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1 Introduction 

1.1 Lysine acylations on histones 

In eukaryotes, nucleosomes are the basic unit of DNA packing and form the first step of 

DNA compaction leading to chromosome formation.1 They consist of approximately 147 

base pairs of DNA which is wound around a protein octamer. This octamer is composed of 

two molecules each of the four core histones H2A, H2B, H3 and H4. Single nucleosomes 

are connected by short DNA segments into nucleosomal arrays (Figure 1.1). 

 

 
Figure  1.1: Schematic structure of a nucleosomal array.2 The DNA (black) is wrapped around the four core 

histones H2A, H2B, H3 and H4, which are present in two copies. The N-terminal tails of the histones (rose) 

are oriented out of the octamer. 

 

All four core histones have N-terminal tails, which are oriented out of the octamer and  

solvent exposed. On these N-terminal tails most of the posttranslational modification 

sites of the core histones can be found. Posttranslational modifications (PTMs) are 

important for the modulation of chromatin structure and function. Over the last decades 

a vast number of PTMs on histones have been identified. One of the first modifications 

described was the acetylation of lysine residues in the N-terminal tails of histones H3 and 

H4.3–6 Acetyl modifications of lysines play an important role in chromatin regulation and 

correlate with active and open chromatin.7 They are also associated with DNA repair.8 

Besides the well known PTMs on lysines like acetylation, methylation and ubiquitination, 

novel modifications were discovered over the last years.9 They include different 
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acylations like butyrylation, proionylation, crotonylation, succinylation and 

malonylation.10–12 A closer look on their molecular structure exhibits similarities between 

some of them. The butyryl and propionyl modifications only differ in the length of their 

acyl-side chain from the acetyl modification and crotonyl groups only obtain an additional 

bond compared to buturyl groups. Considering these similarities the question arose if 

they are removed by the same enzymes as acetyl modifications on lysines and if the 

enzymes obtain a specificity to discriminate between them. Studies demonstrated that 

many histone deacetylases, including sirtuins, remove different types of acylations but 

only few detailed studies about the kinetic of these reactions have been performed. 

Sirtuins couple their activity to the formation of an small acylated molecule. Depending 

on the acylation of the substrate, different variants of this molecule are produced but it is 

unlcear if different acyl groups alter the properties of the molecule. In general, most 

effects of the different histone lysine acylations on cellular processes are still unclear. 

 

1.2 Histone deacetylases 

One family of enzymes that catalyzes the cleavage of PTMs are histone deacetylases 

(HDACs). They hydrolyze acetyl groups from the ε-N-acetyllysine amino acid in histones to 

tighten DNA binding and promote chromatin condensation. Other known targets also 

include non-histone proteins like DNA binding transcription factors, structural proteins 

and nuclear import factors.13 HDACs are divided in four different classes by function and 

DNA sequence similarity (Table  1.1).14–17 These classes are named after their members in 

budding yeast Saccharomyces cerevisiae. The class III HDACs occupy an unique position in 

the family of HDACs because of their sequence composition and reaction mechanism. 
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Table  1.1: Overview of the four HDAC classes.14–16 Depicted members of class III HDACs are the most 

prominent representatives in their class. 

class  members 

I Rpd3-like HDAC 1 – 3 

  HDAC 4, 5, 8 

II Hda1-like HDAC 7 

  HDAC 9 

  HDAC 6, 10 

III Sirtuins mammalian (SIRT1 - 7) 

  Sir2 of S. cerevisiae 

IV -  HDAC 11 

 

1.2.1 Sirtuins 

Class III HDACs are similar to their founding member yeast Sir2 (Silent mating type 

information regulator 2). For this reason they are known as sirtuins. In contrast to the first 

two classes, which share limited sequence similarities, sirtuins do not show any sequence 

resemblance to other HDACs in the family.18 Within their class the catalytic core sequence 

is conserved from bacteria to humans and they reside mainly in the nucleus, 

mitochondria and cytoplasm.19,20 Sirtuins also resemble a special class inside the HDAC 

family because their reaction mechanism differs from other classes. Class I and II HDACs 

catalyze the direct hydrolysis of acetyllysine by utilization of an active-site zinc motif and 

generate deacetylated lysine and acetate.20 Sirtuins on the other hand deacetylate lysine 

residues in a chemical reaction without participation of an active-site zinc motif and 

utilize NAD+ as co-substrate releasing nicotinamide and O-acetyl-ADP-ribose, in addition 

to the deacetylated product.21 At first sight the consumption of NAD+ for the hydrolysis of 

an acetyl group appears to be inefficient, since the energy release is in a comparable 

range to hydrolysis of ATP to ADP22,23 and a dissipation of precious cellular resources.24 

This suggests that the reaction plays an important role for the cell. On the one hand, the 

requirement of NAD+ ensures the coordination of the NAD+:NADH ratio and therefore the 
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metabolic energy status with protein deacetylation. This prevents inappropriate or 

mistimed activity of the sirtuin enzyme and provides a level of control that is missing for 

class I and II HDACs.24 This specialised mechanism results in the unique formation of the 

metabolite O-acetyl-ADP-ribose (OAADPR). 

 

1.3 O-acetyl-ADP-ribose formation and proposed functions in cell 

metabolism 

Functional analysis connects this small molecule with metabolic flux, gene expression, 

cellular redox processes and aging, cell cycle control and apoptosis. The discovery of the 

metabolite in the year 2000 emanated from investigations of the enzymatic functions of 

yeast Sir2. Initially, Sir2 was reported to possess a protein ADP-ribosylation activity with 

the requirement of NAD+.22,25 Further research, however, revealed its more robust activity 

as an NAD+-dependent histone deacetylase.26–28 The utilization of NAD+ as a co-factor, 

which is unique to the sirtuin class, finally led to the discovery of OAADPR. Tanner et al. 

investigated the intrinsic catalytic mechanism of Sir2 and wanted to authenticate the 

reaction products. To their surprise, they did not find significant amounts of ADP-ribose 

(ADPR) and acetate, which were two of the predicted products, but an adduct between 

them. This adduct was identified by mass spectrometry as an acetyl-ADP-ribose, the 

metabolite OAADPR. 

One of the first experiments performed after the discovery of this novel metabolite was a 

quantitative microinjection assay of OAADPR in starfish oocytes. It was shown that the 

metabolite, as well as purified sirtuin, could delay or even block maturation of oocytes 

and blastomeres. This supported the idea that the metabolite possesses biological activity 

as a novel signaling molecule or second messenger in a tightly controlled metabolism.29 

Since then, several OAADPR-metabolizing enzymes have been reported. One of the best 

studied families are the NUDIX hydrolases (hydrolysis of a nucleoside diphosphate linked 

to another moiety x).30 They cleave the pyrophosphate bond of OAADPR, generating 2- 

and 3-O-acetylribose-5-phosphat and adenosine monophosphate (AMP). Other known 



 1 Introduction  5 

OAADPR-metabolizing enzymes are ARH3 (ADP-ribosylhydrolase 3) and macrodomain 

proteins. They hydrolyze the acetyl group of OAADPR and form free acetate and 

ADPR.31,32 

The unique involvment of NAD+ and the formation of a novel metabolite in sirtuin 

catalyzed deacetylation reactions has led to closer investigations of the underlying 

catalytic mechanism. Several assumptions for different types of mechanisms have been 

reported. The proper identification of 2’-OAADPR was one of the key steps that led to the 

following proposed mechanism (Figure  1.2).33,34 The initial step of the deacetylation 

reaction involves a nucleophilic addition of the acetyl oxygen to the C1’ atom of the 

nicotinamide ribose to form a C1’-O-alkylamidate intermediate. Both SN1 and SN2 

mechanisms were proposed for this nucleophilic attack. A study using kinetic isotope 

analysis and computational models suggested a concerted, but highly asynchronous 

substitution mechanism.35 Following the alkylamidate formation, the 2’-hydroxyl group of 

the NAD+ ribose is activated by a conserved histidine in the NAD+ binding pocket. The 

activated hydroxyl group attacks the O-alkylamidate carbon to form a 1’,2’-cyclic 

intermediate.36 Finally, a base-activated water molecule attacks the cyclic intermediate, 

releasing deacetylated lysine and 2’-OAADPR. Subsequently, at neutral pH, 2’-OAADPR 

undergoes a non-enzymatic transesterification yielding 2’- and 3’-OAADPR in a ~1:1 molar 

ratio.21,33 
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Figure  1.2: Proposed catalytic mechanism of OAADPR formation.modifier after 37 At first the oxygen of the 

acetyllysine attacks the C1’ atom at the nicotinamide ribose and nicotinamide is released. The hydroxyl 

group at C2’ gets activated by a conserved histidine, attacks the carbon atom of the O-alkylamidate and a 

1’,2’-cyclic intermediate is formed. This intermediate is attacked by a base-activated water molecule which 

leads to the formation of 2’-OAADPR and the release of deacetylated lysine. A non-enzymatic 

transesterification yields a mixture of 2’- and 3’-OAADPR. 

 

As mentioned above, OAADPR is thought to function as a signalling molecule or second 

messenger in many cellular processes, which includes gene silencing, ion channel 

activation and decreased reactive oxygen species (ROS) levels.37 Its regulatory function in 

gene silencing was unveiled in studies by Liou and McBryant in the years 2005 and 

2006.38,39 They analyzed factors affecting the formation of the Silent Information 
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Regulator (SIR) complex by utilizing an in vitro assembly approach. The SIR complex is a 

multi-protein nucleosomal binding complex and mediates silencing at telomeres and 

mating type loci in S. cerevisiae. It is composed of three sirtuins: Sir2, Sir3 and Sir4.40 

Analyses by Liou and McBryant showed, that only the addition of acetyllysine substrate 

and NAD+ increased the binding of Sir3 to the Sir2/Sir4 complex. This effect was 

suggested to be either due to NAD+ hydrolysis or the formation of OAADPR. Addition of 

purified OAADPR resulting in the same increase of the binding effect supported its role in 

the structural arrangement of the SIR complex. Other studies reported OAADPR to be 

non-essential for Sir3 recruitment to the Sir2/Sir4 complex.41 Gasser et al. analyzed the 

effect in a nucleosomal context. They preincubated the SIR complex with OAADPR, which 

resulted in a subsequently increased affinity of the complex for the chromatin template.42 

In summary, OAADPR presumably enhances the efficiency of Sir3 binding to Sir2/Sir4 and 

chromatin and therefore supports the formation of silent chromatin, although not being 

essential for these processes. 

The ion channel activating function of OAADPR was investigated in 2006 by Grubisha et 

al.43 They discovered that the metabolite induces the channel gating process in TRPM2 

(transient receptor potential malastatin-related channel 2). TRPM2 is a non-selective 

cation channel which is stimulated by oxidative and nitrative stress and supports 

susceptibility to cell death.44 For its activation, ADPR binds to the C-terminal cytoplasmic 

domain of the channel, which displays homology to a NUDIX hydrolase but without any 

enzymatic activity.45,46 OAADPR can bind to this domain as well. It modulates the gating in 

a similar way as ADPR but is possibly generated in higher amounts in response to 

increased sirtuin activity during metabolic adaption.43 A plausible explanation for putative 

modulation of TRPM2 by acetylated ADP-ribose might be a rapid degradation of OAADPR 

before binding to the C-terminal domain of the channel.30 Thus, ADPR would be 

accumulated and subsequently induce channel gating. 

Tong et al. investigated the appearance of decreased ROS levels in the presence of 

OAAPR/ADPR.47 They analyzed S. cerevisiae Δysa1 cells in comparison to wild type strains. 

Ysa1 is a member of the NUDIX hydrolase family. Δysa1 cells, containing increased levels 
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of OAAPR/ADPR, demonstrated a higher resistance to both endogenous and exogenous 

oxidative stress and possessed a general lower basal level of endogenous ROS. Two 

possible explanations were suggested for this mechanism (Figure  1.3). The first 

explanation is the inhibition of complex I of the electron transport chain. During transport 

from one complex to the next, the electrons can react with oxygen and form ROS. It was 

suggested that ADPR is able to inhibit the activity of complex I by preventing NADH from 

binding to the first complex and therefore electrons from passing on.48,49 Tong et al. could 

confirm ADPR as a physiological modulator of ROS originating from the electron transport 

chain. The second explanation for an increased oxidative stress resistance of Δysa1 cells is 

the promotion of pathways that suppress ROS damage and accumulation.47 It is well 

known that H2O2- and Cu2+-stress lead to higher ROS levels and thus to cellular damage. 

To avoid this damage, yeast cells reroute the glucose mechanism from glycolysis to the 

NADPH-generating pentose phosphate pathway.50–53 The produced NADPH is required by 

reductases to reduce essential cellular antioxidants.54,55 OAADPR and ADPR are 

structurally similar to several coenzymes and substrates utilized by glycolytic enzymes 

and might modulate their activity. They were found to interact with the central glycolytic 

enzymes phosphoglycerate kinase (PGK) and glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH), as well as with the glycolysis-related alcohol dehydrogenase (ADH). Consistent 

with the explanation of rerouting glucose to the pentose phosphate pathway by 

OAADPR/ADPR accumulation, NADPH levels in Δysa1 cells were increased by about 75 %. 

This led to a stronger resistance of the cells to toxic effects of ROS induced stress and also 

enabled the cells to maintain a lower basal level of endogenous ROS.47 
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Figure  1.3: Proposed mechanisms of OAADPR/ADPR and YsaI function in metabolic pathways and cellular 

redox.modified after 47 OAADPR/ADPR are generated by NAD+ cleavage and hydrolyzed by YsaI to AMP which 

activates glycolysis. In Δysa1 cells OAADPR/ADPR levels are increased. They consequently inhibit glycolysis 

and promote NADPH production by rerouting glucose to the pentose phosphate pathway. This leads to a 

higher antioxidative stress response capability because essential cellular antioxidants can be reduced by the 

produced NADPH. Increased OAADPR/ADPR levels also inhibit complex I of the electron transport chain 

leading to a lower ROS level. 

 

Despite several studies, the precise biological function of OAADPR and its molecular 

mechanism remains unclear. Also the full identification of interacting proteins is likely 

incomplete. Detailed analysis is generally hindered by the instability of OAADPR due to 

hydrolysis by several enzymes and the limited quantity available from purification of 

enzymatic reaction products. In vivo studies are generally hampered by the inability of the 

metabolite to permeate the plasma membrane. An approach to the problem of limited 

availability and instability was undertaken by Comstock et al.56 They developed a 

chemical synthesis of authentic OAADPR and two non-hydrolyzable analogues. The O-

acetyl moiety of the analogues was replaced by an N-acetyl group to stabilize them 

against spontaneous and enzyme-dependent hydrolysis. It also prevented the typically 

observed acyl migration with OAADPR. To obtain both 2’- and 3’-OAADPR analogues, the 
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N-acetyl groups were synthesized at position 2’ and 3’ of the ribose sugar. Validation of 

the ability of the two analogues to mimic OAADPR was demonstrated by binding studies 

with macroH2A1.1 histone protein. For resistance against the cleavage by NUDIX 

hydrolases, the P-O-P pyrophosphate moiety of the OAADPR analogue was replaced by a 

P-C-P moiety.57 These synthetic and non-hydrolyzable OAADPR analogues present 

valuable tools for studies of biological functions of the metabolite but are limited to in 

vitro studies. 

 

1.4 Engineering of the O-acetyl-ADP-ribose synthase  

An approach to overcome the problem of the membrane impermeability of the O-acetyl-

ADP-ribose synthase (OAADPR) is a major topic of this thesis. Since the metabolite cannot 

permeate the cell membrane, it needs to be produced in situ in the cell for investigations 

of its function in cell metabolism. Generally, the biosynthesis of sirtuins in the cell is 

uncomplicated but the control over their activity remains problematic. The co-substrate 

NAD+ is universally available in the cell but sufficient primary substrate, the acetyllysine 

needs to be accessible to the sirtuin enzyme to produce beneficial amounts of the 

metabolite.  

The solution for an in situ formation of the metabolite was to couple the primary 

substrate acetyllysine to the sirtuin enzyme and therefore enable a constant turnover 

without any external acetyllysine supplementation. For a functional reaction cycle the 

substrate lysine needs to be recharged with an acetyl group after every turnover. 

Therefore, an acetyltransferase had to be fused to the new enzyme as well. The aim of all 

this was to engineer an OAADPR synthase that combines deacetylase and acetyl-

transferase functionality linked by a peptide containing the substrate lysine for both 

moieties. This synthase should be able to produce the metabolite in situ and in defined 

levels. 
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1.5 Objectives 

The main objectives of this thesis were the engineering, functional optimization and 

characterization of a synthase that is capable of the in situ formation of the metabolite  

O-acetyl-ADP-ribose (OAADPR), and the realisation of experiments addressing the in vivo 

function of the metabolite. To this point, insights into the cellular functions and molecular 

mechanisms of this novel metabolite have been obtained from investigations of gene 

deletions affecting its metabolic rate and in vitro experiments. Since OAADPR is inable to 

permeate the plasma membrane and is susceptible to hydrolysis by several enzymes in its 

cellular environment, in vivo studies were hampered so far. A synthase that forms the 

metabolite within the cell and at defined levels would provide a solution to these 

problems. It would facilitate the evaluation of the obtained in vitro observations and 

analyses of the functions of OAADPR in vivo. 

Furthermore, an objective was the analysis of the turnover rates of sirtuins on recently 

discovered acyl modifications on histone H4K16. The first method to create cleanly 

modified histone H4 protein, developed in Jun.-Prof. Heinz Neumanns group, allowed for 

the opportunity to investigate if sirtuins can discriminate between different acylations 

and to discover putative specificities. The results would provide a first step in the 

understanding of the effects of these acylations on nucleosome structure and function. 
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2 Material and Methods 

2.1 Material 

2.1.1 Technical apparatures 

AbiPrism 3100 DNA Sequencer  Applied Biosystems, Darmstadt 

Agarose gel electrophoresis chamber   GP-Kuststofftechnik, Kassel 

Äkta Prime  GE Healthcare, München 

Autoclave HST 4-5-8  Zirbus, Bad Grund 

Bunsen burner Fuego basic  WLD-Tec, Göttingen 

Centrifuge Allegra IR  Beckman Coulter, Krefeld 

Centrifuge Allegra J-20 XP  Beckman Coulter, Krefeld 

Centrifuge 5415 R  Eppendorf, Hamburg 

Centrifuge HEREAUS Pico 17  Thermo Scientific, Langenselbold 

Centrifuge Speedvac 5301  Eppendorf, Hamburg 

Concentrators MWCO 10k, 30k  Sartorius, Göttingen 

Electroblotter semi-dry  PeqLab, Erlangen 

Electroblotter wet  BioRad, München 

FLUOstar Omega  BMG Labtech, Offenburg 

GelDoc gel documentation device   BioRad, München 

Heating cabinet  Mytron, Heiligenstadt 

Light table TFX-200LC  Vilber Lourmat, France 

Magnetic stirrer MR Hei-Standard  Heidolph, Schwabach 

NanoDrop ND-1000 Spectrophoto-

meter 

 Thermo Scientific, Langenselbold 

Microfluidizer 110S  Microfluidics, USA 

Optimax X-ray film processor  Protec, Oberstenfeld 

Orbital shaker Rotamax 120  Heidolph, Schwabach 
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PCR cycler labcycler  SensoQuest, Göttingen 

pH-Meter PT-15  Sartorius, Göttingen 

Photometer  Eppendorf, Hamburg 

Power Supply Consort EV231  Turnhout, Belgium 

Rotors JA-20, JLA-8.1000  Beckman Coulter, Krefeld 

Sonifier 250  Branson, USA 

Special accuracy balance  Sartorius, Göttingen 

Spectrophotometer Ultrospec 2100 

pro UV/Visible  

 Biochrom, England 

Thermomixer comfort  Eppendorf, Hamburg 

Unitron shaking incubator  Infors HT, Basel 

Vertical gel Electrophoresis chamber 

H10 Mini 

 GP-Kunststofftechnik, Kassel 

Vortexer VV3  VWR, Darmstadt 

 

2.1.2 Chromatography columns and resins 

Amylose resin  New England Biolabs, USA 

Econo-Pac Chromatography columns  BioRad, München 

HisPur™ Ni-NTA Resin  Thermo Scientific, USA 

Superdex 75 26/70  GE Healthcare, München 

Superdex 200 26/70  GE Healthcare, München 

Nucleosil ® 100-5 NH2 HPLC column  Macherey-Nagel, Düren 

PolyHYDROXYETHYL ATM 300-5 HILIC 

column 

 The Nest Group, USA 

 

2.1.3 Kit systems 

EnzyChrom™ NAD+/NADH Assay Kit  BioAssay Systems, USA 
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QIAGEN Plasmid Mini Kit  QIAGEN, Hilden 

QIAquick Gel Extraction Kit  QIAGEN, Hilden 

QIAGEN PCR Purification Kit  QIAGEN, Hilden 

qPCR Kit RealMasterMix SYBR ROX  5PRIME, Germany 

Reverse Transcription Kit QuantiTect  QIAGEN, Hilden 

RNA Extraction Kit  Macherey & Nagel, Düren 

 

2.1.4 Chemicals 

All common chemicals were purchased either from AppliChem (Darmstadt), Merck 

(Darmstadt), Roth (Karlsruhe) or Sigma-Aldrich (Steinheim) with the quality pro analysis. 

 

2.1.5 Other material 

Amicon Ultra-15 Centrifugal Filter 

Units (NMWL 10 kDa, 30 kDa) 

 Merck Millipore, Darmstadt 

Coli Rollers Plating Beads  Novagen, USA 

Half micro cuvettes  Sarstedt, Nümbrecht 

Disposal bags  Sarstedt, Nümbrecht 

Falcontubes (15 mL, 50 mL)  Sarstedt, Nümbrecht 

Hamilton syringe 50 µL  Hamilton, USA 

Hyperfilm ECL  GE Healthcare, UK 

Immobilon-P Transfer Membrane  Merck Millipore,  

Instant Blue  Biozol, Eching 

Low binding E tips 10 µL  Sorenson BioScience, USA 

Low binding microcentrifuge tubes 

1.7 mL 

 Sorenson BioScience, USA 

Micro tubes 1.5 mL, 2.0 mL  Sarstedt, Nümbrecht 

Nitrocellulose Transfer Membrane,  Whatman, Dassel 
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Protan 

PCR Softtubes (0.2 mL)  Biozym, Austria 

Petri dishes 92 x 16 mm with cams  Sarstedt, Nümbrecht 

Pipet Research (2.5 µL)  Eppendorf, Hamburg 

Pipets Research Plus (10, 100, 

1000 µL) 

 Eppendorf, Hamburg 

Pipet tips  Sarstedt, Nümbrecht 

96-well Microplates  BD Falcon, USA 

UV Cuvettes  Eppendorf, Hamburg 

Whatman 3MM Chr paper  Whatman plc, UK 
   

2.1.6 Buffers and Solutions 
 

Amylose resuspension buffer 50 mM Tris pH 7.5 

100 mM NaCl 

1 mM PMSF 

2 mM DTT 

Lysozyme 

Amylose wash buffer 50 mM Tris pH 7.5 

100 mM NaCl 

2 mM DTT 

Amylose elution buffer Amylose wash buffer supplemented with 

10 mM Maltose 

Calcium chloride solution 60 mM CaCl2 

 10 mM Pipes 

 15 % glycerol 

10x DNA Loading dye for agarose gels 20 % Glycerol 

0.25 % Bromphenole blue 

0.25 %  Xylene cyanol 
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Gel filtration buffer 50 mM Tris pH 7,5 

50 mM NaCl 

2 mM Mg(OAc)2 

5 mM DTT 

1x Laemmli buffer 25 mM Tris base 

192 mM Glycine 

3.5 mM SDS 

4x Loading buffer for SDS gels 50 mM Tris HCl pH 6.8 

100 mM DTT 

2% SDS solution 

0.1 % Bromphenol blue 

10% Glycerol 

Ni-NTA wash buffer 10 mM Tris HCl pH 7.5 

200 mM NaCl 

20 mM Imidazole 

1 mM DTT 

1x PIC 

Ni-NTA elution buffer NiNTA wash buffer supplemented with 

220 mM Imidazole 

1x Phosphate-buffered saline (PBS) 137 mM NaCl 

2.7 mM KCl 

10 mM Na2HPO4 

1.76 mM KH2PO4                                     pH 7.4 

Ponceau S staining solution 0.5 % (w/v) Ponceau S pigment 

5 % Trichloroacetic acid 

1000x Protease Inhibitor Cocktail 75 mM Pefablock 

150 µM Leupeptin hemisulfate salt 

37.5 mM O-Phenantrolin hydrochloride-

monohydrate 
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500 µM Pepstatin A 

1x Running Buffer for SDS-PAGE 25 mM Tris base 

192 mM Glycine 

3.5 mM SDS 

1x Stripping buffer for Western Blots 200 mM Glycine 

3.5 mM SDS 

10 % (v/v) Tween20 

1x TBE buffer 89 mM Tris base 

89 mM Boric acid 

2.5 mM EDTA 

1x Tris-buffered saline (TBS) 50 mM Tris HCl 

 150 mM NaCl                                           pH 7.6 

1x Transfer Buffer (Western Blot) 25 mM Tris base 

192 mM Glycine 

3.5 mM SDS 

20 % Methanol 

 

2.1.7 SDS-PAGE gel composition (for six gels) 
 

 Stacking gel 
4 % 

Separation gel 
12.5 % 

Separation gel 
15 % 

H2O 12 mL 21.8 mL 16 mL 

Tris-HCl 5.0 mL 

(0.625 M, pH 6.8) 

17.6 mL 

(1.5 M. pH 8.8) 

17.6 mL 

(1.5 M, pH 8.8) 

10 % SDS 200 µL 750 µL 750 µL 

Acrylamide/Bisacrylamide 

(37.5 :1) 

2.6 mL 24.5 mL 35 mL 

10 % APS 100 µL 750 µL 750 µL 

TEMED 30 µL 60 µL 60 µL 
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2.1.8 Media and culture plates 

1 L lysogenic broth (LB) medium contains: 

Tryptone/Peptone 10 g 

Yeast Extract 5 g 

NaCl 5 g 

Agar 1.5 % for culture plates only 

 

2.1.9 Antibiotics 
 

Ampicillin 50 µg/mL AppliChem, Darmstadt 

Kanamycin 50 µg/mL AppliChem, Darmstadt 

Spectinomycin 75 µg/mL Sigma, Steinheim 

 

2.1.10 Antibodies 
 

Anti-Histone H4 polyclonal antibody (rabbit)  abcam, UK 

Anti-Histone H4K16ac polyclonal antibody 

(rabbit) 

 Active Motif, USA 

Anti-crotonyllysine monoclonal antibody 

(clone 4D5) (mouse) 

 PTM Biolabs, USA 

Anti-His monoclonal antibody (mouse)  GE Healthcare, UK 

Anti-Acetyllysine antibody (rabbit)  abcam, UK 

Anti-Mouse IgG (whole molecule)–Peroxi-

dase antibody 

 Sigma Aldrich, USA 

Anti-Rabbit IgG (whole molecule)–Peroxidase 

antibody 

 Sigma Aldrich, USA 
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2.1.11 Cell strains 
 

E. coli BL21(DE3) 

E. coli DH10B 

E. coli C321.ΔA.exp  

 

2.1.12 Enzymes and DNA-, protein size-standards 
 

Acetyl coenzyme A sodium salt Sigma-Aldrich, Steinheim 

Calf Intestinal Alkaline Phosphatase (CIP) Thermo Scientific, USA 

Lysozyme   

L-Glutamic Dehydrogenase solution from 

bovine liver 

Sigma-Aldrich, Steinheim 

Pfu Turbo DNA Polymerase Agilent, USA 

Phusion High-Fidelity DNA Polymerase Thermo Scientific, USA 

Proteinase K (recombinant), PCR grade Thermo Scientific, USA 

BamHI restriction enzyme Thermo Scientific, USA 

XhoI restriction enzyme Thermo Scientific, USA 

GeneRuler 100 bp Plus DNA Ladder Thermo Scientific, USA 

GeneRuler DNA Ladder Mix Thermo Scientific, USA 

QuickLoad 1 kb DNA Ladder New England Biolabs, USA 

PageRuler Prestained Protein Ladder Thermo Scientific, USA 

T4 DNA ligase Thermo Scientific, USA 

Unstained Protein Molecular Weight 

Marker 

Thermo Scientific, USA 
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2.1.13  DNA Oligonucleotides 

The DNA oligonucleotides (primers) were purchased from Sigma-Aldrich in desalted 

purity. 

Primer name Sequence 5’ → 3’ 

Synthase 1.1 CAGGAAGTCCGGAGTCAAGGGCTTGGGAAAGGGTG 

CCTTGACTCCGGACTTCCTGGCTGCCTTGGTGGCC 

Synthase 1.1  

K → G mutant 

GGAGTCAAGGGCTTGGGCGGGGGTGGCGCCAAATC 

GATTTGGCGCCACCCCCGCCCAAGCCCTTGACTCC 

Synthase 1.2 GGCCACCAAGGGAGTCAAGGGCTTGGGAAAGGGTG 

CTTGACTCCCTTGGTGGCCAGCTGCTTGCGGGGAG 

UhpT-lacZ fusion protein ATCAGTCGACGCGCGAAGCGTGATGCATCTCACC 

TGATTCTAGAATACCTGCGTGAGGCATGCATTG 

CobB CCAGGATCCAAAACCAAGAGTACTCGTACTGAC 

GATTAAAAGCGGGAAGCATTGCCTAACTCGAGTCT 

Sirt1 CCAAGGATCCTGTGAAAGTGATGAGGAGGATAGAG 

CAGACTCGAGTTAGACGTCATCTTCAGAGTCTG 

 

Primers for real-time PCR 

uhpT TTCAGGGCTTTACGCTGTTTGA 

ATTGTTGATTGGTGTGGCTGCT 

nadA GGGCAGATTGGGTGGTAACTTC 

AGTATGGCAGCATCCGGGTATT 

nadB ATGTGGGATTACGTTGGCATTG 

GAACAATCAACTCGGCAACCTG 

pnuC TCTCTCATGGATCGAAGCGGTA 

CCACGCATACCAGCCGTAAATA 

fruB TCTGCTTTTCGCCCATCAGTAA 

ACCGGCGTTCAGGTATTTCAGT 

gapA GCCAGAACTGAATGGCAAACTG 

TATCTACCGATTTCAACGGCGA 
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2.2 Methods 

2.2.1 Molecular biological methods 

2.2.1.1 Polymerase Chain Reaction (PCR) 

DNA was selectively amplified from plasmids by polymerase chain reaction.58 The general 

setup for a PCR mixture (50 µL) including Pfu Turbo DNA Polymerase (2.1.12) and the 

associated PCR cycling protocol is described below. 

 

PCR mixture (50 µL)   

10x cloned Pfu reaction buffer 5.0 µL  

dNTPs (25 mM each dNTP) 0.4 µL  

DNA template (30 ng/µL) 1.0 µL  

Pfu Turbo DNA Polymerase (2.5 U/µL) 1.0 µL  

Primer 1 (25 µM) 1.0 µL  

Primer 2 (25 µM) 1.0 µL  

Distilled water 40.6 µL  

 

Cycle step Temperature Time  

Initial denaturation 95 °C 2 min  

Denaturation 95 °C 30 s  

Annealing          Tm - 5 °C 30 s  

Extension 72 °C 1 min/kb  

Final Extension 72 °C 

4 °C 

10 min 

∞ 
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In the following a general setup for a PCR mixture (50 µL) using Phusion DNA Polymerase 

and the associated PCR cycling protocol are described: 

 

PCR mixture (50 µL)   

5x Phusion High Fidelity buffer 10.0 µL  

dNTPs (10 mM each dNTP) 1.0 µL  

DNA template (10 ng/µL) 1.0 µL  

Phusion DNA Polymerase (1 U/µL) 1.0 µL  

Primer 1 (25 µM) 1.0 µL  

Primer 2 (25 µM) 1.0 µL  

Distilled water 35.0 µL  

 

Cycle step Temperature Time  

Initial denaturation 98 °C 30 s  

Denaturation 98 °C 5-10 s  

Annealing           Tm + 3 °C 10-30 s  

Extension 72 °C 15-30 s/kb  

Final Extension 72 °C 

4 °C 

5-10 min 

∞ 

 

 

For purification of PCR products the QIAGEN PCR Purification Kit (QIAGEN, Hilden) was 

used following instructions of the manufacturer. 
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2.2.1.2 Restriction digest 

Restriction digest of DNA was performed following instructions of the restriction 

endonucleases manufacturer (Fermentas, now Thermo Scientific, USA). The digest was 

proceeded for three hours at 37 °C. Half an hour before end CIP (2.1.12) was added to 

remove 5’-phosphate groups from the template DNA to avoid self-ligation. In the final 

step the enzymes were deactivated by heating to 65 °C for 15 min. 

 

2.2.1.3 Ligation 

The reaction mixture for ligation of DNA fragments contains vector and insert DNA in a 

ratio of 1:3 together with 1 U T4 DNA ligase (2.1.12) and 2 µL T4 DNA ligase buffer. For a 

total volume of 20 µL distilled water was added. The mixture was incubated at 37 °C for 

1.5 h and directly transformed into E. coli cells. 

 

2.2.1.4 Agarose gel electrophoresis 

For separation of DNA fragments gels with 1 % (w/v) agarose in 0.5x TBE buffer (2.1.6 

)were used. After the agarose was dissolved in buffer by heating in the microwave, 

GelRed (1:20000) was added to the mixture for visualization of the DNA under UV light. 

DNA samples were mixed with 10x DNA loading dye and electrophoretically separated. 

Visualization of DNA bands was performed at a wavelength of 254 nm or 365 nm if DNA 

extraction was conducted afterwards. 

 

2.2.1.5 DNA extraction from agarose gels 

After a preparative restriction digest and electrophoretical separation of the DNA 

fragments in an agarose gel, bands of desired size were cut out under UV light (365 nm). 

DNA was extracted from the gel pieces using the QIAquick Gel Extraction Kit (QIAGEN, 

Hilden) following the manufacturer’s protocol. The purified DNA was eluted in 50 µL 
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ddH2O and the concentration measured with a photometer. The DNA was stored at -

20 °C. 

 

2.2.1.6 Plasmid DNA preparation 

One single colony from a culture plate containing DH10B cells with the desired plasmid 

was transferred into a culture tube containing LB medium supplemented with antibiotic. 

The culture was incubated at 37 °C over night shaking. Cells were harvested by 

centrifugation (13300 rpm, 5 min) at room temperature (RT). Plasmid DNA isolation and 

purification were performed using the QIAGEN Plasmid Mini Kit (QIAGEN, Hilden) 

according to manufacturer’s protocol. 

 

2.2.1.7 Determination of DNA concentration 

The concentration of DNA in aqueous solutions was determined by measuring the 

absorption at 260 nm using a photometer (Eppendorf, Hamburg). The quotient of 260 nm 

to 280 nm displayed the purity of the DNA. A value between 1.8 and 2.0 indicated 

reasonably pure DNA, a lower value a contamination with proteins. 

 

2.2.1.8 Sequencing 

The principle of the Sanger dideoxy chain termination reaction was used for sequencing. 

Dideoxynucleotide triphosphate containing different fluorophors was incorporated into 

the DNA at random positions during PCR. This stopped the chain elongation due to a 

lacking 3’-OH group to produce fragments which could be separated and analyzed. The 

PCR contained Seq-Mix BigDye Terminator v1.1 (Applied Biosystems, Darmstadt). The 

setup of the reaction mixture and the sequencing PCR are listed in Tables  2.1 and   2.2. 
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Table  2.1 Setup of reaction mixture for PCR before sequencing. 

Template DNA 200-400 ng  

Primer 8 pmol  

Seq-Mix 1 µL  

Seq-Buffer 1 µL  

ddH2O Add to 10 µL  

 

Table  2.2: PCR program in preparation for sequencing. 

Cycle step Temperature Time  

Denaturation 96 °C 10 s  

Annealing 55 °C 15 s 25 cycles 

Elongation 60 °C    4 min  

 

After the PCR 1 µL EDTA (125 mM), 1 µL sodium acetate (3 M) and 50 µL ethanol (96 %) 

were added to the mixture. All components were mixed gently, incubated for 5 min and 

then centrifuged for 5 min at RT (13300 rpm). The supernatant was discarded, the pellet 

washed with 70 µL ethanol (70 %) and centrifuged again. After removal of the 

supernatant the pellet was air dried and finally dissolved in 15 % formamide (99.5 %). The 

containing DNA fragments were analyzed in a capillary sequencing instrument. 

 

2.2.1.9 RNA Isolation 

From cell culture 1x107 cells were harvested, mixed with 1 mL TRI reagent and incubated 

for 5 min at RT. 200 µL chloroform were added and the mixture intensly shaken for 15 s. 

After an incubation time of 2 – 15 min the sample was centrifuged (4 °C, 15 min, 

13300 rpm). The liquid phase was transferred into a new tube, 500 µL isopropanol added 

and incubated for 5 – 10 min at RT. Centrifugation (4 – 25 °C, 8 min, 13300 rpm) resulted 

in the formation of a gel-like or white pellet. The supernatant was discarded. 1.2 mL 

ethanol (75 %) were added to the pellet and vortexed. After centrifugation (4 – 25 °C, 
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5 min, 8000 rpm) the pellet was air dried for 3 to 5 min and resuspended with a pipette in 

sterile water. The suspension was incubated for 10 – 15 min at 55 – 60 °C. RNA 

concentration was measured in a photometer. A small fraction was run in a denaturing 

agarose gel for size control. 

 

2.2.1.10 cDNA transcription 

RNA was isolated as described above and transcribed into cDNA using the Reverse 

Transcription Kit QuantiTect (QIAGEN, Hilden). The transcription was performed following 

manufacturer’s protocol. 

 

2.2.2 Microbiological methods 

2.2.2.1 Chemical competent cells 

For the production of chemical competent cells 250 mL prewarmed LB medium was 

inoculated with cells from a preculture and incubated at 37 °C. At an OD600 0.6 – 0.8 the 

cells were harvested by centrifugation (4 °C, 15 min, 4800 rpm). The cell pellet was 

washed with 10 mL cold calcium chloride solution (2.1.6) and centrifuged again. The 

washing step was repeated with an incubation time of 1 h on ice before centrifugation. 

Most of the supernatant was discarded and the cells resuspended in 2 mL remaining 

supernatant. Aliquots of 200 µL were flash frozen in liquid nitrogen and stored at -80 °C. 

 

2.2.2.2 Transformation of plasmid DNA into chemical competent cells 

Plasmid DNA was transformed into chemical competent cells via the heat shock method. 

Therefore 50 µL cells were mixed with 5 µL plasmid DNA and incubated for 10 min on ice. 

The 2 min heat shock was performed in the Thermomixer comfort (Eppendorf, Hamburg) 

at 42 °C. Cells were returned on ice, 1 mL LB medium without antibiotic added and 
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incubated at 37 °C for 1 h shaking. After recovery the cells were either plated on culture 

plates containing antibiotic or used for inoculation of a liquid preculture. 

 

2.2.2.3 Protein expression 

O-acetyl-ADP-ribose synthase 

The different O-acetyl-ADP-ribose synthases in a pCDF Duet-1 vector were expressed in 

E. coli BL21(DE3) cells. A colony was picked from a culture plate to inoculate 100 mL LB 

medium supplemented with spectinomycin. This preculture was incubated at 37 °C over 

night shaking. Next day the main culture, 500 mL LB medium with spectinomycin in a 2 L 

Erlenmeyer flask, was inoculated to OD600 0.2 and incubated at 37 °C shaking. At OD600 1.0 

protein expression was induced by addition of 0.5 mM IPTG. Cells were harvested 4.5 h 

after induction, washed with cold PBS and stored at -20 °C. 

 

Expression of the synthases on a pBAD plasmid was also performed in E. coli BL21(DE3) 

cells. The preculture was prepared as described above with the antibiotic ampicillin. The 

main culture was inoculated at OD600 0.1 and incubated at 37 °C shaking. At OD600 0.3 

protein expression was induced by addition of 200 – 1000 ppm arabinose. Cell samples 

were taken at defined time points depending on the assay they were used for. 

 

CobB 

Expression of CobB from the pCDF-CobB plasmid was performed as described above for 

OAADPRS on pCDF Duet-1 plasmid. 

 

Sirt1 constructs 

The three Sirt1 proteins with different length of N- and C-terminal regions were 

expressed in E. coli BL21(DE3) cells from a pCDF Duet-1 plasmid. Plasmid DNA was 
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transformed into chemical competent cells via heat shock and used to inoculate 100 mL 

LB medium supplemented with spectinomycin. This preculture was incubated at 37 °C 

over night shaking. The main culture contained 250 mL LB medium supplemented with 

spectinomycin and was inoculated to OD600 0.2. It was incubated at 37 °C shaking up to 

OD600 1.2. 250 mL cold LB medium with spectinomycin was added and the cell cultures 

were shifted to 18 °C before induction with 0.5 mM IPTG. Cells were harvested the next 

day, washed with cold PBS and stored for short term at -20 °C. 

 

Acylated histone H4K16 fusion protein 

Recombinant expression of acylated H4 K16 fusion protein was performed in C321.ΔA.exp 

cells, transformed with the appropriate amber mutant vectors, in standard LB medium 

supplemented with kanamycin and spectinomycin. Cells were inoculated from an 

overnight culture and incubated at 37°C shaking, up to OD600 > 1.0. The culture was 

supplemented with 10 mM unnatural amino acid and 20 mM nicotinamide (NAM) and 

incubated for another 30 min before induction with 0.2 % arabinose. Protein expression 

was carried out at 37°C shaking for 16 h. Cells were harvested and washed with cold PBS 

containing 20 mM NAM. 

 

Nicotinamidase pncA-MBP 

Expression of the nicotinamidase pncA fused to a maltose binding protein from a 

pMalc2x-pncA plasmid was performed in E. coli BL21(DE3) cells. Plasmid DNA was 

transformed into chemical competent BL21(DE3) cells via heat shock and used to 

inoculate 100 mL LB medium supplemented with ampicillin and 0.2 % glucose. The 

preculture was incubated at 37 °C shaking. Next day, the main culture was inoculated to 

OD600 0.1 and incubated at 37 °C shaking. Protein expression was induced at OD600 1.0 

with 1 mM IPTG and the cell culture shifted to 20 °C. 6 h after induction cells were 

harvested, washed with cold PBS and stored at -20 °C. 
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2.2.2.4 Cell disruption 

Frozen cell pellets were thawed on ice and resuspended in lysis buffer. The composition 

of the lysis buffer depended on the buffer used for purification of the protein afterwards 

but always contained 2x DTT and 1x Protease inhibitor cocktail (PIC) (2.1.6). After 

resuspension the cells were decomposed in a cooled pneumatic cell desintegrator 

(Microfluidizer 110S, Microfluidics, USA) using high pressure (552 kPa). Cell debris and 

insoluble fractions were removed by centrifugation (4 °C, 30 min, 20000 rpm). The clear 

supernatant containing the desired protein was further used for purification. 

 

2.2.3 Protein biochemical methods 

2.2.3.1 SDS gel electrophoresis (SDS-PAGE) 

Size analysis of proteins was performed by SDS gel electrophoresis. The gels consist of a 

stacking gel part with 4 % acrylamide and a separating gel part with 12 % or 15 % 

acrylamide depending on the size of the proteins ( 2.1.7). Protein samples were mixed 

with loading buffer ( 2.1.6) and applied to the pockets of the SDS gel. For size 

determination different standards were used ( 2.1.12). The SDS gel electrophoresis 

chamber was filled with SDS runing buffer ( 2.1.6) and a potential of 200 V applied. The 

electrophoresis was performed for 60 – 80 min depending on the protein size and 

acrylamide concentration of the gel. 

 

2.2.3.2 Immunoblot (Western Blot) 

The immunoblot was used for detection of proteins with specific tags. The proteins were 

separated by size with SDS-PAGE and transfered on a nitrocellulose or polyvinylidene 

floride membrane. The SDS gel was soaked for 10 min in transfer buffer ( 2.1.6) before 

placing it on top of the membrane. This order applies to the semi-dry electroblotter. For 

usage of the wet electroblotter the membrane lies on top of the gel. On either side of the 
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stack two or three pieces of Whatman paper soaked in transfer buffer were placed before 

inserting the stack into the electroblotter. In the semi-dry blotter 250 mA per stack was 

applied and 100 V. The electrophoresis was performed for 30  –  45 min depending on the 

size of the proteins. When the wet blotter was used the device was placed at 4 °C and the 

transfer buffer was precooled. For two stacks 100 V and 500 mA were applied for 30 min. 

After the transfer the membrane was treated with Ponceau S staining solution ( 2.1.6) to 

fix the protein on the membrane. Subsequent incubation with buffer solution (Table  2.3) 

for at least 10 min prevented unspecific binding of the antibody. Incubation with primary 

antibody solution was performed differently depending on the antibody and is described 

below. The membrane was rinsed with dH2O thoroughly and a solution with the 

corresponding secondary antibody ( 2.1.10) in a dilution of 1:10000 applied. After 

incubation for 1 h at RT on a shaker the membrane was again thoroughly rinsed with 

dH2O and transferred into PBS or TBS buffer (2.1.6). ECL detection reagents (GE 

Healthcare, UK) were mixed and applied on the membrane following manufacturer’s 

protocol. Emitting light was captured on hyperfilm ECL (GE Healthcare, UK). 

The nitrocellulose transfer membrane could be used without treatment but the 

polyvinylidene fluoride membrane needed to be activated. It was incubated in 100 % 

methanol for 1 min followed by hydrophilization in water. 

 

Table  2.3: The different primary antibodies with used concentrations and corresponding buffer solutions. 

Buffer solutions with anti-histone H4K16ac, anti-crotonyllysine and anti-histone H4 antibody were 

supplemented with 0.1 % Tween20. Also buffer solutions used in the washing step between incubation with 

primary and secondary antibody contained 0.1 % Tween20. 

Buffer solution Antibody 

PBS + 3 % BSA anti-his antibody (1:3000) 

anti-acetyllysine antibody (1:3000) 

anti-histone H4 antibody (1:20000) 

TBS + 3 % BSA anti-crotonyllysine antibody (1:4000) 

TBS + 5 % milk anti-histone H4K16ac antibody (1:5000) 
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2.2.3.3 Protein purification 

Purification of O-acetyl-ADP-ribose synthases (OAADPRS) 

Frozen cell pellets were thawed on ice and resuspended in cold Ni-NTA wash buffer 

( 2.1.6) supplemented with lysozyme (0.2 mg/mL). Lysis was performed using a pneumatic 

cell disintegrator (2.2.2.4). After removal of cell debris via centrifugation HisPur™ Ni2+-

NTA Resin ( 2.1.2) (1 mL slurry in 50 mL solution) was added to the supernatant containing 

the protein of interest and incubated 1 h at 4 °C on a roller. The suspension was loaded 

on a plastic column (BioRad, München) with a frit and the resin was washed with two 

column volumes Ni-NTA wash buffer (2.1.6). Elution of the protein was performed using 

Ni-NTA elution buffer ( 2.1.6). For determination of OAADPRS containing fractions a SDS-

PAGE was performed. Fractions corresponding to the size of the protein were pooled, 

concentrated and loaded on a HiLoad™ 26/70 Superdex™ 200 size-exclusion 

chromatography column (GE healthcare, UK) equilibrated in gel filtration buffer ( 2.1.6). 

Absorption was monitored at 254 nm and 4 mL fractions collected. Fractions containing 

OAADPRS, verified by SDS-PAGE, were pooled and concentrated in a microfiltrator 

(Amicon Ultra-15 Centrifugal Filter Unit, 30 kDa, Merck Millipore). Subsequently the 

protein solution was aliquoted, flash frozen in liquid nitrogen and stored at -80 °C. 
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Purification of CobB 

The purification of CobB protein from frozen cell pellets was performed as described for 

OAADPRS. The corresponding size exclusion chromatogram is shown in Figure  2.1. For 

concentration a microfiltrator with a 10 kDa molecular weight cut-off was used. Protein 

solution was aliquoted, flash frozen in liquid nitrogen and stored at -80 °C. 

 

 
 

Figure  2.1: Size exclusion chromatogram of affinity tag purified CobB using a Superdex 200 26/70 column. 

The synthase eluted with a size of 26 kDa. The 12 % SDS gel displays CobB after the hexahistidine tag affinity 

purification (C) and fractions from the chromatogram. (P: cell pellet, F: flowthrough from hexahistidine tag 

affinity purification). 
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Purification of Sirt1 

The purification of Sirt1 protein from frozen cell pellets was performed as described for 

OAADPRS. The corresponding size exclusion chromatogram is shown in Figure  2.2. For 

concentration a microfiltrator with a 10 kDa molecular weight cut-off was used. Protein 

was stored at 4 °C. 

 

 
 

Figure  2.2: Size exclusion chromatogram of affinity tag purified Sirt1 using a Superdex 200 26/70 column. 

The synthase eluted with a size of 49 kDa. The 12 % SDS gel displays Sirt1 after the hexahistidine tag affinity 

purification (C) and fractions from the chromatogram. (P: cell pellet, F: flowthrough from hexahistidine tag 

affinity purification). 

 

Purification of acylated histone H4K16 fusion protein 

Frozen cell pellets were thawed on ice, followed by lysis in 30 mL PBS supplemented with 

20 mM NAM, 1 mM DTT, 1 mM PMSF, 1xPIC and 0.2 mg/mL lysozyme. The cells were 

incubated at 37°C for 20 min shaking and then lysed via a pneumatic cell desintegrator on 
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ice (2.2.2.4). The lysates were clarified by centrifugation (15 min, 18000 rpm, 4 °C) and 

washed in PBS supplemented with 20 mM NAM, 1 mM DTT and 1% Triton X-100. The 

inclusion bodies were collected as above and washed in PBS with 20 mM NAM, 1 mM 

DTT. The insoluble fraction was pelleted again, macerated in 1 mL DMSO and incubated at 

RT for 30 min. Proteins were extracted from inclusion bodies by adding 30 mL of 6 M 

guanidinium chloride, 20 mM Tris (pH 8.0), 2 mM DTT and then incubated at 37°C for 1 h 

shaking, centrifuged as above and loaded on a pre-equilibrated Ni2+-NTA column. The 

column was washed with 100 mL 8 M urea, 100 mM NaH2PO4, 1 mM DTT (pH 6.2). 

Proteins were eluted with 7 M urea, 20 mM sodium acetate, 200 mM NaCl, 1 mM DTT 

(pH 4.5). The eluates were dialyzed against 5 mM β-mercaptoethanol. The protein 

solution was brought to 50 mM Tris-HCl (pH 7.4), supplemented with TEV protease 

(20 µg/mL) and incubated until cleavage was complete (monitored by SDS-PAGE). 

Subsequently, salts were removed as above and the protein lyophilized. 

 

Purification of pncA-MBP 

Frozen cell pellets were thawed on ice and resuspended in amylose resuspension buffer 

( 2.1.6). Lysis was performed using a pneumatic cell disintegrator (2.2.2.4). After removal 

of cell debris via centrifugation the supernatant with the protein of interest was 

supplemented with amylose resin ( 2.1.2) (2 mL slurry in 50 mL solution) and incubated 1 h 

at 4 °C. The suspension was loaded on a plastic column (BioRad, München) with a frit and 

the resin was washed with amylose wash buffer ( 2.1.6). Elution of the protein was 

performed using amylose elution buffer ( 2.1.6). Fractions were run on a 15 % SDS gel to 

determine purity of the protein. Pnca-MBP containing fractions were pooled, flash frozen 

in liquid nitrogen and stored at -80 °C. The activity of pncA was analyzed via an enzymatic 

coupled assay ( 2.2.4.1). 
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2.2.3.4 Size exclusion chromatography 

Since all proteins were temperature sensitive size exclusion chromatography was 

performed at 4 °C. At first the chromatography column was equilibrated with gel filtration 

buffer ( 2.1.6) until the absorption was stable. The protein solution was sterile filtered, 

applied to the column and the size separation performed at a flow rate of 1.5 mL/min. 

The eluent was fractionated in 4 mL volumes and the containing protein visualized on a 

SDS gel. Fractions containing the protein of interest were pooled and concentrated by 

microfiltration to ~1 mg/mL. Aliquots of OAADPRS and CobB were flash frozen and stored 

at -80 °C. Sirt1 protein was stored at 4 °C. 

 

2.2.4 Spectroscopic methods and assays 

2.2.4.1 Enzymatic coupled sirtuin assay 

Since the reaction products of the sirtuin catalyzed reaction are not photometrically 

traceable, an enzymatic coupled assay was used to determine the activity of the synthase. 

The depicted assay in Figure  2.3 continuously measures nicotinamide formation by using 

a coupled enzyme system with the nicotinamidase pncA and glutamate dehydrogenase. 

The pncA hydrolyzes nicotinamide to nicotinic acid and ammonia. Ammonia, together 

with α-ketoglutarate and NADPH are converted to glutamate and NADP+ by glutamate 

dehydrogenase. Amounts of NADPH can be spectrophotometrically measured at a wave-

length of 340 nm. The reaction mixture contained: 

3.3 mM  α-ketoglutarate 

0.2 mM  NADPH 

7.5 U  glutamate dehydrogenase 

1 µM  pncA 

0.5 µM  synthase 

0.75 mM  NAD+ 

2.5 mM  acetyl-CoA 
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All components except NAD+ and acetyl-CoA were mixed in gel filtration buffer and 

equilibrated until a stable absorption at 340 nm was obtained. NAD+ was added and the 

mixture equilibrated again. To start the reaction cycle acetyl-CoA was added and the 

absorption measured over 10 min. Kinetic parameters could be calculated from the 

absorption decrease. 

 
Figure  2.3: Enzymatic coupled sirtuin assay.modified from 59 An acetyltransferase loads the lysine residue with 

an acetyl group from acetyl-CoA. Nicotinamide is cleaved off NAD+ and the acetyl group transferred from 

the substrate lysine to the remaining ADP-ribose. The deacetylated lysine residue can be loaded again by 

the acetyltransferase. Nicotinamide is converted to nicotinic acid and ammonium whereas ammonium 

serves as a substrate in the photometrically traceable reaction. NADPH is oxidized to NADP+ by glutamate 

dehydrogenase while ammonia and α-ketoglutarate are converted to glutamate.58 The absorption 

maximum of NADPH lies at 340 nm. 
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2.2.4.2 Resazurin-Assay 

 

 
 

Figure  2.4: Reaction of resazurin (7-hydroxy-10-oxidophenoxazin-10-ium-3-one) to resorufin by 

acceptance of electrons from NADH which is oxidized to NAD+. 

 

Resazurin is a blue redox dye which exhibits fluorometric change due to cellular metabolic 

activity. Intracellularly it is reduced to resorufin, a strong fluorophore, by oxidation of 

NADH, FADH, FMNH or NADPH while resazurin itself is only weakly fluorescent (Figure 

 2.4). The fluorescence signal of resorufin can be detected by application of 540 nm 

excitation wavelength and 590 nm emission wavelength. The redox dye is stable in 

culture media, non-toxic to cells and its reduction is directly dependent on the number of 

viable cells. 

For determination of the metabolic activity of cells samples were taken at different time 

points during protein expression. The optical density of the samples was normalized and 

200 µL suspension was added to 10 µM resazurin sodium salt (Sigma-Aldrich, Steinheim) 

in a 96-well microplate. Fluorescence was measure over 30 min in the FLUOstar plate 

reader and the percentage of the samples’ metabolic activity was calculated. Values were 

compared to a control whose values were set to 100 %. 
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2.2.4.3 NAD+-Assay 

The EnzyChrom™ NAD+/NADH Assay Kit ( 2.1.3) was used to determine NAD+ 

concentration in cells. The colorimetric reaction is based on the reduction of a formazan 

reagent by NADH which is formed in a lactate dehydrogenase cycling reaction from NAD+ 

present in the cell. The absorption of the reduced reagent can be detected at 565 nm and 

is proportional to the NAD+ concentration in the sample. 

Cell samples were taken 2 h after induction and the optical density normalized. The assay 

was performed following the manufacturer’s protocol using NAD+ extraction buffer as 

first reagent in the sample preparation for NAD+ determination. 

 

2.2.4.4 Activity test of pncA-MBP 

For activity determination of purified nicotinamidase pncA-MBP an assay was performed 

based on the enzymatic coupled sirtuin assay ( 2.2.4.1). In this assay nicotinamide is 

converted to nicotinic acid and ammonium by pncA-MBP (Figure  2.5). The ammonium 

serves as a substrate in the reaction where NADPH is oxidized to NADP+. The decrease of 

the amount of NADPH during the experiment can be detected at a wavelength of 340 nm. 

 

 
Figure  2.5: Enzymatic coupled assay for analysis of pncA-MBP activity. 
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The reaction mixture contained: 

50 mM  KPi pH 7,5 

3.3 mM  α-ketoglutarate 

200 µM  NADPH 

1 mM  DTT 

30 U/mL  glutamate dehydrogenase 

2 µM  pncA-MBP 

0.4 mM  MgCl2 

 

All components except of nicotinamide were mixed and equilibrated until a stable 

absorption at 340 nm was obtained. Different amounts of nicotinamide, ranging from 

0.01 mM to 1 mM, were added to the reaction mixture and the absorption measured 

over 10 min. From absorption decrease the velocity of the reaction could be calculated. 

 

2.2.4.5 Lysine deacylation assay 

For determination of the ability of CobB deacetylase to cleave different acylations at 

histone H4K16 a lysine deacylation assay was established. 30 ng/µL modified histone H4 

in reaction buffer (500 mM Tris pH 7.5, 140 mM NaCl, 20 mM Mg(OAc)2 and 80 µM NAD+) 

were mixed with 2 ng/µL CobB deacetylase (30:1 molar ratio) and incubated at RT. After 

0, 1, 2, 3, 4, 5, 10, 15, 20 and 30 min 7.5 µL samples were taken and quenched by addition 

of preheated 2.5 µl 4x SDS-PAGE sample buffer containing 48 mM NAM. The samples 

were incubated for 5 min at 95 °C and analyzed by SDS-PAGE using 15 % gels and 

immunoblotting ( 2.2.3). Polyclonal Histone H4K16ac antibody (2.1.10) was used to detect 

acetylation, butyrylation and propionylation and an anti-crotonyllysine antibody (2.1.10) 

was used to detect H4K16 crotonylation. Subsequently, the membrane was stripped and 

anti-histone H4 antibody (2.1.10) used to detect bulk histone H4. Quantification of the 

acylation cleavage was performed by comparison of acylation signals to amount of bulk 

histone applied using the computer program ImageJ (NIH, USA). 
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2.2.5 One-step synthesis of the metabolite O-acetyl-ADP-ribose 

The first part of the synthesis was performed in a 2 mL micro tube. 400 µL glacial acetic 

acid were added to 16 mg (0.15 mmol) sodium carbonate and the mixture stirred at RT. 

After the sodium carbonate was dissolved 50 mg (0.075 mmol) NAD+ was added. The 

micro tube was heated to 90 °C in a thermomixer for 20 min until the NAD+ was 

completely dissolved. 1.0 mL of denatured alcohol (90:5:5 [v/v/v] ethanol/ methanol/ 2-

propanol) was slowly added to the mixture to dilute residual sodium carbonate. After 

transfer into a 15 mL falcontube the product was precipitated by rapid addition of 

another 2.6 mL of denatured alcohol. The suspension was centrifuged (RT, 20 min, 

4000 rpm), the supernatant removed and the remaining light tan solid dissolved in water 

for purification. 

As first purification step an anion exchange chromatography was performed using a high-

pressure liquid chromatography (HPLC) system. A prepacked aminopropyl-linked silica gel 

column (Macherey-Nagel, Dülmen) was washed with elution buffer several times before 

usage. The elution buffer consisted of two solutions. Solution A contained 1 M acetic acid 

and solution B contained 1 M acetic acid and 1 M sodium acetate. The column was 

equilibrated in 90 % solvent A and 10 % solvent B prior to the chromatography run. After 

injection of the sample following separation gradient was applied: 
 

Time [min] Solvent A Solvent B 

0 90 10 

5 90 10 

10 50 50 

20 50 50 

25 0 100 

30 0 100 
 

Absorption at 254 nm was monitored, substance containing fractions collected and the 

solvents evaporated. For removal of residual sodium acetate three desalting cycles had to 

be performed before the samples could be analyzed by mass spectrometry. Each sample 
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was dissolved in 50 µL water and slowly diluted with denatured alcohol (90:5:5 [v/v/v] 

ethanol/ methanol/ 2-propanol) to a final concentration of 95:5 (v/v) alcohol/ water. The 

product precipitated as a white solid. The suspension was centrifuged (RT, 20 min, 4000 

 rpm) and the supernatant removed. After another two desalting cycles the precipitate 

was dissolved again in water and applied to the last purification step, the hydrophilic 

interaction chromatography (HILIC). A polyHYDROXYETHYL ATM column was washed 

several times with elution buffer before the chromatography run was performed. 

Solutions for the elution buffer were 10 mM ammonium acetate as solvent A and 

acetonitrile as solvent B. The following gradient was used to separate the products: 
 

Time [min] Solvent A Solvent B 

0 20 80 

15 20 80 

35 80 20 

55 100 0 

60 100 0 

65 20 80 
 

Absorption at 254 nm was monitored and substance containing fractions collected. The 

analysis for OAADPR content was performed by mass spectrometry after the solvents 

were evaporated. Samples containing product were lyophilized and stored at -20 °C. 
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3 Results 

3.1 The O-acetyl-ADP-ribose synthase (OAADPRS) 

3.1.1 Engineering and functional optimization of the O-acetyl-ADP-ribose 

synthase 

For the successful engineering of an OAADPR synthase with a functional turnover the 

individual parts needed to be chosen with care. An orientation for this was provided by 

parts which can be found in nature. Under physiological conditions the acetylation of 

lysine substrates is catalyzed by a lysine acetyltransferase and the formation of OAADPR 

by a class III deacetylase, a sirtuin. Hence, a sirtuin was selected as deacetylase moiety in 

the synthase. The bacterial sirtuin CobB became the protein of choice because it is stably 

expressed in E. coli cells and its crystal structure is known. In later investigations of 

OAADPR functions in eukaryotic cells, it would provide advantages to use a bacterial 

deacetylase. Finding specific interaction partners and substrats in those systems would be 

highly limited. CobB is a yeast Sir2 homologue and was originally found to play a role in 

the cabalamin synthesis of the bacterium Salmonella typhimurium LT2. It partially 

compensates the inactivation of the phosphoribosyltransferase CobT and was therefore 

thought to have phosphoribosyltransferase activity.60 In Salmonella enterica, however, 

CobB was found to activate the acetyl-CoA synthetase by hydrolysis of the acetyl group 

from an acetyllysine in the active site, which revealed the deacetylase function of 

CobB.61,62 CobB from E. coli could be crystallized in complex with an acetyllysine 

containing peptide from histone H4. Following binding studies with cognate and non-

cognate peptide substrates revealed only little discrimination between them. Surprisingly 

binding with the non-cognate histone H4 peptide showed the lowest dissociation 

constant while the highest dissociation constant was obtained with a cognate 

acetyllysinetransferase peptide.63 Also the structure of yeast Hst2 (homologue of Sir two 

2) had been analyzed in complex with the same acetylated histone H4 peptide.64 Hence, a 

histone H4 peptide sequence seemed to be the best choice to harbour the substrate 
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lysine in the synthase. But this substrate peptide proved not to be accessible for CobB in 

the construct with a fused acetyltranferase. In earlier experiments, a construct containing 

the coding sequence of histone H3 instead of H4 showed promising deacetylating activity, 

but only weak acetylation activity. Therefore, a part of the H3 coding sequence was 

placed in front of the H4 sequence. This new peptide linker proved to function as 

substrate for both enzymatic parts. 

As acetyltransferase moiety Hat1 was chosen out of different yeast variants. This choice 

was based on the stable expression in E. coli compared to constructs with other 

acetyltransferases. This B-type yeast protein was found to reside in the cytosol of yeast 

cells but might also be active in the nucleus.65–70 Hat1 possibly participates in DNA repair 

as well as in gene silencing through its acetylation activity during localized chromatin 

assembly.71 In vitro experiments showed specific acetylation of newly synthesized non-

nucleosomal H4 at lysine 5 and 12. Acetylation of lysine 12 by Hat1 was also 

demonstrated in vivo at sites of DNA double-strand breaks72 and is the most readily 

acetylated position. Newly synthesized histone H3 is acetylated as well but in a less 

conserved pattern.73 Therefore, lysine 12 of histone H4 was determined as substrate 

lysine in the peptide linker of the synthase. 

A scheme of the final engineered O-acetyl-ADP-ribose synthase (OAADPRS) is depicted in 

Figure  3.1. At the N-terminal part of the synthase lies the deacetylase CobB. It consists of 

two domains connected by four loops.63 The large domain forms a classic pyridine 

dinucleotide binding fold, the Rossmann fold, which is a common feature of NAD+-binding 

domains.74 The small domain is composed of two modules. The zinc-binding module 

contains a structural zinc ion coordinated by four invariant cysteins. The second module is 

a helical motif including a flexible loop. The binding sites for NAD+ and the acetyllysine 

substrate are located in a cleft between the large and small domain.75 

The C-terminal part of the synthase forms the acetyltransferase Hat1. It contains two 

domains connected by an extended loop where a hydrophobic interface is formed. The  

C-terminal domain of Hat1 contains the acetyl-CoA binding site. This binding cleft lies on 

the concave surface towards the center of the protein.76 The CobB and Hat1 enzymatic 
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moieties are linked by a histone H3/H4 peptide chain. The H4 sequence harbours the 

substrate lysine at position 12. 

 

 
 

Figure  3.1: Scheme of the O-acetyl-ADP-ribose synthase (OAADPR) describing its individual parts. The 

histone H3/H4 peptide chain harbours the substrate lysine and links the catalytic core domain of the 

deacetylase CobB (PDB-ID: 1S5P62) on the left with the domain of the acetyltransferase Hat1 (PDB-ID: 

1BOB75) on the right. In the binding cleft of CobB its co-substrate NAD+ is depicted and a structural zinc ion 

in the zinc-binding module. The substrate of Hat1, acetyl-CoA, is bound in a cavity on the surface of the 

Hat1 core domain. The structure was composed using PyMOL (DeLano Scientific LLC/Schrödinger LLC, USA). 

 

The function of the OAADPR synthase and the components of the catalytic reaction to 

produce the metabolite OAADPR are depicted in Figure  3.2. In the first step CobB 

interacts with the acetylated lysine at position 12 of histone H4 in the linker peptide and a 

NAD+ molecule. The acetyl group is transferred from the substrate lysine to C1’ of the 

nicotinamide ribose of NAD+ and nicotinamide is released. After some intramolecular 

reactions the acetyl group finally binds to the 2’-position of the nicotinamide ribose, 

forming the metabolite O-acetyl-ADP-ribose. In the last step of the reaction cycle a new 

acetyl group is transferred from an acetyl-CoA molecule to the substrate lysine by Hat1 

and the next reaction cycle starts. 
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Figure  3.2: Function of the OAADPR synthase and formation of the metabolite OAADPR. Following the 

release of nicotinamide, CobB relocates the acetyl group from the substate lysine to NAD+. There it finally 

binds to C2’ of the nicotinamide ribose forming OAADPR. At last the acetyltransferase Hat1 reacetylates the 

substrate lysine by transfer of an acetyl group from acetyl-CoA. Products of one reaction cycle are one 

molecule of OAADPR, nicotinamide and CoA, respectively. 

 

The first version of the O-acetyl-ADP-ribose synthase was named synthase 1.0. For 

simplyfication the O-acetyl-ADP-ribose synthases will be abbreviated “synthases” with the 

version number behind it. The DNA sequence of synthase 1.0 contained the catalytic core 

domain (aa 38 - 279) of CobB, amplified by PCR from E. coli DH10B cells, and the 

acetyltransferase Hat1 moiety (aa 1 - 320) which was amplified from Saccharomyces 

cerevisiae. The linking histone H3/H4 peptide consisted of amino acids 2 - 35 from histone 

H3 and amino acids 8 - 16 from histone H4. Histone H4 contained the substrate lysine for 

both enzymatic moieties at position 12. The peptide sequences were amplified from 
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Xenopus laevis and all components cloned into BamHI and XhoI restriction sites of a pCDF 

Duet-1 vector. The synthase 1.0 was expressed in E. coli BL21(DE3) cells (2.2.2.3) and 

purified via a N-terminal hexahistidine tag using Ni-NTA resin. After affinity tag 

purification, a size exclusion chromatography was performed to remove protein 

truncations and yield pure protein (2.2.3.3, Figure  3.3). Fractions from the 

chromatography were analyzed by SDS PAGE. On the gel fractions 18 to 24 contained 

larger amounts of synthase 1.0 with small impurities (Figure  3.4). The impurity mainly 

consists of a truncated CobB part of the synthase that can also be seen in fractions 26 and 

28. 

 

 
 

Figure  3.3: Size exclusion chromatogram of the affinity tag purified synthase 1.0 using a Superdex 200 

26/70 column. The synthase eluted with a size of 70 kDa after 162 min. After 191 min CobB truncation of 

the synthase eluted from the column. 
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Figure  3.4: 12 % SDS gel showing OAADPRS 1.0 after hexahistidine tag affinity purification (C) and 

fractions from the size exclusion chromatography (Figure  3.3). Bands at 70 kDa represent the full length 

protein and at 28 kDa CobB truncations. 

 

Initial activity tests of synthase 1.0 were performed using thin-layer chromatography with 

a solvent mixture of ethanol and ammonium acetate (ratio 70:30). Since NAD+ and 

OAADPR differ in their solubility in this solvent, an additional spot for OAADPR should be 

visible on the plate after the run if the synthase was active. The reaction mixture 

contained the substrates of CobB and Hat1, namely NAD+ and acetyl-CoA together with 

nicotinamidase and the synthase 1.0. Nicotinamidase is necessary to hydrolyze 

nicotinamide, which is a product besides OAADPR of the deacetylation and can inhibit the 

reaction when aggregated. Samples of the reaction mixture after a certain incubation 

time were spotted on a TLC plate and the components chromatographically separated. 

Spots likely containing OAADPR were scraped off the plate and analyzed by mass 

spectrometry. It was found out that the amount of material in the samples was not 

sufficient and no traces of OAADPR could be detected. 

An alternative method to test the activity of the engineered synthase was the enzymatic 

coupled sirtuin assay ( 2.2.4.1), published by Smith et al. in 2009.59 Since the reaction 

products of the deacetylation themselves were not spectrometrically detectable, the 

produced nicotinamid was coupled to the oxidation of NADPH. NADPH has an absorption 

maximum at 340 nm and can therefore be spectrometrically detected. Nicotinamide is 

converted to nicotinic acid and ammonia by the nicotinamidase pncA. The ammonia is 
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finally utilized in the oxidation of NADPH to NADP+ by glutamate dehydrogenase (Figure 

 3.5). The absorption of NADPH was measured during the deacetylation with a spectro-

photometer and plotted against time. 

 

 
 

Figure  3.5: Scheme of the enzymatic coupled sirtuin assay.modified from 59 Nicotinamide is cleaved from NAD+ 

and the acetyl group is transferred from the substrate lysine to the remaining ADP-ribose structure of NAD+ 

to form OAADPR. The deacetylated lysine residue is charged again with an acetyl group by the 

acetyltransferase. Nicotinamide is converted to nicotinic acid and ammonium, whereas ammonium serves 

as a substrate in the photometrically detectable reaction. Then, NADPH is oxidized to NADP+ by glutamate 

dehydrogenase while ammonia and α-ketoglutarate are converted to glutamate. The absorption maximum 

of NADPH lies at 340 nm. 
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Figure  3.6 details the change in absorption during the reaction catalyzed by synthase 1.0. 

First, the absorption of the reaction mixture without NAD+ and acetyl-CoA was 

equilibrated. Only slight changes in absorption were visible due to equilibration reactions. 

Addition of NAD+ resulted in a decrease of absorption. One reason for this could be an 

impurity in the NAD+ solution. Aqueous solutions of NAD+ are prone to degradation at 

certain pH and temperature conditions and they are sensitive to light. Therefore, 

nicotinamide could have been formed, which would lead to a conversion of NADPH to 

NADP+ and a decrease of the abosorption after addition to the reaction mixture. After a 

stable absorption was obtained, acetyl-CoA was added. The measurement showed a 

linear descent of the absorption that referred to a reduction of NADPH. Consequently, the 

decreasing amount of NADPH led to the conclusion that the synthase was active and 

catalyzing the turnover of NAD+. The same experiment peformed with buffer instead of 

synthase showed no significant decrease of the absorption after addition of acetyl-CoA. 

 

 
Figure  3.6: Enzymatic coupled sirtuin assay with synthase 1.0. Arrows indicate the time points of NAD+ and 

acetyl-CoA addition. A decrease of absorption after NAD+ addition was due to nicotinamide contamination. 

OAADPRS 1.0 activity was dependent on the addition of acetyl-CoA since a significant decrease of the 

absorption was only obtained after its addition. The negative control, containing buffer instead of synthase, 

did not show an absorption decrease upon acetyl-CoA addition. 
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These experiments demonstrated the dependence of the activity of synthase 1.0 on 

acetyl-CoA and thus indicated, that also the acetyltransferase moiety of the synthase was 

active. 

After the activity of synthase 1.0 was confirmed, experiments were performed to 

optimize its activity. Since the CobB and the Hat1 moieties were connected by a peptide 

chain, different length of this linker were analyzed to determine if the activity of the 

synthase could be improved. Therefore, mutations were introduced to the histone 

H3/H4-part of the peptide chain by mutagenesis PCR. These mutations were deletions of 

5 or 10 amino acids to shorten the linker region. For clarification resulting synthases were 

named synthase 1.1 and synthase 1.2 (Figure  3.7). 

 

 
 

Figure  3.7: Schemes of the three O-acetyl-ADP-ribose synthases. Synthase 1.1 was shortened by five amino 

acids in the histone H3 part of the linker sequence. In synthase 1.2 ten amino acids of the linker sequence 

were deleted. 

 

For comparison of the activity of the original synthase 1.0 and the two modified versions 

1.1 and 1.2, the enzymatic coupled sirtuin assay was utilized. Figure  3.8 visualizes the 

decrease of NADPH absorption in the different samples, representing the activity of the 
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synthases, respectively. Absorption of NADPH was measured over ten minutes after the 

addition of acetyl-CoA. Synthase 1.1 showed the highest decrease in absorption of all 

three synthases and therefore the highest activity. A deletion of ten amino acids in the 

linker region of synthase 1.2 led to a decreased activity of the synthase, which was lower 

than the activity of the original synthase. Turnover numbers were calculated from the 

slopes and listed in Table  3.1 together with the value of the human deacetylase Sirt1 as a 

reference.59 Synthase 1.1 showed the highest turnover number, which is comparable to 

free Sirt1 deacetylase. The original synthase 1.0 had a slightly lower turnover number. 

Synthase 1.2 showed with only 27 % of the value of synthase 1.1 the lowest turnover of 

all three synthases. In summary, a deletion of five amino acids in the linker region in 

synthase 1.1 produced the highest increase of activity. Therefore, synthase 1.1 was 

chosen for further experiments investigating the effects of the metabolite OAADPR. 

 

 
Figure  3.8: Measurement of the activity of the three different synthases with the enzymatic coupled 

sirtuin assay. The diagram shows the slopes of the decrease of NADPH absorption after addition of acetyl-

CoA to the reaction mixture and hence indicates the activity. Synthase 1.1, with five deleted amino acids in 

the linker peptide, showed the highest activity of the three synthases. A deletion of ten amino acids in 

synthase 1.2 led to a reduced activity compared to the two others. 
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Table  3.1: Turnover numbers of the three synthases and the human sirtuin Sirt1. 

Deacetylase  kcat (s-1)  

synthase 1.0  0.046 ± 0.001  

synthase 1.1  0.059 ± 0.008  

synthase 1.2  0.016 ± 0.001  

Sirt1  0.060 ± 0.003  

 

As a negative control for further experiments an inactive mutant of synthase 1.1 was 

made by mutagenesis PCR. The aim was to replace the substrate lysine with an amino 

acid that could not carry an acetyl group. Thus, the main substrate for the deacetylase 

would not be available and no target for the acetyltransferase. Consequently, the activity 

of the synthase should be reduced to approximately zero. The mutant carried a glycine in 

place of the substrate lysine. To confirm the replacement of the substrate lysine in this 

new mutant and the inability to bind acetyl groups, it was spotted on a membrane 

together with the active synthase 1.1 and synthase 1.0 as controls (Figure  3.9). The 

membrane was treated with an acetyllysine antibody and decorated with an ECL reagent. 

Spots of synthases 1.0 and 1.1 showed a bright signal, whereas the spot of the mutated 

synthase displayed only a weak signal. This weak signal could possibly be due to another 

lysine in the enzymatic moieties of the synthase which could be acetylated. The bright 

signals of synthases 1.0 and 1.1 demonstrated the presence of acetyllysine, which 

originate from the substrate lysines because the replacement of this amino acid was the 

only change made in the inactive mutant. To verify that the signals in the synthases 1.0 

and 1.1 represented the acetylated substrate lysines, a deacetylation reaction was 

performed. All three synthases were mixed with NAD+, the co-substrate of the 

deacetylase moiety, and incubated for 20 min. Afterwards the reaction mixtures were 

spotted on the membrane and treated as above. No signals for acetylated lysine could be 

detected, which led to the conclusion that the acetyl groups were cleaved. Summarized, 
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these experiments proved the replacement of the substrate lysine by a non-acetylated 

amino acid in the mutant and therefore its highly decreased activity. 

 

 
 

Figure  3.9: Dot Blot of the two active synthases 1.0 and 1.1 and the mutated version of synthase 1.1 

where the substrate lysine was replaced by a glycine. The membrane was decorated with an acetyllysine 

antibody followed by an ECL reagent. In the upper section the samples were spotted untreated and the 

active synthases showed a strong signal in contrast to the mutant. In lower section the samples were 

incubated with NAD+ for 20 min, a substrate for the deacetylation. Upon this NAD+ addition the signals 

disappeared which demonstrated a deacetylation of the substrate lysines. 

 

3.1.2 Validation of the formation of O-acetyl-ADP-ribose 

After a functional optimization of the synthase was achieved and the activity was shown, 

proof of the formation of the metabolite OAADPR was still elusive. Therefore, the product 

solution of the enzymatic coupled assay was measured by liquid chromatography coupled 

to tandem mass spectrometry. The mass spectrometer was used as a selective detector 

and signals of single masses were plotted against time in an extracted ion chromatogram 

(XIC). The product solution was scanned for masses of OAADPR and ADP-ribose. ADP-

ribose is a degradation product of OAADPR and hence always found in OAADPR 

containing samples. Its retention time was determined in earlier experiments and served 

as a standard in the measurment searching for the metabolite. 
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The chromatogram, a superimposition of two XICs, showed two signals at retention times 

of 38.15 min and 40.61 min (Figure  3.10). The minor signal had the same retention time 

as the standard ADP-ribose and also the mass of 558 Da coincided. The major signal at 

38.15 min was measured with a slightly higher mass of 600 Da and the difference of 42 Da 

to the other signal corresponded to an additional acetyl group in the molecule. Hence, it 

was concluded to represent OAADPR. Altogether, these results verified the formation of 

the metabolite OAADPR during synthase activity and with it the functionality the synthase 

was engineered for. 

 

 
Figure  3.10: A superimposition of two XICs, obtained by mass spectrometry analysis of the product 

solution of the enzymatic coupled sirtuin assay. The minor signal represents a mass of 558 Da and had the 

same retention time as the ADP-ribose standard. The major signal at a retention time of 38.15 min 

represents a mass of 600 Da, which corresponds to the mass of OAADPR. 

 

3.1.3 Kinetic characterization of the optimized synthase 1.1 

Overall results of the enzymatic sirtuin assay showed that the CobB part of the 

engineered synthase was able to deacetylate the substrate lysine in the linker region and 

the acetyltransferase Hat1 was able to acetylate this lysine again. Nevertheless, the effect 
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of those two enzymatic moieties being linked remained elusive. The arising question was, 

if the activity of one enzyme is hampered by the other and how high their activities are in 

synthase 1.1 compared to uncoupled enzymes. For a kinetic characterization of both 

enzymatic moieties, the enzymatic coupled sirtuin assay was used. In the first steady-

state kinetics acetyl-CoA was titrated from 2 to 64 µM into the reaction mixture to 

analyze the substrate dependent activity of Hat1. NAD+, the substrate for CobB, was 

added in excess to ensure that the substrate lysine was deacetylated at maximum 

velocity. The acetylation rates obtained in this experiment were plotted against the 

substrate concentration in a Michaelis-Menten plot (Figure  3.11). 

 
Figure  3.11: Steady-state kinetics of the Hat1 moiety in OAADPRS. Acetylation rates, determined using the 

enzymatic coupled sirtuin assay, were plotted against the acetyl-CoA concentrations. 

 

The same experiment was performed with the CobB moiety. NAD+ was titrated while 

acetyl-CoA was added in excess. Deacetylation rates were measured and plotted in a 

Michaelis-Menten plot against the NAD+ concentration (Figure  3.12). 
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Figure  3.12: Steady-state kinetics of the CobB moiety in OAADPRS. Deacetylation rates, determined using 

the enzymatic coupled sirtuin assay, were plotted against NAD+ concentrations. 

 

Based on the obtained acetylation and deacetylation rates, different kinetic parameters 

could be calculated. The plots of the acetylation and deacetylation rates against the 

substrate concentrations were fitted to the Michaelis-Menten equation to determine the 

values for vmax, Km and kcat (Table  3.2). The maximum velocity vmax of Hat1 was with 

0.8 µM/min about 36 % lower than the maximum velocity of CobB, which had a value of 

1.2 µM/min. Km is the Michaelis constant and describes the affinity of the enzyme 

towards its substrate. CobB had a more than 4-fold higher affinity for NAD+ than Hat1 for 

acetyl-CoA. The amount of substrate molecules, catalyzed per time unit under substrate 

saturation, is exhibited in the turnover number kcat. It is calculated from the maximum 

velocity and concentration of the enzyme. Here, Hat1 had the higher turnover number 

with 0.06 s-1. The kcat value for CobB was 0.04 s-1. In summary, the CobB moiety showed a 

higher maximum velocity and a higher substrate affinity but a lower turnover rate than 

the Hat1 moiety. The different turnover rates for the two enzymatic moieties were 
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unexpected since they share the same substrate. Their velocity depends on how fast the 

other enzymatic moiety respectively acetylates/deacetylates the substrate. 

 

Table  3.2: Kinetic data of the CobB and Hat1 moieties in synthase 1.1 obtained from the Michaelis 

Menten equations. 

 
CobB  Hat1  

vmax  1.2 µM/min  0.8 µM/min  

Km  18.0 µM  4.0 µM  

kcat  0.04 s-1  0.06 s-1  

 

3.1.4 Effects of the synthase and the formation of the metabolite OAADPR 

in Escherichia coli 

It is known that injections of the metabolite OAADPR delay or even block the maturation 

of starfish oocytes and blastomeres.29 Since synthase 1.1 produces this metabolite in the 

cell, it might lead to a change in phenotype as well. For analysis of the influence of 

synthase expression and metabolite formation on the phenotype of E. coli cells, a growth 

test was performed. Since synthase 1.1 was the only version used from this point on 

together with its inactive mutant, for symplification it was called active synthase. 

Besides a plasmid with the active synthase, one containing the inactive mutant with the 

exchanged substrate lysine and an empty plasmid as control were transformed into 

BL21(DE3) cells. The cell cultures were incubated at 37 °C. Samples were taken every hour 

and the optical density measured. Growth curves from 40 min before until four hours 

after induction are depicted in Figure  3.13. After the expression of the active synthase 

was induced, a severe delay in growth could be observed. Compared to cells harbouring 

the inactive mutant and the control, which grew similar to each other, the cells expressing 

the active synthase reached only half of the optical density in the same time. Dilution 
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series on agar plates demonstrated that the cells were severe delayed in growth but still 

alive. 

 
Figure  3.13: Growth test of E. coli cells harbouring plasmids with the active synthase or the inactive 

mutant. The control contained an empty plasmid. Cells were induced with 0.5 mM IPTG at time point zero. 

Growth of cells expressing the active synthase was severe delayed after induction while cells with the 

inactive synthase grew comparable to the control. 

 

The growth tests showed that synthase expression and the coupled formation of the 

metabolite OAADPR had indeed a high influence on cell metabolism. 

For further analysis of the changes in the metabolism of the cells harbouring the synthase 

a tightly controlled expression system was needed. The expression had to be 

downregulated to a level where the cells did not show such a high growth deficiency. An 

arabinose inducible promoter, the PBAD promoter, was chosen because it can be regulated 

dose-dependently. The active synthase and the inactive mutant were cloned into a 

plasmid containing this promoter. Different induction levels from 200 to 10000 ppm 

arabinose in the cell cultures were tested for synthase expression. Western blot analysis 

demonstrated that protein was also expressed at the lowest induction level of 200 ppm 

arabinose (Figure  3.14). Growth tests of cultures with the two induction levels resulted in 

the same phenotype and no growth delay was detected. 
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Figure  3.14: Western blot of the active synthase expressed from a plasmid with an arabinose inducible 

promoter. The amount of synthase expressed, utilizing induction levels of 200 and 1000 ppm arabinose 

were compared. Protein was detected with an anti-histidine antibody. Samples were taken before, 2 and 

5 h after induction. On the right purified synthase was blotted as control. At both induction levels protein 

expression was visible after induction. 

 

For analysis of the effects of the synthase expression level and OAADPR formation on cell 

metabolism, a method was needed to observe metabolic activity. The method used is 

based on resazurin (7-hydroxy-10-oxido-phenoxazin-10-ium-3-one), a redox dye, which 

can be reduced to resorufin. Resazurin itself is only weakly fluorescent but resorufin emits 

a strong flourescence signal at 590 nm.77 The reduction is activated by oxidation of NADH, 

FADH, FMNH or NADPH. Those coenzymes participate in redox reactions of metabolic 

pathways and are indicators of the metabolic flux. Hence, the observation of the 

reduction of resazurin can be used to determine and compare metabolic activity in cell 

samples. 

In two experiments cell cultures expressing the active synthase, its inactive mutant and a 

negative control were induced with 200 and 1000 ppm arabinose. Samples were taken 

every hour from the moment of induction untill five hours after. The metabolic activity 

was determined by using the resazurin-assay (2.2.4.2). Fluorescence signals were 

normalized to the control samples and are depicted in Figure  3.15. The diagrams detail a 

dependence of the cell viability on the level of induction. In some samples the 

fluorescence signal exceeded the value of the control and lay above 100 %. This is 

probably due to an error in cell density measurement. The amount of fluorescent 

resorufin formed is directly dependent on the number of viable cells and therefore differs 

with an unequal quantity which leads to values exceeding the control. In Figure  3.15 A) 
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the fluorescence signals of cells after induction with 200 ppm arabinose are shown. 

Before induction the signal of the sample with the active synthase was slightly higher than 

the one with the inactive mutant. This changed after induction. The signal for the active 

synthase started to decrease after three hours to 70-75 % of the control, whereas the 

signal for the inactive mutant rose to the level of the control. It remained similar to the 

control until four hours after induction, where it dropped again to the level of the active 

synthase. An induction with 1000 ppm arabinose, as shown in Figure  3.15 B), resulted in 

higher effects on cell viability. Before induction, the sample with the active synthase 

showed a higher fluorescence signal than the control and the inactive mutant. After the 

beginning of protein expression this signal decreased. Two hours after induction, it 

dropped to less than half of the value of the control signal. In the following hours the 

signal raised again to 61 % of the control. The signal of the cells with the inactive synthase 

was higher than the control one hour after induction. But it started to decrease to about 

80 % of the control value in the last two hours of the experiment. 

In summary, the induction with 1000 ppm arabinose led to a higher decrease of the 

metabolic activity in samples containing the active synthase than an induction with 

200 ppm arabinose. This is probably be due to a higher rate of synthase expression and 

subsequently more metabolite formation. In samples containing the inactive mutant an 

increase of the induction level had only very little effect on the cell metabolism. 
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Figure  3.15: Resazurin assay of cells expressing the active synthase, the inactive mutant and a negative 

control. Samples were taken at indicated time points after induction. The measured fluorescence signals of 

the formed reagent were normalized to the control, which was set to 100 %. In A) cells were induced with 

200 ppm arabinose and in B) with 1000 ppm arabinose. A higher expression level of the active synthase and 

the coupled formation of the metabolite resulted in a higher depression of cell metabolism. 
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In unison, the same cell cultures were used to perform another experiment. NAD+ levels 

inside the cells were measured with the EnzyChrom™ NAD+/NADH Assay Kit ( 2.1.3). Since 

NAD+ is a co-substrate for the synthase, it is likely that the activity of the synthase caused 

a decrease or maybe even a depletion of the NAD+ pool in the cells. This would result in a 

decrease of metabolic activity depending on the degree of the NAD+ reduction and would 

explain the observed effects. The assay used in this experiment contains a formazan 

reagent, which is reducable by NADH. NADH is formed in a lactate dehydrogenase cycling 

reaction depending on the NAD+ concentration in the sample ( 2.2.4.3). The absorption of 

the formazan reduction product was measured at 565 nm. On the basis of a standard 

curve, the amount of NAD+ in the samples was calculated and plotted in Figure  3.16. At 

both induction levels, the NAD+ concentration of cells expressing the active synthase was 

significant lower compared to the control. Induction with 200 ppm arabinose resulted in a 

decrease of 50 % of the NAD+ concentration and the induction with 1000 ppm in a 86 % 

decrease. Samples of the inactive synthase showed a significant smaller reduction of the 

NAD+ pool. After induction with 200 ppm arabinose 15 % less NAD+ was detectable than 

in the control and at the higher induction level 29 % less. 

Summarized, the induction of the expression of the active synthase had a highly negative 

effect on NAD+ levels in the cell. A further 5-fold increase of the induction level from 200 

to 1000 ppm arabinose led to a continuing 3,5-fold lower NAD+ amount in the cells. 

Samples containing the inactive mutant showed a much lower effect after induction and 

no influence by an increase of the induction level. 

Since the induction with 200 ppm arabinose led to a synthase expression with a lower 

impact on the NAD+ pool in the cells and a lower decrease of metabolic activity, it was 

used in subsequent experiments to find possible other effects of the metabolite. 
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Figure  3.16: Determination of NAD+ levels in cells expressing the active synthase, the inactive mutant or a 

negative control. Samples were taken two hours after induction. A formazan reagent was added and the 

amount of reduction product, which depends on NADH concentration in the sample, was measured. NAD+ 

amounts were calculated from those NADH concentrations. In A) cells were induced with 200 ppm 

arabinose and in B) with 1000 ppm arabinose. NAD+ levels were severely decreased when the active 

synthase was expressed and nearly depleted after increasing the induction to 1000 ppm arabinose. 

Expression of the inactive synthase resulted in a much lower decrease of NAD+. 
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3.1.4.1 Gene expression analysis 

The previous experiments detailed the expression of the synthase and formation of         

O-acetyl-ADP-ribose and their influence on cell metabolism and NAD+ levels in the cell. To 

obtain further insights into these metabolic changes, a gene expression analysis was 

performed. This method is used to determine expression levels of genes under defined 

conditions, and therefore gives information about affected pathways in the cell. 

For this experiment, cell cultures with the active synthase, its inactive mutant and the 

control plasmid were utilized. Protein expression was induced with 200 ppm arabinose 

and the cells were harvested two hours after. Samples were normalized after cell count 

followed by extraction of the total RNA using TRI reagent ( 2.2.1.9). The RNA was 

electrophoretically separated via a denaturing agarose gel for qualitative and quantitative 

analysis. Finally, the RNA samples were given to the “Transcriptome Analysis Laboratory 

(TAL)” at the DNA Microarray Facility in Göttingen, where they were analyzed. First, the 

samples were transcribed into fluorescent labled cDNA. Subsequently, the cDNA was 

incubated with probes consisting of oligonucleotide sequences from E. coli genes 

immobilized on a microchip. Fluorescence signals of bound cDNA was measured and 

assigned to the corresponding genes. From the intensity of the fluorescence signals the 

regulation of the genes could be determined. A 2-fold or higher regulation of a gene was 

considered significant. 

Three separate surveys were performed. An overview of the numbers of regulated genes 

is given in Figure  3.17. In the first survey the results from the gene expression of samples 

with the active synthase was compared to that of the negative control. When the active 

synthase was expressed and OAADPR formed, 204 regulated genes could be found which 

were not regulated in the sample with the negative control. When the inactive mutant 

was assayed against the negative control, 55 less regulated genes were detected. In a 

final comparison, samples with the active synthase were assayed against the ones with 

the inactive mutant. The catalytic activity of the synthase led to a regulation of 74 genes. 

The most eminent changes in gene expression were in the results of this last survey. They 

showed the influence of the active synthase and therefore the metabolite on gene 
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expression and hence on affected pathways. Two of the regulated genes were also listed 

in the survey of the inactive mutant versus the negative control. They were regulated the 

same fold and were considered as background. The remaining 72 genes were partially 

only regulated in this evaluation and partially also in the evaluation of the active synthase 

versus the negative control. Altogether, 34 of the genes in this survey were upregulated 

and 40 genes were downregulated. 

 

 
 

Figure  3.17: Venn analysis diagram of the gene expression surveys that were performed. Comparing the 

active synthase to the negative control, 204 genes were regulated. In the samples of the inactive mutant 

compared to the negativ control 55 genes were regulated. When gene expression was measured in the 

presence of the active synthase versus the inactive mutant, 74 genes were regulated. None of the regulated 

genes were found in all three surveys, only partially in two of them. 

 

Table  3.3 highlights a selection of the 34 upregulated genes, which were more than 2-fold 

upregulated (all changes in gene regulation can be obtained in the supplemental 

information  (7.3.1)). Genes were arranged in groups, depending on the pathways they 

belong to. An exception is the group containing pnuC. The pnuC encoding protein is part 

of NAD+ salvage pathways, while the other genes in the group belong to the de novo NAD+ 
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biosynthesis pathway. Thus, they all are connected to NAD+ biosynthesis, but through 

different pathways. 

 

Table  3.3: List of genes with more than 2-fold upregulation in samples with the active synthase versus  

samples with the inactive mutant. The genes which belong to the same pathway were allocated to the 

same group. 

Symbol Gene name n-fold of gene 
upregulation 

NAD+ biosynthesis 

ECs0778 quinolinate synthetase A protein  14.85 

nadA  quinolinate synthetase  14.08 

nadB quinolinate synthase, L-aspartate oxidase (B protein) subunit  10.18 

pnuC  predicted nicotinamide mononucleotide transporter  4.33 

D-glucarate degradation pathway 

garL alpha-dehydro-beta-deoxy-D-glucarate aldolase  3.94 

garR  tartronate semialdehyde reductase  3.79 

garK glycerate kinase I 2.40 

L-arabinose degradation pathway 

araD L-ribulose-5-phosphate 4-epimerase 3.27 

araA L-arabinose isomerase  2.71 

araB L-ribulokinase  2.24 

phosphoenolpyruvate-carbohydrate phosphotransferase system 

fruB fused fructose-specific PTS enzymes: IIA component/HPr 

  

2.40 

fruK  fructose-1-phosphate kinase  2.33 

   
uhpT hexose phosphate transporter  16.68 

yjiY  predicted inner membrane protein 5.22 

soxS  DNA-binding transcriptional dual regulator 2.47 

phoH  conserved protein with nucleoside triphosphate hydrolase 

domain 
2.15 
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In summary, at least four different metabolic systems and pathways were affected when 

the metabolite was formed in the cells. The highest upregulated genes except of uhpT 

belong to NAD+ biosynthesis. This is probably due to the detected lower NAD+ level in 

cells where the metabolite is formed. 

In the same survey 40 genes were downregulated when the synthase was active. A 

selection is depicted in Table  3.4. Some of them obtain similar functions or are connected 

by usage of the same substrates. These genes are allocated in groups like ompA, Ecs3221 

and Ecs1333. All three genes encode membrane proteins. 

 

Table  3.4: Genes with more than 2-fold downregulated transcription in samples harbouring the active 

synthase compared to samples with the inactive mutant. Genes belonging to the same pathway or having 

connected functions were clustered. 

Symbol Gene name n-fold of gene 
downregulation 

cell membrane 

ompA outer membrane protein 3.93 

Ecs3221 outer membrane protein 2.03 

Ecs1333 putative membrane protein 2.58 

PRPP biosynthesis I, ATP synthesis/hydrolysis 

prs ribose-phosphate diphosphokinase 3.05 

papD subunit of ATPsynthase F0 complex 2.82 

glyS glycine tRNA synthetase subunit 2.25 

stress response 

yifE conserved protein 2.96 

yjiD synonym of iraD, an inhibitor of sigma factor σS proteolysis 2.36 

tricarboxylic acid cycle 

aceA isocitrate lyase 2.34 

aceB malate synthase A 2.30 

   
Ecs2845 glycosyl transferase 6.89 

gnd gluconate-6-phosphate dehydrogenase 3.02 
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Symbol Gene name n-fold of gene 
downregulation 

gpmA phosphoglyceromutase 1 2.71 

nupC nucleoside transporter 2.49 

typA member of ribosome-binding GTPase superfamily 2.47 

hmp nitric oxide dioxygenase 2.34 

glgP glycogen phosphorylase 2.27 

lysA diaminopimelate decarboxylase 2.16 

speA arginine decarboxylase 2.08 

 

Here, four groups of downregulated genes could be found with connected functions or 

pathways but almost as many genes belong to other pathways. 

In general, the formation of the metabolite caused the regulation of a variety of genes. 

Affections of certain pathways by upregulated genes could be expected after the results 

of the analyses before. 

 

3.1.4.2 Colorimetric ß-galactosidase assay 

In the gene expression analysis the hexose phosphate transporter gene uhpT showed the 

highest transcription with an over 16-fold upregulation, when the active synthase was 

expressed compared to the inactive mutant. To confirm this result, a promoter reporter 

ß-galactosidase assay was performed. 

This assay is based on the formation of o-nitro-phenol (ONP) from o-nitrophenyl-ß-D-

galactopyranosid (ONPG) by ß-galactosidase (Figure  3.18). ONP can be quantified 

fluorometrically by measuring the absorption at 420 nm. 
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Figure  3.18: Reaction scheme of the ß-galactosidase assay. o-nitrophenyl-ß-D-galactopyranoside (ONPG) is 

enzymatically converted to galactose and o-nitrophenol (ONP) by the lacZ encoded ß-galactosidase. ONP 

formation can be quantified by measuring its absorption at 420 nm. 

 

For this assay, a plasmid harbouring the DNA coding sequence for ß-galactosidase was 

modified. The native promoter was replaced by the promoter region of the uhpT gene 

(Figure  3.19). This plasmid was transformed into E. coli cells together with a plasmid 

either containing the active synthase, the inactive mutant or the negative control.  

 

 
 

Figure  3.19: Scheme representing the lacZ gene encoding for ß-galactosidase and the new promoter 

region.modified from 78 The original promoter was replaced by the uhpT promoter sequence, including a CAP 

binding site, a strong-affinity and a low-affinity UhpA-binding region. Depending on synthase and 

metabolite presence, the promoter should be activated and induce lacZ gene transcription and 

subsequently ß-galactosidase expression. 
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The cell cultures were grown under similar conditions as for the gene expression analysis. 

In cells expressing the active synthase and forming the metabolite the uhpT promoter was 

expected to be induced at the same level as in the gene expression analysis. 

Consequently, also the expression of the ß-galactosidase would be at this level. A 

particular amount of ONPG would be converted into ONP, which could be subsequently 

quantified. 

For the analysis, cell samples were taken at different time points after the induction with 

200 ppm arabinose. The cells were permeabilized and mixed with ONPG. After a certain 

period of time, when the samples turned yellow due to the formation of ONP, the 

reaction was stopped by addition of sodium carbonate. The cells were pelleted and the 

clear supernatant was transferred into a microplate and the absorption measured at 

420 nm. Miller units were calculated using Formula 3.1. Δt indicates the period of time 

from addition of the ONPG untill the end of the reaction. V displays the sample volume. 

The resulting Miller Units were blank corrected and normalized to samples with the 

control plasmid. 

 

1 𝑀𝑖𝑙𝑙𝑒𝑟 𝑈𝑛𝑖𝑡 = 1000 × 𝐴𝑏𝑠420
∆𝑡×𝑉×𝐴𝑏𝑠600

 Formula  3.1 

 

Figure  3.20 details the percentages of the measured expression levels of ß-galactosidase 

relative to the control, which was set to 100 %. Measurements were performed one, two 

and three hours after induction. All samples containing the active synthase and the 

inactive mutant exhibited a lower expression level of ß-galactosidase than the control. 

The values for the active synthase decreased from 77 % one hour after induction to 63 % 

two hours later. Amounts of ß-galactosidase in samples with the inactive mutant 

decreased from initially 68 % to 38 %. Taking the error into account, the values for the 

active synthase and the inactive mutant were similar in the first hour after induction. 

Afterwards the values started to diverge. The ß-galactosidase expression in the samples 

with the inactive mutant decreased significantly while it only slightly deecreased in the 

samples with the active synthase. In general, the biggest change in the ß-galactosidase 
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expression was observed from the first to the second hour after induction. The samples of 

the active synthase even showed a slight increase in ß-galactosidase expression from the 

second to the third hour after induction. 

 

Figure  3.20: Levels of expressed ß-galactosidase one, two and three hours after induction. All values are 

depicted in percentage and were normalized to the control, which was set to 100 %. Samples harbouring 

the inactive mutant showed a lower ß-galactosidase expression than the samples with the active synthase. 

 

Overall, the observed little difference in expression of ß-galactosidase in samples 

harbouring the active synthase and the inactive mutant was unexpected and did not 

match the results from the gene expression analysis. There, a 16-fold difference in gene 

expression was observed. Thus, the results of the colorimetric ß-galactosidase assay could 

not verify if the expression of the gene uhpT was upregulated. 

 

3.1.4.3 Transcription analysis via real-time PCR 

As already stated above, the microarray gene expression analysis and the ß-galactosidase 

assay did not show concordant results concerning the gene uhpT. Therefore it was asked, 

if the gene upregulation could be confirmed, although no changes on the translational 
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level were detectable. In order to determine this, quantitative real-time PCR was used, a 

method for analysing transcription levels of specific genes. For quantification of the gene 

transcripts, a fluorophore was added to the PCR mixture which emited a signal through 

binding to newly synthesized dsDNA. The signal intensity increased with each 

amplification round correlating to product accumulation and was measured at 521 nm. 

For this experiment RNA was isolated from E. coli cell samples and cDNA synthesized 

using a kit ( 2.1.3). A standard PCR was performed with the cDNA to confirm that the 

target DNA could be amplified. For unknown reasons the uhpT gene sequence could not 

be amplified from cDNA but only from genomic E. coli DNA. Hence, the experiments were 

performed with other upregulated genes from the list of the gene expression analysis 

(Table  3.3) to analyze if these results correlate with each other. 

The experiments were performed with cell cultures expressing the active synthase or its 

inactive mutant. RNA was isolated from cell culture samples (2.2.1.9) and transcribed into 

cDNA ( 2.2.1.10). cDNA sequences belonging to the genes of interest were quantified in 

real-time PCR using appropriate primer pairs. Values of the crossing point (CP) are listed 

in Table  3.5. The CP is defined as the threshold, where the fluorescence signal raises 

above the background noise. The lower the value of this crossing point, the more cDNA 

was initially existing in the sample. From the four genes that were analyzed, three 

samples reached a lower CP value when the active synthase was present. The CP values 

were higher when the inactive mutant was present in the samples. Only pnuC showed the 

opposite behaviour. 
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Table  3.5: CP values of genes measured by real-time PCR. The left column showes CP values obtained from 

samples containing the active synthase. In the right column values from samples in which the inactive 

mutant was expressed are depicted. 

Gene name  CP value 
(active synthase expressed) 

CP value 
(inactive mutant expressed) 

nadA 29,85 30,16 

nadB 28,21 28,94 

pnuC 29,77 28,76 

fruB 27,89 28,70 

 

From the CP values of the genes of interest and the reference gene gapA, the 

transcription ratio between samples with the active synthase and the inactive mutant 

could be determined. gapA is a housekeeping gene whose transcription is not regulated. 

Its transcription level is considered as the standard transcription level in the cell. 

Therefore, the value was subtracted from the transcription level of the genes of interest 

to reveal a potential regulation. These ratios are depicted in Figure  3.21. Only for the 

gene nadB a significant higher transcription level could be determined in samples with 

the active synthase compared to samples with the inactive mutant. As already indicated 

by the values in Table  3.5, pnuC gene transcription was only increased when the inactive 

mutant was present and not the active synthase. 

In general, it has to be considered that these values are preliminary results since more 

measurements are needed to obtain adequate error values for all samples. The present 

error values are calculated from two measurements and their range is in some cases too 

broad to determine if transcription ratios differ from each other. Additionally, the 

efficiency of the primers, which was not obtained to that time point, might influence the 

results. 

Summarized, these preliminary values do not reflect the gene regulation values obtained 

from the gene expression analysis. There, significant regulations have been measured 

when the active synthase was expressed and the metabolite formed compared to the 

inactive mutant. 
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Figure  3.21: Comparison of transcription ratios of genes from Table  3.5, transcribed in the presence of the 

active synthase (a. s.) or the inactive mutant (i. m.). As reference the housekeeping gene gapA was used 

and its transcription level was substracted from the values of the genes of interest. nadB was the only gene 

where, depending on the presence of the active synthase, a significant difference in the transcription level 

could be determined. The transcription of the pnuC gene was increased in the presence of the inactive 

mutant. 
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3.1.5 Chemical synthesis of the metabolite O-acetyl-ADP-ribose 

The first total synthesis of the metabolite was published by Comstock and Denu.79 It was a 

twelve-step reaction, yielding a mixture of 2’-O-acetyl-ADP-ribose and 3’-O-acetyl-ADP-

ribose. In 2011, a non enzymatic one-step synthesis of OAADPR from NAD+ was published 

(Figure  3.22).80 This protocol (2.2.5) was followed to prepare the metabolite for later use 

in in vitro assays to study interactions in gene silencing. 

 

 
 

Figure  3.22: Reaction scheme for a one-step synthesis of OAADPR.modified from 80 NAD+ is mixed with sodium 

carbonate and glacial acetic acid, followed by heating to 90 °C. The product solution containes besides 

nicotinamide an isomeric mixture of 2’-OAADPR (R1=Ac, R2=OH) and 3’- OAADPR (R1=OH, R2=Ac). 

 

The reaction was performed in a micro tube. First, glacial acetic acid was added to sodium 

carbonate and stirred at ambient temperature. Then NAD+ was added, the mixture 

heated to 90 °C and stirred until the NAD+ dissolved. For dilution of the residual sodium 

acetate a small amount of denatured alcohol was slowly added before precipitating the 

product by rapid addition of more denatured alcohol. After preparation of the product 

mixture, two chromatographic steps were performed to yield pure isomeric compounds. 

At first, an ion exchange chromatography with an HPLC system was performed to 

separate residual NAD+ from the products (Figure  3.23). This was achieved by using an 

aminopropyl-linked silica gel column. The chromatogram was monitored at an absorption 

of 254 nm and peaks presumably containing product were collected. Since acetic acid and 

sodium acetate were used as solvents, salt remained in the sample after evaporation. At 
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least three desalting cycles with denatured alcohol were neccessary before the presence 

of metabolite in the samples could be analyzed by mass spectrometry. As final step in the 

purification, the products were separated by an hydrophilic interaction chromatography 

(HILIC) using a polyHYDROXYETHYL ATM column (Figure  3.24). In this mode molecules are 

retained according to their hydrophilicity. The elution gradient contained ammonium 

acetate and acetonitrile. Absorption at 254 nm was monitored, peaks collected and 

analyzed by mass spectrometry. 

 

 
 

Figure  3.23: Ion exchange chromatogram of the crude reaction products from the one-step synthesis of 

OAADPR. The chromatography was performed using an aminopropyl-linked silica gel column and 1 M acetic 

acid as buffer A and 1 M sodium acetate and 1 M acetic acid as buffer B. The products were eluted over a 

separation gradient. In the peak at 13.46 min OAADPR was detected by mass spectrometry. 
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Figure  3.24: Chromatogram of the hydrophilic interaction chromatography performed as final purification 

step in OAADPR synthesis. 10 mM ammonium acetate and acetonitrile were used for the separation 

gradient on a polyHYDROXYETHYL ATM column. Peaks were collected and analyzed by mass spectrometry for 

the presence of OAADPR. Mass spectra of the marked retention times a and b are shown in Figures  3.25 

and 3.26. 

 

Figures  3.25 and 3.26 detail mass spectra of the two peaks marked as a and b in Figure 

 3.24. In spectrum a, the peak with the highest intensity possessed a mass of 600 Da, 

which correlates with the mass of OAADPR. The highest intensity in mass spectrum b 

represented a peak at 558.2 Da. This is 42 Da less than OAADPR and corresponds to the 

mass of ADPR. 

In summary, these results detail the successful synthesis and isolation of OAADPR. 
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Figure  3.25: Mass spectrum of the sample from the retention time indicated in Figure  3.24. The spectrum 

displays the mass peak of OAADPR (m/z = 600 Da). 
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Figure  3.26: Mass spectrum of the sample from the retention time indicated in Figure  3.24. The main peak 

at 558 Da represents ADPR. The peaks at 662, 744, 826 and 908 Da refer to remaining salt in the sample. 
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3.2 Removal of acyl modifications on histone H4K16 by sirtuins  

The following project was a collaboration with Liljan Hahn, a PhD student in the same 

group. The contributions are named in the different sections. 

In recent years, studies have shown that the acylation of histone H4K16 is not limited to 

acetyl groups. Numerous acylations like butyrylation, propionylation, crotonylation 

myristoylation, malonylation and succinylation have been observed.10–12 Analysis of their 

effects on nucleosome structure and function have proven difficult, since the generation 

of histone H4 with site-specific modifications was not feasible. The protein was prone to 

degradation and therefore not accessible for genetic code expansion. In 2012, Bryan 

Wilkins solved this problem by creating a stable fusion protein (data unpublished). It 

consists of a shortened histone H3, a linker including a TEV protease cleavage site, and 

the histone H4 with an amber codon at position K16 for the incorporation of an unnatural 

amino acid (UAA) of interest via genetic code expansion. 

For the integration of such an UAA with a modification into the genetic code, an 

additional pair of tRNA and aminoacyl-tRNA synthetase (AARS) needs to be evolved. 

Additionally, it needs to be targeted towards a stop codon, whose original function will be 

suppressed. The evolved AARS has to be specific towards the UAA and the tRNA. Since 

the incorporation of the UAA occurs parallel to the normal translation, it has to be 

orthogonal to the host’s transcription machinery. The orthogonality is retained when the 

orthogonal synthetase does not charge endogenous tRNAs and the orthogonal tRNA 

cannot be recognized by endogenous sythetases. This is assured by the type of selection 

experiments performed while isolating a specific and orthogonal AARS from a library of 

mutants. 

The ability to produce cleanly modified histone H4 allowed for the opportunity to 

investigate different acyl modifications at lysine 16 on this histone. 

Focus of the following analysis lay on the effect of the different acyl-chain lengths of 

acetyl-, butyryl- and crotonyllysine on turnover kinetics by HDACs. It was asked if histone 

deacetylases could discriminate between different substrates and show putative 

specificities. 
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For these experiments the sirtuin CobB was chosen as deacetylase. I cloned the plasmid 

and prepared the protein as described in 2.2.2.3 and  2.2.3.3. Liljan Hahn evolved the 

tRNA/tRNA-synthetase pairs to incorporate the acetyl, butyryl and crotonyl modifications 

at position K16 on histone H4 and prepared the histones (2.2.2.3,  2.2.3.3). In the next 

step, we established a lysine deacylation assay (2.2.4.5). Immunoblotting was used to 

monitor the cleavage of the acyl modifications over time. At first, I tested the antibodies 

for their specificity (Figure  3.27). It was observed, that the anti-histone H4K16ac 

polyclonal antibody could also detect butyrylation, but no crotonylation. The anti-

crotonyllysine monoclonal antibody was also able to detect butyrylation but to a smaller 

degree than crotonylation. It was not able to detect acetylation. In the following 

experiments, the anti-histone H4K16ac antibody was used to detect acetylation and 

butyrylation and the anti-crotonyllysine antibody to detect crotonylation. 

 

 
 

Figure  3.27: Western Blots of antibody tests with wild type histone H4 and differently acylated H4K16 

histones. A) Western Blot decorated with anti-histone H4K16 ac antibody. Besides the very strong signal for 

acetylation, also a signal for butyrylation was visible. Crotonylation could not be detected by this antibody. 

B) Western Blot decorated with anti-crotonyllysine antibody. Crotonylation was recognized best by this 

antibody and butyrylation to a smaller degree. Wild type histone and acetylation were not recognized by 

this antibody. 

 

The assays were performed with a 30-fold molar excess of modified histone compared to 

the deacetylase. In this way, the reaction rate was only dependent on the velocity of the 

enzyme and reflected its affinity for the substrate. Also the co-substrate for CobB, NAD+, 

was added in excess. The reaction was started by addition of CobB to the modified 

histone. Then, the mixture was incubated at RT for 30 minutes. Samples were taken at 

different time points and quenched by the addition of preheated nicotinamide and 4x 
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loading buffer for SDS gels and denaturation at 95 °C for 5 min. The level of remaining 

acylation was detected by immunoblotting with the corresponding antibody and could be 

quantified by comparison to the total amount of protein loaded. The resulting Western 

Blots are depicted in Figure  3.28. They show that the reaction of CobB with acetylated 

H4K16 possessed a slower tunrover rate than with the butyryl or the crotonyl 

modification. The butyrylation was completely consumed after 4 min, while the 

acetylation was still present after 10 min. The fastest deacylation event occured on 

crotonylated lysine and was completed within 2 min of the reaction. 

 

 
 

Figure  3.28: Western Blots of lysine deacetylation assay samples taken at indicated time points. The assay 

was performed with CobB deacetylase and histone H4 carrying different acyl modifications at position K16 

as depicted. Signals in the upper sections represent acylated protein, visualized with anti-acetyl or anti-

crotonyllysine antibody, respectively. In the lower sections, protein was visualized with anti-H4 antibody for 

quantification purpose. 

 

The same lysine deacetylation assay was also performed with the human sirtuin Sirt1. I 

cloned this deacetylase from human cDNA and isolated the recombinant protein from 

E. coli ( 2.2.2.32.2.3.3). The experiments were performed by Liljan Hahn and me, using the 

same protocol as in the assays with CobB. Figure  3.29 shows the resulting Western Blot 
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signals of the butyryl modification. Sirt1 cleaves the butyryl groups within 4 min and 

already after 1 min half of the signal intensity is gone. Hence, this reaction is faster than 

the debutyrylation by CobB, where after 1 min more than half of the signal intensity 

remained. 

 

 
 

Figure  3.29: Western Blots of histone H4K16 debutyrylation by Sirt1. Consumption of the butyryl 

modification was completed within 4 min after the reaction was initiated. 50 % was cleaved after 1 min. 

 

The reactions of Sirt1 with acetyllysine- and crotonyllysine-modified H4 were not 

consistent within the three different measurements performed (Figure  3.30). For that 

reason they are regarded as preliminary results. More measurements need to be 

performed to obtain authentic evidence about the turnover rates of Sirt1 towards the 

two modifications. For the acetyl modification, one measurement shows a clearly 

noncomplete consumption until 30 min reaction time. In the two other measurements, 

the reaction velocity is somewhat faster. Overall, the turnover rate is slower than in the 

experiments with CobB, where the signal was cleaved after 10 min. The measurements of 

decrotonylation also showed different turnover rates. In one reaction more than 50 % of 

the signal intensity was cleaved within 2 min and it was completely consumed after 5 min. 

The second reaction was slower and it took 10 min until 50 % of the signal intensity was 

cleaved. The reaction was completed after 30 min. In the third experiment only a 

marginal reduction of the crotonyllysine signal could be observed. Therefore, no 

conclusion can be drawn for the decrotonylation rate of Sirt1. 
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Figure  3.30: Western Blots of lysine deacetylation on the left and decrotonylation on the right by Sirt1. 

Measurements of the individual modifications are not consistent and therefore regarded as preliminary 

results. Cleavage of acetyl groups off histone H4K16 took either about 30 min or longer. Rates of 

decrotonylation were between 2 min and more than 30 min. 
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4 Discussion 

4.1 The functional optimized O-acetyl-ADP-ribose synthase 1.1 and its 

characterization 

A main aspect of this thesis was the engineering and optimization of an enzyme, which is 

capable of in situ formation of the sirtuin metabolite OAADPR. The first step in optimizing 

the original synthase was to determine an ideal length for the linker region connecting 

the deacetylase and acetyltransferase moieties to obtain enhanced activity. The peptide 

chain had to be long enough for the enzyme moieties to reach the substrate lysine in the 

linker but also short enough to ensure no hindrance and fast binding. In the original 

synthase OAADPRS 1.0, the peptide chain consisted of 68 amino acids. This proved to not 

be an optimal length, since OAADPRS 1.1, which has a five amino acid deletion in the 

linker region, showed a 21 % higher catalytic activity. A third linker, shortened by another 

five amino acids to 58, led to a decrease in activity. Of the three linker lengths tested, the 

one with 63 amino acids, OAADPRS 1.1, proved to be the most functional. This result was 

reflected in the turnover numbers derived from the enzymatic coupled sirtuin assay. On 

this account, OAADPRS 1.1 was chosen for further characterization and following 

experiments. 

 

A kinetic characterization was performed to investigate the properties of the two 

enzymatic moieties CobB and Hat1 in OAADPRS 1.1. First, the moiety of the sirtuin CobB 

was characterized in a NAD+ titration assay. In general, sirtuins are slow turnover enzymes 

with typical deacetylation rates between 0.01 and 0.1 s-1.81 Analysis of the CobB moiety 

yielded a turnover number of 0.04 s-1, which lies within that range. Human Sirt1, in 

comparison, possesses a deacetylation rate of 0.06 s-1 and yeast Sir2 one of 0.03 s-1.59,82 

These values show that the turnover number of CobB, when incorporated into the 

synthase, was comparable to deacetylation rates of free sirtuins. The proximity of the 

acetyltransferase moiety Hat1 did not hamper CobB activity and the substrate lysine was 
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well accessible. Substrate turnover mediated by the Hat1 moiety was determined in a 

second assay, where acetyl-CoA was titrated. The resulting turnover number was similar 

to that of CobB with a value of 0.06 s-1. Literature shows that other acetyltransferases can 

acetylate substrate molecules significantly faster. Gcn5, another acetyltransferase in 

S. cerevisiae, with histone H3 lysine 14 as primary target, has a turnover number of  

1.70 s-1.83 Human Hat1 has an acetylation target, like yeast Hat1 in the synthase, on 

histone H4 lysine 12 but with a significant higher rate of 4.14 s-1. This is about 70-fold 

faster.84 The reason for these higher substrate turnover numbers of free acetylases might 

be due to known complex formations with proteins needed for the optimal function of 

the enzyme. While searching for the predominant cytoplasmic histone acetyltranferase 

activity in S. cereviviae, Parthun and coworkers found a protein that co-purified from 

cytosolic extracts with Hat1. The protein, called Hat2, was identified as a histone 

chaperon and is a homologue of mammalian Rbap46/48 proteins, which play a role in 

chromatin modification. It forms the HAT-B complex together with Hat1. This 

evolutionary conserved complex acetylates newly synthesized soluble histone H4 on 

lysine 5 and 12. 85 HAT-B complexes with a catalytic subunit similar to Hat1 and a subunit 

similar to Hat2 have also been identified in human, Xenopus laevis and maize cell 

extracts.66,70,86–88 Studies with Δhat2 strains indicated that Hat2 association is significant 

for full Hat1 activity by increasing the interaction between Hat1 and its substrate.89 Hat1 

incorporated into the synthase has no such association and might therefore not be fully 

active. 

A second explanation for the slow acetylation activity of the Hat1 moiety could lie in the 

fact that it shares its substrate with the CobB moiety. The turnover rate of CobB 

determines how fast the substrate lysine is deacetylated and available for acetylation by 

Hat1. Therefore, the acetylation rate of Hat1 cannot be significant faster than the 

deacetylation rate of CobB. Consistent with this assumption are the similar turnover 

numbers of the two enzymatic moieties. 
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4.2 Analysis of the effects of synthase 1.1 expression and OAADPR 

formation 

A growth test yielded initial information about the phenotype of E. coli cells expressing 

the synthase and, in turn, harbouring the metabolite OAADPR. Previous experiments in 

starfish oocytes and blastomeres showed a delay, or block in maturation when OAADPR 

was injected.29 Indeed, a significant difference of the phenotype could be observed in the 

growth test after induction. The cells which contained the active synthase and produced 

the metabolite, showed a severe delay in growth. Cells expressing the inactive synthase 

did not show this growth deficiency and the growth curve was similar to the control. 

These different phenotypes indicate that the metabolite is involved in this depression of 

the cellular metabolism.  

In further studies with starfish oocytes, it was also observed that the injection of ADPR 

delayed or blocked maturation. It could not be distinguished if the observed maturation 

defect was a direct effect of OAADPR or of a metabolic breakdown product. In E. coli, a 

Nudix hydrolase, Orf209, was found to catalyze the hydrolysis of the pyrophosphate 

linkage in ADP-sugars and possesses high activity on ADP-ribose. This protein is 

functionally related to the yeast ADP-ribose hydrolase YsaI.90,91 In vitro studies revealed 

that YsaI cleaves OAADPR as well as ADP-ribose.30 Therefore, it might be possible that 

Orf209 possesses the same ability and that the growth delay seen in this growth test is 

triggered by the metabolic breakdown products of OAADPR. A growth test of cells with a 

deletion of the Orf209 gene, or with the protein inhibited, and the active synthase 

present would clarify if the effect is based on the metabolite itself. 

 

The initial expression system for the synthases in E. coli used an IPTG inducible T7lac 

promoter on a pCDF plasmid vector. This system can be turned on by the addition of IPTG 

but the expression level cannot be controlled by IPTG titration. It is also known that the 

transcription can take place in the absence of the inducer.92 For analysis of the metabolic 

changes caused by the active synthase and metabolite formation, a more tightly 

controlled expression system was needed. The expression level should be modulated by 
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inducer concentration. Hence, an expression system with the PBAD promoter of the 

araBAD operon was chosen. In the presence of the inducer arabinose, moderately high 

levels of expression are obtained and the promoter can be dose-dependent regulated.93 

After the synthase and the inactive mutant were cloned into the new vector, analysis of 

expression level dependent metabolic activity and cell viability was performed. The 

resazurin assay was used to visualize the status of metabolic activity in the different cell 

cultures. In this assay, the redox dye resazurin is reduced by coenzymes like NADPH, 

which are indicators for the metabolic flux. The strong fluorescence signal emitted by the 

reduction product can be measured and metabolic activity quantified.  

Overall, the results of the resazurin assay showed a direct effect of the induction level of 

the active synthase on metabolic activity of the cells and their viability. The more 

synthase was produced, the more the metabolism was depressed. Expression of the 

synthase triggered the formation of the metabolite. It is suspected to act as a signalling 

molecule for cell activity and influences metabolism, like observed in the starfish oocytes 

experiments. Modulated induction showed no impact on expression of the inactive 

synthase. Noticeably, at both induction levels, metabolic activity decreased after four 

hours of expression to approximately 80 % of the control. From the first through the third 

hour it remained at 100 %. This might be due to effects caused by the inactive synthase, 

although it does not harbour a substrate lysine. It is not able to catalyze a reaction with 

this substrate but maybe with other lysine substrates in proximity. If this was the case, a 

synthase with mutations in the active sites of CobB and Hat1 would show no such 

decrease of metabolic activity. 

 

Since the synthase needs NAD+ as a co-substrate for catalysis, the extent of NAD+ 

consumption was analyzed at the two different induction levels. NAD+ is an important 

coenzyme in many metabolic pathways like glycolysis and the tricarboxylic acid cycle 

(TCA). A decrease in its availability would affect those pathways. Results of the analysis of 

the NAD+ levels in the cells showed a severe decrease when the active synthase was 

expressed and the metabolite formed. Depending on the induction level, 50 to 86 % less 



 4 Discussion  91 

NAD+ could be determined in those cells compared to the control. Such a high decrease of 

available NAD+ certainly affected the function of the mentioned metabolic pathways in 

the cells and their fidelity. These results are concurrent with the depression of cell 

metabolism measured in the resazurin assay. Expression of the inactive mutant resulted 

in a decrease of NAD+ as well but to a lot smaller degree. As the deacetylase moiety in the 

inactive mutant is fully functional and no substrate lysine is present in the linker, it could 

still react with other acetyllysines in the cytosol. Hence, NAD+ would be consumed, which 

would affect metabolism and explain the decreased metabolic activity measured in the 

resazurin assay. But the whole process would be slower than with the active synthase, 

since this is not an in situ reaction and deacetylase and acetyllysine must first congregate. 

 

For a better understanding, and an overview of the affected metabolic pathways by 

synthase expression and metabolite formation, a microarray gene expression analysis was 

performed. As in analyses before, samples with the active synthase, the inactive mutant 

and the control were analyzed and compared. Unsurprisingly, the most regulated genes 

were detected in the comparison of the active synthase with the control samples. But the 

most eminent gene regulations were found in the survey where samples of the active 

synthase were compared to the ones of the inactive mutant. The activity of the synthase 

and the subsequent metabolite formation led to an upregulation of 34 genes and a 

downregulation of 40 genes. This number of regulated genes is comparable to the effects 

of a transcription factor. Some transcription factors like ArcA or FNR can regulate more 

than 150 genes and CAP more than 180 genes, while others only 20. Genes that exhibited 

a more than 2-fold regulation in this survey were considered to be the best candidates to 

inform upon the modulation of cellular pathways caused by activity of the synthase. 

The highest upregulated gene was uhpT. It encodes a sugar phosphate transport protein 

in the phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS).94 Expression 

of this gene is controlled by two transcription factors, UhpA and CAP (catabolite gene 

activator protein). UhpA is required for transcription activity whereas CAP stimulates the 

transcription and is not essential.95,96 The promoter activity is induced by extracellular 
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glucose 6-phosphate (Glu6P) through an unusual two-component regulatory system, in 

which the products of the uhpB and uhpC genes regulate the activation of UhpA.97 Since 

the growth medium in the experiments was not supplemented with additional Glu6P, 

uhpT upregulation did not originate from an increased UhpA activation. 

CAP, on the other hand, is activated by cyclic AMP (cAMP) through a conformational 

change while forming a cAMP-CAP complex, which enables CAP to bind DNA. Cellular 

levels of cAMP are influenced by the carbon source available in the medium. Under 

catabolite-repressing conditions the level of cAMP-CAP complex is low and the activity of 

CAP-dependent promoters decreased. As already discussed, NAD+ is used as a co-

substrate by the synthase and its decreasing amount negatively influences the energy 

metabolism of the cell. To compensate, more carbohydrates need to be utilized and 

metabolism is shifted from a catabolite-respressing to a non-catabolite-repressing state. 

This stimulates cAMP synthesis and subsequently cAMP-CAP complex formation. The 

complex finally enhances uhpT transcription, which can lead to a 10- to 15-fold 

upregulation of the gene expression.78 In summary, the increased expression of uhpT is 

probably due to a shift in metabolism indirectly caused by OAADPR formation. 

The cAMP-CAP complex dependent transcription increase was also observed for other 

regulated genes in the survey. One example is the gene yjiY. Expression of this gene, 

which encodes an inner membrane protein, was 5-fold upregulated. The gene is activated 

in cells utilizing amino acids or peptides as their carbon source at the beginning of the 

stationary-growth phase.98 Two other genes, fruB and fruK, encode proteins similar to 

UhpT that belong to the superfamily of the phosphotransferase system (PTS) and are 

controlled by the cAMP-CAP complex as well.99–101 Interestingly, fruA, also residing in the 

same operon, did not display a significant upregulation. A third group of cAMP-CAP-

dependent upregulated genes were araA, araB and araD. All three enzymes are located in 

the araBAD operon and catalyze steps in the L-arabinose degradation pathway.102,103 The 

experiments included the addition of L-Arabinose to the cell cultures for induction of the 

PBAD promoter. Although it was also present in the cultures of the control and the inactive 

synthase, an upregulation of those genes could only be detected in samples with the 
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active synthase. Transcription of the araBAD operon is stimulated by the cAMP-CAP 

complex.104 Therefore, the same effect might occur as for the other genes mentioned 

above. Interestingly, the gene araC that encodes the transcription activator of the araBAD 

operon is not upregulated. Its transcription is activated by cancelling the AraC-dependent 

repression in the presence of arabinose and needs the cAMP-CAP complex as co-

activator.105 

Upregulation of genes Ecs0778, nadA, nadB and pnuC can be explained by their 

involvement in NAD+ synthesis. nadA and nadB encode enzymes in the NAD+ de novo 

biosynthesis from L-aspartate.106 pnuC resides in the same operon as nadA but is involved 

in the NAD+ salvage pathway.107 Regarding the results from the NAD+ assay, an 

upregulation of these genes was expected. Due to a higher consumption of NAD+ during 

OAADPR formation, the cell compensated for this by upregulation of its biosynthesis 

pathways. Since the inactive mutant of the synthase converts far less NAD+, an 

upregulation of the relevant genes was not necessary. 

In summary, an upregulation of genes belonging to NAD+ biosynthesis was not 

unexpected after it was shown that the NAD+ level is decreased in cells where the 

metabolite is formed. 

The observed downregulation of the gene glgP is not consistent with the assumption that 

the metabolism in cells producing OAADPR is shifted to a non-catabolite-repressing state. 

The glycogen phosphorylase is a distinct α-glucan phosphorylase in E. coli. The activity of 

the glycogen phosphorylase is allosterically regulated by HPr, a PTS component which 

links PTS to the regulation of glycogen breakdown. The transcription is activated by 

cAMP-CAP. A decreased transcription of glgP, as observed in cells harbouring the active 

synthase, leads to an accumulation of glycogen. This accumulation serves as an energy 

reserve and is one of the responses to nitrogen limitation.108,109 

Expression of the genes garL, garR and garK was 2- to 4-fold upregulated in the presence 

of the metabolite. They are involved in the D-glucarate degradation pathway. In this 

pathway, D-glucarate is degraded to pyruvate and 2-phosphoglycerate which 

subsequently enter glycolysis.110,111 This utilization of this alternative carbon source could 
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be due to the higher need for energy by cells harbouring the active synthase. The 

production of the metabolite OAADPR releases energy comparable to hydrolysis of ATP to 

ADP, which must be compensated. In glycolysis, 2-phosphoglycerate is normally formed 

by the phospho-glyceromutase from 3-phosphoglycerate. The expression of the gene 

gpmA, which encodes this enzyme, was 3-fold decreased in the presence of OAADPR and 

hence the synthesis of 2-phosphoglycerate negatively affected. Supplementation with 2-

phospho-glycerate from the D-glucarate degradation pathway would present an 

alternative source of this molecule. The reason for the downregulation of gpmA might lie 

in observed interactions of OAADPR with enzymes in the preceding steps of glycolysis. 

The metabolite is proposed to modulate the activity of PGK and GAPDH, presumably to 

reroute energy metabolism to the pentose phosphate pathway. Hence, the repression of 

gpmA could be an effect of this modulation. 

The biggest decrease of transcription could be observed for the gene Ecs2845, which 

encodes a glycosyl transferase. These transferases are involved in the biosynthesis of 

oligo- and polysaccharides and glycoconjugates producing glycoproteins which are 

involved in membrane formation including porins. Since the transcription of one of the 

major porins in E. coli and two other membrane proteins were decreased, a reduced 

biosynthesis of glycoproteins could be a consequence of this. 

Proteins NupC and Gnd, whose corresponding genes were 3-fold downregulated, both 

favour the formation of ribose-5-phosphate. A decrease of ribose-5-phosphate formation 

by these enzymes can be associated with the metabolite, since the hydrolysis of it by 

Nudix hydrolases produces ribose-5-phosphate besides AMP. This new source might 

affect the regulation of native ribose-5-phosphate generating proteins. 

Another gene downregulated in the presence of OAADPR is hmp. It encodes a 

flavohemoglobin, which obtains a nitric oxide dioxygenase activity to prevent nitric oxide-

dependent respiratory inhibition and cellular damage. The biosynthesis of nitric oxide is 

dependent on arginine and connects this to another downregulated gene, speA. The 

protein SpeA is an arginine decarboxylase. The decreased expression of hmp would 

presume a low level of nitric oxide in the cell. But a repressed biosynthesis could not be 
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observed and a degradation of arginine within the context of nitric oxide biosynthesis was 

not detected. Nitric oxide, together with superoxide, effect the activation of the 

transcription of soxR from the soxRS superoxide response regulon.112 The protein SoxR, in 

turn, activates soxS transcription.113,114 This transcription was 2.5-fold upregulated in cells 

with the metabolite present. An upregulation of soxS based on superoxide is not 

consistent with the formation OAADPR, since the metabolite is associated with decreased 

ROS levels in the cell. This would prevent activation of the soxRS regulon. Therefore, it 

can be speculated that the metabolite might also be associated with a decrease of 

reactive nitrogen species. 

A closer look on the genes controlled by the soxRS regulon shows that one of them 

encodes a small regulatory RNA, which suppresses the synthesis of the outer membrane 

porin OmpF.115 This protein is a member of the OmpA-OmpF porin family. Another 

member of this family is OmpA, one of the major porins in E. coli. The corresponding gene 

was 4-fold downregulated together with two other membrane proteins in the samples 

harbouring the active synthase. Induction of the transcription of this porin occurs when 

the availability of nitrogen sources is limited. This indicates that the cells perform a de 

novo biosynthesis of nitrogen-containing compounds like amino acids and nucleotides 

when these nutrients are no longer available in the culture medium. The growth test of 

the active synthase and its inactive mutant showed that the culture with the active 

synthase was severely delayed in growth due to the formation of OAADPR. Cell cultures 

expressing the inactive mutant were growing comparable to the control. Therefore, the 

need of nutrients for cell growth was probably decreased in the presence of OAADPR and 

transcription levels of genes involved in the biosynthesis of these nutrients were 

downregulated. 

A decrease of nutrients in the growth medium can also trigger cellular stress responses. 

yifE and yjiD, genes connected to the cellular stress response, were significantly 

downregulated in samples harbouring the active synthase. yifE promotes the 

transcription of rpoS, which is a master regulator of the general stress response.116 yjiD 
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inhibits the proteolysis of rpoS. The downregulated gene typA is related to cellular stress 

response as well.  

The adaption of cells to a decreased supply with nutrients can lead to an increase in the 

synthesis of the alarmone guanosine 5’-diphosphate 3’-diphosphate (ppGpp). The protein 

that synthesizes ppGpp is activated by binding of uncharged tRNA. The glycine tRNA 

synthetase encoding gene glyS was downregulated in samples with the active synthase 

compared to samples with the inactive one. Hence, glycine tRNA could function in this 

case as an activator for increased ppGpp synthesis. ppGpp, in turn, positively regulates 

the expression of the histidine operon. Educts in the first reaction of the histidine 

biosynthesis are PRPP and ATP.117 PRPP is encoded by the gene prs. This gene was 3-fold 

downregulated when OAADPR was present in the cell. A gene that encodes a subunit of 

the ATP synthase, papD, was downregulated as well. This is concurrent with the 

assumption that a difference in cell growth with the active synthase and the inactive 

mutant can trigger these divergent gene regulations. The two genes aceA and aceB were 

significantly downregulated during OAADPR formation which can also be ascribed to the 

different cell growth. They encode the two key enzymes isocitrate lyase and malate 

synthase of the glyoxylate cycle. This cycle is a variation of the tricarboxylic acid cycle and 

is activated due to shortage of complex carbohydrate sources. Acetyl-CoA is used to form 

succinate followed by the convertion into oxalacetate. The oxalacetate enters 

gluconeogenesis, where it is subsequently converted into glucose. 

 

To test the high upregulation of the uhpT gene in the microarray gene expression analysis, 

a reporter gene assay was performed. For this purpose the promoter region of uhpT was 

ligated in front of the lacZ gene, which encodes ß-galactosidase. The amount of ß-galacto-

sidase in the samples was measured in an activity test at different time points after 

induction. Samples harbouring the active synthase showed a slightly higher ß-galacto-

sidase activity than samples with the inactive mutant. Activities in both samples were 

lower than in the control samples. This means that transcription of the uhpT-lacZ fusion 

gene was not enhanced in the presence of the active synthase. The obtained values did 
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not reflect the results from the gene expression analysis, where a considerable increased 

expression of the uhpT gene could be observed when the synthase was active and hence 

the metabolite was formed. In the microarray gene expression analysis, the relative 

amount of mRNA transcribed from a certain gene is measured. The ß-galactosidase assay, 

on the other, hand gives feedback about the translation of that gene. In this case the 

translation might be hindered in some way although the transcription is performed at the 

same level as in the gene expression analysis. This would lead to lower ß-galactosidase 

activity and explain the discrepancy between the results. 

For further transcription analysis, quantitative real-time PCR (qRT-PCR) was used. With 

this method it is possible to quantify mRNA formation and consequently DNA 

transcription from selected genes. Isolated RNA was transcribed into cDNA, which was 

quantified in real-time qPCR. Unfortunately, analysis of mRNA levels from uhpT was not 

successful. It was not possible to obtain clean DNA from the PCR performed on the cDNA. 

As a control, the same primer pair was used in a PCR with genomic E. coli DNA. The 

product was visible as a bright band with the right size on an agarose gel, which states 

that the primers were working well. Also two independent batches of cDNA from two 

different expressions and reversal transcriptions were used as template in case of a 

potential irregular expression or an error in reversal transcription but without success. 

Hence, it could not be determined if uhpT expression was indeed upregulated and 

therefore translation of ß-galactosidase hindered. 

As an alternative, the cDNA of four other genes with a 2-fold upregulation were 

successfully analyzed with qRT-PCR. Genes nadA, nadB, pnuC and fruB were investigated 

and their transcription levels measured in the presence of either the active synthase and 

the metabolite or the inactive mutant. Transcription levels of the housekeeping gene 

gapA were used as a standard for constitutive gene transcription and the levels of the 

other genes put in relation to it. Since these are preliminary results as mentioned above, 

their significance is limited and should be interpreted with caution. The only significant 

regulation in transcription found so far was in the samples of nadB. When the active 

synthase was expressed in the cells, the transcription of nadB was increased. Further 
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measurements using qRT-PCR would possibly help to validate the effects of the 

metabolite on gene transcription observed in the microarray gene expression analysis. 

In summary, some genes that were regulated by the formation of the metabolite in the 

cell were connected to energy metabolism or the compensation of the increased NAD+ 

consumption. Other distinct and new effects of the metabolite could not be observed in 

this gene expression analysis. Unfortunately, the obtained results could not be verified by 

further conducted experiments. Perhaps other methods analyzing cell metabolism would 

reveal new effects of the metabolite if they were present in this organism. 

All experiments in this thesis were performed in E. coli and represent the first analyses of 

the role of the metabolite OAADPR in this organism. The simplicity of this bacterium 

served as a good platform for first investigations of possible effects of the metabolite on 

basic metabolic pathways in the cell. Earlier studies were performed in higher organisms 

like yeast and starfish. These organisms obtain a more complex cell structure and more 

metabolic pathways, which can be affected by the metabolite. Since only NAD+- or 

arabinose-related effects could be detected in E. Coli it would be interesting to continue 

the investigations in a higher organism to advance the understanding of the biological 

role of OAADPR. The engineered synthase can be applied to other organisms and provide 

in situ formation of the metabolite for analysis of possible effects. First experiments were 

already performed in yeast. 

 

4.3 Removal of acyl modifications on histone H4K16 by sirtuin CobB 

In this project I aimed to determine if the sirtuins CobB and Sirt1 could discriminate 

between different acyl modifications of the lysine residue at position 16 of histone H4 and 

if they show putative specificities. A group of substrates with different acyl-chain lengths 

were used to study potential effects of the chain length on the kinetic turnover. 

Three different acylations were chosen as the substrate modification (Figure  4.1). 

Acetylation is a long known and well analyzed modification. On lysine 16 of histone H4 it 

has been shown to be important for the compaction of nucleosomes in vitro. It controlls 
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the interaction between the N-terminal tail of H4 and an acidic surface of neighbouring 

nucleosomes.118–120 The other two acylations used were butyrylation and crotonylation, 

which are fairly new identified lysine acylations. These modifications have not been very 

well characterized so far. However, it is known that HDACs can remove those acylations 

but detailed studies about the kinetics of these reactions are still elusive. Further 

understanding of the reaction kinetics and modifying enzymes could present new insights 

into the effects of these different lysine modifications on physiological processes. 

 

 
 

Figure  4.1: Scheme of different lysine modifications used as substrates in the deacylation assays. 

 

Here, the cleavage of the acyl modifications over time was investigated in a newly 

established lysine deacylation assay. Literature states that the deacetylation of synthetic 

peptides, which are based on the human histone H3 sequence modified at lysine 14, by 

other sirtuins was shown to be faster than debutyrylation.121 Therefore, it was speculated 

that the cleavage of acetyl groups by CobB might also be faster than the cleavage of 

butyryl and crotonly groups. But other than expected the fastest catalytic activity of CobB 

was observed when crotonyllysine was used as substrate, followed closely by 

butyryllysine. The deacetylation activity was decreased more than 2-fold, compared to 

the others. The ability of CobB to process all three different acylations on the other hand 

was not unexpected. Earlier experiments already showed a small discrimination ability of 

CobB towards its substrates.63 It was also shown that CobB has depropionylation and 

desuccinylation activity.122,123 

The structure of the substrate binding site in CobB is apparently able to interact with 

lysines of different acyl-chain length and stereochemistry. A crystal structure reported by 
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Zhao et al. details a cleft at the acetyllysine substrate binding site, flanked by a large 

Rossmann domain and a small zinc-binding domain.63 Certain interactions between the 

acetyllysine residue and conserved sirtuin residues in the binding site could be 

determined and seem to be conserved. The acetyllysine side chain lies in a hydrophobic 

tunnel that extends into the cleft. A hydrogen bond between the ε-amide of the 

acetyllysine and a valine of the CobB structure anchors the acetyllysine. The acetyl group 

does not form interactions, which might provide a reason why substrates with an 

extention of the acyl-chain can still bind in this tunnel. Experiments with Sir2 substrates 

led to the conclusion that the substrate specificity of CobB derives from regions outside 

the acetyllysine binding site.63 This could explain why CobB possesses the ability to 

process a variety of substrates including differently acylated lysines. An explanation for 

this spectrum of substrates might originate in the function of CobB. It activates the acetyl-

CoA synthetase by deacetylation of an active site acetyllysine. Since it is the only known 

sirtuin in E. coli, it might also regulate the activity of other acyl-CoA synthetases. CobB 

would therefore play an important role in the control of the cellular acyl-CoA pool. 

 

The second deacetylase analyzed was Sirt1, a human Sir2 analogue. The results for its 

deacetylation and decrotonylation activity are preliminary. They are not significant 

because the demodification rates were not consistent within the measurements. The 

inconsistency is probably due to the Sirt1 enzyme. Its activity seems to decrease after 

protein purification, probably due to protein instability. Not all assays were performed at 

the same timepoint and the activity of Sirt1 might have changed between assays. 

Therefore, it cannot be confirmed that the removal of the crotonyl group is catalyzed 

significantly faster than the removal of the acetyl group, like in the assays with CobB. 

Determination of the activity of Sirt1 by using a standard prior to peforming the assays 

would make it possible to classify the results.  

Experiments with butyryllysine, on the other hand, generated clear results. The butyryl 

groups were completely cleaved within 4 min, which is comparable to the reaction with 

CobB. The debutyrylation seems to be faster than the deacetylation, which took at least 
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30 min in all measurements for completion. These results are contradictory to analyses 

published by Smith and coworkers.121 An activity test of Sirt1 acting on acetyllysine and 

butyryllysine peptides resulted in a significant higher deacetylation activity. Their study 

also addressed other sirtuins. They concluded that sirtuin deacylation activity decreases 

with increasing chain length. These results do not concur with our experimental lysine 

deacylation assay. The substrate peptides used in Smith’s work were synthesized as 11-

mers based on human histone H3 with the modified lysine at position 14. The ones used 

in the lysine deacylation assay differ, which could be a source for the different results. 

Here, the full histone H4 from Xenopus laevis was used with an encoded acetyllysine at 

position 16. 

 

In general, posttranslational modifications on histones play an important role in the 

regulation of a variety of cellular processes and their effects occur in a number of ways. 

They can alter interactions between nucleosomes or histones and the enclosing DNA to 

modulate chromatin structure. After the histones are modified PTM-specific binding 

proteins are recruited which influence downstream functions. The localization of different 

acyl modifications at the same sites on histones may present a new level of this 

regulation machinery. 
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5 Summary 

Sirtuins are a class of histone deacetylases (HDACs) found in all organisms in all three 

domains of life. Unlike other classes, which hydrolyze water, sirtuins require NAD+ as co-

substrate and form nicotinamide and the metabolite O-acetyl-ADP-ribose (OAADPR), in 

addition to the deacetylated product. This metabolite is thought to function as a 

signalling molecule in the metabolic flux, gene expression, cellular redox processes and 

aging, cell cycle control and apoptosis. However, in vivo analyses of OAADPR function are 

hampered by its inability to permeate the plasma membrane. 

The main objectives of this thesis were the engineering, optimization and characterization 

of an enzyme that can produce the metabolite in situ and in defined levels. This enzyme is 

a fusion construct that combines a sirtuin and an acetyltransferase moiety, which are 

connected by a peptide linker harbouring the substrate for both enzymatic reactions. The 

enzyme showed robust turnover of NAD+ and acetyl-CoA into nicotinamide and OAADPR 

in an enzymatic coupled assay. This assay was dependent upon the presence of a 

substrate lysine in the linker. Mass spectrometry data validated the formation of 

OAADPR. In first analyses, effects of the metabolite on cell metabolism could be 

observed. 

An additional objective was the analysis of turnover kinetics of the bacterial sirtuin CobB 

and its human analogue Sirt1 on acyl modifications of histone H4K16. The results suggest 

that CobB is able to process a variety of acyl modifications but with different catalytic 

efficiencies. It was shown that Sirt1 is able to process different acyl modifications as well, 

however, turnover kinetics could not yet be determined. 
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7 Supplementry 

7.1 Table of figures 

Figure  1.1: Schematic structure of a nucleosomal array. The DNA (black) is wrapped 

around the four core histones which are present in two copies. The N-terminal tails 

of the histones (rose) are oriented out of the octamer. _______________________ 1 

Figure  1.2: Proposed catalytic mechanism of OAADPR formation. At first the oxygen of 

the acetyllysine attacks the C1’ atom at the nicotinamide ribose and nicotinamide is 

released. The hydroxyl group at C2’ gets activated by a conserved histidine, attacks 

the carbon atom of the O-alkylamidate and a 1’,2’-cyclic intermediate is formed. This 

intermediate is attacked by a base-activated water molecule which leads to the 

formation of 2’-OAADPR and the release of deacetylated lysine. A non-enzymatic 

transesterification yields a mixture of 2’- and 3’-OAADPR. _____________________ 6 

Figure  1.3: Proposed mechanisms of OAADPR/ADPR and YsaI function in metabolic 

pathways and cellular redox. OAADPR/ADPR are generated by NAD+ cleavage and 

hydrolyzed by YsaI to AMP which activates glycolysis. In Δysa1 cells OAADPR/ADPR 

levels are increased and consequently inhibit glycolysis and promote NADPH 

production by rerouting glucose to the pentose phosphate pathway. This leads to 

higher antioxidative stress response capability because essential cellular antioxidants 

can be reduced by NADPH. Increased OAADPR/ADPR levels also inhibit complex I of 

the electron transport chain leading to a lower ROS level. _____________________ 9 

Figure  2.1: Size exclusion chromatogram of affinity tag purified CobB using a Superdex 

200 26/70 column. The synthase eluted with a size of 26 kDa. The 12 % SDS gel 

displays CobB after the hexahistidine tag affinity purification (C) and fractions from 

the chromatogram. (P: cell pellet, F: flowthrough from hexahistidine tag affinity 

purification). ________________________________________________________ 33 

Figure  2.2: Size exclusion chromatogram of affinity tag purified Sirt1 using a Superdex 

200 26/70 column. The synthase eluted with a size of 49 kDa. The 12 % SDS gel 
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displays Sirt1 after the hexahistidine tag affinity purification (C) and fractions from 

the chromatogram. (P: cell pellet, F: flowthrough from hexahistidine tag affinity 

purification). _______________________________________________________ 34 

Figure  2.3: Enzymatic coupled sirtuin assay. An acetyltransferase loads the lysine residue 

with an acetyl group from acetyl-CoA. Nicotinamide is cleaved off NAD+ and the 

acetyl group transferred from the substrate lysine to the remaining ADP-ribose. The 

deacetylated lysine residue can be loaded again by the acetyltransferase. 

Nicotinamide is converted to nicotinic acid and ammonium whereas ammonium 

serves as a substrate in the photometrically traceable reaction. NADPH is oxidized to 

NADP+ by glutamate dehydrogenase while ammonia and α-ketoglutarate are 

converted to glutamate.58 The absorption maximum of NADPH lies at 340 nm. __ 37 

Figure  2.4: Reaction of resazurin (7-hydroxy-10-oxidophenoxazin-10-ium-3-one) to 

resorufin by acceptance of electrons from NADH which is oxidized to NAD+. ___ 38 

Figure  2.5: Enzymatic coupled assay for analysis of pncA-MBP activity. ____________ 39 

Figure  3.1: Scheme of the O-acetyl-ADP-ribose synthase (OAADPR) describing its 

individual parts. The histone H3/H4 peptide chain harbours the substrate lysine and 

links the catalytic core domain of the deacetylase CobB (PDB-ID: 1S5P62) on the left 

with the domain of the acetyltransferase Hat1 (PDB-ID: 1BOB75) on the right. In the 

binding cleft of CobB its co-substrate NAD+ is depicted and a structral zinc ion in the 

zinc-binding module. The substrate of Hat1, acetyl-CoA, is bound in a cavity on the 

surface of the Hat1 core domain. The structure was composed using PyMOL. ____ 45 

Figure  3.2: Function of the OAADPR synthase and formation of the metabolite OAADPR. 

Following the release of nicotinamide, CobB relocates the acetyl group from the 

substate lysine to NAD+. There it finally binds to C2’ of the nicotinamide ribose 

forming OAADPR. At last the acetyltransferase Hat1 reacetylates the substrate lysine 

by transfer of an acetyl group from acetyl-CoA. Products of one reaction cycle are 

one molecule of OAADPR, nicotinamide and CoA, respectively. _______________ 46 
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Figure  3.3: Size exclusion chromatogram of the affinity tag purified synthase 1.0 using a 

Superdex 200 26/70 column. The synthase eluted with a size of 70 kDa after 

162 min. After 191 min CobB truncation of the synthase eluted from the column. _ 47 

Figure  3.4: 12 % SDS gel showing OAADPRS 1.0 after hexahistidine tag affinity 

purification (C) and fractions from chromatogram (Figure  3.3) after size exclusion 

chromatography. Bands at 70 kDa represent the full length protein and at 28 kDa 

CobB truncations. ____________________________________________________ 48 

Figure  3.5: Scheme of the enzymatic coupled sirtuin assay. Nicotinamide is cleaved from 

NAD+ and the acetyl group is transferred from the substrate lysine to the remaining 

ADP-ribose structure of NAD+ to form OAADPR. The deacetylated lysine residue is 

charged again with an acetyl group by the acetyltransferase. Nicotinamide is 

converted to nicotinic acid and ammonium, whereas ammonium serves as a 

substrate in the photometrically detectable reaction. Then, NADPH is oxidized to 

NADP+ by glutamate dehydrogenase while ammonia and α-ketoglutarate are 

converted to glutamate. The absorption maximum of NADPH lies at 340 nm. ____ 49 

Figure  3.6: Enzymatic coupled sirtuin assay with synthase 1.0. Arrows indicate the time 

points of NAD+ and acetyl-CoA addition. A decrease of absorption after NAD+ 

addition was due to nicotinamide contamination. OAADPRS 1.0 activity was 

dependent on the addition of acetyl-CoA since a significant decrease of the 

absorption was only obtained after its addition. The negative control, containing 

buffer instead of synthase, did not show absorption decrease upon acetyl-CoA 

addition. ___________________________________________________________ 50 

Figure  3.7: Schemes of the two modified O-acetyl-ADP-ribose synthases. Deleted regions 

are marked in red. Synthase 1.1 was shortened by five amino acids in the linker 

sequence. In synthase 1.2 ten amino acids of the linker sequence were deleted. __ 51 

Figure  3.8: Measurement of the activity of the three different synthases with the 

enzymatic coupled sirtuin assay. The diagram shows the decrease of NADPH 

absorption after addition of acetyl-CoA to the reaction mixture and therefore the 

activity. Synthase 1.1 with five deleted amino acids in the linker peptide, showed the 
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highest activity of the three synthases. A deletion of ten amino acids in synthase 1.2 

led to a reduced activity compared to the two others. ______________________ 52 

Figure  3.9: Dot Blot of the two active synthases 1.0 and 1.1 and the mutated version of 

synthase 1.1 where the substrate lysine was replaced by a glycine. The membrane 

was decorated with an acetyllysine antibody followed by an ECL reagent. In the 

upper section the samples were spotted untreated and the active synthases showed 

a strong signal in contrast to the mutant. In lower section the samples were 

incubated with NAD+ for 20 min, a substrate for the deacetylation. Upon this NAD+ 

addition the signals disappeared which demonstrated a deacetylation of the 

substrate lysines. ____________________________________________________ 54 

Figure  3.10: A superimposition of two XICs, obtained by mass spectrometry analysis of 

the product solution of the enzymatic coupled sirtuin assay. The minor signal 

represents a mass of 558 dalton and had the same retention time as the ADP-ribose 

standard. The major signal at a retention time of 38.15 min represents a mass of 

600 dalton, which corresponds to the mass of OAADPR. _____________________ 55 

Figure  3.11: Steady-state kinetics of the Hat1 moiety in OAADPRS. Acetylation rates, 

determined using the enzymatic coupled sirtuin assay, were plotted against the 

acetyl-CoA concentrations. ____________________________________________ 56 

Figure  3.12: Steady-state kinetics of the CobB moiety in OAADPRS. Deacetylation rates, 

determined using the enzymatic coupled sirtuin assay, were plotted against NAD+ 

concentrations. _____________________________________________________ 57 

Figure  3.13: Growth test of E. coli cells harbouring plasmids with the active synthase 1.1 

or the inactive mutant. The control contained an empty plasmid. Cells were induced 

with 0.5 mM IPTG at timepoint zero. Growth of cells expressing the active synthase 

was severe delayed after induction while the cells with the inactive synthase grew 

comparable to the control. ____________________________________________ 59 

Figure  3.14: Western blot of the active synthase expressed from a plasmid with an 

arabinose inducible promoter. The amount of synthase expressed, utilizing 

induction levels of 200 and 1000 ppm arabinose were compared. Protein was 
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detected with an anti-histidine antibody. Samples were taken before, 2 and 5 h after 

induction. On the right purified synthase was blotted as control. At both induction 

levels protein expression was visible after induction. ________________________ 60 

Figure  3.15: Resazurin assay of cells expressing the active synthase, the inactive mutant 

and a negative control. Samples were taken at indicated time after induction. The 

measured fluorescence signals of the formed reagent were normalized to the 

control, which was set to 100 %. In A) cells were induced with 200 ppm arabinose 

and in B) with 1000 ppm arabinose. A higher expression level of the active synthase 

and the coupled formation of the metabolite resulted in a higher depression of cell 

metabolism. ________________________________________________________ 62 

Figure  3.16: Determination of NAD+ levels in cells expressing the active synthase, the 

inactive mutant or a negative control. Samples were taken two hours after 

induction. A formazan reagent was added and the amount of reduction product 

which depends on NADH concentration in the sample was measured. NAD+ amounts 

were calculated from those NADH concentrations. In A) cells were induced with 

200 ppm arabinose and in B) with 1000 ppm arabinose. NAD+ levels were severely 

decreased when the active synthase was expressed and nearly depleted after 

increasing the induction to 1000 ppm arabinose. Expression of the inactive synthase 

resulted in a much lower decrease of NAD+. _______________________________ 64 

Figure  3.17: Venn analysis diagram of the gene expression surveys that were 

performed. Comparing the active synthase to the negative control, 204 genes were 

regulated. In the samples of the inactive mutant compared to the negativ control 55 

genes were regulated. When gene expression was measured in the presence of the 

active synthase versus the inactive mutant, 74 genes were regulated. Non of the 

regulated genes were found in all three surveys, only partially in two surveys. ____ 66 

Figure  3.18: Reaction scheme of the ß-galactosidase assay. o-nitrophenyl-ß-D-

galactopyranoside (ONPG) is enzymatically converted to galactose and o-nitrophenol 

(ONP) by the lacZ encoded ß-galactosidase. ONP formation can be quantified by 

measuring its absorption at 420 nm. _____________________________________ 70 
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Figure  3.19: Scheme representing the lacZ gene for ß-galactosidase and the new 

promoter region. The original promoter was replaced by the uhpT promoter 

sequence, including a CAP binding site, a strong-affinity and a low-affinity UhpA-

binding region. Depending on synthase and metabolite presence, the promoter 

should be activated and induce lacZ gene transcription and subsequently ß-

galactosidase expression. _____________________________________________ 70 

Figure  3.20: Levels of expressed ß-galactosidase one, two and three hours after 

induction. All values are depicted in percentage and were normalized to the control, 

which was set to 100 %. Samples harbouring the inactive mutant showed a lower ß-

galactosidase expression than the samples with the active synthase. __________ 72 

Figure  3.21: Comparison of transcription ratios of genes from Table  3.5, transcribed in 

the presence of the active synthase (a. s.) or the inactive mutant (i. m.). As 

reference the housekeeping gene gapA was used and its transcription level was 

substracted from the values of the genes of interest. nadB was the only gene where, 

depending on the presence of the active synthase, a significant difference in 

transcription level could be determined. The transcription of the pnuC gene was 

increased in the presence of the inactive mutant. __________________________ 75 

Figure  3.22: Reaction scheme for a one-step synthesis of OAADPR. NAD+ is mixed with 

sodium carbonate and glacial acetic acid, followed by heating to 90 °C. The product 

solution containes besides nicotinamide an isomeric mixture of 2’-OAADPR (R1=Ac, 

R2=OH) and 3’- OAADPR (R1=OH, R2=Ac). ________________________________ 76 

Figure  3.23: Ion exchange chromatogram of the crude reaction products from the one-

step synthesis of OAADPR. The chromatography was performed using an 

aminopropyl-linked silica gel column and 1 M acetic acid as buffer A and 1 M sodium 

acetate and 1 M acetic acid as buffer B. The products were eluted over a separation 

gradient. In the peak at 13.46 min OAADPR was detected by mass spectrometry. 77 

Figure  3.24: Chromatogram of the hydrophilic interaction chromatography performed 

as final purification step in OAADPR synthesis. 10 mM ammonium acetate and 

acetonitrile were used for the separation gradient on a polyHYDROXYETHYL ATM 
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column. Peaks were collected and analyzed by mass spectrometry for the presence 

of OAADPR. Mass spectra of the marked retention times a and b are shown in 

Figure  3.25. _________________________________________________________ 78 

Figure  3.25: Mass spectrum of the sample from the retention time indicated in Figure 

 3.24. It showes the mass spectrum of OAADPR (m/z = 600 Da). ________________ 79 

Figure  3.26: Mass spectrum of the sample from the retention time indicated in Figure 

 3.24. The main peak at 558 Da represents ADPR. The peaks at 662, 744, 826 and 

908 Da refer to remaining salt in the sample. ______________________________ 80 

Figure  3.27: Western Blots of antibody tests with wild type histone H4 and differently 

acylated H4K16 histones. A) Western Blot decorated with anti-histone H4K16 acetyl 

antibody. Besides the very strong signal for acetylation, also a signal for butyrylation 

was visible. Crotonylation could not be detected by this antibody. B) Western Blot 

decorated with anti-crotonyllysine antibody. Crotonylation was recognized best by 

this antibody and butyrylation to a smaller degree. Wild type histone and acetylation 

were not recognized by this antibody. ____________________________________ 82 

Figure  3.28: Western Blots of lysine deacetylation assay samples taken at indicated time 

points. The assay was performed with CobB deacetylase and histone H4 carrying 

different acyl modifications at position K16 as depicted. Signals in the upper sections 

represent acylated protein, visualized with anti-acetyl or anti-crotonyllysine 

antibody, respectively. In the lower sections, protein was visualized with anti-H4 

antibody for quantification purpose. _____________________________________ 83 

Figure  3.29: Western Blots of histone H4K16 debutyrylation by Sirt1. Consumption of 

the butyryl modification was completed within 4 min after the reaction was initiated. 

50 % was cleaved after 1 min. __________________________________________ 84 

Figure  3.30: Western Blots of lysine deacetylation on the left and decrotonylation on 

the right by Sirt1. Measurements of the individual modifications are not consistent 

and therefore regarded as preliminary results. Cleavage of acetyl groups off histone 

H4K16 took either about 30 min or longer. Rates of decrotonylation were between 

2 min and more than 30 min. ___________________________________________ 85 
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Figure  4.1: Scheme of different lysine modifications used as substrates in the 

deacylation assays. __________________________________________________ 99 
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7.2 Abbreviations 

 

AARS  aminoacyl-tRNA synthetase 

ADH  alcohol dehydrogenase 

ADP  adenosine diphosphate 

ADPR  adenosine diphosphate ribose 

APS  ammonium persulfate 

ARH3  ADP-ribosylhydrolase 3 

ATP  adenosine triphosphate 

CAP  catabolite gene activator protein 

CIP  calf intestinal alkaline phosphate 

CoA  coenzyme A 

CP  crossing point 

DTT  dithiothreitol 

ECL  enhanced chemiluminescence 

FADH  flavinadenine dinucleotide (semiquinone) 

FMNH  flavin mononucleotide (semiquinone) 

FDR  false discovery rate 

GAPDH  glyceraldehyde-3-phosphate dehydrogenase 

GFP  green fluorescent porotein 

Glu6P  glucose 6-phosphate 

Hat1  histone acetyltranferase 1 

Hda1  histone deacetylase 1 

HDAC  histone deacetylase 

Hst2  homologue of Sir two 2 

IPTG  isopropyl ß-D-1 thiogalactopyranuside 

LB  lysogeny broth 

Lys  lysine 
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MBP  maltose binding protein 

NAD+  nicotinamide adenine dinucleotide 

NADH  nicotinamide adenine dinucleotide hydride 

NADPH  nicotinamide adenine dinucleotide phosphate 

NAM  nicotinamide 

Ni-NTA  nickel-nitrilotriacetic acid 

NES  nuclear export signal 

NUDIX  nucleoside diphosphate linked to another moiety x 

OAADPR  O-acetyl-ADP-ribose 

OAADPRS  O-acetyl-ADP-ribose synthase 

ONP  o-nitrophenol 

ONPG  o-nitrophenyl-ß-D-galactopyranoside 

PAGE  polyacrylamide gel electrophoresis 

PCR  polymerase chain reaction 

PGK  phosphoglycerate kinase 

PIC  protease inhibitor cocktail 

PMSF  phenylmethylsulfonyl fluoride 

PRPP  5-phospho-α-D-ribose 1-diphosphate 

PTM  posttranslational modification 

PTS  PEP - carbohydrate phosphotranferase system 

qRT-PCR  quantitative real-time-polymerase chain reaction 

Rpd3  reduced potassium dependency 3 

ROS  reactive oxygen species 

RT  room temperature 

SDS  sodium dodecylsulfate 

SIR  silent mating type information regulator 

TAL  transcriptome-analysis laboratory 

TCA  tricarboxylic acid 

TEMED  tetramethylethylenediamine 
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TEV  tobacco etch virus 

TLC  thin layer chromatography 

TRPM2  transient receptor potential malastatin-related 

channel 2 

UAA  unnatural amino acid 

XIC  extracted ion chromatogram 
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7.3 Supplemetry data 

7.3.1 Gene expression analysis 

Complete datasets of the three surveys are depicted in tables 7.1 – 7.3. A positive fold 

change indicates an upregulation of a gene in the presence of the first construct named in 

the legend of the table compared to the presence of the second construct. A negative 

value indicates a downregulation of the gene. 

 

Table  7.1: Survey with the active synthase versus the inactive mutant. 

Symbol fold 
change 

p-value FDR  Symbol fold 
change 

p-value FDR 

uhpT 16,68  3,57E-10 0,00%  garK 2,40  4,27E-08 0,00% 

uhpT 16,68  1,91E-12 0,00%  fruB 2,40  2,12E-06 0,01% 

ECs0778 14,85  3,51E-12 0,00%  lfhA 2,39  7,08E-03 2,22% 

nadA 14,08  1,63E-12 0,00%  fruK 2,33  2,81E-07 0,00% 

nadA 13,61  2,83E-12 0,00%  c-5225 2,28  7,06E-09 0,00% 

nadA 12,80  2,78E-11 0,00%  araB 2,24  4,75E-07 0,01% 

nadB 10,18  2,26E-12 0,00%  rhaA 2,23  1,57E-06 0,01% 

yjiY 5,22  2,02E-10 0,00%  phoH 2,15  7,21E-08 0,00% 

yjiY 4,93  8,46E-11 0,00%  b2885 2,12  6,79E-08 0,00% 

pnuC 4,33  4,17E-10 0,00%  ECs4830 2,10  1,37E-08 0,00% 

garL 3,94  1,26E-08 0,00%  ygfM 2,05  4,04E-06 0,02% 

garR 3,79  2,51E-08 0,00%  ilvC 2,04  1,48E-07 0,00% 

araD 3,27  2,10E-09 0,00%  Z3609 2,03  1,04E-02 2,94% 

b2999 2,75  5,77E-09 0,00%  xdhD 2,03  1,50E-06 0,01% 

araA 2,71  3,06E-09 0,00%  ECs4006 2,02  5,87E-07 0,01% 

c_4110 2,58  1,06E-04 0,12%  fadB 2,01  1,21E-07 0,00% 

soxS 2,47  7,31E-09 0,00%  lacY 2,00  4,31E-08 0,00% 
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Symbol fold 
change 

p-value FDR  Symbol fold 
change 

p-value FDR 

ECs3221  -2,03 1,38E-04 0,14%  Z4171  -2,45 6,34E-04 0,40% 

NinE  -2,04 4,52E-05 0,07%  typA -2,47 8,29E-09 0,00% 

ECs0299  -2,06 1,43E-04 0,15%  nupC -2,49 8,65E-09 0,00% 

Z0336  -2,07 2,76E-05 0,05%  ymfD -2,52 4,01E-05 0,06% 

speA -2,08 1,07E-06 0,01%  Z2123  -2,52 2,67E-03 1,10% 

yehM -2,11 2,54E-04 0,22%  ECs1219  -2,57 4,63E-05 0,07% 

lysA -2,16 5,26E-09 0,00%  ECs1333 -2,58 4,07E-06 0,02% 

ECs1544  -2,20 9,46E-03 2,75%  Z2119 -2,63 5,91E-04 0,38% 

ECs3707  -2,20 6,61E-05 0,09%  gpmA -2,71 1,15E-08 0,00% 

c_1234 -2,21 1,79E-04 0,17%  c_0036   -2,79 6,00E-03 1,96% 

glyS -2,25 4,18E-06 0,02%  c_5185  -2,82 1,29E-02 3,46% 

ECs3483  -2,26 9,52E-04 0,53%  yifE -2,96 2,34E-09 0,00% 

aceA -2,26 2,08E-08 0,00%  c_2556  -2,97 7,45E-10 0,00% 

glgP -2,27 2,25E-07 0,00%  gnd -3,02 5,22E-10 0,00% 

L7055 -2,27 1,84E-03 0,84%  prs -3,05 1,02E-09 0,00% 

ECs1944  -2,29 1,91E-05 0,04%  ompA -3,93 2,19E-08 0,00% 

aceB -2,30 5,80E-07 0,01%  c_2455    -4,31 1,09E-04 0,12% 

aceA  -2,34 6,18E-07 0,01%  Z3204 -6,80 8,10E-08 0,00% 

hmp -2,35 2,88E-08 0,00%  ECs2845 -6,89 7,59E-08 0,00% 

c_5405  -2,36 2,32E-05 0,05%  Z4171  -2,45 6,34E-04 0,40% 

Z1155  -2,44 1,16E-05 0,03%  typA -2,47 8,29E-09 0,00% 
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Table  7.2: Survey with the active synthase versus the control. 

Symbol fold 
change 

p-value FDR  Symbol fold 
change 

p-value FDR 

cobB 1071,41  1,10E-14 0,00%  fruK 2,50  3,49E-07 0,00% 

ECs1498 852,03  3,40E-12 0,00%  nth 2,40  3,54E-05 0,04% 

cobB 793,97  2,58E-14 0,00%  tomB 2,35  1,76E-08 0,00% 

uhpT 25,00  2,98E-10 0,00%  phoE 2,34  7,90E-06 0,01% 

uhpT 20,67  2,58E-12 0,00%  araF 2,34  4,19E-07 0,00% 

nadA 17,70  2,61E-11 0,00%  c_3614 2,32  5,24E-06 0,01% 

ECs0778 17,63  5,21E-12 0,00%  yggA 2,29  2,18E-02 4,82% 

nadA 16,57  3,84E-12 0,00%  xdhD 2,29  1,05E-06 0,00% 

nadA 15,11  3,19E-12 0,00%  ECs1634 2,29  4,52E-07 0,00% 

nadB 12,86  2,55E-12 0,00%  fadB 2,29  7,89E-08 0,00% 

pnuC 5,65  2,70E-10 0,00%  garL 2,28  1,51E-06 0,00% 

araA 4,88  1,91E-10 0,00%  lolC 2,26  1,52E-06 0,00% 

araD 4,85  5,27E-10 0,00%  cysN 2,25  3,62E-08 0,00% 

araB 3,70  2,68E-08 0,00%  can 2,23  5,82E-08 0,00% 

yjiY 3,52  4,13E-09 0,00%  c_1549 2,22  5,53E-06 0,01% 

yjiY 3,39  1,66E-09 0,00%  ECs1176 2,22  9,37E-08 0,00% 

cysJ 3,15  1,60E-06 0,00%  z3357 2,22  1,63E-07 0,00% 

ECs2987 2,99  1,81E-05 0,02%  garR 2,21  3,14E-06 0,01% 

cysJ 2,84  1,68E-07 0,00%  yciM 2,20  3,34E-07 0,00% 

hha 2,69  2,14E-08 0,00%  cysP 2,18  8,41E-08 0,00% 

b2999 2,65  1,82E-08 0,00%  ygeX 2,18  2,82E-08 0,00% 

Z3356 2,64  7,87E-05 0,06%  ECs3745 2,17  5,00E-08 0,00% 

c_2248 2,61  2,07E-07 0,00%  c_1538 2,16  1,01E-07 0,00% 

fruB 2,60  2,48E-06 0,01%  yebO 2,15  2,15E-07 0,00% 

c_1268 2,58  4,76E-06 0,01%  ECs2988 2,14  2,90E-06 0,01% 

c_3169 2,57  4,90E-07 0,00%  ECs1625 2,14  9,83E-08 0,00% 
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Symbol fold 
change 

p-value FDR  Symbol fold 
change 

p-value FDR 

z1887 2,14  1,18E-07 0,00%  ECs1187 2,02  8,28E-07 0,00% 

cysN 2,13  7,90E-07 0,00%  yeiA 2,01  2,80E-07 0,00% 

b1899 2,12  3,41E-08 0,00%  ybcU 2,01  8,59E-06 0,01% 

ygeY 2,11  1,49E-07 0,00%  c_4113 2,01  1,99E-07 0,00% 

fadB 2,11  2,62E-05 0,03%  ycfU 2,01  5,92E-07 0,00% 

pstA 2,10  4,89E-08 0,00%  b2858 2,01  2,84E-07 0,00% 

soxS 2,10  7,90E-08 0,00%  Z1889 2,01  6,45E-07 0,00% 

ECs1250 2,10  1,95E-03 0,71%  yrdD 2,01  3,04E-07 0,00% 

phoH 2,10  2,19E-07 0,00%  c_2555 2,01  6,86E-06 0,01% 

ECs1636 2,09  2,85E-07 0,00%  Z0311 2,00  4,42E-06 0,01% 

b1898 2,08  1,14E-06 0,00%  Z1449 2,00  8,37E-06 0,01% 

ilvC 2,08  2,83E-07 0,00%  nirD -2,00 1,43E-07 0,00% 

cysC 2,07  5,85E-07 0,00%  gltK -2,01 8,39E-07 0,00% 

z0970 2,07  4,02E-06 0,01%  Z2229 -2,02 5,96E-07 0,00% 

hyuA 2,06  1,17E-06 0,00%  Z0388 -2,02 8,45E-05 0,07% 

ECs1294 2,05  1,18E-04 0,08%  bdm -2,02 4,44E-07 0,00% 

ykgK 2,05  9,38E-06 0,01%  iadA -2,03 4,85E-08 0,00% 

ykgG 2,05  1,29E-07 0,00%  gltL -2,04 2,32E-07 0,00% 

c_2858 2,05  1,26E-03 0,51%  yjiG -2,04 9,06E-07 0,00% 

cysN 2,04  6,48E-06 0,01%  ribA -2,04 9,95E-06 0,02% 

c_3167 2,04  2,18E-07 0,00%  ykfH -2,04 6,71E-03 1,89% 

fadB 2,03  4,16E-05 0,04%  rpmE -2,04 2,73E-08 0,00% 

ECs1217 2,03  9,78E-08 0,00%  yajO -2,05 2,27E-05 0,03% 

cysN 2,02  3,68E-07 0,00%  intB -2,05 3,74E-07 0,00% 

celF 2,02  1,45E-06 0,00%  fdoH -2,05 4,11E-05 0,04% 

ygeY 2,02  1,47E-07 0,00%  ydjE -2,06 3,18E-04 0,18% 
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Symbol fold 
change 

p-value FDR  Symbol fold 
change 

p-value FDR 

ribA -2,06 5,13E-06 0,01%  ECs0473 -2,20 1,38E-06 0,00% 

evgS -2,06 3,31E-07 0,00%  serS -2,22 1,47E-08 0,00% 

osmE -2,07 5,69E-06 0,01%  yicR -2,23 4,73E-07 0,00% 

ECs1156 -2,08 6,85E-05 0,06%  ECs1544 -2,23 1,48E-02 3,52% 

ECs0299 -2,08 2,71E-04 0,16%  raiA -2,23 7,86E-07 0,00% 

ompC -2,08 1,47E-07 0,00%  yfbT -2,24 2,18E-07 0,00% 

ECs2038 -2,10 1,63E-05 0,02%  ychH -2,24 1,04E-07 0,00% 

racC -2,10 4,73E-04 0,24%  dppC -2,25 4,98E-08 0,00% 

ECs3622 -2,11 3,70E-04 0,20%  Z4982 -2,28 2,25E-08 0,00% 

ygdR -2,11 7,65E-07 0,00%  c_4992 -2,28 2,47E-06 0,01% 

ECs3249 -2,12 8,29E-08 0,00%  psuK -2,29 1,27E-06 0,00% 

ECs3771 -2,13 4,25E-07 0,00%  c_1234 -2,30 2,73E-04 0,16% 

Z1419 -2,13 2,46E-04 0,15%  ECs1219 -2,30 2,39E-04 0,14% 

yjbJ -2,13 2,43E-06 0,01%  - -2,31 9,43E-08 0,00% 

cspA -2,14 1,10E-07 0,00%  uspG -2,32 8,97E-09 0,00% 

c_5381 -2,14 6,89E-05 0,06%  c_0438 -2,33 6,24E-08 0,00% 

ycgF -2,14 8,24E-06 0,01%  iadA -2,35 4,89E-08 0,00% 

yehM -2,14 4,80E-04 0,24%  ECs2924 -2,36 7,44E-07 0,00% 

ECs4422 -2,14 1,10E-07 0,00%  Z2286 -2,37 2,79E-06 0,01% 

melA -2,15 6,59E-05 0,06%  ECs0348 -2,38 3,92E-08 0,00% 

appB -2,16 1,23E-07 0,00%  speA -2,38 5,30E-07 0,00% 

yihD -2,16 2,66E-07 0,00%  pflB -2,39 4,21E-07 0,00% 

slp -2,18 1,38E-06 0,00%  Z4855 -2,39 1,64E-04 0,11% 

Z3916 -2,18 2,16E-03 0,76%  ygdH -2,40 3,04E-07 0,00% 

essQ -2,18 2,03E-03 0,73%  molR_D -2,41 8,85E-08 0,00% 

ompF -2,20 2,83E-07 0,00%  ydiT -2,41 1,48E-05 0,02% 
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Symbol fold 
change 

p-value FDR  Symbol fold 
change 

p-value FDR 

ECs2085 -2,42 3,73E-06 0,01%  narI -3,01 8,56E-03 2,28% 

gapA -2,43 2,87E-08 0,00%  cheZ -3,07 1,33E-03 0,53% 

grxB -2,44 4,34E-07 0,00%  rne -3,09 2,01E-08 0,00% 

lpp -2,45 2,16E-08 0,00%  c_1176 -3,12 7,98E-07 0,00% 

djlB -2,46 8,24E-05 0,07%  gnd -3,16 1,17E-09 0,00% 

Z4077 -2,47 4,39E-05 0,04%  Z2119 -3,22 3,51E-04 0,19% 

cspE -2,47 2,08E-08 0,00%  gnd -3,28 7,07E-10 0,00% 

hmpA -2,48 1,70E-07 0,00%  ydaG -3,33 3,86E-08 0,00% 

ECs3104 -2,55 1,08E-07 0,00%  hmp -3,54 3,28E-09 0,00% 

cspE -2,56 7,40E-08 0,00%  aceB -3,68 4,36E-08 0,00% 

yifE -2,59 1,55E-08 0,00%  aceA -3,75 4,83E-08 0,00% 

nupC -2,62 1,34E-08 0,00%  aceA -3,80 1,06E-09 0,00% 

ECs3483 -2,64 6,29E-04 0,29%  gpmA -4,07 1,89E-09 0,00% 

NinE -2,66 1,05E-05 0,02%  ompA -4,20 3,60E-08 0,00% 

b0501 -2,66 5,06E-07 0,00%  c_0036 -4,22 1,66E-03 0,63% 

glgP -2,69 1,23E-07 0,00%  prs -4,27 3,05E-10 0,00% 

ybeJ -2,70 1,87E-08 0,00%  ymfD -4,81 1,84E-06 0,01% 

yjiD -2,77 1,49E-05 0,02%  papD -5,06 2,13E-03 0,75% 

ECs0694 -2,78 4,75E-09 0,00%  c_2455 -5,15 1,07E-04 0,08% 

c_0042 -2,81 6,17E-07 0,00%  c_3561 -8,81 9,09E-03 2,40% 

Z0039 -2,89 4,80E-08 0,00%  wbdN -11,74 2,76E-08 0,00% 

typA -2,89 5,69E-09 0,00%  ECs2845 -12,92 2,03E-08 0,00% 

speA -2,90 1,48E-07 0,00%      

melB -2,91 4,38E-08 0,00%      

gltI -2,93 4,07E-08 0,00%      

glyS -2,93 1,14E-06 0,00%      
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Table  7.3: Survey with the inactive mutant versus the control. 

Symbol fold 
change 

p-value FDR  Symbol fold 
change 

p-value FDR 

cobB 1071,41  1,10E-14 0,00%  ECs1637 2,07  4,64E-06 0,02% 

cobB 455,53  5,11E-14 0,00%  ECs1217 2,06  8,50E-08 0,00% 

ECs1498 440,73  7,64E-12 0,00%  ECs1625 2,06  1,46E-07 0,00% 

ECs1805 4,23  1,95E-02 4,93%  borW 2,05  5,10E-07 0,01% 

Z0972 2,81  6,62E-04 0,44%  ECs2162 2,05  8,11E-07 0,01% 

Z0970 2,75  3,27E-07 0,01%  cysJ 2,02  5,86E-05 0,10% 

ECs1250 2,48  5,64E-04 0,40%  ECs1634 2,01  1,62E-06 0,01% 

ECs0834 2,39  3,29E-06 0,02%  ylaC -2,01  1,24E-05 0,04% 

ECs3794 2,38  3,41E-03 1,38%  c_4992 -2,02  8,19E-06 0,03% 

ECs1187 2,38  1,64E-07 0,01%  dppC -2,08  1,06E-07 0,00% 

Z2346 2,28  8,84E-03 2,74%  b0501 -2,10  4,05E-06 0,02% 

ECs1836 2,26  1,98E-07 0,01%  ECs0348 -2,13  1,11E-07 0,00% 

c_1580 2,26  5,99E-08 0,00%  Z0388 -2,14  4,91E-05 0,09% 

ECs2987 2,23  1,64E-04 0,18%  Z0655 -2,14  3,68E-06 0,02% 

ECs0832 2,22  1,92E-05 0,05%  c_4110 -2,20  7,53E-04 0,48% 

rfbA 2,22  2,79E-04 0,25%  hokA -2,26  1,91E-08 0,00% 

ECs2988 2,20  2,24E-06 0,02%  ECs1254 -2,29  7,71E-03 2,48% 

ykgG 2,19  2,38E-07 0,01%  melB -2,36  2,33E-07 0,01% 

Z3079 2,19  8,04E-05 0,11%  c_0471 -2,41  1,23E-05 0,04% 

c_1548 2,17  2,79E-08 0,00%  Z4982 -2,49  9,86E-09 0,00% 

Z1449 2,16  3,87E-06 0,02%   -2,52  4,40E-08 0,00% 

c_1549 2,14  8,00E-06 0,03%  c_0042 -2,59  1,14E-06 0,01% 

Z3356 2,11  4,56E-04 0,35%  Z3651 -2,61  4,27E-03 1,61% 

c_3169 2,10  3,00E-06 0,02%  ydaG -2,63  2,13E-07 0,01% 

nth 2,10  1,12E-04 0,14%  c_5225 -2,71  3,79E-09 0,00% 

Z3357 2,08  3,14E-07 0,01%  nirD -2,77  7,35E-09 0,00% 
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Symbol fold 
change 

p-value FDR  Symbol fold 
change 

p-value FDR 

Z0039 -2,93  4,29E-08 0,00%  molR_D -3,23  9,44E-09 0,00% 

ECs2924 -3,04  1,04E-07 0,00%      
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