Einfluss des Gravitational Platelet Separation System (GPS$^\text{TM}$-System)
im Hinblick auf Wundheilungsstörungen und Infektionen des Sternums
nach medianer Sternotomie bei herzchirurgischem Eingriff
an Patienten mit erhöhtem Risikoprofil

INAUGURAL – DISSERTATION
zur Erlangung des Doktorgrades
der Medizinischen Fakultät der
Georg-August-Universität zu Göttingen

vorgelegt von
Maike-Corinna Bury
aus
Eckernförde

Göttingen 2014
Dekan: Prof. Dr. rer. nat. H. Kroemer

I. Berichterstatter: Priv.-Doz. Dr. med. H. Dörge

II. Berichterstatter: Priv.-Doz. Dr. med. J. Riggert

Tag der mündlichen Prüfung: 18.08.2015
INHALTSVERZEICHNIS

1. EINLEITUNG ... - 6 -
 1.1 Wundheilungsstörungen nach medianer Sternotomie - 6 -
 1.1.1 Pathogenese und Erregerspektrum der sternalen Wundinfektion - 7 -
 1.1.2 Risikofaktoren für postoperative sternale Wundheilungsstörungen .. - 8 -
 1.1.3 Prophylaxe gegen sternale Wundheilungsstörungen - 9 -
 1.1.4 Therapieoptionen bei sternalen Wundheilungsstörungen - 10 -
 1.2 Physiologie der Wundheilung - 11 -
 1.2.1 Bedeutung von Thrombozyten und Wachstumsfaktoren für die Wundheilung - 11 -
 1.2.2 Platelet Derived Growth Factor - 12 -
 1.2.3 Transforming Growth Factor beta - 13 -
 1.3 Autologes thrombozytenreiches Plasma - 13 -
 1.3.1 Gesetzliche Grundlage für die Herstellung und Anwendung von autologem
 thrombozytenreichen Plasma und Thrombin - 14 -
 1.3.2 Herstellung von autologem thrombozytenreichen Plasma und Thrombin .. - 14 -
 1.3.3 Qualität des thrombozytenreichen Plasmas - 15 -
 1.3.4 Studien mit thrombozytenreichen Plasma - 16 -
 1.4 Ziel der vorliegenden Studie zum GPS™-System - 19 -
2. MATERIAL und METHODEN .. - 20 -
 2.1 Studiendesign .. - 20 -
 2.1.1 Leitung und Zentrum der Studie - 20 -
 2.1.2 Aufbau und Durchführung der Studie - 21 -
 2.1.3 Genehmigung der Studie ... - 21 -
 2.2 Charakterisierung des untersuchten Studienkollektivs - 21 -
 2.2.1 Datenerfassung und Datenspeicherung im Rahmen der Studie - 21 -
 2.2.2 Auswertung und statistische Datenanalyse - 22 -
2.2.3 Aufklärung der Studienpatienten ... - 22 -
2.2.4 Randomisierung der Patienten in Kontroll- und Prüfgruppe - 22 -
2.3 Patientenrekrutierung ... - 22 -
2.3.1 Einschlusskriterien der Studie ... - 23 -
2.3.2 Ausschlusskriterien der Studie ... - 23 -
2.3.3 Perioperative Risikofaktoren für sternale Wundheilungsstörungen - 23 -
2.4 Angewandte Operationsverfahren im Studienkollektiv - 24 -
2.5 Das GPS™-System .. - 25 -
2.5.1 Material zur Herstellung des thrombozytenreichen Plasmas - 25 -
2.5.2 Gewinnung und Aufarbeitung des thrombozytenreichen Plasmas - 25 -
2.5.3 Applikation des thrombozytenreichen Plasmas - 26 -
2.6 Definition des Endpunktes der Studie .. - 26 -
3. ERGEBNISSE ... - 27 -
3.1 Vergleich der Variablen und klinischen Charakteristika der Prüfgruppe und der Kontrollgruppe .. - 27 -
3.2 Endpunkt der Studie ... - 29 -
3.3 Vergleich der Variablen und klinischen Charakteristika der Patientgruppen mit und ohne Endpunkt .. - 30 -
4. DISKUSSION .. - 32 -
4.1 Einordnung der vorliegenden Untersuchungsergebnisse in die vorhandene Studienlage ... - 32 -
4.1.1 Unterschiede im Studiendesign zur Prüfung der Wirksamkeit von thrombozytenreichen Plasma an herzchirurgischen Patienten - 32 -
4.1.2 Unterschiedliche Bewertung von Risikofaktoren - 35 -
4.2 Gründe für den fehlenden Therapieeffekt von thrombozytenreichem Plasma bei kardiochirurgischen Patienten .. - 36 -
4.3 Limitationen der vorliegenden Studie ... - 37 -
4.4 Ableitung und Ausblick ... - 38 -
5. ZUSAMMENFASSUNG ... - 39 -
6. ANHANG ...- 40 -

7. ABKÜRZUNG und ZEICHEN ... - 44 -

8. INTERNE VERZEICHNIS .. - 45 -
 8.1 Abbildungsverzeichnis .. - 45 -
 8.2 Tabellenverzeichnis .. - 45 -

9. LITERATURVERZEICHNIS ... - 46 -
1. EINLEITUNG

1.1 WUNDHEILUNGSSTÖRUNGEN NACH MEDIANER STERNOTOMIE

1.1.1 PATHOGENESE UND ERREGERSPEKTRUM DER STERNALEN WUNDINFektION

chronische Lungenerkrankungen und Adipositas auf sowie intraoperativ eine sternale Dehiszenz. (Gårdlund et al. 2002; Fowler Jr. et al. 2003)

1.1.2 RISIKOFAKTOREN FÜR POSTOPERATIVE STERNALE WUNDHEILUNGSSTÖRUNGEN

1.1.3 PROPHYLAXE GEGEN STERNALE WUNDHEILUNGSSTÖRUNGEN

1.1.4 THERAPIEOPTIONEN BEI STERNALEN WUNDHEILUNGSSTÖRUNGEN

Therapieoptionen langwierig, komplikationsträchtig und kosmetisch wie funktionell wenig zufriedenstellend. (Loop et al. 1990; El Oakley und Wright 1996; Sjögren et al. 2006)

1.2 PHYSIOLOGIE DER WUNDHEILUNG

1.2.1 BEDEUTUNG VON THROMBOZYTEN UND WACHTUMSFAKTOREN FÜR DIE WUNDHEILUNG

zu den bioaktiven Proteinen aus den thrombozytären Granula gehören die
Proteine wie der *von-Willebrand-Faktor* und das *Thrombospondin-1*, außerdem diverse
Plasmaproteine, Koagulationsfaktoren, Protease-Inhibitoren und Zytokine. Auch die
Rezeptoren an der inneren Oberfläche der Granula, die durch die Exozytose auf die Außenseite
gelangen, gehören dazu, insbesondere *Glycoprotein IIb/IIIa* und *P-Selektin*. (Harrison und
Die bioaktiven Proteine beeinflussen die Hämostase, Entzündungsreaktion und Wundheilung
maßgeblich durch auto- und parakrine Stimulation der Thrombozyten sowie der
mesenchymalen Stammzellen, Osteoblasten, Chondroblasten, Fibroblasten, Endothelzellen,
epidermalen Zellen und Makrophagen. Ihre Funktionen im Einzelnen sind noch nicht
vollständig verstanden, eine entscheidende Rolle in der Wundheilung wird jedoch PDGF und
TGF-β zugeschrieben. (siehe 1.2.2 und 1.2.3) (Harrison und Cramer 1993; Pietrzak und Eppley
2005; Everts et al. 2006b; Wang und Avila 2007; Alsousou et al. 2009)

1.2.2 PLATELET DERIVED GROWTH FACTOR

Der *platelet derived growth factor* (PDGF), ein Glykoprotein, das überwiegend von Thrombozyten, aber auch von Makrophagen und anderen Zellen produziert wird, ist der erste Wachstumsfaktor in einer Wunde. Er bindet an einen Tyrosinkinaserezeptor unterschiedlicher Zielzellen, bewirkt dessen Dimerisation und Autophosphorylierung. Die Folge ist eine intrazelluläre
Signalkaskade, welche über die Regulation verschiedener Gene die Migration, Differenzierung
und Proliferation der Zellen im Wundgebiet beeinflusst. (Claesson-Welsh 1996; Marx et al.
1998; Everts et al. 2006b; Alsousou et al. 2009) In experimentellen Studien konnte gezeigt
werden, dass PDGF in der frühen Phase der Wundheilung insbesondere zu einer vermehrten
Bildung von Glykosaminoglykanen und Fibronektin und im Verlauf zu Kollagen Typ I führt.
(Pierce et al. 1992; Alsousou et al. 2009) Umgekehrt konnte im Tierversuch bei einer
erniedrigten Konzentration an PDGF eine verminderte Zellproliferation nachgewiesen werden.
(Tyndall et al. 2003)
1.2.3 TRANSFORMING GROWTH FACTOR BETA

1.3 AUTOLOGES THROMBOZYTENREICHES PLASMA

1.3.1 GESETZLICHE GRUNDLAGEN FÜR DIE HERSTELLUNG UND ANWENDUNG VON AUTOLOGEM THROMBOZYTENREICHEN PLASMA UND THROMBIN

Die Blutentnahme zur Herstellung von thrombozytenreichem Plasma und seine Verwendung einschließlich Aufklärung und Dokumentation fallen unter das Transfusionsgesetz (Gesetz zur Regelung des Transfusionswesens¹). Das Gerät zur Aufbereitung des thrombozytenreichen Plasmas ist ein Medizinprodukt. (§ 3 Abs. 2 Gesetz über Medizinprodukte²) Bei dem gewonnenen Blut und seinen Fraktionen, die zur Anwendung am beziehungsweise im menschlichen Körper bestimmt sind, handelt es sich prinzipiell um Arzneimittel (§ 2 Abs. 1 Nr. 1 Gesetz über den Verkehr mit Arzneimitteln³). Das Arzneimittelgesetz findet jedoch keine Anwendung, wenn der Arzt wie in dieser Studie das Arzneimittel selbst herstellt oder die Herstellung in seinem unmittelbaren Einflussbereich durch weisungsgebundene Hilfskräfte erfolgt. (§ 4a Abs. 3 Gesetz über den Verkehr mit Arzneimitteln⁴)

1.3.2 HERSTELLUNG VON AUTOLOGEM THROMBOZYTENREICHEN PLASMA UND THROMBIN

Das gängige Verfahren zur Herstellung des thrombozytenreichen Plasmas ist die Zentrifugation, wobei man sich die Unterschiede im spezifischen Gewicht der Blutbestandteile zu Nutze macht. (Marx 2001; Marx 2004; Everts et al. 2006b; Alsousou et al. 2009; Choi et al. 2012) Bei der Zentrifugation trennen sich drei Schichten: Erythrozytenkonzentrat (relative Dichte 1,09 im Verhältnis zu Wasser bei 3,98°C), thrombozytenreiches Plasma (auch buffy coat ≠ PRP, relative Dichte 1,06) und thrombozytenarmes Plasma (platelet poor plasma, relative Dichte 1,03). Das thrombozytenreiche Plasma macht einen Volumenanteil von ca. 10% aus, abhängig von der Zusammensetzung des Vollblutes. Eine vorzeitige Aktivierung der Thrombozyten wird durch das Zufügen von Calciumcitrat verhindert. (Marx 2001) Messungen des intragranulär gespeicherten P-Selektins im thrombozytenreichen Plasma

1.3.3 QUALITÄT DES THROMBOZYTENREICHEN PLASMAS

Ein direkter Zusammenhang mit der absoluten Thrombozytenzahl konnte nicht immer nachgewiesen werden, was interindividuelle Unterschiede in der Expression der Wachstumsfaktoren in den Blutplättchen nahelegt. (Everts et al. 2006a; Mazzocca et al. 2012)

<table>
<thead>
<tr>
<th>Erstautor und Jahr der Studie</th>
<th>Hersteller</th>
<th>Vollblut</th>
<th>PRP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Thrombozyten Tsd./µl</td>
<td>Leukozyten Tsd./µl</td>
</tr>
<tr>
<td>Marx 1998</td>
<td>Medtronics</td>
<td>232</td>
<td>111 - 523</td>
</tr>
<tr>
<td>Eppley 2004</td>
<td>BIOMET®, GPS</td>
<td>197</td>
<td>+/- 42</td>
</tr>
<tr>
<td>Everts 2006a</td>
<td>BIOMET®, GPS Electa Cell Separator</td>
<td>200-300</td>
<td>400-500</td>
</tr>
<tr>
<td>Bielecki 2007</td>
<td>BIOMET®, GPS I</td>
<td>228</td>
<td>+/- 59</td>
</tr>
<tr>
<td>Mazzucca 2012</td>
<td>BIOMET®, GPS III</td>
<td>121,7</td>
<td>+/- 69,5</td>
</tr>
</tbody>
</table>

Tabelle 1: Vergleich verschiedener Geräte zur Herstellung von thrombozytenreichem Plasma (PRP) hinsichtlich der Anreicherung von Thrombozyten und Leukozyten

1.3.4 STUDIEN MIT THROMBOZYTENREICHEM PLASMA

1.4 ZIEL DER VORLIEGENDEN STUDIE ZUM GPS™-SYSTEM

In der vorliegenden Untersuchung soll nun in einem prospektiven, randomisierten und einfachblinden Studiendesign die Wirksamkeit des thrombozytenreichen Plasmas im Hinblick auf Wundheilungsstörungen und Infektionen des Sternums bei elektivem herzchirurgischem Eingriff an einem Kollektiv von 196 Patienten mit einem erhöhten Risiko für sterna le Wundheilungsstörungen des Sternums überprüft werden. Es handelt sich um eine therapeutische Prüfung.
2. MATERIAL UND METHODEN

2.1 STUDIENDESIGN

2.1.1 LEITUNG UND ZENTRUM DER STUDIE

Es handelt sich bei dieser Studie um eine *Single-Center-Studie*, die in der Klinik für Thorax-, Herz- und Gefäßchirurgie sowie der zugehörigen Intensivstation der Universitätsmedizin Göttingen durchgeführt wurde.

Leiter der klinischen Prüfung:

Prof. Dr. med. Dipl.-Phys. F. A. Schöndube
Direktor der Klinik für Thorax-, Herz- und Gefäßchirurgie
Universitätsmedizin Göttingen
Georg-August-Universität Göttingen
Robert-Koch-Straße 40, 37075 Göttingen
Tel.: 0551 39-6001

Prüfzentrum:

Klinik für Thorax-, Herz- und Gefäßchirurgie
Universitätsmedizin Göttingen
Georg-August-Universität Göttingen
Robert-Koch-Straße 40, 37075 Göttingen
Tel.: 0551 39-6001

Sponsor:

BIOMET® Deutschland GmbH
Gustav-Krone-Str. 2, 14167 Berlin
Tel.: 030 84581-0
2.1.2 AUFBAU UND DURCHFÜHRUNG DER STUDIE

2.1.3 GENEHMIGUNG DER STUDIE

Die Patientenversicherung wurde bei ACE European Groupe Limited (Frankfurt am Main, Deutschland, Handelsregisternummer HRB58029) mit der Versicherungsscheinnummer 43GW550941 abgeschlossen.

2.2 CHARAKTERISIERUNG DES UNTERSUCHTEN STUDIENKOLLEKTIVS

2.2.1 DATENERFASSUNG UND DATENSPEICHERUNG IM RAHMEN DER STUDIE

Der Einschluss der Patienten in die Studie erfolgte nach ihrer Aufklärung bezüglich Teilnahme und Datenschutz und ihrer Einverständniserklärung mittels Unterschrift. Die Datenerhebung erfolgte durch Anamnese, wiederholte klinische und laborchemische Untersuchungen sowie Auswertung der Patientenakten. Die patientenbezogenen Daten wurden entsprechend der Datenschutzrichtlinien anonymisiert, gespeichert und verarbeitet. Als Software wurden
2.2.2 AUSWERTUNG UND STATISTISCHE DATENANALYSE

2.2.3 AUFXLÄRUNG DER STUDIENPATIENTEN

Die ausführliche Aufklärung zur Teilnahme an der Studie erfolgte am Vortag der geplanten Operation durch einen der Prüfarzte. Bei erfüllten Einschlusskriterien und fehlenden präoperativen Ausschlusskriterien erfolgten die schriftliche Einwilligung zur Studie sowie die Unterzeichnung der Datenschutzerklärung für die anonymisierte Speicherung und Auswertung der Daten in jeweils zweifacher Ausfertigung. Eine Ausfertigung verblieb in der Patientenakte, die zweite im Studienordner.

2.2.4 RANDOMISIERUNG DER PATIENTEN IN KONTROLL- UND PRÜFGRUPPE

Die Patienten erhielten laufende Nummern in der Reihenfolge ihrer Aufnahme in die Studie. Um eine gleichmäßige Verteilung der Patienten auf Prüf- und Kontrollgruppe im zeitlichen Verlauf zu gewährleisten, erfolgte eine Block-Randomisierung der Patienten in die Prüfgruppe und in die Kontrollgruppe, rechnergestützt per Zufallszahlengenerator.

2.3 PATIENTENREKRUTIERUNG

142 Männer (72,5 %) und 54 Frauen (27,5 %). Die Patienten wurden nach Einschluss in die Studie prospektiv in die GPS-Prüfgruppe (n_p = 97 Patienten) und in die Kontrollgruppe (n_k = 99 Patienten) randomisiert.

2.3.1 EINSCHLUSSKRITERIEN DER STUDIE
Als Einschlusskriterien waren die Notwendigkeit zum kardiochirurgischen Eingriff mit dem Zugangsweg der medianen Sternotomie sowie die schriftliche Einwilligung zur Teilnahme an der Studie (siehe 2.3.3) definiert. Weiterhin musste mindestens einer der beschriebenen Risikofaktoren für sternale Wundheilungsstörung vorliegen (siehe 1.1.2 Risikofaktoren für sternale Wundheilungsstörungen): Patientenalter über 80 Jahre, eine Adipositas mit einem Body-Mass-Index ab 30 kg/m², ein Diabetes mellitus mit medikamentöser Therapie, eine chronisch obstruktive Lungenerkrankung mit einer inhalativen Dauertherapie, eine linksventrikuläre Dysfunktion mit einer Ejektionsfraktion kleiner als 35 %, eine präoperative Nierenersatztherapie, eine systemische Kortikosteroidtherapie länger als 14 Tage oberhalb der Cushing-Schwelle von 7,5 mg pro Tag.

2.3.2 AUSSCHLUSSKRITERIEN DER STUDIE
Als präoperative Ausschlusskriterien galten eine vorbestehende akute Infektion oder Sepsis, eine bekannte Heparin-induzierte Thrombozytopenie (HIT II), Alter des Patienten unter 30 Jahre, Schwangerschaft und Stillzeit, ein kardiochirurgischer Wiederholungseingriff (Rethorakotomie) und die Nicht-Einwilligung zur Studie. Das gleiche galt für die Notwendigkeit einer Notoperation ohne ausreichende Bedenkzeit vor Einwilligung.

Postoperativ führten ein Thorax apertum und die Notwendigkeit einer Rethorakotomie aus einem anderen Grund als einer sternalen Wundheilungsstörung zum Ausschluss aus der Studie.

2.3.3 PERIOPERATIVE RISIKOFAKTOREN FÜR STERNALE WUNDHEILUNGSSTÖRUNGEN
präoperativen Risikoeinschätzung der Mortalität im Zusammenhang mit kardiochirurgischen Eingriffen. (Nashef et al. 1999; Geissler et al. 2000)

2.4 ANGEWANDTE OPERATIONSVERFAHREN IM STUDIENKOLLEKTIV

2.5 DAS GPS™-SYSTEM

2.5.1 MATERIAL ZUR HERSTELLUNG DES THROMBOZYTENREICHEN PLASMAS

Zur Herstellung des autologen thrombozytenreichen Plasmas und des Thrombins aus Vollblut wurde das GPS™-System der Firma BIOMET® (BIOMET® Deutschland GmbH, Berlin, Deutschland) mit dem GPS™-II-Thrombozytenkonzentrat-Separationsset verwendet, welches folgende Bestandteile beinhaltet:

- GPS™-Disposable-Single-Kit mit
 - GPS™-Behälter 60 ml mit Bojensystem
 - GPS™ Spray Applicator Kit mit GPS™ Dual Spray Applicator
 - Sterile Spritzen und Nadeln
 - Antikoagulation: Calciumcitrat-Dextrose-Lösung (ACDA) 5,5 % (Hersteller: Cytosol Laboratories, Inc. in Braintree, MA, USA)
- ThermoGenesis® Autologous Thrombin Processing Device TPD™
- TPD™-Reagenz 4 ml mit 25 mmol Calciumchlorid, 66 % Ethanol v/v und Wasser
- GPS™-Zentrifuge mit Gegengewicht

2.5.2 GEWINNUNG UND AUFARBEITUNG DES THROMBOZYTENREICHEN PLASMAS

2.5.3 APPLIKATION DES THROMBOZYTENREICHEN PLASMAS

2.6 DEFINITION DES ENDPUNKTES DER STUDIE

Primäre Zielgröße und Endpunkt der Studie war die Notwendigkeit zur operativen Sternumrevision aufgrund tiefer sternaler Wundinfektion oder Sternuminstabilität innerhalb eines Beobachtungszeitraums von 30 Tagen nach herzchirurgischer Operation.
3. ERGEBNISSE

2.1 VERGLEICH DER VARIABELN UND KLINISCHEN CHARAKTERISTIKA DER PRÜFGRUPPE UND DER KONTROLLGRUPPE

Nach Anwendung der Ein- und Ausschlusskriterien wurden insgesamt $n = 196$ Patienten in die Studie eingeschlossen und ausgewertet. Davon wurden 97 Patienten der Prüfgruppe n_p und 99 Patienten der Kontrollgruppe n_k zugeordnet. Die beiden Gruppen zeigten hinsichtlich der klinischen Charakteristika (Altersverteilung, Geschlecht und EuroSCORE) und der zuvor definierten Risikofaktoren (Patientenalter, Diabetes mellitus, COPD, Dialysepflichtigkeit, Adipositas, eingeschränkte Ejektionsfraktion des Herzens und systemische Kortikosteroidtherapie) keine signifikanten Unterschiede. (siehe Tabelle 2)

<table>
<thead>
<tr>
<th>Klinische Charakteristika und präoperative Faktoren</th>
<th>Kontrollgruppe $n_k = 99$</th>
<th>Prüfgruppe $n_p = 97$</th>
<th>p-Wert</th>
<th>Signifikanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter (in Jahren)</td>
<td>67 (± 9,5)</td>
<td>68 (± 8,6)</td>
<td>0,56</td>
<td>n. s.</td>
</tr>
<tr>
<td>Geschlecht</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>männlich</td>
<td>66 (66,6 %)</td>
<td>76 (78,4 %)</td>
<td>0,07</td>
<td>n. s.</td>
</tr>
<tr>
<td>weiblich</td>
<td>33 (33,3 %)</td>
<td>21 (21,6 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EuroSCORE</td>
<td>5,2 (± 2,8)</td>
<td>4,6 (± 2,9)</td>
<td>0,16</td>
<td>n. s.</td>
</tr>
<tr>
<td>Ø Punkte pro Patient</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>32 (32,3 %)</td>
<td>43 (44,3 %)</td>
<td>0,09</td>
<td>n. s.</td>
</tr>
<tr>
<td>COPD</td>
<td>22 (22,2 %)</td>
<td>24 (24,7 %)</td>
<td>0,68</td>
<td>n. s.</td>
</tr>
<tr>
<td>Nierenversagen mit Dialysepflichtigkeit</td>
<td>3 (3,0 %)</td>
<td>0 (0,0 %)</td>
<td>0,09</td>
<td>n. s.</td>
</tr>
<tr>
<td>Adipositas mit BMI ≥ 30 kg/m²</td>
<td>37 (37,4 %)</td>
<td>29 (29,9 %)</td>
<td>0,27</td>
<td>n. s.</td>
</tr>
<tr>
<td>EF < 35 %</td>
<td>16 (16,2 %)</td>
<td>14 (14,4 %)</td>
<td>0,74</td>
<td>n. s.</td>
</tr>
<tr>
<td>Alter ≥ 80 Jahre</td>
<td>8 (8,1 %)</td>
<td>8 (8,2 %)</td>
<td>0,97</td>
<td>n. s.</td>
</tr>
<tr>
<td>Systemische Kortikosteroide</td>
<td>1 (1,0 %)</td>
<td>1 (1,0 %)</td>
<td>0,99</td>
<td>n. s.</td>
</tr>
</tbody>
</table>

Tabelle 2: Klinische Charakteristika und präoperative Variablen der Prüfgruppe und der Kontrollgruppe
Auch hinsichtlich der intraoperativen Parameter wichen die Gruppen nicht signifikant voneinander ab. Die Anwendung des GPS™-Systems in der Prüfgruppe führte nicht zu einer Verlängerung der Operationsdauer (siehe Tabelle 3).

<table>
<thead>
<tr>
<th>Perioperative Faktoren</th>
<th>Kontrollgruppe $n_k=99$</th>
<th>Prüfgruppe $n_p=97$</th>
<th>p-Wert</th>
<th>Signifikanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolierte CABG</td>
<td>61 (61,6 %)</td>
<td>57 (58,8 %)</td>
<td>0,58</td>
<td>n. s.</td>
</tr>
<tr>
<td>Andere Operationen *</td>
<td>38 (38,4 %)</td>
<td>40 (41,2 %)</td>
<td>0,58</td>
<td>n. s.</td>
</tr>
<tr>
<td>Doppel-IMA</td>
<td>4 (4,0 %)</td>
<td>4 (4,1 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OP-Zeiten (in Minuten)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schnitt-Naht-Zeit</td>
<td>266 (± 64)</td>
<td>261 (± 62)</td>
<td>0,79</td>
<td>n. s.</td>
</tr>
<tr>
<td>HLM-Zeit</td>
<td>134 (± 45)</td>
<td>141 (± 48)</td>
<td>0,25</td>
<td>n. s.</td>
</tr>
<tr>
<td>Aortenabklemmzeit</td>
<td>84 (± 35)</td>
<td>84 (± 29)</td>
<td>0,90</td>
<td>n. s.</td>
</tr>
</tbody>
</table>

Tabelle 3 Perioperative Variablen der Prüfgruppe und der Kontrollgruppe

* Andere Herzoperationen = Operationen an den Herzklappen, Myektomien, Myxomentfernungen, Vorhofseptumverschlüsse und kombinierte Eingriffe einschließlich Kombinationseingriffe mit Carotis-Operationen
3.2 ENDPUNKT DER STUDIE

Bei insgesamt 9 Patienten wurde im Beobachtungszeitraum von 30 Tagen eine operative Revision bei tiefer sternaler Wundinfektion erforderlich, womit der definierte Endpunkt vorlag. Davon entfielen 6 Patienten auf die Prüfgruppe (6,2 %) und 3 Patienten auf die Kontrollgruppe (3,0 %). Dieses Ergebnis war statistisch nicht signifikant ($p = 0,293$). Demnach ließ sich kein Einfluss von autologem thrombozytenreichen Plasma auf die Entwicklung von Wundheilungsstörungen des Sternums nach herzchirurgischem Eingriff bei Patienten mit erhöhtem Risikoprofil nachweisen.

Abbildung 1: Anteil der tiefen sternalen Wundheilungsstörungen in der Prüfgruppe und der Kontrollgruppe im Beobachtungszeitraum von 30 Tagen
3.3 VERGLEICH DER VARIABLEN UND KLINISCHEN CHARAKTERISTIKA DER PATIENTGRUPPEN MIT UND OHNE ENDPUNKT

Im deskriptiven Vergleich der Patientengruppe, die den Endpunkt erreichte (im Folgenden *Endpunkt-Gruppe* genannt), mit der Patientengruppe ohne Endpunkt (im Folgenden *Nicht-Endpunkt-Gruppe* genannt) fallen deutliche Unterschiede hinsichtlich einiger der präoperativen Variablen und klinischen Charakteristika auf. (siehe Tabellen 4 und 5)

Bezüglich der Anzahl der präoperativen Risikofaktoren fanden sich in der Endpunkt-Gruppe im Durchschnitt 1,9 Risikofaktoren pro Patient gegenüber 1,2 Risikofaktoren pro Patient in der Nicht-Endpunkt-Gruppe. Dabei unterschied sich die Endpunkt-Gruppe von der Nicht-Endpunkt-Gruppe in den Variablen Geschlecht, chronisch obstruktive Lungenerkrankung und Body-Mass-Index. So lag der Anteil der Frauen am gesamten Studienkollektiv bei 27,5 %, an der Endpunkt-Gruppe jedoch bei 0 %. Der Anteil von Patienten mit einer chronisch obstruktiven Lungenerkrankung an der Endpunkt-Gruppe war 10 % höher als an der Nicht-Endpunkt-Gruppe. Bei der Betrachtung des Body-Mass-Index fällt ein deutlich höherer Durchschnittswert pro Patient in der Endpunkt-Gruppe auf mit 32,7 kg/m² versus 28,2 kg/m² in der Nicht-Endpunkt-Gruppe. Ebenso ist der Anteil adipöser Patienten (BMI ≥ 30 kg/m²) an der Endpunkt-Gruppe mit 78 % weit mehr als doppelt so hoch wie an der Nicht-Endpunkt-Gruppe mit 32 %.

Klinische Charakteristika und präoperative Faktoren

<table>
<thead>
<tr>
<th>Klinische Charakteristika und präoperative Faktoren</th>
<th>Endpunkt-Gruppe</th>
<th>Nicht-Endpunkt-Gruppe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl der Patienten</td>
<td>9</td>
<td>187</td>
</tr>
<tr>
<td>Alter (Ø in Jahren)</td>
<td>69</td>
<td>68</td>
</tr>
<tr>
<td>Geschlecht (Anzahl)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>männlich</td>
<td>9 (100 %)</td>
<td>133 (71 %)</td>
</tr>
<tr>
<td>weiblich</td>
<td>0 (0 %)</td>
<td>54 (29 %)</td>
</tr>
<tr>
<td>Anzahl der Risikofaktoren pro Patient</td>
<td>1,9</td>
<td>1,2</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>4 (44 %)</td>
<td>71 (38 %)</td>
</tr>
<tr>
<td>COPD</td>
<td>3 (33 %)</td>
<td>43 (23 %)</td>
</tr>
<tr>
<td>Nierenversagen mit Dialysepflichtigkeit</td>
<td>0 (0 %)</td>
<td>3 (1,6 %)</td>
</tr>
<tr>
<td>Adipositas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ø BMI pro Patient (in kg/m²)</td>
<td>32,7</td>
<td>28,2</td>
</tr>
<tr>
<td>Anzahl mit BMI ≥ 30 kg/m²</td>
<td>7 (78 %)</td>
<td>59 (32 %)</td>
</tr>
<tr>
<td>EF < 35 %</td>
<td>2 (22 %)</td>
<td>28 (15 %)</td>
</tr>
<tr>
<td>Alter ≥ 80 Jahre</td>
<td>1 (11 %)</td>
<td>15 (8 %)</td>
</tr>
<tr>
<td>Systemische Kortikosteroide</td>
<td>0 (0 %)</td>
<td>2 (1,1 %)</td>
</tr>
<tr>
<td>EuroSCORE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ø Punkte pro Patient</td>
<td>4,4</td>
<td>4,9</td>
</tr>
</tbody>
</table>

| Tabelle 4: Klinische Charakteristika und präoperative Variablen der Endpunkt-Gruppe und der Nicht-Endpunkt-Gruppe |

<table>
<thead>
<tr>
<th>Perioperative Faktoren</th>
<th>Endpunkt-Gruppe</th>
<th>Nicht-Endpunkt-Gruppe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolierte CABG</td>
<td>8 (88 %)</td>
<td>110 (58,8 %)</td>
</tr>
<tr>
<td>Andere Operationen</td>
<td>1 (11 %)</td>
<td>77 (41,2 %)</td>
</tr>
<tr>
<td>Doppel-IMA</td>
<td>1 (11 %)</td>
<td>7 (0,4 %)</td>
</tr>
<tr>
<td>OP-Zeiten (in Minuten)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schnitt-Naht-Zeit</td>
<td>227</td>
<td>265</td>
</tr>
<tr>
<td>HLM-Zeit</td>
<td>101</td>
<td>139</td>
</tr>
<tr>
<td>Aortenabklemmzeit</td>
<td>60</td>
<td>85</td>
</tr>
</tbody>
</table>

| Tabelle 5: Perioperative Variablen der Endpunkt-Gruppe und der Nicht-Endpunkt-Gruppe |
4. DISKUSSION

4.1 EINORDNUNG DER VORLIEGENDEN UNTERSUCHUNGSERGEBNISSE IN DIE VORHANDENE STUDIENLAGE

4.1.1 UNTERSCHIEDE IM STUDIENDESIGN ZUR PRÜFUNG DER WIRksamkeit von thrombozytenreichem Plasma an herzchirurgischen Patienten

bilitationsklinik (Ott et al. 1980; Hall et al. 1998; Ridderstolpe et al. 2001; Oh et al. 2006). Dies kann eine ausreichend lange Beobachtung der Patienten und damit die vollständige Erhebung der Daten erschweren, was auch in der vorliegenden Studie berücksichtigt werden muss.

Sofern prospektive, randomisierte Studien vorliegen, handelt es sich meist um kleine Probandengruppen mit nur eingeschränkter statistischer Aussagekraft. (Englert et al. 2005; Alizzi et al. 2007; Vang et al. 2007; Buchwald et al. 2008; Litmathe et al. 2009)

In der Literatur findet sich nur eine Studie von LITMATHE et al. (2009), die hinsichtlich Fragestellung, Studiendesign und Patientenkollektiv vergleichbar ist mit der vorliegenden Studie. Das thrombozytenreiche Plasma wurde mit dem MAGELLAN® Autologous Platelet Separator System (Medtronic©, Cleveland, OH, USA) aufgearbeitet. An einem Kollektiv von 40 Patienten konnten LITMATHE et al. in einem Beobachtungszeitraum von 30 bis 85, im Mittel
40 Tagen bei gleichverteilten Risikofaktoren keinen signifikanten Einfluss von autologem thrombozytenreichen Plasma auf die Sternumwunde nachweisen. Das Ergebnis entspricht damit dem der vorliegenden Studie.

4.1.2 UNTERSCHIEDLICHE BEWERTUNG VON RISIKOFAKTOREN

In der vorliegenden Studie wurde die Verteilung der Variablen in der Endpunkt-Gruppe und der Nicht-Endpunkt-Gruppe aufgrund der großen Varianz in der Anzahl der Patienten deskriptiv analysiert. Dabei fielen Unterschiede bei drei Risikofaktoren auf: männliches Geschlecht, chronisch obstruktive Lungenerkrankung und eine Adipositas mit einem Body-Mass-Index ab 30 kg/m². (siehe 1.1.2 Risikofaktoren für postoperative sternale Wundheilungsstörungen und 3.3 Vergleich der Variablen und klinischen Charakteristika der Patientengruppen mit und ohne Endpunkt)

Als mögliche Zusammenhänge von Adipositas und sternalen Wundheilungsstörungen werden in der Literatur eine erhöhte mechanische Beanspruchung der Wunde und eine im Vergleich zu anderen Geweben niedrigere Durchblutung und Bradytrophie des Fettgewebes postuliert. Dieser Effekt wird durch die Verwendung einer oder beider Arteriae thoracicae internae noch
stärkt, weil hierdurch die lokale Durchblutung des Sternums zusätzlich reduziert wird. Neben der daraus resultierenden geringeren lokalen Antibiotikakonzentration kommt es oft zu einer niedrigeren systemischen Konzentration aufgrund der vergrößerten Körperoberfläche bei adipösen Patienten im Vergleich zu Normgewichtigen. (Diez et al. 2007)

Patienten mit chronischer obstruktiver Lungenkrankung weisen in der Literatur tendenziell häufiger begleitende Infektionen der Atemwege, vermehrten Husten und längere Beatmungszeiten auf, was einerseits zu höherem mechanischen Stress mit folgender Instabilität des Brustkorbes führt und andererseits Wundinfektionen begünstigt. (Diez et al. 2007)

Die übrigen Parameter konnten in der vorliegenden Studie nicht als Risikofaktoren identifiziert werden.

4.2 GRÜNDE FÜR DEN FEHLENDEN THERAPIE-EFFEKT VON THROMBOZYTENREICHEM PLASMA BEI KARDIOCHIRURGISCHEM PATIENTEN

4.3 LIMITATIONEN DER VORLIEGENDEN STUDIE

Eigenschaft die Adhärenz des thrombozytenreichen Plasmas am Sternum und damit seine Wirkung vermindert.

4.4 ABLEITUNG UND AUSBlick

In der Bundesrepublik Deutschland werden jährlich etwa 95.000 herzchirurgische Eingriffe durchgeführt, zumeist mit dem Zugangsweg der medianen Sternotomie. Dabei sind tiefe sternale Wundheilungsstörungen und Sternuminstabilität seltene, aber gefürchtete Komplikationen. Die Inzidenz hierfür wird in der Literatur der letzten 10 Jahre zwischen 0,6 % und 3,9 % liegend angegeben, in Hochrisikogruppen zum Teil deutlich höher bis über 13 %. Diese Fälle gehen mit langwierigen Therapien und einem hohen Verbrauch von Ressourcen einher. Die Mortalität steigt bei Patienten mit tiefer sternaler Wundinfektion auf bis zu 60 % an.

<table>
<thead>
<tr>
<th>Erstautor und Jahr der Publikation</th>
<th>Studiendesign und Zeitraum der Studie</th>
<th>Patientenkollektiv</th>
<th>SSWI</th>
<th>DSWI</th>
<th>Absolute Mortalität im Beobachtungszeitraum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birgand 2013</td>
<td>prospektiv 2006-2010</td>
<td>5085 bei Hochrisiko 552</td>
<td>3,9 %</td>
<td>13,8 %</td>
<td></td>
</tr>
<tr>
<td>Schimmer 2012</td>
<td>prospektiv 2009-2010</td>
<td>720</td>
<td>3,52 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risnes 2010</td>
<td>retrospektiv 1989-2000</td>
<td>18532</td>
<td>0,6 %</td>
<td></td>
<td>in 30 Tagen: kein Unterschied in 10 Jahren ohne DSWI 29 % mit DSWI 50 %</td>
</tr>
<tr>
<td>Stammers 2009</td>
<td>retrospektiv 2002-2008</td>
<td>1877</td>
<td>1,5 %</td>
<td>1,6 %</td>
<td></td>
</tr>
<tr>
<td>Ghotaslou 2008</td>
<td>retrospektiv 2004-2006</td>
<td>1804</td>
<td>7,8 %</td>
<td>1,2 %</td>
<td>mit DSWI 34,3 %</td>
</tr>
<tr>
<td>Sachithananandan 2008</td>
<td>retrospektiv 2001-2005</td>
<td>4586</td>
<td>1,65 %</td>
<td></td>
<td>in 30 Tagen: ohne DSWI 3,7 % mit DSWI 9,2 % in 4 Jahren: ohne DSWI 14 % mit DSWI 21 %</td>
</tr>
<tr>
<td>Khalafi 2008</td>
<td>retrospektiv 2000-2005</td>
<td>557</td>
<td>5,39 %</td>
<td>1,98 %</td>
<td></td>
</tr>
<tr>
<td>Lepelletier 2009</td>
<td>retrospektiv 2002-2006</td>
<td>5574</td>
<td>0,7 %</td>
<td></td>
<td>in 1 Jahr: mit DSWI 20,5 %</td>
</tr>
<tr>
<td>Diez 2007</td>
<td>retrospektiv 2001</td>
<td>1700</td>
<td>2,65 %</td>
<td></td>
<td>mit DSWI 0 %</td>
</tr>
<tr>
<td>Robinson 2007</td>
<td>retrospektiv 2001-2005</td>
<td>11848</td>
<td>1,3 %</td>
<td></td>
<td>insgesamt 3,6 % mit DSWI 6,5 %</td>
</tr>
<tr>
<td>Karra 2006</td>
<td>retrospektiv 1994-2001</td>
<td>10144</td>
<td>2,95 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MacIver 2006</td>
<td>retrospektiv 1996-1999</td>
<td>1036</td>
<td>1,2 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eklund 2006</td>
<td>retrospektiv 1990-1999</td>
<td>10713</td>
<td>1,1 %</td>
<td></td>
<td>in 30 Tagen: ohne DSWI 1,6 % mit DSWI 0,9 % in 1 Jahr: ohne DSWI 5,9 % mit DSWI 8,7 %</td>
</tr>
<tr>
<td>Erstautor und Jahr der Publikation</td>
<td>Studiendesign und Zeitraum der Studie</td>
<td>Patientenkollektiv</td>
<td>SSWI</td>
<td>DSWI</td>
<td>Absolute Mortalität im Beobachtungszeitraum</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--------------------------------------</td>
<td>--------------------</td>
<td>------</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>Friberg 2005</td>
<td>prospektiv 2000-2002</td>
<td>967</td>
<td>5,7 %</td>
<td>3,3 %</td>
<td></td>
</tr>
<tr>
<td>Trowbridge 2005</td>
<td>prospektiv retrospektiv 2002-2005</td>
<td>948 929</td>
<td>1,8 %</td>
<td>1,5 %</td>
<td>1,7 %</td>
</tr>
<tr>
<td>Sjögren 2005</td>
<td>retrospektiv 1994-1998</td>
<td>11348</td>
<td>0,9 %</td>
<td></td>
<td>in 3 Monaten mit DSWI 15 % in 5 Jahren mit DSWI 58,6 %</td>
</tr>
<tr>
<td>Toumpoulis 2005</td>
<td>retrospektiv 1992-2002</td>
<td>3760</td>
<td>1,1 %</td>
<td></td>
<td>im Krankenhaus ohne DSWI 2,6 % mit DSWI 15 % nach 5 Jahren ohne DSWI 27 % mit DSWI 49 %</td>
</tr>
<tr>
<td>Riess 2004</td>
<td>retrospektiv 1999 - 2001</td>
<td>3617</td>
<td>0,9 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tang 2004</td>
<td>retrospektiv 1990-2003</td>
<td>30102</td>
<td>0,77 %</td>
<td></td>
<td>ohne DSWI 0,77 % mit DSWI 6,9 %</td>
</tr>
<tr>
<td>Fowler Jr. 2003</td>
<td>prospektiv 1994-1998</td>
<td>5500</td>
<td>1,1 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tavolacci 2003</td>
<td>retrospektiv 1998-2000</td>
<td>420</td>
<td>2,3 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gårdlund 2002</td>
<td>retrospektiv 1992-2000</td>
<td>9557</td>
<td>1,32 %</td>
<td></td>
<td>nach 90 Tagen mit DSWI 19 %</td>
</tr>
<tr>
<td>Gummert 2002</td>
<td>retrospektiv 1996-1999</td>
<td>9303</td>
<td>1,44 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wettstein 2002</td>
<td>retrospektiv 1991-2000</td>
<td>6078</td>
<td>1,1 %</td>
<td></td>
<td>DSWI kurzfristig 5,1 % langfristig 15,1 %</td>
</tr>
<tr>
<td>Hollenbeck 2000</td>
<td>retrospektiv 1996-1998</td>
<td>1519</td>
<td>2,7 %</td>
<td></td>
<td>ohne DSWI 0,07 % mit DSWI 22 %</td>
</tr>
<tr>
<td>Trick 2000</td>
<td>retrospektiv 1992-1998</td>
<td>3028</td>
<td>0,7 %</td>
<td>1,7 %</td>
<td>mit DSWI 7 %</td>
</tr>
<tr>
<td>Astudillo 2001</td>
<td>retrospektiv 1992-1997</td>
<td>6500</td>
<td>1,5 %</td>
<td></td>
<td>ohne DSWI 5 % mit DWI 18 %</td>
</tr>
<tr>
<td>Milano 1995</td>
<td>retrospektiv 1987-1994</td>
<td>6459</td>
<td>1,2 %</td>
<td></td>
<td>mit DSWI 29 %</td>
</tr>
<tr>
<td>Nashef 1999</td>
<td>retrospektiv 1996</td>
<td>14781</td>
<td></td>
<td></td>
<td>je nach Risikogruppe 0,8-11,2 %, insg. 4,7 %</td>
</tr>
<tr>
<td>Borger 1998</td>
<td>retrospektiv 1990-1995</td>
<td>12267</td>
<td>1,75 %</td>
<td>0,75 %</td>
<td>ohne DSWI 3,7 % mit DSWI 9,8 %</td>
</tr>
<tr>
<td>Hall 1998</td>
<td>retrospektiv 1990-1995</td>
<td>1000</td>
<td></td>
<td></td>
<td>zusammen 5,9 %</td>
</tr>
<tr>
<td>Ståhle 1997</td>
<td>retrospektiv 1980-1995</td>
<td>13285</td>
<td>1,5 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erstautor und Jahr der Publikation</td>
<td>Studiendesign und Zeitraum der Studie</td>
<td>Patientenkollektiv</td>
<td>SSWI</td>
<td>DSWI</td>
<td>Absolute Mortalität im Beobachtungszeitraum</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--------------------------------------</td>
<td>-------------------</td>
<td>------</td>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>Parisian Mediastinitis Study Group 1996</td>
<td>prospektiv 1993</td>
<td>1830</td>
<td>2,3 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blanchard 1995</td>
<td>retrospektiv 1981-1991</td>
<td>4137</td>
<td>1,18 %</td>
<td>0,15 %</td>
<td></td>
</tr>
<tr>
<td>Fritzsche 1992</td>
<td>retrospektiv 1986-1990</td>
<td>2805</td>
<td>2,35 %</td>
<td>1,25 %</td>
<td></td>
</tr>
<tr>
<td>Nishida 1991</td>
<td>retrospektiv 1978-1989</td>
<td>3118</td>
<td>0,03 %</td>
<td>0,13 %</td>
<td></td>
</tr>
<tr>
<td>Loop 1990</td>
<td>retrospektiv 1985-1987</td>
<td>6054</td>
<td></td>
<td>0,7 %</td>
<td>mit DSWI im Krankenhaus: 14 % nach 3 Jahren: 25 %</td>
</tr>
<tr>
<td>Newman 1988</td>
<td>retrospektiv 1973-1982</td>
<td>9965</td>
<td>0,7 %</td>
<td></td>
<td>ohne DSWI 3 % mit DSWI 31 %</td>
</tr>
<tr>
<td>Ottino 1987</td>
<td>retrospektiv 1979-1984</td>
<td>2579</td>
<td>1,86 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ott 1980</td>
<td>retrospektiv</td>
<td>9279</td>
<td>0,39 %</td>
<td></td>
<td>mit DSWI 2,8 %</td>
</tr>
</tbody>
</table>

<p>| Tabelle 6: Inzidenz von sternaler Wundheilungsstörung nach medianer Sternotomie und sofern angegeben die assoziierte Mortalität in der Literatur |</p>
<table>
<thead>
<tr>
<th>Erstautor und Jahr der Publikation</th>
<th>Studie (Zeitraum)</th>
<th>Hospitalisierung (Tage im Mittel)</th>
<th>Intensivpflichtigkeit (Stunden im Mittel)</th>
<th>Beatmungsdauer (Stunden im Mittel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jenney 2001</td>
<td>n. n.</td>
<td>4,7</td>
<td>10,8</td>
<td>37</td>
</tr>
<tr>
<td>Sachithanandan 2008</td>
<td>2001-2005</td>
<td>8</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Diez 2007</td>
<td>2001</td>
<td>19</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Tang* 2003</td>
<td>1990-2003</td>
<td>ca. 11</td>
<td>ca. 26</td>
<td>ca. 52</td>
</tr>
<tr>
<td>Tavolacci 2003</td>
<td>1998-2000</td>
<td>10</td>
<td>38</td>
<td>hier kein signifikant Unterschied</td>
</tr>
<tr>
<td>Eklund 2006</td>
<td>1990-1999</td>
<td>2</td>
<td>22 bis 37</td>
<td></td>
</tr>
<tr>
<td>Borger 1998</td>
<td>1990-1995</td>
<td>10</td>
<td>32</td>
<td>60</td>
</tr>
<tr>
<td>Loop 1990</td>
<td>1985-1987</td>
<td></td>
<td>43</td>
<td>120</td>
</tr>
</tbody>
</table>

Tabelle 7: Vergleich von Patienten mit und ohne Mediastinitis hinsichtlich der Dauer von Hospitalisierung, Intensivpflichtigkeit und Beatmung in der Literatur

K = Patienten ohne Mediastinitis
M = Patienten mit Mediastinitis
* = Angaben in visuellen Skalen, nicht numerisch (Werte daher abgelesen)
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
<th>Englischer Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abs.</td>
<td>Absatz, Paragraph (auch Gesetzesparagraph)</td>
<td>paragraph, subsection</td>
</tr>
<tr>
<td>ACDA</td>
<td>Natrium-Citrat-Dextrose, Antikoagulans</td>
<td>acid citrate dextrose anticoagulant</td>
</tr>
<tr>
<td>BMI</td>
<td>Body-Mass-Index, Körpermasseindex, Verhältnis Körpergewicht zu -oberfläche</td>
<td>body mass index</td>
</tr>
<tr>
<td>BMP</td>
<td>Knochenmorphogenetische Proteine</td>
<td>bone morphogenetic proteins</td>
</tr>
<tr>
<td>CABG</td>
<td>Koronararterien-Bypass</td>
<td>coronary artery bypass graft</td>
</tr>
<tr>
<td>COPD</td>
<td>chronisch obstruktive Lungenkrankung</td>
<td>chronic obstructive pulmonary disease</td>
</tr>
<tr>
<td>DSWI</td>
<td>tiefe sternale Wundinfektion</td>
<td>deep sternal wound infection</td>
</tr>
<tr>
<td>EGF</td>
<td>epidermal Wachstumsfaktor</td>
<td>epidermal growth factor</td>
</tr>
<tr>
<td>EF</td>
<td>Ejektionsfraktion (des linken Ventrikels)</td>
<td>ejection fraction</td>
</tr>
<tr>
<td>g</td>
<td>Gramm</td>
<td>gram</td>
</tr>
<tr>
<td>GPS™</td>
<td>Gravitational Platelet Separation System™</td>
<td></td>
</tr>
<tr>
<td>HIT II</td>
<td>Heparin-induzierte Thrombozytopenie II</td>
<td>heparin-induced thrombocytopenia II</td>
</tr>
<tr>
<td>HLM</td>
<td>Herz-Lungen-Maschine</td>
<td>life support machine</td>
</tr>
<tr>
<td>IGF-1</td>
<td>Insulin-ähnlicher Wachstumsfaktor 1</td>
<td>Insulin-like Growth Factor 1</td>
</tr>
<tr>
<td>IMA</td>
<td>Arteria mammaria interna</td>
<td>internal mammary artery</td>
</tr>
<tr>
<td>IU</td>
<td>internationale Einheit</td>
<td>international unit</td>
</tr>
<tr>
<td>mmol</td>
<td>Millimol</td>
<td>millimol</td>
</tr>
<tr>
<td>n. s.</td>
<td>nicht signifikant</td>
<td>not significant</td>
</tr>
<tr>
<td>PDGF</td>
<td>thrombozytenreiches Plasma</td>
<td>platelet derived growth factor</td>
</tr>
<tr>
<td>PRP</td>
<td>thrombozytenarmes Plasma</td>
<td>platelet rich plasma</td>
</tr>
<tr>
<td>PPP</td>
<td></td>
<td>platelet poor plasma</td>
</tr>
<tr>
<td>SWI</td>
<td>oberflächliche sternale Wundinfektion</td>
<td>superficial sternal wound infection</td>
</tr>
<tr>
<td>TGF-β</td>
<td>transformierender Wachstumsfaktor beta</td>
<td>transforming growth factor beta</td>
</tr>
<tr>
<td>VEGF</td>
<td>Gefäßendothelialer Wachstumsfaktor</td>
<td>vascular endothelial growth factor</td>
</tr>
<tr>
<td>WHO</td>
<td>Weltgesundheitsorganisation</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>l/ml/µl</td>
<td>Liter/Milliliter/Mikroliter</td>
<td>liter/milliliter/microliter</td>
</tr>
<tr>
<td>°C</td>
<td>Grad Celsius</td>
<td>degree Celsius</td>
</tr>
<tr>
<td>Ø</td>
<td>Durchschnittswert</td>
<td>average</td>
</tr>
</tbody>
</table>
8. INTERNE VERZEICHNISSE

8.1 ABBILDUNGSVERZEICHNIS

8.2 TABELLENVERZEICHNIS

Tabelle 1: Vergleich verschiedener Geräte zur Herstellung von thrombozytenreichem Plasma (PRP) hinsichtlich der Anreicherung von Thrombozyten und Leukozyten - 16 -

Tabelle 2: Klinische Charakteristika und präoperative Variablen der Prüfgruppe und der Kontrollgruppe - 27 -

Tabelle 3: Perioperative Variablen der Prüfgruppe und der Kontrollgruppe - 28 -

Tabelle 4: Klinische Charakteristika und präoperative Variablen der Endpunkt-Gruppe und der Nicht-Endpunkt-Gruppe - 31 -

Tabelle 5: Perioperative Variablen der Endpunkt-Gruppe und der Nicht-Endpunkt-Gruppe - 31 -

Tabelle 6: Inzidenz von sternaler Wundheilungsstörung nach medianer Sternotomie und sofern angegeben die assoziierte Mortalität in der Literatur - 42 -

Tabelle 7: Vergleich von Patienten mit und ohne Mediastinitis hinsichtlich der Dauer von Hospitalisierung, Intensivpflichtigkeit und Beatmung in der Literatur - 43 -

Shaikhrezai K, Robertson FL, Anderson SE, Slight RD, Brackenbury ET (2012): Does the number of wires used to close a sternotomy have an impact on deep sternal wound infection? Interact Cardiovasc Thorac Surg 15, 219-222

