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Summary 

Biotic stress such as pests can cause high yield losses in agricultural crop systems. It has been 

estimated that global warming will increase these rates. Thus, the impact of global warming on the 

distribution and abundance of insect pests caught the attention of investigators in the last years. 

However, little is known about the influence of climate change on the interaction between host plants 

and their insect pests. Current studies make only coarse assumptions about plant responses to their 

associated pests as consequence of climate change. 

The rape stem weevil (Ceutorhynchus napi GYLL.) is the first pest attacking winter oilseed rape 

(Brassica napus L.) in spring. Warming in spring induced by global warming may affect the pest, the 

plant and/or the interaction between them. The aim of this thesis was to close existing knowledge gaps 

about the influence of changing climatic conditions on the interaction between rape stem weevil (RSW) 

and its host winter oilseed rape (WOSR). Within the research framework “KLIFF – Climate Impact and 

Adaption Research in Lower Saxony”, several field, semi-field and laboratory trials were applied.  

The first aim of this study was to assess the influence of WOSR phenology in springtime on damage 

caused by RSW. Therefore, a field trial was conducted with the WOSR varieties ‘Elektra’ and ‘Favorite’ 

in an alternating split-block design over two consecutive years. Moreover, differences in the damage 

potential by RSW regarding the initial oviposition were analyzed. The results of this experiment 

provide new insights into factors influencing the interaction of RSW and its host plant. The variety 

‘Elektra’ with a more rapid development in springtime was earlier infested by RSW adults during the 

growing season. We showed further that “stem injury index” and “damage index” are not suitable for a 

reliable assessment of damage potential of RSW although these parameters are used in recent 

studies. The emigration of RSW third instar larvae was strongly influenced by climatic conditions but 

not by phenology of the varieties and by the hatching time of larvae. 

It is almost unknown, how climate change will influence the interaction between WOSR and RSW. 

Therefore, a semi-field experiment with three different soil temperature regimes induced by soil 

warming was set up in a randomized block design. Different plant parameters and the damage 

potential of RSW through changes in oviposition were recorded. To study the influence of temperature 

on the date of RSW infestation, plots were artificially infested with RSW cocoons. The emergence of 

adult emergence was studied with photoeclectors. The results of this experiment suggest that global 

warming may lead to higher yield losses in order of an earlier beetle emergence. On plant level, the 

temperature and the variety were predicators for the height of the main shoot which was positively 

influenced by these factors. Height as well as soil temperature influenced the infestation level of the 

RSW larvae: taller plants and warmer plots led to an increased abundance of RSW larvae. 

In greater extent, studies were conducted in the laboratory to explain more in detail the biology of 

RSW´s. In order to analyze the effect of temperature on the oviposition, survival rate, longevity and 

egg development of RSW, several trials were carried out. Three average daily temperatures were 

assessed at constant and varying regimes. Varying or constant temperature regimes with the same 

mean daily temperature differed with regard to insect developmental time. Varying temperature 

regimes resulted in an increased oviposition by RSW adults compared to constant temperatures. 

Consequently, temperature regimes with the same mean daily temperature should be treated with 



 Summary 

 

6 

 

care. Another point is the mortality rate of eggs. More eggs died at a constant temperature regime 

compared to a varying temperature regime. We suggest that this fact must be taken into account when 

trials with constant temperature regimes are performed. 

In the last experiment, the volatile emission of oilseed rape plants upon stress through herbivory by 

RSW adults or drought was compared to the emission of non-stressed plants. In addition, plant 

parameters of well-irrigated plants and plants exposed to drought stress were recorded. The results 

showed that volatile emission significantly differed between control and stressed plants. Stressed 

plants emitted a higher number of volatiles. Nevertheless, the volatile profiles of stress through 

herbivory or drought did not result in the same quality and quantity. Regardless to the volatiles, the 

drought stress had an obviously impact on plant height and fresh weight. The weight of stressed plants 

was greatly reduced compared to the weight of well-irrigated plants. 

In summary, this thesis presents new methodology in RSW research. In addition, knowledge gaps of 

detailed biological question in the interaction of RSW´s and WOSR were closed. The result of this 

thesis further suggests that a higher temperature may lead to an increased yield loss in WOSR caused 

by RSW. 
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“Learn from yesterday, live for today, hope for tomorrow. 

The important thing is to not stop questioning.” 

(Albert Einstein, Relativity: The Special and the General Theory) 

General Introduction 

Climatic conditions have changed over the last decades (Karl and Trenberth, 2003; Gutierrez et al., 

2008; Musolin et al., 2010; IPCC, 2012). A main focus of current research is to predict changes in 

temperature regimes in the future. It is estimated that climate warming due to anthropogenic increase 

of greenhouse gases will raise the average surface temperature on the earth by 2 to 5°C during the 

next 100 years (Wigley and Raper, 2001). In the last 60 years, average temperatures have increased 

by 1.3°C in Lower Saxony (Haberlandt et al., 2010). The regional climate models REMO and CLM 

predicted a further increase of 2.5°C by 2100 in comparison to the baseline period 1971-2000 

(Klimaschutz, 2012).  

Effects of an increasing temperature on insects 

It is expected that insect herbivores and their interactions with host plants might be affected if 

temperatures increase (Jalali et al., 2010, Kocmánková et al., 2011). A changing climate has a major 

impact on processes influenced by temperature such as insect developmental time (Keena and 

Moore, 2010), spatial distribution (Gutierrez et al., 2008), behavior, survival and reproduction of 

insects (Bale et al., 2002). Recent studies surveyed the effects of a changing climate on insects and 

biological control of insects (Estay et al., 2009; Westwood and Blair, 2010; Gerard et al., 2013). For 

example, there are already extended flight periods for butterflies (Westwood and Blair, 2010) and 

predictions that pests will follow their hosts to other climate regions (Gerard et al., 2013). Previous 

studies investigating the effects of temperature on insect herbivores and their interaction with plants 

revealed that a shorter generation time of insects could lead to an enhanced population growth 

(Steinbauer et al., 2004; Dalin, 2011).  

Climate and its variability will also have an impact on agronomic decisions (Eitzinger et al., 2010).In 

the last years, the interest of researchers on the effect of a changing climate on plants and their 

interaction with insects (Bale et al., 2002; Olfert and Weiss, 2006) or fungal diseases (Chakraborty et 

al., 2000; Garrett, 2006) has increased. Special focus is drawn on agricultural plants with interactions 

of their associated pests (Golizadeh et al., 2007; Gutierrez et al., 2008; Jaramillo et al., 2009; 

Wilstermann and Vidal, 2013). Recently, winter oilseed rape (WOSR) (Brassica napus L.) has 

received more attention in various studies with regard to climate change (Qaderi et al., 2006; 

Peltonen-Sainio et al., 2009). Qaderi et al. (2006) described the effect of elevated carbon dioxide as 

well as increased temperature and drought stress on WOSR. Peltonen-Sainio et al. (2009) focused on 

the regional importance of summer oilseed rape in case of warmer temperatures in northern areas. 

However, almost nothing is known about the interaction between WOSR and the rape stem weevil 

(RSW) (Ceutorhynchus napi Gyll.) with regard to a changing climate.  

Biology of oilseed rape and its pests 

WOSR is one of the most important oil plants grown in Germany. The seeds are extruded for oil, which 

is used for industrial purposes such as biofuel or lubricants. The side product so called “colza cake” is 

http://www.goodreads.com/author/show/9810.Albert_Einstein
http://www.goodreads.com/work/quotes/2638443
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incorporated into animal nutrition (Tripathi and Mishra, 2007). The remaining plant parts can be used 

as straw in heating systems for renewable energy (Sander and Andrén, 1997). The annual production 

of WOSR in Germany was between 3.6 to 6.3 Mio t in the last 10 years (Eurostat 2012). Herbivory of 

various insects can lead to substantial yield losses in every season (Alford, 2011).  

The RSW is the first pest attacking WOSR after winter. In the last century, the cultivation area of 

WOSR has increased in Germany so that the RSW become more and more important (Günthart, 

1949; Bartlet, 1996).The adult beetles overwinter in the soil of WOSR fields and emerge at a 6°C soil 

temperature threshold in springtime (Juran et al., 2011). The adults are capable of flying at a 10°C air 

temperature (Johnen et al., 2010). The females lay their eggs into the stem of WOSR shoots (Büchi, 

1996). Oviposition is the most significant part of the RSW life cycle in terms of plant damage 

(Günthart, 1949). 

Influence of a changing climate on RSW behavior 

The RSW eggs hatch depends, as well as other insect species, on temperature (Günthart, 1949). The 

larvae start feeding on the degraded stem pith (Juran et al., 2011) which might enlarge the damage. 

Both WOSR and RSW are poikilotherms and thus highly temperature dependent. Certain temperature 

regimes are specific to fulfill different life stages for insects (Satar et al., 2005). Consequently, the 

emergence of RSW will be more important if temperature increases in the future. However, studies 

investigating the temperature requirements for RSW development are missing in details.  

For insects, particular models called day-degree were calculated (Pruess, 1983; Higley et al., 1986). 

These models assume that a sum of constant temperatures over a certain threshold temperature is 

needed to accomplish different life stages (Higley et al., 1986; Gilbert and Raworth, 1996). Another 

hypothesis is that insects are not subjected to constant temperatures in natural habitats (Stinner et al., 

1974; Hagstrum and Milliken, 1991). Therefore, constant and varying temperature regimes should be 

included in experimental set ups. Beside temperature, there are other factors affected by a changing 

climate. A change for the distribution of precipitation could lead to less rain in the summer, but more in 

the winter time (IPCC, 2012). As the host quality plays a big role in pest-host interactions, an altered 

water status of plants may change the infestation level of insect pests due to chemical signals. 

Volatiles 

Insects chose their host by visual and semiochemical stimuli (Cook et al., 2007). They are able to 

discriminate different host plants through odors emitted by plants. As they use these cues to locate 

their hosts, they select their hosts based on the quantity and the blend of volatiles. For example, the 

common 1-hexanol has been shown to be either attractant or repellent to the insects, depending on its 

release rate (Smart and Blight, 1997). Water stress seems to directly affect volatile release 

(Takabayashi et al., 1994). Due to elevated levels of volatiles used in host location, water-stressed 

plants will be easier to locate by their associated herbivores compared to non water-stressed plants 

(Paré and Tumlinson, 1999). Beside the pests, their parasitoids may also be affected as they use the 

volatiles of infestation to locate their own host (Veromann, 2013). Consequently, herbivory can be 

positively or negatively influenced by the stress level of the host, which changes the population 

dynamics of crop pests (Stavrinides et al., 2010). Although the number of studies investigating the role 

of volatiles increased in the last years (Simpson and McQuilkin, 1976; Finch, 1978; Cole, 1980; Visser, 

1986; Takabayashi et al., 1994; Blight et al., 1997; Paré and Tumlinson, 1999; Dicke and Loon, 2000; 
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Boer et al., 2004; Dudareva et al., 2004; Holopainen and Gershenzon, 2010), there are still knowledge 

gaps regarding the volatile emission of WOSR and its effect on RSW in case of climate change related 

drought stress. 

Objectives 

So far, very little is known about the interaction between WOSR and WSR with regard to a changing 

climate. To date, there are only few studies about the behavior of RSW under changing climate 

conditions (Eickermann et al., 2014). Moreover, empirical studies investigating the temperature 

requirements for RSW development are missing. Therefore, this study was based on temperature 

depending stages of RSW and the interaction with the host plant WOSR.  

To study the interactions between WOSR and its associated pest in changing climatic conditions, 

different experiments were carried out. Therefore, the influence of WOSR phenology on the oviposition 

of RSW was investigated at a field scale. Another task was to analyze the development of plants and 

the damage potential of the oviposition. Moreover, new parameters were introduced to assess the 

damage potential of RSW.  

In a semi-field experiment, the influence of soil warming on the RSW abundance was recorded in 

terms of emergence date. In addition, how soil temperature interacts with plant growth was 

investigated. We aimed at assessing if an earlier development of the plant will lead to an earlier 

infestation by the pest. Another major focus was the effect of soil temperature or WOSR variety and on 

the damage potential of RSW.  

Biological models play an important role to predict the occurrence of pests. Data regarding RSW are 

still missing. One aim of this thesis was to investigate the influence of different constant and varying 

temperature regimes on oviposition, egg load, survival rate, longevity and egg development of RSW. 

Moreover, headspace analysis of volatile emissions by WOSR plants with and without stress were 

performed. The volatile profiles should clarify how control plants differ between herbivore-infested 

plants, and drought-stressed plants. Finally, the influence of drought stress on plant height and weight 

was analyzed. 
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Influence of phenology of two different oilseed rape  

(Brassica napus L.) varieties on the damage caused by rape stem 

weevil (Ceutorhynchus napi GYLL.) 

 

A. Reinhardt
 1
, B. Ulber 

1
 and S. Vidal 

1
 

1
 Georg-August University, Department of Crop Sciences, Agricultural Entomology, Grisebachstr. 6, 

37077 Goettingen, Germany, email: svidal@gwdg.de 

 

Abstract 
1. The time when rape stem weevil Ceutorhynchus napi GYLL. females lay their eggs into the 

stem of oilseed rape is important. Interactions of the host plant and the pest were observed in 

terms of the damage potential. 

2. Two varieties of oilseed rape were used to examine the effects of the developmental stage of 

plants on the potential damage. All plants were infested by the rape stem weevils independent 

of the plant developmental stage. The stem length played a major role for the attractiveness of 

the plants. 

3. The earlier developed variety was preferred for the first sampling dates, but this altered with 

time. Finally, the late variety was affected more by the infestation of Ceutorhynchus napi. 

4. The “stem injury index” and the “damage index” both depend on the length of the plants. 

These are good estimates for the damage potential to compare plants only at one point in 

time. An estimation of the proportion of stunted plants and the degree of bent plants as well as 

non-damaged plants served as criteria for the damage potential. For a continuous and 

permanent observation, more parameters need to be developed for a reliable conclusion of 

damage potential.  

5. There was a discrepancy in the number of recovered Ceutorhynchus napi larvae in the stem 

and in the number of emigrating larvae. This possibly indicates resources were not sufficient 

for all larvae in the stems during their development. 

 

Keywords: damage potential, oviposition, larval emigration, stem injury index, plant growth stage 

 

Introduction 
On a world scale, the oilseed rape crop area approaches 34 million ha, about 6 million ha of which are 

grown in Europe (FAO, 2014). The importance of oilseed rape for Germany is represented in the 

number of cultivated acreage. 1.3 million ha of oilseed rape were harvested in the year 2012 in 

Germany with a yield of 4.8 million tonnes (FAO, 2014). Oilseed rape (Brassica napus L.) is used as 

an oil plant with a broad use of its plant parts. The oil can be used for industrial lubricants as biofuel 

(Tuck et al., 2006) or human nutrition, since breeders reared varieties without unhealthy erucic acid 

and low glucosinolate content in the seeds (Björkman et al., 2011). These special varieties are known 

as ‘double-low’ in Europe and called Canola in Canada (Lamb, 1989). The colza cake is used for 

mailto:svidal@gwdg.de
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animal nutrition (Tripathi and Mishra, 2007). The straw can be part of an energy source for heating 

systems (Sander and Andrén, 1997). 

The yield of winter oilseed rape (WOSR) is always at risk to be reduced by herbivorous insects (Lamb, 

1989). The main insect pests of WOSR are oligophagous, feeding only on the plant family 

Brassicaceae (Bartlet, 1996) and therefore highly specialized in dealing with the glucosinolate levels in 

Brassica crops. These pests become more important with increasing acreage of WOSR within a 

certain area (Bartlet, 1996). Starting in spring, the rape stem weevil (RSW) (Ceutorhynchus napi Gyll.) 

is the first pest appearing (Günthart, 1949) and can reduce the yield of WOSR significantly (Dechert 

and Ulber, 2004). The RSW is distributed all over continental Europe (Juran et al., 2011) and have a 

single generation annually (Juran et al., 2011). The immigration into WOSR starts at a threshold of 10 

°C air temperature (Günthart, 1949). The flight of adult RSWs also depends on other weather 

conditions, like maximum day temperature, daily mean temperature, sunshine duration, wind speed 

and precipitation (Johnen et al., 2010). 

After immigration to new WOSR crops, a short maturation feeding begins before the females lay their 

eggs inside the stem (Johnen et al., 2010). Due to histological changes of the cortex, the pith exhibits 

porous cavities even before the larvae hatch (Günthart, 1949). After larval hatching, the larvae feed on 

the stem pith until they reach the third and last instar. They bore out of the stem tissue and pupate 

within the top soil layers directly at the plant. The larvae build an earthen cocoon in which they pupate, 

until the adults leave it around December followed by quiescence (Günthart, 1949). First movements 

in the soil are recorded at a soil temperature of 6 °C (Günthart, 1949). Afterwards, they wait in lower 

soil layers until air temperature reaches the threshold of 10°C to fly into the new crop (Günthart, 1949).  

The feeding damage made by adults is not significantly severe (Juran et al., 2011) and the main 

damage occurs by oviposition of the females. The cavities lead to high damage as the transport of 

assimilates is interrupted. The mining of the larvae in the stems does not result in more damage. The 

infested stems can split open and have a dumose appearance through the development of more 

lateral shoots (Juran et al., 2011). The main stems appear bent, twisted or distorted (Juran et al., 

2011). The potential damage can be influenced by the time female weevils are colonizing their host 

and laying their eggs. Vice versa, the phenological stage of the host is an important factor for the 

degree of damage (Lamb, 1989). As beetles are waiting in the soil, they can react faster to early rising 

temperature in contrast to WOSR. Subsequently, the immigration can occur to less developed plants 

(Gutierrez et al., 2008; Westwood and Blair, 2010).  

In this study, we hypothesized that i) the plant phenology influences the oviposition of RSW, ii) the 

oviposition of RSW harms less developed plants more than more advanced plants and iii) we focused 

on finding new plant parameters for the damage potential of RSW, which can contribute to a better 

understanding of host plant-insect interaction. The phenology was tested with two varieties in an open 

field trial with natural infestation. We estimated that a late flowering variety with a delayed 

development will be more damaged with early infestation compared to an early flowering variety with 

an advanced development in spring. 
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Material & Methods 
Study sites and plant material 

This study was conducted as a field trial with two WOSR varieties. The varieties ‘Elektra’ and ‘Favorite’ 

were selected because of the highest disparity concerning spring development. The trial was 

conducted for two consecutive years. Variety ‘Elektra’ is an early flowering hybrid. In contrast to 

‘Elektra’, ‘Favorite’ is an open-pollinated cultivar with a delayed development in accordance with the 

rating scale of the flowering start by the German Federal Office for Plant Varieties (Bundessortenamt). 

Both varieties were ‘double-zero’ cultivars. The field trials were carried out in two conventionally 

managed fields in the region of Goettingen (51.56571°N 9.94692°E), Germany. Pre-crop was winter 

barley, respectively. The fields were ploughed and harrowed before sowing. The sowing dates were 

20
th
 of August 2010 and 22

nd
 of August 2011. These dates are considered to be the optimal sowing 

dates for the region. The sowing density for ‘Elektra’, as a vigorous hybrid, was 70 seeds per m² and 

for the variety ‘Favorite’ 80 seeds per m² in each year. All seeds were treated with a fungicide coating 

(Dimethomorph). Plant nutrition and protection, except insecticides, were applied according to good 

agricultural practice. 

In 2010/11 and 2011/12 the experimental set-up was conducted as an alternating split-block design 

with the two varieties. Only in 2011/12, there was a technical border to the former WOSR field of 12.5 

m. This border consisted of a mixture of both varieties. To reduce orientation problems of the beetles, 

the minimum distance to the nearest WOSR field was 500 m. Plot sizes varied from 656 m² in 2010 to 

200 m² in 2011.  

Plant parameters 

After a harsh winter in 2012, the number of overwintered plants per m² was counted four times in each 

plot with the aid of a wooden frame (1m x 1m). The parameter ‘plants per m²’ was checked for 

significant differences with a one-way ANOVA followed by a Tukey HSD (Honestly Significant 

Difference) test as post-hoc test. At each sampling date, the plants were randomly taken from the field 

to the laboratory for analysis. At each sampling date, the growth stage (BBCH) was assessed after 

Lancashire et al. (1991). The data set of growth stages is ordinal scaled; therefore, a Mann-Whitney 

U-test was performed. Additionally, the length of the main shoot (cm) was determined. A one-way 

ANOVA followed by Tukey HSD was conducted for the length of the main shoot. 

Damage caused by RSWs 

The shoots were opened and the numbers of RSW eggs and larvae were counted within the main 

stem. The following symptoms were also assessed: length of interior stem cavities caused by RSW 

oviposition, bursts at the main shoot, stunting and bending of the main shoot. Additionally, a stem 

injury coefficient and an index for damage were calculated. The stem injury coefficient determines the 

length of stem cavities caused by RSW´s in relation to the total stem length (Eickermann et al., 2011). 

In the same way, the parameter of bursts at the main shoot was transformed into an index for RSW 

damage. The cumulative burst length was divided by the total stem length. These percentages were 

transformed by arcsine transformation (Δ𝑝 = arc sin√𝑝) prior to a one-way ANOVA with a Tukey HSD 

(Köhler et al., 2007).  

Stunted plants were counted and a chi-square test was utilized to find significant differences in the 

frequencies of this characteristic features. The symptoms of bending were classified in four categories 
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and analyzed with Mann-Whitney U-test for differences. These categories display the severity of the 

bending by none, light, medium and heavy bending. 

Beetle abundance and emigration 

The abundance of RSWs was recorded with four yellow water traps per field and year filled with water 

to which a detergent was added to reduce the surface tension. Finally at the end of the season, the 

number of emigrating larvae was assessed. Six plants per three plots were tested in 2011 and six 

plants in four plots were tested in 2012. Each plant was cut free of adjacent plants and surrounded by 

water traps with a detergent. The traps were emptied weekly and the drowned RSW larvae were 

counted. The number of emigrating larvae per plant and variety was analyzed with a multiple ANOVA 

followed by a Tukey HSD test. 

Statistical analyses 

Each year was analyzed separately. As the data was normally distributed and the variances were 

homogenous, a one-way ANOVA was conducted. The results were assumed to be significant with a p-

value of p ≤ 0.05. The software STASTICA version 10.0 (StatSoft, Tulsa, OK, USA) was used to 

perform the statistical analyses. 

 

Results 
Plant parameters 

In early spring 2012 before the RSWs immigrated, the varieties ‘Elektra’ and ‘Favorite’ showed no 

differences in the plant density between different plots nor between both varieties (F = 52, d.f. = 30, p 

= 0.66). 

Both varieties could differ in their developmental stages as described by the German Federal Office for 

Plant Varieties (Bundessortenamt). The statistic shows a significant difference at sampling date T2 in 

2011 at the end of elongation (Mann-Whitney. U test: Z = 2.16, p < 0.05). In 2012, the difference was 

noted in the later stages, but developed for a longer period. There were significant differences at the 

start of emergence of buds (Mann-Whitney. U test: Z = 2.02, p < 0.05) and end of flowering (Mann-

Whitney. U test: Z = 2.16, p < 0.05). 

 

Table 1 Median value (± SEM) of plant growth stages (BBCH) of two oilseed rape varieties ‘Elektra’ 

and ‘Favorite’ at five sampling dates in 2011 and 2012. Within the same date, means followed by the 

same letter are not significantly different (Mann-Whitney U-test, p< 0.05) 

 T1 T2 T3 T4 T5 

      

2011 04 April 11 April 18 April 26 April 02 May 

Elektra 51 (± 0.00)A 51 (± 0.00)A 51 (± 2.00)A 65 (± 0.50)A 67 (± 0.00)A 

Favorite 50 (± 0.25)A 50 (± 0.00)B 51 (± 0.25)A 64 (± 0.28)A 67 (± 0.82)A 

      

2012 19 March 26 March 02 April 30 April 14 May 

Elektra 51 (± 0.29)A 51 (± 0.31)A 53 (± 0.63)A 69 (± 0.50)A 77 (± 0.48)A 

Favorite 50 (± 0.25)A 51 (± 0.00)A 51 (± 0.25)B 62 (± 1.68)B 75 (± 0.90)A 
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For the parameter length of main shoot, ‘Elektra’ showed an advance of ‘Favorite’ in growth. For the 

first two sampling dates in 2011 no differences were found (T1 F = 1.91, p = 0.08, T2 F = 3.33, p = 

0.08, d.f. = 6 respectively). In 2012, significant differences were indicated late at the sampling date T4 

(F = 6.45, d.f. = 6, p < 0.05), but not for the other sampling dates (T1 H = 0.33, p = 0.6, T2 F = 4.35, p 

= 0.65, T3 F = 2.72, p = 0.09, T5 H = 2.08, p = 0.15, d.f. = 6 respectively). 

Figure 1: Mean length of main shoot of the varieties ‘Elektra’ and ‘Favorite’ displayed for the year 

2011 at two dates and 2012 at five dates (* significant difference with p< 0.05 between varieties within 

one sampling date; one-way ANOVA, Tukey HSD) 

 

Damage caused by RSWs 

The number of extracted eggs were not different between the varieties for the year 2011 (T1 F = 1.88, 

p = 0.12, T2 F = 10.37, p = 0.41, T3 F = 7.55, p = 0.18, T4 F = 0.25, p = 0.76 and T5 F = 0.04, p = 

0.43; d.f. = 6 respectively). Also, the number of found larvae did not differ significantly (T1 H = 0.11, p 

= 0.77, T2 F = 2.63, p = 0.49, T3 F = 1.13, p = 0.53, T4 F = 9.27, p = 0.10 and T5 F = 10.07, p = 0.13; 

d.f. = 6 respectively). 

In 2012, the number of laid eggs was significantly greater in ‘Elektra’ for the first sampling date T1 (F = 

0.12, d.f. = 6, p < 0.05). Over the last four sampling dates, the eggs were extracted with no differences 

in their quantity (T2 F = 12.21, d.f. = 6, p = 0.69, T3 H = 1.33, p = 0.24, T4 F = 0.08, d.f. = 6, p = 0.24). 

All larvae hatched within the time between T4 and T5. For the last sampling date, no data for eggs 

were collected. The first hatched larvae were found in T4. There were no significant differences 

between the varieties for the number of found larvae (T4 H = 0.00, p = 1.00, T5 F = 2.29, d.f. = 6, p = 

0.37). 
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Figure 2: Abundance of eggs and larvae in the main shoot in the varieties ‘Elektra’ and ‘Favorite’ in 

2011 (* = significant differences with p< 0.05 between varieties within one date; One-way ANOVA, 

Tukey HSD) 

 

In 2011, there were no differences for the parameter “stem injury index” (T1 F = 0.00, d.f. = 6, p = 

0.73, T2 F = 0.00, d.f. = 6, p = 0.08). The “stem injury index” differed significantly between ‘Elektra’ 

and ‘Favorite’ only at T4 in 2012 (F = 0.01, d.f. = 6, p < 0.05). All other dates showed a higher stem 

injury coefficient in ‘Elektra’ but not significantly different (T1 F = 0.02, p = 0.13, T2 F = 0.00, p = 0.43, 

T3 F = 0.00, p = 0.50 and T5 F = 0.00, p = 0.93, d.f. = 6 respectively). 

Figure 3: Stem injury coefficient caused by RSW larvae in the varieties ‘Elektra’ and ‘Favorite’ in two 

consecutive years (* = significant differences with p< 0.05 between varieties within one date; One-way 

ANOVA, Tukey HSD) 
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Stunting was measured during the season. The varieties showed no differences in their degree of 

stunted growth in the year 2011 (T4 x² = 0.46, d.f. = 1, p = 0.50). ‘Elektra’ had a lower proportion of 

stunted plants than ‘Favorite’ at only one sampling date in 2012. Notably, the statistical analysis 

showed that there was a significant difference at sampling date T4 in 2012 (T4 x² = 30.25, d.f. = 1, p < 

0.05). At sampling date T5 this parameter did not differ anymore (T5 x² = 1.07, d.f. = 1, p = 0.30).  

Figure 4: Proportion of stunted plants caused by RSW infestation in two WOSR varieties in two 

consecutive years (* = significant differences with p< 0.05 between varieties within one date; χ²- test) 

 

The proportion of bent plant varied between the sampling dates. The sampling date T4 had more 

plants categorized in higher “bent” classes than at sampling date T5. At sampling date T4, only 12.5 % 

and 18 % of ‘Elektra’ and ‘Favorite’ plants respectively were not bent. The following sampling date T5 

showed that, 50 % of ‘Elektra’ and respectively 39 % of ‘Favorite’ plants were not bent. Significant 

differences were not found (T4 Z = 0.43, p = 0.67, T5 Z = -1.59, p = 0.11). 
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Figure 5: Frequencies of plants in different classes of the parameter value ‘bending’ in 2012 (different 

letters indicate significant differences with p< 0.05 between plots within dates; Mann-Whitney U-test) 

 

“Damage index” was significantly greater at sampling date T4 (F = 0.00, d.f. = 6, p < 0.05) in 2012 for 

‘Favorite’. There was no significant difference at the next sampling date T5, (F = 0.00, d.f. = 6, p = 

0.91). In the end, the “damage index” was almost the same in both varieties. 
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Figure 6: “Damage index” caused by RSW larvae in the varieties ‘Elektra’ and ‘Favorite’ in 2012 (* = 

significant differences with p< 0.05 between varieties within one date; One-way ANOVA, Tukey HSD) 

 

Beetle abundance and emigration 

Beetle abundance was recorded with yellow water traps. The catches started from 12
th
 of March until 

2
nd

 of May in 2011, when air temperature was above the threshold of 10°C air temperature for the first 

time. The highest beetle densities were recorded on the 22
nd

 of March 2011 with 271 beetles per trap. 

First beetle records in yellow water traps in 2012 were recorded on 2
nd

 of March. The main catches 

occurred on 16
th
 of March 2012 with a mean number of 1436 beetles per trap. After 17

th
 of April 2012, 

no more beetles were caught with the traps.  
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Figure 7: Beetle abundance per yellow water trap * day
-1 

in the year 2011 

 

Figure 8: Beetle abundance per yellow water trap * day
-1 

in the year 2012 

 



 Chapter 1 

 

20 

 

The emigration of larvae at the last larval stage was dependent on the sampling date. In both years, 

the major emigration occurred at the same date for both varieties. In 2011 and 2012, the number of 

larvae was significantly greater for ‘Elektra’ than for ‘Favorite’ (2011 F = 11.07, d.f. = 24, p < 0.05, 

2012 F = 2.17, d.f. = 30, p < 0.05). The mean number of emigrating larvae was more than double in 

the year 2011 with 10.2 larvae per plant for ‘Favorite’ and 24 larvae per plant for ‘Elektra’. In 2012, 

‘Elektra’ plants were infested with 7.2 emigrating larvae per plant, whereas ‘Favorite’ 11.2 larvae left 

per plant. 

 

Figure 9: Mean number of emigrating larvae per plant in two WOSR varieties in two consecutive 

years, (letters indicate significant difference with p< 0.05 between varieties and sampling dates, 

multiple ANOVA, Tukey HSD) 

 

Discussion 
Our study showed that there were differences in the phenology of different WOSR varieties, but they 

were not observed in springtime and did not last over the whole season. The RSW females preferred 

the well developed plants at the beginning of elongation until the late variety reached the same growth 

stage to be attractive for the females. The greater damage potential to the less developed variety 

‘Favorite’ was not verified. Furthermore, there were no new parameters for the damage potential to be 

found. The previously introduced “stem injury index” was sufficient as reliable parameter. The 

emigration of the larvae occurred at the same date for both varieties. Therefore, the earlier infestation 

did not lead to an earlier emigration.  

Plant parameters 

Both varieties were affected by the harsh winter in 2012 in a similar way. Therefore, there were no 

differences in the plant density. This factor could, however, not influence the beetles in their 

oviposition behavior. Other studies concluded that there is a major role of growth stage development 

on host selection (Koubaiti and Lerin, 1992; Büchi, 1996; Rusch et al., 2013). The varieties in our field 

trial varied in their growth stages. The more advanced stages were favored for oviposition. This fact is 

also supported by the numbers of eggs laid in the main shoot for our trial. ‘Elektra’, as the earlier 
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variety, had a higher number of eggs on the first sampling date. This is in common with other studies, 

where earlier development led to an earlier infestation (Koubaiti and Lerin, 1992). Later on, the 

abundance rose in the late variety ‘Favorite’. The effect was already described, the earlier varieties 

were infested earlier, but later less developed varieties were preferred (Büchi, 1996). The change in 

oviposition between the varieties can be explained by the fact that RSW females are more attracted to 

a larger size of the host plant up to a length of 22 cm (Büchi, 1996). The varieties in our field trial also 

varied in the length of the main shoot. The early variety ‘Elektra’ grew rapidly over the 22 cm length. 

Therefore, our conclusion is that a prediction for the infestation should be more concerned with the 

stem length than the growth stage. The developmental stage after Lancashire et. al. (1991) cannot be 

used as a predictor for the length of the main stem. Whereas the growth stage only considers the 

appearance of certain plant parts (Lancashire et. al., 1991), there is no allowance for the length of the 

main stem. The same BBCH code can be given to plants with a wide range of stem lengths. 

Therefore, we would not include the BBCH code as a predictor for the RSW infestation.  

The effect of advanced development did not last over the whole season. One reason could be that the 

varieties only differ slightly in their earlier development, but the time for harvest is similar within the 

same region. As the harvest date also depends on weather conditions and not just on the plant 

conditions (Diepenbrock, 2000), the plants had time to fulfill the same development.  

Plant-insect interaction 

As already noted, the dynamic for the oviposition was different for the two varieties in our trial. The 

early variety ‘Elektra’ was initially infested earlier, but as ovipositions in the later variety ‘Favorite’ 

increased later, no differences in the total number of eggs and larvae in the main stem were found at 

the end of the season. Also, other studies found no significant differences in the number of laid eggs 

between different varieties in open field trials (Koubaiti and Lerin, 1992; Büchi, 1996). In 2012, there 

were many sampling dates when no data for hatched larvae were recorded. With an almost linear 

correlation temperature is the strongest factor, for developmental rates (Bale et al., 2002; Thöming 

and Saucke, 2011), resulting in a delayed development of the eggs at low temperatures in spring 

2012. 

In terms of finding parameters which can predict the level of damage (Eickermann et al., 2011), 

several parameters were taken into account in our field trial. The stem injury coefficient is not a good 

indicator for damage when this parameter is taken constantly, as plants are still growing during the 

season. The stem injury is either more or less developed at the time the larvae hatch. This coefficient, 

therefore, stays constant or decreases. For that reason, this index is only a parameter for comparing 

different treatments like varieties within one sampling date, but not over time. The same can be said 

for the parameter “damage index”. In addition to this, another factor needs to be considered. The more 

eggs that are laid in one stem, the more damage is given through the parameter of bursting stems 

(Büchi, 1996). Bursting stems are considered to happen more often at late frost events (Büchi, 1996). 

Therefore, the bursting of the stems and hence the “damage index” is more dependent on 

meotrological conditions than on the variety (Büchi, 1996). Other factors, like the parameters of 

stunting and bent plants, were not constant enough to succeed the prediction of the damage potential 

over time. For some reasons, these parameters improved over the sampling dates and it becomes 

apparent that these parameters are too weak to be reliable. 
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In our experiment the varieties did not differ in terms of damage parameters. The hypothesis that the 

earlier RSW fly into the WOSR, the more damage can be caused in less developed plants, cannot be 

validated. WOSR, by itself, was considered to be more inhibited in its growth during springtime. Rapid 

warming in spring could cause an immigration of RSW adults at a time when WOSR has not yet 

started to grow. On the contrary, WOSR starts to regrow at a temperature of 5 °C in spring 

(Diepenbrock, 2000). Thus, a lack of synchronization is only to be expected on really rapidly warming 

events. The consequences of global climate change, global warming, (Eitzinger et al., 2010; IPCC, 

2012) on the interaction between insects and their host plant are still unclear. Some researchers 

started models to predict the changes of insect behavior due to a changing climate (Gutierrez et al., 

2008). The results lead towards earlier and prolonged immigrations of the insects by a few days per 

decade, but at the same time the host plant is more developed (Junk et al., 2012). Hence, there are no 

shifts in pest-host relationship. Similar models should be calculated for Ceutorhynchus napi (Junk et 

al., 2012). 

Beetles abundance and emigration 

The combination of lower insecticide use and the shorter distance to the former field could be an 

explanation for the high number per yellow water trap and the current population of RSW at the field 

side. In 2012, the abundance of adult RSW in the yellow water traps was so high, that effects of the 

WOSR variety were masked by the huge pest pressure, making it difficult to detect any differences. 

The field trial was located at a site of the university area with a permanent cultivation of WOSR and 

with no insecticide use for years. Therefore, the population could increase without any disturbance 

(Günthart, 1949). Additionally, there was a disagreement between the numbers of larvae found in the 

stems and in the number of emigrating larvae in 2011 and even greater in 2012. Different explanations 

could come into consideration. Some researchers found evidence for cannibalism within the stems 

(Lerin and Koubaiti, 1995). Another option could be an intraspecific competition for food, as there were 

too many larvae in one stem (Lerin and Koubaiti, 1995). Many more reasons can be held responsible 

for changes in the interaction between insects and their host plants. As agriculture is changing in 

terms of technologies, the use of growth regulators could lead to thicker pith (Alford, 2003) and 

likewise to a better food source for RSW. This leads to a better host selection as thin stems are 

avoided for oviposition (Dechert and Ulber, 2004). This may lead to higher pest densities in the stems. 

Other studies may interpret the results as an effect of landscape (Rusch et al., 2013), which is 

regarded to positively influencing the beetle abundance at our field site. 

Nevertheless, the damage potential should mainly be considered, because the damage in early spring 

later leads to a reduced pod growth (Diepenbrock, 2000) and, therefore, to a reduced yield. The final 

number of pods is determined during the arrival time of RSWs. At this time, a continuous supply with 

assimilates is important for the maturing pods (Diepenbrock, 2000). If the assimilates have not been 

transported through the RSW damaged pith, the yield is at a risk. It has been previously recorded, that 

there are few studies addressing the impacts of climate change on crop yield whilst incorporating the 

effects of crop pests (Peterson et al., 2001; Gutierrez et al., 2008; Gregory et al., 2009). In summer 

2012, the yield of both varieties was evaluated. The data is not shown in this study, because there 

was a high variation between the plots. Further investigation could also answer the link between pest 

infestation under climate change conditions and the value of the yield (Peterson et al., 2001). 
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Otherwise, mathematical models could help to understand the impact of climate change in agro 

systems (Harte, 1995). Models could be useful as guides in future biological control efforts on existing 

and new exotic pest species (Gutierrez et al., 2008). In addition, the models can be a helping tool for 

farmers. Climate change will change agricultural practices (Weigel, 2005) and agriculture must adapt 

to a changing world (Eitzinger et al., 2010). Agricultural crops such as WOSR (Koubaiti and Lerin, 

1992) have a good compensation capacity (Feeny, 1977) and, therefore, are able to deal with a new 

climate. 

 

Acknowledgement 

This work was financially supported by the Ministry for Science and Culture of Lower Saxony, 

Germany, within the research network “KLIFF- climate impact in Lower Saxony”. 



 Chapter 1 

 

24 

 

References 
 
Alford DV, Nilsson, C, Ulber, B, 2003. Insect pests of oilseed rape crops. In Alford, DV (Ed.) Biocontrol 
of oilseed rape pests. Blackwell Science, Oxford, UK, pp 9-41. 
 
Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, 
Coulson JC, Farrar J, Good J. E. G., Harrington R, Hartley S, Jones TH, Lindroth RL, Press MC, 
Symrnioudis I, Watt AD, Whittaker JB, 2002. Herbivory in global climate change research: direct 
effects of rising temperature on insect herbivores. GLOB CHANGE BIOL. DOI: 10.1046/j.1365-
2486.2002.00451.x. 
 
Bartlet E, 1996. Chemical Cues to Host-Plant Selection by Insect Pests of Oilseed Rape. Agricultural 
Zoology Reviews 7, 89–116. 
 
Björkman M, Klingen I, Birch AN, Bones AM, Bruce TJ, Johansen TJ, Meadow R, Mølmann J, 
Seljåsen R, Smart LE, Stewart D, 2011. Phytochemicals of Brassicaceae in plant protection and 
human health – Influences of climate, environment and agronomic practice. Phytochemistry. DOI: 
10.1016/j.phytochem.2011.01.014. 
 
Büchi R, 1996. Eiablage des RapsstengelrüßlersCeutorhynchus napi Gyll., in Abhängigkeit der 
Stengellänge bei verschiedenen Rapssorten. ANZ SCHADLINGSKD PFL. DOI: 10.1007/BF01904715. 
 
Cook SM, Rasmussen HB, Birkett MA, Murray DA, Pye BJ, Watts NP, Williams IH, 2007. Behavioural 
and chemical ecology underlying the success of turnip rape (Brassica rapa) trap crops in protecting 
oilseed rape (Brassica napus) from the pollen beetle (Meligethes aeneus). ARTHROPOD-PLANT 
INTE. DOI: 10.1007/s11829-007-9004-5. 
 
Dechert G, Ulber B, 2004. Interactions between the stem-mining weevils Ceutorhynchus napi Gyll. and 
Ceutorhynchus pallidactylus (Marsh.) (Coleoptera: Curculionidae) in oilseed rape. AGR FOREST 
ENTOMOL. DOI: 10.1111/j.1461-9555.2004.00220.x. 
 
Diepenbrock W, 2000. Yield analysis of winter oilseed rape (Brassica napus L.): a review. FIELD 
CROP RES. DOI: 10.1016/S0378-4290(00)00082-4. 
 
Eickermann M, Ulber B, Vidal S, 2011. Resynthesized lines and cultivars of Brassica napus L. provide 
sources of resistance to the cabbage stem weevil (Ceutorhynchus pallidactylus (Mrsh.)). B ENTOMOL 
RES. DOI: 10.1017/S0007485310000489. 
 
Eitzinger J, Orlandini S, Stefanski R, Naylor REL, 2010. Climate change and agriculture: introductory 
editorial. J AGR SCI. DOI: 10.1017/s0021859610000481. 
 
FAO, 2014. FAO 2014 [WWW document]. URL http://www.fao.org/home/en/. 
 
Feeny P, 1977. Defensive Ecology of the Cruciferae. ANN MO BOT GARD 64, 221–234. 
 
Gregory PJ, Johnson SN, Newton AC, Ingram JSI, 2009. Integrating pests and pathogens into the 
climate change/food security debate. J EXP BOT. DOI: 10.1093/jxb/erp080. 
 
Günthart E, 1949. Beiträge zur Lebensweise und Bekämpfung von Ceuthorrhynchus quadriens PANZ. 
und Ceuthorrhynchus napi GYLL. mit Beobachtungen an weiteren Kohl- und Rapsschädlingen. 
Mitteilungen der Schweizerischen Entomologischen Gesellschaft 22, 441–591. 
 
Gutierrez AP, Ponti L, d’Oultremont T, Ellis CK, 2008. Climate change effects on poikilotherm tritrophic 
interactions. CLIMATIC CHANGE. DOI: 10.1007/s10584-007-9379-4. 
 
Häggström H, 1995. Slow larval growth on a suboptimal willow results in high predation mortality in the 
leaf beetle Galerucella lineola. OECOLOGIA 104, 308–315. 
 
Harte J, 1995. Global Warming and Soil Microclimate: Results from a Meadow-Warming Experiment. 
ECOL APPL 5, 132–150. 
 



 Chapter 1 

 

25 

 

IPCC 2012, Managing the risks of extreme events and disasters to advance climate change 
adaptation. Cambridge University Press, New York. 
 
Jalali MA, Tirry L, Clercq P, 2010. Effect of temperature on the functional response of Adalia 
bipunctata to Myzus persicae. BIOCONTROL. DOI: 10.1007/s10526-009-9237-6. 
 
Johnen A, Williams I, Nilsson C, Klukowski Z, Luik A, Ulber B, 2010. The proPlant Decision Support 
System: Phenological Models for the Major Pests of Oilseed Rape and Their Key Parasitoids in 
Europe. In: Williams I (ed): Biocontrol-based integrated management of oilseed rape pests, Springer, 
Dordrecht; London, pp13 -16 
 
Junk J, Eickermann M, GÖRGEN K, Beyer M, Hoffmann L, 2012. Ensemble-based analysis of 
regional climate change effects on the cabbage stem weevil (Ceutorhynchus pallidactylus (Mrsh.)) in 
winter oilseed rape (Brassica napus L.). J AGR SCI. DOI: 10.1017/S0021859611000529. 
 
Juran I, Gotlin Culjak T, Grubisic D, 2011. Rape Stem Weevil (Ceutorhynchus napi Gyll. 1837) and 
Cabbage Stem Weevil (Ceutorhynchus pallidactylus Marsh. 1802) (Coleoptera: Curculionidae) – 
Important Oilseed Rape Pests. AGRICULTURAE CONSPECTUS SCIENTIFICUS 76, 93–100. 
 
Köhler W, Schachtel GA, Voleske P, 2007. Biostatistik. [eine Einführung für Biologen und 
Agrarwissenschaftler] ; mit 50 Tabellen. 4th edition. Springer, Berlin, Heidelberg, New York. 
 
Koubaiti K, Lerin J, 1992. Fecundity and egg laying dynamics of Baris coerulescens Scop. (Col., 
Curculionidae) on oilseed rape. J APPL ENTOMOL. DOI: 10.1111/j.1439-0418.1992.tb01129.x. 
 
Lamb RJ, 1989. Entomology of Oilseed Brassica Crops. ANNU REV ENTOMOL. DOI: 
10.1146/annurev.en.34.010189.001235. 
 
Lerin J, Koubaiti K, 1995. Effect of temperature and plant size on the infestation dynamics of oilseed 
rape plants by Baris coerulescens Scop. (Col., Curculionidae) in field conditions. J APPL ENTOMOL. 
DOI: 10.1111/j.1439-0418.1995.tb01262.x. 
 
Peterson RKD, Higley L, Peterson RKD, Higley LG, 2001. Biotic Stress and Yield Loss // Biotic stress 
and yield loss. CRC Press, Boca Raton, FL. 
 
Rusch A, Valantin-Morison M, Sarthou J, Roger-Estrade J, 2013. Effect of crop management and 
landscape context on insect pest populations and crop damage. AGR ECOSYST ENVIRON. DOI: 
10.1016/j.agee.2011.05.004. 
 
Sander M, Andrén O, 1997. Ash from cereal and rape straw used for heat production: Liming effect 
and contents of plant nutrients and heavy metals. WATER AIR SOIL POLL. DOI: 
10.1007/BF02404749. 
 
StatSoft, Inc. (2011). STATISTICA for Windows Version 10.0 
 
Thöming G, Saucke H, 2011. Key factors affecting the spring emergence of pea moth (Cydia 
nigricana). B ENTOMOL RES. DOI: 10.1017/S0007485309990642. 
 
Tripathi MK, Mishra AS, 2007. Glucosinolates in animal nutrition: A review. ANIM FEED SCI TECH 
132, 1–27. 
 
Tuck G, Glendining MJ, Smith P, House JI, Wattenbach M, 2006. The potential distribution of 
bioenergy crops in Europe under present and future climate. BIOMASS BIOENERG. DOI: 
10.1016/j.biombioe.2005.11.019. 
 
Weigel HJ, 2005. Gesunde Pflanzen unter zukünftigem Klima. GESUNDE PFLANZ. DOI: 
10.1007/s10343-004-0060-9. 
 
Westwood AR, Blair D, 2010. Effect of regional climate warming on the phenology of butterflies in 
boreal forests in Manitoba, Canada. ENVIRON ENTOMOL. DOI: 10.1603/EN09143. 

 



 Chapter 2 

 

26 

 

Influence of climate change induced soil warming on  

oilseed rape - rape stem weevil interactions 
A. REINHARDT

 1
, B. ULBER 

1
 and S. VIDAL 

1 

1
 Georg-August University, Department of Crop Sciences, Agricultural Entomology, Grisebachstr. 6, 

37077 Goettingen, Germany, email: svidal@gwdg.de 

 

Abstract 
The influence of climate change on the oilseed rape and rape stem weevil interaction was investigated 

by induced soil warming in a semi-field trial. The measured parameters were based on plant 

characteristics and the damage potential through rape stem weevil oviposition and larval feeding. The 

adult emergence was studied with an artificial infestation using photoeclectors in the soil warming set 

up. 

 The height of the main shoot was positively influenced by the increased temperature. 

 The abundance of rape stem weevil larvae was higher in the heated plots. 

 The damage of bent main stems caused by the oviposition of rape stem weevils was 

influenced by the soil temperature rather than by the oilseed rape variety. 

 A higher emergence of adults in the plots with additional 2°C was measured 

 

Keywords: Ceutorhynchus napi, Brassica napus, soil temperature, climate change, adult emergence 

 

Introduction 
There is little doubt that the global climate is changing, partly due to natural factors, but also  human 

behavior (Eitzinger et al., 2010) as anthropogenic impact increases, greenhouse gases  increasing the 

Earths´ average surface temperature by 2 to 5°C during the next 50 to 100 years (Hansen, 1981). The 

main source of greenhouse gas is energy use, urbanization and land use changes (Karl, 2003). In 

case of climate change, the mean of temperature is shifting to a warmer range (Field, 2012). There are 

already studies reporting a significant temperature increase in the observed period (Westwood and 

Blair, 2010). There was an increase in the mean temperature by 0.05°C per year over 30 years in the 

Canadian forest (Westwood and Blair, 2010). For Lower Saxony, Germany, temperatures in the range 

of +2°C for the near future and +4°C for the far future are predicted by the regional climate model 

(REMO) (Endlicher and Gerstengarbe, 2007). The model REMO predicts a dominant effect on 

temperature during spring, winter, and autumn (Christensen and Christensen, 2007). Apart from this 

model, empirical information, about the dependence of biological criteria on climate parameters is 

lacking (Anderson, 1991). 

Another important area of study is the altered impact of pests and diseases on crops in a changing 

climate (Eitzinger et al., 2010). Insects as ectotherms are sensitive to changes in their environmental 

temperature (Westwood and Blair, 2010; Bale et al., 2002). If temperature increases, we can expect 

insect herbivores and their interactions with host plants to be affected (Jalali et al., 2010). 

This interaction is especially important for major crops such as oilseed rape (OSR), a major oil crop for 

Germany as the fourth biggest producer worldwide (FAO, 2013). OSR is attacked by various insect 

mailto:svidal@gwdg.de
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pests throughout plant development from seedling emergence to pod ripening (Bartlet, 1996; Alford et 

al. 2003). The Rape Stem Weevil (RSW) (Ceutorhynchus napi Gyll.)(Col.: Curculionidae) is one of the 

most devastating pests of winter oilseed rape (WOSR) (Brassica napus L.) throughout Central Europe. 

Adults emerge from former WOSR fields. First movement of RSW adults in the soil are recorded at 6 

°C soil temperature (Günthart, 1949). They stay in lower soil layers until the air temperature reaches a 

10°C threshold which triggers emergence from the soil and subsequent immigration into new WOSR 

fields (Günthart, 1949). A short maturation feeding begins before the females oviposit their eggs inside 

the stem (Johnen et al., 2010) which causes economic damage to the plant. Due to histological 

changes of the cortex, the pith exhibits porous cavities before the larvae hatch (Günthart, 1949). The 

infested stems can split open and have a bushy appearance through the development of more lateral 

shoots (Juran et al., 2011). The shoots appear bent, twisted or distorted (Juran et al., 2011). After 

larval hatching, the larvae feed on the stem pith until they reach the third and last instar. They bore out 

of the stem tissue and pupate within the top soil layers directly at the plant. The larvae build an 

earthen cocoon in which they pupate, until the adults leave it and move into bare soil in December 

followed by quiescence (Günthart, 1949).  

The effect of increasing ambient temperatures on the start of RSW emergence and on interactions 

between plants and RSW has not been studied before. Only modeled data on related species exist 

(Junk et al., 2012). Based on these circumstances, we hypothesized that i) the soil temperature 

influences plant growth, ii) the oviposition of RSWs is affected by changes in plant growth, iii) the 

damage potential is modified with changes in soil temperature and iv) adults hatch earlier with 

increased soil temperature. 

 

Material & Methods 
Soil warming facility 

The influence of soil warming on OSR growth and RSW development was monitored in an 

experimental unit, described by Siebold and von Tiedemann (2012; Figure 1). The plots of this unit are 

located in Goettingen, Germany (51.557953°N, 9.951894°E) and maintained with a power supply and 

a server for data transfer. The facility consists of 12 heatable plots arranged in two rows (Siebold and 

von Tiedemann 2012). Three temperature regimes, each replicated four times, were set up in a 

randomized block design. The regimes included control plots (ambient temperatures) as well as plots 

with temperature regimes with an increased mean soil temperature by +1.6°C (near future) and by 

+3.2°C (far future) during the whole OSR growing season. For simplicity these regimes are named 

+2°C and +4°C throughout the paper. Increased temperature levels were aligned to the warming 

scenarios for Lower Saxony for the near (2050) and far (2100) future, according to Endlicher and 

Gerstengarbe (2007). Heating coils were applied at a soil depth of 10 cm with 5 cm spacing between 

the coils. In each plot, eight temperature sensors (pT100, Steffen Messtechnik, Dorsten, Germany) 

were set up at a depth of 5 cm and 15 cm to adjust the temperatures to the fixed regimes and to allow 

the heated plots to adjust to the set points. Soil moisture was continuously registered by two sensors 

per plot (10HS FD, Decagon Devices, Inc. Pullman WA, USA). Each sensor recorded temperature and 

humidity levels at 5 minute intervals. The experimental site was enclosed by a rodent proof fence to 

prevent plants from wildlife grazing. 
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Figure 1. Experimental set up of soil warming facility, modified after Siebold and von Tiedemann 
(2012). 
 

Plant source 

Two OSR varieties differing in their susceptibility to fungal diseases were chosen (OSR cultivar 

‘Falcon’ (NPZ Hohenlieth, Germany) and ‘SEM 05-500256’ (SW Seed, Stockholm, Sweden)). Both 

varieties are pooled in the analyses as to when the temperature regimes were compared and vice 

versa. The OSR varieties were sown by hand between the heating coils on the 25
th
 of August 2010 

and 22
nd

 of August 2011 at sowing rates of 70 seeds per m². Weekly observations were performed for 

assessing the sprouting, the growth of the plants and to quantify plant densities per plot.  

Rape stem weevil immigration and sampling 

During spring natural immigration and infestation of OSR plants by RSWs took place. Plants were 

harvested up to four weeks after the first record of natural RSW infestation. (Three sampling dates in 

2011: 14
th
 of April, 5

th
 and 26

th
 of May; two sampling dates in 2012: 11

th
 of April and 8

th
 of May). In 

2011 and 2012, 20 and 16 plants per plot, respectively, were randomly removed by cutting the stem 2 

cm above the soil surface in 2011 and 16 plants per plot in 2012 were randomly cut at soil surface and 

transferred to the laboratory and dissected for larval density assessment and for measurements of 

plant parameters (growth stage (BBCH) according to Lancashire et al. (1991) and stem length (cm)). 

The number of eggs or larvae of RSW within the main stem were counted and the classification of 

bending of the main stem. Bending symptoms were categorizing the incidence of bending as none, 

light, medium, and heavy bending. 

Adult emergence Ceutorhynchus napi 

In 2012, an additional experiment was included to investigate the influence of temperature on the date 

of RSW infestation. A ground photoeclector with a diameter of 0.25m² was established in each plot on 

the 6
th
 of February 2012. 40 RSW cocoons were buried at 5 to 10 cm soil depth within the eclector. 

The eclectors were closed with linen. Lightproof tent tops were placed on the eclectors on the 1
st
 of 
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March 2012, when the soil temperature reached the 10°C threshold for adult hatching for the first time 

and immigration to the new OSR fields was expected to begin.  

Cocoon source 

RSW larvae at the 3
rd

 instar stage were extracted in May 2011 from infested oilseed rape stems from 

an open field. The larvae were transferred to boxes (17.5cm x 13cm x 6cm, Neupack Verpackungen 

GmbH & Co. KG, Hamburg, Germany) and placed on top of wet loamy soil, in which 90% of the larvae 

immediately buried themselves for pupation. Ten percent of the larvae remained on the soil surface 

and were removed. The boxes were maintained in a climate chamber at 20°C and 60% relative 

humidity in complete darkness. The temperature of the chamber was cooled down by 4 °C every 

second week until a 2 °C temperature regime was reached. The boxes were left in the chamber until 

infestation in the trial. Cocoons were carefully sieved from the soil before infestation. 200 cocoons 

were opened before the experiment, to check for empty cocoons and parasitized larvae and calculate 

the potential RSW emergence rate. 

Statistical Analysis 

The data were analyzed with Statistica 10.0 (Tulsa, OK, USA) (2011). Years were analyzed 

separately. Significant differences were considered at a p < 0.05. 

The heights of the main stems were compared by a One-way ANOVA followed by a Tukey HSD 

(Honestly Significant Difference). A Kruskal-Wallis test was performed when the data were neither 

normally distributed nor a homogeneity of the variances was given. Bending symptoms were analyzed 

with a Mann-Whitney U-test. Adult emergence between the plots was analyzed by repeated measures 

ANOVA. 

 

Results 
Temperature regimes in the soil warming facility 

The temperature between the plots was significantly different from each other (F = 0.11, d.f. = 9, p < 

0.05), except for the days from the 23
rd

 and 25
th
 of February 2012 (F = 0.03, d.f. = 9, p = 0.13) and the 

time span between 28
th
 of April and 2

nd
 of May 2012 (F = 0.45, d.f. = 9, p = 0.15) (Fig. 2). In February 

the “+2°C” and “+4°C” plots were not significantly different. At the end of April, the plots with the 

ambient “control” temperature did not significantly differ compared to the heated “+2°C” plots. 
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Figure 2. Mean maximum daily soil temperature in plots subjected to three temperature regimes. 

Temperature threshold of 10°C for emergence of RSW adult is indicated by a dotted line. 

 

Effects of soil warming on growth of Brassica napus plants 

Heating of the soil by +2° C and +4° C resulted in an enhanced growth of OSR plants. Compared to 

control plants, the plants in heated plots were significantly longer (Fig. 3). However, these significant 

differences were only recorded for the early sampling dates on the 14
th
 of April in 2011 and the 11

th
 of 

April in 2012 (2011: H = 12.56, p < 0.05; 2012: F = 7.39, d.f. = 45, p < 0.05). During the season, the 

differences were not significant (2011: F = 183.85, d.f. = 42, p = 0.94 and F = 153.82, d.f. = 41, p = 

0.98; 2012: F = 120.85, d.f. = 44, p = 0.91) 
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Figure 3. Plant height of OSR varieties at three different soil temperature levels in 2011 and 2012 

(different letters indicate significant differences with p< 0.05 between regimes)  

 

Effects of Brassica napus varieties on stem height 

The variety ‘Falcon’ was significantly longer than the variety ‘SEM’ at late sampling dates in May 2011 

and 2012 (2011: F = 153.43, d.f. = 42, p < 0.05 and F = 136.62, d.f. = 42, p < 0.05; 2012: F = 101.39, 

d.f. = 45, p < 0.05). 

Figure 4. Plant height of two OSR varieties in 2011 and 2012 (* indicate significant differences with p< 

0.05 between varieties)  
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Effects of soil warming on Brassica napus infestation by Ceutorhynchus napi 

Only 2 and 3 adults were caught in 2011 and 2012 in yellow water traps, respectively, throughout the 

whole growing season. Such a low density was not sufficient to explain the natural infestation of the 

OSR plants in the plots in relation to changes in soil temperature. 

On the first sampling date (14
th
 April 2011), the number of eggs laid per plant did not significantly differ 

between the temperature regimes (H = 8.85, p = 1.00). On the following sampling dates (5
th
 May and 

26
th
 May 2011), the number of laid eggs was significantly higher in plants growing in the “+2°C” than in 

the “+4°C”  plots (H = 6.95, p < 0.05; H = 9.80, p < 0.05).  

On the first sampling date in 2012, the number of eggs laid per plant significantly differed between the 

heated, and the control plots with ambient temperature (H = 12.76, p < 0.05). On the last sampling 

date, the larval density did not differ between the plots (H = 1.69, p = 0.43). 

Figure 5. Mean number of extracted larvae per main shoot of OSR varieties at three different 

temperature levels at different sampling dates in 2011 and 2012 (different letters indicate significant 

differences with p< 0.05 between varieties or temperature regimes) 

 

Effects of Brassica napus varieties on infestation by Ceutorhynchus napi 

Infestation of stems by RSW larvae was not affected by the OSR variety (H = 0.71, p = 0.39; H = 0.06, 

p = 0.80). On the last sampling date in 2011, a significant difference in the number of larvae was 

measured (H = 3.94, p < 0.05). The number of larvae decreased from the second sampling to the last 

sampling date. In 2012, no significant difference in the number of larvae per main shoot was measured 

at any sampling dates (H = 3.86, p = 0.06; H = 3.16, p = 0.08). The number of larvae increased from 

the first sampling date to the last sampling date. 



 Chapter 2 

 

33 

 

Figure 6. Mean number of extracted larvae per main shoot in two OSR at different sampling dates in 

2011 and 2012 (* indicate significant differences with p< 0.05 between varieties)  

 

Effects of soil warming on Brassica napus damage caused by Ceutorhynchus napi 

In 2012 different classifications of ‘bending’ in OSR plants were recorded. The “higher” bending 

classes occurred more often in the heated plots. On the first sampling date, the control plots were 

significantly less affected by this damage parameter (control/+2°C Z = -1.99, p < 0.05; control/+4°C Z 

= -1.95, p< 0.05). The heated plots did not differ in the occurrence of the bending classifications 

(+2°C/+4°C Z = -0.15, p = 0.88). The plants of the control plots were less bend than the plants from 

the heated plots (control/+2°C Z = -3.12, p < 0.05; control/+4°C Z = -1.98, p < 0.05). In comparison, 

the heated plots were not significantly different (+2°C/+4°C Z = 1.03, p = 0.30).  



 Chapter 2 

 

34 

 

Figure 7. Frequencies of plants in different classes of the parameter value ‘bending’ at the sampling 

dates 11 April and 08 May 2012 (different letters indicate significant differences with p< 0.05 between 

plots within sampling dates) 

 

Effects of varieties on Brassica napus plant damage by Ceutorhynchus napi 

The damage by RSW oviposition did not significantly vary between the tested varieties (Falcon/SEM Z 

= -0.88, p = 0.38; Falcon/SEM Z = 0.15, p = 0.88). 

Figure 8. Frequencies of OSR varieties in different classes of the parameter value ‘bending’ at the 

sampling dates 11 April and 08 May 2012 (different letters indicate significant differences with p< 0.05 

between plots within sampling dates) 
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Effect of soil warming on adult emergence of Ceutorhynchus napi 

19.17% of larvae in 200 tested cocoons were parasitized Tersilochus fulvipes Gravenhorst and 5.70% 

were empty. Consequently, 75.13% of the opened cocoons could contain a viable RSW adult. 

Therefore, 30 RSW adult weevils are expected to emerge from each eclector in the semi field plots. 

The mean number of weevils emerging from control, +2°C and +4°C plots was 18.5, 24.2 and 20.0 per 

eclector, respectively. The cumulative emergence curve differed between the three temperature 

scenarios (Figure 2). In plots heated to +2°C and +4°C, 50% of weevil emergence was already 

observed 14 days after the temperature threshold for emergence was reached and 13 days earlier 

than in unheated plots. There was only a one day difference between the plots heated to +2°C and 

+4°C.  

Figure 9. Cumulative percentages of hatched RSW adults per day at different temperature levels. 

Solid and dotted lines indicate the day at which 50% hatch occurred. Gray area highlights the time 

span which is express in detail by table 1. 

 

RSW adult emergence per day was significantly higher in heated plots than from plots with ambient 

temperature on the 16
th
 and 20

th
 of March 2012 (F = 8.42, d.f. = 9, p < 0.05, F = 1.42, d.f. = 9, p < 

0.05)  
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Table 1. Number of hatched RSW adults per treatment and date at different soil temperatures (mean 

number (±SEM), repeated measures ANOVA) 

 

 

Discussion 
Our study showed that an increase in soil temperature of +2°C and +4°C significantly affects WOSR 

plant growth, in early spring. Later during the growing season, the effect of the WOSR cultivar had a 

bigger influence on the stem height rather than changes in soil temperature. The RSW females 

preferred the heated plots compared to control plots for oviposition. The damage parameter ‘bending’ 

was more affected by plot temperature than WOSR variety. Additionally, adult emergence occurred 

two weeks earlier in heated plots compared to the control. 

Effects of soil warming on plant development of Brassica napus plants 

This study shows that plant height was positively influenced by the soil temperature in early spring. 

This would lead to the assumption that the crop duration on the field is shortened with increasing 

temperature. This adds further evidence to the consequences of climate change on crop growth as 

done in other studies such as Gregory et al. (2009) which predicts extended crop duration with 

increasing temperature. 

Effects of Brassica napus varieties on stem height 

Stem height was influenced by the tested WOSR cultivar rather than changes in soil temperature later 

in the growing season. Therefore, the synchronization of crop growth and pest occurrence may shift 

with climate change,  which in turn provides new challenges for WOSR cultivation (Ferguson et al., 

2003; Weigel, 2005), with new breeding goals for an output of new varieties.  

Effects of soil warming on Brassica napus infestation with Ceutorhynchus napi 

Although the yellow water traps did not record high numbers of RSWs, the infestation level was high 

enough to find significant differences in the larval infestation rate. The yellow water traps only give a 

poor picture of RSW population density and can only be used for detecting the first date of crop 

invasion (Debouzie and Ballanger, 1993). Despite the low beetle abundance in both years, the 

infestation was quite high regarding open field data. Without reaching the threshold in the yellow water 

traps (= ten RSWs in three days), the larval abundance was high enough to cause significant damage 

to the plants. A threshold for larvae which is correlated with the adult abundance is not yet known 

(Johnen et al., 2010).  

A higher abundance of RSW larvae was recorded in the heated plots than in the control plots. In 2011, 

the number of larvae decreased on the last sampling date for the heated plot +2°C. This suggests that 

eggs laid earlier also lead to earlier larval emigration from the stem for pupation. Plants may have also 
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not been an appropriate food source anymore, subsequently accelerating the time to pupation (Keena 

and Moore, 2010). 

Effects of Brassica napus varieties on infestation with Ceutorhynchus napi 

The oviposition of RSW is affected by plant growth as RSW females are attracted to stems up to 20 to 

22 cm in length (Büchi, 1996). RSW oviposition and subsequent larval density per plant was therefore 

affected by the plot’s soil temperature, rather than the WOSR cultivar, as changes in temperature 

regimes are the more dominant factor for increased stem height during the oviposition period. Over the 

past decades, temperatures have been increasing and this has led to earlier initiation of crop growth 

stages. Therefore, earlier laid eggs will be laid in more developed plants. Furthermore, the duration of 

growth stages for certain crops will be shortened (Eitzinger et al., 2010). Some previous studies have 

investigated the effects of temperature on insect herbivores and their interaction with plants (Dalin, 

2011; Steinbauer, 2004). Experimental manipulation studies under field conditions are rare. Only a few 

studies address the impacts of climate change on the interaction between crops and their pests (e.g. 

Gregory et al., 2009) but could not come to a reliable conclusion for future predictions. This study 

shows that the effect of climate change to RSW will lead to an earlier infestation. 

Effect of soil warming and variety impact of Brassica napus damage caused by Ceutorhynchus 

napi 

The damage potential by RSW was more dependent on the soil temperature than on the WOSR 

variety. This result, however, may be confirmed by additional studies as there could be an effect of the 

larvae on the damage potential. On one hand, higher larval densities in the stem can lead to greater 

plant damage (Büchi, 1996), which may increase with climate change (Gutierrez et al., 2008); on the 

other hand, WOSR is known for its great compensation rate (Alford, 2003), which may lower any risks 

to enhanced damaged potential for climate change. 

Effect of soil warming on adult emergence of Ceutorhynchus napi  

Regardless of the insect, soil borne stages are not easy to study (Bento et al., 2010). Despite our 

initial hypothesis, an earlier hatch of adult RSWs in plots with “+2°C” instead of the heated plots with 

“+4°C” was observed. An additional “4°C” to the control temperature had a negative impact on RSW 

development in the buried cocoons, which shows that there is a more complex function behind the 

adult hatch than previously assumed. Earlier hatching dates have been described for other insect 

species during the last decades (Westwood and Blair, 2010). The climate change could result in an 

earlier flight of aphids within the UK by one month (Gregory et al., 2009). Also, there may be an earlier 

immigration into vineyards by the grape leafhopper Empoasca vitis in warm winters (Reineke and 

Hauck, 2012). With regard to WOSR pests, models predict an earlier adult crop invasion of the 

cabbage stem weevil (Junk et al., 2012). 

The influence of temperature on population dynamics of insects is essential to insect-host interactions. 

Temperature is the single most important environmental factor affecting insect distribution, 

development, behavior, survival and reproduction (Bale et al., 2002). In addition, climate change will 

also influence other aspects of agro systems. Warmer winters could, for example, lower overwintering 

mortality of eggs, larvae, or pupae of butterflies (Westwood and Blair, 2010). In our study, RSW eggs 

are laid earlier due to earlier hatched adults, leading to an earlier larval emigration for pupation. These 
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changes in insect development, however, are synchronized with plant growth as it will also adapt to 

warmer temperatures.  

Other factors besides temperature have an impact on biological functions in an insect-host interaction 

under natural conditions. The soil type is more important for hatch of dipterous females, whereas 

dipterous males are rather influenced by soil type and humidity level (Bento et al., 2010). As climate 

change is a gradual process, it has been predicted that pests and their biological control agents will 

synchronize with the host plant (Gerard et al., 2013). Under drought stress, pathogens can have 

reduced (Gregory et al., 2009) or higher impact (Siebold and von Tiedemann 2013) on crops. The 

impacts of pests and diseases on yield under current conditions are well known, but the consequences 

of climate change on pests and diseases are complex and are still only poorly understood (Gregory et 

al., 2009). Nevertheless, agriculture must adapt to a changing climate (Weigel, 2005). This experiment 

helped to understand parts of these complex interactions with an interaction between an WOSR pest 

and its host mediated via increased soil temperature. 

 

Conclusion 
Strong warming has been measured in the period from 1971 to 2004 (Westwood and Blair, 2010). 

Significant warming has occurred at various monthly sequences, resulting in a significant increase in 

the annual mean temperature (Westwood and Blair, 2010), resolving any doubts for global climate 

change. This will change the human’s interest on earth, especially in agricultural plant production 

(Weigel, 2005). Farmers’ choices are influenced by the uncertain conditions for growing a crop. 

Therefore, the crops produced in a region will change as growers will optimize their economic returns 

in the prevailing climate and markets (Gerard et al., 2013).  

Each organism will be affected differently by climate change, creating a very complex picture for future 

scenarios (Gutierrez et al., 2008). Therefore, caution should be taken when extrapolating results from 

greenhouse experiments on insect-plant relations to natural situations (Stinner et al., 1974). An 

important issue when considering adaptation and mitigation responses to climate change is the 

uncertainty in the prediction of the future climate (Christensen and Christensen, 2007). Models could 

be useful as guides in future biological control efforts on existing and new exotic pest species 

(Gutierrez et al., 2008). To generate more evidence for predicting biological processes based on 

models, research must be done on indicators for soil humidity for example to predict adult hatch 

(Thöming and Saucke, 2011) or including the length of tibia as a good indicator of body size, which is 

usually correlated with fitness (Le Lann et al., 2011). 
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Abstract 
1. Oviposition and longevity of adult rape stem weevils was tested under different temperature 

regimes. Three average daily temperatures were assessed at constant and varying regimes. 

2. Females laid more eggs with increasing temperature. In contrast to constant regimes, the 

varying temperature regimes resulted in more laid eggs. 

3. The longevity of adult rape stem weevils was not influenced by the different constant 

temperature regimes. 

4. No egg hatched at the constant temperature regime of 8°C, whereas at the varying 

temperature regime with the same average daily temperature same eggs were able to hatch.  

5. The developmental time for eggs was significantly the longest at 10/6°C. 

6. The mortality rate of eggs was increased by constant temperature in contrast to the varying 

equivalent. 

 

Keywords: Longevity, egg development, varying temperature regimes, fecundity 

 

Introduction 
Insects are poikilotherms and their internal temperature depends on the environmental temperature 

(Davidson, 1944). Some researchers even expect that there is no difference between the body 

temperature of insects and air temperature (Taylor, 1963; Higley et al., 1986). The temperature plays a 

major role in their development (Gilbert and Raworth, 1996) and many studies regard this relationship 

to be linear (Gilbert and Raworth, 1996; Satar et al., 2005). A rise in temperature speeds up insect 

development until the optimal temperature is exceeded and developmental speed declines (Higley et 

al., 1986; Sandhu et al., 2010). Therefore, the model of day-degrees was used to predict insect 

development (Pruess, 1983). The model is calculated assuming that a certain developmental stage is 

completed at a certain sum of temperature degrees, which are accumulated over a certain threshold 

per day (Pruess, 1983). These calculations are mostly assumptions made on trials with constant 

temperature regimes upon which many studies are based on (Baffoe et al., 2012). The zero point of 

day-degree data is only a calculated threshold by fitting a linear regression equation, which is highly 

related to the acceptation that enzyme kinetics is the driving factor for development (Higley et al., 

1986). If varying temperature regimes are given, day-degree models are not able to predict the 

developmental stages (Stinner et al., 1974; Wilstermann and Vidal, 2013), which is however important 

for forecasting population dynamics in natural habitats. With varying temperature regimes, the day-

degree models only give a rough estimate of the developmental time (Higley et al., 1986). 

mailto:svidal@gwdg.de
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Developmental times were elongated at constant low temperature and significantly shortened at 

constant high temperatures than at fluctuating temperatures with the same means. At medium 

temperatures, developmental times were adapted (Hagstrum and Milliken, 1991). In nature the 

constant temperatures are not applicable to insects (Stinner et al., 1974; Satar et al., 2005). To draw 

conclusions on the effects of increasing temperature on pest populations in the field, varying 

temperature regimes have to be included in laboratory studies (Hagstrum and Hagstrum, 1970; 

Hagstrum and Leach, 1973; Stinner et al., 1974; Wilstermann and Vidal, 2013).  

The oviposition of insects can be influenced by haptic (Marazzi and Städler, 2004) or chemical cues 

(Mewis et al., 2002; Marazzi et al., 2004) from the host plant. Furthermore, host phenology (Rusch et 

al., 2013) is important as well as their nutrient status (Veromann, 2013). Egg laying by females is 

mostly influenced by ambient temperatures. There are many studies showing that the temperature 

directly influences the oviposition of females. These studies were representing different species such 

as beetles (Keena and Moore, 2010), crickets (Behrens et al., 1983), aphids (Gutierrez et al., 2008), 

planthoppers (Wang et al., 2013), flies and moths (Davidson, 1944). 

For an effective pest management, the interactions between insects and their host plant need to be 

considered (Pruess, 1983). The rape stem weevil (RSW) (Ceutorhynchus napi Gyll.) is the first pest to 

feed on crops of winter oilseed rape (WOSR) (Brassica napus L.) in early spring in Germany. After a 

few days of feeding on WOSR leaves, RSW females lay their eggs into the stem close to the terminal 

bud during stem elongation (Günthart, 1949). Injuries caused by adult feeding are not significant 

(Juran et al., 2011). The main damage is caused by egg-laying females which results in a histological 

change of the stem pith (Alford et al, 2003). Damage appears as distorted stems (Günthart, 1949) with 

high yield losses (Büchi, 1996). Beside the phenology of the plant (Büchi, 1996), the temperature 

plays an important role for oviposition (Debouzie and Ballanger, 1993; Juran et al., 2011). The 

damage on some developmental stages can only be observed with a large effort as the larval hatch of 

RSWs happens well protected inside the stems of WOSR plants. This makes it difficult to observe 

development in the field and makes it necessary to introduce a new method to this research field. 

The focus of this study was the effect of temperature on fertility, embryonic development and adult 

longevity of RSW. In the first experiment, we tested the number of eggs laid, the longevity, the survival 

rate and the duration of egg deposition of RSW females at different constant temperature regimes. In 

the second experiment, we hypothesized that constant and varying temperature regimes, each with 

the same daily average, would change the pattern of egg hatch of RSWs. We assumed that eggs 

under varying temperature regimes require less developmental time than under constant temperature 

regimes. 

 

Materials & Methods 
Rape Stem Weevils and plant source 

The trial was set up using fifteen replicates at three different temperature regimes in climate cabinets 

(MytronWB 750 KFL, Mytron Bio- und Solartechnik GmbH, Germany). Adult RSWs used in this 

experiment were collected from overwintering fields and new crops of WOSR during the main flight 

period in March by using empty yellow water traps (Syngenta Agro GmbH, Maintal, Germany). Adults 

were picked up immediately after landing in the traps and transferred to plastic boxes  
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(17.5cm * 13cm * 6cm, Neupack Verpackungen GmbH & Co. KG, Hamburg, Germany). They were 

supplied with leaves of WOSR as food and a dry paper tissue (Tork Universal, SCA Hygiene Products 

AFH Sales GmbH, Mannheim, Germany) to absorb condensation. Groups of 20 – 50 weevils were 

stored in boxes in a climate chamber at a constant temperature of 14°C to ensure ovary maturation 

and mating process. Boxes and leaves were changed weekly to prevent contamination by pathogens. 

Prior to the start of the experiments, beetles were segregated by their sex under a stereomicroscope 

(Leica Wild M3Z, Leica Microsystems GmbH, Wetzlar, Germany) with a 40x magnification. 

The test plants were cultivated in the greenhouse. Seeds of the spring oilseed rape variety ‘Mozart’ 

were sown in mixed soil substrate, composed by three parts of potting soil (Fruhstorfer Erde (Typ 25), 

Hawita Gruppe GmbH, Vechta, Germany) and one part sand. After emergence, plants were singly 

transplanted in 9-cm-diameter pots using the same mixed soil substrate. Plants were watered daily 

and fertilized once a week with a 2% Hakaphos solution (Compo, Muenster, Germany). After 5 to 6 

weeks, at a stem height of 15 cm, plants were used for the oviposition experiments. 

Egg deposition at different temperatures regimes 

To mimic common ambient temperature regimes during spring and early summer in the region of 

Goettingen, Germany (51.557953°N, 9.951894°E), climate cabinets, in the first experiment, were kept 

at constant temperatures of 8, 11 and 14°C, respectively, (RH 85%; photoperiod 12:12 L:D, 

fluorescent tube type: Master TL-D 18W/840, Royal Philips Electronics, Amsterdam, Netherlands). 

Females of C. napi were released on the fifteen plants by using gauze cages (20 cm high, 9 cm 

diameter, mesh size 0.02 mm) fastened to the top 10 cm of the stems. Basal leaves were removed to 

prevent to fit into the cage. In 2011, two female RSWs were added to each cage and were assumed to 

be fertilized by males during the time they were kept in the boxes. In 2012, a modification was made to 

varying day-night temperature regimes with the same average daily temperature as in the experiment 

using constant temperatures. To achieve the mean temperature of 8, 11 and 14°C, respectively, the 

following day/night temperatures were set for 12h each: 10/6°C, 13/9°C and 16/12°C. A 24 hour 

pretest verified that each female was able to lay eggs. One female was caged on one plant. Each 

plant was checked after 24 hours for eggs. Plants in 2011 were swapped in regular intervals and 

dissected for the number of eggs laid by females every 24 hours in the first week and then weekly until 

July. After July, the changes of the stems were done every second week. In 2012, the plants were 

exchanged daily. 

Performance of adult weevils at different temperature regimes 

The weevils in the 2011 trial were maintained from April until the last female died in December. The 

survival rate was calculated as the mean number of surviving females at each temperature. The 

longevity was calculated as the mean number of days of females alive. Fertility was evaluated as the 

mean number of days until the last egg was laid. 

Egg development 

To study the effect of temperature on the duration of the embryonic development, the eggs were 

exposed to constant and varying temperature regimes of 8, 11 and 14°C mean temperature until 

hatching. Fifteen plants with elongated stems of 15 cm were offered to gravid RSW females for egg 

deposition at each temperature regime. After 24 hours, the eggs were collected from these plants by 

dissection of stems under a stereomicroscope. These eggs were transferred to 6-cm-diameter petri 
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dishes with a wet filter paper (MN 616, Macherey-Nagel GmbH & Co. KG, Dueren, Germany) to 

prevent desiccation. Dishes were sealed with Parafilm (Parafilm M, Pechiney Plastic Packaging, 

Chicago, USA) to prevent any fungal or bacterial contamination after relocation from the stem. The 

sample size varied by the females (8°C n = 38, 10/6°C n= 64, 11°C n = 38, 13/9°C n = 63, 14°C n = 37 

and 16/12°C n = 64). The dishes were incubated in climate cabinets with the same temperature at 

which the eggs were laid. Petri dishes were checked daily for egg hatch. A 15 x magnification was 

used to separate visible head capsule within the egg shells from those head capsules of already 

hatched larvae. Hatched larvae were counted and the period of embryonic development was 

calculated by the time span from egg deposition to hatch. Egg mortality was calculated by the 

percentage of non-hatched larvae in relation to the total number of all eggs. 

Data loggers (DL-120 TH USB Humidity/Temperature Logger, Voltcraft, Hirschau, Germany) were set 

up in each climate cabinet to record relative air humidity, temperature and dew point. 

Data analysis and statistics 

A repeated measures ANOVA was used to identify differences in the mean number of laid eggs per 

sample time for the constant temperature regimes. Differences between mean number of laid eggs, 

longevity, reproduction time and developmental time of RSW eggs were tested with a Kruskal Wallis 

test. If significant differences were found between these parameters, a non-parametric multiple 

comparison test was used to test significant differences between temperature regimes and 

temperature levels for mean number of laid eggs, fertility, longevity and developmental time of eggs. 

Differences in the mortality rates of RSW eggs in petri dishes were assessed by using a χ²-test. 

 

Results  
Egg deposition at different temperatures regimes 

The number of eggs laid by RSW females significantly increased with increasing constant mean 

temperature regime (F = 4.47, d.f. = 14, p < 0.05). 

 

Figure 1: Cumulative mean number of eggs per day and female laid between April and October for 

the constant temperature regimes (repeated measures ANOVA, F = 4.47, d.f. = 14, p < 0.05) 
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When comparing the egg deposition at the mean temperature of 8°C and at the varying temperature 

regime 10/6°C, egg numbers at varying temperature increased almost threefold (H = 4.65, p < 0.05). 

With regard to the medium temperature regimes, egg numbers at the varying temperature regime of 

13/9 °C significantly increased 2.5-fold compared to the constant temperature of 11°C (H = 4.74, p < 

0.05). Egg numbers at the highest varying temperature regime of 16/12°C increased two-fold 

compared to the constant temperature regimes of 14°C (H = 8.55, p < 0.05). 

 

Figure 2: Mean number of laid eggs per day and female for constant and varying temperature regimes 

with the same mean temperature (different letters indicate significant differences with H 2,45 p< 0,05 

between temperatures and H 1,90 p< 0,01 between temperature regimes; Kruskal Wallis test)  

 

The total number of eggs laid per female was highest at a constant temperature of 14°C (42.5 eggs in 

first three weeks and 51 for the total trial period of nine months). In contrast, at varying temperature 

regimes, the highest total number of eggs was found at 13/9°C, with 73 eggs per female within three 

weeks. The most elevated varying temperature regime resulted just in 59 eggs in three weeks. 

Performance of adult weevils at different temperature regimes 

The relationship between temperature and fertility and longevity for each temperature regime is given 

in table 1. There were no significant differences in fertility (H = 1.54, p = 0.46) and longevity (H = 0.20, 

p = 0.91) of C. napi females at different constant temperature regimes. Fertility declined slightly with 

rising temperatures. Longevity remained similar at all temperature regimes. At each temperature 

regime, one beetle remained alive until day 247 of the experiment. The shortest live span was 25 

days. 

 



 Chapter 3 

 

46 

 

Table 1 Fertility and longevity of C. napi females at three different constant temperature regimes. 

Means followed by the same letter within the same column are not significantly different (Kruskal 

Wallis test H2, N=45; 90, p< 0.05) 

Temperature n 
Fertility 

(days, mean ± SEM) 

Longevity 

(days, mean ± SEM) 

  8°C 

 

30 

 

111.2 ± 20.02a 

 

125.2 ± 15.19a 

 

11°C 

 

30 

 

 97.9  ± 11.09a 

 

123.9 ± 13.50a 

 

14°C 

 

30 

 

 84.2 ± 14.31a 

 

130.8 ± 14.39a 

 

 

Egg development 

Eggs did not hatch at the lowest constant temperature regime (8°C), but the egg mortality rate was 

significantly reduced when the varying temperature regime of 10/6°C was tested versus the constant 

temperatures (x² = 32.56, d.f. = 1, p < 0.05) (Tab. 2). The medium temperature regime varied in their 

mortality rate (x² = 18.26, d.f. = 1, p < 0.005). However, at the highest temperature regime tested total 

egg mortality rates did not differ significantly any more (x² = 3.38, d.f = 1 p = 0.07). Developmental 

time of eggs was significantly delayed for the lowest varying temperature (10/6°C) compared to the 

elevated temperature regimes tested (H = 13.62, p < 0.05). Interestingly, increasing the temperature 

from 11 °C to 16/12°C did not significantly reduce the developmental time of eggs (H = 13.61, p = 

1.00). In this experiment, 42 days was the longest duration for hatching tested at 10/6°C. The shortest 

time for hatching was 11 days at 16/12°C.  

Table 2 Developmental time and mortality rate of C. napi eggs in petri dishes with wet filter paper at 

six different temperature regimes. Means of developmental time followed by the same letter within the 

same column are not significantly different (Kruskal Wallis test H4, N=19, p< 0.05). Egg mortality rates 

with same letters within the column indicate no significant differences within temperature levels (χ²-

test) 

Temperature regime n 
Developmental time 
(days, mean ±SEM) 

Total 
Egg mortality rate (%) 

8°C 38   0.0 ±0.00* 100.0A 

10/6°C 64 33.3 ±3.24a   71.9B 

11°C 38 14.5 ±0.29b   71.1A 
13/9°C 63 17.2 ±0.58b   41.3B 

14°C 37 12.6 ±0.56b   56.8A 
16/12°C 64 12.6 ±0.39b   43.8A 
*excluded from statistics 

 

 

 

 



 Chapter 3 

 

47 

 

Discussion 
The focus of this study was laid on the effect of temperature on fertility, adult longevity and embryonic 

development of RSWs. First, we tested oviposition, fertility and longevity of adult RSWs under different 

temperature regimes. RSW females laid more eggs under varying temperature than under constant 

temperature with the same mean value. Consequently, our hypothesis was confirmed that the 

temperature has a different influence if it is a constant or varying temperature regime with the same 

mean (Jalali et al., 2010; Sandhu et al., 2010). It was found for the fertility of crickets, which rose in 

number per eggs and day until a maximum of productivity was reached, after which a gradual 

decrease occurred before reproduction finally ceased (Behrens et al., 1983). 

We found no significant differences in the fertility at different temperature levels. Low temperatures 

could result to dysfunctions and therefore lead to a reduced fertility as discovered in other studies 

(Lessard and Boivin, 2013). Reduced fertility, at best, could reduce the damage caused by the 

oviposition (Juran et al., 2011). The influence of temperature on the fecundity of RSW females is not 

yet known. Some authors observed delayed ovary maturation in RSWs over several days depending 

on the temperature (Johnen et al., 2010). Our own observations (not published) indicated that, in warm 

spring times, females show almost no maturation feeding. They had fully-developed ovaries at the first 

catches in the year 2012 and 2013. But these finding have to be clarified with a more detailed 

monitoring. 

One hypothesis was that beetles would survive longer at lower temperatures. As shown in other 

studies, there was the highest rate of survival recorded at the lowest temperature tested (Jaramillo et 

al., 2009). For our data, the longevity of adult RSWs was not influenced by the different temperature 

regimes. Former studies reported that low temperatures during at least a month could have reduced 

the survival rate and the fecundity of RSW females (Debouzie and Ballanger, 1993) as was found out 

for other insects (Lessard and Boivin, 2013). One reason could be that our temperature regimes did 

not differ so much from each other in regard to the thresholds of survival temperature. In contrast, a 

reduction of adult longevity could result at high constant temperature as well (Behrens et al., 1983; 

Bayhan et al., 2006).  

Many previous studies have investigated the effects of temperature on insect herbivores and their 

interaction with plants (Bale, 2002; Bale et al., 2002; Dalin, 2011). A number of these studies focused 

on constant temperatures (Davidson, 1944; Günthart, 1949), which are based on the assumption of 

average weather data (Gutierrez et al., 2008). In the second experiment, we hypothesized that 

constant and varying temperature regimes, each with the same daily mean, would differ in the pattern 

of egg hatch of RSWs. We assumed that eggs, under varying temperature regimes, require less time 

for development than under constant temperature regimes. Three daily mean temperatures were 

assessed at constant and varying regimes. Günthart (1949) surveyed the development time of RSW 

eggs at constant temperatures. His finding was a hatch after 20 days at 8°C, whereas in our 

experiment no hatch at all occurred. At a varying temperature regime with the same average daily 

temperature the development time was significantly longer. With our data, we suggested that a 

constant 8°C was too low for hatching at all, indicating that there are too many dysfunctions inside the 

egg at this temperature (Lessard and Boivin, 2013). At 11°C Günthart (1949) observed a hatch at day 

12. This date was found for the varying and constant temperature regime of 14°C and 16/12°C in our 
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experiment. Apparently, the populations could have changed in their temperature sensitivity over the 

decades. Concerning changes like these, day-degree models should be used with caution (Stinner et 

al., 1974; Wilstermann and Vidal, 2013). Notable is that not the time length of warm treatment alone, 

but the temperature stimulus itself can make a difference in the development of insects (Behrens et 

al., 1983). Certain temperatures can be lethal when under constant exposure, whereas integrated in a 

varying temperature regime the same temperature can be stimulatory (Behrens et al., 1983). But the 

same temperature level in a varying regime only delayed the egg hatch. This is in line with the data 

that many insects develop very slowly when temperatures are just a little higher than the threshold 

(Gilbert and Raworth, 1996). Own observations (not published) have shown, that the larval hatch is 

possible inside the stem of spring oilseed rape at a constant temperature of 8°C. Therefore, we 

assume a different temperature inside the plants. As the temperature in plants is warmer during the 

day and cooler at night (Tanner, 1963; Keena and Moore, 2010), this fluctuations may provoke larval 

development of laid eggs. Probably because of this fact, there were larger larvae of a xylophagous 

species deeper in the bark where the buffering effect was the largest (Keena and Moore, 2010). 

The mortality rate of eggs in a petri dish differed between constant and the varying temperature 

equivalent, although certain mortality factors were excluded, like parasitoids, predators and other 

natural enemies (Peterson et al., 2009). At constant temperature level the mortality was surprisingly 

higher in comparison to the varying regimes.  

Our results are more general findings, which have to be completed by further research. This data was 

collected at a local population, and may not hold true for other locations (Pruess, 1983; Keena and 

Moore, 2010). Another factor to be considered is the nutrition of larvae. The nutritional substrate can 

influence the developmental rate, whereas the temperature can have an influence on the larval weight 

which in turn has an influence on the time the larval pupate (Keena and Moore, 2010). Depending on 

the substrate, the larvae of Anoplophora glabripennis is able to fasten up to pupation when the food 

moisture declines as a result of a dieback of the host plant (Keena and Moore, 2010). For the RSW 

the substrate could have a similar effect. As the increasing temperature led to an increased 

oviposition, there will be more larvae in competition for the same amount of food resources in the 

WOSR stems. Also, results obtained in this study might provide useful information to RSW biology. 

Due to our experimental set-up and the difficult rearing of RSWs, we were not able to collect data on 

larval development. Initial attempts to rear RSWs on spring oilseed rape in the greenhouse to allow 

such studies unfortunately failed. It would be interesting, though, to complete missing knowledge gaps 

obtained in this study to achieve a complete temperature sensitivity study, as well as to compare the 

suitability of different aphidous species or Diabrotica virgifera virgifera (LeConte). 
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Abstract 
The profile of volatile organic compounds (VOCs) can be used as an indicator for plant fitness. In this 

study, the VOCs of oilseed rape (Brassica napus L.) subjected to herbivory by rape stem weevil adults 

(Ceutorhynchus napi GYLL.) and drought were studied using a dynamic headspace technique. Three 

treatments were set up. In the first treatment the plants were regularly watered and damaged by 

feeding rape stem weevils. In the second treatment the plants was watered irregularly by lowering the 

amount of water to cause drought stress. The third group of plants served as the control with regular 

watering and no RSW infestation. We hypothesized that the analyzed VOC profiles should differ 

between the tested treatments with a reduced emission caused by drought due to the limited supply 

with water as a carrier for nutrients. The identified VOC blends were mostly similar between the 

treatments but differed in their intensity. Especially VOC emissions by plants with drought stress were 

significantly different to plants in the control. In contrast to our hypothesis, however, drought stress 

had the higher emission of VOC per gram fresh weight than regularly watered control plants. As plant 

parameters, such as phenological development, were affected by drought stress. The VOC emission 

is highly depending on the plant status. 

 

Key Words - Ceutorhynchus napi, Coleoptera, Brassica napus, Drought stress, Herbivory, Plant 

volatiles 

 

Introduction 
Many herbivorous insects use volatile organic compounds (VOCs) to locate their host plants 

(Thorsteinson, 1960). VOCs can be classified into general compounds, like green leaf volatiles, and 

specific VOCs, which are more represented by specific plant families (Visser, 1986). Either the 

particular ratio of more general compounds or a specific compound is representative for each plant 

species (Visser, 1986). Sometimes the green leaf volatiles play a role in overall perception and host 

recognition (Evans and Allen-Williams, 1992; Hansson et al., 1999). In other cases the specific odor of 

a plant attracts their associated insects (Bartlet, 1996; Marazzi and Stadler, 2004). Each plant species 

produces an herbivore-specific blend of volatile components in response to a particular herbivorous 

insect feeding on the leaves, and these differences are quantified by headspace analyses (Paré and 

mailto:svidal3@gwdg.de
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Tumlinson, 1999). Intact plants release their major VOC emission permanently (Turlings and 

Tumlinson, 1992; Jakobsen et al., 1994; Röse et al., 1996). In general, leaves release small quantities 

of volatile chemicals, but when a plant is damaged by herbivorous insects, larger amounts of volatiles 

are released (Boland et al., 1992; Paré and Tumlinson, 1999).There is a difference in the VOC profile 

from a mechanically damaged plant and an herbivore-infested plant (Mattiacci et al., 1995). The 

herbivore induced VOC profiles are only emitted when specific enzymes from the saliva of insects are 

present (Boland et al., 1992). In cabbage β-glucosidase, present in the regurgitant of Pieris brassicae 

caterpillars, triggers the same emissions of volatiles as caused by feeding caterpillars (Mattiacci, 

1995). The blend of herbivore-induced VOCs can consist of 20 - 200 changes in altered emission 

rates or newly generated VOCs (Dicke and Loon, 2000). These differences in the emission can be 

used by predators and parasitoids as scents of herbivore-attacked plants to locate their hosts (Boland 

et al., 1992) or follow the herbivore-induced VOCs to find their prey (Dicke and Loon, 2000). Some 

studies consider this as indirect plant defense, where predators help the plant to reduce the negative 

effect of herbivory (Dicke and Loon, 2000). 

Insects locate their host first by visual factors (Bartlet, 1996). Once the insect is in an appropriate 

habitat, olfaction is used to locate the host-plant (Feeny, 1977). The appropriate plant has a positive 

chemical reaction on the basis of their VOC profile (Feeny, 1977; Bartlet, 1996). Cruciferous plants, 

such as oilseed rape (OSR - Brassica napus L.), emit a complex mixture of VOCs (Bartlet, 1993; 

Schiestl, 2010). Insects use this blend to attack OSR and thereby reduce the yield (Blight et al., 1995, 

Cook et al., 2007b; Cook et al., 2007a).  

The rape stem weevil (RSW - Ceutorhynchus napi Gyll.) is the first pest of oilseed rape appearing in 

spring (Günthart, 1949). This weevil is extremely harmful to OSR (Dechert and Ulber, 2004). The 

damage is caused after oviposition of eggs, as the presence of the egg in the stem induces a canker 

in the growing tissue. This leads to characteristic deformations of the stem such as dwarfism, twisting, 

bursting, as well as a premature ripening (Juran et al., 2011). So far, nothing is known about the 

influence of herbivory caused by RSWs on the VOC profile of OSR.  

Chemical changes of VOC profiles can be either seasonal, day-night or inter-year effects (Maarse and 

Kepner, 1970; Visser, 1986; Veromann, 2013). Beside these abiotic changes also biotic stress can 

change the blend of VOCs (Holopainen and Gershenzon, 2010; Niinemets, 2010; Toome et al., 2010; 

Copolovici et al., 2011, Vuorinen, 2004). Herbivory as a stress factor for plants can change the VOC 

profile. It is also interesting to examine other stress factors like water shortage caused by altered water 

availability as a result of climate change. There seems to be little doubt that the global climate is 

changing, partly due to natural factors, but mainly through human activities (Karl and Trenberth, 2003; 

Eitzinger et al., 2010). As climate change results in modified temperature, we can expect insect 

herbivores and their interactions with host-plants to be affected (Gutierrez et al., 2008; Jalali et al., 

2010). The same could be assumed for changes in precipitation. The forecast models predict a 

medium confidence level of droughts in Europe (Field, 2012). Elevated air temperatures result in an 

increased evaporation from the soil and higher transpiration from the plants which subsequently 

causes drought stress (Harte et al., 1995; Eitzinger et al., 2010). As water is essential for in-planta-

transportation of nutrients (Bray, 2004), drought in plants influences growth and fecundity of the 

associated insect fauna (Mattson and Haack, 1987). Some studies concentrated on climate change 
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with respect to the altered water availability for plants and its use (e.g. Eitzinger et al., 2010) whilst 

other studies investigated the effects of temperature on insect herbivores and their interaction with 

plants (Steinbauer, 2004; Dalin, 2011). Consequently, there is an of host plant quality on insects 

(Marazzi et al., 2004; Peterson et al., 2009). The quantitative change in VOC emissions upon 

herbivory alters the interaction between the plant and its environment (Dicke and Loon, 2000). This 

study focused on the interaction between herbivory caused by RSW and OSR and the effect of 

drought on OSR.  

We analyzed the VOC emission of OSR plants three different treatments. The first treatment consisted 

of intact and well-watered OSR plants representing the control group. The second treatment was 

made up of well-watered RSW infested OSR plants. In the third treatment intact OSR plants were 

exposed to drought stress. Our hypothesis was that a change in emission of different VOC blends 

between the treatments of drought stressed OSR plants emit less VOCs because of their limited 

resources and closed stomata (Hsiao, 1973; Qaderi et al., 2006). These results are regarded as 

important for modeling shifts in host finding for RSWs due to changes in water availability leading to 

drought stress in OSR plants. Additionally, we assessed plant parameters of the drought stressed and 

well-watered plants and hypothesized that drought stress has a negative effect on the plant 

development. 

 

Methods & Materials 
Insect sampling and plant treatment 

Black soil (Chernozem) was brought from a nearby field in Goettingen, Germany (51.507432°N, 

9.887492°E) to the laboratory. The soil was steamed at 90°C and dried in a greenhouse at 20 °C for 

14 days. The soil was then mixed with 1/6 Perlite® (insulation fabric, Knauf Aquapanel GmbH, 

Dortmund, Germany) to prevent soil from clogging in the pots. 1.2 kg of the soil mix was weight and 

mixed with 180 ml tap water and filled in the pots. (Pot size: 13 cm x 13 cm x 13 cm). The test plants 

(Brassica napus L. cv ‘Mozart’) were cultivated in the greenhouse. Seeds were sown in mixed soil 

substrate, composed by three parts of potting soil (Fruhstorfer Erde (Typ 25), Hawita Gruppe GmbH, 

Vechta, Germany) and one sand. After 24 hours, the OSR seedlings were removed from their pre-

cultivation pot. The potting soil was carefully washed off the seedlings. The seedlings were 

transplanted into the prepared soil mix. 40 ml of tap water was added to the plants to guarantee soil 

moisture of 40 % (effective field capacity). Pots were placed in a growth chamber with a photoperiod of 

16 h light and 8 h darkness at a constant temperature of 18 °C and 85 % air humidity. The plants were 

watered every second day by placing every single plant on a scale and adjusting the amount of water 

needed to the normal weight. To consider the gained weight by growing plants, extra plants were 

harvested and weighed to adjust the normal weight. One week before the headspace analyses soil 

moisture of five plants was adjusted to 10 % soil moisture. 10 plants were watered to maintain 40 % 

soil moisture.  

We used RSWs collected during the main flight activity in March with empty yellow water traps 

(Syngenta Agro GmbH, Maintal, Germany). Until the start of the trial, they were kept in plastic boxes 

(17.5 cm * 13 cm * 6 cm, Neupack Verpackungen GmbH & Co. KG, Hamburg, Germany) with leaves 

of OSR from the greenhouse as food supply and a dry paper tissue (Tork Universal, SCA Hygiene 
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Products AFH Sales GmbH, Mannheim, Germany) to absorb condensation. The boxes were stored in 

a climate chamber with a constant temperature of 14 °C and a light regime of 12 h light and 12 h 

darkness. Boxes and food were changed weekly to prevent any microbial contamination.   

All plants were transferred to an air-conditioned room 24 h prior to the feeding tests. The temperature 

in the room was 25.5 °C, with a relative humidity of 42 % and a dew point of 11.5 °C. Two RSWs were 

each caged within one clip cage (Ø 60 mm, height 15 mm, coated with gauze (0.02 mm), rim covered 

with 5 mm foam material) on five plants with soil moisture of 40 % to provide feeding. The feeding was 

terminated after 48 h by removing the weevils from the plant. The following plant growth parameters 

were assessed: phenological stage BBCH (Lancashire et al. (1991)), plant height, and fresh weight. 

Fresh weight was determined by weighing the freshly cut plants. 

Volatile sampling, GC–MS and data analyses 

Headspace analyses were performed in the same climate room as the feeding tests. Directly after 

removing the RSWs from the plants, VOCs from all six-weeks-old plants were sampled on TenaxH 

adsorbent traps (TDS, Gerstel, Mülheim, Germany) using a modified push-pull headspace collection 

system (Tholl et al., 2006) directly on the OSR plants. For VOC sampling OSR plants were enclosed in 

an inert plastic oven bag (Melitta GmbH, Minden, Germany), excluding existing flowers or buds. Air 

was circulated through the trap by a miniature pump (Fürgut, Aichstetten, Germany) at a flow of 0.8 l 

min 
-1

. The sampling time was 2 h.  

Volatile samples on Tenax TA tubes were thermo desorbed in a TDS 2 system (Gerstel, Mühlheim, 

Germany) heated at 280 °C for 3 min with a helium (Helium 5.0, AirLiquid, Germany, (purity 99.999 %) 

flow of 40 ml/min. Volatiles were cryo-focused on a cold injection system CIS 4 (Gerstel) at -75°C. 

Volatile samples were analyzed with a gas chromatograph Agilent type 6890 connected to a Agilent 

type 5973 quadrupole mass spectrometer (both Palo Alto, USA) with electron ionization (EI, 70 eV). A 

HP-5 ms (Agilent, 30 m, 0.25 mm ID, and 0.25 lm film thickness, phenylmethylsiloxane) were used to 

analyze the composition of the VOC samples. The oven temperature program was 40 °C held for 3 

min, followed by an increase of 7.50 °C min
-1

 to 250 °C, remaining at 250 °C for 5 min (Weissteiner et 

al., 2012).  

For identification of the constituents, mass spectra GC retention values and linear retention indices 

were compared to those of authentic standards and those of the mass spectral databases. Databases 

used, were Wiley 9 combined with NIST 08 and “Terpenoids and Related Constituents of Essential 

Oils”, a database available from MassFinder 3.07 software (Hochmuth Scientific Consulting, Hamburg, 

Germany).  

Statistical Analyses  

Statistical analyses were carried out using the software R, Version 2.13.2 (R Development Core 

Team2011). Generalized Linear Models (“glm”-function in package “stats and MASS”) were used to 

test the differences of total emissions of plant VOCs and differences of distinct compounds among the 

three treatments (Venables and Ripley, 1997). Multiple Comparisons between treatments were 

calculated using Tukey contrasts with p-values adjusted by single-step method (“multcomp”-package) 

(Hsu, 1996). Results were assessed for significance at p < 0.05. 
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Results 
Volatile compounds of intact OSR plants were shown to comprise highly complex mixtures. The 

control plants emitted 27 VOCs, whereas the treatments herbivore attacked emitted 29 and the 

drought stressed plants only 26 compounds. As the total ion chromatogram (Fig. 1) did not show all 

differences in detail, the statistical analyses had a closer look. 

Figure 1. Total ion chromatograms of headspace analysis of OSR plants that underwent different 
treatments. 
 

Despite the number of specific compounds, quantitative differences were found for the different 

treatments. The control plants varied in comparison to the treatment with the herbivore-infested plants. 

Herbivory resulted in increasing amounts of α-thujene, sabinene, β-pinene and 2,4,4-trimethyl-2-

pentanethiol. A significant reduction in the production of compounds was recorded for nonanal, 

undecane, 2-ethylhexyl acetate and camphor. E-4,8-dimethyl-1,3,7-nonatriene was absent in the 

control plants and about ten times higher in herbivore attacked plants in comparison to drought 

stressed plants. The control and the herbivore attacked plants differed in comparison to drought 

stressed plants in terms of alkanes (decane, dodecane, tridecane and tetradecane) and the 

monoterpene delta-3-carene. 1-dodecene and 2,4,4-trimethyl-2-pentanethiol were not detected in 

drought stressed plants . Methyl-2-ethyl hexanoate is only detected for the herbivore attacked plants. 

The control and drought stressed plants did not differ in its quantities of nonanal, undecane, 
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pentadecane, methyl-2-ethyl hexanoate, 2-ethylhexyl acetate, 3-heptanone, α-thujene, sabinene, β-

pinene and D/L-limonene / 2-ethyl-1-hexanol. When comparing the quantities between both stress 

types, most disparities were observed between drought and herbivory stressed plants than between 

stressed plants and control plants. The lowest total amounts of VOCs were detected with the control 

plants (3.73 * 10
6
 ng g

-1
 fresh weight ± SEM 7.36 * 10

5
). Herbivory increased the total amount of VOCs 

to 4.57 * 10
6
 ng g

-1
 fresh weight (± SEM 1.00 * 10

6
). The highest emission of volatiles was recorded for 

drought stressed plants (6.77 * 10
6
 ng g

-1
 fresh weight (± SEM 5.44 * 10

6
)).  

 

Table 1. Identified volatiles in three different treatments of OSR plants (Peak area/1 kg fresh weight) 

F-

values

p-

values

Aldehyde

Nonanal 102.05 ± 21.31 b 86.40 ± 18.24 a 214.92 ± 40.52 b 6.484 0.012

Alkane

3-methylene-Heptane 152.06 ± 79.68 a 317.96 ± 162.40 a 33.18 ± 33.18 a 2.559 0.119

4-methyl octane 80.63 ± 28.53 a 79.83 ± 19.10 a 63.22 ± 24.77 a 0.164 0.851

Decane 151.68 ± 19.32 a 148.08 ± 22.00 a 260.51 ± 35.32 b 5.930 0.016

Undecane 100.75 ± 14.04 a 80.26 ± 9.17 a 159.71 ± 3,773.09 ab 3.653 0.058

Dodecane 39.51 ± 3.15 a 34.02 ± 4.59 a 74.17 ± 17.27 b 5.598 0.019

Tridecane 49.93 ± 5.44 a 40.11 ± 4.84 a 90.88 ± 12.03 b 12.436 0.001

Tetradecane 39.63 ± 4.26 a 30.15 ± 1.61 a 54.69 ± 4.54 b 11.938 0.001

Pentadecane 52.63 ± 12.07 ab 34.08 ± 3.14 a 62.41 ± 8.88 b 3.017 0.087

Alkatrienes

(E)-4,8-Dimethyl-

1,3,7-nonatriene
0.00 ± 0.00 a 106.17 ± 18.91 b 10.24 ± 10.24 ab 20.557 0.000

Alkenes

1-Dodecene 5.67 ± 2.43 b 9.91 ± 2.00 b 0.00 ± 0.00 a 14.324 0.001

1-Tetradecene 8.17 ± 1.97 a 13.27 ± 2.39 a 19.93 ± 6.97 a 2.291 0.144

Alcohol

1,8-Cineole 312.48 ± 84.60 a 588.95 ± 109.89 ab 975.32 ± 192.06 b 6.673 0.011

Ester

(Z )-3-hexenyl acetate 81.38 ± 23.41 a 153.96 ± 59.49 a 90.52 ± 55.69 a 0.643 0.543

Methyl-2-ethyl 

hexanoate
0.00 ± 0.00 a 142.70 ± 31.37 b 0.00 ± 0.00 a 68.194 < 0.0001

2-Ethylhexyl acetate 581.78 ± 67.60 b 334.34 ± 33.25 a 755.36 ± 98.49 b 10.536 0.002

Ketone

3-Heptanone 31.11 ± 9.05 ab 36.60 ± 4.55 b 9.74 ± 6.37 a 3.703 0.056

3-Octanone 24.73 ± 12.51 a 26.70 ± 6.87 a 49.39 ± 21.41 a 0.913 0.428

Monoterpene

α-Thujene 71.35 ± 4.37 b 174.62 ± 40.53 a 115.70 ± 14.21 ab 5.932 0.016

α-Pinene 156.23 ± 9.67 a 238.26 ± 41.44 a 233.69 ± 49.09 a 1.776 0.213

Sabinene 125.57 ± 15.58 a 332.98 ± 60.78 b 207.47 ± 22.65 a 9.556 0.003

β-Pinene 69.46 ± 7.32 a 150.96 ± 29.59 b 107.72 ± 10.68 ab 6.075 0.015

β-Myrcene 145.60 ± 25.83 a 169.91 ± 34.67 a 145.98 ± 10.52 a 0.300 0.747

Delta-3-Carene 151.07 ± 28.57 a 140.71 ± 35.47 a 288.18 ± 40.08 b 4.986 0.027

D/L-Limonene /

2-Ethyl-1-hexanol
928.43 ± 205.34 ab 798.90 ± 186.50 a 2,345.27 ± 848.50 b 3.834 0.052

γ-Terpinene 111.91 ± 24.66 a 158.04 ± 32.67 ab 250.59 ± 62.66 b 3.044 0.085

Sesquiterpene

(E,E)-α-Farnesene 65.10 ± 9.69 a 79.35 ± 17.72 a 46.86 ± 9.31 a 1.758 0.214

Terpenoid

Camphor 85.04 ± 8.91 b 36.49 ± 4.25 a 104.02 ± 28.28 b 5.878 0.017

unknown class

2,4,4-trimethyl-2-

Pentanethiol
6.99 ± 6.99 b 29.01 ± 6.16 a 0.00 ± 0.00 ab 7.890 0.006

Control 40%

mean

±

SEM

n=5

Herbivore attacked 40%

mean

±

SEM

n=5

Drought stress 10%

mean

±

SEM

n=5

GLM-results

df= 2, 12

 

Results based on GC-MS analyses; glm; multiple comparisons between treatments followed by using Tukey contrasts with p-
values adjusted by single-step method; different letters indicate significant differences; p < 0.05 
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Control plants and herbivore infested plants did not differ in plant growth stage, height and fresh 

weight. The results of these two treatments were therefore combined to compare (figure 2).  

The plant height was affected by the drought stress. Well-watered plants as well as herbivore-

damaged plants had a mean height of 62 cm (± 1.04 SEM) and drought stressed plants 31.5 cm (± 

0.56 SEM), respectively. Consequently, the growth stage was reduced. Control plants were fully 

flowering (BBCH 63). The drought stressed plants just had their flower buds raised over the youngest 

leaves (BBCH 53). The fresh weight was reduced. Well-watered plants had a total fresh weight of 

above ground matter of 36.68 g (± 2.15 SEM) and drought stressed plants had a fresh weight of 21.40 

g (± 1.30 SEM). 

  
Figure 2. Stem height and fresh weight of well-watered and drought stressed plants 
 

Discussion 
The well-watered control plants emitted 27 compounds in total. Monoterpenes were the dominant 

compound class of VOCs collected. However, only two compounds significantly differed compared to 

the control plants. E-4,8-dimethyl-1,3,7-nonatriene and Methyl-2-ethyl hexanoate were induced by 

herbivory different to the profile of intact control plants. E-4,8-dimethyl-1,3,7-nonatriene was detected 

in both stress treatments, but was absent in the controls. All other compounds were similar to the 

stressed treatments. This study has in common with some other studies. Nonanal was found in the 

profile of damaged and undamaged plants (Boland et al., 1992; McEwan and MacFarlane Smith, 

1998), and differed in their amounts only. In some studies, some compounds were even not emitted 

anymore through herbivory. The scents of Brassica flowers were dominated by β-pinene, sabinene, 

mycrene, limonene and β-phelandrene but disappeared in case of macerated plants (Tollsten and 

Bergström, 1988). Other studies detected an increase in α-Pinene, β-Pinene and delta-3-carene from 

the bud stage to the flower stage (Veromann, 2013). This terpene group is therefore mostly present in 

the floral stages (Evans and Allen-Williams, 1992), but their emission may also be sent off the 

vegetative mass like our experiment showed. Comparable to former studies the sesquiterpene α-

farnesene was also collected from undamaged Brassica napus plants (Tollsten and Bergström, 1988). 
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Therefore, we conclude that the concentration of the VOCs is more important for OSR than the VOCs 

themselves.  

Some studies point out that mono- and dicotyledonous plants are different in their volatile response 

(Boland et al., 1992). Beside this, there are also tremendous changes in the VOC emission within one 

plant species caused by a range of environmental factors. Physiological changes like stress or pest 

infestation are reflected in the plant odor by emission rate and profile (Rani, 2012). These blends can 

be traced by phytophagous insects and their parasitoids for recognizing their hosts by a specific blend 

(Visser, 1986). The reaction of insect towards volatiles can be either attraction or repellence (Dicke 

and Loon, 2000). Some compounds result in a specific behavior, like allylisothiocyanate stimulates the 

oviposition of the diamondback moth (Thorsteinson, 1960). 

In our study the release of herbivore-attacked plants did not differ in the VOC profile. The main 

difference was the increased amount of the same VOCs emitted by the intact control plants. Leaves 

normally release small quantities of VOCs; but when plants are damaged by herbivorous insects, 

additional volatiles are released (Paré and Tumlinson 1999, Dudareva et al., 2004) and the quantity is 

increased (McCloud and Baldwin, 1997; Vuorinen, 2004). The sesquiterpene group was represented 

by E,E -α-farnesene but was not significantly different between the treatments. Contrary to Veromann 

(2013) who calculated a negative correlation between E,E -α-farnesene and the damage caused by 

pollen beetles (Meligethes aeneus Fab.), we did not find an influence of the herbivore treatment on the 

amount of E,E -α-farnesene produced. β-farnesene is often regarded a VOC induced by herbivory 

(Paré and Tumlinson, 1999), which was also not found in our results. (E)-4,8-dimethyl-1,3,7-

nonatriene was often quantified in the headspaces of herbivore-infested plants and there is an 

assumption that this compound can allure predators (Boland et al., 1992). In our treatments, (E)-4,8-

dimethyl-1,3,7-nonatriene was dominant in the VOC profile of the stressed plant. It was ten times 

higher in the herbivore attacked than in drought stressed plants. Mechanical damage did, in most 

cases, not fully reflect the responses elicited by herbivory or oviposition. The response was induced by 

an herbivore-derived elicitor, like enzymes in the saliva (Boland et al., 1992). Methyl-2-ethyl hexanoate 

was only present in the herbivore attacked plants, so we regarded this as a more herbivore-induced 

component. Other studies referred to methyl-2-ethyl hexanoate as an ester. Esters are produced by 

autolytic oxidative breakdown of membrane lipids and are released when leaves are mechanically 

damaged (Paré and Tumlinson, 1999). All other compounds were either released by the control or the 

drought-stressed plants or both. Alcohols and aldehydes are mostly degradation products from leaf 

lipids (Tollsten and Bergström, 1988). In our plants alcohol was increased in the stress treatment, but 

the aldehyde nonanal was decreased by the herbivore attack and through drought stress. Some of the 

monoterpene and sesquiterpene, as well as indole and isomeric hexenyl butyrates and 2-methyl 

butyrates, were also only released from damaged leaves (Röse et al., 1996). Jasmonic acid and β-

farnesene are often induced by herbivory but were not detected in our results (McCloud and Baldwin, 

1997; Paré and Tumlinson, 1999). Some compounds were not found in our data. Different studies 

lacked to find similar compounds, even within the same plant species (Evans and Allen-Williams, 

1992). Consistent performance of released compounds show that the same biosynthetic pathways are 

used by a wide range of plant families (Paré and Tumlinson, 1999). Other studies have proven that the 

same VOCs can be synthesized in plant species through different pathways (Dudareva et al., 2004).  
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Cruciferous plants, such as B. napus, emit a complex mixture of VOCs; some of these are important 

cues in host selection by cruciferous pests and their parasitoids, aiding both finding and recognition of 

the host plant (Bartlet, 1993; Evans, 1998; Smart, 2000; Cook, 2006, Schiestl, 2010). In Brassicaceae, 

the most specific odor arises from the breakdown of secondary plant substances, like the formation of 

isothiocyanates from the non-volatile glucosinolates (Visser, 1986). Glucosinolates also stimulated 

feeding by aphids (Feeny, 1977). Glucosinolates are not always responsible for insect behavior. 

Ceutorhynchus assimilis performs a typical dose-response curve for 1,8-Cineole and Z-3-hexenyl 

acetate. The females are highly attracted by these compounds whereas males respond less (Blight et 

al., 1995). The different reactions of males and females to VOCs have also been reported by other 

researchers (Evans and Allen-Williams, 1992). Synergistic effects among the components of an odor 

blend were likely to contribute to the attractiveness of insects to plants. Other studies found out that 

there were differences in sensitivity of different populations (Visser, 1986). All plants emitted VOCs 

from insect-damaged leaves and even from leaves distal to the site of damage (Paré and Tumlinson, 

1999). Plants can be induced by other plants to emit a herbivore-infested VOC blend which serve as a 

phytochemical signal between plant and insects (Blight et al., 1997; Paré and Tumlinson, 1999; Dicke 

and Loon, 2000). Insects discriminate between the blends of plants as shown in behavioral assays 

with Trichogramma japonicum. The egg parasitoid could distinguish among the blends of pest-

damaged and pest-undamaged plants (Rani, 2012). Chemical volatiles induced by feeding larvae of 

ceutorhynchid weevils were attractive for parasitoid wasps (Alford, 2011). The results of bioassays 

indicated that the stem borer-infested rice plants emitted volatile chemicals through their stem 

surfaces, which are produced as a direct result of herbivory by the stem borer Scirpophaga incertulans 

(Rani, 2012).  

VOC emissions during OSR growth were altered by drought stress compared to well-watered control 

plants. If plants are limited in their nutrient uptake, some components, which sometimes act as 

volatiles such as secondary metabolites, are not being produced (Veromann, 2013). We, therefore, 

initially hypothesized that stressed plants, which are less able to mobilize nutrients, emit fewer VOCs 

per gram fresh weight. This hypothesis was proven true for a number of compounds identified in this 

study. In contrast to other papers, however, we could not reveal that the control plants emitted the 

lowest amount of VOCs per gram fresh weight and drought stressed plants the highest amount of 

volatile emission per gram fresh weight. This corresponds with the findings of other studies, which 

describe that intact plants release lower rates of volatiles permanently (Röse et al., 1996). Based on 

studies with lima bean, drought stress also seems to directly affect VOC release (Takabayashi et al., 

1994). Delta-3-carene may play a role in drought stress as the emission was intensified in our plants. 

Also alkanes were significantly increased with drought stress. Only 1-dodecene was significantly 

decreased in contrast to the control plants and the herbivore-infested plants. Nevertheless, the 

duration of stress is a relevant factor for the VOC emission (Hsiao, 1973). Moderate stress, for 

example, has no influence on the glucosinolate level of OSR plants (Jensen et al., 1996). The same 

stress in the vegetative phase caused an increase of glucosinolates and proteins but decreased the oil 

content of seeds built during the generative phase, also inhibiting the uptake of nutrients (Jensen et 

al., 1996). There were only two components -methyl salicylate and acetic acid - which had increased 

with higher nitrogen levels in OSR (Veromann, 2013).  
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Another hypothesis was proven by our data as differences in the VOC profile of drought stressed 

plants and of herbivores attacked plants in contrast to the intact control plants were found. Since the 

emission of volatiles has previously been shown to be highly variable under different biotic and abiotic 

stresses (Holopainen and Gershenzon, 2010; Niinemets, 2010; Toome et al., 2010; Copolovici et al., 

2011), the stress induced by herbivory or drought did not result in the same VOC profile. In all plant 

species, the major headspace volatile is either a green leaf volatile or a terpenoid (Paré and 

Tumlinson, 1999). In our study the main component was D/L-Limonene over all treatments. An 

undamaged plant maintains a baseline level of volatile metabolites that are released from the surface 

of the leaf and/or from accumulated storage sites in the leaf. These constitutive chemical reserves, 

which often include monoterpene, sesquiterpene, and aromatics, accumulate to high levels in 

specialized glands or trichomes (Paré and Tumlinson, 1999). In addition, green leaf odors consist of a 

blend of saturated and unsaturated six-carbon alcohols, aldehydes and esters (Paré and Tumlinson, 

1999). Another group as terpenoids often occurs in plants as complex mixtures (Turlings and 

Tumlinson, 1992; Gershenzon, 1994). As a terpenoid only camphor was found in our plants, with a 

significant decrease for the herbivore attacked treatment. Comparatively Paré and Tumlinson (1999) 

findings corresponds to our profiles, as the monoterpene were almost equal, except that we 

additionally found sabinene, β-myrcene and γ-terpinene. With less water available for the plant, 

elevated levels of VOCs were released from infested individual plants relative to drought stressed 

plants (Paré and Tumlinson, 1999). One compound, 4,8 dimethyl-1,3,7-nonatriene, is often found in 

injured tissue, but also in our drought stressed plants (Turlings and Tumlinson, 1992; Dudareva et al., 

2004; Vuorinen, 2004). The levels of certain products in plants can have an impact on an insect’s 

feeding on these plants (Smart and Blight, 1997). Herbivorous populations can be influenced positively 

or negatively depending on the stress level (Stavrinides et al., 2010). There are even different 

population dynamics with or without drought stress (Stavrinides et al., 2010).  

Beside the VOC emission, drought stress had a large impact on plant height, thereby influencing the 

plant’s growth stage and fresh weight, too. Often, the leaf growth is considered to be inhibited by 

drought stress (Hsiao, 1973; Chaves et al., 2003). This must be a general problem as stress often 

negatively influences growth and metabolism of plants (Richardson, 2012). The odor compositions 

reflect plant conditions and changes in plant age, plant physiological state and crop spacing, during 

the season (Visser, 1986). In our study the fact that the focus was not on the time when VOCs were 

released should be considered. One study found out that there are some volatiles emitted in rhythmic 

time intervals (Jakobsen et al., 1994), but the function of the compounds in the plants is still unknown 

and not fully understood. One hypothesis is that the plant uses the VOCs to allure predators to reduce 

negative effects of herbivory as an induced defense. On the other hand, the VOC can be attractive for 

pollinators. The differences in the VOC emission of our three treatments underline the importance to 

understand the complete ability of VOC production of OSR. Although we found no consistent pattern 

with regard to plant responses to either herbivore attack or drought stress, we highlighted that the 

interactions between these parameters has not been well addressed so far. Additional studies are 

needed which vary either the level of stress and/or herbivory, taking into account different OSR 

cultivars to better understand which VOCs are up- or down-regulated under which specific conditions. 

Moreover, the feeding damage of OSR herbivores may vary with the level of stress, and different 
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species, feeding either internally or externally, may result in different VOCs, both qualitatively and 

quantitatively. 
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General discussion 

In the next decades, the climate will change. As temperature is considered as the most important 

environmental factor affecting insect distribution, development, behavior, survival and reproduction 

(Bale et al., 2002), the climate change might also alter the impact of insects on their host plants. This 

is an interesting point due to the competition between insect pests and humans for crops (Lamb, 1989) 

by reducing the yield for human nutrition by these insects. Recently, the number of studies 

investigating the influence of a changing climate on insect pests and their host plants increased. 

However, studies about the interaction between the rape stem weevils (RSW) and its host winter 

oilseed rape (WOSR) are still missing.  

This thesis aimed at complementing the results of an ongoing research of the interaction between 

WOSR and RSW. Therefore, different methods were used to study the influence of an increased 

temperature on different life stages of RSW and WOSR. Moreover, the volatile emission of drought 

stressed WOSR plants was determined. Specifically, we investigated the phenology of WOSR and the 

infestation dynamic of RSW (chapter 1). We further analyzed the impact of an increased soil 

temperature on WOSR growth and RSW infestation as well as the adult emergence (chapter 2). In 

addition, two experiments were conducted to analyze the interaction between WOSR and RSW with 

regard to an increased temperature (chapter 3+4). All investigations were carried out based on the 

research framework “KLIFF – Climate Impact and Adaption Research in Lower Saxony”. To the best of 

our knowledge, this is the first study about the influence of climate change on RSW, WOSR and their 

interaction performed in field, semi-field and laboratory trials.  

Effect of phenology of WOSR plants on the RSW infestation  

Across all experiments, the influence of temperature has been considered as the most important factor 

influencing the interaction between RSW and its host. The temperature should have an effect on the 

growth stage of the plant (Eitzinger et al., 2010). As insects are depending on the growth stage of 

WOSR as well as on climatic conditions (Williams and Carden, 1961; Koubaiti and Lerin, 1992), we 

assumed a higher infestation rate of the earlier developed variety in this field experiment (chapter 1). 

This was only confirmed for the first sampling dates by the data set. Finally, the late variety was more 

affected by the infestation of RSW. One reason might be that the abundance of RSW larvae was 

relatively high during the experimental time. 

To test the impact of damage potential of RSW on WOSR, we calculated the indices “stem injury 

index” and “damage index”. Both indices depend on the length of the plants. They are good estimates 

for the damage potential to compare plants at a definite time. The stem injury index was introduced by 

Eickermann et al. (2011), but they used only one sampling date to proof this index. Thus, the index 

was not verified for data sets at regular intervals.  

Another important point is the nutrition status of the plants. This status played a role on the damage 

potential of pollen beetles (Rusch et al., 2013). This is consistent with a study of Veromann et al. 

(2013). They found that the damage of pollen beetles and the cabbage seed pod weevil is linked to 

the N fertilization of the WOSR (Veromann, 2013). 

Effect of temperature on WOSR pants and RSW 

So far, the biology of the RSW and its interaction with WOSR is not completely known. In chapter 2, 

we investigated the influence of a soil warming experiment. We observed a significant impact of 
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increase of soil temperature 2 or 4°C on WOSR in spring. This is consistent with the theory that plants 

are also responding to climate warming (Westwood and Blair, 2010). For example, there are negative 

effects on olive orchards predicted for Southern California. This is caused by mild winters when the 

required vernalization of the olive trees cannot happen (Gutierrez et al., 2008). 

Climate change altered significantly the life stages of WOSR. A temperature increase of only a few 

degrees Celsius will result in an extended period of plant vegetation by a few weeks (Weigel, 2005). 

Consequently, the distribution of the plant can change which might result in an altered distribution of 

its associated herbivores. Unlike plant species, insects such as butterflies may respond quite quickly 

to climate fluctuations (Westwood and Blair, 2010).  

In this thesis, a temperature related impact was more sensitive on RSW than on plants. The adult 

emergence was increased with an additional 2°C soil temperature. This result is analogous to 

Westwood and Blair (2010). They showed that butterflies emerged earlier in the Canadian forest over 

the last decades. On the other hand, with a 2° and 3°C increase in average daily temperatures, the 

geographic distribution of the mealybug across California remains relatively unchanged (Gutierrez et 

al., 2008). According to Gregory et al. (2009), the climate alone does not determine the distribution of 

a species.  

Different WOSR varieties did not significantly differ on RSW population dynamics which confirms 

results by a previous study (Koubaiti and Lerin, 1992; Büchi, 1996). The growth stage development 

was more important on host selection than the variety (Koubaiti and Lerin, 1992). The variety with a 

more advanced growth stages was heavier infested by the RSW. This is consistent with Rusch et al. 

(2013).  

Laboratory trial 

Moreover, we observed an effect of temperature on the oviposition of RSW. This is in accordance with 

the results of other studies (Günthart, 1949; Alford, 2011), even for other insects (Hagstrum and 

Hagstrum, 1970; Hagstrum and Leach, 1973; Behrens et al., 1983; Wilstermann and Vidal, 2013). In 

our study, the impact of a constant compared to a varying temperature regime was significant. The 

plants used in this experiment had the same growth stage to avoid artifacts caused by the growth 

stage which is mainly responsible for the oviposition (Koubaiti and Lerin, 1992). It would be interesting 

to complete our data with future studies to obtain a complete life table for RSW. Many insects develop 

very slowly at the start of the season, when field temperatures are little higher than the threshold 

(Gilbert and Raworth, 1996). Consequently, the egg development can be very variable from year to 

year. Another point is that the Kaufmann effect was disregarded in our study. The Kaufmann effect 

leads to an increase in growth speed in the lower temperature range, but to a decrease in the upper 

range (Behrens et al., 1983).  

It is well-known that the development under sub-optimal temperature can have important 

consequences on the fitness of the resulting adult insect (Lessard and Boivin, 2013). The longevity of 

adults was expected to be elongated at lower temperatures, as already shown in other studies 

(Behrens et al., 1983; Bayhan et al., 2006; Jaramillo et al., 2009). Low temperature, however, can lead 

to different dysfunctions with increased fitness costs (Lessard and Boivin, 2013) and may also reduce 

the longevity of RSW adults. Our data set showed no differences in the life span of RSW at different 

temperatures. 
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Impact of drought stress on oilseed rape plants and rape stem weevils 

There are still huge knowledge gaps about the chemical interactions between plants and insect 

herbivores which can lead to changes in synthesis and release of volatiles by the plants (Paré and 

Tumlinson, 1999). As the selection of the host plant by ovipositing females may be the most critical 

stage for limiting the host range (Smith and Beck, 2013), females should be used in these tests 

(Röttger, 1978/79; Evans and Allen-Williams, 1992). The last chapter of this thesis was addressed to 

the VOC emission of OSR plants and a behavioral test with RSW.  

In general agreement with previous work, the time when VOC emission is detected, is important (Cole, 

1980; Lamb, 1989). There is a several hour delay between the beginning of herbivore damage and the 

release of induced VOCs (Dudareva et al., 2004). Mechanical damage causes immediate changes of 

VOC emission, but herbivore-induced changes can appear after 2-4 hours (Paré and Tumlinson, 1999; 

Smith and Beck, 2013). In our trial, the VOC emission was detected 48 hours after the beginning of 

the feeding tests, so that emission should be recorded during the whole experiment. This must be 

regarded in future trials. 

Effect of drought on OSR plants 

In chapter 4, we observed that the plants are slow down in their growth stage if drought stress occurs. 

Drought stress is already known for its responsibility for a growth reduction. Drought stress causes 

specific changes similar to changes induced by nutrient deficiencies (Hsiao, 1973). The effect of 

drought on OSR plants was clearly visible during the experiment. Drought-stressed plants showed the 

symptoms of wilting during the whole experiment. The stunted growth lead to the fact that stressed 

plants produce less straw and less pods with fewer seeds (Jensen et al., 1996). Similar results are 

presented in our study: the fresh weight was reduced. 

The effect of drought stressed plants on RSW larvae was not tested in our trial. As stressed plants are 

less provided with nutrients, this may result in a negative effect for the insect development. Ohnesorge 

(1991) described that a critical shortage of nutrition can have negative effects on the next generation 

of insects (Ohnesorge, 1991). Moreover, the water content of the plant tissue is positively correlated to 

larval growth (Coley, 1983) and therefore can have a positive effect on the larval development.  

Future development 

Each organism will be affected differentially by the climate change (Gutierrez et al., 2008). Thus, data 

should be regarded carefully when extrapolating results of insect-plant relations from greenhouse 

experiments to natural situations. Most models have been developed with limited data, often from a 

single location, and may not hold at other locations. An important issue when considering adaptations 

of insects to climate change is the imprecise prediction of the future climate. As consequence, smaller 

intervals in the temperature regimes should be used in future studies. 

To assess the interaction between RSW females and the VOC emission of WOSR, the attraction of 

insects to plants could be tested in a flight tunnel or an olfactometer. Furthermore the larval 

development on drought stressed plants is missing. Such an approach could answer the question if 

larvae are able to survive in stressed plants induced by a changing climate. Further trials could include 

infested WOSR plants with mining RSW larvae compared to uninfested plants. It would be interesting 

to see whether RSW females are able to discriminate between infested and uninfested plants. Another 
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study has shown that internal feeding is hard to observe in plants (Rani and Sandhyarani, 2012), but 

the VOC emission can give an indication for botanical changes.  
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Zusammenfassung 

Raps (Brassica napus L.) ist die bedeutendste Ölpflanze in Deutschland. Der Ertrag wird jährlich durch 

den Befall von Schädlingen bedroht. Zum Einsatz kommen im konventionellen Anbau verschiedene 

Insektizide. Der Befall mit Rapsstängelrüsslern (Ceutorhynchus napi GYLL.) kann bis zu 70 % 

Minderertrag zur Folge haben. Entscheidend für die Ausprägung des Schadens ist der Vorgang der 

Eiablage. Mit der Eiablage gibt das Weibchen ein Sekret ab, welches das Stängelmark schädigt und 

die charakteristischen Symptome hervorruft. Die Symptome sind Stauchung der Pflanzen, verdrehte 

und aufgeplatzte Stängel. Die Wunden können Eintrittspforten für pilzliche Erreger sein. Die Eier bzw. 

Larven, die im Stängel schlüpfen und sich vom Stängelmark ernähren, sind mit konventionellen 

Insektizidbehandlungen nicht erreichbar. Der Schaden durch erwachsene Tiere ist, abgesehen von 

der Eiablage, unerheblich. Im Hinblick auf die Biologie von Insekten sind die Temperatureinflüsse von 

außen maßgeblich. Für den Klimawandel wird eine Erwärmung für Niedersachsen vorhergesagt von 

2°C für die nahe Zukunft und 4°C für den Zeitraum 2070 - 2100. 

Ziel dieser Studie war es mit verschiedenen Versuchen den Einfluss des Klimawandels auf die 

Schädling-Pflanzen Beziehung zu benennen. Dazu gehörte ein Feldversuch, der angesetzt wurde um 

die Ausprägung des Schadens durch den Rapsstängelrüssler an zwei verschiedenen Sorten zu 

vergleichen. Des Weiteren wurde untersucht wie sich eine erhöhte Bodentemperatur auf die 

Wirtspflanze und deren natürlicher Befall sowie das Schlupfen der erwachsenen Rüssler auswirkt. Im 

Labor wurden die Eiablage, die Lebensdauer und die Fertilität erwachsener Weibchen unter Einfluss 

unterschiedlicher Temperaturen beobachtet. Im Zuge des Klimawandels wird sich neben der 

Temperatur auch die Regenverteilung verändern. Deshalb befasste sich abschließend ein Versuch mit 

der Auswirkung von Trockenstress auf das Duftstoffspektrum von Raps.  

Die Ergebnisse dieser Studie sind ebenso vielfältig wie die Versuche selbst. Der Feldversuch hat 

keine Unterschiede des Befalls zwischen zwei Sorten gezeigt. Im Frühjahr bevorzugten die RSR die 

frühe Sorte und wechselten später auf die späte Sorte. Eindeutige Präferenzen waren nicht 

erkennbar. Indikatoren für die Ausprägung des Schadens kristallisierten sich nicht heraus.  

Innerhalb der Göttinger Bodenerwärmungsanlage wurde deutlich, dass die Erhöhung der 

Bodentemperatur auf 2°C und 4°C einen signifikanten Einfluss auf das Wachstum der Rapspflanzen 

hatte. Dies spiegelte sich auch in den Befallshäufigkeiten wieder. Die großen Pflanzen aus den 

erwärmten Bereichen wurden zur Eiablage der weiblichen Rapsstängelrüssler bevorzugt. In den 

erwärmten Bereichen wurden auch eine Woche früher 50 % des Schlupf der Erwachsenen erreicht. 

Die Eiablage ist temperaturabhängig. Je höher die Temperatur ist, desto signifikant mehr Eier werden 

gelegt. Es wurde ein Unterschied deutlich im Temperaturbedürfnis des Ei-Schlupf und in der 

Mortalitätsrate, ob die Temperatur gleichförmig oder wechselnd auf die Eier einwirkt. Die Fertilität und 

die Lebensdauer der erwachsenen Weibchen wurden nicht von der Temperatur beeinflusst.  

Trockenstress verändert das Duftstoffspektrum von Rapspflanzen. Es gibt Unterschiede in der 

Zusammensetzung der Duftstoffprofile und in der Intensität der abgegebenen Stoffe. Diese werden 

verändert durch den Trockenstress sowohl als auch durch den Fraß der erwachsenen Rüsslern.  

Diese Versuche waren der Anfang für die Erforschung des Klimawandels am Beispiel der Interaktion 

zwischen Raps und Rapsstängelrüsslers. Abschließend müssen weitere Versuche den komplexen 

Einfluss des Klimawandels auf dieser Beziehung klären.  
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