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1 INTRODUCTION 

1.1 Iron an essential element of Life 

With few exceptions, almost every cell needs iron as an essential cofactor for biochemical 

processes, i.e. oxygen transport, energy metabolism, mitochondrial functions, myelin production 

and DNA synthesis (Camaschella, 2013;Hentze et al, 2004;Napier et al, 2005). Due to redox re-

activity of iron it can associate with proteins, couple with oxygen and can also transfer electrons 

or mediate catalytic reactions (Aisen et al, 2001). 

An imbalance of body iron can lead to pathological conditions. The most common disorder 

of iron metabolism associated with iron depletion is iron deficiency anemia, which affects over 

30% of the world's population and is especially prevalent in developing countries (DeMaeyer 

and Adiels-Tegman, 1985). Factors such as inadequate iron intake, blood loss, increased iron 

requirements, and reduced iron absorption contribute to the progression of iron deficiency 

(Dreyfuss et al., 2000; Lewis et al., 2005; Stoltzfus et al., 2000). At the other extreme are iron 

overload disorders such as hemochromatosis which is due to excess iron deposition, primarily in 

the liver (Pietrangelo, 2010). It shows that iron could be potentially toxic because it catalyses the 

dissemination of ROS (reactive oxygen species) under aerobic conditions which ultimately 

generate potentially reactive hydroxyl radicals by Fenton pathway (Koppenol, 1993). The 

oxidative stress, due to ROS is associated with cellular damage of macromolecules, tissues 

and certain disease conditions (Galaris et al., 2008; Kell, 2009). However, the acquisition, 

usage and detoxification of iron is a considerable challenge for cells and organisms, which have 

evolved  various   sophisticated   mechanisms to comply with  their  metabolic needs  and to
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minimize the risk of toxicity concomitantly (Andrews, 2008; De, I et al., 2008; Hentze et al., 

2010). 

The amount of iron in the body depends on age, gender, nutrition, and general state of 

health. In normal conditions, two-thirds of total body iron is incorporated into hemoglobin by 

erythroid cells, while the remaining third is stored in the liver (∼1 g iron) or as myoglobin in 

muscle (300 mg iron) or is found in reticuloendothelial macrophages (600 mg iron) (Andrews, 

1999; Olsson and Norrby, 2008). Other tissues contain lower quantities of iron but not negligi-

ble. 

1.2 Iron metabolism and liver 

The liver is a major organ for the synthesis of iron regulatory proteins and its output in-

cludes several proteins that play critical roles in iron metabolism. These include iron transport 

proteins [(Tf, TfR1, TfR2, LCN-2)(Johnson et al., 2007; Kaplan, 2002; Lu et al., 1989; Yang et 

al., 2002)], iron storage proteins [(Ferritin)(Arosio et al., 2009)] ceruloplasmin, haptoglobin, 

hemopexin, hepcidin and iron export protein ferroportin 1 (Fig. 1b). A major cell population of 

the liver, hepatocytes (70% of the cells of liver) is the key cells to regulate iron absorption and 

reutilization of iron after senescent red cells are phagosytosed and digested by macrophages. 

Dietary iron absorption from intestinal lumen (Fig. 1a) and recycling by macrophages (Fig. 

1d) is regulated by different physiological factors including iron-load, erythropoiesis and in-

flammation (De, I et al., 2008). Hepcidin, an antimicrobial peptide secreted by liver, is a key 

element in the regulation of iron homeostasis (Ganz and Nemeth, 2012; Loreal et al., 2000). 

Hepcidin is a 25 amino acid peptide secreted by the liver into the circulation (Fig. 1c). In fact, 

hepcidin synthesis is regulated by iron demand; transcription of hepcidin is increased when iron 
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stores are high and, conversely, decreased when iron stores are depleted. In different conditions 

of chronic inflammation, such as arthritis or cancer-associated inflammation, hepcidin produc-

tion is increased and decreased iron absorption results in an iron-limited erythropoiesis, known 

as the anemia of chronic inflammation (De, I et al., 2006). 

Almost most of the iron in the circulation is transported by plasma Tf and the vast majority 

of Tf is synthesized in the liver (Ponka et al., 1998). Transferrin (Tf)-iron is transported to the 

reticuloendothelial system (spleen, liver and bone marrow), to liver parenchymal cells and to all 

proliferating cells in the body. It carries iron through portal blood to the liver by TfR1 mediated 

iron uptake mechanism (Hentze et al. 2010) or Tf-independent mechanism (Prus and Fibach 

2011). Another transferrin-dependent iron uptake route is via TfR2. Although, the role of TfR1 is 

well defined for transporting iron across the plasma membrane, the role of TfR2 is not yet clearly 

understood. TfR2 appears to be involved in systemic iron homeostasis (Fig. 1c) rather than in 

cellular iron uptake and delivery because mutations in the TfR2 gene or its knockout results in 

hepatic iron overload (Roetto et al. 2010). 

However, there has been convincing evidences that, during disrupted iron homeostasis, iron 

delivery to cells can take place be alternative mechanism i.e. transferrin-independent pathway. 

This alternative to transferrin-iron is called non-transferrin bound iron (NTBI). This pool has 

been documented in a variety of iron overload syndromes when transferrin is saturated (Hentze 

et al., 2004), including hemochromatosis (69% of patients) and end-stage renal disease (22% of 

patients) (Breuer et al., 2000b). Furthermore, NTBI can reduce the uptake of Tf-bound iron and 

vice versa (Graham et al., 1998; Trinder and Morgan, 1997). A recent study has shown that 

3 



LCN-2 can deliver iron to kidney cells during development (Yang et al., 2003). 

Figure 1: A Schematic overview of iron absorption. From intestinal lumen Fe+3 is reduced to Fe+2 by reductase enzyme and then 

transported to enterocytes by DMT1 (a). Ferroportin 1 export this iron into the circulation and transferrin bind the free iron which 

is transported to Liver via Tf-TfR mediated pathway (b). Hepcidin gene expression is up-regulated during inflammation by pro-

inflammatory cytokines mainly IL-6 (involving JAK-dependent activation of STAT3) (c). Hepcidin binds to ferroportin and 

triggers its lysosomal degradation, leading to a reduction in iron release from enterocytes and macrophages (d). Modified 

from:Stein et al., 2010. 

b 

a 

c 

d 
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1.3 Mechanisms of iron uptake 

1.3.1 Transferrin bound iron uptake and regulation of TfR 

1.3.1.1 Transferrin receptor 1 (TfR1) mediated iron uptake 

Many studies on the uptake of Tf-bound iron by perfused liver, by isolated hepatocytes, or 

by hepatoma cell lines showed existence of both a high-affinity saturable component and a low-

affinity unsaturable component (Goldenberg et al., 1991; Morgan, 1991; Trinder et al., 1988). 

The high-affinity uptake of Tf by hepatic cells is mediated by Tf receptor 1 [(TfR1, figure 2) 

(Aisen, 2004; Hentze et al., 2010)]. At physiological pH, TfR1 binds diferric Tf with 10-fold 

higher affinity than mono-ferric Tf and 2000-fold higher affinity than apo-transferrin (Ponka et 

al., 1998). After Tf binding to TfR1 on the cell surface, endocytosis of this Tf-TfR1 complex 

takes place through clathrin-coated pits (Fig. 2). These vesicles are then uncoated to become en-

dosomes and are acidified by a proton pumping ATPas (Watkins et al., 1992). After entering the 

cytosol, iron is released at a pH of around 5.5, a process requiring also reduction (Richardson et 

al., 2010) and takes advantage of a conformational change in Tf that accompanies its binding to 

TfR1 (Bali et al., 1991). The ferrireductase Steap3 reduces cytosolic Fe3+ to Fe2+ (Ohgami et 

al, 2005), transported by DMT1 or directly in erythroid cell´s mitochondria  (Richardson et al., 

2010). The affinity of TfR1 for apotransferrin is much higher at the low pH of the endosome than 

at physiological pH and the two proteins remain bound as the endosome is recycled to the plasma 

membrane. Apotransferrin is then released into the extracellular milieu where it can again bind 

iron (Fig. 2). Within the liver, all cell types have Tf receptors as they all need iron to meet their 

basic metabolic requirements, but quantitatively hepatocytes take up most Tf (Morgan et al., 

1986; Sibille et al., 1986).  A study demonstrated  that  hepatocytes  expressed  three-  to  four-

fold more high-affinity diferric Tf  binding sites than  nonparenchymal cells which is most likely
5 



TfR1 (Vogel et al., 1987). TfR1 receptor has also been detected on Kupffer cells (Vogel et al., 

1987), endothelial cells (Tavassoli et al., 1986), and activated hepatic stellate cells (Bridle et al., 

2003). During iron deficiency conditions, cells require more iron and increase both their total 

cellular complement of TfR1 and the proportion of TfR1 on the plasma membrane (Aisen, 2004; 

Hirose-Kumagai and Akamatsu, 1989). Some regulation of the TfR1 gene occurs at the 

transcriptional level, while most regulation is at the level of mRNA stability via the iron 

regulatory element (IRE)/iron regulatory protein (IRP) system (Eisenstein, 2000). The TfR1 

mRNA contains a series of stem-loop structures (iron responsive elements or IREs) in its 3´ un-

translated region (UTR) which act as targets for the iron-responsive RNA binding proteins IRP1 

and IRP2. When intracellular iron levels decrease, the IRPs bind to the TfR1 3´ UTR and protect 

the TfR1 mRNA from endonuclease degradation. Consequently more TfR1 is synthesized 

(Mullner and Kuhn, 1988). The opposite response is observed when cells have an excess of iron 

and a reduction in TfR1 expression serves to protect the cells from accumulating iron (Rouault, 

2006; Wallander et al., 2006). TfR1 levels are much higher in fetal liver than in adult liver 

(Trinder et al., 1986) and in regenerating liver after partial hepatectomy (Cairo et al., 2002; 

Hirose-Kumagai and Akamatsu, 1989). It reflects the iron requirements of the rapidly growing 

hepatocyte mass and is likely mediated through the IRE/IRP system. Finally, TfR1 gene expres-

sion can also be modulated by cytokines, hypoxia, and nitric oxide, and these factors could play 

a role in TfR1 synthesis, particularly during disease states (Cairo et al., 2002; Trinder et al., 

2002). 

1.3.1.2  Transferrin receptor 2 (TfR2) mediated iron uptake 

Many studies suggest that the low-affinity iron uptake process may be mediated by the 

TfR2, TfR1 homolog (Cairo et al., 2002; Kawabata et al., 1999; Lee et al., 2003; Robb et al., 
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2004; Trinder et al., 2002). TfR2, like TfR1, is a plasma membrane Tf-binding protein with 25-

fold lower affinity for diferric Tf than that of TfR1, making it a strong candidate for the low-

affinity binding site. Expression pattern of TfR2 also differs from TfR1. TfR2 has a much more 

restricted tissue distribution. High expression levels of TfR2 are present on hepatic parenchymal-  

Figure 2: Schematic diagram illustrating the iron uptake mechanisms. After binding to TfR1 the diferric Tf undergoes endocyto-

sis. Iron is released from Tf by a decrease in pH and is exported out of the endosome by DMT1, where it enters the LIP. Iron in 

the LIP can subsequently be incorporated into ferritin for iron storage or into iron-containing proteins. Source:Kalinowski and 

Richardson, 2005. 
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cells, (Deaglio et al., 2002; Fleming et al., 2002) with lower levels in mature erythroid cells, 

spleen, lung, skeletal muscle, and prostate. Small amounts of TfR2 mRNA have also been found 

in Kupffer cells, sinusoidal endothelial cells, and stellate cells (Zhang et al., 2004). Many studies 

have demonstrated the presence of TfR2 on the cell surface, although a considerable fraction is 

also located at intracellular sites (Deaglio et al., 2002; Robb et al., 2004). TfR2, unlike TfR1, 

does not contain any IREs in its mRNA and its expression at transcriptional level is not regulated 

by cellular iron content (Fleming et al., 2000). However, TfR2 protein levels increase with iron 

loading and decrease with iron depletion (Robb and Wessling-Resnick, 2004). Similarly, treat-

ment of a hepatoma cell line with diferric Tf leads to an increase in TfR2 protein, apparently by 

increasing protein half-life (Johnson and Enns, 2004; Robb and Wessling-Resnick, 2004). Ac-

cording to different studies, mutations in the TfR2 gene in humans or disruption of the gene in 

mice lead to systemic body iron loading (Camaschella et al., 2000; Fleming et al., 2002) due to 

an inability (presumably loss of function) to correctly regulate intestinal iron absorption. Alt-

hough, it appears that most of Tf-bound iron is taken up by cells via the endocytosis of Tf, there 

is also evidence that Tf-bound iron can be released at the cell surface. This process has been de-

scribed for several cell types but is most prominent in hepatocytes (Thorstensen and Romslo, 

1990). Membrane impermeant iron chelators can reduce the uptake of iron from Tf, suggesting 

iron release at the cell surface (Cole and Glass, 1983; Thorstensen and Romslo, 1984), and there 

is also evidence for a cell surface ferric iron reductase activity that may facilitate iron release 

from Tf (Thorstensen and Romslo, 1984).  

1.3.1.3 Non-Transferrin bound iron uptake (NTBI) 

Under normal conditions, 30% of plasma Tf is hyposaturated and shows high capacity 

for iron binding to restrain the accumulation of NTBI (non-transferrin bound iron). On the
8 



contrary, during hereditary haemochromatosis and certain other iron-overload condi-tions, 

plasma iron levels exceed the saturation capacity of Tf, and NTBI pool builds up contrib-uting 

significantly to hepatic iron loading (Breuer et al., 2000a). The exact chemical nature of 

NTBI is still elusive, whereas its redox reactivity and toxicity has been established very well. It 

may consist of loosely chelated ferric (Fe3+) by albumin or small organic molecules, such as cit-

rate (Hider, 2002). The mechanism of NTBI uptake by cells is poorly understood. 

Liver can take up NTBI very efficiently. This mechanism is well documented from differ-

ent studies including rare instances of congenital Tf deficiency in humans (atransferrinemia) and 

mice (Bernstein, 1987; Hayashi et al., 1993). Affected individuals, despite lacking Tf, absorb 

iron from their diet very efficiently and large amounts of iron are deposited in the liver. 

Lipocalin-2 (LCN-2; human ortholog neutrophil gelatinase-associated lipocalin [NGAL], has 

been proposed as a mediator of transferrin-independent iron transportation (Yang et al., 2002). It 

belongs to the lipocalin family which is known to be involved in the regulation of im-mune 

responses, modulation of cell growth and metabolism, prostaglandin synthesis and iron 

transport (Yang et al., 2002). In fact, it is a bacteriostatic agent and capable of sequestering iron 

in the form of siderophores (Flo et al., 2004). A recent study has shown that LCN-2 can 

transport iron during kidney development through siderophore–iron complex (Yang et al., 

2003), inju-ry (Mori et al., 2005) and under inflammatory conditions (Devireddy et al., 2005). 

Iron-loaded LCN-2 is internalized by the LCN-2 receptors (24p3R and megalin) (Devireddy et al, 

2005; Hvidberg et al, 2005) (Fig. 3). Siderophores are low-molecular mass iron-chelating 

metabolites, synthesized by bacteria and fungi for the acquisition of extracellular iron. 
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Figure 3: Schematic overview of non-transferrin bound iron uptake through lipocalin-2 (LCN-2). LCN-2 mediates iron uptake 

through 24p3 receptor (LCN-2 receptor) endocytosis of a LCN-2 siderophore (Sid)-iron complex. Siderophore-iron-associated 

LCN-2 (holo-LCN-2) delivers iron into the cell. LCN-2 then traffics in acidic endosomes, which promote the release and cyto-

plasmic accumulation of iron, resulting in regulation of iron-dependent genes. Source:Haase et al., 2010.  

It was recently described that mammals synthesize the siderophore dihydroxybenzoic acid 

(2,5-DHBA), an isomeric of 2,3-DHBA, the iron-binding component of enterobactin (Devireddy 

et al., 2010). Most importantly by depletion of 2,5-DHBA iron metabolism was deregulated in 

mammalian cells and zebrafish embryos, showing the biological importance of the LCN-2-

dependent mechanisms.  

1.4 Iron storage 

Liver ferritin has a major role in iron storage and iron is stored mainly as ferritin within the 

cell (Ganz and Nemeth, 2012). Ferritin consits of L and H subunits that are highly conserved 

(Arosio et al., 2009) nevertheless, these subunits are genetically separate (Caskey et al., 1983; 

Worwood et al., 1985) and maintain distinct functions (Sammarco et al., 2008). Iron storage is 

considered to take place in the cytoplasm only, however is also required for the nuclear func-
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tions. L and H subunits of ferritin assemble spontaneously to produce a 24-subunit protein 

“cage” with a variable H: L ratio. This H: L ratio can vary between different cell types (Arosio et 

al., 2009; Sammarco et al., 2008). Hepatocytes have a high proportion of L subunits and relative-

ly fewer H subunits (ratio 1:10 to 1:20 in human liver ferritin and 1:4 in rat liver ferritin), where-

as cells that are involved in rapid iron turn over, such as macrophages, express more H subunits 

(Wang et al., 2013). The studies on ferritin proved that the  the L gene showed very less tissue-

specific regulations whereas the H ferritin gene is activated by multiple factors or conditions 

(Briat et al., 2010; Ponka et al., 1998) including changes in the cell proliferation, cytokines and 

heme. A pre-vious study clearly provided evidence of the association between ferritin expression 

and cell pro-liferation (Cozzi et al., 2004). 

All cell types present within the liver can store iron but during normal physiological condi-

tions hepatocytes are the major storage site and site of ferritin synthesis (Ganz and Nemeth, 

2012). During iron-loading disorders characterized by elevated iron absorption, most of excess 

iron is deposited in parenchymal cells, while with transfusional iron overload Kupffer cells can 

store considerable amount of iron (Harmatz et al., 2000). There are numerous studies showing 

positive correlation between ferrtin and body iron store and ferritin level within the cell is deter-

mined by the iron content (Arosio et al., 2009). Ferritin subunit synthesis is iron-dependent and 

is controlled predominantly through a post-transcriptional mechanism by the IRE/IRP system 

(Eisenstein, 2000; Harrison and Arosio, 1996). Unlike TfR1, which has several IREs in its 3´ 

UTR, the ferritin mRNAs contain only a single IRE in their 5´ UTR. When iron contents remain 

low, the IRPs bind to this IRE present in ferritin transcripts and translation blocked. However, 

during iron accumulation conditions within the cell, the ferritin translational block is reversed 

and synthesis of new ferritin subunits is started (Fig. 4). This is not the only one mechanism for 
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regulating ferritin synthesis in response to iron status, transcriptional regulation also plays a role 

in regulation (Cairo et al., 2002). Under normal conditions iron is the major factor influencing 

expression of ferritin, but it is also an acute phase protein and its synthesis that is regulated dif-

ferently by different inflammatory stimuli and various acute phase cytokines e.g. IL-1β, IL-6, 

TNF-α (Cairo et al., 2002). 

Figure 4: Regulation of ferritin expression by iron at the translational level via the IRE–IRP system. Iron-responsive element 

(IRE) in ferritin is an mRNA element at the 5′-untranslated region forming a hairpin structure. Iron regulatory proteins (IRPs), 

including IRP1 and IRP2, bind to IRE and inhibit ferritin mRNA translation. When the iron level is high, IRP2 is degraded, and 

IRP1 is converted from its active RNA-binding form into an Fe–S cluster-containing aconitase that lacks IRE-binding activity. 

Thus, IRPs cannot bind to IRE, and ferritin translation increases. Conversely, when the iron level is low, IRPs bind to IRE, 

and the ferritin level decreases. Source:Wang et al., 2013 

1.5 Acute phase response (APR) 

The acute phase response (ARP) is a key physiological defense mechanism of the organ-

isms in response to any local or systemic insult caused by infection, tissue injury, trauma or sur-

gery and immunological disorders (Gruys et al., 2005; Koj, 1985). The purpose of generating an 

acute phase response is to recover the damage caused by the injuring noxae and it also ensures 

the restoration of homeostasis. Acute phase can be characterized clinically by observing different 
12 



signs i.e. fever, drowsiness, weakness, muscular pain, and adynamia. A large group of specific 

mediators/cytokines including interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) others is 

responsible for mediating acute phase reaction (Ramadori and Christ, 1999). 

Acute phase proteins are divided into two groups: 

1. Type I acute phase proteins include SAA (serum amyloid A), CRP (C-reactive

protein; human), complement C3, haptoglobin (rat), and α1-acid glycoprotein. They 

are induced by interleukin-6 (IL-6), interleukin-1 (IL-1)-like cytokines which com-

prise IL-1α, IL-1β, tumour necrosis factor (TNF)-α and TNF- β.  

2. Type II acute phase proteins are induced by IL-6 cytokine and its family members

LIF (leukaemia inhibitory factor), IL-11, OSM (oncostatin M), CNTF (ciliary neu-

rotrophic factor) and CT-1 (cardiotrophin-1). Type II proteins include fibrinogen, 

haptoglobin (human), α1-antichymotrypsin, α1-antitrypsin, and α2-macroglobulin 

(rat).  

In general, IL-6-like cytokines synergize with IL-1-like cytokines to induce type I acute 

phase proteins, whereas IL-1-like cytokines do not affect induction of type II acute phase pro-

teins or even have inhibitory effect on it (Moshage, 1997). After injury these cytokines are re-

leased or synthesized by different cell types including endothelial cells, fibroblasts, macrophag-

es, granulocytes and lymphocytes, at the site of injury. The systemic circulation brings these 

floating cytokines to the liver and in response liver starts regulation of different acute phase pro-

teins, differentiated as positive and negative acute phase proteins (APP). Proteins with an in-

creased expression and plasma concentration are classified as positive acute phase proteins 

(APP), e.g., α2-macroglobulin and LCN2 in rats (Sultan et al., 2012). These APPs phase proteins 
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are involved in the process of wound healing to neutralize or recover the tissue damage 

(Ramadori and Christ, 1999). The other positive APPs include clotting proteins, transport pro-

teins, antiproteases, and complement factors serum amyloid A (SAA) and C-reactive protein 

(CRP) in humans or in mice its homologue, serum amyloid P component (SAP). Furthermore, 

the decrease of the serum iron level is also a hallmark of APR (Sheikh et al., 2007). There are 

some other proteins which are down-regulated and consequently their plasma concentration de-

creases during APR. These are categorized as negative acute phase proteins and protein such as 

albumin belongs to this family (Ramadori and Christ, 1999). The major and key source of these 

APPs is the hepatocytes which become metabolically active during APR (Ramadori et al., 1985; 

Ramadori and Christ, 1999). 

IL-6-like cytokines use the common receptor β-subunit (gp130) for signal transduction 

which in some cases requires an α-receptor subunit (IL-6, IL-11, CNTF) but in other cases do not 

(OSM, LIF) (Heinrich et al., 1998). After ligand binding, dimerization of two β-subunits leads to 

the activation of the receptor associated Janus kinases (JAKs), which in turn, phosphorylate tran-

scription factors from the signal transducer and activator of transcription (STAT) family, namely 

STAT1, 3, and 5 (Heinrich et al., 2003). After homo- or heterodimerization, activated STATs are 

translocated to the nucleus, where they bind to target sequences in the promoters of type II APP 

genes, stimulating synthesis of corresponding proteins (Fig. 5). Among STAT factors, STAT3 is 

considered to play a pivotal role in the regulation of the APR, since STAT3 binding sites were 

shown in the promoters of various APP genes induced by IL-6 (Streetz et al., 2001). 
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Figure 5: IL-6 stimulation induces the expression of a number of pro-inflammatory genes (Type II APP genes) products 

via activation of JAK/STAT3 pathway. Modified from:Walters and Griffiths, 2009.

1.6 Experimental model of acute phase study (ARP) 

1.6.1 Animal Model of ARP 

There are two well established animal models for the experimental study of the APR and 

acute phase mediated changes in acute phase proteins. Bacterial endotoxin lipopolysaccharide 

(LPS) administration leads to induction of APR by inducing systemic APR along with liver dam-

age (Boelen et al. 2005;Ramadori et al. 1985). The other know model of APR, turpentine oil 

(TO) induced sterile muscle abscess without causing any detectable injury to liver and other tis-

sues (Boelen et al. 2005;Ramadori et al. 1990;Tron et al. 2005;Wusteman et al. 1990). Thus, the 

TO-induced ARP model allows studying the effect of cytokines on liver produced at distant sites 

(Fig. 6). This model of ARP reproduces changes observed in human disease states (Basso et al, 
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2005; Bodet et al, 2006; Boelen et al, 2005; Gabay and Kushner, 1999; Halter et al, 2005; Kim et 

al, 2002; Stoeck et al, 2006).  

Figure 6: The acute phase model of study. Turpentine injection into the limb muscle results in cytokine production at the site of 

injury. These cytokines are released into the blood and when they reach the liver, liver becomes metabolically active and release 

acute phase mediators to trigger the healing process at the site of injury. The decreased iron concentration in serum is the hall-

mark of APR. 

1.6.2 In vitro Model of ARP 

When it became evident that liver is a primary target organ for the APR, hepatocytes cell 

culture was used to investigate a hierarchy of the events triggering the full APR in the liver. Be-

sides the ability to respond to the cytokine, different cell types within the liver also express IL-

1β, IL-6 , TNF-α, and other modulatory cytokines of the hepatic APR (Ramadori and Christ, 

1999). Kupffer cells are the most active intra-hepatic “amplifiers” of the systemic APR in the 

liver by liberating a second wave of pro-inflammatory cytokines, promoting autocrine stimula-
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tion and paracrine hepatocyte stimulation (Decker, 1990). Hepatocytes express a great variety of 

receptors for cytokines, growth factors, and prostaglandins and therefore represent the major 

target for a multiple set of mediators involved in both systemic and local host defense reactions. 

Hepatocytes also express and secrete cytokines of the APR, which might further stimulate adja-

cent hepatocytes (Rowell et al., 1997). 

1.7 Aims of study 

Change in hepatic iron status is hall mark of APR. Turpentine oil (TO) induced APR model 

is well known for studying sterile local inflammation. TO injection leads to local inflammation 

with a subsequent systemic induction of APR mediated by cytokines  (Ramadori and Christ, 

1999; Ramadori et al, 1985). Sterile inflammatory processes develop through a cascade of events, 

char-acterized by a local increase of blood supply, small molecules, and proteins, leakage of 

fluids, and infiltration of inflammatory cells (Roitt and Delves, 2001). TO induces an aseptic 

local abscess without any damage caused to other organs (Boelen et al, 2005; Ramadori 

and Meyer zum Buschenfelde, 1990; Tron et al, 2005; Wusteman et al, 1990). This is clearly 

differ-ent from agents inducing an acute systemic response, like the administration of bacterial 

endo-toxin (lipopolysaccharide) (Boelen et al, 2005). Thus, the TO-induced acute-phase 

response model allows studying the effect of cytokines on the liver produced at distant sites.  

Based on the literature and our previous findings it is known that sterile muscle abscess can 

cause a decrease in serum iron level in parallel to increase in hepatic iron content. Accordingly, it 

has also been reported that the intramuscular administration of TO induced the changes in gene 

expression of several proteins involved in iron metabolism in hepatic and extra-hepatic organs 

(Sheikh et al. 2007). However, the mechanisms governing hepatic iron metabolism under acute 
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phase conditions is poorly understood. In addition, previously we also localized several hepatic 

iron import and export proteins whereas the differential localization of these hepatic iron regula-

tory proteins in comparison to extra-hepatic organs has not been reported before.   

Therefore, the perspective of this study was to compare sub-cellular localization of iron 

regulatory proteins in hepatic as well as extra-hepatic organs under physiological and acute-

phase conditions. Further, it was also the aim of the current study to analyze the regulation and 

signaling pathways of these proteins during APR. 

Therefore, following approaches were adopted to address the aims of the current study:   

1. Investigate and compare the expression changes in iron transport- (TfR1, TfR2 and LCN-

2) and iron storage proteins (ferritin) under the influence of acute phase cytokines (IL-6,

IL-β and TNF-α) in the presence/absence of iron in primary culture of isolated rat 

hepatocytes; in vitro.  

2. Demonstrate role of cytokines in iron uptake using primary cultures of isolated rat

hepatocytes stimulated with acute phase cytokines (IL-6, IL-β and TNF-α) in the pres-

ence/absence of iron; in vitro.

3. Evaluate the role of IL-6, the principle mediator of inflammation, in the regulation of ex-

pression pattern of iron transport (TfR1, TfR2 and LCN-2) and iron storage proteins

(FTH, FTL) in wild type and IL-6 knock-out mice models of acute phase response.

4. Investigate and compare the cellular localization of iron transport- (TfR1, TfR2 and

LCN-2) and iron storage proteins (FTH, FTL) in liver, spleen, and heart in rat model of

acute phase response.
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2 MATERIALS 

2.1 Chemicals 

All the chemicals used in the study were of analytical grade and were purchased from 

commercial sources as indicated below: 

TRIzol reagent (Invitrogen GmbH, Karlsruhe, Germany) for isolation of RNA from the tissues; 

real-time polymerase chain reaction (PCR) primers, M-MLV reverse transcriptase, reverse tran-

scription buffer and 0.1M DTT, platinum Sybr green qPCRUDG mix from Invitrogen, dNTPs, 

protector RNase inhibitor, bovine insulin, Klenow enzyme, primer oligo (DT)15 for cDNA syn-

thesis and salmon sperm DNA from Roche (Mannheim, Germany). All other reagents and chem-

icals were from Sigma-Aldrich (Munich, Germany) or Merck (Darmstadt, Germany). Mouse 

anti-transferrin receptor-1 from Invitrogen (Darmstadt, Germany), Rabbit anti-transferrin recep-

tor-2 from Abcam (Cambridge, UK), Mouse anti-lipocalin-2 from Novus Biologicals, Goat anti-

lipocalin-2 from R & D, Rabbit anti-STAT3 from Cell Signaling, Rabbit anti-pSTAT3 from Cell 

Signaling, FTH from LS Bio and Santa Cruz, Rabbit anti-FTL from Abcam, Mouse anti-beta-

actin antibody from Sigma Aldrich (Germany) were used in the study. Among secondary anti-

bodies; Horse-reddish-peroxidase-conjugated anti-mouse, anti-rabbit and anti-goat IgGs from 

DAKO (Germany) and among Fluorescent Dye Conjugates Alexa Fluor-488 Donkey anti-goat, 

Donkey anti-mouse IgG and Alexa Fluor-555 Donkey anti-rabbit and Donkey anti-mouse IgG 

from Invitrogen (Darmstadt, Germany), were used in the study. 
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2.2 Animals and experimental models of acute-phase reaction 

Male Wistar rats of about 170–200 g body weight were purchased from Harlan Winkel-

mann (Brochen, Germany). Adult male B6.129S2-Il6tm1Kopf (IL6-knockout) mice and control 

wild type adult male C57BL/6J mice (25–28g) were purchased from Jackson Laboratory. The 

animals were kept under standard conditions with 12 h light/dark cycles and had ad libitum ac-

cess to fresh water and food pellets. All animals were cared for according to the University´s 

guidelines, the German convention for the protection of animals and NIH guidelines.  

In rats APR was induced in ether-anesthetized rats by intramuscular administration of 5 

ml/kg TO in both right and left hind limbs (n=5). Control animals did not receive any administra-

tion (n=4). Injected and non-injected control rats were euthanized 1h, 2h, 4h, 6h, 12h, 24h and 

after TO administration under pentobarbital anesthesia. Liver, heart and spleen were excised and 

minced, rinsed with physiological sodium saline, snap frozen in liquid nitrogen and stored at -

80°C till further use. Blood samples were collected from the inferior vena cava of the control and 

treated animals, allowed to clot overnight at 4°C and centrifuged for 20 min at 2000 g. Serum 

was removed and stored at -80°C. 

For the mice experiments, a group of animals (n=3) for each strain, control (C57BL/6J) and 

IL6-knockout, was injected intramuscularly with 0.1 ml TO in both right and left hind limbs to 

induce an aseptic acute phase response. Animals were euthanized 2h, 4h, 6h, 12h and 24h after 

the treatments under pentobarbital anesthesia. Liver tissues were excised and minced, rinsed with 

physiological sodium saline, snap frozen in liquid nitrogen and stored at -80°C till further use. 
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3 METHODS 

3.1 Methods of cell biology 

3.1.1 Isolation of rat liver cells 

3.1.1.1 Isolation of rat hepatocytes 

Hepatocytes were isolated from male Wistar rats by circulating perfusion with collagenase 

essentially as described previously (Seglen 1972). 

3.1.1.1.1 Liver perfusion 

After laparotomy, the vena portae was canulated, vena cava inferior was ligated above the 

diaphragm to prevent flow of the perfusion media into a whole body circulation. Finally, the ve-

na cava inferior was cut beneath the liver and canulated. The liver was perfused in nonrecircula-

tive mode through the portal vein with 150-200ml CO2-enriched preperfusion medium at a flow 

rate of 30ml/min until the liver was free from blood. To break down components of extracellular 

matrix, the liver was perfused in recirculative mode with collagenase perfusion medium until it 

started to feel soft (about 7-11 min). 

3.1.1.1.2 Preparation of the hepatocytes suspension 

After perfusion, the liver was excised and transferred into a sterile glass beaker filled with 

culture medium M 199 with additives. Glissonʼs capsule, i.e. collagen tissue around the liver, 

was carefully removed and discarded. To obtain a cell suspension, the tissue was disrupted me-

chanically using sterile forceps. Connective tissue and remainder of the liver capsule as well as 

big cell aggregates were removed by filtration of the primary cell suspension through a nylon 

mesh (pore-size 79µm). Non-parenchymal cells and cell debris were removed by numerous se-

lective sedimentations (20 g, 2 min, 4°C) in wash medium. After the last centrifugation, hepato-
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cytes were suspended in medium M 199 with additives. 50ml of M 199 was added per 1g of wet 

weight of the sedimented cells; the cell suspension typically had a density of about 106/2.5 ml.  

3.1.1.1.3 Primary culture treatment and harvesting of rat liver cells 

The cultures of rat hepatocytes were performed on 60mm polystyrol dishes and maintained 

at 37°C in a 95% air/ 5% CO2 atmosphere and saturated humidity. Rat hepatocytes were pro-

cessed further for cytokine stimulation.  

3.1.1.1.4 Primary culture of rat hepatocytes 

Immediately after preparation, fetal calf serum (4 ml/100 ml suspension) was added to the 

hepatocytes suspension in order to make the efficient cell adhesion to the polystyrol dishes. Fur-

thermore, the antibiotics (1 ml of pen/strep stock solution per 100 ml cell suspension) together 

with 10-7 M dexamethasone and 10-9 M insulin as permissive hormones were added. Rat 

hepatocytes were plated onto 60-mm plastic dishes at a density of 2×106 cells per dish. After the 

initial 4 h of attachment phase, the medium was changed, and the hepatocytes were further incu-

bated in medium M 199 with the same concentrations of hormones and antibiotics used previous-

ly but without fetal calf serum. A volume of 2.5 ml medium per 60mm culture dish was added. 

3.1.1.1.5 Stimulation of hepatocytes with acute phase cytokines and iron  

Primary rat hepatocytes were stimulated with pro-inflammatory cytokines (IL-1β 100ng/

ml, IL-6 500ng/ml, and TNF-α 100ng/ml concentrations) in the presence/absence of iron 

(0.1mM) or different concentrations of iron (FeCl3:0.01mM, 0.1mM and 0.5mM) alone, on the 

next day of plating. The medium was changed 6 hours prior to stimulation; the stimuli were di-

luted to the required concentrations in the culture medium and added directly to the culture dish-

es by pipetting. An equal volume of the normal culture medium was added to the dishes with 
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cells which later served as experimental controls. After addition of the stimuli, cells were incu-

bated in the incubator prior to RNA and protein isolation. The cells were harvested at different 

time points (0, 6, 12 and 24h), washed with phosphate buffered saline, pH 7.4 and frozen at –

80°C for subsequent RNA and protein isolation. 

3.2 Methods in molecular biology 

3.2.1 RNA isolation  

During the whole study, total RNA was isolated from liver, brain, spleen and injured mus-

cle tissue samples with TRIzol reagent according to the manufacturer‟s instructions. Briefly, 

tissue samples were homogenized in 1 ml TRIzol reagent per 100mg of tissue using a power ho-

mogenizer. After 5 minutes incubation at room temperature, 0.2ml chloroform per sample was 

added and samples were vigorously shaken and incubated at room temperature for 3 minutes. 

Samples were then centrifuged at 12,000g for 30 minutes and the acqueous phase so obtained in 

the supernatants was carefully collected. A volume of 0.5ml of isopropyl alcohol was succevs-

sively added to the collected phase and samples were incubated at room temperature for 10 

minutes. The RNA precipitation was favoured centrifuging again at 12,000g for 10 minutes. Af-

ter a short washing step in ethanol 75%, RNA was shortly air-dried and resuspended in a volume 

of approximately 50μl of RNase and Dnase free water. The RNA was then quantified by measur-

ing the absorbance at 260nm/280nm.  

3.2.2 Reverse transcription (RT) 

The cDNA was generated by reverse transcription of 3.0 g of total RNA with 100nM of 

dNTPs, 50pM of primer oligo(dT)15, 200U of moloney murine leukemia virus reverse transcrip-
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tase (M-MLV RT), 16U of protector RNase inhibitor, 1X RT buffer and 2.5 ml of 0.1M DTT for 

1 h at 40°C.  

3.2.3 Real time quantitative Polymerase chain reaction 

The cDNA samples are analyzed by the Real Time PCR using the following ingredients for 

each PCR reaction: 

Volume per reaction 

“X” primer-forward (5mM)        1.5µl 

“X” primer-reverse (5mM)        1.5 µl 

H2O                      6.5µl 

SYBR Green Master Mix Taq Polymerase               13.0 µl 

2.5µl of the cDNA sample or 2.5µl of H2O for the negative control was added to each PCR reac-

tion.  

3.2.4 Thermal cycler amplification program 

The amplification was performed at 95°C for 20 seconds, 95°C for 3 seconds to 60°C for 

30 seconds for 40 thermal cycles in an ABI prism 7000 sequence detection system. All samples 

were assayed in duplicate. Expression of different genes was analyzed using Platinum SYBR 

Green qPCR mix UDG. The PCR amplification program was followed by dissociation curve 

protocol for controlling the specificity of the PCR products. Specific temperature of dissociation 

of the PCR product was calculated by the Primer Express software. Curves of amplification were 

analyzed to measure the Ct value in the linear range of the amplification. The results were nor-
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malized to the house keeping gene and fold change expression was calculated using Ct values by 

Prism Graph Pad 5 software. 

3.2.5 Standard Curve 

Serially diluted PCR products, of the gene of interest are amplified by Real Time PCR and 

Ct values are calculated. The standard curves were obtained graphically by using the following 

parameters: Ct values and the logarithm of the number of copies. Standard curve were calculated 

for the gene of interest and the housekeeping genes. Number of copies of gene in the sample was 

obtained by extrapolation of the measured Ct value to the relative standard curve. Normalization 

of gene expression in each sample was performed by calculating the ratio of number of copies of 

the gene of interest with respect to the number of copies of the housekeeping gene.  

3.2.6 Primers designing 

Primers for different genes were designed using the program “Primer Express” (ABI Sys-

tem) and the gene bank data (http://www.ncbi.nlm.nih.gov).  

3.3 Methods of biochemistry 

3.3.1 Protein extraction from liver tissue and cultured hepatocytes 

3.3.1.1 Preparation of tissue homogenates 

All steps were performed at 4°C to prevent proteolytic degradation of the proteins. About 

100mg of frozen tissue was homogenized with Ultra-Turrax TP 18/10 model homogenizer 

3times for 10sec each in 10 volumes of 50mM Tris-HCl buffer, pH 7.4, containing 150mM 

NaCl, 1mM EDTA, 1% Triton X-100, 1mM PMSF, 1mM benzamidine, 1μg/ml leupeptin, 10μM 

chymostatin, 1μg/ml antipain, 1μg/ml pepstatin A. Crude homogenates were passed 5 times 

through a 22G administration canula connected to a syringe. To pellet the nuclei and particular 
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matter, crude homogenates were centrifuged for 5 min at 10,000g (4°C). Protein concentration of 

supernatants was determined by the bicinchoninic acid (BCA) method (Smith et al. 1985) using 

the BCA protein assay reagent kit (Pierce, Bonn, Germany). Prepared homogenates were dis-

pensed in aliquots and stored at −20°C until use. 

3.3.1.2 Preparation of cell lysate 

All steps of the procedure were performed at 4°C to prevent proteolytical degradation of 

the proteins. The cells frozen on the culture dishes were thawed on ice. 1X ice-cold lysis buffer, 

comprised of 150mM NaCl, 1mM EDTA, 1% Triton X-100, 50mM Tris-HCl, pH 7.4 and sup-

plemented with protease inhibitors, was added to the cells (500μl per 6 cm dish) followed by 

incubation on ice for 10 min. Afterwards, the cells were scraped with a disposable scraper, trans-

ferred to new tubes and passed 5 times through a 22G administration canula connected to a sy-

ringe. To pellet the nuclei and particular matter, prepared lysates were centrifuged for 5 min at 

10,000g (4°C) and the protein concentration of supernatants was determined by BCA method 

using the kit from Pierce. Prepared lysates were aliquoted and stored at −20°C until use.  

3.3.2 Proteins isolation and Western Blot 

Fifty micrograms from the total protein lysate were loaded in a 4-12% Nu-PAGE BisTris 

(Invitrogen) gel and separated after 2 hours electrophoresis at 80V. After the transfer in a semi-

dry apparatus at 26V for 1.5h, the membranes were blocked in 5% milk, and blotted with prima-

ry antibodies overnight at 4̊ C. The secondary antibodies were horse reddish peroxidase conju-

gated goat anti-rabbit, goat anti-mouse and rabbit anti-goat immunoglobulins (DAKO) diluted at 

1:2000. Membranes were developed with ECL chemiluminescence Kit (Amersham).  
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3.3.3  Immunohistochemistry 

Immunohistochemical analysis was performed on 4µm thin cryostat sections fixed in 

methanol/acetone to localize the antigens on the tissues. After blocking non-specific binding 

with a solution of PBS containing 1% bovine serum albumin (Serva, Heidelberg, Germany) and 

10% donkey serum (Abcam) for 1 h at room temperature, the primary antibodies (TfR1, TfR2, 

LCN-2, FTH and FTL) were incubated overnight at 4°C on the sections. The mouse 

monoclonal (TfR1) and rabbit polyclonal (TfR2) antibodies were detected with an Alexa 

Fluor-555 conjugated donkey-anti-rabbit/donkey anti-mouse and goat polyclonal (LCN-2), 

rabbit polyclonal (TfR2) and mouse monoclonal (LCN-2) antibodies with Alexa Fluor-488 

conjugated secondary antibody from Invitrogen (Darmstadt, Ger-many). For double-staining, 

each of the TfR1 and TfR2 primary antibodies was incubated with goat/mouse anti LCN-2 (R 

& D) (diluted 1:100) overnight at 4°C. A mix of Alexa Flour-555-conjugated donkey-anti-

rabbit, donkey-anti-mouse and FITC/ Alexa Fluor-488-conjugated anti-goat Igs from (Invitrogen 

Darmstadt, Germany) was successively incubated for 1h at room temperature in dark. Sections 

were counter-stained with DAPI (Molecular Probes, Invitrogen) and observed with an 

epifluorescence microscope (Axiovert 200M, Zeiss, Germany). In peroxidase staining antigens 

were visualized using HRP-conjugated secondary antibodies. Negative control immunostainings 

were performed by omission of the primary antibody, by using isotype of matching control 

immunoglobulins.  
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3.4 Methods in clinical chemistry 

3.4.1  Iron measurement 

3.4.1.1 Principle 

Iron bound to transferrin is released in an acidic medium as ferric iron and is then reduced 

to ferrous iron in the presence o ascorbic acid. Ferrous iron forms a blue complex with ferene. 

The absorbance at 595nm is directly proportional to the iron concentration. 

Transferrin (Fe3+)2 → 2Fe2+ + transferrin 

Fe2+ + 3Ferene → Ferrous Ferene (blue complex) 

3.4.1.2 Reagents 

Final concentration 

R1:   Acetate buffer pH 4.5    800mM/l 

Thiourea         90mM/l 

R2:   Ascorbic acid         45mM/l 

Ferene         0.6mM/l 

Thiourea         20mM/l 

Standard        100μg/dl (17.9μM/l) 

Should be protected from light, reagents are stable at 2-25°C until the expiry date. 

3.4.1.3 Assay Procedure 

To determine the hepatocytes iron level, 100μl of the sample along with 1000μl of the re-

agent1 was taken in the reaction tube. For blank 100μl of dd H2O was used. The sample and rea-

gent 1 was mixed thoroughly, incubated for 5 minutes and read the    absorbance (A1). After that 
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250μl of the Reagent 2 was added, mixed thoroughly and the absorbance (A2) was read after 10 

minutes of incubation. 

3.4.1.4 Calculations 

ΔA = [(A2- 0.82 A1) sample/Std.] – [(A2-0.82A1) blank] 

The factor 0.82 compensates the decrease of the absorbance by addition of reagent 2. The factor 

is calculated as follows: 

(Sample +R1)/Total volume. 

This compensation is necessary as a high sample volume is used. 

Iron [μg/dl] = ΔA Sample/ΔA Std/Cal × Conc. Std. /Cal [μg/dl] 

Conversion factor Iron [μg/dl] × 0.1791 [μM/l] 

3.4.1.5 Measuring range 

The test has been developed to determine iron concentrations within a measuring range 

from 5-1000μg/dl (0.9-179μM/l). When values exceed this value samples should be diluted 1 + 2 

with NaCl solution (9g/l) and the results multiplied by 3. 

3.4.1.6 Specificity and sensitivity 

The test was specific and no interference was observed by conjugated and free bilirubin up 

to 60 mg/dl, hemoglobin up to 100 mg/dl, lipemia up to 2000 mg/dl triglycerides, and copper up 

to 200μg/dl. The lower limit of detection for the test is 2μg/dl (0.4μM/l). 

3.5 Statistical analysis 

The data were analyzed using Prism Graph pad 5 software (San Diego, USA). All experi-

mental errors are shown as SEM. Statistical significance was calculated by Student´s t test and 

one way ANOVA. Significance was accepted at *P < 0.05 and *P< 0.0125.  
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ABSTRACT—Decreased serum and increased hepatic iron uptake is the hallmark of acute-phase (AP) response. 
Iron uptake is controlled by iron transport proteins such as transferrin receptors (TfRs) and lipocalin 2 (LCN-2). The 
current study aimed to understand the regulation of iron uptake in primary culture hepatocytes in the presence/absence 
of AP mediators. Rat hepatocytes were stimulated with different concentrations of iron alone (0.01, 0.1, 0.5 mM) and 
AP cytokines (IL-1β, IL-6, TNF-α) in the presence/absence of iron (FeCl3:0.1 mM). Hepatocytes were harvested at 
different time points (0, 6, 12, 24 h). Total mRNA and proteins were extracted for RT-PCR and Western blot. A 
significant iron uptake was detected with 0.1 mM iron administration with a maximum (133.37±4.82 µg/g of protein) 
at 24 h compared with control and other iron concentrations. This uptake was further enhanced in the presence of AP-
cytokines with a maximum iron uptake (481±25.81 µg/g of protein) after concomitant administration of IL-6+iron to 
cultured hepatocytes. Concomitantly, gene expression of LCN-2 and ferritin subunits (light- and heavy-chain ferritin 
subunits) was upregulated by iron or/and AP-cytokines with a maximum at 24 h both at mRNA and protein levels. In 
contrast, a decreased TfR1 level was detected by IL-6 and iron alone, whereas combination of iron and AP-cytokines 
(mainly IL-6) abrogated the downregulation of TfR1. An increase in LCN-2 release into the supernatant of cultured 
hepatocytes was observed after addition of iron/AP cytokines into the medium. This increase in secretion was further 
enhanced by combination of IL-6+iron. In conclusion, iron uptake is tightly controlled by already present iron 
concentration in the culture. This uptake can be further enhanced by AP-cytokines, mainly by IL-6. 
KEYWORDS—Transferrin receptors, lipocalin 2 (LCN-2), acute-phase cytokines (IL-1β, IL-6, TNF-α), FeCl3 

INTRODUCTION This pool has been documented in a variety of iron overload 
syndromes when Tf is saturated (11), including hemochroma- 
tosis (69% of patients) and end-stage renal disease (22% of 
patients) (12); the identification of the components of NTBI, 
however, remains elusive. 

Despite the abundance of iron in nature and in the human 
body, iron absorption, transport, storage, and excretion are 
tightly regulated. Within the cell, iron is mainly stored in the 
form of ferritin (1). In human, ferritin is composed of two 
subunits: the light-chain ferritin subunit (FTL; with 125 amino 
acids, 19 KDa) and the heavy-chain ferritin subunit (FTH; 183 
amino acids, 21 KDa). Both subunits are highly conserved (2); 
nevertheless, they are genetically separate (3) and maintain 
distinct functions (4). 

Lipocalin 2 (LCN-2; human ortholog neutrophil gelatinase- 
associated lipocalin) has been proposed to be a mediator of the 
Tf-independent iron delivery pathway (13). It belongs to the 
lipocalin family, which is known to be involved in the regu- 
lation of immune responses, modulation of cell growth and 
metabolism, prostaglandin synthesis, and iron transportation 
(13). In fact, it is a bacteriostatic agent and capable of se- 
questering iron in the form of siderophores (14). A recent study 
has shown that LCN-2 siderophore-iron complexes can 
transport iron into cells during kidney development (10). 

   Iron homeostasis is controlled by a large group of iron regu- 
latory proteins including ferroportin 1 (5), transferrin receptors 
(TfR1, TfR2) (6), hepcidin (7), and hemojuvelin (8). In fact, 
transferrin (Tf)-bound iron is imported into the reticuloendo- 
thelial system, to liver parenchymal cells and to all proliferating 
cells in the body after binding to TfRs. Interaction of diferric-Tf 
with TfRs and internalization of the complex by receptor-
mediated endocytosis leads to iron uptake into the cells (9). As a 
result, Tf efficiently transports the majority of iron into the cells 
(10). However, there has been convincing evidence that, in 
situations of disrupted iron homeostasis, iron can also be 
delivered to cells by alternative, Tf-independent mechanisms. 
This alternative to Tf iron is called non-Tf-bound iron (NTBI) 

Acute-phase response (APR) is the systemic reaction to 
tissue injury and inflammation. It is clinically characterized by 
systemic symptoms such as fever, weakness, anemia, 
somnolence loss of appetite, and cytokines release (15). In the 
blood, it results in an increase in the plasma levels of a number 
of positive acute-phase proteins (APPs), including clotting 
proteins, transport proteins, antiproteases, and complement 
factors, with a concomitant decrease in negative APPs such as 
albumin (16). In addition, a decrease in serum iron levels and 
consecutive increase in hepatic iron levels are also a hallmark of 
APR. This reaction is mediated by both interleukin 1 (IL-1)-like 
cytokines (IL-1, tumor necrosis factor α [TNF-α]) and IL-6-like 
cytokines (IL-6, oncostatin M, and others), through the 
activation of different transcription factors. 
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Measurement of hepatocytes iron contents 
The iron contents of the cells at different time points after treatment were 

measured by colorimetric FerroZine-based assay (23). Iron contents were mea- sured 
as µg/g of hepatocytes protein and analyzed using Microsoft Excel 2007. 

The liver is a major site of iron storage, and this iron-storage 
function is achieved by a tight control of bidirectional ex- 
change of liver iron with plasma iron. Although the effect of 
cytokines on increased iron uptake has already been reported 
(17), and there have been several reports on iron regulation and 
metabolism, the mechanism of iron uptake is still poorly un- 
derstood in the liver. 

Isolation of total RNA and PCR analysis 
Total RNA was isolated from the hepatocytes samples with Trizol 

reagent according to the manufacturer’s instructions. RNA was then 
measured at an absorbance of 260/280nm. The cDNA was generated by 
reverse transcription of RNA using the superscript kit (Invitrogen, Carlsbad, 
Calif). Real-time po- lymerase chain reaction (RT-PCR) was performed at 
95-60°C for 40 thermal cycles using the Step One Plus real-time PCR cycler 
(Applied Biosystems, Darmstadt, Germany). Quantification of cDNA was 
done by relative quantification βusing SYBR Green UDG reaction master 
mix (Invitrogen,Darmstadt, Germany). Table 1 shows the list of primers, 
which have been gene specifically synthesized (Invitrogen). β-Actin 
mRNA is used as a housekeeping gene with every sample. The results 
in the form of threshold cycle values were normalized to control values and 
relative to the expression of  β-actin. 

Previously, we showed in vivo that expression of acute- 
phase (AP) cytokines (IL-1β, IL-6, TNF-α) increased during 
inflammation, delivered from the site of injury into the blood, 
can induce changes in expression of iron-regulatory, including 
iron-storage proteins (18). Furthermore, a decreased serum and 
increased hepatic iron content during AP conditions were also 
observed. This sponge (iron uptake) effect of the liver during 
AP conditions was supposed to be not only due to a change in 
gene expression of iron regulatory proteins but also due to AP 
cytokines. 

Protein extraction and Western blot analysis 
In the current study, we wanted to explore the role of AP 

cytokines in iron uptake and the changes in gene expression of 
iron transport and storage proteins in the absence or presence of 
AP cytokines in primary culture of rat hepatocytes. 

MATERIALS AND METHODS 

Animals 

Proteins were isolated from the hepatocytes of different time points as 
de-scribed previously (24). Protein contents were calculated by the 
Coomassie protein assay (Pierce, Germany). Cell supernatant (culture 
medium in which hepatocytes were cultured) as whole and cell lysates were 
used for Western blot analysis. Western blot was performed with sodium 
dodecyl sulfate polyacryl-amide under reducing conditions as described (25) 
with β-actin as a loading control. The proteins were then transferred onto 
Hybond ECL nitrocellulose hybridization transfer membranes as described 
(26). Immunodetection studies have been performed according to the ECL 
Western blotting protocol of GE Healthcare (Dornstadt, Germany ). The 
antibodies used are listed in Table 2.

Statistical analysis 
The data were analyzed using GraphPad Prism 4 software (San Diego, 

Calif). All experimental errors are shown as SEM. Statistical significance 
was calculated by Student t-test. Significance was accepted at P ≤ 0.05. 
Bonferroni correction was applied to iron uptake data set obtained from 
FeCl3 treatment groups to prevent accumulation of  and significance was 
accepted at P ≤0.0125 (α/4, n = 4).

As sex difference in cytokine secretion has been reported before (19), 
male Wistar rats (8-12 weeks old, 170-200 g body weight) were purchased 
from Harlan Winkelmann (Brochen, Germany). The animals were kept 
under stan- dard conditions with 12:12-h light-dark cycles and were given 
ad libitum access to water and food. All animals were cared for in 
accordance with the guidelines of the German Convention for the Protection 
of Animals and the US National Institutes of Health. 

Hepatocytes isolation and treatment 

RESULTS 

Lactate dehydrogenase measurement 
   The cellular damage of iron on hepatocytes was detected by 
measuring lactate dehydrogenase in the hepatocytes culture 
medium at all studied time points. All the treatments (iron 
and cytokines) showed less than 5% lactate dehydrogenase 
secretion, indicating no cell damage to control and treated 
hepatocytes (data not shown).

For each experiment, two to four rats were killed under pentobarbital so- 
dium (50 mg/kg) anesthesia according to the university’s guidelines and 
German regulations for the protection of animals, and hepatocytes were iso- 
lated from these animals as described earlier (20). Isolated cells from 
different animals were pooled and plated for cytokine and/or iron treatment. 
Then, these isolated hepatocytes were incubated at 37ºC in an atmosphere 
containing 95% air and 5% CO, Dulbecco modified Eagle medium 
supplemented with 10% fetal calf serum (PAA, Colbe, Germany),1 nmol/L 
insulin, and 100nmol/L dexamethasone (Sigma-Aldrich, Munich, 
Germany) for 48 h to obtain con- fluence and to reduce the stress of 
isolation procedure according to established protocol of our laboratory 
(20). Afterward (48 h), hepatocytes were divided into three groups: one 
was administrated with different AP cytokines, i.e., IL-6 (500 ng/mL), 
IL-1β (100 ng/mL), TNF-α (100 ng/mL) (PeproTech GmbH, Hamburg, 
Germany). The  second group received different concentrations (0.10.1, 0.5 
mM) of FeCl3 (Sigma-Aldrich) in serum-free medium containing 0.2% 
bovine serum albumin up to 24 h. Then, in the third group, cytokines IL-6 
(500 ng/mL), IL-1β (100 ng/mL), and TNF-α (100 ng/mL) were 
supplemented concomitantly with FeCl3 (0.1 mM) (21,22) to cultured 
hepatocytes in serumfree medium containing 0.2% bovine serum albumin. 
Each experiment was repeated four times (n=4) in duplicates, cells 
wereafter treatment, and duplicates were pooled down in one Eppendorf 
tube for protein and mRNA isolation. 

Iron uptake in hepatocytes 
   To find the optimal iron concentration for studying iron 
uptake, different concentrations of iron (0.01, 0.1, and 0.5 mM) 
were administered to the culture medium. The 0.1mM 
concentrationwas found to be the most efficient for iron 
uptake in isolated hepatocytes compared with 0.01 & 0.5mM. 

TABLE 1. Primers used in the study 
________________________________________________________________________________________________________________________ 
Primer                                                                                     Forward 5´→ 3´                                                                             Reverse 5´→ 3´ 
_______________________________________________________________________________________________________________________
LCN-2  GGA ATA TTC ACA GCT ACC CTC       TTG TTA TCC TTG AGG CCC AG 
TfR1     GGC GGA AAC TGA GTA TGG TTG A 
TfR2   TCC AGG CTC ACG TAC ACA ACA G

 FTH     TGC AGG AAG ATT CGT CCA CCT
 TCA GAG TGA GGA GCT CAA AGA G FTL       

β-Actin 

 ATA CGT TCC CCG TTG TTG AGG 
AGC TGG GAC GGA GGT GAC TT      

GCC CTG AAG AAC TTT GCC AAA T 
AAC CAC CTG ACC AAC CTC GCT A 

TGT CAC CAA CTG GGA CGA TA        AAC ACA GCC TGG ATG GCT AC 
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T A B LE 2. Antibodies used in the study
_____________________________________________________________

Antibodies  Company   Reference No.  Dilution
_____________________________________________________________

LCN-2  R&D  AF3508  1:300 

TfR1  Invitrogen  13-6890   1:1,000

FTH  LS Bio  LS-C23537  1:500

FTL  Abcam  ab69090   1:1,000

β-Actin Sigma A-2228 1:5,000

Similarly, hepatocytes treated with AP cytokines (IL-1β,IL-6, 
and TNF-α) showed an increase in LCN-2 transcripts (Fig. 2B). 
Interleukin 6Ytreated hepatocytes showed an early increase in 
LCN-2 at 6 h (5.01±0.24-fold), which remained upregulated 
until 24 h compared with untreated hepatocytes. A late (24 h) 
but significant induction of LCN-2 was detected after adminis- 
tration of IL-1α (3.53±0.14-fold), whereas TNF-α treated he- 
patocytes showed a minor change in gene expression of LCN-2 
at mRNA level (Fig. 2B). 

In the third group (AP cytokines+iron), the upregulating effect 
of alone iron or AP cytokines was further enhanced by the 
addition of AP cytokines together with iron into the culture 
medium. The most pronounced increase was detected at 24 h by 
IL-6+iron (11.85±1.01-fold) and IL-1β+iron (12.81±2.13-fold) 
(Fig. 2, C and D), whereas TNF-α+iron showed the least 
pronounced change of LCN-2 gene expression in hepatocytes. 

  Therefore, we used 0.1mM concentration for costimulatory 
(AP cytokines+iron) experiments. In iron-treated hepatocytes, 
the maximum iron uptake was measured (133.37±4.82 µg/g of 
protein) at 24 h at a concentration of 0.1 mM iron, which was 
approximately two times higher compared with untreated 
controls. Other concentrations of iron (0.01 and 0.5 mM) also 
showed a significantly increased iron uptake; however, the 
magnitude of iron uptake using iron concentration 0.1 mM was 
the maximum among all alone iron-treated hepatocytes (Fig. 
1A). 

RT-PCR results were further con- firmed by Western blot by 
using a specific antibody against LCN-2. Reflecting the results 
at transcript level, an increased protein level of LCN-2 was 
revealed after administration of iron and/or AP cytokines (Fig. 
2D). 

Changes in the amount of TfRs in cultured rat hepatocytes 
Alone iron administration to the hepatocytes culture medium 

decreased the gene expression of TfR1 at mRNA level. The 
impact of 0.5 mM concentration of iron was stronger than other 
concentrations in cultured hepatocytes (Fig. 3A) These data were 
also confirmed at protein level (Fig. 3D). 

In cytokine-treated hepatocytes (IL-1β, IL-6, TNF-α), no 
significant uptake of iron was observed (Fig. 1B). However, a 
significant uptake of iron in hepatocytes was observed when 
iron was supplemented to the culture medium together with the 
AP cytokines. The maximum iron uptake was detected by 
addition of iron and IL-6 together in the culture medium, which 
was approximately eight times (481±25.81 µg/g of protein at 24 
h) higher than untreated controls. Similar increase was also
found in hepatocytes exposed to IL-1β+iron (118.91± 10.58 µg/
g of protein) and TNF-α+iron (106.91±6.91 µg/g of protein) at 
24 h, whereas the magnitude of iron uptake was higher in 
hepatocytes where iron was added together with IL-6 (Fig. 1C). 

Changes in amount of LCN-2 in cultured rat hepatocytes 

In group of AP cytokines, IL-1β+treated hepatocytes showed 
a significant increase in gene expression of TfR1 at 24 h (7.48
±0.08-fold) in comparison to untreated controls. In contrast, a 
reduced expression of TfR1 was detected after IL-6 adminis- 
tration with a minimum (0.44 ±0.08-fold) at 6 h. TNF-α-treated 
hepatocytes did not show any considerable change at any studied 
time point as compared with untreated controls (Fig. 3B). These 
data were also confirmed at protein level (Fig. 3D).

   Cultured rat hepatocytes were exposed to different iron 
concentrations (0.01, 0.1, 0.5 mM) to observe the changes in 
LCN-2 at mRNA and protein levels. Addition of alone iron into 
the hepatocytes culture medium sign ificantly increased the 
LCN-2 gene expression at mRNA and protein levels. A 
significant upregulation for LCN-2 gene expression was 
detected at 6 h on mRNA and protein levels (Fig. 2, A and D). 
However, the max- imum  induction  of  LCN-2  gene  
expression  was found at 12 h with an iron concentration of 0.1 
mM (1.95±0.16-fold) followed by 0.5 mM (1.71±0.304-fold) 
and 0.01 mM (1.52±0.10-fold). 

   Contrary to iron treatment alone, the observed 
downregulating effect of iron on TfR1 transcripts was 
completely abrogated when iron was administrated together with 
IL-6 to the culture medium.  

Fig.1. Measurement of iron uptake in hepatocytes: iron-treated hepatocytes (A). Cytokines treated hepatocytes (B). Cytokines+iron-treated hepatocytes (C). Values on 
y axis represent the intracellular iron contents of hepatocytes compared with nontreated controls. Results representthe mean value±SEM. *P ≤ 0.0125, **P ≤ 0.001, 
***P ≤ 0.0001 analyzed by t-test (n = 4).
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However, IL-1β and TNF-α treatment showed a further in- 
crease in TfR1 transcripts in the presence of iron (Fig. 3C). By 
using a specific antibody against TfR1, these results were 
further confirmed at protein level, although the reduction in 
TfR1 at protein level was observed with a delay compared with 
mRNA level (Fig. 3D). 
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Fig .2. Quantitative RT-PCR analysis of mRNA from rat hepatocytes. Fold changein mRNA expression of LCN-2 gene expression after iron treatment (A), 
cytokine treatment (B), cytokines+iron treatment (C) at different time points related to nontreated controls for each time point. Quantitative RT-PCR was 
normalized by using housekeeping gene β-actin. Results represent mean value±SEM. *P ≤ 0.0125, **P ≤ 0.001, ***P ≤ 0.0001 analyzed by t-test (n = 4). Western 
blot analysis of LCN-2 (25 KDa) from total protein of rat hepatocytes. β-Actin (43 KDa) was used as a marker for equal loading (D).

treatment alone. We could not detect the expression of TfR2 at 
protein level in control as well as treated hepatocytes. This 
might be a problem of antibody sensitivity. 

However, IL-1β and TNF-α treatment showed a further in- 
crease in TfR1 transcripts in the presence of iron (Fig. 3C). By 
using a specific antibody against TfR1, these results were further 
confirmed at protein level, although the reduction in TfR1 at 
protein level was observed with a delay compared with mRNA 
level (Fig. 3D). 

Modulation of ferritin subunits in cultured rat hepatocytes 
after treatment with iron and AP cytokines 

In iron-treated hepatocytes, a time-dependent increase in the 
FTL was detected both at mRNA and protein levels with a peak 
at 24 h (2.48±0.195-fold) after administration of 0.5 mM iron 
into the culture medium (Fig. 5A). 

In contrast to TfR1, TfR2 gene expression was increased by 
different iron concentrations (Fig. 4A). Interleukin 6 treatment 
also increased TfR2 gene expression significantly at 6 h, with a 
maximum expression at 24 h (7.2±1.01-fold), compared with 
untreated hepatocytes. IL-1β showed a late significant increase 
(at 24 h), whereas minor changes were observed in TfR2 gene 
expression after TNF-α treatment in hepatocytes (Fig. 4B). 

In hepatocytes treated with a combination of iron and AP 
cytokines together, IL-6 + iron elicited an early increase in TfR2 
transcripts (1.94 ± 0.31-fold) with a maximum at 24 h (7.32
±0.61-fold), which was followed by TNF-α +iron (7.38±1.5-
fold) and IL-1β + iron (4.73±0.1-fold) (Fig. 4C). Treatment of 
iron and AP cytokine together showed a synergetic effect on 
TfR2  gene  expression  as  compared  with iron or AP cytokine

The effects of AP cytokines (IL-1β, IL-6, TNF-α) on FTL 
and FTH were examined in the second group. mRNA analysis 
of ferritin subunits in rat hepatocytes showed a mild increase in 
FTL gene expression with a maximum at 24 h upon cytokine 
(IL-1β, IL-6, TNF-α) treatment (Fig. 5B). This increase was 
better visible at protein level, where cytokines showed an early 
increase, which persisted until 24 h compared with un- treated 
controls. The most pronounced induction was observed by IL-1β 
(Fig. 5D).  Iron-treated hepatocytes showed  a  higher  induction 
of  FTL than administration of cytokines  alone.  No significant
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Fig .3. Quantitative RT-PCR analysis of mRNA from rat hepatocytes. Fold change in mRNA expression of TfR1 gene expression after iron treatments (A), 
cytokine treatment (B), cytokines+iron treatment (C) at different time points related to nont-reated controls for each time point. Quantitative RT-PCR was 
normalized by using housekeeping gene β-actin. Results represent mean value ±SEM. *P ≤ 0.05, **P ≤ 0.001 analyzed by t test (n = 4). Western blot analysis of 
TfR1 (95 KDa) from total protein of rat hepatocytes. β-Actin (43 KDa) was used as a marker for equal loading (D).

difference was visible by combination of AP cytokines and iron 
in comparison to iron or AP cytokine treatment alone (Fig. 5C). 

Similar to FTL, a dramatic induction in the gene expression of 
FTH was detected after iron treatment to hepatocytes both at 
mRNA and protein levels (Fig. 6, A and D).

Stimulation of hepatocytes with IL-6 showed an early (6h) 
increase in FTH both at mRNA and protein levels with a peak at 
12 h (3.7±0.26-fold). Similarly, a time-dependent increase in 
FTH was observed after IL-1β and TNF-α treatment, with a 
maximum at 24 h (Fig. 6B). 

Fig .4. Quantitative RT-PCR analysis of total RNA from rat hepatocytes.Fold change in mRNA expression of TfR2 gene expression after iron treatments (A), cytokine 
treatment (B), cytokines+iron treatment (C) at different time points related to nontreated controls for each time point. Quantitative RT-PCR was normalized by using 
housekeeping gene β-actin. Results represent mean value ±SEM.*P ≤ 0.0125, **P ≤ 0.001, ***P ≤ 0.0001analyzed by t-test (n = 4).
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Fig.5. Quantitative RT-PCR analysis of mRNA from rat hepatocytes. Fold change in mRNA expression of FTL gene expression after iron treatments (A), cytokine 
treatment (B), cytokines+iron treatment (C) at different time points related to nontreated controls for each time point. Quantitative RT-PCR was normalized by using 
housekeeping gene β-actin . Results represent mean value ±SEM. *P ≤ 0.05, **P ≤ 0.001 analyzed by t-test (n = 4). Western blot analysis of FTL (19 KDa) from total 
protein of rat hepatocytes. β-Actin (43 KDa) was used as a marker for equal loading (D)

Furthermore, combination of iron and AP cytokines in 
comparison to cytokines or iron treatment alone did not show a 
significant difference (Fig. 6C). 

throughtout the course of the study (Fig.7). Taken together, 
LCN-2 can be released from hepatocytes into the supernatant. 
Similar to FTL, this release can be induced by AP cytokines and 
further enhanced when iron is provided in the cell culture 
medium. 

Detection of LCN-2 and FTL in culture media of rat 
hepatocytes after treatment with iron and AP cytokines 

DISCUSSION Light-chain ferritin subunit is known to be a secretory protein 
with increased release by iron and cytokines into the culture 
media of hepatocytes (27). Iron is the main inducer of both 
ferritin subunits (28). To validate the LCN-2 changes in isolated 
rat hepatocytes, iron was added into the culture medium of 
hepatocytes. Western blot analysis of total supernatant from rat 
hepatocytes demonstrated an increase in LCN-2 protein 
expression after iron or AP cytokine treatment alone with a peak 
at 24 h, which was comparable to FTL, a positive secretory APP 
(27). In AP cytokine group, LCN-2 release was most 
pronounced with IL-6 followed by IL-1β and TNF-α ( Fig. 7) in 
accordance to hepatocyte lysate.  

In the present study, an increased iron uptake was detected in 
cultured hepatocytes by the treatment of iron. This iron uptake 
was dramatically enhanced when AP cytokines, mainly IL-6, 
were used together with iro n. In parallel to iron uptake, an 
increase in gene expression of iron transport (LCN-2 and TfR2) 
and storage proteins (FTL, FTH) was observed. In contrast to 
TfR2, the amount of TfR1 was decreased by the addition of IL-6 
or iron alone into the culture medium. This reduction was 
abrogated when IL-6 was used together with iron at the same 
time. Another striking finding of the current study was the 
detection of LCN-2 release from hepatocytes into the 
supernatant after iron administration, similar to what was 
observed for FTL. This increase in LCN-2 gene expres- sion 
caused by iron was further enhanced in the presence of AP 
cytokines, mainly by IL-6. 

Moreover, a dramatic synergistic increase in FTL and LCN- 2 
at protein level was detected after administration of AP cytokines 
together with  iron in the supernatant of  hepatocytes. The protein 
level of  both FTL and  LCN-2 remained  above t he control  level
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Fig .6. Quantitative RT-PCR analysis of total RNA from rat hepatocytes. Fold change in mRNA expression of FTH gene expression after iron treatments (A), 
cytokine treatment (B), cytokines+iron treatment (C) at different time points related to nontreated controls for each time point. Quantitative RT-PCR was 
normalized by using housekeeping gene β-actin. Results represent mean value ± SEM. *P ≤ 0.05, **P ≤ 0.001 analyzed by t test (n = 4). Western blotanalysis of FTH 
(21 KDa) from total protein of rat hepatocytes. β-Actin (43 KDa) was used as a marker for equal loading (D).

Indeed, Tf binding maintains iron in a soluble form and 
serves as a major vehicle of plasma iron delivery into cells via 
TfRs. TfR2 is positively (29) and TfR1 (30) is known to be 
negatively regulated by cellular iron status, which is in 
accordance with our study. 

Iron is transported into the cells by two different pathways: Tf-
dependent and Tf-independent pathway; the latter is acti- vated in 
iron overload conditions (31). In addition to Tf-bound iron, NTBI 
uptake mechanisms have also been described in a variety of cell 
lines (32), including hepatocytes (31). Recent studies have shown 
that LCN-2 is responsible for transport of iron through this 
pathway (33, 34). Based on previous and our current study, one 
can propose that iron uptake/transportation into hepatocytes could 
take place by both Tf-dependent and Tf-independent pathways, 
and the latter could be regulated by LCN-2. However, the role of 
LCN-2 pathway in iron uptake could be of minor importance 
compared with the Tf pathway. 

which upregulate gene expression of most of iron regulatory 
proteins in the liver (and isolated hepatocytes). This indicates a 
strong correlation of these major AP cytokines mainly IL-6 with 
hepatic expression of iron regulatory proteins. A similar effect 
can be true in case of LCN-2 in the current study, as our data 
showed that iron and IL-6 seemed to be the main factors 
responsible for the dramatically induced LCN-2 gene expression 
in hepatocytes as has been previously reported (37). Furthermore, 
a reduced LCN-2 expression was reported in the liver of IL-6 
knockout mice during APR (37). In addition, IL-6 is known to 
cause hypoferremia of inflammation by regulating hepcidin, but a 
recent study clearly demonstrated hepcidin-independent pathway 
for hypoferremia (38). In a mouse model of LPS-induced sepsis, 
LCN-2 has been described to play a key role in causing 
hypoferremia of inflammation (39). From our experimental data, 
we can speculate direct increased uptake of iron in hepatocytes 
stim- ulated by IL-6 can be another 
mechanism of hypoferremia of inflammation.An increase in iron level is associated with increased serum 

levels of AP cyto kines such as IL-6, IL-1β, and TNF-α (35). We 
and several previous AP studies reported that the liver responded 
dramatically to  elevated  levels of  IL-6  by  releasing APPs (36), 

Another important aspect of current study showed that LCN-2 
is a secretory hepatocellular protein. LCN-2 releases into the 
supernatants of isolated hepatocytes was detected not only by AP- 
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Fig .7. Western blot analysis of LCN-2 (25 KDa) and FTL (19 KDa) from total 
protein of rat hepatocytes supernatant. Ponceau S staining was used for equal 
loading.

ernatants of isolated hepatocytes was detected not only by AP 
cytokines (mainly IL-6) administration but also by iron, and this 
release was comparable to that of FTL (iron-storage and AP 
secretory protein). This finding indicates that AP cytokines and 
iron increase the release of LCN-2 probably in a similar way to 
FTL or another classic AP secretory protein (e.g., α-2M) as has 
been previously shown in same setting (27). 

21. Jego P, Chenoufi N, Loreal O, Morel I, Pasdeloup N, Abdallah MA,
Brissot P,Lescoat G: Inhibition of iron toxicity in human hepatocyte
cultures by pyoverdins Pa A and Pf, the peptidic siderophores of
Pseudomonas aeruginosa and fluorescens. Liver 17(2):70-75, 1997.

22. Liu Q, Wang H, Hu D, Ding C, Xu H, Tao D: Effects of trace elements on
the elomere lengths of hepatocytes L-02 and hepatoma cells
SMMC-7721. Biol Trace Elem Res 100(3):215-227, 2004.

In fact, hepatocytes are the main source of most of the serum 
proteins, and they have a pivotal role in iron metabolism (2, 40). 
This work emphasizes the importance of iron uptake in hepa- 
tocytes during AP reaction. Hepatocytes need more iron to re- 
spond to the massive increase in protein synthesis under such 
stress conditions. This information contradicts the usual as- 
sumption that iron is just sequestrated in the macrophages to 
reduce bacterial growth (41). In conclusion, the disappearance of 
iron from the circulation has a very important functional meaning 
also in conditions (acute damage) where AP reaction is not caused 
by bacterial infections. 

23. Riemer J, Hoepken HH, Czerwinska H, Robinson SR, Dringen R:
Colorimetric FerroZine-based assay for the quantitation of iron in
cultured cells. Anal Biochem 331(2):370-375, 2004.

The results of the current and our previous studies (36) show 
the change in expression of hepatic iron regulatory genes in- 
cluding LCN-2 is not only due to the increase in hepatic iron 
concentration but is also due to the effect of AP cytokines (mainly 
IL-6) produced in hepatocytes during AP conditions. 
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Abstract 

Iron is crucial for tissue functions, DNA synthesis and repair. Iron uptake is controlled by 

iron transport proteins like transferrin receptors (TfRs) and lipocalin 2 (LCN-2). We previously 

reported hepatic nuclear detection of iron storage protein subunit, FTH, along with increasing 

amount of nuclear iron in liver during acute phase response (APR). We now aimed to compare 

the expression and subcellular localization of iron transport proteins, (TfR1, TfR2 and LCN-2) in 

the same model of study. Rat, mice wild type (WT) and IL-6 knock-out (KO) mice were injected 

turpentine oil to generate APR. Total protein was used for Western blot analysis and 4µm thick 

sections were evaluated with immunohistochemistry. Immunohistochemistry of hepatic and extra 

hepatic tissues indicated organ dependent localization of TfR1 and TfR2. TfR1 was primarily 

localized in the membrane and cytoplasm of liver, and spleen cells whereas, in both organs, TfR2 

showed nuclear expression mostly. However, in heart, both TfR1 and TfR2 were detected to be 

surplus in membrane, cytoplasm and nucleus. In all the organs studied, TfR1, TfR2 and LCN-2 

were colocalized. Western-blot analysis showed an increased hepatic protein level of TfR1, TfR2 

and LCN-2 in rat and WT mice during APR whereas such an increase was not detected for TfR2 

and LCN-2 in IL6-KO mice. In parallel to induction of iron transporters, a phosphorylation of 

STAT3 was also observed in WT mice however such a change was not noticed in IL-6-KO mice. 

LCN-2 interaction with TfRs suggests its role in iron uptake during APR. Moreover, the 

differential localization of iron transport proteins in different organs may be due to their diverse 

role in these organs under physiological and pathological conditions. Furthermore, our results 

demonstrate that these iron import proteins (TfR2 and LCN-2) mediated mainly but not 

exclusively by IL-6 induced STAT3 pathway.  

Key words: Interleukin 6, lipocalin-2, STAT3, transferrin receptor 1, transferrin receptor 2, 



Introduction 

Iron is an important co-factor for oxygen transport, heme and nonheme iron proteins, 

electron transfer, neurotransmitter synthesis, myelin production energy, metabolism and 

mitochondrial function in the different organs (Wang et al, 2011). Iron homeostasis is controlled 

by a number of iron-regulatory proteins. After entering enterocytes, iron is used for essential 

metabolic purposes, stored in ferritin, or translocated to the portal blood by ferroportin-1 (Fpn-1). 

The plasma protein, transferrin (Tf) binds to diferric iron (Fe2Tf) and transfers it through portal 

blood to the liver where either the transferrin receptor-1 (TfR1)(Hentze et al, 2010) or Tf-

independent mechanism mediates hepatic uptake of iron (Prus and Fibach, 2011) Interaction of 

iron bound to Tf with the TfR-1 and internalization of the resultant complex leads to iron uptake 

in the cells as a result of receptor-mediated endocytosis (Frazer and Anderson, 2005). A second 

alternative transferrin-mediated route of iron uptake exists via TfR-2. Although the role of TfR-1 

in transporting iron across the hepatocyte membrane is well defined, the role of TfR-2 is not yet 

fully understood. TfR-2 knock-out mice fail to reproduce as a result of embryonic lethality due to 

severe anemia (Levy et al, 1999). Because TfR-2 mutations result in hepatic iron overload, TfR-

2 appears to function, not principally in cellular iron uptake and delivery, but rather in iron 

storage (Roetto et al, 2010). Several other genes involved in iron homeostasis have been 

characterized including hepcidin (Pigeon et al, 2001), hemojuvelin [Hjv (Lanzara et al, 2004)] 

and lipocalin-2 [LCN-2 (Srinivasan et al, 2012)]. 

LCN-2 (25kDa) also known as NGAL (neutrophil gelatinase associated lipocalin) 

belongs to lipocalin family which is known to be involved in regulation of immune responses, 

modulation of cell growth and metabolism, and prostaglandin synthesis (Flower, 1996;Yang et 

al, 2002). Apart from its function as bacteriostatic agent and capable of sequestering iron in the 

form of siderophores (Flo et al, 2004), its role in apoptosis, inflammation, angiogenesis, adiposis 



has been reported (Borkham-Kamphorst et al, 2011;Devireddy et al, 2001;Zhang et al, 2008). 

Under physiologic conditions LCN-2 is also known to be involved in iron transportation and iron 

homeostasis (Bao et al, 2010;Srinivasan et al, 2012). It has also been shown that LCN-2 has a 

role in stabilizing the labile iron/siderophore complex (Cherayil, 2011;Correnti and Strong, 

2012). LCN-2 is an upregulated host protein during the acute phase response, not only during 

infection but also in sterile inflammation and aseptic diseases (Sultan et al, 2012). In addition, by 

chelating bacterial siderophores, LCN-2 showed a consistent correlation in driving or dampening 

an inflammatory response, the known bioactivities of LCN-2 led one to hypothesize that it might 

play a role in hypoferremia of inflammation and, thereby, the resolution of severe inflammation. 

Furthermore, several in vitro studies have demonstrated that LCN-2 protects against cellular 

stress and over-expression of LCN-2 allows cells to tolerate super-physiological iron 

concentrations (Hu et al, 2009;Roudkenar et al, 2011). LCN-2 is known not only to chelate iron 

limiting iron available to pathogens but also regulates intracellular iron concentration thus loss of 

LCN-2 may disrupt iron transport/homeostasis (Nairz et al, 2007;Srinivasan et al, 2012). In 

LCN-2 knockout mice model of LPS-induced sepsis delayed hypoferremia of inflammation has 

been described (Srinivasan et al, 2012). 

A characteristic response to tissue damage is a change in iron metabolism, beginning with 

an acute decline in serum iron thought to be due to the sequestration of iron in organs of the 

reticuloendothelial system, the liver and spleen (Cairo et al, 2011). Macrophages sequester iron 

to prevent its availability to pathogens and its subsequent use for tissue repair and cell 

regeneration. This acute reduction of serum iron level is not only observed in cases of bacterial 

infections, but in all conditions associated with tissue damage (Cairo et al, 2011). 



Indeed, APR produced by turpentine-oil (TO) induced muscle damage, changes in gene 

expression of several iron regulatory proteins in hepatic and non-hepatic organs including the 

brain have already been described by our group in rat model of APR (Malik et al, 2011;Sheikh et 

al, 2006;Sheikh et al, 2007). Moreover, a significant increase in the hepatic cytoplamic and 

nuclear content of iron associated with a reduction of the serum concentration was also reported 

in same model (Naz et al, 2012). In parallel to heaptic iron increase, an elevatation in the proteins 

involved in serum iron-uptake and transport with a receprocal reduction in iron export proteins 

(Fpn-1, and hephastin) occurs (Naz et al, 2012). However, the mechanisms governing hepatic 

iron metabolism under acute phase conditions is poorly understood. In addition, previously we 

also localized several hepatic iron import and export proteins whereas the differential 

localization of these hepatic iron regulatory proteins in comparison to extra-hepatic organs has 

not been reported before. 

Therefore, the perspective of this study was to compare sub-cellular localization of iron 

transport proteins (TfR1, TfR2, LCN-2) in hepatic as well as extra-hepatic organs under 

physiological and acute-phase conditions. Further, it was also the aim of the current study to 

analyze the regulation and signaling pathway of these proteins during APR induced by TO-

injection. 

Materials and Method 

Animals 

Male Wistar rats of about 170-200 gram body weight were purchased from Harlan-

Winkelmann (Brochen, Germany). Adult male B6.129S2-Il6tm1Kopf (IL-6-KO) mice and control 

wild-type adult male C57BL/6J mice (25–28g body weight) were purchased from Jackson 

Laboratory. Animals were kept under standard conditions with 12h light/ dark cycles and had ad 



libitum access to fresh water and food pellets. All animals were cared according to the 

University’s guidelines, German regulations for the protection of animals, and NIH guidelines. 

Materials 

All chemicals used, were of analytical grade and purchased from commercial sources as 

followed: Hybond N nylon membranes were from Amersham Pharmacia Biotech (Germany), 

4,6-diamidino-2-phenylindole (DAPI) from Southern Biotech (Germany), donkey serum from 

Abcam (Germany), Alexa fluor-488 and Alexa fluor-555 from Invitrogen (Germany). All other 

reagents and chemicals were from Sigma-Aldrich (Germany) or Merck (Germany). 

Induction of acute phase and removal of hepatic and extra-hepatic organs  

APR was induced by injecting turpentine oil (TO) at a dose of 5 ml/kg body weight of rat 

and 10 ml/kg body weight of mice. TO was injected into each of the right and left hind limb 

gluteal muscles of ether-anesthetized animals. Control animals for each time point received a 

saline injection. All animals were killed at different time points ranging from 1 to 36 hours (rats), 

2 to 24 hours (mice) after TO administration under pentobarbital anesthesia (Tron et al, 2005). 

The liver, spleen and heart were taken, frozen in liquid nitrogen, and stored at −80°C. 

Preparation of tissue lysate 

About 50mg frozen tissue was homogenized with an Ultra-turrax TP 18/10, three times 

for 10s each, in 10 vol 50mM TRIS-HCl buffer, pH 7.4, containing 150mM sodium chloride, 

1mM EDTA, 1% Triton X-100, 1mM phenylmethane sulfonyl-fluoride (PMSF), 1mM 

benzamidine, 1mg/ml leupeptin, 10mM chymostatin, 1mg/ml antipain, and 1mg/ml pepstatin A. 

The entire procedure was carried out at 4°C. Crude homogenates were passed five times through 

a 22-G needle attached to a syringe and centrifuged for 5 min at 10,000g, at 4°C. The protein 

concentration was determined in supernatants by using the BCA (bicinchoninic acid) protein 



assay reagent kit (Pierce, Bonn, Germany). Aliquots of the homogenates were stored at −20°C 

until further use for Western blot analysis.  

Immunohistochemistry 

Liver sections were cut in a cryostat at a thickness of 4μm, air-dried, fixed with acetone 

(−20°C, 10 min) and used for immunohistochemical studies. The antibodies and respective 

dilutions used are listed in table. Blocking of non-specific proteins was performed using donkey 

serum for 1 hour at room temperature in a humidified chamber. After 3 times 5 min washing 

with phosphate buffer saline (PBS) slides were incubated with primary antibodies diluted in 

0.3% Triton-X PBS overnight at 4°C. On the next day slides were rinsed 3 times in PBS for 10 

min each. To visualize antigens, slides were incubated in immunoflourescence conjugated 

secondary antibodies (donkey anti-rabbit/donkey anti-goat/donkey anti-mouse Alexa fluor-488 

and donkey anti-rabbit/donkey anti-mouse Alexa Fluor-555) at room temperature for 1 h, and 

washed 5 times for 5 min in PBS. Finally, the nuclei were stained with 4,6-diamidino-2-

phenylindole (DAPI) 5µl/100ml of PBS for 5 min, sections were washed and mounted with 

Fluoromount-G. 

Western blot analysis  

Samples of 50μg tissue proteins were applied per well and subjected to polyacrylamide gel 

electrophoresis using NuPAGE (4%-12% Bis-Tris Gel; Invitrogen) under reducing conditions 

(Laemmli, 1970). After electrophoresis, the proteins were transferred to Hybond-ECL (enhanced 

chemiluminescence) nitrocellulose membranes (Towbin et al, 1979). Immunodetection was 

performed according to the ECL Western blotting protocol. The antibodies used are listed in 

table. 



Results 

Hepatic expression and localization of transferrin receptors (TfR1, TfR2) 

Immunohistochemical analysis of normal rat liver showed membranous and cytoplasmic 

expression of TfR1 in hepatic cells which increased (6h) after TO-induced APR. The intensity of 

expression was found to be increased in hepatocytes. In contrast, TfR2 was mainly localized in 

the nuclei of hepatic cells and dispersed cytoplasmic dots were also observed in normal rat liver. 

An increase intensity of nuclear dots (TfR2) was noticed after TO-administration as compared to 

normal rat liver (Fig: 1A).  

Localization of transferrin receptors (TfR1, TfR2) in extra-hepatic organs 

Immunodetection of TfR1 in heart tissues showed exclusively membranous and 

cytoplasmic expression in heart of both normal and of TO-administrated rat. However, in 

contrast to liver tissue some nuclei of heart cells showed TfR1 positivity. Similar pattern of 

immuno-expression was observed for TfR2. Both transferrin receptors showed a different 

expression pattern in heart tissue of normal and of TO-administrated rat compared to liver tissue. 

The intensity of expression of both transferrin receptors (TfR1, TfR2) increased and a strong 

immuno-reactivity was also present in cardiac muscle fibers after TO-administration (6h). TfR1 

and TfR2 interaction was also noticed in the nuclei and membranes of heart cells (fig. 1B). 

In spleen of normal and of TO-administrated rat immunohistochemical analysis of 

transferrin receptors showed TfR1 localized to membranes of spleen cells and TfR2 in the nuclei 

mostly but membranous expression was also observed for TfR2. In spleen cells of both red and 

white pulp area partial colocalization of TfR1 and TfR2 was also observed (fig. 1C). 



Lipocalin-2 (LCN-2) interaction with transferrin receptors in hepatic tissue 

In the previous few years LCN-2 emerged as a  iron transport protein, playing a vital role 

in iron regulation under different pathological conditions. We and others showed that LCN-2 

played a pivotal role in iron transport through transferrin receptor mediated and non-transferrin 

bound iron (NTBI) pathway. Therefore, we performed double immunostaining of LCN-2 along 

with TfR1 and TfR2 in control and TO-administrated rat liver. LCN-2 showed no interaction 

with TfR1 under physiological conditions in hepatic tissue (fig. 2A). However, in control rat 

hepatic tissues, a slight interaction between LCN-2 and TfR2 was detected (fig. 2B). After TO-

administration LCN-2 expression increased and a co-expression of LCN-2 protein with TfR1 in 

membranes and cytoplasm of hepatic cells was observed (fig. 15A). Parallel to the interaction of 

LCN-2 and TfR1 proteins, TfR2 was also colocalized with LCN-2 within the cytoplasm and few 

nuclei of hepatic cells during APR (Fig: 2C).  

Lipocalin-2 (LCN-2) interaction with transferrin receptors in extra-hepatic tissues 

Immunohistochemical analyses of extra-hepatic tissues showed no interaction of LCN-2 

protein with TfR1 and TfR2, in hearts from control rat (fig. 3A, 3B). However after the onset of 

acute phase LCN-2 was expressed in heart tissue interacting with TfR1 protein in 

cardiomyocytes and a strong expression of LCN-2 and TfR2 was present in edothelial cells of 

the myocardial vessel, with partial interaction. In spleen both from control and acute-phase 

response rats LCN-2 colocalization with TfR1 and TfR2 was detected. The expression of LCN-2 

interaction with both transferrin receptors was stronger in red pulp cells of the spleen (fig. 4A, 

4B). 



Changes in iron transport proteins in rat hepatic tissue during APR 

Liver of TO-injected rats demonstrated an increase in both, transferrin receptors (TfR1, 

TfR2) and LCN-2 with the onset of APR at protein level by Western blot analysis. TfR1 protein 

was found elevated from 1-24h after TO-injection (Fig. 18). A gradual but less increase in TfR2 

protein was observed with a maximum expression at 6h after APR (Fig. 5). Likewise, LCN-2 

protein revealed a progressive increase in the liver which became clearly evident at 12h by 

immunoblotting with a further increase till 36h after TO-injection (Fig. 5). 

Modulation of iron transport proteins in mice hepatic tissue during APR 

To validate the role of IL-6 in iron regulatory proteins expression, we generated acute 

phase model in wild type (WT) and IL-6 Knockout (KO) mice. Similar to what was observed in 

rat liver after TO-injection, Western blot analysis of WT-mice showed an increase in hepatic 

TfR1, TfR2 and LCN-2 protein level after TO-injection. However such an increase for TfR2 and 

LCN-2 was not found in IL-6-KO-mice after TO-injection. In contrast, TfR1 showed a time 

dependent increase at protein level in IL-6 KO mice similar to WT-mice with the onset of APR 

with a maximum expression at 24h (Fig. 6). 

Phosphorylation of STAT3 in mice hepatic tissue during ARP 

IL-6 is potent pro-inflammatory cytokine and it activates transcription protein signal 

transducer and activator of transcription 3 (STAT3). Phosphorylation of STAT3 in turn activates 

many target downstream genes. By means of Western blot using specific antibody against STAT, 

it was possible to detect the STAT-3 at protein level both in WT and IL-6-Ko-mice. 

Phosphorylation of STAT3 was only detectable in WT-mice after TO-injection. The protein 

expression of p-STAT3 started to increase at 2h with a maximum at 4h with the onset of APR. In 



contrast, such an increase was not observed in IL-6-KO mice after TO-injection apart from a 

slight increase at 12h (fig. 6). 

Discussion 

In this current study we compared sub-cellular interaction between iron transport proteins 

(TfR1, TfR2 and LCN-2) and their expression pattern under physiological and acute phase 

conditions. Immunhistochemical analysis showed no interaction between transferrin receptors 

(TfR1, TfR2) in hepatic tissue suggesting their own independent iron transfer route in hepatic 

cells. However, interestingly TfR1 and TfR2 co-expression was detected in extra-hepatic tissues 

(heart, spleen) suggesting co-transportation of both receptors into the cell through a common 

route. In nuclei of some cardiomyocytes TfR1 and TfR2 positivity was observed and to some 

extent co-expression of TfRs can also be seen in these nuclei. In a study colocalization of TfR1 

and TfR2 has been reported in HepG2 and Hep3B cell lines (Johnson et al, 2007).  

Furthermore, LCN-2 colocalization with TfR1 and TfR2 was detected in liver during 

physiological and AP-conditions, however after ARP co-expression of LCN-2 and TfRs 

increased which suggests that, LCN-2 transports iron during acute phase conditions. In extra-

hepatic tissues (heart, spleen), LCN-2 interaction with transferrin receptors (TfR1, TfR2) was 

also observed in spleen of control and of TO-rat, however, in heart LCN-2 expression was 

detected only after AP reaction, appearance of LCN-2 protein in heart only after the generation 

of AP reaction can be due to stress conditions. We previously reported LCN-2 expression in 

heart at mRNA level in the same settings and a different study reported LCN-2 production by 

isolated neonatal cardiomyocytes (Yndestad et al, 2009). To the best of our knowledge the 

current study is first of a kind to exclusively report colocalization of TfRs in extra-hepatic 

tissues. Our this study also suggests that differential localization of transferrin receptors (TfR1, 



TfR2) in hepatic and extra-hepatic tissues is due to diverse role of these proteins in different 

tissues under physiological and pathological conditions (AP-conditions). 

Although nuclear expression of iron proteins in different organs has already been 

reported, we and others showed TfR1 nuclear expression in rat brain (Malik et al, 2011), LCN-2 

nuclear expression in mice brain (Ip et al, 2011), FTL (Ahmad et al, 2013a), Fpn1 and DMT-1 

nuclear expression in rat liver (Naz et al, 2012), PC12 cells (Roth et al, 2000) and in mice 

glioblastoma cell lines respectively (Calzolari et al, 2010). However, colocalization and 

differential localization of iron importer proteins (TfRs, LCN-2) in hepatic and extra-hepatic 

tissues (heart and spleen) has never been reported before. 

These findings support not only the presence of iron transport proteins within the nuclei 

to transport more iron in the hepatic cell nuclei under stress conditions but suggests that 

increased level of nuclear iron may be necessary for the increased activity of nuclear enzymes 

involved in DNA synthesis, repair and the regulation of transcription (Roth et al, 2000). 

Western blot analysis and immunohistochemical findings support an intense increase of 

iron importer proteins (TfRs and LCN2) within liver under AP conditions studied. Under iron 

overload conditions, level of these proteins increase resulting in cellular iron retention (Canonne-

Hergaux et al, 2006). However, the early upregulation of these transporter proteins could be 

controlled by the acute-phase cytokines (mainly IL-6) which is released at the site of injury 

resulting in an APR (Sheikh et al, 2007). Moreover, the upregulation of IL-6 gene expression 

during an APR (Malik et al, 2011;Sheikh et al, 2007) can account for the intense induction of 

these importer proteins expression, indicating a direct effect of the acute phase cytokine, IL-6, in 

regulating iron importer proteins. 



To answer this question, same APR model was established in wild type (WT) and IL-6-

KO mice after TO-injection. Similar to what was observed in rat APR model, a pattern of 

increase in TfR1, TfR2 and LCN-2 protein level was observed in the liver of WT-mice with the 

onset of APR, such a increase was not observed for TfR2 and LCN-2 in the liver tissue of IL-6 

KO mice. Moreover, IL-6 stimulation leads to the activation and phosphorylation of STAT3 

pathway. A striking finding of the current study is to detect STAT3 phosphorylation in WT-mice 

liver after TO-injection which was not observed in IL-6-KO mice liver, indicating a regulative 

function of this important acute-phase cytokine on TfR2 and LCN-2 during APR. 

In contrast, an increase in TfR1 protein level, similar in both WT and IL-6 KO mice 

during APR suggest the effects of the other acute phase cytokines such as IL-1β and, to a lesser 

extent TNF-α, which are produced also at the site of tissue injury to control this protein 

(Ramadori et al, 2010). In fact, the upregulation of IL-1β and TNF-α gene expression is more 

intense in the injured muscle of IL-6 KO mice than in their wild type (Ramadori et al, 2010) 

indicating that in the absence of IL-6 other cytokines may replace its functional role. 

By summarizing our previous and current study, the upregulation of DMT-1, Tf, TfR1, 

TfR2 and LCN-2 at the mRNA and protein levels supports an increased iron uptake by liver cells 

during the APR. Although TfR1 is thought to be inversely regulated by the cellular iron stores 

via posttranscriptional IRE-iron regulatory protein mechanism, (Levy et al, 1999) the 

upregulation of TfR1 in the present study consisting of the effect of an APR might be attributable 

to either an activation of IRP-1(Caltagirone et al, 2001) or hypoxia-inducible factor-1α (HIF-1α), 

both of which bind to a conserved binding site within the TfR1 promoter (Tacchini et al, 2002). It 

should be noted that an induction of hepatic HIF-1α has been reported in the APR model utilized 

in the present experiments (Ramadori et al, 2010). The upregulation of iron transport molecules 



(TfR2 and LCN-2) may be due to an action of the major acute phase cytokine (IL-6) through 

STAT3 pathway suggested by our current study or the increased iron concentration may induce 

an upregulation of gene expression of iron regulaotry proteins as has also been shown previously 

in our in vitro study (Ahmad et al, 2013b). 

In conclusion, we propose that under normal conditions, portal blood iron is taken up by 

liver cells mostly through a TfRs and by LCN-2 mediated iron uptake pathway. Furthermore, 

during APR, IL-6 induced changes in iron transporter genes (TfR2 and LCN-2) could be 

regulated through STAT3 pathway.  
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Legends 

Figure 1: Double Immunofluorescence detection of TfR1 and TfR2 positivity in liver, heart and 

spleen sections (4µm cryostat) of control rats and TO-administrated rats. Sections were stained 

with TfR1 and TfR2 in liver (A), heart: white arrows showing cytoplasmic and blue arrows 

indicating nuclear co-localization (B), spleen: white arrows showing cytoplasmic co-localization 

and blue arrows indicating TfR2 nuclear expression (C) followed by fluorescence 

immunodetection using Alexa fluor-488 and Alexa fluor-555 (original magnification 200X, Bar 

20µm). Nuclear counterstaining was done with DAPI. 

Figure 2: Double Immunofluorescence detection of TfR1, TfR2 and LCN2 positivity in liver 

section (4µm cryostat) of control rats and TO-administrated rats. Sections were stained with 

antibodies against neutrophil gelatinase associated LCN2 and TfR1, blue arrows indicating LCN-

2+TfR1 cytoplasmic interation (A), LCN2 and TfR2, blue arrows indicating cytoplasmic and 

white arrows showing nuclear co-expression of LCN-2+TfR2 (B) followed by fluorescence 

immunodetection using Alexa fluor-488 and Alexa fluor-555 (original magnification 200X, Bar 

20µm). Nuclear counterstaining was done with DAPI 

Figure 3: Double Immunofluorescence detection of TfR1, TfR2 and LCN2 positivity in heart 

section (4µm cryostat) of control rats and TO-administrated rats. Sections were stained with 

antibodies against neutrophil gelatinase associated LCN2 and TfR1: yellow arrows indicating 

TfR1 nuclear positivity, white arrows showing nuclear colocalization of LCN-2 and TfR1 (A), 

LCN2 and TfR2 (B) followed by fluorescence immunodetection using Alexa fluor-488 and 

Alexa fluor-555 (original magnification 200X, Bar 20µm). Nuclear counterstaining was done 

with DAPI. 

Figure 4: Double Immunofluorescence detection of TfR1, TfR2 and LCN2 positivity in spleen 

section (4µm cryostat) of control rats and TO-administrated rats. Sections were stained with 

antibodies against neutrophil gelatinase associated LCN2 and TfR1 (A), LCN2 and TfR2 (B) 

followed by fluorescence immunodetection using Alexa fluor-488 and Alexa fluor-555 (original 

magnification 200X, Bar 20µm). Nuclear counterstaining was done with DAPI. RP (Red Pulp), 

WP (White pulp) 



Figure 5: Western blot analysis of TfR1(˜95kDa), TfR2 (˜88kDa) and LCN-2 (˜25kDa) from 

total protein of rat liver. β-actin (43kDa) was used as a marker for equal loading.  

Figure 6: Western blot analysis of TfR1 (~95kDa), TfR2 (~88kDa), LCN-2 (~25kDa), p-STAT3 

(~80kDa), and STAT3 (~80kDa), from total protein of WT and IL-6 KO mice. Beta-actin 

(43kDa) was used as a marker for equal loading. 
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Table: Antibodies used in this study 

Antibodies Company 
Reference 
Number 

WB IHC 

Lipocalin-2 (LCN-2) 

Polyclonal Goat IgG 
R & D AF3508 1:300 1:100 

Lipocalin2 (LCN2) 

Monoclonal Mouse IgG 
Novus biological NBPI-05182 1:100 1:100 

Transferrin Receptor1 (TfR1) 

Monoclonal Mouse IgG 
Invitrogen 13-6890 1:1000 1:200 

Transferrin Receptor2 (TfR2) 

Polyclonal Rabbit IgG 
Abcam ab80194 1:1000 1:200 

STAT3 

Polyclonal Rabbit IgG 
Cell Signaling 9132 1:1000 

Phospho-STAT3 

Polyclonal Rabbit IgG 
Cell Signaling 9131 1:1000 

Beta-actin (β-actin) 

Monoclonal Mouse IgG 
Sigma A-2228 1:5000 _ 
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Abstract: Ferritin L (FTL) and Ferritin H (FTH) subunits are responsible for intercellular iron storage. We previously 
reported increasing amounts of liver cytoplasmic and nuclear iron content during acute phase response (APR). 
Aim of the present study is to demonstrate intracellular localization of ferritin subunits in liver compared with extra 
hepatic organs of rat under physiological and acute phase conditions. Rats were administered turpentine-oil (TO) 
intramuscularly to induce a sterile abscess (acute-phase-model) and sacrificed at different time points. Immunohis-
tochemistry was performed utilizing horse-reddish-peroxidise conjugated secondary antibody on 4µm thick section. 
Liver cytoplasmic and nuclear protein were used for Western blot analysis. By means of immunohistology, FTL was 
detected in cytoplasm while a strong nuclear positivity for FTH was evident in the liver. Similarly, in heart, spleen and 
brain FTL was detected mainly in the cytoplasm while FTH demonstrated intense nuclear and a weak cytoplasmic 
expression. Western blot analysis of cytoplasmic and nuclear fractions from liver, heart, spleen and brain further 
confirmed mainly cytoplasmic expression of FTL in contrast to the nuclear and cytoplasmic expression of FTH. The 
data presented demonstrate the differential localization of FTL and FTH within hepatic and extra hepatic organs 
being FTL predominantly in the cytoplasm while FTH predominantly in nucleus. 

Keywords: Ferritin, nuclear localization, liver, acute phase, iron regulation 

Introduction

Liver is key organ for iron homeostasis and 
storage under physiological as well as acute 
phase conditions. Within the cell, iron is stored 
mainly as ferritin [1]. Ferritin is composed of L 
and H subunits that are highly conserved [2] 
nevertheless, genetically separate [3, 4] and 
maintain distinct functions [5]. The storage of 
iron is considered to take place in the cyto-
plasm, however iron is required for the nuclear 
functions as well. L and H subunits spontane-
ously assemble in a 24-subunit protein “cage” 
with a flexible H: L ratio. The H: L ratio can vary 
between different cell types [2, 5]. The L gene 
has very little tissue-specific regulations where-
as multiple conditions activate H ferritin gene 
transcription [6, 7] including cell differentia-
tion, changes in the cell proliferation status, 
oncogenes, cytokines, and heme. Infact, a pre-

vious study has showed an association between 
ferritin expression and cell proliferation [8]. 

Acute-phase response (APR) is a major physio-
logical defence reaction of the body aimed to 
eliminate the injuring noxae and to re-establish 
homeostasis. Clinically, it is characterized by 
fever, somnolence, weakness, muscular joint 
pain, adinamia and increased liver activity. 
Moreover, decrease of serum iron level is also a 
hallmark of acute-phase reaction [9, 10]. This 
decrease is considered to be due to the seques-
tration of iron by the reticuloendothelial system 
[11]. 

In previous work, we demonstrated that under 
acute phase conditions the liver takes up serum 
iron [12, 13] and increased hepatic iron level is 
demonstrable in the nuclear fraction of the liver 
tissue as well [13]. The increased nuclear iron 
content was further supported by the nuclear 
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detection of iron import proteins including TfR2 
and DMT-1 along with nuclear Fpn-1; the iron 
export protein under physiological and acute 
phase conditions [13]. The aim of our prospec-
tive study was to determine the intracellular 
localization of major iron storage proteins; FTH 
and FTL in hepatic as well as extra hepatic 
organs. 

Methods

Materials

Animals: Rats (170–200 g body weight), were 
purchased from HarlanWinkelmann (Brochen, 
Germany). The animals were kept under stan-
dard conditions with 12:12-h light dark cycles, 
and were given ad libitum access to water and 
food. All animals were cared for in accordance 
with the guidelines of our institution, the 
German Convention for the Protection of 
Animals, and the National Institutes of Health 
(USA). 

Induction of acute phase and harvesting the 
liver, heart, spleen and brain 

APR was induced and organs were removed as 
described previously [14]. Briefly, tissue dam-
age was induced by injecting 5 ml/kg-TO in both 
right and left hind limbs of animals. Control ani-
mals were treated in the same way for each 

time point with saline injection. Liver, heart, 
spleen and brain tissue was harvested, cut into 
pieces and snapped frozen for further used. 

Immunohistochemistry and immunocytology

Four to five micrometer thick cryostat sections 
(Reichert Jung, Wetzlar, Germany) from rat liver, 
heart, spleen and brain were used for immuno-
detection of FTL and FTH. The slides were air-
dried, fixed with ice cold methanol (-20°C, 10 
min) and ice cold acetone (-20°C, 10 sec) and 
stored at -20°C. After inhibition of endogenous 
peroxidase by incubating the slides with phos-
phate-buffered saline (PBS) containing glu-
cose/glucose oxidase/sodium azide, the sec-
tions were treated with FCS for 30 min to 
minimize nonspecific staining. Peroxidase 
immunostaining was performed utilizing two 
different commercially available antibodies for 
FTL (abcam; UK and Santa Cruz; USA) and FTH 
(LS Bio and Santa Cruz from USA). The primary 
antibodies were diluted FTH (1:10), FTL (1:50). 
Negative controls were incubated with isotype-
specific IgGs, instead of the specific primary 
antibody. After washing, the slides were cov-
ered with peroxidase-conjugated anti-rabbit/
anti-mouse immunoglobulins pre-absorbed 
with normal rat serum to avoid cross-reactivity. 
Slides were washed and incubated with PBS 
containing 3,3-diaminobenzidine (0.5 mg/ml) 

Figure 1. Immunodetection of FTL (upper panel) and FTH (lower panel) on cryostat sections of rat liver from control 
and TO-injected animals utilizing horse reddish peroxidase conjugated secondary antibody. Negative control repre-
sents immunostaining when primary antibody was omitted. Insets show the enlarged magnification of selected box. 
Original magnification 200x bar 50µm.
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and H2O2 (0.01%) for 10 min to visualize immune 
complexes. Nuclei were counterstained with 
Meyer’s hemalaun solution before the slides 
were mounted with cover slips.

Cellular fractionation for protein isolation 

Liver, heart, spleen and brain cytoplasmic and 
nuclear proteins were isolated using NucBuster 
Protein Extraction kit (Novagen USA) as 
described by manufacturer, with some modifi-
cations. Briefly, 100 mg of tissue sample was 
homogenized in 300 µl of NucBuster reagent 1 
followed by collection of supernatant as cyto-
plasmic fraction. Pellet was washed thrice with 
sterile ice-cold PBS and dissolved in 50 µl of 
NucBuster reagent 2.1µl of 100mMDTT and 
Protease Inhibitor Cocktail Set I was added to 
each sample to inhibit proteases activity. 
Samples were stored at -20°C for further use. 

Western blot analysis

30 μg of protein from tissue fraction was 
applied per well and were subjected to electro-
phoresis using NuPAGEÒ (4-12% Bis-Tris Gel; 
Invitrogen) under reducing conditions [15]. 
After electrophoresis the proteins were trans-
ferred to Hybond-ECL nitrocellulose mem-
branes [16]. Immunodetection was performed 
according to the ECL Western blotting protocol. 
The anti-Ferritin L (abcam and Santa cruz) and 
anti-Ferritin H (LSBio, Santa cruz) were used in 
the study. 

Results

Hepatic expression and localization of FTL and 
FTH 

Immunohistochemical analysis of normal liver 
showed FTL granular positivity mainly in the 

Figure 2. Immunodetection of FTL (upper panel) and FTH (lower panel) on cryostat sections of rat heart from con-
trol and TO-injected animals utilizing horse reddish peroxidase conjugated secondary antibody. Insets show the 
enlarged magnification of selected box. Original magnification 100x bar 25µm.
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Localization of FTL and FTH in extra-hepatic 
organs 

In control heart tissue, the immunodetection of 
FTL indicated a very weak expression as com-
pared to liver tissue. However, it was localized 
exclusively within the cytoplasm. The protein 
expression of FTL showed more intense granu-
lar expression in TO-injected animals at 24h 
Figure 2; upper panel). In contrast to FTL 
expression within the heart tissue, FTH immu-
nodetection was more intense and was spread 
all over the tissue structure including the cyto-
plasm and the nuclei of tissue (Figure 2; lower 
panel). 

In control spleen tissue, FTL was detected with-
in the cytoplasm of red pulp and white pulp cell 
population. This expression was more copious 
in spleen tissue of TO-injected rats (Figure 3; 
upper panel). However, within the spleen tis-
sue, FTH protein showed a dual localization. We 

cytoplasm of hepatic cells, which kept on 
increasing in TO treated rats. Intensity of FTL 
immunoexpression was found to be stronger 
after TO-injection with an intense expression in 
hepatocytes (distinguished on visual morphol-
ogy; Figure 1 enlarged insets). The number of 
cells positive for FTL cytoplasmic expression 
was highest at 24h after TO-injection. The reac-
tion was negative when the primary antibody 
was omitted (negative control; Figure 1; upper 
right panel). 

In contrast to FTL immunolocalization, peroxi-
dase staining of FTH showed intense granular 
positivity in the nucleus of hepatic cells of con-
trol and TO-injected rats. Compared to negative 
controls (primary antibody omission) where 
nuclei were stained clear blue, liver tissue from 
control and TO-injected rats showed FTH 
blotching (brown dots) mainly in the large nuclei 
of hepatocytes (Figure 1; lower panel).

Figure 3. Immunodetection of FTL (upper panel) and FTH (lower panel) on cryostat sections of Rat spleen from 
control and TO-injected animals utilizing horse reddish peroxidase conjugated secondary antibody. Insets show the 
enlarged magnification of selected box. Original magnification 100x bar 25µm.
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and weakly in the cytoplasm 
(Figure 4; lower panel). 

Western blot analysis of hepatic 
and extra hepatic protein fractions 
for FTL and FTH

The immunohistochemical data 
was further confirmed by means of 
Western blot analysis of cytoplas-
mic and nuclear fractions proteins 

could detect a strong nuclear and comparative-
ly weak cytoplasmic expression of FTH within 
spleen tissue of control and TO-injected rats 
(Figure 3; lower panel). 

However, within the brain tissue of both control 
and TO-injected rats, FTL was plentiful in the 
cytoplasm and a slight nuclear expression was 
also detected (Figure 4; upper panel). However, 
in both control and TO-injected animals, FTH 
was localized strongly within the brain nuclei 

Figure 4. Immunodetection of FTL (upper panel) and FTH (lower panel) on cryostat sections of Rat brain from con-
trol and TO-injected animals utilizing horse reddish peroxidase conjugated secondary antibody. Insets show the 
enlarged magnification of selected box. Original magnification 100x bar 25µm.

Figure 5. Western blot analysis of FTL and FTH in protein extracted from 
nuclear and cytoplasmic fractions of different organs of control animals.

from hepatic and extra hepatic organs of con-
trol animals. Western blot analysis demonstrat-
ed mainly cytoplasmic expression of FTL in 
liver, heart, spleen and brain. FTL was found to 
be more abundant in liver followed by spleen 
and then heart and brain. While, only a very 
slight FTL nuclear expression was found in 
spleen. FTH was detected mainly in the nuclear 
fraction of liver, heart, spleen and brain. 
However, it was also detectable in the liver and 
heart cytoplasmic fraction (Figure 5). 
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ous study also showed that gene expression of 
FTL, FTH and of other iron regulatory genes is 
modulated also by acute phase cytokines [13, 
24]. In other words, the increase in hepatic FTL 
and FTH expression is not only due to the 
increase in hepatic iron concentration but it is 
also due to the direct effect of acute-phase 
cytokines produced during TO-induced APR.

A previous study [25] reported that FTH is the 
main iron storage protein in the liver. Depletion 
of FTH in hepatocytes makes these cells more 
susceptible to the toxic effect of iron [25]. 
Moreover, it has been shown that in non-hepat-
ic cell lines (K562 cells) the over-expression of 
FTH resulted in reduced free iron pool [26]. This 
may indicate that not only ferritin L but also fer-
ritin H subunit could be required to reduce free 
available iron level in the “stressed” hepato-
cytes during APR. 

FTL shares “the iron storage” function in liver 
tissue and extra hepatic organs (heart, spleen 
and brain), however the secretory function of 
liver makes it unique to extra hepatic organs. 
We reported FTL as a secretory protein (manu-
script submitted) so liver should have more FTL 
as compared to extra hepatic organs. 

An earlier study reported evidence of stainable 
iron within the nuclei of hepatocytes and 
Kupffer cells in mouse liver under conditions of 
iron overload [27]. Our current finding supports 
not only the presence of iron storage protein 
within the nuclei of liver cells under non-physio-
logical conditions but suggests that nuclear 
iron is important in the initiation of defense 
mechanism. 

In summary, FTH is localized not only in the 
cytoplasm but also in the nucleus of liver, heart, 
spleen and brain cells. This suggests that iron 
is not only stored in the nucleus but also that 
nuclei need to be defended from possible dan-
gerous effects of iron overload on DNA as has 
been hypothesized previously [25]. This might 
become more important when the metabolic 
challenges increase during APR. 
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Discussion 

To our best knowledge, this is the first attempt 
to determine the predominantly nuclear local-
ization of FTH in contrast to cytoplasmic expres-
sion of FTL under physiological and acute 
phase conditions. Immunodetection protocols 
and Western blot analysis showed a strong 
cytoplasmic and very weak nuclear expression 
of FTL as compared to the strong nuclear and 
weak cytoplasmic localization of FTH in hepatic 
and extra hepatic organs of rat including heart, 
spleen and brain. Moreover, protein expression 
was found to be elevated for both FTL and FTH 
by Immunohistology with the onset of APR.

Ferritin has been investigated as a cytosolic 
iron storage protein [17]. Its localization within 
the cell however, is controversially debated. So 
far, nuclear localization of FTH is reported in-
vitro in human astrocytoma cell line [18], in cor-
neal epithelial cells [19] and in-vitro in mice 
hepatocytes under iron overload conditions 
[20]. Indeed, we showed constitutive nuclear 
FTH detection not only in the hepatic but also in 
extra-hepatic organs of rat under physiological 
and acute phase conditions. As increasing 
amounts of iron seem to be temporarily needed 
in the nucleus during the APR, therefore, it is 
not surprising to detect iron storage proteins 
not only in cytoplasm, but also in the nucleus of 
the cells.

Nuclear FTH of our current study suggests iron 
sequestration not only in cytoplasm but also in 
nucleus of liver cells indicating an important 
role of iron for nuclear metabolism. It could also 
suggest that iron may be necessary for the 
activity of nuclear enzymes for DNA synthesis 
and repair and/or to regulate the initiation of 
transcript [21]. Another possibility could be that 
under acute-phase conditions, extra iron may 
be needed to satisfy the increased metabolic 
work of the liver [10].

We previously reported elevated liver iron 
stores in the same model [13]. Likewise, our 
previous and current study showed an 
increased mRNA and protein expression of FTL 
and FTH in the liver, in parallel to the increased 
hepatic uptake of iron during APR [13]. Most of 
the initial observations reported that the 
amount of intracellular ferritin could be modi-
fied by changes in iron status [17] and accumu-
lation of H-chain [22, 23]. However, our previ-
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7 DISCUSSION 

This study reports the iron uptake in hepatocytes and changes in gene expression of iron 

transport (TfR1, TfR2 and LCN-2) and iron storage proteins (FTH, FTL) under the influence of 

acute phase cytokines. Moreover, it identifies induction of TfR2 and LCN-2 by IL-6 through 

STAT3 pathway. Furthermore, sub-cellular localization of these proteins in liver in comparison to 

spleen and heart in acute phase response rat model is described.   

7.1 Iron uptake and regulation of iron transport and iron storage proteins in primary 

culture of rat hepatocytes: Role of IL-6 

A significant iron uptake was detected in hepatocytes after administration of iron in culture 

medium. This iron uptake further enhanced when AP-cytokines (mainly IL-6) and iron were ad-

ministrated concomitantly. There was a parallel increase in iron uptake and gene expression of 

different iron regulatory proteins i.e. iron import proteins (TfR1, TfR2 LCN-2) and iron storage 

proteins (FTL, FTH). This up-regulation was further induced when AP-cytokines, mainly IL-6, 

were administrated together with iron. In contrast to TfR2, the amount of TfR1 was decreased by 

the addition of IL-6 or iron alone into the culture medium. However, surprisingly this reduction 

was abrogated when IL-6 was used concomitantly with iron.  

 Indeed, binding of transferrin to iron keeps iron in a soluble form and acts as major trans-

porter of plasma iron into cells via TfRs. Diferric Tf has a high affinity for the TfRs and this Tf 

uptake by cells has important implications during physiological conditions (Conner and Schmid, 

2003;Frazer and Anderson, 2005;Herbison et al, 2009). Although, it is supposed that TfR1 is in-

versely regulated by intracellular iron concentration through the posttranscriptional IRE-IRP (iron 
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responsive element-iron regulatory protein) mechanism (Levy et al, 1999) but in my study an in-

crease in the TfR1 protein expression was detected in hepatocytes after concomitant administration 

of AP-cytokines and iron. This TfR1 up-regulation could be due to activation of IRP-1 or hypoxia-

inducible factor 1α (HIF-1α) (Caltagirone et al, 2001; Malik et al. 2011) which binds to a conserved 

binding region in TfR1 promoter site (Tacchini et al, 1999) as induction of hepatic HIF-1α was 

also reported by us in our model. However TfR2 is known to be positively regulated by cellular 

iron concentration (Calzolari et al, 2007) which is in accordance with our study. 

 Furthermore, the existence of non-transferrin-bound iron (NTBI) uptake is now well estab-

lished (Breuer et al, 2000a).  Recent studies have shown that LCN-2 is responsible for transport of 

iron through this pathway (Kaplan, 2002;Schmidt-Ott et al, 2007). A recent report clearly demon-

strated the participation of LCN-2 in iron transportation during kidney damage (Yang et al, 2002). 

Likewise, a disrupted iron-uptake has been described in LCN-2 knockout mice (Srinivasan et al, 

2012). 

 In fact, this transferrin independent pathway becomes active in iron overload conditions 

(Chua et al, 2004), because in such conditions plasma iron concentration exceeds the transferrin 

binding limit. NTBI uptake is known to cause significant iron accumulation in the liver (Breuer et 

al, 2000a). NTBI uptake mechanisms have been studied in different types of cell lines, (Prus and 

Fibach, 2011) including hepatocytes also (Chua et al, 2004).  Based on experimental observations 

of current study, it can be proposed that iron transport into hepatocytes can take place by both 

pathways, the transferrin dependent and the transferrin independent and the latter can be regulated 

by LCN-2 under the influence of IL-6.  

 IL-6 is the key regulator of iron metabolism under different inflammatory conditions re-

sulting in iron accumulation.  IL-6 causes hypoferremia of inflammation by hepcidin regulatory 
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pathway but in a recent study hepcidin independent pathway has been described clearly 

(Deschemin and Vaulont, 2013). In a mouse of LPS-induced sepsis, LCN-2 played a pivotal role 

in causing hypoferremia of inflammation (Srinivasan et al, 2012). From experimental data of cur-

rent study it is speculated that increased uptake of iron in IL-6 stimulated hepatocytes could be 

another mechanism of hypoferremia of inflammation.  Few previous studies clearly reported that 

amount of intracellular ferritin was regulated by change in iron status  (Meyron-Holtz et al, 2011). 

These observations clearly indicate that not only FTL but also FTH is needed for reduction of free 

available iron in the stressed hepatocytes during APR. FTL shares “the iron storage” function in 

hepatic and extra-hepatic tissues (heart, spleen and brain) however, liver is a unique organ due to 

its secretory function when compared to extra hepatic organs.  

Even though human plasma ferritin levels are used to estimate body iron stores (Goralska 

et al, 2001), this seems not always applicable in humans and animals (Kanra et al, 2006). An in-

crease of iron level is associated with increased serum levels of AP-cytokines such as IL-6, IL-1β 

and TNF-α (Sheikh et al, 2006). Indeed, we and several previous acute phase studies reported that 

the liver responded dramatically to elevated levels of IL-6 by releasing acute phase proteins (Naz 

et al, 2012) which up-regulate gene expression of most of iron regulatory proteins in the liver (and 

isolated hepatocytes). This indicates a strong correlation of these major AP-cytokines with hepatic 

expression of iron regulatory proteins. A similar effect can be true in case of LCN-2 in the current 

study, as the data showed that iron and IL-6 seemed to be the main factors responsible for the 

dramatically induced LCN-2 gene expression in hepatocytes as has been previously reported 

(Sultan et al, 2012). Furthermore, a reduced LCN-2 expression was reported in the liver of IL-6 

knockout mice during APR (Sultan et al, 2012). 
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In fact, most of the serum proteins are synthesized by hepatocytes which play a pivotal role 

in regulation of in iron metabolism (Arosio et al, 2009;Tran et al, 1997). This study showed that 

LCN-2 is a secretory hepatocellular protein. A release of LCN-2 into the supernatants of isolated 

hepatocytes was detected not only by AP-cytokines (mainly IL-6) but also by iron and this release 

was comparable to that of FTL (iron storage and acute-phase secretory protein). This finding indi-

cates that acute phase cytokines and iron increase the release of LCN-2 probably in a similar way 

to FTL.  

According to the data of current study, IL-6 is the key player of iron uptake in hepatocytes 

during AP-conditions and LCN-2 behaves as an alternative iron transport protein in addition/ com-

pared to classical iron transport proteins (like TfRs) during AP-conditions whose gene expression 

is increased by iron and/or AP-cytokines. In addition, LCN-2 is also a secretory acute phase protein 

whose release from hepatocytes (major cell population of the liver) into the supernatant is con-

trolled by iron and AP-cytokines (mainly IL-6). The results of current study show that change in 

expression of hepatic iron regulatory genes including LCN-2 is not only because of increase in 

iron contents of hepatocytes but is also due to the effect of AP-cytokines produced in hepatocytes 

during acute-phase conditions. 

7.2 Kinetic of acute phase cytokines after turpentine oil induced acute phase response 

In the current study, TO injection in animals was used as a means to induce an APR. After 

turpentine oil (TO)-administration, a dramatic increase in IL-6 gene expression and a significant 

up-regulation of IL-1β was detected in the injured muscle. However, the kinetics of IL-1β was 

quite less than that of IL-6. Furthermore, serum analysis showed a strong up-regulation of IL-6 

and IL-1β whereas expression of IL-6 was 9-times higher than that of IL-1β (Sheikh et al. 2007), 
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which clearly indicates IL-6 as a major cytokine induced in this study model. This model is of 

sterile inflammation in which the inflammatory agent (TO), was restricted to a specific area i.e. 

the muscle. The local inflammation caused by this insult recruits the inflammatory cells at the site 

of injury (damaged muscle) and up-regulation of IL-6 is also recorded in the injured muscle. 

 The inflammatory stimulus is localized to specific area so it could not approach the liver 

to cause the IL-6 up-regulation. TO is a lipophilic substance which readily accumulates in fatty 

tissues and cannot reach the hepatic tissue. In different studies of TO administration to rats maxi-

mum concentration of turpentine was found in perinephric fat and brain (Savolainen and Pfaffli, 

1978) which might be a possible cause of local production of acute phase cytokines. 

7.3 Regulation of iron transport proteins after TO-induced acute phase response in rat 

and mice hepatic tissue 

According to an increase in liver iron level (Naz et al, 2012), an intense increase of iron 

importer proteins (TfRs and LCN2) within liver under AP conditions was studied. Under iron 

overload conditions, level of these proteins increase resulting in cellular iron retention (Canonne-

Hergaux et al, 2006). However, the early up-regulation of these transporter proteins could be con-

trolled by the acute-phase cytokines (mainly IL-6) which is released at the site of injury resulting 

in an APR (Sheikh et al, 2007) confirming the in vitro results which showed a regulative effect of 

the acute phase cytokine, IL-6, on iron importer proteins. 

It further strengthens our hypothesis that liver (and hepatocytes) need iron to respond to AP-

conditions. In order to confirm the direct effect of IL-6 on iron importer proteins and to find out 

the signaling pathway responsible for these changes during APR, same APR model was estab-

lished in wild type (WT) and IL-6-KO mice after TO-injection. Similar to what was observed in 
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rat APR model, a pattern of increase in TfR1, TfR2 and LCN-2 protein level was observed in the 

liver of WT-mice with the onset of APR , such an increase was not observed for TfR2 and LCN-

2 in the liver tissue of IL-6 KO mice. Moreover, IL-6 stimulation leads to the activation and phos-

phorylation of STAT3 pathway (Taub, 2003). A striking finding of the current study is to detect 

STAT3 phosphorylation in WT-mice liver after TO-injection which was not observed in IL-6-KO 

mice liver, indicating a regulative function of this acute-phase cytokine on TfR2 and LCN-2 during 

APR. 

In contrast, an increase in TfR1 protein level, similar in both WT and IL-6 KO mice during 

APR may suggest the effects of the other acute phase cytokines such as IL-1β and, to a lesser 

extent TNF-α, which are produced also at the site of tissue injury to control this protein. In fact, 

an intense up-regulation of IL-1β and TNF-α gene expression is recorded in the injured muscle of 

IL-6-KO mice than their wild type (Ramadori et al, 2010) indicating that in the absence of IL-6 

other cytokines may replace its functional role.  

7.4 The cellular localization of iron transport proteins in rat hepatic and extra-hepatic 

tissues 

To elucidate which cell types are responsible for the TO-induced iron importer proteins expression 

in the liver and extra hepatic organs, immunohistochemical analysis of these organs was per-

formed. By means of double immunohistochemical analysis TfR1 showed membranous and cyto-

plasmic expression whereas TfR2 positivity was mostly in the nuclei of hepatic and spleen cells. 

In spleen a partial co-expression of TfR1 and TfR2 was also observed, both in spleens of control 

rat and after AP-reaction. A nuclear expression of TfR1 was detected in heart tissue as compared 

to the liver and spleen where a membranous and cytoplasmic expression was observed. Moreover, 
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in rat liver and spleen we clearly showed that TfR2 is exclusively located in the nuclei of the cells 

whereas, in heart tissues TfR2 showed nuclear positivity mostly with partial membranous and cy-

toplasmic expression. Transferrin receptors (TfR1 & TfR2) also expressed a colocalization in heart 

tissues both in control and TO-administrated rats. In nuclei of some cardiomyocytes, to some ex-

tent, co-expression of TfRs was also present. The expression of transferrin receptors (TfR1, TfR2) 

increased after TO-administration in liver and heart tissues but decreased in spleen. These obser-

vations suggest that iron is not only being sequestrated into cytoplasm but also in nuclei of cells 

as was observed by the increased cytoplasmic and nuclear iron concentrations in liver (Naz et al, 

2012). A previous study reported the evidence of stainable iron in the hepatocytes nuclei and kup-

ffer cells of mice liver under iron overload conditions. This finding support not only the presence 

of iron transport proteins in the nucleus of liver cells under pathological conditions as a defence 

mechanism (Magens et al. 2005) but also the need of iron for nuclear metabolism. TfR2 nuclear 

expression has been demonstrated in rat PC12 cells (Roth et al. 2000) and in mice glioblastomas 

cancer cell lines respectively (Calzolari et al. 2010). However, in contrast to liver and spleen mem-

branous expression, being an iron importer, the nuclear localization of TfR1 in heart cells needs 

further insights. 

Furthermore, LCN-2 colocalization with TfR1 and TfR2 was detected in liver during physi-

ological and AP-conditions, however after ARP co-expression of LCN-2 and TfRs increased 

strengthening the hypothesis, LCN-2 transports iron during acute phase conditions. In extra-he-

patic tissues (heart, spleen), LCN-2 interaction with transferrin receptors (TfR1, TfR2) was also 

observed in spleen of control and of TO-rat, however, in heart LCN-2 expression was detected 

only after AP reaction, appearance of LCN-2 protein in heart only after the generation of AP reac-

tion can be due to stress conditions. We previously reported LCN-2 expression in heart at mRNA 
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level in the same settings and a different also study reported LCN-2 production by isolated neonatal 

cardiomyocytes (Yndestad et al, 2009).  To the best of my knowledge the current study is first of 

a kind to exclusively report colocalization of TfRs in extra-hepatic tissues.  My this study also 

suggests that differential localization of transferrin receptors (TfR1, TfR2) in hepatic and extra-

hepatic tissues is due to diverse role of these proteins in different tissues under physiological and 

pathological conditions (AP-conditions). 

Although nuclear expression of iron proteins in different organs has already been reported,  

previously, we and others showed TfR1 nuclear expression in rat brain (Malik et al, 2011), LCN-

2 nuclear expression in mice brain (Ip et al, 2011), FTH  (Ahmad et al, 2013), Fpn1 and  DMT-1 

nuclear expression in rat liver  (Naz et al, 2012), in PC12 cells (Roth et al, 2000) and in mice 

glioblastoma cell lines respectively (Calzolari et al, 2010). However, colocalization and differen-

tial localization of iron importer proteins (TfRs, LCN-2) in hepatic and extra-hepatic tissues (heart 

and spleen) has never been reported before. 

These findings support not only the presence of iron transport proteins within the nuclei to 

transport more iron in the hepatic cell nuclei  under stress conditions but suggests that increased 

level of nuclear iron may be necessary for the increased activity of nuclear enzymes involved in 

DNA synthesis, repair and regulation of transcription (Roth et al, 2000).   

7.5 The cellular localization of iron storage proteins (FTH, FTL) in rat hepatic and extra-

hepatic tissues 

  Similar to iron importer proteins, protein expression of iron storage proteins (FTH and 

FTL) was also observed by immunohistochemistry. Immunofluorescence staining showed FTH 
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localized in nucleus while FTL mostly in cytoplasm under physiological and acute phase condi-

tions. Furthermore, Western blot analysis revealed a FTL expression was strong in cytoplasm and 

week in the nuclei of cells. In contrast to FTL, FTH expression was stronger in nucleus and weaker 

in cytoplasm in hepatic and extra-hepatic organs (heart, spleen and brain). After the onset of ARP, 

protein expression of both ferritin subunits (FTH, FTL) increased. Ferritin is always reported as 

iron storage protein of cytosol (Meyron-Holtz et al, 2011) and its subcellular localization is con-

troversial. Some previous studies reported presence of FTH in nucleus of human astrocytoma cell 

line (Surguladze et al, 2005), in corneal epithelial cells (Cai and Linsenmayer, 2001) and in mice 

hepatocytes during iron overload states (Smith et al, 1990). According to my study, FTH is con-

stitutively expressed in hepatic and extra-hepatic organs during physiological and acute-phase con-

ditions. During ARP, nuclear iron contents increased (Naz et al, 2012) therefore, detection of iron 

storage proteins in the nucleus of the cells is not surprising. Nuclear expression of FTH like TfR2 

further confirms these findings that iron is sequestrated in both cytoplasm and nucleus of hepatic 

cells for nuclear metabolism. There could be another possibility that during acute-phase condi-

tions, liver needs more iron to combat the increased metabolic work load (Ramadori and Christ, 

1999). 

 Similarly, results of our previous and current study showed a parallel increase in mRNA 

and protein expression of ferritin subunits (FTH, FTL) and hepatic iron uptake during APR (Naz 

et al, 2012). Few previous studies clearly reported that amount of intracellular ferritin was regu-

lated by change in iron status (Meyron-Holtz et al, 2011) and accumulation of H-chain (Goralska 

et al, 2001;Hentze et al, 1987). However, our previous studies reported that modulation in FTH, 

FTL and other iron metabolism proteins is also due to acute-phase cytokines (Naz et al, 

2012;Sheikh et al, 2006). In other words, acute-phase cytokines synthesized during TO-induced 
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APR have direct effect on hepatic FTL and FTH up-regulation and this increase in their expression 

is not only due to the hepatic iron uptake. 

 A previous study (Darshan et al, 2009) reported FTH as main hepatic iron storage protein 

and hepatocytes become more susceptible to toxic effects of iron when FTH was depleted in these 

cells (Darshan et al, 2009). Moreover, over-expression of FTH in K562 cells resulted in reduction 

of free available iron pool in these cells (Picard et al, 1998). These observations clearly indicate 

that not only FTL but also FTH is needed for reduction of free available iron in the stressed hepato-

cytes during APR. FTL shares “the iron storage” function in hepatic and extra-hepatic tissues 

(heart, spleen and brain) however, liver is a unique organ due to its secretory function when com-

pared to extra hepatic organs.  

 The nuclear expression of FTH in liver, heart, spleen and brain cells suggests that there is 

not only iron storage in the nuclei but also nuclei need to be protected from toxic effects of iron 

on DNA due to iron-overload (Darshan et al, 2009). This function might be more important during 

APR due to increased metabolic challenges. 

8 CONCLUSION 

In conclusion, I propose that under normal conditions, transferrin bound iron of portal blood 

is taken up by liver cells through TfRs mediated and non-trasnferrin bound iron uptake by LCN-2 

under the influence of IL-6. Once in the cell, it is in part delivered not only to cytoplasmic orga-

nelles like mitochondria (Richardson et al, 2010) but also to the nucleus to meet the cellular func-

tional requirements including DNA synthesis and RNA metabolism. As iron is transported into the 

nucleus, surplus iron in the nucleus is stored within FTH to protect nucleus from oxidative damage. 
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Under acute phase conditions, liver behaves as a “sponge” for iron as the decrease in serum iron 

levels is most probably achieved by increased hepatic uptake of transferrin bound iron by TfR1 

mediated iron transport into the hepatocytes; increased LCN-2 also serves to transport iron into 

the cell.  Furthermore, differential localization pattern of iron regulatory proteins in hepatic and 

extra-hepatic tissues indicates their diverse role in these tissues during physiological and acute 

phase conditions. The findings of current suggest that IL-6 causes hypoferremia of inflammation 

by inducing TfRs (exclusively TfR2) and LCN-2 through STAT3 pathway activation. These find-

ings will help in the implications for further understanding the importance of iron metabolism in 

iron related disorders. 
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9 SUMMARY 

Acute phase response (APR) is the systemic reaction to tissue injury and inflammation. It is 

clinically characterized by certain symptoms such as fever, weakness, and anemia, somnolence 

loss of appetite and cytokines release. In the blood, it results in an increase of positive acute phase 

proteins (APPs) in plasma, including clotting proteins, transport proteins, anti-proteases, and com-

plement factors, with a concomitant decrease in negative APPs such as albumin. In addition, a 

decrease of serum iron-levels and consecutive increase of hepatic iron levels is also a hallmark of 

APR. This reaction is mediated by acute phase cytokines (APC) such as interleukin-1β (IL-1β), 

tumor necrosis factor-alpha (TNF-α) and IL-6 cytokines through the activation of different tran-

scription factors. The mechanism of liver iron uptake during APR is poorly understood. Therefore, 

current study aimed to investigate the exact mechanism of iron uptake with relation to iron regu-

latory proteins and their signaling pathway under the influence of APC in liver and liver cells. 

Furthermore, sub-cellular localization of these proteins in hepatic and extra-hepatic organs during 

APR is also examined. 

In vitro: primary cultures of rat isolated hepatocytes were stimulated with APC (IL-1β, IL-6 

and TNF-α) in the presence/absence of different concentrations of iron (FeCl3: 0.01mM, 0.1mM). 

APR was induced by injecting turpentine-oil (TO) in hind limbs of rat and mice (wild type and IL-

6 knock-out). Hepatocytes cell lysates and cell supernatants were prepared for iron measurement, 

RT-PCR and Western blotting. Tissue samples (liver, spleen and heart) were removed to use for 

immunobloting and immunohistochemical analysis.  

In hepatocytes treated with iron in the presence/absence of cytokines, a significant iron up-

take was observed with 0.1mM iron administration with a maximum at 24h (133µg/g protein) in 

comparison to control and other iron concentrations administrated. This iron uptake was further 
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enhanced in the presence of acute phase cytokines with a maximum iron uptake (481µg/g of pro-

tein) after IL-6 and 0.1mM iron concomitant administration. LCN-2 and ferritin subunits (FTH, 

FTL) gene expression was up-regulated by iron with further induction by acute phase cytokines 

both, at mRNA and protein level. The maximum increase was seen for the combination of IL-6 

with iron. TfR2 was increased by IL-6 and iron alone, however TfR1 was decreased. Combination 

of iron and APC abrogated the down-regulation of TfR1. Iron as well as APC stimulation led to 

LCN-2 release into supernatant, with increased release in the presence of iron and APC (IL-6 

mainly) combined. 

Similar to in vitro data, liver tissue of rat and wild type mice also showed an increase in iron 

transport (TfR1, TfR2 and LCN-2) and storage proteins (FTH, FTL) during APR whereas such an 

increase was not detected for TfR2, LCN-2 and FTH in IL6-KO mice. In parallel to induction of 

iron transporters, a phosphorylation of STAT3 was also observed in WT-mice however such a 

change was not noticed in IL-6 KO mice. 

Immunohistochemistry of hepatic and extra hepatic tissues indicated organ dependent local-

ization of TfR1 and TfR2. TfR1 was primarily localized in the membrane and cytoplasm of liver, 

and spleen cells whereas, in both organs, TfR2 showed nuclear expression mostly. However, in 

heart, both TfR1 and TfR2 were detected to be surplus in membrane, cytoplasm and nucleus. In 

all the organs studied, TfR1, TfR2 and LCN-2 were colocalized. The iron storage protein FTL was 

localized in cytoplasm while a strong FTH positivity was observed in the nucleus of liver cells. 

Similarly, in spleen and heart FTL was mostly localized in the cytoplasm however, an intense 

nuclear and a weak cytoplasmic expression was evident for FTH. 
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By summarizing, results of current study demonstrate that liver behaves as a “sponge” for 

iron during APR. Iron uptake in hepatocytes is tightly controlled by already present iron and this 

uptake can be further enhanced by APC, mainly by IL-6. Hepatocytes need more iron to respond 

the massive increase of protein synthesis under such stress conditions. These changes could ex-

plain iron retention in hepatocytes during APR. Furthermore, portal blood iron is taken up by liver 

cells mostly through importer proteins (TfRs and LCN-2) and these proteins are regulated mainly 

through IL-6 activated STAT3 pathway. The differential localization pattern of iron regulatory 

proteins in hepatic and extra-hepatic organs suggests their organ specific diverse role during APR.  
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