Vergleich der physiologischen Stressreagibilität
von Frauen mit komplexen Traumafolgestörungen und
gesunden Frauen

INAUGURAL-DISSertation
zur Erlangung des Doktorgrades
der Medizinischen Fakultät der
Georg-August-Universität zu Göttingen

vorgelegt von
Gesine Bornschein
aus
Rostock

Göttingen 2014
Dekan: Prof. Dr. med. H. K. Kroemer

I. Berichterstatter: Prof. Dr. med. C. Herrmann-Lingen
II. Berichterstatter/in:
III. Berichterstatter/in:

Tag der mündlichen Prüfung:
Inhaltsverzeichnis

1 EINLEITUNG .. 1

1.1 Traumafolgestörungen ... 1

1.1.1 Posttraumatische Belastungsstörung (PTBS) ... 1

1.1.2 Borderline-Persönlichkeitsstörung (BPS) ... 2

1.1.3 Dissoziative Störungen (DS) ... 3

1.1.4 Komplexe posttraumatische Belastungsstörung (kPTBS) ... 3

1.2 Grundlagen der Stressreaktion ... 5

1.2.1 Stressbewältigungssysteme .. 5

1.2.1.1 Kampf-Flucht-System ... 5

1.2.1.2 Bindungssystem ... 7

1.2.1.3 Erstarrungssystem ... 7

1.2.1.4 Polyvagale Theorie .. 8

1.2.2 Neuroanatomische Grundlagen der Stressreaktion ... 9

1.2.3 Bindungsstörungen und Beziehungstraumata .. 10

1.2.4 Pathologische Veränderungen durch chronischen Stress ... 11

1.3 Kardiovaskuläre Stressreagibilität .. 13

1.3.1 α- und β-adrenerge Parameter .. 14

1.3.2 Herzratenvariabilität (HRV) ... 15

1.3.3 Baroreceptorsensitivität (BRS) .. 15

1.3.4 Sympathovagale Dysbalance .. 16

1.3.5 Einfluss von Medikamenten auf die HRV ... 17

1.4 Autonome Dysregulation bei PTBS .. 18

1.5 Zielsetzung ... 21

2 HYPOTHESEN ... 22

3 PROBANDINNEN UND METHODEN .. 23

3.1 Probandinnenrekrutierung ... 23

3.1.1 Einschlusskriterien .. 23

3.1.2 Ausschlusskriterien ... 23

3.2 Aufbau und Ablauf der Untersuchung ... 24
3.3 Stresstests: Kopfrechnen und Babyschreien ... 25

3.4 Der Task Force® Monitor .. 26
 3.4.1 Bestimmung der HRV ... 28
 3.4.2 Validierung des TFM ... 30

3.5 Die Fragebogen-Mappe ... 31
 3.5.1 Symptom-Check-Liste (SCL-90-R) .. 31
 3.5.2 Beck-Depressions-Inventar (BDI) ... 31
 3.5.3 Impact of Event Scale (IES-R) ... 32
 3.5.4 Borderline-Persönlichkeits-Inventar (BPI) .. 32
 3.5.5 Dissociative Disorders Interview Schedule (DDIS) .. 33
 3.5.6 International Personality Disorder Examination (IPDE) 33
 3.5.7 Interview zur Diagnostik der komplexen posttraumatischen Belastungsstörung (Ik-PTBS) 34
 3.5.8 Fragebogen zu dissoziativen Symptomen (FDS) ... 35
 3.5.9 Allgemeiner Fragebogen zu soziodemographischen Daten und Risikofaktoren ... 35

3.6 Statistik .. 35
 3.6.1 Fragebögen .. 35
 3.6.2 TFM-Daten .. 36
 3.6.3 Babyschreien und Stressreaktionen .. 36

4 ERGEBNISSE ... 37

4.1 Vollständigkeit der Daten und Ausschluss von Messwerten 37

4.2 Kollektivbeschreibung .. 38
 4.2.1 Allgemeiner Fragebogen .. 38
 4.2.2 Ergebnisse weiterer Fragebögen (SCL-90-R, IES-R, BDI) 40
 4.2.3 Vorerkrankungen und Traumaprävalenz .. 41
 4.2.3.1 Kontrollgruppe ... 41
 4.2.3.2 Patientinnen ... 41
 4.2.4 Medikamenteneinnahme ... 43

4.3 TFM-Messung: globaler Vergleich von Patientinnen- und Kontrollgruppe 44
 4.3.1 Ergebnisse der ANOVA für CI, TPRI, SDNN, LF- und HF-HRV 44
 4.3.2 Graphische Darstellung der Parameter ... 45
 4.3.3 Erholung nach dem Babyschreien ... 49
4.4 TFM-Messung: Subgruppenvergleich von Patientinnen mit bzw. ohne herzwirksame Medikamente und der Kontrollgruppe ... 52

4.4.1 Erstellung der Subgruppen .. 52

4.4.2 ANOVA für den Subgruppenvergleich der Patientinnen 54

4.4.3 ANOVA für den Vergleich von Kontrollgruppe und Patientinnen ohne herzwirksame Medikamente .. 55

4.4.4 Graphische Darstellung der Parameter CI, TPRI, SDNN, LF- und HF-HRV für die Subgruppen P0, P1 und K0 .. 56

4.5 TFM-Messung: explorative Auswertung von HR, sBP, BRS & PEP 61

4.5.1 Globaler Vergleich aller Patientinnen mit den gesunden Probandinnen 61

4.5.2 Subgruppenvergleich von Patientinnen mit und ohne herzwirksame Medikamente 62

4.5.3 Gesunde Frauen und Patientinnen ohne Medikamente im Vergleich 62

4.5.4 Graphische Darstellung der Parameter ... 63

4.6 Realität des Babyschreiens .. 69

4.7 Subjektive und objektive Stressreaktionen .. 69

4.7.1 Subjektiv empfundener Stress .. 69

4.7.2 Korrelation von subjektivem Stressempfinden und physiologischen Parametern 70

4.7.3 Objektiv beobachtbare Stressreaktionen ... 71

5 DISKUSSION .. 73

5.1 Vergleichbarkeit von Kontrollgruppe und Patientinnen 73

5.2 TFM-Messung ... 73

5.2.1 Ruheparameter .. 73

5.2.2 Rechentest .. 76

5.2.2.1 Kontrollgruppe .. 76

5.2.2.2 Patientinnen ... 78

5.2.3 Babyschreien ... 81

5.2.3.1 Kontrollgruppe .. 81

5.2.3.2 Patientinnen ... 83

5.2.4 Erholung nach dem Babyschreien ... 85
5.2.5 Entspannungsmusik ... 86
 5.2.5.1 Kontrollgruppe 86
 5.2.5.2 Patientinnen 88
5.3 Realitäts- und Stressemfinden ... 89
5.4 Einfluss der Medikamente .. 92
 5.4.1 β-adrenerge Parameter .. 92
 5.4.2 α-adrenerge Parameter .. 93
 5.4.3 Herzratenvariabilität und Barorezeptorsensitivität 93
5.5 Limitationen ... 95
 5.5.1 Stresstests .. 95
 5.5.2 Messmethode .. 96
 5.5.3 Untersuchungsstichprobe ... 97
5.6 Stärken, klinische Relevanz und weiterer Forschungbedarf 98
6 ZUSAMMENFASSUNG .. 99
7 LITERATURVERZEICHNIS ... 103
8 ABBILDUNGSVERZEICHNIS ... 113
9 TABELLENVERZEICHNIS .. 114
ANHANG ... 116
Abkürzungsverzeichnis

ANOVA Analysis of variance
ANS Autonomes Nervensystem
BDI Beck-Depressions-Inventar
BMI Body Mass Index
BPI Borderline-Persönlichkeits-Inventar
BPS Borderline-Persönlichkeitsstörung
BRS Baroreceptorsensitivität
CI Herzindex (auf KO normiertes Maß für HZV)
DS Dissoziative Störung
HF-HRV High Frequency der Herzratenvariabilität (0,15 - 0,4 Hz)
HR Herzrate (=Herzfrequenz)
HRV Herzratenvariabilität
HZV Herzzeitvolumen
IES-R Impact of Event Scale
IKG Impedanzkardiographie
K Kontrollgruppe gesamt
KO Körperoberfläche
K0 Kontrollgruppe ohne herzwirksame Medikamente
K1 Kontrollgruppe mit herzwirksamen Medikamenten
PEP Präejektionszeit
PVT Polyvagale Theorie
RRI RR-Intervall (Anstand zwischen 2 R-Zacken im EKG)
RSA Respiratorische Sinusrhythmie
sBP systolischer Blutdruck
SCL-90-R Symptom-Check-Liste
SDNN Standardabweichung aller NN-Intervalle
SI Schlagindex
SV Schlagvolumen
SVV Selbstverletzendes Verhalten
TFM Task Force Monitor
TPRI totaler peripherer Widerstandsindex (TPR normiert auf KO)
1 Einleitung

1.1 Traumafolgestörungen

1.1.1 Posttraumatische Belastungsstörung (PTBS)

<table>
<thead>
<tr>
<th>Wiedererleben</th>
<th>Anhaltendes Wiedererleben des Traumas in Form von Intrusionen, sich aufdrängenden Bildern, Alpträumen und Flashbacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vermeidungsverhalten</td>
<td>Vermeidung traumaassoziierter Reize, partielle Amnesien</td>
</tr>
<tr>
<td>Emotionale Taubheit</td>
<td>Gleichgültigkeit gegenüber anderen Menschen, Gefühl emotionaler Stumpfheit, Interesseverlust, Anhedonie</td>
</tr>
<tr>
<td>Zustand vegetativer Übererregbarkeit</td>
<td>Schlaflosigkeit, Vigilanzsteigerung, Erhöhte Schreckhaftigkeit Vermehrte Reizbarkeit, Konzentrationsschwierigkeiten</td>
</tr>
</tbody>
</table>

Eine traumatische Erfahrung kann hierbei sowohl an der eigenen als auch an einer fremden Person erlebt werden und umfasst sehr unterschiedliche Ereignisse, die eine potentielle Gefahr für die körperliche Unversehrtheit oder das Leben darstellen. Hierzu werden neben
Einleitung

1.1.2 Borderline-Persönlichkeitsstörung (BPS)

Darüber hinaus sind jedoch zahlreiche weitere Überschneidungen mit der PTBS hinsichtlich gemeinsamer komorbider psychischer Krankheitsbilder bekannt. Hier sind vor allem Angststörungen, Depressionen, Suchterkrankungen und dissoziative Störungen zu nennen.
Einleitung

1.1.3 Dissoziative Störungen (DS)

Auch eine Gewalterfahrung, an die sich ein Opfer im Sinne einer dissoziativen Amnesie nicht mehr bewusst erinnern kann, kann im Unterbewusstsein Einfluss auf spätere Handlungen und Reaktionen haben (Spiegel 1997). Dies kann sich beispielsweise bei vergewaltigten oder sexuell missbrauchten Frauen in einer allgemeinen Angst vor Männern äußern. Außerdem erhöhen dissoziative Mechanismen die Gefahr der Revictimisierung von Gewaltopfern, da Warnsignale unter Umständen fehlinterpretiert oder nicht erkannt werden und neue traumatisierende Situationen so schlechter vermieden werden können (Kluft 1990).

1.1.4 Komplexe posttraumatische Belastungsstörung (kPTBS)

Die Diagnose PTBS alleine wird verschiedenen typischen Langzeitstörungen nach einer schweren und/oder repetitiven Traumatisierung nicht gerecht, da wesentliche Symptome wie Verhaltensauffälligkeiten (Impulsivität, Aggressivität, selbstverletzendes Verhalten (SVV), Drogenmissbrauch), emotionale Störungen (Affektablilität, Wut, Depression), kognitive
Beschwerden (Dissoziation), interpersonelle Schwierigkeiten und Somatisierung in den Diagnosekriterien nicht enthalten sind (Herman 1992; Friedman et al. 2011).

Um die oben genannten weiteren Traumafolgestörungen mit einzubeziehen und alle für eine schwere personale Traumatisierung typischen Symptome zusammenzufassen (siehe Tabelle 2), führte Herman den Begriff „komplexen PTBS“ ein (1992). Die kPTBS wurde als Forschungsdiagnose „Störungen durch extremen Stress, die nicht anderweitig spezifiziert sind“ (Disorders of Extreme Stress Not Otherwise Specified = DESNOS) in den DSM-IV aufgenommen.

Tabelle 2: Vergleich der Symptomkriterien von BPS und kPTBS nach Sack et al. (2011).

<table>
<thead>
<tr>
<th>BPS</th>
<th>kPTBS nach Herman (1992)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verzweifeltes Bemühen, Verlassenwerden zu vermeiden</td>
<td>-</td>
</tr>
<tr>
<td>Instabile interpersonelle Beziehungen mit Idealisierung und Entwertung</td>
<td>Isolation, Rückzug, Misstrauen und Gefahr der Reviktimisierung; Veränderungen in der Wahrnehmung des Täters</td>
</tr>
<tr>
<td>Identitätsstörung mit Instabilität des Selbstbildes oder der Selbstwahrnehmung</td>
<td>Veränderungen des Selbstbildes mit Gefühlen von Hilflosigkeit, Scham, Schuld, Wertlosigkeit und Isolation</td>
</tr>
<tr>
<td>Impulsivität in mind. zwei potentiell selbstschädigenden Aktivitäten</td>
<td>Veränderung der Impulsregulation mit autodestruktiven und risikoreichen Verhaltensweisen</td>
</tr>
<tr>
<td>Affektive Instabilität und Stimmungsschwankungen</td>
<td>Veränderungen der Affektregulierung mit anhaltenden depressiven Verstimmungen</td>
</tr>
<tr>
<td>Suizidale Handlungen, SVV</td>
<td>Beschäftigung mit Suizideideen, SVV</td>
</tr>
<tr>
<td>Chron. Gefühl von Leere</td>
<td>-</td>
</tr>
<tr>
<td>Unangemessene, heftige Wut</td>
<td>explosive und unterdrückte Wut im Wechsel</td>
</tr>
<tr>
<td>Paranoide/dissoziative Symptome</td>
<td>Amnesie und dissoziative Symptome</td>
</tr>
<tr>
<td>-</td>
<td>Veränderung persönlicher Einstellungen</td>
</tr>
<tr>
<td>-</td>
<td>Somatisierung</td>
</tr>
</tbody>
</table>
1 Einleitung

1.2 Grundlagen der Stressreaktion

Stress ist eine physiologische Reaktion, welche durch Kontrollverlust, Unvorhersehbarkeit und Informationsmangel verstärkt wird, während soziale Unterstützung, Kontrollierbarkeit und Informationen sie verringern (Fuchs et al. 2001). In unerwarteten oder bedrohlichen Situationen stehen dem Körper verschiedene, zentral regulierte Stressbewältigungsstrategien zur Verfügung, um sich selber helfen zu können oder Hilfe durch andere zu erfahren. Sie können angeboren oder erlernt sein, sind also stets abhängig von individuellen Vorerfahrungen und dem Kontext der Belastung. Zudem spielen die beiden Arme des autonomen Nervensystems eine zentrale Rolle bei der Vermittlung der peripheren Stressreaktion. Erst zu starker oder langandauernder Stress wird pathologisch und kann gesundheitsschädigend wirken.

1.2.1 Stressbewältigungssysteme

1.2.1.1 Kampf-Flucht-System

Abbildung 1: Darstellung der zentralen und peripheren Strukturen, welche an der Stressreaktion beteiligt sind (aus: Hüther et al. 1999, S. 86)
1 Einleitung

1.2.1.2 Bindungssystem

Kann die Bezugsperson das Kind beruhigen, wird bei beiden der Stress reduziert und durch Ausschüttung von Oxytocin und Endorphinen deren Bindung und Zufriedenheit verstärkt (Feldman et al. 2007). Diese Erfahrung gibt dem Kind Sicherheit und Selbstvertrauen, eigene Stressbewältigungsstrategien zu entwickeln und sich später neuen Herausforderungen zu stellen. Es lernt, dass Probleme alleine oder mit Hilfe anderer lösbar sind, was eine wichtige Ressource für spätere Stresssituationen darstellt (Hüther und Sachsse 2007).

Das Bindungssystem wird parasympathisch moduliert und hat seine Zentren im periaquäduktalen Grau (PAG), dem lateralen Septum und dem Gyrus cinguli. Es wird durch Glutamat erregt und verursacht vagale Angstsymptome wie weiche Knie, Zittern, Kloßgefühl im Hals oder Druck auf der Brust. Über Dopamin fördert es Herdenverhalten und soziale Bindungen. Das Bindungs- und das Furchtsystem sind eng miteinander verbunden; so ist Furcht ein wichtiger Beruhigungsfaktor für das Paniksystem (Hüther und Sachsse 2007) und Oxytocin ein hemmender Faktor der Amygdalaerregung, was wiederum die Furchtreaktion reduziert (Kirsch et al. 2005).

1.2.1.3 Erstarrungssystem

1.2.1.4 Polyvagale Theorie

Diesem Verhalten werden zwei Verteidigungsstrategien gegenübergestellt, die mit dem sozialen Interagieren und Kommunizieren inkompatibel sind und nicht gleichzeitig ablaufen können: die Immobilisation („freeze“), die mit dem alten, unmyelinisierten Vagus assoziiert wird und die Mobilisation („fight or flight“), welche dem dritten autonomen Subsystems, dem Sympathikus, zugeordnet wird. Porges versteht die Erstarrungsreaktion also nicht als gleichzeitige Aktivierung von Sympathikus und Parasympathikus, sondern als Ausdruck der ältesten und entwicklungsgeschichtlich primitivsten autonomen Reaktionsform durch den unmyelinisierten Vagus. Bislang konnte noch kein sicherer Parameter zur Darstellung der Aktivität des unmyelinisierten Vagus gefunden werden. Porges vermutet jedoch, dass die niederfrequente Herzratenvariabilität (low frequency, LF-HRV) diese zumindest teilweise reflektiert (siehe Kap. 1.3.1).

<table>
<thead>
<tr>
<th>ANS-Komponente</th>
<th>Verhaltensfunktion</th>
<th>Zweites Motoneuron</th>
</tr>
</thead>
<tbody>
<tr>
<td>III Myelinisierter Vagus (ventraler Komplex)</td>
<td>Soziale Interaktion (Selbstberuhigung, Hemmung von „arousal“)</td>
<td>Ncl. ambiguus (ventral)</td>
</tr>
<tr>
<td>II Sympathikus (adrenerges System)</td>
<td>Mobilisation („fight or flight“, aktives Vermeiden)</td>
<td>Rückenmark</td>
</tr>
<tr>
<td>I Unmyelinisierter Vagus (dorsaler Komplex)</td>
<td>Immobilisation (Totstellreflex „freeze“, passives Vermeiden)</td>
<td>Dorsaler Kern der vagalen Motoneurone</td>
</tr>
</tbody>
</table>

übergeordnete Strukturen beispielsweise durch eine Krankheit oder Verletzung verloren, übernehmen die untergeordneten, älteren Systeme und dominieren das Verhalten.

1.2.2 Neuroanatomische Grundlagen der Stressreaktion

Bei Stress besteht nicht unbedingt akute Lebensgefahr, das Gehirn muss die Situation unter Einbeziehung höherer limbischer und kortikaler Hirnregionen also erst einschätzen und beurteilen. Es vergleicht deshalb eingehende Stimuli mit bereits vorhandenen Informationen durch frühere Lernerfahrungen und löst anschließend eine entsprechende neuroendokrine Reaktion aus (Fuchs und Flügge 2001).

Eingehende sensorische Signale werden hierfür zunächst über den Thalamus an den Kortex geleitet, wo die Information ausgewertet wird. Wird eine Gefahr erkannt, kommt es zur Aktivierung des limbischen Systems (Kaluza 2004), was gedächtnisspeichernde, assoziative kortikale und subkortikale Strukturen aktiviert (Hüther et al. 1999). Eine zentrale Rolle zwischen den beteiligten Strukturen spielt hierbei der präfrontale Kortex (Kopp et al. 2008), welcher für die Interpretation sensorischer Ereignisse verantwortlich ist und ins limbische System (LS) projiziert (Hüther et al. 1999). Dieses ist wiederum für Lernen und Gedächtnis von
entscheidender Bedeutung und beteiligt sich an der Regulation des Trieb- und Affektverhaltens. Es besteht unter anderem aus Hippokampus, Amygdala, Gyrus cinguli und Teilen des Thalamus.

1.2.3 Bindungsstörungen und Beziehungstraumata

In der postnatalen Gehirnentwicklung kommt es zudem zu einer genetisch angelegten Überproduktion von Synapsen, welche anschließend durch Umwelteinfahrungen selektiv gefestigt und verstärkt oder auch wieder abgebaut werden. Insbesondere in den ersten zwei Lebensjahren erfolgt so durch wechselnde Erfahrungen von kontrollierbarem und unkontrollierbarem Stress (siehe Kap. 1.2.1.1) eine wichtige Prädiktion und Adaptation der individuellen Stressreaktionen (Hüther und Sachsse 2007).
Wenn die elterliche Bezugsperson nun nicht Sicherheit und Geborgenheit vermittelt, sondern Bedrohung und Stress, kann dies einen tiefgreifenden Einfluss auf die Entwicklung des Kindes haben. Da es sich selber nicht helfen kann und das Bindungssystem versagt, kann es keine funktionalen Stressbewältigungsstrategien erlernen und erfährt bereits in früher Kindheit Zustände von Bedrohung und Hilflosigkeit (Schore 2001).

1.2.4 Pathologische Veränderungen durch chronischen Stress

Es wird diskutiert, dass frühkindliche Beziehungstraumata zu einer gestörten Vernetzung zwischen präfrontalen Kortexregionen und dem limbischen System führen und so überschießende subkortikale Reaktionen des limbischen Systems verursachen. Durch eine ungenügende Inhibition der Amygdala wird dann schon bei geringem Stress über noradrenerge

1.3 Kardiovaskuläre Stressreagibilität

Hämodynamische und kardiale Parameter sind durch zahlreiche Studien etablierte Kenngrößen zur Messung der peripheren Stressreaktionen. Hier sind neben physiologischen Messgrößen wie der Herzrate (HR) und dem Gefäßwiderstand (totaler peripherer Widerstand, TPR) auch die autonomen Parameter Herzratenvariabilität (HRV) und Barorezeptorsensitivität (BRS) zu nennen. Sie alle stehen unter ständiger Beeinflussung durch das autonome Nervensystem (ANS), welches über die Formatio reticularis in der Medulla oblongata die Herzaktivität moduliert (Abbildung 2).

![Diagram](image)

Abbildung 2: Regulation der Herzfrequenz und der Herzratenvariabilität (nach von Borell et al. 2007)

Während eine Aktivierung des Sympathikus eine β-adrenerg vermittelte Steigerung der Herzfrequenz und -kontraktilität verursacht und über α₁-Rezeptoren zu einer Vasokonstriktion führt, wirkt der Parasympathikus über Acetylcholinrezeptoren hemmend auf die Schrittmacherzellen und die Herzvorhöfe. Die sympathisch vermittelten Stressreaktionen können zudem im Sinne eines Modells der vier Faktoren neben den α- und β-adrenergen Parametern in eine zeit- und eine frequenzbezogene HRV eingeteilt werden, welche unabhängig voneinander aktiviert werden und nicht stark miteinander korrelieren (<0,25, Herrmann-Lingen et al. 2010). So müssen zur Beurteilung einer Stressreaktion immer alle vier Regulationsmechanismen sowie beide Arme des ANS betrachtet werden, denn Stress-
symptome wie Herzklopfen können sowohl durch eine sympathische Aktivierung als auch durch eine parasympathische Deaktivierung verursacht werden. Ein Ausdruck für das Wechselspiel der hier antagonistisch wirkenden vegetativen Systeme ist die sympathovagale Balance.

1.3.1 α- und β-adrenerge Parameter

1 Einleitung

1.3.2 Herzratenvariabilität (HRV)

Die HRV ist ein Parameter zur Beurteilung der autonomen Adaptationsfähigkeit des Herzens. Sie stellt die Veränderung der Herzfrequenz durch die wechselnden Einflüsse des vegetativen Nervensystems dar und zeigt, wie gut sich das Herz an unterschiedliche Belastungen von Schlag zu Schlag anpassen kann (Löllgen 1999). Ein gesunder Mensch hat eine sehr ausgeprägte HRV, in Ruhe überwiegt der vagale Einfluss auf das Herz. Unter Stress kommt es typischerweise zu einem Anstieg der HR und einem Abfall der HRV als Ausdruck für eine sympathische Aktivierung bzw. vagale Disinhibition (Stiedl et al. 2002). Bei zahlreichen Krankheitsbildern kommt es zu einer gestörten autonomen Regulation, bei denen die Sympathikusaktivität überwiegt oder der Einfluss des Parasympathikus zu schwach sein kann. Hierdurch kann bereits in Ruhe die HR erhöht und die HRV vermindert sein (siehe Kap. 1.3.4).

Einen allgemeinen Überblick über die HRV kann die Standardabweichung der normierten R-Intervalle geben (SDNN), welche eine Form der HRV-Analyse im Zeitbereich darstellt (siehe Kap. 3.4.1). Sie steigt bei vagaler Aktivierung an und fällt bei erhöhtem Sympathikotonus ab. Darüber hinaus kann die HRV in verschiedene Frequenzbereiche aufgeteilt werden, von denen der hochfrequente Bereich vagale Einflüsse wiedergibt (high frequency, HF-HRV) und der niederfrequente Anteil u.a. auch die sympathische Aktivität reflektiert (low frequency, LF-HRV, siehe Kap. 3.4.1). Um, wie oben beschrieben, die vier Komponenten der sympathischen Aktivität zu berücksichtigen und sowohl die zeit- als auch die frequenzbezogene HRV abzudecken, wurden für diese Arbeit die SDNN und die LF-HRV ausgewertet. Entsprechend wurde zur Beurteilung der vagalen Aktivität zudem die HF-HRV herangezogen.

1.3.3 Barorezeptorsensitivität (BRS)

Durch verschiedene Rückkopplungsmechanismen, die direkt auf die vegetativen Zentren im Hirnstamm wirken, kann eine schnelle Anpassung der Herzleistung an wechselnde Belastungen gewährleistet werden. Hier sind vor allem die Baro- und Chemorezeptoren zu nennen, welche

Die Barorezeptorafferenzen haben allerdings nicht nur Einfluss auf das Herz, sondern auch auf Lunge, Darmmotilität und andere vegetative Funktionen und werden selber auch durch diese moduliert (Van De Borne et al. 2000). Der Barorezeptorreflex steht also in Zusammenhang mit anderen Regulationsmechanismen und ist kein isolierter Kreislaufreflex.

1.3.4 Sympathovagale Dysbalance

Die sympathovagale Balance kann durch autonome Parameter wie der HRV und der BRS bestimmt werden (siehe Kap. 1.3.1 und 1.3.3). Bei zahlreichen kardiovaskulären Erkrankungen lässt sich eine Verschiebung dieses Gleichgewichts in Richtung Sympathikotonus mit entsprechendem Abfall des Vagotonus beobachten, was mit einer erhöhten Mortalität einhergehen kann (Task Force Guideline HRV: Malik et al. 1996; La Rovere und Schwartz 1997). So konnte beispielsweise in der ATRAMI Studie (Autonomic Tone and Reflexes After Myocardial Infarction) gezeigt werden, dass eine verminderte BRS und HRV unabhängig voneinander mit einem erhöhten Risiko für den plötzlichen Herz Tod nach erlittenem Myokardinfarkt einhergehen (La Rovere et al. 1998; Schwartz und La Rovere 1998). Auch bei anderen Krankheitsbildern wie der diabetischen Neuropathie, der Herzensuffizienz oder der obstruktiven Ventilationsstörung können Störungen der sympathovagalen Balance mit einem
Mittels physiologischer Maßnahmen oder Medikamenten wie β-Blockern kann positiv Einfluss auf die vegetativen Parameter genommen werden, was teilweise auch zu einer Verbesserung der klinischen Prognose führt (Task Force Guideline HRV: Pagani et al. 1988; Malik et al. 1996; Iellamo et al. 2000; La Rovere et al. 2002; Cohen und Benjamin 2006). Die Erfassung der oben genannten Parameter hat also sowohl diagnostischen als auch prognostischen Charakter, konnte sich jedoch im klinischen Alltag bislang nicht routinemäßig durchsetzen.

1.3.5 Einfluss von Medikamenten auf die HRV

Tabelle 4: Auflistung verschiedener Studienergebnisse zur Beeinflussung der HRV durch Medikamente.

<table>
<thead>
<tr>
<th>Medikamente</th>
<th>Wirkung auf das ANS</th>
<th>Veränderung spezifischer Parameter</th>
<th>Studie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca²⁺-Antagonisten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diltiazem</td>
<td></td>
<td>Kein Effekt</td>
<td>(Cook et al. 1991)</td>
</tr>
<tr>
<td>Amlodipin</td>
<td>Sympathikus ↑, Parasympathikus ↓</td>
<td>HF-HRV ↓, LF-HRV ↑, LF/HF-Ratio ↑</td>
<td>(Karasz et al. 2005)</td>
</tr>
<tr>
<td>Verapamil</td>
<td></td>
<td>SDNN↑, LF- und HF-HRV↑, LF/HF-Ratio↓</td>
<td>(Zhang et al. 2007)</td>
</tr>
<tr>
<td>AT₁-Antag./ACE-Hemmer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telmisartan</td>
<td>Parasympathikus↑</td>
<td>HF-HRV↑, LF/HF-Ratio↓</td>
<td>(Karasz et al. 2005)</td>
</tr>
<tr>
<td>Ramipril</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antidepressiva</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tcAD allg./ Amitryptilin</td>
<td></td>
<td>HRV↓</td>
<td>(Kemp et al. 2010) (Rechlin 1994)</td>
</tr>
<tr>
<td>SSRI allg./ Citalopram</td>
<td></td>
<td>Kein Effekt (nicht ganz eindeutige Studienlage)</td>
<td>(Penttila et al. 2001) (Kemp et al. 2010)</td>
</tr>
<tr>
<td>SNRI allg./ Reboxetin</td>
<td>Sympathikus↑, Parasympathikus↓</td>
<td>BRS↓, RMSSD↓, HF-HRV↓</td>
<td>(Koschke et al. 2009) (Penttila et al. 2001)</td>
</tr>
<tr>
<td>β-Blocker</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-Blocker allg., Amiodaron</td>
<td>Sympathikus↓, Parasympathikus↑</td>
<td></td>
<td>(Tatarenchenko et al. 2003)</td>
</tr>
<tr>
<td>Metoprolol</td>
<td>SDNN↑, RMSSD↑, LF- und HF-HRV↑, LF/HF-Ratio↓</td>
<td></td>
<td>(Zhang et al. 2007) (Tacoy et al. 2007)</td>
</tr>
<tr>
<td>Bisoprolol</td>
<td>Time domain BRS↑</td>
<td>LF-/HF-HRV nicht beeinflusst</td>
<td>(Belota et al. 2009)</td>
</tr>
<tr>
<td>Atenolol</td>
<td></td>
<td>HRV↑</td>
<td>(Cook et al. 1991)</td>
</tr>
<tr>
<td>Propanolol</td>
<td></td>
<td>RMSSD↑, HF- und LF-HRV↑</td>
<td></td>
</tr>
<tr>
<td>Benzodiazepin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lorazepam</td>
<td></td>
<td>Kein Effekt</td>
<td>(Ahmed et al. 1994)</td>
</tr>
<tr>
<td>Anti-epileptikum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbamazepin</td>
<td>Sympathikus↓, Parasympathikus↑</td>
<td>SDNN↓, LF- und HF-HRV↓, Total Power↓</td>
<td>(Persson et al. 2003)</td>
</tr>
<tr>
<td>Antiarrhythmikum (IA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disopyramid</td>
<td>Parasympathikus↓</td>
<td>HF-HRV↓</td>
<td>(Sugiura et al. 2005)</td>
</tr>
</tbody>
</table>

1.4 Autonome Dysregulation bei PTBS

Hauschildt et al. 2011). Die Autoren diskutieren die Möglichkeit, dass Patienten mit einer dauerhaft erhöhten Sympathikusaktivität in Ruhe durch vagale Hyporeagibilität unter Stress keinen Spielraum mehr für weitere sympathische Reaktionen haben.

Die unterschiedlichen Studienergebnisse machen die Komplexität der möglichen autonomen Interaktionen deutlich. Verschiedene Autoren haben daher bereits gefordert, dass neue Studien dem durch größeren Kohorten und dem simultanen Erfassen mehrerer Parameter wie beispielsweise HF-HRV und BRS gerecht werden sollten (Blechert et al. 2007; Keary et al. 2009). Da dies im Verlauf der vorliegenden Studie ebenfalls deutlich wurde, wurden zur Testung der Reliabilität der eigenen Ergebnisse und zur besseren Vergleichbarkeit mit anderen Studien explorativ die folgenden vier weiteren Parameter ausgewertet: BRS, HR und PEP sowie der sBP.
1.5 Zielsetzung

Obwohl das autonome Nervensystem bei Angststörungen unumstritten eine wichtige Rolle spielt, ist die Art und Weise der sympathovagalen Dysbalance noch immer nicht ausreichend erforscht und verstanden. Dies gilt insbesondere für die PTBS. Die bisher erfolgten Untersuchungen der sympathovagalen und kardialen Parameter bei Patienten mit PTBS reichen nicht aus, um ein volles Verständnis der zugrunde liegenden Regulationsmechanismen zu erlangen. Insbesondere die Rolle des Parasympathikus ist in der Vergangenheit lange Zeit nicht ausreichend berücksichtigt worden und die Anzahl der untersuchten Parameter wurde der Komplexität der Regulationsmechanismen i.d.R. nicht gerecht. Die Fallzahlen waren zudem oft klein, die Ergebnisse widersprüchlich und durch verschiedene Untersuchungsmethoden lassen sich die Studien in der Regel nur schwer vergleichen.

2 Hypothesen

1. Im Vergleich zwischen Kontrollgruppe und Patientinnen ergeben sich Unterschiede in der Reagibilität. Hierbei werden folgende Formen autonomer kardiovaskulärer Reaktionsmuster vermutet:
 a) Die sympathische Aktivität der Patientinnen ist bereits in Ruhe erhöht, was sich in einer verstärkten \(\alpha \)- und \(\beta \)-adrenergen Aktivierung, einer eingeschränkten SDNN und einer erhöhten LF-HRV zeigt. Dies geht einher mit einem erniedrigten Vagotonus.
 b) Es kommt während des Rechentestes im Vergleich zu der Kontrollgruppe zu einer stärkeren sympathischen Aktivierung sowie zu einem stärkeren Abfall des Vagotonus.
 c) Die Patientinnen reagieren stärker auf den emotionalen Stresstest (Babyschreien) als die Kontrollgruppe. Bei gleich bleibender Vagusaktivität kommt es bei ihnen zu einer simultanen Sympathikusaktivierung.
 e) In der Abschlussphase mit Entspannungsmusik finden Patientinnen und Kontrollgruppe wieder zu einem vergleichbar niedrigen Erregungsniveau zurück.

2. Subjektiv angegebene und objektiv beobachtbare Reaktionen verhalten sich wie folgt:
 a) Das subjektive Stressempfinden im Verlauf der Stressuntersuchung ist bei den Patientinnen im Vergleich zu den gesunden Frauen erhöht.
 b) Die subjektiven Stressempfindungen korrelieren moderat mit den Änderungen der physiologischen Aktivitätsparameter.
 c) Die objektiv beobachtbaren vegetativen Reaktionen der Patientinnen fallen stärker aus als diejenigen der Kontrollgruppe.

3. Die Unterschiede zwischen Patientinnen- und Kontrollgruppe sind nur teilweise medikamentös bedingt
3 Probandinnen und Methoden

3.1 Probandinnenrekrutierung

3.1.1 Einschlusskriterien

Zum Einschluss in die Studie mussten die Probandinnen zwischen 18 und 60 Jahre alt sein, ausreichende kognitive Fähigkeiten und Beherrschung der deutschen Sprache vorweisen und schriftlich in die Studienteilnahme einwilligen. Für die Patientinnen musste zudem eine durch ein strukturiertes Interview und zusätzliche Fragebogendiagnostik erfasste PTBS oder Borderline-Persönlichkeitsstörung diagnostiziert worden sein. Für den Einschluss einer gesunden Frau in die Kontrollgruppe waren körperliche und psychische Gesundheit in der Anamnese Voraussetzung.

3.1.2 Ausschlusskriterien

3.2 Aufbau und Ablauf der Untersuchung

Nach ausführlicher Diagnostik mittels Fragebögen und strukturierten Interviews (siehe Kap. 3.5) auf der Trauma-Station des Asklepios-Klinikums wurden die Patientinnen dort über die Studie aufgeklärt und gefragt, ob sie daran teilnehmen möchten. Bei den Probandinnen der Kontrollgruppe wurde mittels der Fragebögen SCL-90-R, BPI und IES-R eine psychische Erkrankung weitgehend ausgeschlossen. Beide Gruppen haben einen allgemeinen Fragebogen zur Erhebung soziodemographischer Daten ausgefüllt.

Anschließend erfolgte in der Abteilung Psychosomatische Medizin und Psychotherapie der Universität Göttingen die Untersuchung mit dem Task Force Monitor, welcher nicht invasiv zahlreiche kardiovaskuläre Parameter messen kann (Kap. 3.4). Mit einem Kopfrechentest und der Exposition gegen Babygeschrei wurden während der Messung zwei verschiedene, alltägliche Stresssituationen simuliert, um die hämodynamischen und kardiovaskulären Veränderungen sowohl bei kognitivem als auch bei emotionalem Stress messen zu können. Zum Abschluss erfolgte eine Entspannungsphase, in der den Versuchsteilnehmerinnen als Entspannungsmusik die Mondscheinsonate von Beethoven vorgespielt wurde. Sowohl die Patientinnen als auch die Kontrollfrauen wurden nach folgendem einheitlichen Versuchsprotokoll untersucht:

1) Kalibrierung
2) Phase 1: Ruhe „Beginn der Aufzeichnung“ 5 min
 - Stressempfinden notieren
 - Instruktion für Rechenstresstest bei 4:30 min
3) Phase 2: Rechnen „Rechnen an“ 5 min
4) Phase 3: Ruhe „Rechnen ab“ 6 min
 - Stressempfinden während d. Rechenstresstests erfragen
 - nach 3 min Wechsel der Fingermanschette
5) Phase 4: Babyschreien 5 min
6) Phase 5: Ruhe „Ruhe“ 6 min
 - Stressempfinden während des Babyschreiens erfragen
 - Realitätsempfinden erfragen
 - nach 3 min Wechsel der Fingermanschette
7) Phase 6: Musik „Entspannungsmusik“ 5 min
8) Ende „Musik aus“
 - Stressempfinden während der Musik erfragen
Vor Beginn der Messungen wurde darauf hingewiesen, dass bei zu großem Stressempfinden sowohl die Stresstests als auch die Entspannungsmusik abgebrochen werden können. Hiervon haben einige Patientinnen Gebrauch gemacht. Die Messung fand im Sitzen statt, die Patientinnen mussten den Oberkörper zum Anlegen der Messgeräte nicht vollständig entkleiden.

Der Wechsel der Fingermanschetten erfolgte in den Ruhephasen 2 und 3 in der jeweils dritten Minute manuell. Da man in dieser Zeit für etwa eine Minute keine kontinuierlichen Blutdruckwerte erhält, musste der Wechsel bei allen Messungen zeitgleich gestaltet werden. Um dennoch ein Messintervall von 5 Minuten auswerten zu können, wurden diese beiden Phasen auf insgesamt 6 Minuten ausgedehnt.

In Ruhe 1 sowie unmittelbar nach dem Rechenstresstest, dem Babyschreien und der Entspannungsmusik wurde mittels einer Analogskala von 0 bis 10 das subjektive Stressempfinden der Probandin erfragt. Hierbei entsprach „0“ gar keinem Stress und „10“ dem schlimmsten vorstellbaren Stress.

Ebenfalls auf einer Skala von 1 bis 10 wurde erfasst, wie real den Probandinnen das Babyschreien erschien. „1“ bedeutete hier, dass ihr die ganze Zeit bewusst war, dass es sich um eine Tonbandaufnahme handelte, während „10“ für das starke Empfinden stand, dass das Baby sich tatsächlich mit im Raum befände.

3.3 Stresstests: Kopfrechnen und Babyschreien

3.4 Der Task Force® Monitor

Das Elektrokardiogramm ist ein 2-Kanal-EKG, welches die I. und die II. Ableitung nach Einthoven erfasst. Durch eine genaue Analyse im Millisekundentakt (Frequenz=1000Hz) werden die RR-Intervalle (RRI) detektiert, was eine sehr zuverlässige Messung der HR ergibt und so eine Berechnung der HRV und der BRS ermöglicht. Mit einem neu entwickelten Algorithmus zur Detektion der QRS-Komplexe erreicht der TFM hier eine Fehlerquote von unter 2%. Die BRS wird mit Hilfe der Sequenz-Methode ermittelt, indem von Schlag zu Schlag die Veränderungen des systolischen Blutdrucks (sBP) und der RRI detektiert werden (Parati et al. 1988). Falls sich bei drei aufeinander folgenden Schlägen der sBP um jeweils mindestens 1 mmHg erhöht/erniedrigt und sich das RRI um jeweils mindestens 4 ms verlängert/verkürzt, spricht man von einem Barorezeptor-Event.

Die transthorakale Impedanzkardiographie (IKG) ermöglicht über drei Bandelektroden auf Höhe des Nackens und der unteren Thoraxapertur eine nicht-invasive Bestimmung des „beat-to-beat“-Schlagvolumens (SV) und des Herzzeitvolumens (HZV). Es wird ein Wechselstrom von

Aus den EKG-Signalen, den Blutdruckwerten und der Impedanzmessung können mit Hilfe der TFM-Software außerdem für jeden einzelnen Herzschlag die positive Inotropie des Herzens, der periphere Gefäßwiderstand, sowie Sympathikus- und Vagotonus berechnet werden.

Zusammenfassend werden folgende Werte in Echtzeit auf dem Monitor dargestellt:

- RR-Intervall (RRI), [ms] und Herzrate (HR), [bpm]
- systolischer, diastolischer und mittlerer arterieller Blutdruck (sBP, dBP, mBP)
- thorakale Impedanz abgeleitet aus dem IKG-Signal (Z₀), [Ohm]
- Linksv ventrikuläre Ejektionszeit (LVET), [ms]
- Präejektionszeit (PEP, R-Zacke im EKG bis Aortenklappenöffnung im IKG), [ms]
- Schlagvolumen (SV), [ml] und Schlagindex (SI), [ml/m²]
- Herzzeitvolumen
 - Cardiac Output (CO): CO = SV*HR, [l/min]
 - Cardiac Index (CI), [l/(min* m²)], normiert auf die Körperoberfläche (KO)
- Totaler Peripherer Widerstands-Index (TPRI), [dyn*s/cm⁵], normiert auf KO
- Thorakaler Flüssigkeitsinhalt (TFC), [1/kOhm]
- Kontraktilitätsindex (IC, max. Blutfluss während Auswurf d. li. Ventrikels), [1000/s]
- Systolic Time Ratio (STR, Verhältnis von PEP zu LVET), [%]
- Ejection Rate (ER, Verhältnis von LVET zu RRI), [%]
- Left Ventricular Work Index (LVWI), [kg*m/m²]
- Mean Systolic Ejection Rate (MSER, Verhältnis von SV zu LVET), [ml/s]
- Rapid Ejection Period (REP), [ms]
- Revised Heather Index (HIrev, Maß für positive Inotropie), [1/s²]
- Spektralanalyse von Herzraten- und Blutdruckvariabilität (HRV und BDV), [Hz]
 - VLF „very low frequencies“
 - LF „low frequencies“
 - HF „high frequencies“
- Barorezeptorsensitivität (BRS)
3.4.1 Bestimmung der HRV

Um die HRV zu bestimmen, werden die Abstände regelmäßiger QRS-Komplexe (NN-Intervalle) im EKG ausgewertet und deren periodische Schwankungen sowohl zeitbezogen als auch frequenzbezogen analysiert. Grundsätzlich eignen sich Analysen im Zeitbereich eher für Langzeitmessungen und Analysen im Frequenzbereich eher für Kurzzeitmessungen, da die HRV mit zunehmender Analysedauer größer wird und die physiologischen Regulationsmechanismen nicht über einen längeren Zeitraum konstant sind (Agelink 1999).

Zeitbereich (Time Domain)

Bei der Analyse im Zeitbereich werden die NN-Intervalle über einen definierten Zeitraum betrachtet und daraus Mittelwerte, Standardabweichungen und weitere Parameter berechnet. Standardisierte Werte sind hierbei SDNN [ms], SDANN [ms] und RMSSD [ms] (Task Force Guideline HRV: Malik et al. 1996).

- Teilt man den gesamten Messzeitraum in 5-Minuten-Intervalle ein und betrachtet die Standardabweichung der daraus berechneten NNI-Mittelwerte (SDANN), kann man Veränderungen der Herzfrequenz über einen längeren Zeitraum beobachten.

\[
RMSSD = \sqrt{\frac{1}{n} \sum_{i=1}^{n-1} \left((NNI)_i - (NNI)_{i+1} \right)^2}
\]

\((n = \text{Anzahl aller NNI})\)
Frequenzbereich (Frequency Domain)

- **High Frequency (0,15-0,40Hz):** Das kurzwellige „Atmungsband“ mit Periodendauern von ca. 4 Sekunden ist Ausdruck der respiratorischen Sinusarrhythmie (RSA) und reflektiert vagale Einflüsse auf das Herz. Empfohlener Normwert für Kurzzeitanalysen: 975 ±203 ms² (Task Force Guideline HRV: Malik et al. 1996).

- **Very Low Frequency (0-0,04Hz):** Sehr langwellige Oszillationen mit Zeitintervallen von 30-120 Sekunden sollen humorale, thermoregulatorische und vasomotorische Einflüsse auf das Herz spiegeln. Die physiologische Bedeutung der VLF-Komponente ist jedoch noch nicht ausreichend geklärt und bei einer fünfmütigen Analyse auch nicht aussagekräftig.

3.4.2 Validierung des TFM

3.5 Die Fragebogen-Mappe

3.5.1 Symptom-Check-Liste (SCL-90-R)

3.5.2 Beck-Depressions-Inventar (BDI)

3.5.3 Impact of Event Scale (IES-R)

Die IES-R ist ein Messinstrument zur Beurteilung der psychischen Symptome nach traumatischen Erfahrungen wie Gewalttaten oder Kriegserlebnissen. Die für eine PTBS typischen Reaktionen Intrusion, Vermeidung und Übererregung werden in drei Subskalen erfasst. Jede Frage hat fünf Antwortmöglichkeiten von 0 = „überhaupt nicht“ bis 5 = „oft“, wobei die Antwort ab 4 als positiv für das Vorliegen von Symptomen gewertet wird. Mittels einer Formel kann aus den drei Subskalen berechnet werden, ob die Diagnose einer PTBS wahrscheinlich ist: \(x=(-0,02 \times \text{Intrusion})+(0,07 \times \text{Vermeidung})+(0,15 \times \text{Übererregung})-4,36. \) Ist der resultierende Wert > 0, ist die Diagnose PTBS wahrscheinlich.

3.5.4 Borderline-Persönlichkeits-Inventar (BPI)

Probandinnen und Methoden

zwischenmenschlichen Beziehungen als charakteristisch für einen Borderline-Persönlichkeitsstörung ansahen.

Der Fragebogen besteht aus 53 Items, die in etwa 20 Minuten im Ja/Nein Schema beantwortet werden können. Er enthält die vier Skalen „Entfremdungserlebnisse und Identitäts-Diffusion“ (ID, 12 Items), „Primitive Abwehrmechanismen und Objektbeziehungen“ (AB, 8 Items), „Mangelhafte Realitätsprüfung“ (R, 5 Items) und „Angst vor Nähe“ (N, 8 Items).

Die Auswertung erfolgt durch das Addieren der positiv beantworteten Fragen. Zur Unterscheidung der Borderline-Störung von Neurosen und Schizophrenien werden 20 Items zur Bildung eines Cut-Off-Wertes ermittelt. Hierfür und auch für den Gesamtwert des BDI liegen Normwerte vor (sowohl für die Gesamtstichprobe und als auch für einzelne diagnostische Gruppen). In verschiedenen Studien wurde eine zufrieden stellende innere Konsistenz (Cronbach’s α=0,68-0,91) und Re-Test-Reliabilität (r=0,73-0,89) festgestellt. Die Sensitivität liegt bei 0,85-0,89, die Spezifität bei 0,78-0,89 (Leichsenring 1997).

3.5.5 Dissociative Disorders Interview Schedule (DDIS)

Das Interview umfasst 132 Items mit geschlossenen Fragen, die im Ja-/Nein-Schema bzw. in festen Antwortkategorien zu beantworten sind. Es wurde bereits in mehrere Sprachen übersetzt und dauert etwa 45 bis 90 Minuten. Der DDIS ist gut evaluiert und validiert (Ross, 1989), mit einer hohen Sensitivität und Spezifität (Ross 1997). Die Inter-Rater-Reliabilität liegt bei 0,68. Auch für die deutsche Version (SIDDS, Strukturierter Interviewleitfaden zur Diagnostik dissoziativer Störungen) konnte eine Sensitivität und Spezifität von über 90% nachgewiesen werden (Overkamp 2005).

3.5.6 International Personality Disorder Examination (IPDE)

Die IPDE ist ein strukturiertes Interview als offizielles Instrument der WHO zur Diagnostik von Persönlichkeitsstörungen nach ICD-10 und DSM-IV (Mombour et al. 1996; Loranger et al.
Probandinnen und Methoden

Bei der WHO-Feldstudie lag die Inter-Rater-Reliabilität für die meisten Kriterien über 0,70 und die Zeitstabilität nach mehreren Wochen bis Monaten meist zwischen 0,50 und 0,60. Wegen fehlender Außenkriterien war es schwierig, eine entsprechende messbare Validität festzustellen. Bei einem Vergleich zwischen der IPDE und einem freien Interview mittels Checklisten wird für die Diagnose einer Persönlichkeitsstörung allgemein von einer Inter-Rater-Reliabilität von 0,52-0,75 berichtet. Für die genaue Diagnose der verschiedenen Subtypen der Persönlichkeitsstörungen wurden jedoch sehr starke Abweichungen gefunden (Bronisch und Mombour 1994).

3.5.7 Interview zur Diagnostik der komplexen posttraumatischen Belastungsstörung (Ik-PTBS)

Die interne Konsistenz des Ik-PTBS bezogen auf die Gesamtstichprobe hat sich als gut bis sehr gut erwiesen (α= 0,88) und man geht von einer hohen externen Validität der Diagnose kPTBS aus (Boroske-Leiner et al. 2008).
3.5.8 Fragebogen zu dissoziativen Symptomen (FDS)

3.5.9 Allgemeiner Fragebogen zu soziodemographischen Daten und Risikofaktoren

Um ergänzende Angaben zu den Untersuchungspersonen zu erhalten und eine bessere Vergleichbarkeit der beiden Kollektive zu gewährleisten, wurden die folgenden Daten zusätzlich erhoben: Alter, Größe, Gewicht, Familienstand, Zusammenleben mit Partner, Zahl der Kinder, Stunden Sport pro Woche, drinks per week, Tabakkonsum, Ausbildungsstand, Beschäftigungsverhältnis, aktuelle Medikamentenanamnese, Vorерkrankungen und aktuelles Stresserleben (siehe Anhang).

3.6 Statistik

3.6.1 Fragebögen

werden Häufigkeiten (absolut und prozentual) angegeben. Um auch hier eine Aussage über die Verteilung in den Gruppen machen zu können, wurde für ordinale Werte ein nichtparametrischer Mann-Whitney-U-Test angewandt und für kategoriale Variablen ein Chi-Quadrat Test. Die Erfassung der Vorerkrankungen und der eingenommenen Medikamente erfolgte durch Auswertung der Patientinnenakten und manuelle Übertragung in SPSS.

3.6.2 TFM-Daten

Um die Erholung nach dem Babyschreien besser vergleichen zu können, wurden hier zudem Mittelwerte aus fünf Messwerten der Parameter sBP, RMSSD, TPRI und CI jeweils 30 Sekunden vor Ende des Babyschreiens und 30, 60 sowie 90 Sekunden nach Ende des Babyschreiens berechnet und mittels ANOVA verglichen.

3.6.3 Babyschreien und Stressreaktionen

4 Ergebnisse

4.1 Vollständigkeit der Daten und Ausschluss von Messwerten

Da die Fragebögen nicht von allen Probandinnen vollständig ausgefüllt wurden, ergeben sich hier ebenfalls zum Teil etwas geringere Fallzahlen.
4.2 Kollektivbeschreibung

4.2.1 Allgemeiner Fragebogen

Das durchschnittliche Alter der Patientinnen lag bei 41 ± 9 (20-54) Jahren. Hier ergab sich im Vergleich zu der eingeschlossenen Kontrollgruppe mit 39 ± 11 (22-59) Jahren kein signifikanter Unterschied (p=0,241, Tabelle 5). Auch der Alkoholkonsum (drinks per week) unterschied sich nicht signifikant. Ein deutlicher Unterschied zeigt sich jedoch bei der Betrachtung des BMI und des Zigarettenkonsums (packyears), welche bei den Patientinnen signifikant höher waren (p<0,001). Die sportliche Aktivität war bei den gesunden Probandinnen etwas stärker ausgeprägt (Tabelle 6), während das subjektive Stressgefühl zum Zeitpunkt der Studie bei den Patientinnen signifikant erhöht war (Tabelle 7).

Tabelle 5: Vergleich von Alter, BMI, Alkohol- und Zigarettenkonsum von Patientinnen (P) und gesunden Probandinnen (K). Angabe von Mittelwerten ± Standardabweichung und Prüfung auf Signifikanz mittels T-Test. α=0,05.

<table>
<thead>
<tr>
<th>Variabel</th>
<th>Gr.</th>
<th>N</th>
<th>Mittelwert</th>
<th>SD</th>
<th>Signifikanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter</td>
<td>K</td>
<td>39</td>
<td>38,95</td>
<td>11,41</td>
<td>n.s. (p=0,241)</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>54</td>
<td>41,41</td>
<td>8,69</td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td>K</td>
<td>39</td>
<td>22,46</td>
<td>3,22</td>
<td>p<0,001</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>53</td>
<td>27,63</td>
<td>6,47</td>
<td></td>
</tr>
<tr>
<td>drinks per week</td>
<td>K</td>
<td>39</td>
<td>4,0</td>
<td>4,16</td>
<td>n.s. (p=0,221)</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>53</td>
<td>2,66</td>
<td>6,38</td>
<td></td>
</tr>
<tr>
<td>packyears</td>
<td>K</td>
<td>39</td>
<td>1,67</td>
<td>5,45</td>
<td>p<0,001</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>54</td>
<td>13,04</td>
<td>16,71</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 6: Vergleich der sportlichen Aktivität von Patientinnen (P) und gesunden Probandinnen (K) pro Woche.

<table>
<thead>
<tr>
<th>Gr.</th>
<th>N</th>
<th>Anzahl der Stunden, die man pro Woche Sport macht</th>
<th>Signifikanz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>keine Sport</td>
<td><0,5h</td>
</tr>
<tr>
<td>Anzahl der Frauen mit Angabe in %</td>
<td>K</td>
<td>39</td>
<td>7 (18%)</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>54</td>
<td>23 (43%)</td>
</tr>
</tbody>
</table>

Tabelle 7: Subjektives Stressempfinden der Patientinnen (P) und gesunden Probandinnen (K) vor der Studie.

<table>
<thead>
<tr>
<th>Gr.</th>
<th>N</th>
<th>Fühlen Sie sich in letzter Zeit besonders gestresst?</th>
<th>Signifikanz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ja</td>
<td>nein</td>
</tr>
<tr>
<td>Anzahl der Frauen mit Angabe in %</td>
<td>K</td>
<td>38</td>
<td>10 (26%)</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>54</td>
<td>38 (70%)</td>
</tr>
</tbody>
</table>

Die gesunden Frauen waren häufiger ledig und aufgrund einer geringeren Scheidungsrate aber auch häufiger verheiratet (Tabelle 8). Prozentual lebten somit 77% der gesunden Frauen und
54% der Patientinnen in einer festen Partnerschaft. Darüber hinaus gab es mehr kinderlose Frauen in der Kontrollgruppe (49%), für die Anzahl der Kinder insgesamt ergab sich jedoch kein signifikanter Gruppenunterschied.

Tabelle 8: Familienstand, Beziehungsstatus und Anzahl der Kinder der Probandinnen.

<table>
<thead>
<tr>
<th>Gruppe (K: n=39; P: n=54)</th>
<th>Anzahl der Frauen mit Angabe in %</th>
<th>Signifikanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Familienstand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ledig</td>
<td>Kontrolle 20 (51%) Patientin 17 (31%)</td>
<td>p<0,0001</td>
</tr>
<tr>
<td>verheiratet</td>
<td>17 (42%) 19 (35%)</td>
<td></td>
</tr>
<tr>
<td>geschieden</td>
<td>1 (3%) 17 (31%)</td>
<td></td>
</tr>
<tr>
<td>verwitwet</td>
<td>1 (3%) 1 (2%)</td>
<td></td>
</tr>
<tr>
<td>Beziehungsstatus</td>
<td></td>
<td>p=0,005</td>
</tr>
<tr>
<td>feste Partnerschaft, zusammen leben</td>
<td>Kontrolle 20 (51%) Patientin 22 (41%)</td>
<td></td>
</tr>
<tr>
<td>feste Partnerschaft, nicht zusammen lebend</td>
<td>10 (26%) 7 (13%)</td>
<td></td>
</tr>
<tr>
<td>keine feste Partnerschaft</td>
<td>9 (23%) 25 (46%)</td>
<td>n.s. (p=0,247)</td>
</tr>
<tr>
<td>Anzahl der Kinder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>schwanger</td>
<td>1 (3%) 0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Kontrolle 19 (49%) Patientin 17 (31%)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2 (5%) 15 (28%)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>13 (33%) 13 (24%)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2 (5%) 5 (9%)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1 (3%) 3 (6%)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1 (3%) 1 (2%)</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 9: Ausbildungsstand und Arbeitsverhältnis der Probandinnen.

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Anzahl der Frauen mit Angabe in %</th>
<th>Signifikanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schulabschluss</td>
<td>Kontrolle n=38 Patientin n=54</td>
<td></td>
</tr>
<tr>
<td>Hauptschule</td>
<td>0 (0%) 8 (15%)</td>
<td>p<0,0001</td>
</tr>
<tr>
<td>Realschule</td>
<td>6 (16%) 18 (33%)</td>
<td></td>
</tr>
<tr>
<td>Polytechn. Oberschule</td>
<td>1 (3%) 4 (7%)</td>
<td></td>
</tr>
<tr>
<td>Fachschule</td>
<td>4 (11%) 8 (15%)</td>
<td></td>
</tr>
<tr>
<td>Gymnasium</td>
<td>27 (71%) 15 (28%)</td>
<td></td>
</tr>
<tr>
<td>Anderer Abschluss</td>
<td>0 (0%) 1 (2%)</td>
<td></td>
</tr>
<tr>
<td>Ausbildungsabschluss</td>
<td></td>
<td>p<0,0001</td>
</tr>
<tr>
<td>keine Ausbildung</td>
<td>0 (0%) 5 (9%)</td>
<td></td>
</tr>
<tr>
<td>betriebl. Ausbildung</td>
<td>2 (5%) 14 (26%)</td>
<td></td>
</tr>
<tr>
<td>schulische Ausbildung</td>
<td>5 (13%) 13 (24%)</td>
<td></td>
</tr>
<tr>
<td>Meister/Fachakademie</td>
<td>3 (8%) 8 (15%)</td>
<td></td>
</tr>
<tr>
<td>Fachhochschule</td>
<td>2 (5%) 4 (7%)</td>
<td></td>
</tr>
<tr>
<td>Hochschule</td>
<td>26 (68%) 6 (11%)</td>
<td></td>
</tr>
<tr>
<td>Andere Ausbildung</td>
<td>0 (0%) 4 (7%)</td>
<td></td>
</tr>
<tr>
<td>Ausbildung beendet?</td>
<td></td>
<td>p<0,0001</td>
</tr>
<tr>
<td>ja</td>
<td>29 (76%) 51 (94%)</td>
<td></td>
</tr>
<tr>
<td>nein</td>
<td>9 (24%) 3 (6%)</td>
<td></td>
</tr>
<tr>
<td>Arbeitsstunden pro Woche</td>
<td></td>
<td>p<0,0001</td>
</tr>
<tr>
<td>Nicht erwerbstätig</td>
<td>6 (16%) 35 (65%)</td>
<td></td>
</tr>
<tr>
<td><15h</td>
<td>5 (13%) 4 (7%)</td>
<td></td>
</tr>
<tr>
<td>15-35h</td>
<td>9 (24%) 4 (7%)</td>
<td></td>
</tr>
<tr>
<td>>35h (Vollzeit)</td>
<td>18 (47%) 11 (20%)</td>
<td></td>
</tr>
</tbody>
</table>

Betrachtet man den Ausbildungsstand der Probandinnen (Tabelle 9), fällt das signifikant höhere Bildungsniveau der gesunden Frauen auf. 71% haben hier das Abitur abgeschlossen.
und 68% eine Hochschule besucht. Die Patientinnen zeigen hingegen eine homogenere Verteilung auf die verschiedenen Schul- und Ausbildungswege. Zudem waren 65% der Patientinnen nicht erwerbstätig, obwohl 94% von ihnen ihre Berufsausbildung abgeschlossen haben. Dies war lediglich bei 16% der gesunden Frauen der Fall, welche jedoch mit 37% auch einen höheren Anteil an Teilzeitarbeit aufwiesen.

4.2.2 Ergebnisse weiterer Fragebögen (SCL-90-R, IES-R, BDI)

<table>
<thead>
<tr>
<th>Subskala</th>
<th>Wert</th>
<th>N Kontrolle</th>
<th>N Patientinnen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCL-90-R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Somatisierung</td>
<td>S 39</td>
<td>3,3</td>
<td>16,0</td>
</tr>
<tr>
<td>T 44,2</td>
<td>63,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zwanghaftigkeit</td>
<td>S 39</td>
<td>3,0</td>
<td>19,0</td>
</tr>
<tr>
<td>T 46,9</td>
<td>69,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unsicherheit im Sozialkontakt</td>
<td>S 39</td>
<td>2,4</td>
<td>17,4</td>
</tr>
<tr>
<td>T 46,4</td>
<td>69,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depressivität</td>
<td>S 39</td>
<td>3,7</td>
<td>28,5</td>
</tr>
<tr>
<td>T 46,7</td>
<td>70,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ängstlichkeit</td>
<td>S 39</td>
<td>1,9</td>
<td>18,4</td>
</tr>
<tr>
<td>T 46,4</td>
<td>69,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aggressivität/Feindseligkeit</td>
<td>S 39</td>
<td>1,3</td>
<td>6,0</td>
</tr>
<tr>
<td>T 46,6</td>
<td>60,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phobische Angst</td>
<td>S 39</td>
<td>0,3</td>
<td>10,3</td>
</tr>
<tr>
<td>T 45,4</td>
<td>67,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paranoides Denken</td>
<td>S 39</td>
<td>1,2</td>
<td>7,6</td>
</tr>
<tr>
<td>T 45,3</td>
<td>61,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychotizismus</td>
<td>S 39</td>
<td>0,6</td>
<td>11,8</td>
</tr>
<tr>
<td>T 45,6</td>
<td>65,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grundsätzliche psychische Belastung (GSI)</td>
<td>S 39</td>
<td>0,2</td>
<td>1,6</td>
</tr>
<tr>
<td>T 45,7</td>
<td>69,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intensität der Antwort (PSDI)</td>
<td>S 39</td>
<td>1,1</td>
<td>2,3</td>
</tr>
<tr>
<td>T 43,0</td>
<td>67,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anzahl belastender Symptome (PST)</td>
<td>S 39</td>
<td>17,1</td>
<td>61,8</td>
</tr>
<tr>
<td>T 46,1</td>
<td>66,2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ergebnisse

Tabelle 11: MW der Subskalenergebnisse des IES-R für Kontroll- und Patientinnengruppe. Der Fragebogen wurde nur ausgefüllt, wenn eine traumatische Erfahrung vorlag. Es existieren keine Normwerte, zur Interpretation erfolgt die Angabe von Vergleichswerten. Wahrscheinlichkeitsberechnung für die Diagnose einer PTBS (Maerker und Schützwohl 1998): \(X = (-0.02 \times \text{Intrusion}) + (0.07 \times \text{Vermeidung}) + (0.15 \times \text{Übererregung}) - 4.36. \) Bei \(X>0 \) besteht der V.a. PTBS.

<table>
<thead>
<tr>
<th>Subskala</th>
<th>Kontrolle (n=8)</th>
<th>Vergleichswert (Nichttraumatisierte Gesunde)</th>
<th>Patientinnen (n=44)</th>
<th>Vergleichswert (Frauen mit sexuellen Gewalterfahrungen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intrusion</td>
<td>5,5</td>
<td>6,1</td>
<td>24,6</td>
<td>28,4</td>
</tr>
<tr>
<td>Vermeidung</td>
<td>4</td>
<td>6,6</td>
<td>26,3</td>
<td>25,9</td>
</tr>
<tr>
<td>Übererregung</td>
<td>3,3</td>
<td>6,9</td>
<td>23,6</td>
<td>27,8</td>
</tr>
<tr>
<td>(X)</td>
<td>-3,8</td>
<td>-</td>
<td>0,5</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BDI</th>
<th>Kontrolle (n=39)</th>
<th>Patientinnen (n=47)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtwert</td>
<td>3,4</td>
<td>28,8</td>
</tr>
</tbody>
</table>

4.2.3 Vorerkrankungen und Traumaprävalenz

4.2.3.1 Kontrollgruppe

23% der gesunden Probandinnen haben auf dem allgemeinen Fragebogen Vorerkrankungen angegeben (Tabelle 13). Diese sind vorrangig dem somatischen Bereich zuzuordnen.

Tabelle 13: Vorerkrankungen der Kontrollgruppe (n=39).

<table>
<thead>
<tr>
<th>Erkrankung</th>
<th>Anzahl der Frauen mit Angabe in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine</td>
<td>30 (76,9%)</td>
</tr>
<tr>
<td>Schilddrüsenerkrankung</td>
<td>2 (5,1%)</td>
</tr>
<tr>
<td>Migräne</td>
<td>1 (2,6%)</td>
</tr>
<tr>
<td>Bluthochdruck</td>
<td>3 (7,7%)</td>
</tr>
<tr>
<td>Reynaud-Phänomen</td>
<td>1 (2,6%)</td>
</tr>
<tr>
<td>Atemwegserkrankung</td>
<td>1 (2,6%)</td>
</tr>
<tr>
<td>Arthrose</td>
<td>1 (2,6%)</td>
</tr>
<tr>
<td>Herzrhythmusstörungen</td>
<td>1 (2,6%)</td>
</tr>
<tr>
<td>Rheuma</td>
<td>1 (2,6%)</td>
</tr>
</tbody>
</table>

4.2.3.2 Patientinnen

Von den insgesamt 54 Patientinnen war bei 43 (80%) eine PTBS diagnostiziert worden und bei den übrigen 11 (20%) eine kPTBS. Zum Zeitpunkt der TFM-Messung befanden sich 38 Patientinnen (70%) in der Diagnostikphase und 16 (30%) im ersten Therapieintervall nach Reddemann und Sachsse (Sachsse et al. 2006).

Für 89% der Patientinnen war eine frühkindliche Traumatisierung dokumentiert, 52% waren bereits mehrfach traumatisiert. Bei 74% lagen sexuelle und bei 63% physische Gewalterfahrungen vor (Tabelle 14).
Ergebnisse

Tabelle 14: Traumaprävalenz bei den Patientinnen (n=54). Typ I Trauma = einmalig, zeitlich klar begrenzt; Typ II Trauma = repetitiv, zeitlich wenig begrenzt.

<table>
<thead>
<tr>
<th>Traumatyp</th>
<th>Frühkind. Trauma</th>
<th>Sexuelle Gewalt</th>
<th>Physische Gewalt</th>
<th>Mehrfach-traumatisierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>42 (96%)</td>
<td>40 (74,1%)</td>
<td>34 (63,0%)</td>
<td>28 (51,9%)</td>
</tr>
<tr>
<td>II</td>
<td>2 (4,2%)</td>
<td>4 (6,7%)</td>
<td>4 (7,4%)</td>
<td>3 (5,6%)</td>
</tr>
<tr>
<td>I+II</td>
<td>4 (7,4%)</td>
<td>4 (6,7%)</td>
<td>4 (7,4%)</td>
<td>3 (5,6%)</td>
</tr>
</tbody>
</table>

Bei den Patientinnen ist zudem eine hohe Prävalenz an komorbiden Erkrankungen zu finden. Hier fallen vor allem die weiteren traumasedizierten Störungen auf. So wurde bei 96% der Patientinnen eine Depression, bei 41% eine BPS und bei 63% eine dissoziative Störung diagnostiziert. Bei fast 70% war zudem eine Form von Suchtverhalten dokumentiert (Tabelle 15). Doch auch die zunächst somatisch eingeordneten Erkrankungen waren insgesamt erstaunlich häufig, nur 28% der Patientinnen hatten keine somatische Diagnose.

Tabelle 15: Somatische und psychische Vorerkrankungen sowie Suchtverhalten der Patientinnen (n=54).

<table>
<thead>
<tr>
<th>Erkrankung</th>
<th>Anzahl der Frauen mit Angabe in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychisch</td>
<td></td>
</tr>
<tr>
<td>Borderline-Persönlichkeitsstörung</td>
<td>22 (40,7%)</td>
</tr>
<tr>
<td>dissoziative Störung</td>
<td>34 (63,0%)</td>
</tr>
<tr>
<td>depressive Störung</td>
<td>52 (96,3%)</td>
</tr>
<tr>
<td>somatoforme Störung</td>
<td>17 (31,5%)</td>
</tr>
<tr>
<td>Angststörung</td>
<td>17 (31,5%)</td>
</tr>
<tr>
<td>Esstörung</td>
<td>13 (24,1%)</td>
</tr>
<tr>
<td>Selbstverletzendes Verhalten</td>
<td>22 (40,7%)</td>
</tr>
<tr>
<td>Suchtverhalten</td>
<td></td>
</tr>
<tr>
<td>Keine Suchterkrankungen</td>
<td>17 (31,5%)</td>
</tr>
<tr>
<td>Nikotin</td>
<td>31 (57,4%)</td>
</tr>
<tr>
<td>(Z.n.) C2-Abusus</td>
<td>11 (20,4%)</td>
</tr>
<tr>
<td>Medikamentenabusus</td>
<td>9 (16,7%)</td>
</tr>
<tr>
<td>Somatisch</td>
<td></td>
</tr>
<tr>
<td>Keine</td>
<td>15 (27,8%)</td>
</tr>
<tr>
<td>Schilddrüsenerkrankung</td>
<td>14 (25,9%)</td>
</tr>
<tr>
<td>Migräne</td>
<td>5 (9,3%)</td>
</tr>
<tr>
<td>GI-Erkrankung</td>
<td>8 (14,8%)</td>
</tr>
<tr>
<td>Bluthochdruck</td>
<td>10 (18,5%)</td>
</tr>
<tr>
<td>Diabetes mellitus Typ I</td>
<td>3 (5,6%)</td>
</tr>
<tr>
<td>Atemwegserkrankung</td>
<td>9 (16,7%)</td>
</tr>
<tr>
<td>Gefäßerekranung</td>
<td>4 (7,4%)</td>
</tr>
<tr>
<td>Tumorerekranung</td>
<td>2 (3,7%)</td>
</tr>
<tr>
<td>Lebererkrankung</td>
<td>3 (5,6%)</td>
</tr>
<tr>
<td>Tinnitus</td>
<td>2 (3,8%)</td>
</tr>
<tr>
<td>Dermatologische Erkr.</td>
<td>5 (9,3%)</td>
</tr>
<tr>
<td>BS-Probleme/Rückenschmerz</td>
<td>18 (33,3%)</td>
</tr>
<tr>
<td>Herzrhythmusstörungen</td>
<td>4 (7,4%)</td>
</tr>
<tr>
<td>Rheumatische Erkrankung</td>
<td>1 (1,9%)</td>
</tr>
</tbody>
</table>
4.2.4 Medikamenteneinnahme

43,6% der gesunden Frauen nahmen regelmäßig Medikamente ein, jedoch keine Psychopharmaka, keine Analgetika und nur in 5,1% kardial wirksame Medikamente (Tabelle 16). Die restlichen 38,5% nahmen sonstige Medikamente wie Insulin, hormonelle Verhütungsmittel oder Schilddrüsenmedikation ein.

Dagegen nahmen mit 90,7% doppelt so viele Patientinnen regelmäßig Medikamente ein. 72,2% nahmen Antidepressiva, 42,6% Antipsychotika, 37,0% Sedativa und 14,8% Analgetika. Von den kardialen Medikamenten bildeten die β-Blocker mit 14,8% die größte Gruppe. 51,9% der Patientinnen nahmen darüber hinaus sonstige Medikamente ein.

Tabelle 16: Eingenommene Medikamente durch die Patientinnen (P) bzw. gesunden Probandinnen (K) zum Zeitpunkt der TFM-Messung.

<table>
<thead>
<tr>
<th>Medikamente</th>
<th>Gr.</th>
<th>Anzahl der Frauen mit Angabe in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine Medikamente</td>
<td>K</td>
<td>22 (56,4%)</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>5 (9,3%)</td>
</tr>
<tr>
<td>Antidepressiva</td>
<td>K</td>
<td>0</td>
</tr>
<tr>
<td>SSRI, SNRI, TZA, tetrazyklische AD, Lithium, Agomelatin</td>
<td>P</td>
<td>39 (72,2%)</td>
</tr>
<tr>
<td>Antipsychotika</td>
<td>K</td>
<td>0</td>
</tr>
<tr>
<td>typisch/atypisch</td>
<td>P</td>
<td>23 (42,6%)</td>
</tr>
<tr>
<td>Sedativa</td>
<td>K</td>
<td>0</td>
</tr>
<tr>
<td>Benzodiazepine, Zolpidem, Zopiclon</td>
<td>P</td>
<td>20 (37,0%)</td>
</tr>
<tr>
<td>Analgetika</td>
<td>K</td>
<td>0</td>
</tr>
<tr>
<td>NSAR, Opiode, Nicht-Opiode</td>
<td>P</td>
<td>8 (14,8%)</td>
</tr>
<tr>
<td>Antiarrhythmika/Antihypertensiva</td>
<td>Gesamt</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>Betablocker</td>
<td>K</td>
<td>2 (5,1%)</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>8 (14,8%)</td>
</tr>
<tr>
<td>ACE-Hemmer/AT1-Antagonisten</td>
<td>K</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>7 (13%)</td>
</tr>
<tr>
<td>Ca2+-Antagonisten</td>
<td>K</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>4 (7,4%)</td>
</tr>
<tr>
<td>andere (α-Blocker, Diuretika)</td>
<td>K</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>3 (5,6%)</td>
</tr>
<tr>
<td>Sonstige Medikamente</td>
<td>Pille, L-Thyroxin, Insulin, ...</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P</td>
</tr>
</tbody>
</table>
Ergebnisse

4.3 TFM-Messung: globaler Vergleich von Patientinnen- und Kontrollgruppe

4.3.1 Ergebnisse der ANOVA für CI, TPRI, SDNN, LF- und HF-HRV:

In der globalen ANOVA ergaben sich sowohl im Gruppenvergleich als auch im Zeitvergleich signifikante Ergebnisse für die Parameter Herzindex (CI), totaler peripherer Widerstand (TPRI), Standardabweichung der NN-Intervalle (SDNN) sowie hoch- und niederfrequente Herzratenvariabilität (HF- und LF-HRV) (Tabelle 17).

Tabelle 17: Globale ANOVA für den Vergleich der Gesamtgruppe der Patientinnen (P) mit den gesunden Probandinnen (K): Mittelwerte ± Standardabweichung (SD) aller Messphasen für CI, TPRI, SDNN, LF- und HF-HRV mit p-Werten für Gruppen- und Zeiteffekt sowie Wechselwirkung. α=0,05.

<table>
<thead>
<tr>
<th>Messwert</th>
<th>Gr</th>
<th>N</th>
<th>Mittelwerte in den Phasen ± SD</th>
<th>globale ANOVA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Start</td>
<td>Rechen</td>
<td>Ruhe 1</td>
</tr>
<tr>
<td>CI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[l/min*m²]</td>
<td>K</td>
<td>39</td>
<td>3,26</td>
<td>3,69</td>
<td>3,21</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>51</td>
<td>2,85</td>
<td>3,05</td>
<td>2,83</td>
</tr>
<tr>
<td>TPRI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[dynesm²/cm]</td>
<td>K</td>
<td>39</td>
<td>2207</td>
<td>2133</td>
<td>2276</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>52</td>
<td>2498</td>
<td>2507</td>
<td>2624</td>
</tr>
<tr>
<td>SDNN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[ms]</td>
<td>K</td>
<td>39</td>
<td>64,19</td>
<td>76,96</td>
<td>82,05</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>52</td>
<td>54,07</td>
<td>49,43</td>
<td>63,57</td>
</tr>
<tr>
<td>LF-HRV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[ln(ms²)]</td>
<td>K</td>
<td>39</td>
<td>6,30</td>
<td>6,33</td>
<td>6,70</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>52</td>
<td>5,29</td>
<td>5,70</td>
<td>5,78</td>
</tr>
<tr>
<td>HF-HRV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[ln(ms²)]</td>
<td>K</td>
<td>39</td>
<td>5,63</td>
<td>5,41</td>
<td>5,72</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>52</td>
<td>4,84</td>
<td>4,74</td>
<td>4,84</td>
</tr>
</tbody>
</table>
Da Wechselwirkungen beim CI gefunden wurden, mussten hier zur weiteren Überprüfung der Gruppenunterschiede T-Tests für die einzelnen Versuchsphasen durchgeführt werden (\textit{Tabelle 18}). Nach der α-Adjustierung wird ersichtlich, dass der CI sich nur in den Versuchsphasen 1 und 2 signifikant unterschied und in Phase 3 eine entsprechende Tendenz zeigte.

\textbf{Tabelle 18: T-Tests für den CI nach Wechselwirkung in globaler ANOVA. Vergleich der globalen Patientengruppe und der gesunden Probandinnen während der sechs verschiedenen Versuchsphasen. Alpha-Adjustierung: $\alpha'=1-(1-\alpha)^{1/m} \rightarrow \alpha'=1-(1-0,05)^{1/6}=0,00851$}

<table>
<thead>
<tr>
<th>Messwert</th>
<th>Start</th>
<th>Rechnen</th>
<th>Ruhe 1</th>
<th>Baby- schreien</th>
<th>Ruhe 2</th>
<th>Musik</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI</td>
<td>p=0,008</td>
<td>p=0,001</td>
<td>n.s. (p=0,009)</td>
<td>n.s. (p=0,029)</td>
<td>n.s. (p=0,034)</td>
<td>n.s. (p=0,011)</td>
</tr>
</tbody>
</table>

\textbf{4.3.2 Graphische Darstellung der Parameter}

Der CI ist das nach Körpergröße normierte HZV und dient der Beurteilung der Herzleistung. Bei der Kontrollgruppe (\textit{Abbildung 4}) lag er graphisch während aller sechs Messphasen über dem der Patientinnen und zeigte zudem während des Rechnens (Phase 2) einen signifikant stärkeren Anstieg von 3,26 auf 3,69 l/min*m2 als bei den Patientinnen ($p=0,041$). Dem Betrag nach fiel er mit 0,43 l/min*m2 doppelt so stark aus wie bei den Patientinnen mit 0,20 l/min*m2.

\textit{Abbildung 4: Signifikanter Gruppenunterschied in Phase 1 (p=0,008) und Phase 2 (p=0,001, $\alpha'=0,00851$, siehe Tabelle 18). Der Anstieg des CI von Phase 1 zu Phase 2 (ΔCI) war bei K signifikant stärker ($p=0,041$). Mittelwerte mit 95\% Konfidenzintervallen. Phase 2 = Rechnen, Phase 4 = Babyschreien, Phase 6 = Musik. Phasen 1, 3 und 5 = Ruhe.}
Für den TPRI zeigten hingegen die Patientinnen für alle Messzeitpunkte signifikant höhere Werte (p=0,0483, **Abbildung 5**). Während der TPRI bei den Patientinnen in Phase 2 zudem um 9 dyn*s*m²/cm⁵ anstieg, konnte bei der Kontrollgruppe ein leichter Abfall um 74 dyn*s*m²/cm⁵ beobachtet werden. Tendenziell gegenläufig verhielt sich der TPRI auch in der Ruhephase nach dem Babyschreien (Phase 5): hier stieg der Wert der Kontrollgruppe um 58 dyn*s*m²/cm⁵ an, während der der Patientinnen um 82 dyn*s*m²/cm⁵ abfiel.

Abbildung 5: Signifikanter Gruppenunterschied über gesamte Messung (p=0,0483, α=0,05). Mittelwerte mit 95% Konfidenzintervallen. Phase 2 = Rechnen, Phase 4 = Babyschreien, Phase 6 = Musik. Phasen 1, 3 und 5 = Ruhe.

Die SDNN als zeitbezogene HRV war bei den Patientinnen signifikant eingeschränkt (p=0,0006, **Abbildung 6**). Dies zeigte sich insbesondere in Phase 2 (Rechnen), in welcher die SDNN der Patientinnen um 5 ms auf 49 ms abfiel, während die der Kontrollgruppe um 13 ms auf 77 ms anstieg. Dieses leicht gegenläufige Reaktionsmuster führte in der ANOVA jedoch nicht zu signifikanten Wechselwirkungen zwischen Gruppe und Zeit.
Ergebnisse

Abbildung 6: Signifikanter Gruppenunterschied über gesamte Messung (p=0,0006, α=0,05). Mittelwerte mit 95% Konfidenzintervallen. Phase 2 = Rechnen, Phase 4 = Babyschreien, Phase 6 = Musik. Phasen 1, 3 und 5 = Ruhe.

Auch die LF-HRV der Patientinnen war signifikant niedriger als bei den gesunden Frauen (p<0,0001, Abbildung 7). Zudem war bei den Patientinnen während des Rechnens visuell ein deutlicher Anstieg der LF-HRV um 184 ms² (±0,41 ln(ms²)) zu sehen, während die Kontrollgruppe erst in der anschließenden Ruhephase einen vergleichbaren Anstieg um 259 ms² (±0,37 ln(ms²)) erkennen ließ. Mit p=0,053 war die Wechselwirkung zwischen Gruppe und Zeit jedoch nicht eindeutig signifikant.

Abbildung 7: Signifikanter Gruppenunterschied über gesamte Messung (p<0,0001, α=0,05). Mittelwerte mit 95% Konfidenzintervallen. Phase 2 = Rechnen, Phase 4 = Babyschreien, Phase 6 = Musik. Phasen 1, 3 und 5 = Ruhe.
Die HF-HRV der Patientinnen war ebenfalls signifikant verringert (p=0,0003, Abbildung 8). Während sie zudem vergleichsweise konstante Werte über alle Messphasen zeigten, war bei den gesunden Frauen während des Rechnens ein Abfall und während des Babyschreiens visuell ein Anstieg der HF-HRV zu beobachten.

Abbildung 8: Signifikanter Gruppenunterschied über gesamte Messung (p=0,0003, α=0,05). Mittelwerte mit 95% Konfidenzintervallen. Phase 2 = Rechnen, Phase 4 = Babyschreien, Phase 6 = Musik. Phasen 1, 3 und 5 = Ruhe.
4.3.3 Erholung nach dem Babyschreien

Tabelle 19: Globale ANOVA für die Erholung nach dem Babyschreien. Mittelwertvergleich ± SD für jeweils 5 Einzelwerte von RMSSD, sBP, CI und TPRI. 4_end=30 Sekunden vor Ende des Babyschreiens, 5_30sec=30 Sekunden nach Ende des Babyschreiens, 5_60sec=60 Sekunden nach Ende des Babyschreiens, 5_90sec=90 Sekunden nach Ende des Babyschreiens. α=0,05.

<table>
<thead>
<tr>
<th>Messwert</th>
<th>Gr</th>
<th>N</th>
<th>Mittelwerte zu den verschiedenen Zeitpunkten ± SD</th>
<th>globale ANOVA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Zeitpunkt</td>
<td>RMSSD [ln(ms)]</td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>39</td>
<td>4_end</td>
<td>5_30sec</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMSSD</td>
<td>K</td>
<td>39</td>
<td>4,18</td>
<td>±0,77</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>52</td>
<td>3,80</td>
<td>±0,89</td>
</tr>
<tr>
<td>sBP</td>
<td>K</td>
<td>39</td>
<td>112,05</td>
<td>±19,14</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>52</td>
<td>118,76</td>
<td>±18,06</td>
</tr>
<tr>
<td>CI</td>
<td>K</td>
<td>39</td>
<td>3,24</td>
<td>±0,84</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>51</td>
<td>2,79</td>
<td>±0,78</td>
</tr>
<tr>
<td>TPRI</td>
<td>K</td>
<td>39</td>
<td>2227</td>
<td>±818</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>52</td>
<td>2685</td>
<td>±941</td>
</tr>
</tbody>
</table>

Die graphische Darstellung des durchschnittlichen sBP beider Gruppen zeigt, dass der Blutdruck der Patientinnen zu allen Messzeitpunkten über dem der Kontrollgruppe lag und sehr konstant blieb (Abbildung 9). Bei den gesunden Probandinnen kam es im Verlauf zu einem leichten Anstieg des sBP um 3mmHg.
4 Ergebnisse

Abbildung 9: Kein signifikanter Gruppenunterschied nachweisbar ($\alpha=0,05$). Mittelwerte mit 95% Konfidenzintervallen. Phase4_end = 30 Sekunden vor Ende des Babyschreiens, Phase 5 = jeweils 30, 60 und 90 Sekunden nach Ende des Babyschreiens.

Der RMSSD der Kontrollgruppe lag signifikant über dem der Patientinnen ($p=0,0013$). Während er bei den gesunden Probandinnen zudem auf dem Ausgangsniveau blieb, sank er bei den Patientinnen kontinuierlich etwas ab (Abbildung 10).

Abbildung 10: Signifikanter Gruppenunterschied ($p=0,0013$). Mittelwerte mit 95% Konfidenzintervallen. Phase4_end = 30 Sekunden vor Ende des Babyschreiens, Phase 5 = jeweils 30, 60 und 90 Sekunden nach Ende des Babyschreiens.

Abbildung 11 zeigt den CI beider Gruppen im Vergleich. Während die Kontrollgruppe hier relativ konstante Werte aufwies und lediglich 90 Sekunden nach dem Babyschreien ein leichtes
Absinken um 0,11 l/min*m² erkennen ließ, war bei den Patientinnen ein Peak nach 30 Sekunden zu finden. Hier kam es zu einem kurzzeitigen Anstieg des CI um 0,24 l/min*m² mit anschließendem Absinken um 0,14 l/min*m². Während der CI der Kontrollgruppe also unter das Ausgangsniveau sank, stieg der der Patientinnen darüber hinaus an. Die Unterschiede beider Gruppen erreichten signifikante Werte mit p=0,0391.

Abbildung 11: Signifikanter Gruppenunterschied (p=0,0391). Mittelwerte mit 95% Konfidenzintervallen. Phase4_end = 30 Sekunden vor Ende des Babyschreiens, Phase 5 = jeweils 30, 60 und 90 Sekunden nach Ende des Babyschreiens.

Der TPRI war insgesamt bei den Patientinnen höher als bei den gesunden Probandinnen (Abbildung 12), die Werte näherten sich im Verlauf der Messung etwas aneinander an.

Abbildung 12: Trend zu Gruppenunterschied (p=0,054). Mittelwerte mit 95% Konfidenzintervallen. Phase4_end = 30 Sekunden vor Ende des Babyschreiens, Phase 5 = jeweils 30, 60 und 90 Sekunden nach Ende des Babyschreiens.
4.4 TFM-Messung: Subgruppenvergleich von Patientinnen mit bzw. ohne herzwirksame Medikamente und der Kontrollgruppe

Um den Einfluss der Medikamente auf die Stressreaktion zu berücksichtigen, wurden die Patientinnen aus der globalen TFM-Auswertung (n=52) in eine Gruppe mit und eine Gruppe ohne herzwirksame Medikamente aufgeteilt und die Stressreaktionen dieser beiden Subgruppen verglichen.

4.4.1 Erstellung der Subgruppen

Tabelle 20: Anzahl der Patientinnen, welche β-Blocker, Antihypertensiva/Antiarrhythmika oder anticholinerg wirksame Medikamente einnahmen unter Berücksichtigung der Dosierung.

<table>
<thead>
<tr>
<th>Medikamente</th>
<th>Anzahl der Patientinnen, die herzwirksame Medikamente in folgender Dosierung einnahmen:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Keine Einnahme</td>
<td><25% der Maximaldosis</td>
</tr>
<tr>
<td>β-Blocker</td>
<td>44</td>
<td>1</td>
</tr>
<tr>
<td>Antihypertensiva / Antiarrhythmika</td>
<td>43</td>
<td>1</td>
</tr>
<tr>
<td>außer β-Blocker</td>
<td>43</td>
<td>1</td>
</tr>
<tr>
<td>Anticholinerg wirksame Medikamente</td>
<td>27</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>N</th>
<th>Anzahl herzwirksamer Medikamente (gesamt)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Keine</td>
<td>1</td>
</tr>
<tr>
<td>ANzahl der Frauen mit Angabe in %</td>
<td>39</td>
<td>37</td>
</tr>
<tr>
<td>Patientin</td>
<td>52</td>
<td>22</td>
</tr>
<tr>
<td>Medikamente mit anticholinener Wirkung</td>
<td>Standarddosierung</td>
<td>25% der Erhaltungs- bzw. Maximaldosis (mg/d)</td>
</tr>
<tr>
<td>--</td>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>Prothipendyl</td>
<td>2-4x40-80mg</td>
<td>80</td>
</tr>
<tr>
<td>Perazin</td>
<td>initial (=ini) 50-150mg, Erhaltungsdosis (=Erh.) 300mg, max. 1g</td>
<td>75</td>
</tr>
<tr>
<td>Biperiden</td>
<td>ini 2mg, Erh. 3-4x1-4mg</td>
<td>4</td>
</tr>
<tr>
<td>Solifenacin</td>
<td>5-10mg</td>
<td>2,5</td>
</tr>
<tr>
<td>Flupentixol</td>
<td>Angst/Depr. 1-2mg, Schizophr. 5-60mg</td>
<td>0,5/15</td>
</tr>
<tr>
<td>Amitriptylin</td>
<td>ini 3x25mg, Erh. max. 150mg</td>
<td>37,5</td>
</tr>
<tr>
<td>Opipramol</td>
<td>150-200mg, max. 300mg</td>
<td>75</td>
</tr>
<tr>
<td>Trimipramin</td>
<td>ini 25-50mg, Erh. 100-150mg</td>
<td>37,5</td>
</tr>
<tr>
<td>Doxepin</td>
<td>ini 50mg, Erh. 100-150mg</td>
<td>37,5</td>
</tr>
<tr>
<td>Levozempromazin</td>
<td>ini 15-30mg, Erh. 75-100mg</td>
<td>25</td>
</tr>
<tr>
<td>Promethazin</td>
<td>ini 25mg, Erh. 4x25mg, max.200mg</td>
<td>25</td>
</tr>
<tr>
<td>Carbamazepin</td>
<td>man. depr. 200-400mg, Epilepsie max.1200mg, C2-Prophylaxe 600mg</td>
<td>100/300/150</td>
</tr>
<tr>
<td>Metoprolol</td>
<td>47,5-190mg, Migräne 95mg</td>
<td>47,5/23,75</td>
</tr>
<tr>
<td>Nebivolol</td>
<td>1x5mg p.o. bei Hypertonie</td>
<td>1,25</td>
</tr>
<tr>
<td>Bisopropol</td>
<td>2,5-10mg</td>
<td>2,5</td>
</tr>
<tr>
<td>Propranolol</td>
<td>2-3x40-80mg, Angst/Migräne 2-3x40mg</td>
<td>60/30</td>
</tr>
<tr>
<td>Bisoprolol + Hydrochlorothiazid</td>
<td>5-10mg/12,5-25mg</td>
<td>2,5/6,25</td>
</tr>
<tr>
<td>Ramipril</td>
<td>2,5-10mg</td>
<td>2,5</td>
</tr>
<tr>
<td>Enalapril</td>
<td>5-10mg, max. 40mg</td>
<td>10</td>
</tr>
<tr>
<td>Valsartan</td>
<td>80-160mg</td>
<td>40</td>
</tr>
<tr>
<td>Amlodipin</td>
<td>5-10mg, max. 40mg</td>
<td>10</td>
</tr>
<tr>
<td>Nifedipin</td>
<td>30-60mg</td>
<td>15</td>
</tr>
<tr>
<td>Verapamil</td>
<td>3x80-120mg</td>
<td>90</td>
</tr>
<tr>
<td>Prazosin</td>
<td>ini1-3x0,5-1mg, max. 20mg</td>
<td>5</td>
</tr>
<tr>
<td>Ramipril + Felodipin</td>
<td>2,5-5mg/2,5-5mg</td>
<td>1,25/1,25</td>
</tr>
<tr>
<td>Ramipril + Hydrochlorothiazid</td>
<td>2,5-5mg/12,5-25mg</td>
<td>1,25/6,25</td>
</tr>
</tbody>
</table>

Für den nachfolgenden Subgruppenvergleich wurden die Patientinnen ohne herzwirksame Medikamente (P0, n=22) mit denen verglichen, die mindestens ein herzwirksames Medikament in normaler Dosis einnahmen oder zwei in niedriger Dosierung (P1, n=27). Patientinnen mit nur einem herzwirksamen Medikament unter 25% der maximalen Tagesdosis wurden aus diesem Vergleich ausgeschlossen (n=3), da nicht sicher ist, wie stark die kardiovaskulären Funktionsparameter durch diese niedrige Medikation tatsächlich beeinflusst werden.
Ergebnisse

4.4.2 ANOVA für den Subgruppenvergleich der Patientinnen

Die zwei Subgruppen wurden wie in Kap. 4.4.1 beschrieben aus dem Patientinnenkollektiv erstellt und während der sechs Messphasen mittels einer ANOVA miteinander verglichen. CI, TPR, und SDNN zeigten hierbei im Gruppenvergleich signifikante Unterschiede, nicht jedoch LF- und HF-HRV (α=0,05, Tabelle 23). Bis auf die HF-HRV fanden sich zudem für alle Parameter signifikante Zeiteffekte.

Tabelle 23: Globale ANOVA für den Subgruppenvergleich der Patientinnen: P0=keine Einnahme herzwirksamer Medikamente; P1=Einnahme von herzwirksamen Medikamenten. Mittelwerte ± Standardabweichung aller Messphasen für CI, TPR, SDNN, LF- und HF-HRV mit p-Werten für Gruppen- und Zeitefekt sowie Wechselwirkung. α=0,05.

<table>
<thead>
<tr>
<th>Messwerte</th>
<th>Gr.</th>
<th>N</th>
<th>Start</th>
<th>Rechnen</th>
<th>Ruhe 1</th>
<th>Baby- schreien</th>
<th>Ruhe 2</th>
<th>Musik*</th>
<th>Gruppen- effekt</th>
<th>Zeitefekt</th>
<th>Wechselwirkung Gruppe*Zeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI [l/min*m²]</td>
<td>P0 21</td>
<td>3,20 ±0,64</td>
<td>3,41 ±0,68</td>
<td>3,15 ±0,69</td>
<td>3,20 ±0,75</td>
<td>3,13 ±0,71</td>
<td>3,00 ±0,63</td>
<td>p=0,0006</td>
<td>p<0,0001</td>
<td>n.s. (p=0,5086)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P1 27</td>
<td>2,58 ±0,57</td>
<td>2,77 ±0,64</td>
<td>2,57 ±0,49</td>
<td>2,48 ±0,54</td>
<td>2,57 ±0,48</td>
<td>2,43 ±0,54</td>
<td>p=0,0001</td>
<td>p<0,0001</td>
<td>n.s. (p=0,1477)</td>
<td></td>
</tr>
<tr>
<td>TPRI [dyne*m²/cm³]</td>
<td>P0 22</td>
<td>2104 ±486</td>
<td>2092 ±468</td>
<td>2230 ±540</td>
<td>2193 ±592</td>
<td>2209 ±565</td>
<td>2265 ±583</td>
<td>p=0,002</td>
<td>p=0,0025</td>
<td>n.s. (p=0,3785)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P1 27</td>
<td>2851 ±782</td>
<td>2881 ±845</td>
<td>3007 ±792</td>
<td>3116 ±879</td>
<td>2931 ±743</td>
<td>3136 ±838</td>
<td>p=0,002</td>
<td>p=0,0025</td>
<td>n.s. (p=0,3045)</td>
<td></td>
</tr>
<tr>
<td>SDNN [ms]</td>
<td>P0 22</td>
<td>69,29 ±45,0</td>
<td>57,66 ±22,07</td>
<td>75,67 ±30,11</td>
<td>62,40 ±39,01</td>
<td>70,07 ±43,39</td>
<td>47,45 ±24,66</td>
<td>p=0,002</td>
<td>p=0,0025</td>
<td>n.s. (p=0,3785)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P1 27</td>
<td>43,17 ±16,63</td>
<td>41,65 ±13,37</td>
<td>53,51 ±25,09</td>
<td>37,82 ±14,42</td>
<td>54,47 ±22,55</td>
<td>41,44 ±18,18</td>
<td>p=0,002</td>
<td>p=0,0025</td>
<td>n.s. (p=0,3785)</td>
<td></td>
</tr>
<tr>
<td>LF-HRV [ln(ms)]</td>
<td>P0 22</td>
<td>5,59 ±1,16</td>
<td>5,97 ±1,19</td>
<td>6,15 ±1,10</td>
<td>5,57 ±1,01</td>
<td>5,91 ±1,02</td>
<td>5,47 ±1,01</td>
<td>n.s. (p=0,1149)</td>
<td>n.s. (p=0,3045)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P1 27</td>
<td>5,13 ±0,92</td>
<td>5,55 ±0,92</td>
<td>5,55 ±0,90</td>
<td>5,06 ±0,89</td>
<td>5,60 ±0,89</td>
<td>5,29 ±0,89</td>
<td>n.s. (p=0,1149)</td>
<td>n.s. (p=0,3045)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HF-HRV [ln(ms)]</td>
<td>P0 22</td>
<td>5,71 ±1,20</td>
<td>5,12 ±1,23</td>
<td>5,22 ±1,19</td>
<td>5,28 ±1,13</td>
<td>5,19 ±1,27</td>
<td>5,17 ±1,26</td>
<td>n.s. (p=0,1117)</td>
<td>n.s. (p=0,6532)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P1 27</td>
<td>4,64 ±1,10</td>
<td>4,54 ±0,91</td>
<td>4,62 ±1,05</td>
<td>4,63 ±1,28</td>
<td>4,74 ±1,15</td>
<td>4,84 ±1,22</td>
<td>n.s. (p=0,1117)</td>
<td>n.s. (p=0,6532)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*n (P0)=21, bei CI n=20
4.4.3 ANOVA für den Vergleich von Kontrollgruppe und Patientinnen ohne herzwirksame Medikamente

Im Anschluss wurden die Patientinnen ohne herzwirksame Medikamente (P0) mit der besonderen Kontrollgruppe verglichen. Hierfür wurden auch aus der Kontrollgruppe zwei Frauen mit herzwirksamen Medikamenten aus dem Vergleich ausgeschlossen (K0). In der ANOVA erreichten die Unterschiede von CI, TPRI und SDNN keine signifikanten Ergebnisse mehr (Tabelle 24). Die LF- und HF-HRV beider Gruppen unterschieden sich hingegen weiterhin signifikant.

Tabelle 24: Vergleich von Patientinnen ohne Einnahme herzwirksamer Medikamente (P0) mit gesunden Frauen (K): Mittelwerte der einzelnen Messphasen ± Standardabweichung mit den Ergebnissen der ANOVA für die Parameter CI, TPRI, SDNN, LF- und HF-HRV. α=0,05.

<table>
<thead>
<tr>
<th>Messwerte</th>
<th>Gr</th>
<th>N</th>
<th>Mittelwerte in den einzelnen Messphasen</th>
<th>Gruppen-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Zeiteffekt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI [l/min*m²]</td>
<td>P0</td>
<td>21</td>
<td>3,20 ±0,64 3,41 ±0,68 3,15 ±0,69 3,20 ±0,75 3,13 ±0,71 3,00 ±0,63</td>
<td>n.s.</td>
</tr>
<tr>
<td></td>
<td>KO</td>
<td>37</td>
<td>3,32 ±0,74 3,76 ±1,00 3,28 ±0,67 3,20 ±0,69 3,20 ±0,69 3,14 ±0,68</td>
<td>n.s.</td>
</tr>
<tr>
<td>TPRI [dynes*m²/cm²]</td>
<td>P0</td>
<td>22</td>
<td>2104 ±486 2092 ±468 2230 ±540 2193 ±592 2209 ±565 2265 ±583</td>
<td>n.s.</td>
</tr>
<tr>
<td></td>
<td>KO</td>
<td>37</td>
<td>2103 ±650 2028 ±595 2167 ±652 2161 ±641 2206 ±682 2227 ±734</td>
<td>n.s.</td>
</tr>
<tr>
<td>SDNN [ms]</td>
<td>P0</td>
<td>22</td>
<td>69,29 ±45,0 57,66 ±22,07 75,67 ±30,11 62,40 ±39,01 70,07 ±43,39 47,45 ±24,66</td>
<td>n.s.</td>
</tr>
<tr>
<td></td>
<td>KO</td>
<td>37</td>
<td>64,57 ±21,70 78,91 ±56,95 83,08 ±41,75 62,54 ±38,79 85,92 ±42,46 56,67 ±20,62</td>
<td>n.s.</td>
</tr>
<tr>
<td>LF-HRV [ln(ms²)]</td>
<td>P0</td>
<td>22</td>
<td>5,59 ±1,16 5,97 ±1,19 6,15 ±1,10 5,57 ±1,10 5,91 ±1,02 5,47 ±1,01</td>
<td>p=0,0087</td>
</tr>
<tr>
<td></td>
<td>KO</td>
<td>37</td>
<td>6,33 ±0,74 6,39 ±0,71 6,74 ±0,87 6,09 ±0,79 6,57 ±0,68 6,19 ±0,85</td>
<td>n.s.</td>
</tr>
<tr>
<td>HF-HRV [ln(ms²)]</td>
<td>P0</td>
<td>22</td>
<td>5,21 ±1,20 5,12 ±1,23 5,22 ±1,19 5,28 ±1,13 5,19 ±1,27 5,17 ±1,26</td>
<td>p=0,0432</td>
</tr>
<tr>
<td></td>
<td>KO</td>
<td>37</td>
<td>5,63 ±1,02 5,43 ±0,92 5,76 ±1,07 5,94 ±1,16 5,90 ±1,08 6,03 ±1,03</td>
<td>p=0,0330</td>
</tr>
</tbody>
</table>

*n (P0)=21, bei CI n=20
4.4.4 Graphische Darstellung der Parameter CI, TPRI, SDNN, LF- und HF-HRV für die Subgruppen P0, P1 und K0

Der CI von P0 lag mit \(p=0,0006 \) signifikant über dem von P1 (Abbildung 13). In Phase 4 (Babyschreien) kam es bei P0 zudem zu einem leichten Anstieg des CI, während dieser bei P1 eher abfiel. Insgesamt blieb der CI von P0 jedoch weiterhin etwas unter dem der Kontrollgruppe, die zudem einen stärkeren Anstieg während der Rechenphase zeigte. Die Unterschiede zwischen P0 und K0 erreichten keine Signifikanz.

Abbildung 13: Mit \(p=0,0006 \) war ein signifikanter Gruppenunterschied zwischen P0 und P1 nachweisbar, jedoch nicht zwischen P0 und K0 (\(p=0,4850, \alpha=0,05 \)). Es fanden sich bei beiden Subgruppenvergleichen keine signifikanten Interaktionen zwischen Gruppe und Zeit. Mittelwerte mit 95% Konfidenzintervallen. Phase 2 = Rechnen, Phase 4 = Babyschreien, Phase 6 = Musik. Phasen 1, 3 und 5 = Ruhe.
Der TPRI war bei P0 über alle Messphasen signifikant niedriger als bei P1 (Abbildung 14). Während P0 zudem einen vergleichsweise konstanten Verlauf des TPRI zeigte, welcher lediglich nach dem Rechnen ein wenig anstieg, sind bei P1 stärkere Schwankungen zu beobachten. Hier führten sowohl das Babyschreien als auch die Entspannungsmusik zu einem Anstieg. Im Vergleich von P0 mit K0 ließen sich graphisch hingegen kaum Unterschiede darstellen. Die Werte der Patientinnen lagen nur minimal über denen der Kontrollgruppe und waren mit p=0,8494 auch rechnerisch nicht signifikant anders.

Abbildung 14: Signifikanter Unterschied zwischen P0 und P1 (p=0,0001) nachweisbar, jedoch nicht zwischen P0 und K0 (p=0,8494, α=0,05). Mittelwerte mit 95% Konfidenzintervallen. Phase 2 = Rechnen, Phase 4 = Babyschreien, Phase 6 = Musik. Phasen 1, 3 und 5 = Ruhe.
Für die Standardabweichung der normierten RR-Intervalle als zeitbezogene Herzratenvariabilität (SDNN) war bei P1 eine im Vergleich zu P0 signifikante Einschränkung nachweisbar (p=0,002, **Abbildung 15**). Die SDNN von P0 war über alle Messphasen gleichbleibend höher und sank lediglich während der Entspannungsmusik auf ein mit P1 vergleichbares Niveau ab. Im Vergleich zwischen P0 und K0 waren keine signifikanten Unterschiede zu finden. Graphisch ist während des Rechnens wie auch bei dem Vergleich zwischen den Gesamtgruppen P und K ein etwas gegenläufiges Reaktionsmuster zu sehen, welches jedoch auch hier nicht durch signifikante Wechselwirkungen in der ANOVA bestätigt werden konnte.

Abbildung 15: Signifikanter Unterschied zwischen P0 und P1 nachweisbar (p=0,002), aber nicht für P0 und K0 (p=0,2010, α=0,05). Mittelwerte mit 95% Konfidenzintervallen. Phase 2 = Rechnen, Phase 4 = Babyschreien, Phase 6 = Musik. Phasen 1, 3 und 5 = Ruhe.
P0 zeigte über alle Messphasen eine graphisch höhere LF-HRV als P1, welche nach dem Rechentest in Phase 3 weiter anstieg (Abbildung 16). P1 zeigte in Phase 3 hingegen keine Veränderung der LF-HRV. Die Werte von K0 lagen mit p=0,0087 zudem signifikant über denen von P0 und zeigten im Gegensatz zu beiden Patientinnen-Subgruppen keinen Anstieg während des Rechentests. Erst danach in Phase 3 kam es bei ihnen zu einem deutlichen Anstieg der LF-HRV, welcher bei P0 im Vergleich etwas geringer ausfiel. Für die weiteren Phasen war eine durchweg höhere LF-HRV der Kontrollgruppe zu beobachten, welche jedoch mit den Patientinnen vergleichbare Reaktionsmuster aufwies.

Abbildung 16: Kein signifikanter Unterschied zwischen P0 und P1 nachweisbar, aber für K0 und P0 (p=0,0087, α=0,05). Mittelwerte mit 95% Konfidenzintervallen. Phase 2=Rechnen, Phase 4 = Babyschreien, Phase 6 = Musik. Phasen 1, 3 und 5 = Ruhe.
Auch für die HF-HRV ließ sich ein Shift der Werte erkennen, P0 lag hier zwischen P1 und K0. Die Unterschiede der drei Gruppen erreichten in der ANOVA jedoch nur zwischen K0 und P0 Signifikanz (p=0.0432, α=0.05, siehe Tabelle 24). Während die Patientinnen insgesamt nur geringe Schwankungen zeigten, fiel der Wert der Kontrollgruppe visuell zunächst während des Rechentests ab und stieg anschließend während des Babyschreis deutlich an. Entsprechend konnte in der ANOVA in den Gruppen K0 und P0 ein signifikanter Zeiteffekt berechnet werden, nicht jedoch in der Analyse des Verlaufs von P0 und P1. Vermutlich ist also der Zeiteffekt vor allem auf die Reaktion der Kontrollgruppe zurückzuführen, eine signifikante Wechselwirkung zwischen Gruppen- und Zeiteffekt wurde jedoch in keinem der beiden Modelle gefunden. Während der Entspannungsmusik war bei K0 und P1 visuell ein Anstieg der HF-HRV zu beobachten, während P0 hier mit der HF-HRV leicht abfiel.

Abbildung 17: Kein signifikanter Unterschied für P0 und P1 nachweisbar (p=0.1117), aber für K0 und P0 (p=0.0432, α=0.05). Für die Kontrollgruppe, nicht aber für P0/P1 fand sich ein signifikanter Zeiteffekt. Mittelwerte mit 95% Konfidenzintervallen. Phase 2=Rechnen, Phase 4 = Babyschreien, Phase 6 = Musik. Phasen 1, 3 und 5 = Ruhe.
4.5 TFM-Messung: explorative Auswertung von HR, sBP, BRS & PEP

Im Rahmen der TFM-Messung wurde eine Vielzahl weiterer Parameter erhoben, von denen im Anschluss einige zusätzlich zu den Hypothesenparametern ausgewertet wurden. Es handelt sich um die Herzrate (HR), den systolischen Blutdruck (sBP), die Barorezeptorsensitivität (BRS) und die Präejektionszeit (PEP).

4.5.1 Globaler Vergleich aller Patientinnen mit den gesunden Probandinnen

Im Vergleich der Gesamtgruppen von Patientinnen und gesunden Frauen fanden sich für HR und BRS signifikante Gruppenunterschiede, nicht jedoch für sBP und PEP (Tabelle 25). Der Zeiteffekt war für alle vier Parameter signifikant.

<table>
<thead>
<tr>
<th>Messwert</th>
<th>Gr.</th>
<th>N</th>
<th>ANOVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR [bpm]</td>
<td>K</td>
<td>39</td>
<td>p=0,0262</td>
</tr>
<tr>
<td></td>
<td>K</td>
<td></td>
<td>p<0,0001</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>52</td>
<td>p<0,0001</td>
</tr>
<tr>
<td>sBP [mmHg]</td>
<td>K</td>
<td>39</td>
<td>n.s. (p=0,3325)</td>
</tr>
<tr>
<td></td>
<td>K</td>
<td></td>
<td>p<0,0001</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>52</td>
<td>n.s. (p=0,1133)</td>
</tr>
<tr>
<td>BRS [ms/mmHg]</td>
<td>K</td>
<td>39</td>
<td>p=0,0079</td>
</tr>
<tr>
<td></td>
<td>K</td>
<td></td>
<td>p<0,0001</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>52</td>
<td>p=0,0002</td>
</tr>
<tr>
<td>PEP [ms]</td>
<td>K</td>
<td>39</td>
<td>n.s. (p=0,4420)</td>
</tr>
<tr>
<td></td>
<td>K</td>
<td></td>
<td>p<0,0001</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>52</td>
<td>p=0,0032</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Messwert</th>
<th>Start</th>
<th>Rechnen</th>
<th>Ruhe 1</th>
<th>Babyschreien</th>
<th>Ruhe 2</th>
<th>Musik</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>p=0,001</td>
<td>n.s.</td>
<td>p=0,003</td>
</tr>
<tr>
<td></td>
<td>(p=0,055)</td>
<td>(p=0,796)</td>
<td>(p=0,027)</td>
<td></td>
<td>(p=0,021)</td>
<td></td>
</tr>
<tr>
<td>BRS</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>p=0,001</td>
<td>p=0,001</td>
<td>n.s.</td>
</tr>
<tr>
<td></td>
<td>(p=0,093)</td>
<td>(p=0,377)</td>
<td>(p=0,010)</td>
<td></td>
<td></td>
<td>(p=0,029)</td>
</tr>
<tr>
<td>PEP</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td></td>
<td>(p=0,287)</td>
<td>(p=0,326)</td>
<td>(p=0,450)</td>
<td>(p=0,218)</td>
<td>(p=0,196)</td>
<td>(p=0,298)</td>
</tr>
</tbody>
</table>
4.5.2 Subgruppenvergleich von Patientinnen mit und ohne herzwirksame Medikamente

Im Subgruppenvergleich der Patientinnen mit und ohne herzwirksame Medikamente zeigte sich für die vier Parameter HR, sBP, BRS und PEP ein signifikanter Zeiteffekt, aber keine signifikanter Gruppenunterschied (Tabelle 27).

Tabelle 27: Vergleich von zwei Subgruppen der Patientinnen: P0=keine Einnahme herzwirksamer Medikamente; P1=Einnahme von herzwirksamen Medikamenten. Ergebnisse der globalen ANOVA für die Parameter HR, sBP, BRS und PEP. α=0,05.

<table>
<thead>
<tr>
<th>Messwert</th>
<th>Gr.</th>
<th>N</th>
<th>ANOVA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gruppeneffekt</td>
</tr>
<tr>
<td>HR [bpm]</td>
<td>P0</td>
<td>22</td>
<td>n.s. (p=0,6738)</td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>sBP [mmHg]</td>
<td>P0</td>
<td>22</td>
<td>n.s. (p=0,0712)</td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>BRS [ms/mmHg]</td>
<td>P0</td>
<td>22</td>
<td>n.s. (p=0,1362)</td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>PEP [ms]</td>
<td>P0</td>
<td>22</td>
<td>n.s. (p=0,1034)</td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>27</td>
<td></td>
</tr>
</tbody>
</table>

4.5.3 Gesunde Frauen und Patientinnen ohne Medikamente im Vergleich

Die im Gesamtkollektiv gezeigten Gruppenunterschiede waren beim Vergleich von gesunden Probandinnen und Patientinnen ohne kardial wirksame Medikamente nicht mehr signifikant (Tabelle 28).

Tabelle 28: Vergleich von Patientinnen ohne Einnahme herzwirksamer Medikamente und gesunden Frauen. Ergebnissen der globalen ANOVA für die Parameter HR, sBP, BRS und PEP. α=0,05.

<table>
<thead>
<tr>
<th>Messwert</th>
<th>Gr.</th>
<th>N</th>
<th>ANOVA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gruppeneffekt</td>
</tr>
<tr>
<td>HR [bpm]</td>
<td>K0</td>
<td>37</td>
<td>n.s. (p=0,2057)</td>
</tr>
<tr>
<td></td>
<td>P0</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>sBP [mmHg]</td>
<td>K0</td>
<td>37</td>
<td>n.s. (p=0,6180)</td>
</tr>
<tr>
<td></td>
<td>P0</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>BRS [ms/mmHg]</td>
<td>K0</td>
<td>37</td>
<td>n.s. (p=0,2069)</td>
</tr>
<tr>
<td></td>
<td>P0</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>PEP [ms]</td>
<td>K0</td>
<td>37</td>
<td>n.s. (p=0,1352)</td>
</tr>
<tr>
<td></td>
<td>P0</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

Für die HR und den BRS wurden zwar weiterhin Wechselwirkungen gefunden, in den hierdurch erforderlichen T-Tests für die einzelnen Messphasen ergaben sich jedoch keine signifikanten Ergebnisse.
4.5.4 Graphische Darstellung der Parameter

4.5.4.1 Herzrate (HR)

Der Subgruppenvergleich nach kardial wirksamer Medikation wies lediglich geringe Unterschiede der HR zwischen P0 und P1 nach, welche keine statistische Signifikanz erreichten (Abbildung 19). P0 hatte jedoch graphisch eine etwas niedrigere HR als P1 und näherte sich somit den Werten von K0 an. Hierdurch waren die graphisch zu sehenden Unterschiede der HR während des Babyschreiens und der Musik zwischen P0 und K0 nicht mehr signifikant. Allerdings ergab die ANOVA weiterhin eine signifikante Wechselwirkung für den Zeit- und Gruppeneffekt von P0 und K0 ($p=0,0002$) und ΔHR blieb während des Rechentests bei K0 ebenfalls signifikant stärker ausgeprägt als bei P0 ($p=0,008$).
4 Ergebnisse

Abbildung 18: Wechselwirkungen zwischen Gruppen- und Zeiteffekt (p=0,0001) und signifikanter Gruppenunterschied in Phase 4 (p=0,001) und Phase 6 (p=0,003, α’=0,00851, siehe Tabelle 26). Zudem war der Anstieg der HR von Phase 1 auf Phase 2 (ΔHR) mit p<0,0001 bei K signifikant stärker als bei P. Mittelwerte mit 95% Konfidenzintervallen. Phase 2=Rechnen, Phase 4 = Babyschreien, Phase 6 = Musik. Phasen 1, 3 und 5 = Ruhe.

Abbildung 19: Wechselwirkung zwischen Gruppen- und Zeiteffekt für P0 und K0 (p=0,0002). Kein signifikanter Gruppenunterschied für den Vergleich von P0 und P1 oder den Vergleich von K0 und P0. Der Anstieg der HR von Phase 1 zu Phase 2 (ΔHR) war mit p=0,008 bei K0 signifikant stärker als bei P0. Mittelwerte mit 95% Konfidenzintervallen. Phase 2=Rechnen, Phase 4 = Babyschreien, Phase 6 = Musik. Phasen 1, 3 und 5 = Ruhe.
4.5.4.2 Systolischer Blutdruck (sBP)

K zeigte insbesondere in Phase 4 (Babyschreien) bis Phase 6 (Musik) einen niedrigeren systolischen Blutdruck als P (Abbildung 20). Diese Unterschiede erreichten jedoch keine Signifikanz. Da zudem P0 im Subgruppenvergleich einen signifikant niedrigeren sBP als P1 aufwies und sich so den Werten von K0 annäherte, war dieser Unterschied im anschließenden Vergleich von K0 und P0 auch graphisch kaum noch darstellbar (Abbildung 21).

Abbildung 20: Kein signifikanter Gruppenunterschied nachweisbar ($\alpha=0.05$). Mittelwerte mit 95% Konfidenzintervallen. Phase 2 = Rechnen, Phase 4 = Babyschreien, Phase 6 = Musik. Phasen 1, 3 und 5 = Ruhe.

Abbildung 21: Keine signifikanten Gruppenunterschiede nachweisbar ($\alpha=0.05$). Mittelwerte mit 95% Konfidenzintervallen. Phase 2 = Rechnen, Phase 4 = Babyschreien, Phase 6 = Musik. Phasen 1, 3 und 5 = Ruhe.
4.5.4.3 *Barorezeptorsensitivität (BRS)*

P und K zeigten bei der BRS vergleichbare Reaktionsmuster, welche jedoch bei K deutlich stärker ausgeprägt waren und somit zu einer signifikanten Wechselwirkung führten (p=0,0002). Bei K kam es während des Rechentests zu einem Abfall der BRS und während des Babyschreien zu einem deutlichen Anstieg. Während der Entspannungsmusik war für beide Gruppen ein Anstieg zu sehen (*Abbildung 22*). Die Werte von P lagen in allen Phasen unter denen von K, für Phase 4 und 5 erreichten die Gruppenunterschiede auch nach der α-Adjustierung Signifikanz (α’=0,00851, siehe *Tabelle 26*).

Da die Werte von P0 im Subgruppenvergleich über denen von P1 lagen (*Abbildung 23*), fielen die Unterschiede im anschließenden Vergleich zwischen P0 und K0 geringer aus als im Vergleich der Gesamtgruppen und verloren in der ANOVA ihre Signifikanz. Allerdings war weiterhin eine Wechselwirkung zwischen Gruppenzugehörigkeit (K0 vs. P0) und Zeit nachweisbar und eine graphisch höhere Barorezeptoraktivität von K0 während des Babyschreiens zu sehen. Der Anstieg der BRS während des Babyschreiens (ΔBRS) war mit p=0,039 bei K0 zudem weiterhin signifikant stärker als bei P0.

![Abbildung 22: Wechselwirkung zwischen Gruppen- und Zeiteffekt (p=0,0002) und signifikanter Gruppenunterschied für Phase 4 (p=0,001) und Phase 5 (p=0,001, α’=0,00851, siehe Tabelle 26). Der Anstieg der BRS von Phase 3 auf Phase 4 (ΔBRS) war bei K0 signifikant stärker (p=0,009). Mittelwerte mit 95% Konfidenzintervallen. Phase 2=Rechnen, Phase 4 = Babyschreien, Phase 6 = Musik. Phasen 1, 3 und 5 = Ruhe.](image-url)
Abbildung 23: In der ANOVA waren keine signifikanten Gruppenunterschiede, aber eine Wechselwirkung zwischen Gruppen- und Zeiteffekt für K0 und P0 nachweisbar (p=0,0393). Der Anstieg der BRS von Phase 3 zu Phase 4 (ΔBRS) war mit p=0,039 bei K0 signifikant stärker ausgeprägt als bei P0. Mittelwerte mit 95% Konfidenzintervallen. Phase 2=Rechnen, Phase 4=Babyschreien, Phase 6=Musik. Phasen 1, 3 und 5=Ruhe.

4.5.4.4 Präejektionszeit (PEP)

Die PEP von K war während fast aller Phasen länger als die von P, verkürzte sich jedoch während des Rechnens in Phase 2 von 119 ms auf 112 ms und fiel hierdurch unter das Niveau der PEP von P ab (Abbildung 24). Dieser Abfall der PEP (ΔPEP) während des Rechnens war somit bei K mit p=0,006 signifikant stärker ausgeprägt als bei P, in der ANOVA zeigten sich hierdurch signifikante Wechselwirkungen zwischen Gruppen- und Zeiteffekt (p=0,0032).

Im Subgruppenvergleich wies P0 in allen Messphasen eine graphisch kürzere PEP auf als P1 (Abbildung 25), welche sich bei P0 bereits in Ruhe auf einem mit dem Rechentest vergleichbar niedrigem Niveau befand. Somit war die PEP von P0 in Ruhe graphisch auch deutlich kürzer als die von K0. Durch den stärkeren Abfall der PEP von K0 während des Rechnens erreichten jedoch beide Gruppen in Phase 2 vergleichbare Werte. Der ΔPEP während des Rechnens war in diesem Vergleich mit p=0,055 knapp nicht mehr signifikant unterschiedlich. P1 zeigte ein mit K0 vergleichbares Ruheniveau, das jedoch während des Rechnens kaum abfiel. Die Reaktionsmuster der drei Subgruppen im weiteren Verlauf der Messung waren ähnlich, die beschriebenen Unterschiede der Verläufe erreichten in der ANOVA in keiner Phase statistische Signifikanz.
Abbildung 24: Wechselwirkung zwischen Gruppe und Zeit (p=0,0032), aber kein signifikanter Gruppenunterschied nachweisbar (α'=0,00851). Der Abfall der PEP von Phase 1 auf Phase 2 (ΔPEP) war bei K signifikant stärker als bei den P (p=0,006). Mittelwerte mit 95% Konfidenzintervallen. Phase 2=Rechnen, Phase 4 = Babyschreien, Phase 6 = Musik. Phasen 1, 3 und 5 = Ruhe.

Abbildung 25: Kein signifikanter Unterschied zwischen den Gruppen nachweisbar (α=0,05). Bei K0 zeigte sich im Vergleich zu P0 ein starker Trend zu einem stärkeren Abfall der PEP (ΔPEP) in Phase 2 (p=0,055). Mittelwerte mit 95% Konfidenzintervallen. Phase 2=Rechnen, Phase 4 = Babyschreien, Phase 6 = Musik. Phasen 1, 3 und 5 = Ruhe.
4.6 Realität des Babyschreiens

Das Realitätsempfinden während des Babyschreiens wurde im Anschluss an die Messphase erfragt und die Mittelwerte mittels T-Test verglichen (Tabelle 29). Es zeigte sich ein signifikant stärkeres Realitätsempfinden der Patientinnen (p=0,01). Bei genauerer Betrachtung war dies insbesondere bei den P0 der Fall, welche mit einem mittleren Realitätsempfinden von 5,3 über dem von den P1 lagen (4,5).

Tabelle 29: Vergleich des Realitätsempfindens während des Babyschreiens von allen Patientinnen (P) und der Kontrollgruppe (K) mittels T-Test. Angabe auf einer Skala von 0 bis 10, hiervon entspricht 10 einem sehr realen Empfinden des Babyschreiens. Angabe von Mittelwerten ± Standardabweichung; α=0,05.

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>N</th>
<th>Mittelwert</th>
<th>SD</th>
<th>T-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>34</td>
<td>3,2</td>
<td>2,1</td>
<td>p=0,01</td>
</tr>
<tr>
<td>P</td>
<td>53</td>
<td>5,0</td>
<td>3,0</td>
<td></td>
</tr>
</tbody>
</table>

4.7 Subjektive und objektive Stressreaktionen

4.7.1 Subjektiv empfundener Stress

Das subjektive Stressempfinden wurde während der Messungen für die Phasen Baseline-Ruhe (Phase 1), Rechnen, Babyschreien und Entspannungsmusik mittels Analogskala erfragt und mit einer ANOVA auf signifikante Gruppenunterschiede geprüft (Tabelle 30). Hier ließ sich ein signikanter Unterschied im Stressempfinden nachweisen.

Tabelle 30: Vergleich des subjektiven Stressempfindens von allen Patientinnen und Kontrollgruppe während der ersten Ruhephase, des Rechentests, des Babyschreiens und der Entspannungsmusik mittels ANOVA. Angabe auf einer Skala von 0 bis 10, hiervon entspricht 10 dem schlimmsten Stress und 0 gar keinem Stress. α=0,05.

<table>
<thead>
<tr>
<th>Gruppen</th>
<th>Messphasen</th>
<th>Subjektiver Stress</th>
<th>Globale ANOVA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Start</td>
<td>Rechnen</td>
<td>Babyschreien</td>
</tr>
<tr>
<td></td>
<td>Gruppen*Zeit</td>
<td>Musik</td>
<td>Effekt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p=0,01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p<0,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>n.s. (p=0,09)</td>
</tr>
</tbody>
</table>

Auch unter Berücksichtigung der Medikation war der Zeiteffekt konstant, es gab zudem weder einen signifikanten Gruppenunterschied zwischen P0 und P1 noch eine Wechselwirkung zwischen Gruppen- und Zeiteffekt (Tabelle 31). Bei Betrachtung der Mittelwerte fiel bei P0 im Vergleich zu P1 dennoch ein etwas niedrigeres Stressniveau während des Rechnens und ein etwas stärkerer Stress während der Musik auf.

Tabelle 31: Mittelwertvergleich des subjektiven Stresses von Patientinnen mit (P1) und ohne (P0) herzwirksame Medikation während der ersten Ruhephase, des Rechentests, des Babyschreien und der Entspannungsmusik. Angabe auf einer Skala von 0 bis 10, hiervon entspricht 10 dem schlimmsten Stress und 0 gar keinem Stress.

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Messphasen</th>
<th>Globale ANOVA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Start</td>
<td>Rechnen</td>
</tr>
<tr>
<td>P0</td>
<td>3,3 ± 1,84</td>
<td>5,7 ± 2,09</td>
</tr>
<tr>
<td>P1</td>
<td>3,2 ± 1,80</td>
<td>6,7 ± 1,79</td>
</tr>
</tbody>
</table>

4.7.2 Korrelation des subjektiven Stresses mit den physiologischen Parametern

Die physiologischen Parameter zeigten nur selten eine Korrelation von >0,2 mit dem subjektiven Stressempfinden der Patientinnen oder der gesunden Frauen (Tabelle 32). Während bei der Kontrollgruppe jedoch lediglich marginale Korrelationen mit dem sBP und
der PEP zu finden waren, war bei den Patientinnen auch ein leichter Zusammenhang mit den autonomen Parametern zu beobachten. Insbesondere die Patientinnen ohne kardial wirksame Medikamente zeigten ein erhöhtes Stressempfinden bei erniedrigter HF-HRV. Dies wurde vor allem während der Entspannungsmusik deutlich: hier betrug der Korrelationskoefizient τ=0,49. Auch ein zu geringer relativer Anstieg der HF-HRV korrelierte bei den Patientinnen signifikant mit dem Stressempfinden (τ=−0,32 für P und τ=−0,52 für P0).

Tabelle 32: Korrelation der physiologischen Parameter mit dem subjektiven Stressempfinden der Patientinnen (gesamt=P; ohne Medikation=P0) und der gesunden Frauen (K) während der verschiedenen Messphasen.*p<0,05.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Gr.</th>
<th>Start</th>
<th>Rechnen</th>
<th>Baby-schreien</th>
<th>Musik</th>
<th>∆Rechnen</th>
<th>∆Baby-schreien</th>
<th>∆Musik</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI</td>
<td>K</td>
<td>0,05</td>
<td>-0,12</td>
<td>-0,04</td>
<td>0,03</td>
<td>0,09</td>
<td>0,08</td>
<td>0,13</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>0,10</td>
<td>-0,06</td>
<td>0,10</td>
<td>-0,03</td>
<td>0,00</td>
<td>0,09</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td>P0</td>
<td>0,20</td>
<td>0,05</td>
<td>0,18</td>
<td>0,20</td>
<td>0,13</td>
<td>0,14</td>
<td>0,13</td>
</tr>
<tr>
<td>HR</td>
<td>K</td>
<td>0,15</td>
<td>0,01</td>
<td>0,00</td>
<td>0,05</td>
<td>0,08</td>
<td>-0,06</td>
<td>-0,08</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>0,18</td>
<td>-0,02</td>
<td>0,26*</td>
<td>0,22*</td>
<td>0,02</td>
<td>0,25*</td>
<td>0,24*</td>
</tr>
<tr>
<td></td>
<td>P0</td>
<td>0,32*</td>
<td>0,02</td>
<td>0,37*</td>
<td>0,25</td>
<td>0,18</td>
<td>0,13</td>
<td>0,25</td>
</tr>
<tr>
<td>PEP</td>
<td>K</td>
<td>-0,22*</td>
<td>-0,27*</td>
<td>-0,05</td>
<td>-0,19</td>
<td>-0,03</td>
<td>-0,05</td>
<td>-0,20</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>-0,02</td>
<td>-0,17</td>
<td>-0,10</td>
<td>-0,15</td>
<td>0,19*</td>
<td>-0,09</td>
<td>-0,11</td>
</tr>
<tr>
<td></td>
<td>P0</td>
<td>-0,13</td>
<td>-0,23</td>
<td>-0,34*</td>
<td>-0,23</td>
<td>0,15</td>
<td>-0,23</td>
<td>-0,16</td>
</tr>
<tr>
<td>TPRI</td>
<td>K</td>
<td>0,09</td>
<td>0,12</td>
<td>0,02</td>
<td>0,00</td>
<td>-0,12</td>
<td>0,12</td>
<td>-0,01</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>-0,08</td>
<td>0,13</td>
<td>0,00</td>
<td>0,03</td>
<td>0,07</td>
<td>0,01</td>
<td>-0,04</td>
</tr>
<tr>
<td></td>
<td>P0</td>
<td>-0,20</td>
<td>0,02</td>
<td>-0,04</td>
<td>-0,08</td>
<td>-0,02</td>
<td>-0,02</td>
<td>-0,10</td>
</tr>
<tr>
<td>sBP</td>
<td>K</td>
<td>0,26*</td>
<td>0,01</td>
<td>0,10</td>
<td>0,09</td>
<td>-0,01</td>
<td>0,25*</td>
<td>-0,07</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>0,07</td>
<td>0,13</td>
<td>0,10</td>
<td>0,04</td>
<td>0,09</td>
<td>0,09</td>
<td>-0,08</td>
</tr>
<tr>
<td></td>
<td>P0</td>
<td>0,22</td>
<td>0,17</td>
<td>0,24</td>
<td>0,17</td>
<td>0,20</td>
<td>0,09</td>
<td>0,37*</td>
</tr>
<tr>
<td>SDNN</td>
<td>K</td>
<td>0,02</td>
<td>-0,09</td>
<td>-0,04</td>
<td>0,07</td>
<td>-0,10</td>
<td>0,00</td>
<td>-0,09</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>-0,13</td>
<td>0,18</td>
<td>-0,05</td>
<td>-0,06</td>
<td>-0,13</td>
<td>0,12</td>
<td>0,16</td>
</tr>
<tr>
<td></td>
<td>P0</td>
<td>-0,14</td>
<td>-0,25</td>
<td>0,11</td>
<td>-0,13</td>
<td>-0,34*</td>
<td>0,16</td>
<td>0,35*</td>
</tr>
<tr>
<td>LF-HRV</td>
<td>K</td>
<td>-0,11</td>
<td>-0,04</td>
<td>-0,06</td>
<td>0,11</td>
<td>-0,01</td>
<td>0,11</td>
<td>-0,07</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>-0,16</td>
<td>-0,10</td>
<td>-0,14</td>
<td>-0,22*</td>
<td>-0,13</td>
<td>0,07</td>
<td>-0,10</td>
</tr>
<tr>
<td></td>
<td>P0</td>
<td>-0,17</td>
<td>-0,23</td>
<td>-0,17</td>
<td>-0,45*</td>
<td>-0,06</td>
<td>0,12</td>
<td>-0,19</td>
</tr>
<tr>
<td>HF-HRV</td>
<td>K</td>
<td>-0,06</td>
<td>-0,13</td>
<td>-0,07</td>
<td>0,12</td>
<td>-0,02</td>
<td>0,02</td>
<td>0,09</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>-0,18</td>
<td>-0,19</td>
<td>-0,16</td>
<td>-0,33*</td>
<td>-0,11</td>
<td>-0,28*</td>
<td>-0,32*</td>
</tr>
<tr>
<td></td>
<td>P0</td>
<td>-0,32*</td>
<td>-0,33*</td>
<td>-0,31*</td>
<td>-0,49*</td>
<td>-0,01</td>
<td>-0,27</td>
<td>-0,52*</td>
</tr>
<tr>
<td>BRS</td>
<td>K</td>
<td>0,00</td>
<td>-0,06</td>
<td>-0,07</td>
<td>0,01</td>
<td>0,15</td>
<td>-0,04</td>
<td>-0,03</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>-0,15</td>
<td>0,00</td>
<td>-0,15</td>
<td>-0,29*</td>
<td>0,07</td>
<td>-0,21*</td>
<td>-0,09</td>
</tr>
<tr>
<td></td>
<td>P0</td>
<td>-0,20</td>
<td>0,01</td>
<td>-0,17</td>
<td>-0,46*</td>
<td>0,05</td>
<td>-0,09</td>
<td>-0,28</td>
</tr>
</tbody>
</table>

4.7.3 Objektiv beobachtbare Stressreaktionen

Beobachtbare Reaktionen während der beiden Stresstests und der Entspannungsmusik wurden während der Messung notiert und anschließend in Gruppen kategorisiert. In Tabelle 33 wird aufgeführt, wie viele der Frauen in der jeweiligen Phase diese Reaktionen gezeigt haben und ob sich hier ein signifikanter Unterschied zwischen den beiden Gruppen.

Tabelle 33: Auflistung beobachteter Reaktionen von Patientinnen (gesamt) und gesunden Probandinnen während des Rechentests, des Babyschreiens und der Entspannungsmusik. Coping=Coolpack, Kneten mit dem Stachelball, „Runteratmen“ oder gutes Zureden. Erregung=Gänsehaut, Schwitzen, Herzklopfen, Zucken. Numbing=starrer Blick, körperfremdes Gefühl. Angabe der Anzahl der Frauen mit den jeweiligen Symptomen. \(\alpha\)-Adjustierung: \(\alpha' = 1 - (1 - \alpha) \frac{1}{m} > \alpha' = 1 - (1 - 0,05) \frac{1}{3} = 0,01695 \)

<table>
<thead>
<tr>
<th>Phase</th>
<th>Symptom</th>
<th>Anzahl der Frauen mit genannten Symptomen</th>
<th>Chi-Quadrat-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Kontrolle</td>
<td>Patientinnen</td>
</tr>
<tr>
<td>Rechnen</td>
<td>Weinen</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>schweres Atmen</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Erregung</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Copingmechanismen</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mundtrockenheit</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Konzentrationsprobleme</td>
<td>4</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Numbing</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Abbruch</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Baby-</td>
<td>schweres Atmen</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>schreien</td>
<td>Erregung</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Weinen</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Copingmechanismen</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Numbing</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Abbruch</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Musik</td>
<td>schweres Atmen</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Erregung</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Weinen</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Copingmechanismen</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Numbing</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Musik unangenehm</td>
<td>2</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Abbruch</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>
5 Diskussion

5.1 Vergleichbarkeit von Kontrollgruppe und Patientinnen

Anhand der weiteren Fragebögen (SCL-90-R, IES-R, BDI) kann eine psychische Diagnose bei den Frauen der Kontrollgruppe zwar nicht gänzlich ausgeschlossen werden, die niedrigen Ergebnisse lassen jedoch eine relativ gesunde Psyche vermuten. In jedem Fall wird der Unterschied zu den Ergebnissen der Patientinnen sehr deutlich, so dass eine Eignung der gesunden Frauen als Kontrollgruppe angenommen werden kann.

5.2 TFM-Messung

5.2.1 Ruheparameter

Die Patientinnen allgemein zeigten in Ruhe ein verändertes vegetatives Erregungsniveau mit signifikant niedrigeren β-adrenergen Aktivitätsparametern (CI ↓, LF-HRV↓) und einem ebenfalls erniedrigtem Vagotonus (HF-HRV↓). Explorativ konnte die geringere parasympathische Aktivität durch eine graphisch niedrigere BRS bestätigt werden, welche jedoch nach α-Adjustierung keine statistische Signifikanz mehr erreichte. Die niedrigere SDNN bei den Patientinnen kann als unspezifischer Wert sowohl durch eine erhöhte sympathische Aktivität als auch durch einen erniedrigten Vagotonus verursacht worden sein. Der α-adrenerge TPRI
war im Vergleich zu der Kontrollgruppe erhöht, für den sBD zeigte sich kein signifikanter Gruppenunterschied. Für die PEP fand sich ebenfalls kein signifikanter Gruppenunterschied in Ruhe, während die HR der Patientinnen mit p=0,055 einen Trend zu höheren Werten zeigte.

nicht wie erwartet. Der CI wird durch Veränderungen der HR oder der Inotropie vorwiegend sympathisch moduliert. Bei einem hyperaktiven Sympathikus wäre demnach auch ein erhöhter CI zu erwarten gewesen. Da der Vagus nur auf Vorhofebene wirkt, kann er die HR durch Disinhibition zwar maßgeblich beeinflussen, nicht jedoch die Kontraktilität der Ventrikel. Somit ist ein erniedrigter CI bei gleichzeitig erhöhter HR zwar mit einem erniedrigten Vagotonus vereinbar, nicht jedoch mit einem erhöhten Sympathikotonus. Die PEP, welche laut Newlin und Levenson (1979) ein von vagalen Einflüssen unabhängiger Indikator für die adrenerge Aktivierung ist, zeigt zudem in dieser Arbeit keinen Gruppenunterschied. Dies spricht ebenfalls gegen ein sympathisches Hyperarousal der Patientinnen in Ruhe. Es kann zudem als Hinweis darauf interpretiert werden, dass die Abweichungen der anderen sympathischen Parameter eher auf eine Beeinflussung durch weitere Variablen zurückzuführen sind, beispielsweise den Vagus oder die Medikamente (siehe auch Kapitel 5.4.1). Alternativ kann jedoch auch eine selektive α-adrenerge Aktivierung vermutet werden, so dass bei erhöhtem TPRI und damit erhöhter Nachlast bei gleichbleibender kardialer Pumpkraft weniger Volumen gepumpt werden kann.

In keiner der oben genannten Studien wurden mit dieser Studie vergleichbar viele Parameter simultan gemessen, häufig beschränkte man sich auf die HR und einzelne autonome Parameter. Hierdurch kann jedoch bei der Komplexität der beteiligten Regulationssysteme nicht hinreichend auf die zugrunde liegenden Reaktionsweisen geschlossen werden. Insbesondere die HR wird auch stark durch den Vagus moduliert und kann nicht als alleiniger Parameter für eine sympathische Aktivierung herangezogen werden. Es könnte daher vermutet werden, dass es hierdurch in vorangegangenen Studien zu Fehlinterpretationen gekommen ist. Die eigenen Ergebnisse legen zumindest nahe, dass nicht von einer generell erhöhten sympathischen Aktivität bei PTBS-Patienten ausgegangen werden kann, sondern vielmehr von einer vagalen Hypoaktivität.

5.2.2 Rechentest

5.2.2.1 Kontrollgruppe

Die gesunden Probandinnen zeigten während des Rechentestes eine deutliche β-adrenerge Aktivierung (CI↑, HR↑, PEP↓), einen Anstieg der SDNN um 12,8 ms und des sBP um 10,4 mmHg, sowie einen leichten Abfall des TPRI um 74 dyne*s*m²/cm⁵. Der Vagotonus fiel ebenfalls ab: die HF-HRV um 121,24 ms² auf 333,06 ms² (5,4 ln(ms²)) und die BRS um 2,8 ms/mmHg auf 10,8 ms/mmHg. Die LF-HRV blieb jedoch zunächst fast unverändert und stieg erst in der Ruhephase nach dem Rechentest an.

Es ist also eine Aktivierung der β-adrenergen Parameter bei gleichzeitigem Vagusentzug zu beobachten, was als eine deutliche Stressreaktion der gesunden Frauen auf den Rechentest interpretiert werden kann. Bis auf die Studie von Sahar et al. (2001), welche jedoch in Kap. 5.2.3 eingehender besprochen wird, stimmen diese Reaktionen weitgehend mit den Ergebnissen von anderen Arbeiten überein. So fanden beispielsweise auch Allen und Crowell (1989) bei 51 gesunden Studenten während des Rechnens eine sympathische Aktivierung (HZV↑, HR↑, sBP↑, Schlagvolumen↓, PEP↓, TPR↓) und einen Abfall der vagalen RSA. Gleiches gilt für die 10 gesunden Studentinnen in der Studie von Berntson et al. (HR↑, mBP↑, PEP↓, HF-HRV↓), die Kontrollgruppe von Keary et al. (HR↑, sBP↑, LF-HRV↑ und HF-HRV↓), den weiblichen Anteil der Probandinnen von Ottaviani et al. (HR↑, PEP↓, HF-HRV↓, BRS↓) und die 60 Studenten in der Studie von Kelsey et al. (HR↑, PEP↓, TPR↓) (Berntson et al. 1994; Kelsey et al. 1999; Ottaviani et al. 2008; Keary et al. 2009).

HRV (Malik et al. 1996) spräche ein Anstieg der SDNN zunächst eher für eine vermehrte vagale Aktivität, was mit den übrigen Daten dieser Studie allerdings nicht vereinbar wäre. Es gilt allerdings zu berücksichtigen, dass es durch den Anstieg der HR während des Stresstests zu einer deutlichen Änderung, hier: Verkürzung der RR-Intervalle über die Zeit kommt. Dies allein führt rein rechnerisch zu einer größeren Standardabweichung der RR-Intervalle, also einem Anstieg der SDNN. Zudem konnten Kelsey et al. (1999) zeigen, dass sich die unter Stress erhöhten kardiovaskulären Parameter nach etwa einer Minute bereits wieder der Baseline annähern. Es ist also anzunehmen, dass dieser auch bei der HR beobachtete Adaptationseffekt zu sehr unterschiedlich langen RR-Intervallen auch im weiteren Verlauf der länger andauernden Messphase führen kann.

5.2.2.2 Patientinnen

Diese Ergebnisse bestätigen die Hypothesen im Fall der LF-HRV, die in der Tat stärker anstieg als bei der Kontrollgruppe. Unerwartet sind jedoch die geringere β-adrenerge Aktivierung und der ausbleibende Abfall der HF-HRV. Die physiologischen Parameter lassen somit eine geringer ausgeprägte Stressreaktion bei den Patientinnen vermuten, was jedoch nicht mit deren subjektivem Empfinden übereinstimmt.

Autonome Parameter wurden in der Studie von Peckerman et al. allerdings gar nicht erhoben, zudem ist die Gruppe der dortigen PTBS-Patienten mit n=16 vergleichsweise klein und von gemischem Geschlecht. Letzteres kann jedoch die HR und die HF-HRV vor allem während des Rechnens signifikant beeinflussen, so dass eine Vergleichbarkeit fraglich ist (Ottaviani et al. 2008).

5.2.3 Babyschreien

5.2.3.1 Kontrollgruppe

Bei den gesunden Probandinnen zeigte sich während des Babyschreiens eine deutlich andere Reaktion als während des Rechentests. Es kam zu einer vorwiegend parasympathischen Aktivierung mit einem deutlichen Anstieg von HF-HRV und BRS. Bei der LF-HRV, der SDNN und dem sBP war ein Abfall zu beobachten, der TPRI zeigte hingegen keine Veränderung. Die β-adrenergen Parameter CI und PEP blieben ebenfalls fast konstant, während die HR wiederum etwas abfiel. In der sympathischen Aktivität zeigte sich während des Babyschreiens also fast keine Reaktion.

Reaktion). Eine Stressreaktion verläuft demnach also auch intraindividuell nicht immer gleich und wird an den jeweiligen Stressor angepasst.

Eine Interpretation der reduzierten LF-HRV als Abfall der sympathischen Aktivität erscheint bei unveränderter PEP erneut zweifelhaft, wäre jedoch mit einer verstärkten Inhibition durch den Vagusanstieg erklärbar. Auch eine Inhibition des unmyelinisierten Vagus wäre mit einem hohen Vagotonus vereinbar. Würde die LF-HRV sowohl vagale als auch sympathische Aktivitäten reflektieren, hätte man hier in Anbetracht der unveränderten PEP und des erhöhten Vagotonus jedoch eher einen Anstieg erwartet.

5.2.3.2 Patientinnen

Die Patientinnen zeigen im Vergleich zu der Kontrollgruppe einen deutlich reduzierten Anstieg des Vagotonus. Während die HF-HRV sich gar nicht veränderte und signifikant niedriger war als bei der Kontrollgruppe, zeigte die BRS der Patientinnen einen leichten Anstieg. Dieser war jedoch signifikant schwächer ausgeprägt, so dass der absolute Phasenmittelwert ebenfalls signifikant unter dem der Kontrollgruppe blieb. Die LF-HRV und die SDNN fielen vergleichbar ab und es kam auch bei den Patientinnen nur zu geringen Veränderungen der α- und β-adrenergen Parameter: CI, HR und PEP der Patientinnen blieben praktisch konstant, der sBP fiel im Durchschnitt lediglich um 1,1 mmHg ab und der TPRI stieg mit 46 dyne*s*m²/cm⁵ nur geringfügig an.

Die Reaktion auf den Stresstest durch Babyschreien hat sich somit anders dargestellt, als in den Hypothesen vermutet. Auch wenn der Vagus der Patientinnen in der Tat nur wenig reagiert hat, ist der Sympathikotonus – je nach Interpretation der LF-HRV - nicht angestiegen
Diskussion

Darüber hinaus scheint die LF-HRV der Patientinnen fast autonom, also trotz nur geringer Veränderungen des Parasympathikus, zu sinken. Wie in Kap. 1.4 dargestellt, wird die sympathische Aktivität jedoch stark durch die vagale Inhibition oder Disinhibition moduliert. Diese Reaktion könnte also entweder als Zeichen einer Entkoppelung der autonomen Regulationsmechanismen verstanden werden oder als weiterer Hinweis darauf, dass die LF-HRV neben der sympathischen Aktivität auch andere Einflüsse darstellt.

In jedem Fall zeigen diese Ergebnisse, dass auch in zukünftigen Studien der Vergleich mit gesunden Probanden wichtig ist, um eine Hyporeagibilität der Patienten zu demaskieren. Zudem darf eine mangelnde Übererregbarkeit ohne Erfassung des Vagotonus nicht als Zeichen einer physiologischen autonomen Reagibilität interpretiert werden.

5.2.4 Erholung nach dem Babyschreien

In der globalen ANOVA wurden für die Werte sBP, TPRI, CI und RMSSD für die ersten 90 Sekunden nach Beendigung des Babyschreiens keine signifikanten Zeiteffekte gefunden. Allerdings konnte ein signifikanter Gruppeneffekt für den CI und den logarithmierten RMSSD nachgewiesen werden und für den TPRI mit p=0,055 eine deutliche Tendenz. Die gemessenen Unterschiede imponieren also mehr durch einen Shift der Werte als durch stark verschiedene Reaktionsweisen. So ist der Vagotonus, hier gemessen durch den RMSSD, bei den Patientinnen erniedrigt und die adrenergen Parameter sBP und TPRI sind erhöht. Der CI, obwohl ebenfalls ein adrenerger Parameter, ist erniedrigt und zeigt so eine allgemein schwächere Herzleistung bei den Patientinnen an. Dies entspricht den übrigen Messergebnissen und spiegelt die Reaktionsweise der Messwerte über die Gesamtphase wieder.

Abfall des Vagotonus zu beobachten ist, findet dieser bei der Kontrollgruppe vermutlich erst später statt.

Zusammenfassend bleibt also festzuhalten, dass die in der Ruhephase nach dem Babyschreien zu beobachtenden Veränderungen der sympathischen Parameter vor allem in den ersten Sekunden stattfinden. Die Patientinnen zeigen jedoch nicht wie erwartet eine langsamere Reagibilität im Sinne einer eingeschränkten Beruhigung als die Kontrollgruppe. Da jedoch während des Babyschreins nur geringe sympathische Reaktionen ausgelöst worden sind, ist es schwierig, die psychologische Erregung anhand dieser physiologischen Parameter zu beurteilen.

5.2.5 Entspannungsmusik

5.2.5.1 Kontrollgruppe

Während der Entspannungsmusik fielen bei der Kontrollgruppe die β-adrenergen Parameter etwas ab und auch die LF-HRV und die SDNN wurden reduziert. Der Vagotonus stieg entsprechend an (HF-HRV, BRS), während die α-adrenergen Parameter sBP und TPRI sich kaum veränderten. Dies ging einher mit einem Abfall des subjektiven Stressempfindens.

Während für den TPRI keine Vergleichsdaten zum Einfluss von Musik vorliegen, zeigen die meisten Studien für den BP keine Veränderungen (Vanderark und Ely 1994; White 1999;

Es muss allerdings darauf hingewiesen werden, dass die physiologischen Parameter während der Musik vergleichbare Reaktionsweisen zeigen wie während des Babyschreiens. Das subjektive Stressesmpfinden fällt mit durchschnittlich 1,2 dennoch deutlich geringer aus (Babyschreien: 3,5). Man scheint also anhand der physiologischen Reaktionen nicht zwischen Entspannung und Selbstberuhigung unterscheiden zu können. Da bei den gesunden Frauen zudem kein Parameter mit dem subjektiven Stressesmpfinden korrelierte, kann an dieser Stelle keine Aussage darüber getroffen werden, was dieses ausgelöst oder reduziert haben könnte.

5.2.5.2 Patientinnen

Die Patientinnen zeigten sehr unterschiedliche emotionale Reaktionen auf die Musik. Während einige sie als angenehm empfanden, mussten andere sie aufgrund zu starker innerer Erregung abbrechen (n=6). 19 Patientinnen gaben an, die Musik unangenehm zu finden. Somit wurde das Ziel, eine entspannende Musik zur Beruhigung nach den erfolgten Stresstests vorzuspielen, dem subjektiven Empfinden der Patientinnen nach leider verfehlt. Unklar ist allerdings, ob die innere Erregung noch vom Babyschreien herrührte und die ruhige Musik für einige Probandinnen damit lediglich nicht gut vereinbar war, oder ob diese tatsächlich durch die Musik ausgelöst wurde.
Erstaunlicher Weise kam es bei Ihnen im Durchschnitt jedoch ebenfalls zu einem Abfall der β-adrenergen Aktivierung (CI ↓, HR ↓, PEP ↑) und der LF-HRV. Während die HF-HRV fast konstant blieb, stieg die BRS mit 2,8 ms/mmHg deutlich an. Die α-adrenergen Parameter zeigten auch bei den Patientinnen nur geringe Veränderungen mit einem Abfall des sBP um 0,61 mmHg und einem Anstieg des TPRI um 135 dyne*s*m²/cm⁵. Die Reaktionsmuster der physiologischen Parameter sind somit vergleichbar mit denen der gesunden Frauen und weisen auf einen entspannenden Effekt der Musik auch bei den Patientinnen hin. Die Patientinnen erreichen jedoch kein mit den gesunden Frauen vergleichbares Erregungsniveau. Insbesondere die HR, der TPRI und die SDNN, sowie LF- und HF-HRV zeigen weiterhin signifikante Gruppenunterschiede. Für sBP, PEP, BRS und CI sind statistisch hingegen keine Unterschiede zu finden. Da dies bei sBP, PEP und CI jedoch bereits in der vorangehenden Messphase der Fall war, ist dieser Effekt nicht auf die Musik zurückzuführen. Lediglich bei der BRS könnte man von einer Musik-induzierten Angleichung beider Gruppen sprechen.

Das subjektive Stressesempfinden der Patientinnen war während der Musik höher als zu Beginn der Messung. Dennoch weisen die physiologischen Werte im graphischen Vergleich zum Ausgangsniveau auch bei Ihnen auf ein niedrigeres Erregungsniveau hin. Hier findet sich also eine Diskrepanz zwischen dem subjektiven Stressesempfinden und den physiologischen Parametern, welche durch die Ergebnisse dieser Studie zunächst nicht weiter erklärt werden können.

5.3 Realitäts- und Stressesempfinden

Die Patientinnen gaben ein signifikant höheres Realitätsempfinden während des Babyschreiens an. Dies lässt vermuten, dass die Patientinnen auf emotionaler Ebene nicht so gut zwischen Realität und Tonbandaufnahme differenzieren können. Obwohl sie vom Verstand her i.d.R. sehr wohl wussten, dass dieses Schreien nicht echt ist, hat es sich für sie echter angefühlt als für die Kontrollgruppe.

Auch das subjektive Stressesempfinden der Patientinnen war wie vermutet über alle Messphasen signifikant erhöht. Dies galt insbesondere für den Stresstest durch Babyschreien. Allerdings zeigten sich lediglich geringe Korrelationen mit den physiologischen Parametern, die vor allem bei den autonomen Parametern und der HR zu finden waren. Bei einer erhöhten HR und einem erniedrigtem Vagotonus fühlten sich die Patientinnen demnach vor allem während der Musik etwas stärker gestresst. Interessanterweise korrelierte vor allem bei P0 über alle Messphasen ein erhöhtes Stressesempfinden mit einem erniedrigten Vagotonus, obwohl diese im Vergleich zu P1 eine graphisch höhere HF-HRV hatten und sich bis auf Phase 6 im Vergleich auch weniger gestresst fühlten. Es wäre demnach denkbar, dass die beschriebene Korrelation
durch die anticholinerg wirksamen Medikamente im Sinne einer vagalen Inhibition bei P1 aufgehoben wird. P1 wäre demnach durch den resultierenden reduzierten Vagotonus bereits in Ruhe stärker gestresst und könnte auf emotionalen Stress auch nicht adäquat mit einem Anstieg des Vagotonus reagieren. P0 hätte hingegen durch eine breitere vagale Regulationsbreite die Möglichkeit, auf das Stresserleben stärker auch mit vagalen Reaktionen zu reagieren. Dies gilt es in zukünftigen Studien genauer zu untersuchen.

Die Patientinnen fühlen sich gestresst, aber können diesen Stress nicht über Herzklopfen oder andere Reaktionen ausdrücken. Stressempfinden und Körpererleben passen sozusagen nicht zusammen. In Anbetracht der hohen Rate an komorbider BPS bei den untersuchten Patientinnen könnte diese Diskrepanz eventuell ein Korrelat für den bei BPS häufig beschriebenen inneren Anspannungszustand sein, welcher auch zu selbstverletzendem Verhalten führen kann. Möglicherweise liegt aber auch etwas vor, was Nijenhuis als „Somatoforme Dissoziation“ konzeptualisierte (Nijenhuis 2006). Auf jeden Fall ist dieser Befund bemerkenswert.

Das vermehrte schwere Atmen kann allerdings einen Einfluss auf die gemessenen Unterschiede der vagalen Reaktion gehabt haben, da in anderen Studien ein Abfall des Vagotonus bei steigender Atemfrequenz beschrieben wurde (Berntson et al. 2007). Ein solcher Einfluss sollte in zukünftigen Studien durch das Erfassen der Atemfrequenz ausgeschlossen werden (siehe auch Kap. 5.5.2).
5.4 Einfluss der Medikamente

5.4.1 β-adrenerge Parameter

In Ruhe hatten P1 im Vergleich zu P0 einen signifikant niedrigeren CI und eine graphisch höhere PEP. Damit zeigte P1 eine deutlich geringere β-adrenerge Aktivierung als P0, was vermutlich auf den Einfluss der β-Blocker zurückzuführen ist. Das subjektive Stressempfinden beider Subgruppen unterschied sich dennoch nicht signifikant. Allerdings fällt während des Rechnens ein leicht erhöhtes, subjektives Stressniveau bei P1 auf, obwohl bei ihnen weiterhin eine geringere β-adrenerge Aktivierung vorlag und es auch relativ gesehen graphisch zu einem etwas geringeren Abfall der PEP kam als bei P0. Da für Phase 2 jedoch keine Korrelation zwischen dem subjektiven Stressempfinden und den β-adrenergen Parametern gefunden wurde, kann hier kein Kausalzusammenhang hergestellt werden. Problematisch ist auch die fehlende Differenzierung zwischen anticholinriger und β-blockierender Medikation. Festzuhalten ist an dieser Stelle aber, dass die Medikamente insgesamt das Stressempfinden nicht positiv zu beeinflussen scheinen. Während des Babyschreiens kommt es bei P0 zudem zu einer leichten β-adrenergen Aktivierung, wohingegen der CI bei P1 sogar etwas abfällt. Man könnte hierdurch vermuten, dass die β-Blocker eine sympathische Aktivierung während des Babyschreiens verhindern. Diese Reaktionen sind jedoch nur gering ausgeprägt und sollten daher nicht weiter ins Gewicht fallen.

Entgegen der beschriebenen geringeren sympathischen Aktivierung bei P1 werden die Werte der HR durch die herzwirksamen Medikamente kaum beeinflusst und liegen tendenziell sogar eher über denen von P0. Dies spricht erneut dafür, dass die HR kein guter Parameter zur Beurteilung der adrenergen Erregung ist und auch vagale Einflüsse widerspiegelt. Denn da die herzwirksamen Medikamente sowohl Medikamente mit anticholinriger Wirkung als auch β-Blocker beinhalten, können sie sowohl den Vagus als auch den Sympathikus hemmen und haben somit antagonistische Effekte auf das ANS. Diese Einflüsse scheinen sich in dieser Studie in Bezug auf die HR jedoch auszugleichen.
5.4.2 α-adrenerge Parameter

Die Werte des TPRI von P1 sind über alle Messphasen signifikant höher als bei P0 und K0 und lassen zunächst auf ein Überwiegen der α-adrenergen Erregung durch die herzwirksamen Medikamente schließen. Auch der sBP ist graphisch bei P1 am höchsten. Dies scheint jedoch verwunderlich, bekommen sie mit β-Blockern, ACE-Hemmern und Calciumantagonisten doch unter anderem Medikamente, die gerade eine Blutdrucksenkung bewirken sollen. Bei der Kontrollgruppe ist allerdings zu beobachten, dass es bei einer starken vagalen Aktivierung ebenfalls zu einem Abfall des sBP kommt. Da bei P1 ein erniedrigerter Vagotonus vorliegt, könnte dies also unter Umständen umgekehrt eine Verstärkung der α-adrenergen Aktivität im Sinne einer Disinhibition bedeuten. Dies könnte durch die Medikamente mit anticholinergen Nebenwirkungen zudem verstärkt worden sein. Eine vermehrte Aktivierung der β-adrenergen Parameter kann darüber hinaus, wie in Kap. 5.2.2.1 beschrieben, zu einer Vasodilatation in der Herz- und Skelettmuskulatur führen, was bei P0 den sBP und den TPRI verringert haben kann. Eine Erhöhung des Blutdruckes kann somit aufgrund des damit verbundenen kardiovaskulären Risikos zunächst einmal als mögliche unerwünschte Nebenwirkung der Medikation festgehalten werden. Es ist aber auch eine Beeinflussung der Messergebnisse durch unterschiedlich verteilte Komorbiditäten denkbar, da bei den Patientinnen deutlich häufiger als bei den Kontrollprobandinnen eine arterielle Hypertonie vorlag, welche unter Umständen nicht ausreichend medikamentös eingestellt war.

5.4.3 Herzratenvariabilität und Barorezeptorsensitivität

Betrachtet man die Herzratenvariabilität und die Barorezeptorsensitivität, so sind diese bei P1 insgesamt eingeschränkt. Sowohl der Vagotonus (HF-HRV, BRS) als auch LF-HRV und SDNN sind hier über alle Messphasen graphisch niedriger als bei P0. Auch wenn dieser Unterschied nur bei der SDNN Signifikanz erreicht, scheint es bei P1 doch zu einer Inhibition beider Arme des ANS zu kommen. Da eine eingeschränkte HRV für eine geringere Adaptationsfähigkeit des Herzens steht und als Risikofaktor für zahlreiche kardiovaskuläre Erkrankungen gilt (siehe Kap. 1.3.4), ist dies ein Effekt, der nicht erwünscht sein kann und eine genauere Betrachtung der einzelnen Medikamentengruppen erfordert.

In Kap. 1.3.5 sind bereits Ergebnisse anderer Studien zu Einflüssen verschiedener Medikamente auf die HRV dargestellt worden. Für β-Blocker konnte wiederholt ein Anstieg der HRV und vor allem der vagalen Parameter nachgewiesen werden, während die sympathische Erregung inhibiert wird. Diese Effekte können bei Patientinnen mit Angststörungen zu einer Symptomverbesserung führen (Laverdure und Boulenger 1991) und nachweislich das

Bei unterschiedlichen Ergebnissen für antihypertensive Medikamente wurde für Medikamente mit anticholinerge Wirkung hingegen erwartungsgemäß ein Abfall des Vagotonus und damit verbunden eine eingeschränkte HRV gezeigt. Deshalb müssen hier vor allem die anticholinergen Nebenwirkungen zahlreicher Medikamente betrachtet werden. Da die Ergebnisse dieser Studie die vagale Hyporeagibilität als Ursache für die autonome Dysfunktion bei PTBS vermuten lassen, scheint eine weitere Einschränkung des Parasympathikus durch die verabreichten Medikamente eine ungünstige und zu vermeidende Nebenwirkung zu sein. Man kann anhand dieser Ergebnisse jedoch nicht differenzieren, ob es sich bei P1 um Patientinnen mit besonders schwerer Symptomausprägung der PTBS handelt. Es wäre möglich, dass die Patientinnen ohne kardial wirksame Medikamente weniger Beschwerden hatten und deshalb eine Medikation nicht notwendig erschien. Somit würden P1 lediglich stärker eingeschränkte autonome Parameter zeigen, weil sie auch schwerer krank sind. Bis jedoch eine Klärung durch weitere Studien erfolgen kann, sollte ein Ausweichen auf andere Präparate erwogen werden.

Abschließend bleibt dennoch festzuhalten, dass die Medikamente die Reaktionsmuster der Patientinnen nicht grundlegend verändert haben, sondern lediglich zu einem über alle Messphasen konstanten Shift der Werte geführt haben. So gibt es für keinen Parameter signifikante Wechselwirkungen und lediglich für CI, TPRI und SDNN einen signifikanten Gruppeneffekt. PO zeigt im Vergleich mit K0 weiterhin einen signifikant eingeschränkten Vagotonus, eine niedrigere LF-HRV und eine gegenläufig zu der Kontrollgruppe reagierende SDNN während des Rechnens. Während die PEP graphisch niedriger ist und so eine höhere sympathische Ruheaktivität als bei den gesunden Frauen zeigt, ist für die α-adrenergen Parameter im Vergleich zu den Werten der Kontrollgruppe jedoch kein statistisch signifikanter Unterschied mehr zu finden.
5.5 Limitationen

5.5.1 Stresstests

Um für den Stresstest durch Babyschreien eine ausreichend lange Tonbandaufnahme bereitstellen zu können, wurden mehrere Audioaufnahmen zusammengeschnitten. Dies wurde
von einigen Probandinnen erkannt und als störend empfunden. Es besteht somit die Gefahr, dass die Probandinnen sich während des Babyschreisens gedanklich mit der Gestaltung der Tonbandaufnahme beschäftigten und sich weniger auf das Babyschreien selber konzentrierten. Eine solche Möglichkeit der Ablenkung sollte in zukünftigen Studien möglichst vermieden werden.

Die Musik wurde wie in Kapitel 5.2.5.2 beschrieben von den Patientinnen sehr unterschiedlich aufgenommen, hier wäre eine neutralere Auswahl zielführender gewesen. Eine mögliche Alternative wäre gewesen, dass die Probandinnen sich eine Musik ihrer Wahl mitbringen.

5.5.2 Messmethode

Leider liegen die Daten der autonomen Parameter nicht im Bereich der angegebenen Normwerte (Task Force HRV: Malik et al. 1996). In sich sind sie jedoch konsistent. Da die HRV durch zahlreiche Conounder beeinflusst werden kann, sind die absoluten Werte der verschiedenen Studien i.d.R. nur schwer vergleichbar (siehe Kap. 1.3.2). Es ist zudem nicht ganz klar, auf welcher Studienlage die inzwischen schon relativ alten Normwerte der Task Force begründet sind, offensichtlich wurden jedoch auch Studien mit kleinen Fallzahlen berücksichtigt und Conounder wie Alter, Geschlecht und Umwelteinflüsse nicht differenziert betrachtet.
5 Diskussion

5.5.3 Untersuchungsstichprobe

Eine genaue Erfassung der Medikation ist zwar erfolgt, hier hätte eine detailliertere Auswertung der antagonistisch wirkenden Medikamente jedoch aussagekräftigere Ergebnisse bezüglich der jeweiligen Wirkungen und Nebenwirkungen bringen können. Ziel dieser Studie war es jedoch primär, die physiologischen Reaktionsweisen der beiden Kollektive zu vergleichen und nicht die Nebenwirkungen einzelner Medikamentengruppen zu analysieren. Hierfür wäre eine deutlich größere Teilnehmerzahl mit distinkten Gruppen der verschiedenen Medikation notwendig gewesen, was angesichts der Multimorbidität der Patientinnen jedoch schwierig sein dürfte und auch die klinische Realität nur unvollkommen abbilden würde.

Für eine differenziertere Auswertung wäre zudem eine größere Fallzahl wünschenswert gewesen, was bei einer monozentrischen Studie jedoch schwierig zu realisieren ist. Im Vergleich zu anderen Studien ist die Fallzahl dieser Studie mit 52 Patientinnen bereits überdurchschnittlich hoch, lediglich Hughes und Hopper untersuchten mit 80 und 62 bzw. 59 Patienten ein größeres Kollektiv (Hopper et al. 2006; Hughes et al. 2006; Hughes et al. 2007). Von den übrigen Studien untersuchten sechs unter 20 PTBS-Patienten und jeweils drei zwischen 20-29 und 30-39 PTBS-Patienten (siehe Anhang, Tabelle 34).

5.6 Stärken, klinische Relevanz und weiterer Forschungbedarf

Im Vergleich zu anderen Arbeiten zur Stressphysiologie bei PTBS-Patienten wurden in dieser Studie überdurchschnittlich viele physiologische Parameter erfasst. Dies erlaubt eine deutlich differenziertere Auswertung der vegetativen Regulationsmechanismen. Insbesondere durch das simultane Erfassen von verschiedenen Messgrößen sowohl der sympathischen als auch der vagalen Aktivität können die autonomen Interaktionen genauer erfasst und das Risiko möglicher Fehlinterpretationen verringert werden.

6 Zusammenfassung

Hintergrund: Vegetative Übererregbarkeit ist ein zentrales Symptom der posttraumatischen Belastungsstörung (PTBS), welche durch eine präfrontale Disinhibition des limbischen Systems mit hieraus folgenden maladaptiven peripheren Stressreaktionen erklärt wird. Lange Zeit hat die Forschung den starken Einfluss des Parasympathikus auf die Stressregulation vernachlässigt und durch Erfassung zu weniger Parameter der Komplexität der autonomen Stressregulation nicht ausreichend Rechnung getragen. In dieser Studie sollen die Auswirkungen der sympathovagalen Dysbalance auf alltägliche Stressreaktionen und das Entspannungsvermögen von Frauen mit PTBS im Vergleich zu gesunden Frauen untersucht und Erkenntnisse über verschiedene autonome Regulationsmechanismen gewonnen werden. Hierbei sollen auch medikamentöse Einflüsse berücksichtigt und das subjektive Stressempfinden mit den physiologischen Messwerten korreliert werden. **Methoden:** 52 Patientinnen (P) und 39 gematchte, gesunde Frauen (K) wurden mit Hilfe eines hämodynamischen Monitorsystems während zweier 5-minütiger Stresstests (Rechentest: RT, Babyschreien: BS) und in Ruhe untersucht. Mittels EKG-, Impedanz- und Blutdruckmessungen wurden für jeden Herzschlag die folgenden Parameter erhoben: Herzrate (HR), Herzindex (CI), Präejektionszeit (PEP), peripherer Gefäßwiderstandsindex (TPRI), systolischer Blutdruck (sBP), hoch- und niederfrequente Herzratenvariabilität (HF- und LF-HRV), Standardabweichung der regulären RR-Intervalle (SDNN) und Barorezeptorsensitivität (BRS). Neben dem globalen Gruppenvergleich wurde auch ein Subgruppenvergleich durchgeführt, bei welchem die Reaktionen der Patientinnen ohne kardial wirksame Medikamente (P0, n=21) jeweils mit denen der Patientinnen mit kardial wirksamer Medikation (P1, n=27) und denen der Kontrollgruppe verglichen wurde. Zu Beginn der Untersuchung, nach jeder Stressphase und nach der abschließenden Entspannungsmusik wurde zudem das subjektive Stressempfinden auf einer SUD-Skala von 0-10 erfragt. **Ergebnisse:** Die HF-HRV und die BRS von K fielen während des RT ab, während es zu einer Aktivierung der β-adrenergen Parameter kam (CI↑, HR↑, PEP↓). Das BS verursachte bei K hingegen einen Anstieg von HF-HRV und BRS, ohne dass hier starke sympathischen Reaktionen beobachtet werden konnten. P lag mit der HF-HRV während aller Messphasen signifikant unter den Werten von K (p=0,0003). Signifikante Wechselwirkungen konnten für HR (p<0,0001), PEP (p=0,0032), BRS (p=0,0002) und CI (p=0,0106) nachgewiesen werden: während des RT stiegen die HR (p<0,0001) und der CI (p=0,041) von P signifikant schwächer an als bei K, während die PEP entsprechend weniger abfiel (p=0,006). Der Anstieg der BRS während des BS war bei P ebenfalls signifikant geringer ausgeprägt (p=0,009), zu vermehrten sympathischen Reaktionen kam es bei P dennoch
Zusammenfassung
ebenfalls nicht. Insgesamt zeigten sich auch keine signifikanten Unterschiede für den sBD. Dafür war das subjektive Stressempfinden von P über alle Messphasen und insbesondere während des BS signifikant höher (p=0,01). Eine geringe Korrelation war hier vor allem mit der HF-HRV und der HR zu finden, für die meisten Parameter zeigte sich allerdings kein korrelativer Zusammenhang. Im Vergleich zwischen P0 und P1 fanden sich nur für CI, TPRI und SDNN signifikante Gruppenunterschiede (P1: CI↓, TPRI↑, SDNN↓) und für keinen der Parameter konnten im Subgruppenvergleich eine signifikante Wechselwirkung nachgewiesen werden. Insbesondere die HF-HRV war auch bei P0 signifikant niedriger als bei K (p=0,0432). Das subjektive Stressempfinden beider Subgruppen unterschied sich nicht signifikant.

Abstract

Background: Autonomic hyperarousal is a core symptom of posttraumatic stress disorder (PTSD), which is explained by prefrontal disinhibition with resulting exaggerated stress responses. However, research so far has paid little attention to vagal impact on stress regulation and thereby possibly missed the complexity of the problem. This study investigates the consequences of sympathovagal dysbalance on everyday stress reactions and the ability to relax in women with PTSD in comparison to healthy control subjects to gain further knowledge about the autonomic regulation of stress responses. This includes the consideration of cardioactive medications. Furthermore the individual stress level is explored and correlated with the objective results of the physiologic measurements. In addition, a new and easily feasible emotional stress test is tested. Methods: 91 women, 52 with PTSD and 39 age-matched controls, were studied during rest and two stress tests. Stressors were presented for 5 minutes each and included mental arithmetic (MA) and a standardized audio recording of a crying baby (CB). Relaxation music was offered during the final relaxation phase. The following parameters were continuously recorded by a validated non-invasive monitor system and compared between groups: heart rate (HR), cardiac index (CI), pre ejection period (PEP), total peripheral vascular resistance index (TPRI), systolic blood pressure (sBP), low and high frequency heart rate variability (LF- and HF-HRV), standard deviation of NN-intervals (SDNN) and baroreceptor sensitivity (BRS). Based on known cardioactive side effects of their medications two subgroups of patients were created: patients with (n=27) and without cardioactive medications (n=21). Their autonomic and cardiovascular parameters were compared between both patient groups and to the control group. At the beginning of the examination, after each stress test and after the music self-reported stress levels were recorded. Results: Healthy controls showed a decrease in HF-HRV and BRS with simultaneous β-adrenergic activation during MA (CI↑, HR↑, PEP↓). CB on the other hand caused an increase in vagal tone (HF-HRV↑, BRS↑) with only minor sympathetic reactions. The patients in general showed a significantly reduced HF-HRV (p=0.0003) during the complete measurement. Significant interactions were found for HR (p<0.0001), PEP (p=0.0032), BRS (p=0.0002) and CI (p=0.0106): patients showed less increase of HR (p<0.0001) and CI (p=0.041) during MA and accordingly less decrease of PEP (p=0.006). During CB BRS increased less in patients (p=0.009) and still there where no stronger sympathetic reactions than in controls. No differences were found for sBP. Nevertheless patients felt more stressed throughout the experiment and especially during CB (p=0.01). Some correlations could be found here with HR and HF-HRV, though for most of the parameters no correlative context was found. By comparing patients
with and without cardioactive medications significant differences could only be found for CI, TPRI and SDNN (P1: CI↓, TPRI↑, SDNN↓) and no parameter showed significant interactions in subgroup comparisons. However, HF-HRV still was significantly reduced in patients without cardioactive medications compared to healthy controls (p=0.0432). The patients’ subgroups did not differ in regard to their stress levels. Conclusion: As expected, healthy women showed a decrease in vagal tone with simultaneous increase of sympathetic activity during MA. This can be interpreted as active stress management. During CB however, a different autonomic reaction with mainly increased vagal activity and only slight changes of sympathetic activity was provoked. Therefore this study is the first to show different patterns of vagal reactivity in response to different stress tests in healthy women and thus illustrates the strong influence of parasympathetic modulation on the type of psychophysiological arousal. However, vagal tone was significantly reduced in PTSD during rest and under stress. Furthermore sympathetic reactivity was reduced in PTSD during MA. During CB the vagal reaction in patients was less strong and in spite of the elevated stress level they did not show a stronger sympathetic activation than the control group. The results rather indicate that women with PTSD differ from healthy controls especially in their grade of vagal activity and do not necessarily show elevated sympathetic parameters. Vagal hyporeactivity could thus provide an explanation for insufficient arousal regulation capacities and therefore deserves further study. Although correlations of low vagal tone and elevated stress levels in patients were weak, they are consistent with the other results of this study. Stress might possibly be induced by an insufficient increase of vagal tone and not only by sympathetic activation. Beyond that, it is rather the discrepancy between the high subjective stress level and the reduced reactions of the patients’ physiological parameters which has to be emphasized. Cardioactive drugs did not change the general pattern of autonomic reactions.
7 Literaturverzeichnis

Nijenhuis ERS: Somatoforme Dissoziation - Phänomene, Messung und theoretische Aspekte.

Reddemann L: Distress-Systeme des Menschen. PTT 7 (1), 4-15.

8 Abbildungsverzeichnis

Abbildung 1: An der Stressreaktion beteiligte Strukturen (zentral und peripher) .. 6
Abbildung 2: Regulation der Herzfrequenz und der Herzratenvariabilität .. 13
Abbildung 3: Leistungsspektrum der RR-Intervalle eines gesunden Probanden .. 30
Abbildung 4: Vergleich von Kontrollgruppe und Patientinnen gesamt: CI ... 45
Abbildung 5: Vergleich von Kontrollgruppe und Patientinnen gesamt: TPRI ... 46
Abbildung 6: Vergleich von Kontrollgruppe und Patientinnen gesamt: SDNN ... 47
Abbildung 7: Vergleich von Kontrollgruppe und Patientinnen gesamt: LFHRV .. 47
Abbildung 8: Vergleich von Kontrollgruppe und Patientinnen gesamt: HF-HRV 48
Abbildung 9: Erholung nach dem Babyschreien: sBP .. 50
Abbildung 10: Erholung nach dem Babyschreien: RMSSD ... 50
Abbildung 11: Erholung nach dem Babyschreien: CI .. 51
Abbildung 12: Erholung nach dem Babyschreien: TPRI ... 51
Abbildung 13: Subgruppenvergleich (P0, P1, K0): CI .. 56
Abbildung 14: Subgruppenvergleich (P0, P1, K0): TPRI ... 57
Abbildung 15: Subgruppenvergleich (P0, P1, K0): SDNN .. 58
Abbildung 16: Subgruppenvergleich (P0, P1, K0): LF-HRV ... 59
Abbildung 17: Subgruppenvergleich (P0, P1, K0): HF-HRV ... 60
Abbildung 18: Vergleich von Kontrollgruppe und Patientinnen gesamt: HR .. 64
Abbildung 19: Subgruppenvergleich (P0, P1, K0): HR ... 64
Abbildung 20: Vergleich von Kontrollgruppe und Patientinnen gesamt: sBP .. 65
Abbildung 21: Subgruppenvergleich (P0, P1, K0): sBP .. 65
Abbildung 22: Vergleich von Kontrollgruppe und Patientinnen gesamt: BRS .. 66
Abbildung 23: Subgruppenvergleich (P0, P1, K0): BRS ... 67
Abbildung 24: Vergleich von Kontrollgruppe und Patientinnen gesamt: PEP ... 68
Abbildung 25: Subgruppenvergleich (P0, P1, K0): PEP ... 68
Abbildung 26: Subjektives Stressesmpfinden .. 70
9 Tabellenverzeichnis

Tabelle 1: Symptome der PTBS nach ICD-10 und der Leitlinie für PTBS (AWMF 2011) .. 1
Tabelle 2: Vergleich der Symptomkriterien von BPS und kPTBS nach Sack ... 4
Tabelle 3: Die drei autonomen Subsysteme der Polyvagal Theorie .. 8
Tabelle 4: Aktuelle Auflistung zur Beeinflussung der HRV durch Medikamente .. 18
Tabelle 5: Vergleich von Alter, BMI, Alkohol- und Zigarettenkonsum (P, K) ... 38
Tabelle 6: Vergleich der sportlichen Aktivität pro Woche (P, K) ... 38
Tabelle 7: Subjektives Stressempfinden vor der Studie (P, K) ... 38
Tabelle 8: Famienstand, Beziehungsstatus & Anzahl der Kinder der Probandinnen (P, K) 39
Tabelle 9: Vergleich von Ausbildungsstand und Arbeitsverhältnis (P, K) .. 39
Tabelle 10: Auswertung des SCL-90-R für Kontroll- und Patientinnengruppe .. 40
Tabelle 11: Auswertung des IES-R für Kontroll- und Patientinnengruppe ... 41
Tabelle 12: Auswertung des BDI für Kontroll- und Patientinnengruppe .. 41
Tabelle 13: Vorerkrankungen der Kontrollgruppe ... 41
Tabelle 14: Traumaprävalenz bei den Patientinnen ... 42
Tabelle 15: Vorerkrankungen und Suchtverhalten der Patientinnen ... 42
Tabelle 16: Eingenommene Medikamente durch die Probandinnen ... 43
Tabelle 17: Globale ANOVA (P, K) für CI, TPRI, SDNN, LF- & HF-HRV .. 44
Tabelle 18: T-Tests für den CI nach Wechselwirkung in globaler ANOVA .. 45
Tabelle 19: Globale ANOVA für die Erholung nach dem Babyschreien (P, K) .. 49
Tabelle 20: Anzahl der Patientinnen mit Einnahme herzwirksamer Medikamente ... 52
Tabelle 21: Anzahl der eingenommenen herzwirksamen Medikamente insgesamt (P, K) 52
Tabelle 22: Auflistung aller eingenommener Medikamente mit kardialer Wirkung .. 53
Tabelle 23: ANOVA für den Subgruppenvergleich P0, P1: CI, TPRI, SDNN, LF- & HF-HRV 54
Tabelle 24: ANOVA für den Subgruppenvergleich KO, PO: CI, TPRI, SDNN, LF- & HF-HRV 55
Tabelle 25: Globale ANOVA (K, P) explorativ: HR, sBP, BRS und PEP ... 61
Tabelle 26: T-Tests für HR, BRS und PEP (P, K) .. 61
Tabelle 27: ANOVA für den Subgruppenvergleich (P0, P1) explorativ: HR, sBP, BRS & PEP 62
Tabelle 28: ANOVA für den Subgruppenvergleich (KO, PO) explorativ: HR, sBP, BRS & PEP 62
Tabelle 29: Realitätsempfindens während des Babyschreiens (P, K) ... 69
Tabelle 30: Subjektives Stressempfinden (P, K) .. 69
Tabelle 31: Subjektives Stressempfinden (P0, P1) ... 70
Tabelle 32: Korrelation physiologische Parameter/subjektives Stressempfinden (P, K, P0) 71
Tabelle 33: Objektiv beobachtbare vegetative Reaktionen (P, K)... 72
Tabelle 34: Literaturübersicht zu hämodynamischen Parametern bei PTBS .. 116
Tabelle 35: Literaturübersicht zu psychophysiologischen Reaktionen auf Babyschreien......................... 118
Tabelle 36: Literaturübersicht zu psychophysiologischen Reaktionen auf Musik.................................. 120
Anhang

Tabelle 34: Literaturübersicht zu autonomen und kardiovaskulären Parametern bei PTBS in Ruhe und unter Stress.

<table>
<thead>
<tr>
<th>Autor, Jahr</th>
<th>Studiendesign</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erhöhte Sympathikusaktivität/erniedrigte Parasympathikusaktivität in Ruhe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Hughes et al. 2006)</td>
<td>130 Probanden in Ruhe (80 PTBS, 50 Kontrolle; 70 Männer, 60 Frauen)</td>
<td>BRS↓ (nur bei weiblichen PTBS), kein Unterschied für HR und BP.</td>
</tr>
<tr>
<td>(Hughes et al. 2007)</td>
<td>124 Frauen (34 PTSD + Depression, 28 PTSD, 16 Depression, 46 Kontrolle) in Ruhe und während anger-recall.</td>
<td>BRS↓ in Ruhe und während Stress, Vermutung einer eingeschränkten Funktion des Parasympathikus.</td>
</tr>
<tr>
<td>(Blechert et al. 2007)</td>
<td>Bei 23 Pat mit PTBS (65% Frauen), 26 mit Panikstörung (77% Frauen) und 32 gesunde Probanden (72% Frauen) wurden elektrodermale (ESI), kardiovaskuläre und respiratorische Parameter während der Androhung elektrischer Stromstöße untersucht.</td>
<td>In Ruhe zeigten die PTBS Patienten einen niedrigeren Vagotonus (RSA↓) und einen erhöhten Sympathikotonus (HR↑, CSI↑ und ESI↑). Bei allen Gruppen deutlicher Abfall der RSA unter Stress, hier kein signifikanter Unterschied. ESI unter Stress bei PTBS↓.</td>
</tr>
<tr>
<td>(Slewa-Youanan et al. 2012)</td>
<td>25 Irak-Flüchtlinge, davon 12 mit PTBS (5 Männer, 7 Frauen) und 23 australische Kontrollpersonen (13 Männer, 10 Frauen) wurden in Ruhe untersucht.</td>
<td>Erhöhte HR bei PTBS-Patienten. HF- und LF-HRV niedriger mit erhöhter LF/HF-ratio, Unterschiede jedoch nicht signifikant.</td>
</tr>
<tr>
<td>(Lee und Theus 2012)</td>
<td>Auswertung von 10 Sekunden EKG zur Untersuchung der HRV bei 125 weiblichen Kriegsveteranen mit kardialen Beschwerden, davon 37 mit PTBS.</td>
<td>Die PTBS Patientinnen zeigten eine erniedrigte RMSSD und SDNN. Insbesondere Patientinnen mit sexueller Gewalt als Traumarsache wiesen hierbei die niedrigsten Werte auf.</td>
</tr>
</tbody>
</table>

Fortsetzung auf nächster Seite
Tabelle 34 (Fortsetzung)

<table>
<thead>
<tr>
<th>Autor, Jahr</th>
<th>Studiendesign</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Tan et al. 2011)</td>
<td>30 Kriegsveteranen (20 mit PTBS, 10 ohne PTBS) wurden in Ruhe vor und nach Therapie mit bzw. ohne Biofeedback untersucht.</td>
<td>Die PTBS-Patienten zeigten eine signifikant niedrigere SDNN. Biofeedback konnte PTBS-Symptome und HRV verbessern.</td>
</tr>
<tr>
<td>(Hauschildt et al. 2011)</td>
<td>50 Frauen und 20 Männer (32 mit PTBS, 26 mit Trauma aber ohne PTBS, 18 ohne Trauma) wurden 5 Kurzfilme (je 1,5 Min) mit verschiedenen affektiven Stimuli vorgespili (neutral, positiv, negativ).</td>
<td>PTBS Patienten zeigten eine reduzierte HRV in Ruhe und während verschiedener affektiver Stimuli (RMSSD, LF- und HF-HRV) sowie eine Korrelation der erniedrigten HRV mit dem Schweregrad der PTBS. Keine signifikant unterschiedlichen Re-aktionsmuster der HRV während der verschiedenen Videos und keinen Gruppenunterschied der HR in Ruhe oder unter Stress</td>
</tr>
</tbody>
</table>

Unterschiede während Stressreaktion, aber nicht in Ruhe

<table>
<thead>
<tr>
<th>Autor, Jahr</th>
<th>Studiendesign</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Keary et al. 2009)</td>
<td>Vergleich von 40 Frauen (20 mit PTBS; 20 ohne PTBS aber davon 70% mit Trauma) in Ruhe (20 Min) und während 2 Stresstests (Rechentrauma-recall, je 4 Min).</td>
<td>In Ruhe kein Unterschied in der HF-HRV. Alle Probandinnen zeigten einen Abfall der HF-HRV während beider Stresstests, der HF-Abfall der Patientinnen war signifikant stärker. sBD der Pat generell höher, Reaktivität im Vergleich ähnlich.</td>
</tr>
</tbody>
</table>

Nachweis von Subgruppen mit unterschiedlichen Reaktionsmustern

<table>
<thead>
<tr>
<th>Autor, Jahr</th>
<th>Studiendesign</th>
<th>Ergebnisse</th>
</tr>
</thead>
</table>
Anhang

Tabelle 34 (Fortsetzung)

<table>
<thead>
<tr>
<th>Autor, Jahr</th>
<th>Studiendesign</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Hopper et al. 2006)</td>
<td>50 Frauen und 9 Männer mit PTBS in Ruhe; Vergleich von parasympathischer Aktivität (RSA, RMSSD, LF-HRV) und basaler HR.</td>
<td>Nachweis einer negativen Korrelation zwischen RSA und HR, welche einen starken und vom Sympathikus unabhängigen Einfluss auf die basale HR vermuten lässt. Einteilung der PTBS-Patienten in Subgruppen mit hoher bzw. niedriger HR in Ruhe.</td>
</tr>
</tbody>
</table>

weitere

<table>
<thead>
<tr>
<th>Autor, Jahr</th>
<th>Studiendesign</th>
<th>Ergebnisse</th>
</tr>
</thead>
</table>

Tabelle 35: Literaturübersicht zu psychophysiologischen Reaktionen auf Babyschreien. EDA=elektrodermale Aktivität.

<table>
<thead>
<tr>
<th>Autor, Jahr</th>
<th>Studiendesign</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Frodi et al. 1978a)</td>
<td>48 Eltern-Paare wurde entweder ein weinendes oder ein lachendes Kind auf Video vorgespielt.</td>
<td>Nur das weinende Kind erhöhte dBP und EDA. (Männer und Frauen gleich.)</td>
</tr>
<tr>
<td>(Frodi et al. 1978b)</td>
<td>34 Eltern-Paare sahen Videos mit wechselnd schreienden und ruhigen Kindern (reife Kinder/Frühgeborene).</td>
<td>Frühchen lösen stärkeres Arousal (dBP, EDA, HR) aus als reife Babys, welche mit ihrem Schreien sogar ein Abfallen der HR bewirken.</td>
</tr>
</tbody>
</table>

Fortsetzung auf nächster Seite
<table>
<thead>
<tr>
<th>Autor, Jahr</th>
<th>Studiendesign</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Furedy et al. 1989)</td>
<td>15 Männer und 37 Frauen wurden Videoaufnahmen mit emotionalen Szenen (Sex, Babyschreien) vorgespielt</td>
<td>Frauen zeigten einen Anstieg der HR während des Babyschreien.</td>
</tr>
<tr>
<td>(Brewster et al. 1998)</td>
<td>29 Frauen und 20 Männer wurden Videos mit einem weinendem und einem lachendem Kind vorgespielt, um Unterschiede in den Reaktionen beider Geschlechter zu untersuchen.</td>
<td>Männer zeigten starke sympathische Aktivierung während des Baby-schreiens (HR↑, EDA↑), während bei Frauen ein nicht signifikanter Abfall der HR im Verlauf und nur eine geringe Erhöhung der EDA zu beobachten war. Lachen führte bei beiden zu Anstieg der HR.</td>
</tr>
<tr>
<td>Autor, Jahr</td>
<td>Studiendesign</td>
<td>Ergebnisse</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>(Knight und Rickard 2001)</td>
<td>87 Probanden wurden während kognitivem Stress in Ruhe oder mit klassischer Musik untersucht.</td>
<td>Stress verursachte einen Anstieg von subjektivem Angstgefühl, HR und BP. Diese Reaktion wurde durch Musik gehemmt.</td>
</tr>
<tr>
<td>Studien mit aufregender Musik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Iwanaga et al. 2005)</td>
<td>13 Probanden hörten beruhigende, aufregende und gar keine Musik an.</td>
<td>LF-HRV und LF/HF-ratio stiegen während der Musik an, jedoch nicht in Ruhe. Die HF-HRV war bei aufregender Musik niedriger als während beruhigender Musik oder Ruhe (war sie jedoch schon zu Beginn, im Graphen ist ein Anstieg zu sehen).</td>
</tr>
<tr>
<td>(Hasegawa et al. 2004)</td>
<td>8 Probanden während Rechentest und Musik bzw. Lärm oder Stille.</td>
<td>Angst bei Musik geringer, aber keine signifikanten physiologischen Veränderungen (HR, HRV)</td>
</tr>
<tr>
<td>(Iwanaga und Tsukamoto 1997)</td>
<td>Der Effekt beruhigender und aufregender Musik auf verschiedene autonome Parameter wurde untersucht.</td>
<td>Effekt von Musik scheint sich v.a. in vagalen Parametern zu äußern und nicht in sympathischen.</td>
</tr>
</tbody>
</table>

Fortsetzung auf nächster Seite
<table>
<thead>
<tr>
<th>Autor, Jahr</th>
<th>Studiendesign</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bringman et al. 2009</td>
<td>372 präoperative Patienten bekamen zur Entspannung entweder Musik vorgespient oder Midazolam verabreicht.</td>
<td>Das Angstempfinden und die HR fielen unter Musik signifikant stärker ab als unter Midazolam. Der BP fiel hingegen unter Midazolam stärker ab.</td>
</tr>
<tr>
<td>Argstatter et al. 2006</td>
<td>An 83 Patienten vor der Herzkatheteruntersuchung wurde der Einfluss von Musik auf subjektives und objektives Stressempfinden untersucht.</td>
<td>Die subjektive Angst wurde durch Musik geringer. Der BP konnte durch die Musik reduziert werden, aber nicht die HR.</td>
</tr>
<tr>
<td>Bradt und Dileo 2009</td>
<td>Review: Effekt von Musik auf psychologische und physiologische Reaktionen bei Patienten mit KHK</td>
<td>u.a.: bei Pat. mit MI senkt Musik die HR</td>
</tr>
</tbody>
</table>
Allgemeiner Fragebogen

1) Wie alt sind Sie? _______ Jahre
2) Wie groß sind Sie? _______ cm
3) Wie viel wiegen Sie? _______ kg
4) Befinden Sie sich in einer Beziehung? Ja Nein
5) Sind sie verheiratet? Ja Nein
6) Haben Sie Kinder? Ja Nein
7) Welchen Schulabschluss haben Sie? ___
8) Welchen Beruf haben Sie gelernt? ___
 (○ ich habe keine Berufsausbildung)
9) Sind Sie berufstätig? Ja Nein
10) Treiben Sie regelmäßig Sport? Ja Nein
11) Wie viele Stunden pro Woche? 1-2 3-5 5-10 mehr
12) Wie viel Alkohol trinken Sie pro Woche? ___
 (entspricht wie vielen drinks per week ? __________)
 (0,25 l Bier/ 0,1 l Wein/ 2 cl Schnaps = 1 Drink)
8) Rauchen Sie?
 Wenn ja: Seit wann? _______ Jahre
 Wie viele Zigaretten pro Tag? ___
 (entspricht_______ Packyears)

9) Nehmen Sie Medikamente? Welche?
 (z.B. Pille, Herzmittel,...) ___

10) Haben Sie Vorerkrankungen?
 (z.B. Bluthochdruck, Diabetes, ...) ___

11) Fühlen Sie sich in letzter Zeit besonders gestresst? Ja Nein
Danksagung

An erster Stelle bedanke ich mich ganz herzlich bei den Patientinnen für die ausgeprägte Bereitschaft zur Studienteilnahme, obwohl dies für viele mit deutlichem Stress verbunden war und somit oft nicht leicht gewesen ist. Auch den gesunden Probandinnen danke ich ganz herzlich für ihre Zeit und ihr Vertrauen, ohne sie wäre die Durchführung dieser Arbeit ebenfalls nicht möglich gewesen. Aus beiden Gruppen sind einige Teilnehmerinnen zum Teil viele Kilometer weit angereist, um an der Studie teilnehmen zu können.

Darüber hinaus bedanke ich mich bei meinen Betreuern Prof. Dr. Herrmann-Lingen und Prof. Dr. Sachsse für die Begleitung, den Rat und die Unterstützung während dieser Arbeit.

Für die gute, immer motivierte und produktive Zusammenarbeit bei unserem Promotionsprojekt danke ich Juliane Albrecht.

Lebenslauf

