
 

 

Landscape change and impoverishment in 

North German grasslands since the 1950s 

 

Dissertation 

zur Erlangung des mathemathisch-naturwissenschaftlichen Doktorgrades 

"Doctor rerum naturalium" 

der Georg-August-Universität Göttingen 

 

im Promotionsprogramm Biologie 

der Georg-August University School of Science (GAUSS) 

vorgelegt von  

Benjamin Krause 

aus 

Einbeck 

 

 

 

Göttingen, Juli 2013  



 

Betreuungsausschuss 

 

Prof. Dr. Christoph Leuschner, Abteilung Pflanzenökologie und Ökosystemforschung, 

Albrecht-von-Haller-Institut für Pflanzenwissenschaften 

 

Prof. Dr. Erwin Bergmeier, Abteilung Vegetationsanalyse und Phytodiversität, Albrecht-

von-Haller-Institut für Pflanzenwissenschaften 

 

Dr. Heike Culmsee, Abteilung Vegetationsanalyse und Phytodiversität, Albrecht-von-

Haller-Institut für Pflanzenwissenschaften 

 

 

 

Mitglieder der Prüfungskommission 

 

Referent: Prof. Dr. Christoph Leuschner, Abteilung Pflanzenökologie und 

Ökosystemforschung, Albrecht-von-Haller-Institut für Pflanzenwissenschaften 

 

Korreferent: Prof. Dr. Erwin Bergmeier, Abteilung Vegetationsanalyse und 

Phytodiversität, Albrecht-von-Haller-Institut für Pflanzenwissenschaften 

 

 

Weitere Mitglieder der Prüfungskommission: 

 

PD Dr. Karsten Wesche, Abteilung Botanik, Senckenbergmuseum für Naturkunde in 

Görlitz 

 

Prof. Dr. Hermann Behling, Abteilung Palynologie und Klimadynamik, Albrecht-von-

Haller-Institut für Pflanzenwissenschaften 

 

Prof. Dr. Markus Hauck, Abteilung Pflanzenökologie und Ökosystemforschung, Albrecht-

von-Haller-Institut für Pflanzenwissenschaften 

 

Prof. Dr. Johannes Isselstein, Abteilung Graslandwissenschaft, Department für 

Nutzpflanzenwissenschaften 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tag der mündlichen Prüfung: 08.10. 2013 



 

Table of contents 

Chapter 1: General introduction ................................................................................... 5 

Landscape change in Central Europe ................................................................................ 6 

Changes in quantity and quality of grasslands .................................................................. 7 

Fragmentation .................................................................................................................... 8 

Extinction debt ................................................................................................................. 10 

Functional diversity ......................................................................................................... 11 

General study aims and chapter outline ........................................................................... 12 

Study sites ........................................................................................................................ 14 

References ....................................................................................................................... 16 

Chapter 2: Habitat loss of floodplain meadows in N. Germany since the 1950s ..... 24 

Abstract ............................................................................................................................ 25 

Introduction ..................................................................................................................... 26 

Materials and Methods .................................................................................................... 28 

Results ............................................................................................................................. 32 

Discussion ........................................................................................................................ 37 

Conclusion ....................................................................................................................... 40 

References ....................................................................................................................... 41 

Appendix ......................................................................................................................... 45 

Chapter 3: Fifty years of change in Central European grassland vegetation: Large 

losses in species richness and animal-pollinated plants ............................................. 47 

Abstract ............................................................................................................................ 48 

Introduction ..................................................................................................................... 49 

Materials and Methods .................................................................................................... 51 

Results ............................................................................................................................. 55 

Discussion ........................................................................................................................ 62 

Conclusion ....................................................................................................................... 66 

References ....................................................................................................................... 68 

Appendix ......................................................................................................................... 74 

Supporting information ................................................................................................... 76 

Chapter 4: Historical and recent fragmentation of temperate floodplain 

grasslands: Do patch size and distance affect plant species richness of wet 

meadows? ....................................................................................................................... 77 

Abstract ............................................................................................................................ 78 

Introduction ..................................................................................................................... 80 

Materials and Methods .................................................................................................... 83 

Results ............................................................................................................................. 88 

Discussion ........................................................................................................................ 96 

Conclusion and implications for the conservation of floodplain grasslands ................. 100 

References ..................................................................................................................... 102 

Appendix ....................................................................................................................... 108 



 

Chapter 5: The significance of habitat continuity and current management on the 

compositional and functional diversity of grasslands in the uplands of Lower 

Saxony, Germany ........................................................................................................ 115 

Abstract .......................................................................................................................... 116 

Introduction ................................................................................................................... 118 

Materials and Methods .................................................................................................. 120 

Results ........................................................................................................................... 124 

Discussion ...................................................................................................................... 134 

References ..................................................................................................................... 139 

Appendix ....................................................................................................................... 144 

Chapter 6: Synopsis ..................................................................................................... 150 

References ..................................................................................................................... 160 

Summary ...................................................................................................................... 164 

Zusammenfassung ....................................................................................................... 167 

List of Publications ...................................................................................................... 170 

Danksagung .................................................................................................................. 173 

Academic education ..................................................................................................... 174 



5 

 

Chapter  

1 
 

 

 

General introduction 

 



6 

 

Landscape change in Central Europe 

The world’s natural vegetation cover has been widely replaced by man-made land covers. 

Central Europe would be almost entirely dominated by forests without the human influence 

(Bohn et al. 2000, 2003). During the last centuries increasing human populations created a 

cultural landscape that required large scale deforestation. The former forest areas were 

predominantly transformed into agriculture areas (cropland and grassland) used for food 

production (Ellenberg and Leuschner 2010). These human activities also led to the small-

scaled and highly structured cultural landscape in Central Europe that could be found until 

large-scale intensifications started.  

Since the 1950s agriculture has been rapidly intensified. The drainage of 

groundwater-influenced habitats as one consequence of meliorations occurred widespread 

(Schmidt 1990; Ihse 1995; Treweek et al. 1997; Benton et al. 2003). Many landscape 

structures were eliminated and landscape composition changed tremendously (Gustavsson 

et al. 2007; Krauss et al. 2010; Flohre et al. 2011). Species richness and composition of agro-

ecosystems was additionally influenced by further aspects of management, such as 

mechanical disturbances, e.g. due to ploughing or mowing (Dupré et al. 2010; Morecroft et 

al. 2009; Smart et al. 2005). The application of fertilisers and pesticides accelerated since 

the advent of the Common Agricultural Policy (CAP) in Western Europe in the late 1950s. 

CAP was later identified as being responsible for increasing habitat degradation and 

biodiversity loss, and was reformed in several steps from the late 1980s to the European 

Union Agenda 2000 (Bignal and McCracken 2000, Henle et al. 2008). In Eastern Europe 

intensification campaigns followed with a delay of about one decade (Bauerkämper 2004). 

Despite the differences caused by the contrasting political systems, in both former German 

states, landscape composition and structure has changed tremendously as a result of 

intensification in land use (Weiger 1990; Kienast 1993; Hundt 2001). Finally, today’s 

intensive agriculture is one of the most influential drivers of biodiversity loss all over Europe 

(e.g. Donald et al. 2001; Tscharntke et al. 2005; Ellenberg and Leuschner 2010). Land 

abandonment on mostly marginal sites can lead to an additional change in landscape, and 

thus to a shift in species composition but is only a regional phenomen (Henle et al. 2008).  
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Changes in quantity and quality of grasslands 

Grasslands can harbour a large number of plant species in dependence of site conditions and 

management regime (intensity, grazing or mowing) (Dierschke and Briemle 2002). In 

Central Europe more than one thousand higher plant species are detected in grasslands and 

therefore this type of biotope harbours the communities richest in species number (Ellenberg 

and Leuschner 2010). During the last decades the management often changed and grasslands 

are among the most severely affected habitat types (Treweek et al. 1997; Joyce and Wade 

1998; Norderhaug et al. 2000; Hundt 2001; Hodgson et al. 2005; Prach 2008). Depending 

on the local environmental and economic conditions, large fractions of former managed 

grassland in Central Europe have been transformed to cropland, afforested, abandoned or 

used as construction sites (Riecken et al. 2006; Walz 2008). Over the past 60 years the 

increasing trend towards more industrial agriculture has additionally led to significant 

increases in the amount of fertilizer applied, in mowing frequency and in increasing stocking 

densities on remaining grassland sites. As a consequence, the large group of threatened 

higher plants in Germany comprises taxa from extensively managed grasslands (Korneck et 

al. 1998; Korsch and Westhus 2004). Today extensively managed grasslands often remain 

only under marginal land conditions, e.g. steep slopes or sites with shallow or wet soil where 

the use of machinery is not feasible or inefficient. Wet or moist sites were often meliorated 

and so drainage and subsequent lowering of the groundwater table are the main causes for 

the loss of wet meadows (Rosenthal 2003; Rosenthal and Hölzel 2009; Prajs and Antkowiak 

2010). Consequently, the application of fertilisers and an increasing mowing frequency 

become possible and act as key drivers of biodiversity loss in both wet and mesic meadows 

(Grevilliot et al. 1998; Jannsens et al. 1998; Härdtle et al. 2006). In contrast to the 

intensifications abandonment of grasslands is another threat that leads to slow deterioration 

in kind of succession. Even the type of grazing and the grazing frequency with heterogenous 

effects on species diversity and species composition changed during the last decades 

depending on region (Dierschke and Briemle 2002). 

The tremendous decline of semi-natural relatively dry grasslands has been 

documented for many Northern and Central European landscapes (Hodgson et al. 2005; 

Pärtel et al. 2005; Strijker 2005; Cousins and Lindborg 2008). In the agriculturally 

dominated areas of Central Europe, moist and mesic grasslands are among the habitat types 

that have experienced the severest losses in area (Prach 2008). Consequently, species-rich 

wet and mesic meadows belong today to the most threatened grassland types in Central 



8 

 

Europe (Bergmeier and Nowak 1988; Dierßen et al. 1988; Dierschke and Briemle 2002; 

Riecken et al. 2006; Ellenberg and Leuschner 2010). Overall mesotrophic grasslands have 

suffered from an alarming species decline and habitat loss over the last few decades (Wittig 

et al. 2006; Rodwell et al. 2007). However, it has recently been recognized that grasslands 

generally show losses in plant species richness over time (Isselstein 2003). Deterioration of 

the quality and quantity of grasslands is not yet stopped. Even since 2003, the area of 

permanently managed grassland in Germany declined by 3.1% (Lind et al. 2009), with 

regional differences. Since the 1950s, in parallel to agricultural intensification in more 

productive areas, the area of grassland increased in marginal rural landscapes such as in the 

uplands of Germany and Britain (Peppler-Lisbach 2003; Hodgson et al. 2005; Wellstein et 

al. 2007; Waesch and Becker 2009).  

Today grasslands have come under additional pressure through the increasing 

importance of renewable energy (Lind et al. 2009). Hence, the trend of declining grassland 

(predominantly by substitution with maize cultivation and intensifications in management 

on remaing grassland sites) is additionally amplified in some regions by the cultivation of 

energy crops. 

 

Fragmentation 

Habitat fragmentation is mainly caused by habitat loss. The term describes a landscape-level 

process in which a habitat type is subdivided in more scattered and isolated remnants that 

are smaller in size than the original habitat (Saunders et al. 1991). According to the theory 

of island biogeography (MacArthur and Wilson 1967) habitat fragmentation may affect 

biodiversity through decreased size of habitat patches and increased patch isolation 

(Debinski and Holt 2000; Fahrig 2003; Ewers and Didham 2006). Additional consequences 

are changes in landscape composition, structure and function. The underlying process could 

be natural, e.g. changes in the river course as a result of natural meandering or succession, 

but mainly occur as a result of human land use activities. In Central Europe habitat 

fragmentation is mainly a consequence of agricultural intensification that has important 

implications for biodiversity (Jaeger 2000; Henle et al. 2004; Lindborg and Eriksson 2004; 

Piessens et al. 2005; Boschi and Baur 2008). The land consumption for infrastructure in 

Germany increased by ca. 120 ha every day from 1993-2007 (Schweppe-Kraft et al. 2008) 

and leads to increasing fragmentation in some regions. Changes in the fragmentation level 

depend on region, scale and the considered habitat type. 
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The exchange of genes between remaining populations and re-colonization after 

extinction is hampered with increasing patch-isolation in fragmented landscapes (Hanski 

1999). If the distance to neighbouring areas does not exceed the dispersal range, pollen or 

seeds from plants in surrounding areas can increase the genetic diversity. The dispersal 

capability of plant seeds depends on their dispersal adaptations (e.g. Willson 1993; Hughes 

et al. 1994; Fischer et al. 1996; Danvind and Nilsson 1997 in Geertsema et al. 2002), but 

many grassland specialists have very limited dispersal ranges (Eriksson and Ehrlén 1992; 

Turnbull et al. 2000; Martin and Wilsey 2006; Cousins and Aggemyr 2008). Even plants 

with relatively long-distance wind dispersal are strongly negatively affected by 

fragmentation (Saar et al. 2012). A study of Winter et al. (2008) found negative effects 

through fragmentation on three typical floodplain plant species. Dauber et al. (2010) reported 

a negative effect on reproduction in small populations of flowering plant species due to lower 

pollination success. Due to usually positive correlations between the population size of a 

species and its habitat area (Honnay et al. 2006; Lennartsson 2000; Hanski 1999) there is a 

higher risk of extinction in smaller populations (Lande 1988, Matthies et al. 2004). 

Extinction is hence more likely in habitats affected by fragmentation. Habitat quality is also 

often lower in smaller patches as a result of an increased exposure to edge effects 

(Oostermeijer et al. 1994).  

As such, patch size and habitat isolation are likely to increase the risk of local 

extinctions occurring in more isolated patches of grassland. These factors, along with the 

substantial decline in overall grassland area, have been associated with the progressive 

fragmentation of the remaining meadows and pastures in a matrix of arable land and other 

land-use types (Treweek et al. 1997; Joyce and Wade 1998; Norderhaug et al. 2000; 

Hodgson et al. 2005). Documenting habitat fragmentation at historical and recent time is 

important for understanding vegetation changes and can also help to determine best-practice 

restoration measures for grassland habitats. As long as a species that is predicted to become 

extinct still persists, conservation measures for improving the habitat conditions can be 

performed (Kuussaari et al. 2009). It is easier to preserve and restore habitats with remaining 

species than creating new habitats and re-establishing vanished species. Hence the detection 

of the causes of extinction debt through fragmentation processes is important for nature 

conservation.  
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Extinction debt  

Biodiversity patterns are the result of combined environmental conditions of the past and 

today (Lunt and Spooner 2005). Recent studies indicate that, besides the type and intensity 

of present-day management, land use history and habitat continuity play a crucial role in the 

explanation of grassland diversity (Lindborg 2006; Gustavsson et al. 2007; Aavik et al. 2008; 

Cousins and Lindborg 2008; Waesch and Becker 2009). The vast majority of temperate 

grassland species are perennials and many of these species can survive extended periods of 

unfavourable conditions following land-use change (Eriksson 1996; Eriksson and Ehrlen 

2001). Therefore, local extinction of grassland specialists can occur with a substantial time 

delay following habitat loss (Kuussaari et al. 2009). This time delay between changing 

habitat conditions or habitat extent and species response in kind of extinction is called 

extinction debt (Tilman et al. 1994). Today’s plant species composition can be threatened 

by changes that happened years or decades before and extinction of species is already sealed. 

As a consequence, land use history may, to a considerable extent, explain present-day 

species diversity and distribution patterns (Tilman et al. 1994; Eriksson and Ehrlén 2001). 

In addition to a decrease in area and the resulting fragmentation, an extinction debt of species 

on remaining areas is either increased from a qualitative influence e.g. by anthropogenic 

nutrient enrichment (Pykälä 2000) or abandonment (Pärtel et al. 1999). The functional traits 

and the ecological margins of the grassland species determine the risk of extinction (Fischer 

and Stöcklin 1997; Piqueray et al. 2011). The effects of fragmentation on grassland species 

has been mainly analysed for semi-natural dry grasslands (e.g. Bruun 2000; Öster et al. 2007; 

Rusterholz and Baur 2010) but effects on grassland diversity in floodplain meadows were 

not observed.  

Slow responses of plant species richness to fragmentation and habitat loss in 

grasslands were observed by Eriksson et al. (2002), Helm et al. (2006) and Rusterholz and 

Baur (2010). These studies describe lag periods of up to 50-100 years before a species 

eventually becomes extinct after habitat deterioration (Lindborg and Eriksson 2004). 

Gustavsson et al. (2007) obtained corresponding results for Swedish grasslands, where 

pastures abandoned between the late 19th century and 1961 did not differ significantly from 

sites abandoned between 1961 and 2003-2005. In their study, the existing grassland diversity 

was mainly explained by management practices that have been emplaced over 200 years 

ago. 
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Time lags in species responses often hinder the detection of fragmentation effects 

(Kuussaari et al. 2009). Consequently, a number of recently published studies found no or 

only little influence of past landscape patterns on present-day plant species richness in 

grasslands (Adriaens et al. 2006; Bruun 2000; Cousins et al. 2007; Öster et al. 2007). 

As a result of the tremendous decline in grassland area, in the most ‘ordinary’ (i.e. 

highly transformed) landscapes, the influence of management history was absent or of minor 

importance, because many grassland specialists became already extinct (Adriaens et al. 

2006; Cousins et al. 2007; Cousins and Eriksson 2008; Cousins 2009). 

 

Functional diversity 

Various taxa and ecosystems show different qualitative and quantitative trends in taxonomic 

and functional diversity. A high functional trait diversity can act as a buffer against 

environmental changes and can have a positive impact on the number of ecosystem services 

(e.g. Tilman and Downing 1994; Hector and Bagchi 2007; Maes et al. 2012; Temperli et al. 

2012). In parallel to the widespread decline in species numbers, functional diversity also 

shows a declining trend. Both can have negative effects on ecosystem functioning 

(Bernhardt-Römermann et al. 2008; Fried et al. 2009; Laliberté et al. 2010). Losses in 

functional diversity are often lower than those in taxonomic diversity (Flynn et al. 2009), 

pointing to functional redundancy (Mayfield et al. 2010; Sasaki et al. 2009). Results from 

recent grassland and arable field studies confirm these statements (Flynn et al. 2009; 

Vandewalle et al. 2010). The intensification in grasslands leads to decreasing portions of 

flowering herbs and grasslands dominated by wind-pollinated grasses. Additionally, 

flowering species which are mainly dependent on insect pollination are most negatively 

affected by habitat fragmentation and isolation (Aguilar et al. 2006; Winter et al. 2008; 

Cranmer et al. 2012). Hence, insect-pollinated plants and associated pollinators are 

especially endangered and can be seen as prime example for losses in functional groups and 

associated losses at higher trophic levels (Biesmeijer et al. 2006; Öckinger and Smith 2007; 

Weiner et al. 2011). The success of pollination and dispersal is highly dependent on a 

combination of species characteristics and landscape composition (Dauber et al. 2010). 

Furthermore, Waesch and Becker (2009) found that the age of grasslands largely determines 

the composition of plant species traits. Due to the high diversity potential of plants and 

animals in temperate grasslands (Ellenberg and Leuschner 2010; Wallis de Vries et al. 2002) 

the observed trends are of a great concern to nature conservation.  



12 

 

 

General study aims and chapter outline 

The management practices in agriculture and their distribution in the landscape has changed 

dramatically over time. However, since World War II, the speed and extent of such changes 

increased rapidly. The main changes of grassland management commenced in Central 

Europe five or six decades ago (Joyce and Wade 1998; van Dijk 1991). In some regions, 

grasslands were drained, intensified and ploughed, in other regions, grasslands were 

abandoned or cropland on marginal lands was transformed into grassland (Waesch and 

Becker 2009). Overall, intensifications dominated in Central European crop- and grasslands 

during the last decades. The focus of this study was to detect and quantify changes in Central 

European grasslands, which belongs to one of the most species-rich habitats (Ellenberg and 

Leuschner 2010) harbouring a large number of endangered plant species. 

General study aims were:  

(1) to detect changes in the extent of floodplain grasslands since the 1950/60s 

through agricultural land use change, 

(2) to analyse shifts in plant species richness, species composition and corresponding 

functional traits of floodplain grasslands, 

(3) to investigate the effects of fragmentation and management (indicated by 

Ellenberg Inicator Values (EIV)) at the landscape- and the plot-level on the diversity 

of characteristic meadow species and 

(4) to test for effects of habitat continuity and present-day management on species 

diversity, species composition and the composition of pollination traits in upland 

grasslands.  

 

In chapter two, “Habitat loss of floodplain meadows in North Germany since the 

1950s”, landscape changes in seven floodplain areas, which were dominated by wet and 

moist meadows in the 1950/60s, are analysed. One of the investigated sites is a protected 

area according to the EU Habitats Directive (FFH, 92/43/EEC; European Commission 

2007), which experienced only minor changes in the management regime during the last 

decades. It is thus used as a reference site for distinguishing between local and large-scale 

over-regional drivers of vegetation and landscape change (nutrient input from deposition, 

climate change etc.). The study sites are located in the lowlands of northern Germany and 
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were investigated with a focus on changes in habitat extent and landscape structure between 

the 1950/60s and today (2008), i.e. over a period of 50-60 years. The main objective was to 

quantify and analyse changes in these two formerly widespread floodplain grassland types 

in terms of spatial extent, temporal continuity or replacement, and fragmentation of habitats 

based on historical vegetations maps and own recent field surveys. 

Chapter three “Fifty years of change in Central European grassland vegetation: 

Large losses in species richness and animal-pollinated plants” focuses on how management 

intensification and increased nutrient input since the 1950/60s has altered grassland plant 

community composition, species diversity and functional trait composition using 

comprehensive datasets from five floodplain regions (plus one protected reference region) 

in northern Germany. Sites with available historical relevés and vegetation maps (1950/60s, 

1990s) were resampled in 2008 to facilitate the analysis of a period spanning four to five 

decades. 

In chapter four “Historical and recent fragmentation of temperate floodplain 

grasslands: Do patch size and distance affect plant species richness of wet meadows?” 

changing structures at local and landscape scales are analysed on how they affect grassland 

species that are adapted to wet and moist conditions. Again, historical as well as recent 

vegetation maps and vegetation relevés are taken into account. The studied recent and 

historical grasslands were divided in two groups: (a) habitats which still harbour formerly 

common wet or moist grassland communities (hereafter referred to as ‘optimal habitats’), 

and (b) habitats where grassland communities have been modified due to melioration or 

fallowing (subsequently termed ‘suboptimal habitats’). 

The main objective was to examine whether effects of fragmentation, legacies of 

past land use patterns or recent habitat conditions (Ellenberg Indicator Values for nutrients 

and moisture) have had an influence on the present-day diversity and composition of 

typical floodplain meadow communities in seven representative floodplain areas in 

northern Germany (six and one protected reference site). 

Chapter five “The significance of habitat continuity and current management on the 

compositional and functional diversity of grasslands in the uplands of Lower Saxony, 

Germany” presents a case study located in the Solling Forelands, an escarpment landscape 

east of the Solling highlands and 15 km west of the City of Göttingen in southern Lower 

Saxony, Germany. This study aimed at identifying the environmental factors that control 

grassland diversity (plant community composition, species richness, and pollination trait 
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composition). The study area could act as a model region for most of the Central European 

uplands which have seen an extension of grassland area in the course of land use change 

since the 1950s.  

 

Study sites 

All study areas are located in the northern and central parts of Germany, in the federal states 

of Lower Saxony, North Rhine-Westphalia, Brandenburg, Saxony-Anhalt and Thuringia 

(Tab.1; Fig. 1). Seven study sites (six and one protected) are situated in the lowlands of 

Germany between the rivers Ems in the west and Havel in the east, for analysing landscape 

structure and vegetation change of floodplain meadows. The study site of chapter five 

(Mühlenberg) is located in the uplands 15 km west of Göttingen (Tab. 1). Overall, the 

covered conditions should be representative for the northern part of Central Europe. 

 

Fig. 1 The study region in Germany and location of the eight study areas (black dots) with 

characteristics explained in Tab. 1. 
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Table 1 Location and characteristics of the study areas in Northern and Central Germany (climate data from German National Meteorological Service, 

DWD, based on the reference period 1961—1990).  

Number 

Name of 

the study 

area 

Chapter Federal state 

Historical 

inventory  

(first yr) 

Study 

area size 

(ha) 

Size of 

protected 

area (ha) 

Mean annual 

precipitation 

(mm yr-1) 

Mean annual 

temperature 

(°C) 

Elevation 

(m a.s.l) 

Geographical 

coordinates 

1 Ems 2, 4 Lower Saxony 1954 390 0 757 8.8 3 N 52°56’54’’ 

E 07°17’32’’ 

2 Weser  2, 3, 4 Lower Saxony 

and North Rhine-

Westphalia 

1956 155 19 654 9.1 27 N 52°30’58’’ 

E 09°05’52’’ 

3 Mühlen-

berg 

5 Lower Saxony  1786  2500 484 645 8.7 255 N 51°32’26’’ 

       E 09°45’49’’ 

4 Aue 2, 3, 4 Lower Saxony 1946 264 0 620 8.9 67 N 52°16’20’’ 

E 10°22’48’’ 

5 Helme 2, 3, 4 Thuringia 1969 1081 0 484 8.5 155 N 51°26’33’’ 

E 10°57’02’’ 

6 Havel 2, 3, 4 Brandenburg 1953 293 293 526 8.7 22 N 52°43’44’’ 

E 12°13’00’’ 

7 Luppe 2, 3, 4 Saxony-Anhalt 1967 186 0 500 9.5 90 N 51°21’43’’ 

E 12°07’57’’ 

8 Nuthe 2, 3, 4 Brandenburg 1958 376 0 560 8.8 115 N 52°02’44’’ 

E 12°14’40’’ 
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Abstract 

Floodplain meadows are severely threatened by land use change and intensification in 

Central Europe. This study investigates quantitative and qualitative changes in the vegetation 

of wet and species-rich mesic meadows in the floodplains of north Germany since the 1950s, 

considering their spatial extent, fragmentation, and replacement by other land use types. 

Historical high-resolution vegetation maps were compared with recent vegetation surveys in 

7 study regions (6 unprotected areas, 1 protected reference area) in former West and East 

Germany. The unprotected sites showed alarming losses in wet and species-rich mesic 

meadows in the past 50 years (> 80%). Wet meadows were substituted by species-poor, 

intensively managed grasslands (26-60% of the former area), arable fields (0-47%) or set-

asides (2-33%). Species-rich mesic meadows were transformed to arable fields (42-72%) or 

species-poor, intensively managed meadows (14-72%). Decreases in effective mesh size and 

patch size indicated increasing fragmentation of wet meadows, whilst changes in landscape 

structure were less consistent in mesic meadows. Only slight changes in the protected 

floodplain study area indicate that landscape change is mostly caused by local effects such 

as fertilisation and drainage, but not by general trends such as atmospheric N deposition or 

climate warming. Despite the contrasting political systems in West and East Germany with 

different agroeconomic frames, all unprotected study areas showed similar losses and 

increasing fragmentation of floodplain meadows, which may negatively influence the natural 

dynamics of, and the gene flow between, meadow plant populations. We conclude that 

floodplain meadows in north Germany urgently call for high-priority conservation measures. 

 

Keywords: agricultural intensification; landscape fragmentation; land use change; land use 

history; nature conservation; vegetation mapping 
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Introduction 

Agricultural intensification is one of the most influential drivers of biodiversity loss all over 

Europe (e.g. Donald et al. 2001; Tscharntke et al. 2005; Ellenberg and Leuschner 2010). 

Since the 1950s, agriculture has been intensified through increasing application of fertilisers 

and pesticides, and the widespread drainage of groundwater-influenced habitats (Schmidt 

1990; Ihse 1995; Treweek et al. 1997; Benton et al. 2003). In former West Germany, the 

European Union’s Common Agricultural Policy (CAP) has led to large-scale land use 

changes in the past decades (Bignal and McCracken 2000; Henle et al. 2008). Intensification 

campaigns followed in East Germany with a delay of about one decade (Bauerkämper 2004). 

Despite the differences caused by the contrasting political systems, in both former German 

states, landscape composition and structure has changed tremendously as a result of 

intensification (Weiger 1990; Kienast 1993; Hundt 2001). 

Grasslands are among the habitat types most severely affected by changes (Treweek 

et al. 1997; Joyce and Wade 1998; Norderhaug et al. 2000; Hundt 2001; Hodgson et al. 2005; 

Prach 2008). A considerable part of the managed grassland that was present in the 1950s, 

has been transformed to cropland, afforested or used for construction purposes (Riecken et 

al. 2006; Walz 2008). Even within the short time since 2003, the area of permanently 

managed grassland in Germany declined by 3.1%, and the remaining sites became 

increasingly fragmented (Lind et al. 2009). Consequently, species-rich wet and mesic 

meadows belong today to the most threatened grassland types in Central Europe (Bergmeier 

and Nowak 1988; Dierßen et al. 1988; Dierschke and Briemle 2002; Riecken et al. 2006). 

While drainage and subsequent lowering of the groundwater table are the main causes for 

the loss of wet meadows (Rosenthal and Hölzel 2009; Prajs and Antkowiak 2010), 

application of fertilisers and increasing mowing frequency are key drivers of biodiversity 

loss in both wet and mesic meadows (Grevilliot et al. 1998; Jannsens et al. 1998; Härdtle et 

al. 2006).  

Habitat fragmentation is another consequence of agricultural intensification that has 

important implications for biodiversity (Jaeger 2000; Henle et al. 2004; Lindborg and 

Eriksson 2004; Piessens et al. 2005; Boschi and Baur 2008). Hence, documenting habitat 

fragmentation at historical time and comparing it with the recent situation may be important 

for understanding vegetation changes and can also help to determine best-practice restoration 

measures for grassland habitats.  
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Various authors have investigated changes in the extent of meadows on the landscape 

scale in Central Europe, but their studies were mostly limited to a single area (e.g. Jeanneret 

et al. 2003; Prach 2008; Jansen et al. 2009), based on a relatively coarse spatial scale 

(Williams and Hall 1987; Ihse 1995; Soons et al. 2005), or they relied on the analysis of non-

spatial data such as the comparison of vegetation relevés (Meisel und Hübschmann 1976).  

The lack of replicated studies at multiple locations, which include detailed spatial 

information, is a major shortcoming, given the formerly wide distribution of floodplain 

grasslands in Central Europe (Treweek et al. 1997; Jensen 1998; Joyce and Wade 1998). 

Especially long-term studies that refer to the time before agricultural intensification (>50 

years ago) have not been conducted so far, mainly because historical spatially explicit 

vegetation data are rare (Prach 2008) forcing most authors to rely on the interpretation of 

aerial photographs (e.g. Ihse 1995; Weiers et al. 2004; Wozniak et al. 2009).  

Here, we studied two floodplain meadow habitat types, i.e. wet meadows and 

species-rich mesic meadows, at several locations in the lowlands of northern Germany and 

analysed changes in habitat extent and landscape structure in the time interval from the 

1950/60s to recent time (2008), i.e. over a period of 50 years. One of the investigated sites 

is a protected area according to the EU Habitats Directive (FFH, 92/43/EEC; European 

Commission 2007), which experienced only minor changes in the management regime and 

is thus used as a reference site for distinguishing between local and large-scale over-regional 

drivers of vegetation and landscape change (air-borne nutrient input, climate change etc.). 

The aim of our study was to document and analyse changes in these two formerly widespread 

floodplain grassland types in terms of spatial extent, temporal continuity or replacement, and 

fragmentation of habitats. We hypothesized that (1) both floodplain meadow types have 

significantly declined in their extent, but wet meadows are expected to have experienced 

more severe habitat losses due to their higher sensitivity to drainage, (2) both grassland types 

have largely been replaced by other land use types, but species-rich mesic meadows have 

mainly been transformed to habitat types subjected to enhanced land use intensity (such as 

arable fields and intensively managed grasslands), (3) the present extent of the two meadow 

types is partly determined by the historical floodplain meadow landscape structure, and (4) 

landscape change and habitat loss occurred at a much slower path at the protected floodplain 

site. 
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Materials and Methods 

Study region  

Landscape analysis and vegetation mapping were conducted in seven floodplain areas in the 

lowlands of northern Germany between the rivers Ems in the west and Havel in the east (Fig. 

1). Historical (1950/60) and recent (2008) vegetation maps covering a total area of 1961 ha 

each formed the basis of the analysis, the latter being compiled by the authors. In the 

1950/60s, wet and semi-wet meadow communities of the order Molinietalia caeruleae 

(including the main alliances Calthion palustris, Molinion caeruleae and Cnidion dubii, 

Appendix Table 5) and the species-rich mesic meadows of the order Arrhenatheretalia 

elatioris (comprising moist variances of Cynosurion and Arrhenatherion) were the most 

abundant grassland communities.  

 

Fig. 1 Study region in North Germany and location of the seven study areas (squares) in the north 

German pleistocene lowlands (A), and in the Thuringian basin at the margin of the German uplands 

(B) (WGS_1984 PDC Mercator projection).  

All study areas were situated in lowland regions with elevations ranging from 3 to 

155 m a.s.l. in the seven regions (Tab. 1). While mean annual temperature varied only little 

(annual means of 8.5 to 9.5 °C in the seven regions), precipitation ranged from 757 mm yr-1 

at the Ems river in the west (oceanic climate) to 484 mm yr-1 at the Helme river in southeast 

Central Germany (subcontinental climate).  

Four of the seven study areas were situated on the former territory of the German 

Democratic Republic (Helme, Luppe, Havel and Nuthe), the other three were located in 

western Germany (Ems, Weser, Aue). The Havel region has been protected since 1967, and 

became part of the Natura 2000 network. Furthermore, a small part of the Weser floodplain 

study area has been part of a nature reserve since 1961. All other study areas were not 

covered by nature protection measures.  
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Table 1 Location and characteristics of the seven floodplain study areas (six unprotected areas plus the Havel protected reference area) in northern Germany named 

after main rivers (climate data from German National Meteorological Service, DWD, based on the reference period 1961—1990).  

Study 

area 

Historical 

inventory 

(yr) 

Area covered by 

historical 

vegetation map 

(ha) 

Size of 

protected 

area (ha) 

Mean annual 

precipitation 

(mm yr-1) 

Mean annual 

temperature 

(°C) 

Elevation 

(m a.s.l) 

Coordinates 

(GC-WGS 1984) 

Historical source 

Ems 1954 390 0 757 8.8 3 N 52°56’54’’ 

E 07°17’32’’ 

Ernsting et al. 

(unpubl.) 

Weser  1956 155 19 654 9.1 27 N 52°30’58’’ 

E 09°05’52’’ 

Hübschmann et al. 

(unpubl.) 

Aue 1946 264 0 620 8.9 67 N 52°16’20’’ 

E 10°22’48’’ 

Ellenberg (unpubl.) 

Nuthe 1958 376 0 560 8.8 115 N 52°02’44’’ 

E 12°14’40’’ 

Hundt 1958 

Luppe 1967 186 0 500 9.5 90 N 51°21’43’’ 

E 12°07’57’’ 

Gräfe (unpubl.) 

Helme 1969 1081 0 484 8.5 155 N 51°26’33’’ 

E 10°57’02’’ 

Hundt 1969 

Havel 1953 293 293 526 8.7 22 N 52°43’44’’ 

E 12°13’00’’ 

Fischer 1980 
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Study area selection 

We searched the relevant libraries and archives for the few existing high-quality historical 

vegetation maps that clearly distinguished between wet and species-rich mesic meadows. 

The historical maps of the study areas in West Germany (Ems, Weser and Aue) dated from 

1946—1956, long before major land use changes occurred as a consequence of the 

agricultural policy of the EU. The East German vegetation maps were compiled in the period 

1953—1969. The later maps were considered to be comparable to those from West 

Germany, because the intensification of agriculture started in East Germany only in the late 

1960s (Hundt 2001; Bauerkämper 2004). In the case of the protected reference area (Havel), 

the oldest vegetation map dated from 1980; it was backdated by using monochromatic aerial 

photographs of 1953. This was based on the assumption that the composition of plant 

communities did not change much because the whole area has been protected during the time 

of interest here. The Havel study area was treated only as a reference and was not included 

in the statistical analyses. 

 

Map standardisation and re-surveying procedure 

All selected historical vegetation maps were based on phytosociological units, which were 

in most cases accompanied by tables of phytosociological relevés. Because the 

phytosociological system has experienced major changes over the past decades and different 

underlying classification schemes had been applied in the seven areas, we decided to 

standardise the habitat categories identified in the historical maps using a widely applied key 

for habitat surveys developed by nature protection agencies in Germany (Drachenfels 2004). 

This key is based on structural properties of the vegetation, indicator species, species 

richness data and abiotic habitat characteristics such as nutrient and water availability. The 

habitat key was used in the historical maps and was also applied in the 2008 re-survey. Two 

broad floodplain meadow habitat classes were defined based on moisture conditions and 

species richness: wet meadows (including 98-100% of Calthion communities) and species-

rich mesic meadows that have lower groundwater tables than the former and are in most 

cases not subject to inundation. Habitat type definitions and corresponding 

phytosociological units are summarised in Table 5 and Fig. 3 in the Appendix. 

Phytosociological relevés that further document the historical and recent meadow vegetation 

of the study areas have been registered under GIVD-EU-DE-009 (GIVD 2010).  



31 

 

The current vegetation was mapped during field-surveys between mid-May and mid-

September 2008 using digital geo-referenced aerial ortho-photos from 2005—2007 with a 

ground resolution of 20—40 cm as basic maps. In cases where historical meadow sites had 

been transformed to other habitat types, the type of replacement habitat was recorded using 

a categorization system of six classes: (1) species-poor, intensively managed grasslands; (2) 

abandoned floodplain marshes and grassland fallows; (3) woodland and scrubland; (4) arable 

fields; (5) water-bodies, and (6) settlements and industrial areas.  

 

Geo-statistical analysis 

The historical and actual vegetation maps were digitised in a vector framework using 

corresponding map resolutions (scale c. 1:10 000) and were geo-statistically analysed using 

ArcGIS-ArcInfo software, v. 9.2 (ESRI 2006-2009) and the program Fragstats 3.0 

(McGarigal et al. 2002).  

Intersecting the two vector layers allowed demarcating areas where historically-old 

meadows persisted, new meadows had been created, and historical meadows had been 

replaced by other habitat types.  

Habitat fragmentation analysis examined the area covered by the target meadow 

types in historical and recent times. For each study area and time period, individual grid 

maps (4 m × 4 m resolution) were produced illustrating the spatial distribution of (1) wet 

meadows, (2) species-rich mesic meadows, and (3) the combined area of the two meadow 

types. The grids were imported to Fragstats 3.0 and the following class-level landscape 

metrics were calculated: percentage of the landscape covered by a given habitat type 

(PLAND), number of patches (NP), patch density (PD), area-weighted mean of patch size 

(AM), total class area (CA) and effective mesh size (MESH) equalling the sum of patch area 

squared, summed across all patches of the corresponding patch type and divided by the total 

landscape area. For MESH, AM and total extent, the significance of changes between the 

two time periods was tested by a Wilcoxon-test for pair-wise differences using R-software 

(R Development Core Team 2010). 
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Results 

Changes in the extent of floodplain meadows  

In the six unprotected study areas, wet and species-rich mesic meadows declined enormously 

between the 1950/60s and 2008 (differences significant at p ≤ 0.05; Fig. 2, Tab. 2). On 

average, wet meadows lost 85.2% of their former area, and species-rich mesic meadows 

decreased by 83.6%. Wet meadows were nearly completely lost at the Weser and the Luppe 

with <5 ha remaining, while species-rich mesic meadows were reduced to about 8 ha. In the 

largest study area (Helme), a 83% loss led to a remaining wet meadow area of 100.3 ha, of 

which 77.5 ha were historically old and 22.8 ha were newly created after 1969. The Helme 

floodplain also harbours at present the largest area of species-rich mesic meadows (12.3 ha), 

of which 8.3 ha were newly created. The current extent of wet meadows in the Havel 

protected area was comparatively large (100.8 ha), but only about a third was historically 

old. While wet meadows at the Havel declined only slightly during the past decades (by 

7.4%), the loss of species-rich mesic meadows was substantial (54.3%).  

 

Fig. 2 Areas of wet meadows (black) and species-rich mesic meadows (grey) in two of the seven 

study areas (a) Ems, (b) Havel, in the 1950/60s and in 2008. Other habitat types: white areas.  
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Table 2 Changes in the area of wet and species-rich mesic floodplain meadows between the 1950/60s 

and 2008.  

Study area Historical area in 

the 1950/60s (ha) 

Current area 

in 2008 (ha) 

Historically old area 

remaining in 2008 

(ha) 

New area 

in 2008 

(ha) 

Total area loss 

1950/60s - 

2008 (%) 

Wet meadows  

Ems 242.6 28.7 20.8 7.9 -88.2 

Weser 100.4 4.1 2.8 1.3 -95.9 

Aue 28.1 7.9 3.8 4.1 -71.9 

Helme 575.8 100.3 77.5 22.8 -82.6 

Luppe 22.2 3.0 0.5 2.5 -86.5 

Nuthe 343.8 48.7 48.0 0.7 -85.8 

Mean (± SD) 218.8 (±196.9) 32.1 (±34.5) 25.6 (±28.4) 6.6 (±7.6) -85.2 (±7.2) 

Havel 108.8 100.8 32.9 67.9 -7.4 

  

Species-rich mesic meadows  

Ems 109.6 8.9 3.2 5.7 -91.9 

Weser 45.0 7.1 0.3 6.8 -84.2 

Aue 158.6 4.6 0.3 4.3 -97.1 

Helme 34.5 12.3 4.0 8.3 -64.3 

Luppe 92.6 8.2 2.8 5.4 -91.1 

Nuthe 27.2 7.3 0.1 7.2 -73.2 

Mean (± SD) 77.9 (±47.0) 8.1 (±2.3) 1.8 (±1.6) 6.3 (±1.3) -83.6 (±11.5) 

Havel 71.7 32.8 12.9 19.9 -54.3 

 

Replacement of historical floodplain meadows by other habitat types 

Landscape conversion was large in all unprotected study areas, with historically-old wet 

meadows being nowadays present on only 9.1% (± 5.5 SD) of their former area, and only 

3.1% (± 4.3 SD) of species-rich mesic meadows persisting (Tab. 3). Wet meadows were 

mainly substituted by species-poor, intensively managed grasslands. In the Ems, Aue and 

Nuthe areas, 45—60% of the meadows were converted into species-poor grasslands. At the 

Luppe, most meadows were converted to arable fields (47%) followed by the proportion of 

grasslands transformed to species-poor, intensively used grasslands (26%). In the Weser 

area, species-poor grasslands, fallows and arable fields were established, replacing former 

meadows. At the Helme, a dam was constructed in 1969, resulting in the conversion of much 

of the meadow area to a lake. The formerly widespread species-rich mesic meadows at the 

Ems, Weser, Aue and Luppe were largely substituted by arable fields (42—72%), followed 

by transformation to species-poor, intensively used meadows. In the Nuthe and Helme areas, 

formerly species-rich mesic meadows were to >50% replaced by species-poor meadows.  

The situation was completely different in the Havel area. Here, wet meadows 

remained the most abundant habitat type (30% of the area). More than 90% of the former 
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species-rich mesic meadows remained grasslands, even though a large proportion was 

transformed to species-poor, intensively managed grassland (37%). Another 40% of the 

study area referred to newly established wet meadows.  

 

Habitat fragmentation  

The various investigated measures of landscape structure indicated similarly large changes 

over the 50-year period for wet and species-rich mesic meadows, except for the protected 

Havel area where only very small changes occurred (Tab. 4). The remaining wet meadows 

of the unprotected floodplains experienced increasing fragmentation, as indicated by the 

patch size (area-weighted mean, AM) which decreased from 33.6 ha in the first census period 

to 2.8 ha in 2008 (difference significant at p ≤ 0.05). However, trends in the number of 

patches per study area were not consistent. Effective mesh size (MESH), which gives the 

degree of fragmentation, dramatically decreased in the wet meadow area from a mean of 

24.14 to 0.25 ha (p ≤ 0.05). In contrast, in the protected Havel area, AM and MESH remained 

more or less constant, indicating constancy in the degree of habitat fragmentation during the 

past decades. 

In contrast to the wet meadows, the landscape metrics analysis for the species-rich 

mesic meadows showed few consistent trends over the 50 years, even if the protected area 

is excluded. Only MESH showed a uniform and significant decline for all unprotected study 

areas with a decrease from a mean of 2.31 to 0.05 ha (p ≤ 0.05). In comparison, AM of the 

species-rich mesic meadows in the Havel area decreased only slightly and this parameter 

remained several times larger than at the other study sites (8.9 ha). The mean MESH value 

at the Havel decreased from 2.86 to 1.00.  

Pooling the data of the two meadow types confirmed the trends shown in the separate 

analyses with significant decreases in both AM and MESH (p ≤ 0.05) in the unprotected 

area. At the Havel, this overarching analysis also showed a decline in AM and MESH (p ≤ 

0.05). However, the landscape structure parameters in this area were not only 50 years ago, 

but also in 2008 several times larger than those from the unprotected study areas 

demonstrating a relatively low degree of grassland fragmentation.  
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Table 3 Transformation of historical species-rich mesic meadows (MM) and wet meadows (WM) into other land use types (1950/60s to 2008), and remaining area of 

historically old meadows (italics) in the seven study areas, expressed as percentage of the area in the 1950/60s. The mean refers to the average of the six unprotected 

study areas; the protected Havel area is presented as a reference. 

 Species-rich 

mesic 

meadows 

Wet meadows Species-poor, 

intensively managed 

grasslands 

Marshes, fens, 

watersides and 

fallows 

Woodlands and 

shrublands 

Arable fields Water-bodies Settlements, 

industrial 

areas 

Original habitat type MM WM MM WM MM WM MM WM MM WM MM WM MM WM MM WM 

Ems 2.9 2.0 4.2 8.6 36.4 44.4 4.0 7.1 2.1 4.5 49.6 32.3 0.5 0.7 0.3 0.6 

Weser 0.6 7.0 2.9 2.8 27.9 18.3 9.3 32.6 3.6 21.5 50.1 16.0 1.5 0.4 4.1 1.4 

Aue 0.2 6.5 2.9 13.5 37.9 51.3 6.1 11.7 7.0 13.4 42.8 1.8 0.5 1.4 2.8 0.4 

Nuthe 11.6 1.2 9.1 13.5 72.2 59.8 0.5 2.0 1.9 7.7 3.7 14.7 0.9 0.9 0.1 0.2 

Luppe 3.0 11.6 0.1 2.1 14.1 26.1 2.8 2.1 7.7 9.6 71.5 46.6 0.5 1.0 0.2 0.8 

Helme 0.2 0.8 0.8 14.0 50.7 30.3 10.6 9.5 0.1 0.5 0.2 0.1 37.0 44.5 0.3 0.4 

Mean 3.1 4.8 3.3 9.1 39.9 38.4 5.6 10.8 3.7 9.5 36.3 18.6 6.8 8.2 1.3 0.6 

Havel 18.1 11.7 40.1 30.3 37.3 26.5 3.1 10.5 0.9 2.7 0.5 0.0 0.0 18.0 0.0 0.4 
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Table 4 Landscape metrics for wet meadows, species-rich mesic meadows and their combined areas in the 7 studied floodplain study areas. 

Significant differences between the 1950/60s and 2008 are marked by asterisks (*). Floodplain meadows (total) are the sum of wet and species-rich 

mesic meadows.  

Study area Year of 

first 

inventory 

Number of 

patches 

1950/60 

Number of 

patches 

2008 

Remaining 

number of 

patches (%) 

Patch density 

1950/60 

(n 100 ha-1) 

Patch density 

2008  

(n 100 ha-1) 

Mean patch 

size 1950/60 

(ha) 

Mean patch 

size 2008 

(ha) 

Effective 

mesh size 

1950/60 (ha) 

Effective 

mesh size 

2008 (ha) 

Wet meadows 

Ems 1956 231 111 48.1 59.2 28.5 60.1 1.6 37.36 0.12 

Weser 1954 48 13 27.1 30.9 8.4 17.9 0.8 11.54 0.02 

Aue 1946 26 40 153.8 9.8 15.2 3.3 1.0 0.36 0.03 

Helme 1969 203 32 15.8 18.8 3.0 30.2 9.3 16.08 0.86 

Luppe 1967 10 8 80.0 5.4 4.3 3.8 0.9 0.45 0.01 

Nuthe 1958 29 45 155.2 7.7 12.0 86.3 3.3 79.04 0.43 

Mean (SD)  91.2 (±90.0) 41.5 (±33.8) 80.0 (±56.3) 22.0 (±18.7) 11.9 (±8.5) 33.6* (±30.4) 2.8* (±3.0) 24.1* (±27.5) 0.25* (±0.3) 

Havel 1953 18 37 205.6 6.2 12.6 11.5 12.3 4.29 4.22 

Species-rich mesic meadows 

Ems 1956 230 19 8.3 59.0 4.9 4.2 2.4 1.19 0.05 

Weser 1954 61 11 18.0 39.3 7.1 2.0 2.4 0.57 0.11 

Aue 1946 88 6 6.8 33.3 2.3 6.5 2.2 3.89 0.04 

Helme 1969 86 16 18.6 8.0 1.5 1.6 2.2 0.05 0.02 

Luppe 1967 16 16 100.0 8.6 8.6 16.2 1.1 8.08 0.04 

Nuthe 1958 51 14 27.5 13.6 3.7 1.2 1.0. 0.09 0.02 

Mean (SD)  88.7 (±67.6) 13.7 (±4.2) 29.9 (±32.1) 27.0 (±18.7) 4.7 (±2.5) 5.3 (±5.2) 2.1 (±0.5) 2.3* (±2.9) 0.05* (±0.03) 

Havel 1953 13 12 92.3 4.4 4.1 11.7 8.9 2.86 1.00 

 

Floodplain meadows (total) 

Ems 1956 110 120 109.1 28.2 30.8 65.7 1.8 59.33 0.17 

Weser 1954 67 22 32.8 43.1 14.2 17.0 1.8 15.95 0.13 

Aue 1946 65 43 66.2 24.6 16.3 7.4 2.6 5.22 0.12 

Helme 1969 262 45 17.2 24.2 4.2 29.0 9.1 16.35 0.95 

Luppe 1967 18 21 116.7 9.7 11.3 22.2 1.2 13.70 0.07 

Nuthe 1958 17 57 335.3 4.5 15.2 99.8 3.1 98.55 0.46 

Mean (SD)  89.8 (±83.3) 51.3 (±33.3) 112.9 ±105.9) 22.4 (±12.6) 15.3 (±8.0) 40.2* (±32.3) 3.3* (±2.7) 34.9* (±33.4) 0.3* (±0.3) 

Havel 1953 12 35 291.7 4.1 12.0 41.7 18.9 25.73 8.65 
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Discussion 

Habitat loss of wet and species-rich mesic meadows in unprotected areas 

Despite the different political histories of East and West Germany from 1945 to 1989 and 

corresponding differences in the agricultural development, the six unprotected study areas 

showed similar trends of grassland development with severe losses in the spatial extent of 

wet and species-rich mesic meadows (total losses > 80%). Similarly high losses of wet 

meadows were detected by several other case studies in European countries. In a study from 

the U.K., the extent of lowland floodplain grasslands was reduced by > 80 % and much of 

the remaining wet meadows had been intensified from the 1930s until the 1980s (Treweek 

et al. 1997). In Hungary, the area of wet meadows decreased by two-third, which was mainly 

related to intensification (Joyce and Wade 1998). Soons et al. (2005) described the almost 

complete disappearance of wet and moist grasslands over the last 100 years for three studied 

landscapes in the Pleistocene lowlands of the Netherlands. In our study, we found evidence 

for a general decline in area in both meadow types, but we had to reject the hypothesis that 

wet meadows have experienced significantly larger losses because of their higher sensitivity 

to drainage.  

For their present extent, site history seems to play an important role: in the few study 

sites where a relatively large proportion of historically-old meadows persisted until 2008, 

the absolute extent of meadows in the past was generally larger than elsewhere. However, 

while the percentage of remaining historical area in wet meadows was higher than in mesic 

meadows, the establishment of new grasslands was more important in mesic than in wet 

meadows. Large parts of the current wet and species-rich meadows are not historically old. 

Recently established wet meadows are generally less species rich and more uniform in their 

species composition than old ones (Bissels et al. 2004). Klimkowska et al. (2007) found that 

the restoration success of wet meadows in western Europe is rather limited, and is more 

successful in cases where the remaining meadows still hold more target species. This 

emphasizes the outstanding importance of extensively used, historically-old grasslands for 

nature conservation.  

 

Transformation of meadows in the course of agricultural intensification 

We found that a large part of the former wet and mesic grasslands (about 40%) had been 

substituted by species-poor, intensively used grasslands. Agricultural intensification which 
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includes the application of chemical fertilisers, drainage, re-sowing often combined with 

ploughing, and a shift from hay-making to silage, in fact represents the most serious threat 

to north-western and central European lowland meadows (Hodgson et al. 2005; Wittig et al. 

2006; Rodwell et al. 2007).  

A considerable part of the grassland area has been transformed to arable fields during 

the past 50 years, which should have been associated with a large loss of soil organic carbon 

to the atmosphere (Guo and Gifford 2002). Drainage of meadow areas typically enhances C 

and N mineralization (Wassen and Olde Venterink 2006), resulting in internal eutrophication 

of the grasslands.  

Patterns of conversion strongly depend on the soil moisture regime. Mesic grassland 

areas were twice as often converted into arable fields than wet meadows, mainly due to the 

high costs of draining wet grasslands. In contrast, former wet meadows were twice as often 

abandoned than mesic meadows and thus were frequently invaded by scrub, or converted to 

forest plantations (mostly poplar). Abandoned meadows may soon be dominated by 

Phragmites australis or tall sedges with negative effects on plant diversity (Marschalek et 

al. 2008).  

 

Fragmentation of floodplain meadows 

Agricultural intensification is typically linked to a re-organization of the production 

landscape, shifting to larger arable fields and homogeneously structured, intensively used 

grassland patches. For typical floodplain meadow habitats, which are linked to extensive 

land use practises, we found the opposite trend. Since the 1950/60s, floodplain meadows 

became highly fragmented as reflected by significant decreases in the structural parameters 

AM and MESH (an exception is the AM value of species-rich mesic meadows). Clearly, 

both measures are sensitive to artefacts introduced by digitising and rastering of maps. 

However, the 50-year differences are so large and occurred so uniformly in all six study 

areas, that a misinterpretation of trends can be excluded. Moreover, the direct comparison of 

historical and current maps (see Fig. 2) supports the data presented in Tab. 2-4. Soons et al. 

(2005), who investigated changes in Dutch moist and wet grasslands since 1900, came to 

similar conclusions. They found the largest reduction in patch size (AM) during the first half 

of the 20th century, with an average reduction by 0.2 ha per year over the last 100 years. Two 

of our study areas (Helme and Nuthe) showed a larger effective mesh size (MESH) in 2008 
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than the other areas. At these sites, wet meadows covered a particularly large area in the 

1950/60s which seems to have retarded fragmentation in the past 50 years.  

Large patches of meadow vegetation generally harbour a larger proportion of the 

species pool since edge effects are reduced (Kiviniemi and Eriksson 2002). A high 

connectivity of meadow localities in historical time may also have a positive effect on the 

species richness of temperate grasslands in recent time (Lindborg and Eriksson 2004). In 

addition, many typical wet meadow species are adapted to seed dispersal by flooding (Gerard 

et al. 2008). Given that Central European river floodplains nowadays are less frequently 

flooded than in the past, the probability of natural seed input from abroad is most likely 

smaller in remnant areas that are small and isolated than in large patches. In addition, isolated 

meadow patches of small size will expose their plant populations to the increased risks of 

genetic drift and the harmful consequences of stochastic population fluctuations that may 

eventually lead to their extinction.  

 

Local and continent-wide drivers of vegetation change 

Substantial area losses were also recorded in the protected Havel floodplains, in particular 

in the species-rich mesic meadows, which demonstrates that the existing legislative tools for 

nature protection are not sufficient in the agricultural landscape, because they allowed a 

certain degree of agricultural intensification, at least in the years before 1990. In most nature 

reserves dedicated to protect species-rich meadows, it is nowadays prohibited to intensify 

agricultural management, but this does not exclude effects of atmospheric N deposition, 

nutrient input through sedimentation processes (Gulati and van Donk 2002), and climatic 

changes, which act as additional large-scale drivers of vegetation change in both unprotected 

and protected meadow areas. Despite these overarching threats, the Havel example 

demonstrates that protection efforts were successful in preserving a large patch of species-

rich wet and mesic meadows with sufficient connectivity of the localities in the landscape. 

In most parts of north Germany and also in the Netherlands (Soons et al. 2005), valuable 

mesic and wet meadows are nowadays restricted to such conservation areas.  
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Conclusion 

The extent and habitat quality of north German lowland floodplain grasslands has 

dramatically decreased since the 1950s, and the loss of endangered grassland habitats is an 

ongoing process in Germany (Ammermann 2008; Lind et al. 2009). Our representative 

sample of lowland floodplain areas shows that in most cases only isolated patches of the 

formerly widespread floodplain meadows persisted until today. Larger meadow patches (>3 

ha) were conserved only in the Helme and Nuthe areas which had the largest grassland areas 

in the 1950/60s. A low degree of fragmentation may facilitate future restoration and nature 

conservation efforts, because the dispersal of many grassland species is low (Soons et al. 

2005; Bischoff et al. 2009), and the restoration of typical grassland habitats is difficult 

(Bakker and Berendse 1999). Thus, enhancing or at least maintaining the connectivity of 

remaining grassland patches is a prerequisite to increase population sizes and prevent local 

extinction of endangered species.  

Our study provides evidence that the current extent and structure of floodplain 

meadows is also influenced by the site history. In areas where the historical extent of 

floodplain meadows was highest and historical fragmentation lowest, are the percental losses 

in species-rich mesic grasslands smaller and the present-day fragmentation lower. We 

conclude that the losses in wet and mesic grasslands with high conservation value are 

dramatic over in north Germany calling for large-scale floodplain meadow sanctuaries in 

areas where remnants of historically old grasslands still persist. 
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APPENDIX:  

Appendix Table 5 Criteria applied for classifying meadows during current vegetation mapping and on historical vegetation maps and relevés in the two main 

meadow habitat classes. Nomenclature of plant communities (syntaxa and their synonyms) and of habitats follows Rennwald (2000) and Drachenfels (2004).  

 Species-rich mesic meadows 
 

Wet meadows 
 

Habitat code 
(Drachenfels 2004) 

9.1.1, 9.1.3, 9.1.5: Mesophilous grasslands 9.3: Wet meadows dominated by sedges or forbs; 
9.4: Other wet meadows 
 

Moisture 
conditions 

Moderately dry to moderately wet Permanently or temporarily wet, either caused by high levels 
of groundwater or by temporary flooding 
 

General habitat 
description 
(Drachenfels 2004) 

Rich to moderately rich in typical meadow species, structure 
of grassland or fallow with a still reasonably high number of 
typical grassland species, usually mown (1-)2(-3) times per 
year, characteristic mixture of tall and low grasses, usually 
rich in herbs.  
 

Grassland on wet or periodically wet sites with either high 
cover of sedges and/or rushes, or of herbs indicating wet 
conditions. Usually low-intensity mown or grazed grassland, 
if fallow then wet meadow indicators still present. 
 

Characteristic 
phytosociological 
units included in 
meadow groups 
after von 
Drachenfels (2004) 

Mesic to moist variants of the Cynosurion or the 
Arrhenatherion s.l.: e.g. Lolio perennis-Cynosuretum cristati 
(lotetosum,luzuletosum, plantaginetosum mediae, typicum); 
Arrhenatheretum alopecuretosum; Dauco-Arrhenatheretum 
eliatoris, Anthoxanthum odoratum-Holcus lanatus grassland  
 

Molinietalia caeruleae and Potentillo-Polygonetalia 
communities:, e.g. Junco Molinietum; Molinietum caeruleae; 
Angelico-Cirsietum oleracei (incl. caricetosum fuscae); 
Bromo-Senecionetum (incl. agrostietosum caninae); 
Polygono-Cirsietum oleracei; Ranunculo-Alopecuretum 
geniculati 
 

Phytosociological 
units as assigned 
on the historical 
vegetation maps 
(cp. Table 1) 

Galio molluginis-Alopecuretum pratensis; Angelica sylvestris-
Arrhenatherum elatius community; Dactylis glomerata-
Cirsium oleraceum community, Lolio perennis-Cynosuretum 
cristati (lotetosum, luzuletosum, typicum); Arrhenatheretum 
elatioris (alopecuretosum pratensis, deschampsietosum 
cespitosae, sanguisorbetosum officinalis); Alopecuretum 
pratensis; Dauco-Arrhenatheretum eliatoris; Filipendulo-
Ranunculetum polyanthemi 
 

Molinietalia caeruleae and Potentillo-Polygonetalia 
communities: Angelico-Cirsietum; Polygono-Cirsietum; 
Carex-Cirsium oleraceum community; Bromo-Senecionetum; 
Scirpietum sylvatici; Junco-Molinietum; Rumici crispi-
Alopecuretum geniculati; Ranunculo-Alopecuretum 
geniculati; Sanguisorbo officinalis-Silaetum silai;  
Carex acuta meadows; Poa palustris-Carex acuta 
community; Phalaridetum arundinaceae; Glycerietum 
maximae; Pediculari palustris-Juncetum filiformis; Cnidio-
Deschampsietum 
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Fig. 3 Detrended Correspondance Analysis (DCA) of wet and mesic meadow relevés from the 

1950/60s and 2008 (423 relevés). The samples are coded according to main habitat classes: circles, 

wet meadows; squares, mesic meadows; filled symbols, historical relevés (1950/60s); open symbols, 

current relevés (2008). Cover values are log-transformed (downweighting of rare species, 

eigenvalues / length of gradient axis 1: 0.364 / 4.124; axis 2: 0.267 / 3.672). Secondary variables 

were correlated with DCA axis in a post hoc manner (mean Ellenberg indicator values (EIV) for 

moisture (F) and nutrients (N); species richness). 
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Abstract 

There is growing concern that biodiversity loss in European agricultural landscapes is having 

negative effects on functional trait diversity. Long-term studies examining vegetation changes 

from the period before agricultural industrialisation are however rare. Here, we ask how 

management intensification and increased nutrient input initiated in the 1950/60s have altered 

grassland plant community composition, species diversity and functional trait composition 

using comprehensive datasets from five floodplain regions (plus one protected reference region) 

in northern Germany. Sites with available historical relevés and vegetation maps (1950s/1960s, 

1990s) were resampled in 2008 to facilitate the analysis of a period spanning four to five 

decades.  

Plant community composition changed tremendously in all study regions during the 50 

year period, which was related to increasing Ellenberg indicator values for nutrient availability. 

Species richness at the plot-level fell by 30-50% over the period, and losses in functional 

diversity were equally large. A non-formal comparison with the results from the protected 

reference study region indicates that the changes may mostly be attributable to local nutrient 

input rather than to supra-regional climate change. Our results indicate a consistent trend toward 

much more species-poor communities dominated by mow-tolerant, N-demanding competitive 

grasses, whereas species with more ruderal strategies, species flowering early in the season and, 

in particular, insect-pollinated herbs have all decreased. The substantial loss of nectar-

producing grassland herbs is likely to have negative effects on the abundance of pollinating 

insects, with consequences for the grassland animal communities. This highlights the growing 

need for adequate grassland management schemes with low N input to preserve high-nature-

value grassland. 

 

Keywords: managed grasslands; Germany, historical comparison; land-use intensification; N 

fertilisation; plant functional traits; zoogamous plants 
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Introduction 

The rapid intensification and industrialisation of agriculture in the second half of the 20th 

century has severely affected the structure and functioning of grasslands and arable fields in the 

industrialised regions of the world (Dallimer et al. 2009; Fried et al. 2009b). In the agricultural 

landscapes of Central Europe, moist and mesic grasslands count among the habitat types that 

have experienced the severest losses (Prach 2008), and they have currently come under 

additional pressure through the growing interest in energy from biomass initiatives and fibrous 

crops (Lind et al. 2009). As a consequence, the largest group of threatened higher plants in 

Germany comprises taxa from extensively managed grasslands (Korneck et al. 1998; Korsch 

and Westhus 2004).  

Species richness and composition in agro-ecosystems can be influenced by several 

aspects of management including mechanical disturbance, such as ploughing or mowing, and 

the use of agrochemicals (Smart et al. 2005; Morecroft et al. 2009; Dupré et al. 2010). Perhaps 

the most persistent effect is caused by nitrogen (N) input, which facilitates the increasing 

dominance of a limited number of strongly competitive plants leading to floristic 

homogenisation, decreasing species richness and changes in functional trait composition 

(Kahmen et al. 2002; Smart et al. 2006; Walker et al. 2009). Communities on infertile soils 

(such as acidic grasslands on Leptosols) are already threatened by relatively low N inputs from 

aerial sources while agro-ecosystems on richer soils (such as moist meadows on Gleysols) are 

characterised by higher critical N loads, and have thus been found to respond only to higher 

levels of N deposition and to fertilisation (Bobbink et al. 2010, Stevens et al. 2010). 

Concern has been growing that functional diversity is declining as well and that this will 

have an effect on ecosystem functioning (Bernhardt-Römermann et al. 2008; Fried et al. 2009a; 

Laliberté et al. 2010). Recent evidence from grassland and arable field studies supports this 

assumption (Flynn et al. 2009; Vandewalle et al. 2010). The loss of insect-pollinated plants and 

associated pollinators serves as a prime example for losses in functional groups and associated 

losses at higher trophic levels (Biesmeijer et al. 2006; Weiner et al. 2011). Such trends are of 

great concern to nature conservation, as temperate grasslands can harbour a high diversity of 

plants and animals as long as they are not managed too intensively (Wallis de Vries et al. 2002; 

Ellenberg and Leuschner 2010).  

Qualitative and quantitative trends in taxonomic and functional diversity differ between 

taxa and ecosystems. In vascular plants, functional diversity rarely shows disproportionately 

greater declines than taxonomic diversity (Flynn et al. 2009), and losses in functional diversity 

are often even lower than in taxonomic diversity, pointing to functional redundancy (Sasaki et 
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al. 2009; Mayfield et al. 2010). However, patterns of change over time are not sufficiently 

understood because most studies on the effects of land-use change on biodiversity are based on 

the comparison of sites along land-use gradients (space-for-time substitution; Flynn et al. 2009; 

Laliberté et al. 2010). The few true ‘before and after’ comparisons either cover limited time 

scales or concentrate mainly on changes in taxonomic diversity (Tamis et al. 2005; Britton et 

al. 2009), because suitable historic data are rare.  

In Central Europe, land-use changes in the 1950s to 1970s had a particularly notable 

effect on the current structure of the agricultural landscapes (Bender et al. 2005; Prach 2008; 

Pancer-Koteja et al. 2009). Raster surveys and local floras provide data for the time before the 

1950/60s (Tamis et al. 2005; Pompe et al. 2008; Knapp et al. 2010), but they mostly indicate 

only species presence in a given region rather than giving information on species abundance in 

local communities. Moreover, raster surveys tend to be over-optimistic from an ecosystem 

service and nature conservation perspective because species that are currently present with low 

numbers or at only a few specific sites, may be irrelevant for ecosystem functioning. In 

vegetation science, a number of excellent long-term studies are available covering the last three 

decades, but only a few permanent plots were established in the 1960s or earlier (Bennie et al. 

2006; Wittig et al. 2007; Kuiters et al. 2009; Walker et al. 2009). Indeed, the importance of 

permanent stand-level monitoring was not widely realised until the late 1960s or 1970s, when 

most of the current monitoring schemes were implemented (Lengyel et al. 2008). This renders 

the development of any general conclusions on the effects of land-use change on plant diversity 

since the 1950/60s difficult.  

Phytosociologists were among the first to describe profound changes in plant 

community composition in the agricultural landscape (Tüxen 1955; Meisel 1970; Meisel and v. 

Hübschmann 1976), although their conclusions were not based on statistically reliable analyses 

of larger datasets. Mining of the increasingly available vegetation databases (Bruelheide and 

Chytrý 2000; Schaminée et al. 2007) allows for a more extensive temporal and spatial coverage, 

but problems arise from inconsistent sampling methodologies and non-random sampling in the 

past, which requires careful statistical processing and interpretation of time-series data (Palmer 

1993; Knollová et al. 2004; Smart et al. 2005; Haveman and Janssen 2008). Moreover, 

supplementary information is limited, and even crude locality data are often absent. It may 

therefore be difficult to disentangle spatial effects from temporal trends in vegetation 

composition.  

Here, we adopt a strategy that is intermediate between the re-sampling of fixed sites and 

the mining of large historical databases. Older publications were searched to find case studies 
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where both vegetation relevés and vegetation maps were available, thereby ensuring that new 

relevés were taken for similar communities and in a comparable landscape context. We chose 

five study regions along a west-east gradient in the northern German lowlands that were located 

in floodplain areas and had been under a non-intensive mowing and grazing regime that was 

typical for moist grasslands before the onset of agricultural intensification. Historical data were 

also available for one particularly well preserved region in the Havel floodplain that had been 

protected by national and European law since 1967. Here, land-use remained essentially similar 

over the observation period and thus allowed for a non-formal assessment of whether potential 

supra-regional drivers of vegetation change, such as shifts in climate or nitrogen deposition, are 

relevant influencing factors (Stevens et al. 2011).  

We tested the following hypotheses: 

i) Since the 1950s, floodplain meadows have undergone major changes in community 

composition and associated reductions in species diversity.  

ii) The main drivers of shifts in species composition and of diversity losses are nutrient (mainly 

nitrogen) input and grassland drainage, i.e. management-related factors. 

iii) Increased fertilisation and mowing frequency have led to substantial losses of functional 

diversity with insect-pollinated species being especially affected.  

The data analysis concentrated on the five main study regions that underwent 

pronounced land-use intensification in the past 50 years; the data from the protected reference 

site are used only for comparison. 

 

Materials and Methods 

Study areas 

All five sites (plus the reference site) are situated in floodplains built by alluvial sediments with 

soils varying from anhydromorphic Cambisols to groundwater-influenced Gleysols. Grassland 

communities range from mesic meadows (mainly of the alliance Arrhenatherion) to moist 

meadows (of the Molinion, Cnidion and Calthion alliances). Over the past 50 years, not only 

have land-use systems and landscape structures been altered in the study regions, but changes 

in the hydrodynamic regime and river morphology have taken place as well (Tab. 1 and 

supporting information / electronic appendix S1). The total area covered by grassland in the 

study regions decreased from a mean proportion of 91% in the 1950/60s to 46% in 2008 (Krause 

et al. 2011). Former grasslands were replaced by arable fields (2008: 21%), artificially created 

water bodies (mainly in the Helme region: 22%) and forest/scrub (4%). In species-rich mesic 
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grasslands, 98% of the previous area was lost, while moist species-rich meadows were reduced 

by 88%. Intensive pastures (alliance Cynosurion) or sown grass fields greatly increased in size. 

The conversion of grassland to other agro-ecosystem types is a widespread trend in Central 

Europe (Prach 2008; Lind et al. 2009), and the resulting effects on community composition are 

tremendous. Here, we concentrate on the more subtle changes in community composition that 

took place on sites that are still covered by grassland, i.e. persistent meadow and pasture sites 

with more or less altered species composition. 

 

Sampling approach 

For the 1950/60s, 385 phytosociological relevés were available for the five main study regions 

and 174 relevés for the protected Havel region (Tab. 1). Since the exact location of the historical 

vegetation relevés was not known, we digitised vegetation maps from the 1950/60s and 

developed a set of stratified randomly selected sampling points for the former grasslands using 

GIS-Hawth’s Tools (Beyer 2004). In 2008, the chosen coordinates were visited in the field 

using standard handheld GPS (Garmin, Olathe, Kansas). Relevés were sampled where sites 

were still covered by grassland or related successional communities such as forb-rich fallows, 

but not arable fields or closed shrub/forest communities. In addition, particularly species-rich 

meadow stands were selected in a similar manner as had been practised in historical surveys 

(Chytrý 2001). Our relevé sample thus included both average and particularly well-developed 

(species-richer) grassland stands, ensuring that observed effects were not solely caused by 

artefacts introduced by concentrating on extreme samples alone (Palmer 1993). The two 

datasets showed qualitatively similar trends, and we thus report results from both randomly and 

deliberately positioned relevés together. 

Plot size in 2008 was 16-20 m², a common relevé size used in Central European 

grassland surveys (Bruelheide and Chytrý 2000). Since the plot size of the historical relevés 

was more variable (median 25 m2, inter-quartile range 25-35 m2), we additionally collected 

species richness data for a subset of 321 plots, where we also extended the sampling area to 50 

m².  

For three regions, additional relevés from the 1990s were available that had 

preferentially taken samples with known spatial positions (accuracy < 10 m). These plots were 

re-sampled in 2008.  

At each plot, all vascular plant species, their cover (Londo scale) and supplementary 

information were recorded. Bryophytes and lichens were omitted as historical records were far 

from complete in this respect.  
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Table 1 Overview of sampling sites, geographical coordinates, size, historical/current extent of 

grasslands, and the number of vegetation samples available for the three censuses (‘pref’ = 

preferentially chosen; ‘rand.’ = randomly chosen); data sources for historical samples are indicated 

below the table.  

   Locality Size Grassland  Area No. relevés 

      1950/60 1990 2008  

   °E/°N (ha) 1950s 2008 pref. pref. pref. rand. ∑ 

1 Wesera 9.1/52.5 156 145 44 131     25 156 

2 Aueb 10.4/52.3 265 240 113 51   3 37 91 

3 Helmec 10.9/51.5 1081 971 427 60   18 43 121 

4 Elster d 12.1/51.4 188 121 43 108 77 29 38 252 

5 Nuthe e 12.3/52.0 374 371 284 35 48 37 48 168 

reference          

6 Havel f* 12.1/52.4 293 193 221 174 26 25 21 246 

 ∑  (2357)   559 151 112 212 1034 

References: av. Hübschmann et al. 1954; bEllenberg 1952a, b; cHundt 1969; dAbdank 1995; Gräfe 1967; Täglich 1956; 
eHundt 1958; Schnelle 1992; Umwelt 1996; fBurkart 1998; Fischer 1980, 1990. 

*Data from the 1980s only, no older samples available but historical aerial photographs indicate limited changes. 

 

Data processing 

All data were stored in a Turboveg database (Hennekens and Schaminee 2001). The R package 

vegdata was used to access the data, amend the species’ taxonomy based on a standard list 

(GermanSL, Jansen and Dengler 2008), and convert values from various cover abundance 

scales to % cover (class mean). Subspecies were aggregated to species rank. The few taxa that 

were only identified to the genus level were included as separate taxa in the analyses of species 

richness, but were skipped in all other analyses.  

Information on Ellenberg Indicator Values (EIV), phytosociological affinities (see 

supporting information S2) and Red List statuses of the species (see supporting information S2) 

were also retrieved from the GermanSL package. We used cover (square-root)-weighted 

Ellenberg Indicator values as proxies for site conditions, but unweighted (presence/absence) 

values yielded essentially similar results (in all cases r²weighted/unweighted >0.8). We selected 

morphological and functional plant traits that are considered important in grassland 

communities and that were available for all our species (Dierschke and Briemle 2002; Klotz 

and Briemle 2002): Raunkiaer life form; plant longevity; propagule type and weight; indicator 

values for tolerance to mowing and grazing; fodder value; pollination type; phenological group; 

form of clonal growth, and plant life strategy (CSR system). To meet the requirements of the 

different analytical steps, the raw data (Tab. 1) were split into different sub-sets: 

 SETmain - 779 relevés with 436 species: Derived from the raw data by excluding relevés of 

the unprotected Havel area and 9 relevés with markedly different community compositions 



54 

 

(meadows on saline soils; Sörensen similarity to the other samples >2.5 standard deviations 

of average among-sample distance, McCune et al. 2002). 

 SETmulva - 779 relevés, 286 species: Derived from SETmain by excluding species that occurred 

in less than three relevés and the few unidentified taxa. This reduced the influence of poorly 

represented species in multivariate analysis, but had no influence on the species diversity 

patterns (correlation between richness in SETmain and SETmulva r²= 0.999).  

 SETfunct - 654 relevés, 281 species: Derived from SETmulva by excluding data from the 1990s 

that were not in the focus of the functional analysis. 

 

Statistical analysis 

Since our database consists partly of non-random vegetation samples (historical relevés), 

statistical analysis is, in the strictest sense, not allowed (Lájer 2007). We consequently focused 

our analysis on the description of patterns and used the results of statistical tests as 

supplementary information. We believe that such a procedure can still provide valuable 

information in cases where qualitatively better datasets are not available and cannot be 

generated (see also Oksanen 2001 for a similar argument).  

We found a weak but significant positive correlation between plot size and species 

richness in the complete dataset (both for untransformed and log-transformed data, r² < 0.05, p 

< 0.001). This association was even weaker (r² < 0.01, ns) when only the historical data were 

analysed, even though the range of plot sizes was larger than in the recent samples. In the 2008 

samples, the median species richness of the smaller 16 m2 plots was 19 (inter-quartile range 14 

to 25, 19.9±7.9), while the median for the larger 50m² plots was 20 (IQR 15 – 27, 21.3±8.5). 

Although effects of plot size on species richness were significant (Wilcoxon test p < 0.001), 

they were nonetheless too small to introduce a major confounding effect in the subsequent 

analysis. 

Univariate analyses of diversity patterns in the historical and recent data were based on 

linear mixed models with plot size as a covariate and region as a random factor; the residuals 

were graphically checked for deviations from model assumptions. We used Indicator Species 

Analysis to detect species that showed strong frequency changes in the 50-year period; 

significances were obtained by permutating samples 999 times within a given region (Bakker 

2008). Species Accumulation Curves (100 permutations) were used to compare different 

sampling periods at a standardised sampling density (200 samples). In Detrended 

Correspondence Analysis, supplementary variables were correlated post hoc with the ordination 

axes. An initial correlation matrix PCA on the pooled species trait values for each vegetation 
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sample (tool functcomp in R-package FD) revealed that the first 10 significant axes captured 

only 57% of the total variance in trait space, suggesting that redundancy among traits did exist 

but was not very pronounced. We thus kept all traits for further analysis. Functional diversity 

(FD) was calculated based on the length of the branches of a cluster dendrogram for species, 

which was based on the Gower dissimilarity of the traits (UPGMA, Petchey and Gaston 2002; 

Podani and Schmera 2006, 2007). FD and measures such as functional richness have been 

shown to be sensitive to changes in alpha-diversity (Poos et al.2009; Pakeman 2011), so we 

also calculated the conceptually different RAO’s quadratic entropy and functional dispersion 

(Botta-Dukát 2005; Laliberté and Legendre 2010) in a cover-weighted form, again based on 

Gower dissimilarity. Values for RAO and functional dispersion correlated closely (r=0.97), so 

we only reported RAO values. Responses of specific traits over time were analysed using 

fourth-corner statistics, as modified by Dray & Legendre (2008, univariate approach, 

permutations under model 1).  

The statistical analyses were conducted with the software R 2.10.1(R Core Development 

Team 2004, packages vegdata, vegan, ade4, cluster, lme4, FD, see supporting information S3), 

PC-ORD (McCune and Mefford 2006) and CANOCO (ter Braak and Šmilauer 2002). 

 

Results 

Changes in species composition and diversity 

In the five main study regions, we found a total of 289 vascular plant species in 2008 (277 

relevés), while 299 species were recorded in the historical relevés from the 1950/60s (377 

relevés). Only 189 species were observed in both censuses. Compared against a standardised 

number of 200 samples (species accumulation curves), mean species numbers were 260 (±7) in 

the 2008 census and 264 (±6) in the 1950/60s census.  

Indicator Species Analysis revealed that more species had decreased than increased over 

time (Tab. 2, dataset SETfunct). Taxa with a decrease in frequency included species of mesic 

grasslands such as Rumex acetosa, Ranunculus acris, Anthoxanthum odoratum and Festuca 

rubra. The increasing species were typical of intensively-used and fertilised grasslands such as 

Cirsium arvense, Phleum pratense, Urtica dioica and Lolium perenne.  

While the median species richness per plot differed between areas, trends over time 

were always negative, except for that of the Havel region (Table 3a). A similar pattern was 

found when only relevés taken in true grasslands were considered (Table 3b). Between the 

1990s and 2008, the Nuthe and Havel regions showed only small changes in species richness 



56 

 

and species composition, while in the third study region (Elster), pronounced losses equivalent 

to those observed between the 1950/60s and the 1990s were found. 

Averaged over the five main regions, plot-level diversity decreased from a median of 

27 species in the 1950/60s to a median of 19 in 2008. This reduction was also apparent when 

only the residuals of a plot size vs. richness regression were inspected (Fig. 1a). The linear 

mixed model for the effects of census period and plot size (with region as random effect and 

plots size as a covariate) indicated that the differences in species richness between the two 

census intervals were significant (pperiod < 0.01).  

The frequency of phytosociologically diagnostic species for moist grasslands 

(phytosociological order Molinietalia, see list S2a – supporting information) was already small 

in the 1950/60s, and the median declined to two in the relevés from 2008 (Fig.1b, pperiod < 0.05). 

The number of species indicating high moisture (German “Feuchte” – F) but low nutrient levels 

(Ellenberg IV F >5 and EIV N < 6) showed a non-significant decreasing trend over time. 

Species that are currently considered to be threatened on a nation-wide scale, such as 

Dactylorhiza majalis or Cnidium dubium (see list S2b – supporting information), were already 

rare in the historical relevés. Taxa that are red-listed on a regional scale only, i.e. on the level 

of the respective federal states, showed pronounced losses (Fig.1c, pperiod < 0.05). 

 

 

 

Fig. 1 Changes in species richness between the 1950/60s and 2008 (654 samples as SETfunct, but all 

species given including those identified to genus level only). a) Raw data and residuals from the 

regression of richness against plot size. b) Numbers of species typical of the Molinietalia, and species 
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with a mean Ellenberg IV for M >5, and N <6. c) Species currently red-listed on the federal level and in 

Lower Saxony (LS) / Saxony-Anhalt (SA) only. 

 

Changes in community composition and site conditions 

The ordination (including relevés from forb-rich meadow fallows or dry grasslands, dataset 

SETmulva) revealed a main gradient along the 1st axis that was mainly related to soil moisture, 

as inferred from mean Ellenberg IVs (Fig. 2). The second axis differentiated plots from the 

1950/60s and 2008, with plots from the 1990s taking intermediate positions. The mean EIVs 

for nutrients and, to a lesser extent, soil reaction (pH) increased along axis 2, while the vectors 

for species richness, evenness and Shannon diversity negatively correlated with axis 2. The 

median plot-level Ellenberg IV for moisture was very similar for the two censuses (median = 

6.2 in the 1950/60s and in 2008; inter-quartile ranges 5.7-9.0 and 5.6 – 8.0, respectively), the 

EIV for soil reaction showed an increase (median1950/60s 6.1 / IQR 5.7-6.7; median2008 6.8 / IQR 

6.5-7.0), as did the EIV for nutrients (mainly nitrogen, median1950/60s 5.5 / IQR 5.0-7.1; 

median2008 6.2 / IQR 5.7-8.1).  

In agreement with the results of the ordination, species richness correlated negatively 

with the Ellenberg IV for nutrients (Spearman rho = -0.69, p < 0.001) while the relationships 

of species richness to the EIVs for soil moisture (rho = -0.20, p < 0.001) and soil reaction were 

less pronounced (Pearson radj = -0.40, p < 0.001). 
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Fig. 2 DCA ordination of the dataset SETmulva (779 samples, 286 species, Havel and 9 outliers excluded). 

Species with frequency <3 were removed; species cover values were log-transformed. Supplementary 

variables were fitted post hoc on the ordination plot: mean Ellenberg IVs, S richness, H Shannon 

diversity, FD functional diversity (detrending by 26 segments; downweighting of rare species; 

eigenvalues / length of gradient axis 1 0.33 / 3.9, axis 2 0.27 / 3.3, axis 3 0.22 / 4.1). 
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Table 2 Indicator Species Analysis (sensu Bakker 2008) for vascular plant species that showed similar 

significant trends in at least 3 of the 5 regions analysed. a) Species frequency based on pooled samples 

for the two periods. b) Indicator value (ISA-IV) for the two periods based on weighted averaging of 

study-wide indicator values (1999 permutations, samples for two census periods only, SETfunct). The 

higher values for a given pair-wise comparison is written in italics, also indicated is the number of 

regions, where change was significant (p <0.05). 

a) Frequency 

1950/60s 

 

2008 

b) ISA-IV  

1950/60s 

 

 2008 

Regions 

signif.  

Rumex acetosa 70 22  56 9 4 

Ranunculus acris 62 18  51 9 4 

Silene flos-cuculi 58 10  47 10 4 

Anthoxanthum odoratum 53 6  45 5 4 

Bellis perennis 50 0  41 10 4 

Festuca rubra 53 14  38 17 4 

Trifolium pratense 44 17  31 11 4 

Achillea millefolium 36 21  27 9 5 

Trifolium repens 45 35  27 25 4 

Caltha palustris 16 1  12 4 4 

Daucus carota 25 7  19 7 4 

Leucanthemum vulgare 20 4  17 3 4 

Cirsium palustre 19 2  15 5 4 

Angelica sylvestris 21 1  24 1 3 

Briza media 7 0  7 1 3 

Cardamine pratensis 56 9  39 12 3 

Centaurea jacea 14 1  11 3 3 

Cirsium oleraceum 25 21  22 7 3 

Galium uliginosum 14 2  14 2 3 

Lathyrus pratensis 33 16  23 7 3 

Myosotis scorpioides 17 4  16 1 3 

Pastinaca sativa 11 3  10 4 3 

Plantago lanceolota 52 15  41 8 3 

Phleum pratensis 20 26  13 15 4 

Lolium perenne 17 35  12 22 4 

Rumex obtusifolia 2 21  3 15 4 

Urtica dioica 5 38  3 36 4 

Cirsium arvense 10 43  12 27 3 

Elymus repens 19 32  13 19 3 

Persicaria amphibia 6 20  4 16 3 

 

Table 3 Plot-level species richness per region and site (median, interquartile ranges) for a) all samples 

(SETmain) and b) grassland samples only (sites dominated by perennial grasses, excluding forb 

communities and scrub from SETmain). The Havel region was included for comparison but left out of 

summary statistics. 

Period  Weser  Aue  Helme  Elster  Nuthe  Havel 

a) All 

1950/60 27 (22-32) 29 (27-33) 20 (14-28) 23 (17-33) 27 (26-29) 15 (12-18) 

1990       28 (20-35) 15 (12-19) 26 (22-32) 

2008 15 (11-17) 13 (10-15) 16 (13-18) 22 (17-26) 17 (13-22) 26 (21-33) 

b) grassland only 

1950/60 27 (22-31) 29 (27-33) 22 (17-29) 24 (17-35) 27 (26-29) 16 (13-19) 

1990       28 (19-34) 16 (12-25) 25 (22-32) 

2008 16 (11-16) 13 (10-15) 16 (13-18) 23 (18-27) 17 (14-22) 27 (22-33) 
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Changes in biological traits 

The analysis of changes in functional trait diversity covered only those species that occurred at 

least three times in the complete dataset (dataset SETfunct). When considering the 

presence/absence data, plot-based functional diversity decreased considerably over time (Fig. 

3a); however, the reduction was similar in relative magnitude to that of species richness. In 

terms of species cover, RAO’s index indicated a qualitatively similar temporal trend, which 

corresponded closely to changes in Shannon diversity (Fig. 3b). Both indices (RAO and FD) 

showed a significant negative correlation with the mean Ellenberg IV for N as an indicator for 

grassland management intensity (FD: Spearman rho = -0.69, p < 0.001; RAO’s diversity: rho = 

-0.61, p < 0.001). The correlation with the EIV for soil reaction was less apparent (0 > rho > -

0.3). 

 

Fig. 3 Changes in functional diversity between the 1950/60s and 2008; the corresponding measure of 

species diversity is given for comparison (dataset SETfunct - 654 relevés, 281 species). a) Functional 

diversity for presence /absence (FD) and species richness. b) Functional traits weighted by species 

abundance (RAO) and Shannon species diversity. 

 

Fourth-corner statistics indicated changes of individual traits over the two main periods 

(Tab. 4). The abundances of therophytes and hemicryptophytes tended to be lower in 2008 than 

in the 1950/60s. Plants with ruderal strategy types decreased in abundance, as did a number of 

plants with predominantly clonal growth strategies. In contrast, species belonging to 

phenological groups with late-summer development increased. The abundance of wind-

pollinated taxa on any given plot increased from a mean of 50% in the 1950/60s to 70% in 
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2008, while insect-pollinated species decreased from a mean of c. 50% to only 30%. Thus, the 

availability of nectar resources declined in extant meadows along with decreasing numbers of 

plant species propagated by fruitlets or seeds, and an increasing number of species with fruits 

such as caryopses (Poaceae). Seed weight did not change between the two censuses. Species 

with higher fodder value were more abundant in 2008. Many of these trends were qualitatively 

similar when analysed against the mean Ellenberg IV for nutrients instead of sampling period 

(Tab. 4), and the EIV for nutrients showed a strong positive correlation with the abundance of 

mowing tolerant and grazing-tolerant species. 

 

Table 4 Summary of fourth-corner analysis for 1950/60s vs. 2008 showing significance and direction 

of trends for traits, or traits groups. In groups of nominal traits, only overall significance is indicated 

plus direction of change for significantly responding groups (padjusted; (*) 0.05<p<0.1, *** p<0.001). Test 

statistics indicate type of test, which depend on the scale of the given variables under consideration (chi², 

F-test, correlation r). Trends were tested against time (trendtime ) and with respect to Ellenberg IV for 

nutrients. 

Decreasing trendtime padj trendN padj  Increasing trendtime padj trendN padj 

Lifeform χ² *** F ***  Lifeform     

– Hydrophyte ns  ns   – Phanerophyte ↑  ↑  

– Hemicryptophyte ↓  ↓   – Chamaephyte ↑  ↑  

– Hemiphanerophyte ns  ↓   – Geophyte ↑  ↑  

– Therophyte ↓  ↓        

Strategy  χ² *** F ***  Strategy      

– CR strategy ↓  ↓   – C ns  ↑  

– R strategy ↓        ↑  

– CSR strategy ↓  ↓   Mowing tolerance (F) ns  ↑ *** 

– CS ↓  ↓   Grazing tolerance (F) ns  ↑ *** 

– SR strategy ↓  ↓   Fodder value (F) ↑ *** ↑ *** 

Clonality  χ² *** F ***  Clonality      

– runner ↓  ↓   – fragmentation ns  ↑  

– running rhizome ↓  ↓   – turions ↑  ↑  

– bulbillae ↓  ns   – tuber ↑  ↑  

– buds root ↓  ns        

– rhizome ↓  ↓        

– pleiocorm ↓  ns        

Pollination  χ² *** F ***  Pollination  χ² *** F *** 

– insect ↓  ↓   Wind – pollination ↑  ↑  

– cleistogamous ↓  ↓        

– geitonogamous ↓  ↓   Phenological groups F *** r *** 

– snails ↓  ↓   Season ↑  ↑  

Diaspore  χ² *** r ***  Diaspore      

– Seed ↓  ↓   – aggregate fruit ↑  ↑  

– Fruitlets ↓  ns   – Fruits ↑  ↑  

– Fruits + Appendage ↓  ns        

– Fruit part ↓  ns    Seed weight  F ns r↑  
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Discussion 

Our re-sampling study covered roughly 50 years and 5(+1) study regions that were more 

or less representative in physiography, land-use pattern and management development 

for floodplain grassland of the glacial lowlands of northern Germany. We confirmed 

previous case studies and literature reviews from Central Europe that documented severe 

and consistent species losses in mesic and moist grasslands in the course of agricultural 

intensification (Fischer and Stöcklin 1997; Prach 2008; Ellenberg and Leuschner 2010; 

Krause et al. 2011), and we showed that these trends are also apparent over longer time 

spans and extended regions. The data also imply that losses in terms of plant functional 

diversity have been equally severe and that the provision of important ecosystem services 

such as nectar production for pollinators has declined over the past 50 years. 

 

Species richness 

Species numbers remained stable or, in some cases, even increased in the protected Havel 

region, which presumably reflects successful conservation management activities 

(Burkart 1998). In contrast, the other five unprotected study regions showed uniformly 

negative trends. Expressed in percent of the 1950/60s figures, the data in Table 3 indicate 

richness losses of 10-50% at the releve scale depending on the region. In a recent large-

scale survey of randomly selected meadow plots in northern Germany, median plant 

diversity was found to be 10-15 species only (Oppermann et al. 2009), which is even less 

than our values of 15-20 species and indicates that our figures are not overly pessimistic. 

Our data seem to be robust against effects of variable plot size, as is evidenced by the 

mixed model and the pattern of residuals in Figure 1. Plot size effects are known to 

become a problem when the range of sizes covers several orders of magnitude (Dupré et 

al. 2010), which was not the case here. 

Several studies in European managed grasslands have indicated that rare specialist 

plants may suffer disproportionally high losses in respect of abundance when 

management is intensified (Fischer and Stöcklin 1997; Walker et al. 2009). However, our 

dataset indicates that some of the species with decreasing frequency had been very 

abundant in the 1950/60s (e.g. Bellis perennis). Significant frequency losses were 

detected for taxa currently considered threatened, which is expected because a decline in 

abundance is a key condition for red-listing (IUCN 2001). Many of these threatened 

species were already rare in the 1950/60s, which would provide some support in favour 
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of the above-mentioned hypothesis that rare species are acutely suffering from abundance 

losses. 

The close negative correlation between species richness and the mean Ellenberg 

IV for nutrient availability indicates that as opposed to changes in soil moisture, increased 

input of N (or other nutrients) was a key driver of vegetation change and species loss in 

the meadows. Remarkably, the median indicator value for moisture did not change 

between censuses, even though land-use intensification resulted in improved drainage and 

alteration of the rivers’ hydrodynamic regimes. This is partly related to the fact that we 

deliberately excluded arable fields and forests from the 2008 survey, thereby focussing 

on sites that were probably less affected by changes in the hydrological regime. The 

interquartile range for the EIV for soil reaction was 6.1 to 6.9, indicating that the meadows 

mainly grow on soils in the circumneutral range, which is characteristic for river 

sediments in lowland floodplains. The well-buffered alluvial soils are typically less 

responsive to acidification in the course of long-term deposition of NH4
+ and strong acids, 

and they are also less affected by ammonium toxicity than grasslands on acidic soils 

(Stevens et al. 2011). Moreover, intensively managed grasslands are typically limed to 

increase productivity (Dierschke and Briemle 2002; Ellenberg and Leuschner 2010).  

The negative effect of nitrogen input on the taxonomic diversity of grassland 

communities of the temperate zone has been documented in numerous case studies 

(Dupré et al. 2010; Stevens et al. 2010 ) and is also confirmed by over-regional reviews 

(for Central Europe in Bobbink et al. 1998; Dierschke and Briemle 2002; Bobbink et al. 

2010; Ellenberg and Leuschner 2010). Atmospheric deposition of N compounds has been 

found to affect temperate grassland communities if thresholds of about 15-20 kg N ha-1 

yr-1 are exceeded (Bobbink et al. 1998; Bobbink et al. 2010). Strong and lasting effects 

are also caused by fertilization, and even a single application of a moderate amount of N 

is sufficient to cause permanent shifts in species composition and lasting reductions in 

species richness (Hegg et al. 1992). The separation of the more local effects of on-site 

fertilisation from those of chronic atmospheric N deposition is difficult in re-sampling 

studies as these two drivers of grassland eutrophication are related and both increased 

during agricultural intensification from 1950 to 1980 in Central Europe by factors of 

roughly 3 to 6 (Ellenberg and Leuschner 2010). Protected reference sites such as the 

Havel region may serve as a valuable control because they are exposed to atmospheric N 

deposition (and climate changes) but are much less influenced by N fertilisation. The 
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Havel region was indeed only marginally affected by management intensification and 

increased fertiliser application and it showed only modest changes in grassland 

vegetation, which were qualitatively different from changes detected for the five other 

study regions. However, since we could only access one historical dataset from a now 

protected area, any inference on the driving factors must remain tentative. 

 

Species composition 

Our data revealed marked differences in the species composition between historical and 

recent grassland relevés that were consistent in the five unprotected study regions. In the 

1950/60s, Caltha palustris and Cirsium palustre were common phytosociologically 

diagnostic species (Burkart et al. 2004). These species now occur at very low frequencies 

and many grassland associations and alliances have lost the bulk of their characteristic 

species.  

Species with a decreasing frequency also include widespread generalists without 

specific habitat requirements in terms of soil moisture and nutrient availability (e.g. 

Rumex acetosa, Anthoxanthum odoratum and Bellis perennis). In contrast, species with 

significant increases in frequency are known to benefit from high to very high nitrogen 

availability (Rumex obtusifolia, Urtica dioica), and two of the increasing grass species 

(Lolium perenne, Phleum pratensis) provide high quality fodder and are thus actively 

sown by German farmers (Dierschke and Briemle 2002). These species were relatively 

rare in the floodplain grasslands 50 years ago, but they have since become dominant. The 

ordination diagram showed that the main floristic gradient in both census periods is 

related to soil moisture with no clear differences between the 1950/60s and 2008. Only 

the second, less important axis correlated with nutrient availability and with time factor, 

reflecting the large change in N availability.  

Several studies on grassland change in Europe found only small shifts in species 

composition (e.g. Smart et al. 2003; Morecroft et al. 2009). However, these studies 

investigated time spans covering only two decades, and therefore detected changes should 

be smaller than those found in longer lasting studies. In our study, additional relevés from 

the 1990s show that by the same time many northern German grasslands had already been 

converted to intensively managed swards, which is in line with another long-term case 

study from the region (Wittig et al. 2007). Thus, vegetation change occurred more rapidly 

in the first decades after the 1950s, and studies starting in the 1980s or 1990s may well 
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have missed the most important shifts in species composition. This highlights the need to 

select reference data taken before the start of agricultural industrialisation (Tamis et al. 

2005; Dupré et al. 2010). 

Small changes in vegetation have also been reported from grassland areas with 

partial or full protection status. Walker et al. (2009) studied the change of British 

grasslands that were under conservation management over five decades and found only 

moderate alterations in species composition. A similar result was obtained in the Havel 

region of our study, where the long-term protection status resulted in only modest changes 

in grassland community composition over the study period. These case studies suggest 

that local management is a dominant factor determining community composition, 

irrespective of the potential action of supra-regional factors. 

 

Plant functional trait composition 

In animal communities, reductions in functional diversity may be even larger than losses 

in taxonomic diversity when land-use intensity increases (Flynn et al. 2009; Laliberté et 

al. 2010; Vandewalle et al. 2010). This is in contrast to plant communities, where 

functional diversity has been found to be reduced less than species diversity (e.g. Sasaki 

et al. 2009; Mayfield et al. 2010), perhaps due to functional redundancy buffering losses 

in taxonomic diversity. Our analysis offers only limited support to this idea as the relative 

magnitude of losses in functional diversity and in taxonomic diversity was similar in our 

dataset. Functional diversity is, however, a relatively crude measure for characterizing 

the variability in growth and survival strategies (Podani and Schmera 2006, 2007). The 

most widely applied index FD has been shown to be largely redundant to species richness 

(Villéger et al. 2008; Poos et al. 2009), which is also confirmed by our data. Alternative 

approaches, such as the abundance-weighted RAO index, are less closely associated with 

richness, but apparently show a correlation with Shannon diversity. 

Fourth-corner statistics revealed an abundance decrease in ruderal plants and, 

more generally, in short-lived species. Land-use intensification over time results in the 

dominance of a few productive grassland species that build a permanently closed sward 

(Dierschke and Briemle 2002). Patches of bare soil that may serve as safe sites for 

establishment are becoming rare, posing a problem to short-lived species but also to small 

perennial plants or other weak competitors (Walker et al. 2009). In fact, a large number 

of weakly competitive perennial herbs have declined in our study regions, explaining the 
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detected general decrease in the abundance of hemicryptophytes. The decline of herbs is 

associated with losses of insect-pollinated species and cleistogamous taxa, which in our 

study areas were replaced by wind-pollinated species (mainly grasses), which can also 

persist and spread by clonal growth. This indicates that modern grasslands represent less 

suitable habitats for pollinating insects than their equivalents 50 years ago, corresponding 

to negative trends in pollinator populations documented in other Central European 

cultural landscapes (e.g. Biesmeijer et al. 2006).  

Frequently resown swards are harvested four to seven times during the summer, 

and the now dominant Poaceae (Lolium perenne, Phleum pratense) are indeed known for 

their high mowing tolerance coupled with high fodder value. The apparent increase in the 

importance of plants of phenological groups that flower later in the growing season is 

probably also a land-use effect and not caused by climate changes. Many of the early-

flowering herbs decreased (such as Bellis perennis; phenological group 1 in the 

classification system of Dierschke 1995), probably because frequent and early mowing is 

nowadays preventing the successful reproduction of these species. In contrast, Lolium 

perenne and P. pratense start flowering relatively late (phenological group 7) and are able 

to develop inflorescences late into summer as long as intervals between mowing are 

sufficient to allow for flower production.  

 

Conclusions 

Our supra-regional analysis confirms inferences of earlier case studies and shows that 

agricultural intensification, and in particular nutrient inputs, result in pronounced changes 

in grassland communities with associated losses in taxonomical as well as functional 

diversity. Comparison with studies covering shorter time intervals highlights the need to 

capture five decades or more if intensification effects are to be fully detected. The much 

more subtle change in the protected study region points to local rather than supra-regional 

drivers (climate change, atmospheric N deposition) as a cause of change. This long-term 

comparison emphasises the need to adopt adequate grassland management schemes on 

the local scale in order to preserve grasslands of high nature value. Disentangling the 

effects of local and supra-regional factors will, however, require a more thorough analysis 

based on the comparison of replicated protected and unprotected sites, which is a 

promising avenue for further research.  
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Data on functional trait composition provided no evidence that ecosystem 

functions are buffered against changes in plant species composition. Species dominating 

the recent intensively managed grasslands are typically tall, long-lived, strongly 

competitive grasses with a high fodder value that are often tolerant to frequent mowing 

and flourish under high levels of nitrogen input. The conspicuous decrease in flowering 

insect-pollinated herbs in Central European grasslands implies that nectar feeders and 

animal groups at higher trophic levels have also faced severe losses. Unfortunately, few 

quantitative studies on arthropod diversity in managed grasslands are available. In 

particular, the number of suitable reference datasets on long-term changes in the grassland 

fauna covering 4-5 decades or even more is extremely low. Our data do however 

demonstrate that there are strong directional changes that will undoubtedly have 

pronounced effects on a wide range of organisms, especially species dependent on insect-

pollinated plants or on annual, short-lived herbs.  
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Appendix 
 

S1: Selected characteristics of the study areas. Since the phytosociological units have not been stable over time (Meisel & v. Hübschmann 1976), we employed a 

standard key which is the legally binding system in the relevant states of northern Germany (v. Drachenfels 2004). All sites were assigned to the v. Drachenfels 

groups and aggregated at higher levels (moist, mesic, intensive) provided by the key. Mean Ellenberg indicator values broken down to the respective locality are 

given for comparison. 

Study 

area 

Locality Grassland extent (ha) Median Ellenberg IV 

(1950s /today) 

Remarks 

  Mesic Moist  Intensive Moisture Nutrients  

Lower Saxony       

Weser Stolzenau 45/7 100/4 0/33 6.3/6.5 5.5/6.3 Extensive hydro-engineering, river straightened and incised 

Aue 

 

Braunschweig 159/5 28/8 77/108 6.4/6.3 5.4/6.4 Former river replaced by artificial “Mittelland” canal 

Thuringia        

Helme Kelbra 34/12 576/100 361/315 6.2/6.7 5.6/6.2 River partly still intact, partly dammed into reservoir 

Elster Zweimen 93/8 22/3 21/35 6.3/6.0 5.3/6 Two rivers, one still similar to 1950s, the other still present but straightened and 

incised 

Saxony-Anhalt       

Nuthe 

 

Nedlitz 27/7 344/49 0/228 6.2/6.1 5.2/6.1 River still in original bed, but deeply incised 

Reference site Brandenburg      

Havel Gülpe 72/33 109/101 12/87* 6.4/6.8 5.6/6.1 In original condition, rivers partly re-naturated, FFH protection (Cnidium dubium 

meadows) 

 

Meisel, K., v. Hübschmann, A., 1976. Veränderungen der Acker- und Grünlandvegetation im nordwestdeutschen Flachland in jüngerer Zeit. Schriftenreihe für Vegetationskunde 

10, 109-124. 

v. Drachenfels, O., 2004. Kartierschlüssel für Biotoptypen in Niedersachsen. Niedersächsisches Landesamt für Ökologie, Hildesheim. 
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S2a List of species with diagnostic value for the phytosociological order Molinietalia 

(according to German SL, Jansen and Dengler 2008) that were present in our dataset. 

S2b List of species included in the German Red List (according to German SL,) that were 

present in our dataset. 

 

a) Molinietalia species 

Achillea ptarmica 

Allium angulosum 

Angelica sylvestris 

Betonica officinalis 

Bistorta officinalis 

Bromus racemosus 

Caltha palustris 

Cirsium oleraceum 

Cirsium palustre 

Cirsium tuberosum 

Cnidium dubium 

Crepis paludosa 

Dactylorhiza majalis 

Equisetum palustre 

Euphorbia palustris 

Filipendula ulmaria 

Galium boreale 

Galium uliginosum 

Gentiana pneumonanthe 

Geranium palustre 

Geum rivale 

Gladiolus palustris 

Gratiola officinalis 

Hypericum tetrapterum 

Inula salicina 

Iris sibirica 

Juncus acutiflorus 

Juncus atratus 

Juncus conglomeratus 

Juncus effusus 

Juncus filiformis 

Laserpitium prutenicum 

Lathyrus palustris 

Linum catharticum 

Lotus pedunculatus 

Lythrum salicaria 

Ophioglossum vulgatum 

Pseudolysimachion longifolium 

Scirpus sylvaticus 

Scutellaria hastifolia 

Selinum carvifolia 

Serratula tinctoria 

Silaum silaus 

Silene flos-cuculi 

Stachys palustris 

Succisa pratensis 

Tetragonolobus maritimus 

Thalictrum flavum 

Valeriana dioica 

Viola persicifolia 

 

b) Red List species 

Allium angulosum 

Bromus racemosus 

Calla palustris 

Cardamine pratensis 

Carex distans 

Carex ligerica 

Carex vulpina 

Cerastium dubium 

Chenopodium bonus-henricus 

Cirsium tuberosum 

Cnidium dubium 

Crepis mollis 

Dactylorhiza majalis 

Epipactis palustris 

Euphorbia palustris 

Gentiana pneumonanthe 

Gladiolus palustris 

Gratiola offinalis 

Helichrysum arenarium 

Hieracium lactucella 

Hippuris vulgaris 

Hordeum secalinum 

Inula hirta 

Iris sibirica 

Juncus atratus 

Laserpitium prutenicum 

Lathyrus palustris 

Melilotus dentatus 

Menyanthes trifoliata 

Mentha pulegium 

Oenanthe fistulosa 

Ophioglossum vulgare 

Peucedanum officinalis 

Rhinanthus angustifolius 

Scutellaria hastata 

Senecio paludosus 

Silene otitis 

Tetragonolobus maritimus 

Triglochin maritimum 

Triglochin palustre 

Viola persicifolia 
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Supporting Information 

 

S3 List of R-Packages used in statistical analysis (depending packages not listed): 

 

ade4: Chessel, D. and Dray, S. 2009. Package 'ade4'. Analysis of ecological data: 

Exploratory and euclidean methods in environmental sciences. CRAN web host, online. 

 

cluster: Maechler, M., Rousseeuw, P., Struyf, A. and Hubert, M. 2005. Package ‘cluster’: 

Cluster Analysis Basics and Extensions. CRAN web host, online. 

 

FD: Laliberté, E. and Shipley, B. 2009. Package ‘FD’: Measuring functional diversity (FD) 

from multiple traits, and other tools for functional ecology. CRAN web host, online. 

 

lme4: Bates, D. and Maechler, M. 2009. lme4: Linear mixed-effects models using S4 classes. 

CRAN web host, online. 

  

vegan: Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., O'Hara, B., Simpson, G.L., 

Solymos, P., Stevens, M.H.H. and Wagner, H. 2010. vegan: Community Ecology Package. 

CRAN web host, online. 

 

vegdata: Jansen, F. 2010. vegdata: Functions to use vegetation databases (Turboveg) for 

vegetation analyses in R. CRAN web host, online. 
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Abstract 

Patch size and isolation are thought to have a large influence on the extinction risk in 

grassland fragments in the modern agricultural landscape. We combined a re-sampling 

study in semi-permanent grassland plots with a GIS-based analysis of historical 

(1950s/1960s) and recent landscape patterns to analyse the importance of fragmentation on 

the diversity of specialist species of floodplain meadows in northern Germany. Based on 

historical and recent vegetation maps and relevés from six study areas (plus a protected 

reference area) covering 50-60 years of vegetation change following agricultural 

intensification, we found 30-66% losses in plot-scale diversity over time and an associated 

increase in the fragmentation of grassland habitats. Distance to the nearest suitable habitat 

had a modest negative effect on plot-scale richness while the other tested landscape metrics 

(total meadow area, mean patch size and landscape proximity index distribution) had no 

significant influence. There was also no evidence for a legacy of historical landscape 

structure on current richness of specialist species. Instead, management intensity and its 

change over the past decades as indicated by altered Ellenberg Indicator Values for 

nutrients and moisture had a strong influence on plot-scale diversity. The results suggest 

that habitat deterioration, and not fragmentation, is the main proximate cause of 

impoverishment. We conclude that conservation measures in Central European floodplain 

meadows should not only focus on large grassland areas, but should also consider small 

meadow patches if they remained species-rich, because they may still function as important 

source areas.   
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Introduction 

Species-rich wet and mesic meadows have drastically declined throughout the course of 

land use intensification, and they now count among the most threatened grassland types in 

Central Europe (Bergmeier and Nowak 1988; Dierschke and Briemle 2002; Riecken et al. 

2006; Ellenberg and Leuschner 2010; Wesche et al. 2012). Over the past 60 years, the 

agricultural industrialisation has led to significant increases in the amount of fertilizer 

applied, mowing frequency and stocking densities. These factors, along with the substantial 

decline in overall grassland area, have been associated with the progressive fragmentation 

of the remaining meadows and pastures in a matrix of arable land and other land-use types 

(Treweek et al. 1997; Joyce and Wade 1998; Norderhaug et al. 2000; Hodgson et al. 2005; 

Krause et al. 2011). Large fractions of former managed grassland in Central Europe have 

been transformed to cropland, afforested or subjected to urbanisation (Riecken et al. 2006; 

Walz 2008). In addition, the habitat quality of the remaining grassland fragments has often 

fundamentally changed as a consequence of drainage and modified management 

(Rosenthal 2003; Dietrich et al. 2012; Schaich and Barthelmes 2012).  

The theory of island biogeography (MacArthur and Wilson 1967) suggests that 

habitat fragmentation may affect biodiversity through decreased size of habitat patches and 

reduced colonisation and gene flow (Debinski and Holt 2000; Fahrig 2003; Ewers and 

Didham 2006). Thus, the population size of a species is usually positively correlated with 

the area of its habitat (Honnay et al. 2006; Lennartsson 2000; Hanski 1999) and smaller 

populations are particularly vulnerable to extinction (Lande 1988, Matthies et al. 2004). 

Habitat quality is also often lower in smaller patches as a result of stronger edge effects 

(Oostermeijer et al. 1994). Specialist species with narrow niches are expected to be 

particularly sensitive to the consequences of isolation.  

The vast majority of typical meadow species in Central Europe are perennials, 

many of which can survive extended periods of unfavourable conditions following 

fragmentation and land-use change (Eriksson 1996; Eriksson and Ehrlen 2001). This points 

to the importance of historical factors with present-day species diversity and distribution 

patterns being explained to a considerable extent by land use history. Lag periods are often 

observed and populations may persist for generations after fragmentation or habitat 
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alteration have occurred (extinction debt, Tilman et al. 1994; Kuussaari et al. 2009). In 

grasslands, such slow responses of plant species richness to fragmentation and habitat loss 

were observed by Eriksson et al. (2002), Helm et al. (2006) and Rusterholz and Baur 

(2010). Responses can, however, be very slow, with periods of 50-100 years being 

described (Lindborg and Eriksson 2004) or even more than a century (Gustavsson et al. 

2007).  

A number of recently published studies found no or only little influence of past 

landscape patterns on present-day plant species richness in grasslands (Adriaens et al. 

2006; Bruun 2000; Cousins et al. 2007; Öster et al. 2007). Instead, fragmentation and 

isolation are often related to changes in land-use on the plot-scale. The latter affect local 

plant communities often more directly, and may thereby override any potential effects of 

landscape structure (Korneck et al. 1998; Klimek et al. 2007). 

The main objective of our study was to disentangle the possible roles of landscape 

fragmentation and habitat deterioration as drivers of grassland community impoverishment 

in Central European floodplains  

Most studies on fragmentation effects in Central European grasslands focussed on 

relatively dry, mostly calcareous sites (e.g. Adriaens et al. 2006; Krauss et al. 2004, 2010) 

though effects are more widespread (Cousins 2009). We investigated the effects of land 

use change on meadows and pastures of moist and fertile sites in Central Europe, which 

have been subject to melioration and management intensification since the 1950s (Joyce 

and Wade 1998; van Dijk 1991). We selected floodplains in which wet and species-rich 

mesic grasslands were the dominant habitat type in the 1950/60s. Since then, grassland area 

has markedly declined and the habitat conditions of the remaining grassland have greatly 

changed (Krause et al. 2011).  

The investigated grassland habitats were divided into two major groups, (a) habitats 

still harbouring the formerly widespread species-rich wet or moist grassland communities 

(hereafter referred to as optimal habitats), and (b) habitats where the grassland communities 

have been largely modified due to melioration or fallowing (subsequently termed 

suboptimal habitats). We further distinguished between (1) the local scale (i.e. recent 
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vegetation relevés with exactly known location in the landscape matrix), and (2) the 

landscape scale (i.e. the species pool of a study area) and related both to the landscape 

structure. Our study covers six study areas and one additional reference area (which has 

been under nature protection for decades) that are spread over the lowlands of northern 

Germany. For the majority of study areas, detailed historical (1950/60s) and actual 

vegetation maps and corresponding vegetation relevés were available. We focussed on 

typical floodplain meadow vascular plants (termed ‘characteristic meadow species’), that 

predominantly or exclusively occur in wet or moderately moist grasslands in our region.  

With respect to the regional species pool, we hypothesized that (i) suboptimal 

grassland habitats possess smaller numbers of characteristic taxa for wet and mesic 

grasslands than optimal habitats in both historical and present-day surveys, and (ii) that the 

diversity of characteristic species has declined over time in all grassland types.  

Exploring the effects of fragmentation on species richness at two different spatial 

scales, we further hypothesized that (iii) effects of current landscape structure, notably 

patch size and isolation, reduce the number of characteristic meadow species at both the 

landscape (species pool) and the local (relevé) scale. With respect to legacy effects, we 

examined whether (iv) historical landscape patterns influence current species richness. 

Finally, we tested the alternative hypothesis that (v) the characteristic species richness is 

mainly dependent on local habitat conditions using Ellenberg Indicator Values (EIV) for 

nutrient availability and moisture as indicators. Because no direct information on changes 

in site conditions during the past 50-60 years was available for the study areas, we had to 

rely on indicator values as an indirect approach. 
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Material and Methods  

Study areas 

The study was carried out in seven floodplains in the Pleistocene lowlands of northern 

Germany spanning from the Ems River in the West (Lower Saxony) to the Havel River in 

the East (Brandenburg; Table 1). In the 1950/1960s, wet meadows and periodically flooded 

grasslands (plant communities of the orders Molinietalia caeruleae Koch 1926 and 

Potentillo-Polygonetalia Tx. 1947) and species-rich mesic meadows (moist variants of 

communities of the order Arrhenatheretalia elatioris Pawl. 1928) were the most common 

habitat types, but these have decreased dramatically in their extent since then. An exception 

is the seventh study area (Havel, Brandenburg), which experienced only moderate change 

in land use intensity over the last few decades due to its protected status since 1967. Given 

that the Havel area is the sole protected study site available, it was used in the analysis only 

as a reference area. Further information on study area selection and a more detailed 

description of site conditions are given in Krause et al. (2011).  

 

Data collection and processing 

Vegetation maps and phytosociological relevés were available for both the historical (data 

published in the 1950/1960s; before agricultural intensification) and recent time periods 

(own survey in 2008; after land use intensification; Table 1). Historical and recent maps 

were standardised using a widely applied key for habitat classification developed by 

governmental conservation agencies in Germany (von Drachenfels 2004), and maps were 

analysed using ArcGIS-ArcInfo v. 9.2 (ESRI 2006-2009, see Krause et al. 2011). All 

phytosociological relevés were located within the mapped grassland areas. The number of 

vegetation samples conducted corresponded to the historical and recent size of the 

grassland areas with approximately one relevé taken per 5 ha area, resulting in 559 

historical and 306 recent relevés from the seven grassland areas (registered in the Global 

Indiex of Vegetation Data Base under GIVD-EU-DE-009, Glöckler 2012). Historical 

relevés were available for six of the seven study areas (exception: River Ems area). None 

of the historical surveys provided coordinates for the relevés, which could thus not be 
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assigned to individual meadow patches and were used for landscape-scale analysis only. 

Resampling followed a spatially stratified random sampling scheme applying Hawth’s 

Tools (Beyer 2004) and visited sampling localities in 2008 using a GPS (Garmin, Olathe, 

Kansas). Only habitats referring to grasslands in the wider sense were resampled, including 

related successional communities such as grassland fallows with abundant forbs. Since our 

target species were specialist grassland plants, we did not sample arable fields or forest 

communities that had replaced former grassland. For the sake of comparability with the 

historical sampling method, we also deliberately sampled well developed (particularly 

species-rich) stands wherever they were encountered. Plot size in 2008 was 16-20 m², a 

common size used in Central European grassland surveys (Chytrý and Otýpková 2003). 

Relevés in the historical data set were slightly larger (median 25 m²), but effects were too 

small to introduce a major confounding effect (see Wesche et al. 2012 for detailed 

analysis). Vegetation sampling was conducted in May-July 2008 with all vascular plant 

species being listed and percentage cover estimated following the extended Braun-

Blanquet scale (Wilmanns, 1998). Species’ EIVs (Ellenberg et al. 2001) were calculated 

using the community mean EIV for moisture (EIV-M), and the mean EIV for nutrient 

availability (EIV-N) as an indicator for grassland fertilisation and thus management 

intensity. 
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Table 1. Basic data for the seven study areas in northern Germany. Climate data from German National Meteorological Service, DWD, 

based on the reference period 1961—1990. 

 
Study 

area 

Total size 

of study 

area (ha) 

Coordinates 

(GC-WGS 

1984) 

Mean 

annual 

precipitation 

(mm yr-1) 

Mean 

annual 

temperature 

(°C) 

Year of 

historical 

inventory  

Total number 

of historical 

relevés 

Total number 

of recent 

relevés  

Historical 

source 

Ems 390 
N 52°56’54’’ 

E 07°17’32’’ 
757 8.8 1954 n.d. 52 

Ernsting et al. 

(unpubl.) 

Weser  155 
N 52°30’58’’ 

E 09°05’52’’ 
654 9.1 1956 132 25 

Hübschmann et 

al. (unpubl.) 

Aue 264 
N 52°16’20’’ 

E 10°22’48’’ 
620 8.9 1946 51 38 

Ellenberg 

(unpubl.) 

Helme 1081 
N 51°26’33’’ 

E 10°57’02’’ 
484 8.5 1969 60 58 Hundt 1958 

Luppe 186 
N 51°21’43’’ 

E 12°07’57’’ 
500 9.5 1967 107 20 Gräfe (unpubl.) 

Nuthe 376 
N 52°02’44’’ 

E 12°14’40’’ 
560 8.8 1958 35 74 Hundt 1969 

         

Havel 293 
N 52°43’44’’ 

E 12°13’00’’ 
526 8.7 

1953 

(1980)* 
174 39 Fischer 1980 

* Oldest relevés from 1980  
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Defining characteristic floodplain meadow species 

Species were classified as being characteristic of floodplain meadows (wet meadows or 

moist variants of species-rich mesic meadows) if they were listed in the German standard 

plant species list as characteristic species of wet meadows (Korneck et al. 1998, formation 

number 15; BfN (2000 onwards): http://www.floraweb.de) or of Potentillo-Polygonetalia 

communities (Korneck et al. 1998; formation number 8; BfN (2000 onwards): 

http://www.floraweb.de). In addition, taxa were required to have EIV-M values of 6 to 9. 

Neophytes were not considered; they were in any case negligible in terms of species 

numbers and cover. Out of 482 vascular plant species recorded in total, 78 species were 

defined as characteristic floodplain meadow species (see Appendix Table A); the 

subsequent analyses focused on these species.  

 

Grassland classification and habitat type richness analysis 

Historical and current map and releve-data were classified resulting in ten grassland 

communities (p1-p10, Appendix Table B). The grassland communities p1-p4 (alliances 

and orders Cnidion, Molinion, Calthion and Potentillo-Polygonetalia, Drachenfels 2004) 

were pooled to yield a single group (wet meadows c1) and the other communities (p5-10) 

subsequently received the labels c2 to c7 (see Appendix Table B). Differences in character 

species richness were tested by ANOVA. We applied a Wilcoxon rank sum test for testing 

for significant differences in species richness over time for a given vegetation unit. Tests 

were performed using R software v. 2.13.2 (R Development Core Team 2010). 

 

Estimating the pool of characteristic species on the landscape scale 

The pooled size of characteristic meadow species at the landscape scale was estimated in 

the seven study areas with sample-based rarefaction curves (ESTIMATES v. 8.2.0 (Colwell 

1997; 50 runs; randomized samples without replacement; see Appendix: Figure A) for (1) 

the smallest number of relevés taken in any of the study areas (n = 20), (2) the sample size 

for which all curves reached species saturation (n = 200) and (3) an intermediate sample 

size (n = 100) using the software. If fewer than 100 or 200 relevés were available for a 
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study area, the species number was extrapolated using logarithmic regression (r² = 0.96–

1.00). Because the species accumulation curves showed congruent patterns, we present 

only the estimated richness for n = 20 plots in order to avoid multiple testing. 

 

Spatial pattern analysis 

Spatial patterns were analysed on two scales. Landscape scale metrics were calculated for 

each meadow area for both the historical and the recent survey (12 maps from the six 

unprotected study areas plus two maps from the protected Havel reference area). The 

regional pool of characteristic meadow species was assessed against these metrics. The 

local scale analysis focused on the species composition and species richness of a given 

recent relevé and related these to meadow patch size and the distance to other meadow 

patches (wet or moist) in the direct neighbourhood. 

At the landscape scale, landscape proximity index distribution (PID), area-weighted 

mean of patch size (PS) and total meadow area (TMA) were calculated based on grid maps 

(4 x 4 m resolution corresponding to the relevé size) using FRAGSTATS software (version 

3.0, McGarigal et al. 2002). PID and PS indicate the degree of fragmentation with lower 

values standing for a higher level of fragmentation. PID considers the patch area and, 

additionally, the distance between the focal patch and other similar habitat patches (here 

with 100 m buffer range). Fragmentation was analysed for the grassland units c1 to c7, and 

separately for the grassland types particularly rich in characteristic floodplain meadow 

species (see Appendix: Table B, vegetation units c1and c2 pooled). Hedgerows, larger 

ditches or creeks, and agricultural access roads were recognized in the map analysis, while 

spatial resolution rendered detection of smaller structural elements impossible. Recent or 

historical species pool size and the landscape metrics PID, PS and TMA were analysed 

with Pearson correlation  

A patch was defined as a delimited, homogenous grassland patch containing only 

one of the considered meadow types (see Appendix: Table B), which has been subject to a 

more or less uniform management regime and was not dissected by (larger) structures. 

These patches often corresponded to units of land tenure. We distinguished two different 



 

88 

 

precision levels in the analysis. First, for the analysis of local patch size effects, we used 

the original very detailed phytosociological classification of vegetation types, i.e. four 

subunits of wet meadows (p1 – p4; Cnidion, Molinion, Calthion and Potentillo-

Polygonetalia communities). For all patches that contained a recent relevé, the number of 

characteristic floodplain meadow plant species in each relevé was related to the size of the 

historical and recent patches. Secondly, for analysing spatial isolation, we aggregated these 

four subunits (p1 – p4) to one category of wet meadows (c1; Appendix: Table B) to account 

for their limited spatial extent in recent time. The degree of spatial isolation was quantified 

as the smallest distance of a recent relevé in a patch to the edge of the next nearest patch 

of wet or species-rich moist meadows in the recent survey (units c1 and c2; see Appendix: 

Table B and Fig. 1b) using the ArcGIS add-on Multiple Minimum Distance (Chasan 2005). 

Richness of characteristic species was analysed by fitting separate linear mixed models for 

each of the continuous predictor variables. In all cases, model simplification suggested that 

all predictor variables should be retained in the analysis (model comparison using 

ANOVA). Mixed models were fitted using the lme function in R; the residuals of the mixed 

models were inspected for deviations from a random pattern.  

 

Results 

Richness in characteristic species and its change since the 1950/1960s  

There was a large shift in grassland community composition from the 1950/60s to 2008. 

The proportion of relevés that were classified as wet or species-rich mesic meadows greatly 

decreased over time, whereas the fraction of relevés assigned to intensively managed and 

species-poor grasslands increased (Table 2). In addition, two new intensively managed 

grassland community types that were absent in the 1950/1960s had to be defined in 2008 

(c3 and c6).  

The landscape-level pool of characteristic meadow species tended to decline over 

time (Table 3), although trends were not significant due to large differences between study 

areas (p = 0.095, Wilcoxon test on richness estimates based on n = 20 samples). Diversity 

loss was largest in the Aue area (-67 % in the 20-sample data set, Table 3).  
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At the plot scale, species loss since the 1950/60s was most significant in the wet 

meadows (unit c1, Fig. 1), where historical communities contained on average 9.9 

characteristic species per plot in the 1950/60s but only 7.0 species per plot in 2008. The 

overall mean number of characteristic meadow species declined from 7.9 (± 4.3 s.d.) in 

historical relevés to 4.2 (± 2.7 s.d.) in 2008. Differences in the richness between optimal 

(units c1, c2) and suboptimal habitats (in particular the units c4 and c5) tended to be large 

in both periods, but were significant in the historical survey only. This prompted us to treat 

these two community categories separately in further analysis.  



 

90 

 

 
Figure 1. Box-and-whisker plots for relevé-scale richness of characteristic meadow species 

(a) 385 historical relevés and (b) 268 recent relevés in six study areas (excluding Havel 

study area). Significant differences between the vegetation units at the same point in time 

(letters) were tested with ANOVA, and differences in the same group but between time-

points with a Wilcoxon test (. Letters indicate significant differences among groups within 

a given period at p ≤ 0.05 and asterisks indicate significant differences within groups over 

time at p ≤ 0.05 = *, p ≤ 0.01 = **, p ≤ 0.001 = ***. Optimal habitat group: c1 = wet 

meadows, c2 = species-rich mesic meadows. Suboptimal habitat group: c3 = intensively 

managed grasslands at relatively dry sites, c4 = intensively managed grasslands at moist to 

wet sites, c5 = species-poor managed but non intensive managed grasslands, c6 = sown 

synthetic grasslands, c7 = grassland fallows and extensively managed vegetation types 

(low intensity) dominated by sedges or reed at moist sites. 
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Table 2. Absolute numbers of relevés taken in historical time (HIST= 1950/60s, n = 559) and in recent time (REC = 2008, n = 306) in 

the seven study areas and in the main types of meadow vegetation (c1-c7, see Appendix: Table B); n.d. = no data available. Totals 

include the six unprotected study areas (nHIST = 385, nREC = 268); total (%) refers to the percentage of relevés in a vegetation unit relative 

to the total number of relevés taken in the respective survey. The protected Havel area is given for comparison only. 

Study 

area 
Wet meadows 

(c1) 
Species-rich 

mesic meadows 

(moist variants) 

(c2) 

Intensively 

managed 

grasslands at 

relatively dry 

sites (c3) 

Intensively 

managed 

grasslands at 

moist to wet 

sites (c4) 

Species poor, 

extensively 

managed 

grasslands (c5) 

Sown synthetic 

grasslands (c6) 
Grassland 

fallows and 

similar 

vegetation units 

(c7) 

 HIST REC HIST REC HIST REC HIST REC HIST REC HIST REC HIST REC 

Ems n.d. 5 n.d. 1 n.d. 0 n.d. 31 n.d. 8 n.d. 6 n.d. 1 

Weser 49 0 62 0 0 0 5 14 16 2 0 1 0 8 

Aue 17 4 16 0 0 1 0 27 16 5 0 0 2 1 

Helme 20 19 14 1 0 6 5 11 5 11 0 4 16 6 

Luppe 62 3 32 6 0 0 4 2 6 9 0 0 3 0 

Nuthe 20 26 15 3 0 3 0 13 0 15 0 8 0 6 

Total (n) 168 57 139 11 0 10 14 98 43 50 0 19 21 22 

Total (%) 44 21 36 4 0 4 4 37 11 19 0 7 5 8 

Havel 29 27 21 2 0 2 49 5 35 1 0 0 40 2 
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Table 3. Landscape metrics (PID, PS, TMA) and estimated richness of characteristic 

meadow species in historical (1950/60s) and recent time (2008). N.d. = no data. Richness 

of characteristic species was estimated by rarefaction from species accumulation curves 

(using n = 20, 100 and 200 relevés). Differences between 1950/60s and 2008 were tested 

by a Wilcoxon signed rank test on site means (p ≤ 0.1= (*); p ≤ 0.05 = *; not tested = nt). 

PID = proximity index; PS = patch size; TMA = total meadow area. 

Study 

area 

Period PID PS (ha) TMA 

(ha) 

Estimated richness of 

characteristic species  

  c1-c7 c1-c7 c1-c7 n = 20 n = 100 n =200 

Ems 1950/60 2243.1 83.8 390.1 n.d. n.d. n.d. 

 2008 934.9 25.1 206.2 20 28 31 

        
Weser 1950/60 460.0 28.2 155.4 34 46 51 

 2008 363.2 6.6 75.2 19 28 32 

        
Aue 1950/60 1730.7 9.3 264.2 39 50 55 

 2008 243.5 6.8 129.1 13 19 21 

        
Helme 1950/60 15374.0 143.2 1080.7 26 38 44 

 2008 3880.9 48.5 491.6 29 41 47 

        
Luppe 1950/60 3264.5 49.9 186.0 40 51 59 

 2008 114.3 13.4 48.6 30 42 48 

        
Nuthe 1950/60 8762.0 100.3 375.6 25 34 38 

 2008 2927.7 28.5 287.5 24 34 39 

Mean 1950/60 5305.7 69.1 408.7 32.8 43.8 49.4 

 2008 1410.8 * 21.5 * 206.4 * 22.5(*) 32.0nt 36.3nt 

        
Havel 1950/60 4099.0 76.3 292.6 23 36 40 

 2008 3523.8 64.5 254.7 33 46 51 

 

Changes in landscape structure and its effects on diversity of characteristic meadow 

species  

The total area occupied by meadow communities (TMA) decreased on average by ~50 % 

between the 1950/60s and 2008 in the six unprotected study areas, while losses in the 

protected Havel area were only marginal (Table 3). Wet and mesic meadows were 

particularly affected (Appendix: Table C). The reduction in meadow area was accompanied 

by reductions in PID and PS indicating fragmentation of the remnant meadow area. The 

decrease in PID and PS was  significant when all meadow types were pooled in the analysis 
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(including fallow meadows and related communities) but also persisted if the optimal 

habitats were analysed separately (i.e. the combined group of wet and species-rich mesic 

meadows, Wilcoxon signed rank test, p ≤ 0.05 in both cases).  

 Landscape-scale species richness were assessed for (1) the relation between 

recent landscape metrics and recent diversity patterns, (2) historical landscape metrics and 

historical diversity patterns and for testing on extinction debt, (3) for the relation between 

historical landscape metrics and recent diversity patterns (Table 4; Table D (Appendix)). 

At the landscape scale (regional species pool), none of these three relations between 

landscape metrics and the size of characteristic species pool were significant at p ≤ 0.05.  

 In the plot-scale analysis, recent distance and patch size were positively related 

(r = 0.17, p = 0.005), as were historical and recent patch size (r = 0.16, p = 0.010). No 

significant correlation existed between recent distance and historical patch size (r = -0.10, 

p = 0.099). Simple correlation analysis with the plot-scale data pooled over the six study 

areas in the two habitat categories ‘optimal’ and ‘suboptimal’ indicated only a relatively 

weak relationship between species richness in the recent relevés and recent distance (r = -

0.37), historical patch size (r = 0.24) and recent patch size (r = -0.05, Fig. 2). Mixed model 

analysis (landscape metrics and habitat type as fixed and study area as random factors) 

yielded a significant overall effect only for recent distance (pdist_rec = 0.0004) while 

historical patch size and recent patch size had no effect (pptach_akt >0.7 and ppatch_hist >0.6 

respectively). There was no evidence that the two habitat categories differed in their 

response to the landscape metrics (interaction terms not significant in all cases).  

The majority of relevés (57.3 %) in the recent survey was located at distances of 

<100 m to neighbouring patches of wet or species-rich mesic meadows; only 6.9 % of the 

recent relevés were more strongly isolated (distance to next comparable neighbour patch 

>500 m). The average distance to a comparable patch was 125.3 m (± 226.0). 
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Table 4. Pearson correlations (r) between richness of characteristic species and landscape 

metrics (PID, PS, TMA) in the six study areas (considering vegetation units c1 to c7; see 

Table C for correlation with vegetation units c1 and c2 only). Correlations were calculated 

separately for recent and historical data. Species richness was based on n = 20 relevés 

according to species accumulation curves. ns = not significant. (1) Recent species richness 

vs. recent parameters of landscape metrics (without Havel area); (2) historical species 

richness vs. historical parameters of landscape metrics (without Ems and Havel areas); (3) 

recent species richness vs. historical parameters of landscape metrics (without Havel area). 

PID = proximity index; PS = patch size; TMA = total meadow area. 

 PID PS (ha) TMA (ha)  

 r r r 

(1) 0.47 ns 0.59 ns 0.37 ns 

(2) -0.79 ns -0.84 ns -0.66 ns 

(3) 0.62 ns 0.66 ns 0.45 ns 

 

Relationships between species richness and indicator values for nutrients and moisture  

The mean plot-scale EIV for nutrients was significantly smaller in optimal than suboptimal 

habitats (5.9 ± 0.6 vs. 6.5 ± 0.6) while the EIV for moisture was higher (6.9 ± 0.7 vs. 6.2 ± 

0.8; t test, p < 0.0001 in both cases). Pooled across the two habitat categories, correlation 

analysis indicated relatively strong relations between both EIVs and species richness (r = 

-0.64 for EIV-nutrients and r = 0.44 for EIV-moisture, Fig. 3). This was confirmed by the 

mixed model analyses with EIV and habitat as fixed factors and area as random which 

indicated significant effects of the EIVs for nutrients and for moisture on species richness 

(pEIV_N = 0.0007, interaction pEIV_N*habitat = 0.3; pEIV_M=0.016, interaction pEIV_M*habitat>0.7). 
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Figure 2. Number of characteristic meadow species in recent relevés (without Havel study 

area) as dependent on (a) log recent patch size (in ha), (b) log historical patch size (in ha), 

and (c) log recent distance of a meadow patch to the nearest neighbour patch of wet or 

species-rich mesic meadows of the optimal group (in m; see Fig. 1 and Table 2). 

Calculations were made separately for recent relevés located either in wet or species-rich 

mesic meadows (opt = optimal group, see Fig. 1), or in other grassland habitat types (sopt 

= suboptimal group). Regression lines are indicated only for study areas with significant 

relationships.  
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Figure 3. Number of characteristic floodplain meadow species per recent relevé in relation 

to the EIV for (a) nutrients (nitrogen) and (b) moisture. Correlations given separately for 

recent relevés located in wet or species-rich mesic meadows (units c1 and c2: = optimal 

group; 3a: r = -0.34 **; 3b: r = 0.12 n.s.), and recent relevés located in other grassland 

habitat types (suboptimal group; 3a: r = -0.58 ***; 3b: r =0.30 ***). 

 

Discussion 

Impoverishment in grassland specialist species since the 1950s 

To our knowledge, this is the first analysis of long-term grassland vegetation change in 

Central European floodplains that examines fragmentation effects not only in one or two 

study areas but attempts to achieve a cross-regional perspective. Our six plus one study 

areas represent three of the four main alluvial plains of the north German Pleistocene 

lowlands (rivers Ems, Weser, Elbe) and cover a broad range of small (< 200 ha; Luppe and 

Weser) to large grassland areas (> 1000 ha; Helme). Our sample also cuts through the two 

main political spheres of post-war Central Europe. 

An earlier analysis on the entire species plant species set documented large losses 

in richness at both the landscape (species pool) and local (plots) scales (Wesche et al. 2012; 

Krause et al. 2011), which is in line with our analysis with a focus on the specialist taxa. 

Optimal and suboptimal meadows differed in diversity in both historical and present-day 

surveys in diversity (hypothesis (i)), but the differences are more apparent in recent times. 

All grassland types experienced large species losses in the last 50-60 years (hypothesis 
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(ii)), but they were most pronounced in the wet meadows (c1) and also in the intensively 

managed grasslands at moist to wet sites (c4). The latter had already represented 

impoverished stands in the 1950s. Similar trends of vegetation change in managed 

grasslands have been detected in other regions of Central Europe, for example in the 

Dümmerniederung of Lower Saxony (Blüml et al. 2012) and for the uplands of Saxony 

(Walz and Müller 2009). 

 

Fragmentation effects on the richness in grassland specialist species 

Fragmentation of grassland habitats in general, and of wet and mesic grasslands in 

particular, increased in the last decades, indicated by declining values of all three landscape 

metrics tested (landscape scale). TMA becomes relevant when its size falls well below the 

area needed for saturating the regional species pool. 

However, none of the three landscape metrics PS, PID and TMA showed a strong 

influence on species pool size, as derived from regional species accumulation curves. 

Relatively high correlation coefficients point to trends; low statistical power (n=5) 

combined with high variance resulted in relationships being non-significant. This implies 

that fragmentation and isolation are not the proximate causes of shrinking regional species 

pools, and we cannot confirm the first part of hypothesis (iii) for the landscape scale. The 

observed pattern may be interpreted as mere coincidence between increasing species loss 

and fragmentation, which are caused by the same driver, i.e. management intensification.  

At the plot-scale fragmentation and isolation effects may be of greater importance. 

Recent distance and thus isolation had an effect on species richness at the plot-scale, which 

is evidence in support of plot-scale part of hypothesis (iii) that postulated patch size and 

isolation effects on diversity. Increasing plant diversity with decreasing isolation was also 

found for Swedish semi-natural grasslands (Reitalu et al. 2009). The distance effect seems 

to be more pronounced in suboptimal meadow habitat types (Fig. 2c), which may point to 

the importance of source areas. Survival rates are presumably relatively high in optimum 

grasslands, rendering regular immigration less important. In contrast, suboptimal sites 

should represent sink habitats for specialised meadow taxa that should depend more 

strongly on the presence of source habitats in the neighbourhood.  
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No relationships were found for plot-scale species richness and either recent patch 

size or historical patch size, irrespectively of whether optimal meadow habitats or 

suboptimal meadow habitats were considered. This contrast with the general assumption 

that species richness increases with patch size (for grasslands: e.g. Cousins and Eriksson 

2008). Several studies are in accordance with our results by reporting an only weak or 

unclear dependence of species diversity on the size and isolation of grassland patches in 

fragmented cultural landscapes (Eriksson et al. 1995; Kiviniemi and Eriksson 2002; 

Herrera and Laterra 2011; Öckinger et al. 2012). Several studies reported effects of patch 

size on the relation between plants with clonal and non-clonal growth (e.g. Robinson 1992; 

Lindborg et al. 2011; Saar et al. 2012), which suggests that patch size may well influence 

community composition even when no size effect is detectable on the level of species 

richness. Such an effect was, however, not observed in our data. 

The small meadow patches in our study regions (mean size 0.27 ± 0.16ha) still 

contain an unexpectedly high richness of characteristic meadow species (7 ± 0.25 per plot). 

This indicates that the quality of site conditions must be more important than assumed 

patch sized and distance effects. Most of the characteristic meadow species seem capable 

of colonizing already relatively small grassland patches and can form viable populations 

there, provided that site conditions are suitable (favourable soil moisture, relatively low N 

and P). 

 

No evidence for a legacy of historical landscape structure on current richness of specialist 

species 

We assume that isolation and fragmentation were no relevant factors during the 1950/60s, 

since historical vegetation maps show a nearly complete and continuous cover of wet and 

mesic grassland. In contrast, impoverishment of potential source areas may now be an 

important factor (e.g. Poschlod and Biewer 2005; Hölzel and Otte 2003). Even though 

several typical grassland species have capacities for dispersal covering well over 100 m 

(Geertsema et al. 2002), others are only capable of dispersal over shorter distances (e.g. 

Jensen 1998; Cousins and Aggemyr 2008). Transport with flooding water was once an 

important dispersal agent in floodplain meadows (e.g. Hölzel and Otte 2001), but the 
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construction of dikes has rendered this pathway unimportant in most of the studied 

grassland areas in recent time. Moving cattle and hay transport have most likely lost their 

importance as dispersal agents with the expansion of modern agriculture (Poschlod and 

Bonn 1998).  

Published evidence for the ‘extinction debt’, i.e. the positive effect of historical 

patch size on recent diversity (e.g. Cousins 2009), mostly comes from relatively dry 

grasslands (Eriksson et al. 2002; Helm et al. 2006; Rusterholz and Baur 2010; Gustavsson 

et al. 2007). Our supra-regional analysis produced no coherent evidence for effects of 

historical landscape configuration on the richness of characteristic species in floodplain 

meadows, and thus leads to rejection of our hypothesis (iv). Among the historical and 

recent landscape metrics tested, only recent distance and no historical metric had an effect 

on species richness. Extinction debts most likely develop in grasslands with long continuity 

that are subject to gradual environmental or management change (Gustavsson et al. 2007). 

In support of this assumption, historically old grasslands have been found to harbour larger 

species pools than younger grasslands on the same soil (e.g. Waesch and Becker 2009). 

Instead, many managed grasslands in our study areas have since decades been ploughed 

and resown in order to increase fodder quality. Hence, we assume that the low number of 

characteristic meadow species in recent suboptimal vegetation units (that mostly were 

optimal habitats in the 1950/60s) indicates that the extinction debt is already paid. Cross-

linking of areas by linear elements like ditches or way-sides may have buffered against 

those losses (Tikka et al. 2000; Blomqvist et al. 2003; Cousins 2006). However, the 

function of linear landscape elements as corridors for plant migration has often been found 

to be rather limited (van Dorp et al. 1997).  

 

Richness of specialist species is mainly determined by local environmental conditions  

In contrast to the ambiguous effects of landscape structure on species richness, we found a 

much clearer influence of the local site conditions. Our data show a strong negative 

correlation between the mean indicator value for nutrients and the richness of characteristic 

meadow species in both optimal and suboptimal habitats, which is evidence in support of 

hypothesis (v). This is in agreement with the findings of Stevens et al. (2010), Wellstein et 
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al. (2007) and Klimek et al. (2007) among others. Impoverishment is mainly attributed to 

local nutrient (mostly N) input, which promotes competitive N-demanding species and 

excludes less responsive specialist species. Additional to increasing N-input by 

fertilization, the atmospheric N deposition has increased since the 1950s (Ellenberg and 

Leuschner 2010).  

Exceptions from the widespread pattern of diversity loss are the Helme area and the 

protected Havel reference area, which both showed increases in richness since the 

1950/60s. Again, landscape structure can only be of secondary importance as shown by the 

decreases in TMA, PS and PID that occurred in these two areas as well. The increase in 

species richness in the protected Havel area but also in the conventionally managed Helme 

area are probably related to the local increase in soil moisture levels. In the Helme area, a 

dam was constructed in 1969 that lifted the groundwater level of the upstream meadow 

areas, and in the Havel area nature conservation management also reduced the drainage of 

water after flooding. Wet meadow species profited from these measures, as is indicated by 

the slight (non-significant) increase in the mean EIV for moisture in the Helme region 

between 1968 (6.5) and 2008 (6.7). Similar trends and plant species responses to river 

regulation were described by Leyer (2005). The overall positive relationship between 

richness and the EIV for moisture was closer in the suboptimal habitats, while the moisture 

conditions remained more favourable in the optimal habitats and the across-site variation 

in the EIV-moisture value was smaller than in the suboptimal grassland habitats. 

 

Conclusion and implications for the conservation of floodplain grasslands 

Our results suggest that fragmentation does not play a key role for the species richness of 

floodplain grasslands in northern Germany, probably because this factor is masked by more 

influential site-level factors. Dominant drivers of grassland impoverishment were in most 

cases local alterations of site conditions, notably increased fertilisation, more frequent and 

earlier mowing, drainage. This finding implies that conservation measures in floodplain 

meadows should at least consist of two elements, the establishment and proper 

management of one or a few large-scale sanctuaries, but also of a net of smaller reserves 

of meadow patches with remaining populations of endangered species. The large 
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sanctuaries have a high conservation value because they typically host a larger proportion 

of the regional species pool and may also be indispensable for conserving viable 

populations of characteristic animals such as breeding waders that require large open wet 

grasslands (Wilson et al. 2012). The preservation of small meadow patches with high 

nature value represents another useful short- to medium-term conservation strategy 

because it allows to specifically targeting few remaining and often small stands of high-

value grassland vegetation. Our results on the role of patch distance at the local (relevé) 

scale underpin the importance of small remaining meadow patches with still high plant 

diversity that seem to function as viable source populations for the characteristic meadow 

species. Several examples from Central Europe demonstrated that intensively managed 

grasslands can be successfully restored to their former state of higher nature conservation 

value if management regimes is changed (e.g. Rosenthal 2006; Hölzel and Otte 2003; 

Blüml et al. 2012);  our results show that restoration is much more promising when 

potential source areas are in close vicinity. 
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Appendix 

Table A: List of characteristic floodplain meadow plant species in historical and recent 

relevés of seven study areas in northern Germany. EIV-M indicates Ellenberg Indicator 

Value for moisture according to Ellenberg et al. (2001); underlined values indicate flooding 

indicator species. The assignments to phytosociological communities correspond to Korneck 

et al. (1998).  

Characteristic species 

EIV-M Molinietalia 

species  

Potentillo-

Polygonetalia 

species  

Present in 

historical 

relevés  

Present in 

recent relevés 

      

Achillea ptarmica 8 X - X X 

Agrostis canina 9 X - X X 

Ajuga reptans 6 X - X X 

Allium angulosum 8 X - X 0 

Alopecurus geniculatus 8 - X X X 

Angelica sylvestris 8 X - X X 

Bistorta officinalis 7 X - X X 

Bromus racemosus 8 X - X 0 

Calamagrostis canescens 9 X - X X 

Cardamine pratensis 6 X - X X 

Carex distans 6 X X X 0 

Carex flacca 6 X - X X 

Carex hirta 6 - X X X 

Carex otrubae 8 - X X X 

Carex panacea 8 X - X X 

Cirsium oleraceum 7 X - X X 

Cirsium palustre 8 X - X X 

Cirsium tuberosum 6 X - X 0 

Cnidium dubium 8 X - X X 

Colchicum autumnale 6 X - X 0 

Crepis paludosa 8 X - X 0 

Dactylorhiza majalis 8 X - X 0 

Deschampsia cespitosa 7 X - X X 
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Epilobium hirsutum 8 X - 0 X 

Epipactis palustris 9 X - 0 X 

Equisetum palustre 8 X - X X 

Festuca arundinacea 7 X X X X 

Filipendula ulmaria 8 X - X X 

Galium boreale 6 X - X X 

Galium uliginosum 8 X - X X 

Gentiana pneumonanthe 7 X - X X 

Geranium palustre 7 X - X X 

Geum rivale 8 X - X 0 

Gladiolus palustris 6 X - X 0 

Holcus lanatus 6 X - X X 

Hypericum tetrapterum 8 X X 0 X 

Inula Britannica 7 X X X X 

Inula salicina 6 X - X X 

Iris sibirica 8 X - X 0 

Juncus acutiflorus 8 X - 0 X 

Juncus articulates 9 X X X X 

Juncus compressus 8 - X 0 X 

Juncus conglomeratus 7 X - X X 

Juncus effuses 7 X X X X 

Juncus inflexus 7 X X X X 

Lathyrus palustris 8 X - X X 

Lathyrus pratensis 6 X - X X 

Lotus pedunculatus 8 X - X X 

Lysimachia nummularia 6 - X X X 

Lysimachia vulgaris 8 X - X X 

Lythrum salicaria 8 X - X X 

Mentha arvensis 8 X - X X 

Mentha pulegium 7 - X 0 X 

Molinia caerulea 7 X - X X 

Myosotis scorpioides 8 X - X X 
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Ophioglossum vulgatum 7 X - X 0 

Poa palustris 9 X - X X 

Potentilla anserine 6 X X X X 

Potentilla reptans 6 X X X X 

Pseudolysimachion longifolium 8 X - X X 

Pulicaria dysenterica 7 X X X 0 

Ranunculus repens 7 X X X X 

Rorippa sylvestris 8 - X X X 

Rumex crispus 7 - X X X 

Rumex obtusifolius 6 - X X X 

Sanguisorba officinalis 7 X - X X 

Scirpus sylvaticus 8 X - X 0 

Scutellaria hastifolia 8 X - X 0 

Selinum carvifolia 7 X - X X 

Senecio aquaticus 8 X - X X 

Silene flos-cuculi 7 X - X X 

Stachys palustris 7 X - X X 

Succisa pratensis 7 X - X 0 

Symphytum officinale 8 X X X X 

Thalictrum flavum 8 X - X X 

Trifolium fragiferum 7 - X X X 

Trifolium hybridum 6 - X X X 

Valeriana dioica 8 X - X 0 
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Table B. Habitat classification according to phytosociological units, site characteristics and 

habitat codes used for analyses on both landscape scale and local scale. Nomenclature of 

plant communities (syntaxa and their synonyms) and of habitats follows Rennwald (2000) 

and von Drachenfels (2004). 

Habitat categories according to 

phytosociological units 

Habitat code 

after von 

Drachenfels 

(2004) 

Vegetation units as 

used for landscape 

scale and nearest 

neighbour analyses1  

Vegetation units as 

used for local scale 

patch size analysis2  

Molinion and other wet grassland 

communities at nutrient-poor sites 

9.3.1, 9.3.2, 9.3.3, 

9.4.1 

c1 p1 

Cnidion and related wet grassland 

vegetation units 

9.3.4, 9.4.2 c1 p2 

Calthion and related wet grassland 

vegetation units  

9.3.6, 9.4.3, 9.3.5 c1 p3 

Potentillo-Polygonetalia 

(temporarily flooded grasslands) 

9.3.7, 9.4.4 c1 p4 

Species-rich mesic meadows (moist 

variants of Arrhenatheretalia) 

9.1.1, 9.1.5 c2 p5 

Intensively managed grasslands at 

relatively dry sites 

9.5.1 c3 p6 

Intensively managed grasslands at 

moist to wet sites  

9.5.3, 9.5.5, 9.5.6 c4 p7 

Species-poor managed (low 

intensity) grasslands (often former 

intensive use or arable fields) 

9.5.7, 9.1.6 c5 p8 

Sown synthetic grasslands 9.6 c6 p9 

Grassland fallows and extensively 

managed vegetation types (low 

intensity) dominated by sedges or 

reed at moist sites 3 

11.2.1, 5.1, 5.2 c7 p10 

1 Units c1 and c2 were merged for further analysis at the landscape scale, and for analyses detecting the effect 

of nearest neighbourhood at the local scale 
2 Units were used for analyses at the local scale 

3 Urtica dioica-Phragmites australis-community and communities dominated by sedges or reed 
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Table C. Changes in landscape metrics and total grassland area in the floodplain meadows 

of the seven study areas between the 1950/60s and 2008 (consideration of the vegetation 

units c1 and c2`, i.e. optimal habitats only). n.d. = no data. Differences between the two 

surveys were tested by a Wilcoxon signed rank test on site means (p ≤ 0.1= (*); p ≤ 0.05 = 

*). PID = proximity index; PS = patch size; TMA = total meadow area. 

Study area Period PID PS (ha) TMA (ha) 

  c1, c2 c1, c2 c1, c2  

Ems 1950/60 2393.7 65.7 352.2 

 2008 82.3 1.8 37.6 

      
Weser 1950/60 773.3 17 145.4 

 2008 68.8 1.8 11.2 

      
Aue 1950/60 969.8 7.4 186.7 

 2008 21.5 2.4 12.5 

      
Helme 1950/60 1227.1 29 610.3 

 2008 371.3 9.1 112.6 

      
Luppe 1950/60 1365.7 22.2 114.8 

 2008 23.3 1.2 11.2 

      
Nuthe 1950/60 7684.2 99.8 371.0 

 2008 208.0 3.1 56.0 

     

Mean 1950/60 2402. 40.1 296.7 

 2008 129.2 * 3.2 * 40.2 * 

      
Havel 1950/60 1250.2 41.7 180.5 

 2008 1829.5 18.9 141.5 
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Table D. Pearson correlations (r) between between richness of characteristic species and 

landscape metrics (PID and PS) as well as total meadow area (TMA) in the six study areas 

presented in table C (only the ‘optimal’ vegetation units c1 and c2 are considered). Species 

richness (SR) was estimated based on n = 20 relevés according to the species accumulation 

curves presented in Table 3. (1) Recent species richness vs. landscape metrics for recent 

conditions (without Havel area); (2) Historical species richness vs. landscape metrics 

(without Ems and Havel areas; (3) Recent species richness vs. landscape metrics for 

historical conditions (without Havel region). PID = proximity index; PS = patch size; TMA 

= total meadow area (ns = not significant, (*) 0.05<p<0.1). 

 

 PID PS (ha) TMA (ha) 

 r r r 

(1) 0.51 ns 0.41 ns 0.50 ns 

(2) -0.62 ns -0.72 ns -0.84 (*) 

(3) 0.14 ns 0.18 ns 0.37 ns 

 



114 

 

 

 

Figure A. Species accumulation curves for the historical (1950/60s) and recent surveys (2008), calculated for characteristic meadow species only 

(pooled over all regions) in relation to the cumulative sampled area (m2) (based on the area given by relevés).  
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Abstract 

There is a growing concern that land use intensification is having negative effects on semi-

natural grasslands and that it leads to a general loss of biodiversity among all types of 

formerly extensively managed grasslands of poor to medium nutrient richness. Since the 

1950s, many Central European uplands have been subject to an increase in grassland 

coverage as a result of changes in land use practices. Using such a landscape in Lower 

Saxony, Germany as a model region, we assessed environmental factors that control 

grassland diversity, including plant community composition, species richness and 

pollination trait composition. In 2007, 189 vegetation sampling sites were randomly 

distributed among grasslands covering some 394 ha within a 2,500 ha study area. Plant 

communities were classified using TWINSPAN and the effects of environmental factors 

(soil, topography, current management and habitat continuity) were analysed by canonical 

correspondence analysis and regression analysis and reduced for the effects of spatial 

autocorrelation by using principal coordinates of neighbour matrices.  

We found a wide range of six poor (<15 plant spp.) to extremely species-rich (>27 

spp.) grassland types under mesic to dry site conditions, including sown, Cynosurion, 

Arrhenatherion and semi-natural grasslands. Grassland community composition was best 

explained by soil factors and species richness and pollination type composition by combined 

current management and habitat continuity. During the 1950/60s, the extent of grassland 

area within the studied landscape rapidly increased to more than double its previous extent, 

and in 2007, grasslands comprised 16%. NATURA 2000 grassland types comprised 1% of 

the surveyed site and medium-rich, high-nature-value grasslands a further 5%. While the 

number of wind-pollinated plant species was equal among all grassland types, there was a 

parallel decline in insect-pollinated plants and overall median species richness in the 

grassland communities along a gradient of increasing land use intensity (mowing, nutrient 

supply). Moreover, insect-pollinated plants occurring in intensively managed grasslands 

were found to additionally have the ability to do self-pollination. Species-rich grasslands - 

including semi-natural grasslands and a semi-improved, species-rich Arrhenatherion 

community - occurred exclusively on old sites (with >100 years of habitat continuity) that 

had been used for traditional sheep grazing (environmental contracting). Medium-rich 

Arrhenatherion grasslands were established primarily on less productive, formerly arable 

fields (<30 years). We conclude that conservation efforts should focus on extant species-rich 

grassland types and should aim to implement traditional land use practices such as sheep 
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grazing. Additional restoration efforts should focus on establishing new grasslands on less 

productive sites in the proximate surroundings of species-rich grasslands to facilitate seed 

dispersal, but nitrogen deposition should be buffered where appropriate. These measures 

would enhance the interaction between nature reserves and agricultural grasslands and thus 

improve the ecological quality of grasslands at the landscape scale.  

 

Keywords: community composition; historical and current management; land use 

intensification; mesotrophic meadows; plant functional traits; pollination; semi-natural 

grasslands; species richness; 
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Introduction 

Agricultural intensification has driven large-scale changes in the composition and structure 

of European landscapes (Gustavsson et al. 2007; Krauss et al. 2010; Flohre et al. 2011). 

Since the beginning of the 20th century, formerly widespread semi-natural grasslands 

declined in favour of more productive hay meadows, pastures and arable land (Bakker and 

Berendse 1999; Poschlod et al. 2005). Land use intensification further accelerated with the 

advent of the Common Agricultural Policy (CAP) in Western Europe in the late 1950s. CAP 

was later identified as being responsible for increasing habitat degradation and biodiversity 

loss, and was reformed in several stages from the late 1980s until the European Union 

Agenda 2000 (Henle et al. 2008). Conservation and restoration efforts in agricultural 

landscapes previously focussed on semi-natural grasslands (Bakker and Berendse 1999). 

The tremendous decline of semi-natural grasslands has been documented for many Northern 

and Central European landscapes (e.g. Hodgson et al. 2005; Strijker 2005; Cousins and 

Lindborg 2008). However, it has now been recognized that grasslands generally show losses 

in plant species richness over time (Isselstein 2003; Wesche et al. 2012). In particular, 

mesotrophic grasslands have suffered alarming rates of species-decline, habitat loss and 

fragmentation over the last few decades (Rodwell et al. 2007; Krause et al. 2011). In order 

to understand the causes of such gradual grassland diversity loss, the ecological quality of 

grasslands must first be established with a view to identifying the underlying factors that 

control grassland diversity using a landscape scale approach that covers all types of 

grasslands, rather than solely focussing on conservation priority habitat types.  

Biodiversity patterns reflect the combination of past and present environmental 

conditions that have prevailed with respect to the species assemblage being observed (Lunt 

and Spooner 2005). Recent studies have indicated that, in addition to the type and intensity 

of current management practices, land use history and habitat continuity play a crucial role 

in the explanation of grassland diversity (Gustavsson et al. 2007; Aavik et al. 2008; Cousins 

and Lindborg 2008; Waesch and Becker 2009). In landscapes of south-eastern Sweden, total 

grassland area has declined over the last 100 years, with the current grassland proportion 

having a positive influence on grassland species richness across the landscape (Cousins and 

Vanhoenacker 2011). Considering the effect of the decline of overall grassland area on the 

most common or transformed landscapes, the influence of management history was absent 

or of minor importance as many grassland specialist plants had already become extinct 

(Adriaens et al. 2006; Cousins 2009). However, opposite trends were found in other 
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European temperate regions: Since the 1950s, along with agricultural intensification in more 

productive areas, grassland area increased in marginal rural landscapes, such as in the 

uplands of Germany and Great Britain (Peppler-Lisbach 2003; Hodgson et al. 2005; 

Wellstein et al. 2007; Waesch and Becker 2009). Young grasslands were mostly established 

on former arable fields (Peppler-Lisbach 2003; Hietel et al. 2005). Wellstein et al. (2007) 

found that younger grassland types indicated higher nutrient levels, and that grassland 

composition was most dependent on abiotic site factors such as geomorphology. In contrast, 

Waesch and Becker (2009) found that both species composition and richness of mesic 

grasslands were largely dependent on grassland continuity. From an ecological restoration 

point of view, grassland-enriched landscapes, which include grasslands of different ages, are 

therefore of particular interest, as they can serve as model regions to investigate the effects 

of habitat continuity in combination with present management practices.  

In addition to changes in species richness and community composition, land use 

intensification causes changes in the functional diversity of grasslands (Flynn et al. 2009; 

Vandewalle et al. 2010; Wesche et al. 2012). For grassland specialists, the success of 

pollination is highly dependent on both species characteristics and landscape composition 

(Dauber et al. 2010). Flowering species which are mainly reliant on insect pollination are 

most negatively affected by habitat loss and fragmentation (Aguilar et al. 2006). In 

grasslands, intensification generally results in the promotion of wind pollinated grasses and 

the impoverishment of flowering herbs. This leads to a loss of associated pollinators and can 

result in losses at higher trophic levels (Biesmeijer et al. 2006; Weiner et al. 2011). Waesch 

and Becker (2009) found that the composition in plant species traits is largely determined by 

the age of the grassland. For the conservation of grasslands and associated diversity of plants 

and flower visitor networks, it is therefore important to disentangle the importance of 

pollination traits in different grassland communities with respect to historical and current 

management practices.  

The overall objective of our study was to analyse plant diversity (community 

composition, species richness, and functional diversity) in relation to grassland habitat 

continuity and present management in a representative grassland-enriched region in the 

Central European uplands. The Solling Forelands in southern Lower Saxony, Germany are 

particularly well-suited for such a study because they possess the complete range of 

grassland types from semi-natural grassland remnants to young meadows, and because there 
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is a large variability in abiotic site conditions as well as current grassland management 

practices.  

Specifically, we addressed the following questions:  

(1) How do grassland types differentiate in terms of floristic composition, species-

richness and pollination traits?  

(2) What are the primary factors that determine grassland diversity?  

(3) How is local plant diversity affected by current management and grassland 

continuity? 

 

Materials and Methods 

Study area 

The study was carried out in the Solling Forelands, an escarpment landscape east of the 

Solling highlands and west of the city of Göttingen in southern Lower Saxony, Germany 

(Fig. 1a). The landscape selected for the study had an area of 2,500 ha. A locality called 

Mühlenberg, situated in the centre of the study area (N 51.540486°, E 9.763554°, GC-WGS 

84), is part of a Natura 2000 site (Special Area of Conservation (SAC) according to European 

Council Directive 92/43/EEC, site no. DE 4424-301). Two geological zonal subtypes are 

represented in the area, the Röt depressions and the limestone plateaus of the Dransfeld hills 

(Nagel et al. 1981). Of the 189 grassland samples, 23% were situated on Triassic sandstone 

(sand and silt stone), 39% were placed on Middle Triassic limestone (limestone and marl) 

and 38% on Tertiary and Quaternary basalt outcrops and loess deposits. Elevation ranges 

from 200 to 440 m a.s.l. and the regional climate is transitional between Atlantic and 

Continental Central European temperate with an average annual precipitation of 645 mm 

and average mean temperature of 8.7°C (Göttingen meteorological station, 167 m a.s.l., 

1961-1990).  

 

Sampling of grassland vegetation  

Sampling was stratified by grassland area that was distinguishable from other land use types. 

Grassland patches were digitized based on colour infrared (CIR) aerial photographs (dated 

17/05/1993, Aerowest Photogrammetrie) using ArcGIS-ArcInfo software, version 9 (ESRI 

1999-2005) and validated in a field survey in the spring of 2007. Proportional to the 

grassland surface area, samples were randomly selected using an average number of 0.5 
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samples per hectare, with a 4 m minimum distance to polygon edges in order to avoid edge 

effects (GIS-Hawth’s Analysis Tools; Beyer 2004). In 2007, the chosen coordinates were 

visited in the field using standard handheld GPS (Garmin, Olathe, Kansas). Vegetation was 

sampled on 189 plots of 16 m², which is a common sample size used in Central European 

grassland surveys (Chytrý and Otýpková 2003). Nomenclature follows Jäger and Werner 

(2005).  

 

Environmental data 

For each sample, some environmental data were surveyed in the field, others were extracted 

from historical, geological and soil maps (Table 1). Correlations between the environmental 

variables were assessed using Spearman’s rank correlation test (R software, version 2.14.2, 

R Development Core Team 2010). Environmental variables with autocorrelations of r ≥ 0.9 

were excluded from further analysis, thereby removing ‘environmental contracting’, which 

highly correlated with the management type ‘sheep’. Current grassland management was 

identified during field-surveys and to obtain additional information on mowing frequency, 

the mowing tolerance was analysed for each sample using species indicator values derived 

from the BIOLFLOR database (Klotz et al. 2002). Grassland habitat continuity was 

determined for each sampling site using historical and recent topographical maps (dating 

from 1786, 1894, 1956, 1962, and 1979), aerial photographs (dating from 1993) and during 

field surveys (in 2007). The historical age of grassland patches with continuous management 

was assumed to be equivalent to the latest grassland sequence without interruption from 

2007 to the past. Topography and soil variables were derived from various sources (cp. Table 

1); in order to obtain additional information on soil nutrient conditions, the respective 

Ellenberg indicator values (EIV-N) were calculated (Ellenberg et al. 2001).  

 

Functional traits  

Functional plant traits for pollination type (wind-, insect-, self-pollination, and 

combinations) were determined for the 220 grassland study species using the BIOLFLOR 

database (Klotz et al. 2002).  

 

 

 

Classification of grassland communities  
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Classification of grassland communities was performed by TWINSPAN analysis (Hill and 

Šmilauer 2005) using six pseudo-species cut-levels (0, 2, 5, 15, 30 and 50 % cover of species) 

with equal weight being applied to each and excluding species with less then two 

occurrences in the data set. Clusters were named following the habitat type key of von 

Drachenfels (2011), a widely used key developed by nature conservation agencies, and the 

Natura 2000 code where applicable. 

 

Table 1 Classes of environmental variables with their group memberships (M, current management 

type; A, grassland continuity; T, topography; S, soil), data type and obtained single values 

(nominal) or ranges of values (ordinal, metric).  

Class Group Data type Values 

Management type a M nominal mown; mown*pastured; pastured; 

sheep; fallow 

Historical age 

(grassland continuity) c 

A nominal 1786; 1894; 1956; 1962; 1979; 1993; 

2007 

Elevation (m a.s.l.) a T metric 196–368 

Slope (degree) a T metric 0–35 

Topographical positiona T nominal valley; lower slope; mid slope; upper 

slope; plateau 

Heat load d T metric 0.69–0.92 

pH (H2O) e S metric 4.1–7.7 

CaCO3 
e S ordinal 0-7 

Soil moisture content f S ordinal 2–6 

Top soil texture f S nominal loam; loamy silt; clay 

Geological substrate g S nominal siltstone; limestone; loess 

Soil type f S nominal eutric leptosol; rendzic leptosol; 

cambisol; gleyic cambisol; gleyic 

luvisol; vertisol; gleyic anthrosol 

a = field observations 

b = excluded for further analysis, because of high correlation of r ≥ 0.9 with the sheep management type  

c = derived from topographical maps and aerial photographs 

d = heat load specifies the potential annual direct incident radiation, which is calculated by using the 

variables latitude, slope and aspect (McCune and Keon 2002) 

e = analysis of soil samples following Sponagel et al. (2005) 

f = derived from digital soil maps (Boess et al. 2004) 

g = derived from geological maps (Nagel et al. 1981)  
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Dissecting the spatial structure of vegetation data and direct ordination methods 

The presence of a spatial structure shared by species with regard to environmental data sets 

might lead to an overestimation of the interactions between species and the measured 

environmental conditions (Borcard et al. 1992). To consider this spatial autocorrelation in 

the interpretation of results, the spatial relationship among the grassland sampling sites was 

decomposed using PCNM (Principal Coordinates of Neighbour Matrices) analysis (Borcard 

and Legendre 2002). PCNM variables were created using the following steps: (1) We created 

a matrix of Euclidean distances from the projected coordinates of the 189 samples; (2) we 

truncated the resulting matrix just above the smallest distance that keeps all sites connected 

into a single network (i.e. 591 m) and we filled the truncated portion of the distance matrix 

with the distance value of 2,400 (about four times the largest distance retained); (3) we 

computed principal coordinates, corrected for negative eigenvalues (Lingoes correction), 

using PrCoord, version 1.0 (Anderson et al. 1999, implemented in CANOCO 4.5 package, 

ter Braak and Šmilauer 2002); and (4) we reduced the number of explanatory spatial 

variables to those that were both significant after Holm correction (Legendre and Legendre 

2006) and that contributed to the explanation of the response data. Response data to the 

spatial axes included ‘community composition’, which was analysed by Canonical 

Correspondence Analysis (CCA), and ‘species richness’ and ‘pollination trait composition’, 

both of which were analysed using multiple linear regressions. Significances were tested 

using a Monte Carlo permutation test (full model; with 9,999 permutations; step-wise 

forward selection, and p-value ≤ 0.05).  

Variation partitioning of explained (a) environmental variation, (b) environmental 

and spatial variation, (c) spatial variation, and (d) unexplained variation followed Borcard et 

al. (1992) using CCA/partial CCA for community composition, and multiple linear 

regression/partial multiple linear regression for species richness and pollination trait 

composition. The effects of the four different groups of explanatory variables (cp. Table 1), 

i.e. management type (M), grassland continuity (A), topography (T), and soil (S), were tested 

separately for significant explanatory values by removing the effect of spatial structure and 

the remaining explanatory variables (net effect).  

Ordination and regression were performed using CANOCO, version 4.5 (ter Braak 

and Šmilauer 2002).  
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Summary statistics 

Samples were grouped by grassland community, habitat continuity and current management. 

Differences in the variation in species richness, EIV-N and mowing tolerance between the 

groups were tested by one-way-ANOVA and non-parametric Behrens-Fisher test for 

multiple comparisons and visualized by boxplot diagrams. All summary statistics were 

performed with the R software, version 2.14.2 (R Development Core Team 2010).  

 

Landscape-scale analysis 

In the grassland area of 2007, species richness was modelled using mass point triangulation 

of richness values given by the spatial distribution of the original 189 samples, with class 

thresholds being defined as significant differences in species richness between grassland 

community clusters 1-6 resulting from TWINSPAN analysis. The analysis of habitat 

continuity was based on the overlay of historical maps of given ages. Present management, 

derived from field-surveys for each sample, was extrapolated to the extent of the respective 

land parcel. Spatial analyses were performed using ArcGIS-ArcInfo software, version 9 

(ESRI 1999-2005).  

 

Results 

Gradients in grassland diversity 

In the Central European upland study area, we found a total grassland area of 394 ha, which 

represented 16% of the landscape surveyed in 2007 (Fig. 1a), and TWINSPAN analysis 

revealed six grassland communities occurring therein (Fig. 2, Table 2). These communities 

represented a wide range of mesic and dry grassland types along a land use intensity gradient. 

They included sown and species-poor, intensively managed Cynosurion grasslands mainly 

characterised by productive grass species of the genera Lolium, Poa and Elytrigia 

(communities 1 and 2). Mesic Arrhenatherion communities (communities 3 and 4) had the 

grasses Arrhenatherum elatius and Festuca rubra in common, while community 3 was 

differentiated by a number of characteristic herbs. Extensively managed grasslands of high 

nature conservation value at the European level included species-rich hay meadows 

(community 5) and semi-natural dry grasslands (community 6).  
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Fig. 1 Study area in southern Lower Saxony, Germany. a) Grassland area (hatched) and distribution 

of 189 random samples; b) species richness in three classes modelled on the landscape scale; c) 

habitat continuity (with oldest historical age of 1786); d) present-day management type. Black 

labelled areas represent settlements. Maps with Transverse Mercator projection, Germany Zone 3 

(DHDN). 

 

The grassland communities showed major differences in species-richness. Species-

poor grasslands hosted up to 15 species (Fig. 3a, community 2, upper quartile), medium 

species-rich grasslands up to 27 species and species-rich grasslands hosted over 27 species 

(Fig. 3a, community 5, lower quartile). Increasing median species richness patterns 

correlated with decreasing median nutrient conditions and mowing tolerance of plant species 

(Fig. 3b and 3c). On the landscape scale, species-poor grasslands were most abundant, 
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covering 63% of the total grassland area, followed by medium-rich grasslands, with 31% 

(Fig. 1b). Species-rich grasslands were limited to 6% of the total grassland area, which is 

equivalent to 1% of the studied landscape. The model-based spatial distribution of species-

richness more or less paralleled with the number of samples assigned to the community 

clusters, based on random sampling.  

A total of 220 vascular plant species were recorded in the grassland samples (see 

Appendix), which showed a large diversity in pollination traits (Fig. 4a). More than half of 

them were reliant on cross-pollination, with 68 species being dependent on insect 

pollination, 53 species on wind pollination, and two species alternatively on insect or wind 

pollination. Of the 97 species that were additionally able to self-pollinate, 88 species showed 

traits of insect-dependent cross-pollination. With respect to mean species richness of the 

grassland communities, wind pollinated species numbered 8.4 (± 2.3 SD) across each of the 

grassland communities (Fig. 4b). Large differences between communities were found in the 

proportion of insect pollinated plant species and insect/self-pollinated plant species. These 

were highly correlated to the overall species richness patterns (r = 0.97 ± 0.01, C.I. 95%, n 

= 189). Insect and insect/self-pollinated plants made up around two thirds of the species in 

the species-rich grassland communities (communities 5 and 6) and more than half of the 

species in the medium-rich Arrhenatherion community (community 3).  

 

 

 

Fig. 2. TWINSPAN analysis resulting in six clusters (Communities 1-6, cp. Table 2).  
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Table 2 Description of grassland communities. TWINSPAN classification of 189 samples resulted 

in six clusters (communities 1-6). Assignment to community names follows von Drachenfels (2011); 

asterisks indicate Natura 2000 habitat types (habitats directive, 92/43/EEC, annexe I).  

 

Community Grassland community description No. of 

samples 

(n) 

Relative no. 

of samples 

(%) 

1 Sown grasslands, recently drilled, often 

treated with herbicides and dominated by 

highly productive grass species (e.g. Lolium 

multiflorum, Poa trivialis) 

9 4.8 

2 Species-poor intensively managed 

grasslands (Cynosurion communities) 

dominated by grasses (e.g. Lolium perenne,, 

Poa pratensis) on well drained soils 

104 55.0 

3 Mesic grasslands with medium species 

richness (Dauco-Arrhenatheretum typicum)  

32 16.9 

4 Species-poor extensively managed 

grasslands (Arrhenatherion communities) 

with dominance of grasses and forbs 

22 11.6 

5* Species-rich, nutrient-poor, extensively 

managed grasslands on calcareous 

substrates (including. Dauco-

Arrhenatheretum brizetosum and 

ranunculetosum bulbosi); Natura 2000 habitat 

type 6510 

7 3.7 

6* Semi-natural dry grasslands on calcareous 

substrates (Gentiano-Koelerietum); Natura 

2000 habitat type 6210 

15 7.9 

 

Environmental determinants of grassland diversity 

With its community composition, species richness and pollination trait components, 

grassland diversity was largely determined by the investigated environmental (management 

type, habitat continuity, topography and soil) and spatial variables (Table 3).  

After adjusting for the effect of spatial autocorrelation (2% of the spatial component 

and 3% of the combined spatial and environmental components), environmental variables 

explained 25% of the total variance in community composition. When isolating for the 

effects of the single environmental variable groups, grassland community composition was 

mainly related to soil (7% explained variance), followed by topography (5% explained 

variance). Habitat continuity and current management were less pronounced, but they 
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imparted a combined additive effect by explaining 9% of the variance in community 

composition.  

Results of the regression analysis of species richness and pollination type 

composition were very similar. Together, environment and spatial structure explained an 

extraordinary 69% of the variance in species richness and 62% of the variance in pollination 

type composition. However, environmental factors were highly correlated to the spatial 

components (cp. Fig. 1b-d). Thus, only about 39% and 40% of the variance was explained 

by the environment alone. When examining isolated effects of the environment, soil and 

topography were not significant. In contrast, current management and habitat continuity 

were both primary determinants and together they explained 16% of the variance in species 

richness and 15% of the variance in pollination type composition.  

 

The effects of grassland habitat continuity 

The study area became subject to major land use changes from the 1950s (Fig. 5), but since 

the end of the 18th century, the grassland area had only occupied about 180 ha, i.e. 7% of the 

landscape. In the late 1950s/early 1960s, the grassland area rapidly increased and it more 

than doubled by 2007 to some 394 ha. Thus, the study area represented an enriched upland 

grassland landscape.  

Species richness, classified by habitat continuity, indicated no consistent patterns, 

but extant grasslands dating from 1956/1962 and young grasslands were mostly species-poor 

(Fig. 3d).  

Species-rich hay meadows and semi-natural grasslands were restricted to more than 

100 year old grassland sites (Fig. 6a). The majority of medium-rich hay meadows were less 

than 20 years old. However, species-poor grassland communities were distributed over sites 

of all ages, including old intensified grassland sites, grasslands that had been intensively 

managed since the 1950s (even those partly ploughed and re-sown), and intensively or 

extensively managed young grasslands. The restriction of species-rich grassland types to old 

sites (>100 years) and the predominance of medium-rich grassland types on young sites (<30 

years) is consistent with the observation that those grasslands with habitat continuity since 

the 1950s to 1970s were always the most intensively managed and composed of species with 

the highest mowing tolerance (Fig. 3f). 
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Table 3 Results of (partial) CCA for grassland community composition, and of (partial) multiple 

linear regression analyses for grassland species richness and grassland species pollination types, 

adjusted for the spatial component (SP) and isolating the effect of current management type (M), 

grassland age (A), topography (T), and soil (S) as environmental variables (cp. Table 1).  

Expl. Variables Covariables Eigenv. / 

mult. R² 

var (%) F-

statistics 

p-value 

Community 

composition 

     

M, A, T, S  SP 2.256 25.0 1.934 0.0001 

SP  M, A, T, S 0.131 1.5 1.631 0.0001 

M, A, T, S  - 2.562 28.4 2.179 0.0001 

SP  - 0.438 4.9 4.748 0.0001 

M, A, T, S, SP  - 2.693 29.9 2.160 0.0001 

M  A, T, S, SP 0.356 4.0 2.215 0.0001 

A  M, T, S, SP 0.375 4.2 1.555 0.0001 

M, A  T, S, SP 0.778 8.6 1.934 0.0001 

T  M, A, S, SP 0.480 5.3 1.490 0.0104 

S  M, A, T, SP 0.625 6.9 1.412 0.0001 

Species richness      

M, A, T, S  SP 0.404 40.4 7.078 0.0001 

SP  M, A, T, S 0.007 - 1.791 0.1653 

M, A, T, S  - 0.684 68.4 11.853 0.0001 

SP  - 0.287 28.7 37.346 0.0001 

M, A, T, S, SP  - 0.691 69.1 11.314 0.0001 

M  A, T, S, SP 0.099 9.9 12.512 0.0001 

A  M, T, S, SP 0.038 3.8 3.226 0.0072 

M, A  T, S, SP 0.157 15.7 7.992 0.0001 

T  M, A, S, SP 0.023 - 1.447 0.1909 

S  M, A, T, SP 0.025 - 1.133 0.3428 

Pollination     

M, A, T, S  SP 0.393 39.3 5.629 0.0001 

SP  M, A, T, S 0.013 1.3 2.626 0.0332 

M, A, T, S  - 0.610 61.0 8.566 0.0001 

SP  - 0.230 23.0 27.744 0.0001 

M, A, T, S, SP  - 0.622 62.2 8.347 0.0001 

M  A, T, S, SP 0.079 7.9 8.247 0.0001 

A  M, T, S, SP 0.050 5.0 3.433 0.0002 

M, A  T, S, SP 0.146 14.6 6.068 0.0001 

T  M, A, S, SP 0.022 - 1.168 0.2898 

S  M, A, T, SP 0.040 - 1.518 0.0618 
Expl. variables, explanatory variables ; Eigenv., sum of all canonical eigenvalues (CCA; total inertia 

in community composition = 9.008); mult. R², multiple R-squared (regression analysis; total variance 

= 1.000); var (%), percentage of explained variance; F-statistics, F-ratio for the test of significance 

of all canonical axes (test on the trace); p-value, corresponding probability value obtained by Monte-

Carlo-permutation test (9999 permutations). 
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The effects of current grassland management 

Grassland species richness was strongly related to the current management regime, which 

was reflected in the relationship between Ellenberg IV values and nutrients (Fig. 3g-h). 

Grasslands grazed by sheep were the most nutrient-poor and species-rich. Sheep grazing was 

strongly correlated with environmental contracting (r = 0.93 ± 0.04, C.I. 95%, n = 189). 

Therefore, grassland communities managed under this scheme were exclusively semi-

natural or species-rich hay meadows (Fig. 6b). Both sheep-grazed grasslands and fallows 

were composed of species of low mowing tolerance (Fig. 3i). Although the majority of 

fallows still counted towards the semi-natural grassland community, they were slightly less 

species-rich, which indicated an incipient diversity loss (Fig. 3g).  

In contrast, hay meadows, pastures (grazed by cattle and/or horses) and grasslands 

with combined management were all nutrient-rich, species-poor and composed of species 

with high mowing tolerance (Fig. 3g-i). The vast majority of pastures and combined hay 

meadows/pastures were intensively managed Cynosurion communities (Fig. 6b). Hay 

meadows showed a larger variety of different community types. Of the investigated mown 

grasslands, 56% belonged to the species-poor Cynosurion communities and sown 

grasslands, 44% of which belonged mainly to the medium species-rich Arrhenatherion 

community type (community 3), but also of the species-poor and species-rich variants with 

lower mowing frequencies (communities 4 and 5, cp. Fig. 3c).  
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Fig. 3 Differences in species richness, soil fertility (EIV-N) and mowing tolerance between different 

grassland communities (cp. Table 2), time periods of habitat continuity and categories of present-day 

management (m, mown; m*p = mown and pastured; p, pastured; s, sheep; f, fallow). Boxes are drawn 

with widths proportional to the square-roots of the number of observations in the groups; different 

letters indicate significant differences between groups (p ≤ 0.05 by non-parametric Behrens-Fisher 

test).  
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Fig. 4 Pollination types in grassland plant species of the study area. (a) Absolute number of insect, 

wind and/or self-pollinated plant species in the total of 220 species. (b) Proportion of pollination 

types related to mean species richness of six grassland communities.  

 

  

Fig. 5 Changes in total grassland area in the study area from 1786 to 2007 
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a)  

 

b)  

 

Fig. 6 Distribution of grassland communities (a) by grassland continuity (reference ages), and (b) by 

current management types. Different letters indicate significant differences between groups (p ≤ 0.05 

by non-parametric Behrens-Fisher test; cp. Fig. 3) 
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Discussion 

Evaluating grassland diversity on the landscape scale  

In order to understand the effects of agricultural land use practices with respect to 

biodiversity conservation, assessment should be undertaken at the landscape level 

(Tscharntke et al. 2005). Our comprehensive approach linked plot-scale studies to the 

landscape scale, which allowed us to undertake a regional qualitative and quantitative 

evaluation of grassland diversity. 

We found a wide range of poor to extremely species-rich grassland types under mesic 

to dry site conditions. About two thirds of the grassland area was composed of species-poor, 

intensively managed Cynosurion and sown grassland communities. However, grasslands 

with high species richness (>27 species) that are of high nature conservation value at the 

European level were limited to 6% of the total grassland area, which amounts to only 1% of 

the landscape area. The two identified species-rich communities listed in Annex I of the 

European Habitat Directive (codes 6120 and 6510) are completely dependent on specific 

agricultural management (Halada et al. 2011). In the context of assessing High Nature Value 

(HNV) farmland for environmental impact evaluation of rural areas in the European Union 

(Paracchini et al. 2008), Sullivan et al. (2010) found that besides the rare semi-natural 

grassland relicts, semi-improved grasslands are important in the lowlands of Ireland. Based 

on their species composition and richness values, most of the medium-rich Arrhenatherion 

grasslands, which covered 5% of our studied landscape, may be classified as HNV farmland 

in Germany (PAN et al. 2011).  

 

Land use intensification and losses in insect-pollinated plant species 

We found major differences in pollination type composition of the six grassland 

communities (Fig. 4b), and we conclude that variations result from differences in grassland 

management (mowing, nutrient supply, Fig. 3b-c; Table 3). The intensively managed 

grasslands were mostly composed of wind-pollinated species (mainly grasses), which can 

additionally persist and spread by clonal growth. In comparison, semi-natural grasslands are 

usually dominated by flowering insect-pollinated herbs. Grasses like Brachypodium 

pinnatum that have a shallow root system producing several cohorts of shoots in a year may 

become dominant if semi-natural grasslands change to more mesic conditions (Bobbink et 

al. 1998; Bornkamm 2006). Abandonment of mesic Arrhenatherion grasslands also causes 

large losses in species richness and changes to forbs with large phytomass production and 
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vegetative spreading of some highly competitive grass species, later followed by shrub 

encroachment (Dierschke and Briemle 2002).  

Trends of an increase of wind-pollinated species in modern intensified grasslands in 

comparison to their extensively used (wet) meadow equivalents from 50 years ago were also 

described by Wesche et al. (2012). We observed a parallel decline in insect-pollinated plants 

(mainly herbs) and overall median species richness in the communities along the gradient of 

increasing land use intensity. Corresponding negative trends in insect-pollinated plants and 

pollinator populations were documented in other Central European landscapes (Biesmeijer 

et al. 2006). An impoverishment of flowering herb diversity may have strong effects on the 

diversity and species composition of specialised flower visitor groups (Apidae, 

Lepidoptera), but little effect on unspecialised flower visitors (Weiner et al. 2011). In our 

studied landscape, the large proportion of plant species exclusively dependent on pollinators 

for reproduction was limited to communities with high nature conservation value, but which 

are limited to only 1% of the landscape, and to HNV farmland. In such fragmented habitats, 

and in accordingly small plant populations, insufficient pollination is the most prominent 

cause of reproductive impairment (Aguilar et al. 2006). Because semi-natural and 

extensively used grasslands were formerly common Central European habitat types 

(Poschlod et al. 2005; Ellenberg and Leuschner 2010), we expect that the majority of the 

pollinator-dependent plant species are ‘new rare’ species (Becker et al. 2011). Most of the 

insect-pollinated plant species occurring in intensively managed grasslands of our study area 

additionally have the ability to do self-pollination. Following the results of Weiner et al. 

(2011), we expect that, where applicable, such species are pollinated by only a few or 

unspecialised flower visitors. We conclude for our studied landscape that the abundance and 

population viability of strictly pollinator-dependent plant species may be affected by pollen 

limitation, which may result in inbreeding depression (Becker et al. 2011). Retrospectively, 

this may have already altered both plant community composition with further within-

community species losses (e.g. Isselstein 2003), and plant-flower visitor interactions, with 

losses of highly specialised insect species within pollinator networks (e.g. Fründ et al. 2010).  

 

 

 

 

The effect of nutrient input on grassland community composition and related within-

community richness patterns 
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Grassland community composition was mainly related to soil factors that characterise the 

different siliceous and calcareous substrates in the study area (Table 3). Moreover, Ellenberg 

IV-N (Fig. 3b) is a general indicator for soil fertility, which often correlates with phytomass 

production (Hill and Carey 1997; Schaffers and Sykora 2000), and we found that median 

grassland community richness strongly correlated with EIV-N values. Of particular note was 

the high within-alliance variation recorded in species richness in the Arrhenatherion 

grasslands, which resulted in three different communities (cp. Fig. 3a, communities 3-5). 

This decline in species richness from species-rich to species-poor Arrhenatherion grasslands 

correlated with an increase in nutrient supply, as indicated by the EIV for nutrient conditions 

(cp. Fig. 3b). The negative effect of nitrogen input on the diversity of European temperate 

grasslands has been discussed in several case studies and cross-regional reviews (Ellenberg 

and Leuschner 2010). It has also been demonstrated that species diversity in calcareous 

grasslands decreases rapidly with increasing nitrogen supply (Jacquemyn et al. 2003), and 

Hegg et al. (1992) found that even a single application of fertilizer can cause a reduction in 

species richness and change in the composition of species. The most negative effects on the 

taxonomic diversity of grasslands can therefore be attributed to the direct application of 

fertilisers, as well as the atmospheric deposition of nitrogen (Bobbink et al. 1998, 2010; 

Stevens et al. 2011). One of the most important abiotic constraints to grassland restoration 

is high residual soil fertility associated with repeated fertiliser application (Walker et al. 

2004). Considering these facts in addition to our findings on the distribution of grassland 

communities over the habitats continuity classes (Fig. 6a), we conclude that: First, grasslands 

of the species-rich Arrhenatherion community 5, which occurred exclusively on old sites 

(>100 years), emerged from semi-natural grasslands that were improved by nitrogen 

deposition, either from direct minor application or by atmospheric deposition from nearby 

fertilised areas. Second, grasslands of the medium species-rich Arrhenatherion community 

3, which occurred mostly on young sites (<30 years), were preferentially installed on less 

productive ex-arable fields on calcareous substrates. Third, the grand proportion of the 

species-poor Arrhenatherion community 4 occurred on the youngest sites (<15 years old), 

and the species composition indicated slightly higher median soil nitrogen content, but also 

a lower mowing tolerance than community 3. Both could be related to a more extensive 

management regime, and previous studies showed that the most efficient to counter the 

negative effects of nitrogen supply was using grazing or mowing management (Köhler et al. 

2001; Jacquemyn et al. 2003; Walker et al. 2004). In addition, the creation of diverse 
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grassland communities on ex-arable land can be limited by the lack of seeds of desirable 

species in close proximity to one another (Pywell et al. 2002).  

 

Past and current management analysis and conclusions on grassland restoration potential 

Species-rich grassland communities were only found on grassland sites with >100 years of 

habitat continuity that can be considered remnants of formerly widely distributed grassland 

types. Semi-natural grassland remnants have to be conserved by traditional extensive sheep 

grazing (Poschlod et al. 2005), and these management practices were re-established in the 

study area by nature conservation contracting. The high correlation of the occurrence of 

conservation valuable grasslands, sheep grazing and nature conservation contracting 

contrasts to the largely species-poor, intensively managed agricultural grasslands in the 

surroundings. A general trend has been observed in Europe that the floristic gap between 

agricultural grasslands and grasslands in nature reserves is widening every year (de Snoo et 

al. 2012).  

However, conserving what is left is more effective than getting back what was lost 

(Kleijn et al. 2011). We therefore assume that, besides high residual soil fertility and 

pollinator impairment (see above discussions), seed limitation is the most prominent factor 

restricting restoration efforts (Donath et al. 2007). The natural enrichment of grasslands in 

formerly intensively managed landscapes through traditional, extensive farming practices – 

as promoted by agri-environmental schemes – has been limited by a lack of seed availability 

(Pywell et al. 2002; Blomqvist et al. 2009), while sowing a diverse mix of wildflowers results 

in a stable, perennial plant community that, through functional enrichment, further supports 

pollinator and herbivore species (Pywell et al. 2011). However, Öster et al. (2009) found that 

species richness and similarity to semi-natural grasslands of re-established grasslands on 

formerly arable fields were still lower than in semi-natural grasslands, even after more than 

50 years of grazing. These observations are supported by our results. Medium-rich 

Arrhenatherion grasslands have primarily been established on ex-arable fields on less 

productive sites in the course of the European Union’s ‘set-aside policy’ since the 1980s 

(Henle et al. 2008). In our study, these young grasslands shared more in common with the 

intensively managed Cynosurion grasslands than the semi-improved, species-rich 

Arrhenatherion grasslands (see Fig. 2); however, they contributed to an overall ecological 

improvement of the HNV farmland portion at the landscape scale.  
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We conclude that conserving species-rich and semi-natural grasslands by traditional, 

extensive management is of primary importance. In a landscape such as the study area, which 

still supports high levels of biodiversity in remnants of high nature conservation value 

grasslands, conservation initiatives would most (cost-)effectively be implemented in 

extensively farmed areas (Kleijn et al. 2009). In addition, in order to improve the ecological 

quality of grasslands at the landscape scale, the most effective option would be to establish 

new grasslands on less productive sites in the proximate surroundings of species-rich 

grasslands using diverse autochthonous mixtures, followed by appropriate extensive 

management techniques. Such measures enhance the probability of seed arrival (Wessels et 

al. 2008; Wessels-de Wit and Schwabe 2010; Schmiede et al. 2013) and provide a buffer to 

protect the most valuable sites from deposition of nitrogen of neighbouring intensively 

managed agricultural grasslands. Such a challenging approach, as promoted by de Snoo et 

al. (2012), would enhance the interaction between nature reserves and agricultural 

grasslands.  
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Appendix 

List of the 220 grassland study species and their attributes, including the main occurrence in 

community 1-6 (see Fig. 2, Table 2), pollination type (i, insect-pollinated; w, wind-

pollinated; s, self-pollinated) and Ellenberg indicator value N (EIV-N).  

Species Main occurrence 

in grassland 

community 

Pollination 

type 

EIV-N 

Acer campestre  5 i, w 6 

Acer sp.   6 i, w ? 

Achillea millefolium  5 i 5 

Acinos arvensis  6 i 1 

Aegopodium podagraria  4 i 8 

Agrimonia eupatoria  6 i 4 

Agrostis canina  3 w 2 

Agrostis capillaris  1 w 4 

Agrostis gigantea 4 w 6 

Ajuga genevensis  6 i 2 

Ajuga reptans 4 i 6 

Allium oleraceum 5 i 4 

Allium sp. 4 i ? 

Alopecurus geniculatus 2 w 7 

Alopecurus myosuroides  2 w 6 

Alopecurus pratensis  1 w 7 

Anthemis tinctoria  6 i 4 

Anthoxanthum odoratum  3 w x 

Anthriscus sylvestris  5 i 8 

Arenaria serpyllifolia  5 i, s x 

Arrhenatherum elatius  4, 5 w 7 

Astragalus glycyphyllos  5 i 3 

Barbarea vulgaris  2 i, s 6 

Bellis perennis  3 i, w, s 6 

Brachypodium pinnatum  6 w 4 

Briza media  6 w 2 

Bromus erectus  6 w 3 

Bromus hordeaceus  3 w 3 

Bromus sterilis  5 w 5 

Calamagrostis epigejos  5 w 6 

Campanula rapunculoides  6 i 4 

Campanula rapunculus  3 i 4 

Campanula rotundifolia  5 i 2 

Campanula sp.   2 i ? 

Capsella bursa-pastoris  2 i, s 6 

Cardamine pratensis  3 i, s x 
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Carex caryophyllea  6 w 2 

Carex flacca  6 w x 

Carex hirta  3 w 5 

Carlina vulgaris  6 i, s 3 

Centaurea jacea  6 i, s x 

Centaurea scabiosa  5 i, s 4 

Cerastium arvense  5 i, s 4 

Cerastium glomeratum   5 i, s 5 

Cerastium holosteoides  5 i, s 5 

Cerastium sp.  2 i, s ? 

Chaerophyllum temulum  4 i 8 

Chrysosplenium alternifolium  3 i, s 5 

Cichorium intybus  3 i, s 5 

Cirsium acaule  6 i, s 2 

Cirsium arvense  3 i, s 7 

Cirsium vulgare  4 i, s 8 

Convolvulus arvensis  5 i x 

Cornus sanguinea  6 i, s x 

Corylus avellana   6 w 5 

Crataegus laevigata  6 i 5 

Crataegus sp. 3 i ? 

Crepis biennis  3 i, s 5 

Crepis tectorum  3 i, s 6 

Cruciata laevipes  5 i, s 7 

Cynosurus cristatus  3 w 4 

Dactylis glomerata  5 w 6 

Daucus carota  6 i, s 4 

Deschampsia cespitosa  4 w 3 

Echium vulgare  6 i 4 

Elytrigia repens  1 w 7 

Epilobium lanceolatum 2 i, s 3 

Epilobium parviflorum  4 i, s 6 

Epilobium sp.  4 i, s ? 

Equisetum arvense 4 w 3 

Erophila verna  5 i, s 2 

Fagus sylvatica  4 w x 

Fallopia convolvulus  2 i, w, s 6 

Festuca ovina 5 w 1 

Festuca pratensis  3 w 6 

Festuca rubra  5 w x 

Fragaria vesca  3 i, s 6 

Fragaria viridis  6 i, s 3 

Fraxinus excelsior  6 w 7 

Galium aparine  4 i, s 8 
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Galium mollugo  5 i, s ? 

Galium pumilum  6 i, s 2 

Galium spurium  4 i, s 5 

Galium verum  6 i, s 3 

Geranium columbinum  3 i, s 7 

Geranium dissectum  3 i, s 5 

Geranium molle  5 i, s 4 

Geranium pusillum 2 i, s 7 

Geranium robertianum 2 i, s 7 

Geum urbanum  4 i 7 

Glechoma hederacea  4 i 7 

Gymnadenia conopsea  6 i 3 

Helictotrichon pratense  6 w 2 

Helictotrichon pubescens  4 w 4 

Heracleum sphondylium  3 i, s 8 

Hieracium aurantiacum  3 i, s 2 

Hieracium caespitosum 3 i, s 3 

Hieracium murorum  6 i, s 4 

Hieracium pilosella  3 i, s 2 

Hieracium piloselloides  6 i, s 2 

Hippocrepis comosa  6 i 2 

Holcus lanatus  4 w 4 

Hypericum perforatum  5 i, s 3 

Hypochaeris radicata  4 i, s 3 

Impatiens parviflora  4 i 6 

Inula conyzae  6 i, s 3 

Juncus inflexus  3 w 4 

Juniperus communis  6 w x 

Knautia arvensis  6 i 4 

Koeleria pyramidata  6 w 2 

Lamium album  3 i 9 

Lamium maculatum  4 i 8 

Lathyrus pratensis  5 i 6 

Lathyrus sylvestris 4 i 2 

Leontodon hispidus  6 i, s 6 

Lepidium campestre  5 i, s 6 

Leucanthemum ircutianum  6 i, s 3 

Linum catharticum  5 i, s 2 

Listera ovata  6 i 7 

Lolium multiflorum  1 w 6 

Lolium perenne  2 w 7 

Lotus corniculatus  6 i 3 

Lotus corniculatus agg. 6 i ? 

Luzula campestris  5 w 2 
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Malus domestica  6 i ? 

Matricaria recutita  2 i, s 5 

Medicago falcata  5 i 3 

Medicago lupulina  5 i x 

Medicago x varia 4 i ? 

Melilotus altissimus  5 i 7 

Myosotis arvensis  4 i 6 

Myosotis sylvatica 4 i 7 

Ononis spinosa  6 i 3 

Origanum vulgare  6 i 3 

Papaver rhoeas 2 i 6 

Persicaria maculosa  1 i, w, s 7 

Phleum pratense  2 w 6 

Picris hieracioides  6 i, s 4 

Pimpinella major  6 i, s 7 

Pimpinella saxifraga  5 i, s 2 

Pinus nigra  6 w 2 

Plantago lanceolata  5 w x 

Plantago major  2 w 6 

Plantago media  6 w 3 

Poa angustifolia  5 w 3 

Poa annua  2 w 8 

Poa pratensis   2 w 6 

Poa trivialis  1 w 7 

Polygala comosa  6 i 2 

Polygonum aviculare  1 i, w, s 6 

Potentilla anserina  2 i 7 

Potentilla tabernaemontani  6 i 2 

Primula elatior  3 i 7 

Primula veris  6 i 3 

Prunella vulgaris  6 i x 

Prunus domestica  5 i ? 

Prunus sp.   5 i ? 

Prunus spinosa  6 i, s x 

Quercus robur  6 w x 

Ranunculus acris 3 i, s x 

Ranunculus auricomus agg. 2 i x 

Ranunculus bulbosus  5 i, s 3 

Ranunculus lanuginosus  3 i, s 7 

Ranunculus repens  1 i, s x 

Rhinanthus alectorolophus  4 i, s 3 

Rhinanthus minor  3 i, s 3 

Roegneria canina  5 w 8 

Rosa sp.  6 i, s ? 
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Rubus sp.  6 i ? 

Rumex acetosa 5 w, s 6 

Rumex conglomeratus  2 w, s 8 

Rumex crispus  3 w, s 5 

Rumex obtusifolius  3 w, s 9 

Rumex sanguineus  2 w, s 7 

Rumex sp.  5 w ? 

Sanguisorba minor  5, 6 w 2 

Scabiosa columbaria  6 i 3 

Sedum acre  6 i, s 1 

Sedum sexangulare 6 i, s 1 

Sedum telephium  3 i, s x 

Senecio erucifolius  4 i, s 4 

Senecio jacobaea  3 i, s 5 

Sisymbrium officinale  2 i, s 7 

Sonchus asper  2 i, s 7 

Sonchus oleraceus  6 i, s 8 

Sorbus aucuparia   3 i, s x 

Stellaria media  1 i, s 8 

Symphytum officinale 5 i 8 

Taraxacum sect. Celtica  6 i, s 3 

Taraxacum sect. Erythrosperma  5 i, s 2 

Taraxacum sect. Ruderalia  3 i, s 7 

Thlaspi perfoliatum  6 i, s 2 

Thymus pulegioides  6 i 1 

Tragopogon pratensis  5 i, s 6 

Trifolium campestre  5 i 3 

Trifolium dubium  5 i 5 

Trifolium hybridum 3 i 5 

Trifolium pratense 5 i x 

Trifolium repens  5 i 6 

Tripleurospermum perforatum  2 i 6 

Trisetum flavescens  3 w 5 

Triticum aestivum  2 w ? 

Tussilago farfara 3 i, s x 

Urtica dioica 4 w 8 

Verbascum sp.  6 i, s ? 

Veronica arvensis 5 i, s x 

Veronica chamaedrys 5 i, s x 

Veronica officinalis 3 i, s 4 

Veronica persica 2 i, s 7 

Veronica serpyllifolia  1 i, s x 

Veronica verna 3 i, s 1 

Viburnum opulus 4 i, s 6 
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Vicia angustifolia 3 i x 

Vicia cracca  6 i x 

Vicia hirsuta  3 i 4 

Vicia sepium  2 i 5 

Vicia sp.  3 i ? 

Vicia tetrasperma  4 i 5 

Viola arvensis 2 i, s x 

Viola hirta 6 i, s 2 
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Changes in the agricultural landscape and impacts on Central European grasslands 

In most Central European regions, the landscape is characterized by agricultural activities 

with highest rates of transformation since World War II. The application of fertilizers and 

pesticides, as well as the frequency of cutting and/or mowing on grasslands increased 

dramatically. Additionally, a large number of wet or moist sites have been drained or became 

abandoned. This abandonment of land is a particular problem on marginal sites, e.g. steep 

hillside situations were cultivation is difficult and not rentable. The present study quantified 

landscape and vegetation changes from the 1950/60s, before agricultural intensification 

started, until 2008 in an over-regional approach in order to obtain representative and 

significant results.  

In chapter two it was found that strong changes occurred in the extent of formerly 

wide-spread floodplain meadows during the last five to six decades. More than 80% of the 

unprotected wet and species-rich mesic meadows were lost and substituted either by more 

intensive land use types, such as cropland or species-poor, intensively managed grasslands, 

or by land use types indicating lower management intensity like marshes, fallows and 

shrublands. Both grassland types showed some similar trends, e.g. the substitution by 

intensively managed grasslands, but differences could also be detected. The formerly 

widespread species-rich mesic meadows were twice as often substituted by arable fields than 

wet meadows whereas the latter were twice as often substituted by fallows or shrublands 

indicating a significantly higher cost of land improvement of such wet locations. Overall, 

the grassland area (all types) decreased by 50%. 

In chapter five a contrasting development was found in a typical upland area where 

the area of grassland doubled since the 1950s. However, looking at today’s quality of the 

grassland revealed that just a small part of it is ecologically valuable in terms of species 

diversity and species composition. 

In addition to these direct changes in landscape composition due to grassland losses 

or management intensifications there are often further indirect influences on the remaining 

grassland sites, such as fragmentation, isolation and changes in the length of habitat 

continuity. This could be a potential threat, especially for grassland specialists (e.g. Winter 

et al. 2008; Saar et al. 2012; Münzbergovà et al 2013). 
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Fragmentation – a question of the observation scale 

To analyse habitat fragmentation and its effect on plant species richness, it is necessary to 

determine the scale of observation. To detect land use changes, the fragmentation was 

investigated at different grassland habitat levels (scales). In study one, I analysed 

fragmentation at two different levels: At first wet respectively species-rich mesic meadows 

separately and secondly a combination of both (floodplain meadows). In study three, I 

additionally calculated the fragmentation on a third scale, the joint consideration of all 

grasslands in the broader sense. Many species (grassland generalists) with broad ecological 

amplitude are able to occur in different grassland types and are therefore only affected by 

fragmentation in the sum of all grassland types. Other grassland plants are adapted to specific 

conditions, e.g. moist conditions (see chapter four), and are therefore influenced by the 

fragmentation level of this specific grassland type. Hence, the scale of observation depends 

on the amplitude of site conditions which are tolerated by the investigated plant species. 

The increase in area of individual grasslands patches caused by consolidation and 

removal of hedgerows and other structures did not lead to a lower fragmentation level for 

those specific grassland species. The newly established grasslands are more intensivly used 

and secondly managed more uniformly (mowing times and frequency), so that they are 

mostly not suitable as a habitat for the majority of grassland specialists on the long term. 

The grassland areas that today harbour a lot of characteristic grassland species and grassland 

specialists were mostly found to be fragmented. Only small remnants remained in isolated 

locations. This holds for calcareous grasslands on steep slopes as well as for floodplain 

meadows on sites which could only be cultivated in a complicated and unprofitable way 

(Dolek and Geyer 2002). 

Similar trends and problems were discussed for the arable flora, where the increase 

in area of cropland led to widespread intensifications and decreasing areas of field margins. 

Consequently, the species number and abundance of most plants of the arable flora decreased 

rapidly and some species could only be found in field margins where management pressure 

is rather low (Fried et al. 2009; Kohlbrecher et al. 2012; Meyer et al. 2013). The reduction 

of suitable niches (due to herbicids, poor light conditions due to high coverage of crops) in 

the field center and declining edge structures which can act as a habitat refugium are the 

main threat for arable flora (Meyer et al. submitted a) . Even land set aside on marginal soils 

are a threath for arable plants in some regions (Henle et al. 2008; Storkey et al. 2012). The 

combination of these effects has led to small and isolated populations of arable plants. 
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Brütting et al. (2012) found a weak trend towards low genetic structure in threatened species 

of the arable flora. Recently Meyer et al. (submitted b) found a very low genetic diversity 

for the arable flora in general. These examples show that fragmentation and isolation affect 

plant species negatively even if they still persist in the cultural landscape. 

 

Fragmentation - Overall study results and consequences for extinction debt 

A special characteristic of the study sites used in this survey (except study site Weser) was 

the contiguous and more or less non-fragmented grassland area in the 1950/60s whereas 

other study sites investigated in the search for fragmentation effect were more or less 

fragmented in the past (e.g. Lindborg and Eriksson 2004; Helm et al. 2006; Adriaens et al. 

2006). Hence, the initial situation in the analysis presented here was more or less identical 

and mostly non-fragmented over all study sites. In chapter two and four we found a strong 

increase of grassland fragmentation on different spatial levels. This holds for the 

consideration of wet and species-rich mesic meadows, for floodplain meadows (combination 

of wet and species-rich mesic meadows) as well as for the grasslands in a broader sense. As 

mentioned above, fragmentation has often been identified as a driver of species decline. A 

lot of grassland species are perennials and so they can persist periods with non-optimal 

conditions (Eriksson 1996; Eriksson and Ehrlen 2001). Hence, time lags between changes 

and extinction can occur (extinction debt, see Tilmann et al. 1994).  

In order to detect such an extinction debt, past landscape structures and recent plant 

species diversity were linked and tested for relationships (chapter four). No significant 

correlation and therefore no evidence for an extinction debt in contrast to other studies 

(Lindborg and Eriksson 2004; Helm et al. 2006) were found. However, there is evidence that 

recent diversity is better explained by recent landscape patterns (Adriaens et al. 2006; 

Cousins et al 2007). Weak evidence for an effect of recent fragmentation (isolation of 

meadow patches) on species diversity is given by the results of our analysis of fragmentation 

at the local scale (chapter four). The recent distance between meadow patches was 

significantly negatively correlated with the number of characteristic meadow species per plot 

(overall effect; mixed model analysis). Separated analyses performed for optimal and 

suboptimal habitats based on correlation analysis revealed interesting results: the significant 

effect of distance to the nearest neighbour seems to have a greater impact in the suboptimal 

habitats, which could be interpretated as evidence for a sink habitat with surrounding source 
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habitats (optimal) of characteristic meadow plant species. Only a minor effect of distance 

between the optimal habitas was found on the number of characteristic species. An analysis 

based on mixed models detected no evidence for a pronounced difference between the two 

habitat categories in their response to the metrics (interaction terms not significant in all 

cases) and hence differences between optimal and suboptimal habitat are only trends. 

The missing influence of fragmentation and patch size and the weak influence of 

isolation on the species richness of characteristic meadow plants found here is in accordance 

with several other studies. We can also confirm the low or unclear dependency of plant 

species diversity on the size and isolation of grassland fragments in fragmented cultural 

landscapes reported in the same studies (Eriksson et al. 1995; Kiviniemi and Eriksson 2002; 

Herrera and Laterra 2011; Öckinger et al. 2012). 

The strong decline of short-lived vascular plant species found in chapter three is in 

agreement with the findings for isolated grasslands described by Lindborg (2007) and Saar 

et al. (2012). Such high extinction rates of short-lived plants could be evidence for an 

extinction debt also affecting perennial grassland species (Cousins 2009; Lindborg 2007; 

Kuussaari et al. 2009; Johannsson et al. 2011). Land-use intensification over time resulted 

in the dominance of a few productive grassland species that built a permanently closed sward 

(Dierschke and Briemle 2002). Patches of bare soil that may serve as safe sites for 

establishment are becoming rare, which is a problem for short-lived species but also for 

small perennial plants or other weak competitors (Walker et al. 2009).  

Due to time lags in species’ responses the detection of fragmentation effects is often 

difficult (Kuussaari et al. 2009). Hence, it was distinguished between optimal and suboptimal 

habitats (see chapter four). The low number of characteristic meadow species in today’s 

suboptimal vegetation units (mostly optimal habitats in the 1950/60s) indicate, that the 

extinction debt is already paid in these areas, mainly by changed site conditions and 

management regimes (mowing frequency, ploughing and resowing, fertilisation). The 

situation for the remaining optimal habitats appears somewhat different. Today, we can still 

find a lot of characteristic meadow species in remnants, although the number declined during 

the last decades. Cousins (2009) pointed out that studies where less than 10% of former 

grasslands remained could not find any evidence for an extinction debt. The results presented 

in chapter two showed decreases in area since the 1950/60s of 84% for wet meadows and 

85% (mean over all six unprotected study sites, range of 64-97%). So, different study sites 

fluctuate around this limit of 10% resulting in missing evidence for an extinction debt, but 
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looking at changes in grassland areas in the broader sense, the limit of 10% remaining has 

not been exceeded.  

An additional and at first sight invisible threat is a lower genetic diversity, e.g. due 

to fragmentation or low population sizes, which involves risks for population survival in the 

future and increases the risk for an extinction debt (Spielmann et al. 2004; Brütting et al. 

2012; Meyer et al. submitted b). This is especially true if additional negative effects, e.g. 

intensification or changes in site conditions occur and lead to an additional pressure on 

remaining populations. The effects of climate change in the future are predicted to result in 

changing precipitation pattern and hydrological conditions in the floodplains of Germany 

(e.g. Huang et al. 2013; Wagner et al. 2013) also affecting moisture conditions of floodplain 

meadows. This results likely in an additional pressure on the remaining characteristic 

meadow species. 

Even though, no evidence for an extinction debt for characteristic floodplain species 

was found, negative effects of fragmentation in addition to negative edge effects from the 

surrounding landscape (e.g. indirect nutrient input) on the remaining optimal and non-

fertilized habitat areas are to be feared in the future. 

In chapter four, it was shown that the vegetation unit wet meadows today harbours 

significantly less characteristic meadows species than in the 1950/60s. Due to the fact that 

no clear trend and over-regional fragmentation effect could be detected it is likely that other 

factors, e.g. changing site conditions (local fertilisation, management) are mainly 

responsible for the species decline. Management affects plant communities often more 

directly, and may thereby override any potential effects of landscape structure (Korneck et 

al. 1998; Klimek et al. 2007). The analysis of EIVs in chapter three indicated no clear trend 

in terms of moisture conditions but increasing nutrient conditions pooled over all study sites 

(without Ems and Havel) were found. These higher nutrient levels are negatively correlated 

with the overall species richness (chapter three) and the species richness of characteristic 

meadow species (chapter four). A similar trend could be detected for the grasslands in the 

uplands (chapter five). Hence, it is likely that the loss of species richness in wet meadows is 

mainly a result of increased nutrient supply. Species changes (Table A in the appendix of 

chapter four) since the 1950/60s show that the most characteristic meadow species which 

occured in the 1950/60s but being absent in 2008 were adapted to low nutrient conditions 

(16 species; EIV-N 3.3 ± 1.5). 
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Consequently, high species diversity and corresponding functional traits are 

important to ensure ecosystem stability under changing conditions (Cantarel et al. 2013). 

Human impacts on species diversity therefore also affect ecosystem stability which is to be 

considered a risk for the future.  

 

The importance of habitat and management continuity for species-rich grasslands  

Based on the landscape change and the resulting fragmentation, habitat and management 

continuity play a crucial role for functional traits and species diversity. 

In chapter five, it was shown that grasslands with highest species diversity occurred 

exclusively on old grassland sites (habitat continuity >100 years) and these sites are still rare. 

This is in accordance with the results of other studies, e.g. Gustavsson et al. (2007), Aavik 

et al. (2008) or Waesch and Becker (2009). The fact, that not all old grasslands were species-

rich, but all species-rich grasslands were old, suggests additional influences on the number 

of species. Here the influence of the current management regime (EIVs as indicators for 

mowing frequency and nutrient supply) on the number of species was tested and strong 

negative correlations were found (see previous chapter). This combination of site conditions 

(management, habitat continuity) shows the difficultyies in preserving species-rich 

grassland. Blüml et al. (2012) found differences between grasslands in the 

Dümmerniederung which were converted to cropland in the meantime (30 years ago) and 

grassland which were managed as grassland continuously, but long-lasting and intensive 

management in grasslands leading to similar negative results as detected by converting 

measures. 

Due to the sound dataset used in chapter two, it was possible to study the extent of 

grasslands with habitat continuity not only at the level of grassland in the broader sense 

(study four) but on the specific grassland class (wet meadows, species-rich mesic meadows 

and more intensive grassland vegetation units). Considering the consequences of continued 

influence on species richness as revealed for the upland grasslands in chapter five, the very 

small extent of wet meadows or species-rich mesic meadows with long habitat continuity in 

our floodplain study areas indicate also a major and additional threat for their species 

richness. 

If a species is extinct at the local scale due to intensification or transformation into 

cropland and a missing seedbank, the potential dispersal range and the distance to species 
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sources are crucial for re-colonisation (Cousins and Lindborg 2008). These (theoretical) 

maximum dispersal ranges vary strongly between species (Jensen 1998; Geertsema et al. 

2002; Cousins and Aggemyr 2008) and long-range dispersal events can be infrequent or rare 

for many species. The average dispersal ranges of most grassland species are low or species 

are partly dependent on specific ways of dispersal (e.g. by sheep or water) (Bonn and 

Poschlod 1998; Hölzel and Otte 2001; Wessels et al. 2008). These specific ways of dispersal 

are hampered today by e.g. decreasing numbers of sheep and decreasing flood plain areas 

due to dike constructions. The probabilities for successful colonization are determined by 

the fact of undirected and random dispersal and availability of suitable areas and niches for 

establishment (Piqueray et al. 2011). Therefore, management and habitat continuity is 

crucial as it takes sometimes long time periods for species to re-established on grassland 

areas. Additionally, the site conditions in terms of moisture and nutrients must be suitable 

for restoration success. A best practice example for the restoration of wet meadows is shown 

by Blüml et al. (2012) for the Dümmeniederung in Lower Saxony. Here a lot of characteristic 

species re-appeared even 20 years after first restoration efforts, but recolonization is still 

going on and a lot of areas were previously managed only with a relatively low intensity in 

contrast to the floodplain meadows and upland grasslands of the study areas used in the 

present investigation. Similar results were found by Poptcheva et al. (2009) where study 

species recolononized continuously but slowly during a period of 20 years. These 

experiences are in line with Bakker and Berendse (1999) who mentioned that the restoration 

of typical grassland habitats is difficult. In accordance to that, Öster et al. (2009) found that 

species richness and similarity to semi-natural grasslands of re-established grasslands on 

formerly arable fields were still lower than in semi-natural grasslands, even after more than 

50 years of grazing. 

Information about vegetation and land-use history are necessary and high-valued for 

nature conservation. Using this information the restoration success can be optimized and the 

very limited budget for conservation activities can be used targeted and to the best effect. 

 

 

Conclusions for nature conservation 

The present study shows that even isolated and small areas are able to harbour a high 

number of characteristic meadow species. Effects of fragmentation on species richness in 
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the floodplain meadows of Northern Germany were not always evident. Landscape structure 

effects play a minor role in our study when compared to the results of Rösch et al. (2013) 

for mobile species like insects. Current grassland management and associated impacts on 

nutrient and moisture regimes at the local scale are the determinants for grassland diversity. 

However, predictions of fragmentation impacts on species diversity are difficult. In order to 

avoid local extinctions through random events, genetic impoverishment and changing site 

conditions (human impact, climate change, natural change) nature conservation activities 

should lead to several small and spatially aggregated meadow patches. This will increase 

population sizes and a higher nature conservation value can be achieved when compared to 

a single large patch. The risk of local extinctions is splited to few meadows and can be 

regulated by the re-colonization of species from surrounding habitats. This is necessary as 

the dispersal range of many grassland species is rather low (Soons et al. 2005; Bischoff et 

al. 2009). Restoring grasslands to their former ecological value is promoted if the selected 

sites are located in landscapes where meadow grassland patches of high diversity are still 

present. These can than act as seed sources (Rosenthal 2003). In addition, the history and 

habitat continuity is of a great importance for conservation and restoration efforts. The 

conspicuous decrease in flowering insect-pollinated herbs in Central European grasslands 

implies that nectar feeders and animal groups at higher trophic levels have also facing severe 

losses. Our data demonstrates that there are strong directional changes that will undoubtedly 

have pronounced effects on a wide range of organisms, especially species dependent on 

insect-pollinated plants or on short-lived herbs. 

The present study also showed that the extinction debt in the studied floodplain 

grasslands is mostly paid within short time periods if melioration measures were strong. 

Restoration success on such strongly altered sites is complicated and uncertain. Conserving 

what is left is more effective than getting back what was lost (Kleijn et al. 2011).  

The more subtle changes in species number in the protected study region points to 

local rather than supra-regional drivers (climate change, atmospheric N deposition) as a 

cause of change. This long-term comparison emphasises the need to adopt adequate 

grassland management schemes on the local scale in order to preserve grasslands of high 

nature value. This means that especially local activities for nature conservation are useful to 

improve site condidions. Decision makers are now asked to create incentives for preserving 

high-valuable grasslands and the related species diversity. 
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Summary 

Landscape and agricultural management has changed in Central Europe dramatically since 

the large-scale intensification processes (e.g. meliorations, synthetic fertilizer and herbicide 

use) started in the 1950/60s. Today, most croplands and remaining grasslands are used very 

intensively and many former grassland areas were converted to cropland resulting in an 

overall decline of grassland area in Germany. The reverse case of converting cropland to 

grassland is a regional phenomen on, e.g. in the uplands or initiated by compensation 

measures, but the species composition of the recent grasslands differs from continuously 

managed grasslands. To detect melioration effects on phytodiversity, landscape structure and 

the fragmentation of the remaining grasslands and species composition it is necessary to 

analyse long-term data dating back to the onset of major agricultural industrialisation in the 

middle of the 20th century.  

Floodplain grasslands (wet and mesic species-rich grassland) were common and formerly 

widespread in the 1950/60s, but nowadays are threatened in Central Europe. There are no 

replicated studies at multiple locations that refer to the time before agricultural 

intensification started, and historical and spatially explicit vegetation data is rare. Although 

the extent of grasslands has increased in some upland regions, the ecological quality of these 

grasslands is arguable. Additionally, species-rich calcareous grasslands on steep slopes are 

threatened by abandonment (succession) and increasing nutrient supply. 

The aim of this thesis was to detect landscape changes in six (+ one nature protected) 

floodplain study sites and one upland study site in Northern Germany by quantifying changes 

in grassland area, grassland replacement by other habitat types, habitat continuity, 

fragmentation and their effects on plant species and functional trait diversity as well as 

species composition. The studies on floodplain sites were based on fine-scale vegetation 

maps and corresponding vegetation relevés from the 1950/60s. In 2008, vegetation mapping 

of the almost 2.500 ha (+ 293 ha) historical area was repeated and vegetation relevés were 

sampled in the former grassland at stratified randomly selected sampling points. The case 

study in the uplands of Lower Saxony is based on recent vegetation relevés randomly 

distributed among grasslands covering 394 ha within the 2.500 ha of the study area. 

Additional environmental data for each relevé were surveyed in the field or were extracted 

from historical, geological and soil maps. The continuity of each grassland habitat was 

determined using historical and recent topographical maps and aerial photographs. 
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The first study in the floodplain grasslands pointed out that the wet and species-rich mesic 

meadows in the unprotected grassland sites decreased dramatically by over 80%. They were 

mainly replaced by species-poor and intensively managed grasslands, arable land or set-

asides. Caused by this strong area decline, the fragmentation of remaining wet meadows as 

well as of species-rich mesic meadows also increased dramatically. The nature protected 

study site at the Havel River showed relatively small changes in the extent of wet and 

species-rich mesic grasslands indicating local effects such as fertilisation and drainage, but 

no overregional factors such as climate warming or atmospheric N deposition being 

responsible for the detected changes.  

Our second study in the floodplain grasslands showed that the species richness at the plot-

level declined by 30-50%, similar to losses in functional diversity. The species composition 

of floodplain grasslands changed tremendously in all study regions in the last five to six 

decades. The Ellenberg indicator values (EIV) for nutrient availability increased over time 

and the observed differences between the unprotected and the one protected study site 

support the assumption that the changes were mainly caused by local factors and not by 

overregional influences. The trend is on-going to species-poor communities which are 

dominated by mowing-tolerant and competitive grasses in all unprotected study sites. Early 

flowering and insect-pollinated plants decreased strongly with related effects on the fauna.  

The third study in the floodplain grasslands connects the dramatic loss of floodplain 

grassland area and increasing fragmentation with the impoverishment in plant species 

richness since the 1950/60s. Therefore, a list of 78 characteristic floodplain grassland species 

was defined from 482 vascular plant species recorded in total and the analysis focussed on 

these specialist plants. We found a 30-66% diversity loss at the plot-level over time. The 

tested landscape metrics (total meadow area, mean patch size and landscape proximity 

index) had no significant influence on the richness of characteristic species at the landscape 

level. The distance to the nearest suitable habitat of characteristic meadow species had a 

slightly negative effect on the richness at the plot-level. Ellenberg indicator values for 

nutrient and moisture showed even for the characteristic meadow species that local 

management intensity and corresponding habitat deterioration, but not fragmentation, were 

the driving forces for species shift and species decline.  

In contrast to the floodplain study site, the grassland area of our representative upland case 

study doubled since the 1950/60s. Species diversity and species composition differed 

strongly between six detected grassland types (<15 plant spp. to >27 spp. per relevé), while 
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species-rich grasslands are rare (6% of the grassland area). The number of insect-pollinated 

plants as well as species richness declined with increasing land use intensity (as indicated by 

the EIVs for nutrient and mowing tolerance) in accordance with the results of the floodplain 

grassland studies. Species-rich grasslands only occured on areas grazed traditionally by 

sheep with a habitat continuity of more than 100 years, whereas medium-rich grassland 

occured mainly on former arable fields with a habitat continuity of less than 30 years. 

The presented study showed dramatic losses in the extent of floodplain grasslands. 

Remaining areas were fragmented and suffered major losses in species and functional trait 

diversity. The case study in the upland meadows of lower Saxony shows, that the ecological 

quality of most grassland is low even if the percentage of grassland area is relatively high.  
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Zusammenfassung  

Die Kulturlandschaft und ihre Bewirtschaftung haben sich seit dem Beginn der 

großräumigen Intensivierungsprozesse (z.B. Meliorationen, synthetischer Düngung und 

Herbizidgebrauch) in den 1950/60er Jahren in Mitteleuropa dramatisch geändert. Viele der 

ehemaligen artenreichen Grünlandflächen wurden in den letzten Jahrzehnten beseitigt (z.B. 

durch Umbruch zu Acker). Dies führte zu einem allgemeinen Grünlandrückgang in 

Deutschland. Heute werden die meisten Ackerflächen und die restlichen Grünlandflächen 

sehr intensiv bewirtschaftet. Die gegenläufige Entwicklung, die Umwandlung von Äckern 

zu Grünland, ist eher eine regionale Erscheinung, z.B. im Hügeland oder im Zuge von 

Kompensationsmaßnahmen. Die Artenzusammensetzung dieser Grünländer unterscheidet 

sich jedoch häufig von solchen mit längerer Habitatkontinuität. Um die Effekte von solch 

weiträumigen Meliorationsmaßnahmen auf die Phytodiversität, die Landschaftsstruktur und 

die hiermit einhergehende Grünlandfragmentierung sowie deren Auswirkungen auf die 

Pflanzenarten des Grünlandes zu erfassen, ist es nötig, historische Daten aus den 1950er 

Jahren, bevor die gravierenden, ackerbaulichen Intensivierungen begannen, auszuwerten.  

Feucht- sowie artenreiche Frischgrünländer waren in den 1950/60er Jahren ein typischer und 

weit verbreiteter Habitattyp, gelten jedoch aktuell als sehr bedroht in Mitteleuropa. 

Wiederholungsstudien mit mehreren Untersuchungsflächen und einem Untersuchungs-

zeitraum von 50-60 Jahren, der vor den weiträumigen Intensivierungen beginnt, fehlen 

bislang und klar verortete historische Vegetationsdaten sind selten. Obwohl der 

Graslandanteil in einigen Hügelregionen in Deutschland zugenommen hat ist die 

ökologische Qualität vieler dieser Flächen gering. Zusätzlich sind artenreiche 

Kalkmagerrasen als ein Relikt früherer Bewirtschaftsformen und typischer Bestandteil des 

Hügellandes durch Nutzungsaufgabe (Sukzession) und Nährstoffeintrag gefährdet.  

Das Ziel dieser Doktorarbeit war es, den Landschaftswandel und die Veränderungen im 

Grünland in sechs Flussauengebieten (sowie einem durch Naturschutzstatus geschützten 

Gebiet) und einem typischen Gebiet des Hügellandes in Norddeutschland zu untersuchen. 

Hierzu wurden sowohl der Grünlandanteil, die Habitatkontinuität, der aktuelle Habitattyp, 

der Fragmentierungsgrad als auch die Auswirkungen auf die Artenzahlen, 

Artenzusammensetzung und die funktionelle Diversität untersucht. Die Studien in den 

Flussauen basieren auf fein aufgelösten historischen Vegetationskarten und dazugehörigen 

Vegetationsaufnahmen aus demselben Zeitraum. In 2008 wurden diese sechs Gebiete (+1 

geschütztes Gebiet) mittels einer Biotoptypenkartierung erneut erfasst. Innerhalb dieser 
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kanpp 2800 ha (2500 + 293 ha) früherer Grünländer wurden randomisierte Punkte gelegt 

und zusätzlich Vegetationaufnahmen in allen aktuellen Grünländern (inklusive 

Sukzessionsstadien) angefertigt.  

Die Fallstudie (2500 ha) aus dem niedersächsischen Hügelland basiert auf aktuellen 

Vegetationsaufnahmen, die ebenfalls mittels randomisierter Punkte in den bestehenden 

Grünländern (394 ha) angefertig wurden. Zusatzdaten über z.B. die aktuelle Bewirtschaftung 

oder die Habitatkontinuität (Auswertung historischer Karten) wurden ebenfalls erfasst.  

Die erste Studie zeigte, dass die ehemaligen artenreichen Feucht- und Frischgrünländer in 

den ungeschützten Gebieten drastisch, um über 80% der ursprünglichen Fläche, 

zurückgegangen sind. Sie wurden größtenteils durch Äcker, Intensivgrünländer aber auch 

Brachestadien ersetzt. Bedingt durch diesen starken Flächenrückgang hat die 

Fragmentierung der Restflächen stark zugenommen. Die durch ein Naturschutzgebiet 

geschützte Untersuchungsfläche an der Havel zeigte im Vergleich relative geringe 

Veränderungen. Daraus lässt sich deuten, dass lokale Effekte wie Düngung oder Drainage 

und nicht überregionale Effekte wie Klimaerwärmung oder der Eintrag von Stickstoff durch 

Luft die Hauptursache für den dokumentierten Wandel sind.  

Die zweite Studie in den Grünländern der Auen zeigte, dass sich die Artenzusammensetzung 

in den letzten fünf bis sechs Jahrzehnten in allen Gebieten stark verändert hat, die 

Artenzahlen der Vegetationsaufnahmen um 30-50% und auch die funktionelle Diversität in 

ähnlichem Maße zurückgegangen sind. Die Ellenberg-Zeigerwerte (EIV) für 

Nährstoffverfügbarkeit sind im Vergleich zu den 1950/60er Jahren stark gestiegen und die 

Unterschiede zwischen den ungeschützen und dem geschützten Gebiet unterstützen 

ebenfalls die Annahme, dass Veränderungen größtenteils durch lokale Faktoren und nicht 

durch überregionale Effekte verursacht wurden. Der Trend in den ungeschützten Gebieten 

geht zu artenamen Grünlandgesellschaften, die von wenigen konkurrenzstarken und 

mahdtoleranten Arten dominiert werden. Frühblühende und auf Insektenbestäubung 

angewiesene Pflanzen sind stark zurückgegangen, mit entsprechenden Auswirkungen auf 

die Tierwelt.  

Die dritte Studie verknüpft den dramatischen Grünlandrückgang und die zunehmende 

Fragmentierung mit der Artenverarmung seit den 1950/60er Jahren. Hierfür wurden mittels 

definierter Kriterien eine Liste von 78 für das Feucht- und Frischgrünland charakteristischen 

Grünlandarten definiert, die die Grundlage für die weiteren Analysen bildeten. Die 
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Artenzahlen auf Ebene der Vegetationsaufnahmen nahmen um 30-66% ab. Die getesteten 

Landschaftsstrukturmaße hatten keinen nachweisbaren Einfluss auf die Artenzahlen auf 

Landschaftsebene. Die Distanz zum nächstgelegenen und geeigneten Habitat für die 

charakteristischen Arten hatte einen geringen negativen Effekt auf die Artenzahl der 

Vegetationsaufnahmen. Die Ellenberg-Zeigerwerte (N, F) und die Diversitätsmaßzahlen an 

charakteristischen Arten weisen ebenfalls auf den Effekt der lokalen Bewirtschaftung und 

nicht auf Fragmentierung als treibende Kraft beim Rückgang und dem Wandel der 

Artengarnitur hin. 

Im Gegensatz zu den Untersuchungsgebieten in den Flussauen hat sich der Grünlandanteil 

in der Fallstudie im niedersächsischen Hügelland seit den 1950er Jahren verdoppelt. Es 

wurden sechs verschiedene Grünlandtypen mit einer Spanne von unter 15 bis zu deutlich 

mehr als 27 Arten pro Aufnahme erfasst. Die besonders artenreichen Bestände sind aber mit 

ca. 6% der Fläche sehr selten. Die Anzahl an insektenbestäubten Pflanzen als auch die 

absoluten Artenzahlen gehen mit steigender Nutzungsintensität (indiziert durch die 

Ellenberg-Zeigerwerte Nährstoffe (N) und Mahdtoleranz (M)) wie in den 

Untersuchungsgebieten in den Flussauen zurück. Artenreiche Grünländer kommen nur auf 

mit Schafen beweideten Flächen mit einer Habitatkontinuität von mindestens 100 Jahren 

vor. Grünländer mit mittleren Artenzahlen sind größtenteils auf früheren Äckern mit einer 

Habitatkontinuität von weniger als 30 Jahren zu finden. 

Die dargestellte Untersuchung hat dramatische Verluste in den Grünlandflächen der 

Flussauen aufgezeigt. Die Restflächen sind fragmentiert und die Artenzahlen sowie die 

funtionelle Diversität stark zurückgegangen. Die Fallstudie im niedersächsischen Hügelland 

zeigt, dass selbst in Landschaften mit hohem Grasslandanteil die ökologische Qualität von 

den meisten Grünländern nur noch gering ist.  
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