Einfluss unterschiedlicher metallischer Stents auf das intraluminale Epithelisations- und Granulationsverhalten nach Implantation in die großen Atemwege bei New Zealand White Rabbits

INAUGURAL-DISSERTATION

zur Erlangung des Doktorgrades

der Medizinischen Fakultät der Georg-August-Universität zu Göttingen

vorgelegt von

Julia Klötzer

aus

Münster

Göttingen 2014
Dekan: Prof. Dr. rer. nat. H. K. Kroemer

I. Berichterstatter: PD Dr. med M. Sigler

II. Berichterstatter/in:

III. Berichterstatter/in:

Tag der mündlichen Prüfung:
Inhaltsverzeichnis

1 Einleitung .. 1
 1.1 Tracheobronchiale Stenosen im Kindesalter ... 1
 1.2 Atemwegstents .. 4
 1.2.1 Geschichte der Atemwegstents ... 4
 1.2.2 Indikationen und Kontraindikationen von Atemwegstents 5
 1.2.3 Kindliche Atemwege und Stentimplantation .. 6
 1.3 Aktuelle Studien .. 9
 1.4 Sirolimus .. 12
 1.5 Zielsetzung der Arbeit .. 15

2 Material und Methoden ... 16
 2.1 Versuchstiere .. 16
 2.2 Verwendete Stents .. 17
 2.2.1 Modell Bx Sonic ... 17
 2.2.2 Modell Cypher Select ... 17
 2.3 Versuchsablauf .. 18
 2.3.1 Implantation ... 18
 2.3.2 Verlaufskontrolle und Abbruchkriterien ... 20
 2.3.3 Explantation ... 20
 2.4 Implantataufarbeitung ... 21
 2.4.1 Gewebefixierung ... 21
 2.4.2 Einbettung in Kunstharz .. 21
 2.4.3 Histologie .. 22
 2.4.4 Immunhistochemie .. 24
 2.5 Technische Ausrüstung .. 25

3 Ergebnisse .. 26
 3.1 Versuchsverlauf ... 26
 3.1.1 Implantationsversuche .. 26
 3.1.2 Verlaufskontrollen .. 30
 3.1.3 Gewichtsentwicklung ... 33
 3.1.4 Explantation ... 35
 3.2 Makroskopische Auswertung der Präparate .. 38
 3.2.1 Modell Bx Sonic (Gruppe A) .. 38
1 Einleitung

1.1 Tracheobronchiale Stenosen im Kindesalter

Strumata, äußere Kompressionen durch Gefäßanomalien, die Instabilitäten der Knorpelspangen verursachen, sowie chronische Infektionen oder eine lange Intubationszeit mit hohen Beatmungsdrücken können zur erworbenen Form der Tracheo- und Bronchomalazie führen (Austin und Ali 2003).

Die konservative Therapie der Tracheobronchomalazie besteht in der Langzeitbeatmung mittels CPAP (Continuous Positive Airway Pressure). Dies ist ein einfaches, nicht-invasives Verfahren, welches sich für alle Atemwegsgrößen eignet und eine effektive Methode zur Schienung der Atemwege darstellt. Allerdings kann es mit den Komplikationen einer dauerhaften Beatmung einhergehen: Einem erhöhten Infektionsrisiko, einer eingeschränkten Mobilität, verzögerter Sprachentwicklung und sekundären Tracheomalazien im Bereich des Tubus oder Tracheostomas. Operative Therapieansätze umfassen die Resektion und
Einleitung

1.2 Atemwegstents

1.2.1 Geschichte der Atemwegstents

1.2.2 Indikationen und Kontraindikationen von Atemwegstents

Einleitung

1.2.3 Kindliche Atemwege und Stentimplantation

1.3 Aktuelle Studien

Der Einsatz metallischer Atemwegstents ist ein relativ neues Therapieverfahren, welches sich zunächst als vielversprechend erwies, jedoch mit zunehmendem Einsatz physiologische und technische Komplikationen aufzeigte und daher kontrovers diskutiert wird.

Die erste doppelblinde, randomisierte Studie mit einem drug-eluting stent namens RAVEL (RAndomized Study with the Sirolimus-eluting VElocity Balloon-Expandable Stent) schloss 238 Patienten in Europa und Lateinamerika mit de-novo-Läsionen der Koronargefäße ein. Den Probanden wurde ein unbeschichteter metallischer (bare-metal) Stent Bx Velocity oder ein mit Sirolimus beschichteter metallischer (drug-eluting) Stent Cypher Select der Firma Johnsen und Johnsen Cordis (Warren, New Jersey) implantiert. Nach sechs Monaten zeigte die Gruppe der Patienten mit drug-eluting stent ein geringeres Late Lumen Loss (Differenz zwischen minimalem Gefäßdurchmesser im Stent postinterventionell und minimalem Gefäßdurchmesser bei der Kontrollangiographie nach einem definierten Zeitraum in mm) als die Vergleichsgruppe (0,01 mm vs. 0,80 mm p <0,001). Die binäre Restenoserate (definiert als der prozentuale Anteil der Patienten mit >50 %iger Restenose) der Stents Typ Cypher Select betrug 0 %, in der Kontrollgruppe Bx Velocity hingegen 26 % (p <0,001). Das follow up nach einem Jahr zeigte eine kumulative ereignisfreie Überlebensrate von 94,1 % für den Stent Cypher Select gegenüber 70,9 % in der Kontrollgruppe Bx Velocity. Die Rate schwerer unerwünschter Herzereignisse, der sogenannten Major Adverse Cardiac Events (Herzinfarkt, der Tod des Patienten, die Notwendigkeit eines aortokoronaren-Bypasses oder einer PTCA) betrug nach einem Jahr 5,8 % in der Gruppe Cypher Select gegenüber 28,8 % in der Kontrollgruppe Bx Velocity (p <0,001) (Morice et al. 2002). Eine Metaanalyse aus dem Jahr 2007 umfasste 38 Studien und schloss 18.023 Patienten mit koronarer Stentversorgung ein. Das follow up erfolgte bis zu vier Jahre. Thema der Studien war ein Vergleich von bare-metal stents mit drug-eluting stents bzw. ein direkter Vergleich von sirolimus-eluting stents und den mit einem Taxan beschichteten paclitaxel-eluting Koronarstents. Die besten klinischen Ergebnisse zeigte das mit Sirolimus beschichtete Modell: Während sich die Mortalität der beschichteten und unbeschichteten Stenttypen vergleichbar darstellte, bot er das geringste Herzinfarktrisiko (Hazard Rate: 0,81 im Vergleich zu bare-metal stents) (Hazard Rate: 0,83 im Vergleich zum paclitaxel-eluting stent). Die Notwendigkeit einer Revaskularisierung der Zielstenose war im Vergleich zu einem bare-metal stent deutlich reduziert (Hazard Rate: 0,7) (Stettler et al. 2007).

Andere große Studien und Metaanalysen hingegen beschrieben ein erhöhtes Risiko der drug-eluting stents für die Entstehung von Stentthrombosen in einem Zeitraum von bis zu drei Jahren nach Implantation. Diese in der Literatur als late drug-eluting stent thrombosis bezeichnete Komplikation konnte nach Implantation unbeschichteter Stents seltener
1 Einleitung

1.4 Sirolimus

Abbildung 1: Der Sirolimus (Rapamycin)–Wirkmechanismus
1.5 Zielsetzung der Arbeit

Besonderes Augenmerk gilt folgenden Fragestellungen:

1. Welche zellulären Mechanismen führen zu einem Einwachsen der Stentstreben in das umgebende Gewebe und zur Entstehung von Granulationsgewebe?
2. Inwieweit findet eine Beteiligung von Entzündungszellen wie Granulozyten, Makrophagen und Lymphozyten statt?
3. Weisen die mit Sirolimus immunmodulatorisch beschichteten Stents antiproliferative und antiinflammatorische Eigenschaften auf, welche die Granulationstendenz, Epithelisierung und Entzündungsreaktion des respiratorischen Epithels beeinflussen?
4. Besteht ein Unterschied zwischen der Beeinflussung der Granulationstendenz, Epithelisierung und Entzündungsreaktion der beiden Stentmodelle?
2 Material und Methoden

2.1 Versuchstiere

2.2 Verwendete Stents

2.2.1 Modell Bx Sonic

2.2.2 Modell Cypher Select

2.3 Versuchsablauf

2.3.1 Implantation

Die geplanten Versuche wurden an Kaninchen der Rasse New Zealand White Rabbits durchgeführt. Diese wurden mittels 0,1 ml/kg/KG Xylazin 2 % i.m. und 0,5 ml/kg/KG Ketanest 50 mg/ml i.m. in Allgemeinnarkose versetzt, fiberoptisch intubiert (Tubus: Portex 3,5 mm ID) und die Kreislaufstabilität via Pulsoxymetrie überwacht. Um intakte Atemwege für die zu untersuchenden Reaktionsabläufe (Wachstum von Granulationen, Epithelisierung, Infiltration von Entzündungszellen etc.) zu gewährleisten, erfolgten vor jeder Implantation Bronchoskopien der Atemwege. Zur orientierenden Bestimmung der Atemwegsdurchmesser wurde bei einem der Versuchstiere (FMG2) der Bronchialbaum unter sterilen Bedingungen mittels Kontrastmittel (1 ml Ultravist 300, Bayer Vital GmbH, Leverkusen, Deutschland) unter Durchleuchtung dargestellt (s. Abbildung 2).

Abbildung 2: Tier FMG2: Darstellung des Bronchialbaumes mittels Kontrastmittelgabe

Am distalen Ende eines Katheters befand sich ein Implantationsballon, auf den ein Koronarstent vormontiert wurde. Dieser wurde mit Hilfe eines Führungsdrahtes über den liegenden Tubus in die Atemwege eingebracht und konnte je nach angewandtem Inflationsdruck auf den gewünschten Durchmesser dilatiert werden (s. Abbildung 3 und Abbildung 4). Unter radiologischer Kontrolle wurden randomisiert jeweils ein unbeschichteter, ballon-expandierbarer Koronarstent Bx Sonic sowie ein Sirolimus-beschichteter ballonexpandierbarer
Stent *Cypher Select* in die Hauptbronchien der rechten und linken Lunge implantiert. Im Anschluss daran wurde, soweit möglich, die Lage des Stents mittels flexibler Bronchoskopie kontrolliert und radiologisch mittels C-Bogen dokumentiert. Bei einem ausreichenden Wachheitszustand erfolgte die Extubation der Tiere und ihre Unterbringung in der tierexperimentellen Abteilung der Universitätsmedizin Göttingen.

Abbildung 3: Tier FKZ6: Per Katheter wird ein Stent platziert

Abbildung 4: Tier FKZ6: Mittels eines Ballons wird der Stent dilatiert
2.3.2 Verlaufskontrolle und Abbruchkriterien

Abbildung 5: Versuchsaufbau zur Implantation und Verlaufskontrolle

2.3.3 Explantation

Nach 12 Monaten wurden die Kaninchen nach letzter Kontrolle mittels Thiopental getötet. Der Bronchialbaum wurde mitsamt der Lunge zur weiteren Untersuchung entnommen und die Präparate samt umgebendem Gewebe freipräpariert.
2.4 Implantataufarbeitung

2.4.1 Gewebefixierung

Alle explantierten Implantate wurden mit einem schmalen Saum umgebenden Gewebes in Formalin fixiert.

2.4.2 Einbettung in Kunstharz

Abbildung 6: Präparat 432: Einbettung in einen Kunstharzblock
(Modell *Bx Sonic*, Vergrößerung 20fach)
2.4.3 Histologie

Anfertigung von Schleifpräparaten

Angewandte Färbemethode

Graduierung des Einwachsens der Stentstreben

„0: kein Einwachsen der Stentstreben“

„1: Einwachsen der Stentstreben im Lumen zu <25 %“

„2: Einwachsen der Stentstreben im Lumen zu 25-75 %“

„3: Einwachsen der Stentstreben im Lumen zu >75 %“

Graduierung der inflammatorischen Prozesse

Die semiquantitative, histologische Graduierung der inflammatorischen Prozesse erfolgte ähnlich dem sogenannten inflammatory score, einer 3-Punkteskala nach Schwartz et al., die bereits von Lim et al. im Rahmen histologischer Untersuchungen restenosierender Koronarstents am Tiermodell genutzt wurde (Lim et al. 2008). Im Rahmen dieser Arbeit erfolgte eine Übertragung auf die durch den Kontakt zu Stentstreben ausgelöste lymphohistiozytäre Entzündungsreaktion des bronchialen Gewebes.

„0: no inflammatory cells surrounding the strut“

„1: light, noncircumferential histiocytic infiltrate surrounding the strut“ - (entspricht einer leichten lymphohistiozytären Infiltration)

„2: localized, moderate to dense cellular aggregate surrounding the strut noncircumferentially“ - (entspricht einer moderaten lymphohistiozytären Infiltration)

„3: circumferential, dense lymphohistiocytic cell infiltration of the strut“ - (entspricht einer starken lymphohistiozytären Infiltration)
2.4.4 Immunhistochemie

Zur Ergänzung der konventionellen, histologischen Analyse folgten immunhistochemische Untersuchungen, um verschiedene Antigene im Gewebe nachzuweisen.

Etablierung der Differenzierungsmarker

Verwendete Antikörper

Primärantikörper

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smooth Muscle Aktin (SMA)</td>
<td>Monoclonal Mouse Anti-Human Smooth Muscle Actin Clone 1A4 DAKO M0851</td>
</tr>
<tr>
<td></td>
<td>(Dako Deutschland GmbH, Hamburg, Deutschland)</td>
</tr>
<tr>
<td>Smooth Muscle Myosin</td>
<td>Mouse Anti-Human Smooth Muscle Myosin, Heavy Chain Chemicon MAB 3568</td>
</tr>
<tr>
<td>(SMMMyosin)</td>
<td>(Millipore GmbH, Schwabach/Ts., Deutschland)</td>
</tr>
<tr>
<td>Vimentin</td>
<td>Monoclonal Mouse Anti-Vimentin Clone V9 DAKO M0725</td>
</tr>
<tr>
<td></td>
<td>(Dako Deutschland GmbH, Hamburg, Deutschland)</td>
</tr>
<tr>
<td>Desmin</td>
<td>D9 Mouse monoclonal Ig G Progen No. 10519</td>
</tr>
<tr>
<td></td>
<td>(PROGEN Biotechnik GmbH, Heidelberg, Deutschland)</td>
</tr>
<tr>
<td>CD 3</td>
<td>Goat polyclonal anti CD3 IgG (M-20) Santa Cruz sc-1127</td>
</tr>
<tr>
<td></td>
<td>(Santa Cruz Biotechnology, Inc., Heidelberg, Deutschland)</td>
</tr>
<tr>
<td>CD79</td>
<td>Monoclonal Mouse Anti-Human CD79βγ Clone HM57 DAKO M7051</td>
</tr>
<tr>
<td></td>
<td>(Dako Deutschland GmbH, Hamburg, Deutschland)</td>
</tr>
</tbody>
</table>

Sekundärantikörper

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMA, SMMMyosin, Vimentin</td>
<td>Polyclonal Rabbit Anti-Mouse Immunglobulins DAKO P0260</td>
</tr>
<tr>
<td>und Desmin</td>
<td>(Dako Deutschland GmbH, Hamburg, Deutschland)</td>
</tr>
<tr>
<td>CD3 und CD79</td>
<td>Polyclonal Rabbit Anti-Goat Immunglobulin DAKO (Dako Deutschland GmbH,</td>
</tr>
<tr>
<td></td>
<td>Hamburg, Deutschland)</td>
</tr>
</tbody>
</table>

Tabelle 1: Etablierte und verwendete Antikörper

2.5 Technische Ausrüstung

3 Ergebnisse

3.1 Versuchsverlauf

3.1.1 Implantationsversuche

Erster Implantationsversuch

Es erfolgte die Implantation von 22 Stents in 11 weibliche Kaninchen. Der Innen-
durchmesser der Implantate betrug bei einem Inflationsdruck von durchschnittlich 12,5 atm (12-14 atm) zwischen 3,61 mm und 3,70 mm. Vereinzelt bestand die Notwendigkeit einer Nachdilatation der initial platzierten Stents, um die Adhärenz zur Bronchialwand zu gewährleisten (Tier FKY8, FKZ6 und FLS3). Es handelte sich in allen Fällen um das in den rechten Hauptbronchus platzierte Implantat, zweimal um das Modell Bx Sonic und einmal um das Modell Cypher Select. Bei neun von 11 Tieren wurde der Stent im Bereich des vierten Interkostalraumes (ICR) platziert, unmittelbar nach dem Bronchusabgang von der Trachea (s. Abbildung 7). Ausnahmen boten zwei Tiere: Kaninchen FMK7 zeigte eine beidseitige postinterventionelle Stentlage im Bereich der fünften Interkostalräume medial der Medioklavikularlinie (s. Abbildung 8). Die implantierten Stents des Tier FLS3 lagen im vierten Interkostalraum links, sowie im fünften Interkostalraum rechts, medial der Medioklavikularlinien (s. Abbildung 9).

Alle Narkosen verliefen komplikationslos. In der nach Implantation durchgeführten Bronchoskopie zeigte Kaninchen FLO6 am rechten Stent leichte Schleimhautblutungen. Dyspnöe oder Infekte der Atemwege traten im weiteren Verlauf nicht auf, die Nahrungsaufnahme der Tiere und ihr Sozialverhalten blieben unauffällig. Die bronchoskopische und radiologische Kontrolle im darauffolgenden Monat zeigte einen Verlust von insgesamt 19 der 22 Stents, entsprechend 86,4 % der eingesetzten Implantate (s. Tabelle 2). Kaninchen FMK7 wies einen Stent auf (Modell Bx Sonic/Präparat 432). Kaninchen FLS3 trug zwei dislozierte Stents in sich (Modell Bx Sonic und Cypher Select), eins der Implantate saß in der Trachea (s. Abbildung 10).
Ergebnisse

Abbildung 7: Tier FKhU9: Typische Stentlokalisation des 1. Versuchsdurchlaufes im 4. ICR bds. nahe der Trachea (schwarze Pfeile)

Abbildung 8: Tier FmK7: Präparat 432 links im 5. ICR medial der Medioklavikularlinie gelegen (schwarzer Pfeil)

Abbildung 9: Tier FLS3 mit postinterventioneller Stentlage im 4. ICR links und 5. ICR rechts medial der Medioklavikularlinie (schwarze Pfeile)

Abbildung 10: Tier FLS3 nach vierwöchiger Kontrolle, beide Stents sind nach kranial disloziert (schwarze Pfeile)

<table>
<thead>
<tr>
<th>Kaninchen</th>
<th>Cypher rechts</th>
<th>Cypher links</th>
<th>Sonic rechts</th>
<th>Sonic links</th>
<th>follow up</th>
<th>Anzahl der verbliebenen Stents</th>
<th>untersuchtes Präparat</th>
</tr>
</thead>
<tbody>
<tr>
<td>FKhU9</td>
<td>12 atm</td>
<td></td>
<td>12 atm</td>
<td>expекторiert</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLO6</td>
<td>12 atm</td>
<td>12 atm</td>
<td></td>
<td>expекторiert</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FKZ6</td>
<td>12 atm</td>
<td></td>
<td>12 atm</td>
<td>expекторiert</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FKY8</td>
<td>14 atm</td>
<td></td>
<td>14 atm</td>
<td>expекторiert</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMG2</td>
<td>14 atm</td>
<td>14 atm</td>
<td></td>
<td>expекторiert</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3AAX</td>
<td>12 atm</td>
<td></td>
<td>12 atm</td>
<td>expекторiert</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3FTQ</td>
<td>14 atm</td>
<td></td>
<td>14 atm</td>
<td>expекторiert</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JKF8</td>
<td>12 atm</td>
<td></td>
<td>12 atm</td>
<td>expекторiert</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3AGX</td>
<td>14 atm</td>
<td></td>
<td>14 atm</td>
<td>expекторiert</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FmK7</td>
<td>12 atm</td>
<td></td>
<td>12 atm</td>
<td>expекторiert</td>
<td>1</td>
<td>432 Sonic</td>
<td></td>
</tr>
<tr>
<td>FLS3</td>
<td>12 atm</td>
<td>12 atm</td>
<td></td>
<td>expекторiert</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 2: Inflationsdruck der verwendeten Stentmodelle und follow up der 1. Versuchsdurchführung nach einem Monat
Zweiter Implantationsversuch

<table>
<thead>
<tr>
<th>Kaninchen</th>
<th>Cypher rechts</th>
<th>Cypher links</th>
<th>Sonic rechts</th>
<th>Sonic links</th>
<th>Lage im Interkostalraum</th>
<th>Lage zur Medioklavikularlinie</th>
<th>am Versuchsende untersuchtes Präparat</th>
<th>Präparatlage</th>
</tr>
</thead>
<tbody>
<tr>
<td>FKV9</td>
<td>14 atm</td>
<td>16 atm</td>
<td>7</td>
<td>medial</td>
<td>expektoriert</td>
<td>494 Sonic</td>
<td>Segmentbronchus</td>
<td></td>
</tr>
<tr>
<td>FLO6</td>
<td>12 atm</td>
<td></td>
<td>6</td>
<td>medial</td>
<td>493 Cypher</td>
<td>Hauptbronchus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FKZ6</td>
<td>20 atm</td>
<td>10 atm</td>
<td>5</td>
<td>medial</td>
<td>488 Sonic</td>
<td>Hauptbronchus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FKY8</td>
<td>14 atm</td>
<td>16 atm</td>
<td>7</td>
<td>lateral</td>
<td>491 Cypher</td>
<td>Langengewebe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMG2</td>
<td>20 atm</td>
<td>16 atm</td>
<td>6</td>
<td>medial</td>
<td>486 Sonic</td>
<td>Segmentbronchus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3AAX</td>
<td>16 atm</td>
<td></td>
<td>6</td>
<td>medial</td>
<td>497 Cypher</td>
<td>Hauptbronchus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3FTQ</td>
<td>14 atm</td>
<td></td>
<td>14 atm</td>
<td>5</td>
<td>medial</td>
<td>495 Sonic</td>
<td>Hauptbronchus</td>
<td></td>
</tr>
<tr>
<td>JKF8</td>
<td>12 atm</td>
<td>16 atm</td>
<td>6</td>
<td>medial</td>
<td>expektoriert</td>
<td>499 Sonic</td>
<td>Hauptbronchus</td>
<td></td>
</tr>
<tr>
<td>3AHP</td>
<td>16 atm</td>
<td></td>
<td>16 atm</td>
<td>6</td>
<td>medial</td>
<td>expektoriert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3FGK</td>
<td>14 atm</td>
<td>16 atm</td>
<td>6</td>
<td>medial</td>
<td>expektoriert</td>
<td>500 Sonic</td>
<td>Hauptbronchus</td>
<td></td>
</tr>
<tr>
<td>3EXS</td>
<td>14 atm</td>
<td></td>
<td>14 atm</td>
<td>6</td>
<td>medial</td>
<td>expektoriert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3EUP</td>
<td>14 atm</td>
<td></td>
<td>14 atm</td>
<td>6</td>
<td>medial</td>
<td>expektoriert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3FFE</td>
<td>14 atm</td>
<td></td>
<td>14 atm</td>
<td>6</td>
<td>medial</td>
<td>expektoriert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3EVZ</td>
<td>14 atm</td>
<td></td>
<td>14 atm</td>
<td>7</td>
<td>medial</td>
<td>expektoriert</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.1.2 Verlaufskontrollen

<table>
<thead>
<tr>
<th>Kaninchen</th>
<th>01 Monat</th>
<th>8 Monate</th>
<th>13 Monate</th>
<th>untersuchtes Präparat</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMK7</td>
<td>Sonic links</td>
<td>Sonic links</td>
<td>Sonic links</td>
<td>432 Sonic</td>
</tr>
<tr>
<td>FLS3</td>
<td>Cypher links</td>
<td>expektoriert</td>
<td>Sonic rechts</td>
<td>expektoriert</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anzahl der verbliebenen Stents</th>
<th>3</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stentverlust</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>davon Sonic</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>davon Cypher</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabelle 4: Follow up der Tiere mit Stent der 1. Versuchsdurchführung

3 Ergebnisse

<table>
<thead>
<tr>
<th>Kaninchen</th>
<th>01 Monat</th>
<th>03 Monate</th>
<th>06 Monate</th>
<th>12 Monate</th>
<th>untersuchtes Präparat</th>
</tr>
</thead>
<tbody>
<tr>
<td>FKU9</td>
<td>Cypher rechts</td>
<td>expекторiert</td>
<td>Sonic links</td>
<td>Sonic links</td>
<td>Sonic links</td>
</tr>
<tr>
<td>FLO6</td>
<td>Cypher rechts</td>
<td>Cypher rechts</td>
<td>Cypher rechts</td>
<td>Cypher rechts</td>
<td>493 Cypher</td>
</tr>
<tr>
<td>FKZ6</td>
<td>Cypher links</td>
<td>Cypher links</td>
<td>Cypher links</td>
<td>Cypher links</td>
<td>489 Cypher</td>
</tr>
<tr>
<td>FKY8</td>
<td>Cypher links</td>
<td>Cypher links</td>
<td>Cypher links</td>
<td>Cypher links</td>
<td>491 Cypher</td>
</tr>
<tr>
<td>FMG2</td>
<td>Cypher links</td>
<td>expекторiert</td>
<td>Sonic links</td>
<td>Sonic links</td>
<td>490 Sonic</td>
</tr>
<tr>
<td>3AAX</td>
<td>Cypher links</td>
<td>Cypher links</td>
<td>Cypher links</td>
<td>Cypher links</td>
<td>497 Cypher</td>
</tr>
<tr>
<td>3FTQ</td>
<td>expекторiert</td>
<td>Sonic links</td>
<td>Sonic links</td>
<td>Sonic links</td>
<td>495 Sonic</td>
</tr>
<tr>
<td>JKF8</td>
<td>Sonic links</td>
<td>expекторiert</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3AHP</td>
<td>expекторiert</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3FGK</td>
<td>Cypher rechts</td>
<td>expекторiert</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3EXS</td>
<td>expекторiert</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3EUP</td>
<td>expекторiert</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3FFE</td>
<td>expекторiert</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3EVS</td>
<td>expекторiert</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anzahl der verbliebenen Stents</th>
<th>15</th>
<th>11</th>
<th>10</th>
<th>10</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stentverlust</td>
<td>13</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>davon Sonic</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>davon Cypher</td>
<td>7</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabelle 5: Follow up der 2. Versuchsdurchführung
Narkoseüberhang

<table>
<thead>
<tr>
<th>Kaninchen</th>
<th>Narkoseüberhang</th>
<th>Präparat</th>
<th>Präparatlage</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMK7</td>
<td>nein</td>
<td>432 Sonic</td>
<td>Hauptbronchus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>expektoriert</td>
<td></td>
</tr>
<tr>
<td>FKIU9</td>
<td>nein</td>
<td>494 Sonic</td>
<td>Segmentbronchus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>expektoriert</td>
<td></td>
</tr>
<tr>
<td>FLO6</td>
<td>ja</td>
<td>492 Sonic</td>
<td>Segmentbronchus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>493 Cypher</td>
<td>Hauptbronchus</td>
</tr>
<tr>
<td>FKZ6</td>
<td>nein</td>
<td>488 Sonic</td>
<td>Hauptbronchus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>489 Cypher</td>
<td>Hauptbronchus</td>
</tr>
<tr>
<td>FKY8</td>
<td>ja</td>
<td>490 Sonic</td>
<td>Lungengewebe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>491 Cypher</td>
<td>Lungengewebe</td>
</tr>
<tr>
<td>FMG2</td>
<td>ja</td>
<td>486 Sonic</td>
<td>Segmentbronchus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>expektoriert</td>
<td></td>
</tr>
<tr>
<td>3AAX</td>
<td>nein</td>
<td>497 Cypher</td>
<td>Hauptbronchus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>expektoriert</td>
<td></td>
</tr>
<tr>
<td>3FTQ</td>
<td>nein</td>
<td>495 Sonic</td>
<td>Hauptbronchus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>expektoriert</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 6: Kaninchen, die einen Narkoseüberhang zeigten, wiesen Atemwegstents mit einer irregulären Lage auf (siehe Markierungen)
3 Ergebnisse

3.1.3 Gewichtsentwicklung

Initialgewicht im ersten Versuchsdurchlauf

Der erste Versuch einer Implantation von 22 Stents in 11 Kaninchen verlief bis auf eine Schleimhautblutung bei Kaninchen FLO6 komplikationslos. Das Gewicht der Tiere zu diesem Zeitpunkt betrug durchschnittlich 3539 g (3100 g–4000 g).

Gewichtsentwicklung im Verlauf der ersten Versuchsdurchführung

Das erste follow up im folgenden Monat zeigte einen Verlust von 86.4% der implantierten Stents. Neun von 11 Tieren nahmen an Gewicht zu. Dabei wiesen Kaninchen FMK7 und FLS3, welche als einzige nach einmonatiger Kontrolle noch Implantate aufzeigten, eine mit 130 g und 140 g geringere Gewichtszunahme als Tiere ohne Stent auf. Diese zeigten eine Gewichtszunahme von mind. 170 g bis 390 g. Zwei Kaninchen boten einen Gewichtsverlust. Kaninchen FLO6 mit postinterventioneller Schleimhautblutung verlor 190 g. Tier FKZ6 verlor 310 g, nachdem es zwei Wochen nach Implantation einen stark blutenden Krallenabriss erlitt (s. Tabelle 7).

<table>
<thead>
<tr>
<th>Kaninchen</th>
<th>Gewicht bei Implantation</th>
<th>Gewicht nach 01 Monat</th>
<th>Gewichtsentwicklung</th>
<th>Anzahl der verbliebenen Stents</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMK7</td>
<td>4000 g</td>
<td>4140 g</td>
<td>+140 g</td>
<td>1</td>
</tr>
<tr>
<td>FLS3</td>
<td>3380 g</td>
<td>3510 g</td>
<td>+130 g</td>
<td>2</td>
</tr>
<tr>
<td>FKU9</td>
<td>3390 g</td>
<td>3760 g</td>
<td>+370 g</td>
<td>0</td>
</tr>
<tr>
<td>FLO6</td>
<td>3580 g</td>
<td>3390 g</td>
<td>-190 g</td>
<td>0</td>
</tr>
<tr>
<td>FKZ6</td>
<td>3900 g</td>
<td>3590 g</td>
<td>-310 g</td>
<td>0</td>
</tr>
<tr>
<td>FKY8</td>
<td>3770 g</td>
<td>4040 g</td>
<td>+270 g</td>
<td>0</td>
</tr>
<tr>
<td>FMG2</td>
<td>3450 g</td>
<td>3840 g</td>
<td>+390 g</td>
<td>0</td>
</tr>
<tr>
<td>3AAAX</td>
<td>3170 g</td>
<td>3360 g</td>
<td>+190 g</td>
<td>0</td>
</tr>
<tr>
<td>FKF8</td>
<td>3770 g</td>
<td>3950 g</td>
<td>+180 g</td>
<td>0</td>
</tr>
<tr>
<td>3AHP</td>
<td>3100 g</td>
<td>3270 g</td>
<td>+170 g</td>
<td>0</td>
</tr>
<tr>
<td>3AGX</td>
<td>3420 g</td>
<td>3700 g</td>
<td>+280 g</td>
<td>0</td>
</tr>
<tr>
<td>Durchschnittsgewicht</td>
<td>3539 g</td>
<td>3686 g</td>
<td>+147 g</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabelle 7: Gewichtsentwicklung der Kaninchen der 1. Versuchsdurchführung bis zum Zeitpunkt des ersten follow up nach 1 Monat
Initialgewicht beim zweiten Versuchsdurchlauf

Es folgte der zweite Versuchsdurchlauf, an dessen Ende zehn Präparate gewonnen werden konnten. Das durchschnittliche Gewicht aller Tiere zum Zeitpunkt der zweiten Implantation betrug 3989 g (3530 g-4760 g). Das Gewicht der Kaninchen der ersten Versuchsdurchführung betrug durchschnittlich 4280 g und somit 741 g mehr als zum Zeitpunkt der ersten Versuchsdurchführung. Das Gewicht der sechs neuen Kaninchen (3AHP, 3FGK, 3EXS, 3EUP, 3FFE und 3EVS) betrug durchschnittlich 3600 g und entsprach somit etwa dem Gewicht der Tiere aus der ersten Versuchsdurchführung (3539 g).

Gewichtsentwicklung im Verlauf

Die Gewichtsentwicklung unterlag hohen Schwankungen. Im Vergleich des Implantationsgewichtes zum Explantationsgewicht der Kaninchen mit Stent zeigte sich letztendlich ein Verlust von durchschnittlich 199 g Körpergewicht nach zwölf Monaten. Eine Ausnahme stellte Tier 3FTQ dar, welches trotz Stent eine regelmäßige Gewichtszunahme aufwies.

Die erste Kontrolle nach vier Wochen ergab zunächst eine Gewichtszunahme aller Tiere mit Implantat von durchschnittlich 122 g. Während dieses Zeitraumes hatten die Kaninchen 53,6 % der Stents exporitettiert. Auch im Rahmen der ersten Versuchsdurchführung war es in diesem Zeitraum zu einer vergleichbaren Gewichtszunahme von durchschnittlich 147 g gekommen. Lediglich FKZ6 in seinem Zustand nach Krallenabbriss zeigte weiterhin einen minimalen Gewichtsverlust. In den darauffolgenden sechs Monaten zeigte sich bei allen Tieren mit Stent eine Gewichtsreduktion von durchschnittlich 154 g nach drei Monaten (vier weitere Stents wurden exporitettiert) und durchschnittlich 254 g nach einem halben Jahr (ein Stent wurde exporitettiert). Nach zwölf Monaten wiesen sechs der sieben Tiere mit Stent wieder eine Gewichtszunahme von 89 g auf, ihr Ausgangsgewicht konnten sie jedoch nicht mehr erreichen (s. Tabelle 8).

FMK7 der ersten Versuchsdurchführung hatte innerhalb der ersten acht Monate 644 g Körpergewicht gewonnen und nach dreizehn Monaten 444 g verloren (s. Tabelle 9).
Ergebnisse

Gewichtsentwicklung

<table>
<thead>
<tr>
<th>Kaninchen</th>
<th>Gewicht bei Implantation</th>
<th>01 Monat</th>
<th>03 Monate</th>
<th>06 Monate</th>
<th>12 Monate</th>
<th>Gewichtsentwicklung insgesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaninchen FKU9</td>
<td>4170 g</td>
<td>+340 g</td>
<td>2</td>
<td>-300 g</td>
<td>1</td>
<td>-380 g</td>
</tr>
<tr>
<td>Kaninchen FLO6</td>
<td>4300 g</td>
<td>+040 g</td>
<td>2</td>
<td>-140 g</td>
<td>2</td>
<td>-030 g</td>
</tr>
<tr>
<td>Kaninchen FKZ6</td>
<td>4760 g</td>
<td>-020 g</td>
<td>2</td>
<td>-390 g</td>
<td>2</td>
<td>-270 g</td>
</tr>
<tr>
<td>Kaninchen FKY8</td>
<td>4300 g</td>
<td>+080 g</td>
<td>2</td>
<td>-150 g</td>
<td>2</td>
<td>-270 g</td>
</tr>
<tr>
<td>Kaninchen FMG2</td>
<td>4300 g</td>
<td>+130 g</td>
<td>2</td>
<td>-090 g</td>
<td>1</td>
<td>-240 g</td>
</tr>
<tr>
<td>Kaninchen 3AAX</td>
<td>4110 g</td>
<td>+100 g</td>
<td>2</td>
<td>-020 g</td>
<td>2</td>
<td>-640 g</td>
</tr>
<tr>
<td>Kaninchen 3FTQ</td>
<td>3900 g</td>
<td>+180 g</td>
<td>1</td>
<td>+010 g</td>
<td>1</td>
<td>+050 g</td>
</tr>
<tr>
<td>Kaninchen JKF8</td>
<td>4200 g</td>
<td>+070 g</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kaninchen 3AHP</td>
<td>3950 g</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kaninchen 3FGK</td>
<td>3560 g</td>
<td>+180 g</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kaninchen 3EXS</td>
<td>3660 g</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kaninchen 3EUP</td>
<td>3530 g</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kaninchen 3FFE</td>
<td>3470 g</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kaninchen 3EVS</td>
<td>3430 g</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Durchschnittsgewicht</td>
<td>3989 g</td>
<td>+122 g</td>
<td>-154 g</td>
<td>-254 g</td>
<td>+089 g</td>
<td>-199 g</td>
</tr>
</tbody>
</table>

Tabelle 8: Gewichtsentwicklung der Kaninchen mit Stent aus der 2. Versuchsdurchführung

Tabelle 9: Gewichtsentwicklung der Kaninchen mit Stent aus der 1. Versuchsdurchführung

<table>
<thead>
<tr>
<th>Kaninchen</th>
<th>Gewicht bei Implantation</th>
<th>01 Monat</th>
<th>03 Monate</th>
<th>13 Monate</th>
<th>Gewichtsentwicklung insgesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaninchen FMK7</td>
<td>4000 g</td>
<td>+140 g</td>
<td>1</td>
<td>+644 g</td>
<td>1</td>
</tr>
<tr>
<td>Kaninchen FLS3</td>
<td>3380 g</td>
<td>+130 g</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
3.1.4 Explantation

Abbildung 11: Präparat 491: Nach der Penetration des Bronchus befindet sich der Stent an der Lungenflügeloberfläche (schwarzer Pfeil)
<table>
<thead>
<tr>
<th>Präparatlage</th>
<th>Hauptbronchus</th>
<th>Segmentbronchus</th>
<th>Hauptbronchus</th>
<th>Segmentbronchus</th>
<th>Hauptbronchus</th>
<th>Gewichtsentwicklung</th>
<th>untersuchtes Präparat</th>
<th>Präparatlage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaninchen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMK7</td>
<td></td>
<td>12 atm</td>
<td>5. ICR medial der Medioklavikularlinie</td>
<td>nein</td>
<td>+340 g</td>
<td>432 Sonic</td>
<td>Hauptbronchus</td>
<td></td>
</tr>
<tr>
<td>FKU9</td>
<td></td>
<td>16 atm</td>
<td>7. ICR lateral der Medioklavikularlinie</td>
<td>nein</td>
<td>-310 g</td>
<td>494 Sonic</td>
<td>Segmentbronchus</td>
<td></td>
</tr>
<tr>
<td>FLO6</td>
<td>12 atm</td>
<td></td>
<td>5. ICR medial der Medioklavikularlinie</td>
<td>ja</td>
<td>-150 g</td>
<td>493 Cypher</td>
<td>Hauptbronchus</td>
<td></td>
</tr>
<tr>
<td>FLO6</td>
<td>12 atm</td>
<td></td>
<td>7. ICR lateral der Medioklavikularlinie</td>
<td></td>
<td></td>
<td>492 Sonic</td>
<td>Segmentbronchus</td>
<td></td>
</tr>
<tr>
<td>FKZ6</td>
<td>10 atm</td>
<td>5. ICR medial der Medioklavikularlinie</td>
<td>nein</td>
<td>-580 g</td>
<td>488 Sonic</td>
<td>Hauptbronchus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FKZ6</td>
<td>20 atm</td>
<td>5. ICR medial der Medioklavikularlinie</td>
<td></td>
<td></td>
<td>489 Cypher</td>
<td>Hauptbronchus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FKY8</td>
<td>16 atm</td>
<td>6. ICR lateral der Medioklavikularlinie</td>
<td>ja</td>
<td>-270 g</td>
<td>490 Sonic</td>
<td>Lungengewebe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FKY8</td>
<td>14 atm</td>
<td>7. ICR lateral der Medioklavikularlinie</td>
<td></td>
<td></td>
<td>491 Cypher</td>
<td>Lungengewebe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMG2</td>
<td>20 atm</td>
<td>6. ICR medial der Medioklavikularlinie</td>
<td>ja</td>
<td>-080 g</td>
<td>486 Sonic</td>
<td>Segmentbronchus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3AAAX</td>
<td>16 atm</td>
<td>6. ICR medial der Medioklavikularlinie</td>
<td>nein</td>
<td>-280 g</td>
<td>497 Cypher</td>
<td>Hauptbronchus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3FTQ</td>
<td>14 atm</td>
<td>5. ICR medial der Medioklavikularlinie</td>
<td>nein</td>
<td>+280 g</td>
<td>495 Sonic</td>
<td>Hauptbronchus</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.2 Makroskopische Auswertung der Präparate

Die makroskopische Auswertung der Präparate erfolgte im Vergleich aller unbeschichteten Stentpräparate Typ Bx Sonic (Gruppe A) zu den mit einer Sirolimus-Polymerbeschichtung versehenen Stentpräparaten Typ Cypher Select (Gruppe B).

3.2.1 Modell Bx Sonic (Gruppe A)

Abbildung 12: Präparat 432: Stentlage im Bronchialsystem, im Lumen kommt grau-gelbes Material zur Darstellung
(Modell Bx Sonic, Vergrößerung 32fach)

Abbildung 13: Präparat 495: Stentlage im Bronchialsystem, körniges Material im Lumen des Bronchus
(Modell Bx Sonic, Vergrößerung 10fach)
3.2.2 Modell Cypher Select (Gruppe B)

Abbildung 18: Präparat 497: Körniges, braun-grunes Material im Bronchuslumen, einige Stentstreben (schwarzer Pfeil) zeigen sich innerhalb des Materials (Modell Cypher Select, Vergrößerung 10fach)

Abbildung 19: Präparat 491: Der Stent ist nach Bronchuspenetration und Migration in das Lungengewebe von Bindegewebe umgeben (Modell Cypher Select, Vergrößerung 20fach)

Abbildung 20: Präparat 491: Spärliche Gefäßzeichnung des den Stent umgebenden Bindegewebes (Modell Cypher Select, Vergrößerung 40fach)
3 Ergebnisse

3.3 Histopathologische Auswertung der Präparate

Auch die histopathologische Auswertung der Präparate erfolgte im Vergleich der unbeschichteten Stentpräparate Typ *Bx Sonic* (Gruppe A) zu den mit einer Sirolimus-Polymerbeschichtung versehenen Stentpräparaten Typ *Cypher Select* (Gruppe B). Es wurden die Lage der Stents zu ihrem umgebenden Gewebe, der Grad ihres Einwachsens sowie die durch ihre Implantation ausgelöste Entzündungsreaktion beurteilt.

3.3.1 Lage der Präparate

Die Lagebeschreibung der Stentstreben erfolgte in Beziehung zu dem sie umgebenden Gewebe.

Lage der Präparate Modell Bx Sonic (Gruppe A)

Abbildung 21: Präparat 432: Regelrechte Stentlage im Bronchus, Knorpelspangen umgeben den Stent (schwarze Pfeile), Granulationsgewebe wölb sich flächig in das Lumen vor

(Modell *Bx Sonic*, Färbung nach Richardson, Vergrößerung 4fach)

Abbildung 22: Präparat 488: Regelrechte Stentlage im Bronchus, Knorpelspangen umgeben den Stent (schwarze Pfeile) in der Nähe eines Blutgefäßes (Stern)

(Modell *Bx Sonic*, Färbung nach Richardson, Vergrößerung 4fach)

Abbildung 23: Präparat 495: Regelrechte Stentlage im Bronchus, Knorpelspangen (schwarze Pfeile) umgeben den Stent

(Modell *Bx Sonic*, Färbung nach Richardson, Vergrößerung 4fach)

Abbildung 24: Präparat 490: Stentlage außerhalb des Bronchus, Bindegewebszellen (schwarzer Pfeil) umspannen die Stentstreben, Adipozyten (Sterne) schließen sich an

(Modell *Bx Sonic*, Färbung nach Richardson, Vergrößerung 4fach)

3 Ergebnisse

Abbildung 25: Präparat 492: Stentstreben im Bronchuslumen (schwarzer Stern) und von alveolärem Gewebe umgeben (schwarzer Pfeil)

(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 1,6fach)

Abbildung 26: Präparat 494: Stentstreben im Bronchuslumen (schwarzer Stern) und von alveolärem Gewebe umgeben (schwarzer Pfeil), Knorpelzellen (gestrichelter Pfeil)

(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 1,6fach)

Abbildung 27: Präparat 486: Bronchuslumen und lateral herausragende Stentstrebe (schwarzer Pfeil)

(Modell Bx Sonic, Vergrößerung 10fach)

Abbildung 28: Präparat 486: Stentstreben im Bronchuslumen (schwarzer Stern) sind von alveolärem Gewebe umgeben (gestrichelter Pfeil), Knorpelzellen (schwarzer Pfeil)

(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 1,6fach)
3 Ergebnisse

Lage der Präparate Modell *Cypher Select* (Gruppe B)

Abbildung 29: Präparat 489: Regelrechte Stentlage im Bronchus, Knorpelspangen (schwarze Pfeile) umgeben den Stent (Modell *Cypher Select*, Färbung nach Richardson, Vergrößerung 1,6fach)

Abbildung 30: Präparat 493: Regelrechte Stentlage im Bronchus, Knorpelspangen (schwarze Pfeile) umgeben den Stent (Modell *Cypher Select*, Färbung nach Richardson, Vergrößerung 1,6fach)

Abbildung 31: Präparat 497: Regelrechte Lage im Bronchus, Knorpelspangen (schwarze Pfeile) umgeben den Stent (Modell *Cypher Select*, Färbung nach Richardson, Vergrößerung 1,6fach)

Abbildung 32: Präparat 493: Atypische Lage von Knorpelzellen (schwarzer Pfeil) über den Stentstreben im Granulationsgewebe (Modell Cypher Select, Färbung nach Richardson, Vergrößerung 4fach)

Abbildung 33: Präparat 493: Atypische Lage von Knorpelzellen (schwarzer Pfeil) über den Stentstreben (Modell Cypher Select, Färbung nach Richardson, Vergrößerung 10fach)

Abbildung 34: Präparat 489: Atypische Lage von Knorpelzellen in Form einer Knorpelspange (schwarzer Pfeil) über der Stentstrebe zum Lumen hin (Modell Cypher Select, Färbung nach Richardson, Vergrößerung 10fach)

Abbildung 35: Präparat 491: Der Stent hat den Bronchus komplett durchwandert, er ist von einer Bindegewebschicht umgeben (gestrichelter Pfeil) und der Lungenflügeloberfläche angelagert (schwarzer Pfeil) (Modell Cypher Select, Färbung nach Richardson, Vergrößerung 1,6fach)
3.3.2 Grad des Einwachsens

Die Graduierung des Einwachsens erfolgte nach einer modifizierten 3-Punkteskala nach Carter et al. (s. Seite 22). Es wurden nur Stents mit einer regelrechten Lage im Hauptbronchus berücksichtigt.

Grad des Einwachsens Modell Bx Sonic (Gruppe A)

Präparat 488 und 495 zeigten kein Einwachsen (Grad 0), alle Stentstreben waren von zellarmer Matrix, fibrinösem Material und Entzündungszellen umgeben (s. Abbildung 36 und Abbildung 37). Präparat 432 wies einen geringen Grad des Einwachsens von <25 % der Stentstreben im Lumen auf (Grad 1) (s. Abbildung 38).

Abbildung 36: Präparat 488: Kein Einwachsen der Stentstreben (Grad 0)
(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 1,6fach)

Abbildung 37: Präparat 495: Kein Einwachsen der Stentstreben (Grad 0)
(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 1,6fach)

Abbildung 38: Präparat 432: Das Präparat zeigt eine Bedeckung der Stentstreben mit neugebildetem Gewebe (schwarze Pfeile) zu <25 % (Grad 1)
(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 1,6fach)
Grad des Einwachsens Modell Cypher Select (Gruppe B)

Kein Einwachsen der Stentstreben konnte bei Präparat 497 festgestellt werden (Grad 0) (s. Abbildung 39). Präparat 489 und 493 zeigten eine Bedeckung der Stentstreben mit neugebildetem Gewebe zwischen 25 und 75 % (Grad 2) (s. Abbildung 40 und Abbildung 41).

Abbildung 39: Präparat 497: Kein Einwachsen der Stentstreben (Grad 0)

Abbildung 40: Präparat 489: Das Präparat zeigt eine Bedeckung der Stentstreben mit neugebildetem Gewebe (schwarze Pfeile) zwischen 25 und 75 % (Grad 2)

Abbildung 41: Das Präparat zeigt eine Bedeckung der Stentstreben mit neugebildetem Gewebe (schwarze Pfeile) zwischen 25 und 75 % (Grad 2)

(Modell Cypher Select, Färbung nach Richardson, Vergrößerung 1,6fach)
3 Ergebnisse

3.3.3 Entzündungsaktivität der Präparate

Entzündungsaktivität Modell Bx Sonic (Gruppe A)

Es erfolgt zunächst die Beschreibung der drei Stentpräparate mit einer korrekten Lage im Hauptbronchus. Daran schließt sich die Beschreibung der drei Präparate mit einer atypischen Lage im Bereich der Segmentbronchien und des Präparates im Lungengewebe.
Präparat 432 (Hauptbronchus)

Implantat 432 zeigte unter anteiliger Inkorporation des Stents (<25 % Grad 1) in den Bronchus eine dichte lymphohistiozytäre Infiltration (Grad 3) mit zum Teil dichten Ansammlungen von Lymphozyten. Lymphozyten sammelten sich vereinzelt in der näheren Umgebung eingewachsener Stentstreben (s. Abbildung 42), in regelmäßigen Reihen entlang der Knorpelspangen sowie unterhalb des mehrschichtigen Epithels (s. Abbildung 43). Eine zum Lumen hin zunehmende Infiltration des Gewebes charakterisierte das Zellbild.

Abbildung 43: Präparat 432: Ansammlung von Lymphozyten unterhalb des mehrschichtigen Epithels (Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 20fach)

Abbildung 44: Präparat 432: Granulozyten (schwarzer Pfeil) und Makrophagen (weißer Pfeil) in der Nähe der Metalloberfläche einer eingewachsenen Metallstrebe (Stern)

(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 40fach)

Abbildung 45: Präparat 432: Fibromuskuläre Zellen und Bindegewebe (weiße Pfeile) um eine inkorporierte Stentstrebe (Stern), deutliche Abgrenzung (schwarzer Pfeil) von Entzündungszellen

(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 20fach)
In der weiteren Peripherie eingewachsener Stentstreben sammelten sich in engem Kontakt stehende Granulozyten und Makrophagen (s. Abbildung 46).

Abbildung 47: Präparat 432: Erste Phase der Inkorporation. Granulozyten (schwarze Pfeile) lagern sich der freien Stentstrebe (Stern) im Lumen an und infiltrieren das mehrschichtige Epithel (weiße Pfeile)

(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 40fach)

Abbildung 48: Präparat 432: Zweite Phase der Inkorporation. Mehrschichtiges Epithel (weißer Pfeil) und Granulationsgewebe (schwarzer Pfeil) umschließen eine freie Stentstrebe (Stern) im Lumen, die von Entzündungszellen umgeben ist

(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 40fach)

(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 40fach)

Abbildung 50: Präparat 432: Deutlich Kompression unter dem Metall liegender Zellschichten (weißer Pfeil) mit einer Reduktion der Entzündungszellzahl, über dem Stent liegendes Granulationsgewebe (schwarzer Pfeil)

(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 40fach)
Präparat 488 (Hauptbronchus)

Präparat 488 wies bei fehlendem Einwachsen des Stents (Grad 0) eine eher moderate, gleichmäßige lymphohistiozytäre Infiltration auf (Grad 2). Lymphozyten konnten unterhalb des mehrschichtigen Epithels, sowie in regelmäßigen Reihen entlang der Knorpelspangen gesehen werden. Zwischen dem mehrschichtigen Epithel und dem Knorpel kamen kräftige Bindegewebszüge zur Darstellung, zum Teil waren sie mit vielen Lymphozyten und einigen Makrophagen durchsetzt (s. Abbildung 51).

Abbildung 51: Präparat 488: Kräftige Bindegewebszüge (weißer Pfeil) werden durchsetzt mit Entzündungszellen (schwarzer Pfeil)
(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 20fach)

Unterhalb nicht-inkorporierter Stentstreben konnten Zellen gesehen werden, die in der immunhistochemischen Färbung mit Antikörpern gegen Myosin glatter Muskelzellen positiv färbten (s. Abbildung 52 und Abbildung 53).
Abbildung 52: Präparat 488: Zellen, die positiv für Myosin glatter Muskelzellen färben (schwarzer Pfeil), durchsetzten das Gewebe unterhalb nicht-inkorporierter Stentstreben (Sterne)

(Modell Bx Sonic, immunhistochemische Färbung mit Antikörpern gegen Myosin glatter Muskelzellen, Vergrößerung 4fach)

Abbildung 53: Präparat 488: Zellen färben positiv für Myosin glatter Muskelzellen

(Modell Bx Sonic, immunhistochemische Färbung mit Antikörpern gegen Myosin glatter Muskelzellen, Vergrößerung 40fach)
Granulozyten infiltrierte das mehrschichtige Epithel (s. Abbildung 54).

![Abbildung 54: Präparat 488: Granulozyten (schwarzer Pfeil) in mehrschichtigem Epithel, Lymphozyten (weißer Pfeil) sammeln sich unterhalb des Epithels (Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 40fach)]

Abbildung 55: Präparat 488: Zellarme Matrix (roter Pfeil) mit Makrophagen (schwarzer Pfeil) und Granulozyten (weißer Pfeil) unterhalb einer nicht eingewachsenen Stentstrebe, darunterliegendes entzündlich verändertes Gewebe (Stern)

(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 40fach)

Abbildung 56: Präparat 488: Starke Infiltration des Gewebes unterhalb einer nicht-inkorporierten Stentstrebe (Stern) mit Entzündungszellen und deutlicher Vorwölbung dieses Gewebes in das Lumen (schwarzer Pfeil)

(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 10fach)
3 Ergebnisse

Abbildung 57: Präparat 488: Starke Infiltration des Gewebes unterhalb einer nicht-inkorporierten Stentstrebe mit Granulozyten (roter Pfeil), Makrophagen (weißer Pfeil) und Lymphozyten (schwarzer Pfeil)

(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 40fach)

Abbildung 58: Präparat 488: Ansammlungen von Makrophagen (schwarze Pfeile)

(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 40fach)
Präparat 495 (Hauptbronchus)

Unter massiver Bildung zellarmer Matrix um die nicht-eingewachsenen Metallstreben des Implantates (Grad 0) zeigte dieses Präparat eine dichte lymphohistiozytäre Infiltration (Grad 3). Bevorzugt kam es zu Ansammlungen von Entzündungszellen unterhalb des mehrschichtigen Epithels (s. Abbildung 59).

Abbildung 59: Präparat 495: Starke Infiltration mit Lymphozyten (schwarzer Pfeil) unterhalb des mehrschichtigen Epithels unter zellarmer Matrix (Stern), kräftige Ausprägung einer bindegewebigen Zellschicht (weißer Pfeil)

(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 40fach)

Im Lumen konnten zellarne Matrix, fibrinöses Material sowie einige Makrophagen und Granulozyten um nicht-eingewachsene Stentstreben gesehen werden (s. Abbildung 60). Darunterliegende Zellschichten wurden komprimiert, das respiratorische Epithel konnte sich an diesen Stellen nicht regenerieren (s. Abbildung 61).
3 Ergebnisse

Abbildung 60: Präparat 495: Granulozyten (schwarzer Pfeil) und Makrophagen (weißer Pfeil) im Lumen, zwischen dem Stent (links, im Bild nicht zu sehen) mit zellarer Matrix und fibrinösem Material (Stern) und mehrschichtigem Epithel (roter Pfeil)
(Modell *Bx Sonic*, Färbung nach Richardson, Vergrößerung 40fach)

Abbildung 61: Präparat 495: Zellarme Matrix und fibrinöses Material komprimieren darunterliegende Zellschichten, das respiratorische Epithel konnte sich nicht regenerieren (schwarzer Pfeil)
(Modell *Bx Sonic*, Färbung nach Richardson, Vergrößerung 10fach)
Zwischen den Stentstreben konnten kräftige Vorwölbungen im Sinne einer Granulationsgewebebildung beobachtet werden, die weit bis in das Lumen reichten (s. Abbildung 62).

Abbildung 62: Präparat 495: Zwischen nicht-inkorporierten Stentstreben Bildung von Granulationsgewebe (schwarzer Pfeil), weit in das Lumen reichend (Stern)
(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 10fach)

Abbildung 63: Präparat 495: Nahsicht der Schleimhautvorwölbungen: Lymphozyten (schwarzer Pfeil) und Makrophagen (weißer Pfeil) zwischen Bindegewebszügen (Stern)
(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 40fach)

Abbildung 64: Präparat 495: Ansammlungen von Makrophagen (schwarze Pfeile), Makrophage im Stadium einer beginnenden Anaphase der Mitose (roter Pfeil)
(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 40fach)
Präparat 486 (Segmentbronchus)

Präparat 486 zeigte bei einer anteiligen Penetration des Stent eine dichte lymphohistiozytäre Infiltration (Grad 3) mit vielen Granulozyten im gesamten Präparat. Lymphozyten konnten unterhalb des mehrschichtigen Epithels sowie in dichten Ansammlungen um Knorpelspangen gruppiert gesehen werden (s. Abbildung 65).

3 Ergebnisse

Abbildung 66: Präparat 486: Makrophagen (weißer Pfeil) und Lymphozyten (schwarzer Pfeil) um eine inkorporierte Stentstrebe (Stern)
(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 40fach)

Abbildung 67: Präparat 486: Lymphozyten (schwarzer Pfeil) schließen sich in der weiteren Peripherie einer eingewachsenen Stentstrebe (nicht im Bild) an und stehen in Kontakt zu Makrophagen (weißer Pfeil)
(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 40fach)

Abbildung 68: Präparat 486: Granulozyten (schwarzer Pfeil) infiltrieren das mehrschichtige Epithel
(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 40fach)

Abbildung 69: Präparat 486: Granulozyten (schwarzer Pfeil) um eine freie Metallstrebe (Stern) im Lumen
(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 40fach)
Eine Stentstrebe schien sich in einer Phase der Inkorporation zu befinden, zu ihren Seiten zeigten sich mehrschichtiges Epithel und Granulationsgewebe. Makrophagen und Granulozyten lagerten sich der Metalloberfläche im Lumen an, während es auf der Seite der Bronchialschleimhaut zur Bildung konzentrischer fibromuskulärer Zellen mit einer Infiltration von Makrophagen und Granulozyten kam (s. Abbildung 70).

![Abbildung 70: Präparat 486: Eine Metallstrebe (Stern) in einer Phase der Inkorporation. Mehrschichtiges Epithel und Granulationsgewebe (schwarzer Pfeil) umschließen das Metall seitlich](image)

(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 10fach)

Abbildung 71: Präparat 486: Ansammlungen von Makrophagen (schwarze Pfeile)
(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 40fach)

Abbildung 72: Präparat 486: Proliferierende Makrophagen in verschiedenen Stadien der Mitose: Interphase (weißer Pfeil) und Prophase (schwarzer Pfeil)
(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 40fach)
Präparat 492 (Segmentbronchus)

Auch Stent 492 wies eine irreguläre Lage im Bronchus auf. Er zeigte eine moderate lymphozytäre Entzündungsreaktion (Grad 2). Lymphozyten gruppierten sich in der weiteren Peripherie einer eingewachsenen Stentstrebe (s. Abbildung 73).

![Abbildung 73: Präparat 492: Lymphozyten (schwarze Pfeile) gruppieren sich in der weiteren Peripherie einer eingewachsenen Stentstrebe (Stern) (Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 20fach)](image)

Abbildung 74: Präparat 492: Makrophagen (weißer Pfeil) um eine inkorporierte Stentstrebe (Stern) in dichtem Granulationsgewebe, Granulozyten in der näheren Umgebung (schwarzer Pfeil)

(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 40fach)

Abbildung 75: Präparat 492: Frühes Granulationsgewebe. Kapillarreiches Bindegewebe, von Entzündungszellen und Fibrozyten durchsetzt

(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 40fach)
Makrophagen zeigten sich nicht nur im neugebildeten Granulationsgewebe, sondern auch gemeinsam mit Granulozyten im Lumen nahe der Oberfläche nicht-eingewachsener Metallstreb (s. Abbildung 77). Anteile der Schleimhaut ohne Metallstreb schienen keinen Reiz zur Ansammlungen von Entzündungszellen dieser Art im Lumen hervor- zurufen (s. Abbildung 78).
Abbildung 77: Präparat 492: Makrophagen (gestrichelter Pfeil) und Granulozyten (schwarzer Pfeil) lagern sich den nicht-eingewachsenen Metallstreben (Stern) im Lumen an

(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 40fach)

Abbildung 78: Präparat 492: Entzündungszellen (schwarze Pfeile) lagern sich den freien Metallstreben im Lumen an, Schleimhaut ohne Metallstreben scheint keinen Reiz zur Ansammlung von Entzündungszellen auszuüben (gestrichelter Pfeil)

(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 4fach)

Abbildung 79: Präparat 492: Synzytieller Zusammenschluss mehrere Makrophagen (schwarzer Pfeil) an der Metalloberfläche einer inkorporierten Stentstrebe (Stern), vereinzelte Lymphozyten in der Umgebung (weißer Pfeil)
(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 40fach)
Präparat 494 (Segmentbronchus)

Eine moderate Infiltration mit Lymphozyten und Makrophagen konnte bei diesem Stent festgestellt werden (Grad 2). Er hatte den Bronchus zum Teil durchwandert. Lymphozyten sammelten sich bevorzugt in der weiteren Umgebung inkorporierter Stentstreben (s. Abbildung 80) sowie unterhalb des mehrschichtigen Epithels.

Abbildung 81: Präparat 494: Lymphozyten (schwarzer Pfeil) und Makrophagen (weißer Pfeil) in der Umgebung einer inkorporierten Stentstrebe (Stern)
(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 20fach)

Abbildung 82: Präparat 494: Frühes Granulationsgewebe mit einzelnen Makrophagen (schwarzer Pfeil) um eine inkorporierte Stentstrebe (Stern)
(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 40fach)
Abbildung 83: Präparat 494: Granulozyten (schwarzer Pfeil) im Lumen nahe der Oberfläche einer Metallstrebe (Stern)
(Modell *Bx Sonic*, Färbung nach Richardson, Vergrößerung 40fach)

Abbildung 84: Präparat 494: Phase der Inkorporation. Entzündungszellen (gestrichelter Pfeil) an der Oberfläche einer Metallstrebe (Stern), an den Seiten sich vorwölbendes mehrschichtiges Epithel (schwarzer Pfeil) und Granulationsgewebe (weißer Pfeil)
(Modell *Bx Sonic*, Färbung nach Richardson, Vergrößerung 40fach)
Ergebnisse

Präparat 490 (Lungengewebe)

Präparat 490 migrierte durch den Bronchus und war von einer diskret vaskularisierten, lipomatösen Kapsel umgeben. Hier konnte eine leichte Infiltration mit Entzündungszellen festgestellt werden (Grad 1). Das Metall war ummantelt von Bindegewebszellen und Fasern, die sich zirkulär um die Streben anordneten und nur selten von Makrophagen durchsetzt waren. Auch zwischen den einzelnen Metallstreben zeigten sich zarte Bindegewebszüge. Einzelne Makrophagen sammelten sich an der Metalloberfläche im neu gebildeten Gewebe (s. Abbildung 85).

![Abbildung 85: Präparat 490: Bindegewebszellen und Fasern (schwarzer Pfeil) mit einzelnen Makrophagen (weißer Pfeil) an der Metalloberfläche einer Stentstrebe (Stern)](image)

(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 40fach)

Den Bindegewebszügen schlossen sich univakuoläre Fettzellen an (s. Abbildung 86). Es fanden sich vereinzelt Kapillaren, jedoch keine weitere Infiltration des Gewebes durch Entzündungszellen (s. Abbildung 87). Granulozyten konnten nicht gesehen werden.
Abbildung 86: Präparat 490: Fettvakuolen (schwarzer Pfeil) lagern sich den Bindegewebszügen (gestrichelter Pfeil) um eine Metallstrebe (Stern) an
(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 40fach)

Abbildung 87: Präparat 490: Fettvakuolen mit Kapillarlumen, keine Infiltration mit Entzündungszellen
(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 40fach)
Ergebnisse

Entzündungsaktivität Modell Cypher Select (Gruppe B)

Es erfolgt zunächst die Beschreibung der drei Stentpräparate mit einer korrekten Lage im Hauptbronchus, daran schließt sich die Beschreibung des Präparates mit einer atypischen Lage im Bereich des Lungengewebes an.
Präparat 489 (Hauptbronchus)

Implantat 489 zeigte bei einem anteiligen Einwachsen des Stents von 25-75 % (Grad 2) eine dichte lymphohistiozytäre Infiltration (Grad 3) mit dichten Ansammlungen von Lymphozyten. Sie gruppierten sich bevorzugt um Knorpelspangen, an der Unterseite des mehrschichtigen Epithels sowie in der weiteren Umgebung von eingewachsenen Metallstreben (s. Abbildung 88, Abbildung 89 und Abbildung 90). Immunhistochemisch färbten diese Zellen positiv für CD-79 (s. Abbildung 91 und Abbildung 92).

Abbildung 88: Präparat 489: Ansammlung von Lymphozyten (schwarze Pfeile) entlang einer Knorpelspange (Stern) und zum Lumen hin (Modell Cypher Select, Färbung nach Richardson, Vergrößerung 10fach)

Abbildung 89: Präparat 489: Ansammlung von Lymphozyten (schwarzer Pfeil) unterhalb des mehrschichtigen Epithels (Modell Cypher Select, Färbung nach Richardson, Vergrößerung 40fach)

Abbildung 90: Präparat 489: Dichte Ansammlung von Lymphozyten in der unmittelbaren Umgebung einer Metallstreb (Modell Cypher Select, Färbung nach Richardson, Vergrößerung 10fach)

Abbildung 91: Präparat 489: Ansammlung von Lymphozyten, die positiv für CD-79 färben (schwarzer Pfeil) (Modell Cypher Select, immunhistochemische Färbung mit Antikörpern gegen CD79, Vergrößerung 10fach)
Ergebnisse

Abbildung 93: Präparat 489: Granulozyten (schwarzer Pfeil) lagern sich dem Metall (Stern) an, Makrophagen (weißer Pfeil) befinden sich in der näheren Umgebung

(Modell Cypher Select, Färbung nach Richardson, Vergrößerung 40fach)

Abbildung 94: Präparat 489: Metallstent (Stern) umgeben von Granulozyten (schwarzer Pfeil), Makrophagen (weißer Pfeil) und Lymphozyten (gestrichelter Pfeil) zwischen konzentrisch angeordneten fibromuskulären Zellen (roter Pfeil), deutliche Verdichtung des Gewebes und Rarefizierung der Zellen unter dem Stent zum Bronchus hin

(Modell Cypher Select, Färbung nach Richardson, Vergrößerung 20fach)
Zwischen den Stentstreben kamen kräftige Proliferationen im Sinne einer Granulationsgewebebildung zur Darstellung, die weit bis in das Lumen reichten (s. Abbildung 96).

(Modell Cypher Select, Färbung nach Richardson, Vergrößerung 10fach)

Abbildung 99: Präparat 489: Fremdkörperriesenzellen (schwarze Pfeile) neben einer inkorporierten Stentstrecke (Stern), Makrophagen (weißer Pfeil), Lymphozyten (roter Pfeil) und Granulozyten (gestrichelter Pfeil) in der unmittelbaren Umgebung

(Modell Cypher Select, Färbung nach Richardson, Vergrößerung 40fach)
Präparat 493 (Hauptbronchus)

Präparat 493 zeigte bei einem anteiligen Einwachsen der Stentstreben von 25-75 % (Grad 2) eine moderate lymphohistiozytäre Infiltration (Grad 2). Lymphozyten sammelten sich bevorzugt unterhalb des Epithels nicht-inkorporierter Stentstreben und in dichten Ansammlungen um Knorpelspangen (s. Abbildung 100 und Abbildung 101).

Abbildung 100: Präparat 493: Ansammlung von Lymphozyten in der Nähe von Knorpelgewebe unter nicht-inkorporierten Stentstreben (Modell Cypher Select, Färbung nach Richardson, Vergrößerung 10fach)

Abbildung 101: Präparat 493: Ansammlung von Lymphozyten (schwarzer Pfeil) in gleichmäßiger Verteilung um eine Knorpelspange (Stern) (Modell Cypher Select, Färbung nach Richardson, Vergrößerung 20fach)

Abbildung 103: Präparat 493: Makrophagen und Granulozyten (schwarzer Pfeil) in unmittelbarer Metallnähe (Stern), Infiltration des Granulationsgewebes mit Lymphozyten (gestrichelter Pfeil) und vielen Makrophagen (weißer Pfeil) zur Peripherie hin

(Modell Cypher Select, Färbung nach Richardson, Vergrößerung 40fach)

Abbildung 104: Präparat 493: Viele Makrophagen (weißer Pfeil), einige Granulozyten (schwarzer Pfeil) und Lymphozyten (gestrichelter Pfeil) unterhalb des mehrschichtigen Epithels (roter Pfeil)

(Modell Cypher Select, Färbung nach Richardson, Vergrößerung 40fach)
Abbildung 105: Präparat 493: Synzytieller Zusammenschluss von Makrophagen in Form einer Fremdkörperriesenzelle (schwarzer Pfeil) an der Oberfläche einer inkorporierten Metallstrebe (fixationsbedingte Ablösung des Gewebes vom Metall)
(Modell Cypher Select, Färbung nach Richardson, Vergrößerung 40fach)

Abbildung 107: Präparat 493: Atypisch gelegene Knorpelzellen (schwarze Pfeile) zwischen dem Epithel und zwei eingewachsenen Stentstreben (Sterne), umgeben von entzündungszellreichem Bindegewebe (gestrichelter Pfeil)
(Modell Cypher Select, Färbung nach Richardson, Vergrößerung 10fach)

Abbildung 108: Präparat 493: Granulozyten im Gefäßanschnitt (schwarzer Pfeil) – das Gewebe infiltrierend (roter Pfeil), Makrophagen (weißer Pfeil) und Lymphozyten (gestrichelter Pfeil) in der Nähe atypisch gelegener Knorpelzellen (Stern)
(Modell Cypher Select, Färbung nach Richardson, Vergrößerung 40fach)
Präparat 497 (Hauptbronchus)

Implantat 497 zeigte bei fehlendem Einwachsen des Präparates (Grad 0) eine schmale Schleimhaut mit einer moderaten lymphohistiozytären Entzündungsreaktion (Grad 2). Vorwölbungen in das Lumen wurden nicht gesehen (s. Abbildung 109).

Abbildung 109: Präparat 497: Schmale Schleimhaut ohne Vorwölbungen in das Lumen mit einer moderaten, lymphohistiozytären Entzündungsreaktion (Grad 2)
(Modell Cypher Select, Färbung nach Richardson, Vergrößerung 10fach)

Abbildung 110: Präparat 497: Gleichmäßige Infiltration mit Makrophagen und Lymphozyten, vereinzelte Granulozyten (gestrichelter Pfeil) in einer fibromuskulären Schicht (Stern), viele Makrophagen (weißer Pfeil) oberhalb des fibromuskulären Gewebes, dichte lymphozytäre Infiltration darunter (schwarzer Pfeil)

(Modell Cypher Select, Färbung nach Richardson, Vergrößerung 20fach)

Abbildung 111: Präparat 497: Zellarme Matrix, fibrinöses Material (weißer Pfeil) sowie Makrophagen (gestrichelter Pfeil) und Granulozyten (schwarzer Pfeil) um eine nicht-inkorporierte Stentstrebe (Stern) im Lumen

(Modell Cypher Select, Färbung nach Richardson, Vergrößerung 40fach)
Abbildung 112: Präparat 497: Granulozyten (schwarzer Pfeil) und Makrophagen (gestrichelter Pfeil) im Lumen
(Modell Cypher Select, Färbung nach Richardson, Vergrößerung 40fach)

Abbildung 113: Präparat 497: Unter der Matrix um nicht-inkorporierter Metallstreiben liegende, komprimierte Zellschichten mit einer deutlichen Schädigung des Epithels (schwarzer Pfeil)
(Modell Cypher Select, Färbung nach Richardson, Vergrößerung 4fach)
Präparat 491 (Lungengewebe)

![Abbildung 114: Präparat 491: Fibrozyten (schwarzer Pfeil) in einer faserreichen Matrix, Granulozyten im Gefäßanschnitt (Stern)](image_url)

(Modell *Cypher Select*, Färbung nach Richardson, Vergrößerung 40fach)
Abbildung 115: Präparat 491: Makrophagen (weißer Pfeil) in unmittelbarer Umgebung der Metallstrebe (Stern) in einer aus Bindegewebe bestehenden Ummantelung, darauf eine flache einreihige Epitelschicht (schwarzer Pfeil)
(Modell Cypher Select, Färbung nach Richardson, Vergrößerung 40fach)

Abbildung 116: Präparat 491: Vermutlich synzytieller Zusammenschluss einzelner Makrophagen zu einer Fremdkörperriesenzelle (weißer Pfeil), Lymphozyt (schwarzer Pfeil) in der näheren Umgebung
(Modell Cypher Select, Färbung nach Richardson, Vergrößerung 40fach)
4 Diskussion

4.1 Entzündungsreaktion

Abbildung 117: Zeitliches Auftreten und Intensität der Entzündungszellen über die Zeit
PMN’s = Polymorphonuclear leucocyte (neutrophile Granulozyten) (Anderson 1988, S.103)
Der Druck dieser Abbildung erfolgte mit freundlicher Genehmigung von Lippincott Williams und Wilkins/ Wolters Kluwer Health: [ASAIO Journal], (volume 34, issue 2, page 103), 2ecopyright (1988)
4.1.1 Die frühe Phase der Entzündung

Neutrophile Granulozyten

Granulozyten zeigten sich in beiden Stentgruppen den freien Metallstreben im Lumen angelagert. Wies keine der Stentstreben eine Inkorporation auf, fanden sich die Granulozyten nahezu ausschließlich im Lumen und nicht im darunterliegenden Gewebe, da ein entsprechender Entzündungsreiz zur Migration aus den Blutgefäßen in das neugebildete Gewebe zu fehlen schien. Eingewachsene Stentfilamente schienen keinen entsprechenden Reiz zur Ansammlung von Entzündungszellen im Lumen zu bieten, sie zeigten Schleimhautproliferationen, die weit in das Lumen reichten und das Bild einer lymphohistiozytären Infiltration mit wenigen Granulozyten boten. Stent 490 und 491, welche den Bronchus

4.1.2 Die zweite Phase der Entzündung

Makrophagen und Fremdkörperriesenzellen

Durch Makrophagen sezernierte Mediatoren können Fibroblasten aktivieren (Postlethwaite und Kang 1983) und zu Myofibroblasten umwandeln, die für die Synthese von neuem Gewebe in Form extrazellulärer Matrix sorgen. In den untersuchten Stentpräparaten infiltrierten Makrophagen dementsprechend fibromuskuläre Zellverbände, die sich konzentrisch um inkorporierte Stentstreben gruppierten (s. Kapitel 4.3.1 Fibromuskuläre Zellen).

Lymphozyten

4.1.3 Quantifizierung der Entzündungsreaktion

Eine sinnvolle Quantifizierung der Entzündungsreaktion war aufgrund der Heterogenität der untersuchten Präparate nicht möglich.
4.1.4 Vergleich der Entzündungsaktivität beider Stenttypen

Beide Stenttypen verursachten eine chronische Entzündungsaktivität. Die semi-quantitative histologische Graduierung der inflammatorischen Prozesse erfolgte anhand einer 3-Punkteskala. Es ergab sich ein Grad der Infiltration von 3x (Grad 3), 3x (Grad 2) und 1x (Grad 1) für die Gruppe A Bx Sonic. Dies entsprach bei sieben Implantaten einem durchschnittlichen Grad der lymphohistiozytären Infiltration von 2,3. Zum Teil traten dichte Ansammlungen von Makrophagen auf (s. Abbildung 71, S.67). Es wurde in einem von sieben Präparaten eine Fremdkörperriesenzelle gesehen (1/7). Für die Gruppe B Cypher Select ergab sich eine Entzündungsaktivität von 1x (Grad 3), 2x (Grad 2) und 1x (Grad 1). Dies entsprach bei vier Implantaten einem durchschnittlichen Infiltrationsgrad von 2.

Ein Zusammenhang ergab sich zwischen der Entzündungsaktivität und der Implantatlage. Beide Gruppen wiesen je drei Stents mit einer regelrechten Position im Hauptbronchus und anteiliger Inkorporation in die Atemwege auf, die alle eine moderate (Grad 2) bis dichte (Grad 3) lymphohistiozytäre Infiltration zeigten (s. Tabelle 11 und 12). Diese lymphohistiozytären Infiltrationen bildeten das morphologische Korrelat einer intensiven Auseinandersetzung des (tierischen) Organismus mit den von Atemwegstents ausgehenden chronischen Entzündungsreizen. Auch hohe Inflationsdrücke bei Implantation schienen aufgrund des ausgeübten Druckes eine Bronchuspenetration zu begünstigen und einen zusätzlichen Entzündungsreiz darzustellen (s. Präparat 486, Tabelle 11).
Diskussion

<table>
<thead>
<tr>
<th>Präparat</th>
<th>Druck bei Inflation</th>
<th>Grad des Einwachsens</th>
<th>Präparatlage</th>
<th>Grad der Entzündung</th>
<th>Besonderheiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>432</td>
<td>12 atm</td>
<td>1</td>
<td>Hauptbronchus</td>
<td>3</td>
<td>Lymphozyten-ansammlungen, Makrophagen-ansammlungen</td>
</tr>
<tr>
<td>488</td>
<td>10 atm</td>
<td>0</td>
<td>Hauptbronchus</td>
<td>2</td>
<td>Makrophagen-ansammlungen</td>
</tr>
<tr>
<td>495</td>
<td>14 atm</td>
<td>0</td>
<td>Hauptbronchus</td>
<td>3</td>
<td>Makrophagen-ansammlungen</td>
</tr>
<tr>
<td>486</td>
<td>20 atm</td>
<td></td>
<td>Bronchuspénétration</td>
<td>3</td>
<td>Lymphozyten-ansammlungen, Makrophagen-ansammlungen</td>
</tr>
<tr>
<td>492</td>
<td>12 atm</td>
<td></td>
<td>Bronchuspénétration</td>
<td>2</td>
<td>Fremdkörper-riesenzelle</td>
</tr>
<tr>
<td>494</td>
<td>16 atm</td>
<td></td>
<td>Bronchuspénétration</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>490</td>
<td>16 atm</td>
<td></td>
<td>Lungengewebe</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 11: Übersicht über den Inflationsdruck, Grad des Einwachsens, die Präparatlage und den Entzündungsgrad der Stentmodelle *Bx Sonic* (Gruppe A)

<table>
<thead>
<tr>
<th>Präparat</th>
<th>Druck bei Inflation</th>
<th>Grad des Einwachsens</th>
<th>Präparatlage</th>
<th>Grad der Entzündung</th>
<th>Besonderheiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>489</td>
<td>20 atm</td>
<td>2</td>
<td>Hauptbronchus</td>
<td>3</td>
<td>Lymphozyten-ansammlungen, Fremdkörper-riesenzelle</td>
</tr>
<tr>
<td>493</td>
<td>12 atm</td>
<td>2</td>
<td>Hauptbronchus</td>
<td>2</td>
<td>Lymphozyten-ansammlungen, Fremdkörper-riesenzelle</td>
</tr>
<tr>
<td>497</td>
<td>16 atm</td>
<td>0</td>
<td>Hauptbronchus</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>491</td>
<td>16 atm</td>
<td></td>
<td>Lungengewebe</td>
<td>1</td>
<td>Fremdkörper-riesenzelle</td>
</tr>
</tbody>
</table>

Tabelle 12: Übersicht über den Inflationsdruck, Grad des Einwachsens, die Präparatlage und den Entzündungsgrad der Stentmodelle *Cypher Select* (Gruppe B)
4.2 Bildung von Granulationsgewebe

Besiedelung potenziell pathogener Keime wie Pseudomonas aeruginosa und Staphylococcus aureus dienen (Jacobs et al. 2000).

4.2.1 Vergleich der Granulationsgewebebildung beider Stenttypen

Zellzyklusproteine an der Proliferation und Migration glatter Muskelzellen, oder andere, die Proliferation glatter Muskelzellen und neointimale Hyperplasie stimulierende Faktoren, welche durch die applizierte Sirolimusdosis nicht ausreichend gehemmt werden können (Carter et al. 2004). Faktoren, die auch für die vergleichbare Granulationsgewebebildung in beiden Stentgruppen der vorliegenden Arbeit verantwortlich sein könnten, Widersprüchlichen Ergebnissen präklinischer Studien am Tier sowie klinischer Studien am Menschen könnten außerdem speziesspezifische pharmako-dynamische Besonderheiten zugrunde liegen.

4.3 Gewebe

4.3.1 Fibromuskuläre Zellen

Abbildung 119: Präparat 432: Schmale, parallel und konzentrisch angeordneten Zellen (schwarzer Pfeil) um eine inkorporierte Stentstrebe (Stern) und Ansammlungen von Entzündungszellen (Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 20fach)

Abbildung 120: Präparat 432: Schmale, parallel angeordnete fibromuskuläre Zellen (schwarzer Pfeil) trennen Entzündungszellen an der Stentoberfläche von der Umgebung ab (Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 40fach)

![Abbildung 121: Präparat 493: Eingewachsene Stentstreben (Sterne) umgebende fibromuskuläre Zellen (schwarzer Pfeil)](Modell Cypher Select, Färbung nach Richardson, Vergrößerung 20fach)

![Abbildung 122: Präparat 493: Die fibromuskulären Zellen um inkorporierte Stentstreben (Sterne) färben positiv für Vimentin (schwarzer Pfeil)](Modell Cypher Select, immunhistochemische Färbung mit Antikörpern gegen Vimentin, Vergrößerung 10fach)
Abbildung 123: Präparat 492: Fibromuskuläre Zellen um inkorporierte Stentstreben (Sterne) färben positiv für Vimentin (schwarzer Pfeil)

(Modell *Bx Sonic*, immunhistochemische Färbung mit Antikörpern gegen Vimentin, Vergrößerung 10fach)

Abbildung 124: Präparat 492: Fibromuskuläre Zellen um inkorporierte Stentstreben (Sterne) färben positiv für Aktin glatter Muskelzellen (schwarzer Pfeil)

(Modell *Bx Sonic*, immunhistochemische Färbung mit Antikörpern gegen Aktin glatter Muskelzellen, Vergrößerung 10fach)
4.3.2 Bindegewebe

![Abbildung 125: Präparat 492: Fibrozyten (roter Pfeil) bilden frühes, kapillarreiches Granulationsgewebe. Granulozyten (schwarzer Pfeil), Makrophagen (weißer Pfeil) und Lymphozyten (gestrichelter Pfeil) durchsetzen das Gewebe. Im Lumen der Kapillare vereinzelte Entzündungszellen (Stern). (Modell *Bx Sonic*, Färbung nach Richardson, Vergrößerung 40fach)](image.png)

In den übrigen Präparaten fanden sich zum einen ungeordnete Bindegewebszüge mit einer Infiltration ortsansässiger Fibrozyten und verschiedener Entzündungszellen, zum anderen konnten geordnete kollagene und elastische Faserzüge gesehen werden (s. Abbildung 126 und Abbildung 127).
Abbildung 126: Präparat 432: Ungeordnete Bindegewebszüge (weißer Pfeil) um eine inkorporierte Metallstrebe (nicht im Bild), Drüsengänge (schwarzer Pfeil) und Bündel elastischer und kollagener Fasern (Stern)

(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 40fach)

Abbildung 127: Präparat 495: Fibrozyt (schwarzer Pfeil), umgeben von extrazellulärer Matrix

(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 40fach)
4.3.3 Veränderungen des respiratorischen Epithels

Abbildung 128: Präparat 495: Mehrschichtiges Epithel mit polygonalen Zellen und fehlender ziliärer Besetzung
(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 40fach)

Abbildung 129: Präparat 494: Mehrschichtiges Epithel umschließt eine Metallstrebe von beiden Seiten
(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 20fach)
Die Veränderungen des respiratorischen Epithels der Gruppe Cypher Select (Gruppe B) zeigten unterschiedlich starke Ausprägungsgrade. Während drei der vier Stents polygonale, geschichtete Zellen zwischen mehrreihig hochprismatischem Epithel zeigten (Präparat 489, 493 und 497) (s. Abbildung 130), konnte in Präparat 491, das den Bronchus komplett durchwandert hatte nur eine schmale Schicht einreihigen Epithels gesehen werden.

Abbildung 131: Präparat 489: Mitosestadien im mehrschichtigen Epithel, Zellen in der Interphase (schwarzer Pfeil) und Metaphase (weißer Pfeil)
(Modell Cypher Select, Färbung nach Richardson, Vergrößerung 40fach)

Abbildung 132: Präparat 489: Apoptose (schwarze Pfeile) im mehrschichtigen Epithel
(Modell Cypher Select, Färbung nach Richardson, Vergrößerung 40fach)
4.3.4 Penetrationsgewebe

Abbildung 133: Präparat 490: Von einer Fett- und Bindegewebskapsel umgebener Stent nach Migration in das Lungengewebe
(Modell *Bx Sonic*, Vergrößerung 10fach)

Abbildung 134: Präparat 490: Bindegewebe (gestrichelter Pfeil) und Adipozyten (schwarzer Pfeil), den Stent (Stern) umgebend
(Modell *Bx Sonic*, Färnung nach Richardson, Vergrößerung 40fach)

Abbildung 135: Präparat 491: Der Stent ist nach Migration in das umgebende Lungengewebe von einer zarten Bindegewebschicht umgeben
(Modell *Cypher Select*, Vergrößerung 20fach)

Abbildung 136: Präparat 491: Stentsstrebe (Stern) umgeben von Bindegewebszellen mit Makrophagen (weißer Pfeil) und einer einreihigen Epithelschicht (schwarzer Pfeil)
(Modell *Cypher Select*, Färnung nach Richardson, Vergrößerung 40fach)
4.3.5 Atypische Knorpelzelllage

Abbildung 137: Präparat 489: Atypische Lage von Knorpelzellen (schwarzer Pfeil) über einer inkorporierten Stentstrebe (Stern), Knorpelspangen(weißer Pfeil) in der näheren Umgebung kommen neben einer Metallstrebe zur Darstellung, Fremdkörperriesenzellbildung (gestrichelte Pfeile)
(Modell Cypher Select, Färbung nach Richardson, Vergrößerung 10fach)

Abbildung 138: Präparat 493: Atypisch gelegene Knorpelzellen (schwarze Pfeile) zwischen mehrschichtigem Epithel und zwei inkorporierten Stentstreben (Stern), umgeben von entzündungszellreichem Bindegewebe (gestrichelter Pfeil)
(Modell Cypher Select, Färbung nach Richardson, Vergrößerung 10fach)

Abbildung 139: Präparat 493. Kapillare mit Granulozyten und Lymphozyten (schwarzer Pfeil) über Knorpelzellverbänden (Stern), Makrophagen (weißer Pfeil) und Lymphozyten (roter Pfeil)
(Modell Cypher Select, Färbung nach Richardson, Vergrößerung 40fach)
4.4 Metaplasien

4.5 Zellarme Matrix

Stentstreben beider Gruppen, welche nicht in die Bronchialwand einwuchsen, waren zu großen Anteilen von einer zellarmen, geschichteten Matrix umgeben (s. Abbildung 140). Die Matrix war an der Unterseite des Metalls besonders ausgeprägt und führte zur Komprimierung der darunterliegenden Zellschichten (s. Abbildung 141 und Abbildung 142). Das respiratorische Epithel konnte sich an diesen Stellen nicht regenerieren.

Abbildung 140: Präparat 488: Zellarme, geschichtete Matrix und fibrinöses Material (schwarzer Pfeil) unter nicht-inkorporierten Metallstreben (Sterne)
(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 10fach)

Abbildung 141: Präparat 489: Zellarme, geschichtete Matrix (schwarzer Pfeil) unter einer Metallstrebe des Stent (Stern), deutliche Kompression des darunterliegenden mehrschichtigen Epithels (weißer Pfeil)
(Modell Cypher Select, Färbung nach Richardson, Vergrößerung 20fach)

Abbildung 142: Präparat 432: Zellarme, geschichtete Matrix (schwarzer Pfeil) unter einer Metallstrebe des Stent (Stern) und darunterliegende komprimierte Zellschichten (weißer Pfeil)
(Modell Bx Sonic, Färbung nach Richardson, 40fach)

Abbildung 143: Präparat 488: Granulozyten (schwarzer Pfeil) und Makrophagen (weißer Pfeil) zwischen zellarmer Matrix
(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 40fach)

Abbildung 144: Präparat 495: Gelbes, körniges Material verlegt das Lumen des Bronchus

(Modell Bx Sonic, Vergrößerung 10fach)

Abbildung 145: Präparat 495: Matrix aus fibrinösem Material, Mukus und Detritus, keine Inkorporation der Stentstreben

(Modell Bx Sonic, Färbung nach Richardson, Vergrößerung 4fach)

Abbildung 146: Präparat 497: Bräunlich-gelbes Material verlegt das Lumen des Bronchus

(Modell Cypher Select, Färbung nach Richardson, Vergrößerung 40fach)

Abbildung 147: Präparat 497: Matrix aus fibrinösem Material, Mukus und Detritus, keine Inkorporation der Stentstreben

(Modell Cypher Select, Färbung nach Richardson, Vergrößerung 4fach)
4.6 Versuchsverlauf

4.6.1 Wahl des Inflationsdruckes und Platzierung des Stents

Abbildung 148: Tier FKZ6: Präparat 488 rechts und 489 links, beide im 5. ICR medial der Medioklavikularlinie (schwarze Pfeile)

Abbildung 149: Tier FLO6: Präparat 493 rechts im 6. ICR medial der Medioklavikularlinie (schwarzer Pfeil)

Abbildung 150: Tier 3AAX: Präparat 497 links im 5.-6. ICR medial der Medioklavikularlinie (schwarzer Pfeil)

Abbildung 151: Tier 3FTQ: Präparat 495 links im 5. ICR medial der Medioklavikularlinie (schwarzer Pfeil)
4 Diskussion

4.6.2 Gewichtsentwicklung

Initiales Körpergewicht

Das durchschnittliche Gewicht der Tiere zum Zeitpunkt der ersten Implantation betrug 3539 g. Die Kaninchen nahmen, unabhängig von dem Vorhandensein eines Stent, im ersten Monat an Körpergewicht zu. Kaninchen FMK7 und FLS3, welche als einzige nach ein- monatiger Kontrolle Implantate aufzeigten, wiesen jedoch eine mit 130 g und 140 g geringere Gewichtszunahme auf als Tiere ohne Stent. Letztere verzeichneten eine Gewichtszunahme von mindestens 170 g bis 340 g, so dass eine Beeinträchtigung des tierischen Organismus durch die Atemwegstents anzunehmen war.

Alle Stents (bis auf ein Implantat) ließen sich in den Atemwegen der älteren, schwereren Kaninchen nachweisen. Drei Tiere (FLO6, FKZ6 und FKY8) trugen bis zum Versuchsende beide Stents in sich. Zum Versuchsbeginn wiesen sie ein überdurchschnittliches Körpergewicht von insgesamt 4520 g auf. Kaninchen FLO6 wog 4300 g, Kaninchen FKZ6 4760 g und das Tier FKY8 4500 g (s. Tabelle 9 und 10, S.37 und 104). Das Körpergewicht der Tiere scheint demnach Einfluss auf das Expektorationsrisiko der Implantate aufzuweisen. Je höher das initiale Körpergewicht bei der Implantation, desto weniger wahrscheinlich erschien eine Expektoration des Stents.
Gewicht im Versuchsverlauf

Die Gewichtsentwicklung der Tiere unterlag großen Schwankungen. Am Versuchsende des zweiten Durchlaufes zeigten alle Kaninchen mit Stent eine durchschnittliche Gewichtsreduktion von 199 g. Kaninchen FMK7 des ersten Versuches miteinbezogen, gewannen insgesamt nur zwei der acht Tiere mit Stent an Gewicht. Diese Kaninchen, Tier 3FTQ mit einem im Vergleich geringen Startgewicht von 3900 g und FMK7 mit 4000 g, befanden sich vermutlich in einer Phase körperlichen Wachstums.

4.6.3 Komplikationen

Stentverlust

Stentpenetration

Abbildung 152: Tier FKU9: Präparat 494 links im 7. ICR lateral der Medioklavikularlinie gelegen (schwarzer Pfeil)
Abbildung 153: Tier FLO6: Präparat 492 links im 7. ICR lateral der Medioklavikularlinie gelegen (schwarzer Pfeil)
Abbildung 154: Tier FKY8: Präparate 490 rechts im 6. ICR lateral und Präparat 491 links im 7. ICR lateral der Medioklavikularlinie gelegen (schwarze Pfeile)
Abbildung 155: Tier FMG2: Präparat 486 rechts im 6. ICR medial der Medioklavikularlinie gelegen (schwarzer Pfeil)

Es konnte keine Assoziation zwischen Stentpenetration und Implantation in den rechten oder linken Lungenflügel gesehen werden (s. Tabelle 3, S.29).
4.6.4 Histologische Aufarbeitung

4.7 Zukunftsausblick

5 Zusammenfassung

Atemwegstents stellen weiterhin eine Option für Patienten dar, bei denen alternative Therapieformen erfolglos blieben und sollten erst nach einer gründlichen Anamnese, klinischen Untersuchung sowie radiologischer und endoskopischer Diagnostik durchgeführt werden. Jeder Stenttyp hat unterschiedliche Vor- und Nachteile, die zu seiner therapeutischen Effektivität und Komplikationsrate beitragen. Ein späteres Entfernen metallischer Stents ist mit hohen Risiken verbunden und sollte, sofern möglich, vermieden werden. Die vergleichende Beurteilung der Kompatibilität verschiedener Atemwegstents bildet die Grundlage für die Entwicklung neuer Implantate und wird auch in der Zukunft eine wichtige Rolle spielen.
6 Literaturverzeichnis

Anderson JM (1988): Inflammatory response to implants. ASAIO Trans 34, 101-107

Büchner T: Entzündungszellen in Blut und im Gewebe (Veröffentlichungen aus der Morphologischen Pathologie, 86.Heft). Gustav Fischer Verlag, Stuttgart 1971

137

Helpap B: Leitfaden der Allgemeinen Entzündungslehre; hrsg. v. Helpap B; Springer Verlag, Berlin/Heidelberg 1987

Hofner AF: Sirolimus, ein neues Immunsuppressivum; hrsg.v. Zentrum für Arzneimittelinformation und Pharmazeutische Praxis (ZAPP) der ABDA;GOVI-Verlag, Berlin 2003

Leon MB, Abizaid A, Moses JW (2004): The Cypher Stent: A New Gold Standard in The Treatment of Coronary Artery Disease. Written and produced at the Cardiovascular Research Foundation (New York City) and supported by a nondirected educational grant from Cordis
Corporation, a Johnson&Johnson company (Warren, New Jersey); nur auf CD: Cypher Sirolimus-eluting Stent; hrsg. v. Cordis a Johnson&Johnson company, 2006

Montgomery WW (1965): T-TUBE TRACHEAL STENT. Arch Otolaryngol 82, 320-321

Danksagung

Die vorliegende Arbeit wurde in der Abteilung Pädiatrie III der Medizinischen Fakultät der Universität Göttingen unter der Leitung von Herrn Prof. Dr. med. Thomas Paul angefertigt. Für die Förderung der Arbeit und die Überlassung des Themas möchte ich mich bei Herrn Prof. Dr. med. Paul bedanken.

Mein besonderer Dank gilt Herrn PD Dr. med. Matthias Sigler, Oberarzt der Pädiatrie III, Medizinische Fakultät der Universität Göttingen, für seine intensive fachliche Betreuung, unermüdliche Hilfsbereitschaft und unersetzbare, freundliche Unterstützung.

Außerdem danke ich Herrn Dr. med. Oliver Möller, Chefarzt der Kinder- und Jugendmedizin, Eichsfeld Klinikum, recht herzlich für seine Unterstützung und die angenehme Arbeitsatmosphäre in der Anfangsphase dieser Dissertation.