
Distributed Anomaly Detection and
Prevention for Virtual Platforms

Dissertation

zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades

“Doctor rerum naturalium”

der Georg-August-Universität Göttingen

im Promotionsprogramm Computer Science (PCS)

der Georg-August University School of Science (GAUSS)

vorgelegt von

Ali Imran Jehangiri

aus Mansehra, Pakistan

Göttingen, 2015

Betreuungsausschuss

Prof. Dr. Ramin Yahyapour,

Gesellschaft für wissenschaftliche Datenverarbeitung Göttingen mbH (GWDG),

Institut für Informatik, Georg-August-Universität Göttingen

Prof. Dr. Stephan Waack,

Institut für Informatik, Georg-August-Universität Göttingen

Mitglieder der Prüfungskommission

Referent: Prof. Dr. Ramin Yahyapour,

Gesellschaft für wissenschaftliche Datenverarbeitung Göttingen mbH (GWDG),

Institut für Informatik, Georg-August-Universität Göttingen

Korreferent: Prof. Dr. Andrei Tchernykh,

Computer Science Department, CICESE Research Center, Ensenada, Baja

California, Mexico

Weitere Mitglieder der Prüfungskommission

Prof. Dr. Carsten Damm,

Institut für Informatik, Georg-August-Universität Göttingen

Prof. Dr. Dieter Hogrefe,

Institut für Informatik, Georg-August-Universität Göttingen

Prof. Dr. Xiaoming Fu,

Institut für Informatik, Georg-August-Universität Göttingen

Prof. Dr. Winfried Kurth,

Abteilung Ökoinformatik, Biometrie und Waldwachstum, Georg-August-

Universität Göttingen

Tag der mündlichen Prüfung: 17. 07 2015

i

Abstract

An increasing number of applications are being hosted on cloud based plat-

forms [69]. Cloud platforms are serving as a general computing facility

and applications being hosted on these platforms range from simple multi-

tier web applications to complex social networking, eCommerce and Big

Data applications. High availability, performance and auto-scaling are key

requirements of Cloud based applications. Cloud platforms serve these

requirements using dynamic provisioning of resources in on-demand, multi-

tenant fashion.

A key challenge for cloud service providers is to ensure the Quality of

Service (QoS), as a user / customer requires more explicit guarantees of

QoS for provisioning of services. Cloud service performance problems can

directly lead to extensive financial loses. Thus, control and verification of

QoS become a vital concern for any production level deployment. There-

fore, it is crucial to address performance as a managed objective. The

success of cloud services depends critically on automated problem diagnos-

tics and predictive analytics enabling organizations to manage their perfor-

mance proactively. Moreover, effective and advance monitoring is equally

important for performance management support in clouds. In this thesis,

we explore the key techniques for developing monitoring and performance

management systems to achieve robust cloud systems.

At first, two case studies are presented as a motivation for the need of

a scalable monitoring and analytics framework. It includes a case study

on performance issues of a software service, which is hosted on a virtual-

ized platform. In the second case study, cloud services are analyzed that

are offered by a large IT service provider. A generalization of case studies

iii

Abstract

forms the basis for the requirement specifications which are used for state-

of-the-art analysis. Although, some solutions for particular challenges have

already been provided, a scalable approach for performance problem diag-

nosis and prediction is still missing. For addressing this issue, a distributed

scalable monitoring and analytics framework is presented in the first part

of this thesis. We conducted a thorough analysis of technologies to be used

by our framework. The framework makes use of existing monitoring and

analytics technologies. However, we develop custom collectors to retrieve

data non-intrusively from different layers of cloud. In addition, we de-

velop the analytics subscriber and publisher components to retrieve service

related events from different APIs and sends alerts to the SLA Manage-

ment component for taking corrective measures. Further, we implemented

an Open Cloud Computing Interface (OCCI) monitoring extension using

OCCI Mixin mechanism.

To deal with performance problem diagnosis, a novel distributed par-

allel approach for performance anomaly detection is presented. First all

anomalous metrics are found from a distributed database of time-series for

a particular window. For comparative analysis three light-weight statisti-

cal anomaly detection techniques are selected. We extend these techniques

to work with MapReduce paradigm and assess and compare the methods

in terms of precision, recall, execution time, speedup and scale up. Next,

we correlate the anomalous metrics with the target SLO in order to locate

the suspicious metrics. We implemented and evaluated our approach on

a production Cloud encompassing Infrastructure as a Service (IaaS) and

Platform as a Service (PaaS) service models. Experimental results confirm

that our approach is efficient and effective in capturing the metrics causing

performance anomalies.

Finally, we present the design and implementation of an online anomaly

prediction system for cloud computing infrastructures. We further present

an experimental evaluation of a set of anomaly prediction methods that

aim at predicting upcoming periods of high utilization or poor performance

with enough lead time to enable the appropriate scheduling, scaling, and

iv

migration of virtual resources. Using real data sets gathered from Cloud

platforms of a university data center, we compare several approaches rang-

ing from time-series (e.g. auto regression (AR)) to statistical classification

methods (e.g. Bayesian classifier). We observe that linear time-series mod-

els, especially AR models, are most likely suitable to model QoS measures

and forecast their future values. Moreover, linear time-series models can

be integrated with Machine Learning (ML) methods to improve proactive

QoS management.

v

Acknowledgements

First and for most, I would like to thank to almighty Allah, for his blessings

on me right through my academic life. Next, I will ever be grateful to the

Higher Education Commission (HEC) of Pakistan for their generous grants

to complete my Master and Ph.D. studies.

Words can hardly express my gratitude towards my supervisor Prof. Dr.

Ramin Yahyapour, for his support and guidance throughout the years.

Ramin’s understanding and encouragement are what made this work pos-

sible. I would like to thank him for inspiring me with the topic, giving

me the opportunity to present at research conferences, and giving me the

freedom and time to explore my research interests. His professionalism and

personality will always be an inspiration to me. I would also like to thank

Professor Dr. Stephan Waack, for being the second advisor of this thesis.

I would like to express my gratitude to Prof. Dr. Andrei Tchernykh,

Prof. Dr. Carsten Damm, Prof. Dr. Dieter Hogrefe, Prof. Dr. Winfried

Kurth, and Prof. Dr. Xiaoming Fu for their willingness and availability to

participate in thesis evaluation.

I have been extremely lucky to work and co-author with many great

colleagues. I would like to thank everyone at the GWDG for the friendly

work atmosphere, in particular Peter Chronz, Kuan Lu, Khawar Munir

Abbasi and Jose Luis Gonzalez Garcia. I would like to express special

thanks to Piotr Kaspzak for assisting in building an experimental testbed.

I would like to express my gratitude to my mentors Thomas Röblitz and

Edwin Yaqub, who always gave me the shot of confidence and help to

work out difficult situations. Special thanks go to my group leader Philipp

Wieder for his support to solve many problems.

vii

Acknowledgements

I would like to express my gratitude to many good friends who I think

should be mentioned here for their love, and support all these years: Dr.

Khushnood Khattak, Dr. Rao Amir Ali Khan, Dr. Naveed Akhtar, Niamat

Khan, Dr. Jameel-ur-rehman, Altaf Hussain, Muhammad Haroon, Anwar

Shamim, Shazada Abdul Nasir and many others. May God bless you all.

I owe a lot to my family: my parents, my brothers and sisters. I would

like to happily admit that without their support and encouragement, I

would not have been able to focus and finish this dissertation successfully.

Especially, my brothers, Waheed, Amir, and Shahid, played a crucial role,

and for that I thank them wholeheartedly.

Finally, I would like to thank my life partner, Naila Ali, for her endless

love, prayers, and support throughout the duration of my studies.

viii

Contents

Abstract iii

Acknowledgements vii

I. Introduction 1

1. Introduction 3

1.1. Motivation . 4

1.2. Summary of State of the Art 5

1.3. Problem Statement . 7

1.4. Research Challenges . 8

1.4.1. Service Level Agreements 8

1.4.2. Cloud Monitoring . 9

1.4.3. Performance Problem Diagnosis 9

1.4.4. Performance Forecasting 10

1.5. Thesis Contributions . 10

2. Background 15

2.1. Cloud Computing . 16

2.1.1. OpenStack . 17

2.1.2. OpenShift . 18

2.2. Quality of Service . 18

2.2.1. SLA Management . 20

2.3. Performance Measurement 21

2.3.1. Monitors and Instrumentation 21

ix

Contents

2.3.2. Monitoring Frameworks for Enterprise, Cluster and

Grid Computing . 22

2.3.3. Cloud Monitoring . 23

2.3.4. Scalable Monitoring Solutions: 25

2.4. IT Operations Analytics . 26

2.4.1. Big Data Analytics 27

3. Requirements 33

3.1. Performance Management Scenarios at GWDG 34

3.1.1. Scenario 1: LMS on GWDG Platform Cloud 35

3.1.2. Scenario 2: LMS on GWDG Compute Cloud 36

3.1.3. Discussion . 38

3.2. Requirements . 40

3.2.1. Monitoring Framework (MF) Requirements 40

3.2.2. Analytics Engine (AE) Requirement 42

II. Scalable Monitoring, Performance Anomaly Detec-

tion and Prediction 43

4. Cross Layer Monitoring and Analytics Framework 45

4.1. Motivation: Scalable Monitoring 46

4.2. Use Case Scenario . 47

4.3. Monitoring Analytics Framework 48

4.3.1. Data Collector Mechanism 48

4.3.2. Distributed Data Store 50

4.3.3. Analytics Components 51

4.3.4. SLA and Service Management Components 51

4.4. Monitoring and Analytics Framework Prototype 52

4.4.1. Standardized Monitoring API 54

4.5. Strengths of Proposed Monitoring and Analytics Framework 55

4.6. Summary . 59

x

Contents

5. Diagnosing Performance Anomalies 61

5.1. Motivation: Distributed Parallel Performance Problems Di-

agnosis . 62

5.2. Related Work . 63

5.2.1. Statistical and Threshold based Approaches 63

5.2.2. Performance Diagnosis in Clouds 64

5.3. Cloud System and Performance Diagnosis Workflow 66

5.3.1. Anomaly Detection Phase 67

5.3.2. Correlation Phase . 71

5.4. Implementation . 72

5.5. Pseudo Code for Anomaly Detection Algorithms 73

5.5.1. Implementation of HW 73

5.5.2. Implementation of ASF Algorithm 74

5.5.3. Implementation of Ensemble Algorithm 75

5.5.4. Implementation of Ranking 76

5.6. Anomaly Detection Results 78

5.6.1. Experimental Setup 79

5.6.2. Synthetic Faults and Results 79

5.7. Performance and Accuracy Evaluation 82

5.7.1. Accuracy . 84

5.7.2. Performance of Anomaly Detection Algorithm 86

5.7.3. Performance of Ranking Algorithm 88

5.7.4. Discussion . 90

6. Predicting Performance Anomaly 93

6.1. Motivation: Distributed Parallel Performance Prediction . . 94

6.2. Related Work . 95

6.2.1. Machine Learning Techniques 95

6.2.2. Time Series Analysis 96

6.2.3. Performance Prediction in Clouds 96

6.3. Prediction of Performance Anomalies 97

6.3.1. Reference Scenario 98

xi

Contents

6.4. Prediction Approaches . 99

6.4.1. Time Series Analysis Methods 99

6.4.2. Classification Algorithms 102

6.5. Evaluations . 103

6.5.1. Experiment Setup . 104

6.5.2. Results . 107

6.6. Discussion . 114

III. Conclusion 117

7. Conclusions 119

7.1. Summary . 120

7.2. Contributions . 121

7.3. Limitations . 123

7.4. Future Development Possibilities 125

xii

List of Figures

1.1. Gartner’s Hype Cycle for IT Operations Management, 2014

[30]. 5

3.1. Scenario 1 services dependencies. 36

3.2. Scenario 2 services dependencies. 38

4.1. Motivating scenario for cross layer monitoring and analytics

framework . 47

4.2. Monitoring and Analytics Framework Architecture 49

4.3. Monitoring and Analysis framework prototype 53

5.1. System context and proposed advance Analytics Framework 66

5.2. Workflow of Analytics Framework 67

5.3. The precision results . 85

5.4. The recall results . 85

5.5. Anomaly detection phase Wall-clock time 87

5.6. Anomaly detection phase Speedup 87

5.7. Anomaly detection phase Scaleup 88

5.8. Ranking phase Wall-clock time 89

5.9. Ranking phase Speedup . 89

5.10. Ranking phase Scaleup . 90

6.1. Analytics Framework and Cloud Scenario 98

6.2. Workflow of Analytics Framework 99

6.3. A balanced accuracy comparison of time series models for

SLO belonging to three different datasets 109

xiii

List of Figures

6.4. A balanced accuracy comparison of ML algorithms when

augmented with AR models 109

6.5. A balanced accuracy comparison of ML algorithms when

augmented with ETS models 110

6.6. A balanced accuracy comparison of ML algorithms when

augmented with ARIMA models 110

6.7. Comparing balanced accuracy of Time series model′s in re-

lation to training data set size 111

6.8. Comparing balanced accuracy of estimation-classification model′s

in relation to training data set size 111

xiv

List of Tables

5.1. OpenTSDB: ‘tsdb’ table data format 72

5.2. Experimental results for Disk-Hog 81

5.3. Experimental results Network-Hog 82

5.4. Experimental results for Resource-Contention 83

5.5. The total number of anomalous metrics identified by different

approaches . 84

6.1. Results of machine learning algorithms across the test datasets

using 10-fold cross-validation. 112

6.2. Required time to construct and use the forecasting model on

a 5 node Cluster . 113

6.3. Execution Time [min] for Serial and MapReduce prediction

methods . 114

i

Part I.

Introduction

1

1. Introduction

The scope of this research is to propose an advance level, scalable platform

that integrates monitoring with analytics to build support for IT opera-

tions [47] and SLA enforcement. We put emphasis on state-of-the-art ca-

pabilities that are expected to be delivered in the cloud platform to achieve

an excellent performance. Our work makes an assumption that the SLA

terms between the customer and the cloud provider are already established.

Consequently, the processes of SLA specification, negotiation, and estab-

lishment are relevant, but out of scope of this work.

This initial chapter briefly discusses the motivation behind the proposed

approach and summarize state-of-the-art. Then, it continues to provide an

overview of the research problems and lists out the key contributions in the

thesis.

3

1. Introduction

1.1. Motivation

Cloud computing service providers built data centers that contain hundreds

of thousands of servers. The size and complexity of cloud data centers are

expected to grow further as more and more services are migrating to cloud

platforms. Another important trend in cloud computing is blending of ser-

vices, forming complex relationships among different service providers as

they are forming service chains and hierarchies. Such blending is common

nowadays such as RedHat and VMware PaaS offerings come on top of Ama-

zon and VMware IaaS. This complex landscape produces a huge volume of

service generated data that is critical for performance and availability man-

agement of services. The service-generated data become large-scale and

complex to be efficiently processed by traditional approaches.

Processing service generated data has become a “Big Data” problem for

IT operations [47]. Generally, it is not straightforward to perform analysis

on such an enormous volume of data and most of the traditional approaches

suffer from low efficiency in handling service generated data. IT Operations

Analytics (ITOA) tools are emerging to take on this challenge. These tools

are designed to provide end-to-end performance and capacity management

in virtual and cloud environments. Gartner identifies ITOA as being ’On the

Rise’ on the Hype Cycle for IT Operations Management (Figure 1.1), and

anticipate it to gain momentum to blend into the mainstream IT operations

in the next few years. The combination of increasing data volume, variety,

velocity and increasing system complexity is driving the demand for ITOA

tools utilizing Big Data platforms and Big Data analytics, to mine a large

amount of service generated data and have a look at patterns and models

for automated problem diagnostics and predictive analytics.

Cloud services availability and performance problems can lead to exten-

sive financial losses. Therefore, it is crucial to address performance as a

managed objective. We need to explore the key techniques for automated

problem diagnostics and predictive analytics, to enable providers to manage

their services performance proactively. Thus, we developed an autonomic

4

1.2. Summary of State of the Art

Figure 1.1.: Gartner’s Hype Cycle for IT Operations Management, 2014
[30].

infrastructure for cloud performance and availability management based on

same techniques like ITOA. This thesis combines scaleable monitoring and

Big Data analytics to mine a large amount of service generated data and

have a look at patterns and models for automated problem diagnostics and

predictive analytics.

Summary of state-of-the-art, the problem statement, research challenges

and research contributions of this thesis are described below:

1.2. Summary of State of the Art

Research efforts carried out in the past can be classified into scalable meth-

ods for real-time data collection and performance anomaly management.

Monitoring is an important aspect of Large-scale system management .

There exists many off-the-shelf general monitoring softwares, such as Gan-

glia [83], Nagios [89], Zenoss [132] and cacti [21]. These systems are fo-

cusing primarily on data collection and displaying the data using graphical

user interfaces, while storage and complex data processing are secondary

5

1. Introduction

priorities. Generally, these systems use relational databases and special-

ized tools such as the rrdtool [93] for storage purpose. While a typical

cloud platform needs to collect hundreds of thousands (millions) metrics

with higher rates, making rrdtool or relational databases unsuitable for

Cloud environments. Recently, researchers started to address monitoring

in the cloud platforms [70] [103] [54]. Distributed data-intensive process-

ing frameworks like Hadoop [12] (and related projects) have captured the

interest of researchers for storing and processing the large scale time-series

data. Chukwa [18], Dapper [112] and OpenTSDB [97] are examples of tools

utilizing cluster environments for scaleable storage, and also provide basic

analytics and plotting functionalities. However, none of these platforms

provide built-in advanced distributed data analytics.

Performance management research is further divided into performance

problem diagnostic and performance prediction. Performance problem diag-

nostic is known throughout literature. Traditionally, threshold-based meth-

ods are widely used in commercial (e.g. [61]) and open source (e.g. [83]), [89])

monitoring tools for anomaly detection. Threshold based methods work

well with a modest number of metrics. However, it is difficult to set thresh-

olds for a large number of metrics in a highly dynamic cloud environment.

The prior art on detecting and diagnosing faults in computing systems can

be reviewed in [4, 14, 15, 27, 87]. Diagnosing performance problems in the

context of cloud computing is at an early stage [68,69,109,121]. Most exist-

ing cloud monitoring and analytics techniques address tier-specific issues.

These techniques can not deal with real-world scenarios, where changes in

one tier often affect other tiers.

There is a growing thrust in academia and industry to provide proac-

tive anomaly management approaches. As a matter of fact, performance

anomaly prediction is prerequisite for the proactive management. Perfor-

mance prediction has been studied under different contexts, and we clas-

sified these studies into two broad categories: 1.) Machine Learning ap-

proaches and 2.) Time series processing approaches. The machine learning

based approaches have been effectively used to forecast system disruptions

6

1.3. Problem Statement

and performance anomalies [7, 29,57,82]. The use of time series analysis is

common for workload or resource usage forecasting [10, 60, 105]. However,

performance prediction work in the context of cloud computing is at an early

stage [33, 52, 121]. In most cases, these methods has been demonstrated in

a serial execution fashion. Despite their advantages, serial execution is not

suited for large scale datasets [77]. There are relatively few published stud-

ies on large scale machine learning and time series processing and their

integration with Big Data platforms.

1.3. Problem Statement

The purpose of this research is to understand performance management

in cloud environments and enhance existing techniques to improve state-

of-the-art. In IT operations context, performance management refers to

the monitoring and measurement of related performance metrics to eval-

uate the performance of IT resources. The performance metrics indicate

a systems availability and performance behavior, and monitoring is a key

building block for all performance management tasks. Monitoring systems

have been used for decades in different computing paradigms. However,

these solutions pose significant limitations for their widespread adoption in

large scale cloud platforms. The dynamic nature of cloud platforms requires

monitoring and management tools that are adaptable, extensible and cus-

tomizable. Traditional IT system management and monitoring frameworks

are based on the concept of permanent system connections and architec-

ture constructs. They are not well suited to cloud environments where

instances are frequently provisioned and revoked. Therefore, we postulate

the following thesis statement.

An automated monitoring and analytics framework integrated with a Big

Data platform can cope with a cloud’s service generated data, and it can

help in performance and availability management by automated problem

diagnostics and predictions.

7

1. Introduction

Proof of this thesis statement can be found in each of our contributions.

Our first contribution develops a scalable monitoring and analytics frame-

work based on a Big Data Platform (Hadoop ecosystem). The framework

uses a distributed time series database as its central part. Our second con-

tribution addresses the performance anomaly detection problem using a set

of anomaly detection techniques. We extend these techniques to work with

MapReduce paradigm. Our studies show that these scalable diagnosis tech-

niques are promising for real world cloud scenarios. Our final contribution

builds scalable prediction models for the cloud platform using MapReduce

paradigm. We integrate various machine learning and time series processing

techniques to predict performance anomalies.

1.4. Research Challenges

In this section, we give an overview of the research problems that we iden-

tified for achieving a robust performance management system for cloud

platforms.

1.4.1. Service Level Agreements

For managing performance of Cloud-based applications, SLAs between con-

sumers and providers emerge as a key aspect. The complete SLA manage-

ment lifecycle encompasses four stages: specification, Negotiation, Moni-

toring; and enforcement. These stages are widely studied topics in Service

Oriented Architecture (SOA) and Grid domains. However, monitoring of

SLA is a very important activity in the SLA life-cycle, and it is still in

infancy in cloud environments [55]. Success of cloud computing requires

that consumers receive fine-grain Quality of Service (QoS) guarantees such

as response time and throughput as part of SLA from the providers. The

majority of current cloud providers support SLAs with very simple metrics

based on resource availability [50]. Moreover, SLA violation detection is left

to providers or consumers. In this situation, monitoring outsourced to a

8

1.4. Research Challenges

third party would be very helpful to detect SLA violations and resolve pos-

sible disputes. Another open issue for SLAs is the lack of standardization

for different stages of SLA life cycle.

1.4.2. Cloud Monitoring

Advanced and effective monitoring is one of the fundamental building blocks

to provide performance management support in clouds. The use of tradi-

tional monitoring tools can make performance management difficult for

cloud providers. The lack of visibility across different levels (IaaS, PaaS,

SaaS) makes problem identification and resolution a tedious and lengthy

process. Usually the environment to monitor is highly complex due to

the complicated nature of service delivery tiers and hosted applications.

Moreover, monitoring parameters grow exponentially to the number of ap-

plications and elements belonging to the cloud tiers. Hence, the scalability

of the monitoring approaches is of prime concern as well as the method to

deploy them automatically.

1.4.3. Performance Problem Diagnosis

Various factors need consideration when diagnosing a cloud-based appli-

cation’s performance issues. The complexity and scale of the cloud envi-

ronment introduces a lot of uncertainties and creates greater challenges in

quickly and effectively localizing the system bottlenecks that lead to SLA

violations. System operators usually collect a large volume of continuously

monitored data with high velocity. Which makes it very difficult to perform

realtime diagnosis. Most of the previous solutions (c.f.1.2) suffer from low

efficiency in handling a large volume of data.

Typically, performance anomaly detection algorithms exhibit different

levels of sensitivity to different types of monitored data. Therefore, a key

challenge for a designer of an anomaly detection system is to reduce the

false positive rate by selecting the most appropriate algorithm. A related

challenge is to find only a small subset of monitoring data that is actually

9

1. Introduction

related to a given performance issue [29]. The huge amount of unrelated

data adds to the challenge of identifying the suspicious metrics. It is there-

fore essential to create automated tools to make the diagnoses process more

efficient. This is very important in SLAs perspective, often SLAs contain

guarantees for mean time to repair (MTTR).

1.4.4. Performance Forecasting

Predicting future values of Quality of Service (QoS) attributes is a key

component of autonomic solutions. Predictions assist in control of cloud-

based applications by preventing QoS violations from happening. The huge

amount of monitoring data generated by cloud platforms motivated the ap-

plicability of scalable data mining and machine learning techniques for pre-

dicting performance anomalies. Building prediction models individually for

thousands of Virtual Machines (VMs) requires a robust generic methodol-

ogy with minimal human intervention. Machine learning based models and

time series prediction techniques have been studied under different contexts

to forecast system failures and performance problems [10,33,52,56,105,121].

However, the decision to pick the best prediction method is usually very

difficult, and in some particular cases, is almost impossible to perform accu-

rate prediction. In addition, to make better predictions and to reflect newly

collected statics of dynamic systems, techniques to periodically update the

model’s parameter need to be investigated.

1.5. Thesis Contributions

In this section we highlight our scientific contributions to the state-of-the-

art in cloud monitoring and performance management. The contributions

of this dissertation are summarized as follows:

1. The first contribution of this theses is related to the extraction of

requirements for a cloud monitoring and analytics solution using two

real world cloud case studies. We utilize these case studies as a

10

1.5. Thesis Contributions

motivation for how to design a monitoring and analytics framework

for cloud platforms. Case studies resulted in a set of requirements.

We presented case studies and monitoring framework requirements in

Chapter 3.

2. We propose a scalable monitoring and analytics framework for cloud

platforms. It makes use of existing monitoring and analytics technolo-

gies and a new monitoring and analytics approach for Cloud services

at the IaaS, PaaS and SaaS layers. The framework enables the contin-

uous monitoring and analysis of the cloud components. It addresses

the scalability problem by using a distributed time series database

as its central part. We developed a prototype implementation of the

framework that is deployed in a real world cloud platform. In deciding

about design choices, our criteria included de-facto industry standards

that are capable of providing a high degree of flexibility and scalability

to our architecture. The framework makes use of existing monitoring

and analytics technologies. However, we develop custom collectors to

retrieve data non-intrusively from different layers of cloud. In addi-

tion, we develop the analytics subscriber and publisher components to

retrieve service related events from different APIs and sends alerts to

the SLA Management component for taking corrective measures. Fur-

ther, we implemented an Open Cloud Computing Interface (OCCI)

monitoring extension using Mixin mechanism. The framework archi-

tecture and implementation detail is presented in the Chapter 4.

3. The third contribution of this dissertation is towards addressing the

efficient performance anomaly detection. In order to diagnose perfor-

mance issues out of system metrics of a virtualized cloud environment,

we propose a novel approach to find all anomalous metrics from a dis-

tributed database of time series for a particular time window. We

present three main contributions in this work.

a) We perform a comparative analysis of three selected light-weight

statistical anomaly detection techniques: Adaptive Statistical

11

1. Introduction

Filtering (ASF) [20] , a Holt-Winters based technique [123], and

a an ensemble of models technique [5]. We assess and compare

the methods in terms of precision, recall, execution time, speedup

and scale up.

b) We show how these techniques in conjunction with MapReduce

paradigm can be a useful, practical, and inexpensive method

for diagnosing the performance problems in the cloud platforms.

To the best of our knowledge, our approach is first to adopt

the MapReduce [34] based algorithms for a distributed TSDB to

localize the suspicious metrics.

c) We implemented and evaluated these methods in a production

cloud encompassing IaaS and PaaS service models. Experimen-

tal results confirm that our approach is efficient and effective in

capturing the metrics causing performance anomalies in produc-

tion cloud platforms.

This contribution appears in the thesis as Chapter 5.

4. The fourth contribution of this dissertation concentrates on predict-

ing the QoS attributes of applications running on cloud platforms.

Predicting future values of QoS attributes is a key component of au-

tonomic solutions. Predictions assist in control of cloud-based appli-

cations by preventing QoS violations from happening. We present

three main contributions in this work.

a) First, we compare several time series modeling approaches to

establish the predictive power of these approaches.

b) Second, we propose estimation-classification models those aug-

ment the predictive power of machine learning classification meth-

ods (random forest, decision tree, support vector machine) by

combining them with time series analysis methods (AR, ARIMA

and ETS [45]).

12

1.5. Thesis Contributions

c) Third, we show how the data mining techniques in conjunction

with Hadoop framework can be a useful, practical, and inexpen-

sive method for predicting QoS attributes.

Our solution approach is based on large time series dataset analy-

sis, and we compare univariate time series analysis methods (e.g AR

and ES) with estimation-classification methods (e.g. AR+SVM [17],

ETS+Naive Bayes [75] and AR+Decision tree [107]) to predict QoS

attributes. The last contribution appears in this thesis as Chapter 6.

13

2. Background

In this chapter, we describe core concepts and background information in

the field of cloud computing and performance management. We start by

presenting a brief primer on cloud computing, virtualization and Quality

of Service (QoS). Next, we introduce common definitions and terminolo-

gies related to performance measurement and cloud monitoring. The final

section of this chapter is concerned with IT operations analytics.

15

2. Background

2.1. Cloud Computing

The beginning of the term “cloud computing” can be traced back to 2006,

when Amazon.com presented the Elastic Compute Cloud [9]. Since then,

cloud computing paradigm has been an incredible success. The paradigm

has largely been adopted in different context and applied to a large set of

technologies. A popular definition of cloud computing has been provided

by the National Institute of Standards and Technology (NIST)

Definition 1 (Cloud computing [84]) “Cloud computing is a model for

enabling ubiquitous, convenient, on-demand network access to a shared pool

of configureable computing resources (e.g., networks, servers, storage, ap-

plications, and services) that can be rapidly provisioned and released with

minimal management effort or service provider interaction.”

Cloud computing distinguishes three levels of abstractions for providing

services over the Internet: (1) Applications/software a.k.a. Software as a

Service (SaaS), (2) libraries/APIs a.k.a. Platform as a Service (PaaS), and

(3) hardware a.k.a. Infrastructure as a Service (IaaS).

A Private Cloud is used to refer to services housed in internal data centers

of single organization, and not accessible to general users. A Hybrid Cloud

is a composition of two or more distinct cloud models (e.g. private, public).

If a Cloud offers one or more of these kinds of services in a pay-as-you-

go manner t the public, it is called a Public Cloud. Prominent public

cloud providers are Amazon Web Services, Rightscale, GoGrid, Google,

and Microsoft Azure.

The NIST definition describes five essential characteristics of cloud com-

puting they include i.) Rapid Elasticity - the ability to scale resources both

up and down as needed, ii.) Measured service - In a measured service,

cloud provider control and monitor the different aspects of the cloud ser-

vices. This is critical for billing, access control, resource optimization and

capacity planning. iii.) On-demand Self-Service - the ability to allow con-

sumer to use cloud services as needed without any human interaction with

16

2.1. Cloud Computing

the cloud provider. iv) Ubiquitous network access - ubiquitous network ac-

cess means that cloud providers capabilities are available over the network

and accessed through standard mechanisms that promote use by hetero-

geneous thin or thick client platforms, and v.) Resource pooling - clouds

providing the illusion of infinite computing resources available on demand

to the end users. This precludes the need to plan ahead for provisioning.

Virtualization laid the foundation of Cloud Computing. Virtual machine

monitors (VMM) or hypervisors such as XEN, VMware, KVM, Virtual-

Box may concurrently execute several virtual machine (VM) instances on a

single physical machine (PM), each VM hosting a complete software stack

(operating system, middleware, applications) and being given a partition of

the underlying resource capacity (CPU power, RAM size, etc.). Moreover,

the live migration capability of hypervisors allows to migrate a VM from one

physical host to another. On the one hand, virtualization provides a high

degree of flexibility in optimizing resource utilization. On the other hand,

it requires sophisticated, automated system management mechanisms for

freeing IT managers from the complexity.

This thesis focuses on specific aspects of improving the virtulization re-

lated experience in clouds. Our monitoring and analytics framework helps

IT operations team to diagnose and predict performance anomalies in vir-

tualized platforms.

In the remainder of this section, there is a brief description OpenStack

and OpenShift, as these technologies are used in this thesis.

2.1.1. OpenStack

OpenStack is an opensource cloud computing platform that controls large

pools of compute, storage, and networking resources throughout a data-

center, all managed through a dashboard that gives administrators control

while empowering their users to provision resources through a web interface.

There are currently seven core projects within OpenStack and all these

17

2. Background

projects communicate via public APIs. The initial code base of Open-

Stack originally emerged from collaboration between Rackspace Hosting

and NASA. OpenStack enjoys broad industry support, and some significant

providers are adopting OpenStack as their cloud services platform [96].

2.1.2. OpenShift

OpenShift Origin is a cloud application platform as a service (PaaS). It

is an open source community supported version of RedHat OpenShift. It

enables application developers and teams to build, test, deploy, and run ap-

plications in the Cloud. Users can create applications via command line or

IDE client tools. OpenShift provides an ecosystem that supports multiple

languages, databases and middle-wares in the form of pluggable and exten-

sible execution environments called Cartridges. It also provides a template-

based approach called QuickStart that allows hooks to control the life cycle

of an application. Quickstarts and Cartridges Cloud-enable an applica-

tion. APIs provision applications on resource-constrained containers called

Gears, which can be auto-scaled. A Gear can have small, medium or large

sizes based on the capacity of CPU, RAM, Bandwidth and Disk resources

assigned to it using technologies like kernel namespaces and control groups

(cgroups). Gears are thin-provisioned on the Linux kernel, while SELinux

ensures secure isolation of multi-tenant gears over a single machine. For

details on OpenShift, please refer to [95].

2.2. Quality of Service

The focus of this thesis lies on QoS management with SLAs. Managing ap-

plication performance and QoS is a broad topic, and remains a key challenge

for cloud infrastructures. The terms Quality of Service (QoS), Availabiltiy,

Reliability, Performance, metric, response time, and resource utilization

metric are the key concepts of presented work, none of which are consis-

18

2.2. Quality of Service

tently defined in the literature, therefore in this section these QoS related

terms are defined.

Definition 2 (Quality of Service [43]) “By QoS, we refer to non-functional

properties such as performance, reliability, availability and security.”

Informally, QoS is a guaranteed predefined level of quality while provi-

sioning a given service. This indicates that the quality can be somehow

measured using metrics. Where, a metric is defined as:

Definition 3 (metric) “A metric is a variable to which a value is assigned

according to a measurement method as the result of a measurement.”

In computer science, QoS often refers to non-functional properties 1.) per-

formance, 2.) reliability and 3.) availability. In the following we define

these three terms: [16].

Definition 4 (Availability [115]) “Availability is the probability that a

system, at a point in time, will be operational and able to deliver the re-

quested services.”

Definition 5 (Reliability [115]) “The probability of failure-free opera-

tion over a specified time in a given environment for a specific purpose.”

Definition 6 (Performance [114]) “Performance is the degree to which

a software system or component meets its objectives for timeliness.”

This thesis, is focused on performance of the cloud services. When perfor-

mance in the thesis is refered, the meaning of performance will be the timing

behavior (e.g. response time) and resource efficiency (e.g. CPU usage) of

a computer system. For instance, in order to execute software operations,

the response time is the total time interval it takes to respond a service

request. In our work we measure response time of loading a full web page.

The resource utilization metric denotes the fraction of the time a resource

is busy in a given time interval.

19

2. Background

2.2.1. SLA Management

Generally, a provider agrees the QoS with its customers through a Service

Level Agreement (SLA), which is a bilateral contract between a service

provider and a customer. For the commercial success of Cloud comput-

ing paradigm, the ability to deliver Quality of Services (QoS) guaranteed

services is crucial. Quality and reliability of cloud based services are one

of the most prominent hurdles restricting customers to adopt this model.

Formally, an SLA is defined as:

Definition 7 (SLA [88]) “SLA is a machine interpretable representation

of agreed-upon service characteristics or objectives, established between two

parties. These run time agreements are used as the goals that drive some

form of automation.”

SLA is a formal negotiated agreement between a service provider and a cus-

tomer describing functional and non-functional characteristics of a service

including QoS guarantees, penalties in case of violations, and a set of met-

rics, which are used to measure the provisioning of the requirements [36,40].

Initially, SLAs are being used in the telecommunication and networking do-

mains [101,127], to define things such as allocated bandwidth, the quality of

networking circuits, etc. Now the concept is also applied in Grid and Cloud

computing domains and most recent research consider automated SLAs for

resource and performance management [40, 99]. Automated SLA manage-

ment is still in its infancy and sometimes non-existing for virtual platforms.

Commercial Cloud Infrastructure providers like Amazon EC2 [8], Flexis-

cale [41] and ElasticHosts [38] provides static SLAs drafted by their legal

staff in human readable format. These SLAs cannot be negotiated and

monitored at runtime.

This thesis focuses on specific aspects of improving the performance re-

lated experience in clouds. SLAs define a formal basis for performance

and availability the provider guarantees to deliver. As cloud monitoring

and performance management is correlated to SLAs, hence we also briefly

touch the SLA management in cloud platforms.

20

2.3. Performance Measurement

2.3. Performance Measurement

Computer system performance measurements involve monitoring the sys-

tem while it is being subjected to a particular workload. Metrics are used

as performance measures to assess QoS satisfaction. In this thesis we use

measurement-based performance evaluation techniques. These techniques

obtain values for performance metrics of interest—e.g., response times and

resource utilization—by collecting, processing, and analyzing runtime data

from a system under execution.

2.3.1. Monitors and Instrumentation

The IEEE software engineering vocabulary [62] uses monitoring in its literal

meaning, but provides a definition of the term monitor, i.e., the tool or

device used when monitoring.

Definition 8 (Monitor [62]) “A software tool or hardware device that

operates concurrently with a system or component and supervises, records,

analyzes, or verifies the operation of the system or component.”

According to Jain [63], monitors can be classified based on the trigger mech-

anism, displaying ability, and the implementation level.

A monitor may be classified as event driven or timer driven (sampling

monitor), depending on the mechanisms to trigger measurements of relevant

data from a system. An event-driven monitor is activated whenever a

relevant event in the system occurs. However, a sampling monitor is not

activated by the occurrence of system events, but that is activated at fixed

time intervals. A sampling mechanism is used in this thesis.

A monitor may be classified as a software monitor, a hardware monitor, a

firmware monitor, or a hybrid monitor, with respect to the implementation

level at which monitor is implemented [63].

The displaying ability characterizes whether the gathered data is dis-

played/processed online or offline. On-line monitors display the system

21

2. Background

state either continuously or at frequent intervals. Batch monitors, on the

other hand, gather data that can be analyzed later utilizing a separate

analysis program [63].

Instrumentation is a technique used by monitoring tools for gathering

data about a system under test by inserting probes into that system. It

is often used in combination with accessing already existing data sources,

such as hardware performance counters. The IEEE vocabulary [62] defines

instrumentation as:

Definition 9 (Instrumentation [62]) “Devices or instructions installed

or inserted into hardware or software to monitor the operation of a system

or component.”

Our proposed monitoring and analytics framework may be classified as a

software-sampling-batch monitor, it adds instrumentation in the underlying

runtime environment (operating system and middleware) of cloud layers.

Monitoring is the foundation of performance trouble shooting. A sig-

nificant body of work has been published in the areas of Grid, cloud and

enterprise computing domains. In this section, we classify the related work

into three major categories. We begin with a review of the monitoring

frameworks for Enterprise, Cluster and Grid Computing. We then continue

reviewing monitoring systems in the cloud domain. Finally, we review some

of the specific Big Data related monitoring systems.

2.3.2. Monitoring Frameworks for Enterprise, Cluster and

Grid Computing

Monitoring is an important aspect of Large-scale system management. There

are a lot of off-the-shelf general monitoring software available, such as Gan-

glia [83], Nagios [89], Zenoss [132] and cacti [21].They are open source so-

lutions and can monitor more or less any device for which a sensor exists.

Moreover, these solutions are extensible through a plug-in mechanism. Na-

gios and Zenoss can also be used for application monitoring. Ganglia is

22

2.3. Performance Measurement

mainly used in high performance computing environments like cluster com-

puting and Grid computing. These frameworks receive data from sensors,

store it in rrdtool, and present the gathered monitoring information through

graphical user interfaces. These frameworks are not good for data analy-

sis as data lose precision over time. Moreover, these solutions lack the

supports for elasticity and scalability that is basic characteristic of cloud-

specific tools.

Enterprise management tools like IBM Tivoli [61] and HP Openview [98]

provides powerful infrastructure and SLA monitoring frameworks. These

systems perform centralized data monitoring by aggregating information

from a variety of sources and presenting it to system operators through

some graphical user interfaces. These tools are designed for the fixed server

deployments, therefore they are not very useful in dynamic infrastructure

like cloud platforms.

Despite the various differences, Grid computing pursues a similar target

as Cloud computing: the provisioning of the resources on demand. A large

number of monitoring solutions have been developed in the Grid community.

Globus MDS [108], R-GMA [31] MonALISA [118] and GridICE [11] have

addressed the monitoring of distributed computing Grid. A Grid monitor-

ing system retrieve monitoring data from multiple sites and integrate in a

single monitoring system. In contrast, for individual Clouds, this function-

ality is not needed. Moreover, the design assumptions of Grid monitoring

systems are different from those of cloud, as Grid resources are handed

out in a non-virtualized way. Therefore the use of Grid solutions in cloud

platforms is unlikely.

2.3.3. Cloud Monitoring

Continuous monitoring of cloud platforms serves, for example, to make sure

that the system’s QoS requirements are fulfilled as well as to detect, diag-

nose, and resolve QoS problems as early as possible. For this purpose, mon-

itors are placed at different layers of the cloud stack, including IaaS, PaaS

23

2. Background

and SaaS. On each level, various QoS measures of interest exist. Countless

monitoring tools have been developed and are in production use since the

past many years.

Well-known clouds in the industry all have their own monitoring systems.

CloudWatch is a monitoring service that allows monitoring of other AWS

cloud resources. It is used to collect and store metrics and log files. Clients

can gain system-wide visibility into resource utilization, application per-

formance, and operational health. The low-level monitoring system that

Amazon uses for acquiring information on its physical clusters is kept con-

fidential. Microsoft Windows Azure provides minimal monitoring for a new

cloud service using performance counters gathered from host OS for roles

instance. There is no automatic monitoring mechanism for web roles and

worker roles running on Microsoft Azure. Google App Engine [51] provides

an App Engine System Status Dashboard to show the service status. Some

third-party tools are also developed to keep an eye over the clouds, such as

New Relic [91]. It can monitor Web and mobile applications in real-time.

Largely, existing monitoring solutions for Clouds belongs to a particular

vendor, a particular service, or a particular role. The above mentioned

systems are monitoring as as a service (MaaS) tools and their functionali-

ties are exposed through APIs. These systems are vendor specific, neither

their design details nor any implementations are publicly available for full

evaluation.

With increasing popularity of Cloud computing, many open source cloud

management platforms are developed to help building cloud platform such

as OpenNebula, OpenStack, Cloud Foundry and OpenShift Origin. Each

of these platforms offer only very basic monitoring, and they do not con-

sider advance monitoring and analytics as a high priority task. Hence, none

of these platforms meets the needs of monitoring large scale cloud deploy-

ments.

Research work concerned with monitoring in the cloud is relatively less.

Katsaros et al., presents a service-oriented approach for collecting and stor-

ing monitoring data from a physical and virtual infrastructure. The pro-

24

2.3. Performance Measurement

posed solution extends Nagios with a RESTful interface [70]. Rak et al.,

presents a brief overview of the mOSAIC API, that can be used to build up

a custom monitoring system for a given Cloud application [103]. Aceto et

al., provides specific analysis on definitions, issues and future directions for

Cloud monitoring [3]. Hasselmeyer and D’Heureuse proposes a monitoring

infrastructure that was designed with scalability, multi-tenancy, dynamism

and simplicity as major design goals [54]. Most of the above-mentioned

monitoring techniques address one specific functional tier at a time. This

makes them inadequate in real world domains, where changes in one tier

effects other tiers.

2.3.4. Scalable Monitoring Solutions:

Legacy monitoring systems are focused primarily on data collection and dis-

playing the data using Graphical user interfaces, While storage and complex

data processing are secondary priorities. However, a typical cloud platform

needs to collect hundreds of thousands (millions) metrics with higher rates,

making rrdtool or relational database based monitoring solutions unsuit-

able for Cloud environments. Previous research work has proposed various

solutions to address this problem. Deri et al. [35] presents an innovative

compressed time series database, it allows to store large time series data

in real time with limited disk space usage. The experimental results has

established the benefit of compressed time series database over traditional

approaches, and has shown that it is suitable for handling a large number

of time series.

Distributed data-intensive processing frameworks like Hadoop (and re-

lated projects) have captured the interest of researchers for storing and

processing the large time-series data. In [125], authors presents a survey

of distributed time-series storage and processing in Cloud environments.

Chukwa [18] is high performance distributed monitoring system that uti-

lizes Hadoop distributed file system (HDFS) for storage of time-stamped

log data. OpenTSDB [97] is a scalable time series database. It stores and

25

2. Background

serve huge volume of time series data in Hadoop HBase. OpenTSDB imple-

ments its own optimization techniques for better data arrangement. Han et

al. [53] study the advantages of the three dimensional data model, by using

the “version” dimension of HBase to store the values of a time-series. The

validation has demonstrated the better performance with the data schemas

that use the third dimension of HBase. Dapper [112] is a performance mon-

itoring framework for Google’s production distributed systems. It employs

Bigtable to manage the large volume of trace logs and for data analysis

framework supports MapReduce paradigm. However, this approach does

not outline how they perform distributed processing to diagnose perfor-

mance problems. Although, most of these tools utilize cluster environments

for scaleable storage, and also provide basic analytics and plotting function-

alities, but none of these platforms provide built-in advanced distributed

data analytics. [125].

2.4. IT Operations Analytics

IT Operations Analytics (ITOA) is a Gartner’s term for use of applying

Big Data analytics to the IT domain. According to IT analyst Forrester

Research [42] IT Operations analytics defined as:

Definition 10 (IT Operations Analytics [92]) “The use of mathemat-

ical algorithms and other innovations to extract meaningful information

from the sea of raw data collected by management and monitoring tech-

nologies.”

According to Gartner Research VP Will Cappelli [22], “Gartner estimates

that worldwide spending in this market sub-sector will surpass $800 million

in 2013, which is a $500 million increase from the $300 million spent in

2012. Furthermore, this more than 100% growth rate is expected to con-

tinue through 2014.” A few more important available analytics technologies

are statistical pattern-based analysis, event correlation analysis, heuristics-

based analytics, and log analysis. According to Gartner, customers expects

26

2.4. IT Operations Analytics

to combine the above mentioned analytics technologies in a single ITOA

platform. Under the term ITOA a number of commercial tools are devel-

oped by companies like CA, HP, IBM, Splunk, and Zenoss etc.. These tools

provide a rich set of features and support. ITOA tools tend to be used by

IT operations teams for following purposes [81]:

• Isolate the root-cause of an application performance issue.

• Gain proactive control of service performance and availability.

• Rank and prioritize identified issues.

• Analyze service business impact.

• Complement the output of other discovery-oriented tools to improve

the reliability of information used in operational tasks.

This work can be seen as a platform to build an ITOA tool, e.g., with re-

spect to root-cause analysis (problem isolation), proactive control of service

performance and availability. However, it is not the goal to compete with

commercial ITOA tools. Our purpose is to study new technologies and

permit research which is often not possible with commercial tools.

2.4.1. Big Data Analytics

In this thesis the focus lies on Big Data Analytics. It is intend to mine large

amounts of service generated data and have a look at patterns and models

to Isolate the actual problem and predict services performance. Before

we continue further, it is necessary to first establish Big Data analytics

vocabulary. As a first rough description, a Big Data platform allows users

to access, analyze and build analytic applications on top of large data sets.

In fact, several definitions for Big Data are found in the literature, and

there is no consensus on a single definition. NIST suggests the following

definition:

27

2. Background

Definition 11 (Big Data [32]) “Big Data is where the data volume, ac-

quisition velocity, or data representation limits the ability to perform effec-

tive analysis using traditional relational approaches or requires the use of

significant horizontal scaling for efficient processing.”

Big Data analytics is the process of examining large amounts of data of

various types to uncover hidden patterns, unknown correlations and other

useful information [133]. Development of Big Data platforms and Big Data

analytics makes it possible to mine large amounts of service generated data

and have a look at patterns and models to diagnose performance problems

and QoS prediction of services.

To enable Big Data analytics, there exists multiple frameworks and ser-

vices such as: Apache’s Hadoop [111], Google’s File System (GFS) [48],

BigTable [26] and Microsoft’s Scope [23]. However, the opensource Apache

Hadoop software framework is widely employed by leading companies.

Machine learning

Big Data can be analyzed with common machine learning techniques. In

order to predict performance anomalies, we used machine learning methods

on service generated Big Data. Machine learning is a sub-field of computer

science that explores the construction and study of algorithms that can

learn and make predictions on data [71]. Tom Mitchell define “Machine

Learning” in his book as:

Definition 12 (Machine learning [86]) “A computer program is said to

learn from experience E with respect to some class of tasks T and perfor-

mance measure P, if its performance at tasks in T, as measured by P, im-

proves with experience E.”

Machine learning provides many applications covering many aspects of daily

life, for example recommendation engine, clustering, classification, spam fil-

tering and fraud detection. With the growing popularity of Big Data as a

valuable resource and mechanism to explore the value of data sets there

28

2.4. IT Operations Analytics

is an increasing interest to execute ML algorithms efficiently in parallel on

large clusters. A number of machine learning frameworks have been im-

plemented in mapreduce around Apache Hadoop framework. For example,

the Apache Mahout is a scalable machine learning and data mining library

for Hadoop. The initial implementation of Mahout was based on 10 algo-

rithms described in ”Map Reduce for Machine Learning on Multicore” [28].

All implemented algorithms run in a single machine, and some of them

are implemented in distributed mode using MapReduce paradigm. Mahout

provides algorithms for recommendation mining, clustering, classification

and frequent item set mining. The Apache Mahout library is used by lead-

ing companies (e.g. Adobe, Amazon, AOL, Mendeley, Twitter, Yahoo).

There are few other frameworks worth mentioning, as Apache Hadoop and

Apache Mahout alternatives.

MLbase [72] simplifies accessibility to machine learning algorithm in a

distributed environment. The system itself manages load balances, data

partitioning among cluster nodes and provides built-in common algorithms

such as SVM. It is possible to extend the algorithm set through a cus-

tom high level Pig Latin-like declarative language. The core of MLbase is

its optimizer, which transforms a declarative ML task into a sophisticated

learning plan. MLbase uses down-sampled data to speedup the evalua-

tion of different learning algorithms applicable to the specific task. After

exploration, the best model is trained with the larger dataset.

SystemML [49] is a system that enables the development of large-scale

machine learning algorithms. It allows to write ML algorithms in Declara-

tive Machine learning Language (DML)- a higher-level language that closely

resembles the syntax of R. SystemML applies a sequence of transforma-

tions to translate DML scripts into highly optimized execution plans over

MapReduce. Presented results shows the benefit of different optimization

strategies and the applicability of SystemML to scale up a diverse set of

machine learning algorithms.

Spark [131] is a cluster computing framework developed to reduce la-

tency data sharing in iterative algorithms, common in machine learning and

29

2. Background

data mining fields. Spark introduced the concept of Resilient Distributed

Datasets those can be cached in memory across machines for applications

that require frequent passes through them. It provides special iterative

in-memory operations to better support ML algorithms.

Time series analysis

Time series analysis techniques forms the foundation for a wide range of

applications including physics, climate research, medical diagnostics, eco-

nomics, and systems operations [76]. As size and complexity of cloud data

centers grows service-generated data become large-scale, time series analy-

sis is also needed in IT operations analytics. There exist various techniques

to model and forecast time series, and these techniques can be used for

performance anomaly detection and prediction in the cloud environment.

For brevity, we define time series as follows:.

Definition 13 A time series X represents an ordered sequence of values

x0, x1, ... of a variable at equally spaced time points t = t0, t1,

In recent years, large-scale time series analysis has become widespread

in Internet companies. For example, Google forecast thousands of time

series every day for numerous purposes, including evaluating performance

and anomaly detection [116]. Analyzing massive time-series datasets is a

challenging task and scalable ways to process large time series data sets are

in demand [6]. To fill this void MapReduce has emerged as a technology to

process large amounts of data in distributed environment. Several academic

and commercial organizations (e.g., Facebook, and Yahoo!) are already

using Hadoop MapReduce to analyze a large set of data.

Hadoop.TS [67] is a computational framework for time-series analysis.

It allows rapid prototyping of new algorithms. The main components can

be used as a standalone applications or as a mapreduce job. Hadoop.TS

introduced a bucket concept which traces the consistency of a time series

for arbitrary applications. In the first phase of development the library

provides an implementation of six relevant time series analysis algorithms.

30

2.4. IT Operations Analytics

This library can be hooked into Hive and Pig by using special components

called User Defined Functions (UDF).

R is a statistical software that has extensive features for analyzing time

series data. Hadoop and R are considered to be a natural match in Big Data

analytics for time series analysis. There are frameworks like RHadoop and

RHIPE(R and Hadoop Integrated Processing Environment) that integrate

with R to analyze data within MapReduce workflows. In the same way, our

implementations also integrate R and Hadoop.

OpenTSDB is an open source distributed and a scalable time series

database. It is used for storage and indexing of time-series metrics, and it

works on top of HBase [13]. HBase is an open-source distributed database

that runs on Hadoop [12]. OpenTSDB provides basic statistical function-

alities like mean, sum, maximum and minimum. There exists several tools

that complete OpenTSDB ecosystem from various metric collectors to spe-

cialized tools for analysis of time series. Two of them are worth mention-

ing due to their dependency on R for time series analysis: Opentsdbr [58]

and R2time [6]. Opentsdr uses OpenTSDB’s HTTP/JSON API to query

data from OpenTSDB. This API is only useful for small scale analysis

due to its non distributed implementation that creates performance bottle-

necks for real world applications. R2time allows users to query time-series

data stored in HBase directly using the composite key of OpenTSDB and

Hadoop MapReduce framework. Furthermore, it allows users to perform ad-

vanced statistical analysis employing the Hadoop MapReduce framework.

Our monitoring and analytics framework uses OpenTSDB for collecting,

aggregating and storing data.

31

3. Requirements

This chapter aims to highlight general requirements for performing moni-

toring and analytics in a cloud environment. As a representative of a cloud

provider, we have chosen to analyze Compute Cloud and Platform Cloud

services offered by GWDG. This example is considered representative for

other large-scale cloud service providers as well. Two real world applica-

tions identified as representative Cloud workloads are used as a further

motivation for the necessity of research towards an improved IT operations

management. A generalization of the scenario forms the basis for the spec-

ification of requirements. The generalized scenario involves infrastructure,

platform and software layers of cloud, those are expected to be provisioned

with performance or other guarantees. At the beginning of this chapter

use cases are presented. In section 3.1.3, we discuss identified problems

in greater detail. The elicited requirements for monitoring and analytics

framework can be found in section 3.2. This chapter contains contents

from our previous publication [65].

33

3. Requirements

3.1. Performance Management Scenarios at

GWDG

The GWDG is a joint data processing institute of the Georg-August-Universität

Göttingen and Max Planck Society. GWDG offers a wide range of in-

formation and communication services. GWDG also owns a state of the

art Cloud Infrastructure. The Cloud infrastructure consists of 42 physi-

cal servers with a total of 2496 CPU cores and 9.75 Terabytes of RAM.

Four of the servers are Fujitsu PY RX200S7 using Intel Xeon E5-2670.

Thirty-eight of the servers are Dell PowerEdge C6145 using AMD Inter-

lagos Opteron. The raw disk capacity of the servers is 18.55 Terabytes.

Additionally, it hosts 1 PetaByte of distributed data storage. On top of

this, GWDG is offering “GWDG Compute Cloud” and “GWDG Platform

Cloud” services. Currently, a self-service portal provides single-click pro-

visioning of pre-configured software services. In the future, agents will be

introduced to automatically negotiate SLAs embodying the desired qualities

of procured services, as outlined in our recent research [130].

GWDG Cloud service customers are divided into two categories. The

first category is small institutes and novice individuals. They require simple

off the shelf software services such as WordPress, Moodle, MeidaWiki, etc.

These services are served by Platform Cloud, which can automatically scale

and monitor them. The second category of customers are large institutes

and advanced customers. They have additional performance, availability

and scalability requirements on top of multi-tier architectures and as a

result have much more complex large scale distributed services. This class

of customers prefer to only procure VMs with a pre-installed base operating

system (OS) from the Compute Cloud. These customers already have IT

staff that administer the system, handle support and scalability concerns

and do not require support from the cloud provider to manage their services

running inside VMs. As part of the motivation for requirement elicitation,

we studied two Learning Management Systems (LMS), which are web based

34

3.1. Performance Management Scenarios at GWDG

environments created especially to support, organize and manage teaching

and learning activities of academic institutes.

3.1.1. Scenario 1: LMS on GWDG Platform Cloud

Moodle is a free web based LMS. It is a web application written in PHP. A

simple Moodle installation comprises the Moodle code executing in a PHP-

capable web server, a database managed by MySQL and a file store for

uploaded and generated files. All three parts can run on a single server or for

scalability, they can be separated on different web-servers, a database server

and file server. Moodle is a modular system, structured as an application

core and supported by numerous plugins that provide specific functionality.

We choose a Moodle as a representative cloud application because it is

more widely used LMS in higher level educational institutions. Due to its

three tier architecture, we consider it as an education equivalent for many

business applications like CRM, payroll processing and human relationship

management. Like business customers, students and teachers of educational

institutes depends critically on the reliability of Moodle.

Customers can install Moodle with a single click on the web interface of

GWDG Platform Cloud. One of the most important advantages of hosting

Moodle on GWDG Platform Cloud is the ability to scale up or down quickly

and easily. GWDG Platform Cloud is based on open source, community

supported version of RedHat OpenShift Origin PaaS middleware [95]. It

enables application developers and teams to build, test, deploy, and run

applications in the Cloud. Users can create applications via command line

or IDE client tools. Platform Cloud is a multi-language PaaS that supports

a variety of languages and middleware out of the box including Java, Ruby,

Python, PHP, Perl, MySQL and PostgreSQL. Platform Cloud is deployed

on top of GWDG Compute Cloud and is in its early test phase. Figure 3.1

depicts the resulting dependencies after hosting Moodle on Platform cloud.

35

3. Requirements

Figure 3.1.: Scenario 1 services dependencies.

3.1.2. Scenario 2: LMS on GWDG Compute Cloud

Electronic Work Space (EWS) is another LMS that is used by the Univer-

sity of Dortmund. Teachers and students of the University use EWS to

publish information and materials for lectures, seminars and classes. Cur-

rently, there are approximately 30,000 registered users of this service. EWS

is a Java EE application deployed in JBoss Application Server (AS). Its

structure is highly modular and at Dortmund University, it was tailored to

36

3.1. Performance Management Scenarios at GWDG

interface with the popular phpBB forum and MediaWiki servers. Moreover,

to facilitate collaborative editing and management of documents, a Web-

DAV server was also attached to it. For video streaming, it was interfaced

with a dedicated video streaming server from the University of Duisburg-

Essen. Information about research projects, lectures and scientists working

at the University is managed by another platform called “Lehre Studium

Forschung (LSF)”. Students have the possibility to look at the course cat-

alog and register for courses at LSF. Data (participant, room, course de-

scription) from LSF is automatically transferred to EWS by a custom mid-

dleware (a Java EE application) that is deployed on a separate JBoss AS.

The Oracle database serves as the content repository.

EWS is a complex application and requires multi-VM deployment to ad-

dress scalability, load balancing, and availability requirements. In addition,

security and privacy are other main concerns when considering deployment

over Cloud infrastructure. For such complex applications, GWDG Compute

Cloud is more suitable where advance customers procure VMs with base OS

and some monolithic middleware. Applications running inside these VMs

appear as black-box to Compute cloud administrators.

The “GWDG Compute Cloud” is a service similar to the well-known

commercial IaaS like Amazon EC2. It is especially tailored to the needs

of partner institutes. It provides a simplified web interface for provision-

ing and managing the virtualized resources (VMs, disk, public IPs). The

self-service interface allows customers to choose different VM flavors (in

terms of available processors, memory and storage) and operating sys-

tems. Customers can access their VMs directly from a web browser using

the Virtual Network Computing (VNC) protocol. Customers can also at-

tach the public IP address with VMs on the fly. The GWDG Compute

Cloud is based upon open source products such as OpenStack, KVM, and

Linux. The service is in public test phase and is available to members

of the Max Planck Society and the University of Göttingen. Figure 3.2

depicts the resulting dependencies after hosting EWS on Compute Cloud.

37

3. Requirements

Figure 3.2.: Scenario 2 services dependencies.

3.1.3. Discussion

The key concern for Cloud customers is the availability and performance

of SaaS. In scenario 1, we have a hierarchical dependency between SaaS,

PaaS and IaaS tiers of Cloud. However, in scenario 2, our LMS application

(SaaS) is only dependent on the IaaS tier of the Cloud. These dependencies

lead to strong correlation between some performance metrics.

If customers of LMS are experiencing performance or availability prob-

38

3.1. Performance Management Scenarios at GWDG

lems, then both Cloud provider and customer needs to find the root cause of

the problem in their domain of responsibility. QoS degradation may be due

to the internal components of SaaS or the problem could have propagated

from lower layers of the Cloud stack. For example, LMS might guarantee

to its users that the response time of a HTTP request should be less than

1 second under a fixed request invocation rate. If users experience response

time greater than 1 second, then a possible cause could lie in the customer

domain, e.g., the invocation rate is increased or the network between web

server and database server is congested, etc. The problem could also lie

in PaaS domain, e.g., due to a slow DNS server, contention of resources

caused by collocated applications. The problem could even lie in the IaaS

domain, for instance, due to a malfunctioning virtual network or contention

of resources due to collocated VMs, etc. Therefore, service providers need

an analytics module to pinpoint the component/tier responsible for QoS

degradation.

Analytics module process monitoring data from a wide set of compo-

nents/tiers involved in service delivery. It is vital to determine a clear

ownership of responsibility when problems occur. In real world complex

scenarios as the ones mentioned above, this is a very challenging task. Sce-

nario 1 incorporates infrastructure, platform and software service tiers. Our

experience shows that all the components from these tiers need to be mon-

itored. Although in scenario 2, we only have SaaS and IaaS tiers, but

monitoring is still difficult as the SaaS tier is highly complex and appears

only as a black-box to the IaaS tier. In the given context, we identify three

challenging problems that we address in this work. These are:

1. Complexity: Usually the environment to monitor is highly complex

due to the complicated nature of service delivery tiers and hosted

applications.

2. Monitoring Isolation and Heterogeneity: Cloud tiers are best moni-

tored by separate monitoring technologies that should work in isolated

but complementary fashion.

39

3. Requirements

3. Scalability: Monitoring parameters grow exponentially to the number

of applications and elements belonging to cloud tiers. Hence, scalabil-

ity of monitoring approaches is of prime concern as well as the method

to deploy them automatically.

3.2. Requirements

In the following, requirements derived from presented scenarios and gen-

eral considerations from the literature [3, 37, 54, 66] are generalized. These

requirements have a generic applicability where a Software-as-a-Service

(SaaS), e.g., Learning Management System (LMS) is based upon Platform-

as-a-Service (PaaS) or Infrastructure-as-a-Service (IaaS) tier. We believe

that a thorough understanding of these requirements provides solid founda-

tions for an effective monitoring and analytics solution for virtual platforms

and cloud computing.

3.2.1. Monitoring Framework (MF) Requirements

M1. Scalability: The MF should be scalable i.e. it can cope with a large

number of monitoring data collectors. This requirement is very important

in cloud Computing scenarios due to a large number of parameters to be

monitored for a potentially large amount of services and elements of cloud

tiers that may grow elastically.

M2. Heterogeneous data: The MF should consider a heterogeneous

group of metrics. The MF must allow the collection of service level runtime

monitoring data, virtual IT-infrastructure monitoring data (e.g., VM level

runtime monitoring), and fine-grained physical IT-infrastructure monitor-

ing data (e.g., network links, computing and storage resources).

M3. Polling Interval: The data collection mechanism must allow the dy-

namic customization of the polling interval. The dynamic nature of virtual

platforms demand gathering of data in a sufficiently frequent manner, mean-

ing that nodes should be monitored continuously. Naturally, smaller polling

40

3.2. Requirements

intervals introduce significant processing overhead inside nodes themselves.

However, long polling intervals do not provide a clear picture of the mon-

itored components. Therefore, an optimal trade-off between the polling

interval and processing overhead is required.

M4. Relationship: In the above-mentioned scenario, clusters of VMs and

Physical Machines (PM) serve many kinds of applications, so there is a hi-

erarchical relationship between applications, VMs and PMs. There is also a

possibility of migration of VMs and applications from one node to another,

so relationships can be changed dynamically. The metric’s value must be

tagged to show that they belong to a particular instance (e.g., application),

and what is their relation to other instances (e.g., VM and PM).

M5. Data Repository: The MF requires a data repository where raw

monitoring data needs to be stored after collection. The original data set

must be stored without down-sampling for auditing purposes. The stored,

raw monitoring data can be retrieved by consumers to perform QoS fault

diagnosis, SLA validation, plot rendering, and as an input for fine grained

resource management. The database must be distributed in order to avoid

a single point of failure. Moreover, it must be scalable, and allow to store

thousands of metrics and potentially billions of data points.

M6. Non-Intrusive: The MF must be able to retrieve data non-intrusively

from a variety of sources (for VM via libvirt API, for a host via cgroups, for

the network via SNMP, for Java applications via JMX, etc.). The collection

mechanism should easily be extensible by adding more plugins.

M7. Interface: The MF should provide a REST interface that allows

access to the current monitoring data in a uniform and an easy way, by

abstracting the complexity of underlying monitoring systems. A standard

unified interface for common management and monitoring tasks can make

different virtualization technologies and cloud providers interoperable. A

REST interface is a good choice due to ease of implementation, low over-

head and good scalability due to its session-less architecture.

41

3. Requirements

3.2.2. Analytics Engine (AE) Requirement

Collecting monitoring data is essential but not sufficient per se to explain

the observed performance of services. In the next phase, we need to analyze

and verify data in light of Service Level Agreement (SLA) between a cus-

tomer and a provider. Ideally, the analysis goes beyond simply detecting

violation of agreed terms and predicts potential violations.

General requirements for an Analytics Engine (AE) are detailed below.

A1. Data Source: AE must be able to fetch monitoring data recorded

in the database. Further, it must be able to query the Cloud middle-wares

(e.g., that of OpenStack and OpenShift) and application APIs to know the

current status of the services.

A2. Proactive: AE must support the proactive management of resources.

Proactive management needs short term and medium term predictions for

the evolution of most relevant metrics.

A3. Alerts: Certain QoS metrics need to be processed in real time and

alerts should be triggered when these QoS metrics are violated or approach

certain threshold values.

A4. Event Correlation: Detecting the root cause of QoS faults and

taking effective counter measures require monitoring information spanning

multiple tiers of virtualized platforms. Quick in-comprehensive analysis of

monitoring data of individual tiers does not reveal the root cause(s) of the

problem precisely enough. Therefore, Analytics need to exhaustively ag-

gregate runtime data from different sources and consolidate information at

a high level of abstraction.

A5: Identification of Influential Metrics: Identification of the met-

rics which strongly influence the QoS helps in decreasing the monitoring

footprint and analysis complexity.

42

Part II.

Scalable Monitoring,

Performance Anomaly Detection

and Prediction

43

4. Cross Layer Monitoring and

Analytics Framework

Cloud computing enables rich/complex virtual platforms composed of sev-

eral components executing composite services. Which are often categorize

as Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and

Software as a Service (SaaS). The monitoring of cloud resources and the

guaranteeing of the SLA objectives are challenging. In this chapter, we

present a scaleable cross layer monitoring framework. Moreover, we also

present different design choices for the complete SLA life cycle manage-

ment, catering for multi layer cloud scenarios.

45

4. Cross Layer Monitoring and Analytics Framework

4.1. Motivation: Scalable Monitoring

In recent years, cloud computing has become a popular paradigm for host-

ing Internet-based services in virtualized environments. Well-known ex-

amples are the commercial products Amazon Web Services and Google’s

AppEngine. In general, the paradigm eases the management of the service

lifecycle, however it also introduced a big challenge for the infrastructure

provider to guarantee acceptable levels of quality of service. In fact, each

layer of the cloud stack in the data center makes it more complex to control

and manage acceptable levels of quality of service.

A number of data center processes such as performance anomalies detec-

tion, hardware and software problems detection, and ensuring the system’s

security used to rely heavily on the system monitoring. Similarly, moni-

toring is also necessary for cloud platforms to manage acceptable levels of

quality of service, to actively manage the needed resource capacity, and for

billing the customers. Moreover, monitoring is considered the key part of

any SLA management strategy. Despite the importance of monitoring, the

development of cloud specific monitoring systems is generally overlooked,

if not ignored altogether. Existing monitoring technologies pose significant

limitations for their widespread adoption in large scale, heterogeneous cloud

platforms. Most of the existing approaches are limited to Individual moni-

toring/analysis tools for one cloud provider and/or one cloud layer (IaaS/-

PaaS/SaaS). Analysis and performance characterization of application is

very difficult by using these tools. A plethora of different virtualization

techniques complicates development and deployment of generic cross-layer

monitoring solutions.

As a matter of fact, there exist solutions for monitoring and adjustments

for small clouds, but these solutions does not scale well for large clouds.

An increase in the size of a virtual platform results in an increase of mon-

itoring data that can lead to network and database bottlenecks, or a loss

in the precision of monitoring data. Therefore, in order to operate appro-

priately, a scalable monitoring system is required that needs to have the

46

4.2. Use Case Scenario

Figure 4.1.: Motivating scenario for cross layer monitoring and analytics
framework

following properties [3]: 1.) Scalability to handle a large number of probes;

2.) Elasticity to handle dynamic changes of monitored entities; 3.) Must be

adaptable to handle varying computational and network loads 4.) Compre-

hensive enough to support different types of resources, diverse monitoring

data, and several tenants 5.) Non-intrusive (needs no major modification

in the cloud platform)

4.2. Use Case Scenario

Figure 4.1 presents a motivating scenario that combines the three cloud de-

livery models (SaaS+PaaS+IaaS) and creates a provisioning hierarchy. In

this scenario we assume that multiple software services are built upon an

underlying infrastructure combining IaaS and PaaS layers of cloud. SaaS

developers deploy their applications on the PaaS without the hassle of

47

4. Cross Layer Monitoring and Analytics Framework

buying and managing the underlying hardware and software layers. PaaS

uses resource constraint containers to deploy applications in isolated multi-

tenant fashion. The PaaS environment chose to lease resources from an

IaaS provider and multiple containers can be hosted on the same virtual

machine. Depending on the cloud layer, different levels of guarantees on

the provisioning of the services/resources may be needed.

The challenge now is how to perform effective, non-intrusive, low- foot-

print monitoring at scales of tens of thousands of heterogeneous nodes with

complex hierarchies and how to provide cross-layer operational analytics?

To address this question, we develop an advance level scalable platform

that integrates monitoring with analytics to build support for IT operational

intelligence.

4.3. Monitoring Analytics Framework

In this section we present a distributed scalable framework, which focuses

on storing and serving a huge amount of service data, consequently the data

is available for higher level analytics to process in a parallel distributed way.

The design of our framework revolves around the performance management

of Cloud environments, including scalable monitoring of different levels such

as SaaS, PaaS and IaaS. The basis for defining the architecture is a list of

requirement presented in Chapter 3. Figure 4.4 provides an illustrative

view of high level architecture. The framework provides a data collection

mechanism, a distributed data store, and an Analytics Engine.

4.3.1. Data Collector Mechanism

At the bottom is the monitoring data collection mechanism that interfaces

with various cloud entities. It is intended to collect data from every layer

of cloud stack. The primary information collected by the collection mech-

anism is from the hypervisor. The collection mechanism has the pluggable

48

4.3. Monitoring Analytics Framework

Figure 4.2.: Monitoring and Analytics Framework Architecture

architecture such that data collectors for different cloud layers can be built

separately and linked.

Most virtualization technologies provide APIs that can provide the re-

quired data without any difficulty. However, one of the requirements (M7)

of the monitoring framework is to provide a REST interface that allows

access to the current monitoring in a uniform and an easy way. By using

a common interface, a monitoring framework could interact in a consistent

way with multiple service providers that implement different types of ac-

cess methods and protocols to provision resources. Currently, there are no

generally accepted standards for accessing cloud resources, although Ama-

zon’s EC2 interface is used by other cloud software as well and the Open

Cloud Computing Interface (OCCI) is implemented in a number of soft-

ware products. When it comes to monitoring, a standard way to interact

with the monitoring system is similarly desired. However, there is no stan-

dardization yet on the monitoring APIs provided by any cloud management

software. We implemented a proof of concept prototype that extends the

49

4. Cross Layer Monitoring and Analytics Framework

OCCI standard at the API level, thus facilitating the standardized moni-

toring interface.

The real time information needed from cloud infrastructure is restricted

to physical machine, virtual machine and other virtual container parame-

ters. They comprise primarily CPU utilization, memory utilization, disk

utilization, and network utilization. The other important piece of infor-

mation that data collection mechanism collects is the real time application

performance data, to validate that the end user performance is also meeting

the QoS requirements. One way to get this data is to use synthetic probes

and web robots predefined to report the system availability and response

time of certain transactions.

One instance of a collection plugin is utilized to collect data from compo-

nent of different layers of the cloud platform with a certain time resolution

e.g. 5 sec, 1min etc. With any execution of these collectors, monitoring

data is collected, e.g. the name of the monitored entity, name and value

of metric, and execution time stamp. This collected data is stored in a

scalable distributed data store.

4.3.2. Distributed Data Store

The monitoring framework explicitly includes the scalability requirement by

storing the collected data inside a scalable distributed data store. Massive

amount of monitoring data persistently cache in data store without losing

granularity. Most existing monitoring solutions use rrdtool or relational

databases for caching data. These tools are not suitable for large scale cloud

platforms as they create problems in terms of performance, scalability and

granularity. Moreover, these solutions do not provide flexible and efficient

real-time (or near-real time) access to the captured data. Potential solutions

to this challenge is the use of NoSQL databases. Using a NoSQL database

will help improve the framework’s scalability and its usage in the large scale

cloud environment.

50

4.3. Monitoring Analytics Framework

4.3.3. Analytics Components

On top of the monitoring layer is the analytics layer. The analytics layer

is the most important part of the framework. It processes the data in dis-

tributed parallel fashion and produces a variety of results. The analytics

framework provides two modes of operation i.e. offline analysis and online

analysis mode. In distributed parallel offline analysis mode analysis is per-

formed separately from the collection. The analytics component is the core

of our work in this thesis. We used it for performance anomaly detection

and performance prediction problems. A more detailed description of the

actual process is presented in Chapter 5 and Chapter 6.

The analytics layer uses Complex Event Processing (CEP) technology for

online or live analysis of monitoring data. The goal of CEP is to identify

the meaningful events within the event cloud. CEP products provide a

Query language EPL which supports pattern matching, event joining and

creating time based windows. Event Processing Language (EPL) is a do-

main specific language for event processing. We believe EPL is suitable for

SLA monitoring, although certain guarantee terms are difficult to express

as queries for a CEP system. The analytics layer provides functionality to

listen, publish, and to analyze streams of events. The CEP engine allows

immediate reactions to monitoring events, such as increased response times

of applications or violations SLOs. The listener component retrieves the

monitoring data from the various APIs of the cloud platform and delivers

them to its connected EPL-queries. After EPL performs certain analysis

functions on the received events, publisher sends the results to other com-

ponents e.g. SLA management components. A detailed CEP and EPL

documentation is provided by the EsperTech, Inc. [39].

4.3.4. SLA and Service Management Components

In this research area I have conducted collaborations with researchers from

our group. These collaborations lead to joint publications [79,80,128,129].

51

4. Cross Layer Monitoring and Analytics Framework

A description of these components is out of scope of this thesis and is

discussed by Yaqub et al. [129].

4.4. Monitoring and Analytics Framework

Prototype

The monitoring architecture has been prototypically implemented for GWDG

cloud services to show its utility (cf. section 3.1). The prototypical im-

plementation focused on requirements (M1-M6). We conducted a thorough

analysis of technologies to be used by our framework. In deciding upon

technology, our criteria included de-facto industry standards that are ca-

pable of providing a high degree of flexibility and scalability to our archi-

tecture. Figure 4.3 gives a high level view of our Monitoring and Analytics

framework. Our framework uses OpenTSDB [97] for collecting, aggregating

and storing data. OpenTSDB uses the HBase distributed database system

in order to persistently store incoming data for hosts and applications.

HBase is a highly scaleable database designed to run on a cluster of com-

puters. HBase scales horizontally as one adds more machines to the cluster.

OpenTSDB makes data collection linearly scalable by placing the burden

of the collection on the hosts being monitored. Each host uses tcollec-

tor client side collection library for sending data to OpenTSDB. Tcollector

does all of the connection management work of sending data to OpenTSDB

and de-duplication of repeated values. We instrumented all OpenStack [96]

compute nodes with tcollector framework to gather Compute node specific

resource utilization metrics. Our OpenStack environment utilizes KVM as

the hypervisor and libvirt for Virtualization management. Libvirt API can

provide us monitoring information of hosted VMs. We wrote a custom

collector that retrieves data non-intrusively for VMs via libvirt API. The

system resources and security containers provided by Open Shift are gears

and nodes. The nodes run the user applications in contained environments

called gears. A gear is a unit of CPU, memory, and disk-space on which

52

4.4. Monitoring and Analytics Framework Prototype

Figure 4.3.: Monitoring and Analysis framework prototype
53

4. Cross Layer Monitoring and Analytics Framework

application components can run. To enable us to share resources, multiple

gears run on a single node. For performance analysis of hosted applications,

we want to track and report utilization of gears, whereas node utilization is

already monitored by OpenStack collector. To track the utilization of gears,

we instrumented all nodes of PaaS with tcollector. Linux kernel cgroups

are used on OpenShift node hosts to contain application processes and to

fairly allocate resources. We wrote a custom collector that retrieves data

non-intrusively for gears via cgroups file system. Additionally, monitoring

data can be collected from REST APIs of cloud services by the Service

Subscribers component.

The analytics component is based on the ESPER complex event pro-

cessing (CEP) framework [39]. The analytics component leverage Esper to

forecast the evolution of metrics by using Holt-Winters forecasting. The

analytics component implements the SLA surveillance function and the

proper alarms are triggered when SLAs get violated. The Analytics frame-

work’s service subscriber components retrieve service related events from

different APIs. The analytics publisher component sends alerts to the SLA

Management component for taking corrective measures.

Custom dashboard interfaces are developed for GWDG Platform and

Compute portals. These dashboards allow end users to view particular met-

rics of running VMs and applications recorded by OpenTSDB. For plotting

data, we used Flot - a plotting library for the jQuery JavaScript framework.

4.4.1. Standardized Monitoring API

The Open Cloud Computing Interface (OCCI) comprises a set of open

community-lead specifications delivered through the Open Grid Forum.

OCCI is a protocol and API for all kinds of management tasks, and rOCCI1

is Ruby based OCCI implementation. OCCI-WG2 is currently working on

an OCCI Monitoring extension. We have developed a proof of concept pro-

totype based on the current draft of OCCI monitoring specifications. The

1https://gith ub.com/gwdg/rOCCI
2http://occi-wg.org/

54

4.5. Strengths of Proposed Monitoring and Analytics Framework

prototype extended the rOCCI 3 framework, by using OCCI Mixin mecha-

nism. In our prototype, we used OpenNebula4 as backend. We integrated

OpenNebula’s Statistics API with rOCCI-Framework by defining Mixins

for CPU usage, memory usage, network transmission and network recep-

tion. We can associate metrics and retrieve values of VM instances using

HTTP PUT and GET verbs. Following curl HTTP request can activate

network transmission (net tx) metric for a VM where VM id=123456:

c u r l − i −H ‘ ‘ Accept : t ex t / occ i ’ ’ −−header ‘ ‘X−OCCI−Locat ion :

http :// l o c a l h o s t :3000/ compute /123456 ’ ’ X PUT −d ” http ://

l o c a l h o s t :3000/ metr ic /compute/ ne t tx

Similarly, we can retrieve an instantaneous metric value of network trans-

mission as:

c u r l −v −X GET −−header ‘ ‘ Category : ne t tx ; scheme=

‘ ‘ http :// example . com/ o c c i / i n f r a s t r u c t u r e / metr ic /compute/ ne t tx

’ ’ ;

c l a s s = ’ ’ mixin ’ ’ ; ’ ’ http :// l o c a l h o s t :3000/ compute /123456

As a result, we can retrieve a latest time stamp and value pair:

< X−OCCI−Attr ibute : ne t tx =1329392542 ,12345

4.5. Strengths of Proposed Monitoring and

Analytics Framework

In the following we compared state-of-the-art cloud monitoring alternatives

with our contributions.

Monitoring is an important aspect of Large-scale system. There exists

many open source and enterprise management solution [21,61,83,89,98,132],

those can monitor more or less any device for which a sensor exists. These

3https://github.com/gwdg/rOCCI
4http://opennebula.org/about:about

55

4. Cross Layer Monitoring and Analytics Framework

solutions do not directly deliver Cloud-related monitoring, but they can

be integrated into cloud platforms through extensions for example [70] and

[132].

Well-known clouds in the industry, including Amazon Web Services (AWS),

Microsoft Azure, and Google App Engine have their own monitoring ser-

vices. CloudWatch is a monitoring service that allows monitoring of other

AWS cloud resources. It is used to collect and store metrics and log files.

Clients can gain system-wide visibility into resource utilization, application

performance, and operational health. The low-level monitoring system that

Amazon uses for acquiring information on its physical clusters is kept con-

fidential. Microsoft Windows Azure provides the Azure Fabric Controller

(FC) [85], that monitors and manages virtual and physical servers and coor-

dinates resources for software applications. It functions as the kernel of the

Azure operating system. Google App Engine handles the monitoring and

QoS management of cloud services and application components behind the

scene. For users, it provides an App Engine System Status Dashboard to

show the service status. Some third-party tools are also developed to keep

an eye over the clouds, such as New Relic [91]. It can monitor Web and

mobile applications in real-time. Open source cloud platforms like Open-

Nebula [94], OpenStack [96], and OpenShift Origin [95] offer only very basic

monitoring, which is not very useful for IT operations analytics.

Collecting monitoring data is essential but not sufficient per se to explain

the observed performance of services. The complexity and scale of Cloud

environment introduce a lot of uncertainties and makes the performance

analysis process time consuming. Due to large volumes of continuously

monitored data there is a growing interest in advanced analytics capabilities

like live stream analysis and distributed processing of data. Some existing

research works focus primarily on live streams [78, 90, 122], while others

aim at distributed batch processing of monitoring data [74, 112, 119]. In

stream processing, input data is analyzed as it arrives and (partial) output

is available immediately. However, this may lead to skewed results as the

analysis is never actually finished. In comparison, batch processing is used

56

4.5. Strengths of Proposed Monitoring and Analytics Framework

for historical analysis of monitoring data, it is awkward or even impossible

to use them for detecting current anomalous situations.

The following technical limitations are common to state-of-the-art cloud

monitoring and analytics services, and these limitations need proper studies

and implementations:

1. Most open source and enterprise monitoring solutions implement cen-

tralized monitoring and performance management (e.g. [61,89]). These

services are prone to a single point of failure. Moreover, these systems

do not scale well with the increasing volume of service generated data.

2. Most existing open source monitoring solutions are not good for data

analysis as data lose precision/granularity over time due to down sam-

pling, e.g. [83].

3. Most of commercial cloud monitoring services are layer specific and

are not capable of monitoring across different cloud layers (i.e. IaaS,

PaaS, SaaS). For example AWS CloudWatch is not able to monitor

load of each core of the CPU and its effect on the QoS delivered by

the hosted PaaS services.

4. Commercial cloud monitoring services are provider specific, and they

could not interact in a consistent way with multiple service providers.

For example, CloudWatch, does not support an application compo-

nent that may reside on Azure.

5. The open source cloud platforms offer only very basic analytics, and

advance monitoring and analytics is not a high priority task. None

of the above mentioned monitoring frameworks provide built-in ad-

vanced analytics capabilities.

6. None of the analyzed analytics solutions support processing of both

live streams and batches of historical data and they are not tailored

for the needs of cross layer cloud data analysis.

57

4. Cross Layer Monitoring and Analytics Framework

To overcome these limitations, a novel cross-layer monitoring and analy-

sis approach for Cloud computing environments is proposed. The defined

approach deals with performance related problems. The salient innovative

features of the framework include:

1. It is implemented in a completely decentralized and distributed man-

ner. It addresses the scalability problem by using a distributed time

series data store as its central part.

2. It can keep track of hundred of thousands of time series without ever

losing or downsampling data.

3. It is flexible and adaptable to different cloud environments. The plug-

able architecture of the collection mechanism allows the collection of

a variety of parameters across different cloud layers.

4. We proposed and implemented an OCCI monitoring extension, that

allows our monitoring framework to extract monitoring data from any

OCCI compliant cloud platform.

5. It combines scalable monitoring and Big Data analytics to mine a

large amount of service generated data and have a look at patterns and

models for automated problem diagnostics and predictive analytics.

6. Analytics layer is a multi-purpose data analysis platform, as it sup-

ports both live stream processing (for detecting current anomalous

situations) and batch processing (for historical analysis) technologies

to mine a large amount of service generated data.

After comparing the state-of-the-art against our contributions, we can con-

clude that the proposed cloud monitoring architecture is general-purpose,

complete and representative at the same time.

58

4.6. Summary

4.6. Summary

This chapter has presented a scalable cross layer monitoring framework for

cloud computing environments. It combines the distributed data storage

and Big Data analytics to monitor performance metrics across Cloud lay-

ers, detect performance anomalies, and prevent anomalies by predicting

performance metrics. This chapter has demonstrated that the proposed

framework fulfills all requirements stated in Chapter 3.

59

5. Diagnosing Performance

Anomalies

In this chapter, we present a distributed parallel approach for performance

anomaly detection. For comparative analysis we implemented three dif-

ferent light-weight statistical anomaly detection techniques. In order to

locate the most suspicious metrics we correlate the anomalous metrics with

the target SLO. We implemented and applied the proposed approach in

our production Cloud. Experimental results validate that our method suc-

cessfully detects suspicious metrics, it is highly efficient in comparison to

traditional serial methods, and it is inherently scalable. We claim that

this work benefits IT Operations team in quickly diagnosing performance

problems. To the best of our knowledge, our method is the first to adopt

MapReduce [34] based algorithms for a distributed TSDB to diagnose per-

formance anomalies. This chapter contains the contents from our previous

publication [64].

61

5. Diagnosing Performance Anomalies

5.1. Motivation: Distributed Parallel

Performance Problems Diagnosis

Performance anomalies like high response times of cloud-hosted applications

affects customer experience and ultimately their business. These applica-

tions are susceptible to performance anomalies owing to various reasons

like resource contentions, software bugs, and hardware failures [121]. These

anomalies in the system can effectively end a service delivery. From the user

point of view, performance anomaly and non-availability of service are the

same. Bad customer experience causes companies to lose customers and re-

duce bottom line revenues. The tremendous cost of performance anomalies

drives the need of diagnosing performance issues.

Diagnosing performance issues is a difficult problem, especially in cloud

platforms where applications are collocated on shared pool of resources com-

prising compute, network, storage and memory; which are abstracted using

IaaS or PaaS framework stacks. Common performance diagnosis procedures

depend on system administrator’s domain knowledge and associated per-

formance best practices. This procedure is labor intensive, error prone, and

not feasible for cloud platforms. To improve the productivity of diagnosis

process, highly efficient approaches are needed which supports IT Opera-

tions team in quickly diagnosing performance problems, or even automate

the diagnosis process.

The complexity and scale of Cloud environment introduces a lot of un-

certainties and makes the diagnosis process time consuming as a very large

volumes of continuously monitored data needs to be processed. Due to huge

volume of monitoring data of a cloud platforms, there is a growing interest in

storing monitoring data in distributed Time Series Databases(TSDB) [97].

Distributed TSDB utilizes cluster environments for scalable storage and

provides basic analytics and plotting functions. For improved querying,

most of these tools organize data into period specific “buckets”, where

each bucket contains no more than a few tens of data points. However,

62

5.2. Related Work

these initial developments do not provide advanced analytics capabilities

like complex event processing (CEP), distributed processing of data and

machine learning algorithms [125]. It is therefore essential to create au-

tomated analytics tools, those can analyze monitoring data in distributed

parallel fashion, to improve the productivity of diagnosis process.

5.2. Related Work

In this section we will talk about the studies carried out on Performance

anomaly diagnosis in general and its relation with the Cloud performance

Management in particular.

5.2.1. Statistical and Threshold based Approaches

To diagnose performance problems in distributed systems, a number of ap-

proaches have been proposed in literature. Traditionally, threshold-based

methods are widely used in commercial [61] and open source [83], [89] mon-

itoring tools for anomaly detection. Threshold based methods works well

with a modest number of metrics. However, it is difficult to set thresholds

for a large number of metrics in the large scale cloud environment.

In the context of conventional distributed systems there exists various

statistical approaches for detection of performance anomalies. Particularly,

Cohen et al. [29] uses TAN models for offline forensic diagnosis. The work

aims at finding critical metrics which have an important impact on per-

formance. Chen et al. [27] proposed Pinpoint, a framework for root cause

analysis on the J2EE platform. Pinpoint’s data analysis engine uses clus-

tering/correlation analysis for problem determination. Magpie [15] uses

machine learning to build a probabilistic model of request behavior moving

through the distributed system to analyze the system performance. Our

work is similar to these approaches as we relate performance problems to

hosts and physical resources. The major difference is that we deal with

63

5. Diagnosing Performance Anomalies

the scale of cloud computing systems rather than conventional distributed

systems.

Many approaches applies time-series statistical analysis for performance

anomaly detection. Chandola et al [24] and Hodge et al [1] survey the prob-

lem of anomaly detection. Time series anomaly detection problem is not

well understood as compared to traditional anomaly detection approaches.

Existing research on anomaly detection in time series has been fragmented

across different application domains. J.D. Brutlag [123] uses a variant of

the HW algorithm [59] for anomaly detection. The paper presents a partial

solution to automatically identify aberrant behavior among thousands of

service network time series. In [126], authors describe a method of detect-

ing network anomalies by analyzing the sudden change of time series data

obtained from management information base (MIB) variables. The method

applies the auto-regressive (AR) process to model, and performs a sequen-

tial hypothesis test to detect anomalies. The method also determines the

time and location of anomalous activity using time and location correla-

tion. Garg et al. [46] presented a three-step method to compute time to

resource exhaustion. The time series of monitored resource values is first

smoothed and then it undertakes a statistical test to detect trends. If a

trend is detected, the rate of resource consumption is estimated using a

nonparametric procedure.

The above mentioned previous work addressed the performance anomaly

detection problem in the context of traditional systems. From above-

mentioned approaches, we adopted and complemented Brutlag’s [123] time

series anomaly detection approach to address anomaly detection for cloud

platforms. In contrast to Brutlag’s approach, we used mapreduce paradigm

to process a larger set of time series in a short period of time.

5.2.2. Performance Diagnosis in Clouds

To diagnose performance problems of cloud platforms, a number of ap-

proaches have been proposed. For example, DAPA [69] is a model based

64

5.2. Related Work

performance diagnosis framework. It helps to analyze application perfor-

mance anomalies in virtualized environments. Authors presented a mod-

eling and diagnosis workflow for refinement of the data, and to enhance

the accuracy of the modeling process. The adapted statistical techniques

were able to identify the quantitative relevance between the application

performance and virtualized system metrics. PeerWatch [68] introduces a

statistical technique, canonical correlation analysis (CCA), to infer the cor-

related attributes between multiple application instances. In [120], authors

presented a novel technique “Entropy-based Anomaly testing (EbAT)” for

detecting anomalies in cloud computing systems. At run time, EbAT analy-

ses a metric’s distributions for anomaly detection rather than certain thresh-

olds. CloudPD [109] is a fault detection system for cloud systems. Authors

presented a layered online learning approach and pre-computed fault signa-

tures to diagnose anomalies. An end-to-end feedback loop allows problem

correction to be integrated with cloud steady state management systems.

Thus the present state of the art of performance diagnosis in the cloud

computing is as follows: More efficient analytics approaches for service-

generated time-series data are required. Root cause analysis work in the

context of cloud computing is at an early stage. Most existing cloud mon-

itoring and analytics techniques address tier-specific issues. These tech-

niques can not deal with real-world scenarios, where changes in one tier

often affect other tiers. Statistical techniques discussed in the aforemen-

tioned references are not yet considering performance problem diagnosis

using distributed time series databases. To the best of our knowledge, the

work presented here is the first to employ a distributed time series analysis

technique for diagnosing the cloud performance anomalies.

65

5. Diagnosing Performance Anomalies

5.3. Cloud System and Performance Diagnosis

Workflow

Figure 5.1.: System context and proposed advance Analytics Framework

Fig. 5.1 shows the context of our Cloud system along with our Hadoop

MapReduce based analytics framework for diagnosing performance anoma-

lies. Interested readers may refer to the Section 3.1 for a more detail de-

scription of our Cloud system.

The analytics framework executes a performance diagnosis workflow com-

posed of three phases which encapsulate multiple operations as illustrated

in Fig. 6.2. The Metrics Collection phase continuously collects monitor-

ing data non-intrusively from every tier of Cloud stack and stores it in a

distributed TSDB. A performance tracking tool keeps track of applications

performance in specific intervals (e.g., last 1 hour). If tracking tool de-

tects that a performance metric violates a predefined SLO, it initiates the

anomaly detection phase, which starts the performance diagnosis process

by executing a MapReduce job to identify all anomalous time series for that

specific time interval. The output of the job may have a large number of

anomalous metrics and they need further localization. This leads to the

66

5.3. Cloud System and Performance Diagnosis Workflow

Figure 5.2.: Workflow of Analytics Framework

correlation phase, which starts a new MapReduce job to rank the contribu-

tion of each anomalous metric by using the Pearson Correlation Coefficient.

Finally, the results of the correlation phase are presented to a system ad-

ministrator to take corrective measures. In the following subsections, we

describe the algorithms used in anomaly detection and correlation phases.

5.3.1. Anomaly Detection Phase

Existing anomaly detection methods typically rely on a centralized design

for data collection and decision making which is not scalable for large-cloud

environments. We need methods those aims to address the scalability needs

of cloud environments by providing distributed lightweight technique those

can operate in a black-box manner. In this context we are considering the

anomaly detection as time series outlier detection problem which tries to

classify values at specific time stamps as outlier because of sudden changes.

Our monitoring data set is un-labelled and might show spiky (noisy) and

seasonal (rhythmic) characteristics from a multitude of different causes.

These characteristics can mask or exaggerate behaviors. Consequently, we

are interested in unsupervised anomaly detection techniques those should

67

5. Diagnosing Performance Anomalies

be independent of fixed limits and thresholds so that they can adapt to a

live and evolving environment, but still be able to detect sudden changes

and rhythm disturbances. It is also desirable, that these algorithms should

achieve a high detection rate with low false alarms and should take less time

to build models. In this section, we will focus upon the use of statistical

techniques for time series anomaly detection. While many statistical tech-

niques exist, we will examine only three based upon their unique strengths

and their suitability for mapreduce paradigm. The three techniques we

will focus on include the Holt-Winters algorithm, the Adaptive Statistical

Filtering, and the Ensemble Algorithm.

Holt-Winters

This technique represents the broad category of prediction based anomaly

detection algorithms [25]. The method is built on the assumption that

the observed time series is composed of a baseline, a linear trend and a

seasonal effect. The method presumes that these three components change

over time and this is achieved by applying Exponential Smoothing (ES) [45]

to gradually update the components. A prediction that is the sum of the

three components is then made along with a confidence band around the

prediction. The prediction is deduced from the seasonal variability of input

data. When observed value falls out of the confidence band, it is marked

as significant change (anomaly). The HW algorithm in its additive version

predicts a single value as follows:

Ŷt+h = at + h ∗ bt + st+1+(h−1)−mod p

where p is the period of seasonal trend, and the three components namely at

(the baseline), bt (the linear trend) and st (the seasonal trend) are updated

as follows:

at = α(yt − st−p) + (1− α)(at−1 + bt−1)

bt = β(at − at−1) + (1− β)bt−1

st = γ(yt − at) + (1− γ)st−p

68

5.3. Cloud System and Performance Diagnosis Workflow

The α, β and γ are the model parameters and choosing the right values

of these parameters is important to reduce false alarms yet early detection

of rhythm anomalies. The length of the history m chosen here is critical

to exactly locate the anomaly. If m is smaller than the period length, the

performance will be poor, while the performance will improve if m is larger

than the period length, but it might increase the computational complexity.

Adaptive Statistical Filtering (ASF)

Adaptive Statistical Filtering (ASF) [20] [44] represents the broad category

of threshold based techniques. The technique uses previously measured

values to form a reference set against which new data points are compared.

Thresholds are computed through a statistical analysis of a set of previously

measured data points. The statistical procedure to compute thresholds and

compare the values works as follows.

1. To find the anomalous behavior of a metric between a specific interval

(e.g. test window 10:00 AM-11:00 AM), look-back at observed values

of metric for the same time window of last five days to form a reference

set of measurements.

2. After retrieving the values for look-back windows, compute median

values for each look-back window and store median values in a list for

later use. Later calculate the median of the list of medians.

3. To see how tightly values are clustered around the median values in

look-back windows, compute the deviation of each value from the

median and store the largest deviation in a list for later use. Next,

compute the average of the list of maximum deviations. In our im-

plementation we set the average of maximum deviation as anomaly

threshold. However, calculating and setting an anomaly threshold

value is a pure subjective decision.

69

5. Diagnosing Performance Anomalies

4. Finally, compare the median of medians with the median of test win-

dow, If deviation exceeds the threshold value, the test window is con-

sidered anomalous, otherwise the data is considered normal.

The algorithm has already been used in previous works, but we made slight

modifications to implement it as a mapreduce job. Look-back and aggre-

gation operations are performed in map functions, while reduce function

performs comparison operations.

Ensemble Algorithm

Ensemble algorithm is a meta algorithm for anomaly detection. The basic-

idea behind this approach is that different ways of looking at the same

problem provides more vigorous results which are not dependent on specific

results of a particular algorithm or data set [5]. An ensemble model is a set

of atomic detectors whose individual decisions are combined in some way

(typically by weighted or unweighted voting) to detect anomaly in time

series data. To find the anomalous behavior of a metric between a specific

interval, we retrieve data points of the interval (e.g. test window 10:00

AM-11:00 AM). The following tests are performed on the test window.

Test 1 Returns a true value If Average of test window lies outside of the

three standard deviations of the last hour average.

Test 2 Discretizes whole time series data into bins, and the frequency of each

bin is estimated. Returns a true value, If three or more data points

from test window lie in bins with very low frequency.

Test 3 Calculates the deviation of each test window data point from median

of compete time series. Returns a true value, if the deviation of three

data points with respect to the time series median is 6 times larger

than the median of deviations.

Test 4 Returns a true value, If three datapoint from the test window minus

the moving average is greater than the three standard deviation of

the moving average.

70

5.3. Cloud System and Performance Diagnosis Workflow

Test 5 Returns a true value, If the difference of the average of the test window

and the average of whole time series is greater than the three standard

deviations of the average.

The final decision about anomalous metrics are based on majority voting

scheme i.e a metric is declared anomalous if any four of the above-mentioned

tests returns a true value.

5.3.2. Correlation Phase

Detecting SLO violations and anomalous system metrics is not sufficient

for root cause analysis. On one hand, we may get a huge list of anomalous

metrics by applying anomaly detection algorithm on monitored data and

on the other hand, this list normally contains a lot of unrelated metrics

due to system dynamics and other uncertainties. We need to further lo-

calize the anomalous metrics responsible for SLO violation. Measuring the

relationship (dependence) between anomalous metrics and target objective

(SLO) is a way to discover the more probable causes of SLO violations. A

frequently used method to measure dependence is correlation.

Pearson correlation coefficient is an effective and most widely used cor-

relation measure to quantify dependency between two variables. It is a

dimensionless index, which is invariant to linear transformation of either

variable. A linear dependency between two variables can be scored by us-

ing Pearson’s linear correlation formula:

R(x, y) = Cov(x,y)√
V ar(x).V ar(y)

and respectively its estimate:

r(x, y) =
∑

i
(xi−x̄)(yi−ȳ)√∑

i
(xi−x̄)2

∑
i
(yi−ȳ)2

r gets a value between +1 and -1 inclusive, where 1 is total positive cor-

relation, 0 is no correlation, and -1 is total negative correlation [104]. To

71

5. Diagnosing Performance Anomalies

localize the most suspicious metrics, first we calculate the correlation co-

efficient r for all anomalous metrics and target metrics. Next, we rank

anomalous metrics according to correlation coefficient (r) and select top N

(e.g., N=5) most suspicious metrics.

5.4. Implementation

The goal of implementation is to apply anomaly detection algorithms as

outlined in section 5.3 on a distributed time series database. To achieve

this goal, a set of MapReduce jobs and scripts are developed for processing

time series data stored in OpenTSDB. Next, we briefly outline OpenTSDB

and then discuss implementation details of anomaly detection algorithms.

OpenTSDB is a distributed, scalable time series database built on top of dis-

Table 5.1.: OpenTSDB: ‘tsdb’ table data format

Row Key
Column Family: t

T:0 T:1 T:3 T:18
row1< metric, timestamp, tags > 0.69 0.55 0.39
row2< metric, timestamp, tags > 0.30 0.69
...

tributed columnar storage HBase and Hadoop. All time series data points

are stored in a single, massive table, named tsdb. Data format inside the

tsdb table is illustrated in Table 5.1. A rowkey in OpenTSDB consists of:

a metric, a base timestamp, and a limited number of tags in the key-value

format. Each row store measurements for one hour and the number of

measurements (T columns) depends upon the polling interval of collection

mechanism. A row key without a timestamp uniquely identifies a single

time series.

The mapreduce framework can create a separate mapper for every region

of the HBase table, where Each region comprises a subset of rows of a table.

Consequently, MapReduce jobs can read/process multiple rows (segments

72

5.5. Pseudo Code for Anomaly Detection Algorithms

of time series) simultaneously on multiple nodes. Scalability over rows

is achieved in map step when Hbase regions auto split. Auto splitting

breaks a region into two at the middle key, when regions become too large

after adding more rows. Moreover, scalability over the whole time series is

achieved in reduce step when we increase the number of reducers. We can

run as many Mappers as the regions and there is no limit on the number

of Reducers. Hence, we can use full computational resources of a cluster in

order to construct time series for every metric of Cloud platform as well as

to perform anomaly detection algorithm on individual metric’s time series

data.

5.5. Pseudo Code for Anomaly Detection

Algorithms

5.5.1. Implementation of HW

Fig. 1 shows the pseudo code for HW MapReduce job. It consists of two

steps:

Map step (parallel over rows): In the job setup we set HBase Client

(scan) to retrieve data for past 48 hours from the test window. The Scan

instance provides a selected range of records as input to Mapper. Each

Mapper iterate over the column cells of each record. For every row an

intermediate key-value object is emitted. Whereas the key (TSUID) is a

combination of metric name and tags value, and the value is an object

composed of pairs of timestamp and raw data pints. Each Map function

extracts metric names and tags from row key, and data points from column

cells of the row.

Reducer: The Reduce function collects < key, val > pairs emitted from

mapper and merges all val objects belonging to a single TSUID in a tree-

map. The tree-map ensures that time series data points are sorted with

respect to timestamp. The Reduce function then iterates over tree-map and

73

5. Diagnosing Performance Anomalies

models the behavior of time series using HW algorithm. After modeling, the

Reducer tries to find the anomalous behavior of time series for a specific test

window. If anomalous behavior is found, the TSUID and comma separated

values belonging to the test window are emitted as a CSV file.

Algorithm 1 Holt-Winter Anomaly detection

class MAPPER
method MAP(UID, Cells[C1, C2...]) // A selected row of tsdb table
1: Split UID into TSUID and base time // TSUID is a combination of metric

and tags values and base time is base hour of row
2: iterate over Cells and save extracted time stamp and data point tuples in an

object M
3: EMIT(TSUID,M)

class: REDUCER
method: REDUCE(TSUID, Objects[M1,M2, ...])
1: Instantiate Holt-Winters Algorithm: HW
2: TS ← getValues([M1,M2, ...]) // Construct a sorted Time Series (TS) from

input Objects [M1,M2, ...]
3: Apply HW to TS
4: FLAG ← HW.getAnomaly(Test window) // Returns true if the test window

is anomalous else false
5: if (FLAG==TRUE) then
6: EMIT(TSDUID, Test Window values) // Report anomaly by emitting

metric name and test window values
7: end if

5.5.2. Implementation of ASF Algorithm

Fig. 2 shows the pseudo code for ASF MapReduce job. It consists of two

steps:

Map step (parallel over rows): In the job setup we set HBase Client

(scan) to retrieve data for past five days. Scan instance provides a selected

range of records as input to the Mapper. Mapper iterate over the column

cells of each record, if the base hour of record and test window are found

similar then cell values are decoded for further processing. Next, mapper

finds the median of retrieved values, and also the deviation of each value

74

5.5. Pseudo Code for Anomaly Detection Algorithms

from the median is calculated. Finally, for each row an intermediate key-

value pair is emitted. Whereas the key is a composite key(TSUID) and

value is an intermediate object composed of median, maximum deviation

and base time values of the record.

Reduce step (parallel over time series:) The Reduce step collects <

key, val > pairs emitted from mapper. It retrieves values from input val

objects and creates separate list for median and maximum deviations values.

Further, reducer finds median of the list of Medians (MoM) and Average

of the list of maximum deviation. Finally, it finds the difference of median

of the test window and MoM and report it as an anomaly if the difference

exceeds AvgDev (c.f.5.3.1).

5.5.3. Implementation of Ensemble Algorithm

Fig. 3 shows the pseudo code for Ensemble Algorithm MapReduce job. It

consists of two steps:

Map step (parallel over rows): The job setup and map step is similar to

HW implementation. Scan instance provides a selected range of records as

input to the Mapper. Mapper iterate over the column cells of each record.

For each row an intermediate key-value object is emitted. Whereas the key

(TSUID) is a combination of metric name and tags value, and the value

is an object composed of pairs of timestamp and raw value. Map function

extracts metric names and tags from row key and values from columns of

row.

Reduce step (parallel over time series:) for each metric the reducer

collects data to find anomalous behavior through the use of ensemble of

algorithms as explained in Section 5.3.1. If a majority of base algorithms

declares the metric anomalous then TSUID and comma separated values

belonging to the test window are emitted as a CSV file.

75

5. Diagnosing Performance Anomalies

Algorithm 2 ASF Anomaly detection

class MAPPER
method MAP(UID, Cells[C1, C2...]) // The mapper input is selected rows of

tsdb table
1: Split UID into TSUID and Base Time (BT) // TSUID is a combination of

metric and tags values and BT is base hour of row
2: if Base Time ε test windows OR similar past days window then
3: iterate over Cells and save extracted values in a list V als.
4: Med ← median(Vals) // Calculate the median of all values stored in list

V als
5: MaxDev ← deviation(Vals,Med) // Calculate largest deviation of values

from median
6: M ← <Base Time, Med, MaxDev> // store MaxDev, Med and Base time

in the object M
7: EMIT(TSUID,M)
8: end if

class: REDUCER
method: REDUCE(TSUID, Object[M1,M2, ...])
1: LM ← extractMed([M1,M2, ...]) // Create a list of median (LM) from input

Objects, excluding median of test window
2: LD ← extractDev([M1,M2, ...]) // Create a list of largest deviation from

input Objects, excluding deviation of test window
3: MoM ← median(LM) // Find median of the list of medians
4: AvgDev ← average(LD) // Take the average of the list of deviations
5: Dev ← abs(MoTS - MoM) // absolute difference between the median of test

window and MoM
6: if Dev > AvgDev then
7: EMIT(TSUID, Test Window values) // Report anomaly by emitting met-

ric name and test window values
8: end if

5.5.4. Implementation of Ranking

The implementation of ranking is based on Hadoop Streaming utility and

statistical package R [102]. These scripts further process the comma sepa-

rated files generated by the anomaly detection phase. The logic of ranking

is implemented inside the R based Map and Reduce scripts. These scripts

read the input (line by line) from the standard input stream (stdin) and

emit the output to the standard output stream (stdout). Fig. 4 shows the

76

5.5. Pseudo Code for Anomaly Detection Algorithms

Algorithm 3 Ensemble-based Anomaly detection

class MAPPER
method MAP(UID, Cells[C1, C2...]) // The mapper input is selected rows of

tsdb table
1: Split UID into TSUID and base time // TSUID is a combination of metric

and tags values and base time is base hour of row
2: iterate over Cells and save extracted time stamp and value tuples in object

M
3: EMIT(TSUID,M)

class: REDUCER
method: REDUCE(TSUID, Objects[M1,M2, ...])
1: Base Algorithms: A1 . . . , Aj

2: TS ← getValues([M1,M2, ...]) // Construct a sorted time series (TS) from
input objects

3: for i=1 to j do
4: Apply Ai to TS
5: i++
6: end for
7: if Majority Base Algorithms returns true then
8: EMIT(TSUID, Test Window values) // Report anomaly by emitting met-

ric name and test window values
9: end if

pseudo code for Ranking MapReduce job. it consists of two steps:

Map-function (parallel over time series): Each Mapper takes a line as in-

put and breaks it into metric name and a list of <timestamp,values> pairs.

This list is down sampled (averaged) into five minutes intervals and stored

in an average values vector. The next step correlates this vector with target

vector (representing SLOs). For each anomalous metric xi, the calculated

correlation coefficient value r and metric name is emitted as pairs.

Reduce-function: The Reduce function collects <r,metric name> pairs

and sorts them according to the magnitude of r. Next step emits the list of

top N suspicious metrics on the basis of correlation coefficient ranking.

77

5. Diagnosing Performance Anomalies

Algorithm 4 Ranking Algorithm

class: MAPPER
method: MAP(docid,csvdoc)
1: target ← FILE(target.csv) // Read SLO values from distributed cache and

assign to target vector
2: for each line x ε csvdoc d do
3: metric, fields ← split(x, ”,”) // Split the line using a comma as the sep-

arator, and flatten the resulting list into a metric string and field vector

4: for each y ε fields do
5: Avgfield ← Avg(y) // Create a vector and Add to it 5 min average

values
6: end for
7: r ← Cor(Avgfiled,target) // Correlate average values with SLO metric
8: EMIT(r, metric name)
9: end for

class: REDUCER
method: REDUCE(key r , Value metric name)
1: tupleList← Sorted anomalous metric < r,metricname > list based on mag-

nitude of r
2: suspiciousAttribute< r,metricname >← get top N elements in tupleList //

e.g. N=5
3: EMIT suspiciousAttribute< r,metric >

5.6. Anomaly Detection Results

Our experimental goal is to diagnose performance anomalies in prevalent de-

ployment scenarios for Cloud based applications, encompassing both IaaS

and PaaS layers. We validated our approach on the GWDG Compute

Cloud, which hosts various VMs for different scientific projects as well as

the OpenShift PaaS (cf. Fig.5.1). As a test application, we selected Word-

Press (WP), which is a free open source blogging tool and a content man-

agement system (CMS) based on PHP and MySQL. We now present our

experimental setup and results.

78

5.6. Anomaly Detection Results

5.6.1. Experimental Setup

The GWDG Compute Cloud utilizes KVM as virtualization technology.

For brevity, we only describe the virtual nodes used in the experiments.

1. OpenShift Instances: OpenShift VM(s) have 4 GB of memory, 2

vCPUs, 40 GB storage and 64 bit CentOS 6.4 operating system.

2. WordPress Instances: One instance deployed on a Compute Cloud

VM having 2 GB of memory, 1vCPU, 20 GB storage and 64-bit

Ubuntu 12.04 operating system. Three instances deployed on Open-

Shift, each using 1 small Gear having 1 GB storage and 512 MB

memory. We set response time <1 second as our Service Level Ob-

jective (SLO) for WP instances. We simulated a normal workload for

WP instances for a period of 48 hours before injecting the anomalies.

3. OpenTSDB instances: OpenTSDB is used for collecting, aggregat-

ing and storing monitoring data. Customized collectors retrieve mon-

itoring data for Compute Cloud VM(s) and OpenShift Gears. An

OpenTSDB cluster is also deployed on Compute Cloud. It is com-

posed of 4 slaves, 1 master and 1 tsdb server, each having 8 GB of

memory, 4 vCPUs, 40 GB storage and 50 GB of volume storage. The

Collection mechanism collects monitoring data at a 1 minute regular

interval.

5.6.2. Synthetic Faults and Results

We begin by injecting synthetic anomalies (faults) at both IaaS and PaaS

layers of Cloud to trigger SLO violations for test application(s), and then

detect the causes of SLO violation. It is observed that real anomaly symp-

toms often persist for some time, and occasional short-term resource spikes

cause false alarms. Therefore we injected synthetic faults those last for

600-900 seconds. For each fault, we detect response time SLO violation

and invoke the proposed anomaly detection (cf. Section 5.3.1) process to

79

5. Diagnosing Performance Anomalies

identify the anomalous metrics. Due to space limitation we only describe

the distributed HW results in detail. The underlying HW model is applied

to data points from a look-back window of 48 hours with model parameters

α = 0.452231, β = 0.00208 and γ = 0.00208. Afterwards, the extracted

anomalous time series values are correlated with response time values to

localize the most suspicious metrics. A description of injected faults and

results is given below.

Disk-Hog

Here, we consider the WP instance deployed on Compute Cloud, where 50

VM(s) were already running. After a normal workload simulation on WP

for a period of 48 hours, we triggered an I/O anomaly using Linux stress

tool. This increased the response time of WP. We modeled approximately

900 time series over a look-back window of 48 hours and found 29 anomalous

metrics. The results of correlation and ranking phase are shown in Table 5.5.

The suspicious attributes indicate heavy disk writing requests from a VM

instance and increased load on a physical host. By analyzing the results, we

find that tag vm = 8ef0d6d7 is id of WP instance and tag host = os030 is

id of the physical host where this WP instance is running. Based on these

attributes, we can conclude that increased “disk write” requests from WP

instance block normal requests from clients on the physical host, increase

the average load and incur more memory allocation in the disk cache.

Netwok-Hog

Here, a WP instance deployed on an OpenShift (PaaS) node is considered.

We simulated a normal workload for WP for a period of 48 hours and then

triggered a heavy spike in workload using Apache ab benchmarking tool.

Consequently, the WP instance slows down and violates the response time

SLO. The first phase of the diagnosis process detects 149 anomalous time

series for network-hog interval. The results of the second phase capture top

five most suspicious metrics as shown in table 5.3. The top ranking attribute

80

5.6. Anomaly Detection Results

Table 5.2.: Experimental results for Disk-Hog

Rank CC metric tags
1 0.92 virt.domain.disk.wr req host=os030:

vm=8ef0d6d7
2 0.92 virt.domain.disk.wr bytes host=os030:

vm=8ef0d6d7
3 0.87 proc.meminfo.cached host=os030
4 0.87 proc.meminfo.memfree host=os030
5 0.82 proc.loadavg.1min host=os030

indicates the anomaly in real-memory (resident set) size of the processes

in a Gear of OpenShift. The remaining three attributes point towards

packets/bytes received or transmitted to/from the network interface of a

VM (vm = 8ef0d6d7) instance. By analyzing the tags, we find that vm =

8ef0d6d7 is id of client VM from where we generated http requests, and tag

gear = 000001 is id of the container (Gear) hosting the WP application.

We have precisely diagnosed that increased network traffic from client VM

to WP application is responsible for increased response time. The last

attribute is beyond our analysis as VM with tag vm = a6eaea59 is not

among our testbed instances.

Resource Contention

Here, we are interested in analyzing performance anomalies caused by re-

source contention in PaaS. We deployed three WP application instances

(App1, App2 and App3) on an OpenShift (PaaS) node. These instances

compete for system resources. Using App2 and App3, we simulate CPU

and disk resource contention by gradually increasing the workload of App2

and App3 until hitting the capacity limit of their containers (Gears). As

a result, the response time of App1 is affected. The performance diagnosis

process detects 42 anomalous time series for Case 3 and localization results

are given in Table 5.4. By looking at suspicious attributes and their contex-

81

5. Diagnosing Performance Anomalies

Table 5.3.: Experimental results Network-Hog

Rank CC metric tags
1 0.97 openshift.app.memory.

total rss
host=broker.example.com:
gear=000001

2 0.94 virt.domain.interface.
tx packets

host=os030: vm=8ef0d6d7:
interface=tapad10f5f9-24

3 0.94 virt.domain.interface.
Rex bytes

host=os030: vm=8ef0d6d7:
interface=tapad10f5f9-24

4 0.94 virt.domain.interface.
Rex packets

host=os030: vm=8ef0d6d7:
interface=tapad10f5f9-24

5 0.79 virt.domain.interface.
tx bytes

host=os030: vm=a6eaea59:
interface=tap1a071a9b-4d

tual tags, we conclude with the following observations. The response time

of App1 is affected due to increased CPU and disk utilization of OpenShift

VM (vm=1fd73b00). Moreover, there is a suspicious attribute pointing to-

wards increased response time of App3. Hence, we conclude that our test

application’s performance is degraded due to collocated applications.

5.7. Performance and Accuracy Evaluation

In this section, we compare the accuracy and coverage of anomaly detection

workflow using precision and recall metrics. We also report the performance

of anomaly detection and correlation algorithm in terms of wall clock time,

speedup and scaleup characteristics.

In general, if anomaly detection phase declares a small set of metrics as

anomalous then the workflow will miss true anomalous metrics (false nega-

tives). On the contrary, if the anomaly detection phase declares a huge set

of anomalous metrics, then workflow leads to too many false positives. We

measure this tradeoff for the anomaly detection phase in terms of precision

and recall.

82

5.7. Performance and Accuracy Evaluation

Table 5.4.: Experimental results for Resource-Contention

Rank CC metric tags
1 0.84 virt.domain.disk.wr bytes host=os027:

vm=1fd73b00
2 0.83 virt.domain.disk.wr req host=os027:

vm=1fd73b00
3 0.79 app.response.time host=ubuntu:

app domain=App3:
4 0.84 virt.domain.disk.wr req host=os027:

vm=6263d389
5 0.81 virt.domain.cpu time host=os027:

vm=1fd73b00

For any given threshold ’t’ on the set of detected anomalies, the declared

anomalies set is denoted by S(t). As ’t’ changes, the size of S(t) changes as

well. G represents the true set of anomalies in the data set. For any given

threshold t, the precision is defined as the percentage of reported anomalies,

which truly turn out to be anomalies.

Precision(t) = 100× |S(t)
⋂

G|
|S(t)|

Similarly, The recall is defined as the percentage of true anomalies, which

have been reported as anomalies at threshold t.

Recall(t) = 100× |S(t)
⋂

G|
|G|

The speedup is the ratio between the execution time of a task for the serial

implementation (Ts) and the execution time of the same task with mapre-

duce based implementation (Tp).

Speedup = Ts

Tp

While, we define the scale up as the ratio between the execution time of a

task with a single reducer (T1r) and the execution time of the same task

with an increasing number of reducers (Tnr).

83

5. Diagnosing Performance Anomalies

Scaleup = T1r

Tnr

we are not reporting the scalability with respect to mappers as they depend

upon the hbase regions, in our setup regions automatically split therefore

they are beyond our control.

5.7.1. Accuracy

For accuracy analysis, we used the dataset described earlier in section 5.6.

There are more than 900 metrics in the dataset, and we manually identi-

fied true anomalies for each test case of section 5.6. We used these true

Table 5.5.: The total number of anomalous metrics identified by different
approaches

Approach Case 1 Case 2 Case3
True 9 12 15
HW 36 188 56
ASF 161 376 268
EM 22 124 38

anomalous metrics to compare the precision and recall of each algorithm.

As dataset is collected from production Cloud service, we had no control

of anomalies that manifested beyond our test applications, nor do we have

knowledge about all of them. We present the results of anomaly detection

phase in table 5.5. Each column of the table presents the true anomalies and

anomalies identified by each algorithm in a single column. From the table,

it is clear that the HW and the ASF method identified a higher number of

anomalous metrics and floods ranking phase with too many false positives

as compared to the EM method.

84

5.7. Performance and Accuracy Evaluation

30

40

50

60

70

80

90

5 10 15

P
re

c
is

io
n
[%

]

Threshold of number of selected metrics

HW
ASF

EN

Figure 5.3.: The precision results

30

35

40

45

50

55

60

5 10 15

re
c
a
ll[

%
]

Threshold of number of selected metrics

HW
ASF

EN

Figure 5.4.: The recall results

85

5. Diagnosing Performance Anomalies

The Fig. 5.3 and Fig. 5.4 shows the precision and recall of anomaly

detection workflow. We observe that HW and ASF methods can achieve

better precision and recall, as we change the threshold of the number of

selected metrics from 1 to 15.

5.7.2. Performance of Anomaly Detection Algorithm

For performance analysis, we compared the execution time of MapReduce

based parallel implementation of anomaly detection algorithms with a serial

implementation of the HW method. The serial implementation retrieve data

from the OpenTSDB’s HTTP/JSON API. We report results by analyzing

a dataset of six months period from GWDG Compute Cloud. The dataset

shows an increasing trend in the usage of Compute cloud service and we

had no control of the anomalies that manifested.

Fig. 5.5 and 5.6 shows the execution time and speedup achieved by

different methods by varying the size of analyzed metrics. From figures,

we observe that the distributed implementation of ASF method performs

poorly and it’s execution time is even worst than the serial implementation.

While, the distributed HW and EM methods perform much better than the

serial implementation. The performance advantage of the EM method is

due to it’s need of smaller data set size for analysis. We also observe that

distributed algorithms speedups are undesirable for smaller dataset size, but

they get much more efficient as the dataset size increases. This indicates

suitability of our approach for Cloud-scale deployment.

Next, we will report the scaling results of anomaly detection algorithms

with respect to increasing the number of reducers r. The Scaleup plot

(5.7) shows the results, the x-axis shows the number of the reducers r and

the y-axis shows relative performance with r reducers compared to using

1 reducer. The number of mappers m and dataset size d were fixed using

d=3242 and m=10. The scaleup results exhibit a sub linear behavior and

help to identify an upper bound for r.

86

5.7. Performance and Accuracy Evaluation

0

200

400

600

800

1000

1200

1400

800 1200 1600 2000 2400 2800 3200

W
a
ll-

c
lo

c
k
 t
im

e
 [
s
e
c
o
n
d
]

Dataset Size [metrics]

S
HW

ASF
EM

Figure 5.5.: Anomaly detection phase Wall-clock time

0

1

2

3

4

5

800 1200 1600 2000 2400 2800 3200

S
p
e
e
d
u
p
 [
%

]

Dataset Size [metrics]

HW
ASF
EM

Figure 5.6.: Anomaly detection phase Speedup

87

5. Diagnosing Performance Anomalies

1

1.2

1.4

1.6

1.8

2

1 2 3 4

s
c
a
le

u
p

Number of reducers

HW
ASF
EM

Figure 5.7.: Anomaly detection phase Scaleup

5.7.3. Performance of Ranking Algorithm

Here we used synthetic dataset for performance analysis, due to impracti-

cality of smaller size of datasets generated in experiments from phase 1. To

evaluate the performance of ranking, first we executed the R based mapper

and reducer scripts using Hadoop streaming API and then executed the

same scripts independently on a single node. Fig. 5.8 shows the wall-clock

time and Fig. 5.9 shows the relative speedup of MapReduce based execution

over serial execution. The speedup is undesirable for smaller dataset size,

but it becomes gradually efficient for bigger dataset size. Fig. 5.10 shows

the scaleup achieved when r reducers are compared with a single reducer.

The scaleup results exhibits a sub linear behavior. The number of mappers

(m=1) and dataset size (d=84 M) were kept fixed for scaleup experiments.

88

5.7. Performance and Accuracy Evaluation

0

100

200

300

400

500

600

700

800

0 25 50 75 100 125 150 175 200 225 250

W
a
ll-

c
lo

c
k
 t
im

e
 [
s
e
c
o
n
d
]

Dataset Size [MB]

SR
DR

Figure 5.8.: Ranking phase Wall-clock time

1

2

0 50 100 150 200 250

s
p
e
e
d
u
p

Dataset size [MB]

Figure 5.9.: Ranking phase Speedup

89

5. Diagnosing Performance Anomalies

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5

s
c
a
le

u
p

Number of reducers

Real
Ideal

Figure 5.10.: Ranking phase Scaleup

5.7.4. Discussion

An ideal method should identify a minimal and correct set of anomalies

that reduce the problem-investigation effort and speedup the diagnosis pro-

cess. However, one have to find the trade-off between the correctness and

performance of anomaly detection method. The following is a summary of

key observations:

1. It is easy to conclude from the above sections, that the distributed

implementation scale very well on bigger datasets.

2. The HW algorithm shows better scalability and accuracy, but results

depends upon the model parameters. However, the dynamic nature of

cloud and the large number of performance metrics makes it difficult

to tune the model parameters and find the period of seasonal trends

of every metric.

90

5.7. Performance and Accuracy Evaluation

3. The ASF algorithm does not have a real notion of periodicity, there-

fore it floods ranking phase with a huge number of true positives.

The approach is only preferable, if metrics shows hourly or weekly

patterns. Moreover, the ASF approach is computationally very ex-

pensive due to comparison operations and it does not help in speeding

up the diagnosis process.

4. As observed, the implemented anomaly detection algorithms analyze

monitoring data over historical periods of different lengths to make

their decisions. The length of a historical period plays an important

role in correctness and performance of method. For example, HW and

ASF methods uses a longer historic period and provide more precise

results, and for the EM method a shorter historic time period provides

better performance.

5. The experiments suggest that a list of top 5 suspicious metrics could

be very helpful to quickly guide IT operations team to move their focus

on problems related to performance of a cloud hosted application.

6. The EM method shows better scalability. The only limitation of the

EM method is that it is very strict in choosing anomalous metrics

therefore it misses many true anomalies

7. Choosing Pearson correlation function gives excellent results; future

work may include investigating more complicated feature selection

algorithms , such as the mRMR method.

91

6. Predicting Performance

Anomaly

Predicting subsequent values of Quality of Service (QoS) properties is a key

component of autonomic solutions. Predictions help in the management of

Cloud-based applications by preventing QoS breaches from happening. The

huge amount of monitoring data generated by Cloud platforms motivated

the applicability of scalable data mining and machine learning techniques

for predicting performance anomalies. Building prediction models individ-

ually for thousands of Virtual Machines (VMs) requires a robust generic

methodology with minimal human intervention. In this chapter, we focus

on these issues and present three main contributions. First, we compare

several time series modeling approaches to evidence the predictive capa-

bilities of these approaches. Second, we propose estimation-classification

models that augment the predictive capabilities of machine learning classi-

fication methods (random forest, decision tree, support vector machine) by

combining them with time series analysis methods (AR, ARIMA and ETS).

Third, we show how the data mining techniques in conjunction with Hadoop

framework can be a useful, practical, and inexpensive method for predicting

QoS attributes. This chapter contains the content from our publication [2].

93

6. Predicting Performance Anomaly

6.1. Motivation: Distributed Parallel

Performance Prediction

Despite the success of Cloud computing, the problem of performance man-

agement is still an open issue. Cloud applications are susceptible to perfor-

mance anomalies owing to diffrent reasons like resource contentions, soft-

ware bugs, and hardware failures [121]. These anomalies in the system can

effectively end a service delivery. From the user’s point of view, perfor-

mance anomaly and non-availability of a service cannot be differentiated.

Users will not accept performance anomalies - regardless of where the prob-

lem lies. Performance anomalies result in service outages, loss of customers,

a reduction of revenues and general loss of productivity. In complex sys-

tems such as Clouds, the tremendous cost of downtime drives the need to

diagnose and predict performance issues. Performance problem diagnosis

approaches are reactive approaches and they can not prevent performance

problems from occurring. There is a growing thrust in academia and in-

dustry to provide proactive anomaly management approaches to enhance

the performance of cloud hosted applications. Where, anomaly prediction

is prerequisite for the proactive anomaly management.

SLA aware Cloud platforms should be able to automatically respond to

dynamic interactions, varying workload and environmental conditions by

reducing operational expenditure and preventing SLA breaches. A key com-

ponent of such autonomic solutions is the online prediction of application

performance. The European Commission recommends realtime enforce-

ment of SLAs through proactive SLA violation detection mechanisms [73].

Advanced and effective forecasting can anticipate the periods of heavy us-

age or poor performance in order to prevent SLA breaches. However, due

to the dynamic behavior of web applications, the short-term prediction of

traffic levels and the period of high utilization is not an easy task, while the

scale and complexity of Cloud platforms makes it even harder.

94

6.2. Related Work

The huge amount of monitoring data generated by cloud platforms mo-

tivated the applicability of large scale data mining and machine learning

techniques for predicting performance anomalies.

6.2. Related Work

In this section we will talk about the studies carried out on Performance

anomaly prediction in general and its relation with the Cloud performance

Management in particular. Anomaly prediction has been studied under

different contexts. An extensive list of prediction methods is provided in

[106]. We try to classify the related work into the following categories.

6.2.1. Machine Learning Techniques

There have been several approaches for predicting system failures using

standard machine learning methods. Alonso et al. [7] analyzed the Lasso

Regularization technique jointly with the Machine Learning classifier to

predict the system failure due to software aging. They use ML classifiers to

predict system failure due to resource exhaustion, while we are using Ma-

chine Learning to predict only performance anomalies in a large scale cloud

environment. In [82], authors presented a framework for detection of perfor-

mance anomalies in Web-based applications. Forecasting is carried out in

two stages. The first stage involves the preparation of a dataset using corre-

lation analysis. This dataset is then submitted for offline training through

ML classification algorithms. In the second stage, the runtime parame-

ters collected by a monitoring module are estimated up to N epochs ahead,

using time series analysis algorithms(ARIMA and Holt-Winters). These es-

timated values are classified using previously trained ML algorithms. This

approach is comparable to the work presented in this work. However, the

analysis and validation of different techniques presented in this work focuses

on the cloud hosted applications that can degrade. Powers et al. [100] com-

pare the performance of regression methods and Bayesian network classifiers

95

6. Predicting Performance Anomaly

for short term performance forecasting in an enterprise system. We are also

comparing the performance of different statistical methods for short term

performance forecasting in large scale cloud systems. Our work differs from

the [100] in various way. We analyze the time series estimation-classification

methods under three dimensions: prediction accuracy, dataset size sensitiv-

ity, and scalability with Hadoop framework.

6.2.2. Time Series Analysis

In recent years, time series processing and prediction has been a widely

investigated topic in different domains. Sahoo et al. [105] utilized a set

of time series models to predict parameters such as a percentage of sys-

tem utilization and idle time for a 350-node cluster system. Hellerstein

et al. [56] presented an approach to predict if a time series will violate a

threshold by employing several time series models to model stationary and

non-stationary effects. Amin et al. [10] propose an automated forecasting

approach that integrates linear and nonlinear time series models to predict

the future values of Quality of Service (QoS) attributes. The approach se-

lects and constructs the best suitable time series forecasting model to fit

the QoS attributes’ dynamic behavior. In most cases, these methods has

been demonstrated in a serial execution fashion. Despite their advantages

serial execution is not suited for large scale dataset [77].

With the growing popularity of Big Data as a valuable resource and

mechanism to explore the value of datasets, there is an increasing interest

to efficiently execute time series analysis and machine learning algorithms

in parallel on large clusters. Examples include the forecasting approaches

described in [77] [76] [110]. However, all these work did not consider per-

formance prediction in cloud context.

6.2.3. Performance Prediction in Clouds

To predict performance violations of cloud platforms, a number of ap-

proaches have been proposed. For instance, PREPARE [121] performs

96

6.3. Prediction of Performance Anomalies

predictive anomaly correction, by combining online anomaly prediction,

VM scaling, and VM migration. Tree-Augmented Naive (TAN) Bayesian

network is used for online anomaly prediction. It builds per-VM predic-

tion model. UBL [33] is an anomaly prediction system for IaaS Cloud. It

leverages an unsupervised learning technique to predict both known and

unknown performance anomalies. Considering scalability, it uses uncon-

sumed resources in the cloud infrastructure for anomaly prediction. In [52],

authors present a proactive failure management framework, that uses en-

semble of Bayesian models to predict failure dynamics in cloud computing

systems. It works in an unsupervised learning manner and deals with un-

labeled datasets. It also uses dimensionality reduction for high detection

accuracy.

Our work differs from the above in various ways. First, we predict the

period where performance anomalies are expected, with enough lead time

so that corrective measures can be safely taken. Second, we compare time

series analysis methods with estimation-classication methods for the pre-

dictions. Third, we perform sensitivity analysis with respect to dataset

size. Fourth, we devise a MapReduce based scalable analytics framework

using Hadoop and R. Using this framework we evaluate the scalability of

our prediction methods.

6.3. Prediction of Performance Anomalies

In this section, we focus on predicting the performance of applications

hosted on Cloud platforms. Our aim is to determine approaches those

precisely predict if the number of SLA breaches in the following one-hour

span will cross a fixed threshold. A typical SLA of the cloud provider spec-

ifies the functional and non-functional (QoS) requirements that a provider

has to meet over a service guarantee time period. A typical Service Level

Objective (SLO) defines a threshold on the value assumed by the QoS met-

rics. Examples are availability ≥ 0.99%, average CPU utilization ≤ 75%

97

6. Predicting Performance Anomaly

Figure 6.1.: Analytics Framework and Cloud Scenario

or average response time ≤ 0.5ms. In this work, we only consider the per-

formance metrics related to resource utilization and average response time.

We implemented and compared a number of statistical learning methods

with some variations to fit this context.

6.3.1. Reference Scenario

On top of GWDG Compute and platform cloud service models, we devel-

oped Hadoop MapReduce based analytics framework for diagnosing and

predicting performance anomalies for deployed applications. The system is

shown in Fig. 6.1 and also acts as our reference Cloud scenario. Interested

readers may refer to the Section 3.1 for a more detail description of GWDG

Cloud services. We considered applications hosted in both IaaS and PaaS

layers to cater for both trends. The analytics framework executes a per-

formance prediction workflow composed of three phases. These are metrics

collection, classification and prediction, which encapsulate multiple opera-

tions as illustrated in Fig. 6.2.

For the mentioned Cloud scenario, our objective is to ensure that QoS

requirements of applications defined as SLO thresholds are met. An applica-

tion exceeding these thresholds is said to be in violation of SLO. Otherwise,

it is said to be in compliance.

98

6.4. Prediction Approaches

Phase 2: Classification

(MapReduce)

HDFS

Phase 3: Prediction

(MapReduce)
Phase 1: Monitoring

Metrics

Observations

Open|TSDB

Analytic

s Model

Build Dataset

(MapReduce)

Train Classifier

(MapReduce)

Parameter Estimation

(MapReduce)

Classify

(MapReduce)
Prediction

Prediction

2

3

8

5

6

Figure 6.2.: Workflow of Analytics Framework

6.4. Prediction Approaches

In this work, we assume a breach of an SLO is an indicator of performance

anomalies. We explore different time series estimation and machine learning

(ML) methods to predict the SLO violation in large scale cloud computing

scenarios. In our evaluations, time series estimation methods are used in

two distinct cases. In the first case, they are used directly to predict the in-

dividual SLO. In the second case (estimation-classification approach), they

are combined with ML algorithms. This estimates the parameters for pre-

viously trained machine learning algorithms, which in turn determines the

compliance or violation of a particular SLO. Following subsections briefly

describe the algorithms used for SLO prediction.

6.4.1. Time Series Analysis Methods

For time series analysis, we employ three modeling methods: autoregressive

(AR) model, autoregressive integrated moving average (ARIMA) model and

99

6. Predicting Performance Anomaly

innovative state space models for exponential smoothing (ETS) [45]. We

selected AR and ARIMA model based on the assumption that past QoS

values are serially dependent over time, and linear models can fit these

values. Since Cloud platforms are characterized by highly dynamic and

random workloads, use of non-linear forecasting models can not be ruled

out. Realizing this, ETS models have been considered as well. All these

methods selects the best model based on Akaike’s Information Criterion

(AIC) where the best model is one that has minimum AIC value. AIC is

defined as:

AIC = 2k − 2ln(L)

where k is the number of parameters in the model and L is the likelihood

function. AIC is a goodness of fit measure for models, taking into consid-

eration both their accuracy and complexity determined by their number of

parameters. Each of the modeling methods is described briefly below.

AR model

AR model is a linear autoregressive model, where we forecast the variable

of interest using a linear combination of past values of the variable. Thus

an AR model of order p can be written as:

y(t) =
∑p

i=1 φ(i).y(t− i) + ε(t)

where yt is the time series sample at time t, p is the model order, φ1, ..., φp

are parameters of model, c is a constant and ε(t) is white noise. There

are many ways to estimate the parameters φi. Among those methods, we

selected Yule-Walker method of parameter estimation. Employing AR to

fit the cloud platform traces is substantially smooth operation, but it does

not always produce precise results. We used the approach proposed in R’s

ar() function [102].

100

6.4. Prediction Approaches

ARIMA model

ARIMA is an extension of the AR model with autoregressive and moving

average terms. It predicts future movements of time series using differences

between values in the series instead of using actual data values. Lags of the

differenced series are denoted as “autoregressive” and lags within forecasted

data are denoted as “moving average”. An ARIMA model of order (p, d,

q) can be written as:(
1−∑p

i=1 φi.L
i
)
(1− L)dXt =

(
1 +

∑q
i=1 θiL

i
)
εt

where L is the lag operator, p is autoregressive order, d is the integration

order, q is the moving average order and θi is the i-th moving average

parameter. We used the function auto.arima() from R’s forecast package

[124], which implements a unified approach to specify the model parameters.

This approach also considers the seasonality of the trace.

Innovative state space models for exponential smoothing (ETS)

Forecasts produced using exponential smoothing methods are weighted av-

erages of past observations, where weights decrease exponentially as the

observations get old. The simplest form of exponential smoothing is given

by the formulae:

s0 = x0

st = αxt + (1− α)st−1, t > 0

In literature, there exists many different models for which the various ver-

sions of exponential smoothing are optimal. One such class of models is

innovative state space models for exponential smoothing. This class of

models is very general and includes linear and non-linear models. Here we

used the ets() function from the forecast package [124]. In this framework,

every exponential smoothing method has two relating state-space models,

each with a single source of error (SSOE). One model has an additive error

and the other has a multiplicative error. Therefore, in total there exist 30

101

6. Predicting Performance Anomaly

such state space models: 15 with additive errors and 15 with multiplicative

errors. The framework estimates each model’s parameters by maximizing

the “likelihood”.

6.4.2. Classification Algorithms

The second class of methods we considered was estimation-classification

prediction models of the feature space. These methods are based on the

assumption that performance anomalies manifest in system-level metrics

and they consider the large volume of system metrics to predict the future

QoS measures. System metrics are periodically sampled at fixed intervals

(e.g. each minute). The result will be a time-series X containing a sequence

of the last w observations:

X = xt, xt−1, xt−2, ..., xt−w+1

The estimation-classification approach can be divided into two parts. The

first part estimates the future values of the system metrics using time-

series prediction techniques. While, the second part consists of classification

of these predicted values. Several classification approaches can be used,

among them we have chosen to use the Naive Bayes classifier, random

forest, decision tree and support vector machine (SVM). In the previous

section, we have already discussed the time series analysis methods, now

we will briefly describe the chosen machine learning algorithms below.

Naive Bayes

The Naive Bayes classifier is an elementary probabilistic classifier based on

Bayes rule along with crucial (naive) independence assumptions. The clas-

sifier suppose that the presence of a certain feature of a class is unassociated

to the presence of any other feature. Regardless of their simple design and

assumptions, the method has been shown to perform considerably well in

numerous real world domains. An superiority of the method is that it re-

quires slightly small-scale training data to estimate parameters essential for

classification [75].

102

6.5. Evaluations

Decision Tree

A decision tree is a classifier that is expressed as a rooted tree of feature

space. Where each internal node of the tree is labelled with an input feature.

The edges coming from a node are labelled with each of the possible values

of the feature and each leaf of the tree is labelled with a class. A tree

can be “learned” by splitting the feature space in to two or more feature

spaces according to a certain discrete function of the input attribute. For a

lot of real world domains, Decision Tree generates small and accurate tree,

resulting in fast, reliable classifiers. These properties make decision trees

an important and valuable tool for classification [107].

Random Forest

Random Forest classifier is an ensemble learning method for classification

that constructs a multitude of decision trees via bootstrap re-sampling.

Each tree utilizes different subsets of variables and returns the class that is

the mode of the classes output by the individual trees [19].

Support Vector Machine (SVM)

In machine learning, Support Vector Machines are supervised learning mod-

els. They were originally developed as maximum margin classifiers that only

work with two classes. It performs classification by constructing an n − 1

dimensional hyperplane that optimally separates the data into two cate-

gories. As compared to other classifiers, SVM is able to find out maximum

separation between the two classes [17].

6.5. Evaluations

In this section, we evaluate the above-mentioned prediction algorithms. We

differentiate the algorithms against accuracy and performance properties

that are crucial for building online performance models at large scale.

103

6. Predicting Performance Anomaly

6.5.1. Experiment Setup

In particular, the presented experiments are structured in order to answer

three questions:

Q1 Is accuracy of estimation-classification methods better than univariate

time series analysis methods to predict performance anomalies?

Q2 What data sample size is needed to learn accurate models?

Q3 Does proposed system achieves scalable online anomaly learning and

prediction ?

In order to address Q1, we test the methods using data collected from pro-

duction Cloud environments. The first set of data was collected from Elec-

tronic Work Space (EWS) - a Learning Management System (LMS) that

is used by the University of Dortmund [65]. EWS is a Java EE application

deployed in JBoss Application Server (AS). For EWS, we collected 30 days

of system data, by using Cacti network monitoring tool [21] with a pool-

ing interval of 5 minutes. The collected data consists of both system-level

utilization metrics (CPU, memory, paging, IO, etc.) and application-level

metrics such as response time, number of logins and number of hits. To cat-

egorize the performance problem, we defined response time SLO for EWS

as follows:

• SLO-time: In each 5 minutes interval, response time of invocations

will be within 100 milliseconds (ms).

Our goal is to conclude at any point in time whether the following hour will

contain 20 or more minutes of SLO violations.

Our second dataset corresponds to a VM running a WordPress instance

running over GWDG Compute Cloud. We used httperf to simulate the real

behavior of dynamic web applications by changing between a CPU intensive

workload and idle periods. We linearly increase the load level from level

1 through level 6 every five minutes. Next, we gradually decreased the

104

6.5. Evaluations

workload in similar manner followed by an idle period. In this experiment,

We evaluated the effectiveness of selected techniques by predicting SLOs

for CPU utilization and response time. While SLOs for CPU utilization

and response time are defined as follows.

• SLO-CPU: A CPU SLO violates when an average number of CPU

cycles/sec exceeds 100 for more than 10 % of the time interval.

• SLO-TIME: A response time SLO violates when average response

time exceeds 300 ms.

For WordPress application, we collected system data, by using OpenTSDB

monitoring framework with a pooling interval of 1 minute. We applied

the prediction methods as outlined in section 6.4 to the test datasets and

evaluated the prediction accuracy of each method. Conventionally, accuracy

measures the ratio of the number of correctly classified instances over the

total number of instances. Prediction accuracy depends on the ratio of each

class, and it is less informative in settings in which one of the target classes

is rare. Alternatively, we use the Balanced Accuracy (BA) as the metric

to evaluate the prediction accuracy. Measured by BA, a good predictor

should perform well in both classes (SLA violation and SLA validation),

apart from the distribution of testing sets. BA is defined as:

BA = 0.5∗truepositives
truepositives+falsenegatives

+ 0.5∗truenegatives
truenegatives+falsepositives

To answer Q2, we take the common measure of testing it empirically. Gen-

erally, in machine learning research, the size of the training set is fraction-

ally expanded and accuracy is measured on a fixed test set. To test how

much data is needed for time series analysis models, we created fractional

training datasets (10-100%) of individual response time SLO datasets, and

then computed the BA values by automatically constructing and using the

forecasting models.

We created fractional training datasets from test datasets (i.e. EWS

and individual SLO) and predicted the response time SLO to evaluate pre-

diction accuracy. We reiterated the same process several times, but by

105

6. Predicting Performance Anomaly

changing the fraction of the training dataset while holding the same testing

dataset each time. Similarly, we also evaluated the estimation-classification

approach in relation to their sensitivity to the training dataset size. We cre-

ated new datasets with sizes varying from 10 to 100 % samples of original

EWS dataset. We created new datasets by arbitrarily picking samples from

the original training dataset. Subsequently, we computed the accuracy of

estimation-classification methods across all new datasets.

To address Q3, we probed the performance of data analysis through

MapReduce jobs on a 5-node Hadoop testbed. We used OpenTSDB, R sta-

tistical package and MapReduce to build a parallel processing framework

to automatically construct and use the forecasting models. In the evalua-

tion, MapReduce jobs are executed to build dataset and train models for

virtual machines (VM) running on GWDG Compute Cloud over a single

day period. In total, we trained models for 43 VMs. Our proposed system

consists of three major parts which are depicted in Fig. 6.1:

1. OpenTSDB is a distributed, scalable time series database built on

top of distributed columnar storage HBase and Hadoop. All time se-

ries data points are stored in a single, massive table, named tsdb. A

rowkey in OpenTSDB consists of: a metric, a base timestamp, and

a limited number of tags in the key-value format. Monitoring data

of a specific time period can be efficiently accessed and processed in

OpenTSDB. Virtual machines are represented as tags, and a set of 17

performance metrics are defined. They cover the statistics of different

components of each virtual machine, including CPU usage, memory

utilization, network activity, I/O and data transfer. Customized col-

lectors retrieve monitoring data for VMs. An OpenTSDB cluster is

also deployed on Compute Cloud. It is composed of 4 slaves, 1 mas-

ter and 1 tsdb server, each having 8 GB of memory, 4 vCPUs, 40

GB storage and 50 GB of volume storage. The Collection mechanism

collects monitoring data at a 1 minute regular interval.

106

6.5. Evaluations

2. A forecast Mapper parallelizes the reading of data from OpenTSDB

datastore. The input of the Mapper is selected range of records as

provided by Scan instance. Mapper iterates over the column cells of

each record. For each row an intermediate key-value object is emitted.

The key is name of VM, and the value is an object composed of pairs of

metric name, timestamp and raw value. The MapReduce framework

can create a separate Mapper for every region of HBase table, where

each region comprises a subset of rows of a table. Consequently,

MapReduce jobs can read/process multiple rows (segments of time

series) simultaneously on multiple nodes.

3. A forecast reducer collects < key, val > pairs emitted from Mapper

belonging to a single VM. For univariate time series analysis methods,

Reducers first prepare R’s vector and then apply time-series analy-

sis methods to forecast the trends in QoS attributes. However, for

estimation-classification, in the first step, Reducers prepare R data

frame (R vector in univariate case) and then train models using dif-

ferent machine learning classification algorithms. Then, in run-time,

we use time-series analysis to forecast the trends in system and appli-

cation level attributes. Finally, we query classification algorithms to

classify the influence that such estimations may have on application

performance. We employed Java R interface (JRI) library to inte-

grate R packages in our MapReduce based proposed framework. We

can run as many Mappers as the regions but there is no limit on the

number of Reducers. Scalability over whole time series is achieved in

reduce step when we increase the number of Reducers.

6.5.2. Results

Accuracy of Prediction Approaches

Fig. 6.3 shows the balanced accuracy achieved by different time series anal-

ysis algorithms for SLO belonging to three different datasets. Each set of

107

6. Predicting Performance Anomaly

experiments in the graph reflects the balanced accuracy achieved by the

individual method for a single SLO. We observe that no method is con-

sistently better than the others. However, the AR and ARIMA predictors

exhibit stable prediction accuracy across different SLO datasets. In general,

we can conclude that the tested time series models are a good statistical

tool to model dynamic behaviors of QoS attributes and forecast their future

values. Nonetheless, they do not consider system metrics other than SLOs.

Next, we show the initial results for estimation-classification approach,

where we used all features from the test datasets. First, we evaluate the

performance of the ML classifiers without combining the parameter estima-

tion. The objective is to determine whether the system exhibits anomalies

at the current time. Table 6.1 shows the results of machine learning algo-

rithm using 10 fold cross validation [117]. The columns in the table reflect

the precision, recall and time required for training by the specified algo-

rithm over the two SLOs. We observe that DT, SVM and RT algorithms

provide high precision and accuracy and perform slightly better than the

Naive Bayes algorithm.

Finally, Fig. 6.4, 6.5 and 6.6 shows the anomaly prediction accuracy

comparison of time series analysis models and estimation-classification pre-

diction models for different set of experiments. For these set of experiments,

we choose DT, SVM and RT models as the anomaly classifier. We have sev-

eral observations: 1) The classification models can still attain quite good

prediction accuracy for future system state. 2) The estimation-classification

prediction models perform slightly better than time series methods. 3) We

observe that by using the AR models in estimation-classification approach,

we can achieve higher prediction accuracy than using the ARIMA and ETS,

and 4) DT classifier can attain higher prediction accuracy than the SVM

and RF classifiers. The prediction accuracy of DT is best when combined

with ETS model.

108

6.5. Evaluations

EWS−RT WP−CPU WP−RT

ar

naive

ets

Average balanced accuracy

Test data set

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 6.3.: A balanced accuracy comparison of time series models
for SLO belonging to three different datasets

SLO−TIME(EWS) SLO−CPU(WP) SLO−TIME(WP)

Average balanced accuracy

Test data set

b
a
la

n
c
e
d

 a
c
c
u

ra
c
y

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

AR+RF
AR+SVM
AR+DT

Figure 6.4.: A balanced accuracy comparison of ML algorithms
when augmented with AR models

109

6. Predicting Performance Anomaly

SLO−TIME(EWS) SLO−CPU(WP) SLO−TIME(WP)

Average balanced accuracy

Test data set

b
a
la

n
c
e
d

 a
c
c
u

ra
c
y

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ETS+RF
ETS+SVM
ETS+DT

Figure 6.5.: A balanced accuracy comparison of ML algorithms
when augmented with ETS models

SLO−TIME(EWS) SLO−CPU(WP) SLO−TIME(WP)

Average balanced accuracy

Test data set

b
a
la

n
c
e
d

 a
c
c
u

ra
c
y

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ARIMA+RF
ARIMA+SVM
ARIMA+DT

Figure 6.6.: A balanced accuracy comparison of ML algorithms
when augmented with ARIMA models

110

6.5. Evaluations

5% 10% 20% 40% 60% 80% 100%

Fraction of data set used for training

b
a
la

n
c
e
d

 a
c
c
u

ra
c
y

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

AR
ARIMA
ETS

Figure 6.7.: Comparing balanced accuracy of Time series model′s in
relation to training data set size

1% 2% 5% 10% 20% 40% 60% 80%

Fraction of data set used for training

b
a
la

n
c
e
d

 a
c
c
u

ra
c
y

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ARIMA+SVM
ARIMA+DT
ARIMA+RT

Figure 6.8.: Comparing balanced accuracy of estimation-
classification model′s in relation to training data
set size

111

6. Predicting Performance Anomaly

Table 6.1.: Results of machine learning algorithms across the test datasets
using 10-fold cross-validation.

Algorithm Dataset Precision Recall Training
Time(s)

Naive Bayes
EWS 0.994 0.937 31.536
WP 0.822 0.993 21.872

Decision Tree
EWS 0.993 0.999 35.589
WP 0.944 0.964 15.730

SVM
EWS 0.993 0.998 44.853
WP 0.939 0.963 177.526

Random Forest
EWS 0.993 0.999 304.292
WP 0.9435 0.966 232.747

Training dataset size

The BA value produced by the time series analysis and with respect to

different sizes of training windows are depicted in Fig. 6.7. It is clear

that the approach’s accuracy depends on the number of observations used

to construct the model. From empirical analysis, we found that starting

from 10% of the total number of past windows (i.e last 2 days data), the

accuracy of the time series methods was adequate. However, for smaller

datasets, ARIMA and ETS methods performed better than AR.

Additionally, we assessed the classifiers in connection with their sensitiv-

ity to the training dataset size. We produced new datasets with sizes vary-

ing from 1% to 100 % samples of EWS dataset. We generate new datasets

by arbitrarily picking samples from the original training dataset. Subse-

quently, we determine the accuracy of each classifier over all new datasets.

Fig. 6.8 plots the outcome of this test until the training window reaches

100 % samples. We found that the accuracy of the classifiers enhanced over

dataset size but steadily saturated. By and large, starting from 60 samples,

the accuracy of the classifiers was acceptable. However, SVM performed

better than the other algorithms for much smaller datasets,.

112

6.5. Evaluations

Table 6.2.: Required time to construct and use the forecasting model on a
5 node Cluster

Time to Construct(min) Time to Use(min)

Method RF DT SVM ETS+
RF

AR+
RF

ARIMA+
RF

ETS+
DT

AR+
DT

ARIMA+
DT

ETS+
SVM

AR+
SVM

ARIMA+
SVM

Serial 14.70 14.02 15.04 17.21 16.27 17.35 17.49 16.01 18.08 21.17 18.21 17.03

1 Reducers 6.03 6.6 6.5 14.21 6.12 6.7 14.3 6.43 6.1 14.3 6.3 6.4

2 Reducers 6.13 5.584 5.44 11.29 5.42 5.46 10.51 6.24 5.39 10.49 6.38 5.40

3 Reducers 5.505 5.34 5.33 9.8 5.28 5.30 8.22 6.9 5.29 8.17 6.18 5.24

4 Reducers 5.495 5.25 5.30 9.11 5.22 5.24 8.20 6.3 5.23 8.21 6.13 5.24

5 Reducers 5.511 5.26 5.36 8.34 5.24 5.23 7.47 6.2 5.24 7.45 6.9 5.20

Scalability of the Proposed Approach

The time required for the estimation-classification approach to automat-

ically construct and use the forecasting model for the Compute Cloud

dataset is computed and reported in Table 6.2. As a comparison between

the time series analysis methods, the time needed to automatically con-

struct AR and ETS methods is computed and reported in Table 6.3. These

tables show how the job completion time decreases when we increase the

number of reduce tasks. From 1 to 5 reduce tasks, it is clearly observed that

reduce-proportional performance improvement is possible. For instance, the

job completion time of ETS time series analysis is decreased from 3.07 min-

utes with serial implementation to 1.59 minutes with 5 reducers. The most

complicated estimation-classification job (ETS+SVM) was finished within

21.17 minutes serially and 7.45 minutes in parallel with 5 reducers (2.84 x

improvement). The training of SVM model enhanced from 15.04 minutes

(serially) to 5.36 minutes in parallel (2.80 x improvement).

113

6. Predicting Performance Anomaly

Table 6.3.: Execution Time [min] for Serial and MapReduce prediction
methods

Method ETS AR ARIMA

Serial 3.07 1.98 2.42

1 Reducers 2.35 1.43 1.46

2 Reducers 2.20 1.45 1.50

3 Reducers 2.6 1.48 1.47

4 Reducers 2 1.45 1.46

5 Reducers 1.59 1.43 1.45

6.6. Discussion

This chapter investigated the feasibility of predicting performance anoma-

lies in Cloud-based applications by using MapReduce based processing

framework and a NoSQL type of data store. Autonomic solutions require

capabilities like predicting performance anomalies, to control the quality of

service of cloud-based applications.

The results achieved so far are preliminary but validate the potential of

our approach to predict performance anomalies in state of the art virtual

platforms and Cloud stacks. From the results, we conclude the following:

• In general, we conclude that MapReduce based prediction algorithms

perform considerably well on our small testbed clusters. Although

performance improvements are not perfect, they are in an acceptable

range. We expect similar performance improvements for larger prob-

lems.

• The proposed parallelized prediction methods based on the MapRe-

duce framework shows better performance and lower execution time.

• There is a loss in accuracy when relying only on time series analysis

methods for QoS attributes’ prediction.

114

6.6. Discussion

• Most of the characteristics considered in the study favor estimation-

classification approach, especially ETS+DT and ARIMA+RF.

115

Part III.

Conclusion

117

7. Conclusions

In this chapter, we summary the contributions from the chapters of the

thesis and their association with IT operations analytics in cloud comput-

ing (section 7.1). It is followed by a section on novel contributions (section

7.2). In addition, we evaluate the quality of framework and techniques con-

sidering various limitations in section 7.3. Finally, we discuss the potential

future work related to the findings of this thesis in section 7.4.

119

7. Conclusions

7.1. Summary

The purpose of chapter 3 has been the elicitation of requirements for a cloud

monitoring and analytics solution. The requirements result from general

considerations from literature, but are also motivated and illustrated using

two real-world application scenarios. The requirements have been grouped

into requirements for the monitoring framework and analytics component.

Following, Chapter 4 of the thesis presented an architecture and proto-

type implementation of monitoring and analytics framework. We conducted

a thorough analysis of technologies to be used by our frameworks. The se-

lected state-of-the-art tooling offers only a partial solution to performance

management. We extended certain parts of these tools to make them suit-

able for performance management of multi domain cloud scenarios. In

deciding upon technology, our criteria included de-facto industry standards

that are capable of providing a high degree of flexibility and scalability to

our architecture. A distributed scalable architecture is proposed combining

a NoSQL database and a non intrusive metrics collection mechanism. The

analytics component leverages complex event processing (CEP) technology

to implement the SLA surveillance function. We also implemented a proof

of concept prototype that extends the OCCI standard at the API level, thus

facilitating the standardized monitoring interface. The resulting framework

already being applied by the GWDG Cloud platform.

In Chapter 5 the idea to use a distributed parallel approach for perfor-

mance anomaly detection has been motivated. To achieve inherent scala-

bility, we implemented our approach using the MapReduce paradigm. For

comparative analysis we implemented three different light-weight statisti-

cal anomaly detection techniques. In order to locate the most suspicious

metrics we correlate the anomalous metrics with the target SLO. We imple-

mented and applied the proposed approach in our production cloud. Ex-

perimental results show the feasibility and effectiveness of our algorithms

especially for large time series datasets related to applications deployed in

120

7.2. Contributions

IaaS and PaaS Clouds. We claim that this work benefits Cloud adminis-

trators in quickly diagnosing performance problems.

Finally, we proposed and evaluated a black-box methodology for perfor-

mance prediction of a software service hosted in a multilayer cloud infras-

tructure (explained in Chapter 6). The proposed methodology investigated

the feasibility of predicting performance anomalies by using MapReduce

based processing framework and a NoSQL type of data store. The proposed

method learns a model and predicts the performance of the application us-

ing various time series analysis and machine learning techniques. Auto-

nomic solutions require capabilities like predicting performance anomalies,

to control the quality of service of cloud-based applications. The proposed

method could be integrated with the SLA management system for cloud

applications to satisfy response time requirements, and minimize the SLA

violation periods.

In brief, the salient innovative features of the thesis are scalable perfor-

mance anomaly detection and prediction techniques for cloud platforms.

These techniques are based on a scalable monitoring and analytics frame-

work. In order to show its feasibility, we devoted a considerable effort to

the prototypical implementation of techniques at the GWDG.

7.2. Contributions

From the outset, we sought to explore multifaceted issues in performance

monitoring and analysis in cloud environments. In an effort to improve

performance of cloud environments, scalable performance monitoring and

analytics solutions are needed. We believe the results of this study make

significant nobel contributions and step forward to existing work. The

tangible results can be summarized as follows.

The first step was to define a monitoring and analytics architecture. The

resulting architecture is complete enough to monitor and analyze the per-

formance of multiple layers of cloud environment simultaneously. That said,

the proposed architecture was implemented in a completely decentralized

121

7. Conclusions

and distributed manner using state-of-the-art tooling. The presented archi-

tecture is extending State-of-the-Art in a number of ways, the most impor-

tant of which is the special consideration for data granularity and scalability.

Further to that, the plug-able architecture of the collection mechanism al-

lows the collection of a variety of parameters across different cloud layers.

In addition, it allows to extract monitoring data from any OCCI compliant

cloud platform. The analytics layer, support both live stream and batch

processing technologies for automated problem diagnostics and predictive

analytics. These contributions are also published as:

A. I. Jehangiri, E. Yaqub, and R. Yahyapour, “Practical Aspects for

Effective Monitoring of SLAs in Cloud Computing and Virtual Plat-

forms.,” in CLOSER, 2013.

Having the necessary building blocks available, an anomaly detection work-

flow was described, and based on that three different anomaly detection

techniques were tested in a production cloud encompassing IaaS and PaaS

service models. The main interest of the work here was to assess and com-

pare these techniques in terms of precision, recall, execution time, speedup

and scaleup. Experimental results confirm that our approach is efficient

and effective in capturing the components (metrics) causing performance

anomalies. The conclusion after experimentation was that distributed im-

plementation scale very well on bigger data sets, and Holt-Winters algo-

rithm shows better scalability and accuracy. The experiments suggest that

a list of top five suspicious metrics could be very helpful to quickly guide IT

operations team to move their focus on problems related to the performance

of a cloud hosted application. To the best of our knowledge, our approach is

first to adopt the MapReduce [34] based algorithms for a distributed TSDB

to localize the suspicious metrics. This work has been previously published

as:

A. I. Jehangiri, R. Yahyapour, P. Wieder, E. Yaqub, and K. Lu,

“Diagnosing Cloud Performance Anomalies using Large Time Series

122

7.3. Limitations

Dataset Analysis,” in 2014 IEEE 7th International Conference on

Cloud Computing, 2014.

Finally, a proactive anomaly management approach to enhance the perfor-

mance of cloud hosted applications was considered in the last Chapter. Au-

tonomic solutions require capabilities like predicting performance anoma-

lies, to control the quality of service of cloud-based applications. More

specifically, study provided insights into predictive anomaly detection by

characterizing the problem under three dimensions. First, we compared

several time series modeling approaches to establish the predictive power

of these approaches. Second, we proposed estimation-classification models

that augment the predictive power of machine learning classification meth-

ods (random forest, decision tree, support vector machine) by combining

them with time series analysis methods (AR, ARIMA and ETS). Third, we

showed that data mining techniques in conjunction with the Hadoop frame-

work can be a useful, practical, and inexpensive method for predicting QoS

attributes. The experiments suggest that, there is a loss in accuracy when

relying only on time series analysis methods for QoS attribute’s predic-

tion. Most of the characteristics considered in the study favor estimation-

classification approach, especially ETS+DT and ARIMA+RF. This work is

already accepted as a regular paper at the IEEE International Conference

on Big Data and Cloud Computing (BDCloud 2015) and will be published

as a Journal publication:

A. I. Jehangiri, R. Yahyapour, E. Yaqub, and P. Wieder, “Distributed

Predictive Performance Anomaly detection for Virtualized Platforms,”

in Int. J. of High Performance Computing and Networking, 2015.

7.3. Limitations

Considering that the goal of this thesis is to demonstrate the feasibility of

a scalable monitoring and analytics approach in a cloud data center, we

can declare that the goal was achieved. However, it would be interesting to

123

7. Conclusions

evaluate the quality of the framework and techniques considering various

limitations. In the following, we described certain constraints and limits:

• The proposed monitoring and analytic framework can predict a po-

tential performance anomaly in advance, however, we did not consider

countermeasures like vertical scaling and horizontal scaling to prevent

the occurrence of the predicted anomaly.

• The applications running inside the IaaS and PaaS layers appear

opaque to the GWDG Compute cloud, which makes it pointless to

get access to fine-grained system and application measurements for

anomaly detection and predictions. Therefore, we monitored cloud

resources in a non-intrusive black box manner.

• The monitoring framework is only tested in a Cloud environment with

about average 48 virtual containers. We expect that we can deploy it

successfully in a large scale Cloud environment based on its intrinsic

scalable design.

• Since no pubic dataset was available for performance anomalies of

cloud hosted applications, we demonstrated anomaly detection ap-

proach using a cloud testbed and synthetic anomalies. Moreover, our

multi-tier test applications were hosted on a single virtual container.

• Furthermore, we monitored only virtual containers, physical hosts and

response time of applications. However, the GWDG Compute and

platform cloud makes use of several sub services (e.g. DNS Service,

Storage service, Firewall service, etc.) and resources (e.g. Internet

router). As these sub services and resources can also influence the

performance of applications, It is not ruled out that certain predic-

tions of the ML models are moderately falsified.

124

7.4. Future Development Possibilities

7.4. Future Development Possibilities

Despite the fact the initial evaluation results are satisfactory, there are still

a lot of unresolved questions those needing further research. We discuss

some specific future research directions as follows:

• In the future, we will expand the applicability of our approach in

much larger cloud deployment scenarios with the more number of

virtual machines to assess scalability aspects.

• An important next step is to design an efficient parallel time series pro-

cessing algorithms using MapReduce paradigm for irregularly sampled

massive time series data stored in buckets. Further, we plan to evalu-

ate the maximum entropy based anomaly detection algorithms [120],

detecting change-points in time series [113], as well as using a feature

selection method to exclude irrelevant or redundant metrics.

• We have several ideas to transform the monitoring and analytics

framework to Monitoring as a Service (MONaaS) for providing moni-

toring and analytics capabilities to the tenants and their services/ap-

plications running in the cloud. Such a monitoring service can provide

benchmarking and quality indexing service for evaluating sites in fed-

erated cloud services.

• Standardized monitoring interfaces and data formats are a topic of

high priority as current developments are putting a focus on federated

Clouds. A standard harmonized interface for common management

and monitoring tasks can make different virtualization technologies

and cloud providers interoperable. Currently, there already exists a

few standard API’s (e.g. OCCI, CDMI) for all kinds of management

tasks, but unfortunately these standards, lack the notion of SLA and

monitoring. Notably, there is no universal set of metrics that can be

monitored across cloud providers.

125

7. Conclusions

• A future research direction could be the distributed analysis of work-

loads for capacity management. Where, we can define Capacity plan-

ning as strategies those are used to identify the amount of resources

required to satisfy performance guarantees and optimize costs. A

possible solution could be MapReduce based Machine Learning Al-

gorithm working on historic data and predict workload and resource

consumption for VM instances or Applications.

• In the future, we will explore distributed stream processing for cross

layer event correlation, aggregation and abstraction.

126

Bibliography

[1] J A, Victoria J Hodge, and Jim Austin. A Survey of Outlier Detection

Methodologies. Artificial Intelligence Review, 22(2):85–126, 2004.

[2] A. I. and Jehangiri, R. and Yahyapour, E. and Yaqub, and P. and

Wieder. Distributed Predictive Performance Anomaly detection for

Virtualized Platforms. In Int. J. of High Performance Computing and

Networking (to appear).

[3] Giuseppe Aceto, Alessio Botta, Walter De Donato, and Antonio

Pescapè. Cloud Monitoring: definitions, issues and future directions.

In IEEE CLOUDNET 2012, 2012.

[4] M Agarwal, Karen Appleby, Manish Gupta, and Gautam Kar. Prob-

lem determination using dependency graphs and run-time behavior

models. Utility Computing, pages 171–182, 2004.

[5] Charu C. Aggarwal. Outlier Analysis. Springer, 2013.

[6] Bikash Agrawal, Tomasz Wiktor Wlodarczyk, and Chunming Rong.

Analysis of large time-series data in OpenTSDB. Master’s Thesis

University of Stavanger, 2013.

[7] Javier Alonso, L Belanche, and Dimiter R. Avresky. Predicting Soft-

ware Anomalies using Machine Learning Techniques. In 10th IEEE

International Symposium on Network Computing and Applications

(NCA), 2011.

[8] Amazon AWS. Amazon Elastic Compute Cloud (Amazon EC2) .

http://aws.amazon.com/ec2/. Accessed:2015-04-16.

127

http://aws.amazon.com/ec2/

Bibliography

[9] Amazon AWS. Announcing Amazon Elastic Com-

pute Cloud (Amazon EC2) - beta. https://

aws.amazon.com/about-aws/whats-new/2006/08/24/

announcing-amazon-elastic-compute-cloud-amazon-ec2---beta/.

Accessed:2015-04-16.

[10] A Amin, L. Grunske, and A Colman. An automated approach to

forecasting QoS attributes based on linear and non-linear time series

modeling. In 27th IEEE/ACM International Conference on Auto-

mated Software Engineering (ASE), pages 130–139, 2012.

[11] Sergio Andreozzi, Natascia De Bortoli, Sergio Fantinel, Antonia Ghis-

elli, Gian Luca Rubini, Gennaro Tortone, and Maria Cristina Vistoli.

GridICE: A monitoring service for Grid systems. Future Generation

Computer Systems, 21(4):559–571, 2005.

[12] Apache hadoop team. Hadoop. http://hadoop.apache.org/.

Accessed:12-06-2014.

[13] Apache hbase team. base. http://hbase.apache.org. Accessed:12-

06-2014.

[14] K Appleby, G Goldszmidt, and M. Steinder. Yemanja-a layered event

correlation engine for multi-domain server farms. In Integrated Net-

work Management Proceedings, 2001 IEEE/IFIP International Sym-

posium on, volume 00, pages 329–344. IEEE, 2001.

[15] Paul Barham, Rebecca Isaacs, and Richard Mortier. Magpie: Online

modelling and performance-aware systems. In In Proceedings of the

Ninth Workshop on Hot Topics in Operating Systems, 2003.

[16] S Becker, W Hasselbring, and a Paul. Trustworthy software systems:

a discussion of basic concepts and terminology. . . . SIGSOFT Software

. . . , pages 1–41, 2006.

128

https://aws.amazon.com/about-aws/whats-new/2006/08/24/announcing-amazon-elastic-compute-cloud-amazon-ec2---beta/
https://aws.amazon.com/about-aws/whats-new/2006/08/24/announcing-amazon-elastic-compute-cloud-amazon-ec2---beta/
https://aws.amazon.com/about-aws/whats-new/2006/08/24/announcing-amazon-elastic-compute-cloud-amazon-ec2---beta/
http://hadoop.apache.org/
http://hbase.apache.org

Bibliography

[17] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A

Training Algorithm for Optimal Margin Classifiers. In Proceedings of

the 5th Annual ACM Workshop on Computational Learning Theory,

pages 144–152, 1992.

[18] Jerome Boulon, Andy Konwinski, R Qi, and Ariel Rabkin. Chukwa,

a large-scale monitoring system. In First Workshop on Cloud Com-

puting and its Applications (CCA ’08), Chicago, IL, 2008.

[19] Leo Breiman. Random Forrest. Machine Learning, 45(1, October 1

2001):1–33, 2001.

[20] JP Buzen and AW Shum. Masf-multivariate adaptive statistical fil-

tering. Int. CMG Conference, 1995.

[21] Cacti team. Cacti. http://www.cacti.net. Accessed:2015-04-16.

[22] Will Cappelli. Data Growth Demands a Single, Architected IT Op-

erations Analytics Platform. Gartner, 2013.

[23] Ronnie Chaiken, Bob Jenkins, Per-̊a ke Larson, Bill Ramsey, Darren

Shakib, Simon Weaver, and Jingren Zhou. SCOPE : Easy and Ef-

ficient Parallel Processing of Massive Data Sets. Proceedings of the

VLDB Endowment, 1(212):1265–1276, 2008.

[24] Varun Chandola, A Banerjee, and V Kumar. Anomaly detection: A

survey. ACM Computing Surveys (CSUR), (September):1–72, 2009.

[25] Varun Chandola, Deepthi Cheboli, and Vipin Kumar. Detecting

anomalies in a time series database. . . . Department, University of

Minnesota, Tech. Rep, 2009.

[26] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Debo-

rah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and

Robert E. Gruber. Bigtable, 2008.

129

http://www.cacti.net

Bibliography

[27] MY Chen, E Kiciman, and Eugene Fratkin. Pinpoint: Problem de-

termination in large, dynamic internet services. In In Proc. 2002 Intl.

Conf. on Dependable Systems and Networks, 2002.

[28] Cheng-tao Chu, Sang Kyun Kim, Yi-an Lin, YuanYuan Yu, Gary

Bradski, Andrew Y Ng, and Kunle Olukotun. Map-Reduce for Ma-

chine Learning on Multicore. In Advances in Neural Information Pro-

cessing Systems 19, pages 281–288, 2007.

[29] Ira Cohen, JS Chase, M Goldszmidt, T Kelly, and J Symons. Corre-

lating Instrumentation Data to System States: A Building Block for

Automated Diagnosis and Control. OSDI, 6:16–16, 2004.

[30] Ronni J. Colville. Hype Cycle for IT Operations Management. Gart-

ner, 2014.

[31] Andy Cooke, Alasdair Gray, Lisha Ma, Werner Nutt, James

Magowan, Manfred Oevers, Paul Taylor, Rob Byrom, Laurence Field,

Steve Hicks, Jason Leake, Manish Soni, Antony Wilson, Roney Cor-

denonsi, Linda Cornwall, Abdeslem Djaoui, Steve Fisher, Norbert

Podhorszki, Brian Coghlan, Stuart Kenny, and David O Callaghan.

R-GMA: An Information Integration System for Grid Monitoring. In

On The Move to Meaningful Internet Systems 2003: CoopIS, DOA,

and ODBASE, volume 2888, pages 462–481. 2003.

[32] Michael Cooper and Peter Mell. Tackling Big Data, 2012.

[33] Daniel J Dean, Hiep Nguyen, and Xiaohui Gu. UBL : Unsupervised

Behavior L earning for Predicting Performance Anomalies in Virtu-

alized Cloud Systems. In 9th international conference on Autonomic

computing, pages 191–200. ACM, 2012.

[34] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data

processing on large clusters. Communications of the ACM, 2008.

130

Bibliography

[35] Luca Deri, Simone Mainardi, and Francesco Fusco. tsdb: A com-

pressed database for time series. In Proceedings of the 4th Interna-

tional Conference on Traffic Monitoring and Analysis, pages 143–156,

2012.

[36] Vincent C. Emeakaroha Dustdar, Ivona Br, Michael Maurer, and

Schahram. Low Level Metrics to High Level SLAs-LoM2HiS frame-

work: Bridging the gap between monitored metrics and SLA param-

eters in Cloud environments. In The 2010 High Performance Com-

puting and Simulation Conference (HPCS 2010), 2010.

[37] Jorge Ejarque, J Oriol Fitó, Gregory Katsaros, Juan Luis, and Pri-

eto Martinez. OPTIMIS Deliverable Requirements Analysis (M16).

Technical report, NTUA, ATOS, SCAI, SAP, BT, CITY, LUH, 451G,

FLEXIANT, ULEEDS, 2011.

[38] Elastichost. Elastichosts (Flexible cloud servers) . http://www.

elastichosts.com. Accessed:2015-04-16.

[39] Espertech. Esper CEP Engine. http://www.espertech.com/esper/.

Accessed:2015-04-16.

[40] Stefano Ferretti, Vittorio Ghini, Fabio Panzieri, Michele Pellegrini,

and Elisa Turrini. QoS-Aware Clouds. 2010 IEEE 3rd International

Conference on Cloud Computing, pages 321–328, July 2010.

[41] Flexiscale. Flexiscale (Utility computing on demand) . http://www.

flexiscale.com. Accessed:2015-04-16.

[42] Forrestor. Forrestor. https://www.forrester.com/home/.

Accessed:2015-04-16.

[43] Svend Frø lund and Jari Koistinen. Quality-of-service specifica-

tion in distributed object systems. Distributed Systems Engineering,

5(4):179–202, 1999.

131

http://www.elastichosts.com
http://www.elastichosts.com
http://www.espertech.com/esper/
http://www.flexiscale.com
http://www.flexiscale.com
https://www.forrester.com/home/

Bibliography

[44] R Gallati. Near Real-Time Detection of Traffic Usage Rhythm

Anomalies in the Backbone. PhD thesis, Eidgenössische Technische

Hochschule Zürich, 2005.

[45] Everette S. Gardner. Exponential smoothin: The state of the art-

Part II. International Journal of Forecasting, 22(4):637–666, October

2006.

[46] S. Garg, A. van Moorsel, K. Vaidyanathan, and K.S. Trivedi. A

methodology for detection and estimation of software aging. In IS-

SRE, 1998.

[47] Gartner. it-operations. http://www.gartner.com/it-glossary/

it-operations. Accessed:2015-04-16.

[48] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The

Google file system, 2003.

[49] Amol Ghoting, Rajasekar Krishnamurthy, Edwin Pednault, Berthold

Reinwald, Vikas Sindhwani, Shirish Tatikonda, Yuanyuan Tian, and

Shivakumar Vaithyanathan. Systemml: Declarative machine learn-

ing on mapreduce. In IEEE 27th International Conference on Data

Engineering, pages 231–242, 2011.

[50] Inigo Goiri, Ferran Julia, J. O Fito, Mario Macias, and Jordi Gui-

tart. Resource-Level QoS Metric for CPU-Based Guarantees in Cloud

Providers. In Economics of Grids, Clouds, Systems, and Services

7th International Workshop, GECON 2010 Ischia, Italy, August 2010

Proceedings, pages 34–47. Springer, 2010.

[51] Google. Google AppEngine. https://appengine.google.com.

Accessed:12-06-2014.

132

http://www.gartner.com/it-glossary/it-operations
http://www.gartner.com/it-glossary/it-operations
https://appengine.google.com

Bibliography

[52] Qiang Guan, Ziming Zhang, and Song Fu. Ensemble of Bayesian

Predictors for Autonomic Failure Management in Cloud Comput-

ing. 2011 Proceedings of 20th International Conference on Computer

Communications and Networks (ICCCN), pages 1–6, July 2011.

[53] Dan Han and Eleni Stroulia. A three-dimensional data model in

HBase for large time-series dataset analysis. In 2012 IEEE 6th In-

ternational Workshop on the Maintenance and Evolution of Service-

Oriented and Cloud-Based Systems (MESOCA), pages 47–56. Ieee,

September 2012.

[54] Peer Hasselmeyer and Nico D’Heureuse. Towards holistic multi-tenant

monitoring for virtual data centers. 2010 IEEE/IFIP Network Opera-

tions and Management Symposium Workshops, pages 350–356, 2010.

[55] Peer Hasselmeyer, Gregory Katsaros, Bastian Koller, and Philipp

Wieder. Cloud Monitoring. In Massimo Villari, Ivona Brandic, and

Francesco Tusa, editors, Achieving Federated and Self-Manageable

Cloud Infrastructures: Theory and Practice, pages 97–116. Buisness

Science Refrence (IGI Global), 2012.

[56] J.L. Hellerstein, Fan Zhang, and P. Shahabuddin. An approach to

predictive detection for service management. In Sixth IFIP/IEEE

International Symposium on Integrated Network Management ,, pages

309–322, 1999.

[57] Guenther a. Hoffmann, Kishor S. Trivedi, and Miroslaw Malek. A

Best Practice Guide to Resource Forecasting for Computing Systems.

IEEE Transactions on Reliability, 56(4):615–628, December 2007.

[58] holstius. Opentsdbr. https://github.com/holstius/opentsdbr.

Accessed:2015-04-16.

[59] Charles C. Holt. Forecasting seasonals and trends by exponentially

weighted moving averages. International Journal of Forecasting,

20(1):5–10, 2004.

133

https://github.com/holstius/opentsdbr

Bibliography

[60] J Huang, C Li, and J Yu. Resource prediction based on double expo-

nential smoothing in cloud computing. In 2nd International Confer-

ence on Consumer Electronics, Communications and Networks (CEC-

Net). IEEE, 2012.

[61] IBM. IBM Tivoli. http://www-01.ibm.com/software/tivoli/.

Accessed:12-06-2014.

[62] ISO. Systems and software engineering – Vocabulary. ISO/IEC/IEEE

24765:2010(E), pages 1–418, 2010.

[63] R Jain. The Art of Computer Systems Performance Analysis: Tech-

niques for Experimental Design, Measurement, Simulation, and Mod-

eling. JohnWiley & Sons, 1991.

[64] Ali Imran Jehangiri. Distributed monitoring and performance man-

agement for Virtual Platforms. 2014.

[65] Ali Imran Jehangiri, Edwin Yaqub, and Ramin Yahyapour. Practical

Aspects for Effective Monitoring of SLAs in Cloud Computing and

Virtual Platforms. In CLOSER, 2013.

[66] Goulven Le Jeune, Emilio Garćıa, José Maŕıa Peribáñez, and Henar

Muñoz. 4CaaSt Scientific and Technical Report D5.1.1. Technical

report, Seventh Framework Programme, 2012.

[67] Mirko Kampf and Jan W Kantelhardt. Hadoop . TS : Large-Scale

Time-Series Processing. International Journal of Computer Applica-

tions (0975 - 8887), 74(17), 2013.

[68] H Kang, H Chen, and G Jiang. PeerWatch: a fault detection and

diagnosis tool for virtualized consolidation systems. In Proceedings

of the 7th international conference on Autonomic computing, pages

119–128, 2010.

134

http://www-01.ibm.com/software/tivoli/

Bibliography

[69] H Kang, X Zhu, and JL Wong. DAPA: diagnosing application perfor-

mance anomalies for virtualized infrastructures. 2nd USENIX work-

shop on Hot-ICE, 2012.

[70] Gregory Katsaros, Roland Kübert, and Georgina Gallizo. Building a

Service-Oriented Monitoring Framework with REST and Nagios. 2011

IEEE International Conference on Services Computing, 567:426–431,

July 2011.

[71] R. Kohavi and F. Provost. Glossary of Terms. Machine Learning,

30(2/3):271–274, 1998.

[72] Tim Kraska, A Talwalkar, JC Duchi, and Rean Griffith. MLbase: A

Distributed Machine-learning System. CIDR, 2013.

[73] Dimosthenis Kyriazis. Exploitation of Research Results Europian

Commision Directorate General Communications Networks, Content

and Technology unit E2 - Software and Services, Cloud. Cloud Com-

puting Service Level Agreements - Exploitation of Research Results.

Technical Report June, Europian Commision Directorate General

Communications Networks, Content and Technology, 2013.

[74] Youngseok Lee. Toward scalable internet traffic measurement and

analysis with hadoop. ACM SIGCOMM Computer Communication

Review, 43(1):6–13, 2013.

[75] David D Lewis. Naive (Bayes) at Forty: The Independence Assump-

tion in Information Retrieval. In ECML ’98 Proceedings of the 10th

European Conference on Machine Learning, pages 4—-15, 1998.

[76] Lei Li, Farzad Noorian, Duncan J M Moss, and Philip H W

Leong. Rolling Window Time Series Prediction using MapReduce.

In IEEE International Conference on Information Reuse and Inte-

gration (IRI), pages 13–15, 2014.

135

Bibliography

[77] Leixiao Li, Zhiqiang Ma, Limin Liu, and Yuhong Fan. Hadoop-based

ARIMA Algorithm and its Application in Weather Forecast. Inter-

national Journal of Database Theory and Application, 6(5):119–132,

2013.

[78] Long Li, Buyang Cao, and Yuanyuan Liu. A Study on CEP-Based

System Status Monitoring in Cloud Computing Systems. In 6th Inter-

national Conference on Information Management, Innovation Man-

agement and Industrial Engineering, pages 300–303, Xi’an China,

2013. IEEE Press.

[79] K. Lu, R. Yahyapour, P. Wieder, C. Kotsokalis, E. Yaqub, and A.I.

Jehangiri. QoS-Aware VM Placement in Multi-domain Service Level

Agreements Scenarios. In IEEE 6th International Conference on

Cloud Computing(IEEECloud), 2013.

[80] Kuan Lua, Ramin Yahyapour, Philipp Wieder, Constantinos Kot-

sokalis, Edwin Yaqub, and Ali Imran Jehangiri. QOS-BASED RE-

SOURCE ALLOCATION FRAMEWORK FOR MULTI-DOMAIN

SLA MANAGEMENT IN CLOUDS. IJCC, 1(1):1–12, 2013.

[81] Jeffrey M. Brooks, Ronni J. Colville, Donna Scott, Milind Govekar,

Debra Curtis, and Terrence Cosgrove. IT Market Clock for IT Oper-

ations Management.

[82] JP Magalhaes and Luis Moura Silva. Prediction of performance

anomalies in web-applications based-on software aging scenarios. In

IEEE Second International Workshop on Software Aging and Rejuve-

nation (WoSAR), 2010.

[83] M Massie. The ganglia distributed monitoring system: design, imple-

mentation, and experience. Parallel Computing, 30(7):817–840, July

2004.

136

Bibliography

[84] Peter Mell and Timothy Grance. The NIST Definition of Cloud Com-

puting: Recommendations of the National Institute of Standarts and

Technology. National Institute of Standards and Technology US . . . ,

2011.

[85] microsoft. Azure Fabric Controller. http://azure.microsoft.com/.

Accessed:2015-06-27.

[86] Tom M Mitchell. Machine Learning, volume 1. McGraw-Hill, Inc.,

1997.

[87] Gary Molenkamp. Diagnosing quality of service faults in distributed

applications. Performance, Computing, and Communications Con-

ference, 2002. 21st IEEE International, 2002.

[88] Carlos Molina-jimenez, Jim Pruyne, and Aad Van Moorsel. The Role

of Agreements in IT. Springer -Verlag Gmbh, 2005.

[89] Nagios team. Nagios. http://www.nagios.org/. Accessed:12-06-

2014.

[90] Krishnaprasad Narayanan, Sumit Kumar Bose, and Shrisha Rao. To-

wards ’Integrated’ Monitoring and Management of Data Centers using

Complex Event Processing Techniques. In 4th Annual ACM Banga-

lore Conference, pages 1–5, Bangalore, India, 2011. ACM.

[91] New Relic. New Relic. http://newrelic.com. Accessed:12-06-2014.

[92] Glenn O’Donnell, Jean-Pierre Garbani, Doug Washburn, and Eliza-

beth Langer. Turn Big Data Inward With IT Analytics The Future

Of Service Monitoring And Management, 2012.

[93] Tobias Oetiker. rrdtool. http://oss.oetiker.ch/rrdtool/.

Accessed:12-06-2014.

[94] opennebula. OpenNebula. http://opennebula.org. Accessed:2015-

06-27.

137

http://azure.microsoft.com/
http://www.nagios.org/
http://newrelic.com
http://oss.oetiker.ch/rrdtool/
http://opennebula.org

Bibliography

[95] openshift team. OpenShift. https://www.openshift.com/.

Accessed:12-06-2014.

[96] openstack team. OpenStack. http://www.openstack.org/.

Accessed:12-06-2014.

[97] opentsdb team. OpenTSDB. http://opentsdb.net/. Accessed:01-

01-2014.

[98] openview. OpenView. www.managementsoftware.hp.com/.

Accessed:12-06-2014.

[99] Pankesh Patel, Ajith Ranabahu, and Amit Sheth. Service Level

Agreement in Cloud Computing. Cloud Workshops at, 2009.

[100] R. Powers, M. Goldszmidt, and I. Cohen. Short term performance

forecasting in enterprise systems. In KDD, 2005.

[101] Jian Pu, Kin F. Li, Mostofa Akbar, Gholamali C. Shoja, and Eric

Manning. A reliable sla-based admission controller for mpls networks.

In IFIP International Conference on Network and Parallel Computing

Workshops, pages 57–64, 2007.

[102] R Core Team. R: A Language and Environment for Statistical Com-

puting. R Foundation for Statistical Computing, Vienna, Austria,

2013.

[103] Massimiliano Rak, Salvatore Venticinque, Tam’s M’hr, Gorka

Echevarria, and Gorka Esnal. Cloud Application Monitoring: The

mOSAIC Approach. 2011 IEEE Third International Conference on

Cloud Computing Technology and Science, pages 758–763, November

2011.

[104] Joseph Lee Rodgers and WA Nicewander. Thirteen ways to look at

the correlation coefficient. The American Statistician, 42(1):59–66,

1988.

138

https://www.openshift.com/
http://www.openstack.org/
http://opentsdb.net/
 www.managementsoftware.hp.com/

Bibliography

[105] R. K. Sahoo, A. J. Oliner, I. Rish, M. Gupta, J. E. Moreira, S. Ma,

R. Vilalta, and A. Sivasubramaniam. Critical Event Prediction for

Proactive Management in Large-scale Computer Clusters. In ninth

ACM SIGKDD international conference on Knowledge discovery and

data mining, pages 426–435, 2003.

[106] Felix Salfner, Maren Lenk, and Miroslaw Malek. A survey of online

failure prediction methods. ACM Computing Surveys, 42(3):1–42,

March 2010.

[107] Steven L. Salzberg. Book Review : C4 . 5 : Programs for Machine

Learning. Machine Learning, 16:235–240, 1994.

[108] Jennifer M Schopf, Ioan Raicu, Laura Pearlman, Neill Miller, Carl

Kesselman, and Mike D Arcy. Monitoring and Discovery in a Web Ser-

vices Framework : Functionality and Performance of Globus Toolkit

MDS4. MCS Preprint #ANL/MCS-P1315-0106, pages 1–14, 2006.

[109] Bikash Sharma, Praveen Jayachandran, Akshat Verma, and CR Das.

CloudPD: Problem Determination and Diagnosis in Shared Dynamic

Clouds. cse.psu.edu, pages 1–30, 2012.

[110] C. Sheng, J. Zhao, H. Leung, and W. Wang. Extended Kalman Filter

Based Echo State Network for Time Series Prediction using MapRe-

duce Framework. In Ninth IEEE International Conference on Mobile

Ad-hoc and Sensor Networks (MSN), pages 175–180. IEEE, 2013.

[111] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert

Chansler. The Hadoop distributed file system. In 2010 IEEE 26th

Symposium on Mass Storage Systems and Technologies, MSST2010,

2010.

[112] BH Sigelman and LA Barroso. Dapper, a large-scale distributed sys-

tems tracing infrastructure. Technical Report April, Google, Inc.,

2010.

139

Bibliography

[113] Mathieu Sinn, Ali Ghodsi, and K Keller. Detecting Change-Points

in Time Series by Maximum Mean Discrepancy of Ordinal Pattern

Distributions. CoRR, abs/1210.4, 2012.

[114] C.U. Smith and L. G. Williams. Performance Solutions: A Practical

Guide To Creating Responsive, Scalable Software. Addison-Wesley,

2002.

[115] Ian Sommerville. Software Engineering. Pearson Addison Wesley, 7th

edition, 2004.

[116] Murray Stokely, F Rohani, and E Tassone. Large-scale parallel sta-

tistical forecasting computations in R. JSM Proceedings, 2011.

[117] M Stone. Cross-Validatory Choice and Assessment of Statistical Pre-

dictions. Journal of the Royal Statistical Society. Series B (Method-

ological), 36(2):111–147, 1974.

[118] I. Legrand Stratan, H. Newman, R. Voicu, C. Cirstoiu, C. Grigoras,

C. Dobre, A. Muraru, A. Costan, M. Dediu, and C. MONALISA : AN

AGENT BASED , DYNAMIC SERVICE SYSTEM TO MONITOR ,

CONTROL AND OPTIMIZE GRID BASED APPLICATIONS THE

DISTRIBUTED SERVICES. Computer Physics Communications,

180:2472–2498, 2009.

[119] Aryan Taherimonfared, Tomasz Wiktor Wlodarczyk, and Chunming

Rong. Real-Time Handling of Network Monitoring Data Using a

Data-Intensive Framework. 2013 IEEE 5th International Conference

on Cloud Computing Technology and Science, pages 258–265, Decem-

ber 2013.

[120] Vanish Talwar, Karsten Schwan, and Parthasarathy Ranganathan.

Online detection of utility cloud anomalies using metric distribu-

tions. 2010 IEEE Network Operations and Management Symposium

- NOMS 2010, pages 96–103, 2010.

140

Bibliography

[121] Yongmin Tan, Hiep Nguyen, and Zhiming Shen. PREPARE: Predic-

tive Performance Anomaly Prevention for Virtualized Cloud Systems.

In Distributed Computing Systems (ICDCS), 2012 IEEE 32nd Inter-

national Conference on, 2012.

[122] Pedro Henriques Dos Santos Teixeira, Ricardo Gomes Clemente,

Ronald Andreu Kaiser, and Denis Almeida Vieira-Jr. HOLMES: An

Event-Driven Solution to Monitor Data Centers through Continuous

Queries and Machine Learning. In 4th ACM International Conference

on Distributed Event-Based Systems, pages 216–221, Cambridge, UK,

2010. ACM.

[123] Jake D Brutlag Webtv. Aberrant Behavior Detection in Time Se-

ries for Network Monitoring. In Proceedings of the 14th USENIX

Conference on System Administration, pages 139–146, New Orleans,

Louisiana, 2000. USENIX Association.

[124] Rob J Hyndman with contributions from George Athanasopoulos,

Slava Razbash, Drew Schmidt, Zhenyu Zhou, Yousaf Khan, Christoph

Bergmeir, and Earo Wang. forecast: Forecasting functions for time

series and linear models, 2014. R package version 5.1.

[125] Tomasz Wiktor Wlodarczyk. Overview of Time Series Storage and

Processing in a Cloud Environment. In 2012 IEEE 4th International

Conference on Cloud Computing Technology and Science CLOUD-

COM ’12, pages 232–240. IEEE Computer Society, 2012.

[126] Qingtao Wu and Zhiqing Shao. Network anomaly detection using time

series analysis. In Joint International Conference on Autonomic and

Autonomous Systems and International Conference on Networking

and Services, page 42, Washington, DC, USA, 2005. IEEE Computer

Society.

[127] Ming Xia, M. Batayneh, Lei Song, C.U. Martel, and B. Mukher-

jee. Sla-aware provisioning for revenue maximization in telecom mesh

141

Bibliography

networks. In IEEE Global Telecommunications Conference (GLOBE-

COM), pages 1–5, 2008.

[128] Edwin Yaqub, Ramin Yahyapour, Philipp Wieder, Ali Imran Je-

hangiri, Kuan Lu, and Constantinos Kotsokalis. Metaheuristics-based

Planning and Optimization for SLA-aware Resource Management in

PaaS Clouds. In 7th IEEE/ACM International Conference on Utility

and Cloud Computing, pages 288–297, 2014.

[129] Edwin Yaqub, Ramin Yahyapour, Philipp Wieder, Constantinos Kot-

sokalis, Kuan Lu, and Ali Imran Jehangiri. Optimal Negotiation

of Service Level Agreements for Cloud-based Services through Au-

tonomous Agents. In IEEE International Conference on Services

Computing (SCC), pages 59–66, 2014.

[130] Edwin Yaqub, Ramin Yahyapour, Philipp Wieder, and Kuan Lu. A

protocol development framework for SLA negotiations in cloud and

service computing. In Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), volume 7714 LNCS, pages 1–15, 2012.

[131] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott

Shenker, and Ion Stoica. Spark : Cluster Computing with Work-

ing Sets. In HotCloud’10 Proceedings of the 2nd USENIX conference

on Hot topics in cloud computing, page 10, 2010.

[132] Zenoss team. Zenoss. http://www.zenoss.org.

[133] Zibin Zheng, Jieming Zhu, and Michael R Lyu. Service-generated big

data and big data-as-a-service: An overview. In Proceedings - 2013

IEEE International Congress on Big Data, BigData 2013, pages 403–

410, 2013.

142

	Abstract
	Acknowledgements
	Introduction
	Introduction
	Motivation
	Summary of State of the Art
	Problem Statement
	Research Challenges
	Service Level Agreements
	Cloud Monitoring
	Performance Problem Diagnosis
	Performance Forecasting

	Thesis Contributions

	Background
	Cloud Computing
	OpenStack
	OpenShift

	Quality of Service
	SLA Management

	Performance Measurement
	Monitors and Instrumentation
	Monitoring Frameworks for Enterprise, Cluster and Grid Computing
	Cloud Monitoring
	Scalable Monitoring Solutions:

	IT Operations Analytics
	Big Data Analytics

	Requirements
	Performance Management Scenarios at GWDG
	Scenario 1: LMS on GWDG Platform Cloud
	Scenario 2: LMS on GWDG Compute Cloud
	Discussion

	Requirements
	Monitoring Framework (MF) Requirements
	Analytics Engine (AE) Requirement

	Scalable Monitoring, Performance Anomaly Detection and Prediction
	Cross Layer Monitoring and Analytics Framework
	Motivation: Scalable Monitoring
	Use Case Scenario
	Monitoring Analytics Framework
	Data Collector Mechanism
	Distributed Data Store
	Analytics Components
	SLA and Service Management Components

	Monitoring and Analytics Framework Prototype
	 Standardized Monitoring API

	Strengths of Proposed Monitoring and Analytics Framework
	Summary

	Diagnosing Performance Anomalies
	Motivation: Distributed Parallel Performance Problems Diagnosis
	Related Work
	Statistical and Threshold based Approaches
	Performance Diagnosis in Clouds

	Cloud System and Performance Diagnosis Workflow
	Anomaly Detection Phase
	Correlation Phase

	Implementation
	Pseudo Code for Anomaly Detection Algorithms
	Implementation of HW
	Implementation of ASF Algorithm
	Implementation of Ensemble Algorithm
	Implementation of Ranking

	Anomaly Detection Results
	Experimental Setup
	Synthetic Faults and Results

	Performance and Accuracy Evaluation
	Accuracy
	Performance of Anomaly Detection Algorithm
	Performance of Ranking Algorithm
	Discussion

	Predicting Performance Anomaly
	Motivation: Distributed Parallel Performance Prediction
	Related Work
	Machine Learning Techniques
	Time Series Analysis
	Performance Prediction in Clouds

	Prediction of Performance Anomalies
	Reference Scenario

	Prediction Approaches
	Time Series Analysis Methods
	Classification Algorithms

	Evaluations
	Experiment Setup
	Results

	Discussion

	Conclusion
	Conclusions
	Summary
	Contributions
	Limitations
	Future Development Possibilities

