
Encoding of complex sounds

in the auditory midbrain

Dissertation

zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades

“Doctor rerum naturalium”

der Georg-August-Universität Göttingen

im Promotionsprogramm ProPhys

der Georg-August University School of Science (GAUSS)

vorgelegt von

Dominika Lyzwa

aus

Braunschweig

Göttingen, 2014





Betreuungsausschuss

Prof. Dr. Theo Geisel

Institut für Nichtlineare Dynamik,

Georg-August-Universität Göttingen

Max-Planck-Institut für Dynamik und Selbstorganisation

Dr. J. Michael Herrmann

Institute of Perception, Action and Behaviour

Universität Edinburgh

Mitglieder der Prüfungskommission
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Prof. Dr. Rainer Kree

Institut für Theoretische Physik,

Georg-August-Universität Göttingen

Prof. Dr. Ulrich Parlitz

Biomedizinische Physik

Max-Planck-Institut für Dynamik und Selbstorganisation

Prof. Dr. Fred Wolf

Institut für Nichtlineare Dynamik,

Max-Planck-Institut für Dynamik und Selbstorganisation

Prof. Dr. Marc Timme

Institut für Nichtlineare Dynamik,

Max-Planck-Institut für Dynamik und Selbstorganisation

Tag der mündlichen Prüfung: 17.06.2014
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Abstract

How complex natural sounds such as speech and vocalizations are encoded in the main

converging center of the auditory midbrain is not yet fully understood.

For multi-units, which are composed of several single neurons, the representation of in-

dividual vocalizations is investigated across gradients of neural preferences in the inferior

colliculus. The multi-units allow making inferences about collective neural behavior. The

cross-correlation of averaged spiking responses is used to analyze if the vocalization rep-

resentation depends systematically on the spatial distance between multi-units. The mea-

sure of response correlations and correlated variability indicates if interactions between

the multi-units exist. Neural discrimination is employed to examine whether the whole

set of spectrotemporally rich vocalizations can be reliably distinguished. The question is

addressed whether along the frequency gradient of the inferior colliculus, individual vocal-

izations are encoded following their specific spectral content. This leads to the question

whether vocalizations are accurately represented by individual multi-units, or, if groups

of multi-units provide a more detailed representation, and if the multi-units interact to

facilitate encoding. Some of these vocalizations display envelope correlations, and neurons

might have neural preferences to these correlations, allowing them to encode the complex

sounds in more detail. Reverse correlation analysis can capture nonlinear neural response

properties. This analysis is used to probe preferences of single neurons to stimulus corre-

lations, separately for different frequency carriers of the envelope, and to characterize the

neural spectrotemporal tuning.

It is found that similarity of multi-unit spiking responses to vocalizations decreases lin-

early with spatial distance across the inferior colliculus, and extends to a few hundred

micrometers. Neural correlations which are due to interactions between the multi-units are

substantial but do not improve separability. Since interactions with other multi-units do

not improve the neural separability, the multi-units act as independent encoders of vocal-

izations. However, neural discrimination improves substantially when the responses from

more than one multi-unit are considered. In many cases, combining responses from a few

multi-units results in a perfect discrimination of the whole set of vocalizations. The in-

dividual vocalizations are reliably encoded across wide frequency ranges, thus yielding a

robust representation, which is relevant in a behavioral context. Optimal encoding does

not strictly follow the spectral content of the vocalizations. The analysis of receptive fields

reveals that the majority of the tested single neurons displayed preferences to envelope

correlations. These are mostly found at the preferred frequency of the neuron and exhibit

temporal tuning properties that enhance or modulate the neuron’s linear response.

In conclusion, vocalizations are reliably encoded by independent multi-units across a wide

frequency range of the inferior colliculus. Neural preferences to envelope correlations are

present in the inferior colliculus and are likely to facilitate encoding of the vocalizations.
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1 Introduction

Audition is one of our major senses to interact with the environment in this world, allowing

us to detect dangers (e.g. an approaching car), understand speech and enjoy music. A large

amount of information is provided through auditory perception, e.g. if an object falls to the

ground, based solely on the sound, we can estimate the consistency (e.g. wooden or metal),

approximate size and location of the object.

1.1 General overview of the inferior colliculus

Propagating pressure waves, compressions and dilatations of air molecules, arrive at our

ears and are perceived as sound. The waves that arrive at the outer ear travel through

the ear canal, impinge on the tympanic membrane (ear drum) and cause it to vibrate.

The three ossicles in the middle ear amplify and transduce the vibrations of the tympanic

membrane into the fluid-filled cochlea. The ossicles serve as an impedance converter, their

amplification is necessary in order for the sound to overcome the barrier from low impedance

air to the higher impedance fluid. The cochlea decomposes the sound into its spectral

components: via mechanical filtering, high, middle and low stimulus frequencies are sensed

and encoded in a graded manner in different places on the basilar membrane. The place

encoding of frequency, the tonotopy, is present throughout several stations of the auditory

system. The hair cells on the basilar membrane transduce the mechanical deflection into a

voltage which in turn synaptically activates the auditory nerve fibers. These project to the

cochlear nucleus, the first nucleus located in the brainstem. The cochlear nucleus projects

predominantly onto auditory nuclei of the contralateral hemisphere, however, projections to

both hemispheres are present. The auditory information from the cochlear nucleus diverges

into several processing pathways, which all project onto the central converging station,

the inferior colliculus (IC). The combined information is projected to the thalamus and to

the auditory cortex, which is believed to generate the perception of sound (see Fig. 1.1.1).

However, almost all the information about the sound is already contained at a lower level, in

the inferior colliculus (Fig. 1.1.2), which is a specific nucleus of the auditory midbrain that

integrates projections from nearly all ascending brainstem nuclei [1, 2] (see Fig. 1.1.3). It has

been shown that projections of specific brainstem nuclei terminate onto particular regions

of the central nucleus of the inferior colliculus (ICC). They subdivide it into functional

zones, e.g. the ventral division of the cochlear nucleus projects to the ventral part of the

ICC, and respectively the dorsal division to the dorsal ICC.



General overview of the inferior colliculus

IC AC MGB CN 

cochlea 

AN 

Figure 1.1.1: Schematic of ascending auditory pathway. Sound arrives at the outer ear; in the

cochlea frequency decomposition is carried out, and the information is transduced via the auditory

nerve (AN) to the cochlear nucleus (CN), the first nucleus in the auditory brainstem. From the CN,

several pathways diverge that process the sound differently. All pathways converge in the IC (as

schematized in Fig. 1.1.3). The IC projects to the medial geniculate body (MGB) in the thalamus;

from the MGB the information is projected to the final station of the ascending auditory pathway,

the auditory cortex (AC). [Ear drawing (Cochlear Ltd.)].

The ICC receives projections from several nuclei which have extracted different information

from the sound, and thus integrates diverse inputs. This structure is named after its ap-

pearance and position: resembling a hill and being the lower hill out of two (see Fig. 1.1.4),

it is called the inferior colliculus. The place coding of sound frequencies is also present in

the ICC; the tonotopic gradient exists along the dorsolateral to ventromedial axis, with low

frequencies being represented dorsal laterally and high frequencies represented ventral medi-

ally [3, 4], see Fig. 1.1.5. Along the tonotopic gradient, the stimulus frequency which elicits

the highest spiking response, the best frequency (BF) of the neurons changes gradually. The

ICC consists of isofrequency laminae, which are oriented approximately orthogonal to the

tonotopic gradient. Within one isofrequency lamina, neurons have the same best frequency

(within 1/3 octave [5]). Strong indications for a concentric gradient within one lamina of

neural preferences to the modulation frequency of the sound envelope have been provided

[6, 7, 8].

Figure 1.1.2: The inferior colliculus. Functional magnetic resonance image of a human brain with

the inferior colliculus (indicated by arrow). Measured on a 3T GE Signa Excite HD scanner with

a resolution of 0.7 mm3 voxels (inversion prepared SPGR sequence); from the back (left) and from

the side (right) [generously provided by David Ress, Texas University].
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Figure 1.1.3: Projections to the inferior colliculus. The IC is the main converging station in the

auditory midbrain. It receives several ascending and descending projections. The schematic is

based on [9, 10], it shows projections to the right IC. The cochlear nucleus CN is the first brain-

stem nucleus and receives projections from the auditory nerve. (DCN-dorsal CN, VCN-ventral CN,

MSO/LSO-medial and lateral superior olive, DNLL, VNLL- dorsal and ventral nucleus of the lateral

lemniscus, MGB medial geniculate body, in the thalamus, AC auditory cortex, the final station of

the auditory pathway.

The IC is the main processing station in the auditory midbrain [11], and apart from being

a converging station, further sound feature extraction is presumably performed [12]; it is

the metabolically most active structure in the brain [13]. The ICC is essential for extract-

ing time-varying spectrotemporal information [14] and therefore might be important for

processing complex sounds such as speech and vocalizations. Speech and vocalizations are

spectrotemporally varying sounds which display a wide spectrum of acoustic properties.

Figure 1.1.4: Model brainstem. 3D-model of the brainstem imaged in Fig. 1.1.2. The inferior

colliculi from both hemispheres are encircled in black and indicated by the arrow. The superior

colliculi are situated above the inferior colliculi [provided by David Ress, Texas University].
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General overview of the inferior colliculus
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Figure 1.1.5: Schematic of the inferior colliculus. Along the tonotopic axis the characteristic

frequencies (CF) change gradually from low to high frequencies (caudally to rostrally). The ICC

consists of laminae which are approximately orthogonal to the frequency gradient. Within these

laminae a concentric gradient of best amplitude modulation frequency exist.

The amplitude of their stimulus envelope and their spectral content change over time (am-

plitude and frequency modulation), and also the rates of change are dynamic. The vocaliza-

tions can display stimulus envelope correlations (e.g. Fig. 1.1.6a), and harmonics (e.g. Fig.

1.1.6b), which are frequency components that are integer multiples of the lowest periodic

frequency which is present in the sound. These natural sounds are well suited for studying

the auditory system since it was suggested that neurons are adapted to process them, and,

that these sounds can trigger responses which are not elicited by artificial or simple acoustic

stimuli [15].

The functional organization in order to efficiently represent and encode natural sound, that

is, how neural preferences are organized within the ICC and whether regions, exist, that

process specific acoustic properties, is one of the central questions in auditory neuroscience

research. Further preferences for acoustic properties of natural sound that are systemati-

cally organized, other than the known gradients of neural preferences to stimulus frequency

and amplitude modulation frequency, might exist.
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Figure 1.1.6: Example vocalizations. The waveform and the spectrogram of two guinea pig vo-

calizations are displayed. They contain harmonics and frequency modulations (a), and stimulus

correlations of the envelope (b).
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Understanding encoding mechanisms of natural sounds in this crucial midbrain nucleus is

not only of fundamental scientific interest, but could also be beneficial to medical appli-

cations. Less than a decade ago, a hearing prosthesis was developed for hearing impaired

people that cannot benefit from cochlear implants. The auditory midbrain implant [16] is

inserted into the ICC; and has been implanted in five humans. In contrast to the cochlear

implant, it did not yield improved speech comprehension [17]. This is partly due to the

electrical stimulation algorithm, which is only slightly modified compared to the one applied

in the cochlea, despite the advanced input processing and properties of the ICC.

1.2 Motivating questions

In this work, the representation of vocalizations across the ICC is investigated on the level

of multi-unit clusters. These constitute the collective response from a group of neurons, i.e.

a cluster of neighboring neurons that contains a number of single neurons, which can span

several orders of magnitude. Using groups of neurons to study natural sound encoding

has the advantage that this response is an integrated activity which might reflect local

processing of the ICC. Furthermore, multi-units respond stronger to natural sound than

single units [18].

The neural representation of acoustic stimuli across the ICC results from the interplay of

the locally differing input and the spatially gradual changing of spectrotemporal neural

preferences. Thus the question arises how similar the neural representations of vocalization

are across the frequency gradient and across the amplitude modulation frequency gradient.

Are the representations more similar across either one of these gradients, along which the

sound is filtered either for spectral content or for amplitude modulations? The hypothesis

that the preference gradients induce a gradually changing neural representation is tested.

Strong deviations from such a gradually changing representation could point to confined

functional sub-units. The similarity of neural representations of individual vocalizations

is analyzed by cross-correlation of spiking activity. Interactions between the multi-units

can lead to temporal correlations of their responses. The correlation analysis of simul-

taneous and non-simultaneous responses was used to derive whether similarity of neural

representations is solely attributable to the stimulus, or if interactions exist between the

multi-units. The neural representation of vocalizations across the ICC, and possible neu-

ronal interactions between multi-units are investigated in Chapter 4, using cross-correlation.

The representation and similarity of responses to individual vocalization across the

ICC yields insight into the distribution of responses and possible interactions between

multi-units. Moreover, the encoding of vocalizations is of interest.
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Motivating questions

Based on the separability of neural responses to different vocalizations, inferences about

the encoding can be made when implying that a high accuracy of discrimination results

from detailed encoding of the stimulus. For the discrimination analysis, the temporal infor-

mation of spiking responses is used as it has been shown that spike-timing information is

crucial for neural discrimination of vocalizations and intelligibility of speech [19, 20]. Previ-

ous work in the mouse ICC indicated heterogeneous neural responses to vocalizations [21]

and spatial heterogeneity of receptive fields [22]. However, the specific encoding of indi-

vidual vocalizations remains an open question because either heterogeneously distributed

neural responses could lead to individual vocalizations being encoded equally well across

the ICC, or the vocalizations might be encoded topographically, following the organization

of spectrotemporal preferences in the ICC [3, 4, 6]. The latter was proposed to apply to

neurons in the ICC of guinea pigs [23]. However, encoding of individual calls from a large

set of vocalizations across the best frequency gradient at a fine spectral resolution has not

been studied previously in ICC. Deviations from a purely spectrotemporal attribution of

optimal encoding due to known and suggested nonlinear response mechanisms (e.g. cochlear

distortions [24], spike generating nonlinearity [25] or suggested neural selectivity for single

calls [26] are likely to exist. Thus, optimal encoding of individual vocalizations across the

frequency gradient is compared to the spectral content of these stimuli (Chap. 5). This

analysis is based on multi-units and it is tested whether the collective response from such

a group of neurons allows reliable discrimination of the entire set of spectrotemporally rich

vocalizations.

Single units have been shown to vary in their ability to discriminate from chance to even per-

fect discrimination [27, 28, 29]. In general, however, single neurons do not provide enough

discriminative information to perfectly distinguish vocalizations. Groups of clusters and

individual multi-units, were shown to outperfom discrimination ability of single neurons

[30, 27]. However, a very large population of neurons responding simultaneously in order

to encode a vocalization would not agree with the efficient encoding hypothesis [31].

It is tested whether the combination of successively more multi-units from different sites

across the ICC improves discriminability of the set of vocalizations (Sec. 5.4.2). Neurons

could interact in order to more efficiently encode sensory stimuli. However, neural represen-

tations have been proposed to decrease in redundancy from peripheral to cortical structures

[32]. Whether signal correlations and correlated variability enhance or decrease encoding

efficiency is a controversy [33, 34, 35, 36, 37], and might depend on the specific neural sen-

sory system and its structure. The hypothesis that temporal correlations of simultaneously

recorded multi-units facilitate neural discrimination was tested.

The encoding of vocalizations across the ICC, for individual multi-unit responses and for

the combination of several responses that include correlations between the clusters with the

use of spike-time based neural discrimination has been investigated as part of my research

and the results of this analysis are presented and discussed in Chap. 5.
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Vocalizations can display frequency and amplitude modulations, harmonics and envelope

correlations. Neurons in the auditory midbrain might employ various processing mecha-

nisms, linear and nonlinear ones, in order to encode these sounds. A neuron whose response

to complex sound can be described as a linear superposition of the responses to its (inde-

pendent) constituents has linear response properties, and a linear response is proportional

to the input (e.g. increased spiking rate for enhanced stimulus intensity). A neuron which

does not display these characteristics has nonlinear response properties.

Neurons were shown to display preferences (enhanced spiking) for certain frequency and

amplitude modulations [38, 14], and it was suggested that such preferences for specific

modulations of individual vocalizations facilitate encoding of these behaviorally relevant

sounds [38]. Neurons might also display preferences to envelope correlations. Preferences

to specific stimulus correlations would be due to nonlinear response mechanisms. In the

ICC, ∼ 40% of the neurons were shown to display nonlinear response properties [14], and

different nonlinear response types exist [14, 24, 25, 39].

In this work, neural preferences to stimulus correlations are analyzed at the single cell level

(Chap. 6). In order to assess in which frequency range the nonlinearities are dominant, corre-

lation preferences were analyzed separately for each frequency carrier of the presented sound.

Linear and nonlinear neural response properties of neurons can be visualized with receptive

fields that can capture those preferences in response to a specific stimulus. Comparison of

linear and nonlinear response properties might yield insight into whether the nonlinearity

is due to intrinsic processing, in which case the receptive fields would be similar, or if it is

already present in the input of the neuron, in which case the receptive fields would be dis-

parate. Using first and second order reverse correlation, the linear and nonlinear receptive

fields are computed and compared with respect to spectrotemporal preferences. For the

reverse correlation analysis, an artificial sound that varies dynamically in frequency and

amplitude modulation was used. This sound can be parametrically manipulated, thus, in

contrast to natural sound, allowing for a systematic characterization of neuronal preferences

over a broad spectrotemporal range. Single neuron preferences to envelope correlations are

investigated by reverse correlation in Chapter 6.

1.3 Overview

The remaining thesis is structured as follows: The representation and similarity of multi-

unit responses to vocalizations across the main central station of the auditory midbrain is

investigated with cross-correlation in Chapter 4. Using neural discrimination, the encoding

of these behaviorally relevant sounds by individual and interacting groups of multi-units is

examined in Chapter 5. Preferences of single neurons to envelope correlations which are

also present in natural sound are examined via reverse correlation in Chapter 6.
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2 Related Work

The inferior colliculus has been studied with respect to its anatomy, neurophysiology, con-

nectivities [40], and its excitatory and inhibitory synaptic inputs [41]. Using simple and

artificial stimuli, e.g. pure tones [4, 42], white noise and amplitude-modulated noise [12], as-

pects of sound processing to extract specific features, for example amplitude and frequency

modulation [12] and sound localization [43, 44] have been researched. However, the pro-

cessing of natural, behaviorally relevant sound is the task daily undertaken by the auditory

brain, and thus of interest but is not well understood. In this thesis, the representation and

encoding of natural sound, vocalizations, and of acoustic sound properties in the ICC are

investigated. This chapter provides a discussion of previous studies related to the research

questions that are outlined in Sec. 1.2, and addressed in Chapters 4, 5, 6. This chapter is

divided into three sections, in which previous work on the vocalization representation and

correlation analysis (Sec. 2.1), neural discrimination analysis and encoding (Sec. 2.2), and

nonlinear response properties and receptive fields (Sec. 2.3.3) are discussed. Each section

is subdivided to discuss previous work on specific questions.

2.1 Correlations across the ICC

As a first analysis of this thesis the representation of vocalizations across the ICC, and corre-

lation analysis to systematically investigate similarity of responses is carried out (Chap. 4).

In this section, previous work on the vocalization representation across the best frequency

gradient (Sec. 2.1.2), and analyses on response correlations and neural correlations in de-

pendence on spatial and spectral distance are discussed (Sec. 2.1.2).

2.1.1 Neural representation along the tonotopic gradient

The representation of vocalization along the tonotopic gradient depends on the spectral

content of the vocalizations. Suta and colleagues [23] recorded responses to four vocaliza-

tions (purr, chutter, chirp, and whistle) in 124 single neurons of the ICC in anesthetized

guinea pigs. They analyzed these responses with trial-averaged temporal firing rate repre-

sentations. They found that the poststimulus time histograms (PSTH) reflect the energy

of the characteristic frequency of the neuron and that the spectrotemporal patterns of the

vocalizations are encoded by the ICC neurons, but also that responses are heterogeneous.

Thus, along the tonotopic gradient, the neural representation of a vocalization changes in

dependence of the vocalization’s spectral content.



Correlations across the ICC

In this work, the trial-averaged response representation by Suta et al. [23], likewise for vo-

calizations in the guinea pig ICC, is verified for the analyzed neural set, with the difference

that not single neuron responses but multi-unit responses are used. These might respond

differently, as they provide a collective response from a group a single neurons (Sec. 4.3.3).

The analysis of Suta and colleagues is extended because a larger set of behaviorally rele-

vant vocalizations with diverse spectrotemporal properties is investigated. In addition to

the work of Suta and colleagues, the best frequency dependence of the response is demon-

strated by comparison of the frequency filtered stimulus and the PSTH (Sec. 4.3.5). Neural

responses to vocalizations change gradually with the neuron’s best frequency.

2.1.2 Response correlations and neural correlations

The similarity of neural responses to a vocalization across the ICC is investigated with

cross-correlation analysis, which is a more compact description than the PSTHs for the

large set of neural responses (Sec. 4.4). The analysis also allows estimating the amount

of correlations which are due to neural interactions. In the following, previous correlation

studies in higher auditory structures that have investigated the similarity of responses in

dependence of the neurons’ spatial and spectral distance are discussed.

In the mammalian ICC, it has been shown previously that responses to complex sound

are most correlated for close-by single neurons. Chen and colleagues [45] analyzed single

neuron responses to artificial complex sound (dynamic moving ripple sound) in the cat ICC,

using spectrotemporal receptive fields and spike-train cross-correlation for neural pairs with

a maximal separation of ∼370 µm. They found that, on a grand scheme, the neurons that

are neighbors display a higher probability of having similar receptive fields, thus similar

spectrotemporal preferences. The best frequency (BF) was the most correlated parameter

between neighboring neurons, receptive field similarity was largest for similar BFs, and cor-

related firing was stronger for neighboring neuron pairs and decreased with spatial distance

and differing BFs. Chen and colleagues analyzed correlations between single neurons and

based on their findings suggest local microcircuits of similar functionality in the ICC.

In this work, spike train cross-correlation on the level of groups of neurons is investigated

(Sec. 4.4), since the collective response from a wider spatial volume can display different cor-

relation dependencies than have been found for single neurons. Spectrotemporal receptive

fields are not calculated for the multi-units (see Sec. 3.1.1), but correlations are analyzed

with respect to spatial and spectral (difference in preferred frequency) distances of the neu-

rons. Chen and colleagues used an artificial stimulus, however, in this thesis, correlations

in response to natural sounds are tested. Natural sounds are realistic stimuli that are

processed by the auditory system, and they might elicit responses that are not elicited by

artificial stimuli [15]. In their analysis, Chen and colleagues probed spatial distances up to

∼370 µm, thus no statement could be made about correlations for neurons that are further

away. In the present work, larger neural distances of up to 1600 µm are probed (Sec. 4.4.3).
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2.1.2 Response correlations and neural correlations

Thus, taken together, in this thesis, in addition to the work of Chen and colleagues, the

correlation dependencies of multi-units responses, and in contrast to their work natural

sounds are investigated across large spatial distances.

Correlations of responses in dependence of spatial distance in the auditory midbrain have

been described by a further study, however, not in the mammalian midbrain but for insects.

Epping and Eggermont [46] analyzed neural activity of 150 multi-units in the auditory

midbrain of the grass frog. Using cross-correlation, they found response correlations for

60 % of the units and 15 % of the units displayed correlations due to neural interactions

and connections. These neural correlations were restricted to pairs with distances less than

300 µm, whereas the response correlations were independent of the spatial distance. The

authors suggest that the high amount of response correlations relative to the small amount

of neural correlations indicates that for generating the neural response, the stimulus in-

puts play a predominant role over neural mechanisms [46]. The authors attribute this to a

spread projection of the stimulus input, rather than to restricted areas, which would be in

line with a weak tonotopic organization in the grassfrog midbrain and to the finding that

neighboring neurons often display different spectral preferences. Eggermont and Epping

used multi-units and probed larger spatial distances than described by Chen et al. [45],

which is also used in the analysis of this work. In constrast to the grasshopper midbrain,

the mammalian ICC has a clear tonotopic structure with neighboring neurons displaying

similar spectral preferences. Thus, the correlation structure as described by Epping and

Eggermont might be different for the mammalian ICC, and will be investigated in this work

(Sec. 4.4). Epping and Eggermont also found stimulus dependencies for half of the neural

correlations, indicating that the functional organization is dynamic, thus the functional

connections depend on the particular stimulus applied. Hence, in this thesis, correlations

are analyzed separately for each vocalization, in order to account for possible stimulus de-

pendencies.

In these previous studies no description of the spatial dependence was provided. In a

higher auditory processing station, in the cortex, a correlation dependence on the spa-

tial distance has also been shown. Eggermont [47] analyzed neural groups (that reflected

patched activity and were termed ‘clusters’) in the cat primary auditory cortex with the use

of cross-correlation matrices of spontaneous activity. The author found that the correlation

followed an exponential decrease, f (x ) = a · e−b·x , with x the spatial distance in millimeter

(a=0.05, b=0.24/mm). This dependence that was found for spontaneous activity of neural

groups in the primary auditory cortex which is also tonotopically organized, and larger

than the ICC, is compared to the correlation dependence of responses to vocalizations in

the ICC.
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Neural discrimination of vocalizations

Summary

To summarize, the analysis of the neural representation along the tonotopic gradient verifies

and extends the finding of Suta et al. [23] for a larger vocalization set and for multi-unit

responses (Sec. 4.3.3). Additionally, the best frequency dependence of the response is

demonstrated with a filtering approach (Sec. 4.3.5). The relative amount of correlations

due to the stimulus and due to neural interactions has been computed for the insect auditory

midbrain [46], but not for the mammalian ICC and is investigated in this work (Sec. 4.4.5).

Dependencies on spatial distance have not been found for the grasshopper midbrain [46],

but have been shown in the mammalian ICC [45] and primary auditory cortex [47]. The de-

pendencies on spatial and spectral distance have been analyzed for single neurons, showing

that nearby neurons have a higher probability of displaying similar neural preferences and

responses, and a microcircuitry has been proposed to exist in the ICC [45]. Contrary to

these studies, in the here presented work, a larger spatial distance is covered, and responses

of multi-units to natural sound stimuli are investigated (Sec. 4.4).

2.2 Neural discrimination of vocalizations

In Sec. 2.1, previous work on the representation and correlation of neural responses to the

same stimulus were discussed. The auditory system can distinguish different complex sound

stimuli. The discrimination of these different neural responses to stimuli can be used to

study the encoding of the complex sounds. In this section, the findings of previous studies

on encoding of individual vocalizations by a single neuron and groups of neurons and the

effect of neural correlations on the discrimination are reviewed [29, 27, 26, 48].

It has been shown that spike trains can allow discriminating different stimuli with high

accuracy. Discrimination between the same call from different producers in single neurons

of insects was found to be good [29]. Machens and colleagues analyzed separability of 18

auditory periphery receptor single cell responses of a female grasshopper to the same song

presented from eight different males and obtained neural discrimination values higher than

80 % and up to 100 %. They used spike trains convolved with an exponential function in

order to mimic excitatory postsynaptic potentials (EPSP), and found temporal resolutions

between 3-10 ms and spike train duration above 400 ms to yield the highest discrimination

performances. Hence, the work of Machens and colleagues showed that the temporal res-

olution and spike duration affect discrimination. In general, findings for the grasshopper

auditory periphery do not allow making direct inferences about processing of vocalizations

in the mammalian auditory midbrain. Whereas processing might be similar across different

mammal species [49], this is not necessarily true for other animals, such as insects or birds.

The study by Machens and colleagues addressed discrimination between different stimulus

trials. Whereas this is an important question it cannot be investigated in this thesis, as

only one trial per vocalization is present.
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2.2.1 Preferred encoding of individual vocalizations

Good discriminability between different trials of a call demonstrated by Machens et al.

suggests that calls with different spectrotemporal properties should be discriminated even

better. In contrast to the work of Machens and colleagues., in this work discrimination

between different stimuli is performed, but also based on vocalizations and on spike-trains.

Optimal spike-duration is investigated prior to the discrimination analysis (Sec. 5.3), as

suggested by Machens et al. [29].

2.2.1 Preferred encoding of individual vocalizations

In this work, the optimal encoding of individual vocalizations with their specific spectrotem-

poral content is compared across the best frequency gradient. The total discrimination

across a whole set of complex sounds does not depend on the frequency tuning, i.e. the best

frequency of the neuron [27]. Using clustering of the squared Euclidean distance between

pairs of spike trains, Schneider and Woolley have shown that single neuron responses of the

mesencephalicus lateralis dorsalis in the zebra finch, the homologous to the inferior collicu-

lus in mammals, could be used to discriminate among 11 bird songs with performances up

to 100 % [27]. The authors did not find a correlation of total discrimination performance

and spectral tuning for complex behaviorally relevant calls in the midbrain. However, pre-

ferred encoding of individual vocalizations in specific frequency regions might exist but is

not detectable in the total discrimination. Thus, the encoding needs to be analyzed for

individual vocalizations and is investigated in this work (Sec. 5.4.1).

Individual vocalizations in the guinea pig ICC have been shown to be encoded based on

their spectrotemporal patterns [23]. The work by Suta et al. [23] which is also described

in Sec. 2.1.2, showed that the poststimulus time histograms reflect the energy of the neu-

ron’s characteristic frequency and that the spectrotemporal patterns of the vocalizations

are encoded. The authors did not find evidence for encoding of vocalizations based on

call-selectivity of single neurons [50]. They show that responses are heterogeneous, which

was later confirmed for mice [21]. Within a frequency segmentation of four intervals across

the tonotopy, Suta and colleagues demonstrated for the four calls a dependence of the re-

sponsiveness on the neuron’s characteristic frequency. Overall, their work indicated that

the spike rate of ICC neurons depends on the relationship between the neuron’s preferred

frequency and the frequency spectrum of the vocalization.

Suta et al. [23] investigated responses to conspecific vocalizations in the ICC of guinea

pigs, which is also investigated in the here presented work. However, substantial differences

exist between the work of Suta et al. [23] and the here presented work (Sec. 5.4.1), and

thus expand the previous study. In the here presented work, neural discrimination, which

compares temporal spike train similarity across the whole set of 11 vocalizations is used, as

opposed to the comparison of the trial-averaged response in form of PSTH in the work of

Suta et al. [23].
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Neural discrimination of vocalizations

This method can reveal discriminative response differences in more detail than the spike

rate, and also incorporates trial-to-trial variabilities of the responses, which are realistic,

but which are averaged out in the PSTHs. In the analysis of this work, neural discrimina-

tion is computed for relatively short segments (100 ms) of the vocalizations, as perceptually

vocalizations are already discriminated at these time scales. Another difference to the study

of Suta et al., is that in the here presented work responses from groups of neurons are inves-

tigated, thus neural activity at a wider angle, reflecting the output activity of a population

of neurons. Furthermore, for the comparison of optimal encoding and the vocalization’s

spectral content along the best frequency gradient, a finer frequency resolution of 36 inter-

vals is used than the one by Suta et al. which used only 4 frequency intervals to compare

the neuron’s responsiveness to individual vocalizations in dependence of their characteristic

frequency. Additionally, in the here presented work, a spectrotemporally rich set of 11 be-

haviorally relevant vocalizations is used, and might reflect more realistically the entire set

of guinea pig communication calls, and hence allow investigating their auditory processing,

than the four calls used by Suta and colleagues. A minor difference to the work of Suta et

al. [23] is that here rather than the preferred frequency at the lowest spike-eliciting inten-

sity (the characteristic frequency), the preferred frequency at the actual presented stimulus

intensity (the best frequency) is used and might yield a more accurate comparison of pre-

ferred and presented frequencies. However, trends of dependencies should be the same for

both, characteristic and best frequency. In conclusion, the here presented work differs from

the work by Suta and colleagues because multi-unit responses are compared based on short

individual spike train trials and a much finer frequency resolution is used for the comparison

of encoding and preferred frequency across a larger set of vocalization stimuli.

Deviations from a purely spectrotemporal mapping of vocalizations may be attributed to

nonlinear response properties of the neurons. Nonlinear responses could be displayed by

suggested highly selective neurons that respond only to a specific vocalization, but not to

others even though those contain spectral properties within the neuron’s excitatory tuning

range (‘call-selectivity’ [26]), or other nonlinear responses in the ICC [24, 25, 51].

Not only a topographic representation as demonstrated by Suta et al. [23], but also het-

erogeneous responses have been shown to exist in the mammalian ICC, and contribute to

efficient encoding. Holmstrom et al. [21] recorded from single neurons in the mouse ICC,

while presenting four natural vocalizations and modified versions. Using a correlation-based

similarity measure, the authors computed neural discrimination for a natural vocalization

against its modified versions, based on measures of spike train similarity and information

theoretic methods. They showed that neurons display heterogeneous responses to each per-

turbation of acoustic features in these stimuli, and different neurons responded differently

to the same vocalization. Their work indicates that heterogeneous neural responses in the

mouse inferior colliculus efficiently encode vocalizations [21]. This group also showed spatial

heterogeneity of receptive fields in the mouse ICC [22].
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2.2.2 Population coding

Thus, the encoding of individual vocalizations remains an open question because either

heterogeneously distributed neural responses [21] could lead to individual vocalizations

being encoded rather equally well across the ICC, or the vocalizations might be encoded

more topographically [23], following the organization of spectrotemporal preferences in the

ICC [3, 4, 6].

2.2.2 Population coding

Single neurons have been shown to vary in their ability to discriminate natural stimuli such

as vocalizations from chance to perfect discrimination [27, 28]. Even though in some cases

they yield neural discrimination values of up to 100 % [27, 29], in general, single neurons

do not provide enough discriminative information to perfectly distinguish vocalizations. It

seems probable that several neurons are necessary to discriminate these complex natural

sounds. However, a very large population of neurons responding simultaneously in order

to encode a vocalization would not agree with the efficient encoding hypothesis [31]. Multi-

units, groups of neurons, have been shown to outperform the discrimination ability of single

neurons [30]. In this work it is investigated whether discrimination accuracy changes when

combining responses from a successively increasing number of multi-units, and if the ac-

curacy is altered by whether multi-units with similar or dissimilar frequency tuning are

combined (Sec. 5.4.2).

Previous studies have investigated the encoding of combined responses with neural discrim-

ination analysis [27, 30]. Schneider and Woolley [27] analyzed separability of combined

responses from simulated read-out neurons which received the input from several individ-

ual neurons, and they analyzed separability of concatenated responses from several neurons.

They combined responses from 2-5 individual neurons with either similar or dissimilar tun-

ing. Improvement was observed for combining up to 3-5 neurons, with the highest gain

for neurons with similar frequency tuning. The authors suggest that pooling reduces trial-

to-trial variability of single neuron responses and therefore increases separability [27]. In

contrast to the work of Schneider and Woolley, in the present work, multi-units are used,

which are likely to display different trial-variabilities than single neurons. Therefore it is not

obvious how the findings of Schneider and Woolley are applicable to combining responses

of multi-units. Possibly different encoding mechanisms are present in the mammalian ICC

and in the bird ICC-analog. In the present work responses to vocalizations were combined

by concatenation of spike trains, as preformed by Schneider et al. [27], but also by addition

of spike trains and concatenation of spike rates. These different pooling methods allow to

separately investigate encoding for combining either only spectral or temporal information,

or the joint information from different multi-units.
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Neural discrimination of vocalizations

It has been shown that the discrimination ability of groups of neurons, which are composed

of several single neurons or individual multi-units outperforms the discrimination ability

of a single neuron [30, 27]. Engineer and colleagues [30] have shown this for neurons in

the primary auditory cortex of awake and anesthetized rats which were presented human

speech sounds, shifted into the rats’ hearing range. They demonstrated this by correlating

neural discrimination with behavioral discrimination. Neural discrimination of combined

responses was performed on 1 ms binned spike trains using the summed Euclidean distance

of the bins, and provided to the classifier as a matrix. The authors found that multi-unit

responses outperform single neuron responses in discriminating temporally precise onsets

of complex stimuli, which has also been shown in previous work [52]. When discriminating

responses from 16 combined multi-units, neural discrimination was very high, and corre-

lation with behavioral discrimination was better for an individual multi-unit than for the

combined response. The authors attribute this to a ceiling effect of the high discrimina-

tion performance for combined multi-units. Engineer and colleagues investigated encoding

strategies in the auditory cortex, which need not be the same ones employed by the inferior

colliculus, also, their presented complex sounds are not behaviorally relevant for the rats.

This might alter encoding of these sounds. In the here presented work, behaviorally relevant

vocalization stimuli are used. Furthermore, by combining subsequently the response from

one multi-unit, a more gradual change in population size is provided, and allows studying

the joint encoding by these populations in the inferior colliculus.

2.2.3 Effect of neural correlations

The neural activity of the units involved in the representation of the vocalization could be

coupled in such a way as to lead to a more efficient encoding. However, neural representa-

tions have been proposed to decrease in redundancy from peripheral to cortical structures

[32]. The hypothesis that neural correlations facilitate discrimination of vocalizations is

tested in this work (Sec. 5.4.3). Both, response and neural correlations have been shown

theoretically [34, 53] and experimentally [33] to be destructive or invariant [33], and favor-

able [34, 53, 35, 36] to encoding of sensory stimuli [37]. The effect of the correlations might

depend on the specific neural sensory system and its neuronal structure. Nirenberg et al.

[33], for example, showed for single cells of the mouse retina using information theoretic

techniques that over 90 % of the information about the visual stimulus can be obtained

when removing correlations, and therefore suggest that the ganglion cells act largely inde-

pendently to encode information.

In the auditory midbrain neural correlations of relatively long spike trains have been shown

to improve discrimination. Wang et al. [28] performed discrimination on responses to 20

conspecific songs from groups of single neurons and individual neurons in the L-field in

awake and anesthetized zebra finches, the analog of the primary auditory cortex in mam-

mals.
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To test neural codes, they used a correlation-based similarity measure of spike trains [54]

and the Victor-Purpura spike timing metric. They found that 60 % of the units showed an

increase in discrimination performance of about 10 %, whereas the rest showed a smaller

decrease. The authors state that neural correlations can improve discrimination accuracy.

However, these results were only valid for relatively long spike train durations. For spike

train durations below 250 ms, no difference for simultaneous and non-simultaneous record-

ings was visible, and even for durations below 600 ms differences were not significant. Wang

and colleagues used a correlation-based similarity measure of spike trains to analyze re-

sponses from groups of neurons to vocalizations. This was also performed in the present

work for shorter spike trains (Sec. 5.4.3). However, Wang et al. investigated the primary

auditory cortex of birds which might display substantial differences in the neural correla-

tional structure compared to the mammalian ICC which is investigated in this study (Sec.

5.4.3).

Summary

The ICC has been suggested to encode vocalizations based on their spectral and temporal

acoustic properties [50, 23], but also heterogeneous encoding has been shown [21]. In this

work (Sec. 5.4.1), the analysis of Suta et al. [23] is extended in that not the responsiveness of

the neurons but their spike train trials are analyzed and tested for separability. Combining

responses has been shown to improve discrimination accuracy in higher auditory structures

[30, 27]. In contrast to previous work on neural discrimination, in this analysis the com-

bined responses to behaviorally relevant stimuli from multi-units in the mammalian inferior

colliculus are investigated by subsequently increasing the population size and separately

comparing the temporal and spectral contributions (Sec. 5.4.2). It has been shown that

neural correlations do not alter encoding in the zebra finch auditory cortex [28], but not in

the mammalian ICC and this is investigated in the present work (Sec. 5.4.3).

2.3 Nonlinear response properties

In Section 2.2, previous studies on the ability of neurons to encode vocalizations were

discussed. Neurons might be tuned to specific properties of the vocalizations [38]. This

tuning could be formed e.g. by preferences to several features [55], and the joint processing

of linear and nonlinear response mechanisms [56]. Neural response properties can be probed

with receptive fields. The receptive field which describes the neural preference to a feature

is also termed a filter, because the neuron filters the sensory stimulus for this feature. In

this work, single neurons are probed for preferences to stimulus envelope correlations and

these nonlinear properties are compared to linear spectrotemporal preferences (Chapter 6).
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Nonlinear response properties

2.3.1 Classical and non-classical receptive fields

Receptive fields (RF) describe preferences of the neuron to features of the sensory stimuli.

They summarize the encoding characteristics of the particular neuron by displaying the

spiking activity in dependence of the stimulus properties. At first in the visual system,

receptive fields have been classified into classical and non-classical receptive fields, captur-

ing either linear or nonlinear neural response properties [57]. A neuron whose response

can be described as a linear superposition of the responses to the stimulus’ independent

constituents has linear response properties and these can be characterized by a classical

receptive field. Response properties which do not follow this linear integration but exhibit

nonlinear summation properties can be described by non-classical (or extra-classical) re-

ceptive fields [57, 58, 59, 60, 61, 62]. They were found for the visual [57, 63, 60] and the

auditory system [64]. Schulze and Langner found regions which could be excited outside

the neuron’s classical receptive field [64]. The functional construction of the non-classical

receptive field (nCRF) and its interaction with the classical receptive field (CRF) remains

an open question. The CRF and nCRF might act together as a single processing unit, opti-

mized for natural stimuli. It has been suggested that stimuli in the nCRF can modulate the

responses evoked by CRF stimulation [65, 66]. Natural sensory stimulation of the nCRF

increases selectivity and decorrelates the responses of neurons, thus increasing sparseness

and information transmission [56]. Thus, in which way nonlinearities in the ICC relate to

these definitions of non-classical receptive fields needs to be further investigated.

Non-classical receptive fields have been suggested to exist in the ICC [67]. Schneider and

Woolley [67] found that major nonlinear mechanisms in auditory midbrain neurons can

be attributed to non-classical receptive fields. These are composed of side-band excitation

and/or inhibition and modulate spiking responses to stimuli that fall within the classical

receptive fields. The authors recorded responses from 84 single neurons in zebra finches

in response to noise, pure tones and vocalizations, and analyzed the responses using spec-

trotemporal receptive fields (STRFs). The authors suggest that extra-classical receptive

fields with a static spike threshold nonlinearity contribute to the formation of stimulus-

dependent STRFs.

2.3.2 Spike-triggered covariance analysis to probe response properties

The identification of nonlinear neural response properties can be realized by different anal-

ysis methods. One method is the reverse correlation analysis which was pioneered by De

Boer and Kuyper [68] and generalized to characterize spectrotemporal filtering properties

of neurons throughout the auditory system [69, 70, 71, 72, 55]. From the reverse correlation

analysis the spike-triggered average (STA, STRF) and the spike-triggered covariance (STC)

can be obtained.
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2.3.3 Nonlinearities in the ICC

Another method to characterize relevant sensory stimulus features are maximally infor-

mative dimensions (MID) [73]. The maximally informative dimensions are obtained by

maximizing the mutual information between the neural responses and projections of the

stimulus onto low-dimensional subspaces. This procedure is applied iteratively by increas-

ing the dimensionality of this subspace [73]. Methods which combine both approaches also

exist. Pillow and Simoncelli described an information-theoretic approach with a linear-

nonlinear-Poisson cascade model that combines the STRF and STC [74]. Each of the two

approaches, the reverse correlation and the information-based one have advantages and

disadvantages. Whereas both methods, STA/STC and MID, can be applied to Gaussian

stimuli (e.g. ripple noise, dynamic moving ripple), only MIDs can be directly applied to

natural sound and correct for correlations of any order [73, 75]. However, with MIDs only

a limited number of relevant features can be extracted. In this work, the spike-triggered co-

variance method will be used for detecting nonlinear response properties, because it allows

capturing all relevant stimulus features and because the dynamic moving ripple sound is

used as a stimulus, thus no corrections for global stimulus correlations need to be applied.

The second order reverse correlation, the spike-triggered covariance [76, 77] has been applied

in the visual [78, 74] and in the auditory system [79, 80, 81, 82, 83, 84, 71]. Relationships

between the receptive fields obtained from the first and second order reverse correlation

have been found for auditory nerve fibers [79, 80]. Yamada and Lewis [79] applied the

STC to predict temporal responses of bullfrog auditory neurons to complex acoustic wave-

forms, using broadband white noise. They found that the discrete Fourier transform of

the highest-ranking singular vector was comparable to the frequency response map of the

analyzed neuron, and hence can give information about the neuron’s spectral tuning.

Lewis and Dijk [80] have shown for primary auditory afferent fibers using broad band white

noise, that the STRF can be derived from the second order reverse correlation. These stud-

ies analyzed responses from auditory nerve fibers, thus the results cannot be generalized to

the ICC which has been shown to display intrinsic nonlinear processing mechanisms [25].

In these earlier studies, the spike-triggered average and covariance have been computed by

averaging segments of the stimulus waveform, whereas in the present study, instead of the

whole stimulus waveform, the stimulus amplitude modulations for each frequency carrier of

the sound stimulus are used for the analysis (Chap. 6).

2.3.3 Nonlinearities in the ICC

Nonlinearities of the neural response which originate in earlier auditory structures and are

present in the input to the ICC, such as the cochlear rectification or cochlear distortions [24]

have been found. Nonlinear response mechanisms that are intrinsic processing properties

might exist, originating in the ICC, such as spike generating nonlinearities [25], feedback

kernels [51] or the suggested neural selectivity for single calls [26]. Whether neurons in the

ICC display nonlinear response properties is a controversy.
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Nonlinear response properties

Using spectrotemporal receptive fields, and measuring preferences for frequency and ampli-

tude modulations, Escab́ı et al. [14] found that ∼ 40 % of ICC neurons in cats (out of 81

single neurons) display nonlinear response properties. Neurons which displayed no prefer-

ences to ripple noise but to dynamic moving ripple (DMR) sound that contained specific

frequency and amplitude modulations were classified as nonlinear.

Atencio et al. [85] argue that the receptive field dimensionality, i.e. the number of features

a neurons is tuned to, increases from the auditory midbrain to the cortex and that at the

level of the ICC only one linear stimulus filter is enough to describe neural responses. The

authors recorded from single neurons of cats in response to DMR sound and pure tones.

They analyzed the responses with spectrotemporal receptive fields (STRF) and the first

and second maximally informative dimension (MID, see Sec. 2.3.2). The authors found

that the STRF and first MID are very similar in the ICC. Using an information theoretic

approach they showed that combining the STRF or first MID with a second MID does not

further increase the transmitted information. In the auditory cortex, however, this was not

the case, and the second MID yielded substantial increase in the transmitted information.

This suggests that more than one filter is necessary to capture processing of auditory cortex

neurons, but that the processing of ICC neurons is well described by a linear receptive field.

In their study the number of analyzed neurons is not stated and might be small. Conclud-

ing from the displayed graphs it appears that around 40 neurons were analyzed which is a

rather small set. Thus it cannot be ruled out that the finding applies only to a subset of

ICC neurons and that neurons in the ICC display nonlinear response properties.

On the other hand, Andoni and Pollak indicated in their work that ICC neurons encode

multiple spectrotemporal features [39]. Using pure tones, logarithmic frequency modu-

lated (FM) sweeps centered around the neuron’s best frequency and conspecific calls, they

showed that single neurons (n =136) in the awake Mexican free-tailed bat ICC are selective

for direction and velocity (termed ‘spectral motion’) of sweeping signals. For their analysis

they employed an information-theoretic approach in which the spectrotemporal receptive

field and spike-triggered covariance were used to find the most informative subspace that

maximized the information between the raw stimuli and the stimuli that evoked a neural

response [74]. The authors found that the most informative features were selective for the

spectral motion of FM sweeps. Based on their findings, Andoni and Pollak suggest that

two mechanisms exist which induce this selectivity, and which apply respectively to half

of the neurons. These mechanisms were proposed earlier for neurons in the visual system

[86]. The first mechanism for the processing of neurons consists of two linear filters with

a quadratic phase shift whose output is squared and summed. In the second proposed

mechanism neurons are tuned to opposing directions, which either increase or suppress the

spiking activity. This mechanism consists of two linear filters with opposite orientations and

a spiking response which corresponds to the difference between their squared output [86].

They authors state that the neurons are tuned to multiple features and that selectivity for

natural communication calls can already be observed at the level of the inferior colliculus.

20



2.3.3 Nonlinearities in the ICC

Summary

Non-classical receptive fields which lie outside the excitatory frequency range in the form

of side-band excitation and/or inhibition, and which modulate the neuron’s response have

been suggested for the ICC [67]. In their work, Schneider and Woolley used spectrotemporal

receptive fields which capture the linear response, whereas in the present work, nonlinear

response properties are derived from the neural response using the spike-triggered covari-

ance. It has been found for auditory nerve fibers, that the spectrotemporal receptive field

can be derived from the spike-triggered covariance [79, 80], but this cannot be general-

ized to the auditory midbrain as different processing mechanisms might exist. It has been

suggested that the processing of ICC neurons is well described by a linear receptive field

[85], however, another study suggested that ICC neurons are tuned to multiple (also non-

linear) features [39]. These two studies used information-theoretic approaches, whereas

in the present study the spike-triggered covariance is employed. In contrast to previous

studies which used the entire waveform or stimulus envelope, in the present study, the

stimulus amplitude modulations for each frequency carrier of the sound stimulus are used

to compute the spike-triggered covariance. This allows identifying variations of nonlinear

responses across frequencies and to compare the temporal tuning of the STC to that of the

spectrotemporal receptive field. In this analysis, neural preferences to envelope correlations

in the mammalian ICC are probed (Chap. 6).
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Summary

2.4 Summary

In summary, this chapter gives an overview of previous studies that have analyzed the

neural representations of vocalizations, the correlations of neural responses, and encoding of

these natural sounds by individual neurons and groups of neurons. Furthermore, nonlinear

responses and analysis methods to probe these responses are reviewed.

The present analysis of the neural representation along the tonotopic gradient verifies and

extends the finding of Suta et al. [23] for a larger vocalization set and for multi-unit responses

(Sec. 4.3.3). Response correlations and neural correlations have been analyzed for single

neurons in the mammalian ICC only for relatively short spatial distances [45], and it has

been shown that nearby neurons have a higher probability of displaying similar neural

preferences and responses, suggesting a microcircuitry. In contrast to previous studies, in

this work, a large spatial distance is covered, and responses of multi-units to natural sound

stimuli are investigated (Sec. 4.4).

The ICC has been suggested to encode vocalizations based on their spectral and temporal

acoustic properties [50, 23], but also heterogeneous encoding has been shown [21]. The

work of Suta et al. [23] is extended in this study (Sec. 4.4) because it is not based on the

responsiveness of the neurons but spike train trials are analyzed and tested for separability.

Previous studies have shown that combining responses from several neurons improves neural

discrimination [30, 27] and that neural correlations improve discrimination [28]. Contrary

to these previous studies, in the here presented work, the combination of neural responses

is investigated for the mammalian ICC. This is achieved by subsequently increasing the

neural population size and separately comparing the temporal and spectral contributions

(Sec. 5.4.2). In contrast to previous work [28], the effect of neural correlations is analyzed

for short spike trains (Sec. 5.4.3).

The encoding of vocalizations might result from neural preferences to specific properties of

these natural sounds [38]. Nonlinear response properties have been analyzed in the ICC

[14, 67, 85, 39, 39], but the analyses did not yield consistent results. Nonlinear side-band

excitation and/or inhibition to modulate the neuron’s response has been shown [67], and

that ICC neurons are tuned to multiple features [39]. However, a different study suggested

that ICC responses can be fully described by a linear filter. In contrast to these studies, in

this work, the spike-triggered covariance is derived from the amplitude modulation spectrum

of the sound stimulus, separately for each frequency carrier, in order to investigate nonlinear

response properties in the ICC (Chap. 6).
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3 Basics and neural data

In this chapter, the experimental set-ups and the general statistical analysis methods used

in the presented work are described. The specific application of the methods to the data

and modifications, where appropriate, are included in each Chapter 4, 5, 6. In the first

section, the two experimental set-ups to record the neural data, which are used in this

work, are described. In the second section, the methods to process the neural guinea pig

recordings in order to extract characteristic properties such as the frequency tuning and

spike-timing are described. The remaining three sections introduce the statistical methods

and models employed in Chapters 4, 5 and 6.

3.1 Experimental set-ups

Neural recordings from two different set-ups are analyzed in this work. These set-ups differ

in animal subject, sound stimulus and presentation mode, anesthesia and electrode type,

and display different advantages. Guinea pig multi-unit recordings in response to conspecific

behaviorally relevant vocalizations (from Set-up 1) are explored in Chapters 4 and 5. Single-

unit recordings from the cat inferior colliculus in response to a synthetic spectrotemporally

varying sound (from Set-up 2) are employed in Chapter 6. In the following, these two set-

ups and the approach to separate the single neuron spiking responses from a multi-neuron

recording are described.

3.1.1 Multi-unit recordings in response to guinea pig vocalizations (Set-up 1)

Recording and calibration of guinea pig vocalizations, and recording of neural data were

performed by T. Rode, T. Hartmann, and H. Lim and are also described in [87]. The

advantages of this set-up are that a representative, spectrotemporally rich set of natural,

behaviorally relevant stimuli was presented. Responses were recorded simultaneously from

32 channels and allow studying whether neuronal interactions exist between these sites.

However, the recorded data is multi-unit activity with non-separable units, which allows

analyzing collective behavior of groups of units, but does not allow drawing inferences about

single neuron processing. Furthermore, recording time is relatively short (1-1.6 s) and trial

size (ntrial=20) relatively small, and therefore does not allow the application of information

theoretical and reverse correlation analyses.



Experimental set-ups

Vocalization stimuli

Vocalizations are spectrotemporal dynamically varying sounds, which display a wide spec-

trum of acoustic properties such as harmonics, temporal correlations, amplitude and fre-

quency modulations. These natural sounds are well suited to study the auditory system as

neurons are adapted to process them. They can trigger responses which are not elicited by

artificial or simple acoustic stimuli [15].

Guinea pigs are very communicative and display a rich repertoire of behaviorally relevant

vocalizations. The eleven vocalizations studied here constitute a representative set of guinea

pig communication calls and give information about the animal’s behavioral state [88]. Fig-

ure 3.1.1 shows the waveform, spectrogram and power spectrum of the vocalizations used

in this study. These complex sounds display a variety of frequency ranges and envelope

types. The spectrograms of the vocalizations in Fig. 3.1.1e-k display harmonics. The wave-

form has a simple periodic shape for some vocalizations (‘tooth chatter’, ‘purr’, drr’, Fig.

3.1.1a-c) and is quite complex for others (e.g. ‘squeal’, ‘low whistle’, Fig. 3.1.1j,k). Some vo-

calizations have a frequency content of up to 30 kHz (‘tooth chatter’, ‘scream long’, ‘scream

short’). Vocalizations were recorded with a sampling rate of 97656.25 Hz from male and

female Dunkin Hartley guinea pigs. The vocalizations were played 20 ms after start of

recording and vary in duration between 300 ms and 1300 ms.

Pure tone stimulation was used to create frequency response maps (see Sec. 3.2.2). A total

of 40 stimulus frequencies, ranging between 0.5-45 kHz, with a ramp rise and fall time of

5 ms each and a duration of 50 ms, were presented 20 ms after recording onset.

Stimulus calibration

During the experiments, the stimuli were presented through loudspeakers via a tube

(ca. 2 mm×1 mm) directly to the ear drum, monaurally to the left ear of the guinea pig.

To account for this passage and modification of the sound wave, the original vocalizations

were calibrated. The impulse response function of the system (loudspeaker-tube-mold of

ear canal) was recorded with an ear mold of the ear canal from one guinea pig. The original

vocalizations described in Sec. 3.1.1 were filtered with the impulse-response function with

an adaptive normalized least mean squares filter prior to presentation (‘calibrated’). These

calibrated vocalizations were played at a sampling rate of 195310 Hz.

Out of 11 vocalizations, four showed substantial deviations between the original and the

calibrated version (‘long chutter’, ‘low chutter’, ’drr’, ‘purr’). All vocalizations showed de-

viations in onset by several milliseconds. In Figure 3.1.2 waveforms of the original and

calibrated vocalizations are given for two examples. For the ‘tooth chatter’, the original

vocalization shows good agreement with the calibrated version (Fig. 3.1.2a). However, in

the case of the ‘purr’, the waveform of the calibrated version is very different to the original

one, as no periodic structure is present anymore (Fig. 3.1.2b).
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3.1.1 Multi-unit recordings in response to guinea pig vocalizations (Set-up 1)
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Figure 3.1.1: Guinea pig vocalizations. Waveforms, spectrograms and power spectrums for each

of the 11 studied vocalizations. Vocalizations vary in duration from 0.3-1.3 s (j, b), the envelopes

of vocalizations shown in a-c have periodicities of respectively 10.3 Hz, 15.4 Hz and 14 Hz. Both

‘screams’ and the ‘whistle’ (g-i) show distinct harmonics and broad frequency distributions.
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Experimental set-ups
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Figure 3.1.2: Calibrated vocalizations. Original (-) and calibrated (-) vocalizations of the ‘tooth

chatter’ (a) and ‘purr’ (b).

Data acquisition

Neural recordings from the contralateral ICC of 11 adult male and female Dunkin Hartley

guinea pigs were taken while acoustically presenting conspecific vocalizations with cali-

brated loudspeakers via stereotactic ear tubes to the right ear. The experimental set-up is

schematized in Fig. 3.1.3. The guinea pigs were anaesthetized with Ketamine and stereo-

tactically fixed with ear tubes through which the sound was presented directly to the

eardrum. A total of 11 different vocalizations (see Fig. 3.1.1) were played with intensities

of 30-70 dB SPL in steps of 10 dB SPL. For each vocalization, 20 trials were recorded at

a given intensity. Recordings of 1 s and 1.6 s duration were taken with a TDT Tucker

Davis System with a sampling rate of 24414 Hz. In each animal, the multi-site electrode

array was inserted into 3-4 different positions for recording. For the recording, either linear

double-shank arrays (Fig. 3.1.4a) or 4-double-tetrode arrays (Fig. 3.1.4b) with impedances

between 0.5-1 MΩ at 1 kHz were used (NeuroNexus Catalog, Ann Arbor, MI 48108, 2014).

The first one captures multi-unit activity across a wide best frequency range, across several

isofrequency laminae, whereas the second captures the activity of several multi-units from

few isofrequency laminae. With these arrays the neural activity was recorded simultane-

ously from 32 different channels (recording sites).

Guinea pig

Recording S!mulus :

Vocaliza!ons

impedance :  0.5-1 MΩ

Figure 3.1.3: Set-up 1: Conspecific vocalizations are acoustically presented via a tube to one

ear, while recording with a multi-site electrode from the contralateral ICC of the guinea pig (Head

drawing adapted from [49].)
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3.1.2 Single-unit recording in response to DMR sound (Set-up 2)
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Figure 3.1.4: Dimensions of recording electrodes. Multi-site electrodes used in Set-up 1, that

simultaneously record neural activity from 32 channels. a) double-shank electrode, consisting of two

shanks, with 16 linearly spaced recording channels on each shank; b) 4-double-tetrode electrode,

consisting of four shanks with two tetrodes on each shank. The blue inset shows the distances

between the channels on one tetrode. Impedances are between 0.5-1 MΩ (Dimensions taken from

NeuroNexus Catalog, Ann Arbor, MI 48108, 2014).

The electrode array was introduced under an angle of 45◦ dorsolateral along the gradient of

best frequencies, the tonotopic gradient. Frequency response maps were calculated during

the experiment in order to verify the tonotopic gradient [4]. Recordings were taken from 11

guinea pigs in 3 or 4 electrode insertion positions, taken all together 36 recording positions.

From each position the electrode array (either double-shank or double-tetrode) that con-

sisted of two shanks recorded simultaneously the activity from 32 multi-units. This yielded

72 sets which consist each of simultaneously recorded activity from 16 multi-units from one

shank.

3.1.2 Single-unit recording in response to DMR sound (Set-up 2)

Recordings in the ICC of cats in response to dynamic moving ripple (DMR) sound, and

isolation of single neurons were performed by C. Chen, M. Escab́ı and H. Read and are also

described in [14, 89, 45, 90]. The DMR sound is not natural, but contains amplitude and

frequency modulations, which are present in natural sound. Recording times are relatively

long (2×10 min) and the sound has the advantage that it can be parametrized, which is not

easily possible with natural sounds. This allows capturing response preferences with the

reverse correlation method (Chapter 6). However, the dynamic moving ripple sound might

lack other properties of natural sounds.

Dynamic moving ripple sound stimulus (DMR)

The dynamic moving ripple sound stimulus is a synthetic, parametrizable sound, which

contains frequency and amplitude modulations that are important components of natural

sound. Its time-varying envelope is used to probe spectrotemporal preferences of neurons.
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Experimental set-ups
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Figure 3.1.5: Frequency and temporal modulation. Sound energy modulation in 1 dimension. Red

and blue indicate respectively high and low intensity. a) sound energy changes across frequencies

but not with time, only spectral modulation (2 cycles/octave) is present; b) sound energy changes

with time, but not across frequencies, only temporal modulation (50 Hz) is present (adapted from

[14]).

The DMR sound which was used for the recordings described in this work has first been

introduced and applied by Escab́ı et al. [14], and has since then been widely used [91, 92].

Modulations of the sound envelope in only one dimension are displayed in Fig. 3.1.5. In

Fig. 3.1.5a the sound envelope is constant over time but displays variations in energy for

different frequencies, the spectral modulation is 2 cycles/octave. The sound envelope energy

in Fig. 3.1.5b is the same for all frequencies, but the amplitude changes with time (1 cycle

in 20 ms =̂ 1
0.02 s

), the temporal modulation (amplitude modulation) is 50 Hz.

In order to create the DMR sound, energy modulation in time and in frequency is applied

to a bank of sinusoidal (n = 659) carriers of frequency fk. The frequency carriers span

a range between 0-5.8 octaves, with a spectral resolution of 0.0085 octaves. The ripple

density Ω(t) defines the number of spectral peaks per octave at a time instant, and Fm(t)

defines the instantaneous temporal modulation. These two values are independent and

vary slowly in time: Ω(t) varies within 0-4 cycles/octave with a maximum rate of change

of 3 Hz, and Fm(t) varies between 0-500 Hz at a maximum rate of 1.5 Hz. Within these

parameter ranges, amplitudes are uniformly distributed in order to cover the stimulus space

in a statistically unbiased manner. The rates of change had been taken from observed rates

for similar features in speech and vocalizations [93, 14]. The parameters vary at a slow

rate compared with the integration time of ICC neurons, which is about ∼10 ms [90]. The

peak-to-peak amplitude of the DMR was set to 30 dB since this produces robust responses

for the vast majority of IC neurons [94]. The spectrum of a 400 ms long segment of the

DMR sound envelope is displayed in Fig. 3.1.6.
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3.1.2 Single-unit recording in response to DMR sound (Set-up 2)

F
re

q
u

e
n

cy
[o

ct
]

Time [s]

0              0.1                 0.2                   0.3                   0.4

6

3

1

Figure 3.1.6: Dynamic Moving Ripple Sound. The spectrogram of the dynamic moving ripple

sound (DMR) envelope (adapted from [14]).

The formula of the envelope is given by

SDMR(t,Xk) = M/2 · sin (2πΩ(t)Xk +Φk) (3.1.1)

where M is the modulation depth (M=30), Ω(t) the ripple density, Φk is the integrated

modulation rate of Fm(t) and Ω(t), and Xk is the frequency axis in octaves relative to the

lowest stimulus frequency (f = 1000 Hz). The acoustic waveform which was played to the

animals is obtained by adding all modulated sinusoidal frequency carriers fk:

s(t) =
L
∑

k=1

SLin(t,Xk) · sin(2πfk + φk) (3.1.2)

with φk a randomly chosen phase between 0-2π, which creates a noise-like character that is

necessary for the reverse correlation analysis, and the modulating spectrotemporal envelope

SLin. This is a transformed representation of the spectrotemporal envelope (Eq. 3.1.1, in

decibels) in linear amplitude units bound between 10−M/20 and 1:

SLin(t,Xk) = 10
S
DMR

(t,Xk)−M/2

20 . (3.1.3)

Compared with natural sound, the DMR offers the advantage that it can be parametrically

manipulated, thus allowing for a systematic characterization of neuronal preferences to

specific amplitude and frequency modulations. The reverse correlation method requires the

input to be white noise [95]. However, it has been shown that neurons in higher auditory

areas in primates are not well driven by white noise or simple stimuli [96]. The DMR fulfills

several requirements for use with the reverse correlation methods, while containing the

frequency and amplitude modulations and coherent modulations in the range characteristic

for vocalizations [14, 97]. The local envelope statistics of the DMR are dynamic, they

continuously vary with time. Short-term correlations exist and have been evaluated for

several envelope segment durations [14]. The global (long-term) autocorrelation consists

of an impulse-like central peak of width 3 ms and 1
4
octave [14]. A narrow impulse-like

character of the autocorrelation is a prerequisite to use reverse correlation analysis for the

derivation of receptive fields [72, 97]. A 10 min sequence of the DMR was played twice (20

min in total) at a fixed intensity of 80 dB SPL, dichotically in reverse order. The acoustic

presentation is described in detail in [14].
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Experimental set-ups

Data acquisition

From five adult female cats recordings from the right ICC were taken. Following surgery

(described in [14, 89, 45, 90]), the animal was kept anesthetized in a nonreflexive state

by continuous infusion of Ketamine and Diazepam. Throughout the experiment heart rate,

temperature, breathing rate, and reflexes were monitored and the infusion rate was adjusted

accordingly. Neural recordings were performed over a period of 24-72 h. The probes were

first positioned on the surface of the IC with a stereotaxic frame (Kopf Instruments) at

an angle of 30◦ relative to the sagittal plane (orthogonal to the frequency-band lamina)

[5], and successively inserted deeper in the ICC. Acute 4-tetrode (16 channel) recording

probes (two shanks with two tetrode sites on each, 150 µm spacing, impedance 1.5-3.5 MΩ

at 1 kHz, NeuroNexus Technologies) were used to record neuronal activity from the ICC.

Best frequencies spanned a range of 1.3-16.7 kHz.

Data processing

Neural responses had been recorded with a RX5 Pentusa Base station (Tucker-Davis Tech-

nologies) followed by offline analysis in MATLAB (MathWorks Inc.). The continuous neural

traces were digitally bandpass filtered (300-5000 Hz) and were used to detect spikes exceed-

ing 5 standard deviations of the spontaneous activity. The candidate action potentials and

spike waveforms were aligned and sorted using peak values and first principle components

with an automated clustering software (KlustaKwik software) [98].

Cat
Recording

S mulus:

DMR

S mulus:

 me-reversed DMR                                     

Electrode impedance: 1.5-3.5 M Ω

Figure 3.1.7: Set-up 2: DMR sounds (reversed for left ear) are acoustically presented via tube-

loudspeaker systems to both ears, while recording with a multi-site electrode (impedance 1.5-3.5 MΩ

from the right ICC of a cat. (Head drawing adapted from [49].)

3.1.3 Processing of neural activity

In this section the approach to isolate single neurons from the recordings of Set-up 1 is

described.
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3.1.3 Processing of neural activity

Multi-unit recordings

The contact of the electrodes (Sec. 3.1.1, 3.1.2) in general captures the neural activity not

of a single neuron (‘single unit’) but of several neighboring neurons (‘multi-units’). The

lower the impedance, the more neurons are recorded from, thus spanning a wider radius

around the electrode contact. The recording radius of the used electrodes (impedances:

0.5-1 MΩ at 1 kHz) was estimated by the manufacturer to be 50-125 µm (NeuroNexus,

Ann Arbor, MI 48108, personal comm.). A representative recording of Set-up 1 is given

in Fig. 3.1.8b, and a representative one from Set-up 2 in Fig. 3.1.8a. Whereas spikes are

clearly visible in the recording from Set-up 2, in the recording from Set-up 1 they are not

clearly distinguishable.
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Figure 3.1.8: Recorded neural data. Bandpass-filtered recordings from a) Set-up 2 and b) from

Set-up 1, in which spikes are not clearly visible.

Spike-sorting

The spikes from multi-unit recordings may be assigned to different neurons based on their

shape and amplitude. In this way several single neuron responses can be obtained from

a multi-unit recording (Spike-sorting). The histogram of the inter-spike-intervals (ISI) is

a good indicator of the spike-sorting quality, and spikes from one neuron with ISI <1 ms

are not realistic. The offline spike-sorting program WaveClus [99] was used to spike-sort

recorded activity from Set-up 1. In this spike-sorting program, a wavelet-analysis is car-

ried out on the recordings, and based on the wavelet coefficients, action potentials are

clustered, following the Ising-model. Clustering is based on spin-spin correlations in a

super-paramagnetic regime in which aligned domains appear [100].

For the spike-sorting procedure all trials (n=20) were concatenated, filtered between

300-3000 Hz and assigned as spikes for voltages exceeding a certain threshold (Θ). The

used parameters for the minimum and maximum value for the temperature for the super

paramagnetic clustering were Tmin = 0 and Tmax = 0.2, with 100 iterations for each temper-

ature. The used minimum and maximum value for the number of clusters were Cmin = 3

and Cmax = 33 and for the threshold of spike detection Θmin = 3σ and Θmax = 20σ.

Further parameters include the sampling rate of 195310 Hz, the number of pre- and post-

event data points (Dpre = 15, Dpost = 20), the detector dead time 3 ms, and the high and

low-pass filter frequencies for the spike detection (Flow = 300 Hz, Fhigh = 3000 Hz).
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Methods
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Figure 3.1.9: Spike-sorted waveforms. a) Waveforms assigned to three clusters (Cluster 1-3), and

waveforms that could not be clustered (Cluster 0). b) Inter-spike-Intervals for the spikes of the three

clusters

Figure 3.1.9a shows an example of the spike-waveforms found with WaveClus and ISI his-

tograms for one recording. Three clusters were found to which the waveforms could be

assigned, but a high percentage of waveforms could not be assigned to these groups or fur-

ther clustered. The distribution of inter-spike-intervals for each cluster can give information

about the quality of the clustering. Clusters with assigned spikes with intervals of less than

1 ms indicate sub-optimal clustering, because ISI <1 ms are not realistic, and thus spikes

originating from different neurons were assigned to the same cluster. All clusters have ISI

of less than 1 ms. The neural recordings cannot be well separated. The spike-sorting was

performed on a subset of the large set of analyzed multi-units, and was exemplified here for

a representative recording.

3.2 Methods

In this section the processing methods, which are applied to the raw voltage recordings

of Set-up 1, in order to obtain spiking activity and local field potentials and to obtain

basic neural characteristics, are described. The neural data from Set-up 2 were provided in

the form of single neurons (Sec. 3.1.2) with neural properties, such as the best frequency,

already determined.

3.2.1 Pre-processing

From the voltage recording, which had mean absolute values around ∼80 µV, two different

response types, spiking and local field potential activity (LFP), were obtained (Fig. 3.2.1).

The mean was subtracted before filtering the responses. In order to obtain spiking responses,

a high frequency passband for filtering is applied, and a low passband is applied for LFPs

(see Fig. 3.2.1). Separation of single units was not possible (Sec. 3.1.3), therefore the spiking

activity of multi-units was employed.
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3.2.2 Frequency response maps (FRM)

Low passband

filtering

Highpassband

filtering
thresholding

LFP response

Raw voltage response

Spike-trainsSpiking response

Figure 3.2.1: Filtering for spiking and LFP activity. Low and high frequency passband filtering is

applied to the voltage recordings in order to obtain respectively spiking and LFP responses. The

spiking response is thresholded to obtain binary spike values (see Fig. 3.2.2).

The multi-unit thresholded spiking activity is referred to as spiking activity in the analysis

of the recordings from Set-up 1 (Chap. 4, 5). From the spontaneous activity, the mean

and standard deviation (σ) is computed. Activity exceeding the threshold, which is a

linear function of the standard deviation (Θ = zσ), is counted as a spike. No refraction

time between spikes was assumed, as these likely originate from different single units. The

average spiking response is obtained by binning (temporal window ∆t) of individual spike-

trains and summation across trials. This yields poststimulus time histograms (PSTH).

S mulus Onset

20 ms

spontaneous s mulus-driven

zσ

Figure 3.2.2: Multi-unit thresholded activity. Schematic to obtain multi-unit thresholded activity

from the filtered recording. During the first 20 ms no stimulus was presented. From these 20 ms,

the spontaneous activity, the mean and standard deviation (σ) is computed. Activity exceeding the

threshold (Θ = zσ) is counted as a spike.

3.2.2 Frequency response maps (FRM)

Frequency response maps (FRM) for a neuron or multi-unit cluster show the average spiking

response to pure tones, in dependence of stimulus frequency and intensity (examples are

given in Fig. 4.3.1). The stimulus frequency eliciting the highest spike-rate at a given

intensity, the tone-evoked best frequency (BF), ranged from 0.5 to 45 kHz in the recordings

from Set-up 1.
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Methods

The best frequency at the lowest intensity that still elicited a neural response is the character-

istic frequency (CF). The distributions of characteristic and best frequencies at a stimulus

intensity of 70 dB for all analyzed multi-units from Set-up 1 are displayed in Fig. 3.2.4,

separately for double-shank and tetrode experiments. The tetrode experiments show a

multi-modal distribution of BFs and additional peaks of distinct frequencies for the CF

distribution. Tetrode arrays record activity from multi-units of few isofrequency laminae,

hence several multi-units have the same preferred frequency. The tetrode arrays were not

inserted as deep into the ICC as the double-shank arrays. Therefore mostly responses from

multi-units of low and middle frequency laminae more dorso-laterally were recorded from.

Double-shank arrays record responses across several isofrequency laminae, and thus cover

a wider range of preferred frequencies.
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Figure 3.2.3: Frequency tuning along the tonotopic gradient and within isofrequency lamina. a)

FRMs of 32 multi-units recorded with a double-shank electrode. The characteristic frequency in-

creases gradually from sites higher up (dorso-lateral) to lower ones (ventro-medial). The FRM shape

also changes from a broader symmetric shape to an elongated and skewed one for higher frequencies.

The topmost sites do not show strong responses and might be lying outside the ICC (CF range from

0.5-29 kHz). b) FRMs of multi-units recorded with a double-tetrode electrode from two isofrequency

laminae with CFs of ∼26 kHz (left column) and ∼15 kHz (right). The CF does not change visibly

within one isofrequency lamina, but the frequency tuning varies in sensitivity, e.g. spike-rates from

site 23 and site 27 vary by over 250 Hz.
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This yields a more continuous distribution of CFs and BFs than for the tetrode experiments.

Preferred frequencies from the middle frequency range are more frequent than low or high

ones. This could be due to electrodes not all being inserted equally deep into the ICC

and covering different frequency ranges at the extremes, but all passing through the middle

frequency range.

Low preferred frequencies are not very frequent, which could be due to the anatomy of the

low frequency laminae being skewed, and thus not offering a wide surface orthogonal to the

tonotopic gradient to record from.

0 0.79 1.4 2.5 4.5 8 14 25 45
0

10

20

30

40

50

60

Characteristic freq. [kHz]

# 
M

U

 

 

243 double−shank
246 tetrode−double

0 0.79 1.4 2.5 4.5 8 14 25 45

Best freq. [kHz]

ba

Figure 3.2.4: Distribution of characteristic and best frequencies. The distribution of a) character-

istic (CF) and b) best (BF, at 70 dB stimulus intensity) frequencies of all analyzed multi-units is

displayed for multi-units from double (-) and tetrode (-) experiments.

3.3 Correlation analysis

The recordings from Set-up 1, presented in the previous sections are analyzed with respect to

their similarity across the ICC (Chap. 4). The similarity is quantified by cross-correlation

of spike trains. The correlation analysis carried out in this work includes response and

neural correlations for responses from multi-unit pairs.

3.3.1 Cross-correlation of neural responses

Correlations between responses are computed in the following manner: pairwise, responses

from two multi-units x (t), y(t), of length n, are cross-correlated, and the highest correlation

value within a maximum allowed delay of τmax between the responses is selected.

Corr(τ) = max

(

∑

n−τ
t=1

(x (t + τ)− 〈x 〉) · (y(t)− 〈y〉)
√
∑

n

t=1
(x (t)− 〈x 〉)2

∑

n

t=1
(y(t)− 〈y〉)2

)

(3.3.1)

The correlogram is averaged across all trials, before selecting the highest correlation within

a delay τmax. The maximum possible delay τmax differed for the specific analysis carried

out and is noted in the respective sections.
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Correlation analysis

3.3.2 Cancelling temporal correlations

Neuronal interactions can lead to temporal correlations of their responses. These add to the

correlations, which are due to similar neural processing properties and inputs to the neu-

rons (stimulus correlations). The stimulus correlations and the correlations due to neural

interactions constitute the response correlations which are measured for two neurons. The

neural (or temporal response) correlations are only present if recordings were taken simulta-

neously. Hence, in order to cancel them, simultaneously recorded trials of different neurons

are randomly shuffled before the pairwise correlation [101]. The trial-averaged correlogram

of shuffled trials is called the Shift predictor and represents the stimulus correlations. Sub-

tracting the shift predictor from the measured correlations yields the contribution which is

due to neural interactions. This analysis can indicate whether neural interactions exist and

whether they are prominent or minor.

The correlations due to interactions between neurons or multi-units, in general, are accom-

panied by a covariation of the neurons’ trial-variabilities, and are therefore also termed

noise correlations [37]. In order to visualize the effect of noise correlations on the en-

coded stimulus information, scatter plots are often used. They display the distribution of

averaged spike-rates of two neurons or neural groups to different stimuli. The more the

response distributions to the different stimuli overlap, the less information is carried by

them. Comparing the scatter plot of simultaneous trials to the one with shuffled trials

yields information whether the neural correlation affect encoding. If, for example, separa-

bility of responses to different stimuli increases when removing neural correlations, these

are detrimental for encoding.

3.3.3 Biophysically detailed auditory model (Meddis Model)

The averaged neural spiking responses are compared to predictions of two models

(Sec. 4.3.4). The first model consists of filtering and rectification of the stimulus waveform

(Sec. 4.2.3), the second one is a biophysically detailed auditory model (Sec. 4.2.3). Several

models exist that simulate auditory neural responses [102]. For simulating responses from

the ICC, the models by Carney [103] and Meddis [104] are often used.

Here, the Meddis Model was chosen, because it simulates in detail biophysical processing

of the auditory periphery. This detailed replication will be compared to a rather simple

filtering approach (Sec. 4.2.3). In the following, this model is briefly described along the

auditory pathway which was introduced in Sec. 1.1. Sound that arrives at the outer ear

is filtered by the ear canal. This is simulated by a bandpass-filter (1-4 kHz with a gain of

10 dB). The amplification of the ossicles is simulated with a low-pass filter (<50 Hz) for

high frequencies (>2 kHz) and with a high-pass filter (>1 kHz) for low frequencies. Even

the attenuation of sound levels that are very high (>90 dB SPL) by feedback to the middle

ear by efferent motor neurons from the medial superior olive is simulated by the model.
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The basilar membrane responds linearly at low frequencies and almost linearly at high fre-

quencies. However, at middle frequencies it responds nonlinearly and produces a compressed

output. The processing of the basilar membrane is simulated by a dual-resonance-nonlinear

filter, which adds the outputs of two parallel pathways, a linear and a nonlinear one. The

linear pathway consists of a constant gain and three subsequent identical gamma-tone fil-

ters and a second simulated feedback from the brainstem. This second simulated intensity

feed-back loop reduces the displacement of the basilar membrane and is activated for loud

sounds independently for each best frequency. The nonlinear pathway consists of three

identical first order gamma-tone filters, a psychophysically observed compression function,

followed by three identical first order gamma-tone filters.

The displacement of the inner hair cells of the basilar membrane, the receptor potentials

and conductance changes are modeled in detail. The inner hair cells release vesicles to the

auditory nerve fibers. The transmitter quantity released by these vesicles is estimated by

using a quantized, a full spiking model. The model can generate independent projections

from low and high spontaneous rate auditory nerve fibers. The auditory nerve fibers with

their specific best frequency are simulated to converge on cochlear nucleus cells which have

the same best frequency. In the model, the cochlear nucleus contains 10 times less cells

than there are auditory fibers. The Meddis model simulates the processing of the cochlear

nucleus and of one further auditory brainstem nucleus. The simulated processing of this

nucleus is not specialized to any particular auditory brainstem nucleus and for the purpose

of this work represents the ICC. The cochlear nucleus cells are simulated to project to ICC

neurons with the same best frequency, and 10 projections converge onto one ICC neuron.

Hence, the model simulates a convergence such that 100 auditory nerve fibers converge onto

one ICC neuron.

3.4 Neural discrimination

Neural discrimination has been widely used [30], with a broad range of techniques [105].

Statistical and machine-learning techniques are applied in order to discriminate recorded

neural responses which were elicited by different stimuli. It is a powerful tool in analyzing

encoding of vocalizations by groups of neurons, as opposed to receptive field analysis which

requires further processing if natural sound is used [106].

The neural responses are classified based on a chosen distance metric. In the following,

when referring to ‘classification’ it is meant to imply ‘neural discrimination’. A confusion

matrix, Conf , gives the correct and false classifications, rows representing assigned stimulus

classes, columns representing the actual presented stimulus classes, Fig. 3.4.1.
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Reverse correlation: Spike-triggered average and covariance
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Figure 3.4.1: Example confusion matrix for Nvoc =11 classes. Entries on the diagonal show the

correct classification; all other entries represent false classifications. The average across the diagonal

yields the total correct classification (CC ).

Perfect classification would yield entries only on the diagonal. The entries on the diagonal

of the confusion matrix represent the correct assignments for each individual vocalization

k = 1 . . .Nvoc, averaged across all cross-validation iterations Nxval.

CCi (k) =
1

Nxval

Nxval
∑

x=1

Confx (k , k) (3.4.1)

The average across the diagonal yields the total correct classification. The neural discrimi-

nation method applied to the specific data set is described in detail in Sec. 5.2.

3.5 Reverse correlation: Spike-triggered average and covariance

This section introduces the reverse correlation method (spike-triggered average, spike-

triggered covariance), testing for significant stimulus variances, as well as two further meth-

ods to capture neuronal response preferences (ripple transfer function, conditioned response

histogram). These methods are applied in order to investigate nonlinear neural response

properties (Chap. 6).

3.5.1 Introduction

The receptive fields are derived from the kernels of the Winer expansion [95], an expansion

of functionals which approximates nonlinear systems [76, 77, 69].
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3.5.2 Spectro-temporal receptive field (STRF)

It was shown that the Winer kernels up to the second order (Eq. 3.5.1), respectively corre-

spond to the following expressions (Eq. 3.5.2), adapted from [84]:

r(t) = k0 + k1 + k2 (3.5.1)

= 〈y(t)〉+
1

A
〈y(t) x(t− τ)〉+

1

2!A2
〈[y(t)− k0] x(t− τ1) x(t− τ2)〉 (3.5.2)

∼=
1

T

∫ T

0

dt
N
∑

i=1

δ(t− ti) +
1

AT

∫ T

0

dt x(t− τ1)
N
∑

i=1

δ(t− ti) +
N0

AN

N
∑

i=1

x(ti − τ)

+
1

2A2T

∫ T

0

(

N
∑

i=1

δ(t− ti)−N0

)

× x(t− τ1) x(t− τ2)dt (3.5.3)

= N0 +
N0

AN

N
∑

i=1

x(ti − τ)

+
N0

2!A2

[

1

N

N
∑

i=1

x(t− τ1) x(t− τ2)−
1

T

∫ T

0

x(t) x(t− τ)dt

]

(3.5.4)

where N is the total number of spikes, T is the entire recording time, A is the power

spectral density of the stimulus, x(t) is the temporal input to the system (the stimulus),

ti=1...N are spike times, y(t) is the temporal output of the system (the measured spike

train), N0 = N/T is the average spiking rate and τ, τ1 and τ2 are time delays from the

interval [0, T ]. The first term is the average system’s response. The second term is obtained

by cross-correlating the stimulus x(t) with the response y(t); the third term is obtained

via a second-order cross-correlation of the stimulus and spike train (Eq. 3.5.2). From this

expression, the terms in Eq. 3.5.3 are only approximated due to finite recording times.

Spike occurrences at times ti were represented by δ-function pulses (δ(t − ti)), and the

whole spike train is the summation of all δ-pulses. In the final expression (Eq. 3.5.4), the

first term represents the average spike rate, the second term the spike-triggered average,

and the third term represents the spike-triggered covariance.

3.5.2 Spectro-temporal receptive field (STRF)

The linear spectrotemporal receptive field (STRF) is obtained by averaging all Nspikes stim-

ulus segments preceding a spike [77, 14]; it is also termed the spike-triggered average (STA).

This linear receptive field corresponds to the second term in Eq. 3.5.4.

The STA in response to the envelope of the DMR sound stimulus (Sec. 3.1.2) is given by:

STA(fk) =
1

σ2
DMRT

N
∑

i=1

SDMR(ti − τ, fk) (3.5.5)

with the normalizing variance of the envelope SDMR (Eq. 3.1.1), σ2

DMR = M2/8, recording

time (T = 600 s), and the delay τ relative to the spike timing ti . This delay determines

the temporal width of the window.
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Reverse correlation: Spike-triggered average and covariance

The STAs for all frequency carriers fk correspond to the 2-dimensional linear spectrotem-

poral receptive field. The STRF is the best linear model that transforms any time-varying

stimulus into a prediction of the firing rate of the neuron [69, 71].

3.5.3 Spike-triggered covariance (STC)

The third term of the Winer expansion (Eq. 3.5.1) takes into account nonlinear interactions,

and corresponds to the spike-triggered covariance. The formula for the spike-triggered

covariance (STC), derived in Eq. 3.5.4, is given by:

STC =
N0

2!A2

[

1

N

N
∑

i=1

x(t− τ1)x(t− τ2)−
1

T

∫ T

0

x(t)x(t− τ)dt

]

(3.5.6)

The first term is the covariance of the stimulus. The second covariance is computed from

the stimulus segments preceding a spike. The unit of the spike-triggered covariance is spikes

per second per squared decibel.

3.5.4 Ripple transfer function and Conditioned response histogram

The STA describes spectrotemporal neuronal preferences, and the STC describes prefer-

ences to stimulus correlations. Further descriptions of neuronal preferences are employed

in this work. Neuronal preferences to specific combinations of amplitude and frequency mod-

ulations are captured by the ripple transfer function (RTF) and the conditioned response

histogram (CRH).
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Figure 3.5.1: Ripple transfer function (a); and Conditioned response histogram (b) for one neu-

ron. Positive temporal modulations represent upward sweeps and negative temporal modulations

downward sweeps.
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3.5.5 Significance testing of distributions

The RTF is obtained from the statistically significant STRF (p >0.002) by performing a

two-dimensional Fourier transform [107, 14]. From the RTF, the best modulation param-

eters (best temporal modulation and best spectral modulation) can be derived. The RTF

can also reveal the neuron’s bandpass or lowpass properties of spectral and temporal infor-

mation. The neuron’s filtering properties are also indicated by the STRF. Neurons that

display interleaved patterns of excitatory (on) and inhibitory (off ) subfields in their STRFs,

have in general bandpass response characteristics. If such interleaved patterns are absent,

then the neurons generally have lowpass response characteristics. Neurons whose activity

is not phase-locked to the envelope, and, for which thus no statistically significant STRF

can be derived because responses to different spectrotemporal features average out, the

RTF-derivation is not possible. Therefore, the RTF only depicts time-locked energy in the

neural response.

Another method to map neuronal preferences as a function of the temporal (modulation

rate) and spectral (ripple density) stimulus parameters, is the conditioned response his-

togram (CRH) [14]. In order to obtain the CRH, the range of applied temporal and spectral

modulation rates is binned. Any bin of the 2-dimensional conditioned response histogram is

incremented by 1, each time the temporal and spectral modulation parameter combination

of this bin elicits a spike. This way, one approximates the probability distribution function

of observing a specific set of instantaneous parameters given a spike. The CRH is obtained

by counting stimulus parameters in dependence of spike occurrence and is insensitive to

spike-timing jitter, as opposed to the RTF, which is obtained from the STRF, thus from

averaging the stimulus waveforms. Averaging can also eliminate preferences to specific fea-

tures. The CRH can describe nonlinear neuronal responses which cannot be captured by

the STRF or the RTF [14]. The CRH also displays nonspecific activity, which in general

does not contribute to the construction of the STRF and the RTF. In general, the STRF

and CRH are very similar [14]. In some cases, however, opposite preferences are shown by

the RTF and CRH; such an example for one neuron is given in Fig. 3.5.1.

3.5.5 Significance testing of distributions

Significance was assessed using Student’s t-test for normal distributions, and the Wilcoxon-

Mann-Whitney test for comparison of non-normal distributions (significance level α =0.05).

The p-value is given.

In summary, in this chapter, the experimental set-ups which were used to obtain the neural

data, and general processing methods for neural activity were described. The basic statis-

tical methods and models used in Chapters 4-6 were introduced. Specific methods which

are applied to the analyzed data sets and questions are detailed in each chapter.
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4 Spatial response correlations

4.1 Introduction

The collective response from a group of neurons, i.e. clusters of neighboring neurons that

contain a number of single neurons spanning one order of magnitude, is termed multi-unit

activity. It measures neural activity at a level between patch-clamping, in which single neu-

ron responses are recorded, and larger-scale neurophysiological signals, such as local field

potentials (LFP), and e.g. functional magnetic resonance imaging [108], which are used to

observe how the system might work as a whole. Investigating the encoding of natural sounds

on the level of multi-units has the advantage that this response is an integrated activity

which might reflect local processing of the ICC. Furthermore, multi-units respond stronger

to natural sound than single units [18] and natural sound stimuli can be more accurately

discriminated based on these responses than based on single unit responses [30]. It also

has been suggested that an enhanced selectivity to stimulus characteristics over single-unit

coding by reduction of background noise might be achieved by association of multi-unit

events that are in close temporal correlation to each other [46]. Thus, multi-units might

capture collective neural behavior which is complementary to single-unit recording analysis.

In this work, multi-unit responses to vocalizations in the ICC are investigated. The ICC

receives different pre-processed inputs from ascending nuclei that terminate on different lo-

cations within the ICC [109]. Neural preferences to stimulus frequency and modulation are

mainly organized gradually within the ICC [4, 6, 7]. The neural response depends on the

received input and on the neuron’s processing, on its stimulus preferences. The representa-

tion of acoustic stimuli which results from the interplay of the heterogeneous input and the

gradual organization of neural preferences is investigated for vocalizations which display a

rich set of spectrotemporal properties. The hypothesis that despite the various inputs, the

best frequency and modulation axis induce a gradually changing neuronal representation

of vocalizations across the ICC is tested. To this end, neural responses are compared by

cross-correlation with respect to spatial and spectral (difference in preferred frequency) dis-

tance of the multi-units. The neural responses are compared for directions along and across

isofrequency laminae which correspond respectively to the best frequency and modulation

gradient.



Within one isofrequency lamina, neurons have the same preferred stimulus frequency, within

a 1/3 octave [5], but a gradient in best amplitude modulation frequency exists [6, 7], whereas

across isofrequency laminae, the preferred stimulus frequency changes with spatial distance.

The hypothesis is tested that neural responses are more similar within an isofrequency

lamina, which was suggested to be a functional processing unit [5], than across the tonotopy.

The correlation analysis is performed on the spiking activity, i.e. the processed output of

the ICC neurons. The similarity of the spiking response will be compared to the similarity

of local field potential activity (LFP). The LFP is long-range activity and captures the

presynaptic input [110].

Furthermore, simultaneous and non-simultaneous recordings are compared as this yields

indications whether similarity of spiking responses is mainly induced by the stimulus or

by neuronal interactions. The latter might suggest cooperative processing of the multi-

units. Whether correlated variability of spiking responses enhances or decreases encoded

information is a controversy [37]. The effect of noise correlations between two multi-units

on the separability of vocalizations in the ICC is displayed.

In this chapter, at first, neural responses to vocalizations are displayed and predicted based

on the multi-unit’s best frequency, using two different approaches. After description of the

responses, similarity in dependence of spatial and spectral distance is obtained by pairwise

multi-unit cross-correlation analysis. Finally, response and noise correlations are compared.

4.2 Methods

The provided neural multi-unit data which was analyzed in this chapter and in Chapter 5,

are recordings from the ICC of several guinea pigs, to whom a set of diverse conspecific

vocalizations were presented acoustically to one ear. The experimental set-up (Set-up 1)

and basic methods were described in Sec. 3.1.1, 3.2. In this section, the specific application

to the presented multi-unit data is described.

4.2.1 Thresholding, binning and convolution of multi-unit spikes

In order to investigate responses to vocalizations in the ICC, the spiking activity is employed

for the analysis, because this is the processed output of the neurons [110]. In some cases,

the analysis is extended to the local field potentials (LFP), which is long-range activity and

considered to contain i.a. the synaptic input to the neurons [110].

Spiking multi-unit activity was obtained from the recorded voltage traces by subtracting

the mean, applying a Butterworth filter with a passband of 300-3000 Hz and threshold-

ing at 3 standard deviations (Θs = 3σ) above the ongoing activity. Thresholds between

Θs = 1.5− 3.5σ were evaluated. A threshold of 3σ yielded the best match of spiking activ-

ity and the presence of a stimulus, and is also a common value for thresholding.
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This value was kept constant across all analyzed recordings from Set-up 1 in order to detect

spikes relative to the spontaneous activity of the specific multi-unit. In this way, different

spontaneous rates of the multi-units and adaptation effects over time are accounted for.

The spontaneous or ongoing activity was acquired from the first 20 ms of each recording,

in which no stimulus was applied.

Bin sizes between ∆t=0.5-5 ms were evaluated by comparing the obtained poststimulus

time histograms and the eliciting stimulus waveform. A bin size of ∆t=1 ms yielded the

least noisy, yet detailed representation of the stimulus waveform. Averaging the binned

spike trains across all ntrial =20 trials, yields the poststimulus time histogram (PSTH).

In order to reduce trial-variability of these binary spike trains and mimic the time course

of excitatory postsynaptic potentials (EPSP), the binned multi-unit spike trains were con-

volved with a filter function, fEPSP(t) = t · e−αt , with time t [111, 29, 112]. The full width

at half maximum α of the filter function was chosen to be 3 ms; as this is the smallest

time scale, thus the highest temporal resolution of the time window found to yield maxi-

mum discrimination performances between spike trains in response to vocalizations in the

(grasshopper) auditory system [29]. Responses to pure tones were binned but not convolved,

as these spike trains are only used to estimate average firing rates but are not employed

for comparison of the temporal courses. The local field potentials were obtained by Butter-

worth filtering the voltage traces in a range between 0.5-500 Hz [110].

4.2.2 Stimulus intensity

The poststimulus time histograms were compared for stimulus intensities of 40, 50, 60

and 70 dB SPL. Responses to intensities of 40 and 50 dB were weaker than for the higher

intensities. In most cases, responses to 60 and 70 dB were similar, however, in some cases an

intensity of 70 dB elicited more pronounced responses that reflected the stimulus waveform.

Thus, responses to a stimulus intensity of 70 dB SPL were employed for the analysis.

4.2.3 Predicting the neural response

In order to predict neural responses to a stimulus for multi-units with different best fre-

quencies, two approaches are employed: 1) filtering the stimulus around the multi-unit’s

best frequency, and 2) simulation of the response with the Meddis Model.

Filtering of stimulus around the best frequency

To test predictability of the multi-unit response, based solely on the stimulus and the best

frequency of the unit, the stimulus waveform was filtered. The vocalizations (displayed in

Fig. 3.1.1 on page 25) were Butterworth filtered around the best frequency of each multi-

unit, and then compared to the PSTH of this multi-unit.
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4.2.4 Neuronal pairs from the same or different isofrequency laminae

The applied passband was 1/3 octave and positioned symmetrically around the best fre-

quency, as this is the frequency range contained within one isofrequency lamina. To allow

for comparison, the filtered stimulus was rectified and normalized to the maximum value of

the PSTH. To quantify similarity of the filtered stimulus and the stimulus-elicited segment

of the PSTH, cross-correlation was used (see Sec. 3.3). A delay of maximum τ=10 ms was

allowed, in order to account for possible temporal shifts due to stimulus calibration (see

Sec. 3.1.1).

Meddis Model parameter

The biophysically detailed auditory periphery model, the Meddis model was introduced in

Sec. 3.3.3. In order to compare the model prediction for vocalization stimuli to the measured

responses, some changes to the Meddis Model had to be made, and specific model parameter

values were used. The Meddis Model was modified to yield simulated PSTHs, rather than

one only single unit output. Furthermore, the spiking threshold was adapted to be the

one of a guinea pig. An added current of 28 nA per spike at the level of the cochlear

nucleus yielded an induced spontaneous activity of neurons in the ICC, which was observed

for the physiological data (see Fig. 4.3.3). Only high spontaneous rate auditory nerve

fibers, which are more abundant than the low spontaneous rate fibers, were considered as

a first approximation of the output, as the model currently allows only one type of fiber

for simulation of ICC membrane potential. The model simulates one single spike train

for a neuron with a given preferred frequency. To approximate the multi-unit activity,

the responses of five single neurons with closely spaced characteristic frequencies (with a

maximum difference of 0.1 octaves) around the CF of the recorded multi-unit were simulated.

These five spike trains were binned and averaged as the recorded data (Sec. 4.2.1). The

simulation and recorded data were cross-correlated as described in the previous paragraph.

4.2.4 Neuronal pairs from the same or different isofrequency laminae

Responses from multi-units from the same lamina are compared to those from different

laminae in this chapter. In general, tetrode arrays record from several sites within the same

isofrequency lamina, whereas double-shank arrays mainly record responses from different

isofrequency laminae, but deviations exist for both cases. Multi-unit pairs were assigned

to the same or to two different isofrequency laminae, based on their spectral and spatial

distance. Pairs differing by more than 1/3 octave in their characteristic frequency were

assigned to different isofrequency laminae. The correlation analysis was performed on pairs

from the same recording yielding ideally (32× 31)/2 = 496 pairs, which do not include

autocorrelations or correlations counted twice.
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However, only pairs with a minimum distance of 200 µm were considered for the analysis,

in order to assure that no multi-units are taken from adjacent sites, which possibly share

the same neurons and therefore yield excessively high correlation values. First, the dis-

tances between the multi-units of all pairs were mapped according to the channels on the

electrode. Distances between all 32 channels were obtained either directly from the Neu-

roNexus manual (NeuroNexus Catalog, Ann Arbor, MI 48108, 2014) or calculated using the

Pythagorean theorem, yielding a 32 × 32 matrix, respectively for the double-shank and the

double-tetrode array. Minimum and maximum distances for the double-shank and double-

tetrode array were respectively Dmin = 100 µm, Dmax = 1581 µm and Tmin = 25 µm,

Tmax = 1372 µm. The obtained spatial distances were also used to investigate if correlation

values depend on the spatial distance between two multi-units (Sec. 4.4.3, 4.4.4).

4.2.5 Averaging across multi-units

Correlation is computed between multi-unit responses, either to spike trains convolved with

the EPSP-filter function or for LFP activity, to the same vocalization, from one recording

set. One recording set consists of responses from 32 multi-units. The findings are verified

to be generally true for all sets. The average across all recording sets is computed as

well. In the following, results for an individual recording set and the average across all

recording sets are displayed. When averaging correlation values across multi-unit pairs,

electrode positions and animals, the displayed error is the standard deviation and depicts

the correlation variability across multi-unit pairs. The error was also computed via error

propagation, thus assuming independence of all results, which in general is true, except for

correlations of close-by multi-units from one recording set. These errors are close to zero

in many cases. However, the displayed error was chosen to be the standard deviation to

indicate the variability across multi-unit pairs. The distribution of spatial distances was not

uniform and also varied for double-shank and tetrode recordings. Therefore, the number of

multi-units, for which averages were taken for one spatial distance, varied across recordings.

Differences in response similarity based on different locations and thus different dominant

inputs, as well as amplitude modulation and frequency preferences are averaged out when

taking the mean across all multi-units and yield a result, generally valid across the ICC.

4.3 Neural responses

The spectral tuning of the multi-units determines their responses to vocalizations [23]. In

the following, examples of averaged responses are displayed, and two approaches to predict

the neural response based on the spectral tuning are presented.
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4.3.1 Multi-unit frequency response maps

4.3.1 Multi-unit frequency response maps

The preferred stimulus frequencies of the multi-unit, its characteristic (CF) and best fre-

quency (BF), were determined from the frequency response map (FRM), as described in

Sec. 3.1.1. The frequency response maps show the compound response of several single

neurons to pure tones. Examples of differently shaped multi-unit FRMs are displayed in

Fig. 4.3.1. The multi-unit FRMs are similar to single neuron FRMs and previously reported

multi-unit FRMs [113, 114]. The characteristic frequency was used to define spectral dis-

tances between two multi-units (Sec. 4.2.4). The preferred frequency at the specific stimulus

intensity, the best frequency, and the overall spectral tuning of the multi-unit determines

the response of the neuron to vocalizations.

Figure 4.3.1: Multi-unit frequency response maps. The frequency response maps display different

shapes: (e, f) symmetric v-shaped, (a, g) skewed v-type shape and (d) intermediate shapes between

these two; (b, c) show broad frequency tuning, (h, i) very narrow frequency tuning. Spike-rates are

high throughout several dB-levels, the highest spike-rate being 450 Hz.

4.3.2 Distribution of neural response energy across best frequencies

The vocalizations evoke enhanced spiking activity in several isofrequency laminae (see

Fig. 5.2.4). The white noise, which contains energy in a wide frequency range, also drives

neurons to spike. In contrast, pure tones usually only elicit responses in a few isofrequency

laminae that match their stimulus frequency. Based on the firing rate, the similarity of

responses across the ICC could be investigated. However, temporal information is crucial

for recognition and discrimination of complex dynamically varying sounds such as speech

and vocalizations [20, 30]. In this work, the temporal response courses of the multi-units

across the ICC will be compared.
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Figure 4.3.2: Response energy across the frequency gradient. The average spike rate across the

duration of the stimulus for all 11 vocalizations, 10 pure tones and white noise is displayed for multi-

units along the tonotopic gradient from one recording, spanning a best frequency range 1-25.4 kHz.

4.3.3 Poststimulus time histograms

The post-stimulus time histograms (PSTH) display the trial-averaged (ntrial =20) temporal

response. Responses to vocalizations vary for differently frequency-tuned multi-units and

follow the spectrally matching components in the stimulus, see Fig. 4.3.3. Although less

strongly, responses from multi-units with the same best frequency also vary. This has

been previously found for a subset of the vocalizations used in this work [23]. Figure 4.3.3

displays the PSTHs of multi-units along the best frequency gradient in response to three

vocalizations. Responses to the ‘tooth chatter’ phase-lock to the stimulus envelope for

multi-units throughout the whole best frequency range (Fig. 4.3.3a), because the stimulus

has spectral energy in this range. However, the responses in general become broader for

high BFs. Responses to the ‘purr’, on the other hand, phase-lock accurately only for low

BFs, but then become broad and unspecific (Fig. 4.3.3b). For the ‘purr’, spectral energy is

present for frequencies up to 3 kHz (Fig. 3.1.1b), except for a high frequency contribution

at 600 ms, which is probably due to the filtering of the stimulus prior to presentation

(Sec. 3.1.1). To this feature, almost all multi-units phase-lock. At the start and at the end

of the stimulus presentation, onset and rebound responses are pronounced for middle and

high BFs. The response’s dependence on the match of the best frequency and the spectral

content of the stimulus [23] is clearly illustrated by responses to the ‘scream’ (Fig. 4.3.3c).

In the beginning of the stimulus, only low frequencies are present, and only low-BF multi-

units respond. Subsequently, the stimulus contains frequencies up to 25 kHz and middle-

BF multi-units respond. High-BF multi-units respond to a high frequency peak at 600 ms.

Similarity of responses to the same stimulus by different multi-units can be directly obtained

by comparing the PSTHs.
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4.3.4 Prediction of neural response
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Figure 4.3.3: Poststimulus time histograms in response to the vocalizations a) ‘tooth chat-

ter’, b) ‘purr’, and c) ‘long scream’ for multi-units of a double-shank recording, spanning a best

frequency range of 0.6-20 kHz. On top, the waveforms and spectrograms are displayed (detail in

Fig. 3.1.1).

However, in order to quantify similarities across the large data set of 1120 multi-units used in

this work, a more compact measure is employed. To this end, responses are cross-correlated

and the correlation value indicates the degree of spike train similarity (Sec. 4.4).

4.3.4 Prediction of neural response

The match between the multi-unit’s best frequency and the stimulus’ spectral content sub-

stantially influences the neural response. In the following, the predictive power of the

neuronal response based only on the stimulus waveform and the multi-unit’s best frequency

is displayed with two models. At first, a simple filtering approach of the stimulus waveform

around the best frequency is used, and in a second approach an auditory periphery model,

the Meddis Model is applied.

4.3.5 Stimulus filtering around best frequency

The dependence of the neural response on the spectral content of the vocalization and

the neuron’s preferred frequency was exemplified in the previous section. This is further

demonstrated when predicting the neural response for multi-units with different BFs.
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The eliciting stimulus waveform is filtered around the best frequency of the multi-unit

(Sec. 4.2.3). Figure 4.3.4 displays the neural responses and the filtered vocalizations, for

the same three examples as given in Fig. 4.3.3. The overlap is good in some cases, but less

good for others (indicated in Fig. 4.3.4). Further examples are given in Fig. 4.3.5, which

show multi-units from a tetrode recording. The filtered response is the same for units with

identical best frequencies. The correlation values are also provided, but these do not always

well capture the overall match, which is best evaluated visually. Phase-locking is replicated

by this filtering approach, but the strong onset responses of the neurons are not captured

in some cases. The finding that this filtering approach yields good overlap for some of the

multi-units is surprising, given that the ICC is a major converging station and receives

input from various auditory processing stations. This has been found independently from

a similar study within a collaboration [87], which attributes the responses with a good

overlap to multi-units that receive direct projections from the cochlear nucleus, which is

the first brainstem nuclei and processes responses from the auditory nerve fibers. In some

cases, multi-unit responses to vocalizations in the ICC are well predicted by best-frequency

filtering, rectification and normalization of the stimulus waveform.
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Figure 4.3.4: Stimuli filtered around the best frequency. Comparison of filtered vocalizations (-)

with the neural response in form of PSTHs (-), for the a) ‘tooth chatter’; b) ‘purr’; c) ‘scream’;

d) ‘low chutter’ for multi-units with best frequencies: 0.6-20 kHz. On top, the original waveforms

are displayed. The correlation values (C ) of the filtered stimulus and neural response are given, and

examples of good (+) and less good overlaps (×) are marked.
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4.3.6 Comparison of neural responses with prediction of Meddis Model
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Figure 4.3.5: Stimuli filtered around best frequency for a tetrode recording. Comparison of filtered

vocalizations (-) with the neural response in form of PSTHs (-), for the a) ‘tooth chatter’; b) ‘purr’;

c) ‘scream’; and d) ‘low chutter’ for multi-units with similar best frequencies BF:2.2-2.8 kHz. On

top, the original waveforms are displayed. The correlation values (C ) are given.

4.3.6 Comparison of neural responses with prediction of Meddis Model

In the previous section, an approach which consisted of stimulus filtering, rectification and

normalization yielded, in some cases, good overlap of the neural response and the prediction.

In the following, predictive power of a second approach is tested. This is a biophysically de-

tailed model, which takes into account individual processing of auditory periphery stations,

to simulate neural responses (Meddis Model, Sec. 4.2.3). Figure 4.3.6 shows the recorded

and simulated responses. The simulated response strength varies with the spectral content,

which was also observed for the neural recordings (Fig. 4.3.3). However, phase-locking is not

well replicated and responses are broad and unspecific (Fig. 4.3.6a). On average, correlation

values are lower for this approach than for the filtering approach in Sec. 4.3.5; e.g. corre-

lation values are for the ‘tooth chatter’ are MMeddis = 0.19± 0.05, MFilter = 0.33± 0.07,

and for the ‘scream’ MMeddis = 0.15± 0.09, MFilter = 0.206± 0.097. The simulated mean

firing rates are higher than those of the neural data. Phase-locking, especially for low best

frequency multi-units is not replicated in the simulation. However, it is present for lower

stimulus intensities of 40 dB. Thus, the lack of phase-locking might be due to an increased

unspecific response at low BFs which hides the phase-locking. The threshold of the model

might require further adjustment of simulation and neural data, especially to match both,

stimulus-elicited and spontaneous rates. The latter ones are not displayed as they were not

used for the correlation analysis.
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Figure 4.3.6: Simulated neural responses with the Meddis Model. Comparison of simulated re-

sponse (-) with the neural response (-), for the a) ‘tooth chatter’; b) ‘scream’; c) ‘low chutter’; and

d) ‘drr’ for multi-units with best frequencies between 0.6-20 kHz. (a, b) show responses from a

double-shank recording, (c, d) those from a tetrode recording, with several similar best frequen-

cies. On top, the waveform is displayed. The correlation values (C ) of the simulated and recorded

response are given.

Furthermore, the modified Meddis model, even though very biophysically detailed, in the

present form has some limitations, e.g. only one pathway from the auditory nerve to the ICC

is modeled, although several projections to the ICC exist (Sec.1); inhibitory interactions

between neurons, populations of neurons, or from different processing stations (e.g. the

contralateral ICC) are omitted; the cell type used in the model are chopper cells, while

e.g. primary-like and pauser cells also exist in the ICC [109]. However, deviations might

also be caused by the stimulus calibration (Sec. 3.1.1). Thus, the specific application of the

biophysically detailed Meddis model to predict multi-unit responses to vocalizations in the

guinea pig ICC without further modifications does not exceed the prediction provided by

the filtering approach (Sec. 4.3.5, 4.2.3). Filtering the stimulus waveform around the best

frequency yields a good prediction of the neural response for some multi-units.

4.4 Correlation analysis

In Sec. 4.3, recorded neural responses to vocalizations and predicted responses, based on

the neurons’ best frequencies, were displayed. In the following section, the similarity of

responses across and within isofrequency laminae is investigated by cross-correlation (see

Sec. 3.3.1), which yields a compact description for the large set of multi-units analyzed

in this work. Responses, whose temporal course are compared, are either EPSP-convolved

spike trains, hereafter referred to as ‘spiking activity’, or LFP-activity (see Sec. 4.2.1).
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Figure 4.4.1: Trial-variability of cross-correlation values. Cross-correlation of spiking activity from

two multi-units (BF1 =14 kHz; BF2 =20 kHz) within a delay window of 10 ms, for all ntrial =20

trials. The spiking activity is in response to the ‘long scream’.

When pairwise cross-correlating the spike-trains of two multi-units, the maximum correla-

tion value varies in magnitude and relative delay for the different trials, see example for

correlating spiking activity Fig. 4.4.1. Similarity of responses was compared using cross-

correlation (see Eq. 3.3.1) with a maximum delay τmax = [−10 ms, 10 ms] for neuronal

pairs across and within isofrequency laminae. This delay is within the range of maximum

response latencies found in the ICC [115]. The average peak value across all trials was

computed to quantify response similarity.

4.4.1 Intra versus inter-lamina response similarity

In order to test if responses to vocalizations are more similar across the best frequency gra-

dient or within an isofrequency lamina, which were suggested to be functional processing

units [5], response correlations across and within laminae are compared. The Figure 4.4.2a

displays correlation values for pairs of multi-units from one recording, for each vocaliza-

tion, for spiking activity and local field potentials. Correlation values show large variability

within one recording set, as depicted by the error bars which correspond to one standard

deviation. However, correlation values are significantly higher within isofrequency laminae

than across laminae (two-sided Wilcoxon-Mann-Whitney test, p< 0.05) for almost all vo-

calizations. When averaging correlation values across all recordings (n=4,223 multi-unit

pairs), differences are significant for all vocalizations for LFP activity, but are much smaller

for spiking activity and not significant for two vocalizations, Fig. 4.4.2b. Correlation values

are significantly bigger for LFP than for spiking activity, for each vocalization, within and

across laminae (p< 0.05). The LFP responses are long-range activity, and spread throughout

wider spatial and frequency regions, than spiking responses which are confined to one multi-

unit. Response similarity varies across vocalizations, partly significantly. Vocalization-pairs

(2-4,10-9) do not vary significantly, respectively for spiking (and LFP) responses across and

within laminae.
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Figure 4.4.2: Correlations within and across isofrequency laminae. Averaged correlation values

for multi-units a) from one recording (n=155), and b) averaged across all recordings (the number

of pairs was kept constant across and within laminae for comparison, n=4223), are displayed for

spiking activity (top) and local field potentials (bottom). Responses within isofrequency laminae

are mostly significantly more correlated than across laminae (two-sided Wilcoxon-Mann-Whitney

test p=0.05).

The responses to the ‘tooth chatter’ are significantly larger than for all other vocalizations,

which is due to the stimulus’ spectral content across a wide frequency range and the re-

sponses’ phase-locking throughout this range (see Fig. 4.3.3a).

Higher correlation within isofrequency laminae might point to vocalizations being processed

by isofrequency laminae as functional units, however, even though the differences are sig-

nificant, differences are minor and variability across multi-units is high.

4.4.2 Dependence on spectral distance

The analyzed vocalizations show diverse spectral contents (see Fig.3.1.1). In general, multi-

units respond strongly to stimulus segments whose spectral content matches their best

frequency (Sec. 4.3). Thus the question arises how similar responses are from neurons with

different preferred frequencies, and which mainly respond to different segments of the stim-

ulus? Matrices displaying the correlations between all 32 channels of one recording were

computed for each of the 11 vocalizations, for spiking activity (and LFP), yielding 660 ma-

trices (four examples are shown in Fig. 4.4.3). Neighboring channels, with similar preferred

frequency show relatively high correlation values. However, no systematic pattern of high

correlations in dependence of spectral distances was found for individual vocalizations. The

patterns differ across recordings and across vocalizations. In the example of Fig. 4.4.3a, the

‘tooth chatter’ elicits very high correlation values for neighboring multi-units which dis-

play similar frequency tuning, and response similarity decreases with spectral distance and

distance of the recording sites.
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Figure 4.4.3: Correlation dependence on spectral distance. Correlation values between the 32 multi-

units of one recording and the best frequencies are displayed for the a) ‘tooth chatter’, b) ‘squeal’,

(a,b) from double-shank recordings; c) ‘purr’, and d) ‘tooth chatter’, (c,d) from tetrode recordings.

(a,b,c) represent correlations of spiking activity, (d) of LFP activity.

A further peak of high similarity is present at middle-high frequencies, which could be due

to strong phase-locking to the stimulus throughout a broad frequency range (Fig. 4.4.3a).

In several cases, higher correlation values are only observed for adjacent multi-units, which

display small differences in spectral tuning (Fig. 4.4.3b). The correlation matrices computed

from recordings with double-tetrodes show high correlation values for patches of 4×4 multi-

units (Fig. 4.4.3c, d), that correspond to the four sites on the tetrode. Response similarity of

LFPs is generally higher than for the spiking activity (Fig. 4.4.3d). A systematic dependence

of response similarity only on the spectral difference was not found. The lack of systematic

patterns is probably due to each recording being taken from a different location within the

ICC, and best frequencies, hence spectral distances differed.
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Furthermore, other components such as modulation tuning and locally differing input in-

fluence the response at the specific position. The matrices show high correlation values

mainly for multi-units with small differences in frequency tuning, only for nearby multi-units

(Fig. 4.4.3). Thus, the correlations could be dependent on the spatial distance between the

multi-units. It has been shown previously that neighboring (single) neurons display high

correlation values of spike trains [45].

4.4.3 Dependence on spatial distance

In order to display the relation between correlation values and the spatial distance, the

values were averaged for multi-units for each spatial distance of one recording set. The

relations are shown for spiking activity and LFPs, exemplary, for one recording set for

correlations across (Fig. 4.4.4) and within isofrequency laminae (Fig. 4.4.5). Correlations

decrease with spatial distance and are almost zero for distances of 400 µm for the spiking

responses; LFP correlations display a flatter decrease with distance, and correlation values

of around 0.5 are still present for the maximum measured distance of 1600 µm (Fig. 4.4.4).
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Low Chutter
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Figure 4.4.4: Correlation dependence on spatial distance across isofrequency laminae. Averaged

correlation values for each distance from one recording set are displayed for all vocalizations, for

a) spiking activity, and b) LFPs. The y-axis of the subplot for each vocalization shows a correlation

range of 0-1. In this plot correlation values are also shown for spatial distances of 100 µm. Ex-

ponential fits (f (x ) = a · e−bx , x is the spatial distance) for each distribution are shown (–); with

overlaps of 61-100 %. On top, the number of multi-unit pairs for each spatial distance over which

the average correlation was computed is displayed.
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Figure 4.4.5: Correlation dependence on spatial distance within isofrequency laminae, similar to

Fig. 4.4.4. Averaged correlations values for each distance from one recording set are displayed for

all vocalizations, for a) spiking activity, and b) LFPs. The y-axis of the subplot for each vocalization

shows a correlation range of 0-1. Exponential fits (f (x ) = a · e−bx , x is the spatial distance) for

each distribution are shown (-); with overlaps of 41-100 %. On top, the number of multi-unit pairs

for each spatial distance over which the average correlation was computed is displayed.

For multi-units within one lamina from one recording set, the same is observed. The

distributions can be approximated with an exponential function f (x ) = a · e−bx , x is the

spatial distance). For the eleven examples displayed in Fig. 4.4.4, 4.4.5), the range of

values for a, b and the match of data and fit (χ) was found to be:

a = 0.01− 0.59, b = 0.57− 0.0069, χ = 84− 100 %, 〈χ〉 = 91 % (Fig. 4.4.4a),

a = 0.76− 1, b = 0.012− 0.003, χ = 61− 94 %, 〈χ〉 = 80 % (Fig. 4.4.4b),

a = 0.01− 0.39, b = 0.48− 0.0041, χ = 95− 100 %, 〈χ〉 = 98 % (Fig. 4.4.5a),

a = 0.73− 1, b = 0.042− 0.002, χ = 42− 93 %, 〈χ〉 = 67 % (Fig. 4.4.5b).

Dependencies on the spatial distance differ across vocalizations. The correlations displayed

in Fig. 4.4.4, 4.4.5 are shown for distances up to 680 µm for all vocalizations (Fig. 4.4.6).

A clear correlation decrease is observed from 200-500 µm in all four displayed cases. The

dependence of the correlation on the spatial distance varies across recording sets, and thus

across insertion locations within the ICC. Figure 4.4.7 shows an example for one vocalization

(‘scream long’) of correlations from all recording sets.
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Figure 4.4.6: Comparison of spatial dependence of all vocalizations for small spatial distances.

Correlations are shown for multi-units (from the recording sets displayed in Fig. 4.4.4, 4.4.5), across

(a,b) and within laminae (c,d), for spiking activity (left) and LFPs (right).

Spiking response similarity decreases systematically with spatial distance, and is almost zero

for multi-units with a spatial distance of more than 300 µm. Correlations of LFP activity

are still present at large distances of 1600 µm, and show an almost linear dependence on

the spatial distance.
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Figure 4.4.7: Correlation dependence on spatial distance for all multi-units. The correlations from

all recording sets in response to one vocalization (‘scream long’) are displayed across laminae for

spiking activity across the entire probed spatial range (a), and for smaller distances (b).
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4.4.4 Joint dependence on spectral and spatial distance

As it has been shown above, that spatial distances substantially influence response correla-

tions between multi-units, the analysis in Sec. 4.4.1 is extended by evaluating the distribu-

tion of spatial distances of the recording sets that were used (Fig. 4.4.8). The distributions

are the same for spiking and LFP activity. The distributions for the single recording set dif-

fer substantially, and on average the multi-units from the same laminae had smaller spatial

distances than across isofrequency laminae (Fig. 4.4.8a). Thus, higher correlation values

within the same lamina for the single recording set (Fig. 4.4.2a) are mainly attributed to

smaller distances. Therefore the higher mean values for correlations within the same lamina

can be explained by this biased distribution. The spatial distributions for the multi-units

of all recordings, on the other hand, are similar across and within laminae; distances of

200 µm are more abundant for within lamina correlations, which might explain that mean

correlation values are significantly higher within laminae.
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Figure 4.4.8: Distribution of spatial distances for the recording sets used in Fig. 4.4.2. The

distribution of spatial distances of multi-units from different and same isofrequency lamina is given

for a) the single recording set used in Fig. 4.4.2a, and b) for the multi-units from all recording sets

used in Fig. 4.4.2b.

4.4.4 Joint dependence on spectral and spatial distance

In the previous sections it had been shown that a clear dependence of the response corre-

lations on the spatial distance exists, but a dependence on spectral distance has not been

found. To evaluate if co-dependencies on spatial and spectral distance exist, correlation

values across all recording sets are displayed with respect to spatial and spectral distance

of the multi-units. This was performed for each vocalization, and correlation values were

normalized by the distribution of spatial and spectral distances of all analyzed multi-units

(see Fig. 4.4.10). The joint correlation dependencies on spatial and spectral distance are

shown for three vocalizations in Fig. 4.4.9. In general, highest correlation values are present

for small spatial and spectral differences; exceptions of high correlation values for larger

distances exist (e.g. 2 octaves and 475 µm in Fig. 4.4.9a). They reflect correlations of one

or few multi-units, which were averaged out in the spatial dependence analysis of Sec. 4.4.3.

No systematic joint dependence on the spatial and spectral distance is found for the multi-

unit response correlations.
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Figure 4.4.9: Response correlation in dependence of spatial and spectral distance. Correlation

values, averaged across all recording sets, are displayed with respect to spatial distance and difference

in best frequency of the multi-units, for the a), d) ‘tooth chatter, b) ‘squeal’, and the c) ‘drr’. (a,b,c)

are response correlations for spiking activity and (d) of LFPs.

4.4.5 Response correlations and neural correlations

Comparison of correlations from simultaneous to those of non-simultaneous responses gives

an indication of the amount of correlations due to neural interactions between the multi-

units (Sec. 3.3). It has been shown previously that the sum of the stimulus-driven and neural

correlations does not necessarily yield the measured response correlation [116]. Simultane-

ous spiking response correlations are larger than non-simultaneous correlations. However,

within one recording set, the difference is not significant for all vocalizations, neither within

nor across isofrequency laminae (Fig. 4.4.11). Stimulus-driven correlations are significantly

larger than neural correlations. The difference between response, stimulus-driven and neu-

ral correlations is significant for all vocalizations for LFP activity, and all differences are

significant when averaging across recordings (Fig. 4.4.12). Correlations display variations

as visualized by the standard deviation. Differences between response, stimulus-driven

and neural correlations are larger for LFP than for spiking activity. In conclusion, spiking

activity interactions between multi-units in the ICC exist.
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Figure 4.4.10: Distribution of spectral-spatial distances for all multi-unit pairs used in

Fig. 4.4.7, 4.4.9, (n=15,692). The distribution is broad across the whole frequency and spatial

distance range, with peaks for almost no spectral distance and spatial distance of 100 µm, and

at spectral distances up to 0.5 oct and spatial distances of 500-100 µm. These are mainly due to

responses from respectively the same tetrode of the double-tetrode recording and to responses from

the same isofrequency lamina of double-shank recordings (Sec. 3.1.1). Marked regions were either

excluded for all other correlation analysis ( ), assigned to the same isofrequency laminae ( ), and

the rest to different isofrequency laminae.
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Figure 4.4.11: Response, stimulus-driven and neural correlations from one recording set. a) cor-

relations for spiking activity, respectively across different and within the same isofrequency lamina

(n=110 pairs); and b) correlations for LFP activity (n=122 pairs), all differences are significant.

Significant differences between the response and stimulus-driven correlations are denoted by *, non-

significance by ns (p=0.05), and are displayed in green for the comparison between stimulus-driven

and neural correlations.
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Figure 4.4.12: Response, stimulus-driven and neural correlations, averaged across all recordings.

a) correlations for spiking activity, respectively across different and within the same isofrequency

lamina (n=32,457 pairs); and b) correlations for LFP activity (n=12,699 pairs). Non-significant

differences are denoted by ns, all other differences are significant (p=0.05).

4.4.6 Effect of correlated variability on separation of spike-rates

In the previous section, it was shown that temporal response correlations of spiking activity,

although differing for each recording set, are overall significantly higher for simultaneous

than for non-simultaneous responses.

Interactions between neurons can lead to a covariation of their trial-to-trial variability of

the temporal spiking responses, which might also manifest in a trial-variability of their

average spike-rates. The averaged stimulus-elicited spike rate for each trial (n=20), for

pairs of two multi-units are compared for simultaneous and non-simultaneous responses

to investigate whether a decorrelation (shuffling) induces better separability of the spike-

rates to different vocalizations. Examples for multi-unit pairs from the same or different

isofrequency laminae, and for distant and relatively close-by multi-units are displayed in

Fig. 4.4.13. Although shuffling changes the distribution of responses, separability of the 11

vocalizations does not change substantially in any of the cases. Correlated trial-variability

due to interactions between neurons in the ICC does not alter separability of the multi-units’

spike-rates to vocalizations, although at a single neuron level this might be different.
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Figure 4.4.13: Separation of spike-rates with correlated trial-variability. The scatter plots of

the average spike-rates in response to the 11 vocalizations for simultaneous (Non-Shuffled) and

non-simultaneous (Shuffled) trials are compared for 4 multi-unit pairs, for units from different

(a, c) or the same isofrequency laminae (b, d); and which are spatially relatively close (a, b)

or far away (c, d). a) BF1,2 = 5 kHz, 8 kHz; 360 µm; b) BF1,2 = 2.25 kHz, 2.83 kHz; 400 µm;

c) BF1,2 = 8 kHz, 2.25 kHz; 1270 µm; d) BF1,2 = 2 kHz, 2.25 kHz; 800 µm.

4.5 Discussion

In this chapter, neural multi-unit responses to a set of 11 spectrotemporally rich guinea pig

vocalizations within and across isofrequency laminae of the ICC were analyzed. In some

cases, these multi-unit responses can be approximated by the bandpass filtered waveform

of the vocalization, filtered around the best frequency of the multi-unit.

Response correlations for multi-units within isofrequency laminae were found to be signif-

icantly higher than those across laminae. However, differences of the mean correlation

are minor and the correlation variability is high. Therefore, it cannot be concluded that

response similarity is substantially higher along either the best frequency or amplitude

modulation frequency gradient, across the entire ICC. Also, no systematic patterns of cor-

relation dependence on spectral distance were found across vocalizations or recording sets.

Response similarity depends on the spatial distance between the two multi-units, and de-

creases exponentially with increasing distance. In general, for distances above 400 µm, no

correlation of spiking responses is present, whereas LFP-responses show a more flat, also

linear, decrease and display correlations for distances as high as 1600 µm.

Simultaneous response correlations are significantly higher, thus correlations due to interac-

tions between the multi-units exist, but are minor. The separability of the 11 vocalization

stimuli is not altered by the absence of neural correlations.
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Discussion

In this analysis, only correlations for two multi-units that are separated by at least 200 µm

were analyzed, in order to ensure comparison of different signals. However, neural responses

from a radius of more than 200 µm might be picked up by the recording electrode. In order

to exclude this possibility, and to investigate correlation dependence for smaller distances

(<200 µm), single neuron recordings could be used. Furthermore, this would allow mak-

ing inferences of connectivities. However, limitations of the shift predictor exist for single

neurons such as the obscuring of neural interaction due to deterministic responses or tem-

poral overlap of stimulus and neural response [46]. Probabilistic models based on pairwise

interaction, describing the weights of interactions in a network could be established [117].

Furthermore, knowing the positions of the neurons would allow mapping out and testing

the dependence of the response similarity on the specific location within the ICC. Anesthe-

sia has been shown to affect neural responses [118], and by fluctuating or slowly changing

anesthesia levels also changes in the brain state might affect the cross-correlation strength.

Thus, response similarity might differ in awake animals, however, recordings in awake ani-

mals also bear difficulties and biases.

Here it was shown, that despite diverse inputs to the ICC from different ascending projec-

tions, terminating on different parts in the ICC [109], and existing response heterogeneities

[21], representations of vocalizations gradually decrease in similarity across the best fre-

quency and modulation gradients. Thus, despite the vocalizations displaying very diverse

and inhomogeneous spectral contents, and the spectrotemporal gradients present in the

ICC, the vocalizations exhibit gradual linear response similarity.

Multi-unit clusters with similar responses are spatially spread for distances <400 µm, how-

ever, differences might exist for single neurons and cannot be captured at this resolution

level. These findings might give indications for applications in auditory midbrain prostheses,

e.g. distances for spatial separation of stimulating electrodes. It was found that multi-unit

clusters display largely independent encoding, correlations due to neural interactions are

minor and they do not contribute to a better separability of the spike-rate responses to

vocalizations.

In conclusion, the interplay of the total input to the neurons and their spectrotemporal

response preferences, which both depend on the neurons’ location within the ICC, result in

a gradual change of multi-unit responses with distance. Thus, when comparing responses

of neuronal groups to complex sound, such as vocalizations, across the ICC, it is important

to take their spatial separation into account and not only their frequency tuning.
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5 Neural discrimination of vocalizations

5.1 Introduction

In the previous Chapter 4, the representation and similarity of neural responses to individ-

ual vocalizations, across and within isofrequency laminae of the ICC, has been described.

While this analysis yielded insight into the spread of individual vocalizations, and into the

presence of signal correlations, it could not answer how well responses to different vocal-

izations can be distinguished. However, the discrimination of an individual vocalization

against a whole set of vocalizations, thus the encoding of vocalizations is relevant in a

behavioral context and its underlying mechanisms are open questions in auditory neuro-

science.

In this chapter, the encoding of 11 species-specific vocalizations is investigated with the

use of neural discrimination. In this method, the separability of recorded neural responses

to different stimuli is tested, and assuming that good discrimination results from detailed

encoding of the stimulus, inferences about neural encoding can be drawn. It is a powerful

tool in analyzing encoding of vocalizations by groups of neurons, as opposed to receptive

field analysis which requires further processing if natural sound is used [106]. Neural dis-

crimination is applied to determine how well the spectrotemporally rich set of vocalizations

is encoded by multi-unit clusters in the ICC. The optimal encoding of vocalizations across

the best frequency gradient of the ICC is compared to the spectral content of the individual

vocalizations. In a purely linear system, spectral content and optimal encoding could match

perfectly, and a large overlap of stimulus frequency and strongest neural response at this

best frequency were found [4]. However, the ICC is highly nonlinear [14] and might em-

ploy (on the level of single neurons as well as multi-units) nonlinear mechanisms to encode

behaviorally relevant natural sound. Thus, the encoding of individual vocalizations along

the frequency gradient is investigated. Furthermore, the necessary order of multi-units to

perfectly discriminate the set of vocalizations is addressed. Responses from several multi-

units were combined to investigate whether groups of multi-units represent the whole set of

vocalizations more faithfully than only one unit. In the previous chapter, it was shown that

correlations between different multi-units are mainly stimulus correlations and not due to

neuronal interactions (Sec. 4.4.5). Even though correlations that are due to interactions are

minor, they could still have a modulatory effect (facilitation or decrease) on the encoding

of vocalizations. It was tested if temporal response correlations between the multi-unit

clusters facilitate the unique neural representation of the vocalizations.



Methods

In this chapter, at first, the neural discrimination analysis which was applied to the multi-

unit recordings is described in detail (Sec. 5.2). Then, the optimal discrimination procedure

and response duration are obtained. Subsequently, the encoding of vocalizations by multi-

units in the ICC with respect to the above mentioned questions is investigated.

5.2 Methods

For the analysis of this chapter, the neural guinea pig recordings which are described in

Sec. 3.1.1 are used. These recordings are pre-processed as described in Sec. 4.2.1. In this

section, the neural discrimination procedure which was applied to individual and combined

multi-unit responses is described in detail.

5.2.1 Spectral content of vocalizations

The waveform, spectrogram and power spectrum of the vocalizations used in this study

are shown in Fig. 3.1.1 on page 25. The waveform has a simple periodic shape for some

vocalizations and is quite complex for others. Some vocalizations have a frequency content

of up to 30 kHz (‘tooth chatter’, ‘scream long’, ‘scream short’). The main spectral content of

the vocalization is obtained by computing the power spectrum and integrating the power for

frequency bands fN , which are centered around the recorded multi-units’ best frequencies,

fN = {0− 0.25} , {0.25− 0.55} , . . . , {38− 45.5} kHz. The power for each vocalization is

normalized and its logarithm is displayed (Fig. 5.4.4).

5.2.2 Discrimination of single responses

The procedure to test separability between responses to different stimuli from one multi-

unit is exemplified in Fig. 6.2.3a for two vocalization stimuli, and consists of data pre-

processing, feature extraction and classification. This classification procedure is performed

independently for each multi-unit with its specific frequency tuning. Recordings from one

multi-unit to the different stimuli are preprocessed as described in Sec. 4.2.1. To separate

responses to different stimuli, features obtained from the time courses were employed. The

tested features were: mean response rates (for LFP) and firing rate (for spiking activity)

across 300 ms; a 6-dimensional feature vector, containing respective mean rates over six

response segments of 50 ms which make up the 300 ms, yielding a finer resolution of the

response rate over the previous mean rate, and finally, the five most prominent frequencies

of LFP-recordings obtained from the power spectrum. The first two metrics have been

applied previously for successful discrimination between responses to vocalizations [29, 26].

Features were obtained for each trial (ntrial =20). All 20 trials were divided into test and

training sets and entered to a classifier. A 10-fold cross-validation with 10 % test data was

performed for each classification, and yielded an estimate of the error.
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5.2.2 Discrimination of single responses
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Figure 5.2.1: Schematic of neural discrimination. The classification procedure between responses

elicited by two different vocalization stimuli, S1 and S2 is exemplified. a) Recordings from one multi-

unit (MU 1) to stimuli S1 and S2 are preprocessed, features (F1 and F2) are extracted and entered to

a classifier which yields the percentage of correctly assigned responses for stimulus 1 and 2 (correct

classification CC ). b) Responses from three multi-units (MU1, MU2, MU3) along the tonotopic

gradient are combined. From these combined responses, features (F1 and F2) are extracted and

given to the classifier to obtain the percentage of correct assignments of the responses.
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Methods

Tested classifiers included linear discriminant analysis (LDA, which fits a normal density to

each class and estimates the combined covariance matrix), a naive Bayesian classifier (which

estimates a diagonal covariance matrix) and a nearest neighbor classifier, using Euclidean

distance [105]. As a further approach, correlation of spike trains to be classified (test trials)

with the labeled spike trains (training trials), is employed. Thus correlation values serve as

features. Correlation values are computed as the cross-correlation (see Eq. 3.3.1 on page 35)

at zero lag between the responses (τmax = 0). It was computed at zero lag, because even

though response latencies vary across multi-units with different spectrotemporal preferences

[115], here, responses from the same multi-unit, thus with the same response latency, were

compared. The correlation approach allows comparing temporal responses at a resolution

of 3 ms, which is the width α of the filter function (see Sec. 4.2.1).

The test trial is correlated with all training trials of each class. The class which, on average,

yields the highest correlation value is assigned to the test trial. The classification of all test

trials for each class yields a confusion matrix (see Sec. 3.4). The mean across the diagonal

of the confusion matrix, averaged all cross-validation iterations, yields the total correct

classification between all vocalizations (Nvoc =11).

CC =
1

Nvoc

Nvoc
∑

k=1

CC (k , k) (5.2.1)

The classification yields the percentage of correctly assigned responses to each stimulus

(Correct Classification, CC [%] ). The classification error is the standard deviation obtained

from all cross-validation steps.

The confusion matrix and total correct classification is computed for each multi-unit with

its specific frequency tuning. This allowed investigating whether the ability to discriminate

between individual vocalizations (or between groups of vocalizations), differs for multi-units

with their specific frequency tuning and best frequency (Sec. 5.3.3, 5.4.1).

5.2.3 Combined responses

In order to assess whether combining responses from several multi-units improves discrim-

ination between different stimuli, responses that were recorded simultaneously from differ-

ent multi-units to the same stimulus were pooled. Figure 5.2.1b illustrates the procedure

for combining responses in an example for three multi-units with different best frequencies.

Pooling was performed for multi-units from either along the best frequency gradient (across

several isofrequency laminae) or from the same isofrequency lamina (see Fig. 5.2.2). Separa-

bility was tested for these combined responses to different vocalizations. Pooling methods

have been applied earlier and are discussed in more detail in [27]. Schneider and Woolley

added single neuron spike trains in zebra finches in response to songs. In this work, spike

trains obtained from simultaneous recordings of different multi-units were either concate-

nated (Fig. 5.2.3a) or added (Fig. 5.2.3b).
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5.2.3 Combined responses

Across isofrequency laminae 

Unit 2 Unit 3Unit 1 

frequency/tonotopic gradient 

Unit 2 Unit 3 Unit 1 

modulation gradient 

Within one isofrequency lamina 

different best frequencies same best frequencies 

Figure 5.2.2: Combination of neural responses from across and within isofrequency lamina is

illustrated for a schematic ICC. Neurons across isofrequency laminae (along the tonotopic gradient)

have different best frequencies. Neurons within an isofrequency lamina have similar best frequencies.

Concatenation preserves the temporal spiking response separately for each multi-unit

(Fig. 5.2.3). Concatenation also preserves the frequency information because the order in

which responses from multi-units are concatenated is the same for all combined responses

that are compared. Thus, during classification, spike trains from the same multi-units with

their specific frequency tuning, but in response to different vocalizations, are compared. For

recordings with a tetrode array, several multi-units lie within the same isofrequency lam-

ina. They have similar best frequencies, but might have preferences for different amplitude

modulations depending on their spatial distance within the lamina [6]. Therefore, in this

case, concatenation preserves information of amplitude modulation (AM) preferences. Ad-

dition of spike trains (Fig. 5.2.3) maintains temporal information. However, as responses

from differently frequency-tuned multi-units are added and not distinguishable anymore,

the spectral information is lost.

Concatena�on

Unit 2 Unit 3Unit 1

100ms 300ms

Addi�on

100ms

+

+

100ms

Unit 2 Unit 3Unit 1

100ms 300ms

S1

S2

100ms

+

+

100ms

S1

S2

Figure 5.2.3: Combining multi-unit responses. Example for one trial and two vocalization stimuli

(S1 and S2). Concatenation: Temporal responses of length 100 ms from n = 3 different units are

concatenated, yielding a combined response of length n×100 ms. Addition: Temporal responses of

length 100 ms from n = 3 units are added up, yielding a combined response of length 100 ms.
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Methods

Multi-units were combined in a third manner to preserve only spectral information. For

this purpose, mean firing rates for each multi-unit and trial are computed from spike trains

of 100 ms duration. The spike-rates are concatenated (Fig. 5.2.4) in the same way as the

spike trains had been concatenated (Fig. 5.2.3). The information from different units with

different spectral tuning, thus the spectral information, is preserved, but not the temporal

information. The concatenation of spike-rates yields a feature vector whose length corre-

sponds to the number of combined multi-units.

The test trial is assigned to the class for which its feature vector yields the minimum squared

difference in spike-rate of test and training trial. Discrimination is computed for a succes-

sively increasing number of combined multi-units (Sec. 5.4.2). The additional multi-unit

to be combined was either the spatially nearest neighbor, or, alternatively was chosen at

random. Whereas in the first case information from similarly frequency-tuned units is suc-

cessively combined gradually along the BF-gradient (or similar preferences for amplitude

modulations gradually along an isofrequency lamina), in the second case, information from

multi-units with very different frequency tuning (or AM preferences) is combined. Perfor-

mance values are averaged over two iterations for gradual pooling and over three iterations

for random pooling.

Unit 2 Unit 3Unit 1

100ms

# units

S1

.
SR1

.
SR2

.
SR3

100ms

# units

S2

.
SR1

.
SR2

.
SR3

Figure 5.2.4: Concatenation of spike-rates. From the temporal responses (length 100 ms) the

spike-rates are computed for each of the n = 3 different multi-units, in response to stimulus S1 and

S2. The spike-rates are concatenated to yield a 1×n vector.

5.2.4 Canceling neural correlations

Multi-units may interact in order to more efficiently encode complex sounds. This interac-

tion can lead to temporal correlations of their responses. To test if these neural correlations

have an effect on encoding vocalizations by groups of multi-units, the discrimination was

compared when they are present and when they are absent.

70



5.2.4 Canceling neural correlations

Hence, in order to cancel the neural correlations, simultaneously recorded trials of differ-

ent multi-units are randomly shuffled (see Sec. 3.3.2) before combining them. The effect

of temporal response correlations on the neural discrimination of combined multi-unit re-

sponses was investigated. To this end, the neural discrimination of simultaneous and non-

simultaneously combined responses is compared. In a further comparison, the temporal

correlation values are explicitly included into the feature vector. Thus, correlations between

the multi-unit trials which are pooled are computed (CorrRes). The spiking responses from

two multi-units are cross-correlated (see Eq. 3.3.1) and the highest value within a maximum

possible delay of 10 ms between the responses is selected. This delay is within the range

of maximum response latencies in the ICC [115]. For combining the responses of (ncomb)

multi-units, a correlation matrix which displays the correlation between each multi-unit

trial is computed. The average correlation value for the response of one multi-unit with

all other responses of that combined trial is computed, and yields a 1×ncomb vector which

is concatenated with the feature vector that contains the classification values based on the

time courses (Corr). Test trials were assigned to the class for which the training and test tri-

als had, on average, maximum correlation of the time courses, Corr , and average minimum

squared differences of response correlations CorrRes. Neural discrimination is compared

for simultaneous responses and non-simultaneous responses when explicitly including these

correlations (Sec. 5.4.3).

Averaging across multi-units

One main goal of this work is to study neural discrimination of individual vocalizations with

their specific spectrotemporal properties across multi-units with different frequency-tuning.

However, the average neural discrimination between all behaviorally relevant vocalizations

–of which a representative set was used for this work – is of interest, since this is the task

the auditory system of the guinea pigs solves perfectly, allowing them to react to these

communication calls [88]. Hence, it is possible that preferences for specific vocalizations

might be averaged out.

In this work, discrimination is compared for individual or combined multi-units of one elec-

trode shank and recording (n=72), Fig. 5.4.1, 5.4.5, 5.4.8. Findings are in general true for all

such sets. Averages across these sets are also given (Fig. 5.4.2, 5.4.3 5.4.6). When averaging

classification across multi-units, electrode positions or animals, the classification error was

computed via error propagation. The range of best frequencies of the multi-units recorded

from varied for each animal. Therefore the number of multi-units for which averages were

taken for one best frequency (Fig. 5.3.3c, 5.4.2, 5.4.2) varied across animals. Differences in

neural discrimination based on different amplitude modulation preferences would be aver-

aged out when taking the mean across multi-units with the same best frequency. Validity

of averaging across different animals and positions was tested (Fig. 5.3.3).
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Data pre-analysis

5.3 Data pre-analysis

First of all, a classification procedure and spike train length were selected which yielded the

best classification performance for these multi-unit responses. Additionally, classification

performances were compared across animals, electrode insertion positions and for different

intensities at which the vocalizations were presented. In the first part of the analysis

a sufficient classification procedure, optimal response length and temporal location within

the recording are selected, Fig. 5.3.1, 5.3.2. For this purpose, a recording set with an overall

high classification performance which covers a wide range of best frequencies was used. The

double-shank array was chosen as it covers a much wider range of best frequencies than the

tetrode array which usually just covers two to three isofrequency laminae.

5.3.1 Comparing performance for different classification procedures

In order to determine which data type (EPSP-spiking response or local field potential),

feature of the response and classifier yield the maximum correct classification for neural dis-

crimination between all 11 vocalizations, the performance of (data type, feature, classifier)-

tuples on responses to 300 ms segments of the vocalizations was compared. The focus of this

study was the separability between multi-unit responses from the central inferior colliculus,

the output, thus the spiking activity and not the synaptic input, the local field potential

[110]. Hence, spiking activity was used for the analyses. Nevertheless, classification per-

formance for local field potential responses are also compared. Figure 5.3.1 displays the

classification performance for the 3-tuples. The performances were averaged across 10 multi-

units of one recording (Fig. 5.3.1 top), and are also shown individually for these multi-units

with differing best frequencies. These span a range between 0.5-18 kHz (Fig. 5.3.1 bottom).

Using correlation to discriminate 300 ms long EPSP-spike trains yielded the highest correct

classification (85 %). But differences to some of the other 3-tuples were minor. The naive

Bayesian classifier and linear discriminant analysis on a 6-dimensional feature vector with

firing rates across 50 ms also yielded high correct classification values (75 %). However,

a specific focus of this study is to compare the finer temporal structure of the multi-unit

responses (<10 ms) which has been shown to be crucial for neural discrimination [19]. This

is achieved by the correlation approach which takes a 3 ms-resolved temporal structure into

account. Classification performances for discrimination between 11 vocalizations varied for

multi-units with different best frequencies. However, maximum correct classification values

did not systematically correlate with the multi-unit’s best frequency. Using correlation for

discrimination of spike trains holds the advantage of comparing the temporal structure of

responses and achieved the highest correct classification. Therefore, this method was used

subsequently.
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5.3.2 Neural discrimination of different vocalization segments
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Figure 5.3.1: Comparison of classification performances for 9 (data type, feature, classifier)-

combinations, for classification between all 11 vocalizations on 300 ms of recording. Data types:

EPSP-spike trains (Spk), and local field potentials (LFP); features are: correlation values (Corr),

average (firing) rate of 300 ms (R300), 6 average (firing) rates of each 50 ms (R50); 5 most im-

portant response frequencies (Spec). Classification was performed by choosing the maximum value

(Max), naive Bayes classifier (Bay), linear discriminant analysis (LDA) or nearest neighbor classi-

fication using Euclidean distance (NN). Top: Correct classification averaged across 10 multi-units

are displayed for each 3-tuple. Bottom: Classification performance displayed individually for each

multi-unit, which span a best frequency range of 0.5-18 kHz.

5.3.2 Neural discrimination of different vocalization segments

In order to test from which starting point within the 1 second recording and which length

of the spike trains should be employed for the analyses, correct classification was compared

between all 11 vocalizations for 1) consecutive spike trains of 10 ms before and after stimulus

onset; 2) spike trains of (5, 10-50, 100-900) ms from the same starting point; and 3) for

100 ms long consecutive spike trains covering the whole recording time. The analysis was

performed on multi-units from one recording set covering a BF-range of 0.63-20.1 kHz, and

the average values of all 16 multi-units are used for comparison.

Figure 5.3.2 displays the percentage of correct classification of 10 ms-long spike trains.

Before stimulus onset, classification performance is at chance level (1/11 ≈ 9.1 %) and

increases gradually until about 50 ms after stimulus onset up to 25±5 % without further

increase. Thus, only after stimulus onset discriminative information exists in the responses.

The increase after stimulus onset is gradual and not sharp because the actual starting times

of the individual vocalizations differ (Fig. 3.1.1 a and b). After about 70 ms recording time,

classification does not increase further, hence no additional discriminative information is

present in the responses; all vocalizations have begun at this time (Fig. 3.1.1). Performance

values are relatively low due to the short spike train length of only 10 ms.

Correct classification gradually increased for increasing spike train length, starting at 70 ms

of the recording.

73



Data pre-analysis

Performances were respectively 19± 2 %, 55± 4 %, 83± 4 % and 94± 3 %, for lengths of

5, 100, 300 and 900 ms. This increase of correct classification with spike train length was

shown previously for recordings in zebra finches and grasshoppers [27, 48, 29]. Machens

and colleagues found spike train lengths above 400 ms to yield near to perfect

discrimination [29].

Classification performance for consecutive 100 ms long spike trains across the recording

of 1000 ms did not vary significantly, ranging from 53± 3 % to 58± 3 %. Hence, the

exact starting point of the spike trains within the 1 second recording is immaterial. Thus,

vocalizations do not contain a single specific feature within a temporal window, which

distinguishes them from the other vocalizations, but rather provide information throughout

their duration, allowing for instantaneous discrimination of the vocalizations.

For the present study, the same starting point for all analyses was employed consistently.

To analyze classification performance across animals and positions, 300 ms and not 900 ms

long spike trains were used, since only the first one included the responses to all ongoing 11

vocalizations (Fig. 5.3.3). In order to increase complexity of discrimination and clearly see

differences in performance, when analyzing individual vocalizations in dependence of the

multi-unit’s best frequency, and when combining responses of several multi-units, 100 ms

spike trains were used (Fig. 5.4.1, 5.4.2, 5.4.3, 5.4.5, 5.4.7, 5.4.8).
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Figure 5.3.2: Onset of discrimination. Percentage correct classification between all 11 vocalizations

of consecutive spike trains of 10 ms duration. Low correct classification values are due to the

relatively short spike train length. Before stimulus onset, classification was at chance level (9.1 %,

pink dashed line). After stimulus onset classification performance gradually increased to maximum

25 % correct classification. Discriminative information is present only after stimulus onset.

5.3.3 Variability across animals and electrode insertion locations

In order to test the validity of averaging classification values across all recordings, correct

classification was compared between 11 vocalizations of 300 ms long spike trains, across

average classification values from each animal.
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5.3.3 Variability across animals and electrode insertion locations

Classification values were also compared for different insertion locations in one animal

(32 multi-units), and it was investigated how they vary with the intensity at which the

vocalizations were presented, 30-70 dB SPL, in steps of 10 dB SPL. Correct classifica-

tion varies significantly across animals (Fig. 5.3.3a), the best discrimination being 85 %,

for animal 1 (Exp. 1). Performances for some animals are very similar (e.g. Exp. 1 and

Exp. 2). Classification values vary across electrode insertion locations (Fig. 5.3.3b), thus

across the ICC with different preferences for frequency and amplitude modulation, but are

less pronounced than differences due to stimulus intensity. The overall classification per-

formance increases significantly with stimulus intensity, as spike rates increase for higher

intensities. Figure 5.3.3 displays the average correct classification for each animal for each

best frequency. Responses from some animals are overall better discriminated than others

(e.g. # 2). Correct classification does not depend on the multi-unit’s best frequency and

varies across animals.
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Figure 5.3.3: Discrimination values vary across animals, electrode insertion locations and increase

with stimulus intensity. a) average correct classification across all recordings from one experiment

(animal). b) average classification of responses of all 32 multi-units for each of the four electrode inser-

tion positions (P1-P4), for different intensities at which the vocalizations were presented. (* denotes

significant, ns denotes non-significant differences; mean, Wilcoxon-Mann-Whitney test p =0.05).

The total classification does not depend on the best frequency (see Fig. 5.3.4). This has

been shown previously for songs in single neurons of zebra finches [27]. Thus, in order to

avoid smearing out differences in discrimination, in the subsequent analyses the classifica-

tion values were not averaged across animals and electrode positions but taken from one

recording of one animal. Recordings for stimulus intensities of 70 dB SPL were employed

for the analyses, as they yield the highest classification performance.
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Figure 5.3.4: Total neural discrimination across best frequencies. Average correct classification

value of each experiment (N =11) for each best frequency. Higher classification values do not

correlate with best frequencies but vary for different animals.

5.4 Results

Neural discrimination between a spectrotemporally rich set of 11 species-specific vocaliza-

tions was analyzed for 1152 multi-units across and within isofrequency laminae of the central

inferior colliculus of 11 guinea pigs. It was tested whether encoding of individual vocaliza-

tions varies across the best frequency gradient of the ICC. Combined spike train responses

from several multi-units were employed to investigate whether groups of multi-units re-

sult in a better discrimination than individual multi-units, and whether neural correlations

between the multi-units contribute to a yet better discrimination.

5.4.1 Dependence on best frequency

Encoding averaged across several vocalizations does not vary systematically with best fre-

quency [27]. The total neural discrimination between responses to all 11 vocalizations has

been shown not to vary systematically with the multi-unit’s best frequency (Fig. 5.3.4).

However, depending on their spectral content, neural discrimination of individual vocaliza-

tions might differ with the neuron’s preferred frequency.

To address this question, discrimination of 100 ms-long spike train responses to four vocal-

izations was compared for multi-units with different best frequencies. The four vocalizations

were divided into two groups; vocalizations of the same group have similar spectral content.

A relatively short spike train length of 100 ms was chosen in order to raise the separabil-

ity threshold and enable the detection of subtle differences in discrimination. Figure 5.4.1

shows correct classification between responses to the ‘drr’, ‘low chutter’, ‘whistle’ and ‘long

scream’. These have a main spectral content either below 1.5 kHz (‘drr’, ‘low chutter’, see

Fig. 3.1.1c,d), thus a low frequency content, or above 1.5-2 kHz (‘whistle’, ‘long scream’,

see Fig. 3.1.1g,i), thus a broad spectrum of frequencies.
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5.4.1 Dependence on best frequency

Responses were recorded with a tetrode-array (Fig. 5.4.1a) and a double-shank array

(Fig. 5.4.1b), from multi-units with different best frequencies. The ‘drr’ and ‘low chutter’ are

nearly perfectly encoded for BFs up to 0.7 kHz, whereas the ‘whistle’ and ‘long scream’ are

poorly discriminated in this range. For BFs above 4.5 kHz, the ‘whistle’ and ‘long scream’

are perfectly discriminated but the ‘drr’ and ‘low chutter’ are frequently confused. Re-

sponses of middle-BF multi-units to the two vocalizations which contain a broad spectrum

of frequencies, including middle and high frequencies, are perfectly discriminated, whereas

the vocalizations with low frequency content are poorly discriminated (Fig. 5.4.1a.) Vocal-

izations with low frequency content are nearly perfectly discriminated for low-BF multi-unit

responses. A clear transition towards a perfect discrimination of vocalizations containing

middle and high frequencies is visible as the multi-units’ BFs increase, Fig. 5.4.1b. The

transition from nearly perfect discrimination of low to middle-high frequency vocalizations

is present between 0.7-4.5 kHz. This clear preference for discriminating certain groups of

vocalizations over others was also observed for different combinations, e.g. ‘drr’, ‘low chut-

ter’, ‘squeal’, and ‘low whistle’.

The performances of these four individual vocalizations for classification between all 11 vo-

calizations, averaged across all 1152 multi-units are displayed in Fig. 5.4.2 for BFs between

0.5 kHz and 25.4 kHz.

Classification values of responses from within one lamina or across laminae showed a sim-

ilar dependence on the best-frequency and were averaged to give only one value per best

frequency. A clear trend of higher correct classification of vocalizations containing low fre-

quencies from responses of low-BF multi-units, and of vocalizations with broad spectral

distribution from responses of middle-and high BF multi-units is apparent.
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Figure 5.4.1: Tradeoff of optimal neural discrimination with best frequency. Neural discrimination

between vocalizations with a low (‘drr’, ‘low chutter’) and middle-high (‘whistle’, ‘scream long’)

frequency content for multi-units from a recording with a) several multi-units from the same lam-

ina BF = 5.7-9 kHz; and b) from a recording along the BF-gradient with a broader range of best

frequencies BF = 0.6-11.3 kHz.
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Displayed are also relative frequency contents for these four vocalizations which are dis-

played separately for all 11 vocalizations in Fig. 5.4.4. These show the same trend as the

classification performances, and are for some frequencies very similar to the classification

performances (e.g. ‘long scream’). Deviations exist, which could be due to preferred encod-

ing of fast amplitude modulations by low BF neurons [92], and hence a better discrimination

of vocalizations containing fast amplitude modulations than would be predicted solely by

their frequency content. The match between the averaged correct classification and rela-

tive frequency content for all 10 vocalizations varied between 74-80 %, using the Euclidean

distance. The ‘tooth chatter’ displayed only a match of 53 %. Figure 5.4.2 shows cor-

rect classification between 11 vocalizations averaged across all 1152 multi-units for further

vocalizations (‘chutter long’, ‘low whistle’, ‘squeal’, ‘scream short’). Trends of preferred

encoding for the individual vocalizations along the BF gradient exist. The ‘tooth chatter’

and ‘short chutter’ do not show pronounced preferred encoding by certain best frequency

multi-units, the ‘purr’ displays bimodally distributed preferred encoding. Thus, with the

exception of two vocalizations, best discrimination of individual vocalizations is spatially

distributed across the ICC. Accurate encoding of a vocalization in the spiking response

allows its good discrimination against other vocalizations. Perfect discrimination between

responses to similar vocalizations indicates that these vocalizations are encoded in detail

and hence can be separated based on minor spectrotemporal differences. If, on the other

hand, vocalizations are coarsely encoded, responses to similar vocalizations are frequently

confused.

The ‘tooth chatter’ and ‘long chutter’ display important frequency content across the whole

best frequency range (see Fig. 3.1.1), thus they are not preferentially encoded by a certain

range of best frequency multi-units. Vocalizations with low frequency content are preferen-

tially encoded by low-BF multi-units and vocalizations with middle-high frequency content

are preferentially encoded by middle-high BF multi-units.
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Figure 5.4.2: Correct classification and spectral content for the four vocalizations shown in

Fig. 5.4.1, across the best frequency gradient. The correct classification (•) of individual vocaliza-

tions, for discriminating between all 11 vocalizations (averaged across 1152 multi-units) is displayed

for the ‘whistle’, ‘scream long’, ‘drr’ and ‘low chutter’. The relative frequency content is displayed for

each vocalization (•). The black line denotes 100 % correct classification for each vocalization. The

match between relative frequency content and correct classification is perfect for some frequencies.
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5.4.1 Dependence on best frequency
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Figure 5.4.3: Correct classification and spectral content for individual vocalizations. The correct

classification (•) of individual vocalizations, for discriminating between all 11 vocalizations (averaged

across 1152 multi-units), and the vocalizations’ relative spectral content •) is displayed for the

remaining 7 vocalizations. Substantial differences between spectral content and optimal encoding

exist for some vocalizations.

This preference for encoding groups of vocalizations is spatially distributed. Main spec-

tral contents of the vocalizations also display a spread arrangement across the BF-range.

These results are consistent with earlier work showing that neurons in the ICC encode

spectrotemporal acoustic patterns of vocalizations [23]. Figure 5.4.4 illustrates the relative

frequency content for the 100 ms segment of each vocalization which elicited the responses

that were used for the classification. Figure 3.1.1 displays spectral contents for the en-

tire vocalizations. Whereas the ‘purr’, ‘drr’ and ‘low chutter’ have main spectral contents

at low frequencies, the ‘whistle’, ‘long scream’ and ‘short scream’ have almost no energy

at these frequency ranges, but have important relative power at frequencies above 2 kHz.

Main spectral contents of the 100 ms vocalization segments are distributed across the whole

BF-range.
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Figure 5.4.4: Spectral content of vocalizations. Relative frequency content for the 100 ms segment

of each vocalization which elicited the responses used for the classification. The main frequency

contents of the vocalizations are spread across the entire analyzed best frequency range.
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5.4.2 Combined responses

To test whether the combined response of several multi-units yields better neural discrimina-

tion of all 11 vocalizations, 100 ms-long spike trains from a successively increasing number

of multi-units were combined by either concatenating or adding the spike trains. Concate-

nation preserved the spectral and temporal information whereas addition only preserved

the temporal information.

Additionally, discrimination of average firing rates of the combined units was performed.

Concatenating the units’ spike-rates preserved only spectral information. To test if com-

bining spectral and temporal information affects neural discrimination in a similar way, the

following three cases were compared: combining both, spectral and temporal information,

and combining only temporal or spectral information. Differently frequency-tuned multi-

units from along the BF-gradient were combined and also multi-units from one isofrequency

lamina with similar best frequencies combined. To answer the question whether differently

tuned multi-units (in frequency or amplitude modulation) provide more information than

similarly tuned ones, responses were combined in two different sequences. The additional

multi-unit to be combined was either the nearest spatial neighbor or was chosen randomly.

Whereas in the first case one successively combines information from similarly tuned multi-

units gradually along the BF-gradient (one isofrequency lamina), the second case allows

combining information from multi-units with different frequency tuning (different ampli-

tude modulation preferences).

The displayed data are taken respectively from a double-shank (Fig. 5.4.5a-c) and a double-

tetrode (Fig. 5.4.5d-f) recording of one animal, and are representative for the whole study

of 11 animals. Perfect classification is achieved when using temporal and spectral informa-

tion across laminae (Fig. 5.4.5a) and nearly perfect classification is achieved when using

temporal and spectral information and also when using only temporal information within

few laminae (Fig. 5.4.5d, e). Figure 5.4.5a demonstrates that correct classification contin-

uously increases significantly for combining temporal and spectral information of up to 5

multi-units.

Combining responses from several multi-units significantly increases discrimination

(Fig. 5.4.5). Figure 5.4.5 depicts correct classification for combining information from suc-

cessively 1-16 multi-units, along the BF-gradient (a-c) and within few adjacent isofrequency

laminae (d-e). Combining 5 multi-units led to perfect discrimination, and was not degraded

by adding further multi-units. Across all experiments, discrimination performance increased

for up to 3-6 multi-units. Combination yielded near-to-perfect (on average 90 %) correct

classification for all recordings, in several cases perfect classification. Thus, combining short

responses of 3-6 multi-units is sufficient to uniquely represent 11 different vocalizations.

Increase in correct classification for combining an additional multi-unit was higher when

using temporal and spectral information (10 % per unit) than when using only temporal

information (5 % per unit), Fig. 5.4.5a,b.
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5.4.2 Combined responses

For the latter case, correct classification did not increase significantly when combining more

than 5 multi-units but stayed constant around a value of 80 %. Correct classification of spike-

rates was low for one multi-unit (20 %), increased for combining up to 5 multi-units (8 % per

unit), then continued to increase at a lower rate (2 % per unit) up to a performance level of

80 % and stayed constant for combination of more than 10 multi-units (Fig. 5.4.5c). Using

only temporal spiking information, although saturating at a low number of combined multi-

units, did not recover the entire information about the encoded signal. Using only spectral

information also did not recover the entire encoded information, and a much larger number

of units might need to be combined to achieve comparable correct classification. Thus,

spectral and temporal spiking information are necessary for near-to-perfect discrimination.

Gradually and randomly combined responses yield similar values of correct classification.

This suggests that combined responses from differently frequency-tuned as well as from

similarly tuned multi-units yield a better discrimination performance than the response

from only one multi-unit. Not only large differences in tuning and in responses but also

small differences provide new information to uniquely represent vocalizations in the ICC.
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Figure 5.4.5: Combined multi-unit responses. Correct classification of spiking responses to 11

different vocalizations for an increasing number of combined multi-units. Spiking responses are

concatenated or added to preserve (a, d) spectral and temporal; (b, e) temporal; or (c, f) spectral

response information. Combining responses significantly increases correct classification. Multi-

unit responses were combined either across several laminae (a-c, with BF=0.5-23 kHz) or within

few adjacent isofrequency laminae (d-f, BF = 6.3-8 kHz), and were taken respectively from one

simultaneous recording. Multi-units that are successively combined were selected either gradually in

tuning preferences (•) or randomly chosen (•). Averages over 2-3 iterations are shown. The dashed

pink line denotes chance level, the black top dashed line is drawn at 100 % correct classification.
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The above stated results are largely valid when combining responses from multi-units within

few adjacent isofrequency laminae (Fig. 5.4.5d-f.) However, the following exceptions exist:

the courses of classification for using both, temporal and spectral, and for using only tem-

poral spiking response information are similar and reach the same maximum performance

of 90 %, although more units are needed to reach this value for the latter case. Combin-

ing spectral information only yields a maximum performance of 50 %. Responses from

few adjacent isofrequency laminae do not contain enough information to allow for perfect

discrimination between all vocalizations. Using only temporal information is sufficient to

nearly perfectly represent vocalizations. Thus, mostly temporal information is encoded

within an isofrequency lamina. The average of all 77 pooling procedures confirms the

above stated result (Fig. 5.4.6). Temporal information is encoded in more detail within few

adjacent isofrequency laminae than across isofrequency laminae and thus leads to higher

correct classification. Correct classification is almost identical for gradually and randomly

combined responses.
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Figure 5.4.6: Average correct classification across all recordings. Correct classification for com-

bining temporal information of spiking responses. Correct classification is higher for combination

of multi-units from within few adjacent isofrequency laminae than across several laminae. Grad-

ual (•,•) and random (•,•) combination yield similar correct classification values, along and across

isofrequency laminae. The dashed pink line denotes chance level.

5.4.3 Contribution of neural correlations

Simultaneously responding multi-units can interact in order to more efficiently encode vo-

calizations. This interaction can lead to neural (temporal) correlations of their responses.

The correlations between the multi-unit responses could improve separability in several

ways. One possibility might be that the interaction strength between the multi-units and

consequently their neural correlations varies for responses to different vocalizations and

thus aids discrimination between the vocalizations. Another possibility would be that the

multi-units’ simultaneous responses are more similar to each other than non-simultaneous

ones.
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5.4.3 Contribution of neural correlations
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Figure 5.4.7: Correlations of combined multi-unit responses. (a) Half-matrices of correlation coef-

ficients (within a maximum possible delay of τ =10 ms) between responses recorded simultaneously

(Sim, left) and non-simultaneously (Non-Sim, right), in response to the ‘squeal’ presented at

70 dB SPL, from 16 multi-units spanning a best frequency range of 0.7-22.6 kHz. For simultaneous

responses, correlation values differ across multi-unit pairs. Some multi-unit pairs have higher correla-

tion for simultaneous responses than for non-simultaneous ones. Other multi-unit pairs show similar

values for simultaneous and non-simultaneous responses. The correlation matrices are symmetric

and the diagonal is unity, hence only their lower halves are displayed.

Hence their neural correlations are stronger and by means of redundancy, vocalizations

are more faithfully represented. These possibilities were tested by comparing the averaged

correlation values between all multi-unit responses of one pooling, to each vocalization, for

simultaneously and non-simultaneously recorded responses. Responses of multi-units were

combined by concatenation since this approach preserves temporal and spectral informa-

tion and yielded higher correct classification values than addition of responses, as stated

above. Combination of non-simultaneously recorded responses was performed by randomly

shuffling the 20 response trials of each multi-unit before concatenation of trials from differ-

ent multi-units. Figure 5.4.7 shows the pairwise correlation of spiking responses for all 16

multi-units of one recording, for one vocalization. Correlations of simultaneously recorded

responses are higher or equally high as correlations of non-simultaneous responses. They

vary for different pairs of multi-units. In Fig. 5.4.8a the averaged correlation values for si-

multaneously and non-simultaneously recorded responses between multi-units are displayed

for each vocalization.

For each vocalization correlation values of simultaneously recorded responses are signifi-

cantly higher than those from non-simultaneously recorded ones (mean, p =0.05, Student’s

t-test). Correlations do not vary significantly across vocalizations, neither for simultaneous

nor for non-simultaneous responses. The only exceptions are responses to the ‘tooth chatter’

which yield significantly higher correlations than to all other vocalizations. Responses to

the ‘tooth chatter’ are phase-locked to the envelope for multi-units across almost all studied

best frequencies. This leads to higher correlation values of those responses.
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However, these significantly higher correlation values do not yield significantly higher clas-

sification values for the ‘tooth chatter’, but are comparable to other vocalizations such as

the ‘long scream’. Thus, should neural correlations facilitate a more unique representation

of vocalization, this might be achieved via redundancy.

If neural correlations contribute to a unique representation of the vocalizations and hence

a better neural discrimination, then their cancellation will lead to a decrease in neural

discrimination. The hypothesis that neural correlations improve separability of responses

was tested by comparing neural discrimination when combining simultaneously and non-

simultaneously recorded 100 ms long spike trains. Correlation values between the multi-unit

responses of a combined set were also explicitly included in the feature vector. However,

classification values of combined responses for which correlation values were not explicitly

included was also compared. In Fig. 5.4.8b correct classification between all 11 vocaliza-

tions is compared for combined simultaneously and non-simultaneously recorded responses.
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Figure 5.4.8: Correlations of combined of multi-unit responses and their effect on neural discrim-

ination. (a) Average correlations of all (ncomb =5) combined multi-units for each vocalization are

compared for simultaneously and non-simultaneously recorded responses, for a stimulus intensity of

70 dB SPL. Simultaneous and non-simultaneous response correlations differ significantly for each

vocalization. Correlation values across vocalizations do not vary significantly, except for responses

to the ‘tooth chatter’ which are significantly higher than response correlations elicited by all other

vocalizations. (b) Comparison of correct classification between all 11 vocalizations for combining

1-5 responses, recorded simultaneously and non-simultaneously, for explicitly including response cor-

relations (Sim+Corr,NonSim+Corr) and when not including them (Sim, NonSim), at 70 dB

SPL. (* denotes significant results, ns non-significant; mean, p =0.05, Student’s t-test).
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5.4.3 Contribution of neural correlations

Simultaneity of recordings does not produce a detectable difference in correct classifica-

tion. Correct classification does not vary significantly for combining simultaneous or non-

simultaneous responses, for the case of explicitly including the multi-units’ correlations and

for the case of not including them. Combining responses increases neural discrimination

as shown previously (Sec. 5.4.2), and did not increase further when combining more than

5 multi-units. To increase the complexity of discrimination, thus to raise the threshold,

correct classification for combined simultaneous and non-simultaneous responses was com-

pared for stimulus intensity levels of 30-70 dB SPL, in steps of 10 dB SPL. Overall, correct

classification values were lower, however, classification did not differ significantly between

simultaneous and non-simultaneous combined responses. Correlations were computed al-

lowing for a delay between responses from different multi-units. If no delay is assumed, the

computed non-simultaneous response correlations are much lower than simultaneous ones,

and classification performance is significantly higher for non-simultaneous recordings than

for simultaneous ones. Thus in this case, neural correlations are found to be detrimental

for discrimination (mean, p =0.05, Student’s t-test). This suggests that the interplay of

multi-units from different sites does not aid unique representation of the vocalizations.
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5.5 Discussion

Summary

In this chapter, encoding of vocalizations in multi-units of the ICC was analyzed using

neural discrimination of spike trains.

It was found that within the multi-unit’s neural response to the vocalization, it did not

substantially influence the performance which specific temporal segment was chosen for the

discrimination analysis. It was demonstrated that, in general, individual vocalizations are

optimally discriminated across a rather broad range of the best frequency gradient. The

spatial distribution of the capability to accurately encode the stimulus differs for the in-

dividual vocalizations. Preferred encoding along the BF-gradient follows in most cases a

similar trend as the spectral content distribution of the vocalization. A vocalization which

contains important spectral energy across the whole studied best frequency range (‘tooth

chatter’) is not preferentially encoded by some multi-units, but is encoded uniformly well

across best frequencies. For some vocalizations and frequencies, the match of preferred

encoding and spectral content is perfect (‘long scream’, Fig. 5.4.2), for others, deviations

exist. However, trends of preferred encoding for the individual vocalizations and spectral

content are often similar.

Furthermore, the work shows that groups of a few multi-units yields improved total dis-

crimination over only one multi-unit. Combining responses from up to 3-6 multi-units

significantly increases discrimination between the 11 vocalizations. It did not significantly

alter the discrimination performance whether multi-units with similar frequency tuning

(alternatively amplitude modulation tuning) or with different tuning were combined. The

combined spectral and temporal information of responses from 3-6 multi-units across fre-

quency laminae allowed, on average, for near-to-perfect discrimination for all studied 77

recording sets, and was even perfect for several of them. Thus, a few multi-units are

able to reliably encode a representative set of behaviorally relevant vocalizations. It was

demonstrated that neural correlations of combined multi-units do not contribute to a higher

accuracy of neural discrimination between vocalizations, but have either no impact or are

detrimental. These results are independent of the multi-unit’s best frequency and, hence,

of the response strength to individual vocalizations. That neural correlations do not facili-

tate encoding is further supported by the finding that discrimination improves regardless of

whether neighboring or distant neurons were combined, with neighboring neurons having a

higher probability of interacting and hence displaying neural correlations.
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Critical Review and Future Work

The discussion of the neural data in Sec. 4.5 also applies to the analysis discussed here. Neu-

ral discrimination, especially for multi-units that did not yield perfect classification when

being combined, is likely to improve in awake animals, as anesthesia has non-negligible

effects on the neural activity [118]. Still, the neural discrimination values obtained in this

study were very high, in several cases even perfect.

The findings presented in this chapter are valid for multi-units. It would be interesting to

investigate whether a multi-unit responds differently to different vocalizations because it

either recruits different groups of single neurons for each vocalization, or because the spike

times of the multi-unit and thus of the single neurons are different for each vocalization;

the same holds for averaged spike-rates. A single neuron resolution within the multi-unit

cluster would allow answering this question.

In the presented work, the overlap of the stimulus’ spectral content and optimal encoding

is not perfect, deviations exist and might point to nonlinear processing. Discrimination

performances were averaged across all multi-units within a best frequency interval. Thus,

preferences of individual multi-units might be averaged out. These deviations could be due

to amplitude and frequency modulation preferences within isofrequency laminae [6], or due

to higher temporal but poorer spectral resolution for low BF neurons (vice versa for high

BF neurons [92]). Deviations could also be explained by nonlinear processing properties,

such as a possible selectivity for specific vocalizations as suggested by [26], or by spatial

heterogeneity of receptive fields in the ICC [22]. A possible high call-selectivity of single

neurons would be averaged out, and only if regions of high call-selective neurons for individ-

ual vocalizations existed, would these have been perceivable as an enhanced discrimination.

This, however, was not the case, and even the existence of single neurons in the ICC which

are call-selective is controversial. The deviations need to be analyzed in more detail. Single

neuron recordings, for which not only the best frequency, but also best amplitude modula-

tion frequency and the location within the ICC is known, could be employed. Single-unit

recordings would allow to test for call-selectivity to individual vocalizations. They would

also allow for a direct comparison of the vocalization’s spectral content and its best dis-

crimination in dependence on the neurons’ best frequency (Sec. 5.4.1), since the analyzed

multi-unit’s BF is a compound BF of several single neurons. Such an analysis could be

used to quantify deviations from a linear mapping of the spectrotemporal content of the

vocalizations across the ICC and could point to increased regions of nonlinear processing.

Furthermore, single-unit recordings might allow quantifying the amount of correlations

due to neuronal interactions, and possibly infer structural connectivities between neurons,

which is not possible for multi-units [116]. Temporal correlations which are due to neural

interactions might exist within the multi-units and could support a microcircuit functional

arrangement.
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Discussion

A distortion in the neural representation, which might hamper and corrupt inferences that

are obtained from direct comparison of the stimulus and the neural response, results from

the presentation of calibrated vocalizations (Sec. 3.1.1). The neural responses, in general,

follow the temporal and spectral form of the original vocalizations. However, in order to

avoid any ambiguity, it would be necessary to record the sound exiting the tube and com-

pare it to the neural response.

It would be interesting to examine encoding not only for different vocalizations, but for

natural different exemplars of the same vocalization. The hypothesis that discrimination

of these variants is optimal in frequency regions tuned to parts of the spectrum that are

acoustically more discriminative could be tested, and also how the variability of one vocal-

ization manifests in the neural representation, thus how small differences are represented

in the neural system.

Conclusion

The findings on the representation of vocalization are valid on the level of multi-units with-

out assuming that the same group of single neurons responds to different vocalizations.

Neural discrimination of individual vocalizations remains very good over broad frequency

regions and this should be beneficial in a behavioral context.

Responses from a few multi-units are sufficient to faithfully represent the whole set of

studied vocalizations with very diverse spectrotemporal properties. Improvement of neu-

ral discrimination when combining responses due to reduction of trial-to-trial variability

might be less predominant for multi-units than for single-units, and suggests complemen-

tary information from the different multi-units. Multi-units in the ICC act as independent

encoders in the sense that correlations with other neurons do not facilitate encoding and

redundancy is minimized. No direct interaction beneficial to encoding between the multi-

units is present, and might suggest parallel processing. Possibly, the independent spiking

responses are projected to and combined in higher processing stations. This work supports

an efficient encoding strategy, suggesting that higher level neural representations match the

statistical and behavioral qualities of the stimuli.
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6 Nonlinear single neuron responses

6.1 Introduction

In the previous Chapter 5 the encoding of vocalizations by clusters of neurons was inves-

tigated. It was demonstrated that within each neuronal cluster, there is responsiveness

to almost all vocalizations. Vocalizations and speech can display temporal and spectral

correlations including harmonics, frequency and amplitude modulations. Hence, how does

this responsiveness to vocalizations manifest at the single neuron level? Do preferences to

specific acoustic features of the vocalizations exist? The neurons in the auditory midbrain

might employ various processing mechanisms –linear and nonlinear ones– to encode these

behaviorally relevant sounds. In the inferior colliculus an important part of the neurons

(∼ 40 %) display nonlinear response properties [14].

In this chapter, nonlinear response properties of single cells are analyzed. For the visual

system it has been suggested that simple receptive fields which display linear summation

properties form a unit with a surrounding complex receptive field that displays nonlinear

summation properties [119, 65, 66], and that this might increase selectivity of neurons [56].

In this work, linear and nonlinear receptive fields are investigated. Do nonlinear auditory

responses lie within the linear spectrotemporal receptive field? Or do such nonlinearities lie

outside, thus forming a non-classical receptive field with nonlinear summation properties

analogous to cells in the visual V1 cortex [56]? Since natural sounds are composed of several

temporal and spectral correlations, they do not allow directly linking the neural response

to a particular stimulus property, but only to a composition of a spectral and temporal

component. A systematic approach to identify neuronal preferences, on the other hand, is

offered by the use of the dynamic moving ripple (DMR) sound which contains combinations

of frequency and amplitude modulations and dynamically covers a certain range of the pa-

rameters [14].

In order to link the stimulus properties and the neuronal response, the single cell spiking

activity is recorded while presenting the artificial DMR sound. The reverse correlation

method is well suited for the derivation of nonlinear stimulus preferences since it does not

put any limit on the number of extracted stimulus features, as opposed to the maximally

informative dimension method [73, 91, 55]. Furthermore, the DMR stimulus meets the

requirements for use with the reverse correlation method.



Introduction

Thus, the averaged spiking activity in response to the stimulus frequency and delay time

(spectrotemporal receptive field) and the averaged spiking activity to stimulus correlations

(the spike-triggered covariance) can be computed. The spike-triggered average (STA) and

covariance (STC) are derived from the Wiener kernel analysis [95], an expansion of function-

als which approximates nonlinear systems [76, 77, 69]: r(t) = k0 + k1 + k2 + .... The zeroth

order Wiener kernel term corresponds to the average spike rate, the first term corresponds

to the STA and the second order Wiener kernel, which corresponds to the spike-triggered

covariance, captures correlations within the stimulus which trigger the neuron to spike

[120, 71]. Neural ICC responses were analyzed with respect to the second order Wiener

kernel in order to test whether they display preferences to these nonlinear stimulus interac-

tions.

In previous studies, the entire auditory sound waveform was considered for the reverse

correlation analysis [84, 79] or for derived information theoretical approaches [39]. In the

present work, however, the reverse correlation method is applied to the spectrotemporal

envelope separately for each frequency carrier. Using the amplitude modulation spectrum

of the DMR sound for the reverse correlation analysis allows studying the representation of

amplitude modulations in the ICC. Amplitude modulations are essential for recognition of

complex sounds such as speech [20] and vocalizations. At the level of the ICC, frequencies

greater than about 1 kHz are not encoded due to the inability of the neurons to follow the

fast changes [42]. The frequency carriers, the fine structure, which were used for the DMR

sound, span a frequency range of 1-48 kHz.

Nonlinear response properties to the envelope have been observed in several processing sta-

tions of the ascending auditory pathways and become increasingly complex and specialized

as one progresses up the auditory hierarchy [121, 91, 97]. However, it has not been investi-

gated previously in which frequency range these nonlinearities are contained. By computing

the reverse correlation for each frequency carrier of the DMR sound, it is possible to assess

in which frequency range the nonlinearities are dominant and how these frequencies relate

to the best frequency of the neuron. Thus, instead of the whole stimulus waveform, only the

individual stimulus amplitude modulations for each frequency carrier of the sound stimulus

are used for the analysis.

In the following Section 6.2, the derivation of the spike-triggered covariance to DMR sound

for each frequency channel is described in detail. Examples of derived STCs and the distri-

bution of significant nonlinear response properties across the frequency channels and across

the population of studied neurons are given in Sec. 6.3. The significant spectrotemporal

receptive field and the significant spike-triggered covariance are compared. The findings

are discussed in the last part of this chapter.
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6.2 Methods

The basic methods employed for the characterization of nonlinear response properties were

described in Section 3.5.3. Those were extended for the use of the dynamic moving rip-

ple sound envelope to obtain spike-triggered covariances for each frequency channel and

ascertain significance of these nonlinear receptive fields.

6.2.1 Stimulus and neural data

In order to identify neuronal response preferences, dynamic moving ripple sound was deliv-

ered independently to both ears of the animal. The DMR sound was played to the right ear

and the time-reversed DMR sound was played to the left ear. Recordings were made from

the left ICC of anesthetized cats, and processed to yield single unit responses which were

used for the reverse correlation analysis. The experimental set-up and the DMR stimulus

are described in detail in Sec. 3.1.2 on page 27.

6.2.2 Spike-triggered average (STA)

The spike-triggered average (STA), also denoted as the linear spectrotemporal receptive

field (STRF), was obtained by averaging the temporal windows of the DMR sound enve-

lope that elicited a spike [14]. This receptive field is 2-dimensional, with a maximum time

delay of 50 ms, a temporal resolution of 0.5 ms and a frequency range of 0-5.8 octaves, with

659 frequency channels, thus providing a fine spectral resolution of 0.0085 octaves. The

maximum temporal delay of 50 ms was chosen because integration and delay times of ICC

neurons are enclosed within this temporal window [14, 115]. The statistically significant

portion of the STA is obtained by keeping all values of the STA that exceed 3σ (1.6σ) of the

control noise STRF (which was obtained by adding random sound waveform segments) and

setting all other values to zero [14]. The STRFs have excitatory and/or inhibitory regions,

which indicate respectively enhanced and suppressed spiking activity for these specific tem-

poral and spectral parameters, see Fig. 6.2.1. For the STRF and for the STC-derivation the

full 20 min of recorded spiking activity and DMR sound are used. The STRF is well suited

to map linear response properties [69, 70, 97, 107]. However, to describe nonlinear response

properties, the second order reverse correlation method, the spike-triggered covariance is

necessary.

6.2.3 Spike-triggered covariance (STC)

Nonlinear neural response preferences can be derived with the spike-triggered covariance

(STC). It is obtained by comparing the variance of the entire stimulus distribution and the

spike-eliciting variance.
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Figure 6.2.1: The spectrotemporal receptive field displays spectral and temporal preferences of a

neuron. Parameter regions with high spiking activity indicate neuronal preferences, whereas spiking

activity below the average (number of spikes is zero) points to regions of suppressive parameter

regions.

The STC describes the average (second order) correlations within the stimulus that lead to

an elicitation of a spike. While the average spike rate and spectrotemporal receptive field

are rather intuitive, the spike-triggered covariance is not. In Figure 6.2.2, an example of

a schematic STC is shown. The matrix is symmetric around the diagonal, but for better

visualization the full matrix is displayed. The schematic shows an enhanced spike rate for

stimulus correlations at time delays (τ1 , τ2 ) = (15,5) ms and τ1, τ2 = (5,15) ms, thus at

a relative delay of 10 ms. The spike rate is suppressed for stimulus correlations between

time delays (τ1 , τ2 ) = (10,30) ms and (τ1 , τ2 ) = (30,10) ms, thus at a maximum relative

delay of 20 ms. In order to illustrate the relation of the preferred stimulus correlations and

the shape of the spike-triggered covariance, a schematic with three examples is given in

Fig. 6.2.3.
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Figure 6.2.2: Schematic example of spike-triggered covariance with excitatory (red) and inhibitory

(blue) stimulus correlations.
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6.2.3 Spike-triggered covariance (STC)
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Figure 6.2.3: Relation of stimulus correlations and STC shape. Three examples of preferences to

different stimulus correlations (left) and the derived outer products (right) are given a), b) and c).

Diagonals which correspond to zero delay have been subtracted in the outer products.

Correlations within the stimulus (Fig.6.2.3a left) exist at delay times (τ1 , τ2 ) = (2,4) and

(4,2), and higher values are present at these delay times in the outer product (Fig.6.2.3a

right), which is derived from the stimulus. In the second example, stimulus correlations

are present at (τ1 , τ2 ) = (1,4) and (4,1), and at (τ1 , τ2 ) = (2,3) and (3,2), with relative

delays of 3 and 1 bins. These preferences give rise to high values along the orthodiagonal.

In the third example three different stimulus correlations which occur at different times

τ but all have the same relative delay of 1 bin are present. These stimulus correlations

give rise to high values along the paradiagonals, which are 1 bin away from the diagonal.

For a larger relative delay, e.g. 5 bins, the paradiagonals will be 5 bins away from the

diagonal. Shapes like the one in the third example (at a distance of 0.5-1.5 ms from the

diagonal) were found previously in the auditory nerve when computing the spike-triggered

covariance in response to white noise [81]. The pattern of paradiagonals was interpreted by

the authors to represent a neuronal response component that is phase-locked to the square of

the envelope of a filtered version of the stimulus waveform, or resulting from a quadrature

pair of eigenvectors. Unlike prior work in the auditory nerve, the STC (see Eq. 3.5.6)

derived in this work is obtained from the DMR sound envelope and calculated separately
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for each frequency channel f. This approach allows identifying dominant nonlinearities

across frequency carriers.

Derivation

The STC is obtained from the second order Wiener kernel (Eq. 3.5.6 on page 40). For

each frequency channel t, the covariance matrix that is obtained from the whole stimulus

is subtracted from the covariance matrix that was computed only from stimulus segments

preceding spikes (spike triggered segments):

STC(f) = STCspike(f)− Cint(f) (6.2.1)

with the spike-triggered covariance STCspike:

STCspike(f) =
N

T

1

(2(
m2

db
8

)2)

N
∑

i=1

mdb

1

N

(

S(f, t− τ)−
mdb

2

)

⊗
(

S(f, t− τ)′−
mdb

2

)

(6.2.2)

The outer product is computed for each temporal DMR envelope segment of length τ which

elicited a spike at time t , and averaged across all N obtained matrices for each frequency

channel (schematically shown in Fig. 6.2.4).
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Figure 6.2.4: Schematic derivation of spike-eliciting covariance. a) recorded spike train; b) DMR

stimulus amplitude modulation spectrum; c) outer products of N τ -long segments preceding a spike;

d) averaged STCspike(f) for frequency channel f . The top shows the first 500 ms of a single spike

train obtained from recording while the DMR sound with the amplitude modulation spectrum shown

in b) was presented. When a spike occurred, an immediately preceding time window of τ=50 ms

was taken from the spectrum for a single frequency carrier f. c) From this vector the outer product

was computed. The spike-triggered covariance is the average of all obtained outer products.
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6.2.3 Spike-triggered covariance (STC)

The difference between the covariance and the outer product is that for the covariance,

for each (τ1, τ2)-combination the mean of each segment is subtracted before multiplication,

whereas for the outer product this is not the case. The outer product can be used for

the spike-triggered covariance analysis [79]. The number of spikes, N , varied from neuron

to neuron, but was always higher or of the order of 103, and the maximum time delay

for each segment (τ =50 ms) was the same as for the STA. The frequency resolution is

0.017 octaves, with 220 frequency channels. It is adjusted to densely sample (20×) within

the average STRF bandwidth of the ICC which is 1/3 octave. Each stimulus segment is

multiplied by the mean intensity mdb =30 dB, and centered. The outer products are

averaged across all N matrices. The averaged STC is normalized by the mean firing rate
N
T = N0, with a total recording time of T =600 s, and with the squared standard deviation

of the DMR sound σ2 = mdb
2

8
[14]. The STCs from both trials A and B are averaged. In

Figure 6.2.5a, an example of an obtained spike-eliciting STC (STCspike) is displayed. In

order to obtain the correlation matrix which is only due to stimulus correlations that elicit

a spike, the intrinsic stimulus correlations of the DMR envelope have to be removed. This

is achieved by subtracting the average outer product of the whole DMR stimulus from

STCspike (Eq. 6.2.1). The DMR sound displays no global correlations, however, it does

display short-term correlations (see Sec. 3.1.2 on page 27). This has an effect on the

computed spike-triggered outer product, see Fig. 6.2.5a. Several paradiagonals of fading

intensity with increasing distance from the diagonal can be seen. These are due to the short-

term correlations of the DMR stimulus and are sometimes not removed by averaging the

outer products for all recorded spikes. The effect of these short-term correlations becomes

dominant for neurons which are highly feature selective. For these neurons that almost

exclusively fire in response to a specific combination of a temporal and spectral modulation,

the local stimulus correlations captured in STCspike are pronounced. They are not removed

by subtracting by the global mean, which is obtained by randomly selecting segments from

the stimulus and averaging their outer products.
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Figure 6.2.5: The a) spike-triggered outer product, the b) outer product obtained with jittered

spike times and the resultant c) spike-eliciting correlation matrix, computed for one frequency chan-

nel of one neuron.
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To account for these local correlations, the spike times were added random temporal jitter

from a range of -12,5 ms to 12,5 ms, because within this range short term correlations are

still present, however, envelope phase-locking is abolished. The matrix which captures the

correlations of the stimulus Cint is described by a similar formula as for STCspike, with the

difference that the spike times have been added jitter from a confined temporal range:

Cint(f) =
N

T

1

(2(
m2

db
8

)2)

N
∑

i=1

mdb

(

S(f, ts− τ)−
mdb

2

)

⊗
(

S(f, ts− τ)−
mdb

2

)

(6.2.3)

The average outer product was computed for these jittered spike times ts from the DMR

envelope and the obtained correlation matrix Cint was subtracted from the spike-triggered

correlation matrix STCspike. Figure 6.2.5b shows the outer product for which temporal

jitter has been added to the spike-times for one neuron. The paradiagonals are also visible

in this averaged outer product, and the intensity range is the same as for the spike-triggered

correlation matrix. The only perceivable differences are the light lines orthogonal to the

diagonal at delay times around 20 ms in the spike-triggered correlation matrix. Remov-

ing the intrinsic stimulus correlations (Fig. 6.2.5b) from the spike-triggered outer matrix

(Fig. 6.2.5a) yields only the correlations which trigger the spiking of the neuron. The re-

sultant correlation matrix is displayed in Fig. 6.2.5c. The paradiagonals due to short-term

correlations are not perceivable anymore, but the previously light orthogonal line is very

pronounced. The intensity of this difference matrix is more than one order of magnitude

smaller than either one of the two spike-triggered matrices. For the remainder of this chap-

ter this matrix will be referred to as STC.

Several whitening procedures have been described for non-white Gaussian stimuli [122, 123].

A general approach is to normalize the obtained significant dimensions by the pseudo-inverse

covariance matrix of the stimulus [106]. However, the DMR being Gaussian white noise

[14], these whitening procedures do not have to be taken into account.

6.2.4 Significance testing

In order to determine if the obtained STC matrix is indicative of neuronal preferences for

stimulus correlations, significance testing was performed. Singular value decomposition of

the STC matrices for each frequency channel was computed, and distributions of singular

values were obtained. To estimate the noise level from the recorded data, an STC is

computed using Eq. 6.2.1 from randomly chosen 1 min segments of the 10 min spike-train

recording (‘bootstrapping’). From this matrix STCboot, the singular values and vectors

are derived, and averaged for trials A and B. This procedure is repeated 100 times for

different segments, and the mean (µ) and standard deviation (σ) of these 100 singular

value distributions were computed. This yields an estimate of the noise level, the estimated

error with a standard deviation. The singular values of STC and STCboot are ordered

accordingly to decreasing value.
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6.2.5 Regularized STC
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Figure 6.2.6: Significance testing. The distribution of singular values which are derived from the

STC (displayed in Fig. 6.2.5a) for the frequency carrier f = 2.6 oct are shown. Values exceeding the

estimated noise level by at least Θ = 1.6σ (p=0.05) are considered significant.

The distribution of singular values obtained from the STC and the estimated noise distri-

bution for one frequency channel (f = 2.6 oct) of a neuron are given in Fig. 6.2.6. The

spike-triggered covariance was considered significant in this work, if its singular values ex-

ceed the noise by at least Θ = 1.6σ standard deviations (p=0.05). These singular values

and corresponding vectors were significant. STCs were estimated significant if they dis-

played at least one significant singular vector. The analysis has also been performed for

a higher threshold, using Θ = 3σ (p=0.001). The significance level will be given in each

analysis. Unless stated otherwise, only significant STCs are further analyzed in this work.

The significant vectors and their corresponding values can be used to reconstruct a STC

for which the noise is removed, STCRec.

6.2.5 Regularized STC

The regularized (STCReg) for each frequency channel is reconstructed by summing the outer

products of only the significant singular vectors which are weighted by their singular values.

The STC STCReg for an STC(f) with n significant singular values λi=1 ..n of sign pi=1 ..n

and singular vectors
−→
Si is given by [82]:

STCRec =
n
∑

i=1

pi · λi ·
−→
S i ⊗

−→
S ′

i (6.2.4)

The original and reconstructed STC for one neuron and frequency channel are displayed in

Fig. 6.2.7.
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Figure 6.2.7: Reconstructed STC for a neuron and frequency channel (for which the singular value

distribution is displayed in Fig. 6.2.6). a) original STC; b) reconstructed STC, using all 5 significant

singular vectors.

6.2.6 Spectrotemporal representation of STC

In order to be able to compare a significant STC to the linear STRF, the STA, a ‘STRF-

like’ representation is proposed: for each frequency channel, the highest significant singular

vector is plotted in dependence of time. If no significant values were found for this frequency

channel, the vector is simply a zero-vector. This yields a matrix of singular vector value

in dependance of the frequency channel and the time delay. This representation is of the

same dimensions as the linear STRF.

6.3 Results

The analysis described in the previous Section 6.2 was applied to 178 single neurons. Sig-

nificant singular values and thus significant STCs for at least one frequency channel were

found in 132 neurons (75%). When testing with an elevated threshold of Θ = 3σ still 102

(57%) displayed significant STC.

6.3.1 Significant values across frequencies

The values and the total number of singular values (SV) derived from the STC varied across

frequency channels. In Fig. 6.3.1, the distribution of significant singular values across all

220 frequency channels is shown for three neurons. In most cases, the highest significant

singular values and also the largest quantity of singular values were obtained from STCs at

and around the best frequency. STCs of other frequency channels still yielded significant

values, but of smaller magnitude and quantity (Fig. 6.3.1a). For some neurons, only the

STC of one frequency channel at or close to the best frequency yielded significant values

(Fig. 6.3.1b). In some cases, only a few significant values were found, at the best frequency

but also at frequency channels more than one octave away (Fig. 6.3.1c).
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6.3.1 Significant values across frequencies
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Figure 6.3.1: Distribution of significant singular values across frequency channels. The distribu-

tions for three different neurons a), b) and c) are given (Θ = 1.6σ, p=0.05). The blue dashed line is

a guide to the eye. On top of each graph the relative number of significant values for each frequency

channel is displayed.

In most cases, the highest singular values (and often the largest quantity) was found for

the STC at the best frequency (BF) channel, see Fig. 6.3.2. The dominant STCs are at the

best frequency, and the magnitude of the singular values generally falls off symmetrically

to both frequency sides of the BF. The width of the coherent frequency range around the

best frequency which displays significant singular values was computed for each neuron. For

84 % of the neurons, this coherent bandwidth around the BF equals or is less than 2/3 of

an octave (see Fig. 6.3.3). The singular values differ across frequency channels. The STCs

from which they were derived also differ. They differ not merely in magnitude but also in

their ‘shape’.
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Figure 6.3.2: The STCs at the best frequency channel have the highest singular values. For each

neuron, the absolute spectral difference (in octaves) between the frequency channel of the STC

displaying the highest singular value and the best frequency are shown. For 92 neurons the best

frequency yields the highest singular value, and for 97 % of the neurons, the frequency channel

with the highest singular value and the best frequency differ by less than half an octave (Θ = 1.6σ,

p=0.05).

6.3.2 Significant STCs

Spike-triggered covariances vary across frequency channels and across neurons (Fig.

6.3.4, 6.3.4). Figure 6.3.4a, e show representative STCs at the best frequency with or-

thodiagonals. Stimulus correlations with maximum delays of 30 ms affect spiking activity.

The stimulus correlations follow an excitatory-inhibitory (Fig. 6.3.4a) or an inhibitory-

excitatory-inhibitory (Fig. 6.3.4e) pattern. However, STCs which display neuronal prefer-

ences for stimulus correlation with a constant time delay at around 10 ms (for detailed

explanation see Sec. 6.2.3) are frequent, although these are present mostly for STCs off the

best frequency (Fig. 6.3.4b). The displayed STC show a temporal series of inhibitory and

excitatory stimulus correlations with a constant delay. When averaging the STCs across all

frequency channels, these stimulus correlations are dominant (Fig. 6.3.4c,g). In some cases

they are also pronounced when only considering significant STCs (Fig. 6.3.4d) but aver-

aged out in other cases (Fig. 6.3.4h). The reconstructed STC from of Neuron 3 (Fig. 6.3.4l)

displays preferences for stimulus correlation with constant delay and suppressed spiking

activity for constant delay correlations of 10 ms.
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Figure 6.3.3: Distribution of STC bandwidths. The width of the coherent frequency range around

the best frequency, for which the STCs are significant lies within 2/3 octave for most of the neurons

(Θ = 1.6σ, p=0.05).
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6.3.2 Significant STCs
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Figure 6.3.4: Examples of spike-triggered covariances for three neurons. Neuron 1: (a-d), Neuron

2: (e-h), Neuron 3: (i-l). For each neuron the spike-triggered covariance at the best frequency (a, e, i)

and at a frequency channel more than one octave away (b, f, j) are displayed. The average STC

across all frequency channels of one neuron is given, the ‘Full STC’ (c, g, k) and its regularized

STC, which is constructed only from significant STCs, the ‘Regularized Full STC’ (d, h, l). For all

Θ = 3σ, p=0.05, except for subfigure h), Θ = 1.6σ, p=0.001).

In some cases, the STC does not show a pronounced pattern, but yields significant singular

values (Fig. 6.3.4 f,i,j). In order to investigate whether significant STCs can be predicted

by other descriptions of the neurons, these were compared to the occurence of significant

STCs. For three neurons, the spike-triggered covariances at the best frequency are displayed

together with their significant STRFs, their derived ripple transfer functions (RTF) and

conditioned response histograms (CRH) (see Sec. 3.5.4 for definitions of RTF and CRH) in

Fig. 6.3.5.

The CRH counts the occurrences of spikes to a particular parameter combination. The RTF

also shows preferences for parameter combinations, however, it is derived from the linear

STRF, and might not show the full preference spectrum of the neuron, since the STRF

might be averaging out preferences. A large deviation between the CRH and RTF could

indicate nonlinear response properties. Significant STCs occurred for neurons that showed

a large overlap of RTF and CRH (Neuron 1), but also for neurons for which the overlap

was not very big (Neuron 2).
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Figure 6.3.5: Comparison of STC to other descriptors of neuronal preferences. For Neuron 1, 2 and

3, the significant linear spectrotemporal receptive field STRF (a-c), the spike-triggered covariance

STC at BF (d-f), the ripple transfer function RTF (g-i) and the conditioned response histogram

CRH (j-l) are displayed (Θ = 3σ, p=0.001).

In the example of Neuron 2, the CRH is very diffuse and shows no preference, however, the

RTF does show bandpass tuning in the temporal domain and lowpass tuning in the spectral

domain. These are the two cases, for which mostly significant STCs were encountered: good

overlap of RTF and CRH, or no good overlap due to a diffusive CRH.
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6.3.3 Comparison of significant linear STRF and STC

For neurons which yielded no significant STC, the RTF and CRH usually showed no overlap,

either they showed a complementary behavior with no overlap in the parameter space, or

the CRH was diffusive (Neuron 3).

6.3.3 Comparison of significant linear STRF and STC

In Sec. 6.3.1, it was shown that dominant frequency regions are very similar for the linear

STRF and the STC. To test if this is also true in the temporal domain, the linear STRF is

compared to the temporal representation of the STC in each frequency channel, the STRF-

like representation (see Sec. 6.2.6). Examples of this comparison are given for two neurons,

Fig. 6.3.6. For Neuron 1 the linear STRF displays a broad frequency bandwidth and an

excitatory-inhibitory temporal energy pattern with a delay time of about 10 ms (Fig. 6.3.6a).

The bandwidth of the STC is smaller and contained within the one of the linear STRF. In

the STRF-like representation, several significant vectors around the BF display energy with

an excitatory-inhibitory-excitatory pattern also centered at a delay of 10 ms. Thus, the

tuning is opposite in these two receptive fields, and the nonlinear contribution from the

STC could be modulatory as proposed previously for auditory neurons in the midbrain of

songbirds [67].
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Figure 6.3.6: Comparison of significant linear STRF and STC. The significant linear STRF is

compared to the first significant vectors of each frequency channel (‘STRF-like’ representation), for

a) Neuron 1; and b) Neuron 2 (Θ = 3σ, p=0.001).
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Figure 6.3.7: Comparison of temporal course of significant linear STRF and first (second) singular

vectors for the two neurons displayed in Fig. 6.3.6. a) Neuron 1: temporal courses of linear STRF

and first significant vector at the best frequency (no second significant singular vector is present);

b) Neuron 1: temporal courses of linear STRF and first and second significant singular vector at a

frequency channel near the best frequency; c) Neuron 2: temporal courses of linear STRF and first

and second significant singular vector at best frequency. Neuron 2 only displays significant values

at the best frequency.

In the second example only one significant vector is present and it is located at the best

frequency (Fig. 6.3.6b). Neuron 2 shows an excitatory region at about 12.5 ms delay. The

STC displays an inhibitory-excitatory temporal pattern with an excitatory region at a

delay time of 20 ms. Thus, also in this case, the temporal modulations do not coincide,

but are shifted. The linear STRF and STRF-like representation of the STC show enhanced

(excitatory and suppressive) energy in similar spectral and temporal regions. Significant

singular vectors and the temporal courses of the corresponding frequency channels in the

linear STRF are shown in Fig. 6.3.7. The opposing tuning of the linear STRF temporal

course at the best frequency and of the first significant singular vector is shown in Fig.

6.3.7a. For a neighboring frequency the tuning is very similar. The second significant

singular vector is shifted by a few milliseconds relative to the first one. In the example of

Neuron 2, the second vector coincides temporally with the excitatory region of the linear

STRF.
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6.3.3 Comparison of significant linear STRF and STC

The relationship between the delay time determined from the STRF and from the STC

of one neuron is displayed for all neurons in Fig. 6.3.8a. The delay times are determined

from the linear STRF and from the delay time of the first extremum, either minimum or

maximum value of the first significant singular vector at the best frequency. For 47 % of

the neurons, these two delays match (difference < 1.1 ms), for both, minima and maxima.

Hence, the tuning of the singular vector is the same or opposite to the linear STRF. For

almost all other neurons, the delay of the STC was higher, with differences ranging mostly

between 5 and 30 ms. This was true for STCs with same and opposite tuning. For a small

percentage of the neurons (10 %), delay times of the STC were about 5 ms shorter than

the ones found with the linear STRF. To further investigate temporal tuning, the width

between extrema in the temporal course of the singular vectors was compared to the best

temporal modulation frequency of the neuron, Fig. 6.3.8b. A tendency for larger widths

corresponding to low best temporal modulations frequencies (TMF), and vice versa is visi-

ble.

Previous studies have suggested that nonlinear receptive fields might contribute to an in-

crease of the neuron’s feature selectivity [56]. The highest significant value at the best

frequency was taken as a measure to quantify the nonlinear processing of a neuron. This

measure was compared to the degree of phase-locking (PLI), see Fig. 6.3.9a, and to the

feature-selectivity index (FSI), see Fig. 6.3.9b. Between the phase-locking index and the

degree of nonlinear responses no clear relationship is perceivable. A tendency of higher

singular values for low feature selectivity is visible.
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Figure 6.3.8: Temporal tuning of linear STRF and STC across all neurons. a) delay times obtained

from the STC and linear STRF; b) width in tuning of STC and best temporal modulation frequency

(TMF).

105



Discussion

0 5 10 15

0.05

0.1

0.15

0.2

Phase−locking index

m
ax

. S
in

g
u

la
r 

V
al

u
e

a

0 0.05 0.1 0.15

0.05

0.1

0.15

0.2

Feature−selectivity index

m
ax

. S
in

g
u

la
r 

va
lu

e

b

Figure 6.3.9: Relationship between selectivity and degree of nonlinearity. For all neurons the a)

Phase-locking index (PLI) against the highest singular value, and; b) the feature-selectivity index

(FSI) against the highest singular value are shown.

6.4 Discussion

In this chapter, using spike-triggered covariance of the envelope of DMR sound, it was

shown that an important amount of neurons in the ICC display significant preferences to

stimulus correlations (75 % / 57 %), respectively for significance thresholds of Θ = 3σ and

Θ = 1.6σ. These percentages were determined by attributing significance to a nonlinearity

if at least one frequency channel displayed a significant STC. However, these neurons also

showed significant linear STRFs. Thus the percentage cannot be directly compared to a

previous study which found ∼40 % of the neurons to be nonlinear [14], because in that

work linear neurons were assessed if they responded in the same way to (ripple) noise and

to the spectrotemporally varying DMR sound.

The stimulus correlations vary across neurons and across frequency channels. The shapes

of the STCs seem to be as diverse and rich as the linear STRFs. A pronounced nonlinearity,

present in more than half of the neurons, was found for stimulus correlations with maximum

time delays of about 30 ms. Dominant nonlinear response properties are almost exclusively

present at the best frequency of the neuron, and comparing the significant linear STRF

and the first significant vector of the covariance reveals a large spectral overlap, but also

reveals shifted temporal courses. About half of the neurons displayed the same tuning

pattern and the other half displayed opposite tuning pattern. Same tuning could enhance

the response and the opposite contribute to further tuning. The nonlinear contribution

from the STC could be modulatory as proposed previously for auditory neurons in the

midbrain of songbirds [67].

106



The degree of nonlinear responses, which was assessed with the magnitude of significant

values, did not show a clear dependence on the phase-locking or feature-selectivity index,

which might indicate that the singular value magnitude is not the appropriate measure for

quantifying the degree of nonlinearity. Furthermore, nonlinear response properties were

not linked to the match of the RTF and CRH, or to any particular type of linear STRF.

Thus, the found nonlinearities do not seem to be linked to a specific type of neuron but

to be inherent to ICC neurons with very diverse filtering characteristics. Using the DMR

sound amplitude spectrum for the analysis, it could be shown that dominant nonlinearities

were found at the best frequency of the neuron. Previous studies demonstrated a good

match between the averaged linear STRF for the whole waveform and the highest significant

singular vector of the STC [82]. In this work, not only similar temporal courses of the linear

STRF and STC were found, but also opposing tuning. Lying within the STRF, the linear

receptive field, these nonlinear responses may form a processing unit and have modulatory

effects as suggested for neurons in the songbird [67]. In contrast to findings in the visual

system for which the complex receptive field displaying nonlinear summation properties lies

outside the classical receptive field [119, 65, 66], in this work it was shown, that at least in

the spectral dimensions these two receptive fields coincide. The presented findings might

differ from neural processing in awake animals, as the used recordings were taken from

animals that were put under anesthesia, which was shown to have an effect on the neural

activity [118]. The anesthesia might change inhibitory mechanisms which would affect the

nature of the STRFs and the nonlinearities [85]. The used recording time of 20 minutes is

relatively long. However, for the reverse correlation analysis more recording time would be

desirable. The obtained receptive fields, the STRF and the STC, are stimulus-dependent

[97, 14].

The DMR sound, despite its many advantages also poses some problems, e.g. it might

not capture all features which are displayed by natural sound. Even though the neurons

responded to the complete DMR waveform, the reverse correlation analysis considered only

the stimulus envelope, and the fine structure might contain further crucial information. In

the cortex, neuronal sensitivity to the fine structure has been shown and such a sensitivity

could be present in the ICC and might be more pronounced since temporal resolution is

higher in the ICC than in the cortex [85]. Therefore, the advantage of explicitly studying the

envelope representation, compromises that the complete processing of the neurons might

not be captured. The DMR was presented at one intensity, and even though it covers a

relatively large dynamic range of 40 dB, responses to DMRmight change for other intensities

and yield different STRFs and STCs [124, 85].

In this work, nonlinear response properties have been analyzed for each frequency carrier. A

next step in this analysis would be to further investigate preferences to stimulus correlations

from different frequency carriers. This could be achieved with the spike-triggered cross-

covariance of two different frequency carriers. This analysis would be important, since

earlier studies have indicated nonlinear interactions between different sound frequencies.
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Discussion

Pienkowski and Eggermont [125] showed that intra- and inter frequency interaction in the

responses of neurons in the cats’ primary auditory cortex exist. In their analysis they used

trains of tone pips, which lack the natural sound attributes of frequency and amplitude

modulations that are covered by the DMR sound. The found nonlinearities could be al-

ready present in the input to the ICC or they could originate from nonlinear processing

of ICC neurons. Nonlinearities are already present in the neural responses originating in

the cochlea. But how these nonlinearities are represented in the ICC is not clear yet. One

could hypothesize that if the nonlinearities come from different stations preceding the ICC,

then the nonlinearities would show no correlation with the linear response. Both would

be measured as the neural response. If, on the other hand, the nonlinearity results from

the neuron’s own processing, very probably the linear and nonlinear part would display

similarities, which was shown for about half of the neurons. Thus, an important part of the

nonlinearities do originate in the ICC and further study of these is likely to reveal aspects

of natural sound processing.
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7 Discussion

7.1 Summary and Contributions

In this thesis, I investigated the representation and encoding of complex sounds by neurons

in the central auditory system. Using cross-correlation, neural discrimination and reverse

correlation analysis on a set of 1145 multi- and 150 single-units, the following main results

were found.

The representation of behaviorally relevant vocalizations in the central inferior colliculus

(ICC) of the guinea pig has been examined for groups of single neurons (Chap. 4, 5). These

multi-units display correlations of their spiking responses which decrease almost linearly

with spatial distance (Chap. 4). The correlations are of comparable strength along the

two major spatial axes of the ICC: along the best frequency gradient and across the best

modulation frequency gradient. A significant amount of the response correlations can be

attributed to neural interactions between the multi-units (neural correlation).

Using neural discrimination I showed that these neural correlations do not facilitate en-

coding of the vocalizations (Chap. 5). Total discrimination between the 11 vocalizations

based on individual multi-unit spiking responses is high (>75%) and is near-to-perfect when

combining 3-5 multi-units. Individual vocalizations can be well discriminated against other

vocalizations across a wide frequency range of the tonotopy. Furthermore, in the here pre-

sented work the encoding of complex sounds by neurons in the ICC was investigated with

respect to neural preferences to specific acoustic properties (Chap. 6). Preferences of single

neurons to temporal stimulus envelope correlations, which are also present in vocalizations,

were analyzed for spiking responses to artificial dynamic moving ripple sound using reverse

correlation. It could be demonstrated that the majority of ICC neurons (>57 %) show an in-

creased spiking response to envelope correlations with a maximum delay of about 10-30 ms.

These nonlinear responses are most pronounced for carrier frequencies of the stimulus enve-

lope that correspond to the best frequency of the neuron. At the neuron’s best frequency,

for which linear and nonlinear responses are most pronounced, the temporal tuning of the

nonlinear preferences is either opposite or similiar to that of the linear receptive field. The

nonlinear response properties are present for neurons across the ICC, and no relation to

other specific tuning properties such as feature selectivity or phase-locking was observed.



Critical Review and Future Work

7.2 Critical Review and Future Work

Multi-unit neuron clusters were shown to reliably encode vocalizations across the ICC.

Still, recordings of multi-units would be desirable, that allow spike-sorting and the recu-

peration of single-unit responses and thus the knowledge of the exact number of neurons

contained within one cluster. This would allow making inferences not only about collective

neural behavior but also simultaneously analyze individual single neuron behavior within

the cluster. Single-unit recordings would allow to test for call-selectivity to individual vo-

calizations. They would also allow for a fairer comparison of the individual vocalization’s

spectral content and its best discrimination in dependence of the neuron’s best frequency

(see Sec. 5.4.1). Furthermore, single-unit recordings would allow to reliably quantify the

amount of correlations due to neuronal interactions, and possibly infer structural connec-

tivities between neurons, which is not possible for multi-units [116].

In this work, the number of neurons contained within one cluster can be roughly estimated,

however, an exact number would be desirable in order to attribute the findings to a neural

group of well-defined size. A single-neuron resolution within the multi-unit cluster would

allow answering the question if a multi-unit responds differently to different vocalizations

because it either recruits different groups of neurons for each vocalization, or, because the

spike times of the multi-unit and thus of the single neurons are different for each vocaliza-

tion; the same holds for averaged spike-rates. Thus, the findings on the representation of

vocalization are valid on the level of multi-units without assuming that the same neurons

within the multi-unit respond to different vocalizations. Multi-unit recordings are likely to

display overlapping action potentials, thus distorting the waveforms which are thresholded

and thus corrupting the estimate of the the spike timing and also of the averaged spike-rate.

The effects are enlarged when combining spike timing responses from several multi-unit

clusters, which was performed for the neural discrimination of pooled multi-units.

For the correlation and neural discrimination, the exact position of the recording electrodes,

deducible from histological analysis, would have been desirable as it enables to map the vo-

calization encoding to specific locations within the ICC. Finally, longer recording times, thus

more response trials to the vocalizations or even white noise would have allowed computing

the spike-triggered covariances for the multi-units (with an added whitening procedure [106]

for natural stimuli), and to compare these to the single-unit spike-triggered covariance.

Presenting the exact same version of the vocalization several times bears a bias due to pseu-

doreplication, and could be mitigated by presenting several exemplars of the same stimulus.

Another distortion in the neural representation, which might hamper and corrupt inferences

that are obtained from direct comparison of the stimulus and the neural response, result

from the presentation of the calibrated vocalizations. First, the ear canal mold of one

guinea pig was used to calibrate the vocalizations for all other guinea pigs, even though the

specific shape and filtering of ear canals is unique to each individual.
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Furthermore, the sound which is delivered, was not filtered by the individual pinna, and

hence is distorted compared to vocalizations, which are usually filtered by the pinna and

perceived by the guinea pig. Second, the calibrated vocalizations which impinged on the

ear drum were not recorded. These vocalizations, however, should have been used for

comparison with the neural responses. As was displayed in Chap. 4, the spectral contents

and onsets do coincide in most cases with the original vocalizations. But, it is not clear if

these vocalizations match the original vocalizations perfectly (Fig. 3.1.1). The calibrated

and original vocalizations do show good overlap for seven cases, but also huge variations in

onset and spectral content for others (see Sec. 3.1.1). It is not clear how the vocalizations

impinging on the ear drum were altered. In order to obtain the best approximation of an

input-output function, it is desirable to have a well-defined input and a clear, as noiseless

as possible, output.

In Set-up 2, dynamic moving ripple (DMR) sound was used to probe neuronal nonlinear

response properties (Chap. 6). Despite its many advantages, the DMR envelope may lack

features that are present in the natural, behaviorally relevant full sound waveform. The

DMR can be used for the reverse correlation analysis without further required whitening,

however, short-term correlations exist and might bias the obtained nonlinear receptive fields.

In general, receptive fields are stimulus-dependent [97, 14].

In the natural case, the same sound is perceived by both ears, and information from both

ears influences neural responses in the ICC of either hemisphere, with a dominant part

of the contralateral ear. Thus, in the case of independent DMR sound presented to both

ears, ignoring the effect and sound information from the ipsilateral ear, responses recorded

from one ICC might be altered with respect to presentation of the same sound to both

ears. In Set-up 1, on the other hand, vocalizations were presented monaurally. Although,

here, the influence from a dissimilar sound of the ipsilateral ear is absent, the effects of the

ipsilateral contribution of the same sound are also missing, and thus not the full picture of

ICC-processing is captured.

The recordings used in this work were taken from anesthetized animals. Although obvious

advantages exist when using anesthesia, e.g. elimination of movement or the role of attention,

differences for recordings in awake and anesthetized guinea pigs exist [118]. For example, it

has been shown that anesthesia can suppress the neural response to a particular vocalization

but may also enhance it. Since anesthesia has non-negligible effects on the neural activity

[118], neural discrimination, especially for units that did not yield perfect classification

when pooling, is likely to improve in awake animals. The anesthesia might change inhibitory

mechanisms which would affect the nature of the receptive fields and the nonlinearities [85].

Correlation values and the obtained receptive fields are likely to be different in recordings

from awake animals. Neuronal encoding strategies found in the the ICC of mammalian

animals are considered to be similar to those found in the human ICC. This, however, is

an idealization, and although findings give indications for processing in the human ICC, its

detailed fundamental neuronal mechanisms cannot be ascertained.
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Critical Review and Future Work

Studies aiming to improve perception of hearing impaired humans can yield insight into

some aspects of human hearing, such as the necessary spectral and temporal resolution of

electrical stimulation in the ICC in order to ensure speech recognition.

This work was originally inspired by the attempt to improve the auditory midbrain implant.

Although it developed to be a fundamental auditory neuroscience project, the finding that

responses from groups of multi-unit clusters reliably encode speech-like sounds, suggests

that stimulating a few groups of clusters might at least provide an optimistic starting point

to test speech perception of implantees. Still, the silent underlying assumption that findings

obtained from recorded, already processed activity of the ICC, can be used to effectively

stimulate electrically, hence to simulate input to the ICC, is a coarse approximation. How-

ever, a second option in which the goal could be to simulate the input separately for each

of the various ascending processing pathways, and electrically stimulate the ICC precisely

at the terminating locations of these pathways, does not seem surgically feasible, since in-

sertion of the stimulating electrode into the ICC poses challenges [17].

In a proposed experiment, electrode arrays (double-shank and double-tetrode) with high

impedances (≈2 MΩ) are used to record from the ICC of guinea pigs. The higher impedance

would allow obtaining multi-unit activity from which single neuron responses can be iso-

lated, and to investigate the interplay of single neurons to produce this compound activity.

It is important to examine if the presented findings for multi-units are valid at the single

cell level. Previous work stated that for multi-units with up to five single neurons, no

statistically significant differences exist in discrimination performance, optimal temporal

resolution, and integration time to single neuron responses in songbirds [126]. However,

this does not need to be true for the presented multi-units in the mammalian ICC that

possibly comprise more than five single neurons.

In a previous study, correlations of neuron clusters in the auditory cortex were investigated

by multi-unit activity, which was spike-sorted and then added again to eliminate contribu-

tions from thalamocortical afferents or fast spikes from interneurons [47].

The acoustic stimuli employed for the proposed experiment are vocalizations, spectrotem-

porally modified vocalizations, dynamic moving ripple sound, and white noise. These are

presented binaurally via loudspeakers to the pinna of the guinea pigs. In this way, filtering

of the pinna and ear canal of the individual animal takes place and elicits responses, which,

at least in the case of vocalizations, are usually perceived by the individual. Recordings

from the ICC for at least 10 min are taken, in order to ensure enough collected data for the

proposed analysis. From the single neuron responses to the DMR stimuli, the spectrotem-

poral receptive field (STRF) and the the spike-triggered covariance (STC), as described

in Chap. 6, are computed. Single neuron’s responsiveness to vocalizations is directly com-

pared to preferences found with the STRF and the STC. Previous studies in the auditory

midbrain of songbirds compared the STRF to responses to natural sound but did not take

into account the STC [38]. The spike-triggered covariance analysis would be extended to

inter-frequency stimulus correlations.

112



The question whether preferences to stimulus correlations of the vocalization can be directly

linked to a faithful representation of the individual vocalization by the single neuron,

as ascertained by neural discrimination, is investigated. A second goal of this analysis

would be to investigate the representation and encoding of variability, more specifically

the representation of several exemplars of the same vocalization. Are preferences in

the receptive fields present for all exemplars of the vocalization and how much do the

averaged responses (PSTH) differ? How well can different exemplars of the same stimulus

be discriminated based on their neural responses, and is discrimination best in the main

frequency content of the vocalization or in minor spectral contents which differ for the

different exemplars. Thus, the analysis performed in Sec. 5.4.1 could be performed for

different exemplars of the same vocalizations. However, it would also be very interesting

to apply this analysis to single neuron recordings, as it might point to selectivity of single

neurons to individual vocalizations and allow for a more detailed comparison of spectral

content and best discrimination. Ideally, a very large data set is collected with several

insertion locations, in order to assure broad mapping of ICC activity. Histology analysis

of the insertion locations enables to assign the obtained receptive fields and local circuits

to specific ICC locations, in particular to a detailed location within isofrequency laminae.

The animals proposed for this experiment are guinea pigs, because the vocalizations of

these mammals are spectrotemporally very rich. Experiments would have to be conducted

under anesthesia, since recordings in awake guinea pigs might be hard to realize. Urethane

which was shown to display minor effects on the neural activity [127] could be a potential

anesthesia. Mice show a variety of vocalizations, but these are shifted to an ultra-sound

frequency range [128]. Alternatively, recordings could be done from songbirds (e.g. zebra

finches), which display spectrotemporally rich calls [128], but are not mammals, thus

inferences to humans are harder to draw. Recordings in awake animals are well feasi-

ble in rabbits or cats, which, however, do not show a rich set of vocal communication sounds.

The neural representation and encoding of complex sounds in the inferior colliculus

was investigated in this thesis, on large sets of neurons. Vocalizations are represented

broadly across the ICC by clusters of neurons. The neural responses to the vocalizations,

resulting from the interplay of the input to and the compound receptive field of the neuron

cluster, decrease in similarity with spatial distance. It was shown, that despite diverse

inputs to the ICC from different ascending projections, terminating on different parts in

the ICC [109], and existing response heterogeneities [21], representations of vocalizations

are gradually decreasing in similarity across the best frequency and modulation gradients.

On the level of multi-units, these changes in temporal response between pairs of multi-units

are gradual. A clear gradient of decreasing response similarity, which can be exponentially

fitted, for the representation of individual vocalizations was found.
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Conclusion

Thus, despite the vocalizations displaying very diverse and inhomogeneous spectral con-

tents, and the ICC having a clear logarithmic gradient in best frequency, the vocalizations

exhibit a gradual linear response similarity across the ICC. However, finer differences as

perceivable by single neurons might not be captured at this resolution level. The reliable en-

coding of speech-like sounds across the ICC, and spatial and spectral distances still yielding

a high response similarity, are not only substantial to better understand processing of this

nucleus, but could be important for improving medical devices. For the auditory midbrain

prosthesis, these distances might give indications for the spatial separation of stimulating

electrodes.

The multi-units faithfully encode the spectrotemporally rich set of behaviorally relevant

vocalizations. They allow discriminating the 11 vocalizations based on their neural re-

sponses across a wide range of the tonotopy, despite overlapping spectral contents of the

vocalizations. High response similarities of spiking response are confined to distances below

300 µm, and thus spiking responses differ substantially for larger distances. It was found

that multi-unit clusters display mostly independent encoding, i.e. temporal correlations and

noise correlations do not contribute to a more detailed encoding of the vocalizations. A

similar suggestion which was made for single neurons in inferior temporal cortical neurons

could hold for multi-unit clusters in the ICC: in order to avoid redundant information,

connection patterns and weights are favored which keep the responses of adjacent neuron

(neural groups) as independent as possible, both, for signal and noise, namely that local

circuits are organized with the constraint to avoid correlated signals [129].

7.3 Conclusion

In this work it has been shown that response correlations in the mammalian ICC decrease

with increasing spatial distance of the multi-units. Thus, the different inputs and gradients

of response preferences across the ICC result in a gradual decrease of response correlations

with distance. This decrease follows an exponential function, which has also been found

for the primary auditory cortex [47]. However, with a steeper decrease which indicates

smaller regions of neurons with similar responses than in the auditory cortex. It was shown

that neural correlations in the mammalian ICC are substantial, thus, interactions between

groups of neurons exist but they do not contribute to a more detailed encoding of vocaliza-

tions. The responses from 3-5 multi-units are sufficient to almost perfectly discriminate 11

vocalizations, but discrimination is not improved if further responses are added. Different

tuning will add independent information to the discrimination, but many times adjacent

multi-units will have similar tuning, and it seems puzzling that the small existing differ-

ences in the units’ responses are important enough to contribute new information to the

discrimination. This result, however, is supported by work of Holmstrom and colleagues

who found that neural responses in the mammalian ICC are heterogeneous, and that this

heterogeneity appears to be enough for an efficient encoding of vocalizations [21].
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The representation of vocalizations does not follow a purely linear mapping according to the

stimulus’ spectral content, but deviations exist. These could be due to nonlinear response

mechanisms and this needs to be investigated in future studies. It would be interesting

to investigate such a mapping in detail at the single neuron level. The found nonlinear

response properties agree with previous work [14], but this is the first study to investigate

nonlinear response properties independently for different frequency carriers. In conclusion,

multi-units provide enough information to reliably distinguish complex sounds in broad best

frequency ranges. Thus, a robust representation of vocalization against smaller groups or

deficient neurons exists, which might be important in the behavioral context. Multi-units

in the central inferior colliculus act as independent encoders in the sense that correlations

with other neurons do not facilitate encoding, as demonstrated for single retinal ganglion

cells [33], and redundancy is minimized as suggested for central systems [32]. The nonlinear

response properties seem to be inherent to neurons across the ICC, and also across the best

frequency range.
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für die schöne Zeit. Papa danke ich für hilfreiche Gespräche. Mara, Yuri und Leo danke
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