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As you set out for Ithaka
hope the voyage is a long one,
full of adventure, full of discovery.
Laistrygonians and Cyclops,
angry Poseidon—don’t be afraid of them:
you’ll never find things like that on your way
as long as you keep your thoughts raised high,
as long as a rare excitement
stirs your spirit and your body. (...)
 
Hope the voyage is a long one. (...)
Keep Ithaka always in your mind.
Arriving there is what you are destined for.
But do not hurry the journey at all.
Better if it lasts for years,
so you are old by the time you reach the island,
wealthy with all you have gained on the way,
not expecting Ithaka to make you rich. (...)
 
Ithaka gave you the marvelous journey.
Without her you would not have set out.
She has nothing left to give you now.
 
And if you find her poor, Ithaka won’t have fooled you.
Wise as you will have become, so full of experience,
you will have understood by then what these Ithakas mean.

(Constantine P. Cavafy, 1911)

“!" #$%& '() #*%+" #$%&”  (= ”Ich weiß, dass ich nichts weiß”)

(Sokrates, 5th century B.C.)
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Abstract

The goal of the present work was to form a basis for the development of improved protein 

therapeutics against acute lymphoblastic leukemia (ALL). Bacterial L-asparaginases, in 

combination with other chemotherapeutics, are currently used for the treatment of ALL. This 

chemotherapy approach is limited by  the elicitation of many  immune responses to patients, 

mainly attributed to the bacterial origins of the used enzymes. A potential strategy to 

circumvent such imitations involves the replacement of the bacterial enzymes by human 

molecules which could drastically  eliminate severe side effects arising from the 

immunogenicity. However, human enzymes which display L-asparaginase activity cannot be 

used for such treatment, because of their poor catalytic properties and therefore, protein 

engineering approaches for their catalytic improvement are inevitable. Overall, two novel 

human L-asparaginases were studied, namely human ASNase1 (hASNase1) and human 

ASNase3 (hASNase3), with the latter one being also structurally characterized. 

Wildtype hASNase3 was used as template for mutagenesis and subsequent screening steps 

aiming at the identification of catalytically improved variants. A FACS-based high-

throughput screening system was employed, which correlates semi-quantitatively the 

intracellular eGFP fluorescence intensity with the L-asparaginase activity. The system is 

based on a five-gene-deletion Escherichia coli (E.coli) strain (all genes which contribute to 

the biosynthesis of L-aspartate have been deleted) whose growth is exclusively dependent on 

the availability  of exogenous L-aspartate, product of the L-asparaginase catalytic activity. 

The intracellular expression of hASNase3 variants can rescue the bacterial cells from the lack 

of L-aspartate since they can produce this amino acid through activity of these variants. The 

availability of L-aspartate reflects the expression levels of eGFP, and this, in turn, correlates 

the intracellular fluorescence with the L-asparaginase activity. Applying this screening 

strategy, overall five mutant libraries were analyzed (one generated via epPCR, and four via 

site-saturation mutagenesis), and eventually three human ASNase3 variants with improved 

catalytic properties against the hydrolysis of L-asparagine were identified and isolated, with 

the best one being 6-fold better than the wild type. 

In addition, a novel high-throughput screening platform was developed by  capitalizing on the 

rising field of droplet-based microfluidics. This approach allows the compartmentalization in 
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very small water-in-oil emulsions of different  types of chemical and/or enzymatic reactions, 

thereby monitoring the course of the reactions continuously. To this end, a novel fluorescent, 

three-step coupled assay  for L-asparaginase was developed in order to be able to measure 

quantitatively enzymatic reactions in volumes of the range 500-600 pL. For standardizing the 

system at the single-cell level, the current antileukemic drug Escherichia coli L-asparaginase 

2 was used, which was displayed on the inner membrane of E.coli cells. Individual cells 

displaying the enzyme were compartmentalized, and the assay was validated by  measuring 

the activity of the displayed L-asparaginase. Our experimental results demonstrate that this 

setup allows the quantitative determination of single-cell enzymatic activities, thus being 

suitable for the screening of directed evolution mutant libraries not only for human L-

asparaginases but also for other enzymes in general. 

Besides hASNase3, we additionally  characterized another human L-asparaginase, namely 

hASNase1. It was shown that this enzyme which comprises the N-terminal domain of an 

overall 60-kDa lysophospholipase and resembles the cytoplasmic bacterial E.coli L-

asparaginase 1, can form an independent folding and catalytic unit. Strikingly, despite its 

monomeric state, hASNase1 displayed a very  pronounced sigmoidal steady-state kinetic 

profile, hallmark of allosteric enzymes. Its catalytic properties are poorer than those of 

hASNase3, thus making its engineering task more challenging. 

As a complementary strategy to the engineering of human enzymes for improvement of ALL 

therapy, we focused on the utilization of drug delivery approaches as means for the 

prolongation of the half-life of L-asparaginases under physiologically  relevant conditions. By 

encapsulating Saccharomyces cerevisiae L-asparaginase 1 (ScASNase1) in multilayer 

polyelectrolyte microcapsules consisting of biocompatible and biodegradable materials, it 

was shown that the enzyme’s thermal stability  and its resistance against proteolysis can be 

dramatically improved. In addition, the isothermal inactivation rate at 37 !C of the 

encapsulated enzyme was considerably lower as compared to the free enzyme, thus 

suggesting that the encapsulated enzyme can retain its activity  at physiologically relevant 

temperatures longer than its free state. Ultimately, it was demonstrated that unlike 

preparations of free enzyme, microcapsules filled with active ScASNase1 can kill leukemic 

cells in-vitro even in the presence of a mixture of proteases which degrade the free enzyme. 

These results further suggest that encapsulation of the enzymes can prevent their degradation 

from proteases, thereby  prolonging their half-life and consequently allowing them to kill 
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leukemic cells. Similar results were obtained when the experiments were done using E.coli L-

asparaginase 2, the current antileukemic drug.
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1. Introduction

1.1 Physiological role and general classification of L-asparaginases

L-asparaginases (EC 3.5.1.1; L-asparagine amidohydrolase; L-ASNase) are enzymes which 

primarily  catalyze the conversion of L-asparagine (L-Asn) to L-aspartic acid (L-Asp) and 

ammonia, while some of them are also able to hydrolyze L-glutamine (L-Gln) to L-glutamic 

acid (L-Glu) and ammonia. These enzymes are present in all kingdoms of life from microbes 

to higher mammals and play an essential role in the amino acid and nitrogen metabolism 

[1-3]. L-ASNases are generally  classified into two major families of enzymes which are 

characterized by evolutionarily distinct structural and biochemical properties: the plant-type 

[4,5] and the bacterial-type L-ASNases [6,7]. Bacterial-type enzymes have attracted notable 

scientific and medical interest during the last fifty years, because homologs from this family 

have been extensively used in therapeutic regimens against blood malignacies [8-10]. This 

wide interest in these enzymes has led to a systematic study of their structural and 

biochemical characteristics. This superfamily of L-ASNases includes enzymes which exhibit 

variable affinities against L-Asn covering a KM range from micromolar to millimolar, though 

displaying a high degree of structural homology and sharing similar catalytic mechanisms 

[11]. Additionally, a particular common property of these enzymes is their tendency to form 

dimeric and tetrameric states, with the latter being the predominant oligomeric form [12,13]. 

In contrast, the plant-type enzymes have been less studied. Although conceptually their 

significant role in the nitrogen metabolism of plants has been recognized very  early in the 

1930s, they have been brought to the center of L-ASNase research only during the last two 

decades. Literature of the late 1980s [14] classified the plant-type L-ASNases into K+-

dependent and K+-independent subtypes, while the molecular basis for this distinction of 

catalytic mechanisms is unclear. At this point, it must be underlined that, while bacterial-type 

homologs have been identified in eukaryotic organisms like mammals and fungi, and they 

have been biochemically characterized, no similar enzymes have been found in plants. On the 

contrary, plant-type representatives naturally exist in bacteria and humans [15].

This discovery is of particular importance, since human and bacterial homologs which 

resemble plant-type L-ASNases belong to the so-called N-terminal nucleophile hydrolase 

superfamily of enzymes (Ntn-hydrolases) and constitute a relatively well-studied group of 
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proteins [16]. Those findings formed the basis for the classification of plant-type L-ASNases 

into a broader superfamily of enzymes which embraces not only enzymes capable of 

hydrolyzing L-Asn, but also dipeptidases and proteases. The major common feature of all 

Ntn-hydrolases is their post-translational autoproteolytic activation as well as their structural 

fingerprint of an !""! motif [17]. In the following sections, the two main superfamilies of L-

ASNases will be presented, and their structural and biochemical properties will be discussed. 

Maintaining the most recent and widely accepted classification of the plant-type enzymes as a 

sub-group  of the Ntn-hydrolases, they will be explored according to their specific and their 

common properties as members of this interesting superfamily of enzymes. A schematic 

illustration of the aforementioned grouping of L-ASNases is shown in Figure 1 below.

Figure 1. Schematic representation of the different families of L-ASNases. Bacterial-type 
enzymes constitute a well-studied and characterized superfamily with similar structural 
characteristics, though distinct biochemical properties. Plant-type L-ASNases can be 
considered as a sub-group of the broad Ntn-hydrolases superfamily which also includes 
enzymes other than L-ASNases.

1.2 N-terminal nucleophile hydrolases

The N-terminal nucleophile hydrolase superfamily  (Ntn-hydrolases) has been defined as a 

new protein family in 1995 [18]. It includes enzymes which catalyze different enzymatic 

reactions such as aspartylglucosaminidases [19], penicillin acylases [20], Taspase1 [21], and 

plant-type L-ASNases [22]. Despite their limited amino acid sequence similarity, the Ntn-
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hydrolases share a common sandwich-like !""! folding motif (! refers to !-helix, and " to "-

sheet) which is highly conserved among the members of this family. A principal property of 

this family of enzymes is their expression as inactive precursors that  post-translationally 

undergo an intramolecular autoproteolytic activation process which generates the active 

enzyme [23]. Therefore, the active enzyme consists of two distinct  polypeptide subunits, ! 

and ", also called protomers, which remain non-covalently  and tightly associated during 

catalysis. This intramolecular cleavage of the catalytically  inactive precursor molecule occurs 

at a scissile peptide bond, usually  between a preceding glycine (Gly) residue and a following 

residue which plays the role of the nucleophile and can be either L-Thr, L-Cys, or L-Ser [24]. 

Additionally, instead of Gly as preceding amino acid, L-Asp has been identified in some 

cases [25]. Upon cleavage and generation of the two newly synthesized subunits, the Gly 

residue will be the last residue of the ! subunit at  its C-terminus, while the nucleophile (L-

Thr, L-Cys or L-Ser) will be exposed at the N-terminus of the " subunit. Such N-terminal 

exposure of the L-Thr is absolutely  crucial for the enzymatic activity, and this has been 

confirmed by both mutagenesis and structural studies [26]. The nucleophilic character of the 

catalytic N-terminal residue of the " subunit is responsible for the name given to this enzyme 

family. 

1.2.1 Intramolecular activation mechanism of Ntn-hydrolases

The autocatalytic mechanism of the Ntn-hydrolases maturation is not  yet fully understood, 

but it can be considered analogous to the activation of serine proteases [27]. It has been 

proposed that the autoproteolytic mechanism involves a nucleophilic residue (L-Thr, L-Ser or 

L-Cys) and a general base, which however has not yet been defined, thereby its origins 

remaining still speculative. It is assumed that this role of the general base can be fulfilled 

either by an intramolecular residue or another small metabolite molecule. A general model for 

this process is shown in Figure 2. It  is believed that the nucleophile residue is activated by 

the general base which subtracts the proton from its -O(S)H group (from L-Thr, L-Ser or L-

Cys) while the basicity of this general base could potentially be further intensified by  an 

adjacent acidic residue [28].
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Figure 2. Proposed model for the autoproteolytic activation of Ntn-hydrolases. The 
general base is denoted as B: in blue, the nucleophile HX is in green, and the peptide bond at 
which the cleavage takes place is in red. If the nucleophile residue is L-Thr or L-Ser, then HX 
corresponds to -OH, while in case of L-Cys it is -SH. In addition, in case of L-Cys or L-Ser, 
the R-group is –H, and -CH3 in case of L-Thr. Adapted from [28].

The deprotonation of the -O(S)H group  of the nucleophile residue is a prerequisite for the 

subsequent first step  of the intramolecular activation which includes an N!O or N!S acyl 

shift and the formation of a tetrahedral intermediate (Figure 2; oxyoxazolidine/

oxythiazolidine intermediate), which is stabilized by a so-called oxyanion hole. This 

oxyanion hole is essential for the stabilization of the acyl/deacyl-intermediates and is formed 

between the oxygen atom of the former peptide bond and usually  a neighboring amide group 

which points towards this oxygen. The generation of this intermediate is induced upon the 

nucleophilic attack of either the deprotonated hydroxyl or thiol group on the peptide carbonyl 

C atom [28]. In certain representatives of the Ntn-hydrolase superfamily which have been 

structurally  well-studied, such as aspartylglucosaminidases, the role of the base which 

activates the nucleophile seems to be fulfilled by either an L-His or an L-Asp  residue, N-

terminal to the scissile peptide bond [29]. Yet, the handicap with this model of the L-His, L-
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Asp, L-Thr (L-Cys or L-Ser) autoactivation triad is that the L-His and L-Asp residues are not 

conserved throughout the Ntn-hydrolases, and therefore it cannot be considered as a general 

activation mechanism. Therefore, it appears reasonable to point out that the lack of a 

consensus sequence profile comprising the autocleavage region of Ntn-hydrolases impedes 

even further the elucidation and interpretation of the molecular mechanism of 

autoproteolysis.

1.2.2 Structural and sequence analysis of Ntn-hydrolases

A well characterized mammalian member of the Ntn nucleophile hydrolase superfamily is the 

human lysosomal aspartylglucosaminidase (hAGA), which catalyzes the hydrolysis of 

glucosylated L-Asn molecules, generated during proteolytic breakdown of glycoproteins 

[30]. Deficiency of AGA causes the inborn lysosomal storage disease aspartylglucosaminuria 

[31]. Yet, hAGA is capable of hydrolyzing L-Asn, though with poor catalytic characteristics. 

The human genome encodes another enzyme of this Ntn hydrolase family, variably termed 

human asparaginase-like protein 1 (hASRGL1) [32], glial asparaginase (GLIAP) [33], 

CRASH [34], or hASNase3 due to its high homology with E.coli L-ASNase3 (encoded by 

the iaaA gene) [35]. Crystal structures of the wild-type form [36] and of a circular permutant 

version of hASNase3 [37] have been reported, while in a recent study we have shown that its 

autoproteolytic activation can be drastically and selectively  accelerated by  the free amino 

acid glycine, which could potentially play  the role of the essential base that is required for the 

deprotonation of the -OH group of the nucleophile residue [38]. Yet, the generalization of this 

proposed model needs to be tested for other members of the Ntn hydrolase family  of 

enzymes. 

The physiological role of hASNase3 has not yet been elucidated. It was shown that this 

enzyme is able to hydrolyze !-aspartyl-dipeptides (or iso-aspartyl-dipeptides) displaying KM 

in the sub-millimolar range, as well as L-Asn, though less efficiently (KM in the millimolar 

range) [32]. Iso-aspartyl-dipeptides are formed upon non-enzymatic transfer of the peptide 

bond to the side chain of an L-Asn or an L-Asp residue, resulting in crucial protein structural 

rearrangements and consequently  dysfunction [39]. This protein modification can be 

potentially repaired, or, alternatively, the affected proteins are degraded initially by proteases, 

and subsequently the iso-aspartyl-dipeptides are further eliminated by enzymes called iso-
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aspartyl-dipeptidases [40]. Hence, based on the catalytic properties of hASNase3, it is 

believed to play a key role in the cellular clearance of isoaspartate-containing peptides, 

degradation products of misfolded polypeptides, thereby acting as aspartyl-dipeptidase and 

secondarily as L-ASNase. This dual catalytic role of hASNase3 has been confirmed for its 

E.coli homolog (encoded by the iaaA gene) as well as for the K+-independent plant  homolog 

from Lupinus luteus [5]. A sequence alignment between the last three aforementioned 

enzymes, including hAGA, is shown in Figure 3.

Figure 3. Amino acid sequence alignment of Ntn-hydrolases. human L-ASNase3 
(hASNase3) (UniProt: Q7L266), E.coli (EcASNase3) (UniProt: E0J5W2), L.luteus 
(LlASNase) (UniProt: Q9ZSD6) and human lysosomal aspartylglucosaminidase (hAGA) 
(UniProt: P20933). All four enzymes belong to the Ntn-hydrolase superfamily and undergo 
the characteristic intramolecular post-translational autoproteolytic activation. The scissile 
peptide bond which is cleaved resulting in the generation of two subunits, is denoted by a red 
asterisk and a red frame  (dotted red line indicates the cleavage between Gly-Thr) in the 
figure. Blue-shaded are highly conserved amino acids. Note that the nucleophile in all these 
cases is L-Thr, but the preceding amino acid is L-Asp in case of hAGA, unlike in the other 
three enzymes where this residue is Gly. The lack of a consensus sequence flanking the 
cleavage region makes interpretation of the molecular mechanism of activation difficult. The 
alignment was performed using CLUSTALW [41] and the image was prepared using JalView 
[42].
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The four enzymes which are compared in the sequence alignment above in Figure 3 do not 

show very high degree of sequence homology, and this holds even for the regions around the 

scissile peptide bond. Yet, they share a very similar tertiary structure which follows an !""! 

motif, hallmark of the Ntn-hydrolases, and form dimers consisting of two activated 

monomers. The solved structures of hASNase3 [36,37], EcASNase3 [5], and hAGA [19] are 

shown below in Figure 4 for direct comparison.

Figure 4. Structure representation of Ntn-hydrolases. (A) EcASNase3 (PDB entry: 
2ZAL), (B) hAGA (PDB entry: 1APY), and (C) hASNase3 (PDB entry: 4GDW). The dotted 
lines indicate the dimer interfaces which consist of two identical, fully-activated monomers. 
In the figure is also shown the !""! folding motif (! refers to !-helix and " to "-sheet) of 
each monomer for all three enzymes. With cyan are labelled the ! subunits, while with 
magenta are labelled the " subunits of the enzymes. The figures were generated by PyMol 
[43].

The molecular mechanism of the intramolecular activation of the Ntn-hydrolases remains 

obscured at the moment. The main handicap for the suggestion of a general model is related 

to the lack of a general, and highly conserved interacting group which would activate 
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(deprotonate) the -OH of the L-Thr, enabling it to perform the nucleophilic attack on the 

peptide bond formed by the preceding residue. The postulation that this role could be fulfilled 

by the !-amino group which is liberated upon cleavage of the scissile peptide bond faces 

many limitations and is debatable. The major restriction with this model is that the !-amino 

group of the L-Thr is occupied within the peptide bond, and then the question arises as to 

what initiates the autoproteolysis. In addition, there is high likelihood that the amino group is 

itself protonated at physiological pH, thereby being unable to subtract another proton [15]. 

An important aspect of this intramolecular processing, which is in direct  connection with the 

mechanism behind it, is reflected by  the distinct autoactivation rates of the different 

representatives of the Ntn-hydrolase superfamily of enzymes. For example, recombinant 

expression of hASNase3 and EcASNase3 using E.coli as expression system, results in a 

variable degree of processed enzyme species. This is illustrated in Figure 5, which shows an 

SDS-PAGE of purified hASNase3 and EcASNase3 enzymes. Clearly, in case of hASNase3 

the predominant form (90%) is the full-length inactive precursor, while its E.coli homolog is 

more than 75% activated. Further activation of hASNase3 will take place in a time-dependent 

manner, but, unlike EcASNase3, it does not  reach completion [38]. This highly variable rate 

of autoproteolysis raises many questions regarding the mechanism which governs this 

phenomenon, as well as concerning the lack of full activation versus partial activation among 

different enzymes.

                           

Figure 5.  SDS-PAGE analysis of purified hASNase3 and EcASNase3. The proteins were 
recombinantly expressed in E.coli at 16 "C and were purified at 4 "C. In the figure, the two 
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subunits ! and " are denoted, and arrows indicate the full-length inactive precursors before 
autoproteolysis.

Summary

The plant-type L-ASNases, which have been more specifically discussed in this section, are 

considered as a subgroup of the Ntn-hydrolase family of enzymes. The particular 

characteristic of this family is that the enzymes are translated as inactive precursors which 

undergo an intramolecular activation step  resulting in the final active form. The active form 

consists of two subunits (! and ") which remain non-covalently associated upon the 

activation event. All members of this superfamily contain a very highly conserved folding 

motif, namely !""!, despite low amino acid sequence identity. The underlined molecular 

mechanism of the autoactivation step remains unclear, and the proposed models suffer from 

certain limitations. Plant-type L-ASNases (e.g. plant type hASNase3, EcASNase3) exhibit a 

dual enzymatic profile, being able to hydrolyze iso-aspartyl-dipeptides more efficiently  than 

L-Asn: They display a KM in the submillimolar range, ~ 0.1 mM  for iso-aspartyl-dipeptides, 

and in the millimolar range, ~ 3 mM  for L-Asn. Therefore, they are also called iso-aspartyl-

dipeptidases (or "-aspartyl-dipeptidases). Recombinant expression of different plant-type L-

ASNases revealed highly variable degrees of autoactivation, which brings up  several 

questions concerning the intrinsic properties of these enzymes and the general mechanism 

behind their intramolecular activation.

1.3 Bacterial-type L-ASNases

Bacterial-type L-ASNases comprise a large family of enzymes, which are distributed from 

bacteria to higher mammals. In contrast, no such enzyme homologs have been found in plants 

up until now. Bacterial-type enzymes are further classified into bacterial-type I and bacterial-

type II subgroups, which are characterized by discrete biochemical properties and are 

localized at different cellular compartments [6,7] (for consistency  reasons with the 

abbreviations of enzymes in published work, we will refer to the type-I as type 1 and for 

type-II as type 2). Type 1 group enzymes are localized in the cytoplasm (also called 

cytoplasmic L-ASNases) and display a low affinity against L-Asn (KM in the millimolar 

range), while type 2 enzymes are post-translationally transported to the periplasm of bacterial 
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cells (periplasmic L-ASNases) and demonstrate a high affinity  for L-Asn (KM in the 

micromolar range). Periplasmic L-ASNases are additionally  able to hydrolyze L-Gln (KM in 

the millimolar range), while this does not apply to the cytoplasmic enzymes. The two 

subgroups of bacterial L-ASNases exhibit relatively high sequence identity, yet phylogenetic 

analyses based on their sequences can distinguish them as separate groups [44]. The active 

form of type 1 enzymes varies from dimeric to tetrameric assemblies, while type 2 isoforms 

act predominantly as tetramers [45-47]. 

1.3.1 Catalytic mechanism of bacterial-type L-ASNases

The catalytic mechanism of L-Asn hydrolysis has been much better studied for type 2 

enzymes, but it is believed to be shared by both subgroups, given the high degree of 

homology  around their active sites [48]. Similar to the plant-type enzymes, catalysis is 

initiated by the nucleophilic attack on the amide bond of the substrate. This role is fulfilled by 

an L-Thr residue whose -OH group is activated by a neighboring interacting group, usually 

L-Tyr [49]. At this point, it must be underscored that bacterial-type enzymes do not undergo 

any intramolecular activation mechanism like the plant-type enzymes, yet the principle of the 

catalysis initiation appears to be highly conserved involving a primary nucleophile residue 

(L-Thr), whose -OH group requires deprotonation for its activation for the subsequent attack 

on the carboxylic carbon of the substrate. In addition, unlike the plant-type enzymes whose 

amino group of the catalytic L-Thr is released upon intramolecular processing, in bacterial-

type enzymes the respective amino group of the catalytic L-Thr is still occupied by the 

preceding peptide bond. The catalytic reaction is thought to cause the formation of a 

tetrahedral acyl-enzyme intermediate between the substrate and the enzyme upon the first 

nucleophilic attack, followed by a second nucleophilic attack by a water molecule [50]. This 

second attack induces the formation of a second tetrahedral intermediate which converts into 

the final products. This catalytic mechanism has been proposed to be common for all 

enzymes which exhibit L-ASNase activity, including those which belong to the Ntn hydrolase 

family. However, even this postulated mechanism remains questionable, with the main 

handicap being the identity of the group which activates the -OH of the nucleophilic L-Thr. 

A schematic representation of the catalytic mechanism described above is shown in Figure 6.
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Figure 6. Proposed catalytic mechanism of L-ASNases. The reaction comprises two steps. 
In the first  step, the catalytic nucleophile of the enzyme gets activated by a general base 
which subtracts its proton and subsequently the activated nucleophile attacks the C atom of 
the substrates’s amide group. This leads to the generation of a transition state with an acyl-
enzyme intermediate. Similar to the intramolecular activation proposed mechanism of Ntn-
hydrolases, the formation of an oxyanion hole (as a result of the amide oxygen) is stabilized 
by neighboring hydrogen-bond donors. The second step involves the attack of an activated 
water molecule to the C ester atom of the intermediate playing the role of another nucleophile 
and the final release of the enzyme and the product. (Adapted from [15]).

1.3.2 Bacterial-type 1 L-ASNases

Cytoplasmic L-ASNases have been only  recently studied in detail, and structural analysis 

contributed considerably  towards this direction. The crystal structure determination of E.coli 

L-ASNase1 (EcASNase1; encoded by ansA gene) [51] unveiled that this enzyme is 

homotetramer. Interestingly, the structural analysis revealed the presence of an additional L-

Asn binding site within the same monomer, located close to the catalytic site. Further kinetic 

and mutational characterization identified this second binding as an allosteric site, which 

modulates the activity of EcASNase1. This is a particular type of allostery  where the same 

compound (in this case L-Asn) plays simultaneously  the role of both effector and substrate of 

the enzyme. These effectors are called homotropic, and particularly in cases like this of 

EcASNase1 where the enzymatic activity increases with the concentration of this effector, 

they  are called positive homotropic effectors [52]. EcASNase1 was the first  bacterial-type L-
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ASNase to be identified as an enzyme which shows positive cooperativity. Unfortunately, in 

the absence of crystal structures from other cytoplasmic L-ASNases, it is difficult to conclude 

whether those cytoplasmic enzymes are allosteric in general, or whether this is a specific case 

only for EcASNase1.  The only other available crystal structure of type-1 L-ASNase is from 

the archaeon Pyrococcus horikoshii (PhASNase1) [53]. Unlike EcASNase1, the PhASNase1 

appeared as a dimer in the crystal structure, while its putative allosteric site is characterized 

by significant architectural differences as compared to the EcASNase1 enzyme. The lack of 

additional biochemical data which would further support  or disprove the allosteric behavior 

of this enzyme, makes it difficult to draw a safe conclusion about its properties. 

EcASNase1 and PhASNase1 share 37% sequence identity, which is sufficient to classify 

them in the same subgroup of type-I enzymes. A cytoplasmic L-ASNase has been also 

identified based on sequence similarities in case of Saccharomyces cerevisiae (ScASNase1), 

which is encoded by the ASP1 gene [54]. Despite the fact that the structure of this enzyme is 

unknown, it appears to behave as tetramer in size-exclusion chromatography experiments, as 

well as to exhibit weak positive cooperative kinetics (our unpublished data). Therefore, there 

are good reasons to believe that this is another cytoplasmic L-ASNase which shows similar 

biochemical properties with the well-studied EcASNase1, and it  has eukaryotic origin. 

Interestingly, such homologous enzymes have been also identified in mammalian cells. The 

first report which suggested the existence of bacterial-type 1 L-ASNase in rat cells appeared 

fifteen years ago [55]. This study demonstrated the isolation of a cDNA from rat liver which 

codes for a two-domain enzyme designated 60-kDa lysophospholipase. Sequence analysis 

showed that this enzyme consists of an N-terminal domain which significantly resembles the 

EcASNase1 (~ 47% identity) and a C-terminal ankyrin repeat-like domain. The authors 

assigned three distinct enzymatic activities to this enzyme, namely lysophospholipase, 

acetylhydrolase, and L-asparaginase, though their measurements relied on cell extracts rather 

than on purified enzyme [55]. Almost ten years later, another group reported on the human 

homolog of the 60-kDa rat lysophospholipase [56], which also contains an N-terminal 

domain very similar to EcASNase1 (~ 47% identity) and a C-terminal ankyrin repeat-like 

domain. This study  confirmed the lipase activities of the human enzyme, yet without 

assigning with certainty any  L-ASNase activity. In contrast, recently  we showed that  the N-

terminal domain of the human 60-kDa lysophospholipase, which appears to be highly 

homologous to the EcASNase1 enzyme holds L-ASNase activity, that is allosterically 
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regulated by the substrate L-Asn [57]. However, no lysophospholipase activity  was detected 

when the N-terminal domain was assayed [57]. Figure 7 shows a sequence alignment of five 

different type-1 L-ASNases and highlights important residues which are involved in catalysis 

and allosteric binding. Furthermore, Figure 8 shows the tertiary structures of EcASNase1 

and PhASNase1, the only two available structures of type-1 L-ASNases.

Figure 7. Sequence alignment of bacterial type-1 L-ASNases. Human ASNase1 
(hASNase1)corresponds to the N-terminal domain of the 60-kDa lysophospholipase enzyme 
(UniProt: Q86U10), R.norvegicus (RnASNase1) corresponds to the N-terminal domain of the 
60-kDa R.norvegicus lysophospholipase enzyme (UniProt: O88202), E.coli (EcASNase1) 
(UniProt: P0A962), P.horikoshii (PhASNase1) (UniProt: O57797) and S.cerevisiae 
(ScASNase1) (UniProt: P38986). The red asterisk indicates the catalytic L-Thr which is 
believed to play the role of the primary nucleophilic residue. The three black asterisks denote 
the so-called catalytic triad residues (Thr-Asp-Lys) of bacterial-type 1 L-ASNases which 
ensure proper substrate binding. The red arrows point to residues which comprise the 
allosteric pocket of EcASNase1 and which  show only a moderate degree of conservation. 
The alignment was performed using CLUSTALW [41], and the image was prepared using 
JalView [42].
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Figure 8. Structural representation of bacterial type-1 L-ASNases. (A) Escherichia coli 
ASNase1 (PDB entry: 2P2D) and (B) Pyrococcus horikoshii ASNase1 (PDB entry: 1WLS). 
With cyan is labeled the monomer of each enzyme, while with green are shown the rest 
identical monomers which form the tetrameric structure for EcASNase1 and the dimeric for 
PhASNase1, respectively. The figures were generated by PyMol [43].

Summary

Bacterial cytoplasmic L-ASNases form a subgroup of bacterial L-ASNases which have not 

yet been extensively studied. The available two structures from E.coli and P.horikoshii 

revealed a tetrameric and a dimeric assembly, respectively. Biochemical characterization of 

EcASNase1 showed that the enzyme is allosterically  regulated by  its own substrate L-Asn 

displaying a Hill coefficient (nH) ~ 2.6, and a relatively  high S0.5 of 1 mM  [51]. On the 

contrary, no glutaminase activity  was detected for this enzyme. Recalling the kinetic 

properties of Ntn-hydrolases like hASNase3 or EcASNase3 against L-Asn, one could argue 

that they  are similar to those from EcASNase1, except from the fact that  Ntn-hydrolases do 

not behave allosterically, and their catalytic rates slightly differ (~ 7 s-1 for EcASNase1 and 3 

s-1 for hASNase3 at 37 !C) [32,38,51]. The mammalian homologs of this subgroup  of 

enzymes, i.e. hASNase1 and RnASNase1, have attracted particular attention since they seem 

to be part of larger enzymes which catalyze different activities; further structural and 

biochemical studies are required to shed more light on the properties of those L-ASNase 

domains.

35



1.3.3 Bacterial-type 2 L-ASNases

Periplasmic bacterial L-ASNases have been extensively structurally and biochemically 

studied over the last five decades, and therefore more detailed information is available as 

compared to the cytoplasmic enzymes. Yet, there are still debatable arguments with respect to 

their exact catalytic mechanism (see section 1.3.1 above). This subgroup includes enzymes 

which are exclusively  active as tetramers and are localized in the periplasm of bacterial 

species. They  are expressed in the cytoplasm, and subsequently  they are transported to the 

periplasm through the bacterial translocation machinery. This is achieved through the 

recognition of a peptide-leader amino acid sequence at the N-terminus of these enzymes 

(usually  20-23 long) by the translocation machinery’s protein factors [58]. It has been shown 

that, unlike the cytoplasmic enzymes, the type-2 L-ASNases are not constitutively expressed 

in the cell, but only upon nitrogen starvation [59]. Additionally, periplasmic enzymes show a 

very high affinity to L-Asn, and this is reflected by their low KM which falls within the 

micromolar range (10-30 µM), while they  are capable of hydrolyzing less efficiently  L-Gln 

(KM ~ 3-5 mM) [60]. Moreover, none of the extensively studied L-ASNase2 from different 

bacterial species has shown allosteric regulation or non-Michaelis-Menten kinetics.  

Eukaryotic homologs of type-2 enzymes have been only identified up to the level of 

Saccharomyces cerevisiae (ASP3 gene) [61]. Astonishingly, there are four copies of the gene, 

designated ASP3-1, ASP3-2, ASP3-3 and ASP3-4 respectively, which codes for the 

periplasmic ScASNase2, and they are all located in tandem in a stretch of 20 kb [62]. In 

contrast, in higher organisms like plants or mammals no such homologs have been 

discovered to date. Figure 9 shows a sequence alignment of four type-2 L-ASNases, three 

from bacterial species (E.coli, Wolinella succinogenes, Erwinia chrysanthemi), and one from 

Saccharomyces cerevisiae, while Figure 10 represents the tertiary structures of EcASNase2 

and ErASNase2.
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Figure 9. Sequence alignment of bacterial type-2 L-ASNases. E.coli ASNase2 
(EcASNase2) (Uniprot: P00805), W.succinogenes (WsASNase2) (Uniprot: P50286), 
E.chrysanthemi (ErASNase2) (Uniprot: P06608) and S.cerevisiae (ScASNase2) (Uniprot: 
P0CZ17). The dotted red frame indicates the first 20-25 residues which act as signal-peptide 
for the translocation to the periplasm. Upon translocation, the signal-peptide is cleaved by 
aminopeptidases generating the mature enzymes, whose first  amino acid is considered to be 
the one which is denoted by  the black arrow. The red asterisk indicates the catalytic L-Thr 
which is believed to play the role of the primary nucleophilic residue. The two black asterisks 
show the L-Tyr residue which activates the primary nucleophile by subtracting the proton 
from the -OH group, and the L-Thr residue which contributes to the proper substrate binding, 
respectively. The alignment was performed using CLUSTALW [41], and the image was 
prepared using JalView [42].
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Figure 10. Structural representation of bacterial type-2 L-ASNases. (A) EcASNase2 
(PDB entry: 3ECA) and (B) ErASNase2 (PDB entry: 1HFW) enzymes. With cyan is labeled 
the monomer of each enzyme, while with magenta are shown the rest  identical monomers 
which form the tetrameric structures for both enzymes. Structural representations were 
generated by PyMol [43].

Summary

As stated briefly  above, periplasmic L-ASNases have been studied more extensively  than any 

other enzymes which possess L-Asn hydrolytic activity. Some of them have been used as 

drugs for over 50 years for the treatment of Acute Lymphoblastic Leukemia (ALL), a type of 

blood cancer which most often develops in infants [63-65]. More specifically, L-ASNase2 

from E.coli and Erwinia chrysanthemi bacterial species (the ones shown in Figures 9 & 10) 

have been approved by  FDA for treating humans who suffer from ALL [66-67]. Therefore, 

both enzymes have been in-depth studied by  means of structure, steady-state kinetic, 

mutagenesis, pharmacodynamic and pharmacokinetic analyses [68-70]. In the next section, 

the principle of ALL therapy by  L-ASNases will be discussed, as well as major limitations 

which result from this treatment, and current alternative directions aiming at the improvement 

of ALL therapy. The following Table 1 summarizes the properties of L-ASNases, 

representatives of the different families and groups analyzed above.
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1.4 Leukemia therapy by L-ASNase

Acute Lymphoblastic Leukemia (ALL) is a type of leukemia which develops predominantly 

in children in the age of 1-7 years old. Yet, this does not exclude the possibility to develop in 

adults as well, though with less likelihood [71]. In principle, ALL is one of the four types of 

leukemia which have been defined to describe this disease. In order to obtain a better 

understanding of the different types of leukemia, I give an overview of the different types of 

cells which exist in blood. Figure 11 illustrates the classification of the different types of 

blood cells, describing briefly their roles in the body.

Figure 11. Human blood cells categorization and development. Primary blood stem cells 
give rise either to myeloid or to lymphoid stem cells, which subsequently  differentiate further 
to other types of cells. Lymphoid stem cells are transformed to the so-called lymphoblasts 
that can be, in turn, differentiated to B or T lymphocytes or to natural killer (NK) cells. On 
the other hand, myeloid stem cells can be ultimately  converted to red blood cells, to platelets 
or to granulocytes. As denoted in the figure, the B and T lymphocytes, the NK cells and the 
granulocytes account for the so-called white blood cells which form the backbone of the 
immune system. The red blood cells are in charge of carrying and distributing oxygen 
throughout the whole body, and the platelets contribute to the formation of blood clots which 
control bleeding. Adapted from National Cancer Institute (NCI).
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1.4.1 Types of Leukemia

Leukemia is a type of cancer which affects the blood and the bone marrow. This disease is 

characterized by an uncontrollable proliferation of, mostly, undifferentiated blood cells in the 

bone marrow. This results in a progressive displacement of the normal and healthy cells and 

consequently, the body is fully crowded by dysfunctional blood cells [72,73]. Leukemia is 

grouped into mainly four types according to the cells which are affected:

• Acute Myeloid Leukemia (AML)

• Chronic Myeloid Leukemia (CML)

• Acute Lymphoblastic Leukemia (ALL)

• Chronic Lymphoblastic Leukemia (CLL)

1.4.1.1 Myeloid Leukemia

In case of myeloid leukemia, myeloblasts (Figure 11) divide unmanageably  into abnormal 

granulocytic white blood cells, which cannot perform their normal functions. Myeloid 

leukemia is also called granulocytic or non-lymphocytic leukemia. Depending on which 

subtype of cells are affected, myeloid leukemia can be further grouped into the respective 

subtype which will define the type of patient’s treatment. Furthermore, as implied by the 

terms, acute myeloid leukemia progresses very fast  and necessitates immediate anti-cancer 

treatment, while the chronic refers to this type of disease which develops slowly. The 

symptoms of ML among others, include abnormal prolonged nose bleeding, tiredness, night 

sweats and mild fever events, weight loss and frequent minor infections [74]. Diagnosis can 

be done by different means such as blood or bone marrow tests that usually includes cell 

counting, which shows the number of the different  subtypes of cells (in case of ML, the 

number of red cells and platelets is expected to be considerably  lower than normal). 

Moreover, conventional Polymerase Chain Reaction (PCR) can be used to analyze certain 

genes whose structures are usually affected in case of ML [75]. Once a patient has been 

diagnosed with ML, he/she enters a phase of chemotherapy treatment which is highly 

dependent on the type of ML (Acute or Chronic), the age of the patient, the stage and the 

subtype of the disease. Both types are considered to be curable provided that the diagnosis 
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and the treatment will initiate very  soon after the development of the disease. Towards this 

direction, a proper prognosis might be proven to be extremely  helpful. Certain risk-factors 

exist which help to predict the development of such a disease. Those factors include genetic 

disorders like Down syndrome, Fanconi anemia, having siblings suffering from leukemia, 

being exposed to ionizing radiation or chemicals like benzene [76].

1.4.1.2 Lymphoblastic Leukemia

In analogy  to myeloid leukemia, lymphoblastic leukemia (LL) develops from an 

uncontrollable proliferation of the white blood cells in the bone marrow and depending on 

which subtype of white blood cells are affected (B, T or NK) LL can be further classified into 

additional subtypes, though the most common ones concern the T-cell and B-cell LL [77]. 

Figure 12 contrasts the bone marrow state under healthy and cancerous conditions. ALL 

develops very rapidly, thereby causing immediate and severe symptoms, while CLL develops 

slower. The symptoms of LL do not considerably differ from those of ML, and therefore the 

type of leukemia cannot be concluded solely  based on the symptoms. Even diagnosis can 

become difficult, requiring a series of tests before drawing a safe conclusion about the type of 

the disease and the initiation of the treatment. The diagnostic toolbox which is used for the 

determination of ML also applies for the case of LL, though immunophenotyping of leukemic 

lymphoblasts by flow cytometry sometimes is essential to determine the correct cell lineage 

[78]. Prognosis for LL includes certain genetic disorders like translocation of a part of the so-

called Philadelphia chromosome to another chromosome [79], Down syndrome, Shwachman 

syndrome, and Bloom syndrome [80].
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Figure 12. Bone marrow with (A) healthy cells and (B) cancerous cells. In case of ALL, 
numerous dysfunctional lymphoblasts are crowding out healthy and functional cells (A) 
resulting in progressive loss of infection-fighting capabilities. Adapted from National Cancer 
Institute (NCI).

1.4.2 Acute Lymphoblastic Leukemia treatment with L-ASNase

The treatment of ALL includes a combination of chemotherapy, radiation and/or 

chemotherapy with stem cells transplantation, and, in principle, it is divided into three 

phases: i) the remission induction phase, the ii) consolidation/intensification phase, and the 

iii) maintenance phase [81]. During the first phase, the goal is to kill as many  as possible 

malignant cells in the bone marrow and the blood. This will lead to the remission of 

leukemia. The consolidation/intensification phase of treatment commences when the disease 

is in remission. This phase aims at the elimination of any leukemic cells which possibly 

might still exist in the body and could potentially  cause the so-called relapse (the re-

appearance of a disease with its characteristic symptoms and signs after a period of 

improvement). The maintenance phase intends to kill any leukemic cells which may 

proliferate and cause a relapse. During this phase, the overall treatments are provided to the 

patients in lower doses as compared to the preceding two phases [82]. This treatment scheme 

is a general one and applies not only for ALL, but also for all types of leukemia.

Chemotherapy  against ALL includes an arsenal of FDA-approved compounds, which most 

often are given in cocktail doses to the patient [83]. Briefly, some of them are Vincristine 

Sulfate, Mercaptopurine, Cyclophosphamide, Dexamethasone, Methotrexate, and Clofarabine 
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[84]. However, chemotherapy treatments in case of ALL is done using some of the 

chemotherapeutics  above and always in combination with the enzyme L-ASNase. L-ASNase 

has been a cornerstone in the treatment of ALL and non-Hodgkin lymphoma [85] since the 

1960s. The observation that L-ASNase causes death to leukemic cells goes back to the 1950s 

when Kidd administered serum of guinea pigs into rat and mice, and he found that this leads 

to regression of the transplanted lymphomas [86]. Almost a decade later, Broome discovered 

that the factor with the anti-lymphoma properties in guinea pig serum was L-ASNase [87]. 

Subsequently, in 1966 Yellin and Wriston [88] managed to isolate L-ASNase from guinea pig 

and demonstrated its anti-leukemic activities; the first clinical use of partially purified guinea 

pig L-ASNase was reported in the same year and concerned the administration to an eight 

years old child. Since then, L-ASNase is one of the most essential anti-leukemic agents, and 

it is always present in the chemotherapeutic treatments during the first remission induction 

phase. Attempts to exclude L-ASNase from the treatment plan because of the high cost 

resulted in enormously  increased relapse rates [89]. The dogma of therapy relies on the, 

partial or total, inability  of the enzyme asparagine synthetase of the cancerous lymphoblasts 

to synthesize L-Asn. Therefore, the survival of the malignant cells is exclusively  dependent 

on the exogenous supply of L-Asn from the patient’s serum, since they  need this amino acid 

to meet the requirements of their high metabolic rate [90]. Intramuscularly  or intravenously 

administered L-ASNase catalyzes the hydrolysis of L-Asn to L-Asp and ammonia and in 

principle destroys the available supply for the leukemic cells, which have no longer access to 

this, essential for them, amino acid [91]. Consequently, they undergo protein-synthesis 

inhibition and ultimately  apoptosis [92]. At this point, it must highlighted the fact that the 

normal cells are not affected by this treatment because they can synthesize L-Asn. 

Interestingly, there have been published some reports which demonstrate the significance of 

depriving L-Gln in parallel with the L-Asn for achieving full anti-leukemic activity of L-

ASNase [93,94]. This is happening to a certain extent if we consider the fact that the L-

ASNases which are currently used for the treatment of ALL can hydrolyze L-Gln, though 

much less efficiently  as compared to L-Asn hydrolysis. However, this claim is highly 

questionable and remains to be further validated or disproved. An important aspect of this 

principle of therapy is that it is believed to be a common intrinsic property for the majority of 

cancer types (including organ cancer) that cancerous cells are characterized by certain 

metabolic enzyme deficiencies, resulting in their total dependency on amino acids from the 

44



surrounding serum environment [95]. This has formed a solid basis for the development of 

the so-called “Amino Acid Depletion Cancer Therapy” [96]. Another example of such cancer 

therapy is the use of the enzyme arginase to treat hepatocellular carcinomas, melanomas and 

prostate carcinomas [97]. These cancerous cells cannot express the urea cycle enzyme 

argininosuccinate synthase (ASS) and thus are sensitive to L-Arg depletion [98].

 

1.4.3 Side effects as a result of L-ASNase treatment

One of the primary concerns regarding the treatment of any type of cancer is the immediate  

treatment which will rapidly  kill as many malignant cells as possible and achieve a successful 

remission. In case of ALL, the use of highly  efficient L-ASNase enzymes which could 

deplete rapidly the serum levels of L-Asn, would play a detrimental role in the success of the 

treatment. This is the reason that for the treatment of ALL, only enzymes from bacterial 

origins have been used for the last fifty years. Those enzymes are the periplasmic 

EcASNase2 and ErASNase2 which were discussed above (section 1.3.3). Both enzymes have 

a very low KM (high affinity) against L-Asn (~ 10 µM for EcASNase2, and ~ 50 µM  for 

ErASNase2) while ErASNase2 is considerably faster (~ 300 s-1) in comparison to 

EcASNase2 (~ 30 s-1) [99]. Given the fact that the serum L-Asn levels fall within the range of 

~ 100 µM, it  becomes understandable that both aforementioned enzymes can function very 

efficiently and deplete L-Asn rapidly.

However, treatment rarely occurs without severe side effects which are mainly  attributed to 

the bacterial origins of those enzymes [100]. Side effects vary from hypersensitivity  reactions 

to lethal anaphylactic shocks and immunogenicity. Others include hepatic dysfunctions, 

pancreatitis (notably in children), central nervous system abnormalities, anorexia, 

hyperglycemia and thrombosis [101-103]. Certain side effects are thought to be caused by the 

intrinsic glutaminase activity  of bacterial L-ASNases, influencing both the glutamine and 

glutamic acid levels [104]. Glutamine is the major transport form of amino nitrogen in blood, 

whereas glutamic acid has a notable impact on the central nervous system, since it plays a 

key role as a neurotransmitter. This belief is contradictory to what was mentioned above that 

L-Gln depletion is absolutely  necessary for full anti-leukemic activity of L-ASNase. Such 

contradictions underscore the necessity  to further elucidate the involved molecular 

mechanisms in ALL treatment. However, the major limitation of L-ASNase used as anti-
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cancer agent is related to the so called “silent inactivation” of the enzyme [105]. This 

inactivation arises from the interaction with specific antibodies which are generated upon 

recognition of the enzyme as antigen by the patients’ immune system. This inactivation of L-

ASNase, which manifests itself in a blood serum half-life of only  about 24 hours, necessitates 

continuous administration and progressively higher doses of the therapeutic enzyme.  It has 

also been shown recently  [106] that, apart from silent inactivation, two highly specific 

lysosomal proteases degrade L-ASNase and therefore are co-responsible for the clearance of 

the enzyme. Considering all the side effects which arise from the use of bacterial L-ASNases 

for the treatment of ALL, it appears reasonable to seek for alternative routes which have the 

potential to result in more friendly medical care and by-pass certain severe side effects, yet 

with no compromises concerning the success of the therapy. Such avenues will be discussed 

in the following section.

1.5 Avenues to improve L-ASNase-based ALL therapy

Given the wide spectrum of side effects which accompany the administration of bacterial L-

ASNases to humans for treatment of ALL, several attempts have been made to circumvent 

certain limitations of this medical therapy. One way to cope with the most serious problem of 

immunogenicity  is to switch the administration of one bacterial L-ASNase to the other one 

[107]. In other words, some patients develop severe immune-reactions when they  are treated 

at the beginning with EcASNase2, while some others can tolerate this treatment better. For 

those patients who react negatively with EcASNase2, different chemotherapeutic protocols 

are employed which include ErASNase2 instead of EcASNase2 [108]. This change 

contributes, usually, positively to the alleviation of the immune reactions. Yet, this is a short-

term “trick” to bypass the immune-reactions but many of the side effects which were 

mentioned above persist. Below are discussed the two main paths which have been 

extensively  explored to pave the way for improved ALL therapy, followed by additional two 

that are currently under development and appear to be highly promising.

46



1.5.1 Polyethylene-glycol (PEG) modification of EcASNase2  

One of the main limitations of the use of L-ASNases as anti-leukemic drug is their silent 

inactivation by antibodies. In addition, it has been shown that a number of proteases 

specifically recognize and degrade EcASNase2, thereby reducing significantly its half-life in 

the body [109]. Those observations led to the modification of EcASNase2 by covalently 

attaching Poly-Ethyleno-Glycol (PEG) molecules on it [110]. This chemical modification 

prevents the enzyme from being degraded by proteases and results in prolonged half-life in 

the body in comparison to the native enzyme (from ~ 24 hours for the native enzyme, up to 1 

week for the modified one) [111]. In addition, it has been so far well-documented through 

extensive clinical studies that  PEG-modified EcASNase2 (commercial name approved by 

FDA: Pegaspargase) led to decreased immunogenicity in certain cases, as evidenced by the 

number of patients who developed anti-EcASNase2 antibodies as compared to those who 

were treated with native EcASNase2 [112]. This may be attributed to the masked epitopes of 

the PEG-modified enzyme, which are no longer accessible for recognition by  the immune 

system [113]. On the other hand, it must not be disregarded the fact that  PEG-modification 

influences the catalytic properties of the enzyme and this is reflected by  the longer period of 

time it takes to deplete serum L-Asn, whereas some of the main side effects remain 

(thrombosis, liver dysfunctions, central nervous system disorders). Moreover, there are 

patients who still do not react positively against the PEG-modified enzyme  and experience 

severe immune reactions [112]. No PEGylated ErASNase2 is approved for treatment so far.

1.5.2 De-immunization of bacterial L-ASNases

It is well documented that the plethora of side effects which arise from the treatment of ALL 

by L-ASNase are associated with the bacterial origins of those enzymes [100]. A possible 

approach to circumvent this sort of problem is the so-called de-immunization of bacterial 

enzymes [114]. This is an effort to reduce the immunogenicity of proteins by mutating amino 

acid sequences (known as epitopes) which are likely to be recognized by the antibody 

repertoire (B-cells epitopes) or sequences which are recognized and bound by the major 

histocompatibility complex II (MHC-II), thereby inducing T-cell immune responses (T-cell 

epitopes) [115]. However, the determination and elimination of B-cell epitopes is an 
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exceptionally  tedious and complicated process due to our limited knowledge regarding their 

conformational profile and how they differ among different human populations [116]. On the 

contrary, the removal of T-cell epitopes is much better well-studied and understood as 

evidenced by certain successful modifications in some “humanized” therapeutic proteins 

which resulted in reduced antibody  responses [117]. In principle, T-cell receptors on CD4+ 

cells recognize peptides which are part from the antigen (usually  15-25mers) and are 

presented in complex with the MHC-II on the surface of antigen-presenting-cells [118]. 

MHC-II is characterized by four binding pockets which recognize and accommodate the side 

chains of different antigenic residues, and this is what defines the binding affinity  and 

specificity [119]. The identification of such putative antigenic T-cell epitopes which bind to 

various MHC-II alleles, has been additionally aided by in silico analyses in some cases. At 

this point it must be underlined the difficulty of not only  determining putative T-cell epitopes 

within an antigen, but also the impact on the catalytic activity  which may  be caused upon 

disruption and modification of certain residues. It is well-established that catalysis can be 

seriously influenced by  amino acid mutations which do not only occur close to the catalytic 

centre of the enzyme, but also by  those that are distant from it [120]. Therefore, the major 

challenge of de-immunization enterprises is the removal of T-cell epitopes coupled with 

retainability of the initial enzymatic function and activity. High-throughput screening of 

combinatorial libraries has proven to be a valuable tool for such experimental endeavors 

[121].

1.5.3 Replacement of the bacterial enzymes by engineered human homologs

Recalling the numerous complications which are associated with the use of EcASNase2 and 

ErASNase2 against ALL, despite several efforts to circumvent them, it is plausible to direct 

our thinking towards alternative drug developments. A major step forward would be the 

replacement of the current bacterial enzymes by  others from human origins. However, as 

stated and analyzed in detail above, the human genome codes for two enzymes that belong to 

those L-ASNase families which show poor catalytic properties against L-Asn hydrolysis (KM 

in the millimolar range). The first example is hASNase3 that belongs to the Ntn-hydrolase 

superfamily, characterized by the particular, post-translational autoproteolysis activation step 

[36-38]. The second example includes the N-terminal domain of the 60-kDa human 

48



lysophospholipase whose sequence significantly resembles the cytoplasmic EcASNase1 and 

presumably exhibits similar catalytic properties [57]. However, although they belong to L-

ASNase families whose members do not hydrolyze efficiently L-Asn, these two human 

enzymes deserve certainly more attention; and their characterization could lay  the basis for 

the development of L-ASNase enzyme drugs which could function efficiently in the body, 

eliminating immune reactions given their human origins. Allies towards those efforts can be 

the different structural determination tools, as well as the well-established directed enzyme 

evolution schemes, coupled with state-of-the-art high-throughput screening systems for the 

identification of catalytically  improved variants. Availability of an enzyme’s crystal structure 

can help to design rational (defined point mutations), or semi-rational (randomization of 

certain amino acids and generation of combinatorial libraries) mutagenesis protocols aiming 

at the generation and isolation of ameliorated variants. However, the bottleneck in such cases 

of directed evolution experiments is the availability of a highly sensitive and efficient high-

throughput screening system. In the following chapters, I will discuss the use and the 

development of such screening systems and their potential applications in directed evolution 

experiments. Engineering of hASNase1 and hASNase3 are excellent enzyme candidates, 

which would absolutely justify the development of high-throughput screening systems.

1.5.4 Encapsulation of L-ASNases applying drug delivery technologies

Over the last decade, there has been an explosive development of multifunctional drug 

delivery systems with very promising application and high perspectives in cancer therapy  and 

biotechnology  [122,123]. Such systems are built of highly customizable materials which meet 

certain requirements for biomedical applications [124]. Perhaps, the most well-studied drug 

delivery system is related to the use of the so-called polyelectrolyte nano- and microcapsules 

[125-128]. These capsules are globular in shape and consist of successive layers of 

polyelectrolytes (negatively and positively charged), and their fabrication is based on the 

Layer-by-Layer (LbL) assembly  technique [129]. Particular features of such assemblies are 

their small size (from nanometer to micrometer diameter range), their biodegradability, and 

their high drug load-capacity [130]. In addition, one of their major advantages is the 

possibility to functionalize their surfaces with specific molecules such as antibodies or other 

recognition chemical groups aiming at their cellular targeting, thereby making them cell-
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specific [131]. Proteins (including antibodies and enzymes) have found very promising 

applications in cancer therapy during the last decades, and this is supported by several 

molecules which are currently under clinical trials, whereas others have been approved for 

medical treatment [132]. The potency of those drugs might be considerably improved if they 

could be combined with certain protein delivery systems. For example, the packaging of L-

ASNases in polyelectrolyte microcapsules could potentially protect the enzyme from 

proteases’ attacks, and consequently, prolonging their half-life in the body. In addition, the 

enzyme encapsulation could alleviate the immunogenicity  problems by masking certain 

epitopes and preventing them from getting in contact with the patient’s immune system. 

However, in order to develop such a protein system, it is absolutely crucial that the protein 

retains its initial (or at least sufficient) biological activity during the process of encapsulation. 

Proteins are very  labile molecules, with inherent instabilities and their tendencies to denature, 

aggregate or degrade being major hurdles in drug delivery systems [133]. Yet, the advantages 

which might arise from successful development of such protein delivery systems certainly are 

worth the efforts towards these directions.

Summary

In the last  section, I discussed several approaches which could improve the treatment of ALL 

using L-ASNases. The first two approaches have already been employed (PEG-modification 

of EcASNase2 and de-immunization of T-cell epitopes), though not very successfully. From 

one side, while the PEG-modified EcASNase2 is cleared from the body in longer periods of 

time than the native enzyme, still some patients react negatively upon administration of this 

drug [112]. On the other hand, application of de-immunization protocols coupled with high 

throughput screening schemes, can result  in mutants which appear be less immunogenic 

[113,117]. However, given the high complexity of the antigenic epitopes and their recognition 

by the human immune system, it is not clear whether those mutants will significantly 

alleviate the immune reactions in patients as well. The last  two approaches which were 

shortly introduced above (1.5.3 and 1.5.4), refer to the engineering of human L-ASNases 

envisioning replacement of the current bacterial enzymes and the development of protein 

delivery systems. Both define a great challenge. Considering the poor catalytic properties of 

hASNase1 and hASNase3, the route of protein engineering is inevitable in these cases. In 
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addition, the development of protein delivery systems requires very careful handling of the 

enzymes avoiding their total loss of catalytic activity. 

In the next two chapters, I will discuss different protein engineering approaches and the 

development of high-throughput screening systems for directed evolution experimental set 

ups; as well as the use of polyelectrolyte microcapsules as drug delivery systems and how 

they could potentially be used in case of L-ASNases.

1.6 Development of high-throughput screening platforms for protein 

directed evolution applications

The progressively increased use of enzymes for biomedical, therapeutic, chemical and 

industrial applications has led to the necessity for development of new catalysts with 

improved properties of interest such as stability, ligand binding, substrate specificity and 

catalysis. In the modern era of molecular biology, researchers are fully supported by the 

availability of state-of-the-art toolboxes which help  them towards the aforementioned goal. 

Two different but complementary approaches have been applied to accomplish this goal: i) 

rational design, and ii) directed evolution methods [134]. 

1.6.1 Rational design 

Rational design is a structure-based approach aiming at the identification of amino acid 

residues which are crucial for the enzymatic activity and potential substitution could modify 

certain properties of interest [135]. This approach is highly  dependent on the availability of a 

crystal structure or at  least of a model of the protein of interest based on the structure of 

another homolog. Additionally, detailed knowledge of precise function and catalytic 

mechanism are required, in order to design precise amino acid changes which can be 

ultimately  incorporated by means of site-directed mutagenesis [136]. Therefore, the success 

of this approach has been predominantly  demonstrated and is mainly reserved for proteins 

which have been extensively studied and characterized [137]. 
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1.6.2 Directed evolution

In contrast, the directed evolution approach does not require knowledge of a structure and 

how it  relates to a function. It mimics the natural process of evolution which is, in principle, 

based on the selection of the fittest sequences [138]. This technique employs the generation 

of random mutations throughout the whole sequence of a protein or the randomization of 

certain regions of the protein sequence, followed by selection or screening for the 

identification of variants with the desired properties [139]. The whole process is repeated in 

iterative cycles until the final improvement is met. Several molecular biology techniques 

have been developed for generating protein diversity in directed evolution experiments. They 

can in principle be divided into two basic parts: the single gene manipulation techniques (the 

most widely used are error-prone Polymerase Chain Reaction (epPCR) [140] and Site-

Saturation Mutagenesis (SSM) [141]), and recombination-based techniques (DNA-Shuffling 

[142] and homology-independent crossovers [143]). All those techniques have been, 

individually and/or in combination, applied with great success in certain cases, and new 

variants were generated with improved properties [144-146]. However, it must be underlined 

the fact that the bottleneck of a directed evolution experimental set up is the availability of an 

efficient screening system which can identify ameliorated variants. To illustrate this better, 

let’s consider an example of a relatively small protein consisting of 100 residues. Even for 

this small protein, the so-called protein fitness landscape [147] includes 20100 (~ 10130) 

possible sequences. It becomes immediately understandable that it is impossible to 

experimentally address the whole sequence space of a protein due its vast size. If we 

randomize just five codons of the gene which codes for the aforementioned protein allowing 

all four nucleotides (A,T,G,C) to be incorporated with equal probability at each position, we 

end up having ~ 1010 mutants on the DNA level and 3*106 (less, due to the degeneration of 

the genetic code) mutants on the amino acid level. In order to screen a library of this size, 

achieving a 95% coverage, one would need to screen at least 107 individual mutants which 

means the use of 105 96-well plates! There is an excellent report which describes the statistics 

of random and site-saturation mutagenesis libraries and the effort required for their screening 

coverage [148].

Statistically, random mutations have the tendency to be deleterious causing considerable loss 

of protein function [149]. As concluded from the outcome of numerous directed evolution 

52



experiments, 30-50% of single amino acids have a significantly  negative impact on the 

proteins’ function, 50-70% are neutral, and only  around 0.1-1% are beneficial [150]. Those 

numbers point to a situation where one could say  that searching for an improved mutant in a 

library is like “searching a needle in the haystack”. Screening of a library plays a pivotal role 

in the identification of improved variants and therefore, it must ensure high coverage and 

sensitivity. Most of the conventional screening tools rely  on the development of novel 

enzymatic assays which are applied in 96-well plates to monitor the activity of several 

enzyme mutants [151]. However, considering the screening effort which is required even for 

the analysis of a single, relatively small library, it becomes apparent  that this is an extremely 

costly  and time-consuming process on a laboratory scale. The screening effort  can be 

enormously  decreased and advanced by the development of high-throughput screening 

systems which can analyze several of hundreds of mutants per unit  of time. In the last decade, 

the field of directed evolution has substantially benefited from the involvement of flow 

cytometry and droplet-based microfluidic setups in the screening of mutant libraries 

[152,153]. Both technologies capitalize on the power of fluorescence and allow the analysis 

of up to 105 events per second, thereby enabling the researchers to screen very big libraries 

within a daily experimental setup. In the next sections, I will discuss the development of 

high-throughput screening platforms based on those two technologies and connect them with 

the engineering of hASNases for the isolation of variants with improved catalytic properties.

1.6.3 Fluorescence Activated Cell Sorting (FACS)-based high-throughput 

screening systems

1.6.3.1 Introduction to flow cytometry instrumentation   

Flow cytometry is a powerful method to analyze multiple parameters of individual cells in a 

population of cells. It is widely used as diagnostic tool in medical applications where 

different cell populations need to be characterized [154]. Its use is progressively growing in 

microbiology  during the recent years, and this is evidenced by the increasing number of 

publications reporting on novel directed evolution studies [155-158]. The principle of flow 

cytometry  is based on the forward and right-angle scattering of laser light  when it is directed 

onto a stream of fluid which contains the cell population of interest. Additionally, several 
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fluorescence parameters can be detected simultaneously. A flow cytometer can be divided 

into three major parts: i) the fluidics, ii) the optics, and iii) the electronics part. The fluidic 

part includes appropriate instrumentation which introduces the cell sample into a fluid, called 

sheath fluid that  is forced through an orifice  resulting in the generation of a stream governed 

by laminar-flow [159]. This process is called hydrodynamic focusing, and the primary goal is 

to produce a single stream of particles (or cells), or in other words, to allow the cells to pass 

the light source in a single manner. A schematic representation of this process is given in 

Figure 13. Once the conditions of the flow stream have been adjusted and the cells are 

flowing in a single mode, light generated by one or more lasers (depending on the equipment) 

is focused on the stream at a defined point. This will cause different forward and side light 

scattering depending on the properties of the particle which flows through the stream (Figure 

14). Additionally, if the particle is characterized by specific fluorescence properties (due to 

fluorescent dyes or intrinsic fluorescence), the emitted light can also be detected [160].  

                             

                               

Figure 13. Hydrodynamic focusing process of a flow cytometer. From a central core, the 
cells (or any particles to be analyzed) are directed downwards to the carrier fluid, termed 
sheath fluid, which is forced to generate a stream. The pressure of the system (usually 50-100 
psi) matches the orifice size (50-100 µm), and this results in the generation of laminar-flow in 
the centre of the stream, allowing the cells to flow in a single manner. In most of the cases, 
the sheath fluid as well as the fluid which contains the cells or particles is phosphate-buffered 
saline (PBS).(Adapted from “Introduction to Flow Cytometry” by Misha Rahman).
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Figure 14. Application of light generated usually by lasers onto the flow stream. The side 
and forward scattering as well as several fluorescence parameters of each particle are 
recorded by the optics part of the instrument for further analysis. (Figure licensed and 
modified from BD).

The scattered and emitted light is detected by  the so-called detector arrays which consist of 

photomultiplier tubes (PMTs). In principle, PMTs enhance the light signals, and this is the 

point where they are digitalized. Furthermore, bandpass filters are used in combination with 

the PMTs for measuring the emission from specific fluorophores. The output signal of the 

PMTs is recorded for each cell, and the final data are stored on a computer for further 

analysis.

Up to this point, this was a description of a conventional flow cytometer. However, a very 

important upgrade of this system is cell sorting. This enables the user of a flow cytometer to 

sort and isolate individual cells from the analyzed cell population based on certain properties 

which are met and imposed by the researcher. For example, the availability of a cell-sorting 

system allows the identification and isolation of a subpopulation of cells, which show higher 

fluorescence intensity  as compared to the rest of the cells within a mixture. This cell-sorting 

part is considered to be an extension of a standard flow cytometer equipment, and very often 

it adds an additional high cost to the already initial high cost of the flow cytometer (it also 

depends on the brand of the instrument). This particular feature of flow cytometers is very 

essential for microbiology  and directed evolution experiments since it allows the isolation 

and separation of individual clones based on their properties; otherwise it  would be only 

possible to acquire general informations for a cell population (e.g. the mean fluorescence 

intensity of the cells) without having means of separating them. In the instruments which 

accommodate such sorting parts (also called sorters) the stream is divided into drops by 

applying vibrational pulses with a defined frequency. The system can be adjusted such that 

there is no high probability of more than one cell per drop [161]. Through the computer 
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settings, we can define how the cells will be sorted before the formation of the drops at the 

end of the stream (for example sorting cells with high and discard cells with low fluorescence 

intensity, and vice versa). Subsequently, based on the measured fluorescence intensity  signal 

of the individual cells, it is decided whether a cell will be sorted or not, and an electrical 

charge is applied to the stream resulting in the charge of the newly formed drop. The charged 

drops can be deflected and further directed by the so-called electrostatic deflection plates. 

The electrostatic deflection plates are negatively and positively charged metals which will 

interact with the charged drops and direct them into collection tubes [162]. A schematic 

representation of a sorting process is shown in Figure 15.

Figure 15. Schematic representation of the sorting process. After the signal analysis (point 
2), the drops which contain the cells are charged, followed by the separation from the main 
stream (drops break-off; point 3). Finally, by passing through the electrostatic deflection 
plates (point 4), they are directed to collection tubes (point 6), while uncharged drops which 
do not meet the sorting requirements are discarded (point 5). (Figure licensed and modified 
from BD).
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1.6.3.2 Applications of flow cytometry and cell sorting in screening mutant 

libraries

Flow cytometry coupled with cell sorting (FACS) has proven to be an invaluable tool for the 

screening of protein mutant libraries. This is largely dependent on the extremely high 

sensitivity provided by the fluorescence that allows the quantitative analysis of different 

parameters at the single cell level. FACS has been very successfully used for screening a 

wide variety of antibody, polypeptide and enzyme mutant libraries, thereby offering the 

possibility to study both binding and catalytic phenomena and linking the mutant genotypes 

with the respective phenotypes [163]. The vast majority of the reported assays rely on 

fluorescence as read-out signal. Over the years, mainly two kinds of fluorescence have 

dominated the development of high-throughput screening assays: i) the use of fluorescent 

polypeptide reporters, and ii) the use of fluorogenic chemical compounds [164]. 

Fluorescent polypeptide reporters generally refer either to autofluorescent proteins like the 

green fluorescent protein (GFP), or to peptide tags which can fluoresce upon treatment of the 

cells with specific chemical compounds [165]. Both types of fluorescent polypeptide 

reporters have been extensively used, and their main advantage is that  they provide very fast 

real-time quantitative resolution. On the other hand, the use of fluorogenic compounds have 

been mostly  used in cases where intracellular enzymatic activities are to be determined, or 

binding phenomena between antibodies and antigens [166]. Yet, it must be underscored that 

the use of such fluorogenic compounds in many cases necessitates cell disruption since they 

are bulky organic molecules and cannot diffuse inside the cells to reach the target molecule. 

In addition, another drawback might be the possibility  of generation of a diffusible product 

which leaks out of the cell, resulting in low resolution quantitative analysis and measuring 

artifacts. By capitalizing on the wide availability  of fluorescent probes described above, it is 

possible to record the fluorescent profile which is interconnected with different phenomena 

taking place within individual cells. Subsequently, we can isolate them according to our 

needs. By generating fusions between autofluorescent proteins and proteins of interest, it has 

become feasible to follow several genetic events like gene expression and regulation, protein 

localization in the cells [167,168], as well as protein-protein interactions using pairs of 

autofluorescent proteins that exhibit FRET [169]. An excellent review which highlights the 
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use of different  fluorescent probes for single-cell FACS applications has been recently 

published [170].

1.6.3.3 Fluorescent screens for enzymatic activity determination by FACS

One of the most challenging applications is the development of fluorescent screens for 

monitoring enzymatic activities. It is often very difficult and demanding to develop a 

fluorescent assay  which enables the detection and the quantitative profiling of enzymatic 

catalysis at  the single-cell level for subsequent analysis with flow cytometry. There are 

several requirements which must be fulfilled and impede such developments. Cells must be 

permeable to the reaction substrate(s) and this can be difficult  in cases where the substrate(s) 

is (are) big molecules whose diffusion is limited. On the other hand, the enzymatic reaction 

must yield a product which does not diffuse out of the cell and simultaneously it needs to be 

adequately fluorescent for detection and single-cell analysis. If the latter is the case, then 

library screening by FACS can become awkward. A potential solution to this handicap is the 

compartmentalization of the cells in water-in-oil emulsions which can entrap  the cells, 

thereby maintaining a physical link between the genotype and phenotype (product of the 

reaction) which is crucial for the recovery  of mutants of interest. Such setups will be 

discussed in the following section of droplet-based microfluidic technology. Yet, several 

studies have been published reporting on single-cell fluorescent assays for screening mutant 

and directed evolution libraries for novel enzymatic activities of glutathione-S-transferases 

[171], esterases [172], proteases [173], and aminoacyl-tRNA-synthetases [174]. 

A promising alternative to the use of fluorogenic substrates is the use of GFP or other 

autofluorescent proteins as activity reporters. During the last  years, there have been 

developed many new approaches relying on the use of GFP to study the functions of other 

proteins as well as to evaluate the activities of target enzymes intracellularly. Worth-

mentioning examples include the involvement of GFP as a reporter protein to study the 

function of the chaperonin GroEL which accepts GFP as substrate. GroEL was randomly 

mutated and the library  was transformed into E.coli cells expressing GFP under the regulation 

of an inducible promoter [175]. The impact of the different mutations on GroEL was reflected 

by the ability of the chaperonin to fold GFP, and, consequently, the GFP fluorescence (which 

depends on the protein’s correct folding) provided a means of evaluating the GroEL mutants’ 
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folding activity. Another example involves the use of GFP to study  the site-specificity  of Cre 

recombinase [176]. This enzyme is widely  used to introduce mutations and substitute genes 

since it  catalyzes the recombination of two identical double-stranded DNA sites of a defined 

sequence mostly known as loxP. One of the limitations of this recombination system is 

related to its dependency on the strict positioning of the loxP sites. Therefore, the generation 

and identification of Cre variants with the ability to recombine artificially  introduced 

recombination sites would be of prime interest. Santoro et al. [176] developed a FACS-based 

genetic screening approach which is based on the co-expression of two plasmids, one coding 

for Cre mutant enzymes and the other containing two autofluorescent proteins (GFP and 

eYFP) cloned in anti-parallel orientations, and two loxP sites upstream of each 

autofluorescent protein. Depending on the activity of the Cre recombinase, the orientation of 

the autofluorescent proteins is rearranged resulting in different expression patterns which are 

reflected by the particular fluorescence of GFP and eYFP proteins. The best Cre isolated 

mutant exhibited a ~ 6*104-fold improved specificity  against  a novel variant loxP site as 

compared to wildtype Cre. In a comparable case, the substrate specificity of an amino-acyl-

tRNA synthetase was changed making possible the incorporation of unnatural amino acids 

into a protein of interest [177]. Furthermore, GFP as reporter protein has been used in 

different ways in cases of directed evolution of hydrolases. An interesting example is the use 

of a pH-sensitive GFP mutant, called pHluorin, whose excitation spectrum alters according to 

the surrounding environment’s pH. The hydrolytic activity of certain enzymes usually 

releases protons which consequently change the pH. Those pH changes were sensed by the 

pH-sensitive GFP, and this provided a means of correlating the hydrolytic activity of mutants 

and the excitation ratio of the pHluorin [178]. As model enzyme for this screening setup, an 

esterase from Geobacillus stearothermophilus was used [178]. All these examples are 

schematically represented by the following two Figures 16 and 17.
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Figure 16. Different FACS-screening approaches which involve GFP as reporter protein. 
(A) GFP can be used as helper protein to follow the folding activity of GroEL, (B) GFP can 
also be used as a reporter protein to indicate the expression of another protein of interest 
whose expression induces the GFP expression, and (C) a pH-sensitive GFP variant senses 
intracellular pH variations resulted from hydrolases’ activities. Figure was prepared using 
Keynote.

Figure 17. Schematic representation of the Cre recombinase FACS-based screening 
system. Cells without Cre recombinase activity  express only eYFP. In contrast, active Cre 
enzyme induces equal expression of GFP and eYFP. Figure was prepared using XPlasMap for 
the construction of the plasmids and Keynote for the final layout.

Perhaps the most relevant for L-ASNases engineering example of a FACS-based high-

throughput screening system which relies on the use of GFP as reporter protein, is the study 
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from Cantor et  al. [179]. In this study, the goal was not the identification and isolation of 

catalytically  improved EcASNase2 variants, but variants which were showing similar 

catalytic properties as the wildtype upon mutation of specific regions acting as putative T-cell 

epitopes. This was an effort for de-immunization of the EcASNase2 enzyme and discussed 

briefly in a previous section. The screening setup  was based on an E.coli genetic 

complementation assay, coupled with the co-expression of GFP as reporter protein. Site-

saturation mutant libraries were constructed using the gene of EcASNase2 whose expression 

was controlled by a constitutive tet-promoter. The mutant plasmids were transformed in a 

five-gene-deletion E.coli strain harboring additionally a second GFP-plasmid under the 

regulation of an inducible lac-promoter. The five gene deletions of the used E.coli strain 

concerned genes which encode the following enzymes: L-ASNase1, L-ASNase2, L-

ASNase3, L-Aspartate Aminotransferase, and L-Tyrosine Aminotransferase. All these 

enzymes contribute to the biosynthesis of L-Asp in E.coli. Consequently, this particular strain 

cannot grow without the amino acid L-Asp in the growth medium. This L-Asp biosynthesis 

deficiency could be rescued by the expression of L-ASNase because the product of the L-

ASNase activity is L-Asp. Therefore, the availability of L-Asp is directly proportional to the 

L-ASNase activity of the expressed mutants in the cells. Co-expression of GFP enabled 

another level of quantification of the L-ASNase activities, since the availability  of L-Asp can 

be correlated with the production of GFP, and consequently  the fluorescence intensity  of each 

individual cell reflects semi-quantitatively  the L-ASNase activity. Figure 18 depicts 

schematically the principle of this screening system, which is of particular interest for the 

engineering of hASNases, though the experimental conditions differ because of certain 

properties of hASNase3 (autoproteolytic activation step) which require specific growth 

conditions. In addition, in case of hASNases in general, the ultimate goal is to isolate 

catalytically  improved variants and not those which appear to be equal to wildtype. More 

details about the application of this screening system to the engineering of hASNase3 will be 

discussed in the Results chapter 5.
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Figure 18. Principle of FACS-based high-throughput screening system for EcASNase2 
using GFP as reporter protein. An L-Asp-biosynthesis-deficient E.coli strain is co-
transformed with two plasmids which express L-ASNase mutants and GFP, respectively. 
Beneficial or neutral mutations result in active enzymes which hydrolyze L-Asn efficiently, 
while deleterious mutations impair the enzymatic activity providing only traces of L-Asp in 
the cellular environment. The higher the availability  of L-Asp, the higher expression levels of 
GFP can be achieved, while lack of L-Asp results in protein synthesis inhibition since this 
E.coli strain cannot synthesize L-Asp. Therefore, the activity of EcASNase2 mutants is 
proportional to the fluorescence intensity, and cells of interest can be analyzed and sorted by 
FACS for further analysis. Figure was generated using XPlasMap for the plasmids, 
MarvinSketch for the L-Asn and L-Asp molecules and Keynote for the final layout. 

Summary

The present section focused on the contribution of flow cytometry, and more specifically of 

FACS, to the development of high-throughput screening systems for directed evolution 

experimental designs. FACS-based screening systems have been successfully employed to 

identify and isolate enzyme variants with improved properties of interest, and certain notable 

examples from the literature were cited above [171-174]. One of the major practical 

limitations of FACS is the lack of its wide availability because of high instrumentation costs, 

and the requirement of a certain level of expertise for the operation of the machine, though 

with the latest user-friendly advanced software, it has become more accessible to researchers 

with different scientific backgrounds.

As with all high-throughput screening systems, the link between genotype and phenotype 

must be maintained, and this can be experimentally demanding in some cases. Furthermore, 
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the screening of experimental setups which center on the study of enzymatic activity  and 

catalysis is more challenging as compared to those which focus on binding phenomena. For 

cases where the screening criterion is enzymatic activity, the involvement of GFP as a 

reporter protein has proven to be extremely beneficial in numerous cases [176-179]. In the 

present study, we capitalized on the use of FACS for the engineering of hASNase3 aiming at 

the generation and identification of catalytically improved variants. We made use of an E.coli 

strain with five gene deletions which totally  impaired the L-Asp biosynthesis in the bacterial 

cells. Co-expression of GFP as reporter protein provided a means of linking the intracellular 

L-ASNase activity  with GFP fluorescence and subsequent sorting of the most highly 

fluorescent cells. This screening protocol is a modification of the one which was used by 

Cantor et al. for the de-immunization of EcASNase2 and is described in Figure 18 [179]. 

More details on the application of this system are included in the Results chapter 5.

In the next  section, I will discuss the use of droplet-based microfluidic setups as high-

throughput screening systems. This technology  can be considered as complementary to the 

FACS-based systems, and despite its only  recent development it appears to be highly 

promising, solving some limitations, such as product diffusion out of the cells, which might 

arise from the other systems. 

1.6.4 Droplet-based microfluidic setups as high-throughput screening 

systems

1.6.4.1 Introduction to droplet-based microfluidics

Droplet-based microfluidics is a subsection of the broader field of microfluidics, which 

includes two more main groups of continuous-flow and digital microfluidics [180]. Droplet-

based microfluidics has emerged as a powerful and immensely promising tool for a number 

of different applications notably in biotechnology [181]. Those setups rely on the formation 

of droplets upon mixing of two phases consisting of two immiscible fluids, one aqueous and 

one oil as shown in Figure 19. The continuous phase is often mineral or fluorinated oil, and 

drops are formed when the oil phase interrupts the stream of the water [182]. The subsequent 

movement of the drops is dictated by laminar flow, similar to drops in case of FACS that was 

described in the previous section. The typical size of the formed droplets is in the range of 
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10-100 µm, and this is dependent on the diameter of the channel within which the two phases 

flow. Additionally, by adjusting the flow rates of the phases, different numbers of drops can 

be produced per unit of time [183]. There 

Figure 19. Snapshot of droplet formation process. The figure represents a “T-junction” 
type of droplet formation. The oil phase is running perpendicular to the aqueous phase and at 
the point  where they meet, the formation of monodisperse emulsions takes place. The two 
black arrows indicate the direction of the flow of the two phases (aqueous and oil). The frame 
shows a subsection of a chip. (Image is a kind offer from Dr. Jean-Christophe Baret’s lab).

are different types of oils which are used for the production of droplets, and these mainly 

include silicon-oil, hydrocarbon-oil, and fluorinated-oil [184]. Each type of oil is 

characterized by distinct properties, and their use is based on the different experimental setup. 

The formation of the droplets takes place in specific chips which are manufactured usually by 

using polydimethylsiloxane (PDMS) (Figure 20) [185]. These chips consist of a network of 

channels within which the water, the oil and the droplets flow. The geometric pattern of 

channels for each chip is unique and is constructed by means of photolithography [186]. 

Details of the process of photolithography and the chip construction are beyond the scope of 

the present study, though excellent references and reviews can be found [187,188].
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Figure 20. Home-made chip used in droplet-based microfluidic setups. In the center of 
the figure, it can be seen a geometric pattern which has been constructed by means of 
photolithography  and consists of channels within which the droplets are moving under 
laminar flow conditions. Positions 1 & 2 correspond to inlet points for tubing connections. 
Positions 3, and 4 are available for electrode connections for the application of electric field. 
(Image is a kind offer from Dr. Jean-Christophe Baret’s lab).

1.6.4.2 Key characteristics of droplet-based microfluidic platforms

In the past, the initial schemes of experiments in droplets were suffering from a major 

limitation due to the polydisperse character of the emulsions [189]. As a result, the 

experiments were taking place in different volumes under uncontrollable conditions. 

However, the contribution of different scientific disciplines such as engineering, chemistry 

and physics to the droplet-based microfluidic field, enabled the design and fabrication of 

microfluidic chips suitable for the  formation of monodisperse droplets as well as the 

achievement of very small sizes (down to the fL range) [190]. Major contribution towards 

this accomplishment was the use of improved surfactants which stabilize the formed droplets 

and prevent them from coalescence inside the devices [191]. Droplets of well-defined, 

homogeneous and small volumes brought the concept of compartmentalization of chemical 

reactions to a more advanced level. Monodisperse emulsions can be considered as 

microreactors within which complex chemical or enzymatic reactions can take place, thereby 

serving as excellent screening systems for biological and chemical compounds [192]. The 

currently available systems allow a number of different manipulations of the droplets within 

the chips including electrocoalescence which allow the fusion of two distinct droplets, 
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collection of several droplets in tubes and incubation for desired periods of reaction times, 

entrapment of cells, as well as sorting of droplets according to their properties applying 

dielectrophoretic force [193]. All these possibilities provide an exceptionally interesting 

toolbox for applications in biotechnology and directed evolution experiments. Figure 21 

summarizes schematically all the aforementioned manipulations of droplets. At this point, it 

must be accentuated the fact that, the different manipulations of the droplets mentioned above 

require the integration of a number of distinct modules in a very controlled manner, and this 

can be technologically challenging. Such modules include electrodes which apply 

dielectrophoretic forces for sorting applications, high-speed cameras coupled with high-

resolution microscopes for the visualization of the droplets inside the devices (it  is very 

essential to inspect the flow of the droplets since different leaking events might occur) and 

specific syringes and tubing [194]. 

Figure 21. Overview of the most common droplet manipulation procedures. (A) droplet 
formation, (B) droplet  re-injection from a reservoir, (C) cell entrapment into droplets, (D) 
droplet incubation in channels, (E) droplet fusion, and (F) droplet sorting. (Images are a kind 
offer from Dr. Jean-Christophe Baret’s lab).
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1.6.4.3 Applications of droplet-based microfluidic platforms

The particular features of droplet-based microfluidic setups as they have been presented in 

the previous section, make such systems highly  customizable and adaptable to a wide range 

of applications. They provide a compartment in which many  reactions can take place, they 

are monodisperse and consequently quantitative measurements can be done, and they  offer 

the possibility to work with extremely small volumes in which single-cells or single-

molecules can be entrapped [195]. Over the last five years a great number of studies have 

been published highlighting the wide applicability of droplet-based microfluidics and have 

defined a new field in the biological applied sciences namely lab-on-a-chip [196]. The use of 

such systems particularly  for biotechnology applications has proven to be exceedingly 

promising as evidenced by a series of novel studies which have been reported and the future 

appears to be brighter.

The possibility of compartmentalization, which is one of the major limitations of 

conventional FACS, has set the basis for the individual encapsulation of cells. The loading of 

cells in droplets can be done in a controlled way, and given the fact that  the droplet’s content 

can be modified by fusion with other droplets containing different reagents, it  enables the 

researchers to carry  out assays at the single-cell level [197]. In addition, the well-defined 

volume and the monodisperse character of the droplets maintain the individuality of each 

microreactor, thereby offering the possibility to analyze them separately and quantitatively in 

a continuous manner and preserve the link between the genotype and phenotype in one 

compartment. Most experiments which have been reported relied on the use of bacterial [198] 

and yeast cells [199], though interesting studies using mammalian cells have also been 

published [200]. The power of such setups has been very  successfully demonstrated in certain 

cases of directed evolution experiments, although it  must  be mentioned that up  until now, 

mainly model enzymes like horseradish peroxidase and !-galactosidase have been at  the 

center of those studies. Baret et al. [201] introduced the term “FADS” (Fluorescence-

Activated Droplet Sorting) in analogy  to the term FACS in their study in 2009, where they 

reported on the development of an efficient droplet-based microfluidic system for the sorting 

of droplets based on the measuring of endogenous !-galactosidase activities of E.coli cells. In 

the same year, Agresti et al. [202] evolved the enzyme horseradish peroxidase by  applying 

directed evolution approaches and sorted the most highly active variants by using a yeast 
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surface display system upon compartmentalization of one yeast cell per droplet. Recently, 

Kintses et al. published their work on the evolution of a sulfatase by  screening directed 

evolution-generated libraries using microfluidic droplet compartments [198]. They expressed 

the mutant  enzymes in the cytoplasm of E.coli cells and upon encapsulation in droplets, the 

cells were lysed using commercially available lysing reagents, which were mixed with cells 

and the enzymatic assay  reagents during the formation of the droplets. Finally, they sorted 

droplets which exhibited the highest enzymatic activities and used the plasmid DNA from the 

lysed cells, which was still present in the droplets, to recover the genotype of the improved 

variants.

Considerable progress has also been made in the field of directed evolution using cell-free 

components. A completely in-vitro ultrahigh-throughput droplet-based microfluidic screening 

system was developed by Fallah-Araghi et al. [203]. In this study, single genes of !-

galactosidase were compartmentalized in aqueous droplets and amplified by PCR. 

Subsequently, the droplets containing multiple copies of the parental gene were fused with 

other droplets containing a cell-free coupled transcription-translation system and the 

appropriate reagents for a fluorescent assay. Ultimately, droplets with desired enzymatic 

activity were sorted applying electrocoalescence. Another example of in-vitro expression 

system was reported by Dittrich et al. [204]. This study centered on the expression of GFP, 

while it  was further advanced by Courtois et al. [205], who stored ~ 106 monodisperse 

droplets in a reservoir and followed the protein expression from single GFP gene copies. It is 

worth mentioning that despite the reported progress in the field of directed evolution, droplet-

based microfluidic setups have been used as cancer diagnostic tools, being able to detect 

mutated oncogenes from a mixture containing 200,000-fold excess of wildtype DNA, upon 

compartmentalization in monodisperse emulsions [206]. Other studies have demonstrated the 

development of an ELISA-like format derived from a droplet-based microfluidic setup 

aiming at  the quantitative detection of a low-abundance enzyme biomarker which can serve 

as diagnostic element [207]. 

The vast majority of droplet-based microfluidic platforms depend on fluorescence 

measurements for the analysis of the droplets’ content. This might be a handicap in some 

cases of enzymes for which no fluorescent assay  is available. Absorption-based 

spectrophotometric assays cannot be used due to their limited sensitivity  since the volumes of 

droplets are minimized to 1 nL (or fL) and consequently  the light path lengths are scaled 

68



down to 1 µm. Additionally, considerable attention must be given to the development of 

fluorescent assays because certain compounds have the tendency to diffuse out  of droplets, 

where the enzymatic reaction took place, entering empty droplets and thus causing erroneous 

measurements. In contrast, the availability of a sensitive fluorescent assay can offer great 

possibilities for the study  of enzymatic activities, performing both steady-state and transient 

kinetic experiments very  rapidly  and accurately [208]. Other methods which have been 

integrated in droplet-based microfluidic setups include Raman and mass spectroscopy [209], 

as well as electrochemical detection modules [210], but they  are all less universal and widely 

used as compared to fluorescence analysis.

Summary

Droplet-based microfluidics has emerged as a powerful tool for high-throughput  applications. 

They  combine a number of highly attractive features which are unique to this technique. 

Among others, those include the very  small volumes in which a great number of different 

reactions can take place demanding extremely small amounts of compounds, and their 

compartmentalization properties which circumvent several problems not easily  solvable with 

conventional FACS-based systems. At this point, though, it  must be underscored the 

possibility of using in-vitro compartmentalization approaches with FACS, but those are 

characterized by three major limitations: i) double emulsions must be generated which are 

complex, ii) they are polydisperse limiting quantitative analysis, and iii) there is restricted 

chances for post-formation droplet manipulation, e.g. fusion of droplets [211]. The field of 

directed evolution has hugely benefited from droplet-based microfluidics so far, and still 

there is much potential for more progress. Perhaps the major limitation of this rising field is 

related to its very exceptional know-how which requires bringing together joint forces from 

different scientific disciplines like engineering, chemistry, and biology. The lack of a ready-

to-use mainstream commercial instrument limits the wide availability  of droplet-based 

microfluidic setups. This is the main advantage of FACS-based systems which can be 

obtained commercially  and operated by a wide range of researchers due to their simplified 

and user-friendly interface. On the other hand, the exponentially  emerging interest for the 

droplet-based microfluidic applications provides good reasons to believe that, in the future 

the availability  of such setups will become wider. Table 2 might partially explain why. The 

69



present study focused on the development of a droplet-based microfluidic high-throughput 

screening system for the directed evolution of hASNases. The unavailability of a sensitive 

fluorescent assay for monitoring L-ASNase activity prompted us to develop  and validate such 

an assay whose sensitivity and applicability was demonstrated in both macroscopic (cuvette) 

and microscopic (droplets) volumes using recombinant purified EcASNase2. Additionally, 

we studied the system quantitatively up  to the single-cell level by displaying the EcASNase2 

in the inner membrane of E.coli cells, thereby forming a solid basis for the screening of 

hASNase3 mutant libraries aiming at the isolation of catalytically improved variants. 

Table 2. Comparison of cost and time required for screening, using traditional robotic 
microtiter plates and droplet-based microfluidic setups. (Data adapted from [202]).

Robot-microtiter plate 
-based screening

Droplet-based microfluidic 
screening

Total reactions 5x107 5x107

Reaction volume 100 µL 6 pL

Total volume 5,000 L  150 µL

Reactions/day 73,000 1x108

Total time ~ 2 years ~ 7 h

Number of plates/devices 260,000 2

Cost of plates/devices $520,000 $1.00

Cost of tips $10 million $0.30

Amortized cost of instruments $280,000 $1.70

Substrate $4.75 million $0.25

Total cost $15.81 million $2.50

In summary, it  is very  important to point out that both FACS and droplet-based microfluidic 

setups can become two complementary platforms for the high-throughput screening of 

mutant libraries derived from directed evolution experiments. Each approach has its own 
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advantages and disadvantages as described above in the respective sections. However, the 

fortunate situation of the availability of both techniques can form a firm basis for success in 

the challenging and multi-step field of directed evolution (Figure 22). 

Figure 22. Schematic representation of the major processes, strategies and techniques of 
directed evolution. A great number of methods are available for generating diversity, 
screening for the fittest mutants and further characterizing them by biophysical and 
biochemical means. Figure was prepared using Keynote.
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1.7 Polyelectrolyte capsules for drug delivery applications

Drug delivery is a scientific field which centers on the development of customizable systems 

that can deliver therapeutic compounds quantitatively to a specific target in a controllable 

manner in the body [212]. Several carrier systems have been developed during the last fifteen 

years, and those include: i) liposomes [213], ii) solid lipid nanoparticles [214], iii) dendrimers 

[215], iv) magnetic nanoparticles [216], and v) carbon nanotubes [217]. However, perhaps 

the most extensively and well-studied class of drug vehicles is the polyelectrolyte capsules 

(PECs) [218-220]. Conceptually, they were introduced by Möhwald and his team in 1998 

[221], and since their invention, PECs have influenced several areas of science, with the most 

notable impact on biomedicine and more specifically the therapeutic applications.

1.7.1 Formation of polyelectrolyte microcapsules 

The fabrication of PECs is based on a process called Layer-by-Layer (LbL) assembly and 

includes the successive adsorption of positively and negatively charged polyelectrolyte layers 

on an initial sacrificial template, mostly composed of calcium carbonate spheres [222]. The 

polyelectrolytes can be synthetic such as polystyrene sulfonate (PSS) and allylamine 

hydrochloride (PAH), or biocompatible, which are preferred for biomedical applications, 

such as poly-dextran sulfate (PDS) and poly-arginine hydrochloride (PArH). A schematic 

representation of the fabrication process of PECs is shown in Figure 23. The initial template 

which is also known as core, is responsible for the final shape, morphology  and properties of 

the polymeric structures [223]. Polystyrene (PS), SiO2 and CaCO3 are the most widely used 

cores, whereas MgCO3, CdCO3, and melamine formaldehyde (MF) are less popular. Each 

template material is characterized by different properties, and the choice depends on the 

application. For biomedical applications, CaCO3 is by far the most preferable due to its 

biocompatibility and biodegradability  [224]. In addition, spherical structures of CaCO3 are 

highly  porous and have a large surface area, thereby enabling the adsorption of high amounts 

of biomolecules and chemical compounds which serve as drugs [225].
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Figure 23. Layer-by-Layer (LbL) assembly for polyelectrolyte microcapsules (PECs) 
formation. The process commences with the loading (see different approaches below) of the 
molecules of interest  onto an initial template. Subsequently, poly-ionic polyelectrolytes are 
adsorbed through electrostatic interactions onto the surface of the template. The coating can 
begin with either polyanions or polycations depending on the properties of the initial template 
in combination with those of the loaded molecule. After the deposition of the desirable 
number of polyelectrolyte bilayers, the initial sacrificial template is dissolved by different 
means, resulting in the entrapment of the molecules in the interior space of the final hollow 
polyelectrolyte capsules. Figure was prepared using Keynote.

Another interesting biologically-derived example of template is the erythrocytes (red blood 

cells). Their main advantage is related to their absolute biocompatibility, though their major 

disadvantage is that they need special handling which results in high cost [226]. Depending 

on the subsequent application, different sizes of templates can be formed ranging from 

nanometers to micrometers diameter [227]. The size and the morphology of the initial core 

will have a direct impact on the final formed capsules. Nanometer- capsules are usually 

targeted for intracellular uptake, while micrometer-sized assemblies can accommodate higher 

amounts of drugs and are useful for extracellular or in-vitro applications [228].

The loading of the drug onto the capsules can be done by various approaches, and in principle 

there is no a straightforward protocol which would have to be followed at the beginning. The 

encapsulation of a drug highly  depends on the properties of the compound to be loaded, and 

this is a trial-and-error process. There are basically three main methods for encapsulation: i) 
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encapsulation by co-precipitation, adsorption or solvent exchange, ii) reversible shrinking/

expansion triggered by pH and light, and iii) irreversible shrinking induced by  salt  and 

temperature. Encapsulation by  co-precipitation is called the process in which the molecules 

of interest (e.g. drug) are combined with the primary compounds which will form the 

template upon mixing. For example, CaCO3 cores are produced upon mixing equal molar 

amounts of CaCl2 and Na2CO3. During co-precipitation, a chemical compound will be mixed 

together with CaCl2 and Na2CO3 resulting in its entrapment in the interior space of CaCO3 

cores [229]. In contrast, adsorption is called the method in which the molecules of interest are 

added to already preformed cores, driven by  diffusion and electrostatic phenomena [230]. It 

is plausible to point out  that, in case of co-precipitation higher loading efficiencies can be 

achieved as compared to the adsorption approach; however quite often the co-precipitation of 

molecules results in cores, and consequently in capsules, of bigger size [231]. The solvent-

exchange is based on the different solubilities of molecules in different buffers, and this is a 

less common approach of loading [232]. 

The other two methods for loading are applied once the final capsules have been fabricated. 

The pH approach is based on the observation that PECs expand by  increasing the pH of the 

solution, and this results in the opening of pores which allow the penetration of molecules 

[233]. The pH increase and the loading of the molecules are followed by pH decrease which 

induces the closing of the pores, thereby entrapping the molecules inside the capsules. Light-

induced loading is somewhat more complex than the pH-induced process. It relies on the use 

of certain types of molecules (e.g. azo-benzene) which undergo cis-trans configurations upon 

light exposure, which ultimately  open and close the pores of the capsules for encapsulation of 

molecules of interest. In the simplest case, UV-light can be applied to transiently open pores 

to the capsules [234]. Irreversible shrinking by temperature and salt depends on the particular 

intrinsic properties of PECs to undergo an irreversible shrinking or even expansion upon 

overcoming a certain temperature and ionic strength threshold [235]. This approach can lead 

to mechanically  more robust capsules, but it  employs quite harsh and aggressive loading 

conditions (extreme ionic strength and temperature values) which are not tolerated by 

biomolecules such as enzymes. At this point it  must pointed out that, the method which will 

be followed for the loading of the molecules of interest onto the initial cores or the final 

capsules, depends on several parameters, and they must be taken into account during the 

experimental design. Those parameters are mainly associated with the conditions which are
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imposed by each approach and whether they are tolerable by the molecules of interest. 

Figure 24 summarizes schematically the three main encapsulation methods described above.

Figure 24. Different encapsulation methods. (1A) co-precipitation, (1B) adsorption, and 
(1C) solvent exchange. Reversible shrinking/expansion of capsules by (2A) pH and (2B) 
light. Irreversible shrinking by (3A) temperature, and 3B) salt. Figure was prepared using 
Keynote.

1.7.2 Targeting and content release of PECs

One of the most attractive properties of PECs for biomedical applications is the possibility to 

functionalize their surface, predominantly using antibodies, and ultimately target  them to 

specific cells [236]. There have been reported several studies focusing on the properties of 

PECs upon functionalization with antibodies or other targeting agents (e.g. affibodies) [237], 

since the attachment of such molecules on the surface of the capsules affects their size, their 

mobility  as well as the activity of the encapsulated bioactive molecules [238]. In the vast 

majority  of delivery applications, the so-called delivery scheme consists of the three 

following steps: i) targeting and directing of PECs to specific cellular parts, ii) internalization 
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of the capsules by the cells, and iii) release of the contained compound which acts as a drug 

or pro-drug [239]. Internalization typically  takes place through phagocytic events, and there 

are different studies that  have shown this [240,241]. Regarding the release of the capsules’ 

content, numerous methods have been developed which in principle, can be classified into 

three categories depending on the nature of the stimuli that trigger the release: i) physical, ii) 

chemical and iii) biological [242]. Figure 25 describes a number of different release methods 

from all three categories mentioned above.

                          

Figure 25. Main three categories of release. Biological, chemical and physical methods are 
further classified into specific release approaches as depicted in the figure. (Adapted from 
[242]).

Some of the most interesting and well-studied release approaches include the use of light as a 

source of electromagnetic field [243], application of magnetic and electric fields [244], 

ultrasounds [245], enzymatic degradation [246], and chemical stimuli such as pH and salt 

[247]. When light is used, the mechanism involves a localized temperature increase on the 

polymeric shell of metal nanoparticles, resulting in the generation of pores, thereby releasing 

the content [248]. A similar principle governs the approach of the magnetic field application, 

with the only  variation that magnetic nanoparticles are used in this case. Ultrasound waves 

have also been used successfully  to induce release of capsules’ content in certain studies 

[249]. Enzymatic degradation-based release relies on the degradation of the outer polymeric 
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shell of the PECs, thus liberating the encapsulated compound [250]. Low pH and high 

concentration of salt are two parameters which can additionally  induce release (they were 

mentioned as methods of encapsulation as well), though with restricted applicability in the 

biomedical applications.

Evidently, the release methods are exceedingly diverse, and each of them is characterized by 

certain advantages and disadvantages. The decision about which method must be followed 

depends on the specific application we are interested in, as well as the properties of the 

encapsulated molecules since their function could be irreversibly influenced by the applied 

parameters for achieving release (low pH, heating).

1.7.3 Applications of PECs

The use of PECs covers a really wide spectrum of applications in manifold areas. There are 

many outstanding reports which highlight and analyze the use of PECs in various fields such 

as biosensor development [251], dentistry  [252], mucosal irritation of slugs [253], anti-

reflection coating development [254]. However, the most relevant application for the present 

study is the contribution of those assemblies to the area of biomedicine and more specifically 

the cancer treatment. Current chemotherapy suffers from certain limitations which can be 

very drastic in some cases of treatment. Major impediments of the currently used anti-

cancerous regimens are the lack of specificity and selectivity against the cancer cells [255]. 

Typically, they do not affect only malignant cells but also healthy ones, resulting in several 

side effects and general cytotoxicity. In addition, usually quite high amounts of the drugs 

must be used in order to achieve a considerable treatment level and this leads to more dose-

dependent side effects [256]. Another important limitation, which is also related directly to 

leukemia treatment, is the high degradation susceptibility  of the used anticancer compounds. 

Drugs, especially enzymes, are getting degraded rapidly  in the body by proteases and other 

clearance mechanisms (reticuloendothelial system), thus seriously restricting their efficacy 

[257].

Polyelectrolyte capsules and nanotechnological drug delivery systems in general, can be used 

to overcome the aforementioned limitations which arise from conventional cancer treatment 

schemes. Principal advantages of those systems over the free drug administration are i) their 

small dimensions, ii) the possibility  of specific cell targeting, iii) the protection of the drug 
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molecules through their encapsulation, thereby increasing their stability  and consequently 

their half-life, and iv) the possibility of combination of more than one drug at once, which 

could offer a synergistic anticancer effect [258]. Current preliminary results at least on the in-

vitro level concerning the efficacy of drug-loaded PECs against cancer cells are very 

promising [259]. The same holds for some in vivo-model experiments using mice [260]. 

However, still some hurdles need to be addressed and further investigated for the 

improvement of such systems. 

Summary

The invention of polyelectrolyte capsules has undoubtedly defined a new challenging field of 

research, with a vast potential for applications in many disciplines of material science and 

biosciences. Particularly in biomedicine, the use of PECs appears to be highly promising 

especially for the advancement of cancer treatment [236,240]. Given the complex and still 

uncovered properties of cancer cells, it becomes apparent that the development of “smart” 

delivery systems for the treatment of cancer will be an exceptionally  demanding and 

challenging task. Many of the aforementioned possibilities concerning the cell targeting and 

release have been demonstrated only on the laboratory level and their applicability in real 

schemes is still missing. However, considering the great interest which has been generated 

over the last  years towards the development of such systems, as well as the first promising 

preliminary results, it  is almost certain that further progress will be accomplished in the near 

future. The present study  addressed the possible contribution of PECs to the treatment of 

ALL. The encapsulation of different L-ASNases using biodegradable and biocompatible 

polyelectrolyte microcapsules was investigated. As stated above, of great importance in case 

of drug delivery systems, is the maintenance of the functionality  of the loaded drug during 

the preparation of the capsules. This is particularly true for enzymes whose activity can be 

irreversibly affected by different materials, or by  reaction conditions required for capsule 

fabrication. Those factors were investigated for EcASNase2 and ScASNase1. We developed 

an efficient protocol for the successful encapsulation of labile biomacromolecules, allowing 

them to maintain their functionality upon encapsulation. In addition, the thermal stability, the 

stability  at the physiological temperature (37 !C), the long-term storage stability  and the 

proteolytic resistance against certain proteases which degrade the enzyme during ALL 
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treatment, of the encapsulated enzyme were investigated. Ultimately, we tested the 

encapsulated EcASNase2 and ScASNase1 using two leukemic cell lines aiming at the 

evaluation of their efficacy under in-vitro conditions.

1.8 Aims of the present work and Overview

The present work aimed at the biochemical and biophysical characterization of different L-

ASNases, as well as the development and utilization of high-throughput screening platforms 

for the directed evolution of L-ASNases. Primary  attention was drawn to the study of two 

human enzymes which possess L-ASNase activity, namely  hASNase1 and hASNase3, 

envisioning future replacement of the bacterial enzymes which are currently used in 

antileukemic regimens. Chapter 2 discusses the discovery related to the property  of 

hASNase3 to be activated by the free amino acid glycine. This is demonstrated by 

biochemical means and by the crystal structure determination in complex with glycine, which 

forms the basis for proposing a mechanistic model that underlies this activation. Chapter 3 

focuses on the development of an E.coli co-expression system for the two ! and " subunits, 

which form the final active state of hASNase3. This work provides an alternative to 

circumvent the need of hASNase3 activation by  glycine, thereby skipping many experimental 

steps for the preparation of the enzyme. The circular permutant-like enzyme produced by this 

method exhibits the same specific activity as the enzyme which is activated by glycine. 

Subsequently, chapter 4 describes the characterization of a novel three-step, coupled-enzyme 

assay for L-ASNase which can be employed in both fluorescence and absorbance mode. The 

novelty of this assay arises from the fact that, it is the first fluorescence assay for L-ASNase 

activity determination which solely  depends on its natural substrate L-Asn. A number of 

available fluorescent  assays for monitoring L-ASNase activity  are based on the use of 

substrate analogs, thus not being suitable for screening L-ASNase mutant libraries for the 

identification of variants improved for L-Asn hydrolysis. This assay might be also useful in 

clinics for the determination of L-ASNase activities from L-ASNase-treated patients who are 

suffering from acute lymphoblastic leukemia. Chapter 5 is devoted to unpublished results 

which account for a considerable percentage of this work. The chapter is divided into two 

major parts with the first one centering on the screening of hASNase3 mutant libraries and 

the identification of catalytically improved variants; and the second describing the 
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development of a new droplet-based microfluidic high-throughput screening system for 

directed evolution applications. Chapter 6 discusses the first biochemical characterization of 

a second human L-ASNase, designated hASNase1, which is a mammalian homolog of 

bacterial-type 1 L-ASNases. A particular property of this enzyme is its high degree of 

allosteric regulation by its substrate L-Asn despite its monomeric state under assay 

conditions. This enzyme resides at the N-terminal domain of a 60-kDa enzyme, reported to 

act as lysophospholipase, though our biochemical data for the N-terminal truncated domain 

do not support  these findings. Structural characterization of hASNase1 in complex with 

different ligands such as L-Asn or lysophospholipids could shed more light  on the interesting 

biochemical features of this enzyme. The experimental section ends with chapter 7 which 

describes our work on the encapsulation of L-ASNase1 from Saccharomyces cerevisiae and 

L-ASNase2 from Escherichia coli by capitalizing on the Layer-by-Layer assembly 

technology. We established an easy and widely applicable protocol for the fabrication of 

polyelectrolyte microcapsules filled with active enzyme, which caused killing of leukemic 

cells upon incubation in-vitro. Eventually, chapter 8 summarizes and discusses the most 

significant findings of the present work, correlates them with published work, addresses 

certain weak points which could be further improved, and suggests potential experimental 

directions that may form the basis for extending this work in the future.
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SUMMARY

Human asparaginase 3 (hASNase3), which belongs
to the N-terminal nucleophile hydrolase superfamily,
is synthesized as a single polypeptide that is devoid
of asparaginase activity. Intramolecular autoproteo-
lytic processing releases the amino group of
Thr168, a moiety required for catalyzing asparagine
hydrolysis. Recombinant hASNase3 purifies as the
uncleaved, asparaginase-inactive form and un-
dergoes self-cleavage to the active form at a very
slow rate. Here, we show that the free amino acid
glycine selectively acts to accelerate hASNase3
cleavage both in vitro and in human cells. Other small
amino acids such as alanine, serine, or the substrate
asparagine are not capable of promoting autopro-
teolysis. Crystal structures of hASNase3 in complex
with glycine in the uncleaved and cleaved enzyme
states reveal the mechanism of glycine-accelerated
posttranslational processing and explain why no
other amino acid can substitute for glycine.

INTRODUCTION

The human genome codes for at least three enzymes capable
of hydrolyzing the amino acid asparagine to aspartate and
ammonia. The most-studied enzyme is the lysosomal aspartyl-
glucosaminidase (AGA), whose function is to remove carbohy-
drate groups linked to asparagine, as the final step in the
degradation of cell-surface glycoproteins (Oinonen et al.,
1995). Defects in AGA are the cause of aspartylglucosaminuria,
an inborn lysosomal storage disease (Saito et al., 2008). A
second enzyme is called 60 kDa lysophospholipase, which has
an N-terminal domain homologous to the E. coli type I asparagi-
nase (Sugimoto et al., 1998). The third enzyme, and the focus of
this work, is called L-asparaginase (also known as hASRGL1/
ALP [Bush et al., 2002] or CRASH [Evtimova et al., 2004]). Due
to the sequence and structural homology of this enzyme with
the E. coli type III asparaginase, we refer to this human aspara-
ginase as hASNase3. A member of the N-terminal nucleophile
(Ntn) family of hydrolases (Brannigan et al., 1995), this 308 resi-
due enzyme is produced as an inactive single polypeptide that
must undergo a peptide-bond break between residues Gly167
and Thr168 to attain asparaginase activity. Cleavage releases
the amino group of Thr168, and this endows the enzyme with

catalytic activity. This mechanism of protease activation is
different from that which occurs in proenzymes (zymogens)
such as trypsinogen, pepsinogen, thrombin, or caspases, where
the inactivating protein region is cleaved off, either through
another protease or through autoproteolysis, and then separates
from the now-active enzyme (Kassell and Kay, 1973; Wolan
et al., 2009). Importantly, the fold of Ntn family members is
unchanged after the cleavage reaction, with the N-terminal
(referred to as the a chain) and C-terminal (b chain) parts remain-
ing tightly associated to build a single functional unit. The cleav-
age reaction of Ntn hydrolases occurs autocatalytically, without
a need for proteases (Brannigan et al., 1995; Xu et al., 1999).
Expression of hASNase3 in normal human tissue, observed in

all developmental stages except neonate (based on the ex-
pressed sequence tags database), is restricted to a few organs
that include the testis, brain, esophagus, prostate, and prolifer-
ating endometrium (Bush et al., 2002; Weidle et al., 2009).
Interestingly, it has also been detected in several human tumors
(Weidle et al., 2009), but the implication or the role of hASNase3
in cancer biology is unknown. To increase our understanding of
this enzyme, we recombinantly expressed hASNase3, which
purified as the uncleaved form. Since the uncleaved enzyme is
catalytically inactive, we sought conditions that would promote
the transformation to the cleaved and active state. We report
that the free amino acid glycine highly selectively acts to promote
the autocleavage reaction of hASNase3 in a concentration-, tem-
perature-, and time-dependent manner. In addition, we present
crystal structures of hASNase3 in complex with glycine that pro-
vide a molecular basis for the glycine-induced autocleavage of
the enzyme. We propose that glycine-dependent activation of
hASNase3 is related to the alteredmetabolic profile of cells char-
acterized by increased glycolysis and reduced flux through the
tricarboxylic acid (TCA) cycle. Since de novo synthesis of aspar-
tate requires the TCA cycle intermediate oxaloacetate, such cells
can instead convert asparagine to aspartate using hASNase3.
Glycine, synthesized from the glycolysis metabolite 3-phospho-
glycerate via serine, would act as the sensor that regulates
cellular aspartate concentrations via hASNas3 activation.

RESULTS

Correlation between Glycine and hASNase3 Cleavage
Upon bacterial expression and purification, hASNase3 exhibited
a single !40 kDa band on SDS-PAGE corresponding to the
uncleaved form (Figure 1A). In contrast, when we purified the
homologous E. coli type III asparaginase, the predominant
form was the cleaved version that presents itself as two
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lower-molecular-weight bands on a gel (data not shown). The
proportion of cleaved hASNase3 did increase gradually over
time, but even after 3 days, the uncleaved form constituted
!70% of the protein incubated at 25"C and!54% of the protein
incubated at 37"C (Figure 1A; Figure S1 available online). The
measured asparaginase activity of hASNase3 was proportional
to the amount of cleaved enzyme, indicating that only the
cleaved state was catalytically competent (data not shown).
The extremely slow and incomplete self-cleavage of hASNase3
is consistent with a previous report (Cantor et al., 2009), but is
different from observations made with bacterial (Borek and Jas-
kólski, 2000; Borek et al., 2004) and plant (Michalska et al., 2006)
asparaginases, which showed efficient autoproteolysis in vitro
even at 4"C, with the bacterial enzyme being fully cleaved in
the first purification steps.

Analogy to other studied Ntn family members (Michalska et al.,
2008) suggested that self-cleavage commences with the side
chain of Thr168 acting as a nucleophile that attacks the carbonyl
of Gly167 (Figure 1B, subpanel A). Note that the essential residue
Thr168 of hASNase3 plays a dual role. First, its side chain is
required for the cleavage reaction. Second, with the break of
the peptide bond between Gly167 and Thr168, the freed amino
group of Thr168 participates in catalyzing the hydrolysis of
asparagine. A base that would accept the proton from the
Thr168 hydroxyl group would accelerate the first step of the
cleavage reaction. In several Ntn enzymes, the side chain of an
aspartic acid residue prior to the scissile bond acts as this
base (Qian et al., 2003), but in hASNAse3 the residue preceding
Thr168 is a glycine. When replacing this glycine with aspartate in
hASNase3, no cleavage was detected (data not shown).

Figure 1. Self-Cleavage of hASNase3 Is Slow in the Absence of Glycine
(A) hASNase3 (4 mg/ml) was incubated in storage buffer at 25"C or 37"C, and samples were taken daily. Even after 3 days, the majority of the enzyme is still

uncleaved (top band). Cleaved protein runs as two separate bands of lower molecular weight, representing the a and b subunits. Percentage denotes uncleaved

band intensity relative to the sum of all forms (uncleaved + a + b).

(B) Schematic of the proposed cleavage reaction. A base (shown as B) would accept the proton from the hydroxyl group of Thr168. The identity of this base in the

case of hASNase3 was not known prior to this work.

(C) hASNase3 was incubated for 1 day at 25"C at different pH values using appropriate buffers: citrate, pH 2.5–6.5; Tris, pH 7.5 and 8.5; Bicine, pH 9.0; TAPS, pH

9.5; glycine, pH 9.5 (red arrow); CAPS, pH 10.5. All buffers were at 100 mM. The enzyme sample prior to incubation is labeled #80"C in all figures.

See also Figures S1 and S2.
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Interestingly, the E. coli type III enzyme, like the human enzyme,
has a glycine residue preceding the cleavage site, yet it un-
dergoes self-cleavage efficiently (Borek et al., 2004). This points
to divergence in the mechanism of cleavage between Ntn family
members. After building the tetrahedral intermediate, water is
thought to act to complete the hydrolysis reaction (Figure 1B,
subpanel C). Due to the observation of very slow cleavage of
hASNase3 at physiological pH, we reasoned that a high pH
would promote deprotonation of the Thr168 hydroxyl, making
it more nucleophilic. However, incubation of hASNase3 in three
different buffers spanning the pH range of 9 to 10 showed no in-
crease in the cleaved form of the enzyme (Figure S2). When
repeating the pH-scanning experiment in a wider pH range
(from 2.5 to 10.5), all but one of the ten pH conditions tested
showed the single band of the uncleaved enzyme, whereas at
pH 9.5, using a glycine buffer, we observed essentially complete
cleavage of hASNase3 (Figure 1C, red arrow). The two lower-
molecular-weight bands of about 22 and 15 kDa observed with
glycine buffer correspond to residues 1–167 (a chain) and 168–
308 (b-chain), respectively, of the cleaved enzyme. This finding
was surprising since we had already tested this pH range and
saw no increase in cleavage (Figure S2). Indeed, the lane
adjacent to the glycine-treated sample (Figure 1C) contained
TAPS buffer at the same pH of 9.5, yet showed very little cleav-
age. This suggested that glycine, rather than simply the pH,must
play a critical role in promoting cleavage of hASNase3, poten-
tially as the base depicted in Figure 1B.
Next, we assessed the dependence of self-cleavage on the

glycine concentration and pH. Indeed, the extent of cleavage
was glycine-dose dependent (Figure 2A), and even the lowest
glycine concentration (5 mM) promoted 40% cleavage, a cleav-
age amount requiring !11 days in a buffer lacking glycine (Fig-
ure S1). Significantly, this glycine acceleration of hASNase3
cleavage occurs at the physiological pH of 7.5 nearly as effi-
ciently as at pH 9.5 (Figure S3). We wondered whether other
amino acids could function as cleavage accelerators. Since
this would presumably require the binding of the amino acid to
the active site of hASNase3, we reasoned that amino acids
with small side chains would have a greater chance of replacing
glycine. However, the addition of alanine or serine did not in-

crease the proportion of cleaved enzyme above that obtained
by intrinsic cleavage (Figure 2B). Moreover, the substrate aspar-
agine also did not accelerate the cleavage rate beyond its
intrinsic rate. Likewise, small-molecule metabolites, such as gly-
colate, glyoxylate, sarcosine, oxalate, choline, or ethanolamine,
failed to trigger or inhibit the cleavage reaction (Figure S4).
We also examined the effects of these metabolites on the

asparaginase activity of the cleaved enzyme. Indeed, the cleav-
age-activator glycine, as well as some of these compounds at
relatively high concentration, inhibited the activated form of the
enzyme. While glycine at either 10 or 50 mM reduced asparagi-
nase activity by about 50%, glycolate, glyoxylate, oxalate,
L-aspartate, and serine showed a concentration-dependent
effect, lowering the catalytic activity by up to 5-fold at nonphy-
siological 50 mM (Figure S5). This demonstrates that several of
the tested compounds have the ability to bind to the enzyme
(at least to the cleaved form), but only glycine has the ability to
promote the cleavage reaction.

Structural Analysis of hASNase3
To understand the mechanism behind the glycine-induced
cleavage reaction, we solved the crystal structure of uncleaved
hASNase3 in complex with glycine. Our previous work on
hASNase3 (Nomme et al., 2012) revealed that, depending on
the age of our crystals, we can obtain the structure of either
the uncleaved (using fresh crystals) or cleaved state (using crys-
tals grown several months earlier). In those structures, we
observed a precipitant molecule (e.g., malonate, sulfate) occu-
pying the asparagine-binding site. In fact, due to competition be-
tween the precipitant and any added amino acid, in order to
obtain the hASNase3-ASP complex, we had to transfer the
crystals out of the precipitant and into a highly concentrated
ASP solution (Nomme et al., 2012). Based on this experience,
to obtain the uncleaved hASNase3-glycine complex, we used
freshly prepared crystals, whichwere transferred to a 3Mglycine
solution. The high glycine concentration was required to stabilize
the crystal in the absence of the precipitant and to supply the
glycine for complex formation. Despite using fresh crystals that
were exposed only shortly to a pH 7.5 glycine solution, diffraction
data revealed full hASNase3 cleavage. Based on the cleavage

Figure 2. Increase in Extent of hASNase3 Cleavage Is Specifically Dependent on Glycine
(A) hASNase3 was incubated at 25"C for 42 hr in storage buffer containing increasing glycine concentrations at pH 7.5. There is a glycine-dose-dependent

increase in the extent of cleavage. Percentage reflects quantification of uncleaved band intensity, with enzyme prior to incubation set at 100%.

(B) hASNase3was incubated at 25"C in storage buffer supplemented with 10mMglycine, alanine, serine, or asparagine, and samples were taken daily for 3 days.

Quantification as in (A). In all conditions, the amount of cleaved hASNase3 slowly increases due to the intrinsic rate of autoproteolysis. However, only glycine

accelerates autocleavage beyond the intrinsic rate.

See also Figures S3, S4, S8, and S9.
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mechanism (Figure 1B), we reasoned that a lower pH and
an even shorter soak time would allow us to trap the enzyme
in its precleaved state, the state relevant for probing the
glycine-induced cleavage reaction. Yet again, a data set
(1.91 Å resolution; Table 1) collected from a crystal soaked in
3 M glycine (pH 4.9) for <1 min showed full protein cleavage
(Figure 3A). In this postcleavage state of hASNase3, glycine
bound at the active site very similarly to the product aspartate
(Nomme et al., 2012), forming interactions with the conserved

residues Arg196 via its carboxylic acid moiety and Asp199 via
its amino group (Figure 3B). The sole interaction with Thr168
occurs between the glycine amino group and the hydroxyl moi-
ety of Thr168 (3.3 Å). This glycine-binding mode failed to clarify
how the amino acid would act to accelerate peptide cleavage
between Gly167 and Thr168.
The observation of a fully cleaved enzyme state in the pH 4.9

soaked crystal prompted us to test an even lower pH. Indeed,
by soaking a crystal of hASNase3 in a glycine solution of pH
3.3, we successfully obtained the complex in the precleaved
enzyme state (Figure 3C). For the uncleaved enzyme, we could
model the entire polypeptide chain except four residues that
span Gln158 and Gln163. The electron density of the scissile
bond between Gly167 and Thr168 clearly shows an intact pep-
tide bond (Figure 3D). In this complex structure, solved at
1.95 Å resolution, we again observed the previously mentioned
glycine molecule at the substrate-binding site, making very
similar interactions as noted in the pH 4.9 structure (labeled
GLY1 in Figure 3C). Unexpectedly, an additional glycine mole-
cule occupied the active site (labeled GLY2 in Figures 3C and
S6), this time spanning the conserved threonines at positions
168 and 219. Notably, the carboxylic acid group of this second
glycine is at only 2.6 Å distance to the hydroxyl of the catalytically
essential Thr168. This type of interaction would allow GLY2 to
act as the base that accepts the proton from the Thr168 hydroxyl
group, thereby activating it to attack the carbonyl group of the
preceding residue, Gly167. We analyzed the binding site of
GLY2 in the hASNase3 active site in order to understand why
no other amino acid could substitute for glycine in promoting
cleavage (Figure 2B). Modeling of alanine in place of GLY2 re-
veals a steric clash between the methyl side-chain and main-
chain atoms of hASNase3 (Figure S7). This rationalizes why
even the next-smallest amino acid, alanine, would be sterically
excluded from the GLY2 binding site, and hence the cleavage-
promoting specificity of glycine. It is of interest to mention here
that the dipeptide glycylglycine does not induce (Figure S4) or
inhibit autocleavage (Figure S8) or affect the asparaginase activ-
ity of the activated enzyme (Figure S5), suggesting that glycylgly-
cine lacks the ability to bind to the hASNas3 active site.

Glycine Promotes hASNase3 Cleavage in Human Cells
We next asked whether glycine-accelerated cleavage, and
hence activation, also occurs in mammalian cells. HEK293 cells
were transiently transfected with the hASNase3 gene, and
hASNase3 expression level and molecular state were monitored
using western blot analysis (Figure 4). Cells grown in regular me-
dia, without glycine supplementation, predominantly expressed
uncleaved hASNase3 (Figure 4). Note that themedia used for the
cell culture experiments contained 135 mM glycine, not taking
into account any glycine coming from the fetal bovine serum.
This explains the low, but not absent, cleavage of hASNase3 in
this condition. The addition of an extra 1mMglycine to themedia
resulted in a more than 25% reduction of uncleaved protein with
a concomitant increase in the cleaved forms. Higher concentra-
tions of glycine promoted progressively increased protein cleav-
age, such that at 5 mM added glycine, less than 10% remains in
the uncleaved state, with approximately complete cleavage
occurring at higher glycine concentrations after the same incu-
bation time.

Table 1. Data Collection and Refinement Statistics

Complex GLY, pH 4.9 GLY, pH 3.3

Protein Data Bank codes 4HLP 4HLO

X-ray source and detector SERCAT BM SERCAT ID

MARCCD 225 MARCCD 300

Wavelength (Å) 1.0 1.0

Temperature (K) 100 100

Resolutiona (Å) 1.91 (1.91–2.02) 1.95 (1.95–2.0)

Number of reflections

Observed 144,084 425,284

Unique 45,006 43,500

Completeness (%) 95.7 (81.7) 98.2 (90.0)

Rsym (%) 5.5 (37.9) 12.5 (51.2)

I/s(I) 12.40 (1.55) 12.70 (2.12)

Space group P 65 P 65

Unit cell (Å)

a = b 59.74 59.94

c 301.53 301.10

Refinement program REFMAC5 REFMAC5

Twinning fraction 0.514 0.505

Refinement statistics

Rcryst (%) 18.4 16.7

Rfree (%) 22.4 20.9

Resolution range (Å) 30 - 1.91 30 - 1.95

Protein molecules per a.u. 2 2

Number of atoms

Protein 2,158, 2,158 2,196, 2,199

Glycine 5 3 4 5 3 5

Water 181 176

Rmsd

Bond length (Å) 0.009 0.011

Bond angles (!) 1.116 1.354

Average B-factors (Å2) /chain

Protein 31, 32 24, 24

Glycine 34 33

Water molecules 32 23

Ramachandran plot

Most favored regions (%) 92.2 88.5

Additionally allowed regions (%) 7.2 10.5

Generously allowed regions (%) 0.2 0.6

Disallowed regions (%) 0.4 0.4
aLast shell in parentheses.
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DISCUSSION

Here, we report that physiologically relevant glycine concentra-
tions can dramatically accelerate, and drive to completion, the
weak intrinsic self-cleavage reaction of hASNase3. While we
do find that millimolar glycine levels are required for efficient
cleavage (Figure 4), concentrations between 3 and 8 mM (de-

Figure 3. hASNase3 Structure in Complex with
Glycine
(A) The cleaved state of the homodimeric enzyme, obtained

from crystals soaked in a 3 M glycine solution, pH 4.9, is

depicted. One protomer is colored in dark and light blue, and

the other in dark and light gray. The dark and light shades

depict the a and b chains, respectively. The glycine bound at

the active site is depicted as a space-filling object. The black

star denotes the most C-terminal residue of the a chain with

traceable electron density, and the red star denotes the

N-terminal residue of the b chain, which is Thr168.

(B) Active-site residues in the cleaved hASNase3-GLY

complex structure at pH 4.9. Gray arrow denotes the free

amino group of Thr168 resulting from cleavage. Glycine

binds in a similar fashion to aspartate (green; as seen in the

hASNase3-ASP complex structure; Protein Data Bank code

4GDW). Distances are in angstroms.

(C) The uncleaved hASNase3-GLY complex structure at pH

3.3. Two free glycine molecules are present at the active

site. Glycine 1 (GLY1) binds in the same position as the

glycine in (B), and glycine 2 (GLY2) binds in proximity to

the scissile bond. Importantly, GLY2 interacts directly with

the Thr168 OH group via its carboxylic acid moiety (2.6 Å). It

is this interaction that can serve to activate Thr168 to attack

the carbonyl group of Gly167.

(D) The Fo-Fc omit map contoured at the 3 sigma level

displays the uncleaved peptide bond. To avoid model bias,

residues 163 to 168 were omitted from the model, which

then underwent multiple refinement rounds. The difference

electron density map reveals the conformation of Thr168

and of the residues that precede it. This region, despite

being uncleaved, seems to have increased mobility relative

to the core structure. As a result, some side-chain densities

(e.g., Leu166, Asn165) are not contiguous but clearly pre-

sent. The increased mobility of this region was also

observed in the structures of hASNase3mutants that cannot

undergo cleavage (data not shown). A gray arrow points to

the peptide bond that breaks as hASNase3 is cleaved into

the a and b chains.

See also Figures S6 and S7.

pending on the tissue examined) have been
measured in vivo (Pitkänen et al., 2003). Remark-
ably, the most recent work, which examined the
role of the pyruvate kinase isoform M2 (PKM2)
in regulating glycolytic flux in cancer cells and
the dependence of PKM2 activity on serine and
glycine biosynthesis, revealed intracellular accu-
mulation of free glycine of up to 10mM (Chaneton
et al., 2012), a concentration that would promote
complete cleavage of hASNase3 (Figure 4).
Glycine did not activate PKM2 in cells or in vitro,
yet this work demonstrated serine as the only
amino acid to do so in vitro, with this finding being
further substantiated by structural analyses of

PKM2-serine complexes (Chaneton et al., 2012). In the case of
hASNase3, we discovered a specific role of glycine in activating
the enzyme both in vitro and in cells. This prompts the following
questions: What is the relevance of glycine levels in cells to
hASNase3’s in vivo function, specifically to any potential role
of glycine as a regulator of hASNase3 activity? Can we ratio-
nalize its expression pattern in normal tissue and in several
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human tumors? We note that hASNase3 has dual asparaginase
and isoaspartyl peptidase activities (isoaspartyl peptide linkages
are a common source of protein damage; Aswad et al., 2000),
with seemingly similar kinetic efficiencies (Cantor et al.,
2009). This causes ambiguity as to the precise physiological
function of hASNase3. In this context, it is worth recalling that
human AGA also has dual catalytic function, hydrolyzing
b-aspartyl-glucosamine linkages in glycoproteins and various
b-aspartyl-amides, including asparagine itself. Moreover, the
threonine aspartase Taspase1 acts as an endopeptidase that
cleaves the mixed-lineage leukemia protein (Hsieh et al., 2003),
the basal transcription factor TFIIA (Hsieh et al., 2003), and other
intracellular substrates after an aspartate residue in the recogni-
tion sequence (Bier et al., 2011). Like hASNase3, these enzymes
belong to the Ntn-hydrolase protein family where the full-length
enzymes undergo posttranslational autoproteolytic processing,
liberating the N-terminal threonine of the b subunit as the cata-
lytic nucleophile. This threonine residue has been shown by
mutational analyses to act as the nucleophile for both autopro-
teolysis and hydrolase activity. While several residues critical
for self-cleavage have been identified in human AGA (Bier
et al., 2011), no regulatory, or triggering, factor is known for
this intramolecular activation step. In contrast, in the case of
hASNase3, our work reveals that free glycine very selectively
triggers this activation process, which suggests a link to physio-
logical situations of increased glycine levels.

In the physiological context, one intriguing possibility relates
to situations where intracellular glycine levels are increased
with a concomitant decrease in aspartate levels. This metabolic
imbalance is observed in cancer cells where altered gene
expression increases the flux through glycolysis (Warburg,
1956). One enzyme implicated in increased glycolysis is PKM2,
which is detected in cancer cells and replaces the catalytically
more efficient M1 isoform (Vander Heiden et al., 2009). The
consequence of reduced pyruvate kinase activity is closure of
the spigot connecting the glycolytic pathway to the TCA cycle.

This allows for the diversion of glycolysis intermediates for the
synthesis of essential metabolites. In fact, it was recently shown
that a small-molecule activator of PKM2 induces serine auxot-
rophy, an amino acid whose synthesis relies on the glycolytic
intermediate 3-phosphoglycerate (Kung et al., 2012). A second
enzyme involved in diverting glycolytic intermediates into serine
biosynthesis is phosphoglycerate dehydrogenase, and this ac-
tivity has also been proposed to contribute to cancer cell prolif-
eration (Locasale et al., 2011). As glycine is generated from
serine, increased glycolytic flux would increase the glycine
levels, as demonstrated by studies of a cancer cell line (Locasale
et al., 2011) and brain tumors in vivo (Maher et al., 2012). A recent
metabolite-profiling study of NCI-60 cancer cell lines correlated
glycine levels with proliferation rates, showcasing the important
role of this amino acid in rapidly dividing cells (Jain et al., 2012).
At the same time, increased glycolytic flux reduces the flow

of metabolites to the TCA cycle. Reduced TCA flux limits the
synthesis of molecules that originate from TCA intermediates.
One specific example of such a molecule is the amino acid
aspartate, whose de novo synthesis requires the TCA intermedi-
ate oxaloacetate. Indeed, a marked decrease in the level of the
amino acid aspartate was observed in rat brain gliomas (Ziegler
et al., 2001). The data we present here suggest that one mecha-
nism used by cells to counter low TCA flux is to activate the
enzyme hASNase3, which then provides the required aspartic
acid by catalyzing asparagine hydrolysis. Thus, activation of
hASNase3 by glycine would compensate for the lack of aspar-
tate by converting asparagine to aspartate.
Thus, we suggest a model where cancer cells usurp a regula-

tory mechanism (i.e., dependency of hASNase3 activation on
glycine levels) that pre-exists in noncancer cells (see below)
that normally express hASNase3 for the purpose of maintaining
the required metabolic balance. This model, which relates the
activity of metabolic enzymes to metabolite levels in order to
compensate for the altered metabolic requirements of rapidly
dividing cells, implies that inhibitors of such enzymes (e.g.,

Figure 4. Glycine Promotes hASNase3 Cleavage in Human Cells
(A) Western blot of HEK293 cells transfected with the gene for hASNase3, grown in regular media or in media supplemented with the noted glycine levels for

2 days. Detection of the hASNase3 state was done using polyclonal antibodies raised against the full-length protein. Antibodies detect well the uncleaved enzyme

and the a subunit, but give only a weak signal for the b subunit. The uncleaved (Un-cl) and cleaved (cl) human enzyme purified from E. coli is shown for reference.

Protein loading control is shown below.

(B) Quantification of the uncleaved band, with the condition of no glycine supplementation set at 100%.
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hASNase3) could be explored as potential cancer therapeutics.
In fact, the targeting of enzymes that supply asparagine, in order
to limit cancer cell proliferation, is currently being explored by in-
hibiting asparagine synthetase (Richards and Kilberg, 2006). We
examined additional metabolites other than glycine that are
increased in glycolytic cells, such as pyruvate and lactate, but
these failed to recapitulate glycine’s ability to accelerate hAS-
Nase3 cleavage (Figure S9), highlighting the glycine specificity
of this process.
Finally, the cancer implications of hASNase3 raise questions

on its role in normal cells and the properties of these normal cells
vis-à-vis glycine and aspartate concentrations. Consistent with
our model, it has been reported that normal brain (Coles et al.,
2000) and testis (Liu et al., 2011), two organswith high hASNase3
expression, have increased glycolytic activity. Additionally,
protein analyses of sperm extracts (Bush et al., 2002) revealed
hASNase3 in the predominately cleaved form, thereby corre-
lating the cleaved state of the enzyme with high glycine levels.
Further studies that probe the levels of amino acids in normal
and diseased states, and the cellular response to these changes,
are warranted.

SIGNIFICANCE

Human asparaginase 3 is an Ntn-family hydrolase requiring
cleavage between Gly167 and Thr168 for enzymatic activ-
ity. Autoproteolysis of recombinantly produced hASNase3
is very slow. We discovered that the free amino acid
glycine dramatically increases the rate and extent of
cleavage. Other amino acids or various small-molecule
metabolites tested in vitro are not capable of promoting
self-cleavage. The crystal structure of uncleaved hASNase3
in complex with glycine explains the ability of the amino
acid to promote this intramolecular reaction. We observe
two glycine molecules bound at the active site. The first
binds at the same position as the substrate asparagine.
The second glycine is positioned such that its carboxylic
acid moiety is in close proximity to the Thr168 hydroxyl
group. The latter binding mode would allow glycine to act
as a base that activates the hydroxyl group to attack the
carbonyl group of the preceding Gly167, thereby initiating
the cleavage reaction. The enzyme has limited expression
in normal tissue, being confined mainly to the testis and
brain. Notably, it has also been detected in several cancers.
A unifying feature of tissues that express hASNase3 is high
glycolytic level. Increased flux through glycolysis would
promote glycine synthesis, as it is generated from the
glycolysis metabolite 3-phosphoglycerate via serine. At
the same time, aspartate levels would be decreased, as
de novo synthesis of this amino acid requires the TCA cycle
intermediate oxaloacetate. Together, this implies that the
function of hASNase3 is to increase the level of aspartate
as compensation for its reduced synthesis and that the en-
zyme’s activity is regulated by the glycine concentration.
The requirement of highly glycolytic cells, such as those
found in cancers, to generate sufficient levels of key
metabolites, such as aspartate, suggests that molecules
inhibiting hASNase3 may act to reduce cancer cell
proliferation.

EXPERIMENTAL PROCEDURES

Cloning, Expression, and Purification of Human ASNase3
The cloning and expression of hASNase3 have been reported previously

(Nomme et al., 2012). In short, E. coli BL21(DE3) C41 carrying a modified

pET14b to include a SUMO tag was grown at 37!C. Upon reaching an optical

density of 0.6–0.8, the temperature was reduced to 18!C and 0.5 mM IPTG

was added to induce expression. After cell lysis by sonication, the enzyme

was purified using a metal affinity column and the SUMO tag was cleaved

by SUMO protease, followed by gel filtration. The fractions containing

hASNse3 were concentrated to 38 mg/ml, aliquoted, and stored at "80!C.

Crystallization of hASNase3
A total of 1 ml of hASNase3 at 38 mg/ml (in 25 mM Tris [pH 7.5], 200 mM NaCl,

2 mM DTT) was mixed with 1 ml of the reservoir solution (2.2 M sodium malo-

nate) on a glass coverslip and left to undergo vapor diffusion using the hanging

dropmethod at 20!C. To form the glycine complex, a crystal was transferred to

a 3 M glycine, pH 7.5 solution. Diffraction data on this crystal revealed the

cleaved state of the enzyme and a glycinemolecule at the active site. To obtain

a complex with the uncleaved enzyme, glycine solutions of lower pH were

tested. At pH 4.9, crystals of the cleaved formwere obtained (identical to those

soaked at pH 7.5). However, soaking at pH 3.3 yielded crystals with the un-

cleaved protein.

Data Collection and Structure Solution of hASNase3
Diffraction data were collected at the Advanced Photon Source (APS) located

at Argonne National Laboratory, using the SERCAT beamlines (see Table 1 for

data collection and refinement statistics). The structures were refined with

Refmac5 (Murshudov et al., 1997). All crystals were perfectly twinned, with

the true space group being P65 (apparent space group, P6522) and contained

two copies of hASNase3 (that is, an ab dimer) in the asymmetric unit. Refine-

ment using the twin option in Refmac5 showed a twin domain fraction of

#50%. Data collected for freshly grown crystals showed the uncleaved state

of the enzyme, whereas in older crystals the enzyme was in the cleaved state.

Attempts to soak in the product aspartate (ASP) or glycine (GLY), even at a

concentration of 100 mM, failed to reveal electron density for these amino

acids. We interpret this as being due to competition by the precipitant salt.

To obtain the GLY complex, we transferred the crystals to a 3 M glycine

solution. The rationale was that a high concentration of glycine would act as

a precipitant to keep the crystals stable (attempts to transfer the crystals to

a nonsalt condition such as PEG were unsuccessful) and would also supply

the GLYmolecule bound at the active site. Diffraction data collected on a crys-

tal soaked in 3 MGLY pH 7.5 revealed the fully cleaved state (data not shown).

The same result was obtained with a crystal soaked in 3 M GLY, pH 4.9. In

contrast, we observed the uncleaved state in a crystal soaked in 3 M GLY,

pH 3.3.

For the cleaved pH 4.9 hASNase3-GLY complex (described here), we could

model residues 1 to 153 of the a chain (no traceable density for residues

154–167) and 168–308 of the b chain. For the uncleaved pH 3.3 GLY complex,

we could model all residues except 158–163. The electron density for the

residues immediately preceding the cleavage site was unambiguous (Fig-

ure 3D). All structure figures were made with PyMol.

Western Blot Experiments
HEK293 cells, grown in RPMI 1640 supplemented with 10% fetal bovine

serum, were transfected to express hASNase3, and cell lysates were analyzed

by western blots. All SDS-PAGE gel band intensities were quantified using

ImageJ. Polyclonal antibodies against hASNase3 were generated by immu-

nizing rabbits with 0.6 mg of SDS-PAGE-purified full-length protein according

to the Eurogentec (Seraing, Belgium) custom antibody production protocol.

For expressing and analyzing the enzyme in a human cell line, the gene coding

for hASNase3 was transferred from the pET14b vector to a pcDNA3.1(")

(Invitrogen) with the addition of a Kozak sequence. HEK293 cells (3 3 106)

were grown to 90%–95% confluency and then transfected using Lipofect-

amine 2000 (Invitrogen). At this point, glycine at various concentrations was

added to the media. Cells were then incubated at 37!C with 5% CO2. After

2 days, cells were harvested and lysates analyzed by western blots. Loading

controls were done using a tubulin antibody.
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ACCESSION NUMBERS

The structures of hASNase3 have been deposited in the Protein Data Bank

under accession codes 4HLP (GLY pH 4.9) and 4HLO (GLY pH 3.3).

SUPPLEMENTAL INFORMATION

Supplemental Information includes nine figures and can be found with this

article online at http://dx.doi.org/10.1016/j.chembiol.2013.03.006.
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Figure S1.  hASNase3 has a very slow intrinsic cleavage rate.  Samples were incubated in 
storage buffer for 11 days, at either 4, 12, or 25 °C.  These temperatures were selected since 
the enzyme is not stable for more than 3 days at 37° C.  Percentage denotes precursor band 
strength relative to the sum of all three forms (precursor +  + ). 
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Figure S2.  High pH by itself does not accelerate cleavage.  hASNase3 (freezer-stored 
original sample labeled -80°) was incubated in 25 mM CAPS, pH 10.0, BICINE pH 9.0, or TAPS, 
pH 9.5 for 42 hours.  Note that the enzyme remained predominantly in its uncleaved form. 
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A 

 

B 

 

 

Figure S3.  Cleavage of hASNase3 is glycine dose-dependent and occurs also at 
physiological pH. (A) Left panel; same as Figure 2a; right part, at pH 9.5. Cleavage rate is 
better at the higher pH, but still significant at the physiological pH of 7.5.  (B) hASNase3 was 
incubated in storage buffer plus 100 mM glycine at pH 7.5, 8.5, and 9.5.  Samples were taken 
after 1, 2, and 3 days incubation at 25 °C.  The state of the starting material as taken from the 
freezer is shown in the lane labeled -80°.  Percentage denotes precursor band strength relative 
to the sum of all three forms (precursor +  + ). 
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Figure S4.  Promotion of hASNase3 cleavage is specific to glycine.  The enzyme 
hASNase3 at a concentration of 3.5 mg/ml was incubated with the indicated molecules at 37 °C 
in 50 mM sodium phosphate, pH 8, and 0.5 M sodium chloride for 24 hours.  The control lane 
displays the very limited intrinsic cleavage of hASNase3.  Addition of glycine, but not of the 
other molecules tested, promoted the cleavage reaction.  This demonstrates the selectivity of 
glycine for triggering hASNase3 cleavage. 
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a. 

 

b. 

 

Figure S5: Effect of small metabolites on hASNase3-catalyzed asparagine hydrolysis. The 
enzyme was fully activated during production in E. coli using 200 mM glycine.  After purification, 
cleaved hASNase3 was dialyzed against 50 mM sodium phosphate, pH 8, 0.5 M sodium 
chloride.  The asparaginase activity was measured applying the conventional NADH dependent 
assay with a L-Asn concentration of 3 mM. 
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Figure S6. Fo-Fc map contoured at 3 sigma around GLY1 and GLY2.  The glycine 
molecules were removed from the model that then underwent several rounds of refinement to 
eliminate model bias.  The resulting Fo-Fc map clearly shows the presence of the two glycine 
molecules, labeled GLY1 and GLY2. 
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Figure S7.  A model of an alanine bound in the same position as GLY2.  An alanine 
(orange) was modeled into the same position observed for GLY2 in the pH 3.3 structure.  This 
reveals a steric clash between the alanine side chain and the enzyme, explaining the glycine-
specificity of the accelerated cleavage reaction.  For orientation purposes, GLY1 is also shown. 
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Figure S8.  Promotion of hASNase3 cleavage by glycine is not inhibited by di-glycine, 
aspartate, or serine.  The enzyme hASNase3 at a concentration of 3.5 mg/ml was incubated 
with the indicated molecules at 37 °C in 50 mM sodium phosphate, pH 8, and 0.5 M sodium 
chloride for 24 hours.  Addition of di-glycine, aspartate, or serine did not reduce the amount of 
cleaved protein promoted by 10mM or 50 mM glycine. 
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Figure S9. Small-molecule metabolites other than glycine that are expected to be present 
in glycolytic cells do not duplicate glycine’s ability to accelerate cleavage.  (A) 
Recombinant hASNase3 was incubated for 1 day at 25 °C in Storage Buffer with no additives, 
or with 25 mM of glycine, pyruvate, lactate, acetate, or bicarbonate.  Only the enzyme in the 
presence of glycine showed a significant increase in the amount of the cleaved form, as 
demonstrated by the increase of the - and -chains.  The structure of the various additives is 
shown below the gel, demonstrating the structural similarity of the molecules. (B) Quantification 
of the -chain band intensity shows the very specific effect of glycine on cleavage. 
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a b s t r a c t

L-asparaginases hydrolyze L-asparagine to L-aspartic acid and ammonia. Enzymes of bacterial origin are
used as therapeutic agents for the treatment of acute lymphoblastic leukemia. Recently, the structure
of a human homolog, hASNase3, which possesses L-asparaginase activity, was solved setting the basis
for the development of an anti-leukemic protein drug of human origin. Being an N-terminal hydrolase,
hASNase3 undergoes intramolecular self-cleavage generating two protomers (subunits a and b) which
remain non-covalently associated and constitute the catalytically active form of the enzyme. However,
recombinant expression of full-length hASNase3 in Escherichia coli results in only partial processing
towards the active enzyme. We developed a co-expression system for the two subunits that allowed
production of the b-subunit complexed to the a-subunit such that the N-terminal methionine is removed
by endogenous methionine aminopeptidase to expose the catalytically essential threonine residue at the
N-terminus of the b-subunit. The enzyme produced by this co-expression strategy is fully active, thus
obviating the necessity of self-activation by slow autoproteolytic cleavage.

! 2013 Elsevier Inc. All rights reserved.

Introduction

L-asparaginases (L-ASNase)1 catalyze the conversion of
L-asparagine (L-Asn) to L-aspartic acid (L-Asp) and ammonia. These
enzymes have been extensively used for the treatment of Acute
Lymphoblastic Leukemia (ALL) since more than four decades [1–4].
Cancerous lymphoblasts are unable to synthesize L-Asn due to a defi-
ciency in their asparagine synthetase. Therefore, their survival is
exclusively dependent on the free amino acid L-Asn available from
the blood. Exhaustive depletion of L-Asn by L-ASNase administered
to the patient causes protein synthesis inhibition in the tumor cells
which ultimately undergo apoptosis [5]. However, the use of bacte-
rial enzymes for human therapy causes numerous side effects during
treatment. As an alternative to currently used bacterial enzymes, it is
desirable to develop L-ASNase-like enzymes of human origin into an
efficient protein drug. Our recent studies [6] elucidated the structure
of the first human enzyme which is able to hydrolyze L-Asn, albeit
with poor catalytic properties. Because of high structural homology
(sequence identity 38%) with the previously described Escherichia
coli L-ASNase3 [7], we named the human enzyme hASNase3 [8].

Human ASNase3, as well as its bacterial homologs, belong to the
N-terminal hydrolase family of enzymes [9]. These enzymes are
produced as inactive single-polypeptide chain precursors that
post-translationally undergo an intramolecular cleavage at a scis-
sile peptide bond (autoproteolysis) resulting in the generation of
two tightly associated protomers (subunits a and b) [10]. This
intramolecular processing is essential for the conversion of the
pro-enzymes to the catalytically active forms of these enzymes,
since it liberates the amino group of an amino acid (usually
threonine) acting as a nucleophile at the N-terminus of the newly
synthesized b-subunit, enabling nucleophilic attack on the
substrate L-Asn. In the case of hASNase3 (308 amino acids long),
this autocleavage occurs between residues G167 and T168 [6,9].
However, recombinant expression of hASNase3 in E. coli results
in production of a mixture of processed and unprocessed enzyme
molecules. Although ways have been described to circumvent this
problem, either by adding free glycine which acts as activation
inducer for hASNase3 [8], or by using a circular permutant version
of this enzyme [11], the possibility of co-expressing the two
protomers a and b, thus generating the active enzyme, has not
yet been investigated. While the use of glycine (>10 mM) to induce
self-processing of the enzyme is an efficient in vitro tool for the
activation of hASNase3, it involves additional steps of incubation
of the purified protein, which must be subsequently subjected to
dialysis to remove the glycine that inhibits the enzymatic reaction,
and this glycine-induced intramolecular processing may not go to
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completion [8]. On the other hand, the circular permutant version
of the protein [11] contains an additional long hydrophilic linker
that spans the distance between the N and C termini, and such a
construct may not adequately reflect the structure and the cata-
lytic features of the wild-type enzyme. Therefore, it has been of
great interest to investigate novel strategies for the production of
hASNase3 by co-expressing the two subunits in a way which
would result in not only the formation of intact a and b subunits,
but also generate the catalytically active enzyme carrying the free
threonine residue at the N-terminus of the b subunit.

The co-expression of two or more coding regions in E. coli can be
achieved by using either a single plasmid, or by transforming one
bacterial cell with two or more different plasmids. In case of sin-
gle-plasmid constructs, one can follow different strategies: One
of these strategies includes the use of a single promoter in one
plasmid, linking the two genes by a ribosome-binding site (RBS)
similarly to genomic E. coli operons. This gene arrangement is also
called bicistronic (two genes) or polycistronic (more than two
genes) as termed in other studies [12–14]. This will yield one single
transcript containing the information for the genes to be tran-
scribed. Another approach for co-expressing two gene units relies
on tandem coding regions involving two promoters [15], where
in general the number of promoters is the same as the number
of genes transcribed. While the latter case of co-expression might
offer better yields in recombinant protein production, because
transcription is not coupled, this might lead to imbalanced ratios
of the expressed polypeptides [16]. Co-expression from separate
plasmids in E. coli is an alternative to operon-like constructs, often
requiring less cloning steps, notably when many combinations of
individual constructs need to be tested [12]. In principle, for
achieving efficient co-expression from two separate plasmids in
E. coli, ideally one should use two different origins of replication
(ori), as well as two different antibiotic resistance markers, in order
to stably maintain the plasmids in the host cells. However, it has
been shown that two plasmids with two different antibiotic mark-
ers, yet having the same ori, can co-exist in the cells by simply
using higher concentrations of antibiotics [17].

In the present study, we applied the basic approaches described
above for co-expressing the two subunits of hASNase3. We empha-
size that, in this particular case of co-expression, the removal of the
b-subunit’s N-terminal methionine by endogenous Methionine
Amino Peptidase (MAP) is of critical importance since the L-ASNase
activity depends on the free threonine residue of the b-subunit. In
other words, successful co-expression includes not only production
of the two subunits in soluble form, but also removal of the
N-terminal methionine. Our results highlight several factors that
play key roles for efficient co-expression and protein production,
and for removal of the N-terminal methionine. Among these criti-
cal factors are tags present at the N-terminus of the genes to be
transcribed, the type of vectors used, and the order of the genes
coding for the subunits. This work may be of general interest to
studies where co-expression is required for the production of
interacting proteins or protein domains.

Materials and methods

E. coli strains, plasmids, cDNA, and chemicals

Plasmids pET-14b and pET-29a were purchased from Novagen.
Plasmid pJC20 [18,19] carries the ampicillin resistance marker and
the ColE1-based origin of replication, and occurs at !100 copies/
cell. Both pET14b and pET29a have the same origin of replication
(pBR322) and are medium copy number plasmids (!30 copies/
cell), but they have different antibiotic resistance markers (ampi-
cillin and kanamycin, respectively). A modified version of the

pET14b plasmid, designated pET14b-SUMO [6], was used to in-
clude the SUMO tag (derived from the Saccharomyces cerevisiae
smt3 gene) between the N-terminal His6-tag and the multiple
cloning site (MCS). The E. coli host strain C41(DE3) was obtained
from Lucigen/BioCat, BL21(DE3)pLysS from Invitrogen, and Rosetta
(DE3) from Novagen. The XL-1 Blue strain was purchased from
Stratagene. All restriction and DNA-modifying enzymes were from
New England Biolabs. The oligonucleotides used in this study were
obtained from IBA (Goettingen, Germany). Yeast extract, peptone,
agar, ampicillin, kanamycin, chloramphenicol and Isopropyl-beta-
D-thiogalactoside (IPTG) were purchased from Applichem
(Gatersleben, Germany). All PCR reactions were performed with
KAPA HiFi polymerase purchased from PeqLab (Erlangen,
Germany). Gel extraction and PCR purification kits, and nickel resin
for affinity purification of poly-histidine-tagged proteins was from
Macherey Nagel (Düren, Germany), plasmid purification kit from
Fermentas (Thermo Fisher Scientific, Germany). The hASNase3
open reading frame was amplified using as template cDNA from
a human skin and meninges library (Source Bioscience, UK). All
cloning steps involving PCR amplifications were confirmed by
sequencing (SeqLab, Goettingen, Germany).

Construction of the pET14b-hASNase3[a + b] vector

Using as template the full length cDNA of hASNase3, the gene
fragments corresponding to the two subunits were PCR-amplified
independently. The a-subunit DNA-fragment (501 bp) codes for
amino acid residues M1-G167, while the b-subunit fragment
(426 bp) codes for T168-P309 (Scheme S1). A singular NdeI site
was incorporated at the 50-end of the a-subunit, while its 30-end
contains the sequence for the ribosomal binding site (RBS; identi-
cal to the one present in pET14b), followed by unique KpnI and
BamHI sites. For directional cloning, KpnI and BamHI restriction
sites were incorporated at the 50- and 30-ends of the b-subunit,
respectively. The vector was constructed stepwise: First, the a-
subunit was ligated via the NdeI and BamHI sites, and then the
b-subunit was ligated via KpnI and BamHI (Scheme 1). The final
construct was sequence-verified, and then used to transform
chemically competent E. coli cells for expression analysis. For the
PCR reactions, the following oligonucleotide primers were used
(restriction enzyme recognition sites are underlined in italics,
while the RBS is in bold):
Protomer a

Forward (a): 50-GGAATTCCATATGAATCCCATC GTAG TGGTC-
CACG-30

Reverse (a): 50-CGCGGATCCGGAGGT ACCGGTATATCTCCTTCTTA
A AGTTA AACA AAAT T ATTT CTAGA GTTATCCC AAGTTTT
TTTG A CAATC-30

Protomer b
Forward (b): 50-CGGGGTACCATGACCGTGGGTGCTGTTGCCTTG-30

Reverse (b): 50-CGCGGATCCTTAGGGAAGGTCGGTGATAGTAGT-30

Construction of the pET14b-SUMO-hASNase3[a + b], pJC20-hASNase3-
[a + b], and pJC20-SUMO-hASNase3[a + b] vectors

To generate the hASNase3[a + b] construct, carrying at its
N-terminus the SUMO tag fused to the a-subunit (Scheme S2),
the DNA fragment encoding the two subunits was digested with
NdeI and BamHI, gel-purified, and subcloned into the pET14b-
SUMO vector. For the preparation of both pJC20 constructs
(Schemes S3 & S4), the pET14b-hASNase3[a + b] and pET14b-
SUMO-hASNase3[a + b] were digested with NcoI and BamHI, and
the excised inserts (1 kb) containing the His6 and the SUMO tag
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were ligated into the pJC20 vector which shares with the pET14b
vector a similar multiple cloning site (MCS).

Construction of pET14b-hASNase3[a] and pET29a-hASNase3[b]
vectors

To co-express the two hASNase3 subunits from two different
vectors, we cloned the a-subunit in pET14b-SUMO and the
b-subunit in pET29a via NdeI and BamHI sites (Scheme 2). These
plasmids carry the same origin of replication (ori from pBR322),
but they contain different antibiotic markers: pET14b confers
resistance to ampicillin, while pET29a to kanamycin. For cloning

of the b-subunit, the NdeI site was chosen at the 50-end harboring
the starting codon. Thus, after translation, the second amino acid is
threonine, and after removal of the N-terminal methionine by
endogenous E. coli methionine aminopeptidase (MAP), the first
amino acid is the critical threonine whose amino group is free
for catalysis. Furthermore, expression of the b-subunit from
pET29a yields a protein fragment without His6 tag that could be
co-purified via strong non-covalent interaction with the a-subunit;
tight association of the protomers has been evidenced in our previ-
ous work [8]. The following primers were used to generate these
constructs (restriction sites underlined in italics):
Protomer a

Forward (a): 50-GGAATTCCATATGAATCCCATCGTAGTGGTCCA
CG-30

Reverse (a): 50-CGCGGATCCTTATCCCAAGTTTTTTTGACAATCTG-
30

Protomer b
Forward (b): 50-GGAATTCCATATGACCGTGGG TGCTGTTGCCT
TGG-30

Reverse (b): 50-CGCGGATCCTTAGGGAAGGTCGGTGATAGTAGT-30

Construction of the pET14b-hASNase3[b + a] and pJC20-hASNase3-
[b + a] vectors

To generate a construct with the gene fragments arranged to
encode the two subunits in reversed order (i.e. instead of having
a + b, we now have b + a), a circular permutant-like version of
the hASNase3 gene was designed. However, unlike circular
permutant constructs of various other proteins studied in the past
[20,21], in the present analysis of hASNase3 we introduce no linker
sequence to connect the two new termini. In order to produce this
construct, a modified version of the pET14b vector was developed
by applying the QuikChange site-directed mutagenesis technique
(Stratagene). The unique NcoI site located within the initiation
codon was mutated to NdeI1 which served as the 50-cloning site
for the b-subunit. In this construct, the b-subunit was cloned first
via NdeI and BamHI carrying at its 30-end the ribosomal binding
site (RBS), as well as another KpnI site for the subsequent ligation
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(4.7 kb)

BamHIXhoINdeI

hASNase3 cDNA hASNase3 cDNA
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Scheme 1. Cloning strategy of the pET14b-hASNase3[a + b] construct. The initial step included the ligation of the a-subunit-RBS fragment via NdeI and BamHI sites.
Subsequently, the b-subunit was cloned downstream of the RBS via KpnI and BamHI, resulting in the final operon-like construct.
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Scheme 2. Description of the pET14b-hASNase3[a] and pET29-hASNase3[b] con-
structs. Both units were cloned via NdeI and BamHI sites as described in the
Methods section.
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of the a-subunit via KpnI and BamHI (Scheme 3A). Another
property of this construct is that the His6-tag was fused to the C-
terminus of the a-subunit to facilitate purification, since it is
essential to obtain the b-subunit which carries the catalytically
critical Thr-residue at the N-terminus after endogenous removal
of methionine. The pJC20-hASNase3[b + a] plasmid was generated
by simple transfer of the XbaI-BamHI-fragment from the final
pET14b-hASNase3[b + a] construct (Scheme 3B). The following
primers were used for generating these constructs (restriction sites
are underlined in italics and the His6-encoding sequence is in
bold):

Vector modification

Forward NcoI? NdeI: 50-GAAGGAGATATACCATATGCAGCAGC-
CATCATC-30

Reverse NcoI? NdeI: 50-GATGATGGCTGCTGCATATG GTATATCT
CCTTC-30

Protomer b
Forward (b): 50-GGGAATTCCATATGACCGTGGGTGCTGTTGCCTT
GGACTGC-30

Reverse(b): 50-CGCGGATCCGGAGGTACCGGTATATCTCCTTCTAAA
GTTTAGGGAAGGTCGGTGATAGTAGTATCGTC-30

Protomer a
Forward (a): 50-CGGGGTACCATGAATCCCATCGTAGTGGTCCAC-30

Reverse(a): 50-CGCGGATCCTTAGTGATGATGATGATGATGTCCCAA
GTTTTTTTGACAATCTGTTTTCTG-30

Protein expression and purification

After sequence verification of the final vectors, they were used
to transform several chemically competent E. coli expression
strains [C41 (DE3), BL21(DE3)pLysS, Rosetta (DE3)] to test for opti-
mum conditions in terms of protein yield and solubility. In case of
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Scheme 3. (A) Cloning of the circular permutant-like construct in a modified pET14b plasmid, whose NcoI site was mutated to NdeI (NdeI1). Initially, the b-subunit-RBS unit
was ligated via NdeI and BamHI, followed by the a-subunit via KpnI and BamHI. Note that this construct carries a C-terminal His6-tag at the a-subunit for purification of the
tightly associated a,b-dimer. (B) Subcloning of the hASNase3[b + a] construct into the pJC20 plasmid. The entire fragment was transferred directly to pJC20 via XbaI and
BamHI sites, leaving the overall unit unchanged.
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co-expression using two different plasmids, the cells were first
transformed with one plasmid, grown, and were then made
competent for the transformation with the second plasmid. The
transformation mixtures were plated onto LB plates containing
the respective antibiotic and incubated at 37 !C overnight. Single
colonies were used to inoculate 50 mL cultures in LB-medium.
After overnight incubation at 37 !C, these cultures were used to
inoculate 1 L of 2xYT or TB medium (dilution 1:50). When O.D.600
reached 0.5–0.7, protein expression was induced by adding IPTG
to a final concentration of 1 mM. After 6–8 h of incubation at
37 !C, the cultures were centrifuged at 4000g for 20 min; the cells
were resuspended in buffer A (50 mM Na2HPO4, 0.5 M NaCl,
10 mM imidazole, pH 8), and lysed by ultrasonication. The cell ly-
sate was centrifuged (45 min at 17,200g), the resulting supernatant
mixed with pre-equilibrated nickel agarose beads, and incubated
at 4 !C for 2 h in a rotating beaker. The slurry mixture was filled
in 12 mL polypropylene columns, dried by gravity, and the agarose
beads were then washed with 25 bed volumes of buffer B (50 mM
Na2HPO4, 1 M NaCl, 20 mM imidazole, 10% glycerol, pH 8). Bound

protein was eluted from the column by applying 300 mM imidaz-
ole in buffer A. All purification steps were performed at 4 !C in a
cold room. Eluted fractions were mixed, buffer was exchanged
against 50 mM Na2HPO4, 100 mM NaCl, pH 7.5 using a PD-10
column (GE Healthcare), the protein-containing fractions analyzed
by SDS–PAGE [22], and tested for L-ASNase activity.

Western blots for identifying hASNase3 full-length protein and
subunits

Immunoblotting was performed according to standard proto-
cols. The protein concentration of the samples was determined by
the Bradford dye-binding method [23] using as standard bovine
serum albumin (BSA). Upon immunoblotting, bands were detected
using an enhanced chemiluminescence (ECL) kit (Amersham Phar-
macia, Piscataway, USA). Polyclonal anti-hASNase3 antibodies were
generated by immunizing a rabbit with overall 0.6 mg of SDS–
PAGE-purified full-length protein according to Eurogentec’s (Sera-
ing, Belgium) standard protocols. Polyclonal rabbit anti-hASNase3

Fig. 1. Expression of the pET14b-hASNase3[a + b] and pJC20-hASNase3[a + b] constructs in three different E. coli strains examined by SDS-PAGE and immunodetection. (A)
Lane 1: Marker; lanes 2, 3 and 4 show protein from E. coli C41 (DE3) strain: cell lysate of untransformed cells (negative control), cell lysate of transformed cells, and protein
eluted from Ni2+ beads, respectively; lanes 5, 6 and 7 correspond to the E. coli BL21(DE3)pLysS strain: cell lysate of untransformed cells, cell lysate of transformed cells, and
protein eluted from Ni2+ beads, respectively; lanes 8, 9 and 10 correspond to Rosetta (DE3) cells: cell lysate of untransformed cells, cell lysate of transformed cells, and eluted
protein, respectively. (B) Expression profiles of the three E. coli strains harboring the pJC20-hASNase3[a + b] plasmid. The order of the lanes is identical to the ones described
above. (C) Ponceau S-staining and respective immunoblot of the eluted fractions. Lanes 1, 4: fully cleaved hASNase3, generated upon glycine-induced intramolecular cleavage
of the full-length protein (control); lanes 2,5 & 3,6: eluted protein expressed from pET14b-hASNase3[a + b] and pJC20-hASNase3[a + b] constructs, respectively.
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antibodies were enriched from serum samples by affinity chroma-
tography purification using recombinant hASNase3 as ligand as de-
scribed [24].

L-asparaginase assay

To determine L-ASNase activity after expression and purifica-
tion of hASNase3 constructs, we followed the Nesslerization
method as reported before [25]. Briefly, the purified enzyme was
incubated with the substrate L-Asn in 50 mM Na2HPO4, 300 mM
NaCl, pH 7.5, under substrate saturation conditions (5 mM L-Asn)
at 37 !C for 20 min. In parallel, to detect ammonium generated in
the absence of L-ASNase activity, a second identical sample was
incubated at 37 !C for 20 min, in which the enzymatic reaction
was quenched at time zero by adding trichloroacetic acid (TCA)
to a final concentration of 10%. After TCA precipitation, both sam-
ples were centrifuged at 16,100g for 2 min. The supernatant was
mixed with Nessler’s reagent, and the absorbance was monitored
spectrophotometrically at !440 nm after 10 min incubation at
room temperature. The concentration of ammonia produced by
the enzymatic reaction was determined from a reference curve
using ammonium chloride as standard. An enzymatic unit is de-
fined as the amount of enzyme that catalyzes the conversion of
1 lmol of L-asparagine/min under the aforementioned conditions.

N-terminal amino acid sequencing

In order to analyze structural reasons for the lack of enzymatic
activity we observed in case of the production of both subunits
from certain constructs, we sequenced the N-terminus of the co-
purified b-subunit. SDS–PAGE was used to separate the two
non-covalently but tightly associated subunits. The band corre-
sponding to the b-subunit was cut out of the gel, blotted onto a
PVDF membrane, and stained with Coomassie blue. The stained
protein band was cut out, and analyzed by standard methods on
a Procise 491 protein sequencer from Applied Biosystems, run in
the Bioanalytical Mass Spectrometry service department of the
MPIbpc, Goettingen.

Results and discussion

Expression of hASNase3[a + b] and SUMO-hASNase3[a + b] constructs
in pET14b and pJC20 vectors

The first trials for co-expressing the two subunits of hASNase3
were based on an operon-like construct in which the a-subunit
(residues M1-G167; theoretical Mr: 17.5 kDa but it appears to
run slower at 24 kDa on SDS-PAGE) is located at the 50-end,
followed by a ribosome binding site (RBS), and the b-subunit

Fig. 2. Expression of the pET14b-SUMO-hASNase3[a + b] and pJC20-SUMO-hASNase3[a + b] constructs in three different E. coli strains. (A) Lanes 1–10: order identical to
Fig. 1. (B) Expression profiles of the three E. coli strains harboring the pJC20-SUMO-hASNase3[a + b] plasmid. The order of the lanes is identical to those described above in
Fig. 1. (C) Ponceau S-staining and respective immunoblotting of the eluted fractions. Lanes 1, 4: fully cleaved SUMO-hASNase3, autoproteolytic cleavage induced with glycine
using the full-length protein (control); Lanes 2,5 & 3,6: eluted protein expressed from pET14b-SUMO-hASNase3[a + b] and pJC20-SUMO-hASNase3[a + b], respectively.
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(residues T168-P309; theoretical Mr: 14.5 kDa and apparent Mr -
! 18 kDa on SDS–PAGE) (Scheme 1). The RBS sequence is identical
to the one which is present in the pET14b vector; it was included in
the reverse primer used for PCR-amplification of the a-subunit
(oligonucleotide primers described in the Methods section).
Although the expression of this construct yielded high amounts
of the a-subunit (>8 mg/L 2xYT medium), the b-subunit was only
poorly produced as evidenced by SDS–PAGE and immunoblot anal-
ysis (Fig. 1A and C). In addition, to detect very low levels of the b-
subunit, which might associate with the a-subunit to form a func-
tional enzyme, we tested for enzymatic activity. However, this was
not observed upon production in all three E. coli expression strains
tested, indicating that this unexpected expression profile was
strain-independent. A reason for this weak production of b-subunit
could be the less-than-optimal intermediate RBS sequence, and/or
the presence of rare codons (Arg, Pro, Leu, Iso) at the N-terminus of
the b-subunit, since the presence of rare codons right after the first
Met had earlier been shown to play a detrimental role in the
expression of certain genes in E. coli [26]. However, inspection of
the cDNA sequence of hASNase3 did not reveal any rare codon
within the stretch of the first 35 codons at the 50-end of the b-sub-
unit. Instead, there are four rare codons (Pro2 and 14, and Arg22
and 29) within the first 35 codons at the 50-end of the a-subunit,
without affecting high-level expression of this protomer. Similar
negative results were obtained when the high-copy number
pJC20 vector was used instead of pET14b (Fig. 1B and C).

Interestingly, when the hASNase3[a + b] construct was
transferred into both pET14b-SUMO and pJC20-SUMO vectors
(Schemes S2, S4), which expressed the a-subunit as fusion with
the N-terminal SUMO-tag (SUMO-tag-a-subunit theoretical Mr:
30 kDa but it appears to run at !35 kDa on SDS–PAGE), the b-sub-
unit was successfully produced (Fig. 2A and B). Immunoblot detec-
tion of the two subunits is shown in Fig. 2C: Ponceau S-staining
indicates a 1:1 ratio of the two subunits, but polyclonal antibodies

recognize the b-subunit only weakly. Thus, the presence of the
SUMO-tag was proven to be beneficial for the production of the
b-subunit from either vector.

Nevertheless, despite the production of both subunits in soluble
form using the latter SUMO-fusion constructs, the SUMO-tagged
and the tag-free (after cleavage with SUMO protease) purified
enzymes were inactive when tested for L-ASNase activity. Provided
that the two subunits were properly folded and had adopted the
same tertiary structure as when produced as full-length intact
polypeptide chain, followed by intramolecular cleavage to form
the two protomers [6,8,9], the most likely explanation for the lack
of activity would be the presence of the initiating methionine at
the N-terminus of the b-subunit. If the N-terminal methionine
was not removed from the b-subunit by endogenous MAP, then
the critical threonine-residue which follows this methionine
would not catalyze the reaction. The reason is that its a-amino
group resides in the peptide bond formed with the preceding
methionine, and, therefore, cannot perform the nucleophilic attack
on the substrate L-Asn. According to the reported catalytic mecha-
nism of Ntn-hydrolases, it is only the free a-amino group of Thr,
Ser, or Cys that can fulfill this role [27]. To verify this assumption,
we analyzed the b-subunit by mass spectrometry and sequenced
its N-terminus. Indeed, the N-terminal methionine was not
removed from the recombinantly produced b-subunit, resulting
in totally inactive hASNase3.

Co-expression of hASNase3 a and b subunits using two different
vectors

Since production of the two subunits upon expression from an
operon in the pET14b-SUMO-hASNase3[a + b] vector resulted in
an inactive enzyme, we decided to co-express the two subunits
using two different vectors. Therefore, the a-subunit was cloned
into the pET14b vector (pET14b-hASNase3[a]) which confers

Fig. 3. SDS–PAGE profile of proteins expressed from pET14b-hASNase3[a] and pET29-hASNase3[b] in E. coli C41 (DE3) cells. (A) Lane 1: Marker; lane 2: cell lysate of
untransformed C41 (DE3) cells; lane 3: soluble fraction of cells harboring only pET29a-hASNase3[b]; lane 4: insoluble fraction of cells harboring only pET29a-hASNase3[b];
lanes 5, 6: soluble and insoluble fraction of cells harboring only pET14b-hASNase3[a]; lane 7: pattern of insoluble protein from cells simultaneously carrying plasmids
pET14b-hASNase3[a] and pET29a-hASNase3[b]. Lane 8: protein eluted from Ni2+-agarose. (B) Ponceau S-staining and immunoblotting of pET14b-hASNase3[a] and pET29a-
hASNase3[b] co-expression trial in C41 (DE3). Lanes 1, 5: fully cleaved hASNase3; lanes 2, 6: soluble protein from cells expressing only pET14b-hASNase3[a]; lanes 3, 7:
insoluble protein from cells expressing only pET29a-hASNase3[b]; lanes 4, 8: eluted protein fraction from lysate of cells expressing both plasmids.
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ampicillin resistance, and the b-subunit was cloned into the
pET29a (pET29a-hASNase3[b]) vector containing the kanamycin
resistance marker. Though the two vectors share the same origin
of replication (derived from pBR322), the different antibiotic
markers allow them to co-exist in the same bacterial cell producing
different recombinant proteins [17]. Initially, we investigated
whether the two subunits could be produced separately, and,
therefore, E. coli C41 (DE3) cells were transformed with either
pET14b-hASNase3[a] or pET29a-hASNase3[b]. As shown in
Fig. 3A, either subunit was produced, the a-subunit was soluble,
whereas the b-subunit polypeptide was totally insoluble. It had
been shown by others that upon separate expression of two pro-
tein domains, misfolding and insolubility problems might arise
[28–30]. However, although either domain was produced when ex-
pressed separately, co-transformation of both plasmids led to pro-
duction of the a-subunit only (Fig. 3A and B). Loss, or elimination,
of the plasmid from the cell can be excluded since resistance
against kanamycin was preserved as evidenced by the growth of
co-transformed cells in medium containing both antibiotics
throughout the whole period tested for expression. Thus, we ob-
served that, similarly to the operon-like construct, co-expression
from two plasmids also yielded solely the a-subunit.

Expression of hASNase3[b + a] construct in pET14b and pJC20 vectors

As an alternative to the previous strategies for co-expressing
the two subunits of hASNase3 aiming to produce the soluble and
active enzyme, we generated another circular permutant-like
construct (Scheme 3). In this case, the coding regions for the two

subunits were arranged in an operon-like construct, but the order
of the DNA-fragments was reversed: In this case, the b-subunit
encoding region is located at the 50-end, followed by the RBS se-
quence, and then the a-subunit at the 30-end. Unlike the circular
permutant-arrangement of previously described two-subunit
proteins [19,20], whose domains were connected with a linker, in
our case, the two subunits are not linked. Since the b-subunit is
translated first, before production of, and association with, the a-
subunit, this could facilitate access of the endogenous MAP to
the N-terminal methionine and its removal, resulting in the
exposure of threonine as the first amino acid of the b-chain. Partic-
ularly, in this construct, the His6-tag was fused to the C-terminus
of the a-subunit, since attaching it either to the C-terminus of
the b-chain or to the N-terminus of the a-chain, the tag would
be masked inside the dimeric protein structure [6].

Despite multiple attempts to express the hASNase3[b + a]
construct using the pET14b vector under various conditions (differ-
ent media, temperatures, induction periods, E. coli strains), no
protein production was detected (Fig. 4); we did not analyze tran-
scription of the two open reading frames. In contrast, when this
construct was transferred to the pJC20 vector and tested for
expression, the two subunits were equally well produced. It is
worth mentioning that expression from pJC20-hASNase3[b + a]
yielded lower amounts of protein (!2 mg/L of TB medium) as com-
pared to the pJC20-SUMO-hASNase3[a + b] version (!8 mg/L 2XYT
medium). Potentially, the use of an E. coli codon-optimized se-
quence for the hASNase3 cDNA could improve protein yields
[31]. Most importantly, our initial assumption that in this gene
arrangement, efficient removal of the N-terminal methionine from

Fig. 4. Expression of the pET14b-hASNase3[b + a] and pJC20-hASNase3[b + a] circular permutant-like constructs in C41 (DE3) cells. (A) Lane1: Marker; lane 2: cell lysate of
untransformed cells; lanes 3, 4: soluble fractions from cells expressing pET14b-[b + a] and pJC20-hASNase3[b + a], respectively. Lane 5: purified complex of a- and
b-subunits, produced in cells harboring the pJC20-hASNase3[b + a] construct. (B) Ponceau S-staining and immunoblotting of proteins expressed from pET14b-
hASNase3[b + a] and pJC20-hASNase3[b + a] constructs. Lanes 1, 5: full-length purified and autoproteolytically cleaved hASNase3; lanes 2, 6: cell lysate from cells carrying
pET14b-hASNase3[b + a]; lanes 3, 7: cell lysate from cells transformed with pJC20-hASNase3[b + a]; lanes 4, 8: purified a- and b-subunits, expressed in cells harboring the
pJC20-hASNase3[b + a] plasmid.
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the b-subunit would occur, was confirmed by enzymatic activity
measurements. The purified enzyme exhibited specific L-ASNase
activity (!0.5 U/mg) which was similar to the one we obtained
when we assayed the same amount of wild-type full-length pro-
tein whose intramolecular cleavage between residues Gly167 and
Thr168 was triggered by glycine [8].

In summary, these findings suggest that the production of the
two subunit-enzyme using the particular construct with reversed
order of the two subunit-encoding DNA fragments yielded soluble
and catalytically fully active hASNase3. Moreover, the high-
copy-number pJC20 vector, as compared to the widely used
pET14b plasmid, aided co-production of the two subunits at equal
levels.

Conclusions

Production of two or more proteins, subunits, or domains in E.
coli can be achieved by different co-expression strategies. Often,
there is no straightforward way to decide which approach is the
most promising one. The present study focused on the co-
expression of the two subunits (a and b, also termed protomers)
of the human L-Asn-hydrolyzing enzyme hASNase3 following sev-
eral strategies as summarized in Table 1. Successful co-expression
of these protomers is of particular interest because they must not
only be produced in soluble form and subsequently associate to
form dimers, but removal of the b-subunit’s N-terminal methio-
nine by endogenous E. coli MAP must occur efficiently. Cleavage
of this translation initiation methionine is of critical importance
for the activity of the enzyme since the catalytic threonine’s
a-amino group (residue Thr168 of the full-length protein) located
at the N-terminus of the b-subunit needs to be free for nucleophilic
attack on the substrate L-Asn.

Our findings suggest that several factors play a pivotal role in
order to achieve successful co-expression. Such factors include
the presence of different tags at the N-terminus of the constructs
of interest. In our case, the presence of the N-terminal SUMO-tag
ultimately resulted in efficient translation of the b-subunit, which
was very poorly detected when the same construct carried only the
histidine-tag at the N-terminus of the a-subunit. We found that
the order of the open reading frame units constituting the operon
determines the production of active enzyme, and this is directly re-
lated to the action of endogenous MAP. Therefore, in such particu-
lar cases where the removal of the N-terminal methionine is
essential for enzymatic activity of the recombinantly produced
protein, the order of the involved coding units must be considered.

Unexpectedly, the vector system used for expression was also
found important for successful co-production of the two hASNase3
subunits. The high-copy-number pJC20 plasmid allowed to achieve
satisfying expression levels of both subunits when the order of the
two gene units was reversed (pJC20-hASNase3[b + a], instead of
pJC20-hASNase3[a + b]), while the plasmid pET14b-hASNase3
[b + a] showed no expression at all. We conclude that the two
subunit-expression analysis of the present study might help to find
solutions if co-expression via standard vectors fails.
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Table 1
Constructs described in the present study and their properties.

Construct Expression Solubility Activity

a b a b

pET14b-hASNase3[a + b] (N-a-His6)a +++b + + + n.d.c

pET14b-SUMO-hASNase3[a + b] (N-a-His6) +++ +++ + + n.d.
pJC20-hASNase3[a + b] (N-a-His6) +++ + + + n.d.
pJC20-SUMO-hASNase3[a + b] (N-a-His6) +++ +++ + + n.d.
pET14b-hASNase3[a] (N-a-His6) +++ +
pET29a-hASNase3[b] +++ –
pET14b-hASNase3[a](N-a-His6)/pET29a-

hASNase3[b]
+++ " + – n.d.

pET14b-b-a (C-a-His6)a " " " " n.d.
pJC20-b-a (C-a-His6) ++ ++ + + 0.5 U/

mg

a (N-a-His6) and (C-a-His6) indicate the location of the histidine-tag at either the
amino- or the carboxy-terminus of the a-subunit.

b Indicates the expression levels (+++, high; ++, moderate; +, low) or the solubility
(+, soluble; ", insoluble) of the two subunits.

c Indicates non-detectable levels of activity.
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Supplementary Information

Scheme S1. Schematic representation of hASNase3 intramolecular cleavage by 
autoproteolysis. The initial, L-ASNase-inactive full-length polypeptide chain undergoes 
post-translationally an intramolecular cleavage at the Gly167-Thr168 peptide bond, 
generating two subunits  (also called protomers) which remain tightly associated. The 
asterisk on Thr168 indicates the catalytically critical residue whose amino group must 
be free at the very N-terminus of the !-subunit.



Scheme S2. Subcloning of the hASNase3[!+"] fragment into the pET14b-SUMO 
vector. The initial pET14b-hASNase3[!+"] plasmid was digested with NdeI and BamHI, 
and the isolated insert was then transferred to the pET14b-SUMO plasmid.



Scheme S3. Subcloning of the hASNase3[!+"]-construct into the pJC20 vector. The 
initial pET14b-hASNase3[!+"] vector was cleaved with NdeI andBamHI, and the 
isolated insert was then ligated into the pJC20 plasmid whose MCS is similar to that of 
pET14b.



Scheme S4. Subcloning of the SUMO-hASNase3[!+"] construct into the pJC20 vector. 
The initial pET14b-SUMO-hASNase3[!+"] vector was digested with NcoI and BamHI, 
and the isolated insert was then subcloned into the pJC20 plasmid.
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a b s t r a c t

We report on the development of a sensitive real-time assay for monitoring the activity of L-asparaginase
that hydrolyzes L-asparagine to L-aspartate and ammonia. In this method, L-aspartate is oxidized by L-
aspartate oxidase to iminoaspartate and hydrogen peroxide (H2O2), and in the detection step horseradish
peroxidase uses H2O2 to convert the colorless, nonfluorescent reagent Amplex Red to the red-colored and
highly fluorescent product resorufin. The assay was validated in both the absorbance and the fluores-
cence modes. We show that, due to its high sensitivity and substrate selectivity, this assay can be used
to measure enzymatic activity in human serum containing L-asparaginase.

! 2013 Elsevier Inc. All rights reserved.

The enzyme L-asparaginase (EC 3.5.1.1, L-asparagine amidohy-
drolase, L-ASNase),1 which predominantly occurs in microorganisms
and plants, catalyzes the hydrolysis of L-asparagine (L-Asn) to
L-aspartic acid (L-Asp) and ammonia [1,2]. Escherichia coli L-ASNase
has been used extensively as a therapeutic enzyme in the frontline
treatment of lymphoblastic malignancies, such as acute lymphoblas-
tic leukemia (ALL) and non-Hodgkin lymphoma [3,4], since the 1960s.
In light of the significance of L-ASNase as a therapeutic protein, various
methods have been developed for measuring the enzyme’s activity.
Those assays can be used in either absorbancemode [5–10] or fluores-
cence mode [11,12]. However, these assays suffer from certain disad-
vantages that are primarily related to the use of substrate analogs
instead of the natural substrate L-Asn [6,7,11,12]. Such assays are
not suitable for in vitro evolution of L-asparaginases that aims to select
variants showing improved catalytic efficiency and selectivity for the
physiological substrate. Moreover, the limited sensitivity of absorp-
tion-based spectrophotometric assays [5–7,9,10] is a major handicap
to significantly reducing reaction volumes. A noteworthy example of
such a case is droplet-based microfluidics, which has emerged as a
powerful tool for high-throughput screening in directed protein evo-
lution [13,14]. In these experimental setups, the assay volume is min-
imized to 1 nl, to 1 fl, scaling down light path lengths to 1 lm.

Here, we report on the development of a novel L-ASNase assay
that can be used in either the fluorescence or absorbance mode
and relies solely on the use of the physiological substrate L-Asn.
In this three-step coupled enzyme system (Fig. 1), L-Asp, which is
one of the two products of the L-ASNase reaction, is oxidized by
L-aspartate oxidase (L-AspOx), resulting in the formation of imino-
aspartate and hydrogen peroxide (H2O2); the latter product is used
by horseradish peroxidase (HRP) to oxidize the nonfluorescent
compound Amplex Red (AR) to resorufin, which exhibits excellent
fluorescence as well as absorbance properties.

For establishing and quantitatively evaluating the assay, we
cloned and recombinantly produced E. coli L-AspOx [15] (see
Fig. S1 in online supplementary material) and periplasmic mature
E. coli L-ASNase [16] (Fig. S2), which is the current approved antineo-
plastic enzyme drug for ALL treatment. The assay was optimized in
both the absorbance and fluorescence modes using, for our mea-
surements, a Uvikon 943 double beam UV/VIS (ultraviolet/visible)
spectrophotometer and a Jasco FP 8300 spectrofluorometer, respec-
tively. One of the most important criteria to be fulfilled in assays
relying on a coupled enzyme system like the one described here is
that activity of the auxiliary enzymes always exceeds the enzyme
under study. We verified that the rate-determining step of absorp-
tion or fluorescence changes in our system was indeed the initial
L-ASNase reaction by varying the concentration of L-ASNase. In this
context, it isworthunderlining that the threeenzymes that formthis
reaction system are characterized by large differences in their ki-
netic constants, notably in their turnover numbers, with L-AspOx
being the least efficient one (steady-state kinetics of L-AspOx is
shown in Fig. S3 of the supplementary material) (respective Km
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and kcat values: 20 lM and 12 s!1 for E. coli L-ASNase; 1.5 mM and
0.5 s!1 for E. coli L-AspOx; 0.1 mM and 560 s!1 for HRP) [17,18].

For standardizing the assay in thefluorescencemode, thefinal reac-
tionmixture contained3.5 lML-AspOx, 10 lMflavin adeninedinucle-
otide (FAD), 100 nMHRP, 50 lMAR, 4.6 nM L-ASNase ("16 ng/0.1 ml),
and different amounts of L-Asn in a final volume of 100 ll using phos-
phate-buffered saline (PBS) as buffer. Samples were incubated in dark
Eppendorf tubes at room temperature. Fluorescence signals were re-
corded (excitation at 568 nm, emission at 584 nm, bandwidths at
2.5 nm each) and ultimately corrected by subtracting the control val-
ues (no L-Asn) fromall samples.Aimingat theoptimizationof theassay
in the fluorescence mode, two critical parameters were further inves-
tigated: the concentration of AR in the reaction mixture and the incu-
bation time before recording fluorescence signals. The nonfluorescent
AR reacts with H2O2 in a stoichiometric 1:1 ratio, catalyzed by HRP, to
form the highly fluorescent product resorufin [19,20]. However, as has
beenshownbyothers [20], atexcess levelsofH2O2resorufincanbe fur-
ther oxidized to the nonfluorescent compound resazurin. Therefore,
the concentration of AR should be kept at least five times higher than
that of H2O2. We tested five different AR concentrations in the range
of 10 to 60 lMusing1 lML-Asn. Fig. S4 of the supplementarymaterial
shows that signals obtained under these conditions are similar and
reproducible. In subsequent experiments, we kept AR constant at
50 lM.We realized that the incubation time prior to activitymeasure-
ments canbeacritical variable thatmustbeoptimized in thesefluores-
cent assays. As shown in Fig. S5, fluorescence increases linearly during
the first 20 min and then saturates and remains stable for up to 60 min
after incubation.However, thebest signal-to-noise ratio (factorof"25)
was obtained after 30 min of incubation. Therefore, in all reactions,we
incubated the mixture for 30 min at room temperature before moni-
toring fluorescence. Alternatively, the reaction can be monitored in a
continuous manner for direct kinetic measurements if necessary
(Fig. S6).AsFig. 2Ashows, thefluorescencesignals increaseproportion-
allywith the L-ASNase concentration in the range of 0.1 to 4.6 nM(0.4–
16 ng/0.1 ml). In subsequent kinetic experiments, we used 16 ng of
L-ASNase in0.1-ml reactionmixtures. Importantly, thisproportionality
also holds in the case of L-ASNase-supplemented human serum sam-
ples; therefore, this assay can be used in clinical analyses of L-ASNase
activity (Fig. S7). The limit of detection (LOD) of this fluorescent assay
was determined to be 100 nM L-Asn based on the standard deviation
(r) of the blank samples and the slope (m) of the calibration curve,
according to the following equation: LOD = (3# r)/m. Moreover, this
concentrationcouldbe reliably tracedwithhigh reproducibility (Z’ fac-
tor "0.77; see supplementary material). Fig. 2B demonstrates the lin-
earity of the assay in the concentration range of 0.1 to 10 lM L-Asn.

Asmentioned above, one of themajor advantages of this assay is the
fact that it can be used not only in fluorescencemode but also in absor-
bancemodedue to the favorable absorptionproperties of thefinal prod-
uct resorufin showing a maximum at approximately 570 nm with
e = 5.4# 104M!1 cm!1 [21]. Similar to optimized conditions for fluo-
rescence detection, absorbance measurements were performed at
25 !C for a time period of 10min in a final volume of 1ml of PBS buffer
containing 3.5 lML-AspOx, 10 lMFAD, 100 nMHRP, and50 lMAR. To
assessquantitative features andgeneral validity of thenewL-ASNaseas-
say,weperformedsteady-statekinetic analyses todeterminecharacter-
istic catalytic parameters. First, we determined the level of L-ASNase, up
to which the velocity of the reaction remains linear. Fig. 2C shows that
the response is linear in the AR-dependent assay when using 0.68 to
34 nM(24–1200 ng/ml) L-ASNase.Basedon this result, and tomeet con-
ditions required for initial ratemeasurements, 30 ngof enzymepermil-
liliter ("0.85 nM)wasusedforsubsequentkineticexperimentscovering
substrateconcentrations intherangeof0to15Km.Theenzymefollowed
Michaelis–Menten kinetics (Fig. 2D). Kinetic constants were calculated
bynonlinear regression, yieldingKm = 22 ± 1.2 lM, kcat" 12.1 ± 0.5 s!1,
and kcat/Km = 5.5# 105M!1 s!1.

To validate this AR-dependent assay, we compared our data with
kinetic constants reported before by making use of the nicotinamide
adenine dinucleotide (NADH)-dependent assay [9]. Briefly, the pro-
duced ammonia serves as substrate for glutamate dehydrogenase
(GDH) that converts a-ketoglutarate to L-glutamic acid (L-Glu) with
simultaneous oxidation of NADH. The disappearance of NADH is re-
flected by a decrease in absorption at 340 nm, with e = 6.22 # 103 -
M!1 cm!1 (at pH 7.5). Thus, the oxidation of NADH is directly
proportional to the amount of ammonium generated by L-ASNase
activity. Similar to the L-AspOx-dependent spectrophotometric assay,
reactionswereperformedat25 !C inafinal volumeof1 mlofPBScon-
taining 0.25 mM NADH, 0.25 mM a-ketoglutarate, and 35 nM GDH
from bovine liver. The L-ASNase concentration was 7 nM ("250 ng/
ml). Fig. S6 shows the resulting Michaelis–Menten plot. The calcu-
lated kinetic constants are 21 ± 1.5 lM for Km, 11.5 ± 0.4 s!1 for kcat,
and 5.4# 105 M!1 s!1 for kcat/Km. The values obtained by these two
assays (summarized in Table S1 of the supplementary material) are
in excellent agreement, indicating that the newly developed fluores-
cence assay is a reliable andmore sensitive alternative to the NADH-
dependent assay, requiring approximately 10-fold less L-ASNase.

In summary, herewe reported on the development of a highly sensi-
tive assay for measurement of L-ASNase activity. This L-ASNase assay
comprises three coupled enzymatic reactions. It relies on the use of
L-AspOx in the second reaction step, which generates H2O2 that, in the
presence of HRP, oxidizes the nonfluorescent AR agent to the highly

Fig.1. Schematic representation of the AR-dependent L-ASNase coupled-enzyme assay.
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red fluorescent resorufin product. Advantages of this assay are that it is
homogeneous, allowing adjustment of the assay conditions, such as
temperature and buffer composition, according to specific require-
ments, and that it can in principle be applied in both the absorbance
and fluorescencemodes. Taking advantage of resorufin’s excellent fluo-
rescence and absorption properties, we showed that this assay can reli-
ably beused to detect lowamounts of L-Asn andmonitor low levels of L-
ASNaseactivitynotonlywhenpurifiedenzyme isusedbutalsowhen its
activity is to be determined in human serum. Notably, the enzyme can
be kinetically characterized using its natural substrate and requiring
10-fold less protein compared with other widely used assays.
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Supplementary Material

Chemicals and reagents

L-asparagine (L-Asn), flavine adenine dinucleotide (FAD), nicotinamide adenine 

dinucleotide (NADH), horseradish peroxidase (HRP type X, 386 U/mg, Mr ~ 44 kDa), 

glutamate dehydrogenase from bovine liver (GDH, 44 U/mg, Mr ~ 56 kDa), !-

ketoglutarate, o-dianisidine, L-aspartate (L-Asp), and human serum (from male AB 

plasma) were obtained from Sigma Aldrich (St. Louis MO, USA). Amplex Red (AR) was 

purchased from Cayman chemicals (Michigan, USA). Yeast extract, peptone, agar, 

ampicillin, and Isopropyl-beta-D-thiogalactoside (IPTG) were purchased from Applichem 

(Gatersleben, Germany). KAPA HiFi polymerase was obtained from PeqLab (Erlangen, 

Germany), restriction enzymes and T4 DNA ligase from NEB (Ipswich, MA, USA). Gel 

extraction and PCR purification kits, and nickel agarose for affinity purification of poly-

histidine-tagged proteins were from Macherey Nagel (Düren, Germany), plasmid 

purification kit from Fermentas (Thermo Fisher Scientific, Germany), genomic DNA 

preparation kit from Qiagen (Hilden, Germany), gel filtration chromatography column 

Superdex 200 from Pharmacia/GE Health Care Life Sciences (Uppsala Sweden). 

Coomassie Brilliant Blue G-250 (Bradford reagent) for protein assays  was from Roth 

(Karlsruhe, Germany).



Cloning, expression and purification of L-aspartate oxidase and periplasmic L-

asparaginase from E.coli.

Since L-aspartate oxidase (L-AspOx) is commercially not available, we cloned the E.coli 

gene (nadB) and produced milligram amounts of the enzyme recombinantly. The open 

reading frame (ORF) of L-AspOx consisting of 1623 bp, was amplified by PCR using as 

template genomic DNA isolated from the E.coli XL1-Blue strain. Unique NdeI and 

BamHI restrictions sites (underlined below) were incorporated at the 5’- and 3’- ends of 

the respective oligonucleotides (5’-GGAATTCCATATGAATACTCTCCCTGAACATTC-3’, 

and 5’-CGCGGATCCTTATCTGTTTATGTAATGATTGC-3’). The PCR mixture (50 µL) 

consisted of 1 µg genomic DNA, oligonucleotide mix (10 pmol each), KAPA high fidelity 

buffer, dNTPs (0.2 mM each), and 1 Unit KAPA HiFi DNA polymerase. The reaction was 

performed at initial temperature of 95 °C for 3 min, followed by 25 cycles of the next 

steps: at 98 °C for 20 s, 60 °C for 60 s, and 72 °C for 30 s. The reaction was terminated 

after a 3’-end polishing step of 5 min at 72 °C. The PCR product was agarose gel-

purified, digested with NdeI and BamHI HF, and ligated overnight at 16 °C into a 

pET14b-SUMO vector [1] using T4 DNA ligase. The ligation mixture was used to 

transform DH5! E.coli cells, and positive clones were first identified by colony PCR 

screening. Extracted plasmid DNA was digested with NdeI and BamHI HF to verify 

correct size of the cloned fragment, and finally the gene insert was sequenced (SeqLab, 

Goettingen, Germany).



The expressed protein construct includes an N-terminal six-histidine tag, followed by a 

yeast SUMO (Small Ubiquitin-related MOdifier) tag which has proven to ameliorate 

heterologous protein solubility and stability [2]. E.coli BL21(DE3) C41 cells (Lucigen, 

Madison, USA) were cultured overnight at 37 °C in LB medium supplemented with 200 

µg/ml ampicillin. A fraction of this culture was used to inoculate fresh 2xYT culture 

medium (dilution 1:100) supplemented with 200 µg/ml ampicillin. When O.D.600 reached 

~ 0.5-0.7, expression was induced by adding IPTG to a final concentration of 1 mM. 

After incubation at 37 °C for 8 hours, the cells were harvested by centrifugation (20 min 

at 5,000g), resuspended in nickel agarose binding buffer A (50 mM Na2HPO4, 0.5 M 

NaCl, 10 mM imidazole, pH 8), and ultimately lysed by ultrasonication. The cell lysate 

was centrifuged (45 min at 17,200g), the resulting supernatant mixed with pre-

equilibrated nickel agarose beads, and incubated at 4 °C for 3 hours in a rotating 

beaker. The slurry mixture was filled in 5 mL polypropylene columns, dried by gravity, 

and the agarose beads were then washed with 25 bed volumes of buffer B (50 mM 

Na2HPO4, 1 M NaCl, 25 mM imidazole, pH 8). Bound protein was eluted from the 

column by applying 300 mM imidazole in buffer B. All purification steps were performed 

at 4 °C in a cold room. Eluted fractions were mixed, and buffer was exchanged against 

50 mM Na2HPO4, 100 mM NaCl, pH 7.5, using a PD-10 column (GE Healthcare). Eluted 

protein was incubated with yeast SUMO protease (molar ratio 1:100) at 30 °C for 2 

hours to cleave the N-terminal tag. This treatment resulted in the final intact L-AspOx 

with predicted Mr ~ 60.3 kDa (apparent Mr on SDS-PAGE ~ 60 kDa). The protein 

solution was concentrated using ultrafiltration tubes, 10,000 MWCO (Sartorius, 

Goettingen, Germany). In the final purification step, the enzyme was passed through a 



Superdex 200 column to remove the cleaved tag, SUMO protease, and impurities 

remaining after the affinity purification step. Protein purity, as evaluated by SDS-PAGE, 

was more than 95%. The protein was aliquoted, mixed with glycerol (25% final 

concentration), and stored at -20 °C until further use. The overall protein yield for L-

AspOx was  estimated to be approximately 40 mg per L of 2xYT growth medium with a 

specific activity ~ 0.05 U/mg as determined by applying the o-dianisidine assay 

described elsewhere [3], which was also used for the kinetic characterization of this 

enzyme (Fig. S3).

Periplasmic mature E.coli L-ASNase (ansB) was cloned using the primer pair 5’-

G G A A T T C C A T A T G T T A C C C A A T A T C A C C A T T T T A G C - 3 ’ a n d 5 ’ -

CGCGGATCCTTAGTACTGATTGAAGATCTGCTGG-3’, expressed, and purified in a 

similar way. The protein amount obtained out of 1 L 2xYT medium was ~ 15 mg with a 

specific activity of 1 U/mg as determined by the NADH-dependent assay. The predicted 

Mr of the mature E.coli L-ASNase is 34.5 kDa, while on SDS-PAGE it appears to run 

somewhat faster (~ 32 kDa).



Figures

Figure S1. SDS-PAGE (15%) analysis of purified E.coli L-AspOx (calculated Mr: 60.3 

kDa).

         

!



                                  

Figure S2. SDS-PAGE (15%) analysis of purified mature E.coli L-ASNase (calculated 

Mr: 34.5 kDa).

!



Figure S3. Steady-state turnover rates (kobs) of L-AspOx determined by applying the 

chromogenic o-dianisidine-based assay [3]. Reactions were performed at 25 °C in 1 ml 

PBS, containing 20 µM FAD, 100 nM HRP, 10 µg/ml o-dianisidine, 65 nM (~ 5 µg) L-

AspOx, and variable amounts of substrate. Kinetic constants (see text) were calculated 

by non-linear regression of the Michaelis-Menten (Igor Pro, Wavemetrics). 

Measurements were performed in triplicate (n = 3), and values are expressed as means 

± SD.



Figure S4. Fluorescence intensity as a function of AR concentration. The L-Asn 

concentration was kept constant at 1 µM, while L-ASNase concentration was ~ 4.6 nM. 

The fluorescence signal was recorded after 30 min in each case, (n=3, ± SD)



Figure S5. Time course of the L-ASNase reaction monitored at discrete time points 

using the fluorescence assay. Concentrations: 10 µM L-Asn, 50 µM AR, ~ 4.6 nM L-

ASNase, (n=3, ± SD). Error bars are not shown when they are smaller than the 

symbols.



Figure S6. Real-time monitoring of the three-step enzymatic reaction to detect L-

asparaginase activity using a plate-reader (Molecular Devices, SpectraMax Paradigm; 

wavelength settings were 532 nm for Ex, and 592 nm for Em). The four reactions took 

place simultaneously in a 96-well plate in a final volume of 100 µL at the following 

concentrations: 10 µM L-Asn, 50 µM AR; L-ASNase concentrations were as follows: (!): 

0 nM, ("): 1 nM, (#): 2 nM, and (◇): 4 nM.



Figure S7. Enzyme-concentration response using human serum supplemented with L-

ASNase. 200 µL of human serum were spiked with 50 µg L-ASNase  previously diluted 

in PBS, and mixed thoroughly. Subsequently, aliquots were used to detect enzymatic 

activity in a final volume of 100 µL using standardized conditions as described in the 

main text for the fluorescence mode, except from the following modifications of 

concentrations and settings: 100 µM L-Asn and 500 µM AR, Ex. bandwidth at 1 nm, 

while Em. bandwidth was kept at 2.5 nm. Fluorescence signals were corrected by 

subtracting the control values (no L-Asn) from all samples, (n=3, ± SD).



Figure S8. Steady-state kinetics of L-ASNase applying the NADH-dependent assay. 

Reactions were performed at 25 °C in 1 ml PBS, containing 0.25 mM NADH, 0.25 mM 

!-ketoglutarate, 35 nM GDH and 7 nM (~ 250 ng/ml) L-ASNase. Data points are 

represented as means of triplicate measurements, and error bars are standard 

deviations of three separate reactions. Kinetic constants were calculated by non-linear 

regression of the Michaelis-Menten equation (Igor Pro, Wavemetrics)  and are shown in 

Table S1.



Table S1. Steady state-kinetic parameters (n=3, ± S.D.) for E.coli L-ASNase 

determined by applying the AR or the NADH-dependent assay.

Kinetic parameter Amplex Red assay NADH assay

Km 22 ± 1.2 (µM) 21 ± 1.5 (µM)

kcat 12.1 ± 0.5 s-1 11.5 ± 0.4 s-1

kcat/Km  5.5 x 105 M-1 s-1  5.4 x 105 M-1 s-1

Z’ factor determination

In order to evaluate and validate the newly developed assay for L-ASNase, we 

determined the Z’ factor [4] which is defined as follows:

where µc+ and µc- are the means of the positive and negative control values, 

respectively, and !c+ and !c- are the standard deviations of the corresponding signals. 

The statistical parameters were calculated from six samples containing 10 µM L-

asparagine for the positive control, and six ones which contained all components except 

from L-Asn for the negative control. The final reaction solution contained 3.5 µ" L-



AspOx, 10 µ! FAD, 100 nM HRP, 50 µ! AR and 4.6 nM L-ASNase (~ 16 ng/0.1 ml). 

The Z’ factor was determined to be 0.77 suggesting that this is a very sensitive and 

reproducible assay. 

Some Notes and Tips 

1) L-AspOx, a monomeric enzyme, has been highly overexpressed recombinantly in 

E.coli.  Instead of IPTG, one could use equally efficiently the cheaper “auto-induction” 

medium which contains lactose as inducer. We found similar expression yields (>40 

mg/L 2XYT medium) in both cases, using the pET-14b-SUMO vector. Such yields 

could be easily achieved not only when BL21(DE3) C41 was used as expression 

host, but also with other conventional E.coli strains such as BL21(DE3), BL21(DE3) 

pLysS, or BL21(DE3) Rosetta.

2) AR is a light-sensitive dye, and therefore it is  essential to avoid its exposure to light. 

We observed that the reaction mixture (without L-ASNase to trigger the reaction) 

remains stable, exhibiting a very low background fluorescence signal, for 3 hours at 

room temperature in dark Eppendorf tube. 

3) FAD is  a crucial co-factor for the activity of L-AspOx; it is non-covalently bound to the 

enzyme with 1:1 stoichiometry. However, it is not tightly bound (K ~ 1 µM), and 

therefore a 3-fold molar excess of FAD provides a more stable environment for the 

activity of L-AspOx.

4) Fresh preparation of all buffers is advantageous, as this can diminish undesired 

background activity. A noteworthy example is the L-Asn stock solution. L-Asn, when 

stored for long periods even at 4 °C, can spontaneously hydrolyze to L-Asp and 

ammonia. This would cause a considerably higher initial background activity, since 

the presence of L-Asp would initiate reaction steps two and three of the coupled-

enzyme system. Furthermore, in a series of experiments, we observed that AR 

remained stable for 4 months when dissolved in DMSO at a final concentration of 50 

mM.



5) For the purpose of detection of L-ASNase activity in serum, it is preferable to use 

saturated L-Asn concentrations  (for E.coli L-ASNase > 80 µM) and consequently 

higher AR concentrations (five fold higher than L-Asn). This will decrease the 

background reaction and improve the signal-to-noise ratio.
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The following Chapter 5 is presenting unpublished results regarding the FACS-

based high-throughput screening of hASNase3 mutant libraries, as well as the 

development of a droplet-based microfluidic high-throughput screening system. 

The chapter is divided into two main parts: 

Part 5.1 is focusing on the analysis of a number of hASNase3 mutant libraries using a FACS 

high-throughput screening platform. Catalytically improved hASNase3 variants were identified 

and further kinetically characterized. All the FACS measurements were done at the Structure and 

Dynamics of Mitochondria research group at the MPI-bpc (Prof. Dr. Stefan Jakobs). A 

manuscript is in preparation for submission to a peer-review Journal.

Part 5.2 describes the preliminary development of a novel droplet-based microfluidic high-

throughput screening platform for the analysis of L-ASNase mutant libraries. This project is 

running in collaboration with Dr. Jean-Christophe Baret, head of the Droplets, Membranes and 

Interfaces Research Group at Max Planck Institute for Dynamics and Self-Organization. All the 

experiments and data analysis were performed by Christos S. Karamitros, Jiseok Lim (Post-

doctoral researcher) and Philipp Gruner (Ph.D. student) with equal contribution. A manuscript 

is ready for submission to Journal for peer-review evaluation.

Chapter 5. FACS-based high-throughput screening analysis of 

hASNase3 mutant libraries and developent of a droplet-based high-

throughput screening platform.
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5.1 FACS-based screening of hASNase3 mutant libraries

5.1.1 Materials

5.1.1.1 Plasmids, E.coli strains, cDNA, and chemicals

Plasmid pET-14b was purchased from Novagen. It has the pBR322 origin of replication, is 

medium copy number plasmid (~30 copies per cell) and carries the ampicillin antibiotic 

resistance marker ampR coding for the enzyme beta-lactamase (BLA). A modified version of 

the pET14b plasmid, designated pET14b-SUMO [38], was used to include the SUMO tag 

(derived from the Saccharomyces cerevisiae smt3 gene) between the N-terminal His6-tag and 

the multiple cloning site (MCS). The E.coli host strain C41 (DE3) was obtained from 

Lucigen/BioCat. The XL1-Blue and DH5! strains were purchased from Stratagene and 

Invitrogen, respectively. Plasmid eGFP-pBAD33 was a kind gift from Dr. George Georgiou’s 

lab (University of Texas at Austin, Department of Chemical Engineering and Institute for 

Cellular and Molecular Biology). pBAD33 is a medium copy number plasmid (~ 25 copies 

per cell) and has the chloramphenicol antibiotic resistance marker cmR coding for 

chloramphenicol acetyltransferase (CAT). The five-gene E.coli deletion strain, designated 

JC1(DE3), was also a kind gift from Dr. George Georgiou’s lab. The deleted genes of this 

strain are the following: The L-asparaginase genes ansA (encoding L-ASNase1), ansB 

(encoding L-ASNase2), iaaA (encoding L-ASNase3), the aspartate aminotransferase gene 

aspC, and the tyrosine aminotransferase gene tyrB. The parental strain which was used for the 

chromosomal deletions was E.coli MC1061 having the following genotype [F! "(ara-leu) 

7697 [araD139]B⁄r "(codB-lacI)3 galK16 galE15 #! e14! mcrA0 relA1 rpsL150(strR) spoT1 

mcrB1 hsdR2 (r!m+)]. All restriction and DNA-modifying enzymes and Taq polymerase were 

from New England Biolabs. Separate solutions of dNTPs (dATP, dCTP, dGTP and dTTP) 

were purchased from New England Biolabs. The oligonucleotides used in this study were 

obtained from IBA (Goettingen, Germany). Yeast extract, peptone, agar, ampicillin, 

chloramphenicol, isopropyl-beta-D-thiogalactoside (IPTG), arabinose and glucose were 

purchased from Applichem (Gatersleben, Germany). L-asparagine, flavine adenine 

dinucleotide (FAD), nicotinamide adenine dinucleotide (NADH), horseradish peroxidase 

(HRP type X, 386 U/mg, Mr ~ 44 kDa), glutamate dehydrogenase from bovine liver (GDH, 
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44 U/mg, Mr ~ 56 kDa), !-ketoglutarate, L-aspartate, all other amino acids used for M9 

minimal medium, and the SYPRO Orange dye were obtained from Sigma Aldrich (St. Louis 

MO, USA). Amplex Red (AR) was purchased from the Cayman Chemical Company 

(Michigan, USA). The gel filtration chromatography column Superdex 200 was from 

Pharmacia/GE Health Care Life Sciences (Uppsala Sweden). Coomasie Brilliant Blue G-250 

(Bradford reagent) for protein assays was from Roth (Karlsruhe, Germany). All PCR 

reactions were performed with KAPA HiFi polymerase purchased from PeqLab (Erlangen, 

Germany). Gel extraction and PCR purification kits, and nickel resin for affinity purification 

of poly-histidine-tagged proteins was from Macherey  Nagel (Düren, Germany), plasmid 

purification kits from Fermentas (Thermo Fisher Scientific, Germany), kits for genomic 

DNA preparation from Qiagen (Hilden, Germany). The hASNase3 open reading frame was 

amplified using as template cDNA from a human skin and meninges library  (Source 

Bioscience, UK). All cloning and mutagenesis steps involving PCR amplifications were 

confirmed by sequencing (SeqLab, Goettingen, Germany) according to the company’s 

instructions.

Table 1. Oligonucleotides used for the generation of hASNase3 libraries. The degenerate 
codons are in bold, and the recognition sites for the restriction endonucleases are in italics 
(CATATG for NdeI, GGATCC for BamHI).
 

Primer Sequence

FWhASNase3wt GGAATTCCATATGAATCCCATCGTAGTGGTCCACGGCGGCGG

RVhASNase3wt CGCGGATCCTTAGGGAAGGTCGGTGATAGTAGTATCGTCAG

FW_SSM-LIB1

RV: RVhASNase3wt

GGAATTCCATATGAATCCCNNSNNSNNSNNSCACGGCGGCGGAG
CCGGTC

FW_SSM-LIB2
TAATAAANNSNNSGGCCGCGTTGGGGACTCACCGNNSNNSGGA 
GC

RV_SSM-LIB2
GCTCCSNNSNNCGGTGAGTCCCCAACGCGGCCSNNSNNTTTATT
A

FW_SSM-LIB3 ACCTCCACAGGCGGTNNSNNSAATAAAATGGTCGGCCGC

RV_SSM-LIB3 GCGGCCGACCATTTTATTSNNSNNACCGCCTGTGGAGGT

FW_SSM-LIB4 CTGGTGACAGAGNNSAACAAAAAGNNSCTGGAAAAAGAG

RV_SSM-LIB4 CTCTTTTTCCAGSNNCTTTTTGTTSNNCTCTGTCACCAG
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5.1.2 Methods

5.1.2.1 Cloning of hASNase3

The ORF of hASNase3 was PCR-amplified using as template the full-length cDNA. The 

cloning process for this ORF was the following: NdeI and BamHI sites were incorporated at 

the 5’- and 3’-ends of the used oligonucleotides, respectively (primers are shown in Table 1). 

The PCR reaction mixture consisted of oligonucleotide mix (100 pmol each), KAPA high 

fidelity buffer, dNTPs (0.25 mM each), template DNA (10 ng), and KAPA HiFi DNA 

polymerase (1 unit). The reaction was initiated at 95 !C for 3 min, followed by 25 cycles of 

denaturation at 98 !C for 20 s, primer annealing at 60 !C for 30 s, and extension at 72 !C for 

30 s. The amplification reaction was terminated after a 5 min polishing step at 72 !C. The 

PCR product was gel-purified, digested with NdeI and BamHI H.F., purified with PCR clean-

up kit, and ultimately ligated overnight at 16 !C into pET14b-SUMO vector (17 ng DNA 

fragment plus 50 ng plasmid in a final volume of 20 "L) using T4 DNA ligase (400 units). 

The ligation mixture was used to transform DH5! E.coli cells. Positive clones were identified 

by colony PCR screening using one primer specific for the vector (forward) and one primer 

specific for the insert (reverse), followed by restriction digestion with NdeI and BamHI H.F., 

and finally sequencing of the cloned DNA insert. The expressed protein construct includes an 

N-terminal 6-histidine (His6) tag, followed by the yeast SUMO (Small Ubiquitin MOdifier) 

tag which has proven to improve heterologous protein solubility and stability [261]. 

5.1.2.2 Expression and purification of recombinant enzymes

Recombinantly produced hASNase3 (wildtype and all mutants) were expressed and purified 

according to the following protocol (although their expression and purification are described 

in detail in certain publications, for the sake of consistency of the present unpublished data 

chapter, they are also included briefly here). 

E.coli BL21(DE3) C41 cells containing the plasmid (pET14b-SUMO) with the gene of 

interest were cultured overnight at 37 !C in 2xYT medium supplemented with 200 "g/ml 

ampicillin. A fraction of this culture was used to inoculate fresh 2xYT culture (dilution 1:100) 

supplemented with 200 "g/ml ampicillin and 200 mM glycine to accelerate the 

autoproteolytic processing of hASNase3. When O.D.600 reached ~ 0.5-0.7, the expression 
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was induced by adding IPTG to a final concentration of 1 mM. After incubation at 37 !C for 6 

h, the culture was centrifuged at 4,000g for 30 min, the cells were harvested, resuspended in 

nickel agarose affinity matrix binding buffer (50 mM Na2HPO4, 0.5 M NaCl, 10 mM 

imidazole, pH 8.0), and ultimately lysed by sonication. The cell lysate was centrifuged at 

17,200g for 45 min, the resulting supernatant mixed with pre-equilibrated nickel agarose 

beads, and incubated at 4 !C for 3 h under rotation. Subsequently, the mixture was filled in a 

5 mL polypropylene column and dried by gravity. The nickel resin was treated with 25 bed 

volumes of washing buffer (50 mM Na2HPO4, 0.5 M NaCl, 20 mM imidazole, pH 8.0). 

Finally, the bound protein was eluted from the column by applying 300 mM imidazole, and 

dropwise collection of fractions. All purification steps were performed at 4 !C. The collected 

fractions were mixed and incubated with 500 mM glycine for 4 h at 25 !C. Subsequently, the 

buffer was exchanged against 50 mM Na2HPO4, 0.5 NaCl, pH 7.5 using a PD-10 column 

(GE). The eluted protein fraction was incubated with yeast SUMO protease (molar ratio 

protease:protein ~ 1:100) at 30 !C for 2 h in order to cleave the N-terminal 6-His-SUMO tag 

(alternatively, this was done overnight at 4 !C). In a last purification step, the protein was 

subjected to size exclusion chromatography by passing it through a Superdex 200 column 

(size: 30 x 1 cm; Pharmacia/GE) to remove the cleaved tag and remaining impurities. Protein 

purity was evaluated by SDS-PAGE, the protein samples were aliquoted, mixed with 25% 

glycerol, and stored at -20 !C until use. Protein concentration was determined by the 

Bradford method [262], and by using the molar extinction coefficient of hASNase3 (22,460 

M-1 cm-1) as calculated by the online proteomics tools provided by ExPASy (http://

www.expasy.org/). The two methods showed less than 15% difference, and ultimately the 

values were averaged.

5.1.2.3 Assays for L-asparaginase activity determination and kinetic 

characterization of the enzyme

In the present study, three different assays were employed for activity  determination and 

kinetic characterization of L-ASNases: (A) Nesslerization, (B) NADH-dependent 

spectrophotometric assay, and (C) Amplex Red-dependent fluorescent  assay. They are 

described in the following sections.
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(A) Nesslerization is called the process in which Nessler’s reagent is used to detect free 

ammonium ions. Nessler’s reagent is a yellowish solution of potassium tetraiodomercurate 

which turns into light orange to red (depending on the concentration of ammonia) when it 

binds to ammonia [263]. It is the most widely  used L-ASNase assay mainly  because of its 

simplicity. It is quite sensitive (limit of detection is ~ 1 µM of ammonia produced in 1 mL 

reaction volume as determined in the present study), and it can be used to determine L-

ASNase activity in a quantitative manner applying end-point measurements. Briefly, the 

purified enzyme was incubated with different concentrations of the substrate L-asparagine 

either in buffer 50 mM Na2HPO4, 300 mM  NaCl, pH 7.5, or 50 mM Tris-Cl, 100 mM NaCl, 

pH 8 at 37 !C for 20 min. In parallel, to detect ammonia generated in the absence of L-

ASNase activity, a second identical sample was incubated at 37 !C for 20 min, in which the 

enzymatic reaction was quenched at time zero by adding trichloroacetic acid (TCA) to a final 

concentration of 10%. After TCA precipitation, both samples were centrifuged at  16,100 g for 

2 min. The supernatant (0.8 mL) was mixed with Nessler’s reagent (0.2 mL), and the 

absorbance was monitored spectrophotometrically  at ~ 440 nm after 5 min incubation at 

room temperature. The concentration of the enzymatically produced ammonia was calculated 

based on a standard curve generated with known concentrations of either ammonium sulphate 

or ammonium chloride. An enzymatic unit is defined as the amount of enzyme that catalyzes 

the conversion of 1 µmole of L-asparagine per minute under the aforementioned conditions. 

This assay was used in the present study only qualitatively, but not for determining steady-

state kinetic properties of enzymes. Given the fact that it is colorimetric and can be 

performed very rapidly, it facilitates the determination of L-ASNase activities from enzyme 

fractions after purification steps.

(B) The NADH-dependent assay is a continuous spectrophotometric coupled-enzyme assay 

which monitors the conversion of "-ketoglutarate plus ammonia to glutamate in a glutamate 

dehydrogenase (GDH)-coupled reaction [264]. The disappearance of NADH was monitored 

continuously at 340 nm and was directly  proportional to the L-ASNase activity. For these 

measurements, a Jasco UV/VIS V-650 spectrophotometer was used. All enzymes used for the 

kinetic experiments were free of the His6-SUMO tag which was removed during the last  size 

exclusion chromatographic step (see above). For steady-state kinetic analysis of all 

hASNase3 species, L-Asn concentrations were varied in the range of 0-5KM in a final volume 
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of 1 mL of 50 mM Tris-Cl, 100 mM  NaCl, pH 8. The final enzyme concentration was 

typically in the range of 1-1.5 µM (~ 30-50 µg in 1 mL). The obtained V/E (velocity/total 

enzyme concentration) values were plotted against the respective substrate concentrations. 

The kinetic constants KM and kcat were calculated from the resulting plots by non-linear 

regression using the Michaelis-Menten model (equation 1) and analyzed by the SoftZymics 

software (Igor Pro, Wavemetrics): 

V
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K SM

=
+

max[ ]
[ ]

       (1)

(C) The Amplex Red-dependent fluorescent assay was used for the final screening step in 

96-well plates of the selected mutants following the last FACS sorting round. Details for the 

assay development, and its validation in general, can be found in the respective publication 

[265]. The assay conditions using 96-well plates during the last screening step for the 

identification of active mutants included: 5 µM  (~300 µg/mL) L-Aspartate Oxidase (L-

AspOx), 10 µM  FAD, 100 nM (0.1 U/mL) HRP, 50 µM Amplex Red, and 1 mM L-Asn in a 

final volume of 50 µL per well. The use of 1 mM as final L-Asn concentration was chosen in 

order to select mutants stringently  for improved KM given the fact that wildtype hASNase3 

exhibits a KM value ~ 3 mM. The reaction kinetics was monitored continuously for 20 min 

using a fluorescent plate reader (Molecular Devices, SpectraMax Paradigm, and filter settings 

Ex. 532, Em. 592).  

5.1.2.4 Generation of hASNase3 mutant libraries

Two types of mutant libraries were generated and screened for the evolution of hASNase3. 

Initially, an error-prone PCR (epPCR) protocol was developed, and in addition four site-

saturation mutagenesis libraries were prepared as described below.

(A) Error-prone PCR library. The error rate of an epPCR depends on a number of 

parameters such as the % GC content and the concentration of the gene which is used as 

template, the concentration of metal ions (MgCl2 and MnCl2), dNTPs, the amount of Taq 
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polymerase, and the number of reaction cycles [266]. The use of identical mutagenic 

conditions for two epPCRs for two different genes with distinct  characteristics (different  % 

GC content, different lengths) might yield different final error rates. Therefore, the 

determination of the appropriate mutagenic conditions for individual genes is fundamental for 

achieving the desired error rates, rather than following epPCR schemes from protocols. It has 

been shown that the main mutagenic parameter in epPCR is the concentration of MnCl2 

[267]. For the development of epPCR schemes for hASNase3, four different experimental 

conditions were tested using the concentrations shown in Table 2 (the different tested 

concentrations of MnCl2 are in bold-red):

Table 2. Different epPCR conditions tested for determining the error rates using as 
template the pET14b-SUMO plasmid. 

Compound Stock Concentration Final Concentration

dATP 100 mM 0.2 mM

dGTP 100 mM 0.2 mM

dCTP 100 mM 1 mM

dTTP 100 mM 1 mM

MgCl2 25 mM 7 mM

MnCl2 5 mM 0.01, 0.05, 0.2, 0.5 mM

BSA 10 mg/mL 5 µg/mL

Template DNA 100 ng/µL
50 nM (calculated based on 
the ORF size of hASNase3)

Primers 0.1 nmol/µL 0.03 nmol/µL

Taq buffer 10X 1X

Taq Polymerase 5,000 U/mL 2.5 Units

Final volume 50 µL

The parameters were identical for all the reactions: Initial denaturation step at 95 !C for 30 s, 

followed by 30 cycles of 95 !C for 30 s, 55 !C for 30 s, 68 !C 90 s. The reaction was stopped 

after a 5 min polishing step at 68 !C. The amplicons were agarose-gel purified, digested with 
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restriction enzymes (NdeI and BamHI H.F.), PCR-purified and ligated into the pET14b-

SUMO vector overnight at 16 !C using T4 DNA ligase and T4 DNA ligase buffer using a 

molar ratio of 1:3 (vector:insert). In parallel, the same amount of digested plasmid was mixed 

with T4 DNA ligase and T4 DNA ligase buffer, but without insert in order to determine the 

background of the ligation reaction; this sample served as negative control. 

The ligation mixtures were made salt-free by using a PCR-clean-up kit, and finally ~ 10 ng of 

each were used to transform 50 µL electro-competent DH5! E.coli cells using pre-chilled 1-

mm gap Bio-Rad cuvettes. A Gene Pulser instrument (Bio-Rad electroporation device) was 

used to apply  a pulse on the cuvettes containing the transformation mixtures (cells and 

ligation reactions) with the following settings: 25 µF, 1.5 kV, 200 ". Subsequently, 1 mL of 

SOC medium (Super Optimal broth with Catabolite repression; 2% w/v tryptone, 0.5% w/v 

yeast extract, 10 mM NaCl, 2.5 mM  KCl, 10 mM MgCl2, 20 mM glucose) was added to the 

transformed cells and transferred to a 10-mL Falcon tube. With an additional 1 mL SOC 

medium, the electroporation cuvette was rinsed to remove any remaining cells and was 

combined with the rest of the medium. Cells were grown at 37 !C under vigorous shaking 

(250 rpm), and ultimately were plated onto ampicillin plates. The plates were placed at  30 !C 

overnight. The next day, the transformation efficiency was determined based on the number 

of the obtained individual colonies in relation to the used DNA for transformation. The 

average transformation efficiency was between 2x107 and 5x107 per µg of plasmid DNA. In 

cases where the background ligation reaction of the negative control (without insert) 

accounted for >5% of the positive control, the plates were discarded and the process was 

reinitiated from the cloning level. For the determination of the final error rate, 15 colonies of 

each plate resulting from different mutagenic conditions were cultured overnight at 37 !C in 5 

mL 2xYT medium supplemented with 200 µg/mL ampicillin. Plasmids were extracted using 

plasmid extraction kit, and an aliquot of about 1 µg of plasmid DNA was digested with NdeI/

BamHI H.F. to determine the presence of insert. Usually, more than 13 out of 15 colonies 

contained the insert. Plasmids from 10 colonies were sequenced, and based on the sequencing 

results the error rates were determined, serving as an indicator of the quality of the library.

Cells were scraped from the original plates and resuspended in 2xYT medium supplemented 

with 200 µg/mL ampicillin. A fraction of this suspension was used to inoculate 0.5 L of 

2xYT medium; the remaining cells were pooled and stored at -80 !C as glycerol stocks. After 

overnight growth at 30 !C, the 0.5 L culture was centrifuged, and the plasmid DNA was 
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extracted using a MIDI-PREP kit. Approximately 100 ng of the plasmid mutant library 

(pET14b-SUMO-hASNase3) were used to transform electro-competent cells of the JC1(DE3) 

five-gene-deletion strain which already harbors the pBAD33-eGFP plasmid (chloramphenicol 

resistance). After the transformation, the cells were cultured in 0.5 L 2xYT medium 

supplemented with 200 µg/mL ampicillin and 35 µg/mL chloramphenicol. When OD600 

reached ~ 2, 0.5 mL aliquots were pooled and stored at -80 !C as glycerol stocks. For 

subsequent screening, a 0.5 mL aliquot was used to inoculate a culture of 2xYT medium as 

described in the next section where the screening process is discussed.

(B) Site-saturation mutagenesis. Site-Saturation-Mutagenesis (SSM) constructs were 

generated and screened for catalytically  improved hASNase3 variants. The libraries were 

designed using as template the crystal structure model of hASNase3 (PDB entry: 4OSY) and 

based on a massive amino acid sequence alignment of more than 1000 homologous enzymes 

from different organisms. Figure 1 shows the first ten consensus residues of this alignment 

(NPVIAIHGG), highlighting in a red frame the, critical for intramolecular processing and 

catalytic activity, highly  conserved triad His8-Gly9-Gly10 (counting starts from Met1). The 

alignment served as tool to determine highly conserved residues in the hASNase3 sequence, 

thus avoiding mutating them since they  could play  a pivotal role in the enzyme’s activity and 

stability. Amino acid residues localized around the first, second and third shell of the active 

site (first shell: residues with ~ 1-5 ! distance from the active site; second shell: 5-12 !, and 

third shell >12 !) were identified and their codons were randomized using degenerate 

oligonucleotides (Table 1) following the NNS scheme (N: A, T, G, C; S: G, C). For 

randomization, the NNS-type of codons was chosen in order to minimize the probability of 

generating stop-codons. This combination of nucleotides allows all the twenty  possible amino 

acids to be encoded, but only  one stop-codon (UAG). The residues which were randomized 

for each library are shown in Figures 2 to 5. Each library is denoted with the abbreviation 

SSM-LIB (Site-Saturation-Mutagenesis Library). In addition, an image with highlighted 

residues of the wildtype enzyme’s active site is shown for direct comparison with the residues 

which were mutated. 
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Wildtype hASNase3

Figure 1. Structure of wildtype hASNase3. With cyan is colored the ! subunit and with 
magenta the " subunit. Black-labeled is the product of the enzymatic reaction L-Asp. Red-
labeled are the residues which constitute the catalytic centre of the enzyme and are directly 
involved in the substrate binding. These are: Asn62, Thr186, Arg196, Asp199, Thr219, 
Gly220, and the catalytic threonine Thr168* which plays the role of the nucleophile (as 
discussed in the Introduction). In the figure is also shown the alignment of the homologous 
enzymes from different organisms (1000 in total, here are shown only 50). The first  line 
corresponds to hASNase3 (number 1), and on the top of the alignment the consensus residues 
for each amino acid position are shown. In the structure, three amino acids are framed in a 
red square and represent the amino acid triad His8-Gly9-Gly10. Structural analysis [36-38] 
has shown that this triad is crucial for the enzyme’s autoproteolytic activation and catalysis, 
and based on the alignment comparison, it  is evident that these residues are highly conserved 
among all homologs from different organisms. The first library was constructed by 
randomizing residues close to this conserved triad, as shown in the following figure 2. The 
alignment was done using the Geneious program, the structural representation was prepared 
by PyMol, and the whole figure was generated using Keynote. This also applies to all the 
following figures 2-5.
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SSM-LIB1

Figure 2. Randomized residues of the SSM-LIB1. The residues which were randomized 
are green-labeled and are indicated by  a black arrow. These are Ile4, Val5, Val6, Val7 and 
correspond to the four amino acids preceding the critical triad HGG as shown in the 
alignment at  the right of the figure. The distance between the mutated residues and the centre 
of the active site is ~ 17 ! as calculated by PyMol.
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SSM-LIB2

Figure 3. Randomized residues of the SSM-LIB2. The residues which were randomized 
are green-labeled and are indicated by  two black arrows. These are Met193, Val194, Cys202, 
Leu203, which are not highly conserved as shown in the alignment at the right of the figure. 
The distance between the Met193-Val194 and the Cys202-Leu203 tandem residue pairs and 
the centre of the active site is ~ 14 and 15 !, respectively, as calculated by PyMol.
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SSM-LIB3

Figure 4. Randomized residues of the SSM-LIB3. The amino acids which were 
randomized are green-labeled and are indicated by a black arrow. These are Ile189, Val190, 
which are not highly  conserved as shown in the alignment at the right of the figure. The 
distance between the mutated residues and the centre of the active site is ~ 5 ! as calculated 
by PyMol.
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SSM-LIB4

Figure 5.  Randomized residues of the SSM-LIB4. The amino acids which were mutated 
are green-labeled and are indicated by a black arrow. These are Arg143, Arg147, which are 
not highly  conserved as shown in the alignment at  the right of the figure. The distance 
between Arg143 and Arg147 and the centre of the active site is ~ 17 and 14 !, respectively, 
as calculated by PyMol.

The libraries described above were generated applying the overlap extension PCR 

methodology [268] which is depicted in Figure 6 below.
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Figure 6. Overlap extension PCR method. This method consists of three successive 
amplification steps and involves four primers: two external ones which cover the 5’- and 3’- 
ends of the wildtype sequence (designated as FW wt and RV wt, respectively), and two 
additional ones which carry  the desirable degenerate codons (NNS) to be incorporated in the 
final sequence (indicated by red arrows in the figure; xxx denotes the nucleotide 
mismatches). Two independent PCR reactions (PCR 1 and PCR 2) amplify  two fragments 
which overlap at the regions around the mismatches. In a final third step, the two amplified 
fragments are combined in equal-molar quantities with the initial external wildtype primers 
and are subjected to the last PCR reaction resulting in the final amplicon carrying the 
degenerated codons, or point mutations. The number of nucleotides upstream and 
downstream of the mismatch codons is very critical for the success of this technique, since 
upon those overhangs relies the annealing of the long fragments generated during the first 
two PCRs. This number should be at least  fifteen nucleotides or longer depending on the 
number of codons which are randomized. Figure was prepared using Keynote.

The PCRs for the construction of the four SSM-LIBs described above were run in a final 

volume of 50 µL and included: 10 ng of plasmid DNA template (pET14b-SUMO-

hASNase3), 100 pmoles of each primer, 1X KAPA HiFi buffer, 0.5 mM  dNTPs, and 1 Unit 

KAPA-HiFi DNA polymerase. In the first two PCRs, the reactions were initiated at 95 !C for 3 

min, followed by 30 cycles of denaturation at 98 !C for 20 s, primer annealing at  60 !C for 30 

s, and extension at 72 !C for 40 s. The amplification reactions were terminated after a 5-min 
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polishing step at 72 !C. The PCR products were gel-purified, and then mixed in equal-molar 

amounts for the final overlap  extension PCR using the external FW wt and RV wt primers. 

The reaction parameters were identical to the ones described above, except from the 

annealing step which was done at 65 !C, and the overall cycles were 25. The final PCR 

product was gel-purified, digested with NdeI and BamHI H.F., purified with PCR clean-up 

kit and then ligated overnight at  16 !C into the pET14b-SUMO vector using T4 DNA ligase 

(molar ratio 1:3; vector:insert). Quality control of the libraries was done as described above 

for the epPCR library. Briefly, the ligation mixture was used to transform electrocompetent 

DH5! E.coli cells which were streaked onto ampicillin-containing 2xYT plates and placed at 

30 !C overnight. Positive clones were determined following restriction digestion with NdeI 

and BamHI H.F., and finally  sequencing of the cloned DNA insert  to verify proper 

randomization of the codons at the desired sites.

In case of successful library construction, the cells were scraped from the original plates and 

resuspended in 2xYT medium supplemented with 200 µg/mL ampicillin. A fraction of this 

suspension was used to culture 0.5 L of 2xYT medium, and the rest cells were pooled and 

stored at -80 !C as glycerol stocks. Following overnight growth at  30 !C, the 0.5 L culture was 

centrifuged, and the plasmid DNA was extracted using a MIDI-PREP kit. Approximately  100 

ng of the plasmid mutant library  (pET14b-SUMO-hASNase3) were used to transform the 

electro-competent JC1(DE3) five-gene-deletion strain which already  harbors the pBAD33-

eGFP plasmid (chloramphenicol resistance). The transformed cells were cultured in 0.5 L 

2xYT medium supplemented with 200 µg/mL ampicillin and 35 µg/mL chloramphenicol. 

When OD600 reached ~ 2, 0.5 mL, aliquots were pooled and stored at -80 !C as glycerol 

stocks. For subsequent screening, a 0.5 mL aliquot was used to inoculate a 50 mL culture of 

2xYT medium as described in the next section where the screening process is discussed.

5.1.2.5 Screening steps of hASNase3 mutant libraries

(A) Validation of mutant libraries using the JC1(DE3) five-gene-deletion strain. To validate 

the bacterial screening strategy, the genetic complementation of five different L-ASNases 

(hASNase3, hASNase1, EcASNase1, EcASNase2, and ScASNase1) using the JC1(DE3) 

strain was investigated before initiating the main screening process for hASNase3 libraries. 

All the genes were cloned into the pET14b-SUMO plasmid, which was used to transform 
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chemically  competent JC1(DE3) E.coli cells. The transformants were cultured at 37 !C for 1 h 

and ultimately were plated onto M9 minimal plates supplemented with 0.4% glucose, 3.5 µg/

mL thiamine, 1 mM MgSO4, 0.1 mM CaCl2, 160 µg/mL of L-Tyr, and 80 µg/mL of the 

remaining 18 amino acids except  from L-Asp, 1mM IPTG and 200 µg/mL ampicillin. In 

parallel, cells transformed with empty plasmid (no L-ASNase insert) served as negative 

control. Furthermore, cells transformed with each of the L-ASNases mentioned above were 

plated onto M9 minimal plates supplemented with L-Asp: These transformants served as 

positive control in order to evaluate the growth of the cells in the presence of all amino acids 

and contrast the growth in case of the absence of L-Asp. The principle of this screening 

strategy relies on the impaired genetic ability  of the JC1(DE3) E.coli strain to synthesize L-

Asp since all genes involve in L-Asp  biosynthesis are deleted. Therefore, the survival of the 

cells and the formation of colonies solely depend on the availability  of L-Asp generated by 

the encoded L-ASNases. Figure 7 schematically  represents the principle of this screening 

system. The same process was repeated with liquid culture (M9 medium lacking L-Asp) and 

subsequent FACS analysis of JC1(DE3) cells harboring hASNase3 and EcASNase2 (the most 

active among the L-ASNases) and pBAD33-eGFP plasmids, in order to correlate 

quantitatively the intracellular fluorescent  signal with the distinct enzymatic activities of 

hASNase3 and EcASNase2. 

         

Figure 7. Principle of the genetic complementation screening system. The expressed L-
ASNases provide the free amino acid L-Asp essential for growth of the E.coli cells, resulting 
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in the formation of many colonies. On the contrary, the absence of L-ASNase leads to cell 
death due to unavailability of L-Asp and protein synthesis inhibition. Figure was generated 
using XPlasMap  for the plasmids, MarvinSketch for the L-Asn and L-Asp molecules and 
Keynote for the final layout (the following Figure 8 was prepared in a similar way).

(B) FACS-based screening of hASNase3 mutant libraries.  Frozen aliquots of JC1(DE3) 

cells co-transformed with either an epPCR or an SSM library and pBAD-eGFP plasmids 

were used to inoculate 50 mL 2xYT cultures supplemented with 0.4% glucose, 200 µg/mL 

ampicillin, 35 µg/mL chloramphenicol, and 50 mM glycine (which induces the 

intramolecular activation of hASNase3); the starting OD600 was ~ 0.1. The cells were grown 

at 37 !C, and when OD600 reached 1, the cells were centrifuged for 5 min at 8,000g at  4 !C and 

washed 3X with ice-cold 0.9% NaCl. Subsequently, the cells were resuspended in M9 

minimal medium containing 1% glycerol, 3.5 µg/mL thiamine, 1 mM  MgSO4, 0.1 mM  CaCl2, 

160 µg/mL of L-Tyr, 5 mM L-Asn, and 80 µg/mL of the remaining 18 amino acids except 

from L-Asp, 200 µg/mL ampicillin, 35 µg/mL chloramphenicol, 1 mM IPTG, 2% arabinose 

and 50 mM glycine. The cultures were placed at 37 !C under shaking conditions (250 rpm) for 

2 h. Next, the cells were centrifuged 5 min at 8,000g at 4 !C and washed twice with ice-cold 

PBS. Ultimately they  were resuspended in PBS solution at a final OD600 of 0.05 for 

subsequent FACS analysis.

Flow cytometric analyses were performed with a BD Biosciences Influx FACS instrument 

using a 488-nm solid-state laser for excitation and a 495-525 bandpass filter for detection. 

The cells corresponding to the 5% of the most highly fluorescent cells of the parental 

population were sorted in a throughput of ~ 4-5,000 cells per second in the single-cell mode. 

Depending on the diversity and the size of each library, the maximum number of the sorted 

events covered the range of 106-107 (~2.5 h).  The sorted cells were collected in tubes 

containing 2xYT medium supplemented with 200 µg/mL ampicillin and 35 µg/mL 

chloramphenicol, and were finally  plated onto 2xYT plates with the respective antibiotics. 

Following overnight growth, the clones were pooled and stored at -80 !C in aliquots for the 

next sorting round. Figure 8 shows the principle of the FACS screening system using eGFP 

as reporter protein to correlate the L-ASNase activity with intracellular fluorescence, 

followed by FACS sorting.
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Figure 8. Principle of the FACS-based screening system of hASNase3 mutant libraries. 
Catalytically improved mutants produce higher amounts of L-Asp as compared to mutants 
which have deleterious mutations. The intracellular L-Asp  availability  can be quantitatively 
correlated with eGFP fluorescence since a higher L-Asp  concentration will result in higher 
expression levels of eGFP and, in turn, higher fluorescence.

(C) Identification of catalytically improved hASNase3 mutants. After the last FACS-sorting 

round of the mutant libraries, the pooled clones were cultured, and their plasmid DNA was 

extracted (plasmid DNA contains both pET14-SUMO and pBAD33 plasmids). The extracted 

plasmid DNA was used as template for the amplification of the coding region of hASNase3 

mutants using the primers FWhASNase3 wt and RVhASNase3 wt. The amplified sequences were 

gel-purified, digested with NdeI and BamHI H.F., and finally were ligated into the pET14b-

SUMO plasmid overnight at 16 !C using T4 DNA ligase. The overnight ligation mixture was 

made salt-free using a PCR-clean-up kit, and subsequently was electroporated into C41(DE3) 

electrocompetent cells. The cells were resuspended in 2 mL SOC. medium and then 

incubated for 1 h at 37 !C for recovery. Finally, they were streaked onto 2xYT plates 

supplemented with 200 µg/mL ampicillin, and placed at 30 !C. 

Single clones were selected from the plates and used to inoculate wells of a sterile 96-well 

plate containing 120 µL 2xYT medium per well, with 200 µg/mL ampicillin, 0.4% glucose 

and 50 mM glycine. The plates were placed at 37 !C under vigorous shaking at 300 rpm for 3 

h. In the following step, 100 µL were transferred to a second 96-well plated containing 200 

µg/mL ampicillin, 0.4% glucose, 1 mM  IPTG, and 50 mM glycine, while the rest of the cells 

from the first plate (~ 20 µL) were temporally stored at 4 !C. The second plate was incubated 

at 37 !C for further 3 h, followed by centrifugation for 20 min at 3,000g using a Sigma 4-15C 
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swinging bucket plate-centrifuge. The supernatant culture medium was discarded using a 12-

channel Eppendorf pipette; the pelleted cells were resuspended in 50 mM  Na2HPO4, 300 mM 

NaCl, pH 8, supplemented with 1X BugBuster (Novagen) cell lysis reagent  and 5 KU/mL 

recombinant lysozyme (rLysozyme, Novagen). The plates were incubated at RT for 30 min 

under mild shaking (50 rpm), and were then centrifuged for 20 min at 3,000g. The 

supernatants were transferred to Ni-NTA-coated HisSorb 96-well plates (Qiagen) and were 

left overnight at 4 !C under mild shaking. Ultimately, the supernatants were discarded and the 

plates were rinsed twice using 50 mM Na2HPO4, 300 mM NaCl, 20 mM imidazole, pH 8, 

before washing them twice with PBS, which was the final assay buffer. Enzymatic activities 

were determined applying the Amplex Red-dependent fluorescent assay directly  in the 

HisSorb plates containing 300 µg/mL (5 µM) L-Aspartate Oxidase (L-AspOx), 12 µM  FAD, 

100 nM  HRP (0.1 U/mL), 50 µM  Amplex Red, and 1 mM L-Asn in a final volume of 50 µL 

per well, using a fluorescent plate reader (Molecular Devices, SpectraMax Paradigm, Ex. 

532, Em. 592).  

(D) Biochemical characterization of catalytically improved mutants. The most highly active 

mutants, which were identified after the final activity  measurements using the fluorescent 

plate reader, were traced back to the original 96-well plates where they had grown; they were 

re-cultured in 50 mL for plasmid extraction, and aliquots were stored at -80 !C. In addition, 

the selected original clones were used for expression and protein purification. The purified 

enzymes were kinetically characterized applying the NADH-dependent continuous 

spectrophotometric assay. Both processes of expression-purification and kinetic 

characterization were performed as described above in the Methods section. Furthermore, the 

hASNase3 mutants were analyzed by differential scanning fluorimetry (DSF) [269] in order 

to investigate the impact of mutations on the structural stability of the enzymes. Enzyme 

samples from -20 !C glycerol stocks were dialyzed (Pierce, Slide-A-Lyzer, 10,000 MWCO) 

against 50 mM  Tris-Cl, 0.1 NaCl, pH 8, to remove glycerol, and were mixed with SYPRO 

Orange (Sigma- Aldrich) in a final volume of 20 µL. The final concentrations of the enzyme 

and the dye were 1 µM and 10 % v/v, respectively; the DMSO stock solution of the dye 

(5,000X) was pre-diluted in H2O giving a 100X solution, from which aliquots were used 

according to the experimental needs. The samples were mixed in a 96-well plate suitable for 

real-time (RT)-PCR measurements, centrifuged at 500 rpm for 30 s, and finally  sealed with 
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heat-resistant membranes (Microseal B adhesive Sealer) to prevent evaporation. The protein-

melting experiments were performed using a CFX96 RT-PCR machine (Bio-Rad) with the 

following settings: 2 min pre-warming step at 30 !C, and subsequent temperature gradient 

between 31-95 !C with 1 !C/min increments. SYPRO Orange fluorescence was monitored 

using FAMex (492 nm) and ROXem (610 nm) filters. Data were exported as Excel-based 

worksheet and further analyzed by Igor-Pro (Wavemetrics). Melting temperatures (Tm) were 

obtained by plotting the first derivative d(RFU)/dT of the raw data as a function of 

temperature increase [270]. Figure 9 shows an overall scheme of the whole screening process 

starting from the library generation up to the level of the characterization of individual sorted 

mutants and, in principle, represents each step described in the Methods section above. 
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5.1.3. Results

5.1.3.1 Genetic complementation of L-ASNase deficiency in E.coli 

The genetic complementation of five L-ASNases from human, E.coli and yeast cloned in the 

plasmid pET14b-SUMO was investigated using the five-gene-deletion strain JC1(DE3). The 

following enzymes were tested for genetic rescue of L-ASNase deficiency: hASNase1, 

hASNase3, EcASNase1, EcASNase2, and ScASNase1. The plasmid with no L-ASNase-

encoding insert was included in this series of experiments in order to evaluate the background 

growth of the cells. Cells transformed with equal amounts of DNA were plated onto M9 

minimal plates supplemented with all amino acids except from L-Asp, 1mM  IPTG to induce 

the expression of the L-ASNases, and all the other compounds as described in the Methods 

section, and then placed at 37 !C. Eventually, colony  formation was observed in all 

transformants after ~ 30 h of incubation indicating positive genetic complementation. The 

plates with the negative control (plasmid with no insert) showed very small colonies, possibly 

due to the presence of L-Asp traces in the stocks of the other amino acids, or due to 

spontaneous hydrolysis of L-Asn, which provided the basal level of L-Asp allowing for 

initial cell growth. On the other hand, when the same experiment was done in liquid cultures 

with M9 minimal medium, after 24 h of incubation at 37 !C, the negative control did not show 

any cell growth (non-detectable OD600 increase), while the five positive controls grew 

normally exhibiting an OD600 ~ 1. However, it must be mentioned that this OD600 was 

reached in different periods of time for each enzyme depending on its kinetic properties. For 

example cells expressing the EcASNase2 reached OD600 ~ 1 after ~ 12 h of incubation at 37 

!C, while for ScASNase1, hASNase1 and hASNase3 cells took ~ 16 and 24 h (same time for 

both human enzymes), respectively. 

The next validation of the screening strategy  included a quantitative comparison between the 

rescue capacities of wildtype hASNase3 and EcASNase2 using the FACS technique before 

starting screening of the generated hASNase3 mutant libraries. This experiment aimed to 

determine the mean fluorescence of the cell population, which can be obtained from cells 

expressing two enzymes with distinct catalytic properties. Wildtype hASNase3 displays a kcat/

KM ~ 3x102 M-1s-1, while EcASNase2 has a value of ~ 6x105 M-1s-1 (kinetic constants 

determined by applying the NADH-dependent assay at  25 !C), which means that the E.coli 
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enzyme is ~ 2,000-fold more efficient. To this end, cells transformed with hASNase3 and 

EcASNase2, in either case harboring in parallel the pBAD33-eGFP plasmid, were prepared 

for FACS analysis as described in the Methods section 5.1.2.5 above. Figure 10 shows 

fluorescence profiles resulting from this experiment.

Figure 10. FACS fluorescence profiles obtained for hASNase3- and EcASNase2-
dependent complementation in the E.coli  strain JC1(DE3) which is deficient for L-
aspartate biosynthesis. Bacterial cells transformed with either hASNase3 or EcASNase2 
were analyzed by FACS after incubation in M9 minimal medium for 2 h lacking L-Asp. The 
histogram show the fluorescence distribution of 10,000 cells.

The results revealed that while the in-vitro catalytic properties of the two enzymes differ 

2,000-fold, the genetic complementation assay  using eGFP as reporter protein for metabolic 

rescue showed only ~ 20-fold difference of their fluorescence means. This may be attributed 

to saturated expression levels of eGFP in the case of EcASNase2 expression, or the 

utilization of the produced L-Asp for other cellular processes, thereby not reflecting in 

quantitative terms the real catalytic differences between the two enzymes. Perhaps the 

fluorescence profile of another L-ASNase considerably more efficient than EcASNase2 

would provide more information about the upper limit of the present screening assay  In 

addition, it is very  interesting the fact that both treatments with glycine, i.e. using 50 or 100 

mM glycine, respectively, resulted in practically similar fluorescence means. From in-vitro 

incubation experiments, we have found that the activation of hASNase3 is induced by  glycine 
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in a concentration-dependent manner, reaching saturation at glycine concentrations higher 

than 300 mM. Those FACS results could be potentially  explained on the basis of equal 

glycine uptake by  the E.coli cells in both tested concentrations. In other words, it could well 

be that the cells take from their environment a certain amount of glycine, which saturates at 

concentrations lower than 50 mM that is the lowest which was tested in the present 

experiment, and anything more than this does not lead to further uptake. Based on the 

observation that cells grew somewhat slower in the presence of 100 mM  glycine, 50 mM  was 

used as standard glycine concentration for the next screening experiments.

5.1.3.2 FACS analyses of hASNase3 mutant libraries

(A) epPCR library

Based on the sequencing results obtained for the four epPCRs that were run under different 

mutagenic conditions (see Methods), an epPCR library was generated for the hASNase3. The 

per cent-error rates calculated for each treatment are the following: 0.1% for 0.01 mM 

MnCl2; 0.1% for 0.05 mM; 0.2% for 0.2 mM, and 0.6% for 0.5 mM. It is generally  believed 

that libraries with higher error rates are more likely to be enriched with improved sequences 

as compared to libraries with lower error rates [271]. In addition, the generation of more 

mutations may increase the probability of detecting a positive interaction between mutated 

residues in a non-additive manner, the so-called positive epistasis [272]. Therefore, an epPCR 

library was constructed following the protocol which introduces more mutations in the 

sequence, i.e. using 0.5 mM MnCl2. The final library yielded ~ 107 transformants, while the 

negative control showed less than 1% background. Ten randomly chosen clones were 

cultured, their plasmid DNA was extracted,

and then digested with the restriction enzymes NdeI and BamHI to evaluate cloning 

efficiency. All ten clones were positive and ultimately  were sequenced to verify  the expected 

error rate (~0.6%). Eventually, it turned out that  out of ten clones sequenced, 80% had 6 

mutations, and the other 20% had 5 mutations. In addition, out of overall 58 mutations (6 

mutations per sequence for 8 sequences + 5 mutations per sequence for 2 sequences), 18 were 

silent (31%), while the rest varied from neutral (amino acids with similar properties, e.g. 

leucine to isoleucine) to more drastic mutations (e.g. amino acids with totally distinct 
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properties e.g. L-Asp  to L-Lys). No frame shifts were observed in this epPCR library, though 

other clones may contain such modifications since frame shifts are a common phenomenon in 

epPCR libraries [273]. The library was prepared for FACS analysis, and the results are shown 

in Figure 11.

Figure 11. Fluorescence profiles of the four sorting rounds of the hASNase3 epPCR 
library. The histograms show the fluorescence distribution of 10,000 cells. hASNase3 S0 
corresponds to the arithmetic mean fluorescence (µ) of the initial cell population of the 
library, S1 is the µ of the first, S2 of the second, S3 of the third, and S4 of the fourth sorting 
round, respectively. The sorted cells of each round accounted for the 5% of the most highly 
fluorescent cells. The first  sorting was done in the purity mode, while the other three were 
performed in the single-cell mode. After each round of sorting, the cells were plated onto 
ampicillin/chloramphenicol plates, and grew at 37 !C overnight. Subsequently, the clones 
were pooled and stored at -80 !C for the next round of FACS analysis.

FACS data obtained for the epPCR library suggest that, even after four rounds of sorting, no 

fluorescence enrichment was achieved. In the previous analysis (Figure 10), the wildtype 

hASNase3 exhibited a µ-value of about 50, while in case of the epPCR library the initial 

population did not exceed 40 (hASNase3 S0). The four successive sorting rounds displayed a 

µ within the range of 20-40, with the lowest one being 23 of the last round. These data 

suggest that the screened epPCR library did not contain improved hASNase3 variants as 

evidenced by the lack of fluorescence enrichment throughout the sorting steps. In addition, 

given the fact that the wildtype enzyme showed a µ ~ 50, while all following values for the 

library were lower than 50, it is likely that most of the introduced mutations were neutral or 

deleterious, assuming that expression levels as well as glycine-induced intramolecular 
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activation were similar in these cell populations. In conclusion, the screening of the epPCR 

library with an average number of 6 mutations per gene was not proven to be beneficial for 

the evolution of hASNase3. In future work, the generation of more epPCR libraries with 

different error rates could increase the probability of identifying catalytically  improved 

variants. However, the availability of the hASNase3 crystal structure prompted us to design 

structure-based site-saturation mutant libraries following a semi-rational route, thereby 

exploiting various tools for directed evolution. The screening results of four site-saturation 

mutagenesis (SSM) libraries are presented and discussed in the following sections.

(B) SSM-LIB1

The first  SSM library  was generated by  a focused randomization of four sequential N-

terminal residues: Ile4-Val5-Val6-Val7. These amino acids, as shown in Figure 2, are part of a 

!-sheet on the top of which is located the triad His8-Gly9-Gly10 that is critical for catalysis 

and for the glycine-dependent autoactivation step. The His8-Gly9-Gly10 triad is a highly 

conserved structural motif of Ntn-hydrolases which display  L-ASNase activity  and can be 

considered as a “fingerprint” for these enzymes. Single-site mutations of these three amino 

acids totally abolished the intramolecular activation of hASNase3, as well as the enzymatic 

activity of a circular permutant version of hASNase3 [37]. Based on these findings, we 

reasoned that amino acids which are located close to this triad could provide a promising 

target region for randomization and screening. The stretch of these four residues is ~ 17 ! 

away from the centre of the hASNase3 catalytic site encompassing residues Asn62, Thr186, 

Arg196, Asp199, Thr219, Gly220, and the catalytic threonine Thr168. Therefore, one may 

assume that they  are located at the outer third notional shell regarding the distance from the 

active site. The library was constructed using degenerate primers by randomizing these four 

residues close to the N-terminus applying the scheme NNS to each codon, covering a 

theoretical diversity  of ~106 variants in a population of ~107 individual transformants. Quality 

control and characterization of the library were done, in the present study as for all other 

libraries, as described in detail in the Methods section. The FACS results after three sorting 

rounds are shown in Figure 12.
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Figure 12. Fluorescence profiles of the three sorting rounds of the hASNase3 SSM-LIB1. 
The histograms show the fluorescence distribution of 10,000 cells. In each round, the 5% of 
the most highly  fluorescent cells from the parental population were sorted. The first sorting 
was done in the purity  mode, the two following rounds in the single-cell mode. The sorted 
cells from each round were collected in tubes containing 2xYT medium supplemented with 
ampicillin and chloramphenicol, and finally they were plated on 2xYT plates. The grown 
colonies were pooled and stored at -80 !C until the subsequent FACS analysis.

As evidenced by the mean fluorescence intensities of each of the three sorting rounds of this 

SSM library, with µ-values being in the range 10-25, mutations in the Ile4-Val5-Val6-Val7 

region had a negative impact on hASNase3 activity, considering that the wildtype enzyme 

shows a µ-value of around 50. In the light of the structural importance of this region for both 

autoproteolytic activation and enzymatic activity, it is not easy  to rationalize whether 

randomization of these residues impairs primarily the rate and the degree of intramolecular 

processing of the enzyme, and secondarily  its activity. In order to obtain such information, 

individual mutants of this library  would have to be tested for their intramolecular activation 

rates, as well as for their L-asparaginase activity  profiles. Overall, it appears that  this specific 

hASNase3 region (residues 4 to 7) located close to the His8-Gly9-Gly10 triad (residues 1 to 

15) does not tolerate mutations.

(C) SSM-LIB2

The second SSM library was generated by randomizing the following four residues: Met193-

Val194-Cys202-Leu203. Residues targeted in this mutant library  are located closer in space 
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to the active site residues  (~ 14 ! apart) in comparison to those of the previous SSM-LIB1, 

and are part of a flexible loop which connects two !-sheets (residues 180-185 and 205-210, 

respectively)  in close proximity  to the active site (Figure 3). In this loop is also located 

residue Arg196 which participates in the formation of the substrate binding pocket (Figure 1). 

According to the amino acid alignment, these four residues are not highly conserved among 

the homologs from different organisms. In contrast, the amino acids upstream and 

downstream of Met193-Val194 and Cys202-Leu203, respectively, are highly conserved. 

Similar to the first SSM library, SSM-LIB2 has a theoretical diversity of 106, which was 

covered by the 8x106 transformants obtained. The results from three sorting rounds are shown 

in Figure 13.

Figure 13. Fluorescence profiles of the three sorting rounds of the hASNase3 SSM-LIB2. 
As with previous cases, the histograms show the fluorescence distribution of 10,000 cells. 
Cells were sorted as described in the previous figure legends.

The obtained values of the arithmetic fluorescence means of each sorting round showed also 

in this SSM library, similar to SSM-LIB1, no enrichment. These results strongly suggest that 

the randomization of the selected residues negatively affected the enzyme’s activity. 

However, it must also be kept in mind that, in case of hASNase3, catalytic activity  is not  the 

only parameter which can be influenced in a negative manner. The autoproteolytic activation 

of the enzyme might also be affected by  the different introduced mutations. In summary, the 

region composed by the four amino acids M193-V194-C202-L203, which are surrounded by 
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highly  conserved residues and are part of a critical loop  close to the substrate binding pocket, 

does not seem to be a potential target for generating improved hASNase3 variants.

(D) SSM-LIB3

The third SSM library  was generated by randomizing only two amino acid residues: Ile189-

Val190 (Figure 4). This tandem pair is located very  close to the active site (~ 5 !) and is part 

of the first  notional shell that surrounds it. Particularly, the side-chain of I189 points towards 

the substrate binding pocket and is in space very near to Thr186 and Arg196 which contribute 

to the binding of the substrate L-Asn. Despite the fact  that they are located very close to the 

active site being part of a flexible loop, Ile189 and Val190 are not highly conserved (Figure 

4), and, therefore, they  were thought to be an attractive target for randomization aiming at 

potential positive impact on the substrate binding and/or turnover. This relatively small 

library has a theoretical diversity  of ~ 103, and thus was covered about 104-fold by the yield 

of 107 transformants. The cells were analyzed in only  two sorting rounds, since the size of the 

library is very small. The results are shown in Figure 14.

Figure 14. Fluorescence profiles of the two sorting rounds of the hASNase3 SSM-LIB3. 
The histograms show the fluorescence distribution of 10,000 cells. From each round ~ 5% of 
the most highly fluorescent cells from the parental population were sorted. Both sorting 
rounds were done in single-cell mode. 
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Figure 14 shows the arithmetic mean fluorescence values for the starting cell population (S0) 

and the two sorting rounds (S1 and S2). Interestingly, unlike the previous larger libraries (4 

NNS), significant enrichment was observed through the successive two sorting rounds. 

Starting from µ ~ 43, the cell population of S1 showed µ ~ 104, and S2 ~ 133, indicating that 

intracellular eGFP fluorescence constantly increased, possibly because the population is 

enriched with cells harboring catalytically  improved hASNase3 variants. The sorted mutants 

from the last round were pooled, cultured for plasmid DNA extraction and stored at -80 !C in 

aliquots for further screening and analysis. 

(E) SSM-LIB4

The fourth SSM library  was constructed by randomizing the two arginine residues R143 and 

R147 which are located on the surface of hASNase3 (Figure 5), at ~ 17 and 14 ! distance 

from the active site, respectively. Both amino acids point outwardly  from the notional 

direction to the active site and are part  of an "-helix of the enzyme’s " subunit. According to 

the sequence comparison shown in Figure 5, this region appears to be non-conserved. Similar 

to the previous SSM-LIB3, SSM-LIB4 is a relatively small library characterized by a 

theoretical diversity of ~ 103. The number of individual transformants obtained was ~ 5x106. 

Cells were prepared for FACS analysis similar to the previous libraries and were subjected to 

two sorting rounds. Figure 15 depicts the results of these experiments.

Figure 15. Fluorescence profiles of the two sorting rounds of the hASNase3 SSM-LIB4. 
The histograms show the fluorescence distribution of 10,000 cells, and from each round ~ 5% 
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of the most highly  fluorescent cells from the parental population were sorted. Both sorting 
rounds were done in single-cell mode. 

As shown in Figure 15, SSM-LIB4 is another library  which displayed enrichment after two 

subsequent sorting rounds. The fluorescence mean increased from µ ~ 52 for the initial 

population to µ ~ 96 for S1, and µ ~ 118 for S2, suggesting that this library was enriched with 

catalytically  ameliorated hASNase3 mutants. The clones from the last sorting round were 

pulled and stored at -80 !C in aliquots for further screening and analysis.

5.1.3.3 Identification of catalytically improved mutants from SSM-LIB3 

and SSM-LIB4

Following the final sorting rounds of each of the two libraries, SSM-LIB3 and SSM-LIB4, 

the plasmid DNA of the clones was extracted, and the coding region of the hASNase3 

mutants was amplified using the primer pair FWhASNase3 wt and RVhASNase3 wt. The amplified 

polyclonal gene cassette was cloned into the pET14b-SUMO vector and used to transform 

C41(DE3) cells. Single-clone activity analysis in 96-well plates applying the Amplex Red 

fluorescent assay revealed that a few clones were more active than the wildtype hASNase3 

which served as control. The most active clones from each library were sequenced in order to 

determine the mutations at the respective randomized regions. Strikingly, in the case of the 

SSM-LIB3 library, three clones were identical encoding the mutant Ile189Thr-Val190Ile 

(Double Mutant 1; DM1), and one encoding the variant Ile189Val-Val190Ile (Double Mutant 

2; DM2). Analysis of SSM-LIB4 uncovered three clones which exhibited higher activities 

than the wildtype enzyme, and all three were identical variants with the mutations 

Arg143Glu-Arg147Lys (Double Mutant 3; DM3). The discovery of these three distinct 

mutants motivated us to generate by site-directed mutagenesis two additional variants which 

would combine the four identified mutations. Therefore, the quadruplet mutants Ile189Thr-

Val190Ile-Arg143Glu-Arg147Lys (Quadruplet Mutant 1; QDM 1) and Ile189Val-Val190Ile-

R143Glu-Arg147Lys (Quadruplet Mutant 2; QDM  2) were constructed using the 

oligonucleotide primers shown in Table 1. QDM1 and QDM2 were generated using the same 

pair of primers which introduced the mutations Arg143Glu-Arg147Lys in the respective 

templates: DM1 for QDM1, and DM2 for QDM2. The five variants that were obtained 
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(DM1, DM2, DM3, QDM1 and QDM2) were recombinantly expressed and purified for 

enzymatic characterization. 

5.1.3.4 Expression, purification, and kinetic characterization of five 

hASNase3 variants selected from the libraries 

One of the primary concerns regarding the five pulled mutants was their potential failure to 

undergo the autoproteolytic activation step which is directly related to their catalytic activity, 

and whether this activation could be accelerated by  glycine. Though the three main mutants 

(DM1, DM2 & DM3) were pulled from a library growing in medium supplemented by  50 

mM glycine, in principle, their intramolecular processing state (autoproteolytic cleavage) was 

unknown up to the level of the single-clone activity  assay in 96-well plates. The point here 

was to confirm that the observed improved activity of the mutants was not due to different 

autoactivation rates, but indeed because of improved catalytic efficiency. Therefore, all five 

variants, and the wildtype enzyme, were initially  produced in C41(DE3) E.coli cells grown in 

2xYT medium without glycine, and at low temperature (at 16 !C overnight) in order to slow 

down their activation process. After a rapid NTA-affinity purification step at 4 !C and 

incubation with SUMO-protease (for 4 h at 4 !C; 1:100 molar ratio of protease:enzyme) to 

cleave the His6-SUMO tag, the samples were analyzed by SDS-PAGE to evaluate their 

activation state. The results are shown in Figure 16.
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Figure 16. 15% SDS-PAGE analysis of hASNase3 wildtype and five mutants without 
glycine treatment. After a short  NTA-affinity  purification step, the soluble proteins were 
analyzed in order to evaluate their autoproteolytic activation. Lane 1: wildtype; Lane 2: 
DM1; Lane 3: DM2; Lane 4: DM3; Lane 5: QDM1; Lane 6: QDM2. The first arrow indicates 
the expected molecular weight of the full-length hASNase3 inactive precursor (theoretical 
Mr: 33 kDa), and the second one shows the His6-SUMO tag (~ 13 kDa) which was cleaved by 
SUMO-protease.

As evidenced by SDS-PAGE analysis, all five hASNase3 variants were not cleaved without 

being treated with glycine, and their electrophoretic profiles were similar to the wildtype 

enzyme. The next question which was intuitively  brought up concerned the possibility of 

activation of those mutants using glycine similar to the wildtype hASNase3. This time, all 

five variants were produced following the standard expression protocol which was used for 

the expression of the wildtype enzyme resulting in totally activated enzyme species. To this 

end, wildtype and hASNase3 variants were expressed in 2xYT medium supplemented with 

200 mM glycine for 6 h at  37 !C. Subsequently, the enzymes were purified as described above 

in Methods, incubated with 500 mM glycine at  25 !C for additional 4 h, and their activation 

state as well as their purity were analyzed by SDS-PAGE  as shown in Figure 17.

                          

Figure 17. 15% SDS-PAGE analysis of hASNase3 mutants. The figure shows the purity 
and the activation status of wildtype and the five hASNase3 mutants described above. Lane 
1: wildtype; Lane 2: DM1; Lane 3: DM2; Lane 4: DM3; Lane 5: QDM1; Lane 6: QDM2. 
The two generated subunits " and # are the major protein bands. The electrophoretic profiles 
of the enzymes reflect the final purity obtained after the last gel filtration step  for the removal 
of the His6-SUMO tag. Autoproteolytic processing of the enzyme precursors (weak bands at 
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about 40 kDa) was induced by including 200 mM glycine in the expression medium, as well 
as upon further treatment with 500 mM glycine immediately after the first affinity 
purification step.

As shown in Figure 17, all five hASNase3 variants exhibited autoactivation behavior similar 

to the wildtype enzyme, and glycine treatment accelerated their intramolecular cleavage. This 

fact indicates that the introduced mutations at these specific regions did not influence the 

ability  of the enzyme variants to undergo the autoproteolytic activation step which is crucial 

for their activity. The second step addressed the question of whether their catalytic properties 

were improved. It could well be that the selected DM1, DM2 and DM3 variants were simply 

expressed at higher levels as compared to the wildtype enzyme and, hence, their apparent 

intracellular activity was higher. Therefore, wildtype hASNase3 and all mutants were 

characterized by steady-state kinetics applying the NADH-coupled continuous 

spectrophotometric assay. The tested substrate concentrations covered the range 0-5KM, and 

the obtained V/E (velocity/total enzyme concentration) values were plotted against the 

respective substrate concentrations. Kinetic constants KM and kcat were calculated from the 

resulting plots by non-linear regression using the Michaelis-Menten model and analyzed by 

the SoftZymics software (Igor Pro, Wavemetrics). Figure 18 shows the steady-state kinetic 

plots for the wildtype, DM1, DM2 and DM3 enzyme species, and Figure 19 for the QDM1 

and QDM2 enzymes. All kinetic data are summarized in Table 3.
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Figure 18. Steady-state kinetic plots for wildtype and mutant hASNase3 enzymes. V/E 
versus [L-Asn] plot for (A) wildtype hASNase1, (B) DM1, (C) DM2, and (D) DM3. 
Activities were measured in 1 mL 50 mM Tris-Cl, 100 mM NaCl, pH 8, at 25  !C, using a 
final enzyme concentration of ~ 1 µM  (~ 30 µg in 1 mL; hASNase3 Mr: 33 kDa). Steady-state 
turnover rates (s-1) are expressed as a function of the substrate concentration. Data points are 
represented as means ± SD of duplicate sample measurements. Plots were prepared and 
analyzed by the SoftZymics software (Igor Pro, Wavemetrics) by non-linear regression using 
the Michaelis-Menten equation (Section 5.1.2.3, Equation 1). 

Figure 19. Steady-state kinetic plots for QDM1 and QDM2 hASNase3 enzymes. V/E 
versus [L-Asn] plot  for (A) QDM1 and (B) QDM2. Activity measurements were performed 
and plots were generated as detailed in Fig. 18 legend. 
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Table 3. Steady-state kinetic constants for wildtype hASNase3 and all mutants selected 
by FACS  analyses. The constants were calculated by  non-linear regression analysis using the 
Michaelis-Menten model. The values are represented as means ± standard deviation of 
duplicated measurements of a representative experiment.

Enzyme kcat (s-1) KM (mM) kcat/KM (M-1 s-1)

wildtype hASNase3 0.78 ± 0.016 3 ± 0.16 260 ± 0.16

DM1 (Ile189Thr-Val190Ile) 1.89 ± 0.07 1.3 ± 0.16 1450 ± 0.44

DM2 (Ile189Val-Val190Ile) 0.83 ± 0.01 1.58 ± 0.06   525 ± 0.17

DM3 (Arg143Glu-Arg147Lys) 0.78 ± 0.03 0.78 ± 0.1 1000 ± 0.3

QDM1
(Ile189Thr-Val190Ile-Arg143Glu-

Arg147Lys)
0.7 ± 0.01 1.46 ± 0.03     480 ± 0.33

QDM2
(Ile189Val-Val190Ile-Arg143Glu-

Arg147Lys)
2.2 ± 0.11 2.3 ± 0.33     950 ± 0.33

All five hASNase3 variants are characterized by improved kinetic constants (kcat and KM) in 

comparison to the wildtype enzyme. More specifically, the DM1 variant carrying the 

Ile189Thr-Val190Ile mutations and pulled from SSM-LIB3, displayed an ~ 6-fold 

improvement regarding the overall catalytic efficiency kcat/KM as compared to the wildtype. 

Interestingly, both kinetic constants were improved; the turn-over increased 2.5-fold, and the 

KM value decreased 2.3-fold. In contrast, the second mutant which was isolated from the 

same library, Ile189Val-Val190Ile, showed a 2-fold improvement with respect the kcat/KM. 

The kcat of this variant is similar to that of the wildtype enzyme (~ 0.8 s-1), but the binding 

affinity against L-Asn was 2-fold increased as evidenced by the lower KM value (1.6 mM 

versus 3 mM  for the wildtype). The DM3 variant, which was isolated from the SSM-LIB4 

and which was the only  mutant to be identified as catalytically improved from this library, 

showed approximately  4-times amelioration regarding the kcat/KM. As with DM2, the turn-

over number of DM3 is similar to that from the wildtype, unlike the KM value, which got 

improved ~ 4-fold (0.77 mM).

On the other hand, the rationally designed quadruplet mutants QDM1 and QDM2, which 

reflect an attempt to combine the improved characteristics of the pulled double mutants, 

showed a certain degree of improvement, but overall they did not exceed the highest level of 
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advancement that  was exhibited by the DM1 variant (6-fold). The QDM1 (Ile189Thr-

Val190Ile-Arg143Glu-Arg147Lys), which is a combination of DM1 and DM3 variants, 

inherited almost the same catalytic constant from DM3 (0.7 s-1) and similar KM value from 

DM1 (1.45 mM), resulting in a 2-fold kcat/KM overall improvement compared to the wildtype. 

The second quadruplet mutant QDM2 comprised the two mutations from DM2 (Ile189Val-

Val190Ile) and the two from DM3 (Arg143Glu-Arg147Lys). Interestingly, this variant showed 

the highest kcat value among all the mutants which is ~ 2.2 s-1. However, simultaneously, it 

has the highest KM among all the variants (2.3 mM) which resembles the one from the 

wildtype enzyme (3 mM). These kinetic constants of QDM2 rank this variant as the second 

most improved one together with DM3, having a kcat/KM ~ 950 M-1 s-1 (1000 M-1 s-1 for 

DM3).

In summary, the steady-state kinetic characterization of the individual variants which were 

pulled from the two SSM  libraries (SSM-LIB3 & SSM-LIB4) confirmed the fluorescence 

enrichment of the final sorted cell population from the FACS screening. The increase of the 

fluorescence mean can be attributed to the improved catalytic properties of DM1, DM2 and 

DM3, which provided higher amounts of L-Asp in the intracellular environment, thereby 

promoting the expression of eGFP and, in turn, increasing the fluorescent signal. The 

combination of the best variants’ mutations resulted in the generation of two quadruplet 

enzymes, though without further improvement in comparison to their precursor molecules. In 

a last  characterization step, the impact of the mutations on the stability of the hASNase3 

variants was studied by differential scanning fluorimetry (DSF).
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Figure 20. Differential scanning fluorimetry (DSF) melting curves for wildtype and 
mutant hASNase3 enzymes. Enzyme samples from -20 !C glycerol stocks were dialyzed 
(Pierce, Slide-A-Lyzer, 10,000 MWCO) against 50 mM Tris-Cl, 0.1 NaCl, pH 8, to remove 
glycerol, and were mixed with SYPRO Orange (Sigma-Aldrich) in a final volume of 20 µL. 
The final concentrations of the enzyme and the dye were 1 µM  and 10 % v/v, respectively. 
The enzyme-melting experiments were performed using a CFX96 RT-PCR machine (Bio-
Rad) with the following settings: 2 min pre-warming step at 30 !C, and subsequent gradient 
between 31-95 !C with 1 !C/min increments. SYPRO Orange fluorescence was monitored 
using FAMex (492 nm) and ROXem (610 nm) filters. Data were exported as Excel-based 
worksheet and further analyzed by Igor-Pro (Wavemetrics). Melting temperatures (Tm) were 
obtained by plotting the first derivative d(AFU)/dT of the raw data as a function of 
temperature increase.

The results of the DSF analysis indicated that the different mutations had distinct influence 

on the stability of hASNase3. As shown in Figure 20, the melting curves for all hASNase3 

enzymes were monophasic, with some of them having stabilizing and others destabilizing 

effects. More specifically among the double mutants, the only one which exhibited a higher 

melting temperature (Tm) in comparison to the wildtype is DM3 (Arg143Glu-Arg147Lys) 

with a Tm value ~ 66.5 !C against 62.5 !C for the wildtype. Both DM1 (Ile189Thr-Val190Ile) 

and DM2 (Ile189Val-Val190Ile), which were isolated from the same SSM-LIB3, showed 

lower Tm values, 61 and 61.8 !C, respectively. Strikingly, the quadruplet mutants displayed the 

highest Tm values which were considerably improved in comparison to the wildtype enzyme: 

68 !C for both of them. These data strongly suggest  that  the variant with the most improved 

catalytic properties (DM1) showed the lowest melting temperature (61 !C) and consequently 

lowest stability; this also holds true for the second mutant isolated from the same library 

(DM2 with Tm  61.8), though being catalytically 3-fold less improved. 
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5.2 Development of a droplet-based microfluidic screening system

5.2.1 Materials

5.2.1.1 Plasmids, E.coli strains and chemicals

All the materials and reagents for the microfluidic chip fabrication and the droplet formation 

(fluorinated oil, surfactants, fluorescein) were contributed from Dr. Jean-Christophe Baret’s 

lab. The materials for the droplet formation include HFE7500 fluorinated oil (Novec, 3M), 

PFPE-PEG-PFPE surfactant (home-made synthesis [274]), and fluorescein sodium salt 

(Sigma-Aldrich) which was used as droplet tracer.

All the molecular biology and biochemistry  reagents used in this study are described in detail 

in the description of the previous FACS-based screening system section unless otherwise 

stated. Additionally, the plasmid APEx1 [275] was used for the EcASNase2 anchoring in the 

inner membrane of E.coli cells, as well as the pUC8 vector for the cytoplasmic expression of 

eGFP. APEx1 was a kind giftfrom Dr. George Georgiou’s lab (University of Texas at Austin, 

Department of Chemical Engineering and Institute for Cellular and Molecular Biology). 

APEx1 is a medium copy number plasmid (range 50-70) and has the chloramphenicol 

antibiotic resistance marker. It is derived from the plasmid pMoPac1 after replacement of the 

pelB leader sequence by the leader peptide and the first six amino acids of the mature NlpA 

E.coli inner membrane lipoprotein [155]. pUC8 is a high copy number plasmid (range of 

400-500) with ampicillin antibiotic resistance marker. 

Table 1. Oligonucleotides used in this study. The recognition sites for the restriction 
endonucleases are in italics (SfiI: GGCCCAGCCGGCC; NdeI: CATATG; BamHI: 
GGATCC), and the His6-tag codons in bold.

Primer Sequence

FW_ APEx1-EcASNase2
CGA GGCCCAGCCGGCC ATG TTA CCC 
AAT ATC ACC ATT TTA GCA ACC GGC GGG

RV_ APEx1-EcASNase2
CATC GGCCTCGGGGGCC TTA GTA CTG 
ATT GAA GAT CTG CTG GAT CTG CTG
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Primer Sequence

RV_ APEx1-EcASNase2-His6-C

CATC GGCCTCGGGGGCC   
TTAATGATGATGATGATGATGGTACTGAT
TGAAGATCTGCTGGATCTGCTG

RV_ pET14b-SUMO-EcASNase2-His6-C CGCGGATCCTTAATGATGATGATGATGAT
GGTACTGATTGAAGATCTGCTGGA

FW_eGFP GGAATTCCATATGGTGAGCAAGGGCGAGG
AGCTG

RV_eGFP CGCGGATCCTTACTTGTACAGCTCGTCCAT
GCCG

5.2.2 Methods

5.2.2.1 Cloning of EcASNase2 and eGFP

In the present study, overall five constructs were used: pET14b-SUMO-EcASNase2, 

pET14b-SUMO-EcASNase2-His6-C, APEx1-EcASNase2, APEx1-EcASNase2-His6-C, and 

pUC8-eGFP. The plasmid pET14b-SUMO-EcASNase2 is the one which has been used for 

the recombinant expression and purification of EcASNase2: the construction of this plasmid 

has been described elsewhere [257]. The plasmid pET14b-SUMO-EcASNase2-His6-C was 

constructed for the needs of the present  study for having the enzyme carrying the His6-tag at 

its C-terminus for immunoblotting analysis using anti-His6-C tag antibodies. The construction 

of this plasmid was done similar to the plasmid pET14b-SUMO-EcASNase2 after PCR-

amplifying the EcASNase2-His6-C insert with a reverse primer containing six additional 

codons for the His6-tag (Oligonucleotides are shown in Table 1). Plasmids APEx1-

EcASNase2, APEx1-EcASNase2-His6-C, and pUC8-eGFP were constructed analogously  (see 

Methods section in FACS-based screening system, section 5.1.2.1). APEx1-EcASNase2 

expressed untagged EcASNase2 and was used for all enzymatic activity measurements at the 

single-cell level in droplets. In contrast, APEx1-EcASNase2-His6-C produces the enzyme 

with a C-terminal His6-tag and served exclusively  as a probe for the anchoring confirmation 

of EcASNase2 at the inner membrane of E.coli cells by means of immunoblotting. The eGFP 

protein encoded by pUC8-eGFP does not carry any tag, neither at the N- nor at the C-
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terminus, and the expression of eGFP is under the regulation of the lac promoter, which is 

inducible by IPTG. This plasmid was used solely for the intracellular expression of eGFP in 

E.coli cells, which served as a visualization tool in order to follow the number of 

encapsulated cells in droplets. The plasmids used in this study are summarized in Figure 1, 

and the used oligonucleotides are shown in Table 1.

                  

Figure 1. Schemes of plasmids used in this study. (A) pET14b-SUMO-EcASNase2, (B) 
pET14b-SUMO-EcASNase2-His6-C, (C) pUC8-eGFP, (D) APEx1-EcASNase2, and (E) 
APEx1-EcASNase2-His6-C. The figure was prepared using XPlasMap and Keynote.

5.2.2.2 Droplet-based microfluidic system: Preparation and quantitative 

analysis of EcASNase2 activities in drops

The activity of purified EcASNase2 was measured in 600 pL droplets (radius ~ 50 µm) 

applying the three-step Amplex Red-based assay  as described elsewhere [265]. Briefly, the 

reaction took place at 25 !C, and the assay  mixture contained different amounts of 
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EcASNase2, 250 µM L-Asn, ~ 4 µM L-AspOx (~ 250 µg/mL), 10 µM FAD, ~ 100 nM  HRP 

(~ 0.1 U/mL) and 6.5 µM Amplex Red. The droplet experiments were standardized using a 

lower concentration of Amplex Red, instead of 50 µM as described in [265], because the 

signal was more stable, and unforeseeable background artifacts were observed when higher 

concentrations were tested. The linearity  of the three-step coupled-enzyme reaction as a 

function of the L-asparaginase concentration was tested using a wide range of EcASNase2 

concentrations (0-250 ng/mL). Subsequently, using an enzyme concentration which falls 

within the linear range, steady-state kinetic analysis was performed in droplets by varying the 

concentration of L-Asn in the range of 0-5 KM. The results were compared to those obtained 

by carrying out the assay in 96-well plates (final volume 100 µL per well) following the 

course of the reaction continuously by  a fluorescence plate reader (Molecular Devices, 

SpectraMax Paradigm, Ex 532/Em 592 nm). The resulting data were additionally  compared 

to those obtained from the standard spectrophotometric activity determination in a 1 mL 

cuvette using a Uvikon 943 double beam (UV/VIS) spectrophotometer [265]. The 

microfluidic chip which was used for the activity measurements is shown in Figure 2, and 

the overall experimental setup is shown in Figure 3.

                                           

Figure 2. Microfluidic chip (~1x4 cm) used for the recombinant EcASNase2 activity 
measurements. Two master mixtures were prepared for monitoring of the enzymatic activity. 
The two Master Mixtures MM1 and MM2, which represent the aqueous phase, consisted of 
the assay reagents as shown in the Figure and were mixed in a 1:1 volume ratio (spot A; the 
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initial concentration of the compounds was 2X ending up  to 1X upon mixing the two aqueous 
phases). The same mixtures without EcASNase2 served as negative control and represent the 
second droplet population in the chip (spot B). The droplets were formed upon mixing the 
aqueous (flow rate 10 µL/min) and the oil phases (coming from spot C with flow rate 80 µL/
min) consisting of fluorinated oil (HFE 7500): The final volume of the water-in-oil droplets 
was 600 pL. To prevent coalescence and prepare stable droplets, 0.5% w/w surfactant [276] 
was added in the oil phase. Droplets in which the enzymatic reaction took place were labeled 
with 1 µM  fluorescein, and the negative control (no enzyme) contained 0.5 µM fluorescein, 
in order to distinguish the two types of droplets by their fluorescence signal amplitudes and 
follow their integrity in the chip. Approximately 106 droplets were produced and were stored 
in the oil-filled reservoir. Subsequently, the droplets were re-injected in the chip  (spot E), and 
the fluorescent signal was measured (spot H). In order to control the spacing between the 
droplets, an additional oil phase was applied (spot F). The fluorescence readout frequency 
was ~ 100-200 droplets per second. The fluorescence intensity per droplet was plotted against 
the droplet population, and the arithmetic fluorescence mean was calculated by a Gaussian 
distribution fitting [277]. (The chip and the reservoir part of the figure were adapted from 
[278], while the final figure was prepared using Keynote). 

                    

Figure 3. Schematic experimental setup for monitoring the activity of EcASNase2 in 
droplets. The flow rates of the aqueous and oil phases were adjusted and controlled by 
precision syringe pumps (Nemesis, Cetoni GmbH). Two-color laser-induced fluorescence 
detectors were used, with 473 and 532 nm diodes and a photomultiplier (PMT) tube. A 20X 
objective lens focused the laser on the chip’s microchannels. Fluorescent signals were 
monitored in real-time using Labview software (The figure was kindly provided by Dr. Jean-
Christophe Baret’s lab).
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5.2.2.3 Preparation and encapsulation of eGFP-expressing cells

We used bacterial cells expressing eGFP as visualization means for the determination of the 

appropriate cell dilution conditions for achieving encapsulation of a defined number of cells 

per droplet. E.coli C41(DE3) cells were transformed with pUC8-eGFP and were cultured in 

50 mL 2xYT medium supplemented with 200 µg/mL ampicillin. When OD600 reached 

0.6-0.8, IPTG was added in the culture to a final concentration of 1 mM  to induce the 

expression of eGFP. The culture was grown for additional 4 h at 37 !C; then, 10 mL were 

centrifuged for 10 min at 5,000g,  washed 5X with PBS buffer, and finally  were resuspended 

in PBS at a final OD600 ~ 1, which corresponds to ~ 109 cells per mL as determined by the 

serial dilution method [279]. A 10 µL aliquot of the latter suspension was placed onto a 

microscope slide and visually inspected to confirm eGFP expression using an Olympus 

SZX12 stereo fluorescence microscope with the following settings: DFPLFL 1.6X PF 

objective and 144X magnification using a 10X eyepiece. Once the eGFP expression was 

confirmed, different dilutions of cells were prepared and encapsulated in droplets, which were 

“arrested”  by modifying the flow rate in special well-like microchannels which allow holding 

the droplets immobilized; cell-containing droplets were further visualized using a 

fluorescence microscope to determine the average number of cells per droplet by visual 

inspection.

5.2.2.4 Cytoplasmic expression of EcASNase2 and trials for lysing the cells 

in droplets for subsequent enzymatic activity determination

Initially, we encapsulated E.coli cells which were expressing cytoplasmically the EcASNase2 

enzyme, considering the fact that cytoplasmic expression offers by far higher expression 

yields as compared to periplasmic or display approaches. However, this approach necessitates 

the lysis of the E.coli cells aiming at the release of the intracellularly produced enzyme, in 

order to make it accessible to the substrate for the subsequent enzymatic reactions to take 

place. To this end, we tested three types of lysing agents upon cell encapsulation in the 

droplets, and attempted to measure L-asparaginase activity of EcASNase2 by applying the 3-

step Amplex Red fluorescence assay [265]: (i) The first trial relied on the use of hen egg 

lysozyme at a final concentration of 2 mg/mL in 50 mM  Tris-Cl, 2 mM EDTA, 25 mM  NaCl, 
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pH 8. In this buffer, which constituted the first aqueous phase, all the assay compounds were 

added (L-Asn, FAD, HRP and L-AspOx, all at the concentrations described above), while the 

Amplex Red was mixed with the cells in 50 mM Tris-Cl, 2 mM EDTA, 25 mM  NaCl, pH 8, 

forming the second aqueous phase. At this point, it must be emphasized that the upper 

concentrations refer to the final ones. Since both aqueous phases were mixed in a 1:1 ratio, 

the initial buffer concentrations were prepared as 2X solutions. (ii) A second attempt for 

lysing the cells in the droplets included the lysozyme solution described above in 

combination with the compound Polymyxin B sulfate (Sigma-Aldrich). Polymyxin B is a 

cationic polypeptide antibiotic, naturally synthesized by the microbe Bacillus polymyxa, and 

it is widely used a lysing agent for gram negative bacteria [280]. The final concentration of 

Polymyxin B was 4 mg/mL. (iii) Finally, as an alternative means of cell lysis, we used the 

commercially available BugBuster solution (Novagen) which consists of detergents capable 

of promoting cell lysis. This solution was combined with a special version of commercial 

lysozyme (rLysozyme, Novagen) which has been shown to be 250-fold more efficient than 

the standard hen egg lysozyme (Company’s Instructions Manual). The buffer used for this 

trial consisted of 50 mM Tris-Cl, 100 mM NaCl, 0.1 mM EDTA, 1 mM DTT, 0.1% Triton 

X-100, pH 7.5. The final cell-lysis mixture contained 1 KU (i.e. 1,000 Units based on the 

supplier’s unit definition) rLysozyme, 1X BugBuster protein extraction reagent (provided 

commercially as 10X solution), and all the assay compounds at concentrations as described 

above. The mixtures of cells, lysing agents and assay compounds were incubated for 30-40 

min in droplets, followed by fluorescence signal measurement to evaluate the enzymatic 

activity profiles.

5.2.2.5 Anchoring, detection, and quantification of EcASNase2 displayed in 

the inner membrane of E.coli cells.

(A) Anchoring of EcASNase2 in the inner membrane of E.coli C41(DE3). E.coli cells 

harboring the pAPEx1-EcASNase2 plasmid were grown overnight at 37 !C in 2xYT medium, 

supplemented with 35 µg/mL chloramphenicol. A fraction of this culture was used to 

inoculate a fresh 50 mL 2xYT culture (dilution 1:50). When OD600 reached 0.6-0.8, IPTG 

was added to a final concentration of 1 mM, and the culture was placed at 37 !C under shaking 

conditions. At different time intervals (up to 10 h) after addition of IPTG, 5-mL fractions 

from the main culture were centrifuged, washed 5X with PBS, and finally resuspended in 
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PBS and left on ice. Whole-cell lysates using ~ 109 cells (this number corresponds to an 

OD600 ~ 1 as calculated by  the serial dilution method), were analyzed by SDS-PAGE aiming 

at the determination of the expression levels of the displayed enzyme. Whole-cell lysates 

from untransformed cells, and from cells transformed with the pAPEx1-EcASNase2 plasmid, 

were analyzed in parallel as negative control. Furthermore, in order to qualitatively 

investigate the successful anchoring of active EcASNase2, a small fraction of the PBS-

resuspended cells was mixed with 10 mM  L-Asn, incubated at 37 !C for 10 min, followed by 

the addition of Nessler’s reagent which detects free ammonia, one of the products of the L-

asparaginase reaction. 

(B) Detection of displayed EcASNase2. Aiming at the confirmation of the display of 

EcASNase2 in the inner membrane, cells expressing the EcASNase2-His6-C protein were 

fractionated as described elsewhere [281], and the membranes were used for immunoblotting. 

Briefly, ~ 109 cells were spun down and resuspended in 20 µL of ice-cold solution of 0.1 M 

Tris-Cl, 0.75 M sucrose, 100 µg/mL hen egg lysozyme, pH 8. Subsequently, 30 µL of 1 mM 

EDTA were added dropwise, and the mixture was incubated on ice for 10 min, followed by 

the addition of 5 µL 0.5 M MgCl2 for further 10 min incubation on ice. The treated cells were 

centrifuged at 16,500g for 10 min, and the supernatant (so-called periplasmic fraction) was 

decanted. The pellet was resuspended in 50 µL ddH20 and then subjected to 5 freeze-thawing 

cycles (-20 to 30  !C). The resulting suspension was centrifuged at 16,500g for 20 min and the 

supernatant (intracellular cytoplasmic fraction) was removed. The pellet, which contained the 

whole membrane fraction was resuspended in 1X Laemmli buffer, boiled at 95 !C for 10 min 

and analyzed by immunoblotting using monoclonal mouse anti-His6-C antibodies 

(Invitrogen), which selectively recognize C-terminal polyhistidine tags with a free carboxyl 

group (His6-COOH).

(C) Quantification of displayed EcASNase2. For the quantification of the displayed 

EcASNase2 in the inner membrane, the membrane fraction of ~ 109 cells obtained as 

described in the previous paragraph at different time points after the addition of IPTG was 

subjected to immunoblotting analysis. In parallel, known amounts of purified recombinant 

EcASNase2-His6-C were immunoblotted accordingly. All the resulting bands were analyzed 
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by ImageJ [282], and based on the band intensities of known amounts of the purified protein, 

a standard curve was generated from which the amount of the displayed enzyme was 

estimated. Consequently, considering the number of the used cells (109) for the membrane 

preparation and the calculated overall displayed enzyme amount, the number of the displayed 

enzyme molecules was estimated using the enzyme’s molecular mass and Avogadro’s number 

(6.023*1023).

5.2.2.6 Monitoring L-asparaginase activity of EcASNase2 displayed in 

E.coli cells.

Once the display  of EcASNase2 in the inner membrane of E.coli cells was confirmed, the 

next step  included the encapsulation of single cells in 600 pL droplets and the subsequent 

determination of activity  of the anchored enzyme by applying the Amplex Red-coupled assay. 

The assay  conditions were identical to those which were used for the activity determination 

of purified EcASNase2 in droplets [250 µM L-Asn, ~ 4 µM L-AspOx (~ 250 µg/mL), 10 µM 

FAD, ~ 100 nM HRP (~ 0.1 U/mL), and 6.5 µM Amplex Red]. The cell dilution conditions 

and the number of formed droplets based on the eGFP-expressed cells visualization 

experiment were adjusted such that, in average, one cell is present in ten droplets. The 

number of cells per droplet can be approximated by a Poisson distribution [283]. The time 

course of the single-cell L-asparaginase reaction was compared to the time course of the 

reaction using purified enzyme (under the same droplet volume and assay conditions), and 

based on the immunoblotting quantification experiments, the amount of anchored enzyme per 

bacterial cell was estimated.

5.2.3 Results

5.2.3.1 Validation of the Amplex Red-dependent assay in droplets 

 

The applicability  of the Amplex Red assay  was tested using a droplet-based microfluidic 

setup as shown in Figures 2 and 3. The final volume of the formed droplets was 600 pL, and 

the final assay mixture included ~ 0.6 nM  EcASNase2 (20 ng/mL), 250 µM L-Asn (saturated 
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substrate conditions was determined in other studies [265]), ~ 4 µM L-AspOx (~ 250 µg/mL), 

10 µM  FAD, ~ 100 nM HRP (~ 0.1 U/mL), and 6.5 µM Amplex Red. Two populations of 

droplets were produced: one with all the assay compounds and the enzyme where the 

enzymatic reaction took place (positive), and one without enzyme which served as negative 

control. The positive and negative droplet populations were labeled with 1 and 0.5 µM 

fluorescein, respectively, thereby facilitating the inspection of their formation and their 

stability  throughout the entire time course of the reaction by their 2-fold different 

fluorescence signals. Figure 4 shows the time course of the enzymatic reaction using 20 ng/

mL of purified recombinant EcASNase2.

            

Figure 4. Time course of EcASNase2-catalyzed reaction in droplets applying the Amplex 
Red assay. Panel (a) shows the fluorescence signal intensity  as a function of time after the 
first 3 min of the reaction. The black bars correspond to the fluorescein signals of the labeled 
droplets; the difference of the intensities is due to different fluorescein concentrations which 
were used for the positive (1 µM) and negative (0.5 µM) droplets. The red bars reflect the 
fluorescent signal generated by the product of the enzymatic reaction (Resorufin), which is 
almost zero after 3 min of the assay compounds mixing. Panel (b) shows the fluorescence 
signal intensities ~ 14 min after the reaction initiation. This clearly depicts the fluorescent 
intensity differences between the positive and negative droplets, which are also distinguished 
by the distinct fluorescein concentrations. The plot in panel (c) shows the overall time course 
of the reaction containing 0.6 nM EcASNase2 (20 ng/mL), 250 µM  L-Asn, ~ 4 µM  L-AspOx 
(~ 250 µg/mL), 10 µM FAD, ~ 100 nM  HRP (~ 0.1 U/mL), and 6.5 µM Amplex Red. The 
reaction took place at 25 !C and reached saturation ~ after 16 min. Plots (a) and (b) were 
generated using LabView software, while plot (c) was prepared by using MatLab. 
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The next validation steps comprised a linearity  test of the assay and the steady-state kinetic 

characterization of EcASNase2 in droplets. For the linearity  test, the assay  components were 

maintained constant with saturated substrate concentration (250 µM  L-Asn), and the 

EcASNase2 concentration was varied in order to determine the range within which the 

reaction rate is proportional to the enzyme amount. In parallel, under identical assay 

conditions, the linearity  test was done using a 96-well plate setup, following the reaction in 

the fluorescent mode with a plate reader. Figure 5A shows the results of the linearity  test in 

droplets and in a 96-well plate. The data suggest that in both droplets (microscopic volumes) 

and in a 96-well plate (macroscopic volumes) the system displayed a very similar profile 

maintaining linearity up to the 200 ng/mL EcASNase2 concentration. In contrast, when 

higher enzyme concentrations were tested, the reaction rate was not increasing further. This 

can be attributed to limiting amounts of the auxiliary enzymes, notably L-AspOx, and not to 

HRP, because L-AspOx has poor catalytic properties (KM and kcat values: 0.5 mM and 0.5 s-1 

for L-AspOx against L-Asp; ~ 560 s-1 and 0.1 mM  for HRP against  hydrogen peroxide at 25 

!C), which cannot follow the catalytic rate of the enzyme which initiates the reaction 

(EcASNase2 in this case). An increase of the helper enzymes’ concentrations can potentially 

shift the linear trend to higher concentrations of EcASNase2 if necessary. 

The concentration of 10 ng/mL EcASNase2 was chosen for subsequent steady-state kinetic 

analysis of the enzyme in microscopic (droplets) and macroscopic volumes (96-well plate), 

respectively. The substrate concentration (L-Asn) varied in the range of 0-5 KM, and the 

resulted reaction rates (normalized against the maximum rate) were plotted against the 

substrate concentrations. The data were analyzed by non-linear regression using the 

Michaelis-Menten model. As shown in Figure 5B, the calculated KM from all the 

experiments is ~ 20 µM, and the kcat ~ 7 s-1 (kcat can be also calculated from plot 5A, where 

the data are expressed as nM of product formation per second per concentration of 

EcASNase2; molecular mass of EcASNase2 ~ 35 kDa). Both kinetic parameters are very 

similar to those obtained from previous independent experiments [265].
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Figure 5. Linearity test (A) and Michaelis-Menten plot (B) for EcASNase2 applying the 
Amplex Red assay in microscopic and macroscopic volumes. After the investigation of the 
system’s linearity range (plot A), the concentration of 10 ng enzyme/mL was chosen for the 
kinetic characterization of EcASNase2 in droplets and in 96-well plates. The inset of plot A 
shows the overlap of the time course of the enzymatic reaction in droplets using 10 ng/mL 
(accumulated black dots represent data from single droplets), and in a 96-well plate (the red 
line is the fit of the respective experiment  using the same concentration of enzyme in a 
volume of 100 µL per well). Plot B shows the substrate concentration-dependent reaction 
rates (normalized against the maximum rate) from which the kinetic parameters were 
determined from the droplet  and the plate reader experiments. For comparison, the data 
points from the assay performed in the absorbance mode (ABS mode) [265] were also 
included. Plots were generated using Origin 8.5.

Once the fluorescent assay was characterized in droplets using recombinant purified 

EcASNase2 and the obtained kinetic parameters were found similar to those obtained from 

macroscopic volume experiments, thus confirming the validity of the assay in microscopic 

volumes as well, the following step  for the development of a high-throughput screening 

system was undertaken to include the activity  determination of EcASNase2 (or any other 

enzyme of interest) expressed in the host  cells (E.coli in our case). Results of these 

experiments are presented in the following section.

5.2.3.2 Encapsulation of single E.coli cells displaying EcASNase2 in 

droplets and determination of enzymatic activity

(A) Adjusting the number of cells per droplet. Initially, we wanted to get a rough estimate of 

the number of cells that must be used in order to ultimately encapsulate ~ 1 cell per droplet. 
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To this end, we made use of different  dilutions of E.coli cells expressing eGFP encapsulating 

them in the same total number of droplets. Subsequently, the droplets were trapped in specific 

microchannels in the chip and were visualized by fluorescence microscopy. Figure 6 shows a 

representative experiment of two dilutions of the eGFP-expressed cells, trapped in 

microchannels. In Figure 6A, the number of cells corresponds to ~ 3x108, while in Figure 6B 

the cells are 100-fold less (~3x106). The number of cells was calculated based on the 

experimentally (serial dilution method) determined equality that an OD600 ~ 1 corresponds to 

~ 109 cells. Finally, based on the conditions shown in Figure 6B which correspond to OD600 ~ 

0.002, we encapsulated the E.coli cells in emulsions with an approximate probability of 1 cell 

per 10 droplets which results from a Poisson probability  distribution based on the number of 

produced droplets (~ 10-fold higher than the number of cells) and the cells which are 

randomly distributed in the emulsions [284].

Figure 6. Trapping of eGFP-expressing E.coli cells in microchannels. The number of cells 
correspond to ~ 3x108 (A) and ~ 3x106 (B), respectively. Based on the dilution conditions 
used in (B), the majority of the drops contain either no or only one cell, while some of them 
contain two or three cells but with low likelihood as can be predicted by a Poisson 
distribution [284]. 

(B) Confirmation and quantification of EcASNase2 displayed in the inner membrane of 

E.coli. Our efforts first focused on the determination of enzymatic activity using EcASNase2 

cytoplasmically expressed in E.coli cells. Upon compartmentalization in droplets of E.coli 

cells overexpressing the enzyme, subsequent lysis was attempted for releasing the produced 

enzyme for the reaction initiation. A number of different lysing agents were used as described 

in the Methods section. These include hen egg lysozyme, hen egg lysozyme in combination 
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with polymyxin B, and commercially  available detergents with highly active recombinant 

lysozyme which was supposed to result in the permeabilization of cell membranes and cell 

lysis. However, while all those lysing systems work efficiently in macroscopic volumes, in 

the droplets we totally failed to lyse the cells. Even after long incubation periods of cells with 

the aforementioned agents in drops, we observed no homogeneous distribution activity 

profile of the emulsions. In addition, the use of the detergent had an inactivating impact on 

the helper enzymes which are crucial for the coupled fluorescent assay. This lack of 

successful lysing of the cells in droplets led us to seek for alternatives to circumvent this 

hurdle. Therefore, we displayed the EcASNase2 in the inner membrane of E.coli cells by 

capitalizing on the leader peptide and the first six amino acids of a mature endogenous E.coli 

lipoprotein, designated NlpA [275]. 

Membranes are characterized by  the presence of a group of proteins, called lipoproteins. The 

peptide leader sequence of these proteins undergo an amino-terminal lipid modification 

which ultimately results in their anchoring either in the inner or the outer membrane. They 

are produced in the cytoplasm as secretory precursors and are exported to the periplasm via 

the Sec pathway [285]. Once translocated to the periplasm, a cysteine residue which is 

located at the C-terminus of their peptide leader sequence is modified by the attachment of a 

diacylglyceride group through a thioether bond. After this modification, the leader sequence 

is cleaved by signal peptidase II, the protein is fatty acid acylated at the modified cysteine 

residue, and ultimately the lipophilic fatty acid anchors the protein by  inserting it into the 

membrane. Aiming at the anchoring of EcASNase2 in the inner membrane, we made use of 

the APEx1 plasmid which expresses the protein of interest as fusion at its N-terminus with 

the peptide leader sequence and the first six amino acids of the mature NlpA lipoprotein. 

However, when the whole-cell extract was analyzed on SDS-PAGE to evaluate the 

expression of the enzyme, no prominent protein band at  the expected molecular weight was 

observed. This result can be explained, considering the fact that the number of available 

positions for anchoring on the membrane is limited, unlike the intracellular expression where 

the produced protein can account more than the 25% of the whole cell’s proteins. Figure 7A 

shows an SDS-PAGE analysis of cytoplasmically  expressed and anchored EcASNase2 in 

C41(DE3) E.coli cells prepared two, four and six hours after the IPTG addition. The 

production of the enzyme in case of cytoplasmic expression appears to have reached 

saturation two hours after the IPTG addition. In contrast, the time-dependent change of 
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enzyme production could not  be evaluated in case of the displayed enzyme because the 

expression levels are very low. This fact prompted us to tag the enzyme in order to allow us 

to evaluate its expression by quantifying it through immunoblot analysis. Therefore, we used 

the construct APEx1-EcASNase2-His6-C which anchors the enzyme carrying a His6-tag at its 

C-terminus. The detection of this enzyme upon expression using the membrane fraction after 

cellular fractionation was done by Western blot  using monoclonal mouse anti-His6-C 

antibodies (Invitrogen), which recognize the C-terminal polyhistidine tag carrying a free 

carboxyl group (His6-COOH). 

In parallel, using the plasmid pET14b-SUMO-EcASNase2-His6-C, the EcASNase2-His6-C 

version of the enzyme was recombinantly produced and purified. This enzyme served as a 

probe for immunoblotting known amounts of the protein and preparing a standard curve 

based on the band intensities which were analyzed by  ImageJ [282]. The standard curve was 

subsequently  used to estimate the amount of displayed EcASNase2 per single E.coli cell, 

given the fact that the membrane fraction which was used for immunoblotting was isolated 

from ~ 109 cells. Figure 7B shows the Western blots of the recombinant, purified 

EcASNase2-His6-C which was used in amounts of 0.15, 0.75, 1.5, and 2.25 µg for the 

standard curve, and of the membrane fraction isolated from 109 cells at 2, 4, 6 and 10 h after 

the induction of EcASNase2-His6-C expression. The band intensities of the purified 

EcASNase2-His6-C were analyzed by  ImageJ, and a reference curve was generated which is 

shown in Figure 7C. In addition, based on the time course of the EcASNase2-His6-C display 

as shown in Figure 7B, the expression of the enzyme maximizes ~ 4 h after the IPTG 

addition, is maintained constant up  to 6 h, and starts declining after 10 h of incubation. For all 

the droplet experiments which followed, the cells were induced for 4 h and next were 

compartmentalized in emulsions for the activity  measurements. The intensity of the band 

which corresponds to 4 h after the expression induction was analyzed by ImageJ, and the 

value was plugged into the equation resulted from linear regression analysis of the 

EcASNase2-His6-C standards, in order to calculate the amount of the anchored EcASNase2. 

This final calculated value of the overall amount out of 109 cells which is displayed in the 

inner membrane was found to be 1.2 µg. Dividing this number by 109, we obtain ~ 1.2 fg of 

displayed EcASNase2-His6-C per cell. Going a step  further, using the molecular weight of 

EcASNase2 which is 35 kDa and the Avogadro number (6.023x1023), we can calculate the 

number of EcASNase2 individual molecules which are anchored per cell, which is ~ 20,000. 
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This number is ~ 2-fold bigger than the calculated number of anchored antibodies in another 

study [265; Dr. George Georgiou, personal communication]. However, it must be highlighted 

the fact that the number of the displayed molecules is highly dependent on the properties of 

the molecules which are anchored, and a 2-fold difference between two distinct molecules 

(antibodies and enzymes) is within an acceptable range.

Figure 7. Comparison of expression levels of cytoplasmically expressed and inner 
membrane-anchored EcASNase2, immunoblotting analysis of anchored EcASNase2-
His6-C and purified EcASNase2-His6-C, and standard curve generated based on the 
band intensities of known amounts of immunoblotted EcASNase2-His6-C. The solid 
rectangular frame (panel A) in SDS-PAGE shows the overexpressed EcASNase2 in C41
(DE3) cells using the pET14b-SUMO plasmid, while the dotted frame on the right shows the 
respective expression using the APEx1 plasmid in the same host strain. Panel B shows two 
Western blots. The upper one shows the bands of 0.15, 0.75, 1.5, and 2.25 µg of purified 
EcASNase2-His6-C, and the lower blot depicts the cellular membrane fraction containing 
anchored EcASNase2-His6-C 2, 4, 6 and 10 h after the induction of the expression. Panel C 
illustrates the standard curve for protein quantification resulting from the band intensities of 
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different amounts of purified EcASNase2-His6-C (panel B, upper blot). The dotted line in the 
plot represents the linear correlation between the value of the band intensity  and the 
respective protein amount detected after 4 h of EcASNase2-His6-C expression (panel B, 
lower blot). The linear regression analysis resulted in the curve y=570+3642x (R2=0.955), 
while the band intensity of the unknown protein amount was 4896 (a.u.). This value was used 
to substitute the y  value of the upper linear formula, from which ultimately  the  value of 1.2 
µg (amount of protein) was calculated. The plot was generated using Igor Pro (Wavemetrics), 
and the figure was prepared using Keynote.

(C) Activity determination of EcASNase2 displayed in the inner membrane of E.coli. The 

anchoring of mainly  antibodies using the plasmid APEx1 has been successfully employed in 

a number of studies [265,275]. In those cases, the outer membrane was permeabilized by 

EDTA and lysozyme, thereby  allowing the antigen to interact directly with the inner 

membrane-anchored antibody. In our case, the treatment of the cells with lysozyme and 

EDTA resulted in considerable decrease of the enzymatic activity, which is mainly attributed 

to the inhibitory effect of EDTA on L-ASNases [257]. Therefore, the outer membrane could 

not be permeabilized for the activity measurements using standard procedures for 

permeabilization. In principle, the permeabilization of the outer membrane would not have 

been absolutely  essential in our case, given the fact that both the substrate L-Asn and the 

product L-Asp  are small molecules and therefore can easily diffuse into, and out of, the 

periplasmic space, thus being accessible to the anchored EcASNase2 for the enzymatic 

reaction. Figure 8 shows the distribution of the droplet population as a function of the 

detected fluorescence signal intensity in case of cytoplasmic expression where the cells were 

incubated with lysozyme and polymyxin B, as well as in case of the displayed EcASNase2. 

Based on these results, it is evident that upon cytoplasmic expression of the enzyme, even 

after ~ 40 min of incubation with the lysing agents, the fluorescent signal was not 

homogeneously distributed in the droplet population. In contrast, a two-population 

distribution was observed (Figure 8A) after ~ 40 min. This might be attributed to distinct 

degrees of lysis of the individual E.coli cells resulting in liberation of different amounts of 

EcASNase2, and, thus, in different observed activity rates. Indeed, when we tried to lyse 

eGFP-expressing cells with lysozyme and polymyxin B aiming at the visual inspection of the 

fluorescence distribution in cells in a time-course manner, we observed that cells had released 

different amounts of eGFP in the emulsions’ volume, while in other drops some cells were 

totally unaffected as evidenced by the continuing flagellar movement of the E.coli cells.
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Figure 8. EcASNase2 activity determination in case of (A) cytoplasmic expression, and 
(B) display of the enzyme in the inner membrane. The reaction was monitored for 43 min 
in both cases, and the fluorescent intensity was analyzed at different time points (4, 14, 24, 
and 43 min, respectively). The lysis of the cells was attempted by using 2 mg/mL lysozyme 
in combination with 4 mg/mL polymyxin B which were added in the aqueous phase together 
with all the assay  reagents as described in the Methods section. The intracellular expression 
and the display of EcASNase2 were done using the pET14b-SUMO and APEx1 plasmids, 
respectively, as described in the Methods. The schemes which accompany  the histograms 
above describe the potential partial lysis of E.coli cells in the droplets, and the anchoring 
process of EcASNase2 in the inner membrane of the cells, respectively. The histograms were 
generated by  Origin 8.5, the schemes were prepared by Adobe Illustrator, and the figures 
overall were prepared by Keynote.
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As shown in Figure 8B, in case of single-cell level experiments using the anchored 

EcASNase2, it took ~ 43 min for the reaction to be completed. Based on the activity 

measurements using a well-defined concentration of purified enzyme in droplets, we 

calculated the amount of the enzyme which is displayed, given the 43 min time it took to 

complete the reaction under the same conditions. Figure 5A shows that the use of 10 ng/mL 

enzyme completed the reaction in ~ 2,000 s which correspond to ~ 33 min. Considering the 

volume of the droplets in that case (600 pL), this concentration corresponds to 6 fg of enzyme 

in such a droplet. Taking into account that for the single-cell anchored enzyme experiment 

(Figure 8B) it took 43 min, it  can be estimated from the linearity of the enzymatic reaction 

that the amount of the enzyme which contributes to the reaction is ~ 4 fg. This number is 

rather close to the experimentally determined number of 1.2 fg obtained above in the 

quantification paragraph. This difference could potentially be attributed to the fact that  what 

was used for the immunoblotting detection was only the membrane fraction, excluding the 

most likely existing cytoplasmic and periplasmic fractions. Here, it should be recalled that 

during the anchoring process the enzyme is translocated to the periplasm, followed by the 

attachment of a diacylglyceride group through a thioether bond at a cysteine residue, and it is 

ultimately  fatty-acylated, thereby becoming anchored in the inner membrane. This implies 

that before the anchoring event, a certain amount of the enzyme is present in the periplasm 

during the aforementioned protein modifications step. This fraction of enzyme was excluded 

from the immunoblotting analysis, since only the membrane fraction was analyzed aiming 

exclusively  at the detection of the displayed EcASNase2. However, the fraction which is 

located in the periplasm before the final anchoring is expected to also be accessible for the 

enzymatic reaction. This could explain the deviation between the two different quantification 

approaches, i.e. the one based on the correlation of the purified enzyme activity 

measurements with the single-cell activity  profile, and the one resulting from immunoblotting 

analysis.
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6. Human 60-kDa Lysophospholipase contains an N-terminal L-

asparaginase domain which is allosterically regulated by L-

asparagine.
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Background: The 60-kDa human lysophospholipase comprises an N-terminal domain with predicted, yet uncharacterized
L-asparaginase activity and a C-terminal ankyrin repeat-like domain.
Results: The N-terminal domain, termed hASNase1, was identified as a functional structural unit possessing catalytic activity.
Conclusion: hASNase1 is an allosterically regulated bacterial-type cytoplasmic L-asparaginase.
Significance: Domains of multifunctional human proteins harbor homologs of prokaryotic enzymes displaying similar struc-
tural and kinetic features.

The structural and functional characterization of human
enzymes that are of potentialmedical and therapeutic interest is
of prime significance for translational research. One of themost
notable examples of a therapeutic enzyme is L-asparaginase,
which has been established as an antileukemic protein drug for
more than four decades. Up until now, only bacterial enzymes
have been used in therapy despite a plethora of undesired side
effects mainly attributed to the bacterial origins of these
enzymes. Therefore, the replacement of the currently approved
bacterial drugs by humanhomologs aiming at the elimination of
adverse effects is of great importance. Recently, we structurally
and biochemically characterized the enzyme human L-asparagi-
nase 3 (hASNase3), which possesses L-asparaginase activity and
belongs to the N-terminal nucleophile superfamily of enzymes.
Inspired by the necessity for the development of a protein drug
of human origin, in the present study, we focused on the
characterization of another human L-asparaginase, termed
hASNase1. This bacterial-type cytoplasmic L-asparaginase resides
intheN-terminalsubdomainofanoverall573-residueproteinpre-
viously reported to function as a lysophospholipase.Our kinetic,
mutagenesis, structural modeling, and fluorescence labeling
data highlight allosteric features of hASNase1 that are similar to
those of its Escherichia coli homolog, EcASNase1. Differential
scanning fluorometry and urea denaturation experiments dem-
onstrate the impact of particular mutations on the structural
and functional integrity of the L-asparaginase domain and pro-
vide a direct comparison of sites critical for the conformational
stability of the human and E. coli enzymes.

L-Asparaginases (EC 3.5.1.1; L-asparagine amidohydrolase;
L-ASNase2) are enzymes that primarily catalyze the conver-

sion of L-asparagine (L-Asn) to L-aspartic acid (L-Asp) and
ammonia, although some of them are able to also hydrolyze
L-glutamine (L-Gln) to L-glutamic acid (L-Glu) and ammonia.
These enzymes are present in bacteria to mammals and play
pivotal roles in amino acid metabolism (1, 2). Enzymes with
L-asparaginase activity can be generally classified into two evo-
lutionary distinct families: the bacterial-type and the plant-type
L-asparaginases, which are characterized by different structural
and biochemical features (3, 4). The bacterial-type enzymes
have been further grouped into type I and type II depending on
their cellular localization. Type I includes cytosolic enzymes
that exhibit low affinity (millimolarKm) for L-Asn, whereas type
II enzymes are localized in the periplasm and show consider-
ably higher affinity (micromolar Km) for L-Asn (5). These
enzymes have been studied extensively over the last 40 years
mainly because two of the type II isoforms (L-ASNases from
Escherichia coli andErwinia chrysanthemi encoded by the ansB
genes) serve as therapeutics for the treatment of acute lympho-
blastic leukemia (6–8). Conversely, the less studied plant-type
L-asparaginases belong to the so-called N-terminal nucleophile
(Ntn) hydrolases, which were defined as a new protein struc-
tural family in 1995 (9). A major characteristic of this Ntn
hydrolase superfamily is a post-translational processing step
that generates the active enzyme. The enzymes are expressed as
inactive precursors that undergo a slow intramolecular auto-
proteolytic cleavage reaction at a specific site resulting in two
tightly associated subunits, ! and ", also called protomers. The
catalytic residue acting as the nucleophile is exposed at the very
N terminus of the newly generated "-subunit, which remains
complexed with the !-subunit during catalysis (10–12). A well
characterized mammalian member of the Ntn nucleophile
hydrolase superfamily is the human lysosomal aspartylgluco-

* This work was supported by the Max Planck Society (to C. S. K. and M. K.) and
the Göttingen Graduate School for Neurosciences, Biophysics, and Molec-
ular Biosciences (to C. S. K.).
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paraginase 1; EcASNase1, E. coli L-asparaginase 1; PhASNase1, P. horikoshii

L-asparaginase 1; RnASNase1, R. norvegicus L-asparaginase 1; ScASNase1, S.
cerevisiae L-asparaginase 1; ansA, gene name for cytoplasmic bacterial L-as-
paraginases; ansB, gene name for periplasmic bacterial L-asparaginases;
Ntn, N-terminal nucleophile; palmitoyl-lysoPC, 1-palmitoyl-sn-glycero-3-
phosphocholine; lysoPI, lysophosphatidylinositol; ADIFAB, acrylodated
intestinal fatty acid-binding protein; SUMO, small ubiquitin modifier; Ni-
NTA, nickel-nitrilotriacetic acid; CAPSO, 3-(cyclohexylamino)-2-hydroxy-1-
propanesulfonic acid.
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saminidase, which catalyzes the hydrolysis of glucosylated
L-Asn molecules generated during proteolytic breakdown of
glycoproteins (13, 14). The human genome encodes another
enzyme of this Ntn hydrolase family, variably termed human
asparaginase-like protein 1 (15), glial asparaginase (16), CRASH
(17), or hASNase3 because its high homology with E. coli L-
ASNase3 (encoded by the iaaA gene) (18). Crystal structures
of the wild-type form and of a circular permutant version of
hASNase3 have been reported recently (19–22).
The two aforementioned human enzymes and some of their

microbial and plant homologs have been characterized as
representatives of the Ntn hydrolase superfamily. In con-
trast, little is known about bacterial-type L-asparaginases
expressed in mammalian tissues. An interesting example of
such an enzyme is the 60-kDa lysophospholipase first iso-
lated from rat liver (23). This enzyme comprises two
domains: an N-terminal domain that is homologous to the
E. coli cytoplasmic-type I L-asparaginase (EcASNase1; en-
coded by the ansA gene) and a C-terminal ankyrin repeat-
like domain. This 60-kDa lysophospholipase from rat liver
was shown to exhibit three distinct enzymatic activities
(lysophospholipase, L-asparaginase, and platelet-activating
factor acetylhydrolase) (23); however, no further studies
have been reported on this protein, and little is known about
its human homolog. In fact, the human 60-kDa lysophospho-
lipase is a poorly characterized protein that shows 79% over-
all amino acid sequence identity with its rat homolog. In
addition, although it has been demonstrated (24) that the
protein holds lysophospholipase activity in vitro and plays a
key role in cell proliferation and regulation of membrane
channels, there are no supporting data to assign L-asparagi-
nase activity to this human two-domain protein.
The present study focuses on the bacterial expression, puri-

fication, and biochemical characterization of the N-terminally
located L-asparaginase domain (residues 1–369) of the 60-
kDa (573-residue) human lysophospholipase. Because of high
sequence similarity of this domain with EcASNase1 (47% iden-
tity), we designate it as hASNase1. Lysophospholipase activity
was detected neither for the hASNase1 enzyme nor for the bac-
terial homolog. We show that the purified enzyme exhibits
characteristics similar to those of bacterial type I L-asparagi-
nase. Our kinetic and mutagenesis studies on hASNase1 unveil
strong positive allosteric modulation as a function of L-Asn
concentration through the action of a second L-Asn binding
site, whichwe probed by cysteine-specific fluorescence labeling
of the allosteric site. These results are in line with a previous
crystallographic and mechanistic study on the E. coli cytoplas-
mic homolog demonstrating L-Asn-dependent allosteric regu-
lation of the bacterial enzyme in vitro (25). Interestingly, we
observed a substrate-inducing effect on the oligomeric state of
hASNase1; however, the predominant state of the enzyme at
assay conditions ismonomeric.Our thermodynamic analysis of
hASNase1 suggests conformational features and stability dis-
tinct from its E. coli counterpart. By mutational analysis, we
highlight critical residues located at its putative allosteric and
catalytic sites.

EXPERIMENTAL PROCEDURES

Materials—Yeast extract, peptone from casein, NaCl, Nes-
sler’s reagent, urea, SYPROOrange, L-asparagine, L-glutamine,
L-aspartic acid, glutamate dehydrogenase, !-ketoglutarate, NADH,
synthetic 1-palmitoyl-sn-glycero-3-phosphocholine (palmi-
toyl-lysoPC), lysophosphatidylinositol (lysoPI) from Glycine
max (highly polyunsaturated soybean oil; mixture of different
fatty acids and enriched with stearic and palmitic acids), phos-
pholipase A2 from bovine pancreas, L-!-phosphatidylcholine
from soybean (mixture of different fatty acids), and palmitic
acid were purchased from Sigma-Aldrich-Fluka. The acrylo-
dated intestinal fatty acid-binding protein (ADIFAB) assay kit
was obtained from FFA Sciences (San Diego, CA). Dialysis
membranes and Coomassie Brilliant Blue G-250 (Bradford rea-
gent) were fromRoth (Karlsruhe, Germany). Slide-A-Lyzer was
from Pierce. Oligonucleotides were synthesized by IBA GmbH
(Goettingen, Germany). Restriction enzymes and T4 DNA
ligase were obtained fromNew England Biolabs (Ipswich,MA).
KAPAHiFi polymerase and all PCR reagents were fromPeqLab
(Erlangen, Germany). Gel extraction and PCR product purifi-
cation kits as well as nickel-agarose (Ni-NTA) for protein puri-
fication were purchased from Macherey Nagel (Düren, Ger-
many). Plasmid purification kitswere fromFermentas (Thermo
Fisher Scientific, Germany). Genomic DNA preparation kits
were from Qiagen (Hilden, Germany).
Cloning of hASNase1, EcASNase1, and Chaperonin 10—The

cDNA region coding for the N-terminal domain (termed
hASNase1) of the full-length 60-kDa human lysophospholipase
was PCR-amplified using as template a cDNA clone of the
ASPG gene (human L-asparaginase homolog, NCBI Reference
Sequence NM_001080464; GenBankTM accession number
BC035836) isolated from female ovarian tissue (Source Biosci-
ence, UK). Four different C-terminal truncation constructs of
hASNase1 were generated and subsequently tested for solubil-
ity and enzymatic activity as described in the following sections.
NdeI and BamHI sites, respectively, were incorporated in the
5!-ends of the amplifying oligonucleotides (primers are listed in
the supplemental table). The PCR mixture in a 50-"l final vol-
ume consisted of 50 ng of template plasmid DNA, oligonucleo-
tide mixture (10 pmol each), KAPA high fidelity buffer, dNTPs
(0.2 mM each), and 1 unit of KAPA HiFi DNA polymerase. The
PCR fragment was gel-purified and subjected to additional
overlap extension PCRs aiming at the elimination by silent
mutation of an internal BamHI restriction site (nucleotide
sequence position 740) whose presence would limit the unique
cleavage at the 3!-end. The final PCRproduct was digestedwith
NdeI and BamHI and ultimately ligated overnight at 16 °C into
the pET14b-SUMO vector (10) using T4 DNA ligase. The liga-
tion mixture was used to transform DH5! E. coli cells. Plasmid
DNA isolated from single colonies was digested with NdeI and
BamHI to identify positive clones, some of which were
sequence-verified. The final constructs include an N-terminal
six-histidine tag (His6) followed by the small ubiquitinmodifier
(SUMO; Smt3p protein from yeast; 101 residues; molecular
mass, 11.2 kDa) tag, which has been shown to improve heterol-
ogous protein solubility and stability (26). For bacterial expres-
sion, the E. coli BL21(DE3) pLysS strain was transformed with
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each of the four hASNase1 constructs. Expression vectors for
EcASNase1 and Chaperonin 10 (GroES; encoded by the Cpn10
gene) were constructed analogously.
Mutagenesis of hASNase1 and EcASNase1—All hASNase1 sin-

gle sitemutants (T19A, T116A,T187S, T187AE266R, E266S, and
C299S) and EcASNase1mutants (R240E and C273S) were gener-
atedby applying theQuikChangemethodology (Stratagene) using
as templates the cloned wild-type genes and KAPA HiFi DNA
polymerase.MutantsT187SandT187Aweregenerated in a single
PCR using the same pair of primers bymaking use of the wobble-
type oligonucleotides (G/T) at the first nucleotide of the T187
codon (ACC). Mutants E266R and E266S were constructed in a
similarway (the primers are listed in the supplemental table). Site-
specific mutations were confirmed by sequencing the entire cod-
ing regions (Seqlab, Goettingen, Germany). All hASNase1
mutants were expressed and purified following the protocol
described below for the wild-type enzyme.
Protein Expression and Purification of hASNase1, EcASNase1,

and GroES—E. coli BL21(DE3) pLysS cells containing the
hASNase1 plasmid were cultured overnight at 37 °C in LB
medium supplemented with 200 !g/ml ampicillin and 35
!g/ml chloramphenicol. A fraction of this culture (dilution
1:100) was used to inoculate fresh 2! YT medium (1% yeast
extract, 1.6% Tryptone, 0.5% NaCl) supplemented with 200
!g/ml ampicillin and 35 !g/ml chloramphenicol. When the
bacterial culture reached an A600 of "0.5–0.7, its temperature
was lowered to 22 °C, and protein expression was induced by
adding isopropyl 1-thio-"-D-galactopyranoside to a final con-
centration of 0.25 mM. After incubation at 16 °C for 18 h, the
cells were centrifuged at 4,000 ! g for 30 min, resuspended in
Ni-NTA-agarose affinity matrix binding buffer A (50 mM
Na2HPO4, 0.3 M NaCl, 10 mM imidazole, 2% glycerol, 1 mM
PMSF, pH 8.0), and ultimately lysed by sonication. The cell
lysate was centrifuged at 17,200 ! g for 45 min, and to the
cleared supernatant was added a fraction (1:10 dilution) of 10!
ATP buffer B (50 mM Na2HPO4, 0.3 M NaCl, 100 mM ATP, 200
mM MgCl2, 500 mM KCl, pH 8.0). The combined mixture was
incubated in a 37 °C water bath for 15 min, mixed with pre-
equilibrated Ni-NTA-agarose beads, and incubated at 4 °C for
3 h under rotation. Subsequently, the mixture was transferred
to a 12-ml polypropylene column and dried by gravity. To
remove unspecifically adsorbed material, the nickel resin was
first washed with 25 bed volumes of washing buffer C (50 mM
Na2HPO4, 0.5 M NaCl, 20 mM imidazole, 2% glycerol, pH 8.0).
The resin was then mixed with a 10-fold diluted buffer B sup-
plemented with GroES at a final concentration of 50 !M. The
mixture was incubated at 4 °C for 2 h under rotation, dried by
gravity, and then further washed with 10 bed volumes of buffer
B without GroES. Finally, the bound His6-SUMO-hASNase1
protein was eluted from the column by applying 300 mM
imidazole in buffer A, and fractions were collected dropwise
and tested for L-asparaginase activity. All purification steps
were performed at 4 °C. The fractions that contained active
hASNase1 were mixed, buffer was exchanged against buffer D
(20 mM Tris-Cl, 5% glycerol, pH 8) using a PD-10 column (GE
Healthcare), and then the sample was subjected to DEAE Sep-
hacel anion exchange chromatography. Elution was performed
by applying anNaCl gradient (0–250mM) in bufferD. Fractions

were analyzed by SDS-PAGE, those containing #90% pure
hASNase1 were pooled, and buffer was exchanged against
buffer E (50 mM Tris-Cl, 100 mM NaCl, pH 8). The protein was
incubated with yeast SUMO protease (molar ratio of protease:
protein, "1:100) at 4 °C overnight (alternatively 2 h at 30 °C) to
cleave the N-terminal His6-SUMO tag. In the last purification
step, the protein was subjected to size exclusion chromatogra-
phy by passing it through a Superdex 200 column (size, 30 ! 1
cm; GE Healthcare) to remove the cleaved tag and remaining
impurities. Protein purity was evaluated by SDS-PAGE andwas
estimated to exceed 95%. The protein sample was aliquoted,
mixed with 25% glycerol, and stored at $20 °C at a final con-
centration of 2 mg/ml until use. The aforementioned purifica-
tion protocol was followed for the purification of wild-type
hASNase1 as well as for all mutants described in this study. The
final average yield of the purified human enzymes was " 0.3
mg/liter of 2! YT medium. EcASNase1 and GroES were puri-
fied following the protocol described for hASNase1 excluding
the washing steps with ATP and GroES as well as the interme-
diate anion exchange treatment. EcASNase1 and GroES purifi-
cations yielded "10 and 2 mg/liter of 2! YT medium, respec-
tively. Protein quantification was performed by using the
Bradford method (27) and by the calculated molar absorption
coefficient of each enzyme (23,295 M$1 cm$1 for hASNase1;
26,360M$1 cm$1 forEcASNase1; 1,490M$1 cm$1 forGroES) at
280 nm based on the amino acid sequence (28). The two quan-
tification methods showed less than 10% difference, and ulti-
mately the values were averaged.

L-Asparaginase and Lysophospholipase Activity Assays—We
applied two different methods for monitoring L-asparaginase
activity: a single step discontinuous method and a two-step
continuous assay for real time measurements of the enzymatic
activity. The discontinuous method, the so-called Nessleriza-
tion procedure that quantifies ammonia liberated upon deami-
dation of L-asparagine, has been described previously (29). The
continuous assay, which monitors the NADH-dependent con-
version of #-ketoglutarate plus ammonia to glutamate in a glu-
tamate dehydrogenase-coupled reaction (30), was applied for
the kinetic characterization of the enzymes using a Uvikon 943
double beam UV/visible spectrophotometer. All enzymes used
for the activitymeasurements and the kinetic experimentswere
free of the His6-SUMO tag, which was removed during the last
size exclusion chromatographic step (see above). For steady-
state kinetic analysis, L-Asn concentrations in the range of
0–10Kmwere tested in a final volume of 1 ml of 50 mM Tris-Cl,
100 mM NaCl, pH 8 at 37 °C. The final enzyme concentration
was "0.5 !M (20 !g in 1 ml). The obtained V/E (velocity/total
enzyme concentration) values were plotted against the respec-
tive substrate concentrations. Kinetic constants S0.5 and kcat
were calculated from the resulting plots by non-linear regres-
sion using the Hill equation (Equation 1) and analyzed by the
SoftZymics software (Igor Pro, Wavemetrics).

V $
Vmax[S]n

%S&0.5
n % %S&n (Eq. 1)

Here, V is the initial velocity of the enzymatic reaction, Vmax is
themaximal velocity, [S] is the substrate concentration, [S0.5] is
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the substrate concentration that yields half-maximal velocity,
and n is the Hill coefficient.
Potential lysophospholipase activity of hASNase1 was tested

using a continuous fluorescence assay as described previously
(31). Briefly, this assay detects free fatty acid molecules, which
are released upon hydrolysis of lysophospholipids by lysophos-
pholipases; free fatty acid then is complexed with the intestinal
fatty acid-binding protein conjugated with the fluorescent
probe acrylodan, commercially known as a free fatty acid indi-
cator and abbreviated as ADIFAB. Free fatty acid binding to
ADIFAB induces a fluorescence signal decrease due to changes
of the position of the acrylodan fluorophore, which is located
close to the free fatty acid binding pocket of intestinal fatty
acid-binding protein. In the present study, we tested palmitoyl-
lysoPC and lysoPI as candidate substrates of hASNase1. The
assay was performed in a quartz cuvette according to the man-
ufacturer’s instructions using final concentrations of 100 !M
for each substrate, 1!MADIFAB, and 1.8!M enzyme (15!g) in
200 !l of 50 mM HEPES, 140 mM NaCl, 5 mM KCl, 1 mM
Na2HPO4, pH 7.5. Fluorescence intensity was recorded contin-
uously for 10 min at 25 °C using a Jasco FP 8300 spectrofluo-
rometer in the high sensitivity mode (excitation at 386 nm and
emission at 432 nm with 2.5-nm bandwidths). The assay was
initially standardized by testing the fluorescence signal
decrease upon binding of palmitic acid (one of the expected
products of substrate hydrolysis; lysoPI contains a mixture of
fatty acid derivatives; see “Materials”) with the ADIFAB sen-
sor protein as well as by measuring the activity of phospholi-
pase A2 against L-"-phosphatidylcholine (also provided as a
mixture of different fatty acid derivatives). Both hASNase1 and
EcASNase1 were tested for lysophospholipase activity.
HomologyModeling of hASNase1—Ahomologymodel of the

N-terminal L-asparaginase domain of the 60-kDa human lyso-
phospholipase based on the recently determined structure of
the homologous EcASNase1 enzyme (25) was obtained from
the protein structure prediction service Phyre (32) (Job code
77beadcf4ff84dfc, Fold Library ID c2p2dA, identity of 47%, esti-
mated precision of 100%). The resulting hASNase1 structure
was overlaid on the EcASNase1 crystal structure (Protein Data
Bank code 2HIM) using PyMOL (33). The putative allosteric
and catalytic sites of hASNase1 were analyzed for the presence
of critical residues previously identified in EcASNase1.
Probing the Putative Allosteric Site of hASNase1 by Fluores-

cence Labeling of Cys299—Cysteine residue Cys299 of the cata-
lytically inactive T19A mutant of hASNase1 was labeled us-
ing the compound Atto 465-maleimide as a fluorescent dye
(Sigma-Aldrich). Maleimides show excellent reactivity with
thiol groups, and therefore, they can serve as site-specific label-
ing probes in cases where reduced cysteines are available.
Labelingwas done in the followingway.Highly purified enzyme
(!95% pure as determined by SDS-PAGE) in 20 mM Tris-Cl,
100 mM NaCl, pH 7.2 was mixed under stirring with a 10-fold
molar excess of the dye (dissolved inDMSO). The final concen-
trations in the reaction mixture (0.5 ml) were 20 !M enzyme
and 200 !M dye. The mixture was incubated at 22 °C for 2 h in
the dark, and subsequently 1 mM of glutathione (GSH) was
added to remove excess thiol-reactive dye. The labeled enzyme
mixture was dialyzed against 50 mM Tris-Cl, 100 mM NaCl, pH

8. The labeling of the enzyme was confirmed by SDS-PAGE
analysis applying 5!g each of unlabeled enzyme and of the final
enzyme-dye conjugate because it has been shown (34) that
labeled proteins migrate more slowly than unlabeled species.
For measuring interactions of hASNase1 with L-Asn, L-Asn

in the concentration range of 0.1–40 mM was incubated with
labeled enzyme (1.5!M final concentration) in a final volume of
100 !l. The samples were left for 2 h on ice to equilibrate.
Fluorescence intensity was recorded using a Jasco FP 8300
spectrofluorometer in the high sensitivity mode (excitation at
463 nm and emission at 508 nm with 2.5-nm bandwidths). All
measurements were done in triplicate. Because hASNase1 con-
tains overall 6 cysteines, themutant C299Swas also labeled and
served as a negative control (background fluorescence) for sig-
nal changes upon L-Asn binding. The resulting saturation bind-
ing curve was fitted using SoftZymics software (Igor Pro,
Wavemetrics) according to Equation 2,

F # F0 $
Fmax[S]

Kd % "S#
(Eq. 2)

where F is the fluorescence intensity, F0 is the fluorescence
intensity at zero concentration of ligand, Fmax is the plateau
fluorescence intensity,Kd is the dissociation constant, and [S] is
the ligand concentration.
Thermodynamic Characterization of hASNase1 Conforma-

tional Stability—The conformational stability of hASNase1
and EcASNase1 was studied bymonitoring changes in intrinsic
fluorescence of the stepwise urea-denatured proteins (35, 36).
The final urea concentrations ranged from 0.5 to 8 M using a
stock solution of 10 M urea dissolved in 50 mM Tris-Cl, 100 mM
NaCl, pH 8. The final concentration of the enzymes was
adjusted to 50 !g/ml ($1.25 !M for both enzymes) in a final
volume of 100 !l. The two tryptophan residues of hASNase1
(Trp93 and Trp150) exhibited intrinsic fluorescence upon exci-
tation at 295 nm (this wavelength was chosen to reduce excita-
tion of tyrosines), showing an emission maximum at 343 nm.
The same excitation and emission maxima were obtained for
EcASNase1 containing a single tryptophan residue (Trp68).
Before measurements, equilibrium of the unfolding reactions
was confirmed bymonitoring the fluorescence signals at differ-
ent timepoints until no further changewas observed.Datawere
analyzed assuming a two-state model for reversible protein
unfolding. Isothermal urea-induced unfolding experiments
were carried out at 10, 15, 20, 25, 30, 35, and 40 °C. For each
temperature, data analysis using the linear extrapolation
method (37) yielded three parameters: (i) the difference of
Gibbs free energy between the native and the unfolded state of
the protein (%GH2O); (ii) the dependence of%GH2O on denatur-
ant concentration (parameterm, which is the slope of the equa-
tion %G & %GH2O ' m[urea]), which can be thought of as a
measure for the sensitivity of the protein toward the unfolding
agent; and (iii) the concentration of urea at which the protein is
half-unfolded (C1/2). Subsequently, the calculated %GH2O val-
ues (free energy change at zero concentration of urea) result-
ing from each temperature were fitted to the Gibbs-Helmholtz
equation (Equation 3) (37) as a function of temperature to obtain
the %Cp values. Tm and %Hm values as fitting parameters were
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calculated from temperature-induced denaturation experiments
(range, 15–85 °C) following the intrinsic tryptophan fluorescence
changes of protein similar to urea experiments.

!G"T# ! !Hm"1 " T/Tm# " !Cp$"Tm " T# # T ln(T/Tm#]

(Eq. 3)

!G(T) is the Gibbs free energy difference between the folded
and unfolded state at temperature T, Tm is the melting temper-
ature, !Hm is the enthalpy difference at Tm, and !Cp the heat
capacity difference of the folded and unfolded states at constant
pressure.
Thermal Stability Determination of Wild-type and Mutant

hASNase1 Enzymes byDifferential Scanning Fluorometry—The
effect of point mutations on thermal stability of hASNase1 was
studied by applying differential scanning fluorometry tech-
niques (38, 39). Enzyme samples were dialyzed (Slide-A-Lyzer,
Pierce; 10,000 molecular weight cutoff) against 50 mM Tris-Cl,
0.1NaCl, pH 8 to remove glycerol and subsequentlymixedwith
SYPROOrange (Sigma-Aldrich) in a final volume of 20 $l. The
final concentrations of the enzyme and the dye were 2 $M and
10% (v/v), respectively; the DMSO stock solution of the dye
(5,000%) was prediluted in H2O, giving a 100% solution, from
which aliquots were used according to the experimental needs.
The samples weremixed in a 96-well plate suitable for real time
PCRmeasurements, centrifuged at 500 rpm for 30 s, and finally
sealed with heat-resistant membranes (Microseal B adhesive
sealer) to prevent evaporation. The enzyme melting experi-
ments were performed using a CFX96 real time PCR machine
(Bio-Rad) with the following settings: 2-min prewarming step
at 30 °C and subsequent gradient between 31 and 95 °C with
1 °C/min increments. SYPRO Orange fluorescence was moni-
tored using the filters provided with the machine: FAM (492
nm) for excitation and ROX (610 nm) for emission. Data were
exported as an Excel-based worksheet and further analyzed by
Igor Pro (Wavemetrics). Melting temperatures (Tm) were
obtained by plotting the first derivative d(AFU)/dT (whereAFU
represents arbitrary fluorescence units) of the raw data as a
function of temperature increase (40).
Effects of pH, DivalentMetal Ions, andDTT on EnzymeActiv-

ity and Stability—Effects of pH on enzymatic activity and sta-
bility were assessed in a broad range of pH values using several
buffers: sodium acetate (pH 3–5), sodium phosphate (pH 6–7),
Tris-Cl (pH 7–8.5), and CAPSO (pH 9–10), all at 50 mM con-
centration in the presence of 100 mM NaCl. For the investiga-
tion of the pH effect on the activity of the enzyme, &50 $g of
enzyme were assayed in a final volume of 1 ml at saturating
substrate concentration (20mML-Asn) applying theNessleriza-
tion method. The discontinuous method was preferred to the
NADH-dependent continuous assay because the different pH
values could influence the activity of the auxiliary glutamate
dehydrogenase enzyme, resulting in unforeseeable artifacts.
The stability of hASNase1 under various pH conditions was
studied by incubating the enzyme (at 0.1 mg/ml final concen-
tration) in several buffers for 12 h at 4 °C. Aliquots of these
mixtures were assayed for residual L-asparaginase activity by
Nesslerization using as standard buffer the one at which the
enzyme showed the highest activity based on the previous activ-

ity analysis. To study metal ion effects, purified hASNase1 (0.1
mg/ml)was preincubatedwith a final concentration of 1mM for
each of several divalent metal ions, EDTA, and DTT for 3 h at
4 °C. Subsequently, aliquots were tested for residual activity by
the Nesslerization method.

RESULTS

Expression and Purification of the hASNase1 Domain—Four
different C-terminal truncations (numbered 1, 2, 3, and 4; see
Fig. 2A) of full-length human lysophospholipase (gene code
ASPG; asparaginase homolog) were designed based on se-
quence alignments of the N-terminal putative L-asparaginase
domain and different procaryotic (E. coli, EcASNase1, and
Pyrococcus horikoshii, PhASNase1) and eucaryotic (Rattus nor-
vegicus, RnASNase1, and Saccharomyces cerevisiae, ScASNase1)
cytoplasmic L-asparaginases (Fig. 1). All four constructs were
tested for protein expression in E. coli and solubility under a
spectrum of different conditions (culture medium, E. coli
strain, isopropyl 1-thio-%-D-galactopyranoside concentration,
and temperature). Interestingly, truncation 3, which appears to
fit best to the bacterial cytoplasmic enzymes according to the
amino acid sequence comparison, was not soluble, and trials to
purify the enzyme under denaturation/renaturation conditions
(unfolding by up to 8Murea and refolding by dialysis) ultimately
resulted in a catalytically inactive protein. Similarly, trunca-
tions 1 and 2 failed to produce soluble, active hASNase1. In
contrast, truncation 4 (369 amino acid residues), containing 5
additional amino acids (VEERR) downstream of truncation 3,
produced the protein in soluble form (Fig. 2B), andmost impor-
tantly, the protein purified under native conditions exhibited
L-asparaginase activity.

However, when the protein purity was analyzed by SDS-
PAGE after the last gel filtration step (see “Experimental Pro-
cedures”), a prominent band with an apparent molecular mass
of &60 kDa and an estimated stoichiometric 1:1 ratio to the
hASNase1 band was constantly observed (Fig. 3). Multiple
attempts to remove this associated protein species by alter-
ing standard purification protocols were unsuccessful. This
prompted us to analyze this protein band bymass spectrometry
bywhich it was finally identified as the endogenousE. coli chap-
erone GroEL. Indeed, contamination by co-purified chaper-
ones can be a hurdle in recombinant protein expression and
purification setups (41). Although it has been described previ-
ously (42) that incubation of the crude cell extract with 10 mM
ATP at 37 °C and washing of the affinity column with an ATP-
containing buffer facilitate the removal ofGroEL, this approach
did not prove beneficial in our case. Moreover, attempts to use
an engineered E. coli strain (43) (a kind gift from Prof. Ulrich
Hartl’s laboratory, Max Planck Institute for Biochemistry,
Munich, Germany) carrying the GroEL/ES operon under an
arabinose-inducible promoter, which allows tuned regulation
of the expression levels of these chaperones, failed to produce
the hASNase1 protein (data not shown). Ultimately, we man-
aged to remove the co-purified chaperone by including in the
washing buffer the natural binding partner of this protein,
GroES, at &10-fold excess over GroEL (44). It appears reason-
able to assume that the presence of ATP-Mg2'-GroES weak-
ened the binding between GroEL and hASNase1, thus facilitat-
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ing their separation upon exhaustive washing (Fig. 3). It is
worth mentioning that the bound GroEL did not affect the
activity of hASNase1 because activity measurements on both
enzyme preparations (with and without bound GroEL) yielded
similar kinetic constants. We emphasize that all hASNase1
variants produced in this work were expressed at levels similar
to the wild-type enzyme and showed no aggregation or precip-
itation tendency at any purification step. GroEL contamination
was present during purification of all mutant enzymes as well.
Size exclusion chromatography experiments allowed us not

only to obtain a highly pure protein as evidenced by SDS-
PAGE analysis (Fig. 3) but also to gain insight into the oligo-
meric state of hASNase1. Strikingly, when we first analyzed
native hASNase1, we observed that the enzyme (!3 !M) was
running as a monomer (molecular mass, !40 kDa) on a Super-
dex 200 gel filtration column (Fig. 4C). As the shift between
oligomeric states of enzymes can be drastically influenced by
their substrates and/or other interacting partners (45, 46), we
decided to perform gel filtration analysis in the presence of the
substrate of hASNase1. Interestingly, with 20 mM L-Asn in the
running buffer, we witnessed a slightly shifted shoulder peak of
the previously observed chromatographic peak assigned to the
40-kDa hASNase1 monomer, indicative of a higher molecular
weight species, although the monomer remained the predomi-
nant form (Fig. 4D). This finding suggested that L-Asn could
trigger the association of monomeric hASNase1molecules and

consequently induce the formation of dimers and even tetra-
mers, which are the characteristic molecular species reported
for EcASNase1 (25) as we confirmed in the present study (Fig.
4B). However, at enzymatic assay conditions, hASNase1 (!0.5
!M) is expected to be monomeric because this concentration is
6-fold lower than the concentration of the eluted monomeric
protein shown in Fig. 4 (0.5 mg of enzyme loaded on the gel
filtration column eluted in a final volume of!4ml of buffer, i.e.
!3 !M final concentration of the enzyme).
The hASNase1 Enzyme Shows Non-Michaelis-Menten Ki-

netics for L-Asn Hydrolysis Similar to Its E. coli Homolog but
Lacks Lysophospholipase Activity—The N-terminal domain of
human60-kDa lysophospholipase, whichwehave designated as
hASNase1, shares 47% sequence identity with E. coli cytoplasmic
L-asparaginase (encoded by the ansA gene; EcASNase1). The
crystal structure of EcASNase1 has been reported recently (25),
shedding light on distinct structural features associated with
L-Asn binding to the catalytic site and to the site responsible for
allosteric regulation. Based on this structure, we modeled the
hASNase1 structure using the Phyre program. Fig. 5 shows the
active and the allosteric sites in the predicted hASNase1 struc-
ture overlaid by the homologous regions of EcASNase1. Resi-
dues critical for catalysis in the E. coli enzyme, such as Thr14,
Thr91, Asp92, and Lys163, overlay with high accuracy with those
of hASNase1, which has identical residues at these positions
(Thr19, Thr116, Asp117, and Lys188) (Fig. 5A). Importantly, resi-

FIGURE 1. Alignment of the amino acid sequences of hASNase1 (UniProt accession number Q86U10), R. norvegicus (UniProt accession number
O88202), E. coli (UniProt accession number P0A962), P. horikoshii (UniProt accession number O57797), and S. cerevisiae (UniProt accession number
P38986) L-asparaginases type I. The displayed sequence of hASNase1 corresponds to truncation 4, which showed the best expression pattern of the four
protein constructs produced in this work (see Fig. 2). Asterisks indicate the two threonine residues that are critical for L-asparaginase activity, and red arrows
indicate residues that are located close to the allosteric sites. The alignment was performed using ClustalW (67), and the graph was generated using JalView
(68). Blue shading indicates highly conserved amino acid residues.
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dues Thr14 and Thr91 of the bacterial enzyme are considered to
be the primary nucleophiles for the attack on the substrate L-as-
paragine (25). The presence of threonine residues at equivalent
positions in the human enzyme is in favor of the view that the
primary nucleophile in bacterial L-asparaginases (both cyto-
plasmic and periplasmic) is a threonine residue (47). This

prompted us to investigate this assumption for hASNase1 by
mutagenesis studies. Indeed, when point mutants T19A and
T116A of hASNase1 were assayed, no L-asparaginase activity
was detected (Table 1), thus indicating the critical catalytic role
of these threonine residues in hASNase1.
Steady-state kinetic characterization of wild-type hASNase1

using L-Asn as substrate (therewas no detectable L-glutaminase
activity) revealed that the enzyme did not follow Michaelis-
Menten kinetics. Instead, it exhibited a pronounced sigmoidal
kinetic behavior, which is a hallmark of allosteric enzymes. The
kinetic data were fitted using the Hill equation (Equation 1
under “Experimental Procedures”) from which we estimated a
Hill coefficient (nH) of 3.9 and an S0.5 value of 11.5 mM (Fig. 6).
The modeled structure of the allosteric site is shown in Fig. 5B
in direct comparison with that of EcASNase1. Significant dif-
ferences between the two allosteric sites are seen in two key
residues that directly interact with the substrate L-Asn: Glu266
and Ser327 in hASNase1 as opposed to Arg240 and Val302 in the
bacterial enzyme. Aiming at further characterization of the
allosteric sites of both enzymes, we generated a series of mu-
tants and expressed, purified, and tested them for catalytic
activity. Strikingly, hASNase1 tolerated none of the mutations
introduced in the predicted allosteric site as evidenced by the
total lack of activity of themutant enzymes (Table 1). Given the
high structural homology between hASNase1 and EcASNase1,
we reasoned that the mutation E266R could potentially lower
the S0.5 value of the human enzyme by mimicking the Arg240

FIGURE 2. A, schematic representation of the full-length 60-kDa human lysophospholipase (Met1–Val573). Shown are the four different truncations that were
generated and tested for protein solubility and L-asparaginase activity. Residues Leu352, Arg357, Ser364, and Arg369 indicate the last amino acid of the respective
truncations. Red labeling indicates truncation 4 of the hASNase1 domain, which showed the best solubility and activity. Downstream of the L-asparaginase
domain, the sequence region from His410 to Val573 indicates the putative ankyrin domains as also predicted in the rat homolog (23). B, SDS-PAGE analysis of all
four expressed truncations of hASNase1. Insoluble and soluble fractions are included for each preparation. The arrow indicates the fusion SUMO-hASNase1 of
truncation 4, which resulted in the production of soluble enzyme. The predicted molecular masses for each truncation as a fusion with SUMO are as follows:
truncation 1, 50.5 kDa; truncation 2, 51.2 kDa; truncation 3, 51.9 kDa; and truncation 4, 52.5 kDa. Lane M, molecular mass markers.

FIGURE 3. Purification of hASNase1. Lane 1, purified enzyme associated with
GroEL; lane 2, removal of GroEL by complexation with externally added GroES
in the Ni-NTA column; lane 3, washed GroEL fraction from DEAE anion
exchange purification step; lane 4, final purity of hASNase1; lane M, molecular
mass markers.
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site of the bacterial homolog. However, this mutation totally
inactivated hASNase1. Othermutations introduced around the
putative allosteric site of hASNase1, such as E266S, C299S,
T187S, and T187A, also abolished activity (Table 1). Unlike the
human enzyme, the E. coli enzyme tolerated mutations of its
allosteric site. Mutation R240E resulted in an !5-fold increase
of S0.5 and 2-fold increase of kcat while simultaneously lowering
the Hill coefficient nH from 3.55 to 1.9. The C273S mutation
increased even further the S0.5 value (7-fold with respect to wild
type), whereas the nH value slightly decreased (Fig. 6). All
kinetic data ofwild-type hASNase1 andEcASNase1 aswell as of
mutants generated in this work are summarized in Table 1.
Taken together, these results suggest that despite the high sim-
ilarity of sites predicted to be critical for their activities these
two enzymes display different degrees of tolerance toward
mutations of residues at these sites.
We additionally tested for potential hydrolysis of palmitoyl-

lysoPC and lysoPI by hASNase1 and EcASNase1. We chose
these two substrates because the rat 60-kDa lysophospholipase
has been reported to hydrolyze palmitoyl-lysoPC (23), whereas
lysoPI could serve as a substrate for the human homolog
(24). However, we were unable to detect any activity of either
hASNase1 orEcASNase1 using these two substrates under con-
ditionswhere the control enzyme phospholipaseA2 hydrolyzed
L-!-phosphatidylcholine. The rate of the fluorescence decrease
in the ADIFAB assay was the same for the blank (ADIFAB plus
substrate without enzyme) and the sample (ADIFAB plus sub-

FIGURE 5. A, modeled active site of hASNase1 overlaid by the active site of
EcASNase1. Red highlights amino acids that are critical for activity of bacterial
L-asparaginases: the catalytic triad formed by residues Thr91, Asp92, and Lys163

that ensure proper orientation of the substrate L-Asn (dark gray) and Thr14,
which is responsible for subsequent nucleophilic attack (23, 69). Blue high-
lights the respective amino acids of hASNase1: Thr116, Asp117, Lys188, and
Thr19. B, modeled allosteric site of hASNase1 (magenta residues) overlaid by
the EcASNase1 allosteric site (blue residues). Key differences in homologous
sites of the human enzyme are residues Glu266 versus Arg240 and Ser327 versus
Val302. Other residues of the allosteric sites of the two enzymes are highly
similar. Also shown is an L-Asn molecule (dark gray), which interacts with
allosteric site residues. The interactions between L-Asn and the human
enzyme were predicted based on the structure of the bacterial enzyme (Pro-
tein Data Bank code 2HIM).

TABLE 1
Kinetic data on wild-type and mutants of hASNase1 and EcASNase1
Steady-state kinetic analysis was performed by applying a continuous NADH-de-
pendent assay (30). Enzyme concentrations were !0.5 "M in a final volume of 1 ml
of 50 mM Tris-Cl, 100 mM NaCl, pH 8 at 37 °C; the tested substrate concentrations
covered the range of 0–10Km. Parameters were calculated from non-linear regres-
sion of a V/E versus "L-Asn# plot using the software SoftZymics (Igor Pro, Wavem-
etrics). ND, non-detectable; the limit of detection for the applied assays in the
present study is 0.5 "M of ammonia produced in a 1-ml reaction volume. Data are
shown as mean values $S.D. of triplicate measurements.

Enzyme kcat S0.5 nH
s%1 mM

Wild-type hASNase1 6.7 $ 0.2 11.5 $ 0.8 3.9 $ 0.2
hASNase1 T19A ND ND
hASNase1 T116A ND ND
hASNase1 E266R ND ND
hASNase1 E266S ND ND
hASNase1 T187A ND ND
hASNase1 T187S ND ND
hASNase1 C299S ND ND
Wild-type EcASNase1 7.4 $ 0.3 0.40 $ 0.05 3.5 $ 0.3
EcASNase1 R240E 14.5 $ 0.5 1.8 $ 0.2 1.9 $ 0.2
EcASNase1 C273S 16.8 $ 0.4 2.8 $ 0.3 2.7 $ 0.2

FIGURE 4. Size exclusion chromatography profiles upon separation using
Superdex 200 column (GE Healthcare). A, standard gel filtration marker
(Bio-Rad catalog number 151-1901). B, EcASNase1 chromatogram in 50 mM
Tris-Cl, 100 mM NaCl, pH 8. C, profile of hASNase1 in the absence of L-Asn.
Before sample loading, the column was equilibrated with 50 mM Tris-Cl, 100
mM NaCl, pH 8. D, hASNase1 in the presence of 20 mM L-Asn. The column was
equilibrated with 50 mM Tris-Cl, 100 mM NaCl, 20 mM L-Asn, pH 8. In each case
(B, C, and D), !0.5 mg of enzyme was loaded on the column. mAu, milli-
absorbance units.
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strate and enzyme) and accounted for !10 arbitrary fluores-
cence units/min (data available upon request). This back-
ground activity is in line with another study (31), which also
reported a constant slight fluorescence signal decrease in the
absence of enzyme. In conclusion, our results demonstrate that
the N-terminal domain of the 60-kDa full-length human lyso-
phospholipase can exist as a distinct folding unit that resembles
the bacterial-type I L-asparaginases, lacking the capacity to
hydrolyze substrates other than L-Asn.
Fluorescence Labeling of hASNase1—Cysteine labeling al-

lowed us to investigate the presence of an L-Asn binding site
distinct from the catalytic site in the monomer. This additional
binding site could play the role of an allosteric site of hASNase1,
and its existence is supported not only by the sigmoidal kinetic
behavior of enzyme described in the previous paragraph but
also by our results obtained from substrate titration to a fluo-
rescence-labeled, catalytically inactive version of the protein.

Binding of the substrate L-Asn to the putative allosteric site was
monitored by fluorescence signal changes of the Atto dye-la-
beled enzyme. The dye was covalently attached to cysteine res-
idue Cys299, which according to the structural model built on
the E. coli enzyme directly interacts with L-Asn bound to the
allosteric site (Fig. 5B). The labeling of hASNase1 was con-
firmed by SDS-PAGE analysis as shown in Fig. 7 based on the
observation that labeled proteins migrate more slowly than the
unlabeled species (34). Fig. 8 shows a pronounced fluores-
cence signal decrease upon incubation of the catalytically inac-
tiveT19Amutant of hASNase1with L-Asn in the concentration
range of 0.1–40 mM. We did not label the wild-type enzyme
because upon titration of L-Asn notably at high concentrations
it would hydrolyze the substrate without allowing us to solely
evaluate binding phenomena (the T19A mutant is assumed to
maintain intact its allosteric site similarly to the wild-type
enzyme). From the resulting binding curve, we estimated a Kd

FIGURE 6. L-Asparaginase activities as a function of substrate concentrations of hASNase1 and EcASNase1. A, V/E versus [L-Asn] plot for wild-type hASNase1.
Steady-state turnover rates (s"1) are expressed as a function of the substrate concentration. Data points are represented as means # S.D. of triplicate sample
measurements. B, V/E versus [L-Asn] plots for C273S (E) and R240E (Œ) mutants and wild type (F) EcASNase1. The inset shows a zoomed frame of the plot at low
substrate concentrations for wild-type EcASNase1. Data points are mean values #S.D. of triplicate measurements. All steady-state kinetic curves resulted from
non-linear regression analysis using the Hill equation (Equation 1 under“ExperimentalProcedures”) inSoftZymicssoftware(IgorPro,Wavemetrics).Error barsrepresentS.D.
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of!1mM, which is about 10-fold lower than the S0.5 (!11mM).
Unlike T19A, the C299S mutant, which served as a negative
control for labeling with the Atto dye, yielding a constant back-
ground fluorescence (due to labeling of other cysteines),
showed no fluorescence signal changes upon incubation with
L-Asn.This indicates that signal changes observed forT19Acan
be attributed to direct interaction of the substrate L-Asn with
either Cys299 or other neighboring residues located within the
allosteric cavity. Conversely, we cannot exclude potential inter-
actions between L-Asn and the active site residues leading to
conformational alterations that are transmitted to the allosteric
site and reflected by fluorescence signal changes. Incubation of
labeled enzyme with aspartate induced no fluorescence signal
change (data not shown).
Thermodynamic Characterization of hASNase1 and

EcASNase1—The free energy difference "GH2O of folded and
unfolded states, which is a measure of protein stability, was

determined for both enzymes from urea denaturation experi-
ments at different temperatures (37). Non-linear regression
analysis was applied to the experimentally obtained"GH2O val-
ues using the Gibbs-Helmholtz equation as a function of tem-
perature, which allows the calculation of the "Cp parameter
(48). Fig. 9 shows the stability curves for both enzymes studied
in this work for direct comparison of their characteristic fea-
tures under identical conditions. At 25 °C, the bacterial enzyme
has a 2-fold higher "GH2O in comparison with the human
enzyme, although this difference appears to decline at higher
temperatures (35 and 40 °C) as has also been observed in other
proteins (49). Table 2 summarizes thermodynamic parameters
obtained for hASNase1 and EcASNase1. Interestingly, the pre-
dicted "Cp values are considerably different for the two
enzymes, possibly pointing to variations in the surface area that
is exposed upon denaturation (50) and distinct mechanisms of
enthalpy and entropy changes occurring upon unfolding (51).
The two enzymes exhibited similar melting temperatures Tm
with hASNase1 showing higher "#m and "Sm values, indicat-
ing higher enthalpy changes upon unfolding and a higher
degree of disorder as compared with the E. coli enzyme (52).
Differential Scanning Fluorometry of hASNase1—To analyze

whether allosteric and active site mutations influenced the
thermal stability of hASNase1, several of these hASNase1
mutantswere studied by differential scanning fluorometry. The
melting curves were all monophasic (Fig. 10). Themelting tem-

FIGURE 9. Temperature dependence of free energy change during
unfolding of human and bacterial ASNase1. Shown is a plot of "GH2O as
obtained at various temperatures versus the respective temperatures for
wild-type hASNase1 (Œ) and EcASNase1 (F). Data were fitted to the Gibbs-
Helmholtz equation (Equation 3 in text) after determining Tm and "Hm by
thermal denaturation experiments (see “Experimental Procedures”). The
standard deviation for "GH2O (free energy change at zero concentration of
urea), evaluated from three independent determinations on the wild-type
enzymes at 25 °C, was found to be 0.3 kcal/mol.

TABLE 2
Thermodynamic parameters for wild-type hASNase1 and EcASNase1
The "Cp values were calculated using the Gibbs-Helmholtz equation (see text)
upon plotting the experimentally determined "G(T), Tm, "Sm, and "Hm values.
"Sm, Tm, and "Hm were determined from linear regression analysis of the thermal
denaturation of either enzyme. Parameters are represented asmeans$ S.D. of three
measurements.

Enzyme !Cp Tm !Hm !Sm
kcal/mol % K °C kcal/mol cal/mol/K

hASNase1 5.47 $ 0.20 58.40 $ 0.60 104.2 $ 1.5 314 $ 2
EcASNase1 3.10 $ 0.15 59.50 $ 0.45 89.7 $ 0.9 270 $ 1.5

FIGURE 7. SDS-PAGE analysis of unlabeled and labeled T19A and C299S
mutants. Lane 1, unlabeled T19A; lane 2, labeled T19A; lane 3, unlabeled
C299S; lane 4, labeled C299S; lane M, molecular mass markers. The electro-
phoretic pattern clearly shows the migration difference between the labeled
and unlabeled enzyme species.

FIGURE 8. Plot of fluorescence signal change of Atto 465-labeled T19A
and C299S hASNase1 mutants as a function of L-Asn concentration.
Shown are the fluorescence signal decreases in the case of T19A indicating an
induced conformational change upon binding of L-Asn to either the allosteric
or the active site. In contrast, the C299S mutant, which is not labeled at the
putative allosteric site, showed no signal changes upon L-Asn titration; con-
stant background fluorescence results from labeling of other cysteines. The
saturation binding curve for the T19A mutant was fitted to a hyperbolic func-
tion (Equation 2 in text) as described under “Experimental Procedures.” In the
case of C299S, where no fluorescence change was observed, the points were
fitted to a straight line. Error bars represent S.D. AFU, arbitrary fluorescence
units.
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perature (Tm) values are summarized in Table 3. Our results
suggest that three point mutations (T19A, T187A, and T187S)
had a significant stabilizing effect on the enzyme. In contrast,
mutations T116A andC299S considerably lowered protein sta-
bility as compared with wild type, whereas the two mutations
(E266S and E266R) introduced at the allosteric site Glu266 had
almost no effect on the stability of hASNase1.
Dependence of hASNase1 Activity on pH and Metal Ions—

The optimum activity of hASNase1 was investigated in the pH
range from 2.5 to 10. Fig. 11A shows that the enzyme exhibited
the highest activity in a relatively narrow alkaline pH range as
evidenced by a sharp increase from pH 7 to 8 followed by an
immediate decline from pH 8.5 to 10. In addition, the pH
dependence for stability of the enzyme showed a maximum
peak at pH 8 (Fig. 11B). These results suggest that protonation
of certain residues that are involved in catalysis might partially
impair the activity of hASNase1. Furthermore, certain divalent
metal ions, such as Cd2! and Cu2! at 1 mM, totally inhibited
hASNase1 activity, whereas DTT, Co2!, Ca2!, Ni2!, Mg2!,
Mn2!, Fe2!, and Li! only weakly influenced the hydrolysis of
L-Asn. Such metal-selective inhibition by Cd2! and Cu2! pos-
sibly indicates an interaction between these metal ions and a

thiol group pivotal for activity (53). A candidate might be the
Cys299 residue, which is located at the allosteric site of the
enzyme and plays an important role in L-Asn binding. In addi-
tion, EDTA at concentrations up to 1 mM had no noticeable
negative effect on the activity of hASNase1 (Table 4).

DISCUSSION

The present study focuses on the biochemical analysis of
the N-terminal domain of a human 60-kDa protein designated
as lysophospholipase. The full-length version of this two-do-

FIGURE 10. Melting curves for wild-type and mutant hASNase1 as deter-
mined by differential scanning fluorometry. Melting temperatures were
calculated by plotting the first derivative d(AFU)/dT (where AFU represents
arbitrary fluorescence units) of the raw data as a function of the temperature
range tested (see “Experimental Procedures”).

FIGURE 11. Effect of pH on hASNase1 activity (A) and stability (B). Buffers
used were: sodium acetate (pH 3–5), sodium phosphate (pH 6 –7), Tris-Cl (pH
7– 8.5), and CAPSO (pH 9 –10), all at 50 mM concentration in 100 mM NaCl.
Enzymatic activities were determined as described under “Experimental Pro-
cedures” applying the Nesslerization assay for determining ammonia gener-
ated by L-asparagine hydrolysis. Error bars represent S.D.

TABLE 3
Melting temperatures of wild-type and mutant hASNase1 as deter-
mined by differential scanning fluorometry
Samples of 2 !M highly purified enzyme solution were mixed with a 10% (v/v) final
concentration of SYPROOrange in a final volumeof 20!l in a 96-well plate. Enzyme
melting experiments were performed using a CFX96 RT-PCR machine (Bio-Rad)
and the following settings: 2-min prewarming step at 30 °C and subsequent gradient
between 31 and 95 °C with 1 °C/min increments. SYPRO Orange fluorescence was
monitored using FAM excitation (492 nm) and ROX emission (610 nm) filters.
Melting temperatures (Tm) were calculated by plotting the first derivative
d(AFU)/dT (where AFU represents arbitrary fluorescence units) of the raw data as a
function of temperature increase (40).

Enzyme Tm

°C
Wild-type hASNase1 51.3
T19A 58.1
T116A 41
C299S 40
E266S 52.5
E266R 51
T187A 57.9
T187S 57.6

TABLE 4
Effect of different salts, EDTA, and DTT on the activity of hASNase1
Purified hASNase1 (0.1 mg/ml) in 1ml was preincubated with a final concentration
of 1 mM each of several divalent metal ions, EDTA, and DTT for 3 h at 4 °C. Subse-
quently, aliquots were tested for residual L-asparaginase activity by the Nessleriza-
tionmethod (29). Data are shown asmean values"S.D. of triplicatemeasurements.

Compound (1 mM) Remaining activity
%

EDTA 100 " 0.6
DTT 64 " 4.1
NiSO4 90 " 4.0
CoCl2 68 " 4.0
CaCl2 84 " 3.5
MgCl2 89 " 4.0
CdCl2 0
MnSO4 89 " 1.8
Fe2SO4 73 " 2.8
LiCl 64 " 3.8
CuCl2 0
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main protein has been only poorly characterized in one report
(24). Our primarymotivation to produce and functionally char-
acterize the N-terminal domain of this protein, which structur-
ally and according to its catalytic in vitro properties signifi-
cantly resembles E. coli cytoplasmic L-asparaginase (ansA;
EcASNase1), originated from our previous work on human
enzymes that possess L-asparaginase activity (10, 19, 21). The
discovery, molecular engineering, and in vitro evolution of cat-
alytically efficient human L-asparaginases are thought to lay the
basis for the replacement of bacterial L-asparaginases presently
used as antileukemia therapeutics despite adverse side effects
mainly attributed to their bacterial origins (54).
An early study on the rat 60-kDa lysophospholipase (23)

assigned three distinct activities to this enzyme acting as
lysophospholipase, L-asparaginase, and acetylhydrolase on the
platelet-activating factor. Several years later, a report on the
human 60-kDa lysophospholipase (24) revealed a specific role
of this enzyme as an interacting partner of the serum- and glu-
cocorticoid-induced serine/threonine protein kinase Sgk1, an
enzyme involved in various cell proliferation pathways. In con-
trast to its rat homolog, the human enzyme was not reported to
bear L-asparaginase activity (24). However, in both these stud-
ies, the distinct enzymatic activities were determined only qual-
itatively using lysates from cells overexpressing the respective
genes rather than purified enzyme preparations.
Here, we show that the N-terminal L-asparaginase domain

(residues 1–369) of the 573-residue human protein, that we
termed hASNase1, can be produced in soluble form in E. coli.
This protein showed L-asparaginase activity with a maximum
catalytic rate of about 7 s!1, which is very similar to that of
EcASNase1, implying that this N-terminal domain forms a sta-
ble and functional folding unit in the absence of the C-terminal
putative ankyrin repeat domain. Kinetic and mutational char-
acterization of hASNase1 revealed strong positive allosteric
modulation in the velocity versus substrate plot similar to its
E. coli homolog. To validate our experimental strategy for char-
acterizing this human counterpart of the cytosolic E. coli L-as-
paraginase, we also recombinantly produced the bacterial pro-
tein to directly compare the two enzymes under identical assay
conditions. Our kinetic data obtained on the bacterial enzyme
are consistent with a previous study that centered on its struc-
tural analysis and allosteric regulation (25).
Given the pronounced sigmoidal kinetic behavior that we

observed in steady-state kinetics of L-asparagine hydrolysis, we
hypothesized that hASNase1 possesses an allosteric site that
could act as “sensor” for the presence of substrate. Our dye
labeling approach targeting the Cys299 residue indicated fluo-
rescence signal changes upon binding of L-Asn, thus strength-
ening the idea of the existence of such an allosteric site that can
be regulated by the substrate L-Asn. In the absence of informa-
tion on the three-dimensional structure of hASNase1, which
could provide more detailed insight into the catalytic mecha-
nism and allosteric regulation of the enzyme, we referred to a
structural homology-model based on the EcASNase1 crystal
structure, which allowed us to define the active site and an
allosteric site of the human enzyme. The S0.5 value of 11.5 mM
determined for hASNase1 is about 10-fold higher than that
reported for the E. coli enzyme, raising questions about the

physiological role of the full-length protein and its N-terminal
domain displaying L-asparaginase activity as shown in this
work. The relatively high S0.5 value determined for the human
enzyme falls well within the range of free concentrations of
intracellular amino acids ("10 mM), including L-Asn, reported
for mammalian cells (55, 56), thus making the enzyme operate
efficiently, particularly at elevated substrate concentrations.
The homo-oligomeric EcASNase1 displays sigmoidal kinet-

ics, which can be explained by positive cooperativity induced by
the substrate L-Asn. In contrast, hASNase1, which shows non-
Michaelis-Menten kinetics similar to its E. coli homolog, is
monomeric under the conditions of activity measurements. In
fact, a number of monomeric enzymes exhibiting allosteric
behavior have been reported of which the most thoroughly
characterized is human glucokinase (57, 58). However, glucoki-
nase (also called hexokinase IV), unlike L-asparaginase, is a two-
substrate (ATP plus glucose) enzyme and displays a moderate
degree of allostery (59). However, monomeric enzymes with
single binding sites, like hASNase1, can also show allostery (60).
Two basic models have been put forward aiming at the mech-
anistic explanation of monomeric allostery: the mnemonic
model (61) and the ligand-induced slow transition model (62).
Bothmodels assume the existence of two different enzyme con-
formations that are characterized by distinct affinities for the
substrate (low and high affinity states). Depending on the sub-
strate concentration, certain conformational changes may
occur, thereby perturbing the equilibrium of the two states in
favor of the high affinity state and an increased catalytic activity.
Based on the observed sigmoidal kinetic behavior and the
monomeric state of hASNase1, it appears plausible to assume
that this is another example of a monomeric enzyme exhibiting
positive allosteric regulation. Importantly, given the fact that
L-Asn plays a dual role of being both substrate and regulator of
hASNase1, L-Asn can be considered as a homotropic allosteric
effector of this enzyme, adding to the steadily growing number
of allosterically regulated proteins (63).
The role of the putative ankyrin repeat structure located in

theC-terminal part of the full-length protein remains unknown
at present. In numerous other proteins, ankyrin repeats were
shown to mediate protein-protein interactions, and therefore,
they may play crucial roles in cellular signaling events (64–66).
The study of the kinetics of the full-length 60-kDa human lyso-
phospholipase could provide information on the potential
influence of the ankyrin repeat domain on the L-asparaginase
activity predicted to reside in theN-terminal part. On the other
hand, when we tested palmitoyl-lysoPC and lysoPI as potential
substrates for hASNase1, we detected no lipase activity. Our
biochemical data clearly support the view that the N-terminal
domain bears L-asparaginase activity that exhibits positive
allosteric regulation by the substrate L-Asn. A particular char-
acteristic of hASNase1 is its monomeric state in conjunction
with its pronounced sigmoidal steady-state kinetics. We would
like to emphasize that the distinct enzymatic activities assigned
to rat and human 60-kDa lysophospholipases warrant further
analyses at the cellular level to elucidate the physiological role
of these two-domain proteins. Our studies on L-asparaginase
activity inherent to the N-terminal domain of this 60-kDa pro-
tein expands the basis of our work aiming at the identification
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andmolecular engineering of enzymes of human origin (10, 21)
that might become suitable for replacing bacterial enzymes as
approved therapeutics in the treatment of leukemias.
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Supplementary Table (Primers used in this study)

FW hASNase1: 5’-GGAATTCCATATGGCGCGCGCGGTGGGGCCCG-3’
RV truncation 4: 5’-CGCGGATCCTTACCGGCGCTCTTCCACCGAGGG-3’
RV truncation 3: 5’-CGCGGATCCTTACGAGGGTGGCGTCATCTCCCC-3’
RV truncation 2: 5’-CGCGGATCCTTACCGAAGGTCCTTGGTCAGCAGC-3’
RV truncation 1: 5’-CGCGGATCCTTACAGCAGCTCCTTCCTGACATC-3’
FW BamHI elim.: 5’-CTCTACCCTGGCATCCCTGCCGCC-3’
RV BamHI elim.: 5’-GGCGGCAGGGATGCCAGGGTAGAG-3’
FW T19A: 5’-CTACACCGGCGGCGCCATTGGCATGCGG-3’
RV T19A: 5’-CCGCATGCCAATGGCGCCGCCGGTGTAG-3’
FW T116A: 5’-GTGGTCATCCACGGCGCCGACACCATGGCC-3’
RV T116A: 5’-GGCCATGGTGTCGGCGCCGTGGATGACCAC-3’
FW T187A/S: 5’-GGGGCAACCGGGCAKCCAAGGTAGACGCTCG-3’  (where K: either T or 
G each with 50 % probability)
RV T187A/S: 5’-CGAGCGTCTACCTTGGMTGCCCGGTTGCCCC-3’ (where M: either A or C 
each with 50 % probability)
FW E266R/S: 5’-GGGCGTGGTCATGMGCACCTTCGGTTCAGGG-3’ (where M: either A or 
C each with 50 % probability)
RV E266R/S: 5’-CCCTGAACCGAAGGTGCKCATGACCACGCCC-3’ (where K: either T or G 
each with 50 % probability)
FW C299S: 5’-CAACTGTACCCACAGCCTCCAGGGGGCTG-3’
RV C299S: 5’-CAGCCCCCTGGAGGCTGTGGGTACAGTTG-3’
FW EcASNase1: 5’-GGAATTCCATATGCAAAAGAAATCAATTTACGTTGC-3’
RV EcASNase1: 5’-CGCGGATCCTTAATCATCCGGCGTCAGTTCGCC-3’
FW EcASNase1 R240E: 5’-GAAAGCATTGATTCTGGAATCCTATGGCGTGGG -3’
RV EcASNase1 R240E: 5’-CCCACGCCATAGGATTCCAGAATCAATGCTTTC -3’
FW EcASNase1 C273S: 5’-GGTCAACCTGACACAAAGCATGTCCGGTAAAG -3’
RV EcASNase1 C273S: 5’-CTTTACCGGACATGCTTTGTGTCAGGTTGACC -3’
FW GroES: 5’-GGAATTCCATATGAATATTCGTCCATTGCATGATCG-3’
RV GroES: 5’-CGCGGATCCTTACGCTTCAACAATTGCCAGAATG-3’
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ABSTRACT: The present study focuses on the formation of
microcapsules containing catalytically active L-asparaginase (L-
ASNase), a protein drug of high value in antileukemic therapy.
We make use of the layer-by-layer (LbL) technique to coat
protein-loaded calcium carbonate (CaCO3) particles with two
or three poly dextran/poly-L-arginine-based bilayers. To achieve high loading efficiency, the CaCO3 template was generated by
coprecipitation with the enzyme. After assembly of the polymer shell, the CaCO3 core material was dissolved under mild
conditions by dialysis against 20 mM EDTA. Biochemical stability of the encapsulated L-asparaginase was analyzed by treating the
capsules with the proteases trypsin and thrombin, which are known to degrade and inactivate the enzyme during leukemia
treatment, allowing us to test for resistance against proteolysis by physiologically relevant proteases through measurement of
residual L-asparaginase activities. In addition, the thermal stability, the stability at the physiological temperature, and the long-
term storage stability of the encapsulated enzyme were investigated. We show that encapsulation of L-asparaginase remarkably
improves both proteolytic resistance and thermal inactivation at 37 °C, which could considerably prolong the enzyme’s in vivo
half-life during application in acute lymphoblastic leukemia (ALL). Importantly, the use of low EDTA concentrations for the
dissolution of CaCO3 by dialysis could be a general approach in cases where the activity of sensitive biomacromolecules is
inhibited, or even irreversibly damaged, when standard protocols for fabrication of such LbL microcapsules are used.
Encapsulated and free enzyme showed similar efficacies in driving leukemic cells to apoptosis.

■ INTRODUCTION
The catabolic enzyme L-asparaginase (L-asparagine amidohy-
drolase, EC 3.5.1.1; L-ASNase) catalyzes the hydrolysis of the
amino acid asparagine to aspartic acid and ammonia. It is
present in organisms ranging from bacteria to mammals,
though its activity rarely is essential for cell viability. In humans,
beyond its metabolic role, L-ASNase serves as a therapeutic
enzyme that is used in combination with other drugs, such as
vincristine and prednisone for the treatment primarily of acute
lymphoblastic leukemia (ALL) and secondarily of non-Hodgkin
lymphoma.1 ALL is the most common childhood blood cancer,
with a long-term survival rate around 80%.2,3 The antiprolif-
erating properties of L-ASNase were first identified and
characterized in human clinical trials in the 1970s.4−7 Since
then, this enzyme has become a milestone in the treatment of
ALL. The principle of its effect as a protein drug relies on the
fact that cancerous lymphoblasts cannot synthesize sufficient
levels of asparagine due to down-regulation of their asparagine
synthetase.8,9 Therefore, contrary to normal cells, asparagine is
an essential amino acid for malignant cells whose survival is
exclusively dependent on the availability of extracellular
asparagine from the bloodstream. Intravenously or intra-
muscularly administered L-ASNase depletes the available free

asparagine from the extracellular fluid,10 resulting in protein
and nucleic acid synthesis inhibition, which ultimately leads to
cell apoptosis.11

Bacterial L-ASNase is the only nonhuman enzyme that has
been approved by the American Food and Drug Administration
(FDA) for treatment of ALL.12 The isoforms that are currently
used are recombinantly produced proteins derived from
Escherichia coli and Erwinia chrysanthemi L-ASNases. Many
severe toxic side effects have been attributed to the bacterial
origins of these L-ASNases, the most important one being
immunogenicity; others include hepatic dysfunctions, pancrea-
titis, central nervous system abnormalities, anorexia, hyper-
glycemia, thrombosis, and quite frequently, lethal hyper-
sensitivity reactions.13−15 Certain side effects are thought to
be caused by the intrinsic glutaminase activity of bacterial L-
ASNases, influencing both the glutamine and glutamic acid
levels.16 Glutamine is the major transport form of amino
nitrogen in blood, and glutamic acid has a notable impact on
the central nervous system, since it plays a key role as a
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neurotransmitter. However, the major limitation of L-ASNase
used as an anticancer agent is related to the so-called “silent
inactivation” of the enzyme.17 This inactivation arises from the
interaction with specific antibodies which are generated upon
recognition of the enzyme as antigen by the patient’s immune
system, and this is usually not accompanied by any clinical
symptoms of hypersensitivity.18,19 This inactivation of L-
ASNase, which manifests itself in a blood serum half-life of
only about 24 h, necessitates continuous administration and
progressively higher doses of the therapeutic enzyme.19 It has
also been shown recently20 that, apart from silent inactivation,
two highly specific lysosomal proteases degrade L-ASNase and
therefore are coresponsible for the clearance of the enzyme.
The search for biochemical strategies to increase the half-life

of the enzyme has prompted considerable efforts to enhance
the stability of L-ASNase, by protecting it through surface
modifications and packaging into nanocapsules21 and nano-
spheres.22 Encapsulation potentially prevents exposure of the
enzyme to the immune system. Furthermore, the enzyme
would be protected from degradation by proteases resulting in
extended serum half-life. A promising example for success in
such efforts was the development of the FDA-approved
polyethyleneglycol-modified (PEGylated) form of E. coli L-
ASNase, which diminished the immunogenicity, and raised the
in vivo half-life of the enzyme considerably.19,23−25 Another
study showed that polysialylation of the enzyme26 gradually
reduced the antigenicity of the enzyme depending on the
degree of lysine side-chain modification by polysialic acid,
whereas no immune response was elicited against the
conjugated agent. The most recent advance toward improving
the therapeutic potential of L-ASNase relies on the use of intact
erythrocytes27 as carriers of the therapeutic enzyme. Although
the first preliminary clinical results are quite promising, the
whole process is rather time-consuming, complex, and
expensive, requiring patient-specific strategies of personalized
medicine.
Herein, we report on a novel approach for encapsulation of

asparaginase using glutaminase-free Saccharomyces cerevisiae
cytoplasmic L-asparaginase I (ScASNaseI) as model enzyme.
We capitalize on the use of the layer-by-layer (LbL) method of
microcapsule formation.28−32 This technique allows biomole-
cules to be efficiently adsorbed onto a colloidal core particle,
which serves as template for the consecutive adsorption of
several layers of oppositely charged polymers. The last step of
capsule formation includes the dissolution of the template
material, which ultimately gives rise to hollow capsules that
contain the initially adsorbed biomolecule. The polymers used
for therapeutic proteins ideally are biocompatible. Numerous
examples of successful encapsulation of proteins,33−35 poly-
mers,36 and nucleic acids37 using this technique have been
reported.
In the present study, the encapsulation of L-asparaginase was

performed using calcium carbonate particles as templates for
protein adsorption, which subsequently were coated with
cationic poly-L-arginine and anionic dextran sulfate layers.32

The capsules were then treated with EDTA, resulting in the
removal of CaCO3 and formation of the final polyelectrolyte
capsules. As L-asparaginase is a protein drug with considerable
interest for further improvement of its use in blood cancer
therapy, we aimed to investigate whether biocompatible
encapsulation could be applied to the packaging of this enzyme
in order to enhance its biochemical stability and ultimately
prolong its ability to maintain catalytic activity in an in vivo

situation. We chose as model enzyme the yeast L-asparaginase
ScASNaseI, which is a glutaminase-free L-asparaginase with
promising catalytic properties. In cell culture experiments,
encapsulated and free enzyme displayed similar potency in
inducing apoptotic cell death. Thus, our work suggests that
efficient encapsulation of therapeutic proteins, in combination
with successful enzyme engineering, could set the basis for
novel ways for alternative treatment of blood cancers. This view
is supported by recent reports on advances in encapsulation of
enzymes using various types of polymers38,39 for medical
applications of nanocontainers as carriers of bioactive
molecules.40,41

■ MATERIALS AND METHODS
Materials. Ethylenediamine-tetraacetic acid disodium salt (EDTA),

calcium chloride (CaCl2), sodium carbonate (Na2CO3), dextran
sulfate sodium salt (Mw ∼ 10 kDa), poly-L-arginine hydrochloride
(Mw > 70 kDa), yeast extract, peptone from casein, NaCl, and
Nessler’s reagent were purchased from Sigma-Aldrich-Fluka (St. Louis,
MO). Dialysis membranes and Coomassie Brilliant Blue (Bradford)
reagent were from ROTH (Karlsruhe, Germany). Oligonucleotides
were purchased from IBA GmbH (Goettingen, Germany). Restriction
enzymes, T4 DNA ligase and Trypsin Ultra isolated from bovine
pancreas were obtained from New England Biolabs (Ipswich, MA).
Thrombin from bovine plasma was from Serva (Heidelberg,
Germany). KAPA HiFi Polymerase and all PCR reagents were
purchased from PeqLab (Erlangen, Germany). Gel extraction and
PCR purification kit as well as nickel agarose for protein purification
were purchased from Macherey Nagel (Düren, Germany). Plasmid
purification kit was from Fermentas (Thermo Fisher Scientific,
Germany). Genomic DNA preparation kit was obtained from Qiagen
(Hilden, Germany). RPMI 1640 cell culture medium was from PAA
(Cölbe, Germany) and WST-1 proliferation kit was purchased from
Roche (Mannheim, Germany).

Cloning, Expression and Purification of ScASNaseI, EcASNa-
seII, and eGFP-ScASNaseI Fusion Protein. The preparation of
ScASNaseI, EcASNaseII, and eGFP-ScASNaseI fusion protein was
done as described in the Supporting Information.

Preparation of ScASNaseI-Loaded Calcium Carbonate
Particles. CaCO3 microparticles were prepared by mixing equal
molar amounts of Na2CO3 and CaCl2 under stirring at room
temperature at working concentrations of 0.15 M each dissolved in
ddH2O. For the loading of protein, the coprecipitation approach was
followed. To obtain calcium carbonate cores loaded with ScASNaseI,
we added 2 mL of protein solution (1.5 mg/mL in 50 mM Na2HPO4,
0.5 M NaCl, pH 7.5) to 2 mL of Na2CO3 prior to mixing with 2 mL of
CaCl2. Following mixing (for 60 s at 1000 rpm) after addition of
CaCl2 and the formation of CaCO3 microparticles, the enzyme was
entrapped in the porous structure of the templates. Subsequently, the
particles were spun down (at 400g for 5 min) and washed three times
with 50 mM Na2HPO4, 0.5 M NaCl, pH 7.5. The number of formed
CaCO3 particles was determined by using a hemocytometer (Bright-
Line).

To obtain calcium carbonate particles loaded with eGFP-
ScASNasel, we used the same protocol as mentioned above with
minor changes, that is, 1 mL (0.8 mg/mL) of eGFP-labeled protein
was added to 2 mL of CaCl2 prior to mixing with 2 mL of Na2CO3.
Then the mixture was stirred for 1 min at 1000 rpm after adding of
Na2CO3.

Determination of Protein Loading Efficiency in Calcium
Carbonate Particles. To evaluate the loading efficiency of
ScASNaseI after the precipitation reaction, the formed CaCO3
particles were centrifuged, washed, and counted. The amount of the
enzyme present in the supernatant after coprecipitation, as well as after
each washing step, was determined spectrophotometrically by the dye-
binding method according to Bradford42 using BSA fraction V as
protein standard. The loading efficiency is expressed as amount of
enzyme per CaCO3 particle. The encapsulation efficiency was similarly
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estimated by subtracting the loss of protein after centrifugation and
washing steps from the total enzyme amount initially used for
coprecipitation.
Formation of Hollow Multilayer Polyelectrolyte Micro-

capsules. The layer-by-layer (LbL) technique was applied in order
to prepare multilayer polyelectrolyte microcapsules. Briefly, the
protein-loaded CaCO3 particles were first suspended in 1 mL of 1
mg/mL dextran sulfate dissolved in 0.5 M NaCl, pH 6.5 (adjusted with
HCl/NaOH), and the sample was shaken at 1200 rpm at 25 °C for 20
min. After the attachment of the first polyelectrolyte layer, the particles
were centrifuged at 400g for 5 min, washed 3 times with washing
buffer (50 mM Na2HPO4, 0.5 M NaCl, pH 7.5), and then dispersed in
a solution containing 1 mg/mL poly-L-arginine. In the present work,
overall 2 or 3 polyelectrolyte bilayers were incorporated. The fractions
after each washing step were collected to determine the loss of protein.
To obtain hollow multilayer polyelectrolyte microcapsules loaded with
functional L-asparaginase, we modified the widely used standard
protocol by dissolving the template material by dialysis under mild
conditions, rather than by direct addition of the calcium-chelating
agent EDTA, as outlined in Scheme 1. To this end, the initial batch

preparation was divided into smaller volumes which were dialyzed
overnight at 4 °C (volume ratio 1:1000) against dialysis buffer (50
mM Na2HPO4, 0.5 M NaCl, 20 mM EDTA, pH 6.5). Following this
protocol, we managed to dissolve the CaCO3 cores resulting in the
formation of microcapsules containing catalytically active ScASNaseI.
Zeta Potential Measurements. The zeta (Z) potential of the

microparticles was measured before adsorbing the first layer to the
CaCO3 cores, and then after each polyelectrolyte adsorption step, in
order to determine the surface charge. The measurements were
performed on a Zetasizer Nano Series analyzer (Malvern). Samples
were prepared by dispersing 50 μL aliquots of coated microparticles in
1 mL of ddH2O. Zeta potential values were determined according to
the manufacturer’s instructions; measurements on each sample were
repeated three times.
Light Microscopy. The formation of CaCO3 particles and of the

final microcapsules was followed by light microscopy. Therefore,
aliquots of proper dilutions of the batch preparation were placed on a
cover glass, and particles were analyzed for spherical homogeneity
using an Olympus SZX12 stereo microscope with the following
settings: DFPLFL 1.6X PF objective and 144× magnification using a
10× eyepiece.
Confocal Laser-Scanning Fluorescence Microscopy (CLSM).

Confocal micrographs were recorded with a Leica TCS SP confocal
scanning microscope (Leica, Germany) in the inverted microscope
mode, using a 100× oil immersion objective with the numerical
aperture of 1.4. The excitation wavelength was 488 nm for eGFP-
labeled fusion protein.
Scanning Electron Microscopy (SEM). Scanning electron

microscopy images of the capsules filled with active ScASNaseI were
taken on samples prepared as follows: capsules in suspension were
dropped on silica wafer and were left to dry at room temperature. The
wafer was then immobilized on an aluminum stage by using an
intermediate carbon layer. Finally, the sample was sputtered with gold
film, and was analyzed using a Philips XL30 at 3 kV.

L-Asparaginase Activity Assay. The enzymatic activity of
ScASNaseI was determined by the Nesslerization method detecting

ammonia, as described elsewhere.43 Briefly, the encapsulated enzyme
was incubated with the substrate L-asparagine in 50 mM Na2HPO4, 0.5
M NaCl, pH 7.5, under saturation conditions (5 mM asparagine) at 37
°C for 20 min. In parallel, a second identical sample was incubated at
37 °C for 20 min, in which the enzymatic reaction was quenched at
time zero by adding trichloroacetic acid (TCA) to a final
concentration of 10%. After TCA precipitation, both samples were
centrifuged at 16100g for 2 min. The supernatant was mixed with
Nessler’s reagent, which is a solution of potassium tetraiodomercurate
that forms a yellowish complex with ammonia. The absorbance was
monitored spectrophotometrically at ∼440 nm after 10 min incubation
at room temperature. The concentration of ammonia produced by the
enzymatic reaction was determined from a reference curve using
ammonium chloride as standard. An enzymatic unit is defined as the
amount of enzyme that catalyzes the conversion of 1 μmole of L-
asparagine per minute under the aforementioned conditions.

Proteolytic Resistance of Encapsulated ScASNaseI. Micro-
capsules filled with ScASNaseI (∼4 × 107/mL), suspended in 50 mM
Na2HPO4, 0.5 M NaCl, pH 7.5, were aliquoted in 1 mL samples,
mixed independently with either 10 μg trypsin (0.02 total units) or 10
μg thrombin (10 total units) and then incubated at 37 °C. Trypsin
stock solution (2 mg/mL) was stored in 50 mM Tris-HCl, 20 mM
CaCl2, pH 8.0; lyophilized thrombin was dissolved in 50 mM Tris-
HCl, 140 mM NaCl, 2 mM CaCl2, pH 8.0 (2 mg/mL). After different
periods of time, residual asparaginase activity was measured. Free
enzyme, exhibiting initial volumetric activity similar to the
encapsulated sample, was incubated in parallel at 37 °C using the
same concentration of proteases. Its residual activity was also evaluated
at different time intervals.

Thermal Stability of Free and Encapsulated ScASNaseI.
Irreversible thermal inactivation of free and encapsulated enzyme was
followed by activity measurements. Both preparations resuspended in
50 mM Na2HPO4, 0.5 M NaCl, pH 7.5, were incubated for 10 min at
different temperatures covering the range 4−65 °C and then placed on
ice for an additional 10 min to recover. Subsequently, equal volumes of
the samples were assayed for activity. Residual activity is expressed as
relative (%) activity in comparison to the initial activity (U/mL),
which was equal for control and samples. The midinactivation
temperature Tm is defined as the temperature at which the enzyme
retains 50% of its initial activity and was calculated by plotting the
relative residual activity against the temperature.

The rate of isothermal inactivation of the free and encapsulated
enzyme was studied at 37 °C in 50 mM Na2HPO4, 0.5 M NaCl, pH
7.5 buffer. Samples with equal initial activities were incubated at 37 °C,
and their residual activities were measured at defined time intervals
over 30 h. The first order inactivation rate constants k were
determined from the slopes of the inactivation time courses according
to the equation ln(At/A0) = −kt, where A0 is the initial enzymatic
activity, and At is the activity after time t. Rate constants k were
estimated by linear regression analysis using the Igor Pro data analysis
software (Wavemetrics).

Storage Stability of Free and Encapsulated ScASNaseI.
Preparations of free and encapsulated ScASNaseI in 50 mM Na2HPO4,
0.5 M NaCl, pH 7.5, exhibiting similar initial volume activities were
stored at 4 °C in the absence of protein stabilizers (such as glycerol).
Residual activities of both samples were monitored every week for a
total period of 3 months.

In Vitro Killing of Cancerous Lymphocytes by Encapsulated
ScASNaseI. To assess the effect of encapsulated ScASNaseI on
cancerous lymphocytes, we performed cell culture experiments using
the two leukemic cell lines SD1 and MOLT-4. Both cell lines were
obtained from DSMZ (German Collection of Microorganisms and
Cell Cultures, Braunschweig). SD1 cells belong to the B
lymphoblastoid type of cells and have a doubling time of ∼30 h,
while MOLT-4 cells are derived from T leukemic cells and have a
doubling time of ∼40 h. The SD1 cell line was cultured at 37 °C/5%
CO2 in RPMI 1640 medium (PAA) with 10% FBS, while MOLT-4
cells were cultured at 37 °C/5% CO2 in RPMI 1640 with 20% FBS.
Media were supplemented with a final concentration of 1% penicillin/
streptomycin.

Scheme 1. Schematic Illustration of the Preparation of
ScASNaseI-Filled Polyelectrolyte Capsulesa

aAfter coating with the outermost polyelectrolyte layer (here: poly-L-
arginine), the suspension was subjected to overnight-dialysis yielding
the final homogeneous hollow capsules containing active L-ASNase.
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For the L-asparaginase treatment of these two cell lines, we used as
reference enzyme EcASNaseII which is the currently approved
antileukemic enzyme drug. Recombinant production and purification
of the E. coli enzyme were done similar to ScASNaseI (see Supporting
Information). Capsules containing either EcASNaseII or ScASNaseI
were prepared as described above. Before mixing the capsules with the
cells, they were made contaminant-free by exposing them to low-
intensity UV-light for 10 min, while the free enzymes were passed
through a 0.2 μm filter (Sartorius). Subsequently, the enzymatic
activities were determined as described above, and equal volume
activities of the encapsulated and the free enzyme were used to treat
the leukemic cells.
For cell proliferation studies, ∼106 MOLT-4 and 105 SD1 cells in a

final volume of 200 μL in a 96-well plate, were mixed with five units of
either encapsulated or free EcASNaseII or ScASNaseI. To test whether
encapsulation of the enzyme protected it against trypsin and thrombin
degradation under cell culture conditions, the same number of cells
were mixed with five units of L-asparaginase in the presence of both
proteases. Trypsin was added in a final amount of 0.5 μg, and
thrombin at 20 μg per a 200 μL volume, to mimic the physiological
(presence of thrombin) and the pancreatitis (release of trypsin)
conditions in serum.44,45 As control, cells were treated with empty
capsules and proteases independently to investigate whether they
affected the cells in the absence of enzyme. The cell proliferation status
after 72 h of incubation under the aforementioned conditions was
assessed using the WST-1 assay (Roche), which quantifies the activity
of mitochondrial dehydrogenases, according to the manufacturer’s
instructions. Absorbance was measured at 450 nm against a
background control (culture medium without cells). All treatments
and measurements were done in triplicates. The proliferation state of
the treated cells is expressed as relative survival (%) against the
untreated cells.

■ RESULTS AND DISCUSSION
Characterization of CaCO3 Particles and Polyelectro-

lyte Microcapsules. Enzyme-loaded microparticles formed by
rapid mixing of Na2CO3 and CaCl2 in the presence of
ScASNaseI exhibited an average size of 1−2 μm. We observed
that microparticles of more homogeneous size and spherical
morphology (Figure S5) were obtained when lower than
suggested28,30 concentrations of Na2CO3 and CaCl2 were used.
Therefore, the initial concentrations of Na2CO3 and CaCl2
were 0.15 M, rather than 1 M or 0.33 M, as reported before.
Additionally, we chose the coprecipitation method for protein
loading, because multiple attempts to load the protein onto
preformed microparticles resulted in very low loading
efficiency.46 On the contrary, in the case of simultaneous
mixing of enzyme with Na2CO3 and CaCl2 (coprecipitation
method), almost the total amount of added protein was bound
by the CaCO3 microparticles, such that under conditions
described in Materials and Methods, 3 mg of enzyme could be
loaded with negligible loss (∼0.06 mg). When trying to load
higher amounts (4 mg), we detected considerable loss of
protein.
To quantify the average amount of protein bound per

particle, the formed particles were counted using a hemocy-
tometer. Under the aforementioned conditions, we found that
the loaded enzyme was distributed in ∼108 particles, thus,
estimating that each particle contained approximately 30 pg
ScASNaseI. At this point, it is worth mentioning that
ScASNaseI has a calculated isoelectric point (pI) of ∼5.3,
indicating that, at the working pH of 7.5, the enzyme is
negatively charged, while on the other hand, CaCO3 particles
are positively charged at pH values below 9.0.30 Therefore, one
may assume that high loading efficiency can be attributed to
favorable electrostatic interactions between the protein and the

calcium carbonate template, in addition to the high degree of
adsorption of the enzyme to interior cavity surfaces of the
template during the formation of the cores. When loading the
enzyme following the same procedure at pH 6 (closer to the
enzyme’s pI), we observed a 5-fold higher protein loss in the
coprecipitation as well as in the washing steps (Figure S6). The
enzyme-loaded particles were subjected to stepwise polyelec-
trolyte coating, starting with dextran sulfate, followed by poly-L-
arginine. We chose these two polyelectrolytes because of their
biocompatibility properties, envisioning future in vivo studies.
During the adsorption process, the electrophoretic mobility
(zeta potential) was measured after deposition of each
polyelectrolyte layer (Figure S7).
Prior to LbL-coating, CaCO3 cores exhibited a positive zeta

potential, and therefore, coating was started with dextran sulfate
(negatively charged) as the inner layer. After coating with two
bilayers, hollow protein-containing capsules were obtained by
dialyzing the material against 50 mM Na2HPO4, 0.5 M NaCl,
20 mM EDTA, pH 6.5 (volume ratio 1:1000). We established
this modified protocol for dissolution of the CaCO3 template as
we observed an inactivating effect of the chelating agent on
ScASNaseI when using EDTA at concentrations ∼0.1 M or
higher. Therefore, the standard method of immersing the
coated particles in 0.1 M EDTA was not ideal for this particular
enzyme. By testing the inhibitory effect on enzymatic activity
using free enzyme (Figure S8), we found that concentrations
up to 20 mM EDTA were tolerated by this enzyme. Thus, by
dialyzing the coated particles against buffer containing 20 mM
EDTA, we managed to dissolve the core material thereby
preserving the activity of the enzyme. This is of great
importance for encapsulation of therapeutic proteins; most
likely, this protocol must be adapted to milder conditions of
template removal if less robust proteins of human origin are to
be packaged in microcapsules (unpublished data). Moreover,
we point out that the dialysis method for template dissolution
can be used equally efficiently when more than two bilayers of
polyelectrolytes are used for coating. In this work, we focused
on the characterization of capsules with two bilayers, instead of
three or more, since we observed a delay of reaching the
saturation point of the enzymatic reaction in the case of more
bilayers, possibly due to rate-limiting substrate or product
diffusion through the polymer shell (Figure S9). Figure 1 shows
two confocal as well as two scanning electron microscopy
images of the final hollow capsules (with two bilayers) loaded
with active ScASNaseI or eGFP-ScASNaseI (green fluores-
cence). The average diameter of the generated capsules was
∼1−2 μm.
The total number of protein-loaded capsules was determined

by again using a hemocytometer; this number was found to be
∼8 × 107, which is roughly equal to the initial number of
particles. However, while it is possible to determine the amount
of enzyme loaded on CaCO3 and calculate the approximate
amount of enzyme per particle, such quantitative protein data
are more difficult to obtain for the capsules. The reason is that
when using poly amino acids, such as poly-L-arginine, for
capsule formation, these polymers interfere with protein
determination assays.32 Moreover, it has been shown32 that
during the last step of CaCO3 core removal, a significant
fraction of either adsorbed or coprecipitated protein is released.
This release seems to directly correlate with the size of the
entrapped macromolecule, while physicochemical properties
and the number of bilayers also are important parameters.47

Accurate measurements of protein entrapped in the final
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capsules may necessitate the use of radiolabeled proteins, but
this method is not applicable in all cases. In future work, it will
be of general interest to establish a more direct and accurate,
radio-label-free method for the determination of protein load in
microcapsules. As a compromise in the present study, we
compare volume activities of the free and encapsulated enzyme
rather than specific activities, because the amount of unlabeled
enzyme per capsule cannot be determined.
Resistance of Encapsulated ScASNaseI to Proteolysis.

A critical complication occurring during treatment of ALL with
bacterial L-ASNase is acute pancreatitis,48 causing the release of
the protease trypsin in the patient’s blood serum and
inactivation of the administered enzyme. In addition, it has
been shown recently, that a dyad of lysosomal proteases
degrades specifically E. coli L-ASNase. Therefore, it is of great
interest to assess the resistance of encapsulated enzyme to
proteolytic degradation. Besides trypsin, we tested the serine
protease thrombin which has a key role in blood coagulation
reactions.49 Equal amounts of both proteases, yet with different
specific and total activities (see Materials), were mixed with free
and encapsulated ScASNaseI exhibiting similar volume
activities. Samples were incubated at 37 °C, and residual
activity was measured at successive time points (Figures 2 and
3) for up to 7 h. Our results show that encapsulated L-ASNase
is considerably more resistant to trypsin and thrombin
degradation. The free enzyme was very sensitive to trypsin
treatment, as evidenced by the fact that, after 1 h incubation, its
remaining activity was below 5%. In contrast, encapsulated L-
ASNase resisted significantly better to trypsin exposure,
maintaining up to ∼20% activity even after 7 h.
In contrast to trypsin, thrombin was better tolerated by both

free and encapsulated ASNase. Analysis of the primary structure
provides a potential explanation for this higher resistance
against thrombin. ScASNaseI amino acid sequence analysis

(using Peptide Cutter, Expasy) revealed 31 possible recognition
sites for trypsin, but only one for thrombin. Taking into
account the molecular sizes of proteins such as trypsin (native
MW ∼ 23.6 kDa) and thrombin (∼36 kDa), it can be assumed
that they should be unable to diffuse into the capsules, though
under specific temperature and ionic strength conditions, this
may happen to some extent.
Additionally, one may assume that the encapsulated enzyme

is mostly localized close to the inner surface due to favorable
electrostatic interactions, rather than being homogeneously
distributed in the capsule’s volume; in that way, the interaction
with proteases would be facilitated. Indeed, during LbL
formation of the polyelectrolyte shell around the rough calcium
carbonate surface, a polyelectrolyte complex can be formed
inside the porous CaCO3. This might induce binding of the
protein to such a complex after core decomposition.30

Thermal and Storage Stability of Free and Encapsu-
lated ScASNaseI. Aiming at further evaluation of the
structural stability of the encapsulated L-ASNase, we performed
irreversible thermal inactivation experiments using the free
enzyme as reference. The two enzyme preparations (free and
encapsulated) were incubated at different temperatures and
were then assayed for residual activity (Figure 4). The
corresponding Tm values are summarized in Table 1. We
noted that the free enzyme showed a relatively high Tm (51.6
°C), considering its origin from yeast which grows at 30 °C. A
potential explanation derives from the fact that this enzyme
contains 10 cysteines, which might form disulfide bonds. It is
known that disulfide bonds usually stabilize the overall protein
structure making it more rigid and resistant against harsh
conditions such as high temperatures.50 Yet, encapsulation of
this enzyme enhanced the thermostability of ScASNaseI
slightly. Our observations on thermostability of L-asparaginase
encapsulated by using biocompatible material and reaction

Figure 1. (A) Shown are two-bilayer-microcapsules loaded with
ScASNaseI, after EDTA dissolution by dialysis. Images were taken
using a confocal laser scanning microscope as described in Materials
and Methods. The inset shows a capsule zoomed from the main image
(scale bar corresponds to 5 μm). (B) Confocal fluorescence image of
microcapsules loaded with eGFP-ScASNaseI fusion protein. Inset is
the zoomed area of the main image (scale bar corresponds to 3 μm).
(C, D) SEM images of polyelectrolyte microcapsules after removal of
the CaCO3 template by dialysis.

Figure 2. Residual activities of free (■) and encapsulated (▲)
ScASNaseI incubated with trypsin at 37 °C. Activities were measured
every 2 h upon incubation with the protease. Results are means ± SD
of two independent experiments.

Figure 3. Residual activities of free (■) and encapsulated (▲)
ScASNaseI incubated with thrombin at 37 °C. Similarly to trypsin
treatment, activities were measured every 2 h upon incubation with the
protease. Results are means ± SD of two independent experiments.
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conditions, as compared to stability of the free enzyme, are in
good qualitative agreement with an early report on enzyme
encapsulation.51 In that work, α-chymotrypsin was used as a
model enzyme for entrapment in hollow microcapsules
consisting of four double-layers of sodium poly-
(styrenesulfonate) (PSS) and poly(allylamine hydrochloride)-
(PAH) assembled on commercially available micrometer-sized
melamine formaldehyde particles, and stability was measured in
the temperature range from 20 to 48 °C.
The time course of isothermal inactivation of the two

enzyme preparations was evaluated at the physiologically
relevant temperature of 37 °C. Kinetic analysis yielded linear
plots (Figure 5) from which the first order inactivation rate

constants were calculated according to eq 1 of ref 52. We found
a considerably lower inactivation rate constant (12-fold lower)
for the encapsulated enzyme in comparison to the free enzyme
(Table 1). We hypothesize that the microenvironment which is
formed upon encapsulation protects the enzyme from different
chemical and physical factors that could affect protein folding
and catalytic activity. As it is generally believed that enhanced
protein thermal stability is predominantly dependent on an
increased number of hydrogen bonds and salt links, as well as

better van der Waals’ packing53,54 in the capsules’ micro-
environment, the latter two factors might explain the improved
thermal stability of encapsulated L-ASNase at 37 °C.
The storage stability of the encapsulated enzyme was also

significantly improved in comparison to the free species. As
shown in Figure 6, after storing the encapsulated L-asparaginase

for over 3 months at 4 °C, the enzyme kept about 50% of its
initial activity. In contrast, the free enzyme showed total
inactivation after 2 months when stored at the same
temperature. As microcapsules consist of ionic polymers such
as hydrophilic polyelectrolytes (dextran sulfate and poly-L-
arginine in the present case), our findings are supported by
previous work,55 which showed that hydrophilic polymers have
a particular hydration effect on proteins similar to polyhydric
alcohols (polyethylene-glycol, lactitol, sucrose) which also
enhance their stability.49 Furthermore, it was shown that
mixing of an enzyme with soluble linear-chain high molecular
weight polymers can promote its stability, suggesting that the
interaction between polymers and enzyme molecules forms a
network which imposes a mechanical restriction on the protein
unfolding process.56 Thus, we believe that increased storage
stability of encapsulated L-ASNase can be attributed to
favorable electrostatic interactions between the enzyme and
the polymers.

Treatment of Leukemic Cells Using Free and
Encapsulated ScASNaseI. Encapsulated and free ScASNaseI
were used to treat two different leukemic cell lines in order to
evaluate the efficacy of both enzyme preparations on these cells.
Free and encapsulated EcASNaseII were included in this series
of experiments for comparative purposes, because this enzyme
has been used for many decades for the treatment of ALL. In all
cases, five units of each enzyme preparation (either
encapsulated or free) were added once to the cells which
were incubated for 72 h. Subsequently, the proliferation state of
the cells was evaluated based on the WST-1 assay.
The results of the different treatments of the two cell lines

are presented in Figures 7 and 8. Figure 7 shows the relative
survival of the cells which were exposed to different
preparations of ScASNaseI. These data suggest that free
proteases and empty capsules had no negative impact on the
cells, and therefore cell death can be attributed solely to the
effect of the L-ASNases. This effect on leukemic cells is due to
the depletion of the available levels of L-Asn in the medium,
since lack of L-Asn causes protein synthesis arrest in the
cancerous cells which ultimately undergo apoptosis and cell
death.11 Figure 7 shows that the use of either free or

Figure 4. Irreversible thermal inactivation of free (■) and
encapsulated (▲) L-ASNase. Residual activities were measured after
heat treatment at different temperatures for 10 min. Tm values were
calculated by nonlinear regression to a sigmoid function using Igor Pro
(Wavemetrics) software. Results are means ± SD of two independent
experiments.

Table 1. Mid-Inactivation Temperatures and Inactivation
Rate Constants ± SD for Free and Encapsulated ScASNaseI

Tm (°C) kin (×10−3 h−1)

free enzyme 51.6 ± 0.88 120 ± 4.72
encapsulated enzyme 54.6 ± 0.47 10 ± 1.2

Figure 5. Plot of isothermal inactivation kinetics for free (■) and
encapsulated (▲) enzyme. The enzyme preparations were incubated
at 37 °C, and their residual activities were measured for a period of 30
h. First order inactivation rate constants kin were calculated by linear
regression using the Igor Pro (Wavemetrics) software. The experiment
was performed twice.

Figure 6. Plot of the storage stability for free (■) and encapsulated
(▲) L-ASNase. Samples were incubated at 4 °C in the absence of
stabilizers. Their residual activities were measured for a total period of
3 months. The results are means ± SD of independent measurements
on three samples from the same capsule preparation.
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encapsulated ScASNaseI inhibited the MOLT-4 and SD1
proliferation after 72 h of treatment to a relatively similar
extent. However, when the cells were incubated with free
enzyme in the presence of trypsin and thrombin, the
proliferation inhibition was less pronounced, indicating
inactivation of ScASNaseI by the proteases. In contrast, when
the cells were treated with encapsulated ScASNaseI and
proteases, the proliferation of SD1 cells was inhibited similarly
to the treatment with free enzyme in the absence of proteases,
while MOLT-4 cells were less affected by L-asparaginase
treatment. These findings on protease effects are in line with

our biochemical data which implied that encapsulation of
ScASNaseI significantly elevated its proteolytic resistance as
compared to the free enzyme. Light microscopic images of the
untreated cells and cells treated with ScASNaseI-loaded
capsules are shown in the Supporting Information (Figure
S10). Similar results were obtained when both leukemic cell
lines were incubated with free or encapsulated EcASNaseII
(Figure 8). We observed that SD1 cells were similarly affected
by free ScASNaseI and EcASNaseII. In contrast, the
proliferation of MOLT-4 cells was influenced more by
EcASNaseII than by ScASNaseI. Encapsulation of the bacterial

Figure 7. Viability of MOLT-4 and SD1 leukemic cells treated with ScASNaseI preparations. The proliferation state of the cells is expressed as
relative survival (%) against the control (untreated cells). Data are shown as means ± SD of triplicate measurements.

Figure 8. Viability of MOLT-4 and SD1 cells treated with EcASNaseII, expressed as relative survival (%) against the control (untreated cells). Data
are means ± SD of triplicate measurements.

Biomacromolecules Article

dx.doi.org/10.1021/bm401341k | Biomacromolecules 2013, 14, 4398−44064404



enzyme was also proven to be beneficial for its resistance
against proteolysis, as evidenced by the lower relative survival
resulting from the treatment with capsules in the presence of
proteases as compared to the free enzyme in the presence of
proteases. Images of untreated cells and of cells treated with
EcASNaseII-loaded capsules, are shown in the Supporting
Information (Figure S11).
Taken together, our data suggest that encapsulation of L-

ASNases, using biocompatible polyelectrolytes, improves the
biochemical stability of the enzymes and protects them against
physiologically occurring proteases. We show that this
protection holds for both ScASNaseI and EcASNaseII which
have distinct catalytic properties (kcat/KM 5 × 104 M−1 s−1 for
ScASNaseI, and 1.5 × 106 M−1 s−1 for EcASNaseII). These
findings may form the basis for an improved L-asparaginase-
dependent antileukemic therapy, though in vitro analyses will
have to be complemented by pharmacodynamic and
pharmacokinetic studies.

■ CONCLUSION
Recent advances in cellular drug delivery have relied on the use
of polyelectrolyte microcapsules as carriers for various types of
drugs, including proteins.57,58 Of great importance is the
maintenance of the functionality of the loaded drug during the
preparation of the capsules; this is particularly true for enzymes
whose activity can be strongly affected by different materials, or
by reaction conditions required for capsule fabrication. In the
present work, we have highlighted the importance of removing
the CaCO3 template under mild conditions of dialysis to
preserve catalytic activity of the therapeutic enzyme L-
asparaginase (L-ASNase) which is an approved drug for the
treatment of leukemia. We focused on the up to now poorly
characterized yeast asparaginase, ScASNaseI, which is a
glutaminase-free enzyme exhibiting catalytic properties on
asparagine that are similar to those of the currently approved
E. coli protein. Therefore, this enzyme of eukaryotic origin
could form the basis for the development of an improved
anticancer drug showing less side effects than the bacterial
enzyme
To develop a potential strategy for the amelioration of L-

ASNase’s half-life in the blood, we packaged the enzyme in
microcapsules fabricated by a variable number of layers of
biocompatible polymers. In this way, full catalytic activity was
maintained, biochemical stability of the enzyme was enhanced,
and it can be expected that the encapsulated enzyme will be
protected from inactivation by proteases not only in vitro, as
demonstrated in this work, but also in an in vivo situation, thus,
improving the enzyme’s half-life in the blood. Therefore,
encapsulation appears as a promising avenue to bypass
numerous problems associated with protease degradation of
therapeutic peptides and proteins. Moreover, when residing
inside capsules, the enzyme’s epitopes would be shielded,
preventing direct recognition by the immune system.40,41

However, the question of whether the capsules themselves
could be immunogenic remains to be addressed.59 We are
presently probing the general applicability of our experimental
strategy to more sensitive biomacromolecules such as various
enzymes of human origin. Notably, we embarked on
encapsulation of a human L-asparaginase that we recently
characterized structurally and functionally60 and that could
replace enzymes of nonhuman origin.
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The open reading frame (ORF) coding for yeast cytoplasmic L-asparaginase ScASNaseI 

(UniProt P38986, gene ASP1) consisting of 1143 bp, was amplified with PCR using as template 

genomic DNA from the Saccharomyces cerevisiae S288C wildtype strain. NdeI and BamHI sites 

were incorporated at the 5’- and 3’-oligonucleotides’ ends, respectively: 5’-oligo 

G G A A T T C C A T A T G A A A A G C G A T T C A G T T G A A A T C ; 3 ’ - o l i g o 

CGCGGATCCTCACCCACCATAGACGCCAGTG. The PCR reaction mixture consisted of 

oligonucleotide mix, KAPA high fidelity buffer, dNTPs and KAPA HiFi DNA polymerase. The 

reaction was initiated at 95 !C for 3 min, followed by 25 cycles of denaturation at 98 !C for 20 s, 

primer annealing at 60 !C for 30 s, and extension at 72 !C for 30 s. The amplification reaction 

was terminated after a 5 min polishing step at 72 !C. The PCR product (Figure S1) was gel-

purified, digested with NdeI and BamHI H.F., purified with PCR clean-up kit and then ligated 

overnight at 16 !C into pET14b-SUMO vector (Figure S2) using T4 DNA ligase. The ligation 

mixture was used to transform DH5! E.coli cells. Positive clones were determined following 

colony PCR screening using one primer for the vector (Forward) and one primer for the insert 

(Reverse), restriction digestion with NdeI and BamHI H.F., and finally sequencing of the cloned 

1



DNA insert. The expressed protein construct includes an N-terminal 6-histidine tag, followed by 

the yeast SUMO (Small Ubiquitin MOdifier) tag which has proven to improve heterologous 

protein solubility and stability. 

E.coli BL21(DE3) C41 cells containing the S.c.ASNaseI plasmid were cultured overnight at 37 

!C in TB medium supplemented with 200 "g/ml ampicillin. A fraction of this culture was used to 

inoculate fresh TB culture (dilution 1:100) supplemented with 200 "g/ml ampicillin. When O.D.

600 reached ~ 0.5-0.7, the expression was induced by adding IPTG to a final concentration of 1 

mM. After incubation at 37 !C for 8 h, the culture was centrifuged at 4,000g for 30 min, the cells 

were harvested, resuspended in affinity matrix binding buffer (50 mM Na2HPO4, 0.5 M NaCl, 10 

mM imidazole pH 8.0), and ultimately lysed by sonication. The cell lysate was centrifuged at 

17,200g for 45 min, the resulting supernatant mixed with pre-equilibrated nickel agarose beads, 

and incubated at 4 !C for 3 h under rotation. Subsequently, the mixture was filled in a 5 mL 

polypropylene column and dried by gravity. The nickel resin was washed with 25 bed volumes of 

washing buffer (50 mM Na2HPO4, 1 M NaCl, 20 mM imidazole, pH 8.0). Finally, the bound 

protein was eluted from the column by applying 300 mM imidazole, and dropwise collection of 

fractions. All purification steps were performed at 4 !C. The collected fractions were mixed, and 

buffer was exchanged against 50 mM Na2HPO4, 0.5 NaCl, pH 7.5 using a PD-10 column (GE). 

The eluted protein fraction was incubated with yeast SUMO protease (molar ratio 

protease:protein ~ 1:100) at 30 !C for 2 h in order to cleave the N-terminal 6-His-SUMO tag. In 

a last purification step, the protein was subjected to size exclusion chromatography by passing it 

through a Supradex 200 column (Pharmacia/GE) to remove the cleaved tag. Protein purity was 

evaluated by SDS-PAGE and was estimated to exceed 95%. The protein sample was aliquoted, 

mixed with 25% glycerol, and stored at -20 !C until use. The E.coli L-ASNase II (EcASNaseII) 
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was expressed and purified analogously.

The fusion protein eGFP-ScASNaseI, was constructed using a modified pET14b vector which 

was generated for the needs of the present study (Figure S3). The N-terminus included the His6-

eGFP part followed by a short hydrophilic flexible linker consisting of (Gly-Ser)2. Downstream 

of the 6-His-eGFP plus linker moiety, the coding region for ScASNaseI was inserted via NdeI 

and BamHI sites. The final construct was verified by control digestion and sequencing. E.coli 

BL21(DE3) C41 cells harboring the pET14b eGFP-ScASNaseI plasmid were used for expression 

of the fusion protein at 22 !C in auto-induction culture medium containing lactose as inducer. 

The culture was inoculated with a single colony and was incubated at 22 !C for 24 h. The fusion 

enzyme was purified and stored as described above for the 6-His-SUMO-ScASNaseI fusion.

Figure S1. PCR amplification of ScASNaseI ASP1 gene using as template genomic DNA from 

Saccharomyces cerevisiae. The main amplified fragment shows the expected size of 1143 bp.
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Figure S2.  The final construct of the 6-His-SUMO-ScASNaseI cloned into pET14b plasmid. 

The purified intact ScASNaseI protein (after removal of 6-His-SUMO tag) is shown below in 

Figure S4.

Figure S3.  Construct for the expression of 6-His-eGFP-ScASNaseI fusion protein. Also 

indicated is the position of the hydrophilic linker (Gly-Ser)2. The purified fusion protein is in 

Figure 4
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Figure S4. SDS-PAGE analysis of ScASNaseI after removal of 6-His-SUMO-tag (A), which 

corresponds to the expected size of ~ 40 kDa and of the 6-His-eGFP-ScASNaseI fusion (B) 

showing an apparent Mr ~ 70 kDa (theoretical Mr: 69 kDa).
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Figure S5.  Protein-loaded calcium carbonate particles formed by following the co-precipitation 

method and imaged by transmission light microscopy. Figures A and B show the L-asparaginase-

filled cores, obtained when using 1 M (A) or 0.15 M (B) Na2CO3/CaCl2.

Figure S6. Comparison of the calcium carbonate/ScASNaseI loading efficiency under 2 different 

pH conditions following the co-precipitation method. For quantification of protein loss, the 

supernatant and the washing fractions were collected after centrifugation and the total amount of 
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protein was determined by the Bradford method. The initial amount of enzyme used was 3 mg. 

Results are means ± S.D. of 2 independent experiments.

Figure S7. Zeta potential of particles determined after individual polymer adsorption steps. Step 

0 defines the Z potential of the initial uncoated CaCO3 particles in the presence of enzyme. Steps 

1 and 3 correspond to dextran sulfate adsorption, while 2 and 4 indicate poly-L-arginine 

deposition. The Z potential values alternate between negative and positive upon coating with 

either dextran sulfate or poly-L-arginine, indicating the adsorption of poly-anions or poly-

cations, respectively. Shown are the average values and the S.D. of 3 independent measurements.
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Figure S8. Inhibitory effect of EDTA on ScASNaseI activity. Measurements were performed 

between 0 and 100 mM EDTA using 10 !g of purified enzyme. The plot demonstrates the 

decrease of the steady-state turn-over rate as a function of different EDTA concentrations tested.

Figure S9. Time course of the enzymatic reaction when using ScASNaseI-filled capsules with 

either two (!) or three (!) bilayers. The enzymatic assay was performed as described in the 

Methods section using L-Asn at 5 mM final concentration. For direct comparison of data, the 

number of capsules per volume which were used for measuring the enzymatic activity was kept 
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equal in both cases. Assuming that the amount of enzyme per capsule is the same in both cases 

and that the loaded enzyme is equally active, the observed slower time course of the reaction 

may be attributed to restricted substrate, or product diffusion in case of the three-bilayer 

capsules. Shown are the average values and the S.D. of 2 independent experiments.
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Figure S10. Transmission light microscopy images of untreated MOLT-4 (A) and SD1 (C) and 

treated MOLT-4 (B) and SD1 (D) with capsules containing ScASNaseI. Images for the untreated 

cells were taken at the point where the drugs were added (t=0) and for the treated 72 h after 

incubation; point at which the proliferation state was evaluated.
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Figure S11. Transmission light microscopy images of untreated MOLT-4 (A) and SD1 (C) and 

treated MOLT-4 (B) and SD1 (D) with EcASNaseII-filled capsules. Similarly to Figure S10, 

images for the untreated cells were taken at the point where the drugs were added (t=0) and for 

the treated 72 h after incubation.
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8. Discussion

8.1 General introduction

The present work centered on the development of improved protein therapeutics for the 

treatment of acute lymphoblastic leukemia (ALL) following complementary protein 

engineering and drug delivery approaches [134,212]. We focused mainly  on the biochemical, 

biophysical and structural characterization of two human L-ASNases, designated hASNase1 

[57] and hASNase3 [36,38]. Both enzymes hydrolyze the amino acid L-Asn but with poor 

catalytic properties [32,38]. Bacterial L-ASNases have been extensively used as anti-

leukemic protein therapeutics for the last 50 years. However, this treatment is associated with 

a plethora of side effects mainly attributed to the bacterial origins of the used enzymes 

[100-106]. Inspired by the necessity of development of a protein drug of human origin, our 

ultimate goal has been the generation of catalytically improved human variants which could 

be used as alternative protein therapeutics to the current bacterial L-ASNases for the 

treatment of ALL. To this end, we centered on the biochemical and structural characterization 

of hASNase3, an enzyme which belongs to the N-terminal nucleophile superfamily [18]. We 

reasoned that the structural elucidation could provide a solid basis for the rational design of 

point mutations which could improve the enzyme’s catalytic features.

8.2 Characterization of hASNase3

8.2.1 Structural characterization and glycine-induced intramolecular 

activation of hASNase3

The determination of the hASNase3 structure revealed a dimeric state with the, highly 

conserved among the Ntn-hydrolases, !""! motif for each monomer (Introduction, Figure 4) 

[36-38]. The tertiary structure of the human enzyme significantly  resembles the respective 

structure of its bacterial homolog, EcASNase3, which was solved several years ago [5]. A 

major characteristic of these Ntn-hydrolases is their property of being translated as inactive 

precursors, followed by an intramolecular cleavage at a scissile peptide bond, thereby 

generating two subunits (! and ") which remain non-covalently  associated and comprise the 
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active form the enzyme [22]. However, particularly in case of hASNase3, recombinant 

expression in E.coli results in only partial cleavage of the produced enzyme population with 

fully  activated and non-activated enzyme species; and importantly, this autoactivation process 

never reaches completion even after incubation for several days at 37 !C, though rather fast 

intramolecular processing happens with other Ntn-hydrolases (thus, e.g.the E.coli homolog) 

[5,38]. We discovered that the amino acid glycine dramatically accelerates the autoproteolytic 

step of hASNase3 in a glycine concentration-dependent manner, thus allowing completion of 

the enzyme’s self-activation [38]. Strikingly, other amino acids which are structurally related 

to glycine or other small molecule metabolites, cannot induce similar activation effects, 

thereby establishing glycine as a very specific molecule for hASNase3 intramolecular 

cleavage acceleration. This discovery helped to determine the structure of the fully cleaved 

hASNase3, as well as the uncleaved enzyme in complex with glycine [38]. The latter 

structure allowed us to propose the mechanism of this glycine-induced activation, explaining 

the ability of this amino acid to promote the enzyme’s cleavage. Two bound glycine 

molecules were observed in the uncleaved form of hASNase3. The first occupies the same 

position as the substrate L-asparagine, while the second is oriented towards the residue 

Thr168 which serves as the primary nucleophile of the active enzyme. More specifically, the 

second glycine molecule is positioned such that  its carboxylic moiety  interacts directly  with 

the hydroxyl group of Thr168. This interaction would allow glycine to act as a base which 

subtracts the proton from the hydroxyl group, thereby  activating it for the subsequent attack 

on the preceding Gly167 carbonyl group, ultimately initiating the cleavage reaction. 

Interestingly, when unprocessed hASNase3 was incubated simultaneously with glycine and 

aspartate at 1:1 molar ratios (tested concentrations: 10 and 50 mM each), no inhibition 

against the glycine-induced activation effect was observed [38]. Those results suggest that 

glycine has a dominant role on the activation of hASNase3, and its effect is not influenced by 

the presence of the enzymatic reaction’s product (L-Asp). The question of whether the first 

glycine molecule, which occupies the same position as the substrate, is still present or is 

displaced in the presence of aspartate remains open, and to answer it, crystallization of 

hASNase3 in the presence of both glycine and aspartate may have to be attempted. This 

proposed mechanism is further supported by  the pH-dependent cleavage rate we determined 

by incubating uncleaved hASNase3 with glycine spanning a range of different pH values 

(7.5, 8.5 and 9.5) [38]. The cleavage occurs slightly faster at pH 9.5 as compared to pH 7.5 
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and 8.5, possibly because at higher pH the nucleophilicity of glycine is further increased 

resulting in a faster activation rate. Aiming at the investigation of the generality  of this 

glycine effect possibly occurring in other members of Ntn-hydrolase superfamily as well, we 

recombinantly produced and purified not only E.coli ASNase3, but also another member of 

this family, the enzyme Taspase1. Multiple attempts to purify the E.coli homolog of 

hASNase3 in its uncleaved form totally failed. Even when the purification steps were done at 

4 !C, the final state of the enzyme was the fully-cleaved form as was evidenced by SDS-

PAGE analysis. This prompted us to test another human Ntn-hydrolase. Taspase1 also is a 

threonine aspartase which plays a crucial role in regulation of the mixed lineage leukemia 

(MLL) nuclear protein [21]. Production of this enzyme in E.coli results in a mixture of 

cleaved and uncleaved species similar to hASNase3. However, incubation of Taspase1 with 

high concentrations of glycine (even up to 1 M) did not show any effect on the activation of 

this enzyme (Appendix, Part 1). These findings further support the specificity of the 

glycine-hASNase3 interaction, though it is absolutely necessary to test more Ntn-hydrolases 

in order to draw a more general conclusion. 

The next question which plausibly comes up and we tried to address was, what would be the 

state of the enzyme if it were overexpressed in human cells, and, more importantly, what is 

the state of the endogenous hASNase3 in human cells. Transiently transfected HEK293 cells 

with a plasmid carrying the ORF of hASNase3 expressed the enzyme in its partially  cleaved 

form in standard medium and in its fully-cleaved form in the presence of glycine in the 

growth medium, in a glycine concentration-dependent manner as evidenced by 

immunoblotting analysis using polyclonal antibodies raised in rabbits specifically  against 

hASNase3 [38]. Interestingly, this happened when using glycine concentrations in the range 

of 5-10 mM  though it must be underlined the necessity  of determining the intracellular 

concentration of free glycine upon treatment of the cells with glycine in the growth medium. 

In principle, the exogenous supply  of glycine in the medium does not provide any 

information about the amount of glycine which is uptaken by the cells and is available in its 

free form to interact with the inactive translated hASNase3. On the other hand, it must be 

highlighted the fact that, the quantitative determination of intracellular concentrations of 

metabolites is experimentally very challenging and it can be done either by developing very 

sensitive assays which can detect the molecule of interest or by using radio-labeled 

compounds, which require additional expertise and the availability of special facilities. 
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Significantly, immunoblotting analysis of cell extracts of two breast cancer cell lines, namely 

SKBR3 and MCF7, without including high glycine concentration in the growth medium, 

revealed that endogenous hASNase3 exists in both cleaved and uncleaved states in 

approximately 1:1 stoichiometric ratio (Appendix, Part 2). This suggests that hASNase3 is 

present in both states under steady-state in vivo conditions. Perhaps, an experiment using 

translation inhibitors could terminate the production of the inactive precursor and allow the 

capture of the enzyme’s state shortly after its expression.

A reasonable argument which could be brought up is whether the glycine concentrations 

which are required in order to observe a considerable activation effect on hASNase3, are 

physiologically relevant. Concentrations in the range of 5-10 mM might not appear 

physiological at first glance. However, a recent metabolite-profiling report  on cancer cell 

lines correlated increased glycine levels with proliferation rates, thereby highlighting the role 

of this amino acid in rapidly  proliferating cells [286]. Strikingly, another study [287] which 

coincided with our discovery about glycine and focused on the role of pyruvate kinase 

isoform M2 in glycolytic flux in cancer cells, uncovered an intracellular accumulation of 

glycine in the range of 10 mM, a concentration which would fully activate hASNase3 

processing [38]. Those observations are in direct relevance with the fact that hASNase3 is 

predominantly expressed in a number of different types of cancers as evidenced by a 

systematic study a few years ago [34]. The discovered effect of glycine on hASNase3 was 

proven to be a very efficient in-vitro tool for the activation of the enzyme by accelerating and 

completing its intramolecular cleavage, though its in vivo relevance remains to be further 

investigated. However, based on the findings of other independent studies focusing on the 

metabolite profiling of cancer cells, there are good reasons to believe that the glycine-induced 

phenomenon on hASNase3 has physiological impact in-vivo as well. 

8.2.2 Circular permutant-like version of hASNase3

Our studies have shown that full activation of hASNase3 was really  essential for its 

biochemical characterization. Working with a mixture of fully-cleaved and uncleaved enzyme 

molecules does not allow the accurate and precise kinetic, biochemical, and biophysical 

characterization of a particular enzyme. Fast processing of hASNase3 can be achieved by 

including up to 200 mM  glycine in the growth medium of E.coli during the recombinant 
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expression. However, this did not always result in full activation, and a short incubation 

period after the purification of the enzyme was required. In addition, glycine inhibits the 

enzymatic reaction exhibiting a Ki ~ 10 mM  (data not  shown) and, therefore, it must be 

removed by dialysis once the activation is complete. Those steps add to the already several 

experimental steps from the expression to the purification of the enzyme. For that reason, we 

developed a co-expression system to circumvent the requirement of intracellular activation 

[288]. Several co-expression combinations of the ! and " subunits were investigated (co-

expression from the same plasmid, from different plasmids, expression from different 

plasmids, followed by purification and final mixing together). However, all trials failed for a 

number of different reasons which are discussed in detail in our recently  published work 

[288]. The only co-expression system which resulted in the production of soluble and active 

hASNase3 relied on the co-expression of both ! and " subunits in an operon-like way. The 

design of this construct depended on the concept of circular permutation [289]. Circular 

permutation in protein engineering is the process during which certain parts of the protein 

which form a concise folding unit  (e.g. several !-helices or "-sheets) are produced in a 

rearranged format, not following the natural order of the wildtype gene. The final folded 

molecule is identical to the wildtype, though quite often with improved biochemical 

properties as has been reported in several cases [290]. Normally, a circular permutant version 

of a protein has new N- and C- termini, while the two old ones are usually linked by 

artificially introduced peptide linkers with a variable number of amino acids which span the 

distance between the old N- and C- termini [291]. 

The first naturally existing circular permutant protein was discovered in 1979 by  Bruce 

Cunningham and his colleagues, who noticed that the peptide sequence of the lectin protein 

favin was similar to an already known protein, namely concanavalin A, with the only 

difference being that the ends of the lectin protein favin were circularly permuted [292]. 

Later, it was further shown that concanavalin A undergoes posttranslational cleavage, coupled 

with a ligation reaction finally resulting in its circular permutant version [293]. However, it 

was not before 1995 when scientists found for the first time a circularly permuted pair of 

genes, encoding a class of proteins which are called saposins and are involved in sphingolipid 

catabolism and lipin antigen presentation in humans. The last years, there has been a rising 

interest towards the generation of circular permutant proteins and enzymes as a protein 

engineering tool. Perhaps, the most major challenge is to design an appropriate peptide linker 
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which will connect the old termini in a way that will not cause any misfolding impediments. 

Many permutants have been successfully produced in the lab and their similar, to the 

wildtype, biochemical and biophysical properties have been experimentally  demonstrated 

[294]. On the other hand, there have been reported several cases where circular permutants 

exhibited improved catalytic activity  and thermostability, reduced proteolytic susceptibility, 

as well as altered substrate or ligand binding affinities [295]. Therefore, the researchers’ 

motivations for the generation of circular permutants may vary depending on the final goal. 

In case of hASNase3, we tried to uncouple the intramolecular autoactivation step by 

generating a circular permutant version, without linking the old termini. We reasoned that, 

since the two final ! and " subunits remain non-covalently  strongly  associated after the 

intramolecular cleavage, they could be produced by co-expression and interact forming the 

active final form of the enzyme, despite the absence of a connecting linker. After performing 

a systematic study of different co-expression constructs, we found that the only  one which 

results in the soluble production of both ! and " subunits and, most importantly, in active 

hASNase3 was the circular permutant-like construct expressed from the pJC20-hASNase3[" 

+ !] plasmid. The rearrangement of the two subunits, by expressing at the N-terminus the " 

and at the C-terminus the ! subunit, facilitated the removal of the N-terminal methionine by 

the bacterial endogenous methionine amino peptidase (MAP), thereby exposing the 

catalytically  essential Thr168 at the N-terminus of the " subunit rendering the enzyme 

catalytically  active. The kinetic properties of the permutant were found to be similar to the 

wildtype enzyme, though a more extensive study  would shed more light on their biochemical 

and biophysical distinctions. In summary, in this study we established an attractive alternative 

method for the production of fully active hASNase3 through its expression by  a circular 

permutant-like construct, thus totally precluding the necessity for intramolecular activation 

by glycine.
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8.2.3 Engineering of hASNase3

8.2.3.1 FACS-based high-throughput screening of hASNase3 mutant 

libraries

The ultimate goal of the present study was the engineering of hASNase3 aiming at the 

identification of catalytically  improved variants, envisioning future replacement of the 

current bacterial L-ASNases as protein therapeutics against ALL. The determination of the 

hASNase3 structure did not actually  help us to rationally design a set of mutations which 

could lead to improved variants. The reason is that, hASNase3 belongs to a family of 

enzymes which, strictly speaking, are not primarily  L-ASNases. All hASNase3 homologs 

from E.coli, plants and other mammals display similar, poor catalytic properties against L-

Asn. Therefore, the existence of certain amino acid “fingerprints” attributable to better 

catalytic rates against L-Asn, of other homologs was not available. In other words, there is no 

reference wildtype enzyme structurally  similar to hASNase3, which exhibits favorable kinetic 

properties against the L-Asn hydrolysis and could form the basis for a rational engineering 

enterprise. Taken together all the aforementioned facts, it becomes plausible that the main 

avenue for engineering of hASNase3 was directed evolution. However, a major challenging 

task in directed evolution experiments is the development of a sensitive high-throughput 

screening system, which is capable of discriminating catalytically improved variants among 

others. In the present  study we dealt with the application of a FACS-based high-throughput 

screening system for the analysis of a number of hASNase3 mutant libraries. In addition, we 

focused on the development of a novel screening system for directed evolution applications 

by capitalizing on droplet-based microfluidic setups, whose great potentials as 

compartmentalization systems have been demonstrated in several studies [198-207]. 

Our FACS-based screening system relied on the use of a 5-gene-deletion E.coli strain 

(deletion of all genes which contribute to the biosynthesis of L-Asp) whose survival is solely 

dependent on the availability of L-Asp  from the growth medium [179]. Genetic 

complementation of hASNase3 mutants can rescue those E.coli cells through the supply  of L-

Asp, product of the enzymatic reaction, thereby the growth of the cells is proportional to the 

activity of the hASNase3 mutants. The co-expression of eGFP provided an additional 

quantification level of the availability of L-Asp, allowing the correlation of intracellular 
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eGFP fluorescence with the mutants’ L-ASNase activity, followed by FACS-sorting of the 

most highly fluorescent cells, as higher availability of L-Asp results in higher expression 

levels of eGFP which, in turn, leads to higher fluorescent levels. This system has been 

successfully  used in the past for the deimmunization of EcASNase2 [179], though in that 

study the ultimate goal was not the isolation of catalytically improved mutants, but  of 

variants which were exhibiting kinetic properties similar to the wildtype enzyme. For our 

purpose, we tested this system by comparing the mean fluorescence signal obtained from 

cells expressing the EcASNase2 and hASNase3, and we found that those which were 

expressing the E.coli enzyme showed ~ 20-fold higher mean fluorescent signal as compared 

to those expressing the human enzyme (Results section 5.1.3.1, Figure 1). Interestingly, 

despite the ~ 2,000-fold difference between the kcat/KM values of those enzymes as 

determined in-vitro using purified enzymes (with the E.coli being more efficient), the 

intracellular mean fluorescence signal resulted from the complementation assay differs only ~ 

20-fold. This indicates that this assay provides only  a semi-quantitative means of evaluating 

the enzyme’s activity  in the cells through its correlation with eGFP fluorescence. In addition, 

it must be underscored the complex intracellular environment consisting of multiple 

metabolic processes which might interfere with the availability  of L-Asp, thus not allowing a 

strict quantitative correlation between the L-Asp  concentration (result of L-ASNase activity), 

with the eGFP production and ultimately the fluorescent signal. Yet, considerably improved 

hASNase3 variants in comparison to the wildtype enzyme, should possibly be discriminated 

through the intracellular eGFP fluorescence, followed by sorting and further biochemical 

characterization of the purified enzyme variants.

Subsequently, we analyzed five hASNase3 mutant libraries and more specifically, one epPCR 

and four site-saturation mutagenesis libraries. The average number of mutations in case of 

epPCR library was ~ 5 per kb (ORF of hASNase3 has 930 bp) as described in detail in the 

Methods section. However, after four sorting rounds, no fluorescence enrichment was 

observed, possibly due to the fact that, the generated mutations did not have a positive impact 

on the catalytic properties of the enzyme. On the other hand, it could well be that the 

mutations totally impaired the ability of the enzyme’s intramolecular activation, thereby 

resulting in inactive precursors despite the presence of glycine in the medium for the 

activation induction. This is another particular factor which must be considered and plays a 

crucial role in the engineering of hASNase3: mutations must not influence the ability  of the 
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enzyme to undergo the intramolecular activation step. Taking into account the fact that, the 

enzyme’s amino acid regions which can affect autoproteolysis are unknown and possibly 

unpredictable (unless a systematic site-directed mutagenesis study is performed highlighting 

such pivotal regions), it becomes understandable that additional, uncontrollable factors play 

notable roles in the successful hASNase3 engineering task. The generation of more epPCR 

libraries with higher error rates could provide a better basis for searching improved variants. 

It has been shown experimentally  in certain cases that, proteins with considerably improved 

properties or novel functions can be isolated from high error-rate epPCR libraries (~ 15 

mutations per kb); possibly due to the fact that, high mutation rates “unlock” unique 

sequences of the proteins’ sequence space, which are enriched in beneficially coupled 

mutations [296]. In other words, the more the mutations, the higher is the probability that 

those mutations interact in a positive manner (positive epistasis), thereby improving the 

proteins’ functions [297]. However, on the other hand, high mutation rates can lead to protein 

populations within which few sequences retain their functions. Therefore, an optimal error 

rate must be adjusted that provides a balance between functionality and novel sequences, and 

this is protein-dependent and experimentally challenging and time-consuming.

Given the known structure of hASNase3, we additionally  employed site-saturation 

mutagenesis  (SSM) experiments at  regions which are located at the first and second notional 

shell from the enzyme’s active site (see Methods section). Non-highly conserved amino acids 

were randomized since they  most likely tolerate mutations without considerable influence on 

the enzyme’s stability [298]. Four libraries were constructed by randomizing either four or 

two amino acids (two libraries with 4-codon and two libraries with 2-codon randomization, 

respectively) using degenerate primers with NNS (S: G, C) codons. NNS codons were chosen 

because only one stop codon is encoded (instead of three), and additionally the 

overrepresentation of the commonest variants is minimized (Arg, Leu and Ser are encoded 

each by  six codons and are overrepresented when NNN codons are used) [299]. 

Simultaneously, all twenty amino acids are still encoded, thus the diversity  of the library is 

not restricted. The first  SSM libraries were generated by randomizing four codons. The 

construction of big libraries consisting of the mutation of many amino acids (in the range of 

4-5) samples more extensively  the protein’s sequence space, thus the likelihood of the 

discovery  of variants with improved properties is higher as compared to smaller libraries (1-3 

amino acid randomization). Unfortunately, in case of hASNase3 the FACS-based screening 
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of both 4-codon randomization libraries did not lead to the identification of an improved 

variant. The mean fluorescence of the cells expressing the mutants was lower than the 

respective value of the wildtype enzyme, suggesting that, both libraries predominantly 

consisted of variants with worse catalytic properties than the starting molecule. Those results 

suggest that, the chosen enzyme’s regions for randomization cannot tolerate mutations 

despite the lack of high conservativity. In addition, the impact of each amino acid mutation 

on the enzyme’s activity and/or stability  remains unknown, unless deconvolution experiments 

are performed. For example, in case of SSM-LIB2 which did not show any fluorescence 

enrichment, it  is unclear whether the first set (Met193-Val194) or the second set of mutations 

(Cys202-Leu203) had the most negative affect on the enzyme’s activity. In order to address 

this question, the original 4-codon library  must be dissected into two independent 2-codon 

randomization libraries (one for Met193-Val194 and one for Cys202-Leu203), followed by 

further screening and characterization. This analysis would provide more information about 

the tolerance of specific regions towards mutations and would also indicate whether two 

regions interact in an additive or non-additive manner. Therefore, in future experiments, more 

combinations of amino acid randomization schemes must be attempted aiming at the 

sampling of more pathways within the fitness landscape. 

In contrast to the SSM-LIB1 and SSM-LIB2 (4-codons randomization), the next two smaller 

libraries SSM-LIB3 and SSM-LIB4, which were based on the mutation of two residues 

following the NNS scheme showed fluorescence enrichment during the screening process. 

After two rounds of sorting, we identified finally three variants, with the best one exhibiting 

up to ~ 6-fold better kcat/KM in comparison to the wildtype enzyme (see Results section). At 

this point, it is important to note that despite the 6-fold improvement of the enzyme’s 

catalytic properties, the respective arithmetic fluorescence mean of the cell population was 

not increased by 6-fold. In contrast, it showed a less than 3-fold increase in comparison to the 

wildtype. This confirms what was mentioned above regarding the only  ~ 20-fold difference 

between the EcASNase2 and hASNAse3, despite their 2,000-fold difference of their catalytic 

properties, further supporting the conclusion that it  is a semi-quantitative approach for the 

enzyme activity determination.

The aforementioned best variant (DM1) was isolated from SSM-LIB3 which was constructed 

by randomizing two amino acid residues very close to the binding pocket (~ 5 !), the Ile189 

and Val190. The sequencing of the mutated variant revealed the substitution of Ile189 by a 
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Thr and Val190 by an Ile residue. Strikingly, the second improved variant (DM2) which was 

isolated from this library (~ 2-fold kcat/KM improvement as compared to the wildtype) had the 

original residues mutated in a reversed manner i.e. Ile189 was substituted by Val and Val190 

by Ile. In the wildtype hASNase3, the side chain of Ile189 points towards the active site, thus 

providing a space-filling hydrophobic group to the substrate’s binding pocket. The 

replacement of this Ile by Thr most likely offers more space for substrate binding, though 

space alone does not necessarily lead to higher activity. An additional hint to the possible 

rationalization of the effect of those mutations can be obtained by the DM2, which has a Val 

residue at this position. The two variants (DM1 and DM2) carry  the same mutation at 

position 190 (Ile), but DM1 has a Thr, and DM2 has a Val at position 189, respectively. The 

two mutants share almost the same KM (1.3 mM  for DM1 and 1.58 mM for DM2), but they 

are characterized by  considerably different kcat values with the one of DM1 being ~ 4-fold 

higher. Those observations strongly suggest that the presence of a polar residue at position 

189, favors particularly the substrate turnover rather than the substrate binding. Though, it 

must be emphasized that both sets of mutations lowered equally  (~ 50 %) the KM value. The 

third improved variant (DM3) was isolated from SSM-LIB4, which was generated by 

randomizing two amino acids (Arg143 and Arg147) located at the surface of hASNase3, quite 

distant from the binding pocket (~ 17 ! for Arg143, and 14 ! for Arg147). Interestingly, the 

variant has replaced the positively  charged Arg143 by a negatively  charged Glu residue, and 

the Arg147 by Lys, which is also positively charged. This variant exhibited the lowest KM 

value in comparison to the other isolated mutants, which is ~ 4-fold lower than that of the 

wildtype, while they  both share similar kcat values. The side chains of both Arg143 and 

Arg147 point outwardly with respect to the enzyme’s active site, while the distance between 

them (~ 5 !) is somewhat longer than the upper allowable limit for van der Waals 

interactions (normally, side chains interact via van der Waals interactions when they have less 

than 4 ! distance [300]). Yet, this does not exclude the possibility that the oppositely charged 

side chains of Glu143 and Lys147 may  interact, thereby  stabilizing the !-helix which 

accommodates them. In protein engineering it is generally believed that mutations at specific 

surface locations can considerably increase stability, possibly because the propensity  of these 

regions to initiate unfolding is decreased [301]. Indeed, the stability  of DM3 increased in 

comparison to the wildtype as well as to the other isolated variants, as evidenced by the 

increase of the enzyme’s Tm value, determined by differential scanning fluorimetry (DSF). 
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Furthermore, this set of mutations on the surface of hASNase3 is another counterexample 

where amino acid substitutions far away from the active site have a notable impact on the 

catalytic properties of enzymes [302]. 

Considering the fact that we isolated three variants from two independent sets of randomized 

mutations, we reasoned that  combination of those amino acid substitutions, resulting in two 

quadruplet variants (QDM), could have a positive cooperative effect, thus further improving 

the catalytic properties of hASNase3. Therefore, we combined the mutations of DM1 with 

DM3, and DM2 with DM3, resulting in the generation of QDM1 and QDM2 variants. 

However, despite the improved thermal stability of both QDM (both showed a Tm value of ~ 

68 !C) in comparison to the initial combined variants, their catalytic efficiencies were not 

ameliorated. In case of QDM1, which combines the Thr189-Ile190 and Glu143-Lys147 

mutations, both kcat and KM deteriorated. In contrast, QDM2 displayed an improved kcat, (very 

close to this from DM1) which is the highest among all mutants characterized in this work, 

though this improvement was more than neutralized by its KM value, which was reconverted 

at the wildtype’s levels. The overall catalytic efficiency  kcat/KM for both QDMs, were found to 

be lower than those of the initial combined variants and therefore, it appears reasonable to 

suggest that  the two combined set of mutations interact in a negative cooperative manner 

regarding the catalytic enzyme’s properties.

The effect of more than one mutation on proteins’ properties such as stability, substrate 

binding and specificity  and catalytic efficiency  has been at the center of protein engineering 

studies for many years and brings up the question about additivity  and non-additivity. Are the 

effects of two distinct  point mutations, or more general of two sets of mutations, added up 

mathematically when they are combined in a double or multiple mutant? Or do they interact 

in a non-additive (epistatic) manner, leading to either positive or antagonistic effects? Those 

questions are very difficult to answer, and the literature is full of examples covering both 

cases (additivity and non-additivity) [303, 304]. It is generally believed that epistasis may 

occur when the side chains of two residues are in close proximity, or when one or both cause 

a change in the reaction mechanism of the rate-limiting step  [305]. On the other hand, in 

cases where mutations which are located far away  from each other, epistasis is more 

challenging to interpret and explain. In case of hASNase3, the combination of the three sets 

of mutations did not  lead to further catalytically  improved mutants, though their thermal 

stability  was increased. More in-depth analyses need to be carried out involving urea-
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denaturation experiments or differential scanning calorimetry, in order to determine the !!G 

(difference between the free energy of the wildtype and the mutant) of all mutants studied in 

this work. Those informations will provide more definite answers to the question of additivity 

and non-additivity  for hASNase3. If the !!G could be guessed based on the thermal stability 

results, then indeed the final stability of the QDMs increased, pointing to positive epistasis 

concerning the stability, in contrast to their catalytic efficiencies.

The fitness landscape of proteins is vast [306]. For example, for a relatively small protein of 

300 residues (hASNase3 has 309) there are 5700 single amino acid substitutions and more 

than 3x106 ways to make simply  two amino acid replacements. According to experimental 

results obtained from a different number of proteins, most of the mutational pathways lead to 

dead-ends and finally to nonfunctional and worse variants [307]. Therefore, the identification 

of efficient pathways to initiate a directed evolution experiment is very challenging, since 

only few pathways in Darwinian evolution lead to fitter proteins [308]. The generation of 

large libraries by randomizing many amino acids (equal or more than four) is very essential 

for a higher coverage of the sequence space. On the other hand, the likelihood of getting 

trapped in local minima (pathways of the fitness landscape which are dead-ends) is higher 

because accumulated mutations become nonviable [309]. Analysis of the directed evolution 

literature suggests that, in several cases successful engineering involved simple uphill walks 

in the fitness landscape, one mutational step  at a time [310]. Quite often, single amino acid 

mutations are responsible for the functional change, despite the fact that many mutations may 

have been introduced [311]. In case of hASNase3, the 4-codon randomization libraries did 

not result in the isolation of catalytically improved variants. By contrast, the ~ 103-fold 

smaller, 2-codon randomization libraries allowed us to unlock enzyme’s regions which can 

have a positive influence on the catalytic properties upon mutagenesis. Yet, it must be 

emphasized that in the case of the large libraries, the lack of improved variants might be due 

to the mutational intolerance of the specific regions, rather than the number of randomized 

amino acids. In order to evaluate this assumption, additional libraries must be generated by 

mutating a smaller number of residues around those regions.The engineering of hASNase3 

appears to be a very  challenging task for different reasons. The necessity for the 

intramolecular activation step adds an additional difficulty to the system, and it  must always 

be taken into consideration before the design of mutant libraries. Perhaps, it would be 

beneficial and contributive before the construction of a library for subsequent screening 
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rounds, if a preliminary  short mutational analysis around the region of interest were 

performed, thereby investigating the tolerance (regarding the ability of the enzyme to get 

autocleaved) of this region against  mutations. A possible way to circumvent this activation 

step, is the use of the most recent circular permutant-like construct development, though this 

would entail further standardizations of the screening system, using different plasmids (this 

construct did not produce protein when it  was plugged into pET14b vector). In addition, it 

would be desirable a codon-optimized for E.coli sequence to be used for the circular 

permutant-like version, because the expression levels were found to be dramatically lower 

than the wildtype enzyme [288]. Otherwise, it appears to be a promising alternative to the 

wildtype hASNase3, as template for mutagenesis. 

The catalytic properties of this enzyme are considerably poor and far away of any potential 

anti-leukemic application. When the wildtype enzyme was incubated with two leukemic cell 

lines (MOLT-4 and SD1) no effect was observed (data not shown), while EcASNase2 killed 

the cells within one doubling event [257]. This lack of effect is due to the very high KM of the 

enzyme (3 mM) and the very  low L-Asn concentration in the culture medium (~ 100 µM) 

which is similar  to the steady-state serum concentration [312]. Furthermore, the turnover of 

hASNase3 is significantly  lower (~ 1 s-1 at 25 !C and ~ 3.5 s-1 at 37 !C) than that of 

EcASNase2. Given the fact that, in case of ALL a very  fast depletion of the L-Asn serum 

levels must be achieved in order to induce remission, the kcat must also be substantially 

improved (EcASNase2 has a kcat ~ 22 s-1 at  37 !C and the other FDA approved enzyme from 

ALL treatment from Erwinia chrysanthemi exhibits a kcat  > 300 s-1 at  37 !C). The lack of a 

Ntn-hydrolase homolog which would display  very promising catalytic properties and could 

form an interesting model for the rational engineering of hASNase3, further complicates the 

situation. In addition, systematic analysis of the protein engineering literature shows that, 

there are very  few examples where both kinetic parameters (kcat and KM) for the wildtype 

substrate were improved. In certain cases, indeed, dramatic improvements regarding the 

catalytic efficiency of enzymes have been reported, but  they are predominantly related to 

substrate analogs or new substrates, but not against the enzyme’s natural substrate [313]. The 

isolation of the improved mutants which were characterized in this work forms a good 

starting point  for further mutagenesis and screening experiments. Notably  the DM1 and DM3 

which showed the most improved properties can be used as templates for epPCR or SSM. 

Perhaps, a cell-killing effect of the three DMs against leukemic cells is worth testing, though 
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based on their catalytic properties it appears reasonable to assume that such an effect is 

difficult to observe. Finally, it  is progressively becoming clearer through the different 

directed evolution studies that, the best indicator for the evolvability of an enzyme is its 

natural history [314]. Enzymes from large families displaying diverse substrate activities are 

easier to evolve given the fact that the same natural evolutionary mechanisms govern and 

dictate the obtainment of new functions at the laboratory level as well. Connecting this belief 

with hASNase3, we could be more optimistic about its evolvability  since it satisfies the two 

aforementioned characteristics: it is a member of a very large family of enzymes (Ntn-

hydrolases) and accepts a different number of substrates (primarily  several derivatives of L-

Asp dipeptides, and secondarily  L-Asn). What is needed, is to uncover the correct pathway 

among the vast number of pathways of the fitness landscape, which lead to local maxima.

8.2.3.2 Development of a droplet-based microfluidic high-throughput 

screening system

In the present work we developed a high-throughput enzyme-activity  screening platform by 

capitalizing on the droplet-based microfluidic technology. The great potential of this 

technology has been recently demonstrated in a wide range of applications, including high-

throughput screening setups in directed evolution approaches [200-205]. The major challenge 

for enzyme evolution experiments relying on the droplet-based microfluidic setups is the 

availability of a highly  sensitive fluorescence assay. Given the very small droplets volume 

(range of pL or fL) within which the reactions take place assays utilizing absorbance as 

output, fail to be used due to severe lack of sensitivity  (the light path length is extremely 

small). On the other hand, prior to this work, there was no available fluorescent assay 

utilizing the natural substrate of L-ASNase (L-Asn) to monitor its activity. This was our 

motivation to develop a novel L-ASNase assay, which would enable the monitoring of the 

enzyme’s activity in the fluorescence mode solely relying on L-Asn as the natural substrate. 

To this end, we coupled the L-ASNase activity  step to a second one in which the generated L-

Asp is oxidized to iminoaspartate and hydrogen peroxide. Hydrogen peroxide can be 

converted by horseradish peroxidase in the presence of Amplex Red to Resorufin, which 

shows excellent  fluorescent and absorption properties. The assay can be used equally  well 

either to the fluorescent or to the absorbance modes as demonstrated in our published work 
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[265]. In addition, it can be used to detect very  low levels of L-Asn from samples (down to 

0.1 µM) performing end-point measurements or, to detect L-ASNase activities using aliquots 

of serum spiked with L-ASNase. The latter possibility might be very  useful in clinics where 

the determination of residual L-ASNase activities from serum samples obtained from patients 

treated with L-ASNase is very essential [315]. 

Once the assay was standardized using macroscopic volumes, we tested its applicability in 

microscopic volumes (droplets). As evidenced by our results described in the respective 

section (Results section 5.2.3.1, Figure 5), the assay behaves almost identically  under both 

conditions enabling the accurate determination of L-ASNase activity using purified enzyme. 

The next steps included trials to determine L-ASNase activity at the single-cell level, 

attempting to form the basis for the development of a high-throughput system for directed 

evolution experiments. The use of droplet-based microfluidic setups as screening platforms 

for the screening of enzyme mutant libraries has been demonstrated in many cases, and there 

is an exponentially  rising interest towards this technology. In many of the reported cases of 

directed evolution experiments, yeast was used as a host organism for the expression of the 

mutated sequences, by  displaying the molecule of interest on the outer surface [199]. 

Alternatively, in-vitro expression systems have been also successfully employed [203]. The 

use of E.coli cells for the expression of enzymes subjected to mutagenesis cycles, followed 

by compartmentalization in emulsions has been reported a few years ago [198]. In this case, 

the enzyme of interest (arylsulfatase from Pseudomonas aeruginosa) was produced in the 

cytoplasm, and, consequently, the cells were lysed in the droplets using commercially 

available detergents, in order to liberate the enzyme and make it  accessible to the substrate. 

However, such approaches were not proven beneficial in our case, because the use of 

detergents inactivated the helper enzymes (L-AspOx and HRP), thereby not allowing us to 

monitor the L-ASNase activity (see Results section 5.2.3.2)

Therefore, in the present study, we made use of the anchored periplasmic expression (APEx1) 

in order to display  the EcASNase2 onto the periplasmic side of the inner membrane of E.coli 

cells via fusion to the signal peptide and the first six N-terminal amino acids of the inner 

membrane lipoprotein NlpA [155,275]. This technology has been shown to have great 

potential in the directed evolution of single chain antibody fragments, which were anchored 

in the inner membrane, and upon disruption of the outer membrane by chemical and 

enzymatic means, they interacted with the respective antigens for subsequent FACS analysis. 
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The use of the APEx1 system helped us to circumvent a great number of issues related to cell 

lysis in droplets. Multiple attempts to lyse the cells using lysing agents like lysozyme and 

polymyxin B failed. Different droplets exhibited varying degrees of enzymatic activities, 

most likely attributed to the different degrees of lysis of the compartmentalized cells. In 

addition, the lysis of the cells would entail additional transformation steps in order to recover 

the plasmid DNA of the sorted droplets for the next round of selection. The use of the APEx1 

system allowed us to display EcASNase2 in the inner membrane of the cells and monitor 

enzymatic activity  upon incubation with the assay compounds. The amino acid L-Asn is a 

small molecule, thus its diffusion in the membrane via crossing only the outer membrane is 

not limited. On the other hand, the produced L-Asp can be exported from the periplasm in a 

similar manner, thereby being accessible to the L-AspOx for the subsequent Amplex Red-

coupled reaction steps. Initial attempts to disrupt the outer membrane by lysozyme and 

EDTA making the substrates directly accessible to the displayed enzyme, resulted in 

significant loss of L-ASNase activity (~ 50%). This was to be expected since it has been 

shown that EDTA inhibits the L-ASNase reaction [257]. Yet, this was not proven to be a 

significant impediment of the system, since as mentioned above, the non-disruption of the 

outer membrane did not  limit the reaction, mainly  due to the small size of L-Asn and L-Asp 

enabling them to diffuse easily into and out of the periplasm. 

At this point it is important to note that, there are several other display  technologies which 

can be applied using E.coli cells, though with certain disadvantages. The periplasmic display 

of proteins anchored in the outer membrane is also possible, by creating fusions between the 

protein of interest and endogenous outer membrane proteins. A noteworthy example which 

has been utilized several times is the Lpp-OmpA system [316]. This hybrid system is based 

on the properties of the E.coli major lipoprotein Lpp and the outer membrane protein A 

(OmpA). Lpp is an outer membrane lipoprotein which faces the periplasmic side and is 

absolutely essential for the correct localization of the heterologous protein to the outer 

membrane [317]. OmpA consists of eight anti-parallel !-stands forming a !-barrel which 

span the whole outer membrane and is responsible for the display of the protein of interest  on 

the outer surface of the cell [318]. Neither Lpp nor OmpA system can independently  display 

proteins and their combination is required for this goal [319]. What is combined is the 

peptide signal sequence and the first nine amino acids of the Lpp protein and a truncated 

form of OmpA. The major disadvantage of this outer surface display system is the need to 
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generate very big constructs considering the large parts of the Lpp-OmpA fusion which must 

be combined. The situation becomes even more complex if the protein of interest is a large 

protein. In addition, the mechanism of display is quite complicated involving many steps 

from the expression of the fusion construct in the cytoplasm, transport to the periplasm, and 

from there crossing the protein of interest through the outer membrane, followed by 

anchoring of the OmpA protein’s loops in the membrane. Furthermore, inserting large 

proteins into the external loops, frequently interferes with localization of the fusion protein, 

thereby resulting in unsuccessful display [317]. Other systems involve the simple periplasmic 

expression of proteins, similar to the APEx1 approach without anchoring the proteins on the 

inner membrane. However, it  has been found that periplasmic expression may lead to 

spontaneous disruption of the outer membrane due to accumulation of high amounts of 

proteins in the periplasm [320]. Assuming that this may occur in an uncontrollable manner, it 

would result in loss of the expressed mutants during expression in the growth medium, and 

what would be compartmentalized in emulsions would be simple spheroplasts without the 

protein of interest.

In contrast, the APEx1 system comprises a number of certain advantages as compared to the 

aforementioned systems. It involves only  a short N-terminal fusion consisting of the peptide 

leader and the first six amino acid of the mature lipoprotein NlpA while the translocation to 

the periplasm is mediated by  the Sec pathway, only  by crossing the inner membrane. The 

lipoprotein NlpA display may  provide a more uniform display as compared to periplasmic 

expression, thus resulting in a more homogeneous signal during the analysis by any means 

(droplets, FACS e.t.c.). If the protein of interest is to interact with a big substrate molecule 

which cannot cross the outer membrane (e.g. antigen in case of antibody display, or big 

organic compounds), the outer membrane can be permeabilized chemically and 

enzymatically without loss of the anchored molecule, thereby offering the possibility  for 

direct interaction [155]. 

The displayed EcASNase2 in the inner membrane of E.coli cells was assayed successfully 

applying the 3-step Amplex Red fluorescent assay. Based on the activity rates using known 

concentrations of purified enzyme, we calculated the amount of the anchored enzyme, which 

was approximated very well by quantitative immunoblotting analysis of the membrane 

fraction obtained after cell fractionation using anti-His6 antibodies (see Results section 

5.2.3.2). The cells after the activity measurements maintained their viability, and this was 
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tested by plating them onto agar plates supplemented with the respective antibiotic. The cells 

grew forming almost  equal number of colonies as before their compartmentalization in 

emulsions. This is another great advantage of this display approach which enables cell 

recovery excluding additional transformation or amplification via PCR steps for the recovery 

of the encoding DNA sequences of interest. The next steps for the development and the 

standardization of the droplet-based microfluidic screening system include the 

compartmentalization of cells displaying the hASNase3 enzyme and monitoring its 

enzymatic activity. For the first preliminary  experiments the E.coli enzyme was used because 

it is 2,000-fold more efficient, its preparation is relatively easy since no activation step is 

required, thus facilitating overall the activity measurements. In addition, the mixing of two 

different droplet populations, one carrying EcASNase2 and the other hASNase3, followed by 

subsequent sorting of the most highly fluorescent emulsions based on the distinct enzymatic 

activities is very essential. Provided that this droplet discrimination is possible and the 

isolation of the desired events can take place, then the system would be ready for the 

screening of real hASNase3 mutant libraries. 

In summary, it must be underscored that the availability of two or more different high-

throughput screening systems for the analysis of enzyme mutant libraries is a privilege. In our 

case, by  applying the FACS-based screening approach and analyzing overall five libraries, we 

managed to identify  eventually three hASNase3 variants with several fold improved catalytic 

properties. Perhaps, the analysis of more libraries sampling more the sequence space might 

yield more efficient mutants. However, the FACS approach provides an indirect means of 

measuring the enzymatic activity and this is largely evidenced by the fact  that, EcASNase2 

and hASNase3 display  catalytic properties differing by a factor of ~ 2,000-fold, while the 

respective genetic complementation control experiment using FACS, showed a difference 

around 20-fold. In addition, the variant  which exhibited a 6-fold higher kcat/KM value as 

compared to the wildtype, was isolated from a library which showed a less than 3-fold 

fluorescence enrichment ( µ ~ 50 for wildtype, and µ ~ 130 for the library  enriched with 6-

fold improved mutant). On the other hand, the microfluidic approach provides a more direct 

means of enzymatic activity determination than FACS, given that what is fluorescently 

detected, is the enzyme’s catalytic activity measured in-vitro. Both technologies can be 

proven to be extremely powerful for the characterization of mutant libraries and must be 
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considered complementary towards a common ultimate goal, which is the isolation of 

catalytically improved hASNase3 variants. 

8.3 Biochemical characterization of hASNase1

Inspired by the necessity to develop  a human L-ASNase for an alternative treatment of 

leukemia, we searched for other enzymes of human origins which could possess L-ASNase 

activity. Performing BLASTP analysis in the database using as template the cytoplasmic and 

periplasmic E.coli enzymes, we identified a 573-residue enzyme, designated 60-kDa human 

lysophospholipase, whose N-terminal domain showed high amino acid sequence identity 

(47%) with the EcASNase1 [57]. This enzyme comprises two domains; the N-terminal 

domain (~ the 40 kDa part  of the enzyme) resembles significantly the EcASNase1 enzyme, 

while the C-terminal domain (the rest 20 kDa) is homologous to ankyrin repeat-like domains 

[55,56]. Strikingly, this is a very poorly characterized protein, and this is evident of a single 

study which is available in the literature [56]. In this work, it  was demonstrated that the full-

length 60-kDa human lysophospholipase interacts with a serine/threonine protein kinase, 

named Sgk1, an enzyme which is involved in various cell proliferation pathways. More than 

a decade ago, a Japanese group had reported on the rat homolog of the 60-kDa human 

lysophospholipase, isolated from rat liver [55]. In this study, the authors had shown that the 

full-length rat enzyme possesses three distinct activities acting as lysophospholipase against 

lysophosphatidylcholine, platelet-activating factor (PAF) acetylhydrolase as well as L-

ASNase; though these enzymatic activities were determined only qualitatively using lysates 

from HEK293 cells overexpressing the respective gene rather than purified enzyme 

preparations. Several years later, the lipase activity was confirmed for the human 60-kDa 

lysophospholipase, but the ability  of this enzyme (full-length) to hydrolyze L-Asn was not 

demonstrated [56]. 

We generated a series of N-terminus truncations of the full-length 60-kDa lysophospholipase, 

corresponding to the L-ASNase domain [57]; the expression of the full-length enzyme was 

not successful using E.coli as host organism, though different vectors, tags and expression 

conditions must be further tested. Interestingly, one of the tested constructs produced a 

soluble truncated L-ASNase domain, which we designated hASNase1 because of the high 

homology  with EcASNase1. Most importantly, the purified recombinant enzyme showed L-
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ASNase activity. However, when we tested it for lysophospholipase activity using a mixture 

of lysophospholipids as substrates, we did not detect any activity [Appendix, Part 3]. Those 

data raise several questions concerning the catalytic properties of this enzyme: Does this 

enzyme eventually possess lysophospholipase activity? If yes, then does the active site for the 

lipase activities reside in the L-ASNase active site? What is the role of the C-terminus 

ankyrin repeats? Could the absence of the C-terminus ankyrin repeat of the truncated L-

ASNase domain cause the lack of the lipase activity we could not measure? Ankyrin repeats 

mediate exclusively protein-protein interactions, and no ankyrin repeat domain has been 

found to hold catalytic properties [321]. All the upper questions are more difficult to answer 

given the unknown cellular functional role of the full-length enzyme. Mammalian cells 

encode a great number of enzymes which act as lysophospholipases, forming two large 

families: the small and the big mammalian lysophospholipases [322]. Those enzymes 

catalyze the conversion of the substrates which are supposed to be hydrolyzed by  the 60-kDa 

rat and human lysophospholipases. Those facts plausibly bring up  the question about the 

physiological role of this enzyme in cells, considering in addition the existence of the N-

terminus L-ASNase domain.

When we kinetically characterized hASNase1, we found that  the enzyme does not follow 

Michaelis-Menten kinetics but instead, it exhibited sigmoidal kinetic behavior similar to its 

homolog EcASNase1 [57]. The structural determination of the E.coli enzyme revealed a 

tetrameric oligomeric state, as well as additional, distinct from the active site, binding sites 

for L-Asn. This fact, in combination with the enzyme’s sigmoidal kinetics showing a positive 

response against increasing concentrations of L-Asn, defined the E.coli homolog as an 

allosteric enzyme which shows positive cooperativity  with a Hill coefficient (nH) ~ 2.6 and 

S0.5 ~ 1.2 mM [51]. Those values do not considerably  differ from what we determined for the 

E.coli enzyme (nH ~ 3.5 and S0.5 ~ 0.4 mM) [57]. hASNase1 displayed also sigmoidal steady-

state kinetics with a nH ~ 3.9 and S0.5 ~ 11.5 mM. However, when we analyzed the native 

molecular weight of this enzyme in a size exclusion chromatography column, astonishingly 

we found that the enzyme was running as a monomer. In addition, when we repeated the 

same experiment in the presence of the substrate L-Asn, we observed a shift of the main 

chromatographic peak to higher molecular weights, indicating that  the presence of substrate 

induces the formation of hASNase1 oligomers. Yet, the main state of the enzyme was 

monomeric, and notably  under assay  conditions where we used lower enzyme concentrations 
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than in the size-exclusion chromatography experiment, the predominant form of the enzyme 

is monomeric.

This pronounced allosteric behavior of hASNase1 with very  high Hill coefficient, given its 

monomeric state is difficult to explain. However, despite the steady-state kinetic analysis 

which clearly supports the enzyme’s allosteric behavior, we further probed the putative 

allosteric site by fluorescence labeling of a Cys residue which is located in the binding cavity 

of this site according to a homology structural model we built based on the EcASNase1 

structure [57]. Titration of the labeled enzyme by  L-Asn caused fluorescence quenching, 

indicating interactions between the substrate and this enzyme’s domain, thereby further 

supporting the existence of an allosteric site. Furthermore, mutational analysis of hASNase1 

revealed that the enzyme does not tolerate any mutation of crucial residues located in either 

the active site or the allosteric site. In addition, despite the high Hill coefficient, hASNase1 

exhibited a S0.5 value of ~ 11.5 mM  raising more questions about its physiological role in 

cells. However, this relatively  high S0.5 value falls well within the range of free 

concentrations of intracellular amino acids (> 10mM), including L- Asn, reported for 

mammalian cells [323], thus making the enzyme operate efficiently particularly at elevated 

substrate concentrations.

In fact, a number of monomeric enzymes displaying allosteric behavior have been reported, 

with human glucokinase enzyme being the most thoroughly characterized [324]. Glucokinase 

(also called hexokinase IV), unlike L-asparaginase, is a two-substrate (ATP plus glucose) 

enzyme and displays a moderate degree of allostery [325]. Nevertheless, monomeric enzymes 

with single binding sites like hASNase1, can also show allostery  [326]. Two basic models 

have been proposed aiming at the mechanistic explanation of monomeric allostery: The 

mnemonic model [327], and the Ligand-Induced Slow Transition (LIST) model [328]. Both 

models assume the existence of two different enzyme conformations which are characterized 

by distinct affinities for the substrate (low and high affinity states). Depending on the 

substrate concentration, certain conformational changes may occur, thus perturbing the 

equilibrium of the two states in favor of the high-affinity  state and an increased catalytic 

activity. Based on the observed sigmoidal kinetic behavior and the monomeric state of 

hASNase1, it appears reasonable to assume that this is another example of a monomeric 

enzyme exhibiting positive allosteric regulation. Additionally, given the fact that L-Asn plays 

a dual role of being both substrate and regulator of hASNase1, L-Asn can be considered as a 
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homotropic allosteric effector of this enzyme which adds to the constantly growing number 

of allosterically regulated proteins [52].

Summarizing, it  is very important to note that despite the classification of hASNase1 as a 

bacterial-type L-ASNase, its kinetic properties are not better than those of hASNase3. 

Considering especially its marked allosteric properties with very high both Hill coefficient 

and S0.5 values, it becomes apparent that the engineering of this enzyme is more challenging 

than the engineering of hASNase3. On the other hand, hASNase1 displays a higher turnover 

number than hASNase3 (~ 7 s-1 as opposed to 3 s-1 at  37 !C), though hASNase1 operates at its 

maximal velocity  under L-Asn concentrations which are remarkably  higher than the steady-

state serum concentration (~ 100 µM). Furthermore, the thermal stability  of hASNase3 is 

considerably higher than that of hASNase1 as evidenced by the ~ 10 !C difference performing 

DSF analysis. Overall, based on our accumulated biochemical and biophysical data for both 

human L-ASNases, hASNase3 has been studied more extensively, and the recent isolation of 

the three catalytically improved mutants has formed a solid basis for further improvement. 

Regarding hASNase1, its structural determination would be beneficial as an immediate next 

step, in order to shed more light on structural characteristics responsible for its pronounced 

allosteric behavior; offering the possibility of a more rational engineering design aiming at its 

catalytic amelioration. 

8.4 Characterization of polyelectrolyte microcapsules filled with 

catalytically active ScASNase1 and EcASNase2 

In the present work, despite our efforts to characterize and engineer L-ASNases of human 

origin as alternatives for treatment of ALL, we additionally focused on complementary 

technologies for the improvement of the currently available drugs, or for the future 

enhancement of improved hASNases. Those technologies have defined the field of drug 

delivery systems and have found a vast number of biomedical applications in recent years 

[215-219]. There are excellent reviews which highlight the most recent advances in this field 

[122,123,128]. We exclusively capitalized on the technology of Layer-by-Layer (LbL) 

polyelectrolyte microcapsules (PECs). This technology  has been introduced in the field 

during the last fifteen years and offers the possibility of packaging different biomolecules of 

interest in spherical structures consisting of biocompatible and biodegradable polyelectrolytes 
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[125-128]. The advantages of this approach are severalfold and are discussed in detail in the 

Introduction. In case of L-ASNases, given their biomedical applications as anti-leukemic 

regimens, their encapsulation could potentially  increase their in-vivo half-life by protecting 

them against the proteases’ attacks and by preventing their interaction with antibodies which 

cause their so-called silent inactivation [105]. By packaging the Saccharomyces cerevisiae L-

ASNase1 (ScASNase1) and EcASNase2 (the currently  FDA-approved anti-leukemic drug) in 

PECs, we investigated the encapsulation effect on their biochemical stability, resistance 

against proteases degradation, as well as their efficacy against leukemic cells [257]. 

The fabrication of PECs involves the use of an initial sacrificial template, typically CaCO3, 

where the biomolecules of interest (e.g. enzymes, proteins, antibodies, DNA etc) are adsorbed 

[222,224]. The loading of the molecules is followed by the successive deposition of 

negatively and positively  charged polyelectrolytes onto the spherical surface of the initial 

template. Once, the desirable number of polyelectrolyte bilayers is deposited, the sample is 

subjected to a final treatment for the dissolution of the inner template, resulting in the 

eventual entrapment of the molecules in the polyelectrolyte shell forming the so-called 

hollow microcapsules. This final treatment for the template dissolution usually involves the 

use of quite harsh conditions such as lowering the pH to 3 or 2, raising the temperature up to 

50-60 !C, or using EDTA concentrations in the range of 0.2-0.3 M aiming at the complexation 

of the Ca2+ by EDTA, thereby dissolving the inner CaCO3 cores [124]. However, while 

certain molecules like small organic compounds or even DNA can tolerate such extreme 

treatments, for proteins and notably enzymes this sort of manipulations can result in loss of 

their function. Indeed, when we used 0.2 M  EDTA to dissolve ScASNase1-filled CaCO3 

cores, the enzyme totally  lost its activity [257]. EDTA titrations against ScASNase1, revealed 

that the enzyme can only tolerate up to 20 mM EDTA concentrations without being affected. 

Based on these observations, we developed a protocol for PEC fabrication using very low 

EDTA concentrations in comparison to the standard protocols [223,224]. After the 

polyelectrolyte layers deposition, the sample was subjected to exhaustive dialysis (1:1000 

volume ratio) against the working buffer containing 20 mM EDTA. Following this approach, 

we managed to minimize the exposure of the enzyme to high concentrations of EDTA which 

has inhibitory effects on the enzymatic activity  and simultaneously, the dialysis against a 

large buffer:sample volume ratio mildly dissolved the inner CaCO3 cores, thus forming PECs 

with fully active ScASNase1 [257].
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The final capsules were characterized by confocal and scanning electron microscopy, which 

confirmed the formation of intact, hollow PECs with an average diameter of 2 µm. This 

fabrication protocol might be useful for other cases in which labile molecules are to be used 

for the preparation of PECs. Subsequently, we investigated the stability of the encapsulated 

ScASNase1 by treating the capsules with proteases such as thrombin and trypsin, two 

enzymes which have been shown to degrade the therapeutic EcASNase2 during the treatment 

of ALL. In addition, the ScASNase1-filled PECs were incubated at  the physiologically 

relevant temperature of 37 !C, and at 4 !C and their residual activity was assessed at different 

time points by assaying an aliquot from the initial mixture, in order to determine the 

isothermal inactivation rate and the storage stability of the encapsulated enzyme. Our results 

convincingly  showed that the encapsulation of ScASNase1 dramatically improved the storage 

stability  of the enzyme as well as its stability at 37 !C in comparison to the free enzyme. 

Moreover, the resistance against trypsin and thrombin proteolysis was considerably 

improved. For example, trypsin totally inactivated the free enzyme after one hour of 

incubation at 37 !C, while the encapsulated enzyme retained its activity even after seven hours 

of incubation. To extend our in-vitro findings to the cell culture level, we incubated two 

different leukemic cell lines (MOLT-4; T lymphoblastoid type of cells, and SD; T leukemic 

cells) with free and encapsulated ScASNase1 including as control the EcASNase2 (FDA-

approved drug) in independent treatments, aiming at the simulation of conditions in the 

patients’ serum. In parallel, similar cell-PECs samples were prepared by including in the 

mixtures the combination of thrombin and trypsin at concentrations which are present under 

physiological and pancreatitis conditions, respectively  [257]. We found that incubation of the 

free enzyme with the proteases resulted in limited cell killing, while the encapsulated 

enzymes caused cell death to similar levels with the samples which were lacking proteases. 

Those data clearly indicate that, the presence of the proteases degraded the enzymes, thereby 

not allowing them to deplete the L-Asn levels of the growth medium which would cause cell 

death. On the other hand, the encapsulated enzymes were protected within the shell of the 

PECs preventing the proteases from inactivating them, allowing them to deprive the L-Asn in 

the medium causing cell killing.

Our preliminary in-vitro results concerning the benefits of the encapsulation of therapeutic 

enzymes like L-ASNase are very promising. However, it would be an exaggeration to praise 

the PECs-L-ASNase system as immediately available for treatment. Certain important issues 
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must be addressed in the future for better characterization and improvement of PECs-based 

systems. One of the greatest challenges in the field is the prevention of aggregation of the 

polyelectrolyte capsules [242]. Due to their cationic and anionic properties, the capsules have 

an inherent tendency to form clusters and aggregate. This is a major limitation for their 

biomedical applications, because the aggregated capsules could cause severe problems in 

blood stream through the blood vessels. Another challenge in the field is related to the 

quantification of the loaded drug onto the capsules, and more specifically of proteins. The 

following of the drug amount which is loaded onto the initial sacrificial template is possible, 

but it is no longer doable once the deposition of the poly-amino acid electrolytes is initiated. 

The reason is that, all the available assays for the quantification of proteins interfere with 

such polyelectrolytes. Additionally, during the successive cycles of the polyelectrolytes 

deposition and washing, a certain amount of the initially used protein amount is lost. 

Therefore, the only  possible route for estimation of the final loaded protein amount is 

indirectly by subtracting from the initial amount, the lost protein fractions during deposition 

and washing. However, this approach includes a very high degree of experimental error, 

thereby often leading to inaccurate measurements of encapsulated protein. The use of 

enzymes offers the privilege to evaluate approximately the efficacy of the capsules through 

enzymatic activity determinations, though this is not possible with other proteins. Last but not 

least, it is highly  debatable whether the PECs themselves are immunogenic or not, and this 

issue certainly must more carefully and systematically  be addressed [329,330]. We are 

currently probing the general applicability  of our experimental strategy to more sensitive 

biomacromolecules such as hASNase1 and hASNase3. Notably, we embarked on 

encapsulation of hASNase3 and the different mutants we recently isolated and could replace 

enzymes of nonhuman origin.
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Appendix

Part 1. To test whether free glycine or other, structurally  related, amino acids would 
accelerate autoproteolytic processing of Ntn-hydrolases other than hASNase3, we cloned, 
recombinantly expressed in E.coli and purified the human Taspase1, which was incubated 
with various compounds as shown in Figure1.

Figure 1. Incubation of Taspase1 with different concentrations of glycine, serine, alanine 
and threonine. Lane 1: molecular mass markers; Lane 2: control (bacterially produced and 
purified human Tasp1, without any compound added); Lane 3: 50 mM glycine; Lane 4: 100 
mM glycine; Lane 5: 200 mM glycine; Lane 6: 500 mM glycine; Lane 7: 500 mM serine; 
Lane 8: 500 mM  alanine; Lane 9: 500 mM  threonine. The cloning of Tasp1 ORF (cDNA 
obtained from Source Bioscience, UK) was done similar to the cloning of hASNase3 as 
described in the Methods section (5.1.2.1). The expression was performed using the C41
(DE3) E.coli strain overnight at  16 !C with 0.5 mM IPTG final concentration. The expression 
yield was ~ 2 mg of purified enzyme per 1 L 2xYT medium. The cells were lysed, the 
mixture was centrifuged, and the soluble fraction of the cellular extract was subjected to Ni-
NTA affinity chromatography followed by size-exclusion chromatography. The final enzyme 
preparation was concentrated at a final concentration of 5 mg/mL, mixed with 30% glycerol 
(final concentration), and stored at -20 !C. Aliquots of this stock were mixed with different 
concentrations of glycine, serine, alanine and threonine, and were incubated at 37 !C for 24 h. 
Subsequently, the samples were analyzed by SDS-PAGE in order to evaluate the state of the 
intramolecular processing of the enzyme. None of the amino acids had an effect on the 
enzyme’s autoactivation as evidenced by the fact that all treatments showed the same 
proteolytic cleavage profile as the control sample. The three black arrows show the full-
length Tasp1 precursor,and the generated " and #  subunits, respectively. In addition, the 
partially activated Tasp1 was tested for L-Asn hydrolysis, though with no detectable L-
ASNase activity.

258



Part 2. Since the physiological role of hASNase3 is largely  unknown, we analyzed its 
endogenous status of proteolytic processing in the natural cellular environment using 
polyclonal antibodies and cell extracts of two breast cancer cell lines, namely MCF-7 and 
SKBR-3, as shown in Figure 2.

Figure 2. Immunoblot analysis of endogenous hASNase3 using cell  extracts from MCF-7 
and SKBR-3 breast cancer cell lines. Lane 1: control (50 ng purified recombinant, partially 
cleaved hASNase3); Lane 2: control (100 ng purified recombinant hASNase3); Lane 3: 1 µg 
MCF-7 cell extract; Lane 4: 5 µg MCF-7 cell extract; Lane 5: 1 µg SKBR-3 cell extract and 
lane 6: 5 µg SKBR-3 cell extract. Immunoblot  analysis was performed as described in 
Chapter 3. The dilution of the primary polyclonal anti-hASNase3 antibodies (generated using 
the full-length protein for immunization) was 1:5,000, and that of the secondary  HRP-
conjugated anti-rabbit antibody  was 1:10,000. The extracts of the cell lines were a kind gift 
from Dr. Theresa McSorley. The three black arrows show the full-length hASNase3 
precursor, and the ! and " subunits, respectively. The " subunit is not recognized as 
efficiently as the ! subunit by  the polyclonal antibodies, though Ponceau staining revealed an 
estimated 1:1 molar ratio for both subunits (see Chapter 3). 
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Part 3. Human L-ASNase1 that was studied in this work (Chapter 6) resides in the N-
terminal domain of the 60 kDa Lysophospholipase protein to which the following lipase 
activities have been assigned: lysophospholipase and platelet-activating factor 
acetylhydrolase. We wanted to test whether the N-terminal truncated domain we worked with 
holds such activities. Therefore, we applied a sensitive fluorescent assay to detect potential 
lysophospholipase activity associated with the hASNase1 domain. The following four 
Figures show the assay standardization using as positive control the enzyme A2 
Phospholipase, a titration binding curve generated by  one of the expected products of the 
lipase hydrolytic activity  (palmitic acid), and the plots obtained after incubating hASNase1 
with lysophospholipids provided as mixtures of fatty acids.

         

Figure 3. Standardization of the ADIFAB fluorescent assay using phospholipase A2 as 
positive control and L-!-phosphatidylcholine as substrate (provided as a mixture of 
different fatty acid derivatives). This assay detects free fatty acid molecules which are 
released upon hydrolysis of lysophospholipids by lysophospholipases, or hydrolysis of 
phospholipids by phospholipases. The free fatty  acid then is complexed with the intestinal 
fatty acid-binding protein conjugated with the fluorescent probe acrylodan, commercially 
known as a free fatty acid indicator and abbreviated as ADIFAB. Free fatty  acid binding to 
ADIFAB induces a fluorescence signal decrease due to changes of the position of the 
acrylodan fluorophore, which is located close to the free fatty acid binding pocket of 
intestinal fatty acid-binding protein (FABP) [57]. (A): background reaction (assay buffer, 1 
µM ADIFAB and 7 µg phospholipase A2 without substrate), fitting parameters of the 0-300 s 
curve: y=745-0.088x, R2=0.95; (B): assay buffer, 1 µM ADIFAB, 7 µg phospholipase A2 and 
100 µ!  L-"-phosphatidylcholine, y=750-0.3x, R2=0.97 and (C): assay buffer, 1 µM 
ADIFAB, 15 µg phospholipase A2 and 100 µ!  L-"-phosphatidylcholine, y=752-0.92x, 
R2=0.93. The assay buffer was 50 mM HEPES, 140 mM NaCl, 5mM KCl, 1 mM  Na2HPO4, 
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pH 7.5. The final volume of the assay mixture was 200 µL, and the fluorescence intensity 
was recorded continuously for 10 min at 25 °C using a Jasco FP 8300 spectrofluorometer in 
the high sensitivity  mode (excitation at 386 nm and emission at 432 nm with 2.5 nm 
bandwidths). The figure also shows the general structure of L-!-phosphatidylcholine which is 
commercially available as a mixture of different  fatty acids. The black arrow in the chemical 
structure indicates the point where the enzymatic hydrolysis of the ester bond takes place 
resulting in the liberation of the fatty acid. Plot was generated by Igor Pro (Wavemetrics).

        

Figure 4. Standardization of the ADIFAB fluorescent assay using free palmitic acid. 
Different concentrations of palmitic acid (dissolved initially in ethanol) as shown in the table 
in the figure were titrated against 1 µM ADIFAB (final concentration) using the buffer 
conditions described in Figure 3 above. The samples were placed at 25 °C for 10 min to 
equilibrate, and subsequently  the fluorescence intensities were recorded using the same 
settings as those described in Figure 3. From the resulting curve, a Kd ~ 0.16 µM was 
calculated (R2=0.956).
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Figure 5. Test of L-!-palmitoyl-lysophosphatidylcholine hydrolysis by hASNase1 
applying the ADIFAB assay. The assay was performed as described in the previous figures 
using 1 µM ADIFAB, 100 µM L-!-palmitoyl-lysoPC, and 1.8 µM  hASNase1 (15 µg in 200 
µL assay solution) as final concentrations.

        

Figure 6. Test of L-!-lysophosphatidylinositol hydrolysis by hASNase1 applying the 
ADIFAB assay. The assay  was performed as described above using 1 µM  ADIFAB, 100 µM 
L-!-lysophosphatidylinositol, and 1.8 µM hASNase1 as final concentrations.
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