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Abstract

We propose a general theory to study semidirect products of C∗-quantum groups in the framework of
multiplicative unitaries. Starting from a quantum group with a projection we decompose its multiplicative
unitary as a product of two unitary operators. One of them is again a multiplicative unitary in the standard
sense; it describes the quotient. The other unitary is multiplicative in a braided sense; it corresponds to
the kernel of the projection. Conversely, starting from a standard multiplicative unitary and a braided
multiplicative unitary acting on different Hilbert spaces we construct a standard multiplicative unitary
acting on the tensor product of them. Basic tools used to achieve this contain the interpretation of
bicharacters as homomorphisms between quantum groups, generalised crossed products of C∗-algebras
carrying coactions of quasitriangular quantum groups (quantum groups with a unitary R-matrix), and
Yetter–Drinfeld C∗-algebras.
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Chapter 1

Introduction

Noncommutative geometry generalises the commutative duality between spaces and functions, in analogy
with the Gelfand representation [14] of commutative C∗-algebras. Precisely, every commutative C∗-algebra
is of the form C0(X) for a locally compact Hausdorff space X. Because of this correspondence, the theory
of C∗-algebras can be realised as noncommutative topology [6]. Hence every C∗-algebra can be interpreted
as an algebra of functions on a noncommutative space or quantum space. In a similar fashion, von Neumann
algebras generalise measure theory in the noncommutative geometry framework: every commutative von
Neumann algebra is of the form L∞(X,µ) for a measure space (X,µ).

C*-quantum groups
Quantum groups, in the operator algebraic framework, are natural generalisations of locally compact groups
within the scope of noncommutative geometry. Roughly speaking, the space of the underlying group
is replaced by a C∗-algebra or von Neumann algebra, and group operations are replaced by additional
structure maps.

The pioneering work of Drinfeld [11] and Jimbo [16] was very influential in the theory of Hopf algebras.
In a purely algebraic setting, quantum groups and Hopf algebras are synonymous. Several nice references
can be found for algebraic quantum group theory (see [5,20,26]). In [7,8], van Daele introduced a nonunital
generalisation of Hopf algebras which admit a nice duality.

In the C∗-algebraic framework, a locally compact group G is described by the C∗-algebra A = C0(G)
together with the morphism

∆C0(G) : A→ A⊗A, (∆C0(G)f)(x, y) := f(xy),

for all f ∈ C0(G), x, y ∈ G. Motivated by the classical example above, a C∗-quantum group G (or
locally compact quantum group in the C∗-algebraic framework) should be a pair (A,∆A) consisting of
a C∗-algebra A and a morphism ∆A : A → A ⊗ A. Here ⊗ denotes the minimal C∗-tensor product,
and a morphism A → B is a non-degenerate ∗-homomorphism from A to the multiplier algebra M(B).
Several assumptions are needed for this to deserve the name C∗-quantum group. A simple yet far-reaching
axiomatisation of compact quantum groups, generalising compact groups, was given by Woronowicz
in [45,48]. In particular, this allows to construct a Haar weight, analogous to the Haar measure on locally
compact groups, on compact quantum groups. The most common approaches towards the theory of locally
compact quantum groups, due to Kustermans and Vaes [24,25] and Masuda, Nakagami and Woronowicz
[27], assume the existence of Haar weights.

In [2], Baaj and Skandalis introduced (regular) multiplicative unitaries in order to formulate an abstract
definition of C∗-quantum groups. A multiplicative unitary is a unitary operator W on H⊗H, for some
Hilbert space H, that satisfies the pentagon equation

W23W12 = W12W13W23 in U(H⊗H⊗H).

1



2 CHAPTER 1. INTRODUCTION

A multiplicative unitary simultaneously encodes all the information about a quantum group and its dual. It
is still unknown whether a Haar weight can be constructed on a locally compact quantum group arising from
a “nice” multiplicative unitary; where nice means either manageable due to Woronowicz [49] or modular
by Sołtan and Woronowicz. In this thesis, we work in the general framework of modular or manageable
multiplicative unitaries to construct C∗-quantum groups.

Semidirect product
In group theory, the semidirect product is a basic construction generalising direct products. A group I is
isomorphic to a semidirect product of groups K and G if and only if there is a (right) split exact sequence:

1 K I G 1.
α

β

γ

(1.1)

Here exactness means Im(α) = Ker(γ), while γ ◦ β = idG is the defining condition for a section. Clearly, K
is a normal subgroup of I, and G acts on K by conjugation:

ϕg(k) := α−1(β(g)α(k)β(g−1)
)

(1.2)

for g ∈ G, k ∈ K.

Question. What does a semidirect product decomposition mean for a C∗-quantum group?

The multiplication map K × K → K becomes G-equivariant with respect to the induced diagonal
action of G on K ×K. Coactions of C∗-quantum groups on C∗-algebras generalise group actions on spaces.
Roughly speaking, a coaction of G on a C∗-algebra C is an injective morphism δ : C → C ⊗A, compatible
with the comultiplication map ∆A, and satisfying the Podleś condition (see (2.23) for details). A diagonal
coaction, analogous to the diagonal action of groups, makes sense only in the case that G is abelian or,
equivalently, that A is a commutative C∗-algebra. This is why we cannot directly generalise (1.1) in
the C∗-algebraic framework.

The semidirect product always induces an idempotent endomorphism p := β ◦ γ on I. Conversely, an
idempotent group homomorphism p : I → I is always of the form (1.1), with G = Im(p) and K = Ker(p).
So a semidirect product decomposition of a group I is equivalent to an idempotent homomorphism on I.

To answer the question above, therefore, we view C∗-quantum groups with an idempotent endomorphism,
briefly, C∗-quantum groups with projection, as quantum analogues of semidirect products of groups.

From Hopf algebras with projection to extensions of quantum groups
Hopf algebras with projection were studied by Radford [35], which justifies viewing Hopf algebras with
projection as the correct quantum analogue of semidirect products in the realm of Hopf algebras. The image
of the projection is again a Hopf algebra A. The analogue of the kernel is a Yetter–Drinfeld algebra K
over A. For instance, when A = C[Z] then K is an A-Yetter–Drinfeld algebra if and only if K is a Z-graded
Z-module. For two Yetter–Drinfeld algebras K1 and K2, the tensor product of them, denoted by K1 �K2
carries a unique multiplication for which it is again a Yetter–Drinfeld algebra; the Yetter–Drinfeld module
structure is the diagonal one, which is determined by requiring the embeddings of K1 and K2 to be
equivariant. With this structure, A-Yetter–Drinfeld algebras become a monoidal category (neither braided
nor symmetric). In a Hopf algebra with projection, the algebra K carries a comultiplication K → K �K,
which turns K into a Hopf algebra in the monoidal category of Yetter–Drinfeld algebras. In [35], Radford
shows that Hopf algebras with projection correspond exactly to pairs consisting of a Hopf algebra A and a
Hopf algebra in the monoidal category of A-Yetter–Drinfeld algebras.

As a result, a semidirect product of Hopf algebras K oA does not involve two Hopf algebras, but one
Hopf algebra A and one “braided” Hopf algebra K over A. We want a similar theory for C∗-quantum
groups. In the case of the semidirect product (1.1) of groups, K and A are identified with C0(I/G) and
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C0(G). This clarifies why the “kernel” in Radford’s theorem does not correspond to a Hopf algebra in the
standard sense.

Associating C∗-algebras to these Hopf or Hopf ∗-algebras requires an interpretation of the defining
relations in terms of unbounded operators on Hilbert spaces. This often leads to surprising difficulties. A
case in point is the quantum E(2) studied by Woronowicz in [47]. In this example, the comultiplication fails
to exist for the most obvious choice of C∗-algebra. One must add non-algebraic relations (a restriction on
the spectrum of one of the generators) to those that define the Hopf ∗-algebra in order to get a C∗-quantum
group.

Moreover, we cannot directly define a deformed multiplication on K1⊗K2. A braided C∗-tensor product
of K1 and K2 will be a completion of K1 ⊗K2 in some C∗-norm, but we cannot expect the dense subspace
K1 �K2 to be a subalgebra, where � denotes the algebraic tensor product. Even the adjoint operation will
usually not preserve this subspace.

In the C∗-algebra world, the kernel K in Radford’s construction corresponds to (functions on) a quantum
homogeneous space, which in turn, corresponds to a braided C∗-quantum group. Existence of C∗-algebraic
quantum homogeneous spaces, obtained by taking quotients by closed quantum subgroups, was shown by
Vaes [41]. Later Kasprzak proposed a more general definition [19, Definition 3.1] of quantum homogeneous
spaces. Both constructions of quantum homogeneous spaces use the interplay between C∗-algebraic and
von Neumann algebraic quantum groups by assuming the existence of Haar weights. The von Neumann
algebraic versions of quantum homogeneous spaces were previously used by Vaes and Vainerman [42] to
define the short exact sequences ([42, Definition 3.2]) of locally compact quantum groups in order to study
their extensions (in von Neumann algebraic framework). The main purpose of this thesis is to study braided
multiplicative unitaries as a fundamental object for braided quantum groups and use this to carry over
Radford’s Theorem to the C∗-algebraic framework.

Braided multiplicative unitaries and C∗-quantum groups with projection
We now proceed to sketch our approach towards this, thereby giving an outline of the thesis.

Building on the work by Ng [31] and later by Kustermans [22] we have developed several equivalent
notions of quantum group homomorphisms in [28]. Bicharacters (see Definition 3.1) can be viewed as
homomorphisms and we can also compose them (see Definition 3.6). Thus we can give a good meaning
to projections on C∗-quantum groups I = (C,∆C) using bicharacters. Roughly speaking, bicharacters
P ∈ UM(Ĉ ⊗ C) that simultaneously satisfy the pentagon equation are projections. Manageability
of P, while viewed as a multiplicative unitary, gets induced from I. Therefore, P generates a quantum
group G = (A,∆A) which is a closed quantum subgroup of I in the sense of Woronowicz (see [9, Definition
3.2]). We call G the image of the projection P.

For the moment, keeping the general theory aside, let us motivate the interplay between braided multi-
plicative unitaries and C∗-quantum groups with projection, by analysing the known examples of C∗-quantum
groups, generically denoted as I = (C,∆C). Multiplicative unitaries giving rise to the quantum E(2) group
by Woronowicz [51], the quantum az + b group by Woronowicz [50], and the quantum ax + b group by
Woronowicz and Zakrzewski [55], are of the form F ·P ∈ U(H⊗H). All the examples mentioned above were
constructed by defoming their respective classical versions, which arise as semidirect product of groups. P is
the unitary corresponding to a projection on I. The image G = (A,∆A) of the projection P is commutative.
Equivalently, A = C0(G) for a suitable locally compact group G. The unitary F is defined by using the
quantum exponential function (see [52]); which is rather technical and mysterious. In Section 6.2.1, we show
that all these examples are C∗-quantum groups with projection. Moreover, F is a braided multiplicative
unitary satisfying a braided variant of the pentagon equation (6.35).

In order to understand the braided quantum group associated to F, we require the concept of Yetter–
Drinfeld C∗-algebras over G. The C∗-algebraic counterparts of A-Yetter–Drinfeld algebras are G-Yetter-
Drinfeld C∗-algebras, defined by Nest and Voigt in [30, Section 3] assuming the existence of Haar weights
on G. Moreover, [30, Proposition 3.2] shows that C∗-algebras with a coaction of the quantum codouble of G
are the same as G-Yetter–Drinfeld C∗-algebras. Proposition 8.3 in [41] gives the twisted tensor product
C∗-algebras, denoted by �, such that one of the tensor factors carries a coaction of G and the other one
carries a coaction of Ĝ. If both of the C∗-algebras are G-Yetter–Drinfeld, so is their twisted tensor product.
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First, we generalise this construction of twisted tensor product of C∗-algebras to modular multiplicative
unitaries. In Chapter 4, we construct a twisted tensor product, denoted by �, of C∗-algebras (generalising
minimal tensor products) endowed with coactions of two quantum groups linked through bicharacters. But �
is not coassociative in general, as there is no natural action of either of the quantum groups on the twisted
tensor product. A unitary U ∈ UM(K(H)⊗A) is called a corepresentation of a quantum group G = (A,∆A)
acting on a Hilbert space H if (idH ⊗ ∆A)U = U12U13. The category of corepresentations of G is, in
general, a W ∗-category (for details see [39, Section 3.1, 3.2]). A quantum group G with an R-matrix
R ∈ UM(Â ⊗ Â) is called a quasitriangular C∗-quantum group. Then the corepresentation category
of G becomes braided monoidal. Using covariant representations, we show that the coaction category
of G-C∗-algebras, where the objects are C∗-algebras carrying coactions of G and arrows are G-equivariant
morphisms, is monoidal with the tensor product � (Theorem 5.16). For any C∗-quantum group G (not
necessarily quasitriangular), the Drinfeld double of G has an R-matrix; hence, its dual, the quantum
codouble D(G)̂ is a quasitriangular quantum group. By virtue of [30, Proposition 3.2] we know that
the category of G-Yetter-Drinfeld C∗-algebras is equivalent to the coaction category of D(G)̂ . We show
(Proposition 5.36) that the aforementioned categories are also equivalent as monoidal categories.

Replacing the ordinary flip operator by the braiding operator of the corepresentation category of D(G)̂ ,
we can formulate the braided pentagon equation and braided multiplicative unitaries (Definition 6.1) over G.
Furthermore, we define manageability for F (see Definition 6.3). At present, we do not know how to
generate C∗-algebras even from manageable braided multiplicative unitaries. A pair (K,∆K) is said to
be a braided quantum group over G if K is a G-Yetter–Drinfeld C∗-algebra and ∆K : K → K �K is a
nondegenerate ∗-homomorphism implemented by F (see Definition 6.5 for details).

A quantum group I with a projection P (Definition 3.35) always gives rise to a manageable, braided
multiplicative unitary F over G, where G is the image of the projection P (Theorem 6.7). The second leg of F
belongs to the multiplier algebra of the left invariants under the unique left quantum group homomorphism
associated to the projection. Moreover, we can reconstruct a manageable multiplicative unitary of I starting
from P and F. Similarly, one can define a braided multiplicative unitary F whose second leg belongs to the
multiplier algebra of the right invariants under the unique right quantum group homomorphism associated
to the projection P.

Starting from a braided multiplicative unitary F ∈ U(K ⊗ K), over a quantum group G = (A,∆A)
with a multiplicative unitary WA ∈ U(H ⊗H), we construct a standard multiplicative unitary W1234 ∈
U(H ⊗ K ⊗ H ⊗ K) (Theorem 6.15). Moreover, manageability of F ensures manageability of W1234
(Theorem 6.16) and hence gives rise to a quantum group I = (C,∆C). Under the additional assumption
that G is weakly regular (Definition 5.37), A becomes a G-Yetter–Drinfeld C∗-algebra. Let F give rise to
the braided quantum group (K,∆K). Then the multiplicative unitary W1234 implements a coassociative
comultiplication on the crossed product C = A �K, which extends both ∆A and ∆K , respectively. In
particular, if A = C0(G) for a locally compact group G, then C = K o G; this is true for the known
examples of C∗-quantum groups discussed in the Section 6.2.1,

The missing part of the theory is that, in general, we do not know whether A�K is a quantum group
generated by W1234. In particular, the above reconstruction for a C∗-quantum group I with a projection P
yields W1234 as a multiplicative unitary for I (Proposition 6.9). Therefore, at the level of multiplicative
unitaries we have a nice generalisation of Radford’s theorem. In [54], Woronowicz constructed simplified
quantum E(2) such that quantum E(2) is the double cover of it. We conclude by constructing simplified
quantum E(2) starting from the complex quantum plane, which is a braided quantum group over the
compact quantum group C(T).

Basic notation
Following the standard notation the set of natural numbers, integers, real numbers, complex numbers are
denoted by N (excluding zero), Z, R, C respectively.

From now on, all C∗-algebras and Hilbert spaces are assumed to be separable and defined over C. Given
a Hilbert space H we let K(H) and B(H) be the algebras of compact and bounded operators on H. The
group of unitary operators on H is denoted by U(H).

The C∗-algebra of continuous complex-valued functions on a locally compact Hausdorff space X
vanishing at infinity is denoted by C0(X).
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The multiplier algebra of a C∗-algebra A is denoted byM(A). The group of unitary multipliers of A is
denoted by U(A). For example, M(K(H)) = B(H) andM(C0(X)) = Cb(X), where Cb(X) denotes the
algebra of complex-valued bounded functions on a locally compact Hausdorff space X.

A morphism between two C∗-algebras A and B is a nondegenerate ∗-homomorphism from A to the
multiplier algebra M(B) or, equivalently, a strictly continuous, unital ∗-homomorphism from M(A) to
M(B). The set of morphisms from A to B is denoted by Mor(A,B). C∗-algebras with the above morphisms
form a category, which we denote by C∗alg.

Let A and B be norm closed subsets of a C∗-algebra C. Then A ·B denotes the closed linear span of
the set {ab | a ∈ A and b ∈ B}.

We use ⊗ both for the minimal tensor product of C∗-algebras and the tensor product of Hilbert spaces,
which is well understood from the context.

The standard flip operator Σ: H⊗K → K⊗H for two Hilbert spacesH andK is defined as Σ(ξ⊗η) := η⊗ξ
for all vectors ξ ∈ H, η ∈ K. Similarly, the flip morphism σ : A ⊗ B → B ⊗ A is defined on the
tensor product of C∗ algebras A and B. For any t ∈ M(A ⊗ B) we can denote the leg numberings
on the level of C∗-algebras as t12 := t ⊗ 1C ∈ M(A ⊗ B ⊗ C), t23 := 1C ⊗ t12 ∈ M(C ⊗ A ⊗ B)
and t13 := σ12(t23) = σ23(t12) ∈M(A⊗ C ⊗B) for the C∗-algebras A, B and C, respectively.
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Chapter 2

C∗-quantum groups in a nutshell

This introductory chapter provides a brief introduction to C∗-quantum groups. In particular, the interplay
between the theory of multiplicative unitaries and C∗-quantum groups is covered in Sections 2.2 and 2.3.
The definition and the basic properties of Heisenberg pairs for quantum groups are discussed in Section
2.4. Subsequently, in Sections 2.5 and 2.6, we recall the concepts of coactions and corepresentations
of C∗-quantum groups. In the concluding section, Section 2.7, we explore universal quantum groups and its
corepresentation theory. Moreover, we show that universal bicharacters exist in the context of modular
multiplicative unitaries.

2.1 Group-like structure on C∗-algebras
Definition 2.1 ([2, Définition 0.1]). A Hopf -C∗-algebra (D,∆D) is a C∗-algebra D equipped with a
morphism ∆D : D → D ⊗D called comultiplication such that

1. ∆D is coassociative:

D D ⊗D

D ⊗D D ⊗D ⊗D

∆D

∆D

∆D ⊗ idD
idD ⊗∆D

(2.1)

2. ∆D(D) · (D ⊗ 1D) and ∆D(D) · (1D ⊗D) are contained in D ⊗D.
Such a pair (D,∆D) is said to be bisimplifiable if ∆D satisfies the cancellation property:

∆D(D) · (1D ⊗D) = ∆D(D) · (D ⊗ 1D) = D ⊗D. (2.2)

In [27] bisimplifiable Hopf C∗-algebras are called “proper C∗-bialgebras with cancellation property.” We
shall stick to the former terminology.
Example 2.2. Consider the C∗-algebra C0(G) of continuous functions vanishing at infinity on a locally
compact group G. Then ∆C0(G) : C0(G)→ Cb(G×G) defined as (∆C0(G)f)(x, y) := f(xy) for all f ∈ C0(G)
and x, y ∈ G is a coassociative comultiplication. To verify the cancellation property take h ∈ C0(G) and
observe that (∆C0(G)(f)(1⊗ h))(x, y) = f(xy)h(y), (∆C0(G)(f)(h⊗ 1))(x, y) = h(x)f(xy). Since (x, y) 7→
(xy, y) and (x, y) 7→ (xy, y) are homeomorphisms from G×G to itself we conclude that (C0(G),∆C0(G)) is
a bisimplifiable Hopf C∗-algebra.
Example 2.3. Let G be a locally compact group with left Haar measure µ. The left regular representation
λ : G → U(L2(G,µ)) is defined by (λgf)(x) := f(g−1x) for all f ∈ L2(G,µ), g, x ∈ G. The C∗-algebra
generated by λ(Cc(G)) ⊂ B(L2(G,µ)), where Cc(G) denotes the continuous compactly supported functions,
is called the reduced group C∗-algebra and denoted by C∗r (G). Then (C∗r (G),∆C∗r (G)) is a bisimplifiable
Hopf C∗-algebra with the comultiplication ∆C∗r (G)(λg) := λg ⊗ λg.

7
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Definition 2.4 ([2, Définition 0.5]). Given two Hopf C∗-algebras (A,∆A) and (B,∆B), an element
F ∈ Mor(A,B) is a Hopf ∗-homomorphism between them if it intertwines the comultiplications, that is, the
following diagram commutes:

A A⊗A

B B ⊗B

∆A

F
∆B

F ⊗ F (2.3)

Example 2.5. Let f : G → H be a continuous group homomorphism between locally compact groups G
and H.

1. Then F : C0(H) → C0(G) defined by F (h) := h ◦ f for all h ∈ C0(H) is a Hopf ∗-homomorphism
from C0(H) and C0(G).

2. If ker(f) is amenable, then F̂ : C∗r (G) → C∗r (H) defined by F̂ (λg) := λf(g) for all g ∈ G is a
Hopf ∗-homomorphism from C∗r (G) to C∗r (H).

Let X be a locally compact Hausdorff space and let (D,∆D) be a Hopf C∗-algebra with D = C0(X).
Then ∆D induces a continuous, associative binary operation · onX. The cancellation property yields that the
binary operation · is cancellative; hence (X, ·) is a locally compact semigroup with cancellation. If X is com-
pact then (X, ·) is a compact group (see [32]). More generally, unital, bisimplifiable Hopf C∗-algebras (D,∆D)
are compact quantum groups, as defined in [48] by Woronowicz. If X is locally compact then (X, ·) is not
a locally compact group in general. For example, we may take the set of positive integers with addition,
which is not group. Therefore, in general, bisimplifiable Hopf C∗-algebras are not the correct notion
of C∗-quantum groups.

The construction of quantum E(2) group by Woronowicz [51], quantum az + b group by Woronowicz
[50], and the quantum ax+ b group by Woronowicz and Zakrzewski [55], in the C∗-algebraic framework
use the following procedure. The first step is to look at the Hopf ∗-algebra of polynomial functions on
the group in terms of generators and relations. Then deform the relations by some complex number q
and consider the ∗-algebra C generated by the generators satisfying the deformed relations. Then define a
comultiplication ∆C : C → C � C such that (C,∆C) becomes a Hopf ∗-algebra, where � is the algebraic
tensor product. The second step is to represent the generators of C by (possibly) unbounded closed
operators on a Hilbert space H and impose spectral conditions on the (unbounded) generators of C.
Equivalently, construct a (universal) C∗-algebra C ⊂ B(H) generated by the generators (with the spectral
conditions) and relations of C. The next step is to define the comultiplication on C such that (C,∆C) is a
bisimplifiable Hopf-C∗-algebra. Finally, construct a multiplicative unitary for (C,∆C). This gives rise to
another bisimplifiable Hopf-C∗-algebra (Ĉ, ∆̂C), dual to (C,∆C).

But the formula for the multiplicative unitaries for the quantum groups mentioned above uses special
functions, namely quantum exponential functions, whose presence is conceptually unclear. Classically, these
groups arise as semidirect products of groups. In Chapter 6, we show that quantisation of semidirect
products of groups, in general, gives rise to braided multiplicative unitaries, multiplicative unitaries in a
more general sense, and quantum exponential functions play this role in the above examples.

2.2 Multiplicative unitaries
Multiplicative unitaries were introduced by Baaj and Skandalis in [2] to axiomatise locally compact quantum
groups in the C∗-algebraic framework. The beauty of the theory is that a single unitary operator (with
some additional property) encodes all the necessary information of a C∗-quantum group and its dual.

Definition 2.6 ([2, Définition 1.1]). An element W ∈ B(H ⊗ H) is called a multiplicative unitary if it
satisfies the pentagon equation

W23W12 = W12W13W23 in U(H⊗H⊗H), (2.4)

where we use the standard leg numberings Wij ∈ U(H⊗H⊗H) for 1 ≤ i < j ≤ 3.
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Example 2.7. Let G be a locally compact group and let H = L2(G) be the Hilbert space of all measurable
functions on G square-integrable with respect to the right invariant Haar measure. Then (WGf)(g, g′) :=
f(gg′, g′) is a unitary oprator on L2(G×G). The associativity of the binary operation of G provides the
pentagon equation (2.4) for WG.

The legs of a multiplicative unitay W ∈ U(H⊗H) are defined as

A := {(ω ⊗ id)W : ω ∈ B(H)∗}CLS ⊂ B(H), (2.5)

Â := {(id⊗ ω)W : ω ∈ B(H)∗}CLS ⊂ B(H), (2.6)

where B(H)∗ is the set of normal linear functionals on B(H) and CLS abbreviates closed linear spans.
Let ai := (ωi ⊗ id)W ∈ A for i = 1, 2. Then a1a2 = (ω1 ⊗ ω2 ⊗ id)W13W23. Using the pentagon

equation we get a1a2 = (ω1 ⊗ ω2 ⊗ id)
(
W∗12W23W12

)
= (ω ⊗ id)W, where ω ∈ B(H)∗ is defined by ω(ξ) :=

(ω1 ⊗ ω2)
(
W∗(1H ⊗ ξ)W

)
for ξ ∈ B(H); hence A is a subalgebra of B(H). A similar argument shows that

Â is a subalgebra of B(H).
But A and Â are not closed with respect to the involution in general (see [3, Remark 4.5]). For each ω ∈

B(H)∗ the adjoint is defined as a∗ =
(
(ω⊗ id)W

)∗ := (ω∗ ⊗ id)W∗ and â∗ =
(
(id⊗ω)W

)∗ := (id⊗ω∗)W∗,
where ω∗ : B(H) → C is defined by ξ 7→ ω(ξ∗) (see [40, Lemma 7.2.3]). In general, a∗ and â∗ need not
belong to A or Â, respectively. Therefore, a general objective was to find a good class of multiplicative
unitaries which produce A in (2.5) and Â in (2.6) as C∗-subalgebras of B(H).

Define
C(W) := {(id⊗ ω)(ΣW) : ω ∈ B(H)∗} ⊆ B(H), (2.7)

where Σ is the flip operator on H⊗H. Proposition 3.2 in [2] shows that C(W) is an algebra.

Definition 2.8 ([2, Définition 3.3]). A multiplicative unitary W ∈ U(H⊗H) is said to be regular if C(W)
is linearly dense in K(H).

Regularity of a multiplicative unitary implies that A and Â are C∗-algebras (see [2]). But, unfortunately,
regularity is too restrictive to cover all examples of locally compact quantum groups (see [1]).

2.2.1 Manageability and modularity
A general framework for multiplicative unitaries, namely,manageability, was first introduced in [49, Definition
1.5]. It covers all known examples of quantum groups. It was also noticed in [38, Section 5] that the natural
choices of multiplicative unitaries for the quantum az + b group in [50] and the quantum ax + b group
in [55] are only modular, not manageable.
Notation 2.9. The complex-conjugate Hilbert space of a Hilbert space H is denoted by H.

Definition 2.10 ([38, Definition 2.1]). A multiplicative unitary W ∈ U(H⊗H) is modular if there are
positive self-adjoint operators Q and Q̂ acting on H and W̃ ∈ U(H⊗H) such that:

(i) Ker(Q) = Ker(Q̂) = {0} and W(Q̂⊗Q)W∗ = (Q̂⊗Q),

(ii)
(
x⊗ u |W | z ⊗ y

)
=
(
z ⊗Qu | W̃ | x⊗Q−1y

)
, for all x, z ∈ H, u ∈ Dom(Q) and y ∈ Dom(Q−1).

If Q̂ = Q then W is called manageable.

The notions of modularity and manageability are not very far from each other: starting from a modular
multiplicative unitary one can construct a manageable multiplicative unitary on a different Hilbert space
(see [38]). Moreover, all results in [49] remain true under this weaker assumption.

Example 2.11. The multiplicative unitary WG in Example 2.7 is manageable with Q = id and W̃ = (WG)∗.
Here we identify H with H by sending f → f , where f(g) := f(g) for g ∈ G.

Example 2.12. The dual of a multiplicative unitary W ∈ U(H⊗H) is defined by Ŵ := Σ(W∗)Σ ∈ U(H⊗H),
where Σ is the flip operator. The bidual of a multiplicative unitary is again the multiplicative unitary itself.
Moreover, [49, Proposition 2.2] confirms that the duality of multiplicative unitaries preserves modularity
and manageability, respectively.
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2.3 From modularity to C∗-quantum groups
In this section we recall the main result due to Sołtan and Woronowicz [38] to construct a C∗-quantum
group from a modular multiplicative unitary.

Theorem 2.13 ([38, Theorem 2.3]). Let W ∈ U(H⊗H) be a modular multiplicative unitary. Then
(1) A in (2.5) and Â in (2.6) are non-degenerate C∗-subalgebras of B(H).
(2) W ∈ U(Â⊗A) ⊆ U(H⊗H). We write W ∈ U(Â⊗A) for W viewed as a unitary multiplier of Â⊗A.
(3) There is a unique ∆A ∈ Mor(A,A⊗A) such that

(i) (A,∆A) is a bisimplifiable Hopf C∗-algebra;
(ii) W is a character in the second leg:

(idÂ ⊗∆A)W = W12W13 in U(Â⊗A⊗A); (2.8)

(4) There is a unique closed linear operator κA on the Banach space A such that {(ω ⊗ idA)W : ω ∈ Â′}
is a core for κA and

κA((ω ⊗ idA)W) = (ω ⊗ idA)W∗

for any ω ∈ Â′. Moreover,

(i) the domain of κA is a subalgebra of A and κA is antimultiplicative: for any a, b ∈ Dom(κA) we
have ab ∈ Dom(κA) and κA(ab) = κA(b)κA(a).

(ii) the image κA(Dom(κA)) coincides with Dom(κA)∗ and κA(κA(a)∗)∗ = a for all a ∈ Dom(κA).
(iii) the operator κA admits the following polar decomposition:

κA = RA ◦ τAi/2,

where τAi/2 is the analytic generator of a one-parameter group {τAt }t∈R of ∗-automorphisms of
the C∗-algebra A and RA is an involutive normal antiautomorphism of A,

(iv) RA commutes with τAt for all t ∈ R; in particular Dom(κA) = Dom(τAi/2),

(v) RA and {τAt }t∈R are uniquely determined.

(5) we have

(i) ∆A ◦ τAt = (τAt ⊗ τAt ) ◦∆A for all t ∈ R,
(ii) ∆A ◦ RA = σ ◦ (RA ⊗ RA) ◦∆A, where σ denotes the flip map.

(6) Let Q and W̃ be the operators associated to W in Definition 2.10. Then,

(i) for any t ∈ R and a ∈ A we have τAt (a) = Q2itaQ−2it,

(ii) writing aRA instead of RA(a), we have WT⊗RA = W̃
∗
, where the left hand side is viewed as a

unitary on H⊗H.

Definition 2.14. A bisimplifiable Hopf C∗-algebra G = (A,∆A) is a C∗-quantum group (quantum group
from now on) if it comes from a modular multiplicative unitary W ∈ U(H⊗H).

The reduced dual of G, denoted Ĝ = (Â, ∆̂A), is the quantum group associated to the dual multiplicative
unitary ŴA in Example 2.12. The biduality property of multiplicative unitaries provides Pontrjagin
duality for quantum groups: the reduced dual of Ĝ is isomorphic to G. Moreover, we have the unitary
Ŵ := σ(W∗) ∈ U(A⊗ Â). The character condition (2.8) for Ŵ := σ(W∗), where σ is the flip morphism,
becomes:

(idA ⊗ ∆̂A)Ŵ = Ŵ12Ŵ13 in U(A⊗ Â⊗ Â).
Using the elementary properties of σ, we get the following equivalent form:

(∆̂A ⊗ idA)W = W23W13 in U(Â⊗ Â⊗A). (2.9)

Thus W ∈ U(Â⊗A) is also a character in the first leg:
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Definition 2.15 ([39]). The unitary W ∈ U(Â ⊗ A) is called the reduced bicharacter associated to the
quantum group G.

Remark 2.16. The reduced bicharacter of a quantum group is independent of the choice of W (see [39,
Theorem 5]).

To a locally compact group G we associate the quantum groups (C0(G),∆C0(G)) and (C∗r (G),∆C∗r (G))
discussed in Examples 2.2 and 2.3. The multiplicative unitary WG ∈ U(L2(G×G)) defined in Example 2.7
gives rise to (C0(G),∆C0(G)), and (C∗r (G),∆C∗r (G)) is dual to it. A detailed treatment can be found in
[40, Example 7.2.13].

In particular, if G is abelian, C∗r (G) ∼= C0(Ĝ) by the Fourier transform, where Ĝ is the Pontrjagin dual
of G. This clarifies how C∗-quantum groups allow to generalise the Pontrjagin duality theorem.

2.4 Heisenberg pairs
In quantum mechanics the canonical commutation relation (abbreviated as CCR) is the fundamental
relation between position x and momentum px in the direction of x of a particle. The commutator
[x, px] := xpx − pxx is equal to i~, where ~ is the reduced Planck constant. According to the mathematical
formulation of quantum mechanics, x and px should be represented as self adjoint operators x and p on a
Hilbert space H, and the commutation relation becomes:

[x,p] = i~ · 1H. (2.10)

This is known as CCR in Heisenberg form. But (2.10) is not quite correct, as both the operators x and
p cannot be bounded. Hence (2.10) becomes more delicate as unbounded operators are very sensitive
about their domains. Exponentiation of the operators ix, ip produces the one-parameter group of unitaries(
us := exp(isx)

)
s∈R

,
(
vt := exp(itp)

)
t∈R

acting on H, and (2.10) takes the Weyl form:

usvt = exp(−i~st)vtus. (2.11)

The Stone–von Neumann Theorem says that there is a unique pair of one-parameter groups of unitaries
(us)s∈R and (vt)t∈R satisfying (2.11). More generally, the CCR encodes the commutation relation between
two conjugate variables, where one variable is the Fourier transformation or more generally Pontrjagin dual
of another.

Heisenberg pairs in the context of quantum groups are hidden in the pentagon equation (2.4). Roughly,
it dictates the commutation between the underlying C∗-algebras of a quantum group and its dual. Later in
Section 4.1 we generalise this commutation relation to two different quantums group related by a bicharacter.

Definition 2.17. Let π ∈ Mor(A,K(Hπ)) and π̂ ∈ Mor(Â,K(Hπ)) for some Hilbert space Hπ. (π, π̂) is a
1. G-Heisenberg pair if

Wπ̂3W1π = W1πW13Wπ̂3 in U(Â⊗K(Hπ)⊗A); (2.12)

2. G-anti-Heisenberg pair if

W1πWπ̂3 = Wπ̂3W13W1π in U(Â⊗K(Hπ)⊗A); (2.13)

here W1π := ((idÂ⊗π)W) and Wπ̂2 := ((π̂⊗ idA)W) with the leg numbers 1, 2 and 3 assigned to Â, K(Hπ)
and A, respectively.

Example 2.18. Let W ∈ U(H⊗H) be a modular multiplicative unitary which gives rise to the quantum
group G = (A,∆A). Let W ∈ U(Â⊗A) be the reduced bicharacter. By Theorem 2.13 (1) there are faithful
representations π and π̂ of A and Â on H with W = (π̂ ⊗ π)W ∈ U(H⊗H). Moreover, considering the
preimage of the pentagon equation (2.4) under the injective map (π̂ ⊗ id⊗ π) gives (2.12) as follows:

Wπ̂3W1π = W1πW13Wπ̂3 in U(Â⊗K(H)⊗A). (2.14)
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Conversely, a pair of faithful 1 representations (π, π̂) of A and Â on H is a G-Heisenberg pair if and only if
Wπ̂π ∈ U(H⊗H) is a multiplicative unitary.

The next example shows that G-anti-Heisenberg pairs exist.
Example 2.19. Let (π, π̂) be a G-Heisenberg pair on Hπ and let T : B(Hπ)→ B(Hπ) be the transposition
defined as ξT(v) := ξ∗v for all v ∈ Hπ, where Hπ is the complex-conjugate Hilbert space. Define

π̄(a) := (π(RA(a)))T and ¯̂π(â) := (π̂(RÂ(â)))T (2.15)

for all a ∈ A, â ∈ Â and RA, with RÂ as in Theorem 2.13. Then (π̄, ¯̂π) is a G-anti-Heisenberg pair acting
on Hπ:

W1π̄W¯̂π3 = (RÂ ⊗ T⊗ RA)(Wπ̂3W1π) = (RÂ ⊗ T⊗ RA)(W1πW13Wπ̂3) = W¯̂π3W13W1π̄,

where the first equality uses (2.15), (RÂ ⊗ RA)W = W ([39, Lemma 40]) and antimultiplicativity of RA,
RÂ and T, the second equality uses (2.12), and the third equality follows by applying the facts used for the
first equality in reverse order.
Remark 2.20. Example 2.19 gives a one-to-one correspondence between G-Heisenberg and -anti-Heisenberg
pairs.

Proposition 2.21. Every G-Heisenberg pair or G-anti-Heisenberg pair is faithful.

First we establish the following lemma.

Lemma 2.22. Let (π, π̂) and (ρ, ρ̂) be a G-Heisenberg pair and a G-anti-Heisenberg pair on Hilbert spaces
Hπ and Hρ, respectively. Then π⊗ ρ̂ : A⊗ Â→ B(Hπ ⊗Hρ) and ρ⊗ π̂ : A⊗ Â→ B(Hρ⊗Hπ) are unitarily
equivalent.

Proof. Define Ψ := Wρ̂πΣWπ̂ρ ∈ U(Hπ ⊗ Hρ,Hρ ⊗ Hπ), where Wπ̂ρ := (π̂ ⊗ ρ)W ∈ U(Hπ ⊗ Hρ),
Wρ̂π := (ρ̂ ⊗ π) ∈ U(Hρ ⊗ Hπ) and Σ: Hπ ⊗ Hρ → Hρ ⊗ Hπ is the flip operator. We claim that Ψ
intertwines π ⊗ ρ̂ and ρ⊗ π̂. Using (2.5) and (2.6), it suffices to show:

Ψ23W1πWρ̂4Ψ∗23 = W1ρWπ̂4 in U(Â⊗K(Hρ)⊗K(Hπ)⊗A),

or, equivalently,:
Σ23(Wπ̂ρW1πWρ̂4(Wπ̂ρ)∗)Σ23 = (Wρ̂π)∗W1ρWπ̂4Wρ̂π (2.16)

in U(Â⊗K(Hρ)⊗K(Hπ)⊗A).
The following computation yields (2.16):

Σ23(Wπ̂ρW1πWρ̂4(Wπ̂ρ)∗)Σ23 = Σ23(W1πW1ρWπ̂ρWρ̂4(Wπ̂ρ)∗)Σ23

= W1πW1ρWρ̂4Wπ̂4

= (Wρ̂π)∗W1ρWρ̂πWρ̂4Wπ̂4 = (Wρ̂π)∗W1ρWπ̂4Wρ̂π

where the first equality uses (2.12), the second equality uses (2.13) and application of Σ23, the third equality
again uses (2.13) and the fourth equality uses (2.12).

Proof of Proposition 2.21. Let (π, π̂) and (ρ, ρ̂) be G-Heisenberg and anti-Heisenberg pairs on Hπ and Hρ
respectively. Lemma 2.22 forces π ⊗ ρ̂ and ρ⊗ π̂ to be unitarily equivalent. By [10, Proposition 5.3] the
representations π and ρ of A on Hπ and Hρ are quasi-equivalent. Similarly, ρ̂ and π̂ are quasi-equivalent
representations of Â on Hπ and Hρ, respectively. Therefore, there is a unique quasi-equivalence class
of representations of A that contain the first element of all G-Heisenberg and G-anti-Heisenberg pairs.
Similarly, there is a unique quasi-equivalence class of representations of Â that contain the second element
of all G-Heisenberg and G-anti-Heisenberg pairs. Moreover, Examples 2.18 and 2.19 show the existence of
faithful G-Heisenberg and anti-Heisenberg pairs.

1Proposition 2.21 shows that the representations π and π̂ in a Heisenberg pair are always faithful.
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Example 2.23. Let (π, π̂) be a G-Heisenberg pair on Hπ and let ρ : A→ B(K) be a faithful representation
of A. Define π′(a) := (ρ⊗ π)∆A(a) and π̂′(â) := 1K ⊗ π̂(â) for a ∈ A and â ∈ Â. This is a G-Heisenberg
pair acting on K ⊗Hπ.
Remark 2.24. Ĝ-Heisenberg pairs are in one-to-one correspondence with G-Heisenberg pairs: (π, π̂) is
a G-Heisenberg pair on Hπ if and only if (π̂, π) is a Ĝ-Heisenberg pair on Hπ.

The pentagon equation (2.4) and Theorem 2.13 (1) express the comultiplications using a G-Heisenberg
pair (π, π̂):

∆A(a) = W(π(a)⊗ 1A)W∗ for all a ∈ A, (2.17)

∆̂A(â) = σ
(
W∗(1Â ⊗ π̂(â))W

)
for all â ∈ Â. (2.18)

Warning 2.25. In (2.17), (2.18) we identify a with π(a) and â with π̂(â). We have used the same identification
on the right side of Theorem 2.13(6)(ii). We shall often follow this convention from now on.

Definition 2.26. Let H, K be Hilbert spaces and let V ∈ U(H⊗K). We call V good if, for any a ∈ B(H)
and b ∈ B(K), we have (

V(a⊗ 1K)V∗ = 1H ⊗ b
)
⇒
(
a ∈ C · 1H and b ∈ C · 1K

)
(2.19)

The following Theorem is due to Woronowicz:

Theorem 2.27 ([28, Theorem 2.1]). Every modular multiplicative unitary is good.

Proof. Due to its importance, we prove this Theorem in detail. Define the operators Q̂, Q, and W̃
as in Definition 2.10. First we prove the assertion without D and under the additional assumption
b∗Dom(Q) ⊆ Dom(Q). Our assumption W(a⊗ 1) = (1⊗ b)W means

(x⊗ y |W | az ⊗ u) = (x⊗ b∗y |W | z ⊗ u)

for all x, z ∈ H, y ∈ Dom(Q) and u ∈ Dom(Q−1). The modularity condition for W yields(
az ⊗Qy

∣∣ W̃ ∣∣ x⊗Q−1u
)

=
(
z ⊗Qb∗y

∣∣ W̃ ∣∣ x⊗Q−1u
)
.

In this formula, W̃(x⊗Q−1u) runs through a dense subset of H⊗H. Since a vector in a Hilbert space is
given by the linear functional it induces we get az ⊗Qy = z ⊗Qb∗y for all y ∈ Dom(Q) and z ∈ H. An
operator w on H induces a transpose operator wT on H by wT(ξ) := w∗ξ. Thus (a∗)T ⊗ 1 = 1⊗ b∗, so that
a, b ∈ C · 1 and a = b.

To remove the assumption b∗Dom(Q) ⊆ Dom(Q), we regularise a and b. For a ∈ B(H) and n ∈ N, we
define

R̂n(a) :=
∫ +∞

−∞
Q̂−itaQ̂itδn(t)dt and Rn(b) :=

∫ +∞

−∞
Q−itbQitδn(t)dt,

where
δn(t) :=

√
n

2π exp
(
−nt

2

2

)
is a δ-like sequence of Gaussian functions. Since

(W)∗(Q̂⊗Q)W = Q̂⊗Q,

our condition W(a⊗ 1) = (1⊗ b)W implies

W(R̂n(a)⊗ 1) = (1⊗Rn(b))W.

We will show below that
Rn(b)∗Dom(Q) ⊆ Dom(Q). (2.20)
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The first part of the proof now yields R̂n(a) = Rn(b) = λn1 for all n ∈ N. If n→∞, then R̂n(a) and Rn(b)
converge weakly towards a and b, respectively. Hence we get a = b = λ1 for some λ ∈ C in full generality.

It remains to establish (2.20). Let x, y ∈ Dom(Q). Then the function

fx,y(z) := (Qi(z−i)x | b∗ | Qizy)

is well-defined, bounded, and continuous in the strip Σ := {z ∈ C : − 1 ≤ Im z ≤ 0} and holomorphic in
the interior of Σ. In particular, for t ∈ R :

fx,y(t) = (Qx | Q−itb∗Qit | y), fx,y(t− i) = (x | Q−itb∗Qit | Qy). (2.21)

By Cauchy’s Theorem, the integrals of fx,y(z)δn(z) along the lines R + is for 0 ≤ 1 ≤ s do not depend on s.
For s = 0 and s = 1, (2.21) shows that the integrals are (Qx | Rn(b)∗ | y) and(

x

∣∣∣∣ ∫ +∞

−∞
Q−itb∗Qitδn(t− i)dt

∣∣∣∣ Qy),
respectively. Their equality shows that (Qx | Rn(b)∗y) depends continuously on x. This yields Rn(b)∗y ∈
Dom(Q∗) = Dom(Q), that is, (2.20).

Finally, we add the coefficient algebra D. If a, b ∈ M(K(H) ⊗ D) satisfy W12a13 = b23W12 in
M(K(H⊗H)⊗D), then the first part of the theorem applies to the slices (id⊗µ)(a) and (id⊗µ)(b) for all
µ ∈ D′. Thus (id⊗ µ)(a) = (id⊗ µ)(b) = λµ · 1 for all µ ∈ D′. This implies that a = b ∈ C · 1⊗M(D).

The following result was proved in [24, Result 6.1] assuming the existence of Haar weights. We generalise
it using Theorem 2.27:

Lemma 2.28. Let G = (A,∆A) be a quantum group constructed from a modular multiplicative unitary W ∈
B(H⊗H). If a ∈M(A), then ∆A(a) ∈M(A⊗ 1A) or ∆A(a) ∈M(1A ⊗A) if and only if a ∈ C · 1.

More generally, if D is a C∗-algebra and a ∈ M(A ⊗ D), then (∆A ⊗ idD)(a) ∈ M(A ⊗ 1 ⊗ D) or
(∆A ⊗ idD)(a) ∈M(1⊗A⊗D) if and only if a ∈ C · 1⊗M(D).

Proof. Using (2.17), we rewrite the equation ∆A(a) = 1⊗ a′ for a, a′ ∈ M(A⊗D) as WA
12a13 = a′23WA

12.
Now Theorem 2.27 yields a ∈ C · 1⊗M(D). If ∆A(a) = a′⊗ 1 instead, then we apply the unitary antipodes.
With c := (RA ⊗ idD)(a) and c′ := (RA ⊗ idD)(a′), we get ∆A(c) = 1 ⊗ c′. The argument above shows
c ∈ C · 1⊗M(D) and hence a ∈ C · 1⊗M(D).

2.5 Coactions of quantum groups
Definition 2.29 ([2, Définition 0.2]). A continuous (right) coaction of G on a C∗-algebra C is a morphism
γ : C → C ⊗A with the following properties:

1. γ is injective;
2. γ is a comodule structure, that is, the following diagram commutes:

C C ⊗A

C ⊗A C ⊗A⊗A

γ

γ
γ ⊗ idA

idC ⊗∆A
(2.22)

3. γ satisfies the Podleś condition
γ(C) · (1C ⊗A) = C ⊗A. (2.23)

We call (C, γ) a G-C∗-algebra. We often drop γ from our notation.
A morphism f : C → D between two G-C∗-algebras (C, γC) and (D, γD) is G-equivariant if γD ◦ f =

(f ⊗ idA) ◦ γC . Let MorG(C,D) be the set of G-equivariant morphisms from C to D.
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Notation 2.30. Let C∗alg(G) be the category with G-C∗-algebras as objects and G-equivariant morphisms
as arrows.
Example 2.31. Any C∗-algebra C with the trivial coaction ϕtriv(c) = c⊗ 1A for all c ∈ C is an object of the
category C∗alg(G).
Example 2.32. Theorem 2.13(3)(i) implies that the underlying C∗-algebra A of a quantum group G = (A,∆A)
is a G-C∗-algebra with ∆A as the coaction.
Example 2.33. Combining the previous examples (2.31) and (2.32) we get C ⊗ A as an object in the
category C∗alg(G) with the continuous G-coaction ϕC⊗A := idC ⊗∆A. The following lemma says that any
continuous coaction may be embedded into one of this form.

Lemma 2.34. Let C be a C∗-algebra and D a C∗-subalgebra ofM(C ⊗A) with

(idC ⊗∆A)(D) · (1C⊗A ⊗A) = D ⊗A. (2.24)

Then D with the coaction δ := (idC ⊗∆A)|D : D → D ⊗ A is a G-C∗-algebra, and the embedding D →
M(C ⊗A) is a G-equivariant morphism.

Every G-C∗-algebra is isomorphic to one of this form.

Proof. Equation (2.24) implies that idC ⊗ ∆A maps D into M(D ⊗ A) as claimed. Injectivity and
coassociativity of δ are clear from (2.17) because they hold for idC ⊗∆A, and (2.24) is the Podleś condition
for δ. Thus δ is a continuous G-coaction. The equivariance of the embedding is clear.

Now let (C, γ) be a G-C∗-algebra. Let D := γ(C) ⊆M(C ⊗A). The comodule property (2.22) and the
Podleś condition for γ imply that D satisfies (2.24):

(idC ⊗∆A)γ(C) · (1C⊗A ⊗A) = (γ ⊗ idA)
(
γ(C) · (1C ⊗A)

)
= (γ ⊗ idA)(C ⊗A) = γ(C)⊗A.

Furthermore, the comodule property (2.22) for γ implies that the isomorphism γ : C → D is G-equivariant.

2.6 Corepresentations of quantum groups
Definition 2.35 ([2, Définition 0.3]). A (right) corepresentation of a C∗-quantum group G = (A,∆A) on
a C∗-algebra D is a unitary U ∈M(D ⊗A) such that

(idD ⊗∆A)U = U12U13 in U(D ⊗A⊗A). (2.25)

In particular, if D = K(H) for some Hilbert space H, we call U a corepresentation of G on H.

Let (π, π̂) be a G-Heisenberg pair on a Hilbert space H such that W = (π̂ ⊗ π)W ∈ U(H⊗H) be a
manageable multiplicative unitary for G. Let U ∈ U(K(K)⊗ A) be a corepresentation of G on a Hilbert
space K and let U := (idK⊗π)U ∈ U(K⊗H). Using (2.17) we rewrite the corepresentation condition (2.25)
in the following way

W23U12 = U12U13W23 in U(K ⊗H⊗H). (2.26)
Definition 1.3 in [49] shows that U ∈ U(K ⊗ H) is adapted to W. More generally, [49, Theorem 1.7]
shows that every unitary adapted to W is a corepresentation of G. Further, Theorem 1.6 in [49] shows
that U ∈ U(K(K)⊗A) is manageable in the following sense: there is a unitary Ũ ∈ U(K⊗H) satisfying the
following condition: (

x⊗ u | U | z ⊗ y
)

=
(
z ⊗Qu | Ũ | x⊗Q−1y

)
, (2.27)

for all x, z ∈ K, u ∈ Dom(Q) and y ∈ Dom(Q−1). Here Q is the positive, self-adjoint operator on H
involved in the definition of the manageability of W ∈ U(H⊗H).

The next Proposition shows that every corepresentation of G gives rise to a multiplicative unitary of G.

Proposition 2.36. The unitary W13U23 ∈ U(H ⊗ K ⊗ H ⊗ K) is a manageable multiplicative unitary
on H⊗K generating G.
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The following lemma is needed to show the manageability of W13U23.

Lemma 2.37. Let Q be a self-adjoint, strictly positive operator acting on a Hilbert space H. Then there is
an orthonormal basis {ei}i=1,2,··· in H such that all ei ∈ Dom(Q) ∩ Dom(Q−1) and

∞∑
i=1

|Q−1ei)(Qei| = 1H, (2.28)

where the sum converges in the strong topology.

Proof. Given any integer n ∈ Z and any λ ∈ [22n−1, 22n+1) we set f(λ) = 2−2nλ. Then

R>0 3 λ 7→ f(λ) ∈ [2−1, 2)

is a piecewise linear function and the operator Q′ := f(Q) is self-adjoint, bounded with bounded inverse:
‖Q′‖, ‖Q′−1‖ ≤ 2. Let χ denote the characteristic function (not bicharacter) as discussed in [52] such
that χ(22n−1 ≤ Q ≤ 22n+1) is the spectral projection assigned to Sp(Q)∩ [22n−1, 22n+1). Moreover, if e ∈ H
and

χ(22n−1 ≤ Q < 22n+1)e = e (2.29)

then e ∈ Dom(Q) ∩ Dom(Q−1), Qe = 22nf(Q)(e) = 22nQ′e and Q−1e = 2−2nf(Q−1)e = 2−2nQ′−1. In
that case

|Q−1e)(Qe| = |Q′−1e)(Q′e| = Q′−1|e)(e|Q′.

Finally, selecting an orthonormal basis {ei}i=1,2,··· in H with all ei satisfying condition (2.29) (n depends
on i) we get

∞∑
i=1

|Q−1ei)(Qei| =
∞∑
i=1

Q′−1|ei)(ei|Q′ = Q′−1
( ∞∑
i=1

|ei)(ei|
)
Q′ = 1H.

Proof of Proposition 2.36. Let X1234 := W13U23. The following computation shows that X1234 satisfies the
pentagon equation (2.4):

X3456X1234X3456 = W35U45W13U23U∗45W∗35 = W35W13U23W∗35 = W13W15W35U23W∗35 = W13W15U23U25

= X1234X1256.

The first equality follows from the assumption, the second equality holds as U45 and W13U23 commute, the
third equality uses (2.4), the fourth equality follows from (2.26) and the fifth equality is trivial.

Clearly, X1234 ∈ U(Â⊗K(K)⊗A⊗ 1). We show that the C∗-algebra generated by slices on the first
two legs of X1234 is indeed A. Manageability of W ∈ U(H⊗H) yields A = {(ω ⊗ id)W∗ : ω ∈ B(H)∗}. We
replace B(K)∗ by the dense subset ξω′, where ξω′ is defined by ξω′(ξ′) := ω′(ξ′ · ξ) for ξ, ξ′ ∈ B(K) and
ω′ ∈ B(K)∗. Therefore,

{(ω ⊗ ξω′ ⊗ id⊗ idK)X∗1234 : ω ∈ B(H)∗, ω′ ∈ B(K)∗, ξ ∈ B(K)}CLS

= {(ξ · ω′ ⊗ id)U∗ · a : a ∈ A,ω′ ∈ B(K)∗, ξ ∈ B(K)}CLS

= {(ω′ ⊗ id)(U∗(ξ ⊗ a)) : a ∈ A,ω′ ∈ B(K)∗, ξ ∈ B(K)}CLS

= {(ω′ ⊗ id)(ξ ⊗ a) : a ∈ A,ω′ ∈ B(K)∗, ξ ∈ B(K)}CLS = A

Finally we show that X1234 is manageable. Let Q be the positive, self-adjoint operator on H involved
in the definition of the manageability of W ∈ U(H⊗H). Define Q := Q⊗ 1K. Clearly, Q⊗Q commutes
with X1234.
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By Lemma 2.37 there is an orthonormal basis {ei}i=1,2··· of H such that ei ∈ Dom(Q) ∩ Dom(Q−1)
satisfying (2.28). Let x, z ∈ H, x1, z1 ∈ K, u ∈ Dom(Q) and y ∈ Dom(Q−1). We compute

(x1 ⊗ x2 ⊗ u |W13U23 | z1 ⊗ z2 ⊗ y)

=
∑
i

(x1 ⊗ x2 ⊗ u |W13 · (1⊗ 1⊗ | ei) · (ei |) · U23 | z1 ⊗ z2 ⊗ y)

=
∑
i

(x1 ⊗ u |W | z1 ⊗ ei) · (x2 ⊗ ei | U | z2 ⊗ y)

=
∑
i

(
z1 ⊗Qu | W̃ | x1 ⊗Q−1ei

)
·
(
z2 ⊗Qei | Ũ | x2 ⊗Q−1y

)
=
∑
i

(
z1 ⊗ z2 ⊗Qu | W̃13 · (1⊗ 1⊗ | Q−1ei) · (Qei |) · Ũ23 | x1 ⊗ x2 ⊗Q−1y

)
=
(
z1 ⊗ z2 ⊗Qu | W̃13Ũ23 | x1 ⊗ x2 ⊗Q−1y

)
.

Hence, X1234 ∈ U(H⊗K⊗H⊗K) is a manageable multiplicative unitary generating G.

Proposition 2.38. Let U ∈ U(D1⊗A) and V ∈ U(D2⊗Â) be corepresentations of G, Ĝ on C∗-algebras D1,
D2. Then there is a unique unitary Z ∈ U(D1 ⊗D2) such that for any G-Heisenberg pair (π, π̂) on L

U1πV2π̂Z12 = V2π̂U1π in U(D1 ⊗D2 ⊗K(L)). (2.30)

Equivalently, Z ∈ U(D1 ⊗D2) satisfies the following:

V̂π̂3U1π = U1πZ
∗
13V̂π̂3 in U(D1 ⊗K(L)⊗D2), (2.31)

where V̂ = σ(V∗) ∈ U(Â⊗KD2).
In particular, if D1 = K(H) and D2 = K(K) for some Hilbert spaces H and K, then Z ∈ U(H⊗K).

Proof. Let W ∈ U(Â⊗A) be the reduced bicharacter of G. Equations (2.17) and (2.25) for U yield:

Wπ̂3U1π = U1πU13Wπ̂3 in U(D1 ⊗K(L)⊗A). (2.32)

Similarly, equations (2.18) and (2.25) for V̂ gives:

V13Wπ̂3 = Wπ̂3V13V1π in U(D2 ⊗K(L)⊗ Â). (2.33)

Define Z̃ := V∗2π̂U∗1πV2π̂U1π ∈ U(D1 ⊗ D2 ⊗ K(L)) and consider the multiplicative unitary W =
(π̂ ⊗ π)W ∈ U(L ⊗ L). We are going to use Theorem 2.27 to show Z̃ ∈ U(D1 ⊗D1 ⊗ 1).

W34V∗23U∗13V23U13(W34)∗ = V∗24W34V24U∗13V23(W34)∗U13U14 = V∗24W34U∗13V24V23(W34)∗U13U14

= V∗24U∗14U∗13V24U13U14

= V∗24U∗14V24U14,

where the first and third equality use (2.32) and (2.33), whereas the second and fourth equality follow
because U13 and V24 commute.

Now Theorem 2.27 gives a unitary Z ∈ U(D1 ⊗D2) such that Z12 = Z̃. It satisfies (2.30), which also
shows the uniqueness.

Remark 2.39. At first sight, it seems that the unitary Z ∈ U(H⊗K) in Proposition 2.38 depends on the
choice of G-Heisenberg pairs. We shall justify its independence of auxiliary choices of G-Heisenberg pairs in
Remark 2.44.
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2.7 Universal duals of quantum groups
Given a locally compact group G, the full group C∗-algebra C∗(G) is universal in the following sense: every
unitary representation of G on a Hilbert space factors through a representation of C∗(G) on the same Hilbert
space. The comultiplication ∆C∗(G) ∈ Mor(C∗(G),C∗(G)⊗C∗(G)) defined by ∆C∗(G)(a) := a⊗a for a = δg
is coassociative. Furthermore, (C∗(G),∆C∗(G)) is a bisimplifiable Hopf C∗-algebra and (C∗r (G),∆C∗r (G)) is
a quotient of it. Thus C∗(G) can be considered as the universal dual of the quantum group C0(G). The
counterpart for general quantum groups is known as the universal dual of the quantum group. Under the
assumption of Haar weights, Kustermans discussed a general theory of it in [22]. Later, in [39], Sołtan and
Woronowicz generalised Kustermans’s result in the framework of modular multiplicative unitaries. Let us
recall some facts from [39] in the following theorem:

Theorem 2.40. Let G = (A,∆A) be a quantum group.

1. There is a bisimplifiable Hopf C∗-algebra Ĝu = (Âu, ∆̂Au ).

2. There is a unique corepresentation Ṽ ∈ U(Âu ⊗A) of G such that

(a) Ṽ is universal: given any corepresentation U ∈ U(D ⊗ A) of G on a C∗-algebra D there is a
unique ϕ ∈ Mor(Âu, D) with

(ϕ⊗ idA)Ṽ = U, (2.34)

(b) Ṽ is a character in the first leg:

(∆̂u
A ⊗ idA)Ṽ = Ṽ23Ṽ13. (2.35)

(c) slices on the first leg of Ṽ generate the C∗-algebra Âu:

Âu = {(idÂu ⊗ ω)Ṽ | ω ∈ A′}CLS (2.36)

As a consequence of Theorem 2.40(2) there is a unique Hopf ∗-homomorphism (see [39, Proposition 34])
Λ̂ : Âu → Â, known as the (dual) reducing morphism, satisfying

(Λ̂⊗ idA)(Ṽ ) = W. (2.37)

Also, there is a unique bounded dual counit êu : Âu → C (see [39, Proposition 31]) characterised by the
trivial corepresentation of G:

(êu ⊗ idA)Ṽ = 1A, (2.38)

with the following property:
(êu ⊗ idÂu )∆̂u

A = (idÂu ⊗ êu)∆̂u
A = idÂu . (2.39)

Similarly Gu = (Au,∆Au) is the universal dual of Ĝ with a unique corepresentation V ∈ U(Â⊗Au) of Ĝ
such that

1. V is universal: given any corepresentation U ∈ U(Â ⊗ D) of Ĝ on a C∗-algebra D there is a
unique ϕ ∈ Mor(Au, D) satisfying

(idÂ ⊗ ϕ)V = U, (2.40)

2. V is a character in the second leg:

(idÂ ⊗∆u
A)V = V12V13. (2.41)

3. slices on the second leg of V generate the C∗-algebra Au:

Au = {(ω ⊗ idAu )V | ω ∈ Â′}‖·‖-closure (2.42)
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The unique Hopf ∗-homomorphism, reducing morphism, Λ ∈ Mor(Au, A) is characterised by the following
condition:

(idÂ ⊗ Λ)(V ) = W. (2.43)
Finally, we also have a unique bounded counit eu : Au → C characterised by:

(idÂ ⊗ e
u)V = 1Â. (2.44)

It satisfies
(eu ⊗ idAu )∆u

A = (idAu ⊗ eu)∆u
A = idAu . (2.45)

The following result due to Kustermans which works in the setting of modular multiplicative unitaries:
Lemma 2.41 ([22, Result 6.1]). Let X,Y ∈ U(D⊗Au) be corepresentations of Gu on a C∗-algebra D. Let
ΛA : Au → A be the reducing morphism. If (idD ⊗ΛA)X = (idD ⊗ΛA)Y , then X = Y . A similar statement
holds in the first variable.

Universal duals of quantum groups, in general, do not arise from modular or manageable multiplicative
unitaries; hence they are not quantum groups. Still one may lift W ∈ U(Â⊗A) uniquely to a unitary W ∈
U(Âu ⊗Au) satisfying a variant of pentagon equation (2.4):
Proposition 2.42. There is a unique unitary W ∈ U(Âu ⊗Au) such that

(idÂu ⊗∆Au )W =W12W13 in U(Âu ⊗Au ⊗Au), (2.46)

(∆̂Au ⊗ idÂu )W =W23W13 in U(Âu ⊗ Âu ⊗Au), (2.47)

(idÂu ⊗ Λ)W = Ṽ in U(Âu ⊗A), (2.48)

(Λ̂⊗ idAu )W = V in U(Â⊗Au), (2.49)

(Λ̂⊗ Λ)W = W in U(Â⊗A), (2.50)

(idÂu ⊗ eu)W = 1Âu in U(Âu), (2.51)
(êu ⊗ idAu )W = 1Au in U(Au). (2.52)

Definition 2.43. The unitary multiplier W in Proposition 2.42 is called the universal bicharacter of
G = (A,∆A).

In the presence of a Haar weight on quantum groups this was shown by Kustermans [22, Proposition
6.4]. We establish this fact in the context of modular multiplicative unitaries.

Proof of Proposition 2.42. Let (π, π̂) be a G-Heisenberg pair. Proposition 2.38 gives a unique W ∈
U(Âu ⊗Au) with

W13 = Ṽ∗1πVπ̂3Ṽ1πV∗π̂3. (2.53)
Now we show (2.46):

(idÂu ⊗ idA ⊗∆Au )Ṽ∗1πVπ̂3Ṽ1πV∗π̂3 = Ṽ∗1πVπ̂3Vπ̂4Ṽ1πV∗π̂4V∗π̂3 =W13Vπ̂3Ṽ∗1πVπ̂4Ṽ1πV∗π̂4V∗π̂3

=W13Vπ̂3W14V∗π̂3 =W13W14.

A similar routine computation yields (2.47). The following computation yields (2.48):

(idÂu ⊗ idA ⊗ Λ)W13 = (idÂu ⊗ idA ⊗ Λ)Ṽ∗12V23Ṽ12V∗23 = Ṽ∗12W23Ṽ12W∗23 = Ṽ∗12Ṽ12Ṽ13 = Ṽ13.

A similar computation yields (2.49). Then (2.50) follows from (2.43) or (2.37). Finally, (2.51) and (2.52)
follow by using (2.44) and (2.38) in (2.53).

Let (π′, π̂′) be another G-Heisenberg pair and W ′ ∈ U(Âu ⊗ Au) be the corresponding universal
bicharacter. Now (2.48) gives (idÂu ⊗ Λ)W = (idÂu ⊗ Λ)W ′ = V ; Lemma 2.41 gives W =W ′.

Remark 2.44. We conclude by arguing that Z ∈ U(H ⊗ K) in Proposition 2.38 satisfying (2.31), is
independent of the choice of G-Heisenberg pairs. The universal property (2.34) of Ṽ ∈ U(Âu ⊗A) gives a
unique ϕ ∈ Mor(Âu, D1) with (ϕ⊗ idA)Ṽ = U. Similarly, by the universal property (2.40) of V ∈ U(Â⊗Au),
there is a unique ψ ∈ Mor(Au, D2) such that (idÂ ⊗ ψ)V = V̂. Let (π, π̂) be a G-Heisenberg pair acting
on L and define Z := (ϕ ⊗ ψ)W∗ ∈ U(D1 ⊗ D2). Since W ∈ U(Âu ⊗ Au) is independent of the choice
of G-Heisenberg pairs so is Z. Finally, applying ϕ⊗ idL ⊗ ψ on both sides of (2.53) we obtain (2.30).
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Chapter 3

Homomorphisms of quantum
groups

Let G and H be two locally compact groups and let Ĝ and Ĥ be the respective Pontrjagin duals. Then
for any continuous group homomorphism f : G→ H there is a unique dual morphism f̂ : Ĥ → Ĝ defined
as f̂(χh) := χf(h), where χh ∈ Ĥ for all h ∈ H. There should be a similar notion of homomorphisms
of quantum groups which is compatible with the duality in the following sense: given a quantum group
homomorphism f : G → H there is a unique quantum group homomorphism f̂ : Ĥ → Ĝ. A natural
choice would be the Hopf ∗-homomorphisms in Definition 2.4, which are the right morphisms between
compact quantum groups (see [43]) and, more generally, between amenable quantum groups. For locally
compact groups, however, they are not appropriate because they do not behave well for reduced group
C∗-algebras. It is easy to see that a group homomorphism f : G → H induces Hopf ∗-homomorphisms
from C0(H) to C0(G) and from C∗(G) to C∗(H). But the latter does not always descend to the reduced
group C∗-algebras. For instance, the constant map from G to the trivial group {1} induces a Hopf
∗-homomorphism C∗r (G)→ C∗r ({1}) = C if and only if G is amenable. In this chapter we propose equivalent
notions of homomorphisms of quantum groups building on work by Ng [31] and later by Kustermans [22].

In Section 3.1 we recall the theory of bicharacters as quantum group homomorphisms, which is nicely
compatible with the duality of quantum groups. In Section 3.2, we show a bijection between bicharacters and
Hopf ∗-homomorphisms of universal quantum group C∗-algebras. In Section 3.3 we interpret bicharacters in
terms of certain left and right coactions and vice versa. In Section 3.4 we introduce the most fundamental
notion of quantum group homomorphism from the point of view that quantum groups encode symmetries
of C∗-algebras, in the form of coactions. In Section 3.5 we discuss the correspondence between bicharacters
and classical group homomorphisms. Section 3.6 introduces the notion of projections on quantum groups.

3.1 Bicharacters
Let G = (A,∆A) and H = (B,∆B) be quantum groups with the reduced bicharacters WA ∈ U(Â ⊗ A)
and WB ∈ U(B̂ ⊗B), respectively.

Definition 3.1 (see also [31, Definition 3.1]). A unitary χ ∈ U(Â⊗B) is called a bicharacter from G to H
if

(∆̂A ⊗ idB)χ = χ23χ13 in U(Â⊗ Â⊗B), (3.1)

(idÂ ⊗∆B)χ = χ12χ13 in U(Â⊗B ⊗B). (3.2)

Remark 3.2. Definition 3.1 still makes sense if we consider (Â, ∆̂A) and (B,∆B) as Hopf C∗-algebras. We
do not expect all the nice properties of bicharacters between quantum groups in this general setting. But

21
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it will turn out useful in Section 3.2 while studying Hopf ∗-homomorphisms between universal quantum
groups.

Let HA and HB be the generic Hilbert spaces associated to G and H-Heisnberg pairs.

Lemma 3.3. A unitary χ ∈ U(HA ⊗HB) comes from a bicharacter χ ∈ U(Â⊗B) (which is necesssarily
unique) if and only if

χ23WA
12 = WA

12χ13χ23 in U(HA ⊗HA ⊗HB), (3.3)

WB
23χ12 = χ12χ13WB

23 in U(HA ⊗HB ⊗HB). (3.4)

Proof. The representation of Â⊗ Â⊗B on HA⊗HA⊗HB is faithful. Hence a bicharacter χ ∈ U(Â⊗B) is
determined by its image χ ∈ U(HA ⊗HB), and (3.1) and (3.2) are equivalent to some equations of unitary
operators on HA ⊗HA ⊗HB. Using (2.18), we rewrite (3.1) as Σ12(WA

12)∗χ23WA
12Σ12 = χ23χ13. This is

equivalent to (3.3). A similar argument shows that (3.2) is equivalent to (3.4).
It remains to show that a unitary χ on HA ⊗HB that satisfies (3.3) and (3.4) necessarily belongs to

U(Â⊗ B). Comparing (3.4) with (2.26) we observe that χ is adapted to WB . Rewriting (3.4) as χ13 =
χ∗12WB

23χ12(WB
23)∗, we see that χ ∈ U(K(HA)⊗B). Equation (3.3) in the form χ13 = (WA

12)∗χ23WA
12χ∗23

shows that χ13 ∈ U(Â⊗K(HA)⊗B), so that χ ∈ U(Â⊗B) as asserted.

Example 3.4. Equations (2.8) and (2.9) show that a Hopf ∗-homomorphism f : A→ B yields a bicharacter
Vf := (idÂ ⊗ f)WA. In particular, the bicharacter WA corresponds to the identity morphism.
Remark 3.5. The criterion in Lemma 3.3 has the merit of using only the language of multiplicative unitaries
and pentagon equations. But the same quantum group may be generated by different multiplicative
unitaries. Since WA only depends on (A,∆A) by [39], bicharacters from G to H depend only on (A,∆A)
and (B,∆B).

3.1.1 Composition of bicharacters
Now we define the composition of (concrete) bicharacters as in [31, Lemma 2.5]. Let I = (C,∆C) be another
quantum group.

Definition 3.6. A unitary χA→C ∈ U(Â⊗C) is called a composition of two bicharacters χA→B ∈ U(Â⊗B)
and χB→C ∈ U(B̂ ⊗ C) if its image χA→C in U(HA ⊗HC) satisfies

χB→C23 χA→B12 = χA→B12 χA→C13 χB→C23 in U(HA ⊗HB ⊗HC)

or, equivalently,
χA→C13 = (χA→B12 )∗χB→C23 χA→B12 (χB→C23 )∗. (3.5)

We also briefly write χA→C = χB→C ∗ χA→B .

Lemma 3.7. For any two bicharacters χA→B and χB→C , there is a unique composition χA→C ∈ U(Â⊗C)
from G to I.

Proof. We rewrite (3.5) as χA→C13 = (χA→B1π )∗χB→Cπ̂3 χA→B1π (χB→Cπ̂3 )∗, where (π, π̂) is a H-Heisenberg pair
on H. By Proposition 2.38 there is a unique χA→C ∈ U(Â⊗ C) satisfying (3.5).

The following computation yields (3.1) for χA→C :

(∆̂A ⊗ id⊗ idC)χA→C13 = (∆̂A ⊗ id⊗ idC)
(
(χA→B1π )∗χB→Cπ̂3 χA→B1π (χB→Cπ̂3 )∗

)
= (χA→B1π )∗(χA→B2π )∗χB→Cπ̂4 χA→B2π χA→B1π (χB→Cπ̂4 )∗

= (χA→B1π )∗χA→C24 χB→C
π̂4 χA→B1π (χB→Cπ̂4 )∗

= χA→C24 (χA→B1π )∗χB→Cπ̂4 χA→B1π (χB→Cπ̂4 )∗ = χA→C24 χA→C14

The first step uses (3.5); the second step uses (3.1) for χA→B ; the third step again uses (3.5); the fourth
step uses that χA→C24 and χA→B1π commute; and the last step uses (3.5).

Similarly, one shows (3.4). Hence χA→C is indeed a bicharacter.
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Proposition 3.8. The composition of bicharacters is associative, and the multiplicative unitary WA is an
identity on C. Thus bicharacters with the above composition and locally compact quantum groups are the
arrows and objects of a category, called bicharacter category.

Proof. Only associativity of the composition is non-trivial. This follows from a direct composition similar
to the ones above. We omit it here because associativity follows immediately from Theorem 3.17 or from
Proposition 3.28 below, which translate the composition into a different language where associativity is
obvious.

3.1.2 Properties of bicharacters
Recall that the dual of a multiplicative unitary WA is the multiplicative unitary ŴA := Σ(WA)∗Σ.
Correspondingly, the reduced bicharacter of the dual quantum group is ŴA := σ((WA)∗). Here σ : Â⊗A→
A⊗ Â is the tensor flip automorphism and Σ: HA ⊗HA → HA ⊗HA is the tensor flip unitary. A similar
duality works for all bicharacters:

Proposition 3.9. Let χ ∈ U(Â ⊗ B) be a bicharacter from G to H and let χ ∈ U(HA ⊗ HB) be the
corresponding concrete bicharacter. Then

χ̂ := σ(χ∗) ∈ U(B ⊗ Â) and χ̂ := Σχ∗Σ ∈ U(HB ⊗HA)

are a bicharacter from Ĥ to Ĝ and the corresponding concrete bicharacter. Here we identify the bidual of
H = (B,∆B) again with H = (B,∆B). This duality is a contravariant functor on the bicharacter category.

Proof. We check (3.1) for χ̂ using (3.2) for χ:

(∆B ⊗ idÂ)σ(χ∗) = σ23σ12((idÂ ⊗∆B)χ∗) = σ23σ12(χ∗13χ
∗
12) = σ(χ∗)23 · σ(χ∗)13.

A similar computation yields (3.2) for χ̂. A quantum group and its dual are canonically represented on the
same Hilbert space, and the flip σ on operators is implemented by conjugating by Σ. Hence χ̂ := Σχ∗Σ.

Functoriality follows from the following computation:

χ̂A→C13 = σ13
(
χB→C
π̂3 (χA→B1π )∗(χB→Cπ̂3 )∗χA→B1π

)
= χ̂B→C

1π̂

∗
χ̂A→B
π3 χ̂B→C

1π̂
χ̂A→B
π3

∗
,

where (π, π̂) is an H-Heisenberg pair.

The following result generalises [39, Lemma 40] and is proved by the same idea.

Proposition 3.10. Let χ ∈ U(Â⊗B) be a bicharacter. Then

(RÂ ⊗ RB)(χ) = χ, (3.6)

(τ Ât ⊗ τBt )(χ) = χ for all t ∈ R. (3.7)

Proof. Let ϕ ∈ Â∗ and ψ ∈ B∗ be entire analytic for (τ Ât ) and (τBt ), respectively. Let ϕt := ϕ ◦ τ Ât and
ψt := ψ ◦ τBt for all t ∈ R. Analytic continuation yields

ϕz+z′ = ϕz ◦ τ Âz′ , and ψz+z′ = ψz ◦ τBz′ for all z, z′ ∈ C.

Polar decomposition of the antipodes κÂ and κB ([49, Theorem 1.5]) shows that

ϕz ◦ κÂ = ϕz+i/2 ◦ RÂ, and ψz ◦ κB = ψz+i/2 ◦ RB .

Let κ̄B be the closure of κB with respect to the strict topology onM(B). Then [49, Theorem 1.6(4)] yields

κ̄B(ω ⊗ id)χ = (ω ⊗ id)(χ∗)

for all ω ∈ Â∗. Applying ψz to both sides and using that ω is arbitrary, we get(
id⊗ ψz+i/2 ◦ RB

)
χ = (id⊗ ψz)(χ∗).
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Interchanging the roles of B and Â and replacing χ by Σχ∗Σ and ψ by ϕ, we get(
ϕz+i/2 ◦RÂ ⊗ id

)
(χ∗) = (ϕz ⊗ id)χ.

Both formulas together yield

(ϕz+i/2 ⊗ ψz+i/2) ◦ (RÂ ⊗ RB)(χ) = (ϕz+i/2 ◦ RÂ ⊗ ψz+i/2 ◦ RB)(χ)
= (ϕz+i/2 ◦ RÂ ⊗ ψz)(χ

∗) = ψz(ϕz+i/2 ◦ RÂ ⊗ id)(χ∗) = (ϕz ⊗ ψz)(χ). (3.8)

Inserting ϕ ◦ κÂ and ψ ◦ κB into (3.8) instead of ϕ and ψ yields

(ϕz+i ⊗ ψz+i)(χ) = (ϕz+i/2 ⊗ ψz+i/2) ◦ (RÂ ⊗ RB)(χ) = (ϕz ⊗ ψz)(χ).

This shows that (ϕz ⊗ψz)(χ) is a periodic function of period i. Being bounded as well, Liouville’s Theorem
shows that it is constant, that is,

(ϕz ⊗ ψz)(χ) = (ϕ⊗ ψ)(χ) (3.9)

for all z ∈ C. Putting z = −i/2 in (3.8) and using (3.9) yields

(ϕ⊗ ψ) ◦ (RÂ ⊗ RB)(χ) = (ϕ⊗ ψ)(χ).

This proves (RÂ ⊗ RB)(χ) = χ. Finally, (3.9) also yields (τ Ât ⊗ τBt )(χ) = χ for all t ∈ R.

Let QA and QB be the positive, self-adjoint operators from the definition of manageable multiplicative
unitaries of the quantum groups G and H.

Corollary 3.11. χ ∈ U(HA ⊗HB) commutes with QA ⊗QB.

Example 3.12. We give an interesting example of a concrete bicharacter from the definition of modular
multiplicative unitaries.

Let G = (A,∆A) be a quantum group generated by a modular multiplicative unitary W on H⊗H. The
opposite quantum group (Aop,∆A) is generated by a modular multiplicative unitary acting on H⊗H for
the complex-conjugate Hilbert space H. The unitary operator (W∗)T⊗T on H⊗H is multiplicative and
gives rise to the quantum group (Ā, ∆̄A) with

Ā := {aT : a ∈ A} and ∆̄A(aT) := (∆A(a))T⊗T. (3.10)

The quantum group (Ā, ∆̄A) is isomorphic to (Aop,∆A). Thus the dual ( ˆ̄A, ˆ̄∆A) is isomorphic to the dual
of the opposite quantum group (Âop, ∆̂A), where

ˆ̄A = {âT : â ∈ Â} and ˆ̄∆A(âT) = (∆̂(â))T⊗T. (3.11)

Recall the operator W̃ from the definition of a modular multiplicative unitary. Theorem 2.13(6)(ii) and
(3.6) yield W̃

∗
= WT⊗RA = WR

Â
T⊗id ∈ U(H⊗H). Hence (3.11) yields W̃ ∈ U( ˆ̄A⊗A). We compute

( ˆ̄∆A ⊗ idA)W̃
∗

= ((∆̂A ⊗ idA)W)T⊗T⊗RA = (W23W13)T⊗T⊗RA = W̃
∗
13W̃

∗
23.

(id ˆ̄A ⊗ σ ◦∆A)W̃
∗

= ((idÂ ⊗ σ ◦∆A)W)T⊗RA⊗RA = (W12W13)T⊗RA⊗RA = W̃
∗
13W̃

∗
12.

Thus W̃ is a bicharacter from (Ā, ∆̄A) to (A,∆op
A ).
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3.1.3 Manageability of bicharacters
Lemma 3.3 and Proposition 3.9 show that χ ∈ U(HA ⊗ HB) and χ̂ ∈ U(HB ⊗ HA) are adapted to the
multiplicative unitaries WB and ŴB . Assume that WA and WB are manageable multiplicative unitaries (if
they are modular consider the corresponding manageable multiplicative unitaries as described in [38]).

By (2.27), adaptation to WB yields manageability for χ ∈ U(HA ⊗ HB): there is a unitary χ̃ ∈
U(HA ⊗HB) such that: (

x⊗ u | χ | z ⊗ y
)

=
(
z ⊗QBu | χ̃ | x⊗Q−1

B y
)
, (3.12)

for all x, z ∈ HA, u ∈ Dom(QB) and y ∈ Dom(Q−1
B ). Moreover, χ̃∗ := χT⊗RB ∈ U(HA ⊗HB).

Similarly, χ̂ ∈ U(HB ⊗HA) is adapted to ŴA. So there is a unitary ˜̂χ := (χ̂∗)T⊗R
Â ∈ U(HB ⊗HA)

satisfying (
x⊗ u | χ̂ | z ⊗ y

)
=
(
z ⊗QAu | ˜̂χ | x⊗Q−1

A y
)
, (3.13)

for all x, z ∈ HB , u ∈ Dom(QA) and y ∈ Dom(Q−1
A ). Equation (3.6) shows that

(
Σ(χ̃∗)Σ

)T⊗T = ˜̂χ.

Lemma 3.13. χ̃ and QT
A ⊗Q−1

B commute.

Proof. Since χ commutes with QA ⊗QB , in (3.12) we can replace x, u, z and y by Qit
A(x), Qit

B(u), Qit
A(z)

and Qit
B(y), respectively, for all t ∈ R. Thus we obtain(

z ⊗QBu | χ̃ | x⊗Q−1
B y
)

=
([
QT
A

]−it
z ⊗Qit

BQBu | χ̃ |
[
QT
A

]−it
x⊗Qit

BQ
−1
B u
)

and therefore χ̃ =
([
QT
A

]it ⊗Q−it
B

)
χ̃
([
QT
A

]it ⊗Q−it
B

)
for all t ∈ R.

3.2 Passage to universal quantum groups
In this section we show that our quantum group homomorphisms are equivalent to Hopf ∗-homomorphisms
between the associated universal quantum groups, which were previously suggested as a suitable notion of
quantum group homomorphism (see [22, Section 12]). Proposition 2.42 shows that every reduced bicharacter
admits a unique bi-lift to a universal bicharacter. Thus modular (or manageable) multiplicative unitaries
are basic in the notation of [31, Definition 2.3].

Proposition 3.14. Let (B,∆B) be a Hopf C∗-algebra. Bicharacters in U(Â⊗B) correspond bijectively to
Hopf ∗-homomorphisms from Gu = (Au,∆Au ) to (B,∆B).

Proof. A Hopf ∗-homomorphism ϕ : Au → B is also a morphism from Au to B and thus corresponds to a
corepresentation χ ∈ U(Â⊗B) of Ĝ on B, which is determined by the condition (2.40): (idÂ ⊗ ϕ)(V ) =
χ. The Hopf ∗-homomorphisms ∆B ◦ ϕ : Au → B ⊗ B and (ϕ ⊗ ϕ) ◦ ∆Au : Au → B ⊗ B correspond
to the corepresentations (idÂ ⊗ ∆B)χ and χ12χ13, that is, idÂ ⊗ (∆B ◦ ϕ)(V ) = (idÂ ⊗ ∆B)χ and
(idÂ ⊗ (ϕ ⊗ ϕ) ◦∆Au)(V ) = χ12χ13 because V is a bicharacter. Thus a morphism ϕ : Au → B is a Hopf
∗-homomorphism if and only if the corepresentation χ also satisfies (idÂ ⊗∆B)χ = χ12χ13. That is, χ is a
bicharacter.

Corollary 3.15. Any Hopf ∗-homomorphism ϕ : Au → B induces a dual Hopf ∗-homomorphism ϕ̂ : B̂u → Â
if (B,∆B) is also a quantum group.

Proof. By Proposition 3.14, a Hopf ∗-homomorphism ϕ : Au → B corresponds to a bicharacter χ in U(Â⊗B).
By Proposition 3.9, σ(V ∗) is a bicharacter from B̂ to Â, which yields a Hopf ∗-homomorphism ϕ : B̂u → Â
by Proposition 3.14.

Now we are going to show that Hopf ∗-homomorphisms Gu → H lift uniquely to Hopf ∗-homomorphisms
from Gu to Hu. Together with Proposition 3.14, this yields a bijection between homomorphisms of quantum
groups in our sense and Hopf ∗-homomorphisms between the associated universal quantum groups. The
main ingredient is the universal bicharacter W ∈ U(Âu ⊗Au) from Proposition 2.42.
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Proposition 3.16. A bicharacter in U(Â⊗B) lifts uniquely to a bicharacter in U(Âu ⊗Bu) and hence to
bicharacters in U(Â⊗Bu) and U(Âu ⊗B).

Proof. These liftings are unique by Lemma 2.41. It remains to prove existence. Let χ ∈ U(Â ⊗ B)
be a bicharacter. By Proposition 3.14, it corresponds to a Hopf ∗-homomorphism ϕ : Au → B. Let
WA ∈ U(Âu ⊗ Au) be the universal bicharacter of G. Then χ′ := (idÂu ⊗ ϕ)WA ∈ U(Âu ⊗ B) is a
bicharacter that lifts χ. Now σ(χ′)∗ ∈ U(B ⊗ Âu) is again a bicharacter (see Proposition 3.9). Repeating
the above step we lift it to a bicharacter χ′′ in U(Bu ⊗ Âu). Then σ(χ′′)∗ is the desired lifting of χ.

Recall that bicharacters form a category and that duality is a functor on this category. Hopf
∗-homomorphisms Au → Bu also form the arrows of a category.

Theorem 3.17. There is an isomorphism between the categories of locally compact quantum groups with
bicharacters from G to H and with Hopf ∗-homomorphisms Au → Bu as morphisms G→ H, respectively.
The bicharacter associated to a Hopf ∗-homomorphism ϕ : Au → Bu is (ΛÂ ⊗ ΛBϕ)(WA) ∈ U(Â⊗B).

Furthermore, the duality on the level of bicharacters corresponds to the duality ϕ 7→ ϕ̂ on Hopf
∗-homomorphisms, where ϕ̂ : B̂u → Âu is the unique Hopf ∗-homomorphism with (ϕ̂ ⊗ idBu)(WB) =
(idÂu ⊗ ϕ)(WA).

Proof. Propositions 3.14 and 3.16 yield bijections from Hopf ∗-homomorphisms Au → Bu to bicharacters
from G to Hu and on to bicharacters from G to H. We must check that this bijection preserves the
compositions and the duality. We first turn to the duality because we need this to establish the compatibility
with compositions.

Let ϕ : Au → Bu be a Hopf ∗-homomorphism. Let χ := (ΛÂ⊗ΛBϕ)(WA) ∈ U(Â⊗B) be the associated
bicharacter. The duality on the level of bicharacters yields the bicharacter σ(χ∗) ∈ U(B ⊗ Â) from Ĥ to Ĝ.
This corresponds to a unique Hopf ∗-homomorphism ϕ̂ : B̂u → Âu with (ΛB ⊗ ΛÂϕ̂)(WB̂) = σ(χ)∗. Now
we use WB̂ = σ(WB)∗ to rewrite this as

(ΛÂ ⊗ ΛBϕ)(WA) = (ΛÂϕ̂⊗ ΛB)(WB).

Both (idÂu ⊗ ϕ)(WA) and (ϕ̂⊗ idBu )(WB) are bicharacters. Applying Lemma 2.41 to both tensor factors,
we get first (idÂu ⊗ΛBϕ)(WA) = (ϕ̂⊗ΛB)(WB) and then (idÂu ⊗ϕ)(WA) = (ϕ̂⊗ idBu )(WB). This yields
the asserted description of duality.

Now let ϕ : Au → Bu and ψ : Bu → Cu be Hopf ∗-homomorphisms and let χA→B ∈ U(Â ⊗ B) and
χB→C ∈ U(B̂ ⊗ C) be the corresponding bicharacters,

χB→C = (ΛB̂ ⊗ ΛCψ)WB = (idB̂ ⊗ ΛCψ)VB ,
χA→B = (ΛÂϕ̂⊗ ΛB)WB = (ΛÂϕ̂⊗ idB)ṼB ,

where we use the dual quantum group homomorphism ϕ̂ : B̂u → Âu. Let (π, π̂) be an H-Heisenberg pair
acting on H. Then

(χB→C ∗ χA→B)13 = (χA→B1π )∗χB→Cπ̂3 χA→B1π (χB→Cπ̂3 )∗

= (ΛÂϕ̂⊗ id⊗ ΛCψ)((ṼB1π)∗VBπ̂3ṼB1π(VBπ̂3)∗) = (ΛÂϕ̂⊗ id⊗ ΛCψ)(WB
13)

by Proposition 2.42. Thus

χB→C ∗ χA→B = (ΛÂϕ̂⊗ ΛCψ)(WB) = (ΛÂ ⊗ ΛCψ) ◦ (ϕ̂⊗ idBu )(WB)

= (ΛÂ ⊗ ΛCψ) ◦ (idÂu ⊗ ϕ)(WA) = (ΛÂ ⊗ ΛC(ψ ◦ ϕ))(WA).

Hence χB→C ∗ χA→B is the bicharacter associated to ψ ◦ ϕ. Thus our bijection is compatible with
compositions.

Remark 3.18. Proposition 2.42 or more generally Proposition 3.16 shows that modular multiplicative
unitaries are basic in the notation of [31, Definition 2.3]. Thus Theorem 3.17 is comparable to [31, Theorem
4.9].
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3.3 Right and left coactions
Let G = (A,∆A) and H = (B,∆B) be quantum groups with their reduced bicharacters WA ∈ U(Â⊗ A)
and WB ∈ U(B̂ ⊗B).

Definition 3.19. A right quantum group homomorphism G→ H is a morphism ∆R : A→ A⊗B for which
the following diagrams commute:

A A⊗B

A⊗A A⊗A⊗B

∆R

∆A

idA ⊗∆R

∆A ⊗ idB

A A⊗B

A⊗B A⊗B ⊗B

∆R

∆R

∆R ⊗ idB
idA ⊗∆B

(3.14)

The second diagram in (3.14) means that ∆R is an H-comodule structure on A.
Example 3.20. A Hopf ∗-homomorphism ϕ : A→M(B) yields a right quantum group homomorphism by
∆R := (idA ⊗ ϕ)∆A.

Theorem 3.21. For any right quantum group homomorphism ∆R : A→ A⊗B, there is a unique unitary
χ ∈ U(Â⊗B) with

(idÂ ⊗∆R)(WA) = WA
12χ13. (3.15)

This unitary is a bicharacter.
Conversely, let χ be a bicharacter from G to H, and let χ ∈ U(HA ⊗HB) be the corresponding concrete

bicharacter. Then
∆R(a) := χ(a⊗ 1)χ∗ for all a ∈ A (3.16)

defines a right quantum group homomorphism from G to H.
These two maps between bicharacters and right quantum group homomorphisms are inverse to each

other.

Proof. First we check that χ̄ := (WA)∗12 · (idÂ ⊗∆R)(WA) belongs to U(Â⊗ 1⊗B), that is, χ̄ = χ13 for
some χ ∈ U(Â⊗B). This is the unique χ that verifies (3.15). We compute

(idÂ ⊗∆A ⊗ idB)χ̄ =
(
(WA)∗13(WA)∗12

)
·
(
(idÂ ⊗ (∆A ⊗ idB)∆R)WA

)
=
(
(WA)∗13(WA)∗12

)
·
(
(idÂ ⊗ (idA ⊗∆R)∆A)WA

)
=
(
(WA)∗13(WA)∗12

)
·
(
(idÂ ⊗ idA ⊗∆R)WA

12WA
13
)

= (WA)∗13 ·
(
(idÂ ⊗∆R)WA

)
134

= χ̄13,

the first equality is the definition of χ̄ and (2.8), the second one uses the first diagram in (3.14), the third
one uses (2.8) and the last two are trivial. Now Lemma 2.28 yields χ̄ = χ13 for some χ ∈ U(Â⊗B).

Next we verify that χ is a bicharacter. We check (3.1):(
(∆̂A ⊗ idB)χ

)
124

= (∆̂A ⊗ idA ⊗ idB)
(
(WA)∗12 · (idÂ ⊗∆R)(WA)

)
= ((∆̂A ⊗ idA)(WA)∗)123 ·

(
(idÂ ⊗ idÂ ⊗∆R)(∆̂A ⊗ idA)WA

)
= (WA

23WA
13)∗(idĈ ⊗ idĈ ⊗∆R)(WA

23WA
13)

= (WA)∗13(WA)∗23WA
23χ24WA

13χ14 = χ24χ14;

the first two equalities use (3.15) and that ∆̂A is a ∗-homomorphism; the third equality uses (2.9); the
fourth one uses (3.15) again; and the final step uses that W13 and χ24 commute. The following computation
yields (3.2): (

(idÂ ⊗∆B)χ
)

134
= (WA)∗12(idÂ ⊗ idA ⊗∆B)(idÂ ⊗∆R)WA

= (WA)∗12(idÂ ⊗∆R ⊗ idB)(idÂ ⊗∆R)WA

= (WA)∗12(idÂ ⊗∆R ⊗ idB)(WA
12χ14) = χ13χ14;
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the first equality follows from (3.15); the second one from the second diagram of (3.14); the third and
fourth equalities from (3.15).

Thus we have constructed a bicharacter χ from a right quantum group homomorphism. Conversely,
let χ ∈ U(Â ⊗ B) be a bicharacter. We claim that (3.16) defines a morphism from A to A ⊗ B. Recall
that slices of WA ∈ U(HA ⊗HA) by linear functionals ω ∈ B(HA)∗ generate a dense subspace of A. On
a := (ω ⊗ idHA)(WA), we compute

∆R(a) = (ω ⊗ idHA ⊗ idHB )(χ23W12χ∗23) = (ω ⊗ idHA ⊗ idHB )(W12χ13),

and this belongs toM(A⊗B) (as the representation of A⊗B on HA ⊗HB is faithful). Thus ∆R(A) ⊆
M(A⊗B). It is clear from the definition that ∆R is non-degenerate.

We may also rewrite the above computation as

(ω ⊗ idA⊗B) ◦ (idÂ ⊗∆R)(WA) = (ω ⊗ idA⊗B)(WA
12χ13)

for all ω ∈ B(H)∗. Since ω is arbitrary, (3.15) holds for ∆R and our original bicharacter χ.
Now we use (3.15) to check that ∆R is a right quantum group homomorphism. The first diagram

in (3.14) amounts to

(idÂ ⊗∆A ⊗ idB)(idÂ ⊗∆R)(WA) = (idÂ ⊗ idA ⊗∆R)(idÂ ⊗∆A)(WA)

because slices on the first leg of WA generate A. This follows from (3.15) and (2.8): both sides are equal
to WA

12WA
13χ14. Similarly, the second diagram in (3.14) amounts to

(idÂ ⊗ idA ⊗∆B)(idÂ ⊗∆R)(WA) = (idÂ ⊗∆R ⊗ idB)(idÂ ⊗∆R)(WA),

which follows from (3.15) and (3.2) because both sides are equal to WA
12χ13χ14.

Thus a bicharacter χ yields a right quantum group homomorphism ∆R. Since these are related by (3.15),
we get back the original bicharacter from this right quantum group homomorphism. It only remains to
check that, if we start with a right quantum group homomorphism ∆R, define a bicharacter by (3.15) and
then a right quantum group homomorphism by (3.16), we get back the original ∆R. We may rewrite (3.3)
as

χ23WA
12χ∗23 = WA

12χ13 = (idÂ ⊗∆R)(WA),
using (3.15). This implies that the original ∆R satisfies (3.16) because the slices of WA by linear functionals
on Â span a dense subspace of A.

Theorem 3.21 shows that (3.16) is independent of the choice of G and H-Heisenberg pairs. Given any
Heisenberg pair (π, π̂) we identify A with π(A) and rewrite (3.16) as:

(π ⊗ idB)∆R(a) = χπ̂2(π(a)⊗ 1B)χ∗π̂2 for all a ∈ A. (3.17)

Definition 3.22. A left quantum group homomorphism from G to H is a morphism ∆L : A→ B ⊗A such
that the following two diagrams commute:

A B ⊗A

A⊗A B ⊗A⊗A

∆L

∆A

∆L ⊗ idA
idB ⊗∆A

A B ⊗A

B ⊗A B ⊗B ⊗A

∆L

∆L

idB ⊗∆L

∆B ⊗ idA (3.18)

Theorem 3.23. For any left quantum group homomorphism ∆L : A→ B ⊗A, there is a unique unitary
χ ∈ U(Â⊗B) with

(idÂ ⊗∆L)(WA) = χ12WA
13. (3.19)

This unitary is a bicharacter.
Conversely, let χ be a bicharacter from G to H, let χ ∈ U(HA ⊗ HB) be the corresponding concrete

bicharacter, and define χ̂ as in Proposition 3.9. Let RA and RB be the unitary antipodes of G and H. Then
χ̂∗(1⊗RA(a))χ̂ ∈M(B ⊗A) for all a ∈ A and

∆L(a) := (RB ⊗RA)(χ̂∗(1⊗RA(a))χ̂) for all a ∈ A (3.20)
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is a left quantum group homomorphism from G to H.
These two maps between bicharacters and left quantum group homomorphisms are bijective and inverse

to each other.

Proof. As in the proof of Theorem 3.21, there is a unique χ satisfying (3.19) and ∆L is a well-defined left
quantum group morphism A→ B ⊗A. The only point in the proof of Theorem 3.21 that must be modified
is to show that ∆L given by (3.20) satisfies (3.19). We compute:

(idÂ ⊗∆L)WA = (idÂ ⊗∆L)((RÂ ⊗RA) ◦WA)

= (RÂ ⊗RB ⊗RA)(χ̂∗23WA
13χ̂23)

= (RÂ ⊗RB ⊗RA) ◦ σ23(χ23WA
12χ∗23)

= (RÂ ⊗RB ⊗RA)(WA
13χ12) = χ12W13;

the first step uses Proposition 3.10 for WA, the second one uses (3.20), the third one is trivial, the fourth
one uses (3.3), and the last one follows from Proposition 3.10 and the antimultiplicativity of RÂ.

Remark 3.24. Propositon 3.16 allows a unique universal bi-lift of every bicharacter and by Theorems 3.21
and 3.23 right or left quantum group homomorphisms correspond bijectively to bicharacters. Hence right
or left quantum group homomorphisms are equivalent to the mutual coactions of Ng [31, Definition 3.13]
and to the special coactions that are considered as morphisms between von Neumann algebraic quantum
groups by Kustermans in [22, Propositions 12.1 and 12.4].

Lemma 3.25. Let ∆L : A→ B⊗A and ∆R : A→ A⊗C be a left and a right quantum group homomorphism.
Then the following diagram commutes:

A B ⊗A

A⊗ C B ⊗A⊗ C

∆L

∆R

∆L ⊗ idC
idB ⊗∆R

(3.21)

Furthermore, if B = C, then ∆L and ∆R are associated to the same bicharacter χ ∈ U(Â⊗B) if and
only if the following diagram commutes:

A A⊗A

A⊗A A⊗B ⊗A

∆A

∆A

∆R ⊗ idA
idA ⊗∆L

(3.22)

Proof. Since slices of WA span a dense subspace of A, (3.21) commutes if and only if

(idÂ ⊗ idB ⊗∆R)(idÂ ⊗∆L)(WA) = (idÂ ⊗∆L ⊗ idC)(idÂ ⊗∆R)(WA). (3.23)

Let χ and χ̄ be the bicharacters associated to ∆L and ∆R, respectively. Equations (3.15) and (3.19) imply
that both sides of (3.23) are equal to χ12WA

13χ̄14.
Similarly, the diagram (3.22) commutes if and only if

(idÂ ⊗ idA ⊗∆L)(idÂ ⊗∆A)(WA) = (idÂ ⊗∆R ⊗ idA)(idĈ ⊗∆A)(WA) (3.24)

because the slices on the first leg of WA span a dense subspace of A. Using (2.8), (3.19) and (3.15), we
may rewrite (3.24) as WA

12χ̄13WA
14 = WA

12χ13WA
14. Thus (3.24) is equivalent to χ = χ̄.

Lemma 3.26. Right or left quantum group homomorphisms are right or left coactions.
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Proof. Equations (3.16) and (3.20) show that left and right quantum group homomorphisms are injective.
We only prove the Podleś condition (2.23) for right quantum group homomorphisms, the left case is
analogous. Let ∆R : A → A ⊗ B be a right quantum group homomorphism with associated bicharacter
V ∈ U(Â⊗B). We must show that the linear span of ∆R(A)(1⊗B) is dense in A⊗B. We may replace A by
the dense subspace of slices (âµ⊗ idA)WA for µ ∈ Â′ and â ∈ Ĉ, where âµ ∈ Ĉ′ is defined by âµ(x) := µ(xâ)
for â ∈ Â, µ ∈ Â′, and x ∈ Â. Given b ∈ B we have(

(âµ⊗ idA ⊗ idB)(idÂ ⊗∆R)WA
)
(1⊗ b) = (µ⊗ idA ⊗ idB)

(
WA

12χ13(â⊗ 1⊗ b)
)
.

Here χ13(â⊗ 1⊗ b) ranges over a linearly dense subset of Â⊗ 1⊗B. Hence we do not change the closed
linear span if we replace this expression by â⊗ 1⊗ b. This leads to

(µ⊗ idA ⊗ idB)(WA
12 · (â⊗ 1⊗ b)) =

(
(âµ⊗ idA)WA

)
⊗ b,

and these elements span a dense subspace of A⊗B as asserted.

3.4 Functors between coaction categories
Let For : C∗alg(G)→ C∗alg be the functor that forgets the G-coaction. We now describe quantum group
homomorphisms using functors F : C∗alg(G)→ C∗alg(H) with For ◦ F = For. In particular, we show that a
right quantum group homomorphism induces such a functor. The results in this section answer a question
posed to us by Debashish Goswami.

Theorem 3.27. Let G = (A,∆A) and H = (B,∆B) be locally compact quantum groups. Functors
F : C∗alg(G)→ C∗alg(H) with For◦F = For are in natural bijection with right quantum group homomorphisms
from G to H.

More precisely, let γ : D → D ⊗A be a continuous coaction of G on a C∗-algebra D and let ∆R : A→
A⊗B be a right quantum group homomorphism. Then there is a unique continuous coaction α of H on D
such that the following diagram commutes:

D D ⊗A

D ⊗B D ⊗A⊗B

γ

α
γ ⊗ idB

idD ⊗∆R
(3.25)

If a morphism D → D′ between two C∗-algebras with continuous G-coactions is G-equivariant, then it is
H-equivariant as well, so that this construction is a functor F : C∗alg(G)→ C∗alg(H) with For ◦ F = For.
Conversely, any such functor is of this form for some right quantum group homomorphism ∆R from G to H.

Proof. A map α making (3.25) commute is unique if it exists because γ ⊗ idB is injective. Existence means
(idD ⊗∆R)γ(D) ⊆ (γ ⊗ idB)(M(D⊗B)). Let ∆L : A→ B ⊗A be the left quantum group homomorphism
satisfying (3.22). We compute

(idD ⊗∆R ⊗ idA)(γ ⊗ idA)γ = (idD ⊗∆R ⊗ idA)(idD ⊗∆A)γ
= (idD ⊗ idA ⊗∆L)(idD ⊗∆A)γ
= (idD ⊗ idA ⊗∆L)(γ ⊗ idA)γ
= (γ ⊗∆L)γ = (γ ⊗ idB⊗A)(idD ⊗∆L)γ,

where the first and third equality use that γ is coassociative (2.22), the second one uses (3.22), and the
fourth one is trivial.

Thus (idD ⊗∆R ⊗ idA)(γ ⊗ idA) maps γ(D) into (γ ⊗ idB⊗A)(M(D ⊗ B ⊗ A)). Since it also maps
1D ⊗A into (γ ⊗ idB⊗A)(M(D ⊗B ⊗A)) and γ(D) · (1D ⊗A) is dense in D ⊗A by the continuity of γ,
(idD ⊗ ∆R ⊗ idA)(γ ⊗ idA) maps D ⊗ A into (γ ⊗ idB⊗A)(M(D ⊗ B ⊗ A)). Thus (idD ⊗ ∆R)γ(D) ⊆
(γ ⊗ idB)(M(D ⊗B)) as desired.
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The second diagram in (3.14) and several applications of (3.25) imply

(γ ⊗ idB⊗B) ◦ (α⊗ idB) ◦ α = (γ ⊗ idB⊗B) ◦ (idD ⊗∆B) ◦ α.

Since γ ⊗ idB⊗B is injective, (α⊗ idB) ◦ α = (idD ⊗∆B) ◦ α. The map α is injective as well. We check the
Podleś condition (2.23) for α.

Since γ ⊗ idB⊗A is injective and

(γ ⊗∆L)γ = (idD ⊗∆R ⊗ idA)(γ ⊗ idA)γ = (γ ⊗ idB⊗A)(α⊗ idA)γ

we have (idD ⊗∆L)γ = (α⊗ idA)γ.
Letting 〈. . . 〉 denote closed linear spans, we first compute〈

(idD ⊗∆L)γ(d) · (1D ⊗ b⊗ a) : a ∈ A, b ∈ B and d ∈ D
〉

=
〈
(idD ⊗∆L)(γ(d) · (1D ⊗∆L(a)) · (1D ⊗ b⊗ 1A) : a ∈ A, b ∈ B and d ∈ D

〉
=
〈
(idD ⊗∆L)(γ(d) · (1D ⊗ a)) · (1D ⊗ b⊗ 1A) : a ∈ A, b ∈ B and d ∈ D

〉
=
〈
(idD ⊗∆L)(d⊗ a) · (1D ⊗ b⊗ 1A) : a ∈ A, b ∈ B and d ∈ D

〉
=
〈
(d⊗ (∆L(a)(b⊗ 1A))) : a ∈ A, b ∈ B and d ∈ D

〉
= D ⊗B ⊗A,

where the first and fifth equality use the continuity of ∆L and the third equality uses the Podleś condition
for γ. Hence 〈

(α(d)⊗ a) · (1D ⊗ b⊗ 1A) : a ∈ A, b ∈ B and d ∈ D
〉

=
〈
((α⊗ idA)(d⊗ a)) · (1D ⊗ b⊗ 1A) : a ∈ A, b ∈ B and d ∈ D

〉
=
〈
((α⊗ idA)(γ(d) · (1D ⊗ a)) · (1D ⊗ b⊗ 1A) : a ∈ A, b ∈ B and d ∈ D

〉
=
〈
((α⊗ idA)γ(d)) · (1D ⊗ b⊗ a) : a ∈ A, b ∈ B and d ∈ D

〉
=
〈
((idD ⊗∆L)γ(d)) · (1D ⊗ b⊗ a) : a ∈ A, b ∈ B and d ∈ D

〉
= D ⊗B ⊗A,

where the second equality uses the Podleś condition of γ. This implies α(D) · (1D ⊗A) = D ⊗A, that is, α
satisfies the Podleś condition.

It is easy to see that a G-equivariant map D → D′ remains H-equivariant for the induced H-coactions.
Thus we get a functor F : C∗alg(G)→ C∗alg(H) with For ◦ F = For from a right quantum group homomor-
phism.

Now let, conversely, F : C∗alg(G) → C∗alg(H) be a functor with For ◦ F = For, that is, F maps a
continuous G-coaction γ : D → D ⊗A on some C∗-algebra D in a natural way to a continuous H-coaction
F (γ) : D → D ⊗B on the same C∗-algebra. We claim that F must come from some right quantum group
homomorphism ∆R : A→ A⊗B by the above construction.

When we apply F to the coaction ∆A : A→ A⊗ A, we get an H-coaction ∆R : A→ A⊗B. Being a
coaction, it makes the second diagram in (3.14) commute. We will see later that the first diagram in (3.14)
also commutes. First we use naturality to show that (3.25) with α = F (γ) commutes for any coaction of G,
so that ∆R determines the functor F .

To begin with, we consider the coaction ∆A ⊕ ∆A : A ⊕ A → (A ⊕ A) ⊗ A. Since the coordinate
projections π1, π2 : A⊕A→ A are G-equivariant, they are H-equivariant with respect to F (∆A ⊕∆A) and
F (∆A) = ∆R. This already implies that F (∆A ⊕∆A) = ∆R ⊕∆R.

Next we consider the coaction idK(H) ⊗ ∆B on K(H) ⊗ A. For any projection P ∈ K(H), we get a
G-equivariant morphism

A⊕A→ K(H)⊗A, (a, b) 7→ P ⊗ a+ (1− P )⊗ b.

Since we already know the H-coaction F (∆A ⊕∆A), the induced H-coaction on K(H)⊗A maps P ⊗ a 7→
P ⊗ ∆R(a). Since this holds for all projections P and since these projections generate K(H), we get
F (idK(H) ⊗∆A) = idK(H) ⊗∆R.
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Now consider a general coaction γ : D → D ⊗A. Then γ is G-equivariant with respect to the coaction
idD ⊗∆A on D ⊗ A. Let π : D → K(H) be a morphism coming from a faithful representation of D on
some Hilbert space H. The injective, G-equivariant morphism (π ⊗ idA) ◦ γ : D → K(H) ⊗ A remains
H-equivariant with respect to the coactions F (γ) on A and F (idK(H) ⊗∆A) = idK(H) ⊗∆R on K(H)⊗A.
This means that (3.25) commutes with α := F (γ). Finally, specialising (3.25) to the coaction ∆A on A
shows that the first diagram in (3.14) commutes. Thus ∆R is a right quantum group homomorphism that
generates F . The construction also shows that ∆R is unique.

Let I = (C,∆C) be a quantum group.

Proposition 3.28. Let α : A→ A⊗B and β : B → B⊗C be two right quantum group homomorphisms and
let Fα : C∗alg(G)→ C∗alg(H) and Fβ : C∗alg(H)→ C∗alg(I) be the associated functors. Then Fβ ◦ Fα = Fγ ,
where γ : A→ A⊗ C is the unique right quantum group homomorphism that makes the following diagram
commute:

A A⊗B

A⊗ C A⊗B ⊗ C

α

γ
α⊗ idC

idA ⊗ β (3.26)

Furthermore, the bicharacter associated to γ is the composite of the bicharacters associated to β and α.

Proof. Theorem 3.27 shows that Fα maps the coaction ∆A to α. This is mapped by Fβ to the unique
morphism making (3.26) commute. Thus Fβ ◦ Fα maps ∆A to γ, forcing Fβ ◦ Fα = Fγ .

Theorem 3.27 yields a unique continuous right coaction γ of I on A making (3.26) commute. It is not
hard to show that this is a right quantum group homomorphism. Anyway, we want to convince ourselves
that this construction corresponds to the composition of bicharacters.

Since slices of WA by continuous linear functionals on Â generate a dense subspace of A, the dia-
gram (3.26) commutes if and only if

(idÂ ⊗ idA ⊗ β)(idÂ ⊗ α)(WA) = (idÂ ⊗ α⊗ idC)(idÂ ⊗ γ)(WA).

Equation (3.15) implies (idÂ⊗α)WA = WA
12χ

A→B
13 , and idĈ ⊗ idA⊗β maps this to the element represented

by the unitary operator
WA

12χB→C34 χA→B13 (χB→C34 )∗ = WA
12χA→B13 χA→C14

by (3.16) and (3.5). Thus

(idÂ ⊗ idA ⊗ β)(idÂ ⊗ α)(WA) = WA
12χ

A→B
13 χA→C14 ,

where χA→C := χB→C ∗ χB→C . Let χ̄ be the bicharacter associated to γ. Equation (3.15) implies

(idÂ ⊗ α⊗ idC)(idÂ ⊗ γ)(WA) = (idÂ ⊗ α⊗ idC)(WA
12χ̄13) = WA

12χ
A→B
13 χ̄14.

Hence (3.26) commutes if and only if χ̄ = χA→C .

Example 3.29. Let χA→B ∈ U(Â⊗B) and χB→C ∈ U(B̂ ⊗ C) be bicharacters.
Assume first that χB→C comes from a Hopf ∗-homomorphism f : B → C, that is, χB→C = (idB̂⊗f)(WB).

Let α be the right quantum group homomorphism from G to H associated to χA→B . The right quantum
group homomorphism from H to I associated to χB→C is β := (idA ⊗ f)∆B . The following computation
shows that γ = (idA ⊗ f)α satisfies (3.26):

(idÂ ⊗ idA ⊗ β)(idÂ ⊗ α)WA

= (idÂ ⊗ idA ⊗ idB ⊗ f)(idÂ ⊗ idA ⊗∆B)WA
12χ

A→B
13

= (idÂ ⊗ idA ⊗ idB ⊗ f)WA
12χ

A→B
13 χA→B14

= (idÂ ⊗ idA ⊗ idB ⊗ f)(idÂ ⊗ α⊗ idB)WA
12χ

A→B
13

= (idÂ ⊗ α⊗ idC)(idÂ ⊗ (idA ⊗ f)α)WA;

the first step uses (3.15); the second step uses (3.2); the third and the last step use (3.15). Proposition 3.28
yields β ∗ α = (idA ⊗ f)α. Hence the composite χB→C ∗ χA→B is (idA ⊗ f)χA→B .
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Example 3.30. Let χA→B be constructed from a Hopf ∗-homomorphism f : B̂ → Â, that is, χA→B =
(f ⊗ idB)(WB). Then the composite χA→C is (f ⊗ idC)(χB→C). This follows from Example 3.29 because
A 7→ Â is a contravariant functor on bicharacters.

Proposition 3.31. A right quantum group homomorphism from G to H induces a natural map from Hilbert
space corepresentations of G to corepresentations of H on the same Hilbert space.

Proof. Given any corepresentation UA ∈ U(K(H)⊗A) we can use (3.16) in this more general framework:
replacing WA by UA we get a unique unitary UB ∈ U(K(H)⊗B) such that

(id⊗∆R)UA = UA12UB13 in U(K(H)⊗A⊗B). (3.27)

The computation in the proof of Theorem 3.21 showing that χ satisfies the character condition on the
second leg yields that UB ∈ U(K(H)⊗B) is a corepresentation of H on H.

3.5 Comparison with group homomorphisms
Let G and H be locally compact groups. Hopf ∗-homomorphisms from C0(H) to C0(G) are equivalent
to continuous group homomorphisms G → H. By Theorem 3.17, it follows that bicharacters must also
correspond to classical group homomorphisms. And the same holds for right and left quantum group
homomorphisms. We are going to establish this directly.

Let ϕ : G → H be a continuous group homomorphism. Then Vϕ(g) := λϕ(g) defines a bicharacter in
U(C0(G)⊗ C∗r (H)), that is, a quantum group homomorphism from C∗r (G) to C∗r (H).

Lemma 3.32. Let G and H be locally compact groups. Then every bicharacter from (C∗r (G),∆C∗r (G)) to
(C∗r (H),∆C∗r (H)) is induced by a unique continuous group homomorphism ϕ : G→ H as above.

Proof. It is clear that the bicharacter χϕ determines ϕ. Thus it remains to observe that every bicharacter χ
in U(C0(G)⊗ C∗r (H)) is of this form for a continuous group homomorphism ϕ : G→ H. We may view χ

as a strictly continuous function from G to U(C∗r (H)). Equation (3.2) means that its values are grouplike
elements of U(C∗r (H)) for each g ∈ G, that is, ∆C∗r (H)(χ(g)) = χ(g)⊗ χ(g). This implies χ(g) = λϕ(g) for
some ϕ(g) ∈ H. The map ϕ : G→ H must be continuous in order for g 7→ λϕ(g) to be strictly continuous.
Finally, (3.1) means that the map ϕ is a group homomorphism.

Example 3.33. Let A = C0(G) and B = C0(H) for locally compact groups G and H. A right quantum
group homomorphism from A to A⊗B corresponds to a continuous map α : G×H → G, which we denote
by α(g, h) := g ·h. The commutativity of the first diagram in (3.14) means that (g1 · g2) ·h = g1 · (g2 ·h) for
all g1, g2 ∈ G, h ∈ H, so that g · h = g · ϕ(h) for all g ∈ G, h ∈ H for a continuous map ϕ : H → G defined
by ϕ(h) := 1 · h. The commutativity of the second diagram (3.14) is equivalent to ϕ(h1 · h2) = ϕ(h1) ·ϕ(h2)
for all h1, h2 ∈ H. Thus right quantum group homomorphisms C0(G)→ C0(H) correspond to continuous
group homomorphisms H → G.

Example 3.34. Let A = C∗r (G) and B = C∗r (H) for second countable locally compact groups G and H. We
claim that right quantum group homomorphisms from C∗r (G) to C∗r (H) correspond bijectively to continuous
group homomorphisms G→ H.

Since A⊗B = C∗r (G×H), a morphism from A to A⊗B must come from a continuous representation
g 7→ ug of G by unitary multipliers of C∗r (G×H). To be a right quantum group homomorphism, it suffices
to check that the diagrams in (3.14) commute on the unitary multipliers δg for g ∈ G. The commutativity
of the first diagram in (3.14) becomes (∆A⊗ idB)(ug) = δg ⊗ ug, forcing ug = δg · u′g for unitary multipliers
u′g of B. The commutativity of the second diagram in (3.14) becomes ∆B(u′g) = u′g ⊗ u′g, forcing u′g = δϕ(g)
for some ϕ(g) ∈ H. The map g 7→ ϕ(g) is a measurable group homomorphism. In the separable case,
measurability implies continuity, so that ϕ is a continuous group homomorphism G→ H.
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3.6 Projections on quantum groups
Projections on quantum groups will be used later in Chapter 6. Let I = (C,∆C) be a quantum group and
let WC ∈ U(Ĉ ⊗ C) be the reduced bicharacter. Let (π, π̂) and (ρ, ρ̂) be I-Heisenberg and -anti Heisenberg
pairs on Hπ and Hρ, respectively.

Definition 3.35. A bicharacter P ∈ U(Ĉ⊗C) is a projection if P∗P = P, where ∗ denotes the composition
of bicharacters in Definition 3.6. Equivalently, P ∈ U(Ĉ ⊗ C) satisfies either of the following relations:

Pπ̂3P1π = P1πP13Pπ̂3 in U(Ĉ ⊗K(Hπ)⊗ C), (3.28)

P1ρPρ̂3 = Pρ̂3P13P1ρ in U(Ĉ ⊗K(Hρ)⊗ C). (3.29)

Therefore, a projection, while viewed as an operator acting on Hπ ⊗ Hπ, satisfies the pentagon
equation (2.4). Equivalently, the operator P := (π̂ ⊗ π)P ∈ U(Hπ ⊗Hπ) is a multiplicative unitary. Hence
the dual of a projection is also a projection. Manageability of bicharacters immediately leads to the following
proposition:

Proposition 3.36. P ∈ U(Hπ ⊗Hπ) is a manageable multiplicative unitary.

Proof. Without loss of generality, assume that WC = (π̂⊗ π) ∈ U(Hπ ⊗Hπ) is a manageable multiplicative
unitary. By Corollary 3.11, P commutes with QC ⊗QC , where QC is the positive, self-adjoint operator
with trivial kernel defining manageability of WC . Finally, Equation (3.12) gives P̃ ∈ U(Hπ ⊗Hπ) satisfying
the manageability condition: (

x⊗ u | P | z ⊗ y
)

=
(
z ⊗QCu | P̃ | x⊗Q−1

C y
)
,

for all x, z ∈ HA, u ∈ Dom(QC) and y ∈ Dom(Q−1
C ).

Definition 3.37. The quantum group G = (A,∆A) generated by P ∈ U(Hπ ⊗Hπ) is called the image of
the projection P ∈ U(Ĉ ⊗ C). Moreover, WA = P ∈ U(Â⊗A) is the reduced bicharacter of G.

Identification of P with WA gives the following bicharacter conditions:

(∆̂A ⊗ idA)P = P23P13 in U(Â⊗ Â⊗A), (3.30)

(idÂ ⊗∆A)P = P12P13 in U(Â⊗A⊗A). (3.31)

The dual of P ∈ U(Hπ ⊗Hπ) defined by P̂ := ΣP∗Σ ∈ U(Hπ ⊗Hπ) is also a manageable multiplicative
unitary. Therefore, P̂ generates Ĝ = (Â, ∆̂A) and ŴA = P̂ ∈ U(A⊗ Â).
Example 3.38. In particular, if Ĉ = C0(G) for a group G, then by Lemma 3.32 any projection P ∈
U(C0(G)⊗ C∗r (G)) corresponds to an idempotent group homomorphism p : G→ G and Â = C0(p(G)).

Let A, B be C∗-algebras and T ∈ U(A⊗B). Then B is generated by T in the sense of [46, Definition 4.1],
if for any representation ξ : B → B(H) and any C∗-algebra C ⊂ B(H) the condition (idA⊗ ξ)T ∈M(A⊗C)
implies that ξ ∈ Mor(B,C). In [39, Section 3.5] it is shown that every corepresentation U ∈ U(K(H)⊗A)
of G = (A,∆A) on a Hilbert space H gives rise to a nondegenerate C∗-subalgebra DU = {(id ⊗ ω)U :
ω ∈ A′}CLS of B(H). By [9, Proposition 2.1] a corepresentation U ∈ U(K(H) ⊗ A) of G generates a
nondegenerate C∗-algebra D of B(H) if and only if D = DU.

Definition 3.39 ([9, Definition 3.2]). Let I = (C,∆C), G = (A,∆A) be quantum groups. G is called
a closed quantum subgroup of I in the sense of Woronowicz if there is a bicharacter χ ∈ U(Ĉ ⊗ A) that
generates G.

Therefore, G in the Definition 3.39 is a closed quantum subgroup of I in the sense of Woronowicz.
By duality, we get Ĝ as a closed quantum subgroup of Î in the same sense. Let ∆R : C → C ⊗ C
and ∆L : C → C ⊗ C be the right and left quantum group homomorphism constructed out of the
bicharacter P ∈ U(Ĉ ⊗ C).
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Lemma 3.40. Given any projection P ∈ U(Ĉ ⊗ C) we have

∆C |A = ∆L|A = ∆R|A = ∆A, (3.32)

∆̂C |Â = ∆̂L|Â = ∆̂R|Â = ∆̂A. (3.33)

Proof. It sufficies to show (3.32). Then (3.33) follows by duality.
Since {(ω⊗ idA)P : ω ∈ Â′} is dense in A ⊆M(C) and Â ⊆M(Ĉ) for any a = (ω⊗ idA)P ∈ A ⊆M(C)

we have

∆C(a) = (ω ⊗ idC ⊗ idC)(idĈ ⊗∆C)P = (ω ⊗ idA ⊗ idA)P12P13 = (ω ⊗∆A)P = ∆A(a)

where the second equality uses (3.2) and the third equality uses (3.31).
Let (ρ, ρ̂) be an I-anti-Heisenberg pair on Hρ. We rewrite (3.3) for P as:

WC
1ρPρ̂3 = Pρ̂3P13WC

1ρ in U(Ĉ ⊗K(Hρ)⊗A).

Now (3.19) gives
(idC ⊗ ρ)∆L(c) = P̂1ρ̂(1C ⊗ ρ(c))P̂

∗
1ρ̂. (3.34)

For a = (ω ⊗ idA)P ∈ A we compute:

(idĈ ⊗ ρ)∆L(a) = P̂1ρ̂(1C ⊗ ρ(a))P̂
∗
1ρ̂ = (ω ⊗ idC ⊗ idHρ)P̂2ρ̂P1ρP̂

∗
2ρ̂

= (ω ⊗ idA ⊗ ρ)P12P13 = (ω ⊗ (idA ⊗ ρ)∆A)P = (idC ⊗ ρ)∆A(a).

The first equality uses (3.34), the third equality uses (3.29), and the fourth equality uses (3.31).
Similarly, given any I-Heisenberg pair (π, π̂) we can show

(π ⊗ idC)∆R(a) = (π ⊗ idA)∆A(a) for all a ∈ A.

Finally, the faithfulness of π and ρ yields (3.32).

Notation 3.41. Let C∗QGrp denote the category where objects are C∗-quantum groups and bicharacters
are arrows.

Every projection bicharacter P ∈ U(Ĉ ⊗ C) is an idempotent arrow on I in C∗QGrp with the image G.
Hence P is a split idempotent. We make this precise in the following lemma:

Lemma 3.42. Let P ∈ U(Ĉ ⊗C) be a projection bicharacter and let G = (A,∆A) be its image. Then there
are bicharacters χC→A ∈ U(Ĉ ⊗A) and χA→C ∈ U(Â⊗ C) such that

P = χA→C ∗ χC→A and χC→A ∗ χA→C = WA. (3.35)

Proof. Let P ∈ U(Ĉ ⊗ C) be a projection with the image G = (A,∆A). Then P ∈ U(Â⊗A) ⊂ U(Ĉ ⊗ C).
This gives the Hopf ∗-homomorphisms ϕ : A → C and ψ : Â → Ĉ. By Example 3.4 we construct the
following bicharacters

χC→A := (ψ ⊗ idA)WA= P in U(Ĉ ⊗A), (3.36)
χA→C := (idÂ ⊗ ϕ)WA= P in U(Â⊗ C). (3.37)

The pentagon equation (3.28) yields (3.35).
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Chapter 4

Twisted tensor products of
C∗-algebras

Several important constructions put together two C∗-algebras in a kind of tensor product where the tensor
factors do not commute. For instance, a noncommutative two-torus is obtained in this way from two copies
of C(T). More generally, the crossed product Aoα G for a continuous action α : G→ Aut(A) of a locally
compact group G combines A and the group C∗-algebra of G. Such crossed products also exist for locally
compact quantum groups. Another example is the graded tensor product for Z/2-graded C∗-algebras, which
is defined so that the odd elements anticommute.

Definition 4.1 (compare [44]). Let A, B, C be C∗-algebras, α ∈ Mor(A,C) and β ∈ Mor(B,C). If
α(A) · β(B) = C, then we call (C,α, β) a crossed product or crossed tensor product of A and B.

Example 4.2. The spatial tensor product C = A⊗B of two C∗-algebras with α(a) = a⊗1B and β(b) = 1A⊗b
is the simplest example of a crossed product.

Let α and β be (nondegenerate) representations of A and B on the same Hilbert space H such that
α(A) · β(B) and β(B) · α(A) are the same subspace of B(H). Then C := α(A) · β(B) is a C∗-algebra,
α ∈ Mor(A,C) and β ∈ Mor(B,C). Thus C is a crossed product of A and B. This suggests that crossed
products are defined by some commutation relations between α and β. In a purely algebraic setting,
Exel [13] describes the multiplication on C through the map τ : B ⊗A→ A⊗B expressing β(b)α(a) as a
linear combination of elements of the form α(a′)β(b′); but this does not work for C∗-algebras because of
the completions involved.

Definition 4.3. Two crossed products C1 = α1(A) · β1(B) and C2 = α2(A) · β2(B) of A and B are
equivalent if there is a faithful morphism ϕ ∈ Mor(C1, C2) with ϕ ◦ α1 = α2 and ϕ ◦ β1 = β2.

Any faithful morphism ϕ ∈ Mor(C1, C2) with ϕ ◦ α1 = α2 and ϕ ◦ β1 = β2 satisfies ϕ(C1) = C2 and
hence is a ∗-isomorphism.
Example 4.4. Let C = α(A) · β(B) be a crossed product and U ∈ U(C). Then

(C,α, β) ' (C,AdU ◦ α,AdU ◦ β).

We shall construct twisted tensor products using quantum group coactions on the tensor factors. First
we generalise the notation of Heisenberg pairs for a given bicharacter in Section 4.1. There are two possible
ways to commute generalised Heisenberg pairs (see Section 4.1.1). Ordinary commutation plays an important
role in the construction of twisted tensor products. We propose two equivalent constructions of crossed
products. At the level of C∗-algebras we use coactions of two quantum groups, related through bicharacters,
on C∗-algebras and put them together using generalised Heisenberg pairs (see Section 4.2). The second
approach deals with covariant representations of quantum group coactions on Hilbert spaces discussed in

37
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Section 4.3. In Section 4.4, we explore various properties of crossed products. Section 4.5 shows that our
crossed product generalises the skew-commutative tensor product of Z/2-graded C∗-algebras and the crossed
product of coactions by a quantum group. Finally, in Section 4.6, we construct the generalised Drinfeld
double, a C∗-quantum group, using Drinfeld commutation of generalised Heisenberg pairs associated to a
bicharacter.

4.1 Heisenberg pairs revisited
This section generalises the notions of Heisenberg and anti-Heisenberg pairs from reduced bicharacters,
discussed in Section 2.4, to general bicharacters. We use them to construct our noncommutative tensor
product, after establishing properties of Heisenberg pairs necessary for that purpose.

Let G = (A,∆A) and H = (B,∆B) be C∗-quantum groups. Let WA ∈ U(Â⊗A) and WB ∈ U(B̂ ⊗B)
be their reduced bicharacters. Let χ ∈ U(Â ⊗ B̂) be a bicharacter from A to B̂. Heisenberg pairs and
anti-Heisenberg pairs are pairs of representations (α, β) of Â and B̂ on the same Hilbert space H that
satisfy suitable compatibility conditions.

We use these pairs to define twisted tensor products C �χ D in Section 4.2. A crucial technical point
is to show that a pair of representations of C and D generates a crossed product C∗-algebra. Here the
commutativity result in Section 4.1.1 is crucial. In addition, we construct examples of χ-Heisenberg pairs
and χ-anti-Heisenberg pairs, thus proving their existence, and give some equivalent characterisations of
them.

Definition 4.5. A pair of representations α : A→ B(H), β : B → B(H) is called a χ-Heisenberg pair or
briefly Heisenberg pair if

WA
1αWB

2β = WB
2βWA

1αχ12 in U(Â⊗ B̂ ⊗K(H)); (4.1)

here WA
1α := ((idÂ⊗α)WA)13 and WB

2β := ((idB̂ ⊗β)WB)23. It is called a χ-anti-Heisenberg pair or briefly
anti-Heisenberg pair if

WB
2βWA

1α = χ12WA
1αWB

2β in U(Â⊗ B̂ ⊗K(H)), (4.2)
with similar conventions as above.

The case where H = Ĝ and χ = WA ∈ U(Â⊗A) is the reduced bicharacter of G is already considered
in Section 2.4.

Lemma 4.6. Assume a pair of representations (π, π̂) of A and Â on a Hilbert space H. Then (π, π̂) is a
1. WA-Heisenberg pair if and only if it is a G-Heisenberg pair.
2. WA-anti-Heisenberg pair if and only if it is a G-anti-Heisenberg pair.

Proof. Let π and π̂ be representations of A and Â on H satisfying (2.12). When we apply σ23 to both sides
of (2.12) we get

(ŴA
2π̂)∗WA

1π = WA
1πWA

12(ŴA
2π̂)∗ in U(Â⊗A⊗K(H)).

This is equivalent to WA
1πŴA

2π̂ = ŴA
2π̂WA

1πWA
12, which is (4.1) for B̂ = A, χ = WA, α = π and β = π̂. This

computation may be reversed as well.
The computation for anti-Heisenberg pairs is similar.

Example 4.7. Let H be the conjugate Hilbert space to the Hilbert space H. Recall that the transpose of an
operator x ∈ B(H) is the operator xT ∈ B(H) defined by xT(ξ) := x∗ξ for all ξ ∈ H. The transposition is a
linear, involutive anti-automorphism B(H)→ B(H). Recall that the unitary antipode RA : A→ A is also a
linear, involutive anti-automorphism. Therefore, if α : A→ B(H) and β : B → B(H) are representations,
then so are

ᾱ : A→ B(H), a 7→ (RA(a))T,

β̄ : B → B(H), b 7→ (RB(b))T.
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Lemma 4.8. The pair (α, β) is Heisenberg if and only if (ᾱ, β̄) is anti-Heisenberg.

Proof. Let (α, β) be a Heisenberg pair. The following computation shows that (ᾱ, β̄) is an anti-Heisenberg
pair:

WB
2β̄W

A
1ᾱ = (RÂ ⊗ RB̂ ⊗ T)(WA

1αWB
2β)

= (RÂ ⊗ RB̂ ⊗ T)(WB
2βWA

1αχ12) = χ12WA
1ᾱWB

2β̄ ;

the first equality uses (RÂ ⊗RB̂)χ = χ (see Proposition 3.10) and the antimultiplicativity of RÂ ⊗RB̂ ⊗ T;
the second equality uses (4.1); and the third equality uses the same facts as for the previous ones in reverse
order.

The computation above may be reversed to show the converse direction.

Thus Heisenberg pairs and anti-Heisenberg pairs are essentially equivalent.
Recall that a bicharacter χ gives rise to a dual bicharacter χ̂ ∈ U(B̂ ⊗ Â) by (3.9) and to a right

quantum group homomorphism ∆R : A→ A⊗ B̂ with (3.15). Similarly, χ̂ gives rise to a right quantum
group homomorphism ∆̂R : B → B ⊗ Â. We may reformulate the condition of being a Heisenberg pair in
terms of χ̂, ∆R and ∆̂R, respectively:

Lemma 4.9. Let α and β be representations of A and B on a Hilbert space H. Then the following are
equivalent:

1. (α, β) is a χ-Heisenberg pair acting on H;
2. (β, α) is a χ̂-Heisenberg pair acting on H;

3. (α⊗ idB̂)∆R(a) = (ŴB
β2)(α(a)⊗ 1B̂)(ŴB)∗β2 for all a ∈ A;

4. (β ⊗ idÂ)∆̂R(b) = (ŴA
α2)(β(b)⊗ 1Â)(ŴA)∗α2 for all b ∈ B.

Proof. (1)⇐⇒ (2): (1) is equivalent to

WA
1αWB

2βχ
∗
12 = WB

2βWA
1α in U(Â⊗ B̂ ⊗K(H))

by (4.1). Applying σ12 gives

WA
2αWB

1βχ̂12 = WB
1βWA

2α in U(B̂ ⊗ Â⊗K(H)), (4.3)

which is equivalent to (β, α) being a χ̂-Heisenberg pair. Thus (1)⇐⇒ (2).
(1)⇐⇒ (3): Let (α, β) be a Heisenberg pair. The following computation takes place in U(Â⊗K(H)⊗B̂):

(idÂ ⊗ α⊗ idB̂)(idÂ ⊗∆R)WA = WA
1αχ13 = σ23(WA

1αχ12)

= σ23((WB
2β)∗WA

1αWB
2β) = (ŴB

β3)WA
1α(ŴB

β3)∗;

the first equality uses (3.15); the second equality is obvious; the third equality uses (4.1); and the last
equality uses ŴB = σ((WB)∗). Since {(ω ⊗ idA)WA : ω ∈ Â′} is linearly dense in A, slicing the first leg of
the first and the last expression of the above equation yields (1)=⇒(3).

Conversely, applying idÂ ⊗ α⊗ idB̂ on both sides of (3.15) and using (3), we get

WA
1αχ13 = (idÂ ⊗ (α⊗ idB̂)∆R)WA = (ŴB

β3)WA
1α(ŴB

β3)∗ in U(Â⊗K(H)⊗ B̂);

applying σ23 to this gives (4.1). Thus (3)=⇒(1).
To prove (2)⇐⇒ (4) argue as in the proof that (1)⇐⇒ (3).

Unlike G-Heisenberg pairs (Proposition 2.21), χ-Heisenberg pairs are not faithful in general.
Example 4.10. Assume that G and H have bounded counits eA : A→ C and eB : B → C. Proposition 31(2)
in [39] gives (idÂ ⊗ eA)WA = 1Â and (idB̂ ⊗ eB)WB = 1B̂ ; hence (eA, eB) is a χ-Heisenberg pair for the
trivial bicharacter χ = 1Â ⊗ 1B̂ and clearly not faithful.
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Lemma 4.11. Let (π, π̂) and (η, η̂) be G- and H-Heisenberg pairs on Hilbert spaces Hπ and Hη, respectively.
Then the pair of representations (α, β) of A and B on Hπ ⊗ Hη defined by α(a) := (π ⊗ η̂)∆R(a) and
β(b) := 1Hπ ⊗ η(b) is a χ-Heisenberg pair; here ∆R : A→ A⊗ B̂ is the right quantum group homomorphism
associated to χ as in Theorem 3.21. Similarly, the pair of representations (α′, β′) of A and B on Hη ⊗Hπ
defined by α(a) := 1Hη ⊗ π(a) and β(b) := (η ⊗ π̂)∆̂R(b) is a χ-Heisenberg pair; here ∆̂R : B → B ⊗ Â is
the right quantum group homomorphism associated to χ̂.

Proof. First we check the following equation:

χ1η̂WB
2η = WB

2ηχ1η̂χ12 in U(Â⊗ B̂ ⊗K(Hη)). (4.4)

The coaction B̂ → B̂ ⊗ B̂ associated to the reduced bicharacter WB is the usual comultiplication ∆̂B .
Hence

(ŴB
η3)χ1η̂(ŴB

η3)∗ = (idÂ ⊗ η̂ ⊗ idB̂)(id⊗ ∆̂B)χ = (idÂ ⊗ η̂ ⊗ idB̂)(χ12χ13) = χ1η̂χ13

in U(Â⊗K(Hη)⊗ B̂) because of Lemma 4.9(4) and the bicharacter property (3.2) of χ. When we flip the
last two legs, we turn ŴB

η3 into (WB
2η)∗. Rearranging then gives (4.4).

Now we can check that (α, β) is a Heisenberg pair. The following computation takes place in U(Â⊗
B̂ ⊗K(Hπ)⊗K(Hη)):

WA
1αWB

2β = WA
1πχ1η̂WB

2η = WA
1πWB

2ηχ1η̂χ12 = WB
2ηWA

1πχ1η̂χ12 = WB
2βWA

1αχ12

the first equality uses the definitions of α and β and (3.15); the second equality uses (4.4); the third equality
uses that WA

1π and WB
2η commute; and the fourth equality uses the definitions of α and β again.

A similar argument shows that (α′, β′) is a χ-Heisenberg pair.

4.1.1 Commutativity and Heisenberg pairs
It is interesting to observe how the commutation relations look like when we put a Heisenberg and an
anti-Heisenberg pair together. There are only two possible ways to do so. Ordinary commutativity comes
out if we put together a Heisenberg and an anti-Heisenberg pair. This will be crucial for the existence of
our noncommutative tensor product.

Proposition 4.12. Let H and K be Hilbert spaces; let α and β be representations of A and B on H,
respectively; and let ᾱ and β̄ be representations of A and B on K, respectively. Then the following are
equivalent:

1. the representations (α⊗ ᾱ)∆A and (β⊗ β̄)∆B of A and B on H⊗K commute, that is, for any a ∈ A
and b ∈ B, we have

[(α⊗ ᾱ)∆A(a), (β ⊗ β̄)∆B(b)] = 0; (4.5)

2. there is a bicharacter χ ∈ U(Â ⊗ B̂) such that (α, β) is a Heisenberg pair and (ᾱ, β̄) is an anti-
Heisenberg pair.

Proof. Equation (4.5) is equivalent to

WA
1αWA

1ᾱWB
2βWB

2β̄ = WB
2βWB

2β̄W
A
1αWA

1ᾱ in U(Â⊗ B̂ ⊗K(H)⊗K(K)) (4.6)

because of (2.8) and (2.5) for WA and WB . We may commute WA
1ᾱ with WB

2β and WB
2β̄ with WA

1α on both
sides and rearrange (4.6) to

χ := (WA)∗1α(WB)∗2βWA
1αWB

2β = WB
2β̄W

A
1ᾱ(WB)∗2β̄(WA)∗1ᾱ. (4.7)

This implies χ ∈ U(Â⊗ B̂) because its first definition has 1K in the fourth leg and its second definition
has 1H in the third leg.
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We check that χ is a bicharacter in both legs. First we check (3.1):

(∆̂A ⊗ idB̂)χ = (∆̂A ⊗ idB̂)(WB
2β̄W

A
1ᾱ(WB)∗2β̄(WA)∗1ᾱ)

= WB
3β̄W

A
2ᾱWA

1ᾱ(WB)∗3β̄(WA)∗1ᾱ(WA)∗2ᾱ
= χ23WA

2ᾱχ13(WA)∗2ᾱ = χ23χ13;

the first and third equality use the second definition of χ in (4.7); the second equality uses (3.1) for WA;
and the last equality uses that WA

2ᾱ and χ13 commute. A similar computation using the first definition
of χ in (4.7) yields (idÂ ⊗ ∆̂B)χ = χ12χ13; thus χ ∈ U(Â⊗ B̂) is a bicharacter.

The first definition of χ in (4.7) says that (α, β) is a Heisenberg pair, and the second one says that (ᾱ, β̄)
is an anti-Heisenberg pair.

Conversely, if χ ∈ U(Â⊗ B̂) is a bicharacter, (α, β) a Heisenberg pair and (ᾱ, β̄) an anti-Heisenberg
pair, then (4.7) follows, and hence (4.5).

If we put an anti-Heisenberg pair and a Heisenberg pair together we get twisted commutation. This will
eventually become the central ingredient to construct the generalised Drinfeld double discussed in Section
4.6 and extend the notion of quasitriangularity to the C∗-algebraic framework in Chapter 5.

Definition 4.13. A pair (ρ, θ) of representations of A and B on a Hilbert space H is a χ-Drinfeld pair if

χ12WA
1ρWB

2θ = WB
2θWA

1ρχ12 in U(Â⊗ B̂ ⊗K(H)). (4.8)

In particular, when χ = WA, we call WA-Drinfeld pairs G-Drinfeld pairs. Equivalently, a pair of
representations ρ : A→ B(H) and θ : Â→ B(H) satisfies the G-Drinfeld-commutation relation if and only if

WA
1ρWA

13WA
θ3 = WA

θ3WA
13WA

1ρ in U(Â⊗K(H)⊗A). (4.9)

Proposition 4.14. Let (α, β) and (ᾱ, β̄) be a χ-Heisenberg and χ-anti-Heisenberg pair on H and K,
respectively. Define the representations ρ := (ᾱ⊗ α)∆A and θ := (β̄ ⊗ β)∆B of A and B on K ⊗H. Then
(ρ, θ) is a χ-Drinfeld pair on K ⊗H.

Proof. We must check (4.8) for (ρ, θ). Equations (2.8), (4.1) and (4.2) yield:

χ12WA
1ρWB

2θ = χ12WA
1ᾱWA

1αWB
2β̄W

B
2β = χ12WA

1ᾱWB
2β̄W

A
1αWB

2β = WB
2β̄W

A
1ᾱWB

2βWA
1αχ12

= WB
2β̄W

B
2βWA

1ᾱWA
1αχ12 = WB

2θWA
1ρχ12

because WA
1α commutes with WB

2β̄ and WA
1ᾱ commutes with WB

2β .

Corollary 4.15. Let (π, π̂) and (η, η̂) be G-Heisenberg and G-anti-Heisenberg pairs acting on Hπ and Hη,
respectively. Then the representations ρ : A → B(Hπ ⊗Hη) and θ : Â → B(Hπ ⊗Hη) defined by ρ(a) :=
(η ⊗ π)∆A(a) and θ(â) := (η̂ ⊗ π̂)∆̂A(â) satisfy the G-Drinfeld commutation relation.

4.2 Twisted tensor products via Heisenberg pairs
Let G = (A,∆A) and H = (B,∆B) be C∗-quantum groups, let χ ∈ U(Â⊗ B̂) be a bicharacter, let (C, γ)
be a G-C∗-algebra, and let (D, δ) be an H-C∗-algebra. Let (α, β) be a χ-Heisenberg pair on some Hilbert
space H.

Using this data, we now construct a crossed product (C �χ D, ιC , ιD) of C and D in the sense of
Definition 4.1. A more precise notation is

C �χ D = (C, γ)�χ (D, δ).

There is no need to mention (α, β) in our notation because all Heisenberg pairs give equivalent crossed
products; we will prove this in Section 4.3.
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Lemma 4.16. Define morphisms

ιC : C → C ⊗D ⊗K(H), c 7→ (idC ⊗ α)γ(c)13,

ιD : D → C ⊗D ⊗K(H), d 7→ (idD ⊗ β)δ(d)23.

Then ιC(C) · ιD(D) = ιD(D) · ιC(C) inM(C ⊗D ⊗K(H)).

It follows that
C �χ D := ιC(C) · ιD(D)

is a C∗-algebra and that ιC and ιD are morphisms from C and D to C �χ D, respectively. Thus
(C �χ D, ιC , ιD) is a crossed product of C and D in the sense of Definition 4.1.

Lemma 4.17. Let X ⊆ C and Y ⊆ D be closed subspaces with

γ(X) · (1C ⊗A) = X ⊗A and δ(Y ) · (1D ⊗B) = Y ⊗B.

Then ιC(X) · ιY (D) = ιD(Y ) · ιC(X) inM(C ⊗D ⊗K(H)).

Proof. Since our coactions satisfy the Podleś conditions, Lemma 4.16 is the special case X = C and Y = D
of Lemma 4.17. Hence it is enough to verify Lemma 4.17.

Let (ᾱ, β̄) be a χ-anti Heisenberg pair on a Hilbert space K. The definition of ιC and the comodule
property (2.22) for γ yield

(ιC ⊗ ᾱ)γ = ((idC ⊗ α⊗ ᾱ)(γ ⊗ idA)γ)134 = ((idC ⊗ (α⊗ ᾱ)∆A)γ)134;

Similarly,
(ιD ⊗ β̄)δ = ((idD ⊗ (β ⊗ β̄)∆B)δ)234.

Now Proposition 4.12 yields

(ιC ⊗ ᾱ)γ(c) · (ιD ⊗ β̄)δ(d) = (ιD ⊗ β̄)δ(d) · (ιC ⊗ ᾱ)γ(c) (4.10)

for all c ∈ C, d ∈ D.
Since ᾱ(A) ·K(K) = K(K), our assumption γ(X) · (1C ⊗A) = X ⊗A gives

((ιC ⊗ ᾱ)γ(X)) ·K(K)4 = (ιC ⊗ ᾱ)(γ(X) · (1C ⊗A)) ·K(K)4

= (ιC(X)⊗ ᾱ(A)) · (1C ⊗ 1H ⊗K(K))134 = ιC(X)⊗K(K).

Similarly, β̄(B) ·K(K) = K(K), and the Podleś condition for δ gives

((ιD ⊗ β̄)δ(Y )) ·K(K)4 = ιD(Y )⊗K(K).

Equation (4.10) gives

(ιC ⊗ ᾱ)γ(X) · (ιD ⊗ β̄)δ(Y ) = (ιD ⊗ β̄)δ(Y ) · (ιC ⊗ ᾱ)γ(X).

Multiplying this equation on the right with 1C⊗D⊗H ⊗K(K) and using the computations above to simplify,
we get

(ιC(X) · ιD(Y ))⊗K(K) = (ιD(Y ) · ιC(X))⊗K(K).
Applying a state ω on K(K) to this equation gives ιC(X) · ιD(Y ) = ιD(Y ) · ιC(X) as desired.

The following observation is useful to study slice maps on C �χ D.

Lemma 4.18. In the situation of the previous lemma,

ιC(X) · ιD(Y ) ·K(H)3 = X ⊗ Y ⊗K(H), (4.11)

where the right hand side means the closed linear span of x ⊗ y ⊗ z with x ∈ X, y ∈ Y , z ∈ K(H). In
particular, (C �χ D) ·K(H)3 = C ⊗D ⊗K(H).
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Proof. Since K(H) = β(B) ·K(H), we may compute

ιD(Y ) ·K(H)3 = ((idD ⊗ β)(δ(Y ) · (1D ⊗B)))23K(H)3 = (Y ⊗ β(B) ·K(H))23 = K(H)3 · Y2.

Here Y2 and K(H)3 mean Y and K(H) in the second and third leg, respectively. A similar computation for
ιC(X) using K(H) = α(A) ·K(H) now gives (4.11).

We will consider interesting examples of �χ in Section 4.5. Here we only mention a trivial example:

Example 4.19. Assume the coaction γ is trivial. Then γ(c)13 = c ⊗ 1 ⊗ 1, so that C �χ D ∼= C ⊗ D,
embedded intoM(C ⊗D ⊗K(H)) via idC ⊗ (idD ⊗ β)δ. We get the same conclusion if δ is trivial.

Lemma 4.20. Let C0 be a C∗-algebra with trivial G-coaction and equip C0 ⊗C with the coaction idC0 ⊗ γ.
Then

(C0 ⊗ C)�χ D = C0 ⊗ (C �χ D). (4.12)

A similar statement holds in the second variable.

Proof. The map ιC0⊗C is idC0 ⊗ ιC .

4.3 Hilbert space representation of the twisted tensor prod-
uct

Definition 4.21. A covariant representation of (C, γ,A) on a Hilbert space H is a pair consisting of a
corepresentation U ∈ U(K(H)⊗A) and a representation ϕ : C → B(H) that satisfy the covariance condition

(ϕ⊗ idA) ◦ γ(c) = U(ϕ(c)⊗ 1A)U∗ in U(K(H)⊗A) (4.13)

for all c ∈ C. A faithful covariant representation is one where ϕ is faithful.

Example 4.22. Let ϕ0 : C → B(H0) be any faithful Hilbert space representation. Let (π, π̂) be a faithful
G-Heisenberg pair on a Hilbert space Hπ; this exists because of Example 2.18. Let H := H0 ⊗Hπ and
identify K(H) ∼= K(H0)⊗K(Hπ). The unitary U := 1H0 ⊗WA

π̂2 ∈ U(K(H)⊗A) is a corepresentation; since
ϕ0, π and γ are faithful morphisms, ϕ := (ϕ0⊗π) ◦ γ : C → B(H) is a faithful representation. The following
computation inM(C ⊗K(Hπ)⊗A) implies the covariance condition for (ϕ,U):

((idC ⊗ π)γ ⊗ idA)γ(c) = (idC ⊗ (π ⊗ idA)∆A)γ(c) = (WA
π̂3)(γ(c)⊗ 1A)(WA

π̂3)∗

for all c ∈ C, where we used (2.22) and Lemma 4.9.3 with B = Â and ∆R = ∆A.

We are now going to construct a faithful Hilbert space representation of C �χD using covariant Hilbert
space representations of (C, γ) and (D, δ). This yields an alternative definition of C �χ D and shows that
C �χ D does not depend on the Heisenberg pair used in its construction.

Our new construction uses faithful covariant representations (ϕ,UH) of (C, γ,A) and (ψ,UK) of (D, δ,B)
on Hilbert spaces H and K, respectively. (Example 4.22 shows that such faithful covariant representations
always exists.)

The bicharacter χ and the corepresentations provide a unitary operator Z on H ⊗ K, generalising
Proposition 2.38, as follows:

Theorem 4.23. Let UH ∈ U(H⊗A) and UK ∈ U(K ⊗B) be corepresentations of G and H, respectively.
Then there is a unique unitary Z ∈ U(H⊗K) that satisfies

UH1αUK2βZ12 = UK2βUH1α in U(H⊗K⊗ L) (4.14)

for any χ-Heisenberg pair (α, β) on some Hilbert space L.
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With this unitary Z, define representations ϕ1 and ψ̃2 of C and D on H⊗K by

ϕ1(c) := ϕ(c)⊗ 1K,
ψ̃2(d) := Z(1H ⊗ ψ(d))Z∗.

We can now formulate the main theorem of this section:

Theorem 4.24. Let (ϕ,UH) and (ψ,UK) be faithful covariant representations of (C, γ,A) and (D, δ,B)
on Hilbert spaces H and K, respectively. Construct ϕ1 and ψ̃2 as above. Then there is a unique faithful
representation ρ : C �χ D → B(H⊗K) with ρ ◦ ιC = ϕ1 and ρ ◦ ιD = ψ̃2.

Example 4.25. If χ = 1, then we may take Z = 1. Thus ψ̃2 = ψ2 and the crossed product is simply the
minimal tensor product C ⊗D.

In the rest of this section, we prove the claims above and use the main theorem to show that the twisted
tensor product does not depend on auxiliary choices.

Proof of Theorem 4.23. The uniqueness of Z is clear from

Z12 = (UK2β)∗(UH1α)∗UK2βUH1α.

Existence means that the operator on the right acts identically on the third leg and does not depend on the
Heisenberg pair. The quickest way to prove this uses universal quantum groups to turn corepresentations
into representations.

By (2.34), there is a universal (left) corepresentation ṼA ∈ U(Âu ⊗A); its universal property gives a
unique representation ρ1 : Âu → B(H) with (ρ1⊗ idA)ṼA = UH because UH is a corepresentation. Similarly,
there is a unique representation ρ2 : B̂u → B(K) with (ρ2 ⊗ idB)ṼB = UK.

Proposition 3.16 shows that any bicharacter χ ∈ U(Â⊗B̂) lifts uniquely to a bicharacter χu ∈ U(Âu⊗B̂u).
We claim that

Z := (ρ1 ⊗ ρ2)(χu)∗ ∈ B(H⊗K) (4.15)
verifies (4.14) for any χ-Heisenberg pair (α, β). (Our formulation of Theorem 4.23 highlights the property
of the operator (ρ1⊗ρ2)(χu)∗ that is crucial for the proof of Theorem 4.24, and it avoids universal quantum
groups.)

We will actually prove

ṼA1αṼB2β = ṼB2βṼA1αχu12 in U(Âu ⊗ B̂u ⊗K(L)) (4.16)

for any χ-Heisenberg pair (α, β). Applying ρ1 and ρ2 to the first two legs then gives (4.14) because
(ρ1 ⊗ idA)ṼA = UH and (ρ2 ⊗ idB)ṼB = UK.

When we apply the reducing morphisms Λ̂A : Âu → Â and Λ̂B : B̂u → B̂ to the first two legs in (4.16),
we get WA

1αWB
2β = WB

2βWA
1αχ12, which is exactly the definition of a Heisenberg pair (see Definition 4.5). A

routine computation, using (2.35), shows that

T := (ṼA1α)∗(ṼB2β)∗ṼA1αṼB2β ∈ U(Âu ⊗ B̂u ⊗K(L))

is a character in the first two legs, that is, (∆̂Au ⊗ idB̂u ⊗ idL)T = T234T134 and (idÂu ⊗ ∆̂Bu ⊗ idL)T =
T124T134. Thus T and χu12 are two bicharacters in U(Âu ⊗ B̂u ⊗K(L)) that both lift the bicharacter χ12 in
U(Â⊗ B̂ ⊗K(L)). Using Lemma 2.41 twice, we get that any such bicharacter has a unique lifting. Thus
T = χu12 as asserted. This finishes the proof of Theorem 4.23.

The Hilbert space representation

ϕ⊗ ψ ⊗ id : A⊗B ⊗K(L)→ B(H⊗K⊗ L)

is faithful because ϕ and ψ are faithful. Hence the pair of representations

(ϕ⊗ α)γ13 : C → B(H⊗K⊗ L)
(ψ ⊗ β)δ23 : D → B(H⊗K⊗ L)

of C and D gives a faithful representation of C �χ D; that is, there is a unique faithful representation of
C �χ D that gives the above two representations when composed with ιC and ιD.
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Lemma 4.26. The pair of representations (ϕ1,AdZ12 ◦ ψ2) of (C,D) on H⊗K⊗L is unitarily equivalent
to the pair

(
(ϕ⊗ α)γ13, (ψ ⊗ β)δ23

)
on the same Hilbert space through conjugation by the unitary UH1αUK2β.

Proof. We must prove

UH1αUK2β(ϕ(c)⊗ 1K ⊗ 1L)(UK2β)∗(UH1α)∗ = (ϕ⊗ α)γ13(c),

UH1αUK2βZ12(1H ⊗ ψ(d)⊗ 1L)Z∗12(UK2β)∗(UH1α)∗ = (ψ ⊗ β)δ23(d)

for all c ∈ C, d ∈ D. To check the first equality, we use first that UK2β commutes with ϕ(c)1 because both
act on different legs, and secondly the covariance condition (4.13) for (ϕ,UH) with α applied to the leg A:

UH1αUK2β(ϕ(c)⊗ 1K ⊗ 1L)(UK2β)∗(UH1α)∗ = UH1α(ϕ(c)⊗ 1K ⊗ 1L)(UH1α)∗ = (ϕ⊗ α)γ(c)13.

To check the second equality, we first use (4.14); secondly, that UH1α and ψ(d)2 act in different legs to
commute them; and thirdly the covariance condition (4.13) for (ψ,UK) with β applied to the leg B:

UH1αUK2βZ12(1H ⊗ ψ(d)⊗ 1L)Z∗12(UK2β)∗(UH1α)∗ = UK2βUH1αψ(d)2(UH1α)∗(UK2β)∗

= UK2βψ(d)2(UK2β)∗ = (ψ ⊗ β)δ(d)23.

Proof of Theorem 4.24. We remarked above that the pair of representations
(
(ϕ ⊗ α)γ13, (ψ ⊗ β)δ23

)
generates a faithful representation of C �χ D. Lemma 4.26 shows that this representation is unitarily
equivalent to another representation that restricts to ϕ1 ⊗ 1L and AdZ12 ◦ ψ2 = ψ̃2 ⊗ 1L on C and D,
respectively. The latter representation is ρ⊗ 1L for a faithful representation of C �χ D on H⊗K. This
is the faithful representation whose existence is asserted in Theorem 4.24. Uniqueness is clear because
C �χ D = ιC(C) · ιD(D).

Theorem 4.27. In the notation of Theorem 4.24, the subspace

C �̃χ D := ϕ1(C) · ψ̃2(D) ⊆ B(H⊗K)

is a C∗-subalgebra and (C �̃χ D,ϕ1, ψ̃2) is a crossed product of C and D. Up to equivalence of crossed
products, it does not depend on (ϕ,UH) and (ψ,UK).

The crossed product (C �χD, ιC , ιD) is equivalent to (C �̃χD,ϕ1, ψ̃2) and, up to equivalence of crossed
products, does not depend on the Heisenberg pair (α, β).

Proof. Since C �̃χD = ρ(C �χD) and ρ ◦ ιC = ϕ1, ρ ◦ ιD = ψ̃2, by Theorem 4.24, C �̃χD is a C∗-algebra,
(C �̃χD,ϕ1, ψ̃2) is a crossed product of C and D, and it is equivalent to the crossed product (C�χD, ιC , ιD).

Since the unitary Z is the same for all Heisenberg pairs (α, β), the crossed product (C �̃χ D,ϕ1, ψ̃2)
does not depend on (α, β); hence up to equivalence (C �χ D, ιC , ιD) does not depend on (α, β). And
since (C �χ D, ιC , ιD) does not depend on (ϕ,UH) and (ψ,UK), neither does (C �̃χ D,ϕ1, ψ̃2), up to
equivalence.

As a special case of Theorem 4.24, the usual spatial tensor product C⊗D does not depend on the chosen
faithful representations of C and D. But we do not reprove this classical result. Rather, we reduce analogous
statements for noncommutative tensor products to this case by embedding the latter into commutative
tensor products with more factors.

4.4 Properties of the twisted tensor product
In this section, we establish functoriality of the twisted tensor product and a result about cocycle conjugacy.

We begin with an easy symmetry property:

Proposition 4.28. The crossed products (C�χD, ιC , ιD) and (D�χ̂C, ι′D, ι′C) are canonically isomorphic.
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Proof. Let (UH, ϕ) and (UK, ψ) be faithful covariant representations of C and D on Hilbert spaces H
and K, respectively. Theorem 4.27 yields

(C �χ D, ιC , ιC) ∼= (C�̃χD,ϕ1, ψ̃2),

(D �χ̂ C, ι′D, ι′C) ∼= (D�̃χ̂C,ψ1, ϕ̃2)

with C�̃χD ⊆ B(H⊗K), D�̃χ̂C ⊆ B(K ⊗H); here ψ1(d) := (ψ(d) ⊗ 1H) and ϕ̃2(c) := Ẑ(1K ⊗ ψ(c))Ẑ∗,
where Z satisfies (4.14) and Ẑ = ΣZ∗Σ. The pair of representations (ϕ1, ψ̃2) of (C,D) on H⊗K is unitarily
equivalent to the pair of representations (ψ1, ϕ̃2) on K ⊗H via the unitary ΣZ∗.

4.4.1 Functoriality for quantum group morphisms
Let G = (A,∆A), H = (B,∆B), G2 = (A2,∆A2) and H2 = (B2,∆B2) be quantum groups. Let χ′ ∈
U(Â⊗A2) and χ′′ ∈ U(B̂⊗B2) bicharacters; hence quantum group homomorphisms G→ G2 and H→ H2,
respectively.

Let χ2 ∈ U(Â2 ⊗ B̂2) be a bicharacter. We may view χ2 as a quantum group morphism G2 → Ĥ2.
Composing this with the given quantum group morphisms χ′ : G → G2 and χ̂′′ : Ĥ2 → Ĥ, we get a
bicharacter χ := χ̂′′ ∗ χ2 ∗ χ′ ∈ U(Â⊗ B̂), which we view as a quantum group homomorphism G→ H.

Let (C, γ) and (D, δ) be a G-C∗-algebra and an H-C∗-algebra, respectively. The description of f in
Theorem 3.27 is as a functor from the category of G-C∗-algebras to G2-C∗-algebras that does not change
the underlying C∗-algebra. In particular, this functor maps γ to a continuous G2-coaction γ2 : C → C ⊗A2
on C. Similarly, g maps δ to a continuous H2-coaction δ2 : D → D ⊗B2 on D.

Theorem 4.29. In the situation above, the crossed products (C, γ2)�χ2 (D, γ2) and (C, γ)�χ (D, γ) of C
and D are equivalent.

Proof. Let (ϕ,UH) be a G-covariant representation of (C, γ) on H and let (ψ,UK) be an H-covariant
representation of (D, δ) on K.

Proposition 3.31 shows that the quantum group morphism χ′ turns UH into a corepresentation UH2
of G2 on H. Similarly, χ′′ turns UK into a corepresentation UK2 of H2 on K, and (ψ,UK2 ) is a covariant
representation of (D, δ2).

The bicharacters χ ∈ U(Â⊗ B̂) and χ2 ∈ U(Â2 ⊗ B̂2) lift uniquely to bicharacters χu ∈ U(Âu ⊗ B̂u)
and χu2 ∈ U(Âu

2 ⊗ B̂u
2 ) by Proposition 3.16. Let f̂u : Âu

2 → Âu and ĝu : B̂u
2 → B̂u be Hopf ∗-homomorphisms

between universal duals equivalent to the bicharacters χ′ ∈ U(Â⊗A2) and χ′′ ∈ U(B̂ ⊗B2). The bijection
between bicharacters and quantum group morphisms is defined in such a way that χu = (f̂u ⊗ ĝu)(χu2).
Equation (4.15) then shows that the unitaries Z on H⊗K that are used to construct the twisted tensor
products with respect to χ and χ2 are the same.

Now Theorem 4.24 yields the desired equivalence of crossed products because both are faithfully
represented by the same C∗-algebra ϕ(C) · Zψ(D)Z∗ on H⊗K.

The following special cases of Theorem 4.29 are particularly noteworthy.

Example 4.30. Let G2 = Ĥ, H2 = H, let χ′′ = WB : H→ H2 be the identity quantum group homomorphism
and let χ′ = χ : G→ G2 = Ĥ viewed as a quantum group morphism as above. Let χ2 = ŴB be the reduced
bicharacter of Ĥ. Then

(C, γ)�χ (D, δ) ∼= (C, γ2)�ŴB (D, δ),

where γ2 : C → C ⊗ B̂ is the Ĥ-coaction associated to γ by the quantum group morphism χ : G→ Ĥ (see
Theorem 3.27).

This is a special case of Theorem 4.29 because the bicharacter ŴB describes the identity morphism on
the quantum group Ĥ. The composition of this with χ′ gives again χ′, so that the bicharacter χ that we
get from χ2 = ŴB by the above construction is indeed the given one.
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Example 4.31. Let G2 = G, H2 = Ĝ, let χ′ = WA : G2 → G be the identity quantum group homomorphism
and let χ̂ : H→ H2 = Ĝ be the dual of the morphism χ : G→ Ĥ2. Let χ2 = WA be the reduced bicharacter
of Ĥ. Then

(C, γ)�χ (D, δ) ∼= (C, γ)�WA (D, δ2),

where δ2 : D → D ⊗ Â is the Ĝ-coaction associated to δ by the quantum group morphism χ̂ : H→ Ĝ (see
Theorem 3.27).

The last example reduces the twisted tensor product �χ for an arbitrary bicharacter to the special case
H = Ĝ and χ = WA.

4.4.2 Functoriality for equivariant morphisms
It is well known that the minimal tensor product is functorial for nondegenerate ∗-homomorphisms; that
is, f ∈ Mor(C1, C2) and g ∈ Mor(D1, D2) induce f ⊗ g ∈ Mor(C1 ⊗D1, C2 ⊗D2), which is determined by
(f ⊗ g)(c⊗ d) := f(c)⊗ g(d). We claim the same for the tensor product �χ in the following sense:

Lemma 4.32. Let f : (C1, γ1) → (C2, γ2) be a G-equivariant morphism and g : (D1, δ1) → (D2, δ2) an
H-equivariant morphism. Then there is a unique morphism

f �χ g : C1 �χ D1 → C2 �χ D2, ιC1 (c) · ιD1 (d) 7→ ιC2 (f(c)) · ιD2 (g(d)).

Proof. The uniqueness and hence the functoriality is clear because the linear span of ιC1 (c) · ιD1 (d) with
c ∈ C1, d ∈ D1 is dense in C1 �χ D1.

Let (α, β) be a χ-Heisenebrg pair on H. We remarked above that ordinary minimal C∗-tensor products
are functorial for morphisms, that is, there is a well-defined morphism

f ⊗ g ⊗ idK(H) : C1 ⊗D1 ⊗K(H)→ C2 ⊗D2 ⊗K(H).

Lemma 4.18 implies Ci �χ Di ⊆M(Ci ⊗Di ⊗K(H)) for i = 1, 2.
The morphism f ⊗ g⊗ idK(H) extends to a ∗-homomorphism between multiplier algebras. Since f and g

are equivariant, this canonical extension maps γ1(c)1α 7→ γ2(f(c))1α and δ1(d)2β 7→ δ2(g(d))2β . Hence it
maps ιC1 (c) · ιD1 (d) to ιC2 (f(c)) · ιD2 (g(d)) as needed.

Proposition 4.33. If f and g are injective morphisms, then so is f �χ g, and vice versa.
If f and g are surjective morphisms, then so is f �χ g, and vice versa.
The morphism f �χ g is invertible if and only if both f and g are invertible.

Proof. If f and g are injective, so is f ⊗ g ⊗ idK(H); hence its extension to multipliers is injective, and so is
the restriction to C1 �χ D1. Conversely, (f �χ g)(ιC1(c)ιD1(d)) vanishes if f(c) = 0 or g(d) = 0; hence f
and g are injective if f �χ g is.

If f and g are surjective, then elements of the form (f �χ g)(ιC1(c)ιD1(d)) = ιC2(f(c))ιD2(g(d)) are
linearly dense in C2 �χD2. Hence f �χ g is surjective as well. Conversely, suppose that f �χ g is surjective.
Then

ιC2 (f(C1)) · ιD2 (g(D1)) ·K(H)3 = (C2 �χ D2) ·K(H)3 = C2 ⊗D2 ⊗K(H)

by Lemma 4.18. We also have ιC2(f(C1))ιD2(g(D1)) · K(H)3 ⊆ f(C1) ⊗ g(D1) ⊗ K(H). Applying slice
maps to C2 and D2, we get f(C1) = C2 and g(D1) = D2.

We now use Proposition 4.33 for the equivariant embeddings γ : C → C⊗A and δ : D → D⊗B provided
in Lemma 2.34 to get an embedding

(C, γ)�χ (D, δ)→ C ⊗D ⊗ (A,∆)�χ (B,∆).

Thus we may describe (C, γ)�χ (D, δ) as the crossed product generated by the embeddings (id⊗ ιA)γ13
of C and (id ⊗ ιB)δ23 of D into C ⊗D ⊗ (A,∆) �χ (B,∆). This description is particularly useful if we
know (A,∆)�χ (B,∆) more explicitly.
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4.4.3 Cocycle conjugacy
We now consider the special case where the G-coaction is changed to an equivalent one by a cocycle:

Definition 4.34 ([2, Définition 0.4]). A γ-cocycle is a unitary u ∈M(C ⊗A) with

u12(γ ⊗ idA)u = (idC ⊗∆A)u in U(C ⊗A⊗A). (4.17)

We only treat cocycles that satisfy an extra Podleś condition:

Lemma 4.35. Let u ∈ U(C ⊗A) be a γ-cocycle. Define a morphism γu := Adu ◦ γ : C → C ⊗A. This is
a continuous coaction of G if and only if

γ(C) · u∗ · (1C ⊗A) = C ⊗A. (4.18)

Proof. The morphism γu is faithful because γ is. We check that it is a comodule structure:

(idC ⊗∆A)γu(c) = (idC ⊗∆A)(uγ(c)u∗) = u12((γ ⊗ idA)(uγ(c))u∗)u∗12 = (γu ⊗ idA)γu(c)

for all c ∈ C; the first equality follows from the definition of γu, the second equality uses (4.17) and (2.22)
for γ; the third equality again uses (4.17) for all c ∈ C.

Since u ∈ U(C ⊗ A) we have u(C ⊗ A) = C ⊗ A. Hence (4.18) is equivalent to the Podleś condition
uγ(C)u∗ · (1⊗A) = C ⊗A for γu.

The following result generalises [2, Proposition 7.6].

Theorem 4.36. Let u be a γ-cocycle and let v be a δ-cocycle. Assume both satisfy the Podleś condition (4.18).
Define the coactions γu and δv as above. Then

(C, γ)�χ (D, δ) ∼= (C, γu)�χ (D, δv).

This isomorphism is not one of crossed products, that is, it is not compatible with the embeddings of C
and D.

Proof. We describe the isomorphism above more explicitly. To simplify notation, we treat only u and
assume v = 1. We define a G-coaction on M2(C) by(

c11 c12
c21 c22

)
7→
(
γ(c11) γ(c12)u∗
uγ(c21) uγ(c22)u∗

)
.

The upper left and lower right corners are (C, γ) and (C, γu), respectively. Thus (C, γ) �χ (D, δ) and
(C, γu)�χ (D, δ) are subalgebras of M2(C)�D.

Conjugation by the partial isometry s =
(

0 0
1 0

)
and its adjoint gives isomorphisms between the two

corners C ⊆ M2(C). The strictly continuous extension of ιM2(C) maps s to a partial isometry in M2(C)�χD.
Conjugation by this partial isometry and its adjoint restricts to isomorphisms between (C, γ)�χ (D, δ) and
(C, γu)�χ (D, δ)

Definition 4.37. We call a continuous coaction inner if it is a cocycle-twist of the trivial coaction.

Corollary 4.38. The crossed product (C, γ)�χ (D, δ) is isomorphic to C ⊗D if γ or δ is inner.

Proof. Let u ∈M(C ⊗A) be a cocycle for the trivial coaction τ(c) := c⊗ 1 and let γ = τu. The cocycle u
satisfies (4.18) by Lemma 4.35. Now Theorem 4.36 and Example 4.19 give (C, γ)�χD ∼= (C, τ)�χD ∼= C⊗D.
A similar proof works if δ is inner.

Example 4.39. Let UH and UK be corepresentations of A and B on Hilbert spaces H and K. These are
cocycles for the trivial coaction on K(H). Assume (4.18) to get continuous coactions on K(H) and K(K).
Then

K(H)�χ K(K) ∼= K(H)⊗K(K) ∼= K(H⊗K).
This explains the Hilbert space realisation of C �χ D in Theorem 4.24 in the case where the corepre-

sentations UH and UK used there satisfy the technical condition (4.18). Then we get a faithful morphism
C �χ D → K(H)�χ K(K) from Proposition 4.33. When we identify K(H)�χ K(K) ∼= K(H⊗K) as above,
we get a faithful representation of C �χ D on H⊗K.
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4.5 Examples of twisted tensor products
We show in Section 4.5.1 that the skew-commutative tensor product of Z/2-graded C∗-algebras is a special
case of our theory.

In Section 4.5.2, we treat crossed products for coactions and construct the dual coaction on a crossed
product using the functoriality of �χ.

4.5.1 Skew-commutative tensor products
Let Z/2 = {0, 1} be the two-element group. Let G = H be C∗(Z/2) with the usual comultiplication. Thus
a G-coaction on a C∗-algebra C is a Z/2-grading: a decomposition C = C0 ⊕ C1 into involutive, closed,
linear subspaces C0 and C1 of even and odd elements such that

Ci · Cj = Ci+j mod 2, C∗i = Ci.

Equivalently, α′(c0 + c1) := c0 − c1 for ci ∈ Ci defines an involutive ∗-automorphism of C.
The skew-commutative tensor product of two Z/2-graded C∗-algebras C and D is defined in [18, §2.6]

by imposing the commutation relation that c ∈ C and d ∈ D anti-commute if both are odd, and commute
if one of them is even. This leads to the ∗-algebra structure

(c1 �̂ d1) · (c2 �̂ d2) := (−1)deg(c2)·deg(d1)c1c2 �̂ d1d2,

(c �̂ d)∗ := (−1)deg(c)·deg(d)c∗ �̂ d∗

on the algebraic tensor product C �̂D of C and D. The skew-commutative C∗-tensor product C ⊗̂D is
the completion of the ∗-algebra C �̂D in the C∗-norm

‖x‖ := sup (ρ ⊗̂ λ)(y∗ · x∗ · x · y)
(ρ ⊗̂ λ)(y∗ · y)

(4.19)

over all non-zero elements y ∈ C�̂D and all even states ρ ∈ C∗ and λ ∈ D∗; here the products and adjoints
are with respect to the ∗-algebra structure on C �̂D.

The obvious formulas define morphisms ιC : C → C ⊗̂D and ιD : D → C ⊗̂D, so that C ⊗̂D is a crossed
product of C and D. We want to show that C ⊗̂D ∼= C �χ D for a suitable bicharacter χ ∈ U(Â⊗ Â).

The dual Ĝ is the group Z/2, so that Â ⊗ B̂ ∼= C(Z/2 × Z/2) and a bicharacter χ is a bicharacter
Z/2× Z/2→ T in a more classical sense. The unique non-trivial bicharacter is defined by χ(1, 1) = −1 and
χ(i, j) = 1 if i = 0 or j = 0.

Theorem 4.40. Let C and D be Z/2-graded C∗-algebras and let χ be the non-trivial bicharacter in
C(Z/2 × Z/2). Then the crossed product (C �χ D, ιC , ιD) of C and D is naturally isomorphic to their
skew-commutative tensor product.

Proof. A covariant representation of C is given by a Z/2-graded Hilbert space H = H0 ⊕ H1 and a
representation ϕ : C → B(H) with ϕ(ci)(Hj) ⊆ Hi+j for all i, j ∈ Z/2. We choose such a faithful covariant
representation of A and a faithful covariant representation ψ : D → B(K) on a Z/2-graded Hilbert space
K = K0 ⊕K1.

Since Âu = Â, the unitary Z that is used in the Hilbert space description of C �χ D is described most
easily by (4.15). This gives Z(ξ ⊗ η) = −ξ ⊗ η if ξ ∈ H1 and η ∈ K1, and Z(ξ ⊗ η) = ξ ⊗ η if ξ ∈ H0 or
η ∈ K0. Thus ΣZ : H⊗K → K⊗H is the braiding operator from the Koszul sign rule. The representations
ϕ1 and ψ̃2 in Theorem 4.24 are

ϕ1(c)(ξ ⊗ η) = (ϕ(c)ξ)⊗ η, ψ̃2(d)(ξ ⊗ η) = (−1)deg(d) deg(ξ)ξ ⊗ ψ(d)η,

as expected from the Koszul sign rule. It remains to show that this pair of representations of C and D
yields a faithful representation of the skew-commutative tensor product C ⊗̂D. It is clear that we get a
∗-representation of C �̂D.

We must show that, for any x ∈ C �̂ D, its operator norm on H ⊗ K is equal to the norm defined
in (4.19). The GNS-representation for an even state ρ : C → C on the Hilbert space L2(C, ρ) is a
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covariant representation if we let L2(C, ρ)i be the closure of Ci in L2(C, ρ). The direct sum of these
GNS-representations for all even states is a faithful representation of C because any state on C0 extends
to a state on C and a representation of C is faithful once it is faithful on C0. Since C �χ D does not
depend on the covariant representations, we may assume that ϕ and ψ are these direct sums of covariant
GNS-representations of C and D, respectively. The resulting representations ϕ1 and ψ̃2 are block diagonal
with respect to the direct sum over the even states ρ and λ, and each block is obtained from the GNS-
representation for the pair of even states ρ and λ. The elements y ∈ C �D in (4.19) form a dense subset of
the Hilbert space L2(C, ρ)⊗ L2(D,λ), and the expression in (4.19) for fixed ρ and λ is precisely the norm
quotient ‖x · y‖/‖y‖, where x · y is defined using ϕ1 � ψ̃2. Hence the norm in (4.19) is exactly the operator
norm for a particular choice of the covariant representations ϕ and ψ.

4.5.2 Crossed products
Consider the special case where H = Ĝ, χ = WA ∈ U(Â ⊗ A), D = Â, δ = ∆̂A : Â → Â ⊗ Â. We claim
that (C, γ) �WA (Â, ∆̂A) is the reduced crossed product of (C, γ). More precisely, the reduced crossed
product C or Â comes equipped with canonical morphisms ιC : C → C or Â and ιÂ : Â → C or Â, such
that (C or Â, ιC , ιÂ) is a crossed product in the sense of Definition 4.1. We claim that this is equivalent to
(C, γ)�WA (Â, ∆̂A) as a crossed product.

Let (π, π̂) be the G-Heisenberg pair on the Hilbert space H constructed in Example 2.18; that is,
Wπ̂π = W is a multiplicative unitary generating G.

Theorem 4.41. There is a faithful morphism ρ : (C, γ)�WA (Â, ∆̂A)→ C ⊗K(H) with ρ ◦ ιC = γ1π and
ρ ◦ ιÂ = π̂2, where

γ1π : C →M(C ⊗K(H)), c 7→ (idC ⊗ π)γ(c),

π̂2 : Â→M(C ⊗K(H)), â 7→ 1C ⊗ π̂(â).

Reduced crossed products for locally compact quantum groups (with Haar weights) are defined using the
pair of representations γ1π and π̂2 above, where π and π̂ are the regular representations. Thus Theorem 4.41
provides an isomorphism (C, γ)�WA (Â, ∆̂A)→ C or Â for locally compact quantum groups. For general
C∗-quantum groups, we may now define the reduced crossed product using the pair of representations γ1π
and π̂2 and get the isomorphism (C, γ)�WA (Â, ∆̂A)→ C or Â in complete generality. The theorem shows
that the crossed product does not depend on the choice of W.

Proof of Theorem 4.41. Since

γ1π ⊗ idK(H) : C ⊗K(H)→ C ⊗K(H)⊗K(H)

is a faithful morphism, the pair of representations (γ1π, π̂2) generates a faithful representation of C � Â if
and only the pair ((γ1π ⊗ idK(H)) ◦ γ1π, (γ1π ⊗ idK(H)) ◦ π̂2) does so. We have (γ1π ⊗ idK(H)) ◦ π̂2(â) = π̂3(â)
and

(γ1π ⊗ idK(H))γ1π(c) = (γ ⊗ idA)γ(c)1ππ = (idC ⊗∆A)γ(c)1ππ = W(id⊗ π)γ(c)12W∗.

Let Σ23 be the coordinate flip. Conjugating both representations by the same unitary Σ23W∗ gives a
unitarily equivalent pair of representations. Hence we may further replace γ1π and π̂2 by the representations
c 7→ (id⊗ π)γ(c)13 of C and

â 7→ Σ23W∗π̂(â)3WΣ23 = ∆̂(â)π̂π̂

of Â; here we use the standard description of ∆̂ in terms of W.
Thus we arrive at the pair of representations (idC⊗π̂⊗idK(H))ιC and (idC⊗π̂⊗idK(H))ιÂ in C⊗Â⊗K(H)

with ιC = γ1π and ιÂ = (∆̂A)2π̂. Since π̂ is faithful, this pair is equivalent to (ιC , ιÂ). Since the latter
pair defines the crossed product C � Â, we see that (γ1π, π̂2) generates an equivalent crossed product as
claimed.
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Viewing the reduced crossed product as a special case of � gives us more freedom because we may also
tensor (C, γ) with other Ĝ-C∗-algebras and use functoriality. We now describe the dual coaction in this
way, using the functoriality of �.

The map ∆̂ : Â→ Â⊗ Â is Ĝ-equivariant if Ĝ coacts on Â⊗ Â by id⊗ ∆̂ : Â⊗ Â→ Â⊗ Â⊗ Â. By
the functoriality of �, this equivariant morphism induces a morphism

δ̂ : C or Â ∼= C � Â→ C � (Â⊗ Â) ∼= Â⊗ (C � Â) ∼= Â⊗ (C or Â);

here we use Lemma 4.20 in the second variable to pull out the first factor Â.

Lemma 4.42. The map δ̂ : C or Â→ Â⊗ (C or Â) is a continuous left Ĝ-coaction.

Proof. The comodule property of δ̂ follows from the coassociativity of ∆̂ and the functoriality of �. The
map δ̂ is faithful by Proposition 4.33. The Podleś condition for δ̂ follows because (Â⊗ 1)∆̂(Â) = Â⊗ Â:
apply ιÂ⊗Â to this equality.

The coaction δ̂ is uniquely determined by the conditions δ̂(ιC(c)) = 1⊗ιC(c) and δ̂(ιÂ(â)) = (idÂ⊗ιÂ)∆̂.
The same conditions characterise the dual coaction. Thus we have indeed constructed the dual coaction.

The functoriality of � in the first variable gives us the usual functoriality of reduced crossed products.
General tensor products C �W (D, δ) are closely related to the crossed product through Lemma 2.34,

which shows that δ : D → D ⊗ Â is a Ĝ-equivariant embedding for the coaction idD ⊗ ∆̂ on D ⊗ Â. By
Proposition 4.33 and Lemma 4.20, this induces a faithful morphism

C �W D → C �W (D ⊗ Â) ∼= D ⊗ (C �W Â) ∼= D ⊗ (C or Â).

Now we consider once again the general situation of two quantum groups G = (A,∆A) and H = (B,∆B)
and a bicharacter χ ∈ U(Â⊗ B̂).

Theorem 4.43. View Â⊗ B̂ as a subalgebra of (C or Â)⊗ (D or B̂) via ιÂ ⊗ ιB̂. The embeddings

(ιC)1 : C → (C or Â)⊗ (D or B̂), c 7→ ιC(c)⊗ 1,

Adχ∗ ◦ (ιD)2 : D → (C or Â)⊗ (D or B̂), d 7→ χ∗(1⊗ ιD(d))χ,

induce a faithful morphism
C �χ D → (C or Â)⊗ (D or B̂).

Proof. Choose a faithful representation ϕ0 : C → B(H0). Let (π, π̂) be a G-Heisenberg pair as in Exam-
ple 2.18, acting on a Hilbert space Hπ. Let H := H0 ⊗Hπ. Then we get a faithful representation ϕ0 ⊗ id
of C ⊗K(Hπ) on H. This restricts to a faithful representation ϕ′ : C or Â→ B(H) because the latter is the
crossed product generated by the morphisms γ1π : C → C ⊗K(Hπ) and π̂2 : Â→ C ⊗K(Hπ).

We compare this with the construction of a covariant representation of (C, γ) in Example 4.22. We see
that this covariant representation consists of ρ ◦ ιC : C → B(H) and WA

ρι
Â

2 ∈ U(K(Hπ)⊗A). Furthermore,
the representation of Âu used later in the proof of Theorem 4.23 is ριÂ ◦ Λ for the reducing morphism
Λ: Âu → Â. (Actually, any representation of C or Â gives a covariant representation of (C, γ) in a similar
way.)

Now do the same things for (D, δ): let ψ0 : D → B(K0) be a faithful representation; choose an
H-Heisenberg pair (ρ, ρ̂) as in Example 2.18, acting on a Hilbert space Kρ; let K := K0 ⊗Kρ; let ψ′ be the
resulting faithful representation of D or B̂ on K; construct a covariant representation of (D, δ) on K as in
Example 4.22.

Theorem 4.24 gives a faithful representation of C �χ D on H⊗K, generated by the representations ϕ1
and AdZψ2. By construction, we also get a faithful representation ϕ′⊗ψ′ of (C or Â)⊗ (Dor B̂) on H⊗K.
The description of Z in (4.15) yields Z = (ϕ′ ⊗ ψ′)(χ∗). Hence the representations ϕ1 and AdZψ2 both
factor through the embedding ϕ′⊗ψ′ and the maps (ιC)1 and Adχ∗ ◦ (ιD)2 in the statement of the theorem.
We thus get a faithful morphism C �χ D → (C or Â)⊗ (D or B̂) restricting to (ιC)1 and Adχ∗ ◦ (ιD)2 on
C and D, respectively.

For instance, in the situation of Section 4.5.1, this realises the skew-commutative tensor product C ⊗D
as a subalgebra of (C o Z/2)⊗ (D o Z/2).
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4.6 Generalised quantum codouble and Drinfeld double
In [4, Section 8], Baaj and Vaes have described generalised quantum doubles as a special case of the double
crossed product construction, assuming the existence of Haar weights. Let G = (A,∆A) and H = (B,∆B)
be quantum groups with the reduced bicharacters WA ∈ U(Â ⊗ A) and WB ∈ U(B̂ ⊗ B), respectively.
Let χ ∈ U(Â⊗ B̂) be a bicharacter. Using the χ-Drinfeld commutation relation, we construct a modular
multiplicative unitary for generalised Drinfeld doubles. Finally, we show that the generalised quantum
codoubles are dual to them.

4.6.1 Multiplicative unitary
Starting from a modular multiplicative unitary one can always construct a manageable one (see [38])
giving rise to the same quantum group. Therefore, without loss of generality we assume that (π, π̂) and
(η, η̂) are G- and H-Heisenberg pairs, coming from manageable multiplicative unitaries on the Hilbert
spaces H and K, respectively. Let (α, β) be the faithful χ- Heisenberg pair defined in Lemma 4.11, on
L = H⊗K. Then (ᾱ, β̄), as defined in Example 4.7, is the associated faithful χ-anti-Heisenberg pair acting
on L. Let ∆̂R : B → B ⊗ Â be the right quantum group homomorphism associated to the bicharacter χ̂.
We define faithful representations of A, B, Â, B̂ on HD := L ⊗K ⊗H as:

ρ(a) :=
(
(ᾱ⊗ π)∆A(a)

)
13

in B(HD) for all a ∈ A,

θ(b) := (β̄ ⊗ ((η ⊗ π̂)∆̂R))∆B(b) in B(HD) for all b ∈ B,

ξ(â) := 1L ⊗ 1K ⊗ π̂(â) in B(HD) for all â ∈ Â,

ζ(b̂) := 1L ⊗ η̂(b̂)⊗ 1H in B(HD) for all b̂ ∈ B̂,

(4.20)

respectively.

Proposition 4.44. The unitary WD ∈ U(HD ⊗ HD) defined by WD := ŴB
θζŴA

ρξ ∈ U(HD ⊗ HD) is a
modular multiplicative unitary.

The proof depends on commutation relations of the representations defined in (4.20).

Lemma 4.45. Consider the faithful representations on HD defined in (4.20). Then

1. (ρ, ξ) is a G-Heisenberg pair;
2. (ρ, θ) is a χ-Drinfeld pair;
3. θ and ζ commute in the following way:

ŴB
θ3ŴB

1ζ = ŴB
1ζ · χξ3 · ŴB

13 · χ∗ξ3 · ŴB
θ3 in U(B ⊗K(HD)⊗ B̂); (4.21)

4. θ and ξ commute in the following way:

ŴB
θ3ŴA

1ξ = χξ3 · ŴA
1ξ · χ∗ξ3 · ŴB

θ3 in U(A⊗K(HD)⊗ B̂); (4.22)

5. ρ and ζ commute;
6. ξ and ζ commute.

Proof. Example 2.23 immediately yields (1). Lemma 4.11 and Proposition 4.14 imply (2).
Using (3.15) we express ∆̂R in terms of χ̂ in the following way:

(idB̂ ⊗ ∆̂R)WB = WB
12χ̂13 in U(B̂ ⊗B ⊗ Â).

Applying σ23σ12 on both sides of the last expression and taking adjoints yields:

(∆̂R ⊗ idB̂)ŴB = χ23ŴB
13 in U(B ⊗ Â⊗ B̂).
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The character condition (2.9) for ŴB gives:

ŴB
θ2 = (β̄ ⊗ ((η ⊗ π̂)∆̂R)⊗ idB̂)

(
ŴB

23ŴB
13
)

= χπ̂4 · ŴB
η4ŴB

β̄4 in U(K(L ⊗K ⊗H)⊗ B̂). (4.23)

Let us compute:

ŴB
θ3ŴB

1ζ = χπ̂5 · ŴB
η5ŴB

β̄5Ŵ
B
1η̂ = χπ̂5 · ŴB

η5ŴB
1η̂ŴB

β̄5 = χπ̂5 · ŴB
1η̂ŴB

15ŴB
η5ŴB

β̄5.

The first step uses (4.23), the second equality uses that ŴB
β̄5 and ŴB

1η̂ commute and the third equality uses
that (η, η̂) is an H-Heisenberg pair. Hence (4.21) follows from (4.20) shifting leg numbers.

Similarly, (4.23) with the shifting of leg numbers gives (4.22):

ŴB
θ3ŴA

1ξ = χπ̂5 · ŴB
η5ŴB

β̄5Ŵ
A
1π̂ = χπ̂5 · ŴA

1π̂ŴB
η5ŴB

β̄5 = χξ3 · ŴA
1ξ · χ∗ξ3 · ŴB

θ3.

Finally, (5) and (6) follow from (4.20).

Notation 4.46. We write πi when the representation π is acting on the ith leg.

Proof of Proposition 4.44. Using (4.8) for (ρ, θ) involving ŴA and ŴB we obtain:

ŴA
ρ2ŴB

θ3χ23 = χ23ŴB
θ3ŴA

ρ2 in U(K(HD)⊗ Â⊗ B̂). (4.24)

Equation (4.24) and (4.22) give:

ŴA
ρ1ξ2Ŵ

B
θ13ŴB

θ23 = χξ23 · ŴB
θ13 · ŴA

ρ1ξ2 · χ
∗
ξ23 · ŴB

θ23 = χξ23 · ŴB
θ13 · χ∗ξ23 · ŴB

θ23 · ŴA
ρ1ξ2 . (4.25)

The following computation takes place in U(K(HD ⊗HD)⊗ B̂ ⊗ Â):

ŴB
θ23ŴA

ρ24ŴB
θ1ζ2Ŵ

A
ρ1ξ2 (ŴA

ρ24)∗(ŴB
θ23)∗ = ŴB

θ23ŴB
θ1ζ2Ŵ

A
ρ24ŴA

ρ1ξ2 (ŴA)∗ρ24(ŴB)∗θ23

= ŴB
θ1ζ2 · χξ23 · ŴB

θ13 · χ∗ξ23 · ŴB
θ23ŴA

ρ1ξ2Ŵ
A
ρ14(ŴB)∗θ23

= ŴB
ρ1ζ2Ŵ

A
ρ1ξ2Ŵ

B
θ13ŴB

θ23(ŴB)∗θ23ŴA
ρ14

= ŴB
θ1ζ2Ŵ

A
ρ1ξ2Ŵ

B
θ13ŴA

ρ14.

The first equality uses the commutation between ρ and ζ, the second equality uses (4.21) and statement (1)
in Lemma 4.45, the third equality uses (4.25) and that ŴB

θ23, ŴA
ρ14 commute, the last equality is trivial.

Applying ξ and ζ on the third and fourth leg on both sides of the last expression gives the pentagon
equation (2.4) for WD ∈ U(HD ⊗HD).

Since ŴB
θ2 ∈ U(K(HD) ⊗ B̂) is a corepresentation of Ĥ on HD, by [49, Theorem 1.7], it is adapted

to ŴB = (η ⊗ η̂)ŴB . Then ˜̂WB
θ2

∗
= (ŴB

θ2)T⊗η̂◦R
B̂ ∈ U(HD ⊗ K) satisfies the following manageability

condition: (
x⊗ k | ŴB

θη̂ | z ⊗ k′
)

=
(
z ⊗QB(k) | ˜̂WB

θ2 | x⊗Q
−1
B (k′)

)
(4.26)

for all x, z ∈ HD, k ∈ Dom(QB) and k′ ∈ Dom(Q−1
B ).

Similarly, ˜̂WA
ρ2

∗
= (ŴA

ρ2)T⊗π̂◦R
Â ∈ U(Hτ ⊗ H) satisfies the following manageability condition for

ŴA
ρ2 ∈ U(K(HD)⊗ Â): (

x⊗ h | ŴA
ρπ̂ | z ⊗ h′

)
=
(
z ⊗QA(h) | ˜̂WA

ρ2 | x⊗Q
−1
A (h′)

)
(4.27)

for all x, z ∈ HD, h ∈ Dom(QA) and h′ ∈ Dom(Q−1
A ).
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Let {ei}i=1,2,··· be an orthonormal basis of HD. Then we get Definition 2.10 (ii) for WD as follows:(
x⊗ k ⊗ h | ŴB

θη̂2Ŵ
A
ρπ̂3 | z ⊗ k

′ ⊗ h′
)

=
(
x⊗ k ⊗ h | ŴB

θη̂2

∑
i

(
|ei)(ei| ⊗ 1B̂ ⊗ 1Â

)
ŴA
ρπ̂3 | z ⊗ k

′ ⊗ h′
)

=
∑
i

(
x⊗ k | ŴB

θη̂2 | ei ⊗ k
′
)
·
(
ei ⊗ h | ŴA

ρπ̂3 | z ⊗ h
′
)

=
∑
i

(
z ⊗QA(h) | ˜̂WA

ρ3 | ei ⊗Q
−1
A (h′)

)
·
(
ei ⊗QB(k) | ˜̂WB

θ2 | x⊗Q
−1
B (k′)

)
=
(
z ⊗QB(k)⊗QA(h) | ˜̂WA

ρ3
˜̂WB
θ2 | x⊗Q

−1
B (k′)⊗Q−1

A (h′)
)
.

Recall the definition of (α, β) from Lemma 4.11 and identify HD = H⊗K⊗K ⊗H.
Equation (4.23) gives ŴB

θζ = χ47ŴB
37(ŴB)T⊗η̂◦R

B̂
27 ∈ U(HD ⊗ HD). Similarly, we show ŴA

ρξ =
ŴA

48(ŴA
18)T⊗R

Â χ̂
T⊗R

Â
28 ∈ U(HD ⊗HD). Then

WD = χ47ŴB
37
˜̂WB

∗

27ŴA
48
˜̂WA

∗

18
˜̂χ∗28 in U(H⊗K⊗K ⊗H⊗H⊗K⊗K ⊗H). (4.28)

Define Q̂τ := (Q−1
A )T⊗ (Q−1

B )T⊗QB⊗QA and Qτ := 1H⊗1K⊗QB⊗QA. Clearly, Q̂τ and Qτ are positive,
self-adjoint operators acting on HD with trivial kernel.

The commutation relations Definition 2.10 (i), Theorem 2.13(6)(ii), and Lemma 3.13, (3.12) and (3.13)
yield WD(Q̂τ ⊗Qτ )(WD)∗ = Q̂τ ⊗Qτ .

4.6.2 Generalised Drinfeld doubles
We first describe the quantum group associated to the dual of the multiplicative unitary WD ∈ U(HD⊗HD).
The definition of the faithful representations ξ and ζ in (4.20) allows us to view WD as a unitary multiplier
of K(HD) ⊗ B̂ ⊗ Â. According to the general theory of modular multiplicative unitaries [38], the dual
of WD is again modular. This gives rise to a C∗-algebra Dχ defined by:

Dχ := {(idHD ⊗ ω)WD : ω ∈ (B̂ ⊗ Â)′}CLS ⊂ B(HD),

where CLS abbreviates closed linear spans.
The set of continuous linear functionals of the form η ⊗ ψ for η ∈ B̂′, ψ ∈ Â′ is linearly weak∗ dense

in (B̂ ⊗ Â)′. Thus Dχ = θ(B) · ρ(A) and WD ∈ U(Dχ ⊗ B̂ ⊗ Â). The embeddings ρ of A and θ of B into
Dχ satisfy the χ-Drinfeld commutation relation.

Next we establish the well-definedness of the comultiplication ∆Dχ ∈ Mor(Dχ,Dχ ⊗ Dχ) on Dχ by
∆Dχ

(
θ(b) · ρ(a)

)
:=
(
(θ ⊗ θ)∆B(b) · (ρ⊗ ρ)∆A(a)

)
for a ∈ Â, b ∈ B̂.

Definition 4.47. The quantum group D
χ(G, Ĥ) := (Dχ,∆Dχ) is called the χ-Drinfeld double.

We must show that ∆Dχ is implemented by the dual of WD. The character condition (2.9) for ŴA and
ŴB gives:(

∆Dχ ⊗ idB̂⊗Â
)
ŴB
ρ2ŴA

θ3 =
((

(θ ⊗ θ)∆B ⊗ idB̂
)
ŴB

)
123

((
(ρ⊗ ρ)∆A ⊗ idÂ

)
ŴA
)

124

= ŴB
θ23ŴA

ρ24ŴB
θ13ŴA

ρ14.

Equivalently, (∆Dχ ⊗ idB̂⊗Â)WD = WD234WD134 in U(Dχ ⊗Dχ ⊗ B̂ ⊗ Â). Slicing the last two legs of both
sides of the last expression by ω ∈ (B̂ ⊗ Â)′ and then using the pentagon equation for WD gives:

∆Dχ(θ(b) · ρ(a)) = (ŴD)(θ(b)ρ(a)⊗ 1Dχ)(ŴD)∗,

for a ∈ A and b ∈ B. Thus ∆Dχ is implemented by the dual multiplicative unitary ŴD ∈ U(HD ⊗HD).
Finally, ρ ∈ Mor(Â,Dχ) and θ ∈ Mor(B̂,Dχ) are Hopf ∗-homomorphisms. Therefore, ŴA

ρ2 ∈ U(Dχ⊗ Â)
and ŴB

θ2 ∈ U(Dχ ⊗ B̂) are bicharacters.
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4.6.3 Generalised quantum codoubles
If Ĥ = G, the quantum codouble was described in [34] as dual to the Drinfeld double. In this section, we
construct the generalised quantum codouble in the same spirit.

Define σχ : B̂ ⊗ Â → Â ⊗ B̂, by σχ(b̂ ⊗ â) := χ(â ⊗ b̂)χ∗ for â ∈ Â, b̂ ∈ B̂. This is called flip twisted
by χ. Next we define D̂χ := B̂ ⊗ Â and ∆

D̂χ
∈ Mor(D̂χ, D̂χ ⊗ D̂χ) by

∆
D̂χ

:= σ
χ
23 ◦

(
∆̂B ⊗ ∆̂A

)
. (4.29)

Definition 4.48. The pair Dχ(G, Ĥ)̂ := (D̂χ,∆
D̂χ

) is called χ-quantum codouble.

Proposition 4.49. The comultiplication ∆
D̂χ

is implemented by WD ∈ U(Dχ ⊗ B̂ ⊗ Â). Moreover,
(D̂χ,∆

D̂χ
) is a bisimplifiable Hopf-C∗-algebra.

Proof. Realise WD as a unitary element in the multiplier algebra K(HD)⊗ B̂ ⊗ Â. Then we compute:

ŴB
θ4ŴA

ρ5ŴA
1ξŴB

2ζ(ŴA
ρ5)∗(ŴB

θ4)∗ = ŴB
θ4ŴA

1ξŴA
15ŴA

ρ5ŴB
2ζ(ŴA

ρ5)∗(ŴB
θ4)∗

= ŴB
θ4ŴA

1ξŴA
15ŴB

2ζ(ŴB
θ4)∗

= ŴB
θ4ŴA

1ξŴA
15(ŴB

θ4)∗ · χξ4 · ŴB
2ζŴB

24 · χ∗ξ4
= ŴB

θ4ŴA
1ξ(ŴB

θ4)∗ŴA
15 · χξ4 · ŴB

2ζŴB
24 · χ∗ξ4

= χξ4 · ŴA
1ξ · χ∗ξ4 · ŴA

15 · χξ4 · ŴB
2ζŴB

24 · χ∗ξ4
= χξ4 · ŴA

1ξŴA
15ŴB

2ζŴB
24 · χ∗ξ4.

The first equality uses Lemma 4.45(1), the second equality uses that ρ and ζ commute, the third equality
uses (4.21) and that ξ and ζ commute, the fourth equality follows because ŴA

15 and ŴB
θ4 commute, the

fifth equality uses (4.22), and the last equality follows because ŴA
15 and χξ4 commute.

Taking slices on the first two legs by ω⊗ω′ for ω ∈ A′, ω′ ∈ B′ on both sides of the last expression gives

(WD)
(
ξ(â)ζ(b̂)⊗ 1B̂⊗Â

)
(WD)∗ = χξ4

(
∆̂B(b̂)ζ2∆̂A(â)ξ3

)
χ∗
ξ4.

Since the representations ξ and ζ are faithful, we conclude that ∆̂
D̂χ

is implemented by WD. The pentagon
equation for WD shows that ∆

D̂χ
is coassociative.

We know that ∆̂A(A) · (1Â ⊗ Â) = Â⊗ Â. Therefore,

∆
D̂χ

(D̂χ) · (1
D̂χ
⊗ D̂χ) = χ23

(
∆̂B(B̂)13∆̂A(Â)24

)
χ∗23 · (1B̂⊗Â ⊗ B̂ ⊗ Â)

= χ23

(
∆̂B(B̂)13

(
∆̂A(Â) · (1Â ⊗ Â)

)
24

)
χ∗23(1B̂⊗Â ⊗ B̂ ⊗ 1Â)

= χ23
(
∆̂B(B̂)13(Â⊗ Â)24

)
χ∗23(1B̂⊗Â ⊗ B̂ ⊗ 1Â).

Now the character condition on the second leg of χ is equivalent to

ŴB
η′3χ1η̂′ = χ1η̂′χ13ŴB

η′3 in U(Â⊗K(Hη′)⊗ B̂),

where (η, η̂′) is an H-Heisenberg pair acting on Hη′ . We also know ∆̂B(B) · (1B̂ ⊗ B̂) = B̂ ⊗ B̂ and
(η̂′(B̂)⊗ Â)χ̂η̂′2 = η̂′(B̂)⊗ Â. Hence

∆
D̂χ

(B̂ ⊗ Â)η̂′234 · (1Hη′ ⊗ 1Â ⊗ B̂ ⊗ Â) = χ23ŴB
η′3(η̂′(B̂)⊗ Â⊗ 1B̂ ⊗ Â)(χ23ŴB

η′3)∗(1Hη′ ⊗ 1Â ⊗ B̂ ⊗ 1Â).

Rewriting (4.4) for χ ∈ U(Â⊗ B̂) we get

χ̂
η̂′2ŴB

η′3 = χ23ŴB
η′3χ̂η̂′2 in U(K(Hη′)⊗ Â⊗ B̂). (4.30)
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Therefore, using (4.30), we obtain

∆
D̂χ

(B̂ ⊗ Â)η̂′234 · (1Hη′ ⊗ 1Â ⊗ B̂ ⊗ Â)

= χ23ŴB
η3(η̂(B̂)⊗ Â⊗ 1B̂ ⊗ Â)χ̂η̂2(ŴB

η3)∗χ̂∗η̂2(1Hη ⊗ 1Â ⊗ B̂ ⊗ 1Â)

= χ23ŴB
η3(η̂(B̂)⊗ Â⊗ 1B̂ ⊗ Â)(1Hη ⊗ 1Â ⊗ B̂ ⊗ 1Â)(ŴB

η3)∗χ̂∗η̂2

= χ23ŴB
η3(η̂(B̂)⊗ Â⊗ B̂ ⊗ Â)(ŴB

η3)∗χ̂∗η̂2 = η̂(B̂)⊗ Â⊗ B̂ ⊗ Â.

Since η̂ is faithful, we get ∆
D̂χ

(D̂χ) · (1
D̂χ
⊗ D̂χ) = D̂χ ⊗ D̂χ. A similar computation yields ∆

D̂χ
(D̂χ) ·

(D̂χ ⊗ 1
D̂χ

) = D̂χ ⊗ D̂χ; hence (D̂χ,∆
D̂χ

) is bisimplifiable.

The proposition below shows that Dχ(G, Ĥ)̂ is generated by WD ∈ U(HD ⊗HD).

Proposition 4.50. The space of slices {(ω ⊗ idHD )WD : ω ∈ B(HD)∗} is linearly dense in 1H⊗K ⊗ D̂
χ.

Proof. By Proposition 3.10 and manageability of χ, discussed in Section 3.1.3, we can write χ̃∗ = χRÂT⊗idK

and ˜̂χ∗ = χ̂RB̂T⊗idH .
Throughout the proof we identify A, Â, B, B̂ with their images under the faithful representations π, π̂,

η, η̂ to avoid notational complications.
Then we rewrite (4.28) as

WD = χ47ŴB
37(ŴB)RBT⊗idK

27 ŴA
48(ŴA)RAT⊗idH

18 χ̂RB̂T⊗idH
28 in U(H⊗K⊗K ⊗H⊗H⊗K⊗K ⊗H).

Let L = {(ω⊗idHD )WD : ω ∈ B(HD)∗}. Using the leg numbering notation for functionals and replacing ω ∈
B(HD)∗ by µ⊗ ε⊗ ν ⊗ υ we have

L =
{
µ1ε2ν3υ4

(
χ47ŴB

37(ŴB)RBT⊗idK
27 ŴA

48(ŴA)RAT⊗idH
18 χ̂RB̂T⊗idH

28

)
: µ ∈ B(H)∗, ε ∈ B(K)∗
ν ∈ B(K)∗, υ ∈ B(H)∗

}CLS

,

where CLS abbreviates closed linear spans. Replacing (ν ⊗ idK)ŴB by b̂ ∈ B̂ we get:

L =
{
µ1ε2υ3

(
χ36b̂6(ŴB)RBT⊗idK

26 ŴA
37(ŴA)RAT⊗idH

17 χ̂RB̂T⊗idH
27

)
: µ ∈ B(H)∗, ε ∈ B(K)∗

b̂ ∈ B̂, υ ∈ B(H)∗

}CLS

.

Replacing ε ∈ B(H)∗ by bRBT · ε, where b ∈ B, this becomes:{
µ1ε2υ3

(
χ36
(
(b⊗ b̂)ŴB

)RBT⊗idK
26

ŴA
37(ŴA)RAT⊗idH

17 χ̂RB̂T⊗idH
27

)
: µ ∈ B(H)∗, ε ∈ B(K)∗
b ∈ B, b̂ ∈ B̂, υ ∈ B(H)∗

}CLS

.

Since ŴB ∈ U(B ⊗ B̂), we replace (B ⊗ B̂)ŴB by B ⊗ B̂:

L =
{
µ1ε2υ3

(
χ36(b⊗ b̂)RBT⊗idK

26 ŴA
37(ŴA)RAT⊗idH

17 χ̂RB̂T⊗idH
27

)
: µ ∈ B(H)∗, ε ∈ B(K)∗
b ∈ B, b̂ ∈ B̂, υ ∈ B(H)∗

}CLS

.

Replacing bRBT · ε by ε, where b ∈ B and ε ∈ B(H)∗, we get:

L =
{
µ1ε2υ3

(
χ36b̂6ŴA

37(ŴA)RAT⊗idH
17 χ̂RB̂T⊗idH

27

)
: µ ∈ B(H)∗, ε ∈ B(K)∗

b̂ ∈ B̂, υ ∈ B(H)∗

}CLS

.

Next we replace (µ⊗ idH)(ŴA)RAT⊗idH by â ∈ Â, and ε ∈ B(H)∗ by b̂′RB̂T · ε, where b̂′ ∈ B̂; we get

L =
{
ε1υ2

(
χ25b̂5ŴA

26
(
(b̂′ ⊗ â)χ̂

)R
B̂

T⊗idH
16

)
: â ∈ Â, ε ∈ B(K)∗
b̂, b̂′ ∈ B̂, υ ∈ B(H)∗

}CLS

.
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Since χ ∈ U(Â⊗ B̂), we may replace (B̂ ⊗ Â)χ̂ by B̂ ⊗ Â and (B̂ ⊗ Â)RB̂T⊗idH by B̂T ⊗ Â:

L =
{
ε1υ2

(
χ25b̂5ŴA

26b̂
′T
1 â6

)
: â ∈ Â, ε ∈ B(K)∗
b̂, b̂′ ∈ B̂, υ ∈ B(H)∗

}CLS

=
{
υ1

(
χ14b̂4ŴA

15â5

)
: â ∈ Â,
b̂ ∈ B̂, υ ∈ B(H)∗

}CLS

.

Replacing υ ∈ B(H)∗ by υ · a, where a ∈ A, we get:

L =
{
υ1

(
χ14b̂4

(
ŴA(a⊗ â)

)
15

)
: â ∈ Â, a ∈ A
b̂ ∈ B̂, υ ∈ B(H)∗

}CLS

.

Since ŴA ∈ U(A⊗ Â) we may replace ŴA(A⊗ Â) by A⊗ Â:

L =
{
υ1

(
χ14b̂4a1â5

)
: â ∈ Â, a ∈ A
b̂ ∈ B̂, υ ∈ B(H)∗

}CLS

.

Next we replace υ1 · a by υ and then replace υ by υ · â′, where â′ ∈ Â; we get

L =
{
υ1

(
χ14b̂4â5

)
â ∈ Â, b̂ ∈ B̂,
υ ∈ B(H)∗

}CLS

=
{
υ1

(
χ
(
â′ ⊗ b̂

)
14
â5

)
â′, â ∈ Â, b̂ ∈ B̂,
υ ∈ B(H)∗

}CLS

.

Finally, replacing χ(Â⊗ B̂) by Â⊗ B̂ gives

L =
{
υ1

(
â′1b̂4â5

)
â ∈ Â, b̂ ∈ B̂,
υ ∈ B(H)∗

}CLS

=
{

1H⊗K ⊗ b̂⊗ â : â ∈ Â,
b̂ ∈ B̂

}CLS

= 1H⊗K ⊗ B̂ ⊗ Â.

Properties of the generalised quantum codouble

The general theory of double crossed products [4] says that Dχ(G, Ĥ)̂ contains Ĝ and Ĥ as closed quantum
subgroups in the sense of Vaes [41]. Closed quantum subgroups, in the sense of Woronowicz, have been
introduced recently in [9, Definition 3.2], using the notion of a C∗-algebra generated by a quantum family
of multipliers.

Lemma 4.51. Ĝ and Ĥ are closed quantum subgroups of Dχ(G, Ĥ)̂ in the sense of Woronowicz.

Proof. The bicharacter ŴA
ρ2 ∈ U(Dχ⊗ Â) corresponds to a quantum group homomorphism from D

χ(G, Ĥ)̂
to Ĝ, and its second leg generates Ĝ. Hence Ĝ is a closed quantum subgroup of Dχ(G, Ĥ)̂ in the sense of
Woronowicz. Also, ŴB

θ2 ∈ U(Dχ ⊗ B̂) yields a similar conclusion for Ĥ.

Lemma 4.51 allows us to decompose every coaction and corepresentation of Dχ(G, Ĥ)̂ into a pair of
coactions and corepresentations of Ĝ and Ĥ with a certain compatibility criterion between them. This
becomes more interesting when Ĥ = G, which we shall explore in Section 5.3.

Definition 4.52. A C∗-algebra along with the coactions γ : C → C ⊗ Â and δ : C → C ⊗ B̂ of Ĝ and Ĥ is
called (right, right) χ-Yetter-Drinfeld if the following diagram commutes:

C C ⊗ B̂ C ⊗ Â⊗ B̂

C ⊗ Â C ⊗ B̂ ⊗ Â C ⊗ Â⊗ B̂

δ γ ⊗ idB̂

idC ⊗Adχ(·)γ
δ ⊗ idÂ idC ⊗ σ

(4.31)

Consider Â = C0(G) and B̂ = C0(H) for locally compact groups G and H. Then any G-C∗-algebra with
trivial H-action or any H-C∗-algebra with trivial G action makes it Yetter-Drinfeld in this generalised sense.
In particular, if we take Ĥ = G and χ = WA then WA-Yetter-Drinfeld-C∗-algebras are same as G-Yetter-
Drinfeld C∗-algebras defined by Nest and Voigt in [30]. Next we show that D̂χ is a χ-Yetter-Drinfeld
algebra using the following lemma.
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Lemma 4.53. The corepresentations ŴA
ρ2 ∈ U(K(HD)⊗ Â) and ŴB

θ2 ∈ U(K(HD)⊗ B̂) of Ĝ and Ĥ on HD
commute in the following way:

σ
χ
23
(
ŴB
θ2ŴA

ρ3
)

= ŴA
ρ2ŴB

θ3 in U(K(HD)⊗ Â⊗ B̂). (4.32)

Proof. This is essentially contained in Lemma 4.45 (2):

σ
χ
23
(
ŴB
θ2ŴA

ρ3
)

= σ12σ23
(
χ12(WB)∗1θ(WA)∗2ρχ∗12

)
= σ12σ23

(
(WA)∗2ρ(WB)∗1θ

)
= ŴA

ρ2ŴB
θ3.

Example 4.54. Define ∆R : D̂χ → D̂χ ⊗ Â as ∆R := (idB̂ ⊗ ∆̂A). Taking Equation (3.15) and the simple
computation (idDχ ⊗ ∆R)

(
ŴB
θ2ŴA

ρ3
)

= ŴB
θ2ŴA

ρ3ŴA
ρ4 into account, we conclude that ∆R is the right

quantum group homomorphism corresponding to the bicharacter ŴA
ρ2 ∈ U(Dχ ⊗ Â). Similarly, by virtue

of Lemma 4.53, ∆′R : D̂χ → D̂χ ⊗ B̂ defined by ∆′R := (idB̂ ⊗ σ
χ)(∆̂B ⊗ idÂ) is the right quantum group

homomorphism associated to the bicharacter ŴB
θ2 ∈ U(Dχ ⊗ B̂).

Using Lemma 4.53 we compute:

σ
χ
34

((
idDχ ⊗ ((∆′R ⊗ idÂ)∆R)

)
ŴB
θ2ŴA

ρ3

)
= ŴB

θ2σ
χ
34
(
ŴA
ρ3ŴB

θ4
)
ŴA
ρ5

= ŴB
θ2ŴB

θ3ŴA
ρ4ŴA

ρ5

=
(
idDχ ⊗ ((∆R ⊗ idÂ)∆′R)

)
ŴB
θ2ŴA

ρ3.

Taking slices on the first leg by functionals on Dχ shows that D̂χ is a χ-Yetter-Drinfeld C∗-algebra.
The next proposition generalises Proposition 3.2 in [30].

Proposition 4.55. Every D
χ(G, Ĥ)̂ -C∗-algebra is also χ-Yetter-Drinfeld C∗-algebra, and vice versa.

Proof. Let C be a D
χ(G, Ĥ)̂ -C∗-algebra. Lemma 2.34 shows that C is contained inM(C′⊗D̂χ) for some

C∗-algebra C′ with coaction only on D̂χ. Now D̂χ is a χ-Yetter-Drinfeld-C∗-algebra. By Lemma 2.34 C is
also a χ-Yetter-Drinfeld-C∗-algebra.

Conversely, let γ : C → C ⊗ Â and δ : C → C ⊗ B̂ satisfy (4.31). Define a nondegenerate, injective
∗-homomorphism γ̃ : C → C ⊗ D̂χ by γ̃ := (δ ⊗ idÂ)γ.

The Podleś conditions for γ̃ gets induced from those for γ and δ in the following way: γ̃(C) · (1C⊗D̂χ) =(
(δ ⊗ idÂ)(γ(C) · (1C ⊗ Â)

)
· (1C ⊗ B̂ ⊗ 1Â) =

(
δ(C) · (1C ⊗ B̂)

)
⊗ Â = C ⊗ D̂χ.

The following computation yields (2.22) for γ̃:

(γ̃ ⊗ idB̂⊗Â)γ̃ = (δ ⊗ idÂ⊗B̂⊗Â)((γ ⊗ idB̂)δ ⊗ idÂ)γ = σ
χ
34
(
(δ ⊗ idB̂)δ ⊗ idÂ⊗Â)(γ ⊗ idÂ)γ

)
= σ

χ
34
(
(idC ⊗ ∆̂B ⊗ ∆̂A)(δ ⊗ idÂ)γ

)
= (idC ⊗ ∆̂

D̂χ
)γ̃.



Chapter 5

Braidings for quasitriangular
C∗-quantum groups

The twisted tensor product of C∗-algebras, in general, does not carry any nontrivial symmetry. Therefore, for
a general bicharacter χ, associativity of the functor �χ makes no sense. Motivated by Hopf algebra theory
(see [11, Section 10]), we formulate the notion of unitary R-matrix for C∗-quantum groups in Section 5.1.
Thereafter, in Section 5.2, we define quasitriangular quantum groups and show that their corepresentation
categories are braided monoidal. Next we use this to show that the coaction categories of quasitriangular
quantum groups are monoidal. In [2, Section 8], Baaj and Skandalis have constructed R-matrices on the
quantum codoubles of regular quantum groups. We show that the quantum codoubles of quantum groups
(not necessarily regular) are quasitriangular, in Section 5.3. Crossed products for a quantum codouble get
simpler in terms of Yetter-Drinfeld C∗-algebras as shown by Nest and Voigt in [30]. We show that their
construction implicitly uses the quasitriangularity of the quantum codouble. In Section 5.3.3, we introduce
the notion of weak regularity for a quantum group G = (A,∆A) requiring the natural inner coaction
of Ĝ on A, implemented by the reduced bicharacter, to satisfy the Podleś condition. Then A becomes
a G-Yetter-Drinfeld C∗-algebra. Finally, we discuss associativity of crossed products in this context.

5.1 R-matrices
Let G = (A,∆A) be a quantum group and let W ∈ U(Â⊗A) be its reduced bicharacter.

Definition 5.1. A bicharacter R ∈ U(A⊗A) is called R-matrix if it satisfies:

R(σ ◦∆A(a))R∗ = ∆A(a) for all a ∈ A. (5.1)

Lemma 5.2. The dual R̂ := σ(R∗) ∈ U(A⊗ A) of a given bicharacter R ∈ U(A⊗ A) is an R-matrix if
and only if R is an R-matrix.

Remark 5.3. Condition (5.1) is opposite to the one which is standard for the Hopf algebraists: R(∆(a))R∗ =
σ ◦∆(a). This is because the bicharacter conditions in Definition 3.1 and the conditions used for Hopf
algebras differ by taking coopposite comultiplications. We can match Definition 5.1 of an R-matrix with
the standard one used by Hopf algebraists if we replace ∆ by ∆cop := σ ◦∆.

5.1.1 Universal lift of R-matrices
In order to simplify proofs later we shall lift the universal R-matrix R ∈ U(A⊗A) to a unitary element of
the multiplier algebra of Au ⊗Au.

59
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Proposition 5.4. There is a unique Ru ∈ U(Au ⊗Au) such that

(Λ⊗ Λ)Ru = R in U(A⊗A), (5.2)
(∆u

A ⊗ idAu )Ru = Ru
23Ru

13 in U(Au ⊗Au ⊗Au), (5.3)
(idAu ⊗∆u

A)Ru = Ru
12Ru

13 in U(Au ⊗Au ⊗Au). (5.4)

Moreover, Ru satisfies

Ru(σ ◦∆u
A(au))(Ru)∗ = ∆u

A(au) for all au ∈ Au. (5.5)

Proof. Proposition 3.16 proves that there is a unique Ru ∈ U(Au ⊗Au) satisfying (5.2)–(5.4).
The nontrivial part is to show that Ru satisfies (5.5). By (2.42) {(ω ⊗ idAu )V | ω ∈ Â′} is dense in Au,

and V ∈ U(Â⊗Au) is a character in the second leg by (2.41). Therefore, (5.5) is equivalent to:

Ru
23V13V12(Ru

23)∗ = V12V13 in U(Â⊗Au ⊗Au). (5.6)

We shall prove this in two steps, using similar technique as in the proof of Theorem 4.23. Consider the
following auxiliary bicharacter R̄ = (Λ⊗ idCu )Ru as a unitary inM(A⊗Au).

The following computation shows that

X := W∗12R̄23V13W12 in U(Â⊗A⊗Au)

is a character in the third leg:

(idÂ ⊗ idA ⊗∆u
A)W∗12R̄23V13W12 = W∗12R̄23R̄24V13V14W12 = (W∗12R̄23V13W12)(W∗12R̄24V14W12)

= X123X124.

The first step follows from (2.41), the second step uses commutation of R̄24 and V13, and the last step is
trivial.

A similar routine computation, using (2.41), shows that

Y := V13R̄23 in U(Â⊗A⊗Au)

is a character in the third leg, that is, (idÂ ⊗ idA ⊗∆u
A)Y = Y123Y124.

Using (2.8) we rewrite (5.1) as

R23W13W12 = W12W13R23 in UM(Â⊗A⊗A). (5.7)

Thus (idÂ ⊗ idA ⊗ Λ)X = (idÂ ⊗ idA ⊗ Λ)Y . Lemma 2.41 gives X = Y or, equivalently,

W∗12R̄23V13W12 = V13R̄23 in U(Â⊗A⊗Au). (5.8)

Similarly, using (2.41), we can show that the unitaries X̃ := V∗13(Ru
23)∗V12V13 and Ỹ := V12(Ru

23)∗ in
U(Â⊗Au ⊗Au) are characters in the second leg.

Equation (5.8) shows (idĈ ⊗Λ⊗ idC)X̃ = V∗13R̄∗23W12V13 = W12R̄∗23 = (idĈ ⊗Λ⊗ idC)Ỹ . Lemma 2.41
gives X̃ = Ỹ , which is equivalent to (5.6).

Lemma 5.5. The unitary Ru ∈ U(Au ⊗Au) in Proposition 5.4 satisfies

(eu ⊗ idAu )Ru = (idAu ⊗ eu)Ru = 1Au , (5.9)
Ru

12Ru
13Ru

23 = Ru
23Ru

13Ru
12 in U(Au ⊗Au ⊗Au). (5.10)

Proof. We apply idAu ⊗ eu ⊗ idAu to (5.3) and (5.4) and use (2.45) for eu to get:

Ru = ((eu ⊗ idCu )Ru)23Ru = ((idCu ⊗ eu)Ru)12Ru.

Since R is unitary, this yields both (eu ⊗ idCu )Ru = 1Au and (idCu ⊗ eu)Ru = 1Au .
The following computation yields (5.10):

Ru
12Ru

13Ru
23 = ((idCu ⊗∆u)Ru)Ru

23 = Ru
23((idCu ⊗ σ ◦∆u)Ru) = Ru

23Ru
13Ru

12,

where the first and third step use (5.4) and the second step uses (5.5).
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5.2 Quasitriangular C∗-quantum groups
In a purely algebraic framework it is customary to let Hopf algebras act on vector spaces. The representation
category of a quasitriangular Hopf algebra ([11], [12]) is a braided monoidal category. In the C∗-algebraic
framework, we use corepresentations (equivalently, representation of the universal dual). This justifies the
following definition:

Definition 5.6. A C∗-quantum group G = (A,∆A) is quasitriangular when equipped with an R-matrix
R ∈ U(Â⊗ Â).

5.2.1 The corepresentation category
Let us briefly recall the discussion from Sections 3.1 and 3.2 in [39] on the categorical structure of
corepresentations of quantum groups in general.

Let UH1 ∈ U(K(H1)⊗A) and UH2 ∈ U(K(H2)⊗A) be corepresentations of G on the Hilbert spaces H1
and H2. An element t ∈ B(H1,H2) is an inertwiner between UH1 and UH2 if and only if (t⊗ 1A)UH1 =
UH2 (t⊗ 1A). The set of all operators intertwining UH1 and UH2 is denoted by Hom(UH1 ,UH2 ).

Notation 5.7. Corep(G) denotes the category where objects are the corepresentations of G and morphisms
are intertwiners.

Furthermore,
UH1 >UH2 := UH1

13 UH2
23 in U(K(H1 ⊗H2)⊗A). (5.11)

is again a corepresentation of G on H1 ⊗H2.

Definition 5.8 (see [39, 3.3.2]). UH1 >UH2 is the tensor product of the corepresentations UH1 and UH2 .

The following routine computation shows that > is associative:

UH1 >(UH2 >UH3 ) = UH1
14 >(UH2

13 UH2
23 ) = UH1

14 UH2
24 UH2

34 = (UH1
14 UH2

24 )>UH3 = (UH1 >UH2 )>UH3

Thus Corep(G) is a monoidal category.1.
Let Σ(H1,H2) : H1 ⊗H2 → H2 ⊗H1 be the flip operator. As already pointed out in [39], Σ(H1,H2)

12 ∈
Hom((UH1 >UH2 ,UH2 >UH1 ) if and only if G is commutative. Hence Σ(·,·) does not endow Corep(G) with
a braiding in general.

Let UHi ∈ U(K(Hi) ⊗ A) be corepresentation of G on Hi for i = 1, 2. Let Ru ∈ U(Âu ⊗ Âu) be
the universal lift (constructed in Proposition 5.4) of R ∈ U(Â⊗ Â). By the universal property (2.34) of
Ṽ ∈ U(Âu ⊗A), there are unique ϕ̂i ∈ Mor(Âu,K(Hi)) such that (ϕ̂i ⊗ idA)Ṽ = UHi for i = 1, 2. Define

the unitaries
H1 H2

: H1 ⊗H2 → H2 ⊗H1 by

Z(H1,H2) := (ϕ̂1 ⊗ ϕ̂2)(Ru)∗ in U(H1 ⊗H2), (5.12)
H1 H2

:= Z(H2,H1) ◦ ΣH1,H2 in U(H1 ⊗H2,H2 ⊗H1). (5.13)

Proposition 5.9. The unitaries
H1 H2

: H1 ⊗H2 → H2 ⊗H1 are G-equivariant, that is,

H1 H2

12(UH1 >UH2 ) = (UH2 >UH1 )
Hi Hj

12 in U(K(H1 ⊗H2)⊗A). (5.14)

for all UH1 ,UH2 ∈ Corep(G).
They define a braiding on Corep(G), that is, the following hexagons commute for all UHi ∈ Corep(G),

i = 1, 2, 3:
1More precisely, Corep(G) is a monoidal W∗-category. See [15] for the general theory of W∗-category.
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H1 ⊗ (H2 ⊗H3) (H2 ⊗H3)⊗H1

(H1 ⊗H2)⊗H3 H2 ⊗ (H3 ⊗H1)

(H2 ⊗H1)⊗H3 H2 ⊗ (H1 ⊗H3)

H1H2⊗H3

H1 H2

⊗ idH3 idH2 ⊗
H1 H3

(H1 ⊗H2)⊗H3 H3 ⊗ (H1 ⊗H2)

H1 ⊗ (H2 ⊗H3) (H3 ⊗H1)⊗H2

H1 ⊗ (H3 ⊗H2) (H1 ⊗H3)⊗H2

H1⊗H2H3

idH1 ⊗
H2 H3 H1 H3

⊗ idH2

the unlabelled arrows are associators.

Proof. By the universal property (2.34) and the character condition (2.35) of Ṽ , the corepresentations
UH1 >UH2 are characterised by the representations (φ̂1 ⊗ φ̂2) ◦ σ ◦ ∆̂u

A of Âu on H1 ⊗H2:

((φ̂1 ⊗ φ̂2) ◦ σ ◦ ∆̂u
A ⊗ idA)Ṽ = UH1 >UH2 . (5.15)

The following computation yields (5.14) :

H1 H2

12(UH1 >UH2 ) = (φ̂2 ⊗ φ̂1 ⊗ idA)
(
(Ru

12)∗(∆̂u
A ⊗ idA)Ṽ

)
Σ(H1,H2)

12

=
(
((φ̂2 ⊗ φ̂1) ◦ σ ◦ ∆̂u

A)⊗ idA)Ṽ
)
Z(H2,H1)

12 Σ(H1,H2) = (UH2 >UH1 )
H1 H2

12.

The first equality uses (5.15) and (5.13), the second equality follows from (5.5) and (5.12), and the last
equality uses (5.15) and (5.13).

By (5.13) and (5.15),

H1H2⊗H3

:= Z(H2⊗H3,H1)Σ(H1,H2⊗H3) =
(

(φ̂2 ⊗ φ̂3 ⊗ φ̂1)(σ ◦ ∆̂u
A ⊗ idÂu )(Ru)∗

)
◦Σ(H1,H2⊗H3). (5.16)

Now we check the first braiding diagram:(
(φ̂2 ⊗ φ̂3 ⊗ φ̂1)(σ ◦ ∆̂u

A ⊗ idÂu )(Ru)∗
)
◦ Σ(H1,H2⊗H3)

=
(

(φ̂2 ⊗ φ̂3 ⊗ φ̂1)
(
(Ru)∗23(Ru)∗13

))
Σ(H1,H3)

23 Σ(H1,H2)
12

= Z(H3,H1)
23 Z(H2,H1)

13 Σ(H1,H3)
23 Σ(H1,H2)

12

= Z(H3,H1)
23 Σ(H1,H3)

23 Z(H2,H1)
12 Σ(H1,H2)

12 =
H3 H1

23

H2 H1

12,

where the first equality uses (5.3), the second equality uses (5.12), the third equality uses the property of
the flip operator Σ, and the fourth equality follows from (5.13).



5.2. QUASITRIANGULAR C∗-QUANTUM GROUPS 63

A similar computation for
H1⊗H2H3

yields the second braiding diagram:

H1⊗H2H3

:= Z(H3,H1⊗H2)Σ(H1⊗H2,H3) =
(

(φ̂3 ⊗ φ̂1 ⊗ φ̂2)(idÂu ⊗ σ ◦ ∆̂u
A)(Ru)∗

)
◦ Σ(H1⊗H2,H3).

Corollary 5.10. If C carries the trivial corepresentation of G, then

C H

: C⊗H → H⊗ C and
H C

: H⊗ C→ C⊗H

are the canonical isomorphisms. For any three corepresentations of G,

H1 H2

23

H1 H3

12

H2 H3

23 =
H2 H3

12

H1 H3

23

H1 H2

12. (5.17)

Proof. These are general properties of braided monoidal categories, see [17, Proposition 2.1]. Alternatively,
we may deduce these assertions from (5.9), (5.10) and (5.12).

Remark 5.11. Lemma 5.2 shows that the dual of an R-matrix R ∈ U(Â ⊗ Â) is again an R-matrix.

Following (5.12), we define ˜Z(H1,H2) := (ϕ̂1⊗ ϕ̂2)(R̂u)∗ = ΣH2,H1 ◦
(
Z(H2,H1))∗ ◦ΣH1,H2 . Then

H̃2 H1

∈

U(H2 ⊗ H1,H1 ⊗ H2) defined by
H̃2 H1

:= ˜Z(H1,H2) ◦ ΣH2,H1 = ΣH2,H1 ◦
(
Z(H2,H1))∗ gives another

braiding on Corep(G).

5.2.2 Symmetric braidings
Definition 5.12. An R-matrix R ∈ U(A⊗A) is called antisymmetric if R∗ = σ(R) for the flip σ : A⊗A→
A⊗A, a1 ⊗ a2 7→ a2 ⊗ a1.

Lemma 5.13. If R is antisymmetric, then (Ru)∗ = σ(Ru) for the universal lift Ru ∈ U(Au ⊗ Au)
constructed in Proposition 5.4.

Proof. Both σ(Ru)∗ and Ru are bicharacters that lift R. Since the lifting of bicharacters is unique by
Proposition 3.16, they must be equal.

Proposition 5.14. The braiding on the monoidal category of corepresentations of G on Hilbert spaces
constructed in (5.13) is symmetric if and only if R ∈ U(Â⊗ Â) is antisymmetric.

Proof. Let H1 and H2 be Hilbert spaces with corepresentations of G. Let φ̂i : Âu → B(Hi) be the
corresponding ∗-representations. Then the braiding operator

H1 ⊗H2

H1 H2

−−−−−−−→ H2 ⊗H1

H2 H1

−−−−−−−→ H1 ⊗H2

is the unitary (φ̂1 ⊗ φ̂2)(Ru)∗ ◦ Σ(H2,H1) ◦ (φ̂2 ⊗ φ̂1)(Ru)∗ ◦ Σ(H1,H2) = (φ̂1 ⊗ φ̂2)(σ(Ru)Ru)∗. This is the
identity operator for all representations φ̂i if and only if σ(Ru)Ru = 1.
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5.2.3 The abelian case
Now we consider R-matrices for a commutative quantum group (C0(G),∆) for a locally compact group G.
Since C0(G) ⊗ C0(G) is commutative as well, (5.1) simplifies to the condition σ ◦ ∆ = ∆, which is
equivalent to G being commutative. Hence there is no R-matrix for nonabelian G. In the abelian case,
(5.1) holds for any unitary R ∈ U(C0(G) ⊗ C0(G)). Thus an R-matrix for G is simply a bicharacter
in Cb(G × G). Equivalently, R is a function ρ : G × G → U(1) satisfying ρ(xy, z) = ρ(x, z)ρ(y, z) and
ρ(x, yz) = ρ(x, y)ρ(x, z). Being antisymmetric means ρ(x, y)ρ(y, x) = 1 for all x, y ∈ G.

Any bicharacter ρ as above is of the form ρ(x, y) = 〈ρ̂(x), y〉 for a group homomorphism ρ̂ : G → Ĝ
to the Pontrjagin dual Ĝ, with ρ(x, ␣) = ρ̂. This is a special case of the interpretation of bicharacters as
quantum group homomorphisms in Chapter 3.

The map ρ̂ has a dual map ρ̂∗ : G ∼= ˆ̂
G → Ĝ, defined by 〈x, ρ̂∗(y)〉 = 〈ρ̂(x), y〉 for all x, y ∈ G. The

bicharacter ρ is antisymmetric if and only if ρ̂∗ = ρ−1.
Now we consider the category of Hilbert space representations of an abelian locally compact group G.

This is equivalent to the category of corepresentations of (C0(G),∆) or to the category of representations
of C∗(G) ∼= C0(Ĝ). The tensor category of G-representations is already symmetric for the obvious braiding
Σ(x⊗ y) := y ⊗ x. This corresponds to the R-matrix 1. We want to describe the braiding operators from
nontrivial R-matrices.

A representation of C0(Ĝ) is classified using a measurable field of Hilbert spaces (Hx)x∈Ĝ over Ĝ and
a measure class [µ] on Ĝ. Let

∫ ⊕
Ĝ
Hx dµ(x) denote the space of L2-sections of the measurable field with

respect to the measure µ, with C0(Ĝ) acting by pointwise multiplication. All representations of C0(Ĝ) are
of this form with (Hx) unique up to isomorphism and µ unique up to measure equivalence.

Let H1 =
∫ ⊕
Ĝ
H1x dµ1(x) and H2 =

∫ ⊕
Ĝ
H2x dµ2(x) be two Hilbert space representations of G. Then

H1 ⊗H2 =
∫ ⊕
Ĝ×Ĝ

H1x ⊗H2y dµ1(x)dµ2(y).

Since C0(Ĝ)⊗ C0(Ĝ) ∼= C0(Ĝ× Ĝ) acts by pointwise multiplication, we have
H1 H2 (∫

Ĝ2
ξx,y dµ1(x)dµ2(y)

)
=
∫
Ĝ2
ρ(x, y)Σξx,y dµ1(x) dµ2(y).

Example 5.15. Consider G = Z/2 = {±1} and let ρ(x, y) = xy ∈ Z/2 ⊆ U(1); this bicharacter corresponds
to the isomorphism G ∼= Ĝ. The spectral analysis above writes a Z/2-Hilbert space as a Z/2-graded Hilbert
space, splitting it into even and odd elements with respect to the action of the generator in Z/2. The
braiding unitary on ξ ⊗ η is Σ if ξ or η is even, and −Σ if both ξ and η are odd. This is the usual Koszul
sign rule.

Thus standard operations with Z/2-graded Hilbert spaces and C∗-algebras are special cases of our more
general constructions for quasitriangular C∗-quantum groups.

5.2.4 Associative crossed product of C∗-algebras
Let G = (A,∆A) be a quasitriangular quantum group with R-matrix R ∈ U(Â⊗ Â). The main result of
this section is to induce a monoidal structure on C∗alg(G) using the braided monoidal structure of Corep(G).
As �R is a special case of the general construction of � discussed in Chapter 4, it satisfies all the properties
of � in general. We shall devote the rest of this section to the following main result.

Theorem 5.16. C∗alg(G) with the tensor product �R is a monoidal category.

Let W ∈ U(Â⊗A) be the reduced bicharacter of G. By Definition 4.5, a pair of representations (α, β)
of A on a Hilbert space H is called an R-Heisenberg pair if:

W1αW2β = W2βW1αR12 in U(Â⊗ Â⊗K(H)). (5.18)

Let (C, γ), (D, δ) be G-C∗-algebras and construct the crossed product (C�RD, ιC , ιD) as in Lemma 4.16.
Moreover, let (ϕ,UH) and (ψ,UK) be faithful covariant representations of (C, γ,A) and (D, δ, ψ) on the
Hilbert spaces H and K, respectively.
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Theorem 5.17. There is a unique coaction γ ./R δ of G on C �R D such that (ϕ �R ψ,UH>UK) is a
covariant representation of (C �R D, γ ./R δ,A) on H⊗K.

Proof. By Theorem 4.23, for any R-Heisenberg pair (α, β) acting on L we have

UH1αUK2βZ(H,K)
12 = UK2βUH1α in U(H⊗K⊗ L), (5.19)

where Z(H,K) is defined in (5.12). Then
K H

:= Z(H,K) ◦ ΣK,H is the corresponding braiding operator.
By Theorem 4.24 there is a faithful representation ϕ�R ψ : C �R D → B(H⊗K) such that

(ϕ�R ψ) ◦ ιC(c) = ϕ(c)⊗ 1K for all c ∈ C,

(ϕ�R ψ) ◦ ιD(d) =
K H

(ψ(d)⊗ 1H)(
K H

)∗ for all d ∈ D.
(5.20)

We compute:

(UH>UK)
(
(ϕ�R ψ)(ιC(c)ιD(d))⊗ 1A

)
(UH>UK)∗

= UH13UK23(ϕ(c)⊗ 1K ⊗ 1A)
K H

12(ψ(d)⊗ idH ⊗ 1A)(
K H

12)∗(UK23)∗(UH13)∗

= UH13UK23(ϕ(c)⊗ 1K ⊗ 1A)
K H

12(ψ(d)⊗ idH ⊗ 1A)(UH23)∗(UK13)∗(
K H

)∗12

= UH13(ϕ(c)⊗ 1K ⊗ 1A)(UH13)∗
K H

12UK13(ψ(d)⊗ 1H ⊗ 1A)(UK13)∗(
K H

)∗12

=
(
(ϕ⊗ idA)γ(c)

)
13

K H

12
(
(ψ ⊗ idA)δ(d)

)
13

(
K H

)∗12 for all c ∈ C and d ∈ D.

The first equality uses Definition 5.8 and (5.20), the second and third equality use (5.14) and the fourth
equality uses the covariance condition (4.13) for γ and δ.

Proposition 5.18. C�RD is endowed with a natural (diagonal) coaction γ ./R δ : C�RD → C�RD⊗A
of G such that

(γ ./R δ) ◦ ιC = (ιC ⊗ idA) ◦ γ and (γ ./R δ) ◦ ιD = (ιD ⊗ idA) ◦ δ. (5.21)

Equivalently, �R : C∗alg(G) × C∗alg(G) → C∗alg(G) is a covariant functor and ιC , ιD are morphisms in
the category C∗alg(G).

Proof. Existence of γ ./R δ is given by Theorem 5.17. Diagram (2.22) for γ and δ imply:(
idC�RD ⊗∆A

)
◦ γ ./R δ =

(
(γ ./R δ)⊗ idA

)
◦ γ ./R δ.

Now γ and δ satisfy the Podleś condition (2.23). Therefore, Lemma 4.16 and (5.21) yield the Podleś
condition (2.23) for γ ./R δ:(

γ ./R δ(C �R D)
)
· (1C�RD ⊗A) = (ιC ⊗ idA)γ(C) ·

(
(ιD ⊗ idA)(δ(D) · (1D ⊗A)

)
= ((ιC ⊗ 1A)(γ(C)) · (ιD(D)⊗A)

= (ιC ⊗ 1A)
(
γ(C) · (1C ⊗A)

)
· (ιD(D)⊗ 1M(A))

= ιC(C) · ιD(D)⊗A = C �R D ⊗A.

Proof of Theorem 5.16. Let (Ci, γi) be G-C∗-algebras and let (ϕi,UHi) be covariant corepresentations of
(Ci, γi, A), respectively, for i = 1, 2, 3. By Proposition 5.18 (C2 �R C3, γ2 ./R γ3) is a G-C∗-algebra.
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Now (ϕ2�Rϕ3,UH2 >UH3 ) is a covariant representation of (C2�RC3, γ2 ./R γ3, A) onH⊗K. Therefore,
Theorem 4.27 gives a faithful representation ϕ1 �R (ϕ2 �R ϕ3) : C1 �R (C2 �R C3)→ B(H1 ⊗H2 ⊗H3),
defined by: (

ϕ1 �R (ϕ2 �R ϕ3)
)
◦ ιC1 (c1) = ϕ1(c1)⊗ 1H2 ⊗ 1H3 ,(

ϕ1 �R (ϕ2 �R ϕ3)
)
◦ ιC2 (c2) = (

H2⊗H3H1

)
(
ϕ2(c2)⊗ 1H3 ⊗ 1H1

)
(
H2⊗H3H1

)∗,

(
ϕ1 �R (ϕ2 �R ϕ3)

)
◦ ιC3 (c3) = (

H2⊗H3H1

)(
H3 H2

12)
(
ϕ3(c3)⊗ 1H2 ⊗ 1H1

)
(
H3 H2

12)∗(
H2⊗H3H1

)∗,

(5.22)

for ci ∈ Ci, i = 1, 2, 3.
The diagrams in Proposition 5.9 and Corollary 5.10 give:

H2⊗H3H1 H3 H2

12 =
H2 H1

12

H3 H1

23

H3 H2

12 =
H3H1⊗H2 H2 H1

23.

Then the last two equations in (5.22) get reduced to

(
ϕ1 �R (ϕ2 �R ϕ3)

)
◦ ιC2 (c2) =

H2 H1

12
(
ϕ2(c2)⊗ 1H1 ⊗ 1H3

)
(
H2 H1

12)∗,

(
ϕ1 �R (ϕ2 �R ϕ3)

)
◦ ιC3 (c3) = (

H3H1⊗H2

)
(
ϕ3(c3)⊗ 1H1 ⊗ 1H2

)
(
H3H1⊗H2

)∗
(5.23)

for all c2 ∈ C2 and c3 ∈ C3.
A similar computation shows that the faithful representation (ϕ1 �R ϕ2)�R ϕ3 : (C1 �R C2)�R C3 →

B(H1 ⊗H2 ⊗H3) acts by:(
(ϕ1 �R ϕ2)�R ϕ3

)
◦ ιC1 (c1) = ϕ1(c1)⊗ 1H2 ⊗ 1H3 ,(

(ϕ1 �R ϕ2)�R ϕ3
)
◦ ιC2 (c2) =

H2 H1

12
(
ϕ2(c2)⊗ 1H1 ⊗ 1H3

)
(
H2 H1

12)∗,

(
(ϕ1 �R ϕ2)�R ϕ3

)
◦ ιC3 (c3) = (

H3H1⊗H2

)
(
ϕ3(c3)⊗ 1H1 ⊗ 1H2

)
(
H3H1⊗H2

)∗

(5.24)

for all ci ∈ Ci, i = 1, 2, 3.
Combining (5.23) and (5.24) gives C1 �R (C2 �R C3) ∼= (C1 �R C2)�R C3.

Remark 5.19. The equations in (5.20) imply

H K (
(ϕ�R ψ)ιC(c)ιD(d)

)
(
H K

)∗ =
( H K

(ϕ(c)⊗ 1K)(
H K

)∗
)

( H K K H

(ψ(d)⊗ 1H)(
H K K H

)∗
)
.

Hence
H K

is an intertwiner between ϕ�R ψ and ψ �R ϕ if and only if it is a symmetric braiding.
Therefore, by Proposition 5.14 the monoidal category C∗alg(G) is braided if and only if the R-matrix
R ∈ U(Â⊗ Â) is antisymmetric. Then C∗alg(G) is even symmetric.



5.3. QUASITRIANGULARITY OF THE QUANTUM CODOUBLE 67

5.3 Quasitriangularity of the quantum codouble

The general construction of the χ-Drinfeld double for a given bicharacter χ ∈ U(Â⊗ B̂) has been discussed
in Section 4.6. In this section, we restrict our attention to Ĥ = G and χ = W ∈ U(Â⊗A).

Notation 5.20. We denote DW(G,G)̂ = D(G)̂ , D̂WA = D̂ , DW(G,G)̂ = D(G)̂ , D̂W = D̂.

Definition 5.21. The pairs D(G) = (D,∆D) and D(G)̂ = (D̂,∆
D̂

) are called the Drinfeld double and
the quantum codouble of G.

Let (π, π̂) be a G-Heisenberg pair acting on H. Then the corresponding representations of A and Â
defined in (4.20) reduce to

ρ(a) :=
(
(π̄ ⊗ π)∆A(a)

)
13

in B(HD) for all a ∈ A,

θ(â) :=
(
(¯̂π ⊗ (π̂ ⊗ π̂)∆̂A)∆̂A(â)

)
in B(HD) for all â ∈ Â,

ξ(â) := 1H ⊗ 1H ⊗ π̂(â) in B(HD) for all â ∈ Â,
ζ(a) := 1H ⊗ π(a)⊗ 1H in B(HD) for all a ∈ A.

(5.25)

As before, (π̄, ¯̂π) is the G-anti-Heisenberg pair on H corresponding to (π, π̂) by Example 2.19. Therefore,
the Hilbert space HD = H⊗H⊗H has one leg less than the general construction in Section 4.6.

WD = WθζŴρξ ∈ U(HD ⊗HD) is a multiplicative unitary for the quantum codouble D(G)̂ , and D(G)
is dual to it. Selecting χ = W in Definition 4.52 gives W-Yetter-Drinfeld C∗-algebras.

Terminology 5.22. We use the term G-Yetter-Drinfeld as a synonym for W-Yetter-Drinfeld.

In particular, a C∗-algebra C is G-Yetter-Drinfeld for a pair of coactions (γ, δ) of G and Ĝ on C if and
only if

σW23
(
(γ ⊗ idÂ)δ

)
= (δ ⊗ idA)γ. (5.26)

Notation 5.23. Let YDC∗alg(G) be the category with G-Yetter-Drinfeld C∗-algebras as objects, and G and
Ĝ-equivariant morphisms as arrows.

Let G be a quasitriangular quantum group with R-matrix R ∈ U(Â⊗ Â). Let ∆R : A→ A⊗ Â be the
associated right quantum group homomorphism. Theorem 3.27 induces a dual coaction δ : C → C ⊗ Â for
any G-C∗-algebra (C, γ).

Lemma 5.24. The pair (γ, δ) as above is a G-Yetter-Drinfeld pair.

Proof. By Lemma 2.34 any object C ∈ C∗alg(G) is equivariantly isomorphic to a sub-object of D ⊗A, for
some C∗-algebra D, with trivial coaction on D. Therefore, it suffices to prove the statement for C = A
and γ = ∆A. Then δ = ∆R by (3.25) and (2.22). Using the relation (5.7) for R ∈ U(Â⊗ Â), up to correct
modification for dual multiplicative unitaries, we get:

R12W13W23 = W23W13R12 in U(Â⊗ Â⊗A).

Then using the last equation, (2.8) and (3.15) we compute

σW34
(
(idÂ ⊗ (∆A ⊗ idÂ)∆R)W

)
= W12σ

W
34 (W13R14) = W12R13W14 = (idÂ ⊗ (∆R ⊗ idA)∆A)W.

Finally, slicing the first leg of the last computation by ω ∈ Â′ gives (5.26) for the pair (∆A,∆R), which
completes the proof.
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5.3.1 R-matrix on the Drinfeld double
Proposition 5.25. The quantum codouble D(G)̂ is a quasitriangular quantum group with R-matrix
Wθρ ∈ U(D ⊗D).

Proof. Since ρ ∈ Mor(A,D) and θ ∈ Mor(Â,D) are Hopf ∗-homomorphisms, Wθρ ∈ U(D ⊗ D) is a
bicharacter. We only need to show (5.1) for Wθρ. Lemma 4.45 (2) implies:

Wθ2ρ3

(
(idÂ ⊗ (ρ⊗ ρ)σ ◦∆A)W

)
W∗θ2ρ3 = Wθ2ρ3W1ρ3W1ρ2W

∗
θ2ρ3

= W1ρ2W1ρ3 = (idÂ ⊗ (ρ⊗ ρ) ◦∆A)W,

where ρi denotes ρ acting on the ith leg. Taking slices on the first leg by linear functionals ω ∈ Â′ gives

Wθρ

(
(ρ⊗ ρ)σ ◦∆A(a)

)
W∗θρ = (ρ⊗ ρ)∆A(a) for all a ∈ A.

Similarly, Wθρ

(
(θ⊗ θ)σ ◦ ∆̂A(â)

)
W∗θρ = (θ⊗ θ)∆̂A(â) for all â ∈ Â. Combining the last two identities gives

(5.1) for Wθρ:
Wθρ

(
σ∆D(θ(â)ρ(a))

)
W∗θρ = ∆D(θ(â)ρ(a)) for all a ∈ A, â ∈ Â.

From now on we fix the R-matrix R = Wθρ ∈ U(D ⊗D).
The quasitriangularity of D(G)̂ provides a braided monoidal structure on Corep(D(G)̂), and the

monoidal structure on C∗alg(D(G)̂) gets induced from it. Therefore, we discuss the corepresentation
theory of D(G)̂ first. Let U ∈ U(K(K)⊗A) and V ∈ U(K(K)⊗ Â) be corepresentations of G and Ĝ on a
Hilbert space K.

Definition 5.26. A pair (U,V) is called D(G)̂ -compatible if they commute in the following way:

σW23
(
U12V13

)
= V12U13 in U(K(K)⊗ Â⊗A). (5.27)

Lemma 5.27. A pair (U,V) is D(G)̂ -compatible if and only if (V,U) is D(Ĝ)̂ -compatible.

Example 5.28. As a special case of Lemma 4.53 the pair of corepresentations (Wθ2, Ŵρ2) of G and Ĝ on HD
is D(G)̂-compatible.

Another class of examples of D(G)̂-compatible pairs of corepresentations come from the corepresenta-
tions of quasitriangular quantum groups.
Example 5.29. Let G be a quasitriangular quantum group with R-matrix R ∈ U(Â ⊗ Â) and induced
right quantum group homomorphism ∆R : A→ A⊗ Â. By Proposition 3.31, given any corepresentation
U ∈ U(K(H)⊗A) of G there is a unique corepresentation V ∈ U(K(H)⊗ Â) of Ĝ satisfying (3.27):

(idH ⊗∆R)U = U12V13 in U(K(H)⊗A⊗ Â). (5.28)

The proof of Lemma 5.24 shows that (∆A,∆R) is a G-Yetter-Drinfeld pair. Equations (2.25) and (5.28)
yield

U12σ
W
34
(
U13V14

)
= σW34

(
(idH ⊗ (∆A ⊗ idÂ)∆R)U

)
= (idH ⊗ (∆R ⊗ idA)∆A)U = U12V13U14.

Cancelling U12 on both sides of the last equation yields (5.27) for (U,V).
In general, any corepresentation can be viewed as a cocycle for the trivial coaction (see Exam-

ple 4.39). In particular, Proposition 4.55 establishes a bijective correspondence between corepresentations
of D(G)̂ satisfying (4.18) and D(G)̂-compatible pairs, each of them satisfying (4.18). This is true for
all D(G)̂-corepresentations.
Proposition 5.30. Every D(G)̂ -compatible pair of corepresentations U ∈ U(K(K)⊗A) and V ∈ U(K(K)⊗
Â) gives rise to a corepresentation X ∈ U(K(K)⊗ D̂) of D(G)̂ on K, defined by

X := U12V13 in U(K(K)⊗A⊗ Â). (5.29)

Conversely, every corepresentation of D(G)̂ comes from a unique D(G)̂ -compatible pair of corepresenta-
tions acting on the same Hilbert space.
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Proof. Let (U,V) be a D(G)̂-compatible pair of corepresentations on H. The following computation yields
that X defined in (5.29) is a corepresentation of D(G)̂ :

(idK ⊗ ∆̂D)X = σW34
(
(idK ⊗∆A ⊗ ∆̂A)U12V13

)
= U12

(
σW34
(
U13V14

))
V15 = U12V13U14V15

= X123X145.

Conversely, let X ∈ U(K(K)⊗ D̂) be a corepresentation of D(G)̂ on K. Following Example 4.54, we obtain
the right quantum group homomorphisms ∆R = idA ⊗ ∆̂A and ∆′R = σW23 (∆A ⊗ idÂ) associated to the
bicharacters Ŵρ2 ∈ U(D⊗ Â) and Wθ2 ∈ U(D⊗A), respectively. Moreover, D̂ becomes a G-Yetter-Drinfeld
C∗-algebra with respect to these coactions; hence ∆R and ∆′R satisfy (5.26). Equivalently, we have the
following compatibility condition:

σW23
(
(∆′R ⊗ idÂ)∆R)

)
= (∆R ⊗ idA)∆′R. (5.30)

By Proposition 3.31 and (3.27) we get corepresentations U ∈ U(K(K)⊗A) of G and V ∈ U(K(K)⊗ Â) of Ĝ
on K defined by:

(idK ⊗∆′R)X = X12U13 in U(K(K)⊗ D̂ ⊗A),

(idK ⊗∆R)X = X12V13 in U(K(K)⊗ D̂ ⊗ Â).
(5.31)

The compatibility condition (5.30) between ∆R and ∆′R and then (5.31) yield:(
idK ⊗ (∆R ⊗ idA)∆′R

)
X = σW34 (idK ⊗ (∆′R ⊗ idÂ)∆R

)
X = X12σ

W
34
(
U13V14

)
.

Immediate use of (5.31) gives: (
idK ⊗ (∆R ⊗ idA)∆′R

)
X = X12V13U14.

Combining the right hand sides of the last two equations and cancelling the unitary X12 establishes (5.27)
for (U,V).

5.3.2 Coaction category of the quantum codouble
Let (Ci, λi) be D(G)̂-C∗-algebras and let (XKi , ϕi) be faithful covariant representations of (Ci, γ̃i, D̂) on
Hilbert spaces Ki for i = 1, 2. By virtue of Proposition 4.55 for D(G)̂ and Proposition 5.30 we can always
decompose (XKi , ϕi) into two parts: (UKi , ϕi), a faithful covariant representations of (Ci, γi, A) on Hi, and
(VKi , ϕi), a faithful covariant representations of (Ci, δi, Â) on Ki for i = 1, 2, respectively. Definition 4.21
gives the following conditions:

(ϕi ⊗ idA)γi(ci) = (UKi)(ϕi(ci)⊗ 1A)(UKi)∗ in U(K(Ki)⊗A),

(ϕi ⊗ idÂ)δi(ci) = (VKi)(ϕi(ci)⊗ 1Â)(VKi)∗ in U(K(Ki)⊗ Â),
(5.32)

for i = 1, 2.
Then γi : Ci → Ci⊗A and δi : Ci → Ci⊗ Â satisfy the G-Yetter-Drinfeld compatibility condition (5.26)

for i = 1, 2. Similarly, the corepresentations UKi ∈ UM(K(Ki)⊗A) and VKi ∈ U(K(K)⊗ Â) satisfy (5.27)
for i = 1, 2.

We already know, from the proof of Proposition 5.30, that (id
D̂
⊗ ρ)∆′R = (id

D̂
⊗ ρ)

(
σW23 (∆A ⊗ idÂ)

)
is

the right quantum group homomorphism associated to the R-matrix R = Wθρ (recall θ and ρ from (5.25)).
The corresponding R-Heisenberg pair (α, β) defined in Lemma 4.11 becomes

α(a⊗ â) := (ζ ∗ ξ ⊗ ρ)
(
σW23 (∆A(a)⊗ â)

)
and β(a⊗ â) := 1HD ⊗ ζ(a)ξ(â), (5.33)

where we denote ζ ∗ ξ(a⊗ â) := ζ(a)ξ(â) for a ∈ A and â ∈ Â.
The following lemma characterises the braiding induced by the pair (XK1 ,XK2) of corepresentations

of D(G)̂ in terms of the pair (UK1 ,VK2 ).
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Lemma 5.31. Assume the unitary Z ∈ U(K1 ⊗ K2) satisfies (2.30) for the pair of corepresentations
UK1 ∈ U(K(K1) ⊗ A) and VK2 ∈ U(K(K2) ⊗ Â). Then Z ∈ U(K1 ⊗ K2) is the unique solution of the
following equation:

XK1
1αX

K2
2β Z12 = XK2

2β X
K1
1α in U(K(K1 ⊗K2)⊗ D̂). (5.34)

Equivalently, the unitaries
K2 K1

:= Z ◦ΣK2,K1 : K2⊗K1 → K1⊗K2 define a braiding on Corep(D(G)̂).

Proof. The solution of (5.34) is clearly unique if it exists. Hence we only need to check that Z ∈ U(K1⊗K2)
in (2.30) satisfies (5.34). The pair (UK1 ,VK1) is D(G)̂-compatible. Therefore, with the assignment of
legs 1, 2, 3 to K1, HD, HD we get

XK1
1α = UK1

1ζ2

(
σW34
(
UK1

13 VK1
14
))

1(ζ∗ξ)ρ3
= UK1

1ζ2
VK1

1ξ2
UK1

1ρ3 ,

where the notation ζi means that ζ is acting on the ith leg.
Next we assign the legs 1, 2, 3, 4 to K1, K2, HD, HD and compute:

XK1
1αX

K2
2β Z12 = UK1

1ζ3
VK1

1ξ3
UK1

1ρ4U
K2
2ζ4

VK2
2ξ4
Z12 = UK1

1ζ3
VK1

1ξ3
UK2

2ζ4
UK1

1ρ4V
K2
2ξ4
Z12,

where the second equality uses that ρ and ζ commute on the fourth leg.
Lemma 4.45(1) shows that (ρ, ξ) is a G-Heisenberg pair. Therefore, first using (2.30) and the trivial

commutation of unitaries acting on legs 13 and 24 gives:

XK1
1αX

K2
2β Z12 = UK1

1ζ3
VK1

1ξ3
UK2

2ζ4
VK2

2ξ4
UK1

1ρ4 = UK2
2ζ4

VK2
2ξ4

UK1
1ζ3

VK1
1ξ3

UK1
1ρ4 = XK2

2β X
K1
1α .

Corollary 5.32. Let Z ∈ U(K1 ⊗K2) be as in Lemma 5.31. Then

Z12UK2
23 UK1

13 = UK1
13 UK2

23 Z12 in U(K(K1 ⊗K2)⊗A),

Z12VK2
23 VK1

13 = VK1
13 VK2

23 Z12 in U(K(K1 ⊗K2)⊗ Â).
(5.35)

Proof. The braiding
K2 K1

on Corep(D(G)̂) intertwines XK2 >XK1 and XK1 >XK2 or, equivalently, it
satisfies

Z12XK2
23 XK1

13 = XK1
13 XK2

23 Z12 in U(K(K1 ⊗K2)⊗A). (5.36)

Define the right quantum group homomorphism ∆′R : D̂ → D̂ ⊗ A associated to the bicharacter Wθ2 ∈
U(D ⊗A) as in Example 4.54. Applying idK1⊗K2 ⊗∆′R on the left hand side of (5.36) and using the first
relation from (5.31) yields:

(idK1⊗K2 ⊗∆′R)(Z12XK2
23 XK1

13 ) = Z12XK2
23 UK2

24 XK1
13 UK2

14 = Z12XK2
23 XK1

13 UK2
24 UK2

14 = XK1
13 XK2

23 Z12UK2
24 UK2

14 .

Similar computations for the right hand side of (5.36) yield:

(idK1⊗K2 ⊗∆′R)(XK1
13 XK2

23 Z12) = XK1
13 UK2

14 XK2
23 UK2

24 Z12 = XK1
13 XK2

23 UK2
14 UK2

24 Z12.

Cancellation of the unitary XK1
13 XK2

23 from the right hand side of the last two expressions yields the first
relation in (5.35).

Using the right quantum homomorphism ∆R : D̂ → D̂⊗ Â associated to the bicharacter Ŵρ2 ∈ U(D⊗ Â)
in a similar manner, we obtain the second relation in (5.35).

Corollary 5.33. The braiding
K2 K1

:= Z ◦ΣK2,K1 in Lemma 5.31 is symmetric if and only if W = Ŵ.
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Proof. By the universal property (2.34) of Ṽ ∈ U(Âu ⊗ A) there is a unique morphism ϕ : Âu → B(K1)
such that (ϕ⊗ idA)Ṽ = UK1 .

Similarly, the universal property (2.40) gives rise to a unique morphism ψ : Au → B(K2) such that
(idÂ ⊗ ψ)V = VK2 .

Let (π, π̂) be a G-Heisenberg pair on Hπ. Applying (ϕ ⊗ idHπ ⊗ ψ) on both sides of the defining
condition (2.53) of the universal bicharacter W ∈ U(Âu ⊗Au) gives

((ϕ⊗ ψ)W
)

13
= (UK1 )∗1πVK2

π̂3 U
K1
1π (VK2 )∗π̂3.

Comparing the last expressions with (5.27) gives Z = (ϕ⊗ ψ)W∗ ∈ U(K1 ⊗K2).

Following the proof of Proposition 5.14, we conclude that
K2 K1

is symmetric if and only if σ(W)W =
1; hence W = Ŵ.

Corollary 5.34. Assume a D(G)̂ -compatible pair (U,V) on a Hilbert space H and Z ∈ U(H ⊗ H)

satisfy (2.30). Then
H H

:= Z ◦ Σ ∈ U(H⊗H) is the braiding induced by D(G)̂ .
Remark 5.35. Example 5.29 provides a D(G)̂-compatible pair (U,V) on H starting from a corepre-
sentation U ∈ U(K(H) ⊗ A) of a quasitriangular quantum group G. By Proposition 2.38 there is a
unique Z ∈ U(H⊗H) satisfying the following commutation for the pair (V,U),

V1η̂U2ηZ12 = U2ηV1η̂ in U(H⊗H⊗Hη) (5.37)

for any G-Heisenberg pair (η, η̂) on Hη. Given any G-Heisenberg pair (π, π̂) on Hπ define an R-Heisenberg
pair (α, β) as in Lemma 4.11. Equations (5.28) and (5.37) yield:

U1αU2βZ12 = U1πV1η̂U2ηZ12 = U2ηU1πV1η̂ = U2βU1α.

Finally, comparing the last equation with (5.19) gives Z(H,H) = Z. Therefore, by Proposition 5.9, the

braiding
H H

:= Z ◦ Σ corresponds to the braiding induced by the R-matrix of G.
There are two possible ways to define crossed products of C1 and C2. First, the R-matrix R on D(G)

allows to construct C1 �R C2. The second construction uses half of the available structures, the coactions
γ1 and δ2 of G and Ĝ on C1 and C2, to construct C1 �W C2. Proposition 4.55 shows that C∗alg(D(G)̂)
and YDC∗alg(G) are equivalent. In [30], Nest and Voigt have shown that YDC∗alg(G) is endowed with a
monoidal structure, assuming Haar weights on G. We generalise their construction by showing that the
monoidal structure on YDC∗alg(G) gets induced from the braided monoidal structure on Corep(D(G)̂).

Proposition 5.36. YDC∗alg(G) is a monoidal category.

Proof. Let (γi, δi) be a G-Yetter-Drinfeld pair on the C∗-algebra Ci for i = 1, 2. Without loss of generality,
we may assume covariant representations (UKi , ϕi) and (VKi , ϕi) as in (5.32). Hence the associated pair of
corepresentations (UKi ,VKi) satisfies the D(G)̂-compatibility condition (5.27).

Given a G-Heisenberg pair (η, η̂) on a Hilbert space L, let Z ∈ U(K1 ⊗K2) satisfy (2.30):

UK1
1η V

K2
2η̂ Z12 = VK2

2η̂ U
K1
1η in U(K1 ⊗K2 ⊗ L).

Lemma 5.31 shows that
K2 K1

:= Z ◦ ΣK2,K1 defines a braiding on Corep(D(G)̂). Theorem 4.27 yields
the following equivalence of crossed products

C1 �W C2
Ψ∼= (ϕ1(C1)⊗ 1K2 ) · (

K2 K1

)(ϕ2(C2)⊗ 1K1 )(
K2 K1

)∗. (5.38)

Lemma 4.16 defines the embeddings ιC1 (c1) := γ1(c1)1η and ιC2 (c2) := δ2(c2)2η̂ into C1 �W C2 ⊂M(C1 ⊗
C2 ⊗K(L)) for ci ∈ Ci, i = 1, 2.
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The unitary Z on U(K1 ⊗ K2) satisfies (5.35). Hence, a similar computation as in the proofs of
Theorem 5.17 and Proposition 5.18 gives a unique diagonal coaction γ1 ./W γ2 : C1�W C2 → C1�W C2⊗A
such that

(Ψ⊗ idA)
(
(γ1 ./W γ2)(ιC1 (c1)ιC2 (c2)

)
= (UK1 >UK2 )

(
Ψ(ιC1 (c1)ιC2 (c2))⊗ 1A

)
(UK1 >UK2 )∗.

Hence (Ψ,UK1 >UK2 ) is a covariant representation of (C1 �W C2, γ1 ./W γ2, A).
Similarly, there is a unique coaction δ1 ./W δ2 : C1 �W C2 → C1 �W C2 ⊗ Â such that

(Ψ1 ⊗ idA)
(
(δ1 ./W δ2)(ιC1 (c1)ιC2 (c2)

)
= (VK1 >VK2 )

(
Ψ1(ιC1 (c1)ιC2 (c2))⊗ 1Â)(VK1 >VK2 )∗.

Using the G-Yetter-Drinfeld compatibility (5.26) for the pair of coactions (γi, δi) we establish the same
for the pair of diagonal coactions (γ1 ./W γ2, δ1 ./W δ2):(

(δ1 �W δ2)⊗ idA
)
(γ1 �W γ2)(ιC1 (c1)ιC2 (c2))

=
(
(δ1 �W δ2)⊗ idA

)(
(ιC1 ⊗ idA)γ1(c1)(ιC2 ⊗ idA)γ2(c2)

)
=
(
(ιC1 ⊗ idÂ⊗A)(δ1 ⊗ idA)γ1(c1)

)(
(ιC2 ⊗ idÂ⊗A)(δ2 ⊗ idA)γ2(c2)

)
= σW23

((
(ιC1 ⊗ idA⊗Â)(γ1 ⊗ idÂ)δ1(c1)

)(
(ιC2 ⊗ idA⊗Â)(γ2 ⊗ idÂ)δ2(c2)

))
= σW23

(
(γ1 �W γ2)⊗ idÂ

)
(δ1 �W δ2)(ιC1 (c1)ιC2 (c2))

for ci ∈ Ci, i = 1, 2.
Hence C1�W C2 ∈ YDC∗alg(G) and Ψ preserves G-Yetter-Drinfeld covariant representations. Therefore,

we may use an argument as in the proof of Theorem 5.16 to show that �W is associative.

5.3.3 The dual coaction of a quantum group on itself
The crossed product associated to a bicharacter is isomorphic to the standard tensor product when either
of the coactions is inner (see Corollary 4.38). The dual of the reduced bicharacter Ŵ ∈ U(Â ⊗ A) of a
quantum group G = (A,∆A) induces a morphism δ̂ : A→ A⊗ Â defined by

δ̂(a) := Ŵ(a⊗ 1Â)Ŵ∗ inM(A⊗ Â) for a ∈ A. (5.39)

Clearly, δ̂ is injective. The following computation shows that δ̂ is coassociative:

(idA ⊗ ∆̂A)δ̂(a) = Ŵ12Ŵ13(a⊗ 1Â ⊗ 1Â)Ŵ∗13Ŵ∗12 = (δ̂ ⊗ idÂ)δ̂(a)

for a ∈ A.
Unfortunately, the Podlés condition (2.23) for the coaction δ̂ is not automatic.
Let G have a right Haar weight ψ. The multiplicative unitary W ∈ U(Hψ ⊗Hψ) constructed in [24, 25]

is called the right regular representation of G, where Hψ is the GNS-space of ψ. Proposition 2.6 in [3]
provides an equivalence between regularity for quantum groups and multiplicative unitaries. More precisely,
a quantum group G is regular if and only if Aor Â is isomorphic to K(Hψ).

Definition 5.37. A quantum group G is weakly regular if

Â⊗A = {(â⊗ 1A)W(1Â ⊗ a) : a ∈ A, â ∈ Â}CLS. (5.40)

Remark 5.38. The criterion (5.40) in Definition 5.37 has the merit of using only the pair (A,∆A). By
Proposition 3.16 in [2], regular quantum groups are weakly regular.

Lemma 4.35 yields a necessary and sufficient condition for a quantum group to be weakly regular:

Corollary 5.39. A quantum group G is weakly regular if and only if the dual coaction δ̂ defined by (5.39)
satisfies the Podlés condition.



5.3. QUASITRIANGULARITY OF THE QUANTUM CODOUBLE 73

Proof. Let RA, RÂ be the unitary antipodes (involutive antiautomorphisms of A and Â). By Proposi-
tion 3.10, application of RÂ ⊗RA to (5.40) yields an equivalent criterion:

Â⊗A = {(1Â ⊗ a)W(â⊗ 1A) a ∈ A, â ∈ Â}CLS. (5.41)

Finally, identifying γ = a⊗ 1Â and u = Ŵ in Lemma 4.35 completes the proof.

Therefore, in case of quantum groups with Haar weight, regularity implies Podlés condition (2.23)
for δ̂. Let (π, π̂) be a G-Heisenberg pair on a Hilbert space H. The following simple computation shows
that (∆A, δ̂) is a G-Yetter-Drinfeld pair:

σW23
(
((π ⊗ idA)∆A ⊗ idÂ)δ̂(a)

)
= Ŵπ2Wπ̂3

(
π(a)⊗ 1Â⊗A

)
W∗π̂3Ŵ∗π2 =

(
(π ⊗ idÂ)δ̂ ⊗ idA

)
∆A(a).

for a ∈ A.
For C ∈ YDC∗alg(G), let (γ, γ̂) be the G-Yetter-Drinfeld structure on C. Construct the crossed

product (C �W A, ιC , ιA) or equivalently (C, γ) �W (A, δ̂). Therefore, we have C �W A ∈ YDC∗alg(G).
Since δ̂ is an inner coaction of Ĝ on A, Corollary 4.38 gives an isomorphism C �W A ∼= C ⊗A. This is not
an isomorphism of crossed products.

Proposition 5.40. There is an isomorphism Ψ: C�WA→ C⊗A of crossed products such that Ψ◦ιC(c) =
γ(c) and Ψ◦ιA(a) = 1C⊗a for c ∈ C and a ∈ A. Moreover, the map Ψ⊗ idA⊗Â induces a G-Yetter-Drinfeld
structure on C ⊗A.

Proof. Let (π, π̂) be a G-Heisenberg pair on a Hilbert spaceH. By construction, C�WA ⊆M(C⊗A⊗K(H))
and ιC(c) := γ(c)1π, ιA(a) := δ̂(a)2π̂, for c ∈ C, a ∈ A. Then σWπ̂2

23 : M(C⊗A⊗K(H))→M(C⊗K(H)⊗A)
maps C �W A isomorphically to the crossed product generated by

σ
W
π̂2

23 (ιC(c)) = Wπ̂3γ(c)1πW∗π̂3 =
(
(idC ⊗∆A)γ(c)

)
1π3

=
(
(γ ⊗ idA)γ(c)

)
1π3

and
σ
W
π̂2

23 (ιA(a)) = Wπ̂3W∗π̂3(1C ⊗ 1H ⊗ a)W∗π̂3Wπ̂3 =
(
(γ ⊗ idA)(1⊗ a)

)
1π3

for c ∈ C, a ∈ A.
The Podlés condition (2.23) for γ yields

(
(γ ⊗ idA)γ(c)(1⊗ a)

)
1π3

= γ(C)1π ⊗A ∼= C ⊗A.
Thus σWπ̂2

23 restricts to an isomorphism Ψ of C∗-algebras with the desired properties.

Notation 5.41. Given Ci ∈ YDC∗alg(G), the canonical embedding of Ci into C1 �W C2 �W C3 is denoted
by jCi for i = 1, 2, 3.

Let D ∈ YDC∗alg(G) with the associated G-Yetter-Drinfeld pair (λ, λ̂), and consider the respective
crossed products (A�W D, ιA, ιD), (C �W D, ι′C , ι

′
D).

Corollary 5.42. There is an isomorphism ΨC,A,D : C �W A�W D → C ⊗ (A�W D) such that

ΨC,A,D ◦ jC(c) = (idC ⊗ ιA)γ(c), ΨC,A,D ◦ jA(a) = 1C ⊗ ιA(a), ΨC,A,D ◦ jD(d) = 1C ⊗ ιD(d). (5.42)

Similarly, there is an isomorphism, ΨC,D,A : C �W D �W A→ (C �W D)⊗A such that

ΨC,D,A◦jC(c) = (ι′C⊗idA)γ(c), ΨC,D,A◦jD(d) = (ι′D⊗idA)λ(d), ΨC,D,A◦jA(a) = 1C�WD⊗a. (5.43)

Proof. Associativity of �W and Proposition 5.40 imply

C �W A�W D ∼= (C �W A)�W D ∼= (C ⊗A)�W D.

Since the coaction of G on C ⊗A is idC ⊗∆A, Lemma 4.20 gives

(C ⊗A)�W D ∼= C ⊗ (A�W D).

Composition of the isomorphisms gives ΨC,A,D intertwining the embeddings of C, A, D.
Finally, (5.43) follows from Proposition 5.40 for C �W D.
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Chapter 6

Braided multiplicative unitaries

In this final chapter we define a general theory of braided multiplicative unitaries and braided quantum
groups using all the machinery developed in the preceding chapters. In Section 6.1 we define braided
multiplicative unitaries and braided quantum groups. In Section 6.2, Theorem 6.7 shows that C∗-quantum
groups with projection canonically give rise to braided multiplicative unitaries. More precisely, we start
with a C∗-quantum group and a projection on it and then decompose its multiplicative unitary into two
parts: standard and braided. We move on by showing that some known examples of C∗-quantum groups are
indeed C∗-quantum groups with projection. Furthermore, we reconstruct a “big” standard multiplicative
unitary from a given braided one (see Theorem 6.15). Proposition 6.17 shows that C∗-quantum groups
arise from these “big” multiplicative unitaries are again C∗-quantum groups with projection. This is our
“semidirect product”; hence we have generalised Radford’s construction for multiplicative unitaries. In the
final Section 6.4, use our theory to construct the simplified quantum E(2) by realising the quantum plane
as braided a quantum group over the compact quantum group C(T).

6.1 Braided quantum groups
Let G = (A,∆A) be a quantum group and let WA ∈ U(Â⊗A) be its reduced bicharacter. Fix a G-Heisenberg
pair (η, η̂) on a Hilbert space H. Given any corepresentation U ∈ U(K(L)⊗A) of G on a Hilbert space L,
define U := (idL ⊗ η)U ∈ U(L ⊗ H). For a corepresentation V ∈ U(K(L) ⊗ Â) of Ĝ on L, we define
V̂ := Σ

(
(idL ⊗ η̂)V∗

)
Σ ∈ U(H⊗L).

Throughout this section we assume the pair (U,V) to be D(G)̂-compatible, that is,

U23WA
13V̂12 = V̂12WA

13U23 in U(H⊗L⊗H). (6.1)

Proposition 2.38 gives a unique unitary Z ∈ U(L ⊗ L) characterised by (5.27), which we rewrite in the
following equivalent form

V̂23U12 = U12Z
∗
13V̂23 in U(L ⊗H⊗ L). (6.2)

Following Corollary 5.34 we define a braiding operator
L L

by
L L

:= Z ◦ Σ ∈ U(L ⊗ L).

Definition 6.1. An element F ∈ U(L ⊗ L) is called a braided multiplicative unitary over G if it satisfies

1. G-invariance:
U13U23F12 = F12U13U23 in U(K(L ⊗ L)⊗A) (6.3)

2. Ĝ-invariance:
V̂13V̂12F23 = F23V̂13V̂12 in U(Â⊗K(L ⊗ L)) (6.4)

75
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3. braided pentagon equation:

F23F12 = F12(
L L

23)F12(
L L

)∗23F23 in U(L ⊗ L⊗ L), (6.5)

or equivalently
F23F12 = F12Z23F13Z

∗
23F23 in U(L ⊗ L⊗ L). (6.6)

Let us explain the leg numbering of the braided pentagon equation (6.6) in detail. The unitary
L L

23F12(
L L

23)∗ plays the role of F13. This is a straightforward generalisation of standard leg

numbering, replacing Σ by the braiding operator
L L

. We have F23 = 1L ⊗ F and F12 = F ⊗ 1L,
because F is invariant under the coactions of G and Ĝ implemented by the corepresentations U and V̂. We
prove this by the following chain of computation:{

V̂34U13U23F12

= V̂34F12U13U23

}
1=⇒
{

U13Z
∗
14V̂34U23F12

= F12U13Z
∗
14V̂34U23

}
2=⇒
{

U13Z
∗
14U23Z

∗
24V̂34F12

= F12U13Z
∗
14U23Z

∗
24V̂34

}
3=⇒
{

U13U23Z
∗
14Z

∗
24F12V̂34

= F12U13U23Z
∗
14Z

∗
24V̂34

}
4=⇒
{

U13U23Z
∗
14Z

∗
24F12

= U13U23F12Z
∗
14Z

∗
24

}
5=⇒
{

Z∗14Z
∗
24F12

= F12Z
∗
14Z

∗
24

}
.

We begin with multiplication of V̂34 on both sides of (6.3), 1 and 2 use (6.2), 3 follows from the ordinary
commutation of unitaries, 4 uses (6.3) and cancellation of V̂34 from both sides, 5 uses cancellation of U13U23

from both sides. Therefore, F12 = Z23Z13F12Z
∗
13Z

∗
23 =

L L

23

L L

12F23(
L L

12)∗(
L L

23)∗.
Remark 6.2. If either of the two corepresentations (U,V) is trivial then (6.2) implies Z = 1L⊗L. In that
case, (6.5) is the standard pentagon equation (2.4).

Let G = (A,∆A) be a quasitriangular quantum group. Let ∆R : A→ A⊗ Â be the right quantum group
homomorphism associated to the R-matrix R ∈ U(Â⊗ Â). Let U ∈ U(K(L)⊗A) be a corepresentation of G
on a Hilbert space L. The right quantum group homomorphism ∆R induce a dual corepresentation V ∈
U(K(L)⊗ Â) characterised by (5.28): (idL ⊗∆R)U = U12V13.

Let U satisfies (6.3). Applying idL⊗L ⊗∆R on both sides of (6.3) gives

U13V14U23V24F12 = F12U13V14U23V24 in U(K(L ⊗ L)⊗A⊗ Â).

Using ordinary commutation between U23,V14 and then using (6.3) on the right hand gives

U13U23V14V24F12 = F12U13U23V14V24 = U13U23F12V14V24 in U(K(L ⊗ L)⊗A⊗ Â).

Hence F ∈ U(L ⊗ L) is also Ĝ-invariant for the induced dual corepresentation V̂ := σ(V∗) ∈ U(Â⊗K(L)).
Remark 5.35 shows that (U,V) is a D(G)̂-compatible pair. Hence the condition (6.1) is automatic for

a braided multiplicative unitary over a quasitriangular quantum group G.
We want to interpret braided multiplicative unitaries as a fundamental obejct to study braided quantum

groups in complete generality. Keeping in mind the general theory of C∗-quantum groups, in the sense of
Woronowicz [49], we shall restrict our attention to the manageable braided multiplicative unitaries (see
Definition 6.3). Following fact ought to be a theorem when F is manageable:

K := {(ω ⊗ idL)F : ω ∈ B(L)∗}CLS (6.7)

is a nondegenerate C∗-subalgebra of B(L). Motivated by the known examples, we shall assume existence of
some suitable K ⊂ B(L) to formulate our working definition of braided quantum group at the end of this
section.

For the sake of convenience let us rewrite the corepresentation condition for (2.25) of U and V̂
following (6.1) and using the multiplicative unitary WA := (η̂ ⊗ η)WA ∈ U(H⊗H) as follows:

WA
23U12 = U12U13WA

23 in U(L ⊗H⊗H), (6.8)

V̂23WA
12 = WA

12V̂13V̂23 in U(H⊗H⊗L). (6.9)
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Let WA ∈ U(H ⊗ H) be a manageable multiplicative unitary and let QA and W̃A ∈ U(H ⊗ H) be the
respective operators in Definition 2.10.

Definition 6.3. A braided multiplicative unitary F ∈ U(L ⊗ L) is said to be manageable if there are a
positive, self-adjoint operator QK on L with Ker(QK) = {0} and F̃ ∈ U(L ⊗ L) such that

1. U(QK ⊗QA)U∗ = QK ⊗QA.

2. V∗(QK ⊗QA)V = QK ⊗QA or V̂∗(QA ⊗QK)V̂ = QA ⊗QK .

3. F(QK ⊗QK)F∗ = QK ⊗QK .

4. (x⊗u | Z∗F | y⊗v) = (y⊗QK(u) | F̃ | x⊗Q−1
K (v)) for any x, y ∈ L, u ∈ Dom(QK) and v ∈ Dom(Q−1

K ).

Lemma 6.4. Let V ∈ U(L ⊗ Â) and Z ∈ U(L ⊗ L) be as in (6.2). Then

Z∗(QK ⊗QK)Z = QK ⊗QK . (6.10)

Proof. Using the commutation relations (1) and (2) we obtain (6.10) from the following computation:

Z13(QK ⊗QA ⊗QK)Z∗13 = U∗12V̂23U12V̂∗23(QK ⊗QA ⊗QK)V̂23U∗12V̂∗23U12

= QK ⊗QA ⊗QK .

Define ∆K : K(L)→ B(L ⊗ L) by

∆K(ζ) := F(ζ ⊗ 1L)F∗ for ζ ∈ K(L).

If the coactions of G and Ĝ on K(L) implemented by corepresentations U and V satisfy Podleś condi-
tion (2.23), Example 4.39 gives K(L)�W K(L) ∼= K(L⊗L); hence ∆K is an element in Mor(K(L),K(L)�W
K(L)).

The general theory of crossed products gives K �WA K ∼= (K ⊗ 1L) · Z(1L ⊗ K)Z∗. The braided
pentagon equation (6.6) implies

F23F12F∗23 = F12Z12F13Z
∗
12 in U(K(L)⊗K �W K).

Let us assume (6.7) holds for a manageable F ∈ U(L ⊗ L). Then slicing the first leg on both sides of
the last equation by ω ∈ B(L) we obtain the braided comultiplication ∆K : K → M(K �W K) defined
by ∆K(k) := F(k ⊗ 1L)F∗. Moreover, the braided pentagon equation confirms the coassociativity of ∆K :

(∆K �WA idK)∆K(k) = (∆K �WA idK)(F(k ⊗ 1L)F∗) = F12

L L

23F13(k ⊗ 1L⊗L)F∗13(
L L

)∗23F∗12

= F23F12(k ⊗ 1L⊗L)F∗12F∗23 = (idK �WA ∆K)∆K(k).

This motivates the following Definition:

Definition 6.5. Let F ∈ U(L ⊗ L) be a braided, manageable multiplicative unitary. A pair (K,∆K) is
called a braided quantum group over G if

1. F ∈ U(K(L)⊗K),

2. K ∈ YDC∗alg(G) with the inner coactions induced by U and V,

3. the comultiplication ∆K : K → K �WA K is implemented by F:

∆K(k) = F(k ⊗ 1K)F∗ for k ∈ K. (6.11)
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6.2 Quantum groups with projection
In this section, we show that every quantum group with projection canonically gives rise to a braided
multiplicative unitary. Let I = (C,∆C) be a quantum group with the reduced bicharacter WC ∈ U(Ĉ ⊗C).
Given a projection P ∈ U(Ĉ ⊗ C) on G let G = (A,∆A) be its image. Consider the left quantum group
homomorphism ∆L : C → C ⊗ C associated to the projection P.

For a given I-Heisenberg pair (π, π̂) on Hπ and the associated I-anti-Heisenberg pair (π̄, ¯̂π) on Hπ,
define the following representations of C and Ĉ on L := Hπ ⊗Hπ:

ρ̂(ĉ) := (¯̂π ⊗ π̂)∆̂C(ĉ), ρ(c) := (π̄ ⊗ π)∆L(c), and π′(c) := (1Hπ ⊗ π(c)). (6.12)

Lemma 6.6. Define the corepresentations U := (ρ̂⊗ idA)P ∈ U(K(L)⊗ A) of G and V̂ := (idÂ ⊗ ρ)P ∈
U(Â⊗K(L)) of Ĝ acting on L.

1. The pair (U,V) is D(G)̂ -compatible. Equivalently, U and V̂ commute in the following way:

U23P13V̂12 = V̂12P13U23 in U(Â⊗K(L)⊗A) (6.13)

with the identification WA = P ∈ U(Â⊗A).

2. Given any G-Heisenberg pair (η, η̂) on Hη, the unitary Z := (ρ̂⊗ρ)P∗ ∈ U(L⊗L) solves the following
equation:

V̂η̂3U1η = U1ηZ
∗
13V̂η̂3 in U(L ⊗Hη ⊗ L). (6.14)

Equivalently, the operator
L L

:= Z ◦ Σ ∈ U(L ⊗ L) defines a braiding.

3. (ρ̂, π′) is an I-Heisenberg on L, that is,

WC
ρ̂3WC

1π′ = WC
1π′WC

13WC
ρ̂3 in U(Ĉ ⊗K(L)⊗ C) (6.15)

Proof. Lemma 3.40 implies ∆̂C |Â = ∆̂A and ∆L|A = ∆A. We also may identify WA with P. Then
Corollary 4.15 implies (6.13).

The pentagon equation (3.28) for P yields Pη̂3P1η = P1ηP13Pη̂3. Applying ρ̂⊗ idHη ⊗ ρ on both sides
of the last expression gives (6.14).

Using the Heisenberg commutation relation (2.12) of the pair (π, π̂), we compute

WC
π̂4WC

¯̂π4W
C
1π = WC

π̂4WC
1πWC

¯̂π4 = WC
1πWC

14WC
π̂4WC

¯̂π4.

The character condition (2.9) on the first leg of WC shows that the last equation is equivalent to (6.15).

Theorem 6.7. Let I = (C,∆C) be a C∗-quantum group with a projection P ∈ U(Ĉ ⊗ C). The the second
leg of the unitary

F = P∗WC ∈ U(Ĉ ⊗ C) (6.16)

is invariant under the left quantum group homomorphism ∆L : C → C ⊗ C associated to the projection P.
Let WC := (π̂ ⊗ π)WC ∈ U(Hπ ⊗ Hπ) be a manageable multiplicative unitary. Then F := (ρ̂ ⊗ ρ)F ∈
U(L ⊗ L) is a manageable, braided multiplicative unitary with respect to the D(G)̂ -compatible pair (U,V)
of corepresentations on L.

The proof uses the following lemma on commutation relations between P and F.

Lemma 6.8. Let (η, η̂) be an I-Heisenberg pair on a Hilbert space Hη. Then

P13Pη̂3F1η = F1ηP13Pη̂3 in U(Ĉ ⊗K(Hη)⊗ C), (6.17)

P∗1ηFη̂3 = Fη̂3P∗1η in U(Ĉ ⊗K(Hη)⊗ C). (6.18)
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Proof. Using (η, η̂) we rewrite (3.3) as

WC
η̂3P1η = P1ηP13WC

η̂3 in U(Â⊗K(Hη)⊗ C). (6.19)

Firstly,
P13Pη̂3F1η = P13Pη̂3P∗1ηWC

1η = P∗1ηPη̂3WC
1η = P∗1ηWC

1ηP13Pη̂3 = F1ηP13Pη̂3.

The first equality uses the definition of F in (6.16), the second equality uses the pentagon equation (3.28)
for P, the third equality uses the bicharacter condition (6.19), and the fourth equality again uses (6.16).

Secondly,
P∗1ηFη̂3 = P∗1ηP∗η̂3WC

η̂3 = P∗η̂3P∗13P∗1ηWC
η̂3 = P∗η̂3WC

η̂3P∗1η = Fη̂3P∗1η.
The first equality follows from (6.16), the second equality uses the pentagon equation (3.28), the third
equality uses (6.19), and the last equality again uses (6.16).

Proof of Theorem 6.7. In order to show that F ∈ U(L ⊗ L) is a braided multiplicative unitary, we must
show the following:

F23F12 = F12Z23F13Z
∗
23F23 in U(L ⊗ L⊗ L), (6.20)

U13U23F12 = F12U13U23 in U(K(L ⊗ L)⊗A), (6.21)

V̂13V̂12F23 = F23V̂13V̂12 in U(Â⊗K(L ⊗ L)), (6.22)

where U, V̂ and Z are same as in Lemma 6.6.
Equation (3.19) gives

(idĈ ⊗∆L)WC = P12WC
13 in U(Ĉ ⊗ C ⊗ C). (6.23)

Equation (3.32) shows that ∆L|A = ∆A. Therefore, we get

(idĈ ⊗∆L)F = ((idÂ ⊗∆A)P∗)(idĈ ⊗∆L)WC = P∗13P∗12P12WC
13 = F13, (6.24)

where the second equality uses (6.23) and (3.31) and the last equality follows from the definition (6.16)
of F.

Hence the second leg of F is ∆L-invariant. To establish the braided pentagon equation for F, we
compute:

F1ηP∗η̂3F13Pη̂3Fη̂3 = P∗η̂3P∗13F1ηP13F13Pη̂3Fη̂3 = P∗η̂3P∗13P∗1ηWC
1ηWC

13WC
η̂3

= P∗1ηP∗η̂3WC
η̂3WC

1η = P∗1ηFη̂3WC
1η = Fη̂3P∗1ηWC

1η = Fη̂3F1η. (6.25)

The first equality uses the first auxiliary relation (6.17), the second equality follows from (6.16), the third
equality uses the Heisenberg commutation relations (2.12) for P and WC , the fourth equality uses (6.16),
the fifth equality uses the second auxiliary relation (6.18) and the sixth equality again uses (6.16).

The invariance condition (6.24) leads to the following observation:

(idĈ ⊗ ρ)F = (idĈ ⊗ (η ⊗ π)∆L)F = F1π = (idĈ ⊗ π
′)F. (6.26)

Equation (6.15) shows that (ρ̂, π′) is an I-Heisenberg pair. We replace (η, η̂) by (ρ̂, π′) in (6.25).
Keeping (6.26) in mind, we get

F1π′P∗ρ̂3F13Pρ̂3Fρ̂3 = Fρ̂3F1π′ in U(Â⊗K(L)⊗A). (6.27)

Applying (r̂ ⊗ idL ⊗ ρ) on both sides of (6.27) yields (6.20).
Similarly, replacing (η, η̂) by (ρ̂, π′) in (6.17) and observing (6.26), we get

P13Pρ̂3F1ρ = P13Pρ̂3F1π′ = F1π′P13Pρ̂3 = F1ρP13Pρ̂3 in U(Â⊗K(L)⊗A). (6.28)

Then application of (ρ̂⊗ idL ⊗ ρ) on both sides of (6.28) yields (6.21).
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Recall the identification χA→C = P ∈ U(Â⊗ C) in (3.37). Since ∆L|A = ∆A, Proposition 4.14 shows
that the pair of representations (ρ̂, ρ) is a χA→C-Drinfeld pair. Therefore, (ρ̂, ρ) satisfies (4.8), which is
equivalent to

WC
ρ̂4P14P1ρ = P1ρP14WC

ρ̂4 in U(Â⊗K(L)⊗ C). (6.29)

Using (6.16), (6.13) and (6.29), we obtain

P14P1ρFρ̂4 = P14P1ρP∗ρ̂4WC
ρ̂4 = P∗ρ̂4P1ρP14WC

ρ̂4 = Fρ̂4P14P1ρ. (6.30)

Applying (ρ̂⊗idL⊗ρ) on both sides of (6.30) gives (6.22). A simple observation shows Z∗F = (ρ̂⊗ρ)(P∗F) =
(ρ̂⊗ ρ)(WC). Let QC and W̃C ∈ U(Hπ ⊗Hπ) be the operators in Definition 2.10, defining manageability of
WC = (π̂ ⊗ π)WC ∈ U(Hπ ⊗Hπ).

Let Q := QT
C ⊗QC . Then Q⊗Q commutes with F, Q⊗QC commutes with U, and QC ⊗Q commutes

with V̂.
A routine computation, similar to the proof of Theorem 6.16, shows that the unitary F̃ ∈ U(L ⊗ L)

defined by
F̃ :=

(
(WC)∗

)R
Ĉ
⊗T

13
(WC

14)∗
(
(WC)∗)T⊗T

23 W̃C24,

where RĈ is the unitary antipode of Î, satisfies the last condition in (6.3).
Hence, the manageability of F follows from the manageability of WC .

Next we reconstruct a manageable multiplicative unitary generating I from P and F. This is a special
case of the general Theorems 6.15 and 6.16 of the next Section.

Proposition 6.9. Let (ξ, ξ̂) be a G-Heisenberg pair on a Hilbert space H. Then

W1234 := P13U23V̂∗34F24V̂34 in U(H⊗L⊗H⊗L) (6.31)

is a multiplicative unitary generating I = (C,∆C), where P = (ξ̂⊗ξ)P ∈ U(H⊗H), U = (idL⊗ξ)U ∈ U(L⊗H)
and V̂ = (ξ̂ ⊗ idL)V̂ ∈ U(H⊗L).

Proof. By Lemma 6.6 (3) we know (ρ̂, π′) is an I-Heisenberg pair on L. Since ∆̂C |Â = ∆̂A, (ρ̂, π′) is also
an G-Heisenberg pair on L. We rewrite (3.28) as

P∗1π′U23P1π′ = P13Uρ̂3 in U(Â⊗K(L)⊗A). (6.32)

Equation (6.32) implies

P1ξU2ξV̂∗34F24V̂34 = P∗1π′U2ξP1π′V̂
∗
ξ̂4F24V̂ξ̂4 = P∗1π′U2ξV̂

∗
ξ̂4P1π′F24V̂ξ̂4.

Now (6.14) and (6.30) imply

P∗1π′U2ξV̂
∗
ξ̂4P1π′F24V̂ξ̂4 = P∗1π′V̂

∗
ξ̂4U2ξZ

∗
24F24P1π′V̂ξ̂4.

The defining condition (6.16) gives Z∗F = (ρ̂⊗ ρ)WC . Using (6.23) we get

P∗1π′V̂
∗
ξ̂4U2ξZ

∗
24F24P1π′V̂ξ̂4 = P∗1π′V̂

∗
ξ̂4U2ξ((r̂⊗r)WC)24P1π′V̂ξ̂4 = P∗1π′V̂

∗
ξ̂4((ρ̂⊗(ξ⊗ρ)∆L)WC)234P1π′V̂ξ̂4.

Define Π̂ : Ĉ → B(H⊗L) and Π: C → B(H⊗L) by

Π(c) := P∗ξ̂s(1H ⊗ r̂(ĉ))Pξ̂s and Π̂(ĉ) := V̂∗((ξ ⊗ r)∆L(c))V̂

for c ∈ C and ĉ ∈ Ĉ.
Theorems 6.15 and 6.16 ensure that W1234 := (Π̂ ⊗ Π)WC ∈ U(H ⊗ L ⊗ H ⊗ L) is a manageable

multiplicative unitary. Therefore, (Π, Π̂) is an I-Heisenberg pair acting on H ⊗ L; hence W1234 is a
multiplicative unitary generating I.
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The second leg of the unitary F := WCP∗ ∈ U(Ĉ ⊗ C) is invariant under the right quantum group
homomorphism ∆R : C → C ⊗ C induced by P. By virtue of equation (3.33) we can replace ρ by ρ′ :=

(π̄ ⊗ π)∆R. The operator
L L

:= Z∗ ◦ Σ is also a braiding.
A similar technique as in the proof of Lemma 6.8 shows the following commutation relations:

Lemma 6.10. Let (η, η̂) be any I-Heisenberg pair acting on the Hilbert space Hη. Then

P1ηP13Fη̂3 = Fη̂3P1ηP13 in U(Ĉ ⊗K(Hη)⊗ C), (6.33)

P∗η̂3F1η = F1ηP∗η̂3 in U(Ĉ ⊗K(Hη)⊗ C). (6.34)

Now using Lemma 6.10 we see that F ∈ U(L⊗L) is also a braided multiplicative unitary in the following
sense:

1. F is G-invariant:
U13U23F12 = F12U13U23 in U(K(L ⊗ L)⊗A).

2. F is Ĝ-invariant:
V̂13V̂12F23 = F23V̂13V̂12 in U(Â⊗K(L ⊗ L)).

3. F satisfies the braided pentagon equation:

F23F12 = F12Z
∗
12F13Z12F23 in U(L ⊗ L⊗ L). (6.35)

In order to define manageability for F we modify Definition 6.3 slightly. We replace condition (4) in
Definition 6.3 by

(x⊗ u | FZ | y ⊗ v) = (y ⊗QK(u) | F̃ | x⊗Q−1
K (v)),

where F̃ ∈ U(L ⊗ L) for any x, y ∈ L, u ∈ Dom(QK) and v ∈ Dom(Q−1
K ).

Thus we have an interplay between braided multiplicative unitaries for left and right invariant elements:
PF = FP = WC ∈ U(Ĉ ⊗ C).

6.2.1 Examples of quantum groups with projections
Example 6.11 (Idempotents on groups). Let I be a locally compact group. Example 3.38 shows that any
projection on (C0(I),∆C0(I)) comes from an idempotent group homomorphism p : I → I. Define G := im(p)
and K := ker(p). Then K is a normal subgroup of I, G is a subgroup of I, and I is homeomorphic to
G×K via the multiplication map (g, k)→ gk for g ∈ G, k ∈ K. There is a natural left action of G on I.
The homogeneous space G/I is homeomorphic to K.

The dual (left and right) action of G (or coaction of (C∗r (G),∆C∗r (G))) on G/I is trivial; hence the
braiding operator is just the standard flip. Hence C0(G)� C0(G/I) ∼= C0(G×G/I) ∼= C0(G×K) ∼= C0(I)
and C0(K)� C0(K) ∼= C0(K ×K).

Among the known examples of C∗-quantum groups, the quantum E(2) group by Woronowicz [51], the
quantum az + b group by Woronowicz [50], and the quantum ax+ b group by Woronowicz and Zakrzewski
[55], are of the form F ·P ∈ U(H⊗H). Classically, they are semidirect products of groups. We show that they
are C∗-quantum groups with projection. In those examples we show that every projection P ∈ U(Ĉ ⊗ C)
on I = (C,∆C) is induced by an idempotent Hopf ∗-homomorphisms f : C → C. Moreover, F ∈ U(H⊗H)
is implemented by quantum exponential functions, discussed in [52].

Let C(H) denote the set of closed operator on a Hilbert space H. Given any N ∈ C(H) consider its polar
decomposition N = Phase(N)|N |, where Phase(N) is a partial isometry and |N | is a positive self-adjoint
operator on H. If ker(N) = {0} then Phase(N) is unitary. If N is normal then Phase(N) and |N | commute.

Let R,S ∈ C(H) satisfying some commutation relations such that: R and S are normal and the spectrum
of R and S is contained in some Λ ⊂ C. Assume R+ S ∈ C(H), normal and satisfying the same spectral
condition. Let T := {z ∈ C : |z| = 1}. A continuous function F : Λ→ T is called a quantum exponential
function if

F (R+ S) = F (R)F (S). (6.36)
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In particular, let (R,S) be a pair of commuting self-adjoint operators. More precisely, R and S are self-adjoint,
such that |R| and |S| strongly commute. Then Λ = R, and the function F : R→ T satisfying (6.36) are the
classical exponential functions Ft(r) = exp(itr) parametrised by t ∈ R.

Let 0 < q < 1 and define the sets

C(q) := qZ · T and C(q) := C(q) ∪ {0}. (6.37)

Geometrically, C(q) is a set of concentric circles in the complex plane centered at 0, and C(q) is the closure
of C(q) containing the origin.

Let R,S ∈ C(H) such that R and S are normal, Sp(R),Sp(S) ∈ C(q), and SR = q2RS. In this case, a
quantum exponential function Fq ∈ C(C(q)) satisfying (6.36) is defined by

Fq(t) :=


∞∏
k=1

1+q2kz
1+q2kz

z ∈ C(q) \ {−q2Z},

−1 otherwise.
(6.38)

Clearly, |Fq(η)| = 1 for any η ∈ C(q).

6.2.2 Quantum E(2) group
Let

G′ =
{(

v n
0 v−1

)
: v, n ∈ C and |v| = 1

}
.

For any z ∈ C the map z 7→ v2z + vn defines a homomorphism from G′ onto the group of orientation and
Euclidean distance preserving transformations of C. The kernel of this homomorphism is isomorphic to Z2;
hence G′ is a double cover of the group of motions of the two dimensional Euclidean plane.

Let 0 < q < 1 be the deformation parameter. Let C′ be the ∗-algebra generated by v and n subject to
the following relations

v∗v = vv∗ = 1, n∗n = nn∗, and vnv∗ = qn. (6.39)

We denote the algebraic tensor product by �. Next we define the comulitplication ∆C′ : C′ → C′ � C′ on
generators of C′:

∆C′(v) := v � v and ∆C′(n) := v � n+ n� v∗. (6.40)
Clearly, ∆C′ is coassociative. Woronowicz described its C∗-algebraic version, denoted by Eq(2) in [47,51].
In order to pass to the C∗-algebra level, first we realise v as unitary and n as normal, unbounded operator
on some Hilbert space H.

There is a natural action of Z on C0(C(q)): for any k ∈ Z and f ∈ C0(C(q)) we define

(qkf)(z) := f(qkz) for all z ∈ C(q). (6.41)

Let C′ = C0(C(q)) o Z be the corresponding crossed product. The ∗-homomorphism C0(C(q)) ↪→ C′ is
nondegenerate, and the generator of Z in C′ is a unitary v ∈M(C′) with

vfv∗ = q1f for all f ∈ C0(C(q)).

Define the function n on C0(C(q)) by

n(z) = z for all z ∈ C(q).

Let X be a locally compact Hausdorff space. The set of all elements affiliated, in the sense of [47, Definition
1.1], to C0(X) is C(X). Therefore, n is affiliated to C0(C(q)), and due to the nondegenerate embedding of
C0(C(q)) into C′, n is affiliated to C′. Finally, n is normal, Sp(n) ⊂ C(q) and vnv∗ = qn.

The underlying C∗-algebra of Eq(2), again denoted by C′, is characterised by requiring v, n affiliated
to C′ with

v∗v = vv∗ = 1, n∗n = nn∗, Sp(n) ⊂ C(q) and vnv∗ = qn. (6.42)
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Concretely, we can write (6.42) in terms of the following operator domains:

EH :=
{
N ∈ C(H) : N

∗N = NN∗

Sp(N) ⊂ C(q)

}
, (6.43)

G′H := {(v, n) ∈ U(H)× EH : vnv∗ = qn} . (6.44)

Therefore, C′ is generated by a pair (v, n) ∈ G′H.
Moreover, C′ is universal in the following sense: for any C∗-algebra D′ such that V,N are affiliated to D′

satisfying (6.42) there is a unique φ ∈ Mor(C′, D′) such that φ(v) = V and φ(n) = N . By construction,
the spectrum of n is restricted to a subset of C(q). The reason behind this is to give meaning to the
comulitplication map ∆C′ ∈ Mor(C′, C′ ⊗ C′) (see [47, Theorem 3.1]) on the generators v and n:

∆C′(v) = v ⊗ v and ∆C′(n) = v ⊗ nu n⊗ v∗, (6.45)

where u denotes the closure of the sum. More precisely, ∆C′(n) is affiliated to C′ ⊗ C′ and Sp(n) ⊂ C(q)
plays a crucial role to see this.

The dual of Eq(2) is the quantum deformation of the group of triangular matrices

Ĝ′ :=
{(

a−1 0
b a

)
: a ∈ R, a > 0 and b ∈ C

}
.

Define the operator domain

Ĝ′H :=
{

(N̂ , b) ∈ C(H)× EH : N̂ = N̂∗, Sp(N̂) ⊂ Z, N̂ and |b| strongly commute,
Sp(N̂ , |b|) ⊂ Σq, on ker(b)⊥: (Phase(b))∗N̂Phase(b) = N̂ + 2I

}
,

where Σq is the closure of the set Σq := {(s, qr) : s, r − s
2 ∈ Z}.

The underlying C∗-algebra of Êq(2), denoted by Ĉ′, is the universal C∗-algebra generated by a
pair (N̂ , b) ∈ Ĝ′H.

The dual comutiplication ∆̂C′ : Ĉ′ → Ĉ′ ⊗ Ĉ′ on the generators is given by

∆̂C′(N̂) := N̂ ⊗ 1u 1⊗ N̂ and ∆̂C′(b) := b⊗ qN̂/2 u q−N̂/2 ⊗ b.

Given a unitary v and a self adjoint operator N̂ with integer spectrum recall

(1⊗ v)N̂⊗1 :=
∫
Z×T

zsdEN̂ (s)⊗ dEv(z),

where dEN̂ (·) and dEv are the spectral measures of N̂ and u, respectively.
Let π : C′ → B(H) and π̂ : Ĉ′ → B(H) for some Hilbert space H. For simplicity, we write v ,n, N̂ and b

instead of π(v), π(n), π̂(N̂) and π̂(b), respectively.

Theorem 6.12 ([51, Section 5]). The unitary

W := Fq(qN̂/2b⊗ vn)(1⊗ v)N̂⊗1 in U(H⊗H) (6.46)

is a multiplicative unitary for Eq(2) if and only if
1. (v, n) ∈ G′H and (N̂ , b) ∈ Ĝ′H,
2. v∗N̂v = N̂ + 1,
3. vbv∗ = q−1/2b,
4. N̂ and |n| strongly commute,
5. bn∗ = q1/2n∗b,

6. nb− q1/2bn = (1− q2)q−(N̂+1)/2v.
This is equivalent to (π, π̂) being a Eq(2)-Heisenberg pair on H.
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Projection on quantum E(2)
The Hopf ∗-homomorphism f : C′ → C′ defined by f(v) := v and f(n) := 0 is a projections on Eq(2).
Since Fq(0) = 1, applying f on the second leg of the multiplicative unitary in (6.46) gives a bicharacter P
defined by

P := (id⊗ f)Fq(qN̂/2b⊗ vn)(1⊗ v)N̂⊗1 = (1⊗ v)N̂⊗1 in U(H⊗H).
The commutation relation v∗N̂v = N̂ + 1 shows that P is a projection on Eq(2). Equivalently, P satisfies
the pentagon equation (2.4):

P23P12P∗23 = (1⊗ 1⊗ v)1⊗N̂⊗1(1⊗ v ⊗ 1)N̂⊗1⊗1(1⊗ 1⊗ v∗)1⊗N̂⊗1 = (1⊗ v ⊗ v)N̂⊗1⊗1 = P12P13.

The second leg in the above computation is realized on a Hilbert space associated to a Eq(2)-Heisenberg
pair.

Next we define the right quantum group homomorphism ∆R := (idC′ ⊗ f)∆C′ . The comultiplication
formula (6.45) shows that ∆R(vn) = vn⊗ 1. Since the second leg of F = Fq(qN̂/2b⊗ vn) is ∆R-invariant,
Equation (3.16) yields (6.34). The commutation relations in Theorem (6.12) and realisation of the second
leg on a Hilbert space, implies

(1⊗ v ⊗ 1)N̂⊗1⊗1(1⊗ 1⊗ v)N̂⊗1⊗1(1⊗ qN̂/2b⊗ vn)

= (1⊗ v ⊗ 1)N̂⊗1⊗1(qN̂ ⊗ qN̂/2b⊗ vn)(1⊗ 1⊗ v)N̂⊗1⊗1

= (qN̂ ⊗ qN̂/2b⊗ vn)(1⊗ v ⊗ 1)N̂⊗1⊗1(1⊗ 1⊗ v)N̂⊗1⊗1.

Thus F and P satisfy (6.33).

6.2.3 Quantum az+b group
The group az + b with coefficients a ∈ C \ {0}, b ∈ C is the group of affine transformations of the complex
plane C. Its quantum deformation I = (C,∆C) in the C∗-algebraic framework was introduced in [50]
by Woronowicz. For simplicity, we consider the deformation parameter 0 < q < 1. A pair of normal
operators (a, b) is an I-pair1 on a Hilbert space H if

Sp(a) ⊂ C(q), ker(a) = {0}, Sp(b) ⊂ C(q),

(Phase(a))b(Phase(a))∗ = qb, |a|−itb|a|it = q−itb, for all t ∈ R.
(6.47)

In the quantum version, the pair (a, b) in the classical az + b group is replaced by an I-pair.
For any η, η′ ∈ C(q) we write η = qiϕ+k and η′ = qiψ+l and let

χ(η, η′) := qi(ϕl+kψ).

Then χ is a bicharacter on the multiplicative group C(q).
Given an I-pair (a, b), let Λ = Sp(a)× Sp(b), and

χ(b−1 ⊗ 1, 1⊗ a) :=
∫

Λ
χ(λ−1, λ′)dEb(λ)⊗ dEa(λ′),

where dEa and dEb are the respective spectral measures on Sp(a) and Sp(b).
Next we recall the description of the underlying C∗-algebra of quantum az + b. For any ξ ∈ C(q) set

b(ξ) := ξ.

Then b ∈ C(C(q)) is normal and Sp(b) ⊂ C(q). Therefore, b is affiliated to C0(C(q)). There is an action
of C(q) on C0(C(q)) defined by

(γηf)(ξ) := f(η · ξ) for η ∈ C(q), f ∈ C0(C(q)), ξ ∈ C(q).
1 Originally, in [50], such pairs (a, b) are called G-pairs, where G denotes quantum az + b. In order to keep

notation consistent we rename them I-pair.
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Let C = C0(C(q)) oC(q) be the corresponding crossed product. Since the canonical embedding C0(C(q)) ↪→
M(C) is nondegenerate, b is affiliated to C. By definition,M(C) contains a strictly continuous one-parameter
group of unitaries (Uη)η∈C(q) implementing the action γ:

UηfU∗η = γηf for f ∈ C0(C(q)).

It was shown, in [50, Section 4], that Uη = χ(a, η), where a is a normal operator affiliated to C and Sp(a) ⊂
C(q). Moreover, a is invertible and a−1 is also affiliated to C.

Given η ∈ C(q), ξ ∈ C(q) we have γη(b)(ξ) = b(η · ξ) = η · ξ. Therefore, γηb = η · b, giving Uηb = η · bUη
for η ∈ C(q). Now Uq = Phase(a) and Uqit = |a|−it for t ∈ R. Let π be a nondegenerate representation of C
on H. Theorem 1.2 in [47] gives a natural extension of π to the elements affiliated to C. Thus (π(a), π(b))
is an I-pair on H. Proposition 4.2 in [50] shows that every I-pair is of this form.

The comutiplication on ∆C : C → C ⊗ C is defined by

∆C(a) := a⊗ a, ∆C(b) := a⊗ bu b⊗ 1, (6.48)

where u denotes the closure of the sum. More precisely, ∆C(a) and ∆C(b) are affiliated to C ⊗ C. The
spectral condition Sp(a),Sp(b) ⊂ C(q) is crucial to show that a⊗ bu b⊗ 1 is normal.

A modular multiplicative unitary for quantum az + b is given by

W = Fq(b−1 ⊗ a)χ(b−1 ⊗ 1, 1⊗ a).

A corresponding manageable multiplicative unitary is defined by the following theorem due to Woronowicz:

Theorem 6.13 ([50, Theorem A.1]). Let (a, b) be a I-pair, s be a unitary, and r be a strictly positive
self-adjoint operator on a Hilbert space H. Assume that ker(b) = {0}, r and s strongly commute with a
and b, Sp(r) ⊆ qZ ∪ {0} and r−itsrit = q−its for t ∈ R. Then the unitary

W := Fq(b−1a⊗ b)χ(sb−1 ⊗ 1, 1⊗ a) in U(H⊗H) (6.49)

is a manageable multiplicative unitary for the quantum az + b group.

Projection on quantum az+b

In the case of quantum az + b, the Hopf ∗-homomorphism f : C → C defined by f(a) := a and f(b) = 0
is a projection on quantum az + b. Define the unitary P := χ(sb−1 ⊗ 1, 1 ⊗ a), where a, b, s are as in
Theorem 6.13. By (2.2) in [50] we know

χ(sb−1, η)aχ(sb−1, η)∗ = ηa for all η ∈ C(q).

Therefore, we get

χ(1⊗ sb−1 ⊗ 1, 1⊗ 1⊗ a)χ(sb−1 ⊗ 1⊗ 1, 1⊗ a⊗ 1)χ(1⊗ sb−1 ⊗ 1, 1⊗ 1⊗ a)∗

= χ(sb−1 ⊗ 1⊗ 1, 1⊗ a⊗ a) = χ(sb−1 ⊗ 1⊗ 1, 1⊗ a⊗ 1)χ(sb−1 ⊗ 1⊗ 1, 1⊗ 1⊗ a).

Hence, P is the projection bicharacter induced by f . The corresponding right quantum group homomorphism
is defined by ∆R := (idC ⊗ f)∆C . The comultiplication formula (6.48) shows that ∆R(b) = b ⊗ 1 and,
clearly, the second leg of the unitary F := Fq(b−1a ⊗ b) is ∆R-invariant. By the definition (3.16) of ∆R

we get (6.34). The defining conditions of I-pairs (6.47) show that a⊗ a and b−1a⊗ b strongly commute;
hence Fq(b−1a⊗ a) and a⊗ a commute. Therefore,

χ(sb−1 ⊗ 1⊗ 1, 1⊗ a⊗ a)Fq(1⊗ b−1a⊗ b) = Fq(1⊗ b−1a⊗ b)χ(sb−1 ⊗ 1⊗ 1, 1⊗ a⊗ a)

shows that F and P satisfy (6.33).
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6.2.4 Quantum ax+b group
The group ax+b with coefficients a ∈ R>0, b ∈ R is the group of orientation-preserving affine transformations
of the real line R. Its quantum deformation I = (C,∆C) in the C∗-algebraic framework was introduced by
Woronowicz and Zakrzewski in [55]. The deformation parameter q ∈ T is such that q2 = e−i~, where ~ is a
real number such that 0 < ~ < π. The current construction is more delicate compared to quantum az + b.

Let a and b be self-adjoint operators on a Hilbert space H. Assume that a is strictly positive. We
write a( b if

aitba−it = e~tb for all t ∈ R.
The notion of I-pair (see (6.47)), for a given pair (a, b) on a Hilbert space H becomes as follows:

a is strictly positive and selfadjoint, b is selfadjoint, and a( b.

But the comultiplication ∆C(b) = a⊗ b+ b⊗ 1 fails to give a self-adjoint operator in general. This is the
fundamental difference between quantum az+ b and quantum ax+ b. To overcome this difficulty the notion
of I-triple (originally called G-triple) was introduced in [55]. Let a, b, β be self-adjoint operators acting on a
Hilbert space H. A triple (a, b, β) is called an I-triple if

(a, b) is an I-pair on H, β2 = δ(b 6= 0), βa = aβ and βb = −bβ, (6.50)

where δ is the characteristic function (not a bicharacter) defined by

δ(A) =
{

1 if A is true,
0 if A is false. (6.51)

Passing from I-pairs to I-triples adds one extra generator β. Therefore, the C∗-algebra C corresponds to an
extended quantum ax+ b.

Given an I-triple (a, b, β) the reflection operator τ is defined by τ = α(β⊗β)δ(b⊗ b < 0), where α = ±1.
Here α is the phase factor associated to the deformation parameter ~ related as αie iπ2

2~ . The condition
α = ±1 restricts the values of the deformation parameter to ~ = π

2k+3 , where k = 0, 1, 2 · · ·.
Now we extend the domain of a⊗ b+ b⊗ 1 to

Dom(a⊗ b+ b⊗ 1) + {x ∈ Dom((a⊗ b+ b⊗ 1)∗) : τ(x) = x}.

Then [a⊗ b+ b⊗ 1]τ is a self-adjoint operator defined as the restriction of (a⊗ b+ b⊗ 1)∗ to the extended
domain above.

Let B = C0([0,+∞))⊗M2(C) and B0 = C0((0,+∞))⊗M2(C). The underlying C∗-algebra C of the
quantum ax+ b group is defined by C = B0 o R, where R acts by

(γtf)(s) := f(e~ts) for t, s ∈ R, f ∈ B0.

The operators log(a), b, iβ are affiliated to C (for details see [55, Section 3]), and [55, Proposition 3.1] shows
that C is generated by log(a), b, iβ. Then the comultiplication ∆C : C → C ⊗ C is defined by

∆C(a) := a⊗ a, ∆C(b) := [a⊗ b+ b⊗ 1]τ ,

∆C(iβb) := i{w(e
i~
2 b−1a⊗ b)−1(β ⊗ 1) + (1⊗ β)w(e

i~
2 b−1a⊗ b−1)−1}∆C(b),

(6.52)

where w is the polynomial of order 2k + 3 defined by

w(t) :=
2k+3∏
l=1

(
1 + ei( 1

2−l)~t
)

for all t ∈ R. (6.53)

Theorem 6.14. Let (a, b, β) be an I-triple and let r, s be strictly positive self-adjoint operators on a Hilbert
space H. Assume that ker(b) = {0}, r and s strongly commute with a, b and β and r( s. Then the unitary
defined by

W := F~(e
i~
2 b−1a⊗ b, τ)∗e

i
~ log(s|b|−1)⊗log(a) in U(H⊗H) (6.54)

is a manageable multiplicative unitary for the quantum ax+ b group.
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Projection on quantum ax+b

The projection on (extended) quantum ax+ b is induced by the Hopf ∗-homomorphism f : C → C defined
by f(a) := a, f(b) := 0; hence by the definition of I-triples (6.50) f(β) = 0. Moreover, (idH ⊗ f)τ =
(idH ⊗ f)α(β ⊗ β)χ(b⊗ b < 0) = 0. Define the unitary P, associated to the projection bicharacter induced
by the projection f , by

P := (id⊗ f)
(
F~(e

i~
2 b−1a⊗ b, τ)∗e

i
~ log(s|b|−1)⊗log(a)) = e

i
~ log(s|b|−1)⊗log(a).

By definition, w(0) = 1. Define the right quantum group homomorphism ∆R := (idC ⊗ f)∆C . The
comultiplication formula shows that ∆R(a) = a⊗ a, ∆R(b) = b⊗ 1 and ∆R(iβb) = iβb⊗ 1. Therefore, the
second leg of the unitary F := F~(e i~

2 b−1a⊗ b, τ)∗ is ∆R-invariant. Clearly,

P12P13 = e
i
2 log(s|b|−1)⊗(log(a)⊗1+1⊗log(a)).

Since a ( b, we get aitba−it = e~tb for all t ∈ R. Putting t = −i yields strong commutation of
elog(a)⊗1+1⊗log(a) and e i

2 b−1a⊗ b. The defining conditions of I-triples show that elog(a)⊗1+1⊗log(a) and τ
commute. Therefore,

P12P13F~(1⊗ e
i~
2 b−1a⊗ b, τ)∗ = F~(1⊗ e

i~
2 b−1a⊗ b, τ)∗P12P13.

Similarly, (3.16) shows that P23F12 = F12P23. Thus P and F satisfy (6.33) and (6.34).

6.3 Construction of a standard multiplicative unitary
A braided multiplicative unitary F ∈ U(L ⊗ L) over G yields a multiplicative unitary in the usual sense.
Thus we can construct a “big” quantum group starting from a standard and a braided quantum group,
which is our semidirect product for C∗-quantum group.

Theorem 6.15. The unitary W1234 ∈ U(H⊗L⊗H⊗L) defined by

W1234 := WA
13U23V̂∗34F24V̂34 (6.55)

is a multiplicative unitary.

Proof. We need to verify (2.4) for W1234. Since it is going to be a long routine computation we write it
step by step in order to avoid confusion. Whenever we use relation(s) to a group of terms to simplify we
enclose them by {· · · }.

Let L.H.S. = W3456W1234W∗3456. Using (6.55) we write:

L.H.S. = WA
35{U45V̂∗56F46V̂56}{WA

13U23}V̂∗34F24V̂34V̂∗56F∗46V̂56U∗45(WA
35)∗.

Now U45V̂∗56F46V̂56 and WA
13U23 commute,

L.H.S. = {WA
35WA

13}U23U45V̂∗56F46{V̂56}V̂∗34F24V̂34{V̂∗56}F∗46V̂56U∗45(WA
35)∗.

Using (2.4) and the ordinary commutation between V̂56, V̂∗34F24V̂34, we get

L.H.S. = WA
13WA

15{WA
35U23}U45V̂∗56{F46V̂∗34}F24{V̂34F∗46}V̂56U∗45(WA

35)∗.

Equations (6.4), (6.8) and then the ordinary commutations between V̂56 and V̂34, V̂36 and F24 yield

L.H.S. = WA
13WA

15U23U25WA
35U45{V̂∗56V̂∗34}V̂∗36F46{V̂36}F24{V̂∗36}F∗46V̂36{V̂34V̂56}U∗45(WA

35)∗

= WA
13WA

15U23U25{WA
35U45V̂∗34}V̂∗56V̂∗36F46F24F∗46V̂36V̂56{V̂34U∗45(WA

35)∗}.
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The braided pentagon equation (6.6), equation (6.9) and then commutation between WA
35 and F24Z46F26Z

∗
46

yield

L.H.S. = WA
13WA

15U23U25V̂∗34U45V̂∗56{WA
35}{F24Z46F26Z

∗
46}{(WA)∗35}V̂56U∗45V̂34

= WA
13WA

15U23{U25V̂∗34}U45{V̂∗56F24}Z46F26{Z∗46V̂56U∗45}V̂34.

Using commutation between U25 and V̂34, V̂56 and F24 and then using (6.2) we get:

L.H.S. = WA
13WA

15U23V̂∗34{U25U45F24U∗45}V̂∗56{U45F26U∗45}V̂56V̂34.

Next we use (6.3) and commutation between F26 and U45 to get the following equality

L.H.S. = WA
13{WA

15}{U23V̂∗34F24}{U25V̂∗56F26V̂56}{V̂34}.

Finally, using commutation between WA
15 and U23V̂∗34F24, U25V̂∗56F26V̂56 and V̂34 we obtain the desired

pentagon equalion (2.4) for W1234:

L.H.S. = {WA
13U23V̂∗34F24V̂34}{WA

15U25V̂∗56F26V̂56} = W1234W1256.

Next we show that W1234 is manageable.

Theorem 6.16. If F ∈ U(L ⊗ L) is manageable, so is W1234 := WA
13U23V̂∗34F24V̂34.

Proof. Using (6.2) we can rewrite (6.55) in the following way:

W1234 = WA
13V̂∗34U23Z

∗
24F24V̂34. (6.56)

Definition 6.3 and Lemma 6.4 show that W1234 commutes with QA ⊗QK ⊗QA ⊗QK .
We shall show that

W̃1234 := W̃
A

13V̂∗34F̃24Ũ23V̂23 ∈ U(H⊗L⊗H⊗L) (6.57)
satisfies the manageability condition ((ii)) for W1234.

Let x, y ∈ L, s ∈ Dom(QA), t ∈ Dom(QK), u ∈ Dom(Q−1
A ) and v ∈ Dom(Q−1

B ). Let {ei}i=1,2,··· be an
orthonormal basis of L. Then (3.12) and Definition 6.3(4) yield:

(x⊗ s⊗ t | U12Z
∗
13F13 | y ⊗ u⊗ v) =

∑
i

(x⊗ s⊗ t | U12 · (| ei)·(ei | ⊗1⊗ 1) · Z∗13F13 | y ⊗ u⊗ v)

=
∑
i

(x⊗ s | U | ei ⊗ u) · (ei ⊗ t | (Z∗F) | y ⊗ v)

=
∑
i

(
y ⊗QK(t) | F̃ | ei ⊗Q−1

K (v)
)(

ei ⊗QA(s) | Ũ | x⊗Q−1
K (u)

)
=
(
y ⊗QA(s)⊗QK(t) | F̃13Ũ12 | x⊗Q−1

A (u)⊗Q−1
K (v)

)
Since V̂ commutes with QA⊗QK , V̂(Dom(QA)⊗Dom(QK)) and V̂(Dom(Q−1

A )⊗Dom(Q−1
B )) are dense

subspaces of Dom(QA)⊗Dom(QK) and Dom(Q−1
A )⊗Dom(Q−1

B ). Hence we can replace s⊗ t by V̂(s⊗ t)
and u⊗ v by V̂(u⊗ v) in the last computation. This gives(

x⊗ s⊗ t | V̂∗23U12Z
∗
13F13V̂23 | y ⊗ u⊗ v

)
=
(
y ⊗QA(s)⊗QK(t) | V̂∗23F̃13Ũ12V̂23 | x⊗Q−1

A (u)⊗Q−1
K (v)

)
. (6.58)

Let z, w ∈ H and {ej}j=1,2,··· be an orthonormal basis in H as in Lemma 2.37:∑
j

|Q−1
A (ej)) · (QA(ej)| = 1H.
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Then the following computation completes the proof:(
z ⊗ x⊗ s⊗ t |WA

13V̂∗34U23Z
∗
24F24V̂34 | w ⊗ y ⊗ u⊗ v

)
=
∑
j

(
z ⊗ x⊗ s⊗ t |WA

13 · (1⊗ 1⊗ | ej)·(ei | ⊗1) · V̂∗34U23Z
∗
24F24V̂34 | w ⊗ y ⊗ u⊗ v

)
=
∑
j

(
z ⊗ s |WA | w ⊗ ei

)
·
(
x⊗ ei ⊗ t | V̂∗23U12(Z∗F)13V̂23 | y ⊗ u⊗ v

)
=
∑
j

(
w ⊗QA(s) | W̃

A
| z ⊗Q−1

A (ei)
)

·
(
y ⊗QA(ei)⊗QK(t) | V̂∗23F̃13Ũ12V̂23 | x⊗Q−1

A (u)⊗Q−1
K (v)

)
=
(
w ⊗ y ⊗QA(s)⊗QK(t) | W̃

A

13V̂∗34F̃24Ũ23V̂34 | z ⊗ x⊗Q−1
A (u)⊗Q−1

K (v)
)
.

Let I = (C,∆C) be the C∗-quantum group corresponding to the manageable multiplicative unitary W1234
in Theorem 6.16.

Proposition 6.17. I is a C∗-quantum group with projection.

Proof. Let X1234 = WA
13U23 ∈ U(H⊗L⊗H⊗L). Assume X1234 is a bicharacter from I to I. Proposition 2.36

shows that X1234 = WA
13U23 ∈ U(H ⊗ L) is a manageable multiplicative unitary for G; hence X1234 is a

projection. Therefore we need to show that X1234 is a bicharacter.
The following routine computation yields (3.3) for X1234 and W1234:

X3456W1234X∗3456 = WA
35U45WA

13U23V̂∗34F24V̂34U∗45(WA)∗35 = WA
35WA

13U23U45V̂∗34F24V̂34U∗45(WA)∗35

= WA
13WA

15WA
35U23U45V̂∗34F24V̂34U∗45(WA)∗35

= WA
13WA

15U23U25WA
35U45V̂∗34F24V̂34U∗45(WA)∗35

= WA
13U23WA

15U25V̂∗34U45F24U∗45V̂34

= WA
13U23V̂∗34WA

15U25U45F24U∗45V̂34

= WA
13U23V̂∗34WA

15F24U25V̂34

= WA
13U23V̂∗34F24V̂34WA

15U25 = W1234X1256.

The first equality follows from the assumption, the second equality uses commutation of unitaries, the
third equality uses the pentagon equation (2.4) for WA, the fourth equality uses (2.26), the fifth equality
follows from (6.1), the sixth equality uses commutation of unitaries, the seventh equality follows from the
G-invariance condition (6.3) for F, the eighth equality follows from the commutation of unitaries, and the
last equality is trivial.

Similarly, we can show W3456X1234 = X1234X1256W3456 which gives (3.4). Hence, X1234 ∈ U(H⊗ L ⊗
H⊗ L) is a projection on I.

At first sight, the choice for the expression W1234 in the above Theorem 6.15 seems ad hoc. Let us
justify the origin of this formula.

Let G be a weakly regular quantum group and let (K,∆K) be a braided quantum group over G (see
Definition 6.5). Let λ : K → K ⊗ A be the inner coaction of G on K defined by λ(k) := U(k ⊗ 1Â)U∗
for k ∈ K.

It can be show that A �WA K = ιA(A) · ιK(K) where ιA(a) = π(a) ⊗ 1H and ιK(k) = V̂∗(1 ⊗ k)V̂,
where V̂ := (η̂ ⊗ idL)V̂ for any G-Heisenberg pair (η, η̂).

Next, by Corollary 5.42 we get the following: A �WA K �WA A �WA K ∼= A �WA K ⊗ A �WA K.
Denote the embeddings of A, K, A, K into A�WA K ⊗A�WA K by j1, j2, j3, j4, respectively. Then

j1(a) = (ιA ⊗ ιA)∆A(a), j2(k) = (ιK ⊗ ιA)λ(k),
j3(a) = (1A�WAK ⊗ ιA(a)), j4(k) = (1A�WAK ⊗ ιK(k)).
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for a ∈ A and k ∈ K.
Define ∆A�WAK : A�WA K → A�WA K ⊗A�WA K by

∆A�WAK(ιA(a)ιK(k)) := (ιA ⊗ ιA)∆A(a) · (j2 ∗ j4)∆K(k),

where j2 ∗ j4(k1 �WA k2) := j2(k1)j4(k2) for a ∈ A and k, k1, k2 ∈ K.
We compute:

V̂∗12U23V̂∗34F24 = WA
13U23V̂∗12(WA

13)∗V̂∗34F24 = WA
13U23V̂∗12V̂∗34V̂∗14(WA

13)∗F24

= WA
13U23V̂∗34V̂∗12V̂∗14F24(WA

13)∗

= WA
13U23V̂∗34F24V̂∗12V̂∗14(WA

13)∗.

The first equality uses (6.1), the second equality follows from the corepresentation condition (6.9), the third
equality follows from the ordinary commutations between V̂34 and V̂12, WA

13 and F24, the fourth equality
uses the invariance property of F under the Ĝ-coaction (6.4).

Therefore, using the last relation we obtain:

(ιA ⊗ ιA)∆A(a) · (j2 ∗ j4)∆K(k)

=
(
(π ⊗ π)∆A(a)

)
13
V̂∗12U23V̂∗34F24(k)2(V̂∗12U23V̂∗34F24)∗

= WA
13π(a)1(WA)∗13WA

13U23V̂∗34F24V̂∗12V̂∗14(WA
13)∗(k)2

(
WA

13U23V̂∗34F24V̂∗12V̂∗14
)∗

= WA
13U23V̂∗34F24π(a)1V̂12k2V̂∗12(WA

13U23V̂∗34F24)∗ = W1234
(
ιA(a) · ιK(k)⊗ 1A�WAK

)
W∗1234.

Hence, the comultiplication on A�WAK is implemented by the manageable multiplicative unitary W1234
defined by (6.55). Moreover, W1234 is a unitary in M(H ⊗ L ⊗ A �WA K). Therefore, we expect the
general theory of braided quantum groups to generate (A�WA K,∆A�WAK) as a quantum group from the
manageable multiplicative unitary W1234.

6.4 From the complex quantum plane to simplified quantum
E(2)

First we recall the simplified version of quantum E(2) from an unpublished work [54] of Woronowicz. Let

G =
{(

u m
0 1

)
: u,m ∈ C and |u| = 1

}
.

Let 0 < q < 1 be a deformation parameter and let C be the ∗-algebra generated by u and m subject to the
following relations:

u∗u = uu∗ = 1, m∗m = q2mm∗, and umu∗ = q2m. (6.59)

The comultiplication ∆C : C → C � C is defined by

∆C(u) := u� u and ∆C(m) := u�m+m� 1. (6.60)

where � denotes algebraic tensor product. Clearly, ∆C is coassociative.
Recall (C′,∆C′) in Section 6.2.2 and the relations (6.39) between the generators v and n of quan-

tum E(2). A simple computation shows that (v2, vn) satisfies (6.59); hence generates C. Define the
Hopf ∗-homomorphism ϕ : C′ → C by ϕ(v) := v2 and ϕ(n) := vn. The kernel of ϕ is isomorphic to Z/2Z.
Therefore, quantum E(2) is the double cover of simplified E(2).

In order to describe the C∗-algebraic version of simplified quantum E(2) we need to represent u and m
on a Hilbert space H. The relations (6.42) between the generators of Eq(2) is replaced by the following:

u∗u = uu∗ = 1, m∗m = q2mm∗, Sp(m) ⊂ C(q) and umu∗ = q2m. (6.61)



6.4. FROM THE COMPLEX QUANTUM PLANE TO SIMPLIFIED QUANTUM E(2) 91

Similarly, we replace the operator domains EH and G′H defined by (6.43) and (6.44) by the following operator
domains

FH :=
{
r ∈ C(H) : rr∗ = q2r∗r, Sp(r) ⊂ C(q)

}
, (6.62)

GH :=
{

(u,m) ∈ U(H)×FH : umu∗ = q2m
}
. (6.63)

Therefore, the underlying C∗-algebra C of simplified Eq(2) is generated by (u,m) ∈ GH. The comultiplica-
tion ∆C : C → C ⊗ C is defined by

∆C(u) = u⊗ u, ∆C(m) = u⊗mum⊗ 1, (6.64)

where u denotes the closure of the sum. More precisely, ∆C(m) is affiliated to C ⊗ C and Sp(m) ⊂ C(q)
plays the crucial role in it.

To find a multiplicative unitary we need to use the quantum exponential function from [52]. First we
define the following operator domain:

ĜH :=
{

(N̂ , m̂) ∈ C(H)×F∗H : N̂ = N̂∗, Sp(N̂) ⊂ N, N̂m̂ = m̂(N̂ + 1)
}
. (6.65)

The following Theorem classifies all multiplicative unitaries of simplified Eq(2).

Theorem 6.18 ([54]). The unitary

W := Fq(m̂⊗m)(1⊗ u)N̂⊗1 in U(H⊗H) (6.66)

is a multiplicative unitary for simplified Eq(2) if and only if
1. (u,m) ∈ GH, Ker(m) = {0},
2. u∗N̂u = N̂ + 1,
3. N̂ and m strongly commute,
4. m̂ = m−1uu r̂ where u denotes the closure and r̂ ∈ C(H) is such that

(N̂ , r̂) ∈ ĜH, u∗r̂u = q2r̂, r̂ and m strongly commute. (6.67)

Remark 6.19. The multiplicative unitary W is called type I or type II when r̂ = 0 or ker(r̂) = {0},
respectively. Type I multiplicative unitaries are regular and modular while type II ones are manageable
and nonregular. Finally, every type II multiplicative unitary can be obtained from one of type I (for details
see [54]).

6.4.1 Preparations on the algebraic level
Let 0 < q < 1 be the deformation parameter. The algebra of functions on the complex quantum plane is
defined by

K := C[Υ,Υ∗]/〈Υ∗Υ = q2ΥΥ∗〉.
The group algebra Â = CZ is the universal algebra generated by a one-parameter group of elements {Un}n∈Z.
The Hopf ∗-algebra structure on A is defined by

∆̂A(Un) := Un ⊗ Un, RÂ(Un) := U∗n, eÂ(Un) := 1, for all n ∈ Z.

There are a canonical right action γ and a right coaction δ of Â on K defined by

γ(Υ, Un) := q−2nΥ and δ(Υ) := Υ⊗ U∗1 ,

for all n ∈ Z.
Since K is a Z-graded Z-module, it is a Yetter-Drinfeld module over (Â, ∆̂A). This allows to define the

braided tensor product K �alg K. With the following structural maps, K becomes a Hopf ∗-algebra in the
monoidal category of (Â, ∆̂A)-Yetter-Drinfeld modules:

∆K(Υ) := Υ�alg 1 + 1�alg Υ, RK(Υi) := −Υi, eK(Υ) := 0, for all i ∈ Z.

Thus (K,∆K) is a braided Hopf ∗-algebra over (Â, ∆̂A).
Warning 6.20. In [20] the term braided bialgebra is used to denote quasitriangular bialgebras. This is
because their categories of modules are braided.
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6.4.2 Preparations on the Hilbert space level
The quantum exponential functions Fq will play a central role in the construction of a braided multiplicative
unitary for (K,∆K). Given a Hilbert space H, define the operator domain

E2
H :=

{
(R,S) ∈ EH × EH : SR = q2RS

SR∗ = R∗S

}
. (6.68)

The commutation relation in (6.68) explicitly means:

Phase(R)Phase(S) = Phase(S)Phase(R), (Phase(R))∗|S|(Phase(R)) = q|S|,
(Phase(S))|R|(Phase(S))∗ = q|R|, |R| and |S| strongly commute.

Let us recall the following results on quantum exponential functions due to Woronowicz:

Theorem 6.21 ([53, Theorem 2.1, 3.1]). Assume (R,S) ∈ E2
H and ker(R) = ker(S) = {0}. Then

R u S = Fq(R−1S)RFq(R−1S)∗, (6.69)

and
Fq(R u S) = Fq(R)Fq(S). (6.70)

where u denotes the closure of the sum.

The operator domain FH is defined by (6.62). Here we define the following operator domains related
to FH:

F∗H :=
{
r ∈ C(H) : r∗r = q2rr∗

Sp|r| ⊂ qZ ∪ {0}

}
, (6.71)

F2
H :=

{
(r, s) ∈ F∗H ×F∗H : q2rs = sr

r∗s = q2sr∗

}
. (6.72)

Remark 6.22. The second domain (6.72) is not the same as in [54]. We have changed the second defining
condition sr∗ = q2r∗s to q2sr∗ = r∗s.

Lemma 6.23. FL ⊗F2
H ⊂ E2

L⊗H.

Proof. Let l ∈ FL and (r, s) ∈ F2
H and define (R,S) := (l ⊗ r, l ⊗ s). The following computation

shows R,S ∈ EL⊗H:

R∗R = (l∗l ⊗ r∗r) = RR∗ and S∗S = (l∗l ⊗ s∗s) = SS∗.

Moreover,

R∗S = (l∗l ⊗ r∗s) = (ll∗ ⊗ sr∗) = SR∗ and SR = (l2 ⊗ sr) = q2(l2 ⊗ rs) = q2RS.

Let L be a Hilbert space and let Υ ∈ C(H) be such that:

ker(Υ) = {0}, Sp(|Υ|) ⊂ C(q), (Phase(Υ))|Υ|(Phase(Υ))∗ = q−1|Υ|. (6.73)

The second condition is called spectral condition. It cannot be guessed from Hopf ∗-algebraic relations.
Let H = l2(Z) and let {ei}i∈Z be an orthonormal basis of H. Define

uei := ei+1 and N̂ei := iei.

Hence u is unitary, N̂ is a self-adjoint operator with Sp(N̂) ⊂ Z, and

u∗N̂u = N̂ + 1. (6.74)

A computation in Section 6.2.2 shows that WA := (I ⊗ u)N̂⊗I is a multiplicative unitary for the quantum
group G = (C(T),∆C(T)), where ∆C(T)(u) := u⊗ u. Since N̂ has integer spectrum it is affiliated to C0(Z).
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Thus Ĝ = (C0(Z),∆C0(Z)), where ∆C0(Z)(N̂) := N̂ ⊗ 1u 1⊗ N̂ is affiliated to C0(Z×Z); here u denotes the
closure of the sum. Since G and Ĝ are commutative quantum groups, by (4.9), any G-Drinfeld pairs (ρ, ρ̂)
must commute. Let (ρ, ρ̂) be a G-Drinfeld pair acting on L. Let U = ρ(u) and N̂ = ρ̂(N̂). Then

U N̂ U ∗ = N̂ . (6.75)

The natural actions of Z and T on the Hopf ∗-algebra K lead to the following commutation relations:

U |Υ|U ∗ = q2|Υ|, U Phase(Υ)U ∗ = Phase(Υ), (6.76)

Phase(Υ)N̂ Phase(Υ)∗ = (N̂ + 1), and |Υ| and N̂ strongly commute. (6.77)

Proposition 6.24. There are two irreducible Hilbert spaces Lp (p = even and odd), such that Lp has an
orthonormal basis {ei,j}i,j∈Z;i+j is p, finite linear combinations of ei,j form a core for N̂ , Υ and

Υei,j := qjei−1,j+1, U ei,j := ei,j−2, N̂ ei,j := iei,j . (6.78)

Proof. The operators N̂ and |Υ| have discrete spectrum and strongly commute, hence they have a common
eigenvector. An element e ∈ L is said to be a common eigenvector of the pair (N̂ , |Υ|) with eigenvalue
(j, qi) if

N̂ e = je |Υ|e = qie.

By (6.73) and (6.77) Phase(Υ) multiplies eigenvalues of |Υ| by q and decreases eigenvalues of N̂ by 1.
Similarly, by (6.76), U multiplies eigenvalues of |Υ| by q−2 and leaves eigenvalues of N̂ unchanged.

Starting with a normalised common eigenvector of (N̂ , |Υ|) and applying an appropriate power of
Phase(Υ) we obtain an eigenvector of (N̂ , |Υ|) with eigenvalue (0, qj). Next applying an appropriate power
of U we obtain a common eigenvector of (N̂ , |Υ|) with eigenvalue either (0, 1) or (0, q) (depending on the
parity of j).

Let e0,0 be a common eigenvector of (N̂ , |Υ|) with eigenvalue (0, 1). Applying to e00 powers of U and
Phase(Υ) gives a family of common eigenvectors eij (i, j ∈ Z,m+ n is even) of (N̂ , |Υ|) with eigenvalue
(i, qj):

U ei,j = ei,j−2, (Phase(Υ))ei,j = ei−1,j+1.

If L is irreducible then {ei,j} (n,m ∈ Z, m+ n is even) is an orthonormal basis of L.
Similarly, if e0,1 is an eigenvector of (N̂ , |Υ|) with eigenvalue (0, q) then applying to e0,1 powers of

U and Phase(Υ) gives a family of common eigenvectors ei,j n,m ∈ Z, m+ n is odd of (N̂ , |Υ|) with
eigenvalue (i, qj). Again, if L is irreducible then {ei,j} (n,m ∈ Z, m+ n is odd) is an orthonormal basis
of L.

Proposition 6.25. Let Υ, U and N̂ act on L with the above commutation relations (6.75)–(6.77).

Fq(Υ−1q−2N̂ ⊗Υ)(Υ⊗ 1)Fq(Υ−1q−2N̂ ⊗Υ)∗ = Υ⊗ 1u q−2N̂ ⊗Υ (6.79)

Proof. Let α = Υ⊗ 1 and β = q−2N̂ ⊗Υ. By (6.73) we get Υ ∈ F∗L and α, β ∈ F∗L⊗L. Moreover, (6.77)
implies

βα = (q−2N̂ Υ⊗Υ) = (Υq−2(N̂ −1) ⊗Υ) = q2αβ

and
α∗β = (Υ∗q−2N̂ ⊗Υ) = q2βα∗,

hence (α, β) ∈ F2
L.

Let l ∈ FB satisfy ker(l) = {0}. Lemma 6.23 gives (R,S) ∈ E2
B⊗L, where R := l ⊗ α and S := l ⊗ β.

Then Theorem 6.21 yields:

Fq(1⊗ α−1β)(l ⊗ α)Fq(1⊗ α−1β)∗ = l ⊗ αu l ⊗ β.

Since l ∈ FB is arbitrary, we get (6.79).
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Corollary 6.26. Let r̂ ∈ CL such that

Phase(Υ)Phase(r̂)Phase(Υ)∗ = q2Phase(r̂), and |Υ| and |r̂| strongly commute. (6.80)

If Υ−1q−2N̂ ⊗Υu r̂ exists, then

Fq(Υ−1q−2N̂ u q−2N̂ r̂ ⊗Υ)(Υ⊗ 1)Fq(Υ−1q−2N̂ u q−2N̂ r̂ ⊗Υ)∗ = Υ⊗ 1u q−2N̂ ⊗Υ.

Proof. The property (6.70) of Fq implies

Fq(Υ−1q−2N̂ u q−2N̂ r̂ ⊗Υ)Fq(Υ−1q−2N̂ ⊗Υ) = Fq(q−2N̂ r̂ ⊗Υ).

By Proposition 6.25 it suffices to show Fq(q−2N̂ r̂ ⊗Υ)(Υ⊗ 1)Fq(q−2N̂ r̂ ⊗Υ)∗ = Υ⊗ 1.
The commutation relations (6.77) and (6.80) imply (q−2N̂ r̂ ⊗ Υ)(Υ ⊗ 1) = (q−2N̂ −2Υr̂ ⊗ Υ) =

(Υ⊗ 1)(q−2N̂ r̂ ⊗Υ).

6.4.3 Braided quantum group structure on the quantum plane
In this section we shall describe the C∗-algebraic version of (K,∆K) as a braided quantum group over G.

Consider the polar decomposition of Υ∗ = vh, where v = Phase(Υ∗) is unitary and h = |Υ∗| is a
positive self-adjoint operator on a Hilbert space L. Then Sp(h) ⊂ qZ ∪ {0} and Ker(h) = {0}. Define

K0 :=

{
finite∑
k∈Z

vkfk(h) : fk ∈ C0(C(q)),
fk(0) = 0 for k 6= 0

}
. (6.81)

Proposition 4.1 in [37] implies:

Proposition 6.27. Let K be the norm closure of K0. Then
1. K is a C∗-algebra.
2. Υ∗ is affiliated to K.
3. K is generated by Υ∗.

Define the following coactions γ(Υ) := Υ⊗ u∗ affiliated to K ⊗ C(T) and γ̂(Υ) := Υ⊗ q−2N̂ affiliated
to K ⊗ C0(Z).

Define U := (1⊗ u)N̂ ⊗1 ∈ U(K(L)⊗ C(T)) and V̂ := (1⊗U )N̂⊗1 ∈ U(C0(Z)⊗K(L)).
Since U and N̂ commute, (U,V) is a G-Yetter-Drinfeld pair, where V = (U ∗⊗1)1⊗N̂ ∈ U(K(L)⊗C0(Z)).

Then Z := (ρ̂⊗ρ)
(
(1⊗u∗)N̂⊗1) = (1⊗U ∗)N̂ ⊗1. The corresponding braiding operator

L L

∈ U(L⊗L)
is defined by

L L

:= (1⊗U ∗)N̂ ⊗1 ◦ Σ. (6.82)

Lemma 6.28. Let ϕ denote the representation K → B(L). Then (ϕ,U) and (ϕ,V) are covariant represen-
tations of (K, γ,C(T)) and (K, γ̂,C0(Z)).

Proof. The commutation relation (6.76) between U and Υ yields:

(I ⊗U ∗)N̂⊗I(I ⊗Υ)(I ⊗U )N̂⊗I = q−2N̂ ⊗Υ. (6.83)

Hence V(Υ⊗ 1)V∗ = Υ⊗ q−2N̂ = γ̂(Υ).
Similarly, the commutation relation (6.77) gives

(I ⊗ u)N̂ ⊗I(Υ⊗ I)(I ⊗ u∗)N̂ ⊗I = Υ⊗ u∗, (6.84)

which is equivalent to U(Υ⊗ 1)U = Υ⊗ u∗ = γ(Υ).
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The crossed product K�K is ι1(K)·ι2(K), where ι1(Υ) := Υ⊗1 and ι2(Υ) :=
L L

(Υ⊗1)(
L L

)∗.

Theorem 6.29. In the notation introduced above, we have:
1. the sum ι1(Υ)u ι2(Υ) is affiliated to K �K and Sp(ι1(Υ)u ι2(Υ)) ⊂ C(q).
2. there is a unique Z× T-equivariant morphism ∆K ∈ Mor(K,K �K) such that

∆K(Υ) = ι1(Υ)u ι2(Υ). (6.85)

3. ∆K is coassociative.

Proof. The defining condition (6.82) of
L L

suggests Z = (idL ⊗ ρ̂)V. Therefore, (6.83) gives ι2(Υ) :=
q−2N̂ ⊗ Υ. Now Υ ⊗ 1 is affiliated to K � K, and by Proposition 6.25 Υ ⊗ 1 is unitarily equivalent
to ι1(Υ)u ι2(Υ); hence ι1(Υ)u ι2(Υ) it is affiliated to K �K.

Since G and Ĝ are abelian, Yetter-Drinfeld C∗-algebras over G are the same as C0(Z× T)-C∗-algebras.
Equation (6.79) shows that ∆K is implemented by Fq(Υ−1q−2N̂ ⊗Υ).
Finally, the coassociativity of ∆K means that (ι1(Υ)u ι2(Υ))u ι3(Υ) = ι1(Υ)u (ι2(Υ)u ι3(Υ)), where

the ιjs are the canonical embeddings of K into K �K �K for j = 1, 2, 3. This follows from (6.70) and
Proposition 6.25.

Since (U,V) is a G-Yetter-Drinfeld pair, Lemma 6.28 gives K ∈ YDC∗alg(G). In order to show
that (K,∆K) is a braided quantum group in the sense of Definition 6.5 we need to show that Fq(Υ−1q−2N̂ ⊗
Υ) is a braided multiplicative unitary over G.

Proposition 6.30. The unitary F := Fq(Υ−1q−2N̂ ⊗Υ) ∈ U(L ⊗ L) is a braided multiplicative unitary
over G.

Proof. Theorem 6.29(2) and the property (6.70) of Fq imply

(id⊗∆K)F = Fq
(
Υ−1q−2N̂ ⊗ (ι1(Υ)u ι2(Υ)

)
= Fq(Υ−1q−2N̂ ⊗ ι1(Υ))Fq(Υ−1q−2N̂ ⊗ ι2(Υ))

= F12Z23F13Z
∗
23.

Since ∆K is implemented by Fq(Υ−1q−2N̂ ⊗Υ) we also have

(id⊗∆K)F = F23F12F∗23.

Comparing the right hand sides of the last two equations gives the braided pentagon equation (6.6) for F.
The commutation relation (6.77) between Υ and N̂ gives

(Υ−1q−2N̂ ⊗Υ⊗ 1)(1⊗ 1⊗ u)N̂ ⊗1⊗1(1⊗ 1⊗ u)1⊗N̂ ⊗1

= (1⊗ 1⊗ u)(N̂ −1)⊗1⊗1(Υ−1q−2N̂ ⊗Υ⊗ 1)(1⊗ 1⊗ u)1⊗N̂ ⊗1

= (1⊗ 1⊗ u)N̂ ⊗1⊗1(1⊗ 1⊗ u)1⊗N̂ ⊗1(Υ−1q−2N̂ ⊗Υ⊗ 1).

Therefore, we obtain (6.3). Similar routine computations yield (6.4).

6.4.4 Construction of simplified quantum E(2)
Now we shall construct simplified Eq(2) from (K,∆K) and G. Moreover, we show that the multiplicative
unitary defined by (6.55), constructed out of the braided multiplicative unitary F in Proposition 6.30
and (1⊗ u)N̂⊗1, generates simplified Eq(2).

Define an action of Z on K by ψn(Υ) = q−2nΥ. Let C = K o Z be the corresponding crossed product.
The ∗-homomorphism K ↪→ C is nondegenerate, and there is a unitary w ∈M(C) such that w|Υ|w∗ = q2|Υ|
and wPhase(Υ)w∗ = Phase(Υ). Thus C is the universal object generated by w and Υ. Realise w and Υ as
a unitary and an unbounded operator on a Hilbert space H. Then (6.73) gives (w,Υ) ∈ GH; hence C is the
underlying C∗-algebra of simplified Eq(2).

Realise U and V̂ as operators defined by U := (1⊗u)N̂ ⊗1 ∈ U(L⊗H) and V̂ := (1⊗U ∗)N̂⊗1 ∈ U(H⊗L).
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Proposition 6.31. The unitary W1234 := WA
13U23V̂∗34F24V̂34 ∈ U(H⊗L⊗H⊗L) is a type-I multiplicative

unitary generating simplified Eq(2).

Proof. Equation (6.83) implies

(1⊗U ∗)N̂⊗1(1⊗Υ)(1⊗U )N̂⊗1 = q−2N̂ ⊗Υ.

Therefore, V̂∗34F24V̂34 = Fq(1⊗Υ−1q−2N̂ ⊗ q−2N̂ ⊗Υ).
Next (6.77) implies

(1⊗ u)N̂ ⊗1(Υ−1q−2N̂ ⊗ q−2N̂ ) = (1⊗ u)N̂ ⊗1(Υ−1q−2N̂ ⊗ 1)(1⊗ q−2N̂ )

= (Υ−1q−2N̂ ⊗ 1)(1⊗ u)(N̂ +1)⊗1(1⊗ q−2N̂ )

= (Υ−1q−2N̂ ⊗ 1)(1⊗ q−2N̂ )(q2 ⊗ u)(N̂ +1)⊗1

= (Υ−1q−2N̂ ⊗ 1)(1⊗ q−2(N̂−1)u)(q2 ⊗ u)N̂ ⊗1

= (Υ−1q−2N̂ ⊗ uq−2N̂ )(q2 ⊗ u)N̂ ⊗1

= (Υ−1 ⊗ uq−2N̂ )(1⊗ u)N̂ ⊗1

Hence U23V̂∗34F24V̂34 = Fq(1⊗Υ−1 ⊗ uq−2N̂ ⊗Υ)(1⊗ 1⊗ u⊗ 1)1⊗N̂ ⊗1⊗1.
Equation (6.74) implies

(1⊗ u)N̂⊗1(1⊗ uq−2N̂ ) = (1⊗ uq−2N̂ )(q2 ⊗ u)N̂⊗1 = (q2N̂ ⊗ uq−2N̂ )(1⊗ u)N̂⊗1.

Therefore, W1234 = Fq(q2N̂ ⊗Υ−1 ⊗ uq−2N̂ ⊗Υ)(1⊗ 1⊗ u⊗ 1)(N̂⊗1⊗1⊗1(1⊗ 1⊗ u⊗ 1)1⊗N̂ ⊗1⊗1.

Since (1⊗u)N̂⊗1 is a multiplicative unitary for G, V̂∗(1⊗N̂ )V̂ = N̂⊗1u1⊗N̂ , and Sp(N̂⊗1u1⊗N̂ ) ⊂
Z.

Thus W1234 = Fq(q2N̂ ⊗Υ−1 ⊗ uq−2N̂ ⊗Υ)(1⊗ 1⊗ u⊗ 1)(N̂⊗1u1⊗N̂ )⊗1⊗1.

Define m′ := uq−2N̂ ⊗Υ, u′ := u⊗ 1, and N̂ ′ := N̂ ⊗ 1u 1⊗ N̂ . Then ker(m′) = {0}, Sp(m′) ⊂ C(q),
and (6.76) gives u′m′u′∗ = uuq−2N̂u∗⊗Υ = uq−2N̂+2⊗Υ = q2m′; hence (u′,m′) ∈ GH⊗L. Similarly, (6.74)
gives u′∗N̂ ′u′ = N̂ ′ + 1. Finally, (6.74) and (6.77) show that the operators m′ and N̂ ′ strongly commute.

Therefore, by Theorem 6.18, W1234 = Fq(m′−1u′ ⊗m′) is a multiplicative unitary of type I.

By Remark 6.19 evey type II multiplicative unitary can be constructed from one of type I. Alternatively,
if we start from a multiplicative unitary as in Corollary 6.26 a similar computation shows that W1234 is of
type II. Further, using (6.77) and (6.76) we get Z∗F = Fq(Υ−1 u r̂ ⊗U Υ)(1⊗U )N̂ ⊗1. Therefore, F is
manageable if W1234 is.
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