1 and RAD51 to chromatin was decreased significantly in CHD1 depleted cells 

in response to DSB induction (Fig. III.6B-C). 

 Opening of chromatin structure at DSB is required for the repair machinery to gain 

access to the break sites. Thus we investigated open chromatin status at the DNA damage 

site using formaldehyde-assisted isolation of regulatory elements (FAIRE) technique in 

control and CHD1 depleted cells. Specifically AsiSI-U2OS cells which express a tamoxifen 

inducible AsiSI endonuclease. These cells provide a model in which DSBs can be induced at 

specific sites in the genome (Iacovoni et al., 2010). CHD1 was depleted using siRNA and DNA 

breaks were induced for 2 h and 4 h and then chromatin was analyzed by FAIRE. We 
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observed an increased open chromatin status within 2 h of induction and these changes 

returned to basal levels in control cells by 4 h (Fig. III.7). However, CHD1 depleted cells 

displayed less open chromatin status even without any induction and no increase after the 

induction of DSB was observed (Fig. III.7).  

 

Fig III.7. CHD1 affects end resection process probably through opening up the chromatin at the 
DNA damage site. Open chromatin status of DNA can be assessed using FAIRE technique. We used 
U2OS HA-AsiSI-ER cells which express HA- AsiSI restriction enzyme and can create DNA DBSs at 
specific sites in the genome upon tamoxifen treatment. For FAIRE, U2OS HA-AsiSI-ER cells were 
mock transfected or with siRNA CHD1, 48 h of post transfection cells were treated with 300 nM of 
tamoxifen for 2 h and 4 h and process for FAIRE as described in methods.  

Discussion 

 In this study we provide first the evidence that chromodomain containing DNA 

helicase 1 (CHD1) is recruited to DNA DSB site and also plays critical role in DSB repair. 

Moreover, we show that CHD1 is required for the binding of CtIP to chromatin in DNA 

damage induced cells indicating the role for CHD1 in the end resection process during HR- 

mediated DSB repair.  

CHD1 function was described mostly related to transcription and the maintenance of 

open chromatin status (Gaspar-Maia et al., 2009; Marfella and Imbalzano, 2007). Studies 

from yeast and Drosophila polytene chromosomes show that CHD1 is associated with 

promoters and transcribed regions of active genes (McDaniel et al., 2008; Walfridsson et al., 

2007). In vitro studies show that CHD1 functions in assembly, remodeling and spacing of 

nucleosomes (Lusser et al., 2005; Stockdale et al., 2006).  A recent  study suggested a 

dependence of H2B monoubiquitination (H2Bub1) is dependent on CHD1 (Lee et al., 2012). 
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Our previous study and others have shown that H2B ubiquitin ligase complex containing 

RNF20 and RNF40 which monoubiquitinates H2B is important for activation of DNA damage 

response and DSB repair in an ATM-dependent manner (Kari et al., 2011; Moyal et al., 2011; 

Nakamura et al., 2011). We further showed an intimate connection between H2Bub1 and 

the histone chaperone complex FACT. Specifically FACT subunit SUPT16H was required for 

DNA DSB repair and its depletion elicited a similar phenotype to RNF40 knockdown (Kari et 

al., 2011). Interestingly, CHD1 was also reported to interact with FACT subunit SSRP1 (Kelley 

et al., 1999) proving further support for the functional interaction of these CHD1, FACT and 

H2Bub1 in DNA repair. Our result indicates that CHD1 is recruited to DNA DSB site and co-

localizes with γH2AX. Similar to most of the proteins involved in the DNA damage response 

and repair, CHD1 also forms foci at the site of DNA damage following DSB induction. 

Chromatin fractionation shows that CHD1 recruitment to the chromatin gradually increases 

in response to DSB induction. The DSB breaks which are present in euchromatin are 

repaired fast while breaks in heterochromatin are repaired slower. However, it appears that 

CHD1 is associated with both fast and slow repair kinetics damage sites indicating that CHD1 

recruitment is not restricted to euchromatic regions but can also be recruited to 

heterochromatin-associated DNA damage sites. CHD1 was shown to interact with 

methylated H3 (H3K4me3) during transcriptional regulation (Sims et al., 2005) it is unclear 

whether this mechanism is required during DNA repair. However, recent studies show that 

chromodomain are important for enzyme activity rather than chromatin localization (Hauk 

et al., 2010). The mechanism of recruitment of CHD1 to DNA damage site still needs to be 

studied.  

Activation of cell cycle checkpoint following DNA DSB induction is an important step 

to prevent DNA replication prior to repair in order to maintain genomic stability. CHD1 

depletion did not affect H2AX phosphorylation triggered by NCS treatment indicating that 

CHD1 is not required for the initial recognition of DSBs. However, phosphorylation of CHK2 

is significantly decreased in CHD1-depleted cells indicating that the ATM pathway is not fully 

activated. Plasmid-based HR and NHEJ reporter assays showed that CHD1 depletion affects 

only HR but not NHEJ suggesting that ATP-depending chromatin remodeling activity of CHD1 

is required for HR-mediated DSB repair. One key step in HR is the generation of ssDNA 

through end resection process which requires the binding of CtIP to the damage site. We 
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show that CHD1 depletion leads to reduced recruitment of CtIP to chromatin upon DSB 

induction. CtIP was initially identified as CtBP interacting protein and interacts with MRN 

complex and BRCA1 (Sartori et al., 2007; Yu and Chen, 2004). CtIP promotes ATR 

recruitment in S/G2 phase and end resection process (Sartori et al., 2007). The defects we 

could see in CHD1 cells on end resection process and ssDNA binding proteins recruitment 

may be due to decreased recruitment of CtIP to chromatin in response to DSB. CHD1-

depleted cells show hypersensitivity to MMC treatment where the breaks are converted 

into DSBs in S phase and are repaired by HR pathway. It suggests that CHD1 is involved in 

the repair of DSB in S phase through the HR pathway.  

CHD1 is deleted in many prostate cancers and loss of CHD1 led to decreased AR 

binding and its associated ERG rearrangement (Burkhardt et al., 2013). It would be 

interesting to know whether cancers which have CHD1 deletions are more sensitive to DNA 

damaging drugs in combination with inhibitors of DNA repair pathway. 
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Material and Methods 

Cell culture and siRNA transfection 

PC-3 cells which have stable integration of shControl or shCHD1 were grown in RPMI 

medium containing 10% bovine growth serum (BGS; HyClone, USA), 1x penicillin–

streptomycin (Sigma, St. Louis, USA) and 1 µg/ml of puromycin (sigma) (Burkhardt et al., 

2013). U2OS cells were grown in high-glucose DMEM (Invitrogen) containing 10 % bovine 

growth serum (HyClone), 1x sodium pyruvate (Invitrogen) and 1x penicillin-streptomycin 

(Sigma). U2OS19ptight13 GFP-lacR cells were grown in DMEN high glucose, 10 % BGS, 1x 

penicillin-streptomycin (Sigma), 800 mg/ml of G418, and 2 mM IPTG containing medium 

(Lemaître et al., 2012; Mund et al., 2012) for maintenance. For DNA damage induction cells 

were treated with doxycycline for 24 h without IPTG in the medium and processed for 

immunostaining. AsiSI-U2OS cells were grown in medium containing puromycin and treated 

with 300 ng/ml of tamoxifen for indicated time points to induce DSBs as previously 

described (Iacovoni et al., 2010; Massip et al., 2010). To knock down CHD1, siRNA 

transfections were performed using Lipofectamine RNAiMAX (Invitrogen) according to the 

manufacturer’s instructions. Cells were treated either with Neocarzinostatin (NCS; Sigma) or 

doxycycline or tamoxifen as indicated. Smart pool of siRNAs used to knockdown CHD1, 

displayed sequences CAUCAAGCCUCAUCUAAUA; GAUAAGAACUCAUGAAUGG; 

GAAGAGAGCUGAAACUCAU; GAAACAAGCUCUAGAUCAU;  

Chromatin fractionation 

Chromatin fractionation was performed as previously described (Kari et al., 2011). Briefly 

cells were re-suspended in lysis buffer [10 mM HEPES (pH 7.9), 10 mM KCl, 1.5 mM MgCl2, 

0.34 M sucrose, 10% glycerol, 0.1% Triton X – 100, 1 mM dithiothreitol and protease 

inhibitors] and centrifuged at 1300 g for 5 min and nuclear pellet is lysed in nuclear lysis 

buffer [3 mM EDTA, 0.2 mM EGTA, 1 mM DTT and protease inhibitors] for 30 min on ice. 

Soluble chromatin fractions were separated by centrifuging at 1700 g for 5 min. Chromatin 

fractions were loaded on SDS –PAGE electrophoresis. Immunoblotting and antibody 

incubations were performed according to the standard protocols.  
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DSB reporter assay 

Double strand break repair efficiency was measured using DSB reporter assay as previously 

described. Briefly, HeLa cells harboring single copies of HR repair substrate (pGC) or NHEJ 

repair substrate (pEJ) were transfected with control or CHD1 siRNA. 24 h after transfection, 

DSB was induced by transfecting cells with I-SceI-expressing vector (pCMV-I-SceI-3xNLS). 

Post 48 hours of transfection, percentage of GFP-positive cells were monitored using flow 

cytometry analysis as an indication for HR and NHEJ efficiency.  

Immunofluorescence staining 

Cells were grown on coverslips and treated with NCS 100 ng/ml or doxycycline for indicated 

time points. Cells were fixed with 4 % paraformaldehyde for 10 min and permeabilized with 

0.5 % Triton X-100 for 10 min at room temperature. After blocking with 3 % BSA cells were 

incubated with primary antibodies over night at 4 C and then with fluorescent conjugated 

secondary antibodies. Images were taken using Zeiss confocal microscope (system).  

FAIRE  

Open chromatin status at the DNA damage site is analyzed using FAIRE (Formaldehyde-

assisted isolation of regulatory elements) in AsiSI-U2OS cells. FAIRE was performed 

according to the protocol described (Simon et al., 2012). Briefly, 200 µl of ChIP extracts were 

used to isolate DNA using phenol:chloroform:isoamyl alcohol mixture and DNA was 

precipitated using linear polyacrylamide. Extracted DNA was analyzed using qRT-PCR using 

specific primers listed and 10 % of input is used for normalization. 

Colony formation assays 

For colony formation assay PC-3 and BHP1 cells having either control or CHD1 stable shRNA 

expression were treated with indicated doses of Mitomycin C (MMC) for 4 h and survival 

fractions were measured by counting colonies after 3 weeks. The mean values of three 

independent experiments are shown. Data were normalized to the plating efficiency.  

Antibodies 

Antibodies used in the present study are γH2AX (05-636), CHD1 (06-1339) from Merck 

Millipore, ATM (A1106) from Sigma, CHD1 (sc-271626), 53BP1 (sc-22760), HSC70 (sc-7298), 
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CtIP (Sc-271339) and RAD51 (sc-8349) from Santa Cruz, H2B (Abcam), pCHK2, CHK2, pATM 

(4526), NBS1 (3002), pNBS1 (3001) and  RAD50 (3427) from cell signaling, , RPA1 (NA13) 

from Calbiochem. 
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3. General Discussion 

Histone mRNA synthesis and 3’ end processing 

 The core histone proteins are very stable. However when a mammalian cell divides, 

it must rapidly synthesize a large amount of histones to pack newly synthesized DNA. The 

synthesis of histones is tightly regulated and starts at the beginning of S phase. The histone 

genes that are transcribed during the replication are called replication-dependent histone 

genes. In most of species including humans, replication-dependent histone genes are 

clustered together in the genome. Each core histone is encoded by more than one gene. For 

example, histone H2B is encoded by 18 genes. However, all the histone genes are not 

transcribed at the same efficiency (Fig I.1). The clustering appears to provide a selective 

advantage for efficient and coordinated transcription and regulation of histone mRNA 

synthesis (Marzluff et al., 2002). Unlike normal mRNAs, replication-dependent histone 

mRNAs are not polyadenylated at the 3’ end. Instead they contain a conserved sequence 

which forms a stem-loop structure (Fig 1) (Marzluff et al., 2008).  The unique 3’ structure of 

the histone mRNA is responsible for the recruitment of factors involved in the metabolism 

and regulation of replication-dependent histone mRNAs. Stem-loop binding protein SLBP 

recognizes this stem-loop structure and stabilizes the binding of other processing factors at 

the 3’ end of mRNA (Dominski and Marzluff, 2007).   

Polyadenylated histone mRNAs from replication-dependent histone genes and their 

physiological significance 

mRNAs that are transcribed from replacement histone genes such as H2AX and 

H2A.Z which express in the cell cycle phases G0 and G1 but not in S contain polyA tails at the 

3’ end (Mannironi et al., 1989).  H2AX protein is synthesized throughout the cell cycle and 

the ability to produce two different mRNAs may be an advantage for constitutive expression 

of this variant (Wu and Bonner, 1981b). The mRNAs produced from replication-dependent 

histone genes are not normally polyadenylated instead they end 3’-terminally with a 

conserved stem-loop sequence. Interestingly, some replication-dependent histone mRNAs 

also contain both stem-loop sequence and downstream a polyadenylated site at the 3’ end 

which suggests that histone mRNAs can be processed by two pathways. A number of studies 
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indicate that replication-dependent histone genes produce mRNAs that contain a polyA tail 

at the 3’ end (Kirsh et al., 1989; Pirngruber et al., 2009a, 2009b; Sullivan et al., 2009; Tan et 

al., 2013). For example depletion of SLBP, NELF and CDK9 lead to an increased fraction of 

polyA mRNAs from replication-dependent histone genes. However, the physiological 

significance of the polyadenylated histone mRNAs that are produced from the replication-

dependent histone genes is not clear. 

  Our study indicates that a subset of histone H2B genes is able to produce 

polyadenylated transcripts upon induction of G1 cell cycle arrest. The expression of polyA 

HIST1H2BD and HIST1H2AC were up regulated when cells were exposed to radiation. 

Moreover, differentiation of hMSCs into the osteoblast and adipocycte lineages led to an 

increased fraction of polyA transcripts from replication-dependent histone genes. Initially it 

was thought that polyA mRNAs from replication-dependent histone genes are produced due 

to misregulation of the 3’ end processing (Pirngruber et al., 2009a; Sullivan et al., 2009). Our 

study shows that they are produced in response to specific stimuli such as cell cycle arrest, 

differentiation or DNA damage induction. We could also show that polyA histone mRNAs are 

transported to the cytoplasm and are found in polysomes. This suggests that cells have 

evolved an alternative mechanism to produce an extra pool of histones from the same 

genes when cells are not able to enter into S phase. However, the factors responsible for the 

synthesis of polyadenylated histone mRNAs from replication-dependent histone genes are 

not well defined. 

 Synthesis of polyA histone mRNAs might be an advantage to a non-dividing cell. The 

polyadenylation at the 3’ end of histone mRNAs may increase the half-life of mRNA and 

ability to be translated into proteins outside of S phase. We observed an increased fraction 

of polyA histone mRNAs in the cells that experienced DNA damage. During the repair of DNA 

damage in the cell, histones are post-translationally modified to sense the DNA damage and 

repair. Moreover, during the repair of double strand breaks by homologous recombination 

histones are evicted from the nucleosome in order to generate single strand DNA during the 

end resection process. To maintain genomic integrity, histones which were removed or lost 

during the repair of DNA damage need to be replaced with new histones. However, not all 

the core replication-dependent histone genes express mRNAs that are independent of 

replication or cell division. Only a subset of histone genes are encoded by replication-
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dependent genes express outside S phase including H3.3, H2A.Z and Macro-H2A (Marzluff et 

al., 2008). Only few core histones are known to exchange with other histone variants e.g. H3 

exchanges with H3.3 and H2A exchange with H2AX. However, core histone proteins H2B and 

H4 are not known to exchange with any other variants. Hence, increased expression of 

polyA histone mRNAs from replication-dependent histone mRNAs such as H2B and H2A may 

be a mechanism which is adopted to deal with this problem outside of S phase. 

Interestingly, loss of core histones is observed in aging cells and aging is also directly 

correlated with loss of H3 and H4. Moreover, overexpressing histones was shown to 

increase life span in yeast (Feser et al., 2010; Oberdoerffer, 2010). It would be also 

interesting to study the role of polyadenylated replication-dependent histone mRNAs in 

cells like neurons or cardiomyocytes which are permanently arrested in G0 or G1 phase.   

Post-translational histone modifications and ATP-dependent chromatin remodelers in 

DNA repair 

We studied the role of one of the PTM histone H2B monoubiquitination at lysine120 

(H2Bub1) and its E3 ligase complex RNF20/40 which are associated with actively transcribed 

genes in DNA damage response and repair. Further, we showed that chromodomain 

helicase DNA binding protein 1 (CHD1), an ATP-dependent chromatin remodeler is required 

for the repair of DNA double strand breaks. 

Role of RNF20/40 and H2B monoubiquitination in DNA repair 

 A number of histone modifications are involved in the DNA repair process starting 

from the sensing of DNA damage till restoring chromatin structure after the repair.  Histones 

are post-translationally modified (PTM) in response to DNA damage. A well-characterized 

histone modification is phosphorylation of H2AX variant at Ser139 position by PI3 kinase 

family members ATM, ATR and DNA-PKcs. This phosphorylation event is a key step for 

sensing the DNA damage and recruiting proteins responsible for the chromatin remodeling 

and repair. However, a number of other histone modifications are also reposted which are 

required for the DNA repair (Altaf et al., 2007).  

H2Bub1 which is associated with actively transcribed chromatin is mediated by 

RNF20/40 E3 ubiquitin ligase complex. Most of the studies implicated the role of H2Bub1 in 
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transcription elongation. H2Bub1 is required for the removal of a repressive mark 

H3K27me3, from the genes which are required for cell differentiation (Karpiuk et al., 2012).  

Earlier studies in yeast have shown that H2Bub1 at lysine 123 mediated by Bre1 is necessary 

for the cell cycle checkpoint activation (Giannattasio et al., 2005). Recent studies on 

mammalian H2Bub1 and its E3 ligase complex RNF20/40 suggest that they regulate 

chromatin structure at the DNA double strand break (DSB) site (Kari et al., 2011; Moyal et 

al., 2011; Nakamura et al., 2011). The RNF20/40 complex is phosphorylated by a PI3 kinase 

family member ATM, in response to the DNA damage. RNF20 was shown to interact with 

NBS1, a component of MRN complex which may be required for its recruitment to the 

chromatin. H2Bub1 levels were increased in response to DNA damage and this is dependent 

on ATM. Although it was shown that H2Bub1 levels were increased in response to DSB 

induction, it is not clear whether H2B is monoubiquitinated at the site of DNA damage. Loss 

of RNF20 was shown to decrease the recruitment of SNF2h, a chromatin remodeling factor 

and end resection process that generates single strand DNA (ssDNA) for the homologous 

recombination. On the other hand it is not known whether the defects observed in 

RNF20/40 depleted cells is due to the loss of its own protein levels or the loss of H2Bub1. 

There could be a possibility that RNF20/40 may ubiquitinate other proteins or histones 

which are involved in DNA repair processes. In many DNA associated processes, histone 

modifications crosstalk with each other to regulate cellular functions. A best example for the 

histone crosstalk is between H2Bub1 and H3K4me3 during transcription. Crosstalk between 

histone modifications during DNA repair process is not well characterized. During DNA 

repair, H2Bub1 may also regulate other histone modifications at the DNA damage site. In 

yeast, H2Bub1 is required for H3K79me3 which is methylated by Dot1 and required for the 

recruitment of 53BP1 protein (Giannattasio et al., 2005; Ng et al., 2002). In humans, 

regulation of H3K79me3 through H2Bub1 is not yet investigated.  

Role of FACT complex in DNA repair 

 The histone chaperone, facilitates chromatin transcription (FACT), a heterodimeric 

complex comprised of SUPT16H and SSRP1 complex, was initially discovered as to promote 

RNA PolII associated transcription elongation on the nucleosomal DNA template 

(Orphanides et al., 1998). FACT complex is associated with the elongating RNA pol II and is 

proposed to evict nucleosomal histones (H2A/H2B) and deposit them back at the site of 
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transcription (Belotserkovskaya et al., 2003). An in vitro study by Heo et al. showed that 

FACT catalyzes the exchange of H2AX-H2B dimers on nucleosomes. However, the N-terminal 

domain of Spt16 was shown to bind to H3-H4 but not H2A-H2B in vitro (Stuwe et al., 2008). 

A recent study showed that Spt16 interacts with H2B using its U- turn motif. This suggests 

that FACT complex mainly acts as a chaperone for H2A-H2B dimer (Hondele et al., 2013). 

Interestingly, H2Bub1 functions with the FACT complex to regulate transcription elongation 

by RNA pol II (Pavri et al., 2006). But, whether there is a physical interaction between 

H2Bub1 and FACT complex has not been established. In addition to transcription, the FACT 

complex was also suggested to play role in DNA repair. Studies showed that the FACT 

complex recognizes Cisplatin-induced DNA adducts and gets recruited to the sites of DNA 

damage (Sand-Dejmek et al., 2011; Yarnell et al., 2001). However the exact role of the FACT 

complex in DNA repair remained unexplored. During transcription, H2Bub1 and FACT 

complex functionally cooperate and appears to be partially responsible for nucleosome 

eviction. H2Bub1 was shown to be involved in chromatin changes during the repair of DSB 

and similarly FACT and H2Bub1 might be involved in repair of DNA DSBs.  

Our study showed that binding of FACT complex to chromatin was increased in 

response to DSBs. This increased binding was abolished upon depletion of RNF40 which is 

responsible for H2Bub1. This suggests that during repair of DSBs, the FACT complex 

functions in an H2Bub1 dependent manner. Moreover, depletion of RNF40 or SUPT16 

decreases the end resection process which requires chromatin remodeling at the DNA 

damage site. However there is no clear evidence that the recruitment of the FACT complex 

to chromatin is mediated through interactions with H2Bub1 or the RNF20/40 complex at the 

DNA damage site. It is also possible that the FACT complex can interact with other histone 

modifications which occur at the site of DNA damage or with any other proteins which are 

involved in DNA repair and recruited. Additionally, loss of RNF40 and SUPT16H decrease the 

efficiency of both HR and NHEJ pathway.  A recent study showed that SUPT16H is abundant 

at somatic hyper mutation (SHM) regions at immunoglobulin genes in the genome and 

required for histone exchange at the SHM sites (Aida et al., 2013). It will be interesting to 

determine whether H2Bub1 is also required for the histone exchange at SHM along with 

SUPT16H. 
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The RNF20/40 complex is involved in early or late DNA damage response? 

 During the repair of DSBs, it is proposed that chromatin decondensation occurs at 

two levels, an initial decondensation to open the higher order chromatin structure, and the 

second decondensation step to remove the rearranged nucleosomes. It was proposed that 

RNF20/40 is involved in DNA DSB repair pathway at the second level decondensation 

(Nakamura et al., 2011). On the other hand, our data suggests that RNF40 depletion can 

block the activation of check point pathway within 15 min of DNA DSB induction. Moreover, 

increased H3K56ac following DNA damage was not observed in RNF40-depleted cells within 

30 min of DSBs. This suggests that RNF20/40 may be required for the initial activation and 

decondensation steps rather than later steps. The kinetics of DNA repair in both 

euchromatin and heterochromatin differs due to accessibility of DNA. Since H2Bub1 is 

known to be associated with active chromatin, it is likely that DNA damage sites which are 

already occupied by H2Bub1 may be repaired faster compared to the regions with no or less 

H2Bub1. The role of pre-existing H2Bub1-mediated repair at the damage site for the 

efficient DNA damage response and repair need to be investigated. It may also be 

interesting to study whether H2Bub1 similarly increase at the DNA damage sites in 

heterochromatin regions in comparison to euchromatin regions.  

ATP-dependent chromatin remodelers in DNA repair 

 A large group of chromatin-remodeling complexes has been identified which are 

important for controlling gene expression. It has recently also become clear that ATP-

dependent chromatin remodeling complexes play essential role in modifying chromatin 

structure during the repair of DNA damage. These complexes disturb DNA-histone 

interactions using energy from ATP hydrolysis. During the repair of DSB, chromatin 

remodeling is required either to remove histones or slide them in order to get access to the 

DNA.  Four structurally related ATP-dependent chromatin remodeling complexes have been 

implicated in DNA repair including SWI/SNF (switching defective/sucrose non-fermenting), 

INO80 (inositol requiring 80), CHD (chromodomain, helicase, DNA binding) and ISWI 

(imitation switch) complexes (Lans et al., 2012). In the present study we investigated the 

role of CHD1 which belongs to the CHD family of ATP-dependent chromatin remodeling 

complexes in DNA DSB repair pathway. 
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CHD1 regulates chromatin structure during DSB repair 

 Chromodomain helicase DNA binding protein 1 (CHD1) belongs to the ATP-

dependent chromatin remodeling factor family which contains a SNF2-like helicase domain 

which was shown to recognize and bind to H3K4me3 (Delmas et al., 1993; Lusser et al., 

2005; Sims et al., 2005). CHD1 is associated with decondensed chromatin and required for 

transcription. Moreover, CHD1 was shown to regulate positioning of nucleosome and 

repression of cryptic transcription in yeast (Gkikopoulos et al., 2011; Hennig et al., 2012; 

Pointner et al., 2012). Importantly, CHD1 was shown to be mutated or deleted in a large 

fraction of prostate cancers and was implicated in cancer invasiveness (Burkhardt et al., 

2013; Grasso et al., 2012; Huang et al., 2012). It was shown that CHD1 is required for 

efficient recruitment of androgen receptor (AR) to the promoters and expression of AR-

responsive tumor suppressor genes. Moreover, loss of CHD1 prevents formation of ERG 

rearrangements due to impaired AR-dependent transcription which is prerequisite for ERG 

translocation (Burkhardt et al., 2013). Interestingly, CHD1 was shown to interact with a 

subunit of FACT complex, SSRP1 (Kelley et al., 1999). Furthermore, one study showed the 

co-dependency of H2Bub1 and CHD1 in nucleosome reassembly (Lee et al., 2012). Since the 

FACT complex and H2Bub1 cooperate during the DSB repair process, we hypothesized that 

CHD1 may also be involved in the repair of DSBs.  There are no studies indicating the role of 

CHD1 in the DNA damage repair process.  

In the present study, we showed that CHD1 is recruited to I-SceI-induced DNA 

damage sites stably integrated into the genome. Further, CHD1 is recruited to DSBs which 

were created by NCS treatment, but the mode of recruitment is not defined. It is possible 

that CHD1 may be recruited to the damage site through interaction with the FACT complex. 

Some studies showed that H3K4me3 is increased at the DNA damage site and is dependent 

on H2Bub1 and RNF20/40 complex. There is a possibility that CHD1 may interact with 

H3K4me3 at the DSB site in a manner similar to its recruitment during transcription. Since 

CHD1 is a chromatin remodeling enzyme one could assume that CHD1 is important for the 

remodeling of chromatin at the DNA damage site. Upon DNA damage, cells activate cell 

cycle checkpoint kinase pathways to initiate a DNA damage response. The PI3 kinase 

members ATM, ATR and DNA-PKcs are responsible for activation of the checkpoint kinase 

pathway. ATM is important for sensing the DNA DSBs and activated ATM phosphorylates a 
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number of proteins which are involved in the DNA repair process. We observed that 

depletion of CHD1 decreases the activation of ATM as well as its downstream target CHK2. 

This suggests that CHD1 is important for sensing the DNA damage by ATM. CHD1 is probably 

involved in ATM activation perhaps by changing the chromatin structure at DNA damage 

site. It is known that alterations in the chromatin structure are sufficient to activate ATM 

(Kim et al. 2009). 

DNA DSBs are repaired mainly by two different pathways known as homologous 

recombination (HR) and non-homologous end joining pathway (NHEJ). NHEJ pathway is 

active in all phases of cell cycle and the HR pathway is more favored in S/G2 phase of cell 

cycle due to the availability of sister chromatid to copy the sequence to repair the DSBs. The 

HR pathway is faithful compared to NHEJ where the DSBs are repaired by simply joining the 

ends with little or no homology. At the same time, HR pathway requires extensive 

chromatin remodeling at the damage site compared to NHEJ. In HR pathway, to copy the 

genetic information from the sister chromatid, ssDNA is generated from the damaged DNA 

template by end resection process. A number of proteins are involved in the end resection 

process including the MRN complex, CtIP and EXO1. The breaks are recognized by the MRN 

complex which recruits factors responsible for the end resection process including CtIP. The 

EXO1 processes the end to generate ssDNA. Then the ssDNA is coated with ssDNA binding 

proteins RPA1 and RAD51 which is then followed by the strand invasion process and 

synthesis of complementary DNA (Fig 4). ATP-dependent chromatin remodelers play an 

essential role in the generation of ssDNA by promoting chromatin remodeling and removal 

of histones at the DNA damage site.  

In our study CHD1 depletion showed decreased recruitment of CtIP to chromatin in 

DNA DSB induced cells. That suggests that CHD1 may work along with the MRN complex to 

recruit CtIP to chromatin. Consistent with less CtIP recruitment, CHD1-depleted cells show 

decreased binding of RPA1 and RAD51 binding to chromatin upon DSB induction. Decreased 

recruitment of CtIP to chromatin mainly affects the end resection process where 

nucleosomes at the DSB either removed or slide away to generate ssDNA. This clearly 

indicates that CHD1 promotes end resection process through CtIP recruitment. It is not clear 

whether the chromatin remodeling activity of CHD1 or the interaction of CHD1 with 

proteins that recruit CtIP are required for the CtIP recruitment to chromatin. In the HR 
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pathway, CHD1 may be involved directly through remodeling nucleosomes at the DSB site 

but not effect on NHEJ where it does not require extensive chromatin remodeling. 

Supporting out hypothesis, GFP based reporter assays indicate that CHD1 depleted cells 

show less efficiency of HR but not NHEJ. This indicates that CHD1 participates in the HR 

repair pathway probably through its chromatin remodeling activity. Moreover, CHD1 

depleted cells are hypersensitive to Mitomycin C (MMC) treatment that creates breaks 

which can be repaired by HR. All these results made us to understand the role of CHD1 in 

homologous recombination mediated DNA damage repair. 

Are RNF40, FACT and CHD1 in the same axis?   

 Our data overall suggests that CHD1 is specifically involved in repair of DSB by the HR 

pathway. However, the mechanism of CHD1 recruitment to chromatin and how it regulates 

the recruitment of CtIP is not known. CHD1 interaction with the FACT complex and 

regulation of H2Bub1 may explain the mechanism of CHD1 recruitment to chromatin at DSB 

sites. The H2Bub1 is implicated in maintaining H3K4me3 and recruiting SNF2h chromatin 

remodeling enzyme to DSB site. Similarly, CHD1 may interact with H3K4me3 in order to be 

recruited to the DSB. The loss of H2Bub1 by RNF40 depletion may decrease the recruitment 

of CHD1 to chromatin. Experiments need to be carried out to understand the connection 

between CHD1, FACT and H2Bub1 in the DNA repair process. Preliminary experiments using 

HR and NHEJ GFP based reporter assays showed that SUPT16H and RNF40 depletion 

decreased the efficiency of both HR and NHEJ. However, CHD1 depletion decreased only HR 

but not NHEJ. This suggests that CHD1 may function downstream of FACT and H2Bub1 in 

DSB repair pathway. However, we cannot rule out the possibly that FACT and H2Bub1 may 

also be working together with CHD1 during HR pathway but not in NHEJ. Better 

understanding the mechanism of this cooperativity could pave way to investigate specific 

roles of these proteins in HR pathway and repair. 

Tumor suppressive role of the RNF20/40 complex  

 A previous study demonstrated that, RNF20-depleted cells have higher migration 

potential compared to the control cells (Shema et al., 2008). RNF40 depletion also shows 

similar effects suggesting that RNF20/40 complex have tumor suppressive role in the cell 

(Prenzel et al., 2011). Further, we and others have shown that RNF40 is required for DNA 
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DSB repair pathway (Kari et al., 2011; Moyal et al., 2011; Nakamura et al., 2011). Recently, it 

was shown that RNF20/40 depletion leads to replication stress, formation of R-loops and 

chromosomal instability (Chernikova and Brown, 2012). Altogether these data suggest that 

the RNF20/40 complex is important for maintaining genomic stability and suppression of 

tumor formation. 

DNA repair pathway as a target for cancer therapy 

 Many chemotherapeutic drugs like Cisplatin, Mitomycin C and 5-Fluorouracil are 

used in clinic to treat cancers by inducing DNA damage in the cells (Helleday et al., 2008).  

Cancer cells repair these breaks by different repair mechanism based on type of DNA 

damage. Using DNA repair inhibitors in combinational therapy approaches could give us 

better outcome when we use the drugs which induce DNA damage.  

 CHD1 has been shown to be deleted in many prostate cancers (Burkhardt et al., 

2013; Grasso et al., 2012; Huang et al., 2012). Recently it was shown that CHD1 deleted 

tumors show excess intra-chromosomal rearrangements and gene deletions (Baca et al., 

2013). On the other hand loss of CHD1 in prostate cancers led to decreased binding of AR 

and AR associated gene rearrangements including the TMPRSS:ERG translocation (Burkhardt 

et al., 2013). Chromosomal translocations occur due to joining of two different 

chromosomal ends where the NHEJ pathway has been implicated in this process. Decreased 

translocation in CHD1 depleted cancers could be due to less efficient NHEJ pathway. 

Interestingly our data suggests that CHD1 deletion decreased the repair of DSBs by HR 

pathway but not NHEJ. The essential role of CHD1 in translocations is through AR dependent 

chromosomal interactions and loss of CHD1 led to decrease this interactions and less 

translocations. There is a possibility that cells lacking CHD1 mainly repair the DSBs by NHEJ 

which is most likely to create mutations, deletions or translocations and development of 

tumors.  

To check the clinical relevance of CHD1 deletion one could use radiotherapy or 

chemotherapy to induce DNA damage in the CHD1 deleted cancers and simultaneously 

inhibit other repair pathways to block completely repair of the DNA damage. For example to 

block NHEJ pathway, one might use recently developed DNA ligase IV inhibitor in CHD1 

deleted tumors (Srivastava et al., 2012).  The metastatic castration-resistant prostate 
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cancers are treated with Mitoxantone which inhibits type II topoisomerase. While this 

therapy has mostly been abandoned in the clinic, stratification of patients based upon their 

CHD1 status may help to identify individuals with castrate-resistant prostate cancer which 

may have a higher potential to respond Mitoxantone, perhaps in combination with NHEJ 

inhibitors. There by CHD1 deleted cancers might have significantly improved prognosis 

when treated with such kinds of combinations of DNA damage inducers and DNA repair 

inhibitors. In order to test this, xenograft tumor models that are generated from CHD1 

depleted cells can treat with DNA damage inducing drugs in combination with DNA reapir 

inhibitors. It may also be interesting to study the role of CHD1 depletion in other cancers 

and its clinical application. In addition, using CHD1 inhibitors to block chromodomains or the 

ATPase activity of CHD1 to treat CHD1 positive tumors in combination with NHEJ inhibitors 

could inhibit both AR dependent transcription and also HR pathway.    

In summary, here we provide an evidence for the role of CHD1 in DSB repair 

pathway and its tumor suppressor function.  

   

 

 



References 

 

92 
 

4. References 

 Abba, M.C., Hu, Y., Sun, H., Drake, J.A., Gaddis, S., Baggerly, K., Sahin, A., and Aldaz, C.M. 
(2005). Gene expression signature of estrogen receptor alpha status in breast cancer. 
Bmc Genomics 6, 37. 

Ahel, D., Horejsí, Z., Wiechens, N., Polo, S.E., Garcia-Wilson, E., Ahel, I., Flynn, H., Skehel, M., 
West, S.C., Jackson, S.P., et al. (2009). Poly(ADP-ribose)-dependent regulation of 
DNA repair by the chromatin remodeling enzyme ALC1. Science 325, 1240–1243. 

Aida, M., Hamad, N., Stanlie, A., Begum, N.A., and Honjo, T. (2013). Accumulation of the 
FACT complex, as well as histone H3.3, serves as a target marker for somatic 
hypermutation. Proc. Natl. Acad. Sci. 

Allan, J., Cowling, G.J., Harborne, N., Cattini, P., Craigie, R., and Gould, H. (1981). Regulation 
of the higher-order structure of chromatin by histones H1 and H5. J. Cell Biol. 90, 
279–288. 

Altaf, M., Saksouk, N., and Côté, J. (2007). Histone modifications in response to DNA 
damage. Mutat. Res. Mol. Mech. Mutagen. 618, 81–90. 

Antoni, L., Sodha, N., Collins, I., and Garrett, M.D. (2007). CHK2 kinase: cancer susceptibility 
and cancer therapy - two sides of the same coin? Nat. Rev. Cancer 7, 925–936. 

Audebert, M., Salles, B., and Calsou, P. (2004). Involvement of poly(ADP-ribose) polymerase-
1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks 
rejoining. J. Biol. Chem. 279, 55117–55126. 

Ayoub, N., Jeyasekharan, A.D., Bernal, J.A., and Venkitaraman, A.R. (2008). HP1-beta 
mobilization promotes chromatin changes that initiate the DNA damage response. 
Nature 453, 682–686. 

Ayoub, N., Jeyasekharan, A.D., Bernal, J.A., and Venkitaraman, A.R. (2009). Paving the way 
for H2AX phosphorylation: chromatin changes in the DNA damage response. Cell 
Cycle Georget. Tex 8, 1494–1500. 

Baca, S.C., Prandi, D., Lawrence, M.S., Mosquera, J.M., Romanel, A., Drier, Y., Park, K., 
Kitabayashi, N., MacDonald, T.Y., Ghandi, M., et al. (2013). Punctuated Evolution of 
Prostate Cancer Genomes. Cell 153, 666–677. 

Bakkenist, C.J., and Kastan, M.B. (2003). DNA damage activates ATM through intermolecular 
autophosphorylation and dimer dissociation. Nature 421, 499–506. 

Banin, S., Moyal, L., Shieh, S.-Y., Taya, Y., Anderson, C.W., Chessa, L., Smorodinsky, N.I., 
Prives, C., Reiss, Y., Shiloh, Y., et al. (1998). Enhanced Phosphorylation of p53 by ATM 
in Response to DNA Damage. Science 281, 1674–1677. 

Bassing, C.H., Chua, K.F., Sekiguchi, J., Suh, H., Whitlow, S.R., Fleming, J.C., Monroe, B.C., 
Ciccone, D.N., Yan, C., Vlasakova, K., et al. (2002). Increased ionizing radiation 



References 

 

93 
 

sensitivity and genomic instability in the absence of histone H2AX. Proc. Natl. Acad. 
Sci. U. S. A. 99, 8173–8178. 

Belotserkovskaya, R., Oh, S., Bondarenko, V.A., Orphanides, G., Studitsky, V.M., and 
Reinberg, D. (2003). FACT facilitates transcription-dependent nucleosome alteration. 
Science 301, 1090–1093. 

Berger, S.L. (2002). Histone modifications in transcriptional regulation. Curr. Opin. Genet. 
Dev. 12, 142–148. 

Berger, S.L. (2007). The complex language of chromatin regulation during transcription. 
Nature 447, 407–412. 

Bergink, S., and Jentsch, S. (2009). Principles of ubiquitin and SUMO modifications in DNA 
repair. Nature 458, 461–467. 

Bhaumik, S.R., Smith, E., and Shilatifard, A. (2007). Covalent modifications of histones during 
development and disease pathogenesis. Nat. Struct. Mol. Biol. 14, 1008–1016. 

Bickmore, W.A., and van Steensel, B. (2013). Genome architecture: domain organization of 
interphase chromosomes. Cell 152, 1270–1284. 

Bird, A.W., Yu, D.Y., Pray-Grant, M.G., Qiu, Q., Harmon, K.E., Megee, P.C., Grant, P.A., Smith, 
M.M., and Christman, M.F. (2002). Acetylation of histone H4 by Esa1 is required for 
DNA double-strand break repair. Nature 419, 411–415. 

Birnstiel, M.L., Busslinger, M., and Strub, K. (1985). Transcription termination and 3’ 
processing: the end is in site! Cell 41, 349–359. 

Bolderson, E., Tomimatsu, N., Richard, D.J., Boucher, D., Kumar, R., Pandita, T.K., Burma, S., 
and Khanna, K.K. (2010). Phosphorylation of Exo1 modulates homologous 
recombination repair of DNA double-strand breaks. Nucleic Acids Res. 38, 1821–
1831. 

Bongiorno-Borbone, L., De Cola, A., Barcaroli, D., Knight, R.A., Di Ilio, C., Melino, G., and De 
Laurenzi, V. (2010). FLASH degradation in response to UV-C results in histone locus 
bodies disruption and cell-cycle arrest. Oncogene 29, 802–810. 

Bont, R.D., and Larebeke, N. van (2004). Endogenous DNA damage in humans: a review of 
quantitative data. Mutagenesis 19, 169–185. 

Van den Bosch, M., Bree, R.T., and Lowndes, N.F. (2003). The MRN complex: coordinating 
and mediating the response to broken chromosomes. EMBO Rep. 4, 844–849. 

Brandsma, I., and Gent, D.C. van (2012). Pathway choice in DNA double strand break repair: 
observations of a balancing act. Genome Integr. 3, 9. 

Brush, D., Dodgson, J.B., Choi, O.R., Stevens, P.W., and Engel, J.D. (1985). Replacement 
variant histone genes contain intervening sequences. Mol. Cell. Biol. 5, 1307–1317. 



References 

 

94 
 

Bryant, H.E., Schultz, N., Thomas, H.D., Parker, K.M., Flower, D., Lopez, E., Kyle, S., Meuth, 
M., Curtin, N.J., and Helleday, T. (2005). Specific killing of BRCA2-deficient tumours 
with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917. 

Burgess, R.J., and Zhang, Z. (2010). Roles for Gcn5 in promoting nucleosome assembly and 
maintaining genome integrity. Cell Cycle Georget. Tex 9, 2979–2985. 

Burkhardt, L., Fuchs, S., Krohn, A., Masser, S., Mader, M., Kluth, M., Bachmann, F., Huland, 
H., Steuber, T., Graefen, M., et al. (2013). CHD1 is a 5q21 tumor suppressor required 
for ERG rearrangement in prostate cancer. Cancer Res. 

Cakmakci, N.G., Lerner, R.S., Wagner, E.J., Zheng, L., and Marzluff, W.F. (2008). SLIP1, a 
factor required for activation of histone mRNA translation by the stem-loop binding 
protein. Mol. Cell. Biol. 28, 1182–1194. 

Camphausen, K., Brady, K.J., Burgan, W.E., Cerra, M.A., Russell, J.S., Bull, E.E.A., and Tofilon, 
P.J. (2004). Flavopiridol enhances human tumor cell radiosensitivity and prolongs 
expression of gammaH2AX foci. Mol. Cancer Ther. 3, 409–416. 

Celeste, A., Petersen, S., Romanienko, P.J., Fernandez-Capetillo, O., Chen, H.T., Sedelnikova, 
O.A., Reina-San-Martin, B., Coppola, V., Meffre, E., Difilippantonio, M.J., et al. (2002). 
Genomic instability in mice lacking histone H2AX. Science 296, 922–927. 

Celic, I., Masumoto, H., Griffith, W.P., Meluh, P., Cotter, R.J., Boeke, J.D., and Verreault, A. 
(2006). The sirtuins hst3 and Hst4p preserve genome integrity by controlling histone 
h3 lysine 56 deacetylation. Curr. Biol. Cb 16, 1280–1289. 

Cerosaletti, K., and Concannon, P. (2004). Independent roles for nibrin and Mre11-Rad50 in 
the activation and function of Atm. J. Biol. Chem. 279, 38813–38819. 

Chai, B., Huang, J., Cairns, B.R., and Laurent, B.C. (2005). Distinct roles for the RSC and 
Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair. 
Genes Dev. 19, 1656–1661. 

Chan, D.W., Ye, R., Veillette, C.J., and Lees-Miller, S.P. (1999). DNA-dependent protein 
kinase phosphorylation sites in Ku 70/80 heterodimer. Biochemistry (Mosc.) 38, 
1819–1828. 

Chapman, J.R., Taylor, M.R.G., and Boulton, S.J. (2012). Playing the End Game: DNA Double-
Strand Break Repair Pathway Choice. Mol. Cell 47, 497–510. 

Chen, C.-C., Carson, J.J., Feser, J., Tamburini, B., Zabaronick, S., Linger, J., and Tyler, J.K. 
(2008). Acetylated lysine 56 on histone H3 drives chromatin assembly after repair 
and signals for the completion of repair. Cell 134, 231–243. 

Chernikova, S.B., and Brown, J.M. (2012). R-loops and genomic instability in Bre1 
(RNF20/40)-deficient cells. Cell Cycle 11, 2980–2984. 

Chernikova, S.B., Dorth, J.A., Razorenova, O.V., Game, J.C., and Brown, J.M. (2010). 
Deficiency in Bre1 impairs homologous recombination repair and cell cycle 



References 

 

95 
 

checkpoint response to radiation damage in mammalian cells. Radiat. Res. 174, 558–
565. 

Cheung, W.L., Turner, F.B., Krishnamoorthy, T., Wolner, B., Ahn, S.-H., Foley, M., Dorsey, 
J.A., Peterson, C.L., Berger, S.L., and Allis, C.D. (2005). Phosphorylation of histone H4 
serine 1 during DNA damage requires casein kinase II in S. cerevisiae. Curr. Biol. Cb 
15, 656–660. 

Ciccia, A., and Elledge, S.J. (2010). The DNA damage response: making it safe to play with 
knives. Mol. Cell 40, 179–204. 

Cimprich, K.A., and Cortez, D. (2008). ATR: An Essential Regulator of Genome Integrity. Nat. 
Rev. Mol. Cell Biol. 9, 616–627. 

Collart, D., Ramsey-Ewing, A., Bortell, R., Lian, J., Stein, J., and Stein, G. (1991). Isolation and 
characterization of a cDNA from a human histone H2B gene which is reciprocally 
expressed in relation to replication-dependent H2B histone genes during HL60 cell 
differentiation. Biochemistry (Mosc.) 30, 1610–1617. 

Collins, I., and Newlon, C.S. (1994). Meiosis-specific formation of joint DNA molecules 
containing sequences from homologous chromosomes. Cell 76, 65–75. 

Cosgrove, M.S., and Wolberger, C. (2005). How does the histone code work? Biochem. Cell 
Biol. Biochim. Biol. Cell. 83, 468–476. 

Courilleau, C., Chailleux, C., Jauneau, A., Grimal, F., Briois, S., Boutet-Robinet, E., Boudsocq, 
F., Trouche, D., and Canitrot, Y. (2012). The chromatin remodeler p400 ATPase 
facilitates Rad51-mediated repair of DNA double-strand breaks. J. Cell Biol. 199, 
1067–1081. 

Critchlow, S.E., and Jackson, S.P. (1998). DNA end-joining: from yeast to man. Trends 
Biochem. Sci. 23, 394–398. 

Das, C., Lucia, M.S., Hansen, K.C., and Tyler, J.K. (2009). CBP/p300-mediated acetylation of 
histone H3 on lysine 56. Nature 459, 113–117. 

Dávila López, M., and Samuelsson, T. (2008). Early evolution of histone mRNA 3’ end 
processing. Rna New York N 14, 1–10. 

Dejmek, J., Iglehart, J.D., and Lazaro, J.-B. (2009). DNA-dependent protein kinase (DNA-PK)-
dependent cisplatin-induced loss of nucleolar facilitator of chromatin transcription 
(FACT) and regulation of cisplatin sensitivity by DNA-PK and FACT. Mol. Cancer Res. 
Mcr 7, 581–591. 

DeLisle, A.J., Graves, R.A., Marzluff, W.F., and Johnson, L.F. (1983). Regulation of histone 
mRNA production and stability in serum-stimulated mouse 3T6 fibroblasts. Mol. Cell. 
Biol. 3, 1920–1929. 

Dellaire, G., Kepkay, R., and Bazett-Jones, D.P. (2009). High resolution imaging of changes in 
the structure and spatial organization of chromatin, gamma-H2A.X and the MRN 



References 

 

96 
 

complex within etoposide-induced DNA repair foci. Cell Cycle Georget. Tex 8, 3750–
3769. 

Delmas, V., Stokes, D.G., and Perry, R.P. (1993). A mammalian DNA-binding protein that 
contains a chromodomain and an SNF2/SWI2-like helicase domain. Proc. Natl. Acad. 
Sci. U. S. A. 90, 2414–2418. 

Dominski, Z., and Marzluff, W.F. (2007). Formation of the 3’ end of histone mRNA: getting 
closer to the end. Gene 396, 373–390. 

Downs, J.A., Allard, S., Jobin-Robitaille, O., Javaheri, A., Auger, A., Bouchard, N., Kron, S.J., 
Jackson, S.P., and Côté, J. (2004). Binding of chromatin-modifying activities to 
phosphorylated histone H2A at DNA damage sites. Mol. Cell 16, 979–990. 

Erkmann, J.A., Sànchez, R., Treichel, N., Marzluff, W.F., and Kutay, U. (2005). Nuclear export 
of metazoan replication-dependent histone mRNAs is dependent on RNA length and 
is mediated by TAP. Rna New York N 11, 45–58. 

Farmer, H., McCabe, N., Lord, C.J., Tutt, A.N.J., Johnson, D.A., Richardson, T.B., Santarosa, 
M., Dillon, K.J., Hickson, I., Knights, C., et al. (2005). Targeting the DNA repair defect 
in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921. 

Fernandez-Capetillo, O., Allis, C.D., and Nussenzweig, A. (2004). Phosphorylation of histone 
H2B at DNA double-strand breaks. J. Exp. Med. 199, 1671–1677. 

Feser, J., Truong, D., Das, C., Carson, J.J., Kieft, J., Harkness, T., and Tyler, J.K. (2010). 
Elevated histone expression promotes life span extension. Mol. Cell 39, 724–735. 

Fischle, W., Wang, Y., and Allis, C.D. (2003). Histone and chromatin cross-talk. Curr. Opin. 
Cell Biol. 15, 172–183. 

Fleming, A.B., Kao, C.-F., Hillyer, C., Pikaart, M., and Osley, M.A. (2008). H2B ubiquitylation 
plays a role in nucleosome dynamics during transcription elongation. Mol. Cell 31, 
57–66. 

Frey, M.R., and Matera, A.G. (1995). Coiled bodies contain U7 small nuclear RNA and 
associate with specific DNA sequences in interphase human cells. Proc. Natl. Acad. 
Sci. 92, 5915–5919. 

Gaillard, P.H., Martini, E.M., Kaufman, P.D., Stillman, B., Moustacchi, E., and Almouzni, G. 
(1996). Chromatin assembly coupled to DNA repair: a new role for chromatin 
assembly factor I. Cell 86, 887–896. 

Gao, G., Bracken, A.P., Burkard, K., Pasini, D., Classon, M., Attwooll, C., Sagara, M., Imai, T., 
Helin, K., and Zhao, J. (2003). NPAT expression is regulated by E2F and is essential for 
cell cycle progression. Mol. Cell. Biol. 23, 2821–2833. 

Gaspar-Maia, A., Alajem, A., Polesso, F., Sridharan, R., Mason, M.J., Heidersbach, A., 
Ramalho-Santos, J., McManus, M.T., Plath, K., Meshorer, E., et al. (2009). Chd1 
regulates open chromatin and pluripotency of embryonic stem cells. Nature 460, 
863–868. 



References 

 

97 
 

Gatti, R.A., Becker-Catania, S., Chun, H.H., Sun, X., Mitui, M., Lai, C.H., Khanlou, N., Babaei, 
M., Cheng, R., Clark, C., et al. (2001). The pathogenesis of ataxia-telangiectasia. 
Learning from a Rosetta Stone. Clin. Rev. Allergy Immunol. 20, 87–108. 

Ghule, P.N., Dominski, Z., Yang, X.-C., Marzluff, W.F., Becker, K.A., Harper, J.W., Lian, J.B., 
Stein, J.L., van Wijnen, A.J., and Stein, G.S. (2008). Staged assembly of histone gene 
expression machinery at subnuclear foci in the abbreviated cell cycle of human 
embryonic stem cells. Proc. Natl. Acad. Sci. U. S. A. 105, 16964–16969. 

Giannattasio, M., Lazzaro, F., Plevani, P., and Muzi-Falconi, M. (2005). The DNA Damage 
Checkpoint Response Requires Histone H2B Ubiquitination by Rad6-Bre1 and H3 
Methylation by Dot1. J. Biol. Chem. 280, 9879–9886. 

Gkikopoulos, T., Schofield, P., Singh, V., Pinskaya, M., Mellor, J., Smolle, M., Workman, J.L., 
Barton, G.J., and Owen-Hughes, T. (2011). A Role for Snf2-Related Nucleosome-
Spacing Enzymes in Genome-Wide Nucleosome Organization. Science 333, 1758–
1760. 

Goldberg, M., Stucki, M., Falck, J., D’Amours, D., Rahman, D., Pappin, D., Bartek, J., and 
Jackson, S.P. (2003). MDC1 is required for the intra-S-phase DNA damage checkpoint. 
Nature 421, 952–956. 

Gomes, N.P., Bjerke, G., Llorente, B., Szostek, S.A., Emerson, B.M., and Espinosa, J.M. (2006). 
Gene-specific requirement for P-TEFb activity and RNA polymerase II 
phosphorylation within the p53 transcriptional program. Genes Dev. 20, 601–612. 

Goodarzi, A.A., Yu, Y., Riballo, E., Douglas, P., Walker, S.A., Ye, R., Härer, C., Marchetti, C., 
Morrice, N., Jeggo, P.A., et al. (2006). DNA-PK autophosphorylation facilitates 
Artemis endonuclease activity. Embo J. 25, 3880–3889. 

Goodarzi, A.A., Jeggo, P., and Lobrich, M. (2010). The influence of heterochromatin on DNA 
double strand break repair: Getting the strong, silent type to relax. Dna Repair 9, 
1273–1282. 

Gottlieb, T.M., and Jackson, S.P. (1993). The DNA-dependent protein kinase: requirement 
for DNA ends and association with Ku antigen. Cell 72, 131–142. 

Grasso, C.S., Wu, Y.-M., Robinson, D.R., Cao, X., Dhanasekaran, S.M., Khan, A.P., Quist, M.J., 
Jing, X., Lonigro, R.J., Brenner, J.C., et al. (2012). The mutational landscape of lethal 
castration-resistant prostate cancer. Nature 487, 239–243. 

Grewal, S.I.S., and Elgin, S.C.R. (2007). Transcription and RNA interference in the formation 
of heterochromatin. Nature 447, 399–406. 

Hacques, M.F., Muller, S., De Murcia, G., Van Regenmortel, M.H., and Marion, C. (1990). Use 
of an immobilized enzyme and specific antibodies to analyse the accessibility and 
role of histone tails in chromatin structure. Biochem. Biophys. Res. Commun. 168, 
637–643. 

Harper, J.W., and Elledge, S.J. (2007). The DNA Damage Response: Ten Years After. Mol. Cell 
28, 739–745. 



References 

 

98 
 

Harvey, A.C., Jackson, S.P., and Downs, J.A. (2005). Saccharomyces cerevisiae histone H2A 
Ser122 facilitates DNA repair. Genetics 170, 543–553. 

Hauk, G., McKnight, J.N., Nodelman, I.M., and Bowman, G.D. (2010). The chromodomains of 
the Chd1 chromatin remodeler regulate DNA access to the ATPase motor. Mol. Cell 
39, 711–723. 

Helleday, T., Petermann, E., Lundin, C., Hodgson, B., and Sharma, R.A. (2008). DNA repair 
pathways as targets for cancer therapy. Nat. Rev. Cancer 8, 193–204. 

Hennig, B.P., Bendrin, K., Zhou, Y., and Fischer, T. (2012). Chd1 chromatin remodelers 
maintain nucleosome organization and repress cryptic transcription. EMBO Rep. 13, 
997–1003. 

Henry, K.W., Wyce, A., Lo, W.-S., Duggan, L.J., Emre, N.C.T., Kao, C.-F., Pillus, L., Shilatifard, 
A., Osley, M.A., and Berger, S.L. (2003). Transcriptional activation via sequential 
histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated 
Ubp8. Genes Dev. 17, 2648–2663. 

Heo, K., Kim, H., Choi, S.H., Choi, J., Kim, K., Gu, J., Lieber, M.R., Yang, A.S., and An, W. 
(2008). FACT-mediated exchange of histone variant H2AX regulated by 
phosphorylation of H2AX and ADP-ribosylation of Spt16. Mol. Cell 30, 86–97. 

Heyer, W.-D., Ehmsen, K.T., and Liu, J. (2010). Regulation of homologous recombination in 
eukaryotes. Annu. Rev. Genet. 44, 113–139. 

Hondele, M., Stuwe, T., Hassler, M., Halbach, F., Bowman, A., Zhang, E.T., Nijmeijer, B., 
Kotthoff, C., Rybin, V., Amlacher, S., et al. (2013). Structural basis of histone H2A-H2B 
recognition by the essential chaperone FACT. Nature advance online publication. 

Huang, Y., and Steitz, J.A. (2001). Splicing factors SRp20 and 9G8 promote the 
nucleocytoplasmic export of mRNA. Mol. Cell 7, 899–905. 

Huang, S., Gulzar, Z.G., Salari, K., Lapointe, J., Brooks, J.D., and Pollack, J.R. (2012). Recurrent 
deletion of CHD1 in prostate cancer with relevance to cell invasiveness. Oncogene 
31, 4164–4170. 

Huen, M.S.Y., Sy, S.M.H., and Chen, J. (2010). BRCA1 and its toolbox for the maintenance of 
genome integrity. Nat. Rev. Mol. Cell Biol. 11, 138–148. 

Hyland, E.M., Cosgrove, M.S., Molina, H., Wang, D., Pandey, A., Cottee, R.J., and Boeke, J.D. 
(2005). Insights into the Role of Histone H3 and Histone H4 Core Modifiable Residues 
in Saccharomyces cerevisiae. Mol. Cell. Biol. 25, 10060–10070. 

Iacovoni, J.S., Caron, P., Lassadi, I., Nicolas, E., Massip, L., Trouche, D., and Legube, G. (2010). 
High-resolution profiling of ?H2AX around DNA double strand breaks in the 
mammalian genome. Embo J. 29, 1446–1457. 

Ikura, T., Ogryzko, V.V., Grigoriev, M., Groisman, R., Wang, J., Horikoshi, M., Scully, R., Qin, 
J., and Nakatani, Y. (2000). Involvement of the TIP60 histone acetylase complex in 
DNA repair and apoptosis. Cell 102, 463–473. 



References 

 

99 
 

Jackson, S.P., and Bartek, J. (2009). The DNA-damage response in human biology and 
disease. Nature 461, 1071–1078. 

Jackson, S.P., and Durocher, D. (2013). Regulation of DNA Damage Responses by Ubiquitin 
and SUMO. Mol. Cell 49, 795–807. 

Jenuwein, T., and Allis, C.D. (2001). Translating the histone code. Science 293, 1074–1080. 

Jha, S., Shibata, E., and Dutta, A. (2008). Human Rvb1/Tip49 is required for the histone 
acetyltransferase activity of Tip60/NuA4 and for the downregulation of 
phosphorylation on H2AX after DNA damage. Mol. Cell. Biol. 28, 2690–2700. 

Jiricny, J. (2006). The multifaceted mismatch-repair system. Nat. Rev. Mol. Cell Biol. 7, 335–
346. 

Jørgensen, S., Elvers, I., Trelle, M.B., Menzel, T., Eskildsen, M., Jensen, O.N., Helleday, T., 
Helin, K., and Sørensen, C.S. (2007). The histone methyltransferase SET8 is required 
for S-phase progression. J. Cell Biol. 179, 1337–1345. 

Jung, C., Motwani, M., Kortmansky, J., Sirotnak, F.M., She, Y., Gonen, M., Haimovitz-
Friedman, A., and Schwartz, G.K. (2003). The cyclin-dependent kinase inhibitor 
flavopiridol potentiates gamma-irradiation-induced apoptosis in colon and gastric 
cancer cells. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 9, 6052–6061. 

Kari, V., Shchebet, A., Neumann, H., and Johnsen, S.A. (2011). The H2B ubiquitin ligase 
RNF40 cooperates with SUPT16H to induce dynamic changes in chromatin structure 
during DNA double-strand break repair. Cell Cycle Georget. Tex 10, 3495–3504. 

Karpiuk, O., Najafova, Z., Kramer, F., Hennion, M., Galonska, C., König, A., Snaidero, N., 
Vogel, T., Shchebet, A., Begus-Nahrmann, Y., et al. (2012). The histone H2B 
monoubiquitination regulatory pathway is required for differentiation of multipotent 
stem cells. Mol. Cell 46, 705–713. 

Kelley, D.E., Stokes, D.G., and Perry, R.P. (1999). CHD1 interacts with SSRP1 and depends on 
both its chromodomain and its ATPase/helicase-like domain for proper association 
with chromatin. Chromosoma 108, 10–25. 

Kim, J., Guermah, M., McGinty, R.K., Lee, J.-S., Tang, Z., Milne, T.A., Shilatifard, A., Muir, 
T.W., and Roeder, R.G. (2009). RAD6-Mediated transcription-coupled H2B 
ubiquitylation directly stimulates H3K4 methylation in human cells. Cell 137, 459–
471. 

Kireeva, M.L., Walter, W., Tchernajenko, V., Bondarenko, V., Kashlev, M., and Studitsky, 
V.M. (2002). Nucleosome remodeling induced by RNA polymerase II: loss of the 
H2A/H2B dimer during transcription. Mol. Cell 9, 541–552. 

Kirsh, A.L., Groudine, M., and Challoner, P.B. (1989). Polyadenylation and U7 snRNP-
mediated cleavage: alternative modes of RNA 3’ processing in two avian histone H1 
genes. Genes Dev. 3, 2172–2179. 



References 

 

100 
 

Kolev, N.G., and Steitz, J.A. (2005). Symplekin and multiple other polyadenylation factors 
participate in 3’-end maturation of histone mRNAs. Genes Dev. 19, 2583–2592. 

Kolev, N.G., Yario, T.A., Benson, E., and Steitz, J.A. (2008). Conserved motifs in both CPSF73 
and CPSF100 are required to assemble the active endonuclease for histone mRNA 3′-
end maturation. EMBO Rep. 9, 1013–1018. 

Kondo, T., Wakayama, T., Naiki, T., Matsumoto, K., and Sugimoto, K. (2001). Recruitment of 
Mec1 and Ddc1 checkpoint proteins to double-strand breaks through distinct 
mechanisms. Science 294, 867–870. 

Kornberg, R.D. (1974). Chromatin Structure: A Repeating Unit of Histones and DNA. Science 
184, 868–871. 

Kornberg, R.D., and Lorch, Y. (1999). Twenty-Five Years of the Nucleosome, Fundamental 
Particle of the Eukaryote Chromosome. Cell 98, 285–294. 

Kouzarides, T. (2007). Chromatin modifications and their function. Cell 128, 693–705. 

Kozlov, S.V., Graham, M.E., Jakob, B., Tobias, F., Kijas, A.W., Tanuji, M., Chen, P., Robinson, 
P.J., Taucher-Scholz, G., Suzuki, K., et al. (2011). Autophosphorylation and ATM 
Activation ADDITIONAL SITES ADD TO THE COMPLEXITY. J. Biol. Chem. 286, 9107–
9119. 

Lans, H., Marteijn, J.A., and Vermeulen, W. (2012). ATP-dependent chromatin remodeling in 
the DNA-damage response. Epigenetics Chromatin 5, 4. 

Laribee, R.N., Fuchs, S.M., and Strahl, B.D. (2007). H2B ubiquitylation in transcriptional 
control: a FACT-finding mission. Genes Dev. 21, 737–743. 

Larsen, D.H., Poinsignon, C., Gudjonsson, T., Dinant, C., Payne, M.R., Hari, F.J., Danielsen, 
J.M.R., Menard, P., Sand, J.C., Stucki, M., et al. (2010). The chromatin-remodeling 
factor CHD4 coordinates signaling and repair after DNA damage. J. Cell Biol. 190, 
731–740. 

Lavin, M.F. (2008). Ataxia-telangiectasia: from a rare disorder to a paradigm for cell 
signalling and cancer. Nat. Rev. Mol. Cell Biol. 9, 759–769. 

Leber, R., Wise, T.W., Mizuta, R., and Meek, K. (1998). The XRCC4 gene product is a target 
for and interacts with the DNA-dependent protein kinase. J. Biol. Chem. 273, 1794–
1801. 

Lee, H.-S., Park, J.-H., Kim, S.-J., Kwon, S.-J., and Kwon, J. (2010). A cooperative activation 
loop among SWI/SNF, ?-H2AX and H3 acetylation for DNA double-strand break 
repair. Embo J. 29, 1434–1445. 

Lee, J.-H., Mand, M.R., Deshpande, R., Kinoshita, E., Yang, S.-H., Wyman, C., and Paull, T.T. 
(2013). ATM kinase activity is regulated by ATP-driven conformational changes in the 
MRN complex. J. Biol. Chem. 



References 

 

101 
 

Lee, J.-S., Garrett, A.S., Yen, K., Takahashi, Y.-H., Hu, D., Jackson, J., Seidel, C., Pugh, B.F., and 
Shilatifard, A. (2012). Codependency of H2B monoubiquitination and nucleosome 
reassembly on Chd1. Genes Dev. 26, 914–919. 

Lemaître, C., Fischer, B., Kalousi, A., Hoffbeck, A.-S., Guirouilh-Barbat, J., Shahar, O.D., 
Genet, D., Goldberg, M., Betrand, P., Lopez, B., et al. (2012). The nucleoporin 153, a 
novel factor in double-strand break repair and DNA damage response. Oncogene 31, 
4803–4809. 

Li, Q., Zhou, H., Wurtele, H., Davies, B., Horazdovsky, B., Verreault, A., and Zhang, Z. (2008). 
Acetylation of histone H3 lysine 56 regulates replication-coupled nucleosome 
assembly. Cell 134, 244–255. 

Lieber, M.R. (2010). The mechanism of double-strand DNA break repair by the 
nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 79, 181–211. 

Lim, D.S., Kim, S.T., Xu, B., Maser, R.S., Lin, J., Petrini, J.H., and Kastan, M.B. (2000). ATM 
phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature 404, 613–617. 

Limbo, O., Chahwan, C., Yamada, Y., de Bruin, R.A.M., Wittenberg, C., and Russell, P. (2007). 
Ctp1 is a cell-cycle-regulated protein that functions with Mre11 complex to control 
double-strand break repair by homologous recombination. Mol. Cell 28, 134–146. 

Lindahl, T., and Barnes, D.E. (2000). Repair of Endogenous DNA Damage. Cold Spring Harb. 
Symp. Quant. Biol. 65, 127–134. 

Liu, J.-L., Murphy, C., Buszczak, M., Clatterbuck, S., Goodman, R., and Gall, J.G. (2006). The 
Drosophila melanogaster Cajal body. J. Cell Biol. 172, 875–884. 

Longhese, M.P., Foiani, M., Muzi-Falconi, M., Lucchini, G., and Plevani, P. (1998). DNA 
damage checkpoint in budding yeast. Embo J. 17, 5525–5528. 

Lord, C.J., and Ashworth, A. (2012). The DNA damage response and cancer therapy. Nature 
481, 287–294. 

Luger, K., Mäder, A.W., Richmond, R.K., Sargent, D.F., and Richmond, T.J. (1997). Crystal 
structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251–260. 

Luk, E., Vu, N.-D., Patteson, K., Mizuguchi, G., Wu, W.-H., Ranjan, A., Backus, J., Sen, S., 
Lewis, M., Bai, Y., et al. (2007). Chz1, a nuclear chaperone for histone H2AZ. Mol. Cell 
25, 357–368. 

Lukas, J., Lukas, C., and Bartek, J. (2011). More than just a focus: The chromatin response to 
DNA damage and its role in genome integrity maintenance. Nat. Cell Biol. 13, 1161–
1169. 

Lusser, A., Urwin, D.L., and Kadonaga, J.T. (2005). Distinct activities of CHD1 and ACF in ATP-
dependent chromatin assembly. Nat. Struct. Mol. Biol. 12, 160–166. 

Ma, T., Van Tine, B.A., Wei, Y., Garrett, M.D., Nelson, D., Adams, P.D., Wang, J., Qin, J., 
Chow, L.T., and Harper, J.W. (2000). Cell cycle-regulated phosphorylation of 



References 

 

102 
 

p220(NPAT) by cyclin E/Cdk2 in Cajal bodies promotes histone gene transcription. 
Genes Dev. 14, 2298–2313. 

Ma, Y., Lu, H., Schwarz, K., and Lieber, M.R. (2005). Repair of double-strand DNA breaks by 
the human nonhomologous DNA end joining pathway: the iterative processing 
model. Cell Cycle Georget. Tex 4, 1193–1200. 

Maas, N.L., Miller, K.M., DeFazio, L.G., and Toczyski, D.P. (2006). Cell cycle and checkpoint 
regulation of histone H3 K56 acetylation by Hst3 and Hst4. Mol. Cell 23, 109–119. 

Mahaney, B.L., Meek, K., and Lees-Miller, S.P. (2009). Repair of ionizing radiation-induced 
DNA double-strand breaks by non-homologous end-joining. Biochem. J. 417, 639–
650. 

Maloisel, L., Fabre, F., and Gangloff, S. (2008). DNA Polymerase ? Is Preferentially Recruited 
during Homologous Recombination To Promote Heteroduplex DNA Extension. Mol. 
Cell. Biol. 28, 1373–1382. 

Mangone, M., Manoharan, A.P., Thierry-Mieg, D., Thierry-Mieg, J., Han, T., Mackowiak, S.D., 
Mis, E., Zegar, C., Gutwein, M.R., Khivansara, V., et al. (2010). The landscape of C. 
elegans 3’UTRs. Science 329, 432–435. 

Mannironi, C., Bonner, W.M., and Hatch, C.L. (1989). H2A.X. a histone isoprotein with a 
conserved C-terminal sequence, is encoded by a novel mRNA with both DNA 
replication type and polyA 3’ processing signals. Nucleic Acids Res. 17, 9113–9126. 

Mao, Z., Bozzella, M., Seluanov, A., and Gorbunova, V. (2008). DNA repair by 
nonhomologous end joining and homologous recombination during cell cycle in 
human cells. Cell Cycle Georget. Tex 7, 2902–2906. 

Marfella, C.G.A., and Imbalzano, A.N. (2007). The Chd family of chromatin remodelers. 
Mutat. Res. Mol. Mech. Mutagen. 618, 30–40. 

Martinez, I., Wang, J., Hobson, K.F., Ferris, R.L., and Khan, S.A. (2007). Identification of 
differentially expressed genes in HPV-positive and HPV-negative oropharyngeal 
squamous cell carcinomas. Eur. J. Cancer Oxf. Engl. 1990 43, 415–432. 

Marzluff, W.F. (1992). Histone 3’ ends: essential and regulatory functions. Gene Expr. 2, 93–
97. 

Marzluff, W.F., Gongidi, P., Woods, K.R., Jin, J., and Maltais, L.J. (2002). The human and 
mouse replication-dependent histone genes. Genomics 80, 487–498. 

Marzluff, W.F., Wagner, E.J., and Duronio, R.J. (2008). Metabolism and regulation of 
canonical histone mRNAs: life without a poly(A) tail. Nat. Rev. Genet. 9, 843–854. 

Mašek, T., Valášek, L., and Pospíšek, M. (2011). Polysome analysis and RNA purification from 
sucrose gradients. Methods Mol. Biol. Clifton Nj 703, 293–309. 

Massip, L., Caron, P., Iacovoni, J.S., Trouche, D., and Legube, G. (2010). Deciphering the 
chromatin landscape induced around DNA double strand breaks. Cell Cycle Georget. 
Tex 9, 2963–2972. 



References 

 

103 
 

Matera, A.G. (2006). Drosophila Cajal bodies: accessories not included. J. Cell Biol. 172, 791–
793. 

Matsuoka, S., Ballif, B.A., Smogorzewska, A., McDonald, E.R., Hurov, K.E., Luo, J., Bakalarski, 
C.E., Zhao, Z., Solimini, N., Lerenthal, Y., et al. (2007). ATM and ATR Substrate 
Analysis Reveals Extensive Protein Networks Responsive to DNA Damage. Science 
316, 1160–1166. 

Mazumdar, A., Wang, R.A., Mishra, S.K., Adam, L., Bagheri-Yarmand, R., Mandal, M., 
Vadlamudi, R.K., and Kumar, R. (2001). Transcriptional repression of oestrogen 
receptor by metastasis-associated protein 1 corepressor. Nat. Cell Biol. 3, 30–37. 

McCord, R.A., Michishita, E., Hong, T., Berber, E., Boxer, L.D., Kusumoto, R., Guan, S., Shi, X., 
Gozani, O., Burlingame, A.L., et al. (2009). SIRT6 stabilizes DNA-dependent protein 
kinase at chromatin for DNA double-strand break repair. Aging (Albany NY) 1, 109–
121. 

McDaniel, I.E., Lee, J.M., Berger, M.S., Hanagami, C.K., and Armstrong, J.A. (2008). 
Investigations of CHD1 Function in Transcription and Development of Drosophila 
melanogaster. Genetics 178, 583–587. 

McKinnon, P.J. (2012). ATM and the molecular pathogenesis of ataxia telangiectasia. Annu. 
Rev. Pathol. 7, 303–321. 

Meek, K., Dang, V., and Lees-Miller, S.P. (2008). DNA-PK: the means to justify the ends? Adv. 
Immunol. 99, 33–58. 

Mello, M.L.S. (1983). Cytochemical properties of euchromatin and heterochromatin. 
Histochem. J. 15, 739–751. 

Mello, J.A., Silljé, H.H.W., Roche, D.M.J., Kirschner, D.B., Nigg, E.A., and Almouzni, G. (2002). 
Human Asf1 and CAF-1 interact and synergize in a repair-coupled nucleosome 
assembly pathway. EMBO Rep. 3, 329–334. 

Minsky, N., Shema, E., Field, Y., Schuster, M., Segal, E., and Oren, M. (2008). 
Monoubiquitinated H2B is associated with the transcribed region of highly expressed 
genes in human cells. Nat. Cell Biol. 10, 483–488. 

Misteli, T., and Soutoglou, E. (2009). The emerging role of nuclear architecture in DNA repair 
and genome maintenance. Nat. Rev. Mol. Cell Biol. 10, 243–254. 

Moldovan, G.-L., and D’Andrea, A.D. (2009). How the fanconi anemia pathway guards the 
genome. Annu. Rev. Genet. 43, 223–249. 

Morrison, A.J., Highland, J., Krogan, N.J., Arbel-Eden, A., Greenblatt, J.F., Haber, J.E., and 
Shen, X. (2004). INO80 and gamma-H2AX interaction links ATP-dependent chromatin 
remodeling to DNA damage repair. Cell 119, 767–775. 

Mowry, K.L., and Steitz, J.A. (1987). Identification of the human U7 snRNP as one of several 
factors involved in the 3’ end maturation of histone premessenger RNA’s. Science 
238, 1682–1687. 



References 

 

104 
 

Moyal, L., Lerenthal, Y., Gana-Weisz, M., Mass, G., So, S., Wang, S.-Y., Eppink, B., Chung, 
Y.M., Shalev, G., Shema, E., et al. (2011). Requirement of ATM-dependent 
monoubiquitylation of histone H2B for timely repair of DNA double-strand breaks. 
Mol. Cell 41, 529–542. 

Mullen, T.E., and Marzluff, W.F. (2008). Degradation of histone mRNA requires 
oligouridylation followed by decapping and simultaneous degradation of the mRNA 
both 5’ to 3’ and 3’ to 5’. Genes Dev. 22, 50–65. 

Mund, A., Schubert, T., Staege, H., Kinkley, S., Reumann, K., Kriegs, M., Fritsch, L., Battisti, V., 
Ait-Si-Ali, S., Hoffbeck, A.-S., et al. (2012). SPOC1 modulates DNA repair by regulating 
key determinants of chromatin compaction and DNA damage response. Nucleic 
Acids Res. 40, 11363–11379. 

Murr, R., Vaissière, T., Sawan, C., Shukla, V., and Herceg, Z. (2007). Orchestration of 
chromatin-based processes: mind the TRRAP. Oncogene 26, 5358–5372. 

Nair, D.M., Ge, Z., Mersfelder, E.L., and Parthun, M.R. (2011). Genetic interactions between 
POB3 and the acetylation of newly synthesized histones. Curr. Genet. 57, 271–286. 

Nakamura, A.J., Rao, V.A., Pommier, Y., and Bonner, W.M. (2010). The complexity of 
phosphorylated H2AX foci formation and DNA repair assembly at DNA double-strand 
breaks. Cell Cycle Georget. Tex 9, 389–397. 

Nakamura, K., Kato, A., Kobayashi, J., Yanagihara, H., Sakamoto, S., Oliveira, D.V.N.P., 
Shimada, M., Tauchi, H., Suzuki, H., Tashiro, S., et al. (2011). Regulation of 
homologous recombination by RNF20-dependent H2B ubiquitination. Mol. Cell 41, 
515–528. 

Narita, T., Yung, T.M.C., Yamamoto, J., Tsuboi, Y., Tanabe, H., Tanaka, K., Yamaguchi, Y., and 
Handa, H. (2007). NELF interacts with CBC and participates in 3’ end processing of 
replication-dependent histone mRNAs. Mol. Cell 26, 349–365. 

Narlikar, G.J., Fan, H.-Y., and Kingston, R.E. (2002). Cooperation between Complexes that 
Regulate Chromatin Structure and Transcription. Cell 108, 475–487. 

Neumann, H., Hancock, S.M., Buning, R., Routh, A., Chapman, L., Somers, J., Owen-Hughes, 
T., van Noort, J., Rhodes, D., and Chin, J.W. (2009). A method for genetically 
installing site-specific acetylation in recombinant histones defines the effects of H3 
K56 acetylation. Mol. Cell 36, 153–163. 

Ng, H.H., Xu, R.-M., Zhang, Y., and Struhl, K. (2002). Ubiquitination of Histone H2B by Rad6 Is 
Required for Efficient Dot1-mediated Methylation of Histone H3 Lysine 79. J. Biol. 
Chem. 277, 34655–34657. 

Nicolson, G.L., Nawa, A., Toh, Y., Taniguchi, S., Nishimori, K., and Moustafa, A. (2003). Tumor 
metastasis-associated human MTA1 gene and its MTA1 protein product: role in 
epithelial cancer cell invasion, proliferation and nuclear regulation. Clin. Exp. 
Metastasis 20, 19–24. 

Oberdoerffer, P. (2010). An age of fewer histones. Nat. Cell Biol. 12, 1029–1031. 



References 

 

105 
 

Oda, H., Okamoto, I., Murphy, N., Chu, J., Price, S.M., Shen, M.M., Torres-Padilla, M.E., 
Heard, E., and Reinberg, D. (2009). Monomethylation of Histone H4-Lysine 20 Is 
Involved in Chromosome Structure and Stability and Is Essential for Mouse 
Development. Mol. Cell. Biol. 29, 2278–2295. 

Orphanides, G., LeRoy, G., Chang, C.H., Luse, D.S., and Reinberg, D. (1998). FACT, a factor 
that facilitates transcript elongation through nucleosomes. Cell 92, 105–116. 

Osley, M.A. (1991). The regulation of histone synthesis in the cell cycle. Annu. Rev. Biochem. 
60, 827–861. 

Ouchi, M., and Ouchi, T. (2010). Regulation of ATM/DNA-PKcs Phosphorylation by BRCA1-
Associated BAAT1. Genes Cancer 1, 1211–1214. 

Pandey, N.B., Chodchoy, N., Liu, T.J., and Marzluff, W.F. (1990). Introns in histone genes 
alter the distribution of 3’ ends. Nucleic Acids Res. 18, 3161–3170. 

Park, J.-H., Park, E.-J., Lee, H.-S., Kim, S.J., Hur, S.-K., Imbalzano, A.N., and Kwon, J. (2006). 
Mammalian SWI/SNF complexes facilitate DNA double-strand break repair by 
promoting gamma-H2AX induction. Embo J. 25, 3986–3997. 

Parrilla-Castellar, E.R., Arlander, S.J.H., and Karnitz, L. (2004). Dial 9-1-1 for DNA damage: the 
Rad9-Hus1-Rad1 (9-1-1) clamp complex. Dna Repair 3, 1009–1014. 

Pavri, R., Zhu, B., Li, G., Trojer, P., Mandal, S., Shilatifard, A., and Reinberg, D. (2006). Histone 
H2B monoubiquitination functions cooperatively with FACT to regulate elongation by 
RNA polymerase II. Cell 125, 703–717. 

Pervan, M., Pajonk, F., Sun, J.R., Withers, H.R., and McBride, W.H. (2001). Molecular 
pathways that modify tumor radiation response. Am. J. Clin. Oncol. 24, 481–485. 

Pirngruber, J., and Johnsen, S.A. (2010). Induced G1 cell-cycle arrest controls replication-
dependent histone mRNA 3’ end processing through p21, NPAT and CDK9. Oncogene 
29, 2853–2863. 

Pirngruber, J., Shchebet, A., Schreiber, L., Shema, E., Minsky, N., Chapman, R.D., Eick, D., 
Aylon, Y., Oren, M., and Johnsen, S.A. (2009a). CDK9 directs H2B monoubiquitination 
and controls replication-dependent histone mRNA 3’-end processing. EMBO Rep. 10, 
894–900. 

Pirngruber, J., Shchebet, A., and Johnsen, S.A. (2009b). Insights into the function of the 
human P-TEFb component CDK9 in the regulation of chromatin modifications and co-
transcriptional mRNA processing. Cell Cycle Georget. Tex 8, 3636–3642. 

Pointner, J., Persson, J., Prasad, P., Norman-Axelsson, U., Strålfors, A., Khorosjutina, O., 
Krietenstein, N., Svensson, J.P., Ekwall, K., and Korber, P. (2012). CHD1 remodelers 
regulate nucleosome spacing in vitro and align nucleosomal arrays over gene coding 
regions in S. pombe. Embo J. 31, 4388–4403. 



References 

 

106 
 

Pray-Grant, M.G., Daniel, J.A., Schieltz, D., Yates, J.R., 3rd, and Grant, P.A. (2005). Chd1 
chromodomain links histone H3 methylation with SAGA- and SLIK-dependent 
acetylation. Nature 433, 434–438. 

Prenzel, T., Begus-Nahrmann, Y., Kramer, F., Hennion, M., Hsu, C., Gorsler, T., Hintermair, C., 
Eick, D., Kremmer, E., Simons, M., et al. (2011). Estrogen-dependent gene 
transcription in human breast cancer cells relies upon proteasome-dependent 
monoubiquitination of histone H2B. Cancer Res. 71, 5739–5753. 

Price, B.D., and D’Andrea, A.D. (2013). Chromatin remodeling at DNA double-strand breaks. 
Cell 152, 1344–1354. 

Ransom, M., Dennehey, B.K., and Tyler, J.K. (2010). Chaperoning Histones during DNA 
Replication and Repair. Cell 140, 183–195. 

Redon, C.E., Nakamura, A.J., Martin, O.A., Parekh, P.R., Weyemi, U.S., and Bonner, W.M. 
(2011). Recent developments in the use of γ-H2AX as a quantitative DNA double-
strand break biomarker. Aging (Albany NY) 3, 168–174. 

Rogakou, E.P., Pilch, D.R., Orr, A.H., Ivanova, V.S., and Bonner, W.M. (1998a). DNA double-
stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 
273, 5858–5868. 

Rogakou, E.P., Pilch, D.R., Orr, A.H., Ivanova, V.S., and Bonner, W.M. (1998b). DNA double-
stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 
273, 5858–5868. 

Rossetto, D., Truman, A.W., Kron, S.J., and Côté, J. (2010). Epigenetic modifications in 
double-strand break DNA damage signaling and repair. Clin. Cancer Res. Off. J. Am. 
Assoc. Cancer Res. 16, 4543–4552. 

Russo, S.M., Tepper, J.E., Baldwin, A.S., Jr, Liu, R., Adams, J., Elliott, P., and Cusack, J.C., Jr 
(2001). Enhancement of radiosensitivity by proteasome inhibition: implications for a 
role of NF-kappaB. Int. J. Radiat. Oncol. Biol. Phys. 50, 183–193. 

Sancar, A., Lindsey-Boltz, L.A., Unsal-Kaçmaz, K., and Linn, S. (2004). Molecular mechanisms 
of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 
73, 39–85. 

Sand-Dejmek, J., Adelmant, G., Sobhian, B., Calkins, A.S., Marto, J., Iglehart, D.J., and Lazaro, 
J.-B. (2011). Concordant and opposite roles of DNA-PK and the “facilitator of 
chromatin transcription” (FACT) in DNA repair, apoptosis and necrosis after cisplatin. 
Mol. Cancer 10, 74. 

Sanders, S.L., Portoso, M., Mata, J., Bähler, J., Allshire, R.C., and Kouzarides, T. (2004). 
Methylation of Histone H4 Lysine 20 Controls Recruitment of Crb2 to Sites of DNA 
Damage. Cell 119, 603–614. 

Sartori, A.A., Lukas, C., Coates, J., Mistrik, M., Fu, S., Bartek, J., Baer, R., Lukas, J., and 
Jackson, S.P. (2007). Human CtIP promotes DNA end resection. Nature 450, 509–514. 



References 

 

107 
 

Savitsky, K., Bar-Shira, A., Gilad, S., Rotman, G., Ziv, Y., Vanagaite, L., Tagle, D.A., Smith, S., 
Uziel, T., Sfez, S., et al. (1995). A single ataxia telangiectasia gene with a product 
similar to PI-3 kinase. Science 268, 1749–1753. 

Schmidt, D.R., and Schreiber, S.L. (1999). Molecular Association between ATR and Two 
Components of the Nucleosome Remodeling and Deacetylating Complex, HDAC2 and 
CHD4†. Biochemistry (Mosc.) 38, 14711–14717. 

Schreiber, V., Dantzer, F., Ame, J.-C., and de Murcia, G. (2006). Poly(ADP-ribose): novel 
functions for an old molecule. Nat. Rev. Mol. Cell Biol. 7, 517–528. 

Schultz, L.B., Chehab, N.H., Malikzay, A., and Halazonetis, T.D. (2000). p53 binding protein 1 
(53BP1) is an early participant in the cellular response to DNA double-strand breaks. 
J. Cell Biol. 151, 1381–1390. 

Scrima, A., Fischer, E.S., Lingaraju, G.M., Böhm, K., Cavadini, S., and Thomä, N.H. (2011). 
Detecting UV-lesions in the genome: The modular CRL4 ubiquitin ligase does it best! 
Febs Lett. 585, 2818–2825. 

Shema, E., Tirosh, I., Aylon, Y., Huang, J., Ye, C., Moskovits, N., Raver-Shapira, N., Minsky, N., 
Pirngruber, J., Tarcic, G., et al. (2008). The histone H2B-specific ubiquitin ligase 
RNF20/hBRE1 acts as a putative tumor suppressor through selective regulation of 
gene expression. Genes Dev. 22, 2664–2676. 

Shepard, P.J., Choi, E.-A., Lu, J., Flanagan, L.A., Hertel, K.J., and Shi, Y. (2011). Complex and 
dynamic landscape of RNA polyadenylation revealed by PAS-Seq. Rna New York N 17, 
761–772. 

Shiloh, Y. (2003). ATM and related protein kinases: safeguarding genome integrity. Nat. Rev. 
Cancer 3, 155–168. 

Shogren-Knaak, M., Ishii, H., Sun, J.-M., Pazin, M.J., Davie, J.R., and Peterson, C.L. (2006). 
Histone H4-K16 acetylation controls chromatin structure and protein interactions. 
Science 311, 844–847. 

Simic, R., Lindstrom, D.L., Tran, H.G., Roinick, K.L., Costa, P.J., Johnson, A.D., Hartzog, G.A., 
and Arndt, K.M. (2003). Chromatin remodeling protein Chd1 interacts with 
transcription elongation factors and localizes to transcribed genes. Embo J. 22, 
1846–1856. 

Simon, J.M., Giresi, P.G., Davis, I.J., and Lieb, J.D. (2012). Using formaldehyde-assisted 
isolation of regulatory elements (FAIRE) to isolate active regulatory DNA. Nat. 
Protoc. 7, 256–267. 

Simonsen, J.L., Rosada, C., Serakinci, N., Justesen, J., Stenderup, K., Rattan, S.I.S., Jensen, 
T.G., and Kassem, M. (2002). Telomerase expression extends the proliferative life-
span and maintains the osteogenic potential of human bone marrow stromal cells. 
Nat. Biotechnol. 20, 592–596. 

Sims, R.J., 3rd, Chen, C.-F., Santos-Rosa, H., Kouzarides, T., Patel, S.S., and Reinberg, D. 
(2005). Human but not yeast CHD1 binds directly and selectively to histone H3 



References 

 

108 
 

methylated at lysine 4 via its tandem chromodomains. J. Biol. Chem. 280, 41789–
41792. 

Smerdon, M.J. (1991). DNA repair and the role of chromatin structure. Curr. Opin. Cell Biol. 
3, 422–428. 

Smolle, M., Venkatesh, S., Gogol, M.M., Li, H., Zhang, Y., Florens, L., Washburn, M.P., and 
Workman, J.L. (2012). Chromatin remodelers Isw1 and Chd1 maintain chromatin 
structure during transcription by preventing histone exchange. Nat. Struct. Mol. Biol. 
19, 884–892. 

Srivastava, M., Nambiar, M., Sharma, S., Karki, S.S., Goldsmith, G., Hegde, M., Kumar, S., 
Pandey, M., Singh, R.K., Ray, P., et al. (2012). An inhibitor of nonhomologous end-
joining abrogates double-strand break repair and impedes cancer progression. Cell 
151, 1474–1487. 

Stiff, T., O’Driscoll, M., Rief, N., Iwabuchi, K., Löbrich, M., and Jeggo, P.A. (2004). ATM and 
DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing 
radiation. Cancer Res. 64, 2390–2396. 

Stockdale, C., Flaus, A., Ferreira, H., and Owen-Hughes, T. (2006). Analysis of nucleosome 
repositioning by yeast ISWI and Chd1 chromatin remodeling complexes. J. Biol. 
Chem. 281, 16279–16288. 

Stokes, D.G., and Perry, R.P. (1995). DNA-binding and chromatin localization properties of 
CHD1. Mol. Cell. Biol. 15, 2745–2753. 

Stracker, T.H., and Petrini, J.H.J. (2011). The MRE11 complex: starting from the ends. Nat. 
Rev. Mol. Cell Biol. 12, 90–103. 

Strahl, B.D., and Allis, C.D. (2000). The language of covalent histone modifications. Nature 
403, 41–45. 

Stuwe, T., Hothorn, M., Lejeune, E., Rybin, V., Bortfeld, M., Scheffzek, K., and Ladurner, A.G. 
(2008). The FACT Spt16 “peptidase” domain is a histone H3-H4 binding module. Proc. 
Natl. Acad. Sci. U. S. A. 105, 8884–8889. 

Sugiyama, T., Zaitseva, E.M., and Kowalczykowski, S.C. (1997). A single-stranded DNA-
binding protein is needed for efficient presynaptic complex formation by the 
Saccharomyces cerevisiae Rad51 protein. J. Biol. Chem. 272, 7940–7945. 

Sullivan, K.D., Mullen, T.E., Marzluff, W.F., and Wagner, E.J. (2009). Knockdown of SLBP 
results in nuclear retention of histone mRNA. Rna New York N 15, 459–472. 

Sun, Z.-W., and Allis, C.D. (2002). Ubiquitination of histone H2B regulates H3 methylation 
and gene silencing in yeast. Nature 418, 104–108. 

Sun, Y., Jiang, X., Chen, S., Fernandes, N., and Price, B.D. (2005). A role for the Tip60 histone 
acetyltransferase in the acetylation and activation of ATM. Proc. Natl. Acad. Sci. U. S. 
A. 102, 13182–13187. 



References 

 

109 
 

Sun, Y., Jiang, X., and Price, B.D. (2010). Tip60: connecting chromatin to DNA damage 
signaling. Cell Cycle Georget. Tex 9, 930–936. 

Sung, P., and Klein, H. (2006). Mechanism of homologous recombination: mediators and 
helicases take on regulatory functions. Nat. Rev. Mol. Cell Biol. 7, 739–750. 

Symington, L.S. (2002). Role of RAD52 Epistasis Group Genes in Homologous Recombination 
and Double-Strand Break Repair. Microbiol. Mol. Biol. Rev. 66, 630–670. 

Talbert, P.B., and Henikoff, S. (2010). Histone variants--ancient wrap artists of the 
epigenome. Nat. Rev. Mol. Cell Biol. 11, 264–275. 

Tan, D., Marzluff, W.F., Dominski, Z., and Tong, L. (2013). Structure of histone mRNA stem-
loop, human stem-loop binding protein, and 3’hExo ternary complex. Science 339, 
318–321. 

Taylor, A.M.R., and Byrd, P.J. (2005). Molecular pathology of ataxia telangiectasia. J. Clin. 
Pathol. 58, 1009–1015. 

Tharun, S., He, W., Mayes, A.E., Lennertz, P., Beggs, J.D., and Parker, R. (2000). Yeast Sm-like 
proteins function in mRNA decapping and decay. Nature 404, 515–518. 

Thomas, J.O. (1999). Histone H1: location and role. Curr. Opin. Cell Biol. 11, 312–317. 

Tibbetts, R.S., Brumbaugh, K.M., Williams, J.M., Sarkaria, J.N., Cliby, W.A., Shieh, S.-Y., Taya, 
Y., Prives, C., and Abraham, R.T. (1999). A role for ATR in the DNA damage-induced 
phosphorylation of p53. Genes Dev. 13, 152–157. 

Tjeertes, J.V., Miller, K.M., and Jackson, S.P. (2009). Screen for DNA-damage-responsive 
histone modifications identifies H3K9Ac and H3K56Ac in human cells. Embo J. 28, 
1878–1889. 

Toh, Y., Pencil, S.D., and Nicolson, G.L. (1994). A novel candidate metastasis-associated 
gene, mta1, differentially expressed in highly metastatic mammary adenocarcinoma 
cell lines. cDNA cloning, expression, and protein analyses. J. Biol. Chem. 269, 22958–
22963. 

Tsai, W.-B., Chung, Y.M., Takahashi, Y., Xu, Z., and Hu, M.C.-T. (2008). Functional interaction 
between FOXO3a and ATM regulates DNA damage response. Nat. Cell Biol. 10, 460–
467. 

Tsukuda, T., Fleming, A.B., Nickoloff, J.A., and Osley, M.A. (2005). Chromatin remodelling at 
a DNA double-strand break site in Saccharomyces cerevisiae. Nature 438, 379–383. 

Ulrich, H.D. (2011). Timing and spacing of ubiquitin-dependent DNA damage bypass. Febs 
Lett. 585, 2861–2867. 

Uziel, T., Lerenthal, Y., Moyal, L., Andegeko, Y., Mittelman, L., and Shiloh, Y. (2003). 
Requirement of the MRN complex for ATM activation by DNA damage. Embo J. 22, 
5612–5621. 



References 

 

110 
 

Vassilev, L.T., Vu, B.T., Graves, B., Carvajal, D., Podlaski, F., Filipovic, Z., Kong, N., Kammlott, 
U., Lukacs, C., Klein, C., et al. (2004). In vivo activation of the p53 pathway by small-
molecule antagonists of MDM2. Science 303, 844–848. 

Vempati, R.K., Jayani, R.S., Notani, D., Sengupta, A., Galande, S., and Haldar, D. (2010). p300-
mediated acetylation of histone H3 lysine 56 functions in DNA damage response in 
mammals. J. Biol. Chem. 285, 28553–28564. 

Walfridsson, J., Khorosjutina, O., Matikainen, P., Gustafsson, C.M., and Ekwall, K. (2007). A 
genome-wide role for CHD remodelling factors and Nap1 in nucleosome 
disassembly. Embo J. 26, 2868–2879. 

Walker, A.I., Hunt, T., Jackson, R.J., and Anderson, C.W. (1985). Double-stranded DNA 
induces the phosphorylation of several proteins including the 90 000 mol. wt. heat-
shock protein in animal cell extracts. Embo J. 4, 139–145. 

Wang, B., Matsuoka, S., Carpenter, P.B., and Elledge, S.J. (2002). 53BP1, a mediator of the 
DNA damage checkpoint. Science 298, 1435–1438. 

Wang, M., Wu, W., Wu, W., Rosidi, B., Zhang, L., Wang, H., and Iliakis, G. (2006). PARP-1 and 
Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. 
Nucleic Acids Res. 34, 6170–6182. 

Wei, Y., Jin, J., and Harper, J.W. (2003). The cyclin E/Cdk2 substrate and Cajal body 
component p220(NPAT) activates histone transcription through a novel LisH-like 
domain. Mol. Cell. Biol. 23, 3669–3680. 

Wells, D., and Kedes, L. (1985). Structure of a human histone cDNA: evidence that basally 
expressed histone genes have intervening sequences and encode polyadenylylated 
mRNAs. Proc. Natl. Acad. Sci. U. S. A. 82, 2834–2838. 

West, S.C. (2003). Molecular views of recombination proteins and their control. Nat. Rev. 
Mol. Cell Biol. 4, 435–445. 

Williams, R.S., Williams, J.S., and Tainer, J.A. (2007). Mre11-Rad50-Nbs1 is a keystone 
complex connecting DNA repair machinery, double-strand break signaling, and the 
chromatin template. Biochem. Cell Biol. Biochim. Biol. Cell. 85, 509–520. 

Woodage, T., Basrai, M.A., Baxevanis, A.D., Hieter, P., and Collins, F.S. (1997). 
Characterization of the CHD family of proteins. Proc. Natl. Acad. Sci. U. S. A. 94, 
11472–11477. 

Wu, C.H., and Gall, J.G. (1993). U7 small nuclear RNA in C snurposomes of the Xenopus 
germinal vesicle. Proc. Natl. Acad. Sci. 90, 6257–6259. 

Wu, R.S., and Bonner, W.M. (1981a). Separation of basal histone synthesis from S-phase 
histone synthesis in dividing cells. Cell 27, 321–330. 

Wu, R.S., and Bonner, W.M. (1981b). Separation of basal histone synthesis from S-phase 
histone synthesis in dividing cells. Cell 27, 321–330. 



References 

 

111 
 

Wu, J., Chen, Y., Lu, L.-Y., Wu, Y., Paulsen, M.T., Ljungman, M., Ferguson, D.O., and Yu, X. 
(2011). Chfr and RNF8 synergistically regulate ATM activation. Nat. Struct. Mol. Biol. 
18, 761–768. 

Xiao, T., Kao, C.-F., Krogan, N.J., Sun, Z.-W., Greenblatt, J.F., Osley, M.A., and Strahl, B.D. 
(2005). Histone H2B ubiquitylation is associated with elongating RNA polymerase II. 
Mol. Cell. Biol. 25, 637–651. 

Xie, A., Odate, S., Chandramouly, G., and Scully, R. (2010). H2AX post-translational 
modifications in the ionizing radiation response and homologous recombination. Cell 
Cycle Georget. Tex 9, 3602–3610. 

Xu, Y., Sun, Y., Jiang, X., Ayrapetov, M.K., Moskwa, P., Yang, S., Weinstock, D.M., and Price, 
B.D. (2010). The p400 ATPase regulates nucleosome stability and chromatin 
ubiquitination during DNA repair. J. Cell Biol. 191, 31–43. 

Xu, Y., Ayrapetov, M.K., Xu, C., Gursoy-Yuzugullu, O., Hu, Y., and Price, B.D. (2012). Histone 
H2A.Z controls a critical chromatin remodeling step required for DNA double-strand 
break repair. Mol. Cell 48, 723–733. 

Yamane, K., Wu, X., and Chen, J. (2002). A DNA damage-regulated BRCT-containing protein, 
TopBP1, is required for cell survival. Mol. Cell. Biol. 22, 555–566. 

Yan, B., Yang, X., Lee, T.-L., Friedman, J., Tang, J., Van Waes, C., and Chen, Z. (2007). 
Genome-wide identification of novel expression signatures reveal distinct patterns 
and prevalence of binding motifs for p53, nuclear factor-kappaB and other signal 
transcription factors in head and neck squamous cell carcinoma. Genome Biol. 8, 
R78. 

Yarnell, A.T., Oh, S., Reinberg, D., and Lippard, S.J. (2001). Interaction of FACT, SSRP1, and 
the high mobility group (HMG) domain of SSRP1 with DNA damaged by the 
anticancer drug cisplatin. J. Biol. Chem. 276, 25736–25741. 

Ye, X., Wei, Y., Nalepa, G., and Harper, J.W. (2003). The cyclin E/Cdk2 substrate p220(NPAT) 
is required for S-phase entry, histone gene expression, and Cajal body maintenance 
in human somatic cells. Mol. Cell. Biol. 23, 8586–8600. 

You, Z., Bailis, J.M., Johnson, S.A., Dilworth, S.M., and Hunter, T. (2007). Rapid activation of 
ATM on DNA flanking double-strand breaks. Nat. Cell Biol. 9, 1311–1318. 

Yu, D.S., and Cortez, D. (2011). A role for CDK9-cyclin K in maintaining genome integrity. Cell 
Cycle Georget. Tex 10, 28–32. 

Yu, X., and Chen, J. (2004). DNA damage-induced cell cycle checkpoint control requires CtIP, 
a phosphorylation-dependent binding partner of BRCA1 C-terminal domains. Mol. 
Cell. Biol. 24, 9478–9486. 

Yu, D.S., Zhao, R., Hsu, E.L., Cayer, J., Ye, F., Guo, Y., Shyr, Y., and Cortez, D. (2010). Cyclin-
dependent kinase 9-cyclin K functions in the replication stress response. EMBO Rep. 
11, 876–882. 



References 

 

112 
 

Yuan, J., Pu, M., Zhang, Z., and Lou, Z. (2009). Histone H3-K56 acetylation is important for 
genomic stability in mammals. Cell Cycle Georget. Tex 8, 1747–1753. 

Zhang, F., and Yu, X. (2011). WAC, a functional partner of RNF20/40, regulates histone H2B 
ubiquitination and gene transcription. Mol. Cell 41, 384–397. 

Zhao, H., Langerød, A., Ji, Y., Nowels, K.W., Nesland, J.M., Tibshirani, R., Bukholm, I.K., 
Kåresen, R., Botstein, D., Børresen-Dale, A.-L., et al. (2004). Different gene expression 
patterns in invasive lobular and ductal carcinomas of the breast. Mol. Biol. Cell 15, 
2523–2536. 

Zhao, J., Dynlacht, B., Imai, T., Hori, T., and Harlow, E. (1998). Expression of NPAT, a novel 
substrate of cyclin E-CDK2, promotes S-phase entry. Genes Dev. 12, 456–461. 

Zhao, J., Kennedy, B.K., Lawrence, B.D., Barbie, D.A., Matera, A.G., Fletcher, J.A., and 
Harlow, E. (2000). NPAT links cyclin E-Cdk2 to the regulation of replication-
dependent histone gene transcription. Genes Dev. 14, 2283–2297. 

Zheng, L., Roeder, R.G., and Luo, Y. (2003). S phase activation of the histone H2B promoter 
by OCA-S, a coactivator complex that contains GAPDH as a key component. Cell 114, 
255–266. 

Zhu, B., Zheng, Y., Pham, A.-D., Mandal, S.S., Erdjument-Bromage, H., Tempst, P., and 
Reinberg, D. (2005). Monoubiquitination of human histone H2B: the factors involved 
and their roles in HOX gene regulation. Mol. Cell 20, 601–611. 



Acknowledgments 

 

113 
 

5. Acknowledgements 

First of all, I would like to express my sincere gratitude to my supervisor Prof. Dr. Steven A. 

Johnsen for giving me the opportunity to work with him. I am thankful for his excellent 

scientific supervision, his inspirational and encouraging ideas and all his help during my stay 

in Germany. Moreover, I want to thank him for the friendly atmosphere he created in our 

group and for being available at all times. I could not have imagined having a better 

supervisor for my Ph.D study. 

I thank my thesis committee members Prof. Dr. Holger Reichardt and Prof. Dr. Ralph 

Kehlenbach for the inspiring discussions and their support throughout the thesis work. In 

addition, I appreciate Prof. Dr. Holger Reichardt for being the thesis second reviewer.   

Many thanks go to Prof. Dr. Matthias Dobbelstein for giving me the opportunity to start my 

work in his department. I also want to thank all members of the Institute of Molecular 

Oncology for a nice and helpful working atmosphere. Further, I am thankful to Prof. Dr. 

Klaus Pantel and the Department of Tumor Biology for the very warm welcome after moving 

to Hamburg.  

In particular, I would like to thank all the current and former members of the AG Johnsen for 

a wonderful working atmosphere and a great time spent together. Special thanks also go to 

my colleagues Magali, Sasha and Sanjay for their help in doing experiments.  

I would like to thank Prof. Dr. Hans Will and Dr. Andreas Mund for great help, discussions 

and valuable advices in planning experiments. Also many thanks go to Dr. Wael Yassin 

Mansour for his help with the DNA repair experiments and suggestions.  

Last but not the least, my deepest gratitude go to my parents, my sisters and my life partner 

Giri for their continuous support, constant encouragement, understanding and being there 

for me at every step of the way.   



Curriculum Vitae 

 

114 
 

6. Curriculum Vitae 
Vijayalakshmi Kari 

 

 

Education 
 

 

July 2012 - till date Ph.D. student at University Medical Center Hamburg-Eppendorf, 

Germany 

Jan 2010 to June 2012 Ph.D. student at University Medical Centre Göttingen, Germany 

Aug 2007 to Nov 2009 Junior Research Fellow at Indian Institute of Science (IISc), India 

July 2005 to May 2007 Master of Science in Biochemistry and Molecular Biology, 

Pondicherry Central University, India 

June 2002 to Apr 2005 Bachelor of Science, Nagarjuna University, India 

  

Research Experience 
 

July 2012 - until present  – Ph.D student 

Department of Tumor Biology University Medical Center Hamburg-Eppendorf, Germany 

Supervisor: Prof. Dr. Steven A. Johnsen 

Role of Histone Metabolism and Chromatin Structure in DNA repair 

 

Jan 2010 to June 2012– Ph.D student 

Institute of Molecular Oncology, University Medical Centre Göttingen, Germany 

Supervisor: Prof. Dr. Steven A. Johnsen 

Role of Histone Metabolism and Chromatin Structure in DNA repair 

 

Aug 2007 to Nov 2009 - Junior research fellow 

Department of Biochemistry, Indian Institute of Science (IISc), Bangalore, India  

Supervisor: Prof. Dr. Sathees C Raghavan 

Role of BCL2 in non-homologous end joining pathway 

Personal Details 
 

 

Date of birth 10th April 1985 

Nationality Indian 

Email vijji15@gmail.com 

Telephone 017634912973 

Address Wendloher weg 7, 20251, Hamburg 



Curriculum Vitae 

 

115 
 

Dec 2004 to Apr 2005 – Master thesis 

Department of Biochemistry and Molecular Biology, Pondicherry University, India 

Supervisor: Dr. Suresh Yenugu 

Expression of Toll Like Receptors in rat male reproductive system 

 

May 2004 to June 2004 – Rotation Student 

School of Studies in Neuroscience, Jiwaji University, Gwalior, India 

Supervisor: Prof. Ishan Patro 

 

Publications 

 
1. Kari V*, Karpiuk O*, Tieg B, Kriegs M, Dikomey E, Krebber H, Begus-Nahrmann Y, Johnsen 
SA. A subset of histone H2B genes produces polyadenylated mRNAs under a variety of 
cellular conditions. PLoS ONE 8(5): e63745.doi:10.1371/journal.pone.0063745. * Equal 
authorship. 

 
2. Kari V, Shchebet A, Neumann H, Johnsen SA. The H2B ubiquitin ligase RNF40 cooperates 
with SUPT16H to induce dynamic changes in chromatin structure during DNA double-strand 
break repair. Cell Cycle. 2011 Oct 15;10(20):3495-504 
 
3. Kumar TS*, Kari V*, Choudhary B, Nambiar M, Akila TS, Raghavan SC. Anti-apoptotic 
protein BCL2 down-regulates DNA end joining in cancer cells. J Biol Chem. 2010 Oct 
15;285(42):32657-70. * Equal authorship 
 
4. Chiruvella KK, Kari V, Choudhary B, Nambiar M, Ghanta RG, Raghavan SC. FEBS Lett. 
Methyl angolensate, a natural tetranortriterpenoid induces intrinsic apoptotic pathway in 
leukemic cells. 2008 Dec 10;582(29):4066-76.  
 
5. Nambiar M, Kari V, Raghavan SC. Chromosomal translocations in cancer. Biochim Biophys 
Acta. 2008 Dec;1786(2):139-52. Review. 
 

References 
  
Prof. Dr. Steven A. Johnsen 
Department Tumor Biology 
University Medical Center Hamburg-Eppendorf, Germany  
Email: steven.a.johnsen@gmail.de 
+49 (0)40 7410-57495 
 
Prof. Sathees C Raghavan 
Department of Biochemistry 
Indian Institute of Science, Bangalore, India 
Email: sathees@biochem.iisc.ernet.in 
+91 (0)80 2293 2674  


