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A B S T R A C T

Commonly used transgenic mouse models mimic Alzheimer´s disease (AD) to some

extent but do as well display differences compared to the human AD phenotype. Grow-

ing evidence indicates that N-terminally truncated Aβ isoforms, which are underrep-

resented in common murine models, represent a key player in AD. These peptides

are abundant in AD brains and have increasingly gained attention during the past

years. It has been suggested that the equilibrium of aggregation is shifted towards

the more toxic low-molecular weight oligomeric assemblies due to N-terminal trunca-

tion of Aβ, thereby triggering neurodegenerative processes. In this study, characteriza-

tion of a recently developed monoclonal antibody, NT4X-167, revealed its engagement

with N-terminally truncated AβpE3−X and Aβ4−X. We also showed the propensity

of Aβ4−X to adopt a distinct oligomeric conformation. Analysis of a newly created

homozygous 5XFAD mouse strain with NT4X-167 revealed early intracellular accumu-

lation of Aβ4−X in this model, preceding other N-truncated isoforms, AβpE3−X and

Aβ5−X. Investigation of homozygous 5XFAD mice revealed a gene-dose dependence

of the neuropathological and behavioral phenotype. Homozygous 5XFAD might espe-

cially facilitate the analysis of intracellular Aβ, truncated isoforms in particular. Con-

sidering the consensus that Aβ is a key player on one hand, and the failure of recent

anti-Aβ immunotherapeutic trials in AD on the other hand, there is an urgent need to

find new therapeutic targets and strategies. In the course of this, it has been proposed

that targeting N-truncated Aβ might offer therapeutic advantage. In order to explore

the therapeutic potential of passive anti-N-truncated Aβ immunization, a comparative

study with three monoclonal antibodies (NT4X-167, 9D5, 1-57) in 5XFAD was conduc-

ted in this study. As NT4X-167 showed a significant effect, it can be concluded that this

antibody might offer therapeutic advantage over antibodies specific for AβpE3−X.

3





Part I

I N T R O D U C T I O N





1
I N T R O D U C T I O N

1.1 alzheimer‘s disease

Auguste Deter, whose case was reported by Alois Alzheimer in the year 1906 at the

37th meeting of the Society of Southwest German Psychiatrists (Tübingen, Germany)

was the first patient described with a characteristic combination of symptoms. She

displayed character and mood changes as well as progressive memory and language

deficits and loss of orientation. After her death, A. Alzheimer found the brain to be

atrophic, with intracellularly accumulated neurofibrils and extracellular miliary bodies

(plaques) (Alzheimer, 1907). After A. Alzheimer, the disease he had described was

named Alzheimer´s Disease later on.

1.2 clinical aspects of alzheimer‘s disease

1.2.1 Epidemiology

The World Health Organization estimates the number of people that suffered from

dementia in the year 2010 to be 36 million people. This number is believed to increase to

66 million by the year 2030 and 115 million by 2050. The global cost of dementia in 2010

is estimated to $ 604 billion. This amounts to 1 % of the global gross domestic product,

a number underlining the impact demential diseases have on society and economy.

AD is the most common form of dementia, accounting for 60 - 70 % of these numbers
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(World Health Organzation, 2012). According to the German Alzheimer´s Association

(Deutsche Alzheimer Gesellschaft), in 2014 1.4 million people were suffering from AD

in Germany.

1.2.2 Risk Factors for Alzheimer´s Disease

Two forms of AD are described: An inherited (familial) form which accounts for ap-

proximately 1 % of the disease cases (Zetterberg and Mattsson, 2014), and a majority of

sporadic cases. The major risk factor to develop AD is age (Blennow et al., 2006). One

out of eight people older than 65 years and 45 % of the people older than 85 suffer

from AD, but despite this high prevalence of the disease in the elderly it is not part

of the normal aging process. Besides aging, epidemiological studies have suggested a

variety of risk factors for sporadic AD. Carrying at least one copy of the ApoE4 allel

increases the risk of developing AD (Corder et al., 1993). Other risk factors include

vascular diseases such as atherosclerosis, hypercholesterolemia, coronary heart disease

and heart failure (Kivipelto et al., 2001, 2005; Qiu et al., 2006), obesity, smoking, type

II diabetes (Kivipelto et al., 2005; Leibson et al., 1997; Prince et al., 1994). In addition,

head injury and traumatic brain injuries could be risk factors for AD (McCullagh et al.,

2001; Plassman et al., 2000; Sivanandam and Thakur, 2012). On the other hand, there

are studies connecting a healthy, cognitively and physically active lifestyle as well as

certain dietary habits with a reduced risk of AD (Fratiglioni et al., 2004; Gu et al., 2010;

Hall et al., 2009).

1.2.3 Progression of the Disease

The progression of AD is slow and results in progressive cognitive decline with memory

deficits, often in combination with personality or mood changes (Alzheimer´s Associ-

ation 2012). According to Holtzman et al. (2011), the average development from mild/

moderate AD to a severe clinical phenotype occurs within 7-10 years.

In 2011, the Alzheimer´s Association together with the National Institute of Aging
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(NIH) proposed new guidelines for the classification of AD. A division into three

stages was suggested: Preclinical AD, mild cognitive impairment due to AD and de-

mentia due to AD (Albert et al., 2011; Jack et al., 2011; McKhann et al., 2011; Sperling

et al., 2011). In preclinical AD, no symptoms are observed, whereas patients with mild

cognitive impairment display a beginning cognitive decline. The conversion of these

patients into the dementia phenotype occurs with a rate of 10-15 % per year. This con-

version defines the mild cognitive impairment as an early stage of AD for this patients

(Petersen, 2004; Visser et al., 2005). AD leads to severe cognitive decline, motor impair-

ment and loss of visio-spatial abilities. This accumulation and progressive severity of

symptoms is ultimately fatal and leads to death subsequently (Holtzman et al., 2011;

Wada et al., 2001).

1.3 pathological hallmarks of alzheimer‘s disease

1.3.1 Amyloid Plaques

One of the major pathological hallmarks of AD is the formation of extracellular depos-

its (plaques) composed of the Amyloid-beta peptide (Aβ) that is derived from cleavage

of Amyloid-Precursor-Protein (APP) (Holtzman et al., 2011; Serrano-Pozo et al., 2011).

The particular isoforms are termed in regard to the amino acid sequence: AβX1−X2,

Amyloid-beta peptide ranging from N-terminal amino acid X1 to C-teminal amino

acid X2. Two distinguishable types of plaques are found in human AD brain: Diffuse

plaques and neuritic plaques. Of these types only neuritic plaques are strongly stained

by Thioflavin S or Congo Red, dyes that interact with β-sheeted protein assemblies,

indicating a fibrillar and more dense structure (Serrano-Pozo et al., 2011). The amyloid

deposition typically starts in the neocortex and affects hippocamus and amygdala later.

In the end stage of AD, neuritic plaques are additionally found in subcortical structures

such as the brain stem (Arnold et al., 1991; Serrano-Pozo et al., 2011; Thal et al., 2002).

In the vicinity of neuritic plaques, a range of pathological alterations is observed, such

as neuron and synapse loss, astro- and microgliosis and neuritic dystrophies (Holtz-

man et al., 2011; Lenders et al., 1989; Masliah et al., 1990; Pike et al., 1995a; Selkoe,
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2011; Urbanc et al., 2002). The observation that plaques, mainly of the diffuse subtype

and with almost no detectable neuritic dystrophy, are also present in healthy older in-

dividuals led to the hypothesis that an increase of the plaque load is associated with

preclinical AD (Dickson et al., 1992; Knopman et al., 2003; Vlassenko et al., 2011). How-

ever, although plaques are a diagnostic hallmark of AD, the absolute plaque burden

correlates with cognitive decline and disease stage poorly (Arriagada et al., 1992; Gian-

nakopoulos et al., 2003; Villemagne et al., 2011). In addition, roughly 80 % of the AD

patients show the symptom of amyloid deposition in blood vessels, called Cerebral

Amyloid Angiopathy (CAA).

1.3.2 Neurofibrillary Tangles

Already the initial report of A. Alzheimer (Alzheimer, 1907) mentioned the second

neuropathological hallmark of AD, intracellular Neuro-fibrillary Tangles (NFT) consisting

of hyper-phosphorylated Tau protein organized in paired helical filaments (Grundke-

Iqbal et al., 1986; Kidd, 1963; Lee et al., 1991). Tau is a protein ubiquitously expressed

in all nucleated cells and highly abundant in neurons. In its physiological function,

Tau is involved in the organization of microtubules (Drechsel et al., 1992; Gustke et al.,

1994; Weingarten et al., 1975; Witman et al., 1976). Its hyper-phosphorylation results

in reduced tubulin binding and a higher propensity to form paired helical filaments

(Alonso et al., 1996; Holtzman et al., 2011). It has been reported that the NFT forma-

tion in AD brain is a better correlate for the clinical phenotype than plaque formation

(Holtzman et al., 2011). For diagnosis and staging of AD, Tau is crucial (Arnold et al.,

1991; Braak and Braak, 1991), but Tau aggregation and NFT formation appear later

than amyloid deposition in the development of AD (Galimberti and Scarpini, 2012).

1.3.3 Inflammation

Another pathological feature of AD are inflammatory reactions in the brain. In the vi-

cinity of neuritic plaques, activated microglia and astrocytes are found, which suggests
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that Aβ acts as a trigger for inflammation (Itagaki et al., 1989; Krause and Muller, 2010;

Pike et al., 1995a). In response to activation, microglia and astrocytes release proinflam-

matory signal molecules, complement factors, chemokines and cytokines (Rubio-Perez

and Morillas-Ruiz, 2012; Tuppo and Arias, 2005). Several studies suggest that glial

cells surrounding neuritic plaques engulf and process Aβ (Koenigsknecht-Talboo et al.,

2008; Meyer-Luehmann et al., 2008). It was in consequence proposed that activated

glial cells contribute to Aβ clearance and that this might be beneficial for treatment of

AD (Bard et al., 2000; DeMattos et al., 2012). For instance, DeMattos et al. (2012) have

reported that treatment with antibodies exhibiting maximal phagocytosis effector func-

tion is most efficient in removing deposited Aβ from murine brain. However, it has

been questioned if microglia are capable of efficient Aβ degradation (Majumdar et al.,

2007; Paresce et al., 1997). It is unclear whether inflammatory responses are generally

detrimental in AD or if some aspects of inflammation might be beneficial (Weninger

and Yankner, 2001).

1.3.4 Brain Atrophy and Neuron Loss

Brain atrophy is a prominent feature of an AD brain, but also of other demential

diseases such as frontotemporal dementia or vascular dementia (Blennow et al., 2006).

The regions in which atrophy is observed in AD include the medial temporal lobe, hip-

pocampus and amygdala, the inferior temporal as well as the superior and middle

frontal gyri, but not the inferior frontal and orbifrontal gyri (Blennow et al., 2006;

Duyckaerts et al., 2009; Halliday et al., 2003). Along with others, Kril et al. (2004)

have found a strong correlation of neuron number and hippocampal/brain volume,

indicating that these are somehow connected. It has further been reported that MRI

brain imaging in order to assess hippocampal atrophy can give good indication of

the progression from mild cognitive impairment to AD (Jack et al., 2005; Jagust, 2006).

What causes the atrophy/neuron loss observed in AD is subject to an ongoing discussion.

Some research groups reported a correlation of brain atrophy with NFTs, whereas oth-

ers suggested that intracellular accumulation of aggregated Aβ plays an important role

(Bayer and Wirths, 2010; Gomez-Isla et al., 1997; Haass and Selkoe, 2007).
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As it is challenging to confirm neuron loss, it is unclear whether it is essential in AD

(Duyckaerts et al., 2008). However, brain neuronal loss is observed in some transgenic

murine models of AD (Bouter et al., 2014; Casas et al., 2004; Christensen et al., 2008,

2010a; Jawhar et al., 2012; Meissner et al., 2014; Oakley et al., 2006; Saul et al., 2013;

Schmitz et al., 2004; Wirths and Bayer, 2010).

1.4 diagnosis of alzheimer‘s disease

Currently, an exact diagnosis of AD ist only possible post mortem. This diagnosis is

essentially based on the analysis of the neuropathological hallmarks mentioned above,

i.e. amyloid plaques and NFTs in the brain (Braak and Braak, 1991; McKhann et al.,

1984).

Therefore, cognitive impairment and behavioral alterations are assessed to make an

assumption whether a person will eventually be diagnosed with AD. To this end,

patients presenting with mild cognitive impairment undergo physical and cognitive

assessement by various testing procedures such as the Mini-Mental Stage Examination

(Folstein et al., 1975), the Clock-Drawing Test (Aprahamian et al., 2010; Sunderland

et al., 1989) or the Cambridge Cognitive Examination (Martinelli et al., 2014; Schmand

et al., 2000). For a probable diagnosis of AD, deficits that affect the patient in daily

activities are crucial (American Psychiatric Association, 1995). Besides memory impair-

ment symptoms such as agnosia, aphasia, apraxia or deficits in executive functions

are required (Waldemar et al., 2007). This diagnosis can be supported by neuroima-

ging employing Magnetic Resonance Tomography, Computer Tomography, or Positron-

Emission Tomography (Ballard et al., 2011; Blennow et al., 2006; Perrin et al., 2009;

Schroeter et al., 2009). Furthermore, analysis of biomarkers in the cerebrospinal fluid

has been established for diagnosis of mild cognitive impairment and AD. Reduced

levels of AβX−42 and increased levels of Tau and phospho-Tau support a diagnosis of

AD (Fiandaca et al., 2014; Mattsson et al., 2009; Perrin et al., 2009).

12



1.5 the amyloid precursor protein

Aβ is derived from sequential cleavage of APP (Korenberg et al., 1989), a type-1 trans-

membrane glycoprotein (Puzzo et al., 2014) belonging to the amyloid-precursor-like

protein family. Although in general the members of this family are structurally highly

conserved, they exhibit large hetrogeneity in the Aβ region (Selkoe, 2001). At least

four different mRNAs encoding APP that result from alternative splicing are known.

Together with different post-translational modifications, these result in a variety of iso-

forms expressed in different types of tissues. These isoforms are named by the number

of amino acids: The three major forms APP770, -751, and -695 are expressed in neuronal

cells, with the latter being most frequently expressed (Selkoe, 2001).

1.5.1 Processing

APP is physiologically processed by proteases, resulting in a variety of released pep-

tides. Two alternative pathways of this processing have been described (De-Paula et al.,

2012). In the non-amyloidogenic pathway, APP is cleaved within the Aβ region by

several α-secretases relasing the so-called sAPPα fragment which has been suggested

to have neuroprotective activity to the extracellular space (Chow et al., 2010; Esch et al.,

1990; Furukawa et al., 1996; Mattson, 1997; Sisodia et al., 1990). Various enzymes have

been proposed to function as α-secretase, including ADAM9, ADAM10, ADAM17,

ADAM19 or TACE (Haass, 2004; Haass et al., 2012). Within the cell membrane, a

C-terminal fragment, C83, remains and is further cleaved by γ-secretase, releasing the

so-called p3 peptide and the APP intracellular domain (AICD) (Carrillo-Mora et al.,

2014; Querfurth and LaFerla, 2010).

Amyloidogenic Pathway

The mechanism resulting in release of Aβ is the so-called amyloidogenic pathway

(De-Paula et al., 2012). Here, APP is first cleaved at the N-terminus of the Aβ sequence

by the aspartyl protease site APP cleaving enzyme 1 which liberates the N-terminal

13



Figure 1.1
APP Processing. In the non-amyloidogenic pathway, APP is first cleaved by α-secretase within
the Aβ domain and then further by γ-secretase. Peptides released are sAPPα, the APP intracel-
lular domain (AICD) and the p3 fragment. No Aβ is produced. In the amyloidogenic pathway,
APP is processed by aspartyl protease site APP cleaving enzyme 1 (BACE1) in the first step
and then by γ-secretase in the second step. The amyloidogenic cleavage of APP results in the
release of Aβ, sAPPβ and AICD.

domain sAPPβ (Vassar et al., 1999). The membrane-bound fragment remaining (C99)

is further processed by γ-secretase. In consequence, Aβ and the intracellular domain

of APP are released (Annaert and De Strooper, 2002).

The γ-secretase, essentially involved in the amyloidogenic pathway, is a complex

protease composed of several membrane-bound proteins, presenilin-1 or presenilin-2,

nicastrin, anterior pharynx defective-1, presenilin enhancer protein-2 and cluster of

differentiation 147 (Kaether et al., 2006; Zhou et al., 2006). The non-amyloidogenic

pathway is located to the cell surface, whereas the amyloidogenic cleavage mainly

takes place in endocytic organelles (Thinakaran and Koo, 2008). It has further been

shown that up-regulation of α-secretase activity results in lower production of Aβ in

subcellular compartments (Nitsch et al., 1992; Postina et al., 2004). This indicates that

the regulation of APP processing is of importance for the development and progression

of AD.
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1.6 the amyloid cascade hypothesis

Several hypotheses have been proposed to explain AD. A main step of AD research

was the identification of APP, made possible by investigation of Aβ-containing blood

vessels in CAA and amyloid plaques (Glenner and Wong, 1984; Kang et al., 1987; Mas-

ters et al., 1985). The dominant view since 1991 has been that Aβ deposition in plaques

is the main event in AD, triggering the neurodegenerative processes (Duyckaerts et al.,

2009; Hardy and Allsop, 1991; Selkoe, 1991) (Figure 1.2, page 16). However, since amyl-

oid plaque burden and cognitive deficits correlate poorly in humans (Price and Morris,

1999) and even animal models (Moechars et al., 1999; Schmitz et al., 2004), this Amyloid

Hypothesis was controversely discussed.

Genetic studies on familial AD lead to the identification of numerous mutations in

the APP, presenilin-1 and presenilin-2 genes as underlying cause of the inherited form

of AD. All of these mutations cause an early-onset AD with 100 % prevalence and

share the common effects of altering Aβ levels and increasing plaque deposition (Ber-

tram et al., 2010; Pimplikar, 2009). Down syndrome patients, who carry an additional

chromosome 21 where the APP gene is located, exhibit abundant plaque and intra-

cellular NFT pathology (Rumble et al., 1989; Schupf and Sergievsky, 2002). Recently,

a rare genetic variant of the APP gene that leads to reduced Aβ levels and risk of

AD was discovered (Jonsson et al., 2012). The most important genetic risk factor for

sporadic AD, apolipoprotein E ε4, is furthermore connected with increased Aβ depos-

ition and reduced clearance from the brain (Bickeboller et al., 1997; Castellano et al.,

2011). All these observations support the amyloid cascade hypothesis.

Unlike mutations in the APP and Presenilin (PS) genes, mutations in the Tau gene

lead to other neurodegenerative diseases like frontotemporal dementia whose clinical

phenotypes are different from these of AD. It has therefore been suggested that the

formation of NFTs is not the initial event in AD but likely occurs in response to Aβ

aggregation (Goedert and Jakes, 2005; Hutton et al., 1998; Iqbal et al., 2005).
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Figure 1.2
Classic and modified amyloid cascade hypothesis. The classic amyloid cascade hypothesis
regards the extracellular formation of amyloid plaques as the main event in AD. In contrast,
according to the modified amyloid cascade hypothesis the intracellular accumulation of Aβ is
considered the key event triggering the pathologic cascade in AD.
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1.6.1 Intracellular Amyloid Hypothesis

As early as in Masters et al. (1985), the first report on intracellular Aβ was published,

and it has been shown later that, prior to formation of plaques and NFTs, Aβ is found

intracellularly in brain regions that degenerate in AD (Fernandez-Vizarra et al., 2004;

Gouras et al., 2010). Along these lines, it has been found that Down syndrome patients

lacking amyloid plaques show intracellular Aβ in the brain (Gyure et al., 2001; Mori

et al., 2002). Haass and Selkoe (2007) suggested intracellular Aβ accumulation as the

triggering event of neurodenerative alterations in the brain.

The authors proposed that amyloid plaques might serve as a source or reservoir

for neurotoxic Aβ-oligomers, which might affect synaptic structure and plasticity. Be-

sides intracellular cleavage of APP, another possible source of intracellular Aβ is re-

uptake from the extracellular space (Wirths et al., 2004). The fact that plaques possibly

represent a major source of toxic Aβ oligomers has later been plausibly demonstrated

by Martins et al. (2008). Within this modified or intracellular amyloid hypothesis (Figure 1.2,

page 16), it has been furthermore suggested that intracellular Aβ aggregation precedes

the formation of plaques and other pathologic symptoms of AD (Wirths et al., 2004).

The pathologic relevance of intracellular Aβ has been demonstrated in mouse models

that show little or no extracellular amyloid deposition but behavioral deficits (Bouter

et al., 2013; Wittnam et al., 2012) and models with plaques that develop a substantial

neuron loss in regions where Aβ accumulates intracellularly (Christensen et al., 2010a;

Jawhar et al., 2012; Oakley et al., 2006). It has been shown that plaques are present

some ten years before the first memory complaints in patients and that plaque depos-

ition is virtually at maximal levels by the time of diagnosis (Jack et al., 2010; Morris

and Price, 2001; Price et al., 2009). This finding indicates that further plaque deposition

is not connected to the progression of the disease. In summary, all mentioned studies

suggest a key role of intracellular Aβ rather than extracellular plaques in the etiology

of AD.
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1.7 amyloid-beta isoforms

The Aβ peptides observed in human brain are a heterogenous mixture of various iso-

forms. The major forms found are Aβ1−42 and Aβ1−40, the previous representing the

major constituent of amyloid plaques, the latter is most abundant in amyloid deposits

in blood vessels CAA (Iwatsubo et al., 1994; Suzuki et al., 1994). Besides these major

species, commonly termed full-length Aβ, numerous C- and N-terminally divergent

variants have been described. These include Aβ1−37/38/39 (Portelius et al., 2012; Rein-

ert et al., 2014; Wiltfang et al., 2002) as well as Aβ C-terminally exceeding amino acid

42 (Esh et al., 2005; Van Vickle et al., 2008; Welander et al., 2009). Of these, AβX−43 was

detected in plaques of both mouse models and human AD, for the latter in considerable

amount (Welander et al., 2009). Recently, Kaneko et al. (2014) reported eight novel Aβ-

like peptides that start and end before the β- and γ-secretase cleavage site, the longest

of which consisting of amino acids 663-711 of the APP sequence. Aβ variants with vary-

ing terminal end lengths have been described with different aggregation propensity,

oligomer stability and structure, resistance to proteolytic degradation and neurotoxic

activity (e.g. in Bouter et al. (2013); Jan et al. (2008); Jarrett et al. (1993); Pike et al.

(1995b); Russo et al. (2002); Wirths et al. (2010c)).

1.7.1 N-terminally Truncated Amyloid-beta

In addition to C-terminally truncated Aβ, a variety of N-terminally deviant isoforms

has been described (Bayer and Wirths, 2014; Masters et al., 1985; Mori et al., 1992; Selkoe

et al., 1986; Sergeant et al., 2003). These ragged N-termini are believed to result from dif-

ferential cleavage and/or proteolytic activity after secretion. Besides aspartyl protease

site APP cleaving enzyme 1 which has been shown to cleave between Tyr-10/Glu-11

in addition to cleavage before Asp-1 (Vassar et al., 1999), several other peptidases have

been proposed to be involved in the generation of N-truncated Aβ. This includes the en-

zymes meprin-β, producing Aβ starting at residue 2 (Bien et al., 2012), and neprilysin
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(neutral endopeptidase, a zinc-metalloprotease) that cleaves between Arg-2/Glu-3, Glu-

3/Phe-4, Arg-5/His-6 of the Aβ sequence and myelin basic protein cleaving between

Phe-4/Arg-5 (Howell et al., 1995; Iwata et al., 2001; Liao et al., 2009) as well as plasmin

which is involved in formation of Aβ starting at His-6 (Tucker et al., 2000; Van Nos-

trand and Porter, 1999). N-terminal truncation makes the resulting Aβ peptides more

prone to aggregate (Pike et al., 1995b), which probably promotes plaque formation in

vivo (Soto et al., 1995). Aβ with ragged N-termini is highly abundant in human AD

brain (Kawarabayashi et al., 2001; Portelius et al., 2010; Saido et al., 1995).

Amyloid-beta Starting with a Pyroglutamate-Modified Residue three (Glu-3)

During the past years, it was in particular Aβ starting with a pyroglutamate-modified

residue 3 (AβpE3−X) that has gained considerable attention. Mori et al. (1992) repor-

ted that roughly 15-20 % of Aβ peptides are N-terminally pyroglutamate-modified.

This isoform combines characteristic properties deviant from N-terminally intact Aβ: It

readily aggregates to oligomeric assemblies, exerts higher neurotoxicity than Aβ1−40/42

and is highly resistant to degradation (Kuo et al., 1997; Russo et al., 2002; Wirths et al.,

2010c). Its high abundance in AD and Down syndrome patients suggests that it may

play an important role in the disease, and it has been found to be a main constitu-

ent of highly condensed amyloid plaque cores (Frost et al., 2013; Miller et al., 1993).

However, the role of AβpE3−X in AD and the possible mechanism of action are subject

to ongoing discussion: It has been proposed that AβpE3−X oligomers act as a seed

in AD and thereby promote plaque formation (Schlenzig et al., 2009) and it has been

suggested that AβpE3−X might act in a prion-like matter, promoting toxicity by im-

printing its conformation onto other Aβ assemblies (Nussbaum et al., 2012). Others see

pyroglutamate-modified Aβ as restricted to plaques (DeMattos et al., 2012). AβpE3−X

has been suggested as a therapeutic target in AD and anti-AβpE3−X-antibodies have

been reported to be capable of influencing the progression of pathological alterations

in mouse models of AD (DeMattos et al. (2012); Frost et al. (2012); Wirths et al. (2010c)

see also 1.9.3, page 27).
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Amyloid-beta Starting at Residue Four (Phe-4)

Another species of N-terminally truncated Aβ that is abundant in human AD brain is

Aβ4−X. As early as in 1985 it was discovered that these isoforms are a component of

patients brain amyloid deposits (Masters et al., 1985). In 2006, Lewis et al. (2006) repor-

ted that Aβ4−42 is relatively abundant in AD, aged controls and vascular dementia. On

the whole, Aβ4−X has not gained much attention and therefore less is known about

its function and properties. Aβ4−42 is less abundant according to Miller et al. (1993)

and Näslund et al. (1994), whereas the results from Portelius et al. (2010) support the

findings of Masters et al. (1985) concluding that it is a major component in human AD.

Miravalle et al. (2005) found Aβ4−42 to be a major constituent of cotton wool plaques in

familial AD patients with the V261I mutation in the presenilin-1 gene. A recent study

showed that Aβ4−42 rapidly assembles to oligomers and is as toxic as Aβ1−42 and

AβpE3−42 (Bouter et al., 2013). These studies indicate that Aβ4−42 is important for AD,

although the precise amount of Aβ starting at Phe-4 in AD remains unclear.

Amyloid-beta Starting at Residue Five (Arg-5)

The knowledge about another isoform with ragged N-terminus, Aβ5−X, is even scarcer.

It is present in AD and was suggested to be the result of alternative cleavage of APP

involving caspase activity (Murayama et al., 2007). The role of Aβ5−X and its toxicity

remain unclear (Bayer and Wirths, 2014).

1.8 mouse models of alzheimer‘s disease

A variety of transgenic murine models was described after the discovery of mutations

that lead to familial AD. The alterations in these models resemble pathologic features

of AD such as amyloid deposition, neuron loss, aggregation of phosphorylated Tau

and behavioral and/or memory deficits. All these models rely on overexpression of

human APP and/or presenilin-1/2 with at least one familial AD mutation. They differ

noticeably regarding their phenotype, which is likely to reflect different promotors
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used, the genetic background (mouse line), the transgene doses and differring effects

of mutations introduced with the transgene(s) (Elder et al., 2010).

1.8.1 APP-based Models

The first successful generation of a transgenic AD model was reported by Games

et al. (1995) who created the PDAPP model, in which a Platelet-derived groth factor-

β (PGDF) promotor-driven human APP transgene with the mutation V717F was intro-

duced. PDAPP exhibits an age-dependent deposition of Thioflavin S-positive amyloid

plaques starting at the age of 6 months. Furthermore, the model develops dystrophic

neurites, astro-/microgliosis in proximity to the amyloid plaques, age-related learn-

ing impairment and synapse loss (Chen et al., 2000; Dodart et al., 2000; Games et al.,

1995; Reilly et al., 2003). In a similar approach, a transgenic line overexpressing hu-

man APP with the K670N/M671L (Swedish) mutation under a hamster Prion Pro-

tein (PrP) promotor was described by Hsiao et al. (1996): The Tg2576 model develops

age-dependent amyloid Thioflavin S-postive deposits between 9 and 10 months of age,

gliosis and learning deficits and has been widely used for research (Elder et al., 2010).

In addition to the PDAPP and Tg2576 models, several other APP-based models have

been developed and characterized subsequently. They all show elevated production

of Aβ, gliosis and dystrophic neurites. Other features such as behavioral deficits have

been frequently described (Elder et al., 2010). Most recently, a human APP Knock-in

mouse model has been described. This model develops amyloidosis and memory de-

ficits without expressing the mutant APP beyond endogenous levels (Nilsson et al.,

2014).

1.8.2 Models with Presenilin Mutations

As mutations in the APP gene cause familial AD, so do mutation in the PS genes 1 and

2. These proteins are constituents of the γ-secretase complex involved in amyloido-

genic cleavage of APP. Consequently, human mutant PSs have been overexpressed in
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transgenic mice to study their effects. Mouse models harboring only these transgenes

do not develop any plaques but show elevated levels of AβX−42. When crossed to APP

overexpressing lines, the PS mutations cause an earlier onset of pathology and more

abundant plaque deposition (Elder et al., 2010). Well-characterized lines combining ef-

fects of both mutant APP and PS are the APP/PS1∆E9 model (Borchelt et al., 1997),

the APP/PS1KI model (Casas et al., 2004) and the 5XFAD model (see 1.8.2, page 22).

Research on these lines contributed considerably to the better understanding of intra-

cellular Aβ, neuron loss and behavioral phenotype (Casas et al., 2004; Christensen et al.,

2010a; Jawhar et al., 2012; Oddo et al., 2003; Wirths and Bayer, 2012; Wirths et al., 2009).

It is not understood why the mere expression of PS transgenes only poorly resembles

the AD features (Elder et al., 2010).

The 5XFAD Mouse Model

Transgenic mice (Tg6799) expressing five familial AD mutations (5XFAD) were first de-

scribed by Oakley et al. (2006). This strain expresses human Amyloid-Precursor-Protein

(isoform APP695) and PS-1 with a total number of five familial mutations known to

cause familial AD in humans under a murine Thy-1 promoter (Moechars et al., 1996;

Oakley et al., 2006; Vidal et al., 1990): three mutations in the human APP locus, Swedish

(K670N, M671L), Florida (I716V) and London (V717I) mutation, as well as two PS-1

mutations, M146L and L286V. When hemizygous, these mice display intraneuronal Aβ

accumulation and extracellular plaque pathology at the age of 6-8 weeks (Oakley et al.,

2006). At the age of approximately 6 months, female mice show behavioral impairment

and working memory deficits. At the age of 12 months, neuron loss in cortical layer V

and robust reference memory impairment are found. The neuron loss in cortical layer

V has been linked to the accumulation of intracelluar Aβ (Jawhar et al., 2012; Oakley

et al., 2006). The 5XFAD model develops its phenotype rapidly and displays import-

ant major features of AD. 5XFAD has been widely used and has been employed for

several preclinical studies investigating treatment effects on the behavior phenotype

(Aytan et al., 2013; Bhattacharya et al., 2014; Cho et al., 2014; Fiol-deRoque et al., 2013;

Hillmann et al., 2012; Wirths et al., 2010c).
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Other Models

Besides APP and APP/PS transgenic models, several other models have been de-

veloped for AD research. Of particular importance are models investigating the effects

of N-truncated isoforms expressed exclusively without relying on APP overexpression

and processing: The TBA42 and the Tg4-42 model (Bouter et al., 2013; Meissner et al.,

2014; Wittnam et al., 2012), develop neuron loss and behavioral/memory deficits des-

pite lacking abundant amyloid deposition in the brain. Therefore, they support the

hypothesis that intracellular soluble aggregates of Aβ play a key role in AD (see also

1.8.3, page 24). Another, non-transgenic model addressing the risk factor diabetes mel-

litus type II is the icv-STZ model that was described with some important pathological

features of AD including memory impairment (Chen et al., 2012, 2013; de la Monte and

Wands, 2008; Salkovic-Petrisic et al., 2006). Although the relevance of murine, mutant

APP/PS transgenic models is sometimes questioned since these are clearly associated

with the minor fraction of approximately 1 % familial AD cases, they are widely

employed. This is due to the fact that rodent species do not develop any amyloid-

related pathology spontaneously, but offer important time and cost advantages over

other mammal models such as canines or non-human primates. Besides the icv-STZ

model mentioned above, it was recently proposed that the Tg4-42 mouse represents a

better model for sporadic AD rather than APP/PS-based models because it does not

rely on any mutation (Bouter et al., 2014). However, both the icv-STZ and the Tg4-42

model, do share certain pathologic alterations with various mutation-based models

(Bouter et al., 2014; Chen et al., 2013). Furthermore, as do all other models currently

available, they do not fully resemble the complex pathological alterations ongoing in

human sporadic or familial AD. Thus, due to the convincing resemblance of major AD

features, abundant plaque deposition and expression of a heterogenous Aβ peptide

pool, mutation-based transgene models must still be considered relevant for sporadic

AD.
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1.8.3 N-terminally Truncated Amyloid-beta in Murine Models

N-terminally ragged Aβ has not only been observed in brains of AD patients but also

in murine models of AD: AβpE3−X, Aβ4−X and Aβ5−X have been shown to be pro-

duced in the 5XFAD model (Jawhar et al., 2012; Wittnam et al., 2012). Also, several

N-truncated isoforms of Aβ have been reported in the APP/PS1KI model, including

Aβ4−X/Aβ5−X detectable from the age of 2.5 months and AβpE3−X from 6 months

(Casas et al., 2004) and in the Tg2576 model (Kawarabayashi et al., 2001). These studies

have been further supported by a comparative study by Frost et al. (2013) who assessed

AβpE3−X-immunoreactivity semi-quantitatively in 11 different mouse models of AD,

including 5XFAD, APP/PS1∆E9, and Tg2576. Within an approach of passive immun-

ization, an antibody raised against AβpE3−X was further reported to strongly label

amyloid plaques in the PDAPP model (DeMattos et al., 2012). Several studies have

demonstrated that AβpE3−X is most abundant in the amyloid plaque cores (Frost et al.,

2013; Härtig et al., 2010; Jawhar et al., 2012; Maeda et al., 2007).

Recently generated mouse models support further in-vivo toxicity of N-truncated

Aβ: In TBA42 (expressing AβpE3−42) and Tg4-42 (expressing Aβ4−42) mice, the mere

expression of the respective ragged isoform led to intracellular accumulation of the

peptides and subsequently to behavior/memory deficits and massive loss of neurons

(Bouter et al., 2013; Meissner et al., 2014; Wittnam et al., 2012).

In addition to the APP/PS1KI model (Casas et al., 2004), Aβ5−42 was very recently

reported for the 5XFAD and another (3xTg) model (Guzman et al., 2014), but without

any evidence of intracellular accumulation.

However, the relative amounts of N-terminally truncated Aβ in mouse models and

human AD differ considerably as their levels are much lower in mice (Rüfenacht et al.,

2005; Schieb et al., 2011). For instance, in aged Tg2576 mice, Kawarabayashi et al. (2001)

reported that only 5 % of the deposited (insoluble) Aβ is N-terminally ragged whereas

the relative abundance of N-truncated Aβ in human AD brain is approximately 70-85

%. It was further suggested that the lower percentage of N-truncated Aβ in murine

models is connected to the strikingly different solubility observed for amyloid plaques

from AD and murine brains (Kalback et al., 2002).
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1.9 treatment of alzheimer´s disease

Although there are drugs to treat the symptoms of AD, there is currently no cure. The

availabe medication targets the cholinergic system or glutamate-mediated excitotoxicity

in the brain and has been shown to have moderate effects, but does not prevent the

progression of the clinical symptoms (Bullock and Dengiz, 2005; Bullock et al., 2005;

Rogers et al., 1998; Wallin et al., 2011).

The modified amyloid cascade hypothesis suggests that modulating the production or

improving the clearance of Aβ could be promising for therapy. Thus, the idea of in-

hibitors or modulators targeting enzymes that are involved in amyloidogenic cleavage

of APP (see 1.5.1, page 13) was followed by several studies. However, this approach

has some major flaws: It has not been achieved to date to develop γ-secretase inhib-

itors that are specific for the substrates but non-toxic. β-secretase inihibitors are at a

very early developmental stage. Thus, the focus of research is currently on active and

passive immunization approaches (Lannfelt et al. (2014).

1.9.1 Active Immunization

Schenk et al. (1999) have demonstrated that active immunization against Aβ can pre-

vent plaque deposition in the PDAPP mouse model. Similar approaches were able to

support these results and even show a rescue of behavioral symptoms in transgenic

mice (Dodart et al., 2002; Janus et al., 2000; Kotilinek et al., 2002; Morgan et al., 2000).

These remarkable effects led to the initiation of clinical trials of active immunization

with Aβ preparations in AD patients. In the first clinical phase I safety study, about

60 patients were treated. Although several individuals failed to develop detectable an-

tibody titers, no adverse events were observed (Schenk, 2002). However, clinical phase

2a trials were halted due to the observation that a subset of patients developed symp-

toms of CNS inflammation and the fact that some even died from pulmonary embolism

afterwards (Ferrer et al., 2004; Nicoll et al., 2003).
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It was concluded that active immunization led to an autoimmune response, thereby

causing severe side effects (Orgogozo et al., 2003). Although a more complete follow-up

of these studies suggested slight beneficial effects in a fraction of patients later, many

researchers shifted their interest towards passive immunization strategies (Hock et al.,

2002).

1.9.2 Passive Immunization

Antibodies against Aβ are widely employed as research tools. Monoclonal antibodies

have been raised to engage with various epitopes within the Aβ sequence. Besides

their potential for detection of Aβ in, or purification of, Aβ from biological samples,

several antibodies with specific properties have been proposed for passive immuniza-

tion. Antibodies evaluated positively in preclinical trials were then humanized to avoid

species-specific immune-responses in human patients. The humanized antibodies used

in clinical trials recognize N-terminal, C-terminal or central epitopes within the Aβ

sequence or neo-epitopes of aggregated Aβ, soluble oligomers, protofibrils, plaques or

a subset of them.

Passive immunization strategies against Aβ have been successfully tested in murine

models during the past years. These studies demonstrated the capability of peripherally

administered antibodies to successfully clear Aβ from murine brain (Bard et al., 2000;

DeMattos et al., 2001; Frost et al., 2012; Wilcock et al., 2003, 2004b,c, 2006). However, it

was found that passive immunization can also cause side effects, e.g. microhemorhages

(DeMattos et al., 2012; Pfeifer et al., 2002; Racke et al., 2005; Schroeter et al., 2008; Wil-

cock et al., 2004c, 2006). Subsequently it was proposed that these side effects are in-

duced by the effector function of the antibody on microglial activation: It was shown

that reducing the effector function, for instance by de-glycosylation of the antibody, can

be one way of addressing this issue (Karlnoski et al., 2008; Wilcock et al., 2006).

The clinical trials beyond phase I mostly employed humanized monoclonal antibod-

ies against various Aβ epitopes and neo-epitopes. Some of them have been terminated
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due to lack of efficiency or adverse side effects and the overall outcomes are much less

promising than preclinical studies have suggested (Lannfelt et al., 2014).

The humanized antibody bapineuzumab (Janssen Alzheimer Immunotherapy and

Pfizer) targets fibrillar forms of Aβ preferentially, recognizing the N-terminal domain

of the peptide (Miles et al., 2013). In two clinical phase III studies, some evidence of

target engagement was reported, as well as a statistically significant reduction of Tau in

the cerebrospinal fluid of patients. However, the administration of the antibody was ac-

companied by a significant number of vasogenic edema and microhemorrhages. Thus

the development of bapineuzumab was terminated (Lannfelt et al., 2014).

Solanezumab (Eli Lilly and Co), is a humanized antibody directed against soluble

monomeric Aβ, recognizing a mid-sequence epitope. Pooled data from two phase III

studies indicated a reduction in rate of conitive decline by 34 %, but without statistical

significance. The clinical trials have been extended and solanezumab is further being

tested for the prevention of familial AD (Lannfelt et al., 2014).

Other antibodies such as the conformation-specific gantenerumab (targeting amyloid

plaques), crenezumab (against monomeric and oligomeric Aβ) and BAN2401 (recog-

nizing soluble Aβ-protofibrils) are currently under clinical investigation, too (Lannfelt

et al., 2014). However, none of these antibodies have been proven to substantially in-

fluence the progression of symptoms in AD. Additionally, Watt et al. (2014) recently

raised doubts whether antibodies used in some of the clinical studies sufficiently en-

gage with the target after administration. Passive immunotherapy is still ongoing in

clinical trials and remains a promising option to develop an efficient treatment of AD.

1.9.3 Most Recent Developments

During the past years, rapid progression has been achieved in the field of AD research.

In particular, the role of soluble toxic assemblies of Aβ and some of its N-truncated iso-

forms have increasingly gained attention. It has become widely accepted that AβpE3−X

may play an important role in AD and this isoform has been shown to exhibit devi-

ant biochemical properties compared with N-terminally intact Aβ (see 1.8.3, page 24).

The interest in Aβ starting at residue 4 as another abundant N-truncated species is
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increasing as well (Bouter et al., 2013, 2014). Most of the immunization approaches

against Aβ have been shown to have important disadvantages such as negative side

effects or a lack of efficacy in humans (see 1.9.1, page 25 and 1.9.2, page 26). These dif-

ficulties further underline the need for a more specific drug that is safe and efficacious

at the same time. Therefore, interest in N-truncated Aβ as a possible therapeutic target

has increased. Marcello et al. (2011) showed that patients with AD have reduced levels

of autoantibodies against N-truncated Aβ. A first pilot study of anti-AβpE3−X immun-

otherapy in mice had promising outcomes (Wirths et al., 2010c). During the time that

the studies described here were conducted two other studies supported the importance

of AβpE3−X as a possible target for treatment, describing altered Aβ levels after passive

immunization with anti-AβpE3−X antibodies in two different mouse models without

induction of microhemorrhage, a commonly seen side effect (DeMattos et al., 2012;

Frost et al., 2012). McLaurin et al. (2002) reported that therapeutic benefits observed in

mice after active immunization with protofibrillar Aβ are due to antibodies recogniz-

ing residues 4-10 of the Aβ sequence. However, the question if and how Aβ4−X can be

employed for therapeutic strategies remains unanswered.
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1.10 aims of the study

Among others, the group of Prof. T.A. Bayer (Göttingen) has developed several mono-

clonal antibodies specifically targeting N-terminally truncated Aβ with different bind-

ing preferences that could have therapeutic potential: NT4X-167 was raised against an

Aβ4−X epitope; 1-57 is a non-conformation-specific antibody against AβpE3−X (Wirths

et al., 2010a) and 9D5 is an oligomer-specific antibody against AβpE3−X (Wirths et al.,

2010c). The experimental work carried out in this doctoral thesis aims to extend and

broaden the investigations of N-terminally truncated Aβ as a possible target for AD

therapy. To this end, a comparative pilot study with three monoclonal antibodies

(NT4X-167, 1-57, 9D5) engaging with different fractions of N-truncated Aβ was de-

signed. This comparative approach aims to give insight into the contribution of the

two major fractions of N-terminally truncated peptide isoforms, AβpE3−X and Aβ4−X.

Since discrepancies regarding the abundance of N-terminally truncated Aβ between

murine models and human AD have been described (see 1.8.3, page 24), it was of

particular importance to thoroughly investigate the model that should be employed

(5XFAD) regarding its suitability for the purpose of the study. A homozygous 5XFAD

strain was created to elevate transgene expression and Aβ production. This was in-

tended to improve detection and analysis of the less abundant N-truncated peptide

species. The aims of the study can be summarized in main objectives/main questions

as follows:

• Characterization of the newly developed monoclonal antibody NT4X-167

• Generation and Characterization of a homozygous 5XFAD strain

• Is the 5XFAD model suitabe to study the effects of N-terminally truncated Aβ?

• Does targeting N-truncated Aβ, in particular Aβ4−X, offer any therapeutic ad-

vantages for AD?
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Part II

M AT E R I A L A N D M E T H O D S





2
M AT E R I A L A N D M E T H O D S

2.1 material

2.1.1 Chemicals, Reagents, Kits and Technical Devices

The chemicals used within this study are listed in table 2.1, reagents and formulations

used are listed in table 2.2. Kits used are listed in table 2.3 and the technical devices

used are listed in table 2.4.

2.1.2 Antibodies

The primary antibodies used for Western Blot and/or Immunohistochemistry are lis-

ted in Table 2.5. Secondary antibodies employed in western blotting or immuno-

histochemistry are listed in Table 2.6.
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Table 2.1
Chemicals

Chemical Manufacturer

4´6-Diamidin-2-Phenylindol Roth, Karlsruhe, Germany

Acetonitrile Merck, Darmstadt, Germany

Agarose Lonza, Basel, Switzerland

Ammoniumbicarbonate Sigma, St. Louis, MO, USA

Boric Acid Sigma, St. Louis, MO, USA

Bovine serum albumin Roth, Karlsruhe, Germany

Citric Acid Roth, Karlsruhe, Germany

Molecular Grade Water Braun, Melsungen, Germany

Diaminobenzidin Roth, Karlsruhe, Germany

Ethylenediaminetetraacetic Acid Roth, Karlsruhe, Germany

Ethanol Merck, Darmstadt, Germany

Ethidiumbromide Roth, Karlsruhe, Germany

Formic Acid 98 % Roth, Karlsruhe, Germany

Hydrochloric Acid Merck, Darmstadt, Germany

Hydrogenperoxide Roth, Karlsruhe, Germany

Isopropanole Roth, Karlsruhe, Germany

Liquid Nitrogen Air Liquide

Methanol Roth, Karlsruhe, Germany

Sodium Chloride (NaCl) Roth, Karlsruhe, Germany

Sodium dodecyl sulfate Roth, Karlsruhe, Germany

Sodium hydrogen phosphate Merck, Darmstadt, Germany

Sodium hydroxide AppliChem

Sinapinic Acid Bruker Daltonics

Thioflavin S Sigma, St. Louis, MO, USA

Tris(hydroxymethyl)-
aminomethane Roth, Karlsruhe, Germany

Triton X-100 Roth, Karlsruhe, Germany

Tween-20 Roth, Karlsruhe, Germany

Xylene Roth, Karlsruhe, Germany
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Table 2.2
Reagents and Formulations

Reagent Manufacturer

10X Reaction Buffer for PCR Axon, Kaiserslautern, Germany

100 bp Ladder Bioron, Ludwigshafen, Germany

Agarose Sample Buffer (Blue Juice) Life Technologies, Carlsbad, CA, USA

Amyloid-beta Peptides, Synthetic Peptide Specialty Laboratories, Heidelberg,
Germany

Cømplete Proteinase Inhibitor
tablets Roche, Basel, Switzerland

Taq DNA-Polymerase Axon, Kaiserslautern, Germany

Desoxyribonukleoside-
triphosphates Axon, Kaiserslautern, Germany

Dynabeads M-280 sheep
anti-mouse Life Technologies, Stockholm, Sweden

Dynabeads M-280 sheep anti-rabbit Life Technologies, Stockholm, Sweden

Fetal Cow Serum Thermo Fisher Scientific, Waltham, MA, USA

Fluorescence Mounting Medium DAKO, Glostrup, Danmark

Hematoxylin Solution Roth, Karlsruhe, Germany

Ketamine 10 % Medistar, Ascheberg, Germany

Luminata crescendo Western HRP
Substrate Merck, Darmstadt, Germany

Magnesium chloride (MgCl2) for
PCR Axon, Kaiserslautern, Germany

Native Anode Buffer for BN/CN SERVA, Heidelberg, Germany

Native Kathode Buffer for BN/CN SERVA, Heidelberg, Germany

Native Marker, Liquid Mix for
BN/CN SERVA, Heidelberg, Germany

Nitrocellulose Membranes,
Hyobond ECL GE Healthcare, Chalfont St. Giles, GB

Non-Fat Dry Milk Roth, Karlsruhe, Germany
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Table 2.2 (continued)
Reagents and Formulations

Reagent Manufacturer

Paraffin for Tissue Embedding Roth, Karlsruhe, Germany

PBS pH 7.4 Sigma, St. Louis, MO, USA

PBS pH 7.4 Merck, Darmstadt, Germany

4-16% ServaGelTM N 4-16 SERVA, Heidelberg, Germany

Primers for genotyping Eurofins, Ebersberg, Germany

Proteinase K Peqlab, Erlangen, Germany

Roti-Histokitt Roth, Karlsruhe, Germany

Sample Buffer for Blue Native (2x) SERVA, Heidelberg, Germany

SERVA Blue G Solution for Blue
Native, 1 % SERVA, Heidelberg, Germany

Superfrost glass slides Thermo Fisher Scientific, Waltham, MA, USA

Xylazine (Xylariem) Ecuphar, N.V. Oostkamp, Belgium

Table 2.3
Kits

Kit Manufacturer

DC Protein Assay Kit Biorad Laboratories, Hercules, CA, USA

DyNAmo Flash SYBR Green qPCR
Kit Thermo Fisher Scientific, Waltham, MA, USA

RotiQuant Protein Assay Roth, Karlsruhe, Germany

Vectastain ABC Kit Vector Laboratories, Burlingame, CA, USA
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Table 2.4
Technical Devices

Device Manufacturer

Biophotometer Eppendorf, Hamburg, Germany

Centrifuge (Stratos Biofuge
Heraeus) Thermo Fisher Scientific, Waltham, MA, USA

EG1140 H Embedding Station Leica, Wetzlar, Germany

Electrophoresis Chamber
BlueVertical PRiME Serva, Heidelberg, Germany

Embedding Casettes Simport, Beloeil, QC, Canada

Eppendorf LoBind reaction tubes Eppendorf, Hamburg, Germany

Heating block (UNO-Thermoblock) Biometra, Göttingen, Germany

HM 335E Microtome Thermo Fisher Scientific, Waltham, MA, USA

Individually Ventilated Cages Tecniplast, Hohenpleissberg, Germany

Odyssey FC Li-Cor, Bad Homburg, Germany

BX-51 Microscope Olympus, Shinjuku, Japan

0.2 ml PCR Tubes Greiner Bio-One, Kremsmuenster, Austria

Semi-Dry Blotting Chamber Biorad Laboratories, Hercules, CA, USA

Lab Cycler for PCR SensoQuest, Göttingen, Germany

Savant SPD131DDA Speed Vac
Concentrator Thermo Fisher Scientific, Waltham, MA, USA

Nutating Shaker Gesellschaft für Labortechnik (GFL), Burgwedel,
Germany

MX3000P Real-Time Cycler Stratagene, Santa Clara, CA, USA

Pap Pen Lipid Pen Kisker Biotech, Steinfurt, Germany

Ultraflextreme Mass Spectrometer Bruker Daltonics, Billerica, MA, USA

Uvette 220-1600 nm Cuvettes Eppendorf, Hamburg, Germany

Sonics Vibra-Cell VCX-130 Sonifier
150

Sonics & Materials, Newtown, USA

ThermoMixer compact Eppendorf, Hamburg, Germany

TP 1020 Automatic Tissue
Processor Leica, Wetzlar, Germany

Vortexer, Vortex Genie 2 Scientific Industries, Bohemia, NY, USA

Water Bath for mounting of
paraffin tissue Medax, Olching, Germany

Water Bath Sonorex RK 100H Bandelin electronic, Berlin, Germany
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Table 2.5
Primary Antibodies

Antibody Manufacturer/Reference

1-57
Synaptic Systems, Göttingen, Germany Wirths

et al. (2010a)

24311 Bouter et al. (2013)

4G8 Covance, Princeton, NJ, USA

6E10 Covance, Princeton, NJ, USA

82E1
Immuno-Biological Laboratories, Minneapolis,

MN, USA

9D5
Synaptic Systems, Göttingen, Germany Wirths

et al. (2010a)

Abeta42 Synaptic Systems, Göttingen, Germany

G2-10 Merck Millipore, Darmstadt, Germany

IC16
Gift of Prof. Dr. Sascha Weggen, Heinrich-Heine

University Düsseldorf, Germany

NT4X-167 Antonios et al. (2013)

Table 2.6
Secondary Antibodies

Antibody Manufacturer

Goat-anti-rabbit HRP conjugated Dianova, Hamburg, Germany

Rabbit-anti-mouse HRP-conjugated Dianova, Hamburg, Germany

Rabbit-anti-mouse IgG biotinylated DAKO, Glostrup, Danmark

Swine-anti-rabbit IgG biotinylated DAKO, Glostrup, Danmark
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2.2 biochemical methods

2.2.1 Electrophoresis and Western Blotting of Synthetic Peptides

Synthetic Aβ peptides were dissolved at 1 mg/ml in 10 mM Sodium hydroxide (NaOH)

and sonicated for 5 minutes in an ice-cold sonication water bath. Aliquots of 10 µl were

flash frozen in liquid nitrogen and stored at -80 °C prior to use. 2 µg peptide per well

(mixed with an equal volume of sample buffer for blue native (2x)) were loaded on

Vertical Native Gels and run at a constant current of 120 V in the BlueVertical PRiME

electrophoresis chamber containing Native Kathode Buffer for BN/CN supplemented

with SERVA Blue G Solution for Blue Native, 1 % and Native Anode Buffer for BN/CN.

After electrophoresis, the peptides were transferred onto 0.45 µm nitrocellulose mem-

branes for 30 minutes per membrane at constant 25 mA in a semi-dry transfer chamber.

Free binding sites were blocked with 4 % (w/v) non-fat dry milk dissolved in Tris-

buffered saline supplemented with Tween-20 (TBS-T) (50 mM Tris(hydroxymethyl)-

aminomethane (Tris) pH 8.0 supplemented with 0.05 % (v/v) Tween-20) for one hour

at acRT. For detection, the primary antibodies NT4X-167 (0.5 µg/ml), 1-57 (0.5 µg/ml),

IC16 (0.25 µg/ml) and 24311 (0.5 µg/ml) were dissolved in TBS-T and incubated on

a shaker over night at 4 °C. After three washing steps (5 minutes each) with TBS-T,

secondary antibodies rabbit-anti-mouse HRP-conjugated or goat-anti-rabbit HRP con-

jugated were diluted 10000-fold in TBS-T and incubated with the membrane for 2 hours

at Room Temperature (RT). Exposure was facilitated with 1 ml of Luminata crescendo

Western HRP Substrate in an Odyssey Fc.

2.2.2 Immunohistochemistry on Paraffin Sections

Mouse tissue samples were prepared and processed similar to the way described

previously (Wirths et al., 2001). Paraffin sections of 4 µm mounted on superfrost slides

were de-parrafinized in two steps (5 minutes each) by the use of 100 % Xylene. Then,

sections were re-hydrated in aqueous ethanol solutions with descending ethanol con-
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centrations (100 % ethanol for 10 minutes, 95 % (v/v) for 5 minutes, 70 % for 5 minutes)

and subsequently immersed for 5 minutes in deionized water. In the next step, sections

then were pretreated with 0.3 % (v/v) H2O2 in Phosphate-buffered saline (PBS) for

blocking of endogenous peroxidases and then washed for 5 minutes in deionized wa-

ter. For antigene retrieval, the tissue was treated with citrate buffer (0.01 M citric acid,

pH adjusted to 6.0 with NaOH) at 95 °C and washed again in PBS for 5 minutes. A

second antigene retrieval step of a 3-minute incubation in 88 % (v/v) formic acid was

performed and the slides were washed again twice in PBS. In sections treated this way,

unspecific binding sites were blocked for 1 hour at RT in blocking solution (PBS sup-

plemented with 10 % (v/v) fetal cow serum and 4 % (w/v) fat free milk powder). The

slices were indivdually circled with a Lipid Pen and primary antibodies were applied

in PBS supplemented with 10 % (v/v) fetal cow serum for 16 hours at RT. The slides

were washed in PBS supplemented with 0.5 % (v/v) Triton X-100. This was followed by

incubation (1 hour at 37 °C) with biotinylated secondary antibody rabbit-anti-mouse

or swine-anti-rabbit in PBS supplemented with 10 % (v/v) fetal cow serum, before

staining was visualized using the ABC method (Vectastain ABC kit). To this end, a

1:100 dilution of both Solution A and B in PBS supplemented with 10 % (v/v) fetal

cow serum was prepared and incubated with the slices for 30-60 minutes at 37 °C.

Visualization was then facilitated after 15 minutes washing in PBS by exposure of the

slices to 25 µg/ml diaminobenzidin and 0.0025 % (v/v) H2O2 dissolved in an aqueous

solution of 50 mM Tris pH 7.4. The sections were washed twice in PBS for 5 minutes

and, except for the case of immunohistochemistry for plaque load quantification, coun-

terstained in hematoxylin solution for 45 seconds. After washing in deionized water

for five minutes under constant exchange (running tab), sections were de-hydrated in

a reversed aqueous ethanolic solution chain (as for re-hydration, see above), followed

by two five-minutes steps of washing in xylene. The so treated sections were then

embedded with Roti-Histokitt and left to dry for at least 48 hours prior to examina-

tion. Primary antibodies used were: Mouse monoclonal antibodies NT4X-167 reacting

with AβpE3−X and Aβ4−X (1 µg/ml, visualization in diaminobenzidine solution for 4

minutes), 1-57 reacting with AβpE3−X (1 µg/ml, visualization for 1 minute), G2-10 re-

acting with AβX−40 (3 µg/ml, visualization for 3 minutes), 82E1 reacting with Aβ1−X
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(1µg/ml, visualization for 1 minute), and rabbit polyclonal antibody Abeta42 reacting

with AβX−42 (0.5 µg/ml, visualization for 30 seconds) as well as 24311 (0.5 µg/µl,

visualization for 2 minutes).

2.2.3 Thioflavin S Staining of Paraffin Sections

For Thioflavin S fluorescent staining as in Christensen (2009), paraffin tissue was de-

paraffinized and rehydrated as in 2.2.2, washed twice (1 minute) in deionized wa-

ter and then treated with 1 % (w/v) ThioflavinS in aqueous solution for 8 minutes.

Sections were washed twice again for 1 minute in water and immersed in the Thio-

flavin S solution for another 4minute, washed twice in 80% (v/v) ethanol and three

times in water (1minute each), counterstained in a 1 % (w/v) aqueous solution of

4´6-diamidin-2-phenylindol, washed again in water for five minutes and embedded in

Aqueous Fluorescent Mounting Medium.

2.2.4 Lysis of Murine Brain Tissue

Brains were homogenized in 8-fold amount of Tris-buffered saline (TBS) Lysis Buffer

(50 mM Tris, pH 8.0 supplemented with 1 tablet/10 ml of Cømplete Protease Inhibitor

cocktail (Roche)) and homogenates were spun down for 20 minutes at 17.000 x g, 4 °C

in a stratos Biofuge. Supernatant (termed TBS fraction) was separated. The pellet was

resuspended in 1 ml TBS lysis buffer and spun down again. The supernatant was dis-

carded and the pellet dissolved in Sodium dodecyl sulfate (SDS) lysis buffer (2 % SDS,

supplemented with 1tablet/10ml Cømplete Protease inhibitor cocktail) using the Vibra-

Cell sonifier 150 at power ‘2‘ with 10 single pulses. The lysate was spun down again

as described above and the supernatant (termed SDS-Fraction) was separated. Total

protein concentrations of both fractions were determined using the RotiQuant Protein

Assay with Bovine serum albumin (BSA) as a standard.
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2.2.5 Isolation of Genomic DNA and Genotyping of Animals

Genomic DNA was isolated from tail biopsies. Per sample, 500 µl of lysis buffer

(100 mM Tris/hydrochloric acid pH 8.5, 5 mM ethylenediaminetetraacetic acid, 0.2 %

(w/v) SDS, 200 mM NaCl, 10 µl/ml proteinase K) were added and left overnight at

55 °C in a Thermomixer Compact under gentle agitation. Solutions were centrifuged

at 13000 rpm in the stratos centrifuge for a duration of 10 minutes and the pellet was

discarded. The lysates were diluted into 500 µl of isopropanole. Samples were then

vortexed and centrifuged again for 10 minutes at 13000 rpm. Pellets were washed in

500 µl of 70 % (v/v) ice-cold ethanol and spun down for 10 minutes at 13000 rpm.

After the supernatant was discarded, the pellets were left do dry at RT and further

dissolved in 50 µl H2O. The DNA concentration was then measured using the Bio-

photometer (DNA preparations with A260/A230 and A260/A280 ratios > 1.8 were

considered sufficiently pure) and diluted in molecular grade water to reach a concen-

tration of 20 ng/µl. 5XFAD mice carrying the transgene were identified using conven-

tional Polymerase-chain-reaction (PCR) as follows:

A reaction mix for the polymerase chain reaction was set up according to table 2.7

without the DNA. DNA was then given into a PCR reaction tube and the prepared

reaction mix (18 µl) was added. The cycling protocol is listed in table 2.8. After this,

the samples were subjected to agarose gel electrophoresis to identify transgene animals.

100 ml of TBE buffer (89 mM Tris, 89 mM boric acid, 2 mM ethylenediaminetetraacetic

acid) were added to 2 g agarose and heated in a microwave until the agarose was com-

pletely dissolved. 3 µl ethidumbromide (10 mg/ml) were added and the gel was casted

in a casting tray with a comb to form wells. After the gel was cooled down, the comb

was removed and the samples (10 µl mixed with 1 µl of 10X agarose sample buffer)

were loaded into the wells. The gel was run in a horizontal electrophoresis chamber

(Biorad Laboratories, Hercules, CA, USA).For size indication, one well was filled with

5 µl of 100 bp DNA ladder and run in TBE buffer for approximately 45 minutes at 120

V constant current. The DNA in the gel was visualized under a UV lamp. Animals that

showed the expected amplicon band of approximately 250 base pairs were considered

transgenic.
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Table 2.7
Master Mix for 5XFAD Genotyping

Reagent Volume [µl]

DNA (20 ng/µl) 2.0

Primer hAPP-for (table 2.9) 0.5

Primer hAPP-rev (table 2.9) 0.5

dNTPs (2 mM) 2

MgCl2 (25 mM) 3.2

10X reaction buffer 2

Molecular grade water 9.6

Taq polymerase (5 U/ul) 0.2

Table 2.8
Cycling Programm for 5XFAD Genotyping

Step Temperature [°C] Duration [s]

1 94 180

2 94 45

3 58 60

4 72 60

5 Repetition of steps 2 - 4 (35 times)

6 72 300

7 4 for storage

2.2.6 Quantitative Real-Time PCR Genotyping

To identify homozygous animals, quantitative Real-Time PCR was performed using

a Stratagene MX3000P Real-Time Cycler with 10 ng of genomic DNA per reaction.

For quantification of the PCR product, the SYBR-green based DyNAmo Flash SYBR

Green qPCR Kit containing ROX as an internal reference dye was used, adopting the

conventional APP genotyping protocol for 5XFAD mice. The reaction mix and cycling

protocol are given in tables 2.10 and 2.11. The reaction was performed in duplicates

and separate tubes for each pair of primers.
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Table 2.9
Primer used for genoyping of 5XFAD mice

Primer Sequence

hAPP-for 5´ - GTA GCA GAG GAG GAA GAA GTG - 3´

hAPP-rev 5´ - CAT GAC CTG GGA CAT TCT C – 3´

mAPP-for 5´- TCT TGT CTT TCT CGC CAC TGG C – 3´

mAPP-rev 5´ - GCA GTC AGA AGT TCC TAG G – 3´

Table 2.10
Reaction Mix for 5XFAD Quantitative Real-Time Genotyping

Reagent Volume [µl]

DNA (20 ng/µl) 2.0

Primer mAPP-for or hAPP-for
(table 2.9) 0.5

Primer mAPP-rev or hAPP-rev
(table 2.9) 0.5

Master Mix 10

ROX 0.2

Molecular grade water 6.3

Average CT values were determined from the duplicates, and relative quantification

was performed using murine APP as a reference gene for normalization. The transgene

levels of human APP were normalized to those of murine APP and calibrated to a

selected heterozygous 5XFAD animal using the ∆∆CT method (Schmittgen and Livak,

2008) (i):

(i) AmountGene = 2−∆∆CT
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Table 2.11
Cycling Programm for 5XFAD Quantitative Real-Time Genotyping

Step Temperature [°C] Duration [s]

1 95 600

2 95 15

3 64 20

4 72 30

5 Repetition of steps 2 - 4 (40 times)

6 95 60

7 55 30

8 95 30

9 4 for storage

For an animal (q), the level of human APP (hAPP) gene expression normalized to the

expression of murine APP (mAPP) as a reference gene and calibrated to a confirmed

hemizygous animal (cb), ∆∆CT is calculated as follows (ii) and (iii):

(ii) ∆CT = CT ,hAPP - CT ,mAPP

(iii) - ∆∆CT = −T ,q −∆CT ,cb

Figure 2.1 gives a typical example, with animals A and C being identified as poten-

tially homozygous 5XFAD (5XFADhom) animals.

2.2.7 Immuno-precipitation of Amyloid-beta

Frozen murine brain samples (three left hemibrains from 7-month-old hemizygous

5XFAD mice) were homogenized to powder in liquid nitrogen using mortar and pistil

and aliquoted at 50 mg in 1.5 ml Eppendorf LoBind reaction tubes (LoBind tubes were

used for all subsequent steps). One aliquot of brain powder was dissolved in 330 µl

0.01 M PBS and sonicated with the Sonics Vibra-Cell VCX-130 sonifier for one minute
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Figure 2.1
A typical example for Real-Time-PCR genoyping of 5XFAD mice. Here the animals A and C
whose human APP gene dose was appromately twice as high in comparison to a confirmed
hemizygous animal (D) were identified as potential homozygous 5XFAD. Animals B and E
were considered hemizygous.

applying pulses of 2 s at an amplitude of 30 %. Formic acid was added to a final

concentration of 70 % (v/v) and the sample was sonicated again, the insoluble frac-

tion spun down for 20 minutes at 17.000 g. The pellet was discarded and concentra-

tions were determined using a DC Protein Assay Kit, based on the modified Lowry

method with BSA as standard (Lowry et al., 1951). The extract was aliquoted at 200 µl

and finally dried down in the SpeedVac at 45 °C and stored at –80 °C. For Immuno-

Precipitation (IP), the extract was re-dissolved in 100 % FA to a concentration of 4 mg

total protein/ml and neutralized diluting it by 21-fold (50 µl sample + 1100 l of 1 M

Tris, 0.5 M Na2HPO4). For IP of Aβ from murine brain lysates, a 1:1 mixture of the

antibodies 6E10 (Epitope 4–9) and 4G8 (Epitope 17–24) was used. Paramagnetic Dyna-

beads M-280 sheep-anti-mouse/rabbit were concentrated using a magnetic rack and

washed twice in 1 ml PBS supplemented with 0.1 % (w/v) BSA and coupled with the

capture antibody mixture (8µg/50 µl bead suspension) over night under gentle agita-

tion. After coupling, beads were washed three times in PBS/BSA and incubated with 1

ml of neutralized sample for 6 hours. Following incubation, beads were washed twice
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with PBS/BSA and twice with 50 mM ammoniumbicarbonate and eventually eluation

was facilitated using 100 µl 0.5 % (v/v) FA. After transfer to a new LoBind vial, the

eluate was dried down at 45 °C in the SpeedVac and stored at -80 °C prior to use.

2.2.8 MALDI-TOF detection of Amyloid-beta

For Matrix-Assisted Laser Desoption/Ionisation - Time of Flight (MALDI-TOF), the

dried eluate obtained from IP was re-dissolved in 20 µl of 20 % (v/v) acetonitrile,

0.1 % (v/v) formic acid and sonicated in the water bath for 10 minutes. Sample was

plated at 1-2 µl + equal volume of sinapinic acid as matrix (20 mg/ml in a 1/1 (v/v)

mixture of acetonitrile/water). For MALDI-TOF, samples were re-dissolved in 20 µl of

20 % (v/v) acetonitrile with 0.1 % (v/v) FA, sonicated in the ultrasound waterbath for

10 minutes, spun down briefly and subjected to the steel target plate at 1 µl. Matrix

solution was added in equal amounts directly onto the target and the mixture was

allowed to crystallize at room temperature until found dry. Desorption and time-of-

flight mass spectrometry was carried out in a Ultraflextreme mass spectrometer in

reflection mode at a laser intensity of 80-90 % collecting accumulated spectra of a total

number of 10000 single laser shots. For calibration, 1 µl of a synthetic Aβ peptides

mixture (AβpE3−40/42 and Aβ4−40/42, 0.01 mg/ml each in 10 mM NaOH) was plated

with an equal amount of matrix. Baseline was substracted from the obtained spectra.

2.3 animals and animal experiments

2.3.1 General Considerations

All animals used in this study were of the species Mus musculus. All animals used for

these studies were housed under specific pathogen-free (SPF) conditions in individu-

ally ventilated cages at the central animal facility of the Göttingen University Medical

Center. Mice were kept with a constant 12 h/12 h inverted dark/light daily cycle (light

from 8.00 p.m. to 8.00 a.m.) and had ad libitum-access to food and water.
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All experimental procedures were performed during the night cycle (8.00 a.m. to 8.00 p.m.)

Mice were handled according to the guidelines of the ’Society for Laboratory Animals

Science’ (GV-SOLAS) and the guidelines of the ’Federation of European Laboratory

Animal Science Association’ (FELASA). All animal experiments were approved by the

"Landesamt für Verbraucherschutz und Lebensmittelsicherheit" (LAVES) Niedersach-

sen. Individuals that displayed conditions such as blind eyes or massive loss of weight

( > 20 %) at any time before or during the experiments were sacrificed immediately

and excluded from all analyses.

2.3.2 Transgenic Mice

In this work, the 5XFAD model, initially described by Oakley et al. (2006) has been

used (see also 1.8.2, page 22). Mice were maintained on a C57Bl6/J genetic background

(Jackson Laboratories, Bar-Harbor, ME, USA) (Jawhar et al., 2012).

2.3.3 Tissue Collection and Preservation

Mice were deeply anesthetized by intraperitoneal injection with a mixture of ketam-

ine (100 mg/kg) and xylazine (10 mg/kg) and transcardially perfused with ice-cold

PBS. Brains and spinal cords were dissected, spinal cords and right brain hemispheres

including olfactory bulb and cerebellum were placed into embedding casettes and post-

fixed in phosphate-buffered formaldehyde solution Roti Histofix for five to seven days.

The tissue was treated according to Wirths et al. (2010a): Using a TP 1020 Automatic

Tissue Processor, the tissue was first submerged in Histofix for 5 minutes and the

carried over to deionized water (30 minutes), dehydrated with aqueous solutions of

ascending ethanol content (50 % (v/v), 60 %, 70 %, 80 %, 90 % for one hour each) fol-

lowed by two times xylene (one hour each), and further two steps in melted paraffin

(one hour each) and finally embedded in paraffin. Spinal cords and left hemispheres

(olfactory bulb and cerebellum removed) were flash frozen on dry ice and stored at

-80 °C prior to use. Paraffin-embedded tissue was sliced to 4 µm sections with a
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microtome, mounted on superfrost slides in a water bath at RT and further fixed on

the slides in a second water bath at approximately 52 °C. Before using the sections for

immunohistochemistry, the slices were dried over night at 37 °C.

2.3.4 Passive Immunization of 5XFAD Mice

All monoclonal antibodies used for passive immunization consisted of a murine IgG2b

backbone: NT4X-167, 1-57, 9D5 dissolved in PBS (c = 1 mg/ml) were obtained from

Synaptic Systems, Göttingen (Germany), aliquoted, flash frozen in liquid nitrogen and

thawed at RT right before injection.

Female hemizygous 5XFAD (5XFADhem) mice were immunized in a chronic par-

enteral approach; animal received weekly intraperitoneal injections, over a course of

ten weeks, starting at the age of 4.5 months. The dosage of antibodies was 10 mg/kg

body weight. Two days after the 9th administration, the mice were subjected to behavi-

oral testing, starting with the cross maze test (see 2.3.6, page 52) at day one followed

by the elevated plus maze (see 2.3.6, page 51). After a one-day pause, morris water

maze training started (see 2.3.6, page 53). The last treatment was administered ap-

proximately six hours prior to the first trial of morris water maze acquisition training

stage.

2.3.5 Motorical Testing

Clasping Test

The clasping phenotype of mice was performed as determined as previously described

in Miller et al. (2008). Mice were suspended by the tail and given a score from 0-3,

with 0 representing no clasping, 1 for forepaw clasping only, 2 for forepaws and one

hindpaw clasping, and 3 for all paws clasping.
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Balance Beam Task

The balance beam test (Hau and Schapiro, 2002; Luong et al., 2011) was performed

as follows: A 50 cm long wooden round beam (1 cm in diameter) with a 9 x 15 cm

escape platform at either end was used to assess balance and general motor function.

The beam was elevated by 40 centimeters and the ground below was padded to prevent

mice from injury. Mice were gently released in the middle of the beam and given 60 s to

escape to one of the platform. Time on the beam was recorded as latency to fall. Escape

to one of the platforms was recorded as full time (Jawhar et al., 2012). For statistics,

the average of three trials per mouse, with an interval of at least 20 minutes between

the trials was analyzed. Between the single trials, the apparatus was cleaned with 70 %

ethanol to remove any olfactory cues and marks left by the animals during testing.

String Suspension Task

The string suspension task allows to assess animals for motor coordination and grip

strength (Arendash et al., 2001b; Hullmann, 2012). Similar to the balance beam, animals

were placed on a string connecting two escape platforms of 9 x 15 cm. String and

platforms were approximately 40 cm above the padded ground. The performance was

rated according to the following system: 0 = unable to remain on string; 1 = mouse

hangs on platform by paws only; 2 = as 2, but with attempts to climb up; 3 = mouse

sits on the string and keeps balance; 4 = mouse is able to move laterally on the string;

5 = escape to one of the platforms (Jawhar et al., 2012; Moran et al., 1995). For analysis,

the average ranking out of three independent trials (60 s each) per mouse was taken.

Between the single trials, the apparatus was cleaned with 70 % ethanol to remove any

olfactory cues and marks left by the animals during testing.

2.3.6 Behavioral Testing

Elevated Plus Maze

This paradigm based on the tendency of a mouse to avoid open spaces was originally

described in Karl et al. (2003). The mice were introduced into an elevated, cross-shaped
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Figure 2.2
Behavioral testing paradigms. A Elevated plus maze B Cross Maze C Morris water maze.
Reprinted with kind permission of Dr. Anika Saul, Göttingen

apparatus (length 15 cm x width 5 cm) with two enclosed arms opposing each other

and two opposing wall-free arms (See Figure 2.2). The apparatus was elevated by 75 cm

above ground level. Mice were allowed to freely explore the apparatus for 5 minutes.

For analysis, the percentage of time spent in the open/closed arms was displayed.

The total distance travelled and average speed in the mice were measured as control

parameters to judge the locomotion abilities of the mice. Between the single trials, the

apparatus was cleaned with 70 % ethanol to remove any olfactory cues and marks left

by the animals during testing.

Cross Maze

The cross maze task was performed similar to the way described in Jawhar et al. (2012).

In brief, the mice were subjected to a cross-shaped symmetrical maze with 4 arms

(length 30 cm x width 8 cm x height 15 cm) (See Figure 2.2). To start the test, mice

were placed in the center area of the apparatus and allowed to freely explore the setup

for 10 minutes. Sequential visits of all four arms (e.g. arm 1, arm 3, arm 2, arm 4) were

counted as correct alternations, with overlap of sequences being allowed (Arendash
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et al., 2001b). The percentage of alternations was expressed in regard to the number

of total possible alternations (n(arm antries)-3). Total distance travelled and average

speed in the maze were measured as control parameters. This test is based on the

natural tendency of mice to explore the least visited arm rather than a recently visited

one (Wietrzych et al., 2005). Between the single trials, the apparatus was cleaned with

70 % ethanol to remove any olfactory cues and marks left by the animals during testing.

Morris Water Maze

The morris water maze paradigm (originally described in Morris (1984)) was per-

formed as follows, similar to the way described in Bouter et al. (2013). The apparatus

consisted of a round steel pool with a diameter of 120 cm filled with water (made

opaque by adding non-toxic white paint) up to approximately 20 cm and virtually

divided into four quadrants (see Figure 2.2). For acclimatization and testing of motor-

ic/visual abilities, an animal was released at the border of the pool and trained over

three days (cued training stage) to find a visible (cued) platform (15 cm in diameter)

slightly reaching over the water level. A blue plastic cylinder (5 cm in diameter) with

white vertical stripes served as the platform cue. Each training day consisted of four

independent trials. Between trials, the platform position and release point were semi-

randomly shifted between four different positions excluding the quadrant being the

target quadrant in later stages (Vorhees and Williams, 2006). The duration of a single

trial was 60 s. In case a mouse did not find the platform, it was gently directed to

reach the platform and allowed to rest for five seconds. No external cues were used

during the cued training stage. Having finished the cued training stage, water was

filled up to a level of 0.5 cm above the platform, the platform cue was removed and

proximal/distal cues placed at the pool borders in the middle of each virtual quadrant.

Mice were then trained during a five-day period (acquisition training stage) with four

trials a day to localize the hidden platform in the target quadrant. Again, mice were

released from four different positions at the pool border, allowed to freely search for

the platform for 60 s and given five seconds to rest on the platform. Mice that did

not localize the platform within the given time were again gently directed towards the
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platform and allowed to familiarize. At all stages, the animals were allowed to rest and

dry between two trials for at least 15 min. After the acquisition training stage, the mice

were subjected to a single probe test trial where the platform was removed and the

mice were allowed to search freely for 30 s. Parameters taken into analysis were aver-

age swimming speed and time to reach the platform position (escape latency) for the

cued and acquisition training stages. For the probe trial, swimming speed was meas-

ured as a control parameter and further, the percentage of time in the four quadrants

as well as the average proximity to the memorized target platform position was calcu-

lated. Between the single trials, the apparatus was cleaned with 70 % ethanol to remove

any olfactory cues and marks left by the animals during testing.

2.4 computational methods

2.4.1 Quantification of Plaque Load

Extracellular Aβ load was evaluated in sagittal brain sections of 4 µm for anterior mo-

tor cortex (stereotactic coordinates from the bregma: AP 3 – 2 mm, D 0.75 – 1.75 mm)

and thalamus (AP -1 - 2 mm,D2.25–3.25 mm). Five to six sections per mouse and per

antibody were analyzed by immunohistochemistry with diaminobenzidine as a chro-

mogene and Thioflavin S fluorescent staining. Sections starting from the lateral cutting

plane of approximately 0.36 mm from the bregma were assessed for plaque load quan-

tification, and pairs of parallel sections were stained in three independent experiments

for each animal and antibody/dye. Therefore, the sections for the three experimental

turns using the same antibody/dye were 80 µm apart from each other. Images were

taken at 100-fold magnification using an Olympus BX-51 microscope equipped with an

Olympus DP-50 camera. Using ImageJ the images (Thioflavin S images were inverted)

were binarized to 8-bit black and white images and a fixed intensity threshold was

applied defining the stained area. For the subiculum, an ellipsoid area of constant size

approaching the desired brain region was selected before quantification, and the out-

side of this ellipsoid was cleared. The single measurements (% area fraction) for each

section were normalized to the average of the PBS injected control group, giving a
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relative plaque load level expressed in percent for each individual experimental turn.

For statistical analysis, the average of the three experimental turns was used.

2.4.2 Software and Statistics

For all behavioral testing, AnyMaze Software combined with a camera (Computar,

Commack, NY, USA) for tracking was used. Statistical analysis was performed using

GraphPad PRISM 6 (GraphPad Software, San Diego, CA, USA). Quantitative Real-Time

PCR Data were collected and processed with the MxPro MX3000P Software (Strata-

gene, Santa Clara, USA). Images were processed with ImageJ V1.41, NIH, USA and/or

Adobe Photoshop CS2 (Adobe Systems, San Jose, CA, USA). Figures were composed

with Adobe Photoshop CS2 and/or Adobe Illustrator CS 2 (Adobe Systems, San Jose,

CA, USA). The mass-spectrometric data was processed with the flexAnalysis software

Version 3.0.54.0 (Bruker Daltonics, Bremen, Germany).

Statistical tests performed were students-two-tailed t-test, one-way-Analysis of Vari-

ance (ANOVA) and repeated-measures ANOVA for grouped analysis, followed by

Dunnet´s or Tukey´s post-hoc tests for mutiple comparison. Data were expressed as

mean ± SEM and a 0.5 % general significance niveau was defined, with significance

levels as follows: *: p < 0.05; **: p < 0.01; ***: p < 0.001.
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Part III

R E S U LT S





3
R E S U LT S

3.1 characterization of the antibody nt4x-167

Peptide-binding Properties of NT4X under Native Conditions

Freshly dissolved Aβ peptides were probed on a nitrocellulose membrane under blue

native conditions, where peptides migrate approximately proportional to their mo-

lecular weight. All peptide species tested, though freshly dissolved, formed higher

molecular weight oligomers of different sizes immediately. NT4X-167 detected both

AβpE3−40/42 and Aβ4−40/42. Interestingly, the latter migrated in a distinct band of ap-

proximately 50 kDa, though the other peptides probed were present in different distinct

bands of approximately 20, 30 and 50 kDa for AβpE3−40 and approximately 30, 50, 55

and > 70 kDa for AβpE3−42. Probing with N-terminal specific antibody IC16 revealed

bands at approximately 20 and 30 kDa for Aβ1−40, approximately 20, 30, 55 kDa, as

well as larger aggregates > 70 kDa for Aβ1−42. Furthermore, stronger signals indicated

that NT4X-167, though recognizing both AβpE3−40/42 and Aβ4−40/42, shows a prefer-

ence for the latter. Probing of a duplicate membrane with antibody 24311 revealed that

in fact Aβ4−40/42 migrated in a distinct single band of 50 kDa and do not readily form

oligomers of different molecular weight (Figure 3.1).
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Figure 3.1
Blue Native Western Blot of synthetic Aβ Peptides. Freshly dissolved syn-
thetic Aβ1−40/42, AβpE3−40/42 and Aβ4−40/42 were probed onto a nitr-
cellulose membrane. A Antibody NT4X-167 recognized both AβpE3−40/42
and Aβ4−40/42, with the latter migrating in distinct bands at approxim-
ately 50 kDa. B Antibody 1-57 showed strong recognition of AβpE3−40/42
exclusively. C Antibody IC16 recognized only Aβ1−40/42 D The polyclonal
antibody 24311 recognized all probed peptides, revealing that Aβ4−40/42
indeed migrated as single distinct bands of approximately 50 kDa without
any higher or lower molecular weight bands.
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3.2 characterization of the homozygous 5xfad model

3.2.1 Generation of Homozygous 5XFAD

Confirmed transgenic 5XFADhem males and females were set up as breeding pairs to

generate 5XFADhom animals. All animals of the resulting litters were screened for the

transgenes by conventional APP genotyping and animals found positive were further

analyzed by quantitative Real-Time PCR of genomic DNA as described. Homozygosity

was then verified by backcrossing with wild-type C57B6/J (WT). Confirmed 5XFADhom

individuals were then taken for further breeding. When breeding the 5XFADhom strain,

female mice were well propagating up to the age of approximately 4.5 months, male

animals up to the age of 8 months, with regular litter sizes between 5-8 pups. Female

5XFADhom mice had to be sacrificed due to ethical considerations at an age between

6-7 months and male 5XFADhom animals at the age of 9-10 months, because they dis-

played massive motor impairment and a generally poor condition at later stages.

3.2.2 Transgene Expression in young 5XFAD

Immunohistochemical analysis of young 5XFADhem and 5XFADhom revealed elev-

ated human APP expression in subiculum and cortex already at the age of 16 days

for the homo-zygous animals. This increased APP expression was persisting at the age

of 6 weeks (Figure 3.2). In order to compare the Aβ-distribution in cortex between

6 weeks old 5XFADhem and 5XFADhom mice, sagittal brain paraffin sections were

treated with the monoclonal antibody Aβ[N] (against N-terminal Aβ). In cortical layer

V cells, abundant punctate intracellular immunoreactivity was found (Figure 3.3),

which revealed a vesicular staining pattern at higher magnification (Figure 3.4).
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Figure 3.2
Early age APP-expression in 5XFAD mice. Both 5XFADhem and 5XFADhom mice displayed
detecteable APP expression already at then age of 16 days (p16) in both subiculum and cortex,
with a more abundant APP-positive signal in the 5XFADhom. This finding persisted at 6 weeks
(6w) of age in both genotypes. Scalebar represents 50 µm for all images.
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Figure 3.3
Early age intracellular Aβ accumulation in 5XFAD mice. In 6-week old
5XFAD, intracellular accumulation of Aβ was detected with the antibody
Aβ[N] in the cortex (Right), with the 5XFADhom displaying a stronger Aβ
immunoreactivity than 5XFADhem. In the subiculum (Left), at this age no
intracellular Aβ was detected. Scalebar represents 50 µm for all images.

Figure 3.4
High magnification revealed a vesicular pattern of intracellular Aβ accumu-
lation in young 5XFAD mice. Scalebar represents 20 µm for both images.
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3.2.3 Amyloid-beta in older 5XFAD

To further verify the presence of N-terminally truncated Aβ and estimate relative

abundance of minor peptide isoforms in the 5XFAD model, a pooled sample of three

7-month-old female 5XFADhem individuals was subjected to IP followed by MALDI-TOF.

Besides Aβ1−40/42, several C-terminally and N-terminally truncated Aβ isoforms were

detected as described previously by Wittnam et al. (2012): AβpE3−42, Aβ4−42 and

Aβ5−42. Here, Aβ1−43, Aβ1−37, Aβ1−38, Aβ1−39 and Aβ4−40 were detected in addi-

tion to the previously reported ones as shown in figure 3.2.3.

Figure 3.5
Aβ isoforms in 5XFAD brain.

A Major species detected were Aβ1−40/42. B (Zoomed view of A) Less abundant
species detected in 5XFAD brains were Aβ1−43, Aβ1−37/38/39, Aβ4−40/42, and

Aβ5−42. C No peaks corresponding to Aβ were detected in the WT control.
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Table 3.1
Amyloid-beta Peptides detected between in 5XFAD brain by IP/MALDI-TOF

Peptide Monoisotopic
Weight m/z Intensity Signal/ Noise

Aβ4−40 4012.04 4012.42 72.00 6.14

Aβ5−42 4049.09 4049.40 196.00 16.71

Aβ1−37 4071.99 4071.63 120.00 10.23

Aβ1−38 4129.01 4129.11 799.00 68.12

Aβ4−42 4196.16 4196.16 744.00 63.43

Aβ1−39 4228.08 4228.36 305.00 26.00

AβpE3−42 4307.21 4312.09 298.00 25.41

Aβ1−40 4327.15 4327.15 33683.00 2871.83

Aβ1−42 4511.27 4511.27 275605.00 23498.24

Aβ1−43 4612.32 4612.59 75.00 6.39

3.2.4 Phenotypical Characterization of Homozygous 5XFAD

The newly generated 5XFADhom strain was characterized regarding transgene expres-

sion pattern, Aβ expression, physical condition parameters and behavior phenotype

in comparison to both age-matched WT and age-matched 5XFADhem. The following

numbers of animals were used for the motor testing and behavior analysis: WT: n = 10

(2 months), n = 7 (5 months); 5XFADhem: n = 8-10 (2 months), n = 6-7 (5 months);

5XFADhom: n = 8-9 (2 months), n = 5-7 (5 months).

3.2.5 Physical Condition and Motor Abilities of Homozygous 5XFAD

At the age of two months, both 5XFADhem and 5XFADhom had a significantly reduced

body weight as compared to WT animals (both p < 0.001). At the age of 5 months,

5XFADhom again showed a significantly lower body weight as compared to both, WT

and 5XFADhem animals (both p < 0.01). However, no weight differences were observed

comparing 5XFADhem mice to WT animals (Figure 3.6).

As previously described (Jawhar et al., 2012), 5XFAD mice displayed a characteristic
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so-called clasping phenotype, an unusual retraction of fore- and hindlimbs when the

animal is suspended by the tail. Applying a clasping score scale ranging from 0-3 re-

vealed that in both genotypes revealed that this symptom is already present at the age

of 2 months, whereas WT mice showed no such motor impairment (both p < 0.05).

The clasping phenotype revealed progressing moto-neuronal impairment at the age of

5 months with significantly higher scores in 5XFADhem mice (p < 0.01) compared to

WT, and yet more aggravated impairment in 5XFADhom than in WT and 5XFADhem

(p < 0.001 and p < 0.05 respectively; Figure 3.7).

Figure 3.6
Body weight of 5XFAD mice at the age of 2 and 5 months. A At 2 months of age, both
5XFADhem and 5XFADhom displayed a significantly reduced body weight as compared to
WT control animals. B At 5 months, only 5XFADhom animals showed a reduced body weight
compared to both WT and 5XFADhem mice. (One-way ANOVA followed by Tukey´s post-hoc
test; *: p < 0.05; **: p < 0.01; ***: p < 0.001)

To analyze the sensory-motor performance, mice were subjected to the balance beam

and the string suspension task (Figures 3.8 and 3.9). In the balance beam task,

5XFADhom mice performed significantly poorer at the age of 5 months as compared to

age-matched WT and 5XFADhem animals (p < 0.001 and p < 0.05). In the string suspen-

sion test 5XFADhom performed worse than WT (p < 0.001) and 5XFADhem ( p < 0.05).
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Figure 3.7
Clasping phenotype of 5XFAD mice. A Whereas no clasping phenotype was observed for 2
month old WT animals, both 5XFADhem and 5XFADhom showed a characteristic retraction
of paws. B At 5 months of age, 5XFADhem showed a significantly aggravated clasping phen-
otype compared to WT controls that was even more pronounced in 5XFADhom, showing a
significantly higher clasping score than both WT and 5XFADhem animals. (One-way ANOVA
followed by Tukey´s post-hoc test; *: p < 0.05; **: p < 0.01; ***: p < 0.001)

3.2.6 Anxiety in Homozygous 5XFAD

Already at the age of two months, anxiety levels in 5XFADhom animals were signi-

ficantly lower compared to the age-matched 5XFADhem, as indicated by an increased

ratio of open versus total arm entries (p < 0.05). The average number of arm entries re-

mained unaltered (Figure 3.10, page 67). At 5 months, both 5XFADhem (p < 0.05) and

5XFADhom (p < 0.001) displayed altered anxiety behavior compared to WT controls,

with a more pronounced phenotype in the 5XFADhom group (p < 0.05 compared to

5XFADhem). The control parameter, i.e.the total number of arm entries was not signi-

ficantly different between all three groups (Figure 3.11, page 68).
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Figure 3.8
Sensory-motor performance of 5XFAD in the balance beam task. A No significant differences
were observed between the 2-month old groups. B 5-month old 5XFADhom animals performed
significantly worse than age-matched WT or 5XFADhem mice. (One-way ANOVA followed by
Tukey´s post-hoc test; *: p < 0.05; **: p < 0.01; ***: p < 0.001)

3.2.7 Working Memory Performance of Homozygous 5XFAD

No differences between all tested groups were found for the alternation rate, total num-

ber of arm entries, average speed in the maze and distance travelled in the cross maze

task, indicating that both 2 and 5 month old 5XFAD animals have no working memory

impairment independent of the genotype (One-way ANOVA followed by Tukey´s post-

hoc test; data not shown).
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Figure 3.9
Sensory-motor performance of 5XFAD in the string suspension task. A No significant dif-
ferences were observed between the 2-month old groups. B 5-month old 5XFADhom animals
performed significantly worse than age-matched WT or 5XFADhem mice. (One-way ANOVA
followed by Tukey´s post-hoc test; *: p < 0.05; **: p < 0.01; ***: p < 0.001)

Figure 3.10
Anxiety levels in the 5XFAD model. A At 2 months of age, the 5XFADhom animals showed
significantly reduced anxiety compared to the 5XFADhom group. B The number of total arm
entries was not significantly different between the groups (One-way ANOVA followed by
Tukey´s post hoc test, *: p < 0.05; **: p < 0.01; ***: p < 0.001)
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Figure 3.11
Anxiety levels in the 5XFAD model A At 5 months of age, the 5XFADhem animals showed
significantly altered anxiety compared to the WT group. The 5XFADhom animals showed signi-
ficantly reduced anxiety compared to the WT- as well as the 5XFADhom group. B The number
of total arm entries were not different between the groups (One-way ANOVA followed by
Tukey´s post hoc test, *: p < 0.05; **: p < 0.01; ***: p < 0.001)
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3.2.8 Spatial Reference Memory Impairment of Homozygous 5XFAD

To assess the spatial reference memory performance, WT, 5XFADhem and 5XFADhom

mice at 2 and 5 months were subjected to the morris water maze task. The initial cued

training phase, serving as a control experiment to exclude that sensory or motor

deficits bias the interpretation of the results, revealed that mice of all ages and geno-

types showed progressively decreasing escape latencies. 5 month old 5XFADhom an-

imals showed a significantly lower average swimming speed. However, no significant

difference in swimming speed at day 3 of the cued training phase was observed. There-

fore, all groups fulfilled the criteria for the task. In the following acquisition train-

ing phase, mice were forced to memorize an escape platform hidden below the water

surface during five days of training. Already at the age of 2 months, a significant

main genotype effect for the escape latency was evident (Repeated measures-ANOVA,

F = 7.405, p =0.05) for 5XFADhom, whereas no significant differences between 2-month

old WT and 5XFADhem mice were observed. However, significant differences over the

training days 1-5 were not evident at the age of two months (Figure 3.12). Again,

at the age of 5 months, there was a significant main effect for the genotype evident

(Repeated measures-ANOVA, F = 25.05, p < 0.001), with 5XFADhom showing a signi-

ficantly longer escape latency, although no differences in the swimming speed were

detected among the groups (One-way ANOVA, both p < 0.001). Furthermore, the es-

cape latency of 5XFADhom was significantly higher than that of WT animals at day 1

to day 5, and significantly different compared to the 5XFADhem group at days 2 and

3 of the acquisition training trial (Figure 3.13) On day 6 after start of the acquisition

training, mice were given a 30 s probe trial in which they were allowed to freely search

for the platform´s positon to assess spatial reference memory. Except for the group of

the 5-month-old 5XFADhom group, all genotypes and ages showed a clear, significant

preference for the target quadrant (Figure 3.14). The average proximity to the target

platform position did not differ significantly for the groups of 2-month-old animals

in the probe trial, whereas, in line with the loss of a target quadrant preference, the

average proximity to the target position was significantly lower in the 5 month old

5XFADhom group (Figure 3.14).
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Figure 3.12
Spatial reference learning in 2-month-old 5XFAD mice. A In the cued training phase, all
groups displayed significantly reduced escape latencies within a three-day timespan. B Similar
to A, in the acquisition training stage, all groups showed significantly reduced escape latencies
between day 1 and day 5 of the training. C, D In both cued training and acquisition training,
no differences in the swimming speed were observed. (A, B: Two-way ANOVA followed by
Dunnett´s post-hoc test for multiple comparison; C, D: One-way ANOVA followed by Dunnett´s
post-hoc test for multiple comparison; *: p < 0.05; **: p < 0.01; ***: p < 0.001)
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Figure 3.13
Spatial reference learning in 5-month-old 5XFAD mice. A In the cued training phase, all
groups displayed significantly reduced escape latencies within a three-day time span. B Dur-
ing the entire duration of the acquisition training stage, the 5XFADhom group showed a sig-
nificantly poorer performance in escape latencies than WT and 5XFADhem animals. C In the
cued training stage, 5XFADhom swam significantly slower than the WT and 5XFADhem group,
whereas D in the acquisition training, no differences for the swimming speed were observed.
(A, B: Two-way ANOVA followed by Dunnett´s post-hoc test for multiple comparison; C, D:
One-way ANOVA followed by Dunnett´s post-hoc test for multiple comparison; *: p < 0.05; **:
p < 0.01; ***: p < 0.001)
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Figure 3.14
Spatial reference memory of 5XFAD mice. A At two months of age, all tested groups showed
a significant preference for the target quadrant (T) over the left (L), right (R) and opposite (O)
quadrant (A, C, E). B, D Of the 5 month old groups, the WT and the hemizygous 5XFAD
animals showed a clear and significant preference for the target quadrant as well. F In the 5
month old homozygous animals, no significant preference was observed for the target quadrant.
(One-way ANOVA followed by Dunnett´s post-hoc test for multiple comparison; *: p < 0.05; **:
p < 0.01; ***: p < 0.001)
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3.3 passive immunization against n-truncated amyloid-beta

Female 5XFADhem were immunized for a duration of ten weeks with antibodies NT4X-

167 (termed NT4X-167 group), 1-57 (termed 1-57 group) and 9D5 (termed 9D5 group)

at a dosage of 10 mg/kg body weight. At the age of 7 months, mice were subjected

to behavioral testing and then sacrificed for biochemical analysis. The elevated plus

maze was performed first, followed by the cross maze task and then, after a one day

pause, mice were trained in the morris water maze paradigm, receiving the last of ten

injections approximately 6 hours prior to the the acquisition training trial. The experi-

mental approach compared three antibody-treated groups with a PBS-injected control

(termed PBS group). After the behavior testing, mice were sacrificed and further ana-

lyzed biochemically regarding plaque load and soluble/insoluble Aβ levels.

3.3.1 Quantification of Amyloid Plaque Deposits after Passive Immunization

The numbers of animals used for the passive immunization experiments were: (PBS-

group: 7; NT4X-167-group: 9; 1-57-group: 7, 9D5-group: 8). To exclude that the admin-

istered antibody would bias the plaque load detection, blind stainings (primary anti-

body incubation was skipped) were performed for all animals. The so-treated slices

were free of any immunoreactivity. Thus, plaque load measurement was not biased by

pre-existing immunoreactivity due to chronic passive administration of antibodies.

General Aβ plaque load levels were assessed by fluorescent Thioflavin S staining of

amyloid deposits. In the anterior motor cortex of mice immunized with the antibody

NT4X-167 there was a significantly (p < 0.05) lower plaque load compared to the PBS-

injected controls (PBS-group: 100.00 ± 14.10 %; NT4X-group: 61.20 ± 9.85 %). In the

thalamus, no significant differences of thioflavin S positive deposits were observed

between all groups. However, there was a trend towards a lower plaque burden for the
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Figure 3.15
Quantitative analysis of Thioflavin S-positive plaques in passively immunized 5XFAD mice.
A The plaque burden in the anterior motor cortex was significantly lowered in the NT4X-167
group compared to the PBS group, whereas no significant differences to the PBS group were
observed for the 1-57- and the 9D5 group B A trend, but no significant reduction in thioflavin
S-positive plaques was observed for the NT4X-167 group and the 9D5 group in the thalamus.
(One-way ANOVA followed by Dunnett´s post-hoc test for multiple comparison to the PBS
group, *: p < 0.05; **: p < 0.01; ***: p < 0.001)

NT4X-167 group and the 9D5 group with approximately 30 % (NT4X-167 group) and

20 % (9D5 group) lower measures compared to the PBS group (Figure 3.15 page 74).

The amount of AβpE3−X was measured by immunohistochemistry using the anti-

body 1-57. In the NT4X-group, a significantly lower plaque burden (-43.41 %) was

observed compared to the PBS group (PBS group: 98.47 ± 11.53 %; NT4X-167 group:

55.05 ± 7.09 %; p < 0.01). Similar as in the thioflavin S staining, lower plaque load (-

34.10 %) was seen for the NT4X-167 group in the thalamus, but, however, this trend did

not reach significance. Between all other groups, no significant differences were found

for both brain regions (Figure 3.16, page 75).

The levels of amyloid deposits reacting with the antibody NT4X-167 were not signi-

ficantly altered for any of the antibody treated groups compared to the PBS group in

both anterior motor cortex and thalamus (Figure 3.17, page 76).
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Figure 3.16
Quantitative analysis of AβpE3−X-positive plaques in passively immunized 5XFAD mice.
A The levels of plaques reacting with antibody 1-57 were significantly lower in the NT4X-167
group compared to the PBS group in the anterior motor cortex, whereas the 1-57 group and
the 9D5 group did show a plaque burden that was not significantly altered compared to the
PBS group. B For the thalamus there was a slightly lower, but not significantly different, plaque
load than in the PBS group found for the NT4X-167 group. Again, the 1-57 group and the 9D5
group were not different compared to PBS injected animals. (One-way ANOVA followed by
Dunnett´s post-hoc test for multiple comparison to the PBS group, *: p < 0.05; **: p < 0.01; ***:
p < 0.001)

Plaque load level determination using the antibody G2-10 reacting with AβX−40

revealed significantly lower plaque load for the NT4X-167 group compared to the PBS

group in the anterior motor cortex (PBS group: 100.50 ± 11.05 %; NT4X-167 group:

67.19 ± 7.90 %; p < 0.05), whereas the G2-10 reactivity in the 1-57 group and the 9D5

group remained unaltered. As seen before for the thioflavin S- and AβpE3−X stainings,

a slightly lower plaque load (-28.49 %) for the NT4X-167 group was also found in the

thalamus, but this trend did not reach significance. Thus, no significant differences

between the four groups were observed in the thalamus regarding AβX−40 reactivity

(Figure 3.18, page 77).

The plaque load levels for Aβ1−X as detected with the antibody 82E1 remained

indifferent between all four groups in both anterior motor cortex and thalamus (Figure

3.19, page 78). The same holds true for AβX−42 (detected with the polyclonal antibody

Abeta42) as shown in figure 3.20, page 78.
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Figure 3.17
Quantitative analysis of AβpE3−X- and Aβ4−X-positive plaques in passively immunized
5XFAD mice. A The average levels of plaques reacting with NT4X-167 was not significantly
altered for all three, the NT4X-167-, 1-57- and 9D5 group. B The same holds true for the thal-
amus. (One-way ANOVA followed by Dunnett´s post-hoc test for multiple comparison to the
PBS group, *: p < 0.05; **: p < 0.01; ***: p < 0.001)

3.3.2 Behavioral Phenotype of 5XFAD Mice after Passive Immunization

Following the plaque load analysis, the same groups were analyzed regarding their

behavioral phenotype in the cross maze and the elevated plus maze paradigm. Here,

likewise handled, PBS-injected WT (n = 7) animals were taken as an additional control

group.

Working Memory Performance of 5XFAD Mice after Passive Immunization

Compared to the PBS-injected WT animals, the PBS group showed significantly im-

paired working memory indicated by a reduced rate of correct alternations in the maze

(WT: 32.36 ± 3.60 %; PBS group: 19.94 ± 1.82 %; p < 0.05). None of the treatment groups

performed significantly different from the PBS group in this task as shown in figure

3.21, page 79. However, a significant t-test in comparison to the PBS group (p < 0.05)

indicated a trend towards a rescue of the working memory performance in the NT4X-

167 group. No such trend was, however, observed for the 1-57 group (t-test, p > 0.1),

which displayed higher variability, and the 9D5 group (t-test, p > 0.1), which performed
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Figure 3.18
Quantitative analysis of AβX−40-positive plaques in passively immunized 5XFAD mice. A
In the anterior motor cortex, the levels of plaques reacting with the antibody G2-10 was signific-
antly lower in the NT4X-167 group compared to the PBS group, whereas the average amyloid
burden of the 1-57 group and the 9D5 group was not different from the plaque load levels
observed in PBS-injected animals. B In the thalamus, none of the antibody injected groups was
significantly different from the PBS controls, though a trend towards lowered plaque load was
observed in the NT4X-167 group. (One-way ANOVA followed by Dunnett´s post-hoc test for
multiple comparison to the PBS group, *: p < 0.05; **: p < 0.01; ***: p < 0.001)

almost indentical to the PBS group. The control parameters, i.e. average distance trav-

elled and average speed in the maze, were not significantly different for any of the

treatment groups compared to the PBS injected animals (data not shown).

Anxiety Phenotype of 5XFAD Mice after Passive Immunization

In the elevated plus maze, importantly, the PBS-group was found to perform almost

as described previously in Jawhar et al. (2012), displaying significantly different per-

centage of time spent in the open arms than the PBS-injected WT control group (p <

0.05) (Figure 3.21 B, page 79). No significant alteration in anxiety behavior has been

observed for the antibody-treated groups. The ratio of open arm and total arm entries

as well as the average speed and distance travelled were not significantly different

comparing the treatment groups to the PBS injected 5XFAD controls (data not shown).
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Figure 3.19
Quantitative analysis of Aβ1−X-positive plaques in passively immunized 5XFAD mice. A
The levels of plaques reacting with antibody 82E1 were not significantly different between all
groups compared to the PBS group in the anterior motor cortex. B The same holds true for the
thalamus. (One-way ANOVA followed by Dunnett´s post-hoc test for multiple comparison to
the PBS group, *: p < 0.05; **: p < 0.01; ***: p < 0.001)

Figure 3.20
Quantitative analysis of Aβ42-positive plaques in passively immunized 5XFAD mice. None
of the antibody-injected groups showed significantly altered levels of antibody Abeta42-positive
amyloid plaques in the anterior motor cortex and B the thalamus. (One-way ANOVA followed
by Dunnett´s post-hoc test for multiple comparison to the PBS group, *: p < 0.05; **: p < 0.01;
***: p < 0.001)
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Figure 3.21
Working memory performance and anxiety behavior of passively immunized 5XFAD mice.
A The PBS group showed significantly impared working memory in the cross maze paradigm
in comparison to the PBS-injected WT control animals. The performance of the antibody-treated
groups was not significantly different from the PBS-injected 5XFAD group, however, a positive
trend was observed for the NT4X-167 injected mice. B Compared to PBS-injected WT controls,
PBS-injected 5XFAD showed a reduced anxiety phenotype as shown by the significantly in-
creased time exploring the open arms of the paradigm, whereas none of the antibody-treated
groups was significantly different from the PBS-injected 5XFAD controls. (One-way ANOVA
followed by Dunnett´s post-hoc test for multiple comparison to the PBS group, *: p < 0.05; **: p
< 0.01; ***: p < 0.001)
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D I S C U S S I O N





4
D I S C U S S I O N

4.1 characterization of the antibody nt4x-167

To investigate distinct Aβ species, specific antibodies are a valuable research tool. The

monoclonal antibody NT4X-167 (IgG2b; official name of the cell line Aβ4−40 NT4X-167;

DSM ACC3162) was raised against unconjugated Aβ4−40 by immunization of Balb/c

mice and antibody-producing cells were fused with the myeloma cell line P3-X63-Ag8

to generate hybridoma cells. The antibody was generated to specifically recognize an

N-terminal epitope of oligomeric Aβ4−40 and was selected to bind to amino acids 4-10

of the Aβ sequence and with Aβ4−40 but not with amino acids 36-40. It was shown

subsequently, that the phenylalanine at position four is essential for target engagement

by NT4X-167. NT4X-167 is the first antibody reacting with Aβ4−X (Antonios et al.,

2013).

Toxic Aβ oligomers have increasingly gained attention during the past years. AβpE3−42

and Aβ4−42 have been shown to rapidly form stable oligomers whereas Aβ1−42 rather

stays in equilibrium with the monomeric state (Bouter et al., 2013). It has been proposed

that the N-terminal truncation of Aβ triggers a disequilibrium of monomers and oli-

gomers leading to increased levels of oligomers, which in turn trigger neuropathologic

alterations (Bayer and Wirths, 2014). Varying terminal end lenghts have been reported

to alter the aggregation properties of Aβ (Bouter et al., 2013; Jan et al., 2008; Jarrett

et al., 1993; Pike et al., 1995b). Thus, combinatory effects of varying terminal ends

might determinine the stability and solubility of Aβ oligomeric assemblies.
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In fact, this Aβ4−X aggregation pattern observed in Western Blot under blue native

conditions was clearly different from that observed for Aβ1−40/42 and AβpE3−40/42.

These experiments revealed that NT4X-167 recognizes AβpE3−40/42 and Aβ4−40/42,

of which the latter migrated as a single band at approximately 50 kDa (see 3.1, 57). In

a different approach, Bouter et al. (2013) reported a high propensity of Aβ4−42 to form

stable oligomers as well. In contrast, pyroglutamate AβpE3−40/42 ran as oligomers of

different sizes including higher molecular weight oligomers formed by AβpE3−42 and

Aβ1−42.

In addition, varying N-terminal length seemed to account somehow for different

SDS-resistance of Aβ4−X: In Western Blot under reducing conditions we found that

AβpE3−40 and Aβ4−40 migrated as monomers and dimers, whereas AβpE3−42 and

Aβ4−42 produced trimers and tetramers in addition (Antonios et al., 2013), as it was

shown previously (Masters et al., 1985; Wirths et al., 2010c). Solubility/aggregation

propensity of N-terminally intact Aβ has previously been reported to depend on the

carboxy-terminal of the peptide (Jan et al., 2008; Jarrett et al., 1993). Here, unlike the pat-

tern observed under reducing conditions, Aβ4−42 showed aggregation to oligomers of

identical size as Aβ4−40 under native consitions. In contrast, for AβpE3−42 and Aβ1−42

formation of higher molecular weight oligomers was observed in this approach.

In human AD tissue, NT4X-167 revealed an interesting affinity pattern, staining CAA

preferentially but barely reacting with extracellular plaques (Antonios et al., 2013). Sim-

ilarly, this has been described previously for the anti-AβpE3−X conformation-specific

antibody 9D5 that reacts with lower molecular weight oligomers exclusively (Wirths

et al., 2010c). In murine tissue, NT4X-167 reacted with both intracellular Aβ aggreg-

ates and extracellular amyloid deposits (Antonios et al., 2013).

We have further shown that Aβ4−42 is cytotoxic and that NT4X-167 rescued Aβ4−42-

but not AβpE3−42- and Aβ1−42-induced cytotoxity (Antonios et al., 2013) in a cell

culture model. This further underlines the importance of toxic oligomers composed of

Aβ starting at residue 4.
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These experimental findings point to the conclusion that the newly developed mono-

clonal antibody NT4X-167 is selective for N-truncated Aβ, with a preference for Aβ4−X,

and could have potential to investigate its role in vivo. Moreover, Western Blotting of

synthetic peptides revealed that under native conditions, Aβ4−40/42 display an oli-

gomer aggregation pattern that is different from Aβ1−40/ Aβ1−42 and AβpE3−40/42,

which further supports structural differences of Aβ4−X asseblies as previously repor-

ted in Bouter et al. (2013). The migrating pattern under native conditions indicated that

Aβ4−X is more prone to form stable oligomeric assemblies. It has been demonstrated

for Aβ1−40 and Aβ1−42 that presence of the previous interferes with aggregation of

the latter (Jan et al., 2008). Interaction of N-truncated AβpE3−42 with Aβ1−42 has been

shown to alter conformation and increase toxicity of hetero-oligomers (Nussbaum et al.,

2012), and the existence of a distinct oligomeric species of AβpE3−X, possibly of par-

ticular interest for AD diagnosis and therapy, has been demonstrated by Wirths et al.

(2010c). The observation that NT4X-167 barely reacts with densely aggregated plaques

in AD Antonios et al. (2013) indicates that, probably due to a similar effect of Aβ4−X,

NT4X-167 prefers a more soluble oligomeric conformation of Aβ aggregates. However,

if and how Aβ4−X isoforms display similar effects is yet unknown.

NT4X-167 is the first monoclonal antibody reacting with Aβ4−X and therefore rep-

resents a valuable tool to investigate the mechanism and consequences of an altered

equilibrium between soluble and insoluble Aβ induced by N-terminal truncation of

Aβ. It has been shown that in vitro NT4X-167 rescues Aβ4−42 induced cytotocity (Ant-

onios et al., 2013). In summary, this raises the interest in NT4X-167 as an experimental

and possible therapeutic tool.
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4.2 characterization of homozygous 5xfad mice

4.2.1 Generation of the Mouse Line

The 5XFAD model is a transgenic mouse line overexpressing human APP and human

PS-1 with a total number of five familial AD mutations that are inherited together. This

leads to massive and rapid accumulation of amyloid plaques and elevated AβX−42

levels in the brain. 5XFAD was described previously as one of few models displaying

a combination of several major hallmarks of human AD including neuron loss (Eimer

and Vassar, 2013; Jawhar et al., 2012; Oakley et al., 2006). Neuronal loss is a feature that

has not been reported for some other commonly used APP transgenic models such

as the PDAPP (Games et al., 1995), Tg2576 (Hsiao et al., 1996) and the APP/PS1∆E9

models (Borchelt et al., 1997). The 5XFAD model displays accumulation of intracellular

Aβ prior to plaque formation as early as at 6-8 weeks of age in the subiculum and

furthermore in cortical layer V, a region where abundant neuron loss is observed at

later stages (Jawhar et al., 2012; Oakley et al., 2006). This feature of early intracellular

Aβ accumulation has, among others, been described for several AD models including

APPSDL/PS1M146L (Wirths et al., 2001), APPSL/PS1M146L (Wirths et al., 2002), Tg2576

(Takahashi et al., 2002), 3xTg (Oddo et al., 2003) or APP/PS1KI (Casas et al., 2004).

The focus of the present study lay on N-terminally truncated Aβ: It was described

previously that besides full length Aβ, minor species such as AβpE3−X (Frost et al.,

2013; Wittnam et al., 2012), Aβ4−X and Aβ5−42 (Wittnam et al., 2012) are present in the

5XFAD model . AβpE3−X species have also been shown to be present in brains of mur-

ine models, canines, non-human primates as well as in human AD brain samples (Frost

et al., 2013; Mori et al., 1992). It was further shown that AβpE3−X represents a major

fraction in human AD brain (Portelius et al., 2010; Saido et al., 1995). N-terminally trun-

cated AβpE3−X has gained much attraction since then and it was further described that

increased levels of AβpE3−X aggravate the behavioral phenotype whereas a knock-out

of glutaminyl cyclase, the enzyme responsible for pyroglutamate formation, rescues

behavioral deficits (Jawhar et al., 2011; Wittnam et al., 2012).
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However, although it was described as early as in 1985 (Masters et al., 1985), and it

was shown to be relatively abundant in brains of AD and vascular dementia patients

(Lewis et al., 2006), Aβ starting at position four did not received likewise attention. As

well, not much is known about Aβ starting at position 5. It has been shown to be depos-

ited in human AD brain and to be produced due to caspase activity (Murayama et al.,

2007; Takeda et al., 2004). More recently, a new, Aβ4−42-expressing model (Tg4-42) dis-

playing abundant neuron loss and behavioral deficits amyloid deposition was created

(Bouter et al., 2013). In contrast to prominent intracellular Aβ-immunoreactivity, no

extracellular amyloid deposition was described for Tg4-42 mice (Bouter et al., 2013).

Besides these N-terminally ragged Aβ peptides, several C-terminally truncated spe-

cies such as AβX−38 have been also described in mouse models, familial and sporadic

AD cases (Karran et al., 2011; Moro et al., 2012). It was shown that AβpE3−X correlates

better with cognitive decline in human AD than does plaque deposition (Holtzman

et al., 2011). In contrast to the findings in AD, N-truncated Aβ represents a minor

fraction in 5XFAD (Wittnam et al., 2012). This raised the question if and to what ex-

tent 5XFAD represents a suitable model to investigate the pathophysiologic effects of

N-truncated Aβ variants. In fact, some APP overexpressing models have not been re-

ported to show neuron loss (e.g. PDAPP, APP/PS1∆E9, Tg2576; table 4.1, page 95),

which is a feature of AD (Blennow et al., 2006). Together with this, the remarkably dif-

ferent Aβ stoichiometry observed somehow questions the validity of commonly used

models.

To address this issue, a homozygous 5XFAD line was created to increase the trans-

gene expression and elevate the Aβ levels in the animals brains. Breeding transgenic

mouse models of AD to homozygosity is a common procedure to aggravate the extent

of the phenotype and accelerate its progression and has been performed previously

for models such as PDAPP (German et al., 2003), ARTE10 (Willuweit et al., 2009) and

Tg4-42 (Bouter et al., 2013). The consequences of homozygosity and related findings

will be discussed in the following subsections.
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4.2.2 Transgene Expression in young 5XFAD

Immunohistochemistry on parrafin sections of young 5XFADhem and 5XFADhom mice

revealed that both APP expression (at postnatal day 16 and persisting at the age of

six weeks) and Aβ production (in six weeks old mice) is elevated in the 5XFADhom

animals compared to 5XFADhem mice (Figures 3.2, page 60 3.3, page 61 3.4, page

61). To determine the effects of the elevated transgene expression, the 5XFADhom strain

was thoroughly characterized at later ages subsequently.

4.2.3 Prevalence of N-truncated Amyloid-beta in young 5XFAD

Based on the observation that indeed the levels of Aβ are elevated in 5XFADhom mice,

we performed immunohistochemstry on brain sections of six weeks old 5XFADhom

animals to investigate whether AβpE3−X, Aβ4−X and Aβ5−X can be detected at this

early time point. Employing the newly developed antibody NT4X-167 recognizing both

AβpE3−X and Aβ4−X in combination with the antibody 1-57 specifically reacting with

AβpE3−X, we could show abundant intracelluar NT4X-167 reactivity in the 5XFADhom

animals in contrast to no detecteable AβpE3−X-immunoreactivity. This immunohisto-

chemical pattern was not found in 5XFADhem animals of the same age, indicating

that an high transgene expression levels are crucial for detection of underrepresented

Aβ species in young 5XFAD. Immunohistochemistry did not reveal any extracellular

AβpE3−X in 6 weeks old 5XFAD. This observation led to the conclusion that in the

5XFAD model, Aβ4−X precedes AβpE3−X (Antonios et al., 2013). Later Appearance

of AβpE3−X in this model is further supported by Frost et al. (2013), who found no

AβpE3−X immunoreactivity in 2.5-month-old 5XFAD. Importantly, Aβ4−X was detec-

ted together together with Aβ1−X in the neurons of cortical layer V that are prone to

degenerate in 5XFAD mice at the age of 12 months (Jawhar et al., 2012; Oakley et al.,

2006). Such transient intraneuronal Aβ correlated with subsequent neuron loss has also

been reported for several other APP/Aβ models (Alexandru et al., 2011; Bouter et al.,

2013; Casas et al., 2004; Christensen et al., 2008, 2010a; Wirths et al., 2009).
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Several reports found intracellular accumulation of Aβ in AD, too (D’Andrea et al.,

2001, 2002; Fernandez-Vizarra et al., 2004; Mochizuki et al., 2000). It has been shown

that this intracellular accumulation takes place in AD-vulnerable regions (Gouras et al.,

2000).

Similarly, we performed stainings for Aβ5−X employing the polyclonal antibody AB5-3

to elucidate whether this N-truncated variant is also present at this time point. In con-

trast to Aβ4−X, Aβ5−X does not appear to be abundantly produced in six weeks old

5XFADhom mice, since no intracellular aggregates or extracellular amyloid plaques

were detected with AB5-3 at six weeks of age (Guzman et al., 2014). The feature of

intracellular Aβ accumulation preceeding plaque deposition in this model is well in

line with the findings in AD. Assuming that intracellular Aβ accumulation represents

a pathologic key event, the finding of early intraneuronal Aβ4−X suggests that this

isoform might contribute to neurodegenerative processes, which is in line with obser-

vations in the newly generated Tg4-42 model (Bouter et al., 2013).

4.2.4 Amyloid-beta in 7-month-old 5XFAD

In order to assess whether minor ragged Aβ variants are also present in older 5XFAD

and to further validate the findings from immunohistochemistry, I performed a com-

bined IP/MALDI-TOF approach on brain tissue homogenates from 7-month-old 5XFAD.

Using a mixture of the antibodies 4G8 and 6E10 coupled to paramagnetic Dynabeads,

Aβ was precipiated from neutralized formic acid extracts of the brain homogenate.

The MALDI-TOF detection enabled for identification of peaks corresponding to a total

number of ten Aβ peptides. Among these, as described earlier, Aβ1−40 and Aβ1−42

were detected with the highest intensity peaks (Wittnam et al., 2012), with the latter sig-

nal being approximately 10-fold more intense than the peak for Aβ1−40. As described

in Wittnam et al. (2012) for six month old mice, the less abundant peptides Aβ4−42,

AβpE3−42 and Aβ5−42 were detected. Beyond the findings from Wittnam et al. (2012),

the IP/MALDI-TOF approach with 4G8/6E10 described here revealed the presence of

Aβ4−40, Aβ1−37, Aβ1−38, Aβ1−39, AβpE3−42 and Aβ1−43.
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Since this MALDI-TOF approach can be biased by several factors such as the choice

of the antibodies for IP, it is not suitable for an accurate quantification of the single Aβ

peptides. However, since the selected antibodies both recognize central linear epitopes

within the Aβ sequence (which likely minimizes the bias of preferential binding), the

peak intensities allow for a rough estimation of the relative abundance of the peptides.

Of the minor species detected, the Aβ4−42 and Aβ1−38 were most abundant as in-

dicated by peak intensity. This is in line with the previous finding that in 5XFAD mice

Aβ4−X is detectable at earlier time points than AβpE3−X and further supports the view

that the minor species Aβ4−X may play an important role in the progress of pathologic

alterations in this model (see also table 3.2.3, page 62; Antonios et al. (2013)).

Taken together, 5XFAD represents a model with early-life expression and intracellular

accumulation of Aβ4−X, a peptide that is expressed and accumulated continously up

to the age of 7 months. In addition, it expresses AβpE3−X, Aβ5−X and other minor

Aβ isoforms. The most abundant peptides produced are, however, Aβ1−40/42, which

does not resemble the stoichometry of the different Aβ peptides found in human AD,

where N-terminally truncated Aβ has been reported to be highly abundant or even

the major fraction in brains of AD patients (Kawarabayashi et al., 2001; Portelius et al.,

2010; Saido et al., 1995). Nevertheless, 5XFAD produces a heterogenous mixture of Aβ

that comprises the major species found in AD patients.

4.2.5 Gene Dosage-dependent Effects in the 5XFAD Model

For a detailed investigation of gene-dose effects, 5XFADhem and 5XFADhom mice were

compared to WT animals regarding their behavior phenotype (see 3.2.6 ff, page 65 ff)

and the course of amyloid pathology in animals. Whereas 5XFADhem mice have been

reported previously to show behavior impairment in the elevated plus maze and the

cross maze at the age of 6 months (Jawhar et al., 2012) and spatial reference memory

deficits when 12 months old (Bouter et al., 2014), the onset of behavior deficits is con-

siderably shifted towards earlier time points in the 5XFADhom strain. Anxiety behavior

is significantly altered already at 2 months of age compared to the 5XFADhem group.
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This early onset and genotype dependent aggravation of behavior deficits is persisting

at the age of 5 months, where 5XFADhem, 5XFADhom and WT groups showed clear

and significant differences in their tendency to explore the open arms of the maze. In

the water maze, an overall effect of the genotype on the escape latency was detecteable

already at the age of 2 months, and a robust significant impairment of the spatial ref-

erence memory was evident at the age of 5 months for the 5XFADhom group, whereas

age-matched 5XFADhem showed no impairment in this task. The shift of behavioral

impairment to an earlier onset was accompanied by a likewise aggravation of other

alterations typically observed in 5XFAD such as reduced body weight, and faster devel-

opment of a motor phenotype, indicated by higher clasping scores and poorer perform-

ance in the balance beam and the string suspension task for 5XFADhom. Importantly,

at an age 2 of months, 5XFADhom animals displayed first behavioral alterations but

no significant aggravation of their motor phenotype compared to the 5XFADhem trans-

gene group. Therefore, the accelerated development of impaired behavior precedes the

manifestation of aggravated motor deficits.

In Richard et al. (2015), we have further shown that, along with the accelerated devel-

opment of behavioral impairment, the levels of both extracellularly deposited amyloid,

soluble and insoluble Aβ are significantly elevated in the 5XFADhom groups compared

to the respective 5XFADhem groups: A significant increase of the amyloid plaque bur-

den was noted in cortex (+ 332 %), hippocampus (+ 715 %) and thalamus (+ 411 %) of 2

month old 5XFADhom. The same holds true for 5 month old animals (+ 328 %, + 564 %

and 201 % respectively) as well as for 9 month old male 5XFADhom (+ 32 %, + 52 % and

+ 75 %) (experiments performed by Anastasiia Kurdakova using the antibody Aβ[N]).

Interestingly, the relative plaque load was found to increase slower with aging which

might reflect a saturation effect. This is in line with the initial description of the model,

which, although not quantified, indicated a slower increase of the amyloid pathology

between the analyzed 6- and 9 month old groups (Oakley et al., 2006). Similar observa-

tions were also reported for the APP/PS1KI and the PDAPP models which also exhibit

an abundant plaque pathology but a plateau in deposition without significant increase

in amyloid burden (DeMattos et al., 2012; Wirths et al., 2010a).
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A plateau stage has also been described for AD (Jack et al., 2013). Plaque load quanti-

fication experiments were performed by my colleague Anastasiia Kurdakova.

In addition, we subjected whole-brain lysates (TBS and SDS-fraction) of 2- and 5 month

old animals to quantitative ELISA measurement and found significantly elevated levels

of soluble and insoluble Aβ1−42 and insoluble Aβ1−40 in 5XFADhom animals (2 and 5

months) compared to age-matched 5XFADhem (ELISA measurements were performed

by Sandra Baches, Dept. of Neuropathology, Heinrich Heine Universität Düsseldorf,

Germany). These findings are consistent with the increased plaque burden observed

for 5XFADhom (Richard et al., 2015).

Besides the described acceleration of amyloid plaque deposition and the increased

levels of soluble and insoluble Aβ levels, we could also demonstrate that 5XFADhom

at 9 months show significantly increased axonal degeneration. This was assessed by

immunohistochemistry on brain and spinal cord sections employing the antibodies

against NF200 (a neurofilament subunit) that revealed disclosed marked axonal swell-

ings, mainly large axonal spheroids that were independent from plaques (Experiments

performed by my colleague Anastasiia Kurdakova). The number of these dilatations

was significantly increased for 5XFADhom mice compared to 5XFADhem animals in

both pons and spinal cord gray matter (Richard et al., 2015). Such an age-dependent

axonopathy in brain and spinal cord of 5XFAD has been reported previously (Jawhar

et al., 2012) and spinal cord pathology including formation of amyloid plaques has

been reported in other mouse models overexpressing mutant APP (Christensen et al.,

2014; Seo et al., 2010; Wirths et al., 2006, 2007; Yuan et al., 2013).

In summary, increasing the transgene dose in 5XFAD leads to increased expression

of APP/Aβ, a significant aggravation of pathology and a considerably earlier onset

of related behavioral alterations. The early onset of spatial memory deficits suggests

that 5XFADhom represents a well-suited model for preclinical studies within short

time frames. It might moreover especially facilitate the analysis of intracellular Aβ,

truncated isoforms in particular, as investigation of young 5XFADhom was imperative

to detect early accumulation of intracellular Aβ4−X.
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4.3 5xfad in comparison to other models

The 5XFAD model represents one of the most thoroughly investigated transgenic mod-

els of AD and the knowledge about it has been further broadened here. Together with

the APP/PS1KI model, 5XFAD exhibits a very early onset of plaque pathology at the

age of two months that is preceeded by intracellular accumulation of intracellular Aβ.

N-terminally truncated Aβ has been reported in various other mouse models: Aβ pep-

tides starting at position 2/3 and position 4/5 have been reported for the APP/PS1KI

model (Casas et al., 2004). AβpE3−X and Aβ2/3−40 have been described in the APP23

mouse (Schieb et al., 2011). APP/PS1∆E9 expresses AβpE3−X an the age of 6 months

and is accessible as a therapeutic target (Frost et al., 2012, 2013). Less is known about

N-terminally truncated Aβ in PDAPP, however, passive immunization of PDAPP with

an AβpE3−X-specific antibody reduced insoluble Aβ, indicating the presence and ac-

cessibility of at least AβpE3−X (DeMattos et al., 2012). The Tg2576 model has been

proven to produce AβpE3−X, too (Kawarabayashi et al., 2001). An important disadvant-

age of the APP/PS1KI model, which shows a similar phenotypical progression as that

of 5XFAD, is that it has to be maintained with two parental lines because the APP-

and PS transgenes do not co-segregate (Casas et al., 2004). Other, more recently de-

veloped models are exclusively expressing N-truncated AβpE3−42 and Aβ4−42 which

makes them valuable tools to investigate N-truncated Aβ in particular. Both display

a strinking phenotype including intracellular Aβ aggregation, behavioral impairment

and neuron loss (Bouter et al., 2013, 2014; Meissner et al., 2014; Wittnam et al., 2012).

However, in passive immunization studies, analysis of these models showing no plaque

deposition would be complicated as plaque load has been a well-accepted and widely

used measure in immunotherapeutic approaches (Bard et al., 2000; DeMattos et al.,

2001, 2012; Frost et al., 2012; Wirths et al., 2010c). The rapid onset and progression of

the phenotype in 5XFAD animals further offers time advantages over other commonly

employed models like Tg2576 (Hsiao et al., 1996), PDAPP (Games et al., 1995) and

APP/PS1∆E9 (Borchelt et al., 1997) and APP23 (Sturchler-Pierrat et al., 1997) which

show a considerably later onset of plaque deposition and intracellular Aβ.
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Moreover the AD feature of neuron loss (Blennow et al., 2006) has not been reported

for PDAPP, APP/PS1∆E9 and Tg2576. An overview of the mentioned APP transgenic

models in comparison to 5XFAD is presented in table 4.1, page 95.

Is the 5XFAD Model Suitabe to Study N-truncated Amyloid-beta?

5XFAD meets essential assumtions of the modified amyloid cascade hypothesis with

neuron loss in regions that accumulate intracellular (N-truncated) Aβ and offers time-

advantage due to its rapid phenotypical progression compared to other models. It

is easy to maintain due to co-segregation of the APP and PS-1 transgenes which

gives it advantage over another model displaying rapid development of pathology

(APP/PS1KI). These facts support the choice of 5XFAD for the passive immunization

pilot study presented here.
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4.4 passive immunization against n-truncated amyloid-beta

Passive immunization with various antibodies against Aβ has been widely studied

since the first successful approach by Bard et al. (2000) (A representative subset of

chronic passive immunization approaches is summarized in appendix table 4.2, pages

115 ff). Some studies suggested a significant reduction of pre-existing plaques in trans-

genic mice (Frost et al., 2012; Wilcock et al., 2004b,c, 2006), however others discussed

that clearance of pre-existing plaques is limited (Tucker et al., 2008) or did not occur

after passive immunization (Dodart et al., 2002; Levites et al., 2006). On the contrary,

evidence for a plaque-preventative effect of administered anti-Aβ antibodies was fre-

quently reported (Bard et al., 2000, 2003; Bussiere et al., 2004; DeMattos et al., 2001,

2012; Frost et al., 2012; Levites et al., 2006; Lord et al., 2009b). In vivo antibody effects

were not restricted to alterations in the amyloid plaque burden: In a subset of passive

immunization experiments it was shown that antibody-administration led to increased

vascular amyloid (DeMattos et al., 2012; Racke et al., 2005; Schroeter et al., 2008; Wil-

cock et al., 2004c, 2006).

It has been proven difficult to translate the success of preclinical passive immuniz-

ation trials into clinic. For instance, Bapineuzumab, the humanized equivalent of the

3D6 antibody investigated first in Bard et al. (2000), showed some target engagement

but the treatment did not benefit patients. (Lannfelt et al., 2014). Solanezumab, the

humanized equivalent to the antibody 266 (DeMattos et al., 2001) was not reported

to have significant effects in patients as well. Whereas trials on bapineuzumab were

terminated, investigation of solanezumab in clinical trials is driven further currently.

Furthermore, side effects such as increased occurence of microhemorrages have been

reported after passive immunization of mice against Aβ (DeMattos et al., 2012; Racke

et al., 2005; Schroeter et al., 2008; Wilcock et al., 2004c, 2006), even in a subchronic

approach with few doses only (Lee et al., 2005). Importantly, the observation of side

effects in preclinical studies was somehow predictive of severe adverse events that led

to halting of some human clinical trials (Lannfelt et al., 2014). This was despite of some

preclinical approaches showing both a significant rescue or amelioration of behavioral

and/or memory impairment in transgenic mice and induction of side effects in the
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same cohorts (Wilcock et al., 2004c, 2006). However, the overall outcome of clinical

passive immunization studies targeting Aβ was much less promising than results from

murine trials suggested (Lannfelt et al., 2014). These numerous studies taken together

point out a need to find a more specific and safer immunotherapeutic approach for

AD. In the course of this it has been proposed that N-terminally truncated Aβ might

represent a suitable target for immunotherapy.

Two recent studies addressing this hypothesis (DeMattos et al., 2012; Frost et al.,

2012) share the idea of passively immunizing mice against N-truncated Aβwith the cur-

rent study but differ from previous studies, each other and the present one in a variety

of parameters which are 1) the antibodies used for immunization, 2) the animal model

employed and 3) the administration in regard of both dosage and time course. These

factors are likely to influence the outcome of passive immunization trials: Frequently

used animal models display different Aβ stoichiometry and morphology of amyloid

deposits, e.g. PDAPP and Tg2576 mice (Fryer et al., 2003; Hsiao et al., 1996; Sasaki

et al., 2002). Unlike some other models, the 5XFAD mouse carries several mutations

that elevate AβX−42 levels disproportionally (Oakley et al., 2006), and APP23 mice are

notable for abundant vascular amyloid desposition. Different monoclonal antiobodies

have been shown to have highly different potential for preventative and therapeutic

approaches (DeMattos2012) and the induction of side effects and alterations of plaque

load levels has been shown to be dose-dependent (DeMattos et al., 2012; Schroeter et al.,

2008). Some studies on passive immunization found diverging results when analyzing

extracellular plaque burden and total levels of Aβ peptides in brain lysates (DeMattos

et al., 2012; Frost et al., 2012). This complicates inter-experimental comarison and un-

derlines the importance of conducting comparative experiments as in the present study.

To address the questions whether a) Aβ4−X and/or AβpE3−X are contributing to the

etiology of the disease-like phenotype in the 5XFAD mouse model and b) NT4X-167

might be suitable as a therapeutic tool, a pilot study comparing three different mono-

clonal antibodies (IgG2b) against N-truncated Aβ was conducted. Female 5XFADhem

mice were injected with 10 mg/kg body weight of NT4X-167, antibody 1-57 (recogniz-

97



ing AβpE3−X exclusively, independent of conformation, (Wirths et al., 2010a), see also

3.1, page 57) or antibody 9D5 which reacts with low molecular weight oligomers of

AβpE3−X exclusively (Wirths et al., 2010c). PBS-injected 5XFAD animals served as a

control in this study. The experimental setup chosen here was essentially based the ap-

proach of Wirths et al. (2010c), to treat a well-described model (5XFAD) with abundant

amyloid pathology, behavioral deficits and fast phenotypical progression in a compar-

ative approach with three different antibodies. The treatment duration was prolonged

to assess potential effects on behavior in the animals at a time point were the behavioral

impairment is more manifest, somewhat later than the time point where they become

visble at first (6 months; Jawhar et al. (2012)).

In contrast to the current study, both therapeutic trials conducted in DeMattos et al.

(2012) and Frost et al. (2012) and the preventative trial of DeMattos et al. (2012) were ini-

tiated at time points where the behavioral phenotype is already manifest (see 4.1, page

95). The preventative treatment of Frost et al. (2012) started at the age of 5.8 months,

only little before first behavioral impairment for APP/PS1∆E9 model become visible

(6 months). In both publications, no behavioral data have been reported which makes it

impossible to conclude whether the antibody administration had effects beyond clear-

ance of Aβ.

In general has the majority of chronic passive immunization studies investigated either

prevention of amyloid deposition at early stages or aimed to remove plaques at very

late stages. To date, few studies described a mid-stage approach of anti-Aβ passive im-

munization (DeMattos et al., 2012; Schroeter et al., 2008; Wirths et al., 2010c). In human

AD, plaque deposition starts decades before the onset of clinical symptoms and is vir-

tually at maximal levels by time of diagnosis (Jack et al., 2010; Morris and Price, 2001;

Price et al., 2009), patients with mild cognitive impairment due to AD are therefore at

a stage well after disease initiation. Thus, the majority of preclinical studies focusing

on prevention of amyloid deposition or removal of pre-existing plaques, investigated

stages that are reminescent of the disease onset prior to diagnosis or very late symp-

tomatic stages of AD. For a very early intervention in AD by passive immunization, it

would be necessary to identify patients that are likely to develop the disease. Unless for

the rare cases of familial AD, to date biomarkers that allow for identification of patients
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before they develop amyloid deposits/cognitive symptoms are lacking. It is therefore

impossible to clearly distinguish individuals that will remain healthy from those that

will convert to a cognitively impaired phenotype (Fiandaca et al., 2014). Therefore,

even if very early therapeutic invention has significant effects in a preclinical study as

in Frost et al. (2012), it is hardly possible to design studies translating this approach

into clinical trials. Opposite to the prevention of amyloid deposition, the majority of

therapeutic trials in mice does reflect a stage of fully-blown AD with abundant plaques

in the brain and advanced cognitive impairment.

In contrast to abundantly untertaken preventative and late-stage therapeutic approaches,

such as those performed by DeMattos et al. (2012) and Frost et al. (2012), the 5XFAD

mice treated in the present study already had considerable levels of deposited amyloid

plaques at the starting point of immunization, but were at an age before onset of beha-

vioral symptoms. The present study therefore likely reflects an approach closer to late

preclinical or early symptomatic AD.

4.4.1 Chronic Passive Immunization of 5XFAD Mice

In the NT4X-167 group, Thioflavin S staining for fibrillar Aβ aggregates (Bussiere et al.,

2004) revealed lowered levels compared to PBS-injected controls. A significantly lower

plaque burden was observed as well for AβpE3−X and AβX−40 in the anterior mo-

tor cortex of the NT4X-167 group when specific antibodies were employed to further

characterize the nature of the amyloid deposits. The 1-57- and 9D5 group showed un-

altered plaque levels. In the thalamus, the observed differences in the plaque load were

not significant, although the lower average levels of Thioflavin S-positive plaques and

AβX−40/ AβpE3−X immunoreactiviy indicate a trend in line with the finding of re-

duced plaque burden in the anterior motor cortex. It might be that the thalamus is less

accessible to administered antibodies for some reason, or that the plaque deposition

follows a different pattern. (Frost et al., 2012), wo reported lesser treatment effects in

certain brain regions such as the cerebellum, discussed similarly.
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Plaque abundance and plaque deposition in the brain are linked to soluble Aβ

(DeMattos et al., 2002; Hong et al., 2011; Koffie et al., 2009), and further soluble protofib-

rillar Aβ was correlated with spatial learning in an AD mouse model (Lord et al.,

2009a). Nevertheless, according to the modified amyloid hypothesis plaques might still

function as a source for soluble peptides. Targeting plaques directly can therefore be

considered an approach to reduce a potential secondary source or reservoir of soluble/

intracellular Aβ, whereas a direct engagement with the soluble peptide fraction would

prevent further plaque deposition.

In mid stage treatment approaches such as the present study, antibody-mediated re-

moval of pre-existing plaques must be sufficient to exceed the amount of newly de-

posited amyloid or the administered antibody must prevent deposition of soluble Aβ

efficiently enough to induce significant differences at the time of analysis or the anti-

body must be capable to exert activity serving both mechanisms, leading to an overall

reduced plaque burden. This probably explains the observed less robust treatment ef-

fects compared to previous studies (Bard et al., 2000; DeMattos et al., 2001, 2012; Frost

et al., 2012) and might provide further explanation for the observation that the appar-

ently lower plaque burden in the thalamus of NT4X-167 injected animals did not reach

significance.

Here, NT4X-167 was the only antibody whose administration decreased fibrillar and

total Aβ deposits, especially N-truncated and pyroglutamate-modified Aβ in the cortex

of 5XFAD mice. This indicates that passive immunization with NT4X-167 is efficacious

in modulating the amyloid pathology, whereas treatment against total (antibody 1-57)

or oligomeric AβpE3−X (antibody 9D5) alone did not reveal such an effect. However,

this results are somehow controversial: It has been published before that the admin-

istration of antibodies specific for AβpE3−X had effects on either the amount of over-

all levels of Aβ measured by ELISA on brain lysates (PDAPP model, DeMattos et al.

(2012)) or reduced AβpE3−X-positive plaque load (APPswe/∆E9 model, Frost et al.

(2012)). In addition, Wirths et al. (2010c) reported that chronic passive administration

of the antibody 9D5 to 5XFAD reduced overall plaque load for general Aβ, AβX−42,

AβX−40 as well as for AβpE3−X; furthermore the authors reported reduced levels of
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AβpE3−X in the soluble and insoluble fraction of whole brain lysates and an ameli-

orated behavioral impairment after 6 weeks of treatment. Different aspects of these

findings will be discussed in the following:

Lack of Plaque-lowering Effects in the 9D5 and 1-57 Groups

The results for the 9D5 group were strikingly deviant from Wirths et al. (2010c), who

reported that treatment with 9D5 resulted in reduced plaque load in the treatment

group compared to PBS-injected animals. Therefore, one could expect at least halting

or a slow-down of amyloid deposition in the current study, in particular if oligomeric

AβpE3−X promotes plaque deposition by a seeding mechanism (Wittnam et al., 2012).

It might be that a considerably different protocol (prolongation of the treatment) com-

pared to Wirths et al. (2010c) leads to the finding that effects of passive immunization

are masked by an overall fast progression of the pathologic alterations. This would

suggest that the treatment was capable of slowing down, but not of preventing the

pathologic alterations in Wirths et al. (2010c), and treated animals catch up phenotyp-

ically with untreated controls during a prolonged immunization protocol. Considering

that Aβ4−X, which was not targeted in Wirths et al. (2010c), precedes AβpE3−X in

5XFAD (Antonios et al., 2013) and might substantially contribute to trigger the patho-

logic cascade, targeting AβpE3−X alone is probably not sufficient to cause persisting

treatment effects.

Diverging methodologic procedures are another possible explanation for different

study outcomes. The antibodies employed here for plaque load quantification were,

except G2-10, others than those employed in Wirths et al. (2010c). Therefore, results of

the current study allow for comparison between the treatment groups but comparison

with previous studies is complicated due to methodologic divergence. However, the

results obtained in both studies on 9D5 for the three analytical parameters, i.e. plaque

load, levels of insoluble Aβ in brain lysates and behavioral performance, were well in

line with each other. This consistency within the individual studies indicates that phen-

otypical inter-animal variability needs to be taken into consideration, too. Both studies

analyzed a relatively small number of animals (n = 4 per group in Wirths et al. (2010c);

n = 7-8 here), therefore the statistics need to be interpreted with care.
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These factors might to some extent account for the observed discrepancy between the

two studies. However, it has been shown here that when acting on both major N-

truncated Aβ isoforms, a treatment effect becomes visible, which further supports

the importance of Aβ4−X. NT4X-167 recognizes both AβpE3−X and Aβ4−X which

probably makes it more capable of recognizing hetero-Aβ-assemblies containing N-

truncated Aβ, improving its efficacy. NT4X-167 recognizes soluble oligomers and a

subset of amyloid plaques and it shows a slight preference for the more soluble Aβ4−40

(Antonios et al., 2013).

Whereas 1-57 strongly recognizes plaques in human and murine brain samples (Wirths

et al., 2010a), NT4X-167 barely reacted with human AD plaques but with amyloid

deposits in transgene mouse brains (Antonios et al., 2013). This points to important

structural differences between plaques of human AD and to a preference of NT4X-

167 for rather soluble or less-dense amyloid strucutures, probably promoted by the

conformational properties of Aβ4−X. Major structural differences between human and

murine plaques have been described by Kuo et al. (2001), who reported that the human

plaque cores were highly resistant to chemical and physical disruption whereas murine

(APP23) plaques were completely soluble in SDS-containing buffers. In addition to the

apparently different target engagement of NT4X-167 in human and murine samples,

an apparent preference of Aβ4−40 over Aβ4−42 gives further indication that NT4X-167

might preferentially bind to more soluble Aβ assemblies (Antonios et al., 2013).

In vitro experiments suggested that intracellular Aβ aggregates released from the

endosomal/lysosomal system are capable to induce Aβ fibrillization (Friedrich et al.,

2010; Hu et al., 2009). It has further been demonstrated that PBS-soluble fractions from

AD brains are efficiently inducing amyloid deposition when administered in murine

brains (Fritschi et al., 2014b). The lower engagement of NT4X-167 with highly ag-

gregated, more degradation-resistant amyloid deposits and on the contrary a better

recognition of soluble oligomers might provide explanation for the efficacy of treat-

ment with NT4X-167 compared to 1-57 treatment. Furthermore might differences in

antibody binding capacity, the recognition of assemblies composed of more than one

Aβ isoform (hetero-oligomers/fibrils) and the accessibility/abundance of epitopes and
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neo-epitopes as well as the immunodetection protocol influence the outcome of quant-

itative measures.

However, the results found here for the 1-57 immunized group are somehow in line

with the prevention trial reported in DeMattos et al. (2012) (antibody mE8). In both

approaches, anti-AβpE3−X-antibodies, both recognizing plaques, were employed, but

mE8 detected only 0.6 % of all Aβ found in AD and PDAPP mouse brains.

DeMattos et al. (2012) further claim that mE8 is plaque-specific, whereas 1-57 engages

with soluble and deposited AβpE3−X as shown by Western Blotting (see 3.1, page 57)

and in Wirths et al. (2010a). Similar to the antibody mE8, 1-57 was not capable of alter-

ing plaque levels.

The treatment window chosen for the present study represents a stage of 5XFAD an-

imals well in-between the onset and a possible plateau stage of plaque deposition. It

has been shown that the levels of soluble Aβ is elevated in the vicinity of plaques (Kof-

fie et al., 2009) and in PDAPP is in an equilibrium with the deposited Aβ (DeMattos

et al., 2002). It has further been proposed that this cloud of soluble peptides surrond-

ing plaques acts as a barrier that prevent antibodies to engage with plaques, causing

failure in modulationg plaque pathology. A small 0.1 % fraction of the antibodies in

the periphery crosses the blood brain barrier (Giedraitis et al., 2007; Mehta et al., 2001)

to encounter Aβ in the central nervous system, which is 20 to 67-fold more abundant

in the central nervous system than in the periphery. Therefore, it has been previously

proposed that antibodies can be overwhelmed by the amounts of accessible target. (Das

et al., 2001).

It has been described previously that the efficacy of antibodies in amyloid removal

is dose dependent DeMattos et al. (2012); Schroeter et al. (2008). Alhough the dosage

seems generally well in line with the majority of other passive immunization studies

that reported in vivo-efficacy (see also appendix, table 4.2, pages 115 ff), it might be,

that the dosage was not sufficient for 1-57 to cause a significant effect. DeMattos et al.

(2012) reported significant plaque removal only with 12.5 mg/kg body weight which

is a 25 % higher dose than in the present study. However, a combination of all or some

of these effects could have caused the failure of 1-57 to modulate the pathology.
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No assumptions can be made, however, if 1-57 would be capable of reducing pre-

existing plaques in a trial on mice that reached a plateau stage of plaque deposition.

In contrast to these two studies, Frost et al. (2012) reported a significant plaque-

lowering effect of anti-AβpE3−X passive immunization in both a preventative (starting

before onset of plaque deposition) and a therapeutic trial. DeMattos et al. (2012); Frost

et al. (2012); Wirths et al. (2010c) and the current study taken together do not allow

to draw a profund conclusion. There is good indication that targeting N-truncated Aβ

peptides in vivo is possible and, given the right preconditions, might be capable of mod-

ulating Aβ pathology. However, the considerable differences in the outcome of these

attempts on passive immunization indicate that different approaches lead to divergent

results, as these studies were conducted with different treatment strategies (initiation,

end point, duration), antibodies (specificity, IgG-subtype), dosages, mouse models and

analytical protocols.

Insoluble Amyloid-beta Levels in Brain of 5XFAD Mice after Passive Immunization

When assessing brains of passively immunized mice for insoluble Aβ1−40/42 and

AβpE3−X in SDS-fractions of brain lysates by ELISA, we did not observe any signi-

ficant effect of the treatments (Data not shown; ELISA experiments were performed

by Sandra Baches, Dept. of Neuropathology, Heinrich Heine Universität Düsseldorf,

Germany). The results for Aβ1−42 are well in line with the plaque load measures for

AβX−42 and Aβ1−X where we did not find significant differences among treatment

groups. In contrast to ELISA experiments, the plaque load levels in the anterior motor

cortex were significantly reduced for AβpE3−X and AβX−40 in the NT4X-167 group. It

is not clear, what led to the discrepancy observed between these analyses. One explan-

ation might be that plaque load analysis focuses on distinct regions in thin sections of

brain tissue, whereas the lysate fraction were representing an entire brain hemisphere.

Both experimental approaches analyze different fractions of Aβ: A plaque load quanti-

fication focuses on a particular brain region in contrast to the analysis of whole brain

lysates.
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Moreover contains the SDS-fraction of brain lysates not only Aβ peptides from plaques

but all amyloid aggreagates from the insoluble fractions of the brain tissue. Further-

more were the antibodies used for detection of Aβ in ELISA measurements different

from those taken for plaque load quantification. This might account for important dis-

crepancy as for instance the antibody IC16 was not suitable for plaque load analysis

due to lower contrast observed in stainings compared to stainings with other antibod-

ies such as Aβ[N], whereas it is well established in ELISA for detecting Aβ1−X. Thus,

the suitability of the antibody for a certain methodologic approach seems greatly im-

portant. Previously published studies that reported lowered Aβ levels in brain lysates

followed different analytical protocols and were using other antibodies for detection

than here (Bard et al., 2000; DeMattos et al., 2012; Wirths et al., 2010c).

The unequal methodology might, together with different sample sizes and models

used, account for differential outcomes of measures and statistics. Nevertheless, the ma-

jority of passive immunization studies employed quantification of the amyloid plaque

burden in brain sections of immunized mice as the main analytical parameter (Bard

et al., 2000; DeMattos et al., 2001; Frost et al., 2012; Wilcock et al., 2004b,c, 2006; Wirths

et al., 2010c). As ELISA data are lacking in some of these studies, this indicates that

quantification of plaque burden is well-accepted and might be more robust to determ-

ine effects of passive immunization. The observation that the plaque load after immun-

ization is lowered despite of ELISA measurements showing no significant difference

between groups is, however, consistent with some previously published studies (Frost

et al., 2012; Janus et al., 2000), of which the previous reported similar results in a trial

on an antibody against N-truncated AβpE3−X.

Behavioral Phenotype of 5XFAD Mice after Passive Immunization

Only a subset of studies addressed the question whether a rescue of behavioral or

learning/memory deficits can be achieved by passive immunization against Aβ. No-

ticeably, such rescue or amelioration has been reported for different mouse models,

PDAPP (Dodart et al., 2002), Tg2576 (Wilcock et al., 2004b,c, 2006) and 5XFAD (Wirths

et al., 2010c).
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Within the mentioned studies, different monoclonal antibodies were used, recog-

nizing central Aβ epitopes (Dodart et al., 2002; Wilcock et al., 2004b,c, 2006), and a

conformation-specific antibody (9D5, (Wirths et al., 2010c)) against AβpE3−X, which

has been investigated here as well. As mentioned previously, the outcome of Wirths

et al. (2010c) was strikingly different from the results found here. This held also true

for behavioral performance of treated mice, where, in contrast to the previous study,

no rescue or amelioration of the 9D5 group was observed.

Here, no robust significant difference to the PBS-controls was observed for the NT4X-

167, 1-57 or 9D5 groups in the Elevated Plus Maze and the Cross Maze paradigms

but, however, a trend towards an amelioration of working memory impairment in the

NT4X-167 group in the cross maze was observed.

However, it must be stated that the pathologic alterations in the 5XFAD model

are still in progress at the age of 6 months (endpoint of treatment in Wirths et al.

(2010c)), with the plaque burden increasing by approximately 2-fold between both 3-6

months and 6-12 months of age (Jawhar et al., 2012). Our experiments performed on

5XFADhom animals showed that even a 2-fold increase of the transgene dose would

not lead to a plateau stage in plaque deposition before the age of 9 months (Richard

et al., 2015). Robust spatial memory deficits are not present until the age of 7 months

(Richard et al., 2015), but have been described as late as at the age of 12 months in

5XFADhem mice bred on a C57Bl6/J genetic background (Bouter et al., 2014). Accord-

ing to the modified amyloid cascade hypothesis, intracellullar Aβ peptides trigger a

fatal cascade of secondary events that lead to behavioral and memory deficits. Intracel-

lular Aβ is evident as early as at the age of 6 weeks in the 5XFAD model. Bouter et al.

(2014) thoroughly investigated the molecular profile of plaques, memory decline and

neuron loss in 5XFAD. The authors found 19 differently expressed genes in young (3-6-

month-old) 5XFAD, which were mainly associated with inflammatory processes. Thus,

the pathologically Aβ-triggered cascade is likely to be already ongoing at the starting

point of the study, which probably interferes with reverting or halting a progressing

development of behavioral symptoms.
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Furthermore, it is likely that the pathological alterations in the mouse model do not

exclusively rely on N-truncated Aβ. AβX−42 exerts similar neurotoxicity as AβpE3−42

and Aβ4−40/42 in vitro (Bouter et al., 2013). Therefore it is conceivable that the major

fraction of Aβ1−42 (and probably other species found in 5XFAD), which is not directly

targeted, contributes significantly to induce behavioral alterations. Importantly, the Aβ

pool in 5XFAD brain comprises much less N-truncated Aβ than in AD patients brain,

where those represent a major fraction (Kawarabayashi et al., 2001; Portelius et al., 2010;

Saido et al., 1995). 5XFAD accumulates predominantly N-terminally intact Aβ in neur-

onal cells that are prone to degenerate at 12 months (Antonios et al., 2013; Jawhar et al.,

2012; Oakley et al., 2006).

Apparently in line with this hypothesis, various studies reported amelioration of be-

havioral and/or learning/memory deficits after administration of pan-Aβ antibodies

recognizing central epitopes within the Aβ sequence (Dodart et al., 2002; Wilcock

et al., 2004b,c, 2006). These antibodies bind well to the (in models) highly abundant N-

terminally intact isoforms, which suggests that the observed treatment effects are not

merely based on removal of N-truncated Aβ. Thus, given a key role for N-truncated

Aβ, it can be hypothesized that immunotherapy targeting these isoforms would have

better potential to alleviate or slow down the progression of cognitive deficits in pa-

tients or models that show higher levels of, or are exclusively expressing N-truncated

Aβ isoforms.

The mean alternation rates of the WT and the NT4X-167 group were similar, but a

comparison between the NT4X-167- and the PBS group did only reveal a positive trend

that was overall not significant. This has to be interpreted with care into each direction,

since the number of animals per group was relatively low. Inter-individual variation

within small samples might therefore account for the observed discrepancy between

the present study and Wirths et al. (2010c). It remains unclear if passive immunization

with NT4X-167 can have effects on behavior/memory.
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Nevertheless, comparison of the three treatment groups in the present studies indic-

ates that, depending on the choice of the antibody/target for immunotherapy, there is a

possibility to modify pathology in a mid-stage therapeutic approach. The lower plaque

load measures in the NT4X-167 group, and the corresponding higher rate of correct

alternations in the same group seem to support each other.

4.4.2 Mechanism of Action of Anti-amyloid-beta Immunization

Several hypotheses have been proposed for the mechanism of action of anti-Aβ an-

tibodies in anti-Aβ-immunization. It has been shown that a small subset (0.1 %) of

peripheral antibodies enter the central nervous system through the blood brain barrier

(Pan et al., 2002), a finding that implies the possibility of antibody-mediated effects oc-

curing by direct interaction with Aβ in the brain. Thus, one of three main hypotheses

is that opsonization of antigens upon antibody recognition triggers phagocytosis by

macrophages/microglia. This mechanism requires sufficient levels of antibodies in the

brain after administration. Support for this hypothesis comes from studies that found

abundant antibody-decorated plaques and increased microglial activity after immuniz-

ation (Bard et al., 2000; DeMattos et al., 2012; Wilcock et al., 2004a,b, 2006). Clearance

of pre-existing plaques after passive immunization has been credibly demonstrated in

a murine model by Wang et al. (2011), in which the authors further support that mi-

croglial phagocytosis is involved in the observed plaque removal. DeMattos et al. (2012)

discussed that antibodies might be hindered from altering plaques by saturation with

soluble peptides in the vicinity of extracellular aggregates, thereby failing to trigger

phagocytosis-dependent plaque removal.

However, it was earlier described that engagement of antibodies with soluble Aβ is

not predictive of the antibodies´ in vivo efficacy (Bard et al., 2000) and others repor-

ted that the phagocytosis effector funciton is not essential to modulate Aβ pathology

(Bacskai et al., 2002; Das et al., 2003). It was proposed that peripherally circulating anti-

bodies might facilitate Aβ clearance from the brain through a so-called peripheral sink

108



mechanism, neutralizing circulating peptides and thereby shifting the Aβ equilibrium

towards a higher efflux/reduced influx through the blood brain barrier (Bacskai et al.,

2002; Das et al., 2003; DeMattos et al., 2001). Supporting this view, it has been shown

that Aβ can be rapidly transported to the periphery (Ghersi-Egea et al., 1996; Shibata

et al., 2000; Zlokovic et al., 1993, 1994, 1996).

A third mechanism possibly explaining a treatment effect of anti-Aβ antibodies is

blocking of peptides by the mere molecular interaction, thereby preventing cytotoxicity,

nucleation/seeding and/or conformational imprinting, mechanisms to which patholo-

gic activity of Aβ has been attributed in numerous studies (Fritschi et al., 2014a,b;

Nussbaum et al., 2012; Schlenzig et al., 2009). Catalytic activity of antibodies has been

suggested by Solomon et al. (1996, 1997) and has further been supported by others

(Adolfsson et al., 2012; Alcantar et al., 2010).

Of note, none of these proposed mechanisms are mutually exclusive. However, the

present study focused on comparison of three antibodies in regarding their targets.

Differential phagocytosis effector function was ruled out by the choice of antibodies

of the same isotype (IgG2b) and the mid-stage treatment approach does not allow for

discrimination between different mechanisms of action of the administered antibodies.

To this end, additional experiments would be necessary.

4.4.3 Therapeutic Advantage with NT4X-167?

It is not clear to which extent the phenotypical alterations in 5XFAD can be attributed to

N-truncated AβpE3−X/ Aβ4−X, although several recent in vivo studies from our labor-

atory have provided evidence that N-truncated Aβ isoforms are indeed connected with

behavior deficits and memory impairment (Alexandru et al., 2011; Bouter et al., 2013;

Wirths et al., 2009; Wittnam et al., 2012). There is further indication that a treatment

effect can be achieved with antibodies targeting AβpE3−X (DeMattos et al., 2012; Frost

et al., 2012). However, in the present study it was found that two anti-AβpE3−X anti-

body (1-57) had no significant treatment effects.
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To rank the therapeutic potential of different antibodies/targets, it is of importance to

conduct comparative approaches. The setup of the present comparative study rules out

the bias of varying analytical methods, different models, and different IgG subtypes of

antibodies. Therefore the different efficacy of treatments can be attributed to the an-

tibodies´ target engagement and the results can in return give good indication if the

addressed target is suitable for therapy.

The study conducted here offers the advantage of a scenario close to preclinical or

early-stage AD. However, the obtained effetcs were less pronounced than in previous

studies (DeMattos et al., 2012; Frost et al., 2012; Wirths et al., 2010c).

The observation that passive immunization against AβpE3−X alone was not capable

of inducing treatment effects here indicates that Aβ4−X significantly contributes to

the neuropathologic phenotype in the 5XFAD model. In contrast to the 1-57- and the

9D5 group, The treatment group that received NT4X-167 revealed significant plaque-

lowering effects in an approach close to preclinical AD. Furthermore, the NT4X-167

treatment group was the only one that showed a positive trend in working memory per-

formance. As pointed out above, comparison beetwen the available studies of a chronic

passive immunization against N-truncated Aβ is restricted due to varying setups of

these studies.

Hence, the main conclusion must be drawn from the comparative approach conduc-

ted here. These results suggest that targeting a broader pool of N-terminally truncated

Aβ, as with the antibody NT4X-167, might posess therapeutic advantage. In turn, this

would rather qualify NT4X-167 than 1-57/9D5 as a therapeutic tool. This observation

is, to date, unique and might give implications for developing a therapeutic strategy in

AD .
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4.5 conclusion/limitations of the study

Here, it was shown that passive immunization against AβpE3−X and Aβ4−X, of which

the latter is found intracellularly at early time points in the 5XFAD model, had signific-

ant effects on the plaque load of passively immunized mice. On the contrary, immun-

ization against AβpE3−X alone did not have such an effect.

Importantly, effects reported in many passive immunization trials are mainly restric-

ted to an amelioration of the Aβ-pathology assessed by means of plaque load and/or

Aβ quantification. Reports of behavioral improvement are few and several models fre-

quently employed for such preclinical studies feature no neuron loss. Consequently,

rescue of neuron loss upon passive immunization has not been described in these

models. Other parameters such as behavior/memory perfomance of transgenic mice

have not been commonly asessed, too. The present study has not aimed to determine a

possible treatment effect on neuron loss and interpretation of behavioral data is restric-

ted due to the relatively low animal number.

As pointed out, the mechanism of action of NT4X-167 in vivo can not be elucidated here.

Although some effects of NT4X-167 on the amyloid plaque burden were observed, it

remains unclear if passive immunization against N-truncated peptide isoforms can

effectuate a robust and persisting improvement of Aβ-induced neurodegenerative al-

terations. Translation of preclinical anti-Aβ immunization studies into clinics has been

proven difficult (Lannfelt et al., 2014). Therefore no prediction for a clincal study on

anti-AβpE3−X/ Aβ4−X immunotherapy can be made.

In summary, the data obtained here have further validated the 5XFAD mouse model

for analysis of N-truncated Aβ, behavior and memory. The passive immunization pilot

study conducted provides a proof of the concept that Aβ4−X is accessible for passive

immunotherapy in vivo and in turn indicates that NT4X-167 has therapeutic advantage

over other antibodies targeting N-truncated Aβ. The suitability of the 5XFAD model

for research on N-truncated Aβ isoforms is further supported.
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