
 
 

Novel virulence determinants in  
Mycoplasma pneumoniae: 

Contribution of transport systems and H2S 
production to viability and hemolysis 

  

 

 

Dissertation 

 

 

For the award of the degree 
“Doctor rerum naturalium” 

Division of Mathematics and Natural Sciences 
of the Georg-August-University Göttingen 

 

In the PhD program 
Microbiology and Biochemistry 

of the Georg-August-University School of Science (GAUSS) 

 

 

Submitted by 

Stephanie Großhennig 
from Wernigerode 

 

 

Göttingen 2014 

  



  

II 
 



 

Thesis Committee 

 
Prof. Dr. Jörg Stülke 
(Institute of Microbiology and Genetics; Department of General Microbiology) 
 
PD Dr. Michael Hoppert 
(Institute of Microbiology and Genetics; Department of General Microbiology) 
 
Prof. Dr. Carsten Lüder 
(University Medical Center Göttingen; Department of Medical Microbiology) 
 
 
Members of the Examination Board 

 
First reviewer:  Prof. Dr. Jörg Stülke 
(Institute of Microbiology and Genetics; Department of General Microbiology) 
 
Second reviewer: PD. Dr. Michael Hoppert 
(Institute of Microbiology and Genetics; Department of General Microbiology) 
 
 
Further Members of the Examination Board 

 
Prof. Dr. Carsten Lüder 
(University Medical Center Göttingen; Department of Medical Microbiology) 
 
Prof. Dr. Ivo Feussner 
(Albrecht von Haller Institute; Department. of Plant Biochemistry) 
 
Prof. Dr. Stefanie Pöggeler 
(Institute of Microbiology and Genetics; Department of Genetics of Eukaryotic Microorganisms) 
 
Prof. Dr. Stefan Pöhlmann 
(German Primate Center; Infection Biology Unit) 
 
 
 
Date of Oral Examination: 20.01.2014 
  

III 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare that the doctoral thesis entitled, “Novel virulence determinants in Mycoplasma 

pneumoniae - Contribution of transport systems and H2S production to viability and hemolysis” has 

been written independently and with no other sources and aids than quoted. 

 

 

 

Stephanie Großhennig 

 

IV 
 



DANKSAGUNG 
 

Es gibt viele Menschen, die mich auf meinem Weg durch die Höhen und Untiefen dieser Arbeit 

begleitet haben und denen ich daher unbedingt danken möchte.  

Natürlich richte ich traditionell den ersten Dank an Jörg, weil er mich schon im Bachelor für die 

Mikrobiologie begeistern konnte (damals trug er Chucks mit offenen Schnürsenkeln und 

Ampelmännchen-T-Shirts in der Vorlesung) und dafür gesorgt hat, dass diese Begeisterung bis heute 

anhält. Danke, dass Du mir die ehrenvolle Aufgabe anvertraut hast, auch nach der Ära Schmidl die 

Mycoplasmologie in der Abteilung einigermaßen erfolgreich weiter zu führen. Ich hoffe, dass sich das 

Vertrauen spätestens mit der grandiosen Entdeckung des Schwefelwasserstoffs in Mycoplasma bezahlt 

gemacht hat! 

Außerdem danke ich den weiteren Mitgliedern meines Thesis Committees, Michael Hoppert und 

Carsten Lüder, für das zuverlässige Erscheinen zu meinen Vorträgen, sowie für ihre Unterstützung 

und den Zuspruch. Ich hatte nach den Meetings immer ein gutes Gefühl. Ich bin desweiteren Till 

Ischebeck aus der AG Feussner sehr, sehr dankbar dafür, dass er für mich die wichtigen GC-MS 

Messungen gemacht und mir immer alle Fragen beantwortet hat. 

So, nun zu meinen geliebten (Teilzeit-)Mycoplasmologen Julia, Katrin und Hannes: Ohne Scheiß, ihr 

habt gefühlt ca. die Hälfte meiner Arbeit auf dem (guten) Gewissen! Und das sag ich jetzt nicht nur, 

weil man das halt am Ende einer Arbeit netterweise so macht. Vielen Dank, dass ihr mir so viel 

geholfen habt und dass ihr dabei auch noch gekonnt so getan habt, als würde es euch Spaß machen! ;-) 

Julia, du bist ganz großartig und ich war froh, dass ich dich die ganzen 50% deiner Zeit zu 100% an 

meiner Seite hatte! Katrin, ich hab selten so viel Begeisterung, so viel (schwarzen) Humor und so viel 

Intelligenz neben mir sitzen gehabt! Danke, dass du die Hämolyse mit mir erobert hast und mir nicht 

zuletzt in schwierigen Zeiten das Gefühl gibst, dass ich stolz auf meine Arbeit sein kann! Hannes, für 

mich bist du eine bemerkenswerte Kombination aus mega schlau, mega ehrgeizig, mega zuverlässig, 

mega entspannt und dann auch noch mega angenehm. Ohne dich hätt ich die ganze MPN487-

Geschichte in der Kürze der Zeit nie so gut geschafft. Vielen Dank, dass ihr mich alle so gut betreut 

habt. Ihr macht mich (Achtung, Nerd-Witz!) HapE! :-)  

Wo wir gerade bei Betreuung sind: Vielen Dank auch an meine beiden anderen ehemaligen Studenten 

Julian und Martin, die ich aus den unterschiedlichsten Gründen nie vergessen werde! Martin, du bist 

sowohl fachlich als auch menschlich eine absolute Bereicherung!  

5 
 



Apropos Bereicherung: Katrin G., Lorena, Dodo, Chris, Arne, Daniel, Jan - mit euch hab ich viele 

Stunden verbracht, die mich auf verschiedenste Weise bereichert haben. Katrin, ich bin fasziniert, dass 

du dir jahrelang geduldig meine schlechten Witze und mein Gejammer über Bacillus, Haarausfall und 

allgemeine Verunsicherung angehört hast und wir uns trotzdem immernoch regelmäßig treffen! Du 

bist ein sehr, sehr wertvoller Mensch und bin froh, dass ich dich kennen darf. Lorena... mir fehlen die 

Worte, so gern hab ich dich! Und du heiratest bald, wie cool ist das denn!? :-) Dodo und Chris, mit 

Dresden verbinde ich jetzt immer Duschen hinter Milchglas und nächtliche WhatsApp-Beschwerden 

über das Verschieben der Grenze. Das war ein großartiges Erlebnis! Und ich danke euch für die 

herzliche, vorübergehende Beherbergung in eurem Lab! Da war das Arbeiten jeden Tag noch ein 

bisschen schöner. ;-) Arne und Daniel, eure Bereicherung fand wahrscheinlich maßgeblich über die 

Sättigung der Büro-Luft mit Alkoholausdünstungen statt, hihi. Bei Arne denk ich auch voller Freude 

an „Herzilein“ und „Fields of Gold“ in der Little Britain Variante. Naja und an Bon Jovi, aber das ist 

eher negativ. ;-) Jan, schön, dass wir die Hürden der vergangenen Jahre seit Beginn der Bachelorarbeit 

zusammen gemeistert haben und es auch zusammen bis (hoffentlich) auf’s Liesel schaffen. Leute, ich 

hab euch echt gern und ich hab sehr gern mit euch gearbeitet und „gearbeitet“!  

Auch meinen übrigen gegenwärtigen oder ehemaligen Kollegen Miriam, Sabine, Raphael, Nora, 

Bingyao, Christina, Bärbel, Andrea, Jan2, Joni, Felix, Fredo, Martin, Tini, Frothe, und natürlich 

nachträglich Sebastian „R“ Schmidl danke ich für die Unterstützung und die schöne gemeinsame Zeit! 

Zuletzt kommt natürlich der größte, wichtigste und liebevollste Dank von allen Danken auf 

der ganzen Welt an meine Familie und meine Freunde. Mama, Papa, Juli und Peter, ihr seid die 

wichtigsten Menschen in meinem Leben und ich bin euch dankbar für alles, was ihr mir in der letzten 

Zeit und eigentlich schon immer gegeben habt: Zuversicht, Wertschätzung, Ablenkung, Kuchen, 

Taschentücher zum Tränen trocknen, schöne Urlaube, Aufmunterung und ganz, ganz, ganz viel Liebe! 

Ohne euch hätte ich es nie so weit geschafft. Mama und Papa, diese Arbeit ist für euch. 

  

6 
 



CONTENT 
 

DANKSAGUNG ..................................................................................................................................................................... 5 

ABBREVIATIONS ...................................................................................................................................................................... 11 

1. INTRODUCTION ............................................................................................................................................................ 15 

1.1 Virulence mechanisms in pathogenic bacteria ................................................................................................... 15 

1.2 The pathogenic lifestyle of Mycoplasma pneumoniae ....................................................................................... 17 

1.2.1 The minimal organism M. pneumoniae ......................................................................................................... 17 

1.2.2 The pathogenicity mechanisms ....................................................................................................................... 19 

1.3 Transport systems and their impact in virulence ............................................................................................... 21 

1.3.1 Types of transport systems ............................................................................................................................... 22 

1.3.2 Transport systems in prokaryotes ................................................................................................................... 23 

1.3.3 Transport systems in M. pneumoniae ............................................................................................................. 24 

1.3.4 Transport systems in virulence ........................................................................................................................ 25 

1.4 Hemolytic and hemoxidative activities in bacteria ............................................................................................ 26 

1.4.1 Hemolysis and hemoxidation .......................................................................................................................... 26 

1.4.2 Hemolysins and hemolytic toxins ................................................................................................................... 27 

1.4.3 Hydrogen sulfide ................................................................................................................................................ 28 

1.5 This work ................................................................................................................................................................. 29 

2. MATERIAL AND METHODS ......................................................................................................................................... 31 

2.1 Material .................................................................................................................................................................... 31 

2.1.1 Bacterial strains and plasmids .......................................................................................................................... 31 

2.1.2  Media ................................................................................................................................................................... 31 

2.2 Methods ................................................................................................................................................................... 34 

2.2.1 Standard methods .............................................................................................................................................. 34 

2.2.2 Cultivation techniques ...................................................................................................................................... 35 

2.2.3 Transformation of bacteria ............................................................................................................................... 37 

2.2.4 Bacterial adenylate cyclase two hybrid (BACTH) ......................................................................................... 39 

2.2.5 Preparation and analysis of DNA .................................................................................................................... 40 

2.2.6 Preparation and analysis of RNA .................................................................................................................... 48 

2.2.7 Work with proteins ........................................................................................................................................... 52 

2.2.8 Enzyme activity tests ......................................................................................................................................... 57 

2.2.9 Methods for characterization of M. pneumoniae strains ............................................................................. 60 

2.2.10  Work with blood .......................................................................................................................................... 63 

7 
 



3. RESULTS ......................................................................................................................................................................... 65 

3.1 Transport systems in Mycoplasma pneumoniae ................................................................................................. 65 

3.1.1  Attempts to express M. pneumoniae transporters in B. subtilis .................................................................. 65 

3.1.2  Characterization of M. pneumoniae transporter mutants ........................................................................... 67 

3.2.  Hemolytic and hemoxidative activities in M. pneumoniae .............................................................................. 76 

3.2.1 Hemolytic activity of M. pneumoniae strains on plates ............................................................................... 76 

3.2.2 Hemolysis and hemoxidation in liquid blood culture .................................................................................. 78 

3.2.3 Test for efficiency and effect of catalase ......................................................................................................... 80 

3.2.4  Hemagglutination .............................................................................................................................................. 82 

3.2.5 Microscopic analyses of blood ......................................................................................................................... 82 

3.2.6 Cysteine-dependent hemolysis and hemoxidation ....................................................................................... 83 

3.2.7 H2S production in M. pneumoniae .................................................................................................................. 88 

3.3. Characterization of MPN487 ................................................................................................................................ 89 

3.3.1 Expression of mpn487 in E. coli and purification of Strep-tagged proteins .............................................. 89 

3.3.2 Enzymatic assays ................................................................................................................................................ 91 

3.3.3 GC-MS ................................................................................................................................................................. 95 

3.3.4 Analysis of expression levels using Slot Blots ................................................................................................ 97 

3.3.5 Investigation of protein-protein-interactions using a bacterial-two-hybrid (BACTH) study ............... 99 

3.3.6 Hemoxidative and hemolytic effect of MPN487 ......................................................................................... 100 

4. DISCUSSION ................................................................................................................................................................. 107 

4.1 The role of transport systems in M. pneumoniae pathogenicity .................................................................... 107 

4.1.1       Identification of M. pneumoniae transporters ............................................................................................ 107 

4.1.2       MPN159, MPN571 and the hemolysin system ........................................................................................... 111 

4.2 Hemolytic activities in M. pneumoniae and Mycoplasma-blood interactions ............................................. 112 

4.2.1 Human blood, a habitat with benefits ........................................................................................................... 112 

4.2.2 M. pneumoniae-blood interactions ............................................................................................................... 115 

4.2.3 Hemolytic and hemoxidative activities in M. pneumoniae ........................................................................ 116 

4.3 The importance of HapE and H2S formation for viability, virulence and hemolytic activity of M. 
pneumoniae .......................................................................................................................................................................... 119 

4.3.1 Which enzyme generates H2S in M. pneumoniae? ...................................................................................... 119 

4.3.2 Is HapE working as an L-cysteine desulfhydrase or an L-cysteine desulfurase? .................................... 121 

4.3.3 Are HapE and hydrogen sulfide formation involved in virulence? .......................................................... 127 

4.4 Conclusions and future perspectives ................................................................................................................. 131 

5.  SUMMARY ................................................................................................................................................................... 133 

6. REFERENCES ................................................................................................................................................................ 135 
8 

 



7. APPENDIX .................................................................................................................................................................... 155 

7. 1 Material .................................................................................................................................................................. 155 

7.2 Oligonucleotides ................................................................................................................................................... 159 

7.3 Bacterial strains ..................................................................................................................................................... 166 

7.4 Plasmids ................................................................................................................................................................. 167 

7.5 Bioinformatic tools and software ....................................................................................................................... 169 

7.6 List of putative transporters in M. pneumoniae ............................................................................................... 170 

               Curriculum vitae...................................................................................................................................................173 

 

 

  

9 
 



  

10 
 



ABBREVIATIONS 
 

% (v/v)  % (volume/volume) (volume percent)  

% (w/v)  % (weight/volume) (mass percent)  

ABC ATP-binding cassette 

amp Ampicillin 

AP Alkaline phosphatase 

ATP Adenosine triphosphate  

BACTH Bacterial adenylate cyclase two hybrid 

BLAST Basic Local Alignment Search Tool 

bsu / BSU Bacillus subtilis 

c-di-AMP Cyclic di-adenosine monophosphate 

cAMP Cyclic adenosine monophosphate 

CARDS Community-acquired respiratory distress syndrome 

CDP* Disodium 2-chloro-5-(4-methoxyspiro {1,2-dioxetane-3,2- (5-
chloro) tricyclo[3.3.1.13,7]decan}-4-yl) phenyl phosphate 

CE Crude extract 

cm Chloramphenicol 

dH2O  Deionised water 

DHAP  Dihydroxyacetone phosphate  

DIG Digoxygenin  

DMEM Dulbecco's Modified Eagle Medium 

dNTP  Desoxyribonucleosidtriphosphate 

DNA Desoxyribonucleic acid 

dpi Days past infection 

DTE Dithioerythritol 

DUF Domain of unknown function 

ECF Energy coupling factor 

EI  Enzyme I  

EII  Enzyme II  

EDTA  Ethylene diaminetetraacetate  

et al. Et altera 

FBS Fetal bovine serum 

Fig. Figure 

FT Flow through 

11 
 



fwd. Forward 

GC-MS Gas chromatography coupled to mass spectrometry 

gDNA Genomic DNA 

Glc  Glucose  

Gly Glycerol 

GPC Glycerophosphocholine 

G3P Glycerol-3-phosphate 

HeLa cells Henrietta Lacks (human cervix carcinoma) cells 

HMW High molecular weight 

HEPES  4-(2-Hydroxyethyl)-piperazin-1-ethan-sulfonic acid  

HPr  Heatstable protein  

i.e. id est 

IPTG  Isopropyl-1-thio-β-D-galactoside  

kan Kanamycin 

kb  Kilo base pairs  

LB  Luria Bertani (Medium)  

LFH Long flanking homology 

Mbp  Megabasepairs 

MCS Multiple cloning site 

metHB Methemoglobin  

MFS Major facilitator superfamily 

MMR Multiple mutation reaction 

Mox Methoxylamine 

mpn / MPN Mycoplasma pneumoniae 

mRNA Messenger RNA 

MSTFA N-methyl-trimethylsilyltrifluoroacetamid 

NAD
+
 Nicotinamide-adeninedinucleotide  

NADH2 Nicotinamide-adeninedinucleotide (reduced form)  

ODx  Optical density, measured at wavelenght  λ = x nm  

ORF Open reading frame 

PAGE Polyacrylamide gel electrophoresis 

PBS  Phosphate buffered saline  

PCR  Polymerase chain reaction  

PEP  Phosphoenolpyruvate 

pH Power of hydrogen 

12 
 



PLP Pyridoxal-5‘-phosphate 

PMP Pyridoxamine phosphate  

PPLO  Pleuropneumoniae like organisms  

qRT-PCR Reverse transcription quantitative real-time PCR 

rev. Reverse 

RNA Ribonucleic acid 

RNase Ribonuclease 

rpm Rounds per minute 

PBS Phosphate-buffered saline 

PTS  Phosphoenolpyruvate:Sugar Phosphotransferasesystem  

RBCs Red blood cells 

RT  Room temperature  

SDS Sodium dodecyl sulfate 

SSC Standard saline citrate 

SulfHb Sulfhemoglobin 

Tab.  Table  

TAE Tris-acetic acid-EDTA 

TCA Tricarbolic acid 

Tn Transposon 

Tris  Tris-(hydroxymethyl)-aminomethan  

tRNA Transfer RNA 

U Units 

w/o Without 

wt  Wild type 

X-Gal 5-bromo-4-chloro-indolyl-galactopyranoside 

 
 

 

  

13 
 



Units  Prefixes   
°C Degree Celsius   k Kilo  
A Ampere   m Milli  
bar Bar   µ Micro   
Da Dalton   n Nano  
F Farad   p Pico  
g Gram      
h Hour   Nucleosides   
l Liter   A Adenine  
m Meter   C Cytosine  
min Minute   G Guasine  
mol Mol   T Thymine  
M Molar   U Uracil  
sec Second      
V Volt      
       
Amino acid nomenclature (IUPAC-IUB-covention 1969) 
A Ala Alanine M Met Methionine 
C Cys Cysteine N Asn Asparagine 
D Asp Aspartate P Pro Proline 
E Glu Glutamate Q Gln Glutamine 
F Phe Phenyl alanine R Arg Arginine 
G Gly Glycine S Ser Serine 
H His Histidine T Thr Threonine 
I Ile Isoleucin T Tyr Tyrosine 
K Lys Lysine V Val Valine 
L Leu Leucin W Trp Tryptophane 

14 
 



INTRODUCTION 

 

1. INTRODUCTION 
 

1.1 Virulence mechanisms in pathogenic bacteria 
 

Pathogenic bacteria possess a multitude of mechanisms which ensure their survival and spread and 

which potentially cause disease in their human host. Since infectious diseases represent a major cause 

of death worldwide, identifying and understanding these pathogenicity mechanisms is a key step to a 

successful combat. Though many of the microbial pathogens are highly different from each other, 

plenty of their infection strategies have turned out to be remarkably similar. Microbial pathogenesis 

usually starts with exposure and adhesion of pathogenic bacteria to the host (cells). For this, bacteria 

often produce adhesins or capsules which help to withstand the mechanical forces the host employs to 

get rid of intruders. In many cases, adhesion is an indispensable prerequisite for interaction and 

pathogenesis. Adhesins can be made of proteins or polysaccharides or a mixture of both. In addition to 

adherence proteins, some bacteria produce slime layers or capsules. Since most pathogens exhibit host 

and tissue specificity, they do not adhere to all host cells but selectively e.g. to mucosal surfaces and 

epithelial cells. For this purpose, microbes may use a variety of host-receptors for recognition, like 

glycolipids, glycoproteins, membrane-spanning or extracellular matrix proteins like fibronectin 

(Finlay and Falkow, 1997). Successful adhesion then paves the way for deeper colonization of host 

tissues in forms of extracellular or intracellular invasion. Invasion is a process which describes the 

penetration of the epithelium, thereby allowing the pathogen to get access to protected and nutrient-

rich niches. Entering the blood or lymphatic circular system, the pathogen might force its way to 

tissues which are quite distant from the original entry site, potentially leading to a systemic infection. 

Two general types of invasion can be distinguished: During extracellular invasion, bacteria degrade 

tissue components and cells using secreted proteins like hyaluronidases or lipases without entering the 

host cells. In contrast, intracellular invasion is a process in which the pathogen really enters the host 

cells to survive, proliferate and finally spread. Some pathogens are facultatively intracellular; others like 

Chlamydia spp. have an obligate intracellular lifestyle (Walker, 1998). The host cell types in which 

(obligate) intracellular pathogens can reside comprise professional phagocytes, like macrophages and 

neutrophils, and non-phagocytic cells such as epithelial and endothelial cells (Finlay and Falkow, 

1997). The clear advantage of intracellular life is an overall elevated protection from host antibodies 
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and possibly applied antibiotics. In fact, both, the establishment of antibiotic resistances and the 

successful evasion of the host immune system are significant aspects of bacterial virulence. Effective 

evasion of the immune response mainly relies on the attempts not to be recognized by the host 

immune cells and antibodies, and consequently not to be eliminated by phagocytosis. In this respect, 

capsule formation is used widely by pathogenic bacteria to protect themselves from the host immune 

system or antibiotic substances after entering the infection site. Capsules are sugar coats consisting of 

exopolysaccharides which are specific for different bacterial species. For example, Streptococcus 

pneumoniae dedicates 24 biosynthetic genes for capsule formation which underlines that the capsular 

polysaccharide is one of its main virulence factors (Garcia et al., 1999). Moreover, the bare bacterial 

cell walls can also act as virulence factors which may even lead to a septic shock in the human body. 

The cell walls might contain toxic molecules like the lipopolysaccharides (LPS) in gram-negative or the 

peptidoglycan and teichoic acids in gram-positive pathogens. These compounds induce the enhanced 

release and activation of cytokines, complement components and the coagulation cascade, which 

together can result in a septic shock (Horn et al., 2000). Typical examples for bacteria being involved 

in sepsis are E. coli, Pseudomonas aeruginosa or Staphylococcus aureus (Walker, 1998).  

Beside the toxic cell wall components, bacterial pathogens are able to actively produce a spectrum of 

exotoxins to damage host cells. With regard to their structure and function, there are different groups 

of exotoxins: (i) The AB toxins are amongst others found in E. coli, Vibrio cholerae, and Bordetella 

pertussis (Nakao and Takeda, 2000; Klose, 2001; Stein et al., 1994). These toxins consist of two 

components: A has enzymatic activity like proteolysis or ADP-ribosylation, whereas B delivers the 

toxin into the host cell. (ii) Proteolytic toxins decompose host proteins. In case of the botulinum and 

tetanus toxins from Clostridium botulinum and C. tetani, synaptobrevin is cleaved. This leads to an 

inhibition of neurotransmitter release and violent muscular spasm (Schiavo et al., 1992). (iii) 

Membrane-disrupting and pore-forming toxins insert into the host cell membrane to form holes and 

finally cause cell lysis (Finlay and Falkow, 1997).  

Finally, it is assumed that horizontal gene transfer of pathogenicity islands facilitates the emergence of 

novel pathogenic bacteria strains carrying new resistance and infection properties. Therefore, the gene 

transfer might also be considered a part of the virulence machinery (Ochman and Moran, 2001). 
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1.2 The pathogenic lifestyle of Mycoplasma pneumoniae 
 

1.2.1 The minimal organism M. pneumoniae 

 

Mycoplasma pneumoniae is a human pathogenic bacterium, which belongs to the group of Firmicutes - 

gram-positive bacteria with low GC-content. Within the Firmicutes, the Mycoplasma species, like 

Ureaplasmas, Alcholeplasmas and Spiroplasmas, are members of the Mollicutes (Ciccarelli et al., 2006). 

The term “Mollicutes” can be translated as “soft skin”, describing the absence of a cell wall in these 

bacteria, due to the lack of genes for peptidoglycan synthesis (Carstensen et al., 1971). Therefore, 

mycoplasmas are not surrounded by rigid boundaries which give them defined forms like cocci or 

rods, but they exhibit pleomorphic cell shapes. A typical cell of M. pneumoniae is filamentous or flask-

shaped, with a knobby tip and is about 1-2 μm long and 0.1-0.2 μm wide (Fig. 1.1). The tip has 

important functions as attachment organelle, in gliding and in cell division (Baseman, 1993; Miyata, 

2008). 

 
 

 

                

 

 

 

The Mollicutes are the smallest bacteria that are capable of independent life. They are characterized by 

extremely reduced genomes as result of a long time degenerative evolution, probably due to their 

parasitic life style with constantly high nutrient availability and stable conditions in their habitat. 

Among the Mycoplasma spp., the genome size varies between 0.58 Mb in M. genitalium and 1.36 Mb 

in M. penetrans. The complete genome sequence of M. pneumoniae has been available since 1996. It 

has a size of 0.86 Mb and contains 688 open reading frames (Himmelreich et al., 1996; Dandekar et al., 

2000). Strikingly, in M. pneumoniae, as in some other Mollicutes, the codon UGA codes for tryptophan 

Fig. 1.1. Scanning electron microscopic picture of 
surface-attached Mycoplasma pneumoniae cells. 
Arrowheads indicate the tip structure which is 
crucial for adhesion and gliding. (from Krause and 
Taylor-Robinson, 1992) 
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instead of a stop codon as usual (Renaudin et al., 1987; Schaper et al., 1987). Because of their reduced 

genomes and, yet, their ability to be cultivated in medium without helper cells, these minimal 

organisms are naturally ideal objects to study the necessity of certain genetic elements for life. 

The minimal gene set is not only reflected in the lack of peptidoglycan synthesis. Also, M. pneumoniae 

lacks the genes for most anabolic pathways. Genes coding for amino acid- and vitamin biosynthesis are 

completely absent and the organism is not able to perform respiration. Concerning the catabolism, 

glycolysis is the only central catabolic pathway which is complete. The tricarboxylic acid (TCA) cycle is 

entirely missing and the pentose phosphate shunt is incomplete. Since it lacks its oxidative part, the 

predominant role of the pentose phosphate shunt is supplying the cell with phosphoribosyl 

pyrophosphate (PRPP) for nucleotide biosynthesis (Himmelreich et al., 1996; Miles, 1992). Glucose is 

the carbon-source that is taken up most efficiently and allows the best growth. M. pneumoniae can 

additionally use glycerophosphocholine (GPC), fructose, mannose, glycerol and probably also 

glycerol-3-phosphate as carbon sources, with all of them entering the glycolysis (Halbedel et al., 2004; 

Halbedel et al., 2007)). In M. pneumoniae, substrate-level phosphorylation in the glycolysis and the 

pyruvate metabolism is the only way to produce ATP. The degradation of one molecule glucose via the 

glycolysis yields two molecules pyruvate and two molecules ATP. Pyruvate is converted to either 

lactate or, after several steps, acetate and ATP. Both lactate and acetate are secreted from the cell and 

lead to an acidification of the surrounding medium.  

Due to its constant conditions in the host tissue, the bacterium has no need to adapt to drastic changes 

which would require an elaborate regulatory network. Therefore, comparably few genes for regulatory 

proteins are found (Himmelreich, 1996). Whereas in other bacteria, like Pseudomonas aeruginosa or 

Streptomyces coelicolor, transcription factors account for about 10% of the genome, M. pneumoniae 

possesses only an hand full of potential regulators, which make up less than 0.5% of the genome 

(Stülke et al., 2009). However, this does not mean that M. pneumoniae constantly expresses its genes 

and does not react to extracellular clues. Transcriptome analyses show that M. pneumoniae gene 

expression is indeed altered, e.g. in the presence of different carbon sources, during oxidative stress, 

heat stress, iron-depletion or temperature imbalance. Also, the regulatory roles of small RNAs and 

antisense-RNAs were described and the impact of signaling molecules like c-di-AMP is under intense 

investigation (Güell et al., 2009; Schmeisky, 2013; Treffon, 2014). In addition, there have been several 

evidences for regulation on a post-translational level, like phosphorylation and acetylation (Halbedel et 

al., 2004; Schmidl et al., 2010). In fact, the amount of acetylated targets in Mycoplasma pneumoniae is 

three times as high as in E. coli (van Noort et al., 2012). 
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1.2.2 The pathogenicity mechanisms 
 

Disease and epidemiology 

M. pneumoniae is one of the most prevalent causes for respiratory tract infections worldwide (Waites 

and Talkington, 2004). As a human pathogen, it was described for the first time in 1944, after it had 

been isolated from the sputum of a patient with atypical pneumonia (Meiklejohn, 1944). Transmission 

usually occurs through aerosols from person to person. Once inside the human host, the bacteria 

colonize the mucosa of the lower respiratory tract leading to atypical pneumonia (Jacobs, 1997). 

Although the respiratory tract is the typical habitat, M. pneumoniae has also been isolated from several 

extrapulmonary infection sites like the synovial, the cerebrospinal and the pericardial fluid. 

Importantly, extrapulmonary manifestations are present in up to 25% of all infected persons (Waites 

and Talkington, 2004). While, in general, M. pneumoniae infections are rather mild, they can cause 

worse disease patterns in children and immunocompromised patients leading to complications like 

meningitis, myocarditis (inflammation of the heart muscle) or rheumatoid arthritis (inflammation of 

the joints) (Taylor et al., 1967; Mackay et al., 1975; Ramirez et al., 2005; Wilson et al., 2007). Due to 

their natural lack of a cell wall, Mycoplasma infections cannot be with treated with common β-lactam 

antibiotics like penicillin which target the cell wall synthesis machinery. Instead, tetracycline and 

macrolide-antibiotics are used (Blanchard and Bébéar, 2011). 

 

Adhesion 

A prerequisite for colonization and pathogenesis is the ability of M. pneumoniae to attach to and grow 

on smooth surfaces like the human host tissue. This is mediated by an attachment organelle which the 

bacterium carries at its cell poles (Krause, 1996; Krause und Balish, 2001). This so called tip structure 

is built up of a network of adhesins e.g. P1, P24, P30, P40 and the P41 and various additional proteins, 

like the high molecular weight proteins HMW1-3, which allow them to attach to and stay at the host 

cells (Somerson et al., 1967; Dallo et al., 1990; Inamine et al., 1988). Interestingly, the stability of these 

cytadherence proteins requires phosphorylation by the protein kinase PrkC. Deletion of this kinase 

and therefore destabilization of the adhesins clearly demonstrates the importance of cytadherence, 

since prkC mutants turned out to be highly impaired in virulence in a HeLa cell experiment (Schmidl 

et al., 2010). 

19 
 



INTRODUCTION 

 

Evasion of the host immune system 

Surface proteins, like the P1 protein or lipoproteins, are important for the interaction of mycoplasmas 

with their surroundings. This role, however, makes them also predestined targets for the humoral and 

cellular immune response. During an M. pneumoniae infection, the normal host immune system 

rapidly produces specific antibodies against protein and glycolipid antigens in the pathogen membrane 

to eventually get rid of the intruder. To establish a persistent infection, bacterial pathogens need to 

evade or suppress the host defense response. Mycoplasmas have come up with several mechanisms to 

protect themselves or hide from immune system: (i) They perform molecular mimicry using the 

extensive similarity and homology of their own surface proteins and glycolipids with those of the host 

tissue. This similarity can even cause autoimmune responses in the host through formation of 

antibodies against its very own substances e.g. myosin, keratin, fibrinogen or lung tissues (Barile, 

1979). Also, cross-reactivity can lead to an effect called cold agglutination, in which red blood cells are 

agglutinated by antibody (IgM) formation following M. pneumoniae infection. Therefore, the 

detection of cold agglutinins in a patient enables diagnosis of M. pneumoniae infection. (ii) It has been 

reported that mycoplasmas exhibit immunomodulatory activities to ensure their survival and that an 

intracellular lifestyle in the host cells is to be considered (Talkington et al., 2001; Dallo and Baseman, 

2000). The latter, for sure, would have indisputable advantages for the bacterium like escaping both the 

immune system and antibiotic treatment. (iii) Mycoplasma species are capable of antigenic phase 

variation, a process in which the surface antigens of the bacterium are constantly modulated in order 

to avoid recognition by host antibodies (Citti et al., 2010). In M. pneumoniae, DNA rearrangements 

and recombinatory events in P1 adhesin copies are one example (Kenri et al., 1999). Lipoprotein 

variation is also widely spread in mycoplasmas and ureaplasmas. This can occur in high frequency via 

size variation, variation in the number of tandem repeats in one protein or in forms of phase variation 

(on / off switching of lipoprotein synthesis). Even though M. pneumoniae lacks the genes coding for 

the “classical” lipoprotein families conferring phase variation in other mycoplasma strains, it possesses 

a large number of lipoprotein encoding genes, some of which are very similar to each other (Markham 

et al., 1994; Lysnyansky et al., 1999; Rosengarten and Wise, 1991; Bhugra et al., 1991; Hallamaa et al., 

2006). Together with the fact that the genes involved in lipoprotein synthesis are essential, this hints at 

an important role of these proteins for the cell - and possibly also in antigenic variation (Großhennig, 

2011). 
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Toxins and toxic compounds 

M. pneumoniae does not possess typical endo- or exotoxins. A fundamental virulence factor is the 

release of H2O2 which has been known as the “hemolysin” of M. pneumoniae for a long time 

(Somerson, 1965). It is assumed that hydrogen peroxide acts together with host endogenous reactive 

oxygen species to cause oxidative stress in the lung tissue (Tryon and Baseman, 1992). Interaction of 

H2O2 with erythrocytes might lead to oxidation and denaturation of hemoglobin, lipid peroxidation 

and hemolysis. H2O2 is released by M. pneumoniae as a side product in glycerol metabolism, more 

precisely in the conversion of glycerol-3-phosphate (G3P) to dihydroxy acetone phosphate (DHAP), 

by the glycerol-3-phosphate dehydrogenase GlpD. However, this enzyme actually exhibits oxidase 

function and transfers electrons to oxygen instead of NAD+ thus leading to the formation of hydrogen 

peroxide. Indeed, the glpD mutant is not able to produce any hydrogen peroxide and shows a strongly 

reduced cytotoxicity towards HeLa cells which emphasizes the important role of GlpD in 

pathogenicity (Hames et al., 2009). Interestingly, M. pneumoniae lacks the corresponding enzymes for 

detoxification: superoxide dismutase and catalase. It is not known how hydrogen peroxide exits the 

cell and how exactly the minimal organism avoids internal oxidative damage by H2O2. In addition to 

GlpD, M. pneumoniae encodes a so called CARDS-Toxin (Community-acquired respiratory distress 

syndrom), which is similar to a subunit of the pertussis-toxin and has ADP-ribosylating and 

vacuolating activity (Kannan and Baseman, 2006). While the CARDs toxin appears to be rather 

irrelevant in vitro and in tissue culture, it has been shown to evoke inflammatory responses in a mouse 

model. Finally, with MPN133, M. pneumoniae expresses a lipoprotein which additionally exhibits 

cytotoxic nuclease function (Somarajan et al., 2010). 

Together, these toxic features provide mechanisms to destroy and exploit host cells in order to gain 

nutrients and compounds which cannot be synthesized by the minimal organism itself but still are 

absolutely needed for life. 

 

1.3 Transport systems and their impact in virulence 
 

The magnitude of bacterial pathogenicity is significantly determined by their ability to successfully 

colonize tissues and to spread and persist inside the host. In order to survive, they need to import 

essential nutrients from their surroundings which makes effective transport systems indispensable. 

Generally, the function of transport systems is the translocation of solutes over a membrane barrier. 
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This is not only prerequisite for the uptake of nutrients, but also for the export of metabolic waste or 

toxic products. The export of drugs is an important aspect in antibiotic resistance therefore having 

clear clinical relevance. However, it is also a way for bacteria to evolve their ecological niches and 

prevail over opponents. The secretion of proteins, carbohydrates or lipids can support protection, 

communication and pathogenesis. Another fundamental aspect of transporters is their relevance in 

mediating the maintenance of the intracellular osmotic balance by ion in- and efflux. Finally, they can 

even be involved in the establishment of genetic variety by transferring nucleic acids as part of 

horizontal gene transfer (Saier, 2000). 

 

1.3.1 Types of transport systems  

 

Transport systems are specifically characterized by their mode of transport, energy coupling 

mechanism, molecular phylogeny and substrate specificity. According to the transporter classification 

(TC) system, they can be divided in four major groups regarding their mode of action: channels, 

secondary transporters, primary active transporters and group translocators (Saier, 2000). These 

groups are described in more detail in the following. 

Channels catalyze an energy-independent, facilitated diffusion process down a concentration gradient 

which is energy-independent. There are α-type channels, which consist of α-helical spanners and are 

ubiquitously found in the membranes of all organisms, and β-barrel pores whose transmembrane parts 

are exclusively made up of β-strands. Even pore-forming toxins, which are produced as cytolysins by 

one organism to be inserted into the membrane of a target cell, belong to this group. Primary active 

transporters make use of a primary source of energy, like a chemical reaction, light absorption or 

electron flow, to transport substrates against a concentration gradient. Their most famous member 

and actually one of the largest transporter classes are the ATP binding cassette (ABC) transporters, 

which couple transport to ATP hydrolysis. ABC transporters are usually heteromultimeric complexes 

consisting of two substrate-translocating and two ATP-hydrolyzing proteins. In addition, ABC 

transport systems often rely on the collaboration with additional extracytoplasmic substrate binding 

proteins, which, in gram-positive bacteria, are most often lipoproteins. They bind their substrates with 

an affinity of 0.01 – 1 µM which makes the binding proteins extremely efficient even at low substrate 

concentration. In the past years, a new group of ABC transporters has been discovered and aroused 

interest: the energy-coupling factor (ECF) transporters. These systems do also contain of a small 

membrane-spanning substrate binding S-component and an energy-coupling module. They catalyze 
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the uptake of a range of micronutrients, especially water-soluble vitamins (e.g. riboflavin and thiamin) 

and their precursors. ECF transporters are present in about 50% of all prokaryotes, but are particularly 

abundant in the Firmicutes (Saier, 2000; Rodionov et al., 2009). 

Secondary active transporters are electro-chemically driven transporters. They include uniporters, 

symporters and antiporters. Uniporters mediate specific transport of a single species, mainly by 

facilitated diffusion down a concentration gradient. Antiporters transport two or more species in 

opposite directions, whereas symporters are able to carry two or more species together in the same 

direction. In both cases, these reactions are coupled only to chemiosmotic energy. The largest known 

superfamily of secondary transporters is the Major Facilitator Superfamily (MFS), which is 

ubiquitously distributed in the organisms of all phyla (Saier, 2000: Reddy et al., 2012). 

Finally, group translocators include the phosphoenolpyruvate:sugar phosphotransferase systems 

(PTS). These systems modify their incoming substrate, e.g. glucose, after a series of phosphorylation 

events starting with phosphoenolpyruvate (PEP) as phosphoryl donor and ending at the sugar as 

acceptor. Interestingly, PTS systems are only found in prokaryotes (Deutscher et al., 2006; Reizer et al., 

1993). 

 

1.3.2 Transport systems in prokaryotes 

 

The particular importance of transport systems for the organism is reflected in their relatively high 

abundance in prokaryotes. Large-scale genomic analyses of 201 bacterial and archaeal species revealed 

that in prokaryotes 3 - 16% of all ORFs code for membrane transport proteins (Ren and Paulsen, 

2007). However, it has to be noted that, in this study, only proteins possessing actual transmembrane 

domains are included. Since transport systems do in many cases rely on components with substrate 

binding or energy coupling functions which do not have transmembrane domains, it appears obvious 

that the overall number of transport-dedicated proteins is even higher. Interestingly, the percentage of 

transport systems within one group of bacteria can be quite diverse. This might be due to the 

differential knowledge about particular transport systems among the bacteria or archaea. Moreover, 

the amount and also the composition of transporters in a species strongly depend on its lifestyle. While 

obligate intracellular pathogens tend to encode rather few types of transport systems due to their stable 

environment, plant- and soil-associated organisms are in need of a variety of transporters to be able to 

adapt to changing conditions. For example, the soil-bacterium Bacillus subtilis possesses 423 total 
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transport proteins which account for 10.3% of its genome. In contrast, Leptospira interrogans, a 

parasitic pathogenic spirochaete devotes with 147 transmembrane proteins only 3.1% of its genome to 

transport. Mycoplasma species have about 10% of their genome coding for transport proteins (Ren and 

Paulsen, 2007). Although they have undergone reductive evolution, and the overall number of 

transporters appears to be comparatively low, these organisms strongly depend on efficient transport 

systems for the import of the multitude of metabolites that cannot be synthesized by the cells 

themselves. Therefore, the high percentage of transporters in minimal pathogenic organisms like M. 

pneumoniae, originates from their lack of biosynthetic pathways which makes them constantly reliable 

on extensive, external nutrient supply. In contrast, the high percentage of transporters in B. subtilis 

arises from the diversity of transported metabolites that might be necessary under specific conditions.  

 

1.3.3 Transport systems in M. pneumoniae 

 

Most of the transport systems in M. pneumoniae have been annotated only by sequence similarity 

(Himmelreich et al., 1996). Due to their transmembrane domains, transporters are experimentally 

challenging. The most intensely studied and therefore best described transporters are import systems 

for carbon sources. As mentioned above, M. pneumoniae can utilize glucose, fructose, mannose, GPC 

and glycerol (Halbedel et al., 2007). Like in other bacteria, glucose is actively taken up via the 

phosphoenolpyruvate:glucose phosphotransferase system (PTS). This is also true for fructose and 

mannose which are both assumed to be transported by the substrate specific protein FruA which 

represents the EIIABC component of the PTS. Glycerol is taken up by facilitated diffusion using an 

aquaglyceroporin, GlpF. Since the glycerol metabolism is the basis for hydrogen peroxide production, 

it seems astonishing that the uptake of its direct precursor is mediated by such comparably inefficient 

way of import. Indeed, a highly pathogenic form of M. mycoides, which produces high rates of H2O2 

with glycerol, encodes a highly efficient ABC-transport system for glycerol in addition to GlpF (Vilei 

and Frey, 2001). Recently, it could be shown that GPC is imported by means of a permease, GlpU, 

which belongs to the major facilitator superfamily. GlpU is accompanied by two accessory proteins, 

MPN076 and MPN077, which have parallel functions, but with MPN076 being the more prominent 

one (Großhennig et al., 2013). The phospholipid product GPC is an abundant carbon source in the 

lung tissue. After its uptake into the Mycoplasma cell, it is converted to G3P by the 

glycerophosphodiester-phosphodiesterase GlpQ. Since G3P is the substrate for GlpD which produces 
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the pathogenicity factor H2O2, the GPC metabolism is also linked to virulence (Schmidl et al., 2011). 

Indeed, M. pneumoniae strains lacking the genes for GlpQ or the corresponding transporter GlpU 

show strongly decreased virulence. This example illustrates that, depending on the nature of their 

substrates, transporters can definitely be crucial for establishment of virulence.  

 

1.3.4 Transport systems in virulence 

 

In addition to the above mentioned indispensability of transporters in nutrient uptake and therefore in 

assuring the bacterial survival and multiplication, there are other aspects of pathogenicity which 

involve the function of certain transporters. 

Export systems are typically involved in virulence when it comes to the transfer of toxins, hemolysins 

and antimicrobial or antibiotic substances from the cell into the environment. In gram-negative 

bacteria, this is mediated by the Type I – Type VI Secretion Systems. To translocate effector molecules 

and toxins, pathogenic bacteria like Legionella pneumophila, Helicobacter pylori, Brucella spp. or 

Bordetella pertussis predominantly use the Type IV Secretion System (T4SS) (Vogel et al., 1998; 

Censini et al., 1997; Boschiroli et al., 2002; Burns, 2003). In gram-positive bacteria, protein secretion is 

usually mediated by the Sec (secretory) pathway. For that, the desired proteins are tagged with an N-

terminal signal peptide which is recognized by the Sec machinery. It has been shown that the exotoxins 

of Staphylococcus aureus, the Listeria monocytogenes pore-forming cytolysin listerilolysin O or 

cytotoxins of Bacillus cereus are secreted via the Sec pathway (Fagerlund et al., 2010; Woolridge, 2009). 

Moreover, antimicrobial peptides can be exported by specific ABC transporters (Wooldridge, 2009). 

Another striking and very intensely studied implication of transporters in virulence is the uptake of 

iron. Since iron is an essential element for growth in nearly all bacterial species, but difficult to access 

inside the host, pathogenic bacteria evolved efficient iron-acquisition systems. For this, pathogenic 

bacteria may secrete toxins under iron-limiting conditions that damage the host cells in order to make 

the intracellular iron sources accessible. Characteristic toxins whose expression is regulated in 

response to the availability of iron are the diphtheria toxin in Corynebacterium diphtheriae, and the 

Shiga toxins of Shigella or E.coli strains (Schmitt and Holmes, 1991; Calderwood and Mekalanos, 

1987). 
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1.4 Hemolytic and hemoxidative activities in bacteria 
 

1.4.1 Hemolysis and hemoxidation 

 

The bacterial struggle for iron is often accompanied by hemolysis. Hemolysis describes a process in 

which red blood cells (RBCs) are destroyed due to the action of lytic compounds. This is a convenient 

effect, since the bacteria gain access to a lot of nutrients which are released from the lysed erythrocyte. 

Most importantly, they gain access to iron which is bound inside the hemoglobin molecules of the red 

blood cell (Fig. 1.2 A). 

 

 
   A 
 

 
   B  

 
    

 

 

Bacterial hemolysis can be divided into three major types, which are illustrated in Fig. 1.2 B.: alpha-, 

beta-, and gamma hemolysis. Bacteria which exhibit gamma hemolysis do not have hemolytic activity. 

In contrast, beta-hemolysis describes the process of complete lysis of blood cells leading to a clear 

yellow halo around the colonies in which no intact red blood cells containing hemoglobin are present 

anymore. Finally, alpha hemolysis is a process in which the red blood cells are not destroyed, but the 

hemoglobin is modified. One possibility is, that the Fe2+ bound in the middle of the tetrapyrrole ring in 

Fig. 1.2. Illustration of heme as part of hemoglobin which then 
again is part of a red blood cell (A) and Types of bacterial 
hemolysis (B). A. Hemoglobin (1GZX) is made up of four 
subunits, each of which contains a polypeptide chain called 
globin and a heme group. Red blood cells (erythrocytes) consist 
of about 270 million hemoglobin molecules which makes circa 
97% (w/w) dry weight (Weed et al., 1963). (modified from 
www.chem.ucla.edu, www.rcsb.org and Toumey, 2011) B. 
Blood agar plate with alpha-hemolytic (α), beta-hemolytic (β) 
and non-hemolytic (γ) streptococci recorded with transmission 
light (www.microbelibrary.org.) 
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the heme molecule is oxidized to Fe3+ resulting in a different form of hemoglobin: methemoglobin 

(metHb). This process of hemoxidation leads to a brownish discoloration of the blood around the 

bacterial colonies on the plate. In vivo, oxidized hemoglobin has a reduced binding affinity towards 

oxygen and also the release of oxygen is hindered. However, this process is reversible. Similar to 

oxididation, hemoglobin can also be sulfenylated resulting in so called sulfhemoglobin (sulfHb), which 

appears as a greenish-brownish discoloration of blood (Chatfield and La Mar, 1992). As a result, 

hemoglobin loses its ability to bind oxygen in a non-reversible manner. Both, the formation of sulfHb 

and metHb are forms of alpha hemolysis. For simplification, the term “hemoxidation” will in this work 

be referred to as any kind of alpha-hemolysis, whereas the term “hemolysis” is only used for beta-

hemolysis. 

 

1.4.2 Hemolysins and hemolytic toxins 

 

Beta-hemolysis is usually induced by the action of proteins which destroy the phospholipid bilayer of 

the RBC’s membrane. This can be mediated by (i) enzymes like phospholipases which hydrolyze the 

membrane phospholipids, (ii) toxins which exhibit a detergent-like (surfactant) activity that results in 

membrane solubilization and (or) partial insertion into the hydrophobic regions of target membranes, 

or (iii) pore-forming toxins which, after their secretion, build oligomers inserting into eukaryotic cell 

membranes, thereby causing their leakage (Titball, 1993; Braun and Focareta, 1991). The hemolytic 

actions of phospholipases A and C have been described for several pathogenic bacteria like Borrelia, 

Staphyloccocci, Clostridia or Listeria (Williams and Austin, 1992; Smith and Price, 1938; van 

Heyningen, 1941; Geofflroy et al., 1991). Examples for phospholipases C in gram-positive bacteria are 

phosphatidylinositol phospholipases C, e.g. PLC-A from L. monocytogenes, sphingomyelinases as the 

beta-hemolysin from Staphylococcus aureus or Zinc-metalloenzymes like the alpha-toxin of 

Clostridium perfringens. These enzymes have different preferences concerning their targeted 

phospholipid: Zinc-dependent phosphilopases C preferentially degrade phosphatidylcholine, whereas 

sphingomyelinases prefer sphingomyelin (Nakamura et al., 1988; Maheswaran and Lindorfer, 1967; 

Titball, 1993).  

The most intensely investigated and best described hemolysins are the numerous pore-forming toxins. 

Important examples from gram-negative bacteria are the α-hemolysin of E. coli, which is encoded by 

the gene hlyA, and the similar hemolysin CyaA of Bordetella pertussis (Cavalieri et al., 1984; Hackett et 
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al., 1994). HlyA from E. coli is a 107 kDa protein that induces hemolysis by creating about 2-nm-wide 

pores in the erythrocyte membrane. Those pores are thought to increase the permeability thereby 

producing cell swelling, which ends up in RBC rupture (Bhakdi et al., 1986). 

The α-toxin of S. aureus is probably the most famous hemolysin from gram-positive bacteria. It is a 

small β-barrel pore-forming toxin which is secreted as a monomer, but oligomerizes into a heptameric 

structure when binding the host-cell membrane. This binding leads to formation of a 1-3 nm 

membrane-perforating barrel pore that allows the efflux of Ca2+, K+, ATP and low-molecular weight 

molecules with a maximum size of 4 kDa (Bhakdi and Tranum-Jensen, 1991). Another group of pore-

forming toxins which is present in several genera of gram-positive bacteria are the thiol-activated 

hemolysins. These include the listeriolysin O (L. monocytogenes), the pneumolysin (Streptococcus 

pneumoniae), the perfringolysin (C. perfringens) and the streptolysin O from Streptococcus pyogenes. 

All these toxins are rapidly inactivated in the presence of oxygen but can be activated again after 

addition of sulfhydryl compunds. Streptolysin O has been shown to insert into cholesterol-containing 

membranes, where up to 100 monomers aggregate and assemble as a superstructure forming a 

transmembrane channel with up to 7.5 nm width (Bhakdi et al., 1985).  

In contrast to the hemolytic toxins evoking beta-hemolysis, alpha-hemolysis is not induced by 

proteins. Secretion of hydrogen peroxide or hydrogen sulfide is the main cause for bacterial oxidation 

or sulfenylation of hemoglobin. Alpha-hemolysis following production of hydrogen peroxide is used 

for typing of bacterial species and typically seen in Streptococci like S. pneumoniae and S. mutans 

(Duane et al., 1993; Hamada and Slade, 1981). 

 

1.4.3 Hydrogen sulfide  

 

In the recent years, hemoglobin alteration and hemolysis as result of hydrogen sulfide production has 

been studied in several oral pathogens. Among them, the “cystalysin” of Treponema denticola and its 

hemoxidative and hemolytic activity have been elaborately studied. Cystalysin is a 46 kDa, pyridoxal-

5-phosphate (PLP) dependent L-cysteine desulfhydrase, which is homologous to aminotransferases 

and is able to produce ammonia, pyruvate and H2S from L-cysteine (Chu et al., 1995; Chu et al., 1997). 

Heterologous expression of cystalysin in E. coli lead to high hemoxidation and hemolysis rates which 

became apparent in clear halos around the respective E. coli colonies (Chu et al., 1995). Detailed 

investigation of human erythrocytes incubated with the purified enzyme revealed strong 
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methemoglobin and sulfhemoglobin formation which was attributed to the production of hydrogen 

sulfide (Kurzban et al., 1999). The production of hydrogen sulfide is a prevalent feature of oral 

pathogenic bacteria and responsible for periodontal diseases and oral malodor (Tonzetich, 1971). The 

genera Fusobacterium, Prevotella and Porphyromonas are amongst the predominant H2S producers 

(Persson et al., 1990). For H2S formation, these bacteria possess PLP dependent βC-S lyases which 

catalyze the α,β-elimination of L-cysteine. Hemolytic activity correlating with H2S production has not 

only been demonstrated for T. denticola, but also for Fusobacterium nucleatum, Streptococcus 

anginosus, Streptococcus intermedius and Prevotella intermedia (Fukamachi et al., 2002; Yoshida et al., 

2002; Ito et al., 2008; Yano et al., 2009).  

 

1.5 This work 
 

In this work, two potential virulence determinants should be examined and evaluated for their possible 

roles in virulence and hemolytic activity of M. pneumoniae. 

Transport systems are necessary for survival of bacteria, especially for genome-reduced pathogens with 

strict host-specificity. Since not much is known about transport systems in M. pneumoniae - except for 

some sugar uptake transporters -, the identity and function of as many transport systems as possible 

should be elucidated. For that, (i) mutants for non-essential transporters should be isolated and 

characterized, and (ii) transport systems of M. pneumonie should be expressed heterologously in B. 

subtilis to assess their function in a bacterium that is more convenient for laboratory work. In order to 

estimate the transporters’ importance for host colonization and cell lysis, the respective bacterial 

strains should be tested in growth assays and in infection studies using HeLa cells and blood culture. 

Hemolysis is an important aspect of bacterial pathogenicity which can have severe effects in the human 

host. Therefore, the hemolytic and hemoxidative activity of M. pneumoniae was planned to be studied 

in detail as well. For a long time, the major pathogenicity factor of M. pneumoniae, H2O2, has been 

assumed to be the hemolysin of the organism. However, since also H2S has been proven to play a role 

in hemolysis of other bacterial pathogens, M. pneumoniae also was to be tested for production of 

additional hemolytic compounds, like hydrogen sulfide. Also, their importance in the overall virulence 

of the human pathogen should be evaluated. 
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2. MATERIAL AND METHODS 
 

2.1 Material 
 

Chemicals, utilities, equipment, commercially available systems as well as antibodies, enzymes and 

oligonucleotides are listed with their manufacturers in the Appendix. 

 

2.1.1 Bacterial strains and plasmids 

 

The bacterial strains and plasmids used in this work are listed in the Appendix. 

 

2.1.2  Media 

 

Buffers, solutions and media were prepared with deionized water and autoclaved for 20 min at 121°C 

and 2 bar. Thermally labile substances were solved and filtered sterile. All data refer to water, other 

solvents are mentioned. For preparation of plates, 18 g/l agar were added to LB-medium and 8 g/l agar 

were added to MP-Medium while phenol red was left out (Großhennig, 2011). 

 

Media for bacteria and facultative supplements 

 

MP-Medium (400ml)     7.35 g   PPLO Broth 

Modified Hayflick medium   11.92 g   HEPES 

(Chanock et al., 1962)     2 ml   Phenol red (0.5%) 

14 ml   NaOH (2 N) 

ad 400 ml  deionized H2O 

pH 7,6-7,8 

autoclave, then addition of: 

100 ml   Horse serum (heat inactivated) 

5 ml   Penicillin (100,000 U/ml) 

10 ml   Carbon sources (50%) 

+/- 260 μl   Gentamycin (160 mg/ml)  
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LB- Medium (1 l)     10 g   Trypton 

5 g   Yeast extract 

10 g  NaCl  

ad 1 l   deionized H2O 

 

5 x C-salts (1l)      20 g  KH2PO4 

80 g   K2HPO4 x 3 H2O 

16.5 g  (NH4)2SO4 

ad 1 l   deionized H2O 

 

III’-salts      0.232 g   MnSO4 x 4 H2O 

12.3 g   MgSO4 x 7 H2O 

 

CSE-glucose medium (100 ml)    20 ml  5 x C-salts 

1 ml   Tryptophan (5 mg/ml) 

1 ml  CAF (2.2 mg/ml) 

1 ml   III’-salts 

2 ml   Potassium glutamate (40%) 

2 ml   Sodium succinate (30%) 

1 ml   Glucose (50%) 

ad 100 ml  deionized H2O 

 

C-minimal medium (100 ml)    20 ml  5 x C-salts 

1 ml   Tryptophan (5 mg/ml) 

1 ml  CAF (2.2 mg/ml) 

1 ml   III’-salts 

+/-  1 ml   Glycerol (50%) 

ad 100 ml  deionized H2O 

 

SP-medium (1 l)     8 g   Nutrient Broth 

0.25 g   MgSO4 x 7 H2O 

1 g   KCl 

ad 1 l   deionized H2O 

autoclave, then addition of:  
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1 ml  CaCl2 (0.5 M) 

1 ml   MnCl2 (10 mM) 

2 ml   CAF (2.2 mg/ml) 

 

10 x MN-medium (1 l)     136 g  K2HPO4 x 3 H2O 

60 g  KH2PO4 

10 g   Sodium citrate x 2 H2O 

ad 1 l   deionized H2O 

 

MNGE (10 ml)      1 ml  10 x MN-medium 

400 μl   Glucose (50%) 

50 μl   Potassium glutamate (40%) 

50 μl   Ammonium iron citrate (2.2 mg/ml) 

100 μl   Tryptophan (5 mg/ml) 

30 μl   MgSO4 (1 M) 

+ / -  100 μl   Casamino acids (10%) 

 

X-Gal      Stock solution: 40 mg/ml X-Gal in DMF 

Working concentration in media: 40 μg/ml  

 

IPTG      Stock solution: 1 M in H2O 

      Working concentration in media: 1 mM 

 

Antibiotics 

All used antibiotics were prepared as 1,000 fold concentrated stock solutions. Ampicillin, gentamycin, 

kanamycin, lincomycin and tetracycline were dissolved in water; chloramphenicol and erythromycin 

were dissolved in 70% ethanol, filtered sterile and stored at -20°C. Penicillin was dissolved in water, 

filtered sterile and stored at 4°C. After the media had cooled to about 50°C, antibiotics were added in 

respective concentrations. 

 

Selection concentration for E. coli:    Ampicillin  100 µg/ml 

       Kanamycin  50 µg/ml 
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Selection concentration for M. pneumoniae:   Gentamycin  80 µg/ml 

Penicillin  1000 U/ml 

       Tetracycline   2 µg/ml 

 

Selection concentration for B. subtilis:   Chloramphenicol 100 μg/ml 

Erythromycin  2 μg/ml 

Kanamycin  10 μg/ml 

       Lincomycin  25 µg/ml 

 

2.2 Methods 
 

2.2.1 Standard methods 

 

General methods that were described previously and used in this work are listed in Tab. 2.3. 

 

Tab. 2.3 Standard methods 

Method Reference 

Measurement of optical density Sambrook et al., 1989 

Precipitation of nucleic acids Sambrook et al., 1989 

DNA gel electrophoresis Sambrook et al., 1989 

Ethidium bromide staining of DNA Sambrook et al., 1989 

Ligation of DNA fragments Sambrook et al., 1989 

Plasmid isolation from E. coli Sambrook et al., 1989 

Chain terminator sequencing Sanger et al., 1977 

Gel electrophoresis of proteins Laemmli, 1970 

Determination of protein amounts Bradford, 1976 
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2.2.2 Cultivation techniques 

 

Cultivation of E. coli and B. subtilis 

Unless stated otherwise, E. coli was grown in LB-Medium at 37°C and 200-220 rpm in test tubes. B. 

subtilis was grown in LB medium, CSE-glucose medium, C-glycerol medium or MNGE medium at 

30°C or 37°C and 200 rpm in test tubes or flasks. Inoculation was done with single colonies from fresh 

plates. 

 

Cultivation of M. pneumoniae 

1 ml of M. pneumoniae culture was added to 100 ml MP-Medium. The cultures were grown in 150 cm2 

tissue culture flasks for 4 days at 37°C. When more cell material was needed, 200 ml MP-medium were 

inoculated with 2 ml of the preculture and incubated in a 300 cm2 tissue culture flask at 37°C. 

 

Cultivation of human cervix carcinoma cell lines (HeLa) and determination of cell count 

HeLa cells were grown in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% FCS 

at 37°C and 5% CO2 for 3-4 days in 25 cm2 or 75 cm2 culture flasks. The supernatant of a confluent 

grown culture was removed with a sterile serological single-use pipet. Depending on the size of the 

flask and the cell density, 1-5 ml fresh DMEM were added and the adherent cells were scraped off with 

a cell scraper.  

For passaging of HeLa cells, the scraped cells were separated by gently pipetting up and down and 100 

µl – 1 ml were used for inoculation of new flasks containing 5 – 15 ml DMEM. Again, the cells were 

grown for 3-4 days at 37°C and 5% CO2. 

For subsequent determination of cell count, the previously harvested cells were transferred to a 50 ml 

Falcon tube und pelleted by centrifugation at 1,400 rpm and 5 min. Afterwards, the supernatant was 

discarded and, depending on the size of the pellet, the HeLa cells were resuspended in 2-4 ml DMEM. 

For cell counting, a Neubauer chamber (0.1 mm depth, 0.0025 mm2 surface) was used. 10 µl of the cell 

suspension were mixed with 10 µl trypan blue and 10 µl of the mixture were pipetted between chamber 

and cover slip. Living cells were counted in 4 big squares (each with 16 small squares). The number of 

cells per ml was calculated by multiplying the average number of cells per big square by the dilution 

factor 2 and the volume factor 1 x 104 (Großhennig, 2011). 
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Storage of bacteria  

E. coli strains were kept on LB medium agar plates for several weeks at 4°C. For long-term storage at -

70°C, glycerol cultures were prepared by adding 300 µl of 50% glycerol to 100 µl of a fresh overnight 

culture in a screw-cap tube.  

B. subtilis was stored on SP agar plates at room temperature or as cryo-cultures in DMSO at -70°C. For 

that, 900 μl of an overnight culture was mixed with 100 μl DMSO and subsequently frozen. 

For long-term storage of Mycoplasma pneumoniae strains, the cells of a freshly grown 100 ml culture 

were harvested by scraping in 10 ml fresh MP medium. The cells were transferred into a falcon tube 

and stored without any further supplement at -70°C. 

 

Growth experiments with B. subtilis 

Liquid medium  

The desired B. subtilis strains were grown over day in 4 ml LB medium (supplemented with antibiotics 

where needed) at 30°C. 150 ml CSE medium were inoculated with 100 µl or 50 µl of the over day 

cultures and shaken over night at 30°C or 37°C, respectively. The cultures were harvested by 

centrifugation (10 min; 4,000 rpm, room temperature), the pellets were washed twice in 1x C-salts, 

resuspended and the OD600 was determined. For monitoring the growth in minimal medium, 10 ml C-

minimal medium (supplemented with glucose or glycerol) were inoculated with the preculture to an 

OD600 of 0.1 and incubated shaking at 37°C. The growth rate of the culture was determined by 

measuring its OD once per hour. 

Serial drop dilution plate assay 

Overnight cultures of the strains to be tested were prepared in 4 ml LB-medium. The next day, the 

overnight cultures were transferred into a falcon tube and centrifuged for 10 min at 4,000 rpm. The 

pellets were washed twice and resuspended in 5 ml C-minimal medium. The OD600 was measured and 

an OD = 1 was adjusted with C-minimal medium. Serial tenfold dilutions (in C-medium) were 

prepared and 5 µl of each dilution were dropped in a row on selective plates. The assay was incubated 

for 1-2 days at 37°C. 

 

Determination of wet weight of M. pneumoniae cultures 

The supernatant of a 100 ml culture was decanted and the adhering cells were washed twice with 

1xPBS buffer pH 7.4. Subsequently, the cells were scraped off with a cell scraper in 1.5 ml 1 x 
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phosphate buffered saline (PBS). The cells were transferred to a previously weighed reaction tube and 

centrifuged (13,000 rpm, 4°C). The supernatant was removed completely and the weight of the pellet 

was determined using a special accuracy weighing machine. The wet weight resulted from the weight 

of the reaction tube with the harvested cells minus its weight without cells (Großhennig, 2011). 

 

PBS (10 x)     2 g   KCl 

2 g   KH2PO4 

14.24 g   Na2HPO4 x 2 H2O 

80 g   NaCl 

ad 1 l   dH2O 

adjust pH 7.4 or 6.5 

 

2.2.3 Transformation of bacteria 

 

Transformation of E. coli cells 

Preparation of competent E. coli cells 

20 ml LB medium were inoculated with a single colony of the E. coli strain grown on a LB agar plate. 

The culture was incubated for 20 h at 28°C. 250 ml SOB medium in a 2 l baffled flask were inoculated 

with 6 ml of this preculture and incubated overnight at 18°C and 200-250 rpm until the cells reached 

an OD600 of 0.5 – 0.9. Then, the culture was placed on ice for 10 min and subsequently centrifuged at 

5,000 rpm at 4°C for 10 min. The pellet was resuspended in 80 ml precooled TB buffer and incubated 

on ice for 10 min. The cells were centrifuged again at 4,000 rpm and 4°C for 10 min and the pellet was 

resuspended in 20 ml TB buffer. While gently rotating the tube, 1.4 ml DMSO were added to final 

concentration of 7%. The cells were shortly incubated on ice, divided in 200 μl aliquots and rapidly 

frozen in liquid nitrogen. The competent cells were stored at -80°C until further use (modified from 

Rempeters, 2011). 

 

TB-buffer (500 ml, pH 6.7)    1.51 g   PIPES 

1.1 g  CaCl2 x H2O 

ad 472.5 ml  deionized H2O 

autoclave, then addition of: 

27.5 ml   MnCl2 (1 M, sterile) 
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SOB medium (1 l)     20 g   Tryptone 

5 g   Yeast extract 

0.584 g   NaCl 

0.188 g   KCl 

ad 1 l   deionized H2O 

autoclave, then addition of: 

10 ml   MgCl2 (1 M, sterile) 

10 ml   MgSO4 (1 M, sterile) 

 

Transformation of competent E. coli cells 

10-100 ng of DNA were added to an aliquot of 200 µl competent E. coli cells. The sample was 

incubated on ice for 30 min, followed by a heat shock for 90 sec at 42°C and incubation for 5 min on 

ice again. After addition of 500 µl LB-medium, the cells were shaken for 1 h at 37°C and 200 rpm. For 

each sample, 100 µl as well as the centrifuged and resuspended “rest” were plated on selective media. 

The plates were incubated over night at 37°C (adapted from Großhennig, 2011). 

 

Transformation of B. subtilis cells 

Preparation of competent B. subtilis cells 

10 ml MNGE medium containing casamino acids were inoculated with a B. subtilis overnight culture 

to an OD600 of 0.1. The culture was incubated at 37°C and 200 rpm. At an OD600 of 1.3, one volume 

pre-warmed MNGE medium without casamino acids was added to the culture. After an additional 

hour of incubation at 37°C and 200 rpm the cells were competent. 

Transformation of competent B. subtilis cells 

400 μl competent cells were pipetted onto 0.1 to 1 μg DNA in a microcentrifuge tube and incubated at 

37°C and 200 rpm for 0.5 h. 100 μl expression solution was added to the cells and incubation was 

continued for 1 h. Then the cells were spread on LB agar plates containing the appropriate antibiotics 

for selection (Rempeters, 2011). 

 

Expression mix (1 ml)    500 μl   Yeast extract (5%) 

250 μl  Casamino acids (10%) 

250 μl   dH2O 

50 μl   Tryptophan (5 mg/ml) 
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Transformation of M. pneumoniae by electroporation 

The cells of a four days grown 100 ml M. pneumoniae culture were washed twice with electroporation 

buffer (8 mM HEPES, 272 mM Sucrose; pH 7.4) and scraped off in 1.5 ml of this buffer. The cells were 

centrifuged for 5 min at 10,000 rpm and 4°C, and the pellet was resuspended in 150 µl of ice cold 

electroporation buffer. For an electroporation sample, 50 µl M. pneumoniae cells, 5-10 µg Plasmid-

DNA and 1 µl yeast tRNA were mixed and filled up with electroporation buffer to 80 µl. The samples 

were transferred to electroporation cuvettes (0.2 cm) and incubated 15 min on ice. Electroporation was 

performed at 2.5 kV, 25 µF and 100 Ω. Subsequent to electroporation, the cells were incubated for 15 

min on ice again, followed by 2 h of incubation in 10 ml MP-Medium at 37°C. Afterwards, the cells 

were spun down for 5 min at 4,000 rpm and RT. In order to separate the cells, the pellet was 

resuspended in 1 ml MP-medium using a syringe with needle (0.55 mm diameter) and dilution series 

were prepared. Of each dilution (10-1 – 10-7), 200 µl were plated on MP-plates containing gentamycin 

and tetracycline. The plates were incubated 7-14 days at 37°C. Clones were picked with sterile tooth 

picks and inoculated in 1 ml MP-Medium (Großhennig, 2011). 

 

Electroporation buffer (1l)   1.91 g   HEPES  

      93.11 g   Sucrose 

      ad 1 l   dH2O 

      adjust pH 7.4 

 

2.2.4 Bacterial adenylate cyclase two hybrid (BACTH) 

 

The bacterial adenylate cyclase two hybrid system is a method for detection of protein-protein-

interactions in vivo. It is based on the reconstruction of the Bordetella pertussis adenylate cyclase in E. 

coli. This enzyme consists of two domains (T25 and T18) and is only active when these domains are in 

close proximity. For investigation of protein-protein-interactions, the proteins to be tested are fused to 

the T25 or T18 domain of the B. pertussis adenylate cyclase, respectively. In case of interaction of the 

two proteins, the domains get close to each other and are able to form the active enzyme adenylate 

cyclase which synthesizes the central transcription regulator cAMP. This molecule then binds the 

catabolite activator protein CAP which is responsible for activation of catabolic operons like the lac-

operon. 
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For detection of in vivo- interactions, the proteins to be tested were fused N-terminally and C-

terminally to the domains of the adenylate cyclase using a set of plasmids. For construction of fusions, 

four distinct plasmids were used, respectively: two “low-copy” vectors for expression of T25-fusions 

(pKT25 and p25-N) and two “high-copy” vectors for expression of T18-fusions (pUT18 and pUT18C). 

Genes for transport- and lipoproteins were cloned into the low-copy or high-copy vectors using the 

methods described above and the E. coli strain XL-1 blue. For the interaction experiment, the E. coli 

strain BTH101, which lacks the adenylate cyclase, was co-transformed with one high-copy and one 

low-copy plasmid. The transformation was performed in microtiter plates. For this purpose, 30 µl 

BTH101 cells were mixed with 1 µl of each plasmid and incubated on ice for 30 min, followed by a heat 

shock for 90 sec at 42°C. As positive control, the plasmids pKT25-zip and pUT18C-zip that form a 

functional leucin zipper were used. Afterwards, 120 µl LB medium were added to the cells and the 

plate was incubated at 30°C for 2 h. Finally, 5 µl of the respective cell suspensions were dropped on LB 

plates supplemented with ampicillin, kanamycin, IPTG and X-Gal. The transformation plates were 

incubated for 2 days at 30°C. 

Protein-protein-interactions were detected visually and monitored by scanning. In case of interaction 

blue colonies should be formed due to production of cAMP by the functional adenylate cyclase and 

final activation of β-galactosidase expression. The enzyme β-galactosidase is able to convert the 

colorless compound X-Gal to a blue dye leading to growth of blue colonies (adapted from Großhennig, 

2011). 

 

2.2.5 Preparation and analysis of DNA 

 

Isolation of plasmid DNA by modified Alkali / SDS lysis 

Plasmid isolation was performed by means of alkaline lysis followed by chromatographic purification. 

For that, 4 ml of an overnight culture (and accordingly 10 ml for preparation of “low-copy” plasmids) 

were used. The isolation was done using the NucleoSpin® Plasmid Kit (MACHEREY-NAGEL) 

according to manufacturer’s manual (Großhennig, 2011). 

 

Isolation of M. pneumoniae chromosomal DNA   

The supernatant of 100 ml M. pneumoniae culture that had been grown for four days was poured 

away, the cells were washed twice with 1xPBS buffer (pH 6.5) and were scraped off in 1.5 ml of this 
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buffer. The suspension was centrifuged for 1 min at 13,000 rpm and 4°C. The pellet was resuspended 

in 540 µl Lysis buffer and 10 µl RNaseA (20 mg/ml) were added. Afterwards, the sample was incubated 

for at least 25 min at 37°C and chromosomal DNA was isolated via the DNeasy® Blood and Tissue Kit 

(50) (QIAGEN) according to manufacturer’s manuals (Großhennig, 2011). 

 

Lysis buffer     20 mM   Tris pH 8.0  

      2 mM   EDTA pH 8.0  

50 mg   Lysozyme 

ad 2.5 ml  dH2O 

 

Sequencing of DNA 

Sequencing was done at the Göttingen Genomics Laboratory (G2L), Seqlab (Göttingen) or LGC 

Genomics (Berlin) using the chain termination sequencing technique by Sanger. 

 

Restriction and ligation of DNA 

Restriction with the desired endonucleases (FERMENTAS) was performed using buffers as 

recommended by the manufacturer. The amount of enzyme conformed to the amount of DNA and the 

sample volume. Restriction samples were incubated at 37°C overnight or for 1h in case of use of Fast 

Digest™ enzymes. Ligation of DNA fragments was carried out with T4-DNA-ligase (FERMENTAS) 

and the appropriate manufacturer’s buffer. The reaction sample was set up with 10-100 ng of vector 

DNA and 2-5 fold excess of insert DNA, and incubated for at least 1h at room temperature 

(Großhennig, 2011). 

 

Dephosphorylation of DNA 

In order to dephosphorylate the 5’end of DNA fragments, 1 µl of FastAP™ Thermosensitive Alkaline 

Phosphatase (FERMENTAS) was added to a mixture containing a final concentration of 3-10 ng/µl 

restricted DNA. The sample was incubated for 30 min at 37°C and subsequently purified using the 

QIAquick PCR purification Kit (QIAGEN) (Großhennig, 2011). 
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Polymerase chain reaction (PCR) 

Polymerase chain reactions were performed using chromosomal DNA or plasmid DNA as templates. 

The samples were mixed and the reactions were set up in a thermocycler using the respective 

programs. 

 

Reaction set-up for Taq polymerase (50 μl) 

1 μl  Primer (fwd) (20 pmol) 

1 μl  Primer (rev) (20 pmol) 

1 μl  Template DNA (approx. 100 ng) 

5 μl  10x Taq polymerase buffer 

1 μl  Taq polymerase (5 U/μl) 

2 μl  dNTPs (12.5 μmol/ml) 

39 μl  dH2O 

 

Reaction Temperature Duration Number of cycles 

Initial denaturation 95°C 5 min 1 

Denaturation 95°C 1 min  

Annealing 52°C 1 min 30/50 

Elongation 72°C 1-2 min / 1 kb  

Final elongation 72°C 10 min 1 

Cool down 16°C ∞ 1 

 

In case of screens for M. pneumoniae transposon mutants, 50 cycles were run. 

 

Reaction set-up for Phusion® DNA polymerase (50 μl) 

2 μl  Primer (fwd) (20 pmol) 

2 μl  Primer (rev) (20 pmol) 

0.5 μl  Template DNA (approx. 100 ng) 

10 μl  5 x Phusion HF buffer 

0.5 μl  Phusion® DNA polymerase (2 U/μl) 

2 μl  dNTPs (12.5 μmol/ml) 

33 μl dH2O 
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Reaction Temperature Duration Number of cycles 

Initial denaturation 98°C 30 s 1 

Denaturation 98°C 10 s  

Annealing 52°C 30 s 30 

Elongation 72°C 30 s / 1 kb  

Final elongation 72°C 10 min 1 

Cool down 16°C ∞ 1 

 

Reaction set-up for ACCUZYME™-Polymerase (50 μl) 

2 μl  Primer (fwd) (20 pmol) 

2 μl  Primer (rev) (20 pmol) 

2 μl  Template DNA (approx. 100 ng) 

5 μl  10x ACCU buffer 

1 μl  ACCUZYME™ polymerase (2.5 U/μl) 

2 μl  dNTPs (12.5 μmol/ml) 

36 μl  dH2O 

 

Reaction Temperature Duration Number of cycles 

Initial denaturation 95°C 5 min 1 

Denaturation 95°C 1 min  

Annealing 52°C 1 min 30 

Elongation 72°C 1 min / 1 kb  

Final elongation 72°C 10 min 1 

Cool down 16°C ∞ 1 

 

Isolation of M. pneumoniae transposon mutants 

Isolation of transposon insertion mutants was performed by means of the so called haystack method 

(Halbedel et al., 2006). This strategy is based on an ordered collection of pooled random mutants 

which can be screened for junctions between the transposon and the gene of interest due to transposon 

insertion. The transposon mutants are grouped in 64 pools containing 50 clones, respectively. Cells of 

each pool were used in a PCR to detect the occurrence of products corresponding to junctions between 

the transporter genes of interest and the mini transposons using the gene-specific oligonucleotides as 
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described in the appendix (Tab. 7.1) and the transposon-specific oligonucleotides SH29 and SH30. 

From pools that gave a positive signal, colony PCR with the 50 individual mutants was performed. The 

clones delivering positive PCR signals were isolated and grown in 1 ml liquid MP-medium. 

Additionally, a dilution series was prepared and plated on solid MP-medium supplemented with 

gentamycin. Depending on their growth, positive clones were grown to broth passage P3 or P4 before 

starting further experiments. Each passage was checked for wt contaminations by PCR using the gene-

specific primers (adapted from Großhennig, 2011). 

 

Long flanking homology PCR (LFH-PCR) 

The B. subtilis glpF gene was deleted by the LFH-PCR technique (Wach, 1996). A chloramphenicol 

resistance cassette was amplified from the pGEM-cat plasmid using the primers cat-fwd (kan) and cat-

rev (kan) without terminator to allow expression of downstream genes. Additionally, two fragments of 

about 1 kb were amplified. One comprised the region upstream of the glpF gene and 55 nt of the 

beginning of the gene (upstream fragment). The other comprised the region downstream of glpF 

including 67 nt of the end of the gene (downstream fragment). The upstream fragment was amplified 

using the primers SG43 and SG40, the downstream fragment was amplified using the primers SG41 

and SG44. The extension of the fragments into the gene ensured that all expression signals of genes up- 

and downstream of the glpF-glpK operon stayed intact. To the 3’ end of the upstream fragment and the 

5’ end of the downstream fragment a 25 nt sequence was added by the primers. This sequence was 

complementary to the 5’ end and the 3’ end of the resistance cassette, respectively, and allowed base 

pairing which is crucial for the joining PCR. In the joining PCR all three purified fragments (150 ng of 

the up- and downstream fragments and 300 ng of the resistance cassette) were added to one PCR and a 

single fragment comprising all three fragments was generated. Competent B. subtilis cells were 

transformed with 7,5 μl and 15 µl of the PCR product and selected for chloramphenicol resistance on 

SP plates. 

The clones were subsequently checked for the integrity of the resistance cassette by check PCR using 

the cat-check primers. The DNA sequence of the flanking regions was verified by sequencing with 

primers SG43 and SG44 (modified from Rempeters, 2011). 
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Reaction setup for the LFH PCR: 

0.5 μl  PhusionTM polymerase (5 U/μl) 

2 μl  dNTPs (12.5 μmol/ml) 

2.2 μl  Upstream fragment (150 ng) 

3.3 μl  Downstream fragment (150 ng) 

5.3 μl  Resistance cassette (300 ng) 

10 μl 5 x Phusion HF buffer 

20.8 μl  dH2O 

during the break of the PCR (see below), addition of: 

3 μl  Forward primer (30 pmol) 

3 μl  Reverse primer (30 pmol) 

 

Reaction Temperature Duration Number of cycles 

Initial denaturation 98°C 1 min 1 

Denaturation 98°C 10 s  

Annealing 53°C 30 s 10 

Elongation 72°C 1 min 15 s  

Break 15°C ∞ 1 

Addition of primers    

Denaturation 98°C 10 s  

Annealing 53°C 30 s 21 

Elongation 72 °C 1 min 15 s  

Final elongation 72°C 10 min 1 

Final hold 15°C ∞ 1 

 

Gel electrophoresis 

For analytical and preparative DNA separation, gel electrophoresis was performed with gels containing 

1% agarose in 1 x TAE. The samples were mixed with 5 x DNA loading dye and loaded on the gel. A 

voltage of 120 V was applied until the bromophenol blue band of the loading dye reached the last third 

of the gel. In case of screening for M. pneumoniae mutants, a large gel chamber was used and a voltage 

of 200 V was applied. After the run, the gels were stained in ethidium bromide solution (10-30 min), 

briefly destained with H2O and subsequently photographed under UV-light (λ = 254 nm). For 

estimation of the size of DNA fragments, a marker of EcoRI and HindIII digested λ-DNA was applied 
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to the gel. In order to dissect DNA from a preparative gel, the fragments were detected at λ = 365 nm 

and cut out with a scalpel. Purification of DNA from the gel slice was done using the QIAquick gel 

extraction kit (QIAGEN) according to manufacturer’s manuals (Großhennig, 2011). 

 

DNA-Loading Dye (5 x)    5 ml   100% Glycerol 

for DNA gel electrophoresis   200 μl   50 x TAE 

10 mg   Bromophenol blue 

10 mg   Xylene cyanol 

4.5 ml   dH2O 

 

TAE buffer (50 x)     242 g   Tris  

      57.1 ml   Acetic acid  

100 ml   0.5 M EDTA pH 8.0  

ad 1l   dH2O 

 

Southern Blot 

M. pneumoniae chromosomal DNA was digested with appropriate enzymes for 1 h at 37°C. Digested 

DNA as well as a DIG-labeled DNA marker (DNA molecular weight marker III DIG-labeled, 0.12-21.2 

kbp ROCHE) were loaded on a 1% agarose gel and run at 120 V. Ethidium bromide staining and 

detection after the gel run were omitted. The transfer of DNA to a positively charged nylon membrane 

was conducted via a vacuum blot apparatus (VacuGene™XI). The nylon membrane (ROCHE) was 

saturated with dH2O and placed free from air bubbles on the moistened porous carrier plate. The blot 

was sealed with a plastic mask and the agarose gel was laid on the membrane. A vacuum of 60 mbar 

was applied to the chamber and the gel was sequentially covered with the following solutions: 

 1. Depurinization buffer  30 min 

 2. Denaturing buffer  30 min 

 3. Neutralization buffer  30 min 

 4. 20 x SSC   2-3 hours 

Before addition of the new buffer, the rest of the previous solution was decanted. After addition of 20 x 

SSC, a vacuum of 80 mbar was applied for blotting. Following the blotting steps, the DNA was 

crosslinked to the membrane via UV-light (90 sec) (Großhennig, 2011). 

 

Depurinization buffer    250 mM  HCl 
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Denaturing buffer    1.5 M   NaCl 

0.5 M   NaOH 

ad 1 l   dH2O 

 

Neutralization buffer    1 M   Tris-HCl pH 7.5 

1.5 M   NaCl 

ad 1 l   dH2O 

 

SSC (20 x)     3 M  NaCl 

      0.3 M  Sodium citrate x 2 H2O 

      ad 1 l   dH2O 

      adjust pH 7.0  

 

Hybridization of membrane bound DNA with DIG-labeled RNA probes 

The nylon membrane carrying the crosslinked DNA was transferred to a hybridization tube containing 

25 ml prehybridization buffer and incubated rotating for 1 h at 68°C in a hybridization oven. 

Subsequently, the prehybridization solution was replaced by the probe (15 µl in 5 ml prehybridization 

solution) and hybridization occurred overnight at 68°C. The next day, the probe was removed and, in 

order to remove unspecifically bound RNA probes, the membrane was washed twice for 10 min in 

buffer PI at RT, followed by two washing steps in buffer PII at 68°C for 15 min. Afterwards, the 

membrane could be used for detection of DIG-labeled DNA-RNA-hybrids (Großhennig, 2011). 

 

Prehybridization solution    5 x   SSC 

(for Southern Blot)    1%   Blocking Solution 

      0.1%   N-laurylsarcosine 

      0.02%   SDS 

      ad 30 ml  dH2O 

 

Buffer PI     2 x   SSC 

      0.1%   SDS 

      ad 1 l   dH2O  
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Buffer PII     0.1 x   SSC 

      0.1%   SDS 

      ad 1 l   dH2O 

 

Detection of DNA-RNA-hybrids 

The membrane was incubated for 5 min in 1 x Dig P1 followed by 30 min in 1 x Dig P1 + 1% Blocking 

solution. Afterwards, detection of hybridized probes was done for 30 min using Anti-Digoxigenin 

antibodies coupled to Alkaline Phosphatase that were diluted 1:10,000 in 1 x Dig P1 + 1% Blocking 

solution. Then, the membrane was washed three times 10 min in 1 x Dig P1 followed by 10 min 

washing in Buffer III. The membrane was placed between two clean plastic foils and moistened with 1 

ml Buffer III containing 10 µl CDP* (ROCHE) chemoluminescence substrate for alkaline phosphatase. 

After a short incubation time, the signals were detected using the ChemoCam imager (INTAS) with 

exposure times varying from 1 to 30 min (Großhennig, 2011). 

 

Dig P1 buffer  (5 x)    0.5 M   Maleic acid 

0.75 M   NaCl 

ad 1 l   dH2O 

adjust pH 7.5 

 

Blocking solution (10%)    5 g   Blocking reagent 

      50 ml  1 x Dig P1 

 

Buffer PIII     100 mM  Tris 

 

Detection buffer for    100 mM  NaCl 

RNA-DNA-hybrids    ad 1 l   dH2O 

adjust pH 9.5 

 

2.2.6 Preparation and analysis of RNA 

 

Isolation and precipitation of M. pneumoniae total RNA  

Preparation of total RNA from M. pneumoniae was done using the RNeasy Midi-Kit 50 (QIAGEN). 

Except for PBS, all utilized buffers were included in the kit. 
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The supernatant of a 4 days grown 100 or 200 ml culture was discarded and the cells were washed 

twice with 1 x PBS. Subsequently, the cells were scraped off in 2 ml RLT buffer + 1% β-

mercaptoethanol and transferred to a falcon tube. This step was repeated using 3 ml RLT buffer + 1% 

β-mercaptoethanol. The suspension was vortexed while 5 ml 100% ethanol were added slowly. The 

sample was stepwise transferred to a spin column, briefly centrifuged at 4,000 rpm and the flow-

through was discarded. That followed washing steps with 4 ml buffer RW1 and two times 2.5 ml buffer 

RPE containing ethanol. Again, the flow-through was discarded. The column was placed in a new tube 

and the RNA was eluted using 400 µl RNase-free water.  

For precipitation of isolated RNA, 40µl 3.3 M Sodium acetate and 1 ml 96% ethanol were added to 400 

µl eluat. Precipitation took place overnight at -20°C (Großhennig, 2011). 

 

Isolation and precipitation of B. subtilis total RNA 

Cultivation of B. subtilis cells 

4 mL of LB were inoculated with the respective B. subtilis strain and grown shaking over day at 30 °C 

or 37°C. 50 µl of the over day preculture were used to inoculate 15 mL CSE-glucose medium and 

grown overnight at 30°C or 37°C with agitation. The next morning, the OD600 of the overnight culture 

was determined and a new 100 ml CSE-glucose culture was inoculated to an OD600 of 0.1. The culture 

was incubated at 37°C until an OD600 of 1.0 was reached. For cell harvest, 25 ml of the cell suspension 

was added to 15 ml frozen Killing buffer in a 50 ml falcon tube and mixed until the buffer was melted. 

The mixture was centrifuged at 0°C and 4000 rpm for 10 min. The supernatant was discarded and the 

pellet was shock frozen in liquid nitrogen and stored at -80°C until further use. 

 

Killing buffer     20 mM  Tris-HCl, pH 7.5 

      5 mM  MgCl2 

     autoclave, then addition of:  

      20 mM   NaN3 

 

Preparation of RNA from B. subtilis cells 

The RNA preparation was done using a Mikro-Dismembrator (Sartorius) and the RNeasy Plus kit 

(QIAGEN). To open the cells, the pellet obtained from the harvesting (see above) was resuspended in 

200 µl RNase-free water. The sample was pipetted into the sample box of the Mikro-Dismembrator 

which had been precooled and filled with liquid nitrogen. The Mikro-Dismembrator was run for 3 min 
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at 1,800 rpm. The sample was resuspended in 2 ml RLT buffer containing 20 µl of β-mercaptoethanol 

and transferred to 2 ml Eppendorf reaction tubes. The samples were centrifuged for 5 min at 13,000 

rpm and 4°C. The following steps were done with the QIAGEN RNeasy Plus kit according to the 

manufacturer’s manuals. The RNA was eluted in 150 µl RNase-free water and stored at -70°C. 

 

DNaseI treatment 

Digestion of isolated RNA was performed using DNaseI and the appropriate included buffer 

(FERMENTAS). The following reaction was prepared in a PCR tube: 

  

1.25 µg / 2.5 µg / 3.75 µg RNA 

 2.5 µl  10 x Buffer 

 5 µl  DNaseI 

 ad 25 µl  dH2O 

 

The mixture was incubated in a PCR cycler for 30 min at 37°C. Afterwards, 2.5 µl EDTA were added 

and the samples were incubated again in a PCR cycler for 10 min at 65°C. 

For radical elimination of DNA from the RNA isolates, the DNaseI treated samples were purified again 

using the RNeasy Mini Kit 50 (QIAGEN) including the gDNA elimination column according to 

manufacturer’s manual. Subsequently, the eluted RNA was once more precipitated and treated with 

DNaseI as mentioned above (Großhennig, 2011). 

 

In vitro transcription for preparation of RNA probes 

In order to produce DIG-labeled transcripts, PCRs using genomic M129 DNA as template were set up 

to amplify about 500 bp long, intern fragments of the gene of interest. The reverse primers for these 

PCRs each contained a signal sequence for the T7-RNA polymerase (ROCHE) at their 5’ end.  

For in vitro transcription, the following components were mixed in a reaction tube: 

 

 13 µl  PCR product 

 2 µl  10x DIG RNA labeling mix (ROCHE) 

2 µl  10 x Transcription buffer for T7-RNA polymerase (ROCHE) 

2 µl  T7-RNA polymerase (ROCHE) 

1 µl  RNase inhibitor (ROCHE) 
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The samples were incubated for 2 h at 37°C. Afterwards, the in vitro transcription was stopped by 

addition of 1 µl 0.5 M EDTA pH 8.0, and 2.5 µl 4 M LiCl and 75 µl of ice-cold 96% ethanol were added. 

Precipitation took place overnight at -20°C. The next day, the labeled probes were pelletized by 15 min 

centrifugation at 13,000 rpm and 4°C. The supernatant was discarded. The pellet was washed with ice-

cold ethanol (70%). After repeated centrifugation, the supernatant was discarded and the probes were 

dried at RT to remove remaining ethanol. Finally, the RNA was dissolved in 100 µl RNase-free H2O 

containing 1 µl RNase Inhibitor (ROCHE) (Großhennig, 2011). 

 

Analysis of mRNA amounts using Slot Blots 

In order to analyze mRNA amounts, slot blots were used to transfer total RNA of the wild type or 

mutants directly onto a nylon membrane without prior gel electrophoresis. For this purpose, total 

RNA was isolated from M. pneumoniae cells and a twofold dilution series (2 µg – 0.25 µg) in 10 x SSC 

was prepared. For control, equal amounts of chromosomal DNA and yeast tRNA (ROCHE) were used. 

The RNA extracts were blotted through small slots onto a positively charged nylon membrane by 

means of the PR 648 Slot Blot Manifold (AMERSHAM BIOSCIENCES) to which a vacuum of 100 

mbar was applied for up to 1 h. The following hybridization of membrane bound RNA with DIG-

labeled RNA probes as well as the detection of RNA-RNA hybrids were performed as described for 

Southern blots except for the recipe of the prehybridization buffer (Großhennig, 2011). 

 
Prehybridization buffer     200 ml  Formamide    

(for Slot Blots)     100 ml   20 x SSC  

      4 ml   N-laurylsarcosine (10%)  

8 g   Blocking reagent  

28 g   SDS  

ad 400 ml dH2O 

 

Reverse transcription quantitative real-time PCR (qRT-PCR) 

In order to analyze the expression of specific genes, qRT-PCR was carried out by means of the iScript™ 

One-Step RT-PCR Kit with SYBR® Green (BIO-RAD). The reactions were performed in a 96-well-

plate with each well containing the following set up:  
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Reaction set up for RT-PCR (20 µl):  

10 μl  2x SYBR Green RT-PCR Reaction Mix  

1.2 μl  Primer forward  

1.2 μl  Primer reverse  

x μl  RNA template (80 - 100 ng / µl) 

0.4 μl iScript Reverse Transcriptase  

ad 20 μl  Nuclease-free H2O  

 

The samples were pipetted in a 96-well-plate and the following reaction was set up in an iCycler (Bio-

Rad) according to the manufacturer: 

 

Reaction protocol for RT-PCR:  

cDNA synthesis 10 min at 50°C 

iScript reverse Transcriptase inactivation 5 min at 95°C 

PCR cycling and detection 

(30 to 45 cycles)        

10 sec at 95°C  

10 sec at 60°C 

Melt curve analysis (optional) 1 min at 95°C 

 1 min at 55°C  

10 sec at 55°C  

 (80 cycles, increasing each by 0.5°C each  cycle)  

    



2.2.7 Work with proteins 

 

Overproduction of recombinant proteins in E.coli and cell disruption by French press 

For overexpression of Strep-tagged proteins in E. coli BL21, 500 ml LB + ampicillin were inoculated to 

an OD600 of 0.1 using an overnight culture of the respective E.coli strain carrying the overexpression 

plasmid. The culture was shaken at 37°C until an OD600 of 0.6-0.8 was reached and the overexpression 

was induced using 1mM IPTG. After 2.5 h of induction, the culture was harvested by centrifugation at 

5,000 rpm for 20 min and 4°C. The pellet was resuspended in 15 ml buffer W and centrifuged in a 

falcon tube for 15 min at 4°C and 8,500 rpm. The supernatant was discarded and the pellet was used 

for cell disruption or stored at -20°C until further use. 
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The disruption of E. coli cells after protein overexpression was performed using the SLM Aminco 2-

FA-078-E1 French Press Cell (SLM Aminco) at 18000 psi and repeated 2 times. The disrupted 

suspension was centrifuged for 20 min at 4°C and 8,500 rpm to remove the major cell debris. 

Afterwards, the supernatant was centrifuged for an additional hour at 35,000 rpm and 4°C in an 

ultracentrifuge. The pellet was discarded and the supernatant containing the soluble proteins was used 

as crude extract for purification.  

 

Purification of proteins via Strep-Tactin® sepharose column 

The proteins that were supposed to be purified were tagged with a Strep-tag II, an eight amino acids 

short peptide (WSHPQFEK), and purified using a Strep-Tactin® sepharose column (IBA) with a matrix 

volume of 0.5 ml. This Strep-Tactin® matrix binds specifically and with high affinity to the Strep-tag II 

of the desired proteins thereby separating them from the mixed protein solution. The column was 

equilibrated with 5 ml buffer W and loaded with the crude extract. The flow through was collected and 

the column was washed 4 times with 1.25 ml buffer W. For elution of the bound protein, initially 0.25 

ml followed by three times 0.5 ml of buffer E were added. The elution fractions (E1-E4) as well as the 

last washing fraction (W4), the crude extract (CE) and the flow through (FT) were analyzed on a 12% 

SDS-PAA-gel. 

 

Buffer W    100 mM  Tris-HCl pH 8.0  

150 mM  NaCl  

1 mM   EDTA 

 

Buffer E     100 mM  Tris-HCl pH 8.0  

150 mM  NaCl  

1 mM   EDTA  

2.5 mM   Desthiobiotin 

 

Denaturing polyacrylamide gel electrophoresis (SDS-PAGE) 

The denaturing gels were prepared according to Laemmli et al., 1970. These gels are poured to a 

thickness of 1 mm and consist of a stacking gel to accumulate the proteins in the sample and a running 

gel to separate the proteins according to their size. The samples were mixed with SDS-Loading dye (2 

x) and boiled at 95°C for 5-10 min. After applying the samples, the gels were run at 120 V. In case of 

the Hoefer-SE-400 device, the gels were run over night at 30 V. 
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Stacking gel    1.3 ml  Rotiphorese® Gel 30 (37.5:1)  

    0.87 ml  Tris-HCl pH 6.8 (1.5 M) 

    50 µl  SDS (20%) 

    100 µl  APS (10%) 

     20 µl   TEMED 

     6.3 ml  dH2O 

 

Running gel (12%)   4 ml  Rotiphorese® Gel 30 (37.5:1)  

     2.6 ml  Tris-HCl pH 8.8 (1.5 M) 

     50 µl  SDS (20%) 

     100 µl  APS (10%) 

     10 µl   TEMED 

     3.3 ml   dH2O 

 

5 x SDS loading dye    1.4 ml   Tris-HCl 1 M pH 7.0 

3 ml   Glycerol 

2 ml   SDS (20%) 

1.6 ml   β-Mercaptoethanol 

10 mg   Bromophenol blue 

2 ml   dH2O 

 

Running buffer (10 x)   1.92 M   Glycerin  

0.5 M   Tris  

10%   SDS 

 

Coomassie staining of polyacrylamide gels 

After the gel run, the PAA gel was incubated for 15 min in fixing solution, stained with Coomassie 

staining solution for 5-10 min and destained until an optimal contrast between protein bands and 

background was observable. All steps were performed at room temperature with gentle shaking. 

 

Fixing solution    500 ml  Methanol 

     100 ml  Acetic acid 

     ad 1 l  dH2O 

 

 

54 
 



MATERIAL AND METHODS 

 
Staining solution    2.5 g  Coomassie brilliant blue R250 

     100 ml  Acetic acid  

     500 ml  Methanol 

     ad 1 l  dH2O 

 

Destaining solution   150 ml  Acetic acid 

     100 ml   Methanol 

     ad 1 l  dH2O 

 

Silver staining of polyacrylamide gels   

The silver staining of protein bands in SDS-gels was performed according to the method of Nesterenko 

(1994). This was done by incubating the gels at room temperature and with gentle shaking in the 

following solutions: 

 

Step Reagent Duration 

Fixing Fixing solution 1 -24 h 

Washing 50% ethanol 3 x 20 min 

Reduction Thiosulfate solution 1 min 

Washing dH2O 3 x 20 s 

Staining Impregnating solution 25 min 

Washing dH2O 2 x 20 s 

Developing Developer Until sufficiently stained 

Washing dH2O 5 s 

Stopping Stop solution 5 min 

 

 

Fixing solution     50 ml  Methanol 

12 ml   Acetic acid  

100 μl  Formaldehyde (37%)  

ad 100 ml  dH2O  

 

Thiosulfate solution   20 mg   Na2S2O3 x 5 H2O  

ad 100 ml dH2O  
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Impregnating solution    0.2 g  AgNO3  

37 μl   Formaldehyde (37%) 

ad 100 ml  dH2O 

 

Developer    6 g  Na2CO3  

2 ml   Thiosulfate solution  

50 μl   Formaldehyde (37%)  

ad 100 ml  dH2O  

 

Stop solution     1.86 g  EDTA  

ad 100 ml  dH2O  

 

Western Blot 

The Western blot was employed to detect Strep-tagged proteins from an SDS gel using an anti-Strep 

antibody (PromoKine) after protein purification. Using a semi-dry blotting apparatus (Peqlab), the 

proteins were transferred from the gel onto a polyvinylidene difluoride (PVDF) membrane (Bio-Rad). 

At first, three Whatman papers were soaked in transfer buffer and placed onto the transfer device. The 

membrane was briefly activated in 100% methanol, equilibrated in transfer buffer and placed on top of 

the Whatman papers. The acrylamide gel was equilibrated in transfer buffer and placed onto the PVDF 

membrane. Finally, three Whatman papers soaked in transfer buffer were placed on the 

polyacrylamide gel. Bubbles were removed, the transfer device was closed and a current of 0.8 mA/cm2 

was applied for 1 to 1.5 h. After the transfer of the proteins to the membrane, the membrane was 

incubated 1xTBS for 2 h. Subsequently, the membrane was incubated with the primary antibody (anti-

Strep-antibody) overnight at 4°C. The anti-Strep-antibody was diluted 1:1,000 in TBS-tween. 

Afterwards, the primary antibody was removed and three washing steps of 30 min in blocking solution 

followed. The membrane was incubated for 30 min with the secondary antibody, a polyclonal goat 

anti-rabbit immunoglobulin conjugated with alkaline phosphatase which was diluted 1:100,000 with 

blocking solution. The membrane was subsequently rinsed with deionized water and incubated in 

buffer III for 5 min. The membrane was placed between a transparent foil and the membrane was 

covered with a mixture of 500 μl buffer III and 5 μl CDP*. The luminescence was detected with a 

Chemolumineszenz Imager (modified from Rempeters, 2011). 
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Blocking solution     100 ml   10 x TBS  

25 g   Milk powder 

1 ml   Tween® 20  

ad 1 l   dH2O 

 

Buffer III (1 l)    0.1 M  Tris  

0.1 M   NaCl  

ad 1 l   dH2O  

adjust   pH 9.5  

 

10 x TBS (1 l)    60 g  Tris-HCl pH 7.6 

90 g   NaCl 

ad 1 l   dH2O 

 

Transfer buffer (5 l)   15.1 g   Tris 

  72.1 g   Glycerol 

     750 ml   Methanol 

     ad 5 l   dH2O 

 

Preparation of M. pneumoniae protein extracts 

The cells of a 100 ml culture were harvested after four days of growth in 1.5 ml PBS pH 7.4 in a 2 ml 

Eppendorf reaction tube. The cells were centrifuged (10 min, 11,000 x g, 4°C), washed three times and 

resuspended in 500 µl PBS. The cell suspension was transferred into a 2 ml screw-cap reaction tube 

containing 0.5 g glass beads (0.1 mm diameter). The cells and beads were vortexed 10 times for 30 s at 

1 min intervals and subsequently centrifuged. The resulting supernatant contained the protein extract 

of the lysed M. pneumoniae cells. 

 

2.2.8 Enzyme activity tests  

 

The characteristics and activity levels of the purified proteins were assessed by measuring the 

production rate of H2S, pyruvate or alanine. Hemolysis and hemoxidation assays with the proteins are 

described in 2.2.10. 
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Hydrogen sulfide assays 

Methylene blue method 

The quantification of H2S by the methylene blue method was performed as described previously 

(Schmidt, 1987). In presence of FeCl3 at a very low pH, N’,N’-dimethyl-p-phenylenediamine can form a 

complex with H2S which turns blue (“methylene blue”) and has its absorption maximum at λ = 670 

nm. A reaction setup of 1 ml was composed of 100 mM potassium phosphate buffer (pH 7.6), 2.5 mM 

dithioerythritol (DTE), 10 µM pyridoxal-5-phosphate (PLP), 1-2 µg of the purified enzyme(s) and 

substrate in various concentrations. The mixture was incubated for 2 hours at 37°C, or various time 

periods when needed, and the reaction was terminated by addition of 100 µl solution I (20 mM N’,N’-

dimethyl-p-phenylenediamine dihydrochloride in 7.2 M HCl) and 100 µl of solution II (0.03 M FeCl3 

in 1.2 M HCl). After 30 min incubation at room temperature, the formation of methylene blue was 

determined spectrophotometrically at λ = 670 nm.  

 

Bismuth chloride method 

The bismuth chloride method is based on the reaction of bismuth (BiCl3) with sulfide (H2S) to produce 

Bi2S3 which is visible and measurable as a black precipitate. For a 1 ml reaction setup, 1-10 µg purified 

protein were incubated with various cysteine concentrations in a visualization solution at 37°C. After 2 

hours, or different time points when needed, the OD of the reaction mix was measured at λ = 405 nm 

and compared to a sodium sulfide standard curve. 

 

Visualization solution (1 ml)   100 mM  Triethanolamine 

      10 µM  Pyridoxal-5-phosphate (PLP) 

      1%   Triton X-100 

      10 mM   EDTA (pH 8.0) 

      0.5 mM   BiCl3 

      0-70 mM L-Cysteine 

Pyruvate assay 

The pyruvate assay is based on the derivatization of pyruvate with 3-methyl-2-benzothiazolinone 

hydrazone (MBTH) (Sigma-Aldrich) in an acidic environment. This results in the formation of a 

coloured complex that can be detected photometrically. The assay was carried out in a 250 µl 

potassium phosphate buffer setup containing 10 µM PLP, 2-5 µg purified enzyme and various cysteine 

concentrations. The mixtures were incubated for 10, 30, 60, 120 min or overnight at 37°C. To 
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terminate the reaction, 125 µl of 4.5% trichloroacetic acid (Sigma-Aldrich) were added. The samples 

were centrifuged for 5 min at 13,000 rpm. 300 µl of the supernatant were transferred into a new tube 

containing 900 µl of 0.017% 3-methyl-2-benzothiazolinone hydrazone in 0.67 M sodium acetate (pH 

5.2). After 30 min incubation at 50°C, the OD at λ = 335 nm was measured. 

 

Sample preparation for alanine and pyruvate detection using GC-MS 

To identify products other than hydrogen sulfide that derive from the enzymatic reaction of MPN487, 

gas chromatography coupled to mass spectrometry (GC-MS) was performed by Dr.Till Ischebeck in 

the Department for Plant Biochemistry in Göttingen.  

A 1 ml reaction setup contained 400 µl sodium carbonate buffer (pH 9.2), 10 µM PLP, 2.5 mM DTE, 5 

µg of the purified enzyme and 1, 5 or 10 mM L-cysteine. Control samples without enzyme or without 

substrate, respectively, were prepared and treated the same way. The mixtures were incubated over 

night at 37°C and added to 2 ml of extraction solution (methanol/chloroform/water 32.25:12.5:6.25 

[v/v/v]) in a Kimble glass. Extraction and derivatization of samples was done as described previously 

(Bellaire et al., 2014). The extracts were vortexed and incubated shaking for 2 h at 4°C. After a 

centrifugation step for 5 min at 2,000 x g and 4˚C, the supernatant was transferred into a new Kimble 

glass. 200 µl of the extract were dried under nitrogen, redissolved in 30 µl freshly prepared 

methoxylamine (Mox) solution (30 mg/ml in pyridine) and incubated overnight at RT. After the 

addition of 60 µl pure N-methyl-trimethylsilyltrifluoroacetamid (MSTFA) for derivatization 

(silylation) and volatization of the ingredients, the samples were incubated for at least 1 h but not more 

than 8 h and could subsequently be used for GC-MS analysis. In that procedure, the samples were 

analyzed on an Agilent 5973 Network mass selective detector connected to a Agilent 6890 gas 

chromatograph equipped with a capillary HP5-MS column (30 m x 0.25 mm; 0.25 µm coating 

thickness; J&W Scientific, Agilent). Helium was used as carrier gas (1 ml/min). The inlet temperature 

was set to 230°C and the temperature gradient applied was 50°C for 2 min, 50 – 330°C at 5 K/min 

330°C for 2 min. Electron energy of 70 eV, an ion source temperature of 230°C, and a transfer line 

temperature of 330°C was used. Spectra were recorded in the range of 71-600. 

For quantification, the ions with the following mass-to-charge ratio were used: pyruvate (1 TMS 

(trimethylsilyl-), 1 MEOX (methoximino-)), 174 Da/e; alanine (2 TMS), 116 Da/e; alanine (3 TMS), 

188 Da/e. 
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2.2.9 Methods for characterization of M. pneumoniae strains 

 

Growth assays 

For generation of a growth curve, 100 ml cultures were inoculated with 2.5 mg of M. pneumoniae cells 

and incubated at 37°C. The wet weight of these cultures was determined after two, four and six days of 

growth as described in 2.2.2. 

 

Determination of in vivo H2O2 production 

M. pneumoniae cells were harvested in 1.5 ml 1 x H2O2 assay buffer as described earlier. The cells were 

spun down for 10 min at 10,000 x g and 4°C. The supernatant was discarded. The cells were washed 

again in 1 ml buffer, transferred into a falcon tube and centrifuged again for 15 min at 4,000 rpm and 

4°C. The pellet was resuspended in 3.5 – 4 ml buffer and 1 ml of this solution was used for 

determination of optical density at λ = 550 nm. For measurement of H2O2 production, the amount of 

cells corresponding to 1.0 OD550 unit in a final volume of 1 ml was used. The 1 ml set-up was incubated 

in a reaction tube for 1 h at 37°C. Afterwards, 1 µl 100 mM glycerol, 1 µl 100 mM glucose, 1 µl 100 mM 

glycerol-3-phosphate (G3P) or 2 µl 50 mM GPC were added to the samples. This point was set as t = 0. 

The amount of produced hydrogen peroxide was measured prior to addition of carbon sources, as well 

as at t = 5 min, 15 min, 30 min, 60 min and 120 min. For this purpose, peroxide test strips (MERCK) 

were briefly dipped into the tubes. These strips contain a peroxidase which transfers oxygen from the 

produced H2O2 to an organic redox indicator, which is then converted to a blue-colored product. After 

15 sec, the resulting blue color of the strip was compared to the enclosed color chart (adapted from 

Großhennig, 2011). 

 
H2O2 assay buffer     67.6 mM HEPES (pH 7.3)  

140 mM  NaCl  

7 mM   MgCl2 

ad 1 l  dH2O 
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Determination of cytotoxicity towards HeLa cells 

Preparation of HeLa cells 

Infection assays were performed in 24-well-plates. For this purpose, previously harvested HeLa cells 

were counted in a Neubauer chamber as mentioned above. For calculation of the desired cell number 

per well (2.5 x 104), the following formula was used:   

x ml = 2.5 x 104 / number of HeLa cells per ml  

The respective amount of cell suspension was pipetted in each well to be infected and was filled up 

with DMEM to a final volume of 700 µl. The titer plates were incubated for 24 hours at 37°C and 5% 

CO2. 

Cell harvest and infection 

After 4 days growth, M. pneumoniae cultures were harvested in 1.5 ml 1 x H2O2 assay buffer as 

described above. Then, the cells were centrifuged for 5 min at 4°C and 10,000 x g. The supernatant was 

discarded and the pellet was resuspended in 1 ml buffer using a syringe with a 0.4 x 20 mm hollow 

needle. Depending on the size of the pellet, the suspension was diluted in 5 – 8 ml buffer. 

Subsequently, 1 ml was used for measurement of optical density at λ = 550 nm. The amount 

corresponding to 0.1 OD550 units was transferred to a new reaction tube and centrifuged again for 5 

min at 10,000 x g and 4°C. The supernatant was removed and the pellet was resuspended in 125 µl 

fresh MP-medium with a syringe and a 0.4 x 20 mm hollow needle. The M. pneumoniae cells were 

added to the incubated HeLa cells and incubated for 2 h at 37°C and 5% CO2. Afterwards, the 

supernatant was removed from the wells and replaced by 700 µl fresh DMEM. The assay was 

monitored for 6 days by staining and photographing the cells (adapted from Hames, 2008). 

Quantification of cytotoxixity 

To quantify the cytotoxixity of M. pneumoniae or an enzyme towards HeLa cells, the amount of 

surviving HeLa cells in the assay was determined 2, 4 or 6 days past infection by crystal violet stain. For 

this purpose, the infection assay was set up as described above and the DMEM was removed from the 

wells after the desired time of incubation. The HeLa cells were fixed with 500 µl 10% buffered formalin 

for 10 min at room temperature. Afterwards, the fixing solution was removed and the cells were 

stained for 30 min with 150 µl 0.1% aqueous crystal violet solution which only binds to intact cell 

tissues. After staining, the crystal violet was discarded and the cells were washed with water until all 

unbound crystal violet was removed. For visual documentation, the stained cells were photographed 

(Olympus EVOLT E-420). For quantification, the stained cells were destained again using 500 µl 0.5% 
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SDS solution and the OD595 was determined. The OD595 of an uninfected HeLa cell control was set to 

100% surviving cells. The cytotoxicity of an M. pneumoniae strain was calculated as follows:  

 % cytotoxicity = 100 – (OD595 sample / OD595 control) 

 

Buffered formalin   10 ml  37% Formaldehyde 

     90 ml  1 x PBS pH7.4 

  

Crystal violet solution   0.1 g  Crystal violet 

     100 ml  dH2O 

 

Determination of in vivo H2S production 

M. pneumoniae cell harvest 

M. pneumoniae cells were harvested in 1.5 ml 1 x PBS (pH 7.4) as described above. After centrifugation 

for 10 min at 11,000 x g and 4°C, the pellet was resuspended in 1 ml PBS using a syringe and a needle 

(0.4 mm diameter). Depending on the size of the pellet, the solution was transferred into a falcon tube 

and diluted with 3-5 ml cold PBS. The optical density of the cell suspension was determined at λ = 550 

nm. For investigation of H2S production, M. pneumoniae cells corresponding to an OD550 of 1 were 

used in a 1 ml set-up. 

Setup with lead acetate test strips 

For the lead acetate sample, the M. pneumoniae cells were incubated in 1 ml 1x PBS pH 7.4 or in MP-

medium supplemented with different cysteine concentrations in 2 ml Eppendorf reaction tubes. Lead 

acetate test strips (Aldrich) were fixed under the lid of the tube (without contact to the liquid) to catch 

the produced hydrogen sulfide. The lead covering the strips reacts with the sulfide to form black PbS 

resulting in a dark staining of the test paper. After an overnight incubation at 37°C, the coloration of 

the test strips was examined and photographed. 

Setup with BiCl3 visualization solution 

The harvested M. pneumoniae cells were resuspended in 1 ml visualization solution (see 2.2.8) and 

incubated at 37°C overnight. When H2S is produced by the cells, Bi2S3 is formed which appears as a 

dark discoloration and precipitate that can be detected visually and spectrophotometrically at λ = 405 

nm. A sample that was incubated in visualization solution without BiCl3 was used as control. The 

amount of H2S was determined by comparing the OD405 to a sodium sulfide standard curve. 
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2.2.10  Work with blood 

 

Preparation of red blood cells from whole sheep blood 

To isolate erythrocytes, 5 ml of defibrinated sheep blood were transferred into a 15 ml falcon tube and 

centrifuged for 10 min at 900 x g and 4°C. The supernatant was discarded and the red blood cells were 

washed three times with 1x PBS pH 7.4 by inverting the tube. After the last centrifugation step, the 

amount of erythrocytes was estimated on the scale on the falcon tube. The according amount of 1x 

PBS was added to the RBCs to get a final solution of 20% RBCs in PBS. The erythrocytes were gently 

resuspended and stored at 4°C for up to three days. 

 

Blood agar plates 

To analyze hemolytic activity of M. pneumoniae, serial tenfold dilutions of each strain of interest were 

prepared in MP-medium. 200 µl of the 10-4 dilutions were distributed on MP-glucose plates and 

incubated for 7-14 days at 37°C until colonies were visible. 0.75% agar in 1x PBS pH 7.4 was 

autoclaved and cooled down to 42°C. Defibrinated sheep blood was added to a final concentration of 

5% and mixed carefully. The M. pneumoniae colonies were overlayed with 5 ml blood agar and the 

plates were incubated for 1-2 days at 37°C. Pictures were taken using the Lumar V.12 stereo 

fluorescence microscope (Zeiss). 

 

Hemolysis- and hemoxidation assays 

Assays with proteins 

To test the ability of proteins to lyse erythrocytes or to oxidize hemoglobin, a 10 ml mixture of 2% 

washed sheep RBCs and 2 µg/ml enzyme in PBS (pH 7.4) was set up. In case of MPN487 being the 

enzyme of interest, 10 µM PLP and 1 or 10 mM freshly prepared cysteine were added to the set up. For 

a mixture using GlpD as protein, 1 mM glycerol-3-phosphate was applied as substrate. The samples 

were incubated in a falcon tube at 37°C and gentle rotation at 110 rpm. 1 ml samples were withdrawn 

after different time points and transferred into 1.5 ml Eppendorf reaction tubes. The tubes were 

centrifuged for 10 min at 1,400 x g and 4°C. The supernatant was removed carefully, transferred into a 

new reaction tube and stored for later analysis. The pellet was resuspended in 1 ml dH2O to lyse the 

erythrocytes and release the hemoglobin. The supernatant and the lysed pellet were photographed and 

their spectra from λ = 370 to 700 nm were measured using the platereader SynergyMX (Biotek). 
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Assays with M. pneumoniae cells 

In order to analyze the hemolytic or hemoxidative activities of different M. pneumoniae strains, 100 ml 

cultures were harvested in 1 x PBS as described above. After determination of the optical density at 

λ=550 nm, the appropriate amount of Mycoplasma suspension referring to an OD of 1 was incubated 

with 5% defibrinated sheep blood or 2% washed sheep RBCs in PBS (pH 7.4) and various supplements 

(1 mM glycerol, 1 mM glycerol-3-phosphate and 1 or 10 mM L-cysteine) in a final volume of 1 ml. The 

samples were incubated at 37°C and 100-110 rpm for several hours. One reaction tube for each time 

point and condition of interest was prepared. After the desired incubation time, the tubes were 

centrifuged at 4°C and 1,400 x g and the supernatant was transferred carefully into a new tube. The 

pellet was resuspended and lysed in 1 ml dH2O. Both supernatant and pellet were photographed and 

the spectra were recorded photometrically from λ = 370 to 700 nm.  

 

Hemagglutination assay 

The cells of a M. pneumoniae culture were harvested after 5 days growth as described earlier and their 

OD at λ = 550 nm was determined. The amount of cells needed for an OD550 of 5 was transferred into 

an Eppendorf tube and centrifuged for 5 min at 4°C and 11,000 x g. The supernatant was removed and 

the pellet was resuspended in 150 µl PBS.  

The hemagglutination assay was performed in a 96 well microtiter plate with round bottom. For each 

strain, serial twofold dilutions in PBS (50 µl cells + 50 µl PBS) were prepared starting from an 

undiluted 100 µl cell suspension in the first well of each row. Subsequently, 50 µl of 2% defibrinated 

sheep blood in PBS was added to each well. The plate was incubated at 37°C for 1-2 hours or overnight 

and pictures were taken. 

 

Preparation of a blood smear for microscopy 

5-10 µl blood solution (with or without Mycoplasma) were dropped onto a glass slide and distributed 

using a second slide to form a thin film. The blood smear was heat fixed with a Bunsen burner, cooled 

down and used for staining or microscopy. Blood microscopy was done using the Axioskop 40 FL 

fluorescence microscope (Zeiss). 
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3. RESULTS 
 

3.1 Transport systems in Mycoplasma pneumoniae 
 

3.1.1  Attempts to express M. pneumoniae transporters in B. subtilis  

 

In order to analyze or confirm the function of essential transporters whose substrates are not certainly 

known, heterologous expression of these systems in Bacillus subtilis was attempted. For this, B. subtilis 

transporter mutants were to be prepared, transformed with the Mycoplasma copy of the suspected 

homologous transporter gene and checked for complementation success. To test the functionality of 

this approach, the glycerol facilitator, GlpF, from Mycoplasma pneumoniae was expressed in a B. 

subtilis strain lacking its own glycerol facilitator. GlpF seemed to be the ideal test protein for several 

reasons: (1) M. pneumoniae and B. subtilis possess GlpF homologs; (2) as a facilitator, GlpF is a single 

protein with a simple transport function; (3) its substrate is known; (4) the absence and presence of a 

functional carbon source transporter can be easily tested when growing B. subtilis on minimal medium 

supplied with the respective carbon source, i.e. glycerol; (5) GlpF is the only glycerol transporter in B. 

subtilis.   
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Fig. 3.1. Scheme of glpF deletion in B. subtilis (A) and growth 
assays with B. subtilis strains (B). A. Fusion PCR was performed 
with the resistance cassette plus about 1000 bp of the up- and 
downstream regions of glpF. B. subtilis 168 was transformed with 
the LFH PCR product and selected on SP-cat plates for integration. 
Desired homologous recombination is indicated by crosses. B. 
Drop dilution assays with B. subtilis strains in C-minimal medium 
supplemeted with glycerol to check glycerol-transport 
capabilities. 
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A ΔglpF mutant of B. subtilis was generated by long flanking homology PCR (LFH) and homologous 

recombination (Fig. 3.1 A). The knockout was confirmed by the growth defect of the ΔglpF strain on 

C-minimal medium containing glycerol (Fig. 3.1 B). The glpF gene from M. pneumoniae was 

amplified from pGP663 containing the gene without internal TGA codons (Großhennig, 2011). The 

gene was cloned into pBQ200 (resulting in pGP693) which would allow for constitutive glpF-

expression from the plasmid. Subsequent growth assays with B. subtilis strains 168, ΔglpF and ΔglpF 

containing pGP693 revealed that the growth defect of the mutant could not be restored by GlpFMpn 

(Fig. 3.1 B). The same was true for a ΔglpF strain carrying glpFmpn integrated into the genome (data not 

shown). To rule out whether the ineffective complementation was due to glpFmpn not being properly 

expressed or due to a negative effect of the gene replacement on expression of the downstream gene 

glpK, quantitative real-time PCR with B. subtilis RNA was performed (data not shown). The results 

showed that expression of glpK, which is absolutely needed for glycerol metabolism, was not affected 

by replacement of the native glpF by the chloramphenicol resistance cassette. However, no glpFmpn 

transcripts could be detected in the ΔglpF strain containing pGP693 indicating that with the applied 

system the expression of glpFmpn is not possible in B. subtilis (data not shown). 
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Using fluorescence microscopy, it was tested if and where glpFmpn is expressed in E. coli. Therefore, the 

gene including the constitutively promoter PdegQ was cloned into the fluorescence vectors pBP19 and 

pBP20, respectively. The resulting plasmids were named pGP697 and pGP698 and encode GlpFMpn 

being C-terminally fused to YFP and CFP, respectively. The E.coli DH5α strains that harbored the 

correct plasmids were subsequently examined by fluorescence microscopy (Fig. 3.2). Both the YFP- 

and the CFP-fusion constructs were expressed from pGP697 and pGP698 in E. coli. However, it seems 

Fig. 3.2. Fluorescence microscopy images of E. coli cells expressing C-terminally tagged GlpFMpn. A. Bright field. The scale 
is 5µm. B. GlpF-CFP fusion in the same cells detected with CFP filter. Expression of GlpF-YFP was examined accordingly 
and gave the same result. The pictures were taken with the Axioskop 40 FL fluorescence microscope (Zeiss).  
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that GlpFMpn is not located at the cell membrane but rather inside the cytosol. This might be due to a 

misfolding of the protein, a steric hindrance by the fluorescence tag or simply the lack of a signal 

peptide which could prevent proper transport of the protein to and its correct insertion into the 

membrane. Moreover, as M. pneumoniae and E. coli are only distantly related, it is highly probable that 

their membrane composition differs. All these options, in general, make heterologous expression of 

membrane proteins especially challenging. Taken together, heterologous expression of M. pneumoniae 

transporters in B. subtilis or E. coli is not a practicable tool for studies of transport systems. 

 

3.1.2  Characterization of M. pneumoniae transporter mutants 

 

Of the 70 putative transport proteins listed in Tab. 3.1, 31 are expected to be non-essential (Lluch-

Senar et al., in press). To assess the function of these non-essential proteins and their relevance for 

growth and virulence, mutants for as many transport systems as possible were planned to be identified. 

In case of ABC transporters, isolation of the indispensable ATP binding protein of the complex was 

chosen to be sufficient. 

Isolation of transporter mutants 

In M. pneumoniae, mutants cannot be constructed as in other bacteria, e.g. by LFH, since they do not 

possess a system for homologous recombination. Therefore, mutants need to be created and isolated 

by means of “haystack mutagenesis”. In this approach, an ordered pool of random mutants is 

produced by transposon mutagenesis (Halbedel and Stülke, 2007). This ordered library containing 

about 3,000 clones can then be screened step by step for transposon insertions in the gene of interest 

by PCR combinations, each using a gene specific and a transposon specific oligonucleotide (3.3).  In 

3.3 A, a representative scheme for the isolation of mpn096::Tn is shown and will be explained 

subsequently. For the mutant screen, the gene specific primers SG65 and SG66 were designed and used 

in combination with the transposon binding oligonucleotides SH29 and SH30. The products of the 

PCR combinations that identify the positive isolated clone are depicted in Fig. 3.3 B. Sequencing of 

this clone revealed that the transposon was inserted after 148 bp in mpn096. This results in a truncated 

protein of 49 amino acids with one additional amino acid and the stop codon carried by the 

transposon. No PCR product appeared in the lane with only gene specific primers, assuring that the 

culture was not contaminated with another mutant. To confirm that the transposon inserted in  
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Tab. 3.1. Overview of proteins that are involved in transmembrane transport processes in M. 

pneumoniae.   

 

MPN # Gene 
name 1,2 

Mutant  MPN # Gene 
name 1,2 

Mutant 

018 pmd1 f  274  e 
019 msbA nt 308 apc + 
043 glpF - 318 apc f 
048  - 319 gap1 f 
049  - 333  - 
055 potA e 334 bcrA nt 
056 potB e 335  - 
057 potI e 415 phnD f 
076  + 3 416 phnC f 
077  + 3 417 phnE f 
078 fruA f 421 glpU + 3 

080 ybbP e 431 cbiQ e 
081 glnQ e 432 artP e 
095  + 433 cbiO e 
096  + 435  e 
112  + 4 448 folT e 
113  + 4 460 ktrB e 
134 ugpC e 461 ktrA e 
135 ugpA e 494 sgaA f 
136 ugpE e 495 sgaB nt 
193 cbiO1 f 496 sgaT + 
194 cbiO2 e 508  - 
195 cbiQ f 509  - 
207 ptsG e 510  f 
209 mgtA f 511  nt 
215 oppB e 512  - 
216 oppC f 571 lcnDR3 + 
217 oppD e 609 pstB + 
218 oppF e 610 pstA - 
234  - 611 pstS - 
236  e 651 mtlA + 
258 mglA e 653 mtlF - 
259  + 683 devA nt 
260 rbsC f 684  f 
268  f 685 cysA f 

 

1 Himmelreich et al., 1996; 2 KEGG; 3 Großhennig et al., 2013; 4 Großhennig, 2011; e essential; f fitness (Lluch-Senar et al., in 
press); - no mutant isolated; + mutant isolated and experimentally tested; nt mutant isolated but not tested 
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mpn096 and nowhere else in the genome, Southern blot analysis of the mutant in comparison to the 

wild type M129 was performed. For that, chromosomal DNA of both strains was prepared and 

digested with NcoI and XhoI (Fig. 3.3 A). The digested DNA was blotted and afterwards hybridized 

with two different probes (Fig. 3.3 C). 

 

 
 A 

 
       

 B 

 

 

C 

 
 

 
 
 

 
 
 
 
 
 
 

The aac-aphD probe binds to the gentamycin resistance cassette that is carried by the transposon and 

inserted into mpn096 in the mutant strain but not in M129.  Therefore, hybridization of this probe is 

supposed to occur only with the mutant chromosomal DNA. As shown, only in the lane containing the 

mutant DNA a band appeared at the expected size of about 5 kbp. The mpn096 probe binds to the 

Fig. 3.3. Schematic illustration of transposon insertion in the isolated mpn096::Tn mutant of M. pneumoniae. A. The 
transposon was inserted after 148 bp in mpn096 and is depicted to scale. Oligonucleotides SG65 and SG66 were 
designed for the mutant screen. Restriction sites for Southern blots are marked in pink. Probe binding sites are indicated 
by dotted lines. aac-aphD is the gene conferring gentamycin resistance in the mutant. B. PCR products with the 
respective primers from an isolated clone. No product was obtained with only gene specific primers. M = marker, C = 
positive control with M129 chromosomal DNA and SG65/SG66. C. Southern blot wich chromosomal DNA from M129 and 
mpn096::Tn. Hybridization was done with a probe specific for the aac-aphD gene on the transposons (left) and for the 
gene mpn096 (right). 

 

69 
 



RESULTS 

respective gene as indicated by the dotted line in A. Due to transposon insertion and the appearance of 

a new XhoI restriction site, the digestion pattern changes in the mutant DNA in comparison to the 

wild type chromosomal DNA. This is visible in the band shift. The double bands may be the result of 

incomplete digestion at the transposon or the two XhoI restriction sites upstream of mpn096. The 

bands in the lanes containing mutant DNA hybridized with the aac-aphD and the mpn096 probe 

match, which rules out the possibility of the transposon being additionally inserted elsewhere in the 

genome. The resulting strain was designated GPM31.  

According to the procedure described above, all mutants were isolated and verified and used for 

following characterization. 

 

Growth experiments for characterizing selected M. pneumoniae transporter mutants 

Since growth and viability are a crucial determinant for M. pneumoniae dispersion and pathogenesis, 

the importance of several transport systems in survival and growth rate was tested. For that, the 

respective mutant strains were grown in liquid MP-medium supplemented with glucose and the 

increase of cell density was monitored over six days. The chosen import systems were: MPN095, 

MPN096 and MPN308 as putative amino acid transporters; MPN259 as part of a putative 

ribose/galactose uptake system; MPN496 as the EIIC protein of a putative ascorbate PTS; MPN609 as 

part of a putative phosphate import system and MPN651 as EIIBC component of a mannitol PTS. The 

resulting growth curves of M129 and mutant strains are depicted in Fig. 3.4. Except for the amino acid 

permease mutants mpn095::Tn and mpn096::Tn, none of the mutants exhibited a phenotype that 

differs from the wild type. During the harvest of mpn095::Tn and mpn096::Tn, the strains turned out 

to have an adhesion defect. Usually, M. pneumoniae cells grow attached to the host cell or, in vitro, 

attached to surface of the cell culture flask. The two amino acid transporter mutants, however, only 

partially grew adhesively while most of the cells were dispersed in the medium. This effect was even 

stronger in mpn096::Tn than in mpn095::Tn indicating that their impact on this process might be of 

different intensity. 
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Investigation of the putative hemolysin transporter MPN571 and the putative hemolysin 

MPN159 

Among the transport systems encoded in the M. pneumoniae genome, a putative hemolysin ABC 

transporter, MPN571, is predicted (Himmelreich et al., 1996). Since a hemolysin transporter logically 

needs a corresponding hemolysin to transport, the genome was searched for genes encoding 

hemolysin-like proteins. In fact, the search retrieved the gene hlyC which encodes a hypothetical 

protein, MPN159 (KEGG). Both, MPN159 and MPN571, were tested for their role in viability, 

cytotoxicity and hemolysis to confirm or disprove their function as hemolysin (transporter). This was 

done again by isolating mutants from the transposon mutant library and determining their phenotype. 

Isolation of mutants 

As described above, mpn159::Tn and mpn571::Tn mutants were identified by screening the mutant 

library pools with respective oligonucleotides. Both screens resulted in the isolation of a mutant.  

The genomic context of mpn159::Tn and its transposon insertion in mpn159 are shown in Fig. 3.5. 

The transposon was inserted in antisense direction after 435 base pairs leading to a perfect disruption 

of the gene. In Fig. 3.6, a scheme for the genomic insertion of the transposon into mpn571 is shown. 

Although the transposon inserted rather near the 3’ region of mpn571, which is usually not sufficient 

for a reliable knockout strain, it hit the nucleotide binding domain of the protein. Therefore, the 

protein was regarded as unable to fulfil its function as an ABC transporter rendering the according 

mutant as acceptable. For both mutant strains, Southern blots were performed and confirmed the 

correctness of the transposon insertions. The mpn159::Tn strain was designated GPM34, the 

mpn571::Tn strain is GPM32. 

 

Fig. 3.4 Growth assay with M. 
pneumoniae wild type and mutant 
strains. Mycoplasma cultures were 
inoculated with 2.5 mg cells from the 
pre-culture and grown in MP-glucose 
medium for 2, 4 and 6 days, 
respectively. Total cells were harvested 
and their wet weight was determined 
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Fig. 3.5. Scheme of transposon insertion in mpn159 and verification of the mpn159::Tn mutant using Southern blots. A. 
Genome organization around mpn159. The transposon inserted after 435 bp in mpn159. Dotted lines indicate the binding 
sites of probes for the Southern blot. Oligonucleotide binding sites are marked by arrows, restriction sites are highlighted 
pink. B. Southern blots to confirm integration of the transposon only into mpn159. Left: hybridization with the gene 
specific probe. A band shift is seen between the M129 chromosomal DNA and the mutant DNA after transposon insertion. 
The double bands are probably caused by an incomplete digestion with KpnI (see restrictions sites in A.). Hybridzation 
with the transposon-specific aac-aphD probe expectedly does only occur in the mutant chromosomal DNA. For the 
mpn159::Tn chromosomal DNA, hybridization with each probe results in the same band size. 
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Fig. 3.6. Scheme and proof of transposon insertion into mpn571. A. Genomic organization including the inserted 
transposon in mpn571::Tn. The transposon is depicted to scale. Oligonucleotides used for mutant screen are indicated by 
arrows, binding sited of the respective probes are indicated by dotted lines. HindIII restriction sited for Southern blots are 
marked in pink. B. Southern blot analysis to prove the insertion of the transposon in mpn571. On the left side, 
hybridization with the aac-ahpD probe to the transposon resulted in one band in the mpn571::Tn chromosomal DNA lane. 
After hybridization with the gene-specific probe, a band shift is seen (right). 
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Implication of mpn159::Tn and mpn571::Tn in growth, hydrogen peroxide production and 

pathogenicity 

The impact of MPN159 and MPN571 in M. pnumoniae growth and pathogenicity was assessed as 

described earlier. The results are depicted in Fig. 3.7. For both knockout strains, no difference in 

growth behavior as compared to the wild type strain M129 could be observed. This indicates that these 

proteins are, at least in vitro, dispensable for survival and replication of the cells. 

Since hydrogen peroxide has long been regarded as the hemolysin of M. pneumoniae, possible roles of 

the proteins in H2O2 production or release were tested by a hydrogen peroxide assay (Somerson, 1965). 

As a reference, M129 and the glpD::Tn mutant were examined as well. Since GlpD is the hydrogen 

peroxide producing enzyme in M. pneumoniae, it has been shown that the respective mutant is 

incapable of H2O2 production with glycerol and glycerophosphocholine as substrates (Hames et al., 

2009; Schmidl et al., 2011). As can be seen in Fig. 3.7 B, no hydrogen peroxide is produced without 

addition of a carbon source in all strains. Addition of glucose leads to a very slight H2O2 production in 

all strains which cannot be explained so far. Maximal amounts of H2O2 are produced by M129 with 

glycerol as substrate, which is also true for mpn571::Tn. However, not only glpD::Tn but also 

mpn159::Tn was not able to produce hydrogen peroxide with glycerol. Using GPC, all strains except 

for glpD::Tn were able to produce intermediate amounts of H2O2. The impairment of the mpn159::Tn 

mutant to produce H2O2 with glycerol might hint at MPN159 being involved to some extent in the 

pathogenicity of the bacterium.  
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Fig. 3.7. Growth and hydrogen peroxide production of the M. pneumoniae wt and mpn159::Tn and mpn571::Tn 
mutants. A. Growth curves were performed by inoculating 2.5 mg cells in MP-glucose medium and harvesting after 2, 4 
and 6 days of growth. No difference between M129 and the mutant strains is observed. B. Hydrogen peroxide assays 
were done by incubating M. pneumoniae cells with 100 µM of several carbon sources and measuring the released H2O2 
amount using peroxide test strips. The glpD::Tn mutant, which cannot produce hydrogen peroxide, served as control. 
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To pursue the question, if and how MPN159 and MPN571 are involved in cytotoxicity, HeLa cell 

infection assays were performed (Fig. 3.8). The HeLa cell control grew plain in the well. Incubation 

with M129 and mpn571::Tn led to a complete destruction of the HeLa cell layer except for a clot in the 

middle. The calculated cytotoxicity of both strains accounted for more than 80 and 70%, respectively. 

This percentage might actually be higher, since the value was probably slightly adulterated by the clot 

in the middle of the well. As in the experiments before, the behavior of the mpn571::Tn mutant did not 

differ from the wild type. The glpD::Tn mutant, which was proven to have a strongly reduced 

cytotoxicity due to a lack of hydrogen peroxide production, behaved as expected (Hames et al., 2009). 

This was also true for the mpn159::Tn mutant. For both strains, a high amount of HeLa cells survived 

during the assay and the cytotoxicity was reduced to about 25%. This probably matches the result of 

the H2O2 test, since hydrogen peroxide is the major toxin of M. pneumoniae. 

The actual hemolytic effect of the putative hemolysin MPN159 and the putative hemolysin ABC 

transporter MPN571 were detected by hemolysis assays using the respective mutant strains. The 

results of these assays are summarized in the following sections. 
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Fig. 3.8. Cytotoxicity assay using HeLa cells. A. 
Picture of HeLa cells 2 dpi with M. pneumoniae 
M129 and mutant strains. The infected cells were 
fixed with 4% buffered formalin and stained with 
crystal violet as described. B. Quantification of 
cytotoxicity calculated in %. The crystal violet bound 
by intact HeLa cells is solved with 0.1% SDS and 
measured photometrically at λ = 595 nm. The OD595 
of the HeLa cell control (HeLa ctrl) was set as 100% 
surviving cells referring to 0% cytotoxicity. The % 
cytotoxicity of the M. pneumoniae strains was 
calculated using the OD595 set in relation to the 
control. 
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3.2.  Hemolytic and hemoxidative activities in M. pneumoniae 
 

3.2.1 Hemolytic activity of M. pneumoniae strains on plates 
 

Analysis of the potential role of MPN159 and MPN571 in hemolysis  

MPN571 is annotated as putative hemolysin ABC transporter, while MPN159 is supposed to be a 

putative hemolysin HlyC. In order to confirm their potential involvement in hemolysis, either as 

transporter or as hemolysin itself, hemolysis assays with the respective mutant strains on blood agar 

plates were performed. Assuming the annotation is correct, a lack of the hemolysin MPN159 or the 

hemolysin transporter MPN571 would result in a non-hemolytic phenotype in their corresponding 

mutant strains. The results of the blood agar test after two days of incubation are shown in Fig. 3.9. All 

M. pneumoniae strains exhibit clear zones of β-hemolysis around their colonies. Due to the black 

background under the photographed plates, the clear zones appear dark. Neither the mpn159::Tn nor 

the mpn571::Tn mutant seems to be impaired in their hemolytic function. Since hydrogen peroxide 

has been said to be the hemolysin of M. pneumoniae, it seemed possible that the halos are mainly 

caused by H2O2 and that its effect exceeds that of the putative additional hemolysin. Therefore, blood 

agar tests with high amounts of catalase were performed. As can be seen, for none of the strains, 

addition of catalase was able to abolish the hemolytic effect. This suggests that there is a hemolysin in 

addition to H2O2. However, neither MPN159 nor MPN571 are involved. 

 

Comparative analysis of hemolysis caused by other M. pneumoniae strains 

In addition to the mpn159::Tn and mpn571::Tn mutants, the hemolytic effect of the prkC::Tn, glpD::Tn 

and mpn372::Tn strains in comparison to the lab wild type (M129) was examined. All these proteins 

are involved in virulence which suggested them to play a potential role in hemolysis as well (Schmidl et 

al., 2010; Hames et al., 2009; Kannan et al., 2006). However, none of the strains showed a lack of 

hemolysis (Fig. 3.10). Even the glpD mutant, which does not produce substantial amounts of hydrogen 

peroxide, forms halos around their colonies. This, and the fact that the addition of high amounts of 

catalase (1000 U per plate) did reduce but not abolish the hemolytic effect of the M. pneumoniae 

strains, indicate the presence of a different source of hemolysis. 
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Fig. 3.9. Hemolytic activity of M. pneumoniae M129, mpn159::Tn and mpn571::Tn strains on blood agar plates. M. 
pneumoniae was grown on MP-glucose plates for 7-10 days until colonies were visible. The cultures were overlaid with 5 
ml of blood agar and incubated for two more days at 37°C. The blood agar consisted of 2% defibrinated sheep blood and 
0.75% agar in PBS with or without 1000 U catalase per plate. Pictures were taken using the Lumar V.12 stereo 
fluorescence microscope (Zeiss). Scale bar = 100 µm. 

Fig. 3.10. Hemolytic activity of M129, prkC::Tn, glpD::Tn and mpn372::Tn strains on blood agar plates. M. pneumoniae 
was grown on MP-glucose plates for 7-10 days and subsequently overlaid with blood agar as described above. Scale bar = 
100 µm. 
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3.2.2 Hemolysis and hemoxidation in liquid blood culture 
 

Assessment of hemoxidative activity in reaction tubes 

To get more insight into the hemolytic activities, blood lysis was also examined in liquid culture. For 

this purpose, 5% defibrinated sheep blood in PBS was incubated with M. pneumoniae strains of an 

OD550 = 1 in a glass reaction tube at 37°C and gentle shaking overnight. To estimate the effect of H2O2 

on hemolysis, the assay was done with and without catalase. After incubation, the sedimented pellets 

were photographed, resuspended and photographed again. The results are shown in Fig. 3.11. 

 

 

 

 

 

 
 
 

 

The sedimented pellet of the negative control consisting of 5% sheep blood in PBS had a bright red 

color and a smooth consistence. The pellet contains the intact red blood cells including the 

hemoglobin whereas the supernatant is clear. In contrast, the positive hemolysis control, which 

consisted of 5% sheep blood in dH2O, did not show a pellet, since all the erythrocytes were lysed in 

water, releasing their hemoglobin into the supernatant. As for the negative control, the hemoglobin of 

the positive control had a bright red color. On the contrary, the sedimented pellets of all cultures 

infected with M. pneumoniae strains had a viscous and clotted texture and a brownish color indicating 

that α-hemolysis (hemoxidation) had occurred. Interestingly, this was also the case in the samples 

containing catalase. The supernatant in all samples was clear which means that all hemoglobin is kept 

Fig. 3.11. Hemolysis assay with liquid blood culture. M. pneumoniae cells of an OD550 = 1 were incubated with 5% sheep 
blood in PBS with or without 500 U catalase. The sedimented pellets after overnight incubation (left) were photographed 
and subsequently resuspended. Pictures were taken of the resuspended pellets (right). Control samples are 5% blood in 
PBS (left most tube) as hemolysis negative control and 5% blood in dH2O as hemolysis positive control. 
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inside the erythrocytes of the pellet and no “real” (β-) hemolysis occurred. After resuspension of the 

pellets, the hemoxidizing effect of the M. pneumoniae cells got even more visible in the brownish 

discoloration of the blood samples. All strains were able to oxidize hemoglobin, with glpD::Tn and 

mpn159::Tn having a slightly reduced hemoxidative effect, which might correlate with their impaired 

H2O2 production. Addition of catalase seemed to result in slight reduction of hemoxidation but the 

brown discoloration as compared to the control samples was still present.  

 

Spectrophotometric measurements of hemoglobin 

Hemoxidation can be examined in detail by measuring the absorption spectra of hemoglobin in the 

respective samples. Therefore, 1 ml of the blood solution was centrifuged, to pellet the red blood cells, 

and the supernatant was removed. The pellet was lysed in 1 ml dH2O to dissolve the hemoglobin and 

100 µl of that solution were used in a microtiter plate to photometrically measure the hemoglobin 

spectrum. Fig. 3.12 displays the spectra of hemoglobin after incubation with M129 and different 

amounts of catalase (0, 500, 5000 units). The classic hemoglobin spectrum (black) has one huge peak at 

about 410 nm and two smaller ones at about 530 and 570 nm. After incubation with M129, the peak at 

410 nm slightly shifted to the left, the peaks at 530 and 570 nm decreased and a new peak appeared at 

about 630 nm (Fig. 3.12). This pattern of peaks is typical for oxidized hemoglobin. As can be seen, 

even the addition of 5000 U of catalase did not seem to alter the peaks at 530, 570 and 630 nm in 

comparison to the “M129” sample (yellow) indicating that hemoxidation is not only caused by 

hydrogen peroxide. 

Taken together, M. pneumoniae is able to perform hemolysis on blood agar plates, which is mainly 

independent from hydrogen peroxide production, whereas no complete hemolysis occurs after 

overnight incubation in liquid culture. Instead, clumping of red blood cells and strong hemoxidation 

can be seen in liquid culture, which cannot be abolished by addition of catalase. These results suggest 

that M. pneumoniae possesses a hemolysin different from hydrogen peroxide and which acts on blood 

agar plates but not in liquid culture.  
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3.2.3 Test for efficiency and effect of catalase 

 

In order to confirm the functionality of the applied catalase and to exclude a hemoglobin altering effect 

by the catalase itself, H2O2 assays using test strips and hemoglobin spectra with addition of various 

units of catalase were performed. In Fig. 3.13 A, the y-axis is cut off at 25 mg/l H2O2 since the test 

strips could not detect a higher concentration. Nevertheless, the effect of catalase is perfectly seen with 

lower concentrations of H2O2. The presence of 10-40 U catalase is sufficient to erase 10 mg/l H2O2 

(Fig. 3.13 A). Also, the initially added 100 mg/l hydrogen peroxide are consistently degraded by 10-40 

U catalase. After 120 min incubation, the catalase setups were retreated with the respective hydrogen 

peroxide amounts to mimic the steady production of H2O2 by M. pneumoniae in a hemolysis assay. 

Since the initial amount of additional 10 mg/l is reduced after 180 min incubation, the catalase can be 

assumed active. Incubation of the respective hydrogen peroxide levels with 1000-4000 U catalase 

completely abolished their detection in the assay indicating that the catalase successfully converted all 

externally applied H2O2 even after repeated addition (data not shown). A hemolysis assay using 5% 

sheep blood in PBS with and without addition of 500 U or 5000 U catalase was performed to exclude a 

hemoxidative effect of catalase itself. In both cases, the presence of catalase does not alter the 

hemoglobin spectrum which indicates that the hemoxidative effect described above is only committed 

to the M. pneumoniae cells. 

 

 

Fig. 3.12. Spectra of hemoglobin incubated with M. pneumoniae M129 without and with different amounts of catalase. 
Complete spectrum of hemoglobin recorded from 370 to 700 nm (left) and detailed section of the spectra from 470 to 700 
nm (right box). The black curve is the lysed control of 5% sheep blood in PBS. The spectrum was recorded in the 
SynergyMX platereader from BioTek. 
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 Fig. 3.14. Hemagglutinating effect of M. pneumoniae strains. A. Hemagglutination assay in a 96-well microtiter plate. 
Starting with 100 µl of a mycoplasma culture with an OD550 = 5 in the left most well, serial twofold dilutions in PBS were 
prepared. 2% sheep blood in PBS was added and the plate was incubated at 37°C without shaking. B. Scheme of 
agglutinated (+) and non-agglutinated (-) red blood cells. During hemagglutination, red blood cells form a connected, net-
like structure covering the bottom of the well. Without hemagglutination, single red blood cells sink to the bottom which 
can be observed as a small red dot.   

Fig. 3.13. Hydrogen peroxide assay and hemolysis assay with addition of catalase. A. 10, 100 and 500 mg/l hydrogen 
peroxide were used and incubated with 10 – 40 U catalase. After 120 min incubation at 37°C, the same amount of 
hydrogen peroxide was added again to see if the catalase retained active. B. Spectrum of hemoglobin incubated with high 
500 U or 5000 U of catalase, respectively. No change in spectrum as compared to the control can be observed. 
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3.2.4  Hemagglutination 

 

To address the question why the blood pellet is tough and clotted after incubation with Mycoplasma 

cells in contrast to the control pellet, the hemagglutinating effect of the cells was tested. 

Hemagglutination is a process in which the red blood cells are clumped and connected to a net-like 

structure (Fig. 3.14 B). It is usually caused by viruses and antibodies, but also by some bacteria (Neter 

et al., 1954). For that, serial twofold dilutions of M. pneumoniae suspensions were prepared in a 

round-bottom 96-well plate and incubated with 2% sheep blood in PBS at 37°C. When 

hemagglutination occurs, the red blood cells cover the whole bottom of the well due to their net-like 

connection. When no hemolysis occurs, the red blood cells sink to the bottom to form a little red dot. 

As can be seen in Fig. 3.14 A, the wild type M129 and the clinical isolate KI1 have a hemagglutinating 

effect. In contrast, the clinical isolate KI2 and the prkC mutant strain are strongly impaired in 

hemagglutination. Since both strains exhibit an adhesion deficient phenotype, it seems conclusive that 

these M. pneumoniae cells cannot bind to and thereby connect the red blood cells. 

 

3.2.5 Microscopic analyses of blood 

 

Red blood cells typically exhibit a “donut” shaped cell form, a biconcave disk with a flattened center. 

However, they can assume different shapes upon exposure to certain kinds of stress or membrane 

altering effects. In order to see which effect M. pneumoniae cells have on erythrocytes, microscopic 

analyses of blood cultures with or without M. pneumoniae cells were performed. Blood smears were 

prepared, fixed by heat and examined under the microscope. Fig. 3.15 shows two independent 

experimental setups. The upper panel and the lower panel, respectively, represent one experiment. In 

A and C, pure blood cells in PBC can be seen. They show their typical regular round shape which is 

called discocyte. In contrast, a high proportion of red blood cells that were incubated with M. 

pneumoniae M129 (B and D), possess an irregular, rather “prickly” shape which can be caused by lipid 

depletion in the RBC membrane or by osmotic imbalance and might have severe effects on the 

integrity of erythrocytes (see section 4.3.3). 
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3.2.6 Cysteine-dependent hemolysis and hemoxidation 

 

In many bacteria, like Streptococcus pneumoniae, hemolysins are oxygen-labile. Since M. pneumoniae 

strains were found to cause hemolysis only on blood agar plates in the absence of oxygen and not in 

liquid culture where oxygen is present, the existence of an oxygen-labile hemolysin in M. pneumoniae 

was considered. To test this option, hemolysis assays in liquid blood culture were performed with 

addition of cysteine as reducing agent to protect the potential hemolysin from oxygen.  

Figures 3.16 – 3.20 present the outcome after RBC incubation with the M. pneumoniae strains for 1h 

and 18 h, respectively. A and B show independent experiments. Fig. 3.21 shows the control samples 

which were incubated with the same additives except for the M. pneumoniae cells to rule out an effect 

being caused by glycerol, G3P or cysteine alone. As can be seen in the control, only addition of 10 mM 

cysteine led to a very slight hemoxidation after 18 h of incubation. For all the strains, incubation for 1 

h did not lead to hemolysis in any of the samples, since the supernatant (S) was clear and the pellet (P) 

Fig. 3.15. Phase contrast microscopic images of blood cells after overnight incubation with or w/o M. pneumoniae 
cells from two independent experiments. A and C. Blood cells w/o M. pneumoniae. B and D. Blood samples after 
incubation with M. pneumoniae strains. All pictures were taken at the same magnification with the Axioskop 40 FL 
fluorescence microscope (Zeiss). Scale bar is 10 µM. 
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contained the hemoglobin. However, all strains, except for glpD::Tn, caused hemoxidation with 

glycerol already after 1 h. This can be recognized by the brown color in the respective pellet wells (A) 

and the change of peaks at 530, 570 and 630 nm in the spectrum of hemoglobin (B) as the result of a 

high production of hydrogen peroxide which strongly oxidizes hemoglobin. Expectedly, this was not 

possible in the mutant lacking the hydrogen peroxide producing enzyme GlpD. Remarkably, the 

clinical isolate 2 (KI2) was also able to oxidize hemoglobin with 1 mM and 10 mM cysteine after a 

short incubation time. After 18 h, all strains exhibited a slight hemoxidative effect which was even 

observed without addition of glycerol or cysteine. This indicates that, indeed, red blood cells per se do 

contain substrates leading to hemoxidation by M. pneumoniae. As expected from the results after 1 h 

incubation, this hemoxidative activity was enhanced in the presence of glycerol leading to strongly 

oxidized hemoglobin and partial hemolysis after 18 h of incubation time. Again, this was not true for 

the glpD::Tn mutant. Interestingly, addition of 1 mM and 10 mM cysteine also led to a strong 

oxidation of hemoglobin by all strains after 18 h. In addition, the presence of 10 mM cysteine caused 

nearly complete hemolysis in all strains. This can be recognized by the red-brown supernatant and the 

bright pellet fractions in the respective wells and by the high hemoglobin peaks in the supernatant 

spectra which are proportionately reduced in the pellet spectra. Surprisingly, the hemolytic effect of 

cysteine in most cases exceeded that of glycerol which suggests that H2O2 is not the major hemolysin in 

M. pneumoniae but another compound which is cysteine-dependent. Since addition of cysteine 

initially caused hemoxidation followed by hemolysis, it can be excluded that cysteine acts a reducing 

agent which protects a potential oxygen-labile hemolysin. Instead, it implies that cysteine itself is a 

substrate for the production of a hemoxidative and hemolytic factor which, so far, has not been known 

in M. pneumoniae. 

Another surprising aspect is the strong hemoxidation and hemolysis that is caused by M129 cells in 

presence of glycerol-3-phosphate (G3P). In fact, G3P is the substrate for the enzyme GlpD and will 

therefore lead to production of H2O2 and hemoxidation. However, based on results from hydrogen 

peroxide assays, it has been assumed that M. pneumoniae cannot take up G3P (Schmidl et al., 2011). 

These present data strongly suggest that G3P can be utilized by M. pneumoniae M129 cells leading to 

strong hemoxidation and hemolysis. 
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Fig. 3.17. Heme assays with clinical isolate KI1. A. Supernatant (S) and pellet (P) fractions of the blood samples 
photographed in a 24-well-plate. B. Spectra of hemoglobin of supernatant and pellet after 18 h incubation.  

Fig. 3.16. Heme assays with M129 and 2% RBCs in PBS. A. Pictures of supernatant (S) and pellet (P) fractions of the blood 
samples in a 24-well-plate. B. Spectra of hemoglobin in the supernatant and the pellet, respectively, after 18 h of 
incubation. Cys: cysteine; gly: glycerol; G3P: glycerol-3-phosphate 
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Fig. 3.19. Heme assays with glpD::Tn. A. Supernatant (S) and pellet (P) fractions of the blood samples photographed in a 
24-well-plate. B. Spectra of hemoglobin of supernatant and pellet after 18 h incubation.  

Fig. 3.18. Heme assays with clinical isolate KI2. A. Supernatant (S) and pellet (P) fractions of the blood samples in a 24-
well-plate. B. Spectra of hemoglobin of supernatant and pellet after 18 h incubation.  
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Fig. 3.21. Control heme assays without M. pneumoniae cells. A. Supernatant (S) and pellet (P) fractions of the blood 
samples in a 24-well-plate. B. Hemoglobin spectra of supernatant and pellet after 18 h incubation.  

Fig. 3.20. Heme assays with mpn159::Tn. A. Photos of supernatant (S) and pellet (P) fractions of the blood samples in a 
24-well-plate. B. Hemoglobin spectra of supernatant and pellet after 18 h incubation. A. and B. show independent 
experiments 
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3.2.7 H2S production in M. pneumoniae 
 

Cysteine-mediated hemoxidation and hemolysis is a feature of a variety of oral pathogenic bacteria, 

like Treponema denticola. These pathogens produce hydrogen sulfide from cysteine by enzymes called 

L-cysteine desulfhydrases. In order to clarify if the cysteine-dependent hemoxidation and hemolysis in 

the M. pneumoniae strains can be caused by hydrogen sulfide production of the bacterium, several H2S 

tests were performed. At first, simple lead acetate strips were used. M. pneumoniae M129 cultures were 

incubated with cysteine over night at 37°C in Eppendorf tubes containing a lead acetate strip wedged 

under the lid. The gaseous hydrogen sulfide reacts with the lead on the strips to give a black 

discoloration. In fact, an increasing dark color change can be seen on the strips that were incubated 

with M129 and 3, 6 and 12 mM cysteine, respectively (Fig. 3.22 A).  
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To compare the hydrogen sulfide production in the clinical isolates KI1 and KI2 with the lab wild type 

M129, the bismuth chloride assay was chosen. In this assay, freshly harvested M. pneumoniae cells are 

Fig.3.22. Hydrogen sulfide assays with M. pneumoniae strains. A. Incubation of M129 in PBS with different 
concentrations of cysteine and lead acetate strips overnight. The black discoloration results from PbS formation after 
reaction of lead with hydrogen sulfide. B. and C. Bismuth sulfide assays with M129 and clinical isolates 1 and 2 and 
different L-cysteine concentrations. Bismuth reacts with hydrogen sulfide to Bi2S3 which forms a dark precipitate. B. shows 
photos of an overnight incubation of M. pneumoniae strains in BiCl3 solution. C. presents photometric measurements of 
solutions in B. Bi2S3 can be measured at 405 nm. 
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resuspended in an assay mixture containing bismuth chloride (BiCl3). Bismuth can react with sulfide 

similar to the lead on the strips mentioned above. The release of hydrogen sulfide by the M. 

pneumoniae cells would lead directly to a reaction with the BiCl3 in the solution resulting in the 

formation of black Bi2S3. This precipitate can be measured photometrically. In Fig. 3.22 B and C, the 

hydrogen sulfide assay and its photometric measurement are shown. As can be seen, the results for 0 

mM and 1 mM cysteine were nearly identical in all strains. Apparently, 1 mM cysteine was not 

sufficient for the cells to produce detectable amounts of hydrogen sulfide. However, in the presence of 

10 mM cysteine, the brown precipitate was easily visible in all strains. The H2S production rates of the 

laboratory wild type strain M129 and the clinical isolate KI1 appeared to be similar. In contrast, the 

clinical isolate KI2 seemed to form slightly increased amounts of hydrogen sulfide. 

 

3.3. Characterization of MPN487 
 

In many oral pathogens, hydrogen sulfide is produced by enzymes called L-cysteine desulfhydrases. 

These pyridoxal-5’-phosphate dependent desulfhydrases convert L-cysteine to NH4
+, pyruvate and 

H2S. In M. pneumoniae, no such enzyme is present. However, it possesses the putative L-cysteine 

desulfurase, MPN487, which is supposed to use L-cysteine for Fe-S-cluster biogenesis. In this section, 

the characterization of MPN487 and its unexpected role as H2S producing enzyme is described. 

 

3.3.1 Expression of mpn487 in E. coli and purification of Strep-tagged proteins 

 

The gene mpn487 and the adjoining gene mpn488, which is supposed to be a scaffold protein following 

MPN487 in Fe-S-cluster formation, were expressed in E. coli BL21 and subsequently purified. For that, 

both genes were cloned into the overexpression vector pGP172. This vector places the gene of interest 

under control of a T7 promoter. Upon addition of IPTG to the BL21 culture carrying the plasmid, the 

expression of the T7 polymerase in the BL21 strain is induced, and the gene can be transcribed with a 

high rate. Moreover, overexpression form pGP172 fuses an N-terminal Strep-tag to the protein which 

allows its purification via a Strep-Tactin-sepharose-column. 
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Cloning of mpn487 into pGP172 and MMR 

The gene mpn487 was amplified from chromosomal DNA of M129 in a PCR using the 

oligonucleotides SG142 and SG143 (see Appendix Tab. 7.1). The product was cut with SacI and 

BamHI and cloned into the BamHI and SacI digested vector pGP172 resulting in pGP2245. Since 

mpn487 contained one TGA codon for tryptophan, a multiple mutation reaction (MMR) of mpn487 

had to be performed using pGP2245 and the primers SG142, SG143 and SG144 to mutate the A on 

position 345 to a G. This way, the TGA codon is converted to a TGG codon which codes for 

tryptophan in both M. pneumoniae and E. coli, ensuring a correct expression of the gene in BL21. The 

MMR product was digested as described above and cloned again into pGP172. The resulting vector 

was designated pGP2246 and used for overexpression and purification later.    
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Purification and Western blot 

After overexpression and harvest of the BL21 cells, the respective proteins were purified using their 

Strep-tag. Afterwards, a Western blot was performed to confirm the existence of the Strep-tagged 

protein in the elution fractions. For Strep-MPN487, the purification procedure was successful. A high 

amount of protein with only a little background could be eluted from the Strep-Tactin sepharose 

column (Fig. 3.23). The Western blot proved the presence of a Strep-tag in the elution fractions at the 

size of MPN487.  

 

Fig. 3.23. Strep-tag purification and Western blot of Strep-MPN487. A. Coomassie stained 12% SDS gel of the purification 
fractions. Only the 46-kDa protein MPN487 is eluted from the column in fractions E2-E4. B. Western blot with an α-Strep 
antibody. A 12% SDS gel was run after purification of the protein and the blot was performed using an antibody against 
the Strep-tag fused to the protein MPN487. M: marker, CE: crude extract, FT: flow through, W4: washing fraction 4, E1-4: 
elution fractions 1-4. 
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3.3.2 Enzymatic assays  

 

To find out, if MPN487 is the responsible enzyme for hydrogen sulfide production in M. pneumoniae, 

several enzyme assays were performed. Moreover, the identity of the protein as L-cysteine desulfurase 

or L-cysteine desulfhydrase was attempted to be clarified by determining the additional products of the 

enzyme reaction. 

 

Assay of H2S formation 

Hydrogen sulfide production can be measured by two different methods. One is the methylene blue 

method, the second is the BiCl3 assay. Since none of these methods had been applied before in this 

laboratory, both were tested. To quantify the amount of hydrogen sulfide, standard curves had to be 

prepared for each method using sodium sulfide (Na2S). Finally, to determine the enzymatic 

characteristics of MPN487, kinetic studies were performed. 

Preliminary tests for H2S production using methylene blue and BiCl3 assays 

Prior to elaborate enzyme assays, it should be given a trial, if in fact hydrogen sulfide can be detected 

and if the desired methods for detection, which had not been established in this laboratory so far, are 

working. For this, 5 and 12 µg of the purified MPN487 were used in methylene blue and BiCl3 assays as 

described in 2.2.9 with 24 mM cysteine as substrate. As depicted in Fig. 3.24, hydrogen sulfide could 

be detected in the samples containing purified enzyme. In the controls, which contain only 24 mM L-

cysteine without enzyme, no H2S formation was detected. This proves that MPN487 is a hydrogen 

sulfide producing enzyme in M. pneumoniae and that its function is obviously not inhibited by the N-

terminal Strep-tag. In the methylene blue assays, the typical spectrum for methylene blue appeared and 

could be applied for quantification using the peak at OD670. In the BiCl3 test, the Bi2S3 amount that 

results from reaction of bismuth with the produced sulfide is measured. This assay gave results that are 

very similar to those of the methylene blue assay, indicating that both methods work and could be used 

in parallel to determine enzyme characteristics. Since the methylene blue method is the primary 

method that is used for hydrogen sulfide quantification in enzyme assays in literature, this assay was 

initially chosen for the following tests. 
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In the next step, the enzymes as well as the assays had to be tested for their functionality with different 

amounts of cysteine as substrate. For this, 2 µg of purified MPN487 were used in the methylene blue 

and the BiCl3 setups and the OD was determined after to 2 h of incubation at λ = 670 or 405 nm, 

respectively. The results are shown in Fig. 3.25. In the BiCl3 assay, the OD405 increased with increasing 

cysteine concentrations, which shows that more hydrogen sulfide could be produced by the enzyme 

and detected in the assay. In contrast, the methylene blue assay only seemed to work for very low 

cysteine concentrations. Higher amounts of cysteine probably inhibit the complex formation of color 

development of methylene blue. Since enzyme kinetics needs to make use of different substrate 

concentrations, the BiCl3 assay was the method of choice for further characterization of the enzyme.     

 

 

Fig. 3.24. First tests for H2S production of the purified enzyme directly after Strep-tag purification. A. Typical spectrum 
of methylene blue for H2S detection. The peak at 670 nm represents the wavelength at which the methylene blue 
complex referring to the amount of H2S can be measured. B. Optical density of the methylene blue complex at OD670 for 
the respective samples from the purification steps. C. Bismuth chloride assay to prove hydrogen sulfide production of the 
purified enzyme. The amount of Bi2S3 is measured at OD405. A negative control without addition of proteins, and two 
different amounts of MPN487 were used in each test. 
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Preparation of a Na2S standard curve 

In order to relate the optical density measured in the BiCl3 assays to the respective sulfide 

concentration, sulfide calibration curves were prepared (Fig. 3.26). For that, sodium sulfide was used 

as substitute for hydrogen sulfide, since this substance is not gaseous and more convenient to handle. 

Different concentrations of Na2S were applied in a BiCl3 assay setup without cysteine or enzyme and 

the resulting OD was measured at λ = 405 nm. The deriving slope of y = 0.0011x is later used for 

calculation of hydrogen sulfide amounts produced by MPN487 in the respective assays. As can be seen, 

the assay works fine in a range of 0 – 250 mM sulfide. Only with sulfide concentrations above 250 mM 

it starts to get slightly insensitive and imprecise   

 

 

 

 

 

Kinetic properties of MPN487 in a bismuth chloride assay 

Using the BiCl3 assay and the corresponding standard curve, the kinetics of H2S formation from 

interaction of MPN487 with different cysteine concentrations were determined (Fig. 3.27). 0.5 µg 

purified enzyme were incubated in 100 µl BiCl3 assay setups containing different cysteine 

concentrations. The assay was started by adding the enzyme and the change of absorption at OD405 was 

Fig. 3.26. Sulfide calibration curve 
using different concentrations of 
Na2S. The slope of the curve delivers 
a linear relation between the sulfide 
concentration and the measured OD 
at λ = 405 nm. This can be used for 
quantification of hydrogen sulfide 
amounts in the following enzyme 
assays. 

Fig. 3.25. Comparison of BiCl3 and 
methylene blue assays for hydrogen 
sulfide production with different 
concentrations of cysteine in the 
experimental setup. In both reactions, 2 µg 
MPN487 were used. The OD was measured 
at λ = 405 nm for Bi2S3 and at λ = 670 nm 
for the methylene blue assay. 
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measured over 30 min at 37°C in a plate reader. Using the rate of H2S production, a Km value of 11.21 

and a Vmax = 6.9 µmol H2S / min / mg enzyme were calculated.  
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Assay for detection of pyruvate formation 

In contrast to L-cysteine desulfurases which form alanine from cysteine, L-cysteine desulfhydrases are 

capable of producing not only H2S but also pyruvate. To get more insight into the catalytic function of 

MPN487 and its possible additional products, a pyruvate assay was established.  

Preparation of a sodium pyruvate standard curve 

As for hydrogen sulfide, a calibration curve for the pyruvate assay had to be prepared in order to relate 

the measured OD to an actual pyruvate concentration. For that, sodium pyruvate was used in the 

pyruvate assay setup instead of enzyme and substrate. The OD335 was plotted against the pyruvate 

concentration and the slope was determined for later calculation (Fig. 3.28). 

Pyruvate assay 

The pyruvate assay was performed in 250 µl setups containing 2-5 µg MPN487, 10 µM PLP as cofactor 

and various cysteine concentrations in potassium phosphate buffer. The mixtures were incubated for 

several hours or overnight at 37°C. Afterwards, the reaction was stopped and a solution for color 

development was added which enabled measurement of the product at OD335. After 30, 60 and 120 min 

of incubation time, no pyruvate could be detected (not shown) which suggested the inability of the 

Fig. 3.27. MPN487 kinetics of hydrogen sulfide production. A. Michaelis-Menten substrate saturation curves in which 
the velocity of H2S formation is plotted against the applied cysteine concentrations. B. Lineweaver-Burke graph as 
double-reciprocal plot of H2S formation in A. 
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enzyme to form this product. However, after incubation overnight, pyruvate could in fact be detected 

indicating a very slow reaction rate for pyruvate formation under the given conditions (Fig. 3.29).  

 

 

 

 

 

 

 
 
 
 
 

3.3.3 GC-MS 
 

To get a general impression which products are formed from L-cysteine by MPN487, GC-MS analyses 

of the reaction mix were performed. In this procedure, the components of the reaction sample are 

separated via gas chromatography, where they elute after a specific retention time. The eluted 

components can subsequently be ionized, measured and identified according to their mass/charge 

ratio using the mass spectrometer. For GC-MS measurements, 5 µg of purified enzyme were incubated 

in a 1 ml sodium carbonate buffer set up including the cofactor and various cysteine concentrations for 

several hours or overnight. As control, samples without enzyme or without substrate, respectively, 

Fig. 3.29. Pyruvate formation from different amounts of cysteine. An assay contained 5 µg purified MPN487, 10 µM PLP 
and various substrate concentrations. The setup was incubated overnight (16 hours) at 37°C.  

Fig.3.28. Pyruvate standard curve 
for determination of pyruvate 
concentrations produced from 
MPN487. Sodium pyruvate was used 
in the setup and measurements 
were performed in triplicates. 
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were prepared as well. The reactions were stopped, mixed with 2 ml extraction solution (methanol / 

chloroform / water 32.25:12.5:6.25 [v/v/v]) in a Kimble glass and vortexted. The samples were 

subsequently analyzed by Dr. Till Ischebeck at the department of Plant Biochemistry of the Georg-

August-Universität Göttingen.  

 

 

 

 

 

 

The overlay chromatograms for the samples are shown in Fig. 3.30. In these chromatograms, the 

abundance of all ions (total ion count, TIC) that were eluted at a certain time point and measured by 

mass spectrometry, is depicted. The huge peak that appears after 32 min retention time in the 

“+enzyme +cysteine” and the “w/o enzyme” samples, refers to cystine which is probably spontaneously 

formed by oxidation of cysteine. The other peaks appearing only in the “w/o enzyme” control (blue) 

refer to cysteine derivatives (cysteine sulfonic acid). At a retention time 0f about 14 min, a peak turns 

up in the enzyme samples, which could not be identified by the software and is probably caused by a 

component of the elution buffer from protein purification. Three additional peaks emerge only in the 

sample containing enzyme and substrate (black line) after about 5, 6 and 12 min. These correspond to 

the retention times of pyruvate (5 min) and alanine (6 and 12 min). External standards were run for 

both alanine and pyruvate to be able to determine the amount and ratio of the products that are 

formed in the reaction. Using the standards, the content of the pyruvate and alanine masses in the total 

ion count was calculated. Fig. 3.31 shows the specific chromatograms of the respective pyruvate and 

Fig 3.30. Total ion count of GC-MS samples. The enzyme assays were incubated over night at 37°C. A control without 
enzyme plus a control without cysteine were incubated and treated the same way (blue and yellow graph). The figure 
shows one representative chromatogram. Measurements were performed in triplicates. 
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alanine masses. Since alanine can appear as 2TMS (alanine derivatized with two trimethylsilyl groups) 

and 3TMS alanine (alanine derivatized with three trimethylsilyl groups) which elute at different time 

points, both masses have to be considered for calculation. In total, the averaged GC-MS result of one 

run revealed a production of about 0.24 µmol pyruvate and about 0.1 µmol alanine. This proves that 

MPN487 catalyzes the formation of both alanine and pyruvate from cysteine, with pyruvate being 

produced at an about 2.4 times higher rate than alanine. Since only a small proportion of the 

enzymatic assay setup is used for chromatography, it has to be noted that the calculated amounts are 

no absolute values reflecting the catalysis rate of the enzyme. Instead, these measurements are simply 

supposed to prove the existence and the ratio of the formed products. 
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3.3.4 Analysis of expression levels using Slot Blots 
 

To get insight into the roles of MPN487 in the bacterial cell, its expression level under different 

conditions were examined. This was done by Slot Blot analyses using an mpn487-specific probe. In Slot 

blots, the intensity of the slot signals correlates with the amount of RNA which can be bound 

Fig. 3.31. Peaks of alanine and pyruvate masses 
used in quantification. A. and B. Alanine forms two 
complexes after derivatization (2TMS and 3TMS) 
which elute after ca. 6.3 and 12.6 min, respectively. 
The peaks of alanine m/z 116 (2TMS) and m/z 188 
(3TMS) were added for calculation of total alanine 
amount in the sample. C. Chromatogram of 
pyruvate 174 which elutes after about 5.2 minutes. 
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specifically by the applied probe. For this purpose, total RNA from M. pneumoniae M129 cells that had 

been grown for four days in MP-medium with glucose or glycerol was isolated. Prior to harvest, the 

cells were treated with 10 mM cysteine, 2% blood, 0.02% H2O2 or 0.5 mg/ml of the iron-chelator 2,2-

dipyridyl for 1 h or 4 d. In order to see, if the adjacent gene mpn488 is expressed similar to mpn487, 

which would hint at them being involved in the same pathway, the blots were also performed with an 

mpn488-specific probe.  
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As shown in Fig. 3.32 A, the expression of mpn487 strongly increased after treatment with cysteine. 

Also, the presence of glycerol seemed to enhance mpn487 transcription, whereas H2O2 did not seem to 

have an effect. In Figures 3.32 A and B, the expression of mpn487 and mpn487 under the respective 

conditions is compared. At a first glance, it appears that the expression patterns of both genes are not 

Fig. 3.32. Slot blot analyses to check the expression of mpn487 and mpn488 under the described conditions. M. 
pneumoniae M129 RNA was isolated after 4 days growth in MP medium. Prior to harvest, the cells were treated with 
cysteine, blood, H2O2 or 2,2-dipyridyl for 1 h unless mentioned otherwise. 
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identical. Whereas mpn487 was significantly upregulated only in presence of cysteine, expression of 

mpn488 was strongly enhanced after incubation with the iron-chelator 2,2-dipyridyl for 1 hour or 4 

days and only slightly enhanced upon incubation with cysteine. This suggests that MPN487 is needed 

when elevated cysteine amounts are available, whereas MPN488 seems to become important under 

iron-depletion. These results indicate that both of the proteins might have different roles or priorities 

in the organisms. 

 

3.3.5 Investigation of protein-protein-interactions using MPN487 in a bacterial-

two-hybrid (BACTH) study 

 

To assess the question whether MPN487 and MPN488 are working together in the same metabolic 

pathway, protein-protein-interaction studies were performed.  

For the bacterial-two-hybrid screen, genes coding for the proteins MPN487 and MPN488 were cloned 

into BACTH specific vectors (pUT18/C and pKNT25) and fused each to one domain of the adenylate 

cyclase of Bordetella pertussis. This enzyme consists of two domains (T18 and T25) and separation of 

these domains results in a non-functional enzyme. Interaction of two proteins that are fused to either 

one of the two domains, respectively, results in a spatial proximity of the formerly separated adenylate 

cyclase domains and therefore in a functional enzyme. The presence of a functional adenylate cyclase 

results in the expression of reporter genes in the E. coli strain and possible protein-protein-interactions 

can be recognized in blue colonies.  

The vectors that were constructed for the BACTH containing either mpn487 or mpn488, are listed in 

in the appendix. The BACTH showed self-interaction of MPN488 but not MPN487 (Fig. 3.33). 

Moreover, no interactions between MPN487 and MPN488 could be detected. This might indicate that, 

indeed, MPN487 and MPN488 are not interacting. However, the BACTH is an artificial system in 

which the proteins reside in a different organism, where they might not be properly folded or 

modified. Therefore, the appearance of only white colonies does not necessarily mean that these 

proteins are not able to interact in M. pneumoniae. In this BACTH, an interaction of MPN487 and 

MPN488 could not be proven but is still not excluded. 
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3.3.6 Hemoxidative and hemolytic effect of MPN487 

 

The L-cysteine desulfhydrases in oral pathogens like Treponema denticola, which produce H2S and 

pyruvic acid, were also demonstrated to possess hemoxidative and hemolytic activity (Chu et al., 

1997). Since MPN487 could be shown to also possess desulfhydrase activity, it was subsequently 

investigated, if it also possesses hemoxidative and hemolytic activity. To compare the effect of the 

enzyme with the effect of the H2O2 producing enzyme GlpD, both were purified and tested in parallel. 

Moreover, the homologous L-cysteine desulfurase from B. subtilis, SufS, was tested for comparison. 

 

Cloning and purification of GlpDMpn and SufSBsu 

All enzymes were purified using a Strep-tag fused to the protein and a Strep-Tactin sepharose matrix. 

For that, the genes were cloned into the overexpression vector pGP172, overexpressed in E. coli BL21 

and purified as described in section 3.3.1. The vector containing GlpDMpn (pGP2031) was already 

existing (Schmeisky, 2013). For cloning of SufS, the gene was amplified from B. subtilis 168 

chromosomal DNA using gene specific oligonucleotides SG196 and SG197. The PCR product was 

digested BamHI / SacI and cloned into the BamHI / SacI digested pGP172. Fig. 3.34 shows the 

respective fractions of the GlpD and SufS purifications on a 12% SDS gel. 

 

 

Fig. 3.33. Bacterial-two-hybrid screen for 
detection of potential interactions between 
MPN487 and MPN488. 5 µl E. coli BTH101 cells 
transformed with a pUT18- and a pKT25 
derivative were dropped on an LB plate 
containing X-Gal and incubated at 30°C for two 
days. Discoloration of colonies indicates 
interaction of the proteins encoded by the 
respective plasmids. Down right is the positive 
control. 
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Hemolysis assays using MPN487, GlpDMpn and SufSBsu 

To test their hemolytic activity, 2 µg/ml of the purified proteins were incubated with (or w/o) their 

substrates and 2% RBCs in PBS pH 7.4 for several hours. The mixtures were shaken slowly at 100 rpm 

and 37°C. After the desired incubation time, 1 ml was withdrawn from each sample, centrifuged and 

the supernatant was collected. The pellet was resuspended in 1 ml dH2O. Both fractions were 

photographed in a 24-well plate and their spectrum was recorded photometrically. 

Comparison of the hemolytic activities of MPN487 and GlpD 

After three hours of red blood cell incubation with either MPN487 or GlpD, the supernatants of all 

samples were clear and the hemoglobin was kept inside the pellets (Fig. 3.35). This implies that no 

hemolysis occurred. However, the hemoglobin was slightly oxidized in the MPN487 sample and 

strongly oxidized in the GlpD sample. In fact, the hemoglobin in the GlpD sample was already 

completely oxidized after 30 min (data not shown). This suggests that GlpD is a highly active enzyme 

whereas for MPN487 the rate of catalysis is comparatively low. Similarly, after 20 h of incubation, no 

hemolysis was detectable. Still, the hemoglobin in the MPN487 sample showed stronger oxidation. In 

contrast, after 44 hours, strong hemolysis was visible in the sample containing both MPN487 and 1 

mM cysteine. The strongly oxidized hemoglobin was not only present in the pellet but also in the 

supernatant indicating that a high proportion of erythrocytes had undergone lysis to release their 

hemoglobin. Hemolysis did not appear in the control samples containing only 2% RBCs in PBS with or 

without 1 mM cysteine. Incubation with GlpD and 1 mM G3P led to a strong hemoxidation and a 

slight hemolysis which was, however, not comparable to that caused by MPN487 and cysteine. These 

Fig. 3.34. Purification of Strep-GlpDMpn (A) and Strep-SufSBsu (B). Proteins were overexpressed in E. coli BL21 and then 
purified via their Strep-tag and a Strep-Tactin sepharose column. Proteins from the elution fraction E2 or E3 were used in 
further experiments. 

101 
 



RESULTS 

results are confirmed by the measurements of the respective hemoglobin spectra of the samples (Fig. 

3.36).  

After incubation for 44 hours, all control samples showed only a very little hemoglobin peak in the 

supernatant indicating that only a little amount of hemoglobin was present in the supernatant and 

most of it kept in the pellet (Fig. 3.36). For the sample containing 1 mM G3P + GlpD, a larger peak 

was detectable referring to a higher hemolysis rate. The largest peaks in the supernatant fractions were 

observed for the samples containing cysteine and MPN487. This result was the same for the sample 

containing 1 mM cysteine as for the one containing 10 mM cysteine. From that, it seems that 1 mM 

cysteine is sufficient for MPN487 to exhibit its hemolytic function. On the other hand, the hemoglobin 

peaks in the resuspended pellet fractions were very large in each of the control samples. This means 

that the pellet contained all the hemoglobin and hemolysis did not take place. In contrast, the peak of 

the sample containing 1 mM G3P + GlpD was reduced which fits to the respective higher peak in the 

supernatant fraction. The peaks of the samples containing MPN487 + 1 mM or 10 mM cysteine were 

even more reduced indicating an enhanced hemolysis rate. In fact, the respective peaks for those 

samples were equally intense in both the supernatant and the pellet fractions. Consequently, 

hemoglobin was present in equal parts in the supernatant and the pellet, respectively, meaning that 

about half the erythrocytes had been lysed by the concerted action of MPN487 and cysteine. Moreover, 

the hemoglobin in the samples containing GlpD and MPN487 with their corresponding substrates, 

had an altered spectrum in the region of λ= 500-650 nm. This refers to oxidized hemoglobin which is 

also visible by its brown discoloration in Fig. 3.35. 

 

        

 
 
        

Fig. 3.35. Hemolysis assay with 
2% RBCs in PBS incubated with 
MPN487 and cysteine for 
indicated time periods. As 
controls, only 2% RBCs in PBS 
and a sample with cysteine but 
without enzyme were chosen. 
For comparison, a setup 
containing RBCs, GlpD and 1 mM 
glycerol-3-phosphate (glycerol-
3-P) was prepared as well. 
Brown discoloration indicates 
hemoxidation. S: supernatant. P: 
pellet. 
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Comparing MPN487 with SufS from B. subtilis 

MPN487 is a putative L-cysteine desulfurase, which unexpectedly turned out to be involved in 

virulence and hemolysis. To rule out if its hemolytic attributes are unique for the M. pneumoniae 

enzyme or also present in vitro in L-cysteine desulfurases of non-pathogenic bacteria, its homolog 

from B. subtilis, SufS, should be tested for similar effects on sheep blood. For that, 2 µg / ml enzyme 

were incubated with cysteine, PLP and 2% RBCs in PBS as described above. Figures 3.37 and 3.38 

show the pellet and supernatant fractions in a 24-well-plate and in forms of their spectra, respectively. 

 

 
A 

 
 

 
B 

 

 
 

 
 
 
 
 
 

 

As for the experiment before, no hemolysis was detectable after 3 h (not shown) or 20 h of RBC 

incubation with either of the enzymes. This can be recognized from the clear supernatant in all the 

samples meaning that all the hemoglobin is inside the entire RBCs in the pellets. However, with 10 

mM cysteine, already a slight hemoxidation could be seen in both pellet fractions that were incubated 

with MPN487 and SufSBsu (Fig. 3.37). After 40 h, the hemoxidation is in an advanced state in all setups. 

It is noteworthy that 10 mM L-cysteine solution already seemed to have a slight hemoxidative and 

hemolytic effect on RBCs. Nevertheless, this hemolytic effect was stronger in the samples incubated 

with 10 mM cysteine and SufS and with 10 mM cysteine and MPN487, respectively. In fact, the 

hemolytic activity of MPN487 outnumbered that of SufS, since the hemoglobin appeared to be present 

nearly exclusively in the supernatant fraction. In contrast, less than 50% of the red blood cells seemed 

to be lysed in the SufS sample (Fig. 3.37). The results shown in Fig. 3.37 are supported by those in Fig. 

Fig. 3.36. Spectra of hemoglobin after 44 h of incubation with MPN487 and GlpD. The spectra of the supernatants are 
shown in A, those of the pellets are shown in B. The samples were incubated with gentle shaking at 37°C. After 
centrifuging, the supernatant was removed and the pellet was resuspended in 1 ml dH2O. For measurement of the 
spectra, 100 µl of the supernatant and a 1:5 dilution of the resuspended pellet in 100 µl were pipetted in a 96 well plate. 
Recording of the spectra was done using the platereader SynergyMX (Biotek).  cys: cysteine. G3P: glycerol-3-phosphate. 
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3.38. Here, the hemoglobin spectra of an independent experimental setup are depicted. In all cases, a 

concentration of 1 mM L-cysteine was not enough to cause hemolysis. The presence of 10 mM cysteine 

led to strong hemoxidation in all samples which is implied by the change of the absorption spectra at 

of λ= 500-650 nm. A high proportion of hemoglobin was detectable in the supernatant fraction of the 

sample incubated with 10 mM cysteine and MPN487 (Fig. 3.38 A, yellow curve). Consequently, the 

respective amount of hemoglobin is lower in the pellet fraction. In this experiment, the grey curve of 

the sample containing SufS + 10 mM L-cysteine even seemed to match the negative control with only 

10 mM L-cysteine present. This result indicates that the observed hemolysis is already caused by L-

cysteine alone and cannot be referred to the activity of SufS. Although the results are, unfortunately, 

not 100% reproducible due to fluctuations in the quality of L-cysteine and sheep RBCs, a trend can be 

observed. 

Definitely, SufS from B. subtilis can also cause hemoxidation probably due to release of low amounts of 

H2S. However, the enzyme has significantly less hemolytic activity than MPN487. This means that 

MPN487 either simply releases much higher amounts of hydrogen sulfide than SufS or it has 

additional hemolytic properties, which are not known so far. Either way, MPN487 is a unique enzyme 

in M. pneumoniae which is similar to L-cysteine desulfurases but definitely has hemolytic functions - 

probably due to its high hydrogen sulfide production rate. 

 

 
 

 

 
 

 

Fig. 3.37. Hemolysis assay to compare possible hemolytic effects of SufSBsu and MPN487. 2% RBCs were incubated with 2 
µg/ml of the respective enzyme and 1 mM or 10 mM of the substrate. 1 ml samples were withdrawn after 3, 20 and 40 h 
incubation time. After 3 h no change was detectable. S: supernatant; P: pellet; cys: cysteine. 
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Fig. 3.38.. Hemoglobin spectra of 2% RBC cultures incubated with or without L-cysteine and MPN487 or SufSBsu for 44 h at 
37°C. A. Spectra of supernatant fractions. B. Spectra of pellet fractions that were previously lysed in 1 ml of distilled 
water. Samples were prepared as described in Fig. 3.3.14, and measured in a 96 well plate in the platereader SynergyMX 
(Biotek). 
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4. DISCUSSION 
 

4.1 The role of transport systems in M. pneumoniae pathogenicity 
   

Identification of M. pneumoniae transporters  

 

Transport systems are of various natures and therefore fulfill various functions in the bacterial cell. 

They are responsible for the import of sugars for energy generation, amino acids for protein 

biosynthesis, metal ions as cofactors or electrolytes to maintain the osmotic balance. Their export 

function is essential for protection from toxic compounds that accumulate inside the cell, for 

communication - or for secreting virulence factors that aim at promoting bacterial survival. 

For M. pneumoniae, transport systems are of particular importance. The genome-reduced pathogen is 

strongly dependent on external nutrient supply due to the lack of most biosynthetic pathways. This is 

reflected in the fact that the bacterium has about 10% of its genome coding for proteins which are 

involved in transport, even though it lives in an environment with steady conditions and a predictable, 

comprehensive nutrient supply (Himmelreich et al., 1996; Ren and Paulsen, 2007). In contrast, B. 

subtilis, which is a soil bacterium that has also been shown to live and sporulate in the gastrointestinal 

tract of animals, needs to be prepared for environmental changes and distinct nutrient availability 

(Serra et al., 2014). Still, it dedicates only 7% of its genome for transport systems (Ren and Paulsen, 

2007). This is surely possible, because Bacillus possesses a lot more anabolic and catabolic pathways for 

self-supply than Mycoplasma. Considering the fact that about another 10% of the M. pneumonie 

genome encode lipoproteins, which in many cases function as high-affinity substrate-binding proteins 

for ABC transporters, the total number of proteins involved in transmembrane transport processes in 

the human pathogenic M. pneumoniae is probably even higher (Hallamaa et al., 2006). By ensuring the 

pathogen’s survival, sequestering iron from the host tissue or exporting toxins, transporters play a 

crucial role in general virulence processes. Therefore, their relevant functions in M. pneumoniae were 

to be tested in this work. 

In order to identify the roles of certain transport systems for growth, survival and infection, the 

genome was searched for genes encoding transmembrane transporters and accessory proteins, e.g. 

ATP binding domains in ABC-transporters. This was done using genome annotations (Himmelreich 
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et al., 1996; Dandekar et al., 2000), databases (KEGG, Uniprot, String, TCDB, SubtiWiki) and BLAST 

searches (NCBI, Molligen). Altogether 70 proteins could be found (Tab. 3.1), 39 of which are essential 

(Lluch-Senar, in press). Eleven transport proteins are annotated as putative exporters (membrane 

exporters, multidrug resistance transporters or hemolysin exporters), whereas expectedly, the major 

part is annotated as putative importers (for detailed annotation and essentiality see Appendix Tab. 

7.7).  

Among the import systems, 16 transporters are annotated to be responsible for the uptake of carbon 

sources, e.g. glycerol, glycerophosphocholine, glycerol-3-phosphate, glucose, fructose/mannose, 

mannitol, and ribose. The GPC uptake system has been previously described to be involved in growth 

and virulence, because it transports a precursor for membrane synthesis and for formation of H2O2 and 

a glycolytic feeder (Großhennig et al., 2013). Likewise, the glycerol facilitator GlpF might be involved 

in pathogenicity, although this hypothesis could not be confirmed due to the lack of a corresponding 

mutant. In Mycoplasma mycoides, the glycerol facilitator is prevalently present to enable uptake of 

glycerol. In addition, some M. mycoides subsp. mycoides SC strains possess an efficient ABC 

transporter for glycerol uptake which makes them highly virulent as compared to the others (Vilei and 

Frey, 2001). In M. pneumoniae, the supposedly non-essential GlpF is the only glycerol transporter that 

is known so far. This is quite interesting given the fact that the production of H2O2 from glycerol is 

thought to be its major virulence determinant. Instead, the genome encodes an essential ABC 

transporter, MPN134-136, which is similar to the sn-glycerol-3-phosphate ABC transporter UgpB-

AEC in E. coli (Wuttge et al., 2012). As G3P is the immediate substrate of GlpD and necessary for 

membrane phospholipid biosynthesis, it would be reasonable for the cell to exhibit a corresponding 

transport system. Using a H2O2 assay, it was shown earlier that several M. pneumoniae strains are not 

capable of producing H2O2 when only G3P is available (Schmidl et al., 2011). From this approach, it 

would be concluded that G3P cannot be taken up by these bacteria. In this present work, it was 

revealed that M. pneumoniae cells are able to oxidize hemoglobin in the presence of G3P, most 

probably due to H2O2 release. This indicates that, unexpectedly, the cells are capable of G3P transport 

in a hemolysis assay approach and therefore need to possess a respective transport system which has 

not been known so far. For sure, the putative Ugp-system encoded by mpn134-136 represents one 

potential G3P transporter candidate. However, due to the essentiality of the genes, this question 

remains unsolved by now.  

From a first glance at the transporter genes, it appeared that M. pneumoniae encodes two putative 

cobalt ABC transporters (CbiO), MPN193-195 and MPN431-433. Upon further investigation and 
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BLAST searches, these transporters actually turned out to be members of the energy-coupling factor 

(ECF) transporter family. These systems belong to the ubiquitous class of ATP-binding cassette (ABC) 

transporters, although the organization of the components differs from classical ABC systems (Fig. 

4.1). Typical ABC transporters form heteromultimeric complexes containing two identical 

transmembrane proteins for substrate translocation, two identical cytoplasmic nucleotide-binding 

domains (NBDs) that hydrolyze ATP and drive the transport reaction, and, most often, extracellular 

high-affinity substrate-binding proteins (BP). Members of this group transport a variety of substrates 

including rare elements, peptides or sugars (Davidson et al., 2008). In contrast, ECF transporters 

consist of a general, non-specific ECF module and a substrate-specific S component. The ECF modules 

are composed of three proteins: a transmembrane component (T) for translocation of the captured 

substrate and two similar cytosolic ATP-binding proteins (A and A’) which, in contrast to the ABC 

transporters, are encoded each by their own corresponding genes (Henderson et al., 1977; Henderson 

et al., 1979). Interestingly, one ECF module can transport a large variety of different substrates which 

are all bound specifically by their respective binding proteins. These small integral-membrane S 

components can then deliver their substrate to the transmembrane protein of the ECF module for 

translocation. ECF transporters typically transport micronutrients like transition metal ions (Ni2+ or 

Co2+), as well as water-soluble vitamins, such as riboflavin, thiamin, folate or biotin and their 

precursors (Rodionov et al., 2009). ECF transporters are especially abundant in pathogenic bacteria of 

the Firmicutes e.g. L. monocytogenes or M. pneumoniae which are unable of synthesizing vitamins like 

thiamin (Schauer et al., 2009). Consistent with this, M. pneumoniae carries transporter genes coding 

for even two general CbiO ECF modules all of which are essential. Indeed, M. pneumoniae lacks 

biosynthetic genes for all vitamins, which means that these necessarily have to be taken up, e.g. by ECF 

transporters. Although there are two ECF modules encoded, no typical S component is annotated. 

Since ECF transporters rely on their S components for specific binding of the substrates, the 

Mycoplasma genome was searched for genes similar to S protein coding genes in other organisms. 

Overall 21 different S component families have been identified in different organisms so far. What is 

conserved in all of them is their very high substrate specificity (Rodionov et al. 2009). However, they 

share extreme low sequence similarities (10-20%), which makes their identification in M. pneumoniae 

considerably complicated. Nevertheless, at least one potential S component could be spotted by 

BLAST: MPN448, a protein which is similar to the folate binding S component from Lactobacillus 

FolT. MPN448 is annotated as hypothetical protein, but according to KEGG, it has an ECF-ribofla_trS 
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/ DUF3816 domain, which is typical for S compounds. Analysis at TCDB revealed 7 transmembrane 

segments (TMS), which supports its function in transport.  

For most of the non-essential transport systems, mutants were isolated either in this work or 

previously (Großhennig, 2011;  Großhennig et al., 2013). Of the eight mutants tested here, only the 

two amino-acid transporters MPN095 and MPN096 seemed to play a minor role in virulence, insofar 

as their disruption seems to lead to an adhesion defect of the cell, which cannot be explained by now. 

Interestingly, decreased adhesion after transposon insertion into an amino acid transporter gene has 

also been described for group B streptococci (Tamura et al., 2002). Transcriptome-, proteome- and 

interaction studies with the mutants or the tagged proteins in vivo would possibly give insight into the 

underlying mechanisms.  

 

 
   A 

   C      

    
B 

 

                 
 
 

  

Fig. 4.1 Transport systems. A. Composition of ECF 
transporters. S: S component for substrate binding, T: 
Transmembrane domain, A: ATP hydrolyzing domain. B. 
Illustration of classic ABC transporters for import. SBP: 
extracellular substrate binding protein, TMD: 
transmembrane domain, NBD: nucleotide binding 
domain for ATP hydrolysis. C. Structure of a MgtE dimer 
for magnesium transport. The CBS domains are shown in 
rose. (A and B: Erkens et al., 2012: C: Moomaw and 
Maguire, 2008) 
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MPN159, MPN571 and the hemolysin system 

 

Among the export proteins, M. pneumoniae possesses a putative hemolysin transporter, MPN571. This 

transporter is structurally similar to bacteriocin transporters and carries a C39-peptidase domain 

which is also present in the E.coli hemolysin ABC transporter HlyB (KEGG). The search for genes 

encoding a potential hemolysin to be transported by MPN571 resulted in the discovery of mpn159, 

which is annotated as hlyC (Himmelreich et al., 1996). In E. coli as in other pathogenic bacteria, HlyC 

and HlyB are part of a prevalent hemolysin synthesis and –secretion machinery encoded by the 

hlyCABD operon (Felmlee et al., 1985). The 110 kDa pore-forming hemolysin (HlyA) is herein 

encoded by the gene hlyA. HlyA is synthesized as a non-toxic precursor and needs to be activated in 

the cytoplasm by internal acylation. This task is fulfilled by the acyltransferase HlyC(Albrecht et al., 

1996; Goebel and Hedgpeth, 1982; Hardie et al., 1991). Finally, the translocation of the toxic form of 

HlyA is mediated by the two membrane-localized proteins HlyB and HlyD (Gentschev et al., 1992; 

Schulein et al., 1992). According to its annotation as HlyC, MPN159 would play the part of the 

activating acyltransferase in this system. Nevertheless, mutants for both putative Hly proteins were 

tested for growth, cytotoxicity and hemolysis defects. It turned out that the mpn571 mutant was not 

impaired in any of these processes indicating that its function is not the transport of a pore-forming 

hemolysin A. Because of the presence of a Peptidase C39 domain, the protein might instead be 

involved in the proteolytic cleavage (and simultaneous activation) of peptides containing double-

glycine (GG) leader motifs. In gram-positive bacteria, these play a key role in peptide secretion systems 

involved in quorum sensing and bacteriocin production (Havarstein et al., 1995). 

The mpn159 mutant strain was impaired in H2O2 production with glycerol and HeLa cell lysis similar 

to a glpD mutant. Accordingly, less hemoxidation was seen in a hemolysis assay. These results suggest 

that MPN159 is somehow involved in virulence of M. pneumoniae but rather via regulation of H2O2 

production than as an independent pore-forming hemolysin. A closer look at the structure of the 

protein reveals 4 transmembrane domains in the N-terminal region, which is also designated as 

DUF21 domain. Directly behind these transmembrane sequences, the protein carries two CBS 

(cystathionine-beta synthase) domains. CBS domains are often found in enzymes to bind adenosyl 

groups (AMP and ATP, or s-adenosylmethionine) and regulate the activity of the catalytic domains 

(Kemp, 2004). Additionally, in combination with transmembrane domains, CBS domains may be part 

of dimeric magnesium or cobalt channels like the Mg2+ channel MgtE (Fig. 4.1). The CBS domains in 

the magnesium channel are thought to act as sensors for the availability of magnesium inside the cell 
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which regulates organization and gating of the ion-translocating pore (Moomaw and Maguire, 2008). 

It seems that MPN159 is actually not a hemolysin but another transport protein in M. pneumoniae and 

ensures the availability of Mg2+ and the osmotic balance of the cell. Its function in H2O2 production can 

only be hypothesized. Magnesium is needed as a cofactor in several enzymes. Even though this is not 

true for GlpD, the prior enzyme in glycerol metabolism, GlpK, needs Mg2+ as cofactor. MPN159 might 

be involved in virulence via sensing and regulation of cofactor supply. Interestingly, the implication of 

magnesium transport in virulence has been reported for several pathogens, especially for the 

PhoP/PhoQ dependent systems in Salmonella enterica. Moreover, the magnesium channel CorA was 

shown to be required for Salmonella virulence in mice as well as for invasion of epithelial cells, 

although it is presently not clear how exactly CorA contributes to Salmonella pathogenicity (Papp-

Wallace et al., 2008; Smith et al., 1998). Also, the Mg2+ transporter MgtE was reported to be involved in 

virulence-associated phenotypes in some bacteria. In Aeromonas hydrophila, MgtE is required for 

adherence to surfaces and biofilm formation, whereas it is needed for expression of a type III secretion 

system in Pseudomonas aeruginosa (Merino et al., 2001; Anderson et al., 2010). 

 

4.2 Hemolytic activities in M. pneumoniae and Mycoplasma-blood 
interactions  
 

4.2.1 Human blood, a habitat with benefits 

 

About 6-8% of the human body mass are made up of blood. It serves as important transport and 

communication system which is essential for the maintenance of normal bodily functions. By means of 

the blood stream, oxygen, nutrients and hormones are transported to the organs and tissues and 

metabolites are removed. Blood mediates an equal distribution of water between the vasculature, the 

intra cellular and extracellular space and transports heat through the human body. Finally, it possesses 

several very important mechanisms for (self-) protection against pathogenic bacteria, viruses, fungi, or 

pathologically altered cells, as well as against excessive blood loss e.g. after injury (Walzog and 

Fandrey, 2010). 

Blood consists of sundry cells, electrolytes, water-soluble nutrients, metabolites, vitamins, gases and 

proteins in an aqueous solution called the blood plasma. The most prevalent metabolites are glucose 

(3.6-6.1 mM), lactate (0.4-1.8 mM), urea (3.5-9 mM), amino acids (2.3-4 mM) and lipids (5.5-6 g/l). 
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Cellular components of blood comprise erythrocytes (red blood cells, RBCs), leukocytes (white blood 

cells) and thrombocytes (blood platelets). Thrombocytes are cellular fragments that serve to contract 

and close an injured vessel in a process called hemostasis. Leukocytes are divided in granulocytes, 

monocytes and lymphocytes all of which are involved in immune response and protection. While 

granulocytes and monocytes are the cellular components of the innate immune system, lymphocytes 

belong to the acquired, specific immune response which is developed after birth and serve, amongst 

others, for the production of pathogen-specific antibodies. In general, leukocytes are responsible for 

maintaining infections as short-termed as possible to prevent the body from permanent damage. 

Therefore, important constituents of the innate immune system are macrophages and neutrophil 

granulocytes which phagocytize intruding organisms. Prior opsonization of pathogens by antibodies 

or complement factors leads to a 5,000 fold enhancement of phagocytosis efficiency. However, 

microbial pathogens have evolved several mechanisms to evade phagocytosis, like antigenic variation, 

which would hamper their recognition. Some of them, like Salmonella, are even able to grow inside 

macrophages (Caroll et al., 1979). Among the cellular components of the human blood, erythrocytes 

(RBCs) are the most prevalent (5 x 1012 / l). Normally, they are small biconcave discs with a diameter of 

7.5 µm and an average thickness of 1.5 µm. This shape provides an optimal surface-volume-ratio for 

gas transport and –exchange. Their flexible membrane skeleton enables them to change their shape 

when needed, e.g. for passing narrow capillaries. These cells do not contain a nucleus, any kind of 

DNA or mitochondria and gain energy exclusively via glycolysis. The main function of RBCs is the 

transport of O2 and CO2. Erythrocytes consist for the most part of hemoglobin, a heterotetrameric 

protein containing heme groups with a central divalent iron ion, which is able to bind O2 with a high 

affinity (Fig. 1.2). While O2 is poorly water-soluble (3.2 ml in 1 l blood plasma), hemoglobin can bind 

up to 220 ml O2. The life span of a mature red blood cell in the blood circulation accounts for about 

120 days before it is eliminated in the liver or spleen (Koolman and Röhm, 2003; Walzog and Fandrey, 

2010).   

The high availability of metabolites and especially the high frequency of hemoglobin molecules turn 

blood into an attractive source of nutrients and iron for pathogenic bacteria. In fact, it has been shown 

that Staphylococcus aureus enters erythrocytes and specifically binds human hemoglobin in order to 

get access to the growth limiting factor iron (Skaar et al., 2004). Intentional invasion of erythrocytes 

and other blood components for nutrition, survival, evasion of the host immune system or even 

replication and distribution has been described for several pathogens: Multiple Bartonella and Brucella 

species were shown to be able to persist in their host’s blood for several weeks. Most Bartonella species 
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even perform non-hemolytic parasitism and maintain within the erythrocytes without having a 

significant effect on their physiology (Vitry et al., 2014; Schulein et al., 2001). The causative agent of 

tularemia, Francisella tularensis, can infect and replicate in leukocytes and erythrocytes and exhibits an 

extracellular phase in the blood of the host (Barker and Klose, 2007; Horzempa et al., 2011; Forestal et 

al., 2007). Furthermore, a recent study on Streptococcus pneumoniae infection revealed that these 

pathogenic bacteria are able to invade human erythrocytes suggesting a novel infection strategy and a 

way to evade the host immune system. Interestingly, in this study it was also shown that the survival 

rate of S. pneumoniae in cultures containing erythrocytes was increased by 3-fold as compared to those 

without erythrocytes (Yamaguchi et al., 2013). Obviously, the erythrocyte and blood niches can confer 

a growth advantage by providing nutrients, protection from both, the immune system and antibiotic 

substances, and a means of transportation to distinct infection sites, thereby promoting the survival 

and dissemination of their invading pathogenic bacteria. 

Beside the above mentioned bacterial pathogens like Bartonella spp., some Mycoplasma species 

including M. suis, and M. gallisepticum can establish intraerythrocytic infections (Schulein et al., 2001; 

Kocan et al., 2007; Groebel et al., 2009; Vogl et al., 2008). The avian pathogen M. gallisepticum was 

proven to invade chicken erythrocytes not only after in vitro infection but also in vivo which indicates 

a previously unknown infection strategy for pathogenic mycoplasmas (Vogl et al., 2008). Mycoplasma 

suis, a porcine pathogen belongs to the group of so called hemotropic mycoplasmas (hemoplasmas). 

These are uncultivable mycoplasmas that parasitize mammalian erythrocytes to cause mostly chronic 

blood infections with hemolytic anemia and several accessory symptoms (Messick, 2004). Severe acute 

anemia due to M. suis infection can cause death in young piglets or pregnant sows. Chronic infections 

established by hemotropic mycoplasmas like M. suis or M. ovis, a bovine pathogen, might lead to 

abortion, reproductive inefficiency, decreased milk production or weight loss, which makes the issue 

of major economic importance (Hoelzle, 2007; Smith et al., 1990). Typically, hemoplasmas commit 

surface parasitism on red blood cells which provides them with amino acids, fatty acids, cholesterol or 

vitamins and other essential compounds which cannot be synthesized by the bacteria due to their 

reduced genome. However, M. suis was shown to even enter erythrocytes. Blood smears of infected 

pigs with an acute clinical attack on day seven past infection, show a high number of M. suis cells 

which are predominantly successfully attached to the RBC surface. On day 11, the number of M. suis 

cells on the erythrocyte surface is strongly reduced due to RBC entrance. Remarkably, at this stage, red 

blood cells have turned from discocytes to echinocytes which might be caused by draught or 

phospholipid depletion. Due to the intraerythrocytic lifestyle and the concomitant protection of the 
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bacteria from external antimicrobial substances, the usual treatment of Mycoplasma infections with 

tetracycline is strongly hampered (Groebel et al., 2009).  

 

4.2.2 M. pneumoniae-blood interactions 
 

So far, not much is known about a potential lifecycle of M. pneumoniae in human blood. However, 

there are several indications for an interaction with red blood cells and the contact with the blood 

stream: (i) M. pneumoniae has been isolated and cultivated from several extrapulmonary infection sites 

like the synovial fluid or the cerebrospinal fluid. Extrapulmonary manifestations might affect nearly 

each organ, among them the skin, the hematologic, the cardiovascular and the nervous system. They 

occur in up to 25% of all M. pneumoniae infected patients. Encephalitis is one of the most severe 

manifestations and supposed to be caused by the direct presence of M. pneumoniae in the brain 

causing inflammation. Therefore, M. pneumoniae has to enter the blood stream at its primary infection 

site, i.e. the lung tissue, disseminate through the blood (probably attached to cellular blood 

components) and finally cross the blood-brain barrier (Narita, 2009; Narita, 2010). The possible 

interaction of M. pneumoniae with RBCs is reflected in early studies which used erythrocytes as a 

model to analyze their adhesion behavior and showed that the attachment to RBCs is mediated by 

sialic acid residues (Baseman et al., 1982). Using electron microscopy it was proven that the 

mycoplasmas even produce depressions in the surface of human erythrocytes thereby deforming them 

– a feature which it shares with hemotropic mycoplasmas (Deas et al., 1979; Messick, 2009). In this 

work, it could be shown that M. pneumoniae can cause hemagglutination which is most probably 

mediated by surface proteins which are needed to attach the bacterium to host cells. The functionality 

of these adhesins relies on the protein kinase PrkC (Schmidl et al., 2010). Here, it could be shown that 

also the process of hemagglutination is strongly reduced in a prkC mutant indicating that PrkC activity 

is needed for the binding and clumping of erythrocytes (Fig. 3.14). Hemagglutination is typically seen 

in pathogenic avian mycoplasmas like M. gallisepticum and M. synoviae, where it is procured by a large 

family of variable lipoprotein hemagglutinins (vlhA). These lipoproteins are important surface 

proteins for cytadherence, host-cell-interaction and antigenic variation. Different M. gallisepticum 

strains possess about 30-70 genes encoding VlhA variants. M. pneumoniae does not possess homologs 

of the VlhA family. However, this organism also has an astonishingly high proportion of lipoprotein 

genes which partially are differentially expressed according to external conditions (Hallamaa et al., 
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2006; Hallamaa et al., 2008). It is tempting to speculate that also in M. pneumoniae lipoproteins play a 

role in hemagglutination and phase variation which would facilitate a (transient) lifestyle in human 

blood. In fact, the expression of M. pneumoniae lipoproteins in vitro seems to be dynamically altered 

in response to the presence of sheep blood in the surrounding medium as suggested by preliminary 

RNA seq. experiments (data not shown). 

 

4.2.3 Hemolytic and hemoxidative activities in M. pneumoniae 

 

Hemolytic activity has been described for a multitude of pathogenic bacteria. In Mycoplasma species, 

including M. pneumoniae, hemolysis and host cell damage has mainly been attributed to the 

production of H2O2 ‘(Cole et al., 1968; Hames et al., 2009). In 1965, Somerson et al. tentatively 

identified hydrogen peroxide as the hemolysin in M. pneumoniae. Three years later, Cole et al. 

published a study about hemolysis related to hydrogen peroxide production in different Mycoplasma 

spp. In this study, they showed that M. pneumoniae, as well as most other tested Mycoplasma species, 

cause strong β-hemolysis on sheep blood agar plates. Interestingly, this β-hemolysis appeared to be 

completely reversed upon addition of catalase in all tested cases except for M. neurolyticum, M. 

mycoides and M. bovigenitalium, in which catalase could only reduce the β-hemolysis. From that, it 

could be concluded that H2O2 is the only hemolytic compound in M. pneumoniae (Cole et al., 1968). 

In this present work, the ability of M. pneumoniae to perform β-hemolysis on plates overlaid with 

sheep blood agar could be confirmed. However, in contrast to the previous findings, this effect was not 

completely remedied by addition of even high amounts of catalase. In fact, even the glpD mutant, 

which is deficient in H2O2 production, was able to perform β-hemolysis in both the absence and 

presence of catalase. In principle, several explanations for that observation could be considered: (i) M. 

pneumoniae produces very high amounts of H2O2 independent from GlpD; (ii) the catalase is not 

efficient enough; (iii) M. pneumoniae possesses a hemolysin or β-hemolytic compound other than 

H2O2. Indeed, M. pneumoniae is able to produce H2O2 with glucose or PTS sugars as substrate as could 

be shown in H2O2 assays (Schmeisky, 2013; data not shown). However, these amounts are extremely 

low in comparison to the G3P- dependent release catalyzed by GlpD. Moreover, it can be excluded that 

the catalase is not adequately efficient. The average amount of H2O2 produced by M129 with 100 µM 

glycerol as substrate accounts for 10 mg/l (Schmidl et al., 2011). This is easily removed by only 10-40 

units of catalase (Fig.3.13). 1000-4000 U catalase, a concentration which is used in the hemolysis 
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assays, are even able to rapidly erase 500 mg/l hydrogen peroxide. Also, it could be shown that the 

catalase per se is not causing hemoxidation. In fact, erythrocytes naturally contain catalases and are 

able to eliminate elevated levels of H2O2 to some extent (Eaton et al., 1972). These points suggest that 

the obvious β-hemolysis halos around the M. pneumoniae colonies originate from a source other than 

H2O2. This assumption is supported by the fact, that in Streptococcus pneumoniae, H2O2 production 

leads to a strong α-hemolysis on blood agar plates (Duane et al., 1993). Actually, this feature is 

typically used to distinguish this bacterium from its β-hemolytic relative S. pyogenes which produces 

the pore-forming streptolysin O but no H2O2 (Fig. 1.2 B). In further support of the assumption that 

H2O2 is not responsible for M. pneumoniae β-hemolysis, it could be hypothesized that in a rather 

anaerobic environment, as it is established after overlaying the M. pneumoniae colonies with blood 

agar, there is less O2 available for GlpD as electron acceptor. As a consequence, less H2O2 could be 

produced. 

For a better understanding of the hemolytic activity of M. pneumoniae, accessory hemolysis assays in 

liquid culture were performed and the spectra of hemoglobin were measured to discover potential 

modifications. Surprisingly, these assays revealed that M. pneumoniae does not display beta-hemolysis 

in liquid culture. Instead, strong α-hemolysis (hemoxidation) was observed in all samples, which is 

probably caused by H2O2. The hemoxidative effect was also present in the glpD mutant and could 

partially, but not entirely, be removed by addition of catalase. This finding would also exclude H2O2 as 

the hemolysin and therefore matches the results obtained from the blood agar plates which suggest the 

existence of another hemolytic or hemoxidative compound. Though the hemoxidative effect of M. 

pneumoniae in liquid blood culture perfectly fits the production of the hemoxidative compound H2O2, 

the significant discrepancy between α-hemolysis in liquid culture and β-hemolysis on blood agar plates 

appeared rather puzzling. A similar conflict concerning hemolysis in liquid culture and on blood agar 

plates was observed in a study about hemolytic activities in Mycoplasma penetrans. This bacterium 

turned out to behave beta-hemolytic on blood agar plates and alpha-hemolytic in liquid culture. The 

beta-hemolysis of M. penetrans on plates was mainly attributed to the action of a membrane-associated 

phospholipase C. Beside pore-forming toxins, phospholipases A and C represent a large group of 

typical hemolysins, which destroy erythrocytes by cleaving and degrading special phospholipids in the 

cell membrane (Titball, 1993). In their investigations, Kannan and Baseman suggested that the 

presence of alpha or beta-hemolysis might be due to the presence or absence of oxygen in the 

respective culture. Since the overlay of M. penetrans or M. pneumoniae colonies with blood agar 

produces partial anaerobic environments, potential oxygen-labile hemolysins might be protected and 
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active only on plates. To prevent or reverse the possible oxidative damage in liquid culture, cysteine 

was added as reducing agent. In M. penetrans, the addition of cysteine indeed lead to a strongly 

increased hemolytic activity indicating the presence of a typical oxygen-labile hemolysin, similar to 

streptolysin O or listeriolysin O, which relies on a reduced cysteine residue for lytic activity (Kannan 

and Baseman, 2000). To clarify, if maybe a similar mechanism is working in M. pneumoniae, the 

hemolysis assays in liquid culture were repeated with addition of various cysteine concentrations and 

gave an unexpected result. Not only did cysteine cause β-hemolysis after an overnight incubation of M. 

pneumoniae with sheep RBCs, it also strongly promoted a rapid, preceding hemoxidation. The 

combination of cysteine-dependent hemolysis and hemoxidation is not typical for oxygen-labile 

hemolysins and points at the existence of yet another type of hemolytic and hemoxidative compound. 

Indeed, a cysteine-dependent hemoxidation and hemolysis has been described for several oral 

pathogenic bacteria like Treponema denticola, Prevotella intermedia or Streptococcus anguinosus (Chu 

et al., 1997; Yano et al., 2009; Yoshida et al., 2002). In these organisms, L-cysteine is converted to 

ammonia, pyruvate and H2S in a PLP-dependent β carbon-sulfur (βC-S) lyase reaction that leads to a 

modification of hemoglobin and to hemolysis. On the basis of these reports, the ability of M. 

pneumoniae to produce hydrogen sulfide from L-cysteine was examined. Astonishingly, M. 

pneumoniae cells really release H2S when cysteine is present – a previously unknown behavior for this 

organism. Since H2S can modify hemoglobin to form sulfhemoglobin or methemoglobin, the 

alteration of the hemoglobin spectrum in the hemassay containing M. pneumoniae and cysteine can be 

attributed to H2S release. However, it has to be considered that there is always an interplay of a variety 

of toxic compounds and pathogenicity factors which might lead to hemoxidation and hemolysis in 

vivo. A combined action of H2O2, H2S and superoxide anions produced by M. pneumoniae might cause 

eventually irreversible oxidative damage and hemoglobin modification in erythrocytes. The noxious 

effect of M. pneumoniae on erythrocytes in liquid culture is also underlined by the microscopic images 

in Fig. 3.15. It is clearly visible that the shape of RBCs seems to turn from discocytes to echinocytes, 

similar to those incubated with M. suis. 
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4.3 The importance of HapE and H2S formation for viability, virulence and 
hemolytic activity of M. pneumoniae  
 

4.3.1 Which enzyme generates H2S in M. pneumoniae?    

 

After the finding, that M. pneumoniae is able to release H2S, the responsible enzyme for H2S 

production was to be found. BLAST searches for an L-cysteine desulfhydrase or a βC-S lyase in M. 

pneumoniae did not yield a hit. Aside from that, the protein that appeared most obvious to fulfill a 

similar function was the putative L-cysteine desulfurase MPN487, which is also PLP-dependent. To 

rule out or confirm its potential involvement in H2S production, the protein was subsequently 

investigated. 

Overexpression and purification of a Strep-tagged version of MPN487 was feasible without difficulties. 

Initial hydrogen sulfide assays confirmed that MPN487 is a hydrogen sulfide producing enzyme in 

vitro. In order to determine whether MPN487 produces H2S in a Michaelis-Menten-like manner, 

enzyme kinetics were performed using different cysteine concentrations. The analysis yielded a typical 

Michaelis-Menten substrate saturation curve for H2S production indicating that this finding is not an 

artifact but relates to a true catalytic function (Fig. 3.27). Still, it has to be noted that the calculated Km 

value is very high, which indicates that the enzyme has a rather low affinity for its substrate. 

Further investigations using GC-MS revealed that, surprisingly, MPN487 also releases pyruvate and 

alanine in vitro, with pyruvate being produced at a twofold higher rate than alanine. According to this 

unexpected combination of products, MPN487 was for now renamed in HapE (H2S, alanine and 

pyruvate producing Enzyme). 
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Fig. 4.2. Alignments of the putative L-cysteine desulfurase MPN487 (CSD_MYCPN) with similar proteins. A. Alignment 
with the cystalysin Hly from T. denticola (Q56257_TREDN). B. Alignment with SufS from B. subtilis (SUFS_BACSU) and 
Slr0077, a putative NifS from Synechocystis with desulfurase and lyase activity (CS_SYNY3). Identical residues (dark grey) 
are indicated by asterisks, similar residues (lighter grey) are marked by dots. Yellow: catalytic cysteine for persulfide 
binding. Red: PLP binding site. Blue: residues which, beside the PLP binding Lys, are invariant in aminotransferases.  
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4.3.2 Is HapE working as an L-cysteine desulfhydrase or an L-cysteine 

desulfurase? 

 

The production of pyruvate and H2S from L-cysteine is a typical feature of L-cysteine desulfhydrases 

which catalyze a PLP-dependent β carbon-sulfur (βC-S) lyase reaction. However, an alignment 

between the desulfhydrase Hly from T. denticola and HapE (MPN487) shows only 10.3% similarity. 

Beside a conserved cysteine in the active center, the lysine for PLP binding and three additional 

residues that are invariant in aminotransferases, both proteins do not share substantial similarities 

(Fig. 4.2 A). This is remarkably different in the alignment of MPN487 with the L-cysteine desulfurase 

SufS from B. subtilis which share 29% identity. Indeed, according to genome annotations, MPN487 is a 

putative L-cysteine desulfurase Csd (UniProt) or NifS (KEGG) (Himmelreich et al., 1996). These 

enzymes are normally involved in acquiring sulfur as a first step of iron-sulfur-cluster biogenesis (Fig. 

4.3 C). In this reaction, free cysteine binds the PLP cofactor of the desulfurase, forming a PLP-cysteine 

adduct. The SH-group of this cysteine is then attacked by a cysteine in the active center of the enzyme 

to generate a very stable persulfide bond (R-S-SH) while releasing alanine as a side product. The 

activated sulfur is transmitted to a scaffolding protein, which additionally acquires iron from external 

sources, and builds either a rhombic [2Fe-2S] or a cubic [4Fe-4S] iron-sulfur-cluster. By means of 

special trafficking enzymes, the cluster is subsequently transferred to proteins which are in need for 

iron-sulfur-clusters to finally form functional holoenzymes (Fe-S proteins) (Ayala-Castro et al., 2008; 

Py and Barras, 2010).  

Proteins involved in Fe-S cluster formation usually belong to one of the NIF (nitrogen fixation), ISC 

(iron-sulfur cluster) or SUF (sulfur mobilization) systems. In B. subtilis, the Suf system comprises 

SufCDSUB and SufA with SufS being the sulfur-binding L-cysteine desulfurase, while SufU is an 

important adjacent scaffolding protein (Tokumto et al., 2004; Selbach et al., 2013). The SufBCD 

complexes from B. subtilis and E. coli share high sequence similarities and form a pseudo ABC 

transporter which functions in sulfur mobilization and FeS-cluster assembly. Finally, SufA is supposed 

to be another cluster scaffold or a shuttle protein which can be transferred to apoprotein targets 

(Vinella et al., 2009, Ayala-Castro et al., 2008). The genes involved in the process of Fe-S cluster 

generation are typically organized in one operon (Fig. 4.3 A).  
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The activity of SufS in B. subtilis strongly depends on the presence of and interaction with the 

scaffolding-protein SufU (Selbach et al., 2010). Their mechanism of sulfur transfer starts with a non-

covalent binding of SufU to SufS, which is loaded with the persulfide. Subsequently, the persulfide is 

transferred from the desulfurase to the cysteine 41 of its scaffold SufU. After this intermolecular sulfur 

transfer, SufU dissociates from the complex and performs an intramolecular sulfur transfer to other 

cysteine residues (Albrecht et al., 2011). SufS alone exhibits a very modest activity. In contrast, when 

SufU was present, the rate of sulfide and alanine production is increased more than 100-fold. It was 

concluded that SufU plays an active role in the catalytic mechanism of SufS (Selbach et al., 2010). 

In comparison to reports about SufSBsu, both the vmax (6.9 µmol S2-/min/mg) and the Km value (11.21 

mM as compared to 86 µM in B. subtilis) for the rate of H2S formation by HapE are substantially 

higher. The Km value of catalysis determines the affinity of the enzyme towards its substrate: the higher 

the value, the lower the affinity. It seems that HapE has a relatively low affinity for L-cysteine, since 

H2S is only formed with comparatively high substrate concentrations. Still, the maximum velocity is 

more than six-fold higher than for SufSBsu, suggesting that HapE activity does not necessarily rely on 

Fig. 4.3. Genome organization of Fe-S cluster 
biogenesis genes and scheme of L-cysteine 
desulfurase function. A. Genomic context of L-
cysteine desulfurase genes in E. coli and B. subtilis. 
B. Genomic context of the putative desulfurase 
MPN487 in M. pneumoniae according to KEGG. C. 
Overview of Suf-proteins in sulfur-acquisition for 
bacterial iron-sulfur-cluster formation. SufE does 
not exist in B. subtilis whereas SufU does not exist in 
E. coli. (A modified from Hidese et al., 2011, C from 
Lill, 2009) 
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the presence of a putative SufU. Nevertheless, M. pneumoniae encodes MPN487/HapE (putative SufS) 

and MPN488 (putative SufU) in a putative Suf operon (Fig. 4.3 B). Most of their adjacent genes code 

for hypothetical proteins and are oriented antisense, which supports the assumption that they are not 

part of a larger operon comprising additional suf genes. To test a potential interaction of HapE with 

the putative SufU, MPN488, B2H studies were performed in this work. Interestingly, in these tests, 

clear self-interactions of MPN488 could be seen (Fig.3.33), which is common for some scaffolding 

proteins like IscU (Ayala-Castro et al., 2008; Chandramouli et al., 2007). On the contrary, no 

interaction between MPN487 and MPN488 was detectable in the B2H, suggesting that MPN487 and 

MPN488 are not involved in the same pathway in vivo. One reason for this B2H result might of course 

be a lack of interaction between the two proteins. However, since the B2H makes use of heterologous 

expression in E. coli, the Mycoplasma proteins could exhibit differential functions or even be misfolded 

and inactive at all. Thus, this negative result might give a hint at a lack of interaction, but it 

nevertheless cannot be excluded. The interaction and sulfur transfer from SufS to SufU in B. subtilis 

was shown to rely on the presence of three cysteine residues (Cys41, Cys66, Cys128) and one aspartate 

residue (Asp43) coordinating an essential zinc atom. Cysteine 41 is located in the center of 6 amino 

acids long flexible loop, which probably has in important influence on the efficiency of persulfide 

transfer (Albrecht et al., 2011; Selbach et al., 2014). The alignment of SufUBsu and MPN488 shows that 

these residues are also conserved in the M. pneumoniae protein (Fig.4.4). However, it might be 

possible that for some reason the flexibility of the loop carrying cysteine 41 is altered. Likewise, SufS 

proteins contain an important loop and their activity and the delivery of the sulfur to the acceptor 

molecule is strongly dependent on its flexibility. Therefore, it should be taken into consideration that 

there might have been conformational changes in the evolution of these proteins which would not 

allow for proper interaction of MPN488 with MPN487. 

The Suf operon, e.g. from E. coli, was shown to be up-regulated upon iron-limitation and under 

conditions of oxidative stress (Hantke, 2002; Zheng et al., 2001). Assuming MPN487 and MPN488 

were part of a classical Suf operon and involved in the same pathway, their genes would be expected to 

be up-regulated under similar conditions. The expression of the mpn487 and mpn488 genes was thus 

examined in Slot Blot analyses in response to iron-deprivation, oxidative stress and the availability of 

cysteine (Fig. 3.32). Interestingly, incubation with the iron chelator 2,2-dipyridyl led to an induction 

of mp488 expression, whereas the impact of L-cysteine was rather low as compared with the mpn487 

transcription rate. In contrast, neither H2O2 stress nor iron-limitation, but L-cysteine did result in an 

up-regulation of mpn487 expression. This result is especially striking considering the fact that the 
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genes are located directly behind each other. It seems that MPN488 behaves similarly as typical Suf 

proteins, whereas MPN487 does not.  

 

 

 
 
 
 
 
 

Fe-S proteins are found ubiquitously in nearly each organism and it is supposed that Fe-S clusters 

belong to the earliest catalytic biomolecules. In E. coli, nearly 80 Fe-S proteins have been described 

(Blattner et al., 1997; Py and Barras, 2010). A high proportion of those are involved in respiration (e.g. 

nitrate reductase and NADH dehydrogenase complexes), biosynthetic pathways, especially vitamin 

biosynthesis, the TCA cycle or regulation of gene expression including post-transcriptional and post-

translational modification. In a review by Py and Barras (2010) about bacterial strategies to build Fe-S 

proteins, all Fe-S enzymes from E. coli are listed. Astonishingly, BLAST analyses of each single protein 

did not give a single hit in M. pneumoniae or M. genitalium. Unlike in other Mycoplasma spp., the 

same is true for BLAST searches of all B. subtilis Fe-S proteins listed in SubtiWiki. These results 

strongly indicate that M. pneumoniae (and probably also M. genitalium) does not possess Fe-S 

proteins. Of course this conclusion is a daring thesis given the fact that Fe-S clusters are ubiquitously 

found. However, it might still be possible as a result of extreme, reductive evolution. The high Km value 

of HapE, which refers to a low substrate affinity, might support this theory. In case Fe-S cluster 

proteins were existing and essential in M. pneumoniae, their biogenesis should be guaranteed already 

at very low cysteine concentrations as seen for other essential L-cysteine desulfurases. Instead, it seems 

that HapE activity is only needed when higher cysteine levels are available. In fact, high intracellular 

cysteine concentrations can become toxic for the cell due to promotion of oxidative DNA damage by 

the Fenton-reaction (Park and Imlay, 2003). The conversion of excessive cysteine might hence also 

represent a mechanism of protection.  

Fig. 4.4. Alignment of the putative SufU from M. pneumoniae MPN488 (Y488_MYCPN) with SufU from B. subtilis 
(SUFU_BACSU). The zinc binding aspartate 43 is marked red. The cysteine residues that are important for persulfide 
transfer are yellow. Both proteins share 18.7% identity. 
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The screen for an mpn487 mutant in our transposon mutant library was not successful (data not 

shown). Since the probability to find a mutant for a non-essential gene in the mutant library is 

99.999%, this outcome indicates that the gene is essential for M. pneumoniae (Halbedel and Stülke, 

2007). The possible lack of iron-sulfur-clusters in M. pneumoniae of course raises the question, why 

HapE is indispensable. As a matter of fact, cysteine desulfurases can be involved in important 

processes aside from Fe-S cluster synthesis and iron homeostasis. These include amongst others 

thiamin biosynthesis, molybdopterin biosynthesis, biotin biosynthesis and t-RNA modification (Fig. 

4.5. A) (Mihara and Esaki, 2002; Hidese et al., 2011). The generation of the important sulfur-

containing nucleosides 4-thiouridine (s4U) and 5-methylaminomethyl-2-thiouridine (mnm5s2U) at 

positions 8 and 34, respectively, in bacterial tRNAs mostly relies on the action of L-cysteine 

desulfurases for initial acquisition of sulfur (Fig 4.5. B) (Bjök, 1996). For biosynthesis of s4U, IscS/SufS 

removes the sulfur from free cysteine as described above to form a persulfide which is transferred via 

ThiI to the tRNA forming s4U8 (Kambampati and Lauhon, 2000).  

 

  
  A 
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The formation of mnm5s2U requires IscS/SufS, MnmA and a 2-thiolation step (Sullivan et al., 1985). 

While 4-thiouridine (s4U) can serve as near UV-photosensors, the modification of uridines into 2-

thiouridine at wobble position 34 in tRNALys, tRNAGlu and tRNAGln is crucial for precise decoding of 

the genetic code. Interestingly, recent publications about Salmonella enterica revealed that, in these 

bacteria, the initial step of sulfur mobilization for thiamine thiazole is conditionally mediated by a 

cysteine desulfhydrase, CdsH (Palmer et al., 2014). In M. pneumoniae, genes coding for both a putative 

ThiI (MPN550) and a putative MnmA (MPN422) are present. This implies that HapE might also be 

Fig. 4.5. Representative tRNA modifications in bacteria. A. Proposed pathways for the formation of s4U and mnm5s2U 
depending on the sulfur mobilization by IscS/SufS. B. Thiomodification sites in bacterial tRNA from E. coli. Filled circles 
indicate 4-thiouridine 8, 5-methylaminomethyl-2-thiouridine 34 and 6-N-dimethyallyl-2-methylthioadenosine 37. 
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involved in the mobilization of sulfur for crucial tRNA modifications, which would give one possible 

explanation for its essentiality in the organism.  

Another aspect, which should be taken into account when discussing the biochemical function of 

HapE, is the finding that several PLP containing enzymes can catalyze an abortive transamination as a 

side reaction (Mihara et al., 2000). In this process, the amino group of the cysteine is transferred to the 

cofactor PLP resulting in its conversion to pyridoxamine phosphate (PMP) and the subsequent 

inactivation of the enzyme. In case of L-cysteine desulfurases, the substrate is thereby converted to 

pyruvate as a side product. Thus, one might argue that HapE does not produce pyruvate on purpose 

but as a side product of abortive transamination and that H2S is only released in vitro because the 

bound persulfide cannot be transferred to the following enzyme in its natural pathway. Then again, 

this might be refuted by the fact that M. pneumoniae indeed releases H2S in vivo meaning that there 

has to be a hydrogen sulfide-generating enzyme present in the organism. Moreover, by means of the 

GC-MS studies, pyruvate has been shown to be produced even in a higher rate than alanine. This 

would actually suggest that abortive transamination is preferentially catalyzed. In the studies of Mihara 

et al., it was shown that the conversion of PLP to PMP can be derived from a change in their 

photometric spectrum, and that the abortive process is reversible upon addition of higher 

concentrations of PLP or external pyruvate. For HapE, the analysis of the photometric spectrum did 

not yield useful results. The spectra of HapE and the PLP control looked quite similar, however neither 

of them showed the typical spectrum of PLP. In order to test the reversibility of a potential abortive 

transamination in HapE, hemolysis assays with HapE plus pyruvate or the 10-fold concentration of 

PLP were performed (data not shown). In both cases, no difference to the controls was detectable 

indicating that either reversion did not work or no abortive transamination occurred. On the other 

hand, the formation of both pyruvate and alanine from cysteine has been reported for the protein 

Slr0077 from the cyanobacterium Synechocystis. This enzyme, which shares 49% similarity with SufSBsu 

and 28% similarity with HapE, has cysteine desulfurase and cysteine lyase activity. Depending on the 

redox conditions either the formation of pyruvate or alanine is favored although both reactions are 

catalyzed at a very low rate (Kessler, 2004). This example supports the idea of HapE being involved in 

both functions. 

Though T. denticola Hly and HapE share only 10.3% sequence similarity, there are certain aspects 

which argue for an L-cysteine desulfhydrase function of HapE and accompanying advantages for the 

bacterium. The production of pyruvate and H2S from L-cysteine in a PLP-dependent β carbon-sulfur 

(βC-S) lyase reaction is a typical feature of L-cysteine desulfhydrases. Although these enzymes are 
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usually involved in amino acid metabolism, i.e. the biosynthesis of methionine via homocysteine, there 

are increasing reports about additional functions (Soda, 1987). In E. coli, there are several cysteine 

desulfhydrases. Its major cysteine desulfurase is the tryptophanase TnaA which primarily catabolizes 

tryptophane but also can also degrade cysteine in vivo. The degradation of cysteine proceeds with a Km 

of 11 mM which is strongly reminiscent of HapE (Snell, 1975). TnaA expression is induced by cysteine 

and thought to contribute to energy generation by production of pyruvate. Similarly, mpn487 

transcription was shown to be up-regulated in the presence of cysteine (Fig. 3.32). In M. pneumoniae, 

the only ways of ATP generation are glycolysis and the final step of acetate production from pyruvate 

by the acetate kinase AckA. An effective conversion of cysteine to pyruvate could therefore represent a 

convenient source of energy for the minimal organism. The newly described cysteine desulfhydrase 

CdsH from Salmonella enterica was shown to play an important role in the regulation of potentially 

toxic intracellular cysteine levels, since a cdsH mutant strain exhibited more sensitivity towards 

exogenous cysteine. Also, the gas H2S has been proven to protect a variety of bacteria from antibiotics 

(Shatalin et al., 2011). Likewise, the high activity of HapE at high cysteine concentrations and the 

production of hydrogen sulfide could represent efficient mechanisms of self-protection. 

A potential multifunction of HapE is not anything unusual. The genome reduction in bacteria like M. 

pneumoniae often goes along with the evolution of multitasking bacterial moonlighting enzymes. 

These proteins have activities in addition to their primary functions which are in many cases related to 

virulence. A widespread moonlighting function is the host cell adhesion and plasminogen-binding by 

glycolytic enzymes including aldolase, enolase, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), 

phospholycerate mutase (PGM) and others. The adhesive properties of GAPDH is mainly found in 

streptococci and staphylococci, but was also shown for M. genitalium and M. pneumoniae binding to 

mucin (Alvarez et al., 2003; Dumke et al., 2011; Hernderson and Martin, 2011). Also, the pyruvate 

dehydrogenase subunit B and enolase have been identified as plasminogen-binding proteins in M. 

pneumoniae (Thomas et al., 2013). Therefore, an additional enzymatic function for MPN487 (HapE) 

or a change of its role in M. pneumoniae is definitely to be considered.  

 

4.3.3 Are HapE and hydrogen sulfide formation involved in virulence? 

 

As a toxic gas, H2S acts as a virulence factor in a variety of oral pathogens. Its toxicity is based on a 

multitude of destructive effects on proteins and cells. Once released from the bacterium, H2S can react 
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with diverse metalloproteins, inhibit oxidative phosphorylation and break disulfide bonds of proteins 

in surrounding cells (Beauchamp et al., 1984). These cells may not only include host cells but also 

bacterial competitors to establish a niche. There have been several studies on the impact of H2S on host 

tissues in the habitat of oral bacteria like T. denticola, Porphyromonas gingivalis or S. intermedius. In 

these, H2S was described to increase the permeability of oral mucosal tissue, increase the collagen 

solubility or decrease the protein synthesis in human gingival fibroblasts (Johnson et al., 1992; Ng and 

Tonzetich, 1984). Similarly, hydrogen sulfide produced by M. pneumoniae might have analogous 

effects on lung mucosal tissue and epithelial cells or promote selective advantages and defense against 

other lung pathogens.  

The L-cysteine desulfhydrase of T. denticola has been studied intensely concerning biochemical 

properties and its role in virulence. Beside a growth promoting effect due to pyruvate production and 

the beneficial alteration of the periodontal ecology by H2S release, the enzyme was significantly 

involved in modification of hemoglobin and hemolysis (Hespell and Canle-Parola, 1971; Chu et al., 

1997; Chu et al., 1999; Kurzban et al., 1999). Initial incubation of erythrocytes with T. denticola led to a 

cysteine-dependent alteration of hemoglobin, referring to the formation of methemoglobin, and to a 

change of erythrocyte morphology from discocytes to spiky echinocytes (Chu et al., 1994). In further 

studies, the accumulation of modified forms of hemoglobin, especially methemoglobin and 

sulfhemoglobin, was clearly assigned to cysteine-dependent production of hydrogen sulfide by the T. 

denticola cystalysin and even caused hemolysis (Chu et al., 1999; Kurzban et al., 1999).  

The investigation of M. pneumoniae behavior in blood culture followed by subsequent analysis of 

HapE in this work, gave similar results. As described in 3.2 and 4.2, incubation of red blood cells with 

M. pneumoniae led to echinocytosis and modification of hemoglobin, which is strongly enhanced in 

the presence of L-cysteine. The same is true for incubation of RBCs with HapE and cysteine. As for the 

cystalysin, HapE causes hemoxidation as formation of sulfhemoglobin or methemoglobin due to the 

production of H2S. This modification of hemoglobin is finally accompanied by real hemolysis 

indicating that H2S formation by HapE is causing hemolysis thereby representing a virulence factor 

similar to cystalysin in T. denticola. To compare the hemoxidative and hemolytic effect of HapE to the 

one caused by H2O2 from GlpD, hemolysis assays with both proteins and their substrates were 

performed in parallel. Hemoxidation by formation of H2O2 from GlpD proceeded very fast and 

efficiently. In contrast, hemoxidation due to H2S release went comparatively slowly, which is in good 

agreement with the different activities of both enzymes. However, while hemoxidation caused by GlpD 

stayed on a constant level, hemoxidation by HapE induced strong beta-hemolysis indicating that, 
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concerning hemolysis in vitro, HapE has a surprisingly higher impact than GlpD. This might originate 

from their distinct mechanisms of hemoglobin modification. While H2O2 leads to formation of 

methemoglobin, reaction with H2S generates higher amounts of sulfhemoglobin than methemoglobin. 

As a matter of fact, treatment of RBCs with either H2S or H2O2 could be shown to result in 

modification of hemoglobin and formation of echinocytes (Moxness et al., 1996). However, only 

sulfhemoglobin was shown to substantially contribute to phospholipid extraction from the RBC 

membrane, which finally results in hemolysis.  

From these findings, the following possible virulence mechanism for M. pneumoniae in blood can be 

proposed: Upon initial intracellular production of H2S, the toxic compound diffuses out of the cell to 

reach and enter erythrocytes. Once inside the RBC, H2S leads to formation of sulfhemoglobin resulting 

in lipid depletion, echinocytosis and ultimate hemolysis. The attachment of M. pneumoniae to RBCs 

facilitates this process. Following hemolysis, important nutrients and fresh supplies of cysteine become 

available to the mycoplasmas, promoting further formation of H2S and more hemolysis.  

Attempts to investigate the role of HapE or M. pneumoniae plus cysteine in a HeLa cell infection assay 

failed (data not shown), which is why RBCs have been the only potential host cells tested so far. 

Assuming that lipid depletion by sulfhemoglobin formation is the reason for RBC lysis by HapE, this 

might not work for other cells, e.g. the lung epithelium. However, since H2S was shown to be toxic for 

oral mucosa and fibroblasts, a similar effect in the lung tissue cannot be excluded (Johnson et al., 1992; 

Ng and Tonzetich, 1984). Likewise, the release of H2O2 does not cause hemolysis but significant lysis of 

HeLa cells. Probably, the effect of H2S on different cell types can also be quite diverse. 

L-cysteine is present in the blood plasma of a healthy person in a concentration of about 0.25 mM and 

it is thought to contribute to the plasma’s redox homeostasis (El-Khairy et al., 2001). In erythrocytes, 

cysteine is present in higher concentrations (about 1 mM) and cysteine influx and efflux are tightly 

regulated. It is assumed that erythrocytes can import and store cysteine from blood plasma, since high 

cysteine concentrations can be toxic there (Yildiz et al., 2006). If higher cysteine levels are needed for 

the redox status of the plasma, erythrocytes might export cysteine again. Erythrocytes are not capable 

of protein synthesis, which is why they do not need this amino acid for incorporation into proteins. 

However, they strongly rely on the presence of cysteine for the synthesis of glutathione (GSH), a 

tripeptide consisting of glutamate, cysteine and glycine. GSH is an important antioxidant which 

protects living cells from free radicals and lipid peroxidation and is therefore abundant throughout the 

human body, especially in regions where free radicals can cause the most damage (Gille and Sigler, 

1995; Clemens and Walker, 1987). Surprisingly, for T. denticola, it was reported that glutathione 
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promotes cell growth and H2S synthesis (Chu et al., 2002). Although the cystalysin cannot directly use 

glutathione as substrate, it is assumed to be the final element in a stepwise degradation of glutathione 

yielding glutamate, glycine, pyruvate, ammonia and hydrogen sulfide. It would therefore be interesting 

to learn whether M. pneumoniae can also metabolize glutathione, since it is not only present in blood 

but also abundant in lung tissue as primary habitat. Lung infections and injury like the chronic 

obstructive pulmonary disease (COPD) have been treated with N-acetylcysteine (NAC), for quite a 

while now. This medication is a cysteine-derivative which by providing sulfhydryl groups, can induce 

cysteine metabolism and act both as a precursor of reduced glutathione and as a direct ROS scavenger 

in the lung tissue (Huang and Ling, 2001; Sadowska et al., 2007). This is an interesting aspect 

considering the finding that cysteine and glutathione can promote the virulence of certain bacteria, 

perhaps including M. pneumoniae. Nevertheless, the question whether the formation of hydrogen 

sulfide is in a sufficient rate to be important for the establishment or support of virulence in vivo 

remains difficult to assess. In contrast to glycerol, cysteine concentrations in the environment need to 

be relatively high to induce cell lysis by M. pneumoniae suggesting that H2S production plays a minor 

role in overall virulence. On the other hand, the diversity of virulence factors might represent some 

sort of bacterial adaptation according to their efficiency in different environments.  

A realistic evaluation of the involvement of HapE in virulence in vivo is even more exacerbated 

considering reported discrepancies between potential virulence factors in vitro and in vivo. In M. 

pneumoniae, the CARDS toxin (MPN372) is one example. Whereas an mpn372 mutant does not 

exhibit reduced cytotoxicity in vitro, the protein was clearly shown to have an impact in vivo in a 

mouse model and in infected patients (Kannan and Baseman, 2006). In contrast, the production of 

H2O2 from glycerol is a virulence factor in a lot of mycoplasmas and is evidentially cytotoxic for 

cocultured eukaryotic cells. A recent publication about M. gallisepticum, however, revealed that a glpO 

mutant, which is deficient of hydrogen peroxide production, is still completely virulent in the 

respiratory tracts of chicken indicating that in vivo pathogenicity is mediated by a so far unknown 

additional factor in this Mycoplasma species (Szczepanek et al., 2014). An indispensable method to 

unequivocally assess the function of HapE in pathogenicity would therefore include an in vivo 

infection study with a hapE mutant strain, which is unfortunately not available. Interestingly, HeLa cell 

assays with a M. agalactiae transposon library found the SufS/SufU locus to be crucial for proliferation 

of this ruminant pathogen in the presence of HeLa cells (Baranowski et al., 2010). In later studies, the 

importance of the locus for in vivo infectivity was tested using knockout mutants in the natural host. 

Indeed, none of the tested mutants was able to survive and colonize the host. From these results 
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Baranowski and colleagues concluded that this gene locus plays a so far not elucidated key role in the 

infection process of M. agalactiae – and most probably in other Mycoplasma species as well 

(Baranowski et al., 2014).  

 

4.4 Conclusions and future perspectives 
 

To get more insight into the interplay between M. pneumoniae and blood, further blood infection 

assays could be performed with M129, the clinical isolates and mutant strains and analyzed 

microscopically for deformations of erythrocytes and echinocytosis. For comparison, erythrocytes 

could be incubated with hydrogen peroxide or hydrogen sulfide. Since no hapE mutant can be isolated, 

it might be interesting to construct and analyze a Mycoplasma strain containing additional copies of 

hapE. This strain would be investigated for higher H2S production and hemolysis for an clearer 

assignment of these functions to HapE. Moreover, with a M. pneumoniae strain containing a highly 

expressed, Strep-tagged version of HapE, a SPINE could be performed. This would shed light on the in 

vivo interaction partners and functions of HapE – possibly by interacting with ThiI or MnmA for 

tRNA modification. For a better understanding of the biochemical function and catalysis of HapE, 

time course experiments to monitor the formation of alanine and pyruvate are performed and 

compared to the activity of SufS from B. subtilis. Also, different substrate concentrations might be 

tested to see if the availability of cysteine has an influence on the reaction type of HapE favouring 

alanine of pyruvate production. Another important task poses the purification of MPN488 to 

investigate its influence on HapE or possibly SufSBsu activity in H2S, alanine and pyruvate formation. 

Finally, alternative substrates like homocysteine, glutathione or selenocysteine could be applied in 

enzyme assays for a comprehensive view of HapE activities 
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5.  SUMMARY 
 
The human pathogen Mycoplasma pneumoniae is a remarkable minimal organism which primarily 

colonizes the human lung tissue. To reach distant infection sites, it probably also enters the blood 

stream. The Mycoplasma genome has constantly undergone reductive changes due to strong 

adaptation to the convenient conditions and high nutrient availability in its habitat. In turn, this 

adaptation renders the bacterium dependent on the exploitation of the host tissue. This dependence is 

reflected by a high number of genes coding for transport proteins with most of them being essential. In 

the initial part of this work, the importance of several M. pneumoniae transporters for survival and 

virulence was addressed. However, except for two putative amino acid transporters and one potential 

Mg2+ transporter, none of the isolated transporter mutants showed a significant effect indicating that 

the influence of the analyzed transporters in growth and cytotoxicity is negligible. Following the 

analysis of a putative hemolysin transporter, general hemolytic activities in M. pneumoniae were 

investigated in the second part of this work. It appeared that the organism causes β-hemolysis on 

blood agar plates but α-hemolysis (hemoxidation) in liquid culture. Surprisingly, the long assumed 

hemolysin H2O2 caused only hemoxidation and no real hemolysis. Addition of L-cysteine to liquid 

blood culture unexpectedly resulted in strong hemoxidation followed by complete hemolysis. In 

several oral pathogens, such as Treponema denticola, similar effects are caused by production of H2S by 

so called L-cysteine desulfhydrases. H2S is a toxic gas which leads to modification of hemoglobin and 

subsequent hemolysis. For M. pneumoniae, none of these processes in response to cysteine have been 

described before. In this work, the bacteria were proven to be capable of producing H2S. The search for 

a potential H2S producing enzyme in Mycoplasma retrieved MPN487, an essential putative L-cysteine 

desulfurase which is actually supposed to be involved in FeS-cluster formation. In enzyme assays, it 

turned out that MPN487 indeed produces H2S in a Michaelis-Menten-like behavior and additionally 

forms alanine and pyruvate. Thus, MPN487 was renamed in HapE (H2S, alanine and pyruvate 

producing enzyme). Since alanine formation is a feature of L-cysteine desulfurases, whereas pyruvate- 

and H2S production are performed by L-cysteine desulfhydrases, HapE might be a novel enzyme which 

combines both functions or has changed its activity in a process of reductive evolution. In hemolysis 

assays, HapE showed strong hemoxidation and hemolysis of erythrocytes when incubated with 

cysteine. This in vitro hemolysis rate even exceeded that of the major virulence factor H2O2, produced 

by the enzyme GlpD. Even though the in vivo effect in the human host can only be hypothesized by 

now, the formation of H2S and pyruvate by HapE might represent an important new way to ensure 

virulence and energy generation of this minimal pathogen. 
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7. APPENDIX 
 

7. 1 Material 
 

7.1.1 Frequently used chemicals 

Acrylamide Roth, Karlsruhe 
Agar  Roth, Karlsruhe  
Agarose  Peqlab, Erlangen  
Antibiotics  Sigma-Aldrich, München  

Serva, Heidelberg 
AppliChem, Darmstadt 

Bismuth chloride Sigma-Aldrich, München 
Blocking reagent Roche Diagnostic, Mannheim 
Bromphenol blue  Serva, Heidelberg  
CDP* Roche Diagnostics, Mannheim 
Coomassie Brilliant Blue R250 Serva, Heidelberg 
Desthiobiotin  IBA, Göttingen  
Dithioerythritol Sigma-Aldrich, München 
DMEM Invitrogen, Karlsruhe 
dNTPs  Roche Diagnostics, Mannheim  
EDTA  Sigma-Aldrich, München  
Ethidium bromide  Merck, Darmstadt  
Fetal Bovine serum Invitrogen, Karlsruhe 
Glucose  Merck, Darmstadt  
Glycerol  Merck, Darmstadt  
Glycerol-3-Phosphate Sigma-Aldrich, München 
HEPES  Roth, Karlsruhe  
Horse serum Invitrogen, Karlsruhe 
Hydrogen peroxide Sigma-Aldrich, München 
IPTG  Peqlab, Erlangen  
L-α-Glycerophosphorylcholin Sigma-Aldrich, München 
L-Cysteine Sigma-Aldrich, München 
Natriumdodecylsulfat  Roth, Karlsruhe  
N’,N’-dimethyl-p-phenylenediamine 
dihydrochloride 

Sigma-Aldrich, München (Fluka) 

Phenol red Roth, Karlsruhe 
PPLO Broth Becton, Dickinson and Company, France 
Pyridoxal-5‘-Phosphate Sigma-Aldrich, München 
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Pyruvate Sigma-Aldrich, München 
Sheep blood, defibrinated Oxoid, Heidelberg 
Sodium hydroxide Roth, Karlsruhe 
Sodium sulfide Sigma-Aldrich, München 
Strep-Tactin sepharose Iba, Göttingen 
TEMED Merck, Darmstadt 
Triethanolamine Sigma-Aldrich, München 
Triton X-100 Roth, Karlsruhe 
Tryptone  Oxoid, Heidelberg  
X-Gal Peqlab, Erlangen 
Yeast extract Oxoid, Heidelberg 

Other chemicals were purchased from Merck, Serva, Fluka, Sigma or Roth. 

 

7.1.2 Utilities 

24-well microtiter plates TPP, Switzerland 
96-well flat bottom microtiter plates Corning Inc., USA 
96-well round bottom microtiter plates Bio-Rad Laboratories GmbH, München 
Cell scrapers (24 cm, 30 cm) TPP, Switzerland 
Centrifuge beaker Beckmann, München 
Cuvettes (microlitre, plastic)  Sarstedt, Nümbrecht  
Eppendorf tubes  Greiner, Nürtingen  
Falcon Tubes Sarstedt, Nümbrecht 
Gene Amp Reaction Tubes (PCR)  Perkin Elmer, Weiterstadt  
Glass pipets Brand, Wertheim  
Membrane filter NC45 (0.2 µm pore size) Schleicher und Schüll, Dassel 
Mikrolitre pipets (2 μl, 20 μl, 200 μl, 1000 μl, 5000 
µl)  

Eppendorf, Hamburg  

Needles ROSE GmbH, Trier 
Nylon membrane, positively charged Roche Diagnostics, Mannheim 
Pasteur pipets VWR International 
Petri dishes  Greiner, Nürtingen  
Pipet tips Greiner, Nürtingen 

Eppendorf, Hamburg 
Sarstedt , Nümbrecht 

Polyethylene tubes Greiner, Nürtingen  
Poly-Prep Chromatography Columns  Bio-Rad Laboratories GmbH, München 
Polyvinylidendifluorid-Membran (PVDF)  Bio-Rad Laboratories GmbH, München  
Single use syringes (1 ml) Becton, Dickinson & Company, France  
Syringes (50 ml) ERSTA CODAN Medical, Rodby 
Tissue flasks (25 cm2, 75 cm2, 150 cm2, 300 cm2) TPP, Switzerland 
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7.1.3 Equipment 

Autoklave  Zirbus, Bad Grund  
Blotting device VacuGene™XI Amersham, Freiburg 
Capillary HP5-MS column (for gas 
chromatography) 

J&W Scientific, Agilent Technologies, USA 

Centrifuges 
 

Heraeus Christ, Osterode  
Thermo Scientific, Bonn 

ChemoCam Imager Intas, Göttingen 
Clean bench Heraeus® HERAsafe® Thermo Scientific, Bonn 
CO2-Incubator Labotect, Göttingen 
Fluorescence microscope Axioskop 40 FL  Zeiss 
French Press Spectonic Unicam, England 

SLM Aminco, New York (USA) 
(Now serviced by Fa. G. Heinemann, 
Schwäbisch Gmünd) 

Gas chromatograph Agilent 6890 series Agilent Technologies, USA 
Gel documentation device Geldoc  Bio-Rad Laboratories GmbH, München  
Gel electrophoresis device  EasyCast™ Minigelsystem, Peqlab, Erlangen  
Heating block  Waasetec, Göttingen  
High accuracy weighing machine Sartorius  Sartorius, Göttingen  
Horizontal shaker  GFL, Burgwedel  
Hybridization oven Biometra, Göttingen 
Ice machine  Ziegra, Isernhagen  
Incubator shaker Innova® 40  New Brunswick, Neu-Isenburg  
Incubator shaker Innova® 2300  New Brunswick, Neu-Isenburg  
Incubation waterbath 1083  GFL, Burgwedel  
Luminescence Imager ChemoCam  Intas, Göttingen 
Magnet stirrer  JAK Werk, Staufen  
Mass spectrometerMS 5973 Network Agilent Technologies, USA 
Mikrodismembrator Sartorius, Göttingen 
pH-meter  Knick, Berlin  
Nanodrop ND-1000 Thermo Scientific, Bonn 
Platereader SynergyMX Biotek, Bad Friedrichshall 
RT-PCR detection system iQ5 Bio-Rad Laboratories GmbH, München 
Scale Sartorius universal  Sartorius, Göttingen  
Slot Blot device Hoefer™ PR648 Amersham Biosciences, Freiburg 
Spectral photometer Ultraspec 2100pro  Amersham, Freiburg  
Standard power pac Bio-Rad Laboratories GmbH, München 
Stereo fluorescence microscope Lumar V.12 Zeiss 
Thermocycler labcycler SensoQuest, Göttingen  
Thermocycler Tpersonal  Biometra, Göttingen  
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Ultracentrifuge Sorvall Ultra Pro 80 Thermo Scientific, Bonn 
Vortex Genie 2  Bender & Hobeing AG Zürich  
Water desalination plant  Millipore, Schwalbach  
Western Blot apparatus Peqlab, Erlangen 

 

7.1.4 Commercially available systems 

DIG RNA Labelling Mix Roche Diagnostics, Mannheim 
DNA ladder mix 1 kb DNA ladder  NEB Biolabs, Frankfurt am Main  
DNA molecular weight marker III DIG-labeled Roche Diagnostics, Mannheim 
DNeasy Blood and Tissue Kit (50) Qiagen, Hilden 
Gene Ruler DNA ladder mix MBI Fermentas, St. Leon-Rot  
iScript One-Step RT-PCR kit with SYBR green Bio-Rad Laboratories, München 
Lambda DNA  MBI Fermentas, St. Leon-Rot  
NucleoSpin® Plasmid-Kit  Macherey-Nagel, Düren  
QIAquick® PCR Purification Kit 250  Qiagen, Hilden  
RNeasy Midi-Kit (50) Qiagen, Hilden 
RNeasy Mini-Kit (50) Qiagen, Hilden 

 

7.1.5 Antibodies and enzymes 

Accuzyme Polymerase Bioline, Luckenwalde 
Alkaline Phosphatase (Fast AP) MBI Fermentas, St. Leon-Rot 
Ampligase Epicentre, USA 
Anti-Digoxigenin-AP, Fab Fragmente Roche Diagnostics, Mannheim 
Anti-Strep antibody PromoKine, Heidelberg 
Catalase Sigma-Aldrich, München 
Lysozyme from chicken egg white Merck, Darmstadt 
Phusion™ HF DNA-polymerase Finnzymes, Espoo Finland 
Restriction endonucleases  MBI Fermentas, St. Leon-Rot  

Thermo Scientific, Bonn 
RNase inhibitor Roche Diagnostics, Mannheim 
Secondary antibody (α IgG gekoppelt mit AP) Promega, Madison (USA) 
T4-DNA-Ligase  Roche Diagnostics, Mannheim  
T7-RNA-polymerase Roche Diagnostics, Mannheim 
Taq-DNA-Polymerase  MBI Fermentas, St. Leon-Rot  
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7.2 Oligonucleotides 
 

Tab. 7.1 Oligonucleotides used in this study 

Primer Sequence 5’ → 3’ Description 

AS106 GGGAGGATAAGCAAGCTTTAAAAAG glpF mutant screen fwd. 

AS107 CCGTTTGTAATGTCTGTGGTCAG glpF mutant screen rev. 

cat check fwd CTAATGTCACTAACCTGCCC Sequencing from cmR -cassette of pGem-cat 
for LFH-PCR 

cat check rev GTCTGCTTTCTTCATTAGAATCAATCC Sequencing from cmR -cassette of pGem-cat 
for LFH-PCR 

cat- fwd (kan) CGGCAATAGTTACCCTTATTATCAAG Amplification of cmR -cassette from pGem-cat 
for LFH-PCR 

cat- rev (kan) 
w/o terminator 

CGATACAAATTCCTCGTAGGCGCTCGGTT
ATAAAAGCCAGTCATTAGGCCTATC 

Amplification of cmR gene with kan – flag w/o 
terminator for LFH-PCR 

cat- rev (kan) CCAGCGTGGACCGGCGAGGCTAGTTACCC Amplification of cmR -cassette from pGem-cat 
for LFH-PCR 

CD13 AAACATATGGCTAGCTGGAGCCACCCGCA
GTTC  

Amplification of the Strep-tag coding 
sequence, NdeI 

M13fw CGCCAGGGTTTTCCCAGTCACGAC Sequencing and cloning of pBQ200 
derivatives 

M13_puc_for GTAAAACGACGGCCAGTG Sequencing primer for pBS plasmids and all 
puc-derivatives (e.g. pBQ200) 

M13_puc_rev GGAAACAGCTATGACCATG Sequencing primer for pBS plasmids and all 
puc-derivatives (e.g. pBQ200) 

NP20 GCAGCAGCCAACTCAGCTTCCTTTCGGGC Sequencing of pGP172 rev. 

SG39 CTAAAGAGCCGGCTGATGCCGC B. subtilis glpF upstream fwd. for LFH-PCR 

SG40 CCTATCACCTCAAATGGTTCGCTGCACCA
AAAATGATAAGCAGCATCGTACCG 

B. subtilis glpF upstream fragment rev., with 
kan flag for LFH-PCR 

SG41 CCGAGCGCCTACGAGGAATTTGTATCGGT
TAGGACTCTATGTTTATACGAAATCACA 

B. subtilis glpF downstream fragment fwd., 
with kan flag for LFH-PCR 

SG42 CTCCCTTCTAACGCATAGTTCACTTTTCC B. subtilis glpF downstream rev. for LFH-PCR 

SG43 CCGTGATCTTGGAGCAAAGCTTTTAGGT B. subtilis glpF check fwd. for LFH-PCR 

SG44 GATTCGCTTAGCGATGAATCCTGGAAC B. subtilis glpF check rev. for LFH-PCR 

SG45 TTTGGTACCCTAAACGATAACAGCCACAAG
CAC 

glpFMpn for pGP888  rev., KpnI 

SG46 AAAGGATCCCTCACTTATTTAAAGGAGGA
AACAATCATGTTTAATTTAAGTGATTTTAG
TGAATTACCAC 

glpFMpn for pBQ200 Klonierung fwd. mit 
Shine Dalgarno (gap) Sequence, BamHI 

SG47 TTTGTCGACCTAAACGATAACAGCCACAAG
CAC 

glpF Mpn for pBQ200 rev., SalI 

SG48 AAAGGATCCCTCACTTATTTAAAGGAGGAA
ACAATCATGACAGCATTTTGGGGAGAAGT
CATCG 

glpFBsu for pBQ200 fwd. with Shine Dalgarno 
(gap) sequence, BamHI 
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SG49 TTTGTCGACTTAAATATATTTAGAATTTTTT
AGAATTTGATAATGTTTTAGCAGAATGTGA
TTATA   

glpFBsu for pBQ200 rev., SalI 

SG50 TTTAGATCTAACGATAACAGCCACAAGCAC
ACCTAAGA 

glpFMpn rev w/o stop codon for pBP19/20, 
BglII 

SG51 CAAATGCAAATAGCTGTTTACACTAACC mpn259-260 mutant screen fwd. 

SG52 GTGAGTAATCGGCTTCGTTAAAACC mpn259-260 mutant screen rev. 

SG53 CTTAATGGCCGCAAACCAGTTTG mpn308 mutant screen fwd. 

SG54 GATCGTATGCAGTAGCTTGTTGG mpn308 mutant screen rev. 

SG55 TAGTGTTAAGGGAGCAGGTTCATC mpn571 mutant screen fwd. 

SG56 GTTTGTTCAGACAATTTTGCCCATAAG mpn571 mutant screen rev. 

SG57 GGTGATTTTGTTAGATGAAACACTCAAC mpn569-570 mutant screen fwd. 

SG58 CATAGGTGAAACCAACAAGTTATTCG mpn569-570 mutant screen rev. 

SG59 CTCTCTGGTGGGCAAAAACAAC mpn019 mutant screen fwd. 

SG60 GCCTTATTGAGGTATTTTTTGGGC mpn019 mutant screen rev. 

SG61 GGGTCAAAAATTGCTACAATAAATACCG mpn055 mutant screen fwd. 

SG62 GTTTTCATTTTGGAGTCCACTAACAATAAT
C 

mpn055 mutant screen rev. 

SG63 GATTTTGTTACCCGTTTTGCTAGCTG mpn080 mutant screen fwd. 

SG64 GGTTTAAAGCAACTCAAAAAGGATTACAA
G 

mpn080 mutant screen rev. 

SG65 GTCCATTTTATAGCTGTTTTTACTTTGCG mpn095-096 mutant screen fwd. 

SG66 GTAACTCCCCAAAAGAAATTAAGCGC mpn095-096 mutant screen rev. 

SG67 CCGGTGATCCTTACGAAGTTTTTATG mpn195 mutant screen fwd. 

SG68 CGTGAAAGGTTTGGTTAATGGCATG mpn195 mutant screen rev. 

SG69 AAAGTCGACCTCACTTATTTAAAGGAGGA
AACAATCATGTTGTGGGCAATTGTCTTGCT
TG 

mpn076 for pBQ200 Klonierung fwd., with 
Shine Dalgarno sequence, SalI 

SG70 TTTCTGCAGCTATTTCAACAAGTCCGCGTA
ACG 

mpn076 for pBQ200 Klonierung rev., PstI 

SG71 AAAGGATCCCTCACTTATTTAAAGGAGGA
AACAATCCTGTGAGGTCTCGTCTTACTTG
G 

mpn077 for pBQ200 fwd., with Shine 
Dalgarno sequence, BamHI 

SG72 TTTGTCGACTTATTTTAAGAGATCCGCGTA
ACGGT 

mpn077 for pBQ200 rev., SalI 

SG73 AAAGAATTCATGTTTAATTTAAGTGATTTT
AGTGAATTACCAC 

glpFMpn fwd for pBP15, EcoRI 

SG74 TTTAGATCTCTAAACGATAACAGCCACAAG
CACACCTAA 

glpFMpn rev with stop codon for pBP15, BglII 

SG75 AAACTGCAGATGGAAACGAAACTTAGTTT
AAAGAAACGG 

mpn421 for MMR in pBluescript fwd., PstI 

SG76 TTTAAGCTTTTAAGCATTGTCTAAGGTTCT
CCAGC 

mpn421 for MMR in pBluescript rev., HindIII 

SG77  PCTTAATCTTTTGGACACCACTGTGGAAGT
TAGCGA 

mpn421 MMR 1 A411G, A423G 

SG78 PGAACTGGAAGTTGTGGCTCTTGTCCTTCT mpn421 MMR 2 A762G 
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TTTTAA 

SG79 PGGTTAATACTTGGGAGTTAAAGCGCTTG
GGTAAAA 

mpn421 MMR 3 A1371G 

SG80 AAAGGATCCCTCACTTATTTAAAGGAGGA
AACAATCATGTTTTGTACATTTTTTGAAAA
ACATCACCGGAAGTG 

mtsX fwd. for pBQ200 with Shine Dalgarno 
sequence, BamHI 

SG81 TTTTCTAGATTCTTTTTCTCCTTCTTCAGAT
ACTGAGATGGAT 

mtsX rev. for pBQ200, XbaI 

SG82 AAAGGATCCATGTTGTGGGCAATTGTCTTG
CTTG 

mpn076 fwd. for FLAG-tag fusion in 
pGP1331, BamHI 

SG83 TTTGTCGACTTTCAACAAGTCCGCGTAACG
GTT 

mpn076 rev. for FLAG-tag fusion in pGP1331, 
w/o stop, SalI 

SG84 TTTCTGCAGTTTCAACAAGTCCGCGTAACG
GTT 

mpn076 rev. for FLAG-tag fusion in pGP1331, 
w/o stop, PstI 

SG85 AAATCTAGAATGTTGTGGGCAATTGTCTTG
CTTG 

mpn076  for mpn076-FLAG fusion in pGP699 
fwd., XbaI 

SG86 ATAGTCGACTTATCACTTGTCGTCATCGTC
TTTGTAGTC 

Amplification 3xFLAG rev, SalI 

SG87 TTTGGATCCAATATATTTAGAATTTTTTAG
AATTTGATAATGTTTTAGCAGAATGTGATT
ATAGA 

glpFBsu for pBP19/20 w/o stop, BamHI 

SG88 AAAGTCGACATGTTTAATTTAAGTGATTTT
AGTGAATTACCAC 

glpFmpn-CFP/YFP for mstX fusion fwd. (binds 
to glpF), SalI 

SG89 TTTCTGCAGTCATTACTTATAAAGTTCGTC
CATGCCAAGTGTAATG 

glpFmpn-CFP for mstX fusion rev. (binds to 
CFP, mod. KG206), PstI 

SG90 TTTCTGCAGTCATTACTTGTACAGCTCGTC
CATGCCGA 

glpFmpn-YFP for mstX fusion rev. (binds YFP, 
mod. KG208), PstI 

SG91 AAAGTCGACATGTTTAATTTAAGTGATTTT
AGTGAATTACCACGTTGG 

glpFMpn-CFP/YFP for mstX fusion fwd. (binds 
glpF), SalI 

SG92 GCTTTTAATCGATCCTTACTTCTCCGGCA Intern glpKBsu for RT-PCR fwd. 

SG93 TGCGCTTTTCCGCCTGACATTTTCCAAA Intern glpKBsu for RT-PCR rev. 

SG94 GGTACGATGCTGCTTATCATTTTTGGTGCA Intern glpFBsu for RT-PCR fwd. 

SG95 GCTGATGCCGCCAACCGCGTAT Intern glpFBsu for RT-PCR rev. 

SG96 GGCGGTTGATGTAATGCTGGAAA mpn609 mutant screen fwd. 

SG97 GTGCTGAAAGTAATCAAAAAAGAGTCCTA mpn609 mutant screen rev 

SG98 CCAATTACCCGGGTGTAGGGT mpn159 mutant screen fwd. 

SG99 CAAAGGTAACTAACTCTTCGGTCGT mpn159 mutant screen rev. 

SG100 CGTTTATGAAGTACAAGGTGAACCGA mpn334 mutant screen fwd. 

SG101 GATGATTAACAGCACTAAAGCCAGTAAAA
A 

mpn334 mutant screen rev. 

SG102 GAGTGCTTTGGGTTTGCATATCTGT mpn496 mutant screen fwd.  

SG103 CTTGATTAGCATGCTCGTACCCAT mpn496 mutant screen rev. 

SG104 CACCAGGAAAAGTACAGCTGCT mpn095 probe fwd. 

SG105 CTAATACGACTCACTATAGGGAGAGCACA
CTGGTTCACTTAACACTAA 

mpn095 probe rev., T7 RNA polymerase 
signal sequence 
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SG106 GGTTTTGTAATGTGAACGGGAAAGTT mpn096 probe fwd. 

SG107 CTAATACGACTCACTATAGGGAGAGTTAA
ACACTGCTATTCCTAAATCTACAAA 

mpn096 probe rev., T7 RNA polymerase 
signal sequence 

SG108 GGCAAGAAGTTTGGTCTCGAAATT mpn571 probe fwd. 

SG109 CTAATACGACTCACTATAGGGAGACCAAA
TAGCCCCGATACTGCT 

mpn571 probe rev., T7 RNA polymerase 
signal sequence 

SG110 CTTAGTAATTTTGGCTACCGTTGGTTT mpn494-495 mutant screen fwd. 

SG111 CGCTGTTAGTAAGATAGTGCCCA mpn494-495 mutant screen rev. 

SG112 GCCATTAACACCATCTTGGTCGAAA mpn496 mutant screen fwd. 

SG113 CACTTTGGCGGTGTAGCCCA mpn496 mutant screen rev.  

SG114 GTTGCCATCTTATTTACGGTTAAGGT mpn570 probe fwd. 

SG115 CTAATACGACTCACTATAGGGAGACAAAC
AGCGCTTTGGACGGTAA 

mpn570 probe rev., T7-RNA polymerase 
signal sequence 

SG116 CCCGCCGTGATGTTTACTTCTTTA mpn159 probe fwd. 

SG117 CTAATACGACTCACTATAGGGAGACCCCG
ACTAATTCCTCAATGATGT 

mpn159 probe rev., T7-RNA polymerase 
signal sequence 

SG118 TAGAGCTCGATGGAAAGTGCCCCCAGTGG
T 

mpn159 fwd. for pGP172, SacI 

SG119 TATAGGATCCCTAGTCCACAACATCACTCT
TTTTGC 

mpn159 rev. for pGP172, BamHI 

SG120 PCTACATCCTTTTTTGGCCAATTACCAAGT
TAGCCA 

mpn159 MMR 1 A450G 

SG121 PCAAATCATGATTAAGTGGAACCGGGTGG
TGTA 

mpn159 MMR 2 A639G 

SG122 TAGAGCTCGATGATTGTTTCACCATGGAAG
ATGAAG 

mpn569  for pGP172 fwd., SacI, A18G 

SG123 TATAGGATCCTTATCGATTCCATAGTTTTA
AAACGGTTTCAT 

mpn569 for pGP172 rev., BamHI 

SG124 AAAGAGCTCGATGCCAAATCCTGTTAGATT
TGTTTACC 

mpn372 for pGP172 fwd., SacI 

SG125 TATAGGTACCCTAAAAGCGATCAAAACCAT
CTTTGAC 

mpn372 for pGP172 rev., KpnI 

SG126 PCCGTAGTGCTTGGCTAGTAGATGCTGTT mpn372 MMR 1 A444G 

SG127 PCCAATGATCAACCATGGTTGCCAACACC
A 

mpn372 MMR 2 A585G 

SG128 PGTGCCCTGATTGGAGTCCACCTTCTA mpn372 MMR 3 A699G 

SG129 PCGTGAACCAAAAGTGGAAAATGACACCG
CA 

mpn372 MMR 4 A1092G 

SG130 PGAAAATGGCTTGTTCTGGAATACCAAGA
GTGG 

mpn372 MMR 5 A1176G 

SG131 PGCTAGGCTGGTATTGGAGGGGTTATTAC
T 

mpn372 MMR 6 A1350G 

SG132 PCCACAATTAAGTGGTTGGTCTTATCAGAT
GAAAACA 

mpn372 MMR 7 A1386G 

SG133 PGTTACAGCTGGGATTGGGTAGAATGGCT
A 

mpn372 MMR 8 A1524G 
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SG134 GTGTGATTGCTGTCATTATTGCCATT mpn651 mutant screen fwd. 

SG135 GGTAATGAACTTGGTATTGTTTTTGCTTTT mpn651 mutant screen rev. 

SG136 CCCAGGTCTTTTTAACCAACGTGT mpn683 mutant screen fwd. 

SG137 CGGTGGCCATGCGAGCTAA mpn683 mutant screen rev. 

SG138 AAATCTAGAGATGATTGTTTCACCATGGAA
GATGAAG 

mpn569 fwd. for BACTH vectors, XbaI 

SG139 AAATCTAGAGCTCGATTCCATAGTTTTAAA
ACGGTTTCAT 

mpn569 rev. for BACTH vectors w/o stop, 
XbaI 

SG140 AAAGGTACCGCTCGATTCCATAGTTTTAAA
ACGGTTTCAT 

mpn569 rev. for BACTH vectors w/o stop, 
KpnI 

SG141 TATAGGATCCCTAAAAGCGATCAAAACCAT
CTTTGAC 

mpn372 for pGP172 rev., BamHI 

SG142 AAAGAGCTCGATGACCAAAACTAAGTTTA
ATCCGTACCAA 

mpn487 fwd. for pGP172, SacI 

SG143 TATAGGATCCTTACTTAATTACGTTTTTAA
TAATTGTCTTGGTATCA 

mpn487 rev. for pGP172, BamHI 

SG144 PCTAACGTTTTGCCCTGGGTTGCACTAGCT
A 

mpn487 MMR A384G 

SG145 TAGAATTCATGGAAAGTGCCCCCAGTGGT mpn159 fwd. for pBP15, EcoRI 

SG146 AAATCTAGAGATGGAAAGTGCCCCCAGTG
GT 

mpn159 fwd. for BACTH, XbaI 

SG147 AAAGGTACCGCGTCCACAACATCACTCTTT
TTGCGAA 

mpn159 rev. for BACTH w/o stop, KpnI 

SG148 GTGGTTTTACCTTGGCTTTGTCCAT mpn487 mutant screen fwd. 

SG149 CCCGTTAAAACCAAGTGCTGTTAGT mpn487 mutant screen rev. 

SG150 AAAGAGCTCGATGAAATTTAAGTATTGTGC
CATCTTTTTCAGT 

mpn288 fwd. for pGP172, SacI 

SG151 PCTGCTACAAAAGATCTTTGGGAAAAAAT
AGAAGCTTCT 

mpn288 MMR 1 A642G 

SG152 PCAAAATCAAAGAATCTTGGGGCGAATAC
CAAGAA 

mpn288 MMR 2 A822G 

SG153 PGAGCATCTTCGAAAATTGGCATGACTTAC
TTGATT 

mpn288 MMR 3 A891G 

SG154 PCAATACAGAAAGTTGGGAAGTTAAAAAT
GGAAAAGATTCCT 

mpn288 MMR 4 A2001G 

SG155 CCCAACTCATTATTCACCTCTGTTTTT mpn288 probe fwd. 

SG156 CTAATACGACTCACTATAGGGAGAGTTTT
GTCTGATGGAATTTGACTTTTGTAAA 

mpn288 probe rev., T7-RNA polymerase 
signal sequence 

SG157 AAAGAGCTCGGGTGCACGCGGCAAATTTG
AC 

mpn284 fwd. w/o signal peptide 

SG158 AAAGAGCTCGATGAAATTTAAGTATGGTG
CCATTGTTTTCA 

mpn200 fwd. for pGP172, SacI 

SG159 TATAGGATCCCTATTTATCAAAATCAGAGC
CTAATGCAG 

mpn200 rev. for pGP172, BamHI 

SG160 PCAAAATTAAAGAATCTTGGGGTGCTTAC
CAAGAAGTA 

mpn200 MMR 1 A801G 
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SG161 PGCCATTGTTTTTGAAAACTGGCACGATCT
AATTGATT 

mpn200 MMR 2 A870G 

SG162 PAAATAAAACCGAAAGTTGGGAAGTTAAA
GGAAACGGA 

mpn200 MMR 3 A2055G 

SG163 CCTAATGCTTTACTATCTTCGGTGTTT mpn200 probe fwd. 

SG164 CTAATACGACTCACTATAGGGAGACTTTG
ATTCCGCTTGAGTTTTAGGTTT 

mpn200 probe rev., T7-RNA polymerase 
signal sequence 

SG165 CTTTAAATTACCTCAAACACCGTTTTCT mpn259 probe fwd. 

SG166 CTAATACGACTCACTATAGGGAGAGGCAC
TAACCACTTCATTAACCTTA 

mpn259 probe rev., T7-RNA polymerase 
signal sequence 

SG167 GTACAAACTTTATCCAATAGCTGCCAT mpn651 probe fwd. 

SG168 CTAATACGACTCACTATAGGGAGACGAAA
TTAACAACGAAGTTACAGCTGA 

mpn651 probe rev., T7-RNA polymerase 
signal sequence 

SG169 GGTCAACAATGTGGACTGGCAA fruA probe fwd. 

SG170 CTAATACGACTCACTATAGGGAGAATTGA
TTTAACGCGTTTTTACGGTCAC 

fruA probe rev., T7-RNA polymerase signal 
sequence 

SG171 CCCAAAATTAGCTTTATAGCAGCGAT mpn308 probe fwd. 

SG172 CTAATACGACTCACTATAGGGAGACGGCG
CTTACCACCATGTTTT 

mpn308 probe rev., T7-RNA polymerase 
signal sequence 

SG173 AAAGAGCTCGATGAAAGGGTTTTCTTGCTC
CAGAC 

mpn133 fwd. for pGP172, SacI 

SG174 TATAGGATCCTTAACTACCCTTTTGGGCTA
ATTTGGC 

mpn133 rev. for pGP172, BamHI 

SG175 AAAGAGCTCGACCCGCGACTATACTACCA
AGAA 

mpn133 fwd. w/o signal peptide 

SG176 AAAGAGCTCGATGAAATTGAAATATGGAA
CCATTATTTTCAGTG 

mpn284 fwd. for pGP172, SacI 

SG177 TATAGGATCCAATTTCACTACCCAAAGTGG
CGATG 

mpn288/mpn284 rev. for pGP172, BamHI 

SG178 CAGAATTTTCGTTTTCCTGCTCCCA mpn288 mutant screen fwd. 

SG179 CAGGGAATTCGCCTGGATTGTTTTT mpn288 mutant screen rev. 

SG180 CGTGATGCCGTTAAGAGTACCTTTA mpn200 mutant screen fwd. 

SG181 GCTGTTCAAGTAACATATTCACCATCAAA mpn200 mutant screen rev. 

SG182 CCCCCACAATAAAACCCCTGAT mpn487 probe fwd. 

SG183 CTAATACGACTCACTATAGGGAGAGCTAG
GAAGTCGATCTGGGTTT 

mpn487 probe rev., T7-RNA polymerase 
signal sequence 

SG184 TAGAATTCCTCACTTATTTAAAGGAGGAA
ACAATCACCCGCGACTATACTACCAAGAA 

mpn133 fwd. for pBP19/20 w/o signal peptide, 
EcoRI, RBS gapBsu 

SG185 TAGAATTCCTCACTTATTTAAAGGAGGAA
ACAATCATGAAAGGGTTTTCTTGCTCCAG
AC 

mpn133 fwd. for pBP19/20, EcoRI, RBS gapBsu 

SG186 TATAGGATCCACTACCCTTTTGGGCTAATT
TGGC 

mpn133 rev. for pBP19/20 w/o stop codon, 
BamHI 

SG187 AAAGTCGACTATGACCAAAACTAAGTTTAA
TCCGTACCAA 

mpn487 for BACTH fwd., SalI 
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SG188 TTTGGATCCTCCTTAATTACGTTTTTAATA
ATTGTCTTGGTATCAGT 

mpn487 for BACTH rev. w/o stop, BamHI 

SG189 AAATCTAGAGATGGATCGCAAAATAAGGG
AGCAAATT 

mpn488 for BACTH fwd., XbaI 

SG190 TTTGGTACCCGGTGCGAAAAATCTTTAAGC
CACTGTA 

mpn488 for BACTH rev. w/o stop, KpnI 

SG191 AAAGAGCTCGATGGATCGCAAAATAAGGG
AGCAAATT 

mpn488 fwd. for pGP172, SacI 

SG192 TATAGGATCCTTAGTGCGAAAAATCTTTAA
GCCACTGT 

mpn488 rev. for pGP172, BamHI 

SG193 AAAGCGGCCGCTTACTTAATTACGTTTTTA
ATAATTGTCTTGGTATCA 

mpn487 for SPINE, NotI 

SG194 ATGGATCGCAAAATAAGGGAGCAAA mpn488 probe fwd. 

SG195 CTAATACGACTCACTATAGGGAGAGTGCG
AAAAATCTTTAAGCCACTGTA 

mpn488 probe rev., T7-RNA polymerase 
signal sequence 

SG196 AAAGAGCTCGATGAATATCACAGATATTC
GTGAACAGTT 

sufSBsu fwd. for pGP172, SacI 

SG197 TATAGGATCCTTAAAAGACATTTGTAAAAT
ACTCCTTTGTCTT 

sufSBsu rev.for pGP172, BamHI 

SH29 ATGAGTGAGCTAACTCACAG Sequencing and screen for pMT85 
transposants (binds to transposon) 

SH30 CAATACGCAAACCGCCTC Sequencing and screen for pMT85 
transposants (binds to transposon) 

SH58 AGAATTCGTTAATAATGATGATTGAAGC M. pneumoniae ackAmpn-lacZ fusion fwd. for 
cloning of ackAmpn promoter in pGP353, 
EcoRI 

SS21 AAACTGCAGCATTTTTATCTAATAGGTAAC
AA 

M. pneumoniae ackAmpn promoter fragment 
from rev. for pMT85, PstI 

SS232 TTTGGTACCCGAACGATAACAGCCACAAG
CACAC 

glpF (mpn043) BACTH-Analyse rev., KpnI 

Italic, underlined: restriction sites; P: 5’phosphorylation; bold red: mutation; bold blue: additional 
inserted base for frame shift; bold: special signal sequences. Oligonucleotides were synthesized and 
purchased from Sigma-Aldrich, Steinheim. 
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7.3 Bacterial strains  
 

Tab. 7.2 Bacterial strains used in this work. 

Strain Genotype / description Reference / source 

E. coli   

DH5α recA1 endA1 gyrA96 thi hsdR17rK- mK+relA1 supE44 
Φ80ΔlacZΔM15 Δ(lacZYA-argF)U169  

Sambrook et al., 1989 

XL-1 Blue recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac 
[F‘ proAB lacIq ZΔM15 Tn10 (Tetr)] 

Stratagene, 
Woodock et al., 1989 

BL21 B(834)-derivate F- lon ompT hsdS(rBmB) gal 
dcm[DE3] 

Novagen,  
Sambrook et al., 1989 

BTH101 F- cyaA-99 araD139 galE15 galK16 rpsL1 (Strr) 
hsdR2 mcrA1 mcrB1 

EUROMEDEX,  
Karimova et al., 2005 

B. subtilis   

168 trpC2 Lab collection 

GP99 trpC2 ΔglpF::catR This work. 

M. pneumoniae   

M129 Wild type Somerson et al., 1963 

GPM8 mpn372::Tn4001m Hames, 2008 
GPM30 mpn095::Tn4001m This work. 
GPM31 mpn096::Tn4001m This work.  
GPM32 mpn571::Tn4001m This work. 
GPM33 mpn570::Tn4001m This work. 
GPM34 mpn159::Tn4001m This work. 
GPM35 mpn334::Tn4001m This work. 
GPM36 mpn308::Tn4001m This work. 
GPM37 mpn496::Tn4001m This work. 
GPM38 mpn259::Tn4001m This work. 
GPM39 mpn651::Tn4001m This work. 
GPM40 mpn683::Tn4001m This work. 
GPM41 mpn609::Tn4001m This work. 
GPM42 M129 + mpn487 in pMT85 (pGP2231) This work. 

GPM52 glpD::Tn4001m Hames et al., 2009 
GPM100 Clinical isolate 1 Roger Dumke, Dresden 
GPM101 Clinical isolate 2 Roger Dumke, Dresden 
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7.4 Plasmids 
 

Tab. 7.3 Plasmids constructed in this work. 

Plasmid Construction Used restriction sites 

pGP693 pBQ200 + glpFmpn from pGP663 (SG46/47) BamHI/SalI  

pGP694 pGP888 + glpFmpn from pGP663 (SG45/SS232) XbaI/KpnI  

pGP696 pBQ200 + glpFbsu (SG48/49) BamHI/SalI 

pGP697 pBP19 + glpFmpn from pGP693 (M13fw/SG50) EcoRI/BglII  

pGP698 pBP20 + glpFmpn from pGP693 (M13fw/SG50) EcoRI/BglII  

pGP2226 pBQ200 + mpn077 (SG71/SG72) BamHI/SalI 

pGP2227  pGP172 + mpn372 (SG124/SG141) SacI/BamHI 

pGP2228  pBQ200 + mpn076 + mpn077 (SG69/SG72) BamHI/PstI 

pGP2229 pBP15 + glpFmpn from pGP663 (SG73/74) EcoRI/BamHI  

pGP2230 pMT85 + mpn487 from pGP2246 (SS22/SG193) + PackA from 
pGP1012 (SH58/SS21) 

EcoRI/NotI  

pGP2231 pBSK+ mpn421 for MMR (SG75/76) PstI / HindIII  

pGP2232                                                                                                                                                               pBP19 + glpFbsu (M13fw/SG87) EcoRI/BamHI 

pGP2233 pGP172 + mpn569 A18G (SG122/123) SacI/BamHI 

pGP2234 pGP172 + mpn159 (SG118/119) SacI/BamHI 

pGP2235 pGP172 + mpn159 from pGP2234 A450G, A639G 
(SG118/119; SG120/121) 

SacI/BamHI 

pGP2236 pUT18 + mpn569 from pGP2233 (SG138/SG140) XbaI/KpnI 

pGP2237 pUT18C + mpn569 from pGP2233 (SG138/SG140) XbaI/KpnI 

pGP2238 PKt25 + mpn569 from pGP2233 (SG138/SG140) XbaI/KpnI 

pGP2239 PKNt25 + mpn569 from pGP2233 (SG138/SG140) XbaI/KpnI 

pGP2240 pBSK+ + mpn487 from pGP2246 (SG142/143) SacI/BamHI 

pGP2241 pUT18 + mpn487 from pGP2246 (SG187/SG188) BamHI/SalI 

pGP2242 pGP172 + mpn372 from pGP2227 A444G, A585G 
(SG124/SG141; SG126/127) 

SacI/BamHI 

pGP2243 pGP172 + mpn133 from pGP686 (SG173/SG174) SacI/BamHI 

pGP2244 pUT18C + mpn487 from pGP2246 (SG187/SG188) BamHI/SalI 

pGP2245 pGP172 + mpn487 (SG142/SG143) SacI/BamHI 

pGP2246 pGP172 + mpn487 from pGP2245 A384G (SG142/SG143; 
SG144) 

SacI/BamHI 

pGP2247 pGP172 + mpn200 (SG158/SG159) SacI/BamHI 

pGP2248 pGP172 + mpn288 (SG150/SG177) SacI/BamHI 

pGP2249 pKT25 + mpn487 from pGP2246 (SG187/SG188) BamHI/SalI 

pGP2250 pKNT25 mpn487 from pGP2246 (SG187/SG188) BamHI/SalI 

pGP2251 pUT18 + mpn488 (SG189/SG190) XbaI/KpnI 

pGP2252 pUT18C + mpn488 (SG189/SG190) XbaI/KpnI 

pGP2253 pGP172 + mpn372 from pGP2242 A699G, A1092G SacI/BamHI 
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(SG124/SG141; SG128/129) 

pGP2254 pGP172 + mpn372 from pGP2253 A1176G, A1350G 
(SG124/SG141; SG130/SG131) 

SacI/BamHI 

pGP2255 pGP172 + mpn372 from pGP2254 A1386G, A1524G 
(SG124/SG141; SG132/SG133) 

SacI/BamHI 

pGP2256 pKT25 + mpn488 (SG189/SG190) XbaI/KpnI 

pGP2257 pKNT25 + mpn488 (SG189/SG190) XbaI/KpnI 

pGP2258 pGP172 + mpn488 (SG191/SG192) SacI/BamHI 

pGP2259 pGP172 + sufS from B. subtilis (SG196/SG197) SacI/BamHI 

 

 

Tab. 7.4 Additional plasmids used in this work. 

Plasmid Construction / application Reference 

p25-N Fusion of goi to N-terminus of T25-domain 
(BACTH) 

Karimova et. al., 1998 
 

pBlueskript II SK(+) Intermediate cloning   Stratagene 

pBP15 Fusion of protein to N-terminal YFP  K. Gunka 

pBP19 Fusion of protein to C-terminal YFP  K. Gunka 

pBP20 Fusion of protein to C-terminal CFP  K. Gunka 

pBQ200 Constitutive overexpression of proteins 
in B. subtilis 

Martin-Verstraete et al., 1994 

pGP172 Fusion of protein with N-terminal Strep-
Tag ® II, overexpression in E. coli 

Merzbacher et al., 2004 

pGP663 pUT18 + glpFmpn (MMR product)  Großhennig, 2011 
pGP686 pUT18 + mpn133 (MMR product) Großhennig, 2011 
pGP888 Allows for double homologous 

recombination of goi into the lacA-
locus in B. subtilis 

Diethmaier et al., 2011 

pGP1012 pMT85 + 239 bp promoter ackAMpn(-
224…+3) + 1010 bp Strep-hprKMpn  

Schmidl et al., 2007 

pGP2031 glpDmpn (MMR product) in pGP172 Schmeisky, 2013 

pKT25 Fusion of goi to C-terminus of T25-domain 
(BACTH) 

Karimova et al., 1998 

pKT25-zip pKT25::KpnI-EcoRI Fragment with Leucin 
zipper from GCN4 (positive control) 

Karimova et al., 2005 

pMT85 Mini transposon for integration of goi 
and aac-aphD resistence in M. 
pneumoniae genome 

Zimmermann and Herrmann, 
2005 

pUT18 Fusion of goi to N-terminus of T18-domain 
(BACTH) 

Karimova et. al., 1998 
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pUT18C Fusion of goi to C-terminus of T18-domain 
(BACTH) 

Karimova et. al., 1998 

pUT18C-zip pUT18C::EcoRI-KpnI Fragment with 
Leucin zipper of GCN4 (positive control) 

Karimova et al., 2005 

 

7.5 Bioinformatic tools and software 
 

Tab. 7.5 Used bioinformatic tools and web pages. 

Tool / URL Provider Application 

KEGG 
http://www.genome.jp/kegg/ 

Kanehisa Laboratories 
Genome sequence analysis and 
information about genes 

BLAST 
http://blast.ncbi.nlm.nih.gov/Blast.cgi 

National Center for 
Biotechnology Information 

BLAST searches 

PubMed 
http://www.ncbi.nlm.nih.gov/ 

National Center for 
Biotechnology Information 

Literature research 

OligoCalc 
http://www.basic.northwestern.edu/biotools
/oligocalc 

Northwestern University 
Chicago 

Primer design 

http://arep.med.harvard.edu/labgc/adnan/pr
ojects/Utilities/revcomp.html 

Harvard University 
Formation of reverse-
complement sequences 

Molligen 
http://services.cbib.u-ordeaux2.fr/molligen/ 

Université 
de Bordeaux 

BLAST searches and 
genomanalyses in Mollicutes 

MyMpn Project 
http://mympn.crg.eu/ 

Serrano group, CRG, 
Barcelona 

Information about genes and 
proteins, genome organization 
in M. pneumoniae 

ClustalW 
http://www.ebi.ac.uk/clustalw/ 

European Bioinformatics 
Institute 

Sequence alignments 

String 
http://string-db.org/ 

String consortium CPR, 
EMBL, KU, SIB, TUD and 
UZH 

Information about protein-
protein interactions 

Subtiwiki 
http://subtiwiki.uni-
goettingen.de/wiki/index.php/Main_Page 

Stülke group, Georg-August 
University Göttingen 

Information about genes and 
proteins in B. subtilis 

TCDB 
http://www.tcdb.org/ 

Saier Lab. Group, University 
of California, San Diego 

Information about transporter 
classes, identification of 
transmembrane domains 

NEBcutter 
http://tools.neb.com/NEBcutter2/ 

New England Biolabs Restiction site analysis 

UniProt 
http://www.uniprot.org/ 

Uniprot Consortium 
EMBL-EBI, SIB, PIR 

Information about protein 
functions, sequences and 
domains 
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Tab. 7.6 Used software. 

Program Producer Application 
AxioVision Zeiss Microscopic analyses of single cells 
ChemoCam Imager Software Intas Analysis of chemiluminescence signals 

Clone Manager 
Sci-Ed Scientific & 
Educational Software 

Sequence analysis, plasmid mapping, alignments 

iCycler software Bio-Rad qRT-PCR data analysis 
SeqMan™ II 5.07 DNASTAR Analysis of sequencing results 
Microsoft Office 2007 
Microsoft Office 2010 

Microsoft® Inc. Text- and Dataprocessing 

Gen5™ Data analysis software BioTek® Plate reader measurements of optical densities 

Snap Gene Viewer 
Snap Gene, GSL 
Biotech LLC 

Plasmid mapping 

Zen Zeiss Microscopic pictures of colonies 

 

7.6 List of putative transporters in M. pneumoniae 
 

Tab. 7.7 Putative proteins involved in transmembrane transport processes in M. pneumoniae. 

MPN # Gene name1,2 Essentiality3 Predicted Function1,2 

    
MPN018 pmd1 F ATP-bind prot.; Multidrug resist. ABC transporter 
MPN019 msbA NE ATP-bind prot.; Multidrug resist. ABC transporter 
    
MPN043 glpF NE Glycerol facilitator 
    
MPN048  NE Membrane export family 
MPN049  NE Membrane export familiy 
    
MPN055 potA E ATP-bind. protein for polyamine transport 
MPN056 potB E Transport permease (potB homolog) 
MPN057 potI E Transport permease 
MPN058  E Lipoprotein,  transport system substrate-binding protein 
    
MPN076  NE Hypothetical protein, MFS transporter 
MPN077  NE Hypothetical protein, MFS transporter 
    
MPN078 fruA F Permease EIIA/B/C component 
    
MPN080 ybbP F ABC transporter membrane protein, FtsX-like permease 
MPN081 ybbA/  glnQ E ABC transporter ATP-binding protein 
    
MPN095  NE Amino acid permease 
MPN096  NE Amino acid  permease 
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MPN112  NE Permease 
MPN113  NE Permease  
    

MPN133  NE 
Lipoprotein / multiple sugar transport system substrate-binding 
protein / nuclease / MalE  

MPN134 ugpC E Transport system permease, ATP binding protein 
MPN135 ugpA E Transport system (ABC transporter) permease 
MPN136 ugpE E Transport system (ABC transporter) permease 
    
MPN193 cysA/cbiO1/ecfA1 F Energy-coupling factor transporter ATP-binding protein 
MPN194 hisP/cbiO2/ecfA2 E Energy-coupling factor transporter ATP-binding protein 
MPN195 cbiQ F Transport protein 
    
MPN207 ptsG E PTS system, glucose-specific EIIABC component 
    
MPN209 mgtA / pacL F Probable cation-transporting P-type ATPase  
    
MPN215 oppB E Peptide ABC transporter permease 
MPN216 amiD / oppC F Peptide ABC transporter permease 
MPN217 oppD E Peptide ABC transporter ATP-binding protein 

MPN218 oppF E 
Oligopeptide transport system ATP-binding protein, 
hypothetical protein 

    
MPN234  NE Membrane export family 
    
MPN258 yjcW/mglA E Simple sugar ABC transporter, ATP-binding protein 
MPN259  NE Simple sugar ABC transporter permease 
MPN260 rbsC F Simple sugar ABC transporter permease 
    
MPN268  F PTS system component EIIB/EIIC domain-containing protein 
    
MPN274  E ABC transporter permease 
    
MPN308 apc NE Amino acid permease (sequence similarity zu mpn095/096) 
    
MPN318 apc F Permease 
MPN319 gap1 F permease 
    
MPN333  NE Hypothetical membrane protein 

MPN334 bcrA NE 
ABC transporter ATP binding protein (Multidrug-like 
transport?) 

MPN335  NE Hypothetical membrane protein 
    
MPN415 P37/ phnD F High-affinity transport system substrate-binding protein P37 
MPN416 P29/ phnC F ABC transport system ATP-binding protein P29 
MPN417 P69/ phnE F ABC transport system permease protein P69 
    
MPN421  NE permease 
    
MPN431 cbiQ E Transporter permease (CbiQ family) 
MPN432 artP E Energy-coupling factor transporter ATP-binding protein 
MPN433 cbiO E  Energy-coupling factor transporter ATP-binding protein 
    
MPN435  E Permease 
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E essential; F fitness; NE non-essential. 1 Himmelreich et al., 1996; 2 KEGG; 3 LLuch-Senar et al., in press. 

MPN448 folT E Hypothetical protein, ECF transporter S component  
    

MPN460 ktrB E 
KtrB, Trk-type K+ transport systems, membrane components, 
cation transporter  

MPN461 ktrA E KtrA uptake protein, trk system potassium uptake protein TrkA 
    
MPN494 yjfU/ulaC (sgaA) F PTS system: ascorbate-specific EIIA component 
MPN495 ulaB / sgaB NE PTS system: EIIB 

MPN496 yjfU/sgaT/ulaA NE 
PTS system: ascorbate-specific EIIC component, similar to 
phosphotransferase protein for pentitol from E.coli, SGAT 
homolog 

    
MPN508  NE Membrane export protein 
MPN509  NE Membrane export protein 
MPN510  F Membrane export protein 
MPN511  NE Membrane export protein 
MPN512  NE Membrane export protein 
    

MPN571 lcnDR3 NE 
Hemolysin ABC transporter, ABC transporter ATP binding 
protein 

    
MPN608 phoU / pstU NE Phosphate transport system, regulatory protein 
MPN609 pstB NE Phosphate import system, ATP-binding protein 
MPN610 pstA NE Phosphate ABC transport system, permease protein 
MPN611 pstS NE Phosphate transport system, substrate-binding protein 
    
MPN651 mtlA NE Similar to mannitol-specific PTS EIIBC, EIICB-Mtl 

MPN652 mtlD NE 
Mannitol-1-phosphate 5-dehydrogenase: D-mannitol 1-
phosphate + NAD+ = D-fructose 6-phosphate + NADH 

MPN653 mtlF NE Mannitol-specific  PTS system component EIIA 
    
MPN683 devA NE ABC transporter, ATP-binding protein 
MPN684  F ABC transporter permease 
MPN685 cysA F ABC transporter ATP-binding protein 
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