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Abstract 

The fundamental understanding of karst aquifers is vital for the sustainable management of 

raw water quality and eventually the access to clean drinking water for up to one quarter of 

the world’s population. In order to improve this understanding the storage and attenuation 

potential of a karst aquifer was investigated in the presented work, employing organic 

micropollutants as indicators for transport paths, attenuation and attenuation processes.  

As a prerequisite for reliable data acquisition, suitable stabilisation and storage strategies 

for organic micropollutants in water samples have been evaluated: addition of the biocides 

(i) copper sulphate and (ii) sodium azide to water samples directly after sampling with 

subsequent sample storage as liquid phase and (iii) direct solid phase extraction (SPE), 

stabilising the samples by reducing the water content. River water and treated effluent were 

chosen as commonly investigated matrices with a high potential of biodegradation activity. 

Analyses were carried out for sample storage temperatures of 4 and 28 °C for water 

samples stored as liquid phase and for sample storage temperatures of 4, 20 and 40 °C for 

SPE cartridges. Cooling of water samples alone was not sufficient for longer storage times 

(> 24 h). While copper sulphate caused detrimental interferences with azole- and 

imidazole-like compounds, sodium azide proved to be a suitable stabilising agent. The best 

results could be obtained for SPE cartridges stored coolly. Recommendations for sample 

preservation are provided. 

In the following chapter the long-term storage potential of a karst aquifer was investigated. 

To achieve a sustainable raw water quality for drinking water production, the understanding 

of this potential is highly essential. The transport dynamics of the two herbicides 

metazachlor and atrazine as well as a degradation product of the latter (desethylatrazine) 

were investigated at a karst spring over one year. Even 20 years after its ban in Germany, 

atrazine and its degradation product were almost always detectable in the spring water in 

the low ng L–1. Metazachlor could only be detected after precipitation events and the 

observed concentrations were significantly higher than atrazine or desethylatrazine. 

Comparing the dynamics of the herbicides with the inorganic ions Ca2+, Mg2+ and the 

electrical conductivity, a positive correlation of atrazine with these parameters could be 

observed. From this observation, atrazine is concluded to be located within the aquifer 

matrix, deteriorating the raw water quality for decades. 

In order to identify the attenuation potential within the conduits of karst aquifers in-situ and 

to estimate the risk posed by micropollutants, a dualtracer experiment was conducted to 

investigate differential transport in the subsurface: the reactive compound caffeine was 

used as a tracer to indicate the attenuation potential within the aquifer in-situ. Due to the 

low limit of quantification, only small amounts of caffeine needed to be injected. To calibrate 

a model and to visualise the attenuation of caffeine a conservative reference tracer 

(uranine) was injected simultaneously. The methodology was tested in a well characterised 



karst system in southwest Germany. The results indicate a significantly higher attenuation 

rate than was expected for karst aquifers. The attenuation was described as a first-order 

process. The corresponding half-life was 104 h. This low half-life suggests that a generally 

assumed low natural attenuation potential of karst aquifers is unjustified. The observed 

mass loss of caffeine illustrates the potential of caffeine to be used as reactive tracer for 

indicating in-situ attenuation potential within hydraulically highly conductive systems, such 

as karst aquifers. Due to the high attenuation rate of caffeine it does not pose a threat as a 

long-time contaminant. In combination with a conservative reference tracer an economical 

and environmentally benign method is presented in this chapter for the in-situ determination 

of the attenuation potential of highly conductive aquifer systems. 

Based on the results of the dualtracer experiment, a multitracer experiment was performed 

for verifying the results, examining the transferability of the attenuation potential of caffeine 

to other substances and to specify the attenuation processes responsible for the observed 

mass loss. Uranine, acesulfame and carbamazepine were injected into a sinkhole as 

reference tracers together with the reactive compounds atenolol, caffeine, cyclamate, 

ibuprofen and paracetamol. The breakthrough curves of the reactive compounds were 

interpreted relative to the reference substances. No significant retardation was observed for 

any of the investigated micropollutants. The determined half-lives of the reactive 

compounds range from 38 to 1400 h (i. e. persistent within the investigation period) in the 

following order (from high to no observed attenuation): 

paracetamol > atenolol ≈ ibuprofen > caffeine >> cyclamate. The attenuation rates are 

generally in agreement with studies from other environmental compartments and with the 

results from the dualtracer experiment. The occurrence of the biotransformation product 

atenolol acid served as evidence for the occurrence of in-situ biodegradation within the 

aquifer system. 

 

 

 



Zusammenfassung 

Das grundsätzliche Verständnis von Karstgrundwasserleitern ist essentiell für das 

nachhaltige Management der Rohwasserqualität und letztendlich für sauberes Trinkwasser 

für bis zu 25 Prozent der Weltbevölkerung. Um dieses Verständnis zu verbessern, wird in 

der vorliegenden Arbeit das Speicher- und Attenuationspotential eines 

Karstgrundwasserleiters untersucht. Hierbei werden organische Spurenstoffe als 

Indikatoren für Transportpfade, Attenuation und Attenuationsprozessen eingesetzt. 

Als Voraussetzung für die Erfassung belastbarer Daten, wurden geeignete 

Stabilisierungsstrategien für organische Spurenstoffe in Wasserproben bewertet: Zugabe 

der Biozide (i) Kupfersulphat und (ii) Natriumazid zu Wasserproben nach der Probenahme 

und anschließende Lagerung der Proben in flüssiger Form sowie (iii) sofortige 

Festphasenextraktion (SPE), was zu einer Stabilisierung der Proben durch eine Reduktion 

des Wassergehaltes führt. Es wurden Fluss- und behandeltes Abwasser untersucht. Diese 

zeichnen sich üblicherweise durch ein hohes Potential für biologische Aktivität und 

demnach hohe Biotransformationsraten aus. Analysiert wurde der Einfluss der 

Lagerungstemperatur von 4 und 28° C für die Proben, die in flüssiger Form gelagert 

wurden und von 4, 20 und 40° C für die Lagerung der SPE-Kartuschen. Kühlen der 

Wasserproben allein reichte nicht aus, um die Proben für längere Zeit (> 24 h) zu 

stabilisieren. Die Zugabe von Kupfersulphat führte zu Problemen mit Azol- und Imidazol-

ähnlichen Verbindungen. Natriumazid erwies sich als geeigneter Stabilisierungszusatz. Die 

besten Ergebnisse konnten für kühl gelagerte SPE-Kartuschen beobachtet werden.  

Im darauffolgenden Kapitel wird das Langzeitspeicherpotential von 

Karstgrundwasserleitern untersucht. Um eine nachhaltige Rohwasserqualität zu 

gewährleisten ist das Verständnis dieses Potentials essentiell. Die Transportdynamik der 

zwei Herbizide Metazachlor und Atrazin sowie dessen Abbauprodukt (Desethylatrazin) 

wurde an einer Karstquelle untersucht. Sogar 20 Jahre nach dessen Anwendungsverbot 

konnten Atrazin und dessen Abbauprodukt nahezu immer im Quellwasser in geringen 

Konzentrationen (wenige ng L‒1) nachgewiesen werden. Metazachlor dagegen tritt nur 

nach Niederschlagsereignissen auf und die beobachteten Konzentrationen sind deutlich 

höher. Ein Vergleich der Dynamik der zwei Herbizide mit der der anorganischen Kationen 

Ca2+, Mg2+ und der elektrischen Leitfähigkeit zeigte, dass Atrazin mit diesen Parametern 

korreliert. Aus dieser Beobachtung konnte abgeleitet werden, dass Atrazin innerhalb der 

Gesteinsmatrix vorliegt und die Rohwasserqualität für Jahrzehnte beeinflusst. 

Um das in-situ Attenuationspotential innerhalb des Röhrensystems eines 

Karstgrundwasserleiters zu identifizieren und das Risiko, das von organischen 

Spurenstoffen ausgeht, abzuschätzen, wurde ein Doppeltracer-Experiment durchgeführt: 

Der reaktive Stoff Coffein wurde als Markierungsstoff genutzt um das in-situ 

Attenuationspotential des untersuchten Grundwasserleiters zu bewerten. Aufgrund der 



niedrigen Bestimmungsgrenze konnten sehr geringe Mengen eingesetzt werden. Um ein 

Modell zu kalibrieren und die Attenuation des Coffeins zu visualisieren wurde der 

konservative Markierungsstoff Uranin simultan eingegeben. Diese Methodik wurde in 

einem gut charakterisierten Karstgrundwasserleiter in Baden-Württemberg getestet. Die 

Ergebnisse zeigten eine deutlich höhere Attenuationsrate als für einen 

Karstgrundwasserleiter erwartet wurde. Die Attenuation wurde als Prozess erster Ordnung 

beschrieben; die bestimmte Halbwertszeit betrug 104 h. Diese geringe Halbwertszeit deutet 

darauf hin, dass das generell angenommene geringe Attenuationspotential nicht 

gerechtfertigt ist. Der beobachtete Massenverlust des Coffeins zeigt auf, dass Coffein als 

reaktiver Markierungsstoff in hydraulisch hochdurchlässigen Systemen, wie 

Karstgrundwasserleitern, zur Untersuchung des in-situ Attenuationspotentials geeignet ist. 

Aufgrund der hohen Attenuationsrate des Coffeins, ist nicht mit einer 

Langzeitkontamination zu rechnen. In der Kombination mit einem konservativen 

Referenzmarkierungsstoff wird in diesem Kapitel eine ökonomische und ökologisch 

ungefährliche Methode zur Bestimmung des in-situ Attenuationspotentials vorgestellt. 

Aufgrund der Ergebnisse des Doppeltracer-Experiments wurde ein Multitracer-Experiment 

durchgeführt um das ermittelte Attenuationspotential zu verifizieren, dessen 

Übertragbarkeit auf andere Stoffe zu überprüfen und die Attenuationsprozesse zu 

spezifizieren. Als Referenzsubstanzen wurden Uranin, Acesulfam und Carbamazepin 

gemeinsam mit den reaktiven Markierungsstoffen Atenolol, Coffein, Cyclamat, Ibuprofen 

und Paracetamol in eine Doline eingegeben. Die Durchbruchskurven der reaktiven 

Markierungsstoffe wurden relativ zu den Referenzsubstanzen ausgewertet. Für keinen der 

Stoffe konnte eine signifikante Retardation beobachtet werden. Die ermittelten 

Halbwertszeiten betrugen 38 bis 1400 h (d. h. stabil innerhalb des Beobachtungszeitraums) 

in der folgenden Reihenfolge (von hoher zu keiner Attenuation absteigend sortiert): 

Paracetamol > Atenolol ≈ Ibuprofen > Coffein >> Cyclamat. Die Attenuationsraten stimmen 

generell mit denen aus anderen Studien, die andere Umweltkompartimente untersuchten, 

und den Ergebnissen des Doppeltracer-Experiments überein. Das Auftreten des 

Biotransformationsproduktes Atenololsäure diente dem Nachweis von in-situ 

Biotransformation innerhalb des Karstgrundwasserleitersystems.  
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Chapter 1 

1 Introduction 

1.1 Motivation of the work 

For mankind the access to clean water in sufficient quantity has been declared a human 

right, as it is essential for the full enjoyment of life and all human rights (UN General 

Assembly, 2010). Sighting the global reserves, it becomes clear that groundwater, 

amounting to around 96% of the global liquid fresh water (Hölting and Coldewey, 2005), is 

likely to play a key role to ensure this access. Currently around 2.5 billion people worldwide 

rely solely on groundwater for their daily needs (Schneegans, 2013) and 40% of the worlds’ 

food is produced by irrigated agriculture with water largely obtained from aquifers (Morris et 

al., 2003).  

As a consequence of human activities, e. g. accidental or intentional release of 

contaminants (Bucheli et al., 1998; Moran et al., 2007; Schwarzbauer et al., 2002; Shih et 

al., 2004), treated or untreated wastewater (Asano and Cotruvo, 2004; Buerge et al., 2006; 

Drewes et al., 2003; Gasser et al., 2010; Foppen, 2002; Hillebrand et al., 2012; Paul et al., 

1997) into natural environments or applying manure, pesticides and fertilisers (Baran et al., 

2008; Lapworth and Gooddy, 2006; Masaka et al., 2013; Mullaney et al., 2009) on arable 

areas, various compounds of anthropogenic origin can be detected in groundwater 

systems. A common group of compounds, that recently aroused great interest in the 

scientific community, are the so-called organic micropollutants. This term is used referring 

to numerous trace organic compounds of anthropogenic origin such as human and 

veterinary pharmaceuticals, herbicides or personal care products and will be used 

accordingly throughout this work. They have been found ubiquitously in all compartments of 

the aquatic environment (Hughes et al., 2013; Loos et al., 2009; Loos et al., 2010; 

Schwarzenbach et al., 2006). While the presence of organic micropollutants in the 

environment is certainly undesirable, the observed concentrations are typically below the 

health-oriented guidance value of 0.1 µg L–1 (Dieter, 2011). However, they have great 

potential to be used as indicators, allowing for the identification of processes and the 

characterisation of eco- and geosystems (Licha, 2013). Especially in karst aquifers, that are 

difficult to characterise by conventional hydrogeological approaches (Bakalowicz, 2005), 

the application of organic micropollutants as indicators for e. g. flow components and 

attenuation processes may contribute significantly to the fundamental understanding of flow 
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and transport in these highly heterogeneous and vulnerable (Baran et al., 2008; Schwarz et 

al., 2011; Vesper et al., 2001) systems. This fundamental understanding is vital for 

sustainable raw water management as stated by the World Health Organisation (WHO, 

2010). 

1.2 Karst aquifer 

Karst systems are common geological systems all over the world (Figure 1.1) and karst 

aquifers serve largely or entirely as water source for 20–25% of the global population (Ford 

and Williams, 2007). These systems are set apart from other aquifers by the tendency of 

the host rock to be dissolved by water. All typical karst features arise from the dissolution of 

the rock material by flowing water. Karst may evolve in carbonate rocks (e. g. limestone 

and dolomite) as well as in evaporites, anhydrite, gypsum and partly even in quartzite 

(Bakalowicz, 2005). In the following only karst in carbonate rocks will be considered. 

 

Figure 1.1. Global distribution of carbonate rock outcrops (red areas; Hollingsworth et al., 2008, modified 
after Ford and Williams, 2007). 

1.2.1 Conceptual Model of karst aquifers 

The solubility of the host rock leads to a widening of existing fissures or other pathways 

provided by the geological structure (Ford and Williams, 2007) and consequently to an 

enhanced hydraulic conductivity. Typical features are karst conduits and dolines (cf. Figure 

1.2). Contrary, areas that have not been fissured before do not experience dissolution in 

the same extend, resulting in a spatial heterogeneity of the hydraulic parameters.  

The conceptual structure of a karst aquifer is illustrated in Figure 1.2, picturing its features 

and general vertical build-up. The top layer is the soil layer, typically thin or missing in karst 

regions. Consequently contaminants can easily enter the aquifer system. It is underlain by 

2 
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the epikarst (subcutaneous zone). This zone is characterised by its high secondary 

permeability (Williams, 1983); rain water percolating through the soil layer is enriched in 

CO2, leading to an effective dissolution of the soluble host rock. This dissolution becomes 

less effective with depth. As a result, perched aquifers may evolve in this zone, allowing for 

lateral flow towards preferential flow paths (Williams, 1983). From the epikarst water flows 

through the lower part of the vadose (unsaturated) zone, where water flow is generally 

oriented vertically (Kaufmann, 2003). As soon as water reaches the phreatic (saturated) 

zone, the main flow is directed towards the local outlet. As a result of the high hydraulic 

conductivity of karst conduits, water flow is directed towards them in their vicinity. 

 

Figure 1.2. Conceptual structure of a karst aquifer, illustrating typical components and features (modified 
after Geyer, 2008).  

As a consequence of their heterogeneous nature, a characterisation of karst systems is 

difficult. The unknown distribution and structure of the karst conduit system, multiple flow 

components interacting with each other and the size make it difficult to characterise karst 

systems by conventional hydrogeological methodologies (Bakalowicz, 2005). An elegant 

and promising approach to deal with the complexity of karst is the investigation of spring 

water dynamics (White, 2002), comprising physical and chemical signals to allow for the 

characterisation of karst systems at the catchment scale (e. g. Geyer, 2008). 

1.2.2 Duality of karst aquifers 

In the context of karst aquifers the term duality is often used, referring to several 

peculiarities of and a model concept for these systems. As an approximation, the highly 

complex karst aquifers may be described by a double permeability approach: a high 

3 
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permeability mesh immersed in a low permeability fractured limestone volume (Kiraly, 

1998). In the following the term duality will be used to refer to this double permeability 

approach, which can be transferred to the infiltration process and the flow and storage of 

karst aquifers: 

(i) The infiltration of precipitation may either occur diffusely into the fissured matrix 

blocks or as point recharge into conduits, widened by solution. The epikarst can 

have a large influence on the infiltration process, allowing for lateral flow 

towards vertical shafts, joints, dolines or other preferential flow paths (Williams, 

1983). If the recharge occurs as point recharge, its effect on the spring 

discharge can be recognised rapidly. It is therefore termed rapid recharge or 

concentrated recharge.  

(ii) The fissured matrix accounts for more than 90% of the aquifer storage, but less 

than 10% of the flow (derived from the hydraulic conductivities of the conduits 

and the fissured matrix). The opposite applies to the conduit system: flow 

mainly occurs in the highly conductive conduits, while the proportion of storage 

is less than 5% (Worthington et al., 2000). As a consequence of this duality the 

residence time for the two flow components varies drastically. For karst 

conduits flow velocities of several km d‒1 have been observed (Seiler et al., 

1989), resulting in residence times of a few days (Pronk et al., 2009), while the 

residence time in the fissured karst matrix is typically in the order of years 

(Einsiedl, 2005). 

It becomes evident that both components of this conceptual model need consideration for 

the fundamental understanding of karst aquifers. 

1.3 Attenuation of organic micropollutants in karst aquifers 

The term attenuation comprises all processes lowering the concentration of a compound in 

groundwater. Some of these processes affect all compounds, including e. g. dilution, 

dispersion and dual porosity effects (COST Action 620, 2004) and are sufficient to describe 

the fate of a hypothetical conservative contaminant. 

All non-conservative compounds may undergo additional attenuation processes, such as 

sorption, degradation, precipitation or volatilisation. Apart from the properties of the 

compounds, the properties of the respective system or layer may have a great impact and 

need to be taken into account. In the following the term attenuation will refer only to this 

latter class of attenuation processes. For organic contaminants, three processes are stated 

to be key processes in karst aquifers (COST Action 620, 2004), which will be elucidated in 

the following: 
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(1) sorption 

(2) degradation 

(3) volatilisation 

Sorption describes the tendency of a compound, to interact with the aquifer material or 

solids in general leading to a net enrichment of the compound on the surface of the solid 

phase (Schaffer, 2013) and retardation of the sorbed compounds. Depending on the 

compound’s and solid’s surface charge in groundwater, the process is mainly related to 

non-polar interaction of compounds with mineral surfaces and organic carbon in particular, 

cation exchange or anion exchange. For cationic and anionic compounds, the cation 

exchange capacity (CEC) and anion exchange capacity (AEC) of the subsurface system 

need to be considered respectively (e. g. Schaffer et al., 2012a; Tülp et al., 2009). Since, 

the AEC is typically reversely correlated with the ambient pH (Pansu and Gautheyrou, 

2006) insignificant anion sorption is expected in carbonate buffered systems, such as karst 

aquifers.  

The term degradation comprises chemically or biologically induced transformation 

processes, such as oxidation/reduction and hydrolysis. Although knowledge of all sub-

processes may be of interest, a breakdown of the degradation process is difficult, since 

many transformation reactions are mediated by microorganisms (e. g. Radjenovic et al., 

2008). It may be understood as a cumulative parameter including all named sub-processes. 

Volatilisation describes the process of evaporation of a compound. For various polar and 

thus highly water-soluble organic compounds, this process is insignificant; Henry’s Law 

constants are often low. For all micropollutants investigated in the course of this work, 

volatilisation is negligible. 

If an unambiguous distinction of the above named attenuation processes is not possible, 

the term attenuation is used. 

For the determination of the tendency of organic compounds to exhibit sorption and to 

determine degradation rates (often expressed as half-life) for organic compounds various 

approaches exist. Sorption of non-polar compounds may be estimated from empirical 

log KOW–log KOC correlations (e. g. Karickhoff, 1981) and the fraction of organic carbon of 

the investigated system. Similarly, adapted correlations were developed for ionic 

compounds accounting for their polarity (Franco and Trapp, 2008; Schaffer et al., 2012a). 

Experimentally, sorption and degradation rates may be determined by laboratory 

experiments, such as batch (Barbieri et al., 2012; Yamamoto et al, 2009) and column 

experiments (Schaffer et al., 2012b; Scheytt et al., 2006), evaluation of field data (Panno 

and Kelly, 2004; Swartz et al., 2006) or from tracer tests (Kunkel and Radke, 2011; Thierrin 

et al., 1995). The latter represents the most reliable approach for a specific system as 

attenuation rates (sorption and degradation rates) are determined in-situ. However, no such 

studies have been conducted with organic micropollutants in karst aquifers. 
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Figure 1.3. Key processes affecting transport of organic contaminants and their estimated relative 
importance in different layers of karst systems (modified after COST Action 620, 2004). The terms 
oxidation/reduction and hydrolysis refer to these processes, independent of the microbiological activity 
in each respective layer. 

In Figure 1.3 the estimated relative importance of each process in several layers of karst 

systems is presented. It becomes obvious, that the largest attenuation is expected in the 

soil layer, where a high content of organic carbon (e. g. humus) and microorganisms allow 

for effective sorption of contaminants and their degradation. However, soil layers are 

typically thin or absent in karst regions and some contaminants may be introduced into a 

system below the soil zone (e. g. wastewater leakage from sewer system). In the deeper 

layers sorption and degradation processes become more and more ineffective, especially 

in the conduit system. Consequently the vulnerability of karst systems is often assessed by 

residence time distributions (e. g. Einsiedl et al., 2009). A low residence time indicates high 

vulnerability and vice versa. This approach aims for the determination of the intrinsic 

vulnerability of karst systems as defined in COST Action 620 (2004), not considering the 

actual attenuation potential of karst aquifers for individual contaminants or contaminant 

classes. Few studies exist, investigating attenuation processes, such as sorption or 

degradation, in karst aquifers. 

Panno and Kelly (2004) investigated the mass flux of nitrate and two herbicides out of a 

catchment and observed significantly lower relative mass fluxes for the two herbicides, than 

for nitrate. An effective retention of the herbicides was concluded. Taking into account the 

results from Johnson et al. (1998), who observed only little and varying potential for 

sorption in the unsaturated and saturated zone, it is likely that the observed retention of the 

herbicides is related to sorption in the soil layer. 

Isotopic data (Einsiedl and Mayer, 2005; Einsiedl et al., 2005; Panno et al., 2001) and the 

occurrence of the atrazine degradation product desethylatrazine (e. g. Börger and Poll, 

6 
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1998) suggest that degradation processes are active within karst hydrologic systems. This 

has been further specified by Byl et al. (2002), who observed biodegradation in batch 

experiments with raw karst water from contaminated sites and concluded from biological, 

chemical and hydrological data, that biodegradation processes were active in the 

investigated karst aquifer. When distinguishing the different layers and their potential for 

degradation, inconsistent data are reported. In some publications degradation of 

contaminants is reported only to occur in the soil layer (Johnson et al., 2000), others report 

that in the unsaturated zone degradation of contaminants may occur as well (Börger and 

Poll, 1998; Gooddy et al., 2001), but significantly less effective (Chilton et al., 2005; 

Johnson et al., 1998). For the saturated zone no or ineffective degradation processes were 

observed (Börger and Poll, 1998; Johnson et al., 1998). 

1.4 Scope, objective and further outline of the thesis 

For the sustainable raw water management of karst aquifers a fundamental understanding 

of these systems is vital (WHO, 2011). A holistic understanding can only be achieved, if the 

duality of karst aquifers is considered. In order to characterise the long-term storage 

potential for contaminants within the fissured rock matrix of karst aquifers on the one hand 

and the attenuation potential within the conduit system on the other hand, pesticides, 

pharmaceuticals and life-style products can be used as indicators or employed as tracers to 

characterise different hydraulic compartments and attenuation processes. The 

interpretation of the dynamics of the integrating spring signals allows for the 

characterisation of the whole catchment or, in case of tracer tests, for a characterisation of 

the connection between the injection and the sampling location. A more detailed outline of 

each chapter is provided in the following. 

Chapter 2 deals with the stabilisation and storage of micropollutants in water samples. As 

a prerequisite for the reliable determination of organic micropollutants’ concentrations in 

water samples without the possibility of immediate sample analysis, an effective way for 

sample stabilisation and storage was determined. Different stabilisation techniques and 

storage temperatures were investigated and recommendations for sample preservation are 

provided. 

In Chapter 3 the long-term storage potential of karst aquifers is investigated. On the 

example of the herbicides metazachlor and atrazine and the atrazine degradation product 

desethylatrazine the different time-series of recently and formerly applied herbicides are 

highlighted. This chapter addresses the characterisation of the slow flow component and 

the respective transport in the matrix component of the aquifer and its long-term effect on 

spring water quality. 



Chapter 1 – Introduction 

8 

In Chapter 4 a method for the identification of the attenuation potential within karst conduits 

and the related rapid flow and transport is presented, employing caffeine as a reactive 

tracer in the course of a dualtracer experiment. 

The insights gained in Chapter 4 are extended in Chapter 5. The results of a multitracer 

experiment are presented and discussed. A total of 8 (reactive and conservative) tracers 

were injected into a karst aquifer to investigate differentiated transport and attenuation, 

verify the reproducibility and transferability of the determined attenuation potential of the 

aquifer system and specify the responsible attenuation processes. 

In Chapter 6 a summarising conclusion of the thesis is provided together with suggestions 

for further research. 

In Appendix A additional information regarding this dissertation are provided. 

In Appendix B a list of journal articles, conference abstracts and miscellaneous 

publications was compiled authored or co-authored by me and directly related to the 

presented work. 

Please note that, as a result of the cumulative nature of this thesis, references are provided 

at the end of each chapter. 
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Abstract 

Water sample storage and stabilisation may affect data quality, if samples are managed 

improperly. In this study three stabilising strategies are evaluated for 46 relevant organic 

micro-pollutants: addition of the biocides (i) copper sulphate and (ii) sodium azide to water 

samples directly after sampling with subsequent sample storage as liquid phase and (iii) 

direct solid phase extraction (SPE), stabilising the samples by reducing the activity of 

water. River water and treated effluent were chosen as commonly investigated matrices 

with a high potential of biotransformation activity. Analyses were carried out for sample 

storage temperatures of 4 and 28 °C for water samples stored as liquid phase and for 

sample storage temperatures of 4, 20 and 40 °C for SPE cartridges. Cooling of water 

samples alone was not sufficient for longer storage times (>24 h). While copper sulphate 

caused detrimental interferences with nitrogen containing heterocyclic compounds, sodium 

azide proved to be a suitable stabilising agent. The best results could be obtained for SPE 

cartridges stored cool. Recommendations for samples preservation are provided. 



Chapter 2 – Sample stabilisation 

15 

2.1 Introduction 

Within the last 20 years, researchers increasingly investigated the occurrence and fate of 

organic compounds in trace concentrations (µg L−1 to ng L−1). These so-called micro-

contaminants or micro-pollutants, such as pharmaceuticals and personal care products, 

endocrine disrupting compounds, pesticides and/or industrial chemicals at low 

concentrations were detected in virtually all parts of the water cycle (Focazio et al., 2008; 

Heberer, 2002; Schwarzenbach et al., 2006; Ternes, 2007; Weigel et al., 2001). Due to the 

diversity of these compounds, analytical methods focussing on only one class of 

compounds do not meet the requirements of current research undertaken in environmental 

sciences (Estévez et al., 2012; Nödler et al., 2011; Reh et al., 2013). However, thanks to 

significant progress in the field of analytical science several multi-residue analytical 

methods were developed (e. g. Huntscha et al., 2012; Nödler et al., 2010; Nurmi and 

Pellinen, 2011; Wode et al., 2012).  

Although the diversity of compounds can nowadays be handled analytically by multi-

residue analysis, the wide spectrum of compounds with various stabilities and reactivities 

(e. g. Nödler et al., 2010; Wode et al., 2012) results in a challenge for sample preservation. 

In cases when the immediate sample analysis is difficult or impossible (e. g. remote areas) 

or the sampling is intended to be realised over longer periods (e. g. weekly-integrated 

sampling; Kylin, 2013), the storage conditions become highly relevant (Barceló and 

Alpendurada, 1996; U.S. EPA, 2010; Vanderford et al., 2011). Especially for easily 

degradable compounds, their reliable determination largely depends on proper sample 

storage conditions. Various processes such as microbial degradation, chemical reactions, 

volatilisation or adsorption may occur even during relatively short sample storage times 

resulting in low analyte recoveries. For example, caffeine, ibuprofen and paracetamol 

(acetaminophen) are commonly investigated micro-contaminants and known to be easily 

degradable in wastewater treatment plants (WWTPs) and in the environment (e. g. Halling-

Sørensen et al., 1998; Joss et al., 2006) while carbamazepine is known to be a very stable 

compound (Clara et al., 2004; Gasser et al., 2010). Acknowledging the large range of 

stability encountered for compounds in multi-residue analysis, it is obvious that a proper 

sample pre-treatment and storage is essential to obtain reliable results. Thus, sample 

stabilisation methods should be applied to minimise concentration changes between 

sampling and analysis. These methods are most common in inorganic analysis and include 

addition of chemicals, cooling, pH-modifications and choice of storage container.  

For micro-contaminants the influence of storage temperatures, the material of the storage 

container and different quenching agents have been investigated for water samples, stored 

as liquid phase (U.S. EPA, 2010; Vanderford et al., 2011). As stabilising agents sodium 

azide and sulphuric acid have been tested (Vanderford et al., 2011). However, these recent 
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investigations focussed on the sample treatment of water samples stored as liquid phase, 

although the advantages of using SPE-cartridges for sample stabilisation has been 

recognized several years ago (Barceló and Alpendurada, 1996). 

To inhibit biological degradation in water samples, two biocidal additives which can be used 

are sodium azide and copper sulphate. Sodium azide is frequently used in laboratory 

studies (e. g. Vanderford and Snyder, 2006), especially to produce abiotic reference 

samples in degradation experiments (e. g. Margesin et al., 2000; Ying et al., 2008) and has 

been described by Vanderford et al. (2011) as the most benign of the investigated 

preservatives for sample stabilisation. Copper sulphate is particularly applied for the 

stabilisation of phenols and phenolics (DIN 38409-16; Hossain and Salehuddin, 2009). A 

common non-chemical stabilisation technique is solid phase extraction (SPE). By reducing 

the water activity, the microbial growth can be controlled (Madigan et al., 2003). 

The aim of this study was to evaluate the influence of the water sample matrix, the storage 

temperature, the addition of two selected chemical preservatives and the direct application 

of SPE on the recovery of 46 analytes. The here investigated micro-contaminants comprise 

of a large variety of different compound-classes including readily degradable and highly 

persistent compounds. 

Table 2.1. Investigated analytes and their application/origin. 

Application or origin Compound Application or origin Compound 
Diclofenac Bezafibrate 
Ibuprofen Clofibric acid 

Naproxen 

Lipid regulators 

Gemfibrozil 

Paracetamol Cetirizine 

Analgesics / Anti-inflammatories 

Phenazone 

Antihistamines 

Loratadine 

Caffeine Carbamazepine 

Paraxanthine Diazepam 

Theobromine Primidone 

Theophylline 

Anticonvulsants / Sedatives 

Tetrazepam 

1-Methylxanthine Citalopram 

Stimulants / Caffeine metabolites 

3-Methylxanthine Fluoxetine 

Atenolol 

Selective serotonin reuptake inhibitors 

Sertraline 

Metoprolol Atrazine 

Antihypertensive agents 

Sotalol Desethylatrazine 

Iohexol Desisopropylatrazi

Iomeprol Diuron 

Iopamidol Isoproturon 

Iodinated contrast media 

Iopromide Mecoprop 

Clarithromycin 

Herbicides / Herbicide metabolites 

Metazachlor 

Erythromycin 1H-benzotriazole 

Roxithromycin 

Corrosion inhibitors 

Tolyltriazole 

Sulfamethoxazole Cocaine metabolite Benzoylecgonine 

Antibiotics 

Trimethoprim Gastric acid regulator Pantoprazole 
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Figure 2.1. Schematic overview of the experiments to investigate the influence of different 
stabilisation techniques (c0= initial concentration). 

2.2 Methods and materials 

2.2.1 Chemicals 

Sodium azide (NaN3) and copper sulphate pentahydrate (CuSO4·5 H2O) were purchased 

from Fisher Scientific (Schwerte, Germany). The suppliers of all target analytes, the internal 

standards (IS), the SPE cartridges, and all other reagents were published previously 

(Nödler et al., 2010). The investigated trace organic compounds are presented in Table 1. 

2.2.2 Sample preparation 

A schematic overview of the experiments is presented in Figure 2.1. Water samples were 

collected by using 1 L and 2 L clear-glass bottles, pre-rinsed with the respective water 

sample. The samples were taken from the effluent of the wastewater treatment plant 

(WWTP) Göttingen (Germany, ~120,000 inhabitants) and the Leine River (Göttingen, 

Germany). Under dry weather discharge conditions, the mean hydraulic residence time 

within the WWTP was 20–24 h. The treatment processes consisted of a mechanical 

treatment for the separation of solid material followed by activated sludge treatment, 

including nitrification and denitrification. Additionally, chemical P-removal was performed. 

During a previously published study, the treated effluent was analysed on a daily basis for 

27 days and easily degradable compounds such as ibuprofen, caffeine and its degradation 

products were not detected (Nödler et al., 2011). Therefore, the presence of highly adapted 

17 
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micro-organisms can be assumed, which underlines the big challenge of stabilising these 

compounds in this sample matrix. The presence of anthropogenic micro-pollutants in the 

Leine River was also demonstrated in previous studies (Nödler et al., 2010; 2011). 

Therefore, adapted micro-organisms were expected in both matrices.  

Sample subsets S1–S3: Composite samples of 6.5 L river water and treated effluent, 

respectively, were prepared and spiked with 650 µL stock solution containing all analytes. 

The stock solution was prepared in 50/50 water/methanol (v/v); the final methanol 

concentration in the water samples was therefore 0.005% (v/v). Spike levels of 2 µg L−1 of 

each individual iodinated contrast media and the individual concentration of 1 µg L−1 of all 

other compounds were applied. The spiked composite sample was stirred for 30 min by a 

magnetic stirrer. Aliquots of 100 mL sample were taken by a 100 mL glass pipette and 

transferred into 100 mL clear-glass and screw cap bottles. As the samples were not filtered, 

stirring was applied to enable the transfer of representative aliquots including dispersed 

particles. 54 100 mL sub-samples were prepared. Of each sample matrix 18 sub-samples 

were spiked with 1 mL of an aqueous NaN3 stock solution resulting in a final concentration 

of 5 g L−1 NaN3 (Wender et al., 2000; Ying et al., 2008). Another 18 aliquots were spiked 

with 1 mL of an aqueous CuSO4·5 H2O solution resulting in a concentration of 1 g L−1 

CuSO4 (DIN 38409-16). However, acidification of the Cu-stabilised samples as 

recommended by the DIN standard (DIN 38409-16) was not applied, as some of the 

analytes are sensitive to low pH-values. To the remaining 18 aliquots 1 mL ultrapure water 

was added to keep the sample volumes comparable to the stabilised samples. Because 

some of the analytes were already present in the native samples (Nödler et al., 2010; 

2011), duplicates of each spiked sample matrix were immediately extracted by SPE to 

determine the here applied initial concentration of the analytes (c0).  

Atenolol acid was identified by Radjenovic et al. (2008) and Barbieri et al. (2012) as a 

microbial transformation product (TP) of atenolol, generated by hydrolysis of its amide 

bond. Therefore, the compound was monitored to evaluate the fate of atenolol in the 

prepared subsets. The analysis was performed according to Reh et al. (2013). 

To simulate the impact of the preservatives depending on the storage temperature, 

samples were stored in a refrigerator (4 °C) and in an incubator (28 °C), respectively. All 

samples were covered to prevent photodegradation. The incubation of the samples was 

terminated according to the schedule presented in Figure 2.1 and samples were 

immediately extracted. For the extraction, the sample (100 mL) was spiked with 10 µL of an 

IS-mix (for details on the used internal standards please refer to Nödler et al., 2010; Reh et 

al., 2013 or Table A.1) and 1 mL of a phosphate buffer concentrate (pH 7) and extracted by 

SPE (OASIS® HLB) according to Nödler et al. (2010). After extraction the cartridges were 

sealed with parafilm, covered in alumina foil, and stored in a freezer at −18 °C until elution 

and analysis. It is assumed that storing the SPE cartridges at −18 °C stabilises all analytes. 

Alterations of the samples during this storage phase are not part of this manuscript. 
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Sample subset S4: River and treated effluent matrix were spiked and 19 100 mL 

subsamples of each matrix were extracted by SPE similar to the other subsets. However, 

the samples were not spiked with the above mentioned IS-mix prior to the SPE. The loaded 

cartridges were incubated according to Figure 2.1 in a GC-oven (40 °C; Chrompack CP 

9001), in a temperature-controlled laboratory (20 °C; protected from light) and in a 

refrigerator (4 °C). The minimum and maximum temperatures were monitored and the 

deviation did not exceed 1 °C. In comparison to the native water sample the SPE process 

reduces the water activity. As this is a well-known strategy in microbial growth control 

(Madigan et al., 2003), the effect of biotransformation on the analytes was suspected to be 

significantly lower than in the subsets S1–S3. Therefore, in comparison with S1–S3 a 

higher maximum incubation temperature (40 °C) was chosen. 

2.2.3 Elution from the SPE-cartridge and analysis of the analytes 

The analytes (subsets S1–S3) were eluted with methanol and ethyl acetate under vacuum 

(flow rate ~1 mL min–1). The solvents were evaporated to dryness at 40 °C with a gentle 

stream of nitrogen and re-dissolved in 1 mL of aqueous 5 mM ammonium acetate solution, 

containing 4% methanol. The extract was transferred into an autosampler vial and 

centrifuged for 10 min (4000 rpm). The compounds were analysed with a multi-residue 

analytical method based on high performance liquid chromatographic separation coupled to 

an electrospray ionisation with tandem mass spectrometric detection (HPLC/MS–MS; 

Nödler et al., 2010). The extracts of subset 4 were spiked with 10 µL of the above 

mentioned IS-mix before the evaporation step of the solvents. The further procedure and 

analysis was according to the subsets S1–S3. 

2.3 Results and discussion 

A significance level of 80% is assumed in all experiments i. e. if the recovery of the analyte 

is reduced by less than 20% over the period of observation, it is declared to be insignificant 

and acceptable. 

2.3.1 Water samples stored as liquid phase 

2.3.1.1 Stability of compounds in non-stabilised water samples (subset 1) 

Pantoprazole exhibited incomparable duplicates for river water (RW) and was therefore 

discarded from further analysis. For the treated effluent matrix (WW) a significantly low 

recovery could be observed at 28 °C for the stabilised as well as the non-stabilised 

samples. Out of the remaining 45 micro-pollutants, 18 proved to be stable (recovery ≥ 80%) 

in both water matrices (river and WWTP effluent) at 4 and 28 °C although non-stabilised. 
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The stable substances are, among others, all but one investigated contrast media, both 

antihistamines and all anticonvulsants and sedatives (cf.  

Table 2.1). This was expected since their stability is well known. The persistence of 

carbamazepine, for example, was demonstrated in previous studies (Castiglioni et al., 

2006; Clara et al., 2004). For tables with all spiked compounds and their respective 

recoveries, see Table A.2 to Table A.5.  

The analytes, for which unacceptable recoveries have been observed at the end of the 

investigation period, were generally the same for both water matrices. 

It can be assumed that, in sewage, more micro-organisms are present and they readily 

cause a more efficient transformation, whereas in natural water (e. g. river water) the 

bacteria require a longer lag phase to adapt to changed conditions (Madigan et al., 2003). 

Thus, it can be expected that recoveries from WW are generally lower than from RW. This 

is partially confirmed by the presented study. However, for the compounds atenolol, 

metoprolol, iomeprol, sulfamethoxazole, bezafibrate, fluoxetine, sertraline, 

desisopropylatrazine, 1H-benzotriazole and benzoylecgonine a lower recovery could be 

observed in the RW samples. 

The concentration of atenolol acid in the RW stored at 28 °C increased from 25 ng L−1 

(present in the native sample) to 250 ng L–1 at the end of the incubation period. Assuming 

the TP being stable within the investigated period, ~30% of the atenolol loss can be 

attributed to the formation of atenolol acid. 

Typically, higher temperatures (within the physical range of micro-organisms) promote the 

microbial growth and activity, whereas lower temperatures are inhibitory (Castiglioni et al., 

2006; Kang and Kondo, 2002; Vieno et al., 2005). Accordingly, except for clofibric acid, 

sertraline, diuron and isoproturon in WW as well as tolyltriazole in RW, all compounds 

demonstrated higher recoveries in the cooled samples. The substances with the lowest 

recovery were methylxanthines (caffeine, paraxanthine, theobromine, theophylline, 1-

methylxanthine, 3-methylxanthine), ibuprofen and paracetamol; rapidly decreasing 

recoveries were observed in the WW samples for both temperatures (Figure 2.2). In the 

RW samples ibuprofen and paracetamol exhibited unacceptably low recoveries at both 

temperature levels at the end of the observation period. For the methylxanthines, this holds 

only true for the higher temperature level of 28 °C (Figure 2.3). 

2.3.1.2 Stabilisation with sodium azide (subset 2) 

Sodium azide inhibits microbial activity and growth (e. g. Margesin et al., 2000; Ying et al., 

2008). After two days of incubation at 28 °C, the non-stabilised samples exhibited a clearly 

visible turbidity. In contrast, the stabilised samples hardly manifested any turbidity. This 

may be interpreted as an indication for the reduced microbial activity of the stabilised 

samples. 
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The addition of sodium azide generally led to higher recoveries of the analytes in the 

samples, relative to non-stabilised samples. This was observed for all analytes in the WW 

samples. However, anomalies were observed in the RW samples for naproxen, iomeprol, 

iopamidol, bezafibrate, clofibric acid, gemfibrozil, sertraline and diuron at 4 °C and for 

tolyltriazole at 28 °C. Several authors describe interferences of sodium azide with some 

analytes resulting in a transformation (Chefetz et al., 2006; Lichtenstein et al., 1968; 

Sharom et al., 1980), which may explain the observations. Chefetz et al. (2006) observed a 

nucleophilic aromatic substitution reaction: the chlorine atom of the atrazine was replaced 

by the azide group. This may explain the low recoveries of bezafibrate, clofibric acid, 

sertraline and diuron in the stabilised samples. However, it does not explain the low 

recoveries of the other analytes and why it was observed for 4 °C but not for 28 °C. Grenni 

et al. (2013) found gemfibrozil and naproxen to be biodegradable in river water, while these 

compounds were observed to be stable in sterilized river water samples. One may read this 

as an indication that micro-organisms, responsible for the degradation of gemfibrozil and 

naproxen, are either affected to a lower extend or not affected at all by sodium azide. 

It is noteworthy, that Vanderford et al. (2011) found recoveries to be unacceptable for 

atenolol and fluoxetine in water samples, stabilised with sodium azide and stored at 4 °C. 

This cannot be confirmed from the observations of this study. However Vanderford et al. 

(2011) used higher storage times and a slightly more strict level of significance.  

While the easily degradable compounds from the methylxanthines group, ibuprofen and 

paracetamol demonstrated rapidly decreasing recoveries in the non-stabilised samples, 

they could be successfully stabilised with sodium azide in both water matrices between 2 

and 17 days, depending on the analyte (Figure 2.2 and Figure 2.3). In the stabilised and 

cooled samples all these compounds exhibit acceptably high recoveries over the entire 

investigated period. For paracetamol and 1-methylxanthine a higher, but still unacceptably 

low recovery, was observed over the observation period in the WW samples at 28 °C. 

Thus, it can be assumed that biodegradation is not the only effect, which influences the 

stability of these compounds in the aqueous phase.  

For tables with all spiked compounds and their respective recoveries, see Table A.6 to 

Table A.9. 
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Figure 2.2. Recoveries of selected analytes in WWTP treated effluent with respect to storage time; 
stored as liquid (WW 28 N= non-stabilised wastewater sample stored at 28 °C; WW 28 A= 
wastewater sample stored at 28 °C, stabilised with NaN3; WW 4 N= non-stabilised wastewater 
sample stored at 4 °C; WW 4 A= wastewater sample stored at 4 °C, stabilised with NaN3; the dashed 
grey line at 80% indicates the significance threshold). 
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Figure 2.3. Recoveries of selected analytes in river water with respect to storage time; stored as 
liquid (RW 28 N= non-stabilised river water sample stored at 28 °C; RW 28 A= river water sample 
stored at 28 °C, stabilised with NaN3; RW 4 N= non-stabilised river water sample stored at 4 °C; 
RW 4 A= river water sample stored at 4 °C, stabilised with NaN3; the dashed grey line at 80% 
indicates the significance threshold). 
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Figure 2.4. Observed recoveries of selected analytes after solid phase extraction of spiked 
wastewater samples (WW 4 SPE= cartridges stored at 4 °C; WW 20 SPE= cartridges stored at 20 °C; 
WW 40 SPE= cartridges stored at 40 °C; the dashed grey line at 80% indicates the significance 
threshold). 

24 
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Figure 2.5. Observed recoveries of selected analytes after solid phase extraction of spiked river 
water samples (RW 4 SPE= cartridges stored at 4 °C; RW 20 SPE= cartridges stored at 20 °C; 
RW 40 SPE= cartridges stored at 40 °C; the dashed grey line at 80% indicates the significance 
threshold). 
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2.3.1.3 Stabilisation with copper sulphate (subset 3) 

The stabilisation of the samples with copper sulphate led to significant analytical problems. 

On the one hand, the addition of the stabilising additive led to a milky-blue precipitate which 

is assumed to be copper-(II)-hydroxide (Cu(OH)2) given its low solubility (KSP = 2.20 · 10−20; 

Patnaik, 2003). Due to this precipitate SPE was difficult without prior filtration. On the other 

hand, the methylxanthines exhibited poor recoveries in all samples. Tolyltriazole could 

hardly and pantoprazole and 1H-benzotriazole could not be detected at all. Probably this is 

caused by complexation with copper: all the above mentioned compounds comprise an 

azole structure. 1H-benzotriazole and tolyltriazole are used as corrosion inhibitors for 

metals including copper. After adsorption of the inhibitor on the copper surface a copper-

azole-complex is formed (Subramanian and Lakshminarayanan, 2002). In a third step, 

polymerisation can occur (Antonijevic and Petrovic, 2008). Imidazole and its derivatives are 

also efficient copper corrosion inhibitors in various media (Stupnisek-Lisac et al., 2002; 

Subramanian and Lakshminarayanan, 2002). 

In conclusion, it can be assumed that the methylxanthines and pantoprazole containing 

imidazole-like structures can also form complexes with copper resulting in the observed low 

to very low recoveries. Due to these problems a further discussion of the results from these 

samples is excluded.  

2.3.2 Stabilisation by SPE (subset 4) 

By SPE of the water samples, the water activity and the concentration of inorganic nutrients 

were reduced. Although for the high storage temperature (at 40 °C) low recoveries were 

expected, 33 of the 46 analytes could be stabilised over the complete observation period of 

10 days. Compounds that showed recoveries lower than the significance level of 80% 

include all antihypertensive agents, all SSRIs, both corrosion inhibitors, 1-methylxanthine, 

3-methylxanthine, loratadine, diuron and isoproturon. The most labile compounds in the 

non-stabilised samples stored as liquid phase (methylxanthines, paracetamol and 

ibuprofen) exhibit much higher (1-methylxanthine and 3-methylxanthine) or acceptable 

recoveries after SPE, whereas fluoxetine, sertraline and atenolol show the lowest recovery 

of all analytes at the end of the investigation period (28, 49 and 55% respectively; Figure 

2.4 and Figure 2.5). Despite the relatively low recovery of atenolol, increasing 

concentrations of atenolol acid were not observed. 

At 4 °C and over the entire investigation period of 20 days no significant decrease in 

recovery could be observed for any of the investigated compounds. Comparing the water 

matrices with one another, in general no differences can be observed. In fact, samples from 

WW and RW showed rather similar recoveries for some of the compounds (e. g. fluoxetine 

and atenolol). For tables with all spiked compounds and their respective recoveries after 

SPE, see Table A.10 to Table A.15. 
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2.4 Conclusion 

In the water samples stored as liquid phase the methylxanthines, ibuprofen and 

paracetamol were ascertained to be among the lowest recovered micro-contaminants in 

non-stabilised samples of both investigated water matrices, RW and WW. These 

compounds are valuable indicators for untreated sewage (Bound and Voulvoulis, 2006; 

Buerge et al., 2006; Hillebrand et al., 2012) and immediate sample preparation and 

analysis would be the best option to prevent low recoveries due to storage. However, 

depending on the infrastructure this option may not be feasible and the transport of the 

samples to the laboratory may take a considerable time. 

Stabilising the samples with sodium azide led to significantly higher recoveries in both 

water matrices. Nevertheless, for some analytes unacceptable recoveries were observed. 

The stabilisation of the water samples with copper sulphate caused detrimental 

interferences with all the methylxanthines, the corrosion inhibitors and pantoprazole, most 

likely due to the formation of copper-azole-complexes. It can be concluded that copper 

sulphate is an unsuitable stabilising additive for micro-pollutants in water samples when 

stored as liquid phase especially, if azole- or imidazole-like compounds are to be included 

in the list of analytes. 

Processing the water samples by SPE showed the best results of all stabilising strategies. 

While for some analytes recoveries ≤ 80% could be observed at 20 and 40 °C, storing the 

SPE cartridges at 4 °C led to acceptable recoveries over the whole observation period of 

20 days for all investigated analytes. 

Concluding from our presented results, the following recommendations for sample 

preparation and storage can be derived (from best, to worst alternative): 

(1) Immediate analysis of the samples 

(2) SPE directly after sampling with SPE cartridge, store as cool as possible 

(3) Stabilisation of the samples with sodium azide and store as cool as possible 

(4) Storage of non-stabilised samples as cool as possible 

If no immediate analysis is possible, the storage time should be minimised. Depending on 

the water matrix sampled a ranking can be set up, reflecting its need for sample 

stabilisation. Firstly, WW samples need to be stabilised. Due to their high number of 

adapted micro-organisms, the stabilisation of these samples is most urgent. Secondly, RW 

samples need to be analysed or otherwise stabilised. 

Although groundwater and drinking water have not been investigated in the course of this 

manuscript, the following can be assumed: for groundwater, which is known to be less 

loaded with micro-organisms (Schijven et al., 2003; Toze, 2004) as well as drinking water, 

much less alteration of the analytes is expected. Hence, the analysis or stabilisation of 

respective samples need to be performed the least urgent. 
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Abstract 

While karst aquifers are considered as rapid flow and transport systems, their high potential 

for long-term storage is often ignored. However, to achieve a sustainable raw water quality 

for drinking water production, the understanding of this potential is highly essential. In this 

study, the transport dynamics of the two herbicides metazachlor and atrazine as well as a 

degradation product of the latter (desethylatrazine) were investigated at a karst spring over 

one year. Even 20 years after its ban in Germany, atrazine and its degradation product 

were almost always detectable in the spring water in the low ng L–1 range (up to 5.2 ng L–1). 

Metazachlor could only be detected after precipitation events and the observed 

concentrations (up to 82.9 ng L–1) are significantly higher than atrazine or desethylatrazine. 

Comparing the dynamics of the herbicides with the inorganic ions Ca2+, Mg2+ and the 

electrical conductivity, a positive correlation of atrazine with these parameters could be 

observed. From this observation, atrazine is concluded to be located within the aquifer 

matrix. To achieve a sustainable raw water management at karst springs, the rapidness of 

these systems needs to be highlighted as well as their long-term storage potential. 

Persistent substances or transformation products are prone to deteriorate the raw water 

quality for decades. 

 



Chapter 3 – Herbicide dynamics 

33 

3.1 Introduction 

 

In the Guidelines for drinking-water quality, the World Health Organisation emphasises the 

advantages and necessities of effective catchment management, i. e. understanding an 

aquifer and identifying possible water pollution scenarios affecting the raw water quality 

(WHO, 2011). The understanding of karst aquifers is particularly challenging, due to their 

specific characteristics (e. g. dolines, conduits flow). Still, these highly dynamic and 

heterogeneous aquifer systems are important drinking water sources all over the world. 

The complex interaction between developed karst conduits including the related rapid flow 

and transport processes in them (residence time of a few days, e. g. Pronk et al., 2009; 

Hillebrand et al., 2012a) and the high-volume porous rock matrix (characterised by slow 

matrix flow and long residence times of several years, e. g. Einsiedl, 2005) is not yet fully 

understood and thus still subject to research. Investigating the recharge mechanisms at a 

shallow karst system rapid preferential flow and diffuse matrix flow (which is characterised 

by much slower flow rates) were observed (Atkison, 1977; Haria et al., 2003). However, for 

some deep aquifers only slow matrix flow could be identified (Haria et al., 2003; Chilton et 

al., 2005). 

It is a long established fact that recharge events in karst systems lead to strong variations 

in spring water quality (Jakucs, 1959). Monitoring these spring signals in terms of physical 

or chemical parameters allows for the integral characterisation of the total catchment area. 

This feature has been used to e. g. determine the mean residence time of water within 

aquifer systems based on tritium data (Maloszewski et al., 2002) or to estimate the total 

amount of wastewater infiltrating such systems by employing caffeine as a semi-

quantitative indicator (Hillebrand et al., 2012a). Stueber and Criss (2005) derived the 

primary immediate sources for water quality components depending on their covariance 

with the electrical conductivity (EC) or the turbidity. A positive covariance of components 

time-series with the EC implies diffuse (matrix) flow being its primary source, while a 

positive covariance with turbidity suggests that the components immediate source was from 

agricultural fields. 

In the presented work, two herbicides (atrazine and metazachlor) and the degradation 

product desethylatrazine are employed, in order to improve the understanding of spring 

water signals after precipitation events and consequently the understanding of the 

investigated karst aquifer system which are vital for providing measures for sustainable raw 

water quality. Atrazine is one of the most widely used soil and weed herbicides, whereas its 

use has been prohibited in Germany since 1992. However, it is well dispersed and can still 

be found in the environment even after more than 20 years (Jablonowski et al., 2011; 

Nödler et al., 2013; Reh et al., 2013). The potential of atrazine to be degraded in karst 
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aquifers is stated to be very little to non-existent (Johnson et al., 2000; Chilton et al., 2005). 

One of its degradation products is desethylatrazine (Kolpin et al., 1998). However, 

desethylatrazine is also formed from other triazine herbicides like propazine (Behki and 

Kahn, 1994). Atrazine is affected by sorption, exhibiting a low desorption rate, which may 

take several days or even weeks (Dehghani et al., 2005). In contrast to the banned 

substance atrazine, the weed control agent metazachlor is approved in Germany. Its 

tendency to adsorb onto soil material is known to be low (Mamy and Barriuso, 2005), while 

being readily degradable (Allen and Walker, 1987; Beulke and Malkomes, 2001). In the 

investigated karst system, transport is known to be rapid and an appearance of 

metazachlor in spring water can still be expected. For reference purposes and to locate the 

origin of atrazine, desethylatrazine and metazachlor, the time-series of these three 

compounds are compared to the time-series of the inorganic ions nitrate (NO3
–), calcium 

(Ca2+) and magnesium (Mg2+) as well as the EC of the spring water. 

The aims of the study are to i) improve the understanding of contaminant migration in karst 

aquifers under consideration of recent and former herbicide applications, ii) highlight the 

long-term storage potential of karst aquifers and to iii) draw attention to the consequences 

of unsustainable herbicide application for the raw water quality. The authors hypothesise 

that the characteristic residence time distribution of water in karst aquifer systems (days to 

several decades) is reflected in the occurrence and dynamics of the investigated 

herbicides.  
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3.2 Materials and methods 

3.2.1 Field work 

3.2.1.1 Study area 

The investigated karst spring is the Gallusquelle, which is located in Southwest Germany 

(Figure 3.1). It is used as a drinking water source for 40,000 people. Its average discharge 

is 500 L s–1 draining a rural catchment (4000 inhabitants) of approximately 45 km². Around 

40% of the catchment is used for agriculture. These areas are used as grasslands and for 

the cultivation of crops (approximately 14% of the total catchment area; Sauter, 1992). 

Despite the thick unsaturated zone (~100 m, Figure 3.1) within the investigated system, 

precipitation can quickly reach the groundwater through dolines and dry valleys as 

concentrated recharge. Through these preferential flow paths, the transport of solutes 

including contaminants from the ground surface towards the spring is enhanced. The 

occurrence of contaminants only days after precipitation events has been shown in former 

investigations (Heinz et al., 2009; Hillebrand et al., 2012b). In contrast, a mean 

groundwater residence time of more than 20 years was determined by Geyer et al. (2011) 

employing lumped parameter modelling of tritium in spring water.  

 

Figure 3.1. The catchment area of the Gallusquelle and its geological cross section (delineation of 
the catchment and cross-section according to Sauter, 1992). 

35 
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3.2.2 Sampling 

Over the period of nearly one year, a total of 263 spring water samples were collected and 

analysed for herbicides from March, 6th 2010 until February, 16th 2011. The sampling rate 

varied between weekly, daily and multiple daily depending on the spring discharge and the 

occurrence of recharge events. For one recharge event a highly increased sampling rate of 

up to 8 samples per day was realised. Selected major ions concentrations were determined 

over a period of 3 months, including the mentioned recharge event (n= 153). Additionally, a 

rain water sample was collected during that recharge event with a precipitation-totalisator 

(accumulative precipitation gauge) for the hydrograph separation. To ensure the stability of 

the analytes, the samples were stored at 4 °C. For herbicides, samples were 

preconcentrated by solid phase extraction (SPE) within 48 h and the SPE cartridges were 

stored at –18 °C until analysis (Hillebrand et al., 2013).  

3.2.3 Chemicals 

Methanol (LC/MS grade) was purchased from Fisher Scientific (Schwerte, Germany), 

ammonium acetate, ethyl acetate, formic acid, potassium dihydrogen phosphate and 

disodium hydrogen phosphate dihydrate (all analytical grade) were purchased from VWR 

(Darmstadt, Germany). Atrazine, atrazine-D5, desethylatrazine and metazachlor were 

purchased from Dr. Ehrenstorfer (Augsburg, Germany), carbamazepine-D10 from 

Promochem (Wesel, Germany). 

3.2.4 Laboratory and on-site analyses 

3.2.4.1 On-site analysis 

Hourly data for electrical conductivity (reference temperature: 20 °C) and turbidity of the 

spring water, as well as the spring water levels were gauged with an installed continuous 

monitoring system. The water levels were transferred into spring discharge data, applying a 

rating curve. 

3.2.4.2 Inorganic ions 

The samples for cation analysis were acidified with methane sulfonic acid (2.5 µL mL–1). 

The analysis for the inorganic ions was performed by ion chromatography (IC) as described 

in Nödler et al. (2011). 

3.2.4.3 Herbicides 

The analytical method for the determination of the herbicides metazachlor and atrazine as 

well as its degradation product desethylatrazine is based on SPE and high-performance 
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liquid chromatographic separation coupled with tandem mass spectrometric detection 

(HPLC/MS-MS). The details of the method have been published earlier (Nödler et al., 

2010). Briefly, a sample volume of 500 mL was buffered at neutral pH (phosphate buffer), 

spiked with 100 ng atrazine-D5 and carbamazepine-D10 and extracted by SPE (500 mg 

Oasis HLB, Waters, Eschborn, Germany). After extraction, the cartridges were rinsed with 

ultrapure water, dried, wrapped in aluminium foil and kept frozen (–18 °C) until analysis. 

Prior to analysis the herbicides were successively eluted from the sorbent with methanol 

and ethyl acetate. The eluate was evaporated and re-dissolved in a 5 mM ammonium 

acetate aqueous solution, containing 4% methanol. Unlike Nödler et al. (2010), only 0.8 mL 

was used to re-dissolve the analytes. Thus, a higher enrichment factor and consequently 

lower method detection and quantification limits were achieved: the method detection limits 

(MDL) of atrazine, desethylatrazine and metazachlor were 0.3, 0.4 and 0.5 ng L–1, 

respectively. The method quantification limits (MQL) were 1.1 ng L–1 for atrazine and, 

1.4 ng L–1 for desethylatrazine and metazachlor. The MDLs and MQLs were determined 

according to DIN 32645 (2008). 

3.2.5 Hydrograph separation 

The hydrograph separation technique was employed for estimating the amount of rainwater 

reaching the spring over rapid recharge. Typically, isotopic data (e. g. Malík and Michalko, 

2010), inorganic ions (e. g. Dreiss, 1989) or the EC (e. g. Laudon and Slaymaker, 1997) 

are used. On the basis of end-member mixing the variations of the rainwater tracers are 

utilised in estimating the fraction of rapidly transported rainwater to the spring. The 

calculation procedure is shown in the appendix (Appendix A.1). Please note, that the 

application of end-member mixing is discussed controversially (e. g. Nakamura, 1971; 

Pilgrim et al., 1979). The approach assumes the conservative behaviour of both end-

members, i. e. the investigated components do not change. This is obviously not true for 

any of the investigated parameters here. On the example of EC, one can assume that the 

amount of dissolved solids in the rainwater and consequently the EC increases the moment 

it comes into contact with the earth’s surface and with increasing contact time with soil or 

aquifer material. Taking these uncertainties into account, the hydrograph separation based 

on end-member mixing of EC can be understood as a lower boundary estimation of the true 

fraction of rainwater at the spring. The actual amount of rainwater is likely to be higher. 

Comparable uncertainties must be considered to some extend when performing 

hydrograph separation by end-member mixing with Ca2+, Mg2+, atrazine and 

desethylatrazine. 
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Figure 3.2. Behaviour of the inorganic ions NO3
–, Mg2+ and Ca2+, electrical conductivity (EC), 

desethylatrazine (DEA) and atrazine (ATR) after a precipitation event (Q= spring discharge). The 
grey bars highlight the background concentration, used for the discharge separation calculations. 
The discontinuity at the DEA- and ATR-curves’ minimum refer to single samples, where the 
observed concentrations were below the limit of quantification (LOQ). 
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Figure 3.3. Variations of metazachlor (MTZ), desethylatrazine (DEA), atrazine (ATR), electrical 
conductivity (EC), turbidity and daily average spring discharge (Q) at the Gallusquelle spring over 
the period of investigation. The grey squares at 0 ng L–1 for MTZ, DEA and ATR indicate samples 
for which the observed concentration was below the LOQ. Interruptions in the turbidity line are 
caused by data loss. 

3.3 Results and discussion 

3.3.1 Variations of investigated parameters 

The concentration range of Ca2+, Mg2+, NO3
–, atrazine, desethylatrazine and metazachlor in 

spring water are presented in Table 3.1. 

Although NO3
− may also originate from urban sources, such as leaky sewers and landfills 

(Wakida and Lerner, 2005), the agricultural application of fertilisers is its main source, 

39 
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especially in sparsely populated and rural areas such as the catchment under investigation. 

After precipitation events, the concentration of NO3
– increases before returning to a 

background concentration within a few days, only slightly affected by dilution (Figure 3.2). 

This is expected for NO3
– and other substances/ions, which are introduced into the karst 

system together with the infiltrating rainwater or snow-melt (i. e. recharge events). The 

same behaviour can be observed for the herbicide metazachlor (Figure 3.3). It does not 

occur evenly distributed over time, but only after precipitation events at comparatively high 

concentration (Table 3.1). However, while for NO3
– a background concentration exists in 

the spring water, the concentration of metazachlor decreases below the limit of detection 

(LOD) within a short period of time. The irregular occurrence only after precipitation events 

indicates the transport of metazachlor with the percolating rainwater through the 

unsaturated zone to the local karst spring. As metazachlor was not detected in spring water 

during the winter months, it is unlikely that the occurrence of metazachlor in the spring to 

autumn months is related to metazachlor sources within the subsurface, but originates from 

recent application (metazachlor is applied as a post-emergence herbicide few weeks after 

the sowing in spring or at the end of august for winter oilseed rape). This is supported by 

the low half-life of metazachlor in the environment (Allen and Walker, 1987; Beulke and 

Malkomes, 2001). 

In contrast, for the parameter ‘hardness’ the opposite effect (i. e. decreasing 

concentrations) has been described (Ashton, 1966; Williams, 1983): (i) initial expulsion of 

phreatic and subcutaneous water, (ii) arrival of flood water, diluting the spring water, (iii) 

return to pre-event conditions. This pattern occurs for parameters originating from within 

the aquifer system which are affected by dilution, i. e. hardness, EC, and the inorganic ions 

dissolved from the rock matrix. At the Gallusquelle spring, this behaviour can be observed 

for the EC, Ca2+ and Mg2+ similar to findings of Stueber and Criss (2005). If there were 

additional sources for Ca2+ and Mg2+ beside the subsurface/aquifer material, its influence 

was negligible.  

Table 3.1. Concentration range of the investigated inorganic ions, herbicides and the herbicide 
degradation product in the spring water of the Gallusquelle during the period of investigation. 
Concentrations of the inorganic ions are expressed in mg L–1.  

 Minc Maxd Median DFe 
Ca2+,a 102 114 108 100 
Mg2+,a 6.0 9.3 7.0 100 
NO3

–,a 11.6 17.5 14.4 100 
Atrazineb < LODf 5.2 2.3 99.6 
Desethylatrazineb < LODf 5.9 2.3 99.6 
Metazachlorb < LODf 82.9 < LODf 30.7 

an=153 
bn=263 
cminimum concentration 
dmaximum concentration 
edetection frequency in % 
flimit of detection 
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Unlike the irregular occurrence of metazachlor at the spring, atrazine and desethylatrazine 

were detected in nearly all samples throughout the investigation period (Figure 3.3). Their 

observed concentrations were generally low (Table 3.1), but comparable to values from 

Switzerland (Morasch, 2013). Storm pulses (i. e. increasing concentrations with increasing 

discharge) were reported for atrazine after precipitation events in the U.S. (Vesper et al., 

2001), only occurring after application of atrazine (Stueber and Criss, 2005). Similarly, in 

southwest England a positive correlation was observed between increased water levels 

and atrazine concentrations, which was explained by the remobilisation of historic pollution 

incidents (Lapworth and Gooddy, 2006). At the Gallusquelle spring a different behaviour 

can be observed, comparable to that of the EC, Ca2+ and Mg2+. In fact, the correlation of 

normalised (concentrations attain values between 1 and 0 for their maximum and minimum 

value respectively) atrazine concentrations with these parameters in normalised form yields 

values for R² of 0.6–0.7 (performing the same correlation calculations with NO3
– leads to 

values for R² of 0; scatter-diagrams for all parameters are provided in the appendix 

(Appendix A.2). From the correlation of the time-series of Ca2+, Mg2+, the EC and atrazine a 

similar origin can be deduced (Stueber and Criss, 2005). As Ca2+ and Mg2+ originate from 

the aquifer matrix, atrazine is inferred to be located within the aquifer material, i. e. inside 

the rock matrix. From here it is released slowly into the groundwater. This is in agreement 

with findings reported by Morasch (2013) who assigned the observed continuous low 

atrazine concentrations in a Swiss (where atrazine is still applied) karst aquifer system to its 

slow but steady release from the aquifer matrix. Please note, that sorption may partly affect 

the long-term fate of atrazine, but that the appearance of atrazine even after more than 20 

years in the investigated aquifer is more likely related to the slow groundwater flow rates 

inside the karst matrix and the resulting long residence times, while hardly or not affected 

by degradation (Johnson et al., 2000; Chilton et al., 2005). 

For desethylatrazine a time-series similar to atrazine, Ca2+, Mg2+ and the EC could be 

observed (Figure 3.2). But yet, it is different; a correlation of desethylatrazine with these 

parameters was significantly worse (R² between 0.2 and 0.4, details can be found in the 

Appendix A.2.). The arrival of rapid recharge after a precipitation event leads to decreasing 

concentrations of desethylatrazine and hence its origin can be concluded to be situated 

within the fissured rock matrix, too. However, the time-series seems to evolve a plateau 

before returning to its background concentration rapidly some time after the recharge 

event, instead of a slow and steady concentration increase. The slightly different behaviour 

of desethylatrazine to atrazine is difficult to assess and beyond the scope of this study. 
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Figure 3.4. Calculated discharge (Q) separation based on end-member mixing for desethylatrazine 
(DEA), atrazine (ATR), the inorganic ions Mg2+ and Ca2+ and the electrical conductivity (EC). 

3.3.2 Hydrograph separation 

For one event a hydrograph separation was performed, based on the dilution of the 

concentrations of atrazine, desethylatrazine, Ca2+ and Mg2+ and the EC. As end-member 

for the pre-storm water the background concentration/value of each parameter was used 

(illustrated in Figure 3.2). A sample of the precipitation contained 1.7 mg L–1 of Ca2+ and 

0.07 mg L–1 of Mg2+. As end-member for the rainwater a concentration/value of 0 is 

assumed for all parameters. This assumption seems legitimate as the observed 

concentrations are very low (< 1% of the background concentration) and it does not alter 

the determined fractions of the rainwater at the spring significantly. 

The results are illustrated in Figure 3.4. The calculated amount of rainwater reaching the 

spring over direct recharge is similar for the EC (maximum: 4.5%) and Ca2+ (maximum: 

6.5%). These values are in agreement with previously published results from Sauter 
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(1997), who stated the fraction of rapid recharge to be in the order of 5–10% based on 

δ18O-data. Using Mg2+ the determined amount of freshly introduced recharge is much 

larger (maximum: 32%). This observation may originate either from (i) unevenly distributed 

Mg2+ minerals (e. g. dolomite) in the subsurface, i. e. disproportional dilution of the Mg2+ 

concentration or (ii) slower dissolution of dolomite relative to calcite (Liu and Dreybrodt, 

2001). It is likely, that the extent of the dilution of the Mg2+ concentration is affected by both 

factors. For atrazine and desethylatrazine even higher dilutions can be observed. 

Consequently, a higher amount of rainfall reaching the spring over rapid recharge was 

calculated (maximum: 58% and 57% for atrazine and desethylatrazine, respectively). As 

atrazine was applied as herbicide on agriculturally used areas, the area of application can 

be estimated to be 14% of the catchment area at maximum (Sauter, 1992). Considering 

this fraction, it becomes evident that a larger dilution for atrazine is to be expected than for 

Ca2+ and the EC. Furthermore, the rain-component for atrazine is likely to be less 

influenced by equilibration with the subsurface as a consequence of the restricted areal 

distribution. 

Assuming the maximum dilution of the investigated parameters to be representative for 

their areal extend, one can estimate the latter (i. e. the magnitude of the maximum dilution 

is inversely proportional to the fraction of the catchment area over which the parameter is 

introduced into the system). As Ca2+ is believed to occur all over the catchment (i. e. 

100%), the area over which atrazine is introduced into the system can be estimated to 11% 

of the catchment area. This is in good agreement with the reported land use pattern at the 

time of the application of atrazine (Sauter, 1992). The same applies to desethylatrazine. 

3.3.3 Mass-balance for atrazine 

Atrazine use has been permitted in Germany from 1958 until its ban in 1992. The total 

amount of atrazine applied in the investigated area was estimated according to a report 

from the European Commission (Henriet et al., 1994). The following assumptions were 

made therein: 11.1% of the agriculturally used area (which is 14% for the investigated 

catchment (Sauter, 1992)) was used for maize, 90% of the fields were treated with atrazine 

at a mean dose rate of 1.5 kg ha–1, an additional 10% of atrazine is considered for other 

uses. Presuming a certain time lag until atrazine was applied as herbicide after its 

permission, 27 years (1965–1992) were assumed as the duration of application. The 

resulting total mass of atrazine, being applied in the investigated area was calculated to be 

approximately 2,800 kg. 

To assess the discharge of atrazine the mean concentration of atrazine in the investigation 

period was used as well as the mean spring discharge of 500 L s–1. Accordingly 37.8 g of 

atrazine were discharged in the course of the investigated year via the Gallusquelle spring. 

For an estimation of the total mass of discharged atrazine the following assumptions were 

made: the concentrations of atrazine were higher in the years 1992–2009 following the 
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same trend as in the data of Tappe et al. (2002), i. e. declining concentrations following an 

exponential decline with a decline-rate of 0.26 a–1. For the years 1965–1991 a constant 

discharge of atrazine is assumed which is equal to the estimated value for 1992 (3.8 kg a–1; 

a table with the estimated loads for the whole period is provided in the appendix (Table 

A.16). Over the years 1965–2010 a total discharge of 120 kg (around 4% of the applied 

mass) of non-metabolised atrazine can be estimated. The remaining 96% of the applied 

atrazine were either metabolised (e. g. Jablonowski et al., 2009) or still within the aquifer 

rock matrix. Both possibilities hold true since (i) it could be clearly demonstrated, that even 

after 20 years without application within the catchment the original compound is still 

detected in spring water and (ii) the metabolite desethylatrazine has been found in spring 

water, exhibiting a similar behaviour as atrazine. The estimation of the discharge of 

atrazine can be refined, taking a quantification of the discharge of desethylatrazine into 

account. For the calculation all assumptions were made, as stated above for atrazine. 

However, the concentration of desethylatrazine declines at a different rate, than the 

concentration of atrazine. The trend has been determined from the results of Tappe et al. 

(2002) to be 0.22 a–1. The total discharge of desethylatrazine in the years 1965–2010 can 

be calculated to be 77 kg, corresponding to 88 kg of atrazine. Please note that 

desethylatrazine is not an unambiguous degradation product, and that the calculation is 

hence, unambiguous as well. It must be understood as upper boundary estimation. Thus, a 

total of 120–208 kg of atrazine could be estimated to discharge at the Gallusquelle in the 

course of 45 years. This corresponds to 4–7.5% of the estimated total atrazine applied. 

These low values do no surprise, when taking the low to non-existent degradation rates 

(Johnson et al., 2000; Chilton et al., 2005) and the low leaching rates (Haria et al., 2003; 

Baran et al., 2008) of atrazine into account. Please note, that further degradation products 

may occur (Krutz et al., 2003), which have not been considered in the above estimation. 

3.4 Conclusion 

The concentration of metazachlor in spring water increases after precipitation events and 

decreases below the LOD within a short period as expected for herbicides. In contrast, the 

atrazine and desethylatrazine concentrations are diluted after precipitation events and 

return to their pre-event level. From the correlation with Ca2+ and Mg2+ it can be concluded, 

that atrazine is likely to be located within the aquifer matrix. This duality of transport in karst 

aquifers needs to be considered carefully, in order to achieve a successful and sustainable 

raw water management of karst springs: on the one hand, drinking water suppliers need to 

be aware of rapid recharge and the associated strong variations of raw water quality, which 

may arise from heavy precipitation or snow-melt events. On the other hand, special 

attention must be drawn to the high potential of karst aquifers for long-term storage. 

Potentially persistent substances or transformation products are prone to cause long-term 

contamination. Due to the high residence-time within the rock matrix, persistent 
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contaminants may influence the raw water quality for decades. Although atrazine was 

prohibited in Germany more than 20 years ago, its impact on the investigated karst aquifer 

is still detectable. A similarly long after-effect should be expected in any other region, where 

atrazine (or any other persistent contaminant) was or is still applied. 
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Abstract 

Little is known with respect to the attenuation capacity of karst aquifers. Even less is known 

about the risk posed by emerging micropollutants in these systems. In order to identify the 

attenuation potential of karst aquifers in-situ and to estimate the risk posed by 

micropollutants, a dualtracer test was conducted in this study in order to investigate 

differential transport in the subsurface: the reactive compound caffeine was used as a 

tracer to indicate the attenuation capacity within the aquifer in-situ. Due to the low limit of 

quantification, only small amounts of caffeine needed to be injected. To calibrate a model 

and to visualize the attenuation of caffeine a conservative reference tracer (uranine) is 

injected simultaneously. The methodology is tested in a well characterised karst system in 

southwest Germany. The results indicate a significantly higher attenuation rate than was 

expected for karst aquifers. The attenuation is described as a first-order process. The 

corresponding half-life is 104 h. This low half-life suggests that a generally assumed low 

natural attenuation capacity of karst aquifers is unjustified. The observed mass loss of 

caffeine illustrates the potential of caffeine to be used as reactive tracer for indicating in-situ 

attenuation capacity within highly hydraulically conductive systems, such as karst aquifers. 

Due to the high attenuation rate of caffeine it does not pose a threat as a long-time 

contaminant. In combination with a conservative reference tracer an economical and 

environmentally benign method is presented in this manuscript for the in-situ determination 

of the attenuation capacity of highly conductive aquifer systems. 
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4.1 Introduction 

Karst aquifers supply up to one quarter of the world’s population with drinking water (Ford 

and Williams, 2007). Karst springs are referred to as relatively unsafe drinking water 

sources: along solutionally widened flow paths contaminants can be transported rapidly 

from the land surface to a karst spring through the subsurface. In these conduits, flow 

velocities of several km d–1 were reported (e. g. Seiler et al., 1989). The resulting low 

residence times of the rapidly transported water reduces the potential of contaminant 

attenuation in case of a contamination. Einsiedl et al. (2009) estimated the vulnerability of a 

karst aquifer based on the residence time distribution. 

The biological activity of karst aquifers is believed to be little, as the nutrient offer is low, 

i. e. karst aquifers are oligotrophic environments (Gibert et al., 1994; Hirsch, 1986). 

However, very little is known with respect to the natural attenuation capacity of karst 

aquifers. As important drinking water sources a successful management and an estimation 

of the risk posed by (potential) contamination of karst aquifers is of public interest.  

Within the last decades micropollutants have been ubiquitously registered in all 

compartments of the environment (Schwarzenbach et al., 2006; Ternes, 2007). Several 

micropollutants have been used as indicators for contamination (Buerge et al., 2006; 

Gasser et al., 2010), but so far their fate in karst systems has rarely been addressed 

(Einsiedl et al., 2010). The lack of knowledge with respect to the fate of micropollutants and 

the known vulnerability of karst aquifers result in an unknown risk posed by emerging 

pollutants. 

To reliably assess the natural attenuation potential of a karst system, tracer experiments 

with reactive compounds can be employed. Haggerty et al. (2009) used the organic 

compound resazurin to quantify the metabolically active transient storage in a stream. 

Caffeine, as an often discussed micropollutant (Buerge et al., 2003; 2006; Swartz et al., 

2006), possesses promising sorption and degradation properties to determine the 

attenuation potential of a karst aquifer and therefore indicator properties for reactive 

transport at large. Caffeine is readily degradable in wastewater treatment plants. In lakes 

and porous aquifers the degradation was observed to be much lower (Buerge et al., 2003; 

Swartz et al., 2006). The German Federal Environment Agency classified caffeine as lowly 

water-hazardous (lowest hazard class). Within the context of controlled and specially 

designed experiments, the mass loss of caffeine has a potential to indicate the attenuation 

capacity of a karst aquifer along the tracer flow path.  

Mass loss of a tracer resulting from degradation and the respective quantification can be 

uniquely identified from the appearance of metabolic products or by the simultaneous 

injection of an inert reference tracer (i. e. multitracer test; Geyer et al., 2007). Since primary 

or secondary metabolites are unlikely to be produced by oligocarbotroph microorganisms 
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(Wainwright et al., 1993), and laboratory experimental observations indicate that 

degradation products cannot be expected from the degradation of caffeine (Kurtzman and 

Schwimmer, 1971; Mazzafera et al., 1996), an inert reference tracer, e. g. uranine, has to 

be used to determine the mass loss of caffeine in the investigated karst aquifer and 

therefore demonstrate the natural attenuation capacity of that system. 

This study presents results from a dualtracer experiment, employing caffeine as an 

indicator for the natural attenuation capacity of a karst aquifer. Apart from caffeine, uranine 

was injected simultaneously as inert reference tracer for model calibration. Transport 

parameters were estimated with the numerical modelling approach CXTFIT (Toride et al., 

1995). 

4.2 Materials and methods 

4.2.1 Dualtracer test 

The selected field site for the dualtracer experiment is located in the catchment area of the 

Gallusquelle spring in southwest Germany (Fig. 1). The spring drains a catchment area of 

approximately 45 km². Annual discharge averages to 500 L s–1, ranging from less than 100 

to 2500 L s–1. A small fraction of the outflow is expected to occur below the gauging station. 

Estimations of this discharge component range up to 200 L s–1. The general flow direction 

in the catchment is NW-SE. Hirsch (1986) stated groundwater to be oligotrophic, based on 

low concentrations of organic carbon (1–10 mg L–1). These conditions also apply for the 

investigated aquifer (1–3 mg L–1; Heinz et al., 2009), which is therefore classified to be 

oligotrophic. However, the accidental, irregular and event-based inflow of wastewater 

related micro-contaminants was demonstrated in previous studies (Heinz et al., 2009; 

Hillebrand et al., 2012; Nödler et al., 2012). 

A tracer experiment was performed on June, 27th 2011. A sinkhole 3 km northwest of the 

spring was selected as tracer injection location (Fig. 1). The characteristics of the sinkhole 

injection site were previously investigated by two artificial tracer tests (Birk et al., 2005; 

Geyer et al., 2007), which demonstrated the point-to-point connection between injection 

point and the Gallusquelle spring. The thickness of the unsaturated zone in the area of the 

sinkhole is approximately 100 m (Geyer et al., 2007). In order to minimize the influence of 

the unsaturated zone on the tracer injection and facilitate an introduction of the tracers into 

the conduit system, the sinkhole was flushed with tap water before and after the injection. 

Before the injection of the tracers 105 m³ of water was used (~4 h with a flow rate of 

6.9 L s–1) to temporarily obtain near saturated conditions along the flow path in the vadose 

zone. Shortly before injection the tracers (30 g of caffeine and 500 g of uranine) were 

dissolved in 1 m³ of tap water. The tracer injection was followed by 81 m³ of water to flush 
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the sinkhole over a period of ca. 3.5 h with a flow rate of 6.5 L s–1 to force the injected 

tracer cocktail through the unsaturated into the saturated zone. 

 

Figure 4.1. Catchment area of the Gallusquelle spring. The sinkhole for the injection of the tracers 
is located at a distance of 3000 m from the spring (from Birk et al., 2005). 

Uranine was simultaneously injected with caffeine since (i) uranine can easily be monitored 

online by a fluorometer providing an indication for the times when samples for the analysis 

of the caffeine concentrations need to be taken and (ii) uranine serves as a conservative 

reference tracer, i. e. it is neither retarded nor degraded (Geyer et al., 2007), to quantify the 

potential mass loss of caffeine. 

4.2.2 Sampling 

The uranine concentration was monitored over a period of 16 days with the field 

spectrofluorometer GGUN-FL30 (excitation: 470 nm, detection: wratten orange filter). The 

measuring interval was initially set to 10 min, and decreased to 1 min during tracer 

breakthrough (TBC). The detection limit for uranine in the investigated spring water is 

stated to be 0.02 µg L–1 (Geyer et al., 2007). As quantification limit, a threefold detection 

limit of 0.06 µg L–1 was assumed in this study. Concentrations below this value were set to 

zero. For the calibration of the device three calibration levels were prepared by 

subsequently diluting a uranine stock solution (1 mg L–1) with water from the Gallusquelle 

spring. The calibration levels were 1, 10 and 100 µg L–1. As no natural recharge occurred 

for the duration of the tracer test (no changes in turbidity) and the calibration was 

performed with spring water, interferences with fluorescent humic substances can be 

excluded to affect the quantification of uranine. 

Water samples to be analyzed for caffeine and selected metabolites were taken over a 

period of 7 days. In total 93 spring water samples were taken. The sampling interval for 
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caffeine varied between several hours and 10 min for the time of the increasing limb of the 

TBC, achieving a high temporal resolution of the caffeine TBC. The water samples were 

preconcentrated within a few hours (< 8 h) after sampling by solid phase extraction (SPE) 

as described in section 2.3.2. The volume of the spring water samples varied between 500, 

250 and 200 mL depending on the expected caffeine concentration, estimated from the 

measured uranine concentrations.  

The electrical conductivity and the turbidity of the spring water were monitored every 20 

min by a pre-installed multi-parameter probe system. The discharge of the Gallusquelle 

spring was acquired from a spring gauging station. 

4.2.3 Laboratory analysis 

4.2.3.1 Chemicals 

Methanol (LC/MS grade) and caffeine were purchased from Fisher Scientific (Schwerte, 

Germany), ethyl acetate and ammonium acetate (all analytical grade) were purchased from 

VWR (Darmstadt, Germany). Paraxanthine, paraxanthine-D6, theobromine, theophylline, 1-

methylxanthine and 3-methylxanthine were obtained from Sigma Aldrich (Steinheim, 

Germany). Uranine was purchased from Acros Organics (Geel, Belgium). 

4.2.3.2 Analysis of caffeine and its metabolites 

An analytical method based on SPE and high-performance liquid chromatographic 

separation with tandem mass spectrometric detection (HPLC/MS-MS) was used for the 

analysis of caffeine and its metabolites paraxanthine, theobromine, theophylline, 

1-methylxanthine and 3-methylxanthine. Details were published previously (Nödler et al., 

2010). In brief, 500 mL of sample volume was buffered at neutral pH (phosphate buffer) 

and extracted by SPE (500 mg OASIS HLB; Waters, Eschborn, Germany). Samples of 

smaller volume than 500 mL were filled up with ultrapure water. Prior to extraction, 400 ng 

of paraxanthine-D6 was added as internal standard for the quantification of the analytes. 

After extraction the sorbent was rinsed with ultrapure water and dried by drawing air 

through the cartridges under vacuum. The cartridges were wrapped in aluminium foil and 

kept frozen (–18 °C) until analysis. The analytes were eluted with methanol and ethyl 

acetate, successively. The solvents were evaporated and the dry residue was re-dissolved 

in 1 mL of an aqueous 5 mM ammonium acetate solution, containing 4% methanol. The 

method quantification limits (MQL) of the analyzed substances were: 4.3 ng L–1 (caffeine), 

3.2 ng L–1 (paraxanthine), 5.1 ng L–1 (theobromine), 3.4 ng L–1 (theophylline), 21 ng L–1 (1-

methylxanthine) and 28 ng L–1 (3-methylxanthine). 

Recovery rates for caffeine were determined by the extraction of 500 mL of the original 

spring water spiked at levels of 100 and 1000 ng L–1. The results were 109% (± 0.6%) and 
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100% (± 6.6%), respectively. The influence of uranine on the quantification of caffeine was 

investigated by analyzing 500 mL of spring water spiked with 1000 ng L–1 caffeine and 

30,000 ng L–1 uranine. No significant influence on the recovery rate of caffeine was 

observed. All experiments on recovery rates were conducted in duplicates. 

 

Figure 4.2. Tracer breakthrough curves of uranine (a) and caffeine (b) with their respective fitted 
models and residuals. For the graphical illustration of the uranine breakthrough only every 50th 
observation point is displayed. 

4.2.4 Modelling 

Birk et al. (2005) demonstrated that a simple advection-dispersion model (ADM) fails to 

reproduce the tailing of TBCs in the investigated karst aquifer. In order to achieve a better 

model fit and reliably interpret the TBCs of uranine and caffeine, the suggested non-

equilibrium ADM was applied for TBC interpretation: CXTFIT 2.0 (Toride et al., 1995) was 
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used as part of STANMOD (Simunek et al., 1999). The CXTFIT 2.0 code implements a 

uniaxial, two-region non-equilibrium transport model. Field and Pinsky (2000) introduced 

the application of two-region non-equilibrium transport models to analyze large scale 

artificial tracer tests in karst aquifers. The approach considers the fluid in a karst conduit as 

divided into a mobile and immobile (stagnant relative to the direction of flow) fluid region, 

described previously (Field and Pinsky, 2000; Hauns et al., 2001; Geyer et al., 2007). Thus 

immobile fluid regions are characterized by higher residence times, as the water is not 

displaced by plug flow. Possible immobile fluid regions are vortices and eddies resulting 

from irregular cross sections of the conduits. As input function for the model a pulse input 

was used, i. e. the input duration was assumed to be negligible in comparison to the total 

duration of the tracer test. 

Solute transport processes considered in this study include advection, dispersion, mass 

transfer between the two fluid regions (mobile and immobile), reversible sorption and tracer 

attenuation. The analytical equations for the one-dimensional, two-region non-equilibrium 

model are given as follows (modified from van Genuchten and Wagenet, 1989):  
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with the retardation coefficient, defined as: 

aKV

A
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Eq. 4.3 

for non-porous matrix blocks. β, the solute partitioning coefficient between mobile and 

immobile fluid regions is given as: 

R

Rfm )1( 

  

Eq. 4.4 

t is time, x is the space coordinate, D is the dispersion coefficient, v is the average flow 

velocity, α is a first-order mass transfer coefficient between mobile and immobile fluid 

regions. cm and cim are the solute concentrations in, µ1 and µ2 are first-order attenuation 

rates within the mobile and immobile fluid region respectively. In this study a uniform 

attenuation rate in the mobile and immobile region was considered (µ1=µ2=µ). θm is the 

volumetric fraction of the mobile fluid region, while θm+ θim=θ=1 for a fully saturated conduit, 

θim being the volumetric fraction of the immobile fluid region. A/V represents the surface to 

volume ratio of a karst conduit, Ka is the linear distribution coefficient defined as the ratio of 

tracer mass per unit surface area of the solid phase to the unit concentration of the tracer 
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within the conduit. The parameter f refers to the fraction of reversible adsorption sites that 

equilibrates with the mobile liquid phase. The retardation coefficient R captures the 

retardation of unpolar sorption as well as from reversible polar interactions as shown by 

Geyer et al. (2007). Rearranging Eq. 4.4 and inserting physically reasonable values for f 

(between 0 and 1) allows to constrain β (Geyer et al., 2007): 

RR
imm 

 1  
Eq. 4.5 

To reliably interpret TBCs of reactive tracers a step-wise calibration strategy can be applied 

(Geyer et al., 2007). Fitting the TBC of a conservative tracer yields estimates for the 

parameters v, D, α and θm. The application of uranine as conservative tracer in karst 

hydrology has been shown in several large scale field studies (Birk et al., 2005; Geyer et 

al., 2007). Conservative transport parameters can be assumed to be equal for conservative 

and reactive solute tracers (Geyer et al., 2007). Consequently, the calibration of the 

reactive transport model is reduced to the transport parameters R, β and the decay 

coefficient µ if a conservative reference tracer is applied simultaneously. 

As transport distance, the linear distance of 3000 m between the injection-point and the 

Gallusquelle spring was used. The initial values for v and D for the calibration of the model 

were derived from the method of moments, using the software QTRACER (U.S. EPA, 

2002). Estimates for α are not generally possible and the initial value for θm was obtained 

from the ratio of the mean tracer velocity and the peak tracer velocity (modified from Goltz 

and Roberts, 1988; Field and Pinsky, 2000). 

4.3 Results and discussion 

Precipitation events and associated infiltration can have an impact on the spring discharge 

and the flow regime in the aquifer, because they impose a temporally variable discharge 

rate. Therefore, the interpretation of TBCs becomes considerably more complex, since the 

mass flux of uranine and caffeine are calculated based on the spring discharge. To avoid 

these complications, the tracer test was performed during a dry spring recession period. 

During the whole investigation period spring discharge was relatively constant at ca. 175–

200 L s–1. Turbidity and electrical conductivity measurements were stable at 0.12 FNU and 

650 µS cm–1, demonstrating the absence of disrupting recharge events. 

Background effects with respect to caffeine in the spring water originating from wastewater 

infiltration can be excluded for the tracer test. The caffeine concentrations are 

comparatively small (Hillebrand et al., 2012) and the wastewater infiltration does not occur 

evenly distributed over time, but simultaneously to precipitation events (Musolff et al., 

2010), which were absent for the duration of the tracer test. 
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The mass recovery of injected uranine was found to be 49% (246 g). The mass loss of 

uranine was likely to be caused by groundwater discharge below the gauging station. 

Geyer et al. (2007) stated for the same catchment area that the proportion of mass loss 

increases with lower discharge. The observations of this study emphasize this finding. 

The recovered mass of injected caffeine was only 27%, indicating an additional mass loss 

in comparison to uranine, i. e. caffeine shows reactive transport behaviour in the 

investigated aquifer system. Furthermore, caffeine exhibited a longer tailing (Figure 4.2). 

While the recovery of the total uranine mass was achieved after 127.5 h, caffeine 

concentrations took 164 h before dropping below the limit of quantification after the tracer 

peak. This may be attributed to the lower limit of quantification for caffeine. However, the 

lower recovered mass and the smaller peak indicate a significant mass loss relative to the 

conservative tracer uranine. Irreversible sorption is unlikely to occur since caffeine is highly 

soluble (Gardinali and Zhao, 2002) and has a negative (−0.07; Maeng et al., 2011) log Kow 

(octanol-water partitioning coefficient). Several authors emphasize the degradability of 

caffeine and thus being the main process in its attenuation especially in treatment plants, 

but also in the environment. Buerge et al. (2003; 2006) calculated biodegradation rates of 

caffeine to be in the order of 0.003 to 0.006 d–1 in a lake. Swartz et al. (2006) observed 

caffeine degradation in a porous aquifer at a rate of 0.07 to 0.014 d–1. 

The metabolites of caffeine considered in the analytical method could only be found 

sporadically and at insignificant levels. The metabolites were either not detectable due to 

the high dilution, not produced during degradation, or metabolized further at a higher rate 

than caffeine. The latter is consistent with findings from laboratory experiments (Kurtzman 

and Schwimmer, 1971; Mazzafera et al. 1996). Moreover, Wainwright et al. (1993) stated 

the production of primary or secondary metabolites to be unlikely for oligocarbotrophs. Due 

to the high discharge, a decrease of oxygen concentrations or changes of the redox 

potential in the spring water cannot be resolved. 

In the model a general attenuation rate is determined, which is comprised of all possible 

mechanisms for the additional mass loss (e. g. degradation, irreversible sorption) of 

caffeine relative to the conservative reference tracer uranine. 

4.3.1 Modelling results 

Calibrating the model (using the TBC of uranine) resulted in a very good agreement 

between observed and fitted concentrations (Figure 4.2). The flow velocity v, dispersion 

coefficient D, volumetric fraction of the mobile fluid region θm as well as the mass transfer 

coefficient α (Table 4.1) are in good agreement with the results of a previously conducted 

study by Geyer et al. (2007). 
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In the model for the caffeine TBC the attenuation rate µ as well as solute-specific values for 

the retardation coefficient R and the partitioning coefficient β are considered additionally. 

Figure 4.2 and Table 4.1 show the estimated parameters for uranine and caffeine.  

The mass loss of caffeine was modelled by an attenuation rate of 0.0067 h–1 (i. e. a half-life 

of 104 h). This rate is surprisingly high in comparison to degradation values from the 

literature observed in a lake and a porous aquifer environment (Buerge et al., 2003; 2006; 

Swartz et al., 2006). The estimations of these authors for the half-life of caffeine range from 

weeks to months. In general it is assumed that bacteria are associated with sediment and 

rock surfaces (Holm et al., 1992). For karst aquifers the attenuation rate of caffeine was 

expected to be lower than the attenuation rate within the porous aquifer, as the contact 

area of water to the solid matrix, implying a reduced bacteria count for karst aquifers and 

less reactive interfaces. The relatively high attenuation rate may be related to the influence 

of wastewater leakage and the redox condition in the subsurface, as proposed by Bradley 

et al. (2007).  

 

Figure 4.3. Results of the sensitivity analysis for the parameters µ and R. The values were obtained 
from variations of parameters in the model for caffeine transport. Please note the different scales 
of the ordinates. µ= attenuation rate, R= retardation coefficient. The percentages above the graphs 
indicate the magnitude of variation of each parameter. 

The literature values on in-situ degradation of caffeine mentioned above refer to sub-oxic to 

anoxic conditions (Swartz et al., 2006) and to conditions with low oxygen (Buerge et al., 

2003; 2006). In the investigated aquifer oxic conditions prevail (data not shown). The 

increased degradability of caffeine under oxic conditions has been emphasized by Bradley 

et al. (2007). Furthermore, the investigated aquifer is known to be affected by wastewater 

leakage (Hillebrand et al., 2012; Nödler et al., 2012) and the periodical occurrence of 

overflow events of a wastewater retention basin (Heinz et al., 2009). With the percolating 

wastewater caffeine is introduced into the aquifer. The regular exposition of the aquifer 

bacteria to wastewater and therefore to caffeine may result in an adaption of the bacteria to 

caffeine or rather wastewater related micropollutants in general. This scenario and to a 

larger extent the sufficiently provided oxygen in the aquifer may explain the effective 

attenuation of caffeine observed during the tracer experiment. Moreover it is possible that 

the flow through the unsaturated zone affected the determined attenuation rates. 
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It has to be emphasized here that the attenuation rate determined for caffeine is an 

integrated value. No statements with respect to the temporal and spatial distribution can be 

made. The attenuation along the flow path may have occurred uniformly or at different 

rates.  

Table 4.1. Parameter estimates for a uniaxial, two-region nonequilibrium model to observed tracer 
breakthrough curves. 

Tracer Uranine Caffeine  

v (m h–1) 34.9 34.9 

D (m2 h–1) 135.2 135.2 

α (10–3 h–1) 8.91 8.91 

β (–) 0.9683 0.9340 

R (–) 1 1.046 

µ (h–1); T1/2 (h) 0 0.0067; 104 

r² 0.9997 0.9924 

RMSE (µg L–1) 0.487 0.027 

mm (g) 246 14.8 

m (g) 500 30 

v= average flow velocity; D= dispersion coefficient; α= mass transfer 
coefficient; β= partitioning coefficient between mobile and immobile fluid 
regions; R= retardation coefficient; r²= coefficient of determination; µ= first 
order attenuation rate; T1/2=half life; RMSE= root mean square error; 
mm= tracer injection mass used in the model; m= tracer mass injected into 
the sinkhole.  
Note: values in italics represent fitted values, while underlined values are 
prescribed values. 

A slight shift of the caffeine TBC peak was taken into account by a retardation coefficient of 

1.046. This value refers to the best fit of the model and may be affected by the scattering of 

the measured caffeine concentrations at the peak maximum. If the retardation is due to 

unpolar or polar interactions with organic carbon or the aquifer material cannot be 

determined. 

From the observed mass loss of caffeine relative to the conservative reference tracer 

uranine, an attenuation capacity of the aquifer along the flow path of the tracers can be 

deduced. The high attenuation rate highlights the potential of caffeine as groundwater 

tracer to indicate the natural attenuation potential even in rapid flowing systems. Due to its 

low limit of quantification, very little amounts of caffeine can be used while still producing a 

pronounced TBC. Together with the fluorometrically detectable uranine an inexpensive and 

environmentally benign method for the indication of the in-situ attenuation potential along 

the tracer flow path is presented. In contrast to laboratory experiments, this method 

determines the natural attenuation potential and the risk posed by micro-contaminants in 

aquifers in-situ. The complexity of the system is captured and considered by lumped 

parameters, i. e. spatially averaged values across the length of the whole flow path. 
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Figure 4.4. Effect of varying the attenuation rate µ in the model for caffeine. The higher the 
attenuation rate, the lower the peak and vice versa. The shape of the tracer breakthrough curve is 
not affected by the variation of the attenuation rate. 

4.3.2 Sensitivity analysis 

By varying single parameters and comparing the root mean square errors (RMSE), the 

sensitivity of the modelled concentrations to each parameter was assessed. Geyer et al. 

(2007) discussed the sensitivity of the model concentrations with respect to the parameters 

v, D, θm, α and β. The sensitivity of the model to the parameters µ and R were evaluated for 

caffeine (Figure 4.3). The parameter R is investigated, varying (R–1) instead of R, since the 

difference to 1 quantifies the shift of the TBC. The effect of varying the attenuation rate µ 

rate is illustrated in Figure 4.4. The higher the attenuation rate, the smaller is the peak and 

vice versa. Except for a shorter tailing for high attenuation rates, the shape of the TBC is 

not affected by changes in the attenuation rate. 

4.3.3 Implication 

The determined attenuation rates from the large scale artificial dualtracer test could be 

used to improve the estimation of wastewater volumes infiltrating the aquifer within the 

catchment area (Hillebrand et al., 2012). In that study wastewater volumes appearing in the 

spring water were quantified, employing caffeine concentrations. An attenuation of caffeine 

between source and spring was neglected as intrinsic attenuation data were missing. The 

mean rate of infiltrating wastewater was determined to be 2.2 ± 0.5 m³ d–1. Taking the here 

presented results into account, the impact of caffeine attenuation should be included in the 

wastewater impact estimation. Extending the formula stated by Hillebrand et al. (2012) with 

a first-order attenuation term leads to: 
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Eq. 4.6 

where WW is the volume of wastewater discharging at the spring per day; c the caffeine 

concentration at the spring; µ the first-order attenuation rate (0.0067 h–1); the mean 

residence time of wastewater in the subsurface t (115 ± 20 h); the daily water consumption 

per capita in the spring catchment WC (134 L d–1 person–1); spring discharge Q and the 

load of caffeine in untreated wastewater I (15.8 ± 3.8 mg d–1 person–1; Buerge et al., 2003). 

A mean wastewater infiltration rate of 4.7 ± 1.4 m³ d–1 could be calculated. The temporal 

distribution is shown in Figure 4.5. 

The sensitivity of the wastewater estimation method is affected by the effective attenuation 

of caffeine as well. Considering the method quantification limit of caffeine (4.3 ng L–1) and a 

mean spring discharge of 0.5 m³ s–1 the minimum volume of wastewater, which can be 

quantified is 3.4 ± 1.0 m³ d–1. 

 

Figure 4.5. Calculated volumes of wastewater at the investigated spring under consideration of the 
determined first-order attenuation term. Adapted from Hillebrand et al. (2012). 

4.4 Conclusion 

 A methodology to identify the attenuation potential of a karst aquifer is presented 

employing a dualtracer test with uranine and the reactive indicator caffeine. 

 Surprisingly high attenuation rates for caffeine indicate a higher attenuation potential 

of the investigated karst aquifer than expected. 

 To identify reactive transport and potential attenuation, the use of a conservative 

reference tracer (e. g. uranine) is a prerequisite. 

 The application of uranine and caffeine during a dualtracer experiment is an 

inexpensive and environmentally benign approach for the assessment of the in-situ 

attenuation potential even in rapidly flowing groundwater systems. 
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Abstract 

The increasing pressure on drinking water resources urges for the successful management 

of potential and actual drinking water bodies. Karst aquifers may play a key role supplying 

the world’s population with drinking water. Yet around one quarter of all drinking water is 

produced from these formations. Unfortunately these rapid systems are prone to 

contamination. For a successful management, a fundamental understanding concerning 

the transport and attenuation of possible contaminants is vital. In the here presented study, 

a multitracer experiment was performed for determining the attenuation potential of a karst 

environment by assessing the environmental fate of selected relevant micropollutants. 

Uranine, acesulfame and carbamazepine were injected into a sinkhole as reference tracers 

together with the reactive compounds atenolol, caffeine, cyclamate, ibuprofen and 

paracetamol (also known as acetaminophen). The arrival of the tracers was monitored at a 

karst spring in a distance of 3 km. The breakthrough curves of the reactive compounds 

were interpreted relative to the reference substances. No significant retardation was found 

for any of the investigated micropollutants. The determined half-lives of the reactive 

compounds range from 38 to 1400 h (i. e. persistent within the investigation period) in the 

following order (from high to no observed attenuation): 

paracetamol > atenolol ≈ ibuprofen > caffeine >> cyclamate. The attenuation rates are 

generally in agreement with studies from other environmental compartments. The 

occurrence of the biotransformation product atenolol acid served as evidence for the 

occurrence of in-situ biotransformation within the aquifer system. The results of this study 

highlight the yet underestimated attenuation potential of karst aquifers. 
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5.1 Introduction  

The necessity of clean water for mankind and life in general reached the public awareness 

at least since the UN declared the access to clean water a human right (U.N. General 

Assembly, 2010). This resolution inhibits not only the need of tapping safe water resources 

where necessary but to maintain the state of cleanliness of potential and actual drinking 

water resources as well. In western countries the supply with clean drinking water is not yet 

a problem. However, river as well as ground water has been registered to be affected by 

micropollutants (Hughes et al., 2013; Loos et al., 2009; Loos et al., 2010), reaching the 

aquatic environment over direct input of untreated wastewater (Kuroda et al., 2012; Musolff 

et al., 2010) or from incomplete elimination in wastewater treatment plants (WWTPs; Loos 

et al., 2013; Joss et al., 2006). 

Sorption and degradation were identified as significant mechanisms for the attenuation of 

micropollutants in the environment (Huntscha et al., 2013; Kunkel und Radke, 2012; 

Nakada et al., 2008). Often these parameters are assessed indirectly from empirical 

correlations (Franco and Trapp, 2008; Sabljic et al., 1995) or from laboratory experiments 

(Radjenovic et al., 2008; Schaffer et al., 2012a; Scheytt et al., 2005). However, the transfer 

of the results to natural environments is known to be difficult and defective (Buerge et al., 

2011) and the most accurate determination is to be found in the environment of interest 

itself, i. e. in-situ (Hillebrand et al., 2012a; Kunkel and Radke, 2011). 

As karst aquifer systems supply up to 25% of the world’s population with drinking water 

(Ford and Williams, 2007), the understanding of contaminant transport and fate in these 

systems is of vital importance. Due to their specific characteristics and high transport 

velocities, karst aquifers are particularly prone to contamination. Consequently, the 

vulnerability of karst aquifers is often estimated from residence time distributions (Einsiedl 

et al., 2009; Ozyurt, 2008). However, employing a dualtracer experiment with caffeine 

(CAF), Hillebrand et al. (2012a) demonstrated that even a low residence time within a karst 

aquifer system can lead to significant attenuation of selected contaminants. Yet, no 
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statement could be made, if biodegradation or any other process was responsible for the 

observed attenuation.  

The aim of this study was to remedy this shortcoming, verify the reproducibility of the 

attenuation of caffeine in a karst environment and examine the transferability of the results 

to other compounds by a multitracer experiment. Furthermore, the attenuation potential of 

karst aquifers should be evaluated by investigating the attenuation of caffeine, cyclamate 

(CYC), ibuprofen (IBU) and paracetamol (PAC, acetaminophen), which are encountered in 

high concentrations in wastewater (Lange et al., 2012; own unpublished results from 

investigations in the study area). Additionally to these 4 substances, the fate of atenolol 

(ATE) was investigated to detect possible biotransformation, as it is known to be 

biologically transformed to atenolol acid (AAC), which is a biologically recalcitrant 

transformation product (TP) (Radjenovic et al., 2008). For reference purposes, the stable 

compounds acesulfame (ACE) (Scheurer et al., 2011) and carbamazepine (CBZ) (Clara et 

al., 2004) as well as uranine were included in the list of tracers. 

5.2 Experimental section 

5.2.1 Chemicals 

Acesulfame potassium, atenolol and carbamazepine were purchased from TCI Europe 

(Zwijndrecht, Belgium), atenolol acid from LGC Promochem (Wesel, Germany), caffeine, 

paraxanthine, sodium cyclamate, ibuprofen sodium, theobromine, theophylline, 1-

methylxanthine and 3-methylxanthine from Sigma-Aldrich (Steinheim, Germany), 

paracetamol from Fagron (Barsbüttel, Germany), and uranine from Acros Organics (Geel, 

Belgium). 

The internal standards (IS) paraxanthine-D6, theobromine-D6, caffeine-D9, atenolol-D7, and 

ibuprofen-D3 were purchased from Sigma-Aldrich, (Steinheim, Germany). Acesulfame-D4 

was from Campro Scientific (Berlin, Germany). Carbamazepine-D10, cyclamate-D11, and 

paracetamol-D4 were purchased from LGC Promochem (Wesel, Germany). An IS-mix with 

25 ng µL−1 of each substance was prepared in acetonitrile.  
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Figure 5.1. Catchment of the Gallusquelle spring. The tracers were injected into a sinkhole in a 
linear distance of 3 km to the sampling point (Gallusquelle; modified from Hillebrand et al., 2014). 

5.2.2 Multitracer experiment 

The tracer experiment was carried out at the Gallusquelle, a karst spring in SW-Germany 

(Figure 5.1). Its average annual discharge is 500 L s–1 (100–2500 L s–1), draining a 

catchment of 45 km². The spring water is used for drinking water production. The aquifer 

system and spring water quality is known to be affected by irregular leakage of untreated 

wastewater (Hillebrand et al., 2012b; Nödler et al., 2012).  

For tracer injection a sinkhole at a distance of 3 km to the spring was used. The point-to-

point connection of the sinkhole with the spring has been demonstrated in previous studies 

(Geyer et al., 2007; Hillebrand et al., 2012a). As the unsaturated zone has a thickness of 

100 m (Geyer et al., 2007), flushing of the sinkhole before and after the injection of the 

tracers was necessary. For flushing, 88 m³ of tap water were used respectively (~3.5 h). 

One hour before injection the tracers were dissolved in a container with ~850 L of drinking 

water. The injected masses of the tracers are shown in Table 5.1. The injection of the 

tracers took 15 minutes. The container was rinsed thoroughly with drinking water. 

Table 5.1. Injected and recovered masses of all analytes. 

Tracer Uranine ACE CYC CBZ ATE CAF IBU PAC 
Injected mass (g) 700.0 24.3 26.7 10.0 30.0 30.0 30.0 30.0 
Recovered mass (%) 66.2 67.8 63.8 61.2 30.6 41.1 31.3 17.6 
Recovered mass (%)a 100 100 94.1 100 50 67.2 51.1 28.8 

arelative to the respective reference tracer. 

 

69 



Chapter 5 – Multitracer experiment 

70 

Uranine was used as a conservative tracer to detect possible retardation of any of the 

micropollutants. The concentration of uranine was monitored online with the field 

spectrofluorometer GGUN-FL30 (excitation: 470 nm, detection: wratten orange filter; limit of 

quantification: 100 ng L−1). Spring water temperature (T), turbidity and electrical 

conductivity (EC) were monitored by a multiparameter probe at an interval of 20 minutes. 

The spring discharge was obtained from water level readings and transformed to discharge 

applying a rating curve. The spring discharge (275 L s−1), T, and the EC were constant 

during the experiment. The turbidity exhibited a peak prior to the arrival of the tracers, 

which was likely caused by the flushing of the sinkhole. However, as the turbidity was very 

low (0.03–0.12 NTU), there was no impact on the detection of uranine. 

For the analysis of the micropollutants, spring water was sampled in 0.5 L bottles (clear 

glass, screw cap). The sampling frequency was adjusted to the uranine reading of the 

fluorometer. During the main breakthrough (from the beginning to 94% of the total 

recovered uranine mass) samples were collected every 0.5 h. Afterwards, the sampling 

frequency was gradually decreased to 1 sample every 4, 8, and later on 12 h. In total, 76 

samples were collected.  

5.2.3 Solid phase extraction (SPE) and analysis of micropollutants 

For the extraction 500 mL of sample was spiked with 10 µL of the IS-mix and 5 mL of a 

phosphate buffer concentrate (neutral pH; Nödler et al., 2010). The micropollutants were 

extracted by using the stacked-cartridges-approach (combination of OASIS HLB and WAX) 

as described by Nödler et al. (2013). The artificial sweeteners were extracted by the WAX 

sorbent whereas all other micropollutants were retained on the HLB sorbent material. The 

extraction was performed within 12 h after sampling and the dried SPE cartridges were 

frozen (−18 °C) until analysis. This method was proved to be an adequate approach 

regarding sample stabilisation (Hillebrand et al., 2013).  

Prior to analysis, ACE and CYC were eluted according to Nödler et al. (2013). All other 

analytes were eluted according to Nödler et al. (2010). Detection and quantification of the 

analytes were conducted by high-performance liquid chromatography combined with 

electrospray ionisation and tandem mass-spectrometry (HPLC-ESI-MS/MS). Two different 
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analytical methods were applied: Method 1 for ATE, CAF, CBZ, IBU, PAC, the 

transformation products (TPs) 1-methylxanthine, 3-methylxanthine, atenolol acid (AAC), 

paraxanthine, theobromine, and theophylline; method 2 for ACE and CYC. Details 

regarding instrumentation, chromatographic conditions, and MS/MS-parameters can be 

found in the appendix (Appendix A.3). 

For the calibration artificial samples containing all analytes were prepared in ultrapure 

water and processed according the spring water samples (i. e. including the extraction 

process). Seven calibration levels were prepared covering concentration ranges of 10–

2000 ng L−1 for ACE, CAF, IBU, ATE, CYC, and PAC, 5–1000 ng L−1 for CBZ, and 2–

400 ng L−1 for the TPs. The correlation coefficients for all compounds exceeded 0.99 and 

the relative standard deviation (RSD) was < 5%.  

5.2.4 Quality assurance 

A small aliquot (1 mL) of the injected tracer solution was diluted with spring water according 

to the linear range of the methods. This sample of the initial concentration (c0) was 

extracted and analysed as previously described. To determine the exact volume of tracer 

solution and thus the dilution factor and corresponding concentrations of the injected 

micropollutants, uranine was analysed directly with the fluorometer. Except for ATE (109%) 

the recoveries of all injected micropollutants in the c0 were 98–104%. 

5.2.5 Calculations and modeling 

The recovered masses of all investigated analytes have been determined by integration 

applying the trapezoidal rule.  

For breakthrough-curve (BTC) interpretation a uniaxial two-region non-equilibrium 

advection dispersion model has been employed with CXTFit 2.0 (Toride et al., 1995). The 

analytical equations for this model are given as follow (modified from van Genuchten and 

Wagenet, 1989): 
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Eq. 5.2 

with x being the space coordinate, t is the time, cm and cim are the solute concentrations in 

the mobile and immobile fluid region, µ1 and µ2 are first order attenuation rates in the two 

regions respectively. All other parameters are defined in Table 5.2. Details on the model 

can be found in former studies (Field and Pinsky 2000; Geyer et al., 2007; Hauns et al., 

2001; Hillebrand et al., 2012a) or in the appendix (Appendix A.4). 

The tracer injection is implemented in the model as a pulse input, i. e. the duration of the 

injection is assumed to be negligible compared to the duration of the tracer experiment. For 

the interpretation of the BTCs of the reactive tracers, a step-wise calibration strategy was 

applied (Geyer et al., 2007; Hillebrand et al., 2012a): conservative transport parameters 

(e. g. transport velocity or dispersion) were determined from the BTCs of conservative 

reference tracers. ACE and CBZ are known for their persistency and conservative transport 

behaviour (Clara et al., 2004; Lam et al., 2004; Scheurer et al., 2011). They were used as 

reference substances for the remaining analytes of the two analytical methods: ACE served 

as reference for CYC; CBZ was used as reference for ATE, CAF, IBU, and PAC. These 

parameters were then kept constant for the interpretation concerning the attenuation rates 

of the reactive tracers. The injected mass of the reactive tracers was normalised to the 

recovery of the reference tracer (see Table 5.2). The recovered mass of the reference 

tracers was then set to be 100% (i. e. processes affecting all analytes, even the 

conservatives, are excluded from further interpretation). This procedure allows for the 

interpretation of reactive tracers, relative to conservative reference tracers. 

As initial values for the fitting parameters, values from Hillebrand et al. (2012a) were used 

for uranine. For ACE and CBZ the results from the BTC of uranine were employed. The 

attenuation rate is considered to be identical for the mobile and immobile fluid region. The 

determined first order attenuation rate for the reactive tracers comprises all possible 
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mechanisms (e. g. degradation, hydrolysis, (irreversible) sorption) leading to a lower 

recovered mass than the respective reference tracer. 

5.3 Results and discussion 

5.3.1 Mass recoveries of reference tracers 

The recovered masses of all analytes are shown in Table 5.1. The mass loss of uranine is 

likely to be related to discharge occurring below the gauging station (Geyer et al., 2007). 

From the monitored discharge and the recovered mass of uranine, this fraction can be 

calculated to be around 140 L s‒1, which is in good agreement with previous estimations 

(Sauter, 1992). 

For the two reference tracers ACE and CBZ similar recoveries were observed. Please note, 

that for both reference substances background concentrations (18 ng L‒1 for ACE, 3 ng L‒1 

for CBZ) existed. The monitored BTCs were corrected by subtracting the background 

concentrations. Due to the absence of recharge events, additional background effects can 

be excluded for any of the analytes (Hillebrand et al., 2012a).  

5.3.2 Model results 

The results from the modeling are illustrated in Table 5.2. For all BTCs correlation 

coefficients R² > 0.96 have been realised. 

5.3.2.1 Retardation of the investigated micropollutants 

Applying the model, the retardation coefficient R has never exceeded 1.01 for any analyte, 

although a significant retardation was observed for some of the tracers in experiments with 

sediment (Schaffer et al., 2012a; 2012b). Consequently, it has been set to 1 and kept 

constant during all subsequent fitting procedures. With R being kept constant the 

parameter β was kept constant as well, yet fitted for each analytical method separately.  

Although a variety of substances has been used as tracers, the fitting of the BTCs revealed 

only minor variations (maximum ± 7%) for the investigated transport parameters (v, D, β, α 

and R). If only the transport behaviour is to be investigated, neglecting the attenuation of a 
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substance in a karst environment, a conservative reference tracer seems to yield 

sufficiently accurate estimations. 

Table 5.2. Modeling results for all injected tracers. 

Tracer Uranine ACE CYC CBZ ATE CAF IBU PAC 
v (m h‒1) 49.3 49.5 49.5 48.4 48.4 48.4 48.4 48.4 
D (m² h‒1) 218 209 209 233 233 233 233 233 
β (‒) 0.965 0.967 0.967 0.952 0.952 0.952 0.952 0.952 
α (h‒1) 0.0070 0.0076 0.0076 0.0067 0.0067 0.0067 0.0067 0.0067 
t1/2 (h) ‒ ‒ 1366 ‒ 61.8 89.1 79.9 37.5 
R² (‒) 0.999 0.999 0.997 0.996 0.990 0.974 0.968 0.966 
mm (g) 463.4 16.4 18.0 6.2 18.7 18.7 18.7 18.7 
v= average flow velocity; D=dispersion coefficient; β= partitioning coefficient between the mobile and immobile 
fluid region; α= mass transfer coefficient between the mobile and immobile fluid region; t1/2= half-life; R²= 
coefficient of determination; mm= injected tracer mass used in the model (which equals the observed recovery for 
Uranine, ACE and CBZ). 
Note: bold values are fitted, underlined values are prescribed values.  

 

Figure 5.2. Observed and fitted BTCs for the artificial sweeteners ACE and CYC. The 
concentrations are normalised to the injected mass and the maximum concentration of ACE. 

5.3.2.2 Attenuation of atenolol 

ATE is known to be readily affected by biodegradation under aerobic (Radjenovic et al., 

2008) conditions. In their study, AAC has been shown to be persistent under aerobic 

conditions for at least 25 days, allowing for a reliable estimation of the role of 

biotransformation in the attenuation process of ATE in karst. They performed batch 

experiments with activated sludge and different concentrations of ATE and observed 40–

60% (i. e. <100%) of ATE to be metabolised to AAC. The observed half-life of ATE in that 

study was in the same order of magnitude as in the here presented study. In the 

investigated karst system, at least parts of the observed attenuation of ATE can clearly be 

attributed to biotransformation, as the TP AAC has been found simultaneously to the arrival 
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of ATE (Figure 5.3a). From the modelling results and mass-balance calculations 9.5% of 

the mass loss of ATE (relative to the reference tracer CBZ) can be directly attributed to 

biotransformation. The remaining 90.5% of the mass loss must be attributed to other 

biotransformation pathways or attenuation processes. 

Please note that ATE is a chiral substance and the racemate was injected. Kasprzyk-

Hordern and Baker (2012) observed stereoselective degradation of ATE leading to an 

enrichment of the R-form in wastewater treatment plants and the inverse, i. e. an 

enrichment of S-ATE, with the flow of a river. The observed attenuation rate of ATE in the 

here presented study must be considered as an average of possibly two independent 

attenuation rates. If one enantiomer is attenuated at a higher rate than the other, a 

decreasing attenuation rate is to be expected with time, approximating the lower of the two 

attenuation rates. 

5.3.2.3 Attenuation of caffeine and cyclamate 

The half-life of CAF found in this study corresponds well with the determined half-life from a 

previous study (89 vs. 104 h; Hillebrand et al., 2012a). The remarkable reproducibility of the 

results underlines the reliability and stability of the determined attenuation rates. Similarly to 

the study of Hillebrand et al., (2012a), none of the investigated transformation products 

(mono- and dimethylxanthines) were detected in spring water during the breakthrough of 

the tracers. This does not imply that biodegradation is not involved, but that a further 

distinction of the attenuation process cannot be made. Possible explanations for the 

absence of the selected transformation products involve (i) faster degradation rates of the 

transformation products than of the parent compound, (ii) transformation pathways that 

lead to TPs, which are not considered in the list of analytes. However, knowing for the 

possibility of biotransformation within the investigated karst system, that was inferred from 

the occurrence of AAC (see section 5.3.2.2), and the biotransformability of CAF (Benotti 

and Brownawell, 2009), it is likely that biodegradation is an important attenuation process 

for CAF in the investigated karst system. 

Scheurer et al. (2009, 2010) observed rapid degradation of CYC during soil aquifer 

treatment and in fixed-bed bioreactors after a lag-phase of about one week. For the in-situ 
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attenuation in a karst aquifer generally a lower value should be expected. Considering the 

short residence time of the tracers within the subsurface during the performed tracer 

experiment, no attenuation of CYC was expected. In fact, fitting the observed BTC of CYC 

with the two-region model approach leads to a very high half-life (Table 5.2), which is about 

three times larger than for sterilised soil (Buerge et al., 2011). The lower recovered mass of 

CYC in comparison to ACE (Figure 5.2, Table 5.1) is therefore termed insignificant. The 

determined attenuation rate is likely to be unreliable as the residence time within the karst 

system was too low. Taking a possible lag-phase into account, an estimated travel time of 

several weeks would be required to assess the attenuation potential of karst aquifers for 

CYC by a tracer experiment. 

 

Figure 5.3. Observed and fitted BTCs for (a) CBZ, ATE and AAC and (b) CBZ, IBU, CAF and PAC. 
The concentrations are normalised to the injected mass of the analyte (for AAC the injected mass 
of ATE was used) and the maximum concentration of CBZ. 
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CAF and CYC have both been proposed to be used as indicators for untreated wastewater 

(Hillebrand et al., 2012b; Tran et al., 2014). However, CYC may be a more sensitive 

indicator as (i) its concentration in wastewater is similar to the concentration of CAF 

(Buerge et al., 2003; Lange et al., 2012;), (ii) it is degradable in wastewater treatment 

plants (Lange et al., 2012), (iii) a long-term stability is not to be expected (Lange et al., 

2012) and (iv) on a short time-scale no significant attenuation occurs (this study). Yet, as a 

consequence of the higher stability of CYC, its detection does not necessarily indicate a 

recent input of wastewater to the investigated karst system. A combined application of CAF 

and CYC as indicators is therefore recommended, allowing for an unambiguous and 

sensitive detection of a contamination with untreated wastewater. 

5.3.2.4 Attenuation of ibuprofen and paracetamol 

For these two reactive tracers good attenuation rates have been observed. In a 

comparative study with diclofenac and IBU a lower recovery was observed for IBU than for 

diclofenac in a karst aquifer, which was explained by occurring but yet ineffective 

biodegradation (Einsiedl et al., 2010). In the here presented study the half-life of IBU within 

the investigated karst system was in the same order as of CAF. This low half-life surprised, 

as for an estuary and incubation laboratory experiments at 25 °C half-lives of 48‒96 h have 

been reported (Nakada et al., 2008). The half-life determined for a karst aquifer in the here 

presented study is similar, although at a significantly lower ambient T of about 8 °C 

(Hillebrand et al., 2012b). This emphasises the potentially high attenuation rate that can 

occur within a karst aquifer system. 

Similar to ATE the chirality of IBU must be considered. Poiger et al. (2003) observed 

stereoselective degradation, S-IBU being faster degraded than R-IBU in WWTPs. Hence, 

the observed attenuation rate for IBU must be considered as an average of possibly two 

independent attenuation rates. 

The lowest half-life and therefore the highest attenuation rate of all analytes was observed 

for PAC. However, it appears to be nearly twice as persistent in the observed karst aquifer, 

than in aquatic outdoor field microcosms (with fish, aquatic plants, plankton and bacteria) 

(Lam et al., 2004). Whether the difference is related to a difference in the ambient T or to 
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differing fauna/flora can not be clarified with certainty in this study. Yet, it should be 

stressed that the low half-life in the observed karst aquifer is higher than in the above cited 

study, which is in agreement with the commonly expected decreased attenuation potential 

of karst in comparison to other natural systems. 

5.3.2.5 Comparison of attenuation rates 

The investigated organic micropollutants can be put in an order concerning their tendency 

to be attenuated in karst. From high (t1/2= 37 h) to no attenuation: 

PAC > ATE ≈ IBU > CAF >> CYC. Comparing this result to other studies, requires 

comparative studies, i. e. single studies investigating more than one of the above named 

micropollutants, as results for single substances from different studies can not necessarily 

be compared to one another. For karst aquifers no such comparative studies exist to the 

knowledge of the authors. For other environmental compartments the 

attenuation/degradation rates are generally high for CAF, IBU and PAC, while the order of 

these three substances varies. (Benotti and Brownawell, 2009; Castiglioni et al., 2006; 

Kunkel and Radke, 2011; Lam et al., 2004; Maeng et al., 2011). For ATE very little 

comparative information can be found concerning its half-life in the environment. In a 

riverine system a similar recovery could be observed as for IBU (Castiglioni et al., 2006), 

which is in good agreement with the results of this study. However, data from a river are 

likely to be affected by photodegradation (e. g. Matamoros et al., 2008; Zeng et al., 2012), 

which is obviously irrelevant for groundwater systems. 

The low half-lives observed in this study for a variety of micropollutants in a karst aquifer 

are similar to those observed in studies for other systems (Benotti and Brownawell, 2009; 

Lam et al., 2004). This underlines the finding of Hillebrand et al. (2012a), that a much 

higher attenuation rate should be expected for karst aquifers, than is done so far. However, 

in a river stretch a significantly lower half-life for IBU was observed employing a multitracer 

experiment (Kunkel and Radke, 2011). 

From the results of this study it seems legitimate to transfer the attenuation potential of a 

karst aquifer for one of the reactive tracers to the others. However, possible lag-phases 

have to be considered for the estimation of the short-term fate of reactive compounds. 
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5.4 Conclusions 

 Retardation seems to be an irrelevant attenuation process for any of the compounds 

in the investigated karst aquifer.  

 Readily degradable substances (ATE, CAF, IBU, PAC) exhibit high attenuation rates 

(low half-lives). 

 Biotransformation was observed for ATE, highlighting the biological activity in the 

investigated karst system. It is likely, that biodegradation is an important process in 

the attenuation of CAF, PAC and IBU. 

 Insignificant attenuation was observed for the more persistent compound CYC. 

 Despite the rapid flow and transport within the karst aquifer, significant mitigation of 

contaminants can be observed. 
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Chapter 6 

6 General conclusions and perspective 

Owing to their heterogeneity and complexity of flow and transport processes, karst aquifers 

are difficult to characterise with conventional hydrogeological methods. Employing organic 

micropollutants as tracers and specific indicators are promising approaches to improve the 

fundamental understanding of these systems. They can be used as tracers in the context of 

artificial tracer tests to investigate the attenuation potential of karst aquifers and 

demonstrate the relative importance of individual attenuation processes, and they can be 

used as indicators, according to the definition of Licha (2013). As such they allow for the 

identification of transport paths, flow components and the estimation of the long-term 

storage potential of karst aquifers. This information provides valuable insights into the fate 

and transport processes occurring within karst systems and is vital for, e. g., the setup of 

predictive models and the estimation of the vulnerability of karst systems. 

6.1 Stabilisation of water samples 

The concentrations of compounds in water samples may change after the sample was 

collected. If the immediate analysis of water samples is not possible, proper stabilisation 

and storage of the samples is essential in order to obtain reliable actual concentrations of 

the investigated compounds. For the preservation and handling of water samples specific 

guidelines are available for various parameters (DIN EN ISO 5667-3, 2012). However, little 

information exists on strategies for the stabilisation of organic micropollutants in water 

samples. 

The influence of different storage temperatures and stabilisation approaches for 46 organic 

micropollutants has been evaluated for river water as well as treated effluent. In non-

stabilised water samples 60% of the analytes exhibited unacceptable recoveries (< 80% 

relative to the frozen reference sample) at the end of the investigation period in both water 

matrices. This highlights the need for reliable sample stabilisation strategies. For river water 

generally better recoveries of the analytes were observed than for treated effluent. This is 

likely an effect related to the larger number of microorganisms in treated effluent and the 

fact, that microorganisms in treated effluent are already adapted. However, for some 
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analytes higher losses were observed for the river water than for the treated effluent. Lower 

storage temperatures and shorter storage durations result in higher recoveries. 

Among the three investigated stabilisation approaches, the addition of copper sulphate 

proved to be unsuitable. Better results could be achieved by the addition of sodium azide, 

which resulted in higher recoveries for most analytes in comparison to the non-stabilised 

samples. However, for some analytes worse recoveries were observed. This may be due to 

interactions with the azide anion that has been described by several authors, or due to 

further cross-reactions. The best results could be achieved by the immediate processing of 

the samples by SPE. Storing the cartridges at 28 °C successfully stabilised 33 of the 46 

analytes for 10 days. Storing the cartridges at 4 °C stabilised all investigated analytes over 

the whole investigation period of 20 days. The reduction of the water content and storage at 

low temperatures seems to mitigate all relevant processes that affect the recovery of the 

investigated compounds.  

Even though the processing of the water samples by SPE involves a higher amount of work 

than the addition of sodium azide it is the most promising of the investigated approaches 

and has a further benefit: depending on the sampled volume of water the size and weight of 

the samples can be reduced significantly. To allow for SPE in remote areas, appropriate 

technologies have been developed (Moraes et al., 2003). Further research might aim for 

even more successful stabilisation techniques obviating the need for low storage 

temperatures. 

Although the investigated micropollutants comprise a large variety of readily degradable 

and highly persistent compounds, the results of the study are not directly transferable to 

other organic micropollutants without further investigation. Depending on the subject of a 

study, the selection of analytes and external circumstances, like ambient temperature or 

access to cooling devices, an investigation of an appropriate stabilisation strategy is 

required. In any case the necessity for sample stabilisation needs to be considered in order 

to obtain reliable information on compounds concentrations in water samples.  

6.2 Long-term storage potential of karst aquifers 

Karst aquifers are often considered as rapid systems, referring to the possibility of fast 

percolation, flow and transport that can be observed in karst aquifer systems. While this 

fast flow component is certainly important, especially for the estimation of the microbial 

vulnerability of a karst system, the long-term storage potential of the aquifer matrix needs 

consideration as well. Contaminants can be transported into the fissured aquifer matrix with 

the percolating rainwater or in the course of exchange processes of the conduit system with 

the aquifer matrix. From here the contaminants can be released slowly into the conduit 

system and transported to the spring. As a result of the slow flow and transport within the 
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aquifer matrix, this process may take decades and the contaminants can be detected in 

spring water for long durations. 

To characterise the long-term storage potential of a German karst aquifer two herbicides 

and one degradation product (atrazine, metazachlor and desethylatrazine) were employed 

as indicators, investigating the time-series of these compounds. Although for the two 

herbicides initially a similar input scenario can be assumed (both herbicides are likely to 

reach the groundwater after application on agricultural areas), different behaviour after 

recharge events can be observed at the investigated karst spring. Metazachlor is still 

applied in the catchment and can only be detected in the spring water shortly after recharge 

events and is therefore likely to be transported to the spring via concentrated recharge and 

conduit flow. No background concentration could be observed. Contrary, the application of 

atrazine has been prohibited in Germany more than 20 years ago and it can almost always 

be detected in spring water of the Gallusquelle. From the correlation with Ca2+ and Mg2+ it 

can be concluded that the detected atrazine and its degradation product desethylatrazine 

nowadays originate from the (fissured) aquifer matrix.  

Compounds that are transported through the aquifer matrix are diluted and possibly 

degraded. To allow for the detection of a compound that is transported along this path, the 

compound needs to be introduced into the environment in sufficient quantity and 

degradation processes need to be negligible. In fact, two compounds that are known for 

their low degradability exhibit a background concentration in the spring water as well. For 

the artificial sweetener acesulfame and the anticonvulsant carbamazepine background 

concentrations of 20 and 3 ng L–1, respectively, are observed, suggesting that both 

compounds are slowly released from the aquifer matrix into the conduit system. For 

acesulfame a similar behaviour as described for atrazine can be observed (unpublished 

data). Even if carbamazepine or acesulfame would be banned, these compounds were 

likely to be detectable in spring water for a considerable time. 

The above described phenomenon is only expected for persistent compounds. Hence, a 

long-term impact of organic micropollutants on spring water quality can be prevented by 

preventing the release of persistent organic micropollutants to the environment. The 

European Parliament, the Council of the European Union and the European Commission 

already agreed, that until 2020 chemicals should be produced that do not have severe 

impact on the environment (EU, 2002). In the course of the registration procedure of the 

European Communities for new veterinary and human pharmaceuticals the investigation of 

their environmental sustainability is required by law. Inacceptable environmental risks are 

sufficient for a refusal of the compound in the case of veterinary pharmaceuticals (EU, 

2001a; EU, 2004a) but not for human pharmaceuticals (EU, 2001b; EU 2004b). For human 

pharmaceuticals measures, such as ‘ecolabeling’, have been suggested in the scientific 

literature (Joss et al., 2006; Joss et al., 2008; Kümmerer et al., 2010; Wennmalm and 

Gunnarsson, 2005). Similar efforts and suggestions are part of ‘green chemistry’. 
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Considering the environmental fate in the course of compound design apart from its 

functionality or choosing the environmentally more benign compound for otherwise similarly 

effective agents are promising approaches on long- and short-term respectively to 

overcome the above illustrated difficulties related to the storage potential of karst aquifers 

and environmental pollution with so-called organic micropollutants in general.  

6.3 Attenuation potential during conduit transport 

The potential for contaminant attenuation during transport in karst conduits is believed to be 

low. Factors, such as high transport velocity and low surface to volume ratio are considered 

to reduce the potential for contaminant sorption and degradation significantly. However, 

studies investigating the actual attenuation potential of karst aquifers are scarce. 

A methodology has been developed, to identify the attenuation potential during transport in 

karst conduits employing a dualtracer experiment with the conservative tracer uranine and 

the reactive tracer caffeine. The readily biodegradable caffeine allows for the 

environmentally benign assessment of the in-situ attenuation potential even in groundwater 

systems that are characterised by rapid flow and transport. The result was verified by a 

multitracer experiment, employing a total of 8 tracers to investigate differentiated transport. 

Uranine, acesulfame and carbamazepine were used as reference tracers, while atenolol, 

caffeine, cyclamate, ibuprofen and paracetamol served as reactive tracers. The reactive 

compounds are usually readily biodegraded in wastewater treatment plants indicating their 

susceptibility to biodegradation in general. The list of tracers comprises organic anions, 

cations and uncharged species. 

The attenuation rate of caffeine determined in the course of the dualtracer experiment was 

0.0067 h–1 (corresponding to a half-life of t1/2= 104 h). This was surprisingly high and 

indicates potentially good attenuation of contaminants during transport in karst conduits. 

The half-lives of the reactive tracers atenolol, caffeine, ibuprofen and paracetamol 

determined in the course of the multitracer experiment were 38–89 h, confirming the 

potentially good attenuation during transport in karst conduits. From the simultaneous 

occurrence of the biotransformation product atenolol acid in the spring water, it can be 

concluded, that biotransformation is one important degradation process in karst conduits. 

Contrary to the other reactive tracers, cyclamate was not affected by attenuation. This 

highlights the existing limits for attenuation during transport in karst conduits. The observed 

attenuation rates are in agreement with those that have been described for other natural 

and pseudo-natural systems in the scientific literature. Neither in the dualtracer experiment, 

nor in the multitracer experiment retardation was observed for any of the tracers.  

Despite the rapid transport and low surface areas a significant attenuation was observed 

for some readily degradable compounds in the conduit system of the investigated karst 

aquifer. Biotransformation was shown to be an important degradation process for atenolol 
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and is likely to be a relevant process for the other attenuated tracers as well. It could not be 

clarified if other processes are involved in the attenuation of the investigated 

micropollutants. Compounds, that are known to be more recalcitrant to attenuation or that 

require a certain lag phase, pass the underground passage unaltered. Retardation was 

shown to be irrelevant even though potentially sorbing compounds have been used as 

tracers. All these findings refer to a single investigated aquifer and hence require the 

verification in other karst systems, preferably karst systems that are karstified to a (i) similar 

degree as the investigated aquifer of the Gallusquelle to confirm the observations and (ii) 

differing degree to investigate the possible effect of the degree of karstification of a karst 

aquifer on its attenuation potential. Additionally, the aquifer state of cleanliness may 

influence the determined attenuation rates and its impact needs further investigation. It is 

likely, that an aquifer that is heavily affected by wastewater (e. g. urban aquifer) exhibits a 

higher attenuation potential than a pristine one.  

Tracer experiments with reactive tracers allow for a reliable determination of possibly 

occurring retardation and in-situ attenuation rates in karst conduits. To avoid ambiguity the 

simultaneous use of conservative reference tracers is necessary. Although the observed 

attenuation rates are similar to other natural or pseudo-natural systems, the low residence 

time in karst conduits lowers the de facto attenuation. 

As long as not all possible sources for contaminants are removed, the occurrence of 

compounds related to wastewater and agriculture or accidentally released contaminants is 

still likely in karst spring water. Considering the environmental properties of a compound in 

the course of its design and favouring the environmentally more benign of otherwise 

similarly effective agents as explained in section 6.2 and proposed by e. g. Papa et al. 

(2013), may minimize the introduction of wastewater related compounds via discharge of 

treated effluent and allow for contaminant attenuation within the karst system, if release or 

leakage of untreated wastewater occurred. To prevent pesticides to affect spring water 

quality, the characteristics of karst aquifers need to be taken into account when designating 

groundwater protection zones, also considering the possibility of rapid horizontal transport 

in the epikarst. The application of pesticides need to be prevented in the vicinity of dolines, 

dry valleys and other karst features that allow for rapid transport from the ground surface to 

the conduit system and consequently to the spring. 
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A Appendix 

Table A.1. List of analytes and their related internal standards (adapted from Nödler et al., 2010) 

Analytes Related internal standard 
1H-benzotriazole, 1-methylxantine, 3-methylxanthine, caffeine, paracetamol, 
paraxanthine, theobromine, theophylline, tolyltriazole  

Paraxanthine-D6 

Atenolol, atenolol acid, metoprolol, sotalol Atenolol-D7 
Iohexol, iomeprol, iopamidol, iopromide Desmethoxyiopromide 
Primidone, sulfamethoxazole Sulfamethoxazole-13C6 
Isoproturon Isoproturon-D6 
Atrazine, desethylatrazine, desisopropylatrazine Atrazine-D5 
Benzoylecgonine, carbamazepine, cetirizine, metazachlor, phenazone, 
trimethoprim 

Carbamazepine-D10 

Erythromycin Erythromycin-N-methyl-13C-D3 
Clarithromycin, roxithromycin Ery-methyloxime 
Citalopram, diazepam, tetrazepam Diazepam-D5 
Loratadine Loratadine-D4 
Bezafibrate, clofibric acid, diclofenac, diuron, gemfibrozil, ibuprofen, naproxen Ibuprofen-D3 
Mecoprop Mecoprop-D3 
Fluoxetine, Sertraline Fluoxethine-D6 
Pantoprazole Lansoprazole 
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Table A.2. A list of all spiked compounds and their respective recoveries in non-stabilised water 
samples of treated effluent stored as liquid at 4 °C. 

  Relative recovery (%) after "x" h  

 Time (h)--> 0  95  191  286  404  

Application Compound % +/- % +/- % +/- % +/- % +/- 

 Diclofenac 100 4 100 1 94 4 91 2 80 0 

Analgesics Ibuprofen 100 1 99 3 84 6 70 2 70 1 

and Naproxen 100 1 104 7 89 2 92 6 102 1 

anti-inflammatories Paracetamol 100 5 61 4 28 1 0 0 0 0 

  Phenazone 100 1 108 2 101 0 102 0 100 0 

Stimulants Caffeine 100 1 58 0 25 3 11 1 5 0 

and Paraxanthine 100 2 60 0 26 2 17 5 7 1 

caffeine metabolites Theobromine 100 2 48 3 15 1 5 1 0 0 

 Theophylline 100 2 73 1 30 3 20 3 17 3 

 1-Methylxanthine 100 6 64 4 41 1 25 0 21 3 

  3-Methylxanthine 100 3 47 2 23 2 0 0 0 0 

Antihypertensive Atenolol 100 1 91 0 87 0 87 2 86 2 

agents Metoprolol 100 1 96 1 92 1 89 1 102 1 

  Sotalol 100 0 95 1 92 0 91 1 102 0 

Contrast Iohexol 100 2 101 3 91 4 97 2 93 4 

media Iomeprol 100 4 92 1 95 2 95 0 83 0 

 Iopamidol 100 2 94 1 87 2 95 4 81 0 

  Iopromide 100 1 93 5 85 0 86 4 89 1 

Antibiotics Clarithromycin 100 1 98 1 97 1 94 0 97 0 

 Erythromycin 100 1 97 0 93 1 92 1 92 1 

 Roxithromycin 100 0 98 0 98 2 93 0 97 1 

 Sulfamethoxazole 100 0 98 1 98 1 96 1 96 0 

  Trimethoprim 100 5 109 4 108 1 106 0 112 0 

Lipid regulators Bezafibrate 100 5 96 1 95 2 87 7 77 2 

 Clofibric acid 100 7 103 4 106 3 96 10 77 3 

  Gemfibrozil 100 8 108 2 107 5 102 4 86 0 

Antihistamines Cetirizine 100 3 88 1 86 1 84 2 92 1 

 Loratadine 100 0 93 1 90 2 89 1 91 1 

Anticonvulsants Carbamazepine 100 4 104 2 102 1 100 0 106 2 

and sedatives Diazepam 100 2 92 2 91 1 87 1 88 0 

 Primidone 100 2 95 4 98 1 97 4 94 0 

  Tetrazepam 100 1 93 2 91 0 88 0 92 0 

SSRI Citalopram 100 2 96 2 92 1 50 40 90 4 

 Fluoxetine 100 1 99 3 98 1 98 1 98 4 

  Sertraline 100 2 98 9 102 1 93 1 68 5 

Pesticides Atrazine 100 1 98 1 96 1 97 0 98 1 

and Desethylatrazine 100 0 102 1 96 2 53 44 93 0 

pesticide metabolites Desisopropylatrazine 100 1 111 0 109 2 107 2 100 2 

 Diuron 100 11 101 4 105 2 89 14 64 6 

 Isoproturon 100 4 84 1 84 3 83 0 77 0 

 Mecoprop 100 2 96 1 95 0 94 1 95 0 

  Metazachlor 100 2 99 1 97 1 93 0 98 2 

Corrosion inhibitors 1H-Benzotriazol 100 2 93 2 95 4 86 2 97 0 

  Tolyltriazol 100 1 95 2 96 3 89 1 92 2 

Cocaine metabolite Benzoylecgonin 100 4 107 4 102 0 100 1 110 0 

Proton pump inhibitor Pantoprazole 100 3 97 5 87 1 84 2 92 2  
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Table A.3. A list of all spiked compounds and their respective recoveries in non-stabilised water 
samples of treated effluent stored as liquid at 28 °C.  

  Relative recovery (%) after "x" h  

 Time (h)--> 0  46  91  187  283  

Application Compound % +/- % +/- % +/- % +/- % +/- 

 Diclofenac 100 3 110 15 96 1 77 6 80 1 

Analgesics Ibuprofen 100 4 87 5 71 2 11 11 0 0 

and Naproxen 100 2 95 4 91 4 70 9 66 3 

anti-inflammatories Paracetamol 100 1 79 2 55 0 13 1 7 1 

  Phenazone 100 2 108 8 101 9 93 0 79 15 

Stimulants Caffeine 100 0 48 3 19 1 1 1 0 0 

and Paraxanthine 100 1 60 4 36 2 13 7 5 0 
caffeine 
metabolites Theobromine 100 3 46 1 16 1 0 0 0 0 

 Theophylline 100 0 58 2 26 2 10 6 5 3 

 1-Methylxanthine 100 4 61 0 4 0 10 7 5 0 

  3-Methylxanthine 100 2 64 4 30 0 0 0 0 0 

Antihypertensive Atenolol 100 2 103 6 99 4 73 11 78 1 

agents Metoprolol 100 0 98 4 102 5 91 1 94 1 

  Sotalol 100 1 93 5 96 4 92 1 95 1 

Contrast Iohexol 100 1 99 4 103 6 97 3 95 1 

media Iomeprol 100 0 102 7 100 5 89 0 87 1 

 Iopamidol 100 2 108 11 104 9 89 1 86 0 

  Iopromide 100 2 102 8 100 8 88 2 83 1 

Antibiotics Clarithromycin 100 2 103 4 102 5 82 11 85 1 

 Erythromycin 100 1 100 8 94 7 83 0 76 0 

 Roxithromycin 100 1 106 10 102 7 88 4 88 3 

 Sulfamethoxazole 100 2 100 2 99 5 90 5 75 6 

  Trimethoprim 100 2 112 10 102 6 93 1 92 1 

Lipid regulators Bezafibrate 100 1 107 10 101 9 70 2 65 2 

 Clofibric acid 100 1 114 8 109 13 93 2 84 2 

  Gemfibrozil 100 4 106 11 103 7 75 6 59 1 

Antihistamines Cetirizine 100 2 94 7 91 3 89 3 89 2 

 Loratadine 100 1 101 7 101 7 96 0 90 0 

Anticonvulsants Carbamazepine 100 0 105 4 103 7 99 2 96 1 

and sedatives Diazepam 100 0 104 2 101 5 94 1 95 0 

 Primidone 100 0 99 1 109 5 107 1 103 3 

  Tetrazepam 100 0 98 3 92 7 89 1 83 0 

SSRI Citalopram 100 2 103 17 80 4 79 3 89 2 

 Fluoxetine 100 3 109 7 105 8 93 2 92 4 

  Sertraline 100 4 99 4 114 11 91 0 102 1 

Pesticides Atrazine 100 1 105 7 101 8 97 2 94 1 

and Desethylatrazine 100 3 107 9 101 8 96 0 95 2 
pesticide 
metabolites Desisopropylatrazine 100 2 109 10 101 7 92 4 92 0 

 Diuron 100 4 107 7 103 14 83 1 81 4 

 Isoproturon 100 2 111 5 111 10 98 0 97 1 

 Mecoprop 100 1 106 4 104 4 97 1 95 1 

  Metazachlor 100 0 105 5 104 7 94 2 90 1 
Corrosion 
inhibitors 1H-Benzotriazol 100 1 110 2 91 8 80 0 69 14 

  Tolyltriazol 100 2 103 3 85 5 64 3 64 1 

Cocaine metabolite Benzoylecgonin 100 0 110 8 101 5 86 0 57 15 
Proton pump 
inhibitor Pantoprazole 100 6 85 10 47 4 25 5 8 1  
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Table A.4. A list of all spiked compounds and their respective recoveries in non-stabilised river 
water samples stored as liquid at 4 °C. 

  Relative recovery (%) after "x" h  

 Time (h)--> 0  95  191  286  404  

Application Compound % +/- % +/- % +/- % +/- % +/- 

 Diclofenac 100 2 108 1 81 6 76 6 96 0 

Analgesics Ibuprofen 100 2 98 0 91 0 89 4 75 0 

and Naproxen 100 1 128 3 88 17 85 9 94 2 

anti-
inflammatories 

Paracetamol 100 0 89 3 86 1 87 5 77 2 

 Phenazone 100 1 102 1 102 4 100 3 101 7 

Stimulants Caffeine 100 0 94 3 97 1 94 2 91 1 

and Paraxanthine 100 0 97 2 97 1 95 0 93 0 

caffeine 
metabolites 

Theobromine 100 0 96 0 96 4 89 0 86 1 

 Theophylline 100 1 98 2 95 6 91 4 90 3 

 1-Methylxanthine 100 2 91 5 92 2 99 0 101 2 

 3-Methylxanthine 100 1 90 1 94 1 103 4 105 2 

Antihypertensive Atenolol 100 0 94 1 92 1 89 1 89 1 

agents Metoprolol 100 2 93 2 92 2 95 0 98 2 

 Sotalol 100 2 91 1 89 2 96 3 90 2 

Contrast Iohexol 100 4 99 2 99 1 97 1 97 2 

media Iomeprol 100 5 98 11 95 6 85 3 85 4 

 Iopamidol 100 2 103 2 99 2 88 4 88 8 

 Iopromide 100 2 99 3 98 1 95 0 92 2 

Antibiotics Clarithromycin 100 1 103 1 101 0 99 1 98 1 

 Erythromycin 100 0 93 0 94 0 91 1 91 0 

 Roxithromycin 100 1 101 0 102 0 97 1 98 1 

 Sulfamethoxazole 100 0 98 3 92 3 92 1 81 3 

 Trimethoprim 100 1 104 0 103 1 98 1 99 3 

Lipid regulators Bezafibrate 100 1 109 2 94 9 96 4 99 4 

 Clofibric acid 100 2 108 3 95 9 98 6 97 4 

 Gemfibrozil 100 2 111 2 87 10 86 5 92 1 

Antihistamines Cetirizine 100 5 112 2 100 13 98 8 105 6 

 Loratadine 100 1 95 2 95 3 93 1 92 0 

Anticonvulsants Carbamazepine 100 0 103 0 104 1 100 0 101 2 

and sedatives Diazepam 100 1 98 3 97 0 96 1 96 1 

 Primidone 100 5 96 2 95 1 97 4 93 4 

 Tetrazepam 100 1 95 1 98 1 94 0 92 2 

SSRI Citalopram 100 1 94 0 101 5 92 1 100 5 

 Fluoxetine 100 1 94 1 85 3 87 3 85 1 

 Sertraline 100 6 109 5 81 8 59 4 71 10 

Pesticides Atrazine 100 1 98 1 93 1 92 0 95 1 

and Desethylatrazine 100 1 111 3 97 2 95 4 94 3 

pesticide 
metabolites 

Desisopropylatrazine 100 2 114 1 94 4 91 7 94 3 

 Diuron 100 5 105 4 91 12 97 11 88 9 

 Isoproturon 100 3 98 1 92 1 91 0 93 2 

 Mecoprop 100 1 95 1 96 3 93 1 94 2 

 Metazachlor 100 1 96 1 97 0 96 3 95 5 

Corrosion 
inhibitors 

1H-Benzotriazol 100 1 63 5 69 11 79 8 64 7 

 Tolyltriazol 100 1 62 4 65 17 76 6 61 10 

Cocaine 
metabolite 

Benzoylecgonin 100 1 105 0 98 4 96 1 95 1 

Proton pump 
nhibitor i

Pantoprazole 100 2 99 4 62 34 59 10 50 20 
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Table A.5. A list of all spiked compounds and their respective recoveries in non-stabilised river 
water samples stored as liquid at 28 °C. 

 Relative recovery (%) after "x" h  

 Time (h)--> 0  46  91  187  283  

Application Compound % +/- % +/- % +/- % +/- % +/- 

 Diclofenac 100 1 111 8 117 4 86 2 90 4 

Analgesics Ibuprofen 100 0 94 0 88 3 37 7 15 5 

and Naproxen 100 1 95 2 89 2 77 2 75 5 

anti-inflammatories Paracetamol 100 2 94 1 83 3 66 4 43 7 

 Phenazone 100 1 103 1 108 3 102 1 88 5 

Stimulants Caffeine 100 1 99 3 100 1 55 4 27 8 

and Paraxanthine 100 0 97 1 93 2 65 3 37 9 

caffeine metabolites Theobromine 100 1 93 2 90 5 53 6 26 8 

 Theophylline 100 1 100 2 98 1 63 5 35 7 

 1-Methylxanthine 100 0 99 3 61 4 16 1 10 2 

 3-Methylxanthine 100 0 95 4 99 4 60 2 37 6 

Antihypertensive Atenolol 100 0 91 1 90 2 67 3 34 6 

agents Metoprolol 100 2 96 3 100 2 83 2 58 0 

 Sotalol 100 1 93 4 93 2 96 0 93 3 

Contrast Iohexol 100 2 100 5 90 2 92 4 91 4 

media Iomeprol 100 6 84 2 83 0 75 0 78 2 

 Iopamidol 100 3 102 3 102 2 91 6 86 3 

 Iopromide 100 4 98 1 97 2 92 1 91 1 

Antibiotics Clarithromycin 100 1 101 2 99 2 96 0 83 7 

 Erythromycin 100 1 97 0 93 0 88 1 80 0 

 Roxithromycin 100 1 100 0 97 1 92 2 86 4 

 Sulfamethoxazole 100 2 90 3 77 1 72 1 64 2 

 Trimethoprim 100 1 101 2 103 4 98 1 94 3 

Lipid regulators Bezafibrate 100 1 96 0 98 4 28 6 0 0 

 Clofibric acid 100 1 91 1 101 9 90 3 89 1 

 Gemfibrozil 100 0 94 0 98 2 94 2 91 2 

Antihistamines Cetirizine 100 4 113 2 115 1 103 5 97 2 

 Loratadine 100 0 98 0 97 1 96 1 94 1 

Anticonvulsants Carbamazepine 100 1 100 3 100 1 98 1 95 0 

and sedatives Diazepam 100 1 97 2 99 0 96 1 95 0 

 Primidone 100 1 98 1 82 14 101 1 101 4 

 Tetrazepam 100 1 97 3 97 1 92 1 91 0 

SSRI Citalopram 100 2 100 1 103 2 87 0 86 4 

 Fluoxetine 100 0 91 2 83 0 64 2 48 6 

 Sertraline 100 4 64 6 74 15 52 1 54 9 

Pesticides Atrazine 100 1 96 2 95 1 95 1 94 1 

and Desethylatrazine 100 1 98 4 91 1 94 1 94 2 

pesticide metabolites Desisopropylatrazine 100 0 94 3 88 0 88 3 50 29 

 Diuron 100 4 80 4 81 4 81 6 85 2 

 Isoproturon 100 0 92 2 92 1 90 1 88 0 

 Mecoprop 100 2 101 3 100 1 100 1 98 1 

 Metazachlor 100 1 102 1 109 4 101 1 94 1 

Corrosion inhibitors 1H-Benzotriazol 100 1 100 2 97 7 89 3 55 12 

 Tolyltriazol 100 0 95 4 87 11 83 3 83 4 

Cocaine metabolite Benzoylecgonin 100 1 101 2 102 2 91 1 44 12 

Proton pump inhibitor Pantoprazole 100 1 85 1 58 5 49 1 38 1 
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Table A.6. A list of all spiked compounds and their respective recoveries in water samples of 
treated effluent stored as liquid at 4 °C; stabilised with NaN3. 

  Relative recovery (%) after "x" h  

 Time (h)--> 0  95  191  286  404  

Application Compound % +/- % +/- % +/- % +/- % +/- 

 Diclofenac 100 8 99 0 98 4 86 4 87 4 

Analgesics Ibuprofen 100 2 94 1 95 3 89 1 88 3 

and Naproxen 100 3 98 3 91 0 81 2 83 4 

anti-inflammatories Paracetamol 100 4 94 4 97 5 95 1 95 2 

 Phenazone 100 2 103 1 96 1 100 0 99 1 

Stimulants Caffeine 100 2 92 2 89 3 85 4 85 1 

and Paraxanthine 100 2 100 0 96 2 97 1 97 1 

caffeine metabolites Theobromine 100 1 98 3 99 0 91 2 93 1 

 Theophylline 100 3 96 4 101 3 93 2 104 12 

 1-Methylxanthine 100 6 96 3 95 0 98 3 108 4 

 3-Methylxanthine 100 7 99 4 98 2 107 5 111 2 

Antihypertensive Atenolol 100 4 86 1 82 0 80 0 81 0 

agents Metoprolol 100 2 102 2 101 1 98 0 102 2 

 Sotalol 100 1 95 1 91 1 87 1 92 3 

Contrast Iohexol 100 1 100 0 101 2 99 1 96 1 

media Iomeprol 100 4 99 5 97 4 97 2 100 1 

 Iopamidol 100 5 113 9 101 1 107 3 109 7 

 Iopromide 100 2 97 2 96 2 96 1 94 4 

Antibiotics Clarithromycin 100 1 94 0 96 0 93 0 95 2 

 Erythromycin 100 1 98 0 96 0 95 0 95 1 

 Roxithromycin 100 1 91 1 93 0 92 1 92 0 

 Sulfamethoxazole 100 2 105 1 105 0 106 1 106 2 

 Trimethoprim 100 6 111 1 108 2 110 1 112 0 

Lipid regulators Bezafibrate 100 2 96 0 97 3 93 4 93 4 

 Clofibric acid 100 2 105 2 108 5 104 3 102 3 

 Gemfibrozil 100 5 112 7 110 3 104 5 104 5 

Antihistamines Cetirizine 100 5 94 2 92 0 90 0 94 0 

 Loratadine 100 5 88 1 90 1 86 1 87 2 

Anticonvulsants Carbamazepine 100 3 101 1 99 1 101 1 99 0 

and sedatives Diazepam 100 1 95 1 94 0 91 0 92 1 

 Primidone 100 3 103 1 104 1 100 2 101 3 

 Tetrazepam 100 2 94 0 96 1 93 2 91 1 

SSRI Citalopram 100 1 103 2 94 1 95 0 98 1 

 Fluoxetine 100 6 88 1 85 1 90 2 87 0 

 Sertraline 100 0 84 6 89 2 96 0 91 4 

Pesticides Atrazine 100 2 101 0 100 1 100 1 100 0 

and Desethylatrazine 100 1 103 0 97 0 99 0 98 0 

pesticide metabolites Desisopropylatrazine 100 5 116 1 111 1 114 1 111 0 

 Diuron 100 3 111 4 117 3 114 2 113 5 

 Isoproturon 100 5 91 0 90 0 87 2 86 2 

 Mecoprop 100 2 94 1 95 0 94 1 94 0 

 Metazachlor 100 0 93 1 94 0 94 0 95 2 

Corrosion inhibitors 1H-Benzotriazol 100 6 86 24 102 7 96 11 109 1 

 Tolyltriazol 100 6 93 19 102 7 100 7 107 1 

Cocaine metabolite Benzoylecgonin 100 4 109 1 103 0 106 0 104 1 

Proton pump inhibitor Pantoprazole 100 3 92 9 88 2 80 9 88 3 
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Table A.7. A list of all spiked compounds and their respective recoveries in water samples of 
treated effluent stored as liquid at 28 °C; stabilised with NaN3. 

  Relative recovery (%) after "x" h  

 Time (h)--> 0  46  91  187  283  

Application Compound % +/- % +/- % +/- % +/- % +/- 

 Diclofenac 100 2 95 5 93 2 87 1 86 3 

Analgesics Ibuprofen 100 3 95 2 92 1 96 0 99 1 

and Naproxen 100 9 91 5 103 0 99 2 96 4 

anti-inflammatories Paracetamol 100 2 81 1 75 6 67 1 65 4 

 Phenazone 100 1 104 1 100 1 91 3 79 16 

Stimulants Caffeine 100 2 80 2 84 3 85 2 89 0 

and Paraxanthine 100 0 93 2 96 5 96 1 94 3 

caffeine metabolites Theobromine 100 7 90 2 104 10 103 0 103 3 

 Theophylline 100 4 93 1 96 2 97 2 100 3 

 1-Methylxanthine 100 4 96 1 83 10 56 13 32 4 

 3-Methylxanthine 100 1 97 0 99 6 97 2 103 3 

Antihypertensive Atenolol 100 1 99 1 100 1 92 1 93 1 

agents Metoprolol 100 1 90 1 94 1 95 1 99 1 

 Sotalol 100 2 88 1 95 1 95 2 97 1 

Contrast Iohexol 100 3 107 4 106 1 98 2 99 1 

media Iomeprol 100 1 99 1 93 2 89 3 87 3 

 Iopamidol 100 6 120 0 109 6 88 5 96 3 

 Iopromide 100 0 94 1 102 0 91 0 91 4 

Antibiotics Clarithromycin 100 1 98 1 97 3 97 0 92 0 

 Erythromycin 100 1 96 4 91 0 85 2 82 0 

 Roxithromycin 100 2 99 5 99 1 95 1 93 0 

 Sulfamethoxazole 100 1 108 1 105 1 112 3 110 0 

 Trimethoprim 100 0 102 1 95 1 93 0 97 3 

Lipid regulators Bezafibrate 100 3 112 1 100 4 95 0 96 0 

 Clofibric acid 100 7 114 1 97 2 93 1 87 2 

 Gemfibrozil 100 4 110 3 101 2 95 1 93 1 

Antihistamines Cetirizine 100 3 92 0 90 2 92 0 94 5 

 Loratadine 100 2 96 2 98 1 96 0 96 1 

Anticonvulsants Carbamazepine 100 1 102 1 97 0 99 0 100 3 

and sedatives Diazepam 100 1 101 1 100 1 99 1 96 2 

 Primidone 100 1 80 35 107 2 104 2 105 1 

 Tetrazepam 100 2 99 0 102 3 97 1 91 1 

SSRI Citalopram 100 1 98 4 95 0 94 1 95 9 

 Fluoxetine 100 0 90 3 87 2 93 5 97 2 

 Sertraline 100 4 105 2 104 4 99 3 87 1 

Pesticides Atrazine 100 0 98 2 97 2 93 1 95 0 

and Desethylatrazine 100 3 99 2 97 1 98 1 96 2 

pesticide metabolites Desisopropylatrazine 100 5 100 2 93 1 92 2 87 1 

 Diuron 100 5 125 2 104 7 95 1 90 3 

 Isoproturon 100 2 106 2 103 4 100 4 97 3 

 Mecoprop 100 0 101 1 98 0 98 0 98 0 

 Metazachlor 100 0 98 1 93 1 89 1 89 3 

Corrosion inhibitors 1H-Benzotriazol 100 4 100 4 94 7 92 2 97 0 

 Tolyltriazol 100 3 102 4 98 2 93 0 96 1 

Cocaine metabolite Benzoylecgonin 100 0 94 0 88 2 86 1 83 1 

Proton pump inhibitor Pantoprazole 100 2 78 3 64 2 40 6 26 0 

 



Appendix A 

VIII 

Table A.8. A list of all spiked compounds and their respective recoveries in river water samples 
stored as liquid at 4 °C; stabilised with NaN3. 

  Relative recovery (%) after "x" h  

 Time (h)--> 0  95  191  286  404  

Application Compound % +/- % +/- % +/- % +/- % +/- 

 Diclofenac 100 2 97 4 88 1 81 2 77 7 

Analgesics Ibuprofen 100 3 98 2 96 1 96 2 96 1 

and Naproxen 100 1 90 4 72 1 65 1 60 7 

anti-inflammatories Paracetamol 100 2 93 1 99 3 101 2 98 1 

  Phenazone 100 1 95 0 101 1 95 2 94 2 

Stimulants Caffeine 100 2 96 1 97 3 94 3 100 0 

and Paraxanthine 100 3 98 1 96 1 96 1 91 5 

caffeine metabolites Theobromine 100 2 95 0 95 0 97 3 103 4 

 Theophylline 100 2 101 3 98 4 100 0 85 17 

 1-Methylxanthine 100 4 94 8 104 2 107 6 81 24 

  3-Methylxanthine 100 7 93 7 108 4 112 6 103 8 

Antihypertensive Atenolol 100 2 96 0 94 0 93 0 93 0 

agents Metoprolol 100 0 96 0 104 2 104 1 103 1 

  Sotalol 100 1 101 4 108 2 109 0 99 10 

Contrast Iohexol 100 6 105 0 97 1 94 2 93 0 

media Iomeprol 100 6 108 4 82 10 68 1 71 1 

 Iopamidol 100 6 126 2 88 2 77 6 77 4 

  Iopromide 100 0 90 3 86 4 85 1 86 0 

Antibiotics Clarithromycin 100 0 99 1 97 1 95 2 93 0 

 Erythromycin 100 0 96 1 94 0 89 1 90 0 

 Roxithromycin 100 1 96 0 95 0 91 1 92 1 

 Sulfamethoxazole 100 5 96 0 97 1 93 4 93 1 

  Trimethoprim 100 0 98 1 103 2 98 0 95 0 

Lipid regulators Bezafibrate 100 3 87 6 81 2 72 0 70 1 

 Clofibric acid 100 2 88 6 82 1 72 1 71 1 

  Gemfibrozil 100 3 92 4 84 1 74 2 73 4 

Antihistamines Cetirizine 100 8 107 7 105 13 112 0 68 37 

 Loratadine 100 0 101 3 101 1 100 1 101 1 

Anticonvulsants Carbamazepine 100 1 96 0 97 1 94 1 94 1 

and sedatives Diazepam 100 1 96 0 95 1 94 1 95 1 

 Primidone 100 7 89 4 91 1 86 1 89 1 

  Tetrazepam 100 1 94 1 97 2 96 1 94 1 

SSRI Citalopram 100 5 96 6 107 6 98 0 105 2 

 Fluoxetine 100 1 91 4 92 1 88 0 90 2 

  Sertraline 100 6 93 11 81 10 70 1 67 6 

Pesticides Atrazine 100 1 99 0 95 1 93 0 95 1 

and Desethylatrazine 100 6 109 1 96 2 95 1 89 0 

pesticide metabolites Desisopropylatrazine 100 5 109 5 89 0 87 2 81 0 

 Diuron 100 6 82 11 74 2 62 1 64 1 

 Isoproturon 100 0 94 2 91 1 88 0 89 1 

 Mecoprop 100 1 99 1 97 0 94 1 95 1 

  Metazachlor 100 0 92 1 97 0 90 3 95 0 

Corrosion inhibitors 1H-Benzotriazol 100 15 84 19 90 16 93 2 49 49 

  Tolyltriazol 100 21 83 20 85 20 90 3 51 41 

Cocaine metabolite Benzoylecgonin 100 0 102 4 102 4 100 1 80 16 

Proton pump inhibitor Pantoprazole 100 62 133 46 73 47 102 10 56 34 
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Table A.9. A list of all spiked compounds and their respective recoveries in river water samples 
stored as liquid at 28 °C; stabilised with NaN3. 

   Relative recovery (%) after "x" h  

 Time (h)--> 0  46  91  187  283  

Application Compound % +/- % +/- % +/- % +/- % +/- 

 Diclofenac 100 4 92 3 100 10 86 3 99 3 

Analgesics Ibuprofen 100 1 96 0 97 0 93 2 94 0 

and Naproxen 100 3 97 10 109 15 101 2 110 7 

anti-inflammatories Paracetamol 100 4 97 4 90 1 88 2 88 2 

  Phenazone 100 0 100 0 101 1 96 2 93 2 

Stimulants Caffeine 100 3 106 5 103 0 103 1 100 0 

and Paraxanthine 100 3 97 0 96 2 98 1 95 0 

caffeine metabolites Theobromine 100 3 100 4 97 3 94 2 93 0 

 Theophylline 100 2 91 9 93 6 103 1 98 1 

 1-Methylxanthine 100 5 87 11 76 7 83 0 70 1 

  3-Methylxanthine 100 4 82 5 73 6 85 2 67 1 

Antihypertensive Atenolol 100 2 95 1 92 1 88 2 81 1 

agents Metoprolol 100 1 102 0 98 2 89 0 89 2 

  Sotalol 100 3 93 1 89 2 83 1 76 0 

Contrast Iohexol 100 3 90 3 90 1 84 3 85 3 

media Iomeprol 100 2 118 1 120 0 102 3 128 8 

 Iopamidol 100 5 133 3 117 5 103 3 121 7 

  Iopromide 100 0 99 1 101 1 94 1 101 1 

Antibiotics Clarithromycin 100 2 93 4 92 1 91 1 88 0 

 Erythromycin 100 0 93 2 89 2 82 2 73 3 

 Roxithromycin 100 0 93 4 89 3 93 1 89 0 

 Sulfamethoxazole 100 1 101 1 98 1 100 1 98 2 

  Trimethoprim 100 1 97 2 101 1 97 2 99 0 

Lipid regulators Bezafibrate 100 1 100 2 105 6 107 1 105 7 

 Clofibric acid 100 2 100 1 105 3 109 0 107 5 

  Gemfibrozil 100 0 98 3 104 9 106 2 104 6 

Antihistamines Cetirizine 100 7 80 27 83 21 90 4 87 2 

 Loratadine 100 0 92 3 89 3 90 1 87 1 

Anticonvulsants Carbamazepine 100 2 97 0 94 0 91 0 90 0 

and sedatives Diazepam 100 1 99 2 97 1 95 0 92 0 

 Primidone 100 3 97 2 97 2 99 1 103 1 

  Tetrazepam 100 0 96 1 95 2 91 2 88 0 

SSRI Citalopram 100 3 103 3 101 1 91 2 86 2 

 Fluoxetine 100 5 89 8 87 5 87 2 72 3 

  Sertraline 100 1 94 7 99 1 94 4 81 3 

Pesticides Atrazine 100 0 97 0 95 2 93 0 92 0 

and Desethylatrazine 100 2 95 0 95 3 98 1 95 0 

pesticide metabolites Desisopropylatrazine 100 2 90 0 98 7 98 0 97 3 

 Diuron 100 2 106 2 118 3 136 4 134 9 

 Isoproturon 100 2 98 1 101 1 98 1 98 2 

 Mecoprop 100 0 99 1 96 1 98 0 97 0 

  Metazachlor 100 1 100 0 96 1 89 3 86 0 

Corrosion inhibitors 1H-Benzotriazol 100 14 78 46 74 24 114 7 112 8 

  Tolyltriazol 100 19 72 43 69 24 115 14 111 11 

Cocaine metabolite Benzoylecgonin 100 1 86 9 85 6 81 2 70 2 

Proton pump inhibitor Pantoprazole 100 63 85 67 64 35 87 25 68 27 
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Table A.10. A list of all spiked compounds and their respective recoveries after stabilisation of 
spiked river water by SPE and storage at 4 °C. 

  Relative recovery (%) after "x" h  

 Time (h)--> 0  239  480  

Application Compound % +/- % +/- % +/- 

 Diclofenac 100 5 97 0 100 1 

Analgesics Ibuprofen 100 2 98 0 103 2 

and Naproxen 100 6 101 0 95 1 

anti-inflammatories Paracetamol 100 4 104 1 105 6 

  Phenazone 100 2 106 1 102 4 

Stimulants Caffeine 100 3 98 1 102 4 

And Paraxanthine 100 1 98 1 100 3 

caffeine metabolites Theobromine 100 2 98 0 100 3 

 Theophylline 100 4 103 2 106 0 

 1-Methylxanthine 100 2 97 1 96 4 

  3-Methylxanthine 100 2 95 1 95 2 

Antihypertensive Atenolol 100 5 97 1 92 1 

agents Metoprolol 100 1 91 1 87 0 

  Sotalol 100 6 102 2 99 5 

Contrast Iohexol 100 6 97 7 95 11 

media Iomeprol 100 9 96 3 96 0 

 Iopamidol 100 5 92 1 88 2 

  Iopromide 100 7 95 2 89 8 
Antibiotics 
  Clarithromycin 100 1 101 2 101 2 

 Erythromycin 100 3 98 1 99 0 

 Roxithromycin 100 3 101 1 99 2 

 Sulfamethoxazole 100 3 101 0 100 2 

 Trimethoprim 100 1 106 0 100 3 
Lipid regulators 
  Bezafibrate 100 3 98 1 102 1 

 Clofibric acid 100 2 96 1 101 1 

 Gemfibrozil 100 1 96 3 101 0 

Cetirizine 100 3 104 1 97 1 Antihistamines 
 Loratadine 100 3 95 1 93 0 

Anticonvulsants Carbamazepine 100 2 100 0 98 3 

and sedatives Diazepam 100 4 98 1 95 1 

 Primidone 100 6 102 1 102 0 

  Tetrazepam 100 6 101 0 96 2 

SSRI Citalopram 100 4 100 1 92 3 

 Fluoxetine 100 3 92 0 84 3 

  Sertraline 100 3 100 1 106 2 

Pesticides Atrazine 100 1 98 1 100 1 

and Desethylatrazine 100 3 102 2 103 0 

pesticide metabolites Desisopropylatrazine 100 4 101 1 102 2 

 Diuron 100 4 89 6 95 6 

 Isoproturon 100 2 95 2 98 1 

 Mecoprop 100 2 98 1 100 1 

  Metazachlor 100 2 96 3 95 1 
Corrosion inhibitors 
  1H-Benzotriazol 100 4 101 2 97 4 

 Tolyltriazol 100 1 96 3 100 3 

Cocaine metabolite Benzoylecgonine 100 2 109 1 101 5 

Proton pump inhibitor Pantoprazole 100 3 98 0 97 1 
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Table A.11. A list of all spiked compounds and their respective recoveries after stabilisation of 
spiked river water by SPE and storage at 20 °C. 

  Relative recovery (%) after "x" h  

 Time (h)--> 0  120  240  358  

Application Compound % +/- % +/- % +/- % +/- 

  Diclofenac 100 6 101 2 101 13 96 4 

Analgesics Ibuprofen 100 4 101 1 97 2 96 0 

and Naproxen 100 1 99 8 85 12 81 3 

anti-inflammatories Paracetamol 100 4 106 3 103 4 108 0 

  Phenazone 100 8 106 9 105 5 109 3 

Stimulants Caffeine 100 8 97 0 101 6 97 1 

and Paraxanthine 100 4 99 2 97 1 96 2 

caffeine metabolites Theobromine 100 6 97 2 94 4 96 7 

  Theophylline 100 4 102 5 98 4 100 7 

  1-Methylxanthine 100 7 93 8 101 1 104 3 

  3-Methylxanthine 100 6 91 5 97 3 110 1 

Antihypertensive Atenolol 100 3 90 4 83 1 81 3 

agents Metoprolol 100 2 84 1 77 2 75 1 

  Sotalol 100 2 100 1 91 3 87 6 

 Iohexol 100 6 90 7 104 0 85 9 

Contrast Iomeprol 100 4 81 3 92 12 82 4 

media Iopamidol 100 3 92 7 104 5 111 7 

  Iopromide 100 4 100 3 103 3 103 2 

Antibiotics Clarithromycin 100 4 100 2 98 4 95 1 
 Erythromycin 100 2 97 0 97 3 98 1 
 Roxithromycin 100 3 103 0 100 0 97 2 
 Sulfamethoxazole 100 1 100 2 100 1 101 3 
 Trimethoprim 100 6 97 0 102 1 104 1 

Lipid regulators Bezafibrate 100 14 105 3 108 1 107 0 
 Clofibric acid 100 9 110 1 106 2 103 4 
 Gemfibrozil 100 3 87 5 84 3 83 3 

Antihistamines Cetirizine 100 9 100 4 106 0 105 2 
 Loratadine 100 1 79 1 80 4 80 2 

 Carbamazepine 100 5 92 2 92 0 91 3 

Anticonvulsants Diazepam 100 2 101 0 100 1 106 4 

and sedatives Primidone 100 6 96 6 97 2 96 4 

  Tetrazepam 100 0 101 2 105 2 111 6 

  Citalopram 100 7 91 5 85 3 90 4 

SSRI Fluoxetine 100 2 77 4 64 0 63 3 

  Sertraline 100 8 87 3 82 2 78 3 

 Atrazine 100 2 103 1 102 1 100 1 

 Desethylatrazine 100 6 103 2 100 3 97 3 

Pesticides Desisopropylatrazine 100 8 101 1 95 3 91 5 

and Diuron 100 7 108 8 99 1 109 8 

pesticide metabolites Isoproturon 100 2 96 2 95 1 94 2 

  Mecoprop 100 1 98 1 98 0 94 1 

  Metazachlor 100 5 94 4 93 0 95 1 

Corrosion inhibitors 1H-Benzotriazol 100 4 99 1 93 5 85 2 
 Tolyltriazol 100 3 93 1 94 6 100 6 

Cocaine metabolite Benzoylecgonine 100 7 101 1 105 3 100 0 

Proton pump inhibitor Pantoprazole 100 4 97 2 94 1 97 3 
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Table A.12. A list of all spiked compounds and their respective recoveries after stabilisation of 
spiked river water by SPE and storage at 40 °C. 

  Relative recovery (%) after "x" h  

 Time (h)--> 0  47  120  240  

Application Compound % +/- % +/- % +/- % +/- 

  Diclofenac 100 5 82 2 90 0 86 9 

Analgesics Ibuprofen 100 2 95 1 98 1 95 4 

and Naproxen 100 6 92 4 96 2 83 13 

anti-inflammatories Paracetamol 100 4 106 3 108 6 109 9 

  Phenazone 100 2 90 5 93 4 100 2 

Stimulants Caffeine 100 3 97 2 97 3 97 0 

and Paraxanthine 100 1 100 1 98 0 96 8 

caffeine metabolites Theobromine 100 2 107 1 111 6 110 8 

  Theophylline 100 4 99 2 106 13 105 10 

  1-Methylxanthine 100 2 85 2 88 14 83 4 

  3-Methylxanthine 100 2 89 1 93 11 94 10 

Antihypertensive Atenolol 100 5 81 2 66 4 55 4 

agents Metoprolol 100 1 76 1 74 9 72 4 

  Sotalol 100 6 89 4 81 4 73 5 

 Iohexol 100 6 97 4 100 1 85 5 

Contrast Iomeprol 100 9 97 5 92 13 90 1 

media Iopamidol 100 5 100 1 101 3 99 3 

  Iopromide 100 7 94 4 90 2 80 3 

Antibiotics Clarithromycin 100 1 102 5 96 1 91 1 
 Erythromycin 100 3 101 0 98 1 97 2 
 Roxithromycin 100 3 102 3 96 3 90 3 
 Sulfamethoxazole 100 3 99 0 99 1 93 1 
 Trimethoprim 100 1 91 2 90 2 91 5 

Lipid regulators Bezafibrate 100 3 96 1 102 4 99 4 
 Clofibric acid 100 2 96 1 99 1 94 1 
 Gemfibrozil 100 1 94 2 95 1 95 4 

Antihistamines Cetirizine 100 3 97 1 92 0 93 4 
 Loratadine 100 3 81 0 85 14 71 10 

 Carbamazepine 100 2 100 1 100 1 95 3 

Anticonvulsants Diazepam 100 4 98 4 92 1 93 0 

and sedatives Primidone 100 6 103 4 102 1 98 0 

  Tetrazepam 100 6 104 3 95 3 92 3 

  Citalopram 100 4 85 0 80 10 85 7 

SSRI Fluoxetine 100 3 75 1 56 6 28 2 

  Sertraline 100 3 91 4 82 8 51 6 

 Atrazine 100 1 101 4 101 3 96 1 

 Desethylatrazine 100 3 106 6 109 0 106 1 

Pesticides Desisopropylatrazine 100 4 105 3 112 2 102 1 

and Diuron 100 4 88 3 99 2 86 2 

pesticide metabolites Isoproturon 100 2 97 2 88 1 68 1 

  Mecoprop 100 2 95 0 97 0 93 2 

  Metazachlor 100 2 98 2 98 2 91 1 

Corrosion inhibitors 1H-Benzotriazol 100 4 82 3 93 9 87 10 
 Tolyltriazol 100 1 83 3 97 7 95 11 

Cocaine metabolite Benzoylecgonine 100 2 92 1 90 3 87 5 

Proton pump inhibitor Pantoprazole 100 3 92 1 95 0 90 2 
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Table A.13. A list of all spiked compounds and their respective recoveries after stabilisation of 
spiked treated effluent by SPE and storage at 4 °C. 

  Relative recovery (%) after "x" h  

 Time (h)--> 0  242  480  

Application Compound % +/- % +/- % +/- 

  Diclofenac 100 5 106 0 105 0 

Analgesics Ibuprofen 100 2 98 1 100 1 

and Naproxen 100 6 93 3 97 2 

anti-inflammatories Paracetamol 100 5 102 4 101 1 

  Phenazone 100 6 97 1 99 0 

Stimulants Caffeine 100 2 99 2 92 4 

and Paraxanthine 100 7 106 1 101 3 

caffeine metabolites Theobromine 100 4 101 3 103 2 

  Theophylline 100 2 99 3 96 2 

  1-Methylxanthine 100 6 103 6 102 2 

  3-Methylxanthine 100 4 106 6 97 2 

Antihypertensive Atenolol 100 3 97 4 95 1 

agents Metoprolol 100 2 97 4 96 1 

  Sotalol 100 1 97 2 98 5 

 Iohexol 100 1 93 10 95 10 

Contrast Iomeprol 100 5 102 2 96 1 

media Iopamidol 100 7 105 1 104 3 

  Iopromide 100 4 86 2 94 2 

Antibiotics Clarithromycin 100 2 98 1 97 2 
 Erythromycin 100 1 97 0 97 1 
 Roxithromycin 100 5 95 2 95 3 
 Sulfamethoxazole 100 2 98 0 99 1 
 Trimethoprim 100 7 100 4 101 2 

Lipid regulators Bezafibrate 100 9 102 1 103 3 
 Clofibric acid 100 6 106 1 105 2 
 Gemfibrozil 100 5 105 2 104 0 

Antihistamines Cetirizine 100 6 96 4 97 1 
 Loratadine 100 4 99 2 96 1 

 Carbamazepine 100 5 97 1 99 1 

Anticonvulsants Diazepam 100 2 99 4 99 1 

and sedatives Primidone 100 2 96 2 97 4 

  Tetrazepam 100 3 103 10 99 1 

  Citalopram 100 7 96 1 94 2 

SSRI Fluoxetine 100 2 91 4 90 1 

  Sertraline 100 3 100 6 98 7 

 Atrazine 100 3 101 1 100 0 

 Desethylatrazine 100 3 102 1 101 1 

Pesticides Desisopropylatrazine 100 3 103 2 100 2 

and Diuron 100 10 96 2 100 2 

pesticide metabolites Isoproturon 100 4 103 2 102 0 

  Mecoprop 100 2 99 0 99 1 

  Metazachlor 100 2 97 1 97 1 

Corrosion inhibitors 1H-Benzotriazol 100 4 101 4 93 1 
 Tolyltriazol 100 6 102 4 97 1 

Cocaine metabolite Benzoylecgonine 100 7 99 1 99 0 

Proton pump inhibitor Pantoprazole 100 3 102 2 99 1 
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Table A.14. A list of all spiked compounds and their respective recoveries after stabilisation of 
spiked treated effluent by SPE and storage at 20 °C. 

  Relative recovery (%) after "x" h  

 Time (h)--> 0  119  242  360  

Application Compound % +/- % +/- % +/- % +/- 

  Diclofenac 100 3 105 1 105 3 87 7 

Analgesics Ibuprofen 100 2 99 0 99 3 87 8 

and Naproxen 100 7 100 3 102 1 89 8 

anti-inflammatories Paracetamol 100 8 97 9 103 6 89 6 

  Phenazone 100 1 102 2 101 3 94 8 

Stimulants Caffeine 100 7 99 0 102 5 85 6 

and Paraxanthine 100 3 95 0 98 1 88 6 

caffeine metabolites Theobromine 100 2 100 2 95 0 92 4 

  Theophylline 100 9 94 4 98 0 89 5 

  1-Methylxanthine 100 8 87 6 79 2 61 1 

  3-Methylxanthine 100 3 87 1 80 4 69 1 

Antihypertensive Atenolol 100 4 93 0 92 1 76 7 

agents Metoprolol 100 2 95 0 94 1 83 5 

  Sotalol 100 9 100 10 98 3 80 3 

 Iohexol 100 7 88 0 95 7 89 1 

Contrast Iomeprol 100 1 96 2 93 4 90 7 

media Iopamidol 100 6 99 4 96 2 87 7 

  Iopromide 100 6 104 2 102 2 92 8 

Antibiotics Clarithromycin 100 1 96 2 102 1 91 7 
 Erythromycin 100 1 96 0 100 0 91 9 
 Roxithromycin 100 12 104 2 106 0 94 9 
 Sulfamethoxazole 100 3 96 1 97 1 90 9 
 Trimethoprim 100 4 101 2 102 2 90 3 

Lipid regulators Bezafibrate 100 7 102 5 108 5 94 7 
 Clofibric acid 100 2 97 2 104 6 92 10 
 Gemfibrozil 100 3 93 3 103 6 91 6 

Antihistamines Cetirizine 100 8 105 2 107 3 94 4 
 Loratadine 100 3 93 3 97 0 80 9 

 Carbamazepine 100 1 102 2 105 1 97 7 

Anticonvulsants Diazepam 100 1 99 2 98 1 89 6 

and sedatives Primidone 100 1 99 1 99 1 91 3 

  Tetrazepam 100 1 95 0 96 2 86 6 

  Citalopram 100 2 93 1 95 2 82 7 

SSRI Fluoxetine 100 24 96 3 97 1 75 7 

  Sertraline 100 2 75 1 84 3 64 10 

 Atrazine 100 2 99 0 102 3 94 8 

 Desethylatrazine 100 2 102 0 104 4 94 7 

Pesticides Desisopropylatrazine 100 3 99 2 102 4 91 15 

and Diuron 100 4 98 3 108 10 93 13 

pesticide metabolites Isoproturon 100 4 101 1 103 2 92 9 

  Mecoprop 100 2 97 1 98 1 90 7 

  Metazachlor 100 2 101 2 102 3 93 6 

Corrosion inhibitors 1H-Benzotriazol 100 1 91 3 88 2 77 9 
 Tolyltriazol 100 3 92 3 94 4 83 9 

Cocaine metabolite Benzoylecgonine 100 3 101 3 104 1 91 5 

Proton pump inhibitor Pantoprazole 100 1 98 2 99 1 90 7 
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Table A.15. A list of all spiked compounds and their respective recoveries after stabilisation of 
spiked treated effluent by SPE and storage at 40 °C. 

  Relative recovery (%) after "x" h 

 Time (h)--> 0  47  122  242  

Application Compound % +/- % +/- % +/- % +/- 

  Diclofenac 100 3 102 2 99 5 96 3 

Analgesics Ibuprofen 100 2 98 1 99 1 101 4 

and Naproxen 100 7 95 2 92 1 84 3 

anti-inflammatories Paracetamol 100 2 98 4 97 7 90 0 

  Phenazone 100 1 98 3 99 1 100 2 

Stimulants Caffeine 100 5 95 2 96 3 101 4 

and Paraxanthine 100 3 96 2 94 3 91 1 

caffeine metabolites Theobromine 100 2 90 1 95 1 98 4 

  Theophylline 100 9 97 2 93 5 92 5 

  1-Methylxanthine 100 8 85 5 77 1 76 2 

  3-Methylxanthine 100 3 86 1 80 2 80 2 

Antihypertensive Atenolol 100 4 84 2 74 2 64 3 

agents Metoprolol 100 2 93 2 82 0 77 2 

  Sotalol 100 9 86 3 83 9 64 2 

 Iohexol 100 7 98 5 87 5 85 7 

Contrast Iomeprol 100 1 99 2 97 3 96 1 

media Iopamidol 100 6 104 4 93 1 86 5 

  Iopromide 100 6 100 4 95 1 96 1 

Antibiotics Clarithromycin 100 1 99 1 98 2 100 0 
 Erythromycin 100 1 99 0 98 2 95 1 
 Roxithromycin 100 12 101 0 100 2 98 3 
 Sulfamethoxazole 100 3 97 0 98 1 97 1 
 Trimethoprim 100 4 95 1 95 0 92 2 

Lipid regulators Bezafibrate 100 7 102 0 100 3 103 1 
 Clofibric acid 100 2 98 0 97 1 98 2 
 Gemfibrozil 100 3 101 0 103 1 100 1 

Antihistamines Cetirizine 100 8 104 2 93 11 98 1 
 Loratadine 100 3 87 5 84 2 86 2 

 Carbamazepine 100 1 102 0 103 1 103 2 

Anticonvulsants Diazepam 100 1 98 3 96 1 92 0 

and sedatives Primidone 100 1 95 4 101 2 100 2 

  Tetrazepam 100 1 98 7 93 5 90 1 

  Citalopram 100 2 93 0 86 1 79 3 

SSRI Fluoxetine 100 2 75 2 51 4 31 2 

  Sertraline 100 2 68 4 57 2 49 5 

 Atrazine 100 2 101 1 101 3 98 3 

 Desethylatrazine 100 2 103 2 102 2 101 1 

Pesticides Desisopropylatrazine 100 3 101 7 96 1 98 4 

and Diuron 100 4 92 4 82 0 77 1 

pesticide metabolites Isoproturon 100 4 96 0 78 6 54 2 

  Mecoprop 100 2 95 1 96 1 94 0 

  Metazachlor 100 2 98 2 98 2 92 3 

Corrosion inhibitors 1H-Benzotriazol 100 1 89 0 80 4 71 0 
 Tolyltriazol 100 3 89 3 85 2 78 1 

Cocaine metabolite Benzoylecgonine 100 3 96 0 96 0 96 2 

Proton pump inhibitor Pantoprazole 100 1 97 2 94 2 92 0 
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Appendix A.1. Calculation procedure for hydrograph separation 

The fraction of rapidly transported rain water at the spring is determined as follows: 

bgp cfrcfrc  )1(  Eq. A.1 

resulting in 

bgp

bg

cc

cc
fr




  

Eq. A.2 

with c the observed parameter concentration in spring water at the time of sampling, cp the 

parameter concentration in the precipitation sample, cbg the background concentration of 

the parameter in spring water and fr the fraction of rapidly transported rain water in spring 

water. 

The discharge of rapidly transported rainwater as part of the total spring discharge can be 

calculated according to: 

bgp

bg
fr cc

cc
QfrQQ




  
Eq. A. 3 

with Qfr being the discharge of rapidly transported rainwater at the time of sampling, Q the 

total spring discharge at the time of sampling 

XVI 



Appendix A 

Appendix A.2. Correlation of atrazine (ATR) with inorganic ions and the electrical conductivity (EC). 

 

The parameters are displayed in normalised form to attain values between 0 and 1 for their 

minimum and maximum values respectively. 
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Table A.16. Estimated mean concentrations of atrazine (ATR) and desethylatrazine (DEA) in spring 
water as well as atrazine and desethylatrazine loads. While the values for the year 2010 are 
observed values, all others are estimated according to the trend of the data in Tappe et al. (2002), 
i. e. declining concentrations following an exponential decline with a decline-rate of 0.26 a–1 for 
atrazine and 0.22 a–1 for desethylatrazine. For the years 1965–1991 a constant discharge of atrazine 
and desethylatrazine is assumed which is equal to the estimated value for 1992. 

Year 
Estimated mean concentration  
of ATR in spring water (ng L–1) 

Estimated ATR load in
spring water (g a–1) 

Estimated mean concentration  
of DEA in spring water (ng L–1)

Estimated DEA load in
spring water (g a–1) 

2010 2.4 37.8 2.8 44.2
2009 3.1 48.9 3.5 55.1
2008 4.0 63.2 4.4 68.8
2007 5.2 81.7 5.5 86.0
2006 6.7 105.7 6.8 107.4
2005 8.7 136.6 8.5 134.1
2004 11.2 176.6 10.6 167.4
2003 14.5 228.3 13.3 209.1
2002 18.7 295.1 16.6 261.1
2001 24.2 381.4 20.7 326.1
2000 31.3 493.1 25.8 407.2
1999 40.4 637.4 32.2 508.5
1998 52.3 823.9 40.3 635.0
1997 67.5 1065.1 50.3 792.9
1996 87.3 1376.8 62.8 990.2
1995 112.9 1779.8 78.4 1236.5
1994 145.9 2300.7 97.9 1544.1
1993 188.6 2974.1 122.3 1928.2
1992 243.8 3844.6 152.7 2407.9
1991 243.8 3844.6 152.7 2407.9
1990 243.8 3844.6 152.7 2407.9
1989 243.8 3844.6 152.7 2407.9
1988 243.8 3844.6 152.7 2407.9
1987 243.8 3844.6 152.7 2407.9
1986 243.8 3844.6 152.7 2407.9
1985 243.8 3844.6 152.7 2407.9
1984 243.8 3844.6 152.7 2407.9
1983 243.8 3844.6 152.7 2407.9
1982 243.8 3844.6 152.7 2407.9
1981 243.8 3844.6 152.7 2407.9
1980 243.8 3844.6 152.7 2407.9
1979 243.8 3844.6 152.7 2407.9
1978 243.8 3844.6 152.7 2407.9
1977 243.8 3844.6 152.7 2407.9
1976 243.8 3844.6 152.7 2407.9
1975 243.8 3844.6 152.7 2407.9
1974 243.8 3844.6 152.7 2407.9
1973 243.8 3844.6 152.7 2407.9
1972 243.8 3844.6 152.7 2407.9
1971 243.8 3844.6 152.7 2407.9
1970 243.8 3844.6 152.7 2407.9
1969 243.8 3844.6 152.7 2407.9
1968 243.8 3844.6 152.7 2407.9
1967 243.8 3844.6 152.7 2407.9
1966 243.8 3844.6 152.7 2407.9
1965 243.8 3844.6 152.7 2407.9
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Appendix A.3. Detection and quantification of the micro-contaminants  

The HPLC system consisted of a Varian ProStar 410 autosampler and a high-pressure 

gradient system of two Varian ProStar 210 pumps. A Varian 1200 L triple quadrupole mass 

spectrometer with electrospray interface (ESI) was used for detection and quantification. 

The MS/MS transitions of all injected micro-contaminants, their transformation products 

1-methylxanthine, 3-methylxanthine, paraxanthine, theobromine, theophylline, and atenolol 

acid are presented in Table SI1. The transitions of the assigned internal standards are 

presented in Table SI2. 

Method 1. For the chromatographic separation of atenolol, caffeine, carbamazepine, 

ibuprofen, paracetamol, 1-methylxanthine, 3-methylxanthine, atenolol acid, paraxanthine, 

theobromine, and theophylline, the Polaris C18-Ether HPLC column (150×2 mm, 3 µm 

particle size; Varian, Darmstadt, Germany) was used. The flow was 200 µL min−1, the 

column was operated at 30 °C, and the injection volume was 100 µL. Eluent A was 0.015% 

formic acid + 1% methanol in ultrapure water, eluent B was methanol. The elution started 

with 5% B, followed by a linear gradient of 15 min to 35% B. This step was followed by a 

5-min linear gradient to 95% B. This composition was held for 5 min followed by a 1-min 

linear gradient to 5% B, which was maintained for 9 min to equilibrate the system.  

Method 2. For the analysis of acesulfame the ASCENTIS® Express OH5 (100×2.1 mm, 

2.7 µm particle size; Sigma-Aldrich, Steinheim, Germany) HPLC column was used. The 

flow was 300 µL min−1, the column was operated at 25 °C, and the injection volume was 

5 µL. The separation was conducted isocratically by using 5% of eluent A (aqueous buffer 

of 20 mM ammonium acetate and 1% acetonitrile, adjusted to pH 3.5 with glacial acetic 

acid) and 95% eluent B (acetonitrile).  
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Table A.17. ESI-MS/MS conditions of the analytes. 

Method Compound Quantifier aCap U
[V] 

bCE 
[V] 

Qualifier aCap U
[V] 

bCE 
[V] 

cAssigned IS 
No. 

1 Acesulfame 162 > 82 −30 12.5 162 > 78 −30 28.5 1 
 Cyclamate 178 > 80 −55 23.5 2 
2 1-methylxanthine 165 > 108 −55 19.0 165 > 80 −55 25.0 9 
 3-methylxanthine 165 > 122 −55 19.0 165 > 150 −55 18.0 9 
 Atenolol 267 > 145 55 −20.0 267 > 190 55 −11.0 3 
 Atenolol acid 268 > 145 60 −17.5 268 > 191 60 −12.0 3 
 Caffeine 195 > 138 55 −9.5 195 > 110 55 −9.0 4 
 Carbamazepine 237 > 194 45 −11.0 237 > 179 45 −27.0 5 
 Ibuprofen 205 > 161 −25 5.5 6 
 Paracetamol 152 > 110 40 −20.0 152 > 93 40 −18.5 7 
 Paraxanthine 181 > 124 60 −8.0 181 > 96 60 −10.5 8 
 Theobromine 181 > 138 55 −9.5 181 > 110 55 −13.0 9 
 Theophylline 181 > 124 60 −8.0 181 > 96 60 −10.5 9 
a Capillary voltage. 
b Collision energy. 
C Corresponding to Table SI2 

Table A.18. ESI-MS/MS conditions of the internal standards. 

Method Compound Quantifier aCap U
[V] 

bCE 
[V] 

IS No.

1 Acesulfame-D4 166 > 86 −30 12.5 1
 Cyclamate-D11 189 > 80 −55 23.5 2
2 Atenolol-D5 274 > 145 55 −17.5 3
 Caffeine-D9 204 > 144 60 −8.5 4
 Carbamazepine-D10 247 > 204 45 −13.0 5
 Ibuprofen-D3 208 > 164 −25 6.0 6
 Paracetamol-D4 156 > 116 40 −20.0 7
 Paraxanthine-D6 187 > 127 60 −9.0 8
 Theobromine-D6 187 > 144 55 −13.5 9

a Capillary voltage. 

b Collision energy. 

 

Appendix A.4. Modelling details. 

The following remarks are based on Hillebrand et al. (2012). For breakthrough-curve 

interpretation a uniaxial two-region non-equilibrium advection dispersion model has been 

employed with CXTFit 2.0 (Toride et al., 1995). This approach considers two different 

regions within a karst conduit: (i) a mobile region, where water is displaced by plug flow and 

(ii) an immobile region, where water is retained in e. g. eddies or vortices. These regions 

have been described earlier in Field and Pinsky (2000), Hauns et al. (2001) or Geyer et al. 

(2007).  

For solute transport the following processes are considered: advection, dispersion, mass 

transfer between the two fluid regions (mobile and immobile), reversible sorption and tracer 

attenuation (summarizing all possible processes that lead to a higher mass loss, than for 

the reference tracers, e. g. degradation). The analytical equations for the model are given 

as follows (modified from van Genuchten and Wagenet, 1989): 
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Eq. A.5 

with the retardation coefficient, defined as: 

aKV

A
+=R 1  

Eq. A.6 

for non-porous matrix blocks. The solute partitioning coefficient between the two fluid 

regions β is given as: 

R

)f(R+θ
=β m 1

 
Eq. A.7 

t is time, x is the space coordinate, D is the dispersion coefficient, v is the average flow 

velocity, α is a first-order mass transfer coefficient between mobile and immobile fluid 

regions. cm and cim are the solute concentrations in, µ1 and µ2 are first-order attenuation 

rates within the mobile and immobile fluid region respectively. Comparable to Hillebrand et 

al. (2012), a uniform attenuation rate in the mobile and immobile region was considered 

(µ1=µ2=µ). θm and θim are the volumetric fraction of the mobile and immobile fluid region 

respectively, while θm+ θim=θ=1 for a fully saturated conduit. A/V is the surface to volume 

ratio of a karst conduit, Ka is the linear distribution coefficient defined as the ratio of tracer 

mass per unit surface area of the solid phase to the unit concentration of the tracer within 

the conduit. The parameter f refers to the fraction of reversible adsorption sites that 

equilibrates with the mobile liquid phase. The retardation coefficient R captures the 

retardation of unpolar sorption as well as from reversible polar interactions as shown by 

Geyer et al. (2007). Rearranging eq. 4 and inserting physically reasonable values for f 

(between 0 and 1) allows constraining β (Geyer et al., 2007): 

R

θ
β

R

θ imm  1  
Eq. A.8 
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Fitting the breakthrough-curve of a conservative tracer yields estimates for the parameters 

v, D, α and θm. The application of uranine as conservative tracer in karst hydrology has 

been shown in several large scale field studies (Birk et al., 2005, Geyer et al., 2007, 

Hillebrand et al., 2012). Conservative transport parameters can be assumed to be equal for 

conservative and reactive solute tracers (Geyer et al., 2007). Consequently, the calibration 

of the reactive transport model is reduced to the transport parameters R, β and the 

attenuation coefficient µ if a conservative reference tracer is applied simultaneously. As the 

retardation coefficient R has never exceeded 1.01 for any analyte, it has been set to 1 and 

kept constant during all fitting procedures 

As transport distance, the linear distance of 3000 m between the injection-point and the 

Gallusquelle spring was used. The initial values for v, D and θm for the calibration of the 

model were taken from Hillebrand et al. (2012). Estimates for α are not generally possible 

(Field and Pinsky, 2000). 
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• Solid phase extraction is determined to be the most promising stabilisation strategy.
⁎ Corresponding author at: Goldschmidtstrasse 3, D-3
+49 551 39 9267; fax: +49 551 39 9379.

E-mail address: olav.hillebrand@geo.uni-goettingen.

0048-9697/$ – see front matter © 2013 Elsevier B.V. All
http://dx.doi.org/10.1016/j.scitotenv.2013.03.028
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 13 February 2013
Received in revised form 7 March 2013
Accepted 7 March 2013
Available online 2 April 2013

Keywords:
Sample storage
Sodium azide
Copper sulphate
Solid phase extraction (SPE)
River water
Treated wastewater
Water sample storage and stabilisation may affect data quality, if samples are managed improperly. In this
study three stabilising strategies are evaluated for 46 relevant organic micro-pollutants: addition of the bio-
cides (i) copper sulphate and (ii) sodium azide to water samples directly after sampling with subsequent
sample storage as liquid phase and (iii) direct solid phase extraction (SPE), stabilising the samples by reduc-
ing the activity of water. River water and treated effluent were chosen as commonly investigated matrices
with a high potential of biotransformation activity. Analyses were carried out for sample storage tempera-
tures of 4 and 28 °C for water samples stored as liquid phase and for sample storage temperatures of 4, 20
and 40 °C for SPE cartridges. Cooling of water samples alone was not sufficient for longer storage times
(>24 h). While copper sulphate caused detrimental interferences with nitrogen containing heterocyclic
compounds, sodium azide proved to be a suitable stabilising agent. The best results could be obtained for
SPE cartridges stored cool. Recommendations for samples preservation are provided.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Within the last 20 years, researchers increasingly investigated the oc-
currence and fate of organic compounds in trace concentrations (μg L−1

to ng L−1). These so-called micro-contaminants or micro-pollutants,
such as pharmaceuticals andpersonal care products, endocrinedisrupting
compounds, pesticides and/or industrial chemicals at low concentra-
tions were detected in virtually all parts of the water cycle (Focazio et
al., 2008; Heberer, 2002; Schwarzenbach et al., 2006; Ternes, 2007;
Weigel et al., 2001). Due to the diversity of these compounds, analytical
methods focussing on only one class of compounds do not meet the re-
quirements of current research undertaken in environmental sciences
(Estévez et al., 2012; Nödler et al., 2011; Reh et al., 2013). However,
7077 Göttingen, Germany. Tel.:

de (O. Hillebrand).

rights reserved.
thanks to significant progress in the field of analytical science several
multi-residue analytical methods were developed (e.g. Huntscha et al.,
2012; Nödler et al., 2010; Nurmi and Pellinen, 2011;Wode et al., 2012).

Although the diversity of compounds can nowadays be handled ana-
lytically by multi-residue analysis, the wide spectrum of compounds
with various stabilities and reactivities (e.g. Nödler et al., 2010; Wode
et al., 2012) results in a challenge for sample preservation. In cases
when the immediate sample analysis is difficult or impossible (e.g. re-
mote areas) or the sampling is intended to be realised over longer
periods (e.g. weekly-integrated sampling; Kylin, 2013), the storage con-
ditions become highly relevant (Barceló and Alpendurada, 1996; U.S.
EPA, 2010; Vanderford et al., 2011). Especially for easily degradable com-
pounds, their reliable determination largely depends on proper sample
storage conditions. Various processes such as microbial degradation,
chemical reactions, volatilisation or adsorption may occur even during
relatively short sample storage times resulting in low analyte recoveries.
For example, caffeine, ibuprofen and paracetamol (acetaminophen) are

http://dx.doi.org/10.1016/j.scitotenv.2013.03.028
mailto:olav.hillebrand@geo.uni-goettingen.de
http://dx.doi.org/10.1016/j.scitotenv.2013.03.028
http://www.sciencedirect.com/science/journal/00489697


Table 1
Investigated analytes and their application/origin.

Application or origin Compound Application or origin Compound

Analgesics/anti-inflammatories Diclofenac Lipid regulators Bezafibrate
Ibuprofen Clofibric acid
Naproxen Gemfibrozil
Paracetamol Antihistamines Cetirizine
Phenazone Loratadine

Stimulants/caffeine metabolites Caffeine Anticonvulsants/sedatives Carbamazepine
Paraxanthine Diazepam
Theobromine Primidone
Theophylline Tetrazepam
1-Methylxanthine Selective serotonin reuptake inhibitors Citalopram
3-Methylxanthine Fluoxetine

Antihypertensive agents Atenolol Sertraline
Metoprolol Herbicides/herbicide metabolites Atrazine
Sotalol Desethylatrazine

Iodinated contrast media Iohexol Desisopropylatrazine
Iomeprol Diuron
Iopamidol Isoproturon
Iopromide Mecoprop

Antibiotics Clarithromycin Metazachlor
Erythromycin Corrosion inhibitors 1H-benzotriazole
Roxithromycin Tolyltriazole
Sulfamethoxazole Cocaine metabolite Benzoylecgonine
Trimethoprim Gastric acid regulator Pantoprazole

Fig. 1. Schematic overview of the experiments to investigate the influence of different stabilisation techniques (c0 = initial concentration).
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commonly investigated micro-contaminants and known to be easily de-
gradable in wastewater treatment plants (WWTPs) and in the environ-
ment (e.g. Halling-Sørensen et al., 1998; Joss et al., 2006) while
carbamazepine is known to be a very stable compound (Clara et al.,
2004; Gasser et al., 2010). Acknowledging the large range of stability en-
countered for compounds in multi-residue analysis, it is obvious that a
proper sample pre-treatment and storage is essential to obtain reliable
results. Thus, sample stabilisation methods should be applied to
Fig. 2. Recoveries of selected analytes in WWTP treated effluent with respect to storage time
28 A =wastewater sample stored at 28 °C, stabilised with NaN3; WW 4 N= non-stabilis
stabilised with NaN3; the dashed grey line at 80% indicates the significance threshold).
minimise concentration changes between sampling and analysis.
These methods are most common in inorganic analysis and include
addition of chemicals, cooling, pH-modifications and choice of stor-
age container.

For micro-contaminants the influence of storage temperatures,
the material of the storage container and different quenching agents
have been investigated for water samples, stored as liquid phase
(U.S. EPA, 2010; Vanderford et al., 2011). As stabilising agents sodium
; stored as liquid (WW 28 N = non-stabilised wastewater sample stored at 28 °C; WW
ed wastewater sample stored at 4 °C; WW 4 A = wastewater sample stored at 4 °C,
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azide and sulphuric acid have been tested (Vanderford et al., 2011).
However, these recent investigations focussed on the sample
treatment of water samples stored as liquid phase, although the
advantages of using SPE-cartridges for sample stabilisation have
been recognised several years ago (Barceló and Alpendurada,
1996).

To inhibit biological degradation inwater samples, two biocidal addi-
tives which can be used are sodium azide and copper sulphate. Sodium
azide is frequently used in laboratory studies (e.g. Vanderford and
Snyder, 2006), especially to produce abiotic reference samples in degra-
dation experiments (e.g. Margesin et al., 2000; Ying et al., 2008) and has
been described by Vanderford et al. (2011) as the most benign of the in-
vestigated preservatives for sample stabilisation. Copper sulphate is par-
ticularly applied for the stabilisation of phenols and phenolics (DIN
38409–16, 1984; Hossain and Salehuddin, 2009). A common non-
chemical stabilisation technique is solid phase extraction (SPE). By
reducing the water activity, the microbial growth can be controlled
(Madigan et al., 2003).

The aim of this study was to evaluate the influence of the water
sample matrix, the storage temperature, the addition of two selected
chemical preservatives and the direct application of SPE on the recov-
ery of 46 analytes. The here investigated micro-contaminants com-
prise of a large variety of different compound-classes including
readily degradable and highly persistent compounds.

2. Methods and materials

2.1. Chemicals

Sodium azide (NaN3) and copper sulphate pentahydrate (CuSO4·5
H2O) were purchased from Fisher Scientific (Schwerte, Germany).
The suppliers of all target analytes, the internal standards (IS), the
SPE cartridges, and all other reagents were published previously
(Nödler et al., 2010). The investigated trace organic compounds are
presented in Table 1.

2.2. Sample preparation

A schematic overview of the experiments is presented in Fig. 1.
Water samples were collected by using 1 L and 2 L clear-glass bottles,
pre-rinsed with the respective water sample. The samples were taken
from the effluent of the wastewater treatment plant (WWTP)
Göttingen (Germany, ~120,000 inhabitants) and the Leine River
(Göttingen, Germany). Under dry weather discharge conditions, the
mean hydraulic residence time within the WWTP was 20-24 h. The
treatment processes consisted of a mechanical treatment for the
separation of solid material followed by activated sludge treatment,
including nitrification and denitrification. Additionally, chemical
P-removal was performed. During a previously published study, the
treated effluent was analysed on a daily basis for 27 days and easily
degradable compounds such as ibuprofen, caffeine and its degrada-
tion products were not detected (Nödler et al., 2011). Therefore, the
presence of highly adapted micro-organisms can be assumed, which
underlines the big challenge of stabilising these compounds in this
sample matrix. The presence of anthropogenic micro-pollutants in
the Leine River was also demonstrated in previous studies (Nödler et
al., 2010, 2011). Therefore, adapted micro-organisms were expected
in both matrices.

2.2.1. Sample subsets S1–S3
Composite samples of 6.5 L river water and treated effluent, re-

spectively, were prepared and spiked with 650 μL stock solution
Fig. 3. Recoveries of selected analytes in river water with respect to storage time; stored as l
water sample stored at 28 °C, stabilised with NaN3; RW 4 N = non-stabilised river water sa
the dashed grey line at 80% indicates the significance threshold).
containing all analytes. The stock solution was prepared in 50/50
water/methanol (v/v); the final methanol concentration in the
water samples was therefore 0.005% (v/v). Spike levels of 2 μg L−1

of each individual iodinated contrast media and the individual concen-
tration of 1 μg L−1 of all other compounds were applied. The spiked
composite sample was stirred for 30 min by amagnetic stirrer. Aliquots
of 100 mL sample were taken by a 100 mL glass pipette and transferred
into 100 mL clear-glass and screw cap bottles. As the samples were not
filtered, stirring was applied to enable the transfer of representative al-
iquots including dispersed particles. Fifty-four 100 mL sub-samples
were prepared. Of each sample matrix 18 sub-samples were spiked
with 1 mLof an aqueousNaN3 stock solution resulting in a final concen-
tration of 5 g L−1 NaN3 (Wender et al., 2000; Ying et al., 2008). Another
18 aliquots were spikedwith 1 mL of an aqueous CuSO4·5 H2O solution
resulting in a concentration of 1 g L−1 CuSO4 (DIN 38409–16, 1984).
However, acidification of the Cu-stabilised samples as recommended
by the DIN standard (DIN 38409–16, 1984) was not applied, as some
of the analytes are sensitive to low pH-values. To the remaining 18 ali-
quots 1 mL ultrapure water was added to keep the sample volumes
comparable to the stabilised samples. Because some of the analytes
were already present in the native samples (Nödler et al., 2010, 2011),
duplicates of each spiked sample matrix were immediately extracted
by SPE to determine the here applied initial concentration of the
analytes (c0).

Atenolol acid was identified by Radjenovic et al. (2008) and
Barbieri et al. (2012) as a microbial transformation product (TP) of
atenolol, generated by hydrolysis of its amide bond. Therefore, the
compound was monitored to evaluate the fate of atenolol in the pre-
pared subsets. The analysis was performed according to Reh et al.
(2013).

To simulate the impact of the preservatives depending on the stor-
age temperature, samples were stored in a refrigerator (4 °C) and in
an incubator (28 °C), respectively. All samples were covered to pre-
vent photodegradation. The incubation of the samples was terminat-
ed according to the schedule presented in Fig. 1 and samples were
immediately extracted. For the extraction, the sample (100 mL) was
spiked with 10 μL of an IS-mix (for details on the used internal stan-
dards please refer to Nödler et al., 2010; Reh et al., 2013 or SI-Table 1)
and 1 mL of a phosphate buffer concentrate (pH 7) and extracted by
SPE (OASIS® HLB) according to Nödler et al. (2010). After extraction
the cartridges were sealed with parafilm, covered in alumina foil,
and stored in a freezer at −18 °C until elution and analysis. It is as-
sumed that storing the SPE cartridges at −18 °C stabilises all
analytes. Alterations of the samples during this storage phase are
not part of this manuscript.
2.2.2. Sample subset S4
River and treated effluent matrix were spiked and 19 100 mL sub-

samples of each matrix were extracted by SPE similar to the other
subsets. However, the samples were not spiked with the above men-
tioned IS-mix prior to the SPE. The loaded cartridges were incubated
according to Fig. 1 in a GC-oven (40 °C; Chrompack CP 9001), in a
temperature-controlled laboratory (20 °C; protected from light) and
in a refrigerator (4 °C). The minimum and maximum temperatures
were monitored and the deviation did not exceed 1 °C. In comparison
to the native water sample the SPE process reduces the water activity.
As this is a well-known strategy in microbial growth control
(Madigan et al., 2003), the effect of biotransformation on the analytes
was suspected to be significantly lower than in the subsets S1–S3.
Therefore, in comparison with S1–S3 a higher maximum incubation
temperature (40 °C) was chosen.
iquid (RW 28 N = non-stabilised river water sample stored at 28 °C; RW 28 A = river
mple stored at 4 °C; RW 4 A = river water sample stored at 4 °C, stabilised with NaN3;
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2.3. Elution from the SPE-cartridge and analysis of the analytes

The analytes (subsets S1–S3) were eluted with methanol and
ethyl acetate under vacuum (flow rate ~1 mL min−1). The solvents
were evaporated to dryness at 40 °C with a gentle stream of nitrogen
and re-dissolved in 1 mL of aqueous 5 mM ammonium acetate solu-
tion, containing 4% methanol. The extract was transferred into an
autosampler vial and centrifuged for 10 min (4000 rpm). The com-
pounds were analysed with a multi-residue analytical method based
on high performance liquid chromatographic separation coupled to
an electrospray ionisation with tandem mass spectrometric detection
(HPLC/MS–MS; Nödler et al., 2010). The extracts of subset 4 were
spiked with 10 μL of the above mentioned IS-mix before the evapora-
tion step of the solvents. The further procedure and analysis was
according to the subsets S1–S3.

3. Results and discussion

A significance level of 80% is assumed in all experiments i.e. if the
recovery of the analyte is reduced by less than 20% over the period of
observation, it is declared to be insignificant and acceptable.

3.1. Water samples stored as liquid phase

3.1.1. Stability of compounds in non-stabilised water samples (subset 1)
Pantoprazole exhibited incomparable duplicates for river water

(RW) and was therefore discarded from further analysis. For the
treated effluent matrix (WW) a significantly low recovery could be
observed at 28 °C for the stabilised as well as the non-stabilised sam-
ples. Out of the remaining 45 micro-pollutants, 18 proved to be stable
(recovery ≥80%) in both water matrices (river and WWTP effluent)
at 4 and 28 °C although non-stabilised. The stable substances are,
among others, all but one investigated contrast media, both antihista-
mines and all anticonvulsants and sedatives (cf. Table 1). This was
expected since their stability is well known. The persistence of
carbamazepine, for example, was demonstrated in previous studies
(Castiglioni et al., 2006; Clara et al., 2004). For a table with all spiked
compounds and their respective recoveries, see SI-Table 2 and 3.

The analytes, for which unacceptable recoveries have been observed
at the end of the investigation period, were generally the same for both
water matrices.

It can be assumed that, in sewage, more micro-organisms are present
and they readily cause amore efficient transformation,whereas innatural
water (e.g. river water) the bacteria require a longer lag phase to adapt to
changed conditions (Madigan et al., 2003). Thus, it can be expected that
recoveries from WW are generally lower than from RW. This is partially
confirmed by the presented study. However, for the compounds atenolol,
metoprolol, iomeprol, sulfamethoxazole, bezafibrate, fluoxetine, sertra-
line, desisopropylatrazine, 1H-benzotriazole and benzoylecgonine a
lower recovery could be observed in the RW samples.

The concentration of atenolol acid in the RW stored at 28 °C in-
creased from 25 ng L−1 (present in the native sample) to 250 ng L−1

at the end of the incubation period. Assuming the TP being stablewithin
the investigated period, ~30% of the atenolol loss can be attributed to
the formation of atenolol acid.

Typically, higher temperatures (within the physical range of micro-
organisms) promote the microbial growth and activity, whereas lower
temperatures are inhibitory (Castiglioni et al., 2006; Kang and Kondo,
2002; Vieno et al., 2005). Accordingly, except for clofibric acid, sertra-
line, diuron and isoproturon in WW as well as tolyltriazole in RW, all
compounds demonstrated higher recoveries in the cooled samples.
The substances with the lowest recovery were methylxanthines
(caffeine, paraxanthine, theobromine, theophylline, 1-methylxanthine,
3-methylxanthine), ibuprofen and paracetamol; rapidly decreasing re-
coveries were observed in the WW samples for both temperatures
(Fig. 2). In the RW samples ibuprofen and paracetamol exhibited
unacceptably low recoveries at both temperature levels at the end of
the observation period. For the methylxanthines, this holds only true
for the higher temperature level of 28 °C (Fig. 3).

3.1.2. Stabilisation with sodium azide (subset 2)
Sodium azide inhibits microbial activity and growth (e.g. Margesin

et al., 2000; Ying et al., 2008). After two days of incubation at 28 °C,
the non-stabilised samples exhibited a clearly visible turbidity. In con-
trast, the stabilised samples hardly manifested any turbidity. This may
be interpreted as an indication for the reduced microbial activity of
the stabilised samples.

The addition of sodium azide generally led to higher recoveries of
the analytes in the samples, relative to non-stabilised samples. This
was observed for all analytes in the WW samples. However, anomalies
were observed in the RW samples for naproxen, iomeprol, iopamidol,
bezafibrate, clofibric acid, gemfibrozil, sertraline and diuron at 4 °C
and for tolyltriazole at 28 °C. Several authors describe interferences of
sodium azide with some analytes resulting in a transformation
(Chefetz et al., 2006; Lichtenstein et al., 1968; Sharom et al., 1980),
which may explain the observations. Chefetz et al. (2006) observed a
nucleophilic aromatic substitution reaction: the chlorine atomof the at-
razinewas replaced by the azide group. Thismay explain the low recov-
eries of bezafibrate, clofibric acid, sertraline and diuron in the stabilised
samples. However, it does not explain the low recoveries of the other
analytes and why it was observed for 4 °C but not for 28 °C. Grenni et
al. (2013) found gemfibrozil and naproxen to be biodegradable in
river water, while these compounds were observed to be stable in
sterilised river water samples. One may read this as an indication that
micro-organisms, responsible for the degradation of gemfibrozil and
naproxen, are either affected to a lower extend or not affected at all
by sodium azide.

It is noteworthy, that Vanderford et al. (2011) found recoveries to
be unacceptable for atenolol and fluoxetine in water samples,
stabilised with sodium azide and stored at 4 °C. This cannot be con-
firmed from the observations of this study. However Vanderford et
al. (2011) used higher storage times and a slightly more strict level
of significance.

While the easily degradable compounds from the methylxan-
thines group, ibuprofen and paracetamol demonstrated rapidly de-
creasing recoveries in the non-stabilised samples, they could be
successfully stabilised with sodium azide in both water matrices be-
tween 2 and 17 days, depending on the analyte (Figs. 2 and 3). In
the stabilised and cooled samples all these compounds exhibit ac-
ceptably high recoveries over the entire investigated period. For para-
cetamol and 1-methylxanthine a higher, but still unacceptably low
recovery, was observed over the observation period in the WW sam-
ples at 28 °C. Thus, it can be assumed that biodegradation is not the
only effect, which influences the stability of these compounds in the
aqueous phase.

For a table with all spiked compounds and their respective recov-
eries, see SI-Table 4 and 5.

3.1.3. Stabilisation with copper sulphate (subset 3)
The stabilisation of the samples with copper sulphate led to signif-

icant analytical problems. On the one hand, the addition of the
stabilising additive led to a milky-blue precipitate which is assumed
to be copper-(II)-hydroxide (Cu(OH)2) given its low solubility
(KSP = 2.20 × 10−20; Patnaik, 2003). Due to this precipitate SPE
was difficult without prior filtration. On the other hand, the methyl-
xanthines exhibited poor recoveries in all samples. Tolyltriazole
could hardly and pantoprazole and 1H-benzotriazole could not be
detected at all. Probably this is caused by complexation with copper:
all the above mentioned compounds comprise an azole structure.
1H-benzotriazole and tolyltriazole are used as corrosion inhibitors
for metals including copper. After adsorption of the inhibitor on the
copper surface a copper–azole complex is formed (Subramanian and
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Lakshminarayanan, 2002). In a third step, polymerisation can occur
(Antonijevic and Petrovic, 2008). Imidazole and its derivatives are also
efficient copper corrosion inhibitors in various media (Stupnisek-Lisac
et al., 2002; Subramanian and Lakshminarayanan, 2002).

In conclusion, it can be assumed that the methylxanthines and
pantoprazole containing imidazole-like structures can also form com-
plexes with copper resulting in the observed low to very low recover-
ies. Due to these problems a further discussion of the results from
these samples is excluded.

3.2. Stabilisation by SPE (subset 4)

By SPE of the water samples, the water activity and the concentration
of inorganic nutrients were reduced. Although for the high storage tem-
perature (at 40 °C) low recoveries were expected, 33 of the 46 analytes
could be stabilised over the complete observationperiod of 10 days. Com-
pounds that showed recoveries lower than the significance level of 80%
include all antihypertensive agents, all SSRIs, both corrosion inhibitors,
1-methylxanthine, 3-methylxanthine, loratadine, diuron and isoproturon.
Themost labile compounds in the non-stabilised samples stored as liquid
phase (methylxanthines, paracetamol and ibuprofen) exhibit much
higher (1-methylxanthine and 3-methylxanthine) or acceptable recover-
ies after SPE, whereas fluoxetine, sertraline and atenolol show the lowest
recovery of all analytes at the end of the investigation period (28, 49 and
55% respectively; Figs. 4 and 5). Despite the relatively low recovery of
atenolol, increasing concentrations of atenolol acid were not observed.

At 4 °C and over the entire investigation period of 20 days no sig-
nificant decrease in recovery could be observed for any of the investi-
gated compounds. Comparing the water matrices with one another,
in general no differences can be observed. In fact, samples from
WW and RW showed rather similar recoveries for some of the com-
pounds (e.g. fluoxetine and atenolol). For a table with all spiked com-
pounds and their respective recoveries after SPE, see SI - Table 6 and
7.

4. Conclusions

In the water samples stored as liquid phase the methylxanthines,
ibuprofen and paracetamol were ascertained to be among the lowest
recovered micro-contaminants in non-stabilised samples of both in-
vestigated water matrices, RW and WW. These compounds are valu-
able indicators for untreated sewage (Bound and Voulvoulis, 2006;
Buerge et al., 2006; Hillebrand et al., 2012) and immediate sample
preparation and analysis would be the best option to prevent low re-
coveries due to storage. However, depending on the infrastructure
this option may not be feasible and the transport of the samples to
the laboratory may take a considerable time.

Stabilising the samples with sodium azide led to significantly
higher recoveries in both water matrices. Nevertheless, for some
analytes unacceptable recoveries were observed.

The stabilisation of the water samples with copper sulphate
caused detrimental interferences with all the methylxanthines, the
corrosion inhibitors and pantoprazole, most likely due to the forma-
tion of copper–azole complexes. It can be concluded that copper sul-
phate is an unsuitable stabilising additive for micro-pollutants in
water samples when stored as liquid phase especially, if azole- or
imidazole-like compounds are to be included in the list of analytes.

Processing the water samples by SPE showed the best results of all
stabilising strategies. While for some analytes recoveries ≤80% could
be observed at 20 and 40 °C, storing the SPE cartridges at 4 °C led to
acceptable recoveries over the whole observation period of 20 days
for all investigated analytes.

Concluding from our presented results, the following recommen-
dations for sample preparation and storage can be derived (from
best, to worst alternative):
1) Immediate analysis of the samples
2) SPE directly after sampling with SPE cartridge, store as cool as

possible
3) Stabilisation of the samples with sodium azide and store as cool as

possible
4) Storage of non-stabilised samples as cool as possible

If no immediate analysis is possible, the storage time should be
minimised. Depending on the water matrix sampled a ranking can
be set up, reflecting its need for sample stabilisation. First, WW sam-
ples need to be stabilised. Due to their high number of adapted
micro-organisms, the stabilisation of these samples is most urgent.
Second, RW samples need to be analysed or otherwise stabilised.

Although groundwater and drinking water have not been investi-
gated in the course of this article, the following can be assumed: for
groundwater, which is known to be less loaded with micro-organisms
(Schijven et al., 2003; Toze, 2004) as well as drinking water, much
less alteration of the analytes is expected. Hence, the analysis or
stabilisation of respective samples need to be performed the least
urgent.

Acknowledgements

The presented study was funded by the German Federal Ministry
of Education and Research as part of the funding programme Sustain-
able Water Management (NaWaM-RiSKWa; promotional reference
No. 02WRS1277A, AGRO, “Risikomanagement von Spurenstoffen und
Krankheitserregern in ländlichen Karsteinzugsgebieten”) and promo-
tional references No. 02WM0802 and 02WM1081, SMART, “Sustainable
and Integral Management of Available Water Resources Using Innova-
tive Technologies”.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.scitotenv.2013.03.028.

References

Antonijevic MM, Petrovic MB. Copper corrosion inhibitors: a review. Int J Electrochem
Sci 2008;3:1-28.

BarbieriM, Licha T, Nödler K, Carrera J, Ayora C, Sanchez-Vila X. Fate of β-blockers in aqui-
fer material under nitrate reducing conditions: batch experiments. Chemosphere
2012;89:1272–7.

Barceló D, Alpendurada M. A review of sample storage and preservation of polar pesti-
cides in water samples. Chromatographia 1996;42:704–12.

Bound JP, Voulvoulis N. Predicted and measured concentrations for selected pharma-
ceuticals in UK rivers: implications for risk assessment. Water Res 2006;40:
2885–92.

Buerge IJ, Poiger T, Müller MD, Buser H-R. Combined sewer overflows to surface waters
detected by the anthropogenic marker caffeine. Environ Sci Technol 2006;40:
4096–102.

Castiglioni S, Bagnati R, Fanelli R, Pomati F, Calamari D, Zuccato E. Removal of pharma-
ceuticals in sewage treatment plants in Italy. Environ Sci Technol 2006;40:357–63.

Chefetz B, Stimler K, Shechter M, Drori Y. Interactions of sodium azide with triazine
herbicides: effect on sorption to soils. Chemosphere 2006;65:352–7.

Clara M, Strenn B, Kreuzinger N. Carbamazepine as a possible anthropogenic marker in
the aquatic environment: investigations on the behaviour of carbamazepine in
wastewater treatment and during groundwater infiltration. Water Res 2004;38:
947–54.

DIN 38409–16. German standard methods for the examination of water, waste water
and sludge; general measures of effects and substances (group H); determination
of the phenol index (H 16). Beuth, Berlin, Germany: Deutsches Institut für
Normung e.V.; 1984.

Estévez E, del Carmen CabreraM,Molina-DíazA, Robles-Molina J, del Pino Palacios-DíazM.
Screening of emerging contaminants and priority substances (2008/105/EC) in
reclaimed water for irrigation and groundwater in a volcanic aquifer (Gran Canaria,
Canary Islands, Spain). Sci Total Environ 2012;433:538–46.

Focazio MJ, Kolpin DW, Barnes KK, Furlong ET, Meyer MT, Zaugg SD, et al. A national
reconnaissance for pharmaceuticals and other organic wastewater contaminants
in the United States — II) Untreated drinking water sources. Sci Total Environ
2008;402:201–16.

Gasser G, Rona M, Voloshenko A, Shelkov R, Tal N, Pankratov I, et al. Quantitative eval-
uation of tracers for quantification of wastewater contamination of potable water
sources. Environ Sci Technol 2010;44:3919–25.

http://dx.doi.org/10.1016/j.scitotenv.2013.03.028
http://dx.doi.org/10.1016/j.scitotenv.2013.03.028


298 O. Hillebrand et al. / Science of the Total Environment 454–455 (2013) 289–298
Grenni P, Patrolecco L, Ademollo N, Tolomei A, Caracciolo AB. Degradation of gemfibro-
zil and naproxen in a river water ecosystem. Microchem J 2013;107:158–64.

Halling-Sørensen B, Nielsen SN, Lanzky PF, Ingerslev F, Holten-Lutzhoft HC, Jørgensen
SE. Occurrence, fate, and effects of pharmaceutical substances on the environment:
a review. Chemosphere 1998;36:357–93.

Heberer T. Tracking persistent pharmaceutical residues from municipal sewage to
drinking water. J Hydrol 2002;266:175–89.

Hillebrand O, Nödler K, Licha T, Sauter M, Geyer T. Caffeine as an indicator for the quan-
tification of untreated wastewater in karst systems. Water Res 2012;46:395–402.

Hossain MA, Salehuddin SM. Quantification of phenol in surface water by gas chroma-
tography and mass spectroscopy. As J Energy Env 2009;10:91–8.

Huntscha S, Singer HP, McArdell CS, Frank CE, Hollender J. Multiresidue analysis of 88
polar organic micropollutants in ground, surface and wastewater using online
mixed-bed multilayer solid-phase extraction coupled to high performance liquid
chromatography–tandem mass spectrometry. J Chromatogr A 2012;1268:74–83.

Joss A, Zabczynski S, Göbel A, Hoffmann B, Löffler D, McArdell CS, et al. Biological deg-
radation of pharmaceuticals in municipal wastewater treatment: proposing a clas-
sification scheme. Water Res 2006;40:1686–96.

Kang J-H, Kondo F. Effects of bacterial counts and temperature on the biodegradation of
bisphenol A in river water. Chemosphere 2002;49:493–8.

Kylin H. Time-integrated sampling of glyphosate in natural waters. Chemosphere
2013;90:1821–8.

Lichtenstein EP, Fuhremann TW, Schulz KR. Effect of sterilizing agents on persistence of
parathion and diazinon in soils and water. J Agric Food Chem 1968;16:870–3.

Madigan M, Martinko J, Parker J, editors. Brock biology of microorganisms. 10th ed.
New Jersey: Pearson Education; 2003.

Margesin R, Zimmerbauer A, Schinner F. Monitoring of bioremediation by soil biologi-
cal activities. Chemosphere 2000;40:339–46.

Nödler K, Licha T, Bester K, Sauter M. Development of a multi-residue analytical method,
based on liquid chromatography-tandem mass spectrometry, for the simultaneous
determination of 46 micro-contaminants in aqueous samples. J Chromatogr A
2010;1217:6511–21.

Nödler K, Licha T, Fischer S, Wagner B, Sauter M. A case study on the correlation of
micro-contaminants and potassium in the Leine River (Germany). Appl Geochem
2011;26:2172–80.

Nurmi J, Pellinen J. Multiresidue method for the analysis of emerging contaminants in
wastewater by ultra performance liquid chromatography–time-of-flight mass
spectrometry. J Chromatogr A 2011;1218:6712–9.

Patnaik P. Handbook of inorganic chemicals. New York: McGraw-Hill; 20031125.
Radjenovic J, Pérez S, Petrovic M, Barceló D. Identification and structural characteriza-

tion of biodegradation products of atenolol and glibenclamide by liquid chroma-
tography coupled to hybrid quadrupole time-of-flight and quadrupole ion trap
mass spectrometry. J Chromatogr A 2008;1210:142–53.

Reh R, Licha T, Geyer T, Nödler K, Sauter M. Occurrence and spatial distribution of or-
ganic micro-pollutants in a complex hydrogeological karst system during low
flow and high flow periods, results of a two-year study. Sci Total Environ 2013;443:
438–45.

Schijven J, Berger P, Miettinen I. Removal of pathogens, surrogates, indicators, and
toxins using riverbank filtration. In: Ray C, Melin G, Linsky R, editors. River-
bank filtration. Improving source-water quality. Netherlands: Springer; 2003.
p. 73-116.

Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von Gunten U, et al.
The challenge of micropollutants in aquatic systems. Science 2006;313:1072–7.

Sharom MS, Miles JRW, Harris CR, McEwen FL. Persistence of 12 insecticides in water.
Water Res 1980;14:1089–93.

Stupnisek-Lisac E, Gazivoda A, Madzarac M. Evaluation of non-toxic corrosion inhibi-
tors for copper in sulphuric acid. Electrochim Acta 2002;47:4189–94.

Subramanian R, Lakshminarayanan V. Effect of adsorption of some azoles on copper
passivation in alkaline medium. Corros Sci 2002;44:535–54.

Ternes T. The occurrence of micopollutants in the aquatic environment: a new chal-
lenge for water management. Water Sci Technol 2007;55(12):327–32.

Toze S. Pathogen survival in groundwater during artificial recharge. In: Steenvoorden J,
Endreny T, editors. Wastewater re-use and groundwater quality. Wallingford:
IAHS Press; 2004. p. 70–84.

U.S. EPA. Stability of pharmaceuticals, personal care products, steroids, and hormones
in aqueous samples, POTW effluent, and biosolids. Washington, USA: U.S. EPA, Of-
fice of Water; 2010 [Accessed online on February 2nd, 2013 (http://water.epa.gov/
scitech/methods/cwa/upload/methodsppcp.pdf)].

Vanderford BJ, Snyder SA. Analysis of pharmaceuticals in water by isotope dilution liq-
uid chromatography/tandem mass spectrometry. Environ Sci Technol 2006;40:
7312–20.

Vanderford BJ, Mawhinney DB, Trenholm RA, Zeigler-Holady JC, Snyder SA. Assessment
of sample preservation techniques for pharmaceuticals, personal care products,
and steroids in surface and drinking water. Anal Bioanal Chem 2011;399:2227–34.

Vieno NM, Tuhkanen T, Kronberg L. Seasonal variation in the occurrence of pharmaceu-
ticals in effluents from a sewage treatment plant and in the recipient water. Envi-
ron Sci Technol 2005;39:8220–6.

Weigel S, Bester K, Hühnerfuss H. New method for rapid solid-phase extraction of
large-volume water samples and its application to non-target screening of North
Sea water for organic contaminants by gas chromatography–mass spectrometry.
J Chromatogr A 2001;912:151–61.

Wender PA, Mitchell DJ, Pattabiraman K, Pelkey ET, Steinman L, Rothbard JB. The de-
sign, synthesis, and evaluation of molecules that enable or enhance cellular up-
take: peptoid molecular transporters. Proc Natl Acad Sci U S A 2000;97:13003–8.

Wode F, Reilich C, van Baar P, Dünnbier U, Jekel M, Reemtsma T. Multiresidue analytical
method for the simultaneous determination of 72 micropollutants in aqueous
samples with ultra high performance liquid chromatography–high resolution
mass spectrometry. J Chromatogr A 2012;1270:118–26.

Ying G-G, Toze S, Hanna J, Yu X-Y, Dillon PJ, Kookana RS. Decay of endocrine-disrupting
chemicals in aerobic and anoxic groundwater. Water Res 2008;42:1133–41.

http://water.epa.gov/scitech/methods/cwa/upload/methodsppcp.pdf
http://water.epa.gov/scitech/methods/cwa/upload/methodsppcp.pdf


Science of the Total Environment 482–483 (2014) 193–200

Contents lists available at ScienceDirect

Science of the Total Environment

j ourna l homepage: www.e lsev ie r .com/ locate /sc i totenv
Investigating the dynamics of two herbicides at a karst spring in
Germany: Consequences for sustainable raw water management
Olav Hillebrand a,⁎, Karsten Nödler a, Tobias Geyer a,b, Tobias Licha a

a Department of Applied Geology, Geoscience Centre, University of Göttingen, Göttingen, Germany
b Regierungspräsidium Freiburg, Landesamt für Geologie, Rohstoffe und Bergbau, Freiburg, Germany

H I G H L I G H T S
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While karst aquifers are considered as rapid flow and transport systems, their high potential for long-term stor-
age is often ignored. However, to achieve a sustainable rawwater quality for drinking water production, the un-
derstanding of this potential is highly essential. In this study, the transport dynamics of the two herbicides
metazachlor and atrazine as well as a degradation product of the latter (desethylatrazine) were investigated at
a karst spring over 1 year. Even 20 years after its ban in Germany, atrazine and its degradation product were al-
most always detectable in the spring water in the low ng L–1 range (up to 5.2 ng L–1). Metazachlor could only be
detected after precipitation events, and the observed concentrations (up to 82.9 ng L–1) are significantly higher
than atrazine or desethylatrazine. Comparing the dynamics of the herbicides with the inorganic ions Ca2+,
Mg2+ and electrical conductivity, a positive correlation of atrazine with these parameters could be observed.
From this observation, atrazine is concluded to be located within the aquifer matrix. To achieve a sustainable
raw water management at karst springs, the rapidness of these systems needs to be highlighted as well as
their long-term storage potential. Persistent substances or transformation products are prone to deteriorate
the raw water quality for decades.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

In the Guidelines for Drinking-Water Quality, theWorld Health Orga-
nisation emphasises the advantages and necessities of effective catch-
ment management, i.e., understanding an aquifer and identifying
possible water pollution scenarios affecting the raw water quality
(WHO, 2011). The understanding of karst aquifers is particularly chal-
lenging due to their specific characteristics (e.g., dolines, conduit
flow). Still, these highly dynamic and heterogeneous aquifer systems
are important drinking water sources all over the world. The complex
interaction between developed karst conduits including the related
öttingen D-37077, Germany.

(O. Hillebrand).
rapid flow and transport processes in them (residence time of a few
days, e.g., Pronk et al., 2009; Hillebrand et al., 2012a) and the high-
volume porous rock matrix (characterised by slow matrix flow and
long residence times of several years, e.g., Einsiedl, 2005) is not yet
fully understood and thus still subject to research. Investigating the re-
charge mechanisms at a shallow karst system rapid preferential flow
and diffuse matrix flow (which is characterised by much slower flow
rates) were observed (Atkinson, 1977; Haria et al., 2003). However,
for some deep aquifers, only slow matrix flow could be identified
(Haria et al., 2003; Chilton et al., 2005).

It is a long established fact that recharge events in karst systems lead
to strong variations in spring water quality (Jakucs, 1959). Monitoring
these spring signals in terms of physical or chemical parameters allows
for the integral characterisation of the total catchment area. This feature
has been used to, e.g., determine the mean residence time of water
within aquifer systems based on tritium data (Maloszewski et al.,

http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2014.02.117&domain=pdf
http://dx.doi.org/10.1016/j.scitotenv.2014.02.117
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2002) or to estimate the total amount of wastewater infiltrating such
systems by employing caffeine as a semi-quantitative indicator
(Hillebrand et al., 2012a). Stueber and Criss (2005) derived the primary
immediate sources for water quality components depending on their
covariance with the electrical conductivity (EC) or the turbidity. A pos-
itive covariance of components time series with the EC implies diffuse
(matrix) flow being its primary source, while a positive covariance
with turbidity suggests that the components immediate source was
from agricultural fields.

In the presented work, two herbicides (atrazine and metazachlor)
and the degradation product desethylatrazine are employed, in order
to improve the understanding of springwater signals after precipitation
events and consequently the understanding of the investigated karst
aquifer system, which are vital for providing measures for sustainable
raw water quality. Atrazine is one of the most widely used soil and
weed herbicides, whereas its use has been prohibited in Germany
since 1992. However, it iswell dispersed and can still be found in the en-
vironment even after more than 20 years (Jablonowski et al., 2011;
Nödler et al., 2013; Reh et al., 2013). The potential of atrazine to be de-
graded in karst aquifers is stated to be very little to non-existent
(Johnson et al., 2000; Chilton et al., 2005). One of its degradation prod-
ucts is desethylatrazine (Kolpin et al., 1998). However, desethylatrazine
is also formed from other triazine herbicides like propazine (Behki and
Khan, 1994). Atrazine is affected by sorption, exhibiting a low desorp-
tion rate, which may take several days or even weeks (Dehghani et al.,
2005). In contrast to the banned substance atrazine, the weed control
agent metazachlor is approved in Germany. Its tendency to adsorb
onto soil material is known to be low (Mamy and Barriuso, 2005),
while being readily degradable (Allen and Walker, 1987; Beulke and
Malkomes, 2001). In the investigated karst system, transport is known
to be rapid and an appearance of metazachlor in spring water can still
be expected. For reference purposes and to locate the origin of atrazine,
desethylatrazine and metazachlor, the time series of these three com-
pounds are compared to the time series of the inorganic ions nitrate
(NO3

–), calcium (Ca2+) and magnesium (Mg2+) as well as the EC of
the spring water.

The aims of the study are (i) to improve the understanding of con-
taminant migration in karst aquifers under consideration of recent
and former herbicide applications, (ii) to highlight the long-term
storage potential of karst aquifers and (iii) to draw attention to the con-
sequences of unsustainable herbicide application for the raw water
quality. The authors hypothesise that the characteristic residence
time distribution of water in karst aquifer systems (days to several
decades) is reflected in the occurrence and dynamics of the investigated
herbicides.

2. Materials and methods

2.1. Field work

2.1.1. Study area
The investigated karst spring is the Gallusquelle, which is located in

Southwest Germany (Fig. 1). It is used as a drinking water source for
40,000 people. Its average discharge is 500 L s–1, draining a rural catch-
ment (4,000 inhabitants) of approximately 45 km2. Around 40% of
the catchment is used for agriculture. These areas are used as grasslands
and for the cultivation of crops (approximately 14% of the total
catchment area; Sauter, 1992). Despite the thick unsaturated zone
(~100m, Fig. 1)within the investigated system, precipitation can quick-
ly reach the groundwater through dolines and dry valleys as concentrat-
ed recharge. Through these preferential flow paths, the transport of
solutes including contaminants from the ground surface toward the
spring is enhanced. The occurrence of contaminants only days after pre-
cipitation events has been shown in former investigations (Heinz et al.,
2009; Hillebrand et al., 2012b). In contrast, a mean groundwater resi-
dence time of more than 20 years was determined by Geyer et al.
(2011) employing lumped parameter modelling of tritium in spring
water.

2.1.2. Sampling
Over the period of nearly 1 year, a total of 263 spring water samples

were collected and analysed for herbicides from March 6, 2010, until
February 16, 2011. The sampling rate varied between weekly, daily
and multiple daily depending on the spring discharge and the occur-
rence of recharge events. For one recharge event, a highly increased
sampling rate of up to 8 samples per day was realised. Selected major
ions concentrationswere determined over a period of 3 months, includ-
ing thementioned recharge event (n= 153). Additionally, a rain water
sample was collected during that recharge event with a precipitation-
totalisator (accumulative precipitation gauge) for the hydrograph sepa-
ration. To ensure the stability of the analytes, the sampleswere stored at
4 °C. For herbicides, samples were preconcentrated by solid phase ex-
traction (SPE) within 48 h and the SPE cartridges were stored at –
18 °C until analysis (Hillebrand et al., 2013).

2.2. Chemicals

Methanol (LC/MS grade) was purchased from Fisher Scientific
(Schwerte, Germany), and ammonium acetate, ethyl acetate, formic
acid, potassium dihydrogen phosphate and disodium hydrogen
phosphate dihydrate (all analytical grade) were purchased from VWR
(Darmstadt, Germany). Atrazine, atrazine-D5, desethylatrazine
and metazachlor were purchased from Dr. Ehrenstorfer (Augsburg,
Germany), and carbamazepine-D10 was purchased from Promochem
(Wesel, Germany).

2.3. Laboratory and on-site analyses

2.3.1. On-site analysis
Hourly data for electrical conductivity (reference temperature:

20 °C) and turbidity of the spring water as well as the spring water
levels were gauged with an installed continuous monitoring system.
The water levels were transferred into spring discharge data, applying
a rating curve.

2.3.2. Inorganic ions
The samples for cation analysis were acidifiedwithmethane sulfonic

acid (2.5 μLmL–1). The analysis for the inorganic ionswas performed by
ion chromatography (IC) as described in Nödler et al. (2011).

2.3.3. Herbicides
The analytical method for the determination of the herbicides

metazachlor and atrazine as well as its degradation product
desethylatrazine is based on SPE and high-performance liquid chro-
matographic separation coupled with tandem mass spectrometric de-
tection (HPLC/MS-MS). The details of the method have been published
earlier (Nödler et al., 2010). Briefly, a sample volume of 500 mL was
buffered at neutral pH (phosphate buffer), spiked with 100 ng atra-
zine-D5 and carbamazepine-D10 and extracted by SPE (500 mg Oasis
HLB, Waters, Eschborn, Germany). After extraction, the cartridges
were rinsed with ultrapure water, dried, wrapped in aluminium foil
and kept frozen (–18 °C) until analysis. Prior to analysis, the herbicides
were successively eluted from the sorbent with methanol and ethyl ac-
etate. The eluate was evaporated and re-dissolved in a 5 mM ammoni-
um acetate aqueous solution, containing 4% methanol. Unlike Nödler
et al. (2010), only 0.8 mL was used to re-dissolve the analytes. Thus, a
higher enrichment factor and consequently lower method detection
and quantification limits were achieved: the method detection limits
(MDL) of atrazine, desethylatrazine and metazachlor were 0.3, 0.4
and 0.5 ng L–1, respectively. The method quantification limits (MQL)
were 1.1 ng L–1 for atrazine and 1.4 ng L–1 for desethylatrazine and
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metazachlor. The MDLs and MQLs were determined according to DIN
32645 (2008).
2.4. Hydrograph separation

The hydrograph separation technique was employed for estimating
the amount of rainwater reaching the spring over rapid recharge. Typi-
cally, isotopic data (e.g., Malík andMichalko, 2010), inorganic ions (e.g.,
Dreiss, 1989) or the EC (e.g., Laudon and Slaymaker, 1997) are used. On
the basis of end-membermixing, the variations of the rainwater tracers
are utilised in estimating the fraction of rapidly transported rainwater to
the spring. The calculation procedure is shown in the supporting infor-
mation (S1). Please note that the application of end-member mixing is
discussed controversially (e.g., Nakamura, 1971; Pilgrim et al., 1979).
The approach assumes the conservative behaviour of both end-
members, i.e., the investigated components do not change. This is obvi-
ously not true for any of the investigated parameters here. On the exam-
ple of EC, one can assume that the amount of dissolved solids in the
rainwater and consequently the EC increases the moment it comes
into contact with the earth's surface and with increasing contact time
with soil or aquifer material. Taking these uncertainties into account,
the hydrograph separation based on end-member mixing of EC can be
understood as a lower boundary estimation of the true fraction of rain-
water at the spring. The actual amount of rainwater is likely to be
higher. Comparable uncertainties must be considered to some extend
when performing hydrograph separation by end-member mixing with
Ca2+, Mg2+, atrazine and desethylatrazine.
3. Results and discussion

3.1. Variations of investigated parameters

The concentration range of Ca2+, Mg2+, NO3
–, atrazine,

desethylatrazine and metazachlor in spring water are presented in
Table 1.

Although NO3
− may also originate from urban sources, such as leaky

sewers and landfills (Wakida and Lerner, 2005), the agricultural appli-
cation of fertilisers is its main source, especially in sparsely populated
and rural areas such as the catchment under investigation. After precip-
itation events, the concentration of NO3

– increases before returning to a
background concentration within a few days, only slightly affected by
dilution (Fig. 2). This is expected for NO3

– and other substances/ions,
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which are introduced into the karst system togetherwith the infiltrating
rainwater or snow-melt (i.e., recharge events). The same behaviour can
be observed for the herbicide metazachlor (Fig. 3). It does not occur
evenly distributed over time, but only after precipitation events at com-
paratively high concentration (Table 1). However, while for NO3

– a back-
ground concentration exists in the spring water, the concentration of
metazachlor decreases below the limit of detection (LOD) within a
short period of time. The irregular occurrence only after precipitation
events indicates the transport of metazachlor with the percolating rain-
water through the unsaturated zone to the local karst spring. As
metazachlor was not detected in spring water during the winter
months, it is unlikely that the occurrence of metazachlor in the spring
to autumn months is related to metazachlor sources within the
subsurface but originates from recent application (metazachlor is ap-
plied as a post-emergence herbicide few weeks after the sowing in
spring or at the end of august for winter oilseed rape). This is supported
by the low half-life of metazachlor in the environment (Allen and
Walker, 1987; Beulke and Malkomes, 2001).

In contrast, for the parameter ‘hardness,’ the opposite effect (i.e., de-
creasing concentrations) has been described (Ashton, 1966; Williams,
1983): (i) initial expulsion of phreatic and subcutaneous water; (ii) ar-
rival of flood water, diluting the spring water; and (iii) return to pre-
event conditions. This pattern occurs for parameters originating from
within the aquifer system which are affected by dilution, i.e., hardness,
EC and the inorganic ions dissolved from the rock matrix. At the
Gallusquelle spring, this behaviour can be observed for the EC, Ca2+
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Table 1
Concentration range of the investigated inorganic ions, herbicides and herbicide
degradation products in the spring water of the Gallusquelle during the period of
investigation. Concentrations of the inorganic ions are expressed in mg L–1, and
concentrations of the herbicides (degradation products) are expressed in ng L–1.

Mina Maxb Median DFc

Ca2+,d 102 114 108 100
Mg2+,d 6.0 9.3 7.0 100
NO3

–,d 11.6 17.5 14.4 100
Atrazinee bLODf 5.2 2.3 99.6
Desethylatrazinee bLODf 5.9 2.3 99.6
Metazachlore bLODf 82.9 bLODf 30.7

a Minimum concentration.
b Maximum concentration.
c Detection frequency in %.
d n = 153.
e n = 263.
f Limit of detection.
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and Mg2+ similar to findings of Stueber and Criss (2005). If there were
additional sources for Ca2+ and Mg2+ beside the subsurface/aquifer
material, its influence was negligible.

Unlike the irregular occurrence of metazachlor at the spring,
atrazine and desethylatrazine were detected in nearly all samples
throughout the investigation period (Fig. 3). Their observed concentra-
tions were generally low (Table 1), but comparable to values from
Switzerland (Morasch, 2013). Storm pulses (i.e., increasing concentra-
tionswith increasing discharge)were reported for atrazine after precip-
itation events in the U.S. (Vesper et al., 2001), only occurring after
application of atrazine (Stueber and Criss, 2005). Similarly, in southwest
England, a positive correlation was observed between increased water
levels and atrazine concentrations, which was explained by the
remobilisation of historic pollution incidents (Lapworth and Gooddy,
2006). At theGallusquelle spring, a different behaviour can be observed,
comparable to that of the EC, Ca2+ and Mg2+. In fact, the correlation of
normalised (concentrations attain values between 1 and 0 for their
maximum and minimum value, respectively) atrazine concentrations
with these parameters in normalised form yields values for R2 of
0.6–0.7 (performing the same correlation calculations with NO3

– leads
to values for R2 of 0; scatter diagrams for all parameters are provided
in the supporting information S2). From the correlation of the time se-
ries of Ca2+, Mg2+, EC and atrazine, a similar origin can be deduced
(Stueber and Criss, 2005). As Ca2+ andMg2+ originate from the aquifer
matrix, atrazine is inferred to be located within the aquifer material, i.e.,
inside the rock matrix. From here, it is released slowly into the ground-
water. This is in agreement with findings reported by Morasch (2013),
who assigned the observed continuous low atrazine concentrations in
a Swiss (where atrazine is still applied) karst aquifer system to its
slow but steady release from the aquifer matrix. Please note that
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sorptionmay partly affect the long-term fate of atrazine, but that the ap-
pearance of atrazine even after more than 20 years in the investigated
aquifer is more likely related to the slow groundwater flow rates inside
the karst matrix and the resulting long residence times, while hardly or
not affected by degradation (Johnson et al., 2000; Chilton et al., 2005).

For desethylatrazine, a time series similar to atrazine, Ca2+, Mg2+

and the EC could be observed (Fig. 2). However, it is different; a correla-
tion of desethylatrazine with these parameters was significantly worse
(R2 between 0.2 and 0.4, details can be found in the supporting informa-
tion S2). The arrival of rapid recharge after a precipitation event leads to
decreasing concentrations of desethylatrazine, and hence, its origin can
be concluded to be situatedwithin thefissured rockmatrix, too. Howev-
er, the time series seems to evolve a plateau before returning to its back-
ground concentration rapidly some time after the recharge event,
instead of a slow and steady concentration increase. The slightly differ-
ent behaviour of desethylatrazine to atrazine is difficult to assess and
beyond the scope of this study.

3.2. Hydrograph separation

For one event, a hydrograph separationwas performed, based on the
dilution of the concentrations of atrazine, desethylatrazine, Ca2+ and
Mg2+ and the EC. As the end member for the pre-storm water, the
background concentration/value of each parameter was used (illustrat-
ed in Fig. 2). A sample of the precipitation contained 1.7 mg L–1 of Ca2+

and 0.07 mg L–1 of Mg2+. As the end member for the rainwater, a
concentration/value of 0 is assumed for all parameters. This assumption
seems legitimate as the observed concentrations are very low (b1% of
the background concentration), and it does not alter the determined
fractions of the rainwater at the spring significantly.

The results are illustrated in Fig. 4. The calculated amount of rainwa-
ter reaching the spring over direct recharge is similar for the EC (maxi-
mum: 4.5%) and Ca2+ (maximum: 6.5%). These values are in agreement
with previously published results from Sauter (1997), who stated the
fraction of rapid recharge to be in the order of 5–10% based on δ18O-
data. Using Mg2+, the determined amount of freshly introduced re-
charge is much larger (maximum: 32%). This observationmay originate
either from (i) unevenly distributed Mg2+ minerals (e.g., dolomite) in
the subsurface, i.e., disproportional dilution of the Mg2+ concentration
or (ii) slower dissolution of dolomite relative to calcite (Liu and
Dreybrodt, 2001). It is likely that the extent of the dilution of the
Mg2+ concentration is affected by both factors. For atrazine and
desethylatrazine, even higher dilutions can be observed. Consequently,
a higher amount of rainfall reaching the spring over rapid recharge was
calculated (maximum: 58% and 57% for atrazine and desethylatrazine,
respectively). As atrazine was applied as herbicide on agriculturally
used areas, the area of application can be estimated to be 14% of the
catchment area at maximum (Sauter, 1992). Considering this fraction,
it becomes evident that a larger dilution for atrazine is to be expected
than for Ca2+ and the EC. Furthermore, the rain component for atrazine
is likely to be less influenced by equilibration with the subsurface as a
consequence of the restricted areal distribution.

Assuming the maximum dilution of the investigated parameters to
be representative for their areal extend, one can estimate the latter
(i.e., the magnitude of the maximum dilution is inversely proportional
to the fraction of the catchment area over which the parameter is intro-
duced into the system). As Ca2+ is believed to occur all over the catch-
ment (i.e., 100%), the area over which atrazine is introduced into the
system can be estimated to 11% of the catchment area. This is in good
agreementwith the reported land use pattern at the time of the applica-
tion of atrazine (Sauter, 1992). The same applies to desethylatrazine.

3.3. Mass balance for atrazine

Atrazine use has been permitted in Germany from 1958 until its ban
in 1992. The total amount of atrazine applied in the investigated area
was estimated according to a report from the European Commission
(Henriet et al., 1994). The following assumptions were made therein:
11.1% of the agriculturally used area (which is 14% for the investigated
catchment; Sauter, 1992) was used for maize, 90% of the fields were
treated with atrazine at a mean dose rate of 1.5 kg ha–1, an additional
10% of atrazine is considered for other uses. Presuming a certain time
lag until atrazine was applied as herbicide after its permission,
27 years (1965–1992) were assumed as the duration of application.
The resulting total mass of atrazine, being applied in the investigated
area, was calculated to be approximately 2,800 kg.

To assess the discharge of atrazine, the mean concentration of atra-
zine in the investigation periodwas used aswell as themean spring dis-
charge of 500 L s–1. Accordingly, 37.8 g of atrazinewas discharged in the
course of the investigated year via the Gallusquelle spring. For an esti-
mation of the total mass of discharged atrazine, the following assump-
tions were made: the concentrations of atrazine were higher in the
years 1992–2009 following the same trend as in the data of Tappe
et al. (2002), i.e., declining concentrations following an exponential de-
clinewith a decline rate of 0.26 a–1. For the years 1965–1991, a constant
discharge of atrazine is assumed, which is equal to the estimated value
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for 1992 (3.8 kg a–1; a table with the estimated loads for the whole pe-
riod is provided in the supporting information S3). Over the years
1965–2010, a total discharge of 120 kg (around 4% of the applied
mass) of non-metabolised atrazine can be estimated. The remaining
96% of the applied atrazine was either metabolised (e.g., Jablonowski
et al., 2009) or still within the aquifer rock matrix. Both possibilities
hold true since (i) it could be clearly demonstrated that even after
20 years without application within the catchment, the original com-
pound is still detected in spring water and (ii) the metabolite
desethylatrazinehas been found in springwater, exhibiting a similar be-
haviour as atrazine. The estimation of the discharge of atrazine can be
refined, taking a quantification of the discharge of desethylatrazine
into account. For the calculation, all assumptions were made, as stated
above for atrazine. However, the concentration of desethylatrazine de-
clines at a different rate than the concentration of atrazine. The trend
has been determined from the results of Tappe et al. (2002) to be 0.22
a–1. The total discharge of desethylatrazine in the years 1965–2010
can be calculated to be 77 kg, corresponding to 88 kg of atrazine. Please
note that desethylatrazine is not an unambiguous degradation product
and that the calculation is hence unambiguous aswell. Itmust be under-
stood as upper boundary estimation. Thus, a total of 120–208 kg of atra-
zine could be estimated to discharge at the Gallusquelle in the course of
45 years. This corresponds to 4–7.5% of the estimated total atrazine ap-
plied. These low values do no surprise, when taking the low to non-
existent degradation rates (Johnson et al., 2000; Chilton et al., 2005)
and the low leaching rates (Haria et al., 2003; Baran et al., 2008) of atra-
zine into account. Please note that further degradation products may
occur (Krutz et al., 2003), which have not been considered in the
above estimation.

4. Conclusions

The concentration of metazachlor in spring water increases after
precipitation events and decreases below the LODwithin a short period
as expected for herbicides. In contrast, the atrazine and desethylatrazine
concentrations are diluted after precipitation events and return to their
pre-event level. From the correlation with Ca2+ and Mg2+, it can be
concluded that atrazine is likely to be located within the aquifer matrix.
This duality of transport in karst aquifers needs to be considered careful-
ly, in order to achieve a successful and sustainable raw water manage-
ment of karst springs. On the one hand, drinking water suppliers need
to be aware of rapid recharge and the associated strong variations of
raw water quality, which may arise from heavy precipitation or snow-
melt events. On the other hand, special attention must be drawn to
the high potential of karst aquifers for long-term storage. Potentially
persistent substances or transformation products are prone to cause
long-term contamination. Due to the high residence time within the
rockmatrix, persistent contaminantsmay influence the rawwater qual-
ity for decades. Although atrazine was prohibited in Germany more
than 20 years ago, its impact on the investigated karst aquifer is still de-
tectable. A similarly long after-effect should be expected in any other re-
gion, where atrazine (or any other persistent contaminant) was or is
still applied.
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Little is known with respect to the attenuation capacity of karst aquifers. Even less is

known about the risk posed by emerging micropollutants in these systems. In order to

identify the attenuation potential of karst aquifers in-situ and to estimate the risk posed by

micropollutants, a dualtracer test was conducted in this study in order to investigate

differential transport in the subsurface: The reactive compound caffeine was used as

a tracer to indicate the attenuation capacity within the aquifer in-situ. Due to the low limit

of quantification, only small amounts of caffeine needed to be injected. To calibrate

a model and to visualize the attenuation of caffeine a conservative reference tracer (ura-

nine) is injected simultaneously. The methodology is tested in a well-characterised karst

system in southwest Germany. The results indicate a significantly higher attenuation rate

than was expected for karst aquifers. The attenuation is decribed as a first-order process.

The corresponding half-life is 104 h. This low half-life suggests that a generally assumed

low natural attenuation capacity of karst aquifers is unjustified. The observed mass loss of

caffeine illustrates the potential of caffeine to be used as reactive tracer for indicating in-

situ attenuation capacity within highly hydraulically conductive systems, such as karst

aquifers. Due to the high attenuation rate of caffeine it does not pose a threat as a long-

time contaminant. In combination with a conservative reference tracer an economical

and environmentally benign method is presented in this manuscript for the in-situ deter-

mination of the attenuation capacity of highly conductive aquifer systems.

ª 2012 Elsevier Ltd. All rights reserved.
1. Introduction case of a contamination. Einsiedl et al. (2009) estimated the
Karst aquifers supply up to one quarter of the world’s pop-

ulation with drinking water (Ford and Williams, 2007). Karst

springs are referred to as relatively unsafe drinking water

sources: Along solutionally widened flow paths contaminants

can be transported rapidly from the land surface to a karst

spring through the subsurface. In these conduits, flow veloc-

ities of several km d�1 were reported (e.g. Seiler et al., 1989).

The resulting low residence times of the rapidly transported

water reduces the potential of contaminant attenuation in
7; fax: þ49 551 39 9379.
goettingen.de (O. Hillebra
ier Ltd. All rights reserved
vulnerability of a karst aquifer based on the residence time

distribution.

The biological activity of karst aquifers is believed to be

little, as the nutrient offer is low, i.e. karst aquifers are oligo-

trophic environments (Gibert et al., 1994; Hirsch, 1986).

However, very little is known with respect to the natural

attenuation capacity of karst aquifers. As important drinking

water sources a successful management and an estimation of

the risk posed by (potential) contamination of karst aquifers is

of public interest.
nd).
.
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Fig. 1 e Catchment area of the Gallusquelle spring. The

sinkhole for the injection of the tracers is located at

a distance of 3000 m from the spring (from Birk et al., 2005).
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Within the last decades micropollutants have been ubiq-

uitously registered in all compartments of the environment

(Schwarzenbach et al., 2006; Ternes, 2007). Several micro-

pollutants have been used as indicators for contamination

(Gasser et al., 2010; Buerge et al., 2006), but so far their fate in

karst systems has rarely been addressed (Einsiedl et al., 2010).

The lack of knowledge with respect to the fate of micro-

pollutants and the known vulnerability of karst aquifers result

in an unknown risk posed by emerging pollutants.

To reliably assess the natural attenuation potential of

a karst system, tracer experiments with reactive compounds

can be employed. Haggerty et al. (2009) used the organic

compound resazurin to quantify the metabolically active

transient storage in a stream. Caffeine, as an often discussed

micropollutant (Buerge et al., 2003, 2006; Swartz et al., 2006),

possesses promising sorption and degradation properties to

determine the attenuation potential of a karst aquifer and

therefore indicator properties for reactive transport at large.

Caffeine is readily degradable inwastewater treatment plants.

In lakes and porous aquifers the degradation was observed to

be much lower (Buerge et al., 2003; Swartz et al., 2006). The

German Federal Environment Agency classified caffeine as

lowly water-hazardous (lowest hazard class). Within the

context of controlled and specially designed experiments, the

mass loss of caffeine has a potential to indicate the attenua-

tion capacity of a karst aquifer along the tracer flow path.

Mass loss of a tracer resulting from degradation and the

respective quantification can be uniquely identified from the

appearance of metabolic products or by the simultaneous

injection of an inert reference tracer (i.e. multitracer test;

Geyer et al., 2007). Since primary or secondary metabolites are

unlikely to be produced by oligocarbotroph microorganisms

(Wainwright et al., 1993), and laboratory experimental obser-

vations indicate that degradation products cannot be ex-

pected from the degradation of caffeine (Kurtzman and

Schwimmer, 1971; Mazzafera et al., 1996), an inert reference

tracer, e.g. uranine, has to be used to determine the mass loss

of caffeine in the investigated karst aquifer and therefore

demonstrate the natural attenuation capacity of that system.

This study presents results from a dualtracer experiment,

employing caffeine as an indicator for the natural attenuation

capacity of a karst aquifer. Apart from caffeine, uranine was

injected simultaneously as inert reference tracer for model

calibration. Transport parameters were estimated with the

numerical modelling approach CXTFIT (Toride et al., 1995).
2. Materials and methods

2.1. Dualtracer test

The selected field site for the dualtracer experiment is located

in the catchment area of the Gallusquelle spring in southwest

Germany (Fig. 1). The spring drains a catchment area of

approximately 45 km2. Annual discharge averages to 500 L s�1,

ranging from less than 100 to 2500 L s�1. A small fraction of the

outflow is expected to occur below the gauging station. Esti-

mations of this discharge component range up to 200 L s�1.

The general flow direction in the catchment is NWeSE. Hirsch

(1986) stated groundwater to be oligotrophic, based on low
concentrations of organic carbon (1e10 mg/L). These condi-

tions also apply for the investigated aquifer (1e3 mg/L; Heinz

et al., 2009), which is therefore classified to be oligotrophic.

However, the accidental, irregular and event-based inflow of

wastewater relatedmicro-contaminantswas demonstrated in

previous studies (Heinz et al., 2009; Hillebrand et al., 2012;

Nödler et al., 2012).

A tracer experiment was performed on June 27th 2011. A

sinkhole 3 km northwest of the spring was selected as tracer

injection location (Fig. 1). The characteristics of the sinkhole

injection site were previously investigated by two artificial

tracer tests (Birk et al., 2005; Geyer et al., 2007), which

demonstrated the point-to-point connection between injec-

tion point and the Gallusquelle spring. The thickness of the

unsaturated zone in the area of the sinkhole is approximately

100m (Geyer et al., 2007). In order tominimize the influence of

the unsaturated zone on the tracer injection and facilitate an

introduction of the tracers into the conduit system, the sink-

hole was flushedwith tap water before and after the injection.

Before the injection of the tracers 105 m3 of water was used

(w4 h with a flow rate of 6.9 L s�1) to temporarily obtain near

saturated conditions along the flow path in the vadose zone.

Shortly before injection the tracers (30 g of caffeine and 500 g

of uranine) were dissolved in 1 m3 of tap water. The tracer

injection was followed by 81 m3 of water to flush the sinkhole

over a period of ca. 3.5 hwith a flow rate of 6.5 L s�1 to force the

injected tracer cocktail through the unsaturated into the

saturated zone.

Uraninewas simultaneously injectedwith caffeine since (i)

uranine can easily be monitored online by a fluorometer

providing an indication for the times when samples for the

analysis of the caffeine concentrations need to be taken and

(ii) uranine serves as a conservative reference tracer, i.e. it is

neither retarded nor degraded (Geyer et al., 2007), to quantify

the potential mass loss of caffeine.

http://dx.doi.org/10.1016/j.watres.2012.07.032
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2.2. Sampling

The uranine concentration was monitored over a period of 16

days with the field spectrofluorometer GGUN-FL30 (excitation:

470 nm, detection: Wratten orange filter). The measuring

interval was initially set to 10 min, and decreased to 1 min

during tracer breakthrough. The detection limit for uranine in

the investigated spring water is stated to be 0.02 mg L�1 (Geyer

et al., 2007). As quantification limit, a threefold detection limit

of 0.06 mg L�1 was assumed in this study. Concentrations

below this value were set to zero. For the calibration of the

device three calibration levels were prepared by subsequently

diluting a uranine stock solution (1 mg L�1) with water from

the Gallusquelle spring. The calibration levels were 1, 10 and

100 mg L�1. As no natural recharge occurred for the duration of

the tracer test (no changes in turbidity) and the calibration

was performed with spring water, interferences with fluo-

rescent humic substances can be excluded to affect the

quantification of uranine.

Water samples to be analyzed for caffeine and selected

metabolites were taken over a period of 7 days. In total 93

spring water samples were taken. The sampling interval for

caffeine varied between several hours and 10min for the time

of the increasing limb of the tracer breakthrough curve (TBC),

achieving a high temporal resolution of the caffeine TBC. The

water samples were preconcentrated within a few hours

(<8 h) after sampling by solid phase extraction (SPE) as

described in Section 2.3.2. The volume of the spring water

samples varied between 500, 250 and 200mL depending on the

expected caffeine concentration, estimated from the

measured uranine concentrations.

The electrical conductivity and the turbidity of the spring

water were monitored every 20 min by a pre-installed multi-

parameter probe system. The discharge of the Gallusquelle

spring was acquired from a spring gauging station.
2.3. Laboratory analysis

2.3.1. Chemicals
Methanol (LC/MS grade) and caffeine were purchased from

Fisher Scientific (Schwerte, Germany), ethyl acetate and

ammoniumacetate (all analytical grade) were purchased from

VWR (Darmstadt, Germany). Paraxanthine, paraxanthine-D6,

theobromine, theophylline, 1-methylxanthine and 3-

methylxanthine were obtained from Sigma Aldrich (Stein-

heim, Germany). Uranine was purchased fromAcros Organics

(Geel, Belgium).

2.3.2. Analysis of caffeine and its metabolites
An analytical method based on SPE and high-performance

liquid chromatographic separation with tandem mass spec-

trometric detection (HPLC/MSeMS) was used for the analysis

of caffeine and its metabolites paraxanthine, theobromine,

theophylline, 1-methylxanthine and 3-methylxanthine.

Details were published previously (Nödler et al., 2010). In brief,

500 mL of sample volume was buffered at neutral pH (phos-

phate buffer) and extracted by SPE (500mgOASISHLB;Waters,

Eschborn, Germany). Samples of smaller volume than 500 mL

were filled up with ultrapure water. Prior to extraction, 400 ng
of paraxanthine-D6 was added as internal standard for the

quantification of the analytes.

After extraction the sorbent was rinsed with ultrapure

water and dried by drawing air through the cartridges under

vacuum. The cartridges were wrapped in aluminum foil and

kept frozen (�18 �C) until analysis. The analytes were eluted

with methanol and ethyl acetate, successively. The solvents

were evaporated and the dry residue was re-dissolved in 1 mL

of an aqueous 5 mM ammonium acetate solution, containing

4% methanol. The method quantification limits (MQL) of the

analyzed substances were: 4.3 ng L�1 (caffeine), 3.2 ng L�1

(paraxanthine), 5.1 ng L�1 (theobromine), 3.4 ng L�1 (theoph-

ylline), 21 ng L�1 (1-methylxanthine) and 28 ng L�1 (3-

methylxanthine).

Recovery rates for caffeine were determined by the

extraction of 500 mL of the original spring water spiked at

levels of 100 and 1000 ng L�1. The results were 109% (� 0.6%)

and 100% (� 6.6%), respectively. The influence of uranine on

the quantification of caffeine was investigated by analyzing

500 mL of spring water spiked with 1000 ng L�1 caffeine and

30,000 ng L�1 uranine. No significant influence on the recovery

rate of caffeine was observed. All experiments on recovery

rates were conducted in duplicates.
2.4. Modelling

Birk et al. (2005) demonstrated that a simple advec-

tionedispersion model (ADM) fails to reproduce the tailing of

TBCs in the investigated karst aquifer. In order to achieve

abettermodelfit and reliably interpret theTBCsof uranineand

caffeine, the suggested non-equilibrium ADM was applied for

TBC interpretation: CXTFIT 2.0 (Toride et al., 1995) was used as

part of STANMOD (Simunek et al., 1999). The CXTFIT 2.0 code

implements a uniaxial, two-region non-equilibrium transport

model. Field and Pinsky (2000) introduced the application of

two-region non-equilibrium transport models to analyze

large-scaleartificial tracer tests inkarst aquifers.Theapproach

considers the fluid in a karst conduit as divided into a mobile

and immobile (stagnant relative to the direction of flow) fluid

region, described previously (Field and Pinsky, 2000; Hauns

et al., 2001; Geyer et al., 2007). Thus immobile fluid regions

are characterized byhigher residence times, as thewater is not

displaced by plug flow. Possible immobile fluid regions are

vortices and eddies resulting from irregular cross-sections of

the conduits. As input function for themodel a pulse inputwas

used, i.e. the input duration was assumed to be negligible in

comparison to the total duration of the tracer test.

Solute transport processes considered in this study include

advection, dispersion, mass transfer between the two fluid

regions (mobile and immobile), reversible sorption and tracer

attenuation. The analytical equations for the one-

dimensional, two-region non-equilibrium model are given as

follows (modified from van Genuchten and Wagenet, 1989):

bR
vcm
vt

¼ D
v2cm
vx2

� v
vcm
vx

� aðcm � cimÞ � bRm1cm (1)

ð1� bÞR vcim
vt

¼ aðcm � cimÞ � ð1� bÞRm2cim (2)

with the retardation coefficient, defined as:
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R ¼ 1þA
V
Ka (3)

for non-porous matrix blocks. b, the solute partitioning coef-

ficient betweenmobile and immobile fluid regions is given as:

b ¼ qm þ fðR� 1Þ
R

(4)

t is time, x is the space coordinate, D is the dispersion coeffi-

cient, v is the average flow velocity, a is a first-order mass

transfer coefficient between mobile and immobile fluid

regions. cm and cim are the solute concentrations in, m1 and m2

are first-order attenuation rates within the mobile and

immobile fluid region respectively. In this study a uniform

attenuation rate in the mobile and immobile region was

considered (m1 ¼ m2 ¼ m). qm is the volumetric fraction of the

mobile fluid region, while qm þ qim ¼ q ¼ 1 for a fully saturated

conduit, qim being the volumetric fraction of the immobile

fluid region. A/V represents the surface to volume ratio of

a karst conduit, Ka is the linear distribution coefficient defined

as the ratio of tracer mass per unit surface area of the solid

phase to the unit concentration of the tracer within the

conduit. The parameter f refers to the fraction of reversible

adsorption sites that equilibrates with the mobile liquid

phase. The retardation coefficient R captures the retardation

of unpolar sorption as well as from reversible polar interac-

tions as shown by Geyer et al. (2007). Rearranging Eq. (4) and

inserting physically reasonable values for f (between 0 and 1)

allows to constrain b (Geyer et al., 2007):

qm

R
� b � 1� qim

R
(5)

To reliably interpret TBCs of reactive tracers a step-wise

calibration strategy can be applied (Geyer et al., 2007). Fitting

the TBC of a conservative tracer yields estimates for the

parameters v, D, a and qm. The application of uranine as

conservative tracer in karst hydrology has been shown in

several large-scale field studies (Birk et al., 2005; Geyer et al.,

2007). Conservative transport parameters can be assumed to

be equal for conservative and reactive solute tracers (Geyer

et al., 2007). Consequently, the calibration of the reactive

transport model is reduced to the transport parameters R,

b and the attenuation coefficient m if a conservative reference

tracer is applied simultaneously.

As transport distance, the linear distance of 3000 m

between the injection-point and the Gallusquelle spring was

used. The initial values for v and D for the calibration of the

model were derived from the method of moments, using the

software QTRACER (U.S. EPA, 2002). Estimates for a are not

generally possible and the initial value for qm was obtained

from the ratio of the mean tracer velocity and the peak tracer

velocity (modified from Goltz and Roberts, 1988; Field and

Pinsky, 2000).
3. Results and discussion

Precipitation events and associated infiltration can have an

impact on the spring discharge and the flow regime in the

aquifer, because they impose a temporally variable discharge
rate. Therefore, the interpretation of TBCs becomes consid-

erably more complex, since the mass flux of uranine and

caffeine are calculated based on the spring discharge. To avoid

these complications, the tracer test was performed during

a dry spring recession period. During the whole investigation

period spring discharge was relatively constant at ca.

175e200 L s�1. Turbidity and electrical conductivity

measurements were stable at 0.12 FNU and 650 mS cm�1,

demonstrating the absence of disrupting recharge events.

Background effects with respect to caffeine in the spring

water originating from wastewater infiltration can be

excluded for the tracer test. The caffeine concentrations are

comparatively small (Hillebrand et al., 2012) and the waste-

water infiltration does not occur evenly distributed over

time, but simultaneously to precipitation events (Musolff

et al., 2010), which were absent for the duration of the

tracer test.

Themass recovery of injected uraninewas found to be 49%

(246 g). The mass loss of uranine was likely to be caused by

groundwater discharge below the gauging station. Geyer et al.

(2007) stated for the same catchment area that the proportion

of mass loss increases with lower discharge. The observations

of this study emphasize this finding.

The recovered mass of injected caffeine was only 27%,

indicating an additional mass loss in comparison to uranine,

i.e. caffeine shows reactive transport behaviour in the inves-

tigated aquifer system. Furthermore, caffeine exhibited

a longer tailing (Fig. 2). While the recovery of the total uranine

mass was achieved after 127.5 h, caffeine concentrations took

164 h before dropping below the limit of quantification after

the tracer peak. This may be attributed to the lower limit of

quantification for caffeine. However, the lower recovered

mass and the smaller peak indicate a significant mass loss

relative to the conservative tracer uranine. Irreversible sorp-

tion is unlikely to occur since caffeine is highly soluble

(Gardinali and Zhao, 2002) and has a negative (�0.07; Maeng

et al., 2011) log Kow (octanolewater partitioning coefficient).

Several authors emphasize the degradability of caffeine and

thus being the main process in its attenuation especially in

treatment plants, but also in the environment. Buerge et al.

(2003, 2006) calculated biodegradation rates of caffeine to be

in the order of 0.003e0.006 d�1 in a lake. Swartz et al. (2006)

observed caffeine degradation in a porous aquifer at a rate

of 0.07 to 0.014 d�1.

The metabolites of caffeine considered in the analytical

method could only be found sporadically and at insignificant

levels. The metabolites were either not detectable due to the

high dilution, not produced during degradation, or metabo-

lized further at a higher rate than caffeine. The latter is

consistent with findings from laboratory experiments

(Kurtzman and Schwimmer, 1971; Mazzafera et al., 1996).

Moreover, Wainwright et al. (1993) stated the production of

primary or secondary metabolites to be unlikely for oligo-

carbotrophs. Due to the high discharge, a decrease of oxygen

concentrations or changes of the redox potential in the spring

water cannot be resolved.

In the model a general attenuation rate is determined,

which is comprised of all possible mechanisms for the addi-

tional mass loss (e.g. degradation, irreversible sorption) of

caffeine relative to the conservative reference tracer uranine.

http://dx.doi.org/10.1016/j.watres.2012.07.032
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Table 1 e Parameter estimates for a uniaxial, two-region
non-equilibrium model to observed tracer breakthrough
curves.

Tracer Uranine Caffeine

v (m h�1) 34.9 34.9

D (m2 h�1) 135.2 135.2

a (h�1) 8.91E-3 8.91E-3

b (�) 0.9683 0.9340

R (�) 1 1.046

m (h�1); T1/2 (h) 0 0.0067; 104

r2 0.9997 0.9924

RMSE (mg L�1) 0.487 0.027

mm (g) 246 14.8

m (g) 500 30

v ¼ average flow velocity; D ¼ dispersion coefficient; a ¼ mass

transfer coefficient; b ¼ partitioning coefficient between mobile

and immobile fluid regions; R ¼ retardation coefficient;

r2 ¼ coefficient of determination; m ¼ first-order attenuation rate;

T1/2 ¼ half-life; RMSE ¼ root mean square error; mm ¼ tracer

injectionmass used in themodel;m¼ tracer mass injected into the

sinkhole.

Note: Values in italics represent fitted values, while underlined

values are prescribed values.

Fig. 2 e Tracer breakthrough curves of uranine (a) and

caffeine (b) with their respective fitted models and

residuals. For the graphical illustration of the uranine

breakthrough only every 50th observation point is

displayed.
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3.1. Modelling results

Calibrating the model (using the TBC of uranine) resulted in

a very good agreement between observed and fitted concen-

trations (Fig. 2). The flow velocity v, dispersion coefficient D,

volumetric fraction of the mobile fluid region qm as well as the

mass transfer coefficient a (Table 1) are in good agreement

with the results of a previously conducted study by Geyer et al.

(2007).

In the model for the caffeine TBC the attenuation rate m as

well as solute-specific values for the retardation coefficient R

and the partitioning coefficient b are considered additionally.

Fig. 2 and Table 1 show the estimated parameters for uranine

and caffeine.

The mass loss of caffeine was modelled by an attenuation

rate of 0.0067 h�1 (i.e. a half-life of 104 h). This rate is
surprisinglyhigh incomparison todegradationvalues fromthe

literature observed in a lake and a porous aquifer environment

(Buergeet al., 2003, 2006; Swartz et al., 2006). Theestimationsof

these authors for the half-life of caffeine range from weeks to

months. In general it is assumed that bacteria are associated

with sediment and rock surfaces (Holm et al., 1992). For karst

aquifers the attenuation rate of caffeine was expected to be

lower than the attenuation rate within the porous aquifer, as

the contact area of water to the solid matrix, implying

a reduced bacteria count for karst aquifers and less reactive

interfaces. The relatively high attenuation ratemay be related

to the influenceofwastewater leakage and the redox condition

in the subsurface, as proposed by Bradley et al. (2007).

The literature values on in-situ degradation of caffeine

mentioned above refer to sub-oxic to anoxic conditions

(Swartz et al., 2006) and to conditions with low oxygen (Buerge

et al., 2003, 2006). In the investigated aquifer oxic conditions

prevail (data not shown). The increased degradability of

caffeine under oxic conditions has been emphasized by

Bradley et al. (2007). Furthermore, the investigated aquifer is

known to be affected by wastewater leakage (Hillebrand et al.,

2012; Nödler et al., 2012) and the periodical occurrence of

overflow events of a wastewater retention basin (Heinz et al.,

2009). With the percolating wastewater caffeine is introduced

into the aquifer. The regular exposition of the aquifer bacteria

to wastewater and therefore to caffeine may result in an

adaption of the bacteria to caffeine or rather wastewater

related micropollutants in general. This scenario and to

a larger extent the sufficiently provided oxygen in the aquifer

may explain the effective attenuation of caffeine observed

during the tracer experiment. Moreover it is possible that the

flow through the unsaturated zone affected the determined

attenuation rates.

It has to be emphasized here that the attenuation rate

determined for caffeine is an integrated value. No statements

with respect to the temporal and spatial distribution can be

http://dx.doi.org/10.1016/j.watres.2012.07.032
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Fig. 4 e Effect of varying the attenuation rate m in the model

for caffeine. The higher the attenuation rate, the lower the

peak and vice versa. The shape of the tracer breakthrough

curve is not affected by the variation of the attenuation

rate.
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made. The attenuation along the flow pathmay have occurred

uniformly or at different rates.

A slight shift of the caffeine TBC peak was taken into

account by a retardation coefficient of 1.046. This value refers

to the best fit of the model and may be affected by the scat-

tering of the measured caffeine concentrations at the peak

maximum. If the retardation is due to unpolar or polar inter-

actions with organic carbon or the aquifer material cannot be

determined.

From the observed mass loss of caffeine relative to the

conservative reference tracer uranine, an attenuation

capacity of the aquifer along the flow path of the tracers can

be deduced. The high attenuation rate highlights the potential

of caffeine as groundwater tracer to indicate the natural

attenuation potential even in rapid flowing systems. Due to its

low limit of quantification, very little amounts of caffeine can

be used while still producing a pronounced TBC. Together

with the fluorometrically detectable uranine an inexpensive

and environmentally benign method for the indication of the

in-situ attenuation potential along the tracer flow path is

presented. In contrast to laboratory experiments, this method

determines the natural attenuation potential and the risk

posed by micro-contaminants in aquifers in-situ. The

complexity of the system is captured and considered by

lumped parameters, i.e. spatially averaged values across the

length of the whole flow path.
3.2. Sensitivity analysis

By varying single parameters and comparing the root mean

square errors (RMSE), the sensitivity of the modelled concen-

trations to each parameter was assessed. Geyer et al. (2007)

discussed the sensitivity of the model concentrations with

respect to the parameters v, D, qm, a and b. The sensitivity of

the model to the parameters m and R were evaluated for

caffeine (Fig. 3). The parameter R is investigated, varying

(R� 1) instead of R, since the difference to 1 quantifies the shift

of the TBC. The effect of varying the attenuation rate m rate is

illustrated in Fig. 4. The higher the attenuation rate, the

smaller is the peak and vice versa. Except for a shorter tailing
Fig. 3 e Results of the sensitivity analysis for the parameters m

parameters in the model for caffeine transport. Please note the

R [ retardation coefficient. The percentages above the graphs i
for high attenuation rates, the shape of the TBC is not affected

by changes in the attenuation rate.
3.3. Implication

The determined attenuation rates from the large-scale artifi-

cial dualtracer test could be used to improve the estimation of

wastewater volumes infiltrating the aquifer within the

catchment area (Hillebrand et al., 2012). In that study waste-

water volumes appearing in the spring water were quantified,

employing caffeine concentrations. An attenuation of caffeine

between source and spring was neglected as intrinsic atten-

uation data were missing. The mean rate of infiltrating

wastewater was determined to be 2.2 � 0.5 m3 d�1. Taking the

here presented results into account, the impact of caffeine
and R. The values were obtained from variations of

different scales of the ordinates. m [ attenuation rate,

ndicate the magnitude of variation of each parameter.
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Fig. 5 e Calculated volumes of wastewater at the investigated spring under consideration of the determined first-order

attenuation term. Adapted from Hillebrand et al. (2012).
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attenuation should be included in the wastewater impact

estimation. Extending the formula stated by Hillebrand et al.

(2012) with a first-order attenuation term leads to:

WW ¼ c$em$t$WC$Q
I

(6)

where WW is the volume of wastewater discharging at the

spring per day; c the caffeine concentration at the spring; m the

first-order attenuation rate (0.0067 h�1); the mean residence

time of wastewater in the subsurface t (115 � 20 h); the daily

water consumption per capita in the spring catchment WC

(134 L d�1 person�1); spring discharge Q and the load of

caffeine in untreatedwastewater I (15.8� 3.8mg d�1 person�1;

Buerge et al., 2003). A mean wastewater infiltration rate of

4.7� 1.4m3 d�1 could be calculated. The temporal distribution

is shown in Fig. 5.

The sensitivity of the wastewater estimation method is

affected by the effective attenuation of caffeine as well.

Considering the method quantification limit of caffeine

(4.3 ng L�1) and a mean spring discharge of 0.5 m3 s�1 the

minimum volume of wastewater, which can be quantified is

3.4 � 1.0 m3 d�1.
4. Conclusion

- A methodology to identify the attenuation potential of

a karst aquifer is presented employing a dualtracer test with

uranine and the reactive indicator caffeine.

- Surprisingly high attenuation rates for caffeine indicate

a higher attenuation potential of the investigated karst

aquifer than expected.

- To identify reactive transport and potential attenuation, the

use of a conservative reference tracer (e.g. uranine) is

a prerequisite.

- The application of uranine and caffeine during a dualtracer

experiment is an inexpensive and environmentally benign

approach for the assessment of the in-situ attenuation

potential even in rapidly flowing groundwater systems.
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