
 

 

 

 

 

Climate response of above- and belowground productivity 

and allocation in European beech 

 

 

 

Dissertation 

zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades 

„Doctor rerum naturalium“ 

der Georg-August-Universität Göttingen 

 

im Promotionsprogramm Biologie 

der Georg-August University School of Science (GAUSS) 

 

 

 

vorgelegt von 

Hilmar Müller-Haubold 

aus Linnich 

 

 

 

Göttingen, 2014 

 





 

Betreuungsausschuss 

Prof. Dr. Christoph Leuschner, Abteilung Pflanzenökologie und Ökosystemforschung, 
Universität Göttingen 

Prof. Dr. Markus Hauck, Abteilung Pflanzenökologie und Ökosystemforschung, Universität 
Göttingen 

Dr. Dietrich Hertel, Abteilung Pflanzenökologie und Ökosystemforschung, Universität 
Göttingen (Anleiter) 
 

Mitglieder der Prüfungskommission 

Referent: Prof. Dr. Christoph Leuschner, Abteilung Pflanzenökologie und 
Ökosystemforschung, Universität Göttingen 

Korreferent: Prof. Dr. Markus Hauck, Abteilung Pflanzenökologie und Ökosystemforschung, 
Universität Göttingen 
 

Weitere Mitglieder der Prüfungskommission 

Prof. Dr. Hermann Behling, Abteilung Palynologie und Klimadynamik, Universität Göttingen 

Prof. Dr. Erwin Bergmeier, Abteilung Vegetationsanalyse und Phytodiversität, Universität 
Göttingen  

Prof. Dr. Michael Bredemeier, CBL - Sektion Waldökosystemforschung (SWF), Universität 
Göttingen 

Prof. Dr. Dirk Hölscher, Abteilung Waldbau und Waldökologie der Tropen, Universität 
Göttingen 
 
 

 

 

 

 

 

Tag der mündlichen Prüfung: 16.07.2014 

 





 

Table of contents  

 

CHAPTER 1 9 

 General Introduction 
 

CHAPTER 2 29 

 Material and methods 
 

CHAPTER 3 39 

 Climate responses of aboveground productivity and allocation  
  in Fagus sylvatica: a transect study in mature forests 
 

CHAPTER 4 71 

 Climatic drivers of mast fruiting in European beech and  
 resulting C and N allocation shifts  

 

CHAPTER 5 111 

 Fine root biomass and dynamics in beech forests across a  
 precipitation gradient – is optimal resource partitioning theory  
 applicable to water-limited mature trees? 

 

CHAPTER 6 153 

 Synthesis 
 

CHAPTER 7 173 

 Summary 
 

CHAPTER 8 179 

 Appendix 
 





 

   

List of abbreviations 
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Ca    Area-based carbon concentration 
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CEC    Cation exchange capacity 
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MAP    Mean annual precipitation 
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RSVI       Relative stem volume increment 

RSVIa     Relative annual stem volume increment 

RTD    Root tissue density 

SLA    Specific leaf area 

SRA     Specific root area 

SRL     Specific root length 

SVIa    Annual stem volume increment 

T    Temperature 

VWC    Volumetric water content 

WSC     Water storage capacity 

WUE    Water use efficiency 

ΣfSUT    Fraction of fine-grained soil particles < 200 µm 

ΣUT    Fraction of fine-grained soil particles < 63 µm 
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Background 

Global and regional climate change 

Human activity over the past 250 years has increased the amount of greenhouse gases in 

the atmosphere. Since 1750, atmospheric concentrations of CO2 have risen from < 280 ppm 

to 393 ppm in 2012 (Le Quéré and others 2013). Also the concentrations of several other 

greenhouse gases, such as methane (CH4) and nitrous oxide (N2O) are increasing as a result 

of (agro-) industrial activities (IPCC 2013). Elevated concentrations of atmospheric 

greenhouse gases have changed Earth’s climate, raising the globally averaged combined land 

and ocean surface temperature by 0.85 ° C between 1880 and 2012 (IPCC 2013). Current 

models suggest an increase in global temperature by 3.2 – 5.4°C above the mean temperature 

(1850 – 1900) by the end of the 21st century (IPCC 2013). These changes will very likely 

cause large impacts on the global hydrological cycle (Huntington 2006; Gerten and others 

2007). However, alterations of temperature and, even more, of precipitation will be largely 

subject to regional and seasonal variations (Klein Tank and others 2002; Brunetti and others 

2012). Most climate change scenarios for Central Europe predict a rise in mean annual 

temperature by 2.5 – 3.5 °C until the end of the 21st century as well as increasing frequency 

and raised intensity of summer heat waves (Rowell and Jones 2006; Fischer and Schär 2009). 

Projections of climate change on regional scale for Northern Germany are similar to those 

referring to Central Europe (Jacob and others 2008; Moseley and others 2012). Concurring 

shifts of temperature and precipitation will likely result in a substantial aggravation of the 

climatic water balance during the vegetation period in Germany and many parts of central and 

southern Europe (Kundzewicz and others 2006; Fischer and others 2012).  

 

Responses of plants, populations and species to climate change 

These, on evolutionary time scale, abrupt changes in growing conditions pose a major 

threat to present plant populations (Walther and others 2002; Parmesan 2006). The capacity of 

plants to cope with such radical changes basically rest upon three reaction types with 

differences regarding the spatial and temporal scale: phenotypic plasticity (acclimation), 

genotypic evolution (adaptation) and changes in distribution (migration) (Anderson and others 

2012). 

As acclimative responses to environmental changes, plants may alter their physiological, 

phenological, growth and allocation behaviour by variations of gen expression and 



General Introduction 
 

  11 

metabolism within species-specific limits. Adaptation alters the potential of plants to 

acclimate to environmental variations via micro-evolutionary processes on population level, 

and is therefore regarded as a key factor for a successful adaption of plants to climate change 

(Bradshaw and others 2006). However, adaptation processes involve genetic changes and 

therefore typically require several generations to be put into effect. Comparisons of the 

historical and current distributions of many species suggested their relationships with climate 

to be largely constant (Bradshaw 1991; Huntley 1991). Therefore, among response processes 

of plants to current global climate change, only a minor importance is assumed for adaptation 

(Jump and Peñuelas 2005).  

With changes in environmental conditions formerly limiting the species´ distribution 

range, migration is expected as the most immediate reaction of plants at population level 

(Thuiller and others 2008). A directional shift of species´ ranges toward higher latitudes and 

altitudes in response to global warming has been found in paleoecological studies (Prentice 

and Jolly 2001; Parmesan 2006) as well as in numerous observations of current species´ range 

shift (Parmesan and Yohe 2003; Peñuelas and Boada 2003; Hickling and others 2006; Chen 

and others 2011). For the Holocene warming period, several authors estimate the post-glacial 

migration of Fagus and other temperate tree species to have occurred at rates of 60-170 m y-1 

(McLachlan and others 2005; Bialozyt and others 2012; Feurdean and others 2013). In 

contrast, simulated future migration rates for such tree species are much slower (Meier and 

others 2012), likely due to a greater influence of competition and habitat fragmentation during 

the present warming phase. 

As the current increase in concentrations of atmospheric CO2 is several orders of 

magnitude greater than in any previous period of rapid change in atmospheric CO2 during the 

last 500 million years (Peñuelas and others 2013), present global change may likely exceed 

the capacities of many plant species – at the individual, population and community level – to 

assimilate them (Leemans and Eickhout 2004). Beyond global warming, plants are 

additionally threatened by further impacts like N eutrophication, habitat fragmentation and 

species invasion. Compared to other biological resources, forest ecosystems and silviculture 

are especially vulnerable to rapid environmental changes because of extensive life spans and 

long cultivation periods of temperate forest trees (Spellmann and others 2007). 
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Plant responses to shifting growing conditions 

Global climate change is likely to simultaneously alter many aspects of local growing 

conditions, regarding climate (e.g. precipitation, temperature, solar radiation) and atmospheric 

input of elements to forests and other ecosystems. These alterations will directly affect the 

availability of resources for plants, such as water, light and nutrients (Lindner and others 

2010). Besides abiotic conditions, the capture of requisite resources is further influenced by 

the ability of plants to react to changing conditions with above- and belowground allocation 

and active incorporation processes. 

It is widely assumed that elevated CO2 concentrations will enhance photosynthesis and 

reduce stomatal conductance, which in theory enables plants to conserve water and to enhance 

their water use efficiency (WUE) (Schäfer and others 2002; Battipaglia and others 2013). This 

CO2-induced increase in primary productivity and WUE is commonly known as the 

“fertilization effect” of CO2 (Farquhar 1997; Hättenschwiler and others 1997). Yet, multiple 

studies demonstrated that enhanced CO2 concentrations will not necessarily lead to an 

increased drought resistance of temperate forests, because stomatal control of many tree 

species is widely unresponsive to elevated CO2 (Medlyn and others 2001). In addition, the 

water conserving effects arising from decreased stomatal conductance can at least partially be 

compensated by opposing effects like increased leaf area (Peñuelas and others 2011; Donohue 

and Roderick 2013). Besides effects on the water economy, increases in biomass production 

are often limited by other environmental factors (De Vries and Posch 2011). Accordingly, 

results from a free air CO2 enrichment (FACE) experiment suggested a reduction in water 

consumption of less than 10% and no significant increase in wood increment in a mature 

mixed deciduous forest under artificially enhanced CO2 concentrations (Asshoff and others 

2006; Leuzinger and Körner 2007). 

Although heat and drought tend to occur simultaneously in nature, both factors are known 

to provoke stress in plants in very distinct ways (Rennenberg and others 2006). The response 

of a plant to warmer growing conditions thus primarily depends on whether or not its habitat 

is limited by water (Lindner and others 2010). With increasing temperature, photorespiration 

increases faster than photosynthesis (Sage and Kubien 2007), thereby causing negative 

impacts on the C economy of plants. Under sufficient water supply, plants may respond to 

moderate warming with an adaption of their optimal temperature for CO2 assimilation 

(Gunderson and others 2010). Such acclimation was often observed to result in increased 

photosynthetic activity and biomass production, if not limited by other resources like nutrients 

(Peñuelas and others 2013). In contrast, extreme heat is thought to heavily, albeit reversibly 



General Introduction 
 

  13 

impair photochemistry in photosynthesis or to cause damage to the thylakoid membrane 

(Schrader and others 2004). Therefore, morphological adaptations which improve both the 

uptake of nutrients and the thermal balance of leaves are crucial for maintaining the vitality of 

plants under warming (Michelsen and others 1996; Jónsdóttir and others 2005). In addition to 

effects on photosynthesis, numerous studies have demonstrated alterations in the timing of 

developmental events in plants such as leaf unfolding, flowering, plant growth and fruiting as 

a result of warming climatic conditions (e.g. Menzel and Fabian 1999; Fitter and Fitter 2002; 

Cleland and others 2007; Wolkovich and others 2012). 

Among several climatic factors affecting terrestrial net primary production, increasing 

deficit in the climatic water balance is estimated the most important (Zhao and Running 

2010). Major threats induced by temporal hydrologic imbalances and resulting decreases in 

the plants´ water potential are inherent dangers of xylem cavitation and embolism as well as 

the impairment of many biochemical, metabolic and transport processes (Rennenberg and 

others 2006). Such implications of drought may directly and indirectly cause negative impacts 

on the C balance of plants and thereby induce a decline in productivity, increases in 

vulnerability to secondary stresses (e.g. insect infestations, pathogens or frost damage) and 

may finally lead to the death of plants (Allen and others 2010). 

Plants have developed several physiological and morphological mechanisms to improve 

their water balance, i.e., to reduce water losses to the atmosphere, to enhance water uptake 

from the soils, or to reduce damages caused by enhanced water tension (Bartels and Sunkar 

2005; Maseda and Fernández 2006). As an immediate response to water deficits, plants 

typically increase their leaf diffusive resistances, which directly down-regulates transpiration 

but also photosynthesis. Persistent drought stress may also result in complex metabolic 

impairment involving a decline in rubisco activity that additionally limits C assimilation 

(Flexas and others 2004). In order to maintain a favourable leaf water status, many plants are 

able to adjust their leaf osmotic potential by accumulating ions and organic solutes when 

exposed to drought stress (Chen and Jiang 2010). Besides such physiological short-term 

reactions, also alterations of morphological structures may contribute to the plants’ 

acclimation to increasing drought. Plants can achieve long-term plastic adjustment to water 

shortage by increasing their allocation of carbon to the root system (thereby increasing their 

root:shoot ratio; Xu and others 2007; Shao and others 2008; Dreesen and others 2012), by 

lowering water losses via reduction of the transpiring leaf surface (Ogaya and Penuelas 2006), 

and by developing a highly conductive xylem while keeping the cavitation vulnerability of the 

xylem low (Sperry and others 2002). 
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European beech forests in a changing climate  

European beech (Fagus sylvatica L.) is by far the most abundant tree species of Central 

Europe’s natural forest vegetation and one of the economically most important trees 

(Ellenberg and Leuschner 2010). Owing to an ample physiological tolerance, the distribution 

range of F. sylvatica covers large parts of Central and Western Europe (Figure 1.1) covering 

sites on a broad range of climatic and edaphic growing conditions, from poor, highly acidic to 

neutral soils and from high to low precipitation regimes (Leuschner and others 2006). Among 

other traits, especially a high degree of light interception of mature trees in company with a 

high shade tolerance of seedlings and saplings make this late-successional tree species an 

effective competitor to other tree species. As a result of human activities, the abundance of 

beech was reduced to c. 7 % of its potential areal cover (BMU 2011). While currently beech 

covers 17.3% of the German forest area, forestry explicitly aims to increase of the proportion 

of beech in German forests (BMVEL 2004; NLF 2006).  

 

 
Figure 1.1. Distribution map of Fagus sylvatica (Euforgen 2009, www.euforgen.org, modified). 

Whether the plasticity of F. sylvatica with respect to local growing conditions enables this 

species to cope with future climate conditions in its current distribution range is 

controversially discussed (e.g. Leuschner and others 2001; Schraml and Rennenberg 2002; 

Rennenberg and others 2004; Ammer and others 2005; Bréda and others 2006; Czajkowski 

and others 2006; Geßler and others 2007; Kölling and others 2007). Compared to other 

temperate forest trees such as Quercus, Tilia, Carpinus, Fraxinus, or Pinus species, European 

beech is considered as relatively drought-susceptible (Roloff and Grundmann 2008; Köcher 
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and others 2009; Zapater and others 2012). In response to soil water deficits, beech exhibits a 

drought sensitive stomatal down-regulation of leaf conductance, photosynthesis and sap flow, 

entailing reductions of canopy carbon (C) gain and stem increment (Dreyer 1997; Leuschner 

and others 2001; Leuzinger and others 2005; Granier and others 2007). This behaviour is also 

reflected in results of several dendro-ecological studies which relate summer water 

availability with current year ring width (Dittmar and others 2003; Lebourgeois and others 

2005). However, increased levels of tree mortality in succession to severe drought events are 

assumed to be related with xylem dysfunction as a consequence of drought-induced 

cavitation, rather than with C limitation (Bréda and others 2006). Investigations in mature 

beech trees did not find evidence for leaf osmotic adjustment with soil water deficits (Backes 

and Leuschner 2000; Leuschner and others 2001) whereas ecotype-specific increases of 

proline are reported to occur in leaves of young trees (Schraml and Rennenberg 2002). An 

increase in transpiring leaf surface on sites that are more prone to summer-drought is assumed 

to be explained by positive influences of enhanced temperature and nitrogen availabilities 

during the period of leaf development (Meier and Leuschner 2008b). Yet, summer drought 

was often reported to result in advanced or even premature leaf shedding, maybe induced by 

embolism, thereby shortening the period of C assimilation under drier climates (Dreyer 1997; 

Ciais and others 2005; Bréda and others 2006). Numerous studies attribute growth limitation 

at the southern and south eastern distribution limits of beech to precipitation shortfalls and 

climatic continentality (Gutiérrez 1988; Biondi 1993; Dittmar and others 2003; Lebourgeois 

and others 2005), and identify drought stress as the main driver of beech dieback in its 

southern range edge (Jump and others 2006; Piovesan and others 2008). There are indications 

that the growth-sensitivity to drought in mature beech trees is somehow reduced when 

permanently exposed to artificially enhanced CO2 concentrations (Leuzinger and others 2005; 

Asshoff and others 2006; Leuzinger and Körner 2007). 

Besides precipitation input, also soil texture and plant rooting depth are crucial factors in 

determining the plant available soil water. Therefore, the vitality of beech is most vulnerable 

to climate change in regions where soil moisture is already limited by geographical or 

pedological aspects (e.g. shallow or sandy soils resulting in low water storage capacity) under 

present site conditions (Rennenberg and others 2004; Overbeck and others 2011). Despite 

enhancing effects of higher temperatures on mineralisation rates of organic matter, also 

pedospheric nutrient uptake was shown to be strongly inhibited by reduced transpiration upon 

enhanced levels of temperature, soil drought and CO2 concentrations (Rennenberg and others 

2009; Schleppi and others 2012).  
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Environmental influences on productivity and allocation 

Productivity of trees equally depends on the acquisition of limited aboveground and 

belowground resources. Besides site-specific limitations of resources, also mechanisms of 

competition between plants additionally impair the uptake of requisites, such as water, 

nutrients and carbon; the latter one primarily indirectly by limitations of light availability. 

According to optimal partitioning theory (OPT), plants should allocate resources to the 

growth of that organ which acquires the most limiting resource (Thornley 1972; Bloom and 

others 1985). This theory implies that there is no species-specific equilibrium between single 

components of growth. Instead, resource allocation patterns within trees are highly dynamic 

and partitioning is adaptive to changes in growing conditions (Gleeson and Tilman 1992) and 

tree age (Genet and others 2010). As a variable fraction of photosynthetic C gain in the tree is 

used for wood production, forestal efforts since long aimed at increasing the proportion of 

wood by means of stand structural management and genetic selection.  

OPT suggests that under limiting conditions of soil resources, root biomass should be 

produced at higher rates to build more absorptive surface. Studies on the belowground 

biomass production of temperate tree species in reaction to experimental or natural variations 

of water availability, however, yield an unclear picture as they report both positive (Joslin and 

Wolfe 1998; Leuschner and others 2001; Konôpka and others 2005) and negative (Leuschner 

and Hertel 2003; Leuschner and others 2004; Meier and Leuschner 2008a) shifts in the 

root:shoot ratio and fine root biomass with enhanced drought. This dissent may be caused by 

additional influences on fine root biomass by increasing fine root mortality, functional shifts 

(resource uptake vs. resource storage) or altered patterns of interactions with root symbionts 

(Eissenstat and others 2000; Mccarthy and Enquist 2007; Kobe and others 2010). It was 

shown that drought does not only reduce the C assimilation but also limits the C transfer from 

the tree canopy to the roots (Ruehr and others 2009). 

Also the pattern of reproduction in beech is strongly subject to climatic growing 

conditions. At irregular time intervals, many beech trees of a population synchronously 

produce large seed crops, called masting (Hilton and Packham 2003). In mast years of beech, 

a large portion of current assimilates and other resources are consumed by the production of 

reproductive material. Unlike utilization sinks (i.e. vegetative growth, storage, defence), 

reproductive sinks do not enhance the plants´ ability to gain or to maintain access to resources 

and therefore, resource investment into reproduction is not thought to be controlled according 

to optimal partitioning (Doust 1989). However, the temporal concentration of seed production 

on mast years is also considered a mechanism suitable to increase resource efficiency (Kelly 
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1994). It is still a matter of debate, which particular climate events synchronize masting but in 

a majority of studies, either elevated temperature or drought was identified as the proximate 

factor controlling floral induction in beech (Piovesan and Adams 2001). Although it is 

considered certain that internal dynamics of carbon or nitrogen (N) must be involved in that 

regulation (Miyazaki 2013), a causal relationship between assumed climatic triggers and 

resources could not fully be explained so far. For reasons that are not yet understood, masting 

in beech occurs at increasing frequency since the last three decades (Övergaard and others 

2007). Fructification in beech is inevitably linked to a switch in resource allocation 

(Drobyshev and others 2010). Therefore, the advanced frequency and intensity of fruit 

production is likely to substantially alter forest productivity and forest biogeochemical cycles 

and thus may be another factor constraining vegetative growth and vitality of beech forests in 

future. 
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General study aims 

    In this comparative investigation on above- and belowground productivity of beech forest 

stands across a precipitation gradient in Northern Germany (540 – 820 mm y-1), species-

specific mechanisms of morphological adaptation to alterations of long-term climatic growing 

conditions in beech (Fagus sylvatica L.) should be revealed. Because drought intensity is 

partly dependent on the water retention and water conduction properties of the soil, additional 

emphasis is given to the influence of soil texture on the evolvement of soil water deficits in 

the Pleistocene lowlands of north-western Germany during summer. Results of this study are 

expected to allow conclusions on future climate responses of Fagus sylvatica ranging toward 

the natural drought-induced limit of this species´ current distribution in Central Germany 

(Kölling and others 2007; Leuschner 2009). 

 

This dissertation is subdivided into three studies focusing on different aspects of productivity 

and resource allocation in mature beech forests. 

 

Major study aims were to 
 

i) disentangle partial influences of precipitation and other climatic parameters on the 

 aboveground productivity and growth partitioning in adult beech trees, 
 

ii) identify weather variables proximately controlling the reproduction behaviour of 

 Fagus sylvatica and to assess trade-offs between vegetative and reproductive 

 growth. 
 

iii) investigate adaptive responses of belowground allocational and morphological 

 plasticity to shifts in hydrological regimes,  

 

    This study was conducted within the research co-operation KLIFF (Klimafolgenforschung 

in Niedersachsen - Climate impact and adaptation research in Lower Saxony) which aims to 

increase the knowledge base on consequences of climate change at regional and local scales, 

in order to develop sustainable adaptation strategies for the management of natural resources 

in Lower-Saxony, Germany. 
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Two-factorial plot design: climatic and edaphic drought 

     The growth sensitivity of mature beech trees to long-term reductions in water availability 

was studied using a two-factorial plot design. Both factors refer to major determinants of 

water availability, i.e., precipitation input and soil water storage. For this purpose, 12 mature 

beech stands with comparable stand structure were selected in the Pleistocene lowlands of 

north-western Germany. For minimising additional influences by soil chemical variation, all 

stands grew on comparable geological substrate (Saale glacial meltwater sand or moraine 

deposits covered by periglacial drift-sand). 

 
Study sites 

     The study plots are located in six forest districts along a 130 km-long NW-SE transect in 

the East of the state Lower Saxony and the western part of Saxony-Anhalt; from west to east: 

Sellhorn (Se), Oerrel (Oe), Unterlüß (Un), Göhrde (Go), Klötze (Kl), Calvörde (Ca, site 

acronyms in brackets; see Figure 3.1). This transect spans the regions of Lüneburg Heath, 

Wendland and Altmark and represents a climatic transition from an oceanic to a sub-

continental climate with a continuous decrease in mean annual precipitation (MAP; 816 to 

543 mm y-1) and a slight increase in mean annual temperature (MAT; 8.4 to 9.1 °C) from west 

to east (Figure 2.1). Also long-term climate conditions during the vegetation period (April-

October) show a clear precipitation-decline from west to east (470-330 mm) and a minor 

temperature increase (12.7-13.6 °C). The 12 plots were located at elevations of 72 - 125 m 

a.s.l. in level or only slightly sloping terrain. All stands occurred on highly acidic and 

nutrient-poor sandy or sandy to loamy soils originating from fluvio-glacial sands or moraine 

deposits of the penultimate Saale Ice Age (Drenthe and Warthe stadials) covered by 

periglacial drift sand. The mineral soils (dystric or umbric Arenosols or Podzols) are covered 

by 4-9 cm-thick organic layers.  

     In order to include the influence of soil water storage capacity (AWSC) on the water 

availability of trees in our investigation, pairs of study plots with different soil texture (sandy 

vs. loamy-sandy) were selected at almost each study site. The initial plot design was slightly 

modified: at the Oerrel site, no loamy plot was available; at the driest site in Calvörde, one 

loamy-sandy and two sandy plots were established. Hence, seven out of the 12 study stands 

grew on more coarse-grained meltwater sands and sandy moraine deposits with low silt and 

clay content (denoted by the plot-suffix ‘S’), five plots were chosen on loam-richer sandy 

deposits with higher contents of silt and clay (plot-suffix ‘L’; Figure 2.2). Thus, the plot 

design consisted of a matrix of 12 beech stands differing in the exposure to climatic and 

edaphic drought. 
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Figure 2.1. Climate diagrams for the two sites located at the moist (Sellhorn) and dry end (Calvörde) of the 
investigated precipitation gradient in Northern Germany. Values are shown for the long-term averages (1971-
2000) and the three study years 2009 (late-summer drought), 2010 (early-summer drought), and 2011 (late-
spring drought) in which aboveground net primary production was recorded. Data obtained from the 1km x 1km 
grid data set from Deutscher Wetterdienst. 
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     The stands were selected for the structural criteria of (i) dominance of beech, (ii) mature 

age (85-140 years), and (iii) closed canopy (> 95 % canopy closure). All 12 plots were either 

monospecific beech stands (n = 6) or stands dominated by F. sylvatica with some admixture 

of Sessile oak (Quercus petraea Matt. Liebl; n = 5) or Douglas-fir (Pseudotsuga menziesii 

(Mirb.) Franco; n = 1). The cumulative basal area of the stands ranged from 25 to 45 m2 ha-1 

with no significant relationship to the shift of long-term climatic conditions. Beech held 81 to 

100 % of the stand basal area and 95 to 100 % of the canopy projection area in all stands, 

except for the Oerrel plot (61 and 84 %, respectively). The mean height of beech trees varied 

from 24 to 34 m between the stands and tends to decline towards the drier sites. A second tree 

or shrub layer and a herbaceous layer was lacking in all study plots. With the exception of the 

study site in Oerrel which was established by planting, all stands originated from natural 

regeneration. Detailed physiographic and stand structural characteristics of the 12 forest 

stands are summarized in Table 3.1.  

 

Soil hydrological and chemical analyses 

For a high potential rooting depth on sandy soils, investigations of soil properties were 

executed to a soil depth of 120 cm. Analyses of soil chemical properties, particle size 

distribution and water retention properties were conducted for each single soil horizon 

separately. To determine particle size distribution, dried soil samples were pre-treated with 

30% H2O2 and 4% Na-dithionite-citrate. Particle size classes were separated by sieving 

(particle size: 2000-20 µm) and sedimentation (particle size < 20 µm). Soil texture averages 

over the entire 120 cm soil depth were weighted by horizon thickness. The storage capacity 

for plant-available water (AWSC) of the soils was derived from laboratory desorption curves 

(3 pF-curves per horizon) at matrix potentials between -300 hPa and -1.5 MPa and 

subsequently summed up to a profile depth of 1.2 m. Volumetric soil water content (VWC) 

was continuously measured at 6-h intervals in every plot from July 2009 onwards (plot #12: 

since March) using time domain reflectrometry probes (TDR, CS616, Campbell Scientific 

Inc., Logan, UT, USA) installed at 20, 60 and 120 cm soil depth. 

Mineral soil samples for chemical analysis were not only taken from the central soil pit 

but also from four marginal locations on the plot, in order to cover the spatial variability of 

soil properties. Soil material was sieved and exchangeable cations were extracted using 1 M 

NH4Cl-solution. Cation concentrations were measured by Inductively Coupled Plasma 

Optical Emission Spectrometry (ICP-OES; Optima 5300 DV, PerkinElmer, Wellesley, USA). 

Effective cation exchange capacity (CEC) was calculated by summing up all exchangeable 
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cations. The sum of base cations (Na+, K+, Ca2+ and Mg2+) in relation to CEC is expressed as 

base saturation (%). The depth and chemical properties of the organic layer (leptomoder or 

mormoder, see Green et al. 1993) were analyzed in 18 and 6 randomly collected samples per 

plot, respectively. 

Granulometric analysis of the upper 120 cm of the mineral soils showed that sandy soils 

contained on average 29.1 % (± 5.6 %) of fine grained particles < 200 µm, i.e., the fractions 

of fine sand, silt and clay (ΣfSUT). In contrast, the loam-richer soils showed significantly (p < 

0.01, Mann-Whitney U-test) higher fractions of soil particles from these small size classes 

(mean = 53.1 ± 3.2 %, Figure 2.2). This difference in soil texture between the two plots of a 

pair was very distinct on the drier sites of the transect (Go, Kl, Ca), while it was not that 

pronounced at the two moistest sites (Se, Un). The variability of water storage capacity is 

known to principally depend on particle size composition of the soils. Accordingly, figures of 

AWSC (cumulated for 120 cm soil depth) are closely correlated to the proportion of fine-

grained soil particles (ΣfSUT) and ranged from 46 to 111 mm for the sandy soils (mean = 

81.8 ± 8.9 mm), and from 78 to 140 mm on the loam-richer soils (mean = 105.4 ± 11.5 mm). 

However, an intermediate AWSC value of 107 mm *120 cm-1 which was derived from pF-

curves in plot #7 (Go-S) appears unreliable as it contrasts strongly with the very coarse-

grained soil texture over the entire investigated soil depth (Figure 2.2). 
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Figure 2.2. Soil physical properties of the 12 study plots. Left part: Fraction of fine grained soil particles 
(ΣfSUT; particle size < 200µm; indicated by bars) and available water storage capacity (AWSC; indicated by 
asteriscs) to a soil depth of 120 cm mineral soil. Filled bars = loam-richer soils (N = 5), open bars = sandy soils 
(N = 7). Small latin letters indicate significant difference in particle size distribution between the two substrate 
classes (Mann-Whitney U-test, p < 0.01). Right part: Water storage capacity related to the fraction of fine 
grained soil particles for all study plots (solid line): R2 = 0.43, p = 0.01; excluding plot #7 (dotted line, see text): 
R2 = 0.73; p < 0.001. 



CHAPTER 2 
 

 34 

     Average soil acidity of the 120-cm profiles of mineral soil ranged from pH (KCl) 3.6 to 

4.4 (3.5 to 4.1, for the upper 30 cm of mineral soil) and showed a slight increase (i.e., pH-

values decreased) towards drier sites (R2 = 0.25, p < 0.05). This increase was paralleled by 

decreasing CEC (R2 = 0.25, p < 0.05) and decreasing base saturation (R2 = 0.31, p < 0.05) in 

the upper soil layers (30 cm) with declining MAP. Dry matter analyses of the organic layer 

showed significantly increasing concentrations of Ctotal (R2 = 0.25, p < 0.05), Ntotal (R2 = 0.35, 

p < 0.05) and Ptotal (R2 = 0.67, p < 0.001) with increasing MAP, whereas the thickness of the 

organic layer as well as the Corg/Norg ratio were largely unaffected by the climatic shift along 

the climate transect.  

 
Climate during the study period 

Monthly data of precipitation, temperature (mean, min, max) and sunshine duration for all 

study plots were obtained from the 1km x1 km grid data set of the German Meteorological 

Service (Deutscher Wetterdienst, Offenbach, Germany). To increase data reliability, climatic 

data regionalized to the 12 study plots were calculated by averaging the data of the nine 

nearest grid fields for each location.  

Annual precipitation (or precipitation totals for the vegetation period) during our four-year 

study period showed a continuous decrease from west to east in accordance with the long-

term pattern of rainfall distribution (Figure 2.1). However, considerable inter-annual variation 

appeared regarding the seasonality of low water availability; low precipitation was recorded 

in late-summer 2009 (and 2012, not shown), in early summer 2010 and in spring 2011.This 

seasonal pattern of rainfall distribution is also reflected in the course of volumetric water 

content (VWC, Figure 2.3). 
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Figure 2.3. Seasonal course of monthly mean volumetric soil water content (VWC) at 20 cm soil depth at the 
two sites located at the moist (Sellhorn; loam-richer site #1) and dry end (Calvörde; sandy site #11) of the 
investigated precipitation gradient. Values are shown for the three study years (2009-2011) in which 
aboveground net primary production was recorded. The continuous TDR measurements started in July 2009. 
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Determination of biomass production and allocation patterns 

     The biomass inventory and productivity measurements were conducted in plots of 30 m × 

30 m size (0.09 ha) that were selected in stand sections with representative structure with 

respect to stem density, canopy closure and tree height. Eleven of the 12 study plots were 

fenced (40 m × 40 m) and equipped with measuring instruments in early 2009; plot #12 was 

established in winter 2009/2010. On these plots, all components of aboveground NPP (NPPa; 

stem wood, leaf mass, flower and fruit production) and fine root production were measured in 

varying duration of investigations. Total aboveground net primary production (NPPa) was 

calculated as the total of all components of aboveground biomass production, i.e. the 

production of wood (timber plus brushwood), bark, leaf mass and fruit mass. Annual above- 

and belowground biomass production (NPP) in 2010 was approximated by summing the totals 

of NPPa and fine root production. 
 

Standing wood biomass and wood mass increment 

     In April 2009, the trees´ diameter at breast height (DBH) was measured at 1.3 m height 

with permanently installed dendrometer tapes (UMS, Munich, Germany). DBH increment of 

the years 2009-2011 was recorded at monthly intervals for all trees of a plot with a DBH > 15 

cm and for half of the trees with a DBH of 7-15 cm until April 2012. The stem increment of 

the remaining trees was recorded at annual intervals. On the two plots with less than 24 beech 

trees with DBH > 15 cm within the 0.09 ha (plot #1 & 6), stem increment was recorded on an 

extended plot size of 40 m × 40 m (0.16 ha) in order to include a sufficient number of large 

beech trees. In winter 2009/2010, the height of all trees within the plots was determined using 

a terrestrial laser scanner (Imager 5006, Zoller and Fröhlich, Wangen, Germany).  

     The DBH and height of the trees were used to calculate (i) standing timber volume (wood 

components with diameters > 7 cm), (ii) wood biomass of timber and brushwood (wood 

components with diameters < 7 cm), and (iii) bark biomass, applying empirical allometric 

equations after Bergel (1973), Wutzler and others (2008) and Krauß and Heinsdorf (1996), 

respectively (details in Chapter 3). By relating the annual stem volume increment (SVIa) of a 

tree to the initial stem volume at the beginning of each growth period, the relative annual stem 

volume increment (RSVIa) was obtained. Annual wood mass production was calculated by 

adding up the annual augmentation of stem wood and brushwood. For calculating standing 

timber volume and wood dry mass on plot-level, the data of all trees in the plots were 

summed up and normalized to 1 ha or 1 m2. In the six plots with presence of other tree 

species, biomass and production figures on plot-level were corrected by excluding the canopy 

projection area occupied by these species (0.8-16%; details in Chapter 3). 
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Leaf and fruit production, C and N allocation between leaves and fruits 

     The annual production of leaf and fruit biomass was recorded for the years 2009-2012 by 

litter trapping on each plot. Leaf area of 500 randomly chosen leaves per plot was determined 

with WinFolia software (Régent Instruments, Quebec, Canada). The following foliar traits 

were determined: plot means of specific leaf area (SLA), leaf size and individual leaf weight, 

leaf area index (LAI) and the number of leaves per ground area. The number of beech fruits 

(nuts) was counted. Samples of upper sun canopy leaves were collected in the late summer on 

all study plots in 2009 and 2010, and on one plot per study site along the transect in 2011, for 

the determination of foliar C and N contents with an elemental analyser. The C and N 

concentrations in fruit mass were analysed in the nuts collected in winter 2009 in the litter 

traps (details in Chapter 4). 

 

Biomass, morphology and production of fine roots 

     Standing fine root biomass, fine root morphology and fine root production were 

investigated on all 12 plots in the organic layer and at two fixed depth levels (0-10 and 10-30 

cm) of the mineral soil. Based on results from an earlier investigation on vertical distribution 

of fine roots in mature beech forests on sandy soils (Leuschner and others 2004), these three 

horizons are assumed to contain > 75 % of the total stand fine root biomass. Root inventories 

were carried out in June and September 2009 by soil coring (3.5 cm in diameter) at 20 

randomly selected locations per study plot, and the amount of living (biomass) and dead roots 

(necromass) were determined separately. In order to improve estimations on the fraction of 

smaller root necromass particles (< 10 mm in length), every third root sample of the two 

campaigns was analysed in detail applying a method introduced by van Praag and others 

(1988) and modified by Hertel (1999). From all living rootlets of a soil sample, mean root 

diameter, specific root surface area (SRA, in cm2 g-1), specific root length (SRL, in m g-1), 

and root tissue density (in g cm-3) were determined using a scanner and a visual analysis 

system (WinRhizo, Régent Instruments Inc., Quebec, Canada). The fine root area index (RAI, 

m2 cumulative root surface area per m2 ground area) of each single horizon was calculated by 

multiplying the SRA by mean fine root biomass values. Stand total of RAI were generated by 

summing up the data of the three horizons per soil profile. Fine root tips of each one 

representative live fine root branch per soil sample were counted and related to the respective 

dry weight for the determination of specific root tip abundance (n mg-1). The fine root 

production in the stands was determined by applying the ingrowth core technique. Each 12 

ingrowth cores per study plot were installed at random locations in early summer 2009, and 
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were re-sampled after 22 months in March 2011. According to continuous examination of 

single cores, fine root re-colonisation started after a 12-month lag period subsequent to the 

installation, thus resulting in a 9-month period of root ingrowth. Annual fine root production 

(in g m-2 y-1) was assessed by normalizing the observed fine root growth to 1 year and to 1 m2 

ground area (details in Chapter 3).  
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Abstract 

According to recent climate change scenarios, temperate forests will be increasingly exposed 

to droughts in the 21st century which are thought to affect productivity. While decreasing 

timber yield with reduced precipitation has frequently been reported from temperate forests, 

the dependence of forest net primary production (NPP) on precipitation is little understood. In 

a three-year transect study (2009-2011) carried out in 12 mature beech forests (Fagus 

sylvatica) along a precipitation gradient (820 to 540 mm yr-1) in Northern Germany, we 

measured all aboveground NPP components (NPPa; stem wood, leaf mass, flower and fruit 

production) and analyzed relationships with monthly weather data. Since we measured NPPa 

under a broad range of precipitation levels, drought lengths and mast fruiting intensities, the  

climatic controls of aboveground productivity and carbon allocation could be analysed in 

detail. Despite a significant decrease in annual (and growing season) precipitation sums along 

the transect, NPPa remained largely invariant in each of the years, but varied remarkably 

between the years (means of 981, 702, 955 g DM m-2 yr-1, respectively). Variation in NPPa 

was most closely related to current year’s early-summer weather conditions (June-July), while 

the patterns of biomass allocation to wood, leaf and fruit production responded to the previous 

summer’s weather. 

Wood production cannot predict NPPa in beech due to alternative allocation priorities of 

vegetative and reproductive growth. Our results show that apparent drought-induced 

reductions in beech timber yield often are the result of allocation shifts toward fruit 

production triggered by warm and dry weather in the previous summer. 

 

 

Keywords: allocation shift, fruit production, leaf production, wood production, mature 

stands, net primary production, precipitation gradient, sandy soil. 



Climate response of productivity in beech 
 

  41 

Introduction 

     In most temperate regions, forest productivity is controlled by the availability of water and 

energy (radiation input, temperature and growing season length; Mitscherlich 1975; Becker 

and others 1995; Dreyer 1997; Bréda and others 2006). With global climatic change, water 

availability is expected to become increasingly important as a key controlling factor for tree 

growth especially considering that the frequency and severity of summer droughts are 

expected to increase (IPCC 2007 and references therein). Forests are more drought-vulnerable 

under a future warmer and drier climate than other vegetation types such as agricultural crops, 

simply due to the long lifespan of trees. Given that a typical rotation period in forestry ranges 

between 80 and 120 years, foresters are facing difficult decisions choosing suitable tree 

species for the restocking of managed stands at sites where drought intensity is predicted to 

increase. Whether the native tree species can withstand the expected increase in drought and 

heat stress intensity is not well studied and a matter of recent debate (Leuschner and others 

2001; Rennenberg and others 2004; Ammer and others 2005; Bolte 2005; Geßler and others 

2007; Leuschner 2009). 

     European beech (Fagus sylvatica L.) is by far the most abundant tree species found in 

Central Europe’s natural forest vegetation and is also one of the most economically important 

trees (Ellenberg and Leuschner 2010). Simple extrapolation from the species’ climate 

envelope into a warmer future climate indicates that Fagus may be more vulnerable than co-

occurring Quercus, Tilia, Carpinus, Fraxinus or Pinus species, but less vulnerable than Picea 

abies (L.) Karst. or Acer pseudoplatanus L. (Kölling 2007; Roloff and Grundmann 2008; 

Köcher and others 2009). Dendrochronological evidence shows that beech diameter growth is 

closely tied to the precipitation and soil moisture regimes in most investigated forest regions 

of Central and Southern Europe (Biondi 1993; Piovesan and others 2003; Lebourgeois and 

others 2005). At the southern limit of the species’ distribution range in Spain, drought stress 

has been identified as the main driver of beech dieback (Jump and others 2006). The 

exceptional drought in summer 2003 resulted in pre-senescent leaf shedding in August and a 

substantial reduction in canopy carbon gain in many beech stands across Central Europe 

(Gruber 2004; Ciais and others 2005; Leuzinger and others 2005; Bréda and others 2006). 

Thus, extended periods of summer drought and heat stress may represent a realistic threat to 

the vitality and productivity of Fagus in large parts of its Central European distribution range, 

but the thresholds of the species’ response to a reduction in summer rainfall are little 

understood so far.  

     Water shortage may reduce net primary production through stomatal and/or biochemical 

limitation of photosynthesis and reductions in tree leaf area (Dreyer 1997), and it may lead to 
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shifts in within-plant carbon allocation patterns, notably increases in root:shoot ratio and 

reduced allocation to stem growth (Waring and Schlesinger 1985; Wilson 1988; Oliver and 

Larson 1996; Litton and others 2007). Not much is known about climate-induced allocation 

shifts in mature trees (e.g. Meier and Leuschner 2008b); however, this information is urgently 

needed for a mechanistic understanding of the adaptive response of forest trees to climate 

change-induced increases in drought intensity. 

     Studies along precipitation transects provide valuable insights into the drought response of 

mature trees under the condition that the forest stands are sufficiently comparable with respect 

to stand age, structure and soil conditions (Leuschner and others 2006; Meier and Leuschner 

2008a,b; Scharnweber and others 2011). Unlike throughfall displacement experiments which 

focus on the mechanisms of the immediate tree drought response, transect studies in mature 

stands investigate the steady-state response to natural rainfall variation as they cover long-

term acclimation and adaptation processes of the trees to reduced precipitation. A 

combination of both approaches might be the most promising strategy for achieving a better 

understanding of trees’ response to a warmer and drier climate.  

     With a transect study in 12 mature beech stands along a precipitation gradient (543 - 817 

mm yr-1) in northwest Germany, we investigated the climate response of aboveground 

productivity (NPPa) and carbon allocation patterns in F. sylvatica by measuring all 

components of aboveground productivity (stem wood growth, leaf mass production, flower 

and fruit production) over a three-year period with similar annual precipitation amounts but 

contrasting season rainfall distribution. The plot design consisted of six forest regions along 

the precipitation gradient where in each region a pair of plots was established of which one 

plot was set up on a sandy soil and the second plot on a sandy-loamy soil in close vicinity to 

another to cover the variation in soil water storage capacity. For this region, recent climate 

change scenarios predict a rise in mean annual temperature of c. 2.5°C until the end of the 

century, a decrease in summer precipitation by c. 10 percent and an increase in the frequency 

and duration of summer heat waves (Moseley and others 2012). If these scenarios become 

reality, the beech forests of Northern Germany, and those of many other Central European 

regions, would be exposed to longer and more severe droughts and a higher evaporative 

demand in summer.  

     Within this study we aim to (i) evaluate the dependence of total aboveground productivity 

(NPPa) on precipitation in beech, (ii) identify differences in the growth response of single 

components of aboveground productivity (stem growth, leaf and fruit production) to climatic 

variations, and (iii) disentangle the influences of environmental factors on beech tree growth 

from those induced by carbon allocation to different aboveground sinks. 
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Materials und methods 

Study sites, climate and soil 

     The study was conducted in 12 mature beech stands in the Pleistocene lowlands of north-

western Germany in the years 2009 to 2011. The plot design consisted of six sites located 

along a precipitation gradient and each two neighbouring plots per site with different soil 

texture (sandy vs. loamy-sandy) to cover the edaphic variability in the Pleistocene landscape 

of the study region. The study sites are located in a 130 km-long NW-SE transect in the East 

of the state Lower Saxony and the western part of Saxony-Anhalt representing a climatic 

gradient from an oceanic to a sub-continental climate with a continuous precipitation decrease 

(817 to 543 mm yr-1, see Figure 3.1) and a slight temperature increase (8.5 to 9.1 °C, Table 

3.1) from west to east. The twelve stands were selected in six forest districts (from west to 

east: Sellhorn (2), Oerrel (1), Unterlüß (2), Göhrde (2), Klötze (2), Calvörde (3, number of 

plots per site in brackets) at elevations of 72 - 125 m a.s.l.. At the Oerrel site, only one plot 

(sandy) was available; three plots (two sandy, one sandy-loamy) were established in 

Calvörde. Eleven of the 12 study sites were fenced and equipped with measuring instruments 

in early 2009; plot #12 (Calvörde-III) was established in winter 2009/2010.  

 

 
Figure 3.1. Map of the study area in the Pleistocene lowlands of northern Germany with the six study sites along 
the precipitation gradient from Northwest to Southeast (triangles: location of plots). The black line encircles the 
area of the Lüneburg Heath. Number of study plots per site=2 (except for Oerrel n=1 and Calvörde n=2 in 2009 
and n=3 in 2010-2011). Precipitation data from Deutscher Wetterdienst Offenbach; layout by C. Döring. 
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     All stands occurred on highly acidic and nutrient-poor sandy soils originating from fluvio-

glacial sands or moraine deposits of the penultimate Saale Ice Age covered by periglacial drift 

sand (dystric or umbric Arenosols or Podzols). The mineral soils are covered by thick (4-9 

cm) organic layers on the forest floor. Important physiographic and stand structural 

characteristics of the 12 stands are summarized in Table 3.1. All 12 plots were located in 

forests consisting either of monospecific beech stands (n = 6) or beech with some admixture 

of Sessile oak (Quercus petraea Matt. Liebl; n = 5) or Douglas-fir (Pseudotsuga menziesii 

(Mirb.) Franco; n = 1). The stands were mature with a mean tree height of 24 to 34 m of the 

beech trees. All stands originated from natural regeneration with the exception of study site 

#5 (Oerrel). In the six stands with contribution of oak and Douglas fir (1-8 trees per plot), 

these species held 3-19 % of the stand’s cumulative basal area (an exception was stand #5 

with 39 %). The structure of the stands varied within defined limits (closed canopy with 95-

100 % canopy closure, trees of mature age: 85-140 years, cumulative basal area 25-45 m2 ha-

1, a second tree or shrub layer and a herbaceous layer were absent in all stands). The biomass 

inventory and productivity measurements were conducted in plots of 30 m × 30 m size that 

were selected in stand sections with representative structure with respect to stem density and 

tree height.  

     Despite considerable structural variation among the stands, neither basal area nor timber 

volume were significantly related to mean annual precipitation (standing timber volume: R2 = 

0.08, p = 0.18; stand basal area: R2 = 0.23, p = 0.06 [basal area tended to increase with 

decreasing precipitation]; mean basal area per tree: R2 = 0.01, p = 0.44). 
 

Climatic data and soil hydrological and chemical analyses 

Climatic data (precipitation, temperature, sunshine duration) of the study sites were 

obtained from the 1km x1 km grid data set of the German Meteorological Service (Deutscher 

Wetterdienst, Offenbach, Germany). Sunshine duration data were converted to solar radiation 

with the Ångström equation according to Allen and others (1998). Climatic data regionalized 

to the 12 study plots were generated by averaging the data of the nine nearest grid fields for 

each location. Volumetric soil water content (VWC) was continuously measured in each 

study site since July 2009 using time domain reflectrometry probes (TDR, CS616, Campbell 

Scientific Inc., Logan, UT) installed at a soil depth of 20 cm. 

For investigating the impact of weather on forest aboveground productivity, we used 

climate data from different time periods of the year with an assumed influence on certain 

development or growth processes of the trees: temperature and radiation means of the growth 
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period including the preceding late-spring period (April-October) of either the actual or the 

preceding year (T4-10, Rad4-10), (2) the growth-relevant amount of precipitation was assumed 

to be the precipitation in the period January-October, thus including the refilling of soil water 

storage in late winter and early spring (P1-10). (3) Further, the temperature and precipitation in 

the peak stem growth period (June and July; P6-7, T6-7, Rad6-7) was also considered. 

A detailed examination of the mineral soil properties was executed to a depth of 1.2 m in 

the centre of each plot. For each single soil horizon, analyses of soil chemical properties, 

particle size distribution and water retention properties were conducted. For characterising 

soil texture, the percentage of particles < 200 µm diameter (fine sand, silt, clay; ΣfSUT) and 

of particles < 63µm (silt and clay; ΣUT) was measured. Water retention curves (pF-curves) 

were established in the laboratory by desorption of intact soil cores placed on suction plates. 

The capacity of the soil profile for plant-available water (AWSC) was calculated for the 

investigated soil horizons from the volumetric water content at matrix potentials of -300 hPa 

and -1.5 MPa and by summing up to a profile depth of 1.2 m. For covering the small-scale 

variability in soil properties, additional mineral soil material for chemical analysis was 

collected with a Pürckhauer soil corer at locations close to the four corners of the plot. The 

depth and chemical properties of the organic layer on the forest floor were analyzed in 18 and 

6 randomly collected samples per plot, respectively. 

 

Measurement of tree height, DBH and stem radial growth 

     The height of all trees within the 30 m x 30 m plots (0.09 ha) was determined in winter 

2009/2010 with a precision of 10 cm using a terrestrial laser scanner (Imager 5006, Zoller and 

Fröhlich, Wangen, Germany). The diameter at breast height (DBH) was measured at 1.3 m 

height with permanently installed dendrometer tapes (type D1, UMS, Munich, Germany) with 

a precision of 0.1 mm. Stem wood increment was recorded every 4 weeks between April 2009 

and April 2012 for all trees of a plot with a DBH > 15 cm and for at least half of the trees with 

7 cm < DBH< 15 cm. On plots that contained less than 24 trees with DBH > 15 cm within the 

0.09 ha (N = 2), stem diameter increment was measured on an extended plot of 0.16 ha size 

(40 m × 40 m) to include a sufficient number of beech trees with larger diameters.  
 

Calculation of stem wood volume, standing wood biomass and wood increment 

     For calculating the volume of stems and branches ≥ 7 cm in diameter (standing volume of 

timber), we used the allometric equation:  
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V = π * (d/2)2 * h * f         (1) 

where V is the volume of timber (m3), d the diameter at breast height (cm), h tree height (m) 

and f an empirically derived form factor for beech trees (Bergel 1973): 

with 

f = 0.4039 + 0.0017335 * h + (1.1267/h) – (118.188/d3) + 4.2 * 10-6 * d2  (2) 

     The annual stem volume increment of a tree (SVIa) was approximated as the increment in 

volume from April to November of the respective year (calculated from the repeated 

dendrometer tape readings). This procedure was justified because we observed no stem 

diameter change in the winter period from November to April. As tree height was measured 

only once in the study period, the wood volume increase was calculated from the diameter 

increase whereas height growth was ignored when using equation (1). Comparison with 

alternative approaches of stem volume increase calculation based on height increment 

modelling of mature beech trees (Nagel 1999) revealed that this neglect introduced an error of 

less than 1%. The relative annual stem volume increment of the trees (RSVIa, in percent), was 

obtained by relating the SVIa increase to the stem volume at the beginning of a 

growth period (VApril): 

RSVIa = ((VNovember) - (VApril)) / (VApril) * 100%     (3) 

The biomass of wood components with diameters >7 cm (stem wood or timber) and <7 cm 

(brushwood, i.e. small-diameter branches and twigs) was estimated from an empirical 

equation given by Wutzler and others (2008): 

mt,b = c0 * dc1 * hc2          (4) 

which is based on the harvest of 170 (276) beech trees at 4 (6) sites in Central Europe 

(brushwood data in brackets) and gives stem wood or brushwood mass (mt and mb) in kg per 

tree. The coefficients have the following values: c0 = 0.00775 (0.466), c1 = 2.11 (1.85), c2 = 

1.21 (-0.349) (brushwood in brackets). 

The annual production of bark was estimated after Krauß and Heinsdorf (1996): 

ln mbark = -5.55435 + 1.1303 * ln d – 1.4828 * ln h     (5) 

with mbark given in kg per tree.  

     For calculating plot-level data of standing wood volume and wood dry mass, the data of all 

trees in the 0.09 ha-plots were summed up and normalized to 1 ha or 1 m2. In the six plots 

with presence of oak or Douglas fir, we measured the canopy projection area (8-point canopy 

silhouettes) occupied by these species using a canopy projection mirror (self-constructed in 

the Department of Remote Sensing, University of Göttingen) and used the proportion of the 
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stand area filled by these species to correct the beech biomass and production figures by 

extrapolating to a hypothetical monospecific beech stand. 
 

Measurement of leaf and fruit production 

     The annual production of leaf and fruit biomass was recorded with ten litter traps (aperture 

0.28 m2) located systematically on each plot. Beechnut consumption by deer or rodents was 

excluded by fencing the plots and placing the traps inaccessible for rodents. The collected 

litter material was separated into leaves, flowers and fruits and sorted by tree species, oven-

dried at 70°C for 48 h, and weighed. In each plot, 500 randomly chosen beech leaves were 

collected from the litter traps, scanned and the leaf size determined with WinFolia software 

(Régent Instruments, Quebec, Canada) to calculate the stand leaf area index (LAI). On study 

plots with presence of other tree species, we calculated the leaf mass and leaf area index for 

the stands by including the admixed species. For quantifying the fruit production on the stand 

level, we applied the same correction as for wood biomass by extrapolating to a hypothetical 

monospecific beech stand. Aboveground net primary production (NPPa) was calculated by 

summing up all components of aboveground production, i.e. the production of wood (timber 

plus brushwood), bark, leaf mass and fruit mass.  
 

Statistical analysis 

     Relationships between climatic and soil parameters and aboveground productivity 

components for each single year (2009, 2010 or 2011) were analyzed by Pearson correlation 

analysis. Prior to analysis, we z-transformed all explanatory and response variables in the data 

set from the 12 sites and three years for achieving comparability among variables. In order to 

analyze the repeated observations, we then fitted a linear mixed model (LMM) using the 

environmental variables as fixed and ‘study site’ and ‘year of observation’ as crossed random 

factors. The P-values for the environmental variables were obtained from a likelihood ratio 

test (LRT) conducted against a model with just the random effects. To account for inter-

correlation between explanatory variables, we performed (semi-)partial correlation analyses to 

achieve a stepwise elimination of co-varying factors. 

     All analyses were conducted using R statistical software (R Development Core Team 

2011) with additional functions provided by the R packages lme4 (Bates and Maechler 2010) 

and ppcor (Kim 2012). All data were tested for normal distribution (Shapiro-Wilk test). 

Significance was determined at P<0.05 throughout. Linear regressions were calculated with 

the program Xact 8.03 (SciLab, Hamburg, Germany) and regression lines are displayed at a 

significance level of P <0.05.  



 

 

Table 3.1. Summary of climatic, edaphic, and stand structural properties of the 12 beech stands in north-western Germany. Mean annual precipitation (MAP) and temperature 
(MAT) refer to the period 1971-2000 (regionalised by C. Döring from the national weather stations network data base provided by DWD, Deutscher Wetterdienst). Mean tree 
height figures refer to all beech trees constituting the upper canopy layer. Mean diameter in breast height considers all beech trees > 7 cm stem diameter; stem density and 
cumulative basal area refer to all trees > 7 cm stem diameter in a plot and may include a few individuals of other species in certain plots (see Methods section). Soil chemical 
properties refer to the upper 30 cm of the mineral soil (N: total nitrogen; Al: NH4Cl-exchangeable aluminium; P: total phosphorus; data provided by M. Jansen and C. Döring, 
unpublished). Fine-grained soil particles include fine sand, silt and clay (particles size < 200 µm) expressed in % of total soil mass (0 – 120 cm soil profile). The water storage 
capacity is calculated for the upper 120 cm of the mineral soil. 
Plot no. 

Site code 

1 

Se 

2 

Se 

3 

Un 

4 

Un 

5 

Oe 

6 

Go 

7 

Go 

8 

Kl 

9 

Kl 

10 

Ca 

11 

Ca 

12 

Ca 

Coordinates 53°10' N 
09°57' E 

53°10' N 
09°57' E 

52°50' N 
10°19' E 

52°50' N 
10°19' E 

52°59' N 
10°14' E 

53°07' N 
10°49' E 

53°09' N 
10°52' E 

52°37' N 
11°14' E 

52°37' N 
11°15' E 

52°24' N 
11°16' E 

52°23' N 
11°17' E 

52°22' N 
11°16' E 

Elevation (m a.s.l.) 127 130 120 117 90 85 85 102 85 72 75 105 
MAP (mm) / MAT (°C) 816 / 8.4 816 / 8.4 766 / 8.4 766 / 8.4 741 / 8.6 675 / 8.6 665 / 8.7 615 / 8.7 614 / 8.7 543 / 9.0 544 / 9.1 559 / 9.0 
Annual precipitation 2009 (mm) / temperature (°C) 838 / 9.1 838 / 9.1 815 / 9.2 815 / 9.2 758 / 9.3 702 / 9.3 686 / 9.4 737 / 9.4 726 / 9.5 654 / 9.7 649 / 9.7 658 / 9.6 
Annual precipitation 2010 (mm) / temperature (°C) 817 / 7.6 817 / 7.6 833 / 7.6 833 / 7.6 766 / 7.7 744 / 7.7 726 / 7.8 746 / 7.8 744 / 7.8 672 / 8.0 684 / 8.1 708 / 8.0 
Annual precipitation 2011 (mm) / temperature (°C) 810 / 9.4 810 / 9.4 710 / 9.6 710 / 9.6 710 / 9.6 677 / 9.6 666 / 9.7 573 / 9.7 573 / 9.8 509 / 10.0 515 / 10.1 530 / 10.0 

Stand age (yr) 127 127 115 115 95 142 133 c.125 c.125 131 97 87 
Mean tree height (m) 31.4 28.0 28.4 25.3 27.2 30.2 24.6 33.8 30.2 28.3 23.8 25.5 
Stem density (no. ha-1) 156 367 411 611 500 122 289 267 478 300 711 578 
Mean diameter in breast height (cm) 46.7 29.6 26.1 18.6 21.7 51.0 30.7 43.3 29.0 36.6 23.4 24.9 
Stand basal area (m2 ha-1) 31.0 30.7 28.5 24.3 32.3 26.6 24.4 44.9 40.8 33.3 33.2 32.6 

Proportion of beech (% of basal area) 100 95 100 81 61 100 94 100 81 97 100 100 

Timber volume (m3 ha-1) 490 395 378 227 287 407 289 758 516 454 374 402 

Thickness of organic layer (cm) 7.5 9.1 6.5 7.3 6.9 9.0 8.8 4.1 6.4 7.5 6.6 8.0 
pH value (H2O) of mineral soil 4.2 4.2 4.4 4.3 4.0 4.3 4.3 4.4 4.3 4.2 4.3 4.1 
C/N ratio of mineral soil (g g-1) 15.6 24.2 25.8 24.1 17.8 22.9 25.5 11.9 15.7 15.9 13.2 19.0 
N concentration of mineral soil (g kg-1) 0.28 0.46 0.40 0.47 0.78 0.41 0.51 0.46 0.49 0.34 0.42 0.33 
P concentration of mineral soil (mg kg-1) 63 79 71 106 238 59 97 121 97 126 111 133 
Al concentration of mineral soil (g kg-1) 0.53 0.52 0.58 0.31 0.42 0.46 0.79 0.48 0.54 0.38 0.57 0.38 
Cation exchange capacity (µmolc g-1) 16.1 27.5 18.4 24.2 22.7 20.2 26.5 21.3 17.3 18.6 14.7 14.2 
Base saturation of mineral soil (%) 24.3 9.7 14.8 8.3 13.0 6.7 2.8 14.4 9.7 7.4 5.0 6.9 
Fraction of fine-grained (< 200 µm) soil particles (%) 51 42 52 46 25 41 14 62 46 61 24 14 
Water storage capacity mineral soil (mm 120 cm-1) 90 

 
111 

 
95 79 

 
59 78 

 
107 124 

 
90 

 
140 

 
81 

 
46 
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Results 

Weather conditions during the study period 

     The long-term annual precipitation means (1971-2000; January – December, Pyr) and the 

means of the growing season plus the early spring moisture recharge period (January – 

October, P1-10) showed a continuous decrease from west to east along the studied transect 

(Pyr: 817 to 543 mm, Table 3.1; P1-10: 657 to 451 mm, Figure 3.2a). In all three study years, 

the rainfall distribution patterns followed this long-term gradient with 2010 being wetter than 

2009 and 2011 (P1-10: 620 to 495, 660 to 526 and 652 to 443 mm in 2009, 2010 and 2011, 

respectively). The steeper precipitation decrease from west to east in 2011 (absolute P1-10 

difference: 209 mm) was closer to the long-term rainfall distribution patterns than the 

gradients in 2009 and 2010 (P1-10 differences: 125 and 134 mm). Extended rainless periods 

occurred in August and September 2009 (late summer), in June and July 2010 (early summer) 

and from March to May 2011 (spring). Accordingly, the water content (VWC) of the mineral 

soil reached seasonal minima in these three dry periods at all study sites (Figure 3. 3a, b).  
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Figure 3.2. Precipitation and temperature in the period 2009-2011 at the six study sites along the transect. 
Precipitation data are totals for growing season plus the early spring moisture recharge period (January-October; 
a) and early summer (June-July; b). Temperature means refer to early summer (c) and growing season (April-
October; d). Horizontal bars give the long-term precipitation and temperature means (1971-2000; data from 
Deutscher Wetterdienst Offenbach). The study sites are arranged from east to west according to their position 
along the precipitation gradient. Ca – Calvörde, Kl – Klötze, Go – Göhrde, Oe – Oerrel, Un – Unterlüß, Se – 
Sellhorn. 
 

     The mean air temperature in the growing season (April-October, T4-10) increases in its 

long-term mean by 0.9 K along the transect from west to east and did so in all three study 

years (Figure 3.2d). All three growing seasons were warmer than the long-term average (plus 
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1.0-1.2 and 1.2-1.4 °C in 2009 and 2011, respectively, while 2010 was not that warm: +0.2-

0.4 °C deviation).  

     When considering the weather conditions in the peak growth period in June and July, the 

summer 2010 was the driest and warmest of the three observation years despite the high 

precipitation amount (P1-10) in this year (Figure 3.2b, c). The early-summer temperature (T6-7) 

in 2010 exceeded the long-term mean by more than 2 °C at all six sites and the early-summer 

precipitation was less than the average. In contrast, the early-summer weather in 2009 and 

2011 reflected the long-term mean with respect to precipitation, temperature and radiation at 

all sites.  
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Figure 3.3. Three-monthly precipitation totals (a) and seasonal course of monthly mean volumetric soil water 
content at 20 cm soil depth (b) at three or six sites along the transect in the years 2009 to 2011 (moist sites: 
Sellhorn and Unterlüß, intermediate sites: Oerrel and Göhrde, dry sites: Klötze and Calvörde). Se: site no. 1 
(Sellhorn); Un: site no. 3 (Unterlüß); Oe: site no. 5 (Oerrel); Go: site no. 6 (Göhrde); Kl: site no. 8 (Klötze); Ca: 
site no. 11 (Calvörde). The continuous TDR measurements started in July 2009. Precipitation data by Deutscher 
Wetterdienst, Offenbach, Germany. 
 

Aboveground biomass production 

     With two mast years in the study period, aboveground biomass production (NPPa, the sum 

of wood, leaf and fruit production) ranged among the 12 plots and three study years from 634 

to 1305 g DM m-2 yr-1 with a considerable inter-annual variation (means of 982, 702 and 955 

g m-2 yr-1 in 2009, 2010 and 2011, respectively; Table 3.2). While wood mass production 

(stem wood, brushwood <7 cm diameter, and bark) varied more than two fold between the 

years (means of 452, 359 and 212 g m-2 yr-1 across all plots in 2009, 2010 and 2011, 

respectively), the production of leaf biomass was less variable in this period (range: 231 to 
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364 g m-2 yr-1) with annual means of 306, 326 and 264 g m-2 yr-1 in 2009, 2010 and 2011, 

respectively. In 2009 and 2011, we observed mast events in nearly all study plots with a 

higher fruit mass production measured in 2011 (367 to 603 g m-2) than in 2009 (96 to 422 g 

m-2). In 2009, we found a steep increase in fruit mass production from the moist to the dry end 

of the transect while such a gradient was absent in 2011 (Figure 3.4d). In both mast years, the 

Oerrel plot (#5) showed very low fruit mass production (24 and 136 g m-2). In 2010, fruit 

production was low across the whole transect with values between 3.6 g m-2 (plot #4) and 

42.9 g m-2 (plot #11). 

 
Table 3.2. NPPa and production of wood, leaf and fruit mass in the 12 (11) beech stands along the transect in 
2009, 2010 and 2011 (means and range; 2009: n=11). NPPa includes wood (timber and brushwood), bark, leaf, 
flower and fruit mass production. RSVIa= relative stem volume increment per year. LAI = leaf area index. 

                      

Year 

  
NPPa 

(g m-2 yr-1) 

 Wood mass 
production 
(g m-2 yr-1) 

 Leaf mass 
production 
(g m-2 yr-1) 

 Flower & fruit 
mass production 

(g m-2 yr-1) 

  
LAI 

(m2 m-2) 

  
RSVIa 

(% yr-1) 

 

                      2009  981.3 (831-1305)  452.3 (250-755)  305.5 (237-364)  223.5 (24-422)  7.8 (5.9-9.4)  1.7 (0.8-2.8)  

 2010  701.8 (634-846)  359.0 (293-491)  326.3 (294-363)  16.4 (4-43)  7.1 (6.3-7.7)  1.3 (0.7-1.8)  
 2011  954.8 (772-1158)  212.9 (129-361)  264.4 (231-306)  477.4 (137-603)  6.2 (5.6-7.2)  0.8 (0.3-1.7)  
 2009-11  876.4   338.2   298.6   239.6   7.0   1.2   
                     

 
Aboveground production and its dependence on precipitation 

     A surprising result is that none of the productivity components (production of wood, leaf, 

and flower and fruit mass) showed a consistent dependence on precipitation (P1-10). All three 

components remained more or less invariant across the precipitation gradient in 2010 and 

2011 and correlated significantly with precipitation only in one of the three years (2009) in 

the sample of 11 plots (Figure 3.4d – f). In 2009, wood production decreased considerably 

with a reduction in precipitation (means of 596 g m-2 on the study site Unterlüß (plots #3 and 

4), and of 255 g m-2 on the Calvörde plots #10 and 11); leaf mass production decreased in 

parallel but with a less steep slope (means of 349 and 264 g m-2 on the same plots). In the 

same year, we recorded a more than four fold increase in the production of fruits and flowers 

with decreasing precipitation along the transect (from <100 to >400 g m-2 yr-1; Figure 3.4d) 

almost compensating for the decrease in wood and leaf biomass production (all trends 

significant at P <0.01, Figure 3.4d). Remarkably, total aboveground productivity (NPPa) 

showed a considerable inter-annual variation but did not respond to the precipitation gradient 

(P1-10) in any of the three years (Figure 3.4a-c). Also in the analysis of the entire three-year 

data set, NPPa was not affected by P1-10 but instead increased significantly with rising early-
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summer precipitation of the current year (P6-7), while wood and leaf mass production 

increased with higher precipitation in the preceding year’s summer (P(Y-1),6-7 ; Table 3.3). 
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Figure 3.4. Aboveground biomass production in the years 2009 to 2011 in relation to growing season 
precipitation P1-10. NPPa (A-C) and production of wood, leaf, and flower and fruit biomass (D-F). Wood 
production 2009: y = -965.7 + 2.56x, R2 = 0.53, p < 0.01; leaf biomass production 2009: y = -102.1 + 0.74x, R2 = 
0.56, p < 0.01; flower and fruit production 2009: y = 1438.9 - 2.19x, R2 = 0.58, p < 0.01. The production of 
wood mass includes brushwood (<7 cm). NPPa is the total of wood, leaf and fruit mass production. 
 

Effects of temperature, radiation and soil factors on productivity  

     Apart from the effect of growing season precipitation, we tested another 20 climatic and 

edaphic factors for their influence on NPPa and wood, leaf and fruit mass production. Similar 

to precipitation, the average temperature and the cumulative solar radiation of the entire 

current growing season (T4-10, Rad4-10) seemed to have no (or little) impact NPPa or single 

components. Again, early-summer conditions (June and July) turned out to be important for 

aboveground biomass production, as NPPa was negatively related to temperature (T6-7) and 

radiation (Rad6‑7, marginally significant) of that time span (Table 3.3). Across all three years, 

we also found negative effects of the preceding year’s summer radiation on NPPa. 

In contrast to NPPa, the allocation to single components (wood, leaf and fruit biomass) 

seemed to be subject to weather conditions of the preceding year (Y-1). Early-summer 

conditions of the year prior to each observation year (Y-1,6-7) seemed to control the growth of 
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single components of aboveground productivity. The growth of wood and leaf biomass 

showed a strong negative correlation with radiation (Rad(Y-1),6-7) and – in case of leaf 

production also temperature (T(Y-1),6-7) – of the preceding summer (Table 3.3). Fruit mass 

production significantly responded to the same conditions, but in opposite direction – 

negatively to precipitation and positively to temperature and radiation of the preceding early 

summer while current year conditions had no influence. 

The effects of soil physical and chemical factors on NPPa and wood, leaf and fruit mass 

production were remarkably small. Soil moisture (VWC) influenced none of the productivity 

components neither across the 2-year period 2010-2011 (measurements in 2009 incomplete; 

Table 3.3) nor in individual years (Table 3.A1). A higher storage capacity for plant-available 

water (AWSC) was positively related to fruit production but not to the other production 

components, while NPPa increased with a higher content of fine grained soil particles. The 

only soil chemical factor with a significant effect on productivity was pH(H2O) which had a 

positive influence on NPPa and also fruit mass production, while neither C/N ratio, base 

saturation nor exchangeable aluminium concentration in the soil had significant effects 

(except for a negative effect of soil Ntot content on fruit production and a positive one on 

wood production in 2011, Tables 3.3 and A 3.1). 

 

Biotic controls of aboveground productivity 

     Stem density, mean DBH and the standing stock of wood biomass had no consistent 

influence on NPPa or any of the three productivity components. Fruit mass production 

increased with stand age in 2011 and in the entire data set, and NPPa increased with age in 

2011 (Tables 3.A1, 3.3). Apart from the influence of environmental conditions, the 

productivity components were related to each other. With nearly equal annual leaf mass 

production, variation in NPPa predominantly resulted from shifts in the production of wood 

and fruit biomass (Table 3.3). A significant positive correlation between LAI and NPPa was 

visible only in 2010, when the radiation sums of the growth period were lowest (Table 3.A1). 

Wood mass production was positively related to current season leaf mass or LAI for the entire 

study period (Table 3.3) and for the single study years (to leaf mass in 2009 and 2011; to LAI 

in 2010 and 2011; Table 3.A1). Moreover, the production of both wood mass and leaf mass 

was highly negatively affected by the amount of simultaneously produced fruit mass (Table 

3.3, Figure 3.5a, b): in the two mast years, wood production showed a significant negative 

response to fruit mass production (P< 0.05, Figure 3.5b) indicating a strong control of wood 

production by C allocation priorities. 
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Table 3.3. Results of regression analyses between NPPa, the production of wood, leaf and fruit mass production 
and relative stem volume increment (RSVIa) (dependent variables) and more than 30 climatic, edaphic, stand-
structural and production-related parameters (entire data set for 2009-2011). Given are the standardized 
regression coefficient estimates and the significance level (asteriscs) from linear mixed models (crossed random 
factors ‘site’ and ‘year’) after z-transformation of the data. P = precipitation, T = temperature, Rad = solar 
radiation, VWC = volumetric water content at 20 cm mineral soil depth, AWSC = soil water storage capacity, 
∑fSUT = percentage of soil particles < 200µm. The numbers give the time period considered (months), Y-1 = 
preceding year. Significance levels: *P<0.05; ** P <0.01; *** P <0.001. P values were derived from a likelihood 
ratio test (conducted against the random effects only; see Methods section). Significant correlations are in bold. 
1) VWC values only for 2010 and 2011. 2) Soil physical properties refer to the upper 120 cm of the mineral soil. 3) 

Soil chemical properties refer to the upper 30 cm of the mineral soil. 

                                 Dependent variables  
 
 

    NPPa  Wood mass 
 

 Leaf mass 
 

 Fruit mass 
 

 RSVIa  
                 Climatic parameters              

                 P 1-10  - 0.02   0.21   0.27  - 0.14   0.07  
P 6-7   0.67*   0.18  - 0.02   0.01  - 0.04  
P(Y-1) 1-10    0.21   0.52**   0.67***  - 0.32**   0.67***  
P(Y-1) 6-7   0.16   0.91***   1.14***  - 0.83***   0.92***  
T 4-10   0.09  - 0.39  - 0.64**   0.34*  - 0.54  
T 6-7  - 0.79**  - 0.48  - 0.76   0.46  - 0.79  
T(Y-1) 4-10   - 0.24  - 0.33  - 0.48*   0.22  - 0.56  
T(Y-1) 6-7    0.14  - 0.53  - 0.75***   0.68**  - 0.80*  
Rad 4-10   0.40   0.02  - 0.13   0.29   0.25  
Rad 6-7  - 0.51   0.15   0.59*  - 0.13   0.31  
Rad(Y-1) 4-10   - 0.90**  - 1.72  - 3.33  - 0.76*  - 2.20  
Rad(Y-1) 6-7    0.02  - 1.43*  - 0.74***   0.90***  - 2.19**  
VWC 4-10 1)  - 0.02   0.03   0.05  - 0.03   0.05  
VWC 6-7 1)  - 0.09  - 0.03  - 0.01  - 0.04  - 0.13  
                 Production-related parameters              
                 Wood mass production   0.42**      -   0.53***  - 0.42***   0.79***  
Leaf mass production   0.27   0.50**      -  - 0.33**   0.58***  
Fruit mass production   0.47*  - 0.86***  - 0.79***      -  - 0.85***  
                 Soil parameters                 
AWSC 2)   0.25   0.01  - 0.08   0.20*  - 0.30  
∑ fSUT 2)   0.27*   0.1   0.03   0.14  - 0.20  
C/N ratio 3)   0.18   0.18   0.21  - 0.02   0.48**  
N 3)  - 0.09   0.15   0.19  - 0.19*   0.39*  
Base sat. 3)   0.06   0.19   0.21  - 0.11  - 0.04  
CEC 3)   0.03   0.08   0.14  - 0.05   0.31  
pH H2O 3)   0.35*   0.15  - 0.17   0.20*  - 0.30  
pH KCl 3)   0.13   0.02   0.04   0.07   0.21  
Al 3)   0.09   0.04  - 0.15   0.07  - 0.04  
P 3)  - 0.01  - 0.10   0.06   0.05   0.18  
                 Stand structural parameters 
 
  

             
Stand age   0.19  - 0.04  - 0.17   0.20*  - 0.22  
Stem density  - 0.12  - 0.01   0.12  - 0.11   0.26  
DBH   0.05  - 0.10  - 0.28   0.15  - 0.46*  
LAI   0.16   0.44**   0.82***  - 0.25*   0.75***  
Standing wood biomass   0.14   0.01  - 0.28   0.15  - 0.53**  
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     Relative stem volume increment (RSVIa) showed similar responses to environmental 

and biotic variables as wood mass increment. Leaf mass and stand leaf area (LAI) were 

significantly negatively related to fruit mass production (Table 3.3); leaf mass production was 

not only affected by fruit production in the two mast years but also in the non-mast year 2010 

(Figures 4.3, 4.5a, Table 3.A1). The negative relationship between fruit mass and LAI was 

generally weaker and gained significance only in 2009 and the entire three-year data set. 

Wood and leaf mass production appear to be affected differently by enhanced fruiting as is 

suggested when the productivity components are expressed as fractions of NPPa (Figure 

3.5c). While stand leaf mass fraction responded to a small increase in fruit production (0 - c. 

20 % of NPPa) with a steep decline from c. 50 % to about 30 % of NPPa , the wood fraction 

was not visibly reduced by low fruit proportion rates. In contrast, a further increase in the fruit 

production fraction to 20-60 % of NPPa occurred mainly at the expense of wood production, 

whereas the proportion of leaf mass production did not decrease further.  
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Figure 3.5. Relationship of (A) leaf biomass and (B) wood biomass production to fruit mass production in the 12 
(2009: N=11) stands in the years 2009-2011. Leaf mass production as a function of fruit mass production in 
2009: y = 370.2 - 0.29x, R2= 0.71, p<0.001; for 2010: y = 339.6 - 0.81x, R2=0.25, p=0.05; for 2011: y = 307.1 - 
0.09x, R2= 0.41, p<0.05. Wood mass production as a function of fruit mass production in 2009: y = 602.5 - 
0.67x, R2= 0.30, p<0.05; for 2011: y = 326.9 - 0.24x, R2= 0.27, p<0.05. Wood mass production contains brush 
wood (<7 cm). (c) Leaf and wood mass production as fractions of NPPa as dependent on fractional fruit mass 
production in the study period 2009-2011.  
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Since NPPa and annual wood biomass production were influenced in mast years by the 

synchronous production of leaf mass and fruit mass, we conducted a partial correlation 

analysis for examining the influence of growing season precipitation (P1-10) on productivity in 

more detail. We assumed that the alternative investment of carbohydrates in fruit, leaf or 

wood mass production could have masked a possible precipitation effect on NPPa and wood 

mass production. By controlling for variation in fruit mass production or LAI, we found that 

growing season precipitation indeed did not affect NPPa or wood production (Table 3.4). A 

significant correlation between P1-10 and wood production in 2009 disappeared when the 

influences of LAI and fruit mass production were removed. The negligible effect of growing 

season precipitation is also visible in another result of the partial correlation analysis: the 

effects of LAI (positive) and fruit mass production (negative) on wood production (and also 

RVSIa, results not shown) were only marginally altered when we controlled for the influence 

of P1-10 in the analysis. However, the partial correlation analysis revealed the expected 

positive influence of LAI on NPPa that was only weakly visible in the ordinary correlation 

analyses. Similarly, for 2010 and 2011, the positive influence of LAI on wood mass 

production was verified. This analysis also confirmed the negative relation between fruit and 

wood mass production in the two mast years when we removed the influences of LAI and 

precipitation. The positive effect of LAI and the negative influence of fruit mass production 

on wood production apparently were of similar size but opposing direction in the year 2011, 

while P1-10 remained insignificant as explanatory as well as co-varying variable. 

The analysis of factors influencing total aboveground productivity (NPPa) led to three 

surprising results: (i) the aboveground productivity of the 12 beech stands was not dependent 

on current year’s precipitation (P1-10) as is visible in Figure 3.4a-c. Instead, current early-

summer precipitation (P6-7) apparently is favouring productivity while high temperatures (and 

radiation) in these months are limiting aboveground growth. (ii) The influence of LAI on 

NPPa was low with a significant positive effect only in the year (2010) with lowest radiation 

sums from April to October. (iii) Neither soil chemistry nor stand age or stem density 

impacted on NPPa (except for a positive age effect in 2011). 

Rather, aboveground productivity in a given year appeared to be largely dependent on 

carbon allocation patterns that may switch between a priority of wood mass or fruit mass 

production. This is indicated by high correlation coefficients between wood mass production 

and NPPa in 2009 and 2010 (R = 0.80 and 0.95, P < 0.01 and 0.001), but between fruit mass 

production and NPPa in 2011 (R = 0.84, P < 0.001; Table 3.A1). Allocation patterns explain a 

large part of the variation in the productivity components and seem to respond to the 

preceding year’s early-summer weather conditions, where high temperatures and radiation are 
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promoting the production of fruit mass at the expense of leaf and especially wood biomass in 

the subsequent growing season. 

 

Table 3.4. Pearson correlation coefficient (R) for relationships between aboveground biomass production and 
variables of environmental and phenological conditions: growing season precipitation (P1-10), concurrently 
developed fruit mass (FM) and LAI. Partial correlation analyses were performed for the three growing season 
2009, 2010 and 2011 while holding constant the influences of the remaining third (and fourth) variables. 
Significant correlations in bold. Significance levels: *P<0.05; **P<0.01; ***P<0.001. In case of P1-10 as 
explanatory variable, semi-partial correlation was applied. 

                                                 NPPa  Wood mass production  
                        Explanatory  Partial variable     2009     2010    2011     2009   2010   2011  
                        
 P1-10  -   0.35   0.38  - 0.15   0.73**   0.36  - 0.05  
 P1-10  LAI   0.26   0.14  - 0.17   0.56   0.16  - 0.07  
 P1-10  FM   0.38   0.46  - 0.09   0.37   0.43  - 0.13  
 P1-10  LAI+FM   0.4   0.31  - 0.14   0.37   0.28  - 0.17  
                                                Fruit mass   -   0.04   0.2   0.84***  - 0.55*   0.17  - 0.52*  
 Fruit mass  LAI   0.22   0.51   0.92***  - 0.37   0.41  - 0.60*  
 Fruit mass  P1-10   0.5   0.39   0.83***   0.01   0.35  - 0.53  
 Fruit mass  LAI+ P1-10  0.59   0.58*   0.92***  - 0.61*   0.48  - 0.62*  
                                                LAI  -   0.18   0.60*   0.41   0.46   0.51*   0.52*  
 LAI  FM   0.28   0.71**   0.75***   0.13   0.60*   0.61*  
 LAI  P1-10   0.01   0.52   0.41   0.15   0.42   0.52*  
 LAI  FM+ P1-10  0.36   0.65*   0.75**   0.18   0.53*   0.62*  
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Discussion 

The rainfall-productivity relationship in Fagus sylvatica  

Against the backdrop of climate change, many studies on the drought stress tolerance of 

temperate forest trees have been published in recent years. Particular attention has been paid 

to the impacts caused by the exceptionally severe summer drought of 2003 in Europe, as it 

may represent an increasingly probable future climate event. However, the main sources of 

information on climate-growth relationships have been analyses of either tree ring increment 

(Dittmar and others 2003; Di Filippo and others 2007) or whole-ecosystem carbon balance 

based on CO2 flux measurements (Ciais and others 2005; Granier and others 2007). To our 

knowledge, the current study is the first attempt to analyse the drought response of 

aboveground productivity and carbon allocation of a target tree in (almost) monospecific 

mature forest stands across a precipitation gradient on similar geological substrates. Meier and 

Leuschner (2008a,b) studied the leaf area and root mass of Fagus sylvatica stands along a 

precipitation gradient on moderately fertile sandstone in Central Germany, but they did not 

address net primary production. Other precipitation gradient studies in temperate forests 

included a tree species turnover (for example, in the Pacific Northwest region of the USA; 

Gholz 1982), which makes it difficult to draw conclusions on species responses to a 

precipitation decrease. Detailed analyses of aboveground net primary production (NPPa) in 

Central European monospecific beech forests at maturity gave productivity figures in the 

range of 890 – 1240 g DM m-2 yr-1 (mean: 1050 g m-2 yr-1 with one outlier at 1730 g m-2 yr-1; 

Ellenberg and Leuschner 2010), but the existing data are too limited to examine precipitation 

effects on NPPa. The NPPa figures from the 12 stands of our study agree well with these 

reference data (640 to 1310 g m-2 yr-1, mean: 880 g m-2 yr-1). 

An unexpected result of our study in the 12 beech stands is that NPPa did not significantly 

decrease along the precipitation gradient, despite ~30 % (270 mm yr-1) less mean annual 

precipitation at the dry end of the transect and the driest site (Calvörde) being located close to 

the natural drought-induced range limit of Fagus sylvatica in Central Germany (Kölling 2007; 

Leuschner 2009). In 2009, NPPa differed by not more than 10 % between the moist (838 mm 

yr-1) and dry ends (649 mm yr-1) of the transect. In 2010 and 2011, NPPa showed no declining 

tendency in response to decreasing precipitation (P1-10 and Pyr), which is in sharp contrast to 

the steep precipitation gradient in 2011 (810 to 510 mm yr-1). The insignificant rainfall effect 

on NPPa also persisted when aboveground productivity was related to precipitation figures of 

the preceding year (or of the 30-year mean) instead of the recent year’s precipitation. 
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However, for the entire three-year study period, we found a positive influence of current-year 

early-summer precipitation (P6-7) on NPPa (Table 3.3) which is in line with findings of many 

other authors (Piovesan and others 2003; Lebourgeois and others 2005; García-Suárez and 

others 2009; Friedrichs and others 2009; Weber and others 2013), who all regard precipitation 

or soil moisture availability during early summer as the key climatic factor controlling beech 

growth. From stand-level eddy covariance measurements, Granier et al. (2007) concluded that 

Central and Western European beech forests reduce their canopy gross photosynthetic rate, 

when the extractable water in the soil profile is exhausted by more than 60 %, irrespective of 

seasonal dynamics. 

Apart from a likely growth-limiting effect of low soil water contents during the peak 

growth period (June-July), the low NPPa values measured in 2010 (mean of 702 g m-2 yr-1 

across al stands, compared to 981 and 955 g m-2 yr-1 in 2009 and 2011, respectively) could 

have been caused either by the recovery of the trees´ carbon reserves from the exhaustive 

mast year 2009, or by reduced carbon assimilation due to lower incident radiation in 2010. 

Reduced stem growth after masting events appears conceivable, as the refilling of 

carbohydrate reserves represents a C sink that strongly competes for assimilates (Lacointe 

2000; Vanninen and Mäkelä 2000; Barbaroux and Bréda 2002; Silpi and others 2007) and 

photosynthate allocation to storage pools is considered as the main reason for observed 

mismatches between meteorologically quantified C assimilation und biometrically measured 

growth (Hoch and others 2003; Gough and others 2009; Mund and others 2010). However, in 

an investigation on masting and diameter growth in Southern Sweden over five decades, 

Drobyshev and others (2010) found negative effects of masting on stem growth to be 

restricted to the respective current mast year. Correspondingly, in our study, such a ‘carryover 

effect’ from 2009 is an unlikely cause of the relatively low 2010 NPPa figure, as the 

productivity patterns across the transect did not mirror the very pronounced fructification 

increase toward the drier sites observed in the preceding year 2009. Since the radiation total 

from April to October was lower in 2010 and bud break occurred approx. 2-3 weeks later than 

in 2009 and 2011 at all sites, one would assume a relatively low canopy carbon gain in the 

season of 2010. However, our analysis did not show a positive relation between current 

season radiation totals (Rad4-10 and Rad6-7) and NPPa in this year. We assume that the most 

likely explanation of the 2010 depressions in NPPa and wood production throughout the 

transect was the coincidence of reduced canopy C gain and enhanced belowground sink 

strength due to the drought in June-July 2010. This explanation would match with the results 

of Hertel and others (2013) that show significant increases in fine root biomass and fine root 
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productivity in response to decreasing precipitation in the same beech stands we examined in 

this study (see below). Finally, in accordance with results obtained by Bourioaud and others 

(2005), one may argue that our calculations might have underestimated wood mass production 

(and thus NPPa) especially in 2010, since the stem increment at breast-height may be more 

sensitive to drought events in June and July than it is at higher stem positions. 

In accordance with studies on climatic drivers of radial growth in beech trees at low 

altitude sites, we also find a negative effect of current early-summer temperature (T6-7) on 

NPPa, which likely is a consequence of the negative relation between precipitation and 

temperature (Dittmar and Elling 1999; Dittmar and others 2003; Mölder and others 2011; 

Scharnweber and others 2011). Our results suggest that P6-7 is the main climatic driver of 

current-year NPPa in these beech forests. We explain the insignificance of the precipitation 

effect on NPPa in the 12 stands in all three study years primarily with the small variation in 

P6-7 along the transect in these years (compare Figure 3.2c). 

 

Climate effects on carbon allocation 

Similar to NPPa, the components of aboveground productivity (woody tissues, leaves, 

flowers and fruits) did not show consistent relationships with either the current season´s or the 

current year early-summer´s precipitation. Only in 2009, we observed a significant decline in 

wood production and leaf biomass along the rainfall gradient with productivity decreases by 

c. 50 and 20 %, respectively, from the wet end to the dry end of the transect. As this decrease 

coincided with an almost equivalent increase in fruit production, the likely explanation is a 

shift in carbon allocation along the precipitation gradient. In the two succeeding years, 

however, stem wood and leaf production did not respond to the current season´s climate 

conditions. When the entire study period is analyzed, the early-summer conditions of the year 

prior to the observation year appeared as the main factors controlling the productivity of the 

three aboveground biomass components (see Table 3.3). 

In contrast to aboveground productivity, the production of beech fine root biomass seems 

to be more closely related to the regional precipitation regimes. In a study on fine root 

dynamics in the 12 beech stands, Hertel and others (2013) detected increases in fine root 

biomass (in 2009) and in fine root productivity (in 2010) with decreasing annual precipitation 

along the transect. Fine root production ranged between 139 and 479 (mean: 263) g DM m-2 

yr-1 in 2010, which is comparable to a mean tree fine root production rate of 306 g m-2 yr-1 

reported by Finér and others (2011) in a literature analysis for boreal and temperate forests. 
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According to these figures, the belowground productivity fraction rises from 21 % of NPPtotal 

in the five moister stands (P>700 mm yr-1) to 31 % in the seven drier stands (P <700 mm yr-1) 

pointing to an allocation shift from aboveground to belowground carbon investment in 

response to reduced water availability in beech trees. 

Facing the finite availabilities of nutrients, water and energy, the investment of resources 

into one process will result in a decrease of resources allocated to another process, linking 

different life-history traits through constraining relationships (Obeso 2002). Dry matter 

analyses during mast years showed that developing beech nuts may incorporate large amounts 

of nutrients and photoassimilates (Burschel 1966; Paar 2004; Schmidt 2006; Jochheim 2007), 

which according to the ‘costs of reproduction hypothesis’ will limit vegetative growth, i.e., 

the production of leaf and wood biomass (Reekie and Bazzaz 1987a,b). In accordance with 

observations on the crown condition during mast years (Innes 1994; Eichhorn and Paar 2000; 

Schmidt 2006; Seidling 2007), we found a strong negative relationship between the amounts 

of stand leaf biomass and annual fruit mass produced in the two mast years; this relation 

existed even in the non-mast year 2010. Further, in both mast years, wood mass production 

(and relative volume increment) declined in response to increasing fruit production supporting 

earlier studies that demonstrated a measurable negative effect of masting on wood production 

and shoot elongation in beech (Holmsgaard 1955; Dittmar and others 2003; Drobyshev and 

others 2010; Han and others 2011).  

Without doubt, the decrease in vegetative growth associated with rising reproductive effort 

can partly be explained by a high sink strength of developing fruits for recently assimilated 

carbon, which has previously been found in beech and in a number of other tree species 

(Kozlowski and Pallardy 1997; Hoch and Keel 2006). Beyond these single components´ 

growth limitations due to alteration of sink priorities, the direct costs of reproduction may 

further be amplified by consequences arising from extensive fruiting, often referred to as 

indirect costs of reproduction (Bazzaz and others 1987). Such indirect costs are generated in 

masting trees because the inflorescences of beech displace leaf-bearing shoots, thereby 

reducing the number of leaf buds (Innes 1994; Gruber 1998; Seidling 2007). In addition to a 

resource allocation shift from wood to fruit production, wood increment may also be affected 

by reduced canopy C gain due to a smaller leaf area in mast years (Bartelink 1997). 

In order to separate such direct and indirect effects on wood production and NPPa 

resulting either from fructification or reduced precipitation, we conducted a partial correlation 

analysis which revealed that fruit production and a reduction in LAI both had negative effects 
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of roughly similar size on wood production. Despite this growth-depressing effect, NPPa 

increased with fruit production in each single year (significant in 2010 and 2011), and the 

NPPa figures of the two mast years were higher than that of the non-mast year 2010. 

Contrasting growth responses of woody tissues and foliage to masting events may reflect the 

particular constraining relationships in the context of seasonal growth dynamics of diffuse-

porous trees. Beech trees which allocated up to c. 20% of NPPa to fruit production showed a 

marked response by proportionally reducing leaf production, which is an expression of strong 

competition for carbohydrate reserves between flowers and leaves in spring (Kozlowski 1992; 

Dyckmann and others 2000; Hoch 2005). This corresponds with the observation of Barbaroux 

and Bréda (2002) and Barbaroux and others (2003) that the formation of beech early-wood is 

largely dependent on the current season’s carbon assimilation rate. Only when fruit 

production exceeded 20% of NPPa, we found a substantial decline of the fraction of wood 

production in beech. In contrast, the leaf fraction was barely affected by a further rise in the 

proportion of fruit biomass production beyond 20% of NPPa (on sink strength alternations of 

single tissues see Cannell and Dewar 1994). 

It is known since long that specific climatic conditions are triggering the masting of beech. 

High fruit production occurs mainly in years following warm and dry summers as it was 

found by e.g. Matthews (1955); Piovesan and Adams (2001); Övergaard and others (2007) 

and also in our study. We found the amount of fruit production to be tightly correlated with 

the radiation and temperature (positively) and the precipitation amount (negatively) of the 

previous year´s June and July, while wood and leaf production showed a significant response 

in opposite direction. This finding matches with recent reports about a negative relationship 

between stem increment and the preceding summer’s temperature and are in line with an 

increasing sensitivity of radial growth in F. sylvatica to drought events of the previous 

growing season (Lebourgeois and others 2005; Eichhorn and others 2008; Friedrichs and 

others 2009; Weber and others 2013). In agreement with Di Filippo and others (2007) and 

Drobyshev (2010) we suggest that such growth reductions are not primarily a response to 

stressful weather conditions that impair carbon assimilation or growth processes directly, but 

rather are caused by allocational shifts resulting from climate-triggered fructification events. 

Our results confirm the view that increases in the frequency and intensity of masting events in 

beech, as they were observed in the past decades (Hilton and Packham 1997; Paar and others 

2000; Övergaard 2007), are resulting in significant reductions of stem wood production in this 

species (Dittmar and others 2003; Drobyshev and others 2010). 
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Conclusions 

     From the results of this transect study, we draw the following conclusions: First, annual or 

growing season precipitation totals, which often are used for characterizing the local growing 

conditions of forest stands, apparently are only subordinate determinants of aboveground 

productivity in the beech forests of North-west Germany. Instead, at these lowland sites, 

NPPa and stem wood production were found to be primarily controlled by the precipitation 

and soil moisture content in the peak growing period (June and July). Second, in the absence 

of a correlation between total and wood production across our 3-yr study period, wood 

production (or radial increment) cannot be regarded as a reliable predictor of NPPa in beech. 

Reasons are the varying proportion of wood production to total aboveground productivity and 

the obvious competition between wood and fruit mass production for carbohydrates resources. 

Third, the reduction in stem wood production in mast years is to a large extent attributable to 

shifts in aboveground carbon allocation which can explain most of the observed temporal and 

spatial variation in the productivity of the three aboveground biomass components; these 

shifts are triggered by the weather conditions in June and July of the preceding year. High 

temperatures and radiation sums induce the formation of flower buds with the consequence 

that substantial resources are shifted to reproduction in the subsequent year at the expense of 

leaf and especially wood mass production. This allocation shift can explain the frequently 

observed sensitivity of beech growth to a preceding warm or dry summer (as, for example, 

subsequent to the exceptional heat in summer 2003).  

     In the context of climate change and the assumed future reduction in summer rainfall in 

parts of Central Europe, we predict that the likely increase in the frequency of summer heat 

waves will play a critical role (Schär et al. 2004) because it should trigger masting events in 

beech. Our results suggest that the resulting shift in carbon allocation towards regeneration 

(and probably also to root production) will impair timber yield more than any direct negative 

effect of drought or heat on carbon gain and/or hydraulic functioning, as long as species-

specific tolerance thresholds are not crossed. Future research on safety margins in the 

hydraulic system and about the response of carbon assimilation and plant respiration to 

drought periods in adult stands are needed to better understand the sub-letal response to 

reduced precipitation. Finally, a decisive role will be played by the frequency of extremely 

dry summers (as those in 1976 and 2003) which have been found to significantly increase the 

mortality of adult beech trees in many Central and Western Europe forests (Bréda and others 

2006). These extreme events may destabilize beech forests if soil moisture levels fall below 

critical thresholds for extended periods in early summer. 
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Appendix  
Table A. 3.1. Pearson correlation coefficients (R) for relationships between aboveground production parameters 
and variables of climatic, edaphic, stand structural and production-related parameters in the 12 beech stands in 
the years 2009, 2010 and 2011. Given are the standardised regression coefficient estimates and the significance 
level (asterisks) from linear mixed models (crossed random factors ‘site’ and ‘year’) after z-transformation of the 
data. P = precipitation, T = temperature, Rad = solar radiation, VWC = volumetric water content at 20 cm 
mineral soil depth, AWSC = soil water storage capacity, ∑fSUT = percentage of soil particles < 200µm. The 
numbers give the time period considered (months), Y-1 = preceding year. Significance levels: *P<0.05; ** P 
<0.01; *** P <0.001. P values were derived from a likelihood ratio test. Significant correlations are in bold. 
                                                                             Dependent variables     

  NPPa  Wood mass production  Leaf mass production  Fruit mass production 
                                       2009  2010  2011  2009  2010  2011  2009  2010  2011  2009  2010  2011 

                                     Climatic parameters                            
P 1-10   0.35   0.38  - 0.15   0.73**   0.36  - 0.05   0.75**   0.37   0.09  - 0.77**  - 0.37  - 0.12 
P 6-7   0.10   0.10  - 0.02   0.45  - 0.01  - 0.08   0.38   0.48  - 0.05  - 0.57*  - 0.32   0.03 
P(Y-1) 1-10    0.22   0.39  - 0.01   0.65*   0.35  - 0.04   0.78**   0.46   0.11  - 0.81**  - 0.43  - 0.01 
P(Y-1) 6-7   0.14   0.18  - 0.38   0.58*   0.19  - 0.26   0.75**   0.19   0.04  - 0.82***  - 0.31  - 0.45 
T 4-10  - 0.17  - 0.33   0.07  - 0.59*  - 0.31   0.01  - 0.76**  - 0.37  - 0.09   0.80**   0.39   0.07 
T 6-7  - 0.11  - 0.28   0.17  - 0.54*  - 0.24  - 0.02  - 0.73**  - 0.37  - 0.12   0.79**   0.35   0.18 
T(Y-1) 4-10   - 0.18  - 0.32   0.05  - 0.61*  - 0.29  - 0.01  - 0.78**  - 0.35  - 0.12   0.82***   0.35   0.07 
T(Y-1) 6-7  - 0.12  - 0.29   0.11  - 0.55*  - 0.26   0.04  - 0.75**  - 0.36  - 0.13   0.80**   0.32   0.10 
Rad 4-10  - 0.20  - 0.39   0.13  - 0.60*  - 0.44  - 0.15  - 0.88***  - 0.17  - 0.21   0.82***   0.3   0.22 
Rad 6-7  - 0.14  - 0.33   0.15  - 0.59*  - 0.34  - 0.18  - 0.89***  - 0.31  - 0.23   0.88***   0.42   0.25 
Rad(Y-1) 4-10  - 0.32  - 0.43  - 0.24  - 0.70**  - 0.28  - 0.14  - 0.94***  - 0.80***   0.18   0.82***   0.47  - 0.17 
Rad(Y-1) 6-7  - 0.15  - 0.42   0.02  - 0.61*  - 0.34   0.01  - 0.88***  - 0.56*   0.12   0.89***   0.42   0.53* 
VWC 4-10 1)      0.23  - 0.15      0.26  - 0.08     - 0.07   0.19      0.08  - 0.13 
VWC 6-7 1)      0.09  - 0.24      0.18  - 0.18     - 0.14   0.09     - 0.11  - 0.14 
                                     Production-related parameters                            
NPPa   -   -   -                            
Wood mass   0.80**   0.95***   0.02   -   -   -                   
Leaf mass   0.21   0.28   0.31   0.60*   0.03   0.56*   -   -   -          
Fruit mass   0.04   0.20   0.84***  - 0.55*   0.17  - 0.52*  - 0.84***  - 0.50*  - 0.64*   -   -   - 
                                     Soil parameters                                  
AWSC 2)   0.40   0.26   0.48  - 0.03   0.27  - 0.23  - 0.22  - 0.03  - 0.10   0.55*   0.09   0.54* 
∑ fSUT 2)   0.47   0.31   0.49   0.23   0.39  - 0.21   0.16  - 0.03  - 0.12   0.18  - 0.14   0.55* 
C/N ratio 3)   0.28   0.16   0.38   0.40   0.18   0.15   0.38   0.05   0.50  - 0.30  - 0.10   0.20 
N 3)  - 0.21   0.22  - 0.30   0.08   0.11   0.71**   0.28   0.43   0.08  - 0.43  - 0.12  - 0.61* 
Base sat. 3)   0.23   0.36  - 0.20   0.45   0.37  - 0.06   0.51   0.22  - 0.05  - 0.47  - 0.27  - 0.14 
CEC 3)  - 0.01   0.06   0.08   0.15   0.02   0.12   0.28   0.26  - 0.03  - 0.30  - 0.24   0.02 
pH H2O 3)   0.64*   0.32   0.65*   0.34   0.45  - 0.17  - 0.28  - 0.52*   0.08   0.38   0.44   0.65* 
pH KCl 3)   0.19   0.01   0.29   0.19  - 0.01  - 0.32   0.02  - 0.18   0.41  - 0.03   0.36   0.35 
Al 3)   0.14   0.19   0.11   0.07   0.19  - 0.06  - 0.42  - 0.32   0.28   0.21   0.62*   0.09 
P 3)   0.01  - 0.36   0.14  - 0.10  - 0.37  - 0.15   0.15   0.06  - 0.01   0.08  - 0.21   0.19 
                                     Stand structure                                  
Stand age   0.20   0.01   0.55*  - 0.04   0.16  - 0.39  - 0.26  - 0.43  - 0.11   0.35   0.09   0.69** 
Stem density  - 0.11  - 0.08  - 0.33   0.01  - 0.26   0.23   0.10   0.42   0.13  - 0.17   0.01  - 0.42 
DBH  - 0.03  - 0.05   0.24  - 0.20   0.14  - 0.40  - 0.36  - 0.57*  - 0.38   0.34   0.13   0.45 
LAI   0.18   0.60*   0.41   0.46   0.51   0.52*   0.92***   0.88**   0.90***  - 0.68*  - 0.33   0.03 
Standing 
wood biomass   0.31   0.16   0.19   0.05   0.30  - 0.32  - 0.39  - 0.37  - 0.57*   0.41   0.05   0.40 

                                                                      1) VWC values only for 2010 and 2011. 2) Soil physical properties refer to the upper 120 cm of the mineral soil.  
3) Soil chemical properties refer to the upper 30 cm of the mineral soil.   
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Abstract 

     European beech shows mast fruiting at intervals of 2-20 years with recent increase in 

frequency. It is not precisely known which climatic or endogenous factors are the proximate 

causes of masting. We recorded fruit mass production in 11 beech stands across a climate 

gradient over four years, analysed the influence of climatic, edaphic and stand structural 

parameters on fructification, and quantified carbon (C) and nitrogen (N) allocation to leaf and 

fruit mass production. The solar radiation total in June and July of the year preceding a mast 

year (JJ-1) was the parameter most closely related to fruit mass production, whereas no 

influence was found for drought. Radiation induced flowering and subsequent fruit production 

in beech apparently through a threshold response when the long-term mean of June-July 

radiation was exceeded by more than 5 %. Full masting was associated with a significantly 

smaller leaf size and stand leaf area in the mast year and it significantly lowered foliar N 

content in the mast and post-mast year. We conclude that radiation totals and the N status of 

the foliage jointly govern the temporal pattern of masting in beech, presumably by controlling 

the photosynthetic activity in early summer. Anthropogenic increases in N deposition and 

atmospheric [CO2] thus have the potential to increase masting frequency which can 

substantially alter forest productivity and forest biogeochemical cycles. 

 

 

Key words: climatic cues, drought, Fagus sylvatica, fruit mass production, leaf area 

reduction, leaf nitrogen depletion, masting, reproductive ecology, resource dynamics, solar 

radiation
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Introduction 
Many temperate tree species exhibit a remarkable switching of carbon and nutrient 

allocation patterns between vegetative growth and reproduction. At irregular time intervals, 

large amounts of seeds are produced, a phenomenon known as mast fruiting or masting 

(Janzen 1976; Kelly 1994). In European beech (Fagus sylvatica L.), the most important tree 

species of Central Europe’s natural forest vegetation, the quantity of fruit production differs 

by orders of magnitude between mast and non-mast years, and even among different mast 

years, fruit production varies widely (Hilton and Packham 1997). In central and northern 

Europe, mast years of beech were reported to have occurred at intervals of 2-20 years during 

the last three centuries with a mean interval length of 4-7 years (Hilton and Packham 2003; 

Övergaard and others 2007; Paar and others 2011, and references therein). 

The diversity of hypotheses about the ultimate reasons of masting, which attribute this 

reproductive behaviour to evolutionary advantages related to predator satiation or increased 

pollination efficiency (Janzen 1971; Nilsson and Wästljung 1987; Kelly and Sork 2002), 

comes along with difficulties in identifying those factors that immediately trigger 

fructification events, i.e. represent the ‘proximate causes of masting’. There is general 

agreement that masting in beech occurs subsequently to warm and dry summers (Büsgen and 

Münch 1929; Matthews 1963; Burschel 1966; Gruber 2003a; Hilton and Packham 2003) with 

a high level of synchronisation over large areas (Wachter 1964; Perrins 1966). This hints to a 

powerful and species-specific climatic trigger of fructification (Kelly and Sork 2002). 

However, positive anomalies of temperature, irradiance and soil drought are highly inter-

related, which makes it difficult to distinguish between influential and only co-varying 

factors. Besides summer weather conditions immediately preceding a mast year, it was 

proposed that masting in beech could additionally be promoted by cool and wet summer 

weather two years prior to a masting event (Piovesan and Adams 2001; Drobyshev and others 

2010), by the absence of spring frost during the current mast year (Lindquist 1931; Gruber 

2003b), and by higher soil nitrogen availability (Borchers and others 1964; Le Tacon and 

Oswald 1977). It remains unclear whether the development of floral primordia in beech is an 

immediate reaction to a single exogenous factor such as elevated temperature (Lindquist 

1931; Holmsgaard and Olsen 1960; Drobyshev and others 2010), high solar radiation 

(Matthews 1955; Schmidt 2006) or soil desiccation (Wachter 1964; Piovesan and Adams 

2001). Or, it could be a response to a combination of ambient factors which indirectly control 

masting through the alteration of endogenous state factors such as plant-internal carbohydrate 

or nitrogen levels or budgets (Han and others 2008; Miyazaki 2013).  
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It has frequently been shown that a carbon allocation shift toward reproduction in the 

course of mast years results in reduced vegetative growth in terms of wood production 

(Schweingruber 1996; Koenig and Knops 1998; Selås and others 2002; Mund and others 

2010) and leaf mass production (Innes 1994; Eichhorn and Paar 2000; Seidling 2007). Since 

leaf area is the key variable controlling the fluxes of gases and energy in the canopy, this 

implies that masting-induced variation in LAI and leaf morphology must affect the cycling of 

carbon and other elements in the forest (Jarvis and Leverenz 1983).  

The linkage between mast fruiting and leaf area and its consequences for forest 

productivity have not been studied satisfactorily. Global warming is predicted to alter most or 

all climatic parameters being discussed as possible triggers of mast fruiting in beech. 

Therefore, a mechanistic understanding of the drivers of masting and its consequences for 

productivity and ecosystem carbon cycling is of great interest not only for tree physiologists 

but also for forestry. 

We addressed this topic by measuring the production of fruit and leaf mass in eleven 

mature beech stands across a precipitation gradient (543 - 816 mm y-1) in two full mast years 

and two non-mast years and analysed the influence of various climatic, edaphic and stand 

structural parameters on fruit mass production. The stands were of similar structure and all 

grew on sandy soil of relatively low fertility. Half of the stands stocked on soil with higher 

water storage capacity which allowed distinguishing between effects of climatic drought and 

edaphic drought on masting behaviour.  

Study aims were (i) to identify climatic variables which act as triggers for mast fruiting in 

beech, (ii) to assess the importance of edaphic and stand structural factors in their possible 

role as contributing factors influencing masting intensity, (iii) to analyse the effects of fruit 

production on leaf mass production, and (iv) to estimate the degree of resource shifting 

between fruit and leaf production for carbon and nitrogen in mast years. By studying a matrix 

of beech stands along climatic and edaphic gradients, we tested the hypotheses that (1), beech 

masting is not a response to adverse weather conditions such as drought or heat stress as 

suggested in the environmental prediction hypothesis (e.g. Piovesan and Adams 2005), and 

(2) the resource consumption associated with masting results in significant reductions of the 

assimilating leaf area in the same year. To our knowledge, a direct proof of hypothesis (2) at 

the stand level does not yet exist.  
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This study is part of a more comprehensive investigation about climate change impacts on 

the productivity of European beech in northern Germany (KLIFF program) which also 

includes the study of other productivity components (stem wood and fine root production).  

 

Materials und methods 

Study area and sites 

     The study was conducted in the four years 2009 to 2012 in eleven beech forests (Fagus 

sylvatica) in the Pleistocene lowlands of north-west Germany. The stands are located at five 

study sites in the states of Lower Saxony and Saxony-Anhalt along a 130-km-long NW-SE 

transect (Figure 4.1). This transect represents the transition from an oceanic to a sub-

continental climate with a continuous gradient in precipitation (816 to 543 mm y-1) and 

temperature (8.4 to 9.1 °C, Table 4.1) from west to east. At all sites, two study plots differing 

in soil texture (sandy and sandy-loamy) were established to account for the edaphic 

heterogeneity in the Pleistocene landscape. The study sites are located in the forest districts 

Sellhorn (Se), Unterlüß (Un), Göhrde (Go) and Klötze (Kl) (two study plots each), whereas at 

the driest site Calvörde (Ca), three plots were established (two sandy, one sandy-loamy). All 

forests are situated at low elevations (72 - 130 m a.s.l.) on nutrient-poor, highly acidic sandy 

soils with variable silt content (dystric or umbric Arenosols or Podzols) which are covered by 

thick (4-9 cm) organic layers. The collection of fruit and leaf litter and other fine litter 

components took place from 2009 to 2012 on plots of 30 m x 30 m size in stands 

characterized by (i) dominance of beech, (ii) mature age (85-140 years), and (iii) closed 

canopy without larger gaps (> ~10 m in diameter). The years 2009 and 2011 were full mast 

years in beech, 2010 and 2012 were years with very low fruit production (non-masting years). 

All plots are situated in either monospecific beech stands (n = 6) or in beech-dominated 

stands with some admixture of Sessile oak (Quercus petraea Matt. Liebl; n = 4) or Douglas-

fir (Pseudotsuga menziesii (Mirb.) Franco; n = 1). In all stands, beech trees represented >80% 

of the stands’ cumulative basal area (24-45 m2 ha-1) and >95% of the canopy cover. The 

eleven stands originated from natural regeneration. The beech trees reached a height of 24 to 

34 m; a second tree or shrub layer was lacking in all study plots. The study sites were fenced 

and equipped with litter traps in early 2009 (plot #12 in winter 2009/2010). Litter production 

records from one additional forest stand (plot #5: Oerrel, Table 4.1 and Figure 4.1) were not 

used in this study since beech reached a lower canopy cover here. 



 

 

Table 4.1. Summary of environmental conditions and stand structural properties of the 12 beech stands in north-western Germany. Mean annual precipitation (MAP) and 
temperature (MAT) refer to the period 1971-2000. Mean diameter in breast height covers all beech trees > 7 cm stem diameter; stem density and cumulative basal area refer to all 
trees > 7 cm stem diameter in a plot and may include a few individuals of other species in certain plots (see Methods section). Soil chemical properties refer to the upper 30 cm of 
the mineral soil (N: total nitrogen; Al: NH4Cl-exchangeable aluminium; P: total phosphorus; data provided by M. Jansen and C. Döring, unpublished). Fine-grained soil particles 
include fine sand, silt and clay (fSUT: particle size < 200 µm) or silt and clay only (UT: particle size < <63 µm) expressed in % of total soil mass (0 – 120 cm soil profile). The 
water storage capacity (AWSC) is calculated for the upper 120 cm of the mineral soil. Climate data provided by DWD, Deutscher Wetterdienst and regionalised by C. Döring. 
Data from plot #5 (Oerrel) was not considered in this study (s. Methods). 

Plot no. 

Site code 

1 

Se 

2 

Se 

3 

Un 

4 

Un 

5 

Oe 

6 

Go 

7 

Go 

8 

Kl 

9 

Kl 

10 

Ca 

11 

Ca 

12 

Ca 

Coordinates 
53°10' N 

09°57' E 

53°10' N 

09°57' E 

52°50' N 

10°19' E 

52°50' N 

10°19' E 

52°59' N 

10°14' E 

53°07' N 

10°49' E 

53°09' N 

10°52' E 

52°37' N 

11°14' E 

52°37' N 

11°15' E 

52°24' N 

11°16' E 

52°23' N 

11°17' E 

52°22' N 

11°16' E 

Elevation (m a.s.l.) 127 130 120 117 90 85 85 102 85 72 75 105 

MAP (mm) / MAT (°C) 816 / 8.4 816 / 8.4 766 / 8.4 766 / 8.4 741 / 8.6 675 / 8.6 665 / 8.7 615 / 8.7 614 / 8.7 543 / 9.0 544 / 9.1 559 / 9.0 

Annual prec. (mm) / Temp. (°C) 2009 838 / 9.1 838 / 9.1 815 / 9.2 815 / 9.2 758 / 9.3 702 / 9.3 686 / 9.4 737 / 9.4 726 / 9.5 654 / 9.7 649 / 9.7 658 / 9.6 

Annual prec. (mm) / Temp. (°C) 2010 817 / 7.6 817 / 7.6 833 / 7.6 833 / 7.6 766 / 7.7 744 / 7.7 726 / 7.8 746 / 7.8 744 / 7.8 672 / 8.0 684 / 8.1 708 / 8.0 

Annual prec. (mm) / Temp. (°C) 2011 810 / 9.4 810 / 9.4 710 / 9.6 710 / 9.6 710 / 9.6 677 / 9.6 666 / 9.7 573 / 9.7 573 / 9.8 509 / 10.0 515 / 10.1 530 / 10.0 

Annual prec. (mm) / Temp. (°C) 2012 772 / 8.8 772 / 8.8 749 / 9.0 749 / 9.0 705 / 9.0 648 / 9.0 638 / 9.1 634 / 9.2 629 / 9.2 549 / 9.5 550 / 9.5 568 / 9.4 

Stand age (yr) 127 127 115 115 95 142 133 c.125 c.125 131 97 87 

Stem density (no. ha-1) 156 367 411 611 500 122 289 267 478 300 711 578 

Mean diameter in breast height (cm) 46.7 29.6 26.1 18.6 21.7 51.0 30.7 43.3 29.0 36.6 23.4 24.9 

Stand basal area (m2 ha-1) 31.0 30.7 28.5 24.3 32.3 26.6 24.4 44.9 40.8 33.3 33.2 32.6 

Proportion of beech (% of basal area) 100 95 100 81 61 100 94 100 81 97 100 100 

             C/N ratio of mineral soil (g g-1) 15.6 24.2 25.8 24.1 17.8 22.9 25.5 11.9 15.7 15.9 13.2 19.0 

N concentration of mineral soil (g kg-1) 0.28 0.46 0.40 0.47 0.78 0.41 0.51 0.46 0.49 0.34 0.42 0.33 

P concentration of mineral soil (mg kg-1) 63 79 71 106 238 59 97 121 97 126 111 133 

Al concentration of mineral soil (g kg-1) 0.53 0.52 0.58 0.31 0.42 0.46 0.79 0.48 0.54 0.38 0.57 0.38 

Cation exchange capacity (µmolc g-1) 16.1 27.5 18.4 24.2 22.7 20.2 26.5 21.3 17.3 18.6 14.7 14.2 

Base saturation of mineral soil (%) 24.3 9.7 14.8 8.3 8.3 6.7 2.8 14.4 9.7 7.4 5.0 6.9 

Fine grained soil particles ∑ fSUT (∑ UT) (%) 51 (12) 42 (17) 52 (21) 46 (15) 46 (8) 41 (18) 14 (5) 62 (32) 46 (16) 61 (54) 24 (10) 14 (5) 

AWSC mineral soil (mm 120 cm-1) 90 

 

111 

 

95 79 

 

79 

 

78 

 

107 124 

 

90 

 

140 

 

81 

 

46 
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Figure 4.1. Study plot design: a) Map of the study area in northern Germany with the six study sites along the 
precipitation gradient from Northwest to Southeast (triangles: location of plots). The black line encircles the area 
of the Lüneburg Heath. Layout by C. Döring. b) Scheme of the plot design: two study plots per site (except 
Oerrel: n=1; Calvörde: n=2 in 2009 and n=3 in 2010-2012) located on contrasting soil texture in the six forest 
districts (Se = Sellhorn, Un = Unterlüß, Oe = Oerrel, Go = Göhrde, Kl = Klötze, Ca = Calvörde). Mean annual 
precipitation (MAP) and temperature (MAT) data (1971-2000) from Deutscher Wetterdienst, Offenbach. 
 
 
Measurement of leaf and fruit production, leaf area and leaf morphology 

The annual production of non-woody litter (leaves and fruits) was recorded with ten litter 

traps (aperture: 0.28 m2) on each plot. The collectors were placed in a systematic pattern 

within a grid with 8 m mesh width, inaccessible for deer or rodents. From the fresh leaf 

material of every plot (10 collectors), 500 beech leaves were randomly selected and scanned 

and the leaf size determined with WinFolia software (Régent Instruments, Quebec, Canada). 

The collected litter material was sorted by tree species, oven-dried at 70°C for 48 h and 

Sandy-loamy 

Sandy  

MAP decrease (816-543 mm yr-1) 

Se Un Oe Go Kl Ca Soil texture 

MAT increase (8.4-9.1°C) 

30m 

b 

a 
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weighed; the number of beech fruits (nuts) was counted. The following foliar traits were 

determined: plot means of specific leaf area (SLA), leaf size and individual leaf mass. From 

total leaf mass and mean SLA, leaf area index (LAI) and the number of leaves per ground 

area were calculated. For the five plots with admixture of other tree species, a canopy 

projection mirror (self-constructed in the Department of Remote Sensing, University of 

Göttingen) was used for quantifying the canopy projection area (8-point canopy silhouettes) 

of these species. Figures of leaf biomass production and LAI were then corrected using the 

proportion of the stand area occupied by non-beech trees (0.5-5 %).  

 

Carbon and nutrient content of leaves and fruits  
     The concentrations of carbon (C) and nitrogen (N) in green leaves were analysed in the 

years 2009-2011, but not in 2012. Samples of upper sun canopy leaves were collected by 

crossbow shots (in 2009) or tree climbing (in 2010 and 2011) at the beginning of September 

in the three years. On each plot, 4-5 dominant or co-dominant trees were chosen and leaves 

from 5-8 branches per tree used for the analyses. In the two masting years 2009 and 2011, 

leaves for chemical analysis were collected from non-fruit bearing branchlets. Chemical 

analyses were carried out in 2009 and 2010 on all study plots (N = 10 and 11, respectively). In 

2011, leaf sampling took place on only six plots (# 2, 4, 7, 9, 11, and 12), i.e. one plot per 

study site, along the climatic gradient (except for two plots at the driest site Calvörde). The C 

and N concentrations in fruit mass were analysed in the nuts collected in autumn 2009 in the 

litter traps. We separated the reproductive material into nuts and cupulae and analysed 

composite samples from the litter collectors of each plot for these two fractions. Prior to 

analysis, the organic material was oven-dried at 70°C to constant weight, milled and dried 

again before determining the C and N concentrations with an elemental analyser (NA 2500, 

CE-Instruments, Rodano, Milan, Italy). 

     By multiplying the concentrations of C and N with the collected leaf litter mass in a plot, 

we estimated the stand totals of C and N contained in stand leaf biomass. The C and N 

content per unit leaf area (Ca, Na) or per individual leaf (Cleaf, Nleaf) were calculated by 

dividing the stand totals of C and N in leaf biomass by stand leaf area or by the total number 

of leaves per ground area, respectively. The annual C and N demand for fruit production 

(CFruitmass, NFruitmass) was calculated by multiplying fruit mass with the respective C and N 

concentrations. Mass-based C and N concentrations in nuts (CmNut, NmNut) and cupulae 

(CmCup, NmCup) showed a very low variability across the gradient in 2009, irrespective of 

climate conditions and fruit production quantities. Therefore, we used the mean concentration 
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values of 2009 (C: 49.93 ± 0.39 % and 49.35 ± 0.57 % for CmNut and CmCup, respectively; N: 

2.78 ± 0.10 % and 0.46 ± 0.03 % for NmNut and NmCup, respectively) for estimating the C and 

N amount accumulated in the fruit biomass of 2011. 
 

Climate data 

     We used monthly data of precipitation, mean and maximum air temperature and sunshine 

duration from the 1km x1km grid data set of the German Meteorological Service (Deutscher 

Wetterdienst, Offenbach, Germany) and averaged the data of 3 x 3 km grids encompassing 

the study plots. Maximum temperature (Temp max) was calculated as the monthly mean of 

daily maxima. Monthly totals of solar radiation (direct plus diffuse irradiance) was calculated 

by applying the Ångström equation (Allen and others 1998) to sunshine duration data. 

 

Soil hydrological and chemical analyses 

     Soil physical and chemical properties were analysed in soil pits dug to 1.2 m depth in the 

centre of every plot by sampling all morphologically distinct soil horizons (Table 1). Water 

retention curves (pF-curves) were established in the laboratory by desorption of intact soil 

cores placed on suction plates. The storage capacity for plant-available water (AWSC) was 

calculated for each soil horizon (three pF-curves per horizon) at matrix potentials between -

300 hPa and -1.5 MPa and subsequently summed up over the total profile depth of 1.2 m. In 

addition, particle size classes were separated by sieving (particle size: 2000-20 µm) and 

sedimentation (particle size < 20 µm) in order to determine the percentage of particles < 200 

µm diameter (fine sand, silt, clay; ΣfSUT) and of particles < 63µm (silt and clay; ΣUT). Soil 

texture averages over the entire 120 cm soil depth were weighted by horizon thickness. 

     Volumetric soil water content (VWC) was measured at 6-h intervals in every plot from 

July 2009 onwards (plot #12: since March 2010) using time domain reflectrometry probes 

(TDR, CS616, Campbell Scientific Inc., Logan, UT, USA) installed at 20 cm soil depth. 

From these records, we calculated the relative extractable water (REW) according to Granier 

and others (1999) as a fraction of the maximum extractable water content using equation (1): 

REW = (W – Wm) / (WF – Wm)  (1) 

with W = available soil water, Wm = the minimum water content recorded in the period 2009-

2012 on a given plot, WF = soil water content at field capacity (i.e. saturating water content 

after completion of free drainage). 
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     Unlike the soil physical parameters, the soil chemical characterisation focussed on the 

upper 30 cm of the mineral soil only. For additional chemical analyses, mineral soil material 

was collected in the central soil pit and at four marginal locations on the plot using a soil 

corer. The pH of the sieved mineral soil was measured in 1 M KCl-solution. Exchangeable 

cations were extracted from sieved soil with 1 M NH4 Cl-solution and then measured by 

Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES; Optima 5300 DV, 

PerkinElmer, Wellesley, USA). Effective cation exchange capacity (CEC) was calculated as 

the sum of exchangeable cations. Base saturation (%) is the proportion of the sum of base 

cations (Na+, K+, Ca2+ and Mg2+) in CEC.  

 

Data analysis 

We standardized all explanatory and response variables in the data set from the eleven study 

plots and four years to ensure comparability among variables. The regression coefficients of 

the standardized data (‘Beta weights’) express the relative degree of variation of the response 

variable with variation of the independent variable by one standard deviation. These 

regression coefficients allow comparing the relative influence of the independent variables on 

the dependent variables. 

     The climate dependence of fruit production was analysed using monthly weather data from 

the two years preceding a mast event (mast year-2, and mast year-1) and the mast year itself. 

For reducing the influence of inter-annual differences in the phenology of Fagus (e.g. 

differences in the timing of bud burst), we used moving averages of two months in width, 

e.g., ‘early spring’ (March/April), ‘mid spring’ (April/May), ‘late spring’ (May/June), ‘early 

summer’ (June/July), and so forth. Thus, a total climate data set of 128 weather variables (the 

four climate parameters precipitation, mean and maximum temperature, and solar radiation x 

32 time windows) was used for analysing the climate - fruit production relationship. Not only 

monthly mean temperature was considered but maximum temperature as well, because we 

assumed that fructification might respond to extreme rather than average thermal conditions. 

Weather parameters with a likely effect on masting were identified with a two-step procedure: 

First, simple linear regressions between annual fruit mass production and selected weather 

parameters were calculated individually for the two mast years 2009 and 2011 and jointly for 

these two years pooled. Second, the entire four-year observation period was analysed for 

climate effects on masting with linear mixed-effects models (LMM) using the weather 

variables as fixed and ‘study site’ and ‘year of observation’ as crossed random factors. 

Likelihood ratio tests (LRT), conducted against a reference model, in which the observed 
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variable was left out, were used to test for significant effects. Another 19 edaphic, stand 

structural and productivity-related parameters were also tested for their influence on fruit 

production. By assuming that mast fruiting is triggered by climatic variation, the most likely 

climatic driver as identified in the previous analyses was included as a covarying factor in 

these analyses. 

 For analysing assumed effects of mast fruiting on leaf mass and other leaf properties, 

we regressed stand leaf biomass, LAI, the number of leaves per ground area and leaf 

morphological traits (mean leaf size and mass, SLA) on the fruit mass production of the 

current and the preceding year. Beta weights were calculated by LMM analyses for the total 

observation period (2009-2012) and for the pooled two mast years (2009, 2011) in order to 

contrast responses in masting and non-masting years. For assessing the importance of 

resource competition between leaf and fruit production in mast years, we analysed the 

relationship between foliar C and N concentrations and the total C and N pools in fruit mass. 

 All statistical analyses were conducted with R software (R Development Core Team 

2012) with additional functions provided by the R package lme4 (Bates and Maecheler 2010). 

Probability of fit to normal distribution was tested by a Shapiro-Wilk test (P ≤ 0.05). 

Visualization of linear regressions was conducted using the program Xact 8.03 (SciLab, 

Hamburg, Germany); regression lines are shown at a significance level of P <0.05. 

 

Results 

Weather conditions in 2009-2012 

Annual precipitation decreased and mean annual temperature increased from west to east 

along the transect in all four study years, consistent with the long term climatic gradient. In 

2011, the decrease in annual precipitation from west to east was steepest (810 to 509 mm y -

1); it was associated with particularly low precipitation at the dry end of the transect (Table 

4.1). The trends of decreasing precipitation and increasing temperature and solar radiation 

existed also during the vegetation period (April-October) in the four years (Figure 4.2). 

Highest annual mean temperatures were recorded in 2011 and lowest in 2010 with a positive 

or negative temperature deviation from the long-term average of 1 K at all five sites. The 

mean temperature of the vegetation period was higher than the long term mean in all study 

years (+1.0-1.2 and +1.2-1.4 K in 2009 and 2011, +0.2-0.4 and +0.3-0.5 K in 2010 and 2012, 

respectively). 
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The weather conditions in early summer (June-July) were not anomalous in the four 

summers except for the very warm and dry summer 2010, when rainfall reached only 47-65 

mm along the transect (mean 1971-2000: 116-159 mm) and temperature and solar radiation 

exceeded the long term averages by +2.1-2.3 K and + ~20 %, respectively. 

 

Leaf and fruit mass production 

We recorded two full masting events (2009, 2011) in the four studied years which both 

were preceded and followed by years with low fruit production at all sites. In 2009, fruit mass 

production ranged from 105 g m-2 yr-1 on the two plots at the moistest site Sellhorn to 422 g 

m-2 yr-1 on the loamy-sandy plot at the driest site Calvörde (335 g m-2 yr-1 on the 

corresponding sandy plot). It increased significantly with decreasing mean annual 

precipitation, as did the fraction of fruit biomass in total annual litter production (Figure 4.3). 

In 2011, heavy masting occurred throughout the transect with no dependence on precipitation 

means (368-603 g m-2 yr-1, Table 2). The fruit production patterns across the transect were not 

related to each other in the two mast years. Seed production was very low in 2010 and 2012 

(means of 18 and 15 g m-2 yr-1). 

Leaf mass production averaged at 290 g m-2 y-1 in the eleven stands during the four years. 

In contrast to fruit mass, the inter-annual variation in leaf mass production was relatively low 

(223-360 g m-2 y-1; Table 4.2). LAI varied between 5.3 and 8.8 in the eleven stands during the 

four years (overall mean: 6.9). The inter-annual variation in total non-woody litter production 

(leaf and fruit mass) was very high (from 281 g m-2 y-1 in 2010 [plot# 9] to 862 g m-2 y-1 in the 

mast year 2011 [plot #3]; Table 4.2), despite a negative correlation between leaf and fruit 

mass production in mast years. Data on the main parameters of leaf and fruit production 

considered in this study are summarised in Table A.4.1 in the Appendix. 
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Figure 4.2. Precipitation (a), temperature (b) and solar radiation (c) in 2009-2012 at the five study sites. Values 
shown refer to two periods: ´growing season´ (April-October: P4-10, T4-10, Rad4-10) and ´early summer´ (June-
July: P6-7, T6-7, Rad6-7).  Horizontal bars indicate long-term means (blank bars: weather conditions 4-10; grey 
bars: weather conditions 6-7). The study sites are arranged according to their position along the precipitation 
gradient. Se – Sellhorn, Un – Unterlüß, Go – Göhrde, Kl – Klötze, Ca – Calvörde. Climate data from Deutscher 
Wetterdienst, Offenbach. 
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Figure 4.3. Annual production of leaf mass (black bars) and fruit mass (grey bars) in the 11 (2009: 10) study 
plots during 2009-2012. The study plots are arranged according to their position along the precipitation gradient. 
Black circles indicate fruit mass expressed as fraction of total annual litter production (leaves, fruits) along the 
precipitation gradient. Fruit and leaf litter data from 10 litter traps per site.  
 

 
Table 4.2. Production of leaf and fruit mass in the 11 (2009: 10) beech stands along the transect in 2009-2012 
(means and range). LAI: leaf area index. 

                

Year 

 Leaf mass 
production (g m-2 yr-1) 

 LAI 
(m2 m-2) 

 Fruit mass production 
(g m-2 yr-1) 

 Total litter production 
(g m-2 yr-1) 

 

                2009  287.4 (237-342)  7.4 (5.9-8.8)     245.5 (105-422)  532.9 (430-714)  

 2010  312.7 (269-360)  6.9 (5.9-7.7)     17.7 (4-43)  330.4 (281-371)  

 2011  255.0 (223-300)  6.0 (5.3-7.1)     507.9 (368-603)  762.9 (632-862)  

 2012  303.9 (276-345)  7.5 (6.2-8.7)     15.3 (7-26)  319.2 (285-354)  

 2009-12  289.8   6.9      195.5   485.3   
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Climatic drivers of mast fruiting 

The analysis of the whole data set (4-y study period) with mixed-effects models showed a 

close positive relation of fruit mass to the radiation totals and maximum temperatures in June-

August of the preceding year (year-1), but a negative one to precipitation in June-August, 

while the influence of the current summer and that of year-2 was small (Table 4.3: last three 

columns). Similar results were obtained with linear regression analyses considering only the 

two mast years (2009 and 2011; Table 4.3: first three columns). Accordingly, radiation in 

June-August of year-1 was the most influential factor (R = 0.86-0.93, P <0.001), but 

maximum temperature in this period was also very important (R = 0.81-0.82, P < 0.001). 

Moreover, the radiation total and maximum temperature from July-September of year-2 also 

exerted a strong positive effect on masting, but the radiation influence was weaker than in the 

year-1 (see also Beta weights in Table 4.3). As in the mixed model analyses, current-year 

weather conditions appeared of minor importance for masting intensity: a positive influence 

was detected for the maximum temperature of current year May-June but not for radiation or 

precipitation. Linear regression analyses on weather-fruiting relationships for the mast year 

2009 yielded very similar results as in the analysis of the pooled data (Table A.4.2 in the 

Appendix). In contrast, the variability of fruit production during the very heavy masting year 

2011 was not related to any of the three climatic factors, nor measures of soil water 

availability (R = 0.12 and 0.33 for soil water content VWC and relative extractable water 

REW in June/July of year-1, respectively; P > 0.05). Of all 128 tested climate parameters, the 

June-July solar radiation of year-1 (JJ-1) showed the closest relationship with annual fruit 

mass and the strongest relative influence exerted by any climate parameter in that period 

(Beta = 0.88 in the mixed effects models, P < 0.0001; Table 4.3: last column). 

Fruit mass production increased linearly with the June-July solar radiation total in year-1 

when a threshold of ~300 kWh m-2 was passed (Figure 4.4 a) or when the long-term radiation 

mean in mid-summer (285-291 kWh m-2) was exceeded by more than 5 percent (or 10-15 

kWh m-2) (Figure 4.4b). The mast year 2009 exceeded the long-term radiation mean in 

June/July by 8-13 %, that of 2011 by 17-21 %. A similar analysis for maximum and mean 

temperature in JJ-1 also indicated threshold values (~ +1.5 and +1.0 K; Figures 4.4 c-f) but the 

correlation with fruit mass production was less tight and the relative effect on fruit mass was 

lower than for radiation. For summer precipitation, no clear lower threshold value appeared 

(Figures 4.4 g and h). 
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Figure 4.4. Relationship between annual fruit mass production and weather conditions in early summer one year 
prior to the masting (June & July of Year -1). (a) Total solar radiation; Fruit production 2009: y = -2442.9 + 
16.24x, R2 = 0.83, P < 0.001; for mast years (2009 & 2011): y = -1621.3 + 11.01x, R2 = 0.86, P < 0.001. (b) 
Solar radiation,  plot-specific deviation from the long-term mean (1971-2000); Fruit production 2009: y = -222.7 
+ 16.06x, R2 = 0.65, P < 0.01; 2009 & 2011: y = -39.4 + 9.89x, R2 = 0.73, P < 0.001. (c) Mean temperature; Fruit 
production 2009: y = -2926.4 + 180.6x, R2 = 0.56, P < 0.01; 2009 & 2011: y = -3183.9 + 197.04x, R2 = 0.66, P < 
0.001. (d) Mean temperature deviation from the long-term mean; Fruit production 2009 & 2011: y = -118.4 + 
280.66x, R2 = 0.57, P < 0.001. e) Maximum temperature; Fruit production 2009: y = -2774.0 + 127.5x, R2 = 
0.72, P < 0.01; 2009 & 2011: y = -3185.1 + 146.72x, R2 = 0.65, P < 0.001. (f) Maximum temperature deviation 
from the long term mean; Fruit production 2009 & 2011: y = -239.2 + 219.54x, R2 = 0.61, P < 0.001. (g) Sum of 
precipitation; Fruit production 2009: y = 887.2 - 4.28x, R2 = 0.73, P < 0.01; 2009 & 2011: y = 666.2 – 2.85x, R2 
= 0.75, P < 0.001. (h) Rainfall deviation from the long-term mean; Fruit production 2009: y = 338.5 – 8.26x, R2 
= 0.51, P < 0.05; 2009 & 2011: y = 274.8 – 2.85x, R2 = 0.64, P < 0.001. 
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Table 4.3. Results of regression analyses between annual fruit mass production and two-monthly means of 
climatic conditions in the mast year and the two years prior to masting. The pooled data of the two masting years 
(2009 & 2011) were analysed with Pearson correlations. For the total observation period (2009-2012), 
standardized regression coefficients were estimated from linear mixed models (crossed random factors ‘site’ and 
‘year’) after z-transformation of the data. P values 2009-2012 were derived from a likelihood ratio test 
(conducted against the random effects only; see Methods section). Significance levels: *P<0.05; ** P<0.01; *** 
P<0.001 (in bold). Prec = precipitation, T max = maximum temperature, Rad = solar radiation. 

                      
2-month period   Mast years 2009 & 2011 

Pearson´s R 
  Total period 2009 – 2012 

Beta weight 
                      Mast year -2  Prec  T max  Rad   Prec  T max  Rad 
                        Mar-Apr   0.00  - 0.22  - 0.31   - 0.15   0.54**   0.48* 

  Apr-May  - 0.38   0.35   0.65**    0.03   0.61***   0.54** 

  May-Jun  - 0.61**  - 0.23   0.45*   - 0.10   0.32**   1.41** 

  Jun-Jul  - 0.41  - 0.03   0.44*   - 0.31*   0.21*   0.64 

  Jul-Aug  - 0.85***   0.84***   0.86***   - 0.15   0.19*   0.47** 

  Aug-Sep  - 0.43   0.86***   0.86***   - 0.54*   0.35**   0.84*** 
  Sep-Oct  - 0.04   0.42   0.44*   - 0.20**   0.16*   0.17 

  Oct-Nov   0.55*   0.66**  - 0.61**   - 0.22*   0.04  - 0.07 

                      Mast year -1                    
  Mar-Apr  - 0.42   0.81***   0.82***   - 0.28*   0.21   0.22 

  Apr-May   0.59**  - 0.54*  - 0.42    0.32*  - 0.97**  - 0.68** 

  May-Jun   0.40  - 0.36  - 0.71***    0.01   0.21   0.05 

  Jun-Jul  - 0.87***   0.81***   0.93***   - 0.54***   0.59***   0.88*** 
  Jul-Aug  - 0.31   0.82***   0.86***   - 0.25***   0.23*   0.39*** 
  Aug-Sep   0.39  - 0.21  - 0.39   - 0.09   0.19  - 0.27 

  Sep-Oct   0.68**  - 0.51*   0.14   - 0.22*   0.19  - 0.31 

  Oct-Nov  - 0.39  - 0.31   0.26   - 0.37**   0.11  - 0.06 

                      Mast year                  
  Mar-Apr  - 0.60**   0.27   0.58**   - 0.19*   0.18   0.26 

  Apr-May  - 0.28   0.19  - 0.35    0.01   0.36*   0.15 

  May-Jun   0.16   0.81***   0.31    0.02   0.22*  - 0.16 

  Jun-Jul   0.22   0.64**  - 0.55*   - 0.14   0.25*  - 0.02 

  Jul-Aug   0.32  - 0.31  - 0.39   - 0.18   0.21*   0.45 

  Aug-Sep  - 0.57**  - 0.46*  - 0.56   - 0.28   0.19   0.32 

                                             
 

Non-climatic factors with possible influence on fructification 

     In the mast year 2009, linear models describing fruit mass production were not improved 

when parameters related to soil moisture, soil chemistry or stand structure were included in 

addition to the climatic variable radiation in JJ-1 (Table 4.4). However, in 2011 with very high 

fruit production, the model fit was better when the proportion of fine-grained soil particles 

(ΣfSUT and ΣUT: 2011), water storage capacity (AWSC: 2009/2011), soil N content, stand 

age (all positive effects) or stem density (negative effect) were included; this was also valid 

for the combined data set of 2009 and 2011.  
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Table 4.4. The influence of soil physical and chemical and stand structural parameters on fruit mass production 
during the mast years 2009 and 2011 in the 11 stands as explored with different types of models. Given are beta 
weights from linear models (for the single mast years 2009 or 2011) or from linear mixed models (pooled data of 
both mast years 2009&2011; crossed random factors ‘site’ and ‘year’). The first row presents a model that uses 
only solar radiation of the summer-1 (Rad 6-7 (Y-1) as explaining variable. The following rows present models in 
which (Rad 6-7 (Y-1) was combined with other possibly explaining variables (listed under ‘Stand conditions’) to 
model fruit mass production. The columns present the beta weights for the explaining variables used in the 
respective model (‘Stand’) with inclusion of the parameter radiation as co-variable (‘Rad.’) for the two mast 
years and the pooled data (2009&2011). P values (asterisks) were derived from a likelihood ratio test conducted 
against models using the second explaining variable only (in single-year analyses) or against models using the 
second explaining variable and random effects only (pooled data; see Methods section). AWSC = soil water 
storage capacity; ∑fSUT/ ∑UT = percentage of soil particles < 200µm / < 63µm; VWC/ RWC = volumetric/ 
relative water content at 20 cm mineral soil depth, expressed as the means of early summer (June-July) of the 
previous year. Significance levels: + P<0.1; *P<0.05; ** P <0.01; *** P <0.001. Significant correlations are in 
bold. 

                     Type of regression model  2009  2011  2009 & 2011 
                     Stand conditions + Radiation  Stand  Rad.  Stand  Rad.  Stand  Rad. 
                     -  Rad 6-7 (Y-1)   -   1.93***   -   1.25   -   1.62*** 
                     Soil moisture-related parameters                   
AWSC 1) + Rad 6-7 (Y-1)   0.15   1.76***   0.13   0.69   0.14*   1.36*** 
∑ fSUT 1) + Rad 6-7 (Y-1)   0.05   1.96***   0.18+   1.04   0.13   1.71*** 
∑ UT 1) + Rad 6-7 (Y-1)   0.12   1.74**   0.20+   0.29   0.15*   1.29*** 
VWC 6-7 (Y-1) 2) + Rad 6-7 (Y-1)   -   -   0.15   1.55   -   - 

RWC 6-7 (Y-1) 2) + Rad 6-7 (Y-1)   -   -   0.14   1.67   -   - 

                     Soil chemical parameters                   

C/N ratio 3) + Rad 6-7 (Y-1)   0.08   2.14**   0.07   1.19   0.05   1.76*** 

N 3) + Rad 6-7 (Y-1)   0.07   2.01***   0.18+   1.93   0.14+   1.89*** 

Base saturation 3) + Rad 6-7 (Y-1)   0.00   1.94**   0.04   1.60   0.01   1.67*** 

CEC 3) + Rad 6-7 (Y-1)   0.05   2.01**   0.10   1.35   0.07   1.75*** 

Al 3)  + Rad 6-7 (Y-1)   0.01   1.92**  - 0.04   1.19   0   1.61*** 

P 3) + Rad 6-7 (Y-1)  - 0.02   1.93***  - 0.04   1.44  - 0.03   1.63*** 

                     Stand structural parameters                   

Stem density + Rad 6-7 (Y-1)  - 0.12   2.03***  - 0.17+   1.49  - 0.15*   1.84*** 

DBH + Rad 6-7 (Y-1)   0.08   1.92***   0.13   1.42   0.11+   1.64*** 

Stand age + Rad 6-7 (Y-1)   0.09   1.96***   0.20*   0.97   0.16*   1.72*** 

                     Biomass production of preceding year 2)                

Wood biomass + Rad 6-7 (Y-1)   -   -   0.20+   1.58   -   - 

Leaf biomass + Rad 6-7 (Y-1)   -   -  - 0.10   0.89   -   - 

Fruit biomass + Rad 6-7 (Y-1)   -   -  - 0.11   1.96   -   - 

Fine roots + Rad 6-7 (Y-1)   -   -  - 0.25*   1.16   -   - 

∑ NPP + Rad 6-7 (Y-1)   -   -  - 0.08   1.56   -   - 

                     
1) Soil physical properties refer to the upper 120 cm of the mineral soil. 2) VWC/ RWC values and biomass 
production figures of the preceding year only for 2011. 3) Soil chemical properties refer to the upper 30 cm of the 
mineral soil. 
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     In contrast, soil water content (VWC, REW) in the early summer of year-1 (or of other 

periods) as a co-variable did not improve model accuracy in 2011 (no data available for the 

mast year 2009). In 2011, fruit mass production correlated positively with wood increment 

and negatively with fine root production in the year-1 (Hertel and others 2013; no data 

available for the mast year 2009). Fruit production was not dependent on the production of 

other components (leaves, fruits) or NPP in the preceding year. Low beta weights indicate that 

the edaphic and stand structural parameters were only of minor importance in the explanation 

of fruit mass production relative to the climatic factor. 
 

Masting effects on leaf production and leaf morphology 

     Annual leaf mass production and LAI were significantly reduced in masting years (Table 

4.5; visible in the mast years 2009 and 2011 and also in the 4-y data set). Mean leaf size and 

leaf mass decreased upon a mast while SLA increased. Consequently, leaf mass loss was 

larger than leaf size reduction with rising fruit production. The numbers of leaves and fruits 

were negatively correlated to each other in masting years. However, this effect did not explain 

the full observed variation in leaf numbers across the entire 4-y data set (see also Table A.4.3 

in the Appendix). The impact of masting on crown conditions was largely restricted to the 

current mast year. Neither leaf production (biomass or number of leaves per ground area) nor 

the size or mass of individual leaves varied significantly with fruit mass of the preceding 

(mast) year. However, a positive relation existed between the amount of fruit produced and 

SLA and LAI in the year following a masting event, reflecting the release from resource 

shortage during the 2009 mast. 
 

Table 4.5. Relationships between annual fruit mass production (independent variable) and several leaf mass and 
leaf morphology traits (dependent variables) for the mast years and the respective year before masting (previous 
year) in the 11 stands. Standardized regression coefficients from linear mixed models (crossed random factors 
‘site’ and ‘year’) are given for the total study period (2009-2012) and for the pooled mast years only 
(2009&2011). P values were derived from a likelihood ratio test (conducted against the random effects only; see 
Methods section). Significance levels: *P<0.05; ** P <0.01; *** P <0.001. Significant correlations are in bold. 

 
Leaf 

biomass LAI SLA 

Leaf 

size 

Leaf 

weight Number of leaves 1) 

Mast year                           

 All 2009-2012 - 0.68*** - 0.71**   0.15 - 0.47* - 0.43* - 0.29  (- 0.47) 

 Mast 2009&2011 - 0.97*** - 1.17***   0.39** - 0.14 - 0.49* - 0.90**  (- 0.91**) 

Previous year                           

 All 2010-2012   0.07   0.61**   0.20* - 0.44 - 0.47 - 0.05 (- 0.04) 

 Mast 2010&2012 - 0.18   0.29   0.33* - 0.70 - 0.55   0.25 (  0.43) 
1) The number of leaves per stand area was further correlated with the number of fruits per stand area (Beta 
coefficients in brackets). 
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Masting effects on the nutrient status of the foliage 

The N and C concentrations in beech nuts (NmNut, CmNut) and cupulae (NmCup, CmCup) were 

very constant across the eleven stands and were influenced neither by climate nor masting 

(data for 2009: NmNut = 2.78 ± 0.10 %; NmCup = 0.46 ± 0.03 %; CmNut = 49.93 ± 0.39 %; CmCup 

= 49.35 ± 0.57 %; no data for 2011). In contrast, leaf N and C concentrations (Nm, Cm) 

significantly decreased in the mast years 2009 and 2011 with increasing N and C demand for 

fruit production (R = ‑0.66 and ‑0.65, P <0.01; Table 4.6). Similarly, N content per leaf area 

(Na) and per individual leaf (Nleaf) decreased with increasing fruit production in the masting 

years (R = ‑0.51 and ‑0.39, P <0.05 and <0.1). The amounts of C and N directed to the 

production of stand leaf biomass (CLeafmass, NLeafmass) strongly decreased with increasing fruit 

production in both mast years (R = -0.77 and -0.79, P < 0.01; Table 4.6) as a consequence of 

both decreased leaf mass production (Table 4.5) and lowered foliar concentrations of C and 

N. The plant-internal resource shift from leaf to fruit mass production was stronger for N than 

for C (~0.50 g N withdrawn from leaf production per g N invested in fruit mass vs. ~0.25 g C 

per g C; Figures 4.5a, b). 

Effects on the leaf nutrient status due to resource consumption by mast seeding were not 

limited to the current mast year: Also in the non-mast year 2010, N concentrations (Nm, Na 

and Nleaf) as well as Cm significantly decreased with enhanced resource dedication to fruit 

production in 2009 (Table 4.6). Astonishingly, a significant depletion of N in leaf biomass 

(NLeafmass) occurred in response to N allocation to reproductive material of the preceding year 

(by -0.28 g NLeafmass per g NFruitmass in 2009/2010), notwithstanding higher levels of total leaf 

biomass produced in 2010 (Figure 4.5c). In contrast, total leaf carbon (or Ca) in 2010 were 

not affected by the preceding masting, as a decrease in Cm was almost compensated by higher 

leaf biomass. 

We found no effect of foliar N content and N in total leaf biomass in the non-masting year 

2010 on the amount of N directed to fruit production in the mast year 2011 (Table 4.6). In 

contrast, the relation between foliar C content and C in total leaf biomass in 2010, and the 

amount of carbon allocated to fruit production in 2011 was negative. 
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Table 4.6. Upper part of table: Relationships between the C and N demand of annual fruit mass production 
(CFruitmass, NFruitmass; independent variables) and the C and N content in the leaves produced in the two mast years 
2009 and 2011 in the 11 stands (dependent variables: parameters Cm, Nm – per leaf mass; Ca, Na – per leaf area; 
Cleaf, Nleaf – per individual leaf; CLeafmass, NLeafmass – total C or N in stand leaf mass). The results of the analysis 
of pooled data (2009 + 2011) are also given. Lower part of table: Variation of the C and N content in leaves and 
stand leaf mass produced in the non-mast year 2010 in the 11 stands in relation to the amount of fruit mass 
produced either in the preceding (2009) or the following mast year (2011). Relationships are characterised by 
Pearson´s correlation coefficient R. For CLeafmass and NLeafmass, also regression coefficients b are given (in 
brackets). Leaf samples were collected in early September from the upper canopy in all three years. The number 
of forest stands sampled along the transect varied among the years (2009: N=10, 2010: 11, 2011: 6; see Methods 
section). CFruitmass and NFruitmass for 2011 were calculated based on the all-site average of the C and N 
concentration in nuts (Cm Nut, Nm Nut) and cupulae (Cm Cup, Nm Cup) determined in 2009.  
Significance levels: +P<0.1; *P<0.05; ** P <0.01; *** P <0.001. Significant correlations are in bold. 

                                                  Carbon  Nitrogen 

                       Relations within 
mast years  

n  Cm  Ca  Cleaf  CLeafmass (b)  Nm  Na  Nleaf  NLeafmass (b) 

                       
Mast year 2009  10  -0.81**  -0.47+  -0.23  -0.68*  (-0.27)  -0.43+  -0.45+  -0.26  -0.63*  (-0.49) 
                       
Mast year 2011  6  0.36  -0.22  -0.56  -0.72*  (-0.14)  0.28  0.09  -0.33  -0.25  (-0.12) 

                       
2009 & 2011  16  -0.66**  0.09  0.08  -0.77***  (-0.21)  -0.65**  -0.51*  -0.39+  -0.79***  (-0.48) 

                       
Relations across years - Non-mast year 2010 related to:             

                       
Fruit mass 2009  10  -0.82**  -0.41  -0.51+  -0.35  (-0.08)  -0.56*  -0.71**  -0.59*  -0.50+  (-0.28) 

                       
Fruit mass 2011  11  -0.28  -0.74**  -0.57*  -0.39  (-0.13)  0.12  -0.33  -0.21  -0.13  (-0.16) 
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Figure 4.5. Amount of C (a) and N (b) in the stand leaf litter in relation to the C and N amount in the 
corresponding fruit mass produced in the mast years 2009 or 2011 across the 11 stands. (c) C or N in the leaf 
biomass of the non-mast year 2010 in relation to C and N in fruit mass in the preceding masting in 2009 across 
the 11 stands. 
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Discussion 

Climatic triggers of masting in beech 

A synchronization of masting in beech has long been attributed to variation in weather 

conditions (Övergaard and others 2007) but, as anomalies of temperature, radiation and 

drought strongly coincide, there is still disagreement on which climate parameters may act as 

a cue for the initiation of flowering and fructification. The results of this analysis reveal a 

tight control of beech fructification by levels of solar radiation in June and July one year prior 

to the mast year (JJ-1). June and July are assumed to include the period of floral induction in 

beech (Holmsgaard 1962; Hilton and Packham 1997; Piovesan and Adams 2001) and the 

importance of radiation intensity for floral induction and flower bud differentiation has 

already been shown for a broad range of flowering plants (Nanda 1962; Havelange and 

Bernier 1983; Owens 1995; Miyazaki, Osawa and Waguchi 2009). Switching reproduction 

behaviour in response to continuous variation in climatic inevitably requires a tipping reaction 

beyond a certain threshold value (Schauber and others 2002; Kon and others 2005). Our 

results show that the fruit biomass production of beech in the north-west German lowlands 

steeply increased when the solar radiation totals in JJ-1 exceeded a threshold value of ~300 

kWh m-2 in these two months. This threshold is only slightly (~5 %) above the long-term 

means at our study sites (285-291 kWh m-2). 

Besides a positive relation to JJ-1 global radiation, fruit mass production was also 

positively correlated with temperature and negatively with precipitation in that period. 

Nonetheless, in comparison to temperature or precipitation parameters, the correlation 

between solar radiation and fruit production was closer and exhibited a significantly larger 

effect size. While Kelly et al. (2013) showed for a large number of mast-fruiting species and 

plant families from New Zealand that annual fruit production is better predicted by 

temperature differences between mast year -1 and mast year -2 than by absolute temperatures, 

such a trigger could not be confirmed for beech in this study (see Figure A.4.1 in the 

Appendix). Our results also do not provide support for an assumed positive effect of cool and 

moist summer weather in mast year-2 on fructification intensity (Piovesan and Adams 2001; 

Drobyshev and others 2010).  

The result of the correlation analysis that fructification is cued by excess of radiation 

and not high temperatures in the preceding summer is supported by two other independent 

observations in our region. First, fruit mass production in 2008 was very low according to 

forest monitoring data in the state of Lower Saxony, despite the JJ-1 temperature in 2007 
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exceeding the long term mean by up to 1.2K (1.3K for maximum temperature), presumably 

because solar radiation was 10-20 kWh m-2 below the long term mean (Figure A.4.2 in the 

Appendix). Second, very low beech fruit production was recorded in all study years in a stand 

in which beech were partly shaded by taller oak trees (stand #5, which was not included in our 

analysis), while all other climatic and edaphic conditions were comparable.  

The strong dependence of fruiting on radiation regimes was visible in the spatial 

variation of seed production in the mast year 2009 and also in the inter-annual fruit mass 

variation in the pooled data set. However, in the heavy mast year 2011, when our record of 

fruit mass production was higher than any figure reported for beech nut crop size in the 

literature, fruit mass variation across our stands was remarkably independent from any 

climate factor. We explain the absence of a significant climate-fructification relationship in 

2011 with very high radiation input to all eleven beech stands in the preceding summer: As 

incident radiation in June/July of 2010 greatly exceeded (by ~15 %) the assumed threshold of 

300 kWh m-2 at all study sites, and thus probably triggered the full physiological response, the 

influence of other site factors which affect the vitality and productivity of beech stands, 

probably gained in importance in that year. 

Stand structure influenced fruit production only to a relatively small extent. Our data point 

at increasing fruit production with increasing stand age, which can be interpreted with Genet, 

Bréda and Dufrêne (2010) as the outcome of an age-related shift in the C allocation patterns 

in mature beech trees. In our study, the intensity of fruit production was negatively related to 

stem density as it was also reported for C. japonica (Taira and others 2000). In 

correspondence, stand thinning is known to increase fruit production in temperate forests 

(Owens 1995; Kiyono and others 2003; Perry and others 2004), possibly reflecting release 

from competition for light or soil resources. 

 

Does soil drought trigger masting in beech? 

     Our study did not produce supporting evidence for a positive soil drought effect on the 

intensity of fruit production. Instead, we found a positive effect of soil water storage capacity 

and the abundance of fine soil particles on fruit production. We thus assume a positive, and 

not a negative effect of soil moisture on both flowering and seed development, which is in 

line with results from a rainfall exclusion experiment with Quercus ilex (Pérez-Ramos and 

others 2010). Hence, we suppose that the observed negative relationship between fruit mass 

production and precipitation in the preceding summer in our data is caused by a negative 

interrelation between rainfall and sunshine and thus does not reflect a drought effect. This 



Climatic drivers of mast fruiting in European beech 
 

  95 

interpretation matches the conclusion of Drobyshev and others (2010) that soil water 

depletion seems not to be a triggering factor for beech masting in Sweden (but see Piovesan 

and Adams 2001). 
 

C and N allocation shifts from leaf production to fruit production 

     Many studies on C allocation in woody plants have demonstrated that vegetative growth, 

especially the increment of stem and branch wood, is suppressed by the high sink strength of 

reproductive structures (e.g. Koenig and Knops 1998, 2000; Kelly and Sork 2002; Drobyshev 

and others 2010). However, leaf production is also reduced upon masting. Our data support 

observations of increased defoliation rates or crown transparency reported for masting beech 

trees (Innes 1994; Eichhorn and Paar 2000; Seidling 2007), as total leaf mass, stand leaf area 

index, and the size and mass of single leaves all were significantly reduced in mast years in 

our study. For the two mast years, we also found a decreasing number of leaves per ground 

area in response to rising dry fruit mass (or number of seeds), which according to Gruber 

(1998) can be explained by the fact that beech flower buds develop from transformed leaf bud 

primordia. Decreasing leaf size or leaf bud weight in response to fruit production was also 

observed in other species such as Fagus crenata (Hiura and others 1996; Han and others 

2008), Styrax obassia (Miyazaki and others 2002) and Betula papyrifera (Chapin and 

Moilanen 1991). Due to significant SLA increases, leaf area in the study stands was less 

reduced upon mast fruiting than leaf dry mass, which helped to partly maintain the 

assimilating surface in masting trees (Miyazaki and others 2002, Han and others 2011). 

 Besides decreasing leaf dry mass, we found significantly reduced concentrations of 

both C and N in response to increasing allocation of these nutrients to fruit production in mast 

years. This demonstrates a competitive superiority of developing fruits to attract 

photoassimilates and nutrients, even from neighbouring non-fruiting shoots (Kozlowski and 

Pallardy 1997; Hoch and Keel 2006; Miyazaki and others 2007). 

In comparison to C, total N in leaf mass was depleted roughly twice as strongly by 

rising resource allocation toward fruit growth in current mast years, and foliar C/N ratio 

consequently increased (R = 0.58, P < 0.01 in the pooled data set of 2009 & 2011, not 

shown). The depleted foliar N pool in 2010 is a consequence of fruit production in the 

preceding mast year, which suggests that it takes more than one year for a beech tree to 

restock the N pool available for leaf formation in succession to a heavy masting event. 

Shortage of N in leaves, buds and branches as a consequence of masting has been observed in 

several other tree species as well (McDowell and others 2000; Miyazaki and others 2002; Han 

and others 2008, 2011). 
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Interactions between weather and resource dynamics as drivers of beech 
masting 

From the finding that intensive mast years are usually followed by one or more years 

with low fruit production in beech and other temperate tree species, it has often been 

concluded that internal resource dynamics must also be involved in the proximate control of 

masting (Sork and others 1993; Hilton and Packham 1997; Kon and others 2005). 

Accordingly, fruiting is considered to reflect resource availability in a linear (resource 

matching, Kelly 1994) or nonlinear threshold-driven manner (resource budget, Isagi and 

others 1997) or, alternatively, fixed resource levels are assumed to act as a necessary 

precondition of a masting response in reaction to weather cues (e.g. Smaill and others 2011). 

Apart from these alterantive concepts about the possible interaction between weather and 

resource availability, it is also a matter of current debate, whether C or N (or possibly P) is the 

key element in such a regulation (e.g. Hoch and others 2013, Ichie and others 2013, Miyazaki 

2013). 

Strong enhancement of fructification by above-average solar radiation in JJ-1 as found 

in this study may suggest that flowering of beech is initiated when the photosynthetic carbon 

gain of the early summer exceeds a critical threshold value.  Increased carbon gain in this 

period might also help to meet the additional C expenses needed for developing flower 

primordia, as we measured a 2.2-fold higher dry weight of flower buds than of leaf buds (data 

not shown); this  matches observations from Fagus crenata (Han and others 2008). A positive 

correlation between the number of male flowers and non-structural carbohydrate (NSC) levels 

was found in the conifer Cryptomeria japonica (Miyazaki and others 2009). Ohto and others 

(2001) showed for Arabidopsis that the regulation of genes controlling the floral transition is 

dependent on carbohydrate concentrations. 

However, our results on resource shifts between leaf and fruit mass indicate that, 

among various costs of reproduction, N rather than C must be considered the ‘hard currency’ 

in the process of fruit production in beech. Similar to this study, the availability of nitrogen 

(or site fertility) was identified as a predisposing or promoting factor of fruit production in 

other studies on Fagus (Borchers and others 1964; Paar and others 2004; Övergaard and 

others 2007) and Nothofagus species (Davis and others 2004; Smaill and others 2011), 

especially at N-limited sites. But, given the high spatial variability in soil N availability across 

large continuous masting areas, it is not likely that definite thresholds of plant-internal N 

reserves proximately cue (or also predispose for) a masting response. The impact of N on 



Climatic drivers of mast fruiting in European beech 
 

  97 

masting is more likely an indirect effect through promotion of higher photosynthetic rates and 

possibly by supporting larger leaf areas which in turn increases carbon gain. 

The results of this study suggest that the masting pattern of beech is controlled by both 

climatic triggers and plant-internal resource levels. While enhanced levels of photosynthetic 

carbon gain in early summer probably cue the initiation of flower buds by exceedance of 

certain NSC threshold values, a subsequent induction of flowering likely is inhibited in a 

current mast year due to resource allocation toward fruit growth by three mechanisms. This 

are (i) a reduction in leaf area and (ii) lowered foliar N content, which both negatively affect 

canopy carbon gain (Jarvis and Leverenz 1983; Evans 1989), and (iii) a large export of 

current photoassimilates toward developing fruits (Hoch and Keel 2006). All three 

mechanisms should reduce NSC availability and hence dampen the susceptibility of beech 

trees to a subsequent floral induction through elevated radiation as the synchronising cue. 

 

Masting in a changing climate 

The increased frequency of masting in beech as recorded over the last three decades in 

central and northern Europe indicates that the physiological thresholds of the fructification 

response are exceeded at increasingly shorter intervals, presumably caused by fertilizing 

effects of increased atmospheric [CO2] and N deposition (Hilton and Packham 1997; 

Övergaard and others 2007; Han and others 2011). Reduced intervals of exclusively 

vegetative growth between masting events have the potential to alter the cycling of C and 

nutrients in beech forest ecosystems. Detailed study of aboveground net primary production 

(ANPP) at our study sites in 2009-2011 revealed that fruit biomass production accounted for 

up to 57% of ANPP in the heavy mast year 2011 (Müller-Haubold and others 2013). These 

findings suggest that, besides increasing summer drought stress, also the frequency of mast 

fruiting can be a factor which might reduce wood production and height growth of beech in 

future, if masting frequency remains at the current high level or even increases further.  

 



CHAPTER 4 
 

98 

Conclusion 

     While evidence in support of the environmental prediction hypothesis and for the role of 

drought stress as masting cue was weak (hypothesis 1), our results indicate that fruit 

production of beech closely follows the radiation total received in June and July preceding a 

mast year. Since no other biochemical process is so closely linked to radiation as 

photosynthesis, we assume that floral induction in beech is triggered by higher rates of carbon 

assimilation in early summer. The massive C and N allocation shift associated with fruit 

production reduces the assimilation capacity of the canopy in the mast year and in the 

following year (hypothesis 2), which likely lowers carbohydrate availability needed for a 

subsequent floral induction. Allowing for the importance of N for photosynthesis, its 

pronounced depletion upon masting in our data suggests a key role for the plant-internal N 

level as the potential driver for the temporal pattern of masting events in beech.  
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Figure A. 4.1. Relationship between annual fruit biomass production and weather conditions in early summer 
one year prior to the masting (JJ-1) across the 11 stands in four years (2009-2012). Seed production was better 
predicted by absolute solar radiation or (maximum) temperature (a, c, e) than by climatic differentials (Δ; b, d, f) 
between the two previous years (radiation/temperature in JJ-1 minus radiation/temperature in JJ-2). (a) Total solar 
radiation; Fruit production 2009: y = -2442.9 + 16.24x, R2 = 0.83, P < 0.001; for both mast years (2009 & 2011): 
y = -1621.3 + 11.01x, R2 = 0.86, P < 0.001. (b) Δ solar radiation (JJ -1 - JJ-2). (c) Mean temperature; Fruit 
production 2009: y = -2926.4 + 180.6x, R2 = 0.56, P < 0.01; 2009 & 2011: y = -3183.9 + 197.04x, R2 = 0.66, P < 
0.001. (d) Δ mean temperature; Fruit production 2009 & 2011: y = 216.6 + 133.1x, R2 = 0.64, P < 0.001. E) 
Maximum temperature; Fruit production 2009: y = -2774.0 + 127.5x, R2 = 0.72, P < 0.01; 2009 & 2011: y = -
3185.1 + 146.72x, R2 = 0.65, P < 0.001. (f) Δ maximum temperature; Fruit production 2009 & 2011: y = 74.9 + 
146.5x, R2 = 0.62, P < 0.001. 
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Figure A. 4.2. Weather anomalies of early summer in the six years 2007-2012 (relative to the 1971-2000 mean) 
and fructification in the years 2009-2012. Data of precipitation (a), temperature (b) and solar radiation (c) refer 
to June-July. Weather data and fruit production data (d) are averaged over all study plots of a site (climate data 
from Deutscher Wetterdienst, Offenbach). 
 



Climatic drivers of mast fruiting in European beech 
 

  107 

Table A. 4.1. Production of leaf and fruit mass in the 11 (2009: 10) beech stands along the transect in 2009-2012 (means and standard deviation). LAI: leaf area index; SLA: 
specific leaf area; Cm, Nm: mass-based; Ca, Na: area-based; Cleaf, Nleaf: per individual leaf; CLeafmass, NLeafmass: total C or N in stand leaf mass; n.m.: not measured. 1) Foliar C and 
N content was analysed from 2009-2011 (2011 only on sites # 2, 4, 6, 8, 10 and 11). 2) Fruit C and N content (nuts and cupulae) was analysed only in 2009. 3) Total C and N in 
fruit biomass were calculated based on the all-site-means for nuts and cupulae in 2009. 
                            2009  2010  2011  2012  Overall mean  
                         Number of study plots  10  11  11  11      
                         Leaf production and morphology                      
                          Leaf biomass production (g m-2 yr-1)  287.4 ± 41.2  312.7 ± 26.1  255.0 ± 21.0  303.9 ± 22.5  289.8 ± 35.5  
  LAI (m2 m-2)  7.4 ± 1.0  6.9 ± 0.5  6.0 ± 0.5  7.5 ± 0.8  6.9 ± 0.8  
  SLA (m2 kg-1)  25.7 ± 1.7  22.2 ± 1.3  23.8 ± 0.8  24.6 ± 1.9  24.0 ± 1.9  
  Leaf size (cm2)  17.4 ± 1.4  19.6 ± 1.1  17.3 ± 2.1  22.0 ± 1.9  19.1 ± 2.5  
  Leaf mass (mg)  68.2 ± 5.1  90.6 ± 7.1  75.4 ± 9.3  90.8 ± 10.1  81.8 ± 12.6  
  Number of leaves (m-2)  4052 ± 606  3541 ± 302  3553 ± 545  3430 ± 430  3681 ± 565  
                        
 C and N allocation to leaves 1)                      
                          Cm (mg g-1)  472 ± 11  491 ± 8  463 ± 14  n.m.  478 ± 12  
  Ca (g m-2)  18.9 ± 1.4  21.1 ± 1.3  19.9 ± 0.7  n.m.  20.0 ± 1.6  
  Cleaf  (mg)  32.7 ± 2.4  41.3 ± 3.1  35.0 ± 4.5  n.m.  36.7 ± 5.1  
  Cleaf biomass (g m-2 yr-1)  138.8 ± 21.7  145.9 ± 12.8  116.7 ± 6.7  n.m.  136.8 ± 19.1  
  Nm (mg g-1)  22 ± 2  20 ± 2  18 ± 2  n.m.  21 ± 2  
  Na (g m-2)  0.87 ± 0.10  0.91 ± 0.08  0.79 ± 0.08  n.m.  0.87 ± 0.10  
  Nleaf  (mg)  1.54 ± 0.20  1.80 ± 0.22  1.37 ± 0.23  n.m.  1.60 ± 0.26  
  Nleaf biomass (g m-2 yr-1)  6.44 ± 1.30  6.33 ± 0.90  4.62 ± 0.47  n.m.  5.88 ± 1.22  
                        
 C and N allocation to fruit biomass 

production 2) 3) 
                     

                          Fruit mass production (g m-2 yr-1)              
  Cm Nut (mg g-1)  499.3 ± 3.9  n.m.  n.m.  n.m.  −  
  Cm Cupulae (mg g-1)  493.5 ± 5.7  n.m.  n.m.  n.m.  −  
  Cnut biomass (g m-2 yr-1)  55.2 ± 25.0  4.0 ± 2.8  114.1 ± 16.7  3.4 ± 1.3  43.9 ± 48.7  
  Ccupulae biomass (g m-2 yr-1)  66.6 ± 30.2  4.8 ± 3.4  137.9 ± 20.2  4.2 ± 1.6  53.1 ± 0.5  
  Cfruit biomass (g m-2 yr-1)  121.8 ± 55.3  8.8 ± 6.3  252.0 ± 37.0  7.6 ± 3.0  97.0 ± 107.5  
  Nm Nut (mg g-1)  27.9 ± 0.7  n.m.  n.m.  n.m.  −  
  Nm Cupulae (mg g-1)  4.6 ± 0.3  n.m.  n.m.  n.m.  −  
  Nnut biomass (g m-2 yr-1)  3.07 ± 1.39  0.22 ± 0.16  6.35 ± 0.93  0.19 ± 0.07  2.45 ± 2.71  
  Ncupulae biomass (g m-2 yr-1)  0.62 ± 0.28  0.04 ± 0.03  1.29 ± 0.19  0.04 ± 0.02  0.49 ± 0.55  
  Nfruit biomass (g m-2 yr-1)  3.69 ± 1.68  0.27 ± 0.19  7.64 ± 1.12  0.23 ± 0.09  2.94 ± 3.26  

 



 

 

Table A. 4.2. Results of regression analyses between annual fruit mass production and two-monthly means of climatic conditions in the mast year and year-1 and year-2 before 
the masting events. The pooled data of the mast years 2009 and 2011 was analyzed with Pearson correlations (correlation coefficient R). The total observation period (2009-2012) 
was analyzed using standardized regression coefficient estimates from linear mixed models (crossed random factors ‘site’ and ‘year’) after z-transformation of the data. P values 
2009-2012 were derived from a likelihood ratio test (conducted against the random effects only; see Methods section).  
Significance levels: *P<0.05; ** P <0.01; *** P <0.001 (in bold).  
                                                                                          Precipitation   Maximum temperature   Radiation 

                                                                                  Time relative to a masting 

 
  Pearson´s R 

 
 LMM 

 
  Pearson´s R 

 
 LMM 

 
  Pearson´s R 

 
 LMM 

                                                                                   Year   Months   2009   2011   2009&11   2009-2012     2009   2011   2009&11   2009-2012     2009   2011   2009&11   2009-2012 

                                                                                  Mast year -2   Mar-Apr   - 0.57   - 0.22     0.00   - 0.15       0.40     0.18   - 0.22     0.54**       0.42     0.43   - 0.31     0.48* 

    Apr-May     0.22     0.15   - 0.38     0.03       0.71*     0.15     0.35     0.61***       0.44     0.24     0.65**     0.54** 

    May-Jun   - 0.22     0.29   - 0.61**   - 0.10       0.41     0.07   - 0.23     0.32**       0.62   - 0.14     0.45*     1.41** 

    Jun-Jul   - 0.34     0.56   - 0.41   - 0.31*       0.39     0.08   - 0.03     0.21*       0.38   - 0.06     0.44*     0.64 

    Jul-Aug   - 0.86**     0.08   - 0.85***   - 0.15       0.82**     0.07     0.84***     0.19*       0.81**   - 0.05     0.86***     0.47** 

    Aug-Sep   - 0.29   - 0.15   - 0.43   - 0.54*       0.84**     0.58     0.86***     0.35**       0.42     0.51     0.86***     0.84*** 
    Sep-Oct   - 0.43     0.10   - 0.04   - 0.2**       0.43   - 0.03     0.42     0.16*       0.75*     0.17     0.44*     0.17 

    Oct-Nov   - 0.57     0.12     0.55*   - 0.22*       0.36   - 0.16     0.66**     0.04       0.44   - 0.11   - 0.61**   - 0.07 

                                                                                  Mast year -1   Mar-Apr   - 0.39   - 0.04   - 0.42   - 0.28*       0.85**   - 0.07     0.81***     0.21       0.64   - 0.17     0.82***    0.22 

    Apr-May     0.29     0.22     0.59**     0.32*       0.43     0.09   - 0.54*   - 0.97**     - 0.45   - 0.08   - 0.42   - 0.68** 

    May-Jun   - 0.24     0.30     0.40     0.01       0.41     0.06   - 0.36     0.21       0.37   - 0.35   - 0.71***     0.05 

    Jun-Jul   - 0.85**   - 0.47   - 0.87***   - 0.54***       0.85**     0.13     0.81***     0.59***       0.91***   - 0.44     0.93***     0.88*** 
    Jul-Aug   - 0.42   - 0.06   - 0.31   - 0.25***       0.41     0.03     0.82***     0.23*       0.88***   - 0.41     0.86***     0.39*** 
    Aug-Sep   - 0.61     0.21     0.39   - 0.09       0.62   - 0.01   - 0.21     0.19       0.33   - 0.24   - 0.39   - 0.27 

    Sep-Oct   - 0.44   - 0.11     0.68**   - 0.22*       0.41   - 0.55   - 0.51*     0.19     - 0.38   - 0.13     0.14   - 0.31 

    Oct-Nov   - 0.74*   - 0.21   - 0.39   - 0.37**       0.56   - 0.13   - 0.31     0.11       0.69*   - 0.31     0.26   - 0.06 

                                                                                  
Mast year 

  Mar-Apr   - 0.41     0.01   - 0.60**   - 0.19*       0.42   - 0.01     0.27     0.18       0.08   - 0.61     0.58**     0.26 

  Apr-May     0.17   - 0.35   - 0.28     0.01       0.82**   - 0.00     0.19     0.36*     - 0.15   - 0.06   - 0.35     0.15 

    May-Jun   - 0.16     0.55     0.16     0.02       0.73*     0.45     0.81***     0.22*     - 0.51   - 0.07     0.31   - 0.16 

    Jun-Jul   - 0.34     0.21     0.22   - 0.14       0.42     0.06     0.64**     0.25*       0.40   - 0.07   - 0.55*   - 0.02 

    Jul-Aug   - 0.66*   - 0.13     0.32   - 0.18       0.59   - 0.04   - 0.31     0.21*       0.43   - 0.19   - 0.39     0.45 

    Aug-Sep   - 0.36   - 0.20   - 0.57**   - 0.28       0.85**   - 0.06   - 0.46*     0.19       0.73*   - 0.07   - 0.56**     0.32 
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Table A. 4.3. Results of correlation analyses between several traits of leaf production and annual fruit mass 
production during both the same and the previous year in 11 beech stands. Values shown are the Pearson 
correlation coefficients R for each single study year (2009, 2010, 2011, and 2012) and for the total study period 
(2009-2012). Significance levels: *P<0.05; ** P <0.01; *** P <0.001. Significant correlations are in bold. 1) 

Number of leaves was also correlated with the number of fruits (in brackets). 2) Foliar nitrogen content was 
analyzed only from 2009-2011 (2011 only on sites # 2, 4, 6, 8, 10 and 11). 
 

 Leaf 
biomass 

LAI SLA Leaf 
size 

Leaf 
weight 

Number of leaves 1) 

Current year                           

  2009 - 0.64* - 0.58*   0.60*   0.17 - 0.54* - 0.59* (- 0.57*) 

 2010 - 0.12 - 0.08   0.05 - 0.43 - 0.43   0.20 (  0.20) 

 2011 - 0.10   0.08   0.57* - 0.44 - 0.56*   0.39 (  0.09) 

 2012   0.22 - 0.14 - 0.41   0.22   0.45 - 0.26 (- 0.26) 

  2009-2012 - 0.69*** - 0.53***   0.18 - 0.61*** - 0.60***   0.08 (  0.05) 

Previous year                           

  2010 - 0.20 - 0.03   0.22 - 0.13 - 0.38   0.03 (  0.03) 

 2011   0.43   0.20 - 0.51 - 0.13   0.26   0.26 (  0.26) 

 2012   0.09   0.27   0.31 - 0.46 - 0.50   0.50 (  0.57*) 

  2010-2012   0.53**   0.68***   0.27   0.66***   0.49** - 0.05 (- 0.04) 
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Summary 

1.    Optimal resource partitioning theory predicts that plants should increase the ratio between 

water absorbing and transpiring surfaces under short water supply. An increase in fine root 

mass and surface area relative to leaf area has frequently been found in herbaceous plants but 

supporting evidence from mature trees is scarce and several results are contradictory. 

2.    In 12 mature Fagus sylvatica forests across a precipitation gradient (820 – 540 mm yr-1), 

we tested several predictions of the theory by analysing the dependence of standing fine root 

biomass, fine root production and fine root morphology on mean annual precipitation (MAP), 

the precipitation of the study year, and stand structural and edaphic variables. The water 

storage capacity of the soil (WSC) was included as a covariable by comparing pairs of stands 

on sandy (lower WSC) and loam-richer soils (higher WSC).  

3.    Fine root biomass, total fine root surface area, fine root production, and the fine root/leaf 

biomass production ratio markedly increased with reduced MAP and precipitation in the study 

year, while WSC was only a secondary factor and stand structure had no effect. 

4.    The precipitation effect on fine root biomass and production was more pronounced in 

stands on sandy soil with lower WSC, which had, at equal precipitation, a higher fine root 

biomass and productivity than stands on loam-richer soil.  

5.    The high degree of allocational plasticity in mature F. sylvatica trees contrasts with a low 

morphological plasticity of the fine roots. On the more extreme sandy soils, a significant 

decrease in mean fine root diameter and increase in specific root area with decreasing 

precipitation was found; a similar effect was absent on the loam-richer soils. 

6.    Synthesis. In support of optimal partitioning theory, mature Fagus sylvatica trees showed 

a remarkable allocational plasticity as a long-term response to significant precipitation 

reduction with a large increase in the size and productivity of the fine root system, while only 

minor adaptive modifications occurred in root morphology. More severe summer droughts in 

a future warmer climate may substantially alter the above-/below-ground C partitioning of 

this tree species with major implications for the forest C cycle. 

 

Key-words: carbon allocation, Fagus sylvatica, fine root production, fine root turnover, 

plant–climate interactions, precipitation reduction, root area index, root morphology, 

root : shoot ratio, sandy soils, soil water storage capacity 
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Introduction 

Tree fine roots (roots <2 mm in diameter) are minor in terms of total forest biomass but 

play a prominent role in the functioning of forest ecosystems (e.g. Nadelhoffer & Reich 1992; 

Vogt et al. 1996; Jackson et al. 1997; Matamala et al. 2003; Silver et al. 2005). Due to their 

relatively short lifespan and rapid turnover, fine roots represent a major sink for the trees' 

annual carbohydrate gain (Fogel & Hunt 1983; Ruess et al. 1996; Gill & Jackson 2000) and 

play a central role in soil C dynamics (Fogel 1985; Nadelhoffer & Raich 1992; Vogt et al. 

1996; Gill & Jackson 2000; Hendricks et al. 2006). It has been estimated that fine root growth 

may account for about a third of the global annual net primary production (Jackson et al. 

1997), which emphasises the important role of fine root dynamics in the global C cycle. 

Moreover, even in this small diameter category, root dynamics may differ among different 

fine root branch orders (Withington et al. 2006; Guo et al. 2008; Espeleta et al. 2009; Sun et 

al. 2011) due to their different physiological activity. 

Many factors are affecting root growth and root system size (e.g. Schenk 2005). In 

addition to temperature, nutrient availability, soil acidity and some other biotic and abiotic 

factors, water availability has been found to be a key factor influencing the fine root biomass 

and fine root turnover of trees (Pregitzer et al. 1993; Eissenstat et al. 2000; Lauenroth & Gill 

2003; Leuschner & Hertel 2003). It has frequently been documented that trees growing in 

more xeric habitats have elevated root:shoot (R:S) ratios due to a shift in carbon and nutrient 

allocation toward the roots, thereby increasing the ratio between water absorbing and 

transpiring surfaces (e.g. Walter & Stadelmann 1968; Coomes & Grubb 2000). A rise in 

root:shoot ratio would match with the prediction of optimal partitioning theory for conditions 

when water is limiting (Bloom et al. 1985; Poorter & Nagel 2000; Reich 2002). Such a 

response has been observed in trees subjected to experimental drought (e.g. deVisser et al. 

1994; van Hees 1997; Tomlinson & Anderson 1998), but is also evident from comparisons of 

different tree species across natural gradients of water availability (Santantonio & Hermann 

1985; Coomes & Grubb 2000; Hertel et al. 2008).  

Other results from seedlings experiments or from mature trees are less supportive of 

optimal partitioning theory. The few studies that do compare the fine root system of mature 

trees of the same species or similar forest types at different water availabilities give no 

conclusive support for this theory. While the studies by Kalisz et al. (1987), Cuevas (1995), 

Parker & van Lear (1996), Bakker et al. (2006) and Hertel et al. (2008) revealed a higher fine 

root biomass at sites with lower water availability, the results of Santantonio & Herman 
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(1985), Steele et al. (1997), Leuschner et al. (2004) and Meier & Leuschner (2008a) showed a 

lower root biomass in drier than more moist environments. Data compilations surveying 

existing root studies found either no consistent effect of water availability on the fine root 

biomass of forest stands (Coomes & Grubb 2000; Finér et al. 2007; Finér et al. 2011a) or a 

positive relationship between mean annual precipitation (MAP) and fine root biomass 

(Leuschner & Hertel 2003; Finér et al. 2007) which contradicts optimal partitioning theory. 

Schenk & Jackson (2002) detected no dependence of the maximum rooting depth of trees on 

MAP in water-limited environments; accordingly, no general trend seems to exist in trees to 

explore larger soil volumes under conditions of reduced water availability. 

Even less is known about precipitation effects on tree fine root production. Most of the 

relevant studies have investigated the consequences of a seasonal or experimental increase in 

soil drought on fine root dynamics (e.g. Teskey & Hinckley 1981; Burton et al. 2000; 

Leuschner et al. 2001a; Tierney et al. 2003; Mainiero & Kazda 2006; Gaul et al. 2008), while 

only a handful of studies examined trees or stands growing along precipitation gradients or at 

sites differing in soil water availability (e.g. Santantonio & Herman 1985; López et al. 1998; 

Leuschner et al. 2004; West et al. 2004; Hertel et al. 2008; Meier & Leuschner 2008a). These 

results are not consistent and match with the results of global reviews of root dynamics in 

forest ecosystems by Vogt et al. (1996) and Finér et al. (2011b) who concluded that 

precipitation is in general only a weak factor influencing tree fine root production. This 

conclusion might be due to the fact that the majority of existing related root studies refers to 

experiments with potted tree saplings (e.g. Davidson et al. 1992; Fotelli et al. 2004; Meier & 

Leuschner 2008b; Winkler et al. 2010) and not investigations with mature trees. Given that 

saplings often differ substantially in their physiology and C allocation patterns from adult 

trees (e.g. Rice & Bazzaz 1989; Coleman et al. 1994; McConnaughay & Coleman 1999; 

Norby & Jackson 2000; Reich 2002), extrapolation of the results to mature trees and forests is 

problematic. 

The potential for water uptake of fine roots is more likely to be related to the surface area 

of roots rather than to the biomass of roots (Coomes and Grubb 2000). Moreover, fine root 

morphology and turnover are tightly linked (Eissenstat and Yanai 1997; Eissenstat et al. 

2000). Hence, changes in fine root morphological properties (such as specific fine root area or 

length) may also play an important role in the response of the trees' fine root system to 

differences in soil water availability. Producing fine roots of higher surface area and length, 

and a larger number of root tips per unit carbon invested may therefore help to optimise the 

cost-benefit ratio of fine roots of a tree (Eissenstat and Yanai 1997; Eissenstat et al. 2000; 
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Ostonen et al. 2007) and may increase the root water uptake capacity (Fitter 1986; Eissenstat 

1991; Paula & Pausas 2011). Unfortunately, quantitative information on trends of root 

morphology along gradients of soil moisture has been rarely gathered so far.  

European beech (Fagus sylvatica L.) is the most abundant tree species of central Europe’s 

temperate broad-leaved forests and is playing a key role in forestry (Ellenberg & Leuschner 

2010). Although this species tolerates a broad range of edaphic conditions (Leuschner et al. 

2006) and exists under a MAP range from c. 500 to >2000 mm yr-1, it reaches its highest 

vigour in sub-oceanic to oceanic climates and has been found to respond sensitively to 

drought (Magnani & Borghetti 1995, Backes & Leuschner 2000, Leuschner et al. 2001a, 

Leuzinger et al. 2005, Granier et al. 2007, Köcher et al. 2009, Rühr et al. 2009). For many 

regions of central Europe, climate change scenarios predict a higher frequency and intensity 

of drought events and more frequent summer heat waves in the coming decades (Schär et al. 

2004, Rowell and Jones 2006, IPCC 2007; Allen et al. 2010) which may pose an additional 

threat to F. sylvatica (e.g. Rennenberg et al. 2006; Scholze et al. 2006; Allen et al. 2010; 

Kreutzwieser & Geßler 2010). The majority of studies on the drought susceptibility of F. 

sylvatica are seedling or sapling studies with a focus on physiological and morphological 

responses of the above-ground organs (Davidson et al. 1992; Fotelli et al. 2004; Rose et al. 

2009). Accordingly, beech is more vulnerable to drought-induced xylem embolism than, for 

example, temperate oak species (Cochard et al. 2001). It reduces stem growth upon summer 

droughts and may respond with pre-senescent leaf shedding in exceptionally dry summers as 

in 2003, despite a sensitive stomatal regulation (Leuschner et al. 2001a; Bréda et al. 2006; 

Köcher et al. 2009). Increased drought-induced mortality has been observed in F. sylvatica 

stands not only at the southern range limit (Jump et al. 2006) but also locally in temperate 

central Europe (e.g. Wagenhoff & Wagenhoff 1975; Renaud & Nageleisen 2005 in Bréda et 

al. 2006).  

In contrast to the numerous studies on the drought response of leaves, branches and stems, 

much less is known yet about the drought response of the fine root system of F. sylvatica; a 

more general pattern of the below-ground response of beech and other broad-leaved tree 

species to water shortage has not yet emerged. Three types of responses are possible, (i) an 

absolute increase in the water-absorbing root surface area (or fine root biomass), (ii) no 

increase, but a rising root:shoot ratio due to a reduction in leaf area, or (iii) a decrease in fine 

root surface area or biomass because carbohydrate availability is limiting root growth and/or 

root mortality increases. Only (i) and (ii) are conform to optimal partitioning theory. The type 

of response may depend on the vitality and pre-adaptation of the trees and the growing 
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conditions (Tognetti et al. 1995; Cordell et al. 1998; Meier & Leuschner 2008b; Rose et al. 

2009) and is likely to vary with species (e.g. Stout & Sala 2003; Bréda et al. 2006; 

Rennenberg et al. 2006). A better understanding of the root system response of F. sylvatica 

and other tree species to water limitation is urgently needed in order to reach more robust 

predictions about the future of temperate forests under a drier climate. 

This study uses a precipitation gradient approach with 12 mature stands on Pleistocene 

sandy soils in the northern German lowlands to analyse adaptive responses of the fine root 

system of F. sylvatica to reduced water availability. The main goal of the study was to search 

for evidence in support of, or against, the validity of optimal partitioning theory in mature 

stands of a temperate broad-leaved tree species. In the study region with acidic, nutrient-poor 

soils, F. sylvatica develops shallow fine root systems that are additionally exposed to periodic 

summer drought at the dry end of the transect. We studied not only the precipitation effect 

along the gradient (MAP range: 820 – 540 mm yr-1) but also considered variation in soil water 

storage capacity (WSC, range: 140 – 46 mm for 1.2 m of profile depth) because drought 

intensity is largely dependent on the water retention and water conduction properties of the 

soil.  

Based on existing knowledge and with a focus on mature F. sylvatica trees we 

hypothesised that (i) in contradiction to optimal partitioning theory, reduced precipitation 

does not lead to a significant carbon allocation shift to the fine root system and a higher fine 

root biomass at drier sites, but (ii) fine root production and fine root turnover increase with 

reduced precipitation due to higher mortality and compensatory root growth, (iii) rooting is 

more shallow at wetter than drier sites, (iv) fine roots respond to reduced precipitation with 

lower mean diameters and higher specific root area and root length, and (v) reduced soil water 

storage capacity primarily affects fine root morphology and not standing fine root biomass 

and turnover. 
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Material and methods 

Study sites, climate and edaphic conditions 

     In a two-factorial plot design with the factors precipitation and water storage capacity 

(WSC), 12 study plots of 50 m x 50 m size were established in mature stands of European 

beech along a precipitation gradient in north-western Germany (52-53° N) and examined for 

fine root biomass and dynamics in 2009 and 2010. The stands were selected in 6 forest 

districts (from moist to dry: Sellhorn (acronym 'Se'), Unterlüß ('Un'), Oerrel ('Oe'), Göhrde 

('Go'), Klötze ('Kl'), and Calvörde ('Ca') along a 130km-long transect covering beech forests 

from an oceanic climate in the North-West to forests from a sub-continental climate in the 

South-east. The first four districts are located in the lowlands of the German state of Lower 

Saxony, the latter two in the Saxony-Anhalt lowlands. Mean annual precipitation decreases 

more or less continuously along the transect from c. 820 to 540 mm yr-1 (Table 5.1) while 

mean annual temperature (MAT) slightly increases (8.5 to 9.2 °C). For covering the variation 

in soil water storage capacity, pairs of plots on sandy and loam-richer soil were selected at 

every study site (except for the site Oerrel, see below), thus creating a matrix of 12 plots 

differing in the exposure to climatic and edaphic drought. All selected beech stands grow on 

acidic, nutrient-poor sandy or sandy to loamy soils derived from glacial deposits of the 

penultimate Ice Age (Saale Ice Age, Drenthe and Warthe stadials) at elevations of 70-130 m 

a.s.l.. Seven plots were selected on more coarse-grained meltwater sands and sandy moraine 

deposits with low silt and clay content and typically a smaller water storage capacity (WSC) 

(hereafter termed 'sandy' or 'sa'), five plots were chosen on loam-richer sandy deposits (mostly 

loamy or sandy-loamy moraine deposits) with higher silt and clay content and, in most cases, 

higher WSC (termed ‘loam-richer’ or ‘lo’). No loam-richer plot was available at the Oerrel 

site; two sandy plots were chosen at the Calvörde site.  

     The soil types were dystric or umbric Arenosols or Podzols (WRB classification) with 4-9 

cm-thick organic layers. Soil chemical parameters characterising nutrient availability and soil 

acidity status (total C, N and P concentrations, base saturation at the cation exchangers, pH) 

were measured at each six (organic layer) or four (mineral soil) randomly chosen sampling 

locations in all plots; the total carbon and nitrogen concentrations were determined by 

gaschromatography, the total P concentration with ICP-OES analysis after HNO3 digestion, 

the plant-available cation concentrations after NH4Cl extraction and subsequent element 

analysis in the percolate by ICP-OES. The loam-richer soils contained on average 27% of 

fine-grained particles (<63 µm) in the bulk mineral soil, the sandy soils only 11% (Table 5.1). 

For determining the amount of water retained in the soil at matrix potentials >-1.5 MPa and 

<-300 hPa (as a conventional definition of ‘plant-extractable water’ in sandy soils as a 
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measure of WSC), soil cores were desorbed by suction in the laboratory. Accordingly, the 

WSC of the sandy plots varied between 46 and 111 mm in the profile to 1.2 m depth (mean: 

78.0 ± 7.9 mm), that of the loam-richer plots between 78 and 140 mm (mean: 105.4 ± 11.5 

mm; difference between substrate types significant). Volumetric soil water content was 

continuously recorded with TDR probes (CS616, Campbell Scientific, Cambridge, UK) at 4 

soil depths (organic layer to 1.2 m) in all 12 plots.  

     The study year 2009 received average rainfall in most parts of the transect but was by 1.0-

1.2 K warmer than the average. For illustrating the soil hydrological conditions in their 

regional and seasonal variation across the transect, Figure 5.1 presents the fluctuation of 

volumetric soil water content in the densely rooted organic Oh horizon for the moistest site 

(Sellhorn at the western transect end) and the driest site (Calvörde at the eastern end) in the 

period August 2009 - December 2010 (measurements began in August 2009). Volumetric soil 

water contents were recorded every 6 hours using one time domain reflectrometry probe 

(TDR, CS616, Campbell Scientific Inc., Logan, UT) per site. 

     All 12 stands were either pure beech stands (n = 7) or stands dominated by F. sylvatica 

with admixture of a few (1-8) Sessile oak (Quercus petraea Matt. Liebl.) trees. Beech held 

between 81% and 100% of stand basal area in all stands except for stand Oe-S (61%). The 

above-ground structure of the stands varied within defined limits (95-100 % canopy closure, 

no recent impact of forest management, mature tree age). A second tree or shrub layer and a 

herbaceous layer were absent in all stands. Despite some variation in mean tree height, stem 

density, stem diameter in breast height and cumulative basal area among the stands (see Table 

5.1), stand basal area and above-ground woody biomass were not significantly dependent on 

the MAP variation along the transect (P = 0.06 and 0.18, R2 = 0.23 and 0.08, respectively). 
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Figure 5.1. Seasonal course of volumetric soil water content in the densely rooted organic Oh layer in the period 
August 2009 to December 2010 in the moistest beech stand Sellhorn (sandy substrate, plot #2) at the western 
transect end and the driest stand Calvörde (sandy substrate, plot #11). The measurements began in August 2009. 



 

   

Table 5.1. Summary of climatic, edaphic, and stand structural properties of the 12 Fagus sylvatica stands in north-western Germany. Substrate type: loam-richer soil (lo) and 
sandy soil (sa). Mean annual precipitation (MAP) and temperature (MAT) refer to the period 1971-2000 (regionalised by C. Döring from the national weather stations network 
data base provided by DWD, Deutscher Wetterdienst). Data on stand age were obtained from the local forest administration. Leaf area index and annual leaf production are 
derived from leaf litter collection in each 10 litter traps (aperture 0.28 m2) per plot. Soil chemical properties refer to the upper 30 cm of the mineral soil (data provided by M. 
Jansen and C. Döring, unpublished). Fine-grained soil particles include silt and clay (particles size < 63 µm) expressed in % of total soil mass (0 – 120 cm soil profile, data 
obtained from M. Jansen). The water storage capacity is calculated for the upper 120 cm of the mineral soil. 
Plot no. 
Site code 

1 
Se 

2 
Se 

3 
Un 

4 
Un 

5 
Oe 

6 
Go 

7 
Go 

8 
Kl 

9 
Kl 

10 
Ca 

11 
Ca 

12 
Ca 

Substrate type lo sa lo sa sa lo sa lo sa lo sa1 sa2 

Coordinates 53°10' N 

09°57' O 

53°10' N 

09°57' O 

52°50' N 

10°19' O 

52°50' N 

10°19' O 

52°59' N 

10°14' O 

53°07' N 

10°49' O 

53°09' N 

10°52' O 

52°37' N 

11°14' O 

52°37' N 

11°15' O 

52°24' N 

11°16' O 

52°23' N 

11°17' O 

52°22' N 

11°16' O 

Elevation (m a.s.l.) 127 130 120 117 90 85 85 102 85 72 75 105 

Mean annual temperature (°C) 8.5 8.5 8.5 8.5 8.7 8.7 8.7 8.8 8.9 9.1 9.2 9.1 

Mean annual precipitation (mm) 816 816 766 766 741 675 665 615 614 543 544 559 

Annual precipitation 2009 838 838 815 815 758 702 686 737 726 654 649 658 

Annual precipitation 2010 817 817 833 833 766 744 726 746 744 672 684 708 

Stand age (yr) 127 127 115 115 95 142 133 c.125 c.125 131 97 87 

Mean tree height (m) 31.4 28.0 28.4 25.3 27.2 30.2 24.6 33.8 30.2 28.3 23.8 25.5 

Stem density (no. ha-1) 156 367 411 611 500 122 289 267 478 300 711 578 

Mean diameter in breast height (cm) 46.7 29.6 26.1 18.6 21.7 51.0 30.7 43.3 29.0 36.6 23.4 24.9 

Stand basal area (m2 ha-1) 31.0 30.7 28.5 24.3 32.3 26.6 24.4 44.9 40.8 33.3 33.2 32.6 

Timber volume (m3 ha-1) 490 395 378 227 287 407 289 758 516 454 374 402 

Leaf area index (m2 m-2) 6.9 7.5 7.5 7.5 7.6 6.8 6.3 7.7 7.0 7.2 6.9 6.7 

Leaf production 2010 (g m-2 yr-1) 327.2 360.5 326.4 338.1 362.9 294.3 302.8 306.7 320.1 329.4 328.2 319.4 

Thickness of organic layer (cm) 7.5 9.1 6.5 7.3 6.9 9.0 8.8 4.1 6.4 7.5 6.6 8.0 

pH value (H2O) of mineral topsoil 4.2 4.2 4.4 4.3 4.0 4.3 4.3 4.4 4.3 4.2 4.3 4.1 

C/N ratio of mineral topsoil (g g-1) 15.6 24.2 25.8 24.1 17.8 22.9 25.5 11.9 15.7 15.9 13.2 19.0 

N concentration of mineral topsoil (g kg-1) 0.28 0.46 0.40 0.47 0.78 0.41 0.51 0.46 0.49 0.34 0.42 0.33 

P concentration of mineral topsoil (mg kg-1) 63 79 71 106 238 59 97 121 97 126 111 133 

Cation exchange capacity (µmolc g-1) 16.1 27.5 18.4 24.2 22.7 20.2 26.5 21.3 17.3 18.6 14.7 14.2 

Base saturation of mineral topsoil (%) 24.3 9.7 14.8 8.3 13.0 6.7 2.8 14.4 9.7 7.4 5.0 6.9 

Fraction of fine-grained (< 63 µm) soil particles (%) 11.9 17.2 21.0 14.9 7.8 17.7 4.4 32.0 16.4 53.5 9.6 4.7 

Water storage capacity mineral soil (mm 120 cm-1) 90 

 

111 

 

95 79 

 

59 78 

 

80 124 

 

90 

 

140 

 

81 

 

46 
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Fine root inventory 

     For determining the amount of standing live and dead fine root mass in the soil of the 12 

stands, root inventories were carried out in June and September 2009 (early and late growing 

season) by extracting soil samples with a corer (3.5 cm in diameter) from the organic layer 

and the upper mineral soil (0-10 and 10-30 cm soil depth) at 20 randomly selected locations 

per study plot. June represented a wetter early-summer period, September a drier late-summer 

phase in 2009. The soil samples were transferred to plastic bags and stored at 4 °C in the 

laboratory. The samples were cleaned from soil residues by soaking in water prior to the root 

extraction procedure using a sieve with a mesh size of 0.25 mm. Only tree fine roots were 

considered for analysis. Larger rootlets (> 10 mm in length, < 2 mm in diameter) were 

extracted by hand with tweezers. Living (biomass) and dead roots (necromass) were 

distinguished under the stereo-microscope by inspecting colour, root elasticity, and cohesion 

of the cortex, periderm and stele (e.g. Persson 1978; Hertel & Leuschner 2002). While this 

fine root fraction represents the majority of living fine root mass (>95%), a large proportion 

of fine root necromass consists of smaller root fragments not recovered with this method 

(Bauhus and Bartsch 1996; Leuschner et al. 2001b). In order to quantify this fraction of dead 

fine root mass, a third of the samples were subjected to a very detailed analysis of smaller root 

necromass particles (< 10 mm in length) applying a method introduced by van Praag et al. 

(1988) and modified by Hertel (1999). After extraction of the larger rootlets, the residue of the 

sample was evenly spread on a large sheet of filter paper (730 cm2) with 36 squares marked 

on it. Six of the squares were randomly selected and analysed under the stereo-microscope for 

even the smallest dead fine root fragments. The mass of small dead root fragments detected in 

the sub-samples was extrapolated to the samples, that were not subjected to this detailed 

analysis, by use of a regression equation that relates the mass of small dead roots to large 

necromass rootlets (> 10 mm in length); this regression equation was established in the six 

sub-samples analysed in detail. The fine root biomass and necromass of every sample was 

dried at 70 °C for 48 h and weighed. We did not separate the fine roots by branch order as 

done in some recent studies to hold account on the importance of fine root heterogeneity in 

branch order topology (see e.g. Pregitzer et al. 2002; Guo et al. 2008) (i) due to the 

enormously high numbers of rootlets <2 mm in diameter in a single soil sample the were 

recorded in the 12 forest stands (approximately > 30.000 individual fine rootlets) and (ii) 

since we aimed at comparatively studying the living and dead fine root mass with the latter 

fraction lacking the possibility of such a branch order analysis. However, we considered the 

most dynamic first root branch order (i.e. the root tips) of the living fine roots in a separate 
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approach (see below). The data of the two inventories were expressed as fine root dry mass 

per soil volume at a given soil depth (in g m-3) and as fine root mass profile total (in g m-2) by 

adding the three analysed soil horizons. Earlier investigation of the vertical distribution of fine 

root mass in F. sylvatica stands conducted on similar soil in the direct vicinity of one of the 

selected forest stands (site 'Unterlüß') to a soil depth of 350 cm revealed that more than 85 % 

of the fine root biomass profile total was located in the organic layer and the upper 40 cm of 

the mineral soil (Leuschner et al. 2004); this indicates that our inventory has covered >75% of 

the fine root biomass total in the 12 stands. 

 
Fine root morphology 

     All living rootlets of a soil sample were analysed for their mean root diameter, specific 

root surface area (SRA, in cm2 g-1), specific root length (SRL, in m g-1), and root tissue 

density (in g cm-3) using a scanner and a WinRhizo (Régent Instruments Inc., Quebec, 

Canada) visual analysis system. The fine root area index (RAI, m2 cumulative root surface 

area per m2 ground area) was calculated analogous to leaf area index from the SRA and mean 

fine root biomass values of the three soil horizons that were added to receive the RAI total of 

the soil profile (organic layer plus upper 30 cm mineral soil). The abundance of fine root tips 

(i.e. the first branch order of the rootlets) was determined for every soil sample by counting 

under the stereo-microscope all living tips of each one representative live fine root branch. 

Tip abundance was expressed on a root dry mass basis (specific root tip abundance, n mg-1). 

The rootlets were also inspected microscopically for the abundance of clearly visible 

ectomycorrhizae in order to record the degree of root tip colonization by ectomycorrhizal 

fungi.  

 
Fine root production 

     We used the ingrowth core technique for measuring fine root growth in the 12 stands and 

to obtain an estimate of annual fine root production (Persson 1980; Powell and Day 1991; 

Majdi 1996). In comparison to other techniques, this approach has been found to give rather 

conservative figures of fine root production in temperate forests (e.g. Hertel & Leuschner 

2002; Hendricks et al. 2006; Finér et al. 2011b). In May/June 2009, 12 ingrowth cores each 

were installed in the 12 plots at random locations; they were re-sampled after 22 months in 

March 2011. For installing the ingrowth cores, a soil corer (diameter 3.5 cm) was dug through 

the organic layer to a depth of 20 cm in the mineral soil and the soil and root material was 
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extracted. The bulk soil was cleaned by hand from all macroscopically visible live and dead 

rootlets and the soil material subsequently replaced into the hole in its natural sequence of 

horizons, thereby conserving the natural structure of the soil as much as possible. The 

minimum distance between two ingrowth cores was at least 2 m. The edges of the cores were 

marked accurately at the soil surface. For minimising soil disturbance and allowing for 

barrier-free access of growing roots to the cores, no mesh gaze was used to enclose the cores. 

For recording the start of the re-colonisation process of the cores by invading roots, we 

continuously harvested single cores in the first months after installation. Accordingly, fine-

root growth started in the bulk of the ingrowth cores around June 2010, i.e. after a 12-month 

lag period following the initial disturbance. We harvested all 144 cores in March 2011 (i.e. 9 

months after the assumed start of re-colonisation) to guarantee an extended growth period 

allowing for a complete re-colonisation of the soil in the cores. We therefore did also not 

observe a significant portion of pioneer roots in the extracted root samples that would be 

morphologically and functionally different from the common branched fibrous fine roots in 

the soil (see Polverigiani et al. 2011; Zadworny & Eissenstat 2011). We carefully extracting 

the soil core, quantified the dry mass of larger (>10 mm length) fine root branches (living and 

dead) in the core as described above, and expressed the data as fine root growth per soil 

volume and 9 months. We assumed that the existing live and dead root mass in the core 

represented the root mass produced in the period and that root fragments broken off the main 

root branches were negligible. Annual fine root production (in g m-2 yr-1) was estimated by 

extrapolating the fine root growth during the 9-month period to an entire year and relating it 

to m2 ground area. An estimate of fine root turnover in the study plots was obtained by 

relating annual root production to mean standing fine root biomass (Aber et al. 1985; Aerts et 

al. 1992; Gill & Jackson 2000). 

     The annual production of leaf biomass was recorded with each 10 litter traps (aperture 0.28 

m2) per plot. The collected litter material was separated into leaves, flowers and fruits and 

sorted by tree species, oven-dried at 70°C for 48 h, and weighed. In each plot, 500 randomly 

chosen beech leaves were collected from the litter traps, scanned and the leaf size determined 

with WinFolia software (Régent Instruments, Quebec, Canada) to calculate stand leaf area 

index (LAI). 

 

Statistical analyses  

     All data sets were tested for Gaussian distribution using a Shapiro & Wilk test. Normally 

distributed data were tested for significant differences with ANOVA followed by pair-wise 
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comparison after Scheffé (P < 0.05) that included a correction for multiple pair-wise 

comparisons. In order to test for the effect of the two different geological substrates (sandy vs. 

loam-richer material), the influence of soil depth and the interaction of both factors on fine 

root morphological traits, a two-factorial ANOVA procedure was conducted. The calculations 

were performed with the software package SAS, version 8.01 (SAS Institute, Cary, North 

Carolina, U.S.A.). In order to analyse the differentiation of the 12 study plots with respect to 

climatic and soil chemical characteristics, we conducted a Principal Components Analysis. 

The matrix species factors were: study plot, soil texture type, mean annual temperature, mean 

annual precipitation, annual precipitation of the study year 2009, annual precipitation of the 

study year 2010, C/N ratio, cation exchange capacity (CEC) and base saturation of the cation 

exchangers of the upper mineral soil, mean tree height, mean diameter at breast height (dbh), 

stem density, stand basal area, leaf area index (LAI), annual leaf production, fine root 

biomass, fine root necromass, fine root live/dead ratio, root area index (RAI), root area/leaf 

area index ratio, annual fine root production, fine root/leaf production ratio, fine root turnover 

rate, average fine root diameter, specific root area (SRA), and specific root length (SRL). The 

PCA analyses were conducted with the package CANOCO, version 4.5 (Biometris, 

Wageningen, The Netherlands). We regressed various fine root traits of the sandy and loam-

richer plots on MAP and the precipitation of the respective study year using the software 

package Xact (version 8.03, SciLab, Hamburg, Germany). A multiple linear regression 

analysis was done using the software package SAS to analyse the influence of various climate 

(mean annual precipitation 'MAP', annual precipitation 2009 'AP2009', annual precipitation 

2010 'AP2010'), soil physical (water storage capacity of the mineral soil and percent fine-

grained soil particles) and above-ground structural variables (stand basal area, tree density, 

timber volume and leaf area index) on the fine root biomass or fine root productivity in the 12 

F. sylvatica stands. 

 

Results 

Environmental and stand structural gradients across the beech plot matrix  

     The Principal Components Analysis on the similarity of the 12 beech stands in terms of 

environmental (climate and soil) and stand structural and functional properties revealed a 

more or less continuous distribution of the 12 study plots along 4 different axes that explained 

84% of the total variance of the data set (Table 5.2). Axis 1 with an eigenvalue of 0.35 

strongly coincided with the climatic factors MAP, annual precipitation of the study year, and 
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MAT, reflecting the precipitation decrease by 270 mm yr-1 and the temperature increase by 

0.7°C along the transect from the wet to the dry end (Table 5.1). Important root traits 

including fine root biomass, root area index, root area/leaf area index ratio, and fine root 

production correlated also with the first axis but in opposite direction than precipitation 

indicating a negative relationship between precipitation and fine root biomass and fine root 

production. Part of the root traits correlated also with axis 2 (root morphological traits) or 

with axis 3 (fine root necromass, fine root turnover). Variables characterising stand above-

ground structure correlated either with axis 1 (tree height, stand basal area, timber volume) or 

with axis 2 (stem diameter, stem density). An exception was leaf area index with a positive 

relation to axis 1. Axis 2 (eigenvalue 0.22) showed a close relation to soil texture (with the 

stands with sandy soil being located more toward the positive end and the loam-richer stands 

situated toward the negative end of this axis) and soil chemical properties (most strongly to 

the C/N ratio of the mineral soil). Axis 3 (eigenvalue 0.19) showed only a weak association 

with abiotic variables, but coincided with some single above-ground stand structural variables 

as well as with fine root turnover.  

 

Live and dead fine root mass 

     The mean fine root biomass (live roots) in the organic layer and the upper 30 cm of the 

mineral soil ranged from 289 to 704 g m-2 in the 12 beech stands (Figure A.5.1 in the 

Appendix). The 7 stands with a MAP <700 mm yr-1 showed a significantly higher mean fine 

root biomass (573 ± 28 g m-2) than the 5 stands with MAP >700 mm yr-1 (354 ± 26 g m-2, 

Figures 5.2 and A.5.1). Moreover, drier beech stands showed a higher proportion of the 

standing fine root biomass in the organic layer and the upper 10 cm of the mineral soil than 

stands with higher precipitation. Stand fine root biomass showed a significant negative 

relation to MAP; this relation was even stronger when fine root biomass was scaled to the 

precipitation amount of the study year, showing an increase in fine root biomass by 139 g m-2 

per 100 mm decrease in annual precipitation (Figure 5.2). This relation also appeared when 

the stands on sandy or loam-richer soil were analysed separately (Table 5.3). A closer look 

shows that the increase in fine root biomass occurred mainly in the organic layer and the 

mineral topsoil (0-10 cm) but not in the deeper mineral soil (significant trends P < 0.01 in 

both upper layers, Figure A.5.1). The multiple regression analysis with climatic, edaphic and 

stand structural parameters identified the precipitation in the study year as the only significant 

predictor of fine root biomass (Table 5.4). Neither stem density nor stem diameter or timber 

volume had a significant influence on fine root biomass. 
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Table 5.2. Results of a Principal Components Analysis (PCA) on the differentiation of the 12 Fagus sylvatica 
stands with respect to climatic and soil properties, and various above-ground and below-ground tree variables. 
Given are the loadings of the selected variables along the four explanatory axes. Numbers in brackets below the 
axes indicate the eigenvalues of the axes. Numbers in bold mark the variables with closest correlation to the 
respective axis. 

Variables Axis 1 
(EV 0.348) 

Axis 2 
(EV 0.216) 

Axis 3 
(EV 0.186) 

Axis 4 
(EV 0.088) 

Climate factors     

MAT   0.904   0.133  -0.311  -0.178 

MAP  -0.934  -0.163   0.087   0.055 

AP2009  -0.957   0.057  -0.017   0.106 

AP2010  -0.933  -0.072   0.074   0.138 

Soil properties 
    

Texture type   0.227  -0.624  -0.408   0.401 

C/N  -0.420  -0.740   0.423  -0.010 

N  concentration  -0.132  -0.395  -0.370   0.496 

P  concentration   0.139  -0.116  -0.668   0.365 

CEC  -0.401  -0.447   0.235   0.484 

Base saturation  -0.661   0.644  -0.119  -0.072 

Stand structural variables 
    

Tree height  -0.331   0.799   0.280  -0.015 

Diameter at breast height  -0.026   0.595   0.623  -0.299 

Stem density   0.270  -0.382  -0.704   0.190 

Stand basal area   0.263   0.746  -0.317   0.210 

Timber volume   0.145   0.909   0.117   0.085 

LAI  -0.580   0.244  -0.475   0.183 

Annual leaf production  -0.611  -0.259  -0.675   0.027 

Root-related variables 
    

Fine root biomass   0.780  -0.234   0.518   0.078 

Fine root necromass   0.276  -0.423   0.762   0.369 

Fine root live/dead ratio   0.577   0.303  -0.560  -0.454 

RAI   0.859  -0.013   0.417   0.275 

RAI/LAI   0.844  -0.104   0.452   0.231 

Annual fine root production   0.887  -0.214  -0.263  -0.128 

Fine root/leaf production ratio   0.929  -0.180  -0.111  -0.112 

Fine root turnover   0.273  -0.132  -0.809  -0.192 

Fine root diameter  -0.372  -0.524   0.007  -0.433 

SRA   0.179   0.635  -0.196   0.608 

SRL   0.149   0.715  -0.142   0.542 
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Figure 5.2. Relationship between fine root biomass (organic layer and 0-30 cm of mineral soil) and the annual 
precipitation of the study year 2009 for the 12 Fagus sylvatica stands. Open circles mark the loam-richer plots, 
filled circles the sandy plots. 
 

 

     The dependence of fine root biomass on soil texture was not visible in the multiple 

regression but showed up in a significantly higher fine root biomass in the stands on sandy 

soil as compared to those on loam-richer soil when precipitation was equal (525 ± 52 vs. 463 

± 58 g m-2, P < 0.01). The variation in mean fine root necromass (dead fine roots) showed a 

less clear picture across the 12 stands (Figure A.5.1). Despite a 40% larger mean necromass in 

the drier stands (<700 mm yr-1 MAP) as compared to the moister ones (>700 mm yr-1) (687 ± 

99 vs. 490 ± 69 g m-2), fine root necromass showed a significant dependence neither on MAP 

nor on the precipitation of the study year (Table 5.3). The fine root live/dead ratio showed a 

slight but exponential increase from the wet to the dry stands (Table 5.3). The ratio was below 

unity in most of the stands in the wetter part of the transect but exceeded 1.0 in the 3 beech 

stands at the driest site Calvörde in the South-east (MAP <560 mm yr-1). No systematic 

difference in the ratio was found between the stands on sandy and loam-richer soil. 
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Table 5.3. Results of linear or simple non-linear (*) regression analyses on the response of several root-related 
traits to mean annual precipitation (MAP) and annual precipitation in the study year (2009 or 2010) for the total 
data set (12 plots) or the sandy (7 plots) or loam-richer Fagus sylvatica plots (5 plots). Statistically significant 
relationships are printed in bold (P <0.05). The direction of the slope of the regression line is given in brackets. 

Variable Source               
 MAP Annual 

precipitation in 
study year 

Annual precipitation 
in study year 

Annual precipitation 
in study year 

 All plots 
(N = 12) 

All plots 
(N = 12) 

Sandy plots 
(N = 7) 

Loam-richer plots 
(N = 5) 

  R2 P R2 P R2 P R2 P 
Fine root biomass 0.46 (-) <0.01 0.60 (-) <0.01 0.57 (-) <0.05 0.63 (-) <0.05 
Fine root necromass 0.01 (-) 0.36 0.07 (-) 0.21 0.03 (-) 0.36 0.17 (-) 0.25 
Fine root live / dead 
ratio 

0.61* (-) <0.01 0.40* (-) <0.05 0.42* (-) 0.06 0.32 (-) 0.16 

RAI 0.57 (-) <0.01 0.65 (-) <0.001 0.65 (-) <0.05 0.63 (-) <0.05 
RAI / LAI ratio 0.49 (-) <0.01 0.63 (-) <0.01 0.62 (-) <0.05 0.70 (-) <0.05 
Percentage of RAI  
in organic layer 

0.15 (-) 0.10 0.36 (-) <0.05 0.49 (-) <0.05 0.24 (-) 0.20 

Annual fine root  
production 

0.59 (-) <0.01 0.67 (-) <0.001 0.83 (-) <0.01 0.81 (-) <0.05 

Fine root / leaf  
production ratio 

0.64 (-) <0.001 0.71 (-) <0.001 0.88 (-) <0.01 0.71 (-) <0.05 

Fine root production  
per unit LAI 

0.57 (-) <0.01 0.67 (-) <0.001 0.88 (-) <0.01 0.78 (-) <0.05 

Fine root turnover 0.05 (-) 0.25 0.13 (-) 0.12 0.15 (-) 0.20 0.33 (-) 0.15 
Fine root diameter 0.18 (+) 0.08 0.06 (+) 0.22 0.48 (+) <0.05 0.08 (-) 0.32 
Specific root area 0.03 (-) 0.30 0.00 (-) 0.36 0.50 (-) <0.05 0.04 (+) 0.32 
Specific root length 0.03 (-) 0.29 0.00 (-) 0.48 0.44 (-) <0.05 0.07 (+) 0.33 
Root tissue density 0.03 (+) 0.30 0.02 (+) 0.33 0.08 (+) 0.27 0.00 (+) 0.49 
Specific root tip  
abundance 

0.01 (+) 0.39 0.03 (-) 0.32 0.09 (-) 0.26 0.02 (+) 0.41 

Mycorrhizal  
colonization rate 

0.03 (+) 0.30 0.01 (-) 0.37 0.02 (+) 0.37 0.10 (-) 0.30 

 
 
Table 5.4. Results of a multiple linear regression analysis on the influence of various climate (mean annual 
precipitation 'MAP', annual precipitation 2009 'AP2009', annual precipitation 2010 'AP2010'), soil 
physical/chemical (water storage capacity of the mineral soil and percent fine-grained soil particles, soil nutrient 
properties) and above-ground structural variables (stem diameter, stem density, stand basal area, timber volume 
and leaf area index) on the fine root biomass or fine root productivity in the 12 Fagus sylvatica stands. Given are 
the coefficients of determination (R²) for each model as well as parameter estimates for the variables with 
significant influence that were included in the models, and the F and P values for these predictors. Significant 
predictors were only the two precipitation parameters AP2009 and AP2010, and the percentage contribution of 
fine particles to soil dry mass at marginal significance (P = 0.07). 

Variable Model R2 Predictor (parameter 
estimate)  

  

Fine root 

biomass 

0.60   

(P < 0.01) 

Intercept (1511.6) 
F value: 31.9  
P < 0.001 

AP2009 (-1.35) 
F value: 14.9  
P < 0.01) 

 

Fine root  

production 

0.77   

(P < 0.01) 

Intercept (1333.3) 
F value: 46.1                 
P < 0.001 

AP2010 (-1.35) 
F value: 28.1  
P < 0.001 

ΣUT (-2.98) 
F value: 4.1  
P = 0.07 
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Fine root morphology and root area index  

     Fine root morphology was much less influenced by precipitation than fine root biomass, 

but showed a significant dependence on the soil horizon, i.e. the depth in the soil (Tables 5.2, 

5.3 and 5.5). Mean root diameter d in the size class <2 mm (fine roots) varied between 0.35 

and 0.58 mm across the 12 stands (Table 5.6) although fine root individuals showed no 

significant differences in their principal branching architecture (data not shown). Despite this 

large variation, mean fine root diameter showed no relation to MAP or annual precipitation in 

the study year when all 12 stands were considered (Tables 5.3 and 5.5). However, when the 

seven stands on sandy soil are analysed separately, mean root diameter decreased significantly 

with decreasing precipitation in the study year (R2 = 0.48, Table 5.3) while no such effect 

existed for the stands on loam-richer soil. Similarly, specific root area (SRA) and specific root 

length (SRL) in the whole data set were not related to MAP or annual precipitation in the 

study year but showed a significant increase with decreasing annual precipitation in the study 

year when only the sandy plots were analysed (Table 5.3). All three traits (d, SRA and SRL) 

depended on the soil horizon (depth in soil) while the influence of soil texture (sandy vs. 

loam-richer soil) and of the texture x horizon interaction was not significant (Table 5.5).  

 

Table 5.5. Results of a two-way Analysis of Variance (ANOVA) on the influence of two different soil texture 
classes (sandy vs. loam-richer soil) and three different soil horizons and the interaction of the two variables on 
various morphological traits of the live fine roots in the 12 Fagus sylvatica stands. Given are the F and P values 
of the three source variables and the coefficient of determination (R²) of the model. 

Variable Source    

 Substrate Soil horizon Substrate x  
soil horizon 

Model R2 

Fine root diameter 0.65  (n.s.) 9.49    (P < 0.001) 1.92  (n.s.) 0.042  (P < 0.001) 

Specific root area 0.04  (n.s.) 28.74  (P < 0.001) 0.48  (n.s.) 0.098  (P < 0.001) 

Specific root length 0.11  (n.s.) 22.91  (P < 0.001) 0.48  (n.s.) 0.080  (P < 0.001) 

Root tissue density 0.78  (n.s.) 26.25  (P < 0.001) 0.19  (n.s.) 0.091  (P < 0.001) 

Specific root tip 
abundance 

1.16  (n.s.) 0.26  (n.s.) 0.16  (n.s.) 0.003  (n.s.) 

Mycorrhizal  
colonizations rate 

1.57  (n.s.) 4.74  (P < 0.01) 0.95  (n.s.) 0.018  (P < 0.05) 

 

 

     Fine root tissue density varied in its mean between 0.49 and 0.78 g cm-3 (Table 5.6) with 

no influence of precipitation or soil texture but a significant influence of soil horizon (Tables 

5.3 and 5.5). However, this effect was weak (only 9% of the variation in tissue density 

explained). We found an unexpected relative invariance of specific root tip abundance (tips 
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per fine root dry mass) and of the percentage of root tips colonized by ectomycorrhizal fungi 

across the 12 beech stands. Root tip abundance (means of 17.2 – 36.1 tips mg-1) and percental 

colonization rate (63.8 – 85.2%) were found to be influenced neither by precipitation nor by 

soil texture, but mycorrhizal colonization rate decreased significantly with increasing depth in 

the soil (Table 5.3 and 5.5).  

     The cumulative surface area of fine roots in the soil (root area index RAI in m2 root 

surface area per m2 ground area) ranged from c. 5 to 13 m2 m-2 in the 12 stands (Figure 5.3A). 

Sites with >700 mm yr-1 MAP had a significantly smaller RAI (5.5 ± 0.2 m2 m-2) than sites 

with less than 700 mm yr-1 (10.3 ± 0.5 m2 m-2), and RAI was negatively correlated with 

precipitation (R2 = 0.57 for MAP and 0.65 for the precipitation in the study year, Table 5.3, 

Figure 5.3A). The root area index to leaf area index ratio (RAI/LAI) more than doubled along 

the transect from <0.8 at the wet end to >1.6 at the dry end (Figure A.5.2). The finding of a 

significant increase from the wet to the dry stands in the proportion of fine root surface area 

that was located in the organic layer was unexpected (from c. 35 to 50 % of total RAI, Figure 

5.3B). The increasing concentration of root surface area in the upper soil profile with 

decreasing annual precipitation was more pronounced in the sandy than the loam-richer soils 

(R2 = 0.49 vs. 0.36, respectively, Table 5.3). 
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Figure 5.3. (A) Dependence of fine root area index (RAI, organic layer and 0-30 cm of mineral soil) on annual 
precipitation in the study year 2009 for the 12 Fagus sylvatica stands. (B) Fraction of RAI (in % of soil profile 
total) located in the organic layer as a function of annual precipitation in the study year 2009 for the 12 Fagus 
sylvatica stands. Open circles stand for the loam-richer plots, filled circles for the sandy plots. 

 

 



 

  

Table 5.6. Summary of morphological traits of the live fine roots in the organic layer and two mineral soil horizons in the 12 Fagus sylvatica stands. Substrate types: sandy (sa) 
and loam-richer (lo). Given are means and standard errors for the second inventory in September 2009. Results of statistical analyses on significant differences between plots and 
between soil horizons are omitted for clarity. For a more general statistical analysis of the data, see Tables 5.3 and 5.5. 

Plot no. 

Site code 

1 

Se 

2 

Se 

3 

Un 

4 

Un 

5 

Oe 

6 

Go 

7 

Go 

8 

Kl 

9 

Kl 

10 

Ca 

11 

Ca 

12 

Ca 
Substrate type lo sa lo sa sa lo sa lo sa lo sa1 sa2 

Fine root diameter (mm)             
Organic layer 0.37 ± 0.01 0.45 ± 0.03 0.40 ± 0.03 0.38 ± 0.01 0.42 ± 0.01 0.44 ± 0.01 0.38 ± 0.01 0.35 ± 0.01 0.38 ± 0.01 0.39 ± 0.01 0.38 ± 0.02 0.37 ± 0.01 

0-10 cm mineral soil 0.40 ± 0.02 0.52 ± 0.05 0.42 ± 0.02 0.38 ± 0.02 0.47 ± 0.03 0.49 ± 0.02 0.41 ± 0.02 0.39 ± 0.01 0.41 ± 0.01 0.41 ± 0.02 0.42 ± 0.02 0.39 ± 0.02 

10-30 cm mineral soil 0.41 ± 0.02 0.44 ± 0.02 0.45 ± 0.02 0.44 ± 0.03 0.42 ± 0.02 0.58 ± 0.07 0.39 ± 0.02 0.48 ± 0.04 0.47 ± 0.03 0.38 ± 0.01 0.41 ± 0.02 0.38 ± 0.02 

Specific root area (cm2 g-1)             
Organic layer 219 ± 24 193 ± 22 175 ± 11 198 ± 11 201 ± 17 168 ± 12 202 ± 10 259 ± 25 189 ± 13 185 ± 11 210 ± 10 214 ± 16 

0-10 cm mineral soil 233 ± 32 159 ± 20 178 ± 16 188 ± 15 198 ± 19 129 ± 15 137 ± 14 156 ± 11 150 ±   9 184 ± 19 159 ±   8 187 ± 10 

10-30 cm mineral soil 196 ± 16 147 ± 11 136 ± 13 147 ± 10 162 ± 18 108 ±   8 158 ±   6 135 ± 12 131 ± 10 156 ± 10 151 ± 10 181 ± 16 

Specific root length (m g-1)             
Organic layer 20.2 ± 3.3 15.7 ± 2.7 15.2 ± 1.4 17.5 ± 1.3 15.6 ± 1.6 12.5 ± 1.0 16.9 ± 0.9 24.7 ± 3.0 16.5 ± 1.7 15.9 ± 1.3 18.3 ± 1.3 19.0 ± 1.7 

0-10 cm mineral soil 20.0 ± 3.0 12.1 ± 2.3 14.4 ± 1.7 16.4 ± 1.9 14.9 ± 1.9 9.4 ± 1.4 11.5 ± 1.7 13.2 ± 1.4 12.1 ± 1.0 15.5 ± 1.7 12.5 ± 1.0 16.2 ± 1.5 

10-30 cm mineral soil 16.2 ± 1.8 11.5 ± 1.2 10.8 ± 1.6 11.8 ± 1.4 13.0 ± 1.8 7.1 ± 0.8 13.4 ± 1.1 10.7 ± 1.5 10.0 ± 1.2 13.6 ± 1.2 12.8 ± 1.2 16.6 ± 2.0 

Root tissue density (g cm-3)             
Organic layer 0.55 ± 0.04 0.54 ± 0.04 0.62 ± 0.02 0.56 ± 0.02 0.58 ± 0.11 0.58 ± 0.03 0.53 ± 0.02 0.49 ± 0.04 0.60 ± 0.03 0.59 ± 0.02 0.52 ± 0.02 0.55 ± 0.04 

0-10 cm mineral soil 0.51 ± 0.03 0.55 ± 0.02 0.60 ± 0.04 0.59 ± 0.03 0.49 ± 0.03 0.71 ± 0.06 0.78 ± 0.05 0.67 ± 0.03 0.69 ± 0.03 0.61 ± 0.03 0.62 ± 0.03 0.58 ± 0.02 

10-30 cm mineral soil 0.54 ± 0.03 0.68 ± 0.04 0.74 ± 0.04 0.66 ± 0.02 0.61 ± 0.05 0.78 ± 0.07 0.66 ± 0.02 0.71 ± 0.04 0.71 ± 0.02 0.72 ± 0.04 0.71 ± 0.03 0.65 ± 0.04 

Specific root tip abundance (n mg-1)             

Organic layer 29.4 ± 4.4 24.7 ± 5.9 23.9 ± 3.5 23.1 ± 3.3 29.9 ± 3.6 27.4 ± 4.3 30.6 ± 6.5 22.1 ± 2.5 24.3 ± 4.4 26.2 ± 3.2 22.1 ± 2.9 30.7 ± 4.1 

0-10 cm mineral soil 36.1 ± 6.1 28.1 ± 4.9 27.5 ± 4.2 25.7 ± 4.1 34.1 ± 6.3 21.4 ± 4.8 31.3 ± 4.8 21.4 ± 3.6 21.3 ± 3.5 26.0 ± 4.2 22.1 ± 3.8 32.9 ± 4.1 

10-30 cm mineral soil 33.3 ± 4.7 26.3 ± 4.7 19.2 ± 3.5 28.4 ± 5.2 33.4 ± 5.7 17.2 ± 4.2 24.0 ± 4.9 25.5 ± 4.5 19.1 ± 3.6 29.7 ± 3.6 26.4 ± 3.9 34.1 ± 3.9 

Mycorrhizal colonization rate (%)             

Organic layer 76.0 ± 4.8 80.5 ± 4.3 72.3 ± 5.2 76.6 ± 6.1 85.2 ± 3.1 80.5 ± 4.9 81.2 ± 4.2 71.7 ± 5.7 76.4 ± 4.2 75.3 ± 4.6 76.7 ± 4.5 79.0 ± 4.5 

0-10 cm mineral soil 77.3 ± 4.5 69.1 ± 6.8 73.1 ± 5.8 73.8 ± 5.6 76.5 ± 4.5 67.2 ± 6.8 73.1 ± 4.9 63.8 ± 6.1 70.4 ± 5.0 74.4 ± 6.0 77.7 ± 4.1 79.1 ± 3.7 

10-30 cm mineral soil 73.6 ± 3.7 73.4 ± 5.1 70.0 ± 4.8 65.6 ± 5.0 75.6 ± 3.9 75.5 ± 5.8 68.3 ± 5.3 68.6 ± 5.4 67.4 ± 4.2 75.8 ± 4.5 71.4 ± 4.8 77.8 ± 2.8 
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Fine root production and turnover  

     Annual fine root production as estimated in 2010 with the ingrowth core approach ranged 

from 139 to 479 g m-2 yr-1 (Table A.5.1) and more than doubled with a decrease in annual 

precipitation from 820 to 680 mm (R2 = 0.71, P < 0.001, Table 5.3 and Figure 5.4A). The 

precipitation effect was larger in the plots on sandy soil when compared with the loam-richer 

plots as is shown by a larger mean slope of the regression line (increase by 166 g m-2 yr-1 per 

100 mm yr-1 of precipitation decrease vs. 83 g m-2 yr-1 per 100 mm yr-1). In paired plots with 

equal precipitation, estimated annual fine root production was 35% higher on the sandy soils 

(mean: 300 ± 44 g m-2 yr-1) than on the loam-richer soils (221 ± 27 g m-2 yr-1), but the 

difference was not significant (P = 0.11). Correspondingly, the multiple regression analysis 

identified the precipitation of the study year as the only significant parameter influencing fine 

root production (the effect of soil texture was only marginally significant, Table 5.4).  

     The ratio of annual fine root to leaf production increased significantly with decreasing 

MAP (Table 5.3) and with decreasing annual precipitation in the study year 2010 (Figure 

5.5A). As for annual fine root production, the fine root/leaf mass production ratio showed a 

steeper increase with decreasing precipitation in stands on sandy than on loam-richer soil 

(increase by 0.56 vs. 0.27 units per 100 mm decrease in precipitation; R2 = 0.88 and 0.71). 

The amount of fine root biomass produced per unit leaf area index revealed a corresponding 

increase with decreasing precipitation (Figure 5.5B and Table 5.3) with the slope being 

steeper on sandy soil (27 g m-2 yr-1 productivity increase per unit LAI with 100 mm yr-1 

precipitation reduction) than on loam-richer soil (12 g m-2 yr-1 per 100 mm yr-1). 

     The stand means of fine root turnover (root biomass produced per standing root biomass) 

ranged from 0.36 to 0.84 yr-1 in the 12 stands (Figure 5.4B, Table A.5.1) and showed a (non-

significant) trend of a moderate increase with decreasing precipitation (Table 5.3). The 

increase in turnover rate with precipitation reduction was marginally significant in the stands 

on sandy soil (R2 = 0.39, P = 0.07) when the precipitation of the vegetation period (April to 

September 2010) was considered (data not shown). 
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Figure 5.4. Dependence of annual fine root production in 2010 (organic layer and 0-20 cm of mineral soil; 
ingrowth core data; A) and fine root turnover (B) on annual precipitation in the study year 2010 for the 12 Fagus 
sylvatica stands. Open circles stand for the loam-richer plots, filled circles for the sandy plots. 
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Figure 5.5. (A) Ratio of annual fine root production and annual leaf production in 2010 as a function of annual 
precipitation in the study year 2010 for the 12 Fagus sylvatica stands (B) Relationship between annual fine root 
production scaled to leaf area index and annual precipitation in the study year 2010 for the 12 F. sylvatica stands. 
Open circles stand for the loam-richer plots, filled circles for the sandy plots.  
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Discussion 

Evidence in support of optimal partitioning theory 

With a fine root biomass increase by c. 140 g m-2 per precipitation reduction of 100 mm 

yr-1, our transect data seem to support optimal resource partitioning theory. Fine root biomass 

and the cumulative surface area of fine roots in the soil (RAI) nearly doubled across the 

transect with a reduction in MAP by c. 270 mm yr-1 (and in precipitation of the study year by 

c. 190 mm yr-1), while leaf area index and annual leaf production remained unchanged. As a 

consequence, the ratio of water absorbing to transpiring plant surfaces (RAI/LAI) roughly 

doubled from the wet to the dry end of the transect as it is predicted by optimal partitioning 

theory in response to increasing water shortage.  

One may argue that our root inventory in the organic layer and the mineral soil to 30 cm 

depth might have missed changes in fine root biomass in deeper soil layers. However, this is 

not very likely because earlier inventories to a soil depth of 350 cm in beech forests on similar 

sandy soils in the centre of the transect indicated that more than 75% of the profile total of 

fine root biomass is located in the upper 30 cm (similarly strong concentrations of the fine 

root biomass in upper versus deeper soil depths were also found in beech stands on different 

substrate/soil types, Leuschner et al. 2004). Moreover, from the wet to the dry stands, we 

found an increasing, and not a decreasing, proportion of fine root biomass in the uppermost 

organic layer. The complete fine root biomass inventories further showed that secondary 

peaks of fine root density in moist subsoil horizons are virtually absent in this Pleistocene 

substrate which is probably a consequence of its very low nutrient content and high acidity 

(cation exchange capacity <40 µmolc g-1, base saturation mostly <15%, pH(H2O) 4.0-4.4). 

Despite this evidence, we cannot exclude the possibility that a few deep-reaching roots 

function as ‘high capacity roots’ in terms of water absorption at the drier sites, i.e. that their 

functional role is much more important than their biomass.   

To our knowledge, our finding of an increase in R:S ratio and in the absolute amount of 

fine root biomass with decreasing precipitation is the first convincing support of optimal 

partitioning theory when applied to mature trees under the influence of increasing water 

shortage. This result contradicts our first hypothesis that referred to the observation of a 

positive MAP-fine root biomass relation in F. sylvatica stands in a transect study on 

sandstone in central German pre-montane forests (Meier & Leuschner 2008a) as well as on a 

analysis of literature data (Leuschner & Hertel 2003), thus supporting a type (iii) drought 

response of the roots (see Introduction). In contrast to the data set of the literature meta-



CHAPTER 5 
 

134  

analysis, the 2 transect studies are well comparable as they consist of 12 or 14 beech stands 

covering similar precipitation gradients (816 - 543 and 970 - 520 mm yr-1 MAP). However, 

they are located on largely different soils (silicate-poor sandy diluvial deposits vs. silicate-rich 

Triassic sandstone) with important consequences for the fine root system of F. sylvatica. A 

much higher base saturation in the mineral soil (means of 10 and 40 % in the sand vs. 

sandstone transects) and pH(H2O) in the organic layer (4.0 vs. 5.0) are probably the cause of  

more than three times larger fine root biomass and higher fine root necromass in the sand 

transect (this study, see Table 5.7). Moreover, the thicker organic layers on sand contained a 

much higher proportion of fine root biomass (37 vs. 9 % of the fine root biomass total on 

average) indicating that the mineral soil across the sandy soil transect was less favourable for 

nutrient (and perhaps also water) uptake than the sandstone soils in the study of Meier & 

Leuschner (2008a). The fine root biomass of F. sylvatica and other temperate tree species 

tends to increase with decreasing nutrient supply, in particular lowered N availability (Aber et 

al. 1985; Vogt et al. 1987; Leuschner & Hertel 2003; Leuschner et al. 2004), which probably 

represents a compensatory fine root growth response to low uptake rates. In this context, an 

important role is probably played by base saturation which was high (>90 %) at the dry end of 

the sandstone transect but remained low (10-30 %) across the entire sandy soil transect. Thick 

organic layers on top of the mineral soil obviously are a key requisite for F. sylvatica for 

maintaining large fine root systems. In fact, the fine root biomass in the 12 stands of our study 

(mean: 482 g m-2) was high compared to the pan-European mean given for F. sylvatica by 

Finér et al. (2007). In the drier base-rich stands of the sandstone transect, elevated litter 

decomposition rates are reducing organic layer depth, thus forcing the roots to abandon this 

nutrient-rich but dry horizon; this is not the case in the transect on sandy soil.  

We assume that a drought-induced increase of fine root biomass as predicted by optimal 

resource partitioning theory is possible in F. sylvatica only, when a thick organic layer is 

present atop the acidic and nutrient-poor mineral soil, where a dense fine root system can 

successfully forage for resources. If our results are more generally valid, this would indicate 

that the fine root biomass response of F. sylvatica trees to a precipitation decrease is 

dependent on additional factors that are not considered in optimal partitioning theory. One 

such factor seems to be nutrient availability, in particular the supply of base cations, nitrogen 

or phosphorus, which probably influences the size and structure of tree fine root systems 

besides water availability. We therefore cannot fully exclude that such effects might have 

caused the sand vs. loam fine root biomass differences additionally to the differences in soil 
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water availability between both soil texture types. This, however, would still indicate optimal 

resource partitioning. 

It is also possible that optimal resource partitioning theory cannot adequately predict root 

system size in forest stands with different water availabilities because root water uptake is not 

necessarily closely related to the size (biomass or surface area) of the fine root system, but 

may depend more on differences in the specific uptake rates of the absorbing fine roots as was 

shown by Leuschner et al. (2003). F. sylvatica trees growing on sandy soil with low nutrient 

content and a rapid percolation of infiltrating water could require a larger fine root system to 

meet their water and nutrient demand when compared with beech trees on the more fertile 

sandstone soils with higher water retention capacity.  

 
Table 5.7. Summary table comparing selected climatic, stand structural and soil chemical parameters (means, 
minima and maxima) for the precipitation transects in mature beech forests studied by Meier & Leuschner 
(2008) and in this study. The transect of Meier & Leuschner (2008) comprised 14 mature beech stands on 
silicate-rich acid Triassic standstone in the central German uplands, the transect of this study covers 12 mature 
beech stands on silicate-poor acid Pleistocene sandy deposits in the northern German lowlands. The trends of the 
parameters along the precipitation gradient from moist to dry is also indicated (+ increase, - decrease, 0 no trend, 
indicators given in brackets indicate statistically prevalent trends that are not of significant effect size). Please 
note that the fine root biomas and necromass numbers in the study of Meier & Leuschner (2008) refer to the 
organic layer plus 0-20 cm mineral soil while the numbers in this study refer to the organic layer plus 0-30 cm 
mineral soil. Additional data from the sandstone transect were provided by I.C. Meier. 

 
Sandstone sites 

(Meier & Leuschner 2008) 

 

 Sandy sites 

(this study) 

 

Parameter Mean Min Max 

Trend with 
precipitation 

decrease  Mean Min Max 

Trend with 
precipitation 

decrease 
Elevation (m a.s.l.) 320 230 440 -  99 72 130 (-) 

MAP (mm yr-1) 721 520 970 -  677 543 816 - 

MAT (°C) 7.8 7.1 8.3 +  8.8 8.5 9.2 + 

Tree age (yr) 126 90 157 0  118 87 142 0 

Basal area (m-2 ha-1) 33 21 49 0  32 24 45 0 

Thickness of organic layer (cm) 5.3 3.5 7.2 -  7.3 4.1 9.1 0 

pH(H2O) (organic layer) 5.0 4.4 5.9 +  4.0 3.8 4.5 0 

C/N (mineral soil) (g g-1) 18 15 23 0  19 12 26 - 

Base saturation (%) (mineral soil) 47 15 92 +  10 3 24 (-) 

Al exch (mmol kg-1) (mineral soil) 30 5 50 -  18 12 29 0 

Fine root biomass (g m-2) 139 43 288 -  482 289 704 + 

Percent root biomass org. layer (%) 9.0 0.02 55 -  37 24 53 0 

Fine root necromass (g m-2) 287 76 573 0  605 320 1165 0 
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Does water limitation alter fine root morphology? 

Trees may adapt to reduced water availability not only by adjusting the size and 

positioning of their absorbing root surface area, but also by modifying root morphology and 

physiology in order to increase uptake efficiency under unfavourable conditions (Lõhmus et 

al. 1989; Eissenstat et al. 2000; Hertel & Wesche 2008; Ostonen et al. 2011). Producing 

thinner fine roots with larger surface area and greater length per unit carbon invested may 

help to optimise the cost-benefit ratio of fine root operation of a tree (Eissenstat and Yanai 

1997; Eissenstat et al. 2000; Pregitzer et al. 2002; Ostonen et al. 2007). Thus, root 

morphological plasticity would represent one strategy of trees to respond to increasing water 

limitation (Eissenstat 1992; West et al. 2004). One of the few reports from adult trees is the 

observation by West et al. (2004) of a decreasing mean fine root diameter with increasing soil 

water limitation in Pinus palustris trees. In their comparison of five mature stands of F. 

sylvatica differing in precipitation and soil chemistry, Leuschner et al. (2004) did not find 

marked alterations in fine root morphology, while Meier & Leuschner (2008a) reported an 

increase in specific fine root area (SRA) and a corresponding decrease in mean fine root 

diameter with decreasing rainfall in their transect study. 

We did not find consistent adaptive modifications in fine root morphological properties 

with decreasing precipitation, but a specific response that was restricted to the drier beech 

stands on sandy soil and that only occurred in the uppermost organic soil horizon. Similar to 

the transect of Meier & Leuschner (2008a), specific root length and root area (SRL and SRA) 

increased and average fine root diameter decreased with decreasing precipitation in this subset 

of plots. However, no modification was observed in the loam-richer soils with higher water 

storage capacity, which supports our hypothesis (v) about the soil texture effect on rooting 

patterns. Since periderm thickness and the number of suberin-coated cell layers typically 

increase in parallel with root diameter in ageing tree fine roots (e.g. Leuschner et al. 2003), 

thinner roots should in general be more drought-sensitive than thicker ones (van Hees 1997; 

Enstone et al. 2002; Metcalfe et al. 2008; Schreiber & Franke 2011). If applied to the F. 

sylvatica transect, this assumption implies that the trees in the drier stands are suffering from 

a higher drought-induced mortality of their fine absorbing roots and thus experience a 

reduction in mean fine root age, because rootlets are replaced by new ones with thinner 

diameter and larger surface area. Thus, soil desiccation may rejuvenate the fine root system of 

a tree with a possible positive effect on root relative growth rate and water absorption capacity 

at the cost of a higher carbohydrate demand for root growth because turnover is increased. 
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This hypothesis needs testing by direct observation of root longevity with rhizoscopes, a task 

that has recently been started in our plots on sandy soil. 

Other root morphological traits such as root tissue density (RTD) and specific root tip 

abundance remained invariant across the precipitation gradient and were not influenced by 

soil texture. Similarly, the colonization rate of the tips by ectomycorrhizal fungi did not vary 

systematically from the wet to the dry end of the transect and was apparently unrelated to the 

decrease in mean fine root diameter in the stands on sandy soil. Since we did not investigate 

the fungal communities that formed ectomycorrhizae with the roots of F. sylvatica, we do not 

have information on possible functional changes in the root symbiosis along the precipitation 

gradient as it was assumed in earlier studies (e.g. Espeleta et al. 1999; Eissenstat et al. 2000).  

 

Stimulation and inhibition of tree root growth by water shortage 

Given the widely acknowledged importance of tree fine root production for the global C 

cycle (Nadelhoffer & Raich 1992; Vogt et al. 1996; Jackson et al. 1997; Gill & Jackson 

2000), our limited understanding of the controls of fine root growth and mortality in forests is 

unsatisfactory. Stimulation of root growth would match with the predictions of optimal 

resource partitioning theory, but such a response depends on the availability of carbohydrates 

that may be short in supply when photosynthetic C gain declines due to drought-induced 

reductions in leaf conductance and/or leaf area. Thus, resource partitioning according to 

theory might not occur when water limitation or other stressors result in C source limitation of 

growth. Consequently, water limitation may either stimulate or reduce the fine root 

production of trees with largely different consequences for above-ground productivity and 

stem growth, and the C cycle in forests (Eissenstat et al. 2000; Norby & Jackson 2000). The 

‘tipping point’ between increased or reduced C allocation to root growth is most likely 

species-specific and may depend on the soil environment and the stress history of the trees.  

Besides precipitation, soil texture and the water storage capacity of the soil were identified 

as additional, but only secondary, influential factors of fine root productivity in our study; this 

is evident from the much more pronounced precipitation effect on productivity observed on 

sandy as compared to loam-richer soils. In fact, the estimated productivity was 35% higher on 

sandy soils than on loam-richer soils in our study. It could be that a stimulation of root growth 

by soil desiccation is more prominent in stands on infertile and acidic soils where the trees are 

producing large and more dynamic fine root systems; this would also offer an explanation for 

the lacking stimulation effect on root growth in the transect study on sandstone of Meier & 
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Leuschner (2008a) where both standing fine root biomass and root productivity were 

considerably smaller than in this study. 

Soil drought has been found in short-term experiments to accelerate fine root turnover due 

to reduced root longevity (Eissenstat et al. 2000; Gaul et al. 2008). However, it is not clear 

whether mature trees are responding with compensatory root growth when exposed to reduced 

water availability for years or the entire life, and as to whether short-term acclimation and 

long-term adaptation lead to similar plant responses. In a literature review of tree fine root 

productivity data, Finér et al. (2011b) found only a weak effect of annual precipitation on the 

tree fine root production in boreal, temperate and tropical forests. This conclusion matches the 

findings of Vogt et al. (1996) in an earlier review. However, both studies found that the 

explanatory power of precipitation and other climate factors for the variation in fine root 

productivity increased when individual species or species groups instead of the whole data set 

were analysed. In the few studies, where the root productivity of a tree species or a forest type 

was compared at sites with contrasting water availability, higher productivities at drier sites 

were observed (Santantonio & Herman 1985; Comeau & Kimmins 1989; West et al. 2004).  

In F. sylvatica, the results from short-term drought studies and long-term site comparisons 

are also not fully consistent. Leuschner et al. (2001a) found a stimulation of beech fine root 

production on sandy soil after a severe summer drought period while Mainiero & Kazda 

(2006) detected no effect on root productivity of a severe summer drought on loamy soil and 

Meier & Leuschner (2008a) found no growth stimulation toward drier beech stands in the 

transect on sandstone.  

With respect to fine root turnover (root production per standing root biomass, or the 

inverse of root longevity), mature beech trees either showed higher rates in drier soil or 

exhibited no precipitation sensitivity. While Mainiero & Kazda (2006) did not observe a 

significant change in fine root turnover of mature trees in an exceptionally dry summer in 

2003, Leuschner et al. (2001a) reported a compensatory increase in fine root production of F. 

sylvatica trees after a period of drought-induced higher fine root mortality in a mature stand.  

Global meta-analyses of literature data by Gill & Jackson (2000) and Lauenroth & Gill 

(2003) indicate only a weak or no precipitation effect on the turnover rate of tree fine roots. 

Increased turnover of tree fine roots has been observed as a response to single drought events 

when root mortality increased and was followed by compensatory regrowth of fine roots 

(Leuschner et al. 2001a; Konopka et al. 2005; Gaul et al. 2008). In contrast, West et al. 

(2004) and Mainiero & Kazda (2006) did not find a significant alteration in fine root turnover 
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in periods of soil desiccation. We observed a rise in turnover rate, or a reduction in mean root 

lifespan, with decreasing precipitation only in the F. sylvatica stands on sandy soil 

(marginally significant, P = 0.07), but not in those on loam-richer soil. In the beech gradient 

study of Meier & Leuschner (2008a) on sandstone, turnover also increased with a 

precipitation decrease. Root turnover would remain constant with a reduction in precipitation 

when the stimulation of root production as a response to increased mortality results in a 

proportional increase in standing root biomass. This seems to have happened in the beech 

stands on loam-richer soil, where no increase in turnover with decreasing precipitation was 

found, while the stimulation of production apparently was larger in the sandy soils where both 

productivity and mortality increased in excess of the increase in standing biomass toward the 

drier stands, and thus fine root turnover tended to be faster. The fact that mean fine root 

diameter decreased towards the drier stands on sandy soil in our transect fits into this picture. 

Thinner, less costly fine roots with a putative higher specific water absorption rate are more 

rapidly substituted by newly grown roots at the drier sites which may optimise the cost/benefit 

ratio of root construction and maintenance (Eissenstat et al. 2000; Eissenstat and Yanai 2002) 

and reduce the respiration costs when soil conditions are unfavourable during drought (Bryla 

et al. 1997). Our data further indicate that the carbon transfer to the soil via root growth and 

death increases in F. sylvatica forests with decreasing precipitation, and that soils with low 

water storage capacity further enhance this flux.  

 

Conclusions 

This precipitation transect study about the adaptive response of the fine root system of F. 

sylvatica produced convincing evidence that optimal resource partitioning theory can also 

explain the below-ground response of mature trees to water limitation. The strong increase in 

standing fine root biomass and fine root productivity with decreasing precipitation 

demonstrates the high degree of allocational plasticity in mature F. sylvatica trees which 

certainly is a key functional trait enabling this species to be competitive in both high- and 

low-precipitation environments and to occupy an extraordinarily broad climatic and edaphic 

niche space (Leuschner et al. 2006; Ellenberg & Leuschner 2010). Plasticity in root 

morphology was found to be a secondary factor but it increases the below-ground adaptive 

potential of beech in particular on the more extreme sandy soils. Not much is known about the 

plasticity of root physiological traits in mature trees as water availability changes. Rewald et 

al. (2011) discuss several adaptive mechanisms including osmotic adjustment of root tissue, 
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changes in specific water absorption rates due to differential aquaporin activity, and hydraulic 

adaptation that could improve root performance under exposure to water limitation, but the 

significance of these mechanisms in mature forests is not known.  

However, comparison with other studies on the topic shows that the below-ground 

response of F. sylvatica to water limitation is not fully explained by optimal partitioning 

theory alone. Rather, fine root system adaptation seems to depend largely on the local 

growing conditions, in particular the severity of water limitation. Further, root responses 

appear to be modified by plant age and may even be over-ruled by drought-induced carbon 

limitation of growth. There is a need for additional studies on root system adaptability in 

mature trees that cover a broader range of site conditions in order to develop a valid picture of 

the whole-tree drought response of F. sylvatica and other tree species. 

Our data confirm the perception that the impact of water limitation on plant vitality and 

growth may be traced to independent climatic (precipitation) and edaphic components (water 

storage capacity). By including soil texture and the related WSC as an independent variable in 

the study design, we were able to show that water limitation is acting on the beech root 

system mainly through the climatic pathway, but that soil texture has a significant, yet 

secondary, influence as well. Consequently, predictions about the possible climatic change 

impact on the vitality of F. sylvatica, and also of other tree species, cannot solely rely on the 

modelling of future precipitation regimes, but also have to consider water storage capacity. 

This is equally valid for forestry planning. From this study in mature stands, we conclude that 

F. sylvatica has a remarkable potential for permanently modifying the size and structure of its 

fine root system to cope with precipitation amounts <600 mm yr-1 and to explore soils with 

unfavourable water storage properties, but the existence of an intact thick organic layer seems 

to be of paramount importance at such sites. 
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Figure A. 5.1. Fine root biomass (A) and fine root necromass (B) in the organic layer and the upper 30 cm of the 
mineral soil in the 12 Fagus sylvatica stands. Given are means and standard errors from two inventories (June 
and September 2009) the data of which were averaged. Different capital Latin letters indicate significant 
differences among the loam-richer ('lo') plots, different small Latin letters indicate significant differences among 
the sandy ('sa') plots, and different small Greek letters indicate significant differences between the pairs of sandy 
and loam-richer at a site (P < 0.05). 
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Figure A. 5.2. Change in the ratio of root area index (RAI) and leaf area index (LAI) as a function of annual 
precipitation in the study year 2009 for the 12 Fagus sylvatica stands. Open circles stand for the loam-richer 
plots, filled circles for the sandy plots. 



 

   

 
 
 
 
 
 
 
Table A. 5.1. Annual fine root production and turnover (organic layer and 0-20 cm of mineral soil) in the 12 Fagus sylvatica stands in the year 2010 (means ± SE). The loam-
richer plots are marked by ‘lo', the sandy plots by 'sa'. Different Latin capital letters mark significant differences among the loam-richer plots; different small Latin letters 
differences among the sandy plots, and different small Greek letters significant differences the paired sandy and loam-richer plots at a site (P < 0.05). 
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Climatic and hydrologic influences on growth and partitioning in 
mature beech forest stands on Pleistocene soils in Northern Germany 

     With predicted decreases in summer rainfall over wide parts of central Europe, limited 

water availability is assumed to increasingly constrain the vitality and productivity of Fagus 

sylvatica (Manthey and others 2007; Sutmöller and others 2008). This relationship is in 

general attributed to a drought-sensitive stomatal reaction in beech (Epron and others 1995; 

Backes and Leuschner 2000; Granier and others 2000, 2007; Geßler and others 2004). 

However, the majority of estimations on climate-productivity relationships are derived from 

investigations of only single aspects of biomass production, mostly from dendro-ecological 

analyses of stem increment. The present study attempts to develop a more comprehensive 

understanding of growth responses of F. sylvatica to long-term alterations in water 

availability and varying climatic growing conditions by including all components of biomass 

production (except coarse root growth) of mature beech trees in closed forest stands. For this 

purpose, the entire aboveground biomass production of 12 mature beech stands on similar 

geological substrate but differing in the exposure to climatic and edaphic drought was 

recorded in detail during 3 study years (2009-2011; Chapter 3). In order to assess the biomass 

production and nutrient allocation within the forest canopy in reaction to short-term climatic 

variations, litter production of 4 years (2009-2012) was examined (Chapter 4). In addition, 

fine root biomass and morphology as well as fine root production was investigated in 2009 

and 2010, respectively (Chapter 5).  

 

Is the productivity of mature beech forest stands controlled by precipitation and 
soil water availability? 

In this study, the sensitivity of growth responses to variations in water availability was 

shown to largely differ between aboveground and belowground components of biomass 

production. As shown in Chapter 3, the annual production of wood, leaf and fruit biomass was 

not found to be markedly influenced by current year precipitation parameters. Nevertheless, 

on average within the 3 study years, wood mass production (and RSVIa) significantly 

decreased with decreasing MAP (by ~ 40 g m-2 y-1 and 0.26 % y-1 per 100 mm decline in 

annual precipitation, respectively; Table 6.1). Likewise, leaf mass production (and LAI) 

decreased toward the dry end of the transect when averaged over the 3 study years, however 

this trend was less pronounced than the trend for wood production (decreases by ~16 g m-2 y-1 

and 0.35 m2 m-2 per 100 mm rainfall decline, respectively). The reduction of leaf mass and 

LAI was predominantly induced by a reduction in leaf number towards the drier sites; the 
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latter result was also found in a former transect study in F. sylvatica (Meier and Leuschner 

2008b). As beech exhibits a pronounced masting behaviour, the production of fruit biomass 

showed a very high inter-annual variability between mast years (2009 and 2011; mean = 360 

± 35 g m-2 y-1) and non-mast years (2010 and 2012; mean = 16 ± 2 g m-2 y-1), whereas masting 

appeared synchronously at all sites. Contrary to vegetative growth, the production of fruit 

biomass over the total observation period significantly increased towards the drier and 

warmer sites (Table 6.1). 

Regarding the total aboveground biomass production (NPPa; sum of wood, leaf and fruit 

biomass production), only little evidence was found for a precipitation control of productivity 

along the studied rainfall gradient. During the 3-year observation period, intra-annual 

variation of NPPa across the transect was low and showed no correlation with annual rainfall 

(or precipitation totals for the growing season). Even when averaged for the entire observation 

period, NPPa in the 12 study stands (875 ± 27 g m-2 y-1) remained fairly unaffected by 

alterations of the long-term precipitation regimes (Table 6.1). The inter-annual comparison of 

biomass production and weather conditions in this study suggested that the time of occurrence 

of water shortage during the phenological cycle might be more influential to the aboveground 

productivity than the hydrologic regime during the entire growing season. In spite of 

comparable rainfall patterns between the study years, the aboveground biomass production in 

2010, when water shortage emerged during the early-summer, was reduced by ~ 25% on all 

sites compared to 2009 (late-summer drought) and 2011 (late-spring drought). This is in line 

with results of many dendro-ecological studies, in which precipitation or water availability 

during early summer was identified as the most crucial climatic parameter for stem increment 

(Dittmar and others 2003; Lebourgeois and others 2005; Friedrichs and others 2009; 

Scharnweber and others 2011; Michelot and others 2012; van der Maaten 2012). 

In contrast to the aboveground biomass components, belowground biomass and 

productivity were found to be highly responsive to variations in current hydrologic conditions 

as shown by results presented in Chapter 5. Both fine root biomass and annual fine root 

production doubled from the moist to the dry end of the transect, increasing by ~140 g m-2 

and ~130 g m-2 y-1 per 100 mm decline in annual precipitation, respectively (Table 6.1). These 

findings contradict observations of a positive precipitation effect on the productivity of fine 

root biomass in F. sylvatica, obtained in a rainfall gradient study (520-970 mm y-1) on 

sandstone in Central German pre-montane forests (Meier and Leuschner 2008a) and also in a 

pan-European analysis of published root studies from beech forests (Leuschner and Hertel 

2003). 
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In spite of such significant response in belowground biomass growth, the approximation 

of total NPP in 2010 along the rainfall gradient revealed that the overall productivity of beech 

on Pleistocene sands is mostly independent from annual precipitation parameters. NPP varied 

surprisingly little between the 12 stands (mean = 965 ± 27 g m-2 y-1; Figure 6.1), and no 

tendency of decline in total biomass production was found in relation to a reduction in MAP 

(by c. 270 mm y-1) or to the rainfall decrease in the study year (by c. 190 mm y-1). This result 

was particularly unexpected as the dry end of the studied precipitation gradient (543-816 mm 

y-1) comes close to the natural drought-induced distribution limit of Fagus sylvatica in Central 

Germany (Kölling and others 2007; Leuschner 2009).  

In addition, the sensitivity of growth response to variations in water holding capacity of 

the soils was found to differ between above- and belowground biomass growth. While the 

results suggested that soil texture shows little influence on the aboveground biomass growth, 

both root biomass and fine root production were significantly higher on drier plots with sandy 

soils in comparison to the loam-richer sites (Table 6.1). 
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Figure 6.1. Net primary production (NPP) of 12 mature beech forests in Northern Germany in 2010. Study plots 
arranged following to decreasing MAP. Dotted line illustrates mean value for all study plots (mean = 965 ± 27 g 
m-2 y-1). Soil type codes are ‘L’ for loam-richer soils, and ‘S’ for sandy soils. 
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Table 6.1. Parameters of aboveground and belowground biomass and production across the studied matrix of 
climatic and edaphic drought. Given are the mean and the range (min-max) and, in case of significance, the 
alteration per 100 mm precipitation decrease (MAP or annual precipitation figures) obtained from simple linear 
regression analysis. Supercript ‘a’ indicates a significantly steeper precipitation-effect on sandy compared to 
loamy sites (according to type-III sum of squares). Influence by different substrate classes ‘loamy-sandy’ (L) and 
‘sandy’ (S) was tested applying paired t-tests for paired plots with equal precipitation (after testing for normal 
distribution and homoscedasticity). Significance levels: +P < 0.1; *P < 0.05; **P < 0.01; ***P < 0.001. 

Parameter  Unit  Mean  (Range)  
Variation per 100 
mm precipitation 
decrease 

 
Substrate 
class 
comparison 

            
Aboveground biomass 2009 - 2011      with MAP   
            
Timber volume  m3 ha-1  414.8  (227-758)    n.s.    
NPPa  g m-2 y-1  875.1  (785-1103)    n.s.    
Wood mass production  g m-2 y-1  336.1  (256-512)  -41.0 *   
RSVI  % y-1  1.24  (0.63-1.95)  -0.26 *    L<S * 
Leaf mass production  g m-2 y-1  296.9  (267-334)  -16.3 **   
LAI  m2 m-2  6.97  (6.2-7.9)  -0.35 *   
Leaf number  n m-2  3780  (3141-4301)  -295.88 **   
Leaf size  cm2  18.1  (16.0-19.9)  0.25 +   
SLA  kg m-2  23.7  (22.3-24.7)    n.s.    
Fruit mass production  g m-2 y-1  242.2  (56-336)  42.29 *    L>S * 
Fractions of NPPa            
Wood biomass  %  39.2  (32.0-50.4)  -3.46 *   
Leaf biomass  %  35.4  (30.3-42.5)    n.s.    
Fruit biomass  %  25.4  (7.1-33.1)  4.71 **    L>S * 
            
Belowground biomass 2009      with P 2009   
            
Fine root biomass  g m-2  482  (290-705)  139.2 **    L<S *** 
Fine root necromass  g m-2  605  (320-1165)    n.s.     L<S * 
RAI  m2 m-2  8.32  (4.97-13.2)  3.01 ***   
RAI:LAI  m2 m-2  1.19  (0.71-2.10)  0.48 **   
Fine root diameter  mm  0.39  (0.35-0.45)    n.s.    
SRA  cm2 g-1  201  (168-259)    n.s.    
SRL  m g-1  17.3  (12.5-24.7)    n.s.    
            
Above- and belowground biomass production 2010  with P 2010   
            
Fine root production  g m-2 y-1  263  (139-479)  130.8 *** a    L<S * 
Root turnover  y-1  0.55  (0.36-0.84)    n.s.    
NPP  g m-2 y-1  965  (790-1170)  89.3 *   
Root:leaf production  g g-1  0.81  (0.42-1.46)  0.43 * a   
Stem:root production  g g-1  1.53  (0.67-2.69)  -0.89 ***    L>S ** 
Fractions of NPP            
Wood biomass  %  37.4  (27.4-47.8)  -6.69 **    L>S * 
Leaf biomass  %  34.2  (28.0-42.8)  -4.79 * a   
Fruit biomass  %  1.65  (0.39-3.67)    n.s.    
Fine roots  %  26.8  (17.1-40.9)  10.84 ***    L<S ** 
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Allocational and morphological acclimation responses in mature beech to 
varying climatic and hydrologic conditions 

While the productivity of mature beech was found to be largely unaffected by hydrologic 

conditions, patterns of biomass production exhibited a high degree of allocational plasticity 

and – to a lesser extent – also morphological plasticity in response to changes in water 

availability and climatic growing conditions. Aboveground partitioning between wood, leaves 

and fruit biomass showed a significant alteration along the studied gradient. These shifts, as 

well as inter-annual variability between these three fractions, were not primarily due to 

changes of the precipitation regimes but instead induced by fluctuating fruit production.  

The fraction of wood production to total aboveground productivity was c. 40 % on 

average during the entire study period (44 % vs. 36 % of NPPa on sites with MAP > 700 and 

MAP < 700 mm y-1, respectively; Table 6.1) and continuously decreased with declining 

precipitation (Figure 6.2a). Results of a separate study on xylem anatomy in dominant beech 

trees on only the sandy sites of this transect also showed morphological adaption in the 

hydraulic architecture of the trees to climatic drought: with declining annual rainfall, vessel 

diameters in branchlets of the sun canopy were shown to decrease, probably as a prevention to 

avoid drought stress-induced xylem embolism, but simultaneously reducing conductivity for 

water to the transpiring leaf surfaces (Schuldt and others, in prep.).  

Only little evidence was found for adaptive responses to drought stress of leaf growth. The 

fraction of leaf biomass production showed only small inter- and intra-annual variation along 

the gradient (2009-2011: 35.4 ± 1.1% of NPPa) and only a slight increase toward the moister 

sites. In accordance with former gradient studies on leaf production and leaf morphology of 

beech (Leuschner and others 2006; Meier and Leuschner 2008b), an adaption of the 

transpiring surfaces to shifting hydrologic regimes was not observed in this study. A strong 

influence on leaf production and leaf morphology was found for resource competition 

between fruits and leaves, resulting in smaller and, moreover, lighter leaves in mast years (see 

below). In contradiction to an expected drought adaption, leaf size was found to slightly 

increase toward the dry end of the transect (Table 6.1). This confirms results obtained in 

former rainfall gradient studies in which increasing leaf size was related with rising LAI 

towards the drier sites (Hertel and others 2004; Meier and Leuschner 2008b). This effect is 

presumably explained by influences of co-varying increases in temperature (and possibly N 

availability) during the phase of leaf growth, which usually takes place before summer 

drought periods emerge. In line with Meier and Leuschner (2008b), leaf size in non-mast 
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years was most positively correlated to the mean temperature in the current year’s spring 

(April and May, R2 = 0.60, p < 0.001).  
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Figure 6.2. Biomass partitioning in relation to precipitation parameters for aboveground productivity (NPPa) in 
the years 2009-2011 (a), and for total above- and belowground productivity (NPP) in 2010 (b). a) Wood, leaf and 
fruit production as fractions of NPPa (averaged for the years 2009-2011) in relation to MAP. Fraction of NPPa as 
a function of MAP for wood production: y = 15.9 + 0.03x, R2 = 0.42, p = 0.01; for leaf production: n.s.; for fruit 
production: y = 57.3 - 0.05x, R2 = 0.46, p < 0.01. b) Wood, leaf and fine root production as fractions of NPP in 
relation to annual precipitation 2010. Fraction of NPP as a function of annual precipitation for wood production: 
y = -0.132 + 0.001x, R2 = 0.53, p < 0.01; for leaf production: y = -0.021 + 0.0005 x, R2 = 0.42, p = 0.01; for fine 
root production: y = 1.03 – 0.001x, R2 = 0.76, p < 0.001. Figures of fruit production (insignificant throughout the 
transect in 2010) omitted for clarity. 
 

With high inter-annual variability (0.5-57.2 % of NPPa), the fraction of fruit biomass in 

total aboveground productivity increased significantly toward the drier sites of the transect 

(Figure 6.2a). In Chapter 4, the role of different climate parameters for the proximate control 

of masting patterns was analysed in detail. Contrary to common assumption, the pattern of 

fruit production in beech was shown to be largely independent of hydrologic regimes and 

unaffected by the experience of increased drought and heat stress. The results of this analysis 

strongly suggest that above-average levels of solar radiation during early summer trigger 

floral induction and thus strongly determine the fructification response in the following 

growing season. A sudden increase in fruit production beyond a certain radiation level 

suggests fructification as a threshold-controlled reaction to enhanced levels of canopy carbon 

gain. Besides climatic influences, a key role for the plant-internal N level as the potential 

driver for the temporal pattern of masting events was derived from resource dynamics upon 

masting observed in this study. The climate-controlled induction of fruiting was found to be 

the most influential factor for aboveground biomass partitioning along the climate gradient. In 

line with results of former studies on C allocation in woody plants, vegetative growth was 
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suppressed upon masting by the high sink strength of reproductive structures (Koenig and 

Knops 1998; Drobyshev and others 2010). Among the aboveground biomass components, 

especially stem increment was shown to be sensitively affected by simultaneous fruit growth. 

Detailed examination of resource competition between leaf and fruit growth showed that the 

utilization of nutrients and photosynthates for fruit production resulted in impaired 

development of leaf mass and leaf area, and furthermore, considerably lowered the foliar N 

content in the mast and even in the post-mast year. Accordingly, reproductive growth did not 

only impose direct costs (i.e., the export of photoassimilates toward developing fruits), but 

also indirect costs on aboveground vegetative growth, as both a reduction in leaf area and a 

lowered foliar N content probably led to a reduction in carbon gain (Jarvis and Leverenz 

1983; Evans 1989). Owing to an ample plasticity in SLA, the reduction in LAI with 

increasing resource allocation to fruit growth was somehow attenuated compared to the 

decrease in leaf mass production. 

   Several adaptive responses of tree fine root systems to water shortage are known. According 

to the optimal resource partitioning theory, increased drought exposure should stimulate the 

plants to allocate relatively more carbon and nutrients to fine root growth in order to optimise 

their capacity for resource acquisition (Poorter and Nagel 2000). Besides an adjustment of the 

size of the fine root system (biomass or surface area), growth responses may also entail 

modifications regarding the morphology and the spatial distribution of fine roots (Lõhmus and 

others 1989; Lynch 1995; Eissenstat and others 2000; Hertel and Wesche 2008; Ostonen and 

others 2011). Results of this study revealed a substantial response in aboveground vs. 

belowground partitioning in reaction to both investigated factors of water availability – 

precipitation and soil water storage. With almost unvarying total biomass production (NPP) 

over the 12 study sites (and negligible fruit production) in 2010, the portions of wood and leaf 

mass production significantly decreased (R2 = 0.53, p < 0.01 and R2 = 0.42, p = 0.01; Figure 

6.2b), while the fraction of fine root production significantly increased with decreasing annual 

precipitation (R2 = 0.76, p < 0.001). Correspondingly, the ratio of fine root:leaf production (in 

terms of dry mass as well as surface area) increased significantly toward the drier sites, which, 

in line with Linder and others (1985) and Cannell (1989), was strongly related to decreasing 

allocation of resources toward wood production (Figure 6.3). In addition to allocational 

adaption processes, it was shown in Chapter 5 that mature beech trees may also react to 

increasing water deficit by a distributional shift and by adjusting the fine root morphology. 

With decreasing rainfall, absorbing root surface area increasingly concentrated in the thick 

organic layers, which thereby gained importance for the acquisition of water and nutrients at 
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the drier sites. Also specific root area and root length (SRA and SRL) were found to increase 

with decreasing precipitation, but this response was restricted to drier beech stands on sandy 

soils. These results partly contradict findings reported by Meier and Leuschner (2008a) who 

observed that with declining annual rainfall, the ratio of fine root area to leaf area was 

significantly shifted to the disadvantage of the root surface and that the fine root abundance in 

the organic layer decreased on drier sites. Instead of a size adjustment of the fine root system 

in response to increasing water deficit, the cited study reports an acceleration of fine root 

turnover and – in line with observations of the present study – morphological alterations 

which are suited to enhance root water uptake per unit carbon invested.  
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Figure 6.3. Wood production as fraction of NPP as dependent on the ratio of annual fine root:leaf production in 
12 mature beech forest stands in Northern Germany in 2010. 
 

     Besides precipitation, soil texture was also shown to affect above- vs. belowground 

partitioning; on paired plots with equal precipitation, belowground biomass production was 

elevated (by 57.2 ± 11.3 g m-2 y-1, marginally significant) and aboveground production was 

reduced (by 42.6 ± 20.9 g m-2 y-1, not significant) on plots with sandy soils in comparison to 

the loam-richer sites (Table 6.1). Moreover, the water holding capacity of the soils notably 

influenced the precipitation effect on above- vs. belowground partitioning: over the entire 

rainfall gradient, the study plots with a more fine-grained soil texture showed an elevated 

wood mass fraction and a smaller fine root fraction of total NPP (Figure 6.4a, b). Hence, a 

significantly higher stem:root ratio in production was found for the beech stands on loam-

richer soils along the transect (Figure 6.4c). According to linear regression analysis, the 

deviation in stem:root ratios which was induced by different water storage capacities between 

the two substrate classes corresponded to a difference in annual precipitation of c. 40-60 mm. 
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     These findings on allocational responses to variations in the two main factors of water 

availability provided convincing evidence that adaption of mature beech trees to increasing 

water shortage occurs in accordance with the optimal partition theory. It is most likely that 

this high degree of plasticity in biomass partitioning is one key factor for the ample tolerance 

of this tree species toward a wide range of climatic growing conditions (Ellenberg and 

Leuschner 2010). 
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Figure 6.4. Aboveground and belowground partitioning of biomass in response to precipitation and soil texture 
in 12 mature beech forest stands in Northern Germany in 2010. Production of wood biomass (a) and fine root 
biomass (b) as fraction of NPP, and ratio of annual stem:root production (c), for sites on loam-richer (N=5) and 
sandy soils (N=7), separately. 
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Future threats to productivity and vitality of beech by climate change 

Facing a predicted increase in summer drought events for large parts of Central Europe, 

the future role of beech for forestry is estimated very differently. Some studies concluded that 

beech may lose its competitive superiority toward more drought tolerant tree species 

(Rennenberg and others 2004; Geßler and others 2007), whereas other authors emphasize a 

high drought tolerance and high resilience in succession to severe drought events (Ammer and 

others 2005; Kölling and others 2007, 2010). In any case, the drought resistance of this 

species is assumed to play a decisive role for its presence and persistence at lower altitudes in 

Central Europe. 

Recent dendro-ecological studies report a decline in productivity of beech stands on dry 

sites in Northern and Central Germany and identify critical precipitation thresholds of ~ 600 

mm y-1 (annual precipitation) or ~ 190 mm (summer precipitation; June-August) on sandy or 

loamy soils (Scharnweber and others 2011, Zimmermann and others in prep.). Based on 

projections on summer precipitation decreases by 10-30 % (depending on region, scenario and 

model approach) until the end of this century compared to 1971-2000 (Spekat and others 

2007; Jacob and others 2008; Moseley and others 2012), successful cultivation of F. sylvatica 

could be threatened by future shortfalls in water availability at many current beech forest 

sites. 

From the findings in this study, a more detailed picture on growth responses of beech to 

decreasing water availability emerges. The present results confirm a constrained stem wood 

production on sites with long-term annual rainfall amounts < 600 mm y-1 (~260 g m-2 y-1; 

averaged for 2009-2011) in comparison to the sites with a more favourable water balance 

(~360 g m-2 y-1). However, limited wood production was not related with a decrease in total 

productivity, but resulted solely from altered resource allocation in response to low water 

availabilities. Neither belowground productivity nor total biomass production declined at the 

dry end of the rainfall gradient used in this study (543-816 mm y-1) and – contrary to 

thresholds derived from ring width studies – no evidence was found for limitation of 

productivity with annual (or summer-) precipitation even below 510 mm y-1 (or 160 mm, 

June-August). This is convincing indication that long-term adaption processes enable mature 

beech trees to tolerate such low rainfall regimes without exceeding early stages of drought 

stress. In particular, investigations of the belowground biomass production revealed a 

remarkable potential to absorb long-term water shortage and to cope with annual rainfall 

regimes < 600 mm y-1 by permanent modification of size and structure of the fine root system. 

A high plasticity in resource partitioning might constitute a crucial trait for an effective 
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adaptability of beech and for a lowered climate-sensitivity of beech stands on dry as 

compared to moderate-dry sites (Friedrichs and others 2009; Scharnweber and others 2011; 

Weber and others 2012). However, in connection with pronounced early summer drought (50-

60 mm in June-July), aboveground productivity was significantly reduced, which might in 

parts be explained by enhanced resource partition to belowground production. 

Especially stem increment was found to be affected by allocation shifts, as this biomass 

fraction varied most widely under the influence of resource dedication towards fruit- and root 

growth (wood production took up 16-60 % of NPPa between mast and non-mast years; 27-

47% of NPP in a non-mast year). This reflects the low priority of wood growth among 

competing life-history traits (Epron and others 2012; Sala and others 2012). As silviculture is 

also geared toward the optimization of timber yield, an economic assessment of future beech 

cultivation will differ from forest-ecological evaluations.  

The lowest proportion of wood production and lowest stem:root ratios were found at the 

sites with the highest climatic drought, but also at sites with moderate precipitation regimes in 

combination with low water storage capacities of the soils. This illustrates that climatic 

thresholds can only serve as an approximation and that, among other site factors, especially 

soil physical properties should be considered in estimations of possible climate change 

impacts on the vitality of F. sylvatica and other tree species (Betsch and others 2011). The 

water-holding capacity of the soils will even gain in importance for future water availability, 

as a decrease of summer rainfall is projected to occur in company with increasing summer dry 

spell duration, like already found in Northern Germany by 36 % for the period 1951-2005 

(Haberlandt and others 2010). 

Decreasing summer precipitation, increased air temperature and increases in frequency 

and intensity of heat waves and dry spell periods will contribute in varying degree to local 

drought stress in forest ecosystems. In addition, further stresses for forest ecosystems are 

likely to derive from increases in, e.g., atmospheric CO2 concentration, N availability and 

length of the growing period, as also from increasing intensities of infestation by insect pests 

and pathogens, storms and severe rainfall events. For the period 1881-2010, an increase in 

sunshine duration during summer by 5 % was recorded for Northern Germany (Moseley and 

others 2012). The findings on climatic control of reproduction behaviour in this study 

illustrate that already small variations in solar radiation have the potential to provoke great 

effects on the allocation behaviour of beech and to substantially alter forest productivity and 

forest biogeochemical cycles. Hence, if radiation-rich summer conditions and high 



Synthesis 
 

  165  

atmospheric N depositions further result in an increased frequency of masting as recorded 

over the last three decades in central and northern Europe, fructification might be another 

source of limitation for vegetative growth of beech in future.  

The presented findings were obtained in beech forests on lower Pleistocene sandy (or 

sandy-loamy) soils which are common over the Northern German lowlands. Therefore, 

growth reactions of beech depicted here can be assumed to be representative for this region. 

During this study period, drought emerged at different intensity and seasonality. However, 

growth reactions to extreme drought conditions, as they occurred in Central Europe in 1976 or 

in 2003, could not be investigated in this study. Therefore, the present findings do not allow 

for the identification of critical thresholds related to reductions in rainfall or soil moisture but 

rather are suited to analyse basic mechanism of a long-term drought response in this drought-

susceptible tree species. When applying these mechanisms to regionalised precipitation 

scenarios, it must therefore be considered that future vitality of beech might be to a large 

extent determined by the frequency of severe drought events. 
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Conclusions 

From this study on above- and belowground productivity and allocation in mature Fagus 

sylvatica stands under varying exposure to climatic and edaphic drought, the following 

conclusions can be drawn: 

- Annual (or growing season) measures of water availability exert no or little influence 

on productivity in the beech forests in the Northern German lowlands. Instead, NPPa 

and stem wood production were found to be primarily controlled by water availability 

in the peak growing period (June and July). 

- In reaction to varying water availabilities, beech exhibits a high plasticity in 

aboveground vs. belowground resource allocation, which proves drought adaption of 

mature beech trees to comply with the optimal partition theory. 

- Highly drought-sensitive modification of the size and the structure of the fine root 

system indicate an effective long-term adaptation to low water availability which 

enables Fagus sylvatica to maintain undiminished productivity under annual rainfall 

regimes < 600 mm y-1 on sandy soils. 

- Leaf production and leaf morphology in beech are fairly unresponsive to long-term 

alterations in the local climatic water balance. 

- Floral induction in beech is very likely triggered by enhanced photosynthetic carbon 

gain in early summer (June and July) preceding a mast year; large shifts of C and N 

allocation towards developing fruits impair aboveground vegetative growth and reduce 

the assimilation capacity in the mast year and the following year. 

- Stem increment is not a reliable measure of productivity in beech, as varying resource 

allocation toward fruit and fine root growth largely alters the proportion of wood 

production to NPP. 

- Biomass partitioning in beech is highly responsive to both climatic and edaphic 

influences on water availability; therefore, assessments of future regional-scale 

drought impacts on tree vitality should include local water storage capacities of the 

soil. 

 

     Especially the high degree of allocational plasticity in mature trees, as shown in this study, 

certainly is a key functional trait enabling Fagus sylvatica to be competitive under high to 

low-precipitation conditions and to occupy a broad climatic and edaphic niche breadth. 
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Further research recommendations 

     To evaluate the importance of long-term adaptation for current drought-resistance and 

sensitivity in short term reactions to severe water deficits, studies along natural precipitation 

gradients should be combined with artificial rainfall exclusion.  

     In order to develop a more comprehensive picture of the whole-tree drought response, 

research on safety margins in the hydraulic system and on responses of C assimilation and 

plant respiration to drought periods in adult beech stands should be intensified. 

     To elucidate reasons for contrasting findings on the behaviour of fine root growth with 

decreasing water availability in different studies, the influence of soil acidity and nutrient 

availability on belowground C partitioning patterns should be investigated under a broader 

range of site conditions.  

     In order to deepen the understanding on the masting behaviour of F. sylvatica and to refine 

models of future forest productivity, detailed observations of C assimilation und fluctuation of 

NSC and N compounds in trees between mast years and non-mast years should be conducted 

at sites differing in nitrogen and water availability. 
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Summary 

European beech (Fagus sylvatica L.) is by far the most abundant tree species of Central 

Europe’s natural forest vegetation and one of the economically most important trees in 

Germany. Although this late-successional tree species shows a wide physiological tolerance 

toward a broad range of climatic and edaphic growing conditions, beech is known to be 

relatively drought sensitive when compared to other broad-leaved temperate forest trees. As 

man-made climate change is likely to impair the climatic water balance during the growing 

season and to increase the frequency of severe drought events over large parts of Central 

Europe, the future role of beech in forestry is under current debate. Thus, this study aimed at 

investigating the influence of hydrologic and climatic conditions on the productivity and 

vitality of beech and to identify basic mechanisms of a long-term adaption to water deficits in 

this drought-susceptible tree species. For this purpose, above- and belowground biomass 

production was studied in 12 mature beech forest stands along a natural rainfall gradient (543-

816 mm y-1) on uniform sandy geological substrate in the Northern German Lowlands. To 

consider the potential effect of soil water storage on the precipitation-response, this study was 

carried out in paired beech stands with similar climatic conditions but growing on sites with 

contrasting soil texture (sandy vs. sandy-loamy). Influences of water availability and climatic 

variations on growth patterns were investigated by monitoring (i) total above- and 

belowground biomass production, (ii) carbon partitioning and resource allocation dynamics, 

and (iii) morphology of the water absorbing and transpiring surfaces in response to climatic 

alterations.  

Quite unexpectedly, differences of annual (or growing season) water availability across 

the climatic gradient were found to exert only little influence on the productivity of mature 

beech stands, as neither aboveground NPP (NPPa) nor total NPP showed a decrease towards 

the dry end of the transect. However, NPPa and stem wood production were found to be 

primarily controlled by hydrologic conditions in the current peak growing period (June and 

July). Along the precipitation gradient, a pronounced continuous shift in the patterns of 

biomass partitioning emerged, resulting in higher fine root production and decreased 

aboveground:belowground productivity at the drier sites. Unlike aboveground biomass 

components, fine root production in mature beech was shown to react highly responsive 

toward changes in water availability. In line with the optimal partitioning theory, this 

allocational behaviour could be observed in response to decreasing precipitation but also with 

decreasing soil water storage capacity. Such allocational adaption processes to water shortage 
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were complemented by morphological plasticity (increased surface:biomass ratio) and 

adjustment of the positioning (increasing concentration of fine roots in the organic layers) of 

the fine root system. Leaf morphological alterations, however, were not found as a part of 

long-term adaption to changing hydrologic regimes in mature beech.  

Fructification was found to be a second important factor for allocational shifts in beech, as 

a large C allocation toward fruit growth strongly impaired aboveground vegetative growth, 

especially stem wood increment. For a high sink strength for C and N, fruit growth caused 

decreases in the weight and size of single leaves and thereby reduced a production of leaf 

biomass and LAI. Besides decreases in leaf area, pronounced foliar N depletion upon masting 

assumably lowered the canopy C assimilation in the mast and even in the post-mast year. 

Observed patterns in the fructification response to solar radiation suggest that floral induction 

in beech is a threshold controlled reaction to enhanced levels of canopy carbon gain in early 

summer (June-July) preceding the mast year. By these findings, the temporal pattern of a 

masting response to climatic cues in beech appears to be feedback-controlled by plant-internal 

N dynamics and, with continuing high N deposition loads, from this mechanism may arise 

additional burden for future vegetative growth in beech. 

A high degree of allocational plasticity in mature trees certainly constitutes an integral part 

of long-term adaptability of Fagus sylvatica to a wide range of hydrologic regimes which may 

also support resistance and resilience to single severe drought events. 
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Zusammenfassung 

Die Rotbuche (Fagus sylvatica L.) ist die bestimmende Baumart der potentiell natürlichen 

Vegetation in den Wäldern Mittel- und Westeuropas die ökonomisch bedeutsamste 

Laubbaumart Deutschlands. Obwohl diese spät-sukzessionelle Baumart über eine hohe 

physiologische Toleranz gegenüber einem weiten Spektrum klimatischer Wuchsbedingungen 

verfügt, wird die Buche gegenüber anderen temperaten Laubbaumarten als relativ 

trockensensitiv eingeschätzt. Da im Zuge des globalen Klimawandels mit einer 

Verschlechterung der klimatischen Wasserbilanz und mit einer Zunahme sommerlicher 

Trockenperioden gerechnet wird, wird die zukünftige Rolle der Rotbuche in der europäischen 

Forstwirtschaft derzeit intensiv diskutiert. Diese Studie hatte zum Ziel, hydrologische und 

klimatische Einflüsse auf die Produktivität und die Vitalität der Rotbuche zu untersuchen. 

Hierdurch sollen grundlegende Mechanismen der Trockenstressantwort bei dieser trocken-

sensitiven Art identifiziert, und Rückschlüsse auf zukünftige Klimaantworten von 

Buchenbeständen ermöglicht werden. Zu diesem Zweck wurde die ober- und unterirdische 

Biomasseproduktion von 12 Buchenaltbeständen im Norddeutschen Tiefland entlang eines 

natürlichen Niederschlagsgradienten (543-816 mm a-1) auf einheitlichem geologischen 

Substrat ermittelt. Um den zusätzlichen Einfluss der Wasserspeicherkapazität der Böden zu 

berücksichtigen, wurden Paare von Buchenbeständen untersucht, die unter nahezu identischen 

klimatischen Bedingungen, jedoch auf Böden unterschiedlicher Textur (sandige versus 

lehmig-sandige Böden) stockten. Einflüsse der Wasserverfügbarkeit und klimatischer 

Variationen auf das Wachstum wurden untersucht unter Berücksichtigung (i) der gesamten 

ober- und unterirdischen Biomasseproduktion, (ii) der Dynamik von Ressourcen-Allokation 

und Kohlenstoff-Partitionierung, sowie (iii) der Morphologie wasseraufnehmender und -

abgebender Oberflächen.  

Unerwarteterweise zeigte sich die gesamte Produktivität von Buchen-Altbeständen nur 

geringfügig von Veränderungen der hydrologischen Regime entlang des Gradienten 

beeinflusst. Trotz deutlicher Unterschiede in der jährlichen Wasserverfügbarkeit nahmen die 

oberirdische und die gesamte Biomasseproduktion auf den trockeneren Flächen des 

Transektes nicht ab. Allerdings führten ausgeprägte früh-sommerliche Wasserdefizite (in den 

Monaten Juni und Juli) zu deutlichen Einbußen der oberirdischen Biomasseproduktion, und 

insbesondere der Stammholzproduktion. Entlang des untersuchten Gradienten konnte eine 

ausgeprägte, kontinuierliche Verschiebung der Allokationsmuster festgestellt werden: Mit 

abnehmender Wasserverfügbarkeit nahm die Feinwurzelproduktion zu und das Verhältnis von 
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oberirdischer:unterirdischer Biomasseproduktion ab. Anders als oberirdische Komponenten 

zeigte die Feinwurzelproduktion eine hohe Sensibilität gegenüber Unterschieden hinsichtlich 

hydrologischer Regime. In Übereinstimmung mit der Optimalitätstheorie der pflanzlichen 

Ressourcennutzung konnte dieses Allokationsverhalten in sowohl in Reaktion auf veränderte 

Niederschläge, als auch in Antwort auf auch veränderte Wasserspeicherkapazitäten 

beobachtet werden. Allokative Anpassungsmechanismen an Wassermangel wurden im 

Feinwurzelbereich zusätzlich durch morphologische Plastizität (Zunahme im Verhältnis von 

Oberfläche: Biomasse) und durch Regulierung der räumlichen Verteilung (zunehmende 

Konzentrierung von Feinwurzeln in der organischen Auflage) komplementiert. Im Gegensatz 

zu diesen komplexen unterirdischen Trockenheits-Antworten konnten keinerlei Anpassungen 

der Blattmorphologie an veränderte hydrologische Bedingungen festgestellt werden.  

Neben Reaktionen auf Wasserverfügbarkeit wurde die Fruchtbildung als zweiter 

wesentlicher Einfluss auf das Allokationsverhalten der Buche erkannt. Eine deutliche 

Ressourcen-Allokation zu Gunsten der Fruchtentwicklung beeinträchtigte maßgeblich das 

oberirdische vegetative Wachstum, insbesondere den Stammholzzuwachs. Auf Grund einer 

hohen Attraktionsstärke der Früchte gegenüber C und N führte zunehmende Fruktifizierung 

auch zu einer Gewichts- (und Größen-) Abnahme der Einzelblätter und somit zu reduzierter 

Bildung von Blattmasse und Bestandesblattfläche (LAI). Neben dieser Abnahme an 

assimilierender Blattoberfläche führte auch eine deutliche Senkung der Blatt-Stickstoffgehalte 

in Folge der reproduktiven Ressourcenwidmung mutmaßlich zu einer Verschlechterung der 

C-Bilanz, sowohl im Mast- als auch im Folgejahr. Eine Analyse klimatischer Einflussfaktoren 

auf das Mastverhalten legt nahe, dass die Blütenbildung der Buche durch Überschreitung 

eines Schwellenwertes der Kohlenstoffassimilation im Frühsommer (Juni-Juli) induziert wird. 

Sofern diese Schlüsse zutreffen, unterliegt das zeitliche Muster der Fruktifikations-

Antwort auf Witterungsauslöser einer Rückkopplungskontrolle durch pflanzliche Stickstoff-

Dynamik. Vor dem Hintergrund anhaltend erhöhter Stickstoffdepositionen ergäbe sich aus 

diesem Mechanismus eine zusätzliche Belastung für das zukünftige vegetative Wachstum der 

Buche. 

Es ist anzunehmen, dass die in dieser Studie belegte hohe allokative Plastizität in 

Altbäumen Fagus sylvatica dazu befähigt, ihre hohe Konkurrenzkraft in einem breiten 

Spektrum hydrologischer Regime zu entfalten. Darüber hinaus werden die hier dargestellten 

Mechanismen einer langfristigen Trockenheitsanpassung mutmaßlich zu einer gesteigerten 

Resistenz und Resilienz von Buchen-Altbeständen gegenüber Ereignissen extremer 

Sommertrockenheit beitragen.  
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