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Abstract

We propose a general theory to study semidirect products of C*-quantum groups in the framework of
multiplicative unitaries. Starting from a quantum group with a projection we decompose its multiplicative
unitary as a product of two unitary operators. One of them is again a multiplicative unitary in the standard
sense; it describes the quotient. The other unitary is multiplicative in a braided sense; it corresponds to
the kernel of the projection. Conversely, starting from a standard multiplicative unitary and a braided
multiplicative unitary acting on different Hilbert spaces we construct a standard multiplicative unitary
acting on the tensor product of them. Basic tools used to achieve this contain the interpretation of
bicharacters as homomorphisms between quantum groups, generalised crossed products of C*-algebras
carrying coactions of quasitriangular quantum groups (quantum groups with a unitary R-matrix), and
Yetter—Drinfeld C*-algebras.
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Chapter 1

Introduction

Noncommutative geometry generalises the commutative duality between spaces and functions, in analogy
with the Gelfand representation [14] of commutative C*-algebras. Precisely, every commutative C*-algebra
is of the form Co(X) for a locally compact Hausdorff space X. Because of this correspondence, the theory
of C*-algebras can be realised as noncommutative topology |6]. Hence every C*-algebra can be interpreted
as an algebra of functions on a noncommutative space or quantum space. In a similar fashion, von Neumann
algebras generalise measure theory in the noncommutative geometry framework: every commutative von
Neumann algebra is of the form L* (X, p) for a measure space (X, u).

C*-quantum groups

Quantum groups, in the operator algebraic framework, are natural generalisations of locally compact groups
within the scope of noncommutative geometry. Roughly speaking, the space of the underlying group
is replaced by a C*-algebra or von Neumann algebra, and group operations are replaced by additional
structure maps.

The pioneering work of Drinfeld |11} and Jimbo [16] was very influential in the theory of Hopf algebras.
In a purely algebraic setting, quantum groups and Hopf algebras are synonymous. Several nice references
can be found for algebraic quantum group theory (see [5,/20,26]). In [7./8], van Daele introduced a nonunital
generalisation of Hopf algebras which admit a nice duality.

In the C*-algebraic framework, a locally compact group G is described by the C*-algebra A = Co(G)
together with the morphism

Acya): A= AR A, (Acy@) (=, y) == f(zy),

for all f € Co(G), z,y € G. Motivated by the classical example above, a C*-quantum group G (or
locally compact quantum group in the C*-algebraic framework) should be a pair (A, A4) consisting of
a C*-algebra A and a morphism As: A - A® A. Here ® denotes the minimal C*-tensor product,
and a morphism A — B is a non-degenerate *-homomorphism from A to the multiplier algebra M(B).
Several assumptions are needed for this to deserve the name C*-quantum group. A simple yet far-reaching
axiomatisation of compact quantum groups, generalising compact groups, was given by Woronowicz
in [45,48]. In particular, this allows to construct a Haar weight, analogous to the Haar measure on locally
compact groups, on compact quantum groups. The most common approaches towards the theory of locally
compact quantum groups, due to Kustermans and Vaes [24}/25] and Masuda, Nakagami and Woronowicz
[27], assume the existence of Haar weights.

In [2|, Baaj and Skandalis introduced (regular) multiplicative unitaries in order to formulate an abstract
definition of C*-quantum groups. A multiplicative unitary is a unitary operator W on H ® H, for some
Hilbert space H, that satisfies the pentagon equation

WosWip = WioWi3Wog inUHSHH).
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A multiplicative unitary simultaneously encodes all the information about a quantum group and its dual. It
is still unknown whether a Haar weight can be constructed on a locally compact quantum group arising from
a “nice” multiplicative unitary; where nice means either manageable due to Woronowicz [49] or modular
by Soltan and Woronowicz. In this thesis, we work in the general framework of modular or manageable
multiplicative unitaries to construct C*-quantum groups.

Semidirect product

In group theory, the semidirect product is a basic construction generalising direct products. A group [ is
isomorphic to a semidirect product of groups K and G if and only if there is a (right) split exact sequence:

(1.1)

Here exactness means Im(a) = Ker(y), while v o 8 = idg is the defining condition for a section. Clearly, K
is a normal subgroup of I, and G acts on K by conjugation:

0q(k) == a " (Blg)alk)Blg™")) (1.2)
forge G, ke K.
Question. What does a semidirect product decomposition mean for a C*-quantum group?

The multiplication map K x K — K becomes G-equivariant with respect to the induced diagonal
action of G on K x K. Coactions of C*-quantum groups on C*-algebras generalise group actions on spaces.
Roughly speaking, a coaction of G on a C*-algebra C' is an injective morphism §: C — C ® A, compatible
with the comultiplication map A4, and satisfying the Podle$ condition (see for details). A diagonal
coaction, analogous to the diagonal action of groups, makes sense only in the case that G is abelian or,
equivalently, that A is a commutative C*-algebra. This is why we cannot directly generalise in
the C*-algebraic framework.

The semidirect product always induces an idempotent endomorphism p := o~ on I. Conversely, an
idempotent group homomorphism p: I — I is always of the form , with G = Im(p) and K = Ker(p).
So a semidirect product decomposition of a group I is equivalent to an idempotent homomorphism on 1.

To answer the question above, therefore, we view C*-quantum groups with an idempotent endomorphism,
briefly, C*-quantum groups with projection, as quantum analogues of semidirect products of groups.

From Hopf algebras with projection to extensions of quantum groups

Hopf algebras with projection were studied by Radford [35], which justifies viewing Hopf algebras with
projection as the correct quantum analogue of semidirect products in the realm of Hopf algebras. The image
of the projection is again a Hopf algebra A. The analogue of the kernel is a Yetter—Drinfeld algebra K
over A. For instance, when A = C[Z] then K is an A-Yetter—Drinfeld algebra if and only if K is a Z-graded
Z-module. For two Yetter—Drinfeld algebras K; and K3, the tensor product of them, denoted by K; X K2
carries a unique multiplication for which it is again a Yetter—Drinfeld algebra; the Yetter—Drinfeld module
structure is the diagonal one, which is determined by requiring the embeddings of K; and K2 to be
equivariant. With this structure, A-Yetter—Drinfeld algebras become a monoidal category (neither braided
nor symmetric). In a Hopf algebra with projection, the algebra K carries a comultiplication K — K X K,
which turns K into a Hopf algebra in the monoidal category of Yetter—Drinfeld algebras. In [35], Radford
shows that Hopf algebras with projection correspond exactly to pairs consisting of a Hopf algebra A and a
Hopf algebra in the monoidal category of A-Yetter—Drinfeld algebras.

As a result, a semidirect product of Hopf algebras K x A does not involve two Hopf algebras, but one
Hopf algebra A and one “braided” Hopf algebra K over A. We want a similar theory for C*-quantum
groups. In the case of the semidirect product of groups, K and A are identified with Co(//G) and



Co(G). This clarifies why the “kernel” in Radford’s theorem does not correspond to a Hopf algebra in the
standard sense.

Associating C*-algebras to these Hopf or Hopf *-algebras requires an interpretation of the defining
relations in terms of unbounded operators on Hilbert spaces. This often leads to surprising difficulties. A
case in point is the quantum E(2) studied by Woronowicz in [47]. In this example, the comultiplication fails
to exist for the most obvious choice of C*-algebra. One must add non-algebraic relations (a restriction on
the spectrum of one of the generators) to those that define the Hopf *-algebra in order to get a C*-quantum
group.

Moreover, we cannot directly define a deformed multiplication on K7 ® K2. A braided C*-tensor product
of K1 and K> will be a completion of K; ® K> in some C*-norm, but we cannot expect the dense subspace
K1 ® K> to be a subalgebra, where ® denotes the algebraic tensor product. Even the adjoint operation will
usually not preserve this subspace.

In the C*-algebra world, the kernel K in Radford’s construction corresponds to (functions on) a quantum
homogeneous space, which in turn, corresponds to a braided C*-quantum group. Existence of C*-algebraic
quantum homogeneous spaces, obtained by taking quotients by closed quantum subgroups, was shown by
Vaes [41]. Later Kasprzak proposed a more general definition [19, Definition 3.1] of quantum homogeneous
spaces. Both constructions of quantum homogeneous spaces use the interplay between C*-algebraic and
von Neumann algebraic quantum groups by assuming the existence of Haar weights. The von Neumann
algebraic versions of quantum homogeneous spaces were previously used by Vaes and Vainerman [42] to
define the short exact sequences (|42, Definition 3.2]) of locally compact quantum groups in order to study
their extensions (in von Neumann algebraic framework). The main purpose of this thesis is to study braided
multiplicative unitaries as a fundamental object for braided quantum groups and use this to carry over
Radford’s Theorem to the C*-algebraic framework.

Braided multiplicative unitaries and C*-quantum groups with projection

We now proceed to sketch our approach towards this, thereby giving an outline of the thesis.

Building on the work by Ng [31] and later by Kustermans [22] we have developed several equivalent
notions of quantum group homomorphisms in [28]. Bicharacters (see Definition can be viewed as
homomorphisms and we can also compose them (see Definition . Thus we can give a good meaning
to projections on C*-quantum groups I = (C, A¢) using bicharacters. Roughly speaking, bicharacters
P e UM(C’ ® C) that simultaneously satisfy the pentagon equation are projections. Manageability
of P, while viewed as a multiplicative unitary, gets induced from I. Therefore, P generates a quantum
group G = (A, A4) which is a closed quantum subgroup of I in the sense of Woronowicz (see |9, Definition
3.2]). We call G the image of the projection P.

For the moment, keeping the general theory aside, let us motivate the interplay between braided multi-
plicative unitaries and C*-quantum groups with projection, by analysing the known examples of C*-quantum
groups, generically denoted as I = (C, A¢). Multiplicative unitaries giving rise to the quantum E(2) group
by Woronowicz |51], the quantum az + b group by Woronowicz [50], and the quantum az + b group by
Woronowicz and Zakrzewski [55], are of the form F-P € U(H ® H). All the examples mentioned above were
constructed by defoming their respective classical versions, which arise as semidirect product of groups. P is
the unitary corresponding to a projection on I. The image G = (A, A4) of the projection P is commutative.
Equivalently, A = Co(G) for a suitable locally compact group G. The unitary F is defined by using the
quantum exponential function (see [52]); which is rather technical and mysterious. In Section we show
that all these examples are C*-quantum groups with projection. Moreover, F is a braided multiplicative
unitary satisfying a braided variant of the pentagon equation .

In order to understand the braided quantum group associated to F, we require the concept of Yetter—
Drinfeld C*-algebras over G. The C*-algebraic counterparts of A-Yetter—Drinfeld algebras are G-Yetter-
Drinfeld C*-algebras, defined by Nest and Voigt in |30, Section 3] assuming the existence of Haar weights
on G. Moreover, |30, Proposition 3.2] shows that C*-algebras with a coaction of the quantum codouble of G
are the same as G-Yetter—Drinfeld C*-algebras. Proposition 8.3 in [41] gives the twisted tensor product
C~-algebras, denoted by X, such that one of the tensor factors carries a coaction of G and the other one
carries a coaction of G. If both of the C*-algebras are G-Yetter—Drinfeld, so is their twisted tensor product.
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First, we generalise this construction of twisted tensor product of C*-algebras to modular multiplicative
unitaries. In Chapter 4} we construct a twisted tensor product, denoted by X, of C*-algebras (generalising
minimal tensor products) endowed with coactions of two quantum groups linked through bicharacters. But X
is not coassociative in general, as there is no natural action of either of the quantum groups on the twisted
tensor product. A unitary U € UM (K(H)® A) is called a corepresentation of a quantum group G = (A, A4)
acting on a Hilbert space H if (idy ® Aa)U = U12U1s. The category of corepresentations of G is, in
general, a W*-category (for details see [39, Section 3.1, 3.2]). A quantum group G with an R-matrix
R € L{M(A ® A) is called a quasitriangular C*-quantum group. Then the corepresentation category
of G becomes braided monoidal. Using covariant representations, we show that the coaction category
of G-C*-algebras, where the objects are C*-algebras carrying coactions of G and arrows are G-equivariant
morphisms, is monoidal with the tensor product X (Theorem . For any C*-quantum group G (not
necessarily quasitriangular), the Drinfeld double of G has an R-matrix; hence, its dual, the quantum
codouble D(G)” is a quasitriangular quantum group. By virtue of [30, Proposition 3.2] we know that
the category of G-Yetter-Drinfeld C*-algebras is equivalent to the coaction category of ®(G)~. We show
(Proposition that the aforementioned categories are also equivalent as monoidal categories.

Replacing the ordinary flip operator by the braiding operator of the corepresentation category of ©(G)
we can formulate the braided pentagon equation and braided multiplicative unitaries (Definition over G.
Furthermore, we define manageability for F (see Definition . At present, we do not know how to
generate C*-algebras even from manageable braided multiplicative unitaries. A pair (K, Ag) is said to
be a braided quantum group over G if K is a G-Yetter—Drinfeld C*-algebra and Ax: K - KX K is a
nondegenerate *-homomorphism implemented by F (see Definition for details).

~
)

A quantum group I with a projection P (Definition [3.35]) always gives rise to a manageable, braided
multiplicative unitary F over G, where G is the image of the projection P (Theorem|6.7)). The second leg of F
belongs to the multiplier algebra of the left invariants under the unique left quantum group homomorphism
associated to the projection. Moreover, we can reconstruct a manageable multiplicative unitary of I starting
from P and F. Similarly, one can define a braided multiplicative unitary F whose second leg belongs to the
multiplier algebra of the right invariants under the unique right quantum group homomorphism associated
to the projection P.

Starting from a braided multiplicative unitary F € U(K ® K), over a quantum group G = (A4, Ax)
with a multiplicative unitary W4 e U(H ® H), we construct a standard multiplicative unitary Wiy34 €
UH K ®H ®K) (Theorem . Moreover, manageability of F ensures manageability of W43,
(Theorem and hence gives rise to a quantum group I = (C, A¢). Under the additional assumption
that G is weakly regular (Definition , A becomes a G-Yetter—Drinfeld C*-algebra. Let IF give rise to
the braided quantum group (K, Ak). Then the multiplicative unitary Wi,3, implements a coassociative
comultiplication on the crossed product C = A X K, which extends both A4 and Ag, respectively. In
particular, if A = Co(G) for a locally compact group G, then C' = K x Gj; this is true for the known
examples of C*-quantum groups discussed in the Section

The missing part of the theory is that, in general, we do not know whether A X K is a quantum group
generated by Wi,54. In particular, the above reconstruction for a C*-quantum group I with a projection P
yields W34 as a multiplicative unitary for I (Proposition . Therefore, at the level of multiplicative
unitaries we have a nice generalisation of Radford’s theorem. In [54], Woronowicz constructed simplified
quantum E(2) such that quantum E(2) is the double cover of it. We conclude by constructing simplified
quantum E(2) starting from the complex quantum plane, which is a braided quantum group over the
compact quantum group C(T).

Basic notation

Following the standard notation the set of natural numbers, integers, real numbers, complex numbers are
denoted by N (excluding zero), Z, R, C respectively.

From now on, all C*-algebras and Hilbert spaces are assumed to be separable and defined over C. Given
a Hilbert space H we let K(#) and B(?) be the algebras of compact and bounded operators on H. The
group of unitary operators on H is denoted by U(H).

The C*-algebra of continuous complex-valued functions on a locally compact Hausdorff space X
vanishing at infinity is denoted by Co(X).



The multiplier algebra of a C*-algebra A is denoted by M(A). The group of unitary multipliers of A is
denoted by U(A). For example, M(K(H)) = B(H) and M(Co(X)) = Cp(X), where Cp(X) denotes the
algebra of complex-valued bounded functions on a locally compact Hausdorff space X.

A morphism between two C*-algebras A and B is a nondegenerate *-homomorphism from A to the
multiplier algebra M(B) or, equivalently, a strictly continuous, unital *~-homomorphism from M (A) to
M(B). The set of morphisms from A to B is denoted by Mor(A, B). C*-algebras with the above morphisms
form a category, which we denote by €*alg.

Let A and B be norm closed subsets of a C*-algebra C. Then A - B denotes the closed linear span of
the set {ab|a € A and b € B}.

We use ® both for the minimal tensor product of C*-algebras and the tensor product of Hilbert spaces,
which is well understood from the context.

The standard flip operator X : HRK — KQH for two Hilbert spaces H and K is defined as X (£®n) 1= n®E&
for all vectors £ € H, n € K. Similarly, the flip morphism c: A® B — B ® A is defined on the
tensor product of C* algebras A and B. For any t € M(A ® B) we can denote the leg numberings
on the level of C*-algebras as t12 := t® 1lc € M(A® B® C), toz := lc ®t12 € M(C® A® B)
and t13 := o12(t23) = o23(t12) € M(A ® C ® B) for the C*-algebras A, B and C, respectively.
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Chapter 2

C*-quantum groups in a nutshell

This introductory chapter provides a brief introduction to C*-quantum groups. In particular, the interplay
between the theory of multiplicative unitaries and C*-quantum groups is covered in Sections m and
The definition and the basic properties of Heisenberg pairs for quantum groups are discussed in Section
274 Subsequently, in Sections [2.5] and [2.6] we recall the concepts of coactions and corepresentations
of C*-quantum groups. In the concluding section, Section [2.7] we explore universal quantum groups and its
corepresentation theory. Moreover, we show that universal bicharacters exist in the context of modular
multiplicative unitaries.

2.1 Group-like structure on C*-algebras
Definition 2.1 (|2, Définition 0.1]). A Hopf-C*-algebra (D, Ap) is a C*-algebra D equipped with a
morphism Ap: D — D ® D called comultiplication such that

1. Ap is coassociative:
Ap
D D&®D
ADl lidD@AD (2‘1)
Ap ®idp

D®D ——DR®D®D

2. Ap(D)-(D®1p) and Ap(D) - (1p ® D) are contained in D ® D.
Such a pair (D, Ap) is said to be bisimplifiable if Ap satisfies the cancellation property:

Ap(D)-(1p ® D) = Ap(D)- (D®1p) = D ® D. (2.2)

In |27] bisimplifiable Hopf C*-algebras are called “proper C*-bialgebras with cancellation property.” We
shall stick to the former terminology.

Ezample 2.2. Consider the C*-algebra Co(G) of continuous functions vanishing at infinity on a locally
compact group G. Then A¢(g): Co(G) = Cub(G x G) defined as (Ac, (o) f)(x, y) := f(zy) for all f € Co(G)
and z,y € G is a coassociative comultiplication. To verify the cancellation property take h € Co(G) and
observe that (Acy(c) ()1 @ h)(@,y) = Fzy)h(y), (Acoic) (Hh® 1)(@,y) = h(z)f(zy). Since (z,y)
(zy,y) and (x,y) — (xy,y) are homeomorphisms from G x G to itself we conclude that (Co(G), Acy()) is
a bisimplifiable Hopf C*-algebra.

Ezxample 2.3. Let G be a locally compact group with left Haar measure p. The left regular representation
X: G — U(L*(G, p)) is defined by (A, f)(z) := f(¢~'x) for all f € L*(G,u), g, € G. The C*-algebra
generated by A\(Cc(G)) C B(L?(G, 1)), where Co(G) denotes the continuous compactly supported functions,
is called the reduced group C*-algebra and denoted by C7(G). Then (C;(G), Acx(g)) is a bisimplifiable
Hopf C*-algebra with the comultiplication Acx(a)(Ag) := Ag ®@ Ag.
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Definition 2.4 ([2, Définition 0.5]). Given two Hopf C*-algebras (A,A4) and (B,Apg), an element
F € Mor(A, B) is a Hopf *-homomorphism between them if it intertwines the comultiplications, that is, the
following diagram commutes:

A
A4 ApA
FJ JF@F (2.3)
A

B— - B®B

Ezxample 2.5. Let f: G — H be a continuous group homomorphism between locally compact groups G
and H.

1. Then F: Co(H) — Co(G) defined by F(h) := ho f for all h € Co(H) is a Hopf *~homomorphism
from Co(H) and Co(G).

2. If ker(f) is amenable, then F': C}(G) — Ci(H) defined by F(\;) := Aj( for all g € G is a
Hopf *-homomorphism from C;(G) to C;(H).

Let X be a locally compact Hausdorff space and let (D, Ap) be a Hopf C*-algebra with D = Co(X).
Then Ap induces a continuous, associative binary operation - on X. The cancellation property yields that the
binary operation - is cancellative; hence (X, -) is a locally compact semigroup with cancellation. If X is com-
pact then (X, -) is a compact group (see |32]). More generally, unital, bisimplifiable Hopf C*-algebras (D, Ap)
are compact quantum groups, as defined in [48] by Woronowicz. If X is locally compact then (X, ) is not
a locally compact group in general. For example, we may take the set of positive integers with addition,
which is not group. Therefore, in general, bisimplifiable Hopf C*-algebras are not the correct notion
of C*-quantum groups.

The construction of quantum E(2) group by Woronowicz [51], quantum az + b group by Woronowicz
|50], and the quantum ax + b group by Woronowicz and Zakrzewski [55], in the C*-algebraic framework
use the following procedure. The first step is to look at the Hopf *-algebra of polynomial functions on
the group in terms of generators and relations. Then deform the relations by some complex number ¢
and consider the *-algebra C' generated by the generators satisfying the deformed relations. Then define a
comultiplication A¢: C — C ® C such that (C, Ac) becomes a Hopf *-algebra, where ® is the algebraic
tensor product. The second step is to represent the generators of C' by (possibly) unbounded closed
operators on a Hilbert space H and impose spectral conditions on the (unbounded) generators of C.
Equivalently, construct a (universal) C*-algebra C' C B(?) generated by the generators (with the spectral
conditions) and relations of C'. The next step is to define the comultiplication on C' such that (C, A¢) is a
bisimplifiable Hopf-C*-algebra. Finally, construct a multiplicative unitary for (C, Ac). This gives rise to
another bisimplifiable Hopf-C*-algebra (C, A¢), dual to (C, Ac).

But the formula for the multiplicative unitaries for the quantum groups mentioned above uses special
functions, namely quantum exponential functions, whose presence is conceptually unclear. Classically, these
groups arise as semidirect products of groups. In Chapter [6] we show that quantisation of semidirect
products of groups, in general, gives rise to braided multiplicative unitaries, multiplicative unitaries in a
more general sense, and quantum exponential functions play this role in the above examples.

2.2 Multiplicative unitaries

Multiplicative unitaries were introduced by Baaj and Skandalis in [2] to axiomatise locally compact quantum
groups in the C*-algebraic framework. The beauty of the theory is that a single unitary operator (with
some additional property) encodes all the necessary information of a C*-quantum group and its dual.

Definition 2.6 (|2, Définition 1.1]). An element W € B(H ® H) is called a multiplicative unitary if it
satisfies the pentagon equation

WosWip = WiaWi3Wos  inU(HRH®H), (2.4)

where we use the standard leg numberings W;; c U(H® H® H) for 1 <i < j < 3.
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Example 2.7. Let G be a locally compact group and let H = LQ(G) be the Hilbert space of all measurable
functions on G square-integrable with respect to the right invariant Haar measure. Then (WG g, g) =
flgg',g') is a unitary oprator on L?(G x G). The associativity of the binary operation of G provides the
pentagon equation for W&,

The legs of a multiplicative unitay W € U(H ® H) are defined as

A= {(w®id)W : w € B(H).}™ c B(H), (2.5)
A:={(id®@w)W : w e B(H).}" c B(H), (2.6)

where B(#). is the set of normal linear functionals on B(#) and CLS abbreviates closed linear spans.

Let a; '= (wi ® id)W € A for i = 1,2. Then a1a2 = (w1 ® w2 ® id)W,3W,3. Using the pentagon
equation we get a1a2 = (w1 Q@ we ® id) (W’{Q\W%le) = (w®id)W, where w € B(H). is defined by w(¢) :=
(w1 ® wo) (W*(lq.‘ ® {)W) for £ € B(H); hence A is a subalgebra of B(H). A similar argument shows that
A is a subalgebra of B(H).

But A and A are not closed with respect to the involution in general (see |3, Remark 4.5]). For each w €
B(H). the adjoint is defined as a* = ((w ® id)W)* = (W' ®id)W* and a* = ((id®w)W)* = (ld @ w* )W,
where w*: B(H) — C is defined by £ — w(£*) (see |40, Lemma 7.2.3]). In general, a* and &* need not
belong to A or A, respectively. Therefore, a general objective was to find a good class of multiplicative
unitaries which produce A in and A in as C*-subalgebras of B(H).

Define

C(W) ={(lde@w)(EW) : w € B(H).} C B(H), (2.7)
where X is the flip operator on H ® H. Proposition 3.2 in [2] shows that C(W) is an algebra.

Definition 2.8 (]2, Définition 3.3]). A multiplicative unitary W € U(H ® H) is said to be regular if C(W)
is linearly dense in K(H).

Regularity of a multiplicative unitary implies that A and A are C*-algebras (see [2]). But, unfortunately,
regularity is too restrictive to cover all examples of locally compact quantum groups (see [1]).

2.2.1 Manageability and modularity

A general framework for multiplicative unitaries, namely, manageability, was first introduced in [49, Definition
1.5]. Tt covers all known examples of quantum groups. It was also noticed in |38} Section 5] that the natural
choices of multiplicative unitaries for the quantum az + b group in [50| and the quantum az + b group
in [55] are only modular, not manageable.

Notation 2.9. The complex-conjugate Hilbert space of a Hilbert space H is denoted by .

Definition 2.10 (|38, Definition 2.1]). A multiplicative unitary W € U(H ® H) is modular if there are
positive self-adjoint operators @ and 1) acting on H and W € U(H ® H) such that:

(i) Ker(Q) =Ker(Q) = {0} and W(Q® QW" = (Q©®Q),
(ii) (a:®u | W | z®y) = (E@Qu | \ |Z® Qfly), for all z, 2z € H, u € Dom(Q) and y € Dom(Q™1).
If Q = Q then W is called manageable.

The notions of modularity and manageability are not very far from each other: starting from a modular
multiplicative unitary one can construct a manageable multiplicative unitary on a different Hilbert space
(see [38]). Moreover, all results in [49] remain true under this weaker assumption.

Ezample 2.11. The multiplicative unitary Wi in Example is manageable with @Q = id and W = (WEH*,
Here we identify H with H by sending f — f, where f(g) := f(g) for g € G.

Ezample 2.12. The dual of a multiplicative unitary W € U(H ® H) is defined by W = SWHE eUHOH),
where ¥ is the flip operator. The bidual of a multiplicative unitary is again the multiplicative unitary itself.
Moreover, |49}, Proposition 2.2] confirms that the duality of multiplicative unitaries preserves modularity
and manageability, respectively.
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2.3 From modularity to C*-quantum groups

In this section we recall the main result due to Sottan and Woronowicz [38] to construct a C*-quantum
group from a modular multiplicative unitary.
Theorem 2.13 ([38, Theorem 2.3]). Let W € U(H ® H) be a modular multiplicative unitary. Then
(1) Ain and A in are non-degenerate C*-subalgebras of B(H).
(2) Weld(A® A) CUHSH). We write W € U(A® A) for W viewed as a unitary multiplier of A® A.
(8) There is a unique Aa € Mor(A, A® A) such that
(i) (A,A4) is a bisimplifiable Hopf C*-algebra;
(i) W is a character in the second leg:

(id; ® AW =W,Wi5  inU(A® A® A); (2.8)

(4) There is a unique closed linear operator k4 on the Banach space A such that {(w ®ida)W : w € A’}

is a core for ka and
IiA((w ® idA)W) = (w ® idA)W*

for any w € A’. Moreover,

(i) the domain of ka is a subalgebra of A and ka is antimultiplicative: for any a,b € Dom(ka) we
have ab € Dom(ka) and ka(ab) = ka(b)ka(a).

(@) the image ka(Dom(ka)) coincides with Dom(ka)® and ka(ka(a)*)* = a for all a € Dom(ka).
(@ii) the operator ka admits the following polar decomposition:

A
ka=Rao Ti/2,

where 7'{?2 is the analytic generator of a one-parameter group {TtA}teR of x-automorphisms of
the C*-algebra A and Ra is an involutive normal antiautomorphism of A,

(iv) Ra commutes with 7{* for all t € R; in particular Dom(ka) = Dom(Ti‘?Q),
(v) Ra and {TtA}teR are uniquely determined.
(5) we have
(i) Apord = (A @1 ) 0o A4 for allt € R,
(i) AaoRa =00 (Ra®Ra)o A4, where o denotes the flip map.
(6) Let Q and W be the operators associated to W in Definition . Then,
(i) for anyt € R and a € A we have 7/ (a) = Q¥ a@Q %",

(@) writing aRAiinstead of Ra(a), we have W'®Ra = W*, where the left hand side is viewed as a
unitary on H® H.

Definition 2.14. A bisimplifiable Hopf C*-algebra G = (A4, A4) is a C*-quantum group (quantum group
from now on) if it comes from a modular multiplicative unitary W € U(H ® H).

The reduced dual of G, denoted G= (/1, A A), is the quantum group associated to the dual multiplicative
unitary W4 in Example The biduality property of multiplicative unitaries provides Pontrjagin
duality for quantum groups: the reduced dual of G is isomorphic to G. Moreover, we have the unitary
W :=0o(W*) e U(A® A). The character condition for W := o(W™), where o is the flip morphism,
becomes: R

(ida @ AW =W, W3 inU(AR AR A).

Using the elementary properties of o, we get the following equivalent form:
(Aa ®ida)W = WysWy3 inU(A® A® A). (2.9)
Thus W € U(A ® A) is also a character in the first leg:
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Definition 2.15 ([39]). The unitary W € U(A ® A) is called the reduced bicharacter associated to the
quantum group G.

Remark 2.16. The reduced bicharacter of a quantum group is independent of the choice of W (see [39}
Theorem 5]).

To a locally compact group G' we associate the quantum groups (Co(G), Agy(ay) and (C7(G), Acx(a))
discussed in Examples [2.2{ and The multiplicative unitary W€ € U(L?(G x G)) defined in Example
gives rise to (Co(G), Acy(w)), and (CI(G), Acx(a)) is dual to it. A detailed treatment can be found in
[40, Example 7.2.13].

In particular, if G is abelian, C; (G) & Co(é) by the Fourier transform, where G is the Pontrjagin dual
of G. This clarifies how C*-quantum groups allow to generalise the Pontrjagin duality theorem.

2.4 Heisenberg pairs

In quantum mechanics the canonical commutation relation (abbreviated as CCR) is the fundamental
relation between position x and momentum p, in the direction of = of a particle. The commutator
[, pz] := zps — pox is equal to ik, where & is the reduced Planck constant. According to the mathematical
formulation of quantum mechanics, x and p, should be represented as self adjoint operators x and p on a
Hilbert space H, and the commutation relation becomes:

[x,p] =ik 13. (2.10)

This is known as CCR in Heisenberg form. But (2.10)) is not quite correct, as both the operators x and
p cannot be bounded. Hence (2.10) becomes more delicate as unbounded operators are very sensitive
about their domains. Exponentiation of the operators ix, ip produces the one-parameter group of unitaries

(us = exp(isx))SER7 (’Ut = exp(itp))teR acting on ‘H, and (2.10) takes the Weyl form:
usvy = exp(—ihist)vius. (2.11)

The Stone—von Neumann Theorem says that there is a unique pair of one-parameter groups of unitaries
(us)ser and (v¢)ier satisfying (2:11). More generally, the CCR encodes the commutation relation between
two conjugate variables, where one variable is the Fourier transformation or more generally Pontrjagin dual
of another.

Heisenberg pairs in the context of quantum groups are hidden in the pentagon equation . Roughly,
it dictates the commutation between the underlying C*-algebras of a quantum group and its dual. Later in
Section [4.I] we generalise this commutation relation to two different quantums group related by a bicharacter.

Definition 2.17. Let 7 € Mor(A4, K(H.)) and # € Mor(A, K(#)) for some Hilbert space H.. (m,7) is a
1. G-Heisenberg pair if

WisWi = W, Wi3Was in UAQK(H,) ® A); (2.12)
2. G-anti-Heisenberg pair if

Wlﬂ-Wﬁ-g = Wﬁ-3W13W1ﬂ- in Z/{(AA ® K(Hﬂ—) ® A), (213)

here Wy, := ((id ; @ 7)W) and W, := ((# ® ida)W) with the leg numbers 1, 2 and 3 assigned to A, K(#)
and A, respectively.

Ezample 2.18. Let W € U(H ® H) be a modular multiplicative unitary which gives rise to the quantum
group G = (A, A4). Let W € U(A ® A) be the reduced bicharacter. By Theorem there are faithful
representations 7 and # of A and A on H with W = (& ® m)W € U(H ® H). Moreover, considering the
preimage of the pentagon equation under the injective map (7 ® id ® 7) gives as follows:

WisWir = Wi, Wi3Wis in U(ARK(H)® A). (2.14)
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Conversely, a pair of faithful || representations (m, #) of A and AonHisa G-Heisenberg pair if and only if
W, € U(H ® H) is a multiplicative unitary.

The next example shows that G-anti-Heisenberg pairs exist.

Ezample 2.19. Let (Lfr) be a G-Heisenberg pair on H, and let T: B(H~) — B(H~) be the transposition
defined as £7(T) := &*v for all v € Hn, where H, is the complex-conjugate Hilbert space. Define

(a) = (7(R;4(a))" (2.15)

foralla€ A, a € A and Ry, with R4 as in Theorem Then (7, #) is a G-anti-Heisenberg pair acting
on Hx:

N
3

7(a) := (r(Ra(a)))" and

WizWzs = RO TORA)(WisWin) = (R4 @ TRRA) (Wi WisWis) = W=, Wis Wiz,

where the first equality uses ([2.15), (R4 ® Ra)W = W ([39, Lemma 40]) and antimultiplicativity of Ra,
R and T, the second equality uses (2.12f), and the third equality follows by applying the facts used for the
first equality in reverse order.

Remark 2.20. Example [2.19] gives a one-to-one correspondence between G-Heisenberg and -anti-Heisenberg
pairs.

Proposition 2.21. FEvery G-Heisenberg pair or G-anti-Heisenberg pair is faithful.
First we establish the following lemma.

Lemma 2.22. Let (m,7) and (p, p) be a G-Heisenberg pair and a G-anti-Heisenberg pair on Hilbert spaces
Hr and H,, respectively. Then 1@ p: AQA — B(H- Q@ H,) and p@7: AR A — B(H, ® Hx) are unitarily
equivalent.

Proof. Define ¥ := W, ¥W., 6 € UHr @ Hp,Hp @ Hx), where W, = (T @ p)W € U(H~ @ H,),
W, = (p@m) € U(H, @ Hx) and E: Hr @ H, — H, ® Hr is the flip operator. We claim that ¥
intertwines 7 ® p and p ® #. Using ([2.5)) and (2.6)), it suffices to show:

VosW1, WyaUhy = Wi, Way  in U(ARK(H,) @ K(Hx) @ A),

or, equivalently,:
Y3 (WﬁmeWM (Wfrp)*)223 = (Wﬁw)*wmwmwﬁw (2~16)
in UARK(H,) @ K(Hr) @ A).
The following computation yields (2.16)):

223(Wﬁpwlwwﬁ4(wﬁp)*)223 = 223(Wlﬂwlpwfrpwﬁ4(wfrp)*)223
= W1WW1pWﬁ4Wﬁ4
= (Wﬁﬂ)*WIpWﬁwWﬁALme = (Wﬁw)*wmwmwpw

where the first equality uses (2.12)), the second equality uses (2.13)) and application of o3, the third equality
again uses (2.13) and the fourth equality uses (2.12)). O

Proof of Proposition Let (m,#) and (p, p) be G-Heisenberg and anti-Heisenberg pairs on H, and H,
respectively. Lemma forces 7 ® p and p ® 7 to be unitarily equivalent. By Proposition 5.3] the
representations m and p of A on H, and H, are quasi-equivalent. Similarly, p and & are quasi-equivalent
representations of A on M. and H,, respectively. Therefore, there is a unique quasi-equivalence class
of representations of A that contain the first element of all G-Heisenberg and G-anti-Heisenberg pairs.
Similarly, there is a unique quasi-equivalence class of representations of A that contain the second element
of all G-Heisenberg and G-anti-Heisenberg pairs. Moreover, Examples and show the existence of
faithful G-Heisenberg and anti-Heisenberg pairs. O

1Proposition shows that the representations 7 and 7 in a Heisenberg pair are always faithful.
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Ezample 2.23. Let (m,#) be a G-Heisenberg pair on H. and let p: A — B(K) be a faithful representation
of A. Define 7’(a) := (p®@ 7)Aa(a) and #'(a) := 1x ® #(a) for a € A and a € A. This is a G-Heisenberg
pair acting on K ® Hx.

Remark 2.24. @—Heisenberg pairs are in one-to-one correspondence with G-Heisenberg pairs: (m,7) is
a G-Heisenberg pair on H, if and only if (7, 7) is a G-Heisenberg pair on H.r.

The pentagon equation (2.4) and Theorem express the comultiplications using a G-Heisenberg
pair (m,#):

Aa(a) =W(r(a) ® 14)W* for all a € A, (2.17)

Aa(@) =o(W (14 ®#(a)W)  forallae A (2.18)

Warning 2.25. In [2.17), (2.18) we identify a with 7(a) and & with #(a). We have used the same identification
on the right side of Theorem [2.13(6 )j(ii)} We shall often follow this convention from now on.

Definition 2.26. Let H, K be Hilbert spaces and let V € U(H ® K). We call V good if, for any a € B(H)
and b € B(K), we have

(V(a@l,c)v* :1H®b) = (ae(C-lH andbGC-l;c> (2.19)

The following Theorem is due to Woronowicz:

Theorem 2.27 ([28, Theorem 2.1]). Ewvery modular multiplicative unitary is good.

Proof. Due to its importance, we prove this Theorem in detail. Define the operators Q, Q, and %
as in Definition 2:I0] First we prove the assertion without D and under the additional assumption
b*Dom(Q) C Dom(Q). Our assumption W(a ® 1) = (1 ® b)W means

@y |Wlaz@u)=(zeby|W|zu)
for all z, 2 € H, y € Dom(Q) and u € Pom(Q~"). The modularity condition for W yields
@oQy|W|zeQ 'v) =(ZeQby |W|TeQ 'u).

In this formula, W(E ® Q'u) runs through a dense subset of H ® H. Since a vector in a Hilbert space is
given by the linear functional it induces we get a2z ® Qy = z ® Qb*y for all y € Dom(Q) and z € H. An
operator w on H induces a transpose operator w' on H by w' (€) := w*€. Thus (¢*)" ® 1 =1® b*, so that
a,beC-1and a =b.

To remove the assumption b*Dom(Q) C Dom(Q), we regularise a and b. For a € B(H) and n € N, we
define

—+o00 400
Rn(a) == Q "aQ"6,(t)dt and R,(b) := QbR 5, (t) dt,

where

is a d-like sequence of Gaussian functions. Since
(W) QW =Q®Q,
our condition W(a ® 1) = (1 ® b)W implies
W(Rn(a) ®1) = (1® Ra(b)W.

We will show below that
R, (b)"Dom(Q) C Dom(Q). (2.20)



14 CHAPTER 2. C*-QUANTUM GROUPS IN A NUTSHELL

The first part of the proof now yields Ry, (a) = Rn(b) = Anl for all n € N. If n — oo, then ﬁn(a) and R, (b)
converge weakly towards a and b, respectively. Hence we get a = b = Al for some A € C in full generality.
It remains to establish (2.20)). Let =,y € Dom(Q). Then the function

fou(2) = (QC V2|07 | Q")

is well-defined, bounded, and continuous in the strip ¥ := {z € C: —1 < Imz < 0} and holomorphic in
the interior of 3. In particular, for ¢t € R:

fou@®) = (Qz | Q7'Q" | y),  fau(t—i)= (2| Qb Q" | Qy). (2.21)

By Cauchy’s Theorem, the integrals of fr ,(2)dn(2) along the lines R 4 is for 0 < 1 < s do not depend on s.
For s =0 and s = 1, (2.21]) shows that the integrals are (Qz | R.(b)* | y) and

( )

respectively. Their equality shows that (Qz | R»(b)*y) depends continuously on z. This yields R, (b)*y €
Dom(Q*) = Dom(Q), that is, (2.20).

Finally, we add the coefficient algebra D. If a,b € M(K(H) ® D) satisfy Wisa13 = b23sWy, in
M(K(H ®H)® D), then the first part of the theorem applies to the slices (id ® p)(a) and (id ® p)(b) for all
w € D’. Thus (id ® p)(a) = (id ® u)(b) = A, - 1 for all u € D’. This implies that a=be€ C-1 @ M(D). O

+oo
Qb QM8 (t — i) dt

—o0

The following result was proved in |24, Result 6.1] assuming the existence of Haar weights. We generalise
it using Theorem [2.27]

Lemma 2.28. Let G = (A, Aa) be a quantum group constructed from a modular multiplicative unitary W €
B(H®H). If a € M(A), then Aa(a) € M(AR14) or As(a) € M(1a ® A) if and only if a € C- 1.

More generally, if D is a C*-algebra and a € M(A ® D), then (As ® idp)(a) € M(A®1® D) or
(Aa®idp)(a) e M(1® A® D) if and only ifa € C-1 Q@ M(D).

Proof. Using ([2.17)), we rewrite the equation Aa(a) = 1 ® a’ for a,a’ € M(A® D) as Wibaiz = ah; W1,
Now Theorem yields a € C-1®@ M(D). If As(a) = a’ ®1 instead, then we apply the unitary antipodes.
With ¢ := (Ra ®idp)(a) and ¢’ := (Ra ® idp)(a’), we get Aa(c) = 1 ® . The argument above shows
ceC-1® M(D) and hence a € C-1® M(D). O

2.5 Coactions of quantum groups
Definition 2.29 (|2, Définition 0.2]). A continuous (right) coaction of G on a C*-algebra C' is a morphism
v: C — C ® A with the following properties:

1. 7 is injective;

2. 7y is a comodule structure, that is, the following diagram commutes:

c i CoA
7| [ide A4 (2:22)
Y®i

ida
CA——— SCRARQA

3. ~ satisfies the Podles condition
C)-(le®A) =C® A (2.23)

We call (C,v) a G-C*-algebra. We often drop v from our notation.
A morphism f: C — D between two G-C*-algebras (C,~¢) and (D,vp) is G-equivariant if yp o f =
(f ®ida) oyc. Let Mor®(C, D) be the set of G-equivariant morphisms from C to D.
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Notation 2.30. Let €*alg(G) be the category with G-C*-algebras as objects and G-equivariant morphisms
as arrows.

Ezample 2.31. Any C*-algebra C with the trivial coaction ™V (c) = c® 14 for all ¢ € C' is an object of the
category € alg(G).

Ezample 2.32. Theorem[2.13(3)}(i)|implies that the underlying C*-algebra A of a quantum group G = (A, Aa)
is a G-C*-algebra with A4 as the coaction.

Ezample 2.33. Combining the previous examples (2.31) and (2.32) we get C ® A as an object in the
category €*alg(G) with the continuous G-coaction pcga :=idc ® Aa. The following lemma says that any
continuous coaction may be embedded into one of this form.

Lemma 2.34. Let C be a C*-algebra and D a C*-subalgebra of M(C ® A) with
(ide ® Aa)(D) - (lega® A) =D ® A. (2.24)

Then D with the coaction 0 := (idc ® Aa)|p: D — D ® A is a G-C*-algebra, and the embedding D —
M(C ® A) is a G-equivariant morphism.
Every G-C*-algebra is isomorphic to one of this form.

Proof. Equation implies that ide ® A4 maps D into M(D ® A) as claimed. Injectivity and
coassociativity of ¢ are clear from because they hold for ide ® A4, and (2.24)) is the Podle$ condition
for 0. Thus J is a continuous G-coaction. The equivariance of the embedding is clear.

Now let (C,v) be a G-C*-algebra. Let D := v(C) C M(C ® A). The comodule property and the
Podle$ condition for v imply that D satisfies :

(ide ® Aa)v(C) - (loga ® A) = (v ® idA)("}/(C) (le® A))
= (y®ida)(C® A) = (C) ® A.

Furthermore, the comodule property (2.22)) for v implies that the isomorphism v: C — D is G-equivariant.
O

2.6 Corepresentations of quantum groups

Definition 2.35 ([2, Définition 0.3]). A (right) corepresentation of a C*-quantum group G = (4, A4) on
a C*-algebra D is a unitary U € M(D ® A) such that

(idD [ AA)U =U12U;3 in Z/[(D RAR® A) (2.25)
In particular, if D = K(#) for some Hilbert space H, we call U a corepresentation of G on H.

Let (m,#) be a G-Heisenberg pair on a Hilbert space H such that W = (7 @ m)W € U(H @ H) be a
manageable multiplicative unitary for G. Let U € U(K(K) ® A) be a corepresentation of G on a Hilbert
space K and let U := (idg ® m)U € U(K ® H). Using we rewrite the corepresentation condition
in the following way

WozUrz = U12U13Wog nUKQHSH). (2.26)
Definition 1.3 in [49| shows that U € U(K ® H) is adapted to W. More generally, [49] Theorem 1.7]
shows that every unitary adapted to W is a corepresentation of G. Further, Theorem 1.6 in [49] shows
that U € U(K(K) ® A) is manageable in the following sense: there is a unitary U € U(K ® H) satisfying the
following condition: _
(w®u\U\z®y):(E®QU|U|E®Q_1y), (2.27)
for all z,z € K, v € Dom(Q) and y € Dom(Q~"'). Here Q is the positive, self-adjoint operator on H
involved in the definition of the manageability of W € U(H Q@ H).
The next Proposition shows that every corepresentation of G gives rise to a multiplicative unitary of G.

Proposition 2.36. The unitary Wi3Uss € U(H QR K @ H ® K) is a manageable multiplicative unitary
on H® K generating G.
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The following lemma is needed to show the manageability of W,3Uss.

Lemma 2.37. Let Q be a self-adjoint, strictly positive operator acting on a Hilbert space H. Then there is
an orthonormal basis {e;}i=1.2,... in H such that all e; € Dom(Q) N Dom(Q™") and

SR e (Qeil = 1a, (2.28)
=1

where the sum converges in the strong topology.
Proof. Given any integer n € Z and any A € [22"7! 22"%1) we set f(\) = 272"\, Then
Reo 3 A= f(\) €[271,2)

is a piecewise linear function and the operator Q' := f(Q) is self-adjoint, bounded with bounded inverse:
Q]I Q" |l < 2. Let x denote the characteristic function (not bicharacter) as discussed in [52] such
that x(2°"7! < @ < 22" %) is the spectral projection assigned to Sp(Q)N[22"~*, 22" 1), Moreover, if ¢ € H
and

X2 < <2 e=e (2.29)

then e € Dom(Q) N Pom(Q 1), Qe = 2" f(Q)(e) = 2°"Q'e and Q e = 27" f(Q Ve =272"Q"" . In
that case

Q7 'e)(Qel = |Qe)(Qel = Q" 'e) (el Q.

Finally, selecting an orthonormal basis {e; }i=1,2,... in H with all e; satisfying condition (2.29) (n depends
on i) we get

>0 e @il = > @ e el =@ (P le el )@ = 1 0
=1 i=1 i=1

Proof of Proposition Let X1234 := W;3U23. The following computation shows that X234 satisfies the
pentagon equation (2.4)):
X356 X1234 X 3456 = W35 Uss W13 U3 Us Wis = WasWi3UosWis = W13 Wi WssUas Wi = W13 Wi5Ua3Uzs

= X1234X1256-

The first equality follows from the assumption, the second equality holds as Uss and W;3Us23 commute, the
third equality uses (2.4)), the fourth equality follows from (2.26)) and the fifth equality is trivial.

Clearly, X234 € L{(/l ®K(K) ® A®1). We show that the C*-algebra generated by slices on the first
two legs of X234 is indeed A. Manageability of W € U(H @ H) yields A = {(w ® id)W* : w € B(H).}. We
replace B(K). by the dense subset £w’, where £w’ is defined by £w’(€') := (¢ - €) for £,¢ € B(K) and
w' € B(K)«. Therefore,

{(w®éw ®@id ®idic) X1ass : w € B(H)x,w’ € B(K)., & € B(K)}®
{(¢ ' @id)U* -a:aeAw €BK).,EeBK)S

{(W ®id)(U(E®a)):a € Aw €BK).,EeBK)
{(W®id)(®a):a€ Aw €BK).,EeBK)}I™ =4

Finally we show that Xi234 is manageable. Let @ be the positive, self-adjoint operator on H involved
in the definition of the manageability of W € U(H ® H). Define Q := Q ® 1x. Clearly, Q ® Q commutes
with X1234.
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By Lemma m there is an orthonormal basis {e;}i=1,2... of H such that e; € Dom(Q) N Dom(Q ")
satisfying (2.28). Let x,2 € H, x1,21 € K, u € Dom(Q) and y € Dom(Q™"). We compute

(r1 @22 @u| Wi3Uss | 21 ® 22 @ y)
=Y (@ @w@u| Wiz (1818 | e)- (e ) Uss | 21 ® 22 @)

k3

:Z(x1®u\W|zl®ei)-(x2®ei|U|22®y)
= Z (z@Qu | W | ﬁ@Q‘lei) . (E@Qei \ U \ E@Q_ly)
=Y (Z@E@QMWM-G@I@ | Q7 "es) - (Qei ) Uns \aﬁ@azﬁ@@fly)
= (71®72® Qu | W1sUas |J/’71®J/’72®Q713/> .
Hence, Xi234 € U(H Q@ K ® H ® K) is a manageable multiplicative unitary generating G. O

Proposition 2.38. Let U € U(D1®A) and V € U(D2® A) be corepresentations of G, G on C* -algebras D1,
Dy. Then there is a unique unitary Z € U(D1 ® D2) such that for any G-Heisenberg pair (w,#) on L

UixVa:Z12 = V2:Uir mn U(D1 ® D2 ® K(ﬁ)) (230)
Equivalently, Z € U(D1 ® D2) satisfies the following:
VisUtr = Uix Z13V 23 inU(D1 @ K(L) ® D2), (2.31)

where V = a(V*) € U(A @ KD»).
In particular, if D1 = K(H) and Dy = K(K) for some Hilbert spaces H and I, then Z € U(H ® K).

Proof. Let W € U(A ® A) be the reduced bicharacter of G. Equations (2.17) and (2.25) for U yield:

Wi3Uir = Uiz U13Wis in U(Dl ® K(ﬁ) ® A) (2.32)
Similarly, equations (2.18) and (2.25) for V gives:
VisWis = WasVisVie  inU(D2 @ K(L) @ A). (2.33)

Define Z := V3:UixV2:Uixr € U(D1 ® D2 ® K(L)) and consider the multiplicative unitary W =
(7 @m)W € U(L ® L). We are going to use Theorem to show Z € U(D, ® D1 ® 1).

Wi, Vi3U13VasUis(Way)™ = Vo, W3y Vau Ui Vas(Way) " UisUrs = V5 W3, U3 Vs Vag (Wi ) *Us Uiy
=V5,U74U73V24U13U14
=V5,U74V24 Uy,

where the first and third equality use (2.32) and (2.33)), whereas the second and fourth equality follow
because Uiz and Va4 commute.

Now Theorem gives a unitary Z € U(D1 ® D2) such that Zi2 = Z. Tt satisfies (2.30)), which also
shows the uniqueness. O

Remark 2.39. At first sight, it seems that the unitary Z € U(H ® K) in Proposition depends on the
choice of G-Heisenberg pairs. We shall justify its independence of auxiliary choices of G-Heisenberg pairs in

Remark 2.44]
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2.7 Universal duals of quantum groups

Given a locally compact group G, the full group C*-algebra C*(G) is universal in the following sense: every
unitary representation of G on a Hilbert space factors through a representation of C*(G) on the same Hilbert
space. The comultiplication Ag+(gy € Mor(C*(G), C*(G) ® C*(G)) defined by Ac-(gy(a) := a®a for a = 4,
is coassociative. Furthermore, (C*(G), Ac=(g)) is a bisimplifiable Hopf C*-algebra and (C; (G), Acx(a)) is
a quotient of it. Thus C*(G) can be considered as the universal dual of the quantum group Co(G). The
counterpart for general quantum groups is known as the universal dual of the quantum group. Under the
assumption of Haar weights, Kustermans discussed a general theory of it in [22]. Later, in [39], Soltan and
Woronowicz generalised Kustermans’s result in the framework of modular multiplicative unitaries. Let us
recall some facts from [39] in the following theorem:

Theorem 2.40. Let G = (A, A4) be a quantum group.
1. There is a bisimplifiable Hopf C*-algebra G = (A“, AAu).
2. There is a unique corepresentation V € U(A" ® A) of G such that

(a) V is universal: given any corepresentation U € UD ® A) of G on a C*-algebra D there is a
unique @ € Mor(A", D) with
(p@ida)V =1, (2.34)

(b) V is a character in the first leg:
(A% ®ida)V = Va3Vis. (2.35)
(c) slices on the first leg of V generate the C*-algebra A":

A" ={(idju @w)V |w e A} (2.36)

As a consequence of Theorem 2) there is a unique Hopf *-homomorphism (see |39, Proposition 34])
A: A" — A, known as the (dual) reducing morphism, satisfying

(A®ida)(V) =W. (2.37)

Also, there is a unique bounded dual counit é": A* — C (see |39, Proposition 31]) characterised by the
trivial corepresentation of G:

(" ®ida)V = 14, (2.38)

with the following property:
(6" ®id 4u)A% = (id ju ® €")AY = id 4u. (2.39)

Similarly G" = (A", Aau) is the universal dual of G with a unique corepresentation V € U(A® A" of G
such that

1. V is universal: given any corepresentation U € U(A ® D) of G on a C*-algebra D there is a
unique ¢ € Mor(A", D) satisfying
(id; @ )V = U, (2.40)
2. V is a character in the second leg:
(idg ® AX)Y = VixVis. (2.41)

3. slices on the second leg of V generate the C*-algebra A":

Au _ {(w ® idAU)V | = A/}H-H—closure (242)
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The unique Hopf *-homomorphism, reducing morphism, A € Mor(A", A) is characterised by the following
condition:

(idy @ A)(V) = W. (2.43)
Finally, we also have a unique bounded counit e": A" — C characterised by:
(idg ® ")V = 1. (2.44)
It satisfies
(" ®idau)AY = (idaw ® e")AY = id gu. (2.45)

The following result due to Kustermans which works in the setting of modular multiplicative unitaries:
Lemma 2.41 ([22 Result 6.1]). Let X,Y € U(D ® A") be corepresentations of G* on a C*-algebra D. Let
Aa: A" — A be the reducing morphism. If (idp ® Aa)X = (idp ® Aa)Y, then X =Y. A similar statement
holds in the first variable.

Universal duals of quantum groups, in general, do not arise from modular or manageable multiplicative

unitaries; hence they are not quantum groups. Still one may lift W € U (121 ® A) uniquely to a unitary W €
U(A" @ A") satisfying a variant of pentagon equation ([2.4]):

Proposition 2.42. There is a unique unitary W € U(A® @ A") such that

(idju ® Aa)WV =WiWis  inUA" @ A" @ AY), (2.46)
(Aaw ®@id 1 )W = WosWiz  inU(A" @ A" @ AY), (2.47)
(idju @ AW =V in U(A" @ A), (2.48)
A®ida)W =V inU(A® AY), (2.49)
A AW =W inU(A® A), (2.50)

(id4u ® €W =144 in U(AY), (2.51)
(6" ®@idau)W = 14u in U(A"). (2.52)

Definition 2.43. The unitary multiplier W in Proposition [2.42] is called the wuniversal bicharacter of
G=(4,A4).

In the presence of a Haar weight on quantum groups this was shown by Kustermans Proposition
6.4]. We establish this fact in the context of modular multiplicative unitaries.

Proof of Proposition [2.42] Let (w,#) be a G-Heisenberg pair. Proposition m gives a unique W €
U(A" @ A%) with y y
W13 = V]’.kﬂ'vﬁ'Svlﬂ'V;S' (253)
Now we show ([2.46):
(id ju ®ida ® AA“)vwafr?ﬂ}le;s = Vi VasVaaVirViaVis = WisVas Vi VaaVie VasVis
= WisVasWiaViz = WisWia.
A similar routine computation yields (2.47). The following computation yields (2.48):

(idAu ®ida ® A)W13 = (idAu ®ida ® A)9T2V23]~)12V§3 = ]}T2W23]>12W§3 = f)f2fj12913 = 913

A similar computation yields (2.49)). Then ) follows from or . Finally, - and -
follow by using (2.44)) and (2. 38 in 2 53)). .
Let (n',#") be another G-Heisenberg pair and W' € U(A" ® A") be the corresponding universal

bicharacter. Now (2.48)) gives (id ju @ A)W = (id ju ® A)W' =V; Lemma gives W =W'". O

Remark 2.44. We conclude by arguing that Z € U(H ® K) in PI‘OpOblthH satisfying ,
independent of the choice of G-Heisenberg pairs. The universal property (2.34] of velu (A“ ® A) gives a
unique ¢ € Mor(Au D1) with (¢®ida)V = U. Similarly, by the universal property - of V € Z/I(A®A“),
there is a unique ¥ € Mor(A", Ds) such that (id; ® )V = V. Let (r,#) be a G-Heisenberg pair acting
on £ and define Z := (¢ @ p)W* € U(D1 ® D3). Since W € U(A" ® A") is independent of the choice
of G-Heisenberg pairs so is Z. Finally, applying ¢ ® idz ® ¢ on both sides of we obtain .
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Chapter 3

Homomorphisms of quantum
groups

Let G and H be two locally compact groups and let G and H be the respective Pontrjagin duals. Then
for any continuous group homomorphism f: G — H there is a unique dual morphism f: H — G defined
as f(Xh) ‘= Xf(h), Where x5 € H for all h € H. There should be a similar notion of homomorphisms
of quantum groups which is compatible with the duality in the following sense: given a quantum group
homomorphism f: G — H there is a unique quantum group homomorphism f :H — G. A natural
choice would be the Hopf *-homomorphisms in Definition which are the right morphisms between
compact quantum groups (see [43]) and, more generally, between amenable quantum groups. For locally
compact groups, however, they are not appropriate because they do not behave well for reduced group
C*-algebras. It is easy to see that a group homomorphism f: G — H induces Hopf *-homomorphisms
from Co(H) to Co(G) and from C*(G) to C*(H). But the latter does not always descend to the reduced
group CT-algebras. For instance, the constant map from G to the trivial group {1} induces a Hopf
*-homomorphism C; (G) — C;({1}) = C if and only if G is amenable. In this chapter we propose equivalent
notions of homomorphisms of quantum groups building on work by Ng [31] and later by Kustermans [22].

In Section [3-I] we recall the theory of bicharacters as quantum group homomorphisms, which is nicely
compatible with the duality of quantum groups. In Section [3.2] we show a bijection between bicharacters and
Hopf *-homomorphisms of universal quantum group C*-algebras. In Section we interpret bicharacters in
terms of certain left and right coactions and vice versa. In Section [3:4] we introduce the most fundamental
notion of quantum group homomorphism from the point of view that quantum groups encode symmetries
of C*-algebras, in the form of coactions. In Section we discuss the correspondence between bicharacters
and classical group homomorphisms. Section [3.6] introduces the notion of projections on quantum groups.

3.1 Bicharacters

Let G = (A,A4) and H = (B, Ap) be quantum groups with the reduced bicharacters WA € U(A® A)
and W? € U(B ® B), respectively.

Definition 3.1 (see also [31, Definition 3.1]). A unitary X € U(A ® B) is called a bicharacter from G to H
if
(AA@idB)X:XQ:’,Xlg in U(A(X)A@

B®

), (3.1)
(idA®AB)X = X12X13 in Z/[(A@ .

) (3.2)

Remark 3.2. Definition still makes sense if we consider (A, A4) and (B, Ap) as Hopf C*-algebras. We
do not expect all the nice properties of bicharacters between quantum groups in this general setting. But

B
B
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it will turn out useful in Section while studying Hopf *-homomorphisms between universal quantum
groups.

Let Ha and Hp be the generic Hilbert spaces associated to G and H-Heisnberg pairs.

Lemma 3.3. A unitary X € U(Ha @ Hg) comes from a bicharacter X € U(A ® B) (which is necesssarily
unique) if and only if

X23W1ih = WisX13Xos inUHA Q@ Ha R HE),
WHX12 = X1oX13Way  inU(Ha® Hp @ Hp). (3.4)

Proof. The representation of A ® A ®BonHa® ’HA ® H g is faithful. Hence a bicharacter X € Z/I(fl ® B) is
determined by its image X € U(Ha ® Hp), and an are equlvalent to some equations of unitary
operators on HA ® Ha ® Hp. Using 1-) we rewrlte 'as Y1a( le) X23W12212 = X23X13. This is
equivalent to . A similar argument shows that (| is equlvalent to

It remains to show that a unitary X on Ha ® 7—[ B that satisfies and necessarily belongs to
U(A ® B). Comparing (3.4) with - we observe that X is adapted to WB Rewrltmg as X13 =
X WEX12(WE)*, we see that X € U(K(Ha) ® B). Equation (3.3) in the form X3 = (ng) X23W12X23
shows that X3 € Z/{(A Q@ K(Ha) ® B), so that X € U(A® B) as asserted. O

Ezample 3.4. Equatlons ) and . show that a Hopf -homomorphism f: A — B yields a bicharacter
Vi = (idy; ® f)W*. In partlcular the bicharacter W# corresponds to the identity morphism.

Remark 3.5. The criterion in Lemma [3.3 has the merit of using only the language of multiplicative unitaries
and pentagon equations. But the same quantum group may be generated by different multiplicative
unitaries. Since W4 only depends on (A, A4) by , bicharacters from G to H depend only on (A, A4)
and (B7 AB).

3.1.1 Composition of bicharacters

Now we define the composition of (concrete) bicharacters as in Lemma 2.5]. Let I = (C, A¢) be another
quantum group.

Definition 3.6. A unitary XA7C e U(A®C) is called a composition of two bicharacters XA~ € U(A® B)
and X7¢ e Y(B ® C) if its image XA~ in U(Ha ® Hc) satisfies

ngﬁcfoﬁB = XfQHBstﬁcxégsﬁc inU(Ha @ He @ He)
or, equivalently,
X.{l:;HC _ (sz—}B)*XQBg—)CX{lQ—}B(X%—)C)*' (3‘5)

We also briefly write X4A7¢ = xB2C x xA~E,
Lemma 3.7. For any two bicharacters X* 7P and XP~C | there is a unique composition X~ € U(A® C)
from G to 1.

Proof. We rewrite l} as X{57¢ = (X7 By XEOX{ B (XB7C), where (m,7) is a H-Heisenberg pair
on H. By Proposition [2.38] there is a unique X*~¢ € U(A @ C) satistying (3.5).
The following computation yields ([3.1)) for XA~

(A ®id®ide)Xis ¢ = (Ax ®@id @ ide) (X5 2) " XE X P (X257 9))
(XIIA:B) (XA%B) XB%CX;:)BXA?B(XEA?C)*
= () e OXET X P (T
=X O ) NET O P (ED ) = e e
The first step uses ; the second step uses . ) for X475 the thlrd step again uses ; the fourth
step uses that X5y~ and XA_’B commute; and the last step uses
Similarly, one shows . Hence XAHC is indeed a blcharacter. O
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Proposition 3.8. The composition of bicharacters is associative, and the multiplicative unitary W4 is an
identity on C. Thus bicharacters with the above composition and locally compact quantum groups are the
arrows and objects of a category, called bicharacter category.

Proof. Only associativity of the composition is non-trivial. This follows from a direct composition similar
to the ones above. We omit it here because associativity follows immediately from Theorem or from
Proposition [3.28] below, which translate the composition into a different language where associativity is
obvious. O

3.1.2 Properties of bicharacters

Recall that the dual of a multiplicative unitary W4 is the multiplicative unitary WA = (WA,

Correspondingly, the reduced bicharacter of the dual quantum group is WA = o((W4)*). Hereo: AQ A —
A ® A is the tensor flip automorphism and X: Ha @ Ha — Ha ® H4 is the tensor flip unitary. A similar
duality works for all bicharacters:

Proposition 3.9. Let X € Z/{(A ® B) be a bicharacter from G to H and let X € U(Ha @ Hp) be the
corresponding concrete bicharacter. Then

Xi=o(X)eUB®A) and X:=3IX'S cU(Hp@Ha)

are a bicharacter from H to G and the corresponding concrete bicharacter. Here we identify the bidual of
H = (B, Ap) again with H = (B, Ap). This duality is a contravariant functor on the bicharacter category.

Proof. We check (3.1)) for X using (3.2)) for Xx:
(Ap ®id 4)o(X") = 023012((id 4 ® Ap)X") = 023012(X13X12) = (X )23 - 0 (X" )13.

A similar computation yields (3.2)) for X. A quantum group and its dual are canonically represented on the
same Hilbert space, and the ﬂ1p o on operators is implemented by conjugating by ¥. Hence X := UX*X.
Functoriality follows from the following computation:

X579 = o1 (X35 ()T () X)) = XEP O X PR O
where (7, 7) is an H-Heisenberg pair. O

The following result generalises [39, Lemma 40] and is proved by the same idea.
Proposition 3.10. Let X € U(A ® B) be a bicharacter. Then
(R, ®Rp)(X) = X, (3.6)
(TtA @1E)(X) =X for all t € R. (3.7)

Proof. Let ¢ € A, and ¥ € B, be entire analytic for (T{&) and (77), respectively. Let ¢; := @ o TtA and
2y i= o1 for all t € R. Analytic continuation yields

Oatrt = Q20 T:}, and Yopo =, 0TH for all z,2" € C.
Polar decomposition of the antipodes x4 and kg ([49, Theorem 1.5]) shows that
Pz0K4 = Q.yis2 0 Ry, and Y20k = Y.4ipn 0 RB.
Let kp be the closure of kg with respect to the strict topology on M(B). Then |49, Theorem 1.6(4)] yields
Blw®id)X = (w®id)(X")
for all w € A.. Applying ¥, to both sides and using that w is arbitrary, we get

(id ® Yoy 0 R)X = (id ® 2)(X7).
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Interchanging the roles of B and A and replacing X by LX*X and ¥ by ¢, we get
(QOZ.H/Q o RA X ld) (X*) = (gaz X id)X.

Both formulas together yield

(Pt @ Yaryipp) o (R4 ®RB)(X) = (ati2 O R4 ® Yh2ti2 0 RB)(X)
= (Patyz 0 R @ ¥2)(X7) = ¥2(pzpi2 0 Ry ®@1d)(XT) = (2 ®92)(X).  (3.8)
Inserting p o k4 and ¥ o kp into instead of ¢ and v yields

(241 @ Pat) (X) = (P2ti/2 @ Yarin) © (Rg @ Rp)(X) = (92 @ ¢2)(X).

This shows that (¢, ®1.)(X) is a periodic function of period i. Being bounded as well, Liouville’s Theorem
shows that it is constant, that is,

(0= ®¥:)(X) = (¢ @) (X) (3.9)
for all z € C. Putting z = —i/2 in and using yields
(p@ 1) o (R ®Rp)(X) = (¢ @) (X).

This proves (R4 ® Rp)(X) = X. Finally, (3.9) also yields (TtA ®@7F)(X) = X for all t € R. O

Let Q4 and @Qp be the positive, self-adjoint operators from the definition of manageable multiplicative
unitaries of the quantum groups G and H.

Corollary 3.11. X € U(Ha ® Hp) commutes with Qa @ QB.

Ezample 3.12. We give an interesting example of a concrete bicharacter from the definition of modular
multiplicative unitaries.

Let G = (A, A4) be a quantum group generated by a modular multiplicative unitary W on H ® H. The
opposite quantum group (A°", A4) is generated by a modular multiplicative unitary acting on H ® H for
the complex-conjugate Hilbert space H. The unitary operator (W*)™®T on H ® H is multiplicative and
gives rise to the quantum group (A, A4) with

A:={a":ac A} and Aa(a"):=(Aa(a))"™®". (3.10)

The quantum group (A, A,) is isomorphic to (A°P, A4). Thus the dual (;1, Z 4) is isomorphic to the dual
of the opposite quantum group (A°P, A 4), where

A={a":ac A} and Aa@")=(A@a)"". (3.11)

Recall the operator W from the definition of a modular multiplicative unitary. Theorem E| and
(3.6) yield W' = WTeRa — WRaT®id ¢ U(H @ H). Hence (B.11) yields W € U(A ® A). We compute

(AA & idA)W* = ((AA ® idA)W)T®T®RA = (W23W13)T®T®RA = WISW;S

~% ~k ~—%

(id; ® 00 AW = ((idg ® 00 As)W) ERAERA = (W, W) TERACRA = W, W,

Thus W is a bicharacter from (A, A4) to (A, AP).
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3.1.3 Manageability of bicharacters

Lemma and Proposition show that X € U(Ha ® Hp) and X € U(Hp ® Ha) are adapted to the
multlphcatlve unitaries W2 and W5, Assume that W* and W2 are manageable multiplicative unitaries (if
they are modular consider the corresponding manageable multiplicative unitaries as described in [38])
By -, adaptation to W? yields manageability for X € U(Ha ® Hp): there is a unitary X €
U(Ha ® Hp) such that: B
(m®u\X|z®y):(E®QBU|X|E®Q§1y), (3.12)

for all z,z € Ha, u € Dom(Qp) and y € Dom(le). Moreover, X = xXT®Fs ¢ UHA @ Hp).
Similarly, X € U(Hp ® Ha) is adapted to WA, So there is a unitary X := (X)T®Fa c U(Hp @ Ha)
satisfying _
(z®u|?|z®y):(mQAch\mc?zly), (3.13)

for all #,2 € Hp, u € Dom(Q4) and y € Dom(Q7"). Equation (3.6) shows that (E()}*)E)TQ?T =X.

Lemma 3.13. X and QL ® le commute.

Proof. Since X commutes with Q4 ® Qp, in (3.12) we can replace z, u, z and y by Q' (z), Q% (u), Q' (2)
and Q% (y), respectively, for all + € R. Thus we obtain

(ZeQpu|X |70 Q5'y) = ([QL] Z0QEQpu| X | [Q4] T® Q‘é@fglu)
and therefore X = ([@4]" © Q") X([Q4])" & @5") forall t e R O

3.2 Passage to universal quantum groups

In this section we show that our quantum group homomorphisms are equivalent to Hopf *-homomorphisms
between the associated universal quantum groups, which were previously suggested as a suitable notion of
quantum group homomorphism (see |22, Section 12]). Propositionshows that every reduced bicharacter
admits a unique bi-lift to a universal bicharacter. Thus modular (or manageable) multiplicative unitaries
are basic in the notation of |31} Definition 2.3].

Proposition 3.14. Let (B,Ap) be a Hopf C*-algebra. Bicharacters in U(A ® B) correspond bijectively to
Hopf *-homomorphisms from G" = (A", Aau) to (B, AB).

Proof. A Hopf * homomorphlsm : A" — B is also a morphism from A" to B and thus corresponds to a
corepresentation X € U(A @ B) of G on B, which is determined by the condition (240): (idg @ )(V) =

X. The Hopf *-homomorphisms Ag o ¢: A" - B® B and (¢ ® ¢) 0 Agu: A“ — B ® B correspond
to the corepresentations (id; ® Ap)X and Xi12Xi3, that is, id; ® (Ap o ¢)(V) = (id; ® Ap)X and
(id4 ® (¢ ® @) 0o Aau)(V) = X12X13 because V is a bicharacter. Thus a morphism ¢: A* — B is a Hopf
*-homomorphism if and only if the corepresentation X also satisfies (id ;4 ® Ap)X = X12X13. That is, X is a
bicharacter. ]

Corollary 3.15. Any Hopf *-homomorphism p: A* — B induces a dual Hopf *-homomorphism ¢: B* — A
if (B,AB) is also a quantum group.

Proof. By Proposition , a Hopf *~-homomorphism ¢: A" — B corresponds to a bicharacter X in U (A@B).
By Proposition o(V™) is a bicharacter from B to A, which yields a Hopf *-homomorphism ¢: B* — A
by Proposition [3.14] O

Now we are going to show that Hopf *-homomorphisms G" — H lift uniquely to Hopf *-homomorphisms
from G" to H". Together with Proposition this yields a bijection between homomorphisms of quantum
groups in our sense and Hopf *~homomorphisms between the associated universal quantum groups. The
main ingredient is the universal bicharacter W € U(A" @ A") from Proposition



26 CHAPTER 3. HOMOMORPHISMS OF QUANTUM GROUPS

Proposition 3.16. A bicharacter in U(A ® B) lifts uniquely to a bicharacter in U(A* @ B*) and hence to
bicharacters in U(A Q@ B") and U(A" @ B).

Proof. These liftings are unique by Lemma It remains to prove existence. Let X € U (121 ® B)
be a bicharacter. By Proposition it corresponds to a Hopf *-homomorphism ¢: A" — B. Let
WA € U(A" ® A") be the universal bicharacter of G. Then X' := (id 1. ® P)W* € U(A" ® B) is a
bicharacter that lifts X. Now o(X')* € U(B ® A") is again a bicharacter (see Proposition . Repeating
the above step we lift it to a bicharacter X’ in U(B" ® A"). Then o(X")* is the desired lifting of X. [

Recall that bicharacters form a category and that duality is a functor on this category. Hopf
*-homomorphisms A" — B" also form the arrows of a category.

Theorem 3.17. There is an isomorphism between the categories of locally compact quantum groups with
bicharacters from G to H and with Hopf *-homomorphisms AY — B" as morphisms G — H, respectively.
The bicharacter associated to a Hopf *-homomorphism : A* — B" is (A4 ® App)(W?) € U(A @ B).

Furthermore, the duality on the level of bicharacters corresponds to the duality ¢ — @ on Hopf

*-homomorphisms, where ¢: BY — A" is the unique Hopf *-homomorphism with (p ® idpe) WP) =
(id 10 ® ) (W),
Proof. Propositions and yield bijections from Hopf *-homomorphisms A" — B" to bicharacters
from G to H" and on to bicharacters from G to H. We must check that this bijection preserves the
compositions and the duality. We first turn to the duality because we need this to establish the compatibility
with compositions.

Let ¢: A" — B" be a Hopf *-homomorphism. Let X := (A; ® App)(W?) € U(A® B) be the associated
bicharacter. The duality on the level of bicharacters yields the bicharacter o(X*) € U(B ® A) from H to G.
This corresponds to a unique Hopf *-homomorphism ¢: BY — A" with (Ap ® A ;0)(W?P) = o(X)*. Now
we use WP = o(W?5)* to rewrite this as

(Mg @A) W) = (A ¢ @ Ap)(WP).

Both (id ju ® ¢)(W*) and (¢ ® idpu)(W?) are bicharacters. Applying Lemma to both tensor factors,
we get first (id ju ® App)(W?) = (¢ @ Ap)(W?P) and then (id 4. ® )(W*) = (¢ @ idpu)(W?). This yields
the asserted description of duality. A
Now let ¢: A" — B" and ¢: B" — C" be Hopf "-homomorphisms and let X478 ¢ U(A ® B) and

XxB7C c U(B ® C) be the corresponding bicharacters,

XP7C = (Ap @ Acp)WP = (idg ® Ac) V7,

XA7E = (A @ Ap)W? = (A ¢ @idp)V7,
where we use the dual quantum group homomorphism ¢: B" — A". Let (m,#) be an H-Heisenberg pair
acting on H. Then

(XB—>C % XA—)B)13 _ (Xflﬂ—»B)*X??)—)CXfﬂ%B(Xf?)—)C)*
= (A0 ®id @ Acy)((ViR) VaaVin(Viy)") = (A1 @ id ® Acy)(Wi3)
by Proposition [2.42] Thus

XEZCaxXATE = (M40 @ Acp) WP) = (A4 ® Act) o (¢ @ idpa)(WT)
= (Az @ Actp) o (id4u ® @)W?) = (A4 ® Ac(¥ 0 9))(WH).

XB—)C % XA%B

Hence is the bicharacter associated to 1 o ¢. Thus our bijection is compatible with

compositions. O

Remark 3.18. Proposition [2:42] or more generally Proposition [3.16] shows that modular multiplicative
unitaries are basic in the notation of |31} Definition 2.3]. Thus Theorem is comparable to [31, Theorem
4.9].
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3.3 Right and left coactions

Let G = (A,A4) and H = (B, Ap) be quantum groups with their reduced bicharacters WA cU(A® A)
and WP € U(B ® B).

Definition 3.19. A right quantum group homomorphism G — H is a morphism Ag: A - A® B for which
the following diagrams commute:

A A
A n A® B A n A® B
AAj JAA@HdB ARJ JidA ® Ap (3.14)
da® A Ar®id
A® A&A@A@B A®B&A®B®B

The second diagram in (3.14) means that Ag is an H-comodule structure on A.
Ezample 3.20. A Hopf *~-homomorphism ¢: A — M (B) yields a right quantum group homomorphism by
AR = (idA ® QO)AA,
Theoreim 3.21. For any right quantum group homomorphism Ar: A — A ® B, there is a unique unitary
X € U(A® B) with

(idA ® AR)(WA) = W‘f‘leg. (3.15)

This unitary is a bicharacter.

Conversely, let X be a bicharacter from G to H, and let X € U(Ha ® Hp) be the corresponding concrete

bicharacter. Then
Ag(a) :=X(a ® 1)X" forallae A (3.16)

defines a right quantum group homomorphism from G to H.
These two maps between bicharacters and right quantum group homomorphisms are inverse to each
other.

Proof. First we check that X := (W)}, - (id; ® Ar)(W*) belongs to U(A ® 1 ® B), that is, X = X3 for
some X € U(A ® B). This is the unique X that verifies (3:15). We compute
(id; ® A ®idp)X = ((wA)*{?,(wA);*Q) ((id4 ® (Ax ®idp)AR)W™)
(WHis(W™)is) - ((idg ® (ida ® Ar)AA)W?)
(WH(WHis) - ((id; ®ida ® Ar)WibWi)
=W ) ((ldA ® Ar)WH) = Xus,

134

the first equality is the definition of X and (2.8)), the second one uses the first diagram in (3.14)), the third
one uses (2.8)) and the last two are trivial. Now Lemma yields X = X33 for some X € U(A ® B).
Next we verify that X is a bicharacter. We check (3.1)):

(Aa®@idp)X),,, = (As @ida ®idp) (W2 - (idg @ Ar)(WH))

= (Aa @ida) (W) 125 - ((id4 @id 5 ® Ar)(Aa @ida)W*)
= (W5 Wis)"(idg ® ide ® AR)(WasWis)

= (W) 15 (W33 WasXos WisX14 = XaaXaa;

the first two equalities use (3.15) and that Ay is a *-homomorphism; the third equality uses (2.9)); the
fourth one uses (3.15)) again; and the final step uses that W3 and X24 commute. The following computation

yields :

= (WHi(id; ®ida ® Ap)(id; ® Ag)W™

= (WHi(id; ® Ag ®idp)(id; ® Ag)W™

= (WHia(id; ® Ar @ idp)(WihXia) = X13X14;

((idA ® AB)X)

134
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the first equality follows from (3.15)); the second one from the second diagram of ([3.14); the third and
fourth equalities from (3.15)).

Thus we have constructed a bicharacter X from a right quantum group homomorphism. Conversely,
let X € U(A ® B) be a bicharacter. We claim that defines a morphism from A to A ® B. Recall
that slices of W* € U(Ha ® Ha) by linear functionals w € B(H.a)« generate a dense subspace of A. On
a = (w®idy,)(W?), we compute

AR(G) = (w ® ld’HA ® id’HB)(XQZ;WlQX;g,) = ((IJ ® ld’HA ® id’HB)(W12X13),

and this belongs to M(A ® B) (as the representation of A® B on Ha ® Hp is faithful). Thus Ar(A) C
M(A® B). It is clear from the definition that Ag is non-degenerate.
We may also rewrite the above computation as

(w X idA®B) o (idA ® AR)(WA) = (w ® idA®B)(Wi42X13)

for all w € B(H)«. Since w is arbitrary, (3.15)) holds for Ar and our original bicharacter X.
Now we use (3.15) to check that Ag is a right quantum group homomorphism. The first diagram

in (3.14]) amounts to
(id; ® A ®idp)(id; ® Ar)(WH) = (id; ®ida ® Ag)(id ; ® Aa)(W™H)

because slices on the first leg of W* generate A. This follows from (3.15) and (2.8): both sides are equal
to WihWisX14. Similarly, the second diagram in (3.14) amounts to

(id; ®ida ® Ap)(id; ® Ar)(WH) = (id; ® Ar ®idp)(id; ® Ar)(W?),

which follows from and because both sides are equal to Wf2X13X14.

Thus a bicharacter X yields a right quantum group homomorphism Agr. Since these are related by ,
we get back the original bicharacter from this right quantum group homomorphism. It only remains to
check that, if we start with a right quantum group homomorphism Ag, define a bicharacter by and
then a right quantum group homomorphism by , we get back the original Ar. We may rewrite ([3.3)
as

X3 WihX5s = WisXas = (id4 @ Ar) (W),
using , This implies that the original A g satisfies because the slices of W4 by linear functionals
on A span a dense subspace of A. O

Theorem shows that (3.16] is independent of the choice of G and H-Heisenberg pairs. Given any
Heisenberg pair (w,#) we identify A with 7(A) and rewrite (3.16) as:

(7 ®idg)Ar(a) = Xaz(m(a) ® 15)X52 for all a € A. (3.17)

Definition 3.22. A left quantum group homomorphism from G to H is a morphism Ar: A — B ® A such
that the following two diagrams commute:

AL AL

A B®A A B®A
AAj JidB®AA ALJ jABe@idA (3.18)
AL ®id idp ® A
A®AL41A>B®A®A B®A134L>B®B®A

Theorem 3.23. For any left quantum group homomorphism Ar: A — B ® A, there is a unique unitary
X € U(A® B) with
(id; @ AL)(W?) = X12Wi. (3.19)
This unitary is a bicharacter.
Conversely, let X be a bicharacter from G to H, let X € U(Ha ® Hp) be the corresponding concrete
bicharacter, and define X as in Proposition Let Ra and Rp be the unitary antipodes of G and H. Then
X (1® Ra(a))X € M(B® A) for alla € A and

Ar(a) = (Rp ® Ra)(X (1 ® Ra(a))X) forallae A (3.20)
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is a left quantum group homomorphism from G to H.
These two maps between bicharacters and left quantum group homomorphisms are bijective and inverse
to each other.

Proof. As in the proof of Theorem [3.21} there is a unique X satisfying (3.19) and Ar is a well-defined left
quantum group morphism A — B ® A. The only point in the proof of Theorem that must be modified
is to show that Ay, given by (3.20) satisfies (3.19). We compute:

(id; ® AL)W? = (id; ® AL)((R; ® Ra) o W?)
R; ® Rp ® Ra)(X53WisXas)
R; ® R ® Ra) 0 023(X23Wi5X55)

R; ® Rp ® Ra)(WisX12) = X12W3;

o~ o~ o~ —~

the first step uses Proposition for W4, the second one uses (3.20), the third one is trivial, the fourth
one uses (3.3), and the last one follows from Proposition and the antimultiplicativity of R . O

Remark 3.24. Propositon [3.16]allows a unique universal bi-lift of every bicharacter and by Theorems [3.21
and [3:23] right or left quantum group homomorphisms correspond bijectively to bicharacters. Hence right
or left quantum group homomorphisms are equivalent to the mutual coactions of Ng Definition 3.13]
and to the special coactions that are considered as morphisms between von Neumann algebraic quantum
groups by Kustermans in Propositions 12.1 and 12.4].

Lemma 3.25. Let Ar,: A — BRA and Ar: A — ARC be a left and a right quantum group homomorphism.
Then the following diagram commutes:

Ar
A B A

ARJ JidB®AR (3.21)
AL @id
AgC L2 peaAsc

Furthermore, if B = C, then Ar, and Ag are associated to the same bicharacter X € U(A ® B) if and
only if the following diagram commutes:

A
A 4 A® A

o] Jiso0 o
A id
A®A&> A9 B® A

Proof. Since slices of W4 span a dense subspace of A, (3.21) commutes if and only if
(id; ®idp ® Ag)(id4; ® AL)(W?) = (id4; ® Ar ®@ide)(id 4 ® Ag)(W™). (3.23)

Let X and X be the bicharacters associated to Az and Ag, respectively. Equations (3.15) and (3.19) imply
that both sides of (3.23) are equal to X12WisX14.
Similarly, the diagram (3.22) commutes if and only if

(id; ®ida ® AL)(id; ® Ax) (W) = (id; ® Ar ®ida)(idg ® Aa)(WH) (3.24)

because the slices on the first leg of W* span a dense subspace of A. Using (2.8), (3.19) and (3.15), we
may rewrite (3.24) as WibX13Wiy = Wi X13 W4, Thus (3.24) is equivalent to X = X. O

Lemma 3.26. Right or left quantum group homomorphisms are right or left coactions.
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Proof. Equations m and m show that left and right quantum group homomorphisms are injective.
We only prove the Podle$ condition (2.23) for right quantum group homomorphisms, the left case is
analogous. Let Ar: A — A ® B be a right quantum group homomorphism with associated bicharacter
V € U(A® B). We must show that the linear span of Ar(A)(1® B) is dense in A® B. We may replace A by
the dense subspace of slices (au@ldA)WA for p € A" and a € C, where au € C" is defined by au(z) := p(xa)
forac A, pe A, and z € A. Given b € B we have

((ap®ida ®idp)(id; ® AR)W)(1®@b) = (p®@ida ®ids)(WibXis(@a® 1 @ b)).

Here X13(éd ® 1 ® b) ranges over a linearly dense subset of A®1® B. Hence we do not change the closed
linear span if we replace this expression by ¢ ® 1 ® b. This leads to

(h®ida ®idp)(Wiy - (a®1®b)) = ((ap®ida)W*) @b,

and these elements span a dense subspace of A ® B as asserted. O

3.4 Functors between coaction categories

Let For: €*alg(G) — €*alg be the functor that forgets the G-coaction. We now describe quantum group
homomorphisms using functors F': €*alg(G) — €*alg(H) with For o ' = For. In particular, we show that a
right quantum group homomorphism induces such a functor. The results in this section answer a question
posed to us by Debashish Goswami.

Theorem 3.27. Let G = (A,A4) and H = (B,Apg) be locally compact quantum groups. Functors
F: ¢*alg(G) — €*alg(H) with ForoF = For are in natural bijection with right quantum group homomorphisms
from G to H.

More precisely, let v: D — D ® A be a continuous coaction of G on a C*-algebra D and let Ag: A —
A ® B be a right quantum group homomorphism. Then there is a unique continuous coaction « of H on D
such that the following diagram commutes:

D D®A
al lidD®AR (3.25)
®id
peB—1""" pgaeB

If a morphism D — D’ between two C*-algebras with continuous G-coactions is G-equivariant, then it is
H-equivariant as well, so that this construction is a functor F: € alg(G) — € alg(H) with For o F = For.
Conversely, any such functor is of this form for some right quantum group homomorphism Agr from G to H.

Proof. A map « making (3.25)) commute is unique if it exists because v ® idp is injective. Existence means
(idp ® Ar)y(D) C (y®idp)(M(D ® B)). Let Ar: A — B® A be the left quantum group homomorphism
satisfying (3.22). We compute

(idp ® Ar ® ida)(y ® ida)y idp ® Ar ®ida)(idp ® Aa)y

=(
(idp ® ida @ AL)(idp ® Aa)y
(
= (

idp ®ida ® ArL)(y®ida)y
YR AL)y = (y®idsga)(idp ® Ar)y,

where the first and third equality use that « is coassociative , the second one uses , and the
fourth one is trivial.

Thus (idp ® Ar ® ida)(y ® ida) maps (D) into (7 ® idpga)(M(D ® B ® A)). Since it also maps
1p ® A into (y®idega)(M(D ® B® A)) and y(D) - (1p ® A) is dense in D ® A by the continuity of v,
(idp ® Ar ® ida)(y ® ida) maps D ® A into (y ® idpga)(M(D ® B ® A)). Thus (idp ® Agr)y(D) C
(y®idg)(M(D ® B)) as desired.
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The second diagram in (3.14)) and several applications of (3.25) imply
(’y X idB®B) o (a X idB) o= (’7 %9 idB®B) e} (idD [024] AB) o«

Since v ® idpg B is injective, (¢ ® idp) o a = (idp ® Ap) o . The map « is injective as well. We check the
Podles$ condition ([2.23) for a.
Since v ® idpga is injective and

(Y®AL)y = (idp ® Ar ®ida)(y ®ida)y = (y ® idpga)(a ®ida)y

we have (idp ® Ar)y = (e ®ida)y.
Letting (...) denote closed linear spans, we first compute

((idp ® AL)y(d)- (lp ®b®a) :a € A, b€ Band d € D)
= ((idp ® AL)(v(d)- (1p ® Ar(a)) - (Ip ®b®1a) :a € A, be Band d € D)
=((idp ® AL)(v(d) - (Ip ®a)) - (lp®b®14):a € A, be Bandde D)
=((idp® AL a) (Ip®b®1a):a€ A beBandde D)
=(([d®(AL(a)(b®14))):a € A, be Band d € D)
=D®BQ®A,

(v
)y
Nd®
)

where the first and fifth equality use the continuity of Ar and the third equality uses the Podles condition
for 7. Hence

~

(a(d)®a)-(Ip®b®1a):a€ A be Bandde D)

<((a®1dA (d® ))-(1D®b®1,4):aeA,beBanddeD>
(((a®ida)(v(d) - (1p ®a))- (lp ®b®1a):a€ A, be Bandd € D)
<((a®1d,4 (d)) - (1D®b®a):aeA,b€Bandd€D>

={((idp ® AL)¥(d)) - (lp ®b®a):a € A, be Bandd€ D)
=D®B® A,

= =

where the second equality uses the Podle$ condition of . This implies a(D) - (1p ® A) = D ® A, that is, a
satisfies the Podles condition.

It is easy to see that a G-equivariant map D — D’ remains H-equivariant for the induced H-coactions.
Thus we get a functor F': €*alg(G) — €*alg(H) with For o F = For from a right quantum group homomor-
phism.

Now let, conversely, F': €*alg(G) — € alg(H) be a functor with For o F' = For, that is, F' maps a
continuous G-coaction v: D — D ® A on some C*-algebra D in a natural way to a continuous H-coaction
F(v): D — D ® B on the same C*-algebra. We claim that F' must come from some right quantum group
homomorphism Agr: A -+ A ® B by the above construction.

When we apply F' to the coaction As: A - A® A, we get an H-coaction Ag: A - A® B. Being a
coaction, it makes the second diagram in commute. We will see later that the first diagram in
also commutes. First we use naturality to show that with @ = F'() commutes for any coaction of G,
so that Ar determines the functor F'.

To begin with, we consider the coaction As ® As: A® A — (A® A) ® A. Since the coordinate
projections w1, m2: A@® A — A are G-equivariant, they are H-equivariant with respect to F(As @ A4) and
F(A4) = Ag. This already implies that F(Aa @ Aa) = Ar @ Ag.

Next we consider the coaction idg(x) ® Ap on K(H) ® A. For any projection P € K(H), we get a
G-equivariant morphism

ABA-SKH)®A,  (ab)—P®a+(1—P)®b.

Since we already know the H-coaction F (A4 @ Aa), the induced H-coaction on K(H) ® A maps P ® a —
P ® Agr(a). Since this holds for all projections P and since these projections generate K(H), we get
F(idK(;.Q ® AA) = idK(H) ® ARg.
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Now consider a general coaction v: D — D ® A. Then ~ is G-equivariant with respect to the coaction
idp ® Asg on D® A. Let 7: D — K(H) be a morphism coming from a faithful representation of D on
some Hilbert space H. The injective, G-equivariant morphism (7 ® ida) o v: D — K(#H) ® A remains
H-equivariant with respect to the coactions F'(y) on A and F(idgx) ® Aa) = idgu) ® Ar on K(H) ® A.
This means that commutes with « := F(v). Finally, specialising to the coaction A4 on A
shows that the first diagram in commutes. Thus Ag is a right quantum group homomorphism that
generates F. The construction also shows that Ag is unique. O

Let I = (C, A¢) be a quantum group.

Proposition 3.28. Leta: A — A®B and 3: B — B®C' be two right quantum group homomorphisms and
let Fo: € alg(G) — € alg(H) and Fg: € alg(H) — C*alg(l) be the associated functors. Then Fgo Fo = F,
where v: A — A® C is the unique right quantum group homomorphism that makes the following diagram
commute:

o
A A®B

N Jixss 520
®id
Agwc 22 A BeC

Furthermore, the bicharacter associated to ~y is the composite of the bicharacters associated to  and o.

Proof. Theorem [3.27| shows that F, maps the coaction A4 to . This is mapped by Fp to the unique
morphism makin commute. Thus Fj o F, maps A4 to v, forcing Fgo F, = F,.

Theorem yields a unique continuous right coaction v of I on A making commute. It is not
hard to show that this is a right quantum group homomorphism. Anyway, we want to convince ourselves
that this construction corresponds to the composition of bicharacters.

Since slices of W by continuous linear functionals on A generate a dense subspace of A, the dia-

gram ([3.26)) commutes if and only if
(id4 ®ida ® B)(id4 ® @) (W) = (id4 ® a @ idc)(id4 ® 7)(W™).
Equation (3.15) implies (id ; ® a)W4 = WH X478 and ids ®ida ® 8 maps this to the element represented
by the unitary operator
Wﬁxﬁ_}cxﬁ—w(x?i_}c)* = szxf;BXﬁ_}C
by (3.16) and (3.5). Thus
(id; ® ida @ B)(id4 ® a)(W*) = Wipxis Bxf e,
where X47C := XB2C « XB2Y Let X be the bicharacter associated to . Equation (3.15)) implies
(id; ® a®ide)(id; ® y)(WH) = (id 4 ® a ® ide)(WizXiz) = WinXis PXs.
Hence (3.26) commutes if and only if X = x47¢. O

Ezample 3.29. Let X*~F € U(A® B) and XP~C € U(B ® C) be bicharacters.

Assume first that X5~ comes from a Hopf *-homomorphism f: B — C, that is, X® 7 = (id ;@ f)(W?).
Let a be the right quantum group homomorphism from G to H associated to XA7E The right quantum
group homomorphism from H to I associated to XZ~¢ is 8 := (ida ® f)Ap. The following computation
shows that v = (id4 ® f)a satisfies (3.26)):

(id; ®ida ® B)(id; ® Q)W*

= (id; ®ida ®idp @ f)(id 4 ® ida @ Ap)Wihx{s B

= (id; ®ida @ idp ® f)WiEXTE Pxi?

= (id; ®ida ®idp ® f)(id; ® @ @ idp)WisXi5 P

= (id; ® a®ide)(id4 ® (ida ® f)a)W;
the first step uses (3.15)); the second step uses (3.2)); the third and the last step use (3.15)). Proposition
yields 8 * a = (ida ® f)a. Hence the composite X2~ « X478 is (ida ® f)xA75.
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Ezample 3.30. Let X*~% be constructed from a Hopf *-homomorphism f: B — A, that is, X*7F =
(f® iclB)(WB). Then the composite X* 7% is (f ® idc)(X®~C). This follows from Example because
A — A is a contravariant functor on bicharacters.

Proposition 3.31. A right quantum group homomorphism from G to H induces a natural map from Hilbert
space corepresentations of G to corepresentations of H on the same Hilbert space.

Proof. Given any corepresentation U# € U(K(H) ® A) we can use (3.16) in this more general framework:
replacing W# by U# we get a unique unitary U? € U(K(H) ® B) such that

(id @ AR)U* = Ui, US in U(K(H) ® A® B). (3.27)

The computation in the proof of Theorem [3.:21] showing that X satisfies the character condition on the
second leg yields that U” € U(K(H) ® B) is a corepresentation of H on H. O

3.5 Comparison with group homomorphisms

Let G and H be locally compact groups. Hopf *-homomorphisms from Co(H) to Co(G) are equivalent
to continuous group homomorphisms G — H. By Theorem it follows that bicharacters must also
correspond to classical group homomorphisms. And the same holds for right and left quantum group
homomorphisms. We are going to establish this directly.

Let ¢: G — H be a continuous group homomorphism. Then V,,(g) := A,(4) defines a bicharacter in
U(Co(G) ® C{(H)), that is, a quantum group homomorphism from C;(G) to C;(H).

Lemma 3.32. Let G and H be locally compact groups. Then every bicharacter from (CI(G), Acs(a)) to
(Ci(H),Acx(my) is induced by a unique continuous group homomorphism ¢: G — H as above.

Proof. 1t is clear that the bicharacter X, determines . Thus it remains to observe that every bicharacter X
in U(Co(G) ® C; (H)) is of this form for a continuous group homomorphism ¢: G — H. We may view X
as a strictly continuous function from G to U(C; (H)). Equation means that its values are grouplike
elements of U(C; (H)) for each g € G, that is, Acx(m)(X(g)) = X(g) ® X(g). This implies X(g) = Ay (g for
some ¢(g) € H. The map ¢: G — H must be continuous in order for g — A,(4) to be strictly continuous.
Finally, means that the map ¢ is a group homomorphism. O

Ezample 3.33. Let A = Co(G) and B = Co(H) for locally compact groups G and H. A right quantum
group homomorphism from A to A ® B corresponds to a continuous map «: G X H — G, which we denote
by a(g, h) := g-h. The commutativity of the first diagram in means that (g1-g2)-h =g1-(g2-h) for
all g1,92 € G, h € H, so that g-h =g - ¢(h) for all g € G, h € H for a continuous map ¢: H — G defined
by ¢(h) := 1-h. The commutativity of the second diagram is equivalent to ¢(h1 - h2) = p(h1) - @(h2)
for all hi,he € H. Thus right quantum group homomorphisms Co(G) — Co(H) correspond to continuous
group homomorphisms H — G.

Ezample 3.34. Let A = C;(G) and B = C;(H) for second countable locally compact groups G and H. We
claim that right quantum group homomorphisms from C;(G) to C;(H) correspond bijectively to continuous
group homomorphisms G — H.

Since A® B = C; (G x H), a morphism from A to A ® B must come from a continuous representation
g+ ug of G by unitary multipliers of C; (G x H). To be a right quantum group homomorphism, it suffices
to check that the diagrams in commute on the unitary multipliers §, for g € G. The commutativity
of the first diagram in becomes (A ®idg)(ug) = Iy ® ug, forcing ug = dy - uy for unitary multipliers
uy of B. The commutativity of the second diagram in becomes Ap(uy) = uy ® ug, forcing uy = dy(g)
for some p(g) € H. The map g — ¢(g) is a measurable group homomorphism. In the separable case,
measurability implies continuity, so that ¢ is a continuous group homomorphism G — H.
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3.6 Projections on quantum groups

Projections on quantum groups will be used later in Chapter @ Let I = (C, Ac) be a quantum group and
let WE € U(C ® C) be the reduced bicharacter. Let (r,#) and (p, p) be I-Heisenberg and -anti Heisenberg
pairs on H, and H,, respectively.

Definition 3.35. A bicharacter P € Zx[(é@ C)isa projection if PP = P, where * denotes the composition
of bicharacters in Definition Equivalently, P € U(C ® C') satisfies either of the following relations:

Pi3Pir = P1xP13Pss in U(C @ K(Hx) ® C), (3.28)
P1,Pss = PpsP1sP1, inU(C@K(H,) ®C). (3.29)

Therefore, a projection, while viewed as an operator acting on H,. ® Hr, satisfies the pentagon
equation . Equivalently, the operator P := (# @ m)P € U(H~ ® Hx) is a multiplicative unitary. Hence
the dual of a projection is also a projection. Manageability of bicharacters immediately leads to the following
proposition:

Proposition 3.36. P € U(H~ ® Hx) is a manageable multiplicative unitary.

Proof. Without loss of generality, assume that W¢ = (f®@m) € U(H» ® Hx) is a manageable multiplicative
unitary. By Corollary [3.11] P commutes with Q¢ ® Q¢, where Qc is the positive, self-adjoint operator
with trivial kernel defining manageability of WC. Finally, Equation (3 gives P € U(Hr ® Hr) satisfying
the manageability condition:

(z0u|P|lz0y) = (20 Qcu | P|T®Q5'y),
for all z,z € Ha, u € Dom(Qc) and y € Dom(Qz"). =

Definition 3.37. Thg quantum group G = (A4, Ay4) geperated by P € U(Hr @ Hx) is called the image of
the projection P € U(C @ C). Moreover, W* = P € U(A ® A) is the reduced bicharacter of G.

Identification of P with W# gives the following bicharacter conditions:

(Aa ®ida)P = Py3P3 inUA® A® A), (3.30)
(idA ®AA)P =P15Py3 in ZJ(/X@A@A) (331)

The dual of P € U(’Hﬂ ® Hw) defined by P:=YP'S e Z/I(Hr ® H~) is also a manageable multiplicative
unitary. Therefore, P generates G= (A,A4) and WA=Pecu (A® A).

Ezample 3.38. In particular, if ' = Co(G) for a group G, then by Lemma any projection P €
U(Co(G) ® C;(G)) corresponds to an idempotent group homomorphism p: G — G and A = Co(p(G)).

Let A, B be C*-algebras and T' € U(A® B). Then B is generated by T in the sense of [46, Definition 4.1],
if for any representation £: B — B(#H) and any C*-algebra C' C B() the condition (ida ® §)T € M(A® C)
implies that £ € Mor(B, C). In [39, Section 3.5] it is shown that every corepresentation U € U(K(H) ® A)
of G = (A,A.) on a Hilbert space H gives rise to a nondegenerate C*-subalgebra Dy = {(id ® w)U
w € A} of B(H). By |9, Proposition 2.1] a corepresentation U € U(K(H) ® A) of G generates a
nondegenerate C*-algebra D of B(H) if and only if D = Dy.

Definition 3.39 (]9, Definition 3.2]). Let I = (C,A¢), G = (A, A4) be quantum groups. G is called
a closed quantum subgroup of I in the sense of Woronowicz if there is a bicharacter X € U(C ® A) that
generates G.

Therefore, G in the Definition [3.39] is a closed quantum subgroup of I in the sense of Woronowicz.
By duality, we get G as a closed quantum subgroup of I in the same sense. Let Ar: C — C® C
and Ar: C — C ® C be the right and left quantum group homomorphism constructed out of the
bicharacter P € U(C ® C).
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Lemma 3.40. Given any projection P € U(C & C) we have

Acla=Ar|a=Agrla =Aux, (3.32)
Acl;y = ALl; = Arl; = Aa. (3.33)

Proof. It sufficies to show (3.32). Then (3.33) follows by duality.
Since {(w®idA)P : w € A’} is dense in A C M(C) and A C M(C) for any a = (w®ida)P € A C M(C)

we have
Ac(a) = (w ®ide ® idc)(idé ® Ac)P = (UJ ®ida ® idA)P12P13 = (w ® AA)P = AA(a)

where the second equality uses (3.2)) and the third equality uses (3.31)).
Let (p, p) be an I-anti-Heisenberg pair on H,. We rewrite (3.3) for P as:

W{,Ps3 = PpPisWi,  inU(CK(H,) ® A).

Now (3.19) gives
(ide ® p)As(c) = Pry(le @ p(c) Py (3.34)
For a = (w®ida)P € A we compute:

(ide: ® p)AL(a) = Pis(lc ® p(a))P1,; = (w @ ide @ ida, )P2sP1,Psp
= (w®ida ® p)P12P13 = (w ® (ida ® p)A4)P = (ide ® p)Aa(a).

The first equality uses (3.34)), the third equality uses (3.29)), and the fourth equality uses (3.31)).
Similarly, given any I-Heisenberg pair (7, #) we can show

(r ®ide)Ar(a) = (r ®ida)Aa(a) for all a € A.
Finally, the faithfulness of m and p yields (3.32]). O

Notation 3.41. Let €*Q®&rtp denote the category where objects are C*-quantum groups and bicharacters
are arrows.

Every projection bicharacter P € U(C ® C) is an idempotent arrow on I in €* Q®tp with the image G.
Hence P is a split idempotent. We make this precise in the following lemmas:

Lemma 3.42. Let P € U(é@ C) be a projection bicharacter and let G = (A, Aa) be its image. Then there
are bicharacters X°74 e U(C @ A) and X7 e U(A® C) such that

P=Xx"7%%Xx74 and X974« xA79 = wh (3.35)

Proof. Let P € U(C ® C) be a projection with the image G = (A, A4). Then P e U(A® A) c U(C ® C).
This gives the Hopf *-homomorphisms ¢: A — C and : A — C. By Example we construct the
following bicharacters

X7 = (P @ida)WA=P  inU(C® A), (3.36)

X479 = (id; @ 9)WA=P  imU(A®CO). (3.37)
The pentagon equation (3.28)) yields (3.35). O
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Chapter 4

Twisted tensor products of
C*-algebras

Several important constructions put together two C*-algebras in a kind of tensor product where the tensor
factors do not commute. For instance, a noncommutative two-torus is obtained in this way from two copies
of C(T). More generally, the crossed product A xo G for a continuous action a: G — Aut(A) of a locally
compact group G combines A and the group C*-algebra of G. Such crossed products also exist for locally
compact quantum groups. Another example is the graded tensor product for Z/2-graded C*-algebras, which
is defined so that the odd elements anticommute.

Definition 4.1 (compare [44]). Let A, B, C' be C*-algebras, a € Mor(4,C) and 8 € Mor(B,C). If
a(A) - B(B) = C, then we call (C,«, ) a crossed product or crossed tensor product of A and B.

Ezample 4.2. The spatial tensor product C' = A® B of two C*-algebras with a(a) = a®1p and S(b) = 14 ®b
is the simplest example of a crossed product.

Let o and 8 be (nondegenerate) representations of A and B on the same Hilbert space H such that
a(A) - B(B) and B(B) - a(A) are the same subspace of B(H). Then C := «a(A) - B(B) is a C*-algebra,
a € Mor(A,C) and 8 € Mor(B,C). Thus C is a crossed product of A and B. This suggests that crossed
products are defined by some commutation relations between a and . In a purely algebraic setting,
Exel |13] describes the multiplication on C' through the map 7: B® A — A ® B expressing S(b)a(a) as a
linear combination of elements of the form a(a’)B(b’); but this does not work for C*-algebras because of
the completions involved.

Definition 4.3. Two crossed products C1 = ai(A) - 81(B) and C2 = az(A) - B2(B) of A and B are
equivalent if there is a faithful morphism ¢ € Mor(C1, Cs2) with p 0 a1 = a2 and p o 31 = [Ba.

Any faithful morphism ¢ € Mor(C4, C2) with ¢ o a1 = a2 and p o 81 = B2 satisfies p(C1) = C2 and
hence is a *-isomorphism.

Ezample 4.4. Let C = a(A) - B(B) be a crossed product and U € Y(C). Then
(C,a,B) ~ (C,Ady o a, Ady o B).

We shall construct twisted tensor products using quantum group coactions on the tensor factors. First
we generalise the notation of Heisenberg pairs for a given bicharacter in Section [{.I] There are two possible
ways to commute generalised Heisenberg pairs (see Section. Ordinary commutation plays an important
role in the construction of twisted tensor products. We propose two equivalent constructions of crossed
products. At the level of C*-algebras we use coactions of two quantum groups, related through bicharacters,
on C*-algebras and put them together using generalised Heisenberg pairs (see Section . The second
approach deals with covariant representations of quantum group coactions on Hilbert spaces discussed in

37
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Section In Section [4.4] we explore various properties of crossed products. Section shows that our
crossed product generalises the skew-commutative tensor product of Z/2-graded C*-algebras and the crossed
product of coactions by a quantum group. Finally, in Section [{.6] we construct the generalised Drinfeld
double, a C*-quantum group, using Drinfeld commutation of generalised Heisenberg pairs associated to a
bicharacter.

4.1 Heisenberg pairs revisited

This section generalises the notions of Heisenberg and anti-Heisenberg pairs from reduced bicharacters,
discussed in Section 2-4] to general bicharacters. We use them to construct our noncommutative tensor
product, after establishing properties of Heisenberg pairs necessary for that purpose.

Let G = (A, A4) and H = (B, Ap) be C*-quantum groups. Let W* € U(A ® A) and WP € U(B @ B)
be their reduced bicharacters. Let X € L{(fl ® B) be a bicharacter from A to B. Heisenberg pairs and
anti-Heisenberg pairs are pairs of representations (a, 8) of A and B on the same Hilbert space H that
satisfy suitable compatibility conditions.

We use these pairs to define twisted tensor products C ®x D in Section[f2] A crucial technical point
is to show that a pair of representations of C and D generates a crossed product C*-algebra. Here the
commutativity result in Section is crucial. In addition, we construct examples of X-Heisenberg pairs
and X-anti-Heisenberg pairs, thus proving their existence, and give some equivalent characterisations of
them.

Definition 4.5. A pair of representations a: A — B(H), 8: B — B(H) is called a X-Heisenberg pair or
briefly Heisenberg pair if

Wi W = WEWiL X2 inU(A® B K(H)); (4.1)

here Wi, := ((id4 ® a)W*)13 and W5 := ((id 3 ® B)W?)2s. It is called a X-anti-Heisenberg pair or briefly
anti-Heisenberg pair if
WQBBWfa = XIQW?QWZBB in U(A ®B® K(H))v (42)

with similar conventions as above.

The case where H = G and X = W* € (/1 ® A) is the reduced bicharacter of G is already considered
in Section 24

Lemma 4.6. Assume a pair of representations (7, %) of A and A on a Hilbert space H. Then (m, @) is a
1. WA-Heisenberg pair if and only if it is a G-Heisenberg pair.

2. WA-anti-Heisenberg pair if and only if it is a G-anti-Heisenberg pair.

Proof. Let 7 and # be representations of A and A on H satisfying (2.12). When we apply o23 to both sides

of (2.12) we get
(Woi) Win = Wi Wiz(Wsn)" inU(A® AQ K(H)).

This is equivalent to W{‘WVAV;‘; = VAVQ,A,W{‘,,WT‘% which is (4.1) for B=A X=W* a=mand 8 =#. This
computation may be reversed as well.
The computation for anti-Heisenberg pairs is similar. O

Ezample 4.7. Let H be the conjugate Hilbert space to the Hilbert space H. Recall that the transpose of an
operator & € B(H) is the operator ' € B(H) defined by = (£) := 2*¢ for all £ € H. The transposition is a
linear, involutive anti-automorphism B(#H) — B(#). Recall that the unitary antipode Ra: A — A is also a
linear, involutive anti-automorphism. Therefore, if a«: A — B(H) and 8: B — B(H) are representations,

then so are

Qi

A= B(H), aw— (Ra(a))',
: B — B(H),

™1
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Lemma 4.8. The pair (o, B) is Heisenberg if and only if (&, B) is anti-Heisenberg.

Proof. Let (a, 8) be a Heisenberg pair. The following computation shows that (&, 8) is an anti-Heisenberg
pair:
WisWis = (R4 @ Ry ® T)(Wi, Wi5)
= (R4 ®Rp @ T) (Wi WinXiz) = X12Wig Ws;
the first equality uses (R4 ® Rg)X = X (see Proposition [3.10) and the antimultiplicativity of R; @ R ® T;
the second equality uses (4.1)); and the third equality uses the same facts as for the previous ones in reverse

order.
The computation above may be reversed to show the converse direction. O

Thus Heisenberg pairs and anti-Heisenberg pairs are ebbentlally equlvalent

Recall that a bicharacter X gives rise to a dual bicharacter X € U (B ® A ) by . ) and to a right
quantum group homomorph1sm ARr: A — A® B with - Similarly, X gives rise to a right quantum
group homomorphism Ar: B— B®A. We may reformulate the condition of being a Heisenberg pair in
terms of X, Ar and Am respectively:

Lemma 4.9. Let a and 8 be representations of A and B on a Hilbert space H. Then the following are
equivalent:

1. (e, B) is a X-Heisenberg pair acting on H;

2. (B,a)

3. (a®idg)Ar(a) = (WE)(ala) @ 15)(WE)s, for alla € A;
4. (B@id)Ar(b) = (W) (B(0) © 1) (WA)ss for all be B.

Proof. (1) <= (2): (1) is equivalent to

is a X-Heisenberg pair acting on H;

WiaWEX, = WEWH,  inU(A® BoK(H))
by (4.1). Applying 012 gives
Wi WX = WiEWE,  inU(B® AQK(H)), (4.3)

which is equivalent to (8, ) being a X-Heisenberg pair. Thus (1) <= (2). R
(1) <= (3): Let («, B) be a Heisenberg pair. The following computation takes place in U (AQK(H)® B):

(id; ® a®idp)(id; ® Ar)W? = Wih X153 = 023(WiaXi2)
= 029((W3) Wi W) = (W53 Wi (W)
the first equality uses (3.15]); the second equality is obvious; the third equality uses (4.1); and the last
equality uses W2 = o((WP)*). Since {(w ®ida)W4 : w € A’} is linearly dense in A, slicing the first leg of

the first and the last expression of the above equation yields (1)==(3).
Conversely, applying id ; ® a ® idz on both sides of (3.15) and using (3), we get

Wik Xis = (id; ® (a @ idg) AR)W* = (WE)WE(W5)" in UARKH)® B);
applying 023 to this gives (4.1). Thus (3)==(1).
To prove (2) <= (4) argue as in the proof that (1) <= (3). O

Unlike G-Heisenberg pairs (Proposition [2.21)), X-Heisenberg pairs are not faithful in general.
Ezample 4.10. Assume that G and H have bounded counits e4: A — C and eg: B — C. Proposition 31(2)
in [39] gives (id; ® ea)W# =1, and (id5 ® eg)W? = 15; hence (ea,ep) is a X-Heisenberg pair for the
trivial bicharacter X = 14 ® 15 and clearly not faithful.
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Lemma 4.11. Let (m,#) and (n,7) be G- and H-Heisenberg pairs on Hilbert spaces Hr and H,, respectively.
Then the pair of representations (o, ) of A and B on H. @ Hy defined by a(a) := (7 @ 7)Ar(a) and
B(b) := 14, ®n(b) is a X-Heisenberg pair; here Ap: A - A® B is the right quantum group homomorphism
associated to X as in Theorem . Similarly, the pair of representations (o, 8') of A and B on H, @ Hx
defined by a(a) := 1y, ® (a) and B(b) := (n® #)AR(b) is a X-Heisenberg pair; here Ar: B — B® A is
the right quantum group homomorphism associated to X.

Proof. First we check the following equation:
Xlﬁszn = W2B7]X1ﬁx12 in Z/[(A X B ® K(H,])) (4.4)

The coaction B — B @ B associated to the reduced bicharacter W? is the usual comultiplication Ag.
Hence

(Wis)Xan(Wis)" = (id 4 ® § ®idp)(id ® Ap)X = (id 4 ® 7 ® id ) (X12X13) = X15Xa3
in U(A @ K(H,) ® B) because of Lemma 4) and the bicharacter property (3.2)) of X. When we flip the
last two legs, we turn Wr into (W4,)*. Rearranging then gives (4.4).
_ Now we can check that (a, 8) is a Heisenberg pair. The following computation takes place in (A ®
BeK(Hr) @ K(Hy)):

Wfawgﬁ = waxlﬁwgn = WiqTrW2BnXlﬁX12 = WQBnWiqﬂXIﬁX12 = WZBBWfaXIQ

the first equality uses the definitions of & and 8 and (3.15)); the second equality uses (4.4)); the third equality
uses that Wil and an commute; and the fourth equality uses the definitions of « and 8 again.
A similar argument shows that (a/, ') is a X-Heisenberg pair. O

4.1.1 Commutativity and Heisenberg pairs

It is interesting to observe how the commutation relations look like when we put a Heisenberg and an
anti-Heisenberg pair together. There are only two possible ways to do so. Ordinary commutativity comes
out if we put together a Heisenberg and an anti-Heisenberg pair. This will be crucial for the existence of
our noncommutative tensor product.

Proposition 4.12. Let H and K be Hilbert spaces; let a and ( be representations of A and B on H,
respectively; and let & and [ be representations of A and B on K, respectively. Then the following are
equivalent:

1. the representations (a® @)Aa and (B ® B)AB of A and B on H® K commute, that is, for any a € A
and b € B, we have

[(a®@)Aa(a), (B® B)AB(D)] = 0; (4.5)

2. there is a bicharacter X € U(A @ B) such that («,f) is a Heisenberg pair and (&, B) is an anti-
Heisenberg pair.

Proof. Equation (4.5)) is equivalent to
Wi Wis Wi W = Wi, WEW, Wi inU(A® BeKH) @ K(K)) (4.6)

because of (2.8) and (2.5) for W# and WZ. We may commute W15 with Wfﬂ and W2BB with W4, on both
sides and rearrange (4.6)) to

X = (WHTa(WP)5s Wi, Was = Wi Wis (WP)55 (W) s (4.7)

This implies X € U (A ® E) because its first definition has 1x in the fourth leg and its second definition
has 14 in the third leg.
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We check that X is a bicharacter in both legs. First we check (3.1):
(Aa@idp)X = (Aa @ idg) (W5 Wia(W”)35(W*)1a)
= ngwéqawzléa (WB);,B(WA)T& (WA)za
= X23WhaX13(W™)3a = Xa3Xis;
the first and third equality use the second definition of X in (4.7)); the second equality uses (3.1]) for W*;
and the last equality uses Ehat Wi and Xis commute.AA s}milar computation using the first definition
of X in (4.7)) yields (id 4 ® Ap)X = X12X13; thus X € U(A ® B) is a bicharacter. ~
The first definition of X in (4.7) says that (o, 3) is a Heisenberg pair, and the second one says that (&, 3)
is an anti-Heisenberg pair.

Conversely, if X € Z/I(A ® B) is a bicharacter, (o, ) a Heisenberg pair and (&, §) an anti-Heisenberg
pair, then (4.7)) follows, and hence (4.5). O

If we put an anti-Heisenberg pair and a Heisenberg pair together we get twisted commutation. This will
eventually become the central ingredient to construct the generalised Drinfeld double discussed in Section
and extend the notion of quasitriangularity to the C*-algebraic framework in Chapter

Definition 4.13. A pair (p, 6) of representations of A and B on a Hilbert space H is a X-Drinfeld pair if
X12Wi, Wiy = Wi Wi, X1 in U(A® B@K(H)). (4.8)

In particular, when X = W4, we call WA-Drinfeld pairs G-Drinfeld pairs. Equivalently, a pair of
representations p: A — B(H) and 6: A — B(H) satisfies the G-Drinfeld-commutation relation if and only if

Wi, WisWoh = WEWEWL,  inU(AQK(H) ® A). (4.9)

Proposition 4.14. Let (o, ) and (a,B) be a X-Heisenberg and X-anti-Heisenberg pair on H and K,
respectively. Define the representations p := (& ® a)A4 and 0 := (8 ® B)Ap of A and B on K @ H. Then
(p,0) is a X-Drinfeld pair on K @ H.

Proof. We must check (4.8)) for (p,6). Equations (2.8)), (4.1) and (4.2)) yield:
X12 Wi, Wiy = X2 Wi Wi, W WS = X1 Wis W W, Wh = W WL WE WL X2
= Wy Wi Wis WinX12 = Wi Wi, Xao
because W4, commutes with WfB and Wi, commutes with W2BB. O

Corollary 4.15. Let (m,7) and (1,7) be G-Heisenberg and G-anti-Heisenberg pairs acting on Hx and Ha,
respectively. Then the representations p: A — B(Hr @ Hy) and 0: A — B(H~ ® Hy) defined by p(a) :=
(n®@m)Aa(a) and 0(a) := (h @ 7)Aa(a) satisfy the G-Drinfeld commutation relation.

4.2 Twisted tensor products via Heisenberg pairs

Let G = (A4,A4) and H = (B, Ap) be C*-quantum groups, let X € U(A ® B) be a bicharacter, let (C,~)
be a G-C*-algebra, and let (D, d) be an H-C*-algebra. Let («, 3) be a X-Heisenberg pair on some Hilbert
space H.

Using this data, we now construct a crossed product (C Kx D,tc,tp) of C and D in the sense of
Definition [I.I] A more precise notation is

CWx D= (077) Bx (D76)

There is no need to mention (a, 3) in our notation because all Heisenberg pairs give equivalent crossed
products; we will prove this in Section
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Lemma 4.16. Define morphisms

te: C—=>C®DRIK(H), ¢ (ide ® a)y(c)is,
LD : D—>C®D®K(H), dH(ldD@ﬁ)&(d)gg

Then to(C) - tp(D) = tp(D) - tc(C) in M(C @ D @ K(H)).

It follows that
C®x D :=1c(C)-tp(D)

is a C*-algebra and that (¢ and tp are morphisms from C' and D to C Kx D, respectively. Thus
(C®x D,tc,tp) is a crossed product of C' and D in the sense of Definition

Lemma 4.17. Let X CC andY C D be closed subspaces with
YX) 1lce®A)=X®A and 6(Y) - (1p®B)=Y ®B.
Then tc(X) -ty (D) = p(Y) - te(X) in M(C ® D @ K(H)).

Proof. Since our coactions satisfy the Podle$ conditions, Lemma [£.16] is the special case X = C and Y = D
of Lemma [£:17} Hence it is enough to verify Lemma 17}
Let (&, 8) be a X-anti Heisenberg pair on a Hilbert space K. The definition of tc and the comodule

property (2.22)) for v yield
(te ®a)y = ((ide ® a® @)(y ®ida)y)1ss = ((de @ (0 @ @)Aa)7)1343

Similarly, B ~
(to ® B)0 = ((idp ® (B ® B)AB)0)234.
Now Proposition {.12] yields

(tc ®a)y(e) - (to ® )3(d) = (tp ® B)é(d) - (tc ® a)y(c) (4.10)

forallce C, d e D.
Since a(A) - K(K) = K(K), our assumption y(X) - (lc ® A) = X ® A gives

(ke @ @)y (X)) - K(K)a = (o @ a)(v(X) - (1o @ 4)) - K(K)4
= (o(X)®@a(4)) - (1o ® 1n 9 K(K))134 = 1o (X) @ K(K).
Similarly, 5(B) - K(K) = K(K), and the Podle$ condition for § gives
((to ® B)(Y)) - K(K)s = tp(Y) @ K(K).
Equation gives
(tc @ @Y(X) - (o @ B)3(Y) = (to @ B)3(Y) - (1o ® G)y(X).

Multiplying this equation on the right with lcgpen ® K(K) and using the computations above to simplify,
we get
(to(X) - 1p(¥Y)) 8 K(K) = (1o(Y) - 1e(X)) 2 K(K).
Applying a state w on K(K) to this equation gives tc(X) - tp(Y) = tp(Y) - te(X) as desired. O
The following observation is useful to study slice maps on C Xx D.
Lemma 4.18. In the situation of the previous lemma,

wo(X) - p(Y) - K(H)s = X @Y @ K(H), (4.11)

where the right hand side means the closed linear span of t @y ® z withx € X, y € Y, z € K(H). In
particular, (CX®x D) -K(H)s =C ® D @ K(H).
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Proof. Since K(H) = f(B) - K(H), we may compute
o (Y) - K(H)s = ((idp @ B)(6(Y) - (1p ® B)))23K(H)3 = (Y © B(B) - K(H))23 = K(H)3 - Ya.

Here Y> and K(#H)3 mean Y and K(#) in the second and third leg, respectively. A similar computation for
te(X) using K(H) = a(A) - K(H) now gives (4.11)). O

We will consider interesting examples of Ky in Section [£.5] Here we only mention a trivial example:
Ezample 4.19. Assume the coaction ~ is trivial. Then v(c¢)i13 = ¢c® 1 ® 1, so that CXx D = C ® D,
embedded into M(C ® D ® K(H)) via ide ® (idp ® 8)§. We get the same conclusion if § is trivial.

Lemma 4.20. Let Cy be a C*-algebra with trivial G-coaction and equip Co ® C with the coaction idc, ® 7.
Then

(CoxC)®x D =Cyr® (CKx D). (4.12)

A similar statement holds in the second variable.

Proof. The map tcyoc is idc, ® tc- O

4.3 Hilbert space representation of the twisted tensor prod-
uct

Definition 4.21. A covariant representation of (C,v, A) on a Hilbert space H is a pair consisting of a
corepresentation U € U(K(H) ® A) and a representation ¢: C' — B(H) that satisfy the covariance condition

(p®ida) ovy(c) = U(p(c) ® 14)U" in U(K(H) ® A) (4.13)
for all ¢ € C'. A faithful covariant representation is one where ¢ is faithful.

Ezample 4.22. Let @o: C — B(Ho) be any faithful Hilbert space representation. Let (7, #) be a faithful
G-Heisenberg pair on a Hilbert space H,; this exists because of Example 2.18] Let H := Ho ® H» and
identify K(H) = K(Ho) ® K(Hx). The unitary U := 13, ® W2, € U(K(H) ® A) is a corepresentation; since
o, ™ and v are faithful morphisms, ¢ := (o ® 7)oy: C — B(H) is a faithful representation. The following
computation in M(C ® K(H.) ® A) implies the covariance condition for (¢, U):

((ide ® m)y ®ida)y(e) = (ide ® (7 ® ida)Aa)y(e) = (Wis)(v(e) © 1a)(Wis)"

for all ¢ € C, where we used (2.22) and Lemma 3 with B= A and A = A4.

We are now going to construct a faithful Hilbert space representation of C' Xx D using covariant Hilbert
space representations of (C,~) and (D, ). This yields an alternative definition of C'Kx D and shows that
C Rx D does not depend on the Heisenberg pair used in its construction.

Our new construction uses faithful covariant representations (p, U™) of (C,~, A) and (1, UX) of (D, 8, B)
on Hilbert spaces H and K, respectively. (Example shows that such faithful covariant representations
always exists.)

The bicharacter X and the corepresentations provide a unitary operator Z on H ® K, generalising
Proposition [2.38] as follows:

Theorem 4.23. Let UM ¢ U(H @ A) and UX € U(K ® B) be corepresentations of G and H, respectively.
Then there is a unique unitary Z € U(H @ K) that satisfies

U UL 21 = US U, inUH@K®L) (4.14)

for any X-Heisenberg pair (o, 8) on some Hilbert space L.
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With this unitary Z, define representations ¢ and 92 of C' and D on H ® K by

1(0) = 9(0) ® L,
Pa(d) == Z (1 @ (d)) Z".
We can now formulate the main theorem of this section:

Theorem 4.24. Let (o, U™) and (v, UX) be faithful covariant representations of (C,~, A) and (D, 4, B)
on Hilbert spaces H and IC, respectively. Construct p1 and 2 as above. Then there is a unique faithful
representation p: C Xy D — B(H ® K) with poic = ¢1 and poip = .

FEzxample 4.25. If X = 1, then we may take Z = 1. Thus Py = 12 and the crossed product is simply the
minimal tensor product C' ® D.

In the rest of this section, we prove the claims above and use the main theorem to show that the twisted
tensor product does not depend on auxiliary choices.

Proof of Theorem . The uniqueness of Z is clear from

Z12 = (Uz)"(UTa) UssUle.
Existence means that the operator on the right acts identically on the third leg and does not depend on the
Heisenberg pair. The quickest way to prove this uses universal quantum groups to turn corepresentations
into representations.

By , there is a universal (left) corepresentation VAeu (121“ ® A); its universal property gives a
unique representation p1: A% — B(H) with (p1 ®ida)V? = U™ because U™ is a corepresentation. Similarly,
there is a unique representation pa: BY — B(K) with (ps ® idg)V? = U*.

Proposition hows that any bicharacter X € U (A@B ) lifts uniquely to a bicharacter X" € U (A“@E“).
We claim that

Z:=(p1 @ p2)(X")" € B(H®K) (4.15)
verifies for any X-Heisenberg pair (o, 8). (Our formulation of Theorem highlights the property
of the operator (p1 ® p2)(X")”™ that is crucial for the proof of Theorem and it avoids universal quantum
groups.)

We will actually prove

ViVe, = VasVinXl,  inU(A" @ B @ K(L)) (4.16)
for any X-Heisenberg pair (a, ). Applying p1 and p2 to the first two legs then gives because
(p1 ®1ida)VA = UM and (p2 ® idp)VE = UF.

When we apply the reducing morphisms Aa: A" = A and Ap: B* — B to the first two legs in (4.16)),
we get W‘f‘aWZBB = WZBBW‘f‘axlz, which is exactly the definition of a Heisenberg pair (see Definition
routine computation, using , shows that

T = (Vin)" (V35) ViaVas € U(A" @ B" @ K(L))
is a character in the first two legs, that is, (Aau ® idgu ®1dz)T = Te34T134 and (id ju @ Ape ®id.)T =
Ti24Th34. Thus T and X}, are two bicharacters in U(A" ® B" ® K(£)) that both lift the bicharacter X2 in

U(A® B®K(L)). Using Lemma twice, we get that any such bicharacter has a unique lifting. Thus
T = X7, as asserted. This finishes the proof of Theorem O

The Hilbert space representation
PpRYid: AQBQK(L) > B(HRIK® L)
is faithful because ¢ and v are faithful. Hence the pair of representations

(p@a)ns: C > BHOK® L)
(1) ® B)b23: D = B(HOK ® L)

of C' and D gives a faithful representation of C' Xy D; that is, there is a unique faithful representation of
C Kx D that gives the above two representations when composed with vc and ¢p.
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Lemma 4.26. The pair of representations (¢1,Adz,, 02) of (C,D) on HR K ® L is unitarily equivalent
to the pair ((4,0 ® a)113, (Y @ 6)523) on the same Hilbert space through conjugation by the unitary U;"QUQ’C[;.

Proof. We must prove

U U5 (p(c) ® 1k ® 12)(U5)* (UR)" = (¢ ® a)yis(c),
UL US Z12(19 @ 9(d) @ 12) Z12(Uss) " (UTE)" = (¢ @ B)d23(d)

for all c € C, d € D. To check the first equality, we use first that U'QCB commutes with ¢(c)1 because both
act on different legs, and secondly the covariance condition (&.13)) for (¢, U?) with o applied to the leg A:

UTaU2s(p(c) ® 1k @ 1£)(Uzg) " (UTa)" = Ufa(e(e) ® 1k ® 12)(Ufe)" = (¢ ® a)v(c)s.

To check the second equality, we first use (4.14); secondly, that UjY, and v(d)2 act in different legs to
commute them; and thirdly the covariance condition (@.13)) for (1, UX) with 8 applied to the leg B:

UL Ubs Z12 (1 @ 9(d) ® 12) Z12(Uss) " (UTH)™ = UbsUTL o (d)2(UT,) " (US5)"
= Uhst(d)2(Ubs)" = (¢ ® B)d(d)as. O

Proof of Theorem [£.24 We remarked above that the pair of representations ((ga ® a)yis, (Y ® B)623)
generates a faithful representation of C' Xx D. Lemma [{.26] shows that this representation is unitarily
equivalent to another representation that restricts to ¢1 ® 12 and Adz,, o P2 = 1752 ® 1z on C and D,
respectively. The latter representation is p ® 1. for a faithful representation of C Kx D on H ® K. This
is the faithful representation whose existence is asserted in Theorem [£.:24] Uniqueness is clear because
CXx D =1c(C)-tp(D). O

Theorem 4.27. In the notation of Theorem the subspace
C'Bx D= ¢1(C) - 42(D) CB(H® K)

is a C*-subalgebra and (C My D, @1,9) is a crossed product of C and D. Up to equivalence of crossed
products, it does not depend on (¢, U™) and (v, UX).

The crossed product (C' Rx D, vc,ip) is equivalent to (C Xy D, ¢1,9) and, up to equivalence of crossed
products, does not depend on the Heisenberg pair (o, 3).

Proof. Since C@X D = p(CH®x D) and poic = 1, poip = 1/;2, by Theorem CI%X D is a C*-algebra,
(C Xy D, 1, 1) is a crossed product of C' and D, and it is equivalent to the crossed product (CRx D, tc, tp).

Since the unitary Z is the same for all Heisenberg pairs («, 3), the crossed product (C Xy D, 1, 1/32)
does not depend on (a, 3); hence up to equivalence (C Kx D,tc,tp) does not depend on (a,3). And
since (C' Wx D, tc,tp) does not depend on (p, U") and (i, UX), neither does (C My D, p1,99), up to
equivalence. O

As a special case of Theorem [1.24] the usual spatial tensor product C'® D does not depend on the chosen
faithful representations of C' and D. But we do not reprove this classical result. Rather, we reduce analogous
statements for noncommutative tensor products to this case by embedding the latter into commutative
tensor products with more factors.

4.4 Properties of the twisted tensor product

In this section, we establish functoriality of the twisted tensor product and a result about cocycle conjugacy.
We begin with an easy symmetry property:

Proposition 4.28. The crossed products (C'Rx D, vc,tp) and (DR C,'p,te) are canonically isomorphic.
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Proof. Let (U*, ) and (U, 4) be faithful covariant representations of C' and D on Hilbert spaces H
and IC, respectively. Theorem yields

(C By D7 LC7LC) = (ngD790171;2)3
(D Xy C, L,D7L/C) = (Dgf(cv ¢1>¢2)

with CXyD C ]E(?—[ @ K), DR;C C B(K ® H); here ¢1(d) := ((d) ® 1y) and @a(c) := Z(1x ® %(c)) 2",
where Z satisfies and Z = XZ*¥. The pair of representations (1,2) of (C, D) on H ® K is unitarily
equivalent to the pair of representations (11, $2) on K ® H via the unitary 3Z". O

4.4.1 Functoriality for quantum group morphisms

Let G = (A,Ax), H = (B,Ag), G2 = (42,A4,) and Hy = (B2, Ap,) be quantum groups. Let X' €
LI(A ® Az) and X"’ € U(E ® Ba) bicharacters; hence quantum group homomorphisms G — G2 and H — Hp,
respectively.

Let X2 € U(Ay ® By) be a bicharacter. We may view Xo as a quantum group morphlsm G2 — Ho,.
Composing this Wlth the given quantum group morphisms X': G — G2 and X" H2 — ]H[ we get a
bicharacter X := X” * X x X' € L{(A ® B) which we view as a quantum group homomorphism G — H.

Let (C,~) and (D, d) be a G-C*-algebra and an H-C*-algebra, respectively. The description of f in
Theorem is as a functor from the category of G-C*-algebras to G2-C*-algebras that does not change
the underlying C*-algebra. In particular, this functor maps «y to a continuous Gz-coaction v2: C' — C' ® A,
on C. Similarly, g maps § to a continuous Ha-coaction d2: D — D ® B2 on D.

Theorem 4.29. In the situation above, the crossed products (C,~y2) Kx, (D,~2) and (C,~v) Bx (D,7) of C
and D are equivalent.

Proof. Let (p,U™) be a G-covariant representation of (C,v) on H and let (¢, UX) be an H-covariant
representation of (D, d) on K.

Proposition shows that the quantum group morphism X’ turns U* into a corepresentation U3t
of G2 on H. Similarly, X" turns UX into a corepresentation U5 of Hs on K, and (¢, UY) is a covariant
representation of (D, d2).

The bicharacters X € U(A ® B) and Xo € U(As ® Bo) lift uniquely to bicharacters X* € U(A" @ BY)
and X3 € U( 13 @ 3'21) by Proposition Let f*: A} — A" and §": BY — B" be Hopf *-homomorphisms
between universal duals equivalent to the bicharacters X' € U(A ® As) and X € U(B ® Bs). The bijection
between bicharacters and quantum group morphisms is defined in such a way that X" = ( f“ ® §%)(X35).
Equation then shows that the unitaries Z on ‘H ® K that are used to construct the twisted tensor
products with respect to X and X2 are the same.

Now Theorem [£:24] yields the desired equivalence of crossed products because both are faithfully
represented by the same C*-algebra ¢(C) - Z¢(D)Z* on H ® K. O

The following special cases of Theorem [f.29] are particularly noteworthy.

Example 4.30. Let G = ﬁ,AHz =H, let X" = WZ: H — Hj be the identity quantum group homomorphism
and let X' = X : G — G2 = H viewed as a quantum group morphism as above. Let Xo = WP be the reduced
bicharacter of H. Then

(Cv ’Y) X (D76) = (Cv 72) |z\’;\vB (D’(;)v

where y2: C —» C ® B is the H-coaction associated to ~ by the quantum group morphism X: G — i (see
Theorem |3.27]).

This is a special case of Theorem |4.29| because the bicharacter W2 describes the identity morphism on
the quantum group H. The composmon of this with X’ gives again X', so that the bicharacter X that we
get from Xo = w8 by the above construction is indeed the given one.
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Ezample 4.31. Let G2 = G, Ha = @, let X' =W4: Gy —» G be the identity quantum group homomorphism
andAlet X: H — Hs = G be the dual of the morphism X: G — Hs. Let Xo = W4 be the reduced bicharacter
of H. Then

(Cv 7) By (Dv 5) = (Cv ’7) ‘ZWA (Dv 52)7

where d2: D — D ® A is the G-coaction associated to & by the quantum group morphism X: H — G (see
Theorem |3.27]).

The last example reduces the twisted tensor product Xy for an arbitrary bicharacter to the special case
H=G and X = W,

4.4.2 Functoriality for equivariant morphisms

It is well known that the minimal tensor product is functorial for nondegenerate *-homomorphisms; that
is, f € Mor(C1,C>) and g € Mor(D1, D2) induce f ® g € Mor(C1 ® D1,C2 ® D2), which is determined by
(f®g)(c®d) = f(c)®g(d). We claim the same for the tensor product Xy in the following sense:

Lemma 4.32. Let f: (C1,7) — (C2,72) be a G-equivariant morphism and g: (D1,01) — (D2,d2) an
H-equivariant morphism. Then there is a unique morphism

fBxg: CiBx Dy = CoWx D2, ey (€) - oy (d) = 1oy (f(€)) - Lps (9(d))-

Proof. The uniqueness and hence the functoriality is clear because the linear span of tc, (¢) - tp, (d) with
(XS Cl, d € D is dense in C1 Xx D;.

Let (o, B) be a X-Heisenebrg pair on H. We remarked above that ordinary minimal C*-tensor products
are functorial for morphisms, that is, there is a well-defined morphism

f®g®idg): C1 ® D1 @ K(H) = C2 ® D2 @ K(H).

Lemma implies C; Kx D; C M(C; ® D; @ K(H)) for i = 1,2.

The morphism f ® g ® idk(s) extends to a *-homomorphism between multiplier algebras. Since f and g
are equivariant, this canonical extension maps v1(¢)1a — v2(f(¢))1a and 1(d)2s — d2(g(d))25. Hence it
maps tc, (¢) - tp, (d) to e, (f(€)) - tpy(g(d)) as needed.

Proposition 4.33. If f and g are injective morphisms, then so is f Kx g, and vice versa.
If f and g are surjective morphisms, then so is f Rx g, and vice versa.
The morphism f Xx g is invertible if and only if both f and g are invertible.

Proof. If f and g are injective, so is f ® g ® idks,); hence its extension to multipliers is injective, and so is
the restriction to C1 Kx D;. Conversely, (f Kx g)(tc, (¢)tp, (d)) vanishes if f(c) = 0 or g(d) = 0; hence f
and g are injective if f X g is.

If f and g are surjective, then elements of the form (f Kx g)(cc, (¢)tp, (d)) = te, (f(€))ip,(g(d)) are
linearly dense in Cs Wx D2. Hence f X g is surjective as well. Conversely, suppose that f Xy g is surjective.
Then

ey (f(C1)) - tpy(9(D1)) - K(H)3 = (C2 Kx D2) - K(H)3 = C2 ® D2 @ K(H)
by Lemma We also have tc, (f(C1))tp,(g(D1)) - K(H)s C f(C1) ® g(D1) @ K(H). Applying slice
maps to Cy and D2, we get f(C1) = C2 and g(D1) = Ds-. O

We now use Proposition [£.33| for the equivariant embeddings v: C — C® A and §: D — D ® B provided
in Lemma [2:34] to get an embedding

(C,7)Rx (D,6) = C®D® (A A)XRx (B,A).

Thus we may describe (C,v) Mx (D, d) as the crossed product generated by the embeddings (id ® ta)v1s
of C' and (id ® t5)d23 of D into C ® D ® (A, A) Kx (B,A). This description is particularly useful if we
know (A, A) Ky (B, A) more explicitly.
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4.4.3 Cocycle conjugacy
We now consider the special case where the G-coaction is changed to an equivalent one by a cocycle:
Definition 4.34 (|2, Définition 0.4]). A vy-cocycle is a unitary u € M(C ® A) with
u12(y ®ida)u = (ide ® Aa)u nUCRARA). (4.17)
We only treat cocycles that satisfy an extra Podle$ condition:

Lemma 4.35. Let u € U(C ® A) be a y-cocycle. Define a morphism v, := Ady oy: C — C ® A. This is
a continuous coaction of G if and only if

Y(C) u - (le®A) =C® A. (4.18)
Proof. The morphism 7, is faithful because v is. We check that it is a comodule structure:
(ide ® Aa)yu(c) = (ide ® Aa)(uy(e)u”) = uaz((y @ ida)(uy(c))u")uiz = (yu ®ida)yu(c)

for all ¢ € C; the first equality follows from the definition of ~,,, the second equality uses and
for v; the third equality again uses for all c € C.

Since u € U(C ® A) we have u(C ® A) = C ® A. Hence is equivalent to the Podles condition
uy(Clu* - (1® A) =C ® A for ~,. O

The following result generalises |2, Proposition 7.6].

Theorem 4.36. Let u be a y-cocycle and let v be a §-cocycle. Assume both satisfy the Podles condition (4.18]).
Define the coactions v, and d, as above. Then

(C,v) Bx (D,0) = (C,yu) Bx (D, dy).

This isomorphism is not one of crossed products, that is, it is not compatible with the embeddings of C
and D.

Proof. We describe the isomorphism above more explicitly. To simplify notation, we treat only u and
assume v = 1. We define a G-coaction on My (C) by

c11 cCi2 y(c11)  v(ciz)u®
— .
<021 022> <u7(021) u7(022)u*>
The upper left and lower right corners are (C,v) and (C,~u), respectively. Thus (C,v) Bx (D, d) and
(C,vu) Bx (D, §) are subalgebras of M2 (C') X D.

Conjugation by the partial isometry s = ((1) 8) and its adjoint gives isomorphisms between the two
corners C' C M(C'). The strictly continuous extension of u, ¢y maps s to a partial isometry in Ma(C)Xx D.
Conjugation by this partial isometry and its adjoint restricts to isomorphisms between (C,v) Ky (D, d) and
(Cv ’Y“) Xx (D7 5) O

Definition 4.37. We call a continuous coaction inner if it is a cocycle-twist of the trivial coaction.
Corollary 4.38. The crossed product (C,v) Rx (D, §) is isomorphic to C ® D if v or ¢ is inner.

Proof. Let u € M(C ® A) be a cocycle for the trivial coaction 7(¢) := ¢® 1 and let v = 7,. The cocycle u
satisfies (4.18]) by Lemma Now Theorem and Example give (C,7)XxD = (C,7)KxD = C®D.

A similar proof works if ¢ is inner. O

Ezample 4.39. Let U™ and UX be corepresentations of A and B on Hilbert spaces # and K. These are
cocycles for the trivial coaction on K(#). Assume to get continuous coactions on K(#H) and K(K).
Then

K(H) Kx K(K) 2 K(H) @ K(K) 2 K(H ® K).

This explains the Hilbert space realisation of C' ®x D in Theorem [£:24] in the case where the corepre-
sentations U™ and U™ used there satisfy the technical condition (4.18). Then we get a faithful morphism
CXx D — K(H) Kx K(K) from Proposition When we identify K(#H) Kx K(K) 2 K(H ® K) as above,
we get a faithful representation of C Xx D on H ® K.
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4.5 Examples of twisted tensor products

We show in Section that the skew-commutative tensor product of Z/2-graded C*-algebras is a special
case of our theory.

In Section we treat crossed products for coactions and construct the dual coaction on a crossed
product using the functoriality of Xx.

4.5.1 Skew-commutative tensor products

Let Z/2 = {0, 1} be the two-element group. Let G = H be C*(Z/2) with the usual comultiplication. Thus
a G-coaction on a C*-algebra C is a Z/2-grading: a decomposition C' = Cy @ C1 into involutive, closed,
linear subspaces Cy and C1 of even and odd elements such that

Ci - Cj = Citj mod 2, C; =Ci.

Equivalently, o’(co + ¢1) := co — ¢1 for ¢; € C; defines an involutive *-automorphism of C.

The skew-commutative tensor product of two Z/2-graded C*-algebras C and D is defined in [18| §2.6]
by imposing the commutation relation that ¢ € C' and d € D anti-commute if both are odd, and commute
if one of them is even. This leads to the *-algebra structure

(Cl @ dl) . (CQ @ dg) = (71)d0g<62)'d0g(d1)6102 é) dldz,

(C® d)* = (,1)deg(c)»deg(d)c* & d*

on the algebraic tensor product C' ® D of C and D. The skew-commutative C*-tensor product C' ® D is
the completion of the *-algebra C' ® D in the C*-norm

(P&ON (Y -z* - x-y)
o NG 1) (4-19)

over all non-zero elements y € COD and all even states p € C* and A € D*; here the products and adjoints
are with respect to the *-algebra structure on C' & D.
The obvious formulas define morphisms tc: C — C® D and tp: D — C® D, so that C® D is a crossed
product of C' and D. We want to show that C' & D = C'Kx D for a suitable bicharacter X € U(A ® A).
The dual G is the group Z/2, so that A® B = C(Z/2 x 7Z/2) and a bicharacter X is a bicharacter
Z/2 xZ/2 — T in a more classical sense. The unique non-trivial bicharacter is defined by X(1,1) = —1 and
X(i,j)=1ifi=0or j =0.

[[«]| := sup

Theorem 4.40. Let C and D be Z/2-graded C*-algebras and let X be the non-trivial bicharacter in
C(Z/2 x Z]2). Then the crossed product (C Wx D,ic,tp) of C and D is naturally isomorphic to their
skew-commutative tensor product.

Proof. A covariant representation of C' is given by a Z/2-graded Hilbert space H = Ho ® H1 and a
representation ¢: C' — B(H) with ¢(c;)(H;) C Hiq; for all 4, j € Z/2. We choose such a faithful covariant
representation of A and a faithful covariant representation ¢: D — B(K) on a Z/2-graded Hilbert space
K=Ko®K:.

Since A" = A, the unitary Z that is used in the Hilbert space description of C' Rx D is described most
easily by . This gives Z(E®n) = —(@nif £ € Hiand n € Ky, and Z(E®@n) =E@n if £ € Ho or
n € Ko. Thus XZ: H® K — K ® H is the braiding operator from the Koszul sign rule. The representations
1 and 1/32 in Theorem are

preE@n) = () @n,  da(d)(E@n) = (—1)* VO @ (),

as expected from the Koszul sign rule. It remains to show that this pair of representations of C and D
yields a faithful representation of the skew-commutative tensor product C' & D. It is clear that we get a
*_representation of C & D.

We must show that, for any & € C' & D, its operator norm on H ® K is equal to the norm defined
in . The GNS-representation for an even state p: C — C on the Hilbert space L?(C,p) is a
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covariant representation if we let L?(C, p); be the closure of C; in L?*(C,p). The direct sum of these
GNS-representations for all even states is a faithful representation of C' because any state on Cy extends
to a state on C' and a representation of C' is faithful once it is faithful on Cy. Since C Kx D does not
depend on the covariant representations, we may assume that ¢ and 1) are these direct sums of covariant
GNS-representations of C' and D, respectively. The resulting representations ¢; and 152 are block diagonal
with respect to the direct sum over the even states p and A, and each block is obtained from the GNS-
representation for the pair of even states p and A. The elements y € C ® D in form a dense subset of
the Hilbert space L?(C, p) ® L*(D, ), and the expression in for fixed p and A is precisely the norm
quotient ||z - y||/||y||, where z -y is defined using 1 ® ¢2. Hence the norm in is exactly the operator
norm for a particular choice of the covariant representations ¢ and . O

4.5.2 Crossed products

Consider the special case where H = G, x=W"e UARA), D=A6=As: A— A® A. We claim
that (C,7) Mya (A,A4) is the reduced crossed product of (C,~). More precisely, the reduced crossed
product C' x: A comes equipped with canonical morphisms to: C — C x A and Lt A = C %, A, such
that (C' %, Ao, t4) is a crossed product in the sense of Definition u We claim that this is equivalent to
(C,~) Bywa (A, A4) as a crossed product.

Let (m,#) be the G-Heisenberg pair on the Hilbert space H constructed in Example [2.18} that is,

W, =W is a multiplicative unitary generating G.

T

Theorem 4.41. There is a faithful morphism p: (C,7v) Kywa (A,A4) = C @ K(H) with potc = Y1~ and
poL, =2, where

Yix: C = MC@K(H)),  cr (ide ®@m)y(c),
ﬁg:A—w\/l(C@K(’H)), a— 1o ®#(a).

Reduced crossed products for locally compact quantum groups (with Haar weights) are defined using the
pair of representations 1. and 72 above, Where m and 7 are the regular representations. Thus Theorem@
provides an isomorphism (C,~) Ky a (A A a) = C Xy A for locally compact quantum groups. For general
C*-quantum groups, we may now define the reduced crossed product using the pair of representations 1.
and 72 and get the isomorphism (C, ) Bya (A, Ax) — C %, A in complete generality. The theorem shows
that the crossed product does not depend on the choice of W.

Proof of Theorem [£41] Since
i @ idicy: COK(H) — C @ K(H) @ K(H)

is a faithful morphism, the pair of representations (71, 72) generates a faithful representation of C'X Aif
and only the pair ((yi= ® idg(2)) © Vi, (717 @ idg (%)) © #2) does so. We have (y1x ® idgw)) 0 #2(a) = #3(a)
and

(= ® idx(0)) 717 (€) = (v ® ida) () 1nn = (ide @ Aa)y(¢)1rr = W(id @ m)y(c) 12 W™

Let Ya3 be the coordinate flip. Conjugating both representations by the same unitary 323W™* gives a
unitarily equivalent pair of representations. Hence we may further replace 71, and 72 by the representations
— (id ® m)y(c)13 of C and

a DosW*7(a)sWSas = A(a)rs

of A; here we use the standard description of A in terms of W.

Thus we arrive at the pair of representations (idc ® 7 ®@idk(x))tc and (ide @7 ®idgw))t 4 in CROARK(H)
with tc = 71~ and ¢4 = (Aa)2s. Since # is faithful, this pair is equivalent to (1c, t4). Since the latter
pair defines the crossed product C'X 121, we see that (y1x,72) generates an equivalent crossed product as
claimed. O
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Viewing the reduced crossed product as a special case of X gives us more freedom because we may also
tensor (C,~v) with other G-C*- algebras and use functoriality. We now describe the dual coaction in this
way, using the functorlahty of M.

The map ArAs A Ais Gequlvarlant if G coacts on A® A by deoA: A A— Ao A A. By
the functoriality of X, this equivariant morphism induces a morphism

65:Cx A2CRA-SCRAQA) 2AQ(CRA) 2 AR (C x, A);
here we use Lemma in the second variable to pull out the first factor A.
Lemma 4.42. The map 6: C x, A —» A® (C %, 121) is a continuous left G-coaction.

Proof.A The comodule property of § follows from the coassociativity of A and the fupctoriqlitx of X. The
map ¢ is faithful by Proposition The Podle$ condition for ¢ follows because (A ®@ 1)A(A) = A® A:
apply t4g 4 to this equality. O

The coaction § is uniquely determined by the conditions §(.c(c)) = 1®wc(c) and §(c 4(a)) = (id 4 ®LA)A.
The same conditions characterise the dual coaction. Thus we have indeed constructed the dual coaction.

The functoriality of X in the first variable gives us the usual functoriality of reduced crossed products.

General tensor products C Rw (D, d) are closely related to the crossed product through Lemma [2.34]
which shows that 6: D - D® A is a @—equivariant embedding for the coaction idp ® AonD®A. By
Proposition and Lemma this induces a faithful morphism

CRwD—CRyw (D®A) =D (CRw A) =D (C x, A).

Now we consider once again the general situation of two quantum groups G = (A,A4q) and H = (B, Ap)
and a bicharacter X € U(A ® B).

Theorem 4.43. View A ® B as a subalgebra of (C x; A) ® (D x, B) via 1; ® 1. The embeddings

(to)1: C = (C %, A) @ (D %, B), c—e(e)®1,
Adys o (tp)2: D — (C x; A) @ (D %, B),  d~— X*(1®tp(d))X,

induce a faithful morphism
CH®x D — (C x: A) ® (D x: B).

Proof. Choose a faithful representation ¢o: C' — B(Ho). Let (m, %) be a G-Heisenberg pair as in Exam-
ple 218 acting on a Hilbert space Hr. Let H := Ho @ H». Then we get a faithful representation (o ® id
of C ® K(H~) on H. This restricts to a faithful representation ¢’: C x, A — B(#) because the latter is the
crossed product generated by the morphisms yi.: C — C ® K(Hx) and #a: A — C @ K(H).

We compare this with the construction of a covariant representatlon of (C,~) in Example - We see
that this covariant representation consists of potc: C — B(H) and WpL 2 € U(K(H~) ® A). Furthermore,

the representation of A" used later in the proof of Theorem is pt 4 o A for the reducing morphism
A: A® — A. (Actually, any representation of C X, A gives a covariant representation of (C,~) in a similar
way.)

Now do the same things for (D,d): let ¥o: D — B(Ko) be a faithful representation; choose an
H-Heisenberg pair (p, p) as in Example acting on a Hilbert space K,; let K := Ko ® K,; let 1" be the
resulting faithful representation of D %, B on K; construct a covariant representation of (D, d) on K as in
Example [£:22]

Theorem gives a faithful representation of C' Xy D on H ® K, generated by the representations 1
and Adz2. By construction, we also get a faithful representation ¢’ ® ¢’ of (C %, A) ® (D %y B) on H® K.
The description of Z in yields Z = (¢ @ ¥')(X*). Hence the representations ¢; and Adzs both
factor through the embeddmg ¢ ®1" and the maps (Lc)1 and Adx* o (tp)2 in the statement of the theorem.
We thus get a faithful morphism C Ky D — (C x, A) ® (D x, B) restricting to (1c)1 and Adx+ o (tp)2 on
C' and D, respectively. O

For instance, in the situation of Section 5.1} this realises the skew-commutative tensor product C' ® D
as a subalgebra of (C' X Z/2) ® (D xZ/2).
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4.6 Generalised quantum codouble and Drinfeld double

In [4, Section 8], Baaj and Vaes have described generalised quantum doubles as a special case of the double
crossed product construction, assuming the existence of Haar weights. Let G = (4, A4) and H = (B, Ap)
be quantum groups with the reduced bicharacters W4 € U(A ® A) and WP € U(B ® B), respectively.
Let X €U (A ® E) be a bicharacter. Using the X-Drinfeld commutation relation, we construct a modular
multiplicative unitary for generalised Drinfeld doubles. Finally, we show that the generalised quantum
codoubles are dual to them.

4.6.1 Multiplicative unitary

Starting from a modular multiplicative unitary one can always construct a manageable one (see [38])
giving rise to the same quantum group. Therefore, without loss of generality we assume that (7, #) and
(n,n) are G- and H-Heisenberg pairs, coming from manageable multiplicative unitaries on the Hilbert
spaces H and K, respectively. Let («, 3) be the faithful X- Heisenberg pair defined in Lemma on
L=H®K. Then (&, B), as defined in Example is the associated faithful X-anti-Heisenberg pair acting
on L. Let Ag: B— B® A be the right quantum group homomorphism associated to the bicharacter X.
We define faithful representations of A, B, A, Bon Hp =L ® K ® H as:

pla) == ((64 ® 7r)AA(a))13 in B(Hp) for all a € A,
0(b) := (B® ((n® #)AR))Ap(b)  in B(Hp) for all b e BA, (4.20)
&(a) = 17 ®1c ® #(a) in B(Hp) foralla € A,
C(b) =17 @7(b) ® 1y in B(Hp) for all b € B,

respectively.

Proposition 4.44. The unitary WP € U(Hp ® Hp) defined by WP = WQBCW,?& € UHp @ Hp) is a
modular multiplicative unitary.

The proof depends on commutation relations of the representations defined in (4.20)).

Lemma 4.45. Consider the faithful representations on Hp defined in (4.20). Then
1. (p, &) is a G-Heisenberg pair;
2. (p,0) is a X-Drinfeld pair;

3. 0 and ¢ commute in the following way:
WHWE = W - Xes - Wi X5 - Wh inU(BRK(Hp) ® B); (4.21)

4. 0 and & commute in the following way:
WEWT = Xes - Wik - Xi5 - Wy in U(AQK(Hp) © B); (4.22)

5. p and ¢ commute;

6. & and { commute.

Proof. Example immediately yields . Lemma and Proposition imply .

Using (3.15) we express Ag in terms of X in the following way:
(idy @ AR)WP = WhHXis  inU(B® B® A).
Applying o23012 on both sides of the last expression and taking adjoints yields:

(AR®idB)WB :X23W?3 in U(B(X)A@B)
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The character condition (2.9) for w5 gives:
3B 7 ~\ A . 3B 7B 3B (B . - 5
Woz = (B ((n®#)Ar) ®idg) (WesWi3) = Xaa - WiiW5,  inUKCLRKRH)®B).  (4.23)
Let us compute:
W%Wﬁ = X#s -W%W%W?ﬁ = Xss - W%W{Bﬁwgﬁs = Xas - W%W{%W%W%.

The first step uses (4.23)), the second equality uses that VAV[]?5 and VAV% commute and the third equality uses
that (n,7) is an H-Heisenberg pair. Hence (4.21)) follows from (4.20) shifting leg numbers.
Similarly, (4.23) with the shifting of leg numbers gives (4.22):

Wfswfg = Xzs5 -\7V,,35VAV§5VAV‘14ﬁ = Xzs5 'Wffrwf5wg5 = Xe¢3 'ng - X¢s 'VAVE&
Finally, and @ follow from (4.20). O

Notation 4.46. We write m; when the representation 7 is acting on the ith leg.

Proof of Proposition 44l Using (4.8) for (p,6) involving W4 and W? we obtain:
FrA 7B v B <A . P
Wp2W93X23 = X23W93Wp2 m U(K(HD) ® A ® B) (424)

Equation (4.24) and (4.22]) give:
A

x7A x7B <xrB x7B xTA 7B 1B x7B
Wore: Wo13Wa,3 = Xeps - W, 3 ‘Wpléz ’ X§23 “Wo,3 = Xeps - Woys - X§23 “Woos - Wep (4.25)

The following computation takes place in U(K(Hp ® Hp) ® B® /1):
B A B A (A \* (7B \x _ B UB A A (AVE 7By x
W923Wp24w91€2Wm€2 (sz4) (W923) = W923W9142W1)24W91§2 (W )P24(W )923
= ng@ TR W£3 ’ X223 ’ WOB;SW:;&W;‘M(WB);ﬁ
B A B <37B XarByx xarA
= Wpl(zwp1§2W913W023(W )923Wpl4
B A B oA
= W91C2WP1§2W913Wp14-
The first equality uses the commutation between p and ¢, the second equality uses (4.21)) and statement
in Lemma , the third equality uses (4.25)) and that ngg, Wfl 4, commute, the last equality is trivial.
Applying ¢ and ¢ on the third and fourth leg on both sides of the last expression gives the pentagon
equation (2.4) for WP € U(Hp ® Hp).
Since W5, € U(K(Hp) ® B) is a corepresentation of H on Hp, by Theorem 1.7], it is adapted
to W8 = n® ﬁ)WB. Then WOBQ = (WQBQ)TQMORB € U(Hp ® K) satisfies the following manageability
condition:

(zok| A 2@ k) = (z® Qp(k) | @75/2 |E®Qg1(k')) (4.26)

for all z,z € Hp, k € Dom(Q5) and k' € Dom(Qp").

— %

Similarly, W?z = (V/V’;‘Q)T‘EMORA € U(H, ® H) satisfies the following manageability condition for
W2 € UK(Hp) ® A):

(ron | Whl=on) = (0Qan) | T4 |70 Q4 () (427

for all x, 2 € Hp, h € Dom(Q4) and k' € Dom(Q}").
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Let {ei}i=1,2,... be an orthonormal basis of Hp. Then we get Definition for WP as follows:
(z@k@h| Wi, Wik, | 20K @ h')
- (x®k®h | Wene Y (le)(eil @15 © 1) Wik, | z®k/®h/)
:Z(m@kﬂfvfﬁz |ei®k’) : (ei®h|\7vfﬁ3 |z®h’)
=Y (Feam 1Ty 1@ Q™)) - (a8 Qs | WE |70 Q5 ()
= (20Qs (0 @ QM) | WAL |72 Q5" (K) © Q5 (W)

Recall the definition of (e, 8) from Lemma and identify Hp = HRK @ K ® H.

Equation (4.23) gives VAVé?g = X47W§7(WB)2§ﬁORB € U(Hp ® Hp). Similarly, we show ng =
Wik (W) @i € U(Hp @ Hp). Then
WD = X47\\}\V§7WB27\\}\V28WA18228 in U(ﬂ@ﬁ@K@’H ®Q®E®K®H) (428)

Define Q- == (Q;")" ®(Q5") ®Qp®Qa and Q- := 1;®1x® Qs ®Qa. Clearly, Q, and Q, are positive,
self-adjoint operators acting on Hp with trivial kernel.

The commutation relations Definition Theorem [2.13(6 f(ii), and Lemma |3.13] (3.12)) and (3.13])
yield WP(Qr © Q) (WP)" = Q- @ Qr. H

4.6.2 Generalised Drinfeld doubles

We first describe the quantum group associated to the dual of the multiplicative unitary WP e U (Hp @Hp).
The definition of the faithful representations £ and ¢ in allows us to view WP as a unitary multiplier
of K(Hp) ® B® A. According to the general theory of modular multiplicative unitaries [38], the dual
of WP is again modular. This gives rise to a C*-algebra DX defined by:

DX = {(idup @ W)W? : w e (B® A)'}™° ¢ B(Hp),

where CLS abbreviates closed linear spans.

The set of continuous linear functionals of the form n ® v for n € B’, ¢ € A’ is linearly weak* dense
in (B® A)'. Thus D* = 0(B) - p(A) and WP € U(D* @ B ® A). The embeddings p of A and 6 of B into
DX satisfy the X-Drinfeld commutation relation.

Next we establish the well-definedness of the comultiplication Apx € Mor(D*, DX ® DX) on D* by
Apx (O(b) -p(a)) = ((9 ®0)Ap(b) - (p® p)AA(a)) fora € A, be B.

Definition 4.47. The quantum group ®*(G, ]ﬁl) := (DX, Apx) is called the X-Drinfeld double.

We must show that Apx is implemented by the dual of W?. The character condition (2.9) for W4 and
A gives:

(Ao @ idpe ) WEWE = (0@ 0)An® idB)v“vB)m(((p@ DIVEERS

xrB arA <x7B <x7A
= W923WP24W913Wﬂ14.

124

Equivalently, (Apx ®idgg 4)WP = Wi, Wh, in U(D* @ D* ® B ® A). Slicing the last two legs of both
sides of the last expression by w € (E ® fl)' and then using the pentagon equation for WP gives:
Apx (0(b) - p(a)) = (WD) (0(b)p(a) @ 1px) (W),
for a € A and b € B. Thus Apx is implemented by the dual multiplicative unitary WP e U(Hp @ Hp).
Finally, p € Mor(fl, D) and 6 € Mor(é ,D*) are Hopf *-homomorphisms. Therefore, W’:Q € U(D* ®A)
and W5, € U(DX ® B) are bicharacters.
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4.6.3 Generalised quantum codoubles

IfH= G, the quantum codouble was described in [34] as dual to the Drinfeld double. In this section, we
construct the generalised quantum codouble in the same spirit.

Define 0¥: B A - A® B, by o*(b® a) := X(a ® b)X* for a € A, b € B. This is called flip twisted
by X. Next we define DX := B® A and Ay € Mor(ﬁ’ﬂﬁx ® ﬁx) by

ABX = 053 o (AB ® AA). (4.29)
Definition 4.48. The pair ’,DX((G,I/E\]I)A = (ﬁx, ABX) is called X-quantum codouble.

Proposition 4.49. The comultiplication ABX is implemented by WP € U(DX ® B® fl) Moreover,
(DX, A5

DX

) is a bisimplifiable Hopf-C*-algebra.
Proof. Realise WP as a unitary element in the multiplier algebra K(Hp) ® B ® A. Then we compute:
WoW AW WE (W) (WE)" = Wi Wi WiEWAEWS (Wih)T (Why)*

= W94W1gW15W2< (Wen)*

= Weiwfgwﬁ (W)™ - Xea - WQB<W2B4 - Xgs

= W¢9B4W145 (WEAL)*W& - Xea 'WngWi - Xgs

= Xeq - ng < Xiq - Wi - Xea 'szgcwzi - Xgs

= Xea - Wi Wi WEWE, - Xy

The ﬁrst equahty uses Lemma m the second equality uses that p and ¢ commute the third equality
uses and that E and ¢ commute, the fourth equality follows because Wb and W94 commute, the

fifth equahty uses 7 and the last equahty follows because W15 and X¢4 commute.
Taking slices on the first two legs by w ®@w’ for w € A’, w’ € B’ on both sides of the last expression gives

(WP)(£@)C0) ® 1554) (WP)™ = Xea (A (D) caA a(a)es) Xia-

Since the representations £ and ¢ are faithful, we conclude that ABX is implemented by WP. The pentagon
equation for WP shows that Aﬁx is coassociative.
We know that As(A4)-(1;® A) = A® A. Therefore,

A5 (DY) (15, ® DY) = Xas (Ap(B)13Aa(A)24)Xs3 - (1544 ® B® A)
= Xa3 (AB(B)ls (AA(A) (1@ A))M)X;s(lB@A ®B®1y)
= Xa3 (AB(E)B(A & A)24)X§3(1B®A ®B® 14).
Now the character condition on the second leg of X is equivalent to
WE X1y = XagX1sWEhy  inU(AQK(H, ) ® B),

Where (n,7) is H—Helsenberg pair acting on H,,. We also know Agp(B) - (13 ® B) = B® B and
(7' (B ) A)& T]( )®A. Hence

AEX (B ® A)ﬁ/234 : (17{,7, ®1;® B® A) = X23W53(ﬁ/(§) RA® 1, ® A)(X23W7}73'3)*(1Hn/ R1;® B® 14).
Rewriting ([@.4) for X € U(A ® B) we get

XiaWh s = XosWE X in UK(H,) © A B). (4.30)
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Therefore, using (4.30]), we obtain

As (B& A)grasa - (In,, @14, ® B® A)

= XosWis((B) ® A® 15 @ A)X5(Wis) Xia(13e, ® 1, @ B 1)
= XasWE(A(B) @ A 15 @ A) (13, ® 1, @ Bo1,)(W5) X}y
= XosWE(A(B) @ A® Bo A)(WE)"X, = i(B)® A® Bg A.

Since 7 is faithful, we get Az, (ﬁx) . (15X ® ﬁx) = DX ® DX. A similar computation yields Az, (ﬁx) .
(D*® 15) = DX ® D*; hence (D%, Az, ) is bisimplifiable. O

The proposition below shows that (G, H)™ is generated by W? € U(Hp ® Hp).
Proposition 4.50. The space of slices {(w ® idwp )W : w € B(Hp)«} is linearly dense in l5ex ® DX.

Proof By Proposmonand manageability of X, discussed in Section L we can write X" = xRaT®idc
and X = {RBTEn

Throughout the proof we identify A, A, B, B with their images under the faithful representations =, 7,
7, 7 to avoid notational complications.

Then we rewrite (4.28]) as

WP = X4 W (W2)RETEUC Gy (WA RATOMn g RB T 5 1y H oK@ Ko HOHOK @ K@ H).

Let L = {(w®idwp)W? : w € B(Hp).}. Using the leg numbering notation for functionals and replacing w €
B(Hp)« by 4 ® e ® v ® v we have

—_— — CLS
B R idic (A (TR idy ¢ RpT®I B(H)-, B(K).
I— {/14621/31}4 (X47W?})37(WB)§7BT® A (WA )R T s TS dﬂ) : 566153((/?))* ; E IB%EH))*} 7

where CLS abbreviates closed linear spans. Replacing (v ® id;g)WB by be B we get:

—. y CLS
iday < i IB%(H)* € € B(K).
I = Xach B RBT®1d;CW WA RAT®1dHXR 5 T®i dH> : ne R .
{M162U3( 3606 (W™ )24 (W57 be B, veBH).
Replacing € € B(H). by %37 . ¢, where b € B, this becomes:

{[1462’!}3 <X36 ((b ® b)WB)SGBT®1dKW37(WA)RAT®IdHX BT®1dH) . [ B

Since W2 € U(B ® B), we replace (B ® E)WB by B® B:

mn X

— CLS
i i iy i E B * 9 E B IC *

bRBT

Replacing e by ¢, where b € B and € € B(H)., we get:

_ — § CLS
I — {mezvs (X3656W§47(VAVA)1§7AT®M”X BT®1dH) L €B(H)x, € € IB%(IC)*} '

be B, veB(H).

Next we replace (1 ® idH)(WA)RAT‘X’id"‘ by @ € A, and € € B(H). by 0'R57 - ¢, where b’ € B; we get

L= {ewg (x%z}ng‘G(( ®a)x)"e TW”) :
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Since X € U(A ® B), we may replace (B ® A)X by B® A and ( A)RpT®n by BT @ A:

B®
qle , € € B(K). } { <X14b4W15a5> . a€A, }CLS.
b € B,veB(H). be B, veB(H)
Replacing v € B(H). by v - a, where a € A, we get:
L cLs
b= (r@tesa), ) 25T 0 b
Since W4 € U(A® A) we may replace WA(A ® A) by A® A:

CLS
o EA ac A
L= X14b A)~“ .
{”1( uamis ) e gy e BK), }

L= {61112 <X25B5W§66,1T&6) :

Next we replace v1 - a by v and then replace v by v - &', where &’ € fl; we get

aed be ™ dacdbeB)™”
_ 7oA a s ) — 8 ®b a a,a ’ ’
L= {’U1 (X14b4a5> v € B(H). } = {Ul (X(a ® b) 14a5> v € B(H). }

Finally, replacing X(A @ B) by A ® B gives

L_{m@wwgaeAbeB}

Properties of the generalised quantum codouble

CLS
S
€

o

CLS

o» &

_{1’H®K®b®&

The general theory of double crossed products [4] says that D*(G, ]ﬁl)A contains G and H as closed quantum
subgroups in the sense of Vaes [41]. Closed quantum subgroups, in the sense of Woronowicz, have been
introduced recently in [9, Definition 3.2], using the notion of a C*-algebra generated by a quantum family
of multipliers.

Lemma 4.51. G and H are closed quantum subgroups of @X(G,]ﬁl)/\ in the sense of Woronowicz.

Proof The bicharacter W ceu (DX ® A) corresponds to a quantum group homomorphlsm from ®*(G, ﬁ[)/\
to G and its second leg generates G. Hence G is a closed quantum bubgroup of D*(G, ]HI) in the sense of
Woronowicz. Also, ng € U(D* ® B) yields a similar conclusion for . O

Lemma allows us to decompose every coaction and corepresentation of DX (G, ﬁ)A into a pair of
coactions and corepresentations of G and H with a certain compatibility criterion between them. This
becomes more interesting when H= G, which we shall explore in Sect1on

Definition 4.52. A C*-algebra along with the coactions v: C — C' ® Aands: C — C® B of G and H is
called (right, right) X-Yetter-Drinfeld if the following diagram commutes:

5 A~ ’Y®ldB

CoB———2 ,CcoAeB
~ d®idy . ide®o
cod—""Y4 copei%7 .ceieh

Consider A = Co(@) and B = Co(H) for locally compact groups G and H. Then any G-C*-algebra with
trivial H-action or any H-AC*—algebra with trivial G action makes it Yetter-Drinfeld in this generalised sense.
In particular, if we take H = G and X = W* then WA—Yetter—Drinfeld—C*—algeb}:as are same as G-Yetter-
Drinfeld C*-algebras defined by Nest and Voigt in [30]. Next we show that D* is a X-Yetter-Drinfeld
algebra using the following lemma.
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Lemma 4.53. The corepresentations ng € U(K(Hp)® A) and W5 e UK (Hp)® B) of G and H on Hop
commute in the following way:
Proof. This is essentially contained in Lemma :

033 (Wi W) = 01202 (Xa2 (W) 1 (WH)3,X12) = 010023 (W3, (W) = Wyp Wi, O
Ezample 4.54. Define Ag: DX 5 DX ® A as Ag = (idg ® AA). Taking Equation (3.15) and the simple
computation (idpx ® AR)(WEQW?3) = W§2W§3W§4 into account, we conclude that Ag is the right
quantum group homomorphism corresponding to the bicharacter sz cUD*® A) Similarly, by virtue
of Lemma Aly: DX — DX @ B defined by A = (idg ® 0)(Ap ®id}) is the right quantum group

homomorphism associated to the bicharacter ng cU(D*® B).
Using Lemma [£.53] we compute:

o3 ((idDX ® (AR ® idA)AR))W6B2W£3) = sz0§4 (W%Wﬁ)ﬁ/%
= Wi Wi Wi Wi
= (idpx ® (Ar ®id4)AR)) Wi W .
Taking slices on the first leg by functionals on D* shows that DX is a X-Yetter-Drinfeld C*-algebra.

The next proposition generalises Proposition 3.2 in [30].
Proposition 4.55. Every (G, ﬁ)A -C*-algebra is also X-Yetter-Drinfeld C*-algebra, and vice versa.

Proof. Let C be a DX(G, ]ﬁI)A -C*-algebra. Lemmashows that C' is contained in M(C’ ®§<) for some
C*-algebra C’ with coaction only on DX. Now DX is a X-Yetter-Drinfeld-C*-algebra. By Lemma Cis
also a X-Yetter-Drinfeld-C*-algebra.

Conversely, let v: C — C® Aandé:C - C®B satisfy . Define a nondegenerate, injective
*-homomorphism 74: C — C ® DX by 7 := (6 ®id 4)7.

The Podles conditions for 4 gets induced from those for « and ¢ in the following way: ¥(C)-(1¢ ®5X) =
(6®id;)(4(C) - (le ® A)) - (le®@ Bo1,) = (6(C) - (lc ® B)) ® A= C @ D*.

The following computation yields for A:

(Y ®idpg )7 = (0 ®idigpe4) (Y@ 1dp)d @id 1)y = 034 ((0 @ id )0 ®id 4 4) (v ©1d 4)7)
= o3 ((ide ® Ap @ A)(6®id4)7)
= (ide ® Agy)A- 0



Chapter 5

Braidings for quasitriangular
C*-quantum groups

The twisted tensor product of C*-algebras, in general, does not carry any nontrivial symmetry. Therefore, for
a general bicharacter X, associativity of the functor Xy makes no sense. Motivated by Hopf algebra theory
(see |11}, Section 10]), we formulate the notion of unitary R-matrix for C*-quantum groups in Section
Thereafter, in Section [5.2] we define quasitriangular quantum groups and show that their corepresentation
categories are braided monoidal. Next we use this to show that the coaction categories of quasitriangular
quantum groups are monoidal. In |2} Section 8], Baaj and Skandalis have constructed R-matrices on the
quantum codoubles of regular quantum groups. We show that the quantum codoubles of quantum groups
(not necessarily regular) are quasitriangular, in Section Crossed products for a quantum codouble get
simpler in terms of Yetter-Drinfeld C*-algebras as shown by Nest and Voigt in |30]. We show that their
construction implicitly uses the quasitriangularity of the quantum codouble. In Section we introduce
the notion of weak regularity for a quantum group G = (A, Aa) requiring the natural inner coaction
of G on A, implemented by the reduced bicharacter, to satisfy the Podle$ condition. Then A becomes
a G-Yetter-Drinfeld C*-algebra. Finally, we discuss associativity of crossed products in this context.

5.1 R-matrices
Let G = (A, A4) be a quantum group and let W € U(A ® A) be its reduced bicharacter.
Definition 5.1. A bicharacter R € U(A ® A) is called R-matriz if it satisfies:
R(coAa(a))R" = As(a) for all a € A. (5.1)

Lemma 5.2. The dual R := o(R*) € U(A® A) of a given bicharacter R € U(A® A) is an R-matriz if
and only if R is an R-matriz.

Remark 5.3. Condition is opposite to the one which is standard for the Hopf algebraists: R(A(a))R* =
o o A(a). This is because the bicharacter conditions in Definition and the conditions used for Hopf
algebras differ by taking coopposite comultiplications. We can match Definition of an R-matrix with
the standard one used by Hopf algebraists if we replace A by AP := g o A.

5.1.1 TUniversal lift of R-matrices

In order to simplify proofs later we shall lift the universal R-matrix R € U(A ® A) to a unitary element of
the multiplier algebra of A" ® A".

59
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Proposition 5.4. There is a unique R" € U(A" ® A") such that

(A®MNR"=R inU(A® A), (5.2)
(AY ® idau)R" = R33RIs inU(A" @ A" @ A"Y), (5.3)
(idav @ ADR" = R15RT3 inU(A" @ A" @ A"). (5.4)
Moreover, R" satisfies
R"(c o A(a")(R")" = A%(a") for all a™ € A". (5.5)

Proof. Proposition proves that there is a unique R" € U(A" ® A") satistying (5.2)—(5.4).
The nontrivial part is to show that R" satisfies (5.5). By (2.42) {(w ® idau)V [w € A’} is dense in A",
and V € U(A ® A") is a character in the second leg by (2.41)). Therefore, (5.5) is equivalent to:

Ra3VisVi2(R23)" = ViaVis inU(A® A" ® A"). (5.6)

We shall prove this in two steps, using similar technique as in the proof of Theorem Consider the
following auxiliary bicharacter R = (A ® idcu)R" as a unitary in M(A ® AY).
The following computation shows that

X = WhRasVisW,  inU(A A AY)
is a character in the third leg:
(idj ®ida ® AN Wi R23V13Wig = WioR23R2aVisVigWg = (WT27€23V13W12)(WT27€24V14W12)
= X123X124.

The first step follows from (2.41)), the second step uses commutation of Ras and Vi3, and the last step is
trivial.
A similar routine computation, using (2.41), shows that

Y :=V;3Res inUARA®AY)

is a character in the third leg, that is, (id; ® ida ® AY)Y = Y123Y124.
Using (2.8) we rewrite (5.1]) as

RosWisWio = WoWi3Res  in UM(A® A® A). (5.7)
Thus (id4; ®ida ® A)X = (id; ® ida ® A)Y. Lemma gives X =Y or, equivalently,
WiRasVisWis = VisRos inU(A® A AY). (5.8)

Similarly, using (2-41), we can show that the unitaries X 1= Vi3(RY3) ViaVis and Y = Vi»(RY)* in
U(A® A" ® A") are characters in the second leg.

Equation shows (idg @ A @ide) X = VisR3sWiaVis = WiaRss = (ide ® A ®@ide)Y. Lemmam
gives X = 17, which is equivalent to . O

Lemma 5.5. The unitary R" € U(A" ® A") in Proposition satisfies
(" ®idau)R" = (idav ® ")R" = L4u, (5.9)
Ri2Ri3R23 = Ra3RIzRT2 inUA" ® A" @ A"). (5.10)
Proof. We apply idau ® " ® idau to and and use for e" to get:
R" = ((" @ idcu)R")23R" = ((idew ® €")R")12R".

Since R is unitary, this yields both (e" ® idcu)R" = 14u and (idcv ® €*)R" = 14u.
The following computation yields ([5.10)):

Ri2R13Ras = ((idew ® A")R™")R33 = Ras((idew ® 0 0 A")R™) = R Ri3RY2,
where the first and third step use ([5.4)) and the second step uses (5.5)). O
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5.2 Quasitriangular C*-quantum groups

In a purely algebraic framework it is customary to let Hopf algebras act on vector spaces. The representation
category of a quasitriangular Hopf algebra ([11], [12]) is a braided monoidal category. In the C*-algebraic
framework, we use corepresentations (equivalently, representation of the universal dual). This justifies the
following definition:

DeﬁnitiAon 5.6. A C*-quantum group G = (A, A4) is quasitriangular when equipped with an R-matrix
ReUAR A).

5.2.1 The corepresentation category

Let us briefly recall the discussion from Sections 3.1 and 3.2 in [39] on the categorical structure of
corepresentations of quantum groups in general.

Let U™t € U(K(H1)® A) and U2 € U(K(H2) ® A) be corepresentations of G on the Hilbert spaces H1
and Ha. An element t € B(#1,Hsz) is an inertwiner between U™ and U™2 if and only if (t ® 14)U*! =
U*2(t ® 14). The set of all operators intertwining U** and U™? is denoted by Hom (U™t U*2).

Notation 5.7. Corvep(G) denotes the category where objects are the corepresentations of G and morphisms
are intertwiners.

Furthermore,
UMeUu™ = UMUl2  in UK(H: @ Ha) @ A). (5.11)

is again a corepresentation of G on H1 ® Ha.

Definition 5.8 (see [39, 3.3.2]). U1 @U™2 is the tensor product of the corepresentations U™t and U™2.
The following routine computation shows that @ is associative:
UM o(U*@U™) = U @(UILULE) = U USEULE = (UL UZ)ou™ = (U ou™:)ou™e

Thus Corep(G) is a monoidal categoryﬂ

Let ©*0%2) . 34, @ Hy — Ha ® Hy be the flip operator. As already pointed out in [39], S0 #2) ¢
Hom((UMt@UM2, U2@U™) if and only if G is commutative. Hence X+ does not endow Corep(G) with
a braiding in general.

Let UM € U(K(H;) ® A) be corepresentation of G on H; for i = 1,2. Let R" € U(A" @ A") be
the universal lift (constructed in Proposition of R € L{(/l ® A) By the universal property of
V € U(A" @ A), there are unique @; € Mor(A", K(#;)) such that (¢; ® ida)V = U™ for i = 1,2. Define

H1  Ho

the unitaries X tH1 ® He — He @ Hi by

2002 = (1 @ $2)(RY)* in UMy ®@ Ha), (5.12)
Hi  Ha
/\< — z(Ha M) gy HLH2 U(H1 @ Ha, Ha @ H1). (5.13)
H1  He

Proposition 5.9. The unitaries >< :H1 @ Hoe — Ha @ Ha are G-equivariant, that is,

H1  He Hi Hj
X LUtoute) = Urtout) X inUKH ® H) ® A). (5.14)

for all UMt U2 ¢ Corep(G).
They define a braiding on Corep(G), that is, the following hezagons commute for all U™ € Corep(G),
i=1,2,3:

IMore precisely, Cotep(G) is a monoidal W*-category. See [15| for the general theory of W*-category.
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Hi @ (Ha @ Hs)

/

(H1® H2) ® Hs

H1  Ho

(Hoe ®@ H1) @ Hs

(H1 @ H2) @ Hs

/

Hi® (He ® Hs)
Hy M3
idy, ® X
Hi® (Hs @ Ha)

the unlabelled arrows are associators.

H1Ho®H3

X

(He @ H3) @ Ha

N

Ho ® (Hs ® Hi)

Hi1 Hs
idy, ® /\<

Ho ® (H1® Hs)

H1QH2 Hs

X

Hz @ (H1® Ha)

\

(Hs @ H1) ® Ho
/ \< ® idge,
(H1 ® H3) ® Ha

Proof. By the universal property (2.34) and the character condition (2.35) of V, the corepresentations
UM @U™2 are characterised by the representations (¢1 ® ¢2) o o0 o AY of A" on Hi @ Ho:

(61 ® d2) 00 0 Al ®ida)V

The following computation yields (5.14) :

H1  Ho
X (U eU?) =

= UM euts, (5.15)

(62 ® 1 @ ida) ((Ri2)" (A% @ ida)V)BiHHH2)

H1 Ho

= (((92 ® 1) 0 0 0 AY) @ ida) V) Z{H> M2 H1H2) — (U2 @U™) X L.

The first equality uses (5.15) and (5.13)), the second equality follows from (5.5) and (5.12), and the last

equality uses (5.15)) and (5.13]).
By (5.13) and (5.15)),

Hi1H2®@H3

,\< . 7 (H2®@H3 Hi) 2 (H1, Ha®@Hs) (((132 ®(ZA53 ®(Z;1)(UO A';; ®idAu)(Ru)*) o N(H1,H2@H3) (5.16)

Now we check the first braiding diagram:

(($2 ®($3 ®(£1)(O'O A; ®idAu)(Ru)*) ° Z(H17H2®H3)
_ (((252 ® éi’, ® él)((Ru);3(Ru);3)>Eg’?l:HS)zg’;“lfHZ)
_ Zg’;s’ﬂl)zgyz’ﬂnzgh’HS)EgLI’HZ)
Hs  Hi Ho  Hi1

_ Zglz,ﬂl)zgil7?'13)25?2127%1)2?;1,“2) _ /\< 23 /\< 12,

where the first equality uses (5.3)), the second equality uses (5.12)), the third equality uses the property of
the flip operator X, and the fourth equality follows from (5.13))
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H1Q@H2 Hs
A similar computation for X yields the second braiding diagram:
H1®@H2 H3
X m g @) 5 (L@ Hs) ((ng ®¢1® ¢)(idgu ® o0 A'};)(’R“)*) o n(1®H2Ma)

Corollary 5.10. If C carries the trivial corepresentation of G, then

C H H C
X CoH->HRC and X HqeCsCoH

are the canonical isomorphisms. For any three corepresentations of G,

H1  Ho H1  Hs Ho Hs Hz Hs H1 Hs H1  He

X 23 X 12 X 23 = X 12 X 23 X 12- (5.17)

Proof. These are general properties of braided monoidal categories, see |17, Proposition 2.1]. Alternatively,

we may deduce these assertions from (5.9), (5.10) and (5.12)). O

Remark 5.11. Lemma shows that the dual of an R-matrix R € U(A ® A) is again an R-matrix.

Ho  Hi
Following (5.12), we define Z(*1:%2) .= (g, ®¢2)(7/2T1)* =xyH2Mi o (Z(HQ’H“)* ox 1Mz Then X €
Mo i
U(H2 ® Hi,H1 ® H2) defined by X = 7(H1H2) o yHe H1 . yyHo Ha (Z(H"”H”)* gives another

braiding on Corep(G).

5.2.2 Symmetric braidings

Definition 5.12. An R-matrix R € U(A® A) is called antisymmetric if R* = o(R) for the flipo: AQA —
ARA, a1 Qa2 +— a2 @ ay.

Lemma 5.13. If R is antisymmetric, then (R")* = o(R") for the universal lift R* € U(A" ® AY)
constructed in Proposition [5.4).

Proof. Both o(R")* and R" are bicharacters that lift R. Since the lifting of bicharacters is unique by
Proposition [3.16] they must be equal. O

Proposition 5.14. The braiding on the monoidal category of corepresentations of G on Hilbert spaces
constructed in (5.13)) is symmetric if and only if R € U(A ® A) is antisymmetric.

Proof. Let H1 and H2 be Hilbert spaces with corepresentations of G. Let q@l A B(H;) be the
corresponding *-representations. Then the braiding operator

H1  Ha Ha  Ha

Hi1 ®H2/—>H2®H1 /—>H1 ® Ha

is the unitary ($1 ® ¢2)(R")* 0 BH2H1) o (¢ @ d1)(R)" 0 BH1H2) = (¢ ® §s)(0(R")R")*. This is the
identity operator for all representations ¢; if and only if o(R")R" = 1. O
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5.2.3 The abelian case

Now we consider R-matrices for a commutative quantum group (Co(G), A) for a locally compact group G.
Since Co(G) ® Co(G) is commutative as well, simplifies to the condition o o A = A, which is
equivalent to G being commutative. Hence there is no R-matrix for nonabelian GG. In the abelian case,
holds for any unitary R € U(Co(G) ® Co(G)). Thus an R-matrix for G is simply a bicharacter
in Cp(G x G). Equivalently, R is a function p: G x G — U(1) satisfying p(zy, z) = p(z,2)p(y, z) and
o(z,yz) = p(x,y)p(x, z). Being antisymmetric means p(z,y)p(y,z) =1 for all z,y € G.

Any bicharacter p as above is of the form p(z,y) = (p(x),y) for a group homomorphism p: G — G
to the Pontrjagin dual G, with p(z, ) = p. This is a special case of the interpretation of bicharacters as
quantum group homomorphisms in Chapte;r B

The map p has a dual map p*: G = G — G, defined by (z, p*(y)) = (p(z),y) for all z,y € G. The
bicharacter p is antisymmetric if and only if p* = p~ .

Now we consider the category of Hilbert space representations of an abelian locally compact group G.
This is equivalent to the category of corepresentations of (Co(G), A) or to the category of representations
of C*(G) = Co(G). The tensor category of G-representations is already symmetric for the obvious braiding
Y(z ® y) := y ® . This corresponds to the R-matrix 1. We want to describe the braiding operators from
nontrivial R-matrices.

A representation of Co(G) is classified using a measurable field of Hilbert spaces () s Over G and
a measure class [u] on G. Let fcea H. dp(x) denote the space of L?-sections of the measurable field with

respect to the measure p, with Co(é) acting by pointwise multiplication. All representations of Co(é) are
of this form with (#,) unique up to isomorphism and p unique up to measure equivalence.

Let Hi = fée Hi, dpi(z) and He = fce; Hs, dus(z) be two Hilbert space representations of G. Then

[52]
Hi®Ha = Hi, ® Ha, dpa(z) dpz(y).
GxG

Since Co(G) ® CO(G) Co(G x G) acts by pointwise multiplication, we have

( oy dpa(z )dm(y)) :/ p(z,y) X80,y dpa (z) dpa(y).
a2

Ezample 5.15. Consider G = Z/2 = {£1} and let p(z,y) = zy € Z/2 C U(1); this bicharacter corresponds
to the isomorphism G 2 G. The spectral analysis above writes a Z /2-Hilbert space as a Z/2-graded Hilbert
space, splitting it into even and odd elements with respect to the action of the generator in Z/2. The
braiding unitary on £ ® n is X if £ or 7 is even, and —X if both £ and 7 are odd. This is the usual Koszul
sign rule.

Thus standard operations with Z/2-graded Hilbert spaces and C*-algebras are special cases of our more
general constructions for quasitriangular C*-quantum groups.

5.2.4 Associative crossed product of C*-algebras

Let G = (A, A4) be a quasitriangular quantum group with R-matrix R € U(A ® A) The main result of
this section is to induce a monoidal structure on €*alg(G) using the braided monoidal structure of Corep(G).
As K is a special case of the general construction of X discussed in Chapter [ it satisfies all the properties
of X in general. We shall devote the rest of this section to the following main result.

Theorem 5.16. €*alg(G) with the tensor product Xz is a monoidal category.

Let W € U(A ® A) be the reduced bicharacter of G. By Definition a pair of representations («, )
of A on a Hilbert space H is called an R-Heisenberg pair if:
Wi Was = Wy Wi, Rz inU(A® A K(H)). (5.18)

Let (C,7), (D, d) be G-C*-algebras and construct the crossed product (CX®z D, tc,tp) as in Lemmam
Moreover, let (o, UM) and (¢, UX) be faithful covariant representations of (C,~, A) and (D, d,1) on the
Hilbert spaces ‘H and K, respectively.
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Theorem 5.17. There is a unique coaction v iz § of G on C Wgr D such that (¢ Kz 9, UHCDUK) is a
covariant representation of (C g D,~<xig §,A) on H® K.

Proof. By Theorem [4.23] for any R-Heisenberg pair («, ) acting on £ we have

UM Uz — U U, mUHeK® L), (5.19)
K H
where Z*®) is defined in (5.12). Then X = 2068 o 8 i the corresponding braiding operator.
By Theorem there is a faithful representation ¢ Kz ¢: C ®g D — B(H ® K) such that
(pRr ) orc(c) = p(c) ® 1k for all c € C,
K H £ M (5.20)

(B0 = X @deix)( < ) for all d € D.
We compute:

(UH*@U™) ((¢ Br 9) (te(e)en(d) @ 1) (UHDU™)*

K H K H
—UEUS @@ @1k ©14) X n@d@ide @ 14)( X 12)"(US) (U3
K H K H
= URUS (@ @1k ©14) X 1a(e(d) @ idy ® 14) (U (US) (X )i
K H K H
— U0 @ e @ 1)U X LUS @) @ 1k @ 1)US) (X )
K H K H

= ((p®ida)y(e)) , X 12((¢ ®ida)8(d)) X )2 forall c € C and d € D.

The first equality uses Definition and (5.20)), the second and third equality use (5.14) and the fourth

equality uses the covariance condition ) for v and §. O

Proposition 5.18. CXr D is endowed with a natural (diagonal) coaction vy <ig 0: CRr D — CRr D® A
of G such that

(yxir §) ote = (te ®ida)oy and (yir d)oip = (tp ®ida) 0. (5.21)

Equivalently, Kz : € alg(G) x €*alg(G) — €*alg(G) is a covariant functor and vc, tp are morphisms in
the category € alg(G).

Proof. Existence of v >ig ¢ is given by Theorem Diagram (2.22)) for v and § imply:
(idCﬁnD (24 AA) oyIXIR § = ((’y AR 5) (24 idA) 07y XiR 0.

Now ~ and § satisfy the Podle$ condition (2.23). Therefore, Lemma and (5.21)) yield the Podle$
condition (2.23) for v g 0:

(v>m 8(CBr D)) - (lewgp @ A) = (1o @ida)y(C) - (Lo @ ida)(8(D) - (1p @ A))
= ((tc ® 14)(+(C)) - to (D) ® A)
= (e ® lA)(W(C) (le® A)) - (tp(D) ® 1/vl(A))

:Lc(C)-LD(D)®A:C|ZRD®A. O

Proof of Theorem [5.16] Let (Cy,7:) be G-C*-algebras and let (¢;, U?) be covariant corepresentations of
(Cs,7i, A), respectively, for ¢ = 1,2,3. By Proposition (C2 Rr Cs,v2 Mg v3) is a G-C*-algebra.
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Now (p28r @3, U2@U2) is a covariant representation of (C2Xr Cs,va i 73, A) on H®K. Therefore,
Theorem gives a faithful representation v1 Kz (p2 Mr ¢3): C1 Kz (Co Kz Cs) — B(H1 @ Ha @ Hs),
defined by:

(p1 B (02 Br @3)) 0y (e1) = pr(c1) © Loy @ Lagy,

Ho®H3z Hi1 Ho®@H3z Hi
(18R (2 Br gs)) orc5(e2) = (X Y(pale)@lug @) <),
Ho®H3H1  Hz Ho (5.22)
(1 B (g2 B @) otcyles) = (X )0 X 10)(ps(cs) ® Loy ® 1oy,
H3  Ha Ho®@Hsz Hi

¢ X owc X

forc; € C;,i=1,2,3.
The diagrams in Proposition [£.9] and Corollary [.10] give:

Ho@HzH1 Hz He Ho Hi Hz  Ha Hz  Ho H3H1®H2 H2 Ha

/\< /\< 12 = >< 12 /\< 23 /\< 12 = /\< /\< 23.

Then the last two equations in (5.22) get reduced to

Ho Hi Ha Hi

(301 Kz (p2 Br 903)) oLy (e2) = X 12 (@2(62) 1y, ® 17—13)( X 12)",
H3 H1QH2 H3 H1QH2

(91 Br (92 Br ¢5)) otcs(es) = (< Y(psles) @ oy @ 1o ) (X )

(5.23)

for all c2 € C5 and c¢3 € Cs.

A similar computation shows that the faithful representation (p1 Xz p2) Br ¢3: (C1 Mg C2) Kg C3 —
B(H1 ® Ha @ Hs) acts by:

(01 B p2) Rz 93) 0 1cy (e1) = p1(e1) @ Ty ® Ly,
Ho Hi Ha Hi

(01 B 2) Br p3) 0 1oy (c2) = X 12 (p2(c2) ® Loy ® Lagy) ( X 12)", (5.24)
H3z H1Q@Hz2 Hz H1QH2

(91 B 92) Br 03) otcales) = (X )(pales) ® oy @ 1) (X )
forallc; € Cy,i=1,2,3.
Combining ‘) and 1' gives Cl gn (CQ @R Cg) = (Cl |ZR 02) ‘ZR C3. D

Remark 5.19. The equations in (5.20) imply

H K H K H K H K

X (e Br ¥hc@w@)( Xy =( X e X))
(X X w@weny X Xy,

H K

Hence X is an intertwiner between ¢ Xz ¥ and ¢ Kz ¢ if and only if it is a symmetric braiding.
Therefore, by Proposition the monoidal category €*alg(G) is braided if and only if the R-matrix
R € U(A® A) is antisymmetric. Then €*alg(G) is even symmetric.
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5.3 Quasitriangularity of the quantum codouble

The general construction of the X-Drinfeld double for a given bicharacter X € U(A ® B) has been discussed
in Section m In this section, we restrict our attention to H= G and X = W € U(A ® A).

—

Notation 5.20. We denote D% (G,G)” = D(G)™ , DW* = D, oV (G,G)” =D(G)™, DV =1D.

Definition 5.21. The pairs D(G) = (D, Ap) and D(G)~ = (ﬁ, Az) are called the Drinfeld double and
the quantum codouble of G.

Let (m,7) be a G-Heisenberg pair acting on 7. Then the corresponding representations of A and A

defined in (4.20)) reduce to

pla) == ((7? ® 7r)A,4((1))13 in B(Hp) foralla € A,
0(a) == (@ (A @ 7)Aa)Aa(a))  inB(Hp) forall a € A (5.25)
£(a) =15 ® 1y ® 7(a) in B(Hp) foralla € A,
((a) =157 n(a) ® 1y in B(Hp) for all a € A.

As before, (7, %) is the G-anti-Heisenberg pair on H corresponding to (7, %) by Example Therefore,
the Hilbert space Hp = H ® H ® H has one leg less than the general construction in Section

WP = WQCVAVPE € U(Hp ® Hp) is a multiplicative unitary for the quantum codouble D(G)~, and D(G)
is dual to it. Selecting X = W in Definition gives W-Yetter-Drinfeld C*-algebras.

Terminology 5.22. We use the term G-Yetter-Drinfeld as a synonym for W-Yetter-Drinfeld.

In particular, a C*-algebra C' is G-Yetter-Drinfeld for a pair of coactions (v, d) of G and G on C if and
only if

o3 ((y®id)d) = (8 @ida)y. (5.26)

Notation 5.23. Let YDC*alg(G) be the category with G-Yetter-Drinfeld C*-algebras as objects, and G and
G-equivariant morphisms as arrows.

Let G be a quasitriangular quantum group with R-matrix R € Z/{(A ® /i) Let Ap: A > A® A be the
associated right quantum group homomorphism. Theorem induces a dual coaction §: C' — C ® A for
any G-C*-algebra (C, 7).

Lemma 5.24. The pair (7,0) as above is a G-Yetter-Drinfeld pair.

Proof. By Lemma any object C' € €*alg(G) is equivariantly isomorphic to a sub-object of D ® A, for
some C*-algebra D, with trivial coaction on D. Therefore, it suffices to prove the statement for C' = A

and 7 = A4. Then 6 = Ag by (3.25)) and (2.22). Using the relation (5.7)) for R € Z/{(A ® A), up to correct
modification for dual multiplicative unitaries, we get:

R12W13W23 = W23W13R12 in Z/{(A ® A ® A)
Then using the last equation, (2.8) and (3.15)) we compute

o31 ((id4 ® (A ®id4)AR)W) = Wip035 (WisR1a) = WinR1sWiy = (id4 ® (Ar @ ida)Aa)W.

Finally, slicing the first leg of the last computation by w € A’ gives (5.26) for the pair (Aa, Ar), which
completes the proof. O
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5.3.1 R-matrix on the Drinfeld double

Proposition 5.25. The quantum codouble ®(G)~ is a quasitriangular quantum group with R-matriz
Wy, e U(D® D).
Proof. Since p € Mor(A,D) and # € Mor(A, D) are Hopf *-homomorphisms, Wy, € UD® D) is a
bicharacter. We only need to show (5.1)) for W,,. Lemma implies:
Wospq ((idA ® (p®p)oo AA)W)szﬂs = WGzpswlpswlpzwzws
=Wip, Wiy, = (idg ® (p® p) 0 Aa)W,

where p; denotes p acting on the ith leg. Taking slices on the first leg by linear functionals w € A gives
ng((p®p)aoAA(a))WZp =(p®p)Aa(a) for all a € A.

Similarly, ng((é? ®0)oo AA(&))W;p = (0®0)A4(a) for all & € A. Combining the last two identities gives

(5.1 for Wy,:
Wo, (cAp(0(a)p(a)))Ws, = Ap(8(a)p(a))  forallac A, ac A O

From now on we fix the R-matrix R = W,, € U(D ® D).

The quasitriangularity of ®(G)~ provides a braided monoidal structure on €orep(D(G)™), and the
monoidal structure on €*alg(D(G)") gets induced from it. Therefore, we discuss the corepresentation
theory of ®(G)™ first. Let U € U(K(K) ® A) and V € U(K(K) ® A) be corepresentations of G and Gona
Hilbert space K.

Definition 5.26. A pair (U, V) is called D(G)"~ -compatible if they commute in the following way:
0';)?3/ (U12V13) =V12Ui13 in U(K(’C) ® A ® A) (5.27)

~

Lemma 5.27. A pair (U, V) is D(G)™ -compatible if and only if (V,U) is D(G)~ -compatible.
Ezample 5.28. As a special case of Lemma the pair of corepresentations (W, ng) of G and G on Hp
is D(G) " -compatible.

Another class of examples of D(G) ™ -compatible pairs of corepresentations come from the corepresenta-
tions of quasitriangular quantum groups.

Ezample 5.29. Let G be a quasitriangular quantum group with R-matrix R € Z/{(fl ® A) and induced
right quantum group homomorphism Agr: A -+ A ® A. By Proposition 3.31] given any corepresentation
UeclU(K(H)® A) of G there is a unique corepresentation V € U(K(H) ® A) of G satisfying (3.27):

(idy @ AR)U =UaVizs  in U(K(H) @ A® A). (5.28)
The proof of Lemma shows that (A, Ar) is a G-Yetter-Drinfeld pair. Equations (2.25) and (5.28)
yield
Ulgo'gz <U13V14) = O'QZ ((idH (029] (AA X idA)AR)U) = (idH ® (AR ® idA)AA)U = U12V13U14.
Cancelling U;2 on both sides of the last equation yields (5.27) for (U, V).

In general, any corepresentation can be viewed as a cocycle for the trivial coaction (see Exam-
ple . In particular, Proposition m establishes a bijective correspondence between corepresentations
of D(G)” satisfying and D(G) ™ -compatible pairs, each of them satisfying (4.18). This is true for
all ©(G) ™ -corepresentations.

Proposition 5.30. Every ©(G)™ -compatible pair of corepresentations U € U(K(K)® A) and V € UK(K)®

A) gives rise to a corepresentation X € UK(K) ® ﬁ) of D(G) on K, defined by

X 1= U2V in UK(K)® A® A). (5.29)

o~

Conwersely, every corepresentation of D(G)~ comes from a unique ©(G)~ -compatible pair of corepresenta-
tions acting on the same Hilbert space.
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Proof. Let (U, V) be a ®(G)” -compatible pair of corepresentations on H. The following computation yields
that X defined in (5.29) is a corepresentation of D(G)

(idx ® Ap)X = o3y ((idIC ®AsA® AA)U12V13) = Uiz (O:YZ (U13V14))V15 = U12V13U14V15
= X123X145.

Conversely, let X € U(K(K) ® 6) be a corepresentation of D(G)” on K. Following Example we obtain
the right quantum group homomorphisms Ap = ida ® As and Al = o33 (As @ id ;) associated to the
bicharacters ng € UMD ®A) and Wy, € U(D® A), respectively. Moreover, D becomes a G-Yetter-Drinfeld
C*-algebra with respect to these coactions; hence Ar and A’y satisfy . Equivalently, we have the
following compatibility condition:

o3 (AR ®id4)AR)) = (Ar ®ida)Af. (5.30)

By Proposition and (3:27) we get corepresentations U € U(K(K) ® A) of G and V € U(K(K) ® A) of G
on IC defined by:
(id;c ® AIR)X = X12U13 in U(K(’C) ®RD® A),

(ide ® AR)X =X12Vis  in UK(KK) ® D ® A).
The compatibility condition ([5.30)) between Ar and A’z and then (5.31)) yield:

(5.31)

(ide ® (Ar ® ida)AR)X = o33 (ide ® (AR ® id4)AR)X = X12033 (U13V14).
Immediate use of gives:
(ide ® (A ®1ida)AR)X = X12Vi3Una.
Combining the right hand sides of the last two equations and cancelling the unitary X;2 establishes
for (U, V). O
5.3.2 Coaction category of the quantum codouble

Let (Cy, \i) be D(G) ™ -C*-algebras and let (X, ;) be faithful covariant representations of (Ci,’yi,ﬁ) on
Hilbert spaces K; for i = 1,2. By virtue of Proposition for ®(G)” and Proposition we can always
decompose (XX, p;) into two parts: (UX?, ;), a faithful covariant representations of (C;,y;, A) on H;, and
(Vi ©;), a faithful covariant representations of (C;, d;, /1) on K; for ¢ = 1,2, respectively. Definition
gives the following conditions:

I
(@
g
©
5
®
z
s
s
g
=

in U(K(K;) ® A),
in U(K(K;) ® A),

(i ®ida)vi(ci)

5.32
(; ®id 4)8:(ci) (5.32)

Il
<
g
5
5
®
—
<
<
g
e

fori=1,2.

Then v;: C; - C;,® Aand §;: C; — C; ® A satisfy the G-Yetter-Drinfeld compatibility gondition (5.26)
for 4 = 1, 2. Similarly, the corepresentations U € UM(K(K;) ® A) and V& € U(K(K) ® A) satisfy (5.27))
fori=1,2.

We already know, from the proof of Proposition , that (id5 ® p) A = (id5 ® p) (JXX(AA ®idy)) is
the right quantum group homomorphism associated to the R-matrix R = Wy, (recall 6 and p from (5.25).
The corresponding R-Heisenberg pair («, 3) defined in Lemma becomes

ala®a) = ((+E@p)(023(Aa(a)®a)) and  Bla®a) = 1, ® ((a)é(a), (5.33)

where we denote ¢ % £(a ® @) = ((a)é(a) for a € A and a € A.
The following lemma characterises the braiding induced by the pair (X*!, X*2) of corepresentations
of D(G)~ in terms of the pair (U1, VF<2),
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Lemma 5.31. Assume the unitary Z € Z/I(IC1A® K2) satisfies (2.30) for the pair of corepresentations
UM e UK(K1) @ A) and V2 € UK(K2) ® A). Then Z € U(K1 ® Kz2) is the unique solution of the
following equation:

XIXE2 Z1o = X52XE) inU(K(K) ® K») @ D). (5.34)
Ko K1
Equivalently, the unitaries X ZoxkeKi: @Ky — K1 ®Ka define a braiding on Cotep(D(G) 7).

Proof. The solution of ([5.34) is clearly unique if it exists. Hence we only need to check that Z € U(K1 ® K2)
in (2.30) satisfies (5.34). The pair (UXt, V*1) is ©(G) -compatible. Therefore, with the assignment of
legs 1,2,3 to K1, Hp, Hp we get

Ki _ 1K1
Xia =U

W (11K1v/K K1 y/K1 77K
1¢o (034 (U131V141)> = U1(12V1§12U1p137

1(¢*&)p3
where the notation {; means that ¢ is acting on the ith leg.
Next we assign the legs 1,2,3,4 to K1, K2, Hp, Hp and compute:

Z1p = U VI US2 UYL V2

1¢3 V163 ¥2¢4 ~ 1pa 254212’

K< K K Ic < Ic K
XiaXof Z12 = U1413V1513U1;>14U2<24V2§24

where the second equality uses that p and ¢ commute on the fourth leg.
Lemma [4.45|(1]) shows that (p,€) is a G-Heisenberg pair. Therefore, first using (2.30) and the trivial
commutation of unitaries acting on legs 13 and 24 gives:

XVAX52 Z1p = UYL VIL US2 VB2 UYL, = UR2 VA2 URL VI U, = X52X L. O

1¢3 ' 1€3 ~2¢a ¥ 264 T 1pag 2¢q V264 T 1¢3 Y 163 Y 1ps T

Corollary 5.32. Let Z € U(K1 ® K2) be as in Lemma m Then

ZuUs Ul =UR U 21 inUK(K: @ Ks) ® A),

. (5.35)
Z1VERVIE = Viivk2 z,, in UK(K: @ Ko) @ A).

Ko K1

Proof. The braiding X on Corep(D(G) ™) intertwines X*2@X ! and X*1®X*2 or, equivalently, it
satisfies
Z1X52 X0 = X x52 71, in UK(K: ® K2) @ A). (5.36)

Define the right quantum group homomorphism A’ : DD ® A associated to the bicharacter Wy, €
U(D® A) as in Example Applying idk, gic, ® Az on the left hand side of (5.36)) and using the first
relation from (5.31)) yields:

(i, oK, ® A/R)(Z12X)2CS2 Xllcsl) = 212X§32 U2)C42 Xllcsl U)1C42 = Z12X21C32 X)1<31 U2]C42U}1C42 = X11C31 X2K32 ZIQU2K42 U11C42-
Similar computations for the right hand side of (5.36)) yield:
(i oK. ® AlR)(X’f?,l X)2C32 Zh2) = X’1C31 U11C42X,2C32U2K42 Zia = X}1C31X2’C32U11C42 U’2C42 Zi2.

Cancellation of the unitary X\ X5 from the right hand side of the last two expressions yields the first

relation in (5.35).

Using the right quantum homomorphism Ag: D — D® A associated to the bicharacter WPQ cUDRA)
in a similar manner, we obtain the second relation in (5.35]).

Ko K1
Corollary 5.33. The braiding X = Z o XXX in Lemma is symmetric if and only if W = W.
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Proof. By the universal property of V € Z/I(A“ ® A) there is a unique morphism ¢: A — B(K4)
such that (¢ @ ida)V = U1,

Similarly, the universal property gives rise to a unique morphism ¢: A" — B(K2) such that
(id4 ® )V = V¥,

Let (m,7) be a G-Heisenberg pair on H,. Applying (¢ ® idy, ® 1) on both sides of the defining
condition of the universal bicharacter W € U(A" @ A") gives

(p@PIW) |, = (U1 VE UL (V).

Comparing the last expressions with (5.27) gives Z = (p @ Y)W* € U(K1 ® K2).
Ko K1
Following the proof of Proposition , we conclude that X is symmetric if and only if (W)W =
1; hence W = W. (I

Corollary 5.34. Assume a D(G)™ -compatible pair (U, V) on a Hilbert space H and Z € U(H @ H)
H M

satisfy (2.30). Then X —Zzox € U(H @ H) 1is the braiding induced by D(G)” .

Remark 5.35. Example provides a ®(G)” -compatible pair (U, V) on H starting from a corepre-
sentation U € U(K(H) ® A) of a quasitriangular quantum group G. By Proposition there is a
unique Z € U(H ® H) satisfying the following commutation for the pair (V,U),

Vi13Uz2, Z12 = Uz, Vi, mnUHSHQHy) (5.37)

for any G-Heisenberg pair (n,7) on H,. Given any G-Heisenberg pair (7, 7) on H, define an R-Heisenberg

pair («, ) as in Lemma Equations (5.28]) and (5.37) yield:
U1aU2sZ12 = U1 V13U2,Z12 = U2y U2 Vi = UggUia.

Finally, comparing the last equation with (5.19) gives Z(*™) = Z. Therefore, by Proposition the
HOH

braiding X := Z o % corresponds to the braiding induced by the R-matrix of G.

There are two possible ways to define crossed products of C1 and Cs. First, the R-matrix R on D(G)
allows to construct Ql Xz C2. The second construction uses half of the available structures, the coactions
~v1 and d2 of G and G on C; and C3, to construct C1 Rw C>. Proposition shows that ¢*alg(D(G)™)
and YD€*alg(G) are equivalent. In [30], Nest and Voigt have shown that YD€*alg(G) is endowed with a
monoidal structure, assuming Haar weights on G. We generalise their construction by showing that the
monoidal structure on YD&*alg(G) gets induced from the braided monoidal structure on €otep(D(G)™).

Proposition 5.36. YDC*alg(G) is a monoidal category.

Proof. Let (v, d;) be a G-Yetter-Drinfeld pair on the C*-algebra C; for ¢ = 1,2. Without loss of generality,
we may assume covariant representations (U, ;) and (Vi ;) as in (5.32)). Hence the associated pair of
corepresentations (Ui, VXi) satisfies the ®(G) ™ -compatibility condition (5.27).
Given a G-Heisenberg pair (n,7) on a Hilbert space L, let Z € U(K1 ® K2) satisfy (2.30)):
Ui VE2 21, = VE2US) in U(K1 @ Ka® L).

Ul in

Ko K1
Lemma shows that /< := Z 0 252Kt defines a braiding on €orep(D(G)™). Theorem yields

the following equivalence of crossed products

ICa K1 K2 K1
w
~

Oy B C2 = (01(C1) ® 1xy) - (X Ya(Co) @ 1) X )™, (5.38)

Lemma defines the embeddings tc, (¢1) := 71(c1)1y and e, (c2) := d2(c2)2s into C1 Kw C2 C M(C1 ®
Co®K(L)) for ¢; € Cs, 1 =1,2.
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The unitary Z on U(K: ® K2) satisfies (5.35). Hence, a similar computation as in the proofs of
Theorem and Proposition [5.18| gives a unique diagonal coaction v b<iw v2: C1 Rw C2 = C1 Rw C2® A
such that

(U @ida) (11w 72)(tes (e1)ecs (e2)) = (U @OU2) (U lec, (e1)ic, (c2)) @ 1a) (U @U™2) "

Hence (¥, U1@®UX?) is a covariant representation of (Cy Rw Ca, 1 bdw 72, A).
Similarly, there is a unique coaction 01 dX<iw d2: C1 Rw Cz — C1 Kw C2 ® A such that

(U1 ®ida) (81 >w 62)(ecy (e1)ica(c2)) = (VEIOV2) (Wi (eey (er)ees (e2)) ® 14) (VEI@VE2)™

Using the G-Yetter-Drinfeld compatibility ((5.26) for the pair of coactions (v;, d;) we establish the same
for the pair of diagonal coactions (y1 w 72,01 My d2):

((61 Bw 62) ®@ida) (71 Bw 72)(toy (c1)res (c2))

= ((61 Ry 62) @ idA) ((Lc1 ®ida)yi(er)(ie, ® 1dA)V2(C2))

= ((ter ®@1d i) (01 @ida)71(c1)) ((tes @ 1d 4 0) (82 @ ida)y2(c2))

= o (((ter @ d 1 )0 @1 2)01(e0)) (10 @i 40.4) (32 @ 1 )02(c2)) )
= o33 (1 Bw 72) @ id 4 ) (51 Rw 62) (1, (1), (c2))

forc; € Ci,i=1,2.
Hence C1 Rw C2 € YDC€*alg(G) and ¥ preserves G-Yetter-Drinfeld covariant representations. Therefore,
we may use an argument as in the proof of Theorem to show that Ky is associative.

—

O

5.3.3 The dual coaction of a quantum group on itself

The crossed product associated to a blcharacter is isomorphic to the standard tensor product when either
of the coactions is inner (see Corollary [4.38). The dual of the reduced bicharacter Weu (A® A) of a
quantum group G = (A, A4) induces a morphlsm §: A— A® A defined by

5(a) =W(@a®1;,)W*  in M(A® A) for a € A. (5.39)
Clearly, §is injective. The following computation shows that § is coassociative:
(ida ® Aa)d(a) = Wi Wis(a®1; ® 1) Wis Wiy = (6 ®id4)é(a)

for a € A.

Unfortunately, the Podlés condition for the coaction § is not automatic.

Let G have a right Haar weight . The multiplicative unitary W € U(H ® Hy) constructed in [24[[25)
is called the right regular representation of G, where H, is the GNS-space of ¥. Proposition 2.6 in [3]
provides an equivalence between regularity for quantum groups and multiplicative unitaries. More precisely,
a quantum group G is regular if and only if A x, A is isomorphic to K(H.y).

Definition 5.37. A quantum group G is weakly regular if
A A={(a®14)W(1,®a): a€ A, ac A}°"S. (5.40)

Remark 5.38. The criterion (5.40) in Definition has the merit of using only the pair (4,A4). By
Proposition 3.16 in 2], regular quantum groups are weakly regular.

Lemma yields a necessary and sufficient condition for a quantum group to be weakly regular:

Corollary 5.39. A quantum group G is weakly regular if and only if the dual coaction 5 defined by (5.39)
satisfies the Podlés condition.
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Proof. Let Ra, R; be the unitary antipodes (involutive antiautomorphisms of A and A) By Proposi-
tion application of R; ® Ra to (5.40) yields an equivalent criterion:

A A={1,0a)W(@a®1a)ac A, ac A}°"S. (5.41)
Finally, identifying y =a® 14 and u = W in Lemma completes the proof. O

Therefore, in case of quantum groups with Haar weight, regularity implies Podlés condition ([2.23])
for 0. Let (m,#) be a G-Heisenberg pair on a Hilbert space H. The following simple computation shows
that (A4, 0d) is a G-Yetter-Drinfeld pair:

o35 (1 ®1da)Aa ®1d 4)8(a)) = W Was (1(a) ® 1454 ) WisWis = (1 ®id )8 @ ida) Aa(a).

for a € A.

For C € YDC€*alg(G), let (v,%) be the G-Yetter-Drinfeld structure on C. Construct the crossed
product (C'Rw A,ic,ta) or equivalently (C,~) Kw (A,g). Therefore, we have C Kw A € YDC*alg(G).
Since 4 is an inner coaction of G on A, Corollary m gives an isomorphism C Kw A =2 C ® A. This is not
an isomorphism of crossed products.

Proposition 5.40. There is an isomorphism ¥: CRw A — C® A of crossed products such that Yoic(c) =
v(c) and Wora(a) = lc®a forc € C and a € A. Moreover, the map ¥ ®id 4 4 induces a G- Yetter-Drinfeld
structure on C ® A.

Proof. Let (m, ) be a G-Heisenberg pair on a Hilbert space H. By construction, CXw A C M(CRARK(H))
and 1o (¢) = ¥(¢)1r, ta(a) := 6(a)2s, for c € C, a € A. Then U;)Z” : M(CRARK(H)) - M(CRK(H)®A)
maps C Ww A isomorphically to the crossed product generated by

03" (10(0)) = Wag (@)1= Wis = ((ide ® Aa)y()),, = (7 ®1da)¥0) .,

and
U;};ﬂ(m(a)) =W.sWis(le @ 14 @ a) Wiz Wig = ((’y ®ida)(1® a))
force C, a € A.
The Podlés condition ([2.23) for ~ yields (('y ®ida)y(c) (1 ® a)) ez = VO @ A=C® A

Thus O‘;};ﬂ restricts to an isomorphism ¥ of C*-algebras with the desired properties. O
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Notation 5.41. Given C; € YD€*alg(G), the canonical embedding of C; into C1 Kyw C2 Ky C3 is denoted
by jc, fori=1,2,3.

Let D € YD€*alg(G) with the associated G-Yetter-Drinfeld pair (A, 1), and consider the respective
crossed products (AXw D,ta,tp), (CRw D, e, tp).

Corollary 5.42. There is an isomorphism Yo, ap: CBw ARw D — C ® (ARw D) such that

Weoa,pojo(e) = (ide ®ta)y(c), ¥ea,pojala)=1c®tala), ¥ea,pojp(d) =1lc®ip(d). (5.42)
Similarly, there is an isomorphism, Yo,p.a: C Bw DRw A — (C Rw D) ® A such that

Ue,p,aoje(c) = (te®ida)y(c), ¥e,paojp(d) = (!p®ida)A(d), Ye,p,a0jala) = lemy p®a. (5.43)
Proof. Associativity of Kw and Proposition imply

CRw ARw D= (CXRw A)Rw D= (C® A)Rw D.
Since the coaction of G on C ® A is ide ® A4, Lemma [4.20| gives
(C®A)XRw D =C®(ARw D).

Composition of the isomorphisms gives ¥, 4, p intertwining the embeddings of C, A, D.
Finally, (5.43) follows from Proposition for C Xw D. O
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Chapter 6

Braided multiplicative unitaries

In this final chapter we define a general theory of braided multiplicative unitaries and braided quantum
groups using all the machinery developed in the preceding chapters. In Section we define braided
multiplicative unitaries and braided quantum groups. In Section Theorem shows that C*-quantum
groups with projection canonically give rise to braided multiplicative unitaries. More precisely, we start
with a C*-quantum group and a projection on it and then decompose its multiplicative unitary into two
parts: standard and braided. We move on by showing that some known examples of C*-quantum groups are
indeed C*-quantum groups with projection. Furthermore, we reconstruct a “big” standard multiplicative
unitary from a given braided one (see Theorem . Proposition shows that C*-quantum groups
arise from these “big” multiplicative unitaries are again C*-quantum groups with projection. This is our
“semidirect product”; hence we have generalised Radford’s construction for multiplicative unitaries. In the
final Section use our theory to construct the simplified quantum E(2) by realising the quantum plane
as braided a quantum group over the compact quantum group C(T).

6.1 Braided quantum groups

Let G = (A, A4) be a quantum group and let W4 € U(A® A) be its reduced bicharacter. Fix a G-Heisenberg
pair (n,7) on a Hilbert space H. Given any corepresentation U € U(K(L) ® A) of G on a Hilbert space L,
define U := (idz ® n)U € U(L ® H). For a corepresentation V € U(K(L) ® A) of G on £, we define
V:=%((dz ® HV*)S € UH ® L).

Throughout this section we assume the pair (U, V) to be ®(G) ™ -compatible, that is,

UQngg\?lz = @12Wf3U23 mMUHRILRH). (6.1)

Proposition [2:3§ gives a unique unitary Z € U(L ® L) characterised by (5.27), which we rewrite in the
following equivalent form
VosUio = U12Z73Ves in U(LQOHQ L). (6.2)
L c L ¢
Following Corollary [5.34] we define a braiding operator X by Xz ZoX eU(LRL).

Definition 6.1. An element F € U(L ® L) is called a braided multiplicative unitary over G if it satisfies

1. G-invariance:
U13U2sF12 = F12U13U23 in U(K(L ® L) ® A) (6.3)

2. G-invariance:
Vi3Vi2Fa3 = F23Vi3Viz in U(A QK(L® L:)) (64)

(0]
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3. braided pentagon equation:
L c L r
FoslFio = ]Flz( >< 23)]].:"12( /\< );3]F23 in Z/[(£ RL® E), (65)

or equivalently
F23F12 = F12223F13Z;3F23 in Z/{(L', @ L ® ﬁ) (66)

Let us explain the leg numbering of the braided pentagon equation in detail. The unitary
L L L L

/\< 23F12( >< 23)™ plays the role of Fi3. This is a straightforward generalisation of standard leg
L
numbering, replacing ¥ by the braiding operator _ X . We have Fo3 = 1, ® F and Fi2 = F® 1.,
because F is invariant under the coactions of G and G implemented by the corepresentations U and V. We
prove this by the following chain of computation:

V§4U13U23F12 L Ungf4V34U33F12 N U13ZT4U2322*4‘A734F}2
= V34F12U13U23 =F12U1327,V34Uo3 =TF12U13274U2323, V34

3 U13U23Zf4Z§4F12V§4 4 U13U23 21425, F 12 5 Z14Z34FF12
= F12U13U23 27, Z5, V34 = U13U23F12214 734 =F1227,734

We begin with multiplication of V34 on both sides of (6.3), 1 and 2 use (6.2)), 3 follows from the ordinary

commutation of unitaries, 4 uses ([6.3]) and cancellation of V34 from both sides, 5 uses cancellation of Ui3Uzs
L £ £ C L C L L

from both sides. Therefore, Flz = 223Z13F12Zf3253 = /\< 23 /\< 12F23( /\< 12)*( /\< 23)*.

Remark 6.2. If either of the two corepresentations (U, V) is trivial then implies Z = 12g¢. In that
case, is the standard pentagon equation .

Let G = (A, Aa) be a quasitriangular quantum group. Let Ag: A - A® A be the right quantum group
homomorphism associated to the R-matrix R € U(A® A). Let U € U(K(L) ® A) be a corepresentation of G
on a Hilbert space £. The right quantum group homomorphism Apr induce a dual corepresentation V €
U(K(L) ® A) characterised by (5.28): (idz ® Ar)U = U12Vis.

Let U satisfies . Applying idzge ® Ar on both sides of gives

U13V14U23V24F12 = F12U13V14U23Vay in UKL L)@ AR A).
Using ordinary commutation between Us3,Vi4 and then using (6.3)) on the right hand gives
U13U23V14V24F12 = F12U13U23V14Vas = U13U23F12V14Vou in UKL L)@ AR A).

Hence F € U(L ® L) is also G-invariant for the induced dual corepresentation V := o(V*) e U(ARK(L)).

Remark shows that (U, V) is a ®(G) ™ -compatible pair. Hence the condition is automatic for
a braided multiplicative unitary over a quasitriangular quantum group G.

We want to interpret braided multiplicative unitaries as a fundamental obejct to study braided quantum
groups in complete generality. Keeping in mind the general theory of C*-quantum groups, in the sense of
Woronowicz [49)], we shall restrict our attention to the manageable braided multiplicative unitaries (see
Definition Following fact ought to be a theorem when F is manageable:

K :={(w®ids)F : w € B(L).}"™® (6.7)

is a nondegenerate C*-subalgebra of B(L). Motivated by the known examples, we shall assume existence of
some suitable K C B(£) to formulate our working definition of braided quantum group at the end of this
section.

For the sake of convenience let us rewrite the corepresentation condition for of U and V
following and using the multiplicative unitary W4 := (4 ® n)W* € U(H @ H) as follows:

Wi Uy = UroUisWas  in U(L @ HQH), (6.8)
VaosWih = WisVisVas inUHOH @ L). (6.9)
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Let W € U(H ® H) be a manageable multiplicative unitary and let Q4 and WA € UH ® H) be the
respective operators in Definition [2.10

Definition 6.3. A braided multiplicative unitary F € U(L£ ® L) is said to be manageable if there are a
positive, self-adjoint operator Qx on £ with Ker(Qx) = {0} and F € U(L ® L) such that

1 U(Qr®Qa)U" =Qr ®Qa.

2. V(Qx ®Qa)V=Qx ®Qa or V'(Q1®Qx)V = Qs ® Qx.

3. F(Qx ® Qr)F* = QK ® Qk.

4. (z@u | Z'F | y®v) = (YRQ K (u) | F | Z0Q% (v)) for any z,y € £, u € Dom(Qx) and v € Dom(Qy").

Lemma 6.4. Let Ve U(L® A) and Z € UL ® L) be as in (6.2). Then
Z"(Qr ®QKr)Z = QK ® Qk. (6.10)
Proof. Using the commutation relations and we obtain (6.10]) from the following computation:

Z13(Qr @ Qa Q@ QK)Zis = UizvzaUmv;g(Q}( RQa® QK)‘A/%UIQQS?,UM
=Qr ®Qa®Qk. O

Define Ax: K(£L) - B(L ® L) by
Ag(C) =F( ®1.)F" for ¢ € K(L).

If the coactions of G and G on K(£) implemented by corepresentations U and V satisfy Podles condi-
tion (2:23), Example [1:39] gives K(£) Rw K(£) = K(L£ ® £); hence Ak is an element in Mor(K(£), K(£) Ky
K(£)).

The general theory of crossed products gives K Rya K = (K ® 12) - Z(1z ® K)Z*. The braided
pentagon equation implies

Fo3F12F53 = F12Z12F13 275 in U(K(L) ® K Rw K).

Let us assume holds for a manageable F € U(L ® L). Then slicing the first leg on both sides of
the last equation by w € B(L) we obtain the braided comultiplication Ag: K — M(K Rw K) defined
by Ak (k) :=F(k ® 12)F*. Moreover, the braided pentagon equation confirms the coassociativity of Ag:

L L L L
(Ax Ry idi)Ax (k) = (Ax Bya idic) Bk @ 12)F) =Fiz X ssFra(k® 1eae)Fis( < )35
= FQgFlz(k} ® 1L®£)FT2F;3 = (idK X\WA AK)AK(IC)

This motivates the following Definition:

Definition 6.5. Let F € U(L ® L) be a braided, manageable multiplicative unitary. A pair (K, Ak) is
called a braided quantum group over G if

1. FeUK(L) ® K),
2. K € YDC€"alg(G) with the inner coactions induced by U and V,

3. the comultiplication Ag: K — K Kya K is implemented by F:

Ax(k) =F(k® 1)F*  forke€ K. (6.11)
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6.2 Quantum groups with projection

In this section, we show that every quantum group with projection canonically gives rise to a braided
multiplicative unitary. Let I = (C, A¢) be a quantum group with the reduced bicharacter W € 4 (C’ ® C).
Given a projection P € U(C'® C) on G let G = (A, A4) be its image. Consider the left quantum group
homomorphism Ar: C — C ® C associated to the projection P.

For a given I-Heisenberg pair (m,#) on H, and the associated I-anti-Heisenberg pair (7,#) on Hr,
define the following representations of C' and ConL:= Hr @ He:

(&) == (F@M)Ac(e), plc):=(Fn)AL(c), and 7'(c):= (13, ®@m(c)). (6.12)

Lemma 6.6. Define the corepresentations U = (p ® ida)P € U(K(L) @ A) of G and V := (id ; ® p)P €
U(ARK(L)) of G acting on L.

1. The pair (U, V) is D(G)” -compatible. Equivalently, U and V commute in the following way:
UzsP13Via = Vi2P13Uss  in U(A RK(L)® A) (6.13)

with, the identification WA =P € U(A ® A).
2. Given any G-Heisenberg pair (n,7) on Hy, the unitary Z = (pR p)P* € U(L® L) solves the following
equation:
\7”73U1’W = Uani"3\7;,3 mn Z/{(E ® H’VI ® ﬁ) (6.14)
L L
Equivalently, the operator X =ZoX eU(LR®L) defines a braiding.

3. (p, ') is an I-Heisenberg on L, that is,

WEWE, = WL WHEWS,  in U(C @ K(L) ® C) (6.15)

Proof. Lemma m implies ACL@ = AA and AL|A = Aa. We also may identify W4 with P. Then
Corollary [4.15|implies (6.13]).
The pentagon equation (3.28) for P yields P43P1, = P1,P13Ps3. Applying p ® idH" ® p on both sides
of the last expression gives (6.14]).
Using the Heisenberg commutation relation of the pair (,7), we compute

WEWE W = WEWEWE, = WEWEWE WS
The character condition (2.9) on the first leg of W shows that the last equation is equivalent to (6.15). [
Theorem 6.7. Let [ = (C,A¢) be a C*-quantum group with a projection P € U(C @ C). The the second

leg of the unitary
F=P'W° eUU(C ®O) (6.16)

is invariant under the left quantum group homomorphism Ar: C — C' ® C associated to the projection P.
Let WC = (# @ m)WY € U(H» @ Hr) be a manageable multiplicative unitary. Then F := (p @ p)F €
U(L ® L) is a manageable, braided multiplicative unitary with respect to the ®(G)™ -compatible pair (U, V)
of corepresentations on L.

The proof uses the following lemma on commutation relations between P and F.
Lemma 6.8. Let (n,1) be an I-Heisenberg pair on a Hilbert space H,. Then

P13PssF1y = F1,P13Py3 inUC @K(H,) @ C), (6.17)
P}, Fis = FasPl, inU(C QK(H,) @ C). (6.18)
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Proof. Using (n,7) we rewrite (3.3)) as
WP, = P1,P1sWis  inU(A®K(H,) @ C). (6.19)
Firstly,
P13P;3F1, = P13PysPi, Wi, = Pi, P WS, = P;, W{,P13Ps3 = F1,P13Ps.

The first equality uses the definition of F in , the second equality uses the pentagon equation (3.28)
for P, the third equality uses the bicharacter condition 7 and the fourth equality again uses
Secondly,
Pi,Fs = P{,PiaWis = PRgPisPL, Wi = PRy WP, = FisPl,.
The first equality follows from , the second equality uses the pentagon equation (3.28)), the third
equality uses , and the last equality again uses . O

Proof of Theorem In order to show that F € U(L ® L) is a braided multiplicative unitary, we must
show the following:

FosF12 = F12Z23F13Z33F23 in U(LQ LR L), (6.20)
Ui3U23F12 = F12U13Us3 in U(K(ﬁ ® ﬁ) ® A), (6.21)
Vi3Vi2F23 = F23V13Via inUU(AK(L® L)), (6.22)

where U, V and Z are same as in Lemma
Equation (3.19) gives

(ide ® AL)WY = P1oWi, inUC®C®0). (6.23)
Equation (3.32)) shows that Ap|a = A4. Therefore, we get
(idé X AL)F = ((idA X AA)P*)(idé ® AL)WC = PIgPTQPlQW% = Fi3, (6.24)

where the second equality uses (6.23) and (3.31]) and the last equality follows from the definition (6.16))
of F.

Hence the second leg of F is Ap-invariant. To establish the braided pentagon equation for F, we
compute:

F1nP73F13P43F 43 = PrsPi3F1,P1sF13PysFas = P:A,sPTsPTnW?nW%WT%
= P}, PLsWS WS, = PY, Fas WS, = FisPi, WY, = FrsFr,.  (6.25)

The first equality uses the first auxiliary relation (6.17)), the second equality follows from ([6.16)), the third
equality uses the Heisenberg commutation relations ([2.12) for P and W€, the fourth equality uses ,
the fifth equality uses the second auxiliary relation (6.18]) and the sixth equality again uses .

The invariance condition leads to the following observation:

(idé [029] p)F = (idé X (n [039] W)AL)F =Fi, = (idé 4 7TI)F. (626)

Equation (6.15) shows that (p,n’) is an I-Heisenberg pair. We replace (1,7) by (p, ') in (6.25)).
Keeping (6.26]) in mind, we get

F1oPisF13PpsFps = FpaFrn in U(ARK(L) @ A). (6.27)

Applying (# ® idz ® p) on both sides of (6.27)) yields (6.20)).
Similarly, replacing (n,) by (p,7’) in (6.17)) and observing (6.26)), we get

P13P3F1, = P13PpsFiw = FiuP13Pps = F1,P13Pss in U(AQK(L) @ A). (6.28)

Then application of (p ® idz ® p) on both sides of (6.28)) yields (6.21).
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Recall the identification XA~¢ =P ¢ U(A ® C) in ([3.37). Since Ar|a = Aa, Proposition [4.14] shows
that the pair of representations (p, p) is a XA~ _Drinfeld pair. Therefore, (p, p) satisfies (4.8), which is
equivalent to

WSiP1uP1, = P1,PuWs,  inU(A®K(L)®O). (6.29)
Using (6.16)), (6.13) and (6.29), we obtain

P14P1,Fs1 = P14P1pP;4W§4 = PZ4P1PP14W24 = FpaP14P1,. (6.30)

Applying (p®id, ®p) on both sides of gives (6.22). A simple observation shows Z*F = (p®p)(P*F) =
(p®p)(WO). Let Q¢ and WC € U(Hr @ Hr) be the operators in Definition defining manageability of
W = (7 @m)WC € U(Hr @ Hax).

Let Q := QE ® Qc. Then Q ® Q commutes with F, Q ® Q¢ commutes with U, and Q¢ ® @ commutes
with V.

A routine computation, similar to the proof of Theorem shows that the unitary Feu (L®L)

defined by
Re®T
13

F = ((WO)") 2T (W) (WO)*) 38 TWCay,

where Ry is the unitary antipode of E satisfies the last condition in (6.3]).
Hence, the manageability of F follows from the manageability of W, O

Next we reconstruct a manageable multiplicative unitary generating I from P and F. This is a special
case of the general Theorems and of the next Section.

Proposition 6.9. Let (¢, é) be a G-Heisenberg pair on a Hilbert space H. Then
Wiass = P13Uss V34 F24 Vs inUHQILIH®L) (6.31)

is a multiplicative unitary generating I = (C,Ac), where P = (é@f)P EUHRH), U= (ide®&)U € U(LRH)
and V= (£®ids)VeU(H R L).

Proof. By Lemma we know (p, ') is an I-Heisenberg pair on £. Since Ac|; = Aa, (p,7') is also
an G-Heisenberg pair on £. We rewrite (3.28)) as

PiUnPiy =Pi13Us  in U(AQRK(L) @ A). (6.32)
Equation implies
P1eUneV3aF2uVas = Pl UneP i VeaFau Ve, = Pl Use VesProFas Ve,
Now and (6.30) imply
Pl UseVeuProFauVey = Pl Ve Use Z54F2uP o Ve,

The defining condition gives Z*F = (p ® p)WC. Using we get
Pl VeUse Z54F2aP 1 Ve, = PLo Ve Use (FOT)W)2uP1o Ve, = Pio Ves (0@ (E®p) AL) W )234P 10 Vi,

Define I1: ¢ = B(H ® £) and I1: C — B(H ® L) by

T(c) i= P;,(1n ® #(2))P;, and  T1(&) := V' (€ ®1)AL()V

force Cand é e C.

Theorems and ensure that Wyys, = (1@ MW € U(H ® L ® H ® L) is a manageable
multiplicative unitary. Therefore, (H,f[) is an I-Heisenberg pair acting on H ® L£; hence Wi,3, is a
multiplicative unitary generating I. O
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The second leg of the unitary F := WEP* ¢ U(C’ ® C) is invariant under the right quantum group
homomorphism Ag: C — C ® C induced by P. By virtue of equation (3.33)) we can replace p by p’ :=
L c
(m ® m)AR. The operator X = z'6x is also a braiding.
A similar technique as in the proof of Lemma shows the following commutation relations:

Lemma 6.10. Let (n,7) be any I-Heisenberg pair acting on the Hilbert space Hy. Then

P1,P13F;3 = FisP1,Pis inU(C @ K(H,) ® C), (6.33)
P;sF1, = F1,P)3 inU(C QK(H,) ® C). (6.34)

Now using Lemma we see that F € U(L® L) is also a braided multiplicative unitary in the following
sense:

1. F is G-invariant: B B
U13Us23F12 = F12U13U23 in U(K([, X E) 4 A)

2. F is G-invariant: _ _
Vi3VioFas = F23Vi3Vie in U(ARK(L® L)).

3. TF satisfies the braided pentagon equation:

FasF12 = F12Z15F13212F23s  inU(LQ L X L). (6.35)

In order to define manageability for F we modify Definition slightly. We replace condition in
Definition [6.3] by

@ou|FZ|y®v) = G0 Qxw) | F|Te Qr 1),

where F € U(L ® L) for any x,y € L, u € Dom(Qx) and v € Dom(Qi_(l).
Thus we have an interplay between braided multiplicative unitaries for left and right invariant elements:
PF=FP =W cU(C®C).

6.2.1 Examples of quantum groups with projections

Ezample 6.11 (Idempotents on groups). Let I be a locally compact group. Example|3.38|shows that any
projection on (Co (1), Acy(r)) comes from an idempotent group homomorphism p: I — I. Define G := im(p)
and K := ker(p). Then K is a normal subgroup of I, G is a subgroup of I, and I is homeomorphic to
G x K via the multiplication map (g, k) — gk for g € G, k € K. There is a natural left action of G on I.
The homogeneous space G/I is homeomorphic to K.

The dual (left and right) action of G (or coaction of (Cy(G), Acs(ay)) on G/I is trivial; hence the
braiding operator is just the standard flip. Hence Co(G) K Co(G/I) = Co(G x G/I) = Co(G x K) = Co(I)
and Co(K) X CO(K) = Co(K X K)

Among the known examples of C*-quantum groups, the quantum E(2) group by Woronowicz [51|, the
quantum az + b group by Woronowicz |50|, and the quantum az + b group by Woronowicz and Zakrzewski
[55], are of the form F-P € U(H®H). Classically, they are semidirect products of groups. We show that they
are C"-quantum groups with projection. In those examples we show that every projection P € U (C’ ® C)
on I = (C,Ac) is induced by an idempotent Hopf *-homomorphisms f: C' — C. Moreover, F € U(H ® H)
is implemented by quantum exponential functions, discussed in [52].

Let C(H) denote the set of closed operator on a Hilbert space H. Given any N € C(H) consider its polar
decomposition N = Phase(IN)|N|, where Phase(NV) is a partial isometry and |N| is a positive self-adjoint
operator on H. If ker(N) = {0} then Phase(N) is unitary. If N is normal then Phase(N) and |N| commute.

Let R, S € C(H) satisfying some commutation relations such that: R and S are normal and the spectrum
of R and S is contained in some A C C. Assume R+ S € C(H), normal and satisfying the same spectral
condition. Let T := {z € C: |z| = 1}. A continuous function F': A — T is called a quantum exponential
function if

F(R+S)=F(R)F(S). (6.36)
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In particular, let (R, S) be a pair of commuting self-adjoint operators. More precisely, R and S are self-adjoint,
such that |R| and |S| strongly commute. Then A = R, and the function F': R — T satisfying are the
classical exponential functions F;(r) = exp(itr) parametrised by ¢ € R.

Let 0 < g < 1 and define the sets

(C(q) = qZ -T and @(q) = (C(q) U {0} (637)

Geometrically, C(q) is a set of concentric circles in the complex plane centered at 0, and @(q) is the closure
of C(4) containing the origin.

Let R, S € C(H) such that R and S are normal, Sp(R), Sp(S) € C(,), and SR = ¢>RS. In this case, a
quantum exponential function F, € C(C(,)) satisfying is defined by

e}

14+4%kz 2eC 27,
eC — ,
po - LI 2BV 00 (6.39)
-1 otherwise.

Clearly, |Fq(n)| =1 for any n € C(y).

6.2.2 Quantum E(2) group

Let
G’:{(S Un1> :v,n € C and |v|:1}.

For any z € C the map z — vz + vn defines a homomorphism from G’ onto the group of orientation and
FEuclidean distance preserving transformations of C. The kernel of this homomorphism is isomorphic to Zs;
hence G’ is a double cover of the group of motions of the two dimensional Euclidean plane.

Let 0 < ¢ < 1 be the deformation parameter. Let C’ be the *-algebra generated by v and n subject to
the following relations

v =wv" =1, n*n =nn", and vnv® = gn. (6.39)

We denote the algebraic tensor product by ®. Next we define the comulitplication Agr: ¢/ — C' ® C’ on
generators of C’:
Aci(v) :==vowv and Aci(n) =vOn+nOv". (6.40)
Clearly, A/ is coassociative. Woronowicz described its C*-algebraic version, denoted by Eq(2) in [47,/51].
In order to pass to the C*-algebra level, first we realise v as unitary and n as normal, unbounded operator
on some Hilbert space H.
There is a natural action of Z on Co(Cyy)): for any k € Z and f € Co(C(y)) we define

(@ f)(2) == f(¢"2) for all z € C). (6.41)

Let C" = Co(Cyq)) % Z be the corresponding crossed product. The *-homomorphism Co(C(y)) < C” is
nondegenerate, and the generator of Z in C’ is a unitary v € M(C") with

vfv* =aqf for all f € Co(C(y))-
Define the function n on Co(C(q)) by
n(z) =z for all z € Cy).

Let X be a locally compact Hausdorff space. The set of all elements affiliated, in the sense of |47, Definition
1.1], to Co(X) is C(X). Therefore, n is affiliated to Co(C(,)), and due to the nondegenerate embedding of
Co(C(y) into C’, n is affiliated to C’. Finally, n is normal, Sp(n) C C(,) and vnv* = gn.
The underlying C*-algebra of Eq(2), again denoted by C’, is characterised by requiring v, n affiliated
to C' with
vio=w" =1, n'n =nn", Sp(n) C Cy and vnv* = gn. (6.42)



6.2. QUANTUM GROUPS WITH PROJECTION 83

Concretely, we can write (6.42) in terms of the following operator domains:

= {N cCH) - é\; *(%):C]\g(vq )} , (6.43)
Gy = {(v,n) EUH) x Ex : vnv™ = gn}. (6.44)

Therefore, C’ is generated by a pair (v,n) € Gy,.

Moreover, C’ is universal in the following sense: for any C*-algebra D’ such that V, N are affiliated to D’
satisfying there is a unique ¢ € Mor(C’, D) such that ¢(v) = V and ¢(n) = N. By construction,
the spectrum of n is restricted to a subset of @(q). The reason behind this is to give meaning to the
comulitplication map Agr € Mor(C’,C’ ® C”) (see |47, Theorem 3.1]) on the generators v and n:

Ac(v) =v®v and Ac(n)=v@n+n®v", (6.45)

where + denotes the closure of the sum. More precisely, Acs(n) is affiliated to C' ® C’ and Sp(n) C Cyy)
plays a crucial role to see this.
The dual of E4(2) is the quantum deformation of the group of triangular matrices

-1
@'::{(ab 2):a€R,a>0andb€(C}.

N = N*, Sp(N) CcZ, N and |b| strongly commute,
Sp(N, |b]) € 4, on ker(b)*: (Phase(b))* NPhase(b) = N +2I [’

where X is the closure of the set X4 := {(s,¢") : s,7 — 5 € Z}.

The underlying C*-algebra of Eq(Z), denoted by ¢, is the universal C*-algebra generated by a
pair (N,b) € Gj,.

The dual comutiplication Acr: €' — €' ® ¢’ on the generators is given by

Define the operator domain

<

Gh = {(N,b) EC(H) X Ex -

AC/(N) =N®l+ileoN and Acl(b) ::b®qN/2—i—q_N/2®b.

Given a unitary v and a self adjoint operator N with integer spectrum recall
(1® U)N‘X’l = / 2°dEg(s) ® dEy(2),
ZXT

where dE (-) and dE, are the spectral measures of N and u, respectively.
Let m: C' — B(H) and 7: C'" — B(H) for some Hilbert space H. For simplicity, we write v ,n, N and b
instead of 7(v), w(n), #(IV) and #(b), respectively.

Theorem 6.12 (|51, Section 5]). The unitary
W= Fo(¢"*b@vn)(1 @)V inU(H®H) (6.46)

is a multiplicative unitary for Eq(2) if and only if

(v,n) € Gy, and (N,b) € Gj,,
v*No=N+1,
vbv* = ¢~ 1/,

N and |n| strongly commute,
bn* = q'/?n*b,
6. nb—q%bn=(1— q2)q_(N+1)/21}.
This is equivalent to (m,#) being a Eq(2)-Heisenberg pair on H.

Gr o v~
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Projection on quantum E(2)

The Hopf *-homomorphism f: C' — C’ defined by f(v) := v and f(n) := 0 is a projections on E,(2).
Since Fy(0) = 1, applying f on the second leg of the multiplicative unitary in (6.46]) gives a bicharacter P
defined by

P = (id® NF (" ?b@wm)(10v)V® = (10 0)"8  nUHeH).
The commutation relation v* Nv = N + 1 shows that P is a projection on Eq(2). Equivalently, P satisfies
the pentagon equation (2.4):
PosP1oPis = (1010 0)'®V®*1 100 DV (1010 0") V%! = 1© v @)V ®'®! = P1yPs.

The second leg in the above computation is realized on a Hilbert space associated to a E,(2)-Heisenberg
pair.

Next we define the right quantum group homomorphism Ag := (ider ® f)Acs. The comultiplication
formula, (6.45) shows that Ag(vn) = wvn ® 1. Since the second leg of F = F,(¢"/?b ® vn) is Ag-invariant,
Equation (3.16) yields (6.34). The commutation relations in Theorem (6.12) and realisation of the second
leg on a Hilbert space, implies

12ve )V 1 o1 0)V®'® 1w ¢"/?b o vn)
=1®ve 1)N®1®1(qN ® qN/Qb Q@un)(1®1® 'U)N®1®1
=" 2" boum)(1ove )V 1 g1 @)V

Thus F and P satisfy (6.33)).

6.2.3 Quantum az+b group

The group az + b with coefficients a € C\ {0},b € C is the group of affine transformations of the complex
plane C. Its quantum deformation I = (C,A¢) in the C*-algebraic framework was introduced in [50]
by Woronowicz. For simplicity, we consider the deformation parameter 0 < ¢ < 1. A pair of normal
operators (a,b) is an H—pairﬂ on a Hilbert space H if

Sp(a) C @(q), ker(a) = {0}, Sp(b) C @(q),

oo 4 6.47
(Phase(a))b(Phase(a))* = gb,  |a| "bla|"™ = ¢ b, for all t € R. (6.47)

In the quantum version, the pair (a,b) in the classical az + b group is replaced by an I-pair.
For any n,n" € C(q) we write n = ¢9tF and ' = ¢ and let

i(pl+k
X(n,n') = g FHE,

Then x is a bicharacter on the multiplicative group C(g).
Given an I-pair (a,b), let A = Sp(a) x Sp(b), and

X0'®L1®a) = / X(ATHLN)AE, (V) ® dEa(X),
A

where dE, and dFE; are the respective spectral measures on Sp(a) and Sp(b). B
Next we recall the description of the underlying C*-algebra of quantum az + b. For any § € C(g) set

b(§) :=¢.

Then b € C(C,)) is normal and Sp(b) C C(,). Therefore, b is affiliated to Co(C(q)). There is an action
of C(q) on Co(C(y)) defined by

(Wf)(E) :=f(n-€&)  forn € Cry, f € Co(Cry), £ € Cyy.

1 Originally, in [50], such pairs (a,b) are called G-pairs, where G denotes quantum az + b. In order to keep
notation consistent we rename them I-pair.
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Let C = Co(C(q)) » C(q) be the corresponding crossed product. Since the canonical embedding Co(Cq)) <
M(C) is nondegenerate, b is affiliated to C'. By definition, M(C') contains a strictly continuous one-parameter
group of unitaries (Uy)yec,, implementing the action v:

UnfU;; = f for f € Co(@(q)).

It was shown, in |50} Section 4], that U, = x(a,n), where a is a normal operator affiliated to C' and Sp(a) C
C(q)- Moreover, a is invertible and a~ " is also affiliated to C.

Given n € C(y), & € C(y) we have v,(b)(£) = b(n - &) = n - £ Therefore, v,b = n - b, giving Upyb = n - bU,,
for n € C(q). Now U,y = Phase(a) and Uit = |a| 7" for t € R. Let 7 be a nondegenerate representation of C
on H. Theorem 1.2 in [47| gives a natural extension of 7 to the elements affiliated to C. Thus (7 (a), 7 (b))
is an I-pair on H. Proposition 4.2 in [50] shows that every I-pair is of this form.

The comutiplication on Ac: C — C ® C is defined by

Ac(a) '=a®a, Ac(b) :=a®b+b®1, (6.48)

where 4 denotes the closure of the sum. More precisely, Ac(a) and Ac(b) are affiliated to C ® C. The
spectral condition Sp(a), Sp(b) C Cg is crucial to show that a ® b+ b ® 1 is normal.
A modular multiplicative unitary for quantum az + b is given by

W=F,b"'®@a)x(b"'®1,1®a).
A corresponding manageable multiplicative unitary is defined by the following theorem due to Woronowicz:

Theorem 6.13 (|50, Theorem A.1]). Let (a,b) be a I-pair, s be a unitary, and r be a strictly positive
self-adjoint operator on a Hilbert space H. Assume that ker(b) = {0}, r and s strongly commute with a
and b, Sp(r) C ¢* U {0} and r~*sr't = ¢~s for t € R. Then the unitary

W:=F,b 'a®bx(sb™' ®1,1®a) inU(HH) (6.49)

is a manageable multiplicative unitary for the quantum az + b group.

Projection on quantum az-+b

In the case of quantum az + b, the Hopf *~-homomorphism f: C — C defined by f(a) := a and f(b) =0
is a projection on quantum az + b. Define the unitary P := X(slf1 ® 1,1 ® a), where a,b, s are as in
Theorem By (2.2) in [50] we know

1

*

x(sb™ , max(sb™",n)* =na for all n € Cy).

Therefore, we get

x1®sh'®1,1010a)x(shb ' 9101,10a@1)x(1®sb'®1,101®a)
=x(sb'®101,10aRa)=x(sb ' ®1®1,10a®1)x(sb ' ®121,101Qa).
Hence, P is the projection bicharacter induced by f. The corresponding right quantum group homomorphism
is defined by Ag := (idc ® f)Ac. The comultiplication formula (6.48) shows that Ar(b) = b® 1 and,
clearly, the second leg of the unitary F := F,(b~'a ® b) is Ag-invariant. By the definition (3.16) of Ar

we get (6.34). The defining conditions of I-pairs (6.47) show that a ® a and b~ 'a ® b strongly commute;
hence Fy(b™'a ® a) and a ® a commute. Therefore,

x(sb ' ®1901,10a®a)F,(1@b 'a®b)=F,10b 'a®b)x(sb ' ®1®1,1Qa®a)

shows that F and P satisfy (6.33)).
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6.2.4 Quantum ax-+b group

The group ax+b with coefficients a € R<o,b € R is the group of orientation-preserving affine transformations
of the real line R. Its quantum deformation I = (C, A¢) in the C*-algebraic framework was introduced by
Woronowicz and Zakrzewski in [55]. The deformation parameter ¢ € T is such that ¢ = e " where i is a
real number such that 0 < &7 < m. The current construction is more delicate compared to quantum az + b.
Let a and b be self-adjoint operators on a Hilbert space H. Assume that a is strictly positive. We
write @ —o b if
a'ba " = "b for all t € R.

The notion of I-pair (see (6.47)), for a given pair (a,b) on a Hilbert space H becomes as follows:
a is strictly positive and selfadjoint, b is selfadjoint, and a — b.

But the comultiplication Ac(b) = a ® b+ b® 1 fails to give a self-adjoint operator in general. This is the
fundamental difference between quantum az + b and quantum ax 4+ b. To overcome this difficulty the notion
of I-¢riple (originally called G-triple) was introduced in [55]. Let a,b, 8 be self-adjoint operators acting on a
Hilbert space H. A triple (a,b, 3) is called an I-triple if

(a,b) is an I-pair on H, 8> = 6(b # 0), Ba = af and b= —bf, (6.50)

where 0 is the characteristic function (not a bicharacter) defined by

1 if A is true,
0(A) = { 0 if A is false. (6.51)

Passing from I-pairs to I-triples adds one extra generator 8. Therefore, the C*-algebra C' corresponds to an
extended quantum ax + b.
Given an I-triple (a, b, 8) the reflection operator 7 is defined by 7 = a(8® 8)0(b®b < 0), where o = £1.
2

Here a is the phase factor associated to the deformation parameter A related as aie 3% . The condition
« = +1 restricts the values of the deformation parameter to h = , where k =0,1,2---.
Now we extend the domain of a ® b+ b® 1 to

T
2k+3

Dom(a®@b+b®1)+ {x € Dom((a @b+ b® 1)*) : 7(x) = z}.

Then [a ® b+ b ® 1], is a self-adjoint operator defined as the restriction of (a ® b+ b® 1)* to the extended
domain above.

Let B = C([0,+00)) ® M2(C) and By = Co((0,+00)) ® Mz(C). The underlying C*-algebra C' of the
quantum az + b group is defined by C = By x R, where R acts by

(e f)(s) == f(e™s) fort,s € R, f € Bo.

The operators log(a), b, i3 are affiliated to C' (for details see [55, Section 3]), and [55} Proposition 3.1] shows
that C is generated by log(a),b,i8. Then the comultiplication Ac: C' — C' ® C' is defined by

Ac(a) = a®a, Ac(b) =a®b+b®1],,

i i (6.52)
Ac(ifb) == i{w(eZb la®b) {(Bo1) + (1o AwEb la®b ) YAc(b),
where w is the polynomial of order 2k + 3 defined by
2k+3
i1
w(t):= [[(1+E=")  forallteR. (6.53)

=1

Theorem 6.14. Let (a,b, 3) be an I-triple and let r, s be strictly positive self-adjoint operators on a Hilbert
space H. Assume that ker(b) = {0}, r and s strongly commute with a,b and 8 and r — s. Then the unitary
defined by

W i=Fr(e?b 'a®b,7)"eh PBCIIT s iy 1191 0 %) (6.54)

is a manageable multiplicative unitary for the quantum ax + b group.
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Projection on quantum ax+b

The projection on (extended) quantum az + b is induced by the Hopf *-homomorphism f: C — C defined
by f(a) := a, f(b) := 0; hence by the definition of I-triples (6.50) f(8) = 0. Moreover, (idy ® f)T =
(idy @ fla(B @ B)x(b®@ b < 0) = 0. Define the unitary P, associated to the projection bicharacter induced
by the projection f, by

P= (id ® f) (Fh(G% b la ® b, T)*e% 108<3\b\71)®108(a)) — 6%103(5|b|71)®103(ﬂ).

By definition, w(0) = 1. Define the right quantum group homomorphism Ag := (idc ® f)Ac. The
comultiplication formula shows that Agr(a) = a® a, Ar(b) =b® 1 and Ar(iBb) = i8b ® 1. Therefore, the
second leg of the unitary F := Fh(e% b~ 'a®b,T)* is Ag-invariant. Clearly,

P1oPg = e 1080161 )@ (log(a)81+18l0g(a))

Since a — b, we get a'’ba”" = €"b for all t € R. Putting t = —i yields strong commutation of
elos(a)@1+18log(a) 4ng e3h'q @ b. The defining conditions of I-triples show that '°8(®)®1+1®log(a) 4nq +
commute. Therefore,

P12P13sFr(1® eThla ®b,7)" =Fr(1® e3b g ® b, ) P12P13.

Similarly, (3.16]) shows that P23F12 = F12P2s. Thus P and F satisfy (6.33]) and (|6.34).

6.3 Construction of a standard multiplicative unitary

A braided multiplicative unitary F € U(L ® L) over G yields a multiplicative unitary in the usual sense.
Thus we can construct a “big” quantum group starting from a standard and a braided quantum group,
which is our semidirect product for C*-quantum group.

Theorem 6.15. The unitary Wiszy € U(HR LR H & L) defined by

Wiogs 1= WisUasV34F24Vs4 (6.55)
is a multiplicative unitary.
Proof. We need to verify for Wi,34. Since it is going to be a long routine computation we write it
step by step in order to avoid confusion. Whenever we use relation(s) to a group of terms to simplify we

enclose them by {---}.
Let L.H.S. = W3456W1234W§456. Using ‘) we write:

L.H.S. = Wis {Us5Vi6Fu6 Vs H{WisUs3 } V5, F24Vaa VieFiaVse Uss (Was) ™.
Now U45\A’§6F4e‘756 and W‘f‘;ﬂUgg commute,
L.H.S. = {Wis W15} UasUusVieFae { V56 } V5uF24V3a {Vi6 1 i VseUss (Wis) ™.
Using (2.4) and the ordinary commutation between Vs, V§4F24V34, we get
L.H.S. = Wiy W15 {W5sUss }Uas Vs {Fag Vs - Foa{V3aFi6 Vs Uss (W5 )"
Equations , and then the ordinary commutations between V56 and V34, Vgg and Fa4 yield

L.H.S. = WisWisUs3UasWisUss { Vi V5, Y V36 Fa6{ V36 Y24 {V56 16 Vo { V34 V56 } Uls (W35 )*
= WisWis Uz Uas {W5s Uss V3, } V56 Ve Fas P26 Vi Vo { V34 Uss (W5s)* .
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The braided pentagon equation , equation and then commutation between W5k and Fos ZssFa6 Zis
yield
L.H.S. = WisWi5U23 U2 V5, Uss Ve {W§45}{]F24Z46]F26Z16}{(WA);,s}@%UL@M

= WisWi5U23{Uss V34 Y Uss {V36F24} ZasFa6{ Zis V56 Uls } Va.
Using commutation between Uss and §A7347 Vg,e and F24 and then using we get:

L.H.S. = Wi WikUss V3, {Uss UssFaaUss Vi {UssFasUss } 56 Vsa.
Next we use and commutation between Fas and Uss to get the following equality

L.H.S. = Wi {Wi}{U2sV5,F2a}{U25 V36 Fa6 V6 } { V).

Finally, using commutation between Wik and U23V§4Fg4, U25V§6F26\756 and Vs4 we obtain the desired
pentagon equalion (2.4)) for Wip34:

L.H.S. = {Wi{3U23V5,F24Vas HWis U5 VisFa6 V6 } = Wi234Wiose. O
Next we show that W;,3, is manageable.
Theorem 6.16. IfF € U(L ® L) is manageable, so is W3y 1= Wi U3V, FosVsay.
Proof. Using we can rewrite in the following way:
Wiggs = WisV5,Ua3Z5,F24 V4. (6.56)

Definition [6.3] and Lemma [6.4] show that W34 commutes with Qa4 ® Qx ® Q4 ® Qxk.
We shall show that _ 4 o -
Wizzs = W13V FaqUasVozs e U(HRLROH QL) (6.57)

satisfies the manageability condition ((ii)]) for Wy,34.
Let 2,y € £, s € Dom(Q4), t € Dom(Qk), u € Dom(Q,") and v € Dom(Qz"). Let {e;}i=1,2,... be an
orthonormal basis of £. Then (3.12)) and Definition |6.3|4)) yield:

($®5®t‘U12Zf3F13|y®U®U):Z(x®5®t|U12'(‘ei)'(ei|®1®1)'ZI(BF13|ZJ®U®U)
=) @®s|Ula®u) (aot](ZF)|yev)
=Y (Foax® Flaeer w) (@2 | U176 Q' W)

= (12049 @ Qx(®) | Fulie | 70 Q3 (0 © Qi v)

Since ¥ commutes with Q4 ® Qr, V(Dom(Q4) ® Dom(Qx)) and \A/(Dom(Qzl) ®Dom(Qyz")) are dense
subspaces of Dom(Q4) ® Dom(Qx) and Dom(Q ;") ® Dom(Q"). Hence we can replace s @ t by V(s @ t)
and u ® v by V(u ® v) in the last computation. This gives

(a: RsRt | V33U12Z53F13Vas ly@u® 11)
— (79 Qu(s) ® Que(t) | T3sF1aT1a Ve | 70 Q3 (W) 8 Q' v) ). (6.58)

Let z,w € H and {e;};=1,2,... be an orthonormal basis in H as in Lemma [2.37}

D 1Q4" () - (Qales)] = 1n.

J
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Then the following computation completes the proof:
(z RITRst| Wf3V§4U23Z§4F24V34 [wRyRu® v)
= Z (@z@s@t| W (1010 ¢)(e; | ®1) - V34U2Z5,F24Vss | w @ y @ u @ v)

J

:Z(z@)s\WA|w®ei)~(m®6i®t|V§3U12(Z*F)13V23|y®u®v)
J
— ~A -1
= (T Qa7 17003 ())
J

(79 Qulen) © Qu(®) | VisfralnaVan | 78 Q31 () © Q' (v))
= (E RYRQA(s) ® Qk(t) | W5 V5aFaaU2s Vs 1ZRT® QL' (u) ® Q?(”)) : O

Let I = (C, A¢) be the C*-quantum group corresponding to the manageable multiplicative unitary W,34
in Theorem [6.16l

Proposition 6.17. T is a C*-quantum group with projection.

Proof. Let Xia34 = Wi4Usz € U(HRLRHRL). Assume Xi234 is a bicharacter from I to I. Proposition
shows that Xi234 = ngUzg € U(H ® L) is a manageable multiplicative unitary for G; hence Xi234 is a
projection. Therefore we need to show that X234 is a bicharacter.

The following routine computation yields for Xi234 and Wg3y:

X456 Wi234X3456 = WisUss Wi5Uss V3aFaa VaaUls (W) 35 = Wi Wi5Uss Uss V54 F24 Vs Uls (W*)35
= Wi Wi Wi UnaUss ViaFaa Vaa Ul (W)3
= Wf?,WfSUZSU25W§5U45V§4F24V34U25 (WA)§5
= Wi Uas W15 Uas V5, UssFaaUss Vs
= Wi Uas V5, Wik Uas UssF2aUss Vsa
= Wi5Uzs V34 WisF24Uss Vs
= Wi Uas V54F24 Vs Wik Uss = W93, X1256.

The first equality follows from the assumption, the second equality uses commutation of unitaries, the
third equality uses the pentagon equation for W4, the fourth equality uses , the fifth equality
follows from , the sixth equality uses commutation of unitaries, the seventh equality follows from the
G-invariance condition for IF, the eighth equality follows from the commutation of unitaries, and the
last equality is trivial.

Similarly, we can show Ws,56X1234 = X1234X1256Was5¢ which gives . Hence, Xi234 EU(HR L ®
H ® L) is a projection on L. O

At first sight, the choice for the expression W,3,4 in the above Theorem [6.15] seems ad hoc. Let us
justify the origin of this formula.

Let G be a weakly regular quantum group and let (K, Ax) be a braided quantum group over G (see
Definition [6.5). Let A: K — K ® A be the inner coaction of G on K defined by A(k) := U(k ® 14)U*
for k € K.

It can be show that A Kya K = ta(A) - tx (K) where 1a(a) = n(a) ® 13 and tx (k) = V*(1 @ k)V,
where V := (4 ® id.)V for any G-Heisenberg pair (7, ).

Next, by Corollary [5.42] we get the following: A Mya K Rya ARya K ¥ ARya K @ ARya K.
Denote the embeddings of A, K, A, K into AXya K ® AXya K by j1, j2, js, ja, respectively. Then

ji(a) = (ta ® ta)Aa(a), J2(k) = (tk @ va)A(k),
js(a) = (lamg, . x ®ea(a)),  ja(k) = (lamg,,x @tk (k).
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fora€ Aand k € K.
Define Aug,, k: ARywa K — ARya K Q@ ARya K by
Aumy 4k (tal@)x (k) = (ta ® a)Da(a) - (j2 * ja) Axc (k),
where j2 * ja(k1 Rya k2) := jo(k1)ja(ke) for a € A and k, ki1, k2 € K.
We compute:
VioU2sV34Fas = WisUzsVip (Wi3) V3uFas = WisUss Vo V3, Vis(Wis) Faa
= Wi Uas V3, Vio ViaFaa(Wih)*
= WihUas V54 F2aVio Vg (Wih)*.
The first equality uses (6.1]), the second equality follows fromA the corepresentation condition (6.9), the third
equality follows from the ordinary commutations between V34 and V12, W1k and Fa4, the fourth equality
uses the invariance property of F under the G-coaction (6.4)).
Therefore, using the last relation we obtain:
(ta ®ea)Aa(a) - (j2 * ja) Ax (k)
= ((7T ® W)AA(CL)) ISvT2U23v§4F24(k)2(®T2U23§7§4F24)*
= Wism(a)1 (W) 1sWisUss V3uFaa Vi Vig(Wis) " (k)2 (Wi3U2sV3aF2a V3o Viy) "
= Wf3U23V§4F24W(a)1V12k2§/;2(WfSU%v&Fm)* =Wiazg (LA(CL) -k (k) ® 1A®WAK)WI234~
Hence, the comultiplication on AR 4 K is implemented by the manageable multiplicative unitary Wy,34
defined by (6.55). Moreover, W53, is a unitary in M(H ® L ® AXyya K). Therefore, we expect the

general theory of braided quantum groups to generate (A Mya K, A AR a k) as a quantum group from the
manageable multiplicative unitary Wios,.

6.4 From the complex quantum plane to simplified quantum
E(2)

First we recall the simplified version of quantum E(2) from an unpublished work [54] of Woronowicz. Let

G:{<g T):u,mE(Candm:l}.

Let 0 < g < 1 be a deformation parameter and let C' be the *-algebra generated by u and m subject to the
following relations:

wu=uu" =1, m'm = ¢>mm”, and umu® = ¢*m. (6.59)
The comultiplication Ac: C — C ® C is defined by
Ac(u) :=u®u and Ac(m)=u®Om+m0o 1. (6.60)

where ® denotes algebraic tensor product. Clearly, A¢ is coassociative.

Recall (C’, A¢r) in Section and the relations between the generators v and n of quan-
tum E(2). A simple computation shows that (v>,vn) satisfies (6.59); hence generates C. Define the
Hopf *-homomorphism ¢: ¢’ — C by ¢(v) := v* and ¢(n) := vn. The kernel of ¢ is isomorphic to Z/27Z.
Therefore, quantum E(2) is the double cover of simplified E(2).

In order to describe the C*-algebraic version of simplified quantum E(2) we need to represent v and m
on a Hilbert space H. The relations between the generators of E4(2) is replaced by the following:

wu=uu" =1, m'm = ¢*mm”, Sp(m) C Cy and umu* = ¢*m. (6.61)
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Similarly, we replace the operator domains £ and Gj, defined by (6.43)) and (6.44]) by the following operator

domains
Fay 1= {r €EC(H) :rr" = aerir, Sp(r) C E(q)} , (6.62)
Gn = {(u,m) EU(H) X Fr : umu* = g*m} . (6.63)

Therefore, the underlying C*-algebra C of simplified E4(2) is generated by (u,m) € G. The comultiplica-
tion Ac: C — C ® C is defined by

Ac(u) = u® u, Ac(m)=u®@m+m®1, (6.64)

where + denotes the closure of the sum. More precisely, Ac(m) is affiliated to C ® C and Sp(m) C C(y,
plays the crucial role in it.

To find a multiplicative unitary we need to use the quantum exponential function from [52]. First we
define the following operator domain:

Gr o= {(N,1m) € C(H) x Fpy: N = N*, Sp(N) C N, Niin = (N +1)}. (6.65)
The following Theorem classifies all multiplicative unitaries of simplified E,(2).
Theorem 6.18 ([54]). The unitary
W :=F,(mom)(louw)™® nlU(HeH) (6.66)
is a multiplicative unitary for simplified Eq(2) if and only if

1. (u,m) € Gun, Ker(m) = {0},
2. U*NU = N + 17

3. N and m strongly commute,
4. m =m w7 where + denotes the closure and # € C(H) is such that
(N,7) e G, utPu = ¢°F, 7 and m strongly commute. (6.67)

Remark 6.19. The multiplicative unitary W is called type I or type II when # = 0 or ker(#) = {0},
respectively. Type I multiplicative unitaries are regular and modular while type II ones are manageable
and nonregular. Finally, every type II multiplicative unitary can be obtained from one of type I (for details
see [54]).

6.4.1 Preparations on the algebraic level

Let 0 < ¢ < 1 be the deformation parameter. The algebra of functions on the complex quantum plane is
defined by
K = C[Y,T*]/(Y*T = ¢*TY*).

The group algebra A = CZ is the universal algebra generated by a one-parameter group of elements {Us, }nez.
The Hopf *-algebra structure on A is defined by

AaUn) =U, @ U,,  R;Un):=U;  e;(U,):=1, forallnecZ.
There are a canonical right action v and a right coaction é of A on K defined by
(T, Uy) :=q " T and 5(7) =T QUT,
for all n € Z. o
Since K is a Z-graded Z-module, it is a Yetter-Drinfeld module over (A, A4). This allows to define the

braided tensor product AKEEalg K. With the following structural maps, K becomes a Hopf *-algebra in the
monoidal category of (A, Aa)-Yetter-Drinfeld modules:

Ag(T) =T Rae 1+ 1K, ¥,  Rg(Y):=-Y"  ex(Y):=0, forallicZ
Thus (K, Ax) is a braided Hopf *-algebra over (A, A4).

Warning 6.20. In |20] the term braided bialgebra is used to denote quasitriangular bialgebras. This is
because their categories of modules are braided.
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6.4.2 Preparations on the Hilbert space level

The quantum exponential functions F, will play a central role in the construction of a braided multiplicative
unitary for (K, Agk). Given a Hilbert space H, define the operator domain

&3 = {(R, S) € Ex X En ggf_‘];}fg} (6.68)
The commutation relation in explicitly means:
Phase(R)Phase(S) = Phase(S)Phase(R), (Phase(R))*|S|(Phase(R)) = q|S|,
(Phase(S))|R|(Phase(S))" = q|R|, |R| and |S| strongly commute.
Let us recall the following results on quantum exponential functions due to Woronowicz:
Theorem 6.21 (|53, Theorem 2.1, 3.1]). Assume (R, S) € €% and ker(R) = ker(S) = {0}. Then
R+ S =F,(R 'S)RF,(R'S)*, (6.69)
and
Fq(R+ S) = Fq(R)F(S). (6.70)

where + denotes the closure of the sum.

The operator domain Fy is defined by (6.62)). Here we define the following operator domains related
to Fy:

* 2 *
. - r'r=q’rr
Fi = {r €C(H): Splr| € ¢ U {0}}, (6.71)
. . 2rs = sr
F3 = {(r, s) € Fay X Fay Tfs _ qQST*} . (6.72)

Remark 6.22. The second domain (6.72)) is not the same as in [54]. We have changed the second defining
condition sr* = ¢°r*s to ¢*sr* = r*s.

Lemma 6.23. . ® F3, C Ezgy-

Proof. Let | € Fr and (r,s) € F% and define (R,S) := (I ® r,l ® s). The following computation
shows R, S € Ergnu:

R'R=("l®@r*r)=RR" and S"S=("l®s"s) =55
Moreover,
R'S=("l®@r's)=(l"®sr*)=SR* and SR=(?®sr)=q¢(*®rs)=q¢RS. O
Let £ be a Hilbert space and let T € C(H) be such that:
ker(T) = {0}, Sp(T) C Ty, (Phase(T))|Y|(Phase(T))" =g *[T]. (6.73)

The second condition is called spectral condition. It cannot be guessed from Hopf *-algebraic relations.
Let H = [?(Z) and let {e;}icz be an orthonormal basis of H. Define

ue; = ej+1  and Nei = ie;.
Hence w is unitary, Nisa self-adjoint operator with Sp(N) C Z, and
w' Nu=N +1. (6.74)

A computation in Section shows that W4 := (I ® u)N ®7 js a multiplicative unitary for the quantum
group G = (C(T), Ac(r)), where Agry(u) := u ® u. Since N has integer spectrum it is affiliated to Co(Z).
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Thus G = (Co(Z), Acy(z)), where Acyzy(N) := N@14+1@ N is affiliated to Co(Z x Z); here + denotes the
closure of the sum. Since G and G are commutative quantum groups, by (4.9), any G-Drinfeld pairs (p, p)

A

must commute. Let (p, p) be a G-Drinfeld pair acting on £. Let % = p(u) and A = p(N). Then
UNU* =N, (6.75)
The natural actions of Z and T on the Hopf *-algebra K lead to the following commutation relations:

w\\U* =Y, % Phase(YT)% ™ = Phase(Y), (6.76)
Phase(Y).# Phase(T)* = (A + 1), and |Y| and .# strongly commute. (6.77)

Proposition 6.24. There are two irreducible Hilbert spaces L, (p = even and odd), such that L, has an
orthonormal basis {€i ;}i jezitj is p, finite linear combinations of e; ;j form a core for 4, Y and

Tei,j = qjez;1,j+1, %67;7]‘ =€ -2, ,/Vei,j = iem. (678)

Proof. The operators AN and |T| have discrete spectrum and strongly commute, hence they have a common
eigenvector. An element e € £ is said to be a common eigenvector of the pair (.4, |Y]) with eigenvalue
(J,q") if

Ne=je [T]e = ¢e.

By and (6.77) Phase(YT) multiplies eigenvalues of |Y| by ¢ and decreases eigenvalues of A by 1.
Similarly, by (6.76), % multiplies eigenvalues of |Y| by ¢~ 2 and leaves eigenvalues of .4 unchanged.

Starting with a normalised common eigenvector of (,/V ,|Y|) and applying an appropriate power of
Phase(Y) we obtain an eigenvector of (j ,|T|) with eigenvalue (0, ¢”). Next applying an appropriate power
of % we obtain a common eigenvector of (.4 ,|Y|) with eigenvalue either (0,1) or (0,q) (depending on the
parity of 7).

Let eo,0 be a common eigenvector of (4, |T|) with eigenvalue (0,1). Applying to ey powers of % and
Phase(Y) gives a family of common eigenvectors e;; (i,5 € Z,m +n is even) of (4, |Y]) with eigenvalue
(i, ¢"):

?/em' = €4,5—2, (Phase(T))ei,j = €i—1,j+1-

If £ is irreducible then {e; ;} (n,m € Z, m + n is even) is an orthonormal basis of L.

Similarly, if eg, is an eigenvector of (.#,|T|) with eigenvalue (0, q) then applying to eo,1 powers of
% and Phase(Y) gives a family of common eigenvectors e; ; n,m € Z, m+n is odd of (A, |Y|) with
eigenvalue (i,¢%). Again, if £ is irreducible then {e; ;} (n,m € Z, m 4 n is odd) is an orthonormal basis
of L. O

Proposition 6.25. Let Y, % and ¥ act on L with the above commutation relations (6.75)—(6.77).
F (Y 'Y @) (T@DF, (Y ¢ @) =Tol1+¢ >’ @7 (6.79)

Proof. Let a =T ® 1 and 8 = q72"‘; ® Y. By we get T € F7 and «, B € F/g . Moreover,
implies
Ba=(g " TeT) =Yg >V eT)=dap
and N
=g @) =q'pa’,
hence (o, B) € F2.

Let | € Fp satisfy ker(l) = {0}. Lemma gives (R,S) € £y, where R :=1® a and S := 1 ® B.
Then Theorem [6.2]] yields:

F,la'"B)(l@a)F,(1®a 'f) =l@at+l®p.

Since | € Fp is arbitrary, we get (6.79). O
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Corollary 6.26. Let # € Cr such that
Phase(T)Phase(7)Phase(Y)* = ¢*Phase(?), and |Y| and |#| strongly commute. (6.80)
If Tfquzj ® Y + 7 exists, then
Fo (Y2 127D (Y@ DF(Y ¢ > +¢ 2@ =Tel1t¢ > @T.
Proof. The property of Fy implies
F (Y g2 42 r @ 0)F, (T g2 @) = Fo(q > 72 ).

By Proposition it suffices to show Fq(q*QJ‘;f M(T® I)Fq(q*b‘;f ®T) =T®IL.
The commutation relations (6.77) and (6.80) imply (¢ >*7# @ (YT ® 1) = (2" 2T¢r @ Y) =
(Y1) (¢ >’ +a). O

6.4.3 Braided quantum group structure on the quantum plane

In this section we shall describe the C*-algebraic version of (K, Ax) as a braided quantum group over G.

Consider the polar decomposition of T* = vh, where v = Phase(T") is unitary and h = |Y*| is a
positive self-adjoint operator on a Hilbert space £. Then Sp(h) C ¢* U {0} and Ker(h) = {0}. Define
finite f cC (@ )
Ko = k() : " 0 ~(a)/> . .81
i {kgvf’“() Jul0) = 0 for k #0 (6.81)
€

Proposition 4.1 in [37] implies:

Proposition 6.27. Let K be the norm closure of Ko. Then

1. K is a C*-algebra.

2. Y™ is affiliated to K.

3. K is generated by T*.

Define the following coactions (T) := T ® u* affiliated to K @ C(T) and 4(Y) =T ® ¢~V affiliated
to K ® Co(Z). ) A

Define U := (1 ® u)”" ®! e U(K(L) ® C(T)) and V := (1@ %)V®' € U(Co(Z) @ K(L)).

Since % and .4 commute, (U, V) is a G-Yetter-Drinfeld pair, where V = (%*@1)1®N € UK(L)RCo(Z)).
L c

Then Z := (p®p) ((1 ®u*)N®1) = (1®%*)"V®1. The corresponding braiding operator X cEUL®L)

is defined by
L c

X ezt elorx. (6.82)

Lemma 6.28. Let ¢ denote the representation K — B(L). Then (¢, U) and (¢, V) are covariant represen-
tations of (K,v,C(T)) and (K,%, Co(Z)).

Proof. The commutation relation (6.76]) between % and Y yields:
ITeu )" IeT)Ieu)"® =¢* N oT. (6.83)

Hence V(Y ® 1)V* = T ® ¢ 2N = 4().
Similarly, the commutation relation (6.77) gives

Iow)” ' (TellIou)”® =Teu", (6.84)

which is equivalent to U(TY ® 1)U =T ® u* = (7). O
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L L L L
The crossed product KX K is ¢1(K)-t2(K), where t1(T) := T®1 and 12(Y) := X (Te1)( X )"
Theorem 6.29. In the notation introduced above, we have:
1. the sum t1(Y) + 12(Y) is affiliated to K X K and Sp(t1(Y) + 12(Y)) C C(y)-
2. there is a unique Z x T-equivariant morphism Ax € Mor(K, K X K) such that

Ax(T) = 0a(T) + 2(T). (6.85)

3. Ak 18 coassociative.
L c
Proof. The defining condition of X suggests Z = (idz ® p)V. Therefore, gives 12(T) :=
q72”; ® T. Now T ® 1 is affiliated to K X K, and by Proposition T ® 1 is unitarily equivalent
to t1(T) 4 t2(T); hence ¢1(T) + ¢2(T) it is affiliated to K K K.

Since G and G are abelian, Yetter-Drinfeld C*-algebras over G are the same as Co(Z x T)-C*-algebras.

Equation shows that Ak is implemented by Fq(T_lq_Q‘”; ® 7).

Finally, the coassociativity of Ax means that (¢1(T) 4 e2(T)) + e3(T) = t1(T) + (¢2(Y) + ¢3(Y)), where
the ¢;s are the canonical embeddings of K into K X K W K for j = 1,2,3. This follows from and
Proposition [6.25] O

Since (U,V) is a G-Yetter-Drinfeld pair, Lemma gives K € YD€"alg(G). In order to show

that (K, Ag) is a braided quantum group in the sense of Definition 6.5 we need to show that Fq(T_lq_Q‘”; ®
T) is a braided multiplicative unitary over G.

Proposition 6.30. The unitary F := Fq (T71q72j ®T) eU(L® L) is a braided multiplicative unitary
over G.

Proof. Theorem 2) and the property (6.70) of F, imply

(id® A)F = Fg (T2 @ (1(7) 4 2(X)) = Fo(T¢7>" @ 1 (1)Fo(Y'¢7>" @ 12(T))
=F12Z23F13253.
Since Ak is implemented by Fq(T_lq_Q“‘; ® T) we also have
(id ® A )F = FasF1oF}s.

Comparing the right hand sides of the last two equations gives the braided pentagon equation for F.
The commutation relation (6.77) between YT and A" gives

(T 2T )(101l0u)"®® (1ol gu) e e
=(1elouw Ve Y127 g T g 1) (101 u) e
=(1®19w)”"® ' 1elew) e (T ¢ g T®1).

Therefore, we obtain . Similar routine computations yield . O

6.4.4 Construction of simplified quantum E(2)

Now we shall construct simplified E4(2) from (K, Ax) and G. Moreover, we show that the multiplicative
unitary defined by , constructed out of the braided multiplicative unitary F in Proposition m
and (1 ® u)V®!, generates simplified E,(2).

Define an action of Z on K by 1, (T) = ¢72"Y. Let C = K x Z be the corresponding crossed product.
The *-homomorphism K < C' is nondegenerate, and there is a unitary w € M(C) such that w|Y|w* = ¢*|Y|
and wPhase(Y)w™ = Phase(Y). Thus C is the universal object generated by w and Y. Realise w and Y as
a unitary and an unbounded operator on a Hilbert space H. Then gives (w, ) € Gy; hence C is the
underlying C*-algebra of simplified E,(2).

Realise U and V as operators defined by U := (10u)”* ' € U(L&H) and V := 10%Z*)V®' e U(HSL).
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Proposition 6.31. The unitary Wygsq := WiyUss V5, FouVay € U(HQLOH® L) is a type-I multiplicative
unitary generating simplified Eq(2).

Proof. Equation ((6.83]) implies
ez )N 1eT)(1e%)'® =¢ N e,

Therefore, V5,F24Vsy = F(1® T_lq_Q‘/V ® q_QN ®T).
Next (6.77)) implies

T71q72/ ® 1)(1 ® u)(”;“)@l(l ® q721\7)

(

(

(T—l —2.N @)1 ® quN)(qz ® u)(j+1)®1
_ (T—l —2.N @e)(1® q72(1§f71)u)(q2 ®u)j®l

(

(

Q

(g ©u) !
T71 ® 'LLq72N)(1 ® u)ilt;@l

Hence Ugs Vi, FouVay = F,l®Y'® uq’QN eN1®10ue 1)1®</V®1®1.
Equation (6.74]) implies

1ew¥'(1eu ) =(1eu M) (@ 2u)V® = (¢* @ug )10 u)V®.

Therefore, W34 = Fq(qm T 'ou N e NI®lou® 1)(N®1®1®1(1 R1Ou® 1)1@/«’@1@1.

Since (1®u)1\7®1 is a multiplicative unitary for G, V' (10.4)V = N®1+1®.4, and Sp(N@1+10.4) C
Z.

Thus Wyass = Fo (N @ T @ ug M @ T)(1® 1 9 u 1)VerHeseien

Define m’ :=uqg > @ ¥, v :=u®1,and N := N® 1+ 1® 4. Then ker(m’) = {0}, Sp(m’) C Cy),
and (6.76) gives u'm’u"* = wug Nt @Y = ug N2 @ T = ¢®m’; hence (u',m") € Guge. Similarly, (6.74)
gives u*N'u' = N’ + 1. Finally, (6.74) and (6.77) show that the operators m’ and N’ strongly commute.

Therefore, by Theorem |6.18) Wy234 = Fo(m/~ '’ @ m’) is a multiplicative unitary of type I. O

By Remark evey type II multiplicative unitary can be constructed from one of type I. Alternatively,
if we start from a multiplicative unitary as in Corollary [6.26] a similar computation shows that W34 is of
type II. Further, using and we get Z'F=F (Y 1+ 7@ %Y1 @ %)” ®'. Therefore, F is
manageable if W53, is.
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