NEUE HERLEITUNG UND EXPLIZITE RESTABSCHÄTZUNG DER RIEMANN-SIEGEL-FORMEL

Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Georg-August-Universität zu Göttingen

> vorgelegt von Wolfgang Gabcke aus Bremerhaven

Göttingen 1979

Abstract

Die asymptotische Entwicklung der Funktion $Z(t) = e^{i\vartheta(t)}\zeta(1/2+it)$ für reelle $t \to +\infty$ (dabei ist $\vartheta(t) = \Im \log \Gamma(1/4 + it/2) - (t \log \pi)/2$ und $\zeta(1/2 + it)$ die Riemannsche Zetafunktion auf der kritischen Geraden $\Re(s) = 1/2$) – heute allgemein als Riemann-Siegel-Formel bezeichnet – wird auf neue Weise mit Hilfe der Sattelpunktmethode aus der sogenannten Riemann-Siegel-Integralformel hergeleitet. Die Formeln zur Berechnung der in der asymptotischen Reihe auftretenden Koeffizienten werden vereinfacht und für $t \ge 200$ explizite Fehlerabschätzungen für die ersten 11 Partialsummen dieser Reihe angegeben.

Der tabellarische Anhang enthält u. a. die exakte Darstellung der ersten 13 Koeffizienten der asymptotischen Reihe in der auf D. H. Lehmer zurückgehenden Form sowie die Potenzreihenentwicklungen und die Entwicklungen nach Tschebyscheffschen Polynomen 1. Art der ersten 11 Koeffizienten mit einer Genauigkeit von 50 Dezimalstellen.

The asymptotic expansion of the function $Z(t) = e^{i\vartheta(t)}\zeta(1/2 + it)$ for real $t \to +\infty$ where $\vartheta(t) = \Im \log \Gamma(1/4 + it/2) - (t \log \pi)/2$ – today known as Riemann-Siegel formula – is derived in a new and simpler way. Simplified computation formulas of its coefficients are given as well as explicit error estimates of its first 11 partial sums for t > 200.

In an appendix the first 13 coefficients of the asymptotic series are presented in a form introduced by D. H. Lehmer in 1956. Power series and expansions in terms of Čebyšev Polynomials are given for the first 11 coefficients to 50 decimals.

Keywords: Riemann zeta-function, Riemann-Siegel formula, explicit estimates of the remainders, power series of the coefficients.

D 7

Referent: Professor Dr. M. Deuring Korreferent: Professor Dr. H.-W. Burmann Tag der mündlichen Prüfung: 15. Februar 1979

Inhaltsverzeichnis

Vorwort ii		iii
Einleitung		
Form 1.1 1.2 1.3	nale Herleitung der Riemann-Siegel-FormelDefinition und Integraldarstellung von $Z(t)$ Anwendung der SattelpunktmethodeDie Riemann-Siegel-Formel	7 7 9 12
Die 2.1 2.2 2.3	Koeffizienten der Riemann-Siegel-Formel Formeln zur Koeffizientenberechnung	19 19 31 35
Die 3.1 3.2 3.3	Riemann-Siegel-Formel mit Restglied Restabschätzung der asymptotischen Reihe von S Explizite Abschätzung der ersten 11 Restglieder Zur Divergenz der Riemann-Siegel-Formel	41 41 53 58
Hilfs 4.1 4.2 4.3 4.4	ssätze und Hilfsabschätzungen Integralformeln	61 69 76 80
Literaturverzeichnis 87		
beller I. II. III. IV. V	n Primfaktorzerlegung der Zahlen $a_k^{(n)}$ $(0 \le n \le 11) \ldots \ldots \ldots$ Primfaktorzerlegung der Zahlen $d_k^{(n)}$ $(0 \le n \le 12) \ldots \ldots \ldots$ Exakte Darstellung der Koeffizienten $C_n(z)$ $(0 \le n \le 12) \ldots \ldots$ Potenzreihen der Koeffizienten $C_n(z)$ $(0 \le n \le 10) \ldots \ldots \ldots$ Tschebyscheffreihen der Koeffizienten $C_n(z)$ $(0 \le n \le 10)$	91 91 95 97 101
	rword nleitu Form 1.1 1.2 1.3 Die 2.1 2.2 2.3 Die 3.1 3.2 3.3 Hilfs 4.1 4.2 4.3 4.4 bellen I. III. IIV. V.	rwort hleitung Formale Herleitung der Riemann-Siegel-Formel 1.1 Definition und Integraldarstellung von $Z(t)$

Vorwort

Vor 36 Jahren habe ich meine Dissertation in einer Form veröffentlicht, die den heutigen Ansprüchen an eine mathematische Publikation – Satz in T_EX und Bereitstellung als PDF-Datei – nicht mehr gerecht wird. Auch die Beschaffung eines Exemplars des Drucks von 1979 ist wohl vor allem für ausländische Interessenten ausgesprochen schwierig und mit großem Aufwand verbunden, wie ich von Juan Arias de Reyna weiß. Hauptsächlich aus diesen beiden Gründen habe ich mich entschlossen, meine Dissertation mit I $^{AT}_{E}X$ neu zu setzen und in Form einer PDF-Datei allgemein zur Verfügung zu stellen. Weitere Beweggründe waren, daß die in der Arbeit verwendeten Methoden nebst den daraus gewonnenen expliziten Abschätzungen der Restglieder bis heute aktuell sind, wie die zahlreichen Zitate der Arbeit in den letzten Jahrzehnten gezeigt haben. Diese doch recht umfangreiche Beachtung durch die mathematische Fachwelt habe ich 1979 nicht erwartet.

Methoden und Ergebnisse der Dissertation in anderen Publikationen

Einige von den Publikationen, die auf meine Methoden zurückgegriffen oder die die Ergebnisse der expliziten Restabschätzung insbesondere für numerische Berechnungen verwendet haben, möchte ich hier kurz vorstellen. Sie geben z. T. über die Riemann-Siegel-Formel hinausgehende Einblicke in den umfangreichen Themenkomplex "Riemannsche Zetafunktion", ganz besonders aber in die numerische Berechnungsproblematik dieser Funktion.

Arias de Reyna hat 2011 [3] die Methoden meiner Dissertation auf Geraden $\Re(s) \neq 1/2$, $\Im(s) \rightarrow +\infty$ verallgemeinert und gelangt so zu formelmäßigen Abschätzungen für die Restglieder der asymptotischen Reihe. Dabei geht er ebenfalls von der Riemann-Siegel-Integralformel 4.1.6, S. 65 und nicht von dem komplexen Schleifenintegral (9), S. 3 aus. In einer bisher noch nicht erschienenen Folgearbeit soll eine vollständige Fehleranalyse präsentiert werden.

In [5] stellen Berry und Keating 1992 eine alternative, ebenfalls asymptotische Berechnungsformel für Z(t) vor und vergleichen sie mit der Riemann-Siegel-Formel. Bei gleicher Anzahl der berücksichtigten Summanden ist ihre Formel genauer, erfordert aber einen höheren Rechenaufwand pro Summand. Sie wird heute als Berry-Keating-Formel bezeichnet. Den vermuteten Zusammenhang zwischen den Nullstellen von Z(t) und den Eigenwerten eines potentiellen, zu einem chaotischen quantenmechanischen System gehörenden hermiteschen Operators untersuchen Berry und Keating in [7] 1999. Auch dort findet man ausführliche Informationen zur Riemann-Siegel- und zur Berry-Keating-Formel.

Borwein, Bradley und Crandall haben im Jahre 2000 in ihrer Publikation [8]

neben der Riemann-Siegel-Formel eine Reihe anderer Berechnungsverfahren für die Zetafunktion in einem Kompendium zusammengetragen. Zusätzlich findet man hier viele z. T. kuriose Reihen- und Kettenbruchentwicklungen, die auf unterschiedliche Weise mit der Zetafunktion zusammenhängen.

Von verschiedenen Autoren sind in den Jahren von 1981 bis 2004 umfangreiche numerische Überprüfungen der Riemannschen Vermutung durchgeführt worden. Hier sind vor allem Brent, van de Lune, te Riele, Winter [9, 10, 24], Odlyzko [27], Gourdon/Sebah [18] und Gourdon [19] zu nennen. In jeder der aufgeführten Veröffentlichungen wurde zumindest eine der Restabschätzungen aus Satz 3.2.2, S. 54 verwendet oder zitiert.

In Zusammenhang mit der Primzahlfunktion $\pi(x)$ gab es einige bemerkenswerte Ergebnisse. Mit Hilfe der Riemann-Siegel-Formel hat te Riele 1987 [29] die ersten 50 000 Nullstellen von Z(t) mit hoher Genauigkeit berechnet. Zusammen mit dem Nachweis von Rosser et al. aus dem Jahre 1968 [30], daß die ersten 3,5 Millionen Nullstellen dieser Funktion reell sind, konnte er damit zeigen, daß es in der Größenordnung von $7 \cdot 10^{370}$ x-Werte gibt, an denen die Differenz $\pi(x) - li(x)$ positiv¹⁾ ist. Eine analytische Methode zur Berechnung von $\pi(x)$ und einiger anderer zahlentheoretischer Funktionen haben Lagarias und Odlyzko [21] 1987 angegeben.

Offen gebliebene Fragen in der Originalarbeit

Einige offene Fragen, die ich seinerzeit nicht lösen konnte, sind inzwischen geklärt. So hat Arias de Reyna 2003 [2] bewiesen, daß die Zahlen λ_n , ρ_n und μ_n aus Satz 4.3.1, S. 76 und daher auch die $d_k^{(n)}$ aus Satz 2.1.1, S. 19, wie schon von mir vermutet, ganzzahlig sind (für die ρ_n und μ_n hatte ich diese Vermutung nicht explizit formuliert).

Die in Abschnitt 3.3, S. 58 aufgeworfene Frage, ob die Riemann-Siegel-Formel für jedes feste t > 0 divergiert oder nicht, konnte von Berry 1995 [6] geklärt werden. Demnach liegt immer Divergenz vor – das war aufgrund der Vorgehensweise bei der Herleitung der asymptotischen Reihe auch nicht anders zu erwarten –, so daß diese Reihe tatsächlich "nur" eine "asymptotische Entwicklung" darstellt. Berry macht auch Angaben zum minimal erreichbaren Abbruchfehler, den eine Berechnung mit der Riemann-Siegel-Formel bei vorgegebenem t > 0 erzeugt, wenn die Summation der asymptotischen Reihe bis zum betragskleinsten Glied fortgeführt wird. Er zeigt, daß dieser Fehler mit $e^{-\pi t}$ genau in der Größenordnung liegt²), die auch der "Eingangsfehler" der Riemann-Siegel-Formel aufweist, der durch Weglassen des Ausdrucks $0.5 \cdot \arctan e^{-\pi t}$ in Formel 4.2.3 (a), S. 71 unweigerlich entsteht. Demnach ist das Divergenzverhalten der Riemann-Siegel-Formel dem der Stirlingschen Reihe für $\log \Gamma(t/2)$ sehr ähnlich³⁾ und damit auch die maximal erreichbare Genauigkeit in Abhängigkeit vom Argument.

¹⁾ Littlewood zeigte schon 1914, daß diese Differenz für $x \to \infty$ unendlich oft das Vorzeichen wechselt. Die von te Riele angegebene Größenordnung konnte inzwischen auf etwa 10³¹⁶ reduziert werden.

 $^{^{2)}}$ Eigene Berechnungen mit den ersten 132 Gliedern der asymptotischen Reihe haben das bestätigt.

³⁾ Statt die jeweiligen Abbruchfehler direkt zu betrachten, müßte eine geeignete Mittelung von ihnen über die t-Intervalle $[2\pi N^2, 2\pi (N+1)^2]$ für N ganz ≥ 1 – hier hat die Hauptsumme genau N Glieder – zum Vergleich herangezogen werden, da der Abbruchfehler beim Durchlaufen eines solchen Intervalls lokal sehr stark schwankt. Er kann dabei sogar das Vorzeichen wechseln und deshalb an bestimmten Stellen des Intervalls verschwinden.

Vorwort

Ungeklärt ist nach wie vor die nicht triviale Frage, ob der C_0 -Term zusammen mit der Restabschätzung $|R_0(t)| < 0.127 t^{-3/4}$ für $t \ge 200$ zur eindeutigen Bestimmung von sign Z(t) immer ausreicht. Alle bis jetzt mit der Riemann-Siegel-Formel durchgeführten Berechnungen scheinen das zu bestätigen, zumindest ist mir kein Gegenbeispiel bekannt. Ein allgemeingültiger Beweis dafür liegt aber wohl außerhalb der heutigen mathematischen Möglichkeiten.

Abweichungen von der Originalarbeit

Ein wörtlicher Nachdruck der Originalarbeit von 1979 kam aus unterschiedlichen Gründen nicht in Frage. So galt es, Druckfehler zu korrigieren, sprachliche Bereinigungen vorzunehmen, das Literaturverzeichnis auf den neuesten Stand zu bringen und vor allem die Möglichkeiten des maschinellen Satzes in IATEX zu nutzen. Zwei Druckfehler, auf die mich Juan Arias de Reyna aufmerksam gemacht hat, wurden beseitigt und mittels Fußnoten gekennzeichnet. Nicht dokumentiert sind sprachliche Glättungen und die andere Art der Referenzierung von Sätzen und Formeln, die auf die Verwendung des IATEX-Satzsystems zurückzuführen sind. Das Literaturverzeichnis wurde aktualisiert und erweitert sowie einige dem besseren Verständnis dienende Fußnoten eingefügt. Beides wurde nicht eigens kenntlich gemacht.

Die an mehreren Stellen verwendeten Formulierungen "scharfe Abschätzung" und "scharf abgeschätzt" waren mißverständlich und wurden kommentarlos mit "optimale Abschätzung" bzw. "entsprechend genau abgeschätzt" ersetzt. Mit einer "optimalen Abschätzung" ist eine Abschätzung gemeint, die keine *wesentliche* Verbesserung mehr erlaubt.

Die unnötige Einschränkung $q > -\sqrt{\pi}$ in Kapitel 3, S. 41 und in Satz 4.4.4, S. 85 wurde beseitigt, so daß die dortigen Abschätzungen nun auch für $q = -\sqrt{\pi}$ gelten.

In Satz 4.3.1, S. 77 sind jetzt auch die numerischen Werte der ersten sieben Zahlen ρ_n wiedergegeben, die zwar 1979 implizit schon vorhandenen waren, deren Abdruck ich aus heute nicht mehr nachvollziehbaren Gründen damals aber nicht vorgenommen habe.

Alle numerischen Werte im Text sowie das gesamte Tabellenwerk im Anhang habe ich nicht der Originalarbeit entnommen, sondern mit selbstgeschriebenen C-Programmen vollständig neu berechnet. Erwähnenswerte Abweichungen von den Werten des Jahres 1979 haben sich dabei nicht ergeben. Dasselbe gilt auch für die Neuberechnung, die Juan Arias de Reyna mit *Mathematica* für seine spanische Übersetzung [17] durchgeführt hat. Folglich sind mit drei unterschiedlichen Programmen zweier Autoren dieselben numerischen Werte erzeugt worden, was deren Korrektheit hinreichend belegen sollte.

Von den vorstehenden Ausnahmen abgesehen, wurden an der Originalarbeit keine inhaltlichen Änderungen vorgenommen. Das gilt auch für die Rechtschreibung, die den am 01.01.1903 lt. Bundesratsbeschluß vom 18.12.1902 eingeführten Regeln entspricht.

Die vorliegende Fassung meiner Dissertation wird auf einem Server der Universität Göttingen als PDF-Datei zum Herunterladen bereitgestellt. Sie mußte ebenso wie das Original von 1979 in deutscher Sprache verfaßt werden. Eine englische Version wäre natürlich wünschenswert, jedoch habe ich auch nach Ende meines Arbeitslebens nicht die für eine Übersetzung notwendige Zeit. Wie oben bereits erwähnt, gibt es aber eine sehr schöne spanische Übersetzung [17], die Juan Arias de Reyna 2003 erstellt hat. Dafür und für seine hilfreichen Anregungen möchte ich mich an dieser Stelle herzlich bei ihm bedanken.

Göttingen, Mai 2015

Wolfgang Gabcke *E-Mail:* wolfgang@gabcke.de

Einleitung

Im Jahre 1932 veröffentlichte C. L. Siegel [31, 32] in einer Arbeit über Riemanns Nachlaß zur analytischen Zahlentheorie eine asymptotische Entwicklung der Riemannschen Zetafunktion $\zeta(s)$ für festen Realteil von s und $\Im(s) \to +\infty$. Dabei erweist sich der Fall $\Re(s) = 1/2$ zur Untersuchung der Riemannschen Vermutung als der bei weitem bedeutenste, auf den wir uns daher in dieser Arbeit beschränken werden. Durch Einführung der für reelle t reellen Funktion

$$Z(t) := e^{i\vartheta(t)} \zeta\left(\frac{1}{2} + it\right)$$

 mit

$$\vartheta(t) := \Im \log \Gamma \Bigl(\frac{1}{4} + i \frac{t}{2} \Bigr) - \frac{t}{2} \log \pi$$

gelingt es, die Untersuchung der Nullstellen von $\zeta(s)$ auf der kritischen Geraden $\Re(s) = 1/2$ auf ein reelles Problem zurückzuführen. Die bereits von Riemann gefundene und von Siegel an der oben genannten Stelle veröffentlichte asymptotische Entwicklung von Z(t) für $t \to +\infty$ wird heute allgemein als Riemann-Siegel-Formel bezeichnet.

In dieser Arbeit werden wir die Riemann-Siegel-Formel auf einem neuen, wesentlich einfacheren Wege herleiten, die Formeln zur Berechnung ihrer Koeffizienten vereinfachen und die ersten 11 Partialsummen der asymptotischen Reihe mit expliziten Restabschätzungen versehen. Bevor wir die Ergebnisse hier im einzelnen angeben, treffen wir folgende Konventionen, die für die ganze Arbeit Gültigkeit haben:

- i. Die Quadratwurzel ist stets positiv zu nehmen.
- ii. Die Bernoullischen Zahlen ${\cal B}_n$ und die Eulerschen Zahlen ${\cal E}_n$ sind durch die Potenzreihenentwicklungen

$$\frac{x}{e^x - 1} = \sum_{n=0}^{\infty} \frac{B_n}{n!} x^n \quad |x| < 2\pi \qquad \text{und} \qquad \frac{1}{\cosh x} = \sum_{n=0}^{\infty} \frac{E_n}{n!} x^n \quad |x| < \frac{\pi}{2}$$

gegeben. Es ist also $B_{2n+1} = 0$ für $n \ge 1$, $E_{2n+1} = 0$ für $n \ge 0$ und

$$B_0 = 1, B_1 = -\frac{1}{2}, B_2 = \frac{1}{6}, B_4 = -\frac{1}{30}, B_6 = \frac{1}{42}, B_8 = -\frac{1}{30}, B_{10} = \frac{5}{66}, \dots;$$

 $E_0 = 1, E_2 = -1, E_4 = 5, E_6 = -61, E_8 = 1\,385, E_{10} = -50\,521, \dots$

iii. Zur besseren Unterscheidung von der Gleichheit im üblichen Sinne verwenden wir bei Gleichheit von formalen Potenzreihen das Zeichen \doteq .

In der von D. H. Lehmer [22] eingeführten Form lautet die Riemann-Siegel-Formel dann

$$Z(t) \sim 2\sum_{n=1}^{N} \frac{\cos(\vartheta(t) - t\log n)}{\sqrt{n}} + \frac{(-1)^{N-1}}{\sqrt{a}} \sum_{n=0}^{\infty} \frac{C_n(z)}{a^n} \qquad \text{für } t \to +\infty.$$
(1)

Dabei ist

$$a := \sqrt{\frac{t}{2\pi}}, \qquad N := \lfloor a \rfloor^4, \qquad z := 1 - 2(a - N)$$

und

$$C_n(z) := \frac{1}{2^{2n}} \sum_{k=0}^{\lfloor 3n/4 \rfloor} \frac{d_k^{(n)}}{\pi^{2n-2k} (3n-4k)!} F^{(3n-4k)}(z) \qquad (n \ge 0)$$
(2)

 mit

$$F(z) := \frac{\cos\frac{\pi}{2} \left(z^2 + \frac{3}{4}\right)}{\cos \pi z}^{5}.$$

Die $\boldsymbol{d}_k^{(n)}$ sind positive rationale Zahlen, die der Rekursionsformel

$$\begin{aligned} d_k^{(n+1)} &= (3n+1-4k)(3n+2-4k)\,d_k^{(n)} + d_{k-1}^{(n)} \quad \left(n \ge 0, \ 0 \le k < \frac{3(n+1)}{4}\right), \\ d_k^{(n)} &= 0 \qquad \text{für } k < 0 \text{ oder } k > \frac{3n}{4}, \\ d_{3n}^{(4n)} &= \lambda_n \qquad (n \ge 0) \end{aligned}$$
(3)

genügen. Mit den Eulerschen Zahlen E_{2k} berechnen sich die λ_n rekursiv aus

$$\lambda_0 = 1,$$

(n+1) $\lambda_{n+1} = \sum_{k=0}^n 2^{4k+1} |E_{2k+2}| \lambda_{n-k} \qquad (n \ge 0).$

Die Funktion $\vartheta(t)$ besitzt die asymptotische Entwicklung

$$\vartheta(t) \sim \frac{t}{2} \log \frac{t}{2\pi} - \frac{t}{2} - \frac{\pi}{8} + \sum_{n=1}^{\infty} \frac{(2^{2n-1}-1)|B_{2n}|}{2^{2n}(2n-1)2n t^{2n-1}} \qquad \text{für } t \to +\infty.$$

Dabei sind die B_{2n} die Bernoullischen Zahlen. Für das Rest
glied $R\vartheta(t)$ in

$$\vartheta(t) = \frac{t}{2}\log\frac{t}{2\pi} - \frac{t}{2} - \frac{\pi}{8} + \frac{1}{48t} + \frac{7}{5760t^3} + \frac{31}{80\,640t^5} + R\vartheta(t) \tag{4}$$

gilt für $t \geq 10$ die optimale Abschätzung

$$|R\vartheta(t)| < \frac{1}{3\,322\,t^7}.$$
(5)

⁴⁾ $\lfloor a \rfloor$ ist die größte ganze Zahl $\leq a$. ⁵⁾ F(z) ist eine ganze Funktion der komplexen Veränderlichen z.

Einleitung

Für die Restglieder $R_K(t)$ in der Darstellung (a, N und z wie oben)

$$Z(t) = 2\sum_{n=1}^{N} \frac{\cos(\vartheta(t) - t\log n)}{\sqrt{n}} + \frac{(-1)^{N-1}}{\sqrt{a}} \sum_{n=0}^{K} \frac{C_n(z)}{a^n} + R_K(t) \quad (K \ge 0)$$
(6)

 ist

$$R_K(t) = O\left(t^{-\frac{2K+3}{4}}\right) \text{ für } K \ge 0 \text{ und } t \to +\infty.$$
(7)

Sie genügen für $t \geq 200$ und $K \leq 10$ den expliziten Abschätzungen

$$\begin{aligned} |R_{0}(t)| < 0.127 t^{-3/4}, & |R_{1}(t)| < 0.053 t^{-5/4}, & |R_{6}(t)| < 0.661 t^{-15/4}, \\ |R_{2}(t)| < 0.011 t^{-7/4}, & |R_{7}(t)| < 9.2 t^{-17/4}, \\ |R_{3}(t)| < 0.031 t^{-9/4}, & |R_{8}(t)| < 130 t^{-19/4}, \end{aligned}$$
(8)
$$\begin{aligned} |R_{4}(t)| < 0.017 t^{-11/4}, & |R_{9}(t)| < 1837 t^{-21/4}, \\ |R_{5}(t)| < 0.061 t^{-13/4}, & |R_{10}(t)| < 25966 t^{-23/4}. \end{aligned}$$

Für $K \leq 4$ sind diese Abschätzungen optimal.

Die Riemann-Siegel-Formel (1) haben Riemann, Siegel [31, 32], Edwards [16, Ch. 7] und Crary [15] mit Hilfe der Sattelpunktmethode aus dem bekannten Schleifenintegral

$$\zeta(s) = \frac{i}{2\pi} \Gamma(1-s) \int_C \frac{(-x)^{s-1}}{e^x - 1} \, dx \tag{9}$$

hergeleitet, in dem der Integrationsweg C eine Kurve ist, die im 1. Quadranten von ∞ kommt, die Singularität des Integranden bei x = 0 umschlingt und im 4. Quadranten⁶⁾ nach ∞ geht (die Pole des Integranden bei $x = \pm 2k\pi i$ ($k \ge 1$) werden nicht mit umschlungen). Eine besonders ausführliche Darstellung dieser Art der Herleitung der Riemann-Siegel-Formel gibt Edwards [16, Ch. 7]. Die Herleitung der Riemann-Siegel-Formel läßt sich jedoch erheblich vereinfachen, wenn man statt (9) die für reelle t gültige Integraldarstellung

$$Z(t) = 2 \Re \left(e^{-i\vartheta(t)} \int_{0 \searrow 1} \frac{e^{-i\pi x^2} x^{-1/2 + it}}{e^{i\pi x} - e^{-i\pi x}} \, dx \right)$$

verwendet, die sich aus der sogenannten Riemann-Siegel-Integralformel (Satz 4.1.6, S. 65) ergibt. Dabei ist der Integrationsweg eine von links oben nach rechts unten orientierte Gerade von der Steigung -1, die die reelle Achse zwischen den Punkten 0 und 1 trifft. Durch Anwendung der Sattelpunktmethode auf diese Integraldarstellung von Z(t) haben wir in Kapitel 1, S. 7 die Riemann-Siegel-Formel hergeleitet; allerdings, um die dabei auftretenden Formeln möglichst einfach zu gestalten, in einer etwas anderen Form als in (1) angegeben. In Satz 2.1.6, S. 30 transformieren wir diese dann auf die Lehmersche Form (1).

⁶⁾ In der Originalarbeit steht hier fälschlicherweise "2. Quadranten".

Die Darstellung (2) der Koeffizienten $C_n(z)$ als Kombination von Ableitungen der Funktion F(z) ist zusammen mit der Rekursionsformel (3) bereits in der Zeitschrift Math. of Comp. **31**, No. 139, July 1977, P. 803 in Form einer Mitteilung veröffentlicht worden. Der zugehörige, bis jetzt noch ausstehende Beweis, der übrigens ziemlich aufwendig ist, findet sich in Abschnitt 2.1, S. 19. Dort sind auch numerische Werte der Zahlen λ_n für $n \leq 6$ angegeben. Vermutlich sind alle λ_n und damit auch alle $d_k^{(n)}$ nicht nur positive rationale, sondern sogar natürliche Zahlen. Ein Beweis dafür ist dem Autor dieser Arbeit allerdings nicht bekannt.⁷⁾

Die Zahlen $d_k^{(n)}$ sind für $0 \le n \le 12$ in Form einer Primfaktorzerlegung in Tabelle II, S. 95 und die sich daraus ergebende exakte Darstellung der Koeffizienten $C_n(z)$ nach (2) – die dabei auftretenden rationalen Zahlen $d_k^{(n)}/[2^{2n}(3n-4k)!]$ soweit wie möglich gekürzt – in Tabelle III, S. 97 aufgeführt. Für $n \le 4$ findet man die $C_n(z)$ auch bei Haselgrove [20] und – gering abgewandelt – bei Edwards [16, S. 154], sowie für $n \le 8$ bei Crary und Rosser [15].

Um die numerische Berechnung der $C_n(z)$ für $0 \le n \le 10$ zu erleichtern, sind die Koeffizienten ihrer Potenzreihenentwicklungen um den Punkt z = 0 in Tabelle IV, S. 101 und die Koeffizienten ihrer Entwicklungen nach Tschebyscheffschen Polynomen 1. Art in Tabelle V, S. 113 auf 50 Dezimalstellen genau wiedergegeben. Die dazu notwendigen Rechnungen sind vom Autor auf der UNIVAC 1108 der *Gesellschaft für Wissenschaftliche Datenverarbeitung Göttingen* durchgeführt worden (vgl. Abschnitt 2.2, S. 31). Auf etwa 11 bis 20 Dezimalstellen genau finden sich diese Potenzreihenkoeffizienten für $n \le 4$ auch bei Haselgrove [20] bzw. [16, S. 158] und für $n \le 6$ auf 70 Dezimalstellen genau bei Crary und Rosser [15]. Die Potenzreihenkoeffizienten von $C_7(z)$ bis $C_{10}(z)$ und die für numerische Zwecke besonders gut geeigneten Tschebyscheffentwicklungen aus Tabelle V dürften neu sein.

Die asymptotische Entwicklung von $\vartheta(t)$, die schon bei Siegel [31, 32] zu finden ist, leiten wir in Abschnitt 4.2, S. 69 auf einem neuen Wege her. Für das Restglied $R\vartheta(t)$ in der Darstellung (4) ergibt sich dann auf relative einfache Weise die explizite Abschätzung (5). Damit ist gewährleistet, daß die Funktion $\vartheta(t)$, die zur numerischen Auswertung der Riemann-Siegel-Formel benötigt wird, mit Hilfe von (4) sehr genau berechnet werden kann.

Das wichtigste Ergebnis dieser Arbeit sind die expliziten Restabschätzungen (8), die wir unter Verwendung von optimalen Abschätzungen der Koeffizienten $C_n(z)$ ($0 \le n \le 10, -1 \le z \le 1$), die sich aus ihren Potenzreihenentwicklungen ergeben, in Abschnitt 3.2, S. 53 hergeleitet haben. Entsprechend schlechtere Abschätzungen von $R_K(t)$ ($0 \le K \le 9$), die ohne diese Potenzreihenentwicklungen gewonnen wurden, sind dort ebenfalls angegeben. Bisher sind Abschätzungen dieser Art nur für $R_0(t)$ und $R_2(t)$ bekannt. Die erste stammt von Titchmarsh [33] und [34, S. 331] aus dem Jahre 1935

$$|R_0(t)| < 1.50 \left(\frac{t}{2\pi}\right)^{-3/4}$$
 für $t > 250\pi$, (10)

die zweite von Rosser, Yohe und Schoenfeld [30] aus dem Jahre 1968

$$|R_2(t)| < 2.88 \left(\frac{t}{2\pi}\right)^{-7/4}$$
 für $t > 4\,000\pi$

⁷⁾ Diese Vermutung konnte kürzlich von Arias de Reyna [2] bewiesen werden.

Einleitung

deren Beweis allerdings bis heute nicht erschienen ist.⁸⁾

Die Abschätzungen (8) zeigen, daß man Z(t) aus (6) mit sehr hoher Genauigkeit berechnen kann. Alle bis heute mit Hilfe der Riemann-Siegel-Formel durchgeführten Berechnungen von Z(t) stellen sich daher nachträglich als gerechtfertigt heraus.

Eine in diesem Zusammenhang interessante Frage ist, ob die Riemann-Siegel-Formel in ihrer einfachsten Form (es ist $C_0(z) = F(z)$)

$$Z(t) = 2\sum_{n=1}^{N} \frac{\cos(\vartheta(t) - t\log n)}{\sqrt{n}} + \frac{(-1)^{N-1}}{\sqrt{a}} \cdot \frac{\cos\frac{\pi}{2}\left(z^2 + \frac{3}{4}\right)}{\cos\pi z} + R_0(t)$$

für die Bestimmung von sign $Z(t)^{9}$ zur numerischen Überprüfung der Riemannschen Vermutung immer ausreicht. Die Abschätzung (10) des Restgliedes $R_0(t)$ von Titchmarsh genügt dafür jedenfalls nicht immer, wie die Berechnungen von Lehmer [23], referenziert in [16, S. 175 ff.] und Rosser [30] zeigen. Die in dieser Arbeit bewiesene optimale Abschätzung $|R_0(t)| < 0.127 t^{-3/4}$ ($t \ge 200$) ist jedoch für den bis heute untersuchten Bereich – etwa $t < 2 \cdot 10^6$ – immer ausreichend.¹⁰ Es ist aber zu vermuten, daß das für hinreichend große t nicht mehr der Fall ist, so daß zum Nachweis eines Vorzeichenwechsels von Z(t) u. U. höhere Glieder der Riemann-Siegel-Formel berücksichtigt werden müssen. Weitere Einzelheiten zu den bei der numerischen Überprüfung der Riemannschen Vermutung mit Hilfe der Riemann-Siegel-Formel auftretenden Fragen findet der Leser bei Edwards [16, Ch. 8].

Die bereits von Siegel [31, 32] gefundene Groß-O-Abschätzung (7) der Restglieder $R_K(t)$, die wir in Abschnitt 3.2 beweisen, zeigt, daß sich die Riemann-Siegel-Formel trotz der von t abhängigen diskreten Veränderlichen N im wesentlichen wie eine gewöhnliche asymptotische Entwicklung verhält. Ungeklärt ist nach wie vor, ob die Riemann-Siegel-Formel in der Form (1), was sehr wahrscheinlich ist, für jedes feste t > 0 divergiert. Am Ende von Abschnitt 3.2 zeigen wir, daß das zumindest für spezielle Werte von t, nämlich für $t = t_M = 2\pi M^2$ (M ganz > 0), zutreffend ist.¹¹

An dieser Stelle möchte ich Herrn Prof. Dr. M. Deuring danken, der durch sein freundliches Entgegenkommen das Erscheinen der vorliegenden Arbeit ermöglicht hat. Ferner danke ich Herrn Prof. Dr. H. L. de Vries für die auf der UNIVAC 1108 zur Verfügung gestellte Rechenzeit.

⁸⁾ Zu diesen Abschätzungen vergleiche auch [16, S. 162 ff.]

⁹⁾ Die Berechnung dieses Vorzeichens erfordert immer eine Auswertung des asymptotischen Teils der Riemann-Siegel-Formel – zumindest also die Berücksichtigung des C_0 -Terms –, da die Hauptsumme $2\sum_{n=1}^{N} \cos(\vartheta(t) - t \log n)/\sqrt{n}$ für die korrekte Beschreibung der Nullstellenverteilung von Z(t) allein nicht ausreichend ist. So hat die Hauptsumme beispielsweise zwei konjugiert komplexe Nullstellen in der Nähe des Punktes t = 221.08, während Z(t) dort zwei eng benachbarte einfache reelle Nullstellen besitzt.

¹⁰⁾ Das ist der Stand von 1979. Der vollständig untersuchte Bereich liegt inzwischen etwas unterhalb von $2.45 \cdot 10^{12}$ (Berechnungen von Gourdon und Demichel [19] aus dem Jahre 2004 unter Verwendung des Odlyzko-Schönhage-Algorithmus [28] zur optimierten Berechnung der Hauptsumme $2\sum_{n=1}^{N} \cos(\vartheta(t) - t \log n)/\sqrt{n}$; jedoch sind nach Wissen des Autors noch immer keine Stellen bekannt, an denen die angegebene Abschätzung von $R_0(t)$ zur Vorzeichenbestimmung von Z(t) nicht ausreichend wäre.

¹¹⁾ Berry [6] hat diese Vermutung 1995 für beliebige t bewiesen.

Kapitel 1

Formale Herleitung der Riemann-Siegel-Formel

1.1 Definition und Integraldarstellung von Z(t)

Es sei t reell. Wir setzen

$$\vartheta(t) := \Im \log \Gamma\left(\frac{1}{4} + i\frac{t}{2}\right) - \frac{t}{2}\log\pi$$
(1.1)

und

$$Z(t)^{(1)} := e^{i\vartheta(t)} \zeta\left(\frac{1}{2} + it\right). \tag{1.2}$$

Dabei ist der Logarithmus in (1.1) so zu bestimmen, daß $\vartheta(t)$ bei t = 0 verschwindet.

Die in (1.2) eingeführte Funktion Z(t) ergibt sich auf natürliche Weise aus der Riemann-Siegel-Integralformel (Satz 4.1.6, S. 65). Setzen wir nämlich dort s = 1/2 + it, so werden die beiden Ausdrücke auf der rechten Seite konjugiert komplex. Daher genügt es, wenn wir von einem dieser Ausdrücke den doppelten Realteil nehmen. Wir erhalten so

$$\pi^{-\frac{1}{4}-i\frac{t}{2}} \Gamma\left(\frac{1}{4}+i\frac{t}{2}\right) \zeta\left(\frac{1}{2}+it\right)$$

$$= 2 \Re\left(\pi^{-\frac{1}{4}+i\frac{t}{2}} \Gamma\left(\frac{1}{4}-i\frac{t}{2}\right) \int_{0 \searrow 1} \frac{e^{-i\pi x^2} x^{-1/2+it}}{e^{i\pi x}-e^{-i\pi x}} dx\right).$$
(1.3)

¹⁾ Diese heute übliche Bezeichnung für die rechtsstehende Funktion geht auf Titchmarsh zurück, der sie 1951 in seinem Buch über die Zetafunktion [34, S. 79] erstmals verwendet hat. Es handelt sich dabei wohl nicht um ein lateinisches "Z", sondern um ein großes griechisches Zeta, so daß die Funktion verbal mit "Groß-Zeta von t" bezeichnet werden sollte. Sie wird in der Literatur oft "Hardys-Z-Funktion" genannt, was ein wenig mißverständlich ist, da sie in G. H. Hardys Publikationen nicht explizit vorkommt und insbesondere die Bezeichnung Z(t) dort nicht zu finden ist.

Wegen (1.1) gilt die Zerlegung (von allen Logarithmen ist der Hauptwert zu nehmen)

$$\pi^{-\frac{1}{4}-i\frac{t}{2}} \Gamma\left(\frac{1}{4}+i\frac{t}{2}\right) = e^{\Re \log \Gamma\left(\frac{1}{4}+i\frac{t}{2}\right)-\frac{1}{4}\log \pi} \cdot e^{i\left(\Im \log \Gamma\left(\frac{1}{4}+i\frac{t}{2}\right)-\frac{t}{2}\log \pi\right)}$$
$$= f(t) \cdot e^{i\vartheta(t)},$$

wobei wir zur Abkürzung

$$f(t) := e^{\Re \log \Gamma\left(\frac{1}{4} + i\frac{t}{2}\right) - \frac{1}{4}\log \pi}$$

gesetzt haben. Da f(t) und $\vartheta(t)$ reell sind, erhält man hieraus durch Übergang zum konjugiert Komplexen

$$\pi^{-\frac{1}{4}+i\frac{t}{2}}\Gamma\left(\frac{1}{4}-i\frac{t}{2}\right) = f(t) \cdot e^{-i\vartheta(t)}$$

Damit folgt aus (1.2) und (1.3) nach Kürzen von f(t) die Integraldarstellung

$$Z(t) = 2 \Re\left(e^{-i\vartheta(t)} \int_{0 > 1} \frac{e^{-i\pi x^2} x^{-1/2 + it}}{e^{i\pi x} - e^{-i\pi x}} \, dx\right),\tag{1.4}$$

aus der unmittelbar hervorgeht, daß Z(t) reell ist. Wegen $|Z(t)| = |\zeta(1/2 + it)|$ läßt sich die Untersuchung der Nullstellen der Zetafunktion auf der kritischen Geraden $\Re(s) = 1/2$ durch Einführung der Funktion Z(t) auf ein reelles Problem zurückführen.

Die Integraldarstellung (1.4) kann auf einfache Weise verallgemeinert werden. Es sei N eine natürliche Zahl. Verschieben wir den Integrationsweg $0 \searrow 1$ um N nach rechts, so ergibt sich mit Hilfe des Residuensatzes

$$Z(t) = 2 \Re \left(e^{-i\vartheta(t)} \int \frac{e^{-i\pi x^2} x^{-1/2+it}}{e^{i\pi x} - e^{-i\pi x}} \, dx \right) + 2 \Re \left(2\pi i \, e^{-i\vartheta(t)} \sum_{n=1}^{N} \underset{n=1}{\operatorname{Res}} \frac{e^{-i\pi x^2} x^{-1/2+it}}{e^{i\pi x} - e^{-i\pi x}} \right),$$

und wir erhalten wegen

$$2\pi i \, e^{-i\vartheta(t)} \sum_{n=1}^{N} \operatorname{Res}_{x=n} \frac{e^{-i\pi x^2} x^{-1/2+it}}{e^{i\pi x} - e^{-i\pi x}} = \sum_{n=1}^{N} 2\pi i \, e^{-i\vartheta(t)} e^{-i\pi n^2} n^{-1/2+it} \operatorname{Res}_{x=n} \frac{1}{2i\sin \pi x}$$
$$= \sum_{n=1}^{N} 2\pi i \, e^{i(t\log n - \vartheta(t))} n^{-1/2} (-1)^{n^2} \frac{(-1)^n}{2\pi i}$$
$$= \sum_{n=1}^{N} \frac{e^{i(t\log n - \vartheta(t))}}{\sqrt{n}}$$

die für jede natürliche Zahl ${\cal N}$ geltende Integraldarstellung

$$Z(t) = 2\sum_{n=1}^{N} \frac{\cos(\vartheta(t) - t\log n)}{\sqrt{n}} + \Re I_N(t)$$
(1.5)

 mit

$$I_N(t) = 2 e^{-i\vartheta(t)} \int \frac{e^{-i\pi x^2} x^{-1/2+it}}{e^{i\pi x} - e^{-i\pi x}} dx.$$
(1.6)
$$N \searrow N+1$$

Der Integrationsweg $N \searrow N + 1$ ist entsprechend dem Integrationsweg $0 \searrow 1$ zu verstehen (vgl. Abschnitt 4.1, S. 61 ff.). Wenn man leere Summen Null setzt, bleibt (1.5) auch noch für N = 0 richtig und man erhält die Gleichung (1.4) zurück.

Wir bemerken noch, daß man sich bei der Untersuchung von Z(t) für große |t| auf positive t beschränken kann, da Z(t) eine gerade Funktion ist. Wegen $\Gamma(\overline{s}) = \overline{\Gamma(s)}$ ist nämlich $\vartheta(-t) = -\vartheta(t)$ und daher nach (1.2)

$$Z(-t) = e^{-i\vartheta(t)} \zeta\left(\frac{1}{2} - it\right) = \overline{e^{i\vartheta(t)} \zeta\left(\frac{1}{2} + it\right)} = \overline{Z(t)} = Z(t),$$

denn Z(t) ist reell.

1.2 Anwendung der Sattelpunktmethode

Von jetzt ab sei t > 0. Wir wollen das Integral des Ausdruckes $I_N(t)$ in (1.6) nach der Sattelpunktmethode²⁾ auswerten. Wegen der Periodizität des Nenners $e^{i\pi x} - e^{-i\pi x} = 2i \sin \pi x$ vernachlässigen wir diesen und betrachten nur den Zähler $e^{-i\pi x^2} x^{-1/2+it} = e^{-i\pi x^2 + (-1/2+it)\log x}$. Wir haben also die Sattelpunkte von $\Re\left[-i\pi x^2 + (-1/2+it)\log x\right]$ zu bestimmen. Bekanntlich sind das die Punkte, an denen die erste Ableitung von $-i\pi x^2 + (-1/2+it)\log x$, also $-2\pi i x + (-1/2+it)/x$, verschwindet. Das ist für

$$x = \pm \sqrt{\frac{t}{2\pi} - \frac{1}{4\pi i}} \sim \pm \sqrt{\frac{t}{2\pi}} \qquad (t \to +\infty)$$

der Fall. Die gesuchten Sattelpunkte liegen daher für große positive t in der Nähe der Punkte $x = \sqrt{t/(2\pi)}$ und $x = -\sqrt{t/(2\pi)}$. Wegen des Verzweigungspunktes des Integranden bei x = 0 ist für uns nur der Sattelpunkt bei $x = \sqrt{t/(2\pi)}$ brauchbar. Wir setzen daher

$$a := \sqrt{\frac{t}{2\pi}}$$

und haben den Integrationsweg in (1.6) durch diesen Punkt zu legen. Wenn wir dort $N := \lfloor a \rfloor^{3)}$ wählen und *a* keine ganze Zahl ist, läßt sich das wegen N < a < N + 1 erreichen. Der Integrationsweg ist in diesem Fall also die Gerade von der Steigung -1, von links oben nach rechts unten orientiert, die die reelle Achse im Punkte x = a schneidet. Für ganzes *a* setzen wir wieder $N := \lfloor a \rfloor = a$ und nehmen denselben Integrationsweg wie eben. Den Pol des Integranden bei x = a umgehen wir dabei mit einem kleinen Halbkreis, und zwar so, daß der Pol – unter Berücksichtigung der Orientierung – *rechts* des Integrationsweges liegt, so daß der

²⁾ Allgemeines zur Sattelpunktmethode – auch Methode des stärksten Abstiegs – findet man z. B. in [13, S. 455–460], [14, S. 526–532] oder [35, S. 235 ff.]. Riemann hat sie Ende der 1850-er Jahre zur Herleitung der Riemann-Siegel-Formel wohl als erster angewendet (vgl. Siegels Arbeit [31, 32] von 1932 über Riemanns Nachlaß).

³⁾ Wie üblich bezeichnet |a| die größte ganze Zahl $\leq a$.

Integrationsweg auch hier die reelle Achse zwischen den Punkten N und N + 1 schneidet. Für die so in den beiden zu unterscheidenden Fällen – a ganz bzw. nicht ganz – festgelegten Integrationswege führen wir das gemeinsame Zeichen⁴⁾ \searrow_a ein. Aus (1.5) und (1.6) folgt damit

$$Z(t) = 2\sum_{n=1}^{N} \frac{\cos(\vartheta(t) - t\log n)}{\sqrt{n}} + \Re I_N(t),$$

$$I_N(t) = 2e^{-i\vartheta(t)} \int \frac{e^{-i\pi x^2} x^{-1/2 + it}}{e^{i\pi x} - e^{-i\pi x}} dx,$$

$$a := \sqrt{\frac{t}{2\pi}}, \qquad N := \lfloor a \rfloor.$$

$$(1.7)$$

Es sei darauf hingewiesen, daß der Integrationsweg bei strenger Anwendung der Sattelpunktmethode – zumindest in der Nähe des Sattelpunktes – mit dem Weg des stärksten Abstiegs zusammenfallen muß. Wegen des Faktors $e^{-i\pi x^2}$ geht aber der Betrag des Integranden in (1.7) exponentiell gegen Null, wenn sich x auf dem Integrationsweg \searrow_a von der reellen Achse entfernt, und daher besteht kein Anlaß, diesen besonders einfach zu handhabenden Integrationsweg zu ändern. Ferner sei noch angemerkt, daß sich weder das Ersetzen des exakten Sattelpunktes mit dem benachbarten Punkt a noch die Abänderung des Integrationsweges für ganzzahliges a bei der Restabschätzung in Kapitel 3, S. 41 negativ auswirken werden. Da der Logarithmus in $x^{-1/2+it} = e^{(-1/2+it)\log x}$ die eindeutige holomorphe

Da der Logarithmus in $x^{-1/2+it} = e^{(-1/2+it) \log x}$ die eindeutige holomorphe Fortsetzung der reellen Logarithmusfunktion in die längs der negativen reellen Achse bis zum Nullpunkt aufgeschnittenen x-Ebene ist,⁵⁾ können wir den Zähler des Integranden in (1.7) durch Entwicklung um den Punkt x = a wie folgt umformen

$$e^{-i\pi x^2} x^{-1/2+it} = e^{-i\pi (x-a+a)^2 + (-1/2+it)\log(x-a+a)}$$
$$= e^{(-1/2+it)\log a - i\pi a^2} \cdot e^{-2\pi i (x-a)^2} \widetilde{g}(a, x-a),$$

mit der Abkürzung

$$\widetilde{g}(a,z) := \exp\left[\left(-\frac{1}{2} + it\right)\log\left(1 + \frac{z}{a}\right) - 2\pi iaz + i\pi z^2\right].$$
(1.8)

Wegen a > 0 ist $\tilde{g}(a, z)$ daher in der längs der negativen reellen Achse bis zum Punkt z = -a aufgeschnittenen z-Ebene eine eindeutige holomorphe Funktion von z mit $\tilde{g}(a, 0) \equiv 1$.

Unter Berücksichtigung von

$$e^{(-1/2+it)\log a - i\pi a^2} = \left(\frac{t}{2\pi}\right)^{-\frac{1}{4}} e^{i\left(\frac{t}{2}\log\frac{t}{2\pi} - \frac{t}{2}\right)}$$

folgt damit aus (1.7)

$$I_N(t) = 2\left(\frac{t}{2\pi}\right)^{-\frac{1}{4}} e^{i\left(\frac{t}{2}\log\frac{t}{2\pi} - \frac{t}{2} - \vartheta(t)\right)} \int \frac{e^{-2\pi i(x-a)^2}}{e^{i\pi x} - e^{-i\pi x}} \,\widetilde{g}(a, x-a) \, dx$$

 $^{^{4)}}$ Der Punkt bezeichnet die Lage des Pols relativ zum Integrationsweg bei ganzzahligem a.

⁵⁾ Das ergibt sich aus dem Beweis der Riemann-Siegel-Integralformel in Satz 4.1.6, S. 65.

1.2. Anwendung der Sattelpunktmethode

und wegen $e^{i\pi x} - e^{-i\pi x} = 2i \sin \pi x$ läßt sich das auch so schreiben:

$$I_N(t) = (-1)^{N-1} \left(\frac{t}{2\pi}\right)^{-\frac{1}{4}} U \cdot S,$$

$$U := \exp i \left(\frac{t}{2} \log \frac{t}{2\pi} - \frac{t}{2} - \frac{\pi}{8} - \vartheta(t)\right)^{-6},$$

$$S := (-1)^{N-1} e^{i\pi/8} \int \frac{e^{-2\pi i (x-a)^2}}{i \sin \pi x} \tilde{g}(a, x-a) dx.$$

$$\mathfrak{I}_a$$
(1.9)

Den Ausdruck S formen wir noch in ge
eigneter Weise um. Wir substituieren im Integral mit $x=i\,v/(2\sqrt{\pi})+N+1/2$ und führen die Größen

$$\tau := \frac{1}{2\sqrt{2t}}, \qquad q := \sqrt{\pi} [1 - 2(a - N)]$$

ein. Damit wird

$$t = \frac{1}{8\tau^2},$$
 $a = \frac{1}{4\sqrt{\pi}\tau},$ $N + \frac{1}{2} - a = \frac{q}{2\sqrt{\pi}},$

und wegen $v = 2i\sqrt{\pi}(N + 1/2 - x)$ transformiert sich der Integrationsweg \searrow_a bezüglich x in $_{ia} \swarrow$ bezüglich v. Beachtet man noch

$$\begin{aligned} x - a &= i\frac{v}{2\sqrt{\pi}} + N + \frac{1}{2} - a = i\frac{v - iq}{2\sqrt{\pi}}, \\ -2\pi i(x - a)^2 &= \frac{i}{2}(v - iq)^2 = i\frac{v^2}{2} + qv - i\frac{q^2}{2}, \\ \sin \pi x &= \cos \pi \left(i\frac{v}{2\sqrt{\pi}} + N\right) = (-1)^N \cosh \frac{\sqrt{\pi}}{2}v, \end{aligned}$$

so erhalten wir nach Kürzen von $(-1)^N$ und Umkehrung der Orientierung des Integrationsweges

$$S = \frac{1}{2\sqrt{\pi}} e^{i\pi/8 - iq^2/2} \int \frac{e^{iv^2/2 + qv}}{\cosh \frac{\sqrt{\pi}}{2}v} \, \tilde{g}\left(\frac{1}{4\sqrt{\pi}\,\tau}, i\,\frac{v - iq}{2\sqrt{\pi}}\right) dv.$$

Aus (1.7) und (1.9) folgt dann, wenn wir noch einmal alles zusammenfassen und zur Vereinfachung

$$g(\tau, z) := \tilde{g}\left(\frac{1}{4\sqrt{\pi}\,\tau}, i\,\frac{z}{2\sqrt{\pi}}\right) \tag{1.10}$$

setzen:

⁶⁾ Die Einführung dieses Ausdrucks ergibt sich auf natürliche Weise aus der asymptotischen Entwicklung von $\vartheta(t)$ (Satz 4.2.3, S. 71). Somit ist $U \sim 1$ für $t \to +\infty$.

Satz 1.2.1 (Darstellung von Z(t) nach Anwendung der Sattelpunktmethode).

$$Z(t) = 2\sum_{n=1}^{N} \frac{\cos(\vartheta(t) - t\log n)}{\sqrt{n}} + (-1)^{N-1} \left(\frac{t}{2\pi}\right)^{-\frac{1}{4}} \Re\left(U \cdot S\right)$$

mit

$$\begin{aligned} a &:= \sqrt{\frac{t}{2\pi}}, \qquad N := \lfloor a \rfloor, \qquad q := \sqrt{\pi} \left[1 - 2(a - N) \right], \qquad \tau := \frac{1}{2\sqrt{2t}} \\ U &:= \exp i \left(\frac{t}{2} \log \frac{t}{2\pi} - \frac{t}{2} - \frac{\pi}{8} - \vartheta(t) \right), \\ S &:= \frac{1}{2\sqrt{\pi}} e^{i\pi/8 - iq^2/2} \int_{iq} \frac{e^{iv^2/2 + qv}}{\cosh \frac{\sqrt{\pi}}{2}v} g(\tau, v - iq) \, dv, \\ \swarrow^{iq} \\ g(\tau, z) &:= \exp \left[\left(-\frac{1}{2} + \frac{i}{8\tau^2} \right) \log \left(1 + 2i\tau z \right) + \frac{z}{4\tau} - i\frac{z^2}{4} \right]. \end{aligned}$$

Den rechtsstehenden Ausdruck für $g(\tau, z)$ erhält man aus der Definition dieser Funktion in (1.10) zusammen mit Gleichung (1.8). Wegen $\tau > 0$ ist $g(\tau, z)$ daher in der längs der positiven imaginären Achse bis zum Punkt $z = i/(2\tau)$ aufgeschnittenen z-Ebene eine eindeutige holomorphe Funktion von z mit $g(\tau, 0) \equiv 1$.

Der Integrationsweg \mathcal{A}^{iq} ist jetzt die von links unten nach rechts oben orientierte Gerade der Steigung 1 durch den Punkt v = iq. Dabei ist für ganzzahliges a, wenn $q = \sqrt{\pi}$ wird, der Pol des Integranden bei $v = i\sqrt{\pi}$ mit einem kleinen Halbkreis so zu umgehen, daß der Pol – unter Berücksichtigung der Orientierung – *links* des Integrationsweges liegt, so daß der Integrationsweg auch hier die imaginäre Achse zwischen den Punkten $-i\sqrt{\pi}$ und $i\sqrt{\pi}$ schneidet.

Aus Satz 1.2.1 werden wir im nächsten Abschnitt die Riemann-Siegel-Formel herleiten. Um die dabei auftretenden Formeln möglichst einfach zu gestalten, haben wir dem Ausdruck S die obenstehende Form gegeben und die Hilfsvariable τ eingeführt. Dabei erweist es sich als besonders vorteilhaft, daß die Funktion $g(\tau, z)$ im Gegensatz zu $\tilde{g}(a, z)$ die Zahl π nicht mehr enthält.

1.3 Die Riemann-Siegel-Formel

Wir wollen jetzt den Ausdruck $\Re(U \cdot S)$ aus Satz 1.2.1 in eine formale Reihe nach Potenzen von τ entwickeln. Wegen $\tau = 1/(2\sqrt{2t})$ entspricht das einer Entwicklung von $\Re(U \cdot S)$ nach negativen Potenzen von \sqrt{t} . Wir erhalten diese Entwicklung, wenn wir zunächst für U bzw. S je eine formale Reihe nach Potenzen von τ herleiten, diese Reihen miteinander multiplizieren und zum Realteil übergehen.

Der Ausdruck U besitzt eine asymptotische Entwicklung der Form

$$U \sim \sum_{n=0}^{\infty} i^n \alpha_n \tau^{2n} \qquad (\tau \to 0). \tag{1.11}$$

1.3. Die Riemann-Siegel-Formel

Die Koeffizienten α_n sind rationale Zahlen mit $\alpha_0 = 1$. Alles weitere hierzu findet man in Satz 4.2.4, S. 74.

Wir bestimmen jetzt das Verhalten von S für $\tau \to 0$. Die Funktion $g(\tau, z)$ ist gerade so konstruiert, daß $\lim_{\tau \to 0} g(\tau, z) \equiv 1$ ist. Ersetzen wir nämlich den Logarithmus in

$$\left(-\frac{1}{2} + \frac{i}{8\tau^2}\right)\log\left(1 + 2i\tau z\right) + \frac{z}{4\tau} - i\frac{z^2}{4}$$
 (1.12)

mit den ersten beiden Gliedern seiner Potenzreihe, so wird dieser Ausdruck für jedes feste zgleich

$$\left(-\frac{1}{2} + \frac{i}{8\tau^2} \right) \left(2iz\tau + 2z^2\tau^2 + O\left(\tau^3\right) \right) + \frac{z}{4\tau} - i\frac{z^2}{4}$$
$$= -\frac{z}{4\tau} + i\frac{z^2}{4} + O\left(\tau\right) + \frac{z}{4\tau} - i\frac{z^2}{4} = O\left(\tau\right).$$

Folglich verschwindet (1.12) für $\tau \to 0$ und es ist wie behauptet $\lim_{\tau \to 0} g(\tau, z) \equiv 1$.

Nach Definition von q in Satz 1.2.1 gilt immer $-\sqrt{\pi} < q \leq \sqrt{\pi}.$ Wir setzen für diese q

$$\widetilde{F}(q) := \frac{1}{2\sqrt{\pi}} e^{i\pi/8 - iq^2/2} \int_{iq} \frac{e^{iv^2/2 + qv}}{\cosh\frac{\sqrt{\pi}}{2}v} dv$$
(1.13)

und haben dann $S \sim \widetilde{F}(q)$ für $\tau \to 0$. Eine einfache Anwendung des Cauchyschen Integralsatzes zeigt, daß man den Integrationsweg \varkappa^{iq} in (1.13) mit $i\sqrt{\pi} \nearrow -i\sqrt{\pi}$ ersetzen darf ohne den Wert des Integrals zu verändern, und zwar auch dann, wenn *a* ganzzahlig und $q = \sqrt{\pi}$ wird. Nach Satz 4.1.2, S. 61 ist $\widetilde{F}(q)$ daher mit elementaren Funktionen darstellbar:

$$\widetilde{F}(q) = \frac{\cos\left(\frac{q^2}{2} + \frac{3\pi}{8}\right)}{\cos\sqrt{\pi}q} + i \frac{\sqrt{2}\cos\frac{\sqrt{\pi}}{2}q - \sin\left(\frac{q^2}{2} + \frac{3\pi}{8}\right)}{\cos\sqrt{\pi}q}.$$
(1.14)

Setzen wir noch für reelle q

$$\widehat{F}(q) := \Re \, \widetilde{F}(q) = \frac{\cos\left(\frac{q^2}{2} + \frac{3\pi}{8}\right)}{\cos\sqrt{\pi}q},$$

$$\widehat{F}(q) := \Im \, \widetilde{F}(q) = \frac{\sqrt{2}\,\cos\frac{\sqrt{\pi}}{2}q - \sin\left(\frac{q^2}{2} + \frac{3\pi}{8}\right)}{\cos\sqrt{\pi}q},$$
(1.15)

so wird, da nach (1.11) $U \sim 1$ für $\tau \to 0$ gilt, $U \cdot S \sim \widetilde{F}(q)$ und $\Re(U \cdot S) \sim \widehat{F}(q)$ für $\tau \to 0$. Wegen $(t/(2\pi))^{1/4} = \sqrt{a}$ folgt so aus Satz 1.2.1 für Z(t) die Darstellung (a, N und q wie dort definiert)

$$Z(t) \sim 2\sum_{n=1}^{N} \frac{\cos(\vartheta(t) - t\log n)}{\sqrt{n}} + \frac{(-1)^{N-1}}{\sqrt{a}} \cdot \frac{\cos(\frac{q^2}{2} + \frac{3\pi}{8})}{\cos\sqrt{\pi}q} \quad (\tau \to 0).$$
(1.16)

⁷⁾ Genau genommen ist diese Darstellung von $\tilde{F}(q)$ die holomorphe Fortsetzung der in (1.13) für reelle q mit $-\sqrt{\pi} < q \leq \sqrt{\pi}$ eingeführten Funktion $\tilde{F}(q)$ in die ganze q-Ebene.

Das ist die Riemann-Siegel-Formel in ihrer einfachsten Form.

Durch Entwicklung von $g(\tau, z)$ in eine Potenzreihe nach $\tau^{8)}$ läßt sich (1.16) zu einer vollen asymptotischen Entwicklung ausbauen. Für $2\tau |z| < 1^{9)}$ kann man den Logarithmus in (1.12) mit der Reihe $\sum_{n=1}^{\infty} (-1)^{n-1} (2i\tau z)^n/n$ ersetzen. Diese Reihe konvergiert für $2\tau |z| \leq \theta < 1$ (θ reell > 0) absolut und gleichmäßig als Funktion der beiden Veränderlichen τ und z. Wir können daher den so entstehenden Ausdruck nach Potenzen von τ anordnen. Da (1.12) für $\tau \to 0$ verschwindet, erhalten wir auf diese Weise eine Potenzreihe in τ , deren absolutes Glied verschwindet und deren Koeffizienten Polynome in z sind. Setzen wir jetzt diese Potenzreihe in die Potenzreihe der Exponentialfunktion ein und ordnen wieder nach Potenzen von τ , so ergibt sich die gesuchte Entwicklung von $g(\tau, z)$. Diese konvergiert ebenfalls für $2\tau |z| \leq \theta < 1$ absolut und gleichmäßig als Funktion der beiden Veränderlichen τ und z, ihr konstantes Glied ist 1 und ihre Koeffizienten sind wiederum Polynome in z. Wir haben daher in dem Ansatz mit unbestimmten Koeffizienten

$$g(\tau, z) = \sum_{n=0}^{\infty} P_n(z) \tau^n \qquad (2\tau |z| < 1) \qquad (1.17)$$

die Polynome $P_n(z)$ zu bestimmen. Wegen $g(0,z)\equiv 1\equiv g(\tau,0)$ müssen die $P_n(z)$ den Bedingungen

$$P_0(z) \equiv 1,$$

 $P_n(0) = 0$ (n \ge 1) (1.18)

genügen.

Der Einfachheit halber bezeichnen wir die partielle Ableitung von $g(\tau, z)$ nach z mit $g'(\tau, z)$. Dann ist die logarithmische Ableitung von $g(\tau, z)$ nach z gleich der Ableitung des Ausdruckes (1.12) nach z und wir erhalten nach einer einfachen Rechnung

$$\frac{g'(\tau,z)}{g(\tau,z)} = \tau \frac{z^2 - i}{1 + 2i\tau z}$$

und daraus die homogene Differentialgleichung erster Ordnung

$$(1+2i\tau z) g'(\tau,z) - \tau (z^2 - i) g(\tau,z) = 0.$$
(1.19)

Wir tragen hier die Gleichung (1.17) ein:

$$(1+2i\tau z)\sum_{n=0}^{\infty} P'_n(z)\,\tau^n - (z^2-i)\sum_{n=0}^{\infty} P_n(z)\,\tau^{n+1} = 0.$$

⁸⁾ Siegel [31, 32], Edwards [16, Ch. 7.5] und Crary [15] entwickeln die der Funktion $g(\tau, z)$ entsprechenden Funktionen – bei Verwendung unserer Schreibweise – nicht nach τ sondern nach z. Die formale Herleitung der Riemann-Siegel-Formel führt zwar auch so zum Ziel, jedoch ist es der natürlichere Weg, wenn man zur Entwicklung von $\Re(U \cdot S)$ nach Potenzen von τ die Funktion $g(\tau, z)$ gleich in eine Potenzreihe nach τ entwickelt. Das erweist sich für die Restabschätzung in Kapitel 3 als wichtige Grundvoraussetzung; denn andernfalls, d. h. bei einer Entwicklung von $g(\tau, z)$ nach Potenzen von z, würden die dann auftretenden Formeln derart kompliziert, daß eine realistische Restabschätzung mit vertretbarem Aufwand nicht mehr durchführbar wäre.

 $^{^{9)}}$ Für uns ist τ immer positiv, so daß die Betragstriche bei τ fortfallen können.

1.3. Die Riemann-Siegel-Formel

Da nach (1.18) $P'_0(z) = 0$ ist, können wir das in die Form

$$\sum_{n=0}^{\infty} P'_{n+1}(z) \,\tau^{n+1} + \sum_{n=0}^{\infty} 2iz \, P'_n(z) \,\tau^{n+1} - \sum_{n=0}^{\infty} (z^2 - i) \, P_n(z) \,\tau^{n+1} = 0$$

bringen und durch Koeffizientenvergleich folgt

$$P'_{n+1}(z) + 2iz P'_n(z) - (z^2 - i) P_n(z) = 0 \qquad (n \ge 0).$$
 (1.20)

Wir ersetzen z mit x und integrieren von 0 bis z über x. Unter Beachtung von (1.18) erhalten wir

$$P_{n+1}(z) + 2i \int_{0}^{z} x P'_{n}(x) \, dx - \int_{0}^{z} (x^{2} - i) P_{n}(x) \, dx = 0 \qquad (n \ge 0).$$

Partielle Integration gestattet die Umformung

$$\int_{0}^{z} x P'_{n}(x) dx = z P_{n}(z) - \int_{0}^{z} P_{n}(x) dx,$$

und es ergibt sich die Rekursionsformel

$$P_{n+1}(z) = \int_{0}^{z} (x^{2} + i) P_{n}(x) dx - 2iz P_{n}(z) \qquad (n \ge 0),$$

$$P_{0}(z) \equiv 1,$$
(1.21)

aus der man unmittelbar folgende Eigenschaften der Polynome $P_n(z)$ ablesen kann:

- (a) $P_n(z)$ ist für gerades n eine gerade und für ungerades n eine ungerade Funktion von z.
- (b) $P_n(z)$ hat den Grad 3n.
- (c) Die Koeffizienten der Potenzen z^0 bis z^{n-1} des Polynoms $P_n(z)$ verschwinden, so daß die Funktionen $z^{-n} P_n(z)$ Polynome vom Grade 2n sind.

Um die Berechnung der Polynome $P_n(z)$ aus der Rekursionsformel (1.21) zu vereinfachen, machen wir mit unbestimmten Koeffizienten $a_k^{(n)}$ den Ansatz

$$P_n(z) = \sum_{k=0}^n i^{k-n} \frac{a_k^{(n)}}{(n+2k)!} z^{n+2k} \qquad (n \ge 0), \qquad (1.22)$$

der aufgrund der Eigenschaften (a), (b) und (c) in dieser Form zulässig ist. Wir

tragen das in (1.21) ein, definieren noch $a_k^{(n)} = 0$ für k < 0 oder k > n und erhalten

$$\sum_{k=0}^{n+1} i^{k-n-1} \frac{a_k^{(n+1)}}{(n+2k+1)!} z^{n+2k+1} = \sum_{k=0}^n i^{k-n} \frac{a_k^{(n)}}{(n+2k)!} \cdot \frac{z^{n+2k+3}}{n+2k+3} + \sum_{k=0}^n i^{k-n+1} \frac{a_k^{(n)}}{(n+2k)!} \cdot \frac{z^{n+2k+1}}{n+2k+1} - \sum_{k=0}^n i^{k-n+1} \frac{2a_k^{(n)}}{(n+2k)!} z^{n+2k+1}$$
$$= \sum_{k=0}^{n+1} \left(\frac{i^{k-n-1}a_{k-1}^{(n)}}{(n+2k+1)(n+2k-2)!} + \frac{i^{k-n+1}a_k^{(n)}}{(n+2k+1)!} - \frac{2i^{k-n+1}a_k^{(n)}}{(n+2k)!} \right) z^{n+2k+1}$$

Durch Koeffizientenvergleich folgt hieraus – nach Multiplikation mit (n + 2k + 1)!und Kürzen von i^{k-n-1} – die Rekursionsformel

$$a_{k}^{(n+1)} = (n+2k-1)(n+2k)a_{k-1}^{(n)} + (2n+4k+1)a_{k}^{(n)} \qquad (n \ge 0, 0 \le k \le n+1), a_{0}^{(0)} = 1, a_{k}^{(n)} = 0 \qquad \text{für } k < 0 \text{ oder } k > n,$$

$$(1.23)$$

aus der unmittelbar hervorgeht, daß die $a_k^{(n)}$ natürliche Zahlen sind. Dabei ergibt sich die Anfangsbedingung $a_0^{(0)} = 1$ wegen $P_0(z) \equiv 1$ direkt aus (1.22).

Mit Hilfe dieser Rekursionsformel lassen sich die $a_k^{(n)}$ sehr leicht berechnen. Für $n \leq 11$ findet man ihre exakten Werte – aus Gründen der Übersichtlichkeit in Primfaktoren zerlegt – in Tabelle I, S. 91. Bei der Restabschätzung in Kapitel 3 werden uns diese numerischen Werte noch nützlich sein.

Wir ersetzen jetzt die Funktion $g(\tau, v - iq)$ in der Integraldarstellung von S aus Satz 1.2.1 mit der Potenzreihe $\sum_{n=0}^{\infty} P_n(v - iq) \tau^n$, vertauschen die Integration mit der Summation und erhalten

$$S \sim \sum_{n=0}^{\infty} B_n(q) \tau^n \tag{1.24}$$

 mit

$$B_n(q) := \frac{1}{2\sqrt{\pi}} e^{i\pi/8 - iq^2/2} \int \frac{e^{iv^2/2 + qv}}{\cosh\frac{\sqrt{\pi}}{2}v} P_n(v - iq) \, dv \qquad (n \ge 0).$$
(1.25)

Da wir die Reihe $\sum_{n=0}^{\infty} P_n(v - iq) \tau^n$, die nur für $|v - iq| < 1/(2\tau)$ konvergiert, gliedweise über den unendlichen Integrationsweg \swarrow^{iq} integriert haben, können wir in (1.24) kein Gleichheitszeichen setzen. Das dort gewählte Zeichen "~" besagt zunächst nur, daß die formale Potenzreihe $\sum_{n=0}^{\infty} B_n(q) \tau^n$ dem Ausdruck *S* auf natürliche Weise zugeordnet ist. Es ist aber zu vermuten, daß es sich bei (1.24) um

_

1.3. Die Riemann-Siegel-Formel

eine asymptotische Entwicklung des Ausdruckes S für $\tau \to 0$ handelt. In Kapitel 3 werden wir das beweisen.

Wir tragen nun die Darstellung (1.22) der Polynome $P_n(z)$ in (1.25) ein. Es folgt

$$B_n(q) = \sum_{k=0}^n i^{k-n} \frac{a_k^{(n)}}{(n+2k)!} b_{n+2k}(q) \qquad (n \ge 0) \qquad (1.26)$$

 mit

$$b_m(q) := \frac{1}{2\sqrt{\pi}} e^{i\pi/8 - iq^2/2} \int \frac{e^{iv^2/2 + qv}}{\cosh\frac{\sqrt{\pi}}{2}v} (v - iq)^m \, dv \qquad (m \ge 0), \qquad (1.27)$$

so daß wir zur Berechnung der Koeffizienten $B_n(q)$ nur noch die Funktionen $b_m(q)$ zu bestimmen brauchen. Für m = 0 folgt aus (1.13) die Beziehung $b_0(q) = \widetilde{F}(q)$. Für m > 0 läßt sich $b_m(q)$ in endlicher Form mit Ableitungen der Funktion $\widetilde{F}(q)$ darstellen. Dazu ersetzen wir den Integrationsweg \checkmark^{iq} in (1.13) mit $i\sqrt{\pi} \nearrow -i\sqrt{\pi}$ und schreiben q + x für q. Wir erhalten

$$\widetilde{F}(q+x) = \frac{1}{2\sqrt{\pi}} e^{i\pi/8 - i(q^2 + 2qx + x^2)/2} \int \frac{e^{iv^2/2 + qv + xv}}{\cosh\frac{\sqrt{\pi}}{2}v} \, dv$$

und daraus

$$e^{ix^{2}/2} \widetilde{F}(q+x) = \frac{1}{2\sqrt{\pi}} e^{i\pi/8 - iq^{2}/2} \int \frac{e^{iv^{2}/2 + qv}}{\cosh\frac{\sqrt{\pi}}{2}v} e^{x(v-iq)} dv$$
$$= \sum_{m=0}^{\infty} \left[\frac{1}{2\sqrt{\pi}} e^{i\pi/8 - iq^{2}/2} \int \frac{e^{iv^{2}/2 + qv}}{\cosh\frac{\sqrt{\pi}}{2}v} (v - iq)^{m} dv \right] \frac{x^{m}}{m!}$$

Da $-\sqrt{\pi} < q \leq \sqrt{\pi}$ ist, können wir hier als Integrationsweg wieder \swarrow^{iq} wählen. Ersetzen von $\widetilde{F}(q+x)$ mit der Taylorreihe $\sum_{m=0}^{\infty} \widetilde{F}^{(m)}(q) x^m/m!$ und Vergleich mit (1.27) ergibt so die Formel

$$e^{ix^2/2} \sum_{m=0}^{\infty} \frac{\widetilde{F}^{(m)}(q)}{m!} x^m = \sum_{m=0}^{\infty} \frac{b_m(q)}{m!} x^m, \qquad (1.28)$$

aus der sich die $b_m(q)$ durch Koeffizientenvergleich berechnen lassen, wenn man die Funktion $e^{ix^2/2}$ mit ihrer Potenzreihe um den Punkt x = 0 ersetzt und diese mit der Reihe $\sum_{m=0}^{\infty} \widetilde{F}^{(m)}(q) x^m/m!$ multipliziert.

Wir bilden jetzt das Produkt der beiden formalen Potenzreihen (1.11) und (1.24). Die Koeffizienten in dem Ansatz

$$U \cdot S \sim \sum_{n=0}^{\infty} \widetilde{C}_n(q) \tau^n \tag{1.29}$$

berechnen sich dann nach den Formeln

$$\widetilde{C}_{2n}(q) = \sum_{k=0}^{n} i^k \alpha_k B_{2n-2k}(q),$$

$$(n \ge 0) \qquad (1.30)$$

$$\widetilde{C}_{2n+1}(q) = \sum_{k=0}^{n} i^k \alpha_k B_{2n+1-2k}(q).$$

Setzen wir noch

$$\widehat{C}_n(q) := \Re \widetilde{C}_n(q) \qquad (n \ge 0), \qquad (1.31)$$

so wird

$$\Re \left(U \cdot S \right) \sim \sum_{n=0}^{\infty} \widehat{C}_n(q) \, \tau^n, \tag{1.32}$$

und aus Satz 1.2.1 folgt mit $(t/(2\pi))^{1/4} = \sqrt{a}$ die formale Entwicklung für Z(t)Satz 1.3.1 (Riemann-Siegel-Formel).

$$Z(t) \sim 2\sum_{n=1}^{N} \frac{\cos(\vartheta(t) - t\log n)}{\sqrt{n}} + \frac{(-1)^{N-1}}{\sqrt{a}} \sum_{n=0}^{\infty} \widehat{C}_n(q) \tau^n$$

mit

$$a := \sqrt{\frac{t}{2\pi}}, \qquad N := \lfloor a \rfloor, \qquad q := \sqrt{\pi} \big[1 - 2(a - N) \big], \qquad \tau := \frac{1}{2\sqrt{2t}}.$$

In Kapitel 3 werden wir zeigen, daß es sich hierbei um eine asymptotische Entwicklung der Funktion Z(t) für $t \to +\infty$ handelt. Die Identität unserer Darstellung mit der Riemann-Siegel-Formel folgt dann aus dem Eindeutigkeitssatz asymptotischer Entwicklungen durch Vergleich mit der von Siegel in [32, S. 290] angegebenen asymptotischen Entwicklung von Z(t), wenn man diese auf unsere Form transformiert, d. h. mit den Größen τ und q schreibt. Die Funktion $\hat{F}(q) = \Im \tilde{F}(q)$ wird daher in den Koeffizienten $\hat{C}_n(q)$ nicht auftreten. Für n = 0 kann man das direkt nachprüfen, denn in Übereinstimmung mit (1.16) wird $\hat{C}_0(q) = \hat{F}(q)$. Den allgemeinen Beweis findet man im nächsten Kapitel.

Nach den obenstehenden Formeln können die Koeffizienten $\widehat{C}_n(q)$ auf folgende Weise berechnet werden:

Man bestimme die $a_k^{(n)}$ aus (1.23), die $b_m(q)$ aus (1.28) und damit die $B_n(q)$ aus (1.26). Mit den Zahlen α_n – numerische Werte findet man in Satz 4.2.4, S. 74 für $n \leq 8$ – erhält man dann die $\widetilde{C}_n(q)$ aus (1.30) und daraus die gesuchten $\widehat{C}_n(q)$ durch Übergang zum Realteil aus (1.31).

Der dafür notwendige Rechenaufwand ist jedoch untragbar. Im nächsten Kapitel werden wir ein Verfahren kennenlernen, das es gestattet, die $\hat{C}_n(q)$ ohne Kenntnis der $a_k^{(n)}$, $b_m(q)$, $B_n(q)$ und α_n direkt zu berechnen.

Kapitel 2

Die Koeffizienten der Riemann-Siegel-Formel

2.1 Formeln zur Koeffizientenberechnung

Die Koeffizienten $\hat{C}_n(q)$ in der Riemann-Siegel-Formel aus Satz 1.3.1, S. 18 lassen sich auf folgende Weise sehr einfach berechnen:

Satz 2.1.1. Mit der Funktion

$$\widehat{F}(q) := \frac{\cos\left(\frac{q^2}{2} + \frac{3\pi}{8}\right)}{\cos\sqrt{\pi}q}$$

wird

$$\widehat{C}_n(q) = \sum_{k=0}^{\lfloor 3n/4 \rfloor} d_k^{(n)} \, \frac{\widehat{F}^{(3n-4k)}(q)}{(3n-4k)!} \qquad (n \ge 0). \tag{2.1}$$

 $Die \ d_k^{(n)} \ sind \ positive \ rationale \ Zahlen, \ die \ der \ Rekursionsformel$

genügen. Die Zahlen λ_n sind rekursiv durch

$$\lambda_0 = 1,$$

$$(n+1)\lambda_{n+1} = \sum_{k=0}^n 2^{4k+1} |E_{2k+2}| \lambda_{n-k} \qquad (n \ge 0)$$
(2.4)

gegeben. Dabei sind die E_{2k} die Eulerschen Zahlen. Für die ersten λ_n ergeben sich die Werte

$$\lambda_0 = 1,$$

 $\begin{array}{ll} \lambda_1 = 2, & \lambda_4 = 2 \cdot 3 \cdot 7 \cdot 68 \, 111, \\ \lambda_2 = 2 \cdot 41, & \lambda_5 = 2^2 \cdot 3 \cdot 47 \cdot 499 \cdot 4729, \\ \lambda_3 = 2^2 \cdot 3 \cdot 881, & \lambda_6 = 2^2 \cdot 3 \cdot 409 \cdot 193 \, 077 \, 047. \end{array}$

Alle hier auftretenden Zahlen sind prim.

Die $\widehat{C}_n(q)$ sind daher positive rationale Kombinationen gewisser Ableitungen von $\widehat{F}(q)$, nämlich von $\widehat{F}^{(3n)}(q)$, $\widehat{F}^{(3n-4)}(q)$, $\widehat{F}^{(3n-8)}(q)$, ..., $\widehat{F}^{(3n-4k')}(q)$, wo k' die größte ganze Zahl $\leq 3n/4$ ist.

Die $d_k^{(n)}$ lassen sich für n < 4m sehr einfach aus (2.2) berechnen, wenn die Zahlen $\lambda_n = d_{3n}^{(4n)}$ für $0 \le n < m$ bekannt sind, die man sehr rasch aus (2.4) bestimmen kann. Für $n \le 6$ ergeben sich so die oben angegebenen numerischen Werte.

Da die λ_n nach (2.4) positive rationale Zahlen sind, sind auch alle $d_k^{(n)}$ positiv rational; jedoch ist es sehr wahrscheinlich, daß alle λ_n und damit auch alle $d_k^{(n)}$ natürliche Zahlen sind. Ein allgemeingültiger Beweis für diese Vermutung ist dem Autor nicht bekannt.¹⁾Uns genügt die Tatsache, daß die λ_n für $n \leq 6$ und demnach die $d_k^{(n)}$ für $n \leq 27$ natürliche Zahlen sind. In Tabelle II, S. 95 sind die $d_k^{(n)}$ – aus Gründen der Übersichtlichkeit in Primfaktoren zerlegt – für $n \leq 12$ angegeben.

Der Beweis von Satz 2.1.1 ist leider etwas aufwendig und wird den größten Teil dieses Abschnittes einnehmen. Wir treffen dazu folgende Konvention:

Unter dem Ausdruck "k.T.v. (f(x))" mit der Abkürzung "k.T.v." für "konstanter Term von" wollen wir das konstante Glied der – u. U. nur formalen – Laurententwicklung von f(x) um den Punkt x = 0verstehen. Das soll auch dann gelten, wenn f(x) außer von x noch von anderen Variablen abhängt.

Mit Hilfe des nächsten Satzes können die Koeffizienten $B_n(q)$ der formalen Entwicklung $S \sim \sum_{n=0}^{\infty} B_n(q) \tau^n$ (vgl. in Abschnitt 1.3, S. 16 ff.) ohne Kenntnis der Zahlen $a_k^{(n)}$ und der Funktionen $b_m(q)$ direkt berechnet werden:

Satz 2.1.2. *Für* $n \ge 0$ *ist*

$$B_n(q) = \text{k.T.v.}\left(A_n(x)\sum_{m=0}^{\infty} \frac{\widetilde{F}^{(m)}(q)}{m!} x^m\right).$$
 (2.5)

Die Funktionen $A_n(x)$ sind rekursiv durch

$$A_{0}(x) = e^{ix^{2}/2},$$

$$A_{n+1}(x) = x A_{n}(x) + \left(\frac{A_{n}(x)}{x}\right)^{\prime\prime} \qquad (n \ge 0)$$
(2.6)

gegeben.

Ż

¹⁾ Arias de Reyna [2] hat diese Vermutung 2003 bewiesen.

2.1. Formeln zur Koeffizientenberechnung

Beweis. Wir führen folgende Polynome vom Grade 3n in x^{-1} ein

$$Q_n(x) := \sum_{k=0}^n i^{k-n} a_k^{(n)} x^{-n-2k} \qquad (n \ge 0) \qquad (2.7)$$

und setzen damit

$$A_n(x) := e^{ix^2/2} Q_n(x) \qquad (n \ge 0). \qquad (2.8)$$

Die $a_k^{(n)}$ sind die in (1.23), S. 16 rekursiv eingeführten natürlichen Zahlen. Wir multiplizieren Gleichung (1.28), S. 17 mit $Q_n(x)$ und erhalten wegen (2.8)

$$A_n(x) \sum_{m=0}^{\infty} \frac{\widetilde{F}^{(m)}(q)}{m!} x^m = Q_n(x) \sum_{m=0}^{\infty} \frac{b_m(q)}{m!} x^m \qquad (n \ge 0).$$

Da $Q_n(x)$ als Polynom in x^{-1} den Grad 3n hat, lassen sich hier beide Seiten der Gleichung in beständig konvergierende Laurentreihen mit endlichem Hauptteil um den Punkt x = 0 entwickeln und die höchste nicht verschwindende negative Potenz von x ist x^{-3n} . Wir vergleichen die konstanten Glieder dieser beiden Laurentreihen:

k.T.v.
$$\left(Q_n(x)\sum_{m=0}^{\infty}\frac{b_m(q)}{m!}x^m\right) = \sum_{k=0}^n i^{k-n}\frac{a_k^{(n)}}{(n+2k)!}b_{n+2k}(q) = B_n(q)$$

unter Verwendung von (1.26), S. 17. Folglich ist auch

n

$$B_n(q) = \text{k.T.v.}\left(A_n(x)\sum_{m=0}^{\infty} \frac{\widetilde{F}^{(m)}(q)}{m!} x^m\right) \qquad (n \ge 0)$$

und (2.5) ist bewiesen.

Zum Beweis von (2.6) leiten wir zunächst eine Rekursionsformel für die $Q_n(x)$ her. Aus den Eigenschaften der Zahlen $a_k^{(n)}$ – man beachte besonders $a_k^{(n)} = 0$ für k < 0 oder k > n – folgen für $n \ge 0$ die Gleichungen

$$\begin{aligned} \frac{Q_n(x)}{x} &= \sum_{k=0}^n i^{k-n} a_k^{(n)} x^{-n-2k-1} \\ &= \sum_{k=0}^{n+1} i^{k-n} a_k^{(n)} x^{-n-2k-1}, \\ \left(\frac{Q_n(x)}{x}\right)' &= -\sum_{k=0}^n i^{k-n} (n+2k+1) a_k^{(n)} x^{-n-2k-2} \\ &= -\sum_{k=0}^{n+1} i^{k-n} (n+2k+1) a_k^{(n)} x^{-n-2k-2}, \\ \left(\frac{Q_n(x)}{x}\right)'' &= \sum_{k=0}^n i^{k-n} (n+2k+1) (n+2k+2) a_k^{(n)} x^{-n-2k-3} \\ &= \sum_{k=0}^{n+1} i^{k-n-1} (n+2k-1) (n+2k) a_{k-1}^{(n)} x^{-n-2k-1}. \end{aligned}$$

(Die hochgestellten Striche bedeuten natürlich ein- bzw. zweimalige Differentiation nach x). Damit wird unter Beachtung von (1.23)

$$\left(\frac{Q_n(x)}{x}\right)'' + 2ix\left(\frac{Q_n(x)}{x}\right)' + i\frac{Q_n(x)}{x}$$
$$= \sum_{k=0}^{n+1} i^{k-n-1}(n+2k-1)(n+2k) a_{k-1}^{(n)} x^{-n-2k-1}$$
$$- \sum_{k=0}^{n+1} i^{k-n+1}(2n+4k+2) a_k^{(n)} x^{-n-2k-1}$$
$$+ \sum_{k=0}^{n+1} i^{k-n+1} a_k^{(n)} x^{-n-2k-1}$$
$$= \sum_{k=0}^{n+1} i^{k-n-1} \left[(n+2k-1)(n+2k) a_{k-1}^{(n)} + (2n+4k+1) a_k^{(n)} \right] x^{-n-2k-1}$$
$$= \sum_{k=0}^{n+1} i^{k-n-1} a_k^{(n+1)} x^{-n-2k-1} = Q_{n+1}(x),$$

und wir haben die Rekursionsformel

$$Q_0(x) \equiv 1,$$

$$Q_{n+1}(x) = \left(\frac{Q_n(x)}{x}\right)'' + 2ix\left(\frac{Q_n(x)}{x}\right)' + i\frac{Q_n(x)}{x} \quad (n \ge 0)$$
(2.9)

gewonnen. Die Anfangsbedingung folgt wegen $a_0^{(0)} = 1$ direkt aus (2.7). Es ist aber nach (2.8)

$$Q_n(x) = e^{-ix^2/2} A_n(x)$$
 $(n \ge 0)$

und daher, wie eine einfache Rechnung zeigt,

$$\frac{Q_n(x)}{x} = e^{-ix^2/2} \frac{A_n(x)}{x},$$

$$\left(\frac{Q_n(x)}{x}\right)' = e^{-ix^2/2} \left[\left(\frac{A_n(x)}{x}\right)' - ix \left(\frac{A_n(x)}{x}\right) \right],$$

$$\left(\frac{Q_n(x)}{x}\right)'' = e^{-ix^2/2} \left[\left(\frac{A_n(x)}{x}\right)'' - 2ix \left(\frac{A_n(x)}{x}\right)' - (x^2 + i) \frac{A_n(x)}{x} \right].$$

Wir setzen das in (2.9) ein und erhalten nach Kürzen von $e^{-ix^2/2}$ für $n\geq 0$

$$A_{n+1}(x) = \left(\frac{A_n(x)}{x}\right)'' - 2ix\left(\frac{A_n(x)}{x}\right)' - (x^2 + i)\frac{A_n(x)}{x}$$

2.1. Formeln zur Koeffizientenberechnung

$$+ 2ix\left(\frac{A_n(x)}{x}\right)' + 2x^2 \frac{A_n(x)}{x} + i \frac{A_n(x)}{x}$$
$$= x A_n(x) + \left(\frac{A_n(x)}{x}\right)'',$$

also gerade die Behauptung (2.6). Da $Q_0(x) \equiv 1$ ist, folgt $A_0(x) = e^{ix^2/2}$ unmittelbar aus (2.8) und der Satz ist bewiesen.

Aus (2.6) kann man die allgemeine Form der Laurententwicklungen von $A_n(x)$ und damit aus (2.5) die allgemeine Form der Koeffizienten $B_n(q)$ bestimmen:

Corollar 2.1.1. Für geraden Index besitzen die $A_n(x)$ eine gerade und für ungeraden Index eine ungerade Laurententwicklung um den Punkt x = 0. Die höchste nicht verschwindende negative x-Potenz ist x^{-3n} . Die Koeffizienten $B_n(q)$ sind daher für geraden Index eine Kombination von geraden und für ungeraden Index eine Kombination von ungeraden Ableitungen der Funktion $\tilde{F}(q)$. Die höchste in $B_n(q)$ auftretende Ableitung ist $\tilde{F}^{(3n)}(q)$.

Beginnend mit der Potenzreihe $A_0(x) = e^{ix^2/2} = \sum_{m=0}^{\infty} (i/2)^m x^{2m}/m!$ ergeben sich die Laurententwicklungen der $A_n(x)$ rekursiv aus (2.6) und damit die $B_n(q)$ aus (2.5). Da diese für uns aber nur von geringem Interesse sind, verzichten wir darauf und wenden uns gleich der Berechnung der Koeffizienten $\widetilde{C}_n(q)$ in der formalen Reihe $U \cdot S \sim \sum_{n=0}^{\infty} \widetilde{C}_n(q) \tau^n$ von Gleichung (1.29), S. 17 zu.

Satz 2.1.3. Mit den $A_n(x)$ aus Satz 2.1.2 und den Koeffizienten α_n der formalen Potenzreihe $U \sim \sum_{n=0}^{\infty} i^n \alpha_n \tau^{2n}$ aus Satz 4.2.4, S. 74 setzen wir

$$D_{2n}(x) := \sum_{k=0}^{n} i^{k} \alpha_{k} A_{2n-2k}(x),$$

$$(n \ge 0) \quad (2.10)$$

$$D_{2n+1}(x) := \sum_{k=0}^{n} i^{k} \alpha_{k} A_{2n+1-2k}(x).$$

Dann ist

$$\widetilde{C}_n(q) = \text{k.T.v.}\left(D_n(x)\sum_{m=0}^{\infty}\frac{\widetilde{F}^{(m)}(q)}{m!}x^m\right) \quad (n \ge 0), \quad (2.11)$$

und die Funktionen $D_n(x)$ genügen der Rekursionsformel

$$D_0(x) = e^{ix^2/2},$$

$$D_{2n+1}(x) = x D_{2n}(x) + \left(\frac{D_{2n}(x)}{x}\right)'',$$

$$(n \ge 0) \qquad (2.12)$$

$$D_{2n+2}(x) = x D_{2n+1}(x) + \left(\frac{D_{2n+1}(x)}{x}\right)'' + i^{n+1} \alpha_{n+1} e^{ix^2/2}.$$

Der Beweis ist trivial. Nach Definition der Funktionen $D_n(x)$ in (2.10) ergibt sich nämlich (2.11) unter Beachtung der Gleichungen (1.30) aus (2.5) und die Rekursionsformel (2.12) unmittelbar aus (2.6).

Mit Hilfe dieses Satzes kann man die Koeffizienten $\tilde{C}_n(q)$ bereits direkt berechnen. Da aber in die Auswertung der Formel (2.11) nur der Hauptteil und das konstante Glied der Laurententwicklung von $D_n(x)$ um den Punkt x = 0 eingeht, während die rekursive Berechnung dieser Hauptteile und konstanten Glieder nach (2.12) neben den Zahlen α_n noch die Kenntnis gewisser positiver x-Potenzen verlangt, wünscht man sich zur Verminderung des Rechenaufwandes eine Formel, die zur Bestimmung des Hauptteils und des konstanten Gliedes der Laurententwicklung von $D_{n+1}(x)$ weitgehend nur den Hauptteil und das konstante Glied der Laurententwicklung von $D_n(x)$ benötigt. Eine solche Formel läßt sich mit Hilfe einiger zusätzlicher Informationen über die allgemeine Form dieser Haupteile und konstanten Glieder gewinnen. Als erste Informationsquelle ist hier das Corollar 2.1.1 zu erwähnen, das auch mit $D_n(x)$ statt $A_n(x)$ und mit $\tilde{C}_n(q)$ statt $B_n(q)$ richtig bleibt, wenn man die Gleichungen (2.10) und (2.11) berücksichtigt. Die genaue Form der Hauptteile und konstanten Glieder der Funktionen $D_n(x)$ ergibt sich aus dem folgenden Satz.

Satz 2.1.4. Die formale Reihe

$$U \cdot S \sim \sum_{n=0}^{\infty} \widetilde{C}_n(q) \, \tau^n$$

läßt sich in eine nach den Ableitungen von $\widetilde{F}(q)$ angeordnete Reihe umordnen:

$$\sum_{n=0}^{\infty} \widetilde{C}_n(q) \tau^n \doteq \sum_{n=0}^{\infty} \mathcal{D}_n(\tau) \, \frac{\widetilde{F}^{(n)}(q)}{n!}.$$
(2.13)

Die Funktionen $\mathcal{D}_n(\tau)$ sind formale Potenzreihen in τ . Sie genügen der Rekursionsformel

$$\mathcal{D}_{n+1}(\tau) \doteq \frac{\mathcal{D}_n(\tau)}{\tau} \qquad (n = 1, 2),$$

$$\mathcal{D}_{n+1}(\tau) \doteq \frac{\mathcal{D}_n(\tau)}{\tau} - (n-1)(n-2)\mathcal{D}_{n-3}(\tau) \qquad (n \ge 3)$$
(2.14)

mit den Anfangsbedingungen

$$\mathcal{D}_0(\tau) \doteq \sum_{n=0}^{\infty} \lambda_n \, \tau^{4n},$$

$$\mathcal{D}_1(\tau) \doteq \sum_{n=1}^{\infty} \mu_n \, \tau^{4n-1}.$$
(2.15)

Die Koeffizienten λ_n sind rekursiv durch

$$\lambda_0 = 1,$$

$$(n+1)\lambda_{n+1} = \sum_{k=0}^n 2^{4k+1} |E_{2k+2}| \lambda_{n-k} \qquad (n \ge 0)$$
(2.16)

gegeben. Die Koeffizienten μ_n bestimmen sich mit den durch

$$\varrho_0 = -1,$$

$$(n+1)\,\varrho_{n+1} = -\sum_{k=0}^n 2^{4k+1} |E_{2k+2}|\,\varrho_{n-k} \qquad (n \ge 0)$$
(2.17)

rekursiv definierten Zahlen ϱ_n aus

$$\mu_n = \frac{\lambda_n + \varrho_n}{2} \qquad (n \ge 1). \quad (2.18)$$

Die E_{2k} sind die Eulerschen Zahlen.

Beweis. Wir betrachten die formale Potenzreihe

$$G(\tau, x) := \sum_{n=0}^{\infty} D_n(x) \tau^n, \qquad (2.19)$$

wobei wir unter $D_n(x)$ von jetzt ab immer die Laurententwicklung dieser Funktion um den Punkt x = 0 verstehen wollen. Damit folgt aus (2.11)

k.T.v.
$$\left(G(\tau, x)\sum_{m=0}^{\infty} \frac{\widetilde{F}^{(m)}(q)}{m!} x^m\right) \doteq \sum_{n=0}^{\infty} \widetilde{C}_n(q) \tau^n \sim U \cdot S.$$
 (2.20)

Nach den Rechengesetzen für formale Potenzreihen ist es möglich, die Reihe in (2.19) in eine nach Potenzen von x angeordnete Reihe umzuordnen. Wir erhalten auf diese Weise die formale Laurentreihe mit unendlichem Hauptteil

$$G(\tau, x) \doteq \sum_{n = -\infty}^{+\infty} \mathcal{D}_{-n}(\tau) x^n, \qquad (2.21)$$

in der die Koeffizienten $\mathcal{D}_n(\tau)$ formale Potenzreihen in τ sind. Trägt man diese Darstellung von $G(\tau, x)$ in (2.20) ein, so folgt wegen

k.T.v.
$$\left(G(\tau, x) \sum_{m=0}^{\infty} \frac{\widetilde{F}^{(m)}(q)}{m!} x^m\right) \doteq \sum_{n=0}^{\infty} \mathcal{D}_n(\tau) \frac{\widetilde{F}^{(n)}(q)}{n!}$$

die im Sinne formaler Potenzreihen zu verstehende Gleichung

$$\sum_{n=0}^{\infty} \widetilde{C}_n(q) \, \tau^n \doteq \sum_{n=0}^{\infty} \mathcal{D}_n(\tau) \, \frac{\widetilde{F}^{(n)}(q)}{n!},$$

die besagt, daß eine jede dieser beiden Reihen durch Umordnung aus der anderen hervorgeht. Damit ist (2.13) bewiesen.

Zur Herleitung der Rekursionsformel (2.14) betrachten wir den Ausdruck

$$G(\tau, x) - \tau \left[x G(\tau, x) + \left(\frac{G(\tau, x)}{x} \right)'' \right],$$

in dem die hochgestellten Striche zweimalige Differentiation nach x bedeuten. Mit der Reihe (2.19) und den Formeln (2.12) wird dieser Ausdruck gleich

$$e^{ix^{2}/2} + \sum_{n=0}^{\infty} D_{n+1}(x) \tau^{n+1} - \sum_{n=0}^{\infty} \left[x D_n(x) + \left(\frac{D_n(x)}{x}\right)'' \right] \tau^{n+1} \doteq e^{ix^{2}/2} \sum_{n=0}^{\infty} i^n \alpha_n \tau^{2n},$$

so daß $G(\tau, x)$ der Differentialgleichung

$$G(\tau, x) - \tau \left[x G(\tau, x) + \left(\frac{G(\tau, x)}{x}\right)'' \right] \doteq e^{ix^2/2} \sum_{n=0}^{\infty} i^n \alpha_n \tau^{2n}$$

genügt. Setzen wir hier für $G(\tau, x)$ die Laurentreihe (2.21) ein, so erhalten wir für die linke Seite der Differentialgleichung die Laurentreihe

$$\sum_{n=-\infty}^{+\infty} \mathcal{D}_{-n}(\tau) x^n - \sum_{n=-\infty}^{+\infty} \tau \, \mathcal{D}_{-n}(\tau) x^{n+1} - \sum_{n=-\infty}^{+\infty} \tau \, \mathcal{D}_{-n}(\tau)(n-1)(n-2) x^{n-3}$$
$$\doteq \sum_{n=-\infty}^{+\infty} \left[\mathcal{D}_{-n}(\tau) - \tau \, \mathcal{D}_{-n+1}(\tau) - (n+2)(n+1) \, \tau \, \mathcal{D}_{-n-3}(\tau) \right] x^n.$$

Da die rechte Seite der Differentialgleichung bei x = 0 regulär ist, muß der Hauptteil dieser Laurentreihe verschwinden. Wir haben also

$$\mathcal{D}_{-n}(\tau) - \tau \, \mathcal{D}_{-n+1}(\tau) - (n+2)(n+1) \, \tau \, \mathcal{D}_{-n-3}(\tau) \doteq 0$$

für $n = -1, -2, -3, \ldots$, und das ist gerade (2.14), wenn man n mit -n ersetzt.

Für $n \geq 2$ lassen sich die formalen Potenzreihen $\mathcal{D}_n(\tau)^{2)}$ aus (2.14) rekursiv berechnen, falls $\mathcal{D}_0(\tau)$ und $\mathcal{D}_1(\tau)$ bekannt sind. Auf dem im Beweis von Satz 4.3.1, S. 76 beschriebenen Wege gelingt es, diese zu bestimmen und so die Formeln (2.15) bis (2.18) zu beweisen. Für $n \leq 6$ findet man dort neben den numerischen Werten der λ_n , die wir schon in Satz 2.1.1 angegeben haben, auch numerische Werte für die Zahlen ϱ_n und μ_n . Der Beweis ist damit abgeschlossen.

Mit den Ergebnissen des letzten Satzes können wir jetzt Satz 2.1.1 beweisen. Zunächst folgt aus (2.14) und den Anfangsbedingungen (2.15), daß die Koeffizienten der formalen Potenzreihen $\mathcal{D}_n(\tau)$ für jedes $n \geq 0$ rationale Zahlen und darum insbesondere reell sind. Ferner müssen die Exponenten aller in $\mathcal{D}_n(\tau)$ vorkommenden Potenzen von $\tau \equiv -n \mod 4$ sein. Nach (2.13) sind die Koeffizienten $\widetilde{C}_n(q)$ daher eine reelle und rationale Kombination von Ableitungen der Funktion $\widetilde{F}(q)$ und die Ordnung einer jeden in $\widetilde{C}_n(q)$ auftretenden Ableitung von $\widetilde{F}(q)$ ist $\equiv -n$ mod 4. Da nach Corollar 2.1.1 – mit $\widetilde{C}_n(q)$ statt $B_n(q)$ – die höchste in $\widetilde{C}_n(q)$ vorkommende Ableitung $\widetilde{F}^{(3n)}(q)$ ist und die Kongruenz $3n \equiv -n \mod 4$ gilt, haben die $\widetilde{C}_n(q)$ die allgemeine Form

$$\widetilde{C}_{n}(q) = \sum_{0 \le k \le \frac{3n}{4}} d_{k}^{(n)} \frac{\widetilde{F}^{(3n-4k)}(q)}{(3n-4k)!} \qquad (n \ge 0) \qquad (2.22)$$

²⁾ Die in (2.21) auftretenden $\mathcal{D}_n(\tau)$ mit negativem Index sind für uns uninteressant, da sie in der Gleichung (2.13) nicht vorkommen.

2.1. Formeln zur Koeffizientenberechnung

mit gewissen rationalen Zahlen $d_k^{(n)}$. Durch Übergang zum Realteil ergibt sich hieraus die in Satz 2.1.1 angegebene Darstellung der Koeffizienten; denn nach (1.15), S. 13 und (1.31), S. 18 braucht man dazu nur das Zeichen "~" mit dem Zeichen "~" zu ersetzen.

Nach (2.15) ist λ_n der Koeffizient von τ^{4n} in $\mathcal{D}_0(\tau)$. Mit (2.13) folgt daraus, daß die Funktion $\widetilde{F}(q)$ für jedes $n \geq 0$ in $\widetilde{C}_{4n}(q)$ genau λ_n -mal auftritt. Andererseits ist – wie aus (2.22) ersichtlich – der Koeffizient von $\widetilde{F}(q)$ in $\widetilde{C}_{4n}(q)$ gerade $d_{3n}^{(4n)}$, so daß für alle $n \geq 0$ die Beziehung $d_{3n}^{(4n)} = \lambda_n$ besteht. Zusammen mit (2.16) sind damit (2.3) und (2.4) bewiesen.

Zum Beweis der Rekursionsformel (2.2) vergleichen wir (2.22) und (2.11). Wir erhalten:

Hauptteil und konstantes Glied von
$$D_n(x)$$

hat für $n \ge 0$ die Form $\sum_{0 \le k \le \frac{3n}{4}} d_k^{(n)} x^{-3n+4k}$. (2.23)

Schreiben wir zur Abkürzung "H.T.v." für "Hauptteil von" und nehmen in den Formeln (2.12) auf beiden Seiten den Hauptteil, so lassen sich diese zu

H.T.v.
$$\left[D_{n+1}(x)\right] =$$
 H.T.v. $\left[x D_n(x) + \left(\frac{D_n(x)}{x}\right)''\right]$ $(n \ge 0)$

zusammenfassen. Man sieht unmittelbar, daß die positiven Potenzen von $D_n(x)$ zur Auswertung der rechten Seite dieser Gleichung nicht benötigt werden, so daß von $D_n(x)$ nur der Hauptteil und das konstante Glied bekannt zu sein brauchen. Wir setzen zur Vereinfachung noch $d_k^{(n)} := 0$ für k < 0 oder k > 3n/4 und erhalten mit (2.23) einerseits

$$H.T.v.\left[x D_n(x) + \left(\frac{D_n(x)}{x}\right)^n\right]$$

= H.T.v.
$$\left[\sum_{0 \le k \le \frac{3n}{4}} d_k^{(n)} x^{-3n+4k+1} + \sum_{0 \le k \le \frac{3n}{4}} (3n-4k+1)(3n-4k+2) d_k^{(n)} x^{-3n+4k-3}\right]$$

$$= \text{H.T.v.} \left[\sum_{0 \le k \le \frac{3n}{4} + 1} d_{k-1}^{(n)} x^{-3n+4k-3} \right] \\ + \sum_{0 \le k < \frac{3(n+1)}{4}} (3n+1-4k)(3n+2-4k) d_k^{(n)} x^{-3n+4k-3} \\ = \sum_{0 \le k < \frac{3(n+1)}{4}} \left[(3n+1-4k)(3n+2-4k) d_k^{(n)} + d_{k-1}^{(n)} \right] x^{-3n+4k-3}$$

und andererseits

H.T.v.
$$[D_{n+1}(x)] = \sum_{\substack{0 \le k < \frac{3(n+1)}{4}}} d_k^{(n+1)} x^{-3n+4k-3},$$

woraus durch Koeffizientenvergleich die Rekursionsformel (2.2) folgt. Die Zahlen $d_{3n}^{(4n)}$ – das sind die konstanten Glieder von $D_{4n}(x)^{3}$ – werden von dieser Rekursionsformel nicht erfaßt. Da wir sie jedoch oben bereits auf anderem Wege bestimmt haben, ist das nicht wesentlich. Damit ist Satz 2.1.1 vollständig bewiesen.

Die Idee, die Reihe $\sum_{n=0}^{\infty} \tilde{C}_n(q) \tau^n$ in eine nach Ableitungen von $\tilde{F}(q)$ angeordnete Reihe umzuordnen, um so die genaue Form der Koeffizienten $\tilde{C}_n(q)$ zu bestimmen, stammt im wesentlichen von Riemann. Der Leser vergleiche hierzu Siegel [32, S. 290 ff]. In etwas anderer Form findet man dort auch die Formeln (2.14) und (2.15). Das in Satz 2.1.1 angegebene einfache Verfahren zur Berechnung der Koeffizienten der Riemann-Siegel-Formel ist aber bei Siegel und auch bei Edwards [16, Ch. 7] noch nicht vorhanden und daher neu.⁴)

Der jetzt folgende Satz ist für verschiedene Kontrollrechnungen nützlich.

Satz 2.1.5. Für $n \ge 0$ ist

$$\widehat{C}_{4n}(\sqrt{\pi}) = (-1)^n \,\alpha_{2n} \,\cos\frac{\pi}{8},$$

$$\widehat{C}_{4n+2}(\sqrt{\pi}) = (-1)^{n+1} \,\alpha_{2n+1} \,\sin\frac{\pi}{8}$$
(2.24)

und

$$\sum_{k=0}^{3n} (-1)^k \frac{d_k^{(4n)}}{2^{6n-2k} (6n-2k)!} = \alpha_{2n},$$

$$\sum_{k=0}^{3n+1} (-1)^k \frac{d_k^{(4n+2)}}{2^{6n+3-2k} (6n+3-2k)!} = \alpha_{2n+1}.$$
(2.25)

Beweis. Wir setzen in der Riemann-Siegel-Formel (Satz 1.3.1, S. 18) $t = t_M := 2\pi M^2$ mit ganzzahligem M > 0. Dann wird a = N = M, $q = \sqrt{\pi}$ und $\tau = \tau_M = 1/(2\sqrt{2t_M})$. Nach Satz 3.2.1 des nächsten Kapitels auf Seite 53 stellt die Riemann-Siegel-Formel die Funktion Z(t) für $t \to +\infty$ bzw. $\tau \to 0$ asymptotisch dar. Da $\tau \to 0$ erfüllt ist, wenn τ speziell die Folge τ_M , $M = 1, 2, 3, \ldots$ durchläuft, ist daher

$$Z(t_M) \sim 2\sum_{n=1}^{M} \frac{\cos(\vartheta(t_M) - t_M \log n)}{\sqrt{n}} + \frac{(-1)^{M-1}}{\sqrt{M}} \sum_{n=0}^{\infty} \widehat{C}_n(\sqrt{\pi}) \tau_M^n$$

für $\tau_M \to 0$.

Eine zweite Darstellung für $Z(t_M)$ ergibt sich, wenn wir in der Riemann-Siegel-Formel den linksseitigen Grenzwert $t \to t_M$ mit $t < t_M$ bilden. Wegen N = M - 1und $q = -\sqrt{\pi}$ wird dann nämlich

$$Z(t_M) \sim 2\sum_{n=1}^{M-1} \frac{\cos(\vartheta(t_M) - t_M \log n)}{\sqrt{n}} - \frac{(-1)^{M-1}}{\sqrt{M}} \sum_{n=0}^{\infty} \widehat{C}_n(-\sqrt{\pi}) \tau_M^n$$

³⁾ Nach (2.23) besitzen nur diejenigen $D_n(x)$ ein konstantes Glied, deren Index durch 4 teilbar ist.

 $^{^{(4)}}$ Der Leser vergleiche jedoch die Bemerkung am Ende dieses Abschnittes auf Seite 31 in Zusammenhang mit der untenstehenden Formel (2.27).
2.1. Formeln zur Koeffizientenberechnung

für $\tau_M \to 0$. Subtrahieren wir diese Darstellung für $Z(t_M)$ von der ersten, so erhalten wir nach Kürzen von $2/\sqrt{M}$, wenn wir noch beachten, daß die $\widehat{C}_n(q)$ mit geradem Index gerade und die mit ungeradem Index ungerade Funktionen von qsind⁵)

$$\cos(\vartheta(t_M) - t_M \log M) \sim (-1)^M \sum_{n=0}^{\infty} \widehat{C}_{2n}(\sqrt{\pi}) \tau_M^{2n} \qquad (\tau_M \to 0).$$

Wegen

$$t_M \log M = \frac{t_M}{2} \log \frac{t_M}{2\pi} - \frac{t_M}{2} + \pi M^2$$

ist daher

$$\cos\left(\frac{t_M}{2}\log\frac{t_M}{2\pi} - \frac{t_M}{2} - \vartheta(t_M)\right) \sim \sum_{n=0}^{\infty} \widehat{C}_{2n}(\sqrt{\pi}) \tau_M^{2n} \qquad (\tau_M \to 0).$$

Ein Vergleich mit der aus Satz 4.2.4, S. 74 folgenden asymptotischen Entwicklung

$$\cos\left(\frac{t}{2}\log\frac{t}{2\pi} - \frac{t}{2} - \vartheta(t)\right)$$
$$= \cos\frac{\pi}{8}\cos\left(\frac{t}{2}\log\frac{t}{2\pi} - \frac{t}{2} - \frac{\pi}{8} - \vartheta(t)\right)$$
$$-\sin\frac{\pi}{8}\sin\left(\frac{t}{2}\log\frac{t}{2\pi} - \frac{t}{2} - \frac{\pi}{8} - \vartheta(t)\right)$$
$$= \cos\frac{\pi}{8}\Re(U) - \sin\frac{\pi}{8}\Im(U)$$
$$\sim \cos\frac{\pi}{8}\sum_{n=0}^{\infty} (-1)^n \alpha_{2n} \tau^{4n} - \sin\frac{\pi}{8}\sum_{n=0}^{\infty} (-1)^n \alpha_{2n+1} \tau^{4n+2}$$

ergibt dann in einfacher Weise die Gleichheit der beiden formalen Potenzreihen

$$\cos\frac{\pi}{8}\sum_{n=0}^{\infty}(-1)^n\,\alpha_{2n}\,\tau^{4n} - \sin\frac{\pi}{8}\sum_{n=0}^{\infty}(-1)^n\,\alpha_{2n+1}\,\tau^{4n+2} \doteq \sum_{n=0}^{\infty}\widehat{C}_{2n}(\sqrt{\pi})\,\tau^{2n},$$

woraus wir die Formeln (2.24) durch Koeffizientenvergleich erhalten.

Mit den in Satz 4.1.5, S. 64 angegebenen Werten der geraden Ableitungen von $\widehat{F}(q)$ an der Stelle $\sqrt{\pi}$ ist

$$\frac{\widehat{F}^{(12n-4k)}(\sqrt{\pi})}{(12n-4k)!} = \frac{(-1)^{n+k}}{2^{6n-2k}(6n-2k)!} \cos\frac{\pi}{8},^{6)}$$
$$\frac{\widehat{F}^{(12n+6-4k)}(\sqrt{\pi})}{(12n+6-4k)!} = \frac{(-1)^{n+1+k}}{2^{6n+3-2k}(6n+3-2k)!} \sin\frac{\pi}{8}.$$

Für $q = \sqrt{\pi}$ folgt damit aus (2.1)

$$\widehat{C}_{4n}(\sqrt{\pi}) = \cos\frac{\pi}{8} \sum_{k=0}^{3n} (-1)^{n+k} \frac{d_k^{(4n)}}{2^{6n-2k} (6n-2k)!}$$

⁵⁾ Das folgt aus (2.1), weil $\widehat{F}(q)$ eine gerade Funktion von q ist.

⁶⁾ In dem Ausdruck "(12n - 4k)!" fehlt in der Originalarbeit das "n".

Kapitel 2. Die Koeffizienten der Riemann-Siegel-Formel

$$\widehat{C}_{4n+2}(\sqrt{\pi}) = \sin\frac{\pi}{8} \sum_{k=0}^{3n+1} (-1)^{n+1+k} \frac{d_k^{(4n+2)}}{2^{6n+3-2k} (6n+3-2k)!}$$

Hieraus erhalten wir (2.25) durch Vergleich mit (2.24).

Die Formeln (2.25) kann man für Kontrollrechnungen verwenden. Sämtliche $d_k^{(2n)}$ aus Tabelle II wurden mit diesen Formeln überprüft. In allen Fällen ergab sich Übereinstimmung mit den Werten der α_n aus Satz 4.2.4, S. 74. Wir können daher davon ausgehen, daß die $d_k^{(n)}$ in Tabelle II korrekt wiedergegeben sind.⁷ Wir transformieren jetzt unsere Darstellung der Riemann-Siegel-Formel auf die

Wir transformieren jetzt unsere Darstellung der Riemann-Siegel-Formel auf die von Lehmer in [22] eingeführte Form, die zur numerischen Berechnung der Funktion Z(t) heute gewöhnlich verwendet wird. Man findet die Riemann-Siegel-Formel in dieser Form auch in [15] und [20] und – gering abgewandelt – bei Edwards in [16, Ch. 7].

Satz 2.1.6 (Lehmersche Form der Riemann-Siegel-Formel). Für $t \to +\infty$ ist

$$Z(t) \sim 2\sum_{n=1}^{N} \frac{\cos(\vartheta(t) - t\log n)}{\sqrt{n}} + \frac{(-1)^{N-1}}{\sqrt{a}} \sum_{n=0}^{\infty} \frac{C_n(z)}{a^n}$$

mit

$$a := \sqrt{\frac{t}{2\pi}}, \qquad N := \lfloor a \rfloor, \qquad z := 1 - 2(a - N).$$

Die Koeffizienten $C_n(z)$ sind mit den Zahlen $d_k^{(n)}$ aus Satz 2.1.1 und der Funktion

$$F(z) := \frac{\cos\frac{\pi}{2}(z^2 + \frac{3}{4})}{\cos\pi z}$$
(2.26)

durch

$$C_n(z) := \frac{1}{2^{2n}} \sum_{k=0}^{\lfloor 3n/4 \rfloor} \frac{d_k^{(n)}}{\pi^{2n-2k} (3n-4k)!} F^{(3n-4k)}(z) \quad (n \ge 0) \quad (2.27)$$

gegeben. Für die Werte der Koeffizienten $C_n(z)$ mit geradem Index an der Stelle 1 gilt

$$C_{4n}(1) = (-1)^n \frac{\alpha_{2n}}{2^{8n} \pi^{2n}} \cos \frac{\pi}{8},$$

$$C_{4n+2}(1) = (-1)^{n+1} \frac{\alpha_{2n+1}}{2^{8n+4} \pi^{2n+1}} \sin \frac{\pi}{8}.$$

(n \ge 0) (2.28)

Beweis. Wir setzen

$$F(z) := \widehat{F}(q)$$

 mit

$$z := \frac{q}{\sqrt{\pi}}.$$

30

⁷⁾ Die $d_k^{(n)}$ mit ungeradem n können mit diesem Verfahren zwar nicht direkt überprüft werden; man kann aber davon ausgehen, daß die $d_k^{(2n-1)}$ richtig sind, wenn das für die $d_k^{(2n)}$ zutrifft, da letztere aus den ersten mit Hilfe der Rekursionsformel (2.2) berechnet wurden.

Dann gilt für $k \ge 0$

$$\widehat{F}^{(k)}(q) = \left(\sqrt{\pi}\right)^{-k} F^{(k)}(z)$$
(2.29)

und (2.26) folgt wegen $F(z) = \hat{F}(\sqrt{\pi} z)$ aus der in Satz 2.1.1 angegebenen Darstellung von $\hat{F}(q)$.

Betrachten wir nun unsere Form der Riemann-Siegel-Formel in Satz 1.3.1, S. 18. Wegen $\tau = 1/(4a\sqrt{\pi})$ können wir schreiben

$$\sum_{n=0}^{\infty} \widehat{C}_n(q) \, \tau^n \doteq \sum_{n=0}^{\infty} \frac{\widehat{C}_n(q)}{(4\sqrt{\pi})^n \, a^n} \doteq \sum_{n=0}^{\infty} \frac{C_n(z)}{a^n} \tag{2.30}$$

 mit

$$C_n(z) := \frac{\widehat{C}_n(q)}{(4\sqrt{\pi})^n} \qquad (n \ge 0).$$
 (2.31)

Tragen wir hier die Darstellung (2.1) der Koeffizienten $\widehat{C}_n(q)$ ein und ersetzen die darin auftretenden Ableitungen von $\widehat{F}(q)$ nach Gleichung (2.29) mit denen von F(z), so ergibt sich (2.27). Unter Berücksichtigung von (2.30) folgt so die in diesem Satz angegebene Form der Riemann-Siegel-Formel.

Mit z = 1 lautet (2.31)

$$C_n(1) = \frac{\widehat{C}_n(\sqrt{\pi})}{(4\sqrt{\pi})^n} \qquad (n \ge 0)$$

und die Formeln (2.28) ergeben sich aus (2.24).

Da sich die Fakultäten sehr leicht in Primfaktoren zerlegen lassen, kann man mit Hilfe der Primfaktorzerlegung der Zahlen $d_k^{(n)}$ aus Tabelle II die in (2.27) auftretenden rationalen Zahlen $d_k^{(n)}/[2^{2n}(3n-4k)!]$ fast ohne Rechnung in reduzierter Form angeben. Die sich daraus ergebenden expliziten Darstellungen der Koeffizienten $C_n(z)$ als Kombination von Ableitungen der Funktion F(z) findet man für $n \leq 12$ in Tabelle III, S. 97.

Für $n \leq 4$ sind die $C_n(z)$ auch von Haselgrove in [20] und – gering abgewandelt – von Edwards in [16, S. 154], sowie für $n \leq 8$ in der nicht reduzierten Form (2.27) von Crary und Rosser in [15] angegeben worden. In anderer Form findet man die Koeffizienten der Riemann-Siegel-Formel für $n \leq 4$ auch bei Siegel in [32, S. 290].

Die Darstellung (2.27) der Koeffizienten $C_n(z)$ ist zusammen mit der Rekursionsformel (2.2) der Zahlen $d_k^{(n)}$ und den numerischen Werten der ersten λ_n bereits in der Zeitschrift Math. of Comp. **31**, No. 139, July 1977, P. 803 in Form einer Mitteilung veröffentlicht worden. Der zugehörige Beweis, den wir in diesem Abschnitt geführt haben, ist aber nach Wissen des Autors bisher noch nicht erschienen.

2.2 Potenz- und T-Reihen der Koeffizienten $C_n(z)$

Wie die Restabschätzung im nächsten Kapitel ergeben wird, kann man die Funktion Z(t) mit Hilfe der Riemann-Siegel-Formel sehr genau berechnen. Verwendet

man dazu – wie heute allgemein üblich – die Lehmersche Form aus Satz 2.1.6, so erhebt sich die Frage nach einem möglichst effektiven Verfahren zur numerischen Berechnung der Koeffizienten $C_n(z)$ für $|z| \leq 1$. Dafür ist nämlich

$$C_n(z) := \frac{1}{2^{2n}} \sum_{k=0}^{\lfloor 3n/4 \rfloor} \frac{d_k^{(n)}}{\pi^{2n-2k} (3n-4k)!} F^{(3n-4k)}(z) \qquad (n \ge 0) \qquad (2.32)$$

mit

$$F(z) = \frac{\cos\frac{\pi}{2}(z^2 + \frac{3}{4})}{\cos\pi z}$$
(2.33)

aus zwei Gründen denkbar ungeeignet: erstens, weil die expliziten Darstellungen der höheren Ableitungen von F(z) eine sehr komplizierte Gestalt annehmen, und zweitens, weil die Berechnung der Funktion F(z) mit (2.33) in der Nähe der Punkte z = -1/2 und z = 1/2 numerisch instabil ist, da dort Zähler und Nenner gleichzeitig verschwinden. Eine einfache Überlegung zeigt, daß die letzte Bemerkung auch für die Ableitungen von F(z) gilt, wenn man zu ihrer Berechnung die eben betrachteten expliziten Darstellungen heranzieht. Wir können diese Schwierigkeiten aber auf folgende Weise umgehen: Als Funktion der komplexen Veränderlichen zist F(z) ganz.⁸⁾Da F(z) außerdem gerade in z ist, lassen sich die Funktionen $C_n(z)$ nach (2.32) in Potenzreihen der Form

$$C_{2n}(z) = \sum_{k=0}^{\infty} c_{2k}^{(2n)} z^{2k}, \qquad (2.34)$$

$$C_{2n+1}(z) = \sum_{k=0}^{\infty} c_{2k+1}^{(2n+1)} z^{2k+1}$$
(2.35)

entwickeln, die für alle komplexen z konvergieren und deren Koeffizienten reell sind. Setzen wir in (2.34) n = 0 und vergleichen mit (2.33), so ergibt sich wegen $C_0(z) = F(z)$ bei entsprechender Zerlegung von $\cos \left[\pi (z^2 + 3/4)/2 \right]$ die Beziehung

$$\sin\frac{\pi}{8} \cos\frac{\pi}{2}z^2 - \cos\frac{\pi}{8} \sin\frac{\pi}{2}z^2 = \cos\pi z \sum_{k=0}^{\infty} c_{2k}^{(0)} z^{2k}, \qquad (2.36)$$

aus der sich die Zahlen $c_{2k}^{(0)}$ rekursiv berechnen lassen, wenn man die hier auftretenden trigonometrischen Funktionen mit ihren Potenzreihen um den Punkt z = 0ersetzt. Mit Hilfe dieser Rekursionsformel hat der Autor auf der UNIVAC 1108 der Gesellschaft für Wissenschaftliche Datenverarbeitung Göttingen unter Verwendung einer 150-stelligen dezimalen Arithmetik die ersten $c_{2k}^{(0)}$ bis einschließlich $c_{154}^{(0)}$ mit einem absoluten Fehler < 10^{-100} numerisch bestimmt.⁹ Die Potenzreihenkoeffizienten der Ableitungen $F^{(m)}(z)$ ergaben sich hieraus für $m \leq 30$ mit so hoher relativer Genauigkeit, daß die Koeffizienten $c_{2k}^{(10)}$ der Funktion $C_{10}(z)$, in der $F^{(30)}(z)$ auftritt, noch mit einem absoluten Fehler < 10⁻⁶⁰ aus (2.32) berechnet

 $^{^{8)}}$ Das folgt entweder direkt aus (2.33), wenn man beachtet, daß alle Nullstellen von $\cos\pi z$ auch Nullstellen von $\cos \left[\pi (z^2 + 3/4)/2\right]$ sind, oder aus Satz 4.1.2, S. 61 zusammen mit den Beziehungen $\widetilde{F}(q) = \widehat{F}(q) + i \widehat{F}(q)$ und $F(z) = \widehat{F}(\sqrt{\pi} z)$. ⁹⁾ Die Tabellen im Anhang wurden mit selbstgeschriebenen C-Programmen neu berechnet.

werden konnten. Für n < 10 waren die absoluten Fehler der Potenzreihenkoeffizienten von $C_n(z)$ entsprechend kleiner und ließen sich deshalb ebenfalls mit 10^{-60} nach oben abschätzen. Auf 50 Dezimalstellen gerundete Werte dieser Potenzreihenkoeffizienten sind für $0 \le n \le 10$ in Tabelle IV, S. 101 abgedruckt¹⁰. Für jede dieser 11 Potenzreihen ist die Summe über alle abgedruckten Koeffizienten unterhalb der durchgezogenen Linie angegeben. Diese Summen, die Näherungen für die Funktionswerte $C_n(1)$ darstellen, wurden mit genaueren und auf anderem Wege berechneten Werten von $C_n(1)$ verglichen. In allen Fällen ergaben sich nur geringe Abweichungen in der 50-ten Stelle. Man kann daher davon ausgehen, daß sämtliche in Tabelle IV wiedergegebenen Koeffizienten korrekt auf 50 Dezimalstellen gerundet sind. Für gerades n erhält man die für diesen Vergleich notwendigen genauen Werte von $C_n(1)$ aus (2.28). Für ungerades n kann man für $C_n(1)$ zwar auch eine Formel angeben; da diese jedoch sehr kompliziert ist, verzichten wir darauf, sie hier wiederzugeben und verweisen auf [15]. Abschließend sei noch angemerkt, daß nicht Gleichung (2.32) sondern die reduzierten Darstellungen aus Tabelle III, S. 97 Grundlage für die Berechnungen waren.

Schon bei Lehmer finden sich in [22] erste numerische Werte der Koeffizienten der Potenzreihenentwicklungen (2.34) und (2.35). Haselgrove gibt diese Koeffizienten für $n \leq 4$ auf etwa 11 bis 20 Dezimalstellen genau in [20] an. Die von ihm gefundenen Werte sind von Edwards in [16, S. 158] übernommen worden. 70-stellige Werte, die mit denen aus Tabelle IV sehr gut übereinstimmen, haben Crary und Rosser für $n \leq 6$ in [15] angegeben; jedoch sind dort nicht alle Koeffizienten aufgeführt, deren Betrag > 10⁻⁷⁰ ist. Die in Tabelle IV wiedergegebenen Potenzreihenkoeffizienten von $C_7(z)$ bis $C_{10}(z)$ dürften neu sein.

Mit Hilfe dieser Potenzreihen kann man die Funktionen $C_n(z)$ bereits auf recht einfache Weise mit hoher Genauigkeit berechnen. Jedoch sind gerade für numerische Zwecke Entwicklungen Tschebyscheffschen Polynomen erster Art¹¹⁾ wesentlich günstiger. Für reelle z mit $|z| \leq 1$ sind diese Polynome durch

$$T_k(z) := \cos\left(k \arccos z\right) \qquad (k \ge 0) \qquad (2.37)$$

¹¹⁾ Eine Aufstellung der Eigenschaften dieser Polynome findet man z. B. in [1, Kap. 22].

¹⁰⁾ Hinweis für den an einer eigenen Berechnung interessierten Leser

Die Rekursionsformel (2.36) ist numerisch instabil, so daß ihre Auswertung mit einer erheblich höheren Rechengenauigkeit vorgenommen werden muß, als die gewünschte Genauigkeit der Potenzreihenkoeffizienten beträgt. Diese numerische Instabilität ist ein wesentliches Merkmal der Rekursionsformel, das sich nicht – etwa durch die Art der verwendeten Arithmetik (Fest- oder Gleitpunktarithmetik), die Art und Weise ihrer Implementierung oder ähnlicher Kriterien – beeinflussen läßt. Ursache dafür ist die unterschiedliche Geschwindigkeit, mit der die Potenzreihenkoeffizienten von $\cos(\pi z^2/2)$ bzw. $\sin(\pi z^2/2)$ im Vergleich zu denen von $\cos \pi z$ gegen Null gehen.

Die bei *vorgegebener* Rechengenauigkeit maximal erreichbare Genauigkeit der Potenzreihenkoeffizienten läßt sich auf folgende Weise experimentell bestimmen:

Man drucke die Koeffizienten mit der vollen Rechengenauigkeit so lange aus, bis die Beträge dieser Koeffizienten nicht mehr weiter zurückgehen, sondern aufgrund der endlichen Rechengenauigkeit und der daraus resultierenden Rundungsfehler wieder zu steigen beginnen. Dann liegt die maximal erreichbare Genauigkeit in der Größenordnung des betragskleinsten Koeffizienten und alle ab diesem Koeffizienten noch weiter berechneten Potenzreihenkoeffizienten sowie die Dezimal- oder Binärstellen ab dieser Größenordnung in den vorangehenden Koeffizienten sind irrelevant. Sollte die so bestimmte maximale Genauigkeit nicht ausreichend sein, ist eine Erhöhung der Rechengenauigkeit nicht zu vermeiden.

gegeben. Sie genügen der Rekursionsformel

$$T_0(z) \equiv 1,$$

 $T_1(z) = z,$
 $T_{k+1}(z) = 2z T_k(z) - T_{k-1}(z) \qquad (k \ge 1).$

Wir haben die geraden Funktionen $C_{2n}(z)$ und $z^{-1}C_{2n+1}(z)$ in Reihen nach geraden Tschebyscheffpolynomen entwickelt

$$C_{2n}(z) = \sum_{k=0}^{\infty} \gamma_{2k}^{(2n)} T_{2k}(z),$$

$$(n \ge 0) \qquad (2.38)$$

$$C_{2n+1}(z) = z \sum_{k=0}^{\infty} \gamma_{2k}^{(2n+1)} T_{2k}(z),$$

die wie die entsprechenden Potenzreihen für alle komplexen z konvergieren. Dabei bedeutet der Strich an den Summenzeichen, daß das konstante Glied – wie bei Fourierreihen üblich¹²⁾ – zu halbieren ist. Die Koeffizienten $\gamma_{2k}^{(n)}$ kann man mit Hilfe der Formeln

$$\gamma_{2k}^{(2n)} = \sum_{l=k}^{\infty} {\binom{2l}{l-k}} \frac{c_{2l}^{(2n)}}{2^{2l-1}},$$

$$\gamma_{2k}^{(2n+1)} = \sum_{l=k}^{\infty} {\binom{2l}{l-k}} \frac{c_{2l+1}^{(2n+1)}}{2^{2l-1}}$$

$$(n \ge 0, \ k \ge 0) \quad (2.39)$$

aus den Potenzreihenkoeffizienten $c_k^{(n)}$ berechnen. Man erhält diese Formeln, wenn man die Tschebyscheffentwicklung der geraden z-Potenzen

$$z^{2k} = \sum_{l=0}^{k} 2^{-2k+1} {\binom{2k}{k-l}} T_{2l}(z) \qquad (k \ge 0)$$

in die Potenzreihenentwicklungen (2.34) und (2.35) einsetzt und die dabei entstehenden unendlichen Reihen aufsteigend nach Tschebyscheffschen Polynomen anordnet. Mit den Formeln (2.39) hat der Autor die $\gamma_{2k}^{(n)}$ für $n \leq 10$ auf der oben genannten Rechenanlage aus den 60-stelligen Werten der Potenzreihenkoeffizienten numerisch bestimmt. Die auf 50 Dezimalstellen gerundeten Werte finden sich in Tabelle V, S. 113. Zur Kontrolle sind auch hier für jede der 11 Tschebyscheffreihen die Summen über alle in der Tabelle aufgeführten Koeffizienten – bei Halbierung des konstanten Gliedes – unterhalb der durchgezogenen Linie angegeben. Diese Summen stellen ebenfalls Näherungen für die Werte $C_n(1)$ dar; denn wegen $T_k(1) = 1$ für $k \ge 0$ folgt aus den Formeln (2.38) $C_n(1) = \sum_{k=0}^{\infty} \gamma_{2k}^{(n)}$. Ein Vergleich mit den entsprechenden Summen von Tabelle IV ergibt nur geringe Abweichungen in

¹²⁾ Mit der Substitution $x = \cos \theta$ geht nämlich eine Tschebyscheffreihe der Form f(x) = $\sum_{k=0}^{\infty} a_k T_k(x)$ wegen (2.37) in die Fouriercosinusreihe $f(\cos \theta) = \sum_{k=0}^{\infty} a_k \cos k\theta$ über.

der 50-ten Dezimalstelle. Man kann daher auch hier davon ausgehen, daß alle in Tabelle V angegebenen Koeffizienten korrekt auf 50 Dezimalstellen gerundet sind.

In der Lehmerschen Form der Riemann-Siegel-Formel (Satz 2.1.6) benötigen wir die Koeffizienten $C_n(z)$ nur für reelle z mit $|z| \leq 1$.¹³⁾ Aus numerischer Sicht sind aber gerade für diese z die Tschebyscheffentwicklungen besonders gut geeignet, da die Tschebyscheffschen Polynome in diesem Intervall der Abschätzung $|T_k(z)| \leq 1$ genügen. Anhand des folgenden Beispiels soll der Vorteil der Tschebyscheffentwicklungen gegenüber den entsprechenden Potenzreihenentwicklungen deutlich gemacht werden.

Für reelle z mit $|z| \leq 1$ ist eine Polynomapproximation für $C_{10}(z)$ gesucht, deren absoluter Fehler $< 10^{-12}$ ist. Der erste Koeffizient in der Potenzreihe von $C_{10}(z)$, den man nach Tabelle IV, S. 112 vernachlässigen darf, ist $c_{38}^{(10)}$, so daß sich ein Approximationspolynom vom Grade 18 in z^2 ergibt. Verwendet man jedoch die Tschebyscheffentwicklung von $C_{10}(z)$, so zeigt Tabelle V, S. 124, daß wegen $|T_k(z)| \leq 1$ alle Koeffizienten ab $\gamma_{20}^{(10)}$ vernachlässigt werden können. Das auf diese Weise entstehende Polynom hat dann nur den Grad 9 in z^2 und ist wegen des geringeren Rechenaufwandes für numerische Zwecke wesentlich besser geeignet als das aus der Potenzreihe gewonnene Approximationspolynom. Wenn man die Tschebyscheffentwicklungen (2.38) verwendet, bereitet die Berechnung der Funktionen $C_n(z)$ daher keinerlei Schwierigkeiten mehr.

2.3 Abschätzungen von $C_n(z)~(0 \le n \le 10,~|z| \le 1)$

Wir wollen jetzt den Fehler untersuchen, den man begeht, wenn man die Potenzreihen (2.34) und (2.35) nach dem K-ten Gliede abbricht. Dazu benötigen wir Abschätzungen für die Ableitungen der Funktion F(z), die man aus dem folgenden Satz erhält.

Satz 2.3.1. Für $n \ge 0$ und reelle z mit $|z| \le 1$ gelten die Abschätzungen

$$\left|F^{(2n)}(z)\right| \le \frac{(2n)!}{2^n n!} \pi^n,$$
 (2.40)

$$\left|F^{(2n+1)}(z)\right| \le 2^{n+1} \pi^n n!$$
 (2.41)

Insbesondere genügen die Potenzreihenkoeffizienten $c_{2k}^{(0)}$ von F(z) der Abschätzung¹⁴

$$\left|c_{2k}^{(0)}\right| \le \frac{\pi^k}{2^k k!} \qquad (k \ge 0)$$

Beweis. Aus der Integraldarstellung von F(z) (Satz 4.1.4, S. 64) folgt durch 2*n*-bzw. 2n + 1-malige Differentiation nach z

$$F^{(2n)}(z) = \sqrt{2} \,\Re\left(e^{-i\pi/8} \int_{0}^{\infty} e^{-\pi v^{2}/2} \left(\pi e^{i\pi/4} v\right)^{2n} \frac{\cosh\left(\pi z e^{i\pi/4} v\right)}{\cosh\left(\pi e^{i\pi/4} v\right)} \,dv\right),$$

¹³⁾ In Satz 2.1.6 ist zwar immer z > -1; da z dem Wert -1 aber beliebig nahe kommen kann, ist es sinnvoll, diesen in die Betrachtung mit aufzunehmen.

¹⁴⁾ Vgl. hierzu die in [15] gefundene, wesentlich schlechtere Abschätzung $|c_{2k}^{(0)}| < c \cdot 5^{-2k}$. Dabei ist c eine absolute positive Konstante.

Kapitel 2. Die Koeffizienten der Riemann-Siegel-Formel

$$F^{(2n+1)}(z) = \sqrt{2} \,\Re\left(e^{-i\pi/8} \int_{0}^{\infty} e^{-\pi v^{2}/2} \left(\pi e^{i\pi/4} v\right)^{2n+1} \frac{\sinh\left(\pi z e^{i\pi/4} v\right)}{\cosh\left(\pi e^{i\pi/4} v\right)} \,dv\right).$$

Unter Verwendung des Satzes 4.4.1, S. 80 gelten dann für reelle zmit $|z| \leq 1$ die Abschätzungen

$$\begin{split} \left| F^{(2n)}(z) \right| &\leq \sqrt{2} \int_{0}^{\infty} e^{-\pi v^{2}/2} \, (\pi v)^{2n} \, dv = \frac{(2\pi)^{n}}{\sqrt{\pi}} \, \Gamma\Big(n + \frac{1}{2}\Big), \\ \left| F^{(2n+1)}(z) \right| &\leq \sqrt{2} \int_{0}^{\infty} e^{-\pi v^{2}/2} \, (\pi v)^{2n+1} \, \sqrt{2} \, dv = 2^{n+1} \, \pi^{n} \, \Gamma(n+1), \end{split}$$

aus denen (2.40) und (2.41) folgen, wenn man

$$\Gamma\left(n+\frac{1}{2}\right) = \frac{(2n)!}{2^{2n}n!}\sqrt{\pi}$$

beachtet. Die Abschätzung der Potenzreihenkoeffizienten $c_{2k}^{(0)} = F^{(2k)}(0)/(2k)!$ erhält man direkt aus (2.40).

In der Lehmerschen Form der Riemann-Siegel-Formel ist z reell mit $|z| \leq 1$.¹⁵⁾ In allen jetzt folgenden Abschätzungen bis zum Ende dieses Abschnittes sind daher immer diese z gemeint, auch wenn das nicht ausdrücklich erwähnt wird.

Mit dem Rest
glied von Lagrange ergeben sich aus (2.34) und (2.35) für
 $K \geq 0$ die Gleichungen

$$C_{2n}(z) = \sum_{k=0}^{K} c_{2k}^{(2n)} z^{2k} + \frac{C_{2n}^{(2K+2)}(\xi)}{(2K+2)!} z^{2K+2},$$

$$(n \ge 0) \quad (2.42)$$

$$C_{2n+1}(z) = \sum_{k=0}^{K} c_{2k+1}^{(2n+1)} z^{2k+1} + \frac{C_{2n+1}^{(2K+3)}(\xi)}{(2K+3)!} z^{2K+3}.$$

Dabei ist ξ eine reelle Zahl, die wegen $|z| \leq 1$ der Ungleichung $|\xi| < 1$ genügt. Die Restglieder in (2.42) lassen sich dann folgendermaßen abschätzen:

Satz 2.3.2. Für $|\xi| < 1$ und $K \ge 0$ gelten die Abschätzungen

$$\frac{\left|C_{2n}^{(2K+2)}(\xi)\right|}{(2K+2)!} \le \frac{\pi^{K+1-n}}{2^{7n+K+1}} \sum_{k=0}^{\left\lfloor\frac{3n}{2}\right\rfloor} \binom{6n+2K+2-4k}{2K+2} \frac{2^{2k} d_k^{(2n)}}{(3n+K+1-2k)!},$$

$$\frac{\left|C_{2n+1}^{(2K+3)}(\xi)\right|}{(2K+3)!} \le \frac{\pi^{K+1-n}}{2^{7n+K+5}} \sum_{k=0}^{\left\lfloor\frac{6n+3}{4}\right\rfloor} \binom{6n+2K+6-4k}{2K+3} \frac{2^{2k} d_k^{(2n+1)}}{(3n+K+3-2k)!}.$$

 $^{15)}$ Vgl. dazu die Fu β note 13) auf Seite 35.

36

2.3. Abschätzungen von $C_n(z)$ $(0 \le n \le 10, |z| \le 1)$

Beweis. Wir ersetzen n in (2.32) mit 2n bzw. 2n + 1. Dann wird

$$\frac{\left|\frac{C_{2n}^{(2K+2)}(\xi)\right|}{(2K+2)!} = \frac{1}{2^{4n} (2K+2)!} \sum_{k=0}^{\lfloor \frac{3n}{2} \rfloor} \frac{d_k^{(2n)}}{\pi^{4n-2k} (6n-4k)!} F^{(6n+2K+2-4k)}(\xi),$$
$$\frac{\left|\frac{C_{2n+1}^{(2K+3)}(\xi)\right|}{(2K+3)!} = \frac{1}{2^{4n+2} (2K+3)!} \sum_{k=0}^{\lfloor \frac{6n+3}{4} \rfloor} \frac{d_k^{(2n+1)}}{\pi^{4n+2-2k} (6n+3-4k)!} F^{(6n+2K+6-4k)}(\xi)$$

und hieraus folgt nach einfacher Umformung die Behauptung des Satzes, wenn man die Ableitungen von $F(\xi)$ mit ihren Abschätzungen aus Satz 2.3.1 ersetzt. Dazu benötigt man übrigens nur (2.40), da alle hier auftretenden Ableitungen von $F(\xi)$ gerade sind.

Für $0 \le n \le 10$ können wir jetzt den Fehler abschätzen, der entsteht, wenn man die Funktionen $C_n(z)$ aus ihren Potenzreihenentwicklungen unter Berücksichtigung aller in Tabelle IV wiedergegebenen Koeffizienten berechnet. Dazu wählen wir die Werte von K in den Formeln (2.42) so, daß $c_{2K}^{(2n)}$ bzw. $c_{2K+1}^{(2n+1)}$ die letzten noch in Tabelle IV wiedergegebenen Koeffizienten werden. Auf die sich so ergebenden Restglieder wenden wir Satz 2.3.2 an und erhalten, wenn wir die dort auftretenden Summen mit den exakten Werten der Zahlen $d_k^{(n)}$ aus Tabelle II, S. 95 entsprechend genau abschätzen:

Satz 2.3.3. $F\ddot{u}r |\xi| < 1$ ist

$$\begin{split} \frac{\left|C_{0}^{(88)}(\xi)\right|}{88!} &= \frac{\left|F^{(88)}(\xi)\right|}{88!} < 1.7 \cdot 10^{-46}, \\ \frac{\left|C_{1}^{(91)}(\xi)\right|}{91!} < 4.4 \cdot 10^{-47}, & \frac{\left|C_{6}^{(98)}(\xi)\right|}{98!} < 2.0 \cdot 10^{-46}, \\ \frac{\left|C_{2}^{(92)}(\xi)\right|}{92!} < 1.9 \cdot 10^{-46}, & \frac{\left|C_{7}^{(99)}(\xi)\right|}{99!} < 3.5 \cdot 10^{-46}, \\ \frac{\left|C_{3}^{(93)}(\xi)\right|}{93!} < 5.5 \cdot 10^{-46}, & \frac{\left|C_{8}^{(100)}(\xi)\right|}{100!} < 5.6 \cdot 10^{-46}, \\ \frac{\left|C_{4}^{(94)}(\xi)\right|}{94!} < 1.4 \cdot 10^{-45}, & \frac{\left|C_{9}^{(101)}(\xi)\right|}{101!} < 8.5 \cdot 10^{-46}, \\ \frac{\left|C_{5}^{(95)}(\xi)\right|}{95!} < 2.8 \cdot 10^{-45}, & \frac{\left|C_{10}^{(102)}(\xi)\right|}{102!} < 1.3 \cdot 10^{-45}. \end{split}$$

Mit diesen Abschätzungen folgt aus (2.42), daß man $C_n(z)$ für $0 \le n \le 10$ und $|z| \le 1$ auf mindestens 44 Dezimalstellen genau berechnen kann, wenn man alle in Tabelle IV abgedruckten Potenzreihenkoeffizienten berücksichtigt. Verglichen mit diesen Abschätzungen sind natürlich die Fehler, die durch das Runden der Potenzreihenkoeffizienten auf 50 Dezimalstellen entstehen, vernachlässigbar klein, so daß wir auf ihre Abschätzung verzichten können.

Zur Genauigkeit der Tschebyscheffentwicklungen bemerken wir noch, daß der Fehler, der entsteht, wenn man die unendliche Reihe $\sum_{k=0}^{\infty} \gamma_{2k}^{(n)} T_{2k}(z)$ mit der

Partialsumme $\sum_{k=0}^{K'} \gamma_{2k}^{(n)} T_{2k}(z)$ ersetzt, für alle z mit $|z| \leq 1$ dem Betrage nach nur wenig größer ist als der Betrag des ersten vernachlässigten Koeffizienten $\gamma_{2K+2}^{(n)}$. Auf eine genauere Untersuchung dieser Fehler können wir hier aber nicht eingehen.

Der folgende Satz gibt Abschätzungen für die Funktionen $C_n(z)$.

Satz 2.3.4. Für $0 \le n \le 10$ und $|z| \le 1$ lassen sich die Funktionen $C_n(z)$

(a) ohne Verwendung ihrer Potenzreihenentwicklungen mit

$ C_0(z) = F(z) \le 1,$		
$ C_1(z) < 1.1 \cdot 10^{-1},$	$ C_6(z) < 6.7 \cdot 10^{-3},$	
$ C_2(z) < 3.7 \cdot 10^{-2},$	$ C_7(z) < 8.3 \cdot 10^{-3},$	
$ C_3(z) < 2.8 \cdot 10^{-2},$	$ C_8(z) < 5.6 \cdot 10^{-3},$	
$ C_4(z) < 1.2 \cdot 10^{-2},$	$ C_9(z) < 8.2 \cdot 10^{-3},$	
$ C_5(z) < 1.2 \cdot 10^{-2},$	$ C_{10}(z) < 6.3 \cdot 10^{-3}$	

grob abschätzen.

(b) Numerische Untersuchungen ihrer Potenzreihen führen zu den optimalen Abschätzungen

$ C_0(z) = F(z) < 9.3 \cdot 10^{-1},$	
$ C_1(z) < 3.1 \cdot 10^{-2},$	$ C_6(z) < 3.4 \cdot 10^{-5},$
$ C_2(z) < 5.2 \cdot 10^{-3},$	$ C_7(z) < 1.1 \cdot 10^{-5},$
$ C_3(z) < 3.2 \cdot 10^{-4},$	$ C_8(z) < 2.5 \cdot 10^{-6},$
$ C_4(z) < 4.7 \cdot 10^{-4},$	$ C_9(z) < 2.5 \cdot 10^{-6},$
$ C_5(z) < 7.6 \cdot 10^{-5},$	$ C_{10}(z) < 2.2 \cdot 10^{-7}.$

Beweis. Wir ersetzen in (2.32) wieder n mit 2n bzw. 2n + 1. Mit Hilfe von Satz 2.3.1 wird dann

$$|C_{2n}(z)| \leq \frac{1}{2^{7n} \pi^n} \sum_{k=0}^{\left\lfloor \frac{3n}{2} \right\rfloor} \frac{2^{2k} d_k^{(2n)}}{(3n-2k)!}, \qquad (n \geq 0)$$
$$|C_{2n+1}(z)| \leq \frac{1}{2^n \pi^{n+1}} \sum_{k=0}^{\left\lfloor \frac{6n+3}{4} \right\rfloor} \frac{d_k^{(2n+1)} (3n+1-2k)!}{2^{2k} (6n+3-4k)!},$$

und hieraus erhält man (a), wenn man diese Summen mit den Zahlen $d_k^{(n)}$ aus Tabelle II mit der entsprechenden Genauigkeit abschätzt.

Die optimalen Abschätzungen (b) ergeben sich durch genauere numerische Untersuchungen der Funktionen $C_n(z)$ mit Hilfe ihrer Potenzreihen unter Verwendung von Tabelle IV. Aufgrund der Ergebnisse von Satz 2.3.3 ist dieses Vorgehen gerechtfertigt.

2.3. Abschätzungen von $C_n(z)~(0\leq n\leq 10,~|z|\leq 1)$

Bei der Restabschätzung der Riemann-Siegel-Formel im nächsten Kapitel werden uns diese Abschätzungen der $C_n(z)$ noch von Nutzen sein. Mit Hilfe von (b) wird es gelingen, die ersten fünf Restglieder der Riemann-Siegel-Formel optimal abzuschätzen.

Kapitel 3

Die Riemann-Siegel-Formel mit Restglied

3.1 Restabschätzung der asymptotischen Reihe von S

In Kapitel 1, S. 7 haben wir für den Ausdruck

$$S := \frac{1}{2\sqrt{\pi}} e^{i\pi/8 - iq^2/2} \int_{\stackrel{\bullet}{\xrightarrow{}}} \frac{e^{iv^2/2 + qv}}{\cosh\frac{\sqrt{\pi}}{2}v} g(\tau, v - iq) \, dv \quad \begin{array}{c} (\tau > 0, \\ -\sqrt{\pi} < q \le \sqrt{\pi}) \end{array}$$
(3.1)

die formale Entwicklung nach Potenzen von τ

$$S \sim \sum_{n=0}^{\infty} B_n(q) \, \tau^n$$

hergeleitet. Wir wollen jetzt untersuchen, mit welcher Genauigkeit die Partialsummen dieser formalen Reihe den Ausdruck S approximieren. Da q dem Wert $-\sqrt{\pi}$ beliebig nahe kommen kann, schließen wir ihn in diesem Kapitel ausdrücklich mit ein¹⁾ und definieren die Restglieder

$$\operatorname{RS}_{K}(\tau) := S - \sum_{n=0}^{K} B_{n}(q) \tau^{n} \qquad (K \ge 0, \ \tau > 0, \ |q| \le \sqrt{\pi}), \qquad (3.2)$$

die dann für diese K, τ und q allgemeingültig abgeschätzt werden müssen. Bis zum Ende dieses Abschnittes beziehen sich alle jetzt folgenden Formeln und Sätze grundsätzlich auf diese Werte von K, τ und q. Eventuell bei τ auftretende Betragstriche können wir wegen $\tau > 0$ fortlassen. Zur Abkürzung setzen wir noch $\varepsilon := e^{i\pi/4}$ und geben zunächst eine exakte Darstellung für $\mathrm{RS}_K(\tau)$ an.

Satz 3.1.1. Die Restglieder $RS_K(\tau)$ besitzen die Integraldarstellung

$$\operatorname{RS}_{K}(\tau) = \frac{\varepsilon}{2\sqrt{\pi}} e^{i\pi/8} \int_{-\infty}^{+\infty} \frac{e^{-u^{2}/2}}{\cosh\frac{\sqrt{\pi}}{2}(iq+\varepsilon u)} \operatorname{Rg}_{K}(\tau,\varepsilon u) \, du,$$
(3.3)

¹⁾ In der Originalarbeit ist das noch nicht vollständig umgesetzt worden.

die auch für $q = \pm \sqrt{\pi}$ gültig bleibt. Dabei sind die Funktionen $\operatorname{Rg}_{K}(\tau, z)$ die Restglieder in der Entwicklung von $g(\tau, z)$ nach Potenzen von τ , die für alle z in der längs der positiven imaginären Achse bis zum Punkt $z = i/(2\tau)$ aufgeschnittenen z-Ebene durch

$$\operatorname{Rg}_{K}(\tau, z) := g(\tau, z) - \sum_{n=0}^{K} P_{n}(z) \tau^{n}$$
(3.4)

gegeben sind. Für diese z ist

$$\operatorname{Rg}_{K}(\tau, z) = \tau^{K+1} z \int_{0}^{1} \frac{P_{K+1}'(zw)}{1+2i\tau zw} \exp\left(\tau z \int_{w}^{1} \frac{(zv)^{2} - i}{1+2i\tau zv} dv\right) dw.$$
(3.5)

Beweis. Da die $P_n(z)$ Polynome in z sind, unterscheiden sich die in (3.4) eingeführten Restglieder $\operatorname{Rg}_K(\tau, z)$ für jedes $K \ge 0$ nur um ein Polynom von $g(\tau, z)$ und besitzen deshalb dieselben Singularitäten wie diese Funktion. Nach Definition von $g(\tau, z)$ in Satz 1.2.1, S. 12 ist $\operatorname{Rg}_K(\tau, z)$ daher in der längs der positiven imaginären Achse bis zum Punkt $z = i/(2\tau)$ aufgeschnittenen z-Ebene eine holomorphe Funktion von z, die wegen $g(\tau, 0) \equiv 1$, $P_0(z) \equiv 1$ und $P_n(0) = 0$ für $n \ge 1$ der Bedingung

$$\operatorname{Rg}_{K}(\tau, 0) \equiv 0 \tag{3.6}$$

genügt. Folglich verschwindet $\operatorname{Rg}_{K}(\tau, z)$ für alle $K \geq 0$ bei z = 0 von mindestens erster Ordnung. Aus (3.4) – mit z = v - iq – und (3.1) folgt unter Verwendung von (1.25) durch Vergleich mit (3.2) die Darstellung

$$\operatorname{RS}_{K}(\tau) = \frac{1}{2\sqrt{\pi}} e^{i\pi/8 - iq^{2}/2} \int \frac{e^{iv^{2}/2 + qv}}{\cosh\frac{\sqrt{\pi}}{2}v} \operatorname{Rg}_{K}(\tau, v - iq) dv.$$
(3.7)

Da $\operatorname{Rg}_{K}(\tau, v - iq)$ bei v = iq von mindestens erster Ordnung und $\cosh \sqrt{\pi} v/2$ bei v = iq von höchstens erster Ordnung verschwinden, ist hier der Integrand im Punkte v = iq auch dann holomorph, wenn $q = \pm \sqrt{\pi}$ wird. Die Abänderung des Integrationsweges \mathcal{A}^{iq} in (3.7) für $q = +\sqrt{\pi}$ ist also nicht mehr notwendig und kann mit Hilfe des Cauchyschen Integralsatzes rückgängig gemacht werden. Daher dürfen wir den Integrationsweg in (3.7) auch für $q = \pm \sqrt{\pi}$ mit $v = iq + \varepsilon u$ ($-\infty < u < +\infty$) parametrisieren, woraus sich die in (3.3) angegebene Integraldarstellung von $\operatorname{RS}_{K}(\tau)$ ergibt.

Die Gleichung (3.5) erhält man in einfacher Weise aus der Differentialgleichung von $g(\tau, z)$ (vgl. (1.19), S. 14). Setzen wir dort (3.4) ein, so folgt – die hochgestellten Striche bedeuten gewöhnliche bzw. partielle Differentiation nach z –

$$\sum_{n=0}^{K} P'_n(z) \tau^n + \sum_{n=0}^{K} 2iz P'_n(z) \tau^{n+1} - \sum_{n=0}^{K} (z^2 - i) P_n(z) \tau^{n+1} + (1 + 2i\tau z) \operatorname{Rg}'_K(\tau, z) - \tau (z^2 - i) \operatorname{Rg}_K(\tau, z) = 0$$

und daraus wegen $P'_0(z) = 0$

$$\sum_{n=0}^{K} \left[P'_{n+1}(z) + 2iz P'_{n}(z) - (z^{2} - i) P_{n}(z) \right] \tau^{n+1} - P'_{K+1}(z) \tau^{K+1} + (1 + 2i\tau z) \operatorname{Rg}_{K}'(\tau, z) - \tau (z^{2} - i) \operatorname{Rg}_{K}(\tau, z) = 0.$$

Nach (1.20), S. 15 verschwindet hier die Summe identisch, und wir erhalten für $\operatorname{Rg}_{K}(\tau, z)$ die inhomogene lineare Differentialgleichung erster Ordnung

$$(1+2i\tau z) \operatorname{Rg}_{K}'(\tau, z) - \tau (z^{2} - i) \operatorname{Rg}_{K}(\tau, z) = P_{K+1}'(z) \tau^{K+1},$$

die sich nur durch die Inhomogenitä
t $P'_{K+1}(z)\,\tau^{K+1}$ von der Differentialgleichung für
 $g(\tau,z)$ unterscheidet. Unter Berücksichtigung der Anfangsbedingung (3.6) ist daher²⁾

$$\operatorname{Rg}_{K}(\tau, z)$$

$$= \exp\left(\tau \int_{0}^{z} \frac{y^{2} - i}{1 + 2i\tau y} \, dy\right) \int_{0}^{z} \left[\frac{P_{K+1}'(x) \, \tau^{K+1}}{1 + 2i\tau x} \, \exp\left(-\tau \int_{0}^{x} \frac{y^{2} - i}{1 + 2i\tau y} \, dy\right)\right] dx.$$

$$(3.8)$$

Dabei soll in allen drei Integralen als Integrationsweg die Verbindungsstrecke des Nullpunktes mit dem Punkt z bzw. x genommen werden. Für alle z aus der längs der positiven imaginären Achse bis zum Punkt $z = i/(2\tau)$ aufgeschnittenen z-Ebene sind dann die Ausdrücke $1 + 2i\tau x$ und $1 + 2i\tau y$ auf den so festgelegten Integrationswegen immer $\neq 0$, so daß die rechte Seite von (3.8) für diese z eine holomorphe Funktion von z ist. Damit ist durch (3.8) eine allgemeingültige Darstellung der Restglieder $\operatorname{Rg}_{K}(\tau, z)$ gegeben. Schreiben wir (3.8) in der Form

$$\operatorname{Rg}_{K}(\tau, z) = \tau^{K+1} \int_{0}^{z} \frac{P'_{K+1}(x)}{1+2i\tau x} \, \exp\!\left(\tau \int_{x}^{z} \frac{y^{2} - i}{1+2i\tau y} \, dy\right) dx$$

und parametrisieren zuerst den Integrationsweg des äußeren Integrals mit x = zw $(0 \le w \le 1)$ und danach den des inneren Integrals mit y = zv $(w \le v \le 1)$, so ergibt sich (3.5) und der Satz ist bewiesen.

Zur Abschätzung von $\operatorname{RS}_K(\tau)$ benötigen wir zunächst eine Abschätzung für $\operatorname{Rg}_K(\tau, z)$. Dabei können wir uns wegen (3.3) auf diejenigen z beschränken, die auf der Winkelhalbierenden des ersten und dritten Quadranten liegen. Nun zeigen

 $a(z)f'(z) + b(z)f(z) = h(z) \qquad a(z) \neq 0$

die allgemeine Lösung

$$f(z) = \exp\left(-\int \frac{b(z)}{a(z)} dz\right) \left\{ \int \left[\frac{h(z)}{a(z)} \exp\left(\int \frac{b(z)}{a(z)} dz\right)\right] dz + \text{const.} \right\}.$$

Da $g(\tau, z)$ Lösung der homogenen Differentialgleichung ist, könnte man (3.8) auch mit Hilfe von $g(\tau, z)$ schreiben. Für die Abschätzung von $\operatorname{Rg}_{K}(\tau, z)$ im nächsten Satz ist das aber nicht vorteilhaft.

 $^{^{2)}}$ Bekanntlich hat die inhomogene lineare Differentialgleichung erster Ordnung

bereits ganz grobe Abschätzungen von (3.5) mit $z=\varepsilon u$ und reellem u,daß für ${\rm Rg}_K(\tau,\varepsilon u)$ eine Abschätzung der Form

$$|\operatorname{Rg}_{K}(\tau, \varepsilon u)| \leq |\operatorname{Polynom in } u| \ e^{cu^{2}} \tau^{K+1}$$

mit einer positiven Konstanten c
 zu erwarten ist. Schätzt man hiermit das Integral in (3.3) ab, so muß c
 der Bedingung $c \leq 1/2$ genügen, damit das Integral konvergiert. Die Abschätzung von
 $\operatorname{Rg}_K(\tau,\varepsilon u)$ ist daher mit der entsprechenden Sorgfalt vorzunehmen. In dem jetzt folgenden Satz haben wir das berücksichtigt.

Satz 3.1.2. Für reelle u gelten die Abschätzungen

$$|\operatorname{Rg}_{K}(\tau,\varepsilon u)| < \begin{cases} e^{u^{2/4}} V_{K}(u) \tau^{K+1} & \quad f\ddot{u}r \ u \leq -\frac{\theta}{2\sqrt{2}\tau}, \\ e^{\omega u^{2/4}} V_{K}(u) \tau^{K+1} & \quad f\ddot{u}r \ -\frac{\theta}{2\sqrt{2}\tau} < u < 0, \\ \sqrt{2} V_{K}(u) \tau^{K+1} & \quad f\ddot{u}r \ 0 \leq u \leq \frac{1}{2\sqrt{2}\tau}, \\ \sqrt{2} e^{0.28 u^{2}} V_{K}(u) \tau^{K+1} & \quad f\ddot{u}r \ u > \frac{1}{2\sqrt{2}\tau}. \end{cases}$$

Dabei ist $V_K(u)$ mit den natürlichen Zahlen $a_k^{(n)}$ aus (1.23), S. 16 durch

$$V_K(u) := \sum_{k=0}^{K+1} \frac{a_k^{(K+1)}}{(K+1+2k)!} |u|^{K+1+2k}$$
(3.9)

und ω für beliebige reelle $\theta > 0$ durch

$$\omega := 1 - \frac{2}{\theta} + \frac{4}{\theta^2} \arctan \frac{\theta}{\theta + 2}$$
(3.10)

gegeben, wobei arctan die gewöhnliche reelle Arkustangensfunktion ist. Für diese θ ist stets $0 < \omega < 1$.

Beweis. Mit $z = \varepsilon u$ folgt aus (3.5)

$$\operatorname{Rg}_{K}(\tau,\varepsilon u) = \tau^{K+1} iu \int_{0}^{1} \frac{P_{K+1}'(\varepsilon uw)}{\varepsilon - 2\tau uw} \exp\left(-\tau u \int_{w}^{1} \frac{(uv)^{2} - 1}{\varepsilon - 2\tau uv} \, dv\right) dw$$

und daraus

$$|\operatorname{Rg}_{K}(\tau,\varepsilon u)|$$

$$\leq \tau^{K+1} |u| \int_{0}^{1} \frac{|P'_{K+1}(\varepsilon uw)|}{|\varepsilon - 2\tau uw|} \exp\left(-\Re\left[\tau u \int_{w}^{1} \frac{(uv)^{2} - 1}{\varepsilon - 2\tau uv} \, dv\right]\right) dw.$$
(3.11)

Mit der Abkürzung

$$x := 2\sqrt{2}\,\tau u \tag{3.12}$$

 ist

$$|\varepsilon - 2\tau uw| = \frac{1}{\sqrt{2}} |1 + i - xw| = \frac{1}{\sqrt{2}} \left[1 + (xw - 1)^2 \right]^{\frac{1}{2}}$$
(3.13)

und

$$-\Re\left[\tau u \int_{w}^{1} \frac{(uv)^{2} - 1}{\varepsilon - 2\tau uv} dv\right]$$
$$= -\Re\left[\frac{x}{2} \int_{w}^{1} \frac{(uv)^{2} - 1}{1 + i - xv} dv\right] = \frac{x}{2} \int_{w}^{1} \frac{(u^{2}v^{2} - 1)(xv - 1)}{1 + (xv - 1)^{2}} dv$$
$$= \frac{x}{2} u^{2} \int_{w}^{1} v^{2} \frac{xv - 1}{1 + (xv - 1)^{2}} dv - \frac{x}{2} \int_{w}^{1} \frac{xv - 1}{1 + (xv - 1)^{2}} dv.$$

Für $x \neq 0$ können wir im ersten Integral v mit v/x substituieren. Das zweite Integral ist elementar lösbar – nach Multiplikation mit 2x wird der Zähler des Integranden gleich der Ableitung des Nenners – und wir erhalten

$$-\Re \left[\tau u \int_{w}^{1} \frac{(uv)^2 - 1}{\varepsilon - 2\tau uv} \, dv \right]$$
$$= \frac{u^2}{2x^2} \int_{xw}^{x} v^2 \frac{v - 1}{1 + (v - 1)^2} \, dv - \frac{1}{4} \log \left[1 + (x - 1)^2 \right] + \frac{1}{4} \log \left[1 + (xw - 1)^2 \right].$$

Setzen wir noch

$$\varphi(x,w) := \int_{xw}^{x} v^2 \frac{v-1}{1+(v-1)^2} \, dv, \qquad (3.14)$$

dann wird mit (3.13)

$$\frac{1}{|\varepsilon - 2\tau uw|} \exp\left(-\Re\left[\tau u \int_{w}^{1} \frac{(uv)^{2} - 1}{\varepsilon - 2\tau uv} \, dv\right]\right)$$
$$= \sqrt{2} \left[1 + (xw - 1)^{2}\right]^{-\frac{1}{4}} \left[1 + (x - 1)^{2}\right]^{-\frac{1}{4}} \exp\left(\frac{u^{2}}{2x^{2}} \varphi(x, w)\right).$$

Die Einschränkung $x \neq 0$ kann wegen der aus (3.12) und (3.14) folgenden Beziehung

$$\lim_{x \to 0} \frac{u^2}{2x^2} \varphi(x, w) = \frac{1}{16\tau^2} \varphi(0, w) = 0$$
(3.15)

natürlich jetzt fortfallen. Aus (3.11) erhalten wir daher, wenn wir die für0 < w < 1geltende Abschätzung

$$\left[1 + (xw-1)^2\right]^{-\frac{1}{4}} \left[1 + (x-1)^2\right]^{-\frac{1}{4}} < \begin{cases} \frac{1}{\sqrt{2}} & \text{für } x < 0, \\ 1 & \text{für } x \ge 0 \end{cases}$$

berücksichtigen,

$$|\operatorname{Rg}_{K}(\tau,\varepsilon u)| < \begin{cases} \tau^{K+1} |u| \int_{0}^{1} e^{u^{2}\varphi(x,w)/2x^{2}} |P_{K+1}'(\varepsilon uw)| \, dw \quad \text{für } x < 0, \\ \\ \tau^{K+1}\sqrt{2} |u| \int_{0}^{1} e^{u^{2}\varphi(x,w)/2x^{2}} |P_{K+1}'(\varepsilon uw)| \, dw \quad \text{für } x \ge 0. \end{cases}$$
(3.16)

Eine von w unabhängige Abschätzung für $\varphi(x, w)$ läßt sich wie folgt gewinnen. Bezeichnen wir der Einfachheit halber die partielle Ableitung von $\varphi(x, w)$ nach w mir $\varphi'(x, w)$, dann wird wegen (3.14)

$$\varphi'(x,w) = -x^3 w^2 \frac{xw-1}{1+(xw-1)^2}.$$

Hieraus ergibt sich

$$\varphi'(x,w) \begin{cases} < 0 & \text{für } 0 < w < 1 \text{ und } x < 0, \\ > 0 & \text{für } 0 < w < 1 \text{ und } 0 < x \le 1, \\ > 0 & \text{für } 0 < w < \frac{1}{x} \text{ und } x > 1, \\ = 0 & \text{für } w = \frac{1}{x} \text{ und } x > 1, \\ < 0 & \text{für } \frac{1}{x} < w < 1 \text{ und } x > 1. \end{cases}$$

Als Funktion von w ist $\varphi(x, w)$ daher in dem Bereich 0 < w < 1 für x < 0 streng monoton fallend, für $0 < x \le 1$ streng monoton steigend und hat für x > 1 bei w = 1/x ein lokales Maximum, das wegen der strengen Monotonie von $\varphi(x, w)$, die aus den letzten drei Abschätzungen von $\varphi'(x, w)$ folgt, gleichzeitig das Maximum von $\varphi(x, w)$ in dem gesamten Bereich $0 \le w \le 1$ ist. Folglich können wir $\varphi(x, w)$ für $0 \le w \le 1$ mit

$$\varphi(x,w) \leq \begin{cases} \varphi(x,0) & \text{ für } x < 0, \\ \varphi(x,1) = 0 & \text{ für } 0 \le x \le 1, \\ \varphi(x,\frac{1}{x}) & \text{ für } x > 1 \end{cases}$$

abschätzen, wobei sich die Gültigkeit dieser Abschätzung für x = 0 aus (3.15) ergibt. Setzen wir $f(x) := \varphi(x, 0)$, so ist nach (3.14)

$$f(x) = \int_{0}^{x} v^{2} \frac{v-1}{1+(v-1)^{2}} dv,$$

$$\varphi(x, \frac{1}{x}) = \int_{1}^{x} v^{2} \frac{v-1}{1+(v-1)^{2}} dv = f(x) - f(1),$$

46

und wir erhalten aus (3.16)

$$|\operatorname{Rg}_{K}(\tau,\varepsilon u)| < \begin{cases} \tau^{K+1} e^{u^{2}f(x)/2x^{2}} |u| \int_{0}^{1} |P'_{K+1}(\varepsilon uw)| \, dw & \text{für } x < 0, \\ \tau^{K+1}\sqrt{2} |u| \int_{0}^{1} |P'_{K+1}(\varepsilon uw)| \, dw & \text{für } 0 \le x \le 1, \\ \tau^{K+1}\sqrt{2} e^{u^{2}[f(x)-f(1)]/2x^{2}} & \text{für } x > 1. \\ \times |u| \int_{0}^{1} |P'_{K+1}(\varepsilon uw)| \, dw \end{cases}$$
(3.17)

Zur weiteren Abschätzung verwenden wir die Darstellung (1.22) der Polynome $P_n(z)$ und erhalten

$$\begin{split} |u| \int_{0}^{1} \left| P_{K+1}'(\varepsilon uw) \right| \, dw &= |u| \int_{0}^{1} \left| \sum_{k=0}^{K+1} i^{k-K-1} \frac{a_{k}^{(K+1)}}{(K+2k)!} \, (\varepsilon uw)^{K+2k} \right| dw \\ &\leq |u| \sum_{k=0}^{K+1} \frac{a_{k}^{(K+1)}}{(K+2k)!} \, |u|^{K+2k} \int_{0}^{1} w^{K+2k} \, dw \\ &= \sum_{k=0}^{K+1} \frac{a_{k}^{(K+1)}}{(K+1+2k)!} \, |u|^{K+1+2k}. \end{split}$$

Aus (3.17) folgt hiermit, wenn wir den letzten Ausdruck entsprechend (3.9) mit $V_K(u)$ bezeichnen und die Abschätzungen für f(x) bzw. f(x) - f(1) aus Satz 4.4.2, S. 81 verwenden

$$|\operatorname{Rg}_{K}(\tau,\varepsilon u)| < \begin{cases} e^{u^{2}/4} V_{K}(u) \tau^{K+1} & \text{für } x \leq -\theta, \\ e^{\omega u^{2}/4} V_{K}(u) \tau^{K+1} & \text{für } -\theta < x < 0, \\ \sqrt{2} V_{K}(u) \tau^{K+1} & \text{für } 0 \leq x \leq 1, \\ \sqrt{2} e^{0.28 u^{2}} V_{K}(u) \tau^{K+1} & \text{für } x > 1. \end{cases}$$

Dabei ist $\theta > 0$ und ω durch (3.10) gegeben. Wegen (3.12) ist das gerade die Behauptung des Satzes.

Mit Hilfe dieses Satzes läßt sich nun leicht eine Abschätzung für $\operatorname{RS}_K(\tau)$ gewinnen. Wir verwenden zur Vereinfachung der Schreibweise neben der Variablen τ jetzt auch wieder die Variable t – bekanntlich ist $\tau = 1/(2\sqrt{2t})$ bzw. $t = 1/(8\tau^2)$ – und haben den

Satz 3.1.3. Es sei $t_0 > (3K+4)/0.44$ und $\tau_0 := 1/(2\sqrt{2t_0})$. Dann ist für $t \ge t_0$ bzw. $\tau \le \tau_0$

$$|\mathrm{RS}_{K}(\tau)| < \left(Y_{K}^{(1)} + Y_{K}^{(2)} + Y_{K}^{(3)} + Y_{K}^{(4)}\right)\tau^{K+1}$$

mit

$$\begin{split} Y_K^{(1)} &:= \frac{(\theta \sqrt{t_0})^K e^{-\theta^2 t_0/4}}{\sqrt{\pi} \sinh \frac{\theta}{4} \sqrt{2\pi t_0}} \sum_{k=0}^{K+1} \frac{(\theta^2 t_0)^k a_k^{(K+1)}}{(K+1+2k)!} \Big(\frac{K}{2} + k + 1\Big), \\ Y_K^{(2)} &:= \frac{1}{\sqrt{2} \pi (\sqrt{w})^{K+1}} \sum_{k=0}^{K+1} \frac{w^{-k} a_k^{(K+1)}}{(K+1+2k)!} \Gamma\Big(\frac{K+1}{2} + k\Big), \\ Y_K^{(3)} &:= \frac{(\sqrt{2})^{K+1}}{\pi} \sum_{k=0}^{K+1} \frac{2^k a_k^{(K+1)}}{(K+1+2k)!} \Gamma\Big(\frac{K+1}{2} + k\Big), \\ Y_K^{(4)} &:= \frac{(\sqrt{t_0})^K e^{-0.22 t_0}}{0.44 \sqrt{2\pi} \sinh \frac{\sqrt{2\pi t_0}}{4}} \sum_{k=0}^{K+1} \frac{t_0^k a_k^{(K+1)}}{(K+1+2k)!} \Big(\frac{K}{2} + k + 1\Big). \end{split}$$

Dabei ist θ eine beliebige reelle Zahl, die nur der Bedingung $\theta > \sqrt{2(3K+4)/t_0}$ genügen muß und

$$w := \frac{1}{4} + \frac{1}{2\theta} - \frac{1}{\theta^2} \arctan \frac{\theta}{\theta + 2}.$$
(3.18)

Diese Abschätzung von $RS_K(\tau)$ gilt gleichmäßig in q.

Beweis. Für reelle x und y ist

$$\left|\cosh\left(x+iy\right)\right|^2 = \sinh^2 x + \cos^2 y.$$

Daher ist für reelle \boldsymbol{u}

$$\begin{aligned} \left|\cosh\frac{\sqrt{\pi}}{2}(iq+\varepsilon u)\right| &= \left|\cosh\frac{\sqrt{2\pi}}{4}\left[u+i(\sqrt{2}\,q+u)\right]\right| \\ &= \left[\sinh^2\frac{\sqrt{2\pi}}{4}u+\cos^2\frac{\sqrt{2\pi}}{4}(\sqrt{2}\,q+u)\right]^{\frac{1}{2}} \\ &\geq \left|\sinh\frac{\sqrt{2\pi}}{4}u\right| = \sinh\frac{\sqrt{2\pi}}{4}|u| \end{aligned}$$

und aus Satz 3.1.1 folgt

$$|\mathrm{RS}_K(\tau)| \le \frac{1}{2\sqrt{\pi}} \int_{-\infty}^{+\infty} \frac{e^{-u^2/2}}{\sinh \frac{\sqrt{2\pi}}{4}|u|} |\mathrm{Rg}_K(\tau,\varepsilon u)| \ du$$

gleichmäßig für die von uns betrachteten q mit $|q| \leq \sqrt{\pi}$, denn diese Abschätzung ist von q unabhängig. Wir zerlegen das Integral entsprechend den Geltungsbereichen der Abschätzungen von $|\mathrm{Rg}_K(\tau,\varepsilon u)|$ aus dem vorigen Satz und haben wegen $1/(2\sqrt{2}\tau) = \sqrt{t}$

$$|\mathrm{RS}_K(\tau)| \le J_1 + J_2 + J_3 + J_4 \tag{3.19}$$

 mit

$$J_1 := \int_{-\infty}^{-\theta\sqrt{t}} \Psi_K(\tau, u) \, du, \qquad \qquad J_2 := \int_{-\theta\sqrt{t}}^0 \Psi_K(\tau, u) \, du,$$

3.1. Restabschätzung der asymptotischen Reihe von S

$$J_3 := \int_0^{\sqrt{t}} \Psi_K(\tau, u) \, du, \qquad \qquad J_4 := \int_{\sqrt{t}}^{\infty} \Psi_K(\tau, u) \, du$$

und der Abkürzung

$$\Psi_K(\tau, u) := \frac{1}{2\sqrt{\pi}} \cdot \frac{e^{-u^2/2}}{\sinh \frac{\sqrt{2\pi}}{4}|u|} \left| \operatorname{Rg}_K(\tau, \varepsilon u) \right|.$$

Für reellea und positive reelle x bezeichnen wir die unvollständige Gamma-funktion^3)

$$\int_{x}^{\infty} e^{-v} v^{a-1} dv$$

wie üblich mit $\Gamma(a, x)$ und schätzen die Ausdrücke J_1 bis J_4 mit Hilfe von Satz 3.1.2 ab. Dabei sei $t_0 > (3K + 4)/0.44$ und $t \ge t_0$.

a) Abschätzung von J_1

$$J_1 < \frac{\tau^{K+1}}{2\sqrt{\pi}} \int_{\theta\sqrt{t}}^{\infty} \frac{e^{-u^2/2}}{\sinh\frac{\sqrt{2\pi}}{4}u} e^{u^2/4} V_K(u) \, du$$
$$\leq \frac{\tau^{K+1}}{2\sqrt{\pi} \sinh\frac{\theta}{4}\sqrt{2\pi t_0}} \int_{\theta\sqrt{t_0}}^{\infty} e^{-u^2/4} \sum_{k=0}^{K+1} \frac{a_k^{(K+1)}}{(K+1+2k)!} \, u^{K+1+2k} \, du.$$

Mit der Substitution $u = 2\sqrt{v}$ folgt daraus

$$J_1 < \frac{\tau^{K+1}}{\sqrt{\pi} \sinh \frac{\theta}{4} \sqrt{2\pi t_0}} \sum_{k=0}^{K+1} \frac{2^{K+2k} a_k^{(K+1)}}{(K+1+2k)!} \Gamma\Big(\frac{K}{2} + k + 1, \frac{\theta^2 t_0}{4}\Big).$$

Für $\theta^2 t_0/4>K/2+k+1$ ist die Abschätzung aus Satz 4.4.3, S. 84 anwendbar. Wegen $K/2+k+1\leq (3K+4)/2$ wird damit

$$J_1 < \left[\frac{(\theta \sqrt{t_0})^K e^{-\theta^2 t_0/4}}{\sqrt{\pi} \sinh \frac{\theta}{4} \sqrt{2\pi t_0}} \sum_{k=0}^{K+1} \frac{(\theta^2 t_0)^k a_k^{(K+1)}}{(K+1+2k)!} \left(\frac{K}{2} + k + 1\right)\right] \tau^{K+1}, \quad (3.20)$$

falls θ der Bedingung $\theta > \sqrt{2(3K+4)/t_0}$ genügt.

b) Abschätzung von J_2

$$J_2 < \frac{\tau^{K+1}}{2\sqrt{\pi}} \int_{0}^{\theta\sqrt{t}} e^{-u^2/2} \frac{u}{\sinh\frac{\sqrt{2\pi}}{4}u} e^{\omega u^2/4} \frac{V_K(u)}{u} du.$$

³⁾ Siehe [1, Kap. 6.5].

Wegen $u/\sinh u \leq 1$ für reelle u ist

$$\frac{u}{\sinh\frac{\sqrt{2\pi}}{4}u} \le \frac{4}{\sqrt{2\pi}}.$$
(3.21)

Damit wird

$$J_2 < \frac{\sqrt{2}\,\tau^{K+1}}{\pi} \int_0^\infty e^{-(2-\omega)u^2/4} \sum_{k=0}^{K+1} \frac{a_k^{(K+1)}}{(K+1+2k)!} \, u^{K+2k} \, du.$$

Wir setzen

$$w := \frac{2-\omega}{4}.$$

Wegen $\omega < 1$ ist dann w > 1/4 > 0 und mit der Substitution $u = \sqrt{v/w}$ folgt

$$J_2 < \left[\frac{1}{\sqrt{2}\pi (\sqrt{w})^{K+1}} \sum_{k=0}^{K+1} \frac{w^{-k} a_k^{(K+1)}}{(K+1+2k)!} \Gamma\left(\frac{K+1}{2}+k\right)\right] \tau^{K+1}.$$
 (3.22)

Die in (3.18) angegebene Darstellung von w ergibt sich aus der Definition von ω in (3.10).

c) Abschätzung von J_3

$$J_3 < \frac{\tau^{K+1}}{2\sqrt{\pi}} \int_0^{\sqrt{t}} e^{-u^2/2} \frac{u}{\sinh\frac{\sqrt{2\pi}}{4}u} \sqrt{2} \frac{V_K(u)}{u} \, du.$$

Mit (3.21) erhalten wir

$$J_3 < \frac{2\tau^{K+1}}{\pi} \int_0^\infty e^{-u^2/2} \sum_{k=0}^{K+1} \frac{a_k^{(K+1)}}{(K+1+2k)!} u^{K+2k} \, du$$

und daraus mit der Substitution $u=\sqrt{2v}$

$$J_3 < \left[\frac{(\sqrt{2})^{K+1}}{\pi} \sum_{k=0}^{K+1} \frac{2^k a_k^{(K+1)}}{(K+1+2k)!} \Gamma\left(\frac{K+1}{2}+k\right)\right] \tau^{K+1}.$$
 (3.23)

d) Abschätzung von J_4

$$J_4 < \frac{\tau^{K+1}}{2\sqrt{\pi}} \int_{\sqrt{t}}^{\infty} \frac{e^{-u^2/2}}{\sinh \frac{\sqrt{2\pi}}{4} u} \sqrt{2} e^{0.28 u^2} V_K(u) du$$
$$\leq \frac{\tau^{K+1}}{\sqrt{2\pi} \sinh \frac{\sqrt{2\pi t_0}}{4} \int_{\sqrt{t_0}}^{\infty}} e^{-0.22 u^2} \sum_{k=0}^{K+1} \frac{a_k^{(K+1)}}{(K+1+2k)!} u^{K+1+2k} du.$$

3.1. Restabschätzung der asymptotischen Reihe von S

Wir substituieren mit $u = \sqrt{v/0.22}$ und erhalten

$$J_4 < \frac{\tau^{K+1}}{2\sqrt{2\pi}\sinh\frac{\sqrt{2\pi t_0}}{4}} \sum_{k=0}^{K+1} \frac{0.22^{-\frac{K}{2}-k-1} a_k^{(K+1)}}{(K+1+2k)!} \Gamma\Big(\frac{K}{2} + k + 1, 0.22 t_0\Big).$$

Da wir $0.22 t_0 > (3K+4)/2$ vorausgesetzt haben, gilt für alle k mit $0 \le k \le K+1$ die Beziehung $0.22 t_0 > K/2 + k + 1$, so daß wir wieder die Abschätzung aus Satz 4.4.3, S. 84 verwenden können. Damit wird

$$J_4 < \left[\frac{(\sqrt{t_0})^K e^{-0.22 t_0}}{0.44 \sqrt{2\pi} \sinh \frac{\sqrt{2\pi t_0}}{4}} \sum_{k=0}^{K+1} \frac{t_0^k a_k^{(K+1)}}{(K+1+2k)!} \left(\frac{K}{2} + k + 1\right)\right] \tau^{K+1}.$$
 (3.24)

Bezeichnen wir die in den eckigen Klammern stehenden Ausdrücke in den Abschätzungen (3.20) – (3.24) der Reihe nach mit $Y_K^{(1)}$ bis $Y_K^{(4)}$, so ist das wegen (3.19) gerade die Behauptung des Satzes.

Bei ge
eigneter Vorgabe von t_0 und θ , also unter Berücksichtigung der Nebenbeding
ungen $t_0 > (3K+4)/0.44$ und $\theta > \sqrt{2(3K+4)/t_0}$, werden die
 $Y_K^{(l)}$ $(1 \le l \le 4)$ für jedes $K \ge 0$ konstante Größen. Folglich ist für hinreichend kleine
 τ

$$|\mathrm{RS}_K(\tau)| < c \, \tau^{K+1}$$

mit einer nur von K, aber nicht von τ und q abhängigen Konstanten c, und wir haben wegen (3.2) den

Satz 3.1.4. Für $K \ge 0$ ist gleichmäßig in q

$$S = \sum_{n=0}^{K} B_n(q) \tau^n + O(\tau^{K+1}) \qquad f \ddot{u}r \ \tau \to 0$$

Die formale Potenzreihe

$$\sum_{n=0}^{\infty} B_n(q) \, \tau^n$$

ist die asymptotische Entwicklung des Ausdruckes S für festes $|q| \leq \sqrt{\pi}$ und $\tau \to 0$ bzw. $t \to +\infty$.

Die Ausdrücke $Y_k^{(l)}$ $(1 \le l \le 4)$ in Satz 3.1.3 mögen dem Leser etwas kompliziert erscheinen. Es ist aber wenig sinnvoll, sie durch eine weitere Abschätzung zu vereinfachen, denn dazu wären Abschätzungen für die Zahlen $a_k^{(n)}$ notwendig, die nur bei entsprechend hohem Aufwand durch Untersuchung ihrer Rekursionsformel (1.23), S. 16 bzw. des Wachstums der Polynome $P_n(z)$ in

$$g(\tau, z) = \sum_{n=0}^{\infty} P_n(z) \tau^n \qquad (2\tau |z| < 1)$$

zu gewinnen wären. Unter der Voraussetzung, daß die $a_k^{(K+1)}$ exakt bekannt sind, kann man sich diese mühevollen Abschätzungen ersparen. Die direkte Berechnung der $Y_K^{(l)}$ $(1 \le l \le 4)$ aus den in Satz 3.1.3 angegebenen Darstellungen bereitet dann nämlich keine Schwierigkeiten. Auf diese Weise kann man recht einfach explizite Abschätzungen für $|\text{RS}_K(\tau)|$ herleiten, wie der folgende Satz für den Fall K = 10 zeigt.

Satz 3.1.5. Für $\tau \leq 1/40$ bzw. $t \geq 200$ ist gleichmäßig in q

$$|\mathrm{RS}_{10}(\tau)| < 1.4 \cdot 10^9 \, \tau^{11}.$$

Beweis. Wir setzen in Satz 3.1.3 K = 10 und $t_0 = 200$. Dann wird $\tau_0 = 1/40$ und die Bedingung $t_0 > (3K + 4)/0.44 = 34/0.44$ ist erfüllt. Mit

$$\Gamma\left(\frac{11}{2}+k\right) = \frac{(2k+10)!}{2^{2k+10}(k+5)!}\sqrt{\pi}$$

folgt nach einfachen Umformungen

$$Y_{10}^{(1)} = \frac{(200\,\theta^2)^5 \,e^{-50\,\theta^2}}{\sqrt{\pi}\,\sinh(5\sqrt{\pi}\theta)} \sum_{k=0}^{11} \frac{(200\,\theta^2)^k \,a_k^{(11)}}{(2k+11)!} (k+6),$$

$$Y_{10}^{(2)} = \frac{\sqrt{2}}{\sqrt{\pi}\,(\sqrt{4w})^{11}} \sum_{k=0}^{11} \frac{(4w)^{-k} \,a_k^{(11)}}{(2k+11)(k+5)!},$$

$$Y_{10}^{(3)} = \frac{1}{\sqrt{\pi}\,(\sqrt{2})^9} \sum_{k=0}^{11} \frac{2^{-k} \,a_k^{(11)}}{(2k+11)(k+5)!},$$

$$Y_{10}^{(4)} = \frac{200^5 \,e^{-44}}{0.44\sqrt{2\pi}\,\sinh(5\sqrt{\pi})} \sum_{k=0}^{11} \frac{200^k \,a_k^{(11)}}{(2k+11)!} (k+6).$$

Den abgesehen von der Nebenbedingung

$$\theta > \sqrt{\frac{2}{t_0}(3K+4)} = \frac{\sqrt{34}}{10}$$

noch frei wählbaren Parameter θ bestimmen wir so, daß die Summe $Y_{10}^{(1)}+Y_{10}^{(2)}$ möglichst klein wird. Ein recht guter Wert ist

$$\theta = \frac{3}{4} > \frac{\sqrt{34}}{10} = 0.58309\dots$$

Damit wird

$$w = \frac{11}{12} - \frac{16}{9} \arctan \frac{3}{11} = 0.44332\,96903\,98\dots$$

und mit den Zahlen $a_k^{\left(11\right) }$ aus Tabelle I, S. 91 berechnet man

$$\begin{split} Y_{10}^{(1)} &= 4.07738\ldots \cdot 10^7 < 4.08\cdot 10^7, \qquad Y_{10}^{(2)} = 9.67772\ldots \cdot 10^8 < 9.68\cdot 10^8, \\ Y_{10}^{(3)} &= 3.90019\ldots \cdot 10^8 < 3.91\cdot 10^8, \qquad Y_{10}^{(4)} = 2551.10\ldots < 10^4. \end{split}$$

Folglich ist für $\tau \leq 1/40$ bzw. $t \geq 200$ gleichmäßig in q

$$\begin{aligned} |\mathrm{RS}_{10}(\tau)| &< \left(4.08 \cdot 10^7 + 9.68 \cdot 10^8 + 3.91 \cdot 10^8 + 10^4\right) \tau^{11} \\ &= 1.39981 \cdot 10^9 \, \tau^{11} \\ &< 1.4 \cdot 10^9 \, \tau^{11} \end{aligned}$$

wie behauptet.

Mit Hilfe von Tabelle I kann man auf demselben Wege auch für K < 10 zu expliziten Abschätzungen von $|\text{RS}_K(\tau)|$ gelangen. Im nächsten Abschnitt benötigen wir jedoch nur die eben bewiesene Abschätzung von $|\text{RS}_{10}(\tau)|$, so daß wir auf die Durchführung dieser Abschätzungen verzichten können.

Abschließend sei noch darauf hingewiesen, daß die Abschätzung von $|\text{RS}_K(\tau)|$ in Satz 3.1.3 nur durch Entwicklung der Funktion $g(\tau, z)$ in eine Potenzreihe nach τ auf so einfache Weise zu gewinnen war. Hätten wir die andere Möglichkeit gewählt und $g(\tau, z)$ in eine Potenzreihe nach z entwickelt, so wären die Koeffizienten dieser Reihe Polynome in τ geworden, was bei einer Satz 3.1.3 entsprechenden Restabschätzung wegen der dann fehlenden Anordnung nach Potenzen von τ zu fast unüberwindlichen Schwierigkeiten geführt hätte. Der Leser vergleiche dazu noch einmal die Fußnote 8) auf S. 14.

3.2 Explizite Abschätzung der ersten 11 Restglieder

Wir betrachten zunächst die in Satz 1.3.1, S. 18 angegebene Darstellung der Riemann-Siegel-Formel. Wenn wir dort die formale Reihe $\sum_{n=0}^{\infty} \hat{C}_n(q) \tau^n$ nach dem K-ten Gliede $(K \ge 0)$ abbrechen, erhalten wir einen Ausdruck, der für alle $K \ge 0$ sinnvoll ist und es stellt sich die Frage, mit welcher Genauigkeit dieser Ausdruck die Funktion Z(t) approximiert. Dazu führen wir die Restglieder

$$R_K(t) := Z(t) - 2\sum_{n=1}^N \frac{\cos(\vartheta(t) - t\log n)}{\sqrt{n}} - \frac{(-1)^{N-1}}{\sqrt{a}} \sum_{n=0}^K \widehat{C}_n(q) \tau^n$$
(3.25)

 mit

$$a := \sqrt{\frac{t}{2\pi}}, \qquad N := \lfloor a \rfloor, \qquad q := \sqrt{\pi} \big[1 - 2(a - N) \big], \qquad \tau := \frac{1}{2\sqrt{2t}}$$

ein, die dann im weiteren näher untersucht werden müssen und vereinbaren, daß bis zum Ende dieses Abschnittes K ganzzahlig ≥ 0 und t reell > 0 zu nehmen ist.

Eine zweite, zur Abschätzung besonders gut geeignete Darstellung von $R_K(t)$ ergibt sich, wenn man (3.25) auf die Lehmersche Form (Satz 2.1.6, S. 30) transformiert:

$$R_K(t) = Z(t) - 2\sum_{n=1}^N \frac{\cos(\vartheta(t) - t\log n)}{\sqrt{n}} - \frac{(-1)^{N-1}}{\sqrt{a}} \sum_{n=0}^K \frac{C_n(z)}{a^n}$$
(3.26)

mit a und N wie oben und z := 1 - 2(a - N).

Das asymptotische Verhalten von $R_K(t)$ für $t \to +\infty$ läßt sich mit den Ergebnissen des letzten Abschnittes sofort angeben:

Satz 3.2.1. Für $t \to +\infty$ ist

$$R_K(t) = O(t^{-(2K+3)/4}).$$

Die Riemann-Siegel-Formel stellt Z(t) für $t \to +\infty$ asymptotisch dar.

Beweis. Aus den Sätzen 3.1.4 und 4.2.4 (c), S. 74 folgt die asymptotische Entwicklung

$$U \cdot S \sim \sum_{n=0}^{\infty} \widetilde{C}_n(q) \tau^n \qquad (\tau \to 0, \ |q| \le \sqrt{\pi}),$$

deren Koeffizienten sich nach den Formel
n(1.30)errechnen, und es ist gleichmäßig i
nq

$$U \cdot S = \sum_{n=0}^{K} \widetilde{C}_n(q) \tau^n + O\left(\tau^{K+1}\right) \qquad \text{für } \tau \to 0. \quad (3.27)$$

Durch Übergang zum Realteil folgt dann – ebenfalls gleichmäßig in q –

$$\Re\left(U \cdot S\right) = \sum_{n=0}^{K} \widehat{C}_n(q) \,\tau^n + O\left(\tau^{K+1}\right) \qquad \text{für } \tau \to 0$$

und daraus, wenn wir die Darstellung von Z(t) aus Satz 1.2.1, S. 12 mit (3.25) vergleichen und beachten, daß q dort immer der Bedingung $-\sqrt{\pi} < q \leq \sqrt{\pi}$ genügt,

$$R_K(t) = t^{-\frac{1}{4}} O\left(\tau^{K+1}\right) = t^{-\frac{1}{4}} O\left(t^{-(K+1)/2}\right) = O\left(t^{-(2K+3)/4}\right) \quad \text{für } t \to +\infty.$$

Daher ist die Riemann-Siegel-Formel eine asymptotische Entwicklung der Funktion Z(t) für $t \to +\infty$ und der Satz ist bewiesen.

Für jedes K und hinreichend große t gibt es also eine Abschätzung der Form

$$|R_K(t)| < c(K) t^{-(2K+3)/4}$$
(3.28)

mit positiven Konstanten c(K), die nur von K aber nicht von t abhängen.

Damit können wir jetzt die Unstetigkeitsstellen der Riemann-Siegel-Formel untersuchen. An den Stellen $t = t_M = 2\pi M^2$ (M ganz > 0), an denen N von M - 1auf M springt, ist $R_K(t)$ nämlich nicht stetig, wie man leicht nachweist, wenn man in (3.25) oder (3.26) den links- bzw. rechtsseitigen Grenzübergang $t \to t_M$ ($t < t_M$) und $t \to t_M$ ($t > t_M$) vornimmt. Daher sind die auf den rechten Seiten von (3.25) bzw. (3.26) stehenden Ausdrücke, mit denen wir die stetige – sogar analytische – Funktion Z(t) approximieren wollen, an den Stellen t_M ebenfalls unstetig. Die Verwendbarkeit dieser Ausdrücke zur numerischen Berechnung von Z(t) wird davon für große t aber nicht negativ beeinflußt; denn nach (3.28) läßt sich die Höhe des Sprungs von $R_K(t)$ an den Stellen $t = t_M$ für große M mit $2 c(K) t_M^{-(2K+3)/4}$ nach oben abschätzen. Für hinreichend große M wird das – ebenso wie das Restglied $R_K(t)$ selbst – vernachlässigbar klein,⁴⁾ so daß die Ausdrücke in (3.25) und (3.26) für große t angenähert als stetige Funktionen betrachtet werden dürfen.

Für $K \leq 10$ geben wir jetzt explizite Abschätzungen für die Konstanten c(K) an.

Satz 3.2.2. Für $t \ge 200$ und $0 \le K \le 10$ lassen sich die Restglieder $R_K(t)$

⁴⁾ Hierauf beruht die Bestimmung der Werte $\widehat{C}_{2n}(\sqrt{\pi})$ in Satz 2.1.5, S. 28.

3.2. Explizite Abschätzung der ersten 11 Restglieder

(a) ohne Verwendung der Potenzreihenentwicklungen der Funktionen $C_n(z)$ mit

$$\begin{split} |R_0(t)| < 0.47 \, t^{-3/4}, & |R_1(t)| < 0.43 \, t^{-5/4}, & |R_6(t)| < 10.1 \, t^{-15/4}, \\ |R_2(t)| < 0.77 \, t^{-7/4}, & |R_7(t)| < 27.1 \, t^{-17/4}, \\ |R_3(t)| < 0.90 \, t^{-9/4}, & |R_8(t)| < 188 \, t^{-19/4}, \\ |R_4(t)| < 2.12 \, t^{-11/4}, & |R_9(t)| < 1934 \, t^{-21/4}, \\ |R_5(t)| < 3.35 \, t^{-13/4}, & |R_{10}(t)| < 25 \, 966 \, t^{-23/4} \end{split}$$

 $grob\ absch \"at zen.$

(b) Unter Verwendung dieser Potenzreihenentwicklungen ergeben sich für $K \leq 9$ die besseren Abschätzungen

$$\begin{aligned} |R_0(t)| &< 0.127 t^{-3/4}, \quad |R_1(t)| < 0.053 t^{-5/4}, \quad |R_6(t)| < 0.661 t^{-15/4}, \\ |R_2(t)| < 0.011 t^{-7/4}, \quad |R_7(t)| < 9.2 t^{-17/4}, \\ |R_3(t)| < 0.031 t^{-9/4}, \quad |R_8(t)| < 130 t^{-19/4}, \\ |R_4(t)| < 0.017 t^{-11/4}, \quad |R_9(t)| < 1837 t^{-21/4}, \\ |R_5(t)| < 0.061 t^{-13/4}. \end{aligned}$$

Für
$$K \leq 4$$
 sind diese Abschätzungen optimal.

Beweis. Es sei $t \ge 200$ bzw. $\tau \le 1/40$. Mit K = 10 folgt aus (3.2) und Satz 4.2.4 (b), S. 74 unter Verwendung der Abkürzung

$$u(\tau) := e^{-i\left(\frac{\tau^2}{6} + \frac{28}{45}\tau^6 + \frac{3\,968}{315}\tau^{10}\right)} \tag{3.29}$$

für $U \cdot S$ die Darstellung

$$U \cdot S = u(\tau) \sum_{n=0}^{10} B_n(q) \tau^n + R^{(1)}$$
(3.30)

 mit

$$R^{(1)} := u(\tau) \cdot \mathrm{RS}_{10}(\tau) + \mathrm{RU}(\tau) \sum_{n=0}^{10} B_n(q) \,\tau^n + \mathrm{RU}(\tau) \cdot \mathrm{RS}_{10}(\tau).$$

Für $\tau \leq 1/40$ haben wir dann mit den Abschätzungen von $|{\rm RU}(\tau)|$ und $|{\rm RS}_{10}(\tau)|$ aus den Sätzen 4.2.4 (b) und 3.1.5

$$|R^{(1)}| < 1.4 \cdot 10^9 \tau^{11} + \frac{\tau^{11}}{101} \sum_{n=0}^{10} |B_n(q)| \tau^n + \frac{\tau^{11}}{101} \cdot 1.4 \cdot 10^9 \tau^{11}$$
$$\leq \left[1.4 \cdot 10^9 + \frac{1}{101} \sum_{n=0}^{10} \frac{|B_n(q)|}{40^n} + \frac{1.4 \cdot 10^9}{101 \cdot 40^{11}} \right] \tau^{11}.$$

Verwenden wir die Abschätzungen von $|B_n(q)|$ $(0 \le n \le 10, |q| \le \sqrt{\pi})$ aus Satz 4.4.4 (b), S. 85, so ist gleichmäßig für diese q

$$\sum_{n=0}^{10} \frac{|B_n(q)|}{40^n} < 1.1 \; .$$

Die Konstante in der obenstehenden eckigen Klammer läßt sich dann mit $1.41 \cdot 10^9$ nach oben abschätzen, so daß $|R^{(1)}|$ für $|q| \leq \sqrt{\pi}$ der Abschätzung

$$|R^{(1)}| < 1.41 \cdot 10^9 \,\tau^{11} \tag{3.31}$$

genügt. Daher ist $R^{(1)} = O(\tau^{11})$ für $\tau \to 0$, und durch Vergleich von (3.27) – mit K = 10 – und (3.30) folgt, daß die Potenzreihe von $u(\tau) \sum_{n=0}^{10} B_n(q) \tau^n$ um den Punkt $\tau = 0$ mindestens bis zur Potenz τ^{10} mit der formalen Reihe $\sum_{n=0}^{\infty} \tilde{C}_n(q) \tau^n$ übereinstimmen muß. Betrachten wir für den Augenblick einmal τ als komplexe Veränderliche, dann ist $u(\tau) \sum_{n=0}^{10} B_n(q) \tau^n$ (q fest mit $|q| \leq \sqrt{\pi}$) eine ganze Funktion von τ und wir haben für alle komplexen τ die Identität

$$u(\tau)\sum_{n=0}^{10} B_n(q)\,\tau^n = \sum_{n=0}^{10} \widetilde{C}_n(q)\,\tau^n + R^{(2)}$$
(3.32)

 mit

$$R^{(2)} = \frac{1}{2\pi i} \oint_{|x|=\varrho} \frac{u(x) \sum_{n=0}^{10} B_n(q) x^n}{x - \tau} \left(\frac{\tau}{x}\right)^{11} dx \qquad (\varrho > |\tau|),$$

wo auf dem Kreis mit dem Radius ρ einmal im mathematisch positiven Sinn um den Nullpunkt herum zu integrieren ist. Jetzt sei τ wieder reell mit $0 < \tau \leq 1/40$. Wählen wir $\rho > 1/40$, so können wir $R^{(2)}$ für diese τ wie folgt abschätzen

$$|R^{(2)}| \leq \frac{1}{2\pi} \oint_{|x|=\varrho} \frac{|u(x)| \sum_{n=0}^{10} |B_n(q)| \varrho^n}{\varrho - \tau} \left(\frac{\tau}{\varrho}\right)^{11} |dx|,$$

woraus sich mit (3.29) die Abschätzung

$$|R^{(2)}| \le \left[\frac{\exp\left(\frac{\varrho^2}{6} + \frac{28}{45}\varrho^6 + \frac{3\,968}{315}\varrho^{10}\right)}{\left(\varrho - \frac{1}{40}\right)\varrho^{10}}\sum_{n=0}^{10}|B_n(q)|\,\varrho^n\right]\tau^{11}$$

ergibt. Für $|B_n(q)|$ verwenden wir wie oben die expliziten Abschätzungen aus Satz 4.4.4 (b), S. 85. Der Ausdruck in der eckigen Klammer hängt dann nur noch von ρ ab und kann durch geeignete Wahl von ρ minimiert werden. Ein recht guter Wert dafür ist $\rho = 3/5 > 1/40$. Damit wird

$$\sum_{n=0}^{10} |B_n(q)| \, \varrho^n < 322\,318$$

und

$$\frac{\exp\left(\frac{\varrho^2}{6} + \frac{28}{45}\varrho^6 + \frac{3\,968}{315}\varrho^{10}\right)}{\left(\varrho - \frac{1}{40}\right)\varrho^{10}} < 340.$$

Folglich gilt für $\tau \leq 1/40$ die in qgleichmäßige Abschätzung

$$|R^{(2)}| < (340 \cdot 322\,318)\,\tau^{11} < 1.1 \cdot 10^8\,\tau^{11}. \tag{3.33}$$

⁵⁾ Diese Darstellung des Restgliedes $R^{(2)}$ folgt in einfacher Weise aus den Cauchyschen Integralformeln. Vgl. dazu [4, S. 135, Satz 24] Restglied einer Potenzreihe.

Aus (3.30) und (3.32) erhalten wir jetzt

$$U \cdot S = \sum_{n=0}^{10} \widetilde{C}_n(q) \tau^n + \operatorname{RUS}(\tau)$$
(3.34)

 mit

$$RUS(\tau) := R^{(1)} + R^{(2)}$$

und nach (3.31) und (3.33) die Abschätzung

$$|\operatorname{RUS}(\tau)| < (1.41 \cdot 10^9 + 1.1 \cdot 10^8) \tau^{11} = 1.52 \cdot 10^9 \tau^{11} \quad (\tau \le \frac{1}{40}, |q| \le \sqrt{\pi}).$$
(3.35)

Gehen wir in (3.34) zum Realteil über

$$\Re \left(U \cdot S \right) = \sum_{n=0}^{10} \widehat{C}_n(q) \, \tau^n + \Re \left[\text{RUS}(\tau) \right]$$

und setzen das in die Darstellung aus Satz 1.2.1, S. 12 von Z(t) ein, so folgt durch Vergleich mit (3.25)

$$R_{10}(t) = (-1)^{N-1} \left(\frac{t}{2\pi}\right)^{-\frac{1}{4}} \Re [\mathrm{RUS}(\tau)].$$

Da q in der Riemann-Siegel-Formel der Bedingung $|q| \leq \sqrt{\pi}$ genügt, ist die Abschätzung (3.35) anwendbar und wir erhalten, wenn wir zur Variablen t zurückkehren und beachten, daß der Bereich $\tau \leq 1/40$ dem Bereich $t \geq 200$ entspricht, die für $t \geq 200$ gültige Abschätzung

$$|R_{10}(t)| \le \left(\frac{2\pi}{t}\right)^{\frac{1}{4}} |\operatorname{RUS}(\tau)| < \left(\frac{2\pi}{t}\right)^{\frac{1}{4}} \frac{1.52 \cdot 10^9}{(2\sqrt{2t})^{11}} < 25\,966\,t^{-23/4},$$

wie in (a) dieses Satzes angegeben.

Die Abschätzungen von $R_K(t)$ für K < 10 machen nun keine Schwierigkeiten mehr. In Gleichung (3.26) sei $0 \le K \le 9$. Subtrahieren wir davon dieselbe Gleichung mit K = 10, so wird

$$R_{K}(t) = \frac{(-1)^{N-1}}{\sqrt{a}} \sum_{n=K+1}^{10} \frac{C_{n}(z)}{a^{n}} + R_{10}(t)$$

$$(0 \le K \le 9)$$

$$= (-1)^{N-1} \left(\frac{2\pi}{t}\right)^{\frac{2K+3}{4}} \sum_{n=K+1}^{10} C_{n}(z) \left(\frac{2\pi}{t}\right)^{\frac{n-K-1}{2}} + R_{10}(t).$$

Es sei $t_0 \geq 200$ fest vorgegeben. Für $t \geq t_0$ und $K \leq 9$ ist dann

$$|R_{10}(t)| < 25\,966\,t^{-23/4} = 25\,966\,t^{\frac{K-10}{2}}\,t^{-\frac{2K+3}{4}} \le 25\,966\,t^{\frac{K-10}{2}}\,t^{-\frac{2K+3}{4}},$$

und wir erhalten die Abschätzung

$$|R_{K}(t)| < \left[(2\pi)^{\frac{2K+3}{4}} \sum_{n=K+1}^{10} |C_{n}(z)| \left(\frac{2\pi}{t_{0}}\right)^{\frac{n-K-1}{2}} + 25\,966\,t_{0}^{\frac{K-10}{2}} \right] t^{-\frac{2K+3}{4}}, \qquad (3.36)$$

die für $0 \le K \le 9$ und $t \ge t_0$ gültig ist. Setzen wir hier $t_0 = 200$ und schätzen $|C_n(z)|$ mit Hilfe von Satz 2.3.4 (a), S. 38 ab,⁶⁾ so lassen sich die Ausdrücke in der eckigen Klammer mit den in (a) dieses Satzes angegebenen Konstanten nach oben abschätzen. Auf dieselbe Weise ergeben sich die Abschätzungen (b), wenn man die aus den Potenzreihenentwicklungen der Funktionen $C_n(z)$ gewonnenen besseren Abschätzungen nach Satz 2.3.4 (b) verwendet.

Numerische Untersuchungen der Genauigkeit der Riemann-Siegel-Formel lassen vermuten, daß wir $|R_{10}(t)|$ etwa um den Faktor 10⁶ überschätzt haben. Mit $t_0 = 200$ führt das in (3.36) noch zu einer Überschätzung von $|R_K(t)|$ für $K \ge 5$. Ist jedoch $K \le 4$, so sind die in (b) angegebenen Abschätzungen von $|R_K(t)|$ nur geringfügig größer als $(2\pi)^{(2K+3)/4} |C_{K+1}(z)| t^{-(2K+3)/4}$, wenn man hier $|C_{K+1}(z)|$ wieder mit seiner Abschätzung aus Satz 2.3.4 (b) ersetzt. Die Abschätzungen (b) von $|R_K(t)|$ liegen also für $K \le 4$ in der Größenordnung des ersten vernachlässigten Gliedes der Riemann-Siegel-Formel. Sie sind deshalb nicht mehr wesentlich verbesserbar, so daß wir sie als optimal betrachten dürfen.

Mit Hilfe der Abschätzung von $|\operatorname{RS}_K(\tau)|$ aus Satz 3.1.3 und einer Verallgemeinerung der Abschätzung von $|\operatorname{RU}(\tau)|$ aus Satz 4.2.4, S. 74 – was grundsätzlich keine Schwierigkeiten bereitet – gelingt es, die eben für K = 10 durchgeführte direkte Abschätzung von $|R_K(t)|$ auf beliebige $K \ge 0$ auszudehnen. Das führt aber zu einer sehr komplizierten und unübersichtlichen Formel, die wir hier deshalb nicht wiedergeben. Außerdem sind die in Satz 3.2.2 gewonnenen expliziten Abschätzungen der Restglieder $R_K(t)$ ($0 \le K \le 10$) auch für extreme numerische Ansprüche vollkommen ausreichend. Sie zeigen, daß die ersten 11 Partialsummen der Riemann-Siegel-Formel – trotz der Überschätzung von $|R_{10}(t)|$ – zur Berechnung der Funktion Z(t)hervorragend geeignet sind. Sämtliche mit Hilfe der Riemann-Siegel-Formel bisher durchgeführten Berechnungen von Z(t) stellen sich damit nachträglich als gerechtfertigt heraus. Die Einschränkung $t \ge 200$ in Satz 3.2.2 ist natürlich unwesentlich, da Z(t) für t < 200 gut bekannt ist und sich zudem für diese kleinen t noch recht gut mit der Eulerschen Summenformel berechnen läßt.

3.3 Zur Divergenz der Riemann-Siegel-Formel

Wir beschließen das Kapitel mit einer kurzen Bemerkung zur Divergenz der Riemann-Siegel-Formel. Siegel schreibt in [32, S. 285], daß es – bei Verwendung unserer Notation – keineswegs trivial ist, daß $|R_K(t)|$ für festes t > 0 und $K \to +\infty$ nicht gegen Null geht. Zwar ist das aufgrund der Herleitung der Riemann-Siegel-Formel in Kapitel 1 sehr wahrscheinlich; ein Beweis dafür ist aber bis heute nicht veröffentlicht worden.⁷) Wegen der geraden Symmetrie der Funktionen $C_{2n}(z)$ würde es zum Nachweis der Divergenz ausreichen, Abschätzungen der Form

$$|C_{2n}(z)| \ge w_{2n} \qquad (n \ge 0, \ 0 \le z \le 1)$$

mit nur von *n* abhängigen positiven Konstanten w_{2n} so anzugeben, daß die Potenzreihe $\sum_{n=0}^{\infty} w_{2n} x^n$ für alle $x \neq 0$ divergiert. Das führt jedoch mit großer Sicherheit

 $^{^{6)}}$ Das ist möglich, da z
 in der Lehmerschen Form der Riemann-Siegel-Formel immer der Bedingung
 $|z|\leq 1$ genügt.

⁷⁾ Ein solcher Beweis liegt inzwischen vor, vgl. Berry [6], 1995.

3.3. Zur Divergenz der Riemann-Siegel-Formel

nicht zum Ziel, da die Funktionen $C_{2n}(z)$ – wie man mit Hilfe ihrer Potenzreihenentwicklungen aus Tabelle IV, S. 101 leicht nachweist – für 2n = 4, 8 und 10 je eine einfache Nullstelle in dem offenen Intervall 0 < z < 1 besitzen und daher bereits für diese Werte von 2n nur der trivialen Abschätzung

$$|C_{2n}(z)| \ge 0 \qquad (0 \le z \le 1)$$

genügen.⁸⁾ Ist jedoch in der Riemann-Siegel-Formel $q = \sqrt{\pi}$, d. h. setzt man $t = t_M = 2\pi M^2$ (*M* ganz > 0), so folgt aus der Identität (vgl. Beweis von Satz 2.1.5, S. 28)

$$\sum_{n=0}^{\infty} \widehat{C}_{2n}(\sqrt{\pi}) \tau_M^{2n} \doteq \cos\frac{\pi}{8} \sum_{n=0}^{\infty} (-1)^n \alpha_{2n} \tau_M^{4n} - \sin\frac{\pi}{8} \sum_{n=0}^{\infty} (-1)^n \alpha_{2n+1} \tau_M^{4n+2n}$$

die Divergenz der Riemann-Siegel-Formel für diese Werte von t; denn die beiden Potenzreihen auf der rechten Seite dieser Gleichung haben den Konvergenzradius 0, was sich ohne Schwierigkeiten mit Hilfe von Satz 4.2.4, S. 74 beweisen läßt. Damit ist die Divergenz der Riemann-Siegel-Formel zumindest für spezielle Werte von tnachgewiesen.

⁸⁾ Da die Funktionen $C_n(z)$ mit ungeradem Index grundsätzlich nur diese triviale Abschätzung zulassen, haben wir sie in dieser Betrachtung von vorn herein nicht betrachtet.

Kapitel 4

Hilfssätze und Hilfsabschätzungen

4.1 Integralformeln

Für $\Re(\tau) > 0$ sei

$$\Phi(x,\tau) := \int_{0 \ge 1} \frac{e^{i\pi\tau u^2 + 2\pi i x u}}{e^{2\pi i u} - 1} \, du.^{(1)}$$

Dabei ist der mit $0 \nearrow 1$ bezeichnete Integrationsweg eine von links unten nach rechts oben orientierte Gerade der Steigung 1, die die reelle Achse zwischen den Punkten 0 und 1 trifft. Es gilt dann:

Satz 4.1.1. Das Integral konvergiert für jedes komplexe x, so daß $\Phi(x, \tau)$ eine ganze Funktion von x ist und für $\tau = m/n$, wo m und n natürliche Zahlen sind, wird

$$\Phi\left(x,\frac{m}{n}\right) = \frac{\sum_{k=1}^{n} e^{i\pi\frac{m}{n}k^{2} + 2k\pi ix} - \sqrt{\frac{n}{m}} e^{i\pi\left(\frac{1}{4} - \frac{n}{m}x^{2}\right)} \sum_{k=1}^{m} e^{-i\pi\frac{n}{m}k^{2} + 2k\pi i\frac{n}{m}x}}{e^{i\pi n(2x+m)} - 1}.$$

Daher ist $\Phi(x,\tau)$ für positive rationale τ in endlicher Form durch Exponentialfunktionen darstellbar. Zum Beweis sei auf [11, Kap. V] oder [12, S. 35 ff.] verwiesen. Wir bemerken noch, daß die Nullstellen des Nenners $e^{i\pi n(2x+m)} - 1$ in der obigen Darstellung von $\Phi(x, m/n)$ gleichzeitig Nullstellen des Zählers²⁾ sind. Das folgt unmittelbar aus der Tatsache, daß $\Phi(x, \tau)$ eine ganze Funktion von x ist.

Satz 4.1.2. Die durch

$$\widetilde{F}(q) := \frac{1}{2\sqrt{\pi}} e^{i\pi/8 - iq^2/2} \int \frac{e^{iv^2/2 + qv}}{\cosh\frac{\sqrt{\pi}}{2}v} dv$$
$$\frac{i\sqrt{\pi}}{\sqrt{\pi}} - i\sqrt{\pi}$$

¹⁾ Dieses Integral ist ein spezielles "Mordell-Integral". Definition und Eigenschaften der Mordell-Integrale, insbes. ihre Beziehung zu den Thetafunktionen, findet man in [25].

²⁾ Daraus lassen sich auf elegante Weise die Werte der Gaußschen Summen und das quadratische Reziprozitätsgesetz herleiten, vgl. [11, Kap. V] oder [12, S. 35 ff.].

definierte Funktion $\widetilde{F}(q)$ ist ganz und genügt der Gleichung

$$\widetilde{F}(q) = \frac{\cos\left(\frac{q^2}{2} + \frac{3\pi}{8}\right)}{\cos\sqrt{\pi}q} + i\,\frac{\sqrt{2}\,\cos\frac{\sqrt{\pi}}{2}q - \sin\left(\frac{q^2}{2} + \frac{3\pi}{8}\right)}{\cos\sqrt{\pi}q}.$$

Der Integrationsweg ist entsprechend dem Integrationsweg $0 \nearrow 1$ in Satz 4.1.1 zu verstehen. Hier trifft die Integrationsgerade daher die imaginäre Achse zwischen den Punkten $i\sqrt{\pi}$ und $-i\sqrt{\pi}$.

Beweis. Parametrisiert man den Integrationsweg mit $v = e^{i\pi/4}u$ $(-\infty < u < +\infty)$, so sieht man unmittelbar, daß die Konvergenz des Integrals nicht von q abhängt. Folglich ist $\widetilde{F}(q)$ eine ganze Funktion von q.

Wir setzen in Satz 4.1.1 m = 2, n = 1 und x = 1/2 - 2p mit reellem p. Dann ist einerseits

$$\Phi\left(\frac{1}{2} - 2p, 2\right) = \int_{0 \nearrow 1} \frac{e^{2\pi i u^2 + 2\pi i (1/2 - 2p)u}}{e^{2\pi i u} - 1} \, du = \int_{0 \nearrow 1} \frac{e^{2\pi i u^2 - 4\pi i p u}}{e^{i\pi u} - e^{-i\pi u}} \, du$$

und andererseits

$$\Phi\left(\frac{1}{2} - 2p, 2\right) = \frac{-e^{-4\pi ip} - \frac{1}{\sqrt{2}} e^{i\pi(1/8 + p - 2p^2)} \left(e^{-2\pi ip} - e^{-4\pi ip}\right)}{-e^{-4\pi ip} - 1}$$
$$= \frac{e^{-2\pi ip} + \frac{1}{\sqrt{2}} e^{i\pi(1/8 - 2p^2)} \left(e^{i\pi p} - e^{-i\pi p}\right)}{e^{2\pi ip} + e^{-2\pi ip}}.$$

Hieraus folgt

$$2e^{-i\pi(1/8-2p^2)}\Phi\left(\frac{1}{2}-2p,2\right) = 2\frac{e^{2\pi i(p^2-p-1/16)} + \frac{1}{\sqrt{2}}\left(e^{i\pi p} - e^{-i\pi p}\right)}{e^{2\pi i p} + e^{-2\pi i p}}.$$

Daher ist

$$2 e^{-i\pi(1/8-2p^2)} \int_{0 \neq 1} \frac{e^{2\pi i u^2 - 4\pi i p u}}{e^{i\pi u} - e^{-i\pi u}} du$$
$$= \frac{\cos 2\pi \left(p^2 - p - \frac{1}{16}\right)}{\cos 2\pi p} + i \frac{\sin 2\pi \left(p^2 - p - \frac{1}{16}\right) + \sqrt{2} \sin \pi p}{\cos 2\pi p}.$$

Geht man hier zum konjugiert Komplexen über, so wird

$$2 e^{i\pi(1/8-2p^2)} \int_{0^{n}} \frac{e^{-2\pi i u^2 + 4\pi i p u}}{e^{i\pi u} - e^{-i\pi u}} du$$
$$= \frac{\cos 2\pi \left(p^2 - p - \frac{1}{16}\right)}{\cos 2\pi p} - i \frac{\sin 2\pi \left(p^2 - p - \frac{1}{16}\right) + \sqrt{2} \sin \pi p}{\cos 2\pi p}$$

und durch holomorphe Fortsetzung bleibt das für alle komplexen prichtig. (Der Integrationsweg $0 \land 1$ ist wieder entsprechend dem Integrationsweg $0 \land 1$ zu verstehen. Die Steigung der Integrationsgeraden beträgt hier also -1).

4.1. Integralformeln

Setzen wir jetzt $p = (1 - q/\sqrt{\pi})/2$ und substituieren im Integral mit $u = (1+iv/\sqrt{\pi})/2$, so geht der Integrationsweg 0^{\wedge} 1 bezüglich u in den Integrationsweg $i\sqrt{\pi} \nearrow -i\sqrt{\pi}$ bezüglich v über. Für die linke Seite der letzten Gleichung erhalten wir dann nach einer einfachen Rechnung den Ausdruck

$$\frac{1}{2\sqrt{\pi}} e^{i\pi/8 - iq^2/2} \int \frac{e^{iv^2/2 + qv}}{\cosh\frac{\sqrt{\pi}}{2}v} dv$$

und für die rechte Seite dieser Gleichung

$$\frac{\cos\left(\frac{q^2}{2} + \frac{3\pi}{8}\right)}{\cos\sqrt{\pi}q} + i\frac{\sqrt{2}\cos\frac{\sqrt{\pi}}{2}q - \sin\left(\frac{q^2}{2} + \frac{3\pi}{8}\right)}{\cos\sqrt{\pi}q}$$

Damit ist der Satz bewiesen.

Satz 4.1.3. Für jedes komplexe q ist

$$\widetilde{F}(q) = \sqrt{2} e^{i\pi/8} \int_{0}^{\infty} e^{-\pi v^{2}/2} \frac{\cosh\left(\sqrt{\pi}q e^{-i\pi/4}v\right)}{\cosh\left(\pi e^{-i\pi/4}v\right)} \, dv,$$

wo $\widetilde{F}(q)$ die Funktion aus Satz 4.1.2 ist.

Beweis. Wir setzen in Satz 4.1.1 m = 1, n = 2 und erhalten

$$\Phi\left(x,\frac{1}{2}\right) = \frac{i + e^{2\pi i x} - \sqrt{2} e^{i\pi(1/4 + 2x - 2x^2)}}{e^{2\pi i x} - e^{-2\pi i x}}.$$

Fürx=z/2+1/4 wird hieraus nach Multiplikation mit $i\sqrt{2}\,e^{-i\pi z/2}$

$$i\sqrt{2} e^{-i\pi z/2} \Phi\left(\frac{z}{2} + \frac{1}{4}, \frac{1}{2}\right) = i\sqrt{2} \frac{e^{i\pi z/2} + e^{-i\pi z/2} - \sqrt{2} e^{i\pi(1/8 - z^2/2)}}{e^{i\pi z} + e^{-i\pi z}}$$
$$= \frac{\sin\frac{\pi}{2}\left(\frac{1}{4} - z^2\right)}{\cos\pi z} + i\frac{\sqrt{2}\cos\frac{\pi}{2}z - \cos\frac{\pi}{2}\left(\frac{1}{4} - z^2\right)}{\cos\pi z}$$
$$= \frac{\cos\frac{\pi}{2}\left(z^2 + \frac{3}{4}\right)}{\cos\pi z} + i\frac{\sqrt{2}\cos\frac{\pi}{2}z - \sin\frac{\pi}{2}\left(z^2 + \frac{3}{4}\right)}{\cos\pi z}.$$

Andererseits haben wir nach Satz 4.1.1 die Integraldarstellung

$$i\sqrt{2} e^{-i\pi z/2} \Phi\left(\frac{z}{2} + \frac{1}{4}, \frac{1}{2}\right) = i\sqrt{2} e^{-i\pi z/2} \int_{0 \ge 1} \frac{e^{i\pi u^2/2 + i\pi zu + i\pi u/2}}{e^{2\pi i u} - 1} du$$
$$= \frac{1}{\sqrt{2}} e^{-i\pi z/2} \int_{0 \ge 1} \frac{e^{i\pi u^2/2 + i\pi zu - i\pi u/2}}{\sin \pi u} du.$$

Hier können wir den Integrationsweg durch den Punkt 1/2 legen. Wir parametrisieren den Weg mit $u = 1/2 + e^{i\pi/4}v$ und erhalten nach einer einfachen Rechnung

$$= \frac{1}{\sqrt{2}} e^{i\pi/8} \int_{-\infty}^{+\infty} \frac{e^{-\pi v^2/2 + i\pi z e^{i\pi/4} v}}{\cos(\pi e^{i\pi/4} v)} dv$$
$$= \sqrt{2} e^{i\pi/8} \int_{0}^{\infty} e^{-\pi v^2/2} \frac{\cos(\pi z e^{i\pi/4} v)}{\cos(\pi e^{i\pi/4} v)} dv.$$

Dabei ergibt sich der letzte Ausdruck aus dem vorangehenden, wenn man dort das Integral in $\int_{-\infty}^{0} + \int_{0}^{\infty}$ zerlegt und in $\int_{-\infty}^{0} v$ mit -v substituiert. Durch Vergleich mit dem obenstehenden Ausdruck für $i\sqrt{2}\,e^{-i\pi z/2}\,\Phi(z/2+1/4,1/2)$ folgt hieraus, wenn man noch $\cos{(e^{i\pi/4}x)} = \cosh{(e^{-i\pi/4}x)}$ beachtet, die für alle komplexen zgeltende Gleichung

$$\frac{\cos\frac{\pi}{2}(z^2+\frac{3}{4})}{\cos\pi z} + i\frac{\sqrt{2}\cos\frac{\pi}{2}z - \sin\frac{\pi}{2}(z^2+\frac{3}{4})}{\cos\pi z}$$

$$= \sqrt{2}e^{i\pi/8}\int_{0}^{\infty} e^{-\pi v^2/2}\frac{\cosh\left(\pi z e^{-i\pi/4}v\right)}{\cosh\left(\pi e^{-i\pi/4}v\right)}dv.$$
(4.1)

Setzt man hier $z = q/\sqrt{\pi}$, so wird die linke Seite dieser Gleichung nach Satz 4.1.2 gleich der Funktion $\tilde{F}(q)$ und es ergibt sich die Behauptung.

Satz 4.1.4. Für reelle z besitzt die Funktion

$$F(z) := \frac{\cos\frac{\pi}{2}\left(z^2 + \frac{3}{4}\right)}{\cos\pi z}$$

die Integraldarstellung

$$F(z) = \sqrt{2} \,\Re \left(e^{-i\pi/8} \int_{0}^{\infty} e^{-\pi v^{2}/2} \, \frac{\cosh\left(\pi z e^{i\pi/4} v\right)}{\cosh\left(\pi e^{i\pi/4} v\right)} \, dv \right).$$

Beweis. In (4.1) sei z reell. Dann ist

$$F(z) = \sqrt{2} \,\Re \left(e^{i\pi/8} \int_{0}^{\infty} e^{-\pi v^{2}/2} \,\frac{\cosh\left(\pi z e^{-i\pi/4} v\right)}{\cosh\left(\pi e^{-i\pi/4} v\right)} \,dv \right),$$

und hieraus folgt die Behauptung, wenn man den Ausdruck in der großen Klammer mit seinem konjugiert Komplexen ersetzt. $\hfill\square$

Satz 4.1.5. Für die geraden Ableitungen der Funktionen

$$\widehat{F}(q) := \frac{\cos\left(\frac{q^2}{2} + \frac{3\pi}{8}\right)}{\cos\sqrt{\pi}q},$$
4.1. Integralformeln

$$\widehat{F}(q) := \frac{\sqrt{2} \cos \frac{\sqrt{\pi}}{2}q - \sin\left(\frac{q^2}{2} + \frac{3\pi}{8}\right)}{\cos \sqrt{\pi}q}$$

an der Stelle $q = \sqrt{\pi}$ gelten die Formeln

$$\widehat{F}^{(4n)}(\sqrt{\pi}) = (-1)^n \frac{(4n)!}{2^{2n}(2n)!} \cos\frac{\pi}{8},$$

$$\widehat{F}^{(4n+2)}(\sqrt{\pi}) = (-1)^n \frac{(4n+2)!}{2^{2n+1}(2n+1)!} \sin\frac{\pi}{8},$$

$$\widehat{F}^{(4n)}(\sqrt{\pi}) = (-1)^n \frac{(4n)!}{2^{2n}(2n)!} \sin\frac{\pi}{8},$$

$$\widehat{F}^{(4n+2)}(\sqrt{\pi}) = -(-1)^n \frac{(4n+2)!}{2^{2n+1}(2n+1)!} \cos\frac{\pi}{8}.$$

$$(n \ge 0)$$

Beweis. Aus Satz 4.1.3 folgt durch 2n-malige Differentiation nach q

$$\widetilde{F}^{(2n)}(q) = \sqrt{2} e^{i\pi/8} \int_{0}^{\infty} e^{-\pi v^{2}/2} \left(\sqrt{\pi} e^{-i\pi/4} v\right)^{2n} \frac{\cosh\left(\sqrt{\pi} q e^{-i\pi/4} v\right)}{\cosh\left(\pi e^{-i\pi/4} v\right)} \, dv.$$

Für $q=\sqrt{\pi}$ heißt das

$$\begin{split} \widetilde{F}^{(2n)}(\sqrt{\pi}) &= \sqrt{2} \, \pi^n \, i^{-n} \, e^{i\pi/8} \int_0^\infty e^{-\pi v^2/2} \, v^{2n} \, dv \\ &= i^{-n} \, e^{i\pi/8} \, \frac{2^n}{\sqrt{\pi}} \, \Gamma\Big(n + \frac{1}{2}\Big) \\ &= i^{-n} \, \frac{(2n)!}{2^n n!} \, e^{i\pi/8}, \end{split}$$

da für ganze $n \geq 0$

$$\Gamma\left(n+\frac{1}{2}\right) = \frac{(2n)!}{2^{2n}n!}\sqrt{\pi}$$

ist. Ersetzt man jetzt nzum einen mit 2n und zum anderen mit 2n+1, so erhält man die Formeln

$$\widetilde{F}^{(4n)}(\sqrt{\pi}) = (-1)^n \frac{(4n)!}{2^{2n}(2n)!} \left(\cos\frac{\pi}{8} + i\sin\frac{\pi}{8}\right),$$

$$(n \ge 0)$$

$$\widetilde{F}^{(4n+2)}(\sqrt{\pi}) = (-1)^n \frac{(4n+2)!}{2^{2n+1}(2n+1)!} \left(\sin\frac{\pi}{8} - i\cos\frac{\pi}{8}\right).$$

Durch Vergleich von Real- und Imaginärteil folgt hieraus die Behauptung, denn nach Satz 4.1.2 ist $\widetilde{F}(q) = \widehat{F}(q) + i \widehat{F}(q)$.

Satz 4.1.6 (Integral formel von Riemann-Siegel). Bis auf Polstellen ist für alle komplexen s

$$\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \zeta(s)$$

$$= \pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \int_{0 \swarrow 1} \frac{e^{i\pi x^2} x^{-s}}{e^{i\pi x} - e^{-i\pi x}} \, dx + \pi^{-\frac{1-s}{2}} \Gamma\left(\frac{1-s}{2}\right) \int_{0 \searrow 1} \frac{e^{-i\pi x^2} x^{s-1}}{e^{i\pi x} - e^{-i\pi x}} \, dx.$$

Die beiden durch die Integrale gegebenen Funktionen von s sind ganz. Von den Potenzen x^{-s} und x^{s-1} sind die Hauptwerte zu nehmen.

Beweis. Wir setzen in Satz 4.1.1 n = m = 1 und x = z + 1/2. Nach einfacher Umformung erhält man die für alle komplexen z geltende Gleichung

$$\int_{\substack{0 > 1}} \frac{e^{i\pi u^2 + 2\pi i z u}}{e^{i\pi u} - e^{-i\pi u}} \, du = \frac{e^{i\pi z} - e^{-i\pi z^2}}{e^{i\pi z} - e^{-i\pi z}}.$$

Es sei *s* eine reelle Zahl > 1. Wir multiplizieren die letzte Gleichung mit z^{s-1} und integrieren, im Nullpunkt beginnend, längs der Winkelhalbierenden des zweiten Quadranten über *z*. Dabei sei die Potenz z^{s-1} die holomorphe Fortsetzung der für positive reelle *z* reellen Funktion $z^{s-1} = e^{(s-1)\log z}$ in die längs der negativen Achse bis zum Nullpunkt aufgeschnittenen *z*-Ebene. Es wird dann

$$= \int_{0}^{e^{i\frac{3\pi}{4}} \infty} \int_{0}^{\frac{\pi}{2}} z^{s-1} \frac{e^{i\pi u^{2}+2\pi izu}}{e^{i\pi u}-e^{-i\pi u}} du dz$$

$$= \int_{0}^{e^{i\frac{3\pi}{4}} \infty} z^{s-1} \frac{e^{i\pi z}}{e^{i\pi z}-e^{-i\pi z}} dz - \int_{0}^{e^{i\frac{3\pi}{4}} \infty} z^{s-1} \frac{e^{-i\pi z^{2}}}{e^{i\pi z}-e^{-i\pi z}} dz.$$

$$(4.2)$$

Das Doppelintegral auf der linken Seite dieser Gleichung konvergiert absolut.³⁾ Daher dürfen wir hier die Integrationsreihenfolge vertauschen und erhalten so

$$\int_{0 \ge 1} \frac{e^{i\pi u^2}}{e^{i\pi u} - e^{-i\pi u}} \int_{0}^{e^{i\frac{2\pi}{4}}\infty} e^{2\pi izu} z^{s-1} \, dz \, du.$$

Mit der Substitution $z = e^{i3\pi/4}y$ wird aber, da für u auf dem Integrationsweg $0 \nearrow 1$ $\Re(2\pi e^{i\pi/4}u) > 0$ ist

$$\int_{0}^{e^{i\frac{3\pi}{4}}\infty} e^{2\pi i z u} z^{s-1} dz = \int_{0}^{\infty} e^{-2\pi e^{i\pi/4} u y} \left(e^{i3\pi/4} y\right)^{s-1} e^{i3\pi/4} dy$$
$$= e^{i\frac{3\pi}{4}s} \int_{0}^{\infty} e^{-2\pi e^{i\pi/4} u y} y^{s-1} dy$$

³⁾ Dazu parametrisiere man etwa $u = 1/2 + e^{i\pi v/4}$ $(-\infty < v < +\infty)$ und $z = e^{i3\pi y/4}$ $(0 < y < +\infty)$ und betrachte den Betrag des Integranden.

4.1. Integral formeln

$$= e^{i\frac{3\pi}{4}s} \frac{\Gamma(s)}{(2\pi e^{i\pi/4}u)^s}$$
$$= e^{i\frac{\pi}{2}s} (2\pi)^{-s} \Gamma(s) u^{-s}.$$

Folglich ist die linke Seite von (4.2) gleich dem Ausdruck

$$e^{i\frac{\pi}{2}s} (2\pi)^{-s} \Gamma(s) \int_{0 \nearrow 1} \frac{e^{i\pi u^2} u^{-s}}{e^{i\pi u} - e^{-i\pi u}} \, du.$$
(4.3)

Das zweite Integral auf der rechten Seite von (4.2) läßt sich in eine (4.3) ähnliche Form bringen. Dazu betrachten wir das Integral

$$\int_{0 \leq 1} z^{s-1} \frac{e^{-i\pi z^2}}{e^{i\pi z} - e^{-i\pi z}} \, dz.$$

Wegen s>1läßt sich die Integrationsgerade $0\,{\nwarrow}\,1$ durch den Nullpunkt legen. Damit wird

$$\int_{0 \leq 1} z^{s-1} \frac{e^{-i\pi z^2}}{e^{i\pi z} - e^{-i\pi z}} \, dz = \int_{-e^{i\frac{3\pi}{4}\infty}}^{e^{i\frac{3\pi}{4}\infty}} z^{s-1} \frac{e^{-i\pi z^2}}{e^{i\pi z} - e^{-i\pi z}} \, dz$$
$$= \int_{0}^{e^{i\frac{3\pi}{4}\infty}} z^{s-1} \frac{e^{-i\pi z^2}}{e^{i\pi z} - e^{-i\pi z}} \, dz + \int_{-e^{i\frac{3\pi}{4}\infty}}^{0} \frac{e^{(s-1)\log z - i\pi z^2}}{e^{i\pi z} - e^{-i\pi z}} \, dz$$

Für $\Im(z)>0$ gilt nach Festlegung der Poten
z $z^{s-1}=e^{(s-1)\log z}$ die Gleichung $\log{(-z)}=\log{z}-i\pi$ und daher

$$\int_{-e^{i\frac{3\pi}{4}\infty}}^{0} \frac{e^{(s-1)\log z - i\pi z^{2}}}{e^{i\pi z} - e^{-i\pi z}} dz = -\int_{0}^{e^{i\frac{3\pi}{4}\infty}} e^{(s-1)\log(-z)} \frac{e^{-i\pi z^{2}}}{e^{i\pi z} - e^{-i\pi z}} dz$$
$$= e^{-i\pi s} \int_{0}^{e^{i\frac{3\pi}{4}\infty}} \frac{e^{-i\pi z^{2}} z^{s-1}}{e^{i\pi z} - e^{-i\pi z}} dz.$$

Wir setzen das oben ein und erhalten für das zweite Integral auf der rechten Seite von (4.2)

$$\int_{0}^{e^{i\frac{3\pi}{4}\infty}} \int_{0}^{\frac{e^{-i\pi z^{2}}z^{s-1}}{e^{i\pi z} - e^{-i\pi z}} dz = \frac{1}{1 + e^{-i\pi s}} \int_{0 \leq 1}^{\infty} \frac{e^{-i\pi z^{2}}z^{s-1}}{e^{i\pi z} - e^{-i\pi z}} dz.$$
(4.4)

Das erste Integral auf der rechten Seite von (4.2) läßt sich wie folgt berechnen:

$$\int_{0}^{e^{i\frac{3\pi}{4}}\infty} z^{s-1} \frac{e^{i\pi z}}{e^{i\pi z} - e^{-i\pi z}} \, dz = -\int_{0}^{e^{i\frac{3\pi}{4}}\infty} z^{s-1} \sum_{n=1}^{\infty} e^{2n\pi i z} \, dz.$$

Hier sind Summation und Integration vertauschbar; also

$$= -\sum_{n=1}^{\infty} \int_{0}^{e^{i\frac{3\pi}{4}\infty}} e^{2n\pi i z} z^{s-1} dz$$

$$= -\sum_{n=1}^{\infty} \int_{0}^{\infty} e^{-2n\pi e^{i\pi/4}y} \left(e^{i3\pi/4}y\right)^{s-1} e^{i3\pi/4} dy$$

$$= -e^{i\frac{3\pi}{4}s} \sum_{n=1}^{\infty} \frac{\Gamma(s)}{(2n\pi e^{i\pi/4})^s}$$

$$= -e^{i\frac{\pi}{2}s} (2\pi)^{-s} \Gamma(s) \sum_{n=1}^{\infty} \frac{1}{n^s}$$

$$= -e^{i\frac{\pi}{2}s} (2\pi)^{-s} \Gamma(s) \zeta(s).$$

Setzen wir das zusammen mit (4.3) und (4.4) in (4.2) ein, so wird

$$e^{i\frac{\pi}{2}s} (2\pi)^{-s} \Gamma(s) \int_{0\nearrow 1} \frac{e^{i\pi x^2} x^{-s}}{e^{i\pi x} - e^{-i\pi x}} dx$$
$$= -e^{i\frac{\pi}{2}s} (2\pi)^{-s} \Gamma(s) \zeta(s) - \frac{1}{1 + e^{-i\pi s}} \int_{0\searrow 1} \frac{e^{-i\pi x^2} x^{s-1}}{e^{i\pi x} - e^{-i\pi x}} dx.$$

Daraus folgt

$$(2\pi)^{-s}\,\Gamma(s)\,\zeta(s)$$

$$= (2\pi)^{-s} \Gamma(s) \int_{0 \swarrow 1} \frac{e^{i\pi x^2} x^{-s}}{e^{i\pi x} - e^{-i\pi x}} \, dx + \frac{e^{-i\frac{\pi}{2}s}}{1 + e^{-i\pi s}} \int_{0 \searrow 1} \frac{e^{-i\pi x^2} x^{s-1}}{e^{i\pi x} - e^{-i\pi x}} \, dx.$$

Es ist aber nach dem Ergänzungssatz der Gammafunktion

$$\frac{e^{-i\frac{\pi}{2}s}}{1+e^{-i\pi s}} = \frac{1}{2\cos\frac{\pi}{2}s} = \frac{1}{2\pi}\,\Gamma\left(\frac{1-s}{2}\right)\Gamma\left(\frac{1+s}{2}\right)$$

und nach dem Verdoppelungssatz

$$(2\pi)^{-s} \Gamma(s) = \pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \frac{\pi^{\frac{1-s}{2}}}{2\pi} \Gamma\left(\frac{1+s}{2}\right).$$

Trägt man das in die letzte Gleichung ein, so ergibt sich nach Multiplikation mit $\pi^{-(1-s)/2}$ und nach Kürzen von $\Gamma[(1+s)/2]/(2\pi)$ die Behauptung des Satzes. Die Einschränkung *s* reell > 1 kann natürlich jetzt fortfallen; denn da die Konvergenz der beiden Integrale in der Riemann-Siegel-Integralformel offenbar nicht von *s* abhängt, sind diese Integrale ganze Funktionen von *s*. Folglich ist die rechte Seite der Riemann-Siegel-Integralformel wegen der Meromorphie der Gammafunktion in die

ganze Ebene meromorph fortsetzbar. Aufgrund der Art der Herleitung ist ferner unmittelbar ersichtlich, daß von den Potenzen z^{-s} und z^{s-1} die Hauptwerte zu nehmen sind. Damit ist der Satz bewiesen.

Eine ähnliche Herleitung der Riemann-Siegel-Integralformel findet sich in [16, S. 166] und in [31, 32].

4.2 Die asymptotische Entwicklung von $\vartheta(t)$

Wie N. Nielsen in [26, S. 87] setzen wir in der längs der negativen reellen Achse bis zum Nullpunkt aufgeschnittenen z-Ebene

$$\mu(z) := \log \Gamma(z) - \left(z - \frac{1}{2}\right) \log z + z - \log \sqrt{2\pi}.$$
(4.5)

Dabei sind die rechtsstehenden Logarithmen so zu bestimmen, daß $\mu(z)$ für positive reelle z reell wird.

Satz 4.2.1. Die oben eingeführte Funktion $\mu(z)$ hat folgende Eigenschaften:

- (a) $\mu(\overline{z}) = \overline{\mu(z)}$ (b) $\mu(z) = \mu(z+1) + \left(z + \frac{1}{2}\right) \log\left(1 + \frac{1}{z}\right) - 1$ (c) $\mu(z) + \mu\left(z + \frac{1}{2}\right) = \mu(2z) - z \log\left(1 + \frac{1}{2z}\right) + \frac{1}{2}$ (d) $\mu(z) + \mu(-z) = -\log\left(1 - e^{2\pi i z \operatorname{sign} \Im(z)}\right)$ (z nicht reell)
- (e) (Stirlingsche Reihe) Für $K \ge 0$ und jedes $\varepsilon > 0$ ist

$$\mu(z) = \sum_{n=1}^{K} \frac{B_{2n}}{(2n-1) 2n \, z^{2n-1}} + O(z^{-2K-1}) \qquad z \to \infty \ in \ |\arg z| \le \pi - \varepsilon.$$

Die B_{2n} sind die Bernoullischen Zahlen.

(f) (Restabschätzung der Stirlingschen Reihe) Für $\Re(z) \ge 0$ und $K \ge 1$ gilt für das Restglied

$$r_K(z) := \mu(z) - \sum_{n=1}^K \frac{B_{2n}}{(2n-1) 2n \, z^{2n-1}}$$

die Abschätzung

$$|r_K(z)| \le \frac{|B_{2K+2}|}{(2K+1)(2K+2)|z|^{2K+1}} \left(1 + \frac{2K+1}{2}\sqrt{\frac{\pi}{K}}\right).$$

In allen Fällen ist von den Logarithmen der Hauptwert zu nehmen.

Zum Beweis bemerken wir, daß (a) unmittelbar aus (4.5) folgt. Die Gleichung (b) ergibt sich aus der Funktionalgleichung, (c) aus dem Verdopplungs- und (d) aus dem Ergänzungssatz der Gammafunktion. Einen Beweis für (d) findet man z. B. in [26, S. 94]⁴⁾ und für die wichtige Abschätzung (f) in [4, S. 303]. Im übrigen verweisen wir auf [4] und [26].

Satz 4.2.2. Es sei t > 0. Dann ist

$$\Im\left[\left(i\frac{t}{2} - \frac{1}{4}\right)\log\left(1 + \frac{1}{2it}\right) + \mu\left(\frac{1}{4} + i\frac{t}{2}\right)\right]$$
$$= \frac{1}{2}\Im\left[\mu(2it) - \mu(it)\right] + \frac{1}{2}\arctan e^{-\pi t},$$

wenn von dem Logarithmus der Hauptwert genommen wird.

Beweis. (Von allen hier auftretenden Logarithmen ist der Hauptwert zu nehmen). Wir setzen in Satz 4.2.1 z = -1/4 + it/2. Aus (c) folgt

$$\mu\left(-\frac{1}{4}+i\frac{t}{2}\right)+\mu\left(\frac{1}{4}+i\frac{t}{2}\right)=\mu\left(-\frac{1}{2}+it\right)+\left(\frac{1}{4}-i\frac{t}{2}\right)\log\left(1+\frac{1}{-1/2+it}\right)+\frac{1}{2}$$

und aus (d)

$$\mu\left(-\frac{1}{4}+i\frac{t}{2}\right)+\mu\left(\frac{1}{4}-i\frac{t}{2}\right)=-\log\left(1-e^{2\pi i(-1/4+it/2)}\right)=-\log(1+ie^{-\pi t}).$$

Wir subtrahieren die zweite von der ersten Gleichung und erhalten wegen Satz 4.2.1 (a)

$$\mu\left(\frac{1}{4} + i\frac{t}{2}\right) - \mu\left(\frac{1}{4} - i\frac{t}{2}\right)$$
$$= \mu\left(\frac{1}{4} + i\frac{t}{2}\right) - \overline{\mu\left(\frac{1}{4} + i\frac{t}{2}\right)} = 2i\Im\mu\left(\frac{1}{4} + i\frac{t}{2}\right)$$

die Beziehung

$$2i \Im \mu \left(\frac{1}{4} + i\frac{t}{2}\right)$$

$$= \mu \left(-\frac{1}{2} + it\right) + \left(\frac{1}{4} - i\frac{t}{2}\right) \log \left(1 + \frac{1}{-1/2 + it}\right) + \log \left(1 + ie^{-\pi t}\right) + \frac{1}{2}.$$

$$(4.6)$$

Für z = -1/2 + it ist nach Satz 4.2.1 (b)

$$\mu\left(-\frac{1}{2} + it\right) = \mu\left(\frac{1}{2} + it\right) + it\log\left(1 + \frac{1}{-1/2 + it}\right) - 1$$

und für z = it nach Satz 4.2.1 (c)

$$\mu\left(\frac{1}{2} + it\right) = \mu(2it) - \mu(it) - it\log\left(1 + \frac{1}{2it}\right) + \frac{1}{2}$$

Zusammengefaßt lauten die beiden letzten Gleichungen

$$\mu\left(-\frac{1}{2}+it\right) = \mu(2it) - \mu(it) - it\log\left(1+\frac{1}{2it}\right) + it\log\left(1+\frac{1}{-1/2+it}\right) - \frac{1}{2}.$$

⁴⁾ In diesem Buch achte der Leser besonders auf Druckfehler!

4.2. Die asymptotische Entwicklung von $\vartheta(t)$

Wir tragen das in (4.6) ein:

$$2i\Im\mu\left(\frac{1}{4} + i\frac{t}{2}\right) = \mu(2it) - \mu(it) - it\log\left(1 + \frac{1}{2it}\right) + \left(\frac{1}{4} + i\frac{t}{2}\right)\log\left(1 + \frac{1}{-1/2 + it}\right) + \log(1 + ie^{-\pi t}).$$
(4.7)

Da t reell >0 ist, gilt die Zerlegung

$$\log\left(1 + \frac{1}{-1/2 + it}\right) = \log\left(1 + \frac{1}{2it}\right) - \log\left(1 - \frac{1}{2it}\right).$$

Damit wird

$$\left(\frac{1}{4} + i\frac{t}{2}\right)\log\left(1 + \frac{1}{-1/2 + it}\right) - it\log\left(1 + \frac{1}{2it}\right)$$

$$= \left(\frac{1}{4} - i\frac{t}{2}\right)\log\left(1 + \frac{1}{2it}\right) - \left(\frac{1}{4} + i\frac{t}{2}\right)\log\left(1 - \frac{1}{2it}\right)$$

$$= 2i\Im\left[\left(\frac{1}{4} - i\frac{t}{2}\right)\log\left(1 + \frac{1}{2it}\right)\right].$$

Aus (4.7) folgt dann, wenn wir gleich durch 2i dividieren,

$$\begin{split} \Im\left[\left(i\frac{t}{2}-\frac{1}{4}\right)\log\left(1+\frac{1}{2it}\right)+\mu\left(\frac{1}{4}+i\frac{t}{2}\right)\right]\\ &=\frac{1}{2i}\left[\mu(2it)-\mu(it)\right]+\frac{1}{2i}\log\left(1+i\,e^{-\pi t}\right). \end{split}$$

Die linke Seite dieser Gleichung ist reell. Folglich reicht es, wenn man von der rechten Seite den Realteil nimmt. Wegen

$$\Re\left[\frac{1}{2i}\log(1+i\,e^{-\pi t})\right] = \frac{1}{2}\arctan e^{-\pi t}$$

ergibt sich daraus die Behauptung.

Satz 4.2.3. Für reelle t sei

$$\vartheta(t) := \Im \log \Gamma\left(\frac{1}{4} + i\frac{t}{2}\right) - \frac{t}{2}\log \pi.$$

Von dem Logarithmus ist der Hauptwert zu nehmen, so daß $\vartheta(t)$ bei t = 0 verschwindet. Dann ist für t > 0:

(a)
$$\vartheta(t) = \frac{t}{2} \log \frac{t}{2\pi} - \frac{t}{2} - \frac{\pi}{8} + \frac{1}{2} \arctan e^{-\pi t} + \frac{1}{2} \Im \left[\mu(2it) - \mu(it) \right]$$

(b)
$$\vartheta(t) = \frac{t}{2}\log\frac{t}{2\pi} - \frac{t}{2} - \frac{\pi}{8} + \sum_{n=1}^{K} \frac{(2^{2n-1}-1)|B_{2n}|}{2^{2n}(2n-1)2nt^{2n-1}} + O(t^{-2K-1}) \quad \begin{array}{c} (t \to +\infty, \\ K \ge 0) \end{array}$$

(c) $\vartheta(t)$ besitzt die asymptotische Entwicklung

$$\vartheta(t) \sim \frac{t}{2} \log \frac{t}{2\pi} - \frac{t}{2} - \frac{\pi}{8} + \sum_{n=1}^{\infty} \frac{(2^{2n-1}-1)|B_{2n}|}{2^{2n}(2n-1)2n t^{2n-1}} \qquad (t \to +\infty).$$

(d) In der Darstellung

$$\vartheta(t) = \frac{t}{2}\log\frac{t}{2\pi} - \frac{t}{2} - \frac{\pi}{8} + \frac{1}{48t} + \frac{7}{5760t^3} + \frac{31}{80\,640t^5} + R\vartheta(t)$$

genügt das Restglied $R\vartheta(t)$ für $t \ge 10$ der Abschätzung

$$|R\vartheta(t)| < \frac{1}{3\,322\,t^7}.$$

Beweis. Es seitreell>0. Aus (4.5) folgt für z=1/4+it/2

$$\log \Gamma\left(\frac{1}{4} + i\frac{t}{2}\right) = \left(i\frac{t}{2} - \frac{1}{4}\right)\log\left(\frac{1}{4} + i\frac{t}{2}\right) - \frac{1}{4} - i\frac{t}{2} + \log\sqrt{2\pi} + \mu\left(\frac{1}{4} + i\frac{t}{2}\right).$$

Wegen

$$\log\left(\frac{1}{4} + i\frac{t}{2}\right) = \log i\frac{t}{2} + \log\left(1 + \frac{1}{2it}\right) = \log\frac{t}{2} + i\frac{\pi}{2} + \log\left(1 + \frac{1}{2it}\right)$$

wird dann

$$\Im \log \Gamma\left(\frac{1}{4} + i\frac{t}{2}\right)$$

$$= \Im \left[\left(i\frac{t}{2} - \frac{1}{4}\right) \left(\log \frac{t}{2} + i\frac{\pi}{2}\right) - \frac{1}{4} - i\frac{t}{2} + \log\sqrt{2\pi} + \left(i\frac{t}{2} - \frac{1}{4}\right) \log\left(1 + \frac{1}{2it}\right) + \mu\left(\frac{1}{4} + i\frac{t}{2}\right) \right]$$

$$= \frac{t}{2} \log \frac{t}{2} - \frac{t}{2} - \frac{\pi}{8} + \Im \left[\left(i\frac{t}{2} - \frac{1}{4}\right) \log\left(1 + \frac{1}{2it}\right) + \mu\left(\frac{1}{4} + i\frac{t}{2}\right) \right].$$

Hieraus ergibt sich (a), wenn man auf beiden Seiten der Gleichung $(t\log\pi)/2$ abzieht und Satz 4.2.2 anwendet.

Mit z = it lautet (f) von Satz 4.2.1 wegen $|B_{2n}| = (-1)^{n-1}B_{2n}$

$$\mu(it) = \sum_{n=1}^{K} \frac{B_{2n}}{(2n-1)2n(it)^{2n-1}} + r_K(it)$$
$$= i \sum_{n=1}^{K} \frac{(-1)^n B_{2n}}{(2n-1)2n t^{2n-1}} + r_K(it) \qquad (K \ge 1)$$
$$= -i \sum_{n=1}^{K} \frac{|B_{2n}|}{(2n-1)2n t^{2n-1}} + r_K(it).$$

Daher ist

$$\frac{1}{2}\Im\left[\mu(2it) - \mu(it)\right]$$

$$= \frac{1}{2}\sum_{n=1}^{K} \frac{|B_{2n}|}{(2n-1)2nt^{2n-1}} - \frac{1}{2}\sum_{n=1}^{K} \frac{|B_{2n}|}{(2n-1)2n(2t)^{2n-1}} + \frac{1}{2}\Im\left[r_{K}(2it) - r_{K}(it)\right]$$

$$= \sum_{n=1}^{K} \frac{(2^{2n-1}-1)|B_{2n}|}{2^{2n}(2n-1)2nt^{2n-1}} + \frac{1}{2}\Im\left[r_{K}(2it) - r_{K}(it)\right].$$

4.2. Die asymptotische Entwicklung von $\vartheta(t)$

Aus (a) folgt so die Darstellung

$$\vartheta(t) = \frac{t}{2} \log \frac{t}{2\pi} - \frac{t}{2} - \frac{\pi}{8} + \frac{1}{2} \arctan e^{-\pi t}$$

$$+ \sum_{n=1}^{K} \frac{(2^{2n-1} - 1)|B_{2n}|}{2^{2n}(2n-1)2n t^{2n-1}} + \frac{1}{2} \Im [r_K(2it) - r_K(it)].$$

$$(4.8)$$

Nach Satz 4.2.1 (e) und (f) ist $r_K(2it) - r_K(it) = O(t^{-2K-1})$ für $t \to +\infty$. Setzt man leere Summen gleich Null, so bleibt das auch noch für K = 0 richtig. Da $\arctan e^{-\pi t} = O(t^{-K})(t \to +\infty)$ für jedes K ist, sind damit (b) und (c) bewiesen.

Zum Beweis von (d) wenden wir (4.8) mit K = 5 an. Wir erhalten mit den numerischen Werten von $(2^{2n-1}-1)|B_{2n}|/[2^{2n}(2n-1)2n]$ $(1 \le n \le 5)$

$$\vartheta(t) = \frac{t}{2}\log\frac{t}{2\pi} - \frac{t}{2} - \frac{\pi}{8} + \frac{1}{48t} + \frac{7}{5760t^3} + \frac{31}{80\,640t^5} + R\vartheta(t)$$

 mit

$$R\vartheta(t) = \frac{127}{430\,080\,t^7} + \frac{511}{1\,216\,512\,t^9} + \frac{1}{2}\arctan e^{-\pi t} + \frac{1}{2}\,\Im\big[r_5(2it) - r_5(it)\big].$$

Für $t\geq 10$ läßt sich das Rest
glied $R\vartheta(t)$ wie folgt abschätzen:

$$|R\vartheta(t)| \le \frac{127}{430\,080\,t^7} + \frac{511\cdot10^{-2}}{1\,216\,512\,t^7} + \frac{1}{2}\arctan e^{-\pi t} + \frac{1}{2}|r_5(2it)| + \frac{1}{2}|r_5(it)|.$$

Es gelten die Abschätzungen $(t \ge 10)$

$$\frac{1}{2}\arctan e^{-\pi t} < \frac{e^{-\pi t}}{2} < \frac{10^{-6}}{t^7}$$

und wegen $|B_{12}|=691/2730$ nach Satz 4.2.1 (f)

$$\begin{aligned} \frac{1}{2}|r_5(2it)| + \frac{1}{2}|r_5(it)| \\ &\leq \frac{1}{2} \cdot \frac{|B_{12}|}{11 \cdot 12 \ (2t)^{11}} \left(1 + \frac{11}{2}\sqrt{\frac{\pi}{5}}\right) + \frac{1}{2} \cdot \frac{|B_{12}|}{11 \cdot 12 \ t^{11}} \left(1 + \frac{11}{2}\sqrt{\frac{\pi}{5}}\right) \\ &= \frac{(2^{11} + 1) \cdot 691}{11 \cdot 12 \cdot 2^{12} \cdot 2730 \ t^{11}} \left(1 + \frac{11}{2}\sqrt{\frac{\pi}{5}}\right) \\ &\leq \frac{(2^{11} + 1) \cdot 691}{11 \cdot 12 \cdot 2^{12} \cdot 2730 \cdot 10^4 \ t^7} \left(1 + \frac{11}{2}\sqrt{\frac{\pi}{5}}\right) < \frac{5.2 \cdot 10^{-7}}{t^7}. \end{aligned}$$

Damit wird

$$|R\vartheta(t)| < \left[\frac{127}{430\,080} + \frac{511 \cdot 10^{-2}}{1\,216\,512} + 10^{-6} + 5.2 \cdot 10^{-7}\right] \frac{1}{t^7}.$$

Hier läßt sich die Konstante in der eckigen Klammer mit 1/3322 nach oben abschätzen, wie in (d) behauptet wurde.

Wir bemerken noch, daß diese Abschätzung fast optimal ist; denn wegen

$$\frac{127}{430\,080\,t^7} = \frac{1}{3\,386.45\dots\cdot t^7}$$

ist der mit $1/3322\,t^{-7}$ abgeschätzte Fehler nur wenig größer als das erste vernachlässigte Glied der asymptotischen Reihe. $\hfill \Box$

Eine andere Art der Herleitung der asymptotischen Entwicklung (c) findet der Leser bei C. L. Siegel in [31, 32].

Satz 4.2.4. Es sei $\tau > 0$ und $t = 1/(8\tau^2)$. Für den durch

$$U := \exp i\left(\frac{t}{2}\log\frac{t}{2\pi} - \frac{t}{2} - \frac{\pi}{8} - \vartheta(t)\right)$$

definierten Ausdruck bestehen die Beziehungen

(a)
$$U = \exp\left(-i\sum_{n=1}^{K} \frac{(2^{2n-1}-1)|B_{2n}|}{2^{2n}(2n-1)2n} (8\tau^2)^{2n-1}\right) + O\left(\tau^{4K+2}\right) \qquad \begin{array}{l} (\tau \to 0, \\ K \ge 0). \end{array}$$

(b) Für $\tau \leq 1/40$ genügt das Restglied $\operatorname{RU}(\tau)$ in der Darstellung

$$U = e^{-i\left(\frac{\tau^2}{6} + \frac{28}{45}\tau^6 + \frac{3\,968}{315}\tau^{10}\right)} + \mathrm{RU}(\tau)$$

der Abschätzung

$$|\operatorname{RU}(\tau)| < \frac{\tau^{11}}{101}$$

(c) U ist in eine formale Potenzreihe der Form

$$U \sim \sum_{n=0}^{\infty} i^n \,\alpha_n \,\tau^{2n} \qquad (\tau \to 0)$$

entwickelbar. Für $K\geq 0$ ist

$$U = \sum_{n=0}^{K} i^{n} \alpha_{n} \tau^{2n} + O(\tau^{2K+2}) \qquad (\tau \to 0).$$

Die Koeffizienten α_n sind rationale Zahlen. Sie genügen der Rekursionsformel

$$\alpha_0 = 1,$$

$$n \alpha_n = -\sum_{k=1}^{\lfloor (n+1)/2 \rfloor} \beta_k \alpha_{n+1-2k} \qquad (n \ge 1)$$

mit

$$\beta_k := \frac{2^{4k-4} \left(2^{2k-1} - 1\right) B_{2k}}{k} \qquad (k \ge 1).$$

Für die ersten α_n ergeben sich folgende Werte:

$$\begin{split} \alpha_0 &= 1, \\ \alpha_1 &= -\frac{1}{2 \cdot 3}, \\ \alpha_2 &= \frac{1}{2^3 \cdot 3^2}, \end{split} \qquad \qquad \alpha_5 &= -\frac{8\,689 \cdot 9\,463}{2^8 \cdot 3^6 \cdot 5 \cdot 7}, \\ \alpha_6 &= \frac{19 \cdot 141\,865\,649}{2^{10} \cdot 3^8 \cdot 5^2 \cdot 7}, \end{split}$$

4.2. Die asymptotische Entwicklung von $\vartheta(t)$

$$\alpha_{3} = \frac{4\,027}{2^{4} \cdot 3^{4} \cdot 5}, \qquad \qquad \alpha_{7} = \frac{19^{2} \cdot 47 \cdot 173 \cdot 1\,487\,809}{2^{11} \cdot 3^{9} \cdot 5^{2} \cdot 7}, \qquad \qquad \alpha_{8} = -\frac{43 \cdot 853 \cdot 31\,393 \cdot 32\,653}{2^{15} \cdot 3^{10} \cdot 5^{2} \cdot 7}.$$

Zähler und Nenner sind vollständig in Primfaktoren zerlegt.

Beweis. Aus Satz 4.2.3 (b) folgt nach Definition von U

$$U = \exp\left(-i\sum_{n=1}^{K} \frac{(2^{2n-1}-1)|B_{2n}|}{2^{2n}(2n-1)2nt^{2n-1}} + O(t^{-2K-1})\right) \quad (t \to +\infty)$$
$$= \exp\left(-i\sum_{n=1}^{K} \frac{(2^{2n-1}-1)|B_{2n}|}{2^{2n}(2n-1)2nt^{2n-1}}\right) + O(t^{-2K-1}) \quad (t \to +\infty)$$

und hieraus ergibt sich (a), wenn man $t = 1/(8\tau^2)$ setzt.

Zum Beweis von (b) verwenden wir die Abschätzung 4.2.3 (d). Wir erhalten

$$U = e^{-i\left(\frac{1}{48t} + \frac{7}{5760t^3} + \frac{31}{80\,640t^5} + R\vartheta(t)\right)}.$$

Für $t = 1/(8\tau^2)$ heißt das

$$U = e^{-i\left(\frac{\tau^2}{6} + \frac{28}{45}\tau^6 + \frac{3\,968}{315}\tau^{10}\right)} + \mathrm{RU}(\tau)$$

 mit

$$\operatorname{RU}(\tau) = e^{-i\left(\frac{\tau^2}{6} + \frac{28}{45}\tau^6 + \frac{3\,968}{315}\tau^{10}\right)} \left(e^{-iR\vartheta(1/(8\tau^2))} - 1\right).$$

Daher ist

$$\left|\operatorname{RU}(\tau)\right| = \left|e^{-iR\vartheta(1/(8\tau^2))} - 1\right| \le \sum_{n=1}^{\infty} \frac{1}{n!} \left|R\vartheta\left(\frac{1}{8\tau^2}\right)\right|^n.$$

Es sei jetzt $\tau \leq 1/40$. Dann wird $1/(8\tau^2) \geq 200$ und die Abschätzung (d) aus Satz 4.2.3 ist anwendbar. Wir erhalten damit

$$\left|R\vartheta\left(\frac{1}{8\tau^2}\right)\right| < \frac{(8\tau^2)^7}{3\,322} = \frac{2^{21}}{3\,322}\,\tau^{14} < 632\,\tau^{14}$$

und so

$$|\operatorname{RU}(\tau)| < \sum_{n=1}^{\infty} \frac{632^n}{n!} \tau^{14n} = \tau^{11} \sum_{n=1}^{\infty} \frac{632^n}{n!} \tau^{14n-11} \le \tau^{11} \sum_{n=1}^{\infty} \frac{632^n}{40^{14n-11}n!}.$$

Da sich hier die ganz rechts stehende unendliche Reihe mit 1/101 nach oben abschätzen läßt, ist (b) bewiesen.

Zum Beweis von (c) bemerken wir, daß aus Satz 4.2.3 (c) folgt

$$U \sim \exp\left(-i\sum_{n=1}^{\infty} \frac{(2^{2n-1}-1)|B_{2n}|}{2^{2n}(2n-1)2n} (8\tau^2)^{2n-1}\right) \quad (\tau \to 0). \quad (4.9)$$

⁵⁾ In der Originalarbeit steht hier im Zähler statt $,19^2 \cdot \ldots$ " fälschlicherweise $,19 \cdot \ldots$ ".

Durch Einsetzen des Exponenten in die Potenzreihe der Exponentialfunktion erhält man hieraus mit gewissen Zahlen α_n eine formale Entwicklung von U nach Potenzen von τ^2

$$U \sim \sum_{n=0}^{\infty} i^n \,\alpha_n \,\tau^{2n} \qquad (\tau \to 0) \tag{4.10}$$

und nach (a) ist klar, daß jede Partialsumme dieser Reihe der in (c) angegebenen Groß-O-Abschätzung genügt.

Die Rekursionsformel der α_n läßt sich in bekannter Weise durch Gleichsetzen der logarithmischen Ableitungen von (4.9) und (4.10) gewinnen. Unter Verwendung der Beziehung $|B_{2k}| = (-1)^{k-1}B_{2k}$ kann man sie in die obenstehende Form bringen. Dabei ist unter $\lfloor (n+1)/2 \rfloor$ wie üblich die größte ganze Zahl $\leq (n+1)/2$ zu verstehen. Da $U \sim 1$ für $\tau \to 0$ ist, muß $\alpha_0 = 1$ sein. Aus der Rekursionsformel erhält man damit die angegebenen Werte der α_n $(n \leq 8)$. Es ist trivial, daß die α_n rationale Zahlen sind.

4.3 Bestimmung von $\mathcal{D}_0(\tau)$ und $\mathcal{D}_1(\tau)$

Satz 4.3.1. Für die formalen Potenzreihen $\mathcal{D}_0(\tau)$ und $\mathcal{D}_1(\tau)$ in

$$U \cdot S \sim \sum_{n=0}^{\infty} \mathcal{D}_n(\tau) \, \frac{\widetilde{F}^{(n)}(q)}{n!} \qquad (\tau \to 0)$$

gilt

$$\mathcal{D}_0(\tau) \doteq \sum_{n=0}^{\infty} \lambda_n \, \tau^{4n} \tag{4.11}$$

und

$$\mathcal{D}_1(\tau) \doteq \sum_{n=1}^{\infty} \mu_n \, \tau^{4n-1}.$$
 (4.12)

Die Koeffizienten sind rekursiv durch

$$\lambda_0 = 1,$$

$$(n+1)\lambda_{n+1} = \sum_{k=0}^n 2^{4k+1} |E_{2k+2}| \lambda_{n-k} \qquad (n \ge 0),$$
(4.13)

$$\varrho_0 = -1, \qquad (4.14)$$

$$(n+1)\,\varrho_{n+1} = -\sum_{k=0}^n 2^{4k+1} |E_{2k+2}|\,\varrho_{n-k} \qquad (n \ge 0)$$

und

$$\mu_n = \frac{\lambda_n + \varrho_n}{2} \qquad (n \ge 1) \qquad (4.15)$$

gegeben. Dabei sind die E_{2k} die Eulerschen Zahlen.

Für $n \leq 6$ geben wir die Werte der Zahlen λ_n , $\rho_n^{(6)}$ und μ_n in Form einer Primfaktorzerlegung an:

$\lambda_0 = 1,$	
	$\lambda_4 = 2 \cdot 3 \cdot 7 \cdot 68111,$
	$\lambda_5 = 2^2 \cdot 3 \cdot 47 \cdot 499 \cdot 4729,$
	$\lambda_6 = 2^2 \cdot 3 \cdot 409 \cdot 193077047,$
	$\lambda_0 = 1,$

 $\varrho_0 = -1,$

$\varrho_1 = 2,$	$\varrho_4 = 2 \cdot 313 \cdot 4493,$
$\varrho_2 = 2 \cdot 3 \cdot 13,$	$\varrho_5 = 2^2 \cdot 3 \cdot 37 \cdot 2968241,$
$\varrho_3 = 2^2 \cdot 11 \cdot 233,$	$\varrho_6 = 2^2 \cdot 61 \cdot 3859681871,$
$\mu_1 = 2,$	$\mu_4 = 2^5 \cdot 5 \cdot 17729,$
$\mu_2 = 2^4 \cdot 5,$	$\mu_5 = 2^2 \cdot 3 \cdot 17^2 \cdot 521 \cdot 733,$
$\mu_3 = 2^2 \cdot 19 \cdot 137,$	$\mu_6 = 2^5 \cdot 5^2 \cdot 179 \cdot 283 \cdot 23311.$

Beweis. Wir können die einzelnen Schritte des Beweises hier nur andeuten, da dieser bei genauer Ausführung sehr umfangreich wird. Der Leser vergleiche dazu auch Siegel [32, S. 290 ff.], beachte jedoch, daß sich die hier auftretenden Integrale entsprechend unserer Herleitung der Riemann-Siegel-Formel aus der Riemann-Siegel-Integralformel von denen Siegels unterscheiden.

Wir setzen zur Abkürzung $\varepsilon := e^{i\pi/4}$ und erhalten mit der Parametrisierung $v = \varepsilon u \ (-\infty < u < +\infty)$ aus Satz 4.1.2

$$\widetilde{F}(q) := \frac{\varepsilon}{2\sqrt{\pi}} e^{i\pi/8 - iq^2/2} \int_{-\infty}^{+\infty} \frac{e^{-u^2/2 + q\varepsilon u}}{\cosh\frac{\sqrt{\pi}}{2}\varepsilon u} \, du.$$

Ersetzen wir q mit $q + \varepsilon x$, so folgt

$$2\sqrt{\pi}\,\overline{\varepsilon}\,e^{-i\pi/8+i(q+\varepsilon x)^2/2}\,\widetilde{F}(q+\varepsilon x) = \int_{-\infty}^{+\infty} e^{ixu}\,\frac{e^{-u^2/2+q\varepsilon u}}{\cosh\frac{\sqrt{\pi}}{2}\varepsilon u}\,du$$

und daraus mit $u = \overline{\varepsilon}v$ nach dem Satz von Fourier

$$\frac{e^{iv^2/2+qv}}{\cosh\frac{\sqrt{\pi}}{2}v} = \frac{\overline{\varepsilon}}{\sqrt{\pi}} e^{-i\pi/8} \int_{-\infty}^{+\infty} e^{-\varepsilon vx} e^{i(q+\varepsilon x)^2/2} \widetilde{F}(q+\varepsilon x) dx, \qquad (4.16)$$

falls v der Bedingung $|\Re(v) - \Im(v)| < \sqrt{\pi}$ genügt. Man erhält diese Bedingung, wenn man die für $\widetilde{F}(q + \varepsilon x)$ aus Satz 4.1.2 folgende Darstellung

$$\widetilde{F}(q+\varepsilon x) = \frac{e^{-i(q+\varepsilon x)^2/2 - i\,3\pi/8} + i\sqrt{2}\,\cos\frac{\sqrt{\pi}}{2}(q+\varepsilon x)}{\cos\sqrt{\pi}(q+\varepsilon x)}$$

⁶⁾ In der Originalarbeit wurde auf die Angabe der ρ_n verzichtet.

in den Integranden einsetzt und die Konvergenz des Integrals an der unteren und oberen Grenze untersucht.

In Satz 1.2.1, S. 12 machen wir die unwesentliche Einschränkung *a* nicht ganz, so daß $-\sqrt{\pi} < q < \sqrt{\pi}$ wird, setzen in die dortige Integraldarstellung von *S* die aus (4.16) folgende Gleichung

$$e^{i\pi/8 - iq^2/2} \frac{e^{iv^2/2 + qv}}{\cosh\frac{\sqrt{\pi}}{2}v} = \frac{\overline{\varepsilon}}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-x^2/2 - (v - iq)\varepsilon x} \widetilde{F}(q + \varepsilon x) dx$$

ein und parametrisieren den Integrationsweg \mathfrak{R}^{iq} mit $v = iq + \varepsilon \sqrt{2} u$ $(-\infty < u < +\infty)$. Die Bedingung $|\Re(v) - \Im(v)| < \sqrt{\pi}$ ist dann wegen $|\Re(v) - \Im(v)| = |q|$ erfüllt und es folgt

$$S = \frac{1}{\sqrt{2}\pi} \int_{-\infty}^{+\infty} g(\tau, \varepsilon \sqrt{2}u) \left[\int_{-\infty}^{+\infty} e^{-x^2/2 - i\sqrt{2}ux} \widetilde{F}(q + \varepsilon x) dx \right] du.$$

Wir tragen hier die Taylorreihe $\widetilde{F}(q+\varepsilon x) = \sum_{n=0}^{\infty} \widetilde{F}^{(n)}(q) (\varepsilon x)^n / n!$ ein und erhalten nach Multiplikation mit

$$U = \exp i\left(\frac{t}{2}\log\frac{t}{2\pi} - \frac{t}{2} - \frac{\pi}{8} - \vartheta(t)\right)$$

die formale Entwicklung

$$U \cdot S \sim \sum_{n=0}^{\infty} \mathcal{D}_n^*(\tau) \, \frac{\widetilde{F}^{(n)}(q)}{n!} \tag{4.17}$$

 mit

$$\mathcal{D}_n^*(\tau) := \frac{U\varepsilon^n}{\sqrt{2}\pi} \int_{-\infty}^{+\infty} g(\tau, \varepsilon\sqrt{2}u) \left[\int_{-\infty}^{+\infty} e^{-x^2/2 - i\sqrt{2}ux} x^n \, dx \right] du \quad (n \ge 0).$$
(4.18)

Setzen wir für $n \geq 0$

$$h_n(u) := \frac{i^n}{\sqrt{2\pi}} 2^{n/2} \int_{-\infty}^{+\infty} e^{-x^2/2 - i\sqrt{2} ux} x^n dx,$$

so wird $h_{n+1}(u) = -h'_n(u)$. Wegen $h_0(u) = e^{-u^2}$ ist dann

$$h_n(u) = (-1)^n \frac{d^n}{du^n} \left(e^{-u^2} \right) = e^{-u^2} H_n(u)^{-7}$$

mit den Hermiteschen Polynomen $H_n(u)$. Wir erhalten so aus (4.18), wenn wir die Funktion $g(\tau, \varepsilon \sqrt{2} u)$ gleich mit ihrem expliziten Ausdruck aus Satz 1.2.1, S. 12 ersetzen und $\tau = 1/(2\sqrt{2t})$ beachten,

$$\mathcal{D}_n^*(\tau) = \frac{\varepsilon^{-n} \, 2^{-n/2}}{\sqrt{\pi}} \, U \int\limits_{-\infty}^{+\infty} e^{(-1/2+it) \log\left(1+i\varepsilon u/\sqrt{t}\right) + \varepsilon\sqrt{t} \, u - u^2/2} \, H_n(u) \, du \quad (n \ge 0).$$

⁷⁾ Siehe [1, 22.11.7].

4.3. Bestimmung von $\mathcal{D}_0(\tau)$ und $\mathcal{D}_1(\tau)$

Eine einfache Anwendung des Cauchyschen Integralsatzes zeigt, daß wir hier den Integrationsweg mit der durch den Verzweigungspunkt des Integranden bei $u = \varepsilon \sqrt{t}$ parallel zur reellen Achse verlaufenden Geraden ersetzen dürfen.⁸⁾ Wir parametrisieren diesen Weg mit $u = \varepsilon \sqrt{t} + x \ (-\infty < x < +\infty)$ und erhalten nach Definition des Ausdruckes U und der Funktion $\vartheta(t)$

$$\mathcal{D}_{n}^{*}(\tau) = \frac{\varepsilon^{-n} \, 2^{-n/2}}{\sqrt{\pi}} \, e^{\frac{1}{4} \log t + \frac{\pi}{4} t - i \left[\frac{t}{2} \log 2 + \Im \log \Gamma\left(\frac{1}{4} + i\frac{t}{2}\right)\right]} W_{n}(t) \tag{4.19}$$

 mit

$$W_n(t) := e^{-\pi t/4 - i\pi/8} \int_{-\infty}^{+\infty} e^{-x^2/2 + (-1/2 + it)\log(i\varepsilon x)} H_n(\varepsilon \sqrt{t} + x) \, dx \quad (n \ge 0).$$

Zerlegt man dieses Integral in $\int_0^\infty + \int_{-\infty}^0$ und substituiert im zweiten Integral x mit -x, so kann man das in die Form

$$W_n(t) = \int_0^\infty e^{-x^2/2} x^{-1/2 + it} \left[H_n(\varepsilon \sqrt{t} - x) - i e^{-\pi t} H_n(\varepsilon \sqrt{t} + x) \right] dx \quad (n \ge 0)$$

bringen. Hieraus berechnet man wegen $H_0(x) \equiv 1^{(9)}$

$$W_0(t) = \left(1 - i e^{-\pi t}\right) 2^{-\frac{3}{4} + i\frac{t}{2}} \Gamma\left(\frac{1}{4} + i\frac{t}{2}\right)$$

und wegen $H_1(x) = 2x^{10}$ unter Verwendung des Ergänzungssatzes der Gammafunktion

$$W_1(t) = 2\varepsilon\sqrt{t}W_0(t) - 2^{\frac{3}{4}+i\frac{t}{2}}\frac{2\pi\varepsilon e^{-\frac{t}{2}t}}{\Gamma(\frac{1}{4}+i\frac{t}{2})}.$$

Mit der Zerlegung

$$\Gamma\left(\frac{1}{4} + i\frac{t}{2}\right) = e^{\Re \log \Gamma\left(\frac{1}{4} + i\frac{t}{2}\right) + i\Im \log \Gamma\left(\frac{1}{4} + i\frac{t}{2}\right)}$$

folgt damit aus (4.19)

$$\mathcal{D}_0^*(\tau) = (1 - i e^{-\pi t}) e^{\omega},$$

$$\mathcal{D}_1^*(\tau) = \sqrt{2t} \left(\mathcal{D}_0^*(\tau) - e^{-\omega} \right),$$
(4.20)

wobei wir zur Abkürzung

$$\omega := \Re \log \Gamma\left(\frac{1}{4} + i\frac{t}{2}\right) + \frac{\pi}{4}t + \frac{1}{4}\log\frac{t}{2} - \log\sqrt{2\pi}$$

⁸⁾ Nach Definition der Funktion $g(\tau, z)$ in Satz 1.2.1, S. 12 ist der Logarithmus $\log(1 + i\varepsilon u/\sqrt{t})$ im Integranden in der längs der Winkelhalbierenden des 1. Quadranten vom Punkt ∞ bis zum Punkt $u = \varepsilon \sqrt{t}$ aufgeschnittenen *u*-Ebene eine eindeutige holomorphe Funktion von *u*, die reelle Werte annimmt, wenn $1 + i\varepsilon u/\sqrt{t}$ reell und positiv ist. Bei dieser Anwendung des Cauchyschen Integralsatzes wird der Schnitt in der *u*-Ebene daher nicht berührt.

⁹⁾ Siehe [1, 22.4.8].

¹⁰⁾ Siehe [1, 22.4.8].

gesetzt haben. Der letzte Ausdruck läßt sich für $t \to +\infty$ in eine asymptotische Reihe entwickeln. Wir verwenden die von Siegel in [32, S. 289, Nr. 43] angegebene Darstellung, aus der sich mit $\tau = 1/(2\sqrt{2t})$ die asymptotische Entwicklung

$$\omega \sim \sum_{n=1}^{\infty} \frac{|E_{2n}|}{n} 2^{4n-3} \tau^{4n} \qquad (\tau \to 0)$$
 (4.21)

ergibt. Dabei sind die E_{2n} die Eulerschen Zahlen.¹¹⁾ Die Ausdrücke e^{ω} und $e^{-\omega}$ lassen sich daher in formale Potenzreihen der Form

$$e^{\omega} \sim \sum_{n=0}^{\infty} \lambda_n \tau^{4n},$$

$$e^{-\omega} \sim -\sum_{n=0}^{\infty} \varrho_n \tau^{4n}$$
(4.22)

entwickeln, in denen $\lambda_0 = 1$ und $\rho_0 = -1$ sind. Die Rekursionsformeln (4.13) und (4.14) ergeben sich dann in bekannter Weise durch Vergleich von (4.21) und (4.22). Für $t \to +\infty$ bzw. $\tau \to 0$ folgen damit aus (4.20) die asymptotischen Entwicklungen

$$\mathcal{D}_{0}^{*}(\tau) \sim e^{\omega} \sim \sum_{n=0}^{\infty} \lambda_{n} \tau^{4n},$$

$$\mathcal{D}_{1}^{*}(\tau) \sim \frac{e^{\omega} - e^{-\omega}}{2\tau} \sim \sum_{n=1}^{\infty} \mu_{n} \tau^{4n-1},$$
(4.23)

wobei sich die Koeffizienten μ_n mit den Zahlen λ_n und ϱ_n nach Gleichung (4.15) errechnen.

Aus der Existenz einer Entwicklung der Form

$$U \cdot S \sim \sum_{n=0}^{\infty} \mathcal{D}_n(\tau) \, \frac{\widetilde{F}^{(n)}(q)}{n!},$$

in der die $\mathcal{D}_n(\tau)$ formale Potenzreihen in τ sind (Satz 2.1.4, S. 24), folgt durch Vergleich mit (4.17), daß die $\mathcal{D}_n(\tau)$ die formalen Potenzreihenentwicklungen der Funktionen $\mathcal{D}_n^*(\tau)$ sind. Aus (4.23) ergeben sich so für $\mathcal{D}_0(\tau)$ und $\mathcal{D}_1(\tau)$ die Gleichungen (4.11) und (4.12). Die angegebenen Werte der λ_n und μ_n ($n \leq 6$) erhält man mit relativ geringem Rechenaufwand aus (4.13), (4.14) und (4.15). Damit ist der Beweis abgeschlossen.

4.4 Verschiedene Hilfsabschätzungen

Satz 4.4.1. Für reelle a mit $|a| \leq 1$ und beliebige reelle x gelten die Abschätzungen

$$\left|\frac{\cosh\left(e^{i\pi/4}\,ax\right)}{\cosh\left(e^{i\pi/4}\,x\right)}\right| \le 1,\tag{4.24}$$

$$\left. \frac{\sinh\left(e^{i\pi/4}\,ax\right)}{\cosh\left(e^{i\pi/4}\,x\right)} \right| \le \sqrt{2}.\tag{4.25}$$

¹¹⁾ Siegel bezeichnet $|E_{2n}|$ mit E_n .

4.4. Verschiedene Hilfsabschätzungen

Beweis. Bekanntlich ist für reelle x und y

$$\cosh(x+iy)|^2 = \frac{1}{2}(\cosh 2x + \cos 2y),$$
 (4.26)

$$|\sinh(x+iy)|^2 = \frac{1}{2}(\cosh 2x - \cos 2y).$$
 (4.27)

Aus (4.26) folgt mit y = x

$$\left|\cosh\left(1+i\right)x\right|^{2} = \frac{1}{2} \left[\sum_{n=0}^{\infty} \frac{(2x)^{2n}}{(2n)!} + \sum_{n=0}^{\infty} (-1)^{n} \frac{(2x)^{2n}}{(2n)!}\right] = \sum_{n=0}^{\infty} \frac{(2x)^{4n}}{(4n)!}.$$
 (4.28)

Für reelle a mit $|a| \leq 1$ und beliebige reelle x gilt dann die Abschätzung

$$|\cosh(1+i)x|^2 - |\cosh(1+i)ax|^2 = \sum_{n=0}^{\infty} (1-a^{4n}) \frac{(2x)^{4n}}{(4n)!} \ge 0;$$
 (4.29)

denn diese Reihe enthält nur Summanden $\geq 0.$ Daher ist

$$\left|\frac{\cosh\left(1+i\right)ax}{\cosh\left(1+i\right)x}\right| \le 1$$

und wegen $e^{i\pi/4} = (1+i)/\sqrt{2}$ folgt hieraus die Abschätzung (4.24), wenn man x mit $x/\sqrt{2}$ ersetzt.

Wiederum mit y = x ist nach (4.26) und (4.27)

$$|\sinh(1+i)x|^{2} = \frac{1}{2}(\cosh 2x + \cos 2x) - \cos 2x = |\cosh(1+i)x|^{2} - \cos 2x,$$

und wir erhalten unter Verwendung von (4.29)

$$|\cosh(1+i)x|^{2} - |\sinh(1+i)ax|^{2} = |\cosh(1+i)x|^{2} - |\cosh(1+i)ax|^{2} + \cos 2ax$$
$$\geq \cos 2ax \geq -1.$$

Folglich gilt

$$\left|\frac{\sinh{(1+i)ax}}{\cosh{(1+i)x}}\right|^2 \le 1 + \frac{1}{\left|\cosh{(1+i)x}\right|^2} \le 2;$$

denn nach (4.28) ist $|\cosh(1+i)x|^2 \ge 1$. Ersetzen wir wie eben x mit $x/\sqrt{2}$, so ergibt sich die Abschätzung (4.25) und der Satz ist bewiesen.

Satz 4.4.2. Es sei x reell. Mit Hilfe der gewöhnlichen reellen Arkustangensfunktion gelten für die durch

$$f(x) := \int_{0}^{x} v^{2} \frac{v-1}{1+(v-1)^{2}} dv$$
(4.30)

definierte Funktion die Darstellungen

$$f(x) = \frac{x^2}{2} + x - 2\arctan(x - 1) - \frac{\pi}{2} \qquad \text{für alle reellen } x, \qquad (4.31)$$

$$f(x) = \frac{x^2}{2} + x + 2\arctan\frac{x}{x-2} \qquad \qquad f \ddot{u}r \ x < 2. \tag{4.32}$$

f(x) und f(x) - f(1) genügen den Abschätzungen

$$f(x) < \begin{cases} \frac{x^2}{2} & \text{für } x \le -\theta, \\ \omega \frac{x^2}{2} & \text{für } -\theta < x < 0, \end{cases}$$

$$(4.33)$$

 $f(x) - f(1) < 0.56 x^2$ für $x \ge 1.$ (4.34)

Dabei ist θ eine beliebige reelle Zahl > 0 und

$$\omega := 1 - \frac{2}{\theta} + \frac{4}{\theta^2} \arctan \frac{\theta}{\theta + 2}.$$
(4.35)

Für diese θ ist $0 < \omega < 1$.

Beweis. Mit der Zerlegung

$$v^{2} \frac{v-1}{1+(v-1)^{2}} = v+1 - \frac{2}{1+(v-1)^{2}}$$

folgt (4.31) unmittelbar aus (4.30). Mit Hilfe der Funktionalgleichung

$$\arctan x = \arctan \frac{1+x}{1-x} - \frac{\pi}{4}$$
 für $x < 1$

ergibt sich dann (4.32) aus (4.31).

Zur Herleitung der Abschätzung (4.33) sei jetzt x < 0. Aus (4.32) folgt

$$f(x) = \frac{x^2}{2} h(x)$$
(4.36)

mit

$$h(x) := 1 + \frac{2}{x} + \frac{4}{x^2} \arctan \frac{x}{x-2}.$$
(4.37)

Für die erste Ableitung von h(x) berechnet man

$$h'(x) = -\frac{2}{x^2} - \frac{8}{x^3} \arctan \frac{x}{x-2} - \frac{8}{x^2 \left[x^2 + (x-2)^2\right]}$$

Wegen x < 0 gilt die Abschätzung

$$-\frac{8}{x^3}\arctan\frac{x}{x-2} < -\frac{8}{x^3} \cdot \frac{x}{x-2} = -\frac{8}{x^2(x-2)},$$

und wir erhalten

$$h'(x) < -\frac{2}{x^2} \left[1 + \frac{4}{x-2} + \frac{4}{x^2 + (x-2)^2} \right] = -\frac{4x}{(x-2) \left[x^2 + (x-2)^2 \right]} < 0,$$

so daß h(x) eine streng monoton fallende Funktion ist. Aus (4.30) folgt aber

$$f'(x) = x^2 \frac{x-1}{1+(x-1)^2}.$$
(4.38)

Daher ist f'(0) = f''(0) = 0 und damit

$$f(x) = O(x^3)$$
 für $x \to 0$.

Nach (4.36) ist dann

$$h(x) = O(x)$$
 für $x \to 0$,

so daß h(x) im Punkte x = 0 mit dem Wert 0 stetig (sogar analytisch) ergänzbar ist. Wegen $h(-\infty) = 1$ ist damit gezeigt, daß h(x) monoton von 1 bis 0 fällt, wenn x die reellen Zahlen von $-\infty$ bis 0 durchläuft. Wir können h(x) daher mit

$$h(x) < \begin{cases} 1 & \text{für } x \le -\theta, \\ h(-\theta) & \text{für } -\theta < x < 0 \end{cases}$$

abschätzen. Dabei ist θ eine beliebige reelle Zahl > 0. Setzt man noch

$$\omega := h(-\theta),$$

so ergibt sich hieraus zusammen mit (4.36) die Abschätzung (4.33). Die in (4.35) angegebene Darstellung von ω folgt aus (4.37) und wegen 0 < h(x) < 1 für negative x ist $0 < \omega < 1$ wie behauptet.

Es sei nun $x \ge 1$. Wir setzen

$$w(x) := f(x) - f(1) - 0.56 x^2$$
(4.39)

und haben mit (4.38)

$$w'(x) = x^2 \frac{x-1}{1+(x-1)^2} - 1.12 x$$

= $x \frac{-0.12 x^2 + 1.24 x - 2.24}{1+(x-1)^2}$
= $-0.12 x \frac{(x-7/3)(x-8)}{1+(x-1)^2}$.

Hieraus ergibt sich durch Untersuchung des Vorzeichens von w'(x), daß w(x) für $1 \le x \le 7/3$ und $x \ge 8$ streng monoton fallend und für $7/3 \le x \le 8$ streng monoton steigend ist. Daher hat w(x) bei x = 7/3 ein lokales Minimum, bei x = 8 ein lokales Maximum und genügt für alle $x \ge 1$ der Abschätzung

$$w(x) \le \max\left(w(1), w(8)\right).$$

Nach (4.39) ist aber

$$w(1) = -0.56 < 0$$

und unter Verwendung der Abschätzungen

$$f(8) = 40 - 2 \arctan 7 - \frac{\pi}{2} = 40 - \frac{3\pi}{2} + 2 \arctan \frac{1}{7}$$
$$< 40 - \frac{3\pi}{2} + \frac{2}{7} < 35.6,$$

Kapitel 4. Hilfssätze und Hilfsabschätzungen

$$-f(1) = -\frac{3-\pi}{2} < 0.08,$$

die sich aus (4.31) ergeben,

$$w(8) < 35.6 + 0.08 - 0.56 \cdot 64 = -0.16 < 0,$$

so daß w(x) für alle $x \ge 1$ negativ ist. Die Abschätzung (4.34) folgt damit aus (4.39) und der Satz ist bewiesen.

Satz 4.4.3. Die unvollständige Gammafunktion¹²⁾

$$\Gamma(a,x) := \int_{x}^{\infty} e^{-v} v^{a-1} dv \qquad (a \text{ beliebig reell, } x \text{ reell} > 0)$$
(4.40)

 $l\ddot{a}\beta t \ sich \ f\ddot{u}r \ a \ge 1 \ und \ x > a \ mit$

$$\Gamma(a, x) \le a e^{-x} x^{a-1}$$

abschätzen.

Beweis. Zunächst sei $a \ge 0$. Mit der Substitution v = 1/w folgt aus (4.40)

$$\Gamma(a,x) = \int_{0}^{1/x} e^{-1/w} w^{-a-1} dw.$$
(4.41)

Setzen wir

$$h(w) := e^{-1/w} w^{-a-1},$$

so wird die erste Ableitung dieser Funktion,

$$h'(w) = e^{-1/w} w^{-a-2} \left[\frac{1}{w} - (a+1)\right],$$

für alle w aus dem Integrationsintervall von (4.41) positiv, wenn x der Bedingung x > a+1 genügt. Daher ist h(w) für diese w und x eine streng monoton wachsende Funktion von w, und wir erhalten aus (4.41) die Abschätzung

$$\Gamma(a,x) \le \frac{1}{x} h\left(\frac{1}{x}\right) = e^{-x} x^a \qquad (a \ge 0, \ x > a+1).$$
 (4.42)

Für $a \ge 1$ läßt sich diese Abschätzung noch verschärfen. Partielle Integration in (4.40) führt zu der Funktionalgleichung

$$\Gamma(a, x) = e^{-x} x^{a-1} + (a-1) \Gamma(a-1, x).$$

Wendet man hier (4.42) mit a - 1 statt a an, so folgt die Abschätzung

$$\Gamma(a,x) \le e^{-x} x^{a-1} + (a-1) e^{-x} x^{a-1} = a e^{-x} x^{a-1} \quad (a \ge 1, \ x > a),$$

und das war zu zeigen.

84

¹²⁾ Siehe [1, Kap. 6.5].

Satz 4.4.4.

(a) Die Koeffizienten $B_n(q)$ in der formalen Entwicklung $S \sim \sum_{n=0}^{\infty} B_n(q) \tau^n$ genügen für $|q| \leq \sqrt{\pi}$ den Abschätzungen¹³⁾

$$|B_{2n}(q)| \le \frac{2^{n+1/2}}{\pi} \sum_{k=0}^{2n} \frac{2^k a_k^{(2n)} (n+k-1)!}{(2n+2k)!} \qquad (n\ge 1),$$

$$|B_{2n+1}(q)| \le \frac{1}{2^{n-1}\sqrt{\pi}} \sum_{k=0}^{2n+1} \frac{a_k^{(2n+1)}}{2^k (2n+2k+1)(n+k)!} \qquad (n \ge 0).$$

(b) Für diese q ist

$$\begin{split} |B_0(q)| &\leq 1, \\ |B_1(q)| < 1.6, & |B_6(q)| < 4209, \\ |B_2(q)| < 3.3, & |B_7(q)| < 37784, \\ |B_3(q)| < 13.5, & |B_8(q)| < 372500, \\ |B_4(q)| < 76, & |B_9(q)| < 3974961, \\ |B_5(q)| < 526, & |B_{10}(q)| < 45428942. \end{split}$$

Beweis. Aus (1.26) und (1.27) folgt

$$|B_n(q)| \le \sum_{k=0}^n \frac{a_k^{(n)}}{(n+2k)!} |b_{n+2k}(q)| \qquad (n \ge 0) \qquad (4.43)$$

 mit

$$b_m(q) = \frac{1}{2\sqrt{\pi}} e^{i\pi/8 - iq^2/2} \int dx \frac{e^{iv^2/2 + qv}}{\cosh \frac{\sqrt{\pi}}{2}v} (v - iq)^m dv \qquad (m \ge 0, \ -\sqrt{\pi} < q \le \sqrt{\pi}).$$

Für $m \geq 1$ verschwindet $(v - iq)^m$ bei v = iq von mindestens erster Ordnung, so daß der Integrand im Punkte v = iq auch für $q = \sqrt{\pi}$ holomorph ist. Daher können wir wie beim Beweis von Satz 3.1.1, S. 41 vorgehen. Wie dort setzen wir $\varepsilon := e^{i\pi/4}$ und erhalten mit der Parametrisierung $v = iq + \varepsilon u \ (-\infty < u < +\infty)$

$$b_m(q) = \frac{\varepsilon}{2\sqrt{\pi}} e^{i\pi/8} \int_{-\infty}^{+\infty} \frac{e^{-u^2/2}}{\cosh\frac{\sqrt{\pi}}{2}(iq+\varepsilon u)} (\varepsilon u)^m du \qquad (m \ge 1, \ -\sqrt{\pi} < q \le \sqrt{\pi}),$$

woraus sich mit (vgl. Beweis von Satz 3.1.3, S. 48)

$$\frac{|u|}{\left|\cosh\frac{\sqrt{\pi}}{2}(iq+\varepsilon u)\right|} \le \frac{|u|}{\sinh\frac{\sqrt{2\pi}}{4}|u|} \le \frac{4}{\sqrt{2\pi}}$$

¹³⁾ In der Originalarbeit sind diese Abschätzungen unnötigerweise auf den Bereich $-\sqrt{\pi} < q \leq +\sqrt{\pi}$ beschränkt worden.

die von q unabhängige Abschätzung

$$|b_m(q)| \le \frac{2\sqrt{2}}{\pi} \int_0^\infty e^{-u^2/2} u^{m-1} \, du = \frac{2^{(m+1)/2}}{\pi} \, \Gamma\left(\frac{m}{2}\right) \qquad (m \ge 1)$$

ergibt. Trennen wir die Fälle m gerade und m ungerade, so heißt das

$$|b_{2m}(q)| \le \frac{2^{m+1/2} (m-1)!}{\pi} \qquad (m \ge 1),$$

$$|b_{2m+1}(q)| \le \frac{(2m)!}{\sqrt{\pi} 2^{m-1} m!} \qquad (m \ge 0).$$

Wegen $b_m(-q) = (-1)^m b_m(q)$ gelten diese Abschätzungen auch noch für $q = -\sqrt{\pi}$ und aus (4.43) folgt für $|q| \le \sqrt{\pi}$

$$|B_{2n}(q)| \leq \sum_{k=0}^{2n} \frac{a_k^{(2n)}}{(2n+2k)!} |b_{2n+2k}(q)|$$

$$\leq \frac{2^{n+1/2}}{\pi} \sum_{k=0}^{2n} \frac{2^k a_k^{(2n)} (n+k-1)!}{(2n+2k)!}$$
(n \ge 1)

und

$$|B_{2n+1}(q)| \leq \sum_{k=0}^{2n+1} \frac{a_k^{(2n+1)}}{(2n+2k+1)!} |b_{2n+2k+1}(q)|$$

$$\leq \frac{1}{2^{n-1}\sqrt{\pi}} \sum_{k=0}^{2n+1} \frac{a_k^{(2n+1)}}{2^k (2n+2k+1)(n+k)!},$$
(n \ge 0)

wie in (a) behauptet.

Nach Satz 4.1.2 ist $b_0(q) = \widetilde{F}(q)$. Wegen $a_0^{(0)} = 1$ ist daher $|B_0(q)| = |\widetilde{F}(q)|$, und aus der Integraldarstellung von $\widetilde{F}(q)$ aus Satz 4.1.3 folgt die Abschätzung

$$|B_0(q)| \le \sqrt{2} \int_0^\infty e^{-\pi v^2/2} \left| \frac{\cosh\left(\sqrt{\pi}q\overline{\varepsilon}v\right)}{\cosh\left(\pi\overline{\varepsilon}v\right)} \right| dv \qquad (|q| \le \sqrt{\pi})$$

Es ist aber für $|q| \leq \sqrt{\pi}$ nach Satz 4.4.1

$$\left|\frac{\cosh\left(\sqrt{\pi}q\overline{\varepsilon}v\right)}{\cosh\left(\pi\overline{\varepsilon}v\right)}\right| = \left|\frac{\cosh\left(\varepsilon\frac{q}{\sqrt{\pi}}\pi v\right)}{\cosh\left(\varepsilon\pi v\right)}\right| \le 1$$

und daher wie in (b) behauptet

$$|B_0(q)| \le \sqrt{2} \int_0^\infty e^{-\pi v^2/2} \, dv = 1.$$

Mit den exakten Werten der Zahlen $a_k^{(n)}$ aus Tabelle I, S. 91 lassen sich die beiden Ausdrücke von (a) leicht berechnen. Auf diese Weise erhält man die in (b) angegebenen expliziten Abschätzungen von $B_n(q)$ für $1 \le n \le 10$.

Literaturverzeichnis

- M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards, Applied Mathematics Series, 55, Tenth Printing, 1972
- [2] J. Arias de Reyna, Dynamical Zeta Functions and Kummer Congruences, Acta Arithmetica 119 (1), 2005, 39-52, http://arxiv.org/PS_cache/math/ pdf/0309/0309190v1.pdf
- [3] J. Arias de Reyna, High precision computation of Riemann's zeta function by the Riemann-Siegel formula, I, Math. of Comp. 80 (274), 2011, 995– 1009, http://www.ams.org/journals/mcom/2011-80-274/S0025-5718-20 10-02426-3/home.html
- [4] H. Behnke, F. Sommer, Theorie der analytischen Funktionen einer komplexen Veränderlichen, Springer Verlag, Berlin, Heidelberg, New York, 1965
- [5] M. V. Berry, J. P. Keating, A new asymptotic representation for ζ(¹/₂ + it) and quantum spectral determinants, Proc. Royal Soc. Lond. A 437, 1992, 151–173, http://www.phy.bris.ac.uk/people/berry_mv/the_papers/Berry23 3.pdf
- [6] M. V. Berry, The Riemann-Siegel expansion for the zeta function: high orders and remainders, Proc. Royal Soc. Lond. A 450, 1995, 439-462, http://www. phy.bris.ac.uk/people/berry_mv/the_papers/berry265.pdf
- M. V. Berry, J. P. Keating, The Riemann Zeros and Eigenvalue Asymptotics, SIAM Review 41 (2), 1999, 236-266, http://jpkeating.files.wordpress. com/2010/11/32.pdf
- [8] J. M. Borwein, D. M. Bradley, R. E. Crandall, Computational strategies for the Riemann zeta function, Journal of Computational and Applied Mathematics 121, 2000, 247–296, http://people.reed.edu/~crandall/papers/atta ch01.pdf
- [9] R. P. Brent, J. van de Lune, H. J. J. te Riele, D. T. Winter, On the Zeros of the Riemann Zeta Function in the Critical Strip. II, Math. of Comp. 39 (160), 1982, 681-688, http://oai.cwi.nl/oai/asset/10742/10742A.pdf
- [10] R. P. Brent, J. van de Lune, H. J. J. te Riele, D. T. Winter, The first 200,000,001 zeros of Riemann's zeta function, Computational Methods in Number Theory, Math. Centrum, Amsterdam, 1982, 389-403, http://maths. anu.edu.au/~brent/pd/rpb081i.pdf

- [11] K. Chandrasekharan, Einführung in die analytische Zahlentheorie, Lecture Notes in Mathematics 29, 1966, Springer Verlag, Berlin, Heidelberg, New York
- [12] K. Chandrasekharan, Introduction to Analytic Number Theory, Springer Verlag, Berlin, Heidelberg, New York, 1968
- [13] R. Courant, D. Hilbert, Methoden der mathematischen Physik, Springer Verlag, Berlin, Heidelberg, New York, 4. Auflage, 1993
- [14] R. Courant, D. Hilbert, Methods of Mathematical Physics, Vol. 1, John Wiley & Sons, New York, 1989 und Wiley–VCH, Weinheim, 2004
- [15] F. D. Crary, J. B. Rosser, High Precision Coefficients Related to the Zeta Function, MRC Technical Summary Report 1344, May 1975, Madison, Wisconsin, USA
- [16] H. M. Edwards, Riemann's Zeta Function, Academic Press, New York, 1974
- [17] W. Gabcke, Nueva deducción y cotas explicitas des los restos de la fórmula de Riemann-Siegel, Dissertation, Göttingen 1979, spanische Übersetzung von Juan Arias de Reyna, 2003
- [18] X. Gourdon, P. Sebah, Numerical evaluation of the Riemann Zeta-function, http://numbers.computation.free.fr/Constants/Miscellaneous/ zetaevaluations.pdf, 2003
- [19] X. Gourdon, The 10¹³ first zeros of the Riemann Zeta function, and zeros computation at very large height, http://numbers.computation.free.fr /Constants/Miscellaneous/zetazeros1e13-1e24.pdf, 2004
- [20] C. B. Haselgrove, Royal Society Mathematical Tables 6, Cambridge 1960
- [21] J. C. Lagarias, A. M. Odlyzko, Computing π(x): An Analytic Method, J. Algorithms 8, 1987, 173-191, http://www.dtc.umn.edu/~odlyzko/doc/arch/ analytic.pi.of.x.pdf
- [22] D. H. Lehmer, Extended Computation of the Riemann zeta function, Mathematika 3, 1956, 102–108
- [23] D. H. Lehmer, On the roots of the Riemann zeta function, Acta Mathematica 95, 1956, 291-297, http://www.kryakin.com/files/Acta_Mat_%282_55%29 /acta106_57/95/95_09.pdf
- [24] J. van de Lune, H. J. J. te Riele, D. T. Winter, Rigorous High Speed Separation of Zeros of Riemann's Zeta Function, Report NW 113/81, Mathematical Centre, Amsterdam, Oktober 1981, http://oai.cwi.nl/oai/asset/8955/8 955A.pdf
- [25] L. J. Mordell, The definite integral $\int_{-\infty}^{\infty} \frac{e^{ax^2+bx}}{e^{cx}+d} dx$ and the analytic theory of numbers, Acta Mathematica **61**, 1933, 323-360, http://www.springerlink.com/content/j1474815272w103h/fulltext.pdf

- [26] N. Nielsen, Handbuch der Theorie der Gammafunktion, B. G. Teubner, Leipzig, 1906; Nachdruck (Faksimile): Chelsea Pub. Company, New York, 1965
- [27] A. M. Odlyzko, On the Distribution of Spacings Between Zeros of the Zeta Function, Math. of Comp. 48 (174), 1987, 273-308, http://www.dtc.umn. edu/~odlyzko/doc/arch/zeta.zero.spacing.pdf
- [28] A. M. Odlyzko, A. Schönhage, Fast Algorithms for Multiple Evaluations of the Riemann Zeta Function, Trans. Amer. Math. Soc. 309 (2), 1988, 797-809, http://www.dtc.umn.edu/~odlyzko/doc/arch/fast.zeta.eval.pdf
- [29] H. J. J. te Riele, On the Sign of the Difference π(x) li(x), Math. of Comp. 48 (177), 1987, 323-328, http://www.ams.org/journals/mcom/1987-48-17 7/S0025-5718-1987-0866118-6/S0025-5718-1987-0866118-6.pdf
- [30] J. B. Rosser, J. M. Yohe, L. Schoenfeld, Rigorous computation and the zeros of the Riemann zeta function, Cong. Proc. Int. Federation Information Process., 1968, 70–76, Spartan, Washington, D. C. y Macmillan, New York, 1969
- [31] C. L. Siegel, Über Riemanns Nachlaβ zur analytischen Zahlentheorie, Quellenstudien zur Geschichte der Mathematik, Astronomie und Physik, Abt. B, Studien 2, 1932, 45–80
- [32] C. L. Siegel, Gesammelte Abhandlungen 1, 275–310, Springer Verlag, Berlin, Heidelberg, New York, 1966
- [33] E. C. Titchmarsh, The Zeros of the Riemann Zeta-Function, Proc. Royal Soc. Lond. A 151, 1935, 234-255, http://www.ift.uni.wroc.pl/~mwolf/Proc_ Roy_Soc_Lond_151%281936%29.pdf
- [34] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Oxford, 1951
- [35] G. N. Watson, A Treatise on the Theory of the Bessel Functions, 2. Edition, Cambridge, 1966

Tabellen

I. Primfaktorzerlegung der Zahlen $a_k^{(n)}$

 $(0 \le n \le 11)$

Tabelle I

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	-			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$k \downarrow \overrightarrow{n}$	0	1	2	3	4	5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0	1	1	3	$3 \cdot 5$	$3 \cdot 5 \cdot 7$	$3^3 \cdot 5 \cdot 7$
$ \begin{vmatrix} 2 \\ 3 \end{vmatrix} \qquad \begin{vmatrix} 2^3 \cdot 5 \\ 2^5 \cdot 5 \cdot 7 \\ 2^6 \cdot 5 \cdot 7 \end{vmatrix} \begin{vmatrix} 2^4 \cdot 3 \cdot 7^2 \cdot 11 \\ 2^6 \cdot 5^2 \cdot 7 \cdot 11 \end{vmatrix} \begin{vmatrix} 2^4 \cdot 3^4 \cdot 5 \cdot 7 \cdot 13 \\ 2^5 \cdot 3 \cdot 5 \cdot 7^2 \cdot 11 \cdot 19 \end{vmatrix} $	1		2	$2^2 \cdot 5$	$2^{3} \cdot 3^{3}$	$2^2 \cdot 3 \cdot 223$	$2 \cdot 3 \cdot 6323$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2			$2^3 \cdot 5$	$2^5 \cdot 5 \cdot 7$	$2^4 \cdot 3 \cdot 7^2 \cdot 11$	$2^4 \cdot 3^4 \cdot 5 \cdot 7 \cdot 13$
	3				$2^6 \cdot 5 \cdot 7$	$2^6 \cdot 5^2 \cdot 7 \cdot 11$	$2^5 \cdot 3 \cdot 5 \cdot 7^2 \cdot 11 \cdot 19$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4					$2^7 \cdot 5^2 \cdot 7 \cdot 11$	$2^7 \cdot 5^2 \cdot 7^2 \cdot 11 \cdot 13$
$5 \qquad 2^8 \cdot 5^2 \cdot 7^2 \cdot 11 \cdot 13$	5						$2^8 \cdot 5^2 \cdot 7^2 \cdot 11 \cdot 13$

、		
$k \downarrow \overrightarrow{n}$	6	7
0	$3^3 \cdot 5 \cdot 7 \cdot 11$	$3^3 \cdot 5 \cdot 7 \cdot 11 \cdot 13$
1	$2^3 \cdot 3^2 \cdot 5 \cdot 19 \cdot 89$	$2^5 \cdot 3^2 \cdot 5 \cdot 7591$
2	$2^5 \cdot 3^3 \cdot 127^2$	$2^4 \cdot 3^4 \cdot 11 \cdot 24371$
3	$2^6 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 29 \cdot 83$	$2^6 \cdot 3 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 709$
4	$2^8 \cdot 3^2 \cdot 5 \cdot 7^2 \cdot 11 \cdot 13 \cdot 17$	$2^7 \cdot 3 \cdot 5^2 \cdot 7^2 \cdot 11 \cdot 13 \cdot 29 \cdot 37$
5	$2^{11} \cdot 5^2 \cdot 7^2 \cdot 11 \cdot 13 \cdot 17$	$2^{11} \cdot 3 \cdot 5^2 \cdot 7^2 \cdot 11 \cdot 13 \cdot 17 \cdot 29$
6	$2^{12} \cdot 5^2 \cdot 7^2 \cdot 11 \cdot 13 \cdot 17$	$2^{13} \cdot 5^3 \cdot 7^2 \cdot 11 \cdot 13 \cdot 17 \cdot 19$
7		$2^{14} \cdot 5^3 \cdot 7^2 \cdot 11 \cdot 13 \cdot 17 \cdot 19$

,		
$k \downarrow \overrightarrow{n}$	8	9
0	$3^4 \cdot 5^2 \cdot 7 \cdot 11 \cdot 13$	$3^4 \cdot 5^2 \cdot 7 \cdot 11 \cdot 13 \cdot 17$
1	$2^3 \cdot 3^2 \cdot 5 \cdot 173 \cdot 3491$	$2\cdot 3^3\cdot 5\cdot 7\cdot 2512297$
2	$2^4 \cdot 3^2 \cdot 11^2 \cdot 527627$	$2^4 \cdot 3^2 \cdot 5 \cdot 11 \cdot 13 \cdot 2511011$
3	$2^9 \cdot 3^4 \cdot 5 \cdot 7 \cdot 11 \cdot 13^2 \cdot 83$	$2^5 \cdot 3^2 \cdot 7^3 \cdot 11 \cdot 13 \cdot 73 \cdot 89^2$
4	$2^8 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13^3 \cdot 5477$	$2^8 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11 \cdot 13^2 \cdot 17 \cdot 47 \cdot 1429$
5	$2^{14} \cdot 3^3 \cdot 5^2 \cdot 7^2 \cdot 11 \cdot 13 \cdot 17 \cdot 29$	$2^9 \cdot 3^3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19^2 \cdot 71 \cdot 83$
6	$2^{12} \cdot 3 \cdot 5^2 \cdot 7^2 \cdot 11 \cdot 13 \cdot 17^2 \cdot 19 \cdot 23$	$2^{12} \cdot 3 \cdot 5^2 \cdot 7^3 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 5273$
7	$2^{14} \cdot 5^3 \cdot 7^2 \cdot 11^2 \cdot 13 \cdot 17 \cdot 19 \cdot 23$	$2^{13} \cdot 3^2 \cdot 5^2 \cdot 7^2 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23$
8	$2^{15} \cdot 5^3 \cdot 7^2 \cdot 11^2 \cdot 13 \cdot 17 \cdot 19 \cdot 23$	$2^{15} \cdot 5^5 \cdot 7^2 \cdot 11^2 \cdot 13^2 \cdot 17 \cdot 19 \cdot 23$
9		$2^{16} \cdot 5^5 \cdot 7^2 \cdot 11^2 \cdot 13^2 \cdot 17 \cdot 19 \cdot 23$

× .	
$k \downarrow \overrightarrow{n}$	10
0	$3^4 \cdot 5^2 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19$
1	$2^2 \cdot 3^3 \cdot 5 \cdot 7 \cdot 29894203$
2	$2^3 \cdot 3^4 \cdot 5^2 \cdot 13^2 \cdot 2820197$
3	$2^8 \cdot 3^2 \cdot 7 \cdot 11 \cdot 13^3 \cdot 37 \cdot 21323$
4	$2^8 \cdot 3^2 \cdot 7^2 \cdot 11 \cdot 13 \cdot 17 \cdot 29923237$
5	$2^{10} \cdot 3^5 \cdot 5^2 \cdot 7^2 \cdot 11 \cdot 13^2 \cdot 17 \cdot 19 \cdot 853$
6	$2^{11} \cdot 3 \cdot 5^3 \cdot 7^2 \cdot 11^2 \cdot 13 \cdot 17 \cdot 19 \cdot 281 \cdot 401$
7	$2^{15} \cdot 3 \cdot 5^3 \cdot 7^2 \cdot 11^2 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 3037$
8	$2^{15} \cdot 3 \cdot 5^4 \cdot 7^2 \cdot 11^3 \cdot 13^2 \cdot 17 \cdot 19 \cdot 23 \cdot 29$
9	$2^{17} \cdot 5^5 \cdot 7^3 \cdot 11^2 \cdot 13^2 \cdot 17 \cdot 19 \cdot 23 \cdot 29$
10	$2^{18} \cdot 5^5 \cdot 7^3 \cdot 11^2 \cdot 13^2 \cdot 17 \cdot 19 \cdot 23 \cdot 29$

Primfaktorzerlegung der Zahlen $\boldsymbol{a}_k^{(n)}$

$k {\downarrow} \overrightarrow{n}$	11
0	$3^5 \cdot 5^2 \cdot 7^2 \cdot 11 \cdot 13 \cdot 17 \cdot 19$
1	$2^3 \cdot 3^3 \cdot 5^2 \cdot 7 \cdot 2857 \cdot 26959$
2	$2^4 \cdot 3^3 \cdot 5 \cdot 13 \cdot 1571 \cdot 5542021$
3	$2^7 \cdot 3^3 \cdot 13^2 \cdot 17 \cdot 34217 \cdot 35323$
4	$2^8 \cdot 3^2 \cdot 5^2 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 37 \cdot 577 531$
5	$2^{12} \cdot 3^2 \cdot 5 \cdot 7^2 \cdot 11 \cdot 13 \cdot 17 \cdot 19^2 \cdot 1201327$
6	$2^{12} \cdot 3^3 \cdot 5^2 \cdot 7^2 \cdot 11^2 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 106801$
7	$2^{14} \cdot 3 \cdot 5^3 \cdot 7^2 \cdot 11^2 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 43 \cdot 14783$
8	$2^{15} \cdot 3^4 \cdot 5^4 \cdot 7^2 \cdot 11^2 \cdot 13^2 \cdot 17^2 \cdot 19 \cdot 23 \cdot 103$
9	$2^{20} \cdot 3 \cdot 5^4 \cdot 7^5 \cdot 11^2 \cdot 13^2 \cdot 17 \cdot 19 \cdot 23 \cdot 29$
10	$2^{22} \cdot 5^5 \cdot 7^3 \cdot 11^2 \cdot 13^2 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31$
11	$2^{23} \cdot 5^5 \cdot 7^3 \cdot 11^2 \cdot 13^2 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31$

II. Primfaktorzerlegung der Zahlen $d_k^{\left(n\right)}$

$$(0 \le n \le 12)$$

Tabelle II

```		_				-
$k \downarrow \overrightarrow{n}$	0	1	2	3	4	5
0	1	2	$2^3 \cdot 5$	$2^6 \cdot 5 \cdot 7$	$2^7 \cdot 5^2 \cdot 7 \cdot 11$	$2^8 \cdot 5^2 \cdot 7^2 \cdot 11 \cdot 13$
1			2	$2^{6}$	$2^6 \cdot 7 \cdot 11$	$2^8 \cdot 5 \cdot 7^2 \cdot 11$
2				2	$2^2 \cdot 19$	$2^3 \cdot 17 \cdot 53$
3					2	$2^4 \cdot 5$

,		
$k \downarrow \overrightarrow{n}$	6	7
0	$2^{12} \cdot 5^2 \cdot 7^2 \cdot 11 \cdot 13 \cdot 17$	$2^{14} \cdot 5^3 \cdot 7^2 \cdot 11 \cdot 13 \cdot 17 \cdot 19$
1	$2^8 \cdot 5 \cdot 7^2 \cdot 11 \cdot 13 \cdot 17$	$2^{14} \cdot 5^2 \cdot 7^2 \cdot 11 \cdot 13 \cdot 17$
2	$2^6 \cdot 13 \cdot 1453$	$2^{10} \cdot 11 \cdot 13 \cdot 2131$
3	$2^3 \cdot 3 \cdot 367$	$2^8 \cdot 61 \cdot 109$
4	$2^4 \cdot 5$	$2^3 \cdot 3 \cdot 11 \cdot 37$
5		$2^4 \cdot 5$

$k \downarrow \overrightarrow{n'}$	8	9
0	$2^{15} \cdot 5^3 \cdot 7^2 \cdot 11^2 \cdot 13 \cdot 17 \cdot 19 \cdot 23$	$2^{16} \cdot 5^5 \cdot 7^2 \cdot 11^2 \cdot 13^2 \cdot 17 \cdot 19 \cdot 23$
1	$2^{14} \cdot 5^2 \cdot 7^2 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23$	$2^{16} \cdot 5^2 \cdot 7^2 \cdot 11^2 \cdot 13^2 \cdot 17 \cdot 19 \cdot 23$
2	$2^{11} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 19 \cdot 587$	$2^{12} \cdot 5 \cdot 7 \cdot 11^2 \cdot 13 \cdot 17 \cdot 19 \cdot 773$
3	$2^9 \cdot 11 \cdot 88651$	$2^{10} \cdot 3 \cdot 7 \cdot 11 \cdot 13 \cdot 53 \cdot 1259$
4	$2^4 \cdot 5^2 \cdot 5281$	$2^5 \cdot 19 \cdot 107 \cdot 10597$
5	$2^3 \cdot 3 \cdot 7 \cdot 61$	$2^7 \cdot 5 \cdot 19 \cdot 199$
6	$2 \cdot 41$	$2^2 \cdot 19 \cdot 137$

$ \rightarrow $	1.0	
$k \downarrow n'$	10	11
0	$2^{18} \cdot 5^5 \cdot 7^3 \cdot 11^2 \cdot 13^2 \cdot 17 \cdot 19 \cdot 23 \cdot 29$	$2^{23} \cdot 5^5 \cdot 7^3 \cdot 11^2 \cdot 13^2 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31$
1	$2^{16} \cdot 5^4 \cdot 7^2 \cdot 11^2 \cdot 13^2 \cdot 17 \cdot 19 \cdot 23 \cdot 29$	$2^{23} \cdot 5^4 \cdot 7^3 \cdot 11^2 \cdot 13^2 \cdot 17 \cdot 19 \cdot 23 \cdot 29$
2	$2^{14} \cdot 5^3 \cdot 7^2 \cdot 11^2 \cdot 13 \cdot 17 \cdot 19^2 \cdot 37$	$2^{16} \cdot 5^3 \cdot 7^2 \cdot 11^2 \cdot 13 \cdot 17^2 \cdot 19 \cdot 23 \cdot 359$
3	$2^{12} \cdot 7^2 \cdot 11 \cdot 13 \cdot 17 \cdot 61 \cdot 3767$	$2^{17} \cdot 5 \cdot 7^2 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 52889$
4	$2^7 \cdot 3^4 \cdot 13^2 \cdot 17 \cdot 10499$	$2^{11} \cdot 13 \cdot 17 \cdot 661 \cdot 625  631$
5	$2^5\cdot 19\cdot 257\cdot 5527$	$2^{11} \cdot 3 \cdot 5 \cdot 149 \cdot 93229$
6	$2^4 \cdot 5 \cdot 7 \cdot 13 \cdot 19^2$	$2^5\cdot 19\cdot 31\cdot 53629$
7	$2^2 \cdot 19 \cdot 137$	$2^9 \cdot 19 \cdot 283$
8		$2^2 \cdot 19 \cdot 137$

$k \downarrow \overrightarrow{n'}$	12
0	$2^{24} \cdot 5^6 \cdot 7^4 \cdot 11^2 \cdot 13^2 \cdot 17^2 \cdot 19 \cdot 23 \cdot 29 \cdot 31$
1	$2^{23} \cdot 5^5 \cdot 7^4 \cdot 11^2 \cdot 13^2 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31$
2	$2^{17} \cdot 5^3 \cdot 7^2 \cdot 11^2 \cdot 13^2 \cdot 17 \cdot 19 \cdot 23 \cdot 31 \cdot 7411$
3	$2^{16} \cdot 3^2 \cdot 5 \cdot 7^2 \cdot 11^2 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 40459$
4	$2^{12} \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 360131573$
5	$2^{11} \cdot 19 \cdot 23 \cdot 101 \cdot 3062053$
6	$2^6 \cdot 5 \cdot 18919 \cdot 88853$
7	$2^5 \cdot 5^2 \cdot 11 \cdot 19 \cdot 6737$
8	$2^3\cdot 19\cdot 18523$
9	$2^2 \cdot 3 \cdot 881$

# III. Exakte Darstellung der Koeffizienten $C_n(z)$

$$(0 \le n \le 12)$$

$$\begin{split} C_{0}(z) &= F(z) := \frac{\cos \frac{z}{2} \left(e^{2} + \frac{3}{4}\right)}{\cos \pi z} \\ C_{1}(z) &= \frac{F^{(3)}(z)}{2^{2} \cdot 3^{2}} \\ C_{2}(z) &= \frac{F^{(6)}(z)}{2^{5} \cdot 3^{2} \pi^{4}} + \frac{F^{(2)}(z)}{2^{4} \pi^{2}} \\ C_{3}(z) &= \frac{F^{(9)}(z)}{2^{1} \cdot 3^{4} \pi^{4}} + \frac{F^{(3)}(z)}{2^{3} \cdot 3 \cdot 5 \pi^{4}} + \frac{F^{(1)}(z)}{2^{5} \pi^{2}} \\ C_{3}(z) &= \frac{F^{(12)}(z)}{2^{1} \cdot 3^{6} \pi^{8}} + \frac{11}{2^{9} \cdot 5^{2} \cdot 5 \pi^{6}} + \frac{19 F^{(4)}(z)}{2^{5} \cdot 3 \pi^{4}} + \frac{F^{(2)}}{2^{1} \pi^{2}} \\ C_{4}(z) &= \frac{F^{(12)}(z)}{2^{11} \cdot 3^{6} \pi^{8}} + \frac{11 F^{(8)}(z)}{2^{10} \cdot 3^{2} \cdot 5 \pi^{6}} + \frac{19 F^{(4)}(z)}{2^{10} \cdot 3^{4} \cdot 5 \pi^{4}} + \frac{F^{(2)}}{2^{11} \cdot 3^{2} \cdot 5 \cdot 7 \pi^{6}} + \frac{5 F^{(3)}(z)}{2^{13} \cdot 3 \cdot 5 \pi^{9}} \\ C_{5}(z) &= \frac{F^{(15)}(z)}{2^{16} \cdot 3^{8} \cdot 5 \pi^{12}} + \frac{17 F^{(11)}(z)}{2^{10} \cdot 3^{4} \cdot 5 \pi^{8}} + \frac{17 \cdot 53 F^{(7)}(z)}{2^{14} \cdot 3^{4} \cdot 5^{2} \cdot 7 \pi^{5}} + \frac{367 F^{(6)}(z)}{2^{13} \cdot 3 \cdot 5 \pi^{9}} + \frac{5 F^{(2)}(z)}{2^{9} \pi^{4}} \\ C_{6}(z) &= \frac{F^{(18)}(z)}{2^{16} \cdot 3^{8} \cdot 5 \pi^{12}} + \frac{17 F^{(11)}(z)}{2^{15} \cdot 3^{6} \cdot 5 \pi^{10}} + \frac{13 \cdot 1453 F^{(10)}(z)}{2^{14} \cdot 3^{4} \cdot 5^{2} \cdot 7 \pi^{5}} + \frac{367 F^{(6)}(z)}{2^{13} \cdot 3 \cdot 5 \pi^{9}} + \frac{5 F^{(2)}(z)}{2^{9} \pi^{4}} \\ C_{7}(z) &= \frac{F^{(21)}(z)}{2^{12} \cdot 3^{9} \cdot 5 \pi^{12}} + \frac{17 F^{(11)}(z)}{2^{15} \cdot 3^{6} \cdot 5 \pi^{12}} + \frac{2131 F^{(13)}(z)}{2^{13} \cdot 3 \cdot 5^{2} \cdot 7 \pi^{10}} + \frac{61 \cdot 100 F^{(9)}(z)}{2^{10} \pi^{4}} \\ C_{8}(z) &= \frac{F^{(21)}(z)}{2^{23} \cdot 3^{10} \cdot 5 \cdot 7 \pi^{16}} + \frac{23 F^{(20)}(z)}{2^{10} \pi^{4}} \\ C_{8}(z) &= \frac{F^{(21)}(z)}{2^{23} \cdot 3^{10} \cdot 5 \cdot 7 \pi^{16}} + \frac{23 F^{(20)}(z)}{2^{10} \pi^{4}} \\ C_{9}(z) &= \frac{F^{(21)}(z)}{2^{23} \cdot 3^{10} \cdot 5 \cdot 7 \pi^{18}} + \frac{13 F^{(23)}(z)}{2^{10} \pi^{3}} + \frac{11 \cdot 773 F^{(10)}(z)}{2^{10} \pi^{4}} \\ C_{9}(z) &= \frac{F^{(21)}(z)}{2^{25} \cdot 3^{2} \cdot 7 \pi^{18}} + \frac{13 F^{(22)}(z)}{2^{10} \pi^{6}} + \frac{11 \cdot 773 F^{(10)}(z)}{2^{10} \cdot 3^{2} \cdot 7 \pi^{16}} + \frac{19 \cdot 37 F^{(22)}(z)}{2^{15} \cdot 3^{2} \cdot 7 \pi^{16}} \\ + \frac{19 \cdot 137 F^{(3)}(z)}{2^{17} \cdot 3 \pi^{6}} \\ C_{10}(z) &= \frac{F^{(30)}(z)}{2^{28} \cdot 3^{5} \cdot 5^{7} \pi^{10}} + \frac{29 F^{(20)}(z)}{2^{27} \cdot 3^{10} \cdot 5^{2} \cdot 7 \pi^{18}} + \frac{19 \cdot 37 F^{(22)}(z)}{2^{15$$

Exakte Darstellung der Koeffizienten  ${\cal C}_n(z)$ 

$$C_{11}(z) = \frac{F^{(33)}(z)}{2^{30} \cdot 3^{15} \cdot 5^2 \cdot 7 \cdot 11 \pi^{22}} + \frac{F^{(29)}(z)}{2^{24} \cdot 3^{13} \cdot 5^2 \cdot 7 \pi^{20}} + \frac{17 \cdot 359 F^{(25)}(z)}{2^{28} \cdot 3^{10} \cdot 5^3 \cdot 7 \pi^{18}} \\ + \frac{52\,889 F^{(21)}(z)}{2^{23} \cdot 3^9 \cdot 5^3 \cdot 7 \pi^{16}} + \frac{661 \cdot 625\,631 F^{(17)}(z)}{2^{26} \cdot 3^6 \cdot 5^3 \cdot 7^2 \cdot 11 \pi^{14}} + \frac{149 \cdot 93\,229 F^{(13)}(z)}{2^{21} \cdot 3^4 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \pi^{12}} \\ + \frac{19 \cdot 31 \cdot 53\,629 F^{(9)}(z)}{2^{24} \cdot 3^4 \cdot 5 \cdot 7 \pi^{10}} + \frac{19 \cdot 283 F^{(5)}(z)}{2^{16} \cdot 3 \cdot 5 \pi^8} + \frac{19 \cdot 137 F^{(1)}(z)}{2^{20} \pi^6}$$

$$C_{12}(z) = \frac{F^{(36)}(z)}{2^{34} \cdot 3^{17} \cdot 5^2 \cdot 7 \cdot 11 \pi^{24}} + \frac{F^{(32)}(z)}{2^{32} \cdot 3^{14} \cdot 5^2 \pi^{22}} + \frac{31 \cdot 7 \cdot 411 F^{(28)}(z)}{2^{32} \cdot 3^{13} \cdot 5^3 \cdot 7^2 \pi^{20}} \\ + \frac{40 \cdot 459 F^{(24)}(z)}{2^{30} \cdot 3^8 \cdot 5^3 \cdot 7 \pi^{18}} + \frac{23 \cdot 360 \cdot 131 \cdot 573 F^{(20)}(z)}{2^{30} \cdot 3^8 \cdot 5^4 \cdot 7^2 \cdot 11 \pi^{16}} \\ + \frac{19 \cdot 23 \cdot 101 \cdot 3 \cdot 062 \cdot 053 F^{(16)}(z)}{2^{28} \cdot 3^6 \cdot 5^3 \cdot 7^2 \cdot 11 \cdot 13 \pi^{14}} + \frac{18 \cdot 919 \cdot 88 \cdot 853 F^{(12)}(z)}{2^{28} \cdot 3^5 \cdot 5 \cdot 7 \cdot 11 \pi^{12}} \\ + \frac{5 \cdot 11 \cdot 19 \cdot 6737 F^{(8)}(z)}{2^{26} \cdot 3^2 \cdot 7 \pi^{10}} + \frac{19 \cdot 18 \cdot 523 F^{(4)}(z)}{2^{24} \cdot 3 \pi^8} + \frac{3 \cdot 881 F(z)}{2^{22} \pi^6}$$
## IV. Potenzreihen der Koeffizienten $C_n(z)$

50 Dezimalstellen

$$(0 \le n \le 10)$$

$$C_{2n}(z) = \sum_{k=0}^\infty c_{2k}^{(2n)} \, z^{2k} 
onumber \ C_{2n+1}(z) = \sum_{k=0}^\infty c_{2k+1}^{(2n+1)} \, z^{2k+1}$$

k					$c_{k}^{(0)}$					
0	0.38268	34323	65089	77172	84599	84030	39886	67613	44562	48563
2	0.43724	04680	77520	44936	02964	67371	33198	70730	41501	04236
4	0.13237	65754	80343	52332	40352	67391	51055	54743	22995	55867
6	-0. 1360	50260	47674	18865	49831	88709	09990	76607	06870	27422
8	-0. 1356	76219	70103	58088	79156	70583	49920	61860	29596	96188
10	-0. 162	37253	23144	46528	28546	25294	13364	97256	59201	71817
12	0. 29	70535	37333	79690	78312	72833	99515	86690	67933	33345
14	0. 7	94330	08795	21469	58801	63902	64879	50144	87309	91526
16	0.	4655	61246	14504	50503	70634	02160	34762	31240	41457
18	-0.	14327	25163	09551	05754	08246	31206	26158	88246	25803
20	-0.	1035	48471	12312	94607	50074	15677	38403	49888	27246
22	0.	123	57927	08386	17380	56125	76262	31253	03165	10118
24	0.	17	88108	38579	54904	98566	67814	07069	04566	45456
26	-0.		33914	14389	92703	59069	40621	89788	44556	15248
28	-0.		16326	63390	25659	05101	37405	29710	48102	81346
30	-0.		378	51093	18541	22038	28546	47200	18504	50264
32	0.		93	27423	25920	17248	45662	32063	98698	63600
34	0.		5	22184	30159	78136	85531	38931	47853	02371
36	-0.			33506	73072	74426	37895	15090	35794	73261
38	-0.			3412	42652	28117	26494	08098	71045	62059
40	0.			57	51203	34143	23991	60339	50179	51646
42	0.			14	89530	13632	11505	45475	62777	57347
44	0.				12565	37271	70214	16853	30428	17661
46	-0.				4721	29525	01434	25668	95398	81367
48	-0.				132	69069	36303	96199	92735	41309
50	0.				11	05343	99951	21418	34453	78225
52	0.					54996	46377	52746	55111	40104
54	-0.					1823	13765	02318	02628	06411
56	-0.					156	89403	73772	08801	46868
58	0.					1	58396	35088	23801	16107
60	0.						34346	20725	43720	40220
62	0.						170	21033	50031	70178
64	-0.						59	95119	30495	78167
66	-0.						1	04876	82754	09445
68	0.							8422	13517	83493
70	0.							258	47038	59772
72	-0.							9	34763	93749
74	-0.								45694	19225
76	0.								754	55974
78	0.								64	61816
80	-0.									27882
82	-0.									7609
84	-0.									38
86	0.									8

 $0.92387 \ 95325 \ 11286 \ 75612 \ 81831 \ 89396 \ 78828 \ 68224 \ 16625 \ 86366$ 

k						$c_{k}^{(1)}$					
1	0.0	02682	51026	28375	34702	99914	03955	66674	96592	70472	43064
3	-0.	1378	47734	26351	85304	98704	52589	89616	23659	48225	59753
5	-0.	3849	12504	82235	08222	87364	15363	18936	68960	98807	49451
7	-0.	987	10662	99062	07647	20121	47046	18854	06928	04214	59667
9	0.	331	07597	60858	40433	29090	76951	30069	78028	02091	85612
11	0.	146	47808	57795	41508	24977	96561	98311	19780	77545	77229
13	0.	1	32079	40624	87696	36751	61447	49443	09678	24291	83541
15	-0.	5	92274	87018	47141	32322	34995	28189	56840	68029	12492
17	-0.		59802	42585	37344	85877	10835	07451	58584	19335	89017
19	0.		9641	32245	61698	26352	67298	53298	51666	87570	78366
21	0.		1833	47337	22714	41176	00167	93657	83221	90807	53603
23	-0.		44	67087	56271	78335	99560	79422	71505	51934	65747
25	-0.		27	09635	08217	72743	21692	62839	87091	93725	93160
27	-0.			77852	88654	31585	10462	94823	08520	96100	06728
29	0.			23437	62601	08936	88532	48455	04871	04512	27313
31	0.			1583	01727	89987	52164	21622	26426	28742	11967
33	-0.			121	19941	57372	37912	46646	34473	80175	72576
35	-0.			14	58378	11611	08307	01758	28548	16989	99317
37	0.				28786	30525	81319	17504	55821	28002	08761
39	0.				8662	86290	21237	24122	52825	28879	33104
41	0.				84	30722	72713	70412	71560	02253	14627
43	-0.				36	30807	22309	73462	00173	24618	11033
45	-0.				1	16266	98212	83829	67194	13888	62925
47	0.					10975	48671	15275	31815	90183	28340
49	0.					615	73990	20468	42710	38814	70791
51	-0.					22	90928	00676	78471	51396	38263
53	-0.					2	20328	11748	84879	53437	95983
55	0.						2476	02518	00402	78508	28527
57	0.						595	42772	15583	65780	22727
59	0.						3	26120	20746	79595	26153
61	-0.						1	26540	35591	04116	22437
63	-0.							2431	28469	65496	98190
65	0.							213	83011	38754	69537
67	0.							7	16779	94139	41062
69	-0.								28242	93607	23367
71	-0.								1500	60741	96069
73	0.								26	87318	94053
75	0.								2	49041	95008
77	-0.									1160	53898
79	-0.									341	37546
81	-0.									1	82473
83	0.										39328
85	0.										562
87	-0.										38
89	<u>-0.</u>										1
	-0.0	03059	73064	99706	26546	06819	22459	66280	08083	79039	96856

k						$c_{k}^{(2)}$					
0	0.0	0518	85428	30293	16849	37845	81519	23095	95659	68684	33791
$\frac{0}{2}$	0.0	30	94658	38806	34746	03345	67436	09587	88236	69500	30795
4	-0	1133	59410	78229	37338	21824	35255	88351	34102	49474	89026
6	0	223	30457	41958	14477	20571	25527	58036	81570	98397	99816
8	0	519	66374	08862	33020	51169	26953	06819	18885	15832	10762
10	0.	34	39914	40762	08336	69465	59135	79918	09598	41858	90021
12	-0	59	10648	42747	05828	21732	25230	30773	95276	58837	561021
14	-0	10	22997	25479	35857	45442	78675	22727	78713	39437	47273
16	0	2	08883	92216	99275	54080	73296	17417	54159	31186	30536
18	0.	-	59276	65493	09653	59578	91996	48498	28633	35742	24986
20	-0.		1642	38383	62436	27597	76903	02847	78378	04961	61213
$\frac{-0}{22}$	-0.		1516	11997	00940	68286	17346	05397	18738	16600	81084
${24}$	-0.		59	07803	69820	66679	62922	79025	39789	62060	71628
26	0.		20	91151	48594	78188	97774	55551	89722	58039	58857
$\overline{28}$	0.		1	78156	49583	29235	10537	99701	87884	74866	56010
30	-0.			16164	07245	53538	30752	85576	94444	73857	77680
32	-0.			2380	69624	96667	61570	72107	40380	13584	97816
$\overline{34}$	0.			53	98265	29554	25949	18182	00414	83368	22987
36	0.			19	75014	21969	69515	27330	87335	88451	72519
38	0.				23332	86873	28826	34831	04815	30059	23548
40	-0.				11187	51761	00480	80208	20048	38089	71616
42	-0.				416	40094	88883	76718	85011	22836	43331
44	0.				44	46081	10929	18830	28903	04350	09287
46	0.				2	85461	14783	63714	45457	33874	26978
48	-0.					11913	23143	00378	94304	97184	75053
50	-0.					1298	16343	60736	49894	67099	02313
52	0.					16	12376	31780	33262	33877	96587
54	0.					4	38249	75198	87344	05965	52584
56	0.						2718	63895	76555	75913	88204
58	-0.						1145	88965	06774	58036	97439
60	-0.						24	41531	81819	27522	97891
62	0.						2	35056	75086	79043	46067
64	0.							8669	25899	56212	98718
66	-0.							372	39779	85489	46268
68	-0.							21	64603	32663	21799
70	0.								42034	57751	93556
72	0.								4244	05249	48043
74	-0.								21	23139	27539
76	-0.								6	81349	63731
78	-0.									3954	73207
80	0.									912	11999
82	0.									14	05333
84	-0.									1	02240
86	-0.										2613
88	0.										95
90	$\frac{0}{0}$	0100	00741	C4500	10500	CCCOF	10040	40970	49010	00070	4
	0.0	JUTZ0	ðð/41	04389	10900	60000	18849	40370	43010	92970	23221

k						$c_{k}^{(3)}$					
1	0.0	0133	97160	90719	45690	42698	35729	94522	81238	56353	95317
3	-0.	374	42151	36379	39370	46641	61864	46239	65812	84315	04245
$\tilde{5}$	0.	133	03178	91932	14681	20318	54722	40241	05098	97088	24610
7	0.	226	54660	76547	17871	14760	31990	52100	68874	11951	34489
9	-0.	95	48499	99850	67304	15112	25515	76501	13355	10463	76633
11	-0.	60	10038	45896	36039	12075	80587	57956	11286	93255	59075
13	0.	10	12885	82867	76621	95334	43494	18087	85828	88131	81267
15	0.	6	86573	34492	99825	64245	74283	64865	21853	43285	92530
17	-0.		5985	36679	15385	98159	30593	38532	89474	47603	32543
19	-0.		33316	59851	23994	71290	43553	66983	83079	31712	85955
21	-0.		2191	92891	02435	08105	71848	42192	25369	44570	56301
23	0.		789	08842	45681	49441	05552	48261	56888	52335	34195
25	0.		94	14685	08129	52621	51652	46515	67088	87214	34441
27	-0.		9	57011	62108	83480	30188	07228	47736	89941	49204
29	-0.		1	87631	37453	47066	27968	12970	57776	33187	71497
31	0.			4437	83767	93233	99327	46470	89849	67982	03943
33	0.			2242	67385	05617	35324	84110	68573	06374	39088
35	0.			36	27686	86573	52436	89408	25563	79232	00993
37	-0.			17	63980	95508	21581	60783	11214	98067	40561
39	-0.				79607	65246	78677	77572	90345	17927	78777
41	0.				9419	65149	05896	90763	91489	50256	94424
43	0.				713	31038	54569	65782	45566	67924	63721
45	-0.				32	89910	58455	46243	21179	66525	84927
47	-0.				4	18073	03748	98459	29136	29248	70562
49	0.					5550	54207	16463	33789	78211	64027
51	0.					1787	04419	06260	12385	87176	36353
53	0.					13	31280	39646	56094	28629	73430
55 57	-0.					<b>5</b>	81801	00110	90987	51617	92100
57 50	-0.						14019	12202	80200	35374	30497
09 61	0.						1404	13202	11020	20414	89978 19045
01 62	0.						00	20020	00108 70210	91420	18940
05 65	-0.						2	18065	12319	50245	14004
67	-0.							377	05083	31034	48408
69	0.							42	14558	05294	75628
71	-0							-14	22110	61928	33988
73	-0								7977	85719	14915
75	-0								51	34879	81542
77	0.								12	48640	63022
79	0.									20921	85069
81	-0.									1623	63775
83	-0.									44	84110
85	0.									1	73507
87	0.										7222
89	-0.										146
91	-0.										10
	-0.0	0019	86852	09405	30243	22292	94053	99643	43911	82834	46391

k						$c_{k}^{(5)}$					
1	-0.0001	1	34340	59228	68681	58827	89786	22736	30105	22768	18413
3	-0. 1	3	85155	85671	47985	11219	83406	60473	59129	54479	06908
5	0. 5	0	68306	01735	94034	57526	51330	83952	90098	28198	76511
7	-0. 4	1	22268	28546	77669	24003	22395	75379	70772	16031	22262
9	-0.	5	02125	03923	89304	68611	33009	98232	85900	88004	62547
11	0. 1	8	58333	02933	62498	66427	53866	44602	36078	73138	96532
13	-0.	2	75048	68033	01063	88219	93319	07939	21787	84629	41549
15	-0.	3	15691	32435	59332	80063	79547	01458	39659	32875	89769
17	0.		42177	25904	12201	97981	94005	98882	55782	08866	90245
19	0.		29158	99780	47906	36055	51463	54130	11298	76532	39676
21	-0.		1565	37849	55844	68062	97453	25753	24030	83645	99484
23	-0.		1465	21355	93176	92592	60207	41610	48857	87876	46533
25	-0.		12	20015	86506	11429	90198	51976	36194	13186	65882
27	0.		41	61924	47590	97839	47671	64265	92800	11205	30751
29	0.		2	09398	12749	73436	33264	08788	16993	67138	15718
31 22	-0.			(0839	55086	07248	85205	25367	99790	34999	37810
33 25	-0.			0023 745	00144 41526	44422	42831	01924 50029	87093	90509	30131
30 37	0.			745 04	41000	44214	54683	59926 70257	25080	90020 65858	15043
30	0. _0			94 1	63034	20856	22220	75611	20080	02523	10940
<i>4</i> 1	-0.			4	96376	05904	06208	17943	39665	67623	56119
43	-0.				1044	94028	45048	07270	93663	66465	72605
45	0.				693	87245	20141	27039	12210	28293	46941
47	0.				9	73300	20965	69540	47245	29578	55607
49	-0.				3	66298	72527	67677	77079	46994	67508
51	-0.				-	12513	20911	93576	37011	34566	44686
53	0.					1440	44164	68986	79032	04974	33720
55	0.					79	26953	53722	21720	69969	47117
57	-0.					4	16125	26928	83910	39027	55847
59	-0.						35064	81184	11847	40816	69279
61	0.						807	72511	64436	28936	26811
63	0.						118	65496	28222	66413	63465
65	-0.							56844	10036	47862	51213
67	-0.							31957	27571	11389	34715
69	-0.							281	35861	65198	21126
71	0.							69	83511	21565	27962
73	0.							1	45059	53781	82417
75	-0.								12452	92818	47399
70	-0.								$410 \\ 17$	408/1	90230
79 91	0.								17	95559	20009
83	0.									1006	07660
85	-0. -0									155	02001
87	0									100	44958
89	0.									T	22618
91	0.										6
93	-0.										28
	-0.0000	7	39654	31412	41629	73340	88486	15411	27275	31917	92498

k					$c_{\mu}^{(7)}$					
1	-0.00003	30623	99591	39952	29024	87318	67166	56535	46126	55816
3	-0.00005	58380	11071	673/1	67188	25883	67807	70276	\$1359	10371
5	-0 3	38757	25212	77010	17/80	1/031	87425	10210	05770	11763
7	-0. 3	02854	0015 <i>/</i>	12035	02030	03/57	47011	42020	04055	24728
ģ	-0.5	59013	38897	42033	<i>32</i> 030 86441	75960	64660	85961	55637	56359
11	-0 3	76365	07526	41637	0.0441 0.75/11	13000	18865	02185	96404	10030
13	-0. 0	77587	52128	98363	87786	77788	58804	21375	74674	71491
15	0 1	24346	81009	03170	13854	62920	03156	97472	02285	22504
17	-0	13758	66097	40895	38622	58184	27541	54644	28908	06487
19	-0	15381	43632	05079	13348	05096	83866	74352	37943	86927
21	0	2469	23352	16114	25500	28981	11363	41554	60802	12002
23	0	1130	37488	41071	98166	87702	48571	03849	93083	27545
$\frac{1}{25}$	-0.	140	65380	57682	03288	62357	68785	27784	22995	94048
$\frac{20}{27}$	-0.	53	30220	99943	13446	47873	31522	07126	76247	57168
$\frac{-1}{29}$	0.	3	59428	35262	85034	03526	62845	84527	72829	84714
31	0.	1	60914	68843	19826	04928	46417	33661	89535	13512
33	-0.	-	3405	39843	55486	28691	57518	47323	62007	67527
35	-0.		3175	02449	60695	34155	64297	79074	84549	67918
37	-0.		38	62417	13739	06374	27781	37102	34036	30784
39	0.		42	37052	71361	14640	21794	42549	53403	62355
41	0.		1	59919	33724	67790	45570	54455	23960	23808
43	-0.			39390	48539	22384	81800	24475	70772	53182
45	-0.			2400	16399	71157	29383	28357	36848	56489
47	0.			258	60510	85421	68898	16717	50238	85233
49	0.			22	70087	14433	08317	32323	82108	18990
51	-0.			1	17488	73138	45793	16253	26962	16207
53	-0.				15334	67272	36759	85446	12061	66150
55	0.				323	75436	58260	73211	61926	95556
57	0.				78	27127	90820	78112	11950	09775
59	-0.					7444	47157	21113	12244	32002
61	-0.					31151	34644	40512	30502	01487
63	-0.					452	18515	97017	93803	81976
65	0.					98	37527	95687	74038	90560
67	0.					2	79509	19701	42493	76037
69	-0.						24785	25849	80959	63219
71	-0.						1075	12538	89274	85989
73	0.						49	25301	24764	37445
75	0.						3	12461	76734	30532
77	-0.							7341	99880	33856
79	-0.							731	13688	37108
81	0.							0	65251	03881
83	0.							1	41940	11191
80	0.								234	8//48
01 80	-0.								232	52021 50026
09 01	-0.								2	00020 20207
05	0.									323U7 621
93 05	0.									20 20
90 97	-0. -0									30 1
51	$\frac{0.0}{-0.00001}$	00177	82459	12224	98164	27476	44926	78407	76390	93882
	0.00001	00111	J= 100	I	20101		11040	10101	10000	00004

k					$c_{1}^{(8)}$					
0	0.00000	24197	53613	61179	64945	79307	99978	19897	97564	31445
2	-0	40283	80692	67601	28830	00852	62298	31629	84738	35511
$\frac{2}{4}$	0.1	35738	01583	12178	13454	57533	10495	18567	29816	42291
6	-0 3	66274	30474	20052	21850	30737	59647	91397	35458	83666
8	0.0	51274	67954	56112	84850	58802	04198	09706	73437	76912
10	-0. 2	33637	49180	75876	15227	87733	78674	94067	00601	52672
$12^{10}$	-0.	37917	00292	08222	99108	69420	64652	40529	93783	40432
14	0. 1	02572	37070	28557	96481	16491	52654	52549	90838	32160
16	-0.	31689	29001	22484	22380	55899	54520	19328	99846	90849
18	-0.	10319	15903	98532	72272	86776	57544	15357	27111	01879
$\frac{10}{20}$	0.	6297	34532	76060	50786	41168	96876	69986	88644	23019
$\frac{-0}{22}$	0.	416	86604	88193	94903	88391	82411	01919	31491	08306
${24}$	-0.	537	86314	44658	43575	02020	28880	61201	47538	66058
$\frac{-}{26}$	-0.	14	15344	67639	13293	47101	26806	33928	91732	57025
$\frac{-0}{28}$	0.	26	16924	26305	88468	22334	14640	99058	82687	41557
$\frac{-0}{30}$	0.		86322	05275	86130	15196	99710	52532	20626	06067
32	-0.		78635	47640	79874	41169	80071	23003	50152	39095
$34^{-1}$	-0.		3981	58068	23744	62290	43263	48891	05734	19546
36	0.		1527	29738	16746	16443	65105	19619	47837	15854
38	0.		107	88522	40603	83248	52561	39073	19048	18117
40	-0.		19	80895	73728	71650	89275	56977	17279	58950
42	-0.		1	85414	27835	01535	44679	77337	06120	86729
44	0.			17388	91294	57125	38274	92504	24926	55674
46	0.			2182	52090	26684	95930	17076	76411	65084
48	-0.			100	19236	99865	50741	23944	01964	37315
50	-0.			18	57874	54953	53617	20928	80993	59676
52	0.				30760	92119	31602	60339	27665	54728
54	0.				11877	85523	98865	04091	90012	13659
56	0.				45	80602	75225	68100	03614	60810
58	-0.				58	52729	89870	81926	05135	27643
60	-0.				1	17340	71024	99857	64142	73524
62	0.					22581	19341	30008	41533	00196
64	0.					790	32610	70344	99600	94287
66	-0.					68	54003	02148	23016	05985
68	-0.					3	53473	24971	93191	86512
70	0.						16152	38451	11428	69040
72	0.						1204	72398	34897	83417
74	-0.						27	90612	84733	75341
76	-0.						3	29812	06351	62946
78	0.							2725	80116	96058
80	0.							745	07478	86323
82	0.							2	24139	82400
84	-0.							1	41013	86014
86	-0.								1781	97043
88	0.								225	24683
90	0.								4	94743
92	-0.									30360
94	-0.									983
96	0.									34
98	0.									2
	-0.00000	00150	03601	85507	75452	37803	75237	28152	58375	98888

k					$c_{i}^{(9)}$					
1	-0.00000	68841	20503	02734	50464	61678	38107	25811	99444	30684
3	-0.00000	35455	20000	52358	<i>4</i> 0787	11064	18706	61003	0/013	030084
5	0.1	17540	22152	$\frac{52500}{91147}$	60281	22088	64460	58206	52636	31740
7	-0.2	10047	55165	85005	83028	22000	51196	15048	55781	01140
á	-0 1	01782	8//20	03048	87260	20021	25120	55850	00385	46125
11	-0. 1	38363	10144	19745	01643	50318	08381	04483	10671	11373
13	-0.	79196	20160	-42740 06357	19271	87869	34310	43663	71644	68478
15	-0	35151	23103 96700	43216	13500	40118	10/12	43003 0/280	51863	87945
$17 \\ 17$	-0.	3734	79889	72624	76532	02202	63481	23077	27441	67754
10	-0.	7600	05862	35/30	10002 53354	87465	83/87	00010	8/056	40210
21	-0	1130	03002	12065	60870	82245	27118	61653	70820	40210 57387
21	-0.	661	13/17	42000	31655	01067	71236	30028	361/13	71583
$\frac{20}{25}$	-0.	155	40047	40040 06612	31/88	53865	037/8	08616	30140	81499
$\frac{20}{97}$	0.	36	20047	00330	08040	42008	51620	22181	46055	15384
$\frac{21}{20}$	0.	50	20204 81317	55262	00377	42098	41223	20101	50/08	71733
20 31	-0.	1	46700	08100	01162	60847	33220	00222	03490	1031/
33	-0.	T	27008	71997	12262	27/20	05112	28502	63778	66500
35	0.		4368	630//	60535	05677	35802	20052	81947	14450
37	-0		539	73899	08013	26311	59128	57526	07726	63407
39	-0.		92	62633	46009	83158	46339	76752	53933	72800
41	0.		6	54313	49032	22681	55095	04111	34893	30789
43	0.		1	39808	29940	39760	03943	34567	37704	20690
45	-0		1	4684	25717	71758	32438	53960	67365	02875
47	-0			1532	69898	48153	13897	59760	93775	81291
49	0			1002	17499	01875	44543	93309	39186	20007
51	0			12	50412	07183	83387	47334	53760	93297
53	0				15591	11027	51327	96855	08452	84653
55	-0				7751	97555	47983	23627	10236	56399
57	-0				225	06761	63134	86007	04767	54281
59	0				37	03799	08075	91632	07533	13189
61	0.				1	66976	01620	56056	73990	28104
63	-0.				-	13686	12196	76531	54908	64469
65	-0.					872	90672	85976	21409	35864
67	0.					38	47825	20643	39629	49644
69	0.					3	51172	41137	34726	79520
71	-0.						7669	68065	13064	04803
73	-0.						1132	65635	85874	94906
75	0.						7	51939	04655	97091
77	0.						2	99788	94515	91468
79	0.							1524	92924	80856
81	-0.							660	24315	73341
83	-0.							10	06295	90014
85	0.							1	21833	48644
87	0.								3071	01144
89	-0.								188	25513
91	-0.								6	87110
93	0.									24056
95	0.									1244
97	-0.									24
99	-0.									2
	-0.00000	24833	76166	45216	96989	87654	35537	91997	77728	34558

 $0.00000 \ 00150 \ 12515 \ 99634 \ 48440 \ 41727 \ 38666 \ 92650 \ 55685 \ 14695$ 

## V. Tschebyscheffreihen der Koeffizienten $C_n(z)$

50 Dezimalstellen

$$(0 \le n \le 10)$$

$$egin{aligned} C_{2n}(z) &= \sum_{k=0}^\infty ' \gamma_{2k}^{(2n)} \, T_{2k}(z) \ C_{2n+1}(z) &= z \sum_{k=0}^\infty ' \gamma_{2k}^{(2n+1)} \, T_{2k}(z) \end{aligned}$$

k						$\gamma_k^{(0)}$					
0	1.2	28533	45724	79536	75509	83278	11943	13377	57546	45644	96843
2	0.2	27197	29999	97855	06708	46022	52228	72571	94242	80496	13627
4	0.	1073	86058	19340	28415	43983	84790	92455	55749	55934	71384
6	-0.	137	43815	29633	66144	38463	77555	10654	27186	24066	47365
8	-0.	12	46822	18803	20677	22768	36095	82144	10726	56877	09246
10	-0.		5764	59970	67830	48036	53256	23468	99688	41503	08183
12	0.		2728	06742	95804	52225	63887	04597	09100	89047	10720
14	0.		80	77953	05950	04706	24064	96277	92945	02478	84645
16	-0.		2	08846	08068	86965	44739	54447	85589	81888	90978
18	-0.			13115	56185	47395	27051	43465	47089	29879	36453
20	-0.			14	20798	72280	87185	16522	14545	97015	69688
22	0.			10	27170	13579	31161	57820	85202	93304	72441
24	0.				13974	59881	95183	74434	34553	54873	04395
26	-0.				448	41187	33952	28832	56462	23828	84808
28	-0.				11	83059	95738	45289	00047	66413	22873
30	0.					9389	86956	03999	35583	46932	60750
32	0.					560	18228	47320	69688	75839	09874
34	0.					1	00235	43875	61480	71741	84664
36	-0.						17592	98558	12938	86554	58716
38	-0.						148	54553	06273	36628	40897
40	0.						3	80876	08010	84831	03427
42	0.							5901	18313	95297	34120
44	-0.							53	64406	58895	17071
46	-0.							1	50792	28966	50424
48	0.								297	37477	61358
50	0.								28	31060	64080
52	0.									7416	44194
54	-0.									407	81826
56	-0.									2	67787
58	0.										4529
60	0.	0007	05905	11000	75010	01091	00202	70000	<u> </u>	10005	50
	0.9	92387	95325	11286	75612	81831	89396	78828	68224	16625	86365

k						$\gamma_{\iota}^{(1)}$					
0	0.0	0733	83131	24365	54395	58976	98324	10137	81951	44204	47791
2	-0.	2873	41409	66371	54549	72001	67056	57313	59859	04216	54515
4	-0.	560	71615	20384	22214	41208	97308	41266	81875	77875	51044
6	0.	2	07392	20807	27996	36562	21642	19569	24346	30365	48407
8	0.	5	20120	86631	27012	11396	51447	92331	65212	63719	94974
10	0.		22058	23831	03165	28847	43848	82008	37534	77510	45286
12	-0.		1090	73857	68109	82094	76299	59085	54995	17626	67371
14	-0.		86	55485	64945	32274	27646	08265	21725	88612	99420
16	0.			9551	11244	76693	21632	11988	42623	31828	30816
18	0.			13188	07072	88781	01857	97837	74092	13017	93056
20	0.			211	59709	18325	53103	90394	30269	08750	27148
22	-0.			9	99713	87763	83605	71606	02408	24818	75785
24	-0.				30783	72420	60626	88279	03743	53814	01242
26	0.				349	81526	23887	46286	29201	28823	05414
28	0.				22	57403	42849	95734	63953	90895	33393
30	0.					2965	80834	96795	90146	33431	11313
32	-0.					1035	74705	43081	69452	23661	56997
34	-0.					9	57508	27773	53987	62107	60197
36	0.						31498	46681	31185	26787	66521
38	0.						537	74438	45416	82810	03031
40	-0.						6	10338	89042	62897	80770
42	-0.							18459	66984	45692	43165
44	0.							50	17972	75987	45493
46	0.							4	51972	42434	43113
48	0.								1171	69478	88276
50	-0.								83	08858	95157
52	-0.									57972	01462
54	0.									1158	70477
56	0.									13	71707
58	-0.										11819
60	-0.										231
62	0.										1
	-0.0	3059	$7306\overline{4}$	$9970\overline{6}$	$2654\overline{6}$	06819	$2245\overline{9}$	66280	$0808\overline{3}$	79039	$9685\overline{4}$

						$(\mathbf{n})$					
k						$\gamma_k^{(2)}$					
0	0.0	0629	22317	07977	82452	01893	06692	67900	20237	09616	19090
2	-0.	230	87838	84530	75012	28835	50512	57347	02235	40356	97470
4	0.	5	76982	07666	89844	02193	81941	18534	87447	93784	50311
6	0.	35	23886	20236	65900	66308	39235	00689	93181	35140	81996
8	0.	2	52466	67458	68443	44519	47626	41272	56937	09402	21979
10	-0.		34428	21197	19313	58825	25724	75238	89885	81470	79835
12	-0.		3535	07455	66224	58875	98521	95193	85767	51793	91875
14	0.		37	30830	18379	26253	92809	25592	11959	75827	42761
16	0.		12	77695	18641	16635	29593	96982	80536	55253	81509
18	0.			21874	61620	41470	57788	37361	90165	88900	71317
20	-0.			1914	14109	64610	37039	68259	77373	47944	76419
22	-0.			65	62883	10216	85226	88218	48902	51369	30526
24	0.			1	25860	09182	41171	56326	79018	57976	74461
26	0.				8140	07662	38814	62665	12820	41304	76845
28	-0.				5	42387	42754	88607	44529	86530	35655
30	-0.				5	79698	01310	86543	07304	01587	61335
32	-0.					5382	91650	37463	97022	93503	67946
34	0.					260	10080	77238	34259	05349	39056
36	0.					4	66696	67749	11327	46013	77608
38	-0.						7288	84953	60751	77881	58278
40	-0.						225	00967	90723	19310	01279
42	0.							97378	54958	61202	87407
44	0.							7414	68125	61434	64400
46	0.							15	36964	53521	87620
48	-0.							1	78488	49203	39584
50	-0.								1251	85348	61621
52	0.								32	00856	79563
54	0.									38918	23642
56	-0.									417	20524
58	-0.									8	25999
60	0.										3410
62	0.	0100			10500	0000-	10010	100 - 0	10.01.0	000 -	134
	0.0	0126	88741	64589	10500	66605	18849	40376	43616	92970	25218

						(3)					
k						$\gamma_k^{(s)}$					
0	0.0006	60	38248	69196	01706	81532	55957	94252	40870	60433	61796
2	-0.	74	62899	93620	09453	19148	23600	67406	46632	21629	04743
4	0. 2	28	16038	87656	79836	23619	31504	98623	45096	23805	36768
6	-0.	2	30056	46747	34886	64242	23739	13095	22411	38739	60836
8	-0.	1	31433	46079	99401	22385	43867	90529	94931	63072	80038
10	0.		909	75705	55313	32343	15898	69249	59264	83208	83609
12	0.		1429	51602	01730	64913	56680	35842	96844	16281	49757
14	0.		40	37920	51305	60258	06271	04983	93847	47454	97152
16	-0.		4	87738	49747	46115	15777	93391	74490	02613	16470
18	-0.			23372	09479	06935	12083	81154	07631	34713	56250
20	0.			618	82158	96189	13533	45930	56693	27002	81486
22	0.			51	15119	00871	41843	89055	12393	66905	27611
24	-0.				7643	13788	14060	36282	94157	36795	24125
26	-0.				5889	86366	12377	05270	86878	67830	43585
28	-0.				63	91328	27462	40371	33699	42249	76157
30	0.				4	00886	65711	06543	53937	96685	23760
32	0.					8337	11284	08474	93120	06914	85018
34	-0.					163	25993	41895	08470	02143	32004
36	-0.					5	69230	79927	69963	08249	52978
38	0.						3176	91031	18712	02417	61492
40	0.						255	60087	72196	68742	85889
42	0.							50937	03434	54115	02700
44	-0.							8144	37507	81358	70439
46	-0.							61	84638	90857	93071
48	0.							1	89058	39011	13253
50	0.								2497	52355	94938
52	-0.								31	41204	21056
54	-0.									66836	62795
56	0.									327	83010
58	0.									13	41377
60	-0.										354
62	-0.										212
64	-0.										1
	-0.000	19	86852	09405	30243	22292	94053	99643	43911	82834	46396

_					(4)					
k					$\gamma_k^{(z)}$					
0	0.00033	53149	04933	93719	26294	79078	80465	63628	42901	70151
2	-0. 22	72876	89434	16725	82447	08020	56990	47794	62281	28153
4	0. 6	47738	71884	45696	03960	72013	62140	73212	71260	82073
6	-0.	84922	00500	12540	90538	91024	35092	48897	74208	69715
8	-0.	26161	40724	52190	76554	60875	34511	76300	23322	82468
10	0.	8336	76496	87332	14522	71056	32730	19647	49413	65957
12	0.	632	47040	37544	83262	16727	52811	98543	12312	68763
14	-0.	100	59949	40300	10715	52124	58149	22187	21953	70227
16	-0.	7	82267	72041	30333	05429	01514	29237	75861	30226
18	0.		31676	58285	34986	03452	96287	45969	85192	40649
20	0.		3500	69447	02052	89499	31804	75625	88640	36148
22	-0.		14	31481	45114	43749	52890	08803	63354	67996
24	-0.		7	26940	27079	21763	47855	22720	91455	25346
26	-0.			8780	55659	48359	56771	55567	62834	09032
28	0.			815	02544	74954	57956	01099	02211	31209
30	0.			19	20839	70582	20861	42332	88449	65670
32	-0.				51756	55213	95298	16508	68038	24133
34	-0.				1976	77367	24405	78028	84414	78934
36	0.				16	05986	73439	52903	22609	29997
38	0.				1	26586	32662	43986	18624	27820
40	0.					163	26189	82504	78574	14578
42	-0.					55	37211	02174	23459	82084
44	-0.						43104	84397	20263	50486
46	0.						1717	45105	67185	54737
48	0.						23	84697	34363	81049
50	-0.							37541	87758	56400
52	-0.							829	73640	14169
54	0.							5	22748	11927
56	0.								21077	99457
58	-0.								18	21356
60	-0.								4	13084
62	-0.									1275
64	0.									64
	-0.00000	50785	89831	65002	$4\overline{6841}$	$9\overline{3421}$	$1\overline{4936}$	$8\overline{3542}$	$4\overline{8754}$	$2\overline{9911}$

k					$\gamma_k^{(5)}$					
0	-0.00020	18981	43328	10260	77235	33269	94906	13047	23554	33479
2	0.2	53212	38631	92457	79320	01755	45660	47611	63167	10837
4	0.	59361	31306	73219	68818	16044	81728	10544	71778	98947
6	-0.	55692	82352	78899	52063	19394	52518	43828	10579	58463
8	0.	13498	28777	80148	68715	92564	27526	81328	91545	24235
10	-0.	184	25542	98220	93803	61225	09022	51953	94136	40546
12	-0.	370	03939	42792	74794	78174	78072	85862	77641	44904
14	0.	7	81440	67639	77286	50908	44363	71189	22516	12383
16	0.	3	71737	48594	54668	13489	74903	26739	00182	31764
18	0.		1763	18257	61962	34236	46726	81996	05981	04409
20	-0.		1542	15039	78543	73806	54182	32898	10768	25111
22	-0.		31	97827	57569	90931	06161	60716	29942	86178
24	0.		3	06157	37656	80689	65881	11830	55320	48558
26	0.			10134	46160	41216	39524	28822	73595	64347
28	-0.			313	18394	33940	60341	91384	08290	33667
30	-0.			15	70008	10192	75403	98283	11813	06290
32	0.				14404	51842	28939	64225	34896	74653
34	0.				1459	93533	64699	04948	78514	68051
36	0.				2	59608	49210	55653	72586	39436
38	-0.					89294	42752	80508	90540	80832
40	-0.					819	17045	73158	24529	73938
42	0.					37	49628	41308	81267	94351
44	0.						59859	60155	14778	50000
46	-0.						1081	08673	82178	20610
48	-0.						27	00212	66774	34829
50	0.							19502	83166	97012
52	0.							872	02698	26323
54	-0.								93522	70445
56	-0.								21352	77170
58	-0.								70	77979
60	0.								4	07047
62	0.									2912
64	-0.									61
66	-0.		01.11.2	11000		00400			0101-	1
	-0.00007	39654	31412	41629	73340	88486	15411	27275	31917	92499

k					$\gamma_k^{(6)}$					
0	0.00002	43794	84282	13794	12901	48074	79635	35212	83927	13064
$\tilde{2}$	-0. 1	38297	60140	50378	67038	36744	01916	31749	77066	61864
4	0.	51109	67304	99826	00183	39455	97485	28054	12596	81576
6	-0.	20458	13645	03860	76147	44038	37477	57424	40824	98148
8	0.	4938	13664	48320	11752	89782	84032	07758	19285	76727
10	-0.	361	87528	34962	28140	71368	61138	16473	51537	90405
12	-0.	128	76905	09807	98607	19900	46819	27486	63650	18126
14	0.	25	74412	11114	48661	81986	59212	23907	50240	52255
16	0.	1	36414	57070	79168	35873	60473	64886	55148	62795
18	-0.		30324	39574	08438	20831	12986	00877	50716	82154
20	-0.		1321	66712	39902	53693	45498	24918	43540	54071
22	0.		130	31652	13000	93681	30207	50614	56813	99699
24	0.		6	63588	35532	00669	90941	11267	59194	05186
26	-0.			24600	35654	79328	00436	71027	52605	50906
28	-0.			1681	52792	08168	83360	20027	27606	95137
30	0.			18	93793	20803	59403	33971	43924	24567
32	0.			2	43065	06127	37235	99200	17745	19625
34	0.				460	84861	41193	19911	36630	36440
36	-0.				219	56897	62633	71151	35571	13921
38	-0.				2	29588	03325	96836	94725	47682
40	0.					13065	99063	38240	80331	95096
42	0.					234	71644	89511	60725	79122
44	-0.					5	18149	96672	99090	70426
46	-0.						14258	92256	16492	47277
48	0.						127	33209	77817	00606
50	0.						6	02914	39303	16113
52	-0.							1032	75494	24628
54	-0.							189	01407	75501
56	-0.								61705	08484
58	0.								4530	98979
60	0.								33	86503
62	-0.									83932
64	-0.									1001
66	0.									12
	0.00000	18725	64208	86912	25126	20016	82842	62929	64248	68170

k					$\gamma_k^{(7)}$					
0	-0.00003	65457	15731	22088	28006	27050	86971	40862	91158	85878
2	0. 1	10084	00136	34444	39137	47817	74310	36183	96085	25626
4	-0.	32825	32467	06124	50172	67107	82527	27960	19701	22215
6	0.	5437	66279	76766	92168	73737	20539	44895	14408	31176
8	0.	91	74553	88820	06164	40686	99937	85800	37223	99020
10	-0.	297	41427	53489	10359	84936	19886	43203	24655	51962
12	0.	62	31294	39855	28608	52796	70447	14501	21650	64243
14	-0.	1	21196	56685	88706	54581	29883	36885	47257	66717
16	-0.	1	07412	27112	80687	95570	65706	39425	89515	69575
18	0.		4795	89762	08648	46848	67623	08872	24875	33507
20	0.		875	12219	96380	55570	72132	46367	46453	88213
22	-0.		21	79136	73080	69345	60545	26029	09286	06464
24	-0.		3	73577	87089	65404	20048	26312	24722	69959
26	0.			2196	27024	72947	89825	93679	71016	60499
28	0.			876	58716	85007	37083	79766	00449	42039
30	0.			5	72463	92700	23455	90228	77855	20503
32	-0.			1	21616	94920	95999	72056	54794	10763
34	-0.				1868	43680	42043	66844	38080	92627
36	0.				105	50891	12947	78182	71147	27629
38	0.				2	48614	41687	24970	57187	46731
40	-0.					5823	30474	85232	90796	28480
42	-0.					201	65183	92106	96842	09803
44	0.					1	89663	26714	75821	14831
46	0.						11225	09549	40470	78328
48	-0.						16	75578	98896	08835
50	-0.						4	54384	80348	38703
52	-0.							1807	08392	63397
54	0.							138	02624	34109
56	0.							1	18435	82062
58	-0.								3185	38390
60	-0.								42	77832
62	0.									55163
64	0.									1111
66	-0.									7
	-0.00001	00177	82459	12224	98164	27476	44926	78407	76390	93878

k					$\gamma_k^{(8)}$					
0	0.00000	24571	17017	61821	57264	97607	31378	46944	60056	05071
2	-0.	11940	98639	60772	42754	93671	60954	67441	85707	36887
4	-0.	609	99996	53919	51745	78749	60603	34947	43076	66094
6	-0.	88	44063	91388	59541	91652	60878	38732	75777	16319
8	0.	316	98163	17194	40201	98341	36664	46733	48162	14110
10	-0.	142	00472	09588	33976	59935	74560	31625	79952	75494
12	0.	31	61410	59154	71479	17043	88494	23666	46491	26241
14	-0.	2	44363	15262	11608	27405	04306	96196	42831	42352
16	-0.		43226	31236	56343	76942	70043	79679	90959	03065
18	0.		9017	68190	77394	95903	52342	84311	58275	69126
20	0.		146	98907	92000	89222	75565	86545	01381	93816
22	-0.		87	03305	38247	09761	03762	27714	21026	91238
24	-0.			83797	70803	37318	24493	15966	93745	84484
26	0.			38874	55068	66593	72765	86991	77679	46321
28	0.			624	06850	72470	11086	27307	93159	01710
30	-0.			92	29170	87555	88700	05548	63325	59333
32	-0.			2	15924	26398	49792	19941	93037	90256
34	0.				12647	34812	79546	71775	06243	47268
36	0.				399	09605	99867	51244	42005	21792
38	-0.				10	36360	39114	56207	70066	03409
40	-0.					45361	16477	26836	79086	00955
42	0.					476	45521	98290	30484	89264
44	0.					34	58280	15134	16345	07944
46	-0.						5499	48064	97420	59831
48	-0.						1868	24823	17645	92473
50	-0.						8	44569	53568	03679
52	0.							73986	91738	54030
54	0.							708	21293	59742
56	-0.							21	82641	49514
58	-0.								32281	78754
60	0.								475	88131
62	0.								10	40666
64	-0.									7192
66	-0.									257
68	0.									1
	-0.00000	00150	03601	85507	75452	37803	75237	28152	58375	98889

k					$\gamma_k^{(9)}$					
0	-0.00000	80668	22285	19551	64615	97584	32896	82516	72477	15889
2	0.	20252	28197	48693	05969	04605	96692	37927	92096	06667
4	-0.	6113	23732	62780	19174	19181	47502	83972	90048	83653
6	0.	1689	93326	57723	01425	86354	20981	07018	41181	45772
8	-0.	386	77374	32115	02548	99754	67222	89638	62368	08400
10	0.	62	59906	35892	67559	85981	02442	86472	26093	78189
12	-0.	3	62846	69051	52954	64971	87207	44261	60910	96341
14	-0.	1	08059	05023	26490	52614	15408	12705	37400	38335
16	0.		27038	40332	23753	07283	23036	25334	13647	72756
18	-0.		1225	12678	73263	31021	57506	34740	14889	12376
20	-0.		278	53879	78776	89154	47490	36769	08912	12487
22	0.		22	15543	70252	17402	01074	99118	69479	62959
24	0.		1	63940	47879	14063	94917	43450	69621	99822
26	-0.			11419	33819	81940	77210	01705	12926	88943
28	-0.			647	72080	44847	33742	22000	62828	70284
30	0.			27	68618	40083	59666	39960	59644	74530
32	0.			1	62743	67431	60784	26797	48066	76288
34	-0.				3516	44658	52929	68997	07480	46945
36	-0.				260	24300	24497	25837	38639	18510
38	0.				2	12805	41005	63576	10921	71125
40	0.					27577	28585	46395	37131	18391
42	0.					14	96365	96357	59272	06186
44	-0.					20	21137	45024	93025	54844
46	-0.						13858	41819	24883	82267
48	0.						1058	28143	65469	17763
50	0.						12	97167	89429	01193
52	-0.							40273	75071	82999
54	-0.							725	68559	65025
56	0.							11	05724	98315
58	0.								28888	59700
60	-0.								204	32158
62	-0.								8	74574
64	0.									1666
66	0.									208
	-0.00000	24833	76166	45216	96989	87654	35537	91997	77728	34556

k					$\gamma_k^{(10)}$					
0	0.00000	01396	23158	56448	96271	67546	87884	77148	69664	29684
2	0.	518	76020	99781	90896	29148	36083	77933	80205	15311
4	-0.	1502	56894	00416	70346	78130	02704	42265	73327	93564
6	0.	538	51754	15429	12940	18591	96330	90906	69147	98767
8	-0.	120	09470	94721	26665	15285	93225	00831	32425	86715
10	0.	18	44141	61121	34064	96087	76058	65392	48900	90575
12	-0.		60512	85922	58187	97076	61529	03233	67566	76416
14	-0.		58913	92764	47941	41266	33294	56283	35090	89308
16	0.		16515	77264	14351	16930	87034	29790	16875	61022
18	-0.		1648	99182	75452	74252	00545	98466	11038	37229
20	-0.		84	50007	40924	13967	84374	10529	40614	33412
22	0.		30	23518	01777	26554	44814	93791	80963	90116
24	-0.			61792	01123	77458	04263	61173	49740	30616
26	-0.			21506	48020	78085	27206	14695	97726	02171
28	0.			523	60584	16945	07406	26560	62805	15936
30	0.			87	02944	99075	88985	84072	59778	59515
32	-0.			1	27211	27494	56193	42301	81121	40766
34	-0.				21508	80677	13936	63172	03462	92080
36	0.				94	42732	61756	40684	31763	38771
38	0.				33	86918	51579	23337	51053	74935
40	0.					12242	35865	98890	73712	39085
42	-0.					3547	58606	57436	26225	66963
44	-0.					35	15406	11385	45924	75071
46	0.					2	56244	50392	46635	39942
48	0.						3982	56508	00273	14066
50	-0.						130	43413	38490	64986
52	-0.						2	83801	99311	09570
54	0.							4662	70139	47129
56	0.							143	45489	66385
58	-0.							1	09390	81899
60	-0.								5446	16726
62	0.								10	84882
64	0.								1	60596
66	0.									344
68	-0.	00150	10515	00001	40.4.40	41707	00000	00050	FFOOF	38
	0.00000	00150	12515	99634	48440	41727	38666	92650	55685	14689

## Lebenslauf

Am 22.02.1949 wurde ich, Wolfgang Gabcke, als Sohn des Lehrers Harry Gabcke und seiner Ehefrau, der Lehrerin Hildegard Gabcke, geb. Bensel, in Bremerhaven geboren. Ich besitze die deutsche Staatsangehörigkeit.

Ab Ostern 1955 besuchte ich die Altwulsdorfer Schule und ab Ostern 1959 den altsprachlichen Zweig des Gymnasiums der Wilhelm-Raabe-Schule in Bremerhaven. Am 22.06.1967 legte ich dort die Reifeprüfung ab.

Nach zweijähriger freiwilliger Dienstzeit beim Bundesgrenzschutz immatrikulierte ich mich am 01.10.1969 an der Georg-August-Universität zu Göttingen im Fach Mathematik mit Nebenfach Physik. Nach der Vordiplomprüfung am 27.10.1971 bestand ich am 24.10.1975 die Hauptdiplomprüfung in dieser Fachkombination.

Seit dem 02.10.1978 bin ich im Angestelltenverhältnis bei einem in Göttingen ansässigen Versicherungsunternehmen beschäftigt.