
Extension of the Rule-Based
Programming Language XL by

Concepts for Multi-Scaled Modelling
and Level-of-Detail Visualization

Dissertation
for the award of the degree

”Doctor rerum naturalium” (Dr.rer.nat.)
of the Georg-August-Universität Göttingen

within the doctoral program Environmental Informatics (PEI)
of the Georg-August University School of Science (GAUSS)

submitted by
Yongzhi Ong

from Singapore
Göttingen, 2015

Thesis Committee

Prof. Dr. Winfried Kurth

(Department Ecoinformatics, Biometrics & Forest Growth, Georg-August University of

Göttingen)

Prof. Dr. Joachim Saborowski

(Department Ecoinformatics, Biometrics & Forest Growth, Georg-August University of

Göttingen)

Members of the Examination Board

Reviewer: Prof. Dr. Winfried Kurth

(Department Ecoinformatics, Biometrics & Forest Growth, Georg-August University of

Göttingen)

Second Reviewer: Prof. Dr. Hans-Jörg Kreowski

(Department of Computer Science, University of Bremen)

Further members of the Examination Board

Prof. Dr. Holger Kreft

(Biodiversity, Macroecology & Conservation Biogeography Group, Georg-August Univer-

sity of Göttingen)

Prof. Dr. Joachim Saborowski

(Department Ecoinformatics, Biometrics & Forest Growth, Georg-August University of

Göttingen)

Prof. Dr. Anita Schöbel

(Research Group Optimization, Institute for Numerical and Applied Mathematics, Georg-

August University of Göttingen)

Prof. Dr. Stephan Waack

(Theoretical Computer Science and Algorithmic Methods, Georg-August University of

Göttingen)

Date of the oral examination: 27.04.2015

Gedruckt mit Unterstützung des Deutschen Akademischen Austauschdienstes.

Printed with the support of the German Academic Exchange Service.

Acknowledgements

I would like to thank:

• Prof. Dr. Winfried Kurth - for his liberal guidance, immense patience,
and bringing me into this special domain of science.

• Prof. Dr. Joachim Saborowski - for supporting my research work in
Göttingen.

• Prof. Dr. Hans-Jörg Kreowski - for taking an interest in this disserta-
tion.

• Mum and Dad - for love and support.

• Grandma - who walked me to the door and opened another.

• Chew Geik - for the sweet and bitter memories we share.

• Yi and Si Jie - for taking care of the family while I am away.

• Katarina - for her friendship, advice, and lending a listening ear during
the darker days.

• Gunnar, Michael, Reinhard - for being friends and partners in research.

• Hien and Dit Dit - for being friends and adding joy to time spent in
our department.

• Liz and Kevin - for giving a tinge of home in a faraway place.

• Ole - for the creation that made this dissertation possible.

• Ms. Ilona Watteler-Sprang and Dr. Reinhold Meyer - for the wonderful
administrative and technical support in our department.

• Everyone whom I met in this journey towards a PhD degree.

Contents

Page

1 Introduction & Motivation 1
1.1 Programming Languages . 1

1.1.1 From Mechanical Calculators to Electronic Computers 1
1.1.2 From Logic to Algorithms 3
1.1.3 Generations of Programming Languages 4

1.2 The XL Programming Language 5
1.3 Computer Graphical Modelling & Level-of-Detail (LOD) Vi-

sualization . 7
1.4 Motivations . 8

1.4.1 Research Questions . 9
1.4.2 Research Objectives 10

I The Rule-Based Paradigm & XL 12

2 Linear Rewriting Systems 13
2.1 Introduction to Formal Languages 13

2.1.1 Alphabets, Words & Languages 14
2.1.2 The Chomsky Grammars and Hierarchy 15

2.1.2.1 Phrase-structure Grammar (type 0) 15
2.1.2.2 Context-sensitive Grammar (type 1) 16
2.1.2.3 Context-free Grammar (type 2) 16
2.1.2.4 Regular Grammar (type 3) 16

2.2 L-systems . 17
2.2.1 0L-systems & D0L-systems 18
2.2.2 E0L-systems . 20
2.2.3 T0L-systems & DT0L-systems 20
2.2.4 Bracketed L-systems 21

i

CONTENTS

2.2.5 Context-sensitive L-systems 24
2.2.6 Stochastic L-systems 25
2.2.7 Pseudo L-systems . 26
2.2.8 Extending L-systems from Discrete to Continuous . . . 27

2.2.8.1 Parametric L-systems 27
2.2.8.2 Differential L-systems 28

2.2.9 L-systems with Global and External Interactivity . . . 29
2.2.9.1 Growth Grammars 29
2.2.9.2 Environmentally-sensitive L-systems 30
2.2.9.3 Open L-systems 30

3 Graph Rewriting 31
3.1 Introduction to Graphs . 32

3.1.1 Fundamental Definitions 32
3.1.1.1 Alphabet . 32
3.1.1.2 Graph . 32
3.1.1.3 Subgraph . 32
3.1.1.4 Graph Homomorphism 33
3.1.1.5 Partial Graph Homomorphism 34

3.1.2 Graphs in Category Theory 35
3.1.2.1 Category . 35
3.1.2.2 Monomorphism 36
3.1.2.3 Epimorphism 37
3.1.2.4 Isomorphism 38
3.1.2.5 Functor . 38
3.1.2.6 Category-of-Paths 39
3.1.2.7 Diagram-in-Category 41
3.1.2.8 Cone & Cocone 42
3.1.2.9 Limit & Colimit 45
3.1.2.10 Product & Coproduct 48
3.1.2.11 Equalizer & Coequalizer 50
3.1.2.12 Pullback & Pushout 53

3.2 Fundamentals of Graph Rewriting 55
3.2.1 The Double-Pushout Approach (DPO) 56
3.2.2 The Single-Pushout Approach (SPO) 58
3.2.3 Neighbourhood Controlled Embedding 61

3.3 Graph Rewriting in XL . 66
3.3.1 Parallel Single-Pushout (SPO) Approach 66

ii

CONTENTS

3.3.2 L-system-style Connection 68
3.3.2.1 Operator-based Graph Rewriting 69
3.3.2.2 Operator-based L-system-style Graph Rewrit-

ing . 70
3.3.2.3 Single-pushout (SPO) with Operators 75

4 XL for Multiscale Modelling 81
4.1 Multiscale Modelling Framework 82
4.2 Statement of Problem . 85
4.3 Multiscale Graph Data Structure 89

4.3.1 Structure-of-Scales . 89
4.3.2 Type Graph . 91
4.3.3 Instanced Graph . 93

4.4 Multiscale Graph Rewriting 93
4.4.1 Scale-specific L-system-style Connection 95
4.4.2 Multiscale Connection 100

4.4.2.1 Partial Multiscale Embedding 102
4.4.2.2 Total Multiscale Embedding 106
4.4.2.3 On Parallelism in Multiscale Embedding . . . 111

4.5 XL Multiscale Syntax & Features 115
4.5.1 Syntax Extensions . 115
4.5.2 The Observer Programming Pattern 120

4.6 Technical Documentation . 127
4.6.1 Use Cases . 127
4.6.2 Compilation . 129
4.6.3 Run . 130
4.6.4 Visualization and the Observer Pattern 132

II Level-of-Detail (LOD) Visualization 137

5 Multiscale & LOD Visualization 138
5.1 Incremental LOD for Branching Structures 138

5.1.1 Previous Work . 139
5.1.2 Polyline Incremental LOD and Ramification LOD . . . 141

5.1.2.1 Polyline Incremental LOD 142
5.1.3 Ramification LOD . 144

5.2 The Multiscale Graph and Grammar 144

iii

CONTENTS

5.2.1 Local - The Multiscale Branching Structure 145
5.2.2 Global - The Multiscale Scene Graph 148
5.2.3 Update and Extraction for Rendering 149

5.3 Implementation and Results 150
5.4 Summary and Future Work 150

III Applications & Examples 159

6 Examples and Demonstrative Models 160
6.1 Fission Yeast . 160

6.1.1 Single Cell Model . 160
6.1.2 Multiple Cell Model 163
6.1.3 Rule-based Species and Complexes 165

6.2 Beech Structural Growth . 166
6.3 Specifying and Generating a Multiscale Plant Structure 169
6.4 Crown Generation . 173
6.5 Fagus sylvatica Stand under Ozone Exposure 178
6.6 Stand Dynamics and Morphological Developments of Conifers 189

6.6.1 Multiscale Graph Structure and Model Initialization . . 189
6.6.2 Germination . 191
6.6.3 Growth . 192

6.6.3.1 Stand Competition Index 192
6.6.3.2 Individual Tree Growth 193
6.6.3.3 Structural and Architectural Development . . 195

6.6.4 Mortality . 198

7 Conclusion 200
7.1 Answers to Research Questions 200
7.2 Concluding Remarks . 203

8 Appendix: Interfaces with Other Software 204
8.1 The MTG File Interface . 204
8.2 The Xplo and ArchiTree Interface 207

iv

List of Tables

6.1 Multiscale framework for crown generation 175
6.2 Simulation steps for beech stands under ozone exposure 184
6.3 Parameter values for multiscale stand dynamics 199

v

List of Figures

2.1 Tree diagram of T0L-system derivations 21
2.2 Turtle interpretation of bracketed D0L-system derivations . . . 24
2.3 Turtle interpretation of context-sensitive 1L-system modelling

acropetal signal propagation 26
2.4 Sierpiński ”arrowhead” based on turtle interpretation of pseudo

L-system . 27
2.5 Turtle interpretation of parametric 0L-system 28

3.1 Graph homomorphism . 34
3.2 Not a graph homomorphism 34
3.3 Monomorphism in the category Graph 37
3.4 Epimorphism in the category Graph 38
3.5 Isomorphism in the category Graph 39
3.6 Object and arrow functions of a functor 40
3.7 A category and its corresponding category-of-paths 41
3.8 Diagram-in-Category: J -diagram-in-K 42
3.9 Categories forming bases of cones and cocones 44
3.10 Cone . 45
3.11 Cocone . 45
3.12 Limit . 47
3.13 Colimit . 48
3.14 Categorical product with apex K2 49
3.15 Categorical product with detailed graph homomorphisms . . . 50
3.16 Categorical coproduct with apex K2 51
3.17 Categorical coproduct with detailed graph homomorphisms . . 52
3.18 Coequalizer . 53
3.19 Categorical pushout with detailed graph homomorphisms . . . 55
3.20 Graph rewrite . 57
3.21 DPO graph rewrite . 59

vi

LIST OF FIGURES

3.22 DPO identification condition failure 60
3.23 DPO dangling condition failure 61
3.24 SPO production and match 62
3.25 SPO step 1 - gluing . 63
3.26 SPO step 2 - deletion . 64
3.27 SPO direct derivation overview 64
3.28 edNCE graphs and production 65
3.29 Derivation of edNCE production 66
3.30 Parallel SPO derivation: step 2 69
3.31 Derivation of production with operators 71
3.32 Graph translation of well-nested word 72
3.33 L-system-style production . 73
3.34 SPO derivation with operators 79

4.1 Multiscale tree graph (MTG) [67] 82
4.2 Multiscale scale integration steps 85
4.3 L-system style embedding with multiple scales 87
4.4 SPO embedding with multiple scales 88
4.5 Refinement orderings . 89
4.6 Structure-of-Scales and Type Graph 90
4.7 Instanced Graph . 94
4.8 Scale specific L-system-style connection setup 97
4.9 Scale specific L-system-style production 97
4.10 Scale specific L-system-style derived graph 99
4.11 Operators for multi-scale embedding 102
4.12 Partial multi-scale embedding setup 103
4.13 Partial multi-scale embedding production 104
4.14 Partial multi-scale embedding derived graph 105
4.15 Total multi-scale embedding setup 108
4.16 Total multi-scale embedding production 109
4.17 Total multi-scale embedding derived graph 111
4.18 Prevention of embedding edges between adjacent matches . . . 113
4.19 XL multi-scale syntax without branching 118
4.20 Query or production graph with cycles 120
4.21 Syntax for rule establishing refinement embedding edges - 1 . . 121
4.22 Syntax for rule establishing refinement embedding edges - 2 . . 121
4.23 Syntax for rule establishing refinement embedding edges - 3 . . 122
4.24 Half-edge matching . 123

vii

LIST OF FIGURES

4.25 Use case diagram for user of GroIMP 128
4.26 Class diagram for classes used in compilation 134
4.27 Class diagram for classes modified for running multiscale XL

code . 135
4.28 Class diagram for multiscale visualization 136

5.1 Polyline and simplification line with enclosed area 142
5.2 Polyline and simplification line with incremental term 143
5.3 Ramification of branching line 145
5.4 Graph and geometric interpretation 146
5.5 Illustration of type graph . 147
5.6 Applying the multiscale rule for 2 time steps 152
5.7 Multiscale graph representation of complete branching structure153
5.8 Illustrations of scene graphs 154
5.9 Pseudo-code for the first type of graph traversal 155
5.10 Pseudo-code for the second type of graph traversal 155
5.11 Pseudo-code for selective traversal of branching structure . . . 156
5.12 Results of simulation tree growth for 40 time steps 157
5.13 Multiple resolutions of branching structure 158

6.1 Fission yeast cell division simulation structure of scales 161
6.2 Fission yeast cell division simulation model graph 162
6.3 Screenshot of cell division process visualization 165
6.4 Species and complexes . 166
6.5 Beech model structure of scales and type graph 167
6.6 Beech structural growth . 168
6.7 Beech structural growth . 168
6.8 Illustration of graph structures for multiscale plant structure . 169
6.9 Initial instanced graph modified by an XL rule 171
6.10 Illustration of graph structures for modelling crown layers . . . 174
6.11 Illustration of multiscale crown model development 176
6.12 Modification of instanced graph at organ scale 177
6.13 Multiscale vs. single scale crown generation 179
6.14 Bud count comparison between multiscale and single-scale mod-

els . 180
6.15 Simulation time comparison between multiscale and single-

scale models . 180

viii

LIST OF FIGURES

6.16 Illustration of graph structures for beech stands under ozone
exposure . 182

6.17 Illustration of initial instanced graph for beech stands 183
6.18 Application of multiscale framework for beech stands under

ozone exposure . 185
6.19 Example of an execution of a multiscale rule in XL 188
6.20 Screenshot of the three beech stands after sixteen simulation

years . 189
6.21 Graph construct for model simulating stand dynamics 190
6.22 Illustration of tree variables 197
6.23 Illustration of multiscale tree stand 199

8.1 MTG interface class diagram 206
8.2 Visualization of imported MTG in GroIMP 208
8.3 ArchiTree and multiscale instanced graph 209
8.4 Class diagram of GroIMP module in Xplo 211
8.5 Screenshot of Xplo displaying GroIMP generated trees 212

ix

Listings

4.1 XL Module Declaration . 115
4.2 XL Fundamental Methods . 116
4.3 XL Host and Type Graph Construction 116
4.4 XL Multiscale Rule . 119
4.5 Structure of scales construction 124
4.6 Establishment of observer pattern in XL 125
6.1 XL Type Graph Construction 169
6.2 XL Type Graph Construction for beech stand 183
6.3 Specifying enzyme concentrations using ozone conditions in

tree stand . 186
6.4 Reducing photosynthetic production of leaves based on crown

layer capacity . 186
6.5 Beech growth with multiple scales 187
6.6 Creation of grid floor for forest stand 190
6.7 Creation of type graph for forest stand 190
6.8 Germination rule . 191
6.9 Grid to tree refinement . 191
6.10 Sum of dbh for competition index computation 192
6.11 Setting competition index for trees 193
6.12 Multiscale tree development based on competition indices . . . 193
6.13 Tree trunk development . 195
6.14 First order branch development 195
6.15 Mechanical bending . 196
6.16 Mortality . 198

x

Chapter 1

Introduction & Motivation

The effect of scale depends not on a thing itself, but in relation to its whole
environment or milieu; it is in conformity with the thing’s ’place in Nature’,
its field of action and reaction in the Universe. - D’Arcy Thompson, 1952.

1.1 Programming Languages

The idea of a language involves people, communication, and any system of
symbols or signs [114]. When speaking of programming languages, however,
communication generally refers to that from man to machine.

1.1.1 From Mechanical Calculators to Electronic Com-
puters

One of the earliest machines for computation, or more specifically, calcula-
tion, was invented by Blaise Pascal in 1642 [24]. The machine, known as a
Pascaline, was a mechanical device that could add and subtract two numbers.
Input to Pascal’s calculator was given by rotating wheels, each representing
a digit zero through nine. Around 1672, Gottfried Wilhelm Leibniz invented
the Stepped Reckoner, the first calculator that could perform all four arith-
metic operations (interestingly, one of the machines was discovered in an attic
at the end of the 19th century in the University of Göttingen) [110]. Input to
the Stepped Reckoner was given by rotating dials, in a manner similar to the
Pascaline, and a crank to perform the calculations. Historically, tables such
as those for logarithmic and trigonometric functions were tabulated by peo-

1

CHAPTER 1. INTRODUCTION & MOTIVATION

ple, often resulting in errors. In 1821, Charles Babbage attempted to resolve
the problem by designing and proposing a mechanical calculator, the Differ-
ence Engine, which could tabulate polynomial functions [132]. While doing
so, he realized that a design for a general purpose computer was possible
and consequently proposed the Analytical Engine in 1834. The Analytical
Engine had an arithmetic logic unit, control flow, and integrated memory.
Hence, input of programs in addition to data was necessary. Babbage uti-
lized the idea of punch cards, first demonstrated by Joseph Marie Jacquard
in 1801 to direct mechanical looms [78], for providing input to the Analytical
Engine. Three different types of punch cards were used: one for arithmeti-
cal operations [18, 19], one for numerical constants, and one for load and
store operations, transferring numbers from the store to the arithmetic unit
or back. The programming language employed in the design was similar to
modern assembly language. A description of the Engine was written by Luigi
Menabrea in 1842 [118]. In 1843, while translating Menabrea’s description to
English, Ada Lovelace appended a way to calculate Bernoulli numbers using
the engine and punch cards, becoming the first computer programmer. On
a similar note, in 1890, Herman Hollerith invented the tabulating machine
that read punch cards for processing the 1890 United States census [80].

Meanwhile, strides were taken towards the expression of logic with math-
ematics. Leibniz wrote about his Calculus Ratiocinator, a theoretical uni-
versal logical calculation framework. Some understand it as the beginning
of symbolic logic [99]. In 1847, George Boole published a pamphlet titled
”Mathematical Analysis of Logic” [12]. The article developed ideas on a log-
ical method, and he argued that logic should be a branch of mathematics
instead of a part of philosophy. Boole showed how Aristotle’s syllogistic logic
could be expressed as algebraic equations and published further refinements
to his ideas later in his book, ”An Investigation of the Laws of Thought”
[13]. These concepts have come to be known collectively as Boolean algebra.
Some perceive Boole’s work as the origin of modern logic [54]. Boole’s work
was not of particular interest to many until Claude Shannon employed it to
simplify the design of circuits and telephone routing switches [159]. Shan-
non’s master’s thesis became the foundation for digital circuit design, laying
grounds for the development of modern electronic computers.

2

CHAPTER 1. INTRODUCTION & MOTIVATION

1.1.2 From Logic to Algorithms

Another significant event in the history of programming languages occurred
in 1879, when Gottlob Frege published his ”Begriffsschrift” [57]. In this pub-
lication, Frege showed a formal system together with propositions, axioms,
universal and existential quantification, and formalism of proof [132]. This
formal system became the basis of modern predicate logic. Frege’s motiva-
tion for this work resembled Leibniz’s motivation towards a universal logical
calculation framework and universal conceptual language. He intended to
show that mathematics was reducible to logic and attempted to derive all
the laws of arithmetic from axioms he asserted as logical [58]. However, in
1903, Bertrand Russell proved one of the axioms inconsistent (the inconsis-
tency is known as Russell’s paradox)[152]. Several alternatives were proposed
to resolve the inconsistency but the details are omitted here.

Russell’s paradox was met by David Hilbert’s programme in the early
twentieth century. His programme was concerned with the formalization of
mathematics, i.e. the axiomatization of mathematics, and proof that the
axiomatization was consistent. In 1900, he posed a set of twenty-three key
problems that needed to be solved [121]. The problems were not just mathe-
matical problems but problems about the formalization of mathematics itself.
Taken together, the problems can be summarized in three questions:

• Is mathematics complete? That is, can every mathematical statement
be proved or disproved from a given set of axioms?

• Is mathematics consistent? That is, can only true statements be proved?

• Is every statement in mathematics decidable? That is, is there an algo-
rithmically computable function that can be applied to every statement
to determine if the statement is true or false in finite time?

The first two questions were addressed by Kurt Gödel the same year (and
at the same conference) they were presented by Hilbert. Gödel proved that
if mathematics is consistent, then mathematics is not complete. That last
question is known by its German name as the Entscheidungsproblem. It
was considered by Leibniz when he was building a mechanical calculator,
and wondered if a machine that could determine if particular mathemat-
ical statements are true or false was possible. In 1935, Alan Turing was
introduced to Gödel’s incompleteness theorem while studying under Max
Newman. When he understood Gödel’s results, Turing was able to see the

3

CHAPTER 1. INTRODUCTION & MOTIVATION

answer to the Entscheidungsproblem as ”no” [121]. He began to define the
notion of an algorithm with a similar intuition as Leibniz more than two cen-
turies earlier. Turing formulated his definition by thinking about a powerful
calculating machine that could not only perform arithmetic but also could
manipulate symbols in order to prove mathematical statements. The mental
design of such a machine is now known as a Turing machine. In 1936, Turing,
and independently, Alonzo Church, published papers [170, 29] showing that
a solution to the Entscheidungsproblem is impossible. Their assertions were
based on the assumption that a function is algorithmically computable if and
only if it is computable by a Turing machine, or equivalently, expressible by
lambda calculus. Although a formal definition of an algorithm remains a
challenging problem, Turing machines were put forth as the definition [122].
Today, programmers are essentially writing algorithms using programming
languages.

1.1.3 Generations of Programming Languages

Before describing the evolution of programming languages, it is necessary
to mention the fundamental design of electronic programmable computers.
Modern computers are stored program computers, i.e., machine instructions
are stored in memory. This design arose in 1945 when John von Neumann,
Eckhert, and Mauchly worked on the design of EDVAC (Electronic Discrete
Variable Automatic Computer) [132], one of the earliest computers. The
design, also known as the von Neumann architecture, allowed machines to
swap instructions without altering their physical or wiring setup. Konrad
Zuse invented such a design independently for his Z3 computer in 1941. The
programs for the Z3 were stored on an external tape and no rewirings were
necessary to change programs.

First generation programming languages (1GLs) are machine level pro-
gramming languages that consist of 1s and 0s. In the case of the Z3, or Bab-
bage’s Differential Engine for example, the punched tape consists of punch
holes that are physical representations of 1s or 0s. The advantage of such a
language is efficiency since no intermediate compilation or assembly is neces-
sary for the machine to execute the given instructions. However, the task of
writing in 1GLs, essentially entering streams of binary numbers, is a tedious
one, not to mention its error prone nature. In addition, the machine lan-
guages for different computers might be different, introducing the additional
task of translating programs for execution on another computer.

4

CHAPTER 1. INTRODUCTION & MOTIVATION

Second generation languages (2GLs) are low-level assembly languages
that are machine specific. They are easier to be read and written by a
person, assuaging the problem of tedious writing and proneness to error. In
particular, learning and error correction are easier with 2GLs. Assembly code
has to be converted to binary machine code (1GLs) for execution.

Third generation languages (3GLs) are high-level programming languages
that are machine independent. They include features such as named vari-
ables, assignment operators, data structures, etc. that further assuage the
difficulty of writing programs. Examples of early 3GLs are COBOL [149]
and Fortran [25]. Some examples of later 3GLs are C++ [166] and Java
[156]. Early 3GLs are procedure-oriented languages that require program-
mers to specify a program in the sequence in which it is executed. This form
of programming is also known as imperative programming. Later 3GLs are
object-oriented such that programming tasks are arranged into objects that
can be used as building blocks for larger programs.

Fourth generation languages (4GLs) differ significantly from 3GLs in that
they specify what needs to be done instead of how it should be done [111]. An
example is the IBM RPG (report program generator) programming language
[37] that generates reports using specifications of the data and data formats
involved. In this manner, they are intended to reduce, although practically
not always, programming time and effort.

The fifth generation languages (5GLs) attempt to further reduce program-
ming effort. They require programmers to specify only the problem, along
with conditions or constraints that need to be satisfied. They are usually
accompanied by complementary intelligent mechanisms that solve the prob-
lem automatically. An example of a fifth generation programming language
is Prolog [32].

1.2 The XL Programming Language

The eXtended L-systems (XL) programming language [91] is an extension
of the Java programming language. It can be seen as a 4GL based on its
graph or rule-based features, i.e. how the rules are applied is transparent to
the programmer. As its name suggests, an introduction to this programming
language is incomplete without mentioning L-systems, a domain for which
a chapter is dedicated to in this thesis. Here, beginning from the study
of morphogenesis, a summarized account of historical events leading to the

5

CHAPTER 1. INTRODUCTION & MOTIVATION

development of the XL language is given.
Morphogenesis is the development of forms and patterns in living organ-

isms. The term was coined by Johann Wolfgang von Goethe in the nineteenth
century in a biological context [8]. Historically, the study of morphogenesis
has been approached in two directions [138], structure-oriented, or space-
oriented. The former focuses on the development of biological entities while
the latter focuses on the space embedding the entities. More specifically, the
structure-oriented approach describes form as a derivative of growth [169]
while the space-oriented approach describes form using the locale of sub-
stances in the whole space [171]. In both approaches, it was discovered that
complex patterns and morphology can result from relatively simple rules.
For example, a cellular automaton [173] has rules for the state transition of
cells (conforming to the space-oriented approach) while an L-system [101] has
rules for rewriting strings (conforming to the structure-oriented approach).

The dawn of rule-based concepts triggered the exploration of their usage
in the modelling of various biological entities such as cells, organs, and indi-
vidual plants (e.g. [81, 59, 79, 164]). In 1979, Szilard and Quinton integrated
concepts of geometry with plant structures generated by L-systems [167], as-
sociating the field of computer graphics with the study of morphogenesis.
Many ideas then emerged in computer graphics for modelling and visualizing
plants at different levels of organization (e.g [7, 162, 39, 143]).

In the early 1990s, functional-structural plant modelling emerged from the
need to merge spatially-explicit representations of plants with process-based
physiological models in order to take interactions between plant structure
and functioning into account [95]. This domain was new and can be consid-
ered multi-disciplinary, requiring expertise in plant physiology, morphology,
and for visualization, computer graphics. Early functional-structural plant
models (FSPMs) focused on one aspect of physiology in relation to physical
structure. For example, they considered light interception ([168, 87, 66]),
assimilate allocation ([56, 17]), or xylem sapflow [60]. In most early FSPMs,
causality was considered only in a uni-directional manner, from structure
to functionality. In the late 1990s, FSPMs accounting for multiple aspects
of plant physiology emerged ([134, 9, 178]) and some models accounting for
bi-directional causality between structure and function appeared ([148, 76]).

While increasingly complex and accurate FSPMs continue to be devel-
oped [3], L-systems remain as the prevailing rule-based formalism in struc-
tural plant modelling [72]. Variants or extensions of L-systems have emerged
to cope with modelling requirements - e.g., stochastic L-systems [51], context-

6

CHAPTER 1. INTRODUCTION & MOTIVATION

sensitive L-systems [153], table L-systems [86], pseudo L-systems [137], para-
metric L-systems [71], differential L-systems [140], growth grammars [94],
environmentally-sensitive L-systems [139], and open L-systems [123].

To address some missing but desirable features of L-systems, relational
growth grammars (RGG) [92] were introduced by Kniemeyer et al. Some of
these features include:

• Representation of complex topologies other than trees and strings.

• An integrated representation for geometry and structures produced by
rules.

• Flexibility for additional relations in addition to the conventional branch-
ing and successor relations.

• Structure-aware navigation for computations that require structural
information.

Their solution was to use graphs as representation. Graphs are capable of
representing complex topologies, addressing the first desired feature. Graphs
can also be interpreted as scene graphs [55] that contain 3-dimensional ge-
ometrical information, striking off the second desired feature. Last but not
least, edges in graphs can be labelled differently for additional relations and
they allow structural navigation directly, as opposed to indirect representa-
tion of branching relations using bracket symbols in string-based L-systems.
The concrete implementation of RGG, empowered with most if not all the
features of the Java programming language, resulted in the XL programming
language [91], the basis of extensions made in this thesis.

1.3 Computer Graphical Modelling & Level-

of-Detail (LOD) Visualization

In the field of 3-dimensional (3D) computer graphics, a vast quantity of 3D
data is used to render objects in a virtual scene to 2-dimensional (2D) pix-
els. In 1976, James Clark published a paper titled ”Hierarchical Geometric
Models for Visible Surface Algorithms” [30]. The paper addressed the redun-
dancy of using many polygons to render objects covering relatively few pixels.
Clark introduced several fundamental level-of-detail (LOD) techniques to re-
duce the redundancy, e.g. a hierarchical scene graph structure, view frustum

7

CHAPTER 1. INTRODUCTION & MOTIVATION

culling, parallel processing of scene graphs, perceptual metrics, etc. Today,
the acronym LOD is used in several contexts, either referring to the notion
of computing multiple resolutions of geometrical models, or to a particular
resolution of a geometrical model. In plural, the acronym is appended with
’s’ to becomes LODs, referring to a set of resolutions of a geometrical model.

When LOD was relatively new to the graphics community, LODs were
created by hand. In the 1990s, many papers were published about automat-
ing the creation while retaining visual appearance in render results. Some
of these algorithms remain useful today, e.g. vertex decimation [158] and
gridded vertex clustering [147]. Subsequently, other algorithms and frame-
works for LOD surfaced. Some key developments include optimization-based
predictive schedulers for selecting LODs [61], progressive meshes for continu-
ous LOD [82], vertex hierarchies for view-dependent LOD [83], quadric error
metrics for measuring simplification error [65], etc.. A comprehensive collec-
tion of LOD techniques can be found in the book ”Level of Detail for 3D
Graphics” by Luebke et al. [107]. In part II of this thesis, LOD in the con-
text of vegetation visualization, and its relationship with relational growth
grammars is addressed.

1.4 Motivations

A multiscale representation of objects in a virtual scene is necessary for the
application of LOD techniques in order to achieve accelerated rendering.
Such multiscale data structures are also needed in the case of plants, where
different spatial and functional levels (e.g. genome, cell, tissue, organ, branch,
individual plant, stand) are distinguished. A mathematical theory for a
graph-based representation of such multiscale structures has been proposed
by Godin and Caraglio [67]; and a corresponding relation of ”refinement” or
”decomposition” was foreseen as a basic edge type in XL for the purpose of
connecting nodes belonging to different resolutions or scales. However, no
appropriate algorithms and functions for its use in the graph-grammar context
of XL were designed and implemented, nor were any application examples
tested and evaluated.

Data representation alone is not the only reason to adopt a multiscale ap-
proach. A second motivation arises from the dynamic aspects of modelling.
Considering the hierarchy of physical models (ranging from continuum mod-
els to quantum mechanics), the interest of a modeller usually resides in a pre-

8

CHAPTER 1. INTRODUCTION & MOTIVATION

dominant scale. If the scale of interest is macroscopic, the effects of inputs to
the microscopic model are usually modelled by some constitutive correlations
at the macro scale because representative models at the micro scale often
pose computational or analytical problems. Despite their success in many
applications, the extension of such correlation-based approaches to complex
scenarios has proven to be difficult, often requiring complicated mathemat-
ical functions [46]. Multiscale methods have been successfully applied to
overcome such difficulties [22, 175]. Eventually, several general frameworks
for multiscale modelling in mathematical physics such as the heterogeneous
multiscale method (HMM) by E and Engquist [47] have been developed.

1.4.1 Research Questions

In the context of the above-mentioned requirements for accelerated rendering
and multi-level spatial and functional representations of plants, the following
research questions are addressed in this thesis:

• Multiscale Data Structure Design

– How can 3-dimensional structures be described consistently at sev-
eral spatial scales at once, based on the graph representation used
in XL?

– How can multi-scaled graphs be transformed by rules?

– What are the various aspects of consistency in multi-scaled graphs?
How can consistency checks on these aspects be performed effi-
ciently on multi-scaled graphs?

– How can transformation, query and rendering of multi-scaled graphs
be performed efficiently?

• Programming Language XL Extension

– How can the programming language XL be extended for multi-
scaled graphs?

– How can classical, and, possibly new Level-of-Detail methods be
incorporated in the multi-scaled graph approach of XL?

• Tests and Benchmarks

9

CHAPTER 1. INTRODUCTION & MOTIVATION

– What are the various test data and scenarios that can consider-
ably challenge the performance, rendering quality and integrity of
multi-scaled structures?

– Are there any unique or isolated scenarios that result in unsatis-
factory performance, rendering quality or integrity of multi-scaled
structures?

– What are the differences in performance and rendering quality
of multi-scaled structures as compared to existing or alternative
implementations?

• Application and Usability

– What workflows and interactive Graphical User Interface (GUI)
elements are suitable for users to control the transformation, query
and rendering of multi-scaled structures?

1.4.2 Research Objectives

Corresponding to the research questions, the following research objectives
are achieved and specified in this thesis:

• Multi-scaled Data Structure Design

– Establish abstract and/or theoretical concepts for representing 3-
dimensional structures at several levels of spatial resolution, con-
sistent with the graph-based approach of XL.

– Design data structures with reference to the established concepts
for multi-scaled graphs, taking into account the following:

∗ Algorithms for performance and accuracy optimized queries.

∗ Algorithms for verifying the consistency and integrity of the
data structures across various scales.

∗ Algorithms for performance and accuracy optimized transfor-
mations, particularly rule-based transformations.

∗ Algorithms for parallel traversal to reap performance opti-
mized rendering.

10

CHAPTER 1. INTRODUCTION & MOTIVATION

– Design an export and import data format to represent the multi-
scaled data structures. The data format shall be text-based and
preferably XML-based [112]. The data format shall adhere as
much as possible to any existing standards.

• Programming Language XL Extension

– Extension of the programming language XL by appropriate opera-
tors, functions and supporting classes for multi-scaled data struc-
tures.

• Tests and Benchmarks

– Perform benchmark tests for the new software components using
complex scenes with vegetation models.

– Document benchmarks and tests performed.

• Application and Usability

– Implement established data structures, algorithms and interfaces
as part of the opensource software GroIMP.

– Improve GroIMP Graphical User Interface (GUI) elements for con-
trolling the display, transformation and querying of multi-scaled
data structures.

– Document all software implementations and modifications.

• Evaluation and Conclusion

– Evaluation of tests and benchmarks performed.

– Draw conclusion for further improvements and future projects.

11

Part I

The Rule-Based Paradigm &
XL

12

Chapter 2

Linear Rewriting Systems

The difficulties are such that one cannot hope to have any very embracing
theory of such processes, beyond the statement of equations. It might be
possible, however, to treat a few particular cases in detail with the aid of a
digital computer. This method has the advantage that is is not so necessary
to make simplifying assumptions as it is when doing a more theoretical type
of analysis. - Alan Turing, 1952.

2.1 Introduction to Formal Languages

L-systems (short-form for Lindenmayer systems) were introduced by Aristid
Lindenmayer in 1968 to model the development of multicellular organisms
[101]. In the introductory chapter, they are mentioned as a type of system
capable of generating complex patterns and morphologies using rewriting
rules that are concise in comparison. This chapter provides some scattered
glimpses of L-systems and their variants, leading towards the subject of this
thesis, the XL (eXtended L-systems) programming language.

What are concise rewriting rules? We begin with an answer to this ques-
tion by considering first the domain of formal languages. In a formal lan-
guage, one is generally concerned with a set of finite words made up of
symbols from an alphabet. The set can be specified, at least in principle, by
listing its elements if it is finite. An infinite set, on the other hand, requires a
finitary device for specification. Such finitary devices can be called rewriting
rules, rewriting systems, grammars, automata, etc. [114]. An L-system is
one such device.

13

CHAPTER 2. LINEAR REWRITING SYSTEMS

2.1.1 Alphabets, Words & Languages

In this section, we describe fundamental terminology used for the description
of various rewriting systems.

An alphabet Λ is a finite non-empty set with elements called symbols. A
word over Λ is a finite sequence consisting of zero or more symbols of Λ. The
word with zero symbols is called the empty word, denoted by λ. For example,
the binary alphabet Λ = {0, 1} can have words 01, λ, 001, 1100 over it. The
same symbol can appear multiple times in a word.

Given two words, a and b over Λ, their concatenation, ab, is obtained by
writing them one after another. The set of all words over Λ and the set of all
non-empty words over Λ are written as Λ∗ and Λ+ respectively. Λ∗ and Λ+

are also the free monoid and semigroup generated by Λ in algebraic terms.
A word v is a subword of a word w if there are words u1 and u2 such that

w = u1vu2. If u1 is λ, v is a prefix of w. It follows that if u2 is λ, v is a suffix
of w. We call a word primitive if it cannot be decatenated into two or more
identical words, i.e. w = ui does not hold for any word u and integer i ≥ 2.

A language L over Λ is a subset, finite or infinite, of Λ∗. For example,
L1 = {λ, 1, 10, 0001} and L2 = {0p|p is an even integer} are languages over
the binary alphabet Λ = {0, 1}. A finite language such as L1 can be, at
least in principle, be defined by listing all its words. This is not possible for
infinite languages such as L2. By considering languages as sets, Boolean op-
erations like union, intersection, and complementation can be applied. The
concatenation operation for words is extended for languages:

L1L2 = {w1w2|w1 ∈ L1 and w2 ∈ L2}, and

Ln = {w1w2...wn|wi ∈ L, 1 ≤ i ≤ n}.

As such, the Kleene star and Kleene plus of a language L, L∗ and L+, are
defined as the union of all non-negative powers of L and all positive powers
of L respectively.

Boolean operations, concatenation, and Kleene star are the regular oper-
ations for languages. Therefore, when speaking of a regular language, one is
referring to a language LR over Λ, where LR can be obtained by applying the
regular operations finite times on the empty language ∅ and Λ. A star-free
language L over Λ is one that can be obtained by applying Boolean opera-
tions and concatenation finite times on ∅ and Λ without applying the Kleene

14

CHAPTER 2. LINEAR REWRITING SYSTEMS

star operation.

2.1.2 The Chomsky Grammars and Hierarchy

This section gives an overview of grammars arising in classical language the-
ory. Most of them are modifications of the classical notion of a rewriting
system, introduced by Axel Thue at the beginning of the 20th century [113].

A rewriting system is a (finite) set of rules in the form u → v, where u
and v are words; and an occurrence of u is replaced by v each time the rule
is applied.

Although rewriting systems can transform words and languages, no for-
mal methods were available to use them defining languages. For this purpose,
Chomsky introduced mechanisms in the form of grammars [27, 28], eventually
being classified into the four classes of the Chomsky hierarchy of grammars
and languages:

• Recursively enumerable, phrase-structure, or type 0;

• Context-sensitive, or type 1;

• Context-free, or type 2;

• Regular, or type 3.

The significance of these four classes is related to major questions in mathe-
matics and logic. For example, type 0 grammars and langauges are, loosely
said, equivalent to computability (see Entscheidungsproblem in 1.1.2). For a
definition of Turing machines corresponding to Phrase-structure grammars,
see (Def. 1.2 in [113]). Type 3 grammars and languages correspond to strictly
finitary computing devices.

2.1.2.1 Phrase-structure Grammar (type 0)

A phrase-structure grammar is a quadruple G = (N, T, S, P), where N and
T are disjoint alphabets, S ∈ N , and P ⊆ V ∗G × V ∗G is a finite set of rules
for VG = N ∪ T . N is the set of non-terminal symbols, T is the set of
terminal symbols, and S is the axiom (the starting symbol). P is a set of
rules containing ordered pairs (u, v) written in the form u→ v, where u ∈ V ∗G
and v ∈ V ∗G.

15

CHAPTER 2. LINEAR REWRITING SYSTEMS

For x, y ∈ V ∗G, we say that x directly derives y with respect toG, x =⇒G y,
if and only if(iff) x = x1ux2, y = x1vx2, for some x1, x2 ∈ V ∗G and u→ v ∈ P .
The reflexive and transitive closure of the relation =⇒ is denoted by =⇒∗.
The language generated by G, L (G), is the set {x ∈ T ∗|S =⇒∗ x}.

Example 2.1.1 (Phrase-structure grammar). Given type 0 grammar
G = {{a}, {b}, a, {a → a2, a5 → b5}}, the following words result from the
application of the rules at each rewriting step:

Step 0(axiom): a
Step 1: aa = a2

Step 2: a2a = a3

Step 3: a2a2 = a4

Step 4: a2aa2 = a5

Step 5: a6 or b5

.

.

.

Clearly, L (G) = {b5n|n ≥ 1}.

2.1.2.2 Context-sensitive Grammar (type 1)

A context-sensitive grammar is a type 0 grammar G = (N, T, S, P) such that
each rule in P is in the form αXβ → αuβ, where X ∈ N , α, β, u ∈ (N ∪ T)∗,
and u 6= λ. In addition, P may contain the rule S → λ and in this case, S
does not occur on the right-hand side of any rule in P .

2.1.2.3 Context-free Grammar (type 2)

A context-free grammar is a type 0 grammar G = (N, T, S, P) such that each
rule in P is in the form u→ v, where u ∈ N and v ∈ (N ∪ T)∗.

2.1.2.4 Regular Grammar (type 3)

A regular grammar is a type 0 grammar G = (N, T, S, P) such that each rule
in P is in the form u→ v, where u ∈ N and v ∈ T ∪ TN ∪ {λ}.

16

CHAPTER 2. LINEAR REWRITING SYSTEMS

2.2 L-systems

We now move on to the topic of L-systems. L-systems are parallel rewriting
systems. They were originally introduced to model multicellular organisms.
In the period from its introduction in 1968 to 1975, fundamental families
of L-systems emerged in the L-hierarchy [86]. Parallelism is the significant
characteristic of L-systems that distinguishes them from sequential grammars
such as the Chomsky grammars (ref previous section).

Example 2.2.1 (Sequential vs parallel rewriting). Given the rule a→
a2 and the axiom aaa, a sequential rewriting system produces the following
words at each rewriting step:

Step 0(axiom): aaa
Step 1: a2aa
Step 2: a2a2a
Step 3: a2a2a2

.

.
Step n: an+3

That is to say, one can obtain all words ai, i ≥ 3 by sequential derivations of
this rule. If the rewriting system is parallel, the following words are produced
at each rewriting step:

Step 0(axiom): aaa
Step 1: a2a2a2

Step 2: a2a2a2a2a2a2

Step 3: a4a4a4a4a4a4

.

.
Step n: a3·2n

Only the words in the set {a3·2n|i ≥ 0} can be obtained.

Having said that, there is an apparent correspondence of this unique char-
acteristic with the fact that life, concerning the structure of all living things,
is parallel. Consider, for example, the workings of distributed cells in an

17

CHAPTER 2. LINEAR REWRITING SYSTEMS

animal. Although the variants of L-systems have not (yet) captured all in-
tricacies of living phenomena, they have been successfully used to model and
treat specific cases. The next sections provide the reader with an overview of
some key variants of L-systems following the notations used in Section 2.1.

2.2.1 0L-systems & D0L-systems

0L-systems and D(eterministic)0L-systems are considered the most basic
variants of L-systems. Before defining and describing these two variants,
the key notion of a finite substitution over an alphabet Λ is given.

Definition 2.2.1 (Finite substitution). A finite substitution σ is a map-
ping of Λ∗ into the set of all finite non-empty languages which is compatible
with concatenation. In other words, σ (a) is a finite non-empty language for
each a ∈ Λ; and σ (w1w2) = σ (w1)σ (w2) ,∀w1, w2 ∈ Λ∗.

If ∀a ∈ Λ : λ 6∈ σ(a), we say that σ is non-erasing or λ-free. If ∀a ∈ Λ :
|σ (a) | = 1, σ is a homomorphism. We can hence think of a finite substitution
as a set of parallel rewriting rules in the form u → v that replace instances
of symbol u ∈ Λ in the string with instances of word v ∈ Λ∗.

Definition 2.2.2 (0L-system). An 0L-system is a triple G = (Λ, σ, S)
where Λ is an alphabet, σ is a finite substitution over Λ, and S ∈ Λ∗ is the
axiom. The language generated by G is L (G) = {S ∪ σ (S) ∪ σ2 (S) ∪ ...} =
∪i≥0σ

i (S).

If σ is non-erasing, the 0L-system is propagating, i.e. a P0L-system.
The ”0” in ”0L-system” means that the rewriting rules are applied without
(or with zero-sided) interactions between symbols being rewritten and their
neighbouring symbols. Using the formal language terminology introduced
earlier in section 2.1.2, this means that 0L-systems are context-free.

Example 2.2.2 (0L-system). At this point, we take the opportunity to in-
troduce the reader with the application of L-systems on modelling structural
plant developments. Consider a 0L-system G = ({bud, gu}, σ, bud) where σ
is a finite substitution consisting of rules:

gu→ gu,
bud→ gu bud,
bud→ gu gu bud.

18

CHAPTER 2. LINEAR REWRITING SYSTEMS

We can also specify G by listing the range of σ:

σ (gu) = {gu},
σ (bud) = {gu bud, gu gu bud}.

It follows that L (G) = {gui bud|i ≥ 0}. We can think of this 0L-system
as one that captures all possible development stages of a plant stem, each
rewriting step corresponding to an elongation made of up to two growth units
(gu represents a single growth unit) in one year; the non-homomorphic char-
acteristic, i.e. two rules with the same symbol on the left-hand side, accounts
for the possibility that a bud may produce one or two growth units in a year.

Definition 2.2.3 (D0L-system). A 0L-system is a D0L-system G = (Λ, σ, S)
iff σ is a homomorphism.

Example 2.2.3 (D0L-system). Consider a D0L-system G = ({bud, gu}, σ,
bud) where σ is a finite substitution consisting of rules:

gu→ gu,
bud→ gu bud,

This example is similar to Example 2.2.2, except that |σ (bud) | = 1. There
is exactly one rule for each a ∈ Λ. At each rewriting step, one new word is
obtained, i.e. G generates L (G) as a sequence S (G):

bud
gu bud
gu gu bud
gu gu gu bud
.
.

We can think of this D0L-system as one that captures the apical develop-
ment stages of a plant stem, each rewriting step corresponding to growth in
one year; the homomorphic characteristic, i.e. exactly one rule with the same
symbol on the left-hand side, accounts for the one and only scenario that a
bud produces one growth unit a year.

19

CHAPTER 2. LINEAR REWRITING SYSTEMS

2.2.2 E0L-systems

An extended 0L-system (E0L-system) [150] is a 0L-system, where the alpha-
bet Λ is divided into two disjoint sets, non-terminals and terminals (similar
to Chomsky grammars described in section 2.1.2).

The reader is encouraged to note the difference between E0L-systems
from the subject of this thesis, the ”eXtended L-systems (XL) programming
language”, although both include the term ”extended”. The XL program-
ming language is capable of implementing E0L-systems but its naming is
unrelated to the meaning of ”extended” in E0L-systems.

Definition 2.2.4 (E0L-system). An E0L-system [150] is formally defined
as a 0L-system G = (Λ, σ, S) where Λ = ΛN∪ΛT is an alphabet, ΛN∩ΛT = ∅,
ΛT is the set of terminal symbols, ΛN is the set of non-terminal symbols,
σ is a finite substitution over Λ, and S ∈ Λ∗ is the axiom. In addition,
L (G) = ∪i≥0σ

i (S) ∩ Λ∗T .

2.2.3 T0L-systems & DT0L-systems

In some cases, it may be necessary to group rewriting rules into sets so that
at each rewriting step, rules from the same set are applied. These groupings
are called ”tables” and hence Table 0L-systems (T0L-systems) refer to 0L-
systems with such groupings [77, 150].

Definition 2.2.5 (T0L-system). A T0L-system is a triple G = (Λ, P, S)
where P is a finite set of finite substitutions (each a table) such that, for each
σ ∈ P , (Λ, σ, S) is a 0L-system. The language L (G) consists of S and all
words in all languages σ1...σk(S), where k ≥ 1 and σi ∈ P .

If all finite substitutions in P are homomorphic, G is deterministic, i.e.
a DT0L-system. Contrary to D0L-systems however (see example 2.2.3), the
production of a DT0L-system is not a sequence since the order of using the
tables is not included in its definition.

Example 2.2.4 (T0L-system). Consider the T0L-system G = (Λ, {σs, σw}, ab),
where Λ = {bud, gu, annualMark}, σs consists of the rules:

bud→ gu bud,
gu→ gu,
annualMark → annualMark,

20

CHAPTER 2. LINEAR REWRITING SYSTEMS

and σw consists of the rules:

bud→ annualMark bud,
gu→ gu,
annualMark → annualMark.

σs and σw are two tables representing the development of a shoot in sum-
mer and winter respectively. In deciduous trees, visible markings of shoot
development in winter can be observed and these are represented by the sym-
bol annualMark in G. As a result, the ”summer-winter” derivations of G
can be visualized as a tree diagram from top to bottom:

Figure 2.1: Tree diagram of T0L-system derivations

The left descendents in the tree correspond to the application of σs and
the right descendents correspond to the application of σw. If the order of the
table usage is given, we will be able to trace the development of the shoot
spanning multiple seasons. Note that in a single summer season, σs can be
applied multiple times and in a single winter, σw is usually applied only once.

2.2.4 Bracketed L-systems

Lindenmayer introduced brackets for L-systems to represent trees using strings
[101]. The intention was to allow L-systems to be used as formal descriptions
of branching structures found in many plants [141]. We define a bracketed
D0L-system (BD0L-system) based on the definition in [142].

21

CHAPTER 2. LINEAR REWRITING SYSTEMS

Definition 2.2.6 (Bracketed D0L-system). Let Λ be a finite non-empty
alphabet, the brackets [and] be two symbols outside Λ called branch delim-
iters. We denote the extension of Λ with the branch delimiters by ΛE = Λ ∪
{[,]}. A bracketed D0L-system (BD0L-system) is a D0L-system G = (ΛE, σ,
[w0]), where the axiom [w0] is a well-nested word (for a definition of well-
nested, see [142]) over the alphabet ΛE, and each rule in σ ⊂ ΛE × Λ∗E has
one of the following forms:

• a→ α, where a ∈ Λ, α ∈ Λ∗E, and α is well-nested,

• [→ [, or

•]→].

With a graphical interpretation of strings, bracketed L-systems can be
visualized as figures resembling plants. One such interpretation is based
on the notion of a LOGO-style turtle, originally introduced by Szilard and
Quinton [167]. The basic idea of the turtle interpretation is that symbols
or words in a given string are perceived as commands for a virtual turtle.
With a set of orientation, movement, and drawing-related commands, one
can specify strings that draw in a virtual space using the virtual turtle. We
now briefly describe turtle interpretation in a 2-dimensional (2D) virtual
space, first without the bracket symbols.

A state of the turtle is a triplet (x, y, α) where (x, y) represents the tur-
tle’s position and α represents the direction in angles which the turtle is
headed towards. With a specified length d and an angle δ, the turtle can act
or respond to the following commands:

F0
Move forward a step of length d. The state of the turtle changes to
(x′,y′,α) where x′=x+ d·cosα and y′=y + d·sinα. The turtle draws
a straight line from the point (x, y) to the point (x′, y′).

M0
Performs the same actions as in the command F0, but does not
draw a line.

Rr
Turn right by angle δ. The state of the turtle changes to
(x,y,α + δ).

Rl Turn left by angle δ. The state of the turtle changes to (x,y,α− δ).
Given an unrecognized command, the turtle simply does not change its state
and does not act. The image consisting of lines drawn by the turtle based on
a string v of commands is called the turtle interpretation of v. Prusinkiewicz

22

CHAPTER 2. LINEAR REWRITING SYSTEMS

introduced the brackets used in bracketed L-systems as commands for a tur-
tle (see page 23 in [141]) as an extension to the original turtle interpretation:

[

Push the current state of the turtle on the stack. The informa-
tion saved on the stack contains the turtle’s position and orienta-
tion, as well as other attributes such as the color and width of
lines being drawn.

]
Pop a state from the stack and make it the current state of the
turtle. No line is drawn, although in general the position of the
turtle changes.

Example 2.2.5 (Bracketed D0L-system). A bracketed D0L-system G =
({F,Rr,Rl, [,]}, σ, F) is given where σ consists of the following rules (for
simplicity, we use F to represent F0):

F → F [Rr F] F [Rl F] F ,
Rr → Rr,
Rl→ Rl,
[→ [,
]→].

G generates L (G) as a sequence S (G):

F ,

F [Rr F] F [Rl F] F ,

F [Rr F] F [Rl F] F
[Rr F [Rr F] F [Rl F] F]
F [Rr F] F [Rl F] F
[Rl F [Rr F] F [Rl F] F]
F [Rr F] F [Rl F] F ,

...

The corresponding turtle interpretation, assuming length d = 1 and angle
δ ≈ 45◦, is shown in Figure 2.2.

23

CHAPTER 2. LINEAR REWRITING SYSTEMS

Figure 2.2: Turtle interpretation of bracketed D0L-system derivations

2.2.5 Context-sensitive L-systems

In Section 2.2.1, we saw that 0L-systems are context-free, i.e. rules are ap-
plied without regarding the context of the symbols being rewritten. In some
cases it may be necessary to model interactions between neighbouring objects
that are represented by neighbouring symbols in the string. Many extensions
to L-systems for this purpose have been studied ([153, 77]) in the past. Two
fundamental variants are 1L-systems and 2L-systems. 1L-systems are similar
to 0L-systems but they consist of rules in the form:

(∗ α ∗) x→ χ, or
x (∗ β ∗) → χ

where given the alphabet Λ, α, β, x ∈ Λ and χ ∈ Λ∗. The context on
one side, either left or right (enclosed in (∗ and ∗)), is regarded for the ap-
plication of the rule. α and β are in these cases the left and right context
of x and are not rewritten. 2L-systems on the other hand consist of rules in
the form:

(∗ α ∗) x (∗ β ∗) → χ,

taking in account both the left and right context of x for the application
of the rule. 0L-systems, 1L-systems, and 2L-systems all belong to a larger
class of context-sensitive L-systems known as (k,l)-systems (k and l being the

24

CHAPTER 2. LINEAR REWRITING SYSTEMS

length of the words constituting the left and right contexts respectively).

Example 2.2.6 (Context-sensitive L-system). Consider the bracketed
1L-system G = ({I, J, Rr,Rl, [,]} , σ, S). σ consists of the following rules
(the rules that map a symbol to itself are omitted here):

(∗ J ∗) I → J ,
(∗ J [Rr ∗) I → J ,
(∗ J [Rl ∗) I → J ,
(∗ J [Rr I] ∗) I → J ,
(∗ J [Rl I] ∗) I → J .

S is the word J [Rr I] I [Rl I] I [Rr I] I. G is a 1L-system that
models acropetal signal propagation, i.e. propagation of a signal from the
base of a plant to its leaves. J represents a shoot segment that has already
received the signal and I represents a shoot segment that has not received the
signal. Notice that the first symbol in S is J , indicating that the signal be-
gins from the base of the plant. The signal propagates to the top of the plant
represented by the last symbol in 6 rewriting steps:

J [Rr I] I [Rl I] I [Rr I] I (axiom),
J [Rr J] I [Rl I] I [Rr I] I,
J [Rr J] J [Rl I] I [Rr I] I,
J [Rr J] J [Rl J] I [Rr I] I,
J [Rr J] J [Rl J] J [Rr I] I,
J [Rr J] J [Rl J] J [Rr J] I.
J [Rr J] J [Rl J] J [Rr J] J .

By interpreting both I and J as the turtle command F0, the signal prop-
agation is visualized in Figure 2.3.

2.2.6 Stochastic L-systems

Deterministic L-systems produce languages that look artificially regular when
interpreted visually. To counter such regularity, variations of the turtle inter-
pretation, the L-system, or both by some randomization can be introduced
[141]. Stochastic L-systems enable randomizations by including a probability
distribution that maps the set of rules to a set of probabilities.

25

CHAPTER 2. LINEAR REWRITING SYSTEMS

Figure 2.3: Turtle interpretation of context-sensitive 1L-system modelling
acropetal signal propagation

Definition 2.2.7 (Stochastic 0L-system). A stochastic 0L-system is a
quadruplet G = (Λ, σ, S, π) where the alphabet Λ, the finite substitution σ,
and the axiom S are as defined for 0L-systems (see Section 2.2.1). Let r be a
rule a→ p specified in σ. π is a probability distribution function π : r 7→ (0, 1]
such that

∑
p∈σ(a) π (a→ p) = 1, for all a ∈ Λ.

In other words, the application of a rule a→ p is based on the probability
given by π (a→ p). For a specific definition of stochastic 0L-systems, the
reader is referred to [51].

Example 2.2.7 (Stochastic L-system). Consider a stochastic 0L-system
G = ({F,Rr,Rl, [,]}, σ, F, π). σ consists of the following rules (the rules that
map a symbol to itself are omitted here):

r1 : F → F [Rr F] F [Rl F] F ,
r2 : F → F [Rr F] F [Rl F] F [Rr F] F .

π consists of the mappings π (r1) = 0.75 and π (r2) = 0.25, and
∑

p∈σ(F)

π (F → p) = 1. At each rewriting step, r1 is three times more likely to be
applied than r2.

2.2.7 Pseudo L-systems

Pseudo L-systems allow substitutions from words instead of only single sym-
bols. [137].

26

CHAPTER 2. LINEAR REWRITING SYSTEMS

Example 2.2.8 (Pseudo L-system). Consider a pseudo L-system G =
({X, Y, F,Rr,Rl}, σ, Y F) where the word Y F is the axiom. σ consists of the
following rules (the rules that map a symbol to itself are omitted here):

X F → Y F Rr X F Rr Y F ,
Y F → X F Rl Y F Rl X F .

This pseudo L-system example (taken from [137]) generates the Sierpiński
”arrowhead” [108] (see Figure 2.4) by rewriting the words XF and Y F .

Figure 2.4: Sierpiński ”arrowhead” based on turtle interpretation of pseudo
L-system

2.2.8 Extending L-systems from Discrete to Continu-
ous

2.2.8.1 Parametric L-systems

The L-systems described so far are still restricted to discrete space and time
modelling. Consider for example the turtle command F that has been used
in the examples (e.g. Example 2.2.5). We are able to specify unique discrete
length values for the lines drawn by the turtle. To construct models that
resemble biological phenomena to a greater extent, having continuous, i.e.
parametric, attribute values for symbols in the string is essential. One can

27

CHAPTER 2. LINEAR REWRITING SYSTEMS

Figure 2.5: Turtle interpretation of parametric 0L-system

think of, for example, the size of cells in organisms. It is very unlikely that
two cells are of the same exact size in reality.

Parametric L-systems offer a simple solution to this requirement. They
consist of symbols that are appended with parameter values. For example,
a parameter ”length” can be introduced to the turtle command F so that
the turtle moves forward for the specified distance given by the value of the
parameter [94]. A parameterized symbol is called a module. It is easy to see
that this parametric extension can be introduced to other L-system variants.
A formal definition of parametric L-systems is given in [71].

Example 2.2.9 (Parametric 0L-system). Consider a parametric 0L-system
with the following rule (the rules that map a symbol to itself are omitted here):

F (l)→ F (l ∗ 0.5) [Rr F (l ∗ 0.5)] F (l ∗ 0.5) [Rl F (l ∗ 0.5)] F (l ∗ 0.5).

At each rewriting step, the parameter l for module F is halved. The cor-
responding turtle interpretation is shown in Figure 2.5.

2.2.8.2 Differential L-systems

Differential L-systems (dL-systems) were introduced by Prusinkiewicz et al.
in [140]. They offer the capability of relating parameters in modules (a
feature introduced by parametric L-systems in Section 2.2.8.1) to ordinary
differential equations (ODEs). As such, the parameter values change based
on the numerical or analytical solutions of the ODEs given the differential
rates, initial conditions, and boundary conditions. While the parameter val-
ues change in a continuous (time) paradigm, the structure of the L-system,

28

CHAPTER 2. LINEAR REWRITING SYSTEMS

i.e. the string, is updated with these changes only at discrete time intervals
at which the rules are executed. (The XL programming language has been
extended to provide this feature in graph grammars by Hemmerling [75]).

2.2.9 L-systems with Global and External Interactiv-
ity

In Section 2.2.5, we described L-systems that rewrite symbols taking into
account the neighbouring symbols. In [139] and [94], the authors introduced
extensions to L-systems that can regard all symbols in the string, a feature
known as global or environmental sensitivity.

2.2.9.1 Growth Grammars

Growth grammars [94] are extensions of parametric, stochastic 0L-systems.
They are enhanced with features particularly useful for tree modelling (for
application in forestry), including global sensitivity. Some of these features
are:

• Representations of some 3-dimensional (3D) geometrical objects such
as cylinders.

• Geometrical interpretation of 3D turtle commands such as rotations,
translations, and geotropism.

• Turtle commands for modifying turtle state such as length, diameter,
biomass, etc.

• Interpretive rules that operate at a second phase between a string and
its structural or geometrical interpretation. The syntax for these rules
are the same as the usual rules. In plant modelling, these rules can
be useful to avoid cluttering the main string with symbols represent-
ing high detail (geometry) that do not contribute to developmental
processes.

• Object-instancing commands to relate a previously defined sub-structure
to multiple instances of a module in the string.

• Global sensitivity: sensitive growth grammars employ sensitive func-
tions that operate based on the properties of other modules in the

29

CHAPTER 2. LINEAR REWRITING SYSTEMS

string. For example, consider a rewriting rule that replaces a mod-
ule bud with some internode modules, modelling the elongation of a
shoot. The length parameter of the newly created internode modules
can be specified with a sensitive function that relates the number of
internodes surrounding the bud in 3D space to length. This requires
the evaluation of the 3D positions of all internodes, hence the term
”global sensitivity”.

2.2.9.2 Environmentally-sensitive L-systems

Environmentally-sensitive L-systems [139], like growth grammars, allow rules
to execute taking into account all other modules in the string. They provide
a feature, called environmental sensitivity through special modules known
as query modules. These modules are updated with values in the context
of the environment, e.g. 3D positions and orientations during geometrical
interpretation, and referenced during rule application.

2.2.9.3 Open L-systems

Growth grammars and environmentally-sensitive L-systems allow informa-
tion input from the whole structure, i.e. the string operated on by the
L-system. Open L-systems [123] take this sensitivity further to allow inter-
action with external systems. For example, consider a lattice gas automaton
modelling air currents in the 3D space shared by an L-system model of a
tree. The idea is that information on humidity in the earlier is required by
the L-system productions in the latter, i.e. for tree growth and development;
and the subsequent architectural development of the tree influences the re-
sults of the lattice gas automata model. Such bi-directional interactions of
an L-system with an external system is a feature provided by open L-systems
through special modules known as communication modules.

30

Chapter 3

Graph Rewriting

In chapter 2, we saw some variants of linear rewriting systems, particularly
L-systems. Many of these originated from modelling certain objects or phe-
nomena. In fact, many parts of formal language theory originated in this
manner [114]. As seen in examples 2.2.2, 2.2.3 and 2.2.4, L-systems are
intended and useful for models in developmental biology. Sometimes, a lin-
ear model is insufficient. In these cases, the language used to express or
identify a model does not consist of strings. By using trees, graphs or multi-
dimensional structures, a language becomes potentially more expressive. A
comprehensive collection of non-linear formal language concepts can be found
in [151].

In this chapter, we focus on graph rewriting, the most important theoreti-
cal basis of the XL programming language designed by Kniemeyer [91]. In his
thesis, a wide range of graph rewriting approaches were surveyed and exten-
sions were made for parallel graph rewriting catered primarily for functional-
structural plant models (FSPMs). In the following sections, we avoid a rep-
etition of his survey, and present instead descriptions and explanations of
graph rewriting concepts that he adopted in XL. No new results are given in
this chapter, but it is an important prerequisite for Chapter 4.

31

CHAPTER 3. GRAPH REWRITING

3.1 Introduction to Graphs

3.1.1 Fundamental Definitions

Before discussing rewriting in the context of graphs, several fundamental
definitions related to graphs (based on definitions from [52] and chapter 4.1
in [91]) are given.

3.1.1.1 Alphabet

We begin with the definition of an alphabet that is different from that defined
for linear rewriting systems in section 2.1.1.

Definition 3.1.1 (Alphabet). For labelled, directed graphs, an alphabet
is Λ = (ΛV ,ΛE) where ΛV is a finite non-empty set of symbols called node
labels, and ΛE is a finite non-empty set of symbols called edge labels.

3.1.1.2 Graph

Definition 3.1.2 (Graph). Let Λ be an alphabet as defined in definition
3.1.1. A labelled directed graph G = (GV , GE, Gλ) over Λ is a set of nodes
GV , a set of edges GE, and a node-labelling function Gλ : GV −→ ΛV . The
set of edges GE is a subset of {(s, β, t)|s, t ∈ GV , β ∈ ΛE}, where s and t are
called the source node and target node respectively. When referring to G
as a mathematical set, e.g. a ∈ G or G ⊆ H, we mean G = GV ∪ GE. A
discrete graph is a graph with GE = ∅.

In Definition 3.1.2, an edge is uniquely determined by its source node,
target node, and edge label. Hence, parallel edges with the same edge label
cannot exist. However, an edge from a node to itself, i.e. a loop is allowed.

Hereafter, we refer to the labelled, directed graph in Definition 3.1.2 when-
ever we use the term graph.

3.1.1.3 Subgraph

Definition 3.1.3 (Subgraph). Let G = (GV , GE, Gλ) be a graph over an
alphabet Λ. A subgraph S of G, written S v G, is a graph (SV , SE, Sλ) with
SV ⊆ GV , SE ⊆ GE, and Sλ = Gλ|SV

.

32

CHAPTER 3. GRAPH REWRITING

3.1.1.4 Graph Homomorphism

The notion of graph homomorphism is repeatedly used in this thesis. We
give here its definition (based on [161]) followed by an example.

Definition 3.1.4 (Graph homomorphism). A (total) graph homomor-
phism f is a pair of functions f = (fV , fE) : G −→ H, where G = (GV , GE, Gλ)
and H = (HV , HE, Hλ) are graphs over an alphabet Λ. fV is a function
GV −→ HV and fE is the function defined by (s, β, t) 7−→ (fV (s), β, fV (t))
for all (s, β, t) ∈ GE. The following two conditions must be satisfied:

• Hλ ◦ fV = Gλ, i.e. fV is label-preserving,

• fE(GE) ⊆ HE.

For an object a ∈ GV ∪ GE, we define f(a) = fV (a) if a ∈ GV , otherwise
f(a) = fE(a).

Example 3.1.1 (Graph homomorphism). Let G = (GV , GE, Gλ) be a
graph over the alphabet Λ = ({bud, gu}, {+, >}) with GV = {n1, n2,n3,
n4, n5} and GE = {(n1, >, n2), (n1,+, n3), (n2, >, n4), (n3, >, n5)}. The node
labelling function Gλ is

Gλ(ni) =

{
gu, i ≤ 3

bud, i > 3

where ni ∈ GV .
Let L = (LV , LE, Lλ) = ({l1, l2}, {(l1, >, l2)}, Lλ) be another graph over Λ

such that Lλ(l1) = gu and Lλ(l2) = bud. Figure 3.1 illustrates graphs G and
L.

Let mV be a function LV −→ GV such that mV (l1) = n2 and mV (l2) = n4.
mV is label-preserving since Gλ ◦mV (l1) = Lλ(l1) = gu and Gλ ◦mV (l2) =
Lλ(l2) = bud. mV induces the function mE : LE −→ GV ×ΛE×GV , which in
this case is (l1, >, l2) 7−→ (n2, >, n4). Since (n2, >, n4) ∈ GE, i.e. mE(LE) ⊆
GE, and mV is label-preserving, mV induces a (total) graph homomorphism
m = (mV ,mE) : L −→ G shown in Figure 3.1.

Counter-example: Let cV be a function LV −→ GV such that cV (l1) = n1

and cV (l2) = n2. cV is not label-preserving since Gλ ◦ cV (l2) 6= Lλ(l2). cV
induces the function cE : LE −→ GV × ΛE ×GV , which in this case is (l1, >
, l2) 7−→ (n1, >, n2). Although (n1, >, n2) ∈ GE, cV is not label-preserving and
no graph homomorphism is induced by cV . This counter-example is shown in
Figure 3.2.

33

CHAPTER 3. GRAPH REWRITING

Figure 3.1: Graph homomorphism. Left: Graph L. Right: Graph G. Nodes
are illustrated as text in the form ”node label(node)”, e.g. ”bud(l2)”. Edges
are solid arrows with their respective edge labels. Dashed arrows show the
graph homomorphism m = (mV ,mE) : L −→ G.

Figure 3.2: Not a graph homomorphism. Left: Graph L. Right: Graph G.
Nodes are illustrated as text in the form ”node label(node)”, e.g. ”bud(l2)”.
Edges are solid arrows with their respective edge labels. Dashed arrows show
the functions cV and cE. No graph homomorphism is induced by cV since
the node labels for n2 and l2 are different.

3.1.1.5 Partial Graph Homomorphism

Partial graph homomorphisms are used in some formal mechanisms of graph
rewriting, e.g. the single-pushout approach (Section 3.2.2). We give here its
definition based on [48].

Definition 3.1.5 (Partial graph homomorphism). A partial graph ho-
momorphism g is a total graph homormorphism from some subgraph dom(g)
of G to H, where G and H are graphs. dom(g) is known as the domain of
g. The injective function from dom(g) to G is written dom(g) ↪→ G.

34

CHAPTER 3. GRAPH REWRITING

3.1.2 Graphs in Category Theory

Graphs and their homomorphisms form a category Graph in the context
of category theory [49], a branch of mathematics that unifies and simplifies
properties of mathematical constructions using diagrams of arrows [97].

In this section, we give the definition of category and descriptions of
some basic gadgetries (based on [97], [6], and [161]) in category theory using
examples based on graphs. These concepts are essential for the understanding
of this chapter.

3.1.2.1 Category

Definition 3.1.6 (Category). A category Υ consists of:

a collection Obj of entities called objects,

a collection Arw of entities called arrows,

two assignments:

Arw
source−−−−→ Obj,

Arw
target−−−→ Obj,

an assignment Obj
id−−→ Arw, and

a partial composition Arw × Arw −→ Arw.

We write A
f−−→ B to indicate that f is an arrow with source A and target B

for A,B ∈ Obj and f ∈ Arw. The assignments source and target consume
f and return A and B respectively. The notation idA is used for the identity

arrow assigned to each A ∈ Obj, A idA−−→ A. Notice that the source and target
of idA are both A and the assignment id consumes A and returns idA. Certain
pairs of arrows (hence partial composition and not total composition) can be

composed to form another arrow. Two arrows A
f−−→ B1 and B2

g−−→ C can
be composed, in that order, precisely when B1 and B2 are the same object to

form the arrow A
g◦f−−→ C. Category Υ must satisfy the following axioms:

• For arrows A
f−−→ B

g−−→ C
h−−→ D, the composite arrows (h ◦ g)◦f and

h ◦ (g ◦ f) must be equal, i.e. the composition of arrows is associative.

35

CHAPTER 3. GRAPH REWRITING

• For arrows A
idA−−→ A

f−−→ B
idB−−→ B, idB ◦ f = f = f ◦ idA must hold.

Given two objects A,B ∈ Obj in an arbitrary category Υ, there may be
no arrows or multiple arrows between A and B. We write HomΥ[A,B] to
refer to the collection of all arrows between A and B in Υ.

Consider three arrows arranged in a triangular diagram:

The composite arrow g ◦ f and the arrow h gives us a parallel pair of ar-
rows from A to C:

If the two arrows are the same, i.e. g ◦ f = h, we say that the (triangu-
lar) diagram commutes.

Example 3.1.2 (The category Graph). Graphs and their homomorphisms
constitute a category Graph where graphs are the objects and graph homo-
morphisms are the arrows [49].

Let F = (FV , FE, Fλ), G = (GV , GE, Gλ), and H = (HV , HE, Hλ) be
graphs over an alphabet Λ. Let f = (fV , fE) : F −→ G and g = (gV , gE) :
G −→ H be graph homomorphisms (cf. Definition 3.1.4). In this example, F ,
G, H are objects and f , g are arrows in the category Graph. Composition of
arrows, e.g. composition of g and f , is defined by g◦f = (gV ◦fV , gE◦fE). The
identity arrow for an object, e.g. idG for G, is defined by idG = (idGV

, idGE
),

where idGV
(a) = a and idGE

(e) = e for all a ∈ GV and e ∈ GE.

3.1.2.2 Monomorphism

In a category, an arrow B
m−−→ A is a monomorphism if for each parallel pair

of arrows, X
f−−→ B and X

g−−→ B, m ◦ f = m ◦ g =⇒ f = g [161]:

36

CHAPTER 3. GRAPH REWRITING

Example 3.1.3 (Monomorphism in the category Graph). Let L =
(LV ,LE, Lλ) and G = (GV , GE, Gλ) be two graphs in the category Graph
over the alphabet Λ = ({bud, gu}, {+, >}). Let m be a homomorphism
m = (mV ,mE) : L −→ G. We illustrate L and G in Figure 3.3. m is a
monomorphism because L and G can be conceived as sets and m is injective
(see chapter 2 in [6] for the equivalence of injectivity and monomorphism in
the category Set). In this example, m is not surjective and is therefore not
an epimorphism (see Example 3.1.4 for epimorphism in graph categories).

Figure 3.3: Monomorphism in the category Graph. Left: graph L. Right:
graph G. mV induces the graph monomorphism m from L to G. The induced
mE is not shown in this figure.

3.1.2.3 Epimorphism

In a category, an arrow A
e−−→ B is an epimorphism if for each parallel pair

of arrows, B
x−−→ X and B

y−−→ X, x ◦ e = y ◦ e =⇒ x = y [161]:

Example 3.1.4 (Epimorphism in the category Graph). Let L = (LV , LE,
Lλ) and G = (GV , GE, Gλ) be two graphs in the category Graph over the
alphabet Λ = ({bud, gu }, { +, >}). Let m be a homomorphism m =

37

CHAPTER 3. GRAPH REWRITING

(mV ,mE) : L −→ G. We illustrate L and G in Figure 3.4. m is a an epimor-
phism because we treat L and G as sets and m is surjective (see chapter 2 in
[6] for the equivalence of surjectivity and epimorphism in the category Set).
In this example, m is not injective and is therefore not a monomorphism.

Figure 3.4: Epimorphism in the category Graph. Left: graph L. Right:
graph G. mV induces the graph epimorphism m from L to G. The induced
mE is not shown in this figure.

3.1.2.4 Isomorphism

A pair of arrows A
f−−→ B and B

g−−→ A such that g ◦f = idA and f ◦g = idB
is an inverse pair of isomorphisms. Each arrow which has a 2-sided inverse
is an isomorphism [161]. We say that objects A and B are isomorphic if an
isomorphism with source A and target B, or vice versa, exists.

Example 3.1.5 (Isomorphism in the category Graph). Let L = (LV , LE,
Lλ) and G = (GV , GE, Gλ) be two graphs in the category Graph over the al-
phabet Λ = ({bud, gu}, {+, >}). Let m be a homomorphism m = (mV ,mE) :
L −→ G. We illustrate L and G in Figure 3.5. m is an isomorphism because
we treat L and G as sets and m is bijective (see chapter 1 in [6] for the
equivalence of bijectivity and isomorphism in the category Set).

3.1.2.5 Functor

Consider a category such that the objects are categories. An arrow between
objects in such a category is called a functor (cf. page 13 in [97]). More
specifically, for objects A and B , a functor T :A −→ B with source A
and target B consists of two related functions: the object function T , which
assigns each object A of A to T (A) of B and the arrow function (also written

38

CHAPTER 3. GRAPH REWRITING

Figure 3.5: Isomorphism in the category Graph. Left: graph L. Right: graph
G. mV induces the graph isomorphism m from L to G. The induced mE is
not shown in this figure.

T), which assigns to each arrow f : A → A′ of A an arrow T (f) : T (A) →
T (A′) of B , in such a way that

T (idA) = idT (A), T (g ◦ f) = T (g) ◦ T (f),

the latter whenever the composition arrow g ◦ f is defined in A.

Example 3.1.6 (Functor). Let J and K be two categories with a functor T ,

J
T−−→K. J itself is a category with objects J0, J1, and an arrow f , J0

f−−→ J1.
K is a category with objects K0, K1..., K6 connected by arrows as shown in
Figure 3.6. We can view K as the category Graph such that K0, K1..., K6

are graphs and the arrows are graph homomorphisms. The object function
T assigns J0 to T (J0) = K2, J1 to T (J1) = K4, and f to T (f) = m, where
K2

m−−→ K4 is an arrow in K.

3.1.2.6 Category-of-Paths

We describe in this section the notion of category-of-paths (for a concrete
definition, see chapter ”Limits and colimits in general” in [161]). Suppose J
is a category. A path through J of length l ∈ N is a list of l arrows

J0
e1−−→ J1

e2−−→ J2
e3−−→ ...

el−−→ Jl

where the target of each arrow is the source of the next one, J0...Jl and
e1...el being objects and arrows in J . A path of length 1 is a single arrow
and a path of length 0 is a single object.

39

CHAPTER 3. GRAPH REWRITING

Figure 3.6: Object and arrow functions of a functor. Left: category J with
objects J0, J1, and arrow f . Right: category K (the category Graph) with
objects (graphs) K0, K1, ... , K6. Dashed arrows show the object and arrow
functions of the functor T from J to K .

We can create a category Pth(J), the category-of-paths through J . The
objects of Pth(J) are the objects of J . The arrows of Pth(J) are the paths
through J such that the sources and targets are the first and last objects of
the respective paths. Given two arrows in Pth(J) (i.e. two paths of J)

J0
e1−−→ J1

e2−−→ J2
e3−−→ ...

el−−→ Jl and J ′0
e′1−−→ J ′1

e′2−−→ J ′2
e′3−−→ ...

e′l−−→ J ′l

with Jl = J ′0, the composite arrow is

J0
e1−−→ J1

e2−−→ J2
e3−−→ ...

el−−→ Jl = J ′0
e′1−−→ J ′1

e′2−−→ J ′2
e′3−−→ ...

e′l−−→ J ′l ,

formed by ”concatenating” the paths one after another.

Example 3.1.7 (Category-of-paths). Let J be a category with objects J0,
J1, J2, J3 and arrows J0

e1−−→ J1, J0
e2−−→ J2, J1

e3−−→ J3. There are a total of
four paths through J:

J0
e1−−→ J1,

J0
e2−−→ J2,

40

CHAPTER 3. GRAPH REWRITING

J1
e3−−→ J3, and

J0
e3◦e1−−−→ J3.

We construct Pth(J) and illustrate its correspondence to J in Figure 3.7.

Figure 3.7: A category and its corresponding category-of-paths. Left: cate-
gory J . Right: category-of-paths Pth(J).

3.1.2.7 Diagram-in-Category

Consider a functor T :J −→ K with target category K . The source category
J is also called the scheme of the functor [6]. A J-diagram-in-K is:

a collection of objects in K (T (J)|J is an object in J) and

a collection of arrows in K (T (e)|e is an arrow in J)

assigned from J [161]. The terminology follows the naming of the given
categories, e.g. for a functor D :A−→B , we say an A-diagram-in-B .

There is technically no difference between a scheme and a category. The
alternate terminology is used to indicate a slight change of perspective from
categories in general to limits and colimits, gadgetries that will be introduced
in Section 3.1.2.9 [6].

Example 3.1.8 (Diagram-in-Category). Let J be a category with objects
J0, J1, J2, J3 and arrows J0

e1−−→ J1, J0
e2−−→ J2, J1

e3−−→ J3. In addition,
let K be a category with objects K0, K1, ..., K6 connected by arrows as
shown in Figure 3.8. A functor T:J−→K is specified so that T (J0) = K1,

41

CHAPTER 3. GRAPH REWRITING

T (J1) = K2, T (J2) = K3, T (J3) = K4, and T (e1) = ek1, T (e2) = ek2,
T (e3) = ek3. Consequently, the J-diagram-in-K consists of the objects K1,

K2, K3, K4, and the arrows K1
ek1−−→ K2, K1

ek2−−→ K3, K2
ek3−−→ K4. We

illustrate categories J, K, functor T , and the J-diagram-in-K in Figure 3.8.

Figure 3.8: Top left: category J . Top right: category K . Bottom: J -
diagram-in-K . T is a functor T :J−→K .

3.1.2.8 Cone & Cocone

Consider two categories J , K , and a functor T :J−→K . An object K in K
with arrows K −→ T (J) to each object T (J) in the J -diagram-in-K is a
cone. For every arrow T (Ji) −→ T (Jj), the triangle

42

CHAPTER 3. GRAPH REWRITING

must commute. A cocone is an object K in K with arrows K ←− T (J)
from each object T (J) in the J -diagram-in-K . As in the case for cones, for
every arrow T (Ji) −→ T (Jj), the triangle

must commute.
Cones and cocones are defined with the aid of different supporting no-

tions and to different extents in [97], [6], and [161]. The above description
summarizes the collective meaning.

We should note that cones and cocones may or may not exist, depending
on the given categories and functor. The terms cone and cocone reflect their
graphical appearance when represented in a diagram, resembling geometrical
cones (see Figures 3.10 and 3.11 for Examples 3.1.9 and 3.1.10 respectively).
Hence the object in a cone is called the apex (in plural apices) of the cone,
and the diagram-in-category accompanying the cone is called the base of the
cone.

Example 3.1.9 (Cone). Let J be a category with objects J1, J2, J3, and
an arrow J1

e3−−→ J3. Let K be a category with objects K0, K1, ..., K6 con-
nected by arrows as shown in Figure 3.9. We construct the categories-of-
paths, Pth(J) and Pth(K), and specify a functor T:Pth(J)−→Pth(K). J,
K, Pth(J), Pth(K), and the Pth(J)-diagram-in-Pth(K) are illustrated in
Figure 3.9. K0 and K1 are the only objects in Pth(K) that have arrows to
all objects in the Pth(J)-diagram-in- Pth(K). Taking K0 as an example, a
cone is formed with K0 and the arrows K0 −→ T (J1), K0 −→ T (J2), and
K0 −→ T (J3). We illustrate this cone in Figure 3.10. K1 forms a cone in
the same manner as K0. If we view K as a partially ordered set (poset), the
apices of the cones formed by K0 and K1 are also lower bounds to K2, K3,
and K4.

Example 3.1.10 (Cocone). In this example, we reuse the categories J, K,
Pth(J), Pth(K), and the Pth(J)-diagram-in-Pth(K) from Example 3.1.9.
Figure 3.9 illustrates the categories and the diagram-in-category. K5 and
K6 are the only objects in Pth(K) that have arrows from all objects in the
Pth(J)-diagram-in-Pth(K). Taking K6 as an example, a cocone is formed
with K6 and the arrows K6 ←− T (J1), K6 ←− T (J2), and K6 ←− T (J3). We

43

CHAPTER 3. GRAPH REWRITING

Figure 3.9: Categories forming bases of cones and cocones. Top left: category
J . Top right: category K . Middle left: Pth(J). Middle right: Pth(K).
Bottom: Pth(J)-diagram-in-Pth(K). T is a functor T :Pth(J)−→Pth(K).

illustrate this cocone in Figure 3.11. K5 forms a cone in the same manner as
K6. If we view K as a partially ordered set (poset), the apices of the cocones
formed by K5 and K6 are also upper bounds to K1, K2, and K3.

44

CHAPTER 3. GRAPH REWRITING

Figure 3.10: Cone. K2 = T (J1), K3 = T (J2), K4 = T (J3), and T (e3) are
objects and arrows in the Pth(J)-diagram-in-Pth(K). K0 is an object in
Pth(K), in which it has arrows to K2, K3, and K4, altogether forming a
cone.

Figure 3.11: Cocone. K2 = T (J1), K3 = T (J2), K4 = T (J3), and T (e3) are
objects and arrows in the Pth(J)-diagram-in-Pth(K). K6 is an object in
Pth(K), in which it has arrows from K2, K3, and K4, altogether forming a
cocone.

3.1.2.9 Limit & Colimit

Given categories J , K , functor T :J −→K , and the J -diagram-in-K , zero,
one, or multiple cones (or conversely, cocones) may exist. For example,
in Example 3.1.9, we saw that two cones exist in the given categories and
functor.

A limit is a particular cone (with apex L) such that for all other cones
(with apex X), there is a unique arrow X

m−−→ L such that for each object J
in J , the triangle

45

CHAPTER 3. GRAPH REWRITING

commutes [161]. Here, a belongs to the cone with apex L and b belongs
to the cone with apex X. The arrow m is called the mediator.

Conversely, a colimit is a particular cocone (with apex R) such that for
all other cocones (with apex X), there is a unique arrow X

m←−− R such that
for each object J in J , the triangle

commutes. Here, a belongs to the cocone with apex R and b belongs to
the cocone with apex X. The arrow m is also called the mediator.

Example 3.1.11 (Limit). We continue with Example 3.1.9 and now con-
sider both cones in the example with apices K0 and K1. The cones are super-
imposed and the mediator arrow m from K0 to K1 is shown in Figure 3.12.
We observe that the cone with apex K0 ”factors through” the cone with apex
K1 via m. In other words, the triangles

, , and

commute. Hence, K1 is the apex of the limit, considering that K0 is the
apex of the only other cone in the example. If we view K as a partially or-
dered set (poset), the limit with apex K1 is also the greatest lower bound to
K2, K3, and K4.

Example 3.1.12 (Colimit). We continue with Example 3.1.10 and now
consider both cocones in the example with apices K5 and K6. The cocones
are superimposed and the mediator arrow m from K5 to K6 is shown in Fig-
ure 3.13. We observe that the cocone with apex K6 ”factors through” the

46

CHAPTER 3. GRAPH REWRITING

Figure 3.12: Limit. Superimposed cones with apices K0 and K1. T (J1) = K2,
T (J2) = K3, T (J3) = K4 and the arrow T (e3) are objects and arrows that
make up Pth(J)-diagram-in-Pth(K), the common base for both cones. m
is the mediator arrow and K1 is the apex of the limit.

cocone with apex K5 via m. In other words, the triangles

, , and

commute. Hence, K5 is the apex of the colimit, considering that K6 is the
apex of the only other cocone in the example. If we view K as a partially
ordered set (poset), the colimit with apex K5 is also the least upper bound to
K2, K3, and K4.

Different schemes for a functor and target category result in different
types of limits. Some of these types include equalizer, product, pullback,
and conversely, coequalizer, coproduct, and pushout. These constructs are
fundamental to graph rewriting and we describe some of them with graph-
based examples in the next sections.

47

CHAPTER 3. GRAPH REWRITING

Figure 3.13: Colimit. Superimposed cones with apices K5 and K6. T (J1) =
K2, T (J2) = K3, T (J3) = K4 and the arrow T (e3) are objects and arrows that
make up Pth(J)-diagram-in-Pth(K), the common base for both cocones.
m is the mediator arrow and K5 is the apex of the colimit.

3.1.2.10 Product & Coproduct

Consider a scheme J , a category K , a functor T :J−→K , and the J -diagram-
in-K . Given that J is a discrete scheme, i.e. a category with no arrows, the
J -diagram-in-K contains only objects and no arrows assigned by T . In such
cases, the limit L of T is called the product and the colimit R of T is called
the coproduct (cf. chapter 11, ”Limits and colimits” in [6]).

Example 3.1.13 (Product). Consider a discrete scheme J with objects J0,
J1, and no arrows. We have a functor T:J −→ K, where K is the category
Graph with objects K0, K1, K2, K3, and arrows K2 → K0, K2 → K1,
K3 → K0, K3 → K1, K3 → K2. The J-diagram-in-K consists of T (J0) = K0

and T (J1) = K1 without arrows. J, K, T , and the J-diagram-in-K are
illustrated in Figure 3.14.

We stipulate that the cone with apex K2 and arrows K2 → T (J0) and
K2 → T (J1) is the limit, i.e. the product of T for any K3 in the category
Graph.

K0, K1, K2, K3 are graphs and the arrows in K are graph homomor-
phisms. To obtain the product K2 from K0 and K1, we take the cartesian
product of K0 and K1, following the formulation of products in the category
Set (see chapter ”Limits in Set” in [161]).

48

CHAPTER 3. GRAPH REWRITING

Let K0 = (K0V , K0E, K0λ) = ({a0, a1} , {(a0, >, a1)} , K0λ) and K1 =
(K1V , K1E, K1λ) = ({b0, b1} , {b0, >, b1} , K1λ) be graphs over the alphabet
Λ = ({bud, gu}, {>,+}). The labelling functions are specified as K0λ(a0) =
K0λ(a1) = K1λ(b0) = gu and K1λ(b1) = bud. Consequently, K2 consists of
nodes K0V ×K1V , edges, and labels as illustrated in Figure 3.15. The graph
homomorphisms from K2 to K0 and K2 to K1 are based on projection map-
pings proj0(K0 ×K1) −→ K0 and proj1(K0 ×K1) −→ K1 of the nodes and
edges. Figure 3.15 illustrates the graph homomorphisms in detail.

Figure 3.14: Categorical product with apex K2. Top left: category J . Top
right: category K . Bottom: J -diagram-in-K .

Example 3.1.14 (Coproduct). Consider a discrete scheme J with objects
J0, J1, and no arrows. We have a functor T:J −→K, where K is the category
Graph with objects K0, K1, K2, K3, and arrows K0 → K2, K1 → K2,
K0 → K3, K1 → K3, K2 → K3. The J-diagram-in-K consists of T (J0) = K0

and T (J1) = K1 without arrows. J, K, T , and the J-diagram-in-K are
illustrated in Figure 3.16.

We stipulate that the cocone with apex K2 and arrows T (J0) → K2 and
T (J1)→ K2 is the colimit, i.e. the coproduct of T for any K3 in the category
Graph.

K0, K1, K2, K3 are graphs and the arrows in K are graph homomor-
phisms. To obtain the coproduct K2 from K0 and K1, we take the disjoint
union, K0 tK1, following the formulation of coproducts in the category Set
(see chapter ”Limits in Set” in [161]).

49

CHAPTER 3. GRAPH REWRITING

Figure 3.15: Categorical product with detailed graph homomorphisms. Top
right: object (graph) K1. Bottom left: object (graph) K0. Bottom right:
product apex K2. Solid arrows are edges in the graphs (labels not shown).
Dotted arrows are graph homomorphisms.

Let K0 = (K0V , K0E, K0λ) = ({a0, a1} , {a0, >, a1} , K0λ) and K1 = (K1V ,
K1E, K1λ) = ({b0, b1, b2, b3, b4} , {(b0, >, b1), (b1, >, b2), (b2,+, b3), (b2, >, b4)}
, K1λ) be graphs over the alphabet Λ = ({bud, gu}, {>,+}). The labelling
functions are specified as K0λ(a0) = K0λ(a1) = K1λ(b0) = K1λ(b1) = K1λ(b2)
= gu and K1λ(b3) = K1λ(b4) = bud. Consequently, K2 consists of the nodes
K0V tK1V and edges as illustrated in Figure 3.17. The graph homomorphisms
from K0 to K2 and K1 to K2 are illustrated in Figure 3.17 as well.

3.1.2.11 Equalizer & Coequalizer

Consider a scheme J , a category K , a functor T :J −→ K , and the J -

diagram-in-K . Let J0
f−→ J1 and J0

g−→ J1 be the objects and arrows in

J . The J -diagram-in-K contains the objects and arrows T (J0) = K0
T (f)−−→

50

CHAPTER 3. GRAPH REWRITING

Figure 3.16: Categorical coproduct with apex K2

T (J1) = K1 and T (J0) = K0
T (g)−−→ T (J1) = K1. An equalizer is a limit with

apex K2 and arrows K2 → K0 and K2 → K1, such that K2 → K0
T (f)−−→ K1 =

K2 → K0
T (g)−−→ K1 [161]:

.

Conversely, a coequalizer is a colimit with apex K2 and arrows K1 → K2

and K0 → K2, such that K0
T (f)−−→ K1 → K2 = K0

T (g)−−→ K1 → K2:

.

Example 3.1.15 (Coequalizer). In this example, we continue with the
scheme J, functor T , target category K, and J-diagram-in-K as described
above in Section 3.1.2.11 for a coequalizer. In this case, K0, K1, K2 are
graphs and the arrows in K are graph homomorphisms.

To derive the coequalizer apex K2, we view K1 as a Set. Let be a

51

CHAPTER 3. GRAPH REWRITING

Figure 3.17: Categorical coproduct with detailed graph homomorphisms.
Top left: object (graph) K1. Top right: coproduct apex K2. Bottom right:
object (graph) K0. Solid arrows are edges in the graphs (labels not shown).
Dotted arrows are graph homomorphisms (edge mappings not shown).

relation on K1 such that k1 k2 ⇐⇒ ∃k0 ∈ K0 : k1 = T ◦ f(k0) and
k2 = T ◦g(k0), k1, k2 ∈ K1. Let ∼ be the equivalence relation on K1 generated
by , so that objects in K1 that share a common pre-image in K0 fall in the
same equivalence classes. For each k ∈ K1, let [k] be the equivalence class in
which k resides, and let K1/ ∼ be the set of all equivalence classes. Then,
based on the definition of coequalizers in [161], K2 is simply computed as
K1/ ∼.

Let K0 = (K0V , K0E, K0λ) = ({a0, a1}, {(a0, >, a1)}, K0λ) and K1 =
(K1V , K1E, K1λ) = ({b0, b1, b2, b3} , {(b0, >, b1), (b2, >, b3)} , K1λ) be graphs
over the alphabet Λ = ({bud, gu}, {>}). The labelling functions are specified
as K0λ(a0) = K1λ(b0) = K1λ(b2) = gu, and K0λ(a1) = K1λ(b1) = K1λ(b3) =
bud. The function mappings f , g, the equivalence classes, and the derived

52

CHAPTER 3. GRAPH REWRITING

coequalizer with apex K2 are illustrated in Figure 3.18.

Figure 3.18: Coequalizer. Left: graph K0. Middle: graph K1. Right: Co-
equalizer apex (graph) K2. The function mappings or homomorphisms f and
g are depicted as dashed arrows from K0 to K1. The node c0 represents an
equivalence class containing b0 and b2, and c1 represents an equivalence class
containing b1 and b3. The equivalence classes are determined based on the
equivalence relationship, i.e. objects in K1 that share a common pre-image
in K0. Mappings for edges in the graphs are not shown.

3.1.2.12 Pullback & Pushout

Consider a scheme J , a category K , a functor T :J −→ K , and the J -
diagram-in-K . Let J0 → J2 ← J1 be the objects and arrows in J , and
T (J0) = K0 → T (J2) = K2 ← T (J1) = K1 be the objects and arrows in the
J -diagram-in-K . A pullback is a limit with apex K3 and arrows K3 → K0

and K3 → K1, such that the square

commutes.

53

CHAPTER 3. GRAPH REWRITING

Conversely, let J0 ← J2 → J1 be the objects and arrows in J , and
T (J0) = K0 ← T (J2) = K2 → T (J1) = K1 be the objects and arrows in the
J -diagram-in-K . A pushout is a colimit with apex K3 and arrows K3 ← K0

and K3 ← K1, such that the square

commutes.
Pushouts are fundamental to graph rewriting. They always exist in the

category Set [97] and the category Graph (cf. page 50 in [91]). Next, we
look at an example of a pushout in the category Graph . This serves as a
lead in to the next sections on rewriting.

Example 3.1.16 (Pushout). We continue in this example from the above-
mentioned set up of categories for a pushout. Let K0 = (K0V , K0E, K0λ)
= ({a0, a1}, {(a0, >, a1)}, K0λ), K2 = (K2V , K2E, K2λ) = ({c0, c1}, {(c0, >
, c1)}, K2λ), and K1 = (K1V , K1E, K1λ) = ({b0, b1, b2, b3, b4} , {(b0, >, b1), (b1, >
, b2), (b2,+, b3), (b2, >, b4)} , K1λ) be graphs over the alphabet Λ = ({bud,
gu}, {>,+}). The labelling functions are specified as K0λ(a0) = K0λ(a1) =
K1λ(b0) = K1λ(b1) = K1λ(b2) = K2λ(c0) = K2λ(c1) = gu and K1λ(b3) =
K1λ(b4) = bud.

To obtain the apex of the pushout, K3, the disjoint union of the nodes in
K0V and K1V is first computed, resulting in K0V tK1V . Let f be K2 → K0

and g be K2 → K1. A relation on K0V tK1V is such that k1 k2 ⇐⇒
∃k0 ∈ K2V : k1 = f(k0) and k2 = g(k0), k1, k2 ∈ K0V tK1V . Let ∼∗ be the
(least) equivalence relation on K0V tK1V generated by , so that objects in
K0V tK1V that share a common pre-image in K2 fall in the same equivalence
classes. For each k ∈ K0V tK1V , let [k] be the equivalence class in which k
resides, and let K0V tK1V / ∼∗ be the set of all equivalence classes. Then the
set of nodes K3V in the pushout apex is K0V tK1V / ∼∗, and the edges K3E

are uniquely determined by the nodes. The labelling function K3λ follows the
labelling in K0 and K1. The detailed graph homomorphisms are illustrated
in Figure 3.19.

54

CHAPTER 3. GRAPH REWRITING

Figure 3.19: Categorical pushout with detailed graph homomorphisms. Top
left: object (graph) K1. Top right: pushout apex (graph) K3. Bottom left:
object (graph) K2. Bottom right: object (graph) K0. Solid arrows are edges
in the graphs (labels not shown). Dotted arrows are graph homomorphisms
(edge mappings not shown). The node d0 represents an equivalence class
containing a0 and b0, and the node d1 represents an equivalence class con-
taining a1 and b1. The rest of the nodes, i.e. d2, d3 and d4 are equivalence
classes on their own.

3.2 Fundamentals of Graph Rewriting

With the core definitions in place, we begin to describe graph rewriting.
Graph rewriting or graph grammars provide a mechanism to model graph
transformations in a mathematically precise way [52].

As in the case of rules in the form u → v for Chomsky grammars, we
have, analogously, productions in the form p : L R for graph rewriting,

55

CHAPTER 3. GRAPH REWRITING

where p is the production, L is the left-hand side graph, and R is the right-
hand side graph [36]. Given a graph G, an occurrence of L in G, called a
match(m), is replaced by R when p is applied. Such an application of p for

a match m is called a direct derivation, denoted G
p,m

==⇒ H, where H is the
resulting derived graph from the replacement. A match is formally defined
as a graph homomorphism (see Definition 3.1.4).

A direct derivation G
p,m

==⇒ H generally consists of three steps. We illus-
trate these three steps that result in H with reference to Figure 3.20:

• Step 1: Each object (node or edge) of L is mapped to a correspond-
ing object in G, such that the graphical structure and the labels are
preserved. Between L and R, corresponding objects are also identi-
fied. The correspondences are shown using the symbols ∗, ∗∗, and #
in Figure 3.20.

• Step 2: Every object (node or edge) in G with a corresponding object
in L but no corresponding object in R, i.e. bud∗∗ and the edge marked
with #, is deleted.

• Step 3: Every object (node or edge) in R without a corresponding
object in L, i.e. all objects in R except gu∗, is added to G.

Of course, this general description of graph rewriting is not precise and
does not account for all cases. In the next sections, several formal methods
for sequential (not parallel) graph rewriting are specified.

Gluing approaches to graph rewriting are generalizations of string con-
catenation in linear rewriting systems to gluing construction in graphs. These
approaches are also commonly known as algebraic approaches [36] because
they are usually defined using the pushout algebraic construct (see Section
3.1.2.12). In this thesis, two fundamental gluing approaches related to XL
are described. They are the double-pushout (DPO) approach [49] and the
single-pushout approach (SPO) [106].

3.2.1 The Double-Pushout Approach (DPO)

The double-pushout approach [49, 36] represents a production p : L R as

a pair of total graph homomorphisms L
l←−− K

r−−→ R. K is an interface
graph that consists of the nodes and edges common between L and R, i.e.
nodes and edges that are so-called ”the same” in L and R.

56

CHAPTER 3. GRAPH REWRITING

Figure 3.20: Graph rewrite. Top left: left-hand side graph L of production.
Top right: right-hand side graph R of production. Bottom left: the original
graph G. Bottom right: derived graph H after a direct derivation. The
symbols ∗, ∗∗ and # mark corresponding nodes and edges in the graphs.

A direct derivation using the double-pushout approach is modelled as two
pushout (square) diagrams of graphs and total graph homomorphisms, (1)
and (2) as seen below:

. For a given graph G and a match m, the context graph D consists of
the nodes and edges in G except those with a homomorphic pre-image in
L and no subsequent homomorphic pre-image in K. In other words, D =
G−{m(a)|a ∈ L, l(b) 6= a,∀b ∈ K}. H is then obtained as (D tR)/ ∼∗ (see
Example 3.1.16 for details of obtaining the apex of a pushout). In addition,

57

CHAPTER 3. GRAPH REWRITING

the match m must satisfy certain conditions collectively known as the gluing
condition, which we will describe after the following example.

Example 3.2.1 (Double-Pushout). Consider a production p : L R, a
graph G, and a match m as shown in Figure 3.21. m is the graph homo-
morphism shown by the dashed arrows from L to G. K consists of the gu
node identified to be the same node in L and R. To obtain the context graph
D, the node bud∗ and the edge marked with # are removed from G. H is
obtained as (D t R)/ ∼∗ to form the square pushout diagram containing K,
R, D, H and the graph homomorphisms between them.

The gluing condition consists of an identification condition and a dan-
gling condition. Rewriting via the DPO approach is not allowed when either
of these conditions fail. To illustrate the identification condition, consider a
modified version of Example 3.2.1 shown in Figure 3.22. The left-hand side
graph L now consists of an additional bud node that is mapped to bud∗ in G.
The additional bud node is not deleted by an application of the production.
Hence, a conflict arises because bud∗ in G is mapped from a node that is
deleted by the production and also from a node that is retained in the pro-
duction. Therefore, this illustrated match fails the identification condition,
which requires every element of G that should be deleted by the production
to have only one homomorphic pre-image in L. In Figure 3.22, bud∗ in G has
two pre-images in L.

To illustrate the dangling condition, consider another modified version of
Example 3.2.1 shown in Figure 3.23. L consists of an additional bud node
matched to the unmarked bud node in G. The production specifies that this
bud node should be deleted when a derivation occurs, resulting in a dangling
edge in the context graph D. This is erroneous because by Definition 3.1.2,
edges must have a source and a target node.

3.2.2 The Single-Pushout Approach (SPO)

In the single-pushout approach [48], a production p is represented as an
injective partial graph homomorphism (Section 3.1.5) r from a left-hand side
graph L to a right-hand side graph R. In short, we write p : (L

r−→ R). As
in the case for DPO, an occurence of L in a given graph G is a match m.
The partial homomorphism r specifies which objects (nodes and edges) in L
correspond to which in R. Objects mapped by r are analogous to the objects
of the interface graph in the DPO approach. A direct derivation G

p,m
==⇒ H

58

CHAPTER 3. GRAPH REWRITING

Figure 3.21: DPO graph rewrite. Top left: left-hand side graph L of pro-
duction. Top center: interface graph K. Top right: right-hand side graph R
of production. Bottom left: the original graph G. Bottom center: context
graph D. Bottom right: derived graph H after a direct derivation. Solid
arrows show edges in the respective graphs. Dashed arrows show graph ho-
momorphisms. The detailed mappings for the co-match m∗ : R −→ H and
r∗ : D −→ H are collectively represented by the larger dashed arrows to
avoid cluttering.

using the SPO approach is the construction of a pushout in the category
GraphP, in which graphs are objects and partial graph homomorphisms
are arrows. In the following example, we illustrate the details of such a
construction.

Example 3.2.2 (Single-Pushout). Consider a production p : (L
r−→ R)

and a graph G as shown in Figure 3.24. There is a match m depicted as
the total graph homomorphism from L to G. H is yet unknown and it will

59

CHAPTER 3. GRAPH REWRITING

Figure 3.22: DPO identification condition failure. It is ambiguous whether
bud∗ should be deleted or retained in the context graph D when the identi-
fication condition is not satisfied.

be the result of a direct derivation via the construction of a pushout in the
category GraphP. This pushout is the result of two steps (see [48] for proof
and details):

• Gluing: From r, we obtain the subgraph dom(r) of L, which has total
graph homomorphisms to R and G (see Figure 3.25). A graph D is
constructed as the result of a pushout in the category Graph using
dom(r)→ R and dom(r)→ G.

• Deletion: H is obtained via the construction of a co-equalizer of the
partial homomorphisms L→ R→ D and L→ G→ D in the category
GraphP (see Figure 3.26).

An overview of the complete SPO approach is shown in Figure 3.27.

60

CHAPTER 3. GRAPH REWRITING

Figure 3.23: DPO dangling condition failure. The deletion of the unmarked
bud node in G leaves a dangling edge in D.

Because of the order in which H is derived, deletion takes priority over
preservation and dangling edges are removed automatically. Hence, the SPO
approach overcomes conflicting and erroneous scenarios such as those de-
picted in Figures 3.22 and 3.23 by deleting the conflicting nodes and the
dangling edges respectively.

3.2.3 Neighbourhood Controlled Embedding

A constrasting type of graph rewriting approach is the connecting approach.
These approaches do not rely on the identification of common objects between
the left-hand side and right-hand side of a rule like the gluing approaches.
They explicitly define what edges to establish between the remaining host
graph G− and the graph R on the right-hand side of a rule, whenever a match

61

CHAPTER 3. GRAPH REWRITING

Figure 3.24: SPO production and match. Top left: left-hand side graph L
of production. Top right: right-hand side graph R of production. Bottom
left: the original graph G. Bottom right: unknown derived graph H. Solid
arrows show edges in the respective graphs. Dashed arrows show graph
homomorphism mappings. r is a partial graph homomorphism. The total
graph homomorphism from L to G represents a match.

m is removed from graph G. One such approach is neighbourhood controlled
embedding (NCE) [52].

A simple version of NCE is the node label controlled (NLC) mechanism
for node-labelled, undirected graphs. We illustrate this technique here based
on the description by Kniemeyer [91].

In NLC, a rule has the form L
e−→ R, where L is one node, R is a graph,

and e is a set of connection instructions. Each connection instruction is a
pair of node labels (µ, ν), where µ and ν are node labels. For a match m,
the matched node is removed from the host graph G along with its incident
edges, and an isomorphic copy of R, Rc, is connected to the remaining host
graph G−. For each neighbour a of the removed node (before it was removed)
in G−, and every node b in Rc, an edge is established if the set of connection

62

CHAPTER 3. GRAPH REWRITING

Figure 3.25: SPO step 1 - gluing. Top left: subgraph dom(r) of L (L in
Figure 3.24). Top right: right-hand side graph R of production. Bottom
left: the original graph G. Bottom right: graph D constructed as the result
of a pushout in category Graph . Solid arrows show edges in the respective
graphs. Dashed arrows show total graph homomorphism mappings. The
graph homomorphisms R → D and G → D are collectively represented as
the larger dashed arrows to avoid cluttering.

instructions contains the pair (Gλ(a), Rc
λ(b)).

An elaborated version of NLC is the edge-labelled directed neighbourhood
controlled embedding (edNCE) mechanism (cf. [52] and page 46 in [91]). A
production p in edNCE is in the form L

e−→ R, where L and R are graphs,
and e is a set of connection instructions. Each connection instruction is a
tuple (µ, ν, γ/δ, w, d) ∈ LV × ΛV × ΛE × ΛE ×RV × {in, out}.

edNCE operates in the following manner: µ is a node in L. In a match m
where m(L) is removed from host graph G, nodes labelled ν in G− with an
edge labelled γ to m(µ) are identified. Edges labelled δ are established from
these identified nodes to the isomorphic copy of w. d is a flag indicating the
directions of the edges.

63

CHAPTER 3. GRAPH REWRITING

Figure 3.26: SPO step 2 - deletion. H is the result of a co-equalization of
the partial homomorphisms L → R → D and L → G → D. Let L → R →
D = a and L → G → D = b. Then the co-equalizer is H and D → H,
where H ⊆ D is the largest subgraph of [a(L) ∩ b(L)] ∪ [a(L) ∩ b(L)]. Here,
[a(L)∩ b(L)] = gu∗, and [a(L)∩ b(L)] consists of all objects in D except gu∗,
bud# and the edge marked #.

Figure 3.27: SPO direct derivation overview.

Example 3.2.3 (edNCE). Let G = ({g0, g1, g2, g3, g4}, {(g0, >, g1), (g0,+, g3

), (g1, >, g2), (g3, >, g4)}, Gλ) be a graph over the alphabet Λ = ({bud, gu}, {>
,+}). Gλ specifies the labelling of the nodes, where Gλ(g0) = Gλ(g1) =
Gλ(g3) = gu, and Gλ(g2) = Gλ(g4) = bud. We define an edNCE production
p : L

e−→ R for G, where L is a graph ({l1}, {}, Lλ : l1 7→ bud), and R is

64

CHAPTER 3. GRAPH REWRITING

a graph ({r0, r1, r2, r3, r4}, {(r0, >, r1), (r0,+, r3), (r1, >, r2), (r3, >, r4)}, Rλ)
where Rλ(r0) = Rλ(r1) = Rλ(r3) = gu, and Rλ(r2) = Rλ(r4) = bud. e con-
sists of only one connection instruction, (l0, gu,> / >, r0, in). The graphs
and production are illustrated in Figure 3.28.

Figure 3.28: edNCE graphs and production. Top: host graph G. Bot-
tom: graphs L and R belonging to production p. The connection instruction
(l0, gu,> / >, r0, in) is specified on the arrow from L to R.

Given a match m where m(l0) = g2, the node g2 and its incident edge is
removed, resulting in the remaining host graph G−. A direct derivation of
p is made by making an isomorphic copy of R, Rc, which is joined with G−

using the connection instruction. Figure 3.29 illustrates this direct deriva-
tion. Notice that another possible match in this example can be made on the
node g4. We will discuss parallel rewriting in Section 3.3, where one direct
derivation can account for such cases of multiple matches.

65

CHAPTER 3. GRAPH REWRITING

Figure 3.29: Derivation of edNCE production. Top left: host graph G.
Bottom left: remaining host graph G− with g2 and its incident edge removed.
Right: Rc is an isomorphic copy of R, where rci are copies of ri. The dotted
edge is established by the connection instruction in e. H is the result of the
direct derivation.

3.3 Graph Rewriting in XL

The approaches in Section 3.2 offer glimpses of graph rewriting methods. In
this section, we present the two main graph rewriting approaches (chapter
5.3 in [91]) in relational growth grammars (RGG) [92], the underlying formal-
ism of the XL programming language. Unlike the sequential approaches in
Section 3.2, both of these techniques are parallel in nature, the first intended
for general cases, and the second to provide a specific L-system-like form of
rewriting.

3.3.1 Parallel Single-Pushout (SPO) Approach

The sequential SPO approach in Section 3.2.2 was considered for XL because
its properties apply well in the context of biological models (cf. page 104 in

66

CHAPTER 3. GRAPH REWRITING

[91]). For example, SPO rewriting removes dangling edges, a trait suitable
for the removal of graph nodes representing dying plant organs. In addition,
because node deletion is considered a deliberate action in models intended
to be developed in XL (e.g. a production for death takes precedence over
a production for metabolic activity), the SPO approach overcomes conflicts
arising from the identification condition of the DPO approach (see Section
3.2.1). However, there are cases where parallel productions are necessary, e.g.
for the modelling of concurrent cell movements using a single production. For
this purpose, the parallel SPO approach [48] is used in XL. We describe this
approach here using an example.

Example 3.3.1 (Parallel SPO). Consider a graph G = ({g0, g1, g2, g3, g4},
{(g0, >, g1), (g0,+, g3), (g0,+, g4), (g1, >, g2)}, Gλ) over the alphabet Λ = ({
Cell, Grid}, {>,+}). Gλ labels the nodes such that Gλ(g0) = Gλ(g1) =
Gλ(g2) = Grid and Gλ(g3) = Gλ(g5) = Cell, i.e. three of them represent
places in a regular spatial grid and two of them represent cells. An illustra-
tion of G looks like:

To model the movement of a cell to the neighbouring grid place, a production
p : L→ R is specified:

Two matches based on p occur, one for each cell in G. We call the match
with Cell(g3) m1 and the match with Cell(g4) m2.

A parallel derivation of m1 and m2 proceeds in two main steps. (This
two step approach relates to the general amalgamated two-level derivation
technique in [50]). In the first step, independent versions of the production
for m1 and m2, p1 : L1 → R1 and p2 : L2 → R2 respectively, are combined
using co-product (see Section 3.1.2.10) operations. We illustrate this first
combination step below:

67

CHAPTER 3. GRAPH REWRITING

where L1 + L2 is a co-product of L1 and L2, and R1 + R2 is a co-product of
R1 and R2. A combined production p1 + p2 : L1 + L2 → R1 +R2 is formed.

In the second step, the derived graph H is obtained using p1 + p2 by
the sequential SPO approach described in Section 3.2.2. We illustrate this
derivation in Figure 3.30.

3.3.2 L-system-style Connection

While the parallel SPO approach (Section 3.3.1) supports general cases, RGG
includes a type of graph rewriting that mimics the operation of L-system rules
(cf. chapter 5.3 in [91]). In this section, two operator-based approaches are
first described in Sections 3.3.2.1 and 3.3.2.2 before concluding in Section
3.3.2.3 with the method adopted in RGG.

68

CHAPTER 3. GRAPH REWRITING

Figure 3.30: Parallel SPO derivation: step 2. Top left: combined left-hand
side graph L1 + L2 for matches m1 and m2. Top right: combined right-
hand side graph R1 + R2 for matches m1 and m2. Bottom left: host graph
G. Bottom right: derived graph H computed as apex of pushout. Dashed
arrows curved to the left represent homomorphisms of match m1 and dashed
arrows curved to the right represent homomorphisms of match m2. L1 +L2,
R1 +R2, G, H, and the homomorphisms between them form a commutative
square.

3.3.2.1 Operator-based Graph Rewriting

Operator-based graph rewriting [124] is an approach that uses operators,
which identify a set of related nodes for each node in the host graph. We
describe here the functionality of this early approach with an example based
on [91].

An operator is a family of mappings AG : GV → GV for a graph G such
that n 6∈ AG(n) for all n ∈ G. A production with operators p : µ

σ,τ−→ R
is given by a node label µ, a graph R, and two finite sets of connection
transformations c = (A, γ, w) where A is an operator, γ ∈ ΛE is an edge

69

CHAPTER 3. GRAPH REWRITING

label, and w ∈ R is a node of the right-hand side graph. A direct derivation
of host graph G to derived graph H using p exists if a match occurs for each
node v ∈ GV , and H consists of tv∈GV

Rv (where Rv is an isomorphic copy
of R for a match on v) and a set of additional edges E. Let an edge in E be
(s ∈ HV , γ, t ∈ HV). s and t are nodes produced based on matched nodes
sp ∈ GV and tp ∈ GV respectively. For the direct derivation to hold, there
must exist connection transformations α = (S, γ, s) ∈ σ and β = (T, γ, t) ∈ τ ,
where tp ∈ S(sp) and sp ∈ T (tp).

Example 3.3.2 (Parallel graph rewriting with operators). Consider
a graph G = ({g0, g1}, {(g0, >, g1)}, Gλ : g 7→ gu) over an alphabet Λ =

({gu}, {>}). We define a production with operators p : gu
σ,τ−→ R, where R =

({r0, r1}, {(r0, >, r1)}, Rλ : g 7→ gu). σ consists of a connection instruction
(Aout, >, r1), and τ consists of a connection instruction (Ain, >, r0). Aout

is an operator that returns all nodes vout ∈ GV with an edge connection
(n,>, vout) from a matched node n. Ain is an operator that returns all nodes
vin ∈ GV with an edge connection (vin, >, n) to a matched node n.

A direct derivation proceeds as follows: g0 and g1 are both matched by
the production p (resulting in matches m0 and m1 respectively). They are
removed from G, resulting in an empty remaining host graph G−. Two iso-
morphics copies of R are produced, Rc0 = ({rc00 , r

c0
1 }, {(rc00 , >, r

c0
1)}, Rc0

λ) and
Rc1 = ({rc10 , r

c1
1 }, {(rc10 , >, r

c1
1)}, Rc1

λ) corresponding to m0 and m1 respec-
tively. The operator Aout yields {g1} for m0 and ∅ for m1, while the operator
Ain yields {g0} for m1 and ∅ for m0. Consequently, an edge labelled > is
established between rc01 and rc10 . Figure 3.31 illustrates this direct derivation
process.

3.3.2.2 Operator-based L-system-style Graph Rewriting

To utilize the operator-based approach in Section 3.3.2.1 for L-system-style
graph rewriting, Kniemeyer first extended the notion of well-nested words
[142] to translate strings to graphs (cf. page 95 in [91]). The translation is
based on axial tree representations ([144], [67]) of strings in L-system rules.
It is essential for the identification of nodes in the right-hand side graphs of
productions, so that they establish embedding edges in a manner resembling
L-system derivations.

Based on [91], a well-nested word is a word that can be generated by the
context-free grammar

70

CHAPTER 3. GRAPH REWRITING

Figure 3.31: Derivation of production with operators. Top left: host graph
G. Arrows with large heads represent a complementing pair of operator
mappings, Aout(g0) = g1 and Ain(g1) = g0. Bottom left: empty remaining
host graph G−. Right: Derived graph H consisting of isomorphic copies of
R, Rc0 and Rc1, and the dotted edge established based on the complementing
pair of operator mappings seen at the top left.

α→ A0,
A0 → λ,
A0 → A,

A→ aA0 ∀a ∈ Λ,
A→ %A0,
A→ [A0]A0.

In this grammar, α is the axiom, A is a non-empty well-nested word, A0 is a
possibly empty well-nested word, λ is the empty word, % is the cut-operator
turtle command [4], and Λ is an alphabet of symbols excluding [,], and %.
It allowed the specification of a recursive function that translates strings in
the form of well-nested words to graphs (see specification of function on page
96 in [91]) by parsing from left to right. We illustrate the translation using
an example:

Example 3.3.3 (Translation of well-nested words). Consider a well-
nested word [A[[B%CD]E[F]]G][H]I. Upon translation, the word yields an
unconnected graph G, a set of left-most nodes L, a set of right-most nodes R,
and a set of pending branch nodes B. G is given by ({a, b, ..., i}, {(a,+, b), (c, >
, d), (a,+, e), (e,+, f), (a,>, g)}, Gλ), where Gλ(a) = A, Gλ(b) = B, ...,
Gλ(i) = I. Both L and R consist of one node i, considering that I is the left-

71

CHAPTER 3. GRAPH REWRITING

most and right-most symbol not enclosed in brackets. Lastly, B contains the
nodes a and h, which are the left-most nodes within brackets. We illustrate
the resulting graph in Figure 3.32.

Figure 3.32: Graph translation of a well-nested word (a string in an L-system
rule) [A[[B%CD]E[F]]G][H]I. I(i) is in the sets of left-most and right-most
nodes, L and R respectively. The set of pending branch nodes B contains
the nodes A(a) and H(h).

Based on this translation of well-nested words, a D0L-system rule can
be translated to a special case of graph rewriting production with operators
(cf. [91]). Consider a D0L-system rule r : a→ χ over an alphabet V , where
a ∈ V and χ is a well-nested word. We specify the translation function of
well-nested words to graphs as T : χ 7→ (G,L,R,B), where G is the graph
translation of χ, and L, R, and B are the sets of left-most, right-most, and
pending branch nodes respectively. r is translated to a graph rewriting pro-
duction with operators p : a

σ,τ−→ G with

σ =
⋃

γ∈ΛE ,s∈R\{%}
{(N out

γ , γ, s), (N out
γ ,+, s)}

τ =
⋃

γ∈ΛE ,t∈L\{%}
{(N in

γ , γ, t)} ∪
⋃

γ∈ΛE ,t∈B
{(N in

γ ,+, t)} .

In this production, Λ = (ΛV ,ΛE) is the alphabet of node and edge labels.
The operator Ndir

e returns the set of nodes connected to a matched node via
an edge labelled e in the direction dir. The following example illustrates the
operation of such a production.

Example 3.3.4 (L-system-style production with operators). Consider
a string, a a a. To differentiate between the three symbols, we label them
with indices so the string becomes a1 a2 a3. A D0L-system rule r : a → [b]c
is applied to the string to derive [b1]c1[b2]c2[b3]c3, the indices indicating the
original symbol before rule application. We describe this rule derivation in
graph grammars using the above special case of production with operators:

72

CHAPTER 3. GRAPH REWRITING

The string, a a a, is represented as a graph G = ({a1, a2, a3}, {(a1, >
, a2), (a2, >, a3)}, Gλ : ai 7→ a) over the alphabet Λ = ({a, b, c}, {>,+}). In
order to specify connection instructions, the well-nested word, [b]c, on the
right-hand side of rule r is translated to (K,L,R,B) = (K, {c}, {c}, {b}),
where K = ({k1, k2}, ∅, Kλ) is a graph over Λ, Kλ(k1) = b, and Kλ(k2) = c.
To transform G like the rewriting of the string by r above, a production with
operators p : a

σ,τ−→ K is specified.
A match occurs for each of the three nodes in G, and isomorphic copies

of K, Kc1, Kc2, Kc3, are made for matches on a1, a2, and a3 respectively.
Figure 3.33 illustrates G, the production p, and the copies of K (i.e. Kc1,
Kc2, Kc3) made for each match.

Figure 3.33: L-system-style production. Top: original graph G before deriva-
tion. Middle: production p with graph K on right-hand side. Bottom: De-
rived graph H with isomorphic copies of K for each match and embedding
edges.

We proceed to describe the sets of connection instructions, σ and τ for
the derivation. σ consists of the connection instructions:

s1 = (N out
> , >, c),

s2 = (N out
> ,+, c), and

s3 = (N out
+ ,+, c).

73

CHAPTER 3. GRAPH REWRITING

τ consists of the complementing connection instructions:

s4 = (N in
> , >, c),

s5 = (N in
+ ,+, c),

s6 = (N in
> ,+, b),

s5 = (N in
+ ,+, b).

Using these connection instructions and their operators, half-edges pending
connections are created. For the match on a1, two half-edges:

e1 = (c1, >, ?) and
e2 = (c1,+, ?)

pending connections to Kc2 are created based on s1 and s2 respectively. For
the match on a2, four half-edges:

e3 = (c2, >, ?),
e4 = (c2,+, ?),
e5 = (?, >, c2),
e6 = (?,+, b2),

pending connections to Kc3 and from Kc1 are created. Lastly, for the match
on a3, two half-edges:

e7 = (?, >, c3),
e8 = (?,+, b3),

pending connections from Kc2 are created. The pairs of complementing half-
edges result in the embedding edges in H as shown in Figure 3.33:

• e1 and e5: (c1, >, c2)

• e2 and e6: (c1,+, b2)

• e3 and e7: (c2, >, c3)

• e4 and e8: (c2,+, b3)

74

CHAPTER 3. GRAPH REWRITING

Although this special form of production with operators was defined to
mimic rules in D0L-systems, it is mentioned in [91] that extentions to other
forms of L-systems are straightforward and require only more complex nota-
tions.

3.3.2.3 Single-pushout (SPO) with Operators

This section describes the second rewriting approach called single-pushout
(SPO) with operators (cf. page 104 in [91]) in RGG and XL for L-system-
style connections. It combines the functionalities of the operator-based L-
system-style rewriting in Section 3.3.2.2 and the parallel SPO approach in
Section 3.3.1. We illustrate the operation of this approach with an example,
which will reveal the reasons for such a combination.

Example 3.3.5 (SPO with operators). Consider a graph G = ({g0, g1, g2},
{(g0, >, g1), (g1, >, g2)}, Gλ) over an alphabet Λ = ({A,B,C}, {>,+}). Gλ

labels the nodes such that Gλ(g0) = Gλ(g1) = A and Gλ(g2) = C. A diagram
of G appears as follows:

An SPO production with operators p : L
σ,τ−→ R is specified to rewrite G in

order to obtain a derived graph H. L and R are represented as translated well-
nested words in the forms L = (LG, LL, LR, LB) and R = (RG, RL, RR, RB)
respectively. The subscripts G, L, R, B represent the graph, the left-most, the
right-most, and the pending branch nodes respectively (see Example 3.3.3 for
the translation of well-nested words). LG is a graph ({l0}, ∅, LGλ(l0) = A) and
RG is a graph ({r0, r1, r2, r3}, {(r0, >, r1), (r1, >, r2), (r1,+, r3)}, RGλ), where
RGλ(r0) = A and RGλ(r1) = RGλ(r2) = RGλ(r3) = B. A diagram of p ap-
pears as follows:

The dotted arrow represents a homomorphism from node l0 to r0. Based on
this setup, LL = {l0}, LR = {l0}, LB = ∅, RL = {r0}, RR = {r2}, and
RB = ∅. σ and τ are sets of connection instructions as previously described

75

CHAPTER 3. GRAPH REWRITING

in Section 3.3.2.2. However, the operator N out
γ returns nodes connected to

the matched node of the node in LR via out-going edges labelled γ, and the
operator N in

γ returns nodes connected to the matched node of the node in LL
via incoming edges labelled γ. The derivation of graph H proceeds in five
steps:

Step 1:

For each match mi (1 ≤ i ≤ n, n being the number of matches), an iso-
morphic copy Ri of R is derived using the sequential SPO method described
in Section 3.2.2. In this example, there is a match on g0 and another on g1,
resulting in the following Ri graphs:

Step 2:

The embedding edges are determined following the operator-based approach
in Section 3.3.2.2. For the match m1, the half-edge

e0 = (r1
2, >, ?)

pending connection to R2 is created. For the match m2, the half-edges

e1 = (r2
2, >, (g2)?) and

e2 = (?, >, r2
0)

pending connections to g2 and R1 respectively are created.
Remark: Although the operator resulting in e1 returned g2, which is a node

in G that is not matched, the half-edge is still created as a trivial (non-parallel,
sequential) case for embedding in the remaining host graph G−. However,

76

CHAPTER 3. GRAPH REWRITING

such half-edges are not created for connection instructions in σ that are in
the form (N out

γ ,+, s). This allows sequential embedding similar to the edNCE
approach.

A pair of complementing half-edges (e0, e2) and the half-edge e1 with no
complement synthesizes the embedding edges (r1

2, >, r
2
0 = g1) and (r2

2, >, g2)
respectively.

Step 3:

For each embedding edge and each match, a new SPO production pij : Lj → Rj

is specified to include the gluing node (either the source or target of the embed-
ding edge), where i corresponds to match mi and j corresponds to embedding
edge ej. The following productions are created:

The dashed edges in Rj represent the embeddings edges created in the previous
step. This step is a preparation step for an application of the amalgamated
two-level derivations (see page 65 in [91]) for parallel SPO in the next two
steps.

77

CHAPTER 3. GRAPH REWRITING

Step 4:

The four productions in Step 3 are amalgamated using pushout-stars (cf.
page 63 [91]) to obtain a final production pf : Lf → Rf . This is the first
level of an amalgamated two-level derivation. We illustrate the commutative
diagrams (pushout-stars) for obtaining Lf and Rf below:

Each Lij consists of the common nodes and edges in Li and Lj, and each
Rij consists of the common nodes and edges in Ri and Rj. As a result, the
final production pf is:

Step 5:

Finally, the production pf : Lf → Rf is used for a SPO direct derivation
of H from G. We illustrate this derivation in Figure 3.34.

78

CHAPTER 3. GRAPH REWRITING

Figure 3.34: SPO derivation with operators. Lf and Rf are the left-hand side
and right-hand side graphs of the amalgamated production pf obtained in the
previous step of the SPO with operators method. The dashed arrows from
Lf to Rf represent a partial homomorphism. The dashed arrows from Lf to
G represent a match that is a total homomorphism. (dom(pf) ⊆ Lf) → Rf

is a total homomorphism corresponding to Lf → Rf . D is computed as
the apex of the pushout by arrows dom(pf) → Rf and dom(pf) → G. The
derived graph H as a result of applying pf to G is obtained by a coequalizer
operation, in which the edges (g0, >, g1) and (g0, >, g2) are deleted. Arrows
with large heads are collective representation of graph homomorphisms to
avoid cluttering.

Step 1 in Example 3.3.5 shows the necessity of gluing which is not catered
for by the operator-based approach in Section 3.3.2.2. Step 2 in the same
example highlights the dynamic identification of desired neighbouring nodes
for each match using operators, a feature absent in the parallel SPO approach

79

CHAPTER 3. GRAPH REWRITING

in Section 3.3.1. The combined approach delivers the functionality of both
approaches and allows an L-system-style connection in RGG.

In this chapter, we have described the graph rewriting formalisms in RGG,
which underlies the XL programming language. In the next chapter, we
introduce new techniques and extensions of XL as part of this thesis for
multiscale modelling.

80

Chapter 4

XL for Multiscale Modelling

This chapter introduces new concepts that address the first part of the thesis
topic - ”Extension of the Rule-Based Programming Language XL by Con-
cepts for Multi-Scaled Modelling”. The sections contain information pub-
lished in [128] and [130].

To express the modularity and multi-scale nature of plant topology, Godin
et al. introduced the Multiscale Tree Graph (MTG) [68]. MTGs allow the
preservation of plant structural information at several scales, e.g. internodes,
axes or branching systems (see Figure 4.1). In addition to spatial scales,
variations in MTGs recorded at particular time instances reflect incremental
growth of plant topology [67]. In 2012, an integration of L-systems with the
Python language called L-Py [14] was made with the capability to represent
MTG data as multiscale L-system strings. String-based rules can be applied
on these strings using scripts in L-Py.

As we have seen in the previous chapters, parallel graph grammars (uti-
lized in relational growth grammars (RGG)) are considered a generalization
of string-based L-systems [38, 62]. Therefore, we are motivated to develop
a data structure and rewriting method that retain the versatility of graphs
while allowing the specification of a dynamic model with multiple scales. To
keep the implementation flexible for a wider variety of modelling require-
ments, we do not restrict our research on tree structures, i.e. MTGs, so
that other graph structures can be represented. It is our intention that the
proposed model and grammar are suitable with single-scale models as well
as existing ones built on RGG [20, 92, 93]. They should be well adapted but
not limited to applications in FSPM. In Section 4.1, a generalized framework
to conduct multi-scale modelling using XL is given. Concrete developments

81

CHAPTER 4. XL FOR MULTISCALE MODELLING

Figure 4.1: Multiscale tree graph (MTG): a tree at different scales of percep-
tion (leaves not taken into account): (a) Tree scale, (b) axis scale, (c) growth
unit scale, (d) internode scale, (e) corresponding multiscale tree graph. Fig-
ure extracted from [67].

are documented in Sections 4.2, 4.3, and 4.4. Section 4.5 gives a description
of syntax changes in the XL programming language that support and pro-
vide access to the new data structure and rewriting formalism. To conclude
the chapter, technical details of implementation in the software GroIMP are
documented in Section 4.6.

4.1 Multiscale Modelling Framework

We begin first by addressing the dynamic aspects of modelling from a broad
perspective. Considering the hierarchy of physical models (ranging from

82

CHAPTER 4. XL FOR MULTISCALE MODELLING

continuum models to quantum mechanics), the interest of a modeller usu-
ally resides in a predominant scale. If the scale of interest is macroscopic,
the effects of inputs to the microscopic model are usually modelled by some
constitutive correlations at the macro scale because representative models at
the micro scale often pose computational or analytical problems [46]. These
correlations are usually obtained empirically. However, a correlation-based
model is soon loaded with parameters with obscure meaning as it becomes
increasingly complex with more microscopic inputs. For example, consider
constructing a model for the structural growth of trees under the effects of
an atmospheric component. One possible way could be an experimental ob-
servation of structural growth in relation to gas concentrations, followed by a
construction of a mathematical model after data interpretation. It would be
computationally impractical to model particular responsive metabolic net-
works in each cell of the trees. Despite their success in many applications,
the extension of such correlation-based approaches to complex scenarios has
proven to be difficult, often requiring complicated mathematical functions.
E [46] illustrated this argument with extensions of the Navier-Stokes equa-
tion (which commonly uses an empirically obtained stress tensor parameter)
for complex fluids such as polymeric fluids [11]. The quantum mechanics-
molecular mechanics (QM-MM) model of chemical reactions [175] and the
first-principle-based molecular dynamics [22] are two examples of successful
multiscale applications that overcame these difficulties. Subsequently, several
general frameworks for multiscale modelling in mathematical physics such as
the heterogeneous multiscale method (HMM) by [47] have been developed.
These frameworks from domains of science relatively distant from FSPM,
nevertheless, offer a concise overview of multiscale concepts. They address
a fundamental difficulty in mathematical modelling inherent to correlation-
based approaches.

The three-part graph data structure which will be introduced in Sec-
tion 4.3 offers only an infrastructure for modelling [130]. To justify its util-
ity, we propose a multiscale modelling framework inspired by the extended
multi-grid method [16], the equation-free approach [89] and the heteroge-
neous multiscale method (HMM; [47], [46]). This approach consists of three
components, namely, problem categorization, scale-dependency, and scale in-
tegration.

The problem categorization component adopts the two categories of mul-
tiscale problems introduced by E [46]. Both problem categories are charac-
terized by significant disparities of simulation output from expected output.

83

CHAPTER 4. XL FOR MULTISCALE MODELLING

One category (hereafter referred to as ”local”) is characterized by disparities
at localized regions in the domain of the coarse scale. The fine scale is em-
ployed to resolve the disparities occurring at these regions. As a hypothetical
example, an FSPM of tree growth at organ scale may be integrated with a
micro-scale biophysical model of xylem vessels to predict sudden embolisms
that can cause a catastrophic dysfunction of the water supply system in a
branch or in a whole crown part (cf. [34]). The second category (hereafter
referred to as ”global”) of problems requires the fine scale to overcome dispar-
ities throughout the domain of the coarse scale. For example, the production
of new internodes and buds may be an extrapolation of meristem cell differ-
entiation throughout the vegetation period. This form of categorization is
helpful for identifying and describing the aim of a multiscale model. Con-
trasting with the problem types by E [46], our framework does not mandate
the occurrence of disparities only in the coarse scale. I.e., disparities in the
fine scale domain can also be resolved with feedback from coarse scale models.

The notion of scale dependency is closely related to problem categoriza-
tion. The scale with disparities, either locally or throughout its entire do-
main, is said to be scale dependent on the scale providing information that
alleviates the disparities. The scale that provides information to alleviate dis-
parities is said to be scale independent. Scale integration serves as a template
for scale-to-scale interactions during simulation. It comprises three steps be-
tween two comparable scales that are executed in the order of initialization,
evolution and extrapolation (Figure 4.2 shows a schematic representation of
the steps). Suppose X is a scale dependent on scale Y. If Y is a finer scale
than X, it is usually simulated at spatial and time scales much smaller in
magnitude than the model in X. While correlation-based approaches seek to
avoid simulation at scale Y due to computational or analytical impractical-
ity, our approach attempts to perform a feasible simulation at scale Y and
estimates the state of X using the results. In initialization, the state of X
may first undergo preparatory modifications. Subsequently, the state of Y is
initialized with information from the observable state of the model, including
the state of X. Evolution refers to the simulation of a model in Y following
the initialized parameters. Finally, the state of X is modified based on the
evolved state of Y in extrapolation. We revisit this framework in Chapters
6.4 and 6.5 where its use is demonstrated.

84

CHAPTER 4. XL FOR MULTISCALE MODELLING

Figure 4.2: Multiscale scale integration steps initialization, evolution, ex-
trapolation. X is a dependent scale and Y is an independent scale. Dotted
arrows are directed at scales with state modification (excluding preparatory
modifications of X in initialization).

4.2 Statement of Problem

In this section, we introduce the fundamental problem in graph rewriting
within the context of RGG when scales are introduced.

Consider a graph rewriting production p : L → R that uses the L-
system-style connection mechanism described in Section 3.3.2.3. (Although
technically the name for the mechanism is single-pushout with operators, we
refer to it as L-system-style connection to differentiate it from the paral-
lel SPO method). To simplify the description, we do not explicitly spec-
ify L and R as results of translated well-nested words here (for details on
translation of well-nested words, see Section 3.3.2.2). Let L be a graph
({l0}, ∅, Lλ(l0) = A) and R be a graph ({r0, r1, r2}, {(r1, >, r2)}, Rλ) over
the alphabet Λ = ({A,B,C,D, U,X}, {>,+}). Rλ labels the nodes in R as
Rλ(r0) = B, Rλ(r1) = C, and Rλ(r2) = D. The string representation of
production p is:

85

CHAPTER 4. XL FOR MULTISCALE MODELLING

A ==> [B] C D,

where ==> is syntax in XL for a production using the L-system-style con-
nection. The graph representation of p is:

We apply p on a host graph G = ({g0, g1, g2}, {(g0, >, g1), (g1, >, g2)}, Gλ)
over Λ, where Gλ(g0) = U , Gλ(g1) = A, and Gλ(g2) = X. The derived
graph H based on the connection mechanism is ({h0, h1, h2, h3, h4}, {(h0, >
, h1), (h1, >, h2), (h2, >, h3), (h0,+, h4)}, Hλ), where Hλ(h0) = U , Hλ(h1) =
C, Hλ(h2) = D, Hλ(h3) = X, and Hλ(h4) = B. Graphs G and H are graph-
ically represented as below:

The same rewriting operation can be specified by a production that uses
the parallel SPO mechanism described in Section 3.3.1. Such a production
is specified as pspo : L→ R, where L = ({l0, l1, l2}, {(l0, >, l1), (l1, >, l2)}, Lλ),
andR = ({r0, r1, r2, r3, r4}, {(r0, >, r1), (r1, >, r2), (r2, >, r3), (r0,+, r4)}, Rλ).
Lλ labels the nodes in L as Lλ(l0) = U , Lλ(l1) = A, Lλ(L2) = X, and Rλ

labels the nodes in R as Rλ(r0) = U , Rλ(r1) = C, Rλ(r2) = D, Rλ(r3) = X,
Rλ(r4) = B. The string representation of production pspo is:

u : U A x : X ==>> u [B] C D x,

where ==>> is syntax in XL for a production using the parallel SPO con-
nection mechanism. The small letters u and x are labels attached to matched
nodes of U and X respectively. Their prescence in the right-hand side in-
dicate that they are the gluing nodes in the SPO mechanism, i.e. a partial
homomorphism maps u and x on the left-hand side to u and x on the right-

86

CHAPTER 4. XL FOR MULTISCALE MODELLING

hand side respectively. The graph representation of pspo is:

,

where the dotted arrows show the partial homomorphism. The derived graph
H obtained by applying pspo to G is the same as that obtained by applying
p.

Consider the use of an edge type (symbolized as /) to represent refinement
relationships between nodes representing the same entity in the graph model
at different scales. The alphabet Λ hence becomes ({A,B,C,D, S, U,X}, {>
,+, /}), where S is a node label for a coarser scale representation. We now
apply the production p on another version of graph G containing a coarser
scale. The new graph G is specified as ({g0, g1, g2, g3}, {(g0, >, g1), (g1, >
, g2), (g3, /, g0), (g3, /, g1), (g3, /, g2)}, Gλ) over Λ. Figure 4.3 shows graph G
and derived graph H via the application of p on G. The L-system style

Figure 4.3: L-system style embedding with multiple scales. Edges labelled ’/’
are refinement (inter-scale) edges. Node S is a coarse scale representation of
an entity (e.g. growth unit) comprising of 3 fine scale representations (nodes
U , A and X) of the same entity (e.g. internodes). Notice that nodes B and D
are not connected to node S after rule execution based on the L-system-style
embedding mechanism.

embedding in RGG fails to take the refinement relationships correctly into
account. Assuming that B and D are in the same scale as A, they are not

87

CHAPTER 4. XL FOR MULTISCALE MODELLING

connected by refinement edges from S after derivation although we intuitively
expect them to be.

One can of course argue that such connections can be established if we
utilize the parallel SPO approach and indicate all expected embedding edges
explicitly. In order to do so, we modify pspo to include the coarse scale node
labelled S:

u : U a : A x : X, s : S/ > u, s/ > a, s/ > x
==>>

u [b : B] c : C d : D x,
s / > u, s / > b, s / > c, s / > d, s / > x

By applying this modified version of pspo, we can obtain a derived graph
H with all expected embedding edges. Figure 4.4 shows graph G and de-
rived graph H via the application of the modified pspo on G. However, this

Figure 4.4: SPO embedding with multiple scales. Edges labelled ’/’ are
refinement (inter-scale) edges. Node S is a coarse scale representation of an
entity (e.g. growth unit) comprising of 3 fine scale representations (nodes U ,
A and X) of the same entity (e.g. internodes). ’/>’ represents a refinement
edge. In comparison with Figure 4.3, notice that all inter-scale embedding
edges are established.

reveals another problem. The explicit connection specifications at the end
of the right-hand side production statement between the coarse scale node
S and the finer scale nodes are very lengthy. Considering that only one
additional scale is introduced in this case, the production statement will po-
tentially become very long with more than two scales, making multi-scale
rule programming tedious in XL.

88

CHAPTER 4. XL FOR MULTISCALE MODELLING

4.3 Multiscale Graph Data Structure

4.3.1 Structure-of-Scales

A solution of the problems revealed in Section 4.2 first requires a concrete
definition of a data structure that contains the refinement edge type. On one
hand, the data structure and its operations should take into account compli-
ance with existing multiscale data, such as MTG encoded plant structures.
On the other hand, the restrictions imposed by them on the modelling ap-
proach should be minimal. The primary restriction a data structure imposes
on the modelling approach is the type of refinement ordering it supports. We
describe two types of refinement orderings.

Conventionally, the notion of plants as modular organisms [74] has been
used as a reference to relate and construct orderings for the modularities of
plants [67], i.e. for the types of repeatedly-occurring morphological entities.
Orderings represent decomposition relationships between modularities. In
the context of this thesis, the terms refinement and decomposition are used
as synonyms. A set of pairwise inter-comparable modularities yields a linear,
i.e. strict ordering (Figure 4.5A). When a set of modularities has no decom-

Figure 4.5: Refinement orderings: (A) linear ordering with inter-comparable
modularities, (B) fine modularities with common encoarsements and (C)
coarse modularities with common refinement. Arrows represent coarse-to-
fine refinement.

position relationships among its elements and is regarded as representing the

89

CHAPTER 4. XL FOR MULTISCALE MODELLING

plant’s constituents at a certain spatial resolution, we call it a scale.
A multiscale model can potentially transcend the scope of a single plant.

For example, the focus of a modeller may be fixated on a population of
plants without disregarding structures of individual plants or even molecu-
lar processes. In such scenarios, the reference to incomparable modularities
in individual plants, as perceived from the population scale, necessitates the
aggregation of finer modularities into common coarse representations (Figure
4.5B). The dissolution of coarse modularities to common fine representations
(Figure 4.5C) may occur when microscopic models are taken into account.
Furthermore, arbitrary measurements or data in three dimensional space
compartments (e.g. layers or boxes) that cannot be classified as plant mod-
ularities can thus be easily included in the refinement ordering as properties
referring to specific scales. The distinction between scales and modularities
is intentional to highlight scales as sets of modularities as well as the tran-
scendence beyond the scope of single organisms. If incomparable scales exist,
a linear ordering is unsuitable for representation. In such cases, a generalized
multiscale graph [67] or a structure-of-scales [128] can represent the scales as
a partially ordered set. Such refinement orderings (Figure 4.6A) are useful
for models with an extensive range of scales (as we will demonstrate in Part
III of this thesis).

Figure 4.6: Structure-of-Scales (Λs,≤) and Type Graph T . A: graph repre-
sentation of partially-ordered set of scales. Edges labels are not shown since
all edges are labelled /. B: type graph T corresponding to the structure-of-
scales. Dotted arrows represent the scale mapping Ts from Tv to Λs.

90

CHAPTER 4. XL FOR MULTISCALE MODELLING

Definition 4.3.1 (Structure-of-Scales). A structure-of-scales [128] is a
finite weak partially ordered set (Λs,≤). The elements of Λs are called scale
labels, si. If Λs 3 s1 ≤ s2 ∈ Λs, we say that s1 is finer than s2 and that s2

is coarser than s1. inf(s1, s2) ∈ Λs is the coarsest common refinement of s1

and s2. sup(s1, s2) ∈ Λs is the finest common coarsening of s1 and s2. Let ≺
be the nearest neighbour relation of (Λs,≤), i.e., s1 ≺ s2 :⇔ s1 ≤ s2 ∧ s1 6=
s2 ∧ ∀s ∈ Λs : (s1 ≤ s ≤ s2 ⇒ s = s1 ∨ s = s2). Then we can characterize
(Λs,≤) by the directed acyclic graph Gs = (Λs, {(s1, /, s2)|s1, s2 ∈ Λs, s1 �
s2}, Gsλ : si 7→ si) over the alphabet (Λs, {/}), where the vertex set is also
the set of node labels. Edges are directed only from coarser to finer scales.

Example 4.3.1 (Structure-of-Scales). An example of a structure-of-scales
(Λs,≤) is shown in Figure 4.6A. In this case, individuals, axes, voxel space,
growth units, organs are scale labels, i.e. elements of the set Λs. We say,
for example, that growth units are finer than individuals, or individuals
are coarser than growth units, written growth units ≤ individuals. The
coarsest common refinement of voxel space and axes are organs, written
inf(voxel space, axes) = organs. The finest common coarsening of voxel
space and growth units are individuals, written sup(voxel space, growth
units) = individuals. The nearest neighbour relations and their corresponding
edges in the graph representation of (Λs,≤), Gs are:

individuals � axes

individuals � voxel space

axes � growth units

voxel space � organs

growth units � organs

(individuals, /, axes)

(individuals, /, voxel space)

(axes, /, growth units)

(voxel space, /, organs)

(growth units, /, organs)

4.3.2 Type Graph

Graph re-writing and rule-based operations are generally defined for types
rather than scales. For example, one scale may have leaf and internode
types, while another, coarser scale may have an axis type. In order to pro-
vide control on the possible relationships between types, we adopt a typed
approach from languages such as Java (in which types are called classes) and
require a specification of all types and their potential relationships in a type
graph ([91], [128]) before transformation rules are established.

91

CHAPTER 4. XL FOR MULTISCALE MODELLING

Definition 4.3.2 (Type Graph). Let Λ = (Λv,Λe, (Λs,≤)) be an alphabet
consisting of node labels Λv, edge labels Λe and a structure of scales (Λs,≤).
A type graph [128] T = (Tv, Te, Tλ, Ts) is a labelled, directed graph over Λ
consisting of a set of vertices Tv, a set of labelled edges Te ⊆ Tv ×Λe × Tv, a
surjective node labelling function Tλ : Tv → Λv and a surjective scale mapping
function Ts : Tv → Λs fulfilling the condition ∀u, v ∈ Tv : (Tλ(u) = Tλ(v) ⇒
Ts(u) 6= Ts(v)). T is not necessarily acyclic and has a distinguished edge
label / ∈ Λe (”refinement”) which is antitonic with the scale mapping, i.e.,
(u, /, v) ∈ Te ⇒ Ts(u) > Ts(v).

One can thus say that the refinement relationships between the types are
controlled or restricted by the structure-of-scales based on the scale mapping
function. In other words, the graph representation of the structure-of-scales
is an epimorphic (see Sections 3.1.4 and 3.1.2.3 on epimorphism) image of
the type graph.

Each type is represented by a node in the type graph. Refinement re-
lationships between types are represented by edges labelled by the unique
refinement edge label. The appearance of other edges, such as successor and
branching edges, between two nodes a and b in a type graph means that edges
with these labels are allowed between instances of types a and b, although
it is not necessary that they exist. We discuss instances of types in the next
Section 4.3.3.

Example 4.3.2 (Type Graph). We give an example of a type graph fol-
lowing the structure-of-scales (Λs,≤) defined in Example 4.3.1. Let Λ =
(Λv,Λe, (Λs,≤)) be an alphabet consisting of node labels Λv = {Tree, Axis,
GU, V oxel, I, Leaf}, edge labels Λe = {>,+, /} and a structure of scales
(Λs,≤). GU is short for growth unit and I is short for internode. We specify
a type graph T = (Tv = {t0, t1, t2, t3, t4, t5}, Te, Tλ, Ts). Te consists of the edges
(t0, /, t1), (t0, /, t3), (t1, /, t2), (t2, /, t4), (t2, /, t5), (t3, /, t4), (t3, /, t5), (t4, >
, t5), and (t4,+, t5). The nodes are labelled Tλ(t0) = Tree, Tλ(t1) = Axis,
Tλ(t3) = V oxel, Tλ(t2) = GU , Tλ(t4) = I, and Tλ(t5) = Leaf . A graphi-
cal image of T is shown in Figure 4.6B. The individual types represented as
nodes in T are mapped to scales as Ts(t0) = Individuals, Ts(t1) = Axes,
Ts(t3) = V oxel Space, Ts(t2) = Growth Units, Ts(t3) = Ts(t5) = Organs.
The scale mappings are shown as dotted arrows in Figure 4.6. In this exam-
ple, the Organs scale consists of two types: I and Leaf , while the rest of the
scales have a single representative type each.

92

CHAPTER 4. XL FOR MULTISCALE MODELLING

4.3.3 Instanced Graph

Analogous to the creation of object instances from classes in the object-
oriented programming paradigm, instances of types can be created as nodes
in an instanced graph. This graph is used for modelling virtual entities such
as biological organisms, cells, forest stands, etc., which are represented as
nodes, and their relationships as edges.

The type graph is a homomorphic image of the instanced graph, with
the underlying homomorphism preserving node types and edge labels. This
means that the type graph controls or restricts the architecture of the in-
stanced graph. If two types a and b are, for example, not connected by a
successor edge in the type graph, such an edge is forbidden between instances
of a and b.

Definition 4.3.3 (Instanced Graph). An instanced graph (also known as
multi-scale typed graph in [128]) G = (Gv, Ge, Gλ, Gt) over a type graph T
is a graph (Gv, Ge, Gλ) with a graph homomorphism Gt : (Gv, Ge, Gλ) → T .
Gλ is defined by taking labels from T such that Gλ(v) = Tλ(Gt(v)). G is not
necessarily acyclic.

The instanced graph is the subject of rule-based transformations. Succes-
sor and branching edges in instanced graphs are interpreted in the same way
as the conventional successor and branching relations in L-systems.

Example 4.3.3 (Instanced Graph). We give an example of an instanced
graph G following the structure-of-scales (Λs,≤) and type graph T defined in
Example 4.3.2. Figure 4.7 shows the instanced graph. It should be clear from
the figure that node labels, i.e. Tree, Axis, GU , V oxel, I, Leaf , indicate
the homomorphism to the type graph T .

Together, the structure-of-scales (Definition 4.3.1), the type graph (Def-
inition 4.3.2), and the instanced graph (Definition 4.3.3) form a three-part
multi-scale graph data structure fundamental to the concepts we introduce
in the rest of this chapter.

4.4 Multiscale Graph Rewriting

This section describes modifications of the L-system-style connection mech-
anism illustrated in Section 3.3.2.3. For clarity, the explanations are given

93

CHAPTER 4. XL FOR MULTISCALE MODELLING

Figure 4.7: Instanced Graph corresponding the structure-of-scales and type
graph shown in Figure 4.6. Nodes in the same scale are boxed together. To
avoid cluttering, only non-refinement edges, i.e. successor (>)and branching
(+) edges are labelled. Edges without labels are refinement edges.

progressively, with Section 4.4.2 building upon Section 4.4.1. The modifi-
cations result in a connection mechanism suitable for rewriting multi-scale
instanced graphs (defined in Section 4.3.3). This mechanism addresses the
problem stated earlier in Section 4.2 and tackles some additional issues that
we will describe next. For simplicity, we refer to instanced graph whenever

94

CHAPTER 4. XL FOR MULTISCALE MODELLING

we use the term graph in this section.

4.4.1 Scale-specific L-system-style Connection

The L-system-style connection mechanism does not differentiate nodes at
different scales. We tackle this immediately by incorporating scale discrim-
ination in the mechanism to get the so-called scale-specific L-system-style
connection.

Let Λs be an alphabet of scale labels, (Λs,≤) be a structure-of-scales,
Λ = (Λv,Λe, (Λs,≤)) be an alphabet, and T be a type graph over (Λs,≤).
The refinement edge label /, the successor edge label >, and the branching
edge label + are elements in Λe. A production p using the scale-specific L-
system-style connection is p : L

σ,τ−→ R over (Λs,≤) and T , where σ and τ
are sets of connection instructions. The left-hand side L of the production is
specified as L = (LG, LL, LR) and the right-hand side R of the production is
specified as R = (RG, RL, RR, RB). We describe these constituents of L and
R as follows:

• LG and RG are graphs, i.e. LG = (LGv, LGe, LGλ, LGt) and RG =
(RGv, RGe, RGλ, RGt). LG is used as the graph for matching in a host
graph G on which the production is applied. RG on the other hand is
the graph produced for each match.

• As in the case of L-system-style connections, LL and RL are the sets of
left-most nodes in LG and RG respectively. More specifically, LL ⊆ LGv
and RL ⊆ RGv.

• LR and RR are the sets of right-most nodes in LG and RG respectively,
i.e. LR ⊆ LGv and RR ⊆ RGv.

• The last constituent RB ⊆ RGv is the set of pending branch nodes in
RG.

Hence, in a longer form, the production p can be written as

p : ((LGv, LGe, LGλ, LGt), LL, LR)
σ,τ−→ ((RGv, RGe, RGλ, RGt), RL, RR, RB).

95

CHAPTER 4. XL FOR MULTISCALE MODELLING

For the sets of connection instructions σ and τ , we exclude the refine-
ment edge label (symbolized as /) from the operation of the operators Ndir

e ,
where dir is edge direction and e is edge label. They are specified as follows
(compare with the connection instructions in Section 3.3.2.2):

σ =
⋃

/6=γ∈ΛE ,s∈RR\{%}
{(N out

γ , γ, s), (N out
γ ,+, s)}

τ =
⋃

/6=γ∈ΛE ,t∈RL\{%}
{(N in

γ , γ, t)} ∪
⋃

/6=γ∈ΛE ,t∈RB

{(N in
γ ,+, t)} .

With the above modifications, p operates like the L-system-style connec-
tion mechanism (Section 3.3.2.3) with one exception: an embedding edge
(s, γ, t) or (s,+, t) is only established if s and t are at the same scale. More

specifically, all embedding edges (s, γ, t) or (s,+, t) in the derivation G
p−→ H

must satisfy Ts(Ht(s)) = Ts(Ht(t)), where s ∈ Hv and t ∈ Hv. We call this
the scale condition. To recap, Ht is the homomorphism from H to the type
graph T , and Ts is the scale mapping function from T to the structure-of-
scales (Λs,≤).

Note that we have yet to explain how the left-most, right-most, and pend-
ing branch nodes (i.e. LL, LR, RL, RR, and RB) at multiple scales have been
derived. This will be left to Section 4.5, where syntax changes which play a
more important role in these derivations are documented. Nevertheless, an
example of this connection mechanism can already be presented.

Example 4.4.1 (Scale-specific L-system-style Connection). Let Λs =
{a, b} be an alphabet of scale labels and Λ = (Λv = {A,B},Λe = {>
,+, /}, (Λs,≤)) be an alphabet, where (Λs,≤) is a structure-of-scales such
that b < a. A type graph T = (Tv = {t0, t1}, Te = {(t0, /, t1)}, Tλ, Ts) over
Λ is given such that Tλ(t0) = A, Tλ(t1) = B, Ts(t0) = a, and Ts(t1) =
b. A host graph (an instanced graph) G = (Gv = {g0, g1, g2, g3}, Ge =
{(g0, /, g1), (g2, /, g3), (g0, >, g2), (g1, >, g3)}, Gλ, Gt) is specified. Gt is a ho-
momorphism Gt : G → T such that Gt(g0) = Gt(g2) = t0 and Gt(g1) =
Gt(g3) = t1. Gλ labels the nodes based on Gt, i.e. Gλ(g0) = Gλ(g2) =
Tλ(Gt(g0)) = Tλ(Gt(g2)) = A and Gλ(g1) = Gλ(g3) = Tλ(Gt(g1)) = Tλ(Gt(g3

)) = B. The structure-of-scales (Λs,≤), type graph T , and graph G are shown
in Figure 4.8.

We specify a scale-specific L-system-style connection production p : L
σ,τ−→

R, where L = (LG, LL, LR) and R = (RG, RL, RR, RB). LG is graph ({l0, l1},

96

CHAPTER 4. XL FOR MULTISCALE MODELLING

Figure 4.8: Scale specific L-system-style connection setup. Left: structure-
of-scales. Middle: type graph T . Right: host graph G. Dotted arrows from
T to the structure-of-scales represent the scale mapping function Ts. Dotted
arrows from G to T represent the graph homomorphism Gt (edge mappings
not shown).

{(l0, /, l1)}, LGλ, LGt) and RG is a graph ({r0, r1, r2, r3}, {(r0, /, r1), (r2, /, r3),
(r0, >, r2), (r1, >, r3)}, RGλ, RGt). The homomorphism from LG to T is given
as LGt(l0) = t0 and LGt(l1) = t1. The labelling of nodes in LG is based on
LGt, such that LGλ(l0) = Tλ(LGt(l0)) = A and LGλ(l1) = Tλ(LGt(l1)) = B.
The homomorphism from RG to T is given as RGt(r0) = RGt(r2) = t0 and
RGt(r1) = RGt(r3) = t1. The labelling of nodes in RG is based on RGt, such
that RGλ(r0) = Tλ(RGt(r0)) = RGλ(r2) = Tλ(RGt(r2)) = A and RGλ(r1) =
Tλ(RGt(r1)) = RGλ(r3) = Tλ(RGt(r3)) = B. The set of left-most nodes LL in
LG is {l0, l1} and the set of right-most nodes LR in LG is also {l0, l1}. The
set of left-most nodes RL in RG is {r0, r1} while the set of right-most nodes
RR in RG is {r2, r3}. RB is an empty set in this example. Figure 4.9 shows
production p in graphical form.

Figure 4.9: Scale specific L-system-style production. The sets of left-most
(LL) and right-most (LR) nodes of the left-hand side graph LG are both
{l0, l1}. The sets of left-most (RL) and right-most (RR) nodes of the right-
hand side graph RG are {r0, r1} and {r2, r3} respectively.

We now apply p on G to derive graph H. The derivation follows the five-

97

CHAPTER 4. XL FOR MULTISCALE MODELLING

step procedure for L-system-style connections in Section 3.3.2.3 with modifi-
cations as described above.

Step 1:

For each match mi (1 ≤ i ≤ n, n being the number of matches), an iso-
morphic copy Ri of R is derived using the sequential SPO method described

in Section 3.2.2. In this example, there is a match on g0
/−→ g1 and another

on g2
/−→ g3, resulting in the following Ri

G graphs (corresponding matched
subgraphs LiG are shown below each Ri

G:

Step 2:

The embedding edges are determined following the operator-based approach
in Section 3.3.2.2. For the match m1, the half-edges

e0 = (r1
2, >, (g2)?)

e1 = (r1
2, >, (g3)?)

e2 = (r1
3, >, (g2)?)

e3 = (r1
3, >, (g3)?)

e4 = (r1
2,+, (g2)?)

e5 = (r1
2,+, (g3)?)

e6 = (r1
3,+, (g2)?)

e7 = (r1
3,+, (g3)?)

as pending connections to replacements of g2 and g3, i.e. R2
G, are created.

For the match m2, the half-edges

98

CHAPTER 4. XL FOR MULTISCALE MODELLING

e8 = ((g0)?, >, r2
0)

e9 = ((g1)?, >, r2
0)

e10 = ((g0)?, >, r2
1)

e11 = ((g1)?, >, r2
1)

as pending connections to replacements of g0 and g1, i.e. R1
G, are created.

The pairs of complementing half-edges are:

p0 = (e0, e8) = (r1
2, >, r

2
0)

p1 = (e0, e9) = (r1
2, >, r

2
0)

p2 = (e0, e10) = (r1
2, >, r

2
1)

p3 = (e0, e11) = (r1
2, >, r

2
1)

p4 = (e1, e8) = (r1
2, >, r

2
0)

p5 = (e1, e9) = (r1
2, >, r

2
0)

p6 = (e1, e10) = (r1
2, >, r

2
1)

p7 = (e1, e11) = (r1
2, >, r

2
1)

p8 = (e2, e8) = (r1
3, >, r

2
0)

p9 = (e2, e9) = (r1
3, >, r

2
0)

p10 = (e2, e10) = (r1
3, >, r

2
1)

p11 = (e2, e11) = (r1
3, >, r

2
1)

p12 = (e3, e8) = (r1
3, >, r

2
0)

p13 = (e3, e9) = (r1
3, >, r

2
0)

p14 = (e3, e10) = (r1
3, >, r

2
1)

p15 = (e3, e11) = (r1
3, >, r

2
1)

where duplicates exist: p0 = p1 = p4 = p5, p2 = p3 = p6 = p7,
p8 = p9 = p12 = p13, p10 = p11 = p14 = p15. p2, p8 and their duplicates
are rejected because they do not satisfy the scale condition. As a result, two
embedding edges are synthesized from the connection instructions σ and τ .
They are (r1

2, >, r
2
0) and (r1

3, >, r
2
1).

Step 3 to Step 5:

The remaining steps (step 3 to step 5) of the derivation are the same as
in Section 3.3.2.2 and we obtain the derived graph H shown in Figure 4.10.

Figure 4.10: Scale specific L-system-style derived graph H. The embedding
edges are (r1

2, >, r
2
0) and (r1

3, >, r
2
1).

99

CHAPTER 4. XL FOR MULTISCALE MODELLING

In Example 4.4.1, the scale-specific L-system-style connection performs
graph rewriting as though there is an L-system rule at each scale, i.e. one
rule for scale a and nodes labelled A, and another for scale b and nodes
labelled B. Although this is already an enhancement from the original L-
system-style connection, we have yet to resolve the problem in Section 4.2.

4.4.2 Multiscale Connection

This section describes the multi-scale connection method that improves upon
the scale-specific L-system-style connection method (in Section 4.4.1), which
creates embedding edges only for nodes at scales that are explicitly specified
in the production. For example, a scale-specific L-system-style connection
production p0 : L

σ,τ−→ R:

has two scales Growth Units and Organs containing the types GU (growth
unit), I (internode), and Bud. Here, we omit the structure-of-scales and type
graph specifications to keep the description concise. An application of p0 on
a graph G successfully embeds all scales in a derivation as below:

Another similar scale-specific L-system-style connection production p1 : L
σ,τ−→ R:

100

CHAPTER 4. XL FOR MULTISCALE MODELLING

fails to embed the Growth Units scale when applied on G:

This failure is firstly reminiscent of the problem in Section 4.2 because
GU(g1 = h3) is not reconnected to I(h0) and I(h1) after derivation. Sec-
ondly, we would like GU(g1 = h3) to have an edge connection to GU(h4),
the newly created GU node. If the scale-specific L-system-style connection
mechanism is improved to handle these two aspects of the failure, we would
be able to use shorter rules like p1 to achieve the same derivations obtained
by using longer rules like p0. We begin to describe the multi-scale embedding
method by addressing the latter aspect of the failure.

Recall from Section 4.4.1 that the operator Ndir
e in the connection in-

structions returns nodes connected to (either the left or right-most nodes in)
the predecessor graph Li of graph Ri produced by a match mi, 1 ≤ i ≤ n,
where n is the number of matches found. A schematic diagram showing the
scope of nodes returned by an operator Ndir

e is shown in Figure 4.11. The
nodes returned by Ndir

e are never connected to nodes in Li by refinement (/)
edges due to their exclusion from the connection instruction sets σ and τ in
any scale-specific L-system-style connection production p : L

σ,τ−→ R.
In order to establish embedding edges with un-matched nodes that are

encoarsements or refinements of matched nodes, e.g. GU(g1 = h3) in the
failure above, we require a new operator Sbearing, which can either be Sl (l
stands for left) or Sr (r stands for right). Sl returns nodes connected to the
left-most nodes LiL while Sr returns nodes connected to the right-most nodes
LiR of a matched subgraph Li via paths made up of only refinement (/) edges.
With Sbearing, we gain access to other scales of a matched subgraph without
explicitly specifying them in the left-hand side of a production p : L

σ,τ−→ R.
We proceed to include Sbearing in the scale-specific L-system-style connection
to get the partial multi-scale embedding mechanism.

101

CHAPTER 4. XL FOR MULTISCALE MODELLING

Figure 4.11: Operators for multi-scale embedding. G is the host graph on
which a multi-scale embedding production p is applied. Li in the middle
is a matched subgraph of G and it contains the sets of left-most nodes LiL
and right-most nodes LiR. The operator Ndir

e for scale-specific L-system-style
connections returns nodes connected to nodes in LiL and LiR. The operators
Sl and Sr return nodes connected to nodes in LiL and LiR respectively via
directed paths consisting of only refinement edges (labelled /).

4.4.2.1 Partial Multiscale Embedding

Definition 4.4.1 (Partial Multiscale Embedding). Let Λs be an alpha-
bet of scale labels, (Λs,≤) be a structure-of-scales, Λ = (Λv,Λe, (Λs,≤)) be
an alphabet, and T be a type graph over (Λs,≤). The refinement edge label /,
the successor edge label >, and the branching edge label + are elements in Λe.
Let p : L

σ,τ−→ R be a scale-specific L-system-style connection production over
(Λs,≤) and T . A partial multi-scale embedding production is a scale-specific

L-system-style connection production q : L
σ,υ−→ R, where

σ =
⋃

/6=γ∈ΛE ,s∈RR\{%}
{(N out

γ , γ, s), (N out
γ ,+, s)} and

υ =
⋃

/6=γ∈ΛE ,t∈RL\{%}
{(N in

γ , γ, t)} ∪
⋃

/6=γ∈ΛE ,t∈RB

{(N in
γ ,+, t)}

∪
⋃

t∈RL\{%}
{(Srn, >, t), (Sry ,+, t)} ∪

⋃
t∈RB

{(Sr,+, t)} .

In other words, σ is as defined for p and

υ = τ ∪
⋃

t∈RL\{%}
{(Srn, >, t), (Sry ,+, t)} ∪

⋃
t∈RB

{(Sr,+, t)}.

For a match mi based on q on a host graph G, let the matched subgraph be

102

CHAPTER 4. XL FOR MULTISCALE MODELLING

Li = (LiG, L
i
L, L

i
R). Sr is an operator that returns all w ∈ Gv, w 6∈ LiG,

and there exists a path with only refinement edges between w and z ∈ LiR,
w 6= z. Srn is a specific Sr operator that filters its results by excluding nodes
that have an existing out-going successor edge connection. Sry is a specific
Sr operator that filters its results by excluding nodes that do not have an
existing out-going successor edge connection. The other, unused operator Sl

is an operator that returns all x ∈ Gv, x 6∈ LiG, and there exists a path with
only refinement edges between x and y ∈ LiL, x 6= y. The operators Sl and
Sr are collectively referred to as Sbearing. For simplicity, we refer to a partial
multi-scale embedding production as partial MS production.

Example 4.4.2 (Partial Multiscale Embedding). Let Λs = {GUs, IBs}
be an alphabet of scale labels and Λ = (Λv = {GU, I,Bud},Λe = {>,+, /},
(Λs,≤)) be an alphabet where (Λs,≤) is a structure-of-scales such that IBs ≤
GUs. GUs is short for growth units and IBs is short for internodes and buds.
A type graph T = (Tv = {t0, t1, t2}, Te = {(t2, /, t0), (t2, /, t1), (t0, >, t1),
(t1, >, t0), (t0,+, t1), (t1,+, t0), }, Tλ, Ts) over Λ is given such Tλ(t0) = I,
Tλ(t1) = Bud, Tλ(t2) = GU , Ts(t2) = GUs, and Ts(t0) = Ts(t1) = IBs.

A host graph (an instanced graph) G = (Gv = {g0, g1}, Ge = {(g1, /, g0)},
Gλ, Gt) is specified. Gt is a homomorphism Gt : G→ T such that Gt(g0) = t1
and Gt(g1) = t2. Gλ labels the nodes based on Gt, i.e. Gλ(g0) = Tλ(Gt(g0)) =
Bud and Gλ(g1) = Tλ(Gt(g1)) = GU . The structure-of-scales (Λs,≤), type
graph T , and graph G are shown in Figure 4.12.

Figure 4.12: Partial multi-scale embedding setup. Left: structure-of-scales
(Λs,≤). Middle: type graph T . Right: host graph G. Dotted arrows from
T to the structure-of-scales represent the scale mapping function Ts. Dotted
arrows from G to T represent the graph homomorphism Gt (edge mappings
not shown).

We specify a partial multi-scale embedding production q : L
σ,υ−→ R, where

103

CHAPTER 4. XL FOR MULTISCALE MODELLING

L = (LG, LL, LR) and R = (RG, RL, RR, RB). LG is graph ({l0}, ∅, LGλ, LGt)
and RG is a graph ({r0, r1, r2, r3}, {(r0, >, r1), (r1, >, r2), (r3, /, r2)}, RGλ, RGt).
The homomorphism from LG to T is given as LGt(l0) = t1. The labelling
of nodes in LG is based on LGt, such that LGλ(l0) = Tλ(LGt(l0)) = Bud.
The homomorphism from RG to T is given as RGt(r0) = RGt(r1) = t0,
RGt(r2) = t1 and RGt(r3) = t2. The labelling of nodes in RG is based
on RGt, such that RGλ(r0) = Tλ(RGt(r0)) = RGλ(r1) = Tλ(RGt(r1)) = I,
RGλ(r2) = Tλ(RGt(r1)) = Bud, and RGλ(r3) = Tλ(RGt(r3)) = GU . The set
of left-most nodes LL in LG is {l0} and the set of right-most nodes LR in LG
is also {l0}. The set of left-most nodes RL in RG is {r0, r3} while the set of
right-most nodes RR in RG is {r2, r3}. RB is an empty set in this example.
Figure 4.13 shows production q in graphical form.

Figure 4.13: Partial multi-scale embedding production q. The sets of left-
most (LL) and right-most (LR) nodes of the left-hand side graph LG are both
{l0}. The sets of left-most (RL) and right-most (RR) nodes of the right-hand
side graph RG are {r0, r3} and {r2, r3} respectively.

We now apply q on G to derive graph H. The derivation uses the five-
step procedure for scale-specific L-system-style connections in Section 4.4.1.
In this case, however, there are additional connection instructions as defined
in Definition 4.4.1.

Step 1:

In this example, m1 is the one and only match on g0. An isomorphic copy R1

of R is derived using the sequential SPO method described in Section 3.2.2,
resulting in the following R1

G graph (corresponding matched subgraph L1
G is

shown on the left of R1
G):

104

CHAPTER 4. XL FOR MULTISCALE MODELLING

Step 2:

The embedding edges are determined following the operator-based approach
in Section 3.3.2.2. For the match m1, the half-edges

e0 = ((g1)?, >, r1
0) and e1 = ((g1)?, >, r1

3)

as pending connections to replacements of g1 are created. e0 is rejected be-
cause it does not satisfy the scale condition. As g1 is not matched, the em-
bedding edge (g1, >, r

1
3) is synthesized (for a sequential transformation) from

the connection instructions σ and υ.

Step 3 to Step 5:

The remaining steps (step 3 to step 5) of the derivation are the same as in
Section 4.4.1 (for two-level amalgamation) and we obtain the derived graph
H shown in Figure 4.14.

Figure 4.14: Partial multi-scale embedding derived graph H. The embedding
edge is (g1, >, r

1
3).

Example 4.4.2 demonstrates that the partial multi-scale embedding (Def-
inition 4.4.1) mechanism establishes embedding edges for scales that are not
specified in the left-hand side of the production. The mechanism is demon-

105

CHAPTER 4. XL FOR MULTISCALE MODELLING

strated again in the more sophisticated Example 4.4.3, where it is subsumed
in the (total) multi-scale embedding mechanism.

4.4.2.2 Total Multiscale Embedding

In this section, we describe the (total) multi-scale embedding method, which,
together with the scale-specific L-system-style connection, provides a pair of
solutions to the graph rewriting problems raised in this chapter.

Definition 4.4.2 (Total Multiscale Embedding). Let qp : L = (LG, LL,

LR)
σ,υ−→ R = (RG, RL, RR, RB) be a partial multi-scale production. LG

and RG are defined with indexed nodes as LG = (LGv = {li : 1 ≤ i ≤
|LGv|}, LGe, LGλ, LGt) and RG = (RGv = {ri : 1 ≤ i ≤ |RGv|}, RGe, RGλ, RGt)
respectively.

For an arbitrary relation % and arbitrary elements x and y, the image im
is defined as im(x) = {y|x%y} and the preimage pr is defined as pr(x) =
{y|y%x}. By setting % as the refinement relationship, im(ri) = {x ∈ RGv :
(ri, /, x) ∈ RGe} and pr(ri) = {x ∈ RGv : (x, /, ri) ∈ RGe}, where ri ∈ RGv.

A total multi-scale embedding production q (MS production in short) is

an extension of qp, q : L
η,ϑ−→ R = (RG, RL, RR, RB, RC = RCl ∪ RCr, RF =

RFl ∪ RFr). RC is the set of nodes in RGv with no encoarsements, defined
as RC = {ri ∈ RGv : pr(ri) = ∅}. RF is the set of nodes in RGv with no
refinements, defined as RF = {ri ∈ RGv : im(ri) = ∅}.

The sets of nodes RC and RF each consist of two subsets of nodes, i.e.
RC = RCl ∪ RCr and RF = RFl ∪ RFr. These subsets are defined as RCl =
RC − RR, RCr = RC ∩ RR, RFl = RF − RR, and RFr = RF ∩ RR. In other
words, the nodes in RC and RF are grouped further based on their membership
in RR.

The total multi-scale embedding production q : L
η,ϑ−→ R has the sets of

connection instructions η and ϑ as follows:

η = σ ∪
⋃

s∈RFl,Ts(RGt(s))�Ts(Gt(Sl))

{(s, /, Sl)}

∪
⋃

s∈RFr,Ts(RGt(s))�Ts(Gt(Sr))

{(s, /, Sr)},

ϑ = υ ∪
⋃

t∈RCl,Ts(RGt(t))≺Ts(Gt(Sl))

{(Sl, /, t)}

106

CHAPTER 4. XL FOR MULTISCALE MODELLING

∪
⋃

t∈RCr,Ts(RGt(t))≺Ts(Gt(Sr))

{(Sr, /, t)}

For simplicity, we refer to a total multi-scale embedding production as MS
production.

Example 4.4.3 (Total Multiscale Embedding). Let Λs = {Axes,GUs,
IBs} be an alphabet of scale labels and Λ = (Λv = {Axis,GU,Bud, I}
,Λe = {>,+, /}, (Λs,≤)) be an alphabet where (Λs,≤) is a structure-of-
scales such that IBs ≤ GUs ≤ Axes. GUs, GU and I abbreviate growth
units, growth unit and internode respectively. IBs is abbreviation for in-
ternodes and buds. A type graph T = (Tv = {t0, t1, t2, t3}, Te, Tλ, Ts) over Λ
is given such Tλ(t0) = Axis, Tλ(t1) = GU , Tλ(t2) = I, Tλ(t3) = Bud, and
Ts(t0) = Axes, Ts(t1) = GUs, Ts(t2) = Ts(t3) = IBs. Te is a set of edges
{(t0, /, t1), (t1, /, t2), (t1, /, t3), (t2, >, t3), (t2,+, t3), (t3, >, t2), (t3,+, t2)}.

A host graph (an instanced graph) G = (Gv = {g0, g1, g2, g3}, Ge =
{(g1, /, g0), (g1, /, g2), (g1, /, g3), (g2, >, g3)}, Gλ, Gt) is specified. Gt is a ho-
momorphism Gt : G → T such that Gt(g0) = t0, Gt(g1) = t1, Gt(g2) = t2,
and Gt(g3) = t4. Gλ labels the nodes based on Gt, i.e. Gλ(g0) = Tλ(Gt(g0)) =
Axis, Gλ(g1) = Tλ(Gt(g1)) = GU , Gλ(g2) = Tλ(Gt(g2)) = I, and Gλ(g3) =
Tλ(Gt(g3)) = Bud. The structure-of-scales (Λs,≤), type graph T , and graph
G are shown in Figure 4.12.

We specify a total multi-scale embedding production q : L
η,ϑ−→ R, where

L = (LG, LL, LR) and R = (RG, RL, RR, RB, RC , RF). LG is graph ({l0},
∅, LGλ, LGt) and RG is a graph ({r0, r1, r2, r3, r4, r5, r6, r7}, {(r0, /, r2), (r1, /,
r4), (r1, /, r5), (r2, /, r6), (r2, /, r7), (r3, >, r4), (r4, >, r5), (r6, >, r7), (r3,+, r6)
}, RGλ, RGt). The homomorphism from LG to T is given as LGt(l0) =
t3. The labelling of nodes in LG is based on LGt, such that LGλ(l0) =
Tλ(LGt(l0)) = Bud. The homomorphism from RG to T is given as RGt(r0) =
t0, RGt(r1) = RGt(r2) = t1, RGt(r3) = RGt(r4) = RGt(r6) = t2, and
RGt(r5) = RGt(r7) = t3. The labelling of nodes in RG is based on RGt, such
that RGλ(r0) = Tλ(RGt(r0)) = Axis, RGλ(r1) = Tλ(RGt(r1)) = RGλ(r2) =
Tλ(RGt(r2)) = GU , RGλ(r3) = Tλ(RGt(r3)) = RGλ(r4) = Tλ(RGt(r4)) =
RGλ(r6) = Tλ(RGt(r6)) = I, and RGλ(r5) = Tλ(RGt(r5)) = RGλ(r7) =
Tλ(RGt(r7)) = Bud. The set of left-most nodes LL in LG is {l0} and the
set of right-most nodes LR in LG is also {l0}. The set of left-most nodes
RL in RG is {r1, r3} while the set of right-most nodes RR in RG is {r1, r5}.
RB = {r0, r2} is the set of pending branch nodes in RG. The set of nodes in
RG with no encoarsements is RC = RCl ∪RCr = {r0, r3} ∪ {r1}. The set of

107

CHAPTER 4. XL FOR MULTISCALE MODELLING

Figure 4.15: Total multi-scale embedding setup. Left: structure-of-scales
(Λs,≤). Middle: type graph T . Right: host graph G. Dotted arrows from
T to the structure-of-scales represent the scale mapping function Ts. Dotted
arrows from G to T represent the graph homomorphism Gt (edge mappings
not shown).

nodes in RG with no refinements is RF = RFl∪RFr = {r3, r4, r6, r7} ∪ {r5}.
Figure 4.16 shows production q in graphical form.

We now apply q on G to derive graph H. The derivation uses the five-
step procedure for partial MS productions in Section 4.4.2.1. In this case,
however, there are additional connection instructions as defined in Defini-
tion 4.4.2.

Step 1:

In this example, m1 is the one and only match on g3. An isomorphic copy R1

of R is derived using the sequential SPO method described in Section 3.2.2,
resulting in the following R1

G graph (corresponding matched subgraph L1
G is

shown on the left of R1
G):

108

CHAPTER 4. XL FOR MULTISCALE MODELLING

Figure 4.16: Total multi-scale embedding production q. The sets of left-most
(LL) and right-most (LR) nodes of the left-hand side graph LG are both {l0}.
The sets of left-most (RL) and right-most (RR) nodes of the right-hand side
graph RG are {r1, r3} and {r1, r5} respectively. The set of pending branch
nodes RB in RG is {r0, r2}. The set of nodes in RG with no encoarsements
is RC = RCl ∪ RCr = {r0, r3} ∪ {r1}. The set of nodes in RG with no
refinements is RF = RFl ∪RFr = {r3, r4, r6, r7} ∪ {r5}.

Step 2:

The embedding edges are determined following the operator-based approach
in Section 3.3.2.2. For match m1, the following half-edges are created:

109

CHAPTER 4. XL FOR MULTISCALE MODELLING

For connection instructions in the form (N in
γ , γ, t):

e0 = ((g2)?, >, r1
1) e1 = ((g2)?, >, r1

3)
For connection instructions in the form (N in

γ ,+, t):
e2 = ((g2)?,+, r1

0) e3 = ((g2)?,+, r1
2)

For connection instructions in the form {(Srn, >, t)}:
e4 = ((g0)?, >, r1

1) e5 = ((g0)?, >, r1
3)

e6 = ((g1)?, >, r1
1) e7 = ((g1)?, >, r1

3)
For connection instructions in the form {(Sr,+, t)}:

e8 = ((g0)?,+, r1
0) e9 = ((g0)?,+, r1

2)
e10 = ((g1)?,+, r1

0) e11 = ((g1)?,+, r1
2)

For connection instructions in the form {(Sl, /, t)}:
e12 = ((g1)?, /, r1

3)
For connection instructions in the form {(Sr, /, t)}:

e13 = ((g0)?, /, r1
1)

e0, e2, e3, e4, e5, e7, e9 and e10 are rejected because they do not satisfy
the scale condition. As g0, g1 and g2 are not matched, the remaining half
edges (e1, e6, e8, e11, e12, e13) are synthesized (based on sequential transfor-
mations) from the connection instructions η and ϑ.

Step 3 to Step 5:

The remaining steps (step 3 to step 5) of the derivation are the same as in
Section 4.4.1 (for two-level amalgamation) and we obtain the derived graph
H shown in Figure 4.17.

Example 4.4.3 demonstrates the solution to the problems stated in Sec-
tion 4.2. Firstly, refinement edges are established automatically from the
remaining host graph to the produced graphs, unlike the operation of single-
scale rules shown in Figure 4.3. For example, a refinement edge is established
from Axis(g0) to GU(r1

1). Secondly, lengthy rules (see rule in Section 4.2 for
the production shown in Figure 4.4) to manually establish embedding re-
finement edges can be avoided. In Example 4.4.3, the MS production q is
specified in XL as:

Bud ==> I [Axis GU I Bud] GU I Bud;.

110

CHAPTER 4. XL FOR MULTISCALE MODELLING

Figure 4.17: Total multi-scale embedding derived graph H.

Notice that no syntax is required to established the embedding edges at
all scales. The problems in Section 4.2 are hence resolved.

4.4.2.3 On Parallelism in Multiscale Embedding

Parallel rewriting is supported by MS productions based on the two-level
amalgamation mechanism described in Section 4.4.1. However, there are two
cases in which parallel rewriting is not supported:

• Matches that overlap. More specifically, given two matches m1 and m2

with matched graphs L1
G = (L1

Gv, L
1
Ge, L

1
Gλ, L

1
Gt) and L2

G = (L2
Gv, L

2
Ge

, L2
Gλ , L

2
Gt) such that L1

Gv ∩ L2
Gv 6= ∅, rewriting is performed only for

the first match (either m1 or m2) found. This behaviour is consistent
with single-scale rewriting defined in [91].

• Matches with nodes returned by the Sbearing operator that are adjacent.
More specifically, let m1 and m2 be two matches with matched graphs

111

CHAPTER 4. XL FOR MULTISCALE MODELLING

L1
G = (L1

Gv, L
1
Ge, L

1
Gλ, L

1
Gt) and L2

G = (L2
Gv, L

2
Ge , L

2
Gλ , L

2
Gt) such that

L1
Gv ∩ L2

Gv = ∅. If there exists an edge (x, e, y) ∈ Ge in the host graph
G where x ∈ Sbearing is operating on L1

G and y ∈ Sbearing is operating
on L2

G, or x ∈ Sbearing is operating on L2
G and y ∈ Sbearing is operating

on L1
Gv, embedding edges are not established to and from the nodes

returned by the Sbearing operator.

We illustrate the argument for the second case (matches adjacent with
one another) by considering several scenarios.

Consider a partial MS production q : L
σ,υ−→ R:

where types A, B, and C belong to three distinct scales from coarse to fine.
We omit the structure-of-scales and type graph specifications to keep this
example concise with focus on the argument against parallelism for adjacent
matches. q is applied on a host graph G depicted below:

The derivation G
q−→ H results in the graph H shown in Figure 4.18.

q as a partial MS production did not establish embedding edges (g6, /, g0),
(g6, /, g1), (g8, /, g3), and (g8, /, g4). This was addressed in Section 4.4.2.2
with total multiscale embedding but we now focus on another obvious prob-
lem shown in Figure 4.18. For parallel rewriting of adjacent matches with

112

CHAPTER 4. XL FOR MULTISCALE MODELLING

Figure 4.18: Prevention of embedding edges at un-matched scales between
adjacent matches during parallel rewriting.

multiple scales to work, i.e. for the dotted edges in Figure 4.18 to be estab-
lished, the set of connection instructions σ defined for partial MS productions
in Section 4.4.2.1 has to be improved by including instructions that utilize
the Sl operator. Such an improvement will result in matching half-edges
between the newly included instructions using the Sl operator on the C(g1)
match and the instructions using the N out

λ operator on the C(g0) match,
forming the dotted edges in Figure 4.18. Ideally, the (un-matched) edges
marked with (d), i.e. edges connected to nodes returned by the operator
Sbearing, should then be automatically deleted to avoid forming circles in the
derived graph.

The Sl operator is however left out from the definition of the partial
MS production because the enforcement of such edge deletions for adjacent
matches at the un-matched scales will cause other conflicting scenarios. For
example, consider another host graph J below:

113

CHAPTER 4. XL FOR MULTISCALE MODELLING

A partial MS production q2 is applied on J . q2 is graphically represented
as below:

By deleting edges between nodes returned by the operator Sbearing, e.g (j6, >

, j7), we will obtain the derived graph K in the derivation J
q2−→ K shown

below:

This result does not satisfy the intent to remove the C nodes, reconnect
the pair of D nodes, and keep the relations or edges in the coarser scales
containing A and B nodes. Consequently, returning to the earlier deriva-
tion G

q−→ H, we note that unconditional deletion of the (d)-marked edges
in Figure 4.18 is not a solution for parallel multi-scale embedding. One can
argue that conditional deletion can be introduced, for example, by perform-
ing deletion only if the right-hand side of a production like q contains nodes
(e.g. A(r4) above) at the same scales as the nodes for which edge connections
are deleted (e.g. A(g10) and A(g12) above). We argue that this, however, is
counter-intuitive from the practical perspective because production rules for
edge deletions commonly require the involved nodes to be specified on the
left-hand side. To avoid confusion in the implementation language XL, we
choose not to perform such hidden deletions. This results in the decision to
leave the Sl operator-based instructions out from the definition of the partial
MS production in order to avoid the creation of circular structures at the
same scale. This is further supported by the fact that the scene graph inter-
pretation for 3D rendering in GroIMP considers circular structures involving

114

CHAPTER 4. XL FOR MULTISCALE MODELLING

only > and + edges as errors.
In conclusion, parallelism is supported in multi-scale embedding except

for two special cases. Despite the loss of support for these special cases, the
examples in Chapter 6 do not reveal any insufficiencies in terms of parallel
and multiscale graph rewriting using the techniques presented in this section.

4.5 XL Multiscale Syntax & Features

The graph model and grammar introduced in this chapter are implemented
as an extension to the eXtended L-system (XL) language [91, 128] in the
open source software GroIMP [93]. The language is extensive and the reader
is encouraged to see [91] and [75] for details of the language. In the following,
we highlight fundamentals of the language as well as modified aspects that
empower it for multiscale modelling.

4.5.1 Syntax Extensions

In XL, node labels are declared as modules with object-orientated function-
alities, similar to classes in the Java programming language. For example,
the labels Axis, GU , Bud and I in Example 4.4.3 can be declared in XL as
shown in Listing 4.1.

module Axis(float length , float radius);

module GU(float length , float radius);

module I(super.length , super.diameter) extends F;

module Bud(super.radius) extends Sphere;

Listing 4.1: XL Module Declaration

Parameters and their data type for each module are specified in parentheses
following the module name. For example, the module Axis in Listing 4.1 has
parameters length and radius of the data type float. XL provides classes
representing geometrical shapes and turtle commands as possible superclasses
of modules. For example, the module I in Listing 4.1 extends the turtle
command F . I also inherits the parameters of the super class F by specifying
them with a preceeding super. instead of the usual data type.

A typical program in XL (after module declarations) begins with an init()
method as shown in Listing 4.2.

115

CHAPTER 4. XL FOR MULTISCALE MODELLING

protected void init()

[

{int x=1;}

Axiom ==> Bud;

]

public void run()

[

Bud ==> I Bud;

]

Listing 4.2: XL Fundamental Methods

This method initializes the graph model or data structure. Normally, an
Axiom node exists as the initial node in the graph data structure. XL code
in the scope of square brackets [and] is used for writing graph queries, rules,
or productions. To use Java code in XL, the code must be written within the
scope of curly brackets { and } (e.g. the declaration of the primitive integer x
in init() in Listing 4.2). Between square brackets, we can write rules that use
the L-system-style embedding (see Section 3.3.2.3) by specifying the graph to
be matched (i.e. the query graph) on the left, followed by the symbol ==>,
and lastly the production graph on the right. In Listing 4.2, such a rule
(symbolized by ==>) is used to rewrite the initial Axiom node with a Bud
node. Alternatively, the symbols ==>> and ::> can be used for parallel
SPO embedding rules and imperative code execution without changes to
graph topology respectively. The root node of the graph data structure can
be accessed by using the symbol ∧. Additional methods such as the run()
method in Listing 4.2 can be written. Public methods such as run() can be
triggered via buttons on the graphical user interface of GroIMP.

Conventionally, the symbol ==> represents single-scale L-system-style
connections 3.3.2.3. In order for the program to interpret ==> as a MS
production rule, a type graph must be constructed. For example, the type
graph in Example 4.4.3 can be constructed in the init() method as shown in
Listing 4.3.

protected void init()

[

//Host graph G initialization

Axiom ==> Axis /> g:GU /> I Bud </ g;

116

CHAPTER 4. XL FOR MULTISCALE MODELLING

//Type graph initialization

==>> ^ /> TypeRoot /> Axis /> GU

/> {# I Bud #};

]

Listing 4.3: XL Host and Type Graph Construction

To specify the type graph, the parallel SPO rule symbol ==>> is used with
an empty query, i.e. the left-hand side is empty. This allows us to produce a
graph following the root node symbolized by ∧ on the right-hand side. The
default node serving as a basis of the type graph is TypeRoot. The nodes
for the type graph are then written behind the TypeRoot node. As I and
Bud belong to the same scale IBs (see Example 4.4.3), we enclose them
in the symbols {# and #} so they form a clique. In our terminology for
type graphs in XL, a clique is a set of nodes where each node is connected
to all other nodes in the set with a successor edge and a branching edge.
This allows successor and branching edges to be established between them.
The functionality of the symbols ==>> and ::> is unaffected by multi-scale
extensions.

Query and production graphs can be specified using a string of module
names separated by symbols representing edges in the graph. A sequence
of XL module names separated by space characters constructs a graph with
nodes joined by successor edges. Square brackets indicate branching edges.
For example, to query for a lateral bud (Bud) branching from an internode
(I), we use the XL syntax:

I [Bud]

Extending this original syntax, if a space character separates two module
names that are at different scales (the earlier coarser than the latter), a re-
finement edge is inserted between them. This relies on the condition that
the modules have a refinement edge between them in the representing type
graph. Subsequent nodes will be refined from the same node at coarser scale.
A successor edge is established from the last node (from left to right) at a
particular scale to the next node behind a space character at the same scale
if no brackets exist between them. If the name of a module at a coarser scale
follows one at a finer scale, a successor edge is connected to the coarser scale
node from the last specified node, if one exists, at the same coarse scale. This
syntax is illustrated in Figure 4.19. The first occurrence (from left to right)

117

CHAPTER 4. XL FOR MULTISCALE MODELLING

of a node that is not enclosed in brackets at a particular scale is an element

of the left-most set of nodes. In a MS production q : L
η,ϑ−→ R, this set of

left-most nodes is the set LL in L if the graph expressed by the statement is a
query, i.e. on the left-hand side of the production. If the graph expressed by
the statement is a production, i.e. on the right-hand side of the production,
this set of left-most nodes is the set RL in R.

A(1) A A(4)

B(2) B B B B(5)

C(3) C C C C C(6)

> >

> > > >

> > > > >

/ / / / /

/ / / / / /

XL Syntax: A B C C B C A B C A B C B C

Figure 4.19: XL multi-scale syntax without branching. Module A is coarser
than B, which is coarser than C. An example of a simple, acyclic query or
production graph. Nodes with additional labels 1, 2 and 3 are the left-most
nodes. Nodes with additional labels 4, 5 and 6 are the right-most nodes.

If an opening bracket character separates two module names that are at
different scales (the earlier coarser than the latter), a refinement edge is also
inserted between them. Similar to the space character, this relies on the
condition that the modules have a refinement edge between them in the rep-
resenting type graph. Subsequent nodes will be refined from the same node
at coarser scale. A branching edge is established from the last node (from
left to right) at a particular scale to the next node behind a space character
at the same scale if opening brackets exist between them. If the name of a
module at a coarser scale follows one at a finer scale after an opening bracket
character, a branching edge is connected to the coarser scale node from the
last specified node, if one exists, at the same coarse scale. For example, the
production graph RG in Example 4.4.3 illustrated in Figure 4.16 can be ex-
pressed in XL syntax as:

118

CHAPTER 4. XL FOR MULTISCALE MODELLING

I [Axis GU I Bud] GU I Bud

The first occurrence (from left to right) of a node that is enclosed in brackets
at a particular scale with no preceeding un-enclosed node at the same scale is
an element of the set of pending branch nodes. In the above statement, Axis
and GU enclosed in brackets are the pending branch nodes at two distinct
scales. The I enclosed in brackets is not a pending branch node because
there is a preceeding I (a node at the same scale) at the beginning of the

statement. In a MS production q : L
η,ϑ−→ R, this set of pending branch nodes

is the set RB in R if the graph expressed by the statement is the production
graph, i.e. on the right-hand side of the production.

The MS production q : L
η,ϑ−→ R in Example 4.4.3 is hence written in XL

as shown in Listing 4.4.

Bud ==> I [Axis GU I Bud] GU I Bud;

Listing 4.4: XL Multiscale Rule

Consider the query or production graph shown in Figure 4.20. A cycle
is present at the intermediary scale for the nodes labelled B and at the fine
scale for the nodes labelled C. The left-most and right-most nodes at the two
scales with cycles can be deciphered based on the syntax of XL that brings
the nodes into a strict order, e.g. b0:B0 c0:C0 in the first line of syntax
in Figure 4.20. The left-most and right-most nodes of the graph in Figure
4.20 are the nodes labelled with an additional asterisk * because the nodes
after the first comma in the code representation of the graph cannot be the
left-most or right-most nodes of the query. Embedding edges can then be
created based on the same connection mechanisms as in non-cyclic cases.

In some cases, refinement embedding edges must be added to embed
a production graph in the remaining host graph. Consider the left-most
nodes in a matching host sub-graph. Out-going refinement edges from these
nodes to nodes that do not belong to the matched sub-graph are replaced
with embedding refinement edges that begin from the left-most nodes of the
production graph (see Figure 4.21 including syntax).

Incoming embedding refinement edges to the left-most and subsequent
nodes in the production graph are created if the corresponding left-most
node in the matched sub-graph had incoming refinement edges from an un-
matched node (see Figure 4.22 including syntax).

119

CHAPTER 4. XL FOR MULTISCALE MODELLING

A∗

B0∗

C0∗

B1

C1 C2

B2

C3

/

/

/

/ /

/

/

E

E E

E

E

EE

XL Syntax: a:A b0:B0 c0:C0,
a b1:B1 c1:C1 -E-> c2:C2, a b2:B2 c3:C3,
b0 -E-> b1 -E-> b2 -E-> b0,
c0 -E-> c1, c2 -E-> c3 -E-> c0

Figure 4.20: Query or production graph with cycles. Nodes labelled with an
additional * are both the left and right-most nodes. Subscript numbers are
not part of the syntax and only serve to help identify nodes in this figure.

Consider now the out-going refinement edges from the right-most nodes
in a matched host sub-graph, connecting to nodes not in the matched sub-
graph. Embedding edges are created from the right-most nodes with the same
scale of the production graph to the host graph (see Figure 4.23 including
syntax).

An example of the syntax for parallel rewriting is shown in Figure 4.24.

4.5.2 The Observer Programming Pattern

The combination of processes and structural developments at different scales
in plant models requires additional implementation effort in comparison with
single-scale models. In order to organize and reduce time taken to implement

120

CHAPTER 4. XL FOR MULTISCALE MODELLING

A

B∗ X W

C Y Z

> >

> >

/ / /

/ / /

A

B∗ B

C C

>

>

/ /

/ /

Rule: A X Y W Z ==> A B C

Figure 4.21: Syntax for rule establishing refinement embedding edges - 1.
The graph on the left is transformed to the graph on the right using the
specified rule. Node A is reconnected to the un-matched B* node in the
original host graph. Rectangular nodes belong to the query or production
graph.

A

B X W

C Y Z

> >

> >

/ / /

/ / /

A

B B∗ B∗ B+

C C C C

> > >

> > >

/ / / /

/ / / /

Rule: X Y W Z ==> B C B C B C

Figure 4.22: Syntax for rule establishing refinement embedding edges - 2.
The graph on the left is transformed to the graph on the right using the
specified rule. Node A is reconnected to the left-most and subsequent B
nodes labelled with * in the production graph. Node A is also reconnected
to the right-most B node labelled with +. Rectangular nodes belong to the
query or production graph.

121

CHAPTER 4. XL FOR MULTISCALE MODELLING

A A

B B X

C C Y

>

> >

> >

/ / /

/ / /

A

X X X∗

Y Y Y

> >

> >

/ / /

/ / /

Rule: A B C A B C ==> A X Y X Y

Figure 4.23: Syntax for rule establishing refinement embedding edges - 3. The
graph on the left is transformed to the graph on the right using the specified
rule. Node A in the production graph is reconnected to node X labelled with
an additional * in the remaining host graph. Rectangular nodes belong to
the query or production graph.

these models, we propose a method [126] based on the class of formalized
practices in software engineering known as design patterns [63]. In particular,
our approach uses the observer pattern, which allows the specification of one-
to-many dependencies between objects. When one object changes state, all
its dependents are notified and updated automatically. In the context of
the multiscale graph structures introduced in this chapter, we utilize this
pattern on scales, i.e. elements in the structure of scales defined in Section
4.3.1. This allows the registration of dependencies between scales and it
follows that when the state of a scale changes, all its dependent scales are
notified and updated automatically.

We discuss the motivation behind the adoption of this pattern. A dis-
advantage of developing a model as a collection of cooperating scales is the
need to integrate and maintain consistency between related scales. In object-
oriented programming, such integration can be achieved by coupling the
scales tightly, i.e. by establishing inter-scale dependencies either as mem-
ber variables, indices, or method invokations. This reduces the reusability
of code providing the functionality of individual scales (consider the need to
extract the functionality of a scale for usage in another model). The observer
pattern offers an alternative approach to establish these references without

122

CHAPTER 4. XL FOR MULTISCALE MODELLING

A1

X1

Y1

B1

C1

A2

X2

Y2

B2

C2

//

/ /

>

>

>

>

>

//

/ /

>

>

A1

W1

Z1

A2

W2

Z2

/

/

>

>

>

/

/

Rule: A X Y B C ==> A W Z

Figure 4.24: Half-edge matching. The connected graph G shown on the left
contains two sub-graphs matching the graph representation of A X Y B C.
The numeric sub-scripts in the node labels are used to distinguish nodes
between the two sub-graphs matched. Operators from the first sub-graph
yield the set {A2, X2, Y2} while operators from the second sub-graph yield
the set {A1, B1, C1}. This mutual containment constitutes three ’half-edge
matches’. As a result, the derived graph on the right contains edges (A1, >
,A2), (W1, >,W2) and (Z1, >, Z2).

tight coupling. It uses two distinct roles: subject and observer. A subject
can have multiple dependent observers. The observers are notified when-
ever the subject changes its state. This kind of interaction is also known
as publish-subscribe. The subject is the publisher of notifications. It sends
notifications without knowledge of the identity of the observers while the
observers subscribe to notifications.

A precondition for the usage of the observer pattern is the possibility to
represent a structure of scales in the XL program. We allow the declaration
of a scale in XL code as:

scale A;

scale B;

scale C;

where A, B, and C are scale labels. The syntax is identical to the declaration
of modules in XL but does not support further extension from superclasses.

123

CHAPTER 4. XL FOR MULTISCALE MODELLING

Once the required scales are declared, the structure of scales can be con-
structed as a subgraph connected to the root of the main graph in the init()
method as shown in Listing 4.5.

int ScaleToType =1;

scale Tree;

scale Organ;

module T;

module I;

protected void init()

[

Axiom ==> T /> I;

==>> ^ [/> SRoot /> tr:Tree /> or:Organ]

/> TypeRoot /> t:T /> i:I

tr -ScaleToType ->t,

or -ScaleToType ->i

;

]

Listing 4.5: Structure of scales construction

In Listing 4.5, a structure of scales with coarse to fine linear ordering of
scales Tree to Organ is constructed and connected to SRoot, the root node of
the structure of scales with refinement edges. Two corresponding types, i.e.
modules in terms of XL code, are used to construct the type graph connected
to TypeRoot with refinement edges. To relate the scales with their respective
types, an arbitrary edge label (not a successor, branching, or refinement edge)
can be used. In Listing 4.5, the edge label ScaleToType is used to connect
the nodes in the structure of scales to the type graph nodes. The code in
Listing 4.5 also initializes the instanced graph with two nodes, one from each
type.

The syntax to establish dependencies between scales is:

x.observe(y,code,"m");

where x is the observer, y is the subject, code is an integer value identi-
fying a notification message, and m is the member method of the observer x

124

CHAPTER 4. XL FOR MULTISCALE MODELLING

to invoke when y publishes a code notification.
We now extend the code in Listing 4.5 to establish a dependency of the

Tree scale on the Organ scale. The extended code is shown in Listing 4.6.

int ScaleToType =1;

int EVOLVE =0; // notify code 0

int EXTRAPOLATE =1; // notify code 1

scale Tree

{

public void grow(){notify(EXTRAPOLATE);}

};

scale Organ;

module T;

module I;

protected void init()

[

Axiom ==> T /> I;

==>> ^ [/> SRoot /> tr:Tree /> or:Organ]

/> TypeRoot /> t:T /> i:I,

tr -ScaleToType ->t,

or -ScaleToType ->i,

{

this.observe(or , EVOLVE , "internodeGrow");

this.observe(tr , EXTRAPOLATE , "treeGrow");

tr.observe(this , EXTRAPOLATE , "grow");

}

;

]

public void run()[

o:Organ ::> {o.notify(EVOLVE);}

]

public void internodeGrow ()[

125

CHAPTER 4. XL FOR MULTISCALE MODELLING

//.. rules for organ scale (internode) growth

{this.notify(EXTRAPOLATE);}

]

public void treeGrow ()[

//.. rules for tree scale growth

]

Listing 4.6: Establishment of observer pattern in XL

The differences between Listing 4.5 and Listing 4.6 are highlighted in
this paragraph to illustrate how dependencies between the scales Tree and
Organ are established in XL. Firstly, two notification identifiers, EVOLVE and
EXTRAPOLATE are declared as integers. A method grow() in the scale dec-
laration of Tree is defined. This method sends out a notification with code
EXTRAPOLATE when invoked. In the init() method, the rule is appended
with three lines of invokation to the observe method. The first two lines
establish observations by the RGG class (the code in the Listing is actually
an extension of a class ”RGG”) on the scales Organ and Tree. This allows
the invokation of the methods internodeGrow and treeGrow based on no-
tifications from the scales. The third line establishes an observation by the
Tree scale on the RGG class. This allows the invokation of the method grow

based on notifications from the RGG class. The flow of the dependencies at
runtime is as follows:

• run() is invoked. The scale Organ bound to variable o is queried. The
organ scale publishes a notification by invoking the method
o.notify(EVOLVE); on the node o.

• The RGG class observes the notification with code EVOLVE from the
organ scale. As a result, the method internodeGrow is invoked. Some
rules for organ scale development are run. Next, the RGG class pub-
lishes a notification with code EXTRAPOLATE.

• The tree scale (Tree node in structure of scales) observes the notifica-
tion with code EXTRAPOLATE. As a result, the method grow is invoked.
In the grow method, the Tree scale publishes a notification with code
EXTRAPOLATE.

• The RGG class observes the notification with code EXTRAPOLATE from
the tree scale. As a result, the method treeGrow is invoked. Rules

126

CHAPTER 4. XL FOR MULTISCALE MODELLING

for tree scale development (likely based on developments at the organ
scvale) are run.

In this manner, the methods internodeGrow and treeGrow are not aware
of each other’s existence and they can be copied and reused in another model
easily. In addition, only one line of notification is necessary for the invokation
of methods of multiple observers. In contrast, consider the case with multiple
observers where no observer pattern is used. Multiple method invokations
must occur in the subject’s method, possibly one for each observer. Most
importantly, such a design pattern encourages the segregation of functional-
ity based on scales for individual methods. We observe such segregation in
Listing 4.6 where treeGrow and internodeGrow provide functionality at tree
scale and organ scale respectively without overlaps. This syntax implemen-
tation for the observer pattern in XL is a preliminary solution that should be
improved to become concise and transparent to the modeller or programmer.

4.6 Technical Documentation

In this section, the software implementation of the techniques in this chapter
within the software GroIMP [91] is documented. They are implemented as
extensions to the existing open source code on:
http://sourceforge.net/projects/groimp/. For convenience, we shall call them
multiscale extensions. All lines of code removed or added have been marked
at the start by the comment //multiscale begin and at the end by the com-
ment //multiscale end. All classes added have been commented with the
remark This class is part of the extension of XL for multiscale modelling.

In the following sub-sections, an overview of the use cases is first given,
followed by descriptions of classes grouped by functionality. The purpose
of this section is to provide the reader with an idea of what key classes
contribute to the multiscale extensions. Detailed comments can be found in
the source code itself.

4.6.1 Use Cases

Figure 4.25 shows the use case diagram for a user (the actor) of GroIMP.
While the features and functionalities of GroIMP are manifold, the diagram
focuses on the aspects changed by the extensions for multiscale rewriting

127

CHAPTER 4. XL FOR MULTISCALE MODELLING

and modelling. The rest of the functionalities are encompassed within the
”Use other functionalities of GroIMP” use case. The top use case, ”Write /

Figure 4.25: Use case diagram for user of GroIMP.

modify model code” refers to the writing of XL code in GroIMP. This use
case now includes specifying a structure-of-scales, a type graph, and writing
multiscale rules as described in Section 4.5.

The second use case ”Compile model code” refers to the compilation of
written code. Compilation is triggered whenever the user presses ”save” on
the graphical user interface. By default, GroIMP runs the method init() im-
mediately after compilation. Hence the use case ”Initialize model” is included
in the ”Compile model code” use case.

The third use case ”Run model” refers to the execution of a certain
method in the written code. This is triggered whenever the user presses
on a button named after a public method on GroIMP’s graphical user inter-
face. As a result, the model runs and produces results in the form of data in
the running program.

The fourth use case ”Visualize model” refers to the 3D visualization of
the model. This is usually within a 3D panel in GroIMP that is refreshed

128

CHAPTER 4. XL FOR MULTISCALE MODELLING

with every invokation of a method in the model code.

4.6.2 Compilation

Several classes have been modified and added for the ”Compile model code”
use case. We illustrate them in Figure 4.26. The majority of the classes
modified and added in the multiscale extensions for compilation lie in the
plugins ”RGG” and ”XL-Compiler”. The classes involved in tokenizing
and parsing code to generate abstract syntax trees (ASTs) are found in
the package ”de.grogra.xl.parser” (seen at the top of Figure 4.26). The
classes involved in traversing abtract syntax trees (ASTs) to create expres-
sion trees using a three pass approach (see chapter 8.3.1 in [91]) are found
in the package ”de.grogra.xl.compiler”, which is seen in the middle of Fig-
ure 4.26. The classes that trigger compilation are found in the package
”de.grogra.rgg.model”. They have not been modified but are shown in Fig-
ure 4.26 for reference purposes.

GroIMP uses the ANTLR (www.antlr.org) tool for tokenizing code and
parsing code. Notice that the class ”Parser” extends from the class
”antlr.LLKParser” from the ANTLR library. The classes ”JavaTokenizer”,
”XLParser”, ”XLTokenizer” and ”XLTokenTypes” are generated automati-
cally whenever changes to the grammar file ”XL.g” are made and when the
ant build script (build.xml) for the ”XL-compiler” plugin is run. For multi-
scale extensions, the keyword scale and the symbols for enclosing nodes in
a clique, {# and #} have been added to ”XL.g”. In addition, an ANTLR
rule ”scaleDeclaration[AST mods]” for declaration of scales similar to the
declaration of modules is added. A list of edge or node tokens in a clique can
be written to the AST sub-tree containing a production statement (see line
starting with ”productionStatement[AST prev]” in ”XL.g”).

For writing expression trees, GroIMP uses the ANTLR tool. Notice that
the class ”CompilerBase” extends from the class ”antlr.TreeParser” from the
ANTLR library. The classes ”Compiler”, ”CompilerBase” and ”Compiler-
TokenTypes” are generated automatically whenever changes to the grammar
file ”Compiler.tree.g” are made and when the ant build script (build.xml) for
the ”XL-compiler” plugin is run. For multiscale extensions, the ANTLR rules
”compilationUnit[...]” and ”classDecl[...]” in ”Compiler.tree.g” are modified
so a scale declaration is a class declaration in Java, just like how a module
declaration is a class declaration. In addition, the ANTLR rule ”stat[...]”
is modified so that methods in the ”Producer” class (see Section 4.6.3) are

129

CHAPTER 4. XL FOR MULTISCALE MODELLING

invoked when the symbols representing a clique are encountered. This allows
the program to establish necessary edges between nodes in a clique during
production.

XL syntax for query graphs are written as sequences of patterns in ex-
pression trees during compilation. For details on patterns and places, see
Section 17.3.1 in www.grogra.de/xlspec and [91]. A query is composed of
patterns like node patterns or edge patterns, together forming compound
patterns. During the three-pass expression tree writing stage of compilation,
the ”PatternBuilder” class is responsible for creating these patterns. To al-
low for the multiscale syntax of spacings between nodes at different scales, a
new class ”SpacingPattern” is added, which extends the original ”EdgePat-
tern”. More specifically, the methods ”addPattern”, ”add”, and ”join” in
the ”PatternBuilder” class are invoked during expression tree generation to
create instances of the ”SpacingPattern” class.

4.6.3 Run

The main packages involved in queries and productions at runtime are
”de.grogra.xl.query”, ”de.grogra.xl.impl.base”, ”de.grogra.xl.vmx”, and
”de.grogra.rgg”. These packages are in the plugins ”XL”, ”XL-Impl”, ”XL-
VMX”, and ”RGG” respectively. Figure 4.27 shows the classes modified
and added in the multiscale extensions. We describe now the flow of events
programmatically when a query in XL is evaluated at runtime. The method
”findMatches” in the class ”Query” (found in the package ”de.grogra.xl.query”
in the middle of Figure 4.27) is invoked. This method begins to construct
”Matcher” objects corresponding to individual patterns by invoking ”get-
Matcher” in the ”Query” class and subsequently the overriden ”createM-
atcher” methods of individual patterns (to avoid cluttering, Figure 4.27
shows only the ”SpacingPattern”. There are however other patterns ref-
erenced from ”CompoundPattern” such as ”NodePattern”, ”EdgePattern”,
etc.). Consequently, these ”Matcher” objects are gathered as a linked-list
headed by a ”CompoundPattern.Matcher” object. This linked-list is found
in the ”QueryState” class. For multiscale extensions, the ”createMatcher”
method is implemented in the ”SpacingPattern” class and it supports the
creation of both single and multiscale matchers depending on the prescence
of a type graph. Once the linked-list of ”Matcher” objects is generated, the
method ”findMatches” in the ”QueryState” class is invoked and it starts to
iterate through the linked-list of ”Matcher” objects. While iterating through

130

CHAPTER 4. XL FOR MULTISCALE MODELLING

the linked-list, the ”findMatches” method of each ”Matcher” object is in-
voked, binding graph nodes (and edges) to variables in a simulated call-stack
(Kniemeyer implemented a simulated method call stack under the package
”de.grogra.xl.vmx” because the low level Java call stack is inaccessible at
program level. See Kniemeyer’s thesis [91] for details). These variables are
instances of the ”VMXState.Local” class. If all the ”Matcher” objects in the
linked-list managed to bind their respective patterns to call stack variables,
the ”Producer” object is called to start production.

In the multiscale extensions, the ”QueryState” class is extended with a
reference to a ”QueryStateMultiScale” class that contains information for
multiscale queries. The information consists, for example, of lists of node-
edge-node tuples, where the node pairs are at the same scale or different
scales. These tuples correspond to the successively bound spacing or edge
patterns described in the previous paragraph.

The methods ”producer$beginExecution” and ”producer$endExecution”
of the ”Producer” class in the ”de.grogra.xl.impl.base” package are invoked
at the start and at the end of rule productions. The extensions for multi-
scale rule productions have also been implemented in these methods of the
”Producer” class. Several member variables for containing references to the
left-most and right-most nodes at each scale have been added. In addition,
nodes belonging to a clique are also traced within lists in the class. The
”Producer” class operates using a collection of queues, each representing a
command such as add node, delete node, add edge, delete edge. For each
rule, the nodes and edges of the query and production graphs, as well as
embedding edges are added to the queues. The queues are executed at the
end when all possible query matches have been found. The multiscale exten-
sions build upon this previous mechanism for multiscale embedding, filling
up the queues with necessary commands based on the theory described ear-
lier in this chapter. The extensions are however backward compatible, i.e.
old methods are used if there is no type graph in the graph data structure.

A type graph is specified in the data structure as a rooted graph with root
node of the class ”TypeRoot” from the package ”de.grogra.rgg”. A structure
of scales is specified in the data structure as a root graph with root node
of the class ”SRoot” from the package ”de.grogra.rgg”. These root nodes
are expected to be child nodes of the original graph root node. For relating
nodes in the type graph, i.e. types, to the respective scales in the structure
of scales, a custom edge type must be used to connect a scale node (instance
of ”Scale” class in the ”de.grogra.graph.impl” package) in the structure of

131

CHAPTER 4. XL FOR MULTISCALE MODELLING

scales to a node in the type graph. The partial ordering of the structure of
scales is established using the unique refinement edge type.

To accelerate queries to the type graph, for example to check if a node is of
a finer scale than another, a series of cache structures are constructed within
the ”Graph” class in the ”de.grogra.xl.impl.base” package. Without these
cache structures, the type graph must be traversed every time a query to the
type graph is made. The following cache structures have been implemented:

• HashMap<Type, HashMap<Type, Boolean> > cacheScaleSame;

• HashMap<Type, HashMap<Type, Boolean> > cacheScaleCompara-
ble;

• HashMap<Type, Object> cacheTypeNode;

• HashMap<Type, HashMap<Type, Integer> > cacheMinEncoarseDiff;

The structures are used to trace if two types are at the same scale, at compa-
rable scales, and if comparable, the minimum number of scale encoarsements
between them. The Hashmap ”cacheTypeNode” is used to retrieve the node
in the type graph for a specific type.

4.6.4 Visualization and the Observer Pattern

GroIMP interprets the main graph data structure as a scene graph for 3D
visualization. For rendering purposes, it utilizes the visitor pattern for scene
graph traversal. The main class for rendering logic is hence the ”DisplayVis-
itor” class in the package ”de.grogra.imp3d”. This class plays the role of
a visitor and for multiscale extensions, it works together with several other
classes shown in Figure 4.28. For every graph node traversed, the classes
”View3D” and ”ViewConfig3D” are consulted to see if the node is visible by
invoking the method ”isInVisibleScale”. This method retrieves the root of
the main graph data structure and the corresponding ”Scale” node (of class
”de.grogra.graph.impl.Scale”) in the structure of scales. For each ”Scale”
class node or object, there exists a flag to indicate if the scale is visible or
not. These flags can also be set via the graphical user interface implemented
via the class ”ScaleVisibilityPanel” in the ”de.grogra.imp” package. Only
visible nodes during scene graph traversal are rendered.

The observer pattern is implemented using Java’s ”Observer” interface in
the ”java.util” package. Classes implementing this interface can observe one

132

CHAPTER 4. XL FOR MULTISCALE MODELLING

another by invoking the ”addObserver” method of the object being observed
and passing in the observer object as argument. Upon the establishment of
such observation relationships, observed objects can invoke the method ”no-
tify”, which results in the invokation of the method ”update” in all observers
of the observed object. Because we want to allow scale-scale observations,
each node or object of the ”Scale” class in the ”de.grogra.graph.impl” package
consists of a ”ScaleObserver” variable that implements Java’s ”Observer” in-
terface. To establish scale-scale observation, we invoke the ”observe” method
in the ”Scale” class and pass in the observed object, the notification key in
the form of an integer, and the method to invoke when the observed notifies
with the key. The ”ScaleObserver” class contains reference to the ”Scale”
class object or node and a hash map containing the registered methods to
invoke for particular observed objects and notification keys whenever the
”update” method is called.

Remark: The contents in Sections 4.2, 4.3, 4.5.1, and 4.1 are published
in [128], [125], and [130].

133

CHAPTER 4. XL FOR MULTISCALE MODELLING

Figure 4.26: Class diagram for classes used in compilation.

134

CHAPTER 4. XL FOR MULTISCALE MODELLING

Figure 4.27: Class diagram for classes modified and added for running mul-
tiscale XL code.

135

CHAPTER 4. XL FOR MULTISCALE MODELLING

Figure 4.28: Class diagram for multiscale visualization.

136

Part II

Level-of-Detail (LOD)
Visualization

137

Chapter 5

Multiscale & LOD
Visualization

5.1 Incremental LOD for Branching Struc-

tures

The development of branching structures occurs in many aspects of nature
[69]. This section presents an incremental computation method for the level-
of-detail (LOD) visualization of dynamic branching structures. Our method
is the first to minimize LOD computation delays occuring between simulation
steps of branching structures that grow. As a result, transition between
steps is less choppy, giving the viewer a smoother visual feedback of the
development processes. Our method applies to grammar or L-system based
specifications of branching structures, and is therefore particularly useful for
plants or vegetation scenes.

Our LOD computation method is based on the notion of incremental com-
putation [5, 23] and consists of buffers for polygonal areas between simplified
and non-simplified polylines or branch ramifications. Each buffer stores the
quadratic error for the simplification of a polyline or a pair of lines at a rami-
fication point, thus capturing detail for a given error threshold. Transitioning
between levels-of-detail is achieved by selective traversal of a multiscale in-
stanced graph (Section4.3.3) that arranges the buffers in a hierarchical man-
ner. Our method computes quadratic error incrementally by replacing and
appending to the last term of the shoelace formula (also known as Gauss’s
area formula or the surveyor’s formula) [15] in order to avoid re-visiting all

138

CHAPTER 5. MULTISCALE & LOD VISUALIZATION

coordinates as the structure develops.
By coupling the incremental LOD computation with a multiscale scene

graph representation, a dynamic multi-resolution branching structure can be
rendered at high frame rates.

This section presents an LOD computation method and a multi-resolution
model for branching structures. In order to achieve these objectives, we
introduce the following techniques:

• An incremental computation method for estimating quadratic errors
resulting from polyline simplification.

• A quadratic error estimate for filtering branch ramifications. As ramifi-
cations below an error threshold are filtered away, the branching struc-
ture is ”pruned” and only decipherable ramifications are rendered.

• A multiscale graph representation of branching structures. As opposed
to conventional scene graphs, this data structure is utilized in two as-
pects: local and global. These aspects segregate the topology of in-
dividual branching structures defined by rules (local) from the scene
construction (global).

The approach in this section has the following drawbacks and limitations:

• Accuracy of the error estimates is subjected to the modeller’s decision
on the number of scales (hierarchical levels) and ratio between objects
at different scales in the data structure.

• Accuracy of the error estimates does not match up to some existing
LOD or simplification algorithms.

• The thickness of lines in the branching structures is not accounted for.

5.1.1 Previous Work

Many methods for computing LODs of branching structures have been pro-
posed in the past. The earlier methods are generic simplifications, mostly
applicable to vertex-edge constructs of geometry. More recent researches
explore simplifications on alternative representations, such as topology (con-
nectivity between segments in branching structures), textures, volumetric
representations and hybrid representations.

139

CHAPTER 5. MULTISCALE & LOD VISUALIZATION

Early techniques relevant to branching structures are line simplification
algorithms. McMaster categorized and compared some of these methods
[117], which were revisited with newer algorithms by Shi and Cheung in a
more recent review [160]. The methods are categorized based on the range
of neighbouring points considered in the algorithm. In an order of ascending
range, some algorithms include the nth point routine, the routine of distance
between points, the perpendicular distance routine, the Reumann-Witkam
routine [146], the Zhao-Saalfeld algorithm [179], the Opheim simplification
algorithm [131], the Lang simplification algorithm [98], the Douglas-Peucker
simplification algorithm [44] and the Visvalingam-Whyatt algorithm [174].
While these methods are generally good in applications with requirements
for high fidelity, none of them allow filtering or substitution of deeper parts
(in terms of branching depth) in the branching structure.

Alternatively, research in the rendering of plants also saw advancements
in the simplification of branching structures. Weber and Penn [176] proposed
the substitution and filtering of finer twigs with increasing viewing distance.
Marshall et al. [109] described another technique with discrimination against
higher branching orders or depths. Following the dominance of polygonal
geometry and the initial idea of replacing primitives with quadric surfaces
by Gardner [64], Max [116] and Meyer and Neyret [119] used z-buffers and
volumetric textures respectively to represent botanical objects. However,
problems like parallax error and loss of detail at close viewing distances were
generally identified with texture-based and billboard approaches. Polygonal
simplifications, on the other hand, were posing limitations to frame rates for
large scenes. As a result, many improvements and extensions are made. For
example, the geometry substitution and filtering approach was extended by
Deussen et al. [43] for plant populations. Meyer et al. [120] proposed to use
a hierarchy of bi-directional textures and Decaudin and Neyret [40] extended
the usage of volumetric textures to forest scenes.

Some recent methods focus on filtering the branching structure using
more specific criterias. For example, Clasen and Prohaska [31] used branch-
ing angle and branch size to successively merge lines in the skeleton of the
branching structure. Lluch et al. [104] sorted the branching structure ac-
cording to lengths from root to leaf. Both approaches construct a hierarchy
according to criterias in order to filter away parts of the branching structure
for lower resolutions. While these methods have clear criterias, a direct rela-
tionship between view-dependent pixel error and simplification error is not
present. In addition, given a growing branching structure, the criteria-based

140

CHAPTER 5. MULTISCALE & LOD VISUALIZATION

hierarchies require repeated reconstructions.
Other recent methods can be perceived as hybrid approaches with break-

throughs in terms of efficiency and realism. To complement a high-speed hier-
archical simplification of foliage, Deng et al. [42] proposed the usage of poly-
line simplifications on branching structure skeletons before multi-resolution
mesh generation. Livny et al. [103] introduced lobe textures suitable for
representing higher order branches while keeping lower order branches as a
skeletal graph. Also using a combination of approaches, Fan et al. [53] used a
hierarchy based on branching order to filter away high order branches for low
resolution models of trees while retaining fine twigs as textures together with
foliage. However, to the best of our knowledge, none of the methods address
dynamic structures and most require extensive pre-computations. Moreover,
not all techniques are catered for grammar or L-system generated structures,
some requiring intermediary conversions.

The cache in our incremental approach updates on-the-fly and avoids com-
plete reconstructions. The incremental error estimation is based on existing
polyline simplifications, such as the perpendicular distance routine and the
Douglas-Peucker simplification algorithm. These algorithms use the distance
between points on the simplified and original line as simplification error. We
continue the line of research from Clasen and Prohaska and Lluch et al. to-
wards criteria-based filtering of multi-resolution branching structures. By
relating pixel error and estimated errors at branch ramification points, line
segments are filtered for low resolution representations. Our methods do not
use textures in order to avoid costly alignment and scaling of textures to a
dynamic structure.

The multi-scale graph data structure in Chapter 4 is used to represent
the scene with branching structures, supporting graph grammar usage. We
interpret the graph in two ways: a conventional scene graph and multiscale
branching topologies. Although this data structure was designed under the
motivation of multiscale plant representation [67], we explicitly use the term
”branching structures” to include non-botanical objects.

5.1.2 Polyline Incremental LOD and Ramification LOD

In this section, we first describe a method to compute estimated error for
polyline simplifications. As a polyline is extended with more line segments at
the end, the computation proceeds incrementally from previous estimations.
Secondly, we present an error estimation method for ramifications.

141

CHAPTER 5. MULTISCALE & LOD VISUALIZATION

5.1.2.1 Polyline Incremental LOD

A 2-dimensional (2D) polyline P is a sequence of n vertices (v1, v2, ..., vn),
where vi is a vertex with 2D cartesian coordinates (xi, yi), 1 ≤ i ≤ n, so
that P consists of line segments connecting the consecutive vertices. The
straight line Q from the first vertex v1 to the last vertex vn is a simplified
representation of the polyline P with quadratic simplification error A, where
A is the signed polygon area enclosed by P and Q (Figure 5.1). Specifically,
based on the surveyor’s formula [15],

A =

∑n−1
i=1 (xiyi+1 − yixi+1) + (xny1 − ynx1)

2
(5.1)

where (xi, yi) = vi, vi ∈ P , and n ≥ 3. Let Pt be a polyline at time step t,

Figure 5.1: Polyline P , simplification straight line Q, and enclosed polygon
area A used as simplification error.

Pt+1 be the polyline at time step t+1 and |P | be the notation for the number
of vertices in an arbitary P . The sequence of polylines (P1, P2, ..., Pk) with
k time steps then describes a ”growing” or dynamic polyline. The dynamic
polyline is such that |Pt| <|Pt+1|, and ∀i ∈ {1, ..., |Pt|}: ai = bi, where
ai ∈ Pt, bi ∈ Pt+1 and 1 ≤ t ≤ k − 1.

The simplified lines Qt and Qt+1 for Pt and Pt+1 yield quadratic simplifi-
cation errors At and At+1 respectively (Figure 5.2). As At is computed prior
to the computation of At+1, we can compute the quadratic simplification
error at time step t+ 1 incrementally by

At+1 = At + ∆At+1 (5.2)

142

CHAPTER 5. MULTISCALE & LOD VISUALIZATION

Figure 5.2: Polyline Pt+1 is shown in blue. The simplification lines Qt and
Qt+1 for time steps t and t+1 respectively are shown in red. The incremental
term ∆At+1 is the polygon area enclosed by (x1, y1), (xn, yn), and (xm, ym).
Simplification error for time step t+ 1 is the polygon area computed by the
sum of At and ∆At+1.

where ∆At+1 is the incremental term. Let |Pt| = n and |Pt+1| = m. The
incremental term, specifically, is

∆At+1 =At+1 − At

=
1

2

[
m−1∑
j=1

(xjyj+1 − yjxj+1) + (xmy1 − ymx1)

]
−

1

2

[
n−1∑
i=1

(xiyi+1 − yixi+1) + (xny1 − ynx1)

]

=

∑m−1
j=n (xjyj+1 − yjxj+1) + (xmy1 − ymx1)

2
−

(xny1 − ynx1)

2

(5.3)

In general, the quadratic simplification error Aq of Qq for Pq at an arbitrary
time step q in incremental terms is

Aq =

{
A1 +

∑q
i=2 ∆Ai if q ≥ 2

A1 if q = 1.
(5.4)

143

CHAPTER 5. MULTISCALE & LOD VISUALIZATION

The above methods for 2D polylines are extended for 3-dimensional (3D)
polylines. A 3D polyline P is a sequence of n vertices (v1, v2, ..., vn), where
vi is a vertex with 3D cartesian coordinates (xi, yi, zi), 1 ≤ i ≤ n, so that P
consists of line segments connecting the consecutive vertices. As in the case
of 2D polylines, the straight line Q from the first vertex v1 to the last vertex
vn is a simplified representation of P . The quadratic simplification error of
Q in the xy-dimensions (xy-dim) is

Axy-dim =
1

2

[
n−1∑
i=1

(xiyi+1 − yixi+1) + (xny1 − ynx1)

]
, (5.5)

and analogously for the yz-dimensions (yz-dim) and xz-dimensions (xz-dim).
Similar to 2D polylines, they can each be expressed incrementally using equa-
tion (5.2). The consolidated quadratic simplification error for Q is

A = max(Axy-dim, Ayz-dim, Axz-dim) (5.6)

5.1.3 Ramification LOD

Let a parent line in 3D be specified by a starting vertex vs = (xs, ys, zs) and an
ending vertex ve = (xe, ye, ze). A ramification is the protrusion of a branching
line at a vertex vr along the parent line, so that vr = (xs + (xe − xs)t, ys +
(ye − ys)t, zs + (ze − zs)t) and 0 ≤ t ≤ 1. The branching line has starting
vertex vr and an ending vertex vb that does not lie along the parent line.
Branching lines can be parent lines for further ramifications, resulting in a
branching structure. We discuss the representation of an extensive branching
structure in section 5.2.

The quadratic error estimateA for a ramification is the area of the triangle
with vertices vs, vr, and vb. Specifically,

A =
1

2
|vrvs||vrvb| sin θ, (5.7)

where |vrvs| is the distance from vs to vr, |vrvb| is the length of the branching
line and θ is the angle as shown in Figure 5.3.

5.2 The Multiscale Graph and Grammar

In this section, we first describe the generation and modification of a multi-
scale graph data structure that represents both a scene as well as branching

144

CHAPTER 5. MULTISCALE & LOD VISUALIZATION

Figure 5.3: Parent line from vs to ve with ramification of branching line
from vr to vb. The area of the triangle with vertices vs, vr, and vb is used as
error estimate of the ramification.

structures within the scene. The graph is managed in a local aspect con-
cerned with individual branching structures, and a global aspect concerned
with scene organization and hierarchies. We present these aspects separately,
each with key graph grammar rule statements in the programming language
XL [96, 128]. Secondly, we present the traversals of the graph for rendering,
including the update and extraction of resolution specific geometry based on
the error estimations, in Subsection 5.2.3.

5.2.1 Local - The Multiscale Branching Structure

Unsimplified branching structure: Before describing an extensive hi-
erarchy of simplifications for a branching structure, we first illustrate the
data structure for an unsimplified branching structure based on L-systems
[102, 145] and turtle geometry [4]. The turtle commands F and RU represent
a forward movement and a rotation around an axis orthogonal to movement
respectively. With an additional graph node type Tip, which represents an
ending tip of the branching structure, the following rule statement in XL
generates a graph data structure for an unsimplified branching structure
procedurally:

Tip ==> F [RU F F Tip] F Tip;

Figure 5.4 shows the geometric interpretation against the graph data struc-
ture after two applications (time steps) of the above rewriting rule. Rami-

145

CHAPTER 5. MULTISCALE & LOD VISUALIZATION

fications indicated by square brackets establish branching edge connections
labelled +, while successions indicated by an empty space establish successor
edge connections labelled >.

Tip ==> F [RU F F Tip] F Tip;

Figure 5.4: Results after applying rule twice. Left: Graph data structure.
Green nodes are Tip nodes, black nodes are F nodes, and red nodes are RU
nodes. Right: Geometric interpretation of the graph.

Polyline simplifications: A sequence of nodes connected consecutively
by successor edges can be interpreted as a polyline. To introduce simplifi-
cations to polylines represented in the graph, multiscale rule statements are
used in XL. For example, a module named Sim denoting the first level of
polyline simplifications can be introduced. A type graph is required in XL for
the interpretation of multiscale rule statements. In this case, we construct
a type graph before invoking other procedures. It is constructed with the
statement:

^ /> TypeRoot /> Sim /> {# F RU Tip #};

where ˆ is the root node of the graph data structure, TypeRoot is the root
node of the type graph, and the symbols /> are directed refinement edges
that connect coarse scale nodes to fine scale nodes. Since Sim nodes are sim-
plifications of the finer polylines, they are coarse scale or coarse resolution
representations of subgraphs composed of the nodes F , RU , and Tip. The

146

CHAPTER 5. MULTISCALE & LOD VISUALIZATION

symbols {# and #} enclose nodes in a clique, establishing successor and
branching edges bi-directionally between every pair of nodes enclosed. Edge
connections in the type graph dictate valid edge connections in the graph
data structure. Figure 5.5 illustrates the type graph resulting from the above
statement. Given a type graph, multiscale rules can specify branching struc-

Figure 5.5: Illustration of type graph. Black, dotted edges labelled / are
refinement edges. Colored, solid edges are successor (>) and branching (+)
edges that connect nodes in a clique.

tures with polyline simplifications. For example, we append the earlier rule
statement with Sim nodes to simplify every two F nodes and occasionally
an RU node in the unsimplified structure to a Sim node:

Tip ==> Sim F [Sim RU F F Tip] F Tip;

The two F nodes not enclosed in brackets form a simple polyline with two
line segments. This polyline is simplified to the left-most Sim node. The
RU node and the two F nodes between the brackets are simplified to the
Sim node between the brackets. These simplifications are represented by
refinement edges in the graph data structure. In addition, successor and
branching edges are established to embed newly created nodes in the graph
(following embedding mechanisms in Chapter 4). Figure 5.6 shows the devel-
opment of the branching structure in this example for two time steps. The
subgraph consisting of all Sim nodes and the edge connections between them
represent one level of simplification for the unsimplified branching structure.

147

CHAPTER 5. MULTISCALE & LOD VISUALIZATION

More than one level of simplification can be introduced in the same manner.

Ramification axes and the encompassing node: Polyline simplifica-
tions can be applied to an extent resulting in a level of simplification with only
straight lines and no polylines. We term the straight lines axes (based on the
terminology for scales in plant morphology [67]). The subgraph representing
the branching structure with only axes has a set of nodes, each representing
one axis, and a set of branching edges. Each branching edge connection be-
tween a pair of axis nodes represents a ramification as described in section
5.1.3.

To encapsulate a branching structure in a single unit, an encompassing
node is used as a coarse representation of all axes. The encompassing node
has a refinement edge to each axis representing node. Figure 5.7 illustrates a
multiscale graph representation of a branching structure, including multiple
levels of simplification, axes, and the encompassing node.

5.2.2 Global - The Multiscale Scene Graph

In this subsection, we describe a scene graph compatible with the graph repre-
sentation of multi-resolution branching structures. Local graphs representing
branching structures are embedded in the global scene graph as subgraphs.
The scene graph takes the form of a directed acyclic graph (DAG) and re-
finement edges are used for connections. As in the case of conventional scene
graphs, nodes representing 3D transformation can be included, usually as
turtle commands.

Generating the scene graph: We use rule statements in XL to con-
struct a scene graph. For example, the initial rule

Axiom ==> for(int i:(1:5))(

[/> Translate(random(0,10), random(0,10),

random(0,10)) /> P /> Axis /> Sim /> Tip])

generates five seminal branching structures at random positions. Figure 5.8
depicts the graph along with annotations segregating the local and global
aspects. Translate represents a 3D translation in the scene. It is not part of
any branching structure and belongs to the global aspect. P is the encom-
passing node, Axis is the axis, Sim is the simplification line, and Tip is the
initial branch tip for a branching structure. Together, these three modules
are the local aspect of the multiscale scene graph. By connecting nodes in

148

CHAPTER 5. MULTISCALE & LOD VISUALIZATION

the global aspect to encompassing nodes of branching structures, the aspects
are bridged and we arrive at an integrated multiscale scene graph. Several
edge connections to encompassing nodes are used for instanced branching
structures (Figure 5.8, right side).

5.2.3 Update and Extraction for Rendering

Cache and error estimation updates: Each graph node representing a
part of a branching structure is associated with a set of cache values contain-
ing position and orientation information in the form of a matrix. The cache
contains additional information for nodes representing simplified polylines
or ramification axes. If a node represents a simplified polyline, the length
of the simplified line and the polyline simplification error is stored in cache.
If a node represents an axis, the ramification simplification error (for which
the axis is the child ramification line) is stored in cache. An axis-aligned
bounding box is cached for encompassing nodes.

Cache values for modified graph nodes, excluding newly created nodes,
are set as dirty in each simulation step. In addition, cache values for graph
nodes that belong in the same axis as modified nodes are likewise set as dirty.

Two types of graph traversal in the local aspect of the scene graph up-
date the cache and simplification errors of branching structures. Figure 5.9
shows the pseudo-code for the first type of traversal that updates position,
orientation, length, and polyline simplification error. The second type of
traversal, shown as pseudo-code in Figure 5.10, updates ramification simpli-
fication errors for axes, and axis-aligned bounding boxes for whole branching
structures.

Extraction traversal: Once cache values and error estimations are up-
dated, the scene graph is ready to be traversed for rendering. Traversal begins
from the root node of the multiscale scene graph and proceeds depth-first,
following directed paths composed by refinement edges. View-dependent
LOD extraction begins when traversal reaches the encompassing nodes of
branching structures.

Upon reaching an encompassing node, the distance d in the viewing di-
rection from the eye point to the axis-aligned bounding box of the branching
structure is computed. If d is less than a specified distance threshold, traver-
sal continues until graph nodes representing the unsimplified structure are
encountered and rendered based on their positions, orientations, and lengths.
In this case, nodes representing simplifications are ignored.

149

CHAPTER 5. MULTISCALE & LOD VISUALIZATION

On the other hand, traversal proceeds selectively if d is more than or
equal to the distance threshold. The quadratic object-space geometric error
threshold ε2 is computed for the branching structure encountered. The linear
object-space geometric error [35] threshold is computed by

ε = p
2d tan θ

2

x
(5.8)

where p is the screen-space geometric error threshold in pixels, θ is the field
of view, and x is the resolution of the screen in pixels. We illustrate the
selective traversal in Figure 5.11.

5.3 Implementation and Results

We implement the proposed methods on a Pentium 4 2.6 GHz computer
with 4 Gb of memory. 3D visualization is implemented using OpenGL. Our
experiment consists of empirical measurements made on simulated juvenile
trees.

The methods in Section 5.1 and 5.2 are used to simulate the development
of a tree (a branching structure) for 40 time steps. Figure 5.12 shows the
number of axes, line segments, and time taken to compute simplification
errors at each time step. Computation time is relatively linear in relation to
time steps.

Figure 5.13 shows the tree at various linear object-space geometric error
threshold values. Polyline simplifications and ramification simplifications
operate concurrently, effectively reducing the branching structure to only a
few main axes at high thresholds.

5.4 Summary and Future Work

We presented a new data structure and algorithms for level of detail of
branching structures. Our examples show instanced structures generated
procedurally by multiscale rules. To our knowledge, our approach is the first
to consider LOD, a key component of real-time graphs, for branching struc-
tures that develop. We presented experiments that demonstrate the viability
of such an approach, suitable as an extension to L-system based models for
visualization.

150

CHAPTER 5. MULTISCALE & LOD VISUALIZATION

Some interesting modifications in the future are:
Non-branching structures: Most scenes include non-branching struc-

tures and objects. A seamless integration of our approach and data structure
with other LOD computation methods for these objects would be useful to
allow collective visualization.

Parallel computation: Despite the incremental algorithm, more effi-
ciency may be achievable if computations are performed in parallel. One
possible way is to perform graph traversals in parallel when updating simpli-
fication errors.

Lines with varying thickness: Some branching structures have line
segments that have varying thickness. The most common example would be
plants. Increased accuracy of our algorithms for these structures to take into
account line thickness is desirable.

Dynamic deformation: Branching structures deform with time. For
example, parts of the structure may bend further over time under the in-
fluence of external forces. Research towards an incremental approach to
compute the LOD of such structures is another interesting area for future
work.

Remark: The content in this chapter was submitted [127] for publication
but are under modifications after review.

151

CHAPTER 5. MULTISCALE & LOD VISUALIZATION

Tip ==> Sim F [Sim RU F F Tip] F Tip;

Figure 5.6: Applying the multiscale rule for 2 time steps. Green nodes are
Tip nodes, black nodes are F nodes, red nodes are RU nodes, and blue nodes
are Sim nodes. Black, dotted edges are refinement edges. Colored, solid
edges are successor or branching edges. The multiscale rule is first applied
to the single Tip node in Box 1 to derive the graph in Box 2. The next
application derives the graph in Box 3 from the graph in Box 2. The Sim
nodes persistent in the second rule application are labelled a and b. Faded
nodes and edges in Box 3 are created in the earlier (first) rule application,
not in the second rule application. The subgraph consisting of all blue Sim
nodes and colored edges between them is one level of simplification for the
unsimplified structure.

152

CHAPTER 5. MULTISCALE & LOD VISUALIZATION

Figure 5.7: Multiscale graph representation of complete branching structure.
The grey encompassing node refines to the axis-representing nodes in orange.
The dotted orange boundary highlights the level of simplification made up
by axes. The pattern and coloring of edges and nodes are consistent with
that in Figure 5.6.

153

CHAPTER 5. MULTISCALE & LOD VISUALIZATION

Figure 5.8: Illustrations of scene graphs. Node type names are listed on the
left with the same colors as the nodes they represent. Black, dotted edges
are refinement edges. Left: Five branching structures randomly positioned
using Translate nodes. Right: Five branching structures placed in scene by
establishing edge connections to a single instanced branching structure. The
global aspects of the scene graph are highlighted using dotted, purple bound-
aries. The local aspects are highlighted using dotted, orange boundaries.

154

CHAPTER 5. MULTISCALE & LOD VISUALIZATION

for each branching structure instance
traverse1(root node of unsimpli�ed branching structure);

traverse1(sNode):
if sNode is new or dirty
set sNode position & orientation in cache;
for each polyline simpli�cation of sNode

if sNode is polyline �rst vertex
set position of simpli�cation in cache;

if sNode is polyline last vertex
set length & orientation of simpli�cation in cache;

set error of simpli�cation incrementally in cache;
for each tNode connected an by outgoing
successor or branching edge from sNode

traverse1(tNode);

Figure 5.9: Pseudo-code for the first type of graph traversal, visiting nodes
representing branching structures. The position, orientation, and length of
each line segment, including polyline simplifications for multiple levels of
simplification, as well as axes, are updated. Polyline simplification errors are
updated using the incremental approach in section 5.1.

for each branching structure instance
traverse2(root node of axes);

traverse2(sNode):
if sNode is new or dirty
set rami�cation error in cache;

update bounding box in encompassing node;
for each tNode connected an by outgoing
successor or branching edge from sNode

traverse2(tNode);

Figure 5.10: Pseudo-code for the second type of graph traversal, visiting
nodes representing the axes and encompassing nodes of branching structures.
Ramification errors are updated using the approach in section 5.1.

155

CHAPTER 5. MULTISCALE & LOD VISUALIZATION

for each aNode representing an axis
traverse3(aNode);

traverse3(sNode):
err = simpli�cation error of sNode
if (err < ε2)

if sNode is not an axis
draw sNode;

skip the next recursive calls;
for each tNode connected an by outgoing
re�nement edge from sNode

traverse3(tNode);

Figure 5.11: Pseudo-code for selective traversal of branching structure. If
the quadratic ramification or polyline simplification error is less than the
quadratic object-space geometric error threshold ε2, the current sNode is an
acceptable simplification and its refinements are excluded from traversal.

156

CHAPTER 5. MULTISCALE & LOD VISUALIZATION

Figure 5.12: Results of simulation tree growth for 40 time steps. Top left:
LOD computation time, accounting for graph traversals, polyline simplifica-
tion errors, and ramification errors. Top right: Number of axes at each time
step. Bottom: Number of unsimplified line segments at each time step.

157

CHAPTER 5. MULTISCALE & LOD VISUALIZATION

Figure 5.13: Multiple resolutions of branching structure. Top left: ε at 0.002
with 1077 line segments and 898 axes. Top center: ε at 0.014 with 607 line
segments and 124 axes. Top right: ε at 0.058 with 150 line segments and 124
axes. Bottom left: ε at 0.233 with 31 line segments and 18 axes. Bottom
right: ε at 0.5 with 0 line segments and 15 axes.

158

Part III

Applications & Examples

159

Chapter 6

Examples and Demonstrative
Models

This chapter contains examples and demonstrative models for the concepts
and techniques described in this thesis. The sections contain information
published in [128], [130], and [129]. While some examples contain isolated
conclusions, collated conclusions referencing several examples together are
presented in Chapter 7.

6.1 Fission Yeast

A multi-cellular model of the fission yeast (Schizosaccharomyces pombe) cell
division is implemented. The model and simulation parameters are based
on the multi-level approach by Maus et al. [115]. However, our multiscale
graph grammar approach allows arbitrary functions and rules to be applied
to any part of the model data. Multiscale causation in our graph model is
illustrated and visualized by interpreting the graph as a scene graph.

6.1.1 Single Cell Model

The yeast cell cycle consists of four phases: G1, S, G2 and M . During the
phases G1, S and G2, the cell increases in size. Following the G2 phase,
the cell enters the M (mitosis) phase and divides into two daughter cells.
Phase changes are regulated by two proteins - cyclin and cdc2, that form
a complex called maturation promoting factor (MPF). MPF controls the

160

CHAPTER 6. EXAMPLES AND DEMONSTRATIVE MODELS

M

S

I

Figure 6.1: Fission yeast cell division simulation structure of scales. S is
a scale representing cells and lists of cells. M is a scale representing grid
space and sub-divided space (tiles). I is a scale representing proteins and
complexes at a micro level.

traversal of cell cycles. This protein regulation model is based on an early
model by Tyson [172]. Fission yeast cells may undergo sexual reproduction
when environmental conditions are getting poor. The mating types (P and
M) of cells enforce fusion of opposite types [100]. Fused diploid zygotes
undergo sporulation and later germinate to create haploid cells. The mating
type of proliferating cells switches sporadically [177] and can be observed
by phenomenological patterns [90]. We define cells as a module Cell in
XL with the attributes: volume, state, mateType, switchable, x and y.
state represents the cell cycle phase, mateType represents either the P or
M mating type and switchable represents the phenomenological type for
determining the mating type of spawned cells.

Proteins and complexes (cyclin, phosphorylated cyclin, cdc2, inactive
MPF, active MPF and repressed MPF) are also defined as modules (named
Y , Y p, D, MI, MA and MR respectively) extending from a base module
representing species in general. The base module consists of an attribute for
molecule count. Proteins and complexes exist as nodes in the model graph.
A node labelled CellList represents a collection of cells. Each Cell node is
connected from the CellList node by a branching edge. Each cell is refined
to its intracellular components represented by nodes of the protein or com-
plex modules. Proteins or complexes taking part in the same intra-cellular
processes are connected in a chain of successor or branching edges. Figure 6.2
shows an example of the graph model and Figure 6.1 shows the corresponding
structure of scales.

Rules are defined modelling the intra-cellular processes. One such rule,
illustrating an inter-scale causation is:

161

CHAPTER 6. EXAMPLES AND DEMONSTRATIVE MODELS

CellList Grid

T ile ...T ile

Cell Cell ...

Y D

MI MR

MAY p

...

+ + +

+ + +

/ / /

/ /

/ /

//

/ /

>

>

+

>

>

>

Figure 6.2: Fission yeast cell division simulation model graph. CellList and
Cell nodes belong to scale S, Grid and Tile nodes belong to scale M and
the other nodes belong to scale I (scales seen in Figure 6.1).

162

CHAPTER 6. EXAMPLES AND DEMONSTRATIVE MODELS

c:Cell ma:MA yp:Yp d:D ::>

{ double r = (k4/c[volume])*ma[mol];

ma[mol]=ma[mol]-r;

yp[mol]=yp[mol]+r;

d[mol]=d[mol]+r; ... }

The volume of the cell is used along with the amount of active MPF to
determine a reduction in the amount of active MPF in the cell. ’::>’ is a rule
for code execution without changes to the graph structure. k4 is a constant
value. Notice that MA, Y p and D are connected sequentially by successor
edges, simplifying the query statement in the rule, i.e. no explicit expres-
sions of the edges are required. Advanced implementations with ordinary
differential equations in GroIMP [75] can also be used instead.

The model graph functions additionally as a scene graph. The Cell mod-
ule extends the Sphere module and is therefore graphically rendered in the
3D-view of GroIMP as a sphere. Graph nodes contain transformation infor-
mation (e.g. rotation, translation, scaling) used during the traversal of the
graph for rendering. The cell nodes in this case contain translation infor-
mation for their positioning on a two-dimensional plane using their x and y
attribute values. Entities from the finest scale, i.e. proteins and complexes,
are not visualized in this example.

6.1.2 Multiple Cell Model

The fusion of fission yeast cells is regulated by pheromone molecules secreted
by the cells. Cells of mating type P secrete P-factor pheromones and cells
of mating type M secrete M-factor pheromones. Cells sense the pheromones
secreted by the opposite mating type, causing an arrest at their G1 cell cycle
phase [163]. Cells of mating type M also secrete a P-factor-specific protease
(Sxa2) that reduces the effect of P-factor pheromones. This process is mod-
elled using a two-dimensional grid space where each sub-divided grid area
(a tile) contains information about the quantity of both types of pheromone
and protease Sxa2 in the tile. In our implementation, the entire collection
of tiles is defined by a module Grid. Each sub-divided space is defined by a
module Tile with attributes: x, y, Fp, Fm and Sxa2.

x and y are the positions of the tile on a two-dimensional plane, Fp is the
amount of P-factor pheromone, Fm is the amount of M-factor pheromone
and Sxa2 the amount of protease Sxa2 in the area represented by the tile.

163

CHAPTER 6. EXAMPLES AND DEMONSTRATIVE MODELS

Each tile is connected to the cell nodes that are residing in its spatial terri-
tory, i.e. the 1 unit2 square area from (x,y) to (x+1, y+1). Figure 6.2 shows
the model with the Grid node representing the entire grid space, Tile nodes
for each sub-divided area and refinement connections to individual cells re-
siding in the respective tiles. The cell cycle arrests are dependent on the
amount of pheromones in the containing tiles of the cells. Pheromones also
diffuse from tile to tile in four directions (up, down, left and right). The
following rule spanning 3 scales models the conversion of inactive MPF to
repressed MPF depending on tile pheromone quantity, causing the arrest of
cell cycles:

v:Tile c:Cell mi:MI [mr:MR] ::>

{ ...

if(c[mateType]==typeM)

rate = (k11*(v[Fp]**3))/

(K11+(v[Fp]**3));

else

rate = (k11*(v[Fm]**3))/

(K11+(v[Fm]**3));

rate = rate/(c[volume]**2)*mi[mol];

mi[mol]=mi[mol]-rate;

mr[mol]=mr[mol]+rate; }

The following rule models the spawning of new cells and their connection
to both the CellList node and Tile node. The details of copying and setting
the attribute values from the parent cell to the new cell are left out inten-
tionally. It is our intention here to demonstrate the rule-based modification
of the graph structure. A new cell and a new set of proteins and complexes
are added using the production statement on the right-hand side of the rule.

g:Grid [v:Tile c:Cell y:Y d:D mi:MI [mr:MR] ma:MA yp:Yp],

clist:CellList [c],(c[state]==M),

(ma[mol]<t9)

==>

g [v c y d mi [mr] ma yp]

[v nc:Cell ny:Y nd:D nmi:MI [nmr:MR] nma:MA nyp:Yp],

clist [c] [nc];

164

CHAPTER 6. EXAMPLES AND DEMONSTRATIVE MODELS

Figure 6.3: Screenshot of cell division process visualization. The white circles
are cells. There are 25 tiles. Color intensity indicates strong presence of
pheromone in the tiles. The sizes of the circles depend on the cell volumes.
The picture on the left shows an earlier simulation state compared to that
shown on the right.

The Tile module is defined such that it extends the graphically meaningful
Parallelogram module and contains translation information to the respec-
tive grid positions.

Rules for cell movement dynamics to avoid crowding of cells in tiles are
implemented. When cells move into the space of another tile, the refine-
ment relation is updated accordingly. Figure 6.3 shows the top-down three-
dimensional visualization of the simulation in GroIMP.

6.1.3 Rule-based Species and Complexes

Since the above defined set of proteins and complexes is contained in each cell,
it is questionable why they are not defined as attributes of the Cell module.
We would like to illustrate the possibility of creating complex species by
applying rules to a basic set of species. Figure 6.4 shows four interacting
protein species represented by nodes refined from a SPool (species pool)
node. Using rules, we can create complex species that combine the basic
species as nodes of a coarser scale. Complex species nodes refine to the basic
species nodes and are added into a pool of complex species CPool. Figure
6.4 shows the creation of a few complex species. This approach of generating
possibly large numbers of combinatorial complexes is introduced in [115].
Although our newly introduced graph model is suitable for this purpose,
the functionality for translating rule-generated complexes and their reactions
into attributes and functions of modules in XL is work-in-progress as part
of a component-based modelling project in our team. In this yeast model

165

CHAPTER 6. EXAMPLES AND DEMONSTRATIVE MODELS

root

SPool CPool

C1 ...C2

S1 S2 S3 S4

/ /

/ / / /

/ / /

/ / / / /

Figure 6.4: Species and complexes. Rules can be used to define a large
number of combinatorial complexes. SPool is a pool of species, CPool is
a pool of complexes, S labelled nodes are species and C labelled nodes are
complexes.

example, we justify our choice of using nodes instead of module attributes to
make conscious the possibility of using graph nodes to represent protein and
complex species as well as the multi-scale causality with cell nodes.

6.2 Beech Structural Growth

The continued virtual growth of a measured young European beech (Fa-
gus sylvatica) is simulated using the multiscale graph model and grammar.
Canopy height and topological scales are combined in a single simulation
model. The branching structure is represented as internodes at the finest
scale. Two coarse scale representations of internodes are used: annual growth
units and height layers. The corresponding structure of scales is shown in
Figure 6.5.

The graph structure of growth units and internodes is similar to that
in Multiscale Tree Graphs [67]. Internodes are represented as graph nodes
connected using successor and branching edges. Growth units are also rep-
resented as graph nodes connected in the same way. Internode nodes are
connected to growth unit nodes that they belong to using refinement edges.
Statistical information, e.g. the number of internodes per growth unit, can

166

CHAPTER 6. EXAMPLES AND DEMONSTRATIVE MODELS

root

GU Ca

I

/ /

//

root

GU Ca

I B

/ /

//

>

Figure 6.5: Beech model structure of scales and type graph. Left: GU is
a scale representing growth units, Ca is a scale representing height layers,
and I is a scale representing internodes. Right: Type graph similar to the
structure of scales but with additional node B.

be utilized for the basic simulation of structural growth.
The percentage of above canopy light (PACL) is unevenly distributed in

tree crown layers. Light interception in relation to canopy height is com-
monly explored [154] and related to senescence and mortality [135] of plants.
To model self-pruning, we represent every interval of height above ground
with a Ca (canopy) node. Internodes are connected to these Ca nodes with
refinement edges based on their height above ground. For consistency, we
use the top position of each internode for the categorization.

At the start of the simulation, the measured information for a young
beech tree is input using XL. Height layers are created, each representing a
hundred millimetres, up to three metres. Heights for the initial internodes
are computed and connected with the respective Ca nodes. The type graph
used is shown in Figure 6.5.

Each simulation step creates a number of internodes and corresponding
growth units. For the demonstration of this graph model, we use a simple
random number of internodes from one to three. The length of the newly cre-
ated internodes decreases exponentially with the order of the branch. Figure
6.6 shows the graph rewriting step simulating structural growth.

Self-pruning of the tree is simulated using the height layer scale. Proba-
bility of pruning an internode exponentially decreases with height. Figure 6.7
shows the visualization results. This virtual tree growth example illustrates
the use of the multiscale graph model and grammar for multiscale modelling
in functional-structural plant modelling.

167

CHAPTER 6. EXAMPLES AND DEMONSTRATIVE MODELS

root

GU

I I B

Ca Ca ...

/

/ /

> >

/ > >

/ /

root

GU GU

I I I B

Ca Ca ...

/

/ /

>

/

> > >

/ > >

/ / /

Figure 6.6: Beech structural growth. GU represents a growth unit node. I
represents an internode node. Ca represents a height layer node. B repre-
sents a meristem tip of a branch. The graph on the left shows the structure
before rule execution. The graph on the right shows structural growth after
a single rule execution. An additional internode belonging to a new growth
unit is added and connected to the next height layer.

Figure 6.7: Beech structural growth. The left-most image shows the mea-
sured tree before simulation. The middle image shows the result of simulated
growth with pruning using height layers. The right image shows the result
of simulated growth without pruning.

168

CHAPTER 6. EXAMPLES AND DEMONSTRATIVE MODELS

Figure 6.8: An illustration of the structure-of-scales (A), type graph (B) and
initial instanced graph (C) for modelling a multiscale plant structure.

6.3 Specifying and Generating a Multiscale

Plant Structure

A structure-of-scales (Figure 6.8A) is made to represent the tree, axis and
organ scales of a tree. It is not explicitly declared in source code, but can be
derived from the type graph. The model’s type graph (Figure 6.8B) consists
of types Tree, Axis, Internode, and Bud. The Internode and Bud types belong
to the organ scale while the Axis and Tree types belong to the axis and tree
scales respectively. The types in the organ scale are pairwise inter-connected
by branching and successor edges to allow these relationships between them.

The type graph is constructed in XL as shown in Listing 6.1.

==>> ^ /> TypeRoot /> Tree

/> Axis

/> {# Internode Bud #};

Listing 6.1: XL Type Graph Construction

169

CHAPTER 6. EXAMPLES AND DEMONSTRATIVE MODELS

Because nodes at the organ scale (i.e. Internode, Bud) can be connected
to one another by successor or branching edges, a clique (complete graph;
syntax {# ... #}) is established for these node types in the type graph such
that the pair is completely (in graph terminology) inter-connected by branch-
ing and successor edges (cf. Figure 6.8B).

To initialize simulation, the model’s instanced graph is created with a
Tree node refined to an Axis node that is further refined to a Bud node (Fig-
ure 6.8C):

Axiom ==> Tree /> Axis /> Bud;

Each simulation step consists of parallel applications of a rule that replaces
a bud with a new internode, lateral axis, lateral bud and apical bud:

Bud ==> Internode [Axis Bud] Bud;

Axis is the only node that belongs to a coarser scale in this rule. With-
out it, the rule appears like classical (single-scale) L-system rules. When a
bud in the instanced graph is matched to the left-hand side of the rule, the
query recognizes its axis and tree encoarsements at the same time, follow-
ing the relationships specified in the type graph. Subsequently, organ scale
nodes produced by the right-hand side of the rule, except for the lateral axis
and bud, are automatically refined from the same encoarsements. For the
new lateral Axis specified in the right-hand-side production statement, the
framework establishes a branching edge from the existing parent axis node
and a refinement edge from the tree node automatically. The new lateral Bud
branches from the newly produced internode and refines from the new lateral
Axis. Figure 6.9 illustrates the modification of the initial instanced graph
after one application of this rule. A detailed account of grammar operations
at multiple scales is given in Chapter 4.4 and in [128]. The resultant data
structure is a multiscale graph (in this case, also an MTG) representing the
plant topology.

This example generates a multiscale representation of plant topology. We
have implemented an alternative model with single-scale rules to achieve the
same goal (see supplementary material in [130]). In this model, coarse rep-
resentations (not scales since the model is not formulated with a structure-
of-scales or equivalent) of organs are implemented using an object-oriented
(O-O) approach. To represent the axes and the organs in O-O code, a Java

170

CHAPTER 6. EXAMPLES AND DEMONSTRATIVE MODELS

Figure 6.9: An illustration of the initial instanced graph modified by an XL
rule. The initial Bud node is removed and replaced by a new internode,
lateral axis, lateral bud and apical bud.

171

CHAPTER 6. EXAMPLES AND DEMONSTRATIVE MODELS

class Axis and a Java interface Organ are implemented in separate files. An
Axis object has references to other Axis objects to which branching relation-
ships exist, as well as references to its fine representations at organ scale. In
the main modelling file, an array is defined to contain all axes in the plant.
XL modules for internodes and buds are defined with an index reference to
the array, identifying their respective encoarsements:

module Internode(int axis) implements Organ;

module Bud(int axis) implements Organ;

The rule to generate the same multiscale structure from this example is then
specified as:

b:Bud ==> {
removeOrganFromAxis(b.axis, b);

int latAxis = createAxis(b.axis);

}
i:Internode(b.axis, 1)

[bl:Bud(latAxis)]

ba:Bud(b.axis)

{addOrganToAxis(b.axis, i); ...}
;

The production statement is sandwiched between object-oriented code blocks
(between curly braces) that invoke methods to maintain and create refine-
ment relationships between axes and organs. The method
removeOrganFromAxis is invoked to remove the matched Bud node from its
axis encoarsement. After the specification of the production graph (consisting
of a new internode, lateral bud and apical bud), the method addOrganToAxis

is invoked multiple times to add references of the newly created organs into
the axis objects.

By comparing this implementation with this example, some advantages
of the three-part multiscale graph model and grammar are identified. One
significant advantage of the multiscale rules is the implicit handling of refine-
ment relationships once a type graph is specified. An index or reference-based
implementation of scales together with classical single-scale rules, as shown
in our alternative implementation, requires the modeller to explicitly main-
tain scale relationships with method invocations, introducing more room for

172

CHAPTER 6. EXAMPLES AND DEMONSTRATIVE MODELS

error. Another advantage of the multiscale rules over index-based implemen-
tations is the implicit type constraint, i.e. rules referencing the type graph
are less likely to generate erroneous refinement relationships. In contrast,
such constraints need to be manually handled by a modeller who chooses
an index-based implementation approach, since indices are not programmat-
ically tied to specific arrays. Comparing the length of the implementation
code files reveals a third advantage of the multiscale rules. For generating
a simple multiscale structure, multiscale rules require less than 30% of the
code (ignoring empty and commentary lines) required by single-scale rules.

6.4 Crown Generation

In this example, we demonstrate the dependency of an artificial light-sensitive
tree on fine scale organ developments. Light sources are directed at a grow-
ing tree from equal distances vertically above, diagonally around from an
elevated height and horizontally around from ground level. The model is
catered to produce coarse-scale outputs such as tree height and crown di-
mensions (e.g. radii in different directions). These outputs are derived from
organ developments extrapolated from finer to coarser spatial and time scales.

The structure-of-scales in this example has a tree scale refined to an organ
scale (Figure 6.10A). Several types defined in the type graph (Figure 6.10B)
make up the model of the growing tree. At the tree scale, a CrownLayer type
represents a vertical quartile of the tree crown and a Trunk type represents
the growing tree trunk. At the organ scale, a Bud type represents buds, a
Branch type represents branch segments and a Foliage type emulates leaves
to reduce light intensity. In addition, the organ scale has a Marker type to
mark initial bud sample positions in crown layers. The types at the organ
scale are inter-connected by branching and successor edges to allow these
relationships between them. An instanced graph (Figure 6.10C) is created
with one node for the trunk and four nodes for the crown layers of the growing
tree. Light sources are included as nodes in the graph but are excluded from
figures for simplicity. The XL code for creating the type graph is similar to
that in the previous example.

Tree growth is modelled by a series of simulation steps. In each simulation
step, crown growth is formulated as a multiscale problem (see Section 4.1 on
the problem categorization, scale dependency, and scale integration compo-
nents of the multiscale modelling framework) where the tree scale is entirely

173

CHAPTER 6. EXAMPLES AND DEMONSTRATIVE MODELS

Figure 6.10: An illustration of the structure-of-scales (A), type graph (B)
and initial instanced graph (C) for modelling the growth of four crown layers
based on the development of a sample of organs.

174

CHAPTER 6. EXAMPLES AND DEMONSTRATIVE MODELS

Problem Category Crown growth always
based on bud and branch
developments.

Dependency
Dependent Tree (crown layers)
Independent Organ (branches and buds)

Integration

Initialization Bud positioning - Based on vertical
distribution and crown dimensions,
a representative number of buds are
positioned.

Evolution Branch growth - Rule-based branch
elongations over short time scale.

Extrapolation Crown estimation - Bounding boxes
of branches scaled up and
aggregated into new crown
dimensions.

Table 6.1: Multiscale problem categorization, scale dependency and scale
integration for example in Section 6.4 (crown generation).

scale dependent on the organ scale, i.e. crown dimensions are determined by
the developments of light-sensitive buds and branches. An overview of the
scale integration, in this case also a Monte Carlo method [84] application, is
shown in Table 6.1.

In initialization, the age of the tree determines the number of buds. From
the finite population of buds, a representative sample is created. A wide range
of sampling methods can be used. In this example, simple random sampling
with finite population correction [105] is employed. The mean number of the
buds forming the height and maximum radii in each direction of the crown
layers is assumed to be 20% of the bud population. The sample buds are
independently distributed to each crown layer following proportions given
as inputs to the model. Each sample bud is assigned a random position
within its crown layer (Figure 6.11A). The sampled and positioned buds are
refined from their respective crown layers. For example, the XL code to
establish the refinement is: cl [createBud(cl)]; where createBud(cl)

is a method returning a new Marker graph node representing a single bud
from the samples in the crown layer represented by cl. The two nodes
are connected by a refinement edge although createBud is contained within

175

CHAPTER 6. EXAMPLES AND DEMONSTRATIVE MODELS

Figure 6.11: Illustration of multiscale crown model development. Black
spheres represent samples of buds (sizes intentionally increased for visibil-
ity). Green spheres represent random foliage. Green frustums represent
crown layers. (A) Random positioning of bud samples and foliage spheres in
initialization. (B) Up-scaled bounding boxes of fine organs shown in blue.
(C) Result of extrapolation. Crown layers are updated to reflect new tree
height and crown dimensions containing the bounding boxes in (B).

square brackets because of the refinement relationship defined in the type
graph. Spheres are placed in each crown layer to emulate leaves for self-
shading within the crown (similar to the approach by [26]). The volumes of
these spheres are proportional to the volume of their respective crown layer.
The rule-based code for refining foliage graph nodes from crown layer nodes
is similar to the refinement of crown layers to buds.

In evolution, a photon-tracing technique [76] is used to obtain irradiance
of each sampled bud from each light source. The final growth direction of
branches from each bud is determined by a weighted sum of the direction
towards the light source providing maximum irradiance and a default di-
rection for the crown layer given as model input (similar to the method by
[133] but tropism is accounted for in the default direction). Rules gener-
ate branch segments for a fine-scale (i.e. short) time frame. Figure 6.12
illustrates an example of the graph modifications when rules are executed

176

CHAPTER 6. EXAMPLES AND DEMONSTRATIVE MODELS

Figure 6.12: Modification of instanced graph at organ scale. After two it-
erations, the bud produces three branches. The branches with paths to the
same marker node are eventually used to create a bounding box at the organ
scale.

to create branch segments from buds. In extrapolation, minimal bounding
boxes enclose branches originating from each Marker object. The dimensions
of these bounding boxes are scaled up based on the ratio of the macro-scale
simulation time to the micro-scale simulation time (Figure 6.11B). Finally,
existing crown dimensions and the up-scaled bounding boxes from each bud
node are aggregated into new crown dimensions (Figure 6.11C). Sample buds
are discarded at the end and the three processes (initialization, evolution and
extrapolation) repeat for each step.

To concretize a comparison of this example against single-scale approaches
of plant modelling, we implemented a corresponding model that contains
complete plant topology and light conditions by Palubicki et al. [133]. Four
plant architectures with contrasting apical dominance and tropism (cf. Fig-
ure 7 and Figure 12 in [133]) are implemented using both models. Figure
6.13 shows that the model in this example, i.e. the multiscale framework,
is capable of replicating selected architectural shapes with specific param-
eters. No crown dimensions or tree scale aggregates are created from the

177

CHAPTER 6. EXAMPLES AND DEMONSTRATIVE MODELS

single-scale implementation for comparisons because aggregates constitute
dependencies that make a model multiscale in nature. A correlation-based
crown development model, on the other hand, cannot offer fine light sensi-
tivity for comparisons.

Due to the self-replicating characteristic of plants, the numbers of branches
and buds can increment exponentially during the juvenile growth phase, of-
ten causing computational limitations in single-scale approaches (one of the
earlier mentioned motivations of multiscale modelling). The example in this
section overcomes this while retaining fine sensitivity to light by sampling
the bud population. Juxtapositions of bud count and simulation time for the
multiscale and single-scale implementations are shown in Figure 6.14 and
Figure 6.15.

The above advantages are attributed to the multiscale framework and
not to the sampling method. An attempt to utilize bud sampling for the
single-scale model requires a consideration of bud positions in relation to
the crown’s geometric space, i.e. only buds near the boundary of the crown
should be sampled, deeming the model a multiscale model. Moreover, with
sampling, light model mechanisms in the single-scale model still operate for
a large number of branches and buds. A salvaging attempt to use coarse
representations of woody and foliage objects would constitute, once again, a
multiscale model. Despite the advantages, the implementation of this exam-
ple requires additional procedures which are absent in the single-scale model
to up-scale organ developments to the tree crown. More specifically, the scal-
ing and aggregation of bounding boxes to crown layer dimensions lengthens
the simulation pipeline. In addition, this example produces output at tree
scale, i.e. at coarse spatial resolutions, limiting its practicality to cases where
fine-scale outputs can be ignored. Additional coarse-scale inputs such as the
vertical distribution of buds and spatial distribution of foliage in crown layers
are also not required in the single-scale approach.

6.5 Fagus sylvatica Stand under Ozone Ex-

posure

European beech (Fagus svlvatica) is one of the most important tree species
in central Europe [155]. Models and observations indicate increasing concen-
trations of tropospheric ozone in Europe since 1996 [41]. Tropospheric ozone

178

CHAPTER 6. EXAMPLES AND DEMONSTRATIVE MODELS

Figure 6.13: Black trees depict results of the single-scale model (SS) with
complete topological data. Green crown layers show results of the corre-
sponding multiscale model (MS) parameterized from the example in Section
6.4. Each architectural type is described with distinguishing source code
parameters values. ALLOC L and apical are parameters indicating api-
cal dominance. PLANT WT TROPISM is a parameter indicating tropism
in branch development. budAngleRL consists of the minimum and max-
imum branching angles in the four crown layers. O LEN is a parameter
for branch elongation length. (A) Low apical dominance and low tropism.
SS parameters: ALLOC L=0.49, PLANT WT TROPISM=0.3. MS pa-
rameters: apical=0.6, budAngleRL=0,20,30,45,40,75,50,85, O LEN=0.071.
(B) Low apical dominance and high tropism. SS parameters: AL-
LOC L=0.49, PLANT WT TROPISM=1.0. MS parameters: api-
cal=0.6, budAngleRL=0,20,15,25,20,30,20,30, O LEN=0.071. (C) High
apical dominance and low tropism. SS parameters: ALLOC L=0.54,
PLANT WT TROPISM=0.3. MS parameters: apical=0.78, budAngleRL=
0,20,30,45,40,75,50,85, O LEN=0.2. (D) High apical dominance and high
tropism. SS parameters: ALLOC L=0.54, PLANT WT TROPISM=1.0.
MS parameters: apical=0.78, budAngleRL= 0,20,15,25,20,30,20,30,
O LEN=0.2.

179

CHAPTER 6. EXAMPLES AND DEMONSTRATIVE MODELS

Figure 6.14: Logarithm of the number of buds in each simulation step for
the single-scale model and the multiscale model (example in Section 6.4).

Figure 6.15: Simulation time taken at each simulation step for the single-scale
model and the multiscale model (example in Section 6.4).

180

CHAPTER 6. EXAMPLES AND DEMONSTRATIVE MODELS

triggers oxidative stress responses in the enzymes of the Shikimate pathway
[10] as well as in protein levels related to the Calvin cycle [88] in beech trees.
These responses lead to structural (e.g. leaf lesions) and functional (e.g.
photosynthetic capacity) depreciations.

A structure-of-scales (Figure 6.16A) is designed to incorporate the effects
of ozone on beech tree stands. The stand scale consists of ozone concentra-
tions and light sources. The tree scale describes the positional information
of trees in a stand and aggregated attributes of individual beech trees. It is
further refined into two incomparable scales: the axis scale and the crown
scale. The crown scale contains collective information of tree crowns and is
refined to a crown layer scale. The layers are unique vertical height sections
that divide the tree crown one-dimensionally. The axis scale is refined to the
growth unit scale. The crown layer scale is additionally decomposed into an
organ scale that is a refinement of the growth unit scale concurrently. Lastly,
the crown layer scale refines to a metabolic network scale. Here we deploy
the simplifying model assumption that the metabolic network dynamics do
not significantly differ between organs of the same crown layer.

The model’s type graph (Figure 6.16B) illustrates the types and rela-
tionships utilized in each scale. The stand, tree, crown, crown layer, axis
and growth unit scale each consists of only one representative node type. In
a straightforward manner, they are the stand type, tree type, crown type,
crown layer type, axis type and growth unit (GU) type respectively. Leaf,
bud, internode, root and marker types are the basic building organs of the
modelled beech trees. The internode type acts in place of tree segments
while the marker type is used as virtual and invisible markers in the topo-
logical structure for self-pruning. The root type is used for basal nodes
for consolidation in the carbon transportation model. At the finest scale, the
metabolic species types represent constituents of the Shikimate pathway each
accounting for quantity. The node types at organ scale are inter-connected
by branching and successor edges to allow these relationships between the
instantiated nodes of these types. (Here we permit more than needed, since
in reality, e.g., a leaf will not be succeeded by a bud. However, there is no
necessity to include all possible restrictions in the type graph.) An identi-
cal inter-connection by branching and successor edge types is also specified
for the types at the metabolic network scale. Aside from their role in the
type graph, each type is declared as a module (in terms of the programming
language XL) [91] with attribute values that contribute to simulation.

Simulation initialization begins with a procedure to create three stands

181

CHAPTER 6. EXAMPLES AND DEMONSTRATIVE MODELS

Figure 6.16: An illustration of the structure-of-scales (A) and type graph (B)
for modelling three beech stands under ozone exposure.

182

CHAPTER 6. EXAMPLES AND DEMONSTRATIVE MODELS

Figure 6.17: An illustration of the initial instanced graph for modelling three
beech stands under ozone exposure. Edges labelled with an asterisk (*) and
number represent multiple connections to the specified number of distinct
nodes.

with ozone AOT40 (accumulated ozone exposure of 40 parts per billion) of
10000, 25000 and 40000 (µg m−3).h. For each stand, the refinements to
seven individual beech trees are created each with a single axis, a growth
unit (GU), a bud and a root node. The crown decomposition of each tree is
created using a crown node and a series of crown layer nodes. Every crown
layer node is decomposed into the twenty species of the Shikimate pathway,
connected in a specific order closely resembling the reaction sequence. The
type graph is specified using the XL code in Listing 6.2.

^ /> TypeRoot /> Stand /> Tree

[/> Crown /> cl:CrownLayer /> {# PEP E4P ... #}]

/> Axis /> GU />

{# Bud Internode Root l:Leaf Marker #},

cl /> l;

Listing 6.2: XL Type Graph Construction for beech stand

The last line cl /> l establishes the refinement of crown layers (
CrownLayer, cl) to leaves (Leaf, l) in addition to the refinement from growth
units (GU) to leaves (Leaf, l). Figure 6.17 depicts a condensed instanced
graph of the model upon initialization.

Multiple steps simulate growth of the beech trees in the stands per year.

183

CHAPTER 6. EXAMPLES AND DEMONSTRATIVE MODELS

No. Step Description
1 Light model, ray tracing and irradiance of leaves
2 * Mean irradiance in crown layers

3 *
Photosynthetic depreciation in crown layers and metabolic
network simulation

4 * Photosynthesis and carbon assimilation
5 Transportation, allocation and distribution
6 Secondary growth
7 Primary growth (segment elongation)
8 Branch fall and bending

9
Update of refinement relationships between crown layers and
leaves

10 * Aggregation of data in tree and stand nodes

Table 6.2: Overview of the steps executed within one simulation step for
modelling the three beech stands under ozone exposure. Steps with an as-
terisk (*) indicate usage of the multiscale approach.

Table 6.2 gives an overview of the steps in order. Of particular interest for
our results are the application of (multiscale) grammar formalisms in step
ten and steps two to four that endorse the multiscale framework. Figure 6.18
summarizes the problem categories, scale dependencies and scale interactions
for steps two to four (see Section 4.1 on the problem categorization, scale
dependency, and scale integration components of the multiscale modelling
framework).

A photon tracing technique following the implementation by [76] is per-
formed to obtain irradiance for single leaves.

The photosynthetic production for each leaf is multiplied by a normalized
capacity factor obtained from the crown layer in which it resides. This inter-
scale dependency is categorized as a multiscale problem requiring feedback
from the macro-scale globally (i.e. scale feedback is required not only at
localized domain) and illustrated as Framework A in Figure 6.18. The organ
(leaf) scale takes the role of dependent scale and the crown scale is the in-
dependent scale. Scale integration begins with initialization (Framework A)
by computing the mean irradiance of each crown layer using the individual
irradiance of leaves within:

184

CHAPTER 6. EXAMPLES AND DEMONSTRATIVE MODELS

Figure 6.18: Schematic diagram for the application of the multiscale frame-
work for determining photosynthetic capacity and production of leaves at
their respective crown layers. The first application (Framework A) estimates
photosynthetic production of each leaf using a capacity factor obtained from
the crown layer. The nested application (Framework B) estimates the max-
imum photosynthetic depreciation at each crown layer using ozone concen-
trations.

185

CHAPTER 6. EXAMPLES AND DEMONSTRATIVE MODELS

layer.lightMean = mean((* layer Leaf *).lightIntercepted);

Notice that the query for Leaf follows layer without any edge specification
due to the pre-defined refinement relationship in the type graph. This cor-
responds to step two of the simulation steps (see Table 6.2).

In evolution (Framework A), maximum photosynthetic depreciation in
each crown layer is estimated from chorismate concentration. This depen-
dency is again formulated as a multiscale problem requiring feedback from
the metabolic network scale globally. It is an application of the multiscale
framework nested within Framework A, illustrated by Framework B in Figure
6.18. The dependent scale is the crown scale while the independent scale is
the metabolic network scale. In initialization (Framework B), ozone AOT40
is used to determine the concentrations of enzymes raised by hypersensitiv-
ity to ozone. For example, the concentration for DAHPS is specified by the
rule-based statement as shown in Listing 6.3.

s:Stand (/>)* CrownLayer

[dahps:DAHPS][dhqd:DHQD][sd:SD][epsps:EPSPS] ::> {

dahps.con=DAHPS.conMin +

(s.ozone * DAHPS.conRange);

...//other 3 enzymes

}

Listing 6.3: Specifying enzyme concentrations using ozone conditions in tree
stand

No specific edge specification between CrownLayer and the metabolic
species is required due to the pre-defined refinement relationships in the type
graph. The rest of the enzymes have their concentration values reset. In evo-
lution (Framework B), the metabolic reactions are simulated. First, the rates
of all reactions are determined. The concentrations are then updated using
the computed rates. In extrapolation (Framework B), chorismate concentra-
tion is expressed as a percentage of a maximum chorismate concentration.
This percentage is interpreted as the maximum photosynthetic depreciation
for the crown layer. Returning to extrapolation (Framework A), mean irra-
diance and maximum photosynthetic depreciation estimate the normalized
capacity factor in the crown layer. The photosynthetic production of each
leaf is reduced with a multiplication by the capacity factor of the crown layer
it resides in. An example of the code is shown in Listing 6.4.

186

CHAPTER 6. EXAMPLES AND DEMONSTRATIVE MODELS

cl:CrownLayer lf:Leaf ::> {

lf.carbonAssimilated = calculatePS(lf);

lf.carbonAssimilated *= cl.photosynCapacity;

}

Listing 6.4: Reducing photosynthetic production of leaves based on crown
layer capacity

where calculatePS computes the photosynthetic output from leaf lf and
the operator *= multiplies the output by the normalized capacity factor
(photosynCapacity) from the crown layer.

Carbon assimilation, transport and allocation are implemented at the
organ scale with the topological structure of individual trees using the meth-
ods by [85] and [165]. Allocated carbon is used for secondary growth, i.e.
incrementing the diameter attribute values of Internode nodes in the graph.

The number of primordial leaves and consequently, the number of intern-
odes is computed for each bud based on the diameter of the nearest internode
[33]. Based on empirical measurements by Schober [157], the length of in-
ternodes based on the age of the tree is determined. Primary growth demon-
strates the application of multiscale grammar rules, establishing relationships
from the tree to the organ scale in a concise statement. For example, the
code in Listing 6.5 creates a number of internodes, lateral buds and leaves
specified by numInternode. Figure 6.19 illustrates an iteration of this sample
code for the production of two internodes from a bud.

t:Tree a:Axis g:GU Bud ==> t a g

for (1: numInternode)

(Internode [Axis GU Bud])

GU Bud;

Listing 6.5: Beech growth with multiple scales

After a simplified simulation of branch fall and bending, the refinement
from crown layers to leaves is updated based on the vertical height of leaves.
Finally, data is aggregated from organ to tree scale and from tree to stand
scale. Ozone AOT40 values in the three stands are updated using trends
proposed by [41]. Figure 6.20 shows the stands after fifteen simulation years.

187

CHAPTER 6. EXAMPLES AND DEMONSTRATIVE MODELS

Figure 6.19: Example of an execution of a multiscale rule in XL. The in-
stanced graph is shown on top and the rule in XL code is shown in the
middle. The bottom shows a corresponding geometrical representation of
the instanced graph. In this rule, a bud is queried on the left-hand side of
the rule along with the chain of encoarsements up to the tree scale. On the
right-hand side of the rule, light grey graph nodes (with light grey XL syntax
and geometrical picture) represent the two lateral buds produced, along with
their chain of encoarsements up to the axis scale.

188

CHAPTER 6. EXAMPLES AND DEMONSTRATIVE MODELS

Figure 6.20: Screenshot of the three beech stands after sixteen simulation
years. The left stand is exposed to the least ozone, the middle one to mod-
erate ozone and the right one to the most ozone.

6.6 Stand Dynamics and Morphological De-

velopments of Conifers

This examples describes the development of a multiscale model that consists
of stand dynamics, crown profile development, height growth, diameter at
breast height (dbh) growth, and branching structure development of indi-
vidual trees. Emphasis is placed on the rule-based (graph) data structure-
oriented programming approach, and the integration of quantitative values at
different scales for a consistent multiscale model. For this example, empirical
models are adopted from literature and combined. The rest of this section
is divided into sub-sections describing the multiscale graph structure, model
initialization, the germination model, the growth model, and the mortality
model.

6.6.1 Multiscale Graph Structure and Model Initial-
ization

An overview of the scales and entity types required in the model is first
constructed using the structure-of-scales and type graph (Figure 6.21).

Three scales make up the model. The Stand scale is the coarsest scale
and comprises the entity types Stand, which represents a collective object
for a forest stand, and Grid, which represents a unit of the regularly divided
stand area. The Tree scale comprises an entity type Tree that represents a
single fir tree. The finest scale Organ has entity types Bend, I, Bud, and
Trunk. Bud represents a bud, I represents an internode, Trunk represents

189

CHAPTER 6. EXAMPLES AND DEMONSTRATIVE MODELS

Figure 6.21: Graph construct for model simulating stand dynamics and de-
velopments of crown profile, height, dbh, and branching structure of virtual
fir trees. Left: structure-of-scales. Right: type graph.

an internode along the trunk or main stem, and Bend represents a connection
between a lateral branch and the trunk. The entity types, otherwise known
as modules in the programming language XL, are declared in code. In the
initial procedure init(), a forest stand with an evenly divided grid floor is
created using the code shown in Listing 6.6.

{grids = createGridFloor ();}

//grids is a double array of Grid objects

Axiom ==> Stand

for(int i:(1: S_GRID_COUNT_X))(

for(int j:(1: S_GRID_COUNT_Y))(

[grids[i][j]]

)

);

Listing 6.6: Creation of grid floor for forest stand

The procedure createGridFloor() initializes a double array (rows and
columns) of Grid nodes. To initialize the instance graph, a rule with query
for Axiom creates a Stand node that is connected to each Grid node via a
branching edge. The init() procedure additionally contains the rule for
creating the type graph (see Listing 6.7), as illustrated in Figure 6.21, and
connecting it to the root node ^.

==>> ^ {# Stand Grid #} /> Tree />

190

CHAPTER 6. EXAMPLES AND DEMONSTRATIVE MODELS

{# Bend I Trunk Bud #};

Listing 6.7: Creation of type graph for forest stand

The symbols {# and #} enclose nodes in a clique, connecting each pair
within bi-directionally by successor and branching edges.

Upon completion of init(), a procedure run() is invoked once for every
simulation year. Three major simulation sub-steps, described by the next
three sub-sections, are included in run().

6.6.2 Germination

A constant pool of germinating seeds is assumed to reside in the virtual forest
stand each year. The procedure for the first sub-step of run(), germinate(),
contains the rule shown in Listing 6.8 that appends graph nodes representing
seedlings to the instance graph.

s:Stand ==> s for(int i:(1: S_SEED_POOL))(

{x = random(0,S_DIM_X);

y = random(0,S_DIM_Y);}

[createTree(x,y) createTrunk Bud(0)]

);

Listing 6.8: Germination rule

In the second and third lines of the rule, a Java code block (between curly
brackets) is embedded to generate random 2-d coordinates for the position of
a new tree. createTree(x,y) and createTrunk are procedures that return
new graph nodes with entity types Tree and Trunk respectively. All in all, a
total of S SEED POOL nodes with entity type Tree are newly refined from each
Stand node. Each new Tree node is refined to a new Trunk node succeeded
by a new Bud node.

Internally, the procedure createTree(x,y) establishes a refinement edge
from a Grid node to the new Tree node it creates based on the position given
by x and y (see Listing 6.9).

{Tree t = new

Tree(x,y,T_INIT_HT ,T_INIT_CI ,T_INIT_DBH ,

T_INIT_AGE ,T_CR ,treeCwmax (0),

T_INIT_HCBASE ,T_INIT_HD ,

T_INIT_NUMINT ,T_CROWN_SHADE ,

191

CHAPTER 6. EXAMPLES AND DEMONSTRATIVE MODELS

T_RPMAX);}

==>> grids[x/S_DIM_X][y/S_DIM_Y] t <+ ^;

Listing 6.9: Grid to tree refinement

The Grid node representing the grid unit in which the tree resides is iden-
tified from the double array using a simple division of the coordinates by the
grid dimensions, S DIM X and S DIM Y. The graph root node ^ is connected
to the new Tree node via a branching edge for visualization purposes, since
our tool GroIMP currently shows in its 3D view only nodes accessible from
the root by a path composed exclusively of successor and branching edges.
Parameters for a new Tree node are mostly constants except for maximum
crown width, which is computed by the procedure treeCwmax. Empirical
data for maximum crown width of fir trees was extracted from [157]. The
data was fitted and computed as

cw = 8.331566/(1 + 5.011992 ∗ age1.011805)2 + 0.194259

where cw is the maximum crown width for a tree with age age. Similar
to createTree, createTrunk consists of a rule to connect the graph’s root
node to new Trunk nodes.

6.6.3 Growth

The second sub-step of run(), grow(), contains procedures and rules to com-
pute competition among trees, growth of individual trees, and development
of organs and finer structures for each tree.

6.6.3.1 Stand Competition Index

An empirical model of forest stand development based on [21] is utilized.
Dbh of trees in each grid unit is reset and summed using the rules in Listing
6.10.

g:Grid ::> {g.dbhSum = 0; g.dbhSumInRange = 0;}

g:Grid t:Tree ::> {g.dbhSum += t.dbh;}

Listing 6.10: Sum of dbh for competition index computation

The first rule resets the value of parameters dbhSum and dbhSumInRange

for each Grid node. The second rule aggregates the dbh of each tree, t.dbh,
residing in each grid unit into g.dbhSum.

192

CHAPTER 6. EXAMPLES AND DEMONSTRATIVE MODELS

The effects of competition between trees occur within a specified distance
range S COMPETE RANGE, which is resolved into a number of grid units de-
pending on the dimensions of a grid unit. The sum of dbh in grid units
within the range S COMPETE RANGE, dbhSumInRange, is aggregated for each
Grid node using conventional Java iterations on the double array grids.
Correction is performed for grid units along the marginal areas of the virtual
stand by compensating for out-of-range areas using the average dbhSum of
within-range grid units.

With the accumulation of dbh in grid units, competition indices of trees
are set using the rule in Listing 6.11.

g:Grid t:Tree ::> {t.ci = g.dbhSumInRange/t.dbh;}

Listing 6.11: Setting competition index for trees

where t.ci is the competition index for tree t residing in the grid unit
represented by Grid node g.

6.6.3.2 Individual Tree Growth

Empirical data for height and dbh of fir trees is extracted from [157]. The
data was fitted and computation of height and dbh are as follows:

ht = 0.023777/(0.000559 + age−1.896382) + 0.400637

dbh = 0.225899 ∗ age1.142437+(−0.000378∗age) + 1.012812

where ht, dbh, and age are the height, dbh, and age of a fir tree respec-
tively. Given height, dbh, and age, crown ratio (vertical proportion of height
that the crown occupies) is computed based on the model by [45]:

cr = 1 − e−(0.55243+5.026/age)∗dbh/ht

where cr is the crown ratio of the tree.
A rule (shown in Listing 6.12) in grow() utilizes the empirical fittings

and pre-computed competition indices to determine the development of each
tree.

t:Tree ::> {

//poten. ht inc.

193

CHAPTER 6. EXAMPLES AND DEMONSTRATIVE MODELS

float htPotDelta = treeHt(t.age + 1) - t.ht;

//ht inc. w. competition

t.hd = cDelta(htPotDelta , t.ci, t.cr);

t.ht += t.hd;

//poten. dbh inc.

float dbhPotDelta = treeDbh(t.age + 1) - t.dbh;

//dbh inc. w. competition

t.dbh += cDelta(dbhPotDelta , t.ci , t.cr);.

t.age ++; //tree age

//crown ratio

t.cr = crownRatio(t.dbh ,t.ht ,t.age);

// maximum crown width

t.cwmax = treeCwmax(t.age);

// height to base of crown

t.hcbase = (1-t.cr) * t.ht;

}

Listing 6.12: Multiscale tree development based on competition indices

The procedures treeHt, treeDbh, and crownRatio contain the aforemen-
tioned empirically fitted formulas for height, dbh, and crown ratio of fir trees.
Given the succeeding age of a tree (t.age + 1) , the potential height incre-
ment, htPotDelta, and potential dbh increment, dbhPotDelta, are com-
puted. These potential increments are provided as inputs to the competition
model (based on [21]) specified in the procedure cDelta to obtain actual
increments in the competitive environment. The competition model is com-
puted as follows:

d = dpot ∗ (0.26325 + (2.11119 ∗ cr0.56188 ∗ e−0.26375∗ci−1.03076∗cr))

where d is the actual increment, dpot is the potential increment, cr is the
crown ratio, and ci is the competition index of the tree. Lastly, age, crown
ratio (cr), and maximum crown width (cwmax) are updated for each tree.

194

CHAPTER 6. EXAMPLES AND DEMONSTRATIVE MODELS

6.6.3.3 Structural and Architectural Development

In this section, we first describe apical growth of a tree’s trunk, followed by
elongation of lateral first order branches. Bending and senescence of lateral
branches are described at the end.

Development of tree trunks is specified by the rule in Listing 6.13.

t:Tree b:Bud , (b.order == 0) ==> { int numInt =

(t.hd / I_ELONG0);}

t for(int i: (1: numInt)) (

Trunk(I_ELONG0 , I_INIT_DBH) RH(I_PHYLLO)

[Bend(I_ANGLE , 0) I(I_ELONG1) Bud(1)])

Trunk(t.hd%I_ELONG0 , I_INIT_DBH)

RH(I_PHYLLO) Bud (0);

Listing 6.13: Tree trunk development

where numInt is the number of internodes to be created along the trunk
and t.hd is the precomputed actual height increment for the tree. The for-
loop inserts Trunk nodes according to a phyllotaxy constant I PHYLLO, each
with a lateral branching angle Bend(I ANGLE, 0), internode I(I ELONG1),
and bud Bud(1). The final apical internode is represented by a Trunk node
with length t.hd % I ELONG0, remainder of the division of actual height
increment by internodal length. This rule operates only for the bud with
order zero, i.e. apical bud for the main stem or trunk, as indicated by the
query condition (b.order == 0).

The development of lateral first order branches is specified by the rule in
Listing 6.14.

t:Tree b:Bud , (b.order == 1) ==> { Point3d locB =

location(b);

float dist =

distToTrunk(t.x,t.y,locB.x,locB.y);

if(locBud.z > t.hcbase) {

float rp = 1-((locBud.z -

t.hcbase)/(t.ht - t.hcbase));

float cwah = (cwah(t.cwmax , rp, t.ht,

t.dbh)/2);

}

float elong = cwah - dist; if(elong < 0)

elong = 0;}

195

CHAPTER 6. EXAMPLES AND DEMONSTRATIVE MODELS

t if(elong > 0)(RU(I_TROPISM) I(elong)

Bud (1))

else(b);

Listing 6.14: First order branch development

The 3D position, locB, of the first order bud is first computed. With its
position, the minimum (perpendicular) distance, dist, of the bud from the
trunk is computed. If the bud is not below t.hcbase, the height to the base
of the crown, we compute the vertical relative position, rp, of the bud in
the crown. rp is provided as input to a crown profile model based on [73] to
compute cwah, the crown width at a specific height as follows:

f = 0.929973− 0.135212 ∗ rp0.5 − 0.131316 ∗ (ht/dbh)

cwah = cwmax ∗ rpf

where f is a coefficient computed using the vertical relative position in crown,
height, and dbh of the tree. cwmax is the pre-computed maximum crown
width of the tree. Elongation, elong, of the lateral branch is computed as
the difference between cwah and dist. A rotational node RU(I TROPISM)

with tropism angle I TROPISM, and an I node representing an internode with
length elong are appended to the graph if elong is positive. Figure 6.22 illus-
trates the various parameters associated with the crown profile graphically.

Mechanical bending of the branches is simulated by modifying the an-
gles of Bend nodes. Branches originating below the pre-computed minimum
height to crown base are removed. These two operations are specified with
the rules in Listing 6.15.

t:Tree b:Bend ::> {if(location(b).z > t.hcbase)

b.angle+= I_BEND;

else cutBranch(b);}

b (-->)+ Node ==>> ;

Listing 6.15: Mechanical bending

The first rule checks if the height location(b).z of the Bend node b is
higher than the minimum height to crown base t.hcbase of the tree. If
so, the angle of the Bend node b is incremented by I BEND degrees. If not,
the procedure cutBranch is invoked with b as input parameter to remove

196

CHAPTER 6. EXAMPLES AND DEMONSTRATIVE MODELS

Figure 6.22: Illustration of variables - height (ht), diameter at breast height
(dbh), maximum crown width (cwmax), bud’s minimum distance to trunk
(dist), crown width at height (cwah) for vertical height (hcw), height to base
of crown (hcbase), and bud’s vertical position (locBud.z). Relative position
in crown (rp) is 1 − ((locBud.z − hcbase) / (ht − hcbase)).

197

CHAPTER 6. EXAMPLES AND DEMONSTRATIVE MODELS

nodes representing the branch. The second rule is specified in the cutBranch
procedure. It queries for the node b as well as all nodes Node with a path from
b and replaces them with an empty production graph, effectively deleting
these nodes from the instance graph.

6.6.4 Mortality

The third and last sub-step of run(), mortality(), contains procedures and
rules that simulate the death of trees in the virtual forest stand. Mortality
is based on the model by [21] and is specified by the rule in Listing 6.16.

t:Tree /> n:Node ==> {float prob = S_LIVE_JUVENILE;

if (t.age >= S_AGE_COMPETE) prob =

probLive(t.cr , t.ci);}

if (probability(prob)) (t /> n);

Listing 6.16: Mortality

A Tree node and all nodes with a refinement edge connection from it are
queried from the instance graph. If the queried tree is younger than S AGE CO-

MPETE, its probability of survival, prob, is S LIVE JUVENILE. If it is of age
S AGE COMPETE or older, its probability of survival is computed from its crown
ratio (t.cr) and competition index (t.ci) in the procedure probLive as

k = −0.0023 ∗ ci0.65206

p = 1.02797 ∗ cr0.0379 ∗ ek

where k is a cofficient computed using the competition index ci, and p is
the probability of survival, computed from the tree’s crown ratio cr and k.
The tree’s survivial is determined by the procedure probability with prob

as input parameter. If the tree survives, the nodes are specified as they
were in the production statement on the right-hand side, leaving them intact
in the instance graph. Otherwise, the production statement is left empty,
effectively removing the nodes representing a tree from the instance graph.

A list of parameter values (capitals in code statements) is provided in
Table 6.3. Figure 6.23 shows screenshots of the model.

Remark: The contents in this chapter are published in [128], [130], and
[129].

198

CHAPTER 6. EXAMPLES AND DEMONSTRATIVE MODELS

S AGE COMPETE 8 T INIT HCBASE 0
S DIM X 16 T INIT HD 0
S DIM Y 16 T INIT HT 0.1
S GRID COUNT X 4 T INIT NUMINT 0
S GRID COUNT Y 4 T RPMAX 0.1
S LIVE JUVENILE 0.8 I ANGLE 80
S SEED POOL 26 I BEND 1
T CR 0.3 I ELONG0 0.2
T CROWN SHADE 0.9 I ELONG1 0.1
T INIT AGE 0 I INIT DBH 0.0575
T INIT CI 0 I PHYLLO 132
T INIT DBH 1 I TROPISM -1.3

Table 6.3: Constant parameter values. Prefix S, T, and I, for stand, tree,
and internode (organ) scales respectively.

Figure 6.23: Illustration of 154 trees in a 265 year old stand. Left: Vi-
sualization of the crown profiles. Right: Visualization of organ scale with
internodes.

199

Chapter 7

Conclusion

This chapter concludes the thesis by addressing the research questions and
objectives raised in Sections 1.4.1 and 1.4.2. Several concluding remarks
based collectively on the examples in Chapter 6 are also made together.

7.1 Answers to Research Questions

How can 3-dimensional structures be described consistently at several spatial
scales at once, based on the graph representation used in XL?

Chapter 4 defines a three-part graph data structure that contains a structure-
of-scales (Section 4.3.1), a type graph (Section 4.3.2), and an instanced graph
(Section 4.3.3) suitable for describing 3-dimensional structures at several spa-
tial scales.

The notion of plant modularities and MTG topology is shown in the
structure-of-scales containing plant, axis, growth units and organs in the ex-
ample illustrated in Section 6.5 (beech tree stands under ozone exposure). In
that example, two forms of static spatial division are illustrated. A continu-
ous concept of three-dimensional space is used for the random positioning of
individual beech trees in a stand area. MTG modularities and stand space are
additionally merged with a discrete spatial division employed by the crown
layers. Dynamic spatial segregation is shown in the example in Section 6.4
that has an evolving tree crown space. Network-based systems such as the
metabolic network in the beech trees under ozone exposure are successfully
embedded in the graph data structure.

200

CHAPTER 7. CONCLUSION

A single graph data structure is used to represent both geometric spaces
and topological structures in the two above mentioned examples. This al-
lows the use of rules to access and modify relationships between the spaces,
e.g. relating a leaf with a canopy layer. Moreover, in this manner, topolog-
ical changes directly impose a change in the graph data structure, reducing
the need to synchronize changes to the geometric space. For example, the
removal of a graph node (e.g. simulating the death of a leaf) imposes the
removal of all edges connected with it, including the edge from the graph
node representing the canopy layer containing the leaf. If the two spaces are
maintained in separate data structures, an explicit procedure to remove the
reference to the leaf from the geometric space (canopy layer) is required.

How can multi-scaled graphs be transformed by rules?

Section 4.4 in Chapter 4 defines transformation techniques for transform-
ing multi-scaled graphs. The techniques rely on the three-part graph data
structure and are defined as extensions to the SPO with operators (Section
3.3.2.3) formalism in [91]. In addition, a framework inspired by multiscale
modelling in other domains of science is introduced in Section 4.1. The
framework puts into perspective the combination of rule-based modelling
and classical multiscale modelling techniques [46].

Refering to the examples in Section 6.4 (crown generation) and 6.5 (beech
trees under ozone exposure), a comparison of scale dependencies and extrap-
olation methods in the multiscale modelling framework are made in [130].

What are the various aspects of consistency in multi-scaled graphs? How
can consistency checks on these aspects be performed efficiently on multi-
scaled graphs?

This question has not been answered and is left for future work.

How can transformation, query and rendering of multi-scaled graphs be per-
formed efficiently?

Two considerations of efficiency have been made:

201

CHAPTER 7. CONCLUSION

• The large number of queries into the type graph for multiscale rules is
recognized. To reduce the number of traversals of the type graph (for
every match of a query), a cache mechanism is introduced as described
in Section 4.6.3.

• The search order for queries may need to be optimized. This consider-
ation is however not concretized and is left for future work.

How can the programming language XL be extended for multi-scaled graphs?

The syntax of XL is modified as described in Section 4.5 to support multi-
scaled graphs. In addition, the use of the observer design pattern is in-
troduced as a high level programming approach to complement multiscale
modelling.

How can classical, and, possibly new Level-of-Detail methods be incorporated
in the multi-scaled graph approach of XL?

Chapter 5 introduces an incremental level-of-detail computation method for
branching structures. The chapter also includes a multiscale graph traversal
method catered for interpretation of the multiscale graph data structure as
a scene graph.

What are the various test data and scenarios that can considerably challenge
the performance, rendering quality and integrity of multi-scaled structures?

Several examples and demonstrative models are presented in Chapter 5 and
6. These examples and models ([128], [130], [129], [127]) pose challenges in
terms of performance, rendering quality and integrity of multi-scaled struc-
tures.

Are there any unique or isolated scenarios that result in unsatisfactory per-
formance, rendering quality or integrity of multi-scaled structures? What are
the differences in performance and rendering quality of multi-scaled struc-
tures as compared to existing or alternative implementations?

202

CHAPTER 7. CONCLUSION

Multiscale rules in general result in shorter implementation code as com-
pared to single-scale implementations. These advantages currently come with
a price of slower executions in comparison to single-scale rules. This occurs at
least for the existing implementation in GroIMP, which does not utilize pos-
sible speed-up techniques for graph matching. The search order for queries
may potentially improve in this aspect and is left for future work. In ad-
dition, edge discrimination in queries where edge connections to each graph
node are grouped according to their labels may potentially speed up query
for multiscale rules.

What workflows and interactive Graphical User Interface (GUI) elements
are suitable for users to control the transformation, query and rendering of
multi-scaled structures?

In addition to the new syntax and features of the XL language, selection
of visible scales is made possible by a pop-up menu in the 3D panel of
GroIMP. The items of the pop-up menu are listed according to the scales
in the structure-of-scales constructed in the graph data structure. Each item
or scale is a checkbox in the menu and is visibled if checked.

7.2 Concluding Remarks

The work in this thesis has introduced advances in graph rewriting catered
primarily for functional-structural plant modelling. The theory is imple-
mented in the XL programming language and the open-source software
GroIMP. The nature of the graph structures produced are intepreted as geom-
etry, topology and arbitrary data structures. Advances in XL must therefore
involve concurrent considerations from these different perspectives. Much
of the considerations made in this thesis are centered on topology, partic-
ularly on the unique refinement relationship, leaving much to be desired in
the other aspects. Future work in the aspects of high performance graph
processing (the data structure aspect) and real-time rendering (the graphical
and geometrical aspects) can serve as continued work from this thesis.

203

Chapter 8

Appendix: Interfaces with
Other Software

8.1 The MTG File Interface

The multiscale tree graph (MTG) is a multiscale data structure defined math-
ematically by Godin and Caraglio [67]. Accompanying this data structure
is a file format that allows text encoding for storing and exchanging MTG
data. The file format is documented online [1]. GroIMP is extended with
an interface to import and export MTG files. This section documents the
implementation of the interface as well as basic usage instructions.

An MTG can be represented using the instanced graph data structure in-
troduced in Section 4.3.3. Hence, no conversion or translation of graph topol-
ogy is necessary during import and export. However, geometrical interpre-
tation of an MTG is different from an instanced graph because MTG nodes
typically contain absolute (not relative) cartesian coordinates that position
them in 3-dimensional space. The orientation of a 3D object represented by
an MTG node is then computed as the vector resulting from the difference
between the position of the node and the next successor or branching node.
MTG nodes rely on a set of permanently named attributes for geometrical
interpretation. For example, the length attribute of an MTG node must be
named ”Length”. The complete list of permanent MTG attribute names can
be found in the online documentation. It is noteworthy that more than one
interpretation of the MTG file format exist ([68], [136], [14]), giving room for
minor differences such as the necessity for space characters or empty lines in

204

CHAPTER 8. APPENDIX: INTERFACES WITH OTHER SOFTWARE

the file content. Consequently, although the MTG interface implemented in
GroIMP follows the online documentation (the above mentioned link), mi-
nor adjustments to file contents may be necessary for successful import to or
reading of MTG exports from GroIMP.

An import of an MTG file in GroIMP is organized into two general steps.
The first step involves the reading of the header sections of the MTG file.
The header sections are the ”CODE”, ”CLASSES”, ”DESCRIPTION”, and
”FEATURES” sections in this order starting at the beginning of the file.
These sections do not contain the actual graph nodes, edges, and attribute
values but meta information such as the version, classes, topological con-
straints, and node attributes. These can be represented in our multiscale
graph data structure (see Section 4.3) and XL using modules, edges’ con-
nections in the type graph (although no type graph is generated by the im-
port), and module attributes respectively. At the end of the first import step,
GroIMP creates and compiles an XL script containing module declarations
(prefixed with ”mtg ” followed by the MTG class name) equivalent to that
specified in the MTG headers. The second import step proceeds to read the
body of the MTG file, which contains the graph nodes, edges, and attribute
values. GroIMP constructs the graph following the topology specified in the
file by creating node instances from the compiled modules and loading them
with attribute values read from file. Each line the in MTG file body encodes
one or more graph nodes that share a set of attribute values.

A so-called dressing file may accompany an MTG file. A dressing file
provides additional data for visualization such as references to 3D meshes
(e.g. .smb files), texture images, etc. The interface developed in GroIMP
does not yet support loading of dressing files. A default set of parameters
identical to that used in the AMAPmod software [68] is used to compute
geometrical information for visualization in GroIMP.

Once imported, an MTG in GroIMP is rooted by an additional root
node of the unique class MTGRoot. This node contains all meta information
loaded from the MTG headers. In addition, it is interpreted geometrically
as a 3D mesh by GroIMP for rendering. To render the MTG, the method
plantFrame(scale,distance) needs to be invoked on the MTGRoot node,
where scale is the scale to visualize and distance is the 3D distance per
unit length in the MTG. The implementation of the plantFrame method is
based on the AMAPmod software [68] for MTG geometry computation.

A class diagram of the classes in the interface package ”de.grogra.mtg”
is shown in Figure 8.1. The ”MTGFilter” class provides the entry point for

205

CHAPTER 8. APPENDIX: INTERFACES WITH OTHER SOFTWARE

Figure 8.1: A condensed class diagram showing the classes implementing the
import and export of MTG files in GroIMP. Some peripheral or subclasses
are not shown to avoid cluttering the diagram.

206

CHAPTER 8. APPENDIX: INTERFACES WITH OTHER SOFTWARE

MTG file import. It dedicates the interpretation of MTG file content to the
”MTGTranslator” class, which reads lines and tokenizes the contents using
the ”MTGTokenizer” and ”MTGLineReader” classes. The ”MTGTransla-
tor” class relies on the ”MTGGraphBuilder” class and its subclasses for con-
structing nodes and edges of an instanced graph representing the imported
MTG. The subclasses of the ”MTGGraphBuilder” class are named based on
the sections of an MTG file. Each module created and compiled for an MTG
type is an extension of the ”MTGNode” class that contains a reference to
the ”MTGNodeData” class for storing attribute values. Standard MTG at-
tributes such as length are not included in the ”MTGNodeData” class, they
can be directly retrieved from an ”MTGNode” instance. Export of an MTG
from GroIMP’s graph is supported using the ”MTGExport” class. As MTG
files allow only single letter naming of types, e.g. ”A” or ”I”, the export func-
tionality trims the modules names in XL and retains only the first letter. If a
letter is already used, GroIMP assigns a new letter. If all letters are used, an
export error occurs. The export functionality expects the graph in GroIMP
to be an MTG, i.e. without cycles and circles, throwing an exception if the
graph is not MTG compatible.

Import of an MTG file is possible by directly opening an MTG file from
the main menu in GroIMP. Export is executed by selecting the ”View-
>Export” option in the 3D panel menu. A screen shot of a visualized MTG
structure [136] imported into GroIMP is shown in Figure 8.2.

8.2 The Xplo and ArchiTree Interface

Xplo is a part of the AMAPstudio software [70, 2] for exploring, building,
editing, visualizing, and filtering multiscale plant architecture data. It pro-
vides a platform for developing software plugins (called modules in the ter-
minology used by Xplo developers) that model and simulate virtual plants
and environments.

Xplo handles plant architecture data with the ArchiTree data structure,
which is an improved Java implementation of the MTG formalism. It is an
MTG capable of representing both topology and geometry. An illustration of
an ArchiTree in comparison with a multiscale instanced graph (Section 4.3.3)
is shown in Figure 8.3.

There are two significant differences between the two data structures.
Firstly, in an ArchiTree, refinements (decompositions) of a node are not all

207

CHAPTER 8. APPENDIX: INTERFACES WITH OTHER SOFTWARE

Figure 8.2: Visualization of imported MTG in GroIMP. The mesh is com-
puted using the plantFrame method based on the AMAPmod [68] software.

208

CHAPTER 8. APPENDIX: INTERFACES WITH OTHER SOFTWARE

Figure 8.3: ArchiTree and multiscale instanced graph. The two connected
graphs represent the same plant architecture with three scales - Axis (axes),
GU (growth units), and I (internodes). Top: ArchiTree structure. Bottom:
Multiscale instanced graph.

209

CHAPTER 8. APPENDIX: INTERFACES WITH OTHER SOFTWARE

connected from their encoarsement. For example, in Figure 8.3, the (growth
unit) nodes v2 and v3 are both refinements of the (axis) node v0. In the
ArchiTree representation, only the first node in a succession of nodes is con-
nected from the encoarsement, hence only v2 is connected from v0. In the
multiscale instanced graph, all refinement nodes are connected from their
encoarsement, hence v2 and v3 are both connected from v0. Secondly, a suc-
cessor or branching (ramification) edge connection is represented only at one
scale in the ArchiTree data structure. For example, in Figure 8.3, the (in-
ternode) node v8 actually succeeds v7 but no successor edge is established
between them. This is because the same successor relationship is represented
at the coarser scale from the (growth unit) node v2 to v3. In other words,
successor and branching relationships are not duplicated across scales in an
ArchiTree. On the other hand, the multiscale instanced graph represents
these relationships at all scales, e.g. the edges (v7, >, v8) and (v2, >, v3) rep-
resent the same successor relationship at two different scales. One reason
that the ArchiTree is capable of using less edges for the same plant architec-
ture is that each ArchiNode (a node in an ArchiTree) contains a 4x4 affine
transformation matrix that provides the absolute 3D position and orientation
of the geometry represented by the node. In contrast, nodes in multiscale
instanced graphs may contain only relative transformation information such
as rotation angles.

A preliminary interface between GroIMP and Xplo is established. Source
code version 3434 of GroIMP is built as a Java library file named GroImp.jar.
A module is developed in Xplo to allow the running of an XL script in Xplo
using this library version of GroIMP. The module class diagram is shown in
Figure 8.4. GIRelay is a class for the graphical user interface (GUI) that
allows the module to get initial parameters such as the folder location of
the XL script, etc. GIModel contains the main methods for simulation using
the XL script. GIScene represents a scene timeline and GISketchLinker is
used to establish connections to the GUI panels. Two important methods
in the GIModel class are initializeModel and processEvolution. Intu-
itively, these methods are used to initialize the plant model (analogous to
the init() method in XL scripts) and to make one simulation step of the
model (analogous to the run() method in XL scripts) respectively.

In this preliminary interface implementation, the methods init() and
run() are mandatory for an XL script to run in Xplo. In the GIModel

class, each call to processEvolution triggers a conversion of the multiscale
instanced graph in GroIMP derived after invoking the run() method to an

210

CHAPTER 8. APPENDIX: INTERFACES WITH OTHER SOFTWARE

Figure 8.4: Class diagram of GroIMP module in Xplo.

ArchiTree in Xplo. Conversion is done in several steps:

• For each GroIMP graph node a global transformation matrix is com-
puted.

• Check if the GroIMP graph is multi-scale.

• Traverse the GroIMP graph on the finest scale. For each step in this
traversal, we get a pair of Nodes (linked by succession or branching
edges), then a recursive function is called to reach the complex scales
of the current nodes. ArchiNodes are created each time we reach a new
GroIMP Node and a Map<Node, ArchiNode> is maintained to relate
GroIMP nodes to ArchiNodes.

• Succession and Branching links between ArchiNodes are established
when a common complex is encountered. Refinement (or Composi-
tion) links in ArchiTree must only be created for the first component
Node(that is when a complex ArchiNode has no yet refinements (or
components)).

211

CHAPTER 8. APPENDIX: INTERFACES WITH OTHER SOFTWARE

Figure 8.5: Screenshot of Xplo displaying GroIMP generated trees.

The conversion of some GroIMP node classes has been implemented, e.g. ro-
tation nodes (RU,RL,RH), F (cylinder), Sphere. Type conversion hierarchy
must be completed in jeeb.xplo.module.groimp.model.types. The function
copyValues() must be overridden and must call super.copyValues() to trans-
fer all member variable values in GroIMP nodes and their superclasses to
ArchiNodes.

The usage of the interface is as follows:

• Start Xplo and run module GroIMP (Menu Project → New).

• A panel is displayed where user can select the folder with the XL script
files, then set the number of simulation step (Age) and the output step
frequency (Output Step = 1 means each simulation steps are saved),
then press OK.

A screenshot of GroIMP generated plant architectures is shown in Figure
8.5.

Additional notes on the interface and GroIMP module in Xplo are found
at http://amapstudio.cirad.fr/soft/xplo/private/groimp module.

212

Bibliography

[1] OpenAlea MTG documentation. http://openalea.gforge.inria.fr/doc/

vplants/newmtg/doc/_build/html/contents.html. Accessed: 16-02-2015.

[2] Xplo wiki. http://amap-dev.cirad.fr/projects/xplo/wiki. Accessed: 16-02-
2015.

[3] Proceedings of the 7th International Conference on Functional-Structural Plant Mod-
els, Saariselkä, Finland, 2013. Finnish Society of Forest Science, Vantaa, Finland.

[4] H. Abelson and A. diSessa. Turtle Geometry. MIT Press, Cambridge, Massachusetts,
1982.

[5] Umut A. Acar, Guy E. Blelloch, and Robert Harper. Adaptive functional program-
ming. ACM Transactions on Programming Languages and Systems (TOPLAS),
28(6):990–1034, 2002.

[6] J. Adámek, H. Herrlich, and G. E. Strecker. Abstract and Concrete Categories: The
Joy of Cats. Dover Publications, 2009.

[7] M. Aono and T. L. Kunii. Botanical tree image generation. IEEE Computer Graphics
and Applications, 4:10–34, 1984.

[8] M. Aronoff and K. Fudeman. What is Morphology? Wiley-Blackwell, 2010.

[9] P. Balandier, A. Lacointe, X. LeRoux, H. Sinoquet, P. Cruiziat, and S. Le Dizès.
SIMWAL: a structural-functional model simulating single walnut tree growth in
response to climate and pruning. Annals of Forest Science, 57:571–585, 2000.

[10] G. A. Betz, C. Knappe, C. Lapierre, M. Olbrich, G. Welzl, C. Langebartels,
W. Heller, H. Sandermann, and D. Ernst. Ozone affects Shikimate pathway tran-
scripts and monomeric lignin composition in European beech (Fagus sylvatica L.).
European Journal of Forest Research, 128:109–116, 2009.

[11] R. B. Bird, Armstrong R. C., and Hassager O. Dynamics of Polymeric Liquids.
John Wiley, 1987.

[12] G. Boole. The Mathematical Analysis of Logic. Macmillan, Barclay, & Macmillan,
London, 1847.

213

http://openalea.gforge.inria.fr/doc/vplants/newmtg/doc/_build/html/contents.html
http://openalea.gforge.inria.fr/doc/vplants/newmtg/doc/_build/html/contents.html
http://amap-dev.cirad.fr/projects/xplo/wiki

BIBLIOGRAPHY

[13] G. Boole. An Investigation of the Laws of Thought on Which are Founded the
Mathematical Theories of Logic and Probabilities. Dover Publications, New York,
1958.

[14] F. Boudon, C. Pradal, T. Cokelaer, P. Prusinkiewicz, and C. Godin. L-Py: an L-
system simulation framework for modeling plant architecture development based on
a dynamic language. Frontiers in Plant Science, 3(00076), 2012.

[15] Bart Braden. The surveyor’s area formula. The College Mathematics Journal,
17(4):326–337, 1986.

[16] A. Brandt. Multiscale scientific computation: Review 2001. In T. J. Barth, T. Chan,
and R. Haimes, editors, Multiscale and Multiresolution Methods: Theory and Appli-
cations, pages 3–96. Springer, Berlin, 2002.

[17] B. Breckling. An individual based model for the study of pattern and process in
plant ecology: An application of object oriented programming. Ecosys, 4:241–254,
1996.

[18] A. G. Bromley. Charles Babbage’s Analytical Engine, 1838. IEEE Annals of the
History of Computing, 20:29–45, 1998.

[19] A. G. Bromley. Babbage’s analytical engine plans 28 and 28a - the programmer’s
interface. IEEE Annals of the History of Computing, 22:5–19, 2000.

[20] G Buck-Sorlin, O. Kniemeyer, and W. Kurth. A model of poplar (Populus sp.)
physiology and morphology based on relational growth grammars. In Mathematical
Modeling of Biological Systems, Volume II, Modeling and Simulation in Science,
Engineering and Technology, pages 313–322. Birkhäuser, Boston, 2008.

[21] H. E. Burkhart, K. D. Farrar, R. L. Amateis, and R.F. Daniels. Simulation of
individual tree growth and stand development in loblolly pine plantations on cutover,
site-prepared areas. Virginia Polytechnic Institute and State University, Blacksburg,
Pub., FWS-1-87, 1987.

[22] R. Car and M. Parrinello. Unified approach for molecular dynamics and density-
functional theory. Physical Review Letters, 55:2471–2474, 1985.

[23] Magnus Carlsson. Monads for incremental computing. In ACM SIGPLAN Interna-
tional Conference on Functional Programming, pages 26–35. ACM, New York, USA,
2002.

[24] S. Chapman. Tercentenary of the calculating machine. Nature, 150:427–427, 1942.

[25] S. Chapman. Fortran 95/2003 for Scientists & Engineers. McGraw-Hill, 2007.

[26] N. Chiba, S. Ohkawa, K. Muraoka, and M. Miura. Visual simulation of botanical
trees based on virtual heliotropism and dormancy break. The Journal of Visualiza-
tion and Computer Animation, 5:3–15, 1994.

[27] N. Chomsky. Three models for the description of language. IRE Transactions on
Information Theory, 2:113–124, 1956.

214

BIBLIOGRAPHY

[28] N. Chomsky. Syntactic Structures. Mouton, Gravenhage, 1957.

[29] A. Church. An unsolvable problem of elementary number theory. American Journal
of Mathematics, 58:345–363, 1936.

[30] J. Clark. Hierarchical geometric models for visible surface algorithms. Communica-
tions of the ACM, 19:547–554, 1976.

[31] Malte Clasen and Steffen Prohaska. Image-error-based level of detail for landscape
visualization. In Reinhard Koch, Andreas Kolb, and Christof Rezk-Salama, edi-
tors, Vision, Modeling and Visualization Workshop, pages 267–274. Eurographics
Association, 2010.

[32] W. F. Clocksin and C. S. Mellish. Programming in Prolog: Using The ISO Standard.
Springer, Berlin, 2003.

[33] H. Cochard, S. Coste, B. Chanson, J. Guehl, and E. Nicolini. Hydraulic architec-
ture correlates with bud organogenesis and primary shoot growth in beech (Fagus
sylvatica). Tree Physiology, 25:1545–1552, 2005.

[34] H. Cochard and M. T. Tyree. Xylem dysfunction in quercus: vessel sizes, tyloses,
cavitation and seasonal changes in embolism. Tree Physiology, 6:393–407, 1990.

[35] J. Cohen, M. Olano, and D. Manocha. Appearance-preserving simplification. In
Michael F. Cohen, editor, SIGGRAPH ’98, pages 115–122. ACM, 1998.

[36] A. Corradini, U. Montanari, and F. Rossi. Algebraic approaches to graph trans-
formation: Part I. In G. Rozenberg, editor, Handbook of Graph Grammars and
Computing by Graph Transformations, volume 1, chapter 3, pages 163–245. World
Scientific, 1997.

[37] R. Cozzi. The Modern RPG IV Language. MC Press, USA, 2006.

[38] K. Culik and A. Lindenmayer. Parallel graph generating and graph recurrence
systems for multicellular development. International Journal of General Systems,
3(1):53–66, 1976.

[39] P. de Reffye, C. Edelin, J. Françon, M. Jaeger, and C. Puech. Plant models faithful
to botanical structure and development. In Proceedings of SIGGRAPH 88, pages
151–158, New York, NY, USA, 1988. ACM.

[40] Philippe Decaudin and Fabrice Neyret. Rendering forest scenes in real-time. In
Alexander Keller and Henrik Wann Jensen, editors, Eurographics Symposium on
Rendering, pages 93–102. Eurographics Association, 2004.

[41] B. Denby, I. Sundvor, M. Cassiani, P. de Smet, F. de Leeuw, and J. Horaálek. Spatial
mapping of ozone and SO2 Trends in Europe. Science of the Total Environment,
408:4795–4806, 2010.

[42] Qingqiong Deng, Xiaopeng Zhang, Gang Yang, and Marc Jaeger. Multiresolution
foliage for forest rendering. Computer Animation and Virtual Worlds, 21:1–23, 2010.

215

BIBLIOGRAPHY

[43] Oliver Deussen, Carsten Colditz, Marc Stamminger, and George Drettakis. Interac-
tive visualization of complex plant ecosystems. In Conference on Visualization ’02,
VIS ’02, pages 219–226. IEEE Computer Society, 2002.

[44] D. Douglas and T. Peucker. Algorithms for the reduction of the number of points
required to represent a digitized line or its caricature. Canadian Cartographer,
10:112–122, 1973.

[45] M. E. Dyer and H. E. Burkhart. Compatible crown ratio and crown height models.
Canadian Journal of Forest Research, 17:572–574, 1987.

[46] W. E. Principles of Multiscale Modeling. Cambridge University Press, United King-
dom, 2011.

[47] W. E and B. Engquist. The heterogeneous multiscale methods. Communications in
Mathematical Sciences, 1:87–132, 2003.

[48] H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner, and A. Corradini.
Algebraic approaches to graph transformation: Part II. In G. Rozenberg, editor,
Handbook of Graph Grammars and Computing by Graph Transformations, volume 1,
chapter 4, pages 247–312. World Scientific, 1997.

[49] H. Ehrig, M. Pfender, and H. J. Schneider. Graph-grammars: an algebraic approach.
In Proceedings IEEE Conference on Automata and Switching Theory ’73, pages 167–
180. IEEE, 1973.

[50] H. Ehrig and G. Taentzer. From parallel graph grammars to parallel high-level re-
placement systems. In G. Rozenberg and A. Salomaa, editors, Lindenmayer Systems,
pages 283–304. Springer, Berlin, 1992.

[51] P. Eichhorst and W. J. Savitch. Growth functions of stochastic Lindenmayer sys-
tems. Information and Control, 45:217–228, 1980.

[52] J. Engelfriet and G. Rozenberg. Node replacement graph grammars. In G. Rozen-
berg, editor, Handbook of Graph Grammars and Computing by Graph Transforma-
tions, volume 1, chapter 1, pages 1–97. World Scientific, 1997.

[53] Jing Fan, YunYi Fan, TianYang Dong, and Lei Ji. Real-time information recombina-
tion of complex 3d tree model based on visual perception. Science China Information
Sciences, 56(9):1–14, 2013.

[54] R. Feys. Boole as a logician. Proceedings of the Royal Irish Academy, 57:97–106,
1955.

[55] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer Graphics.
Principles and Practice. Addison-Wesley, Massachusetts, 1997.

[56] E. D. Ford, A. Avery, and R. Ford. Simulation of branch growth in the Pinaceae:
Interactions of morphology, phenology, foliage productivity, and the requirement
for structural support, on the export of carbon. Journal of Theoretical Biology,
146:15–36, 1990.

216

BIBLIOGRAPHY

[57] G. Frege. Begriffsschrift: Eine der arithmetischen nachgebildete Formelsprache des
reinen Denkens. Halle, 1879.

[58] G. Frege. Die Grundlagen der Arithmetik: Eine logisch mathematische Unter-
suchung über den Begriff der Zahl. W. Koebner, 1884.

[59] D. Frijters and A. Lindenmayer. A model for the growth and flowering of Aster
novaeangliae on the basis of table (1,0) L-systems. In Grzegorz Rozenberg and Arto
Salomaa, editors, L systems, volume 15 of Lecture Notes in Computer Science, pages
24–52. Springer-Verlag, Berlin, 1974.

[60] T. Früh. Simulation of water flow in the branched tree architecture. Silva Fennica,
31:275–284, 1997.

[61] T. A. Funkhouser and C. H. Séquin. Adaptive display algorithm for interactive
frame rates during visualization of complex virtual environments. In Proceedings of
SIGGRAPH ’93, pages 247–254. ACM, 1993.

[62] T. Gabriele and M. Beyer. Amalgamated graph transformations and their use for
specifying AGG – an algebraic graph grammar system. In LNCS 776, pages 380–394.
Springer, 1994.

[63] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1994.

[64] Geoffrey Y. Gardner. Simulation of natural scenes using textured quadric surfaces.
ACM SIGGRAPH Computer Graphics, 18(3):11–20, 1984.

[65] M. Garland and P. Heckbert. Surface simplification using quadric error metrics. In
Proceedings of SIGGRAPH ’97, pages 209–216. ACM, 1997.

[66] V. L. Gavrikov and O. P. Sekretenko. Shoot-based three-dimensional model of young
scots pine growth. Ecological Modelling, 88:183–193, 1996.

[67] C. Godin and Y. Caraglio. A multiscale model of plant topological structures.
Journal of Theoretical Biology, 191:1–46, 1998.

[68] C. Godin, Y. Guédon, E. Costes, and Y. Caraglio. Measuring and analyzing plants
with the AMAPmod software. In M. Michalewicz, editor, Advances in Computa-
tional Life Sciences, Vol I : Plants to Ecosystems, pages 53–84. CSIRO, Australia,
1997.

[69] J. F. Gouyet. Branching in Nature, volume 14 of Centre de Physique des Houches.
Springer, France, 2001 edition, 2001.

[70] S. Griffon and F. de Coligny. AMAPstudio: An editing and simulation software
suite for plants architecture modelling. Ecological Modelling, 290:3–10, 2014.

[71] J. Hanan. Parametric L-systems and Their Application To the Modelling and Visu-
alization of Plants. PhD thesis, University of Regina, 1992.

217

BIBLIOGRAPHY

[72] J. Hanan. Functional-structural modelling with L-systems: Where from and where
to. In Proceedings of the 7th International Conference on Functional-Structural Plant
Models, pages 1–3, Saariselkä, Finland, 2013. Finnish Society of Forest Science,
Vantaa, Finland.

[73] D. W. Hann. An adjustable predictor of crown profile for stand-grown Douglas-fir
trees. Forest Science, 45:217–225, 1999.

[74] J. L. Harper, B. R. Rosen, and J. White. The Growth and Form of Modular Organ-
isms. The Royal Society, London, 1986.

[75] R. Hemmerling. Extending the Programming Language XL to Combine Graph Struc-
tures with Ordinary Differential Equations. PhD thesis, University of Göttingen,
2012.

[76] R. Hemmerling, O. Kniemeyer, D. Lanwert, W. Kurth, and G. Buck-Sorlin. The
rule-based language XL and the modelling environment GroIMP illustrated with
simulated tree competition. Functional Plant Biology, 35:739–750, 2008.

[77] G. T. Herman and G. Rozenberg. Developmental Systems and Languages. North
Holland, Amsterdam, 1975.

[78] E. Hobsbawm. The Age of Revolution: 1789-1848. Vintage, 1996.

[79] P. Hogeweg and B. Hesper. A model study on biomorphological description. Pattern
Recognition, 6:165–179, 1974.

[80] H. Hollerith. In Connection with the Electric Tabulation System Which Has Been
Adopted by U.S. Government for the Work of the Census Bureau. Dissertation,
Columbia University, 1890.

[81] H. Honda. Description of the form of trees by the parameters of the tree-like body:
Effects of the branching angle and the branch length on the shape of the tree-like
body. Journal of Theoretical Biology, 31:331–338, 1971.

[82] H. Hoppe. Progressive meshes. In Proceedings of SIGGRAPH ’96, pages 99–108.
ACM, 1996.

[83] H. Hoppe. View-dependent refinement of progressive meshes. In Proceedings of
SIGGRAPH ’97, pages 189–198. ACM, 1997.

[84] M. H. Kalos and P. A. Whitlock. Monte Carlo Methods. Wiley-VCH, Weinheim,
2008.

[85] M-Z. Kang and P. de Reffye. A mathematical approach estimating source and sink
functioning of competing organs. In J. Vos, L. F. M. Marcelis, P. H. B. de Visser,
P. C. Struik, and J. B. Evers, editors, Functional-Structural Plant Modelling in Crop
Production, pages 65–74, Berlin, 2007. Springer.

[86] L. Kari, G. Rozenberg, and A. Salomaa. L systems. In Grzegorz Rozenberg and
Arto Salomaa, editors, Handbook of Formal Languages, volume 1, chapter 5, pages
253–328. Springer-Verlag, 1997.

218

BIBLIOGRAPHY

[87] S. Kellomäki and H. Strandman. A model for the structural growth of young Scots
pine crowns based on light interception by shoots. Ecological Modelling, 80:237–250,
1995.

[88] R. Kerner, J. B. Winkler, J. W. Dupuy, M. Jürgensen, C. Lindenmayr, D. Ernst, and
G. Müller-Starck. Changes in the proteome of juvenile European beech following
three years exposure to free-air elevated ozone. iForest, 4:69–76, 2011.

[89] I. G. Kevrekidis, C. W. Gear, J. M. Hyman, P. G. Kevrekidis, O. Runborg, and
C. Theodoropoulos. Equation-free, coarse-grained multiscale computation: Enabling
microscopic simulators to perform system-level analysis. Communications in Math-
ematical Sciences, 1:715–762, 2003.

[90] A.J. Klar. Developmental choices in mating-type interconversion in fission yeast.
Trends in Genetics, 8(6):208–213, 1992.

[91] O. Kniemeyer. Design and Implementation of a Graph Grammar Based Language
for Functional-Structural Plant Modelling. PhD thesis, Brandenburg University of
Technology Cottbus, 2008.

[92] O. Kniemeyer, G. Barczik, R. Hemmerling, and W. Kurth. Relational growth gram-
mars - a parallel graph transformation approach with applications in biology and
architecture. In AGTIVE 2007, pages 152–167, 2007.

[93] O. Kniemeyer, G. Buck-Sorlin, and W. Kurth. A graph grammar approach to
artificial life. Artificial Life, 10(4):413–431, 2004.

[94] W. Kurth. Growth Grammar Interpreter GROGRA 2.4 - a software tool for the 3-
dimensional interpretation of stochastic, sensitive growth grammars in the context of
plant modelling. Berichte des Forschungszentrums Waldökosysteme der Universität
Göttingen, Ser. B, 38, 1994.

[95] W. Kurth. Proposal for a Research Grant - A Generic Functional-Structural Plant
Model with Applications to the Development and Interaction of Young Forest Trees,
Unpublished, 2013.

[96] Winfried Kurth, Ole Kniemeyer, and Gerhard Buck-Sorlin. Relational growth gram-
mars - A graph rewriting approach to dynamical systems with a dynamical structure,
volume 3566 of Lecture Notes in Computer Science, book section 5, pages 56–72.
Springer Berlin Heidelberg, 2005.

[97] S. M. Lane. Categories for the Working Mathematician. Springer, New York, 1998.

[98] T. Lang. Rules for robot draughtsmen. Geographical Magazine, 42:50–51, 1969.

[99] W. Lenzen. Leibniz und die Boolesche Algebra. Studia Leibnitiana, 16:187–203,
1984.

[100] U. Leupold. Studies on recombination in Schizosaccharomyces pombe. Cold Spring
Harbor Symposia on Quantitative Biology, 23:161–170, 1958.

219

BIBLIOGRAPHY

[101] A. Lindenmayer. Mathematical models for cellular interactions in development II.
Simple and branching filaments with two-sided inputs. Journal of Theoretical Biol-
ogy, 18(3):300 – 315, 1968.

[102] Aristid Lindenmayer. Mathematical models for cellular interaction in development.
Journal of Theoretical Biology, 18:280–315, 1968.

[103] Yotam Livny, Soeren Pirk, Zhanglin Cheng, Feilong Yan, Oliver Deussen, Daniel
Cohen-Or, and Baoquan Chen. Texture-lobes for tree modelling. ACM Transactions
on Graphics, 30(4):53:1–53:10, 2011.

[104] Javier Lluch, Emilio Camahort, Jose Luis Hidalgo, and Roberto Vivo. A hybrid mul-
tiresolution representation for fast tree modeling and rendering. Procedia Computer
Science, 1(1):485–494, 2010.

[105] S. L. Lohr. Sampling: Design and Analysis. Cengage Learning, Boston, 2009.

[106] M. Löwe. Algebraic approach to single-pushout graph transformation. Theoretical
Computer Science, 109:181–224, 1993.

[107] D. Luebke, M. Reddy, J. Cohen, A. Varshney, B. Watson, and R. Huebner. Level of
Detail for 3D Graphics. Morgan Kaufmann Publishers, San Francisco, USA, 2003.

[108] B. B. Mandelbrot. The Fractal Geometry of Nature. W. H. Freeman, San Francisco,
USA, 1982.

[109] Dana Marshall, Donald S. Fussell, and A.T. Campbell. Multiresolution rendering of
complex botanical scenes. In Graphics Interface ’97, pages 97–104, 1997.

[110] E. Martin. The calculating machines. In M. Campbell-Kelly and W. F. Aspray,
editors, Charles Babbage Institute Reprint Series for the History of Computing, vol-
ume 16. The MIT Press, London, England, 1992.

[111] J. Martin. Applications Development without Programmers. Prentice Hall, 1982.

[112] H. Maruyama, K. Tamura, and N. Uramoto. XML and Java: Developing Web
Applications. Addison-Wesley Longman, Amsterdam, 2002.

[113] A. Mateescu and A. Salomaa. Aspects of classical language theory. In Grzegorz
Rozenberg and Arto Salomaa, editors, Handbook of Formal Languages, volume 1,
chapter 4, pages 175–251. Springer-Verlag, 1997.

[114] A. Mateescu and A. Salomaa. Formal languages: an introduction and a synopsis.
In Grzegorz Rozenberg and Arto Salomaa, editors, Handbook of Formal Languages,
volume 1, chapter 1, pages 1–39. Springer-Verlag, 1997.

[115] C. Maus, S. Rybacki, and A. M. Uhrmacher. Rule-based multi-level modeling of cell
biological systems. BMC Systems Biology, 5(1):166, 2011.

[116] Nelson Max. Hierarchical rendering of trees from precomputed multi-layer z-buffers.
In Eurographics Workshop on Rendering Techniques, pages 165–174. Springer-
Verlag, London, UK, 1996.

220

BIBLIOGRAPHY

[117] Robert B. McMaster. The geometric properties of numerical generalization. Geo-
graphical Analysis, 19(4):330–346, 1987.

[118] F. L. Menabrea. Sketch of the analytical engine invented by Charles Babbage.
Scientific Memoirs, 3:666–, 1842.

[119] Alexandre Meyer and Fabrice Neyret. Interactive volumetric textures. In George
Drettakis and Nelson Max, editors, Eurographics Rendering Workshop, pages 157–
168. Springer, 1998.

[120] Alexandre Meyer, Fabrice Neyret, and Pierre Poulin. Interactive rendering of trees
with shading and shadows. In Steven J. Gortler and Karol Myszkowski, editors,
Eurographics Workshop on Rendering, pages 183–196. Springer-Verlag, 2001.

[121] M. Mitchell. Complexity: A Guided Tour. Oxford University Press, U.S.A., 2011.

[122] Y. N. Moschovakis. What is an algorithm. In B. Engquist and W. Schmid, editors,
Mathematics Unlimited — 2001 and beyond, pages 919–936. Springer, 2001.

[123] R. Měch and P. Prusinkiewicz. Visual models of plants interacting with their envi-
ronment. In SIGGRAPH 96, pages 397–410. ACM, 1996.

[124] M. Nagl. On a generalization of Lindenmayer-systems to labelled graphs. In A. Lin-
denmayer and G. Rozenberg, editors, Automata, Languages, Development, pages
487–508. North Holland, 1976.

[125] Y. Ong. Multi-scale rule-based graph transformation using the programming lan-
guage XL. In H. Ehrig, G. Engels, H-J. Kreowski, and G. Rozenberg, editors, Graph
Transformations. 6th International Conference, ICGT 2012, Lecture Notes in Com-
puter Science 7562, pages 417–419, Berlin, 2012. Springer.

[126] Y. Ong and W. Kurth. A design pattern in XL for implementing multiscale mod-
els, demonstrated at a fruit tree simulator. Abstract submitted to X International
Symposium on Modelling in Fruit Research and Orchard Management, 2015, Mont-
pellier, France.

[127] Y. Ong and W. Kurth. Incremental LOD for multi-resolution branching structures.
Submitted to Eurographics Symposium on Geometry Processing, 2014.

[128] Y. Ong and W. Kurth. A graph model and grammar for multi-scale modelling using
XL. In J. Gao, W. Dubitzky, C. Wu, M. Liebman, R. Alhaij, L. Ungar, A. Chris-
tianson, and X. Hu, editors, 2012 IEEE International Conference on Bioinformatics
and Biomedicine Workshops, pages 1–8, Philadelphia, USA, 2012. IEEE Computer
Society.

[129] Y. Ong and W. Kurth. Developing multiscale simulation models using the software
GroIMP. In J. Wittmann and D. K. Maretis, editors, Simulation in den Umwelt- und
Geowissenschaften. Workshop Osnabrück 2014, pages 51–64, Aachen, 2014. Shaker
Verlag.

[130] Y. Ong, K. Streit, M. Henke, and W. Kurth. An approach to multiscale modelling
with graph grammars. Annals of Botany, 114:813–827, 2014.

221

BIBLIOGRAPHY

[131] H. Opheim. Fast data reduction of a digitized curve. Geo-Processing, 2:33–40, 1982.

[132] G. O’Regan. A Brief History of Computing. Springer-Verlag, London, 2008.

[133] W. Palubicki, K. Horel, S. Longay, A. Runions, B. Lane, R. Mech, and
P. Prusinkiewicz. Self-organizing tree models for image synthesis. ACM Trans-
actions on Graphics, 28:1–10, 2009.

[134] J. Perttunen, R. Sievänen, E. Nikinmaa, H. Salminen, H. Saarenmaa, and J. Väkevä.
LIGNUM: a tree model based on simple structural units. Annals of Botany, 77:87–
98, 1996.

[135] A. M. Petritan, B. von Lüpke, and I. C. Petritan. Effects of shade on growth and
mortality of maple (Acer pseudoplatanus), ash (Fraxinus excelsior) and beech (Fagus
sylvatica) saplings. Forestry, 80(4):397–412, 2007.

[136] C. Pradal, S. Dufour-Kowalski, F. Boudon, C. Fournier, and C. Godin. OpenAlea:
a visual programming and component-based software platform for plant modelling.
Functional Plant Biology, 35(10):751–760, 2008.

[137] P. Prusinkiewicz. Graphical applications of L-systems. In Proceedings on Graphics
Interface 86/Vision Interface 86, pages 247–253, Toronto, Canada, 1986. Canadian
Information Processing Society.

[138] P. Prusinkiewicz. Modeling and visualization of biological structures. In Proceeding
of Graphics Interface ’93, pages 128–137, 1993.

[139] P. Prusinkiewicz, M. Hammel, J. Hanan, and R. Měch. Visual models of plant de-
velopment. In Grzegorz Rozenberg and Arto Salomaa, editors, Handbook of Formal
Languages, volume 3, chapter 9, pages 535–597. Springer-Verlag, 1997.

[140] P. Prusinkiewicz, M. Hammel, and E. Mjolsness. Animation of plant development.
In SIGGRAPH 93, pages 351–360. ACM, 1982.

[141] P. Prusinkiewicz and J. Hanan. Lindemayer Systems, Fractals, and Plants. Springer
Verlag, Berlin, 1989.

[142] P. Prusinkiewicz and L. Kari. Subapical bracketed L-systems. In J. Cuny, H. Ehrig,
G. Engles, and G. Rozenberg, editors, Grammars and their Application to Com-
puter Science, volume 1073 of Lecture Notes in Computer Science, pages 550–564.
Springer-Verlag, 1996.

[143] P. Prusinkiewicz, A. Lindenmayer, and J. Hanan. Developmental models of herba-
ceous plants for computer imagery purposes. In Proceedings of SIGGRAPH 88,
pages 141–150, New York, NY, USA, 1988. ACM.

[144] P. Prusinkiewicz and R. Lindenmayer. The Algorithmic Beauty of Plants. Springer,
New York, 1990.

[145] Przemyslaw Prusinkiewicz. Graphical applications of L-systems. In Graphics Inter-
face ’86, pages 247–253. Canadian Information Processing Society, 1986.

222

BIBLIOGRAPHY

[146] K. Reumann and A. P. M. Witkam. Optimizing curve segmentation in computer
graphics. In International Computing Symposium, pages 467–472. North-Holland
Publishing Company, 1974.

[147] J. Rossignac and P. Borrel. Multi-resolution 3d approximations for rendering com-
plex scenes. In B. Falcidieno and T. Kunii, editors, Modeling in Computer Graphics,
IFIP Series on Computer Graphics, pages 455–465. Springer, 1993.

[148] A. Rostand-Mathieu, P-H. Cournède, and P. de Reffye. A dynamical model of plant
growth with full retroaction between organogenesis and photosynthesis. ARIMA,
4:101–107, 2006.

[149] M. K. Roy and D. G. Dastidar. COBOL Programming. Tata McGraw-Hill Educa-
tion, 1989.

[150] G. Rozenberg and A. Salomaa. The Mathematical Theory of L-systems. Academic
Press, New York, 1980.

[151] G. Rozenberg and A. Salomaa, editors. Beyond Words, volume 3 of Handbook of
Formal Languages. Springer-Verlag, 1997.

[152] B. Russell. The Principles of Mathematics. Cambridge University Press, 1903.

[153] A. Salomaa. Formal Languages. Academic Press, New York, 1973.

[154] V. Sarlikioti, P. H. B. de Visser, and L. F. M. Marcelis. Exploring the spatial distri-
bution of light interception and photosynthesis of canopies by means of a functional-
structural plant model. Annals of Botany, 107(5):875–883, 2010.

[155] M. Scalfi, M. Troggio, P. Piovani, S. Leonardi, G. Magnaschi, G. G. Vendramin, and
P. Menozzi. A RAPD, AFLP and SSR linkage map, and QTL analysis in European
beech (Fagus sylvatica L.). Theoretical and Applied Genetics, 108:433–441, 2004.

[156] H. Schildt. Java: The Complete Reference. Mcgraw-Hill Osborne Media, 2014.

[157] R. Schober. Ertragstafeln wichtiger Baumarten. J. D. Sauerländer’s Verlag, Frank-
furt am Main, 1995.

[158] W. J. Schroeder, J. A. Zarge, and W. E. Lorensen. Decimation of triangle meshes.
In Proceedings of SIGGRAPH ’92, pages 65–70. ACM, 1992.

[159] C. E. Shannon. A symbolic analysis of relay and switching circuits. Transactions of
the American Institute of Electrical Engineers, 57:713–723, 1938.

[160] W. Shi and C. Cheung. Performance evaluation of line simplification algorithms for
vector generalization. The Cartographic Journal, 43(1):27–44, 2006.

[161] H. Simmons. An Introduction to Category Theory. Cambridge University Press,
2011.

[162] A. R. Smith. Plant, fractals, and formal languages. In Proceedings of SIGGRAPH
84, pages 1–10. ACM, 1984.

[163] B. Stern and P. Nurse. Fission yeast pheromone blocks S-phase by inhibiting the
G1 cyclin Bp34cdc2 kinase. EMBO Journal, 16(3):534–544, 1997.

223

BIBLIOGRAPHY

[164] P. S. Stevens. Patterns in Nature. Little, Brown and Company, 1974.

[165] J. Strobel. Die Atmung der verholzten Organe von Altbuchen (Fagus sylvatica
L.) in einem Kalk- und einem Sauerhumusbuchenwald. Dissertation, University
of Göttingen, Germany, 2004.

[166] B. Stroustrup. The C++ Programming Language: Special Edition. Addison Wesley,
2000.

[167] A. L. Szilard and R. E. Quinton. An interpretation for D0L systems by computer
graphics. The Science Terrapin, 4:8–13, 1974.

[168] A. Takenaka. A simulation model of tree architecture development based on growth
response to local light environment. Journal of Plant Research, 107:321–330, 1994.

[169] D. W. Thompson. On Growth and Form. Cambridge University Press, 1952.

[170] A. Turing. On computable numbers, with an application to the Entscheidungsprob-
lem. Proceedings of the London Mathematical Society, 42:230–265, 1936.

[171] A. Turing. The chemical basis of morphogenesis. Philosophical Transactions of the
Royal Society of London B, 237:37–72, 1952.

[172] J. J. Tyson. Modeling the cell division cycle: cdc2 and cyclin interactions. Proceed-
ings of the National Academy of Sciences USA, 88(16):7328–7332, August 1991.

[173] S. Ulam. On some mathematical properties connected with patterns of growth of
figures. In Proceedings of Symposia on Applied Mathematics, volume 14, pages 215–
224. American Mathematical Society, 1962.

[174] M. Visvalingam and J. D. Whyatt. Line generalization by repeated elimination of
points. The Cartographic Journal, 30:46–51, 1993.

[175] A. Warshel and M. Levitt. Theoretical studies of enzymic reactions: Dielectric,
electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme.
Journal of Molecular Biology, 103:227–249, 1976.

[176] Jason Weber and Joseph Penn. Creation and rendering of realistic trees. In SIG-
GRAPH ’95, pages 119–128. ACM, 1995.

[177] T. Yamada-Inagawa, A.J.S. Klar, and J.Z. Dalgaard. Schizosaccharomyces pombe
switches mating type by the synthesis-dependent strand-annealing mechanism. Ge-
netics, 177:255–265, 2007.

[178] H. Yan, M. Z. Kang, P. de Reffye, and M. Dingkuhn. A dynamic, architectural plant
model simulating resource-dependent growth. Annals of Botany, 93:591–602, 2004.

[179] Z. Zhao and A. Saalfeld. Linear-time sleeve-fitting polyline simplification algorithms.
In Auto-Carto 13, ACSM ASPRS Annual Convention and Exposition, volume 5,
pages 214–223, 1997.

224

	Introduction & Motivation
	Programming Languages
	From Mechanical Calculators to Electronic Computers
	From Logic to Algorithms
	Generations of Programming Languages

	The XL Programming Language
	Computer Graphical Modelling & Level-of-Detail (LOD) Visualization
	Motivations
	Research Questions
	Research Objectives

	I The Rule-Based Paradigm & XL
	Linear Rewriting Systems
	Introduction to Formal Languages
	Alphabets, Words & Languages
	The Chomsky Grammars and Hierarchy
	Phrase-structure Grammar (type 0)
	Context-sensitive Grammar (type 1)
	Context-free Grammar (type 2)
	Regular Grammar (type 3)

	L-systems
	0L-systems & D0L-systems
	E0L-systems
	T0L-systems & DT0L-systems
	Bracketed L-systems
	Context-sensitive L-systems
	Stochastic L-systems
	Pseudo L-systems
	Extending L-systems from Discrete to Continuous
	Parametric L-systems
	Differential L-systems

	L-systems with Global and External Interactivity
	Growth Grammars
	Environmentally-sensitive L-systems
	Open L-systems

	Graph Rewriting
	Introduction to Graphs
	Fundamental Definitions
	Alphabet
	Graph
	Subgraph
	Graph Homomorphism
	Partial Graph Homomorphism

	Graphs in Category Theory
	Category
	Monomorphism
	Epimorphism
	Isomorphism
	Functor
	Category-of-Paths
	Diagram-in-Category
	Cone & Cocone
	Limit & Colimit
	Product & Coproduct
	Equalizer & Coequalizer
	Pullback & Pushout

	Fundamentals of Graph Rewriting
	The Double-Pushout Approach (DPO)
	The Single-Pushout Approach (SPO)
	Neighbourhood Controlled Embedding

	Graph Rewriting in XL
	Parallel Single-Pushout (SPO) Approach
	L-system-style Connection
	Operator-based Graph Rewriting
	Operator-based L-system-style Graph Rewriting
	Single-pushout (SPO) with Operators

	XL for Multiscale Modelling
	Multiscale Modelling Framework
	Statement of Problem
	Multiscale Graph Data Structure
	Structure-of-Scales
	Type Graph
	Instanced Graph

	Multiscale Graph Rewriting
	Scale-specific L-system-style Connection
	Multiscale Connection
	Partial Multiscale Embedding
	Total Multiscale Embedding
	On Parallelism in Multiscale Embedding

	XL Multiscale Syntax & Features
	Syntax Extensions
	The Observer Programming Pattern

	Technical Documentation
	Use Cases
	Compilation
	Run
	Visualization and the Observer Pattern

	II Level-of-Detail (LOD) Visualization
	Multiscale & LOD Visualization
	Incremental LOD for Branching Structures
	Previous Work
	Polyline Incremental LOD and Ramification LOD
	Polyline Incremental LOD

	Ramification LOD

	The Multiscale Graph and Grammar
	Local - The Multiscale Branching Structure
	Global - The Multiscale Scene Graph
	Update and Extraction for Rendering

	Implementation and Results
	Summary and Future Work

	III Applications & Examples
	Examples and Demonstrative Models
	Fission Yeast
	Single Cell Model
	Multiple Cell Model
	Rule-based Species and Complexes

	Beech Structural Growth
	Specifying and Generating a Multiscale Plant Structure
	Crown Generation
	Fagus sylvatica Stand under Ozone Exposure
	Stand Dynamics and Morphological Developments of Conifers
	Multiscale Graph Structure and Model Initialization
	Germination
	Growth
	Stand Competition Index
	Individual Tree Growth
	Structural and Architectural Development

	Mortality

	Conclusion
	Answers to Research Questions
	Concluding Remarks

	Appendix: Interfaces with Other Software
	The MTG File Interface
	The Xplo and ArchiTree Interface

