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Außerdem möchte ich allen meinen Freunden in Göttingen danken, die diese Stadt in den

vergangenen acht Jahren zu einem Zuhause für mich gemacht haben. Ein ganz spezieller

Dank gilt Rebecca, meinen Eltern und Jan, die mich zu jeder Zeit mit vollem Einsatz

unterstützt haben, und ohne die weder mein Studium noch meine Promotion möglich
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Summary

In this PhD thesis, we address the problem of giving simultaneous confidence statements

about local features of the diffusion of an Itô process. To this end, we construct a multiscale

test based on weighted quadratic variation and prove that the test statistic can be strongly

approximated by a sequence of Gaussian martingales which are distribution-free. Further,

we give optimality results and present different visualization methods.

In the second part of the thesis, we extend the approach to data corrupted by additive noise

to cover applications from high-frequency finance. Additionally, we show which difficulties

arise from real data and apply our method exemplarily to prices of Euro-Bund-Futures

(FGBL).

As an outlook for future work, we present ideas of generalizing the method to inference on

the local covariance and point out some interesting applications from finance.
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Chapter 1

Introduction

1.1 Some History of Volatility Estimation

In many fields of science, data can be approximated by a heterogeneous random walk.

Among these are examples from physics, biology, and maybe most prominently, mathe-

matical finance. Here, some arbitrage-free log-price X is often modeled as an Itô process

(cf. for example Delbaen and Schachermayer (1994, 1998)), that is

Xt = X0 +
∫ t

0
bsds+

∫ t

0
σsdWs, t ∈ [0, 1], (1.1)

where W is a Brownian motion, the drift b and the diffusion σ2 (referred to as “spot

volatility“ in the financial literature and playing the role of a local variance) are predictable

and integrable processes. For identifiability reasons, we restrict σ to be non-negative.

Both in financial application and in theory, the diffusion σ2 and surrogates of it (such

as integrated volatility
∫
σ2
sds) are of interest for modeling and pricing (cf. for example

Black and Scholes (1973), or more recently Heston (1993)). Furthermore, looking on small

scales only (for example in intraday trading), the martingale part of (1.1) dominates the

comparably smooth integrated drift part, such that the latter is asymptotically negligible.

Typically, integrated volatility is considered since it is well-known that it is the limit of

realized quadratic variation, that is

n∑

i=1

(Xi/n −X(i−1)/n)2,

when n tends to infinity. However, pathwise estimation of σ2 is more challenging. An

approach based on realized quadratic variation is given in Fan and Wang (2008).

Due to technical progress however, the frequency of observing data increased more and

more during the past decades. As it turned out in financial practice, Model (1.1) was

1



CHAPTER 1. INTRODUCTION

no longer appropriate to describe these high-frequency observations, since there are so-

called microstructure effects occurring due to market frictions such as bid-ask-spreads,

discreteness of prices, or trading costs. Overviews of these frictions are given in Hasbrouck

(1993) and Madahavan (2000). In the literature, these effects are often modeled as additive

noise, resulting in an observed log-price

Y = X + ǫ (1.2)

as the sum of the latent log-price X and some noise process ǫ (cf. for example Zhou (1996)).

In these models, the well-established quadratic variation methods fail if the noise process

is rougher than the semimartingale part. Especially, realized quadratic variation does not

converge to integrated volatility any longer but tends to infinity (cf. Bandi and Russell

(2008)). This fact is also displayed in Figure 1.1, which is also known as a signature

plot: Sub-sampling the data at frequency k (x-axis) and computing realized quadratic

variation of each sub-sample (y-axis) results in an tremendous increase if k gets small.

This singularity cannot be explained by any continuous semimartingale model.
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Figure 1.1: Realized volatilities of FGBL data from June 4th, 2007 to June 8th, 2007 for
different sub-sampling frequencies.1

At this point, two different strands can be found in the literature: On the one hand, Gloter

and Jacod (2001a,b) targeted the problem of estimating volatility in a parametric family.

Proving a local asymptotic normality (LAN) property, they found the asymptotic minimax

lower bound 8τσ3n−1/2 for the mean squared error (MSE). An easier proof of this sharp

bound is given in Cai et al. (2010). Further, authors have investigated asymptotic minimax

properties in a parametric version of Model (1.2), where the driving Brownian motion W in

2



1.2. CONFIDENCE STATEMENTS ABOUT THE DIFFUSION

(1.1) is replaced by more general Gaussian processes, including fractional Brownian motion

with Hurst index H ∈ (0, 1). Optimal rates for the fractional Brownian motion case are

given in Gloter and Hoffmann (2004), optimal constants follow from the results in Sabel

and Schmidt-Hieber (2014a).

On the other hand, researchers targeted nonparametric estimation of the volatility and its

surrogates. Starting with the seminal work of Ait-Sahalia et al. (2005), many sophisticated

regularization methods for estimation of integrated volatility have been proposed in the

literature. Among those are the papers of Zhang (2006), Barndorff-Nielsen et al. (2008),

and the pre-averaging approach of Podolskij and Vetter (2009) and Jacod et al. (2009). A

huge advance in understanding volatility was achieved by Reiß (2011), who proved that

under quite strong assumptions, the microstructure noise model is asymptotically equiva-

lent in Le Cam’s sense to a regression setting. At the same time, a first approach to spot

volatility estimation, that is nonparametric pathwise reconstruction of σ2, was introduced

by Munk and Schmidt-Hieber (2010), where the authors proposed a rate-optimal Fourier

series estimator. However, this estimator lacks in adapting to the unknown smoothness.

This problem was solved in Hoffmann et al. (2012) by proposing an estimator based on

a wavelet decomposition which is adaptive and rate-optimal over Besov classes. In Sabel

et al. (2014), this estimator is further adjusted and fine tuned to overcome difficulties oc-

curring in practice. A Matlab based implementation can be found in the Spotvol Toolbox

by Sabel and Schmidt-Hieber (2014b).

1.2 Confidence Statements about the Diffusion

Despite of the large scientific and practical impact of all the methods mentioned above,

practitioners are often interested in confidence statements about the diffusion coefficient.

Surprisingly, there are very few references dealing with this topic in either the pure semi-

martingale or the high-frequency model. Hoffmann et al. (2012) provide a thresholding

rule (given in Theorem 3.3 in their work) for each wavelet coefficient
∫
ψj,kσ

2, which can

be viewed as a confidence interval for the respective coefficient. Nevertheless, if we consider

a more general set of test functions ψt,h with support in [t, t+h] for some non-dyadic t and

h, it is not clear at all if their statement holds simultaneously over all combinations (t, h).

A different approach was chosen in Spokoiny (2009): Here, it is assumed that volatility is

locally constant, allowing the author to rewrite the problem as a change point problem.

3



CHAPTER 1. INTRODUCTION

Under this assumption, different results including confidence regions and forecasting meth-

ods are presented. However, this assumption seems to be quite restrictive compared to the

semimartingale model. Jacod et al. (2009) proved asymptotic normality of their estimator

of integrated volatility allowing the construction of asymptotic confidence intervals. How-

ever, this is only proved for some fixed time interval [0, T ] and therefore lacks in uniformity

and localization, that is information about local features of the spot volatility function.

1.3 Main Results of this Thesis

The main body of the thesis is split into two parts: In the first half, we develop a method

to obtain uniform confidence statements about the diffusion in a low-frequency setting,

that is directly observing X on a discrete grid. The second half provides an extension to

high-frequency observations and an application to real financial data.

1.3.1 The Low-Frequency Setting

Firstly, we consider data from Model (1.1) observed at discrete time points i/n, i = 0 . . . , n.

We concentrate on simultaneous confidence statements for integrals of the type

h−1/2
∫ t+h

t
ψ
(
s−t
h

)
σ2
sds (1.3)

for some test function ψ with support in [0, 1] and simultaneously for (t, h) belonging to

some subset of [0, 1]2. Our approach has to be regarded as a compromise between inference

on spot volatility and integrated volatility. Although the confidence statements do not give

us adaptive confidence bands for the function s 7→ σ2
s (which is an impossible task at least

in nonparametric regression, cf. Low (1997)) but only for weighted averages of σ2 on some

interval [t, t + h], they contain information about very local features of σ2 if h becomes

small.

Since approaches like this consider multiple “scales” defined by the location t and the band-

width h, they are often termed “multiscale methods” in the literature. Similar approaches

focusing on nonparametric regression and density estimation were developed in Dümbgen

and Spokoiny (2001), Dümbgen and Walther (2008), and Schmidt-Hieber et al. (2013).

4



1.3. MAIN RESULTS OF THIS THESIS

However, there has been no comparable techniques dealing with inference on volatility

even for non-high-frequent data so far.

To get confidence intervals for (1.3), we choose a weighted quadratic variation approach:

Let Tn ⊂ [0, 1]2 be a set of scales (t, h) (again using the notation t for the location and

h for the bandwidth), so that [t, t + h] ⊂ [0, 1] and ln < h < un for some minimal and

maximal bandwidths ln and un, both tending to zero. Observing discrete data Xi,n from

Model (1.1), we consider the test statistic

T
(1)
n,t,h := h−1/2

n−1∑

i=0

ψ
(

i
n

−t
h

)
(Xi+1,n −Xi,n)

2 .

We prove that under mild assumptions on ψ, σ2, ln, and un, and for some estimator σ̂2
t,h of

σ2
t which is consistent at a log-rate, there exists a sequence of Brownian motions W [n], s.t.

sup
(t,h)∈Tn

wh

∣∣∣∣
T

(1)
n,t,h − h−1/2

∫ t+h
t ψ

(
s−t
h

)
σ2
sds

σ̂2
t,h

−
√

2
nh

∫ t+h

t
ψ
(
s−t
h

)
dW [n]

s

∣∣∣∣ = o(n−1/2) a.s.

Thus, when approximating (1.3) by the test statistic T
(1)
n,t,h, the rescaled approximation

error
T

(1)
n,t,h − h−1/2

∫ t+h
t ψ

(
s−t
h

)
σ2
sds

σ̂2
t,h

is uniformly small and does not depend on σ or X but is a Gaussian process with known

distribution (for more details cf. Theorem 3.4).

This construction allows us to simulate quantiles of the supremum of the Gaussian process

over Tn to obtain quantiles for the supremum of the approximation error. Afterwards, these

can be used to construct asymptotic confidence intervals for (1.3) (cf. Proposition 4.1).

Finally, we show that the lengths of these intervals are rate-optimal in a certain sense.

More thorough explanations and rigorous results can be found in Chapter 3. The con-

struction of confidence intervals, a discussion of optimality, as well as aspects concerning

application such as the choice of the test function ψ and visualization methods are given

in Chapter 4.

5



CHAPTER 1. INTRODUCTION

1.3.2 The High-Frequency Setting

As mentioned previously, modern financial data is often sampled at very high-frequencies,

so that there are two options: Either one sub-samples the data (resulting in a loss of infor-

mation, cf. Ait-Sahalia et al. (2005)), or one finds new methods suited to the microstructure

noise model given in (1.2). For our purpose, it turns out that we can construct a high-

frequency analog of our multiscale test using the pre-averaging technique introduced in

Jacod et al. (2009) and refined in Hoffmann et al. (2012):

In a first step, we compute local averages of the noisy data in (1.2). This reduces the

effect of the noise term by some argument similar to the law of large numbers, while the

continuous martingale term is not affected (up to some small bias). However, the data size

is reduced by this method. It turns out that averaging over intervals of length of order

n−1/2 balances the negative effects of the microstructure noise and the data size reduction,

which corresponds to previous results in the literature. After the pre-averaging procedure,

the multiscale approach developed for the low-frequency setting can be transferred almost

directly up to some technicalities (cf. Theorem 5.5). More details can be found in Chapter

5.

9 10 11 12 13 14 15 16 17 18

113.5
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113.7
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Figure 1.2: FGBL price of May 10th, 2007 (panel 1), and areas of significant increase (x-axis
of panel 2) for different levels of significance (y-axis). The vertical red line at 13.75 refers to the
announcement of not changing the key interest rate. Every interval of increase is indicated gray
and darker regions only refer to intersections of these intervals.
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1.3. MAIN RESULTS OF THIS THESIS

Chapter 6 is devoted to the application of the method in practice. Since there are different

model violations such as jumps in the data or non-equidistant time schemes, we present

different solutions to overcome these difficulties. Afterwards, we turn towards data analysis

in the last part of the chapter, where we exemplarily investigate the volatility of Euro-

Bund-Futures (FGBL) with our method. Here, we find a significant increase of volatility

during some of the monthly press conferences of the president of the European Central

Bank, where changes of the key interest rate are announced. The results for one of these

days (May 10th, 2007) is displayed in Figure 1.2, where regions of significant increase are

displayed for different levels of significance. Here, we observe a significant increase (with

significance level clearly above 90%) at the time of the announcement (1.45 p.m., indicated

by the red vertical line) as well as some less significant increase all over the day. More

thoroughly, we investigate at which days in 2007 the spot volatility at 1.45 p.m. exceeds

the daily average, that is the integrated volatility, significantly and find that this effect

appears more often on days with announcements than on regular trading days.

In Chapter 7, we give an outlook to future work: We motivate an extension to multidi-

mensional volatility estimation (so-called covolatility estimation), which seems to be sur-

prisingly simple. Furthermore, we present an interesting application dealing with testing

of the presence of the leverage effect in financial data.

Most of the proofs and further technicalities are postponed to the Appendices A, B, and

C.
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Chapter 2

Methodology

In this chapter, we will give a short introduction to the theory of martingales and quadratic

variation to provide some tools which are useful later on. Furthermore, we will introduce

some notation we will frequently use.

2.1 Some Preliminaries from Martingale Theory

Throughout this thesis, we consider some Itô process X = (Xt)t∈[0,1], that is X is a semi-

martingale with representation

X = (X0 +
∫ t

0
btdt+

∫ t

0
σsdWs)t∈[0,1],

where W is a Brownian motion and b and σ2 are predictable and almost surely integrable

processes. It will turn out that we can restrict ourselves to the case X0 = bt = 0 almost

surely for all t ∈ [0, 1], that is X is the continuous martingale

(
∫ t

0
σsdWs)t∈[0,1].

Here, the predictable quadratic variation 〈X〉, defined as the unique predictable process,

such that X2 − 〈X〉 is a martingale (cf. Jacod and Shiryaev (2003), Chapter 1, Theorem

4.2), is of particular interest for practical purposes (cf. Jacod and Protter (2011), p.92).

Let us collect some facts about the predictable quadratic variation:

Proposition 2.1. Let X be a martingale with representation X = (
∫ t

0 σsdWs)t∈[0,1] for a

Brownian motion W and some predictable, positive, and square-integrable process σ. Then,

we obtain the following statements:

1. The process 〈X〉 is given by (
∫ t

0 σ
2
sds)t∈[0,1] (cf. for example Jacod and Shiryaev

(2003), Proposition 4.10).

9



CHAPTER 2. METHODOLOGY

2. Let T ∈ (0, 1]. For any adapted partition π = {0 = t0 < · · · < tn = T} with mesh

tending to zero (i.e. inf1≤i≤n ti − ti−1 → 0), the sum

n∑

i=1

(Xti −Xti−1
)2 (2.1)

tends to a limit [X]T in probability uniformly in T . This limit process is called

quadratic variation and coincides with the predictable quadratic variation for contin-

uous martingales (cf. Jacod and Shiryaev (2003), Theorems 4.47 and 4.52). For that

reason, we will use the term “quadratic variation” for both processes synonymously.

3. In Theorem 3.4 of this thesis, we will prove that under certain assumptions on σ2

and π, the uniform convergence of (2.1) is almost sure. Moreover, we see that for

fixed T > 0, the rate of convergence is
√
n, if ti = i

n
.

4. By Itô’s formula (cf. for example Jacod and Shiryaev (2003), Theorem 4.57), we find

the explicit representation

X2
t − 〈X〉t = 2

∫ t

0
σs

∫ s

0
σudWudWs.

Especially the second part of the previous proposition gives us an idea of how to construct

estimators for
∫ b
a g(s)σ2

sds, for some constants a and b, and a real-valued (piecewise smooth)

function g, when we observe X at time points i/n, i = 0, . . . , n: If g is piecewise constant,

the proposition yields that the estimator

n−1∑

i=0

g( i
n
)(X i+1

n
−X i

n
)2 (2.2)

is consistent. If g is (piecewise) sufficiently smooth (for example, if it has finite total

variation), this holds as well, as one can easily check with some approximation arguments.

In the course of this thesis, it will turn out that the estimator in 2.2 is rate-optimal in a

certain sense and that it performs well simultaneous over some class of smooth functions

g.

In the literature on martingale theory, there are various articles concerning probabilistic

bounds on martingales, the so-called martingale inequalities. At this place, we like to state

the Burkholder-Davis-Gundy inequality, which is probably the most prominent one and

will be extensively used in our proofs. A first version was proved in Burkholder (1966).

10



2.2. FURTHER DEFINITIONS AND NOTATION

However, we will use the refined one given in Barlow and Yor (1982), Proposition 4.2:

Proposition 2.2. Let M be a continuous martingale with M0 = 0. Then, for any k ≥ 2,

there exists a constant CB which is independent of M and k, s.t.

E

(
sup

0≤s≤t
Mt

)k
≤ (CBk

1/2)kE〈M〉k/2.

2.2 Further Definitions and Notation

In the following, we consider Hölder classes as parameter spaces. These are defined and

denoted as follows:

Definition 2.3. For some K + 1 ≥ γ > K, K ∈ N, L > 0, T ⊂ R, the Hölder class

H(γ, L, T ) is defined as the class of all functions f : T → R which are K-times continuously

differentiable and satisfy

|f (K)(x) − f (K)(x′)| ≤ L|x− x′|γ−K

for any points x, x′ ∈ T . For convenience, we will write H(γ, L) = H(γ, L, [0, 1]).

For γ = 1, H(γ, L) is known as the class of Lipschitz continuous functions. A prominent

example for non-Lipschitz but Hölder continuous functions are the paths of Brownian

motion or more generally, of Itô processes. For any realization, there exists an L, so that

it is in any class H(γ, L) for γ < 1/2 (cf. for example Steele (2001)). In most examples

from finance, σ2 is an Itô process as well, so that we should keep in mind that from an

practical point of view, we focus on the case γ < 1.

A classical result from nonparametric statistics is the following minimax bound for non-

parametric estimation of a function f in a Hölder space. We will use it as a benchmark to

show rate-optimality of our method.

Proposition 2.4 (cf. for example Tsybakov (2009)). Consider nonparametric estimation

in a Hölder space H(γ, L) for an equidistant design with Gaussian errors, that is observing

Zi = f( i
n
) + ǫi, i = 1, . . . , n, where (ǫi) are i.i.d. centered Gaussian random variables and

11



CHAPTER 2. METHODOLOGY

f ∈ H(γ, L). Then, the optimal rate of convergence is given by:

n− γ
2γ+1 , if we consider L2-loss, and

(
logn
n

)− γ
2γ+1 , if we consider L∞-loss.

Throughout this thesis, we will make use of the following notation, describing the asymp-

totic order of two sequences:

Definition 2.5. Let (an) and (bn) be two real-valued deterministic sequences. Then, we

use the notation

• an = o(bn) or an ≪ bn, if and only if an/bn → 0,

• an = O(bn) or an . bn, if and only if there exists a real number C > 0 with −C <

an/bn < C for all n,

• an ≍ bn, if and only if an = O(bn) and bn = O(an).

If (an) or (bn) are random, we either write the adjunct ”a.s.“ if the statement holds almost

surely, or use the symbols Op and op to indicate that the statement holds in probability.

Note that in both cases the real number C is replaced by a real-valued random variable C

which does not depend on n.

12



Chapter 3

Theory

3.1 Modeling

We consider discrete observations coming from Model (1.1), sampled at time points i
n
,

i = 0, . . . , n, that is we observe

Xi,n =
∫ i

n

0
σsdWs, i = 0, . . . , n. (3.1)

Without loss of generality, we assume thatX0 = 0 and bs = 0 for all s, since we will consider

increments of the observations. As already mentioned in the introduction, the increments

of the drift part
∫
bsds are of negligible small order compared to those of the martingale

part
∫
σsdWs. Furthermore, it is no restriction to consider σ > 0 only, since

∫ t
0 σsdWs and

∫ t
0 |σs|dWs are identically distributed. Therefore, we cannot distinguish between σ and −σ.

A more detailed discussion of these assumptions is given in Jacod and Protter (2011).

In the following chapters, we will refer to this setting as the “low-frequency” or the “pure-

semimartingale“ setting, in contrasts to the ”high-frequency“ or ”microstructure noise“

model, which we will introduce later on (cf. Chapter 5).

3.2 Assumptions

We make the following assumptions on the volatility σ2:

Assumption 3.1 (Assumptions on σ2). Assume that σ2 is a stochastic process which is

adapted to the natural filtration of W and which is Hölder continuous with index γ ∈ (0, 1]

and Hölder constant Lσ2 , that is σ2 ∈ H(γ, Lσ2). Assume further that σ2 is bounded from

13



CHAPTER 3. THEORY

below and above, that is, there exist 0 < σ < σ < ∞ with

σ2 < inf
0≤t≤1

σ2
t ≤ sup

0≤t≤1
σ2
t < σ2.

Remark 3.2. Note that the Hölder continuity assumption is easily met in practice (cf.

for example Heston (1993)). Here, we restrict ourselves to Lσ2 being deterministic but

arbitrary large similarly to the restrictions chosen in Hoffmann et al. (2012).

For γ > 1, all the results are still true, since then, H(γ, Lσ2) ⊂ H(1, L′) for some L′.

However, we will only use Lipschitz continuity in that case. Thus, there is no efficiency

gain from further restricting the parameter space.

Moreover, note the upper bound is a direct consequence of Hölder continuity, while the

lower bounds exists as long as there are no periods without market activity. Admittedly,

this is the minimal requirement for obtaining economic reasonable statements, and is indeed

unavoidable for statistical inference.

In this thesis, we like to give qualitative statements about
∫ t+h
t ψ(•−t

h
)σ2 for some test

function ψ and some (t, h) ∈ [0, 1]2. To obtain these statements, let us introduce a test

based on a multiscale approach. To this end, let ψ be some function with support [0, 1]

and positive and finite L2 norm. We consider the family of functions

{ψt,h =
ψ(•−t

h
)

‖ψ(•−t
h

)‖L2
[0,1]

, (t, h) ∈ Tn}, (3.2)

where ‖ • ‖L2
[0,1]

denotes the L2 function norm on [0, 1] and Tn ⊂ [0, 1]2. Here, t refers to

the location of the considered interval while h plays the role of a bandwidth.

We require the following assumptions on Tn and ψ:

Assumption 3.3 (Assumptions on the set of test functions ψt,h). We assume that ψ is a

test function with suppψ ⊆ [0, 1] and 0 < ‖ψ‖L2
[0,1]

< ∞. Further, we suppose that the total

variation of ψ is finite.

Define

Tn = {(t, h) : 0 ≤ t < t+ h ≤ 1, ln ≤ h ≤ un},

where ln and un are deterministic sequences fulfilling

log3(n)
n

≪ ln ≪ un ≪ log−ǫ(n),

14
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for some ǫ > 1/(2γ).

Some reasonable examples for ψ are discussed in Section 4.1.

3.3 Results

In the following, we consider the test statistic

T
(1)
n,t,h :=

n−1∑

i=0

ψt,h(
i
n
) (Xi+1,n −Xi,n)

2 , (3.3)

where Xi,n are observations from Model (3.1), and ψt,h is chosen according to Assumption

3.3. Observe that for fixed t, h, n,

T
(1)
n,t,h ≈

∫ 1

0
ψt,h(s)σ

2
sds, (3.4)

which is the quantity we like to obtain confidence statements about.

Assume that there exists a collection of estimators (or for theoretical considerations even

oracles) σ̂2
t,h of σ2

t which is uniformly consistent in the sense that

sup
(t,h)∈Tn

|σ̂2
t,h − σ2

t | = O(sn) a.s., (3.5)

with sn = o( log log(1/ln)
log(1/ln)

). We address the problem of finding such an estimator in the next

section.

The following theorem shows how good the asymptotic approximation given in (3.4) is

uniformly in (t, h) ∈ Tn. In particular, it gives a strong invariance principle, that is the

difference between the terms in (3.4) can be a.s. approximated by a sequence of stochastic

processes with known distribution, uniformly in Tn. It can be used to obtain quantiles for

testing purposes (cf. Section 4.1).

For some ν > e, let wh =
√

1
2

log ν
h
(log log ν

h
)−1. This term is needed to calibrate different

scales for application of the following theorem.

Theorem 3.4. Work under Model (3.1), and Assumptions 3.1 and 3.3. Then, there exists

15



CHAPTER 3. THEORY

a sequence of Brownian motions W [n], s.t.

sup
(t,h)∈Tn

wh

∣∣∣∣
T

(1)
n,t,h − ∫ 1

0 ψt,h(s)σ
2
sds

σ̂2
t,h

−
√

2
n

∫ 1

0
ψt,h(s)dW

[n]
s

∣∣∣∣ = O(qn) a.s., (3.6)

where

qn = wlnl
−1/2
n

log(n)
n

+ wunu
γ
n( logn

n
)1/2 + snn

−1/2 log(1/ln)
log log(1/ln)

.

The proof of this theorem may be found in Appendix A.

Remark 3.5. Admittedly, the approximation rate qn in Theorem 3.4 is very slow. However,

if there is prior knowledge of the approximate smoothness of σ2, one may choose ln and un

much closer to each other than demanded by Assumption 3.3. Moreover, the required rate

of convergence of σ̂2
t,h (cf. (3.5)) is a very weak assumption. Especially, it is sub-polynomial

for any choice of ln covered by Assumption 3.3. However, this should also be understood

as a minimal requirement: The third part of the rate of approximation in Theorem 3.4 is

the faster the better the estimator is.

3.4 Choice of the Spot Volatility Estimator

The estimators σ̂2
t,h determine the length of the confidence intervals which result from The-

orem 3.4, cf. Section 4. We decided to formulate the Theorem for very general estimators,

since practitioners might want to choose their own favorite. In particular, any sufficiently

good nonparametric estimator (σ̃2
t )t∈[0,1] of the spot volatility is allowed, which refers to a

collection of estimators which are constant in h. However, the estimators may depend on

h as well, since this gives us the following very natural collection:

Proposition 3.6. Let

σ̂2
t,h := 1

h

n−1∑

i=0

I[t,t+h](
i
n
)(Xi+1,n −Xi,n)2.

Let further un ≪ log−ǫ(n) for some ǫ > 1/γ. Then, the assumption in (3.5) is fulfilled.

Proof. Note that

sup
(t,h)∈Tn

∣∣∣∣σ̂
2
t,h − σ2

t

∣∣∣∣ ≤ sup
(t,h)∈Tn

∣∣∣∣σ̂
2
t,h − 1

h

∫ t+h

t
σ2
sds

∣∣∣∣+ sup
(t,h)∈Tn

∣∣∣∣ 1
h

∫ t+h

t
σ2
sds− σ2

t

∣∣∣∣. (3.7)
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3.4. CHOICE OF THE SPOT VOLATILITY ESTIMATOR

For the first summand, apply Theorem 3.4 with ψ = I[0,1] and the oracle σ̂2
t,h = σ2

t . This

gives us that almost surely,

sup
(t,h)∈Tn

∣∣∣∣whh
1/2σ−2

t

(
σ̂2
t,h − 1

h

∫ t+h

t
σ2
sds

)∣∣∣∣ = sup
(t,h)∈Tn

∣∣∣∣wh
√

2
hn

∫ t+h

t
dW [n]

s

∣∣∣∣ ·
(
1 + o(1)

)

. sup
(t,h)∈Tn

n−1/2wh log1/2( ν
h
) ≍ n−1/2wln log1/2( 1

ln
),

where the last asymptotic inequality is due to the almost sure finiteness of the limiting

statistic proved in Theorem 1 in Schmidt-Hieber et al. (2013). Hence, we obtain

sup
(t,h)∈Tn

∣∣∣∣σ̂
2
t,h − 1

h

∫ t+h

t
σ2
sds

∣∣∣∣ . n−1/2wln log1/2( 1
ln

) sup
(t,h)∈Tn

w−1
h h−1/2σ2

t

≤ σ2(lnn)−1/2 log1/2( 1
ln

) . log−3/2(n) log1/2( 1
ln

),

due to Assumption 3.3. Further, we observe that

log−3/2(n) log1/2( 1
ln

) log( 1
ln

)(log log( 1
ln

))−1 . (log log( 1
ln

))−1 = o(1),

since log( 1
ln

) . log(n).

The second summand in (3.7) is bounded by

∣∣∣∣
1
h

∫ t+h

t
σ2
sds− σ2

t

∣∣∣∣ ≤ 1
h

∫ t+h

t
|σ2
s − σ2

t |ds . 1
h

∫ h

0
sγds = 1

γ+1
hγ ,

where we used Assumption 3.1. Finally, observe that sup(t,h)∈Tn
hγ = uγn ≪ log−1(n).

Again, by log( 1
ln

) . log(n), the proof is complete.

17



CHAPTER 3. THEORY

18



Chapter 4

Inference on Spot Volatility

In this chapter, we like to indicate how to apply Theorem 3.4 to obtain inferential state-

ments on the diffusion. In the following, we choose σ̂2
t,h as described in Proposition 3.6.

4.1 Application of Theorem 3.4

This subsection is strongly connected to the ideas of Dümbgen and Walther (2008) and

Schmidt-Hieber et al. (2013), who developed tests for local features in density estima-

tion without and with deconvolution, as well as to Dümbgen and Spokoiny (2001), who

introduced such results for nonparametric regression.

For any combination (t, h) ∈ Tn, Theorem 3.4 in combination with the triangle inequality

gives us that the a.s. approximation

sup
(t,h)∈Tn

wh

(∣∣∣∣
T

(1)
n,t,h − ∫ 1

0 ψt,h(s)σ
2
sds

σ̂2
t,h

∣∣∣∣−
√

4
n

log ν
h

)
(4.1)

= sup
(t,h)∈Tn

wh
√

2
n

(∣∣∣∣
∫ 1

0
ψt,h(s)dW

[n]
s

∣∣∣∣−
√

2 log ν
h

)
· (1 + o(1)) (4.2)

holds uniformly over Tn. Here, the terms wh and (2 log ν
h
)1/2 are chosen to balance the

influence of the different scales, so that n1/2 times the right hand side is a.s. finite (cf.

Schmidt-Hieber et al. (2013) and Dümbgen and Spokoiny (2001)). Denote the (1 − α)-

quantile of (4.2) by
√

2
n
q1−α. Then, (4.2) implies the following proposition:

Proposition 4.1. Asymptotically,
∫ 1

0 ψt,h(s)σ
2
sds is in the interval

CIt,h =
[
T

(1)
n,t,h −

(√
2
n
q1−α

wh
+
√

4
n

log ν
h

)
σ̂2
t,h, T

(1)
n,t,h +

(√
2
n
q1−α

wh
+
√

4
n

log ν
h

)
σ̂2
t,h

]
(4.3)

with probability 1 − α uniformly in Tn.
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Since suppψt,h ⊆ [t, t + h] and h < un → 0, Proposition 4.1 allows us to make local

statements about σ2. Here, the choice of ψ heavily depends on the quantity of interest.

For a heuristic explanation, assume for the moment that σ2 is m-times continuously dif-

ferentiable. Even though this assumption is not fulfilled in practice, it will yield a good

impression of how to choose ψ.

Let D be a linear differential operator of order p given by

Df =
p∑

k=0

akD
kf,

with Df(x) = d
dx
f(x), for f which is p times continuously differentiable, and for some

k times continuously differentiable functions ak, k = 0, . . . , p, where ap 6≡ 0. Suppose

that we are interested in the local behavior of Dσ2. Let K be a non-negative kernel with

suppK ⊆ [0, 1] and K(i)(0) = K(i)(1) = 0 for all i = 0, . . . , p − 1. Then, we obtain by

integration by parts that

∫ t+h

t
K( s−t

h
)(Dσ2)(s)ds =

∫ t+h

t
(D∗K(•−t

h
))(s)σ2(s)ds, (4.4)

where D
∗ is the formal adjoint of D. Note that

D
∗K(•−t

h
))(s) ∼ h−p(−1)pap(s)K

(p)( s−t
h

),

when h tends to zero (which is the case here, since the upper bound un in Assumption 3.3

tends to zero). Thus, choosing ψ = (−1)pap(s)K
(p) yields simultaneous confidence intervals

as given in (4.3), which in turn can be transformed via (4.4) into confidence intervals CIt,h

for
∫ t+h
t K( s−t

h
)(Dσ2)(s)ds. Note that the scaling term h−p is not relevant here, since ψt,h

is L2-normalized.

Since K is chosen as a kernel and Dσ2 is assumed to be continuous, we may conclude that

with probability 1 −α, for all (t, h) ∈ Tn, there exists an s ∈ (t, t+h) with Dσ2(s) ∈ CIt,h.

The following example will make it more obvious how to use these equations result in

practice:

Example 4.2. Let D be the first derivative operator, that is (Df)(s) = d
ds
f(s). Further,

write CIt,h = [at,h, bt,h]. Then, for any (t, h) with at,h ≥ 0, we may reject the hypothesis

“σ2 is strictly decreasing on [t, t+ h]” simultaneously at level α.
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4.1. APPLICATION OF THEOREM 3.4

This connection between testing and confidence sets is addressed more detailed in Section

4.2.

While a differentiable diffusion σ2 is often of theoretical interest merely, financial spot

volatility is often modeled to be rougher in practice. It is often assumed to be not even

Hölder continuous with smoothness parameter γ ≥ 1
2

(cf. for example the Heston model in

Heston (1993), where σ2 is a continuous semimartingale itself). To understand the results

in this situation, let us first discuss how to choose the kernel appropriately to obtain a

simple interpretation: Consider the setting of Example 4.2. Here, the triangular kernel

ψ△(x) = 4xI[0,1/2](x) + (4 − 4x)I(1/2,1](x) appears suitable, since its derivative is given by

4I[0,1/2](x) − 4I(1/2,1](x). Thus, we may interpret the situation “at,h > 0” as the average of

σ2 on [t, t+ h/2] being significantly larger than the average on [t+ h/2, t+ h], even if σ is

not differentiable. Similar interpretation are possible for higher-order differential operators

as well. For instance, we may choose K, such that its second-derivative is proportional to

I[0,1/4)∪[3/4,1] − I[1/4,3/4), referring to statements about convexity/concavity, or in practice,

changes in the volatility of volatility. This shows that by choosing the kernel in such a way

that D
∗K is as simple as possible, we find simple interpretations of the results relying on

discretized versions of the problem.

Remark 4.3. The Gaussian approximation in the proof of Theorem 3.4 given in Appendix

A (cf. step I in the proof) is useful to obtain the correct penalization for each scale (which

is done by subtraction of
√

2 log ν
h

and multiplication by wh). However, it is dispensable

for practical purposes. Instead, it is more accurate to consider quantiles of the supremum

of weighted sums of centered and normalized χ2 random variables. The proof reveals that

these sums are already distribution-free.

Remark 4.4. In practice, it is useful to imply further restrictions on Tn, such as requiring t

and h coming from the discrete grid Xn := { i
n

: i ∈ N, 0 ≤ i ≤ n}. To reduce running time,

one can also consider only intervals of dyadic length, that is h ∈ {2i

n
: i ∈ N, 0 ≤ i ≤ log2 n},

while t is in Xn again. In any of this cases, Theorem 3.4 holds as well. The only difference

(besides the running time) is the finite performance of detecting features. However, we

like to emphasize that it is not possible to decide which choice of candidate intervals works

better in general, since the performance heavily relies on the respective realization of σ2.

On the one hand, the quantiles of the limiting statistic will be smaller, if we consider some

subset of Tn. This allows us to more easily detect a feature, whose support is of dyadic

length. On the other hand, features of non-dyadic length are possibly not detected at all.
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An even more restrictive assumption would be to consider only those t that have a repre-

sentation t = hk for some k ∈ N and h on the dyadic grid as in the second case. In this

case, each of the considered intervals [t, t + h] is the support of a basis function used in

wavelet decomposition. Thus, Theorem 3.4 gives us a simultaneous hard thresholding rule

for wavelet reconstruction.

In Table 4.1, we compare running times and quantiles of (4.2) for the three scenarios

described above for the choice ψ = I[0,1] and n = 10, 000. Note that the “standard” case

refers to Tn as in Assumption 3.3 with ln = log3
10(n)/n = 0.027 and un = log−1

10 (n) = 1/3.

We observe that running times differ considerably between the three scenarios while the

quantiles appear stable.

4.2 Detection Rates

At this point, we like to discuss how small a certain feature of the spot volatility may be to

keep it detectable. This can also be viewed as a power analysis of the underlying multiscale

test, as we will see in the following. Note that all statements have to be understood as

asymptotic statements, since our result is also only of this nature.

Let ψ be some test function satisfying Assumption 3.3. Let us consider one specific (t, h) ∈
Tn, while we still keep in mind that our confidence statements hold simultaneously in Tn.

Let CIt,h be the confidence interval given in (4.3), that is

CIt,h =
[
T

(1)
n,t,h −

(√
2
n
q1−α

wh
+
√

4
n

log ν
h

)
σ̂2
t,h, T

(1)
n,t,h +

(√
2
n
q1−α

wh
+
√

4
n

log ν
h

)
σ̂2
t,h

]
.

Candidate set Tn ∩ X 2
n h dyadic wavelet supports

Running Time (milliseconds) 1,998.67 26.02 1.13

90%-quantile 1.42 1.11 0.33

95%-quantile 1.72 1.36 0.61

Table 4.1: Simulated quantiles of (4.2) (without the factor (2/n)1/2) for ψ = I[0,1] and n =
10, 000 based on 10, 000 repetitions and the average running time per simulation. The different
columns refer to different choices of candidate sets as described in Remark 4.4.
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Suppose that we are interested in the test problem

H :
∫
ψt,hσ

2 ∈ It,h vs. K :
∫
ψt,hσ

2 6∈ It,h,

for some interval It,h = [ct,h, dt,h] ⊂ R, which contains at least one point. Since CIt,h

is a level-α confidence interval, we can reject H significantly at level α, if It,h ∩ CIt,h is

empty. Obviously, if the truth
∫
ψt,hσ

2 is very close to It,h, a significant rejection of H

is quite unlikely. Thus, the following question arises: How large is the minimal distance

between
∫
ψt,hσ

2 and It,h to guarantee a rejection with probability 1 − β, β ∈ [0, 1], that is

guaranteeing power 1 − β?

To answer this question, observe that

T
(1)
n,t,h ∈

[ ∫
ψt,hσ

2 −
(√

2
n

q1−β

wh
+
√

4
n

log ν
h

)
σ̂2
t,h,

∫
ψt,hσ

2 +
(√

2
n

q1−β

wh
+
√

4
n

log ν
h

)
σ̂2
t,h

]

with probability at least 1 − β, which can be obtained by Proposition 4.1. Thus, if the

distance between
∫
ψt,hσ

2 and It,h is at least

(√
2
n

q1−β

wh
+
√

4
n

log ν
h

)
σ̂2
t,h ≍ n−1/2(− log h)1/2,

we can assure power 1 − β asymptotically. Note that often
∫
ψt,hσ

2 is not directly the

quantity of interest, since it is not scaled properly for the purpose of interpretation. Rather,

one is interested hk
∫
ψt,hσ

2, where k heavily depends on the choice of ψ, as we can see

in the following two examples. They deal with the important special cases of testing the

(weighted) average of σ2 and the variation of σ2 on the interval [t, t+ h]:

Example 4.5 (Testing the (weighted) average of σ2). Suppose that we are interested in

the average

avt,h(σ
2) := 1

h

∫ t+h

t
σ2
sds.

To this end, consider the indicator function ψ = I[0,1], that is ψt,h = h−1/2
I[t,t+h]. Then,

avt,h(σ
2) = h−1/2

∫
ψt,hσ

2,

so that testing whether avt,h(σ
2) ∈ I∗ := [c∗, d∗] for some 0 ≤ c∗ < d∗ ≤ ∞ refers to testing

whether
∫
ψt,hσ

2 ∈ [h1/2c∗, h1/2d∗]. For detecting avt,h(σ
2) 6∈ I∗, it is therefore necessary

that the distance between
∫
ψt,hσ

2 and [h1/2c∗, h1/2d∗] is at least of order n−1/2(− log h)1/2.
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Thus, infu∈I∗ | avt,h(σ
2) − u| must be at least of order (hn)−1/2(− log h)1/2.

Note that in principle, ψ can be any kernel fulfilling Assumption 3.3. This would give us

statements about the weighted average of σ2.

Even more, note that (hn)−1/2(− log h)1/2 is rate-optimal in the following sense:

Suppose that we know the Hölder smoothness γ ∈ [0, 1] of σ2. If we want to draw conclu-

sions about σ2
u for every u in [t, t+h], we must take into account that σ2 may vary in [t, t+h]

by terms of order hγ. Thus, we need a minimum distance of order hγ +(hn)−1/2(− log h)1/2

between the boundary of the hypothesis and the truth. Minimizing this is equivalent to

balancing the rates hγ and (hn)−1/2(− log h)1/2. This gives us the rate-optimal bandwidth

h∗ ≍
(

logn
n

) 1
2γ+1 ,

which turns out to be the same as the rate-optimal bandwidth in nonparametric regression

w.r.t. sup-norm, cf. for example Tsybakov (2009). Furthermore, we obtain

hγ∗ + (h∗n)−1/2(− log h∗)1/2 ≍
(

logn
n

) γ
2γ+1 ,

which is in turn the optimal rate of convergence in nonparametric regression w.r.t. sup-

norm. Here, sup-norm estimation is the appropriate procedure to compare our test with,

since the level of the test is kept simultaneously over Tn.

Remark 4.6. In the previous paragraph, we have seen that a bandwidth of rate h∗ is more

informative than bandwidths of other rates. Therefore, our test of H vs. K is adaptive

over all Hölder classes H(γ, L) with (t,
(

logn
n

) 1
2γ+1 ) ∈ Tn for some t ∈ [0, 1].

However, it is not possible to construct adaptive and rate-optimal uniform confidence bands

with this technique, that is confidence intervals for σ2
s , which are valid simultaneously in

s ∈ [0, 1]. This is indeed a very hard task: According to Low (1997), it is not possible to

construct adaptive and honest confidence bands in nonparametric regression. We conjecture

that this result also applies in our setting: Note that for deterministic σ2, we are in a

situation close to a regression setting (cf. for example the results on asymptotic equivalence

presented in Reiß (2011)). Hence, it is not possible to construct adaptive and honest

confidence bands in that simple case, already. In the more general model, that is assuming

that σ2 is random and possibly depends on the underlying Brownian motion W , there is
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no direct analogon to the honesty condition. However, the uniformity over the underlying

Hölder space is partly expressed in the probability, which is a function on the sigma-algebra

generated by (σ,W ). Therefore, the only hope is that the realizations of σ2, which disturb

the uniformity, lie in a null set, that is they do not occur almost surely.

Example 4.7 (Testing for variation of σ2 via differential operators). This example is a

continuation of Example 4.2. Again, assume that σ2 is in H(p+γ, L), γ ∈ (0, 1), 1 ≤ p ∈ N,

L ∈ R+, that is σ2 is p-times continuously differentiable with Hölder(γ) continuous p-th

derivative. Let D be the p-th derivative operator, that is (Df)(s) = ( d
ds

)pf(s). If we are

interested in statements about the p-th derivative of σ2, we may consider

devpt,h(σ
2) = 1

h

∫ t+h

t
K( s−t

h
)Dσ2

sds

for (t, h) ∈ Tn and some kernel K fulfilling the conditions in Section 4.1. By integration

by parts as described in Section 4.1, we can choose ψ, so that

devpt,h(σ
2) = h−p−1/2

∫ t+h

t
ψt,h(s)σ

2
sds. (4.5)

Thus, we may proceed as in the previous example: Inverting the confidence bands gives

us a test of the hypothesis H : devpt,h(σ
2) ∈ I for some interval I. Combining (4.5) and

the length of the confidence bands in (4.3), infu∈I | devpt,h(σ
2) − u| must be at least of order

(hn)−1/2h−p(− log h)1/2 to ensure (correct) rejection of the hypothesis.

Furthermore, since Dσ2 is Hölder(γ) continuous, pointwise detection of features of Dσ2 is

only possible if they exceed hγ + (hn)−1/2h−p(− log h)1/2. This term is minimized by

h∗ ≍
(

logn
n

) 1
2(γ+p)+1 ,

yielding a detection rate of

hγ∗ + (h∗n)−1/2h−p
∗ (− log h∗)

1/2 ≍
(

logn
n

) γ
2(γ+p)+1 .

These rates coincide with the optimal bandwidth and convergence rates for nonparametric

estimation of the derivative of a regression function w.r.t. sup-norm (cf. for example

Donoho (1994), corollary of Theorem D).
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CHAPTER 4. INFERENCE ON SPOT VOLATILITY

4.3 Visualization and First Data Examples

So far, we have constructed confidence intervals, which can be used for further computa-

tions. However, the set of confidence intervals

{(t, t+ h, inf CIt,h, supCIt,h) : (t, h) ∈ Tn}

is very complex if the cardinality of Tn is large. Therefore, it is crucial to find a good

visualization of this set.

In this section, we like to present and compare four different approaches to this aim: (a)

The minimal lines approach presented in Dümbgen and Walther (2008) and more detailed

the minimal rectangle approach in Schmidt-Hieber et al. (2013), (b) a level set plot coming

from the projection of this rectangles to the x-axis, (c) a visualization of the degree of

rejection, and (d) illustration methods using moving pictures.

(a) The probably most intuitive way of visualization is to draw two-dimensional rectan-

gles with vertices

(
(t, inf CIt,h), (t+ h, inf CIt,h), (t+ h, supCIt,h), (t, supCIt,h)

)
,

for every (t, h) ∈ Tn. This approach appears to be especially useful for simultaneous testing

(Df)(s) > 0 for all s ∈ I ∈ I (4.6)

for some differential operator D, some intervals I, and a collection of those intervals I.

In this case, rejection of the hypothesis on a small interval I already implies rejection

on any superinterval of I, so that the huge collection of rectangles can be reduced to a

hopefully small set of minimal rectangles containing all the information regarding the test.

This reduction is more generally discussed in Schmidt-Hieber et al. (2013). As a further

reduction, it is often enough to draw an indicator line from t to t + h implying that the

lower bound of the rectangle is larger than zero (that is projecting the rectangle to the

x-axis) instead of drawing the whole rectangle.

However, our procedure (as well as the ones presented in Dümbgen and Walther (2008)

and Schmidt-Hieber et al. (2013)) only tests if the (weighted) average of Df on a interval is
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Figure 4.1: Observed Itô process (panel 1) and unobserved diffusion (panel 2) following Model
(4.7) as well as visualizations (panels 3-5) of intervals where σ2 is significantly increasing in
average (at level α = 5%). Here, panel 3 displays all rectangles which are strictly above the
x-axis, panel 4 contains the sufficient reduction for testing (4.6), and in panel 5, each sufficient
rectangle is projected to a line from t to t+h. Note that in the last case, the y-values are without
any relevance.
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positive. Pointwise statements as in (4.6) are obtained afterwards via mean value theorem.

For this purpose, it is necessary to assume continuity of Df , which is a common assumption

in density estimation but not in financial practice. Here, the expression Dσ2 does generally

not even exist. Therefore, for volatility inference, one is interested in the weighted averages

themselves. This thwarts the attempt to reduce the set of rectangles to an informative

subset suitable for visualization.

Nevertheless, we depict the method of rectangles and its reductions in Figure 4.1 using

simulated data following the Heston model (cf. Heston (1993) and the survey in Chapter

7 of Č́ıžek et al. (2005)), that is we assume that σ2 is a semimartingale itself possibly

correlated with the driving Brownian motion W . More precisely, we consider

dXt = −1

2
σ2
t dt+ σtdWt,

dσ2
t = κ

(
θ − σ2

t

)
dt+ ǫσtdW̃t,

(4.7)

where the W and W̃ are Brownian motion with (constant) correlation E(W1W̃1) = ρ ∈
(−1, 1). We choose the parameters

ρ = −2/3, θ = 10−5, κ = 4, ǫ =
√
κθ = 2 · 10−5/2. (4.8)

Further, we choose n = 1, 000 and our goal is to identify intervals where σ2 is increasing in

average significantly at a simultaneous level of 5%. To this end, we used ψ ∝ I[0,1/2)−I[1/2,1].

The 95%-quantile 1.74 is obtained via 10, 000 Monte-Carlo simulations, whose empirical

distribution function is given in Figure 4.2.

As a result, we see that the reduced set of rectangles yields an easily understandable and

quite clear graphic (at the expense of a loss of information). Surprisingly, the apparently

large increase in the first half of the data is not declared significant, while the comparably

small increase at the end is. This can be explained by the fact that in Theorem 3.4, the

approximation error is divided by the estimator σ̂2
t,h to obtain a distribution-free limit.

Therefore, our method detects an increase if it is large relatively to the actual value of the

diffusion.

(b) As we have seen, reduction may cause a loss of information on large scales, if we are

interested in the averages themselves. Therefore, we like to propose a different approach:
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Figure 4.2: Empirical distribution function of 10, 000 simulations of the supremum over the
penalized limit process (cf. (4.2)) with ψ ∝ I[0,1/2) − I[1/2,1].
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Figure 4.3: Observed Itô process (panel 1), unobserved diffusion (panel 2), and level set plot
(panel 3).

For each point s ∈ [0, 1], let R(s) be the number of intervals containing s on which the

hypothesis is rejected. Displaying the level sets of this function as a one-dimensional gray-

scale plot gives a reasonable overview over all intervals which are rejected. Figure 4.3 shows

the level set plot for the data considered in (a).
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This method obviously suffers from a loss of information, since one cannot determine in

retrospect on which interval a rejection took place. Moreover, the viewer might get the

impression that darker regions respond to heavier increases. Although this implication

is often correct, it is not true in general. Therefore, the different gray-scales have to be

considered as an indication to distinguish between different intervals and not as an indicator

for the size of the increase.

Besides these drawbacks, this method gives a very clear intuition if and where something

happened, and therefore, if the user should take a closer look at the original confidence

intervals. Especially, large intervals are not omitted as it is often done in the minimal

rectangle procedure.

(c) In Method (b), we lose the information how large a certain violation is. If we consider

a test problem
∫
ψt,hσ

2 > 0, we can think of a 2-dimensional plot, displaying level set plots

(x-axis) for different choices of quantiles (y-axis). Note that these quantiles can directly

be transferred to p-values (cf. Figure 4.2).

Fortunately, there is a.s. no loss of information (up to the null set that the supremum of

the penalized test statistic as given in (4.1) is attained at two different intervals (t, t+ h)):

By finding and subtracting the highest peak consecutively, we can theoretically recover

the original confidence intervals. However, this can hardly be done by eye, so that the

resulting plot requires a careful interpretation.

The huge advantage of this method is that the user obtains quantitative statements in

terms of p-values, while the methods proposed in (a) and (b) only contains statements for

a fixed significance level α.

The resulting image is given in Figure 4.4. It proves our visual impression that there is

some increase in the first half of the data. Here, we see that it can be detected with

significance 7% or below.

(d) The main difficulty in visualization is the aim of presenting a lot of information while

trying to avoid a loss of information. In our opinion, the best way to solve this problem

is to consider multidimensional approaches, such as movies or graphical user interfaces

(GUI). These methods offer the chance of splitting information into small, “local” parts,

which are understandable for the user.

30



4.3. VISUALIZATION AND FIRST DATA EXAMPLES

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4
x 10

−5 Diffusion

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−5

0

5
x 10

−3 Ito Process

 

 

0  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1  

1.74
1.47
1.14

Figure 4.4: Observed Itô process (panel 1), unobserved diffusion (panel 2), and intervals of
significant increase in average (panel 3). In panel 3, the y-axis gives different quantiles of the
(4.2), that is the supremum over the limiting process. For any of this values, the gray regions
indicate intervals on which the test statistic is greater than the respective quantile. The quantiles
corresponding to type-I-errors α = 5%, 10%, 20% are indicated by the dashed lines.

A possible solution would be to localize the level set plots in the following sense: In the

construction described in (b) or (c), we replace R by the local functions

Ru(s) = #{[t, t+ h] : s ∈ [t, t+ h], u ∈ [t, t+ h], Hypothesis is rejected on [t, t+ h]},

where u takes values [0, 1]. In this case, Ru carries all the information contained in R which

is connected to the process at time u. Considering u as the time variable of a movie will

give us some clear local information about the diffusion.
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Chapter 5

Extension to High-Frequency Data

5.1 Motivation

As we mentioned in the introduction, high-frequently sampled data cannot be explained

well enough by a semimartingale model. Before turning to a more general model and to

theory within this new model, we like to verify the inadequacy of the simple model on the

basis of prices of Euro-Bund-Futures (FGBL).

The FGBL price of August 1st, 2007 is displayed in Figure 5.1. In the magnification in the

bottom of the plot, we observe that the process only takes very discrete values and seems

to vary a lot on small scales.

Additionally, classic quadratic variation based methods fail for the data (cf. for example

Figure 1.1 in the Introduction).

To overcome these problems, Hasbrouck (1993) (among others) suggested to integrate an

additive noise term into the model, the so-called microstructure noise.

5.2 Modeling

Instead of considering data from Model (1.1) corrupted by additive noise, we assume that

we observe the whole process (Yt)t∈[0,1] described by

dYt = Xtdt+ τn−1/2dW ∗
t , t ∈ [0, 1], (5.1)

1Figure 1.1 is taken from Sabel et al. (2014)
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Figure 5.1: FGBL data for August 1st, 2007, and magnification of the time interval from 1
p.m. to 2 p.m.

where X is the process given in (1.1) (w.l.o.g., assume again X0 = 0 and b ≡ 0), τ > 0 is

the standard deviation of the noise and W ∗ is Brownian motion, independent of X and σ.

Remark 5.1. Under the assumption that σ is a process, such that X is conditionally on σ

a Gaussian process, it is proved in Reiß (2011) that this model is asymptotically equivalent

in Le Cam’s sense to observing discrete data

Yi,n = Xi/n + τǫi, i = 1, . . . , n, (5.2)

where ǫ is Gaussian white noise. Roughly speaking, this means that any decision procedure

based on Model (5.1) can asymptotically be imitated by a procedure based on Model (5.2)

without losing information, and vice versa. A more rigorous definition is given in Le Cam

and Yang (1990).

Here, we choose Model (5.1), since it is easier to handle for our purpose since it avoids

discretization effects.

Remark 5.2. τ may be random and non-constant, in general. However, one can estimate
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it very precisely from the data via quadratic variation (for example, an n−β/(2β+1)-rate

is achievable if τ is in a bounded Sobolev ellipsoid of smoothness β > 1, cf. Munk and

Schmidt-Hieber (2010)) and is therefore of minor importance for the scope of this thesis.

Thus, we assume that τ is a known constant in order to keep the proofs as simple as

possible.

5.3 Results

In the following, we work under Model (5.1). To handle the additional noise, we will use

the pre-averaging approach introduced in Jacod et al. (2009) and refined in Hoffmann et al.

(2012). Loosely speaking, we will compute local averages of the data, reducing the impact

of the noise process while not affecting the continuous martingale part. More thoroughly,

let us recall the definition of a normalized pre-average function:

Definition 5.3. A piecewise Lipschitz continuous function λ : R → R with support in

[0, 1], satisfying λ(t) = −λ(1 − t) for all t ∈ [0, 1
2
], and

∫ 1

0

( ∫ s

0
λ(u)du

)2
ds = 1 (5.3)

is called a (normalized) pre-average function.

For some normalized pre-average function λ, consider its (negative) anti-derivative Λ(s) =

− ∫ s
0 λ(t)dt. For some m = m(n) with 1 ≪ m ≪ n, let λi = mλ(m • −i), i = 0, . . . , m− 1

and Λi = Λ(m • −i). We introduce the pre-averaged values

Y i,m : =
∫ 1

0
λi(s)dYs =

∫ 1

0
λi(s)Xsds+ τn−1/2

∫ 1

0
λi(s)dW

∗
s

=
∫ i+1

m

i
m

Λi(s)σsdWs + τn−1/2
∫ i+1

m

i
m

λi(s)dW
∗
s ,

(5.4)

where the third equality is valid due to integration by parts and the symmetry assumption

λ(t) = −λ(1 − t) (implying in particular that Λ(1) = 0).

Remark 5.4. Note that our pre-averaging procedure produces independent pre-averaging

values, if σ is deterministic. This relies on the fact that the i-th pre-averaged value only

depends on data from the interval [ i
m
, i+1
m

], while in the literature, data from [ i
m
, i+2
m

] is
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considered, that is the support of the pre-average values overlaps. This further reduces

the impact of microstructure effects at the expense of a small negative influence of the

dependency. For example, consider estimation of integrated volatility with pre-averaging

function λ(s) =
√

2π cos(πs), when σ is a deterministic constant. In the case of overlap-

ping pre-averaged values and for optimally chosen m, the respective asymptotic MSE is ap-

proximately 10.21τn−1/2σ3 by Lemma 6 in Schmidt-Hieber (2010). With the pre-averaging

procedure described in (5.4) and again choosing m optimal for this procedure, we obtain

an asymptotic MSE of approximately 19.35n−1/2τσ3 by some calculations analogously to

the proof of that lemma. Despite of this drawback in performance, our definition of pre-

averaged values allows us to construct a limiting distribution as it is done in Theorem 5.5,

since the additional dependency would cause severe problems in several steps of the proof.

In (5.4), it becomes clear why the normalization of the pre-average function is chosen as in

Definition 5.3 assuring
∫

Λ2
i = m−1. This allows us to consider mΛ2

i as a kernel. Therefore,

the compensator of (
∫

ΛiσdW )2, which is given by
∫ i+1

m
i

m

Λ2
i (s)σ

2
sds, equals approximately

σ2
i/m/m. This gives us reasons to approximate

∫
ψt,hσ

2 by the weighted sum of the squared

pre-average values:

We consider the test statistic

T
(2)
n,t,h :=

m−1∑

i=0

ψt,h(
i
m

)
(
Y

2
i,m − b(Y, i,m, n)

)
,

where

b(Y, i,m, n) := τ 2n−1
∫ i+1

m

i
m

λ2
i (s)ds

plays the role of an unavoidable bias correcting term compensating the expectation of the

squared noise.

Note that

T
(2)
n,t,h = Tσ2 + 2Tστ + Tτ2 , (5.5)

where

Tσ2 = Tσ2(t, h,m) :=
m−1∑

i=0

ψt,h(
i
m

)
( ∫ i+1

m

i
m

Λi(s)σsdWs

)2
,
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Tστ = Tστ (t, h, n,m) :=
m−1∑

i=0

ψt,h(
i
m

)
∫ i+1

m

i
m

Λi(s)σsdWsτn
−1/2

∫ i+1
m

i
m

λi(s)dW
∗
s ,

Tτ2 = Tτ2(t, h, n,m) :=
m−1∑

i=0

ψt,h(
i
m

)τ 2n−1
(( ∫ i+1

m

i
m

λi(s)dW
∗
s

)2 −
∫ i+1

m

i
m

λ2
i (s)ds

)
.

Unfortunately, these terms depend on different powers of σ. Therefore, dividing by σ̂2
t,h

as in Theorem 3.4 does not result in a limiting distribution not depending on unknown

quantities. On the contrary, we have to approximate each of the terms separately, cf.

Theorem 5.5. These results can afterwards be combined using Bonferoni’s inequality to

obtain confidence statements (cf. Corollary 5.9 and Chapter 6).

Theorem 5.5. Work under Model (5.1), and Assumptions 3.1 and 3.3. If γ < 1/2, also

assume that um ≪ m−1+2γ−ǫ for some ǫ > 0. Further, suppose that there is a collection

of estimators (σ2
t,h) which are uniformly and almost surely consistent in the sense of (3.5)

with n replaced by m.

Then, there exist sequences of Brownian motions W [n],m,i, i = 1, . . . , 3, so that we find the

almost sure approximations

a.) sup
(t,h)∈Tm

wh

∣∣∣∣
Tσ2 − ∫ 1

0 ψt,h(s)σ
2
sds

σ̂2
t,h

−
√

2
m

∫ 1

0
ψt,h(s)dW

[n],m,1
s

∣∣∣∣ = O(qn,m1 ),

b.) sup
(t,h)∈Tm

wh

∣∣∣∣
Tστ
σ̂t,h

− τ‖λ‖L2
[0,1]

√
m
n

∫ 1

0
ψt,h(s)dW

[n],m,2
s

∣∣∣∣ = O(qn,m2 ),

c.) sup
(t,h)∈Tm

wh

∣∣∣∣Tτ2 −
√

2τ 2‖λ‖2
L2

[0,1]

m3/2

n

∫ 1

0
ψt,h(s)dW

[n],m,3
s

∣∣∣∣ = O(qn,m3 ).

Here, the specific approximation rates qn,mi tend to zero if n ≥ m → ∞, and are given by

qn,m1 = wlml
−1/2
m

log(m)
m

+ wum(uγm( log(m)
m

)1/2 + u1/2
m m−γ) + smm

−1/2 log(1/lm)
log log(1/lm)

,

qn,m2 = wlml
−1/2
m

log(m)

n1/2 + wumu
γ
m(m log(m)

n
)1/2 + smm

1/2n−1/2 log(1/lm)
log log(1/lm)

,

qn,m3 = wlml
−1/2
m

m log(m)
n

.

A proof of the Theorem is given in Appendix B. Note that it heavily relies on the proof of

Theorem 3.4 given in Appendix A.

Remark 5.6. The restriction um ≪ m−1+2γ is necessary for the approximation of
∫
ψt,hσ

2

by
∑
i

∫
ψt,hΛ

2
iσ

2, since the approximation error is given by u1/2
m m−γ up to logarithmic
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terms. Note that this is an unavoidable artifact coming from the pre-averaging procedure.

Fortunately, m−1+2γ is larger than the optimal regression bandwidth (logm/m)1/(2γ+1) for

any γ > 0 (cf. Remark 4.6). Therefore, if we know the smoothness of σ, the assumption

um ≪ m−1+2γ is not restrictive. Moreover, if we do not know the exact smoothness, we may

choose um as m−1+2γ0 for some 0 < γ0 < 1/2. Then, the optimal bandwidth is included

in Tm for every γ ∈ (γ0, (γ0/(1 − 2γ0)). These intervals are the same as the regions of

adaptivity given in Theorem 3.4 in Hoffmann et al. (2012).

Remark 5.7. As described in various publications regarding high-frequency data, the prob-

lem of estimating in this scenario with n observations is as hard as estimating in the pure

semimartingale model without microstructure noise from
√
n observations (cf. for example

Gloter and Jacod (2001a,b), Jacod et al. (2009), or Reiß (2011)). In Theorem 5.5, this is

reflected in the fact that the terms qn,mi , i = 1, . . . , 3, as well as the terms Tσ2 , Tστ , and

Tτ2, are only balanced if m is of order n1/2.

Remark 5.8. The estimator σ2
t,h can be constructed analogously to Proposition 3.6 if m ≍

n1/2.

To obtain confidence statements from Theorem 5.5, the following corollary is helpful:

Corollary 5.9. Under the Assumptions of Theorem 5.5, we obtain a.s. that

sup
(t,h)∈Tm

wh

∣∣∣∣
(
T

(2)
n,t,h −

∫ 1

0
ψt,h(s)σ

2
sds

)

− σ̂2
t,h

√
2
m

∫ 1

0
ψt,h(s)dW

[n],m,1
s

− 2σ̂t,hτ‖λ‖L2
[0,1]

√
m
n

∫ 1

0
ψt,h(s)dW

[n],m,2
s

−
√

2τ 2‖λ‖2
L2

[0,1]

m3/2

n

∫ 1

0
ψt,h(s)dW

[n],m,3
s

∣∣∣∣ = O(qn,m1 + qn,m2 + qn,m3 ).

(5.6)

Again, the proof is postponed to Appendix B.
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Chapter 6

Application to Financial Data

In order to apply the presented procedure to real data, parameters have to be chosen

adequately to guarantee a good performance in a finite setting, as all results have been of

asymptotic nature, so far. Furthermore, different difficulties concerning model violations

occur in practice. In this chapter, we will address these problems and show exemplarily

how to use our method for high-frequency financial data. Note that parts of Section 6.3 as

well as the data description and the overview of existing literature in Section 6.4 coincide

with Sabel et al. (2014).

6.1 Model Discretization

In finance, the observable price of an underlying changes only when it is traded. Therefore,

it is not possible to observe data in continuous time as it is done in Model (5.1), but only

on a discrete grid. As described in Remark 5.1, we consider in the following a discrete

version of our theoretical model, that is data Yi,n from Model (5.2). In this model, the

pre-averaged values are given by

Y i,m := 1
n

∑

j:
j
n

∈
[
i
m
,
i+1
m

) λi(
j
n
)Yj,n, i = 0, . . . , m− 1.

This definition coincides with the definition given in Hoffmann et al. (2012), up to the fact

that intervals are overlapping there (cf. Remark 5.4).

6.2 Parameter Optimization

Our procedure requires to choose a pre-averaging function λ and a pre-averaging “band-

width” 1/m. The specific choices will heavily influence the finite sample performance and
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even the asymptotic behavior as we can see in the approximating terms in Theorem 5.5.

Before choosing m and λ, let us show how to construct confidence intervals using Theo-

rem 5.5 and Corollary 5.9. Afterwards, we will give a reasonable choice for m based on

minimizing the length of these intervals.

For zm,n,t = σ̂2
t,h

√
2
m

+ 2σ̂t,hτ‖λ‖L2
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√
m
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+
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, we obtain by Theorem 5.5
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Denote the (1 − α)-quantile of

sup
(t,h)∈Tm

wh
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0
ψt,h(s)dW

[n],m,1
s

∣∣∣∣−
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)

by q1−α. Then, Bonferoni’s inequality in combination with (6.1) yields that

lim
n→∞

P

( ⋃

(t,h)∈Tm

{wh
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n,t,h −

∫ 1

0
ψt,h(s)σ

2
sds

∣∣∣∣− zm,n,t
√

2 log ν
h

)
≥ zm,n,tq1− α

3
}
)

≤ α.

Thus, simultaneous level-α confidence intervals for
∫ 1

0 ψt,hσ
2 are given by

[
T

(2)
n,t,h − zm,n,t

( q1−
α
3

wh
+
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2 log ν
h

)
, T

(2)
n,t,h + zm,n,t

(q1−
α
3

wh
+
√

2 log ν
h

)]
. (6.2)

Note that the length of the confidence intervals is determined by h and zm,n,t. Therefore,

we would like to choose m locally (that is mt(n) as a function in t and n) as the largest

integer lower than the minimizer of zm,n,t. This is given by mt(n) =
[
c
σ̂t,h

τ
n1/2

]
, where

c = c(λ) = 2√
2+

√
14

‖λ‖−1
L2

[0,1]
and [·] is the Gauss bracket. As we need a global choice of
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m = m(n), that is one not depending on t, we define in the following

m :=

[
c(
∫̂
σ2)1/2τ−1n1/2

]
,

where
∫̂
σ2 is any estimator of the integrated volatility. We will use the one presented in

Hoffmann et al. (2012), here.

Different choices for λ are discussed in Schmidt-Hieber (2010), and more extensively in

Sabel et al. (2014). In our case, minimizing zm,n,t in λ is equivalent to minimizing ‖λ‖L2
[0,1]

in the class of all pre-average functions. This can be done via calculus of variation, and we

obtain
√

2π cos(π•) as the optimal pre-average function. In this case,

c = 2√
2+

√
14
π−1 ≈ 0.12.

Let us conclude with some remarks:

Remark 6.1. The choice of m assures a minimal length of the resulting confidence inter-

vals. However, in practice, people might be interested in being robust against microstructure

effects by choosing m smaller than optimal. This decreases the impact of microstructure

noise, while it increases the variance of the signal part. In our setting, it can simplify the

implementation of the test: Consider for example m ≪ n1/2. Then, the terms Tστ and

Tτ2 are negligible, such that the testing procedure can be applied in complete analogy to the

non-high-frequent semimartingale case.

Remark 6.2. Dividing α into three equal parts as done above is not necessary for Bon-

feroni’s inequality. Instead, one can choose αi > 0, i = 1, . . . , 3 with α1 + α2 + α3 = α to

balance the three summands of zm,n,t. However, there is no closed form for the quantiles,

making optimization difficult.

Remark 6.3. The choice
√

2π cos(π•) as optimal pre-average function is due to asymptotic

considerations. Especially for small sample sizes, this function might be outperformed by

other ones. In Sabel et al. (2014), it is argued that
√

8/3π sin(2π•) is a better choice

for estimation if one considers FGBL data. However, this might partly be a result of the

overlapping pre-average procedure as described in Remark 5.4.
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6.3 Difficulties in Practice

While the semimartingale model (Model (1.1)) describes non-high-frequent data quite well,

the high-frequency model (5.2) can only be viewed as an idealized model which is close to

reality in many but not in all purposes.

In order to handle real data, there are some problems to overcome:

1. Rounding errors: Due to discreteness of prices, rounding errors are inevitable in

practice. Unfortunately, these errors are not independent of the price itself and

thereby not covered by the microstructure noise model. However, we show in Table

6.1 that these errors are absorbed by pre-averaging as well.

2. Discontinuities: While we assume the latent log-price X to be continuous in time,

in practice, micro- or macroeconomic announcements may cause jumps in the price

process. The presence of such jumps is discussed in Ait-Sahalia and Jacod (2009),

Bollerslev and Todorov (2011), Ait-Sahalia et al. (2012), and the references therein.

Unfortunately, the presence of jumps is indeed a very delicate problem: Figure 6.2

shows that jumps severely change the reconstruction of σ2 in spot volatility estimation

using the adaptive spot volatility estimator (ASVE) given in Sabel et al. (2014). As

the estimator is based on a Haar wavelet deconvolution, that is on integrals over

(dyadic) intervals, it seems reasonable that jumps disturb our aim to find confidence

bands for integrals over different intervals as well. In order to eliminate jumps in

the price, we apply a pre-processing procedure to the data, described in Subsection

6.3.1. Note that this should be viewed as a data cleaning method, as we attach more

importance to practical purposes than to mathematical accuracy. The performance

of this procedure is presented in Table 6.1.

3. Trading times: We have to deal with data recorded at non-equidistant time points.

One possibility to ’convert’ data into the equispaced framework of model (5.2) is to

sub-sample the process, that is to sample for example every tenth second. However,

this clearly results in a loss of information. Therefore, we propose another method

by defining different time schemes distinguishing between real time and tick time in

Subsection 6.3.2.
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Figure 6.1: FGBL data of November 2nd, 2007 and magnification of a small time interval
around 1.30 p.m., where multiple consecutive jumps occur in the price process.

6.3.1 Model Violations

As discussed above, the continuity assumption in the model is often too strict in reality.

The most natural way to include a jump component into the model is to allow for non-

continuous semimartingales. Estimation of the integrated volatility under microstructure

noise and jumps has been considered for instance in Podolskij and Vetter (2009).

In order to correct for jumps, we adopt a rather practical point of view here. In fact,

looking at financial data, relevant jumps seem to occur very irregularly. Occasionally,

there are isolated jumps, while quite rarely, jump clusters of very short duration appear

(cf. Figure 6.1). Therefore, our aim in this section is a hands-on approach to detect and

to remove possible jumps as a pre-processing of the data.

As usual, we model jumps as an additive càdlàg jump process (Jt)t∈[0,1]. If jumps are

present, any estimator ignoring these jumps will reconstruct the pointwise sum of the spot

volatility plus the jump process t 7→ (Jt − Jt−)2, where Jt− denotes the left limit of J at

time point t. Note that (Jt−Jt−)2 is either zero or produces a spike depending on whether

there is a jump at time point t (cf. Figure 6.2, Panel 2). As our results can be seen as

confidence bands for integrals of such an estimator, the bumps in the reconstruction, which

are results of jumps, transfer directly to these integrals. In order to separate spot volatility

and jump part, we apply the following method:
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Let m1 = ⌊n3/4⌋ and λ be a pre-average function. For r = n
m1
, . . . , n− n

m1
, define

Qr :=

r+ n
m1∑

j=r− n
m1

λ
(

1
2

+ (j − r)
m1

2n

)
Yj,n. (6.3)

If there is no jump in [r − n
m1
, r + n

m1
], then Qr = oP (1). Under the alternative, that is

there is a jump with height ∆r at r/n, we obtain Qr = OP (∆r). Note that by some CLT

argument, Qr is approximately Gaussian distributed. Therefore, we may apply a procedure

mimicking a local t-test:

1. We partition the set {Qr : r = n
m1
, . . . , n− n

m1
} into blocks of length n1/2.

2. For each of these blocks, we compute the mean µ̂ and the standard deviation ŝd.

3. For each Qr in a block, we compare (Qr − µ̂)/ŝd with a fixed threshold t, rejecting

values larger than t. Here, simulations show that t = 3.5 performs well for FGBL

data (cf. Table 6.1).

Afterwards, we reject those pre-averaged value Y i,m, whose supports intersect the support

of a Qr which is rejected by the procedure. The rejected pre-averaged values are replaced

by the average of the nearest neighbors which are not rejected.

This procedure ensures that isolated jumps are detected. However, we sometimes observe

in real data that there are consecutive jumps within a short time period (cf. FGBL data

of November 2nd, 2007 in Figure 6.1 as an example). This may result in acceptance of

the hypothesis that there is no jump, since every single jump might be not high enough

in comparison to the estimated variance of Qr. However, it is high enough to disrupt

any inference procedure severely. To overcome this problem, we introduce a second data

cleaning procedure which directly compares increments of the observations and is more

suitable to detect jump clusters.

From our data sets, we find that the level of the microstructure noise, that is τ , remains

almost constant over a day. Thus, to explain the test, we might assume that τ is constant.

Then,

Yi,n − Yi−1,n = τ(ǫi/n − ǫ(i−1)/n) +OP (n−1/2) ≈ τ(ǫi/n − ǫ(i−1)/n),
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Figure 6.2: Simulated data (Panel 1) coming from the Heston model with parameter choices
given in (4.8) for n = 15, 000 and true signal-to-noise-ratio ≈ 15 − 20 with two artificial jumps at
0.4 and 0.5, the true spot volatility function (gray, solid line, Panel 2 and 3) and the adaptive spot
volatility estimator (ASVE) from Sabel et al. (2014) neglecting the presence of jumps (dashed
line, Panel 2) and automatically finding and correcting the jumps (dashed line, Panel 3).

if there is no jump. Additionally, we observe that the distribution of the noise is well-

concentrated around zero, justifying the assumption of Gaussian (or even sub-Gaussian)

noise. Using Corollary 2.1 in Li and Shao (2002), we find the following behavior regarding

extreme values:

lim
n→∞

P( max
i=2,...,n

(ǫi/n − ǫ(i−1)/n)2 ≤ 4τ 2 log n) = 1.

Consequently, we identify the difference Yi,n − Yi−1,n as due to a jump, if the squared

increment exceeds 4τ 2 logn. Note that the latter procedure is much less powerful for

isolated jumps than the first one, since it cannot detect jumps of size oP (log n). However,

application proves that this data cleaning is very helpful to obtain robust results.

Figure 6.2 exemplarily displays the effects of jumps and the success of the procedure for one

simulated price, following the Heston model (cf. (4.7)). Here, we want to emphasize again

that the results directly transfer from estimation to confidence intervals, so that Figure

6.2 should be seen as a visualization. More thoroughly, the performance is displayed in

Figure 6.3. Here, we simulated high-frequency data with constant volatility σ2 = 10−5,
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Figure 6.3: Success of the jump detection and impact of jumps: Simulation study based on
1, 000 repetitions of Model (5.1) with constant volatility σ2 = 10−5, n = 10, 000, τ = 5 · 10−5,
and one jump added to the log-price at 0.5. The jump height varies along the x-axis. The circles
correspond to the estimated probabilities at which a jump of certain height is detected. Neglecting
the presence of jumps, the asterisks represent the estimated probability of falsely rejecting (at
level α = 10%) the hypothesis that the volatility is constant, conditionally on the event that the
hypothesis would not have been rejected without the added jump.

Percentage of rejection pure price rounded price price with jump

with jump detection 0.119 0.119 0.125

without jump detection 0.112 0.112 0.217

Table 6.1: Simulated actual levels (for nominal level α = 10%) based on 1, 000 repetitions of
Model (5.1) with constant volatility σ2 = 10−5, n = 10, 000, and τ = 5 · 10−5. In the fourth
column a jump of height 0.0004 is added to the log-price at 0.5.

n = 10, 000, and noise level τ = 5 · 10−5. The values are chosen to mimic the signal-to-

noise ratio of FGBL data, which we use later on. Afterwards we add a jump at 0.5 to the

data. The different heights of the jump are displayed at the x-axis, while the corresponding

circles show how often the jump was found by the procedure. Moreover, we provide some

information about the influence of an ignored jump: Skipping the jump detection, we

investigate the percentage of false rejections (at level α = 10%) of the hypotheses that the

volatility is constant, conditionally on the event that the hypothesis would not have been

rejected without the jump. The estimated values are given by the asterisks in Figure 6.3.

As a result, we observe that our procedure performs well whenever the jump size is large

enough to severely inflate the level of the testing procedure.
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The impact of the jump detection procedure is analyzed in Table 6.1. Again, we choose a

constant volatility σ2 = 10−5, n = 10, 000, and noise level τ = 5·10−5, and set α = 10%. As

a first result, we observe that the multiscale test without jump detection and in the absence

of jumps performs pretty well in keeping the nominal level. The small discrepancy can be

explained by the comparably small sample size (m ≈ 750 in this setting). Furthermore, we

observe that the confidence procedure is not influenced too badly by the jump detection

compared to the impact of ignored jumps given in the fourth column, where a jump at 0.5

of height 0.0004 is added to the data.

Furthermore, we investigated the effect of rounding errors here. To this end, the simulated

log-prices X are transformed to prices 100 log(X). These are rounded to two decimal

digits and are transformed back afterwards. Again, this transformation is chosen to mimic

FGBL data. Regarding the values in Table 6.1 we may conclude that rounding effects are

negligible in this setting.

6.3.2 Time Schemes

It has been noticed in the econometric literature that an increase in volatility might be

due to different reasons. One explanation would be that there are larger price changes.

Alternatively, the volatility of course also increases as price changes are of the same size and

only the number of trades per time interval goes up (cf. for example Ederington and Lee

(1995), Section IV.B). Disentangling the different explanations is quite difficult without an

underlying mathematical concept. Nevertheless, determining the source of an increase in

volatility is clearly of importance.

A more rigorous investigation of this problem leads to the definition of different notions

of time (for instance in Dahlhaus and Neddermeyer (2013)). In this thesis, we discuss the

most prominent examples: real time and tick time (sometimes also referred to as clock

time and transaction time, respectively).

Volatility in real time is appealing as it seems very intuitive. In tick time successive ticks

are treated as one time unit. By definition, this time scheme does not depend on the speed

at which successive trades occur. Consequently, volatility in tick time is independent of

the trading intensity and hence measures the volatility of the price changes only. As the

trading speed can be estimated directly from the ticks, we argue in this section that tick

time volatility is the more natural object. A drawback of tick times is that there is no
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straightforward extension of the concept to multivariate processes, where price changes

might occur non-synchronously.

Let us clarify the connection between both time schemes in more detail. Denote by ti, i =

0, . . . , n the ordered (t0 < t1 < t2 < . . . < tn) sample of trading times. Then, for i < j the

time between ti and tj equals j−i
n

time units in tick time and tj − ti time units in real time.

With this notation, the tick time model is given by

Y T
i,n = Xti + ǫi,n, i = 1, . . . , n. (6.4)

Inspired by the classical high-frequency framework, we think about the trading times as

an array, that is ti = ti,n, where the sampling rate gets finer for increasing n. Define the

trading intensity θ at time t as

θ(t) = lim
n→∞

1
n

∑n
i=1 I[t−δn,t+δn](ti)

2δn
(tn − t0), (6.5)

provided this limit exists and is unique for any sequence δn → 0 and δnn → ∞.

As an example, consider the following toy model: Assume that σ is deterministic and

there exists a deterministic, differentiable, and strictly monotone function h : [0, 1] → [0, 1]

with h(i/n) = ti,n. Note that in this setting, θ is deterministic as well and given by the

derivative of h−1.

Let σRT denote the original (real time) volatility. Recall that under tick time, we consider

successive trading times as equidistant. Therefore, the tick time volatility σTT satisfies for

all i = 1, . . . , n

∫ i/n

0
σTT (h(s))dWs =

∫ h(i/n)

0
σRT (s)dWs =L

∫ i/n

0

√
h′(s)σRT (h(s))dWs

in law. Thus, the first and the latter integrand are (roughly) equal, that is σ2
TT (h(s)) =

h′(s)σ2
RT (h(s)). Rewriting this, we obtain

θσ2
TT = σ2

RT , (6.6)

cf. also Dahlhaus and Neddermeyer (2013), Section 4. This formula clarifies the connection

between tick time and real time volatility.

In order to make inference about the real time volatility directly from tick data, we have
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to construct artificial observations by recording the price each tenth second, for example.

This method leads to a loss of information if there are many ticks in one time interval.

Additionally, nonparametric multiscale inference about the trading intensity θ can be done

using the results in Dümbgen and Walther (2008). Since there is no additional ill-posedness

in this problem, detection rates are comparably fast here. Thus, in view of (6.6), it seems

more informative to consider real time spot volatility as the product of σ2
TT and θ.

Furthermore tick time volatility seems to be smoother than its real time counterpart making

inference easier: To analyze volatilities of Euro-Bund-Futures on all days in 2007 (for a

description of the data, cf. also Section 6.4), we estimate tick time volatility using the

estimator presented in Sabel et al. (2014) and the real time counterpart via its product

representation. We use Haar wavelets and hence obtain piecewise constant reconstructions.

As a measure for the oscillation behavior of the volatility, we take the sum of squared jump

sizes of the reconstructions for every of these days. In average, for tick time spot volatility,

this gives 9.68 · 10−11 per day, while for real time volatility, the corresponding value is

1.98 · 10−10.

To summarize, the tick time volatility is the quantity measuring the volatility of the price

changes. Furthermore, it seems to be smoother and therefore easier to handle. Moreover,

we can transfer results about tick time volatility via (6.6) to results about real time volatil-

ity. For these reasons, we restrict ourselves throughout the following to spot volatility in

tick time.

6.4 Real Data Example

We analyze the spot volatility of Euro-Bund-Futures (FGBL) using tick data from EUREX

database in 2007. The underlying is an 100, 000 Euro debt security of the German Federal

Government with coupon rate 6% and maturity 8.5 − 10.5 years. The price is given in

percentage of the par value. The tick times are recorded with precision of 10 milliseconds.

The minimum price change is 0.01% (one basis point), corresponding to 10 Euro. For more

information on FGBL, cf. Eurex Frankfurt AG (2005).

In our datasets, the number of trades per day varies among 10, 000 and 30, 000. Obser-

vations which are not due to trading are removed from the sample. If there are different

FGBL contracts at a time referring to different expiration days, we only consider these
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belonging to the next possible date. Trading takes places from 8:00 a.m. until 7:00 p.m.

Central European Time (CET). Here, we restrict ourselves to observations between 9 a.m.

and 6 p.m. CET. Outside this period, trading intensity is often too low to make use of a

high-frequency setting.

During business hours, FGBL prices fit well as an example for high-frequency data. On the

one hand, trading is very liquid due to low transaction costs and high trading volume. In

average, the holding period is less than two days (cf. Dorfleitner (2004), Figure 4). On the

other hand, microstructure effects are present and simple quadratic variation techniques

fail as indicated in Figures 5.1 and 1.1.

When macroeconomic announcements or events occur, one expects an increase in volatility

due to the uncertainty of the market. There has been a large body of literature in economics

devoted to this subject. Nevertheless, up to now, there seems to be no general consensus

quantifying how much the volatility is affected by public announcements. Ederington and

Lee (1993, 1995) claim that volatility is substantially higher for a few minutes after the

announcement and is still visible in the data for several hours. They also find evidence that

volatility is slightly elevated for some minutes before an announcement. They conclude

that macroeconomic announcements are the driving force for volatility. In contrast, in the

seminal paper Andersen and Bollerslev (1998) daily volatility patterns are found to explain

most of the spot volatility behavior, while public announcements have only a secondary

effect on overall volatility. In a recent study, Lunde and Zebedee (2009) focus on the

effects of US monetary policy events on volatility of US equity prices. In accordance with

previous work, they conclude that there are spikes in the volatility around macroeconomic

announcements, lasting for approximately 15 minutes. In Jansen and de Haan (2006)

effects of certain European Central Bank (ECB) announcements on price changes and

volatility are studied. Although these papers deal with volatility on relatively short time

intervals, none of them accounts for microstructure effects.

As an example, we investigate the volatility within those days in 2007 when the president

of the European Central Bank, Jean-Claude Trichet, announced possible changes of the

key interest rates. We suppose that there is a strong connection between FGBL prices and

these events since government bonds are closely related to this rate. However, it is not

clear, if and how much the volatility is effected as well.

The announcements take place regularly once per month and consist of the announcement

itself at 1.45 p.m. followed by a press conference at 2.30 p.m. which lasts exactly one hour.
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In advance, between 20 and 62 financial experts were interviewed by the news and data

agency Bloomberg L.P. about their prediction of the change. In the following, we will use

the sample standard deviation of their answers as an indicator for market uncertainty.

In a first step, let us exemplarily turn to one of these days, May 10th, 2007: In Figure 6.4,

the FGBL log-price and the corresponding pre-averaged values are displayed. Furthermore,

the last panel of the plot indicates regions of significant increase of the volatility (in the

spirit of Section 4). Here, we set lm = 20/m ≈ 0.0225 and um = 50/m ≈ 0.0562 referring

to time intervals of approximately 6 to 15 minutes in average because we are interested in

very local statements. The quantiles of the limit distribution are again obtain via 10, 000

Monte Carlo simulations. We observe that although market uncertainty was 0 for that day,

there is a highly significant increase at the time of the announcement, where the hypothesis

of non-increase can be rejected at level 7%.

Day
Market Change of the key Minimal level α,

uncertainty interest rate in basis points s.t. there is a rejection
January 11th, 2007 0 0 -
February 8th, 2007 0 0 0.017
March 8th, 2007 0 +0.25 -
April 12th, 2007 0 0 -
May 10th, 2007 0 0 0.211
June 6th, 2007 0 +0.25 -
July 5th, 2007 0 0 0.362
August 2nd, 2007 0.05 0 0.066
September 6th, 2007 0.1 0 -
October 4th, 2007 0.03 0 -
November 8th, 2007 0 0 -
December 6th, 2007 0 0 0.4314

Table 6.2: For those days in 2007 where a ECB press conference took place, minimal levels
allowing to detect a significant overshoot of the integrated volatility on some interval containing
1.45 p.m. over the daily integrated volatility. “-” indicates that the respective value is above
50%. Note that the levels has to be understood as levels which are kept simultaneously over one
day and must not be confused with levels for a simultaneous test for all days together.

More thoroughly, we investigated these days in Table 6.2 and compare them to all days

in 2007 in Table 6.3: Here, we are interested in the question if there are any intervals

containing 1.45 p.m. such that the integrated volatility on the interval is significantly larger

than the integrated volatility over the whole day. As a benchmark, the same procedure is

applied to all days in 2007. For each day, we applied our procedure separately. This gives
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Figure 6.4: Logarithm of the FGBL price of May 10th, 2007 (panel 1), jump-corrected pre-
averaged values (panel 2), and areas of significant increase (x-axis of panel 3) for different levels
of significance (y-axis). The vertical red line at 13.75 refers to the announcement of not changing
the key interest rate. Again, every interval of increase is indicated gray and darker regions only
refer to intersections of these intervals. In this example, n = 16, 232, m = 890, and we chose
lm = 20/m and um = 50/m.
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us confidence statements which hold simultaneously over one day but not simultaneously

over all days.

We observe that at least at some of the considered days, there is a significant peak in the

volatility, which cannot be explained by a trend occurring on an average day. However, we

find no reliable connection between market uncertainty and appearance of these peaks.

Level α
Proportion regarding Proportion regarding

all days in 2007 all days with key interest rate announcement
5% 0.012 0.083
10% 0.021 0.167
15% 0.029 0.167
20% 0.045 0.167

Table 6.3: Proportion of those days in 2007, on which integrated volatility is significantly higher
at some interval containing 1.45 p.m. than the average of the day. Again, significance has to be
understood in the sense of confidence bounds being kept simultaneously over one day.
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Chapter 7

Outlook

7.1 Multidimensional Extension

In practice, one is often interested in the key figures of different time series, which are

correlated with each other. This situation appears for example in portfolio management,

where often a large number of shares is bundled and investors are not only interested in

the respective volatilities but also in the local covariance between the prices, the so-called

“covolatility”. Estimation of integrated covolatility or even the whole integrated covariance

matrix has recently drawn a lot of attention (cf. the publications of Hayashi and Yoshida

(2005), Ait-Sahalia et al. (2010), Christensen et al. (2010), Barndorff-Nielsen et al. (2011),

Zhang (2011), Bibinger (2011), and Bibinger et al. (2014), among others). Moreover, in

Bibinger and Reiß (2014) and Sabel et al. (2014), pointwise estimators of the covolatility

are presented.

In this chapter, we like to give a short heuristic explanation of how to extend the multiscale

test from this thesis to inference on covolatility. Here, we restrict ourselves to the two-

dimensional case and to the continuous-time model (5.1). These assumptions are quite

common in literature, cf. for example Bibinger and Reiß (2014).

Suppose that we observe two different time series Y (1) and Y (2) in the continuous-time

model (5.1) with diffusions σ(1) and σ(2). We assume that the driving Brownian motions are

correlated with time-depend correlation ρt and that both noise processes are independent

of each other and of both signal parts.

We are interested in the local behavior of t 7→ σ
(1)
t σ

(2)
t ρt. To this end, we compute the

pre-averaged vectors Y
(1)
i,m and Y

(2)
i,m in a first step analogously to Chapter 5. Then, we

consider the test statistic

T
(3)
n,t,h =

m−1∑

i=0

ψt,h(
i
m

)Y
(1)
i,mY

(2)
i,m,
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where ψ is again any regular test function designed for the specific problem and (t, h) ∈ Tm.

Note that in this case, no bias correction is necessary, since both noise terms are assumed

to be independent.

This test statistic approximates the integral

∫ t+h

t
ψt,h(s)σ

(1)
s σ(2)

s ρsds.

Moreover, by the same arguments as given in the proof of Theorem 5.5, one can prove that

the approximation error divided by some pre-estimator for (σ
(1)
t σ

(2)
t ρt) again behaves like

a properly scaled Brownian integral uniformly in Tm.

Proceeding as in Chapter 4, this result can be used to obtain confidence intervals for

features of the covolatility of these prices.

7.2 Investigation of the Leverage Effect

The (financial) leverage effect provides important tools to control key figures of a company

such as return on equity (that is earnings per invested monetary unit): If the costs of

further liabilities are smaller than the costs of equity, one can raise the return on equity

by borrowing additional money and investing it.

In the economic literature, it is argued that this effect directly implies that the correlation

between the price and the volatility is negative: A decrease of the price results in an increase

of the debt-to-equity ratio which will not be compensated because it is favorable due to

the leverage effect. However, this also increases the risk of the company and therefore the

volatility of the share (cf. for example Yu (2005) and the references therein).

Thus, a non-negative correlation implies the absence of the leverage effect. Starting with

the papers of Black (1976) and Christie (1982), there have been many empirical studies

testing this correlation. However, these are limited from a statistical point of view, since to

the best of our knowledge there are no simultaneous and localized tests in a fairly general

model like Model (5.1).

Using the methods introduced in this thesis, one can test simultaneously on the size of local

in- and decreases of the volatility. By similar (and even easier) arguments as in Theorem
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5.5, one can approximate the limit distribution of

sup
(t,h)∈Tm

whσ̂
−1
t,h

∣∣∣∣
m−1∑

i=0

ψt,h(
i
m

)Y i,m

∣∣∣∣,

under the hypothesis that the unobserved log-price X is constant. Here, ψ is again the L2-

normalized derivative of a piecewise differentiable kernel, for example ψ = I[0,1/2] − I[1/2,1].

This multiscale test provides confidence intervals for the size of in- and decreases in the

price process. Combining both test (for example by Bonferoni’s inequality), we obtain

significant statements about the sign of the correlation between volatility and price.
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Appendix A

A Proof of Theorem 3.4

The generality of the choice of the test function ψ heavily relies on the following theorem,

which is motivated by Theorem 11.4 in Koltchinskii (1994). Although it relies only on

surprisingly basic arguments, it simplifies the proofs of Theorems 3.4 and 5.5 tremendously.

Theorem A.1. For some uniformly bounded class F of functions on [0, 1], let Hs denote

the symmetric convex hull of F , that is Hs contains all functions g, s.t. g =
∑N
i=1 aifi,

where N ∈ N, fi ∈ F , ai ∈ [−1, 1] for i = 1, ..., N , and
∑N
i=1 |ai| ≤ 1. Let Hs denote

the sequential closure of Hs, that is Hs is the smallest closed class containing all functions

which are pointwise limits of sequences of functions in Hs.

Let J be some sublinear, real-valued (possibly random) functional on Hs. Assume further

that J is continuous in the sense that for any sequence (gN) ⊂ Hs,

gN → g a.s. pointwise ⇒ J(gN) → J(g) in probability.

Then, the almost surely,

sup
g∈Hs

|J(g)| = sup
f∈F

|J(f)|. (A.1)

Proof. Note that due to continuity of J , both expressions in (A.1) are finite.

Let g = limN→∞
∑N
i=1 ai,Nfi,N ∈ Hs for some fi,N ∈ F and ai,N ∈ [−1, 1] with

∑N
i=1 |ai,N | ≤

1. Then, we obtain by sublinearity and continuity that

J(g) = J( lim
N→∞

N∑

i=1

ai,Nfi,N) = lim
N→∞

J(
N∑

i=1

ai,Nfi,N) ≤ lim
N→∞

N∑

i=1

ai,NJ(fi,N) ≤ sup
f∈F

|J(f)|.

Note that the limit after the second equality is only in probability. However, taking ap-

propriate subsequences yields almost sure convergence.

Furthermore, the relation F ⊂ Hs provides equality in (A.1).
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Remark A.2. Recall that ψt,h is L2-normalized and TV(ψ) < ∞ by Assumption 3.3. Thus,

we obtain that

TV(ψt,h) = TV(ψ)‖ψ‖−1
L2

[0,1]
h−1/2 = C1h

−1/2

for any (t, h) ∈ Tn, where C1 is a finite, positive constant independent of (t, h). Therefore,

the total variation of h1/2ψt,h/C1 is bounded by 1, so that we can write h1/2ψt,h/C1 =

gt,h, where gt,h is in the sequential closure (in the sense of pointwise convergence) of the

symmetric convex hull of the class of all indicators F = {I(t,t+h], (t, h) ∈ T }, where T =

{(t, h) : h ∈ (0, 1), [t, t+ h] ⊂ [0, 1], h ≤ un} (cf. Giné et al. (2004), p.172).

This allows us to apply Theorem A.1, whenever a term depends sublinearly on ψt,h. Thus,

it suffices to consider indicators I[t,t+h] instead of h1/2ψt,h in many steps of the following

proof. However, the supremum has to be taken over T instead of Tn in that case, that is

the lower bound on h is omitted.

It is very natural to split the proof into three parts. To this end, observe that by the

triangle inequality,

sup
(t,h)∈Tn

wh

∣∣∣∣
T

(1)
n,t,h − ∫ 1

0 ψt,h(s)σ
2
sds

σ̂2
t,h

−
√

2
n

∫ 1

0
ψt,h(s)dW

[n]
s

∣∣∣∣ ≤ I + II + III,

where

I := sup
(t,h)∈Tn

wh

∣∣∣∣
n−1∑

i=0

ψt,h(
i
n
)((W i+1

n
−W i

n
)2 − n−1) −

√
2
n

∫ 1

0
ψt,h(s)dW

[n]
s

∣∣∣∣,

II := sup
(t,h)∈Tn

wh

∣∣∣∣
T

(1)
n,t,h − ∫ 1

0 ψt,h(s)σ
2
sds

σ2
t

−
n−1∑

i=0

ψt,h(
i
n
)((W i+1

n
−W i

n
)2 − 1

n
)
∣∣∣∣,

III := sup
(t,h)∈Tn

wh

∣∣∣∣
T

(1)
n,t,h − ∫ 1

0 ψt,h(s)σ
2
sds

σ̂2
t,h

− T
(1)
n,t,h − ∫ 1

0 ψt,h(s)σ
2
sds

σ2
t

∣∣∣∣.

Each of the three parts deals with a different approximation problem and we will therefore

use a different proving technique in each step:

• The first approximation (I) may be seen as a strong invariance principle for χ2

distributed random variables, that is a uniform approximation of the sum of these

random variables with Gaussian ones. For the proof, classic large deviation results

are used, including Theorem 1 in Komlós et al. (1976) (termed “KMT-Theorem” in
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the literature, cf. also Theorem C.2 in this thesis) and Lévy’s modulus of continuity

for Brownian motion.

• II states that in this specific situation, canceling σt and σs (for s ∈ [t, t + h]) is

correct up to some small error, as h tends to zero. To prove this, we use martingale

inequalities (especially the Burkholder-Davis-Gundy inequality (cf. Proposition 2.2)

and a result from Hoffmann (1999) (Lemma C.4)) combined with techniques from

empirical process theory based on chaining.

• The last term reflects that there is almost no difference between using the true value

σ2
t or the estimator σ̂2

t,h in the denominator. This is proved via basic computations.

ad I. In a first step, let us uniformly and almost surely approximate a sum of inde-

pendent, centered and normalized χ2-distributed random variables (ξi)i∈N by a sum of

standard Gaussian ones, denoted by (ηi)i∈N. Observe that for t < 2−1/2, the moment gen-

erating function M(t) = E exp(tX) of a centered and normalized χ2
1 distributed random

variable X is finite. Thus, we may apply Theorem 1 in Komlós et al. (1976) (cf. Theorem

C.2, known as KMT-Theorem): Using the fact that

max
0≤j≤k≤n−1

∣∣∣∣
k∑

i=j

(ξi − ηi)
∣∣∣∣ ≤ max

0≤j≤k≤n−1



∣∣∣∣
k∑

i=0

(ξi − ηi)
∣∣∣∣+

∣∣∣∣
j−1∑

i=0

(ξi − ηi)
∣∣∣∣


 ≤ 2 max

0≤k≤n−1

∣∣∣∣
k∑

i=0

(ξi − ηi)
∣∣∣∣,

their theorem yields that for any n ∈ N, there exists a sequence (ηi)i∈N of i.i.d. standard

Gaussian random variables, so that

P

(
max

0≤j≤k≤n−1

∣∣∣∣
k∑

i=j

(ξi − ηi)

∣∣∣∣ > C log n+ x
)

≤ P

(
max
k≤n−1

∣∣∣∣
k∑

i=0

(ξi − ηi)

∣∣∣∣ > (C logn + x)/2
)

≤P

(
max
k≤n−1

∣∣∣∣
k∑

i=0

(ξi − ηi)

∣∣∣∣ > C ′ log n+ x/2
)
< K exp(−λx/2) = K exp(−λ′x),

for all x > 0. Here, C ′, K, λ′ are global constants independent of x and n. Furthermore,

we may bound

max
0≤j≤k≤n−1

∣∣∣∣
k∑

i=j

(ξi − ηi)
∣∣∣∣ ≥ sup

(t,h)∈T

∣∣∣∣
n−1∑

i=0

I[t,t+h](
i
n
)(ξi − ηi)

∣∣∣∣

≥ sup
(t,h)∈Tn

∣∣∣∣
n−1∑

i=0

C−1
1 h1/2ψt,h(

i
n
)(ξi − ηi)

∣∣∣∣,
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due to Remark A.2. This results in

P

(
sup

(t,h)∈Tn

∣∣∣∣
n−1∑

i=0

h1/2ψt,h(
i
n
)(ξi − ηi)

∣∣∣∣ > C1(C
′ logn + x)

)
< K exp(−λ′x). (A.2)

Note that this means that sup(t,h)∈Tn

∣∣∣∣
∑n−1
i=0 h

1/2ψt,h(
i
n
)(ξi − ηi)

∣∣∣∣ = O(logn) a.s., since for

x > 2 log(n)/λ′, (A.2) is summable in n. By Lemma C.5, we find for n large enough that

whh
−1/2 is strictly decreasing in h. Thus,

√
2
n

sup
(t,h)∈Tn

wh

∣∣∣∣
n−1∑

i=0

ψt,h(
i
n
)(ξi − ηi)

∣∣∣∣ ≤
√

2
n

sup
(t,h)∈Tn

whh
−1/2 sup

(t,h)∈Tn

∣∣∣∣
n−1∑

i=0

h1/2ψt,h(
i
n
)(ξi − ηi)

∣∣∣∣

=O(n−1wlnl
−1/2
n log(n)) a.s. (A.3)

In expression I, the squared increments ((W i+1
n

−W i
n
)2 −1/n), i = 0, ..., n−1 are i.i.d. ran-

dom variables with the same distribution as
√

2n−1ξ0. Thus by (A.3), we can approximate

them by Gaussian random variables.

As a last step of the first part of the proof, we construct a sequence of Brownian motions

W [n], so that the weighted partial sum process 1
n

∑n−1
i=0 whψt,h(

i
n
)ηi can be approximated

by integrals with respects to W [n] uniformly in (t, h) ∈ Tn:

Let (Bn,j)0≤j≤n−1 be a triangular scheme of independent Brownian bridges on [0, 1]. Here

and in the following, we assume that all random variables are defined on the same prob-

ability space to overcome measurability problems. Further let η0, . . . , ηn−1 be defined as

before as i.i.d standard Gaussian random variables which additionally are assumed to be

independent of (Bn,j). Define

W [n]
s := n−1/2

([ns]−1∑

i=0

ηi + η[ns](ns− [ns]) +B
n,[ns]
ns−[ns]

)
,

where [x] denotes the Gauss bracket. This is by construction a Brownian motion and

sup
(t,h)∈Tn

wh

∣∣∣∣
n−1∑

i=0

n−1ψt,h(
i
n
)ηi − n−1/2

∫ 1

0
ψt,h(s)dW

[n]
s

∣∣∣∣

= sup
(t,h)∈Tn

whn
−1/2

∣∣∣∣
n−1∑

i=0

∫ i+1
n

i
n

(
ψt,h(

i
n
) − ψt,h(s)

)
dW [n]

s

∣∣∣∣

≤C1n
−1/2 sup

(t,h)∈Tn

whh
−1/2 sup

(t,h)∈T

∣∣∣∣
n−1∑

i=0

∫ i+1
n

i
n

I[t,t+h](
i
n
) − I[t,t+h](s)dW

[n]
s

∣∣∣∣,

(A.4)
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applying again Theorem A.1 as described in Remark A.2. This requires continuity of

the operator. For that purpose, recall that for any bounded sequence of measurable

functions (gj) with pointwise limit g and any locally square-integrable martingale Z,

sup0≤u≤1

∣∣∣∣
∫ u

0 gj(s) − g(s)dZs

∣∣∣∣ → 0 in probability (cf. for example Theorem 4.40 in Ja-

cod and Shiryaev (2003)). Since we need a.s. continuity here, this is not enough. However,

from the proof of Theorem A.1, it becomes clear that continuity of the functional J can

be replaced by the condition J(limN→∞ gN) = limN→∞ J(gN) a.s. for the very specific

sequence (gj) used for the approximation of g. Thus, we may consider an appropriate

subsequence (gj′) of (gj) to make the convergence a.s.

In the last sum in (A.4), for each (t, h), at most two summands are non-zero. Therefore,

we may bound (A.4) by

2C1n
−1/2 sup

(t,h)∈Tn

whh
−1/2 sup

s,u∈[0,1]:|s−u|≤n−1

|W [n]
s −W [n]

u |

=O(wlnl
−1/2
n n−1

√
log(n)) = o(wlnl

−1/2
n n−1 log(n)) a.s.,

using Lévy’s modulus of continuity (cf. Revuz and Yor (1999)) and again Lemma C.5 for

the monotonicity of whh
−1/2.

ad II. Observe that II ≤ A +B, where

A := sup
(t,h)∈Tn

wh

∣∣∣∣
n−1∑

i=0

ψt,h(
i
n
)
(
( ∫ i+1

n
i
n

σsdWs

)2 − ∫ i+1
n

i
n

σ2
sds

σ2
t

−
(
(W i

n
−W i−1

n
)2 − 1

n

))∣∣∣∣,

B := sup
(t,h)∈Tn

wh

σ2
t

∣∣∣∣
n−1∑

i=0

ψt,h(
i
n
)
∫ i+1

n

i
n

σ2
sds−

∫ 1

0
ψt,h(s)σ

2
sds

∣∣∣∣.

To bound the second term, apply again Theorem A.1 as described in Remark A.2:

B ≤ sup
(t,h)∈Tn

whh
−1/2σ−2

t sup
(t,h)∈Tn

h1/2
∣∣∣∣
n−1∑

i=0

ψt,h(
i
n
)
∫ i+1

n

i
n

σ2
sds−

∫ 1

0
ψt,h(s)σ

2
sds

∣∣∣∣

≤ sup
(t,h)∈Tn

whh
−1/2σ−2

t sup
(t,h)∈T

∣∣∣∣
n−1∑

i=0

∫ i+1
n

i
n

σ2
s(I[t,t+h](

i
n
) − I[t,t+h](s))ds

∣∣∣∣

≤ C1
σ2

σ2 sup
(t,h)∈Tn

whh
−1/22n−1 = O(wlnl

−1/2
n n−1) = o(wlnl

−1/2
n n−1 log(n)).

(A.5)

69



APPENDIX A. A PROOF OF THEOREM 3.4

Note that Theorem A.1 is not directly applicable to A, since A is not linear in σ−2
t , while

Theorem A.1 requires linearity in all terms depending on t and h. To obtain a similar

result, note that by Lemmata C.1 and C.5, whC
−1
1 ψt,h, (t, h) ∈ Tn, is in the sequential

closure of the symmetric convex hull Hs of {wh∨ln(h ∨ ln)−1/2
I[t,t+h], (t, h) ∈ T }. Further,

observe that (σσti,N
)2(σσt)

−2 ≤ 1. Therefore, we obtain by Lemma C.1 that the scaled

function whC
−1
1 σ2(σσt)

−2ψt,h is in the sequential closure of the symmetric convex hull of

{wh∨ln(h ∨ ln)−1/2
I[t,t+h]/σ

2
t : (t, h) ∈ T }. Since the indicators used for both the approxi-

mation of whC
−1
1 ψt,h and of whC

−1
1 σ2(σσt)

−2ψt,h are the same and only the coefficients ai,N

differ (cf. the proof of Lemma C.1), we can still use the linearity arguments in the proof

of Theorem A.1 in this situation. This allows us to proceed as described in Remark A.2.

To bound the first term, we obtain by Itô’s formula and by the triangle inequality:

A = 2 sup
(t,h)∈Tn

wh

∣∣∣∣
n−1∑

i=0

ψt,h(
i
n
)
( ∫ i+1

n

i
n

σs

σt

∫ s

i
n

σu

σt
dWu −

∫ s

i
n

dWudWs

)∣∣∣∣

≤C2 sup
(t,h)∈T

q(h, n)

∣∣∣∣
n−1∑

i=0

I[t,t+h](
i
n
)
( ∫ i+1

n

i
n

σs

σt

∫ s

i
n

σu

σt
dWu −

∫ s

i
n

dWudWs

)∣∣∣∣

≤C2(A1 + A2),

(A.6)

where

A1 := sup
(t,h)∈T

q(h, n)

∣∣∣∣
n−1∑

i=0

I[t,t+h](
i
n
)
( ∫ i+1

n

i
n

(σs

σt
− 1)

∫ s

i
n

σu

σt
dWudWs

)∣∣∣∣,

A2 := sup
(t,h)∈T

q(h, n)
∣∣∣∣
n−1∑

i=0

I[t,t+h](
i
n
)
( ∫ i+1

n

i
n

∫ s

i
n

(σu

σt
− 1)dWudWs

)∣∣∣∣,

and C2 is a global constant and q(h, n) = wh∨ln(h ∨ ln)−1/2. Define further for j = 1, . . . , n,

At,h1 (j) := q(h, n)
j−1∑

i=0

I[t,t+h](
i
n
)
( ∫ i+1

n

i
n

(σs

σt
− 1)

∫ s

i
n

σu

σt
dWudWs

)
,

At,h2 (j) := q(h, n)
j−1∑

i=0

I[t,t+h](
i
n
)
( ∫ i+1

n

i
n

∫ s

i
n

(σu

σt
− 1)dWudWs

)
,

and At,hp (0) := 0, p = 1, 2.

For fixed t, h, n, At,h1 (j) and At,h2 (j) are locally square-integrable martingales in j w.r.t. the

filtration F = (Fj)j∈N, where Fj := σ({Wt : t ≤ j
n
}).
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Moreover, for j = 1, . . . , n, k ≥ 2,

E

(∣∣∣At,h1 (j + 1) − At,h1 (j)
∣∣∣
k∣∣∣Fj

)

≤
(
CBk

1/2q(h, n)

σ
sup

s∈[t,t+h+ 1
n

]

|σs − σt|
)k

E

(∣∣∣
∫ j+1

n

j
n

(
∫ s

j
n

σu
σt
dWu)

2ds
∣∣∣
k/2∣∣∣Fj

)

≤
(
CBk

1/2q(h, n)Lσ2(h+ 1
n
)γ

σ

)k
n−k/2 sup

s∈[ i
n
, i+1

n
]

E

(∣∣∣
∫ s

j
n

σu
σt
dWu

∣∣∣
k∣∣∣Fj

)

≤kk
(
C2
Bq(h, n)σLσ2(2(h ∨ ln))γ

nσ2

)k
,

where we used the Burkholder-Davis-Gundy inequality with factor CBk
1/2 (cf. Proposition

2.2) for the first and third inequality and Assumption 3.1 for the second one.

Choose C3 =
C2

BσLσ22γ

σ2 . Note that At,h1 (j + 1) − At,h1 (j) = 0 if j
n
/∈ [t, t + h], providing

that there are at most hn + 1 non-zero summands. Thus, we can apply Lemma C.4 with

ℓ = 2(h ∨ ln)n ≥ hn+ 1. This yields for every (t, h) ∈ Tn and n large enough,

P(|At,h1 (n)| ≥ rn,h)

≤2 exp
( −1

2
r2
n,h

eC3q(h, n)(h ∨ ln)γn−1
(
2C3q(h, n)(h ∨ ln)γ2(h ∨ ln) + rn,h

)
)

≤2 exp
( −1

2
r2
n,h

eC3wh∨ln(h ∨ ln)γ−1/2n−1
(
4C3wh∨ln(h ∨ ln)γ+1/2 + rn,h

)
)
.

(A.7)

Choose rn,h = C4wh∨ln(h∨ln)γ( logn
n

)1/2 for C4 = 8e1/2C3. Then, 4C3wh∨ln(h∨ln)γ+1/2 > rn,h

for n large enough, and therefore, we may bound (A.7) by

2 exp
( −1

2
r2
n,h

8eC2
3w

2
h∨ln(h ∨ ln)2γn−1

)
= 2 exp

(−1
2
C2

4 log n

8eC2
3

)
= 2n−4. (A.8)

Let rn = sup(t,h)∈T rn,h = C4wunu
γ
n(

logn
n

)1/2. Further, denote the discrete grid with constant

mesh n−1 on [0, 1] by Xn := {i/n : i ∈ N, 0 ≤ i ≤ n}, and the closed ǫ-neighborhood (w.r.t.

sup-norm) of x ∈ R
2 by Bǫ(x). Then, we may bound

A1 = sup
(t,h)∈T

|At,h1 (n)| ≤ sup
(t,h)∈T ∩X 2

n

[
|At,h1 (n)| + sup

(t′,h′)∈T ∩B 1
n

(t,h)
|At′,h′

1 (n) − At,h1 (n)|
]

(A.9)
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Note that by (A.7) and (A.8),

P( sup
(t,h)∈T ∩X 2

n

|At,h1 (n)| ≥ rn) ≤ n2 sup
(t,h)∈T ∩X 2

n

P(|At,h1 (n)| ≥ rn) ≤ 2n−2. (A.10)

This is summable and therefore, sup(t,h)∈T ∩X 2
n

|At,h1 (n)| = O(rn) a.s.

The second summand in (A.9) is bounded by

sup
(t,h)∈T ∩X 2

n

sup
(t′,h′)∈T ∩B 1

n
(t,h)

[
|A1,1| + |A1,2| + |A1,3|

]
, (A.11)

where

A1,1 := (q(h, n) − q(h′, n))
n−1∑

i=0

I[t,t+h](
i
n
)
( ∫ i+1

n

i
n

(σs

σt
− 1)

∫ s

i
n

σu

σt
dWudWs

)
,

A1,2 := q(h′, n)
n−1∑

i=0

(I[t,t+h] − I[t′,t′+h′])(
i
n
)
(∫ i+1

n

i
n

(σs

σt
− 1)

∫ s

i
n

σu

σt
dWudWs

)
,

A1,3 := q(h′, n)
n−1∑

i=0

I[t′,t′+h′](
i
n
)
( ∫ i+1

n

i
n

[
(σs

σt
− 1)

∫ s

i
n

σu

σt
dWu

− ( σs

σt′

− 1)
∫ s

i
n

σu

σt′

dWu

]
dWs

)
.

Note that it suffices to cover T by the set of upper halves of the 1
n
-neighborhoods around the

points in X 2
n , that is to assume that t′ ≥ t. This guarantees measurability (and therefore

integrability) of the integrands in A1,2 and A1,3, since we must ensure that t ≤ i/n for

integration of σ−2
t .

In the following, let (t, h) ∈ T ∩ X 2
n be arbitrary but fixed. Note that

sup
|h−h′|≤ 1

n

|q(h, n) − q(h′, n)|
q(h, n)

=
q(ln, n) − q(ln + 1

n
, n)

q(ln, n)
−→ 0, n → ∞.

Therefore, A1,1 ≤ At,h1 (n) uniformly in (t′, h′) ∈ T ∩ B 1
n
(t, h), showing that

sup
(t,h)∈T ∩X 2

n

sup
(t′,h′)∈T ∩B 1

n
(t,h)

A1,1 = O(rn) a.s.
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For A1,2, we approximate q(h′, n) by q(h, n). As we have seen in the preceding paragraph,

this is possible up to an uniform o(1)-error. Further, observe that (again for fixed (t, h)) all

but at most 6 summands in A1,2 are zero for all (t′, h′) considered, so that the supremum

over (t′, h′) ∈ T ∩ B 1
n
(t, h) reduces to a maximum over finitely many outcomes, all already

covered by sup(t,h)∈T ∩X 2
n

|At,h1 (n)|. This shows that sup(t,h)∈T ∩X 2
n

sup(t′,h′)∈T ∩B 1
n

(t,h) A1,2 =

O(rn) a.s.

Instead of A1,3, it suffices by the same arguments as above to consider

Ã1,3 = Ã1,3(t
′) := q(h, n)

n−1∑

i=0

I[t,t+h](
i
n
)
(∫ i+1

n

i
n

[
(σs

σt
− 1)

∫ s

i
n

σu

σt
dWu

− ( σs

σt′

− 1)
∫ s

i
n

σu

σt′

dWu

]
dWs

)
,

where again for measurability reasons, we now may assume w.l.o.g. that t′ ≤ t. To bound

this term, we like to apply the following proposition, given as Corollary 2.2.5 in van der

Vaart and Wellner (1996):

Proposition A.3. Let Ψ be a convex, nondecreasing, nonzero function with Ψ(0) = 0 and

lim supx,y→∞ Ψ(x)Ψ(y)/Ψ(cxy) < ∞ for some constant c > 0. Let (Zt)t∈T be a separable

stochastic process with

‖Zs − Zt‖Ψ ≤ Cd(s, t), for every s, t ∈ T,

for some semimetric d on T , a constant C, and the Orlicz norm

‖Q‖Ψ := inf{R > 0 : E(Ψ( |Q|
R

) ≤ 1}.

Then, there exists a constant K, such that

‖ sup
s,t

|Zs − Zt|‖Ψ ≤ K
∫ diamT

0
Ψ−1(D(ǫ, d))dǫ,

where D(ǫ, d) is the packing number of T defined as the maximal number of ǫ-separated

points in T .
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Choose Ψ(•) = exp(•) −1. Observe that for any C > 0 for t1, t2 ∈ [t− 1
n
, t], we may bound

EΨ

(
|Ã1,3(t1) − Ã1,3(t2)|

C

)
+ 1

=
∞∑

k=0

E

∣∣∣
∑n−1
i=0 I[t,t+h](

i
n
)
( ∫ i+1

n
i
n

[
(
σs−σt1

σ2
t1

) − (
σs−σt2

σ2
t2

)]
∫ s

i
n
σudWu

)∣∣∣
k

q−k(h, n)Ckk!

≤
∞∑

k=0

(C5kq(h, n) 1
n
(hn + 1)1/2|t1 − t2|γ)k
Ckk!

≤
∞∑

k=0

(eC5q(h, n) 1
n
(hn+ 1)1/2|t1 − t2|γ)k

Ck
,

for some global constant C5. Here, the second inequality comes from applying the Burk-

holder-Davis-Gundy (cf. Proposition 2.2) inequality twice (similarly as before), and from

∣∣∣∣∣
σs − σt1
σ2
t1

− σs − σt2
σ2
t2

∣∣∣∣∣ ≤ C6|t1 − t2|γ ,

due to Hölder continuity of σ. The third inequality is due to k! > (k/e)k.

Thus, for C > 2(eC5q(h, n) 1
n
(hn + 1)1/2|t1 − t2|γ), we obtain

EΨ

(
|Ã1,3(t1) − Ã1,3(t2)|

C

)
≤ 1,

and therefore,

‖Ã1,3(t1) − Ã1,3(t2)‖Ψ ≤ 2eC5q(h, n) 1
n
(hn + 1)1/2|t1 − t2|γ ≤ C7wlnn

−1/2|t1 − t2|γ,

for all (t, h) ∈ T , t1, t2 ∈ [t− 1
n
, t]. Thus, we may choose the semimetric d as

d(t1, t2) = wlnn
−1/2|t1 − t2|γ.

Define the packing number D(ǫ, d) as the largest number of points pairwise having d-

distance strictly larger than ǫ. It follows that D(ǫ, d) ≤ 2ǫ−1/γn1/(2γ)w
1/γ
ln .

Note that Ã1,3(t) = 0. Therefore, by Proposition A.3,

AΨ
1 :=‖ sup

t′∈[t− 1
n
,t]

Ã1,3(t
′)‖Ψ ≤ C8

∫ wlnn
−γ−1/2

0
log(2ǫ−1/γn1/(2γ)w

1/γ
ln + 1)dǫ
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≤C8

∫ wlnn
−γ−1/2

0
log(4ǫ−1/γn1/(2γ)w

1/γ
ln )dǫ ≤ C9wlnn

−γ−1/2 log(n),

for some global constants C8, C9 > 0. We may conclude that for any (t, h) ∈ T ,

P( sup
t′∈[t− 1

n
,t]

Ã1,3(t′) ≥ rn) = P

(
Ψ
(

sup
t′∈[t− 1

n
,t]

Ã1,3(t
′)/AΨ

1

)
+ 1 ≥ Ψ

(
rn/A

Ψ
1

)
+ 1

)

≤
E

(
Ψ
(

supt′∈[t− 1
n
,t] Ã1,3(t′)/AΨ

1

)
+ 1

)

Ψ
(
rn/AΨ

1

)
+ 1

≤ 2 exp(−rn/Aψ1 )

≤2 exp(−C4/C9wunw
−1
ln (unn)γ log−1/2 n) ≤ exp(−nβ),

for some global β ∈ (0, 1) and n large enough, since unn is assumed to increase polynomially.

Thus, we may proceed in analogy to (A.9), which yields

sup
(t,h)∈T ∩X 2

n

sup
(t′,h′)∈T ∩B 1

n
(t,h)

A1,3 = O(rn) a.s.,

which in turn proves that A1 = O(rn) a.s.

Note that all the arguments above concerning A1 are true for A2 as well. Actually, only

the constants C3 and C5 are smaller by a factor σ/σ in that case. Therefore, II = O(rn)

a.s.

ad III. Since the convergence of σ̂2
t,h is uniform and almost sure, we may work on

the event {inft∈[0,1] σ̂
2
t,h > 1

2
σ2}. In the following, we use the notation ‖σ̂2 − σ2‖∞ :=

sup(t,h)∈Tn
|σ̂2
t,h − σ2

t |. Observe

III ≤ 2
‖σ̂2 − σ2‖∞

σ2
sup

(t,h)∈Tn

wh

∣∣∣∣
T

(1)
n,t,h − ∫ 1

0 ψt,h(s)σ
2
sds

σ2
t

∣∣∣∣.

By Theorem 1 in Schmidt-Hieber et al. (2013) in combination with the bounds on I and

II,

sup
(t,h)∈Tn

[
n1/2wh

∣∣∣∣
T

(1)
n,t,h − ∫ 1

0 ψt,h(s)σ
2
sds

σ2
t

∣∣∣∣−
√

2 log ν
h

log log ν
h

]
< ∞ a.s.
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Since ‖σ̂2 − σ2‖∞ = O(sn) a.s.,

III =O(‖σ̂2 − σ2‖∞ sup
(t,h)∈Tn

log ν
h

n1/2 log log ν
h

) = O(snn
−1/2 log(1/ln)

log log(1/ln)
) a.s.,

which completes the proof.
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Appendix B

A Proof of Theorem 5.5

Since the proof of Theorem 5.5 is massively based on the proof of Theorem 3.4 in structure,

notation, and techniques, we strongly advise the reader take a look at Appendix A before

reading this one.

Proof of a. In analogy to the proof of the semimartingale case, we decompose

sup
(t,h)∈Tm

wh

∣∣∣∣
Tσ2 − ∫ 1

0 ψt,h(s)σ
2
sds

σ̂2
t,h

−
√

2
m

∫ 1

0
ψt,h(s)dW

[n],m,1
s

∣∣∣∣ ≤ I + II + III,

where

I := sup
(t,h)∈Tm

wh

∣∣∣∣
m−1∑

i=0

ψt,h(
i
m

)
(( ∫ i+1

m

i
m

Λi(s)dWs

)2 −m−1
)

−
√

2
m

∫ 1

0
ψt,h(s)dW

[n]
s

∣∣∣∣,

II := sup
(t,h)∈Tm

wh

∣∣∣∣
Tσ2 − ∫ 1

0 ψt,h(s)σ
2
sds

σ2
t

−
m−1∑

i=0

ψt,h(
i
m

)
(( ∫ i+1

m

i
m

Λi(s)dWs

)2 −m−1
)∣∣∣∣,

III := sup
(t,h)∈Tm

wh

∣∣∣∣
Tσ2 − ∫ 1

0 ψt,h(s)σ
2
sds

σ̂2
t,h

− Tσ2 − ∫ 1
0 ψt,h(s)σ

2
sds

σ2
t

∣∣∣∣.

Again, we will bound these terms separately:

ad I. Note that m
( ∫ i+1

m
i

m

Λi(s)dWs

)2
is standard χ2-distributed due to the normalization

of the pre-average function. Therefore, the proof is the same as in part I of the proof of

Theorem 3.4 (with n replaced by m), yielding

I = O(wlml
−1/2
m m−1 log(m)) a.s.
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ad II. Again, similar to the proof in the semimartingale case, observe that II ≤ A +

B1 +B2, with

A := sup
(t,h)∈Tm

wh

∣∣∣∣
m−1∑

i=0

ψt,h(
i
m

)




( ∫ i+1
m

i
m

Λi(s)σsdWs

)2 − ∫ i+1
m

i
m

Λ2
i (s)σ

2
sds

σ2
t

−
(( ∫ i+1

m

i
m

Λi(s)dWs

)2 −m−1
)

∣∣∣∣,

B1 := sup
(t,h)∈Tm

wh

σ2
t

∣∣∣∣
m−1∑

i=0

ψt,h(
i
m

)
∫ i+1

m

i
m

σ2
s − Λ2

i (s)σ
2
sds

∣∣∣∣,

B2 := sup
(t,h)∈Tm

wh

σ2
t

∣∣∣∣
m−1∑

i=0

ψt,h(
i
m

)
∫ i+1

m

i
n

σ2
sds−

∫ 1

0
ψt,h(s)σ

2
sds

∣∣∣∣.

B2 is the same as B in the proof of Theorem 3.4 (cf. (A.5)), while for B1, note that

σ2
i/m

∫ i+1
m

i
m

(1 − Λ2
i (s))ds = 0. Thus,

B1 = sup
(t,h)∈Tm

wh

σ2
t

∣∣∣∣
m−1∑

i=0

ψt,h(
i
m

)
∫ i+1

m

i
m

(σ2
s − σ2

i/m)(1 − Λ2
i (s))ds

∣∣∣∣

= O(m−γ sup
(t,h)∈Tm

wh
m−1∑

i=0

|ψt,h( i
m

)|
∫ i+1

m

i
m

|1 − Λ2
i (s)|ds) = O(m−γwumu

1/2
m ),

where we used the Hölder continuity of σ (and therefore of σ2), and that ψt,h is L2-

normalized resulting in
∑m−1
i=0 |ψt,h( i

m
)| = O(mh1/2).

For the first term, observe again that by Itô’s formula,

A = 2 sup
(t,h)∈Tm

wh

∣∣∣∣
m−1∑

i=0

ψt,h(
i
m

)
(∫ i+1

m

i
m

Λi(s)
(
σs

σt

∫ s

i
m

Λi(u)σu

σt
dWu

−
∫ s

i
m

Λi(u)dWu

)
dWs

)∣∣∣∣ ≤ C2(A1 + A2),

where

A1 := sup
(t,h)∈T

q(h,m)
∣∣∣∣
m−1∑

i=0

I[t,t+h](
i
m

)
( ∫ i+1

m

i
m

Λi(s)(
σs−σt

σt
)
∫ s

i
m

Λi(u)σu

σt
dWudWs

)∣∣∣∣,

A2 := sup
(t,h)∈T

q(h,m)
∣∣∣∣
m−1∑

i=0

I[t,t+h](
i
m

)
( ∫ i+1

m

i
n

Λi(s)
∫ s

i
m

Λi(u)(σu−σt

σt
)dWudWs

)∣∣∣∣,

in analogy to (A.6). Therefore, only the additional factor sups∈[0,1] Λ2(s) < ∞ occurs in
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the Burkholder-Davis-Gundy inequalities in that part of the proof and therefore in all the

calculations after (A.6). This in combination with the bound on B1 gives us the bound on

II, that is

II = O(m−γwumu
1/2
m + wumu

γ
m( log(m)

m
)1/2), a.s.

ad III. This is again completely analog to part III of the previous proof.

Proof of b. Again, we decompose

sup
(t,h)∈Tm

wh

∣∣∣∣
Tστ
σ̂t,h

− τ‖λ‖L2
[0,1]

√
m
n

∫ 1

0
ψt,h(s)dW

[n],m,2
s

∣∣∣∣ ≤ I + II + III,

where

I := sup
(t,h)∈Tm

wh

∣∣∣∣
m−1∑

i=0

ψt,h(
i
m

)
∫ i+1

m

i
m

Λi(s)dWs
τ√
n

∫ i+1
m

i
m

λi(s)dW
∗
s

− τ‖λ‖L2
[0,1]

√
m
n

∫ 1

0
ψt,h(s)dW

[n],m,2
s

∣∣∣∣,

II := sup
(t,h)∈Tm

wh

∣∣∣∣
m−1∑

i=0

ψt,h(
i
m

)
∫ i+1

m

i
m

Λi(s)(1 − σs

σt
)dWs

τ√
n

∫ i+1
m

i
m

λi(s)dW
∗
s

∣∣∣∣,

III := sup
(t,h)∈Tm

wh

∣∣∣∣( 1
σt

− 1
σ̂t,h

)
m−1∑

i=0

ψt,h(
i
m

)
∫ i+1

m

i
m

Λi(s)σsdWs
τ√
n

∫ i+1
m

i
m

λi(s)dW
∗
s

∣∣∣∣.

ad I. Let (ξ
(1)
i )i∈N and (ξ

(2)
i )i∈N be two sequences of i.i.d. standard Gaussian random

variables, independent of each other. Let (ξi)i∈N = (ξ
(1)
i ξ

(2)
i )i∈N be their component-

wise product. Then, the moment-generating function of ξ1 is finite in (−1, 1). Thus,

we may again apply the result in Komlós et al. (1976) analogously to the proof in the

semimartingale case. To obtain the bound on I, observe that m1/2
∫ i+1

m
i

m

Λi(s)dWs and

m−1/2‖λ‖−1
L2

[0,2]

∫ i+1
m

i
m

λi(s)dW
∗
s , i = 0, . . .m−1, are i.i.d standard Gaussian random variables,

independent of each other. This shows that the scaling τ‖λ‖L2
[0,2]

√
m
n

is chosen correctly,

and therefore

I = O(wlml
−1/2
m log(m)n−1/2) a.s.

Note that the a.s. approximation of the sum of standard Gaussian random variables by an

Itô integral is again negligible, since it causes an error of order O(wlml
−1/2
m log1/2(m)n−1/2).
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ad II. Observe that

II ≤ max
0≤i≤m−1

∣∣∣∣ τ√n
∫ i+1

m

i
m

λi(s)dW
∗
s

∣∣∣∣ sup
(t,h)∈Tm

wh

∣∣∣∣
m−1∑

i=0

ψt,h(
i
m

)
∫ i+1

m

i
m

Λi(s)(1 − σs

σt
)dWs

∣∣∣∣.

The first term can be a.s. bounded by

max
0≤i≤m−1

∣∣∣∣ τ√n
∫ i+1

m

i
m

λi(s)dW
∗
s

∣∣∣∣ = O((m/n)1/2 log1/2 m), (B.1)

due to Lévy’s modulus of continuity. By Theorem A.1 (cf. also Remark A.2), we may

bound the second term by

sup
(t,h)∈T

q(h,m)
∣∣∣∣
m−1∑

i=0

I[t,t+h](
i
m

)
∫ i+1

m

i
m

Λi(s)(1 − σs

σt
)dWs

∣∣∣∣.

Here, q(h,m) = wh∨lm(h ∨ lm)−1/2 as in Part II of the proof of Theorem 3.4. Define

At,h(j) := q(h, n)
j−1∑

i=0

I[t,t+h](
i
m

)
∫ i+1

m

i
m

Λi(s)(1 − σs

σt
)dWs,

which is a locally square-integrable martingale in j w.r.t. the filtration F = (Fj)j∈N, where

Fj := σ({Wt : t ≤ j
n
}). We obtain by the Burkholder-Davis-Gundy inequality

E

(∣∣∣At,h(j + 1) − At,h(j)
∣∣∣
k∣∣∣Fj

)
≤
(
Cq(h,m)(k/m)1/2(h ∨ lm)γ

)k

≤ kk
(
Cq(h,m)m−1/2(h ∨ lm)γ

)k
,

for some constant C. Thus, the proof of Theorem 3.4 is valid with rm = wumu
γ
m, showing

that the second term is O(rm) a.s. Combining this with (B.1), we obtain that

II = O(wumu
γ
m(m/n)1/2 log1/2 m) a.s.

ad III. This part of proof goes again along the lines of part III in Appendix A.

Proof of c. Note that for this part, the steps II and III in the proof of Theorem 3.4 are

not necessary, since the terms in c.) do not depend on σ. Thus, we only have to prove the
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strong approximation previously denoted by I. To this end, observe that

τ2

n

(( ∫ i+1
m

i
m

λi(s)dW
∗
s

)2 −
∫ i+1

m

i
m

λ2
i (s)ds

)
, i = 0, . . . , m− 1 (B.2)

are i.i.d. scaled and centered χ2-distributed random variables. Therefore, the proof

is completely analog to I in Appendix A up to the different scaling. Here, the fac-

tor
√

2τ 2m3/2

n
‖λ‖2

L2
[0,2]

can directly be verified by calculation of the standard deviation of

(B.2).

Proof of Corollary 5.9. Summing up, we obtain (5.6) by the decomposition in (5.5), the

triangle inequality, and the upper bound on σ̂2
t,h. The latter is given by the almost sure

and uniform convergence of σ̂2
t,h and the bound on σ2.
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Appendix C

Technical and Auxiliary Results

Let us state a technical implication concerning convex hulls of functions:

Lemma C.1. Denote the sequential closure of the symmetric convex hull of the class of all

indicators

F = {I[t,t+h] : (t, h) ∈ T = {(t, h) : t ∈ [0, 1], t+ h ∈ [0, 1], 0 < h < hmax}}

by Hs. Let g be a function with support in [0, 1] and g(•−t∗
h∗

) ∈ Hs for some (t∗, h∗). Then,

p(t∗, h∗)g(•−t∗
h∗

) is in the sequential closure of the symmetric convex hull of

{(p(t, h)I[t,t+h] : (t, h) ∈ T },

if |p(t∗, h∗)/p(t, h)| ≤ 1 for all t, h with [t, t+ h] ⊆ [t∗, t∗ + h∗].

Proof. Consider a sequence g
[N ]
t∗,h∗ =

∑N
i=0 ai,NI[ti,N ,ti,N +hi,N ] approximating g(•−t∗

h∗
) pointwise

with ai,N ∈ R,
∑N
i=0 |ai,N | ≤ 1, and [ti,N , ti,N + hi,N ] ⊆ [t∗, t∗ + h∗]. Such a sequence exists

due to the definition of the sequential closure of the symmetric convex hull and due to

the fact, that supp g(•−t∗
h∗

) ⊂ [t∗, t∗ + h∗]. Note that p(t∗, h∗)g(•−t∗
h∗

) can be approximated

pointwise by

p(t∗, h∗)g
[N ]
t∗,h∗ =

N∑

i=0

ai,N
p(t∗, h∗)

p(ti,N , hi,N)
p(ti,N , hi,N)I[ti,N ,ti,N +hi,N ].

Since
∑N
i=0 |ai,N p(t∗,h∗)

p(ti,N ,hi,N )
| ≤ 1 by assumption, the proof is complete.

The following result from Komlós et al. (1976) is essential for step I in our proofs. In

Komlós et al. (1975), the same result was proved under stronger conditions. However, the

main idea of the proof is more obvious in the first paper.
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Theorem C.2. Let F be a distribution function with moment generating function M ,

which is finite in some neighborhood of 0, that is for X ∼ F and some t0 > 0:

E(exp(tX)) < ∞ for all |t| < t0.

Further assume that EX = 0 and EX2 = 1, if X ∼ F . Then, one can construct a

sequence of i.i.d. random variables (ξi) with distribution F and a sequence of i.i.d. standard

Gaussian random variables (ηi) on the same probability space, such that for all n and all

x > 0

P( max
1≤k≤n

|
k∑

i=1

(ξi − ηi)| > C log n+ x) ≤ K exp(−λx),

for some constants C,K, λ not depending on n or x.

Thus, max1≤k≤n |∑k
i=1(ξi − ηi)| = O(logn) a.s.

Remark C.3. In the proof of this theorem, the authors construct (ξi) based on a given

standard Gaussian sequence (ηi). Note that in the proof of Theorem 3.4, we like to go

the other way around, that is constructing standard Gaussian random variables from given

(normalized) χ2 ones. However, the proofs in Komlós et al. (1975, 1976) reveal that this

is possible as well (provided that the probability space is large enough).

Next, we state a lemma about large deviation of martingales, which can be found in

Hoffmann (1999), Lemma 3.

Lemma C.4. Let (Mℓ)ℓ≥0 be an (Fℓ)-martingale with M0 = 0 such that for k = 2, 3, . . .,

E(|Mi+1 −Mi|k|Fi) ≤ ckkk for some constant c > 0. Then, for all t ≥ 0:

P(|Mℓ| > t) ≤ 2 exp
(

− 1

2

t2

ce(2cℓ+ t)

)
.

In the proofs of Theorems 3.4 and 5.5, it is crucial to know the behavior of whh
z for h → 0.

To this end, the following lemma is useful.

Lemma C.5. Let wh be as in Theorem 3.4. Then for any z > 0 (z ≤ 0), there exists an

ǫ > 0, s.t. f(h) = whh
z is increasing (decreasing) on (0, ǫ).

Proof. The result can be obtained by differentiation w.r.t. h.
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Let us collect some facts about total variation:

Lemma C.6. Let f, g : [a, b] → R be bounded functions with finite total variation. Then,

1. TV(f + g) ≤ TV(f) + TV(g),

2. TV(fg) ≤ ‖f‖∞ TV(g) + ‖g‖∞ TV(f).

Proof. The first inequality is true due to the triangle inequality. For the second one,

observe that for any partition a = x0 ≤ · · · ≤ xn = b, we find

n∑

i=1

∣∣∣∣f(xi)g(xi) − f(xi−1)g(xi−1)

∣∣∣∣ (C.1)

≤
n∑

i=1

∣∣∣∣f(xi)g(xi) − f(xi)g(xi−1)
∣∣∣∣+

n∑

i=1

∣∣∣∣f(xi)g(xi−1) − f(xi−1)g(xi−1)
∣∣∣∣

≤‖f‖∞ TV(g) + ‖g‖∞ TV(f).

Since TV(fg) is defined as the supremum of sums of type (C.1), the statement is proved.
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