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SUMMARY 

Forests are dynamic and complex ecosystems that play important roles for economic, ecological 

and social aspects. Besides that, they house the largest share of terrestrial biodiversity. Forests 

function as carbon sinks, provide natural resources and become more and more valuable. Hence, 

comprehensive knowledge about forests and their status is crucial. Optical multispectral remote 

sensing is one appropriate instrument to observe and monitor larger areas. In recent years, 

hyperspectral sensors have been developed that offer much more spectral details. Besides remote 

sensing, surveys made in the field are essential for sensor calibration and training data.  

This study captures both aspects of remote and ground observations using hyperspectral airborne 

and non-imaging field data covering a spectral range of 400-2500 nm. It consists of four sub-

studies and was conducted in the Hainich national park in central Germany, a beech (Fagus 

sylvatica) dominated broadleaved forest with large old-growth stands. The study considers present 

issues and shows the capability of spectral high-resolution information.  

In addition to spectral reflectances, selected broad- and narrowband vegetation indices (VI) are 

calculated and used to describe differences among the considered species. The leaf optical 

properties of the main tree species were examined including reflectance, transmittance and 

absorptance. Repeated measurements of reflectances were covering two subsequent growing 

seasons, allowing insights in the seasonal phenology. Overall, the optical properties depend highly 

on the date and measuring method. Examining species differences, clear rules for separation are 

not apparent. Especially in the shortwave infrared, a triplet grouping of species could be observed. 

Beech and hornbeam (Carpinus betulus) showed similar appearances in shortwave infrared, as well 

as maples (Acer platanoides and Acer pseudoplatanus), and Ash (Fraxinus excelsior) and Oak 

(Quercus petraea). However, general assumptions about the response pattern related to species are 

hard to communicate due to high variation and changes in the order of reflectance values. This 

study also revealed the complexity of spectroscopy in forests.  

In a next step, in-situ leaf and crown reflectances were compared with remotely sensed values 

using airborne sensors. This study incorporates a unique data set of simultaneously gathered 

measurements. Compared to crowns, sampled leaves show much higher reflectances. Differences 

of the various levels could be described with simple linear and logarithmic model approaches. For 

further comparison, VI and red edge position metrics including Red Edge Position Index (REPI) 

and spectral derivatives were calculated for each level and species. Some of the in-situ leaf level 

values were more similar to the remotely sensed data than to the in-situ crowns.  

Within an area of 2.25 ha, the canopy light interception and crown porousness was assessed. 

Different approaches were compared including digital cover and hemispherical photography in 

both visible and near infrared light. Additionally, hyperspectral irradiances were measured below 



 

the canopy to retrieve the amount of intercepted light and corresponding extinction coefficients. 

Ground data was then compared to aerial hyperspectral imagery. From the calculated remotely 

sensed VI, the Photochemical Reflectance Index (PRI), followed by the Carotenoid Reflectance 

Index 1 (CRI1), showed the highest, albeit moderate, correlation with openness derived from 

hemispherical and near infrared cover photos. Fractional cover, derived from radiation 

measurements, was moderately correlated with Normalized Difference Lignin Index (NDLI) and 

Red Green Ratio Index (RGRI).  

In the last sub-study, forest inventory data was combined with hyperspectral airborne data. 

Standard stand variables averaged per inventory plot were related to remotely sensed metrics. 

Basal area did not show any correlation with the derived spectral VI. Also in height, tree diameter 

at breast height (dbh) and stand density classes no clear trends could be observed. However, in 

near and shortwave infrared, there are tendencies of a relation between reflectance and dbh and 

density class. Comparing all calculated VI, the PRI had the highest, moderate, correlation with dbh 

and density classes as well as with mean tree height per plot. Again, the PRI showed promising 

results for future analyses. 

 



 

ZUSAMMENFASSUNG 

Wälder sind dynamische und komplexe Ökosysteme, die neben ökonomischen, ökologischen und 

sozialen Aspekten eine wichtige Rolle für die globale Biodiversität spielen. Sie funktionieren als 

Kohlenstoffspeicher, stellen natürliche Ressourcen zur Verfügung und werden immer wertvoller. 

Daher ist eine umfassende Kenntnis über die Wälder und deren Status immens wichtig. Optische 

multispektrale Fernerkundung ist ein geeignetes Instrument um größere Flächen zu beobachten 

und zu überwachen. In den letzten Jahren wurden hyperspektrale Sensoren entwickelt, die viel 

mehr spektrale Details liefern. Zusätzliche Feldaufnahmen sind essentiell für Sensorkalibrierung 

und die Sammlung von Trainingsdaten. Diese Untersuchung erfasst beide Gesichtspunkte von 

Fernerkundung und Beobachtungen am Boden, indem hyperspektrale Luftbilder und nicht-

bildgebende Felddaten verwendet werden, die einen spektralen Bereich von 400-2500 nm 

abdecken. Die Arbeit besteht aus vier Teilstudien und wurde im Hainich Nationalpark inmitten 

Deutschlands durchgeführt, einem von Buche (Fagus sylvatica) dominierten Laubwald mit großen 

Altbeständen. Die Untersuchung befasst sich mit vorhandenen Problemen und zeigt die 

Leistungsfähigkeit von spektral hochaufgelösten Informationen auf.  

Zusätzlich zu den spektralen Reflexionsgraden wurden ausgewählte Breit- und Schmalband 

Vegetationsindizes (VI) berechnet und für die Beschreibung von Unterschieden zwischen den 

berücksichtigten Baumarten verwendet. Daneben wurden die optischen Eigenschaften von 

Blättern der Hauptbaumarten untersucht, einschließlich Reflexion, Transmission und Absorption. 

Wiederholte Messungen von Reflektanzen decken zwei nachfolgende Vegetationsperioden ab, was 

Einblicke in die saisonale Phänologie ermöglicht. Insgesamt sind die optischen Blatteigenschaften 

abhängig vom Datum und der Messmethode. Bei der Untersuchung der Speziesunterschiede waren 

keine klaren Regeln zur Trennung erkennbar. Vor allem im kurzwelligen Infrarot wurden drei 

Gruppen zu je zwei Baumarten beobachtet: Buche und Hainbuche (Carpinus betulus) zeigten hier 

sehr ähnliche Werte, genau wie Ahorne (Acer platanoides, Acer pseudoplatanus), sowie Esche 

(Fraxinus excelsior) und Eiche (Quercus petraea). Allerdings sind generelle artbezogene Aussagen 

zu den Reflexionskurven eher schwierig zu treffen durch die hohe Streuung und Änderungen in der 

Reihenfolge bezüglich der Reflektanzwerte der Baumarten, die sich je nach Datensatz in 

unterschiedlichen Wellenlängenbereichen überschneiden können. Schließlich zeigt diese Arbeit 

auch die Komplexität von Spektroskopie in Wäldern auf. 

Im nächsten Schritt wurden die Ebenen von Blatt zu Krone betrachtet. Dabei wurden in-situ Blatt- 

und Kronenreflektanzen mit fernerkundungsbasierten Werten von flugzeuggetragenen Sensoren 

verglichen. Diese Studie verwendete einen einzigartigen Datensatz aus simultan aufgenommenen 

Messungen. Im Vergleich zu den Kronen zeigten die Blätterproben viel höhere Reflektanzen auf. 

Die artspezifischen Unterschiede konnten herausgearbeitet werden. Unterschiede bzw. 

Zusammenhänge der verschiedenen Ebenen konnten mit einfachen linearen und logarithmischen 



 

Modellen annähernd beschrieben werden. Für weitere Vergleiche wurden für jede Ebene und 

Baumart VI sowie Red edge-Positionsmetriken berechnet, inklusive dem Red Edge Position Index 

(REPI) und spektraler Ableitungen. Einige der in-situ Blattdaten zeigten dabei ähnlichere Werte zu 

den Fernerkundungsdaten als zu den in-situ Kronendaten 

Auf einer 2,25 ha großen Fläche wurden alle Bäume aufgenommen und die Lichtinterzeption der 

Kronen sowie deren Porosität angesprochen. Verschiedene Ansätze wurden verglichen: digitale 

Standardfotos und hemisphärische Fotos, sowohl im sichtbaren als auch nahinfrarotem Bereich. 

Zusätzlich wurden hyperspektrale Globalstrahlungen unterhalb der Kronen gemessen, um die 

Menge an abgefangenem Licht und die entsprechenden Extinktionskoeffizienten zu ermitteln. 

Felddaten wurden mit hyperspektralen Luftbilddaten verglichen. Von den berechneten 

fernerkundungsbasierten VI zeigte der Photochemical Reflectance Index (PRI) gefolgt vom 

Carotenoid Reflectance Index 1 (CRI1) die höchsten, wenn auch moderaten, Korrelationen mit 

Kronenöffnungen aus sichtbaren hemisphärischen und den nahinfraroten Standardaufnahmen. 

Der Anteil an abgefangener photosynthetisch aktiver Strahlung, ermittelt aus den 

Strahlungsmessungen, zeigte eine moderate Korrelation mit dem Difference Lignin Index (NDLI) 

und dem Red Green Ratio Index (RGRI). 

In der letzten Teilstudie wurden Waldinventurdaten mit flugzeuggetragenen Hyperspektraldaten 

auf größerer Fläche kombiniert. Standardmäßige Bestandesvariablen wurden pro Inventurplot 

gemittelt und den fernerkundungsbasierten Metriken gegenübergestellt. Die geschätzte 

Grundfläche pro Hektar zeigte keine Korrelation mit berechneten Vegetationsindizes. Auch 

konnten bei den Baumhöhen- und Durchmesserklassen (Brusthöhendurchmesser, BHD), sowie 

den Bestandesdichten keine klaren Trends beobachtet werden. Allerdings waren im nahen und 

kurzwelligen Infrarot Tendenzen eines Zusammenhangs zwischen Reflektanzen und Durchmesser 

und Dichteklassen erkennbar. Beim Vergleich aller VI hatte der PRI die höchste, moderate, 

Korrelation mit BHD- und Dichteklassen, sowie der mittleren Baumhöhe pro Plot. Wieder einmal 

zeigte der PRI vielversprechende Ergebnisse für zukünftige Analysen. 
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1 CHAPTER ONE – INTRODUCTION 

 BACKGROUND 1.1

In the last decades an increased change of the global landscapes and environments and a huge 

human impact have been come to pass. One main focus is on forests and their condition since they 

cover about one third of the Earth’s surface as reported by the United Nations Environment 

Programme (UNEP et al., 2009). The area covered by forests in the country of Germany is about the 

same dimension and amounts to currently ca. 32 %, which are approximately 11.4 million ha 

(BMEL, 2015). These ecosystems are highly dynamic and very complex. They take up essential 

functions for local and global communities in social, ecological and economic aspects (Füssel et al., 

2012; Thomas, 2012). Some of those functions represent the fundament of sustainability and have 

a higher impact than others have; some are maybe more evident on a closer inspection (Figure 

1.1). One main role of forests is certainly the influence on the world’s climate. They play an 

important role for water regulation. By the processes of evapotranspiration, respiration and 

photosynthesis they are consequently the main drivers in the terrestrial and atmospheric water, 

carbon and oxygen circles (Bonan, 2008). In addition, forests host a huge number of plant and 

animal species and contribute a big part to the overall biodiversity (FAO, 2010; Parrotta et al., 

2012). Besides the relevance for global fauna and flora, there is also a big importance for the 

livelihood of local communities and international economies. Woodlands are essential for 

employment and livelihood of millions of people worldwide (Chao, 2012). The multipurpose 

character of forests makes mankind often facing with a balancing act between conservation and 

utilization. 

Although some countries like Germany try to manage their forests in a way that the regrowth of 

trees is higher than or equals to the amount of felling (BMEL, 2015), a rising need for woody 

products, energy and especially land has been leading legally and illegally to deforestation and 

cultivation of large areas in many parts of the world. Besides an ongoing urbanization and 

expansion of infrastructure the loss of substantial ecosystems and forests has been intensified by 

grazing land for cattle and, more recently, for soy bean and oil palm plantations (Hansen et al., 

2008; UNEP et al., 2009). Thus, the recent situation and markets have become challenging to 

researchers and decision makers world-wide and led to continuous reassessing and adapting these 

cross-linked processes. This holds especially for the debate about man-made climate change and 

future strategies (Franklin, 2001; Füssel et al., 2012; IPCC, 2013; Peng et al., 2011).  



CHAPTER 1 - BACKGROUND 

3 

 

Figure 1.1: Services of forests cover ecological, economic and social aspects (Thomas, 2012, 
modified). 

  

There are several international processes considering forest mitigation functions of forests by 

financial compensations. Among the most prominent in the last years is the UN-REDD program on 

reducing emissions from deforestation and forest degradation (FAO et al., 2011). More recently the 

UNEP started a collaboration with the International Union for Conservation of Nature (IUCN) 

bringing their REDD program and the Global Partnership on Forest and Landscape Restoration 

together with the goal of restoring forest landscapes (UNEP, 2014). The importance of forests for 

the climate is also based on the sequestration of carbon above ground and in the soil (Baccini et al., 

2012; Pan et al., 2011; Saatchi et al., 2011). These carbon stocks are maybe not always an 

accumulating sink, for example, when forests are getting old and decay, but at least a storage of 

immense importance. Moreover, the global carbon cycle is affected not only by complete removal 

of forests but already by disturbances (McDowell et al., 2015; Seidl et al., 2014). However, we are 

coping loss of forests in some regions of the world (FAO & JRC, 2012; Sloan and Sayer, 2015), and 

because deforestation is the second largest source of anthropogenic CO2 emission, it is crucial to 

have a sound monitoring to record changes over time (Kleinn et al., 2002; van der Werf et al., 2009; 

Wertz-Kanounnikoff, 2008).  

Forest inventories are the primary sources of terrestrial data about wooded landscapes. On 

national level, the methods of inventory as well as the implementation of sampling techniques 

differ. However, mainly based on a systematic samples spread over a target area they record and 

report key variables like species composition, basal area, tree height, stem density and many other 

auxiliary data more. When surveying Earth’s surface on local, regional and global scale another 

important measure is the utilization of remotely sensed data acquired from aircrafts or satellites 

(Belward and Skøien, 2014; Boyd and Danson, 2005; FAO & JRC, 2012; Franklin, 2001; Kleinn, 

2002). It should be noted that usually only the land cover type can be derived rather than the kind 

of land use (Tuanmu and Jetz, 2014; Verburg et al., 2011). However, as additional information it 
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can be a helpful support for fieldwork and becomes more and more indispensable (Fridman et al., 

2014; Gregoire et al., 2011; McRoberts and Tomppo, 2007). Selected ground targets or even whole 

landscapes are viewed from above and examined from a certain distance. The analysis of images 

and collected data takes place in a laboratory or workstation afterwards. Obtained information can 

then be shared and used for future decisions. Furthermore, changes in relation to a point in time as 

a base line can be registered using a standardized and operational monitoring system, which 

ideally includes a repeated survey at a meaningful temporal and spatial scale (Giri et al., 2013; 

Romijn et al., 2015). The exploitation of remotely sensed data is still continuing, and the techniques 

and methods can lead to information which is getting more interesting for forest management and 

planning purposes than it might be the case in the past (Holmgren and Thuresson, 1998). The 

challenging part is the derivation of useful and needed information. Nowadays there are plenty 

multispectral remote sensing (RS) platforms possibly related to observing and monitoring of 

forests (Boyd and Danson, 2005; Fagan and Defries, 2009), and the number of operating satellite 

systems is increasing since years (Figure 1.2). 

 

Figure 1.2: Number of near-polar orbiting, land imaging civilian satellite operational from 1972 to 
2013 (Belward and Skøien, 2014, modified). 

 

In the following, only some examples will be highlighted for a better assessment of the context and 

pointing to the international importance of remotely sensed monitoring. The European Earth 

observation program Copernicus, formerly called GMES (Global Monitoring for Environment and 

Security), started the Sentinel satellite series in 2014. It shall support in monitoring climate 

change, atmosphere, oceans and land (EC, 2015). Up to now, mainly Landsat satellites have been 

used for these kinds of large-area and often multi-temporal observations. Their newest 

replacement, the Landsat Data Continuity Mission (LDCM) or just Landsat 8, was launched in 2013. 

Also the Intergovernmental Panel on Climate Change (IPCC) is attempting to detect processes like 

afforestation, reforestation and deforestation (ARD) incorporating remote sensing for 

classification and monitoring purposes (IPCC, 2000). The global Forest Resource Assessment of the 

Food and Agriculture Organization of the United Nations (FAO) has implemented a special remote 
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sensing study to improve information about actual spatial distribution of forests and changes in 

time (FAO, 2010). Moreover, the FAO recently set up the global land cover database GLC-SHARE 

which incorporates and combines different data sources, from which the area of global tree cover 

amounts to 27.7 % (FAO, 2014). Latest publications and discussions about global forest mapping 

using remote sensing data show the importance and actuality of forest and vegetation mapping 

(Asner, 2014; Hansen et al., 2014, 2013; Lui and Coomes, 2015; Tropek et al., 2014). Finally, in the 

Global Climate Observing System (GCOS) there are 50 essential climate variables listed including 

land cover and vegetation type, leaf area index, above ground biomass and fraction of 

photosynthetically active radiation (GCOS, 2010). The World Meteorological Organization (WMO) 

supports this system as well as the Intergovernmental Oceanographic Commission (IOC) of 

UNESCO, the UNEP, and the International Council for Science (ICSU). Remote sensing technology is 

partly helping in deriving information about the target variables. 

For observing large areas, multispectral data, having a moderate spectral resolution and only a few 

distinct broad bands, has already been widely used. Moreover, this type of RS has been actually the 

most preferable source of information when it comes to monitor forest cover changes over large 

areas and time intervals (Kim et al., 2014; Olander et al., 2008; Townshend and Justice, 1988). 

However, nowadays there is an increased appearance of hyperspectral sensors and their data 

exploitation – although the technology is already available since long (Goetz, 2009; Steiner and 

Gutermann, 1966; Treitz and Howarth, 1999). In contrast to the most often used multispectral 

sensors hyperspectral systems collect and provide data in numerous narrow channels resulting in 

rather contiguous signal responses. In this context it is often referred to as imaging spectroscopy 

or spectral imaging. Obviously, the high number of bands entails an enormously increased disk 

space. The spatial resolution is often lower than of comparable multispectral systems as a 

compromise for keeping the data size manageable (Burger and Gowen, 2011). Due to the higher 

dimensionality, its analysis is also much more complex. Furthermore, when designing such sensors 

it seems to be difficult to retain a good signal to noise ratio while decreasing the spatial resolution 

(Villafranca et al., 2012). In the last years the technology has enhanced due to better sensors and 

more powerful computers making data analyzable by new methods and accessible for more end 

users. However, hyperspectral data analysis has got a huge potential which yet has to be fully 

explored. All these circumstances and the yet low number of available systems are the reasons for 

that hyperspectral data analysis is still a rather young discipline. Even though the technology had 

been developed some time ago the analyses and scientific usage has become more interesting and 

promising for many different purposes (Arafat et al., 2013; Beck, 2003; Grosjean et al., 2014; 

Medina et al., 2011; Saldaña et al., 2013). Besides that, dealing with forests the recognition and 

mapping of tree species is a contemporary and ongoing issue in remote sensing (Clark and Roberts, 

2012; Dalponte et al., 2013; Féret and Asner, 2013; Ghiyamat et al., 2013). Albeit there is a constant 

improvement of sensors and analysis methods, we must not disregard to use field observations as 
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training data for calibration and validation. The combination of these two approaches is a key 

challenge and should always be followed whenever possible. Besides RS systems there are also 

non-imaging hand-held sensors available for a range of different applications in mineralogy, 

geology, vegetation analyses. These field spectroradiometers can be used for calibrating sensors, 

measuring reflectance or the incoming radiation at sensor as well as at ground level. Furthermore 

it allows detailed examination of the optical properties of mineral soil or plant leaves, e.g. (Castro-

Esau et al., 2006; Clark et al., 2005; Milton et al., 2009; Ramakrishnan et al., 2013).  

Another way of plant-related imaging and non-imaging spectroscopy data exploitation is the 

calculation of vegetation indices. Broad-band indices such as the Normalized Difference Vegetation 

Index (NDVI) and Simple Ratio (SR) have been established in many studies (Bannari et al., 1995). 

Rather new hyperspectral vegetation indices offer complete new application possibilities and a 

more distinct and selective analysis of features (Thenkabail et al., 2000). Hence, hyperspectral data 

provide much more information and can be used for an improved vegetation analyses (Cole et al., 

2014; Gitelson et al., 2003; Ustin et al., 2009) including the analysis of foliage biochemistry for 

deriving plant state and performance (Bartlett et al., 2011; Sims and Gamon, 2002). For these 

applications detailed hyperspectral data seem to be appropriate to investigate the processes 

related to plant physiology (Ghiyamat and Shafri, 2010). But recent argumentation reveals also to 

interpret the gained results such as nitrogen content in leaves and canopies with care. Observed 

relations in NIR and SWIR can have other reasons and often depend on leaf structure and water 

content. For that, it is important to distinguish between causality and correlation (Fisher, 2009; 

Knyazikhin et al., 2013a, 2013b; Ollinger et al., 2008; Townsend et al., 2013). Nonetheless, forest 

canopies can tell us a lot about the condition of forest stands. Therefore, many researchers link 

other field-observed data to remote sensing imagery. Since some characteristics of vegetation are 

influencing light absorption and hence the reflected radiation, the variable derivation can be done 

indirectly by optical measures. One popular variable is the leaf area index (LAI) which is related to 

growth and productivity (Pekin and Macfarlane, 2009; Soudani et al., 2006; Zheng and Moskal, 

2009). In that context also the dimensionality and density of tree crowns plays a big role. Thus, 

canopy porosity and light interception are important factors for applications in forestry and 

ecology. One way for non-destructive estimations of LAI, openness or gap fraction is the use of 

digital hemispherical photography (Beckschäfer et al., 2013; Frazer et al., 1997; Jonckheere et al., 

2004). Besides that, light detecting sensors, mainly the Licor LAI-2000 device, have been used 

(Gobron and Verstraete, 2009a; Nackaerts et al., 2000). However, one major drawback is the lack 

of spectral details measured about light interception and absorption. And only a few publications 

took this explicitly into account yet (Endler, 1993; Jordan, 1969; Wang et al., 2003). Beyond this 

and within the contexts of nature conservation and carbon-emission-trading systems it is crucial to 

generate comprehensive information about the existing forest. This includes knowledge about 

growing stocks and health condition of the plants. So, there is a demand for details on variables 
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describing the vegetation in general or rather the characterization of forests and trees in 

particular. Thus, the understanding of the impact of spatial arrangement of trees and species 

composition and of processes within these ecosystems such as physiology, seasonal phenology and 

optical properties of canopies is of central interest. Moreover, what is absolutely needed, besides 

remote sensing approaches, are detailed studies on leaf level (Homolová et al., 2013). That is what 

this study is taking up. It is carried out in a mixed temperate forest and shall consider present 

issues and show the capability of spectrally high resolved information in different applications 

with a focus on canopy light interception, tree species mapping and the modelling of important 

forest data such as diameter class and stand density. 

 

 OVERALL OBJECTIVES 1.2

In preparation of the upcoming German hyperspectral satellite mission EnMAP (Environmental 

Mapping and Analysis Program) several national and international research projects have been 

conducted. They cover a variety of applications like aquatic and urban research, geology and 

mineralogy, agriculture and forestry. Within the framework of that program also this study is 

carried out. Most parts of this study can be considered as basic research and methodological 

investigation. The focus is on the utilization and potentials of hyperspectral data within the 

framework of forestry and ecological research using regular inventory data and additional 

recorded information. Moreover, it shall give an overview in the applicability of the data and show 

some aspects and challenges occurring in the context of forest vegetation analysis and 

management planning on the example of a temperate forest. The study intends to help and 

improve understanding for the spectral-optical behavior of tree leaves and forest stands. It should 

further be investigated how sunlight is penetrating the canopy layer of a forest stand and which 

amount is being absorbed or scattered. Besides hyperspectral field data for radiation measurement 

on the ground also hyperspectral remotely sensed imagery is used which allows the linkage and 

comparison of data sets on different scales. As these campaigns are done simultaneously, this study 

has gathered very unique data sets. On leaf level the point of time is investigated which might 

emphasize the temporal development and the apparent interspecific differences in reflection. 

Another goal of this study is to investigate the potential of hyperspectral data for the 

discrimination of different tree species on different levels. Finally, aerial imagery is linked to 

permanent forest inventory plots to explore the relation of field data and remotely sensed 

hyperspectral information on a large area. In summary, the examples on the application of high 

spectral resolution sensors shall be shown in case studies conducted in a rather highly mixed 

forest of the Hainich, a German national park with a high number of unmanaged near-natural 

stands consisting of a variety of deciduous tree species. 
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 THE STUDY SITE 1.3

This study was conducted in a part of the Hainich in Thuringia, a wooded ridge in the center of 

Germany, located at about N51.08° E10.45°. The terrain altitude ranges approximately between 

200 and 500 m (Figure 1.3). The slope on the north-facing plateau area is about 1-4°, but can 

increase in some harsher cuts. The climate is sub-Atlantic with a sub-continental influence. 

Precipitation averages 750 mm annually, mean temperature is about 7.5° C. Mainly Triassic parent 

materials shell-limestones and loess from the Pleistocene are providing several different soil types 

like rendzina, luvisols, stagnosols and brown soils, having often a loamy texture (Fischer et al., 

2010; Getzin et al., 2012; Knohl et al., 2003; Mölder et al., 2008). With a total area of 16,500 ha the 

surrounding Hainich is the largest coherent deciduous forest of Germany. In the year 1975, a part 

of 7,500 ha was declared as national park, of which about 5,000 ha is forest. The stands are 

commonly dominated by beech (Fagus sylvatica), followed by ash (Fraxinus excelsior), maples 

(Acer spec.), oaks (Quercus spec.), hornbeam (Carpinus betulus) and others. Only a few patches of 

coniferous trees exist, mostly composed of spruce (Picea abies). The species rich forest is listed as 

Subatlantic-Central European beech forest with Lathyrus vernus, Hepatica nobilis in the colline-

submontane level (Bohn. et al., 2004). Several forest communities are present including Galio-

Fagetum, Hordelymo-Fagetum and Carpinum-Fagetum.  

 

Figure 1.3: Location of the study site in central Germany within the National Park Hainich. 
Background images: Landsat 8, channel composite 6-5-4, date: 07.07.2013; digital elevation model: 
dtm20, 2010 (GeoBasisDE/TLVermGeo). UTM Zone: 32N, WGS84. Upper right: climate diagram for 
Mülverstedt (climate-data.org). 
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Due to the history and the recent protected status, many stands have not been managed for 

decades. Historically, these forests have been managed in a so-called coppice with standards 

system. Moreover, parts of the area were used as a military training ground between 1965 and 

1997, so that near-natural forest stands have been evolved (Knohl et al., 2008, 2003; Kutsch et al., 

2010; Mölder and Bernhardt-Römermann, 2009). Hence, many standing dead trees and lying wood 

debris can be found all over the area. The trees in the Hainich belong to very different age classes, 

and depending on the location it can reach up to more than 250 years. The highly mixed forest 

consists of a high variety of deciduous tree species and offers unique characteristics considering 

species compositions and diversity. Within this context these Ancient Beech Forests of Germany are 

listed as UNESCO World Heritage Site since 2011 together with the Primeval Beech Forests of the 

Carpathians (Nationalparkverwaltung-Hainich, 2012; UNESCO, 2014).  

 

Figure 1.4: From left to right: Inside the study area in winter and summer; climate tower and canopy 
walk. 

 

Nevertheless, the presence of trees of different species and ages makes it attractive and challenging 

for both terrestrial and remote sensing based studies. On account of the special conditions there, 

many long-time and recent studies from different fields of research have been conducted in the 

Hainich (Boch et al., 2013; Fischer et al., 2010; Guckland et al., 2009; Herold et al., 2014; Nölke et 

al., 2015). This also causes the presence of on-site research facilities. Within the study area a 45 m 

high climate tower is located (Figure 1.4), which is a part of the international FLUXNET network 

(Ershadi et al., 2014; Stoy et al., 2014). It is used, amongst others, for measuring carbon dioxide 

fluxes and solar radiation (Knohl et al., 2003; Pinty et al., 2011b). It allows one also to reach higher 

levels of nearby trees and canopies. Moreover, it shall provide the basis for a core area in which 

this study is carried out. A canopy walk nearby offers another way to access tree crowns and can 

be used for both touristic and scientific purposes.  

 

 THESIS STRUCTURE  1.4

A quick overview of the organization and content of this thesis shall be given in the following. This 

text is a monograph, but arranged in single sections which correspond to individual but closely 



CHAPTER 1 - THESIS STRUCTURE 

10 

linked research sub-projects that may be the starting point for subsequent journal publications. 

The chapters are including subsequent content:  

The next chapter 2 is dealing with some basic and important principles of the physics of radiation 

and background information about the used technologies. Furthermore, the fundamentals of 

optical characteristics of vegetation are outlined here.  

The subjects of chapter 3 are the processing and analysis of in-situ collected spectral responses 

from different broadleaved trees. Further focus is on the species-wise leaf optical properties 

incorporating reflection, absorption and transmission as well as the derivation of phenology and 

seasonal trends in leaf reflectance.  

Chapter 4 is picking up the reflectances of different Central European tree species with special 

regard to the levels of leaves, branches, crown and stand. Besides reflectances, specific vegetation 

indices are examined with a focus on the red edge position expecting varying results on the 

different scales. 

In chapter 5, the topic is the analysis of forest canopies regarding canopy porousness and species 

composition. In an established core area the crown cover and light interception are obtained. 

Different techniques and technologies such as photography and radiation measurements are 

compared and examined. Furthermore, ground based data regarding canopy openness and light 

interception is connected with remotely sensed data. It is investigated whether there is a 

relationship between terrestrially measured and airborne derived data of high spectral resolution.  

Chapter 6 deals with the linkage of hyperspectral remote sensing imagery and information 

acquired on the ground on a larger area. Data sets are forest management units and boundaries 

and forest inventory plots incorporating different target variables like tree species, basal area, 

height and diameter and stand density class. Plot data is opposed to spectral bands and vegetation 

indices. 

The final chapter 7 is the synopsis and concludes the single parts of this study and summarizes the 

work in the overall context. Additional ideas and analyses are presented that have not been 

examined further. After that follows a short outlook and future perspectives.  

 



 

 

CHAPTER 2 

THEORETICAL BACKGROUND & DATA MATERIAL 
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2 CHAPTER TWO – BACKGROUND 

 PRINCIPLES OF OPTICAL RADIATION 2.1

The basis for vision in general and optical remote sensing in particular is the detection, processing 

and interpretation of electromagnetic radiation (EMR). There are many natural and artificial 

sources of radiation: changes of energy levels of electrons, the acceleration of electrical charges, 

the decay of radioactive materials or the thermal motion of atoms and molecules. Actually, all 

matter with a temperature of more than the absolute zero point of ca. -273 °C emits EMR (Jones 

and Vaughn, 2010; Lillesand et al., 2008), but we are mainly talking about the radiation emitted by 

the sun in this context. First, it is important to have an idea about the rather complicated character 

of radiation. There are two models trying to explain the behavior of EMR: according to the first one, 

the flux of energy is moving in harmonic waves having a certain frequency in the magnetic and 

electric fields (Figure 2.1). The second model is seeing light as consisting of particles like photons 

and quanta. As EMR can show any of these properties, depending on the experimental design, both 

points of view have to be considered (Bolduc et al., 2014; Mather and Koch, 2011; Menzel et al., 

2012). 

 

Figure 2.1: Concept of electromagnetic waves (UGA, 2013, modified). 

 

All EMR disperse with the speed of light 𝑐 of about 3.00×108 m/s. It is constant and independent 

from the wavelength . The relationship to the frequency 𝑓 can then be expressed as:  

𝑐 =  𝑓       =  𝑐/𝑓   (Eq. 2.1) 

Further, the energy of the photons 𝑄 is proportional to the frequency 𝑓: 

𝑄 =  ℎ𝑓 (Eq. 2.2) 

where ℎ is the Planck constant, which is 6.626 x 10-34 Js. If we include ℎ in the formula for energy 

(Eq. 2.2), we can rewrite it as: 

𝑄 =  ℎ𝑐/ (Eq. 2.3) 

Consequently the energy of photons is decreasing with increasing wavelength (Figure 2.2). In 

shorter wavelengths the ultraviolet are appearing, followed by x- and gamma-rays; the latter have 
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a very high content of energy. On the other end, towards low frequencies, micro- and radio waves 

come after the infrared region containing low energy. 

 

Figure 2.2: Electromagnetic spectrum (Lambert and Edwards, 2013). 

 

What we can see with our eyes, is, generally speaking, a certain amount of light that is reflected or 

emitted by objects and matter. For us only the range of the spectrum about between 400 and 

700 nm is visible with a maximal sensitivity at 550 nm (Mather and Koch, 2011). Inside the eye 

there are two types of receptors that are responsible for our color vision. The specialized cone cells 

are most sensitive to light at about 425, 530 and 560 nm, representing blue, green and red (Figure 

2.3). Rod cells are more sensitive to light and hence important for the night vision. Their 

responsiveness peak is around 500 nm.  

 

Figure 2.3: Left: Human eye’s back part with receptor cells (SSP, 2015). Right: Response functions of 
the blue-, green- and red-sensitive cones in human eyes (Mather and Koch, 2011). 

 

 ILLUMINATION AND GEOMETRY  2.2

At this point it is useful for clarification to have an overview about terminology in hemispherical 

and directional radiation measurement (Table 2.1). The radiant energy is defined as the total 

energy that is radiated to or from all directions and usually noted in joule [J] which is newton 
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meter [N m] or watts multiplied by seconds [W s]. We can measure the incoming radiation or 

irradiance per time and area as radiant flux in watts per square meter [W m-²]; while radiance 

considers a solid angle and not the complete hemisphere. It is usually noted in watts per square 

meter and steradian [W m-² sr-1].  

Table 2.1: Selected terms and their definition used in radiation measurement (Jones and Vaughn, 
2010; Lillesand et al., 2008). 

Unit Definition 

Radiant energy (Q), [J] = [W s] Total energy radiated in all directions 

Radiant flux (F, Φ), [Js
-1

] = [W] Radiant energy emitted or absorbed per unit time 

Irradiance (E), [W m-²] Radiant flux incident on unit area 

Spectral irradiance (E), [W m-² nm-1] Radiant flux per wavelength incident on unit area  

Radiance (L), [W m-² sr-1]  Radiant flux per unit area of surface per unit solid angle 

Reflectance (R, ρ), [unit-less] Ratio of incoming and reflected radiation 

 

However, reflection is the central process and describes the amount of the incoming light that is 

thrown back from an object. One way to make data comparable and interpretable is to work with 

spectral reflectances derived from digital numbers or radiances, respectively (Eq. 2.4).  

𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 =  
𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛

𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛
 (Eq. 2.4) 

The values range between 0 and 1 (0-100 %), as they define the ratio of reflected and incoming 

light – being more precisely the ratio of reflected radiant flux to incident radiant flux. Object 

surfaces can behave in very different ways. At a perfect specular object like a mirror the incident 

angle of incoming beams equals the exit angle. Diffuse or Lambertian materials are isotropic and 

reflect the incoming light equally to all directions (Figure 2.4). An example of a nearly diffuse 

object is the screen in cinemas. Here, up to a certain degree, the viewing position has not a big 

impact on the quality of the picture.  

 

Figure 2.4: Different types of reflecting surfaces. 

 

Hence, in reality surfaces are rather rough, often facing a mixture of these concepts and showing 

anisotropy. Especially when observing an object or a landscape consisting of several surfaces with 

different reflection behaviors from a distance. Another effect is apparent when the source of light 
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like the sun is in the same angle as the viewer. Here the reflected beams often create a hot spot in a 

specific region having the brightest values.  

Not only the reflected radiation, but all kind of EMR is principally spreading to any direction and 

following the inverse square law. That means that the intensity, the energy per area, is depending 

on the angle and decreases with the distance to the light source: at a doubled distance the intensity 

(observed brightness) is four times lower. However, the theory of reflectance geometry is rather 

complex and not as trivial as it may appear at first glance. Of the nine geometries proposed by 

Nicodemus et al., 1977, only two are relevant for practical measurements. What we usually 

measure in the field 2or by remote sensors is in most cases hemispherical-conical reflectance 

(Figure 2.5). Strictly speaking, the frequently used term ‘bidirectional’ can in fact be seen as a 

rather theoretical concept than a measureable parameter.  

 

Figure 2.5: The conical (left) and hemispherical-conical (right) reflectances are normally measured 
(Nicodemus et al., 1977; Schaepman-Strub et al., 2006, modified). 

 

The difference between reflectance and reflectance factor is sometimes not clearly emphasized; 

see Nicodemus et al. 1977 and Schaepman-Strub et al. 2006 for further readings. Nonetheless, the 

reflected signals are always depending on several variables like viewing and illumination angles in 

azimuthal and zenithal directions (Figure 2.6). The corresponding bidirectional reflectance factors 

(BRF) can be described by the viewing angles (𝛩𝑣 , 𝛷𝑣) and illumination angles (𝛩𝑖 , 𝛷𝑖) of incoming 

(𝐼) and reflected radiation (𝑅) (cf Nicodemus et al., 1977; Walter-Shea and Biehl, 1990). 

 

Figure 2.6: Reflection and illumination geometry. R=reflected radiation, I=incident radiation, Θv, 
Φv=viewing angles, Θi, Φi=illumination angles; N=north, E=east, Z=vertical zenith direction.  
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Furthermore, the Lambert's cosine law says that the incoming radiant intensity and reflected 

radiation 𝐿 depends proportionally to the cosine angle between the incoming light and the surface 

of an ideal diffuse object (𝐿 ~ 𝑐𝑜𝑠(𝑖)): 

𝐸𝜃 =  𝐸 ∗ 𝑐𝑜𝑠()      𝐸 = 𝐸0 ∗ 𝑐𝑜𝑠(𝑖)  (Eq. 2.5) 

where 𝐸0 is the incoming radiant energy, 𝐸 is the effective energy. Hence, it follows for a 

Lambertian object: 

𝐿 =
𝐸0

𝜋
𝑐𝑜𝑠(𝑖) (Eq. 2.6) 

These are simplified and ideal assumptions for rather flat terrain. For sloped terrain, the effective 

incident angle 𝑖 can be defined by (Smith et al., 1980): 

𝑐𝑜𝑠(𝜃î) =  𝑐𝑜𝑠(𝜃𝑠) ∗ 𝑐𝑜𝑠(𝜃𝑛) + 𝑠𝑖𝑛(𝜃𝑠) ∗ 𝑠𝑖𝑛(𝜃𝑛) ∗ 𝑐𝑜𝑠(𝜙𝑠 − 𝜙𝑛) (Eq. 2.7) 

where 𝜃𝑠 is referring to the solar zenith angle and 𝜃𝑛 to the normal zenith angle or terrain slope, 𝜙𝑠 

is the surface azimuth and 𝜙𝑠 is the solar azimuth. 

 

 IMPACT OF THE EARTH’S ATMOSPHERE 2.3

2.3.1 Scattering 

Another important process which is influencing the optical appearance of objects and the photon’s 

path through the air by redirecting is scattering. There are mainly three types of scattering 

(Landgrebe, 2003). Rayleigh scattering occurs when the atmospheric particles have a very small 

size in comparison to the wavelength of the radiation. On the optical range, the shortwave 

ultraviolet and blue light is scattered at first and the most, whereas towards the infrared this effect 

is decreasing. This is the reason why the sky appears blue. Due to this, the sky appears rather 

reddish during sunset as all blue light is scattered completely in the longer atmospheric path. 

Particles like dust, water droplets or smoke that have a similar size like the wavelength of the 

scattered rays are causing the Mie scattering. Its wavelength dependence is a bit more complex 

than in the Rayleigh scattering. The third type is the nonselective scattering. Here all wavelengths 

are scattered equally by large particles like water droplets or dust. Hence, scattering depends on 

the viewing and illumination angles. This has an impact on the appearance and reflection values 

within one scene. Figure 2.7 shows the effect of angle-dependency on both, scattering and 

reflectance. From that, it is clear that the reflection of the closed forest canopy is rather 

anisotropic. This is a proper example that the Lambertian assumption is not valid but only a rough 

approximation. 
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Figure 2.7: Extreme examples for backward scattering 'with' the sun (left) and forward scattering 
'against' the sun (right) showing a beech forest canopy from the top of a tower in summer, own 
photos. 

 

2.3.2 Sunlight and the atmosphere 

Atmospheric absorption leads to the presence of so-called atmospheric windows. That means that 

the transmittance is wavelength dependent and EMR can penetrate the atmosphere only at certain 

portions of the spectrum. In other parts, the path of radiation is disturbed or blocked completely 

(Figure 2.8). This is crucial for channel selection of sensors detecting up- or down welling 

radiation, for in some wavelengths sensors are just ‘blind’. Water vapor (H2O) is responsible for the 

water bands at about 1400 and 1900 nm. They might be obsolete only under very dry conditions. 

The other main gases causing the absorption are carbon dioxide (CO2), methane (CH4), nitrous 

oxide (N2O), oxygen (O2) and ozone (O3). Besides clouds, these gases are mainly responsible for the 

heating of the atmosphere, what we commonly name the greenhouse effect. Nevertheless the 

bigger part, almost 50 %, is being absorbed by the surface rather than by atmosphere (Trenberth 

et al., 2009). We can read the energy budget for the shortwave radiation as the sum of reflected, 

absorbed and transmitted radiation. About one third of the incoming sun light is reflected within 

the atmosphere and by the surface (Mather and Koch, 2011). For the sake of completeness, it 

should be noticed that the surface emits thermal radiation as heat. However, this study is not 

regarding this longwave emission. The focus is rather on the range of 400-2500 nm, which is also 

referring to the visible, near- and shortwave infrared regions in optical remote sensing. 

Corresponding solar radiation, the energy of the light emitted by the sun is about 1367 Wm-2 at 

Earth’s top of atmosphere – similar to a 5800 K blackbody. It is striking that the shape of solar 

radiance is strongly depending on the selected units. When choosing radiant flux per wavelength 

the maximum is at about 500 nm, whereas it would be around 880 nm when the dependent 

variable is frequency instead. As this is a kind of a distribution function, one should not compare it 

with the functions of the sensitivity of our eyes. This is often misinterpreted and resulting in the 

conclusion that we are evolutionary optimally adapted to maximal solar output (Soffer and Lynch, 

1999). At a more detailed level the spectral irradiance 𝐸 is the energy flux per wavelength unit, 

e.g. watts per square meter and micron. As described above, the irradiance at sea level differs from 

the sun light at the top of Earth’s atmosphere. Absorption, reflection and scattering effects cause a 
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specific pattern and a lower intensity of the beams that reach the ground (Figure 2.8). Molecules 

like water and carbon dioxide induce furthermore the characteristic absorption bands, which 

imply that the insolation is extremely sensitive to atmospheric gases. Whereas the impact of clouds 

is not only fix for the water bands but rather affecting all the spectrum. Figure 2.9 depicts the 

decreasing effect of a thin cirrus-like layer on a rather sunny day. The graph is based on own 

measurements conducted in May at a latitude of about N 51°. 

 

Figure 2.8: Solar radiation spectrum at Earth in the ultraviolet (UV), visible (VIS), near- and shortwave 
infrared (IR) spectral domain showing the absorption bands of ozone, oxygen and carbon dioxide 
(Jensen 2007, modified). 

 

 

Figure 2.9 : Spectral irradiance at clear sky (solid line) and with cirrus and minor cloud cover (dashed 
gray line) and the difference (multiplied by 10) (dotted line); own measurements, date: 25.05.2012. 

 

There is a clear and obvious relationship between the sensor-target angle and the energy content 

of the rays reaching Earth’s surface. The irradiance quantity at surface level depends on the 

location on Earth, sun elevation angle, date and time. Commonly there are changes during the day 

with some stable conditions around the maximum at noon (Figure 2.10). This can be relevant when 
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planning a flight or field campaign and undertaking repeated and comparable measurements. As 

the global PAR radiation is highly correlated with the sun elevation angle, also other wavelengths 

show an increase with a peak around noon. Figure 2.11 depicts some measurements from shortly 

before 10:00 am until 01:00 pm, when the sun zenith is coinciding with the most powerful 

radiation. In absolute terms the changes in the shortwave infrared are apparently less than in the 

visible range. Again, at higher wavelengths over 2200 nm there is remarkable noise in the data 

induced by the sensor.  

  

Figure 2.10: Left: Global PAR irradiance measured on towers at two sites in the Hainich national park 
on canopy walk (solid line), core area (dashed line). Right: Relationship between global irradiance at a 
canopy walk and sun elevation angle during 06:00-21:00, 24.07.2012. 

 

 

Figure 2.11: Spectral irradiance in dependence on the daytime, date: 20.08.2011, at about 51.1°N, 
10.5°E. 

 

 REMOTE SENSING TECHNOLOGY 2.4

For a better understanding of the evolution and theory of remotely sensed imaging a short 

excursus shall be given now. There are mainly two types of platforms: airborne and spaceborne. 

The history of remote observation begun in the 19th century by using balloons and even cameras 

attached to pigeons. As often in the history, military purposes enforced the development of 

methods and technology. In the First World War, the air forces took pictures from zeppelins and 

planes mainly for reconnaissance, in the Second World War the success of bombing missions was 
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checked additionally by aerial photography (Baumann, 2014; Granshaw, 2015). In that time also 

infrared and radar measures had been incorporated starting a period of more elaborate utilization. 

One decade after successful launches of orbiting satellites in the 1960’s a series of operational 

systems had been evolved with the Earth Resources Technology Satellite (ERTS-A), also known as 

Landsat-1 (Boyd and Danson, 2005; Campbell, 2006; Lillesand et al., 2008; Steiner and Gutermann, 

1966).  

The carried sensors or camera systems themselves can be split into groups of active sensors on 

one side and passive sensors on the other side. Active sensors emit or transmit, as the name 

implies, actively a certain range of the spectrum and receive and decode the returned signals. 

Mostly used examples are radio wave-based Radar (Radio detection and ranging) and laser-based 

Lidar (Light detection and ranging) technologies, commonly operating in a wavelength range of 1-

100 cm. By contrast, passive sensors do not have their own source of energy or light which is 

usually the sun. Common photo cameras and most of the remote sensing sensors belong in this 

class as well as the instruments in this study. At all systems the path of incoming and reflected 

radiation is through at least a part of the atmosphere, and hence the signal is distorted by 

absorption and scattering. Additionally, adjacency effects by the neighboring areas of the focused 

target are influencing the signal. The common spectral range is 400-2500 nm. 

There are four main resolutions that we should consider when dealing with remote sensing data: 

The temporal resolution defines the date and time of acquisition. This also incorporates monitoring 

aspects for repeated measurements of a specific area or landscape. The repetition time for a 

Landsat 8 satellite is 16 days, e.g. The radiometric resolution provides information about how the 

data is stored, or, better speaking, of how many grey values the image consists of. As it sets the 

contrast, it is hence also referred to sensitivity and usually determined in terms of bits, like 8-bit 

(=28) or 16-bit (=216). The spectral (optical) resolution is the covered wavelength range related to 

the number of spectral bands as it is linked to the bandwidth and is described by the full width half 

mean (FWHM). It is sometimes mixed up with the spectral sampling interval (Figure 2.12), which 

defines the steps of bands.  

 

Figure 2.12: Concept of spectral resolution (FWHM) and sampling interval (Malenovský et al., 2007). 
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Finally, the spatial resolution is mainly about the pixel size. It is depending on the sensor’s 

capability, size of the CCD array (charge-coupled device) and the viewing angles. Some important 

terms in remote sensing and its significance are: FOV=field of view, defines the swath width; 

IFOV=instantaneous field of view, defines the individual sensors’ angle; GIFOV=ground 

instantaneous field of view, is the projected IFOV to the ground. The GSD=ground sample distance, 

(from GIFOV, detector size), defines finally the resulting pixel size (Figure 2.13). The spatial image 

resolution is crucial for detecting objects.  

 

Figure 2.13: Illustration of some important key terms in remote sensing (Jones & Vaughn, 2010).  

 

 HYPERSPECTRAL SENSING 2.5

2.5.1 Non-imaging spectroscopy 

When sunlight hits a surface, it depends on the material’s properties and several processes like 

absorption how it appears and whether it is brighter or darker in specific wavelengths. By 

interpretation of reflected radiation, in relation to the incident radiation, we can draw conclusions 

about type and condition of the target matter. In many situations – not only in research – it is 

necessary to gain spectral information concerning the characteristics and composition of materials 

and objects on the ground. In order to emphasize the contrast of land cover types appearances 

Figure 2.14 depicts some targets with variable reflectances. The typical response patterns are 

apparent. Asphalt shows compared to gravel a rather low reflectance over the whole spectrum. 

Notice that grass shows a very typical vegetation reflectance curve with rather low values in the 

visible region and an increased signal in the near infrared.  

Non-imaging field spectroscopy is a way to measure in situ radiation near the object or with direct 

contact using special hand-held instruments. With a spectroradiometer, it is possible to detect 

radiation in calibrated units like relative reflectances as a ratio of incoming and reflected rays, or 
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radiances and irradiances as flux per area. The user can record data in a high number of narrow 

bands over a rather wide range of the electromagnetic spectrum. However, according to the focus 

of the study in the following only the range of about 400-2500 nm is considered. The field 

spectroradiometer used in this study is an ASD FieldSpec 3 Hi-Res (Analytic Spectral Devices Inc., 

Boulder) which will be described in the next chapter in more detail.  

 

Figure 2.14: Ground raw reflectances derived with ASD FieldSpec 3; sensor-related jump at 1000 nm 
and the water bands at about 1400 and 1900 nm are recognizable as well as noisy signals at the end; 
own measurements. 

 

As an accurate and rather sophisticated topic the field spectroscopy has been used in a variety of 

modern research questions (Milton et al., 2009). Measurements taken in the field can be linked to 

remote sensing directly (Groeneveld et al., 2006) or used for calibration purposes (Smith and 

Milton, 1999). However, several studies have been carried out on targets that are rather easy to 

access (Arafat et al., 2013; Ramakrishnan et al., 2013; Schmidt and Skidmore, 2003), but when 

dealing with non-imaging spectroscopy in forests the circumstances are obviously entirely 

different. The most self-evident challenge is the tree height of about 20-40 m in temperate forest 

stands, which makes it difficult to reach the top of the crowns for measuring. There are several 

ways for harvesting leaves and branches to get samples without felling trees: some inventive 

methods use helicopters (Milton et al., 1994) and towers (Leuning et al., 2006), catapults (Omar, 

2010) or slingshots, pole pruner, canopy crane (Castro-Esau et al., 2006) and even shotguns (Clark 

et al., 2005; Clark and Roberts, 2012; Ollinger et al., 2008). Besides the height issue, the surfaces of 

canopies are rather uneven and complex creating differences in reflection. Holes and gaps caused 

by the crown structure create a rough pattern and generate shadowed and sunlit parts having 

different spectral responses which highly depend on the scale. Additionally, trees of uneven age 

and growth have a variable appearance. On the level of leaves as crown compartments, these 

differences might be completely altered or even interspecific absent. Hence, the discrimination of 

species is another complex topic.  
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2.5.2 Imaging Spectroscopy  

2.5.2.1 Background 

In opposite to the low-band-number systems emerging hyperspectral sensors offer a completely 

new point of view to our world. The data consist not only of a few but rather of hundreds of bands 

– for comparison: 8 broad bands of multispectral Landsat 7 ETM+ and 220 spectral bands of 

hyperspectral Hyperion. Figure 2.15 shows the distinct response functions representing the 

sensor’s sensitivity of each channel of four common multispectral satellites as implemented in the 

R-package hsdar (Lehnert et al., 2015). For comparison, a continuous hyperspectral leaf reflectance 

curve is also plotted.  

 

Figure 2.15: Examples of sensor sensitivity as relative response functions for (a) RapidEye, (b) 
Worldview2 (c) Landsat 7 and (d) Landsat 8. For comparison, a hyperspectral reflectance curve of a 
beech leaf derived from field spectroradiometer based on own measurement is shown.  

 

For the definition and characteristics the presence of narrow and contiguous bands is more 

important than just the number of channels alone (Qi et al., 2012). Hence, the term hyperspectral 

does not have a direct physical meaning but is rather referring to the large number of channels. In 

this context we can translate hyper, which means ‘beyond’, actually with ‘too much’. This is also 

because many neighboring bands are containing redundant information and are partly highly 

correlated, so that they have to be filtered according to the intention and target information. 

Moreover, some bands might not contain any useful information at all due to absorption and noise. 

The high spectral resolution can cause classification problems. The Hughes’ phenomenon describes 

for example the curse of dimensionality and says that the higher the number of dimensions the 

higher the estimation error and the poorer the performance of classification can be (Hughes, 1968; 

Shahshahani and Landgrebe, 1994). That can easily occur when using hyperspectral data having 

much more bands than training samples. Hence often data reduction techniques like principal 
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component analysis (PCA), minimum noise fraction transformation (MNF) and discriminant 

analyses (Chang, 2013; Kalacska et al., 2007; Pu, 2009) or other more appropriate methods are 

applied. Another reason for reducing the amount of information is to create data sets, which are 

easier to handle.  

Hyperspectral RS is also referred to imaging spectrometry or imaging spectroscopy (Goetz et al., 

1985; Green et al., 1998). In imaging spectroscopy, besides the two spatial axes of an image, there 

is a third axis representing the hyperspectral bands. That is why data can be represented as a 

three-dimensional data cube (Figure 2.16). Each picture element contains information for every 

channel leading to a specific vector of values. Plotting them yields a continuous graph which some 

authors call spectral signature. But this implies that targets are constantly distinctive and unique. 

However, the reflection of Earth’s land cover surfaces is rather ambiguous and varies with the 

condition and time. Users should be aware that there is not the one and only signature for a 

specific category – apart from pure material often analyzed under laboratory conditions. Hence, we 

should talk rather about spectral curves or spectral response patterns than about spectral 

signatures. 

 

Figure 2.16: Relationship between hyperspectral image cube (left), picture element (middle) and 
spectral response curve (right) (Aberle, 2014, modified). 

 

Imaging technology with a very high number of bands has been used in the investigation of lake 

sediments (Grosjean et al., 2014), human biomedicine (Medina et al., 2011) and also food quality 

(Gowen et al., 2007; Huang et al., 2014; Saldaña et al., 2013). However, one big issue is the 

observation of objects from a larger distance by remote sensing. Just as the non-imaging 

spectroscopy hyperspectral remote sensing is incorporating many possible applications like 

marine research (Vahtmäe et al., 2006), urban information and planning (Cilia et al., 2015; Heiden 

et al., 2012; van der Linden and Hostert, 2009), mineralogy and geology (Crouvi et al., 2006) and 

agriculture (Arafat et al., 2013; Thenkabail et al., 2000).  
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2.5.2.2 Image radiance and ground irradiance 

The following paragraph shall give an example of how measured irradiances can be used for direct 

image corrections. When operating hyperspectral imaging sensors such as AISA (Airborne imaging 

spectrometer for applications) EAGLE and HAWK (SPECIM, SPECTRAL IMAGING LTD., Finland), spectral 

irradiance is measured by default at the aircraft using the diffuse fiber optic down welling 

irradiance sensor (FODIS). In this case, additional to the airplane’s sensor irradiance, also ground 

irradiance was measured close to the forest by a cosine receptor attached to an ASD FieldSpec 3 – 

in next chapters referred to as above-canopy irradiance. Using this we can rather simply derive a 

reflectance image (Figure 2.18 b) by: 

𝑅 = (
𝐿

𝐸
) ∗ 𝜋 (Eq. 2.8) 

where 𝑅 is representing the reflectance value, 𝐿 the image radiance and 𝐸 the spectral irradiance. 

After spectral smoothing with a Savitzky-Golay filter (Savitzky and Golay, 1964; Schafer, 2011) the 

result is at first glance similar to atmospherically corrected reflectance AISA EAGLE/HAWK 

imagery used in this study (Figure 2.18 c). Note that no explicit atmospheric correction was done 

using additional software tools. However, it is rather noisy and the water bands are apparent. 

 

Figure 2.17: Scheme of measuring radiances and irradiances at the airplane’s and the ground sensor. 
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Figure 2.18: Spatial subset (RGB: ~650-870-550 nm) from hyperspectral AISA EAGLE/HAWK flight 
stripe and the corresponding spectral profiles of the central pixel. (a) Original radiance image without 
atmospheric correction. (b) Own reflectance image as ratio of image radiance to ground irradiance 
multiplied by 𝜋 with an additional application of a 2-5-5 Savitzky-Golay filter. (c) Delivered reflectance 
product for comparison.  

 

2.5.2.3 Hyperspectral imaging sensors 

Several countries are operating hyperspectral-imaging sensors in remote sensing. The following 

passage will present some examples of recent and future missions (see also Staenz and Held, 2012; 

Vorovencii, 2009), as there is an ongoing development and constant release of new sensors. 

Obviously, for technical and practical reasons, there are more aerial platforms than space-based. 

Some selected hyperspectral earth observation satellites that should be mentioned in this context 

are NASA’s FTHSI (on MightySat II), Hyperion (on EO-1) and HICO (on International Space Station 

ISS), ESA’s Chris (on PROBA-1), and China’s HJ-1A. For the upcoming years there are also some 

new space-based missions planned: HyspIRI (USA), PRISMA (Italy) and HISUI (ALOS-3) (Japan), 

see Table 2.2. The German-led hyperspectral satellite mission EnMAP (Environmental Mapping 

and Analysis Program) has to be highlighted here, as this study had been conducted within the 

framework of preliminary investigations in a national research program. EnMAP shall offer 244 

bands over the range of 420-2450 nm at a GSD of 30 m (Kaufmann et al., 2014). Its postponed 

launch is scheduled for 2018 (Guanter et al., 2015) (May 2015, enmap.org). The most prominent 

airborne systems are AVIRIS, HyMap, HySpex, Hydice, CASI, series of AISA and DAIS, EPS-H, 

PROBE-1 and APEX. Usually mounted on aircrafts they deliver a GSD depending on their IFOV and 

the distance above the ground. Flight height is normally ranging between 1000-2000 m. Typical 

applications are rather experimental tests and still small-area investigations. In this study the 

combined AISA (Airborne Imaging Spectrometer for Applications) sensors EAGLE and HAWK are 

used, an along-track scanning system. 
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Table 2.2: Overview of selected former, current and planned space- and airborne hyperspectral 
sensors. 

Type Sensor Spectral range Bands GSD 

Spaceborne MODIS 405-14385 nm 36 250-1000 m 

HICO (ISS) 380-960 nm 100 90 m 

Hyperion (EO-1) 400-2500 nm 220 30 m 

Chris (PROBA 1) 415-1050 nm <150 17-34 m 

FTHSI (MightySat II) 400-1050 nm 142 30 m 

HJ-1A 450-950 nm 115 100 m 

HISUI  400-2500 nm 185 30 m 

PRISMA 400-2500 nm 250 20-30 m 

HyspIRI 380-2500 nm 210 60 m 

EnMAP 420-2450 nm 244 30 m 

Airborne AVIRIS 380-2500 nm 224 

depends 

on 

IFOV 

and 

flight 

height 

HyMap 400-2500 nm 128 

HySpex Odin 400-2500 nm 427 

Hydice 400-2500 nm 210 

itres CASI 380-1050 nm 288 

APEX 400-2500 nm 300 

PROBE-1 400-2500 nm 128 

DAIS 430-12300 nm 76 

EPS-H 430-2500 nm 152 

AISA EAGLE 400-970 nm 122 

AISA HAWK 970-2500 nm 254 

 

 

Figure 2.19: Overview of resolutions of some important earth observation sensors (Kaufmann et al., 
2012). 
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 PLANTS AND SUN LIGHT 2.6

2.6.1 Photosynthesis and absorption 

As mentioned, every type of matter has a different reflection behavior depending not only on the 

external but also on internal conditions such as the chemical composition. The variability in 

reflectance of vegetation is furthermore determined by biochemical constituents and their 

concentrations (Bartlett et al., 2011; Blackburn and Ferwerda, 2008; Ollinger et al., 2008; Ustin et 

al., 2009). However, plant-related field spectroscopy is nearly always about green vegetation 

having chloroplasts and doing photosynthesis. The useable range of the spectrum is the 

photosynthetic active radiation (PAR) and equals almost the visible spectrum (400-700 nm). Since 

photosynthesis is one of the main drivers in foliage reflectance, it is crucial to know more about the 

procedures behind. As a central part of the global carbon cycle the energy-storing process of 

photosynthesis converts water and carbon dioxide to oxygen and carbohydrates (sugar) under the 

usage of solar light energy (ℎ). Thus, it is inducing the accumulation of biomass. The simplified net 

reaction equation can be written as: 

6 𝐶𝑂2 + 6 𝐻2𝑂 
ℎ
→ 𝐶6𝐻12𝑂6 + 6 𝑂2 

(Eq. 2.9) 

 

Figure 2.20: Simplified role of photosynthesis as part of the terrestrial carbon cycle – not including 
oceans. 

 

It is noteworthy but obvious as well that plants do not exploit all of the incoming sunlight properly 

for growth and metabolism. From an energetic point of view, the whole process of photosynthesis 

is not very efficient as there is a certain amount of unused energy. About half of the visible light is 

not usable for the photosynthetic pigments. In addition, the structures of plants or leaves that are 

not well oriented to the sun are contributing to a loss of energy. Finally, only 5 % is de facto being 

stored as chemical energy in carbohydrates. This makes it also understandable why a good 

knowledge about these processes is necessary, as the CO2 concentration in the atmosphere is 

increasing and the future effect on the photosynthesis of plants remains partially unclear (Sadava 

et al., 2011). Chlorophylls and pigments like anthocyanins, carotenes and xanthophylls mainly 

dominate absorption within healthy leaves. The peaks in chlorophyll-driven absorption (Figure 
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2.21) at the so-called Soret bands are clearly apparent in the blue region of the spectrum as well as 

the Q bands for the red region (Lichtenthaler and Buschmann, 2001; Zigmantas et al., 2002). 

Compared to reflectances of leaves the extracted chlorophyll shows absorption peaks that are 

shifted towards the shorter wavelengths about 20 nm (Rühle and Wild, 1979). Additionally, the 

maxima of the absorption are dependent on the solvent; chlorophyll is not water-soluble. Due to 

the presence of other accessory and non-photosynthetic pigments the identification of single 

pigments from a plant leaf can be quite challenging (Buschmann et al., 1994; Ustin et al., 2009). 

Apart from the absorption caused by photosynthesis there are other interactions occurring as 

parts of the overall radiation system. Plant leaves emit only small amounts as heat or fluorescence, 

but reflect and let pass a certain amount of the incident visible and infrared light (Figure 2.22). 

Absorption, reflection, scattering and therefore transmission are the central processes for the light 

interception of canopies and wavelength dependent. 

 

Figure 2.21: Differences in absorption of chlorophyll a and b in diethyl ether and the more polar 
solvent 95 % ethanol, where a shift of the (smaller) maxima to longer wavelengths is observed; red 
maxima were set to the same values (Lichtenthaler and Buschmann, 2001, modified). 

 

 

Figure 2.22: Simplified scheme of radiative interactions between incoming sun light and a healthy 
green leaf. 

 

That leads to the characteristics in leaf reflection, as already touched previously. Due to absorbing 

processes as described above leaves and needles appear greenish to the human’s eyes. This is also 

evident in the low reflectances in the blue and red range of the spectrum and a small peak at about 

550 nm. Very typical for green vegetation is the harsh increase in reflectance in the region at 700-

750 nm, called red edge, followed by a high plateau in the near infrared (Figure 2.23). When leaves 

mature and start withering spectral response curves of vegetation show a completely different 
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pattern. Besides an obvious change in the visible and red edge area the strongest impact is in the 

near infrared due to destruction of cell structures and decreased water content. Figure 2.23 shows 

typical reflectances of a healthy green and a withered leaf, representing photosynthetically active 

and non-photosynthetically active vegetation, respectively.  

 

Figure 2.23: Example of spectral response patterns of a living and a withered leaf of Boston ivy vine 
(Parthenocissus tricuspidata); besides the photosynthetic absorption, the red edge and two water 
absorption bands are the most prominent features; own measurements. 

 

While the chloroplasts in the palisade mesophyll are mainly responsible for reflectance in the VIS 

region, the spongy mesophyll plays a bigger role in the NIR reflection by multiple scattering. In the 

shortwave infrared, the reflectance values are normally lower with extreme minima at about 1400 

and 1900 nm, which is mainly caused by leaf water. Additionally, the reflection is heavily 

influenced by cell structure, lignin and cellulose and other biochemicals (Fourty et al., 1996; Jones 

and Vaughn, 2010). Differences in reflectance are more striking when comparing broadleaf 

deciduous and evergreen coniferous tree species groups. In the PAR region of the spectrum, we can 

observe a similar pattern, but especially in the near and shortwave infrared reflection is lower for 

conifers. This is mainly due to the texture and inner structure of needles having a rather 

undifferentiated palisade and spongy mesophyll (Figure 2.24). Furthermore, unlike leaves, they 

usually do not have a distinct upper and lower side and hence show a different reflection behavior.  

 

Figure 2.24: Schematic cross section of typical leaves (a) (here: Liriodendron tulipifera) and needles 
(b) (here: Picea rubens). Compared to the leaf the coniferous needle shows a more packed structure 
(USDA Natural Resources Service, 2010, in: Ollinger, 2011, modified). 
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2.6.2 Spectral indices for vegetation analysis 

In both imaging and non-imaging systems, the reflection pattern of plants allows the utilization of 

special metrics by calculating ratios, differences or other algebraic combinations of reflectance 

values at specific wavelengths. These vegetation indices (VI) can be brought in relation to a variety 

of target variables (Bannari et al., 1995; Glenn et al., 2008). By using VI researchers try to get 

information about the general health condition (Lausch et al., 2013a) but also to derivate 

biophysical variables (Thenkabail et al., 2000) such as leaf and canopy water content (Colombo et 

al., 2008) or concentration of chlorophyll (Carter and Knapp, 2001; Wu et al., 2008). In addition, it 

may help in estimations of leaf area index (Gong et al., 2003; Haboudane et al., 2004) and biomass 

(Das and Singh, 2012; Van Der Meer et al., 2001). Furthermore, different species, vegetation types 

and landscapes can be compared and monitored. VI often base upon a normalized difference or a 

band ratio, like the two most prominent: 

¬ Normalized difference vegetation index (NDVI) (Rouse et al., 1974) 

𝑁𝐷𝑉𝐼 =  
𝜌𝑁𝐼𝑅 −  𝜌𝑅𝐸𝐷

𝜌𝑁𝐼𝑅  + 𝜌𝑅𝐸𝐷
 (Eq. 2.10) 

¬ Simple ratio (SR) (Tucker, 1979) 

𝑆𝑅 =  
𝜌𝑁𝐼𝑅

𝜌𝑅𝐸𝐷
 (Eq. 2.11) 

where 𝜌𝑅𝐸𝐷 and 𝜌𝑁𝐼𝑅 represent the reflectance in the red and the near infrared region of the 

electromagnetic spectrum. They exploit the optical properties of healthy vegetation which shows 

high absorption in red and a high reflection in the NIR. The values for NDVI range between -1 and 

+1. Healthy green and dense vegetation has a NDVI of 0.6-0.9. Both NDVI and SR tend to saturate in 

dense stands with high leaf area index and biomass (Huete et al., 2002; Sellers, 1985). They belong 

to the group of broadband VI and are derived by incorporating a specific but rather wide range of 

the electromagnetic spectrum. They are commonly calculated for large-area and global 

applications using multispectral sensors (Huete et al., 2002, 1997). In contrast, hyperspectral data 

allow the calculation of narrow-band indices using distinct bands of a single wavelength. Due to the 

high number of bands there are much more possibilities for hyperspectral normalized-difference 

and ratio indices (Agapiou et al., 2012; Pacheco-Labrador et al., 2014; Schlerf et al., 2005; Zarco-

Tejada et al., 2005). Since VI are usually directly linked to the characteristics of green plants and 

leaves, one can obtain a clear relation to the development stage during a growing season (Figure 

2.25) (Cole et al., 2014; Gonsamo et al., 2012). 

Le Maire et al. (2004) examined in a comprehensive study all VI published from 1973 to 2002 that 

are sensitive to chlorophyll. A more recent and thorough overview of all common VI can be found 

in an online database, in which researchers gathered information about imaging sensor-dependent 

indices and their possible applications (Henrich et al., 2012). It should be noted that VI values can 
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differ with the relative response function of each remote sensing system affecting a direct 

comparison (Cundill et al., 2015; Trishchenko et al., 2002). However, besides the desired factors 

also other issues such as sensor-sun-geometry, illumination and background soil conditions can 

affect the apparent reflectance (Liang, 2004).  

 

Figure 2.25: Example of a seasonal course of NDVI with key phenology moments (Nilson et al., 2012) 

 

 HYPERSPECTRAL DATA SET 2.7

2.7.1 Field spectroscopy 

The field spectroradiometer used in this study is an ASD FieldSpec 3 Hi-Res (ANALYTIC SPECTRAL 

DEVICES INC.) – one of the most popular sensors, which has been recently used in different studies 

(Bartlett et al., 2011; Ferreira et al., 2013; Manakos et al., 2010; Mansour et al., 2012). The device 

covers a wide wavelength range by two detectors: one photodiode-array for the visible and near 

infrared (350-1000 nm) and two photodiode-arrays for the short wave infrared (1000-2500 nm). 

The spectral sampling is 1.4 nm and 2 nm, respectively. ASD specifies the spectral resolution with 3 

and 10nm. It is defined by the full-width-half-maximum. By internal interpolation, it offers finally 

2150 single channels and band widths of 1 nm, storing data in 16 bit. Scanning time is 100 ms. 

Users can obtain wavelength, reflectance, transmittance, radiance and irradiance after calibration. 

To the input fiber optic cable, having a field of view (FOV) of 25°, several foreoptics can be attached 

including narrower FOV, a diffuse cosine receptor or contact probe and a clip for direct 

measurements. It weighs about 5.2 kg, is carried in a backpack and controlled wirelessly by laptop.  

 

Figure 2.26: ASD FieldSpec 3 Hi-Res field spectroradiometer. 
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2.7.2 Imaging spectroscopy 

In contrast to multispectral systems, hyperspectral sensors acquire hundreds of bands. In this 

study the combined AISA (Airborne imaging spectrometer for applications) push broom line 

scanners EAGLE and HAWK (SPECIM, SPECTRAL IMAGING LTD., Finland) are used mounted on an 

aircraft. The sampling interval values are about 4.6 nm (EAGLE) and 6.3 nm (HAWK) (Figure 2.27). 

The 368 narrow bands cover a spectral range of 400-970 nm and 970-2500 nm, respectively. 

 

Figure 2.27: Sampling intervals of the delivered reflectance imagery of AISA EAGLE (VIS-NIR) and 
HAWK (NIR-SWIR). 

 

The sensors detect reflected radiation from the surface and store the signal as radiances. These can 

be converted to unit-less reflectance by building the ratio to the spectral irradiance measured 

simultaneously skywards. The flight was conducted on 24.07.2012 at perfect conditions after 

several attempts and waiting for stable and sunny weather. The planning of the flight campaign 

was done in consultations with the Department of Computational Landscape Ecology of the 

Helmholtz Centre for Environmental Research UFZ in Leipzig, which also performed the 

acquisition and preprocessing including following steps: 

¬ Radiometric and geometric correction using the ENVI module CaliGeo (SPECIM) 

¬ Correction of some sensor-dependent striping effects (Figure 2.30) using the 

ROME method (Reduction of Miscalibration Effects (Helmholtz Center Potsdam, GFZ 

German Research Center for Geosciences) 

¬ Atmospheric correction using ATCOR 4, (Atmospheric and Topographic Corrections, RESE) 

¬ Spectral smoothing by a Savitzky-Golay filter incorporating 6 neighboring bands 

Resampled pixel size (GSD) is 2.0 m. The delivered product was finally referenced using additional 

data like aerial images and basemap imagery in ESRI’s ArcMap. Every airborne survey has to 

consider that the aircraft is never completely steady, though the pilots are countering. Besides the 

forward moving there are the three principal axes in which an airplane can rotate or move (Figure 

2.28). Pitch defines the up and down movement of the nose. Roll is the rotation around the 

longitudinal axis. Yaw describes the movement and heading lo left and right. All these unavoidable 
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issues have to be corrected and are affecting location and size of picture elements before the final 

image is ready for analyzing (Figure 2.29). Precise GPS positions are crucial for the geometric 

correction. The original raw image is rather rectangular, consisting of lines (rows) and samples 

(lines); the sensor’s FOV defines the image width. The corrected image does not have straight 

borderlines anymore. The influence of the airplane’s movement is clearly apparent in the new 

arrangement and curvy image borders. The planned eight flight lines and the footprints of the 

finally realized stripes are shown in Figure 2.31. The discrepancy of planning and realization is 

apparent, as there are a few small gaps between some images. However, the image stripes have a 

width of about 500-700 m each, a length of about 9-11 km and cover a large area of the northern 

Hainich national park. 

 

Figure 2.28: Illustration of the effects of aircraft instability due to rotations in three directions: pitch, 
roll and yaw affect the geometry of single pixels and the whole image (Jones and Vaughn, 2010). 

 

 

Figure 2.29: Subset of flight stripe number six as raw (a) and final referenced image (b); the influence 
of aircraft instability is clearly apparent. 
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Figure 2.30: Thin stripes are apparent in the raw images (left) and almost completely removed after 
the processing (right). 

 

 

Figure 2.31: Planned flight lines 1-8 (straight lines) and final covered flight stripes (filled areas) within 
the national park area (outer polygon).  

 

The geometric correction was more challenging because the imagery includes mainly forested area 

what makes it difficult to find prominent points like cross roads or house corners. Thus, final image 

matching and georeferencing was done manually by using exposed trees with a prominent crown 

checking aerial imagery and topographic maps. Additionally, the first and last bands are not 

included due to noisy signals; the spectral range is adjusted from 0.4019-2.5009 µm to 0.4404-

2.3886 µm (Figure 2.32).  

 

Figure 2.32: Final spectral range after cutting the first and last bands – apparent reflectances using 
the example of seven arbitrarily chosen pixels. 
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For better data handling and analysis the eight flight strips need to be aligned and put together to a 

single file. Loading all tiles simultaneously for mosaicking did not lead to satisfying results due to 

anisotropic effects and differences in reflectances at the image borders. Instead, this process was 

done in the software ENVI using a step-by-step approach merging the files consecutively. As 

mentioned in the first chapter, depending on the resolutions and data type hyperspectral imagery 

can be quite large in terms of data size. In this case the final mosaic stored as a band-interleaved 

.dat-file (ENVI standard) occupies disc space of almost 18 GB. For comparison: an uncompressed 

Landsat 8 scene (Geotiff, Level 1T) has a data size of just about 2 GB, but covers an area of ca. 

170 x 183 km, which is roughly thousand times larger than the study site here. 

 

 FOREST DATA SET 2.8

2.8.1 Inventory plots 

2.8.1.1 Sampling and plot design 

The sampling design describes how the sample points are selected and how many of them (Kleinn, 

2015). Here the data basis is a subset of a systematic sampling forest inventory. Available data 

(Nationalparkverwaltung-Hainich, 2011) were used to cover an area of ca. 5x8 km. On a grid of 200 

by 200 m, 606 plots (Figure 2.33) including more than 14,000 sampled trees have been considered 

for this study. The plots are part of permanent control sampling gathered in 2009-2011.  

 

Figure 2.33: Spatial distribution of the inventory plots in a 200 x 200 m grid covering the whole study 
area.  
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The plot or response design is a nested plot consisting of three circular plots of 200, 500 and 

1000 m² around each plot center (Figure 2.34). Trees are sampled depending on their diameter at 

breast height (dbh) measured at 1.3 m. Within the innermost circle (radius, r = 7.98 m) only trees 

with a dbh of 7.0-24.9 cm are recorded; on the second circle (r = 12.62 m) trees with a dbh of 25.0-

49.9 cm, on the biggest circle (r = 17.84 m) all trees with dbh larger than 50.0 cm, respectively.  

 

Figure 2.34: Nested plot design of the permanent forest inventory (left). The three horizontal radii of 
the circles are 7.98 m, 12.62 m and 17.84 m. Green spots show sampled trees according to their dbh. 
Same plot modelled in the Waldplaner software (Hansen and Nagel, 2014) (right). 

 

As every plot has the same radii on an even surface, the diameter differs in rugged terrain and has 

to be corrected concerning the slope. A proper slope correction needs accurate determination of 

the slope in the field. However, depending on the terrain adjusted plot diameters differ only within 

some centimeters from the original values for map plane. The frequencies of corrected field plot 

diameters are plotted in Figure 2.35. It can be shown that there are some slopes in the study area. 

However, the majority of adjustments is rather small and amounts some centimeters.  

 

Figure 2.35: Frequencies of adjusted plot diameters for the nested inventory plots, consisting of three 
circles of 7.98, 12.62 and 17.84 m at map plane. 

 

2.8.1.2 Tree attributes 

Since it is rather laborious to measure the height of all trees of a sample plot in a forest inventory, 

it is common not to measure all heights. Then, missing values can be derived by a height-diameter 

model. Here the curve model after Petterson (Eq. 2) (Nagel, 2009; Petterson, 1955; Schmidt, 1968) 

is used: 
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𝐻𝑒𝑖𝑔ℎ𝑡 =  1.3 +  (
𝑑𝑏ℎ

𝑎 +  𝑏 ∗  𝑑𝑏ℎ
)

3.0

 (Eq. 2.13) 

where 𝑑𝑏ℎ is the trunk diameter measured at 1.3 m height, 𝑎 and 𝑏 are model coefficients. Since 

tree species vary in growth behavior, the model was applied separately for ash, beech, maples, 

hornbeam, oaks, spruce and other broad-leaved and coniferous species. Model fitting was done in 

the statistical software R (R Core Team, 2012) using the nonlinear least squares nls function and 

the nlstools package (Baty et al., 2015). A similar procedure was done for the crown base heights. 

Missing values were also derived from the model. Expansion factors (EF) according to the plot size 

have to be considered to get estimates for one hectare, representing 10.000 m².  

𝐸𝐹𝑟  =  
10000

𝜋 ∗ 𝑟2
 (Eq. 2.14) 

where 𝐸𝐹𝑟 is the expansion factor according to the sample plot radius 𝑟. The 𝐸𝐹𝑠 here are 50, 20 

and 10 for the 200, 500 and 1000 m² plots, respectively. Similarly, for the derivation of plot-wise 

data such as the average dbh, the smaller plots of 200 and 500 m² need to be adjusted to the 

biggest of 1000 m². Figure 2.36 depicts clearly the diameter distribution as derived from the 

inventory data before and after incorporating the corrected number of trees by the expansion 

factors. The histogram is typical for a natural forest having a unimodal shape with the majority in 

smaller dbh classes. The bigger the trees are the smaller is their occurrence. 

 

Figure 2.36: Histograms of the dbh classes before (left) and after applying the expansion factors 
(right). 

 

Furthermore, for each tree the following attributes were modelled: basal area [m²/ha/tree], trunk 

below crown [m], circular crown width [m] and crown radius [m]. All tree-wise variables can be 

averaged per inventory plot and/or species-wise using the arithmetic mean: 

𝑦̅  =  (∑ 𝑦𝑖

𝑛

𝑖=1

) /𝑛 (Eq. 2.15) 
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where 𝑦̅ is the mean, 𝑦𝑖 is the observation and 𝑛 is the number of samples. The standard deviation 

𝑠 is a measure of the average variation of the data from the mean and is calculated for simple 

random sampling as the square root of the variance: 

𝑠 =  √
∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1

𝑛 − 1
 (Eq. 2.16) 

For all plots the distribution of the averaged tree heights, including modelled values for trees 

without measured height, shows two maxima at 26 and 29 m (Figure 2.37). Generally, the majority 

of plot mean heights is larger than 20 m. The mean is 25.21 m, with a standard deviation of 5.13 m. 

 

Figure 2.37: Distribution of tree height classes as plot-wise means. 

 

2.8.1.3 Tree species composition 

Overall, 29 tree species have been observed in the inventory data set. The whole area is dominated 

by broadleaf deciduous tree species. The following nine species classes are built: beech (Fagus 

sylvatica), ash (Fraxinus excelsior), hornbeam (Carpinus betulus), oaks (Quercus spec.), Sycamore 

maple (Acer pseudoplatanus), other broadleaves, spruce (Picea abies), Scotts pine (Pinus sylvestris), 

other coniferous. It is clear that the proportions of species depend on the variable used as 

reference, so that the calculated species fraction is depending on the analysis of the data. In Figure 

2.38 are additionally the classes Linden (Tilia spec.) and Norway maple (Acer platanoides) 

incorporated. So, considering the basal area, as a more meaningful variable than the number of 

stems, beech has a lesser portion, but is still by far dominant (Aberle, 2014). 

 

Figure 2.38: Main tree species (groups) fractions derived from nested forest inventory plots within 
the study area. 
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By building sub-classes, we can compare the values with class values derived from the German 

national forest inventory (Figure 2.39). In this study area beech is the most frequent species 

(m²/ha: 31 %, n/ha: 53 %), whereas on national level it is spruce (m²/ha: 32.0 %, n/ha: 29 %). 

Generally, the study area is rather special, as the proportion of coniferous species is low. However, 

the proportion of oak species is quite similar to the nationwide average. 

 

Figure 2.39: Tree species fraction in the study area compared to the national average derived from 
the 3rd national forest inventory in Germany (BMEL, 2015). 

 

2.8.2 The core area 

2.8.2.1 Collecting forest stand data 

For the second data set a 2.25 ha large full census plot was established which will be addressed 

now. Inside this core area, 25 core plots of 30 by 30 m were established. All trees with a dbh 

greater than or equal to 15 cm were recorded in spring 2012. The dbh was measured crosswise at 

larger trees. Smaller trees were omitted, as there were only a few in the understorey and 

considered as negligible. All in all 416 trees were surveyed recording the spatial position using 

compass and an ultrasonic HAGLÖF Vertex IV. Accurate coordinates of one of the tower’s corner, 

which were measured on the top using longtime GPS logging, served as a reference point. Tree 

diameters were measured with caliper and diameter tape for bigger trees, respectively. 

Additionally, dbh-related circular crown dimensions were modeled for each species including 

crown width using formulas from empirical growth models (Nagel, 2009). For practical reasons we 

measured tree top heights plus live crown heights not on every tree. Height values of 99 

individuals were measured using the Vertex. The remaining height values were estimated using 

the height-dbh curve model after Petterson (1955) derived from the measured heights: 

𝐻𝑒𝑖𝑔ℎ𝑡 =  1.3 +  (
𝑑𝑏ℎ

𝑎 +  𝑏 ∗  𝑑𝑏ℎ
)

3.0

 
(Eq. 2.17) 

where 𝑑𝑏ℎ is the trunk diameter measured at 1.3 m height, 𝑎 and 𝑏 are model parameters. The 

model was applied separately for ash, beech and other species. A similar procedure was done for 
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the crown base heights. Missing values were also derived from the model. The following statistics 

were calculated for the fitted model: the root mean square error 𝑅𝑀𝑆𝐸 (Eq. 7) and pseudo- 

coefficient of determination 𝑅2 or adjusted coefficient of determination 𝑅𝑎𝑑𝑗
2  (Eq. 8).  

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1

𝑛 − 𝑝
 (Eq. 2.18) 

𝑅2 = 𝑟𝑦𝑖𝑦̂𝑖

2   ;   𝑅𝑎𝑑𝑗
2 = 1 − (

∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

) (
𝑛 − 1

𝑛 − 𝑝
) (Eq. 2.19) 

where 𝑛 is the sample size, 𝑝 is the number of parameters to be estimated, y̅ is the mean value of 

the dependent variable (tree height), 𝑦̂ is the predicted value, and 𝑟𝑦𝑖𝑦̂𝑖

2  is the correlation coefficient 

for a linear regression between the observed and the predicted values of the dependent variable 

(tree diameter) (Ryan, 1997). Residuals 𝑒 (Eq. 2.20) are defined as the deviance of the observed 

data to the model. The standardized residual for each pair 𝑒𝑖𝑆𝑇𝐷  is the residual divided by the 

square root of the residual variance 𝑠 (Eq. 2.21): 

𝑒𝑖 =  𝑦𝑖 −  𝑦̂𝑖 (Eq. 2.20) 

𝑒𝑖𝑆𝑇𝐷 =  
𝑒𝑖

𝑠
 (Eq. 2.21) 

 

2.8.2.2 Species composition and spatial distribution 

Typical for that area is that the by far dominating species are beech (Fagus sylvatica) and ash 

(Fraxinus excelsior). Beech outnumbers ash with about 66 % versus 23 % when just counting the 

number of stems. Considering each tree’s basal area instead these differences are still present, but 

less: 55 % and 35 %, respectively (Figure 2.40). The third most frequent is Sycamore Maple (Acer 

pseudoplatanus) with about 7 %. The other tree species play minor roles. 

 

Figure 2.40: Proportions of the recorded tree species within the core area considering number and 
basal area. 
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The spatial distribution of the trees does not show any clear pattern (Figure 2.41). However, it 

should be noted, that the climate tower is located close to the center and a small path is heading to 

it from the corner of the plot in the south-east, by what the arrangement is influenced. Another 

bigger gap is located in the north-east and close to the tower. For the purpose of visualizing, the 

entire single-tree-value table was converted to xml format and read into the growth model 

software BWINPRO7 (Nagel, 2009). A three dimensional view of the recorded trees can be produced 

then (Figure 2.43). Aerial CIR imagery was used for checking if the trees are mapped spatially 

correctly. In some parts of the core area there are several mismatches (Figure 2.42). In contrast to 

coniferous species such as spruce (Picea abies) or Douglas fir (Pseudotsuga menziesii) broadleaf 

trees do not have a straight and vertical stem and grow often leaning sidewards causing 

discrepancies in located tree base and tree crown top. 

 

Figure 2.41: Sampled trees inside the core zone. Point sizes are relative to measured dbh. 

 

 

Figure 2.42: Modelled tree crowns in comparison with an aerial near infrared image (Biodiversity 
Exploratories, acquisition date: 05.06.2010). The crown areas are dissolved for each species for 
better visualization. 
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Figure 2.43: Three-dimensional model of the forest stand generated with ForestSimulator of 
BwinPro7 (Hansen and Nagel, 2014). Dominant species: red=beech (Fagus sylvatica), light-blue=ash 
(Fraxinus excelsior). 

 

2.8.2.3 Tree height and diameter  

For the prediction of missing tree top heights Petterson’s (1955) height model was used. The 

model curves for ash and beech are displayed in the following scatterplots (Figure 2.44). The 

dependent variable is height, the independent variable the measured dbh values. The 

corresponding model coefficients and statistics are listed in Table 2.3. For beech the pseudo 𝑅2 is 

higher (0.62) than for ash (0.37), which is also related to the higher number of trees. However, for 

other species it is slightly larger (0.64). The 𝑅𝑀𝑆𝐸 are rather similar and ranging between 2.95 and 

3.58 m. The associated residuals are distributed rather equally (Figure 2.45), which is indicating a 

good model fit to the acquired data.  

 

Figure 2.44: Petterson’s height-dbh curves used for modelling missing tree heights of ash (grey) and 
beech (black). 

 

Table 2.3: Adjusted-, pseudo-R², root mean square error (RMSE) and coefficients of the Petterson’s 
height model for the three species (-groups). 

Species 

(group) 

Model coefficient Statistics of fitted model 

a b Adjusted R² Pseudo R² RMSE [m] 

Ash 1.4442 0.2879 0.3353 0.3656 2.95 

Beech 1.7162 0.2874 0.6176 0.6241 3.21 

others 2.1529 0.2868 0.5955 0.6415 3.58 
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Figure 2.45: Residual plots of the height-dbh curve model for beech. 

 

The spatially limited stand shows a relatively homogeneous canopy height and diameter 

distribution (Figure 2.46). This is as expected due to the rather small extent of the stand and the 

little variation in close-by neighborhoods due to autocorrelation. The mean measured tree top 

height is 30.00 m (standard deviation, sd: 5.53 m) – after applying the Petterson model for missing 

values the final mean height is 29.31 m (sd: 4.9 m). Measured dbh averages out at 46.1 cm (sd: 

17.86 cm). However, differences in height and diameter are becoming more evident on species 

level. Plotting the histograms of tree height classes for each species there is a certain pattern to 

identify (Figure 2.48). The majority of the ash trees are the highest, followed by the dominant 

beech. Furthermore, the occupation of different niches within the forest canopy is apparent at 

several heights at around 22 m, at 28-30 m and above 36 m. 

     

Figure 2.46: Left: Measured dbh values per core plot. Right: Modelled and measured tree heights. 

 

 

Figure 2.47: Histogram of diameter classes per species. 
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Figure 2.48: Tree top heights as absolute and accumulated relative frequencies of the four most 
frequent species Ash (Fraxinus excelsior), Beech (Fagus sylvatica), Sycamore Maple (Acer 
Pseudoplatanus) and Hornbeam (Carpinus betulus) within the core area. The majority of Ash trees are 
higher than the dominant Beech.  

 

Table 2.4: Surveyed trees and their corresponding basal area per core plot 

Plot 
Tree 

stems 
Sum of tree 

basal area [m²] 
Basal area 

[m²/ha] 
 

Plot 
Tree 

stems 
Sum of tree 

basal area [m²] 
Basal area 

[m²/ha 

1 13 2.49 27.67 14 17 3.13 34.78 

2 19 3.77 41.89 15 19 2.95 32.78 

3 20 2.87 31.89 16 14 2.08 23.11 

4 21 3.86 42.89 17 22 4.18 46.44 

5 16 2.70 30.00 18 14 3.24 36.00 

6 13 2.90 32.22 19 6 1.82 20.22 

7 18 4.65 51.67 20 11 3.03 33.67 

8 26 3.99 44.33 21 12 2.15 23.89 

9 16 2.71 30.11 22 15 3.21 35.67 

10 18 3.68 40.89 23 9 2.86 31.78 

11 19 3.02 33.56 24 12 2.11 23.44 

12 26 4.22 46.89 25 17 3.77 41.89 

13 25 4.52 50.22     
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LEAF OPTICAL PROPERTIES OF EUROPEAN BROADLEAVED SPECIES  

 

 

 

 

 



CHAPTER 3 - INTRODUCTION 

47 

3 CHAPTER THREE - LEAF OPTICAL PROPERTIES AND PHENOLOGY 

 INTRODUCTION 3.1

Shape and size, that is how we can generally describe a leaf of a deciduous tree. Besides that, the 

color is the most striking feature. Spectral reflection, absorption and transmission of light are the 

main processes that specify the leaf optical properties (LOP). Those characteristics of the spectral 

behavior can depend on several factors such as species (Castro-Esau et al., 2006), the stage of 

development and the age of leaf and tree (Roberts et al., 1998; Wilson et al., 2001). The location 

within a tree crown plays an important role as sun and shade leaves typically differ in e.g. leaf area, 

thickness and chlorophyll content (Gausman, 1984; Legner et al., 2013; Lichtenthaler et al., 2007). 

Furthermore, other leaf structural characteristics like cuticular thickness and intercellular air 

spaces may also influence the appearance (Slaton et al., 2001). For us, healthy tree leaves usually 

appear in a variation of green due to very high absorption in blue and red induced by plant 

pigments and a relative higher reflection in green. Beyond the visual range of the electromagnetic 

spectrum the near infrared (NIR) and shortwave infrared (SWIR) are of central interest, as leaves 

show there a higher reflection. In contrast to coniferous needles, which typically have a lower NIR 

reflection, the leaves of broadleaf trees have two sides that are more distinct: the top adaxial side, 

which is mainly apparent from above, and the lower abaxial side, which tend to be brighter for 

many species. In most cases these have different functions and hence diverging reflectance 

behaviors due to construction, cuticular hairs etc. However, there is some confusion in the 

literature as some authors state that cuticular wax is influencing the reflectance (Clark and Lister, 

1975; Lu, 2013; Sims and Gamon, 2002) while others say it is almost not affecting due to its 

transparency (Knipling, 1970; Ollinger, 2011). In any case, after the shooting leaves pass through a 

certain development during a growing season, which we might call seasonal phenology, and in 

which LOP alter over time due to changes in structure, biochemical composition and 

photosynthesis rate (Wilson et al., 2001). Although recent studies show that photosynthesis is 

rather related to the day length than to temperature (Bauerle et al., 2012), the explanation of 

seasonal patterns in canopy photosynthesis is still complicated, as many factors such as leaf area 

index also vary (Groenendijk et al., 2011; Stoy et al., 2014). Vegetation indices (VI) can be used to 

detect the best point in time for species discrimination or the condition assessment of vegetation 

(Cole et al., 2014). Hence, the calculation of VI also help in emphasizing specific optical features 

that are related to biophysical factors (Dillen et al., 2012). Since VI are linked to the characteristics 

and development stage of green plants and leaves, it should be further checked if there are evident 

changes of VI values on leaf level over a growing season. Hence, it is important to gather 

comprehensive information for comparison, monitoring and the understanding of responses on 

weather or even climatic changes (Botta et al., 2000; White et al., 2009). For this purpose, remote 
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sensing can be applicable covering large areas (Glenn et al., 2008; Gonsamo et al., 2012). The 

number of forest vegetation studies incorporating remote sensing is increasing (Boyd and Danson, 

2005; Fagan and Defries, 2009). Although some studies examined leaf trait data in relation to leaf 

reflectance, including chlorophyll and leaf pigments (Gitelson et al., 2003; Le Maire et al., 2004), 

nitrogen content (Dillen et al., 2012; Pacheco-Labrador et al., 2014) and leaf metabolism (Serbin et 

al., 2012), still detailed studies on leaf level are often disregarded and actually highly needed 

(Homolová et al., 2013).  

Detailed leaf level data about spectral reflection, absorption and transmission are also 

indispensable inputs for simulations and the application of radiative transfer models and their 

inversion, respectively. These models allow the examination of leaf optical properties under 

different conditions incorporating varying contents of water, chlorophyll and pigments or leaf 

angle distribution (Féret and Asner, 2011; Féret et al., 2008; Jacquemoud et al., 2009). They are 

further important for coping and analyzing scaling effects between data gained at different levels: 

in-situ, at laboratory or by remote sensing. Hence, they can improve the establishment of ties 

between information at the levels of (i) leaves, (ii) tree crowns, (iii) forest stands and (iv) forested 

landscapes and ecosystems. Model data usually bases on generated look-up tables incorporating 

several scenarios and settings (Richter et al., 2011). Because broadleaf trees show a changing 

spectral behavior throughout a season after foliation, it is crucial to cover a variety of input data 

incorporating detailed species-related information and the temporal component. Overall, we can 

state that detailed LOP case studies for different tree species are still lacking. Moreover, the 

literature reveals that what is furthermore missing is recent investigation in respect to deciduous 

broadleaf tree species in old growth temperate forest. That is what this case study is taking up. 

Here, the examined LOP include hyperspectral reflectances assessed from leaf surface and 

transmittances as the result of on-leaf reflectance and within-leaf actions such absorption and 

scattering. The amount of absorption as the main effect of photosynthesis is determined 

subsequently. The focus is on beech (Fagus sylvatica) as this is the dominant tree species at the 

study site. In addition, the other main tree species oak (Quercus petraea), ash (Fraxinus excelsior) 

and Sycamore maple (Acer pseudoplatanus) are incorporated as well as Small-leaved linden (Tilia 

cordata), hornbeam (Carpinus betulus) and Norway maple (Acer platanoides). Besides that, both 

the upper and the lower sides of leaves are examined incorporating an additional data set in order 

to see if there are species-dependent differences in adaxial and abaxial reflectances. All 

measurements are done by using a new high-resolution field spectroradiometer, also to test its 

capabilities. Finally, following central questions shall be answered:  

¬ What are the optical properties of main Central European broadleaved tree species? 

¬ Do shade-tolerant species like beech, Small-leaved linden and Sycamore maple have similar 

leaf optical properties? 
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¬ What is the proportion of each spectral response for reflectance, transmittance and 

absorbance and how do they differ? 

¬ How stable are LOP and VI over the time of a growing season? 

¬ What are the consequences for radiative transfer model inputs on leaf-level? 

 

 MATERIAL AND METHODS 3.2

3.2.1 Study location and data collection 

The study area is located at about N 51.08° E 10.45° in a forest ridge within the Hainich National 

Park, Thuringia in central Germany. See chapter 3 for a more detailed description of the site. 

Measurements gathered in this study were executed utilizing the tree canopy walk of the National 

Park and the 45 m high climate tower within the forest. Hence, even higher situated sun-leaves and 

upper crown parts could be reached for sampling. Tree height is about 30 m; the age is estimated 

to be around 200 years. Data collection was conducted on sunny days in 2012 (25.05., 19.07., 

24.07.) and 2011 (02.08., 16.08., 23.08.) during the growing season to ensure equal conditions in 

tree physiology and minimize differences in daily leaf chemistry, which may lead to different 

spectral responses. Corresponding daily weather data is shown in Figure 3.1. Additional 

reflectances from upper and lower side of leaves as auxiliary data were collected at a canopy walk 

close to the forestry campus in Göttingen, located in a younger mixed broad-leaf stand at about 

N 51.56° E 09.96°. Reflectance measurements of both sites of leaves were done in July 2011 and 

May 2012, whereas transmittances could only be obtained for three species at three points in time.  

 

Figure 3.1: Daily maximum air temperature [°C] and daily precipitation [mm] for the days of 
measurement (marked) acquired at a weather station in close-by Eisenach (source: 
WetterOnline.de). 
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As the term leaf reflectance is often used, it should be noted that the upper side as well as the lower 

side of the leaves were considered in some of the measurements, which is very important to 

incorporate for a complete analysis (Cordón and Lagorio, 2007; Hughes et al., 2008). A field 

spectroradiometer ASD FieldSpec 3 (ASD Inc., Boulder, USA) was used for the in situ data 

collection. The device has a spectral resolution of 350-2500 nm and a spectral sampling of 1.4-

2.0 nm. By using internal interpolations, which produce bandwidths of 1 nm, it offers 2150 single 

channels. At the FieldSpec’s fiber optic a contact probe (2011) and a leaf clip (2012), respectively, 

was attached for direct measurements to minimize the influence of air between sensor and leaf 

(Figure 3.2).  

 

Figure 3.2: Schematic derivation of leaf reflectance (left); ASD leaf clip in action (middle) and its white 
reference (right) (ASDI, 2012). 

 

This setting allows measuring reflectances of the upper (adaxial) and the lower side (abaxial) of a 

leaf as well as transmittance and the subsequent calculation of absorptance. Measurements were 

done quickly to prevent damages on the leaves by the bulb’s heat. In order to avoid mistakes and 

minimize measurement errors during the sampling every recording consist of a minimum of four 

repeated readings. Overall, more than 200 leaves comprising over 900 single values were sampled 

(Table 3.1). For the supplementary acquisition of adaxial and abaxial reflectances, 77 

measurements are recorded additionally. 

Table 3.1: Sampled leaves and amount of single measurements per tree species. 

Common name Scientific name Measurements Leaves 

Ash Fraxinus excelsior 214 51 

Beech Fagus sylvatica 220 52 

Hornbeam Carpinus betulus 165 42 

Norway maple Acer platanoides 38 9 

Oak Quercus petraea 102 24 

Small-leaved linden Tilia cordata 111 25 

Sycamore maple Acer pseudoplatanus 77 19 
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3.2.2 Data processing 

3.2.2.1 General remarks 

Before the data analysis, the raw spectral responses have to be checked for consistency, errors and 

outliers occurring while measuring. Data processing was mainly done using following software: 

ASD ViewSpecPro v. 6.0 (ASDI, 2008), Excel 2010 (Microsoft, 2010), the free software RStudio 

v. 0.9ff. (RStudio Team, 2015) together with R v. 3 (R Core Team, 2012) and SAMS (Spectral 

Analysis and Management System) (CSTR, 2005). Overall, there are many steps incorporated in the 

whole analysis. Figure 3.3 depicts the basic workflow including corrections and filtering as 

described in the following. 

 

Figure 3.3: Workflow for the spectral data collected with the ASD FieldSpec. 

 

3.2.2.2 Sensor jump correction 

The spectroradiometer ASD FieldSpec 3 consists actually of three sensors in the VIS-NIR (350-

1000 nm), NIR-SWIR1 (1000-1800 nm) and SWIR2 (1800-2500 nm) region of the spectrum. At the 

transitions at 1000 and 1800 nm, sometimes harsh jumps or steps are apparent in the signal. Since 

it was observed that the jumps could go in both positive or negative direction and being sometimes 

larger or smaller, the raw responses have to be corrected in order to guarantee continuous signal 

and comparability. Here, an additive jump correction for each of the corresponding wavelength is 

applied as implemented in SAMS (Rueda and Wrona, 2003). The result is an adjusted curve 

without those breaks but with different values (Figure 3.4). Jump-corrected data can then be used 

in further processing steps. 
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Figure 3.4: Example of correcting the sensor signal jump at 1000 nm (left) and 1800 nm (right), 
dashed line: raw data, solid line: corrected data. 

  

3.2.2.3 Signal filtering 

Depending on the sensor, the collected and unprocessed spectroradiometer signals are often 

relatively noisy and can show a rather rough curve. Hence, they have to be smoothed by specific 

filters incorporating the surrounding data for creating a new updated value. Implementing such 

filters make signals easier to interpret and a bit more comparable. There are several functions 

which can possibly be applied such as moving mean or median filter, splines or wavelets 

(Ghiyamat and Shafri, 2010; Goyal et al., 2013; Schmidt and Skidmore, 2003). However, users 

should do this with care, keeping the main characteristics of the signals without losing too much 

information. Here, a 2-5-5 Savitzky-Golay (SG) filter was applied (Savitzky and Golay, 1964; 

Schafer, 2011; Vaiphasa, 2006), a second order least-squares polynomial for smoothing the signal 

incorporating the 5 previous and the 5 following bands. The applied filter produces a curve which 

is less noisy (Figure 3.5).  

 

Figure 3.5: Example for applying a 2-5-5 Savitzky-Golay smoothing filter (black) to raw reflectance 
(red) of a beech crown part. 

 

3.2.2.4 Vegetation indices 

Hyperspectral data allows the calculation of both broadband and narrow-band vegetation indices. 

This can be done for remotely sensed imagery as well as for direct leaf data (Kumar et al., 2010; 
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Thenkabail et al., 2000; Zarco-Tejada et al., 2005). Here, seven VI are analyzed comprising 

greenness, leaf pigments and light use efficiency (Table 3.2). The two broadband indices NDVI 

(Normalized Difference Vegetation Index) (Rouse et al., 1974) and SR (Simple Ratio) (Tucker, 

1979) are a measure of greenness and hence of healthy, green vegetation. Both incorporate the 

relation of green leaf reflection in near infrared and the absorption of chlorophyll in red and are 

suitable to estimate the absorption by carotenoids like xanthophyll and the uptake of carbon 

dioxide. Just as SR, NDVI can saturate in dense vegetation conditions when LAI becomes high. Both 

indices CRI1 (Carotenoid Reflectance Index 1) (Gitelson et al., 2002) and ARI2 (Anthocyanin 

Reflectance Index 2) (Gitelson et al., 2001) are related to leaf pigments apart from chlorophyll. 

Carotenoids are involved in the light absorption processes of vegetation and protect plants from 

too much light which could have even negative effects. Higher index values imply a greater 

carotenoid concentration relative to chlorophyll. Anthocyanins are present in both suffering 

senescence and newly grown leaves. Since weakening vegetation usually contains higher 

concentrations of both carotenoid and anthocyanin, CRI1 and ARI2I are measures of stressed 

vegetation. The three further indices are more associated with the light use efficiency. Broadband 

RGRI (Red Green Ratio Index) (Gamon and Surfus, 1999; Sims and Gamon, 2002) highlights the 

relation of leaf redness caused by anthocyanin and chlorophyll incorporating reflectance in the red 

and green spectrum. The SIPI (Structure Insensitive Pigment Index) (Peñuelas et al., 1995) is an 

indicator of leaf pigment concentrations maximizing the sensitivity to the ratio of chlorophyll to 

carotenoids. Finally, the PRI (Photochemical Reflectance Index) (Gamon et al., 1992; Gamon and 

Surfus, 1999; Garbulsky et al., 2011) is sensitive to changes in pigments, especially xanthophylls, 

that are indicative of photosynthetic light use efficiency or the rate of carbon dioxide uptake by the 

leaves. All indices are also indicators for foliage stress (Exelis, 2012).  

In order to enhance comparability, the calculated vegetation indices are standardized to each other 

in a next step by a ranking per VI over all species leading to normalized index 𝑉𝐼𝑁𝑗 . The result of 

this normalization is that the new values range between zero and one:  

𝑉𝐼𝑁𝑗𝑖 = (
𝑉𝐼𝑗𝑖 − 𝑚𝑖𝑛𝑉𝐼𝑗𝑖

𝑚𝑎𝑥𝑉𝐼𝑗𝑖 − 𝑚𝑖𝑛𝑉𝐼𝑗𝑖
) (Eq. 3.1) 

where 𝑉𝐼𝑗𝑖  is the original record for the 𝑗-th VI, 𝑚𝑎𝑥𝑉𝐼𝑗𝑖  and 𝑚𝑖𝑛𝑉𝐼𝑗𝑖  represent the maximum and 

minimum of the corresponding recorded VI over all species 𝑖.  
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Table 3.2: Overview about the calculated vegetation indices in this study. 

Objective Index Formula Reference 

Greenness Normalized Difference 

Vegetation Index (NDVI) 
NDVI = 

ρNIR- ρRED

ρNIR + ρRED

 (Rouse et al., 1974) 

Simple Ratio (SR) SR = 
ρNIR

ρRED

 (Tucker, 1979) 

Leaf 

pigments 

 

Carotenoid Reflectance 

Index 1 (CRI1) 
CRI1 = 

1

ρ510

−
1

ρ550

  (Gitelson et al., 2002) 

Anthocyanin Reflectance 

Index 2 (ARI2) 
ARI2 = ρ800* (

1

ρ510

-
1

ρ700

) (Gitelson et al., 2001) 

Light use 

efficiency  

 

Red Green Ratio Index 

(RGRI) 
RGRI = 

ρRED

ρGREEN

 (Gamon and Surfus, 1999) 

Structure Insensitive 

Pigment Index (SIPI) 
SIPI = 

ρ800 − ρ445

ρ800 − ρ680

 (Peñuelas et al., 1995) 

Photochemical Reflectance 

Index (PRI) 
PRI = 

ρ531 − ρ570

ρ531 + ρ570

 (Gamon et al., 1992) 

 

3.2.2.5 Statistics 

All measured spectral responses are averaged by the arithmetic mean: 

𝜇 =
∑ 𝑦𝑖

𝑛
𝑖=1

𝑁
 (Eq. 3.2) 

where 𝑦𝑖 are the observed values of all 𝑁 elements. The parametric standard deviation 𝑠𝑑 of the 

mean is calculated as the square root of the variance: 

𝑠𝑑 = 𝜎 = √
∑ (𝑦𝑖 − 𝜇)2𝑁

𝑖=1

𝑁
 

(Eq. 3.3) 

The unitless coefficient of variation 𝐶𝑉 then calculated by dividing the standard deviation σ by the 

mean 𝜇 for each date of measurement. Furthermore, Pearson’s correlation coefficient 𝑟 is derived 

as a measure for the relationship of two variables: 

𝑟 =
∑ (𝑥 − 𝑥̅)(𝑦 − 𝑦̅)𝑛

𝑖=1

√∑ (𝑥 − 𝑥̅)2(𝑦 − 𝑦̅)2𝑛
𝑖=1

 (Eq. 3.4) 

Additionally, the non-parametric Spearman rank correlation coefficient 𝑟𝑠 is used for grouped and 

interval scaled variables, respectively. 
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 RESULTS 3.3

3.3.1 Leaf optical properties of different tree species 

3.3.1.1 Adaxial and abaxial reflectances 

The additional measurements were conducted at a canopy walk close to the forestry campus in 

Göttingen on 12.07.2011. Reflectance measurements from both sides of leaves of ash, hornbeam, 

Norway maple, field maple, Sycamore maple and Small-leaved linden are shown in Figure 3.6. Oak 

and beech are not present in this site. Differences between ad- and abaxial reflectances are 

apparent especially in the VIS and SWIR2 region of the spectrum. Generally, all trees show higher 

abaxial values in the VIS meaning a brighter backside of the leaves, where Sycamore maple reflects 

the most. Comparing the sampled species it can be shown that only for ash also the abaxial NIR 

reflectance is higher, all others have lower or similar values. Ash, hornbeam, Field- and Norway 

maple show a lower adaxial reflection in the SWIR2, whereas at Sycamore maple and linden the 

difference between upper and lower leaf side is far less.  

 

Figure 3.6: Mean upper adaxial (solid line) and lower abaxial (dotted line) leaf reflectances, date of 
measurement: 12.07.2012. 
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3.3.1.2 Leaf level reflection, absorption and transmission 

When doing repeated measurements, a certain deviation occurs depending on the development 

age, water content and condition of single leaves. At the first glance, all sampled species show the 

typical response pattern of green healthy vegetation. This is not only valid for trees but can also be 

observed in leaves of Dog’s mercury (Mercurialis perennis), an herbaceous plant growing 

frequently underneath the trees in the study site. The two local minima at about 1400 and 1900 

nm are induced by water content in the leaves, equivalent to the water bands in the atmosphere.  

 

Figure 3.7: Examples of mean reflectances (± standard deviations) of sampled leaves of Dog’s 
mercury (Mercurialis perennis) and Sycamore maple (Acer pseudoplatanus), date of measurement: 
19.07. 

 

On the one hand, the circumstance that plant leaves have typical and similar response curves leads 

to the fact that the curves of different species overlap in many regions of the spectrum. On the 

other hand, mean reflectance of a species can cross the curve of another (Figure 3.8). For example, 

hornbeam shows on average higher values in the near infrared as beech, whose reflectance is 

higher in shortwave infrared. In contrast, oak reflects least in SWIR1 and SWIR2 but has a medium 

reflectance in NIR. When considering the difference between the maximum and minimum values 

over all species, it can give a first indication which wavelengths may play an important role for 

differentiation. Biggest differences are apparent in the green and SWIR2 and around three 

inflections points (i) the red edge region (~717 nm), (ii) between NIR and SWIR1 (~1420 nm) and 

(iii) between SWIR1 and SWIR2 (~1870 nm). Besides the leaf surface reflectance (𝑅) also 

transmittance (𝑇) and absorptance (𝐴) were acquired. The proportion and shape of transmittance 

is similar to leaf reflectance. According to the physical rules of radiation, the sum of these three 

fractions equals one (=100 %). 
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Figure 3.8: Mean reflectances of sampled leaves and the corresponding differences of maximum and 
minimum (dashed line), date of measurement: 25.05.2012. 

 

 

Figure 3.9: Mean absorptance of sampled leaves, date of measurement: 25.05.2012. Highest 
absorption occurs in the visible blue and red and in the water absorption bands. 

 

 

Figure 3.10: Mean transmittance of sampled leaves, date of measurement: 25.05.2012. The curves 
show patterns comparable to reflectance data. 

 

Tree leaves mainly absorb the sun light in the visible and shortwave infrared region of the 

electromagnetic spectrum. As the high reflection already induces, absorption is least in the near 

infrared. Moreover, the curves for reflectance and transmittance have similar patterns. The latter 

shows however a bigger impact of the water absorption features near to 970 and 1190 nm and 

lower values in SWIR. All reflectance curves have a similar shape following the typical response of 
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green vegetation. However, there are more interspecific differences apparent in the transmission 

and absorption. The curves in Figure 3.11 are presented in relation to beech as a reference for 

better visualization. Both maple species, Sycamore m. and Norway m., differ from each other, 

whereas the latter is showing a pattern, which is most similar to beech. Nonetheless, note that the 

deviations are rather small, but can reach up to 12 % within the spectral range of 450-2450 nm. 

Larger differences appear in smaller wavelengths due to sensor noise. Especially in absorptance, 

beech shows most often higher values than the other species. Here Norway maple deviates by far 

least from beech, whereas Sycamore maple and oak have a very similar pattern primarily in SWIR. 

Generally, the biggest differences are apparent in the inclination points at the red edge, at about 

720 nm, and at the first water band at about 1400 nm. 

 

Figure 3.11: Deviations in leaf reflectance, transmittance and absorptance in relation to beech (zero) 
as the reference spectrum. 

 

By building the average over all bands and over the PAR region only, one can observe distinct 

deviations between the species. These become clear when the species value are put in relation to 

beech. Hornbeam shows reflectance and absorptance values that are most similar to beech over 

the complete spectrum, oak deviates the most. All species absorb more than beech, whereas ash 
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has a similar transmittance, and only Norway maple transmits less. However, averaged values 

seem to be not very meaningful for a detailed inspection, as the PAR region makes clear. Here we 

can see completely different pattern than in the NIR and SWIR (Figure 3.12).  

 

Figure 3.12: Average spectral leaf reflectance, transmittance and absorptance in the PAR region. 

 

Hornbeam and Sycamore maple reflect the most, oak and Norway maple least. 𝑇 curves show a 

similar pattern as the reflectances, except for Sycamore maple, oak and linden, which transmit 

more especially towards the blue and red. Similarly, Sycamore maple and hornbeam show the 

lowest 𝐴, Norway maple and beech the highest indicating higher concentrations of absorbing 

pigments such as chlorophyll a and b. Besides the main absorption in the blue below 500 nm and 

red regions of the spectrum with a minimum at about 680 nm, some features are especially 

apparent at the wavelengths 580 and 627 nm as well as at about 619 and 634 nm. They actually 

deviate from the input bands used for the calculated vegetation indices.  

The following graphs show the relationships between leaf reflectance, absorptance and 

transmittance averaged over all sampled tree species – in May, approximately the first month of 
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the growing season (Figure 3.13). The dependencies on the wavelength becomes clear after the 

separation of five main spectral regions: 420-700 nm (VISPAR), 760-1100 nm (NIR), 1150-

1450 nm (SWIR1a), 1500-1800 nm (SWIR1b) and 1900-2450 nm (SWIR2). 𝑅, 𝑇, and 𝐴 show the 

weakest changes in the NIR region. Generally, reflectance values are positively related to 

transmittance and slightly lesser to absorptance. Absorptance decreases highly when 

transmittance is increasing nearly over all wavelengths.  

 

Figure 3.13: Relationships between reflectance, absorptance and transmittance as averaged over all 
tree species sampled in May. 

 

3.3.2 Multitemporal measurements 

3.3.2.1 Leaf spectral transmittance 

As a main aspect in this study is to demonstrate and analyze the growing-seasonal trend in the 

appearance of deciduous leaves, multitemporal measurements were conducted during two 

growing seasons in 2011 and 2012. One important parameter is the leaf transmission as an 

indicator of photosynthetic activities and rate of absorption and reflection. Spectral transmittances 

at two points of time (25.05.2012, 19.07.2012) were obtained for ash, beech and Sycamore maple. 

The measurements are revealing a quite peculiar behavior. At the second beech transmittance 

response pattern there is only a distinct decrease around 800 nm, the remaining curve is almost 

identical with the first, but shifted minimally. The transmittance of Sycamore maple, in contrast, 

has a stronger decrease over the whole NIR plateau and minor increase in the PAR region. 

However, the curves of ash do not show at all any similarities to each other (Figure 3.14). 

Transmittance in the PAR range is for beech lower than for the other species, whereas, compared 

to the others, there is a higher transmittance in NIR and SWIR, where the leaf water content is 

mainly responsible for the spectral behavior. Furthermore, the differences between the May and 

July values are less for beech implying almost full development of the leaves in early growing 

season. All three species transmit less at NIR and SWIR in July.  
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Figure 3.14: Transmittances on leaf level for beech, Sycamore maple and ash as sampled in May 
(dashed line) and July (solid line). 

 

3.3.2.2 Leaf spectral reflectance 

In Figure 3.15, the mean spectral response patterns of sampled tree species leaves from several 

dates are plotted. Again, all species have the typical shape of the curves in common. The 2011 data 

is showing much higher values in NIR and SWIR due to the different way of measurement using 

contact probe and 2-leaf-stack. However, when looking at the different acquiring dates, it is 

striking that there is a specific trend for every tree species from May until August. In the visible 

range of the electromagnetic spectrum (ca. 400-700 nm) values tend to decrease, caused primarily 

by the increasing amount of chlorophylls, which absorb mainly in the blue and red range (400-

500 and 600-700 nm).  

In contrast, there is a distinct shift upwards in the near infrared and the first part of the shortwave 

infrared. Considering these shifts over time, it can be deduced which tree species start shooting 

leaves and greening first. Therefore, hornbeam shows a bit delayed leave maturing, while ash 

reached higher reflectances in the near infrared earlier. While all species show similar NIR 

reflectances in the August measurements, hornbeam and especially oak have lower values on the 
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02.08.2011. The same applies for the SWIR1, where only beech shows higher values at that day 

compared to the other dates.  

Generally, beech reflects more in SWIR1 and SWIR2 than the second most frequent species ash. 

Moreover, the three rather shade-tolerant species beech, linden and hornbeam reflect on average 

in SWIR1 the most, followed by maples. Nonetheless, at all species both minima of the water bands 

at about 1400 and 1900 nm are rather constant over all measurements. Having a look on the 

region of the photosynthetic active radiation, the reflectance curves of May-July 2012 follow a clear 

decreasing trend over all bands with a higher absorption in red and blue. The three measurements 

within August 2011 are more or less equal to each other and do not show any huge development in 

time. However, the pattern is similar in all data sets. 

In VIS, there are fewer influences by the measurement method of the two years apparent. This is 

evident when zooming in to a range of 400-700 nm (Figure 3.17). Except for oak, the reflectances 

are the highest in May 2012, whereas in July 2012 especially linden and hornbeam show the lowest 

values. Even at the measurements within three weeks in August, there are distinct differences for 

single species like oak and Sycamore maple. By contrast, ash and mainly hornbeam are rather 

constant. Furthermore, there is a certain pattern in the responses for the species, and one can see 

specific shapes of the curves. Norway maple and linden have a narrower peak at the green 

wavelengths, whereas hornbeam and Sycamore maple this peak is wider and with a more gentle 

slope particularly towards the red. Hence, the shadow-tolerant species beech, linden and 

hornbeam do not show explicitly different reflectance curves compared to intolerant oak and ash.  
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Figure 3.15: Phenologies of leaf reflectances of the compared seven tree species. Early 
measurements show higher chlorophyll absorption but lower reflectance in infrared. 

 

 

Figure 3.16: Pearson’s correlation coefficient between mean reflectance and day of the year over all 
species. 
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Figure 3.17: Leaf reflectances in PAR region, note that for Sycamore maple there is no value for July. 

 

The overall mean reflectances for each tree species for both years are showing perfectly the typical 

and rather smooth patterns of a high-resolution measurement on leaf level. Yet some species are 

partially very similar, and there is a sort of grouping in the responses. This is especially obvious in 

the SWIR2 region, where three clusters are (i) beech and hornbeam, (ii) Norway maple, Sycamore 

maple and linden and (iii) oak and ash.  
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Figure 3.18: Overall means (2011-2012) of the leaf level reflectances (top) and the corresponding 
differences to beech as reference (bottom). 

 

Within the visible section between 450 and 650 nm, we can see similarities between hornbeam 

and Sycamore maple showing the highest values and amongst ash, beech and Norway maple 

(Figure 3.19a). Oak and linden (lime) reflect the least. Whereas in NIR we can separate two groups 

at about 800-1120 nm: (i) Lime, ash and Sycamore maple and (ii) beech and hornbeam (Figure 

3.19b). Oak and Norway maple have the lowest values. In SWIR1 (Figure 3.19c) again beech and 

hornbeam and SWIR2 (Figure 3.19d) are objectively quite similar. However, especially in SWIR2 

the grouping of species is most striking. Here, oak and ash show similar pattern. 
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Figure 3.19: Leaf reflectances of the sampled tree species magnified for VIS, NIR, SWIR1 and SWIR 2 
(top to bottom). At each spectral region, some sort of species grouping is apparent. 

 

Standard deviations over all species by acquisition date are shown in Figure 3.20a. Furthermore, 

the corresponding Pearson’s correlation coefficients of reflectance value and day of the year are 

plotted against the wavelength showing highest trends in NIR. Biggest deviations are at the red 

edge position in end of May and July and for 23rd of August at about 1080 nm. By contrast, the 

other dates in July and August show high deviations at both inclination points around the water 

absorption band at 1450 nm. Since standard deviations are not comparable here, we have to 

consider the coefficients (CV) of variation for each data set. CVs are giving different and more 

meaningful results in terms of comparability for the wavelengths with the most variation (Figure 
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3.20b). The NIR plateau shows with less than ca. 5 % the lowest variations. The highest dispersions 

are apparent in the VIS at about 550-600 nm, where the CV is 10-17 %, followed by a peak before 

the red edge region at 700 nm, and close to the water absorption bands at 1450 and 1975 nm. Here 

it reaches up to 21 %. Highest positive correlations between CV and day of the year are present in 

blue, red, the beginning of the NIR plateau and the second water band, negative correlations in 

green, at the red edge and moderately in SWIR1.  

 

Figure 3.20: Top: Standard deviations over all mean species for each measurement date. Bottom: 
Corresponding coefficients of variation (CV). 

 

Considering only the VIS spectrum, we can see the local maxima on the right hand side of the 

“green hump” at 550 nm, which seems to shift with the date towards the red wavelengths (Figure 

3.21). However, the exceptions are in the data of the 16.08. and the 19.07. Below 500 nm, there is 

some fluctuation in the CV, which is induced by lower sensor stability in shorter wavelengths. 

 

Figure 3.21: Magnified plot of the coefficients of variation in the visible and red edge spectral region. 
For comparison, a typical leaf reflectance is plotted. 
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Figure 3.22: Band wise Pearson’s correlation coefficients between CV and day of the year incl. and 
excl. 19th of July data. 

 

3.3.2.3 Vegetation indices 

The derived vegetation indices NDVI, SR, PRI, SIPI, RGRI, CRI1 and ARI2 change more or less over 

time, according to the input reflectances (Figure 3.23). Combining both years 2011 and 2012 to 

one growing season data set, there is a slight increase apparent in NDVI and SR, whereas the 

indices CRI1, ARI2 show a decrease. The CRI1 values of Norway maple are quite similar but lower 

to hornbeam and by far smaller than of beech. RGRI and SIPI do not change much from July to 

August, except the Norway maple and hornbeam series. Here we can state a maximum in beginning 

of August. PRI is only rather stable over the time for some species. However, higher PRI deviations 

are present for hornbeam and mainly beech end of July, as well as an increase for oak. As the range 

of data values is different for each VI, e.g. about 0-20 for ARI2 and -0.1-0.06 for PRI, the applied 

normalization (Eq. 1) helps in displaying and intercomparison (Figure 3.24). While beech and oak 

show considerable changes, linden and ash are somewhat constant in relation to the others.  
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Figure 3.23: Changes in the calculated mean VI over the growing season May-August. 

 

When checking the overall mean values for all tree species (Figure 3.25), it is striking that almost 

all species follow similar trends. Nonetheless, VI values and the corresponding ranking are 

crossing each other, so that there is often no clear ranking in species. One can see that a higher 

NDVI leads by trend to a larger CRI1 due to a higher content of Chlorophyll. The VI of the beech 

data set are rather constantly in the mid-range and are the largest for CRI1 and ARI2 together with 

oak. Another group is including hornbeam, linden ash and Sycamore maple. By contrast, all species 

are separated from each other more evenly in NDVI and SR. The overall trend of VI is also including 

some discrepancies like the SIPI data of oak, which is on average quite stable, but also relatively 

high compared to the other species. However, these means neglect the larger SIPI of Norway maple 

in July/August. The biggest variation in terms of standard deviation is noted in RGRI followed by 

SIPI and PRI, the lowest in ARI2 and CRI1. 
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Figure 3.24: Selected VI over time for all sampled tree species. Data is normalized to 0-1 (min. to 
max.) for each VI by a ranking over all species. 

 

 

Figure 3.25: Normalized VI over all measurements in time for each species incl. standard deviation 
(sd) (top) and as differences from beech as reference (bottom), excl. data from 19

th
 of July. 
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 DISCUSSION AND CONCLUSIONS 3.4

Many field spectroscopy studies have been conducted on minerals or agricultural crops dealing in 

fact with targets which allow rather easy ground measurements (Arafat et al., 2013; Ramakrishnan 

et al., 2013; Schmidt and Skidmore, 2003). It is clear that the conditions are quite different and 

rather complex when dealing with spectroscopy and forests. As a general remark one can say that 

the utilization of a field spectroradiometer is not as trivial as it might look like at first sight. Even 

after some training users should be aware of the radiation physics and the measurement 

technology and handle it with care to avoid mistakes leading to unusable data. A crucial point is the 

way of sampling as there is no established method yet for collecting leaf spectra in trees. However, 

in this study we only gained data from leaves that were healthy, intact and typical for the 

individual tree crown. Because the study was done in a national park, it was not possible to harvest 

the leaves. Hence, the number of samples per species could maybe higher in future research to 

ensure an adequate sampling. Since we could not use any marking tapes or tags, it might be that 

not always the same branches of the sample trees were recovered. Another restriction within the 

framework of data acquisition is the limited time slot per measurement day. It emerged that is was 

rather time consuming to collect several recordings within one day around noon. Certainly, direct 

measurements using leaf clip or contact probe are not as weather-dependent as imaging 

spectroscopy. However, we tried to conduct measurements only during sunny weather to ensure 

(i) correct device calibration by white reference panel and (ii) similar biochemical conditions 

within leaves for better comparison between days and further remote sensing data acquisition. 

In both years of measurements, two different fore-optical devices were used: in 2011, a contact 

probe for measuring two stacked leaves, in 2012, a leaf clip for one leaf each time. Indeed, the 

amount of leaves in a stack is influencing the reflectance and transmittance values especially in the 

NIR region, which matches perfectly with other studies (Bartlett et al., 2011; Lillesaeter, 1982; 

Woolley, 1971). This is important for the comparison of data at different scales like remote sensing 

and in-situ measurements and gives insights for the derivation and estimation of forest canopy 

light interception. However, because all species were treated similarly, it is assumed that those 

factors can be disregarded for analyses based on averages. Moreover, the vegetation indices data 

sets do not show tremendous deviations, but rather complement to one other. Measurements from 

different dates such as the transmittances of beech are fitting very well to each other and do 

support that the work was done quite accurately. Moreover, the identified relationships between 

reflectance, transmittance and absorptance do match particularly with the results of prior studies 

(Bauerle et al., 2004; Panferov et al., 2001). This also underscores that the measurements were 

done correctly. 

There is possibly a concern about the method of smoothing original reflectance data. The used 

Savitzky-Golay filter, like any other filtering technique, can polish too much and may destroy 
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important features, but also introduce artefacts. However, since the obtained data is in very high 

resolution without noteworthy noise – except the first and last couple of bands – and the 

processing steps were observed with care, this risk can be neglected.  

We could see that the derivation of tree leaf reflectances is a non-trivial and complex topic. Talking 

about reflectances, on the one hand, there are discrepancies between the leaves within each crown. 

However, here only most upper sun leaves were considered and not the general differences in leaf 

optical properties (LOP) of sun and shade leaves. On the other hand, there are differences within 

and between species in leaf structure and composition like epidermal hairs or cuticular differences 

such as waxy layers, which can influence the surface reflectance tremendously. Hence, it is also 

important to incorporate both sides of the leaves (Cordón and Lagorio, 2007; Hughes et al., 2008). 

In this study, all species showed a higher VIS-reflectance at the abaxial than at the adaxial top side. 

Especially ash trees (Fraxinus excelsior) tend to turn their leaves easily already at slower wind 

speeds and show the lower bright sides upwards. This is also a reason why they can appear lighter 

than beech (Fagus sylvatica), e.g., in (near infrared) aerial or satellite imagery of mixed temperate 

stands. At least for tropical species the thickness of leaves seems to be another key factor for leaf 

reflectance (Castro-Esau et al., 2006; Knapp and Carter, 1998), which was not possible to analyze 

in this study, but might be incorporated for the temperate species in further research. 

The portions of measured reflectance (𝑅) and transmittance (𝑇) and derived absorptance (𝐴) are 

as expected and show typical curves of healthy green vegetation. Transmission shows similar 

pattern to reflection, but it is clear that it is impossible just to infer transmittance and absorptance 

from reflectance values without an explicit measurement. However, at least in the scatterplot for 

May we can see rather clearly an approximated relation between 𝑅, 𝑇 and 𝐴. Generally, 

transmittance tends to be higher than reflectance only in NIR but lower in VIS and both SWIR 

regions. Absorptance behaves accordingly to that and rather reciprocally having minimal values in 

NIR. Corresponding to the absorption by chlorophyll and water, the local minima in transmission 

are at about 460 and 680 nm and at 1450 and 1920 nm, respectively. 

If we compare species, the transmittances showed for beech lower values in the visible range the 

electromagnetic spectrum than for the other species, but a higher transmission in the infrared. This 

could be related to the shade tolerance of beech and its ability of (i) utilizing the high energy 

radiation better and (ii) shading other plants creating a milieu in which it has an advantage over 

competitors. This result is also supported by high absorptance values in blue and red of beech, 

which is in fact similar to Norway maple. By contrast, Sycamore maple, also known as shadow-

tolerant mainly in younger ages, however shows higher transmission in the VIS region. Moreover, 

beech and linden do not show any special pattern that differs on the first sight from the other less 

shade-tolerant species ash and oak. Further detailed analysis need to follow up. 
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The seasonality was demonstrated well in this study, as there are clear trends in reflectances 

during the growing season. In addition, the spectral behavior differs between tree species. This is 

related to a variety of reasons such as leaf thickness, leaf surface and internal structure as well as 

pigment and water content, that have to be taken into account. The variation in the standard 

deviations of reflectances over all species and time underline the implication of the date of 

measurement. For some reasons the few reflectance values derived on 19th of July do not seem to 

fit in the sequence of values and should be not included in further analysis. Considering the 

coefficients of variation as a first measure of dispersion, we can see that the highest variations 

appear in the visible region around 580 and 700 nm as well as close to the water absorption bands 

in SWIR. This is especially interesting for a comparison with remote sensing sensors, which are 

usually blind or affected by the noise in the signal induced by water vapor within the atmosphere. 

Rather surprising was the low dispersion in the NIR plateau. However, that matches with similar 

results found by researchers on species level (C. Zhang et al., 2014). 

 As the reflectances change, seasonality is consequently also apparent in the calculated vegetation 

indices. It could be shown that during the summer the conditions start to stabilize. However, for 

the CRI1 (Carotenoid Reflectance Index 1) and similar for ARI2 (Anthocyanin reflectance index 2) 

there seems to be a decrease from July to August for all sampled species, with exception of oak. PRI 

(Photochemical Reflectance Index) tends to respond in a wider range within short time changes in 

illumination conditions (Soudani et al., 2014). During the growing season, there were only a few 

days of constant weather conditions, which could have an immediate effect on the tree 

biophysiology. This might be supported by the findings in this study, as the measurements for July 

and August indicate where the values differ highly from the others. LOP derived in past and future 

could be set into relation with local weather conditions such as temperature, precipitation or 

drought stress.  

Another possible application for the utilization of leaf level spectra are radiative transfer models 

like PROSAIL (PROSPECT and SAILH) (Jacquemoud et al., 2009; Schlerf and Atzberger, 2006) or the 

DART model (Gastellu-Etchegorry et al., 2004). Gathered LOP can be used as basis input and 

validation for modelling tissue layers and canopies and hence whole forest stands under different 

conditions. Here we can also state that the point of time of a simulation should be chosen 

meaningfully according to the date the spectral input data was collected. However, since details 

about the relation of the sequestration of carbon (C) and the light-use efficiency (LUE) or 

photosynthesis rate, respectively, remain partly obscure (Garbulsky et al., 2011; Wong and Gamon, 

2015), additional information about the actual radiation use efficiency (RUE) over the full 

spectrum and the assimilation of C may finally be connected to growth and carbon uptake models 

(Anderson et al., 2000; Stoy et al., 2014).  
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One key feature in reflectance is the red edge position (REP) at about 720 nm besides the 

inclination points of the water bands, which differ both in time and interspecifically. There is a link 

of REP to health and senescence status and the concentration of chlorophyll, carotenoids and 

anthocyanin. A shift of the red edge position towards shorter wavelengths is induced by pigment 

degradation and vice versa (Gitelson et al., 2003; Vogelmann et al., 1993). Hence, the derivation of 

leaf pigments from samples might be another meaningful task to implement in forthcoming 

investigations. In order to complete the image of foliage characteristics, the estimation of leaf 

water content as a main driver for absorption in SWIR (Ceccato et al., 2001). That and the 

determination of non-pigment constitutes incl. cellulose and lignin, which are mainly responsible 

for the appearance in NIR and SWIR (Clark and Roberts, 2012; Dawson et al., 1999), could help to 

enhance the knowledge about spectral pattern and physiological traits.  

The utilization of hyperspectral field data can be a powerful tool for detailed spectral analyzes. 

However, the user should be aware of the large amount of data that can arise and a proper way to 

analyze it. Furthermore, it should be considered, whether there is a benefit at all, if we consider the 

increased labors and rather higher costs in using this technology. A scientifically interesting and 

important approach the combination of spectra measured on the ground and remotely sensed 

data. However, reflectances are more similar on leaf level than on the scale of crown or stands. 

Hence, it is crucial to have knowledge about the trends and changes in leaf reflectances during a 

growing season. Depending on the point of time the measurements are conducted, the spectral 

response patterns can lead to completely different conclusions and result. It was successfully 

shown that there are species-specific differences in phenological reflectances. The appearances 

and reflectances of tree leaves do highly change during growing season, especially in the for human 

eyes invisible infrared, so that foliage is more than just greenish. All in all, detailed data about leaf 

optical properties are very crucial for a variety of research applications and still highly needed 

(Homolová et al., 2013). The derived results contribute hence to understand the optical properties 

and leaf traits of temperate broadleaved tree species. Certainly, the discrimination of tree species 

on different scales like leaf and crown is a main focus. Next steps within the framework of this 

study are the linkage to remotely sensed information and the comparison of tree crown 

reflectances. 
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4 CHAPTER FOUR – SPECTRAL TRAITS OF BROADLEAVED TREE SPECIES AT 

DIFFERENT SCALES 

 INTRODUCTION 4.1

Knowledge about the spatial extent of forested land and particularly its status is essential for 

planning and conservation (Lui and Coomes, 2015; O’Connor et al., 2015; Turner et al., 2015). A 

standard way in Earth observation is the utilization of optical airborne and satellite systems 

detached from the ground. Imaging and non-imaging hyperspectral sensors offer contiguous 

information covering commonly the electromagnetic spectrum between visible violet and 

shortwave infrared. For a meaningful operation, the link between ground information and the 

signal reaching the sensor is crucial. In-situ field observations or measurements are used as 

reference for remotely sensed data and for sensor calibration (Pfitzner et al., 2006). Obtained data 

can be used for a variety of applications. Some studies are conducted on minerals, agricultural 

crops or on other targets that are rather easy to reach (Arafat et al., 2013; Ramakrishnan et al., 

2013; Schmidt and Skidmore, 2003). However, when dealing with spectroscopy and forests the 

circumstances are obviously quite different. Here, the appearance of trees and their traits are of 

central interest. The heterogeneous canopy surface and variations in type, height, stand density 

and development stage influence the reflection behavior (Barbier et al., 2012; Nilson and Peterson, 

1994). Other drivers are biophysical and chemical components within the foliage (Curran, 1989). 

As shown in previous chapters, leaf optical properties are species- and time dependent and show 

typical response patterns. Distinct spectral features are mainly caused by absorption at certain 

wavelengths. Detecting those characteristics is pertinent to describing plant type and condition.  

A rather important feature of vegetation reflectance curves is the red edge position (REP) (Cho et 

al., 2008b; Dawson and Curran, 1998), also referred to as red edge inflection point (REIP) (Schlerf 

et al., 2005; Ustin et al., 2009). It marks the maximum slope of the reflection between the red and 

near infrared region at about 700-720 nm. Furthermore, the REP is associated with chlorophyll 

content and hence with plant vigor (Filella and Peñuelas, 1994). Since precise determination of the 

REP requires a continuous spectrum of narrow bands, hyperspectral data is predestined for this. 

There are mainly two groups of approaches to define the REP (Li et al., 2005). The first one is using 

a curve fitting method (Baranoski and Rokne, 2005; Guyot et al., 1992), the second group is based 

on the calculation of derivates (Tsai and Philpot, 1998; Zarco-Tejada et al., 2003). Derivatives of 

spectral reflectances allow the separation of background signal and are relatively insensitive to 

illumination issues (Demetriades-Shah et al., 1990; Tsai and Philpot, 1998). A first derivative for 

instance should have a local maximum at the red edge inflection point of the original response 

curve. However, it varies with the content of chlorophyll in the leaves and can show one or even 
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two peaks at the red edge region (Cho and Skidmore, 2006; Le Maire et al., 2004). In this study, 

first and second derivatives are calculated and checked for a bimodal red edge hump. Derivatives 

have been proven their potential mostly in laboratory and in-situ spectroscopy data (Panigrahy et 

al., 2012), but there are still uncertainties in scaling and airborne hyperspectral remote sensing 

using real data (Lausch et al., 2013b; Zhang et al., 2006).  

The mapping of tree species and the recognition of differences are contemporary and ongoing 

issues in remote sensing (Clark and Roberts, 2012; Dalponte et al., 2013; Féret and Asner, 2013). 

Information about the REP might be helpful in distinguishing species (Ghiyamat and Shafri, 2010), 

but it is by nature depending on the scale, such as leaf and crown (Cho et al., 2008b; Dillen et al., 

2012). Spectral derivatives are tested for species discrimination, where they could not always 

convince to be an appropriate tool (Kumar et al., 2010; Zhang et al., 2006). Moreover, they showed 

better results when the discrimination is less challenging (Ghiyamat et al., 2013). On the other 

hand, researchers found significant differences in species (Cho et al., 2008b). However, some 

studies found that the important wavelength regions for species discrimination are not always 

clear or the same: VIS and NIR (Ferreira et al., 2013) or NIR and SWIR, e.g. (Clark and Roberts, 

2012). Vegetation indices (VI) are further appropriate measures to stress spectral features (Huete 

et al., 1997; Schlerf et al., 2005). Hyperspectral sensors offer a high number of possible VI by using 

ratios, normalized differences or further equations incorporating any of their bands (Bannari et al., 

1995; Prospere et al., 2014). The capability for estimations of leaf area and chlorophyll content is 

shown (Brantley et al., 2011; Gitelson et al., 2003). However, similar to the detection of the REP, 

the values of VI are affected by the resolution of the data. Overall, there are still big scaling issues 

between leaf, canopy and stand level (Kumar et al., 2010; Malenovský et al., 2007; Schaepman, 

2009), and the relationships are yet to be fully understood.  

Here, I attempted to describe the relationship between leaf and crown level using simple linear and 

nonlinear modelling approaches. Moreover, besides the spatial scale, also the temporal dimension 

for in-situ data is analyzed by incorporating two subsequent growing seasons. This study bases on 

unique data sets of field and remote sensing data as ground measurements were conducted 

simultaneously to a hyperspectral airborne survey. Hence, it shall be examined how the spectral 

responses of broadleaved tree species, selected spectral features and indices change with the level 

of acquisition and if we can draw conclusions from one scale to another. On the basis of red edge 

position metrics potential differences will be assessed. 
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 MATERIALS AND METHODS 4.2

4.2.1 Study site 

The area is located in the Hainich, a beech (Fagus sylvatica) dominated ridge at N51.08° E10.45° 

and with an elevation of about 440 m a.s.l. Data is collected within the national park. See chapter 3 

for a detailed description about the study site. The broadleaved trees have a height of about 25-

30 m and an approximate age of 100-120 years. Exact stand information was not available since 

the stands are unmanaged since decades (Knohl et al., 2003; Mund et al., 2010). 

 

4.2.2 Remotely sensed and in-situ data 

The combined airborne hyperspectral sensors AISA EAGLE and HAWK (SPECTRAL IMAGING LTD., 

Finland) build the remote sensing data part in this study. The cameras record a spectral range of 

400-2500 nm split in 368 bands resulting in a spectral sampling of 4-6 nm. The spatial resolution 

or ground sampling distance (GSD) of the imagery is 2.0 m. It was resampled to 0.25 m pixel size 

using a nearest neighbor approach in order to achieve a spatially more accurate extraction of pixel 

values. This procedure allows quasi-subpixel crown delineation while maintaining original pixel 

values. Because the original resolution is often not sufficient, aerial color infrared photography, 

Google Earth (GOOGLE INC.) and the basemap in ArcMap (ArcGIS Desktop 10, ESRI) were used as 

auxiliary data for delineating the tree crowns. Spectral responses of seven broadleaved tree 

species on the ground are collected by an ASD FieldSpec 3 Hi-Res field spectroradiometer 

(ANALYTICAL SPECTRAL DEVICES INC.) in the growing seasons of 2011 and 2012 using ASD contact 

probe and leaf clip, respectively. Also, see chapter 2 for the details. The general study setup is 

shown in Figure 4.1. 

Overall, 18 individual trees were sampled at the canopy walkway within the forest allowing 

reaching crowns from above (Figure 4.2). Sampled tree species are ash (Fraxinus excelsior), beech 

(Fagus sylvatica) hornbeam (Carpinus betulus), Norway maple (Acer platanoides), Sessile oak 

(Quercus petraea), Sycamore maple (Acer pseudoplatanus) and Small-leaved linden (Tilia cordata). 

It is presumed that leaves of shade tolerate species such as beech and hornbeam are more similar 

to each other, and it is expected that they are different from the other tree species. The second data 

set consists of reflectance measurements of tree crown parts to get a more direct link to remote 

sensing imagery. The distance from sensor to crown ranges from about 1 m, only in a few cases the 

spacing was up to 5 m. Thus, using a fore optic with an IFOV of 25° the resulting footprints have an 

average diameter of about 0.5 m, what would correspond to four resampled AISA pixels. The 

spectral response patterns of the corresponding tree crown part can be extracted from the 

hyperspectral images.  
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Figure 4.1: Sketch of the general study setup: Extraction of spectral responses on crown level and 
single leaf level. 

 

Table 4.1: Number of sampled leaves, amount of single measurements and pixels per tree species. 

Species 

Measurements Pixels 0.25m 

Leaf ASD Crown ASD Crown AISA 

Fraxinus excelsior 214 22 1200 

Fagus sylvatica 220 51 2448 

Carpinus betulus 165 54 1578 

Acer platanoides 38 24 383 

Quercus petraea 102 10 1573 

Tilia cordata 111 55 770 

Acer pseudoplatanus 77 8 - 

 

 

Figure 4.2: Locations of to the sampled trees at the canopy walk. Imagery: AISA EAGLE/HAWK true 
color composite, overlaid with 33 % transparency to a ArcGIS basemap. Projection: UTM zone 32N, 
WGS84. 
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4.2.3 Spectral derivatives  

Derivatives (DV) of spectra give an indication of the slope of the original curve as a rate of change. 

As an approximation, following approach for the first derivative (DV1) can be used by calculating 

the slope of a focal line: 

𝐷𝑉1  =
∆𝜌

Δ
=  

𝜌𝑖+1 −  𝜌𝑖

𝑖+1 − 𝑖
 (Eq. 4.1) 

where 𝜌 represents the reflectance value of the single entry 𝑖 at the wavelength . An increasing 

reflectance means a positive first derivative, a decreasing reflectance result in a negative first 

derivative. The second spectral derivative (DV2), which is a derivation of the first derivative, can be 

useful for the determination of features such as absorption bands and the red edge inflection point. 

Furthermore, special vegetation indices can be constructed using the derivatives instead of the 

original response (White et al., 2008). In spectroscopy, derivatives of even up to the 4th degree are 

usable, where peaks are more related to absorption. However, as signal noise is being emphasized, 

too, in this study the calculated first and second derivatives are smoothed again by a Savitzky-

Golay filter (Savitzky and Golay, 1964). This frequently used filter applies here a second order 

polynomial including the five previous and five next positions of the focal value for smoothing. 

 

Figure 4.3: Left: Example leaf reflectance with indicated red edge region. Right: Examples for 
demonstration of first derivative reflectances on leaf level of different species. Peak maxima 
determine the red edge position. Graphs show own data. 

 

4.2.4 Vegetation indices 

Here, the broadband Normalized Difference Vegetation Index (NDVI) and the narrowband indices 

Photochemical Reflectance Index (PRI), Carotenoid Reflectance Index 1 (CRI1) and Anthocyanin 

Reflectance Index 2 (ARI2) are calculated to investigate their changes on varying scales. They are 

common indices and have been the subject in research studies (Cho et al., 2008b; Clark and 

Roberts, 2012; Prospere et al., 2014). 
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Table 4.2: Overview of the calculated vegetation indices.  represents the specific reflectance. 

Objective Index Formula Reference 

Greenness Normalized Difference 
Vegetation Index 

𝑁𝐷𝑉𝐼 =  
𝜌𝑁𝐼𝑅 −  𝜌𝑅𝐸𝐷

𝜌𝑁𝐼𝑅 + 𝜌𝑅𝐸𝐷

 (Rouse et al., 1974) 

Leaf pigments 

 

Carotenoid Reflectance 
Index 1 

𝐶𝑅𝐼1 =  
1

𝜌510

−
1

𝜌550

 (Gitelson et al., 2002) 

Anthocyanin 
Reflectance Index 2 

𝐴𝑅𝐼2 =  𝜌800 ∗ (
1

𝜌510

−
1

𝜌700

) (Gitelson et al., 2001) 

Light use efficiency Photochemical 
Reflectance Index  

𝑃𝑅𝐼 =  
𝜌531 − 𝜌570

𝜌531 + 𝜌570

 (Gamon et al., 1992) 

 

Additionally, for defining the red edge position, the Red Edge Position Index (REPI) was calculated 

following Guyot et al. (1988) (cf. Baranoski and Rokne, 2005; Cho and Skidmore, 2006; Dawson 

and Curran, 1998) using a linear four-point interpolation method: 

𝜌𝑟𝑒 =  
𝜌670 + 𝜌780

2
 (Eq. 4.2) 

𝑅𝐸𝑃𝐼 =  700 + 40 (
𝜌𝑟𝑒 − 𝜌700

𝜌740 − 𝜌700
) (Eq. 4.3) 

where 𝜌 is the reflectance at the corresponding wavelength, 𝜌𝑟𝑒  is the inclination point reflectance. 

𝑅𝐸𝑃𝐼 represents the red edge position expressed by the wavelength. For the calculation, it uses the 

reflectance values of two bands in red (670 and 700 nm) and in near infrared (740 and 780 nm), 

respectively (Figure 4.4). The idea behind this interpolation, is to assume a straight line between 

low values due the chlorophyll absorption and high values in the NIR plateau in order to determine 

the red edge position at about the center of this line (Cho et al., 2008a; Cho and Skidmore, 2006). 

 

Figure 4.4: Wavelengths used for the four-point interpolation method for determine the red edge 
position. Leaf reflectance is shown as example, based on own data. 

 

4.2.5 Inter-level comparison and regression 

A priori, data from different scales for each species are opposed to each other in scatterplots, by 

what the correlations become visible. In order to estimate approximately relations and 
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dependencies several approaches can be applied. A simple linear model regression describes a line 

through data points which minimizes the average deviation from the mean value: 

𝑦 =  𝑎 ∗ 𝑥 +  𝑏 (Eq. 4.4) 

Another approach is to use a logarithmic model when data tend to saturate on specific values: 

𝑦 = 𝑎 ∗ 𝑙𝑛(𝑥)  +  𝑏 (Eq. 4.5) 

where x is the original reflectance, 𝑦 is the synthetic; 𝑎 and 𝑏 are the model parameters in each 

case. For the modelling, the in-situ data gathered by the field spectroradiometer is resampled to 

the spectral sampling interval of the AISA EAGLE/HAWK imagery. 

 

 RESULTS 4.3

4.3.1 Leaf level 

4.3.1.1 ASD leaf level - reflectances 

In the following, only the spectral responses of tree leaves gathered on 24.07.2012, the day the 

remote sensing flight was conducted, are presented. The reflectances were obtained from the 

upper, usually sunlit side of the leaves and show the typical pattern of healthy green vegetation, as 

already demonstrated in the previous chapter. Furthermore, their shape is rather similar on 

average (Figure 4.5). On a closer look at four spectral regions VIS, NIR, SWIR1 and SWIR2 some 

pattern and grouping of the species is apparent.  

 

Figure 4.5: Left: Spectral response pattern of the leaves, averaged over the measurements from 
24.07.2012. Right: Differences to beech as reference. 

 

4.3.1.2 ASD leaf level - spectral derivatives 

The first derivative DV1 are rather similar over all species (Figure 4.6). They show a major peak at 

the red edge inflection point and two big negative peaks at the inclinations of the water absorption 

bands in SWIR. In the second derivatives DV2, the amplified noise in the curves becomes more 

visible especially in the shorter wavelengths. DV2 values of zero mark local maxima of DV1 and 

inflections in the original reflectance curve. Overall, the differences between the sampled species 
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are small. For defining the exact REP, the spectral derivatives are showing their characteristics at 

the red edge region. The first derivative is always unimodal on leaf level, leading to rather distinct 

values. The REP can be deduced visually directly from such graphics, either at the peaks of DV1 or 

at the intersections of DV2 and the abscissa where the values are equal to zero (Figure 7). Beech 

and hornbeam have similar values, having a lower REP. By contrast, the similar responses of linden 

and oak feature higher REP, indicating higher chlorophyll content. 

 

Figure 4.6: First (top) and second (bottom) derivative of averaged spectral responses of the sampled 
tree species. Inflection points at the red edge area and the two main water absorption bands are 
highlighted. 

 

 

Figure 4.7: Top: First derivative of the leaf spectra between 670 and 770 nm at the red edge region. 
Peak maxima mark the REP. Bottom: Second derivative of the leaf spectra. Intersections of the curves 
and zero around 700-720 nm are marking inflections and hence the REP. 
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4.3.2 Crown level 

4.3.2.1 ASD crown level - reflectances 

The presented in-situ crown reflectances consist of two data sets acquired with the ASD field 

spectroradiometer in the growing seasons of 2011 and 2012, containing seven and six species, 

respectively. Similar to the leaf level data there are also big differences in the crown reflectance 

values (Figure 4.8). The two main water absorption bands are clearly visible by the sensor noise at 

about 1450 and 1900 nm. The second data set from 2012, however, appears less influenced by the 

water vapor or humidity, as the first water band is not as obvious. Additionally, especially in VIS 

the reflectances are very low. The data sets reveal that there are no clear trends in species 

reflectances in terms of comparative relation to each other. Neither in absolute nor in relative 

sense the species are following a ranking. Nevertheless, for a better comparison with the 

simultaneously acquired remote sensing data the focus shall be on the data gathered in 2012 in the 

forthcoming paragraphs.  

 

Figure 4.8: Crown level field reflectances and the deviations from beech as reference in 2011 (left 
column) and 2012 (right column). 

 

4.3.2.2 ASD crown level - spectral derivatives  

The DV values of 2012 are much lower than the campaign of 2011, and compared to the leaf level 

data the patterns are more influenced by noise (Figure 4.9, a, d). At the hump at the red edge of the 

first derivative, the unimodality is less distinct than in the leaf data. Moreover, a double peak is 

rather apparent. There are modes at about 701 nm and 725 nm for all species followed by a local 

maximum at about 718 nm (Figure 4.9, b, e). However, seemingly there is a similar tendency of a 

blue-shift of REP by which maples and hornbeam have their maximum of DV1 towards shorter 
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wavelengths. Whereas there is apparently a red-shift for beech, ash, oak and linden. This should be 

proven further in section about the finding of the red edge inclination point. Consequently, a 

graphical reading of the REP from the second derivative is rather difficult as there are multiple 

points where the values equal zero intersecting the abscissa (Figure 4.9c, f). Here the 

determination is chosen in such way, that the values be read at the last intersections before 

becoming negative. 

 

Figure 4.9: First spectral derivatives of in-situ crown reflectances as acquired in 2011 (a) and 2012 (d). 
Spectral subsets of the red edge region of the first (b, e) and second derivatives (c, f). The 2012 data 
is not including Sycamore maple. 

 

In contrast to the leaf level signatures and the remotely sensed spectra, there are small peaks 

present in the in-situ crown data at about 760 nm, which is known as the O2-A absorption band 

(Raychaudhuri, 2012). This correlates actually with the sun-induced chlorophyll fluorescence and 

can be used for further monitoring purposes such as plant status and photosynthetic efficiency 

(Meroni et al., 2009; Yang et al., 2015).  

 

4.3.2.3 AISA crown level - reflectances 

In contrast to the very high-resolution field spectroradiometer measurements, the images have a 

coarser spectral sampling interval of 4.3-4.7 nm (EAGLE) and 6.2-6.3 nm (HAWK). The at-sensor 
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reflectance is displayed in Figure 4.10. Mean NIR values range about 0.3-0.4, are on average 

between both leaf- and crown level ASD sets. Especially the response pattern of ash differs from 

the other species and is much higher in NIR. One striking circumstance is that due to the pre-

processing and interpolation procedures the two main water absorption bands, which usually 

cause noise, are not anymore present in the data. Furthermore, the small absorption features in the 

NIR plateau at about 995 and 1175 nm are more distinct than at the two other examined data sets 

gathered with the field spectroradiometer. The deviations from beech are mainly positive for most 

of the species. Only oak and ash show in SWIR1 and SWIR2 lower values than beech, which is 

similar to the ASD crown data. 

   

 

Figure 4.10: Mean crown reflectances (top) for the sampled trees as derived from AISA EAGLE and 
HAWK and corresponding differences from beech as reference (bottom). 

  

4.3.2.4 AISA crown level - spectral derivatives  

The extracted pixel values of the imagery can be handled for the derivative analysis just like the 

field spectroradiometer data. The typical pattern of DV1 is also recognizable here. However, the red 

edge region shows a weak double peak and the maximum is less clear to define. Moreover, the 

curves of DV2 pass consequently through zero at nearly the same position at about 709 nm (Figure 

4.11). 
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Figure 4.11: First derivatives of AISA EAGLE/HAWK spectra and their course between 670 and 770 nm 
at the red edge region. Bottom: Corresponding second derivative.  

 

4.3.3 Level comparison - reflectance 

The direct comparison per individual tree of in-situ and remote sensing data as sampled on 

24.07.2012 reveals the differences for the levels of measurement. Leaf data has highest 

reflectances, ASD crown data the lowest. Apart from that, there is almost no clear pattern or 

grouping apparent in the species reflectances on varying levels. However, oak reflectances are the 

lowest nearly in every wavelength. Whereas beech, linden and hornbeam belong to the species 

with highest values (Figure 4.12).  
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Figure 4.12: Mean reflectances for sampled species on three levels: (i) ASD leaf (darker solid line), (ii) 
ASD crown (dashed line) and (iii) AISA crown (light solid line). Date of measurement: 24.07.2012 

 

By opposing the data from different scales for each species, the correlations become better 

observable. While the relationship between ASD-crown and AISA-crown data seems to be linear, it 

is different between ASD-leaf and AISA-crown data (Figure 4.13). Hence, a simple linear model 

could be applied to the in-situ crown data in order to approximately describe the AISA pixel values. 

For modelling of leaf reflectance, as the dependent variable, from the AISA data, the logarithmic 

approach is chosen. However, since an automatic fit did not lead to satisfying results, the model 

parameters 𝑎 and 𝑏 are forced to the final values afterwards (Table 4.3) by visual interpretation of 

the modelled curves. The coefficients of determinations (𝑅²) are ranging about 0.8-0.97. Figure 

4.14 presents the resulting synthetic reflectance curves on the examples of ash and hornbeam. 

Bigger deviations are apparent especially in the near infrared and in the water absorption bands. 

The latter are somewhat negligible for remote sensing sensors and exist only because of 

preprocessing and interpolation. However, the modelled curves are seemingly a fair 

approximation. 
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Figure 4.13: Relationships between AISA EAGLE/HAWK crown and in-situ ASD reflectances on crown 
and leaf level over all wavelengths using the example of beech. 

 

 

Figure 4.14: Left: Ash reflectances as derived of crowns from AISA EAGLE/HAWK (dark solid line) and 
leaves by ASD (brighter solid line) in comparison to modelled leaf reflectances (dashed line). Right: 
Oak crown reflectances from AISA (dark solid line), ASD crown (brighter solid line) and modelled AISA 
(dashed line). 

 

Table 4.3: Model parameters of each species for transforming crown (ASD) to crown (AISA) and from 
crown (AISA) to leaf (ASD). 

Species 

ASD-crown -> AISA 

𝑦 =  𝑎 ∗ 𝑥 +  𝑏 

 AISA -> ASD-leaf 

𝑦 = 𝑎 ∗ 𝑙𝑛(𝑥) +  𝑏 
 

𝒂 𝒃 RMSE  𝒂 𝒃 RMSE  

Ash 1.50 0.005 0.028 0.165 0.63 0.056 

Beech 1.10 0.015 0.018 0.174 0.65 0.062 

Hornbeam 0.90 0.020 0.014 0.185 0.66 0.059 

Linden 1.00 0.008 0.023 0.179 0.64 0.062 

Norway maple 1.15 0.020 0.016 0.171 0.60 0.054 

Oak 1.17 0.020 0.020 0.155 0.59 0.055 

 

4.3.4 Level comparison - vegetation indices and red edge position 

The vegetation indices obtained for the three levels reveal several issues (Figure 4.15). All NDVI 

range between 0.71 and 0.95, and differences between the levels are considerable. However, leaf 

data and remote sensing values show values that are more similar. This holds especially for beech 

and oak. The in-situ crown NDVI data shows a bit different pattern. Most of the PRI values are 
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negative between -0.11 and 0.03. By contrast, here are both crown data sets more similar. Except 

for beech, the ranking of PRI is more pronounced than for NDVI: first ASD leaves, followed by ASD 

crowns and AISA crowns. Narrowband vegetation indices CRI1 and ARI2 usually tend to have 

rather similar pattern. However, we can see that on crown level, there are some serious deviations 

depending on the scale. Nevertheless, the general trend is similar for each level. The in-situ crown 

data differ strongly and show furthermore extremely high values for both indices – inexplicably 

and primarily for the oak data. Overall, indices calculated on leaf level are most stable and show 

least variation between species. The red edge inflection points were obtained separately using 

spectral derivatives and the Red Edge Position Index (REPI). Here, the first presented in-situ leaf 

and crown level also contain values from two growing seasons for comparison with an averaged 

and more stable data set. We can see for the leaves a clearer trend in the REP over the species with 

Ash and Linden having the highest REP, Beech, Sycamore maple and Hornbeam the least. Similarly, 

this is apparent in the field crown data (Figure 4.16). 

 

Figure 4.15: Mean NDVI and PRI values for the different tree species at different scales and sensors. 
Only data from 24.07.2012 are considered. CRI1 at ASD crown level deviates and is scaled separately. 



CHAPTER 4 - RESULTS 

91 

     

Figure 4.16: Graphical comparison of the red edge inflection points from 2011-2012 data at different 
levels. Left column: REP from derivatives, right column: REP from REPI. Notice the different scales. 

 

There are clear variations in the collected data, and discrepancies between the REPs derived by the 

different methods are obvious even within one species. REP from second order derivatives (REPDV) 

show a far higher variation than the index-based (REPREPI) (Figure 4.17). The latter stays on 

relative constant level of about 720-725 nm, whereas REPDV values go down to 705 nm. In any case, 

the REPs from AISA imagery have the nethermost values on average. The overall trend over all 

measurements indicates a certain ranking in REP: ash, linden and oak have higher REP than beech, 

followed by hornbeam and Norway maple. A similar pattern in the REP is recognizable plotting the 

data over all species (Figure 4.18). 

 

Figure 4.17: Pairwise comparison of red edge positions (REP) for the sampled trees at the three scales 
in-situ leaf, in-situ crown and remotely sensed crown as derived by red edge position index (REPI) and 
spectral derivative (DV). 
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Figure 4.18: Graphical comparison of the red edge inflection points from 2011-2012 data at different 
levels for each species, without Sycamore maple. 

 

Considering only the day when the data was gathered simultaneously, the values are slightly 

different compared to the full data set from two growing seasons. Again, on crown level the REP 

from AISA images are lower than the in-situ ones from the ASD device. However, in contrast to the 

other scales the remote sensing-based REP are similar and range around 709 nm, so that they are 

actually the same for all species. The leaf level derivatives yield the lowest values for Norway 

maple, Hornbeam and Beech (Figure 4.19). The red edge positions derived from in-situ leaf level 

data and from imagery are generally more similar to each other than the one from in-situ crown 

reflectances. On the other hand, both crown REPDV and REPREPI from ASD measurements are more 

consistent in terms of values and show the smallest differences (Figure 4.20).  

The scale-dependency is also apparent when checking the relationship between red edge position 

values and vegetation indices. Obtained 𝑅² values (Leaf/AISA image) would range for 

NDVI~REPREPI at about 0.87/0.43 and about 0.18/0.76 for PRI~REPREPI, respectively. By contrast, 

the correlations are much less or even not apparent at all when using the derivative approach: 

0.01/0.55 (NDVI~REPDV) and 0.41/0.14 (PRI~REPDV). However, as these are gained only from six 

species mean values, those relations cannot be seen as ultimate but rather show the unsteady 

behavior and a potential ambivalence in the interpretation of results. 
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Figure 4.19: Red edge positions (REP) for the sampled tree species as derived from simultaneous 
measurements by second order spectral derivatives (DV, left) and by red edge position index (REPI, 
right). 

 

 

Figure 4.20: Red edge positions (REP) for the sampled tree species as derived from simultaneous 
measurements by second-order spectral derivatives (DV, left) and by the red edge position index 
(REPI, right). 

 

 DISCUSSION 4.4

In this study, the considered leaf level data was all sampled on the day of the flight over, which 

yields to an extraordinary and unique data set. The scale-dependency of tree reflectances from 

single leaves to crowns could be successfully demonstrated for the spatial, temporal and spectral 

resolution. It could be observed that reflectance measurements of vegetation is a rather dynamic 

and inconstant business. Inner and outer conditions influence the spectral appearance of tree 

leaves and crowns. These variations can be immediate responses or the result of a longer 

treatment. In this study, there were considerable differences in crown reflectances of the two 

considered years. The data from 2011 show much larger values than the 2012 data. This can have 

several reasons such as different weather conditions during the growing season or a higher leaf 

water content causing higher reflection in NIR and SWIR. Another factor might be the used field 
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spectroradiometers and their calibration. Here, small operational mistakes and carelessness can 

lead to false results. The same holds for the processing of the data. The final explanation for the 

discrepancy remains open. 

Obtained reflectances of leaves and crowns show common range and shape of green vegetation. 

Here, leaves reflect more in NIR and SWIR than crowns or crown parts, respectively. This was also 

found in some investigations (Cho et al., 2008b) and is in contrast to other studies (Clark et al., 

2005). Explanation can be in the stacking of leaves causing a higher reflectance in longer 

wavelengths of NIR and SWIR. However, stronger observed absorption features, which are mainly 

present in NIR of the remotely sensed data, are also reported by Clark et al. (2005) and support the 

correctness of this study. Additionally, the responses obtained on both leaf and crown level 

sometimes show in some spectral regions nearly identical values for different species.  

Calculated narrowband vegetation indices CRI1 and ARI2 were most stable on leaf level. Variations 

on crown level are indicating an influence by canopy structure and background, respectively. The 

other levels showed more inconsistence variations. Another approach considered here is the 

calculation of first and second order derivatives for finding important bands and distinctive 

features like the red edge position. REPI as derived by the linear interpolation technique tends to 

have higher red edge position values than other methods (Dawson and Curran, 1998). This could 

partly be observed here as well. In theory, a higher REP is related to both a higher concentration of 

nitrogen (Cho and Skidmore, 2006) and a higher chlorophyll content (Le Maire et al., 2004). 

Incorporating modelled spectra, a jump of the REP could be observed by Le Maire et al., (2004) 

when chlorophyll content exceeds 45 µg/cm². Although the first derivatives did not show strong 

bimodal appearance at the red-edge region as found in other studies (Cho and Skidmore, 2006; 

Miller et al., 1991), the slight bimodal DV1 found in this study are related to medium-high 

chlorophyll content. Assuming the information found in the literature, we could say that the 

sampled leaves of beech and hornbeam have a lower chlorophyll content than for instance oak and 

linden. While the data is relatively unambiguous for leaf level data, the interpretation of the near- 

and far-remote derivatives is somewhat more complex, especially for the data set of 2012. In-situ 

ASD crown data measurements as well as the AISA data tend to have a double peak, which are less 

distinct in the pixel spectra. Beech and hornbeam showed occasionally rather different traits. The 

presumed assumption of similar characteristics cannot hold finally. Moreover, there is almost no 

obvious trend regarding species and level of data acquisition, what makes it rather difficult to 

deduce clear statements. Moreover, there are differences in chlorophyll and carotenoid 

concentration or in leaf water contents over the time, due to the development during the growing 

season, which is also species-specific.  

Differences in the REP obtained from derivatives are also depending on the grade of smoothing. 

The more neighboring values are included in the filter function the smoother gets the graph. 
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Generally, it should be noticed that each smoothing can even have a negative influence on the 

results (Vaiphasa, 2006), depending on the intentional task, when important features are polished 

away unseen. Here, a Savitzky-Golay filter was applied for each derivation smoothing the five 

previous and subsequent neighboring values. Smoothing is also part of the pre-processing of the 

remote sensing data. Additionally, it should be kept in mind that the airborne images were 

acquired from a height above ground of almost 2000 m. Even though the distance between sensor 

and surface is rather small, there is still an influence of the atmosphere comprehending absorption 

and scattering processes due to water vapor, molecules and particles. Hence, the pixel values are 

just the result of a long processing chain. 

The definition of the correct REP is rather challenging (Baranoski and Rokne, 2005). Contrary to 

often stated that red edge parameters should be, at least, less sensitive to changes in canopy 

structure, leaf optical properties, background reflection, illumination angles and irradiance than VI 

(Curran et al., 1995; Ghiyamat and Shafri, 2010), it could be shown however that it depends highly 

on the data resolution as well as on the approach. The assignment of the red edge position by 

graphical interpretation of the second derivative should theoretically lead safely to the true REP. 

Moreover, we are assuming commonly that there is only one rather distinct REP per spectrum. In 

this study, the curves of DV2 of the in-situ crown reflectances are intersecting the abscissa more 

than once in some cases (species). This finding is somewhat comparable to prior studies (Cho and 

Skidmore, 2006). On one hand, it supports the correctness of the measurements. On the other 

hand, it evinces the dilemma of a correct reading. For the AISA imagery, the utilization of the 

derivatives is not constructive in this case as the values are too similar. 

A further issue is that maybe there are not the same conditions at the canopy walk as at other 

locations within the forest. Because the relative new construction, built in 2008-2009, may have 

still an impact on the soil density or water supply. However, since all trees undergo the same 

condition, we could neglect this issue. For modelling correct AISA and leaf data the information 

about the full width half mean (FWHM) of EAGLE and HAWK was not on hand for this study. 

Instead, the spectral sampling interval was used. Since in this case the correct spectral response 

function is not considered, the results might be affected by the resampled data. The sampling of 

tree leaves itself is always an awkward issue which is usually never really addressed in the 

literature. A standard protocol might help in documentation and further comparisons. 

As already mentioned, stacking leaves for measurement can have a massive impact on the 

reflectance and hence on the resulting REP and calculated VI (Vogelmann et al., 1993). Sampled 

leaves show rather high reflectances in NIR and SWIR especially after stacking like in year 2011. 

Since crowns and canopies also consist of multiple tissue layers, one might expect similar behavior 

on that scale. However, this study demonstrates that this assumption is too simple and does not 

hold. Canopies cannot just be seen as stacked leaves. There is multiple scattering within the rather 
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rough surface of a forest canopy. Moreover, it consists of gaps and shaded parts, bark and 

epiphytes, twigs and branches. Another driver is surely the background like other trees, shrubs, 

grass or bare ground. Depending on the site, the understory can influence the spectral behavior 

even of upper tree parts (Eriksson et al., 2006; Ollinger, 2011). That means also consequently that 

for upscaling towards coarser resolutions of remote sensing sensors is quite complex, and, there is 

no general scaling approach being the best (Wu and Li, 2009). Even on a single leaf, there are areas 

of different reflection performance such as leaf veins or spots of varying pigmentation. Hence, what 

we obtain is always a compounded signal of a more or less heterogeneous surface.  

 

 CONCLUSIONS AND OUTLOOK 4.5

Conducted measurements and derived results are highly dependent on the level of acquisition. The 

link between leaf level data and canopies and hence to forests and landscapes is a crucial point for 

understanding of photosynthetic efficiency and productivity (Gamon, 2015). Specific vegetation 

indices such as the PRI can help to clarify those relationships between spectral appearance and 

carbon fluxes (Garbulsky et al., 2011). Red edge position information can be used as an indicator 

for the chlorophyll content, which is essential for the photosynthesis. I compared the REP on 

different scales from leaves to crowns with different approaches using (i) spectral derivatives and 

(ii) calculating a red edge position index (REPI). It reveals that there are rather big deviations in 

the derived REP. The values differ with the two methods and with the level of acquisition. 

Interestingly, REPI values from leaves and from the images are more similar to each other than to 

the in-situ crown data. However, the presented relations between leaf and crown responses base 

on a rather rough and simple but promising approach that should be analyzed further. Specific 

models for different ranges of wavelengths might help to improve minimizing the deviations from 

model and target variable. Another possible approach would be to use radiative transfer models to 

obtain more controllable input and results (Gastellu-Etchegorry et al., 2004; Jacquemoud et al., 

2009). The up- and downscaling of vegetation responses over a variety of levels incorporating field 

and remote sensing are important subjects and ongoing topics (Colombo et al., 2008; Lausch et al., 

2013b; Schaepman et al., 2010). Spectral unmixing techniques (Keshava, 2003) could be 

incorporated for data with coarser spatial resolution. Observed differences in REP at different 

scales demonstrate to interpret results with care as they can imply erroneous deductions about 

chlorophyll content and productivity status. Upcoming research should include hyperspectral 

vegetation indices to examine the scaling effects also in relation to biophysiological traits. Another 

possible aspect would be considering the leaf water content and drought stress. Certainly, more 

research is needed on the REP and a possible incorporation to species discrimination (Ghiyamat 

and Shafri, 2010). 
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Looking at the field of imaging spectroscopy, we are facing challenges and opportunities in using 

data from different sensors with different spatial and spectral resolutions. On one side, there are 

hyperspectral airborne platforms like the used AISA system or the HyMap sensor (Schlerf et al., 

2005) with variable GSD. On the other side, there are satellites such as Hyperion and upcoming 

EnMAP (Segl et al., 2015, 2012). New hyperspectral spaceborne sensors will surely be in the future 

focus to improve Earth observation and mapping. Further analysis steps are resampling to band 

characteristics of other imaging systems and the comparison of sensors. Since this study used 

rather high spatial resolution data, resampling using relative spectral response functions of 

sensors directly is only meaningful to other aerial sensors like multispectral frame cameras or to 

satellite sensors such as RapidEye, Worldview 2 and 3, Sentinel 2, SPOT or Quickbird (Forestier et 

al., 2013). For coping both the spatial and the spectral scale successfully, a simulation and 

evaluation framework is needed for modelling larger pixels like from Landsat 8 or Hyperion and 

EnMAP. However, the key for the future is the utilization of multiple sources of information and its 

adequate distribution, and hence we need intercomparable data with standardized pre-processing. 

For a better understanding of ecosystem functions, multi-scale research studies on forests are still 

needed and important for comparison, interpretation and drawing conclusions. For all this, not 

only spectrally but also spatially coordinated sensor products are required.  
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APPENDIX 

Table 4.4: Mean red edge positions (REP) for the different tree species at different scales and 
sensors. DV=second derivative from 2011 and 2012, respectively and the corresponding Red edge 
position index (REPI) in brackets. 

Species 

REP [nm] 

Leaf Crown 

ASD DV2011-12 

(REPI2011-12) 

ASD DV2011 

(REPI2011) 

ASD DV2012 

(REPI2012) 

AISA DV2012 

(REPI2012) 

Hornbeam Carpinus betulus 704.0 

(718.9) 

717.3 

(720.1) 

726.6 

(722.2) 

708.5 

(719.9) 

Sycamore maple Acer 

pseudoplatanus 

704.7 

(719.2) 

716.1 

(718.3) 

- 

(-) 

- 

(-) 

Beech Fagus sylvatica 715.2 

(720.3) 

724.3 

(722.0) 

728.3 

(722.7) 

708.6 

(719.4) 

Norway maple Acer platanoides 716.6 

(720.6) 

715.8 

(718.3) 

722.3 

(721.2) 

708.5 

(718.5) 

Oak Quercus spec. 717.5 

(720.7) 

723.1 

(721.9) 

728.0 

(725.2) 

709.0 

(719.7) 

Small-leaved linden Tilia cordata 718.7 

(721.4) 

725.3 

(722.7) 

727.6 

(723.6) 

708.4 

(718.5) 

Ash Fraxinus excelsior 718.7 

(721.1) 

723.5 

(721.6) 

726.8 

(725.0) 

708.8 

(720.0) 

 

Table 4.5: Mean NDVI values for the different tree species at different scales and sensors. Only crown 
data from 2012 considered. 

Species 

NDVI 

Leaf ASD Crown ASD   Crown AISA 

Hornbeam Carpinus betulus 0.754 0.856 0.756 

Sycamore maple Acer pseudoplatanus 0.763 - - 

Beech Fagus sylvatica 0.794 0.708 0.773 

Norway maple Acer platanoides 0.785 0.823 0.723 

Oak Quercus spec. 0.811 0.943 0.822 

Small-leaved linden Tilia cordata 0.822 0.804 0.783 

Ash Fraxinus excelsior 0.800 0.892 0.842 
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Table 4.6: Mean PRI values for the different tree species at different scales and sensors. Only crown 
data from 2012 considered. 

Species 

PRI 

Leaf ASD Crown ASD  Crown AISA 

Hornbeam Carpinus betulus -0.0164 -0.1528 -0.0930 

Sycamore maple Acer pseudoplatanus -0.0022 - - 

Beech Fagus sylvatica 0.0019 -0.0633 -0.0940 

Norway maple Acer platanoides 0.0229 -0.1067 -0.1087 

Oak Quercus spec. 0.0198 -0.0481 -0.0760 

Small-leaved linden Tilia cordata 0.0188 -0.0929 -0.0709 

Ash Fraxinus excelsior 0.0107 -0.0485 -0.0752 

 

 

Figure 4.21: AISA EAGLE/HAWK crown reflectances and corresponding ASD measured and modelled 
leaf reflectances. 

 



 

100 

CHAPTER 5 

DESCRIBING LIGHT INTERCEPTION IN AN OLD-GROWTH FOREST 
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5 CHAPTER FIVE – CANOPY LIGHT INTERCEPTION IN AN OLD-GROWTH 

BROADLEAVED FOREST STAND 

 INTRODUCTION 5.1

The sun, billions of years old, is emitting its energy to us from a distance of more than 1.5×108 km. 

This “starlight” is essential for most of Earth’s life. It is crucial for growth and vitality of higher 

plants and the main driver for the photosynthesis, that process, in which simply spoken water and 

carbon dioxide are converted to oxygen and sugar with the usage of solar energy. Depending on 

site and climate, the efficiency of this light use is linked to the gross primary production and finally 

the sequestration of biomass and hence carbon (Anderson et al., 2000; Keith et al., 2009; Luyssaert 

et al., 2008). Within this context the radiation utilization efficiency describes the assimilation of 

biomass in relation to total incoming radiation (Garbulsky et al., 2011). The quantification of 

sunlight going through tree crowns and the intercepted amount is an important issue. As light 

availability is relevant for many processes within the complex forest ecosystems, it is crucial to 

have knowledge about its distribution within forest stands. Moreover, since light regime within 

and below canopies as well as the optimal exploitation of sunlight play key roles in supporting or 

constraining species in the understory, the understanding of the processes is finally important for 

silviculture and forest management. Furthermore, within forest crowns the availability of light 

influences tree species competition, what in turn is influencing the light distribution. Besides the 

composition of plant species it is affecting also the behavior and abundancies of animals by 

variations in visibility and temperature (Endler, 1993; Lehnert et al., 2013).  

As shown in chapter 3, the transmission through leaves depends on the species, health condition 

and season of the year. Hence, the light reaching the lower layers and its composition is affected by 

the entire crown including woody parts. The estimation of the proportion of ground area, which is 

covered by canopy, or more precisely by tree canopy, is a central part of national and international 

forest definitions (FAO, 2012; Gschwantner et al., 2009; Pulla et al., 2013). Within this context of 

acquisition readers are often confronted with the terms canopy density, canopy closure, canopy 

cover, crown cover and crown closure. According to the definitions of IPCC (Intergovernmental 

Panel on Climate Change) and FAO (Food and Agriculture Organization of the United Nations) 

canopy cover and crown cover are the same as crown closure (FAO, 2012; IPCC, 2003). Now and 

then there are still misunderstanding and confusion about the terminology which need to be 

standardized (Gonsamo et al., 2013; Korhonen et al., 2006). However, the concept of canopy cover 

and canopy closure (Figure 5.1) has already been carried out in several studies (Jennings et al., 

1999; Korhonen et al., 2006; Paletto and Tosi, 2009; Rautiainen et al., 2005), and some compared 

methods and devices (Jonckheere et al., 2004; Thimonier et al., 2010). 



CHAPTER 5 - INTRODUCTION 

102 

 

Figure 5.1: The concepts of canopy closure (left) incorporating viewing angles and canopy cover 
(right) following Jennings et al. (1999) and Korhonen et al. (2006). 

 

Many terrestrial methods of measuring the porousness of forest canopies have been developed and 

proposed using different devices such as hemispherical densiometer, vertical densitometer, 

cajanus tube or photography (Goodenough and Goodenough, 2012; Korhonen et al., 2006; Marchi 

and Paletto, 2010; Paletto and Tosi, 2009; Rautiainen et al., 2005). Especially hemispherical photos 

have been widely used for the description of canopy structure and light regime as well as for the 

estimation of the leaf area index (LAI) (Beckschäfer et al., 2014; Hale and Edwards, 2002; Russell 

et al., 1989; Wagner, 1998; Wang et al., 1992). A common way of analyzing photos is a binarization 

in order to group the pixels into plant and non-plant, which is actually the sky background (Rich, 

1990). One major drawback in applying photographically derived parameters is the neglecting of 

occlusion of branches and overlapping leaves within the tree canopy strata and hence the 

occurrence of clumping effects. That often leads to underestimated values compared to the real leaf 

area derived from destructive methods (Fassnacht et al., 1994; Van Gardingen et al., 1999; Walter 

et al., 2003). That is one reason why the geometry of viewing angle and rays are taken into account 

to reduce these effects (Walter et al., 2003). Nevertheless, the results are often not sufficiently 

explainable (Gonsamo and Pellikka, 2009) and the direct link to real leaf area is not guaranteed. 

Hence, only gap fraction or openness of binarized photographs can be considered as the most 

traceable metric we can simply derive. Similar to photographs, devices often used in studies as 

reference such as the LI-COR LAI-2000 (Gong et al., 2003; Gower and Normann, 1991; Morisette et 

al., 2006) are assuming foliage as black and usually do not consider light transmitted through 

leaves.  

Certainly, there are several research studies about light transmission through canopies (Black et 

al., 1991; Canham et al., 1993; Endler, 1993; Hardy et al., 2004; Jordan, 1969). But as commonly 

only green leaves are capable of making photosynthesis a more detailed exploration should be 

done. Moreover, an explicit spectral information about the transmitted or absorbed light has only 

been barely considered (Huang et al., 2007). Further example studies were conducted in conifer 

stands (Wang et al., 2003) or in tropical forests (De Castro, 2000). Hence, analyses for old-growth 

temperate forest stands are still lacking. 
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The processes behind incoming sunlight that is transmitted through foliage and canopy and 

scattered within the tree crowns are quite complex and follow the principle of energy 

conversation. As light absorption is highly related to plant state and productivity, the 

quantification of the intercepted incoming sunlight is a vital issue. Again, the determination of 

absorption by green vegetation gives information about the plant’s status and condition (Gobron et 

al., 2006). In that context the fraction of absorbed photosynthetically active radiation (fAPAR, 

fPAR) within the spectral range of 400-700 nm is labeled as an essential climate variable (Gobron 

and Verstraete, 2009b), which is linked to chlorophyll content (Gitelson et al., 2003) and the 

assimilation of CO2 (Sellers et al., 1992). However, there is still some confusion and disagreement 

about the estimation of fAPAR (Gobron and Verstraete, 2009b), what might be also concerned with 

the rather complicated estimation of the absorbed PAR. If a forest canopy is dense and has green 

leaves, APAR can be approximated by the IPAR. That is the amount of PAR intercepted by all parts 

of the vegetation, not only by leaves, which reflect less PAR when healthy and green (Daughtry and 

Ranson, 1986; Eklundh et al., 2011; Serrano et al., 2000).  

Besides in-situ ground-based measurements, the derivation of closure and cover estimations can 

also be achieved by using remotely sensed data as an auxiliary tool for regionalization and 

mapping larger areas (Pu and Gong, 2004). Operational fAPAR products might be derived on a 

rather coarse scale by satellites like MERIS (Medium Resolution Imaging Spectrometer), MODIS 

(Moderate Resolution Imaging Spectroradiometer) and MISR (Multi-angle Imaging 

Spectroradiometer) (D’Odorico et al., 2014; Gobron and Verstraete, 2009b; Pinty et al., 2011a). The 

utilization of hyperspectral sensors having numerous bands to measure the reflected radiation by 

remote sensing and below the canopy to estimate the amount of intercepted light is a suitable 

approach. This can be fostered by incorporating broad- and narrowband vegetation indices (VI) to 

highlight specific features (Huete et al., 1997; Jackson and Huete, 1991; Schlerf et al., 2005). 

Especially in hyperspectral remote sensing the number of possible VI incorporating band ratios, 

normalized differences or other equations using any channel combination is enormous (Agapiou et 

al., 2012; Bannari et al., 1995; Prospere et al., 2014). Several vegetation indices showed already 

their capability for remote estimations such as of LAI and chlorophyll content (Brantley et al., 

2011; Gitelson et al., 2003). Here, besides others, the photochemical reflectance index (PRI) is in 

the main focus (Garbulsky et al., 2011; Wu et al., 2015). PRI is found to be sensitive to leaf area 

index (Barton and North, 2001) and seems to have an inverse relation with light use efficiency 

(LUE) (Peñuelas et al., 2013; Soudani et al., 2014). However, literature reveals also that there are 

still ambiguities and uncertainties about this relationship and the role of canopy structure 

(Garbulsky et al., 2011; Wu et al., 2015). 

This study takes up the needs and findings of prior studies and tries additionally to address canopy 

light absorption using common but also newest sensors in a rather simple manner. The study is 
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conducted in a mature deciduous forest stand which is part of global carbon flux research 

networks. In order to encompass the view from above, high-resolution hyperspectral remote 

sensing data is used. Moreover, a unique set of ground radiation measurements and simultaneous 

remote sensing imagery acquisition are the basis this work. Below-canopy spectral irradiances 

shall give precise insights on transmitted light composition. One objective is the derivation of local 

light extinction coefficients for the old-growth broadleaved stand, which describe the 

transmission/absorption rate of the radiation through the canopy. Another question to be 

answered is which parts of the electromagnetic spectrum are most affected by the attenuation and 

what are the possible consequences. The data set is completed by digital cover photography (DCP) 

and digital hemispherical photography (DHP) in order to address canopy structure and 

porousness. Therefor a device is introduced which is combining two cameras incorporating visible 

and near infrared light. On the remote sensing side, besides several commonly used vegetation 

indices, here the focus is on the PRI. It shall be examined if the remotely sensed PRI can be used for 

establishing estimations of within-canopy light interceptions. By using rather simple methods this 

research case study compares different approaches, which describe canopy structure and light 

interception. It shall furthermore contribute to a better understanding of the behavior of the 

involved processes.  

 

 MATERIALS AND METHODS 5.2

5.2.1 Study site 

The study area is located at N51.08° E10.45° and an elevation of about 440 m a.s.l. in the Hainich, a 

beech (Fagus sylvatica) dominated primeval forest. The site belongs to the FLUXNET network 

(Ershadi et al., 2014), is a CarboEurope verification site (Mund et al., 2010) and since 2011 part of 

a UNESCO World Heritage site (UNESCO, 2014). Tree age can reach 250 years. The old-growth 

stand is unmanaged since over 60 years (Knohl et al., 2003). For the area a maximum leaf area 

index of about 5.0-5.5 is reported (Anthoni et al., 2004; Knohl et al., 2003; Kutsch et al., 2008; Pinty 

et al., 2011b).  

Surrounding a climate tower a squared core area of 150x150 m (2.25 ha) was established and 

additionally split into 25 plots for spatially more comprehensive analysis, consecutively named 

core plots. Each plot has a size of 30x30 m, which corresponds to the pixel size of Landsat and 

Hyperion satellites as well as to the upcoming EnMAP sensor. On the core area 416 trees having a 

diameter at breast height (dbh) measured at 1.30 m of minimum 15 cm were recorded noting 

position, diameter, species and some heights (Figure 5.2). Positions are subsequently confirmed 

with a canopy height model derived from airborne laser scanner. See chapter 3 for a detailed 

description about the tree survey methods and the study site. Highest individuals are ash trees 
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(Fraxinus excelsior) representing the second most frequent species. Further present species are 

Sycamore maple (Acer pseudoplatanus), Hornbeam (Carpinus betulus), Norway maple (Acer 

platanoides), Oak (Quercus petraea) and Wych elm (Ulmus glabra).  

 

Figure 5.2: Left: Location of the core area; aerial false color photograph, composite: NIR-G-B. Right: 
Recorded trees within the core area. Point size is relative to the diameter at breast height 

 

Table 5.1: Core area characteristics (tree dbh  15 cm). 

Species 

Percentage 
of total 
stems 

Mean 
dbh 
[cm] 

Mean 
height 

[m] 

Beech (Fagus sylvatica) 66.3 41.7 28.1 

Ash (Fraxinus excelsior) 22.6 62.8 33.7 

Sycamore maple (Acer pseudoplatanus) 7.0 59.3 28.4 

Hornbeam (Carpinus betulus) 2.2 33.5 24.1 

Norway maple(Acer platanoides) 1.0 32.4 22.2 

Oak (Quercus petraea) 0.7 64.1 30.2 

Wych elm (Ulmus glabra) 0.2 62.8 30.4 

 

5.2.2 General study setup 

For the detection of reflected radiation of the forest canopy remotely sensed hyperspectral data is 

used. The incident above and below canopy radiation within the forest stand were measured using 

a high resolution field spectroradiometer. This spectral global irradiance is depending on 

wavelength, stand density, canopy gap distribution and species composition. Besides that also 

different digital crown photographs were conducted for detailed intercomparison purposes. The 

following figures show the general scheme and setup (Figure 5.4, Figure 5.4). Finally, acquired 

point data can be interpolated.  
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Figure 5.3: Simplified scheme of radiation measurements. 

 

 
Figure 5.4: Core area and spatial arrangement of measuring positions. 

 

5.2.3 Remotely sensed data 

The remote sensing imagery used in this study was acquired on 24.07.2012 by the AISA cameras 

EAGLE and HAWK (SPECTRAL IMAGING LTD.). These hyperspectral sensors are sensitive for a 

spectrum of 400-2500 nm. Pixel size is 2 m corresponding to the flight height above ground. 

Acquisition and preprocessing was performed by the Department of Computational Landscape 

Ecology of the Helmholtz Centre for Environmental Research UFZ Leipzig. The delivered product 

was finally georeferenced using additional data like aerial imagery and basemap images in ArcMap 

(ArcGIS Desktop 10, ESRI). Besides the direct utilization of reflectance values broad- and narrow-

band vegetation indices can be calculated. In this study the following vegetation indices are 

analyzed as they are calculated in the software ENVI (v. 4.8, ITT VIS) (Table 5.2). They represent the 

most important aspects and they have been used in several studies (Clark and Roberts, 2012; 

Gitelson et al., 2002). 
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Table 5.2: Vegetation indices used in this study and the according formulas. ρ is the reflectance at 
specific wavelengths. 

Objective Index Formula Reference 

Greenness Normalized Difference 
Vegetation Index  

NDVI =  
ρNIR −  ρRED

ρNIR  + ρRED

 (Rouse et al., 1974) 

Simple Ratio SR =  
ρNIR

ρRED

 (Tucker, 1979) 

Leaf 

pigments 

 

Carotenoid Reflectance 
Index 1 

CRI1 =  
1

ρ510

−
1

ρ550

  (Gitelson et al., 2002) 

Anthocyanin 
Reflectance Index 2  

ARI2 =  ρ800 ∗ (
1

ρ510

−
1

ρ700

) (Gitelson et al., 2001) 

Carbon Normalized Difference 
Lignin Index  NDLI =  

log (
1

ρ1754
) − log (

1
ρ1680

)

log (
1

ρ1754
) + log (

1
ρ1680

)
 

(Fourty et al., 1996) 

Light use 

efficiency  

 

Red Green Ratio Index RGRI =  
ρRED

ρGREEN

 (Gamon and Surfus, 1999) 

Structure Insensitive 
Pigment Index  

SIPI =  
ρ800 − ρ445

ρ800 − ρ680

 (Peñuelas et al., 1995) 

Photochemical 
Reflectance Index  

PRI =  
ρ531 − ρ570

ρ531 + ρ570

 (Gamon et al., 1992) 

 

5.2.4 In-situ data 

5.2.4.1 Photography 

Digital cover photos were taken on the same 10 m wide grid as the irradiance measurements. This 

campaign was conducted begin of September 2012. During the acquisition all photos were shot 

around noon but avoiding direct sunlight. For normal RGB (VIS) photos a 6 megapixel NIKON D70 

digital single-lens reflex (DSLR) camera, for the near infrared (NIR) an almost identical D70s was 

used. It is modified and is operating without an internal filter, so that the camera is sensitive for 

infrared light. Both cameras are equipped with a standard 17-35 mm 1:2.8-4 lens, a TAMRON 

SP AF Aspherical DI LD-IF objective. Since infrared light contains less energy the exposure time 

needed to be adjusted to 1/100 sec. and +5 steps, aperture was set to f/4.  

For the DCP acquisition a custom-built device designed by the author combines one VIS and one 

NIR camera (Figure 5.5). It is using a dielectric cold mirror (EDMUNDOPTICS NT43-962) which is set 

to an incidence angle of 45° reflecting the visible light, but letting through near infrared. The 

average NIR transmission at 800-1200 nm is >85 %, average VIS reflection at 425-650 nm is 

>90 %. With the cameras aligned to each other this arrangement allows simultaneous photo 

shooting using a remote control. This copes moving of leaves and branches by wind and changes of 

the objects within the scene by shifting the tripod. Due to the settings of the construction and the 

dimensions of the cold mirror, the camera objectives have to set to high zoom. This leads to images 

that are covering a smaller area. 
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Figure 5.5: Schematic setting of the MultiCam D70 using two DSLR cameras, vertically arranged 
pointing towards sky. 

 

Additionally, wide angle photographs were collected on a subset of plots using a simple WALIMEX 

fisheye converter lens shortening the focal length by factor of 0.25 and offering viewing angle of 

about 165° which is subsequently termed digital hemispherical photos (DHP). 81 hemispherical 

VIS (DHPVIS) were recorded on a regular grid with a spacing of 15 m. Exposure time was set to 

1/160 sec., aperture to f/8. In addition, a set of 25 hemispherical near infrared photos (DHPNIR) 

were shot on the same grid around the center of the core area, mainly for test purposes. All images 

of this study were taken 1.3 m above ground on a tripod, leveled and aligned to magnetic north. 

Table 5.3: Overview of the below-canopy measurements in this study. The ASD measurements 
contain a continuous spectrum of 400-2500 nm. 

Method Spectrum Records 

ASD Irradiance VIS-SWIR2 167 

DCP VIS 225 

NIR 225 

DHP VIS 81 

NIR 25 

 

While some authors suggest only to use the blue channel (Gonsamo and Pellikka, 2009; Pekin and 

Macfarlane, 2009; Zhang et al., 2005), here I followed Jonckheere et al., 2005, incorporating all 

three RGB bands. After visual inspection the photographs were analyzed using batch processing in 

the free software ImageJ (Rasband, 2014). This includes the conversion of the original photos to 8-

bit greyscale images. For binarization the Intermodes algorithm (Prewitt and Mendelsohn, 1966) 

was applied for setting the threshold. Only for one photograph the produced binary image was 

deficient. The instead applied Huang algorithm (Huang and Wang, 1995) led to the subjectively 

best result in that case. Finally, for all image data sets describing parameters such as arithmetic 

mean, median and standard deviation of the relative gap proportions were calculated. This is the 

amount of sky pixels of an image in relation to non-sky pixels. Since gap fraction, or openness, is 
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related with the natural logarithm of the LAI, it is possible to derive an estimation of the leaf area 

index from hemispherical photography (Lang and Xiang, 1986; Leblanc et al., 2005).  

 

Figure 5.6: Workflow for the hemispherical photograph processing. 

 

5.2.4.2 Spectral irradiance 

What we commonly call sunlight is the visible part of the electromagnetic spectrum rayed by the 

sun. The maximum energy is in the visible range of the spectrum from 400 to 700 nm reaching the 

surface during noon when sun zenith is largest. Figure 5.7 illustrates the sun geometric angles 

during a summer day at the Hainich.  

 

Figure 5.7: Sun azimuth and elevation angles during the day. Date: 24.07.2012, day light saving time, 
UTC+1h (derived from sunearthtools.com). 

 

Irradiance 𝐸 is defined as the incident radiant flux per area. It is often obtained as integrated over 

the PAR region of 400-700 nm. Here, the spectral irradiance is obtained for the full spectrum from 

blue to shortwave infrared. For the in situ measurements of incoming radiation an ASD FieldSpec3 

HiRes field spectroradiometer (ANALYTICAL SPECTRAL DEVICES INC.) was used. The device has a 

spectral resolution of 350-2500 nm and a spectral sampling of 1.4-2 nm. By using internal 

interpolations, which produce bandwidths of 1 nm, it offers 2150 single channels. For measuring 

global spectral irradiance, a cosine receptor was attached on the fiber optics of the device (Figure 

5.8). This diffuser allows the user recording the insolation or incident radiant flux, respectively, in 

units of watts per area and wavelength over the complete hemisphere. 
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Figure 5.8: Remote cosine receptor (ASDI, 2012, modified). 

 

In the core area the incoming light below the canopy was recorded on a 10 m grid (Figure 5.4). The 

survey was conducted on July 25th 2012, one day after the AISA EAGLE/HAWK fly-over. For sensor 

calibration the spectral irradiance measured outside the forest on a free area is assumed as above-

canopy insolation and conducted just before and after the collection within the stand. Later 

analysis incorporates the average of the chronological different values. The spectroradiometer was 

calibrated using a white spectralon panel for ideal reflectance reference. This had been repeated on 

a nearby forest gap during the campaign whenever necessary. Each below-canopy measurement 

was done at 2 m height and aligned using a bubble level and consists of four single records leading 

to more than 660 entries. The derived curves are compared to references in the literature to check 

if the measured values of spectral irradiances are meaningful. It should be noticed that the 

following calculations only consider the spectral irradiance of the PAR region, here assumed as 

400-700 nm. In order to get estimation about the intercepted light within the forest stand the ratio 

of below-canopy irradiance 𝐸 to above-canopy irradiance 𝐸𝑜 is calculated for every record: 

𝐸𝑟 = (
𝐸

𝐸𝑜
) (Eq. 5.1) 

where the irradiance-ratio, here denoted as 𝐸𝑟, can actually be considered as the canopy 

transmission (Aubin et al., 2000). The fractional cover (𝑓𝐶) of the forest stand is comparable with 

the fraction of intercepted photosynthetically active radiation (fIPAR) and is calculated simply by 

(Eklundh et al., 2011; Propastin and Panferov, 2013): 

𝑓𝐶 = (
𝐸𝑜 − 𝐸

𝐸𝑜
) = 1 − 𝐸𝑟 (Eq. 5.2) 

The logarithm of the leaf area index is proportional to the logarithm of the transmission (Lang and 

Xiang, 1986). Hence, following the Beer-Lambert law it can be approximated by: 

𝐸𝑟  =  𝑒−𝑘∗𝐿𝐴𝐼  (Eq. 5.3) 

Guard ring Diffuser

Fiberoptic input

to spectrometer
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where 𝑘 represents the extinction coefficient and 𝐿𝐴𝐼 is the leaf area index (Daughtry and Ranson, 

1986; Monsi and Saeki, 2005; Serrano and Peñuelas, 2005). The term 𝑘 ∗ 𝐿𝐴𝐼 is also named the 

bulk canopy optical thickness (Hardy et al., 2004). Equation 3 can furthermore be written as:  

𝑘 =
−𝑙𝑛(𝐸𝑟)

𝐿𝐴𝐼
 (Eq. 5.4) 

It should be noticed that in this study the LAI is rather associated to the plant area index (PAI) 

(Weiss et al., 2004) than to the projected leaf area only. The extinction coefficient 𝑘 is reported for 

vegetation as 0.2-2.0, whereas it is ranging between 0.5 and 1 for broadleaved species (Bréda, 

2003; Daughtry and Ranson, 1986; Monsi and Saeki, 2005). Although 𝑘 is often set to about 0.5 

(Richardson et al., 2009), this general assumption may not lead to appropriate results in some 

situations and needs to be adjusted for bigger trees and forest stands of different density and type 

(Hopkinson et al., 2013). Transmission is, similarly to reflection and absorption, depending on the 

spectral range, tree species and crown structure. Furthermore, sun and leaf-inclination angles are 

important factors for the probability that photons collide with crown parts (Bréda, 2003; Propastin 

and Panferov, 2013). Finally, transmission, and therefore the irradiance ratio, can be set equal to 

gap fraction (Martens et al., 1993). This implies that 𝐸𝑟 and 𝑓𝐶 derived from ASD field 

measurements could subsequently be compared with the gap or cover fractions obtained from 

digital photography. 

 

 RESULTS 5.3

5.3.1 DCP 

Figure 5.9 shows examples of the digital cover photographs taken at plot 16 by the RGB and NIR 

version of the camera. It is apparent that they differ regarding the details within the crown, but 

also in crown and background-sky. The NIR image is highlighting the contrast between woody 

parts and foliage, which is appearing by nature brighter. For direct comparison, the VIS photos 

have to be re-mirrored horizontally to get the real orientation 

    

Figure 5.9: Examples of normal (left) and near infrared image (right) on DCP plot number 16. 

 

When comparing the calculated gap fractions for dense plots both cameras lead to values in similar 

quantity. However, in regions of higher openness, say above 20 %, the RGB images tend to induce 
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lower values than the NIR photos (Figure 5.10). These remarkable differences can also be seen in 

the median values which are 6.2 % (VIS) and 3.1 % (NIR). For the NIR photos the standard 

deviation of 11.9 % is remarkably higher than the mean. Differences are clearly apparent in the 

distributions (Figure 5.11). However, the mean gap fractions, defined as proportion of sky in 

relation to the whole image, are quite similar with 7.50 % (VIS) and 7.66 % (NIR). Moreover, the 

averaged values for the 25 core plots yield to a Pearson correlation coefficient of about 0.85. 

 

Figure 5.10: Scatterplots of crown openness derived from 225 normal (VIS) and near infrared (NIR) 
digital cover photographs. NIR DCP show higher values; for smaller gap proportions NIR is lower. Left: 

Black line is a linear regression. Right: Graph represents a potential trendline for values  20 %. 

 

 

Figure 5.11: Histograms of the percentage openness derived from RGB (VIS) and near infrared (NIR) 
digital cover photos. 

 

5.3.2 DHP 

Figure 5.12 shows as an example the hemispherical digital photographs taken at plot 1 in normal 

RGB and NIR. On the upper right side the climate tower is apparent, which is almost not visible in 

the RGB photo. The contrast between wood and non-wooden tree parts is more pronounced in 

NIR.  
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Figure 5.12: Examples of hemispherical normal (left) and near infrared image (right) on DHP plot 1 
close to the tower, visible on the right side. 

 

Overall, 81 VIS and 25 additional NIR photos could be recorded. The histograms reveal the 

differences in the data ranges of both methods (Figure 5.13). The VIS DHP show a much higher 

variation than the NIR DHP, which tend to lead to smaller openness. Table 5.4 lists the main 

describing statistical parameters for both data sets of the two methods DCP and DHP. Nonetheless, 

as the numbers of records differ considerably, conclusions might be limited from the frequency 

distributions (Figure 5.13). For direct comparison only the plots containing both methods are 

selectable. Here, no clear correlation is recognizable. When opposing DCPVIS and DHPVIS as 

averaged for each of the 25 core plots Pearson correlation coefficient 𝑟 amounts only to about 0.13.  

Table 5.4: Basic openness statistics of digital cover photographs (DCP) and digital hemispherical 
photographs (DHP) incorporating the two data sets of visible (VIS) and near infrared (NIR), values in 
percentage. The NIR DHP were recorded on smaller extent and cannot be compared directly. 

Parameter                     
[openness] 

DCP DHP 

VIS NIR VIS NIR 

Mean  7.50 7.66 4.59 2.05 

Median  6.23 3.08 4.06 1.61 

Minimum  0.30 0.01 1.46 0.71 

Maximum  47.59 74.29 10.73 6.15 

Standard deviation  5.78 11.86 2.02 1.46 

 

     

Figure 5.13: Left: Histograms of the 81 VIS and the 25 coincident VIS and NIR hemispherical photos. 
Right: Scatterplot of gap fractions derived from the coincident VIS and NIR DHP. 
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5.3.3 Ground irradiance and transmission 

Hemispherical spectral irradiances are measured outside the forest stand referred as above-

canopy. Below-canopy irradiance was recorded within the core area as described. In comparison to 

available data from literature, irradiances range in meaningful limits and show the typical pattern 

of incoming sun light on Earth’s surface (Figure 5.14). Furthermore, it is obvious that absorption is 

wavelength-dependent. This stand for the radiation through the atmosphere as well as for the light 

transmitted through a forest canopy. Mean below-canopy irradiance extenuates heavily and 

reveals strong changes especially in PAR. Figure 5.14 depicts all spectral irradiances measured 

below the canopy during the campaign. In this dense forest stand the quantity of PAR light 

incidencing the forest floor is quite low. The irradiance ranges between 0.003 and 

0.253 W/m2 nm-1. The overall average is only about 0.018 W/m2 nm-1. However, as mentioned, the 

amount of light reaching the lowest layer differs with the wavelength. Hence, we can split the 

measurements into four segments: (I) 400-700 nm, (II) 760-1100 nm, (III) 1150-1350 nm, 

(IV) 1500-1800 nm. Leaving out water bands and noisy regions the sections would correspond to 

VIS, NIR (2x) and SWIR1. SWIR2 must be disregarded due to low signal. 

 

Figure 5.14: Left: Comparison of spectral irradiance at the top of atmosphere (orange dashed line) 
(Wehrli, 1985), measured at surface level (solid blue line) and average below-canopy (green line) at 
the study site on 24.07.2012. Right: All 167 measured irradiances below the forest canopy. The water 
absorption bands around 1400 and 1900 nm are clearly visible. Weak signals cause heavy noise. 

 

The dependency of the intercepted light on the spectral range and the light composition itself 

become more understandable when plotting the above-canopy against the below-canopy 

irradiance (Figure 5.15). Though the transmitted radiation is decreased by about the factor 10, we 

can see the strongest absorption in the visible PAR region, followed by SWIR1. 
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Figure 5.15: Correlations between above and mean below-canopy irradiance for four different 
spectral ranges. R² corresponds individually to the coefficient of determination. 

 

The calculated standard deviations are in the visible spectrum larger than the mean values (Figure 

5.16). This is due to the variability in the PAR region and extreme high values, respectively, and 

caused by a certain skewness of the data. Coefficients of variation are at maximum in red about 

680 nm. Hence, this is another clear hint for the importance of VIS in terms of transmission and 

absorption by photosynthetic processes. One can state that the more light reaches freely the forest 

floor through gaps or by scattering, the higher is the proportion of short wavelength radiation.  

 

Figure 5.16: Mean below-canopy irradiance and the corresponding standard deviation (sd). 

 

The patterns of below-canopy spectral irradiances are rather varying. In more open plots, where 

more sun light hits the forest floor, even the shape of solar irradiance is still recognizable. Under 

denser conditions we can see a pattern which is similar to transmittance curves including high 

absorption in the visible spectrum. This is more apparent for the light interception building the 

ratio 𝐸𝑟 = 𝐸/𝐸𝑜. In PAR only 1.6 % of the light is reaching on average the forest floor (min. 0.2 %, 

max. 22.4 %, sd. 3.4 %). Whereas with 13.3 % the proportion of transmitted infrared radiation – as 

averaged over 800-1200 nm – is higher (min. 8.7 %, max. 36.1 %, sd. 4.4 %). However, especially in 

the shortwave infrared above 1800 nm the ratios tend to be noisy (Figure 5.17). In addition, 

several peaks are apparent in NIR. From this, the next step is the approximation of the 

transmission. After applying the negative natural logarithm following Beer’s law, the irradiance 

ratio becomes to a certain degree comparable with absorptance curves of the foliage (Figure 5.18). 
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Here, the highest values are apparent in VIS and in the water bands. Whereas values are the lowest 

in NIR, just in contrast to the transmission. 

 

Figure 5.17: All ratios of below- above-canopy irradiances (𝐸/𝐸𝑜). A transmittance pattern of a single 
beech leaf (black curve) sampled in May is plotted for comparison. 

 

 

Figure 5.18: All derived negative logarithmic values from the ratio of below- and above-canopy 
irradiance (-ln(𝐸𝑟)). An absorptance pattern of a single beech leaf (black curve) sampled in May is 
plotted for comparison. 

 

Multiplying −𝑙𝑛(𝐸𝑟) with the reciprocal extinction factor (1/𝑘) one can derive an estimation for 

the leaf area index (Monsi and Saeki, 2005; Serrano et al., 2000), which hinges on the extinction 

coefficient and vice versa. This connection of the two variables makes a precise acquisition 

difficult. The result increases strongly with decreasing 𝑘. Whereas with smaller 𝑘 not only the 

mean LAI increases, but also the range of values (Figure 5.19). The often used 𝑘=0.5 (Groenendijk 

et al., 2011; Macfarlane et al., 2007; Pekin and Macfarlane, 2009) would lead to an average LAI of 

9.7. By assuming a 𝑘 of 0.7-1 the ratio-derived LAI values average about 4.8-6.9, what corresponds 

to the LAI in this type of forests (Breuer et al., 2003; Scurlock et al., 2001). Moreover, the LAI 

reported for this stand of about 5 to 5.5 would imply an average extinction coefficient of 0.88-0.97. 

Indeed, the histogram of 𝑓𝐶 classes reveals that the coverage is most often very close to 100 %.  

However, although the stand canopy appears rather dense and homogenous, there are still some 

variations in crown light permeability. Figure 5.20 depicts the theoretical relationship between 

fractional vegetation cover and the extinction coefficient for fix leaf area indices of 4 to15.  
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Figure 5.19: Left: Theoretical LAI (minimum, mean, maximum) in dependence of extinction 

coefficient. Right: Corresponding mean  1 standard deviation. Data bases on the in-situ irradiance 
ratios per plot. 

 

    

Figure 5.20: Left: Theoretical relation of fractional cover (fC) and extinction coefficient (k) for the 
measured irradiance ratios at the 25 core plots and assumed LAI of 4 to 15 (LAI of about 5.5 is 
reported for the study site). Right: Histogram of fC values as derived from PAR irradiance on all plots. 

 

5.3.4 Remotely sensed data 

Some example pixel values from the used AISA EAGLE and HAWK imagery show the characteristic 

reflectance pattern. The mean responses per core plot are emphasizing this. On average, the plot 

reflectances differ mainly in NIR and SWIR1 (Figure 5.21). 

    

Figure 5.21: Left: Spectral responses of some arbitrarily selected pixels within the core area; tower 
values are clearly influenced by adjacent vegetation pixels. Right: Mean reflectances of the 25 core 
plots. 
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The reflectance imagery is basis for the calculation of the vegetation indices. Figure 5.22 shows the 

core area for some VI considering greenness and light use efficiency. Corresponding statistics 

calculated for the whole core area are listed in Table 5.5. The different appearances of the forest 

stand surrounding the climate tower are clearly visible for each VI. Those pixels are cut to avoid 

misleading mean values. Especially the NDVI shows a rather homogeneous surface compared to 

CRI1 or PRI which are richer in contrast. However, the images are only a hint and differences can 

be due to display settings. The true pixel values are considered in the paragraphs further down.  

 

Figure 5.22: Imagery of selected vegetation indices at the core area; the inner square has a size of 
150x150 m; the tower appears as spot in the middle. 

 

Table 5.5: Resulting values of selected VI for the core area. 

Metric NDVI SR CRI1 ARI2 NDLI RGRI SIPI PRI 

Mean 0.887 16.795 28.747 5.379 0.047 1.004 1.027 -0.079 

Minimum 0.639 4.543 7.145 2.549 0.027 0.850 1.012 -0.140 

Maximum 0.907 20.447 79.365 9.136 0.067 1.396 1.144 0.018 

 

5.3.5 Remote vs field methods 

For intercomparison of the field and remote methods the means of each of the 25 plots are 

calculated and compared. Figure 5.23 shows the correlation matrix of the in-situ acquisitions and 

remotely sensed indices.  

Here, 𝑘 is chosen as the extinction coefficient for the reported LAI of 5.5. Since 𝑓𝐶 on plot number 

four caused an outlier in the analysis, it is omitted from the 𝑓𝐶 data set. The plot wise relationships 

of the variables were checked by calculating Pearson correlation coefficients. This is done for 

among and between the metrics 𝑘, 𝑓𝐶 and the openness values for DCPVIS, DCPNIR and DHPVIS. 

Additionally, in order to include also the forest structure parameters, the sum of basal area and 

averaged tree height are considered. Overall, the correlations are not very distinct but rather 

moderate and range between -0.64 (PRI~DHP) and 0.85 (DCPNIR~DCPVIS). The DHP have highest 𝑟 

values on average. However, there is almost no correlation (r = 0.2-0.3) with the forest structure 

parameters, which can be excluded subsequently. Similarly, there is no high correlation between 

DHP and the ground-derived fractional cover (-0.21), whereas there is a moderate one with 𝑘 (-

0.52). 
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Associating the correlation coefficients of the variables with each of the AISA bands and vegetation 

indices allows an incorporation of the spectral reflectance information. For each plot the mean 

response curve is derived. However, none of the metrics has a high relation with the remotely 

sensed data. From the calculated vegetation indices PRI and CRI1 show the highest correlations 

with DCPNIR and DHP. In the example of 𝑘, the single bands with high 𝑟 values like for the two 

wavelengths 531 and 570 are also included in the vegetation index PRI. The ten variables with the 

highest 𝑟 are listed in Table 5.6. 

 

Figure 5.23: Part of the correlation matrix of selected features. Absolute r values 0.45 regarding the 
in-situ data are highlighted. Photography metrics DCP and DHP refer to openness. 
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Figure 5.24: Pearson correlation coefficients between (a) in-situ metrics, (b) forest structure and, for 
comparison, (c) vegetation indices and the spectral reflectance. 

 

Table 5.6: Top ten of Pearson correlation coefficients between the five main approaches, selected 
vegetation indices and AISA bands representing wavelengths. First row contains mostly redundancy.  

k5.5  fC  DCPVIS
*  DCPNIR

*  DHP*  

fC 0.78 k5.5 0.78 DCPNIR 0.85 DCPVIS 0.85 Plot 0.78 

DHPVIS -0.52 531 0.49 525 -0.42 CRI1 0.59 PRI -0.64 

DCPNIR -0.46 571 0.49 521 -0.41 PRI -0.56 CRI1 0.59 

ARI2 -0.42 566 0.49 516 -0.41 512 -0.50 2026 0.55 

RGRI -0.42 575 0.49 512 -0.41 507 -0.50 2020 0.55 

525 0.39 RGRI -0.45 530 -0.41 516 -0.50 2013 0.54 

530 0.38 ARI2 -0.40 CRI1 0.40 503 -0.50 2032 0.53 

534 0.38 Stems -0.36 NDLI 0.22 DHPVIS 0.46 k5.5 -0.52 

543 0.38 DCPNIR -0.23 2026 0.18 NDLI 0.41 516 -0.49 

CRI1 -0.38 DCPVIS -0.21 2020 0.17 2026 0.40 521 -0.49 

*openness  
                     

By plotting the most correlated wavelengths, it becomes more obvious which of the spectral bands 

are involved. The focus is on PAR and mainly blue-green radiation. Whereas NIR is practically 
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almost not represented. Only a few bands are located in the red edge area and in both SWIR 

regions (Figure 5.25). 

 

Figure 5.25: Location of the wavelengths that are most frequent in the top ten correlations. Left: 
Bands included in vegetation indices. Right: Single bands. 

 

5.3.5.1 Spatial interpolation 

Although the statistics did not lead to clear relations, a visual comparison reveals some pattern 

pointing to a connection of remotely sensed PRI and in-situ measured transmission. There are 

several recognizable structures coinciding with 𝑘 and 𝑓𝐶 and mainly the DHP values (Figure 5.26, 

Figure 5.27). Interpolation is done by using ordinary kriging (Geostatistical Analyst, ArcMap 10, 

ESRI), the contour lines represent 12 classes by geometric intervals. 

     

Figure 5.26: PRI image of the core area, overlaid by contour lines of ordinary kriging of mean k (left) 
and fC (right). There are pattern recognizable in the center and the south western part. 
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Figure 5.27: PRI image of the core area, overlaid by contour lines of ordinary kriging of openness 
values from DHP (left) and DCP (right). 

 

An interpolation of 𝑘 using a radial basis function leads to a different result, which seems to take 

the forest canopy structure more in account objectively (Figure 5.28). However, also here there is 

no clear trend in data correlation detectable. 

 

Figure 5.28: PRI image of the core area, overlaid by contour lines of a radial basis function of k values. 

 

 DISCUSSION 5.4

It was observed that the photographs are sometimes not covering the same scene to hundred 

percent, so that small differences between the images on the same plot can arise. Discrepancies 

may appear generally in repeated recordings when exact positions cannot be adhered. For DCP this 

was coped by using the new device combining two cameras. However, considering the digital 

crown photography there is a discrepancy between VIS and NIR regarding the estimation of gap 

fractions. DCPVIS images tend to lead to smaller openness than the DCPNIR. The latter seem to be 

more suitable in catching details within the crowns in terms of discrimination between woody 

parts and leaves, whereas the DCPVIS appear to have higher contrast between sky and foliage. In 
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addition, the influence of the method of DCP is not further highlighted here. However, it is 

definitely an issue which could be analyzed in more details for upcoming research. Both DCP 

approaches differ in grey value distribution. It became clear in this study that the same 

binarization algorithm leads to different results for VIS and NIR imagery. Besides the threshold 

method for this binarization also the settings of the camera such as exposure can play a role for the 

resulting gap fractions or sky/non-sky proportions, respectively. This might be an issue especially 

in denser canopies where differences in gap fractions become relatively larger (Beckschäfer et al., 

2013; Jonckheere et al., 2005; Zhang et al., 2005). The resolution of the cameras is only an issue if 

the pixel size is too coarse making an adequate detection of very small holes in the canopy difficult. 

This can be neglected in this study. This study also tested successfully the applicability of a high-

resolution field spectroradiometer for measuring below-canopy radiation. However, it was 

observed that the acquisition of irradiance underneath a rather dense forest canopy is challenging 

for the ASD FieldSpec. The sensor apparently needs a certain amount of light to deliver rather good 

signal values without too much noise. Moreover, it did not work under overcast sky, so the 

measurements were done in rather sunny conditions. It could be clarified that insolation and 

incident energy is highly day time dependent, as the irradiance conditions are changing. During 

noon time conditions are somewhat stable. This is important for any field work incorporating the 

irradiance above the canopy or outside a forest stand. For future research repeated recordings 

covering several days from the beginning to the end of a growing season are suggested. On 

average, only less than 2 % of the sunlight in PAR region was reaching the forest floor during noon 

time. That matches with other published information for dense beech forests of 1-3 % (Ellenberg 

and Leuschner, 2010). Hence, the old-growth stand in the study area has a dense canopy, yet 

having some gaps and sun flecks where the insolation is higher with up to 25 % sunlight. This is 

also supported by the openness derived from VIS and NIR photos. Higher irradiation is possible (i) 

through small holes and bigger gaps in the crowns but also (ii) due to partly thinner tissue cover. 

In terms of reflectance and transmittance, optical properties of leaves (see chapter 3) are similar to 

the crown level. Nevertheless, there are several factors such as gaps, shadows, branches and 

woody elements providing spectral responses of canopies that differ from leaf level. Moreover, the 

crown architecture can differ widely with the species (Purves et al., 2007). As shown in chapter 3, 

leaf stacking has an immediate and high impact on the light absorption of the foliage, and hence on 

the transmission through the whole canopy. The more leaf layers there are, the higher is the NIR 

reflectance, and the lower is the NIR transmittance (Bartlett et al., 2011). This observation could 

also be confirmed in this study. Moreover, reflectance, transmittance and absorptance are not 

behaving similar when the number of leaf layers or the canopy thickness increases. Reflectance 

tends to saturate much earlier than transmittance and absorptance (Jacquemoud and Baret, 1990). 

As the true leaf area index itself is not measurable by indirect methods in the field anyway, we only 

can handle with estimations while the real values stay unrevealed. What we can state at least are 
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limits of values in which the derived 𝑘 and LAI are ranging. Moreover, measured irradiance ratios 

or 𝑓𝐶 and sky/non-sky proportions in terms of gap fractions are rather the only reliable variables. 

The obtained results are somewhat contrary to the expected relationship between 𝑘 and LAI. 

Seemingly, there is not always a clear correlation trend of the extinction coefficient and leaf area 

index. Both positive and negative relationships between 𝑘 and LAI are observed by Zhang et al. 

(2014). Here a LAI of 5.5 was assumed as average over the whole area. Since leaf area index is not a 

spatial invariant, for more detailed analysis additional estimations of LAI should be incorporated. 

This would lead to locally better adopted results of light interception. However, the here employed 

approach, using -1/𝑘 ∗ 𝑙𝑛(𝐸𝑟), is an adequate approximation, at least to narrow the expectable 

range of values. Though the stand canopy was rather homogeneous and dense, there are notable 

local differences in the results of the approaches but also in the spectral reflectance of crowns and 

crown parts as indicated by the vegetation indices. Scatterplots of the variables suggest that for a 

description of the relationship between remotely sensed PRI and openness values derived from 

digital photography a non-linear model might be more appropriate than a linear. Both Pearson’s 𝑟 

and the interpolated openness values suggest that the DHP data is most related to remotely sensed 

PRI. Interestingly, the core plot number has some of the maximum 𝑟 for some of the entries. That 

shows once more to take results with care and that further research is needed. Since DHP and the 

ASD measurements are covering a hemisphere, nearby gaps are included and influence the metrics. 

This should be taken into account when combining for example raster data such as remote sensing 

imagery of Lidar and a spatially distinct intersect. For more accurate results the extraction of VI 

values might be conducted not for the whole core plots, but rather based on an area buffering 

around field points. This should be done for each of the in-situ data sets separately. Similarly, 

remote sensing data can be split and averaged over smaller tiles in order to avoid a too strong 

smoothing. A spatial interpolation of point data can be an appropriate approach when the records 

are distributed meaningfully without too large space in-between. Kriging and other techniques 

should be used with care to avoid misleading results. For filling up gaps between the measuring 

points, all used data sets inclusive remote sensing imagery have to fit spatially to each other 

implying an exact georeferencing. This also requires accurate field work. 

 

 CONCLUSIONS 5.5

This study compared different methods to assess sun light interception of forest canopy. Besides 

digital NIR and VIS terrestrial cover and closure photos also detailed spectral information about 

irradiance and transmittance, respectively, were gathered. As here only an area of a certain size 

could be covered, one possible approach would be to derive the transmission of sunlight through 

the canopy of other stands over a wider area. The information of already established forest 
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inventory plots might be used to cover a larger area. Stands of different age and species 

composition including broad-leaved and conifers could then be compared to examine potential 

differences in terms of transmission and absorption. Additionally, canopy light transmission is also 

depending on the species’ capacity to endure cover or water stress. On one hand, shade tolerate 

species tend to block more light, on the other hand, transmission increases with the drought 

tolerance (Niinemets and Valladares, 2006). Similar hints about the species-dependency and light 

interception are presented in Legner et al. (2013). Hence, for future work a more detailed tree-

dependent absorption could be analyzed considering species and tree dimension. Gathered data 

can be used as an input for comparison in (three dimensional) models such as PROSPECT 

(Jacquemoud et al., 2009; Jacquemoud and Baret, 1990) and DART (Discrete anisotropic radiative 

transfer model) (Gastellu-Etchegorry et al., 2004). Applications of these models could be supported 

by acquisition of chlorophyll contents at leaf and canopy level. The derived results for canopy 

reflection and transmission might then be incorporated within the radiation transfer model 

intercomparison (RAMI) network (Pinty, 2004). PRI can have a strong relation to the light use 

efficiency on leaf level. However, on a short-time scale changes in cloud condition and solar 

radiation are also influencing PRI. Over a growing season the relation to LUE might be even 

weakened by structural and biochemical properties of the forest canopy (Soudani et al., 2014). The 

influence of canopy structure and temporal variability of PRI and LUE is discussed in Wu et al. 

(2015) and Merlier et al. (2015). This also impacts the utilization of remote sensing data for larger 

areas and the index interpretation over time. The present study data can only be used for single 

season analysis. For stronger evidences multitemporal data acquisition should be conducted to 

estimate both the seasonal trend and diurnal changes. In cases where a full spectrum is not needed, 

more simple and less costly PAR sensors might be preferable to achieve the desired information. 

LAI, biomass and fAPAR are declared as essential climate variables, according to the global climate 

observing system (GCOS) (Füssel et al., 2012), what underlines the importance of studies involving 

the analysis of those in-situ and remotely sensed variables. Moreover, the link of ground 

measurements and flux towers with productivity and CO2 storage of trees is still a crucial issue 

(Gamon, 2015; Porcar-Castell et al., 2015). Collected field data and derived results need to be (i) 

related to remote sensing data and (ii) validated. For that, an operational system of high spectral 

resolution sensors is required. Nonetheless, combined hyperspectral field data and remotely 

sensed imaging spectroscopy are promising tools for detailed retrieval of the amount on 

intercepted light in forested areas. It could be shown that depending on time and approach we can 

derive rather different results on forest canopy porousness. There were no high linear correlations 

detectable between the used approaches. The results have to be interpreted with care and reveal 

the challenge and complexity of assessing canopy light interception. Besides multitemporal 

measurements also the inclusion of plots with more variable canopy density incorporating 

gradients and different forest types with variable productivity is suggested. 



CHAPTER 5 - APPENDIX 

126 

 APPENDIX

Table 5.7: Averaged values of the used terrestrial methods and the selected remote sensing 
vegetation indices for the 25 core plots. Extinction coefficient k set for LAI=5.5, CRI1 and NDLI x100. 

Plot k5.5 
ASD   
fC 

Open. 
DCPVIS 

Open. 
DCPNIR 

Open. 
DHPVIS 

NDVI SR CRI1 NDLI RGRI ARI2 PRI 

1 0.916 0.985 7.509 4.093 1.753 0.875 15.219 0.254 -1.232 1.002 4.933 -0.065 

2 0.868 0.987 5.714 1.733 2.075 0.890 17.180 0.248 -1.247 0.999 5.558 -0.065 

3 0.800 0.978 6.878 7.109 2.916 0.892 17.581 0.278 -1.232 0.993 5.433 -0.077 

4 0.597 0.913 9.517 12.749 2.619 0.885 16.510 0.289 -1.160 0.979 4.850 -0.084 

5 0.934 0.994 10.315 14.585 2.080 0.886 16.568 0.311 -1.166 0.982 4.923 -0.093 

6 0.863 0.979 6.679 4.228 2.023 0.884 16.358 0.295 -1.210 0.998 5.268 -0.072 

7 0.878 0.991 7.521 4.254 2.238 0.887 16.776 0.267 -1.207 1.015 5.599 -0.079 

8 0.908 0.971 7.995 4.663 2.023 0.889 16.996 0.287 -1.289 1.009 5.587 -0.068 

9 0.991 0.996 5.568 3.487 1.540 0.880 15.703 0.257 -1.231 0.994 5.069 -0.059 

10 0.995 0.996 6.192 3.569 1.783 0.884 16.318 0.260 -1.239 0.989 5.123 -0.065 

11 0.975 0.995 4.976 3.665 2.594 0.889 17.142 0.258 -1.179 0.996 5.322 -0.078 

12 0.795 0.968 7.898 6.433 2.686 0.878 16.302 0.251 -1.260 1.038 5.749 -0.067 

13 0.826 0.985 10.336 13.403 2.790 0.891 17.409 0.308 -1.168 1.021 5.829 -0.088 

14 0.885 0.991 12.538 18.556 3.304 0.886 16.712 0.324 -1.158 1.002 5.247 -0.092 

15 0.795 0.972 6.992 8.041 4.399 0.888 16.899 0.321 -1.199 1.013 5.508 -0.087 

16 0.900 0.991 7.133 3.401 3.802 0.885 16.498 0.300 -1.193 1.016 5.482 -0.081 

17 0.876 0.987 6.170 1.832 3.905 0.887 16.797 0.280 -1.225 1.019 5.692 -0.077 

18 0.948 0.994 5.647 1.866 3.873 0.891 17.339 0.302 -1.213 1.003 5.374 -0.085 

19 1.018 0.996 5.324 3.247 3.032 0.890 17.251 0.294 -1.172 0.999 5.396 -0.083 

20 0.793 0.979 12.310 20.604 4.544 0.890 17.296 0.287 -1.233 0.995 5.353 -0.081 

21 0.916 0.993 9.749 14.349 4.492 0.889 17.064 0.294 -1.187 1.000 5.346 -0.081 

22 0.890 0.992 4.861 7.715 4.393 0.892 17.605 0.288 -1.188 1.022 5.884 -0.090 

23 0.792 0.985 5.553 7.002 4.560 0.884 16.347 0.286 -1.216 1.008 5.277 -0.085 

24 0.712 0.971 8.081 17.200 5.160 0.890 17.173 0.352 -1.187 1.013 5.603 -0.087 

25 0.874 0.991 6.140 3.739 2.522 0.888 16.836 0.296 -1.208 0.982 5.062 -0.077 

mean 0.870 0.983 7.504 7.661 3.084 0.887 16.795 0.287 -1.208 1.003 5.379 -0.079 
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6 CHAPTER SIX - FOREST INVENTORY AND HYPERSPECTRAL REMOTE 

SENSING 

 INTRODUCTION 6.1

Forests are complex and dynamic ecosystems. They take up vital functions of economic, ecological 

and social aspects for local communities and people worldwide (Füssel et al., 2012; Thomas, 2012). 

In days of increasing environmental pressure and global carbon trading systems, forests become 

more important and valuable than ever. One key method to derive relevant information about 

forested areas is the implementation of in-situ forest inventories on regional and national level. 

Mainly based on systematic sampling, they can give an overview about species composition and 

dispersion as well as tree dimension. Obtained information can be used as a basis for decisions 

regarding the forest management and the corresponding strategies on national and international 

level for countries and organizations (Fridman et al., 2014). The importance and need can be seen 

in the fact that more than 80 % of the global forests have been covered by forest inventories (FAO, 

2015). About one third of the country of Germany are forests, which corresponds to the global 

proportion of forested land (BMEL, 2015; UNEP et al., 2009). 

 

Figure 6.1: Left: spatial distribution of Germany’s forests according to CORINE Land Cover Europe 
2006 (Forested semi natural areas) (EEA, 2012). Right: Forest inventory plots of the third national 
forest inventory of Germany (BMEL, 2015). 

 

In forest inventories, we often deal with circular nested plots with different subplot sizes. Within 

these plots, trees are sampled depending on their diameter at breast height. In remote sensing (RS) 

studies, those inventory plots are used for training data and can be used to extract the pixel values 

of remotely sensed data or their derivates (Foster and Townsend, 2004). Hence, the link of field 

based information and remotely sensed data can be an asset to extend the information and support 

inventories (Romijn et al., 2015). Although it is a common procedure, there is no clear and 

standardized rule on how users should extract RS raster values. This can be done by using the, 
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quasi-original, circular plots or by creating squares around a sample point. Certainly, the method 

highly depends on the scale and pixel resolution and can be more or less meaningful. As here 

hyperspectral airborne imagery with a GSD of 2.0 m is used, rather detailed extraction and analysis 

are possible. In this study, additional to circular plot extraction another method to obtain raster 

values is applied. The proposed way is the utilization of a convex hull (CH), which span modelled 

crowns of recorded trees on each inventory plot. This study includes following objectives: Both 

data sets, circular and CH plots, are compared to answer the question if there are differences in 

extracted pixel values. Of main interest are common forestry variables such as mean tree diameter 

at breast height (dbh) [cm], basal area [m²/ha] and stand density [stems/ha] as derived from the 

inventory plots. As a main objective, potential relationships between inventory plot data and 

airborne hyperspectral remotely sensed metrics containing reflectances and selected narrow- and 

broadband vegetation indices shall be examined. 

 

 MATERIAL & METHODS 6.2

6.2.1 Study site 

The study was conducted in the Hainich, a forested ridge at about N51.08° E10.45° and with an 

elevation ranging around 400 m a.s.l. The forest stands are unmanaged since decades (Knohl et al., 

2003; Mund et al., 2010) and cover a large area of the Hainich national park. See chapter 3 for a 

detailed description about the study site. The dominating tree species is beech (Fagus sylvatica), 

followed by ash (Fraxinus excelsior), maples (Acer spec.), oaks (Quercus spec.), hornbeam (Carpinus 

betulus) and other broadleaved species. The few patches of coniferous trees are mostly composed 

of spruce (Picea abies). 

 

6.2.2 Remotely sensed data 

6.2.2.1 Reflectance and vegetation indices 

The hyperspectral AISA sensors EAGLE and HAWK (SPECTRAL IMAGING LTD.) cover a spectral range 

of 400-2500 nm split into 368 bands. Figure 6.2 shows the complete mosaic of the eight flight 

stripes as single-band greyscale image representing reflectance at 869 nm. At each wavelength, the 

scenery is appearing more or less different, whereas adjacent bands tend to be redundant. The 

figure depicts additionally some single-channel images on the example of a spatial subset including 

forest and crops. Several common broad- and narrowband vegetation indices (VI) are calculated to 

examine the potential relationship with tree based plot variables such as mean dbh and stems per 

hectare. The selected VI address multiple objectives like greenness, pigments or light use efficiency 

(Table 6.1). 
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Figure 6.2: Mosaic of the eight flight stripes at 869 nm, overlaid over a digital elevation model. 
Selected layers of the same subset of AISA EAGLE and HAWK imagery and the corresponding 
wavelengths in nanometers. The scene depicts forest and neighboring grass land. 

 

Table 6.1: Vegetation indices used in this study and the according formulas. 

Objective Index Formula Reference 

Greenness Normalized Difference 
Vegetation Index  

NDVI = 
ρNIR −  ρRED

ρNIR + ρRED

 (Rouse et al., 1974) 

Simple Ratio  SR = 
ρNIR

ρRED

 (Tucker, 1979) 

Leaf 
pigments 

 

Carotenoid Reflectance 
Index 1  

CRI1 = 
1

ρ510

−
1

ρ550

  (Gitelson et al., 2002) 

Anthocyanin 
Reflectance Index 2  

ARI2 = ρ800 ∗ (
1

𝜌510

−
1

𝜌700

) (Gitelson et al., 2001) 

Carbon Normalized Difference 
Lignin Index  NDLI = 

log (
1

ρ1754
) − log (

1
ρ1680

)

log (
1

ρ1754
) + log (

1
ρ1680

)
 

(Fourty et al., 1996) 

Light use 
efficiency  

 

Red Green Ratio Index  RGRI = 
ρRED

ρGREEN

 (Gamon and Surfus, 1999) 

Structure Insensitive 
Pigment Index  

SIPI = 
ρ800 − ρ445

ρ800 − ρ680

 (Peñuelas et al., 1995) 

Photochemical 
Reflectance Index  

PRI = 
ρ531 − ρ570

ρ531 + ρ570

 (Gamon et al., 1992) 

 

6.2.2.2 Extraction of remote sensing raster data 

Usually there is no common agreement of how raster values from an optical remote sensing image 

have to be derived by defined masks like vector polygons of tree crowns, inventory plots or 

delineated forest stands. The decision depends mainly on both the spatial resolution and 

characteristics of the focal raster. In heterogeneous areas like in the present study site, value 

extraction requires a sufficient spatial alignment of mask and base image. As mentioned, the 
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inventory data consist of three circular nested plots. Hence, there is no full information of the 

complete plot, which would be represented by the biggest circle. Actually, only the smallest and 

innermost subplot contains all trees. The here proposed way to extract pixel values of imagery 

with relatively fine spatial resolution and is the utilization of a convex hull spanning modelled 

crowns. The circular crown diameters depend on the dbh of the recorded trees on each inventory 

plot and are approximatively calculated using empiric models (Hansen and Nagel, 2014) for 

following species and species groups: Ash, beech, oak, hornbeam, maple/other broadleaved, 

spruce, Douglas fir/larch, pine. The created convex hulls differ in size from the biggest circular 

plots and can be larger or much smaller than the latter. Consequently, the number of selected 2 m-

pixels within circles and convex hulls can differ reasonable.  

 

Figure 6.3: Examples of convex hulls at inventory plot 1019 and 1414 incl. modelled crowns of 
sampled trees, in dashed line the regular 1000 m² plot (radius=17.84 m). 

     

6.2.3 Forest data 

The data basis is a set of forest inventory plots. On a grid of 200 by 200 m, 606 plots including 

more than 14,000 sampled trees are considered for this study are part of a permanent control 

sampling gathered in 2009-2011. The plots consist of concentric nested circles with pre-defined 

radii of 7.68, 12.62 and 17.84 m, respectively. See chapter 2 for further information about the 

inventory data and the according species composition. Besides tree species, the two focus 

parameters are mean tree diameter at breast height (dbh) and number of stems per area. 

Appropriate expansion factors have to be applied to get estimations for each plot and values per 

hectare, respectively. In the highly mixed forest, it is almost impossible to find pure stands with 

only one species. Hence, the inventory database is filtered by species or species group for the 

extraction of plot values. The fractions of observed tree species can be expressed by both the basal 

area [m²/ha] and the number of stems [n]. In any case, beech is dominating by far. However, since 

most of the plots contain more than one species, a specific threshold per plot is applied for each 

species. By this, the number of usable plots per species becomes more sufficient (Table 6.2).  

The fractions of the species groups for each forest inventory plot are presented as pie charts in 

Figure 6.4. Here the spatial distribution of the species is already visible revealing some local trends 

and differences in the composition. Moreover, the assigned colors for the species are somewhat 

comparable with the color composite of three vegetation indices SR, PRI and SIPI.  



CHAPTER 6 - MATERIAL & METHODS 

132 

Table 6.2: Overview of inventory plots with 'pure' species content and final number of plots per 
species using thresholds. 

Species group Scientific name 
Species 

code 

Pure plots 

[n] 

Threshold 

per plot [%] 

Thresholded 

plots [n] 

Beech Fagus sylvatica 211 72 90 119 

Ash Fraxinus excelsior 311 0 75 18 

Oak Quercus spec. 110 1 50 14 

Hornbeam Carpinus betulus 221 1 50 7 

Sycamore maple Acer pseudoplatanus 323 2 60 10 

Other broadleaf - 200 6 50 29 

Spruce Picea abies 511 4 70 11 

Scotts pine Pinus sylvestris 711 0 60 3 

Other coniferous - 800 0 50 2 

 

Another silvicultural standard procedure is to categorize trees considering their development 

stage and dimension. Therefore, regarding to the diameter, common classes contain young growth 

(dbh 20 cm), young (21-35 cm), middle-aged (36-50 cm) and old timber (>50 cm). However, in 

this study the trees are split into seven dbh classes in steps of 10 cm as listed in Table 6.3. 

Additionally, considering the stand density in terms of trees per hectare, classes of a width of 

n=200 were created (Table 6.4). The most frequent density classes, representing about 53 % of the 

plots, are 201-400 and 401-600 n/ha. Only 3 % of the plots have a very high estimated density of 

more than 1800 n/ha. 

 

Figure 6.4: Location and species group compositions of the inventory plots. AISA VI composite: SR-
PRI-SIPI covering the forested study area. Background: Greyscale aerial NIR image. 
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Table 6.3: Definition of the dbh classes. 

Group dbh class [cm] Category Plots [n] 

1 10 young growth 12 

2 11-20 64 

3 21-30 young and 

middle-aged 

105 

4 31-40 190 

5 41-50 old timber 165 

6 51-60 67 

7 61-70 3 

 

Table 6.4: Definition of the stem density classes. 

Group Density [trees/ha]  Plots [n]  Group Density [trees/ha]  Plots [n] 

1 200 50  10 1801-2000 3 

2 201-400 165  11 2001-2200 3 

3 401-600 155  12 2201-2400 3 

4 601-800 92  13 2401-2600 5 

5 801-1000 44  14 2601-2800 0 

6 1001-1200 33  15 2801-3000 3 

7 1201-1400 20  16 >3001-3200 0 

8 1401-1600 14  17 >3200 2 

9 1601-1800 14     

 

Figure 6.5 shows the typical pattern between stand density and mean tree height per plot in 

relation to mean tree diameter at breast height. While the height increases, the number of stems 

per hectare decreases with dbh. The distribution of summed up basal area per plot is somewhat 

bimodal with maxima at the classes of 32 and 42 m²/ha and an average of about 41 m²/ha. Higher 

and lower classes are less represented (Figure 6.7). 

 

Figure 6.5: Relationship between trees per hectare, mean height, and mean dbh; values per 
inventory plot. 
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Figure 6.6: Relationship between mean basal area per tree, mean tree height and stem density; 
values per inventory plot. 

 

 

Figure 6.7: Distribution of summed basal area [m²/ha] class per inventory plot. 

 

 RESULTS 6.3

6.3.1 Plot shape effect on reflectance 

There are some differences in the spectral responses of the pixels extracted by circular inventory 

plot and the created convex hulls spanning modelled tree crowns. As an example the reflectances 

of a NIR band at about 800 nm are opposed in Figure 6.8. One of the outliers at the bottom is 

located on an edge next to a grassland. This is a good example where in the circular plots wrongly 

included pixels are not considered in the convex hull. 

 

Figure 6.8: Comparison of reflectance values in NIR channel (803 nm). 
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Absolute differences of plot mean values are dependent on the wavelength. The reflectance values 

extracted from convex hulls show a smaller variation, as the difference of maximum and minimum 

are reduced in comparison to the values derived from circular plots. The higher variation in the 

circular plots can also be seen in the larger standard deviations (Figure 6.9). Most of the variability 

appears in NIR and SWIR1, while in VIS the differences are minor. In spite of that, the means of 

both approaches are almost the same, which legitimates the utilization of the approach. 

 

Figure 6.9: Comparison of plot-wise reflectance statistics as derived from circle-shaped (Circ) plots 
and convex hulls (CH). Mean values  standard deviations (sd). 

 

6.3.2 Tree species 

The extraction of spectral response pattern from the imagery was done at inventory plots with the 

majority of the species classes. About 90% of the species per plot is beech. However, the derived 

reflectance curves of all inventory plots show the typical shape of green vegetation with the two 

main water absorption bands and two minor ones in the NIR plateau. The reflectances in the PAR 

region are decreased due to chlorophyll and other leaf pigments, but relatively low when 

comparing to in-situ data (see chapter 4). Besides plot averages, the calculated mean per species 

group is plotted in Figure 6.10. At about 2 µm, the response patterns show a strong feature, which 

might be an artifact due to the pre-processing steps of the imagery. Detailed graphs of the VIS 

region are shown in Figure 6.11.  

 

Figure 6.10: All mean spectral responses (grey) and corresponding means of the nine species groups 
as derived from convex hulls of the inventory plots. 110=Oak, 200=Other broadleaved, 211=Beech, 
221=Hornbeam, 311=Ash, 320=Maples, 511=Spruce, 711=Douglas fir/Larch, 800=Other coniferous. 
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Figure 6.11: Spectral responses derived from inventory plots and averaged by species (group) for the 
VIS region. 

 

By subtracting species reflectances from the one of beech, differences between species become 

more distinct (Figure 6.12). Hornbeam and beech are most similar over all bands. However, the 

differences among species are depending on the range of wavelengths. While in NIR maple plots 

are more similar with ash, they are rather comparable to beech in SWIR. 

 

Figure 6.12: Differences in reflectance of broadleaved and beech plots as reference. 

 

Estimated stand variables are opposed to the reflectances of the AISA images. Again, variables and 

pixel values are averaged per plot. There are no distinct linear relations between wavelength and 

basal area, mean tree height or stand density. Over all tree species, the achieved Pearson’s 

correlation coefficients are rather small and range between -0.11 and 0.16 (Figure 6.13). 

 

Figure 6.13: Pearson's correlation coefficients between spectral reflectance and mean forest stand 
attributes as derived from inventory plots. 
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For each inventory plot, the mean dbh was calculated. Apart from the unique average, groups of 

diameter classes were built and contrasted with spectral bands. Clear trends are mainly apparent 

in SWIR1 and SWIR2, where reflectances increase with the averaged tree dbh. 

 

Figure 6.14: Plot-wise averaged reflectance curves for different dbh classes; numbers correspond 
with class means [cm]. 

     

By contrast, the relationship between stand density groups and reflectance by wavelength shows 

an opposite pattern. Higher densities are here associated with higher values in the near infrared 

but lower in the short-wave infrared reflectance (Figure 6.15). 

 

Figure 6.15: Plot-wise averaged reflectance curves for different density classes; numbers in trees per 
hectare as class means. 

 

6.3.3 Vegetation indices vs. plot attributes 

Additionally to the reflectance values, the calculated broad- and narrowband vegetation indices are 

opposed to the estimated stand variables basal area, density, mean dbh and tree height. The 

corresponding scatter diagrams for each inventory plot are displayed in Figure 6.16 and Figure 

6.17. Potential relationships between mean VI and mean stand parameter could become visible. 

However, there are no clear trends at all recognizable in basal area per hectare using mean values 

of each variable. Similarly, mean tree height and VI are apparently without distinct correlation, 
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with one exception: PRI, however, has seemingly a weak negative relation with the height. In NDVI, 

SR, SIPI and slightly NDLI, there is some variation for mean tree heights of about 25 m, which 

represents the mean height of all inventory plots. 

For the classified dbh and stand density data, the VI values are depicted in box plots of Figure 6.16 

and Figure 6.17. In some of the VI, like RGRI and ARI2, there is a concave-like trend in the median 

and quantile distribution over the dbh classes, where the lowest and highest classes have minor 

values. Similar to the mean tree height, there is a nearly constant negative trend in PRI and dbh 

class. For all other VI, the distributions show rather equal median values for each class. 

In contrast to the diameter classes, the first stand density classes corresponding to the sparse 

stands contain the most varying data. However, examining the relations between classes of trees 

per hectare and the VI, we can see comparable pattern to the dbh classes, albeit it is more variable 

due to higher number of classes. Again, in PRI there is a rather distinct trend, which is in this case 

positive.  

 
Figure 6.16: Scatter plots of plot-wise basal area per hectare and vegetation indices. 
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Figure 6.17: Scatter plots of plot-wise averaged tree height and vegetation indices. 

 

 

 

 
Figure 6.18: Boxplots of dbh classes for each vegetation index as derived from inventory plots.  
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Figure 6.19: Boxplots of the trees-per-hectare classes for each vegetation index. 

 

None of the mean VI value per inventory plot shows any correlation with basal area. It should be 

noticed that the dbh values are kept as mean group values, why a direct interpretation of the 

correlation coefficients should be done with care. However, among all VI the by far highest 

correlations are observable in PRI, where stand density is positively, tree height and dbh group 

negatively correlated.  

 

Figure 6.20: Pearson’s correlation coefficients (Spearman’s correlation coefficient for dbh group) of 
plot-wise median VI and stand attributes as derived over all inventory plots. 

 

 DISCUSSION 6.4
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have an influence on the reflectance values and hence on a derived vegetation index. This should 

be kept in mind when interpreting results, comparing with other studies using another pre-

processing or even different sensors. However, still the data never fit to 100 % to each other. 

Differences in spatial accuracy and alignment of various sources become clearer when dealing with 

high-resolution imagery. This can be a source of error for the extraction of pixel values and has to 

be taken into account in mind during analysis and interpretation. Further differences in the images 

due to illumination and sun-observer-angle issues, which could not fully be compensated. 

This study proposed successfully an approach for extracting raster image values with vector data 

by using a convex hull spanning idealized modelled tree crowns. By this, it is assumed that due to 

that the spatial alignment is more meaningful and corresponds more to the real crowns. 

Comparing the convex hull approach with a common method using the biggest circle of nested 

inventory plots, shows that the mean pixel values per plot are almost identical. However, the 

variation is smaller than in the circular plots. This could be interpreted in two ways: on one hand, it 

is better to cover most of the variability to ensure all spectral variance of a plot. This variability can 

occur by shadows or other land cover types at forest edges may have an impact on the mean plot 

reflectance, whereas these false signals are not desired. Due to the CH, the pixel extraction is more 

restricted to the observed crowns leading to less noise. On the other hand, similar means of convex 

hulls and circular plots support and justify the use of the CH approach. However, the observed 

differences are smaller than expected. The unequal number of elements (plots) per dbh or height 

class may have an impact on the derived results when comparing class means. Hence, the observed 

differences in the mean class spectra might be artifacts.  

However, a somewhat surprising outcome of this study is that from all calculated vegetation 

indices only PRI shows the highest (moderate) correlations with the examined inventory plot data. 

Since PRI is related to light use efficiency and productivity, the correlation with dbh, height and 

stand density becomes explainable. Hence, PRI has seemingly a good potential for predicting those 

forest stand attributes.  

Canopy closure is one main driver in the spectral appearance of forest stands. The mixture of 

dimension, tree-to-tree distance creating gaps and shadows, and tree age influence the reflectance 

of forests. Younger stands, for example, which are usually denser, tend to reflect more in NIR than 

older ones (Nilson and Peterson, 1994). Besides the stand attributes, the tree species is surely an 

aspect which should be respected. When only considering plots where the majority consists of only 

one species like beech, the correlation coefficients might be different between the main species. 

The effect of species-depending reflectances could be considered when examining tree diameter 

and stand density, to ensure that differences are not mainly species related. For that, analysis could 

focus on beech at first before merging all species. 
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 CONCLUSIONS AND OUTLOOK 6.5

It should be assessed in future for the convex hull approach if the different plot training data is 

affecting or even improving image classification. This could incorporate also different sensors. The 

approach of convex hull-based data extraction in combination with the vegetation indices can then 

be tested at other sites that are (i) similar and (ii) rather different in conditions. Considering the 

stand attributes, there are also some things to consider in subsequent analysis. Further analyses 

might be improved by implementing more details, for example by smaller density classes. Splitting 

the plots into groups with the same number of elements would overcome the unequal 

representations and hence maybe reduce artifact effects. 

The plot reflectances already revealed that the shortwave infrared might be important for forest 

stand variables like mean dbh. For assessing that, vegetation indices can be a key approach in 

combining forest inventory data and remote sensing. Overall, the PRI showed promising results 

and is preferred to rather standard VI such as the NDVI. As leaf water content is one of the main 

drivers in SWIR reflectance, future analysis could focus on that spectral region incorporating 

water-related vegetation indices. A rather important issue is the estimation of aboveground 

biomass, which is recently often found in publications dealing with carbon sequestration and 

climate change mitigation analyses (Saatchi et al., 2011). Potential analyses could include species-

specific allometric models to obtain detailed estimations. 

Another method to be tested in the future might be ordination techniques (Feilhauer et al., 2011; 

Schmidtlein et al., 2007). They can be a helpful tool in describing species dissimilarities based on 

forest inventory plots. Similarity information could then be extended by plot-wise dimensional tree 

attributes such as height or diameter as well as stand characteristics like density or basal area. 

Moreover, site conditions and gradients are possibly to include.  

The combination of forest inventories and airborne imaging spectroscopy offers a variety of 

possibilities of applications, not only for research but also for management purposes. However, 

this study showed that it is feasible, but not operational. Moreover, to cover bigger areas, 

hyperspectral spaceborne RS systems like the planned EnMAP are required. Apart from those 

technological developments, we should not lose the track of ground based forest inventories. While 

in Middle Europe the situation of a sustainable forest management might be different from many 

tropical and low-income countries, less than 40 % of low-income countries are covered by forest 

inventories (Sloan and Sayer, 2015). However, they are still a key method to gather information 

about global and regional forests. For a successful monitoring, not only researchers and decision 

makers, but also the local stakeholders (MacDicken et al., 2015) need to be involved.  
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 APPENDIX 6.6

The codes for the tree species are not using the original Thuringian system, but they are rather 

based on the coding of the German federal state of Lower Saxony. 

Table 6.5: List of tree species found within the study area and the used coding. 

Code Common name Scientific name 

110 Oak  Quercus spec. 

112 Sessile oak Quercus petraea 

211 Beech Fagus sylvatica 

221 Hornbeam Carpinus betulus 

311 Ash Fraxinus excelsior 

321 Sycamore maple Acer pseudoplatanus 

322 Norway maple Acer platanoides 

323 Field maple Acer campestre 

330 Elm Ulmus spec. 

331 Wych elm/Scots elm Ulmus glabra 

340 Lime/Linden Tilia spec. 

341 Large-leaved linden Tilia platyphyllos 

342 Small-leaved linden Tilia cordata 

354 Wild cherry Prunus avium 

356 Wild pear Pyrus pyraster 

357 Wild service tree Sorbus torminalis 

410 Birch Betula spec. 

420 Alder Alnus spec. 

421 Red alder Alnus glutinosa 

422 Grey alder Alnus incana 

430 Poplar Populus spec. 

431 European aspen Populus treumula 

441 Willow Salix spec. 

511 Spruce Picea abies 

611 Douglas fir Pseudotsuga menziesii 

711 Scots pine Pinus sylvestris 

810 Larch  Larix spec. 

811 European larch Larix decidua 

812 Japanese larch Larix kaempferi 
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Figure 6.21: Proportions of species (groups) considering the basal area (BA) per plot. 

 

 

Figure 6.22: Proportions of species (groups) considering the number of trees per hectare (n) per plot 
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7 SYNTHESIS 

 INTRODUCTION 7.1

Collecting up-to-date information about our world is getting more and more important and 

valuable. This is not only valid for our daily life, but also counts for the commercial and non-

commercial observation of land cover as basis for informed decisions in forest management and 

forest policy. Nowadays the monitoring of forests plays a key role within the context of climate 

change and carbon sequestration. The knowledge about the spatial extent of forested land and its 

status is essential for planning and conservation (Lui and Coomes, 2015; O’Connor et al., 2015; 

Turner et al., 2015). The utilization of remote sensing is one way of Earth observation from a 

distance. In recent years, there was a raise of awareness and accessibility of this imagery and the 

derived maps for the public due to faster distribution of information and the appearance of new 

technologies. Besides that, also scientific and non-civilian missions with improving platforms are 

increasing (Belward and Skøien, 2014). For monitoring purposes, there is another trend towards 

cheaper solutions incorporating armadas of micro- and nanosatellites. The most prominent 

systems having rather different intentions are from GOOGLE (Terra Bella, formerly Skybox) or 

PLANET LABS, which operate satellites with a size of about a shoebox. 

However, it is essential for Earth observation to have a working and reliable system of both ground 

and remote data, and the incorporation of multiple scales within a multi-temporal monitoring has 

to be extended yet. By using mainly passive sensors, the amount and composition of reflected 

sunlight can give us detailed information about a material or vegetation on the surface. However, 

the acquisition of images alone is not enough. Comprehensive analyses require also in-situ 

information, which is often referred to as ground truth. This includes mapping of single trees or 

landscape composites as well as the derivation of biochemical variables or rather structure related 

information like the leaf area index. Many studies are conducted on minerals, agricultural crops or 

on other targets that are rather easy to reach (Arafat et al., 2013; Ramakrishnan et al., 2013; 

Schmidt and Skidmore, 2003). By contrast, the circumstances are quite different and more 

challenging when dealing with spectroscopy in forests. Information is composed of all parts such 

as soil, ground vegetation, bark and epiphytes, flowers and foliage. Each compartment causes 

changes in terms of reflection, absorption and transmission. Moreover, the three-dimensional 

structure of tree crowns is responsible for multiple scattering.  

In this research study, several important aspects in field and remotely sensed spectroscopy of 

vegetation have been addressed. To understand the relationships and to emphasize differences, 

analyses were conducted on different levels from single leaves to crowns. The schematic graphic of 

overall study setup (Figure 7.1) illustrates the link of the concerned levels on a spatial scale. The 
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remote sensing of forests deals with the characterization of the most ex part, the visible canopy. On 

the second level, the leaves of deciduous trees are examined considering the spectral properties. 

 

Figure 7.1: Sketch of the general study setup. From left to right: forest inventory plot as small stand 
level containing several trees, partial tree crown and single leaf. 

 

Overall, this study incorporates a unique set of simultaneously recorded data but also 

multitemporal measurements. It is, to my knowledge, one of the very few research studies that are 

dealing with spectroscopy on Middle European deciduous broadleaved trees, and in an old-growth 

forest.  

 

 LEAF OPTICAL PROPERTIES 7.2

The most striking and exposed compartment of broadleaved crowns and canopies during the 

growing season is the green foliage. Information about this organ including the spectral 

appearance is crucial for health and development status. For that, using a field spectroradiometer 

is a powerful tool to obtain very detailed information about the spectral properties. In this basic 

research study, leaf optical properties of seven tree species representing the most relevant 

deciduous species in Middle European forestry are examined. The focus is on the determination of 

spectral reflectance curves; in addition, leaf transmittances and absorptances. It could be shown 

that the obtained spectral traits of the foliage depend mainly on three things: (i) the species (ii) the 

day of the year within a growing season and (iii) the number of stacked leaves during the 

measurement process. Moreover, the measurement device itself should be appropriate and might 

have an immense impact on the derived response pattern. The interspecific differences are not as 

distinct as on canopy level, and the variation of the spectral reflectances is less. Commonly, foliar 

reflectances base on measurements done on the upper, adaxial, side of leaves. However, for 

detailed analysis and future modelling, also the lower, abaxial, side could be considered. Including 



CHAPTER 7 - SCALE DEPENDENCY OF SPECTRAL TRAITS 

148 

both abaxial and adaxial reflectances can be important for species like ash (Fraxinus excelsior), that 

tend to show the lower sides of the leaves upwards already at little wind speeds (Figure 7.2). 

Knowledge about this kind of behavior needs to be checked for the species within a study site, 

what may improve analysis and interpretation. 

 

Figure 7.2: Characteristic appearances of tree crowns. Blue: ash (Fraxinus excelsior), red: beech 
(Fagus sylvatica). Own photograph taken from a climate tower in the Hainich forest in September 
2012. 

 

Finally, the seasonal phenology could be demonstrated well in this study by repeated 

measurements and the calculated vegetation indices. Comparing all VI, the NDVI slightly increases 

and CRI1 and ARI2 decrease over time, while PRI showed rather stable values. This matches with 

the relationship of daily production or carbon uptake and PRI for broadleaved forests (Gamon, 

2015; Garbulsky et al., 2011). Overall, this study showed impressively the potential of detailed field 

spectroscopy in forestry. Future research should include additional measurements of leaf 

chemistry like chlorophyll, nitrogen or water content (Feilhauer et al., 2015). 

 

 SCALE DEPENDENCY OF SPECTRAL TRAITS 7.3

Scaling issues are apparent in nearly every study that is carried out using different levels of data 

acquisition. Examples can be found incorporating issues in temporal (Somers and Asner, 2013) and 

spatial scaling (Van Der Meer et al., 2001). For the utilization of flux tower approaches examining 

light use efficiency (LUE) and gross primary production (GPP), a correct scaling is essential for the 

understanding of the involved processes (Gamon, 2015). Another instance of the scaling issue give 

the deviating results for albedo-based nitrogen concentration on leaf and canopy level were 

observed by Bartlett et al. (2011). Up- and down-scaling of plant traits is still an ongoing and future 

topic. Functional substances such as chlorophyll and carotenoids are essential for most of the 

vascular plants. The concentration or content can give helpful information of the status and 

condition. Several absorption features of those pigments are detectable indirectly by optical 

sensors measuring the reflectance of vegetation. Since the features are often located at specific 
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wavelengths, narrowband analyses are required. Therefore, the use of hyperspectral sensors is 

predestinated for this task. In this study, the spectral reflectance properties of the most common 

broadleaved trees are examined on different levels. The first level takes the spatial scale into 

account, which is varying from small area on single leaves over crown parts. Here, interesting 

relations between the different levels were observed. With simple linear and logarithmic models 

leaf and RS data could be approximated. Overall, leaves reflect more than crown compartments. 

The second level is the temporal scale. Repeated measurements had been done during two 

growing seasons. This aspect is crucial for a detailed monitoring as well as for comparing results to 

other studies, which are conducted on varying dates. Reflectances covering the full range of 400-

2500 nm were collected by field spectroradiometer and hyperspectral airborne imagery. The 

narrowband resolution allows the investigation of specific spectral features like the red edge 

position (REP). REP can be an indicator of chlorophyll content and photosynthetic performance. 

Two approaches of finding the REP are compared: using the maxima of second order derivatives 

(DV), and the calculation of the index REPI. The correlations between crown and leaf level REP are 

apparently higher when using REPI compared to DV (Figure 7.3). However, that does not imply 

that the index is per se preferable and more correct than the derivative value. The main question 

stays, which REP can be seen as “true”. Here, the derivative could be considered as more reliable, 

as it is derived directly from the response curves and not calculated by formulas basing on certain 

assumptions.  

 

Figure 7.3: Comparisons of red edge positions (REP) as derived at crown and leaf level from 
derivatives (DV) and red edge position index (REPI) by ASD spectroradiometer and AISA EAGLE, 
respectively. 

 

 CANOPY LIGHT INTERCEPTION 7.4

The description of canopy structure and crown porosity for light interception and attenuation is an 

important issue for forest characteristics. The amount of intercepted PAR is linked to crown 

porousness and a specific extinction coefficient and can be used as an indicator for photosynthetic 

activity and productivity. Hence, detailed information about the absorption of sunlight within 

forest canopies is helpful in understanding the processes of growth and production. One variable 
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that is often used to characterize the canopy density and structure is the leaf area index (LAI). LAI 

cannot be measured with non-destructive methods, even though many authors are using this 

terminology. This is not only misleading but also even wrong and should be avoided. For sure, 

someone might call the readings of devices, such as the commonly used LAI-2000 (LICOR), 

measurements, but researchers should be aware of the fact that this variable is not measurable and 

often approximately estimated by the plant area index (PAI). However, what is derived at the most, 

should actually rather be seen as a proxy or index that is somehow related to the porousness of a 

canopy and the three-dimensional distribution of plant compartments. The main problems arise 

due to clumping effects. They appear in two different ways: (i) within a crown by obscured 

branches and leaves and (ii) within a forest stand by the arrangement of the trees and the 

distances in-between. Depending on the spatial collocation of the trees, the light attenuation within 

a forest stand can be completely different while the LAI stays the same (Binkley et al., 2013). This 

becomes clear when we imagine a site with a certain number of trees and a certain leaf area. By 

arranging them in groups, the light interception is lower in other locations than if distributed 

equally.  

In this study, several remotely sensed broad- and narrowband vegetation indices were calculated 

and opposed to ground measurements including digital cover photographs (DCP) and digital 

hemispherical photographs (DHP). Furthermore, spectral irradiances were acquired below canopy. 

Field and remote values were averaged for core plots of a size of 25x25 m. As a result, it could be 

shown that most variables have weak linear correlations. The highest correlation is observed 

between DHP and Photochemical Reflectance Index (PRI) which is a promising outcome of this 

study. However, scatterplots of the variables indicate that non-linear approaches might be better 

solutions for some cases. This should be analyzed in further studies. The use of the PRI and its 

interpretation for LUE-related statements is an ongoing research issue (Garbulsky et al., 2011). 

However, the short- and long-time changes in PRI values (Soudani et al., 2014; Wong and Gamon, 

2015) reveal the importance of a multi-temporal monitoring. The solar irradiance is also time-

dependent. This counts for the amount and especially for the spatial allocation below a forest 

canopy. During a day, the radiation reaching the ground changes according to the course of the sun. 

Due to varying sun angles and gaps in the crowns, the diurnal radiation distribution is unlikely 

locally stable. As a consequent, repeated measurements are suggested to cover these variations. 
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Figure 7.4: Forest floor within the core area. Left: Although most of the ground is shaded rather 
homogeneously, several sun flecks with much higher insolation are apparent. Middle, right: effects of 
clouds within few minutes. 

 

 FOREST INVENTORY APPLICATIONS 7.5

This chapter addresses the applications of hyperspectral remote sensing for forest inventories and 

the occurring challenges coming along. One question many researchers are facing is how to extract 

RS data based on inventory plots. For that, a spatially correct alignment of both imagery and field 

data is required. Depending on the pixel size and location, a varying number of pixels will be 

considered for each plot. In this study, an approach is proposed to extract raster data values by a 

convex hull spanning modelled tree crowns. Since the number of plots is consisting of only one 

species is extremely small in relation to the overall number, the focus was not on species 

recognition. Moreover, the mainly considered variables are rather related to the stand structure: 

basal area [m²/ha], stand density [trees/ha], mean tree dbh [cm] and height [m]. The latter two 

were split into groups. Additionally to the spectral reflectances, narrowband vegetation indices 

were calculated and opposed to the derived stand variables. There was none correlation between 

estimated basal area and any of the spectral variables. Similarly, no high linear correlation were 

found among all other variables. However, the highest (moderate) correlation could be observed 

between PRI and the plot values of dbh class, height and density. Once more, the calculation of 

hyperspectral VI allow a detailed way to assess the relations of forest stand characteristics and the 

spectral appearance, what might be an alternative approach to predict forest variables.  

 

 ADDITIONAL RESEARCH AND TESTS 7.6

7.6.1 Derivative images  

Just as the spectral derivatives calculated for in-situ reflectances and some pixel values in 

chapter 5, any derivatives can also be obtained for whole hyperspectral images. According to the 

author’s knowledge this function is not included by default in standard software like ENVI. Hence, 

a first derivative image was calculated by an own function using R. As it is a rather computationally 

intensive operation using a huge amount of RAM, it could only be applied for the small core area. 
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However, it is likely that there are potentials on tree species identification. Especially the 

discrimination of the main species ash and beech seems to be promising (Figure 7.5). Detection of 

ash trees are important for monitoring applications against the background of the nowadays 

increasing problem of the ash decline within Europe and North America (Pautasso et al., 2013; 

Waser et al., 2014). 

 

Figure 7.5: Spectral derivative image of the core area, RGB: bands 285-233-58. Overlaid modelled 
tree crowns are dissolved for better visibility. 

 

7.6.2 Further vegetation indices 

Another promising approach is the utilization of narrowband VI, which has been addressed often 

in this study. Figure 7.6 shows potential application for species detection. 

 

Figure 7.6: Transparent composite of the vegetation indices SR, PRI, SIPI with the sampled trees 
within the core area. Plot sizes are according to the tree dbh. 
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 In this study, one focus was on some selected vegetation indices. However, there are plenty of 

other narrowband VI that could also be possibly investigated. Water related VI like Water Band 

Index (WBI), Normalized Difference Water Index (NDWI), Moisture Stress Index (MSI) and 

Normalized Difference Infrared Index (NDII) show in a rough test quite promising correlations 

with plot values derived from inventory data (Figure 7.7). 

 

Figure 7.7: Pearson’s correlation coefficients (Spearman’s correlation coefficients for dbh group) of 
plot-wise median VI and stand attributes as derived over all inventory plots.  

 

7.6.3 Forest stand modelling 

In denser forest stands, also difficulties can emerge in the general definition of canopies and 

crowns. Although there is not much understory present inside the core area, there are still lower 

branches and leaved twigs existent that influence the radiation system. Especially the shadow 

tolerant beech trees show this, by what a determination of the crown basis can be challenging for 

field teams. Often there is no clear rule for marking vertical layers or strata within a forest 

(Bongers, 2001; Parker and Brown, 2000). Another definition of a canopy, which says it is the leaf-

bearing part of woody plants including branches and the leaves (Sadava et al., 2011), would make 

it even more complicated. 

For a comprehensive three-dimensional simulation of forest stands the utilization of radiative 

transfer models are designated. As a drawback, researchers need keen background knowledge 

about the radiative physics. One example of widely used models is the DART (Discrete Anisotropic 

Radiative Transfer) model (Gastellu-Etchegorry et al., 2004), which allows detailed three-

dimensional analyses. For test purposes we imported the surveyed trees of the core area of 

150x150 m into DART conform format. Further input data are the spectral properties derived from 

the sampled leaves and forest floor spectra. Though running the model with rather high spatial 

resolution is quite computational, first attempts are promising (Figure 7.8).  



CHAPTER 7 - CONCLUDING REMARKS 

154 

 

Figure 7.8: Left: Color infrared sub-scene of the core area at the climate tower, modelled with the 
DART model. Right: corresponding AISA EAGLE/HAWK image with overlaid modelled tree crowns 
based on diameters, dissolved for display. RGB: 594, 832, 480 nm. 

 

The model permits the simulation of the following aspects:  

- modelling of full hyperspectral remotely sensed scenes 

- individual scenes with specific topographic and geographical properties 

- simulation of sensors such as the used AISA EAGLE/HAWK or EnMAP 

- viewing and sun angle for precise date  

Input parameters can be varied and the model outputs can be compared with prior study results 

and look up tables. Spatial up- and down-scaling of radiative variables could further be 

implemented in spectral unmixing approaches. 

 

 CONCLUDING REMARKS 7.7

Nowadays the monitoring of forests is important more than ever, facing economic and ecological 

issues. Even small disturbances can influence the carbon stocks (Seidl et al., 2014), which is not 

only an issue for tropical rainforests but also for European forests (Lindner et al., 2010). Besides 

the threat of biodiversity due to the loss of species we are coping also economic loss (Hanewinkel 

et al., 2012). Some issues revealed by this study are common problems and can be transferred to 

most of the cases where we try to combine plot data, containing local in-situ information, with 

remote sensing data containing information covering a much larger area.  

The combination of flux tower information about the carbon uptake and remote sensing 

approaches, which used to be separate disciplines, can be an important key for the understanding 

of terrestrial ecosystem processes (Gamon, 2015). Generally, a meaningful translation between the 
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different scales is essential in Earth observation using integrated remote sensing and ground data. 

Hence, the solution of up- and down-scaling issues is crucial. This can involve the link between 

leaves and canopies, the utilization of coarse and fine imaging and non-imaging products, or 

multitemporal readings. It should be noticed that in the case of forests and forested landscapes, 

remote sensing systems with very high spatial resolutions of some centimeters are occasionally 

misleading and often not appropriate to the stated problem of mapping. Moreover, the spectral 

resolution and spectral sampling should be examined more in the future in order to reduce the 

data volume and achieve operationalization. The calculation of meaningful vegetation indices, 

which are adapted to the specific target variables and selected spectral features, can be key 

approaches. 

The present study site is characterized by highly mixed stand with dominant beech (Fagus 

sylvatica). Hence, the number of inventory plot with only one occurring tree species is very low. 

That makes a species wise analysis based on pure plots difficult or even impossible. Consequently, 

single-tree based analyses on small areas would be the next step. However, this would necessitate 

accurately referenced data and exact tree recognition. By nature, broadleaved trees are not 

growing as straight as spruces and firs, e.g., and the tree bases mapped in the field are often not 

directly underneath the crown top. It was observed that there are in some extent big discrepancies 

between the tree positions and the visible crowns in the remote sensing imagery. The reasons 

behind that can be manifold. Most likely an inaccurate application of a digital terrain model for an 

ortho-rectification or the use of mismatching imagery as the basis for georeferencing 

The combination of data Lidar data and hyperspectral imagery (Anderson et al., 2008; 

Buddenbaum et al., 2013) or even future applications of hyperspectral laser technology (Hakala et 

al., 2012; Nevalainen et al., 2013) can provide advanced and new improvements in precise remote 

sensing. In contrast to multispectral data hyperspectral data is often coping the Hughes 

phenomenon (Hughes, 1968; Pal and Foody, 2010; Richards, 2013), which says an increasing 

number of features can lead to a decreasing classification accuracy. In the case of hyperspectral 

data, the high number of narrow and redundant bands might worsen the situation. So, 

incorporating more and more information, is not always the best choice and could even lower the 

accuracy (Onojeghuo and Blackburn, 2011). 

The integration of optical measurements and carbon fluxes is still an open issue and needed for a 

better understanding of plant productivity and the efficiency of sunlight use (Peñuelas et al., 2013). 

This again includes the meaningful application of narrowband vegetation indices as we can derive 

from hyperspectral sensors. Since many studies deal with single sites and few species, one aim 

must be the comparability and intercomparison between different types of biomes and landscapes. 

Especially deciduous broadleaved forests are complex and highly dynamic ecosystems. This variety 

can be found in the spectral behavior of crowns and canopies (D’Odorico et al., 2015; Nilson et al., 
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2012). In a review article (Ollinger, 2011) about the variability of tree canopies the author 

concludes that reflectances in the spectral region of NIR are often not easy to interpret. Multiple 

factors and their combination such as leaf area index (LAI) and leaf angle distribution (LAD) or leaf 

water and dry matter can lead to similar results. 

Besides the role in LUE, photosynthetic activity and production still not all relationships are 

understood and not all potential applications of VI like the PRI are discovered. One key point could 

be in the remotely sensed monitoring of forests’ emissions of volatile organic compounds (VOC) 

such as isoprenoids, which have an impact on the content of greenhouse gases, pollutants and 

secondary organic aerosols in the atmosphere (Grote, 2010; Kefauver et al., 2015; Peñuelas et al., 

2013). Hence, within the framework of climate change analyses, we need knowledge of the 

involved processes. In this context, the link between phenology, GPP and remotely sensed 

vegetation indices still needs to be fully explored. Additionally, the in-situ crown data of this study 

reveal another possible application of non-imaging spectroradiometers. The presence of sun-

induced fluorescence peaks around 760 nm show the potential of very high-resolution devices. 

This might lead to a better monitoring of photosynthesis rates and plant status (Meroni et al., 

2009; Yang et al., 2015). 

A combination of varying leaf or canopy traits such as leaf area, leaf angle or water and nitrogen 

content can lead to similar optical properties. Especially in radiative transfer and inverse 

modelling there we face these ill-posed problems (Atzberger, 2004; Combal et al., 2002). However, 

even today, after a rather long period of consistent technological development and enhancements 

of measurement devices, spectral analysis of leaf optical properties and in-situ objects covering the 

full-range of 400-2500 nm is still cumbersome. The elaborative field work and post-processing, the 

high costs for labor and equipment are the main issues that still hamper the overall progress (cf 

Bauerle et al., 2004). Nonetheless, in future it will be more important than ever to strengthen the 

link between ground-based research and information with the remotely sensed derived products 

(Skidmore et al., 2015).  

There is still a lot of work to do when it comes to species differentiation and the observation of 

biodiversity and species composition. Many studies deal with only a few species and with their 

distinction incorporating various techniques (Ghiyamat and Shafri, 2010). However, it is barely 

possible to identify species only depending on a given spectrum but rather by direct comparison. 

Hence, spectral libraries of the tree species are needed including several development stages and 

sites. Sharing this information might be an asset to future analyses. Up to date, there is a lack of 

meaningful and especially operational hyperspectral satellite systems – also of ground reference 

data for validation. Existing satellites with a very high spectral resolution are still rather 

understood as technology demonstration missions. Nonetheless, hyperspectral remote sensing is 

surely about to play a key role in local and global monitoring. The Convention on Biological 



CHAPTER 7 - CONCLUDING REMARKS 

157 

Diversity includes remote sensing and the utilization of hyperspectral sensors as a measure within 

its defined Aichi Biodiversity Targets (O’Connor et al., 2015; Secades et al., 2014). Although the 

technology is not brand-new anymore and could show their potential in several studies giving new 

insights, the establishment of hyperspectral sensors is yet to come. The near future will show if 

there will be a successful integration of sensors covering different sites, biomes and research 

disciplines. One important step could be done with the upcoming EnMAP mission. Finally, as 

Secades et al. (2014) already pointed rightly, a constructive dialogue between policy makers, data 

providers and the Earth observation community is still needed for a serious collaboration and 

functional interactions coming along with mutual benefits. 
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