Long-Term Location-Independent
Research Data Dissemination Using
Persistent Identifiers

Dissertation

zur Erlangung des Doktorgrades
,,Doktor rerum naturalium*
der Mathematisch-Naturwissenschaftlichen Fakultiten
der Georg-August-Universitit zu Géttingen

im PhD Programme in Computer Science (PCS)
der Georg-August University School of Science (GAUSS)

vorgelegt von

Oliver Wannenwetsch (geb. Schmitt)
aus Stuttgart

Gottingen, 2016

Betreuungsausschuss:

Priifungskommission:
Referent:

Korreferenten:

Weitere Mitglieder

der Priifungskommission:

Prof. Dr. Ramin Yahyapour

Gesellschaft fiir wissenschaftliche Datenverarbeitung
Gottingen mbH (GWDG),

Institut fiir Informatik

Georg-August-Universitidt Gottingen

Prof. Dr. Jens Grabowski
Institut fiir Informatik
Georg-August-Universitidt Gottingen

Dr. Lena Wiese
Institut fiir Informatik
Georg-August-Universitit Gottingen

Prof. Dr. Ramin Yahyapour

Gesellschaft fiir wissenschaftliche Datenverarbeitung
Gottingen mbH (GWDG),

Institut fiir Informatik

Georg-August-Universitit Gottingen

Prof. Dr. Jens Grabowski
Institut fiir Informatik
Georg-August-Universitidt Gottingen

Dr. Lena Wiese
Institut fiir Informatik
Georg-August-Universitit Gottingen

Prof. Dr. Xiaoming Fu
Institut fiir Informatik
Georg-August-Universitit Gottingen

Prof. Dr. Caroline Sporleder
Institut fiir Informatik
Georg-August-Universitidt Gottingen

Jun.-Prof. Dr. Marcus Baum
Institut fiir Informatik
Georg-August-Universitidt Gottingen

Tag der miindlichen Priifung: 11. Januar 2017

Abstract

Research data occurs in all scientific experiments, computer simulations, observations or
as a derivation from other datasets, literature or publications. As a subset of the general
concept of digital data, it is classified through its distinct state and its origin. Enriched with
descriptive metadata, research data serves as a foundation for discoveries and publishing
results in various formats. For citing and linking specific research datasets and publications,
unique and persistent identification is necessary. Today, this is realized by Persistent
Identifier (PID) systems that provide stable identification for digital entities and an optional
annotation by descriptive metadata. Moreover, PID systems abstract the current network
location of data in order to anticipate changes in its network location, owed to alternating
Uniform Resource Locators (URL) on the World Wide Web (WWW). Applying these
concepts, PID systems have tagged billions of research datasets and publications over the
past 20 years.

On these foundations, the Handle PID system, known from the Digital Object Identifier
(DOI) system, provides reliable access to digital publications and research data to the whole
scientific community. While the architecture of the Handle system itself, which depends on
fixed network locations, was designed with farsightedness, additional end-user services for
PID resolution and management have introduced critical weak spots that can be discovered
by comprehensively reviewing the current state-of-the-art.

This thesis focuses on the adaption of location-independent network paradigms which
have shown encouraging results when applied to several problems in the domain of
decentralized network infrastructures in PID systems. Our first approaches aim at evolving
the Handle system design into a self-adjusting system for all major infrastructure services
that does not depend on fixed network locations. We tackle this by incorporating strategies
and techniques from location-independent network paradigms originating from the current
research branch of Named Data Networking (NDN). By this, major weak spots can be
eliminated in the Handle PID system and it becomes robust against core infrastructure
outages, sudden network topology changes, packet loss and heavy load situations.

The second goal of the thesis is the integration of next generation data dissemination
technologies based on location-independent network paradigms into the domain of
persistent identifier systems. Therefore, we propose to employ the Handle system for
citing research datasets which are disseminated by location-independent technologies based
on BitTorrent and NDN. To tackle the trust challenges of dynamic data locations, we create
a novel approach for trusted data dissemination in location-independent networks that
ensures the authenticity of data as well as the attribution to data issuers. This is done by
incorporating the foundations of the Handle PID system and a further format for exchanging
complex access information in PIDs.

Acknowledgements

The work on this thesis has been conducted in the very interesting environment of
the eScience group of the GWDG and the Institute for Computer Science at the
Georg-August-Universitit Gottingen.

First, I would like to express my great thanks and gratitude to my advisor Ramin
Yahyapour for his supervision, his encouraging support, the inspiring discussions and the
feedback he provided to me. I am also very thankful to Jens Grabowski and Lena Wiese
for being my second and third supervisor and their interest in my scientific activities, Jens
Grabowski additionally for being the second referee of this thesis. I also like to thank Tim
Majchrzak, Sven Bingert, and Philipp Wieder for their advice and support during the thesis.

Furthermore, I want to thank my colleagues of the eScience group and especially the
data management section, who provided input and challenges for creating new research
questions.

This thesis would not have been possible without the financial support of the “Deutsche
Forschungsgemeinschaft (DFG)” in the collaborative research center 963 “Astrophysical
Flow Instabilities and Turbulence” and the support of the “Digital Humanities Research
Collaboration” founded by the ‘“Niedersdchsisches Vorab der Volkswagen Stiftung”.
Additionally, I am very grateful for the numerous possibilities to travel to conferences
in Germany, Europe and the United States.

My special thanks go to my family and friends for their understanding and support.
Finally, I want to thank my wife for her endless love, patience and sharp-witted advice.

Contents

1 Introduction

1.1
1.2
1.3
1.4
1.5

Motivation e e
Scopeof Thesis
Goals and Contributions
Impact e
Structure of Thesis

2 Foundations

2.1
2.2
23
24
2.5
2.6

2.7

2.8

Research Data Management
Digital Data Repositories e
Persistent Identifierso Lo
Handle System
Magnet Links
Overlay Networks with BitTorrent
2.6.1 General Principles
2.6.2 Network Organization
2.6.3 DataOrganization
Information Centric Networks with Named Data Networking
2.7.1 Differentiation between CCNand NDN
2.7.2 General Principles
2773 NamingData L
2774 Packet Types
2775 NodeDesign
276 Routing
2.7.7 Data Transport and Flow Control
2.7.8 Content Validation and Content Protection
Cryptography
2.8.1 Symmetric Encryption Lo
2.8.2 Asymmetric Encryption00,
2.8.3 Digital Signatures
2.8.4 Symmetric Authentication

3 Problem Statements

O 0 U B D -

11
14
16
18
24
25
26
26
29
31
31
32
33
33
34
37
40
41
42
42
43
44
45

47

Contents

4

viii

Related Work
4.1 Research Data Dissemination With Overlay Networks
4.2 Research Data Dissemination With Named Data Networking
4.3 Persistent Identifier in Named Data Networking
4.4 Naming Schemes for Archive Data Access
4.5 Running Legacy Network ApplicationsinNDN
4.5.1 Location-based Network Protocolsover NDN
4.5.2 Application Protocol Adaptionfor NDN
4.5.3 Communication Application Interfaces Adaption
4.5.4 TransparentProxies.
4.6 Summary and ResearchDelta

Location-Independent Persistent Identifiers

5.1 Persistent Identifier in Location-Independent Networks

5.2 Improvements and Benefits,

5.3 Approach
5.3.1 General Principles oL
5.3.2 PID NDN Namespace Convergence
533 AccessModels Lo
5.3.4 Interoperability Model

5.4 Implementation e
5.4.1 NDN-Enabled Handle Server
5.4.2 Handle Library Modification for NDN Connectivity
5.4.3 Native Handle Protocol Transport With the NDNInterface
5.4.4 PID Publishing Subsystem

5.5 Evaluation
5.5.1 Simulator Environment
5.5.2 Evaluation Input Data Preparation
5.5.3 Native Handle Communication Using NDN PID Push
5.5.4 PID Publishing using NDNPIDPull

Location-Independent Data Access using Persistent Identifiers

6.1 Improvements and Benefits

6.2 Distribution of PID Maintenance Efforts

6.3 Approach
6.3.1 Magnet URI Scheme Extension for NDN
6.3.2 Magnet URI Scheme Extension for Trusted Data Access
6.3.3 Embedding Magnet Links into Handle PID
6.3.4 Data Access ServiceChain
6.3.5 Creation and Maintenance of PIDs
6.3.6 Data Access from Location-Dependent Networks

6.4 Implementation
6.4.1 ServerSide

53
53
55
57
61
61
62
63
65
66
67

73
73
74
75
76
76
78
98
108
109
111
113
119
122
122
123
127
132

Contents

642 ClientSide 155
6.5 Evaluation 156
6.5.1 PIDSizelncrease o 156
6.5.2 Data AccessDuration, 164
7 Discussion 167
7.1 Answers to Research Questions Concerning Location-Independent Persistent
Identifiers 167
7.2 Limitations Of Location-Independent Persistent Identifiers 169
7.3 Answers to Research Questions Concerning Location-Independent Data
Access Using Persistent Identifiers 171

7.4 Limitations Of Location-Independent Data Access Using Persistent Identifiers 172

8 Conclusion 175
8.1 Summary 175
82 Outlook e 177
Bibliography 179
List of Acronyms 195
List of Symbols 201
List of Definitions 203
List of Figures 205
List of Listings 209
List of Tables 211
Appendix 213
A.1 Handle Source Code Remarks 213
A.1.1 Removal of URN Data Type Support 213
A.2 Handle Source Code Patches and Additions 215
A.2.1 Patches for NDN-enabled Native Handle Communication Using
NDNPIDPush 215
A.2.2 Additions for NDN-enabled Native Handle Communication Using
NDNPIDPush 233
A.2.3 Patches for PID Publishing Using NDNPID Pull 244
A.2.4 Additions for PID Publishing Using NDN PID Pull (Server) 245
A.2.5 Additions for PID Publishing Using NDN PID Pull (Client) 253
A.3 Simulation Environment oL Lo 258
A.3.1 PID Resolution Request Classification By Handle Prefixes 258

X

Contents

A.3.2 Collecting Primary Handle Site Data 260
A.3.3 Network Hop Calculations For Classified Handle Prefixes 261
A.3.4 NDN PID Push Evaluation Testbed with Mini-NDN 267
A.3.5 TCP Evaluation Reference Testbed with Mini-NDN 273
A.3.6 TCP User Space Forwarder 275

A.4 Comparison of Magnet Link Collections to PID Target URLs 279
A.4.1 MineraHandleMiner. 279
A.4.2 PID Target URL Collection 292
A.4.3 Academic Torrent Magnet Link Collection 296

A.5 PIDs with Persistent Resolution Targets 298
AS5.1 UserInterface o 298
AS52 SourceCode 301
A.5.3 PID Resolution Measurements For Various PID Sizes 308
A.5.4 Magnet Link Size Growth Caused By Content Signatures 311
Curriculum Vitae 313

Chapter

Introduction

Research data have become more and more important over the past decades. They have
grown massively in volume, complexity and importance for all scientific disciplines [1].
As a result, they have become a strategic resource for conducting state-of-the-art research
and a burden for curating and preserving them for future use. To maximize the advantage
of research data over the time, “long-term” research data access is a key principle for all
organizations supporting scientific data activities like data centers, information technology
providers and libraries. It is necessary for all data-driven science disciplines for justifying
results, sharing irreplaceable data and empowering scientific processes [2]. If research data
can be reused, it has the potential to accelerate research work and one can take advantage of
former investments in science [3]. This is imminent important for the near future scientific
endeavors, where existing research data collections are the foundations for scientific big
data and machine learning applications. Hence, the research data management community
is aiming at improving data dissemination through enhanced data access and distribution
mechanisms [4].

In a more detailed view, the duration of “long-term” ranges from the minimal time span
of ten years for justifying results in order to comply with the rules of good scientific practice
up to infinite time spans, when data is irreplaceable, as it is the case for observations
of the nature [5]. To prepare research data that is or was subject of scientific work and
publications for long-term access, a curation process is applied on the data. Within this
curation process, the relevant data sets are selected and augmented with descriptive data
providing provenience information (metadata).

While data curation and preservation are the necessary foundation, long-term accessibility
is necessary to disseminate the data to every interested party. With today’s globalized
research communities, research data dissemination today equals data accessible from all
over the planet using the Internet. Like almost all networks used today for data exchange,
the Internet depends on location-dependent data access principles that require the knowledge
of the network location for data access. Hence, changes in the network and data organization

Chapter 1 Introduction

makes long-term data access a challenge with a frequently changing data pointer (Uniform
Resource Locator (URL)). To overcome these difficulties, Persistent Identifiers (PIDs) have
been created by the research data management community to replace changing data pointers
with fixed identifiers that are resolved against changing data locations [6].

While the introduction of PIDs has simplified the research data access for scientists
accessing PID-tagged publications and data, they introduced new challenges and bottle
necks for data curators, publishers and PID infrastructure providers [7]. In this thesis,
we investigate the challenges for PID systems and research data dissemination through
PIDs generated by today’s location-dependent network infrastructure. We provide
contributions and solutions to these challenges by transferring and adapting principles
from location-independent networks. By this, we remove major obstacles in long-term data
dissemination through PID and provide solutions for enhancing the Handle PID system into
more efficient and robust long-term data access and identification system.

1.1 Motivation

To enable ubiquitous research data dissemination, research data is attached to the Internet or
large community networks through repositories [8]. This online dissemination of research
data that includes the (processed) data and its associated metadata is done via location-based
network technology which is the foundation of almost all Wide Area Network (WAN)
technologies.

Sharing research data through networks imposes the challenge to offer data intact, genuine
and citable [9] [10]. The first challenge is implied by the design of today’s networks that
use the host-to-host principle, a location-based mechanism for accessing computers or
nodes located at the ends of the network. In this type of network, every computer or node
owns at least one Internet Protocol (IP) address, in order to be contacted by other network
parties. The design of the network is based on the idea to leave intelligent components
at the end of the wires, i.e., at the host system side, and to build the network on simple
components that only forward packets to all sides. This allows an independent upgrade of
network components without further impact on host systems, as long as logic data paths
and transmission mechanisms remain compatible [11]. These principle allows scaling out
IP networks to the size of the largest network on earth — the Internet. In this network type
that was invented in the late 1960s / early 1970s the question “where is my data located?”
has to be answered every time, when data access is needed. For long-term data access,
the challenge of research data localization needs to be solved equivalently, meaning if
research data is moved from one host to the other, the question of data localization has to
be answered without additional knowledge.

A second challenge arising from the host-to-host principle is that data access has to
come through a narrow waist of the IP network [11]. This means that every data access
has to be answered by a single host and that there is no caching involved. To improve the

1.1 Motivation

availability of data, multiple approaches have been invented to mitigate the challenges of
the host-to-host principle. They often combine multiple distributed data sources that form
a smart data distribution network. One very prominent example is a Content Distribution
Network (CDN) that utilizes multiple HTTP-servers on the Internet to distribute files, to
serve content and to host popular websites [12]. CDNs are very common and form the
foundation of large operators such as Akamai, Inc. and Alphabet, Inc. that serve the content
of the most-popular websites [13]. A drawback of the CDN network design is that it requires
planning and the prediction of content hot spots caused by high demand. Furthermore, a
high investment is needed to run own CDN infrastructure or to rent existing CDN capacity
with large data volumes. Hence, running a CDN requires efforts, investments, additional
knowledge and infrastructure. Therefore it is no practical option for research data repository
owners, who can only spend limited resources on data dissemination on the Internet [14].

But besides the attempts of improving the data availability through centrally operated
infrastructure, other attempts have been made in the open source and research data
management community. A common approach is to create an overlay network that
operates on top of the location-dependent IP network. The design of the overlay network is
intended to work around or solve limitations of the location-based IP network. These
overlay networks are built on location-dependent principles and support multi-host
sourcing like GridFTP [15] or even provide location-independent data access through
content access like BitTorrent [16]. Another option is to replace the host-to-host principle
and the location-boundedness with a new approach that can be found in Information
Centric Network (ICN) with its current realization of Named Data Networking (NDN) [11].
Location-independent research data dissemination has been recently introduced into the
highly data intensive science disciplines of climate research and high energy physics, but
does currently not reflect aspects of long-term data access [17] [18].

For the research data management community granting long-term access to research
data is difficult, because network topologies change frequently due to technical evolutions,
organizational restructuring or growth [2]. By this, the location of hosts and therefore data
also changes which has a significant impact on making data accessible and citable under the
same URL for months, years or even decades. As this impact has been observed quite early,
several technologies and implementations have been developed to overcome this problem.
Domain Name System (DNS) is a mechanism on top of the raw IP addresses that offers
a human-readable mapping of names to network entities [19]. But the relationship of IP-
addresses and DNS names is fragile and transports problems of domain management to the
area of long-term data dissemination [2]. As DNS does not solve the problem of long-term
data access in a changing network environment, entity identification systems have been
created that tag data on changing locations with a fixed identifier that is long-living and
durable through technical measures, organizational rules and independent namespaces.

Nevertheless, almost all significant PID systems still rely on location-dependent network
technology and thus share also the disadvantages of IP technology [20]. Furthermore, the
most common PID systems do not support location-independent data access technology
as resolution targets. As a result, PID systems have to include location-independent
technology on the one side and must also enable location-independent data dissemination

Chapter 1 Introduction

through overlay and information-centric network approaches on the other side. Describing,
formulating and evaluating those two aspects in order to advance PID technology with
location-independent access principles are the goals of this thesis. By this, research data
dissemination can be organized decentralized and data access becomes more robust, as data
movement does not have an impact on long-term access. Research data can be disseminated
through durable PIDs as long as the data is available online and PIDs can be resolved,
without central infrastructure as long as a party is resolving them on the network at any
location. These decentralized location-independent approaches presented in this thesis
allow to reduce the efforts for research data dissemination and to integrate the users of the
PID and repository infrastructure into the operation of the platform itself.

1.2 Scope of Thesis

In this thesis, two approaches for location-independent research data dissemination are
presented. In the first approach, the central key-concept of PID is decoupled from the
necessity of location-based operation. In the second approach, location-independent data
dissemination is realized using persistent identifiers as permanent access media. Our
considerations base on the assumption that research data is static and consists of a set
of aggregated data that is stored jointly with its metadata. Additionally, we consider the
assumption that research data management has a very slow change momentum, meaning
that existing principles and infrastructures can only be renewed over time, as billions of
data sets exists on infrastructure operated by entities all over the planet. Hence, green-field
data management approaches and fundamental changes for research data management have
no impact on practical system operation. Therefore, as a third assumption, conceptual
improvements of research data management have to be incremental and to respect existing
principles at a maximum in order to create an impact on practitioners’ side.

As introduced in the motivation section, a major challenge for research data dissemination
is caused by the location-dependent design principles of today’s networks. Thus, we aim on
improving long-term research data dissemination through PID using location-independent
access techniques, while respecting the assumptions on the changing nature of research data
management. This leads us to the major hypothesis that location-independent data access is
beneficial for PID systems and provides operational robustness with improved research data
dissemination through PID usage. For evaluating this hypothesis, we concentrate on the
following research questions concerning the improvement of research data dissemination
with location-independent data access through PID:

RQ 1: Can persistent identifier systems benefit in performance and robustness by
integrating foundations of location-independent data access?

This leads to the following detailed sub-questions, which will be answered in the thesis:

1.3 Goals and Contributions

RQ 1.1: Which requirements exists for extending a PID system towards location-independent
data access and operation?

RQ 1.2: How to provide the necessary end-to-end connection principle required by PID
systems within a NDN network?

RQ 1.3: How to assure operational and semantic interoperability between location-dependent
and location-independent PID systems?

Additionally, a second research question particularly focused on the aspect of improved
research data dissemination with location-independent data access is formulated:

RQ 2: Can persistent identifiers become a possible base for improving research data
dissemination through location-independent data access?

Again, we split this up into detailed research questions, which are also subject of this thesis:

RQ 2.1: How to construct a persistent identifier model that enables data dissemination
for location-independent data access in conjunction with classic location-based data
access?

RQ 2.2: Does the operational and architectural integration of this model not impair existing
PID systems?

RQ 2.3: Can PIDs help to safeguard trusted data access in location-independent networks?

1.3 Goals and Contributions

Before answering the research questions in this thesis, let us enumerate our contributions
to the current state-of-the-art in research data dissemination using persistent identifiers. In
contrast to existing work on PID and research data dissemination, the contributions we
provide in this thesis do not propose green-field approaches or require major modification
to PID systems, but they rather adapt and embrace the slow change momentum of research
data management with its billions of PIDs and datasets stored in digital repositories all over
the planet. For this, we first focus on conceptualizing, shifting and operating PID systems
on location-independent network environments facilitating NDN with our first contribution:

Contribution 1: Location-Independent Persistent Identification of Research Data
We provide a generalized approach for operating a persistent identifier system in a
location-independent network infrastructure. By this, we provide a concept of instant
PID access without prior knowledge on PID infrastructure locations and we provide
better outscaling capabilities combined with an improved infrastructure robustness.
Chapter 5 is presenting this contribution.

Chapter 1 Introduction

This contribution consists of following subcontributions:

Contribution 1.1: Instant Handle PID Access Without A Priori Knowledge on PID
Infrastructure Locations Using Converged Name Spaces in NDN
For creating, maintaining and resolving PIDs without a priori knowledge of PID
infrastructure network locations, we propose a converged namespace model that
allows instant access to PIDs in location-independent networks. For this, we introduce
a converged name space model for Handle PIDs in NDN networks that augments
the Handle PID naming scheme to a first-class global-routable NDN data naming
scheme. This contribution can be found in Section 5.3.2.

Contribution 1.2: Selective End-to-End Communication in NDN networks using
Interest-based Data Push for PID Management
For maintaining PIDs in distributed systems, access to specific systems in the
network is necessary. As NDN is based on a content-centric approach, designed
for accessing data from sources using a publish-retrieve cycle, pushing data similar
to location-dependent networks from a source to a client requires multiple network
round trips. To avoid this, we propose a new polling-free approach for NDN that
allows spontaneous data transfers (data pushs) without further preparation from one
NDN network node to another, by facilitating NDN interests for data transport. By
using our data push techniques, we are able to access specific PID data sources
spontaneously within the NDN network. Thus, we can offer all location-based use
cases of the Handle PID system within the NDN domain. The results are presented in
Section 5.3.3.1.

Contribution 1.3: Location-Independent Multi-Source PID Resolution Using NDN
networks
In order to improve the reaction time for PID access, we propose an approach, which
benefits from the advantages of NDN. By this, we can create a more robust PID
resolution and an improved distribution of administrative metadata within the Handle
system. The contribution is contained in Section 5.3.3.2.

Contribution 1.4: Protocol Selection and Data Exchange for NDN Interoperability
using Application Protocol Information
As pointed out in the introduction, research data dissemination has a very slow
change momentum. Thus, an interoperability between location-dependent and
location-independent approach in NDN is inevitable. For this, we present an
approach to routing PID Handle-based data between both network domains using a
gateway principle. To tackle this, we present a new method for selecting the best
suitable protocol for data forwarding based on application protocol metadata. Our
contribution fill the gap between the different transport paradigms (packet-oriented vs.
content-oriented) for the Handle PID domain. The contribution is shown in
Section 5.3.4.

1.3 Goals and Contributions

Our further contributions focus on disseminating research data through location-independent
access technology using PIDs. For this, we propose as second major contribution:

Contribution 2: Location-Independent Research Data Dissemination Through PIDs
We provide a generalized approach for accessing research data through a location-
independent network using Handle PIDs. Our contribution that facilitates the
embedding of location-independent access information for BitTorrent and NDN
into PIDs removes the need for adjusting the resolution target stored within the PID.
By this, a major limitation in the scaleout behavior of the Handle PID system can be
overcomed and the creation of maintainance-free PIDs is possible for the first time.
The complete contribution is content of Chapter 6.

This contribution consists of following subcontributions:

Contribution 2.1: Extension of the Magnet URI Scheme as a NDN Data Name
Container for Storing and Exchanging Access Information with Complex
Metadata
As network-locations cannot be used as assurance for trustworthy content in NDN,
additional metadata like checksums and digital signatures are important additions
in the access information. With the current state-of-the-art, there is no container
standard for exchanging complex access information for content stored in NDN
networks, beside simple Uniform Resource Identifier (URI) notations limited to NDN
data names. For adding complex metadata and access assurance information into
NDN access information, we propose an extended Magnet Link URI scheme as a
standardized container format for exchanging and storing NDN access information.
This contribution is shown in Section 6.3.1.

Contribution 2.2: Embedding Location-Independent Access Information Into PID
The current Handle PID system is limited to provide and resolve location-dependent
access information based on URLs. To release this barrier, we provide an approach
based on Magnet Links to embed location-independent access information into
Handle PIDs. In contrast to existing work on alternative resolution targets for PID,
we investigate the impact of PID resolution behavior for extended resolution target
data. By this, we can show that our approach has no significant impact on the scaling
behavior of the Handle PID system. Section 6.3.3 provides the contribution.

Contribution 2.3: Accessing Research Data Through PIDs Containing Location-
Independent Resolution Targets
Based on the previous contributions for location-independent resolution targets in
PIDs, we propose an improved PID resolution scheme for accessing research data
through PIDs containing location-independent access information. We presented this
contribution in Section 6.3.6.

Chapter 1 Introduction

1.4 Impact

During the work of this thesis, following peer-reviewed conference proceeding have been
published that contain some intermediate results on transferring location-independent
approaches in the domain of PID:

O. Schmitt (Wannenwetsch), T. A. Majchrzak, S. Bingert, “Experimental realization of
a Persistent Identifier Infrastructure stack for Named Data Networking”, Proceedings of
the 15th IEEE International Conference on Architecture and Storage (NAS2015), Boston,
USA, Aug. 2015. DOI: 10.1109/NAS.2015.7255207
URL.: http://ieeexplore.ieee.org/document/7255207/

O. Wannenwetsch, T. A. Majchrzak, “On Constructing Persistent Identifiers with
Persistent Resolution Targets”, Proceedings of the Federated Conference on Computer
Science and Information Systems (FedCSIS2016), pp. 1031-1040, Gdarnsk, Poland,
Sep. 2016. DOI: 10.15439/2016F87

URL: http://ieeexplore.ieee.org/document/7733372/

Furthermore, the author has contributed to following peer-reviewed journal articles in the
field of research data management:

T. Kalman, D. Tonne, O. Schmitt (Wannenwetsch), “Sustainable Preservation for the
Arts and Humanities”, New Review of Information Networking, pp. 123-136, Vol. 20,
Issue 1-2, 2015. DOI: 10.1080/13614576.2015.1114831

URL: http://dl.acm.org/citation.cfm?1d=2859726.2859740

O. Schmitt (Wannenwetsch), T. A. Majchzrak, “Document-Based Databases for
Medical Information Systems and Crisis Management”, International Journal of
Information Systems for Crisis Response and Management (IJISCRAM), pp. 63-80,
Vol. 3, Issue 4, 2013. DOI: 10.4018/ijiscram.2013070104

URL: http://www.igi-global.com/article/document-based-databases-for-
medical-information-systems-and-crisis-management/96922

The author has contributed to following peer-reviewed conference proceedings in the field
of research data management:

H. Kusch, O. Schmitt (Wannenwetsch), B. Marzec, S. Y. Nussbeck, ,,Datenorganisation
eines klinischen Sonderforschungsbereiches in einer integrierten, langfristig verfiigbaren
Forschungsdatenplattform®, Proceedings der 60. Jahrestagung der Deutschen
Gesellschaft fiir Medizinische Informatik, Biometrie und Epidemiologie (GMDS),
Krefeld, Sep. 2015. DOI: 10.3205/15gmds104

URL: http://www.egms.de/static/de/meetings/gmds2015/15gmds104.shtml

1.5 Structure of Thesis

0. Schmitt (Wannenwetsch), P. Weil, P. Wieder, S. Y. Nussbeck, ,Integrierte
Portalumgebung und verteilte Echtzeitsuche fiir medizinische Langzeitarchivierung,
Proceedings der 59. Jahrestagung der Deutschen Gesellschaft fiir Medizinische
Informatik, = Biometrie und Epidemiologie (GMDS), Goéttingen, Sep. 2014.
DOI: 10.3205/14gmds014

URL: http://www.egms.de/static/de/meetings/gmds2014/14gmds014.shtml

Additionally, the author has contributed to following peer-reviewed conference proceedings
outside the scope of this thesis:

N. Campos-Lopez, O. Wannenwetsch, “The PERICLES Process Compiler: Linking
BPMN Processes into Complex Workflows for Model-Driven Preservation in Evolving
Ecosystems”, Proceedings of the 12th International Conference on Web Information
Systems and Technologies (WEBIST2016), pp. 76-83, Rome, Italy, Apr. 2016.
DOI: 10.5220/0005759800760083

URL: http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx
ND=E24vyfHKFm8%3d&t=1

The author has supervised two master theses related inside and outside the scope of the
provided research work:

A. Wildschiitz, ,Transformation einer Persistent Identifier Infrastruktur zum
Management globaler Namensrdume in Named Data Networking™, Master Thesis,
Institute of Computer Science, University of Gottingen, 2016.

M. Hellkamp, “A hierarchical File-System for the CDSTAR Object Storage Interface”,
Master Thesis, Institute of Computer Science, University of Gottingen, 2015.

1.5 Structure of Thesis

This thesis is structured as follows. We start with the foundations in Chapter 2, where
we introduce the field of research of the thesis and its terminology. The terminology
covers the area of research data management (cf. Section 2.1), digital research repositories
(cf. Section 2.2), persistent identifiers (cf. Section 2.3), and its realization in the Handle
persistent identifier system (cf. Section 2.4), as well as the Magnet Link scheme (cf.
Section 2.5).

In Chapter 3, we motivate the thesis’ contributions by pointing out the problem statements
in the context of research data dissemination in location-dependent networks in conjunction
with persistent identifiers. For this, we first look at the challenges introduced by the
location-dependent network principles and its impact on the infrastructure of Handle PID
systems.

In Chapter 4, we refer to scientific work that is related to this thesis, in order to put our
contributions into a broader research context. This chapter is divided into existing work on
research data dissemination facilitating overlay networks (cf. Section 4.1), and Named Data
networking (cf. Section 4.2). Furthermore, it refers to previous work on persistent identifiers
in named data networks (cf. Section 4.3), archive access naming schemes derived from

9

Chapter 1 Introduction

Magnet Links (cf. Section 4.4) and running location-dependent legacy network application
in NDN networks (cf. Section 4.5). We conclude Chapter 4 with a description of the
research delta provided in this thesis.

Chapter 5 contains the details of the first approach on location-independent persistent
identifiers in this thesis. First, we explain the foundations of the paradigm shift from the
location-bound PID as-is situation to new location-independent possibilities in Section 5.1.
Then, we list the benefits of our approach in Section 5.2 and continue with a detailed
explanation of it in Section 5.3, where we present the PID and NDN name space conversion
(cf. Section 5.3.2), the different location-independent access models (cf. Section 5.3.3)
and an interoperability model for an interaction of our PID approach using the existing
location-dependent Handle PID foundations (cf. Section 5.3.4). We validate our approach
with an implementation and an evaluation. The implementation of our access model
approaches is provided in Section 5.4. In Section 5.5, we verify our contributions employing
real-world PID resolution data in a simulated NDN test bed that we describe in Section 5.5.1.
The processing of the resolution data sets is described in Section 5.5.2. Then, we compare
the different access models with the current state-of-the-art Handle PID system for normal
and faulty network conditions in Section 5.5.3 and Section 5.5.4.

In the following Chapter 6, we explain our approach on accessing location-independent
research data through PIDs. For this, we point out first the impact of PID distributed
maintenance efforts caused by the current principles of all PID systems linking to
location-dependent resolution targets (URLs) (cf. Section 6.2). Then, we explain our
approach in detail on creating maintenance-free PIDs that contain location-independent
resolution targets which are persistent by design and do not require current adjustments like
URLSs (cf. Section 6.3). To explain our method in detail, we first start with the approach
of extending the Magnet URI scheme to augment it into a container format for storing and
transporting NDN access information (cf. Section 6.3.1). By this, our extended Magnet
URI scheme allows transporting location-independent access information within Handle
PIDs. We explain the embedding of Magnet Links into Handle PIDs in the subsequent
Section 6.3.3. As this has particular impact on the data access service chain that is an
essential part of a (Handle) PID system, we investigate the impact of our approach on the
PID resolution (cf. Section 6.3.4). Afterwards, we point out the approach on maintaining
and creating PIDs following our approach (cf. Section 6.3.5). As almost all PID resolutions
conducted through the Internet by end-users are using state-of-the-art location-based
network technology, we look at the data access using PID from location-based networks in
Section 6.3.6. To evaluate our feasibility of our approach and to assess the impact on the
Handle PID infrastructure and its operation, we provide an implementation of our approach
in Section 6.4. In this section, we first look at the implementation at the server side (cf.
Section 6.4.1) and afterwards shift the focus to the client side (cf. Section 6.4.2). Finally,
we evaluate the approach and its materialization in the implementation in an own evaluation
section (cf. Section 6.5).

In Chapter 7, we discuss the result of the approaches and its evaluations. For this,
we answer the research questions and highlight our contributions in Section 7.1 and 7.3.
Afterwards, we point out the limitations of our approaches in Section 7.2 and 7.4. Finally,
in Chapter 8, we conclude the thesis and provide an outlook on potential future work.

10

Chapter

Foundations

In this chapter, we present the foundations of this thesis which cover basic concepts,
terminologies and definitions. We start by introducing the principles of research data
management and digital repositories. Then, the central idea of persistent identifiers is
introduced. Finally, the design principles behind content-driven location-independent
network technologies are explained with all essential details which are necessary to follow
the contributions of this thesis.

2.1 Research Data Management

In order to make research data ready for use in new research processes and to use digital
data sets for scientific result verification, different steps such as data selection, preparation,
metadata annotation and publishing are necessary for long-term access [21]. Let use first
introduce the definition of research data management used at the University Libraries of
Boston, in order to understand these steps better [22]:

Definition 2.1 (Research Data Management) “Research data is data that is collected,
observed, or created, for purposes of analysis to produce original research results. |...]
Research data can be generated for different purposes and through different processes, and
can be divided into different categories:”

1. “Observational: data captured in real-time, usually irreplaceable. For example,
sensor data, survey data, sample data, neurological images.”

2. “Experimental: data from lab equipment, often reproducible, but can be expensive.
For example, gene sequences, chromatograms, toroid magnetic field data.”

3. “Simulation: data generated from test models where model and metadata are more
important than output data. For example, climate models, economic models.”

Chapter 2 Foundations

4. “Derived or Compiled: data is reproducible but expensive. For example, text and
data mining, compiled database, 3D models.”

5. “Reference or Canonical: a (static or organic) conglomeration or collection of
smaller (peer-reviewed) datasets, most probably published and curated. For example,
gene sequence data banks, chemical structures, or spatial data portals.”

The definition of curation given by [4] emphasizes the level-approach that is followed
here to focus on the scientific activities performed in this thesis. The distinction of research
data management levels is depicted in Figure 2.1.

Definition 2.2 (Curation) “The activity of managing and promoting the use of data from its
point of creation, to ensure it is fit for contemporary purpose, and available for discovery
and re-use. For dynamic datasets this may mean continuous enrichment or updating to
keep it fit for purpose. Higher levels of curation will also involve maintaining links with
annotation and other published materials.”

Furthermore, the data needs to be intact without any physical or semantic damage which
allows a successful reconstruction of the data sets. Curation of data means that the bits
are preserved and the minimal requirements of good scientific practice are met regarding
the archiving of data sets. Still, this lowest standards needs periodical activities, i.e. by
verifying the physical intact state of data and the encoded information [4] (cf. Figure 2.1).

Definition 2.3 (Archiving) “Archiving is a curation activity which ensures that data is
properly stored, selected and can be accessed and that its logical and physical integrity
is maintained over time, including security and authenticity.”

In this case of archiving the data sets will be opened to be usable by other persons or
entities, such as research institutes. In this state, the digital research information is preserved
and can be integrated into the scientific practice and be can cited in publications. The
notation of preservation used in this thesis is defined by [4] as follows:

Definition 2.4 (Preservation) “Preservation is an activity within archiving in which
specific items of data are maintained over time so that they can still be accessed and
understood through changes in technology.”

Furthermore, the preserved data is reusable and can be subject of verifying results and
feed new research processes. To reach this state, research data has to be augmented with
metadata that describes the data sets, its authors, the origin and gives information how to
interpret the data. For citing it, a unique data identification has to be added that should
exist for an infinite time space or at least for a time span, when research data has to be
reusable and citable. In this setting, PIDs are used as a concept for creating and maintaining
long-living identifiers for digital entities.

12

2.1 Research Data Management

In the context of research data management, we further need to introduce the terms of
Metadata and Meta-Metadata. It is important that the definition of metadata has two distinct
meanings in these contexts. The first meaning of metadata is the more natural one, where
metadata describes scientific data sets, i.e., through adding author information. This is given
in Definition 2.5. The second meaning of metadata aims at describing data by a (data)
model [23], i.e., through adding a revision number to a data scheme [24]. We introduce this
meaning in Definition 2.6 and refer to it as meta-metadata.

Definition 2.5 (Metadata) “There is a large amount of information which describe the
data in statistical and scientific database that are kept in an ad hoc fashion in log books,
text files, or even hand-written notes. Examples are the failure logs of devices, the date and
method used in generating a new analyzed data set, the identity of people who generated
the data sets, the description of materials that were encoded in the database, the data units
used, etc. Such information, which is referred to collectively as metadata, can be quite
complex and is just as important as the database itself for analysis purposes. In addition,
such metadata are particularly important for archival purposes.” [25]

Definition 2.6 (Meta-Metadata) “The metadata capturing the physical characteristics or
structure of the data and the metadata associated with the logical interpretation of the data.
The physical [Meta-] metadata allows us to decode the raw bits into integers, reals, and
other structures.” [26]

After introducing the (meta-) metadata concept, we can now have a look at the next levels
defined by Lord et al. [4]. The highest levels that can be achieved in (digital) data curation
are integration and preservation which use citable resp. reusable data (cf. Figure 2.1).
Integrated data is available with a full set of metadata, long-term-valid identifiers and a
machine-readable interface (e.g. a web services) that allow an easy connection of data
consuming services. Additionally, the metadata use a community-acknowledged or broadly
used metadata scheme that enables interoperability in data usage among a large group of
information systems. This is the level where research data curation takes place as it is
defined in [27]:

Definition 2.7 (Research Data Curation) A set of activities that aims at the point where
the research is finished [...] some results are available for public viewing. Characterized by
fewer items, more metadata, statically derived.

As the data consumers are interested in the integrity of data and its accessibility
the content is most important and not the place where data is stored or how data is
transferred between source and requester, as long as it works fast, reliable and secure.
This fact is condensed in the what principle, where only content matters and network
transmission and connectivity is a necessary circumstance for content dissemination of
digital information [11]. Hence, accessibility of curated research data can be condensed
into three major challenges according to the literature:

13

Chapter 2 Foundations

1. Intact, discoverable an accessible content is the foundation for long-term data
preservation.

2. Data accessibility is realized through connecting archived data to networks.

3. Data localization is a major challenge introduced by today’s location-dependent
networks.

In addition, the presentation level is the result of an information system which uses
integrated data sets and offers interfaces to provide an instant presentation of research data
that make data sets visible and browsable for interested parties. In this level research data
is often highly aggregated to certain aspects, categories or dimensions (e.g. correlations
between time, space and observations). Figure 2.1 summarizes the different levels of digital
curations.

presentation visible, instant presentation
inteerated new research tools,
& new methodology

content preservation, publication,

citable, reusable . . .)
integrated into scientific practice

bit preservation, minimal
archived, content accessible requirements for good
scientific practice

Figure 2.1: Levels of Digital Data Curation (adapted from [21])

2.2 Digital Data Repositories

In order to perform research data curation, information system engineers and researchers
have to create specialized information systems that are able to store research data jointly
with the respective metadata. These information systems are defined as Digital Research
Repositories by Heery and Anderson [28] and provide a minimum set of basic operations
such as put, get, search combined with an access control mechanism. With these basic
operations, they provide two major groups of functionality. The first group of functionality
is centered towards research data curation. For this, data repository software provides
mechanisms to select, manage and verify research data in order to provide the basic levels
of bit and content preservation. Furthermore, as part of the curation activities, they allow
to assign and manage metadata sets. To make data accessible on a global layer, digital
repository software allows the assignment of a persistent identifier to curated data sets, too.
The second group of functionality is centered towards the accessibility and presentation of

14

2.2 Digital Data Repositories

curated research data. With the basic operations presented before, the repository software
expose curated research data and its metadata over a network and often provides specialized
presentation layers and search catalogues for browsing and selecting relevant data sets.

To assess the impact of the approaches presented in this thesis on research data
curation, we have to find measurements that reflect the current importance of research
data management on an international level. Unfortunately, it is very hard to estimate an
overall amount of research data that is tagged with PIDs. Therefore, we only highlight
the growing importance of research data and digital repositories by the number of public
known repositories. The re3data project, an EU-founded project to explore, count and
consult digital repositories and digital infrastructure for digital curation emphasizes the
growing importance of digital research data. Between August 2012 and August 2014,
digital repositories have been indexed by the re3data project [29]. As we can see from
Figure 2.2, more than 1000 digital repositories have been indexed in the European Union,
leading to the fact that each member country runs dozens of digital repositories for research
data as national efforts. Hence, if we assume a four digit number of digital data sets per
repository, we can estimate billions of data sets that are subject of data curation and PID
assignment.

1,000 |- a

g 800 |
o
g
o
[0}

& 600 | y
=
(5}
5
=
=
S

o 400 8
(9]
Na)
=
=
Z.

200 | .

0 [-

| | | | | | |

0 4 8 12 16 20 24
Month (Aug. 2012 - Oct. 2014)

Figure 2.2: Indexed research data repositories by re3data.org [29]

15

Chapter 2 Foundations

2.3 Persistent Identifiers

A key concept used in this thesis is the Persistent Identifier (PID). Therefore, we introduce
the technical term by the definition of E. Tonkin that is widely used in literature:

Definition 2.8 (Persistent Identifier (PID)) “Persistent identifiers are simply maintainable
identifiers that allow us to refer to a digital object — a file or set of files, such as an e-print
(article, paper or report), an image or an installation file for a piece of software. [...] unlike
a simple hyperlink, persistent identifiers are supposed to continue to provide access to the
resource, even when it moves to other servers or even to other organizations.” [20]

Most important for PIDs are the terms identification and persistency. ldentification
means to connect the identity of a digital object to a respective technical identifier. This
technical identifier is living in an own namespace and secured against unintended changes.
In the majority of PID systems the validity of technical identifiers follows a defined life
cycle, which is embedded into the operational model of a PID operator and the connected
policies and rules. The term PID operator can refer to an organization that is operating the
infrastructure for running a PID service (with servers, networks and all other necessary
items) or to an organization which is creating and maintaining the PIDs. In practical
applications PID operators are fulfilling both functions simultaneously or execute certain
functions in behalf or digital repository owners. The form and semantic of the identifier
is also part of the policies and rules of the PID operator. Often an opaque identifier
(dumb number) is chosen that has no deeper semantic except of organizational identifier
segmentation. The principle of identification requires a uniqueness of the identifier in the
respective namespace. By maintaining an own namespace that is free of overlapping in a
common domain of data curation, PIDs ensure the validity of their identifiers over changes
in technology, network topology and organizational changes [6].

But in order to make a persistent identification scheme a persistent identifier, general
assertions of the PID concept have to be kept at all time to assure its durability. These
assertions can be found, in the fundamentals of the Document Object Identifier (DOI)
system, the most common PID system used in academia, publications and libraries
today [30] [31]. The foundations of the DOI system require the following measures that are
accompanied by organization and social measures [32] [33]:

1. “A syntax specification, defining the construction of a (PID) name [...].”

2. “A resolution component, providing the mechanism to resolve the (PID) name to
data specified by the registrant.”

3. “A metadata component, defining an extensible model for associating descriptive
and other elements of data with the (PID) name.”

4. “A social infrastructure [...].”

The concept of persistency has three meanings for PIDs. The first one is the persistency of
the PID as a digital object itself, which means that PIDs do exist infinitely at best and follow

16

2.3 Persistent Identifiers

a controlled life-cycle with distinct state from creation to the end of their lifetime. Within
this life-cycle, all PIDs have to stay in a defined state and are not allowed to vanish. PIDs
which reach the end of their life-cycle continue to exist but are assigned to a semantic state
of invalidity. This invalidity can be realized by a tombstone website, if the PID is resolved
via Hypertext Transfer Protocol (HTTP). The second meaning refers to the identity of the
PID. The identifier also has a certain life-cycle and should always be in a defined state. A
defined state in this context means that the PID operator has to check and adjust the identifier
regularly to reflect the actual real condition of the PID. Hence, an undefined state refers to
a PID that is identifying or referring a missing or invalid resource, without stating this fact.
PIDs in an undefined state appear broken to users and may result in unresolvable identifiers
or data referencing to resources that have been deleted or moved to an unknown location.
This is particularly important for updating an identifier and is implemented differently in
PID systems. Often a forward from the old identifier to the new identifier is used. The third
meaning refers to the persistency of PID data. All PIDs that are subject of Definition 2.8
contain at least a resolution target as associated data record. This associated data has to be
updated as often as the operational rules and guidelines are demanding it and is within inside
the PID system. The resolving target, often stated as target URL, has to be updated in order
to point to the current valid location of the digital object. If digital objects are moved, the
resolving target has to be updated, too. Some PID and/or repository operators are checking
the validity of PID data and maintain updating processes for the PID and associated data.

Figure 2.3 illustrates the principle behind PIDs in the context of linking scientific
publications to digital objects. The scientific publication on the left side contains a PID,
which is in this case a DOI. This PID is used to link the publication to a specific digital
object. The assignment of the PID to the digital object has been done independently from
the creation of the publication. If a reader of the publication is interested in the digital
object cited in the publication, he or she can use a PID infrastructure to resolve the opaque
identifier into a data pointer (in most systems a URL). With the data pointer, the digital
object can be accessed over network. If the network location changes over time, the PID
is adjusted from the past to the current URL. This process is repeated, every time the data
object is moved to a new place. Hence, the next iteration will move the data pointer from
the current URL to the future URL.

PID infrastructure

S--. ! Past URL
Publication TT=e ;
[— 1 <cited_paper.pdf>:

Current URL
<cited_paper.pdf>

_ Future URL
DOI: 10.123/1234/ i <cited_paper.pdf>:

Figure 2.3: Working Principle of PID systems
17

Chapter 2 Foundations

2.4 Handle System

After describing PID in general, we now want to introduce the Handle PID System. It is used
in this thesis to verify our approaches with real-world infrastructure and to implement the
suggested approach in a prototypical system for evaluation. The thesis uses productive
Handle PID systems hosted at GWDG in the area of European Persistent Identifier
Consortium (EPIC) to gather strictly anonymized metadata [34], perform measurements
and draw samples from large PID populations hosted by GWDG customers and associated
PID-data centers. Let us now first have a look at the system foundations of Handle. The
Handle System, initially released in 1994, consists of a set of specifications that allow the
creation of a distributed information system infrastructure for tagging and resolving PIDs on
digital objects. It realizes PIDs by building up a distributed key-value-like data base system
that stores entries with a distinct name that resolvable in a global namespace. Those values
can be grouped together into sets, called Handles. In the terms of the Handle system, a PID
consists of a named Handle that contains multiple Handle values, where one value is a target
URL. The Handle value with the target URL is needed to resolve the PID for accessing
digital objects linked by the PID (cf. Figure 2.3). Through maintaining the link between the
identifier and the digital object, it offers the possibility to have long-living data names that
overcome the problem of changing network locations. The Handle specifications include
protocols and mechanisms for setting up a distributed system set that stores, manages and
resolves PIDs [35]. The system itself is described by the specifications that are available as
Request for Comments (RFC) from the Internet Engineering Task Force:

e RFC 3650: Handle System Overview [36]
e RFC 3651: Handle System Namespace and Service Definition [37]
e RFC 3652: Handle System Protocol (ver 2.1) Specification [38]

RFC 3650 describes the fundamentals of the Handle System and gives an explanation of
the system architecture. RFC 3651 depicts the definition of the namespace and the roles
of the infrastructure parts. RFC 3652 explains in detail the native Handle Protocol, the
transport of Handle messages via User Datagram Protocol (UDP) and Transmission Control
Protocol (TCP), as well as the management of sessions for user authentication and data
transport encryption.

The core system has been designed as a very robust and resilient infrastructure with
no single point of failure. By design, it is scalable and allows the inclusion of additional
servers at any time to tackle high load situations and to provide failover capabilities.
Furthermore, it includes cryptographic trust mechanisms that secure PID resolution and
maintenance and it integrates everything into a open, well-documented system that provides
transparent abstraction to the user about the architectural and technical details [39]. The
International DOI Foundation (IDF) is operating the DOI System on base of the Handle
System and introduces own guidelines and policies for usage and operation [33]. Thus,
technical properties for the Handle system can be transferred to DOI system and vice versa.

18

2.4 Handle System

The Handle system and the DOI system are integrated in the same namespace and part of
the same worldwide infrastructure. As a result, servers operated for DOI by the IDF are
able to resolve Handle PIDs and Handle resolvers linked to the global Handle system are
able to resolve DOIs. In Table 2.1, the main properties of the Handle System are listed.

Property Availability Source

unique identifier | yes, if connected to a central infrastructure [36]

user base 1000 servers in 75 countries, [30] [31]
DOI >100 mio handles with 12k registrants

standardization yes, by IETF [36] [37] [38]

metadata support | yes [36]

Table 2.1: Properties of the Handle System

For assigning PID identifiers that are resolvable and manageable in a distributed manner,
the Handle System features a namespace, which is split into a global and a local part.
Figure 2.4 gives an overview on the naming scheme in Handle. The global name part,
identified by a Handle Prefix, in literature also called Naming Authority (NA), splits the
global namespace into local sub-namespaces. Local sub-namespaces can be grouped
together in the prefix, by introducing a dot as separator (American Standard Code for
Information Interchange (ASCII) code 0x2E). This grouping is performed in the DOI
system, where all prefixes start with a Directory Indicator (DI) “10.” [40]. But also new
Handle prefixes assigned by Data Oriented Network Architecture (DONA), as consortium
for global PID infrastructure operation assigns use a grouping policy like DOI using a
dot separator. The local sub-namespaces that are identified through a Handle Suffix can
assign own IDs for their local entities. Local administrators have to make sure that local
assignments are in line with the Handle policy PID requirements. A full Handle PID ID
consists of a concatenation of the different identifying parts. Thus, the Handle PID qualifies
itself as a unique indentifier if the Handle System installation is attached to the central
infrastructure in order to assure an overlap free assignment of PID identifiers.

‘ 10. 1145‘/‘973@97 . 9731@0l

C -

Naming Unique
Authority Local Name
(NA) (Prefix) (Suffix)

Figure 2.4: Handle Naming Scheme

19

Chapter 2 Foundations

In order to explain the approaches presented in this thesis, a short introduction into
the construction of a Handle is needed. As defined above, a Handle is a set of values
that is accessible trough an identifier. In Figure 2.5, the schematics of a Handle is
depicted. A Handle consists of a set of typed, indexed key-value pairs that store the
data record-by-record [36] [37]. The data is stored as hierarchical records enumerated by an
index. The key-value pairs store sequences of binary octets that are terminated by a 4-byte
unsigned int length marker. Strings are represented as UTF-8 encoded strings.

i <index> 3

§<index> i 2 i
<index> : 1 i i
<type> : URL P
<data> : https://gwdg.de/... Lo
<TTL> : {Relative: 24 hours} {---!
<permission> : PUBLIC_READ, ADMIN WRITE o
<timestamp> : 927364617838

Figure 2.5: Handle With Its Associated Values (based on [37])

The separation into global and local namespaces in Handle is also extended to the
architecture of the system (cf. Figure 2.6). All assignments of prefixes are stored in global
available Handle servers on the Internet, forming the Global Handle Registry (GHR).
To share the responsibility of prefix assignments, the GHR is operated as Multi Primary
Administrator (MPA) GHR [41]. This means that the GHR is operated as a distributed
system by different organizations, in order to prevent an organizational overweight of a
single infrastructure operator. DONA is coordinating the operation of the MPA GHR.
DONA is governed by international stakeholders and experts and operates in cooperation
with the International Telecommunication Union (ITU), the United Nations’ specialized
agency for information and communication technologies. Each GHR is operated by an
own organization. Corporation for National Research Initiatives (CNRI) is an MPA GHR
operator located in the US, the GWDG is located in the EU and operates the MPA GHR
in behalf of EPIC, while the Chinese Handle Coalition (CHC) is operating a MPA GHR in
China. The GHR is replicated to multiple sites, in order to prevent data loss in case of data
center disasters. Moreover, the redundancy is used for load distribution and maximizing
uptime in case of maintenance or disaster. The GHR database stores the network locations
(IP-addresses) of all official Local Handle System (LHS). The LHS is responsible for
all Handle PIDs that belong to a certain Handle prefix (local sub-namespace) and are
under local administration of PID operator or PID service providers. Additionally, the
verification information based on cryptographic certificates is stored in the GHR to make
LHS responsibility for a certain prefix verifiable publicly. The LHS stores the actual PID
information in a local Handle server systems with an attached database system. Often

20

2.4 Handle System

operators of LHS cooperate together by mirroring their LHS site information in order to
prevent data loss or provide higher query and update capacities through load sharing [42].

GHR
Site 1

GHR GHR
Site 2 Site 3

Global Handle Registry (GHR)

PID:
11022/afcde

Current
GHR Location

Handle 9
Client LHS LHS
Site 1 Site 2

PID PID
DB DB
Local Handle System (LHS)

Figure 2.6: Handle System Architecture with Client Interaction

In Figure 2.6, the process of client interaction is depicted. For the interaction with the
Handle System, a client can use the native location-dependent Handle protocol that uses
port 2641 for UDP and TCP transport [38]. Before resolving, accessing or changing the
PID, the client needs the full PID and the current network location of the GHR. This
a priory bootstrap information is needed within the Handle system to start interaction. When
using the Handle software, bootstrapping information are included as static data set in the
Handle software bundle. Then, the client contacts the GHR in step @ in order to obtain the
location of the LHS and the optional verification information, to assure that the LHS has
been authorized to answer requests for the local sub-namespace. After responding with the
LHS access information in step @, the client contacts the primary LHS site and sends its
request for processing the Handle in step ©.

21

Chapter 2 Foundations

GHR
Site 1

GHR GHR
Site 2 Site 3

PID: PID Resolution
11022/afcde Service URL

-—

HTTP Handle
Client HTTP-Proxy

LHS LHS
Site 1 Site 2
LL —F~
9 PID PID
[\ DB DB
DNS

Server Local Handle System (LHS)

Global Handle Registry (GHR)

-

Figure 2.7: Handle System Architecture with Client Interaction Using a Handle HTTP-
Proxy

Although, the Handle system has been designed as a distributed PID system with
almost no external dependencies at its core like DNS, it comes with an entry barrier for
application integration. This entry barrier is the adaption of the complex native Handle
protocol. To make the adaption of Handle-based PID systems easier and to support PID
resolution from the web browser, HTTP-based proxy systems have been added to the
Handle infrastructure. The HTTP-based proxy system allows resolving Handle PIDs into
target URLs using HTTP forwarding. This feature is a real-world example of the switching
between location-independent persistent ID spaces and location-based resolution targets
as shown in Chapter 3. In Figure 2.7, the working principle is depicted. As we can see,
the working principle is identical to Figure 2.6, but two new parties have been added. The
Handle HTTP-Proxy acts as an intermediary between the location-dependent network of the
user and the Handle space. Hence, the proxy has two interfaces, a HTTP-interface for the
HTTP-client communication and a Handle interface for the Handle communication to the
GHR and LHS servers. In this scenario, a DNS Server is needed, because a user accesses
the Handle HTTP-proxy using a URL with a DNS domain. As stated in Chapter 3, the
DOI and Handle operators are offering official HTTP-proxies at the domains dx.doi.org
or hdl.handle.net. In order to understand the HTTP-proxy, we have a look at the
HTTP-client interaction in Figure 2.7. In this figure, we look at each step of the PID
resolution using a Handle proxy server via HTTP. In step @, HTTP-client, e.g., a web
browser, uses the central resolution service URL hdl.handle.net to resolve its PID
11022/afcde. In this step, the domain hdl.handle.net is resolved into the IP-address
of the Handle HTTP-proxy. The resolution process contains a round robin selection that
returns one IP-address out of five other addresses linked to the other five official proxy

22

2.4 Handle System

servers (cf. Figure 3.2 and Chapter 3). After delivering the IP-address to the client in
step @, the client connects to the HTTP-proxy and passes the PID as resource in the GET
command of the HTTP request [43] (step ®). Then, the HTTP-proxy contacts the GHR in
step @, in order to obtain the location of the LHS and the optional verification information,
to assure that the LHS has been authorized to answer requests for the local sub-namespace.
After responding with the LHS access information in step ®, the HTTP-proxy contacts
the primary LHS site and sends its request for processing the Handle in step ®. Now,
after the resolution of the PID, the Handle record with the target URL is responded to
the HTTP-proxy (step @). After obtaining the target URL, the HTTP-proxy integrates the
target URL into a HTTP redirection that is sent as a response to the HTTP client (step ©).
The client parses the response and follows the redirection URL and as a result, the web
browser display the resource that has been the result of the PID resolution. This process is
also identical for reading any other Handle values or administrative information from the
Handle system using the official HTTP-proxies.

In addition to Figure 2.7, we provide in Figure 2.8, a Unified Modeling Language (UML)
sequence diagram. It illustrates the HTTP-based PID resolution in detail. As we can see
from the figure that a pipeline with six tiers is needed to resolve a PID and to access the
research data in a location-based network through a PID.

HTTP DNS HTTP Global Handle Local Handle Data
Client S . Resolving Regist Syst S
ien ervice Proxy egistry ystem ource
— lookup g) :
hdl.handle.net : :
134.76.30.195 : :
- ————————— T :
GET http://134.76.30.195/ ,-_ Locate :
11022/afcde g LHS: 11022
: e —137.76.10.172
: Resolve afcde
- ___target WL _______ oo __target WL __________ D 5
http://xyz.com/ http://xyz.com/ 0 .
data.zip : data.zip :
GeT : : : r
http://xyz.com/data.zip : : R w
<DATA> : : :
[- ST TTT T T s T AT T T e T T T ST TTT T T s s T m T A o

Figure 2.8: HTTP-based Location-Dependent Resolution And Data Access Using Handle
PID

The usage of the HTTP-based proxy system also requires additional information
concerning the network location of the HTTP proxy system that is located in the
location-dependent network. In Figure 2.9, the augmented PID name scheme is depicted
that adds a protocol scheme indicator (http://) and the URL of the Handle proxy service
(hdl.handle.net) in front of an existing PID. The augmentation of the PID shows the

23

Chapter 2 Foundations

contradiction to the PID main purpose and the problem caused by non-persistent URLs.
Also, the protocol scheme is subject to technical change and the usage of unencrypted
communication may be disregarded in the future. Hence, challenges and problems of the
location-dependent network on technical access become challenges for the PID system
in use cases involving end-user. Thus, the augmentation may bring practical advantages,
but endangers the persistent nature of all PIDs. As a result persistent citing of a PID on a
media should only use the prefix and the suffix and not the complete HTTP proxy URL that
includes http(s)://hdl.handle.net.

http://hdl.handle.net/10.1145/973097.973100

J\

T oh 5

Protocol Resolver Address Naming Unique
Authority Local

(NA) (Prefix) Name

(Suffix)

Figure 2.9: Augmented Handle Naming Scheme (based on [44])

2.5 Magnet Links

For bridging the gap between different applications in mobile and desktop environments,
Magnet Links are used as transport container for complex access information. The structure
and the usage of Magnet Links are described in the Magnet Link URI scheme that currently
is a work-in-progress specification [45]. The target behind the work on Magnet Links is
to integrate utility programs, such as file downloading programs, into hypertext media,
such as websites. In order to be compliant with current standards and systems, the
Magnet URI schema follows best practices of the Internet Engineering Task Force (IETF)
specifications for Uniform Resource Name (URN). Furthermore, the usage of Magnet
Links has also been discussed in the area of the World Wide Web Consortium (W3C) [46].
Magnet Links contain suitable service access information for location-dependent and
location-independent data access. Today, Magnet Links are supported by numerous Peer-to-
Peer (P2P) applications and are the de-facto standard in large file sharing communities [47].
In Table 2.2, we provide an overview of different data distribution systems that make use of
Magnet Links for storing data access information.

24

2.6 Overlay Networks with BitTorrent

System URN | Value

Gnutella2 shal | file hash (SHA-1)
Gnutella2 | tiger | file hash (Tiger Tree Hash)
Kazaa kzhash | file hash (proprietary)
BitTorrent | btih | unique file identifier

Table 2.2: Magnet URI Scheme Usage for Different Data Distribution Systems

To initiate a download with a Magnet Link from an application like a web browser
or a smartphone app, a pseudo-protocol handler for the Magnet Link URL format
magnet: ?xt=urn:<System>:<Access Information> is registered. = This protocol
handler passes the information from the browsing application to the utility program that is
able to process the access information and start a download.

A Magnet URI has the form of

magnet: 7xt=urn:<System>:<Access Information>,

where magnet: is the URI scheme for a Magnet Link and all subsequent keys after the “?7”
character contain information about the digital object in form of a key-value dictionary
concatenated by “&”. Keys may contain location-based access URLs or descriptive
information that are needed to access a digital object independent from its location. In
Table 2.3, we can see an excerpt of the Magnet URI link scheme keys including its names
and purposes.

Key | Name Purpose

as Acceptable Source | location-dependent download URL

dn | Display Name file name

kt | Keyword Topic search key word

tr | address Tracker optional tracker information for BitTorrent

xt | exact Topic location-independent access information in URN-format
x1 | exact Length size in bytes

Table 2.3: Magnet URI Schema (based on [45])

2.6 Overlay Networks with BitTorrent

In this section, the foundations of BitTorrent are introduced. BitTorrent is built on the
principle of peer-to-peer technology. It is augmenting the location-based networks with
a logical overlay network that resides on top of today’s network structures. Similar to
NDN, BitTorrent follows the principles of location-independent data localization and access

25

Chapter 2 Foundations

within its overlay network space. It tackles problems of classic networks by providing
a decentralized and robust data dissemination design that allows parallel downloads from
multiple sources. BitTorrent addresses the challenges of locating data in the network and
reducing network congestion, when particular data sets become well-known and the operator
is not able to provide as many servers as needed to fulfill all requests by sharing downloaded
data between the clients.

2.6.1 General Principles

BitTorrent has been proposed by B. Cohen in 2001 as a P2P network for file sharing [16].
It has been formulated to distribute (large) files collaboratively using a swarm of computer
which exchange data with each other in a peer-to-peer principle. To exchange information
and data, BitTorrent is constructed as an overlay network that runs on top of TCP and
UDP connections in Open Systems Interconnection Model (OSI) layer seven. An essential
property of BitTorrent is the file dissemination strategy that uses a mechanism of knocking
down files into small chunks (cf. Section 2.6.3). These chunks are exchanged between
every BitTorrent peer that is interested in the file. Chunks that are downloaded are instantly
shared with other peers, in order to use the upload bandwidth of participating peers to fulfill
download requests of other interested peers. By this, BitTorrent pushes the network load
from central servers to the decentralized peers. Furthermore, it provides a self-amplifying
effect on very popular files, as with the amount of peers interested in the files, the amount
of peers offering download capabilities rises [48]. Thus, every client that is downloading a
data sets helps to distribute its already downloaded data to other clients. By this, BitTorrents
bandwidths is scaling up with the popularity of downloads in the overlay network. As a
result, BitTorrent features collaborative data dissemination like NDN and enables robust
data dissemination that is capable of compensating the loss of network nodes.

2.6.2 Network Organization

For distributing files, BitTorrent uses dynamic overlay network topologies that is created
individually for file distribution. In Figure 2.10, a complete overview is given. Although the
physical topology remains identical, the logical topology of the network is determined for
every new file, because a unique set of peers is owning specific parts (chunks) of the file.
All nodes that are part of such a topology are called swarm. During the data distribution,
network nodes grouped in a swarm hold fixed roles. In the following, we have a look at
different roles of nodes in a recent BitTorrent network:

Clients (cf. Figure 2.10, number ®) are mostly run by users that are interested in specific
files [16]. The download information can be provided via web, e.g., through a torrent file
(cf. Figure 2.10, number @). Using the access information stored in a torrent file, the clients

26

2.6 Overlay Networks with BitTorrent

can download chunks from other BitTorrent clients for retrieving chunks in order to get a
complete file. While downloading, clients share the existing chunks with other clients. The
download process is called leeching, while the upload process is called seeding.

Trackers (cf. Figure 2.10, number ®) are used to support the swarm in distributing
files [16]. They gather and store the information which client holds which chunks and files.
Thus, they help to coordinate and improve the chunk transmission between the nodes. This
is done by exchanging information between the clients regarding the temporary network
topology. By this, clients get information about new peers that entered the swarm and peers
that offer a higher bandwidth for the file transfer. Since the introduction of Distributed
Hash Table (DHT) in BitTorrent, trackers are not essential for running a BitTorrent network
anymore.

Web 9

Tracker

—\ [—\ [—\ \
Client Client Client Web seed
S~

Figure 2.10: Structure of a BitTorrent Network using a Tracker

Distributed Hash Tables are used for locating peers in a decentralized manner.
In contrast to tracker-based networks, BitTorrent can also operate trackerless using a
DHT [49]. In this foundation section, we focus on the discovery of nodes with DHTs but
not on the details of DHT operation. When using a DHT, the tracker is replaced by a data
structure that is hosted by different BitTorrent clients jointly. The discovery of new peers
and the transport optimization is done solely by the clients. There is no central coordination
involved and DHT is used for locating new nodes and establishing data transfers between
the clients. The official BitTorrent implementation uses a Kademlia DHT [50]. Figure 2.11
illustrates the working principle behind DHT in BitTorrent. The info hash of a torrent
file (cf. Subsection 2.6.3) is used as a key in Kademlia. Every node is sending tuples
of its network address and the info hashes of the files available for upload to the DHT
(cf. Figure 2.11, number @). By looking up the info hash in the DHT, a client can
retrieve other nodes that are also interested to the same file and may share file chunks (cf.
Figure 2.11, number). By connecting to the discovered peer, chunks can be downloaded

27

Chapter 2 Foundations

(cf. Figure 2.11, number ®). Furthermore, connected peers can dispatch Remote Procedure
Call (RPC) requests on each other, to share a node list with IP addresses from other nodes in
order to extend their amount of data sources. This procedure is called Peer Exchange (PEX)
and explained in following.

Distributed Hash Table (DHT)

[——\ [——
Client [=—] L L Client

Client

Figure 2.11: Structure of a BitTorrent network using a Distributed Hash Table [51]

Web seeds (cf. Figure 2.10, number @) are central web servers that support the swarm
by serving files to clients [52]. They offer files using web protocols such as HTTP. Web
seeds can operate independently from the network mode and support tracker-based and
trackerless file distribution. The concept of web seeds is a contradiction to the principle
of decentralized P2P data distribution. However, web servers have usually a better upload
bandwidth than regular clients and therefore they are used for bootstrapping file distribution,
when not enough clients have received the file to perform a powerful P2P file distribution
yet. Another important role of web seeds is to provide file access, when no P2P node
shares chunks for a file. This is the case for rarely requested files. As other BitTorrent
nodes, multiple web seeds can serve a file simultaneously to speed up data distribution and
to provide a failover, if a web seed is offline. Additionally, the concept of web seeds is
suitable for supporting other location-based network protocols for data distribution to the
swarm [53].

Peer Exchange (PEX) is an additional method used in BitTorrent for discovering peers
in swarms. Using PEX, nodes in the swarm exchange lists of peers that share similar info
hashes in order to get a more up-to-date view of neighboring peers. By this, additional
peers are discovered and the number of queries towards a tracker or a DHT can be reduced.
Figure 2.12 is depicting the exchange of peers along the download of data from other peers.

28

2.6 Overlay Networks with BitTorrent

As peer information are not trustful by design, only peers that are actually sharing the file
are included in the exchange list [54].

3%
s] |

yeat ™
* [—) Info
Seeder
Hash
vy
{ \ v »\QX‘G\‘Q
©
Download S [::::]
s [——=
[[:::] Seeder

[::::] Seeder [::::]

[——\
Seeder [——
Seeder

Info Info
Hash Hash

Figure 2.12: Peer-to-peer data distribution and peer exchange in BitTorrent

2.6.3 Data Organization

In this subsection, an introduction into the data organization of BitTorrent is given. We first
explain the creation and handling of file chunks. Then, the metadata for BitTorrent access
information is described that is necessary to access files. Afterwards, different distribution

schemes for access information are given that form the foundation for data distribution used
in Chapter 6.

File chunking is used in BitTorrent to segment a file into smaller parts. These parts
are exchanged between the peers. File chunking allows peers to exchange parts of files
(seeding), before a complete file has been downloaded. By this, a peer can start seeding,
when the first chunk is complete and verified. As a result, a client is improving data
distribution with the first (random selected) obtained chunks that are redistributed within
the swarm immediately. The length of each part is by default 256 kilobyte (2!3 bytes) by
default. For each chunk, a SHA1 checksum is computed that is used to address and verify
it. The length of the chunks is stored along a map with the SHA1 hashes of all chunks [48].
To distribute files efficiently BitTorrent uses a rarest first policy for chunk distribution [55].
With this policy, the clients request chunks that are least available within the swarm to
improve the availability of underrepresented chunks. As a result, downloads are secured
against missing chunks and a starvation of downloads is inhibited.

Descriptive metadata is stored together with the access information. It can be included

optionally along the file chunk information set and provides space for a file name suggestion
or for the total file size of the download [48].

29

Chapter 2 Foundations

Bootstrap information is necessary to start the data exchange with BitTorrent and
is needed when using trackers or DHT. If trackers are chosen as swarm coordination
mechanism, a list of trackers is part of the bootstrap information, which is called tracker
announcement. To start its exchange operations, a client contacts a tracker in order to find
other peers and becomes a part of the swarm. This approach has the disadvantage that
trackers are a central infrastructure and if no tracker is available, file exchange is impossible
due to a missing entry point into the swarm [48].

If the trackerless mode is chosen, bootstrap information with a different content are
needed for joining a DHT. Hence, trackerless access information does not contain a
tracker announcement and instead a nodes key is included for DHT joining. For initial
bootstrapping of a BitTorrent software that has not started on the computer before (cold
start), nodes are chosen using Kademlia algorithm properties such as the K closest neighbor
of the generator’s DHT routing table. If the BitTorrent has started before and was able to
join a DHT (warm start), a list of DHT nodes has been saved from the previous run and
is used to rejoin the DHT. As the tracker announcements, DHT bootstrapping is a critical
phase of BitTorrent operation [49]. Modern BitTorrent software can contact an additional
DHT bootstrapping server as fallback, to connect to a DHT swarm if the node key is invalid.
A list of popular DHTs is available at [56].

Besides bootstrapping information related to swarm activities, access information to web
seeds can be included into it as well. By using web seeds, downloads can be invoked directly
from web sources. Web seed bootstrap information contains a list of web seeds that offer
the file for direct location-based download on URLSs [53].

Access information distribution can currently be realized in two different ways in order
to access data in BitTorrent. The access informations contain all necessary data to invoke a
P2P download within a BitTorrent network.

a) direct distribution

In the original draft of BitTorrent, the information of file chunks, descriptive metadata
and bootstrapping information was given in a binary-encoded file. These files have been
associated with the extension .forrent and can be distributed on the web as file downloads,
via E-Mail as attachments or stored on any other digital media. They have a size of a few
hundreds bytes for minimal examples and do not exceed one megabyte for even large
donwloads [48]. Hence, this direct distribution of access information has some practical
limitations, as binary-encoded access information is not suitable to be stored in web
links used in websites. For sharing .torrent files, file distribution mechanisms have to
be provided for exchanging access information. In the case of web distribution, a HTTP
server is used for offering the access information downloads (cf. Figure 2.10, number @).

30

2.7 Information Centric Networks with Named Data Networking

b) indirect distribution

For sharing a file with BitTorrent using indirect distribution, the access information are
computed first. Then, the SHAT hash of the access information is computed, called info
hash. Afterwards, the access information is stored in the swarm together with the file
chunks of the shared file. Now, if a user wants to obtain the file from the BitTorrent
network he or she can use the info hash instead of a torrent file. For this, the info hash
is used to download the access information of the file from the swarm. With the access
information in place, the download of the file chunks from the swarm can be initiated. As
we can see, indirect distribution with info hashes uses the swarm for distributing access
information and uses the hash to link them from the outside, e.g., through a text link
on a website (cf. Section 2.5). Hence, the mechanism of indirect distribution makes a
BitTorrent swarm a self-hosting access information and metadata platform [57].

2.7 Information Centric Networks with Named Data
Networking

In this section, the foundations of Named Data Networking (NDN) are explained. NDN
is the most recent realization of an Information Centric Networks (ICN) and a current
target of research in the area of network technology and information organization [58].
The intention behind ICN is to fix the major problems of the current Internet architecture
in order to improve the access and dissemination of content in computer networks. In
particular, ICN addresses the problem of locating data in the network and the problem of
data congestion, also known as Slash-Dot-Effect, when particular data sets e.g a website,
becomes well-known and the operator is not able to handle all requests any longer. This
is done by shifting the network paradigm from the classic where approach to the what
approach, where data demands are sent through the network instead of requesting data from
certain locations. As we will see in this thesis, this paradigm shift is very useful, regarding
long-term data availability.

2.7.1 Differentiation between CCN and NDN

In the context of ICN, the acronym Content Centric Network (CCN) is often used as a
synonym for NDN. Therefore, the usage of NDN in favor of CCN in this thesis has to be
explained first. CCN is an architecture project that was initially set up by Jacobson et al.
at the Xerox Palo Alto Research Center before the NDN project was started [59]. NDN
can be regarded as the successor project of CCN and has taken over many similarities like
initial network specifications or early architectural drafts. In October 2015, the NDN project
consists of twelve research facilities, universities and the Xerox Palo Alto Research Center
(PARC), with V. Jacobson as principal co-investigator [60]. The NDN research project uses
the source code base of CCN and is developing it further for the needs of the project and
academia [58].

31

Chapter 2 Foundations

2.7.2 General Principles

NDN are one realization of ICN and make data available independently from its storage
location in the network. As in most ICN families, it is not necessary in NDN to express
places in the network like IP-addresses or URLs to access hosts and the data stored on it.
This is achieved by building a semantic and technological bridge between the content stored
in digital entities and its discoverability in the network. These principles classifies NDN as
a location-independent data access technology.

But in contrast to overlay networks such as BitTorrent, which operate with distributed
hash tables on top of existing IP-driven networks, NDN can replace the network transport
layer completely or use it in conjunction with existing transport technology following the
ISO/OSI model [61]. Thus, from the point of view of long-term research data access, the
network becomes an integral part of the data curation stack. In this role, it is not only
a transport layer that shifts data from a server to a requesting client, but it exploits the
resources of computers and smart nodes in the network that can support to accomplish the
task of data dissemination.

The fundamental principle behind NDN is that data consumers specify what kind of
data they need, instead of connecting to a specific data source, where the place is known
in advance, which would mean to solve the question where the data is located. Hence, in
NDN there is no host-level notion for data access as it is in traditional networks. Thus, data
requests in NDN are issued at the network level. To perform data operations, the network
nodes in NDN need more functionality, than network nodes in classic location-based
networks.

As most ICN architecture, NDN is designed as a consumer-driven architecture. In this
kind of architecture data requests are stated as interest that are broadcasted through the
network, directed by NDN routing algorithms until a valid data source is matched and
data is sent back to the requester [11]. One fundamental aspect of the architecture is the
principle that every node in the NDN network can answer to an interest with a matching
data packet (interest consumption). As all NDN nodes posses an own cache for data packets
they are able to respond to interest immediately without forwarding the interest to other
nodes or the data source (cf. Section 2.7.5). Hence, content that is frequently requested by
clients is served by the nodes using its caches, instead of the original data source. With
this design property, the data distribution in the network is self-amplifying when sudden
demand of a specific data set occurs. By this, more frequent data is pushed from the data
source “closer” to the data requesters, meaning a significant load reduction for many Internet
Applications such as downloads, e.g. for operating system updates or websites suffering
under the Slash-Dot effect [11].

32

2.7 Information Centric Networks with Named Data Networking

2.7.3 Naming Data

NDN data is identified by Data Names that are hierarchically structured into a series
of components [11]. The components are octets of variable length. The values can be
human-readable in order to reflect the usage in certain applications, but they can also be
encrypted or reflect any other purpose which allows a large span of use cases. As a delimiter,
Jacobson has chosen “/” in order to provide a common delimiter that is similar to the URL
scheme specified in [19]. However, it is possible to use other delimiters, as long as they do
not conflict with NDN control characters. The NDN project has defined all delimiters in its
NDN implementation in a technical IETF draft [62] [63].

A very important property of naming data is that interests can be specified not only on a
pre-selected data names, but also on identifiers like file hashes. Consequently, applications
can access data with hash-based pointers similar to the SHAT hashes of BitTorrent. Another
important aspect is that data names can be resolved directly in the network without any
auxiliary systems such as DNS because the relation between data content and data name
can be directly managed by applications running on top of NDN, which can implement a
semantic model between data names and content. Hence, the data names can be constructed
by design long-lasting and persistent in the case of changing network locations. However,
these naming properties do only provide the base for a convenient naming schema, but they
do not assure other necessary naming conditions in a NDN network, such as the uniqueness
of data names or the organization and partition of NDN names spaces. Thus, NDN data
names are a foundation for persistent entity naming in networks, but they are no persistent
identifiers, which require additional efforts, as we will see in the latter.

Versioning &

User/App supplied name Segmentation

/gwdg.de/videos/win_setup.avi/_v<timestamp>/_s3

T T T
Globally-routable Organisational Conventional/auto-
name name matic name

Figure 2.13: NDN Data Name Example (adapted from [11])

2.7.4 Packet Types

There are two types of packets in NDN networks [11]. Interest packets are used for
expressing requests for specific data sets in the NDN network (cf. Figure 2.14, left site).
It consists of three sections: a content name @ identifies the data set that is subject of the
request. A selector section @ is used for multiple purposes in order to add details to the
request for finer data selection. It can e.g. be used to request a specific version of a data

33

Chapter 2 Foundations

set, as multiple versions of a file can coexist in NDN networks, or to select a specific part
(bitstream offset) of a data set. The selectors are stated as version string representation or
data segment offsets. A nonce section ® is appended to the packet to provide it with an
identity. For the majority of use cases, a random value is chosen as nonce, in order to make
interest packets distinguishable by the source, if the same data name is chosen as selector
from different interest packets in the network. Furthermore, the nonce is used to link the
interest packet logically to the sending NDN node.

Data Packets (cf. Figure 2.14, right site) are used to transport requested data from a NDN
node back to the requesting NDN node, which emitted an interest packet before. Thus,
data packets follow the path backwards that interest packets have gone prior through the
network. Similar to interest packets, data packets also have a content name section @ that
identifies the packet through the name of the contained data. The content name can be
extended with version strings or segment information if a data set is segmented into multiple
data packets for better transmission handling. The section signature ® contains an optional
cryptographic signature of the data, which is used to verify the content of a data set. Content
verification is necessary, as NDN data can also come from other nodes or caches that are able
to fulfill the request instead of the original data sources. The section signed info ® contains
the access information (data names) for obtaining the data for signature verification, e.g. a
public key or a certificate. In the section data @, the payload of the packet is stored.

interest packet data packet

G Content Name e Content Name

Q Selector e Signature

(order preference, publisher (digest algorithm, witness, ...)
filter, scope, ...)

e Nonce esigned Info

(publisher ID, key locator,
stale time, ...)

e Data

Figure 2.14: NDN packet types (adapted from [11])

2.7.5 Node Design

In order to understand the principle of NDN, it is necessary to have a look at the node
design. As shown in Figure 2.15, typical NDN nodes consists of three major parts. The first
part is the application part that is running a specific use cases like file sharing. Then, the
second part is the packet forwarding engine (depicted in gray), which serves as a middleware
and is realizing all the NDN specific network functions. It provides abstraction for the
network details and allows to connect the application and NDN network part together in one

34

2.7 Information Centric Networks with Named Data Networking

component. In the lower part is the operating system that is providing access to the network
using the hardware of the network node (depicted as black boxes). For explaining the details
of NDN, we now focus on the packet forwarding engine (cf. Figure 2.16) and look at the
details of the gray-painted box.

Client Intermediate Node N Server
Client Server
Application Application

Packet Forwarding
Engine (NFD)

Packet Forwarding
Engine (NFD)

Packet Forwarding
Engine (NFD)

transport transport

Figure 2.15: Overview of NDN Node Details

The packet forwarding engine is explained next using Figure 2.16. It is also referred as
Network Forwarding Daemon (NFD) in the literature according to the name of the software
component that implements the middleware. The packet forwarding engine consists of a
Content Store (CS), a Pending Interest Table (PIT), a Forward Information Base (FIB) and
an engine containing the NFD program logic that is connected to the faces. Faces handle
sending and receiving of interests and data packets to other NDN nodes or applications. It
is a network abstraction for NDN and can be considered as a mixture between a (hardware)
network interface and a network socket available for user applications. The face represents
different connection types and provides either a connection to another NDN node, or to
an application serving and/or consuming resources over NDN. In NDN networks, faces
are usually created for each network device present in the NDN node and each application
connected to the NFD. As the connected NDN nodes and applications exposes different data
namespaces, the availability of namespaces on the different faces is stored in the FIB ©.
By using the information in the FIB, the engine can determine on which face incoming
requests and interests have to be forwarded. Hence, the FIB serves as storage for the routing
information within the NDN node. Routing information are obtained through routing
announcements of NDN names from applications or other NDN nodes (cf. Section 2.7.6).

As stated before, NDN nodes are able to respond to data requests autonomously, which
is one secret behind NDN. For this, the NDN node has a data packet cache called Content
Store @. Unless not suppressed by the data packet sender, the CS stores a copy of each
received data packet by its name for a limited time span. If an interest is received that
matches a name of in the CS, the interest is consumed and a data packet is emitted with
content from the CS to the requester. The re-usage of CS content is only possible, if NDN
data packets are self-contained and idempotent, meaning that they contain all necessary

35

Chapter 2 Foundations

information for application usage in the same packet. For this, applications have to build
the data packets self-describing in order to support the idempotent nature of NDN [11].
The usage of the CS allows saving bandwidth dramatically, when the same data sets are
frequently demanded. This allows shortening reaction times and latency and to push data
simultaneously over different connections. As a result, NDN is able to build fast, robust and
resource efficient network structures.

The Pending Interest Table (PIT) (cf. Figure 2.16,) is the data structure that stores for
all incoming interests the data name and the face, where the interest has been received.
If a data packet with a name enters the NDN node and there is a match between the data
names in the PIT, the data packet is forwarded to the face recorded in the PIT entry. After the
forwarding of the data packet, the matching PIT entry is deleted (consumed). If no match for
incoming data packets occurs within a certain time limit, the PIT entry is removed (time out).
As we can see, the PIT controls the forwarding of data packets along the same faces that an
incoming interest has taken through the node. By this, data packets flowing from the data
source to the requester take the same route through the NDN network as the PIT-recorded
interest. In contrast to the interest flowing from the requester to the data source, the data
packets are forwarded using the PIT entries in the opposite direction to deliver the response
back to the requester. Hence, the PIT entries stored in the intermediate NDN nodes between
the requester and the data source serve as line of hints, which the data packets follow.

The Forwarding Information Base (FIB) (cf. Figure 2.16, ®) is the data structure within
the packet forwarding engine that is storing all data for interest routing. The FIB stores a
combination of the NDN prefix (cf. Section 2.7.3) and the faces that are connected to other
NDN nodes or applications serving the data using the prefix namespace. In order to perform
name-based routing of interests to a specific face, the engine compares the interest name
prefix against all FIB entries. If an entry matches based on the longest identical NDN prefix
in the table, the interest is forwarded to faces stored in the entry. If no entry matches, the
interest is discarded and the NDN request ends at this NDN node. Entries in the FIB can be
created by prefix routing announcements, which we describe in the next section.

As we can see now, there is a parallelism between the PIT and the FIB. The PIT is
responsible for data packet routing by recording faces and data names of incoming interests.
The FIB responsible for interest forwarding using external routing announcements as base
for an interest forwarding decisions. The difference in the creation of entries is that the
PIT entries are created automatically through interest recording, while the FIB entries need
external routing announcements for its creation.

36

2.7 Information Centric Networks with Named Data Networking

Content Store (CS) Face 0
Name Data ' i
I
/gwdg.de/videos/ — <———®| WLAN card
win_setup.avi/vl/se@ lele1e1. . 1 @—L——| (LAN access)
! :
I I
e e - - - I
ePending Interest Table (PIT) Face 1
Name Requesting Faces ' |
I I
/gwdg.de/videos/ 0 . — <o DSL modem
win_setup.avi/vl/s1 E ngine ! @&—r——>| (WAN access)
! :
I I
e e - - - I
Forwarding Information Face 2
Base (FIB) . !
I
o Prefix Face List ' |
] <——T—®| Application
/gwdg . de 0, 1 — @&—r——| (file sharing)
I
e - - — I

Figure 2.16: NDN Packet Forwarding Engine (adapted from [11])

2.7.6 Routing

In general, routing schemes that apply to IP-based networks can be applied to NDN
networks, too. But in contrast to IP networks, the subject of routing in NDN networks are
not single network packets but rather interests and data packets. NDN routing is used as a
layer for logical organization of NDN interest and packet flows. When NDN is operated
in a native environment, the NDN routing directly influences network behavior. If NDN is
operated as an overlay network on-top of TCP/IP, the NDN routing is independent from the
routing of IP packets that are used for data transport in lower network layers. More details
on transport and flow control are described in Subsection 2.7.7.

Let us now have a look at NDN routing as a fundamental principle in NDN. There
are several semantic similarities between the creation of routing decisions in IP-packets
and NDN entities. But in contrast to IP networks, the routing of NDN packets has fewer
restrictions in a direct comparison to IP, because NDN allows more network topologies that
may include loops [11]. Hence, there are no restrictions to configure routes using loop-based
multi-sourcing and/or multi-destination entity routing. Furthermore, the route look up is
based on the longest prefix matching algorithm.

37

Chapter 2 Foundations

When looking at the routing procedure of NDN in detail, it can be split into two major
phases. The first phase is a bootstrapping phase, called pre-topology phase, which is
responsible for initializing the NDN connectivity of a node. In this phase, the NDN
node has no connection to an existing NDN node and no network peers are known. The
target of this phase is to detect other neighbor nodes and to verify their identity through
cryptographic mechanisms. This identity verification is an optional step. As bootstrapping
of NDN nodes is an own topic of research, we recommend the paper of Mahadevan et al.,
who investigate the problems of bootstrapping CCN/NDN networks using a list-based local
resolution bootstrap approach with trusted initialization peers, similar to the DNS [64].

After a connection to peer nodes has been established in the pre-topology phase, the
inter- and intra-domain routing is entered in the second phase. In the next step, after
the node has acquired information on routing, it is able to participate in the network
by sending and receiving NDN interests and packets. Intra-domain routing addresses
the issue how nodes discover and describe their local connectivity, what resources are
present in their environment and what structure the network graph around the node has [11].
Inter-domain routing addresses the problem of reducing the peering costs in NDN networks,
as in large NDN installations nodes joining and discovering the network will produce
significant load in the network. In order to avoid this, inter-domain routing uses the
mechanism of peer-announcements to create a more efficient entering procedure for new
NDN nodes to the network [11]. We will not describe NDN routing in detail, as this is
an own research topic in ICN and particularly in the CCN and NDN community. Further
insights into routing challenges are provided in Sun et al. [65].

In order to illustrate the routing process, a simple scenario is provided in Figure 2.17,
where an application (depicted as a computer icon in the bottom left lower corner) is
requesting data from a source application (depicted as a cylinder icon in the upper middle
part). The different NDN networks are connected to each other. When the source application
sends an interest for the file paper.pdf, the data name stated in the interest packet is
analyzed by all intermediate NDN nodes. Based on the longest matching prefix (parts of the
NDN name separated by /), the interest packets are sent to different segments of the network
(depicted by clouds) that contain the data sources. If the data name stated in the interest is
met, a data packet is sent back along the chain of nodes that were forwarding the interest
before. The intermediate nodes store the information which interest packet has passed them
in the PIT. If multiple sources are able to fulfill the data request data, packets are emitted
by multiple sources, making NDN a true multi-sourcing network that is independent of data
locations.

38

2.7 Information Centric Networks with Named Data Networking

Legend Content Name:
/de/gwdg/media/pdf/paper.pdf NDN-enabled
~¢——— |Interest path /de/gwdg/media/pdf file server
’

<4~ — — — Data Path

Content Name: NDN-enabled
/de/gwdg/media/pdf file server

Figure 2.17: Simple NDN/CCN Routing (adapted from [65])

For advanced routing in NDN, routing algorithms developed for location-based networks
can be adapted. Hence, NDN network segments can adjust their routings in case of NDN
failures and detect alternative routes and namespace access to route interest and data packets.
One adapted set of routing algorithms usable for self-diagnosting and self-adjusting NDN
networks is Named Data Link State Routing Protocol (NLSR). NLSR is a link-state routing
protocol for NDN [66] [67]. It ensures that the NDN name prefixes are propagated in a
NDN network in order to ensure the reachability of NDN nodes serving data with a specific
prefix. For this, NLSR is using ranked metrics that indicate the reachability of NDN sub-
namespaces through different faces.

Prefix LSA Adjacency LSA
/<network>/NLSR/LSA/<site> /<network>/NLSR/LSA/<site>
/<router>/name/<version> /<router>/adjacency/<version>
number of prefixes number of adjacencies
name prefix 1 neighbor 1, link cost 1
name prefix n neighbor n, link cost n
signature signature

Figure 2.18: Link State Advertisement Packet Format [67]

This information, called Link State Advertisement (LSA) is shared between neighbor
NDN nodes, in order to initialize and adjust routing of interests in the NDN nodes. It reflects
the availability of NDN names on nodes as Prefix LSA and their network connectivity as
Adjacency LSA (cf. Figure 2.18). For information exchange, ChronoSync is used as protocol

39

Chapter 2 Foundations

for data synchronization between NDN nodes [68]. In this way, the routing is synchronized
from one NDN node to the other by sharing the availability information in a decentralized
manner. This solves the problem of adding preconfigured network routes into NDN nodes
for initial node bootstrapping or if the availability of a name prefix changes, due to (sudden)
network restructuring [67]. Hence, if a name prefix changes its availability, the new routing
information is shared with NDN network nodes using NLSR. Data sources and links that
add new namespaces to a NDN network are propagated through NLSR. Thus, NLSR is not
only suitable as an advanced mechanism for bootstrapping a NDN network, but it is very
important to make NDN network robust to link and node fails and ready for instant upgrades
of data sources and network links. As a result, NLSR-enabled NDN networks can provide
a better resilience to network failures than IP-networks, if the network application using
NDN is able to outplay these advantages through its design and operation. For this, NLSR
supports the exchange of multi-path forwarding, as NDN in contrast to IP-networks does
not require cycle free network topologies like spanning trees for a correct operation [67].

2.7.7 Data Transport and Flow Control

In general, NDN is not bound to network components that support natively NDN, as this
step would require new network hardware. With the introduction of Software Defined
Networking (SDN) it is possible to build native devices for NDN using SDN software.
By this, the packet forwarding engine (cf. Section 2.7.5) could be integrated as an integral
part of a SDN device into the network. Until SDN gains a significant market share, we
can assume that the network technology remains unchanged for the next years. Hence, we
can assume that NDN in the current test beds run on top of a classic network as an overlay
network. For these overlay networks, we can assume an OSI network model [69], where
layer four provides the transport function with TCP and UDP as protocols and layer three
is using IP for relaying and routing datagrams [70] [71]. When operating NDN on top of
a packet-based delivery media, interests that are not satisfied within a certain time frame
are re-transmitted by the node using all valid routings stored in the FIB until the time out
threshold is reached. This ensures that interest packets reach nodes over newly established
network paths that have been created in the meantime due to dynamic changes in the network
topology [11]. This design makes NDN a perfect solution for unreliable networks and
frequently changing network connectivity [72]. Of course, this behavior and the fact, which
has been mentioned before that NDN networks do not rely on spanning tree topologies lead
to the result that packets are transmitted several times and that interest packets are even
routed in a limited circular manner. A countermeasure to avoid network saturation due to
circular routing and multiple transmissions is to add a random nonce to every interest packet
in order to distinguish interests from different sources. Thus, duplicated or miss-routed
interests are discarded by the node engine. Additionally, sequence numbers are added to
NDN packets similar to TCP Acknowledgement (ACK) packets [11]. NDN has no need
for a dynamic flow control as it is used in TCP that is based on an end-to-end principle

40

2.7 Information Centric Networks with Named Data Networking

and uses dynamic window sizes to control the traffic and avoid congestions in the data
transmission [73]. In contrast, NDN uses a hop-to-hop transmission principle between the
nodes that only makes a flow control from one node to the other necessary. However, when
running NDN on top of a TCP connections, dynamic TCP flow control occurs between the
nodes connected via TCP in the lower transport layer. While writing this thesis (2016), data
transport and flow control are active topics of NDN research. Hence, this paragraph only
introduced the existence of a hop-to-hop flow control in NDN as a fundamental network
principle and therefore does not include cutting-edge algorithms that are outside the scope
of this thesis.

2.7.8 Content Validation and Content Protection

In general, NDN provides a separate field in the data packet that allows the integration
of a cryptographic signature (see Figure 2.14). There, signature data can be included to
implement different payload security mechanisms. This is necessary, as every node in NDN
networks can answer to interests. Thus, in a location-independent network the security
model has to shift from trusted locations to trusted content. Now, we have a closer look at
the fundamentals of content validation and content protection.

Integrity checks verify that the message has not been altered in the meantime, e.g.
through a transmission error or by malicious manipulation. Integrity checks can be done
in a very simple way by generating a checksum over the payload or by applying a more
sophisticated mechanism that relies on symmetric (cf. Section 2.8.4) or asymmetric
encryption (cf. Section 2.8.3). Sender identity verification can be implemented either by
obtaining the certificate with the public key from the node of origin using the built-in
Public Key Infrastructure (PKI) of NDN or by using web of trust approaches. To realize
these protection mechanisms, NDN implements a system of cryptographic keys that are
stored by every node in a NDN network [11]. The NDN key system operates here in
asymmetric manner, which assigns a pair of keys to every network node — a secret private
key and an open public key (cf. Section 2.8.3). Obtaining public key from the NDN network
is easy, as public keys can be accessed like any other data set using a data name. The PKI
has to be in place to verify the authenticity of the public key using a certificate with the
identity of the data source owner. For access the public key or the certificate, a data name
is needed that should be inferable easily for end-users. For instance, a fixed name scheme
for obtaining the public key from a node could be <nodeId>/keys/root.pub. It is open
to the NDN implementation to choose an asymmetric encryption scheme such as Rivest,
Shamir and Adleman (RSA) and to decide on a scheme for determining the data name
for obtaining verification mechanisms from a node. This integrated and smart usage of
asymmetric encryption and public key distribution allows securing data transmission and
can additionally be used as an initial mechanism for bootstrapping advanced transport
and authentication mechanisms [74]. Furthermore, routing announcements can be secured
against malicious manipulation using the built-in verification mechanisms of NDN (cf.
Section 2.7.6) [64].

41

Chapter 2 Foundations

2.8 Cryptography

As communication in overlay networks and information centric networks depends on
cryptographic functions, we introduce the necessary foundations. Besides the domain
of network communication, several PID systems employ cryptography to secure their
communication, to authenticate user and to protect PIDs through cryptographic means. In
the following, we describe the general principles of symmetric and asymmetric encryption.
After that, we introduce the foundations of certificate management, hash functions and
cryptographic signatures.

2.8.1 Symmetric Encryption

Symmetric encryption uses a shared secret key K for encrypting a plain text P into an
encrypted text C. For both, encrypting and decrypting, the secret key K is required.
Hence, the symmetry is given by the usage of K on both sides [75]. As a matter of
fact, communication that is secured by symmetric encryption needs knowledge of K on the
side of the receiver and the sender. K needs to be exchanged on a secure channel without
observation of a malicious third party. If K is disclosed, C can be translated back into P by
a malicious attacker [75].

Symmetric encryption can be operated in two ways: block cipher and stream cipher.
Stream cipher XORs every chunk or bit of P with a respective chunk of the pseudo-random
cipher stream that has been derived out of K. As the principle of a stream cipher works
bit wise, it does not require a minimal set of bits to start its operation but is able to start
immediately. Block cipher in contrast operates blockwise on P and handles a block of n
chunks or bits at a time using K. Block ciphers requires a minimum size to start, which is
at least the length of a block. It requires P to be extended in length that the length of P’ is a
multiple number of the block length. This extension is called padding [75].

random number

|

generate

P — encrypt decrypt [—r

= trusted area

Figure 2.19: Principle of Symmetric Encryption (adapted from [76])

Figure 2.19 illustrates the key distribution process in a trusted area for symmetric
encryption. Following the figure, we can see that the encryption and decryption functions
have to be executed in the trusted area, too. The usage of symmetric cryptography poses the

42

2.8 Cryptography

challenge of exchanging the cryptographic key over an insecure communication channel.
To solve this problem, the Diffie-Hellman key exchange has been invented by W. Diffie,
M. Hellman and R. Merkle in 1976 [77]. This key exchange algorithm allows two parties
to compute an identical key by sending information over a public unencrypted channel. To
compute a secure key on both sides, the communication must be protected against changes
or fabrication using a Message Authentication Code (MAC) or cryptographic signature in
order prevent a man-in-the middle attacks. If this is assured, the attacker is not able to infer
the key by observing the information on the public unencrypted channel.

Two well-known symmetric ciphers that are known to be secure at the time of
writing (2016) are Twofish [78] and Rijndael, commonly referenced as Advanced
Encryption Standard (AES) [79]. Both are designed to use XOR operations to perform its
encryption and decryption. They have a small memory foot print in order to be implemented
on hardware with low computation power.

2.8.2 Asymmetric Encryption

Asymmetric encryption has been developed to avoid the problem of secure key exchange
between the communication parties. It employs two different keys, the encryption
key Kg and decryption key Kp. While K¢ is available for everyone publicly and can be
transmitted through an insecure channel, Kp has to remain secret (private). To achieve these
properties Kg and Kp are designed with certain special mathematical properties. Therefore,
this technique is called public-key-encryption [75]. The most important realization are RSA
using the hardness of prime number factorization to protect secret information [80] and
Elliptic Curve Cryptography (ECC) as more advantage asymmetric encryption scheme
using the hardness of dividing points on a cyclic group of an elliptic curve for information
protection [81] [82].

random number

generate

KD

y

P — encrypt decrypt [—P

= trusted area

Figure 2.20: Principle of Asymmetric Encryption (adapted from [76])

The cypher text C is generated from the plain text P by using the public Kg, which
does not need special protection. To decrypt C into the plain text P, the secret key Kp is
needed, which has to remain protected to ensure confidentiality of P. Figure 2.20 depicts
the principles of asymmetric encryption. The key generation, encryption and decryption has

43

Chapter 2 Foundations

to take place in a trusted and secure environment. Asymmetric encryption requires strong
random numbers to generate the key pair as well as for the encryption process. The secret
key Kp cannot be derived from Kg or C. As two different keys are involved, the encryption
scheme is called asymmetric. In contrast to symmetric encryption, asymmetric encryption
is comparatively slow concerning the data throughput [76]. Hence, asymmetric encryption
can be used to exchange an encrypted key for symmetric encryption. After that, symmetric
encryption is used to perform the heavy data load. By combining the encryption principles,
the throughput for data encryption and decryption can be increased significantly [75].

2.8.3 Digital Signatures

Digital signatures are based on the principles of asymmetric encryption and have two
fields of usage. In the first field, they are employed for securing information against
fabrication and (malicious) changes. In the second field they can be used to proof that
a party is owning a particular secret key [75]. This allows the setup of a non-repudiation
schemes with digital signatures attributing signed data sets to particular parties owning
a secret key. By this, an independent third party can attribute signed data to the key
owner with public available knowledge and without having information on the secret key.
Additionally, it allows implementing authentication mechanisms by exchanging signed data
in a challenge-response protocol. From Figure 2.21 we can see that the key generation
and the calculation of the message signature have to be performed in a trusted area. For
generating a signature, a cryptographic hash is generated over the plain text message m.
Then, the hash is encrypted with the private secret key Kp to generate the cipher text, which
is the signature s from the data. The message is sent together with the signature s to the
receiver. The receiver uses the public encryption key K to decrypt the message and check
the obtained hash against an own hash that has been calculated independently using the
message m. If the hashes match, the signature is valid. Leveraging the same mechanisms
like asymmetric encryption, the key generation requires strong random numbers, too.

random number

l

generate

Kp

4

m — sign

m| |s(m)

test

l

= trusted area {true, false}

Figure 2.21: RSA Digital Signature System (adapted from [75])

44

2.8 Cryptography

2.8.4 Symmetric Authentication

In contrast to digital signatures, a Message Authentication Code (MAC) a can be computed
using symmetric encryption. It can also confirm the integrity of a message but does not
feature the non-repudiation, because every party owning the secrete key K can create valid
signatures. The relation between the private and public key in asymmetric encryption
allow a key attribution due to the mathematical relation of the keys. As systems based
on symmetric encryption have only one key, this attribution is not possible. For message
authentication codes Hash-based Message Authentication Code (HMAC) is a common
choice [75].

random number

|

generate

m| [a(m)

test

l

= trusted area {true, false}

m — auth

Figure 2.22: Symmetric Message Authentication (adapted from [83])

Figure 2.22 depicts the process. Similar to symmetric encryption, the secret key K needs
to be generated and distributed in a trusted environment. In the first step, a cryptographic
hash of the message m is computed. This hash is then encrypted using K generating a. Then,
in a second step, m is sent jointly with a to the receiver. The receiver calculates the hash of
m and using K for decryption. If the hashes match, the MAC is valid and the message has
not been changed. This procedure confirms that the message has been sent by a party who
owns a copy of K but it cannot assure the identity of the sender. Similar to other symmetric
encryption protocols, symmetric encryption has the challenge of a key distribution over a
secured trusted channel.

45

Chapter

Problem Statements

In this chapter, we address the major problem fields of PID that occur in the usage of
location-dependent network paradigms. This motivates the contributions of this thesis,
which aim on improving persistent identifier systems by using location-independent
network technologies. The problem statements show the limitations of the current
state-of-the-art approaches and techniques, which are also reflected by the related work
in Chapter 4.

Today’s Internet network technology is based on location-dependent services and
end-users consume the Internet using Hypertext-based web media, also known as websites
with links to other Internet resources. Researchers use the Internet with its web services
and HTTP resources to present, exchange and disseminate research data based on URLs.
As URLs point to network locations of web resources, they can break for several reasons
and point to non-existing network locations. This can be cause by moving web resources
from one Internet server to another, by restructuring of networks, new ownership of DNS
domains or a simple renaming of web resources. Hence, broken URLs lead to a loss of
information on the Internet and make researchers and librarians to question the usefulness
of publishing research result on the Internet without a reliable publishing mechanism [2].
But in fact the problem of broken URLs is inherited from the underlying location-dependent
network technology and thus persistent identifiers have been proposed as reliable identifiers
replacing unreliable URLs. In this context, PIDs are used to solve the question of “where
is my data located?” 1in location-dependent network environments in order to overcome
changing network locations by a fixed indentifier, which is adjusted to the currently valid
network location (URL) of the web resource [84]. The principle behind PID has lead to
different PID infrastructure systems, such as DOI, that is based on the Handle system [85]
and Persistent URL (PURL) as other broadly used system [86]. These systems are used
in digital libraries, data repositories and literature databases, e.g., IEEE Xplore [87], to
abstract the identification from the current valid network location. As the concept of PIDs
for globally unique identifiers exists for a long time of over 20 years, billions of data sets
have been tagged in the different PID infrastructures. Hence, when improving research data

Chapter 3 Problem Statements

access and dissemination with location-independent network technologies, the principles
and infrastructures behind PID have to be taken into consideration on different levels, in
order to keep access to all existing PID-tagged data sets.

For understanding the problems of location-dependent PID resolution and data access,
we use Figure 3.1. It depicts the current as-is situation of PID systems. To resolve a PID in
order to get access to a (research) data set, the end-user starts in the location-dependent
space, as his or her network connections depend on this paradigm and the typical tool
for browsing data sets on the Internet is a web browser. The PID itself is located in
location-independent space, as it only identifies an entity similar to International Standard
Book Number (ISBN) for books. The PID may contain information for the current location
of an entity. However, the optional location information stored inside a PID has no impact
on its location-independent nature, as it is only one attribute of many others. This means
that a URN can serve as a persistent identifier, too. As it is also suitable for tagging real
world-objects like serial titles [88] using an International Standard Serial Number (ISSN)
or books using bibliographic descriptions [89]. Interesting is now the overlapping of the
location-dependent space of the user and the location-independent space of the PIDs. Within
this overlap, the PID infrastructure is located with its services. It allows to access PIDs
under a location-dependent service using an URL. In the case of PID resolution, it retrieves
a location-dependent data pointer (target URL) for the user, in order to provide access to
web resources located in the location-dependent space.

location-dependent location-independent
space (where) space (what)

[]

Resolution
Request 3 2 >
Service Identifier
Data
Acvoss <:E Target URL
O vatid ure
+ data online

|

Figure 3.1: As-Is Situation in the Persistent Identifier Domain

When we continue to look at Figure 3.1, the data access using a PID can be described
as follows. First, the user has to know the URL of a location-dependent PID resolution
service capable of resolving its PID (step @). For different PID systems several web-based
resolution services exist. The Handle system, offers HTTP-based PID resolution
service [36] [39]. The German National Library Service is operating another HTTP-based

48

URN PID resolution service under the name space urn:nbn:de [89]. Then, in step @ the,
PID Resolution Service resolves the PID into its target URL. After obtaining the target
URL in step @, the user can access the data, if three prerequisites are valid (step @):

1. The Service URL has to be known by the user and central PID resolution service has
to reachable under this URL.

2. The target URL has to point to a valid data location.

3. The data set has to be available in the network (online).

With the current setup of PID systems available from the location-dependent Internet we
can derive the first problem statement:

Problem Statement 1: Breaking the central resolution service of a PID system breaks
the PID system for almost all end-users world-wide
All PID systems that employ the principle above use a central (HTTP) resolution
service service with a URL using a DNS domain. If the control over a part of the
service URL is lost, e.g., the domain ownership changes (unintentionally), almost
all PID resolutions request by end-users will fail. The same is true, if an attacker
shuts down or takes over the majority of the central resolution services. Moreover,
all automated PID resolutions over HTTP fail, as the service URLSs are hard-coded in
software and scripts. Hence, we can think of following scenarios:

1. If an attacker wants to shutdown the DOI system for end-users world-wide, he
or she has to take control over the domain (dx.)doi.org.

2. If an attacker wants to shutdown the Handle system for end-users world-wide,
he or she had to take control over the domain (hdl.)handle.net

3. Alternatively, an attacker can perform a distributed denial of service attack
against the server located at the domains listed above to inhibit global end-user
PID resolution for a limited timespan.

Although the PID infrastructure would continue to function, the system would appear
broken to end-users, as they use HTTP-based services for resolution. This reveals
the problems that although the PID systems were designed as distributed systems the
centralization of the resolution services has introduced a needle eye at the overlapping
of both spaces. Moreover, world-wide end-users PID resolutions can be observed at
these servers centrally.

Figure 3.2 is depicting the current as-is setup of the Handle system for HTTP-based
PID resolutions using the Handle HTTP-proxies located at the service URL (DNS domain)
hdl.handle.net. Five HTTP-proxies are responsible for the PID resolutions (state
10/15/2016), forming a sensitive needle eye for outage and attacks. The DOI system is
using a similar structure.

49

Chapter 3 Problem Statements

E E GHR GHR GHR
.
[—\

. GHR GHR GHR
.
[—\ :

Global Handle Registry (GHR)
< 12 Systems (central operation)

¢ gLy

|
- E]
[=—1 LHS LHS
= =
[—)\ [—] LHS LHS
= =] L]
[—\ [—— -
E] i
[] LHS LHS
[—=\
. Official Handle Local Handle Systems (LHS)
HTTP-Clients HTTP-Proxy Servers > 1200 Systems (decentral operation)

> 1 billion 5 Systems (decentral operated)
1 Service URL (hdl.handle.net)
1 Round Robin DNS

Figure 3.2: As-Is Situation of the official HTTP-based PID Resolution at the Handle System
(10/2016)

The second problem statement originates from the challenge of determining network
locations for Handle servers storing and resolving PIDs for a specific Handle prefix. The
Handle system uses a two-staged approach for accessing PIDs (cf. Figure 2.6). First,
the GHR is contacted to request the current network location of all LHS sites using
pre-configured GHR network locations. Then, the LHS is accessed for a direct PID
interaction. This legacy approach of bootstrapping PID-related communication generates
our second problem statement:

Problem Statement 2: The hierarchical structure of the Handle PID system results in
unbalanced conditions
The imbalance of the Handle PID system results from the fact that although the
Handle system is designed as a distributed system, the entry points for communicating
with unknown LHS are operated using a small number of centralized GHR servers.
Thus, the central role of the GHR systems introduces following problems:

1. If the small number of GHR servers is not reachable (e.g. due to a Denial of
Service attack [90]), resolving of PIDs is impossible on the Internet. While the
small number of GHR servers is generating problems on the availability, the
centralization has another impact.

2. Every LHS that should be part of the official Handle system, must be approved
by the central GHR operators. For this, the LHS network address is added to the
GHR and the Handle prefix information served by the LHS is signed by the GHR

50

operators. Unwanted Handle system operators can be shutdown centrally, by
removing the LHS server addresses from the GHR. Hence, large PID collections
from unwanted entities (universities, countries, companies, etc.) can be detached
from global PID resolution instantly, rendering their PID collections useless for
PID resolution on the Internet. In contrast to regulations for DNS entries on the
Internet by Internet Corporation for Assigned Names and Numbers (ICANN),
there is no possibility to dispute LHS detachment.

Problem Statement 1 and Problem Statement 2 are addressed in Chapter 5, where we
provide approaches for shifting the location-dependent PID infrastructures into the domain
of location-independent networks.

The third problem statements originates from the usage of target URLs in PIDs. Data
owners and users can check for broken PIDs that do not resolve to a valid URL target by
resolving every PID. By this, they can estimate if the resolution works for all given PIDs.
The target URL can be evaluated by using the HTTP response status codes that are provided
by web servers or data repository software [91]. A complete safety on PID resolution can
only be achieved when checking all PIDs regularly by a data owner. This is a large effort
for data owners as data crawlers that iterate over all PIDs have to be implemented first. As
data owners use individual software stacks for data repositories, the reuse of existing code
for PID checking crawlers is limited. Furthermore, the decision on data fitness is bound to
individual algorithms that judge the availability of data, tailored to the data repository stack.
For example, a check against the HTTP status code may allow judging if data is available
on a web server when the PID is directly linked to the data set. But when the PID links
to a landing page, the HTTP status code of the landing page does not determine, whether
associated research data is available, too. Hence, an inspection of the links stored on the
landing page is needed as well, to have a complete evaluation of research data availability
and for this, detailed knowledge of data repository software is needed. As a result, we see
that an evaluation of research data availability is complex and time consuming for every data
set that is linked by a PID and is served by location-dependent network technology. Hence,
we can formulate the second problem statement:

Problem Statement 3: PID Target URLSs have to be correct for usable PIDs
In Figure 3.1, two prerequisites exist after a successful PID resolution for accessing
the data:

1. The data has to be online available through a network software like a web server
or a digital repository.
2. The target URL has to reflect the correct network location of the data set.

To ensure a correct PID resolution, the PID owner have to maintain the PIDs regularly
by checking and updating the target URLs. As we will see in Section 6.2, PID
maintenance is a large effort that that is already growing dramatically. Furthermore,
defect PIDs with broken target URL can be detected by users and the global PID

51

Chapter 3 Problem Statements

infrastructure providers. However, only the PID owners can repair the target URL, as
they know where the current network location of the data is.

Now, we come to the last problem statement. This fourth problem statement is originated
to the limited usage of PIDs as simple pointers to changing URLs.

Problem Statement 4: PIDs must be part of trusted data dissemination

The mechanism of using PIDs as pointers, does not assure that the PID is pointing to
the correct data set. In the Handle system, the PID can be signed cryptographically,
to assure the validity of the pointer but if the resource is replaced, where the PID is
pointing to, then unwanted data sets could be served. Hence, information on verifying
data sets that are referred by a PID have to be added to the pointing information
(target URL) in the PID. By this, we are able to create a chain of trusted access
information that enables secure access for research data and publications and we also
secure location-independent data dissemination that cannot rely on network locations
for trusted data serving.

Problem Statement 3 and Problem Statement 4 are addressed in Chapter 6, where we
address the unresolved challenge of PID maintenance efforts cause by location-dependent
resolution targets and provide approaches for trustworthy data access in location-independent
network using PID.

52

Chapter

Related Work

The approaches described in this thesis aim at decoupling PID from the necessity of
location-dependent operations and at location-independent data dissemination through PID.
Hence, PID and location-independent data dissemination are two essential key concepts in
this thesis. In this chapter, we discuss the related work for the approaches presented in this
thesis and cover their different aspects. For this, we have a look at the work in the area of
data dissemination in overlay networks (cf. Section 4.1). Then, we focus on the research
data dissemination in NDN in Section 4.2. The related work on PID in the context of NDN
is presented in Section 4.3 together with a short look on running legacy applications in NDN
provided in Section 4.5. Finally, a summary on the research delta is given in Section 4.6,
which points out possible research contributions by this thesis.

4.1 Research Data Dissemination With Overlay Networks

Early approaches on using overlay networks for research data dissemination have originated
in the area of data-intensive scientific applications. In those areas, massive amount of
data is generated, e.g in experiments related to the High Energy Particle Physics (HEP)
community such as the Large Hadron Collider (LHC) located at CERN. Therefore, the Grid
community has developed own protocols and tools for sharing and replicating data sets in
petabyte scale [92]. One technology is GridFTP that used multiple sources to download
data in order to improve bandwidth utilization and distribute network loads [15]. Since the
early 2000s, the amount of generated research data has significantly increased. Thus, the
research community has proposed multiple ways to advance GridFTP in order to increase
its performance. One publication that particularly aims at improving data distribution with
overlay networks is provided by Khanna et al., who retrofitted GridFTP with a multi-point
overlay network [93]. They explore the effects of multi-hop path splitting and multi-pathing
to boost the file transfer performance in GridFTP. In multi-hop transfer data is stripped at the
source and is then sent across multiple overlaying paths to the source. The overlay network

Chapter 4 Related Work

is dynamically constructed for each file transfer by calculating a graph based on the network
properties such as bandwidth utilization. By this, different nodes are used for the transfer
and multiple different independent network routes are employed simultaneously. At the
data source, the chunks are combined into a working file. The approach uses location-based
network transfer and relies on TCP for data transmission. However, this approach uses
overlay networks for file transfer but is not linked to research data dissemination, where
persistent data access is in place. For providing a long-term overlay network access, a
landing page that is describing a dataset can be registered as a PID target. With the
information on the landing page a data access can be provided. However, direct access
to the data in the GridFTP overlay-network is not possible using a PID.

In 2010, Ramakrishnan et al. described an on-demand high throughput data transfer
architecture for WAN data transport [94]. The target of the approach is to provide a
reliable, secure and light-weight possibility for on-demand WAN file access with increased
performance, minimized overhead and elimination of bandwidth bottle necks in comparison
to standard location-dependent technology. The authors put their work in direct relation to
other overlay networks such as BitTorrent and describe it as an evolution step, as not only
the protocol layer is improved (as in the case of GridFTP by Khanna et al. [93]), but the
entire approach is aligned for superior performance using overlay networks. Their approach
is to provide a guaranteed bandwidth for file transfer between two WAN endpoints in order
to facilitate replication of large research data sets that can grow up to a petabyte-scale.
The endpoints can consist of multiple source and target servers. All TCP/IP nodes that are
between the endpoints (routers, caching/proxy servers and upstream servers) are configured
along a calculated network graph that forms the overlay network. This configuration
involves adjustment of the TCP/IP parameters, a setup of the minimum bandwidth and
an adjustment of the flow control settings with Quality of Service (QoS) measures. The
calculation of the network graph for the dynamically provisioned overlay network is
done on-demand. One interesting feature is the introduction of the on-demand scheme
that enables scientists to place data on any source in the network, without updating a
location-dependent identifier, because the architecture has to hold a central catalog of all
data sets in the network in order to compute the network graph. Furthermore, telemetry
data from the network is needed as input for the graph calculation. As shown in the last
publication, the usage of overlay network is done, in order to improve certain aspects of
data transmission and replication in the area of data-intensive scientific experiments and
communities but not to improve long-term dissemination.

In 2012, Steer at al. presented an approach of using BitTorrent overlay networks for
research data dissemination [95]. For realizing their approach, they used an existing research
data repository software developed in the data.bris project. The software stack of data.bris
is the foundation for the research data repository of the University of Bristol and features
an extensible metadata regime, a Simple Web-service Offering Repository Deposit 2.0
(SWORD?2) data deposit interface and makes use of BitTorrent for data dissemination.
Furthermore, it allows the assignment of a DOI as a PID for each research data set and

54

4.2 Research Data Dissemination With Named Data Networking

it allows a HTTP download for research data and its associated metadata. However, a closer
investigation reveals that BitTorrent is not integrated into data.bris in a technical sense.
The integration is done by a modified ingest process for the research data sets. Instead
of depositing the full research data, a torrent file is ingested in the repository, meaning
that the direct access information for overlay data access is provided to the downloader
(cf. Section 2.6.3). By this, the repository is only involved in the distribution of the access
information but not in the distribution of the research data. The approach introduces a new
stage between the PID-driven long-term access process and the data access using BitTorrent.
The integration of PID is limited to the repository and is not extended into the domain of
BitTorrent. The data.bris DOI PIDs point to the landing pages of the repository. Every
further download of metadata or research data has to be invoked from the landing page after
PID resolution. Hence, the availability of the PID target is dependent on the availability of
the repository and its respective landing pages. As a result a broken approach is provided
where research data is disseminated decentralized through a BitTorrent overlay networks,
but the conceptual binding of the torrent access information to the torrent files available
from the landing pages break the advantage. By this, the data.bris repository forms a focal
point (or single point of failure) between the PIDs and decentralized data access.

In 2014, Cohen and Lo published a paper on the Academic Torrents community-maintained
distributed repository [96]. Academic Torrents is a platform for sharing and exchanging
scientific data and knowledge between researchers and interested people from the public.
The platform is facilitating BitTorrent technology for a cost-efficient dissemination of
large research data sets and publications. The goal of research data and publication
dissemination using the potential of BitTorrent is to provide a low-cost platform with
shared responsibilities and obligations. By this, the costs and efforts for data distribution
capacity (storage and bandwidth) is shared between different voluntaries. It allows the
acceleration of data distribution by using multiple sources using a swarm and web seeds (cf.
Section 2.6.2). For this, Academic Torrents provides storage, upload bandwidth and a web
portal for torrent access information [97]. Using the web portal, users can upload torrent
files containing access information to their scientific data and publications. The access
information are available in the web portal, where they are browsable and searchable for the
public. For downloading the data sets and publications, uses can download the torrent files
and download the files using a BitTorrent software.

4.2 Research Data Dissemination With Named Data
Networking

In 2014, considerations on supporting climate research data exchange with NDN were
published by Olschanowsky et al. [18]. In this publication, first approaches are made
to improve research data exchange for climate data using NDN. In contrast to later

55

Chapter 4 Related Work

publications, research data management is not in the focus but rather the upgrade of the
network and data repositories using a NDN approach. The approach aims at improving the
data discovery using data names instead of location-dependent URLs or host names and
thus at improving the data access with location-independent naming schemes implemented
in NDN. For implementing the approach, a disruptive-free process is suggested that
integrates NDN as back-end technology and uses well-integrated bridges such as Filesystem
in Userspace (FUSE) adapters for integration. By this, users and information systems
relying on interfaces and file systems are not requested to change their behavior. To interact
with existing research data management repositories from the climate research community,
translation rules from location-bound resources descriptors (HTTP-URLSs) to NDN objects
are employed.

As a next step of research data dissemination for data-intensive disciplines, publications
exploiting the potential of NDN were published to solve the challenge of exchanging
petabyte-scale research data. In November 2015, a publication by Fan et al. presented a
scientific data management application designed and implemented on top of NDN [98].
This approach is an evolutionary step to the first research data distribution described by
Olschanowsky et al. in 2014 [18]. The approach described in this publication covers the
discovery, search and distribution of scientific data from the HEP and climate research
community that are facing the challenges of distributing multi-petabyte data sets, which are
located at different research facilities all over the planet. Hence, there is a specific need
for a seamless publication of large data sets, reliable data transfers and efficient discovery
of data sets in distributed storage environments. The authors’ contribution is to decouple
data access from data location for improving the data availability and to assure smooth
data distribution through NDN by offering transparent fail-over and improved transmission
performance through optimal source utilization. For formulating their approach, the authors
investigate the working-principle of well-established tools from HEP and climate research
community that are based on location-dependent network principles. These tools are
xroot as distributed scientific data management system from the HEP community [99]
and Earth System Grid Federation (ESGF) from the climate research community [8]. To
replace those tools with NDN-enabled equivalents, a software architecture presented in
this paper. This architecture features two software stacks — one for data set discovery and
search and a second for federated and synchronized name catalogs. The data operations
of the new replacement tools are designed and implemented on NDN network operations.
For building a distributed data catalog, a scalable NDN name discovery system is proposed
that uses NDN ChronoSync for decentralized data synchronization within NDN [68]. With
ChronoSync, the catalog entries are exchanged between the data centers. For publishing
the data within the federated data sites, hierarchical NDN names are required to submit
entries to the data catalog because data names are used to assign namespaces to research
data providers and individuals. In general, the publication by Fan et al. is important, as
it shows that NDN is able to power scientific data management solutions. However, the
approach does only cover basic aspects of research data curation and aims at providing an
operational system. In particular, the publication of data is not in line with the demands

56

4.3 Persistent Identifier in Named Data Networking

that research data publication makes. For publishing data, arbitrary namespaces are used
that only adhere to the principle of hierarchical structure, as it is requested by NDN and the
data catalog scheme. This approach is not sufficient for long-term data access, because data
names are subject of constant change, especially if data names are reflecting organizational
structures as suggested in the publication. Hence, the publication provides a valid approach
for data distribution but does not fulfill the requirements of research data dissemination,
where persistent data access is needed and can be provided by introducing PID concepts.

In December 2015, a publication by Shannigrahi et al. [17] was released that provides
supplemental performance measurements for the approach provided by Fan et al. The
performance measurements were conducted in a dedicated testbed of six nodes for climate
applications consisting of machines with 40 cores each, 48TB disk space and 128GB RAM.
The machines were interconnected with a 10GBit link and hosting over SOTB of climate data
in total. The half part of the testbed was located at the Colorado State University, Lawrence
Berkeley National Laboratory, NCAR-Wyoming Supercomputing Center. A second half
was located on Energy Science Network (ESNet) nodes located in Fort Collins, Denver
(Colorado, USA) and Sacramento (USA, California). This realistic network testbed that
connected NDN nodes from three states over a distance of more than 1.500 km provided
approximately 50% of the performance delivered by a mature TCP/IP-based based solution.
Although the first transmission performance results delivered by NDN appear disappointing,
the potentials for speed optimization have not been addressed in NDN software design
yet [100]. Thus, transmission performance speed ups can be expected with a gradual mature
NDN software. Regarding request delay performance, Shannigrahi et al. provide simulation
results that show a better performance of NDN in comparison to TCP/IP-based solution. The
request delay was reduced by 76% with NDN and provided faster remote access for shorter
incremental data synchronization and random access. Our evaluation results presented in
Section 5.5 are in line with the results of this publication.

4.3 Persistent Identifier in Named Data Networking

When moving from location-based data access to location-independent data access,
persistent identifiers have to reflect this technological alternative. This adaption is
necessary for providing access to location-independent resources through PID resolution
and to resolve PIDs from a location-independent access technology in order to ensure the
accessibility of billions of PIDs used for tagging scientific literature and research data.
Hence, PIDs have to embrace location-independent access technologies such as BitTorrent
and NDN.

In 2012, K. Sollins published a conceptual conference paper that introduces principles
of persistent identifiers in the context of ICN in order to create a better identification
system for ICN data objects [101]. The objective of the paper is to provide an identification

57

Chapter 4 Related Work

system, called Pervasive Persistent Identification System (PPINS) for information centric
networking that meets the requirements of scalability, longevity, evolvability and security.
The approach of the paper is to tackle the challenges of identifying and naming objects in
different ICN systems, such as DONA, Network of Information (NETINF) and Publish-
Subscribe Architecture (PURSUIT). The findings in the paper are aggregated into a
selection criteria continuum that is used to build a PPINS based on the usage of URN.
The URN system is transformed in the context of PPINS into a Pervasive Persistent Object
Id (PPOID) suitable for the usage in different ICN families. Hence, the content of the paper
is to formulate a common identifier for location-independent data access using ICN that
provides an abstraction of the different naming schemes used in each ICN family. The
target of Sollins is not to provide a persistent identifier scheme for ICN like networks but
rather user PID principles to organize namespaces and bridge naming scheme heterogeneity.
Hence, the design principles of PPINS are based on modularity and layering for making
PPINS applicable for different ICNs like DONA, NETINF and CCN. A compatibility
towards NDN can also be assumed, as the naming principles between CCN and NDN follow
the same rules in its foundations (cf. Subsection 2.7.1). As the publication focuses on the
design of PPINS and PPOID, its goal is to provide a solution for typical challenges that
ICN naming schemes are facing, such as scalability, assignment of distributed namespaces
and bootstrapping of new namespaces. Figure 4.1 shows the principle proposed by Sollins.
In this figure, a data request is generated either as a result of a search engine query, a
data catalog (attribute set) lookup or as a media reference (book reference). This request
consists of a URN formatted data set. The data set is then transformed by the PPINS
framework into a suitable naming scheme that is processable by an ICN family set. One
particular criticism that is applicable towards the assumptions of this publication is that
Sollins assumes a certain commonality between the ICN architectures. On a superficial
view, commonalities between the architectures are existing, but the literature on ICN
shows that there are fundamental differences in the architecture, naming schemes and the
realizations in software. This fact is also mentioned by Sollins in the end of the paper
(“there is a small but growing trend in considering sets of architectural criteria.”), which
indicates that the concept needs to be verified against real ICN architectures. In the next
two paragraph, we follow the references from the Sollins publication that underline the
differences between the ICN systems. By looking closer at the two referenced publications,
we see that the differences of ICN families can be considered problematic towards the
approaches presented in her paper.

The first reference is Ghodsi et al. [102]. They pointed out in 2011 that the naming of
named objects is the most significant difference between ICN families and organization
of the names has a significant impact on basic principles such as data routing. Hence, a
modular resolution approach as suggested by Sollins must also incorporate the impact on
the ICN specific principles that adhere to object naming — a simple mapping of the ID
spaces as suggested in her publication is not sufficient.

The second source is Ahlgren et al. [103], which is a journal article from 2012, cited by
Sollins. This journal articles points out the differences in all named ICN architectures. The
article explains the most important differences regarding the namespace organization of

58

4.3 Persistent Identifier in Named Data Networking

NETINF, DONA, and CCN/NDN, which have a different granularity in name structuring
starting from flat namespaces to structured flat namespaces and reaching well-structured,
hierarchical namespaces. In practice, a naming convention may overcome the problem
of different granularity at the first hand but it will break the compatibility with other ICN
parties that adhere to the name-dependent principles of route aggregation concerning data
name granularity. Therefore, it is questionable whether the approach presented by Sollins is
realizable beyond the state of concept, when an abstraction of ICN design and architectural
fundamentals is not possible.

Global Attri- Book
Search bute Refer-
Queries Set ence
PPOId PPOid PPOid
Y Y Y
PPINS Framework
ID Space ID Space
Resolution Resolution
l PURSUIT RiD Netinf Id CCN Name

| NetInf/DONA Flat Id space resolution and object delivery

CNN Data packet Interest matching and delivery

PURSUIT Rendezvous and Forwarding

Figure 4.1: Pervasive Persistent Identification System (PPINS) concept proposed by
Sollins [101]

Karakannas and Zhao published a research project report in 2014 which covers the topic
of PID resolution to NDN data names [35]. Their work covers the resolution from the most
popular PID systems to NDN data names using a centralized meta-resolution service. By
this, their approach covers the mapping of different PID systems to NDN data names but
not how the PID resolutions are performed in detail for PID each system. For their work
they focus on URN, the Handle System (thus, also the DOI system), Archival Resource
Key (ARK) and PURL as PID systems. Although, most PID systems are designed to be
distributed and use delegated namespace hosting and responsibility, Karakannas and Zhao
suggest abstraction layer on-top of the existing PID systems that does the translation from a
given PID to a NDN name. This concept leads to the creation of a meta-PID service. They
justify the need of a meta-service by the commonality found between the structure of PID

59

Chapter 4 Related Work

naming schemes. When looking at the assumption of PID system comonality more closely,
we observe two fundamental problems.

First, all suggested PID systems contain the possibility to store a resolution target. This
resolution target is available in all PID architectures and contains a location-based identifier
often expressed as a URL. If a client wants to access any data behind a PID, the PID needs to
be resolved by the PID infrastructure. Hence, if the client has a network connectivity to the
PID infrastructure, no central meta-service like Karakannas and Zhao suggest is needed, as
PIDs are self-contained. Hence, instead of introducing a meta-PID service, the connectivity
of PID services into the NDN space is sufficient to solve the problem conceptually without
adding any complexity. This approach is presented in the already published results of this
thesis [104].

Secondly, the commonality between PID systems that is claimed in the paper, does not
exist for all PID systems. On page 15 in Table 3 of their report, they interconnect the concept
of PID resolution and PID naming in order to claim similarity between PURL and other PID
systems. This interconnection is not true for URN, where namespace organization [105]
is defined separately from the resolution mechanism [106]. However, it is true that the
HTTP-based PID resolution for all PID systems work similar in practice. This could lead to
the assumption that the same concepts of PID naming holds true for all PID systems. But
the similarity is caused by the usage of HTTP that enforces certain design properties and
not by the design of PID services and its namespaces.

Root PID
Server
URN Handle ARK DOl
Server Server Server Server
ISBN IETF NAAN NAAN
Server Server Server X Server Y

Figure 4.2: Proposed meta-PID service architecture by Karakannas and Zhao [35]

In order to understand this confusion in the appraoch of Karakannas and Zhao, the
applied methodology has to be investigated [107]. For their research work they followed
a three-stage approach. First, they conducted theoretical studies on latest ICN projects
and PID standards. Then, they proposed a mapping architecture design based on the
theoretical study, which is depicted in Figure 4.2. Finally, an evaluation of in-network
caching was performed for big data objects but no evaluation was done for the mapping
scheme or mapping architecture using a system comparison from literature. As a result, the
contradictions in the PID part remains undiscovered.

In 2010, Dannewitz et al. published a conference paper on the realization of complex
secure naming schemes for content-centric data [108]. In their publication, they formulate

60

4.4 Naming Schemes for Archive Data Access

the principle of name persistency for resources related to a content-centric network.
However, they did not incorporate the principle of PID, although they state that basic
security functionality for secure naming must be attached to the data and the employed
naming schemes. They justify this principle by the fact that the identity of network
locations cannot be used as a trust base in content-centric (location-independent)
networks. The approaches presented in this thesis (cf. Chapter 6) follow the demands
of Dannewitz et al. for secure location-independent data naming but attachs these principles
directly to the persistency and security mechanisms provided through PID. Hence, the
location-independent research data access through PIDs is fulfilling the requirement
formulated by their publication and advances the state-of-the-art with complement data
management principles inherited from PID.

4.4 Naming Schemes for Archive Data Access

For organizing and accessing archived data with the URN-like Magnet Links scheme, only
little literature exists. Haun and Niirnberger introduced in their conference paper from 2013
a persistent identification scheme for organizing archived Personal Information Manager
(PIM) application data on file systems [109]. For this, they proposed an approach using
the Magnet Links scheme that is connected to attributes of common persistent identifier
systems such as global id uniqueness, persistency and scalability. Their approach aims at
accessing and archiving data on archive file systems stored on Wrote Once Read Multiple
(WORM) discs. In contrast to this publication that initially introduces the usage of Magnet
Links in the domain of data archiving, we propose an approach for globally distributed
data with changing online data locations that is not bound to static structures of archive
media. For persistency of access information and data identification, we employ a real-world
PID system. Thus, we extend the usage of Magnet Links from the limited domain of data
archiving in closed archives to the general domain of research data dissemination in a global
network system.

4.5 Running Legacy Network Applications in NDN

For using legacy applications based on classic location-dependent networks in NDN
environments, there are several approaches. An overview of these approaches will be given
here, as they are important for adapting and realizing network functionalities in NDN that
originates from location-based network technology.

A general approach on shifting applications from the IP domain to NDN is provided
by Dai et al. [110]. In their publication, they investigate the behavior of the NDN PIT
for application use cases of HTTP, File Transfer Protocol (FTP), P2P applications,

61

Chapter 4 Related Work

streaming media, E-Mail, online games and instant messaging. For this, they look at
the challenge of NDN for solving the problem of bootstrapping two-way communications
on top of a fundamentally one-way service, which is the nature of NDN. They sketch
for each application use case possible transitions to NDN communication from the angle
of communication models. Their approach does not include an in-depth explanation of
protocol implementation but rather provides a high-level view on communication modes in
NDN and the impact of the applications on NDN routing and PIT size and growth.

4.5.1 Location-based Network Protocols over NDN

One obvious approach is to run a TCP or UDP based connection over a NDN network. This
approach uses encapsulation of network packets that are transported with a different network
media. In location-dependent networking, this method is applied when running unencrypted
protocols on an encrypted Virtual Private Network (VPN) that uses virtual network cards
for operation system abstraction. In this approach, the transport layer of the OSI model is
replaced by a NDN stack that takes care about transport. For NDN connection maintenance
and bridging semantic gaps between the network models, additional functionality such as
NDN session management for simulating a persistent TCP/IP connection over NDN has
to be provided. This principle of transparent transport has not been widely adopted in
literature, as most ICNs try to establish a contraposition against classic host-based networks
and thus against location-dependent networks using TCP and UDP [11] [111]. As we can
derive from the literature, this approach has limitations. In 2013, Xia et al. hold the opinion
that conventional TCP cannot be mapped to ICN-based networks [112]. According to their
publication, a modified variant of TCP Tahoe [73] [113] can be used for archiving a lossy
TCP/IP transport in ICN. The challenges of using TCP within ICN networks is, according to
the authors, based on four principles of ICN that are also valid for NDN applied in this thesis.
The first principle highlighted by Xia et al. 1s that ICN is pull based. This means that sending
data to another node in ICN requires a notification in form of an interest to the receiver
first. The receiver consumes the interest and sends back a request for the data pull process
(cf. Subsection 2.7.2). The second principle is that ICN uses an end-to-network principle
that is in opposite to the location-based principle of TCP/IP, which uses a host-to-host
principle. Additionally, as a third principle, ICN facilitates network caches. This caching
is a source for errors in raw TCP communication and therefore needs to be turned off
there. In NDN avoid the cache usage is possible by setting a MustBeFresh flag in the
interest [114]. As a fourth principle, the authors emphasize the point-to-multipoint design
of ICN that adheres also to NDN. In location-based IP networks, congestion control is
designed to work on a single transmission channel. As NDN uses multiple connections and
nodes simultaneously, multi-channel transmission control is necessary.

62

4.5 Running Legacy Network Applications in NDN

4.5.2 Application Protocol Adaption for NDN

As native TCP/IP transport is possible with limitation using NDN, the literature concentrates
on porting specific protocols to NDN by focusing on the application protocol semantic
and its associated data models. This can be done either by recreating the protocol and
its semantics in an ICN specific implementation or by providing a proxy-based architecture
that allows tunneling a specific protocol such as stateless HTTP through an ICN.

A reimplementation of a Voice Conference System (VCS) with protocols for conference
discovery and voice data transmission has been created by Zhu at al. in 2011 [115]. In this
publication, the mechanism of conference discovery that is done on location-based VCS via
UDP broadcasting is realized as a NDN broadcast namespace. The voice communication
requires an enumeration of voice devices and a negotiation of the available audio and video
codecs, as well as the transport parameters. This is done in the publication by encoding the
device IDs and available codecs into the NDN names. By this, a NDN replacement for every
necessary mechanism that is included in a location-dependent VCS is provided. Hence, no
adaption of the transport and session layers for NDN is necessary according to Zhu et al.
but only a reimplementation of the VCS features in NDN.

Another example for an application protocol adaption for NDN towards HTTP is given
in the following papers. In the paper by Shang et al. a JavaScript implementation of a
client library for NDN is presented and compared against native HTTP implementation that
relies on TCP [116]. Their JavaScript implementation is intended to work with modern web
browsers. A comparison of data transfers done through CCNx (NDN.JS), the technological
base for the current NFD, and TCP-based XMLHttpRequest (XHR) from the paper is
provided in Table 4.1. From the table, we see that the performance of the throughput in
Megabytes/s is bound to the transfer volumes. This is caused by the larger overhead in
NDN for establishing a client-server connection and transmitting data for each request. With
larger file sizes, fewer requests are needed and the share of protocol-related overhead for
request handling is reduced in comparison to the transfer volume. As a result for smaller
transfer volumes that come with a large amount of protocol overhead in comparison to
the transported payload, the NDN performance degenerates up to ~30%, while the HTTP
throughput is diminished by ~5%. Hence, the paper is a good example of successful NDN
adaption of an application protocol, which does not yield a comparable performance in
well-behaving networks.

o e NDN.JS (WebSocket) Native HTTP (XHR) .
File Size Chrome | Firefox | Safari || Chrome | Firefox | Safari CCN Test Utility
742 KB 46.01 48.66 | 65.66 83.6 84.73 | 82.51 71.21
287 7MB | 62.26 71.07 | 74.75 88.71 89.33 | 89.02 75.41

Table 4.1: Throughput Comparison of HTTP using NDN- and TCP-transport (in
Megabytes/s) [116]

63

Chapter 4 Related Work

Another observation of an outperformed NDN network, against classic location-based
technology using TCP-based HTTP, can be found in the publication on content distribution
evaluation by Yuan and Crowley [117]. Figure 4.3 is presenting their results. On the left
side, the average client download duration in relation to the number of connected clients
of a CCNx-powered NDN CDN is compared against Lighttpd [118], a light-weight HTTP
server. For a download of a 100 megabyte file in a clean network environment without
any packet delays or packet loss, we see that Lighttpd is outperforming CCNx dramatically
(lower is better). Furthermore, while the HTTP server scales out almost linear with an
increasing number of clients, the CCNXx realization is offering a less efficient scaling out
behavior with an increased overhead for more than 20 connected clients in a clean network
conditions. On the right side of Figure 4.3, the impact of network caching is depicted,
where a comparison of network level caching for Squid [119] HTTP-caching proxies is
done against native NDN caching. For the comparison two network topologies are used.
The first topology includes one intermediate network layer with caches (/-Level), while
the second topology contains two intermediate network layers with a doubled number of
caches (2-Level). We can see in the Figure that the TCP-based HTTP implementation is
outperforming NDN in a single and double level network caching hierarchy (lower is better).
Moreover, NDN scales up worse with more introduced overhead in comparison to classic
location-based network technology.

Average Download Time vs. Number of Clients Average Download Time vs. Number of Clients
250 - " " T 250 " T
. — . — CCNXx — CCNx 1-Level
5 200 | —— Lighttpd < 200| ——— CCNx 2-Level
2.)
S | - S . |t —-— Squid 1-Level
g 190 - g 190r Squid 2-Level
@ P 0
o 100 . ool St o 100} L
E =
= 50} 1 F s0f o
O —/-.-——_——‘. 0 — == S —— - =
0 10 20 30 40 0 10 20 30 40
Number of Clients Number of Clients
CCNx vs. Lighttpd (90% Confidence Interval) CCNx vs. Squid (90% Confidence Interval)

Figure 4.3: Evaluation of Content Distribution with NDN and TCP-based HTTP [117]

But as this thesis goes along, we will see that the sheer throughput is not the most
important factor for an efficient NDN adaption. However, the two publications on
application protocol adaption for ICNs show that decades of optimization in location-
dependent networks based on TCP and UDP are hard to outperform with application
protocol adaption.

64

4.5 Running Legacy Network Applications in NDN

4.5.3 Communication Application Interfaces Adaption

Another approach is to exchange high-level Application Interfaces (API) in operating
systems, software libraries and applications to provide ICN network access for legacy
applications relying on location-dependent network connectivity. By this, the application
can access data using a native (and often unmodified) API while the software components
responsible for network communication are replaced by an ICN-capable version. This
pattern provides an abstraction from network operation foundations. The implementation
of the ICN capable version supports one specific set of protocols and uses for these a
NDN adaption pattern, as presented in the publication of the VCS adaption by Zhu at al.
The adaption of HTTP is particularly popular, as HTTP is stateless by design [43], which
allows an easy encapsulation of HTTP-requests in interests and a data transmission through
NDN data packets. Thus, it does not require a sophisticated session management adaption
in NDN and already implements the semantics of caching that is also reflected on NDN
network level. Figure 4.4 depicts an example for exchanging an existing software library for
HTTP-based network access with a NDN-enabled software library, which offers the same
interfaces to the network components of the software. In this figure, a NDN port of a web
browser is shown. In order to make the web browser ready for NDN, an additional network
library is added for NDN access besides a HTTP access library. This allows leaving most
parts of the web browser (user interface, rendering and scripting engines) unmodified while
also providing access to NDN network resources.

Graphical User Interface

Rendering Engine Scripting Engine

Platform Runtime

Network Components

NDN lib HTTP lib ... lib ... lib

NDN-Network

Legend
<+——— Data path < - - - - |nterest path

Figure 4.4: API-based NDN Integration into Legacy Applications (adapted from [120])

65

Chapter 4 Related Work

4.5.4 Transparent Proxies

An additional approach that is similar to the exchange of high-level APIs is the usage
of application protocol aware NDN proxies. These proxies have two interfaces. One
interface provides a native location-dependent OSI layer 7 application protocol such as
HTTP. The other side is an ICN transport interface that sends and receives data and interests
using a location-independent network connectivity. The proxy itself provides a boxing and
unboxing of protocol related messages. For instance, HTTP requests are boxed into NDN
requests and HTTP responses are boxed into NDN data packets. For applications that use
the proxy server, the NDN transport is invisible and may only result in different response
timing. Based on the location-dependent protocol, the proxy has to maintain additional
data structures such as queues to fulfill the native protocol behavior. Furthermore, the
proxy endpoints have to communicate for establishing and managing the NDN connection
(out-of-band communication). Figure 4.5 shows two applications that communicate over a
NDN proxy and use NDN for communication. By using a proxy server, applications can
make use of NDN advantages without altering the application.

data data
requester source

v v

protocol protocol
Proxy Proxy

Legend

<—— Data path < - - - - |nterest path < — —» native protocol

Figure 4.5: Proxy-based Architecture for Running Legacy Network Protocols Using a NDN
Network

Publications that leverage the principles of application library and application protocol
patterns particularly exist in the domain of HTTP, although the approach is not limited
to this group of OSI layer 7 protocols. Wang et al. published a NDN enabled web
browser in 2014 [120]. For this, they applied the concept of content access abstraction
through application libraries and also make use of HTTP-NDN-proxies. An unmodified
Webkit-based Hypertext Markup Language (HTML) rendering engine was combined with

66

4.6 Summary and Research Delta

NDN client library for accessing web content over NDN and CCNXx in order to build an
ICN-enabled web browser.

Another publication provided by Nan et al. in 2015, which also follows the approach of
using application library setups, is comparable to Wang et al. [121]. In contrast to Wang
et al., ICN-enabled network libraries are not only used in a web browser but also in Tomcat
Java web container. By this, the web browser is able to consume ICN web resources through
CCNXx but also the modified Tomcat web container is able to offer web communication to
Java web applications through CCNx. By this, they cover the full web stack by providing
a web client (web browser) and a web server (Tomcat container). The modified Tomcat
Java web container was developed by one of the coauthors in 2014 by Qiao et al. [122].
By making the web servers and web browsers ready for ICN, they overcome the proxy
pattern that adds additional overhead and limits the application of ICN advantages on web
applications. Hence, this publication can be seen as an evolutionary step based on the
approaches provided by Wang et al. Tu et al. delivered also a performance assessment for
the application-based ICN support together with Qiao and Nan in 2015 in a conference
publication [123]. In this publication, Tu et al. provided an improvement to handle web
related traffic with ICN connections by formulating a priority based dynamic web requests
scheduling mechanism for NDN. This scheduling mechanism aligns the client web resource
request patterns efficiently to the request and transmission patters that are suitable for NDN
network operation. By this, the number of NDN round trips can be reduced and the response
time is decreased.

4.6 Summary and Research Delta

The publications analyzed in the previous sections show that research data dissemination
with location-independent access is not a completely new topic in the research community.
Approaches from the early 2000s already came up with a break from a classic one-to-one
connection in order to support multi-path sourcing for improving data transmission rates.
One of these efforts is GridFTP [15]. The next step was to introduce simple overlay network
structures that form a virtual network topology on a physical existing location-dependent
network topology. Khanna et al. improved GridFTP by using a multi-point overlay network
that uses intermediate network nodes to pass data from one node to the other [93]. By
this, the end-point principle of classic location-based networks has been replaced by
a node-based principle. Although this approach overcomes many problems of today’s
location-dependent networks such as host-failures, network breakdowns and congested
connections, it relies on a location-dependent data organization that uses URLs for data
classification or a central data catalog for GridFTP access. Additionally, the approach by
Khanna et al. does not include long-term data access using a PID.

67

Chapter 4 Related Work

The approach provided by Steer at al. presents an idea of using BitTorrent overlay
networks for research data dissemination [95]. This method combines research data
repositories with the techniques for research data dissemination using overlay networks.
The problem of this approach is that research data is not streamed from the repository
to participants of the overlay network but rather the access information for overlay data
access is stored within the repository. The research data is then streamed from external data
sources (and not from the repository) using the overlay network to the participants. Hence,
the data repository is only storing access information and the PID is linked to storage place
of the access information in the repository. As a result, the publication by Steer at al. leaves
open the challenge of a long-term dissemination of research data in location-independent
overlay networks using a persistent identifier.

Olschanowsky et al. presented an approach to improve research climate data exchange
with NDN [18]. Their work has similar goals as the publication by Khanna et al.,
particularly to improve the data transmission throughput and the availability of research data
sets. Moreover, the discovery of research data should be improved using non-location-based
data identifiers based on NDN data names. In this publication, long-term data access and
research data management is not in the focus but rather the upgrade of the network and data
repositories using a NDN approach.

Fan et al. took the next step in the improvement of research data distribution for very large
data sets and decoupled data access from data location for improving the data availability
and to assure smooth data distribution through NDN by offering transparent fail-over and
improved transmission performance [98]. Their work concentrates on well-established
tools from HEP and the climate research community that are based on location-dependent
network principles. A direct link to PID concepts and long-term access is not provided.
Similar to the GridFTP approaches, data access information has to be provided by external
infrastructures that perform the necessary steps for long-term access. An integration
between location-independent data access and long-term access information, e.g. through
PIDs is not given. Concrete performance tests with NDN research data distribution in this
area have been performed by Shannigrahi et al. [17].

Although, Cohen and Lo have discovered the potential of BitTorrent for the resource
efficient dissemination of research data and publications, the platform Academic Tor-
rents [96] [97] does not include PID support in October 2016. Thus, it is currently not
possible to link research data stored as BitTorrent resource in a scientific publication or any
other media using PID. A download of the torrent file or the Magnet Link is possible from
the data catalog of the Academic Torrent digital repository. However, there is no possibility
yet to generate or obtain a PID to the data set, because there are no theoretical or practical
foundations for this case yet. This important piece is added by our approach presented in
Chapter 6 that bridges the gap between PID and research data available through PID. By
this, our approach presented in this thesis may have a significant impact on the success of
data and publication dissemination using BitTorrent. It is the missing link to reliable citing
of research data in publications that is disseminated through BitTorrent technology.

68

4.6 Summary and Research Delta

While the research area of ICN is currently lacking a direct and self-containing link to
persistent access information for long-term data access, e.g. through a PID, approaches of
PID-related communities have been investigated. The work by K. Sollins can be regarded
as an initial central publication from the URN community that introduces the usage of
PID in the context of ICN technology [101]. But while not looking at PID-enablement
for long-term-specific location-independent data access, the concept of URN, that is also
applicable for creating a PID infrastructure, is used to build a universal object identification
scheme that bridges the differences between the ICN families and their different object
naming schemes. Hence, the approach aims at improving ICN development through
providing a naming scheme based on URN and to transport techniques and experiences
from over 20 years of URN naming into the ICN community.

Another contribution in the field of PID towards NDN access is provided by Karakannas
and Zhao [35]. Their work covers the resolution from the most popular PID systems to
NDN data names. For this, they suggest using a meta-PID system, that maps NDN data
names to different PID systems. But instead of improving the PID services directly for
supporting NDN access and NDN resolution, an overarching abstraction layer is proposed.
This abstraction layer in form of a meta-PID service is not solving the problem and makes
the chain of services used for long-term data access longer and thus more fragile. As pointed
out above, their approach is not complete and has issues regarding the methodology and
assumptions on PID systems. Furthermore, the usage of a meta-service is superfluous, when
PIDs are stated as native NDN data names (cf. Subsection 5.3.2).

Besides previous work on improved research data distribution and PID usage in the area
of location-independent data access, techniques for implementing and adopting existing
network applications in the ICN families of NDN and CCN have been proposed as well.
Three common patterns have been identified from the literature. The first pattern is to
encapsulate raw TCP traffic into ICN packets. Xia et al. explained that raw encapsulation
of TCP is limited and that only a specific version of TCP, called Tahoe, is suitable for
implementing this pattern [112]. The second pattern is to reimplement a location-dependent
OSI layer 7 application protocol with an ICN-adapted version. This has been done for VCS
applications by Zhu at al. [115] and for HTTP by Wang et al. who implemented a HTTP
stack for an application library [120]. As a third pattern, the usage of application libraries
that serve internal APIs to provide ICN access are another form of layer 7 protocol adaption.
This has been done for web containers and browser by Qiao et al. [121] [122].

While the approach presented in this thesis makes use of the techniques described
above, following research deltas exist, where we provide contributions by this thesis. We
provide an approach for true long-term dissemination of research data through PID that
is location-independent and allows the creation of PIDs that do not require adjustment
of resolution targets. In contrast to the work of Steer atal., we provide data access
directly through the PID to location-independent research data in overlay and named
data networks without storing the access information in an intermediate infrastructure

69

Chapter 4 Related Work

as e.g. a digital repository. Additionally, in contrast to the work of Karakannas and
Zhao, we formulate a concept that allows direct access to NDN data through PID without
service abstraction or meta-services. By this, we can also contribute with our work on
accessing location-independent research data to the challenges that have been formulated
by Olschanowsky et al. and Fan et al. Our approach, that brings location-independent
access and PID concepts together, does also support improved data dissemination and
long-term data access. Thus, we make contributions to improved data transmissions
through overlay networks and NDN usage by providing a natural way to access research
data in PID resolution processes that are already part of today’s researchers’ workflows.
Additionally, we bring NDN research data dissemination from early adopter stages to real
applications by adding the concept of PID access. For this, we use techniques for NDN
implementation presented by Xia et al., Qiao et al. and Nan et al. In the end of the thesis,
we provide a long-term data access with integrated robustness against data source outages,
low maintenance efforts due to persistent resolution targets. It is a natural link from PID
resources located in web and print publications to research data stored in an intelligent
location-independent network.

Hence, we can summarize the research delta from the related work as follows:

1.) Research dissemination has been investigated using location-independent access
technology in an early stage. The primary goals were the enhancement of throughput
and robustness using those technologies. However, an improvement in following the
requirements of long-term location-independent research data dissemination has not been
investigated in depth to our knowledge.

2.) Location-independent PID schemes have been proposed in the literature as
high-level approaches. The past optimization goals were directed towards a cross-system
access of different ICN families without taking the differences of the ICN designs into
account. Other goals in the literature were directed towards providing an abstraction from
the different PID systems, without incorporating the different foundations of the systems.
As a result, a proposal for improving PID systems using location-independent technology
has not been investigated in literature yet (beside our publications) that incorporates the
PID system with the largest user base and includes its system foundations into a concrete
ICN system. By this, we formulate an approach that includes the foundations of a distinct
ICN and PID system to synthesizing a solution, which persists rigor inspections.

3.) Citation of research data in location-independent networks has been covered as
a first approach in state-of-the-art research repositories employing BitTorrent. However,
the citation information only include descriptive metadata of the data sets and no persistent
identifier that allows direct access to the research data using BitTorrent or NDN. Hence,
to our knowledge, the long-term dissemination of research data in location-independent
networks is not possible in the approaches provided in the literature yet.

70

4.6 Summary and Research Delta

4.) NDN access information exchange is crucial for the success of NDN. In the literature
provided before, the exchange of data in NDN networks has been described in depth on the
network and architectural level. However, an improvement of storing and exchanging access
information to NDN resources within the network that include more than the bare NDN data
name has not been discussed. From our point of view, it is essential to provide an advanced
access information scheme for location-independent network, as the location of the data
cannot be used as a base of trustworthy data. For BitTorrent, these mechanisms exist, but
they have not been extended to our knowledge into the domain of NDN, which is facing the
same challenges of secure data provenience.

71

Chapter

Location-Independent Persistent
Identifiers

In this chapter, we introduce our approach of conceptualizing, shifting and operating PID
systems on location-independent network environments using NDN foundations. We point
out the nature of PID and its relation to data locations in networks and sum up the benefits
that are provided by transferring location-dependent network principles into the domain of
persistent identifiers. For this, we use a multi-stage approach. At the start, we formulate
our general principles for location-independent PID access. Secondly, we point out the
namespace convergence for NDN and PID and explain the location-independent access
models for Handle PIDs. Thirdly, we come to interoperability models for a seamless
interaction of PID infrastructures for our and existing state-of-the-art approaches. Then, we
present an implementation of our approach, which is evaluated using real-world PID data
in a simulated environment. Finally, a discussion of our results is provided in Section 7.1,
where we answer the research questions and point out the limitations of our methods in
Section 7.2.

Aspects of our approach presented in this chapter have been published in a conference
paper at the 10" IEEE Networking, Architecture and Storage (NAS) conference 2015 in
Boston, MA, USA [104]. In this thesis, we provide an improved and extended version.

5.1 Persistent Identifier in Location-Independent Networks

In contrast to location-dependent data access, location-independent networks do not work
with a transition of locations in order to access data. Hence, there is no challenge of locating
data and solving the question of where data is. Instead, only the data content, meaning
what needs to be specified. For persistent identifiers, the usage of location-independent
paradigms can bring significant advantages. When looking at Figure 6.1, we can derive
that a resolution does not cross the border between the location-dependent space and the

Chapter 5 Location-Independent Persistent Identifiers

location-independent space. Thus, PIDs are resolvable in the location-independent space
without any given resolution service URL or network address. In this space, PIDs can
become true first-class data names that are reachable without any intermediate service as
HTTP-proxies. The PID can be sent to the location-independent network and the network
automatically routes the information to the PID-owning network entities. Then, the
information behind the PID, which is also known as resolution target, is sent back to the
requester. It remains invisible to the user, if the network topology is changed or the primary
LHS site is changing its network location. Consequently, location-independent technology
in conjunction with PID allows very robust and long lasting mechanisms for tagging and
accessing digital research data that is resilient to network changes. Furthermore, it provides
a reduced number of abstraction layers and eliminates the need for a centralized PID
infrastructures.

5.2 Improvements and Benefits

Now, we look at the benefits and improvements of location-independent persistent
identifiers:

1.) Reduced complexity in the PID resolution is an essential improvement of the
approaches we present in this chapter. When moving PIDs into a location-independent
environment, like NDN, no centralized end-user PID resolution services are needed,
as stated in problem statement 1 (cf. Figure 5.1). By this, a changing ownerships of
central domains, such as doi.org or handle.net is not a thread to the end-user PID
resolution on the Internet anymore.

location-dependent location-independent
space (where) space (what)
Resolution
~ Request
PID
I PID
bt < Target URL Resolution
Access ’_ Service
valid URL
+ data online Persistent
Identifier

Figure 5.1: Location-Independent PIDs

74

5.3 Approach

2.) Decentralization of PID operation is an additional improvement that we provide with
our approach. A decentralized infrastructure can be used to overcome the hierarchical
bootstrapping procedure of the PID resolution process, as PIDs can be resolved directly
from the LHS without contacting a GHR. This improvement is also helping to solve the
challenges formulated in problem statement 2.

3.) Robust PID resolution is an additional benefit, we provide through our approach. As
we will show in Section 5.5.4, our approach of location-independent PID access is able to
resolve PIDs in erroneous network conditions, suffering under packet loss, more robust than
classic location-based realizations.

4.) Multisite PID serving can be implemented with less effort in a NDN-enabled PID
system. This is possible with a truly decentralized infrastructure (cf. benefit 2, above). In
contrast to classic location-based data access, NDN supports multi-site data serving without
any additional infrastructure. This allows accessing PIDs from the best available site without
contacting the original data source. By this, PID access can be realized even if parts of
the network or other Handle hosts responsible for a PID namespace are out of order or
not reachable by the client. In contrast to the location-based PID access, this approach
does not require maintaining a list of alternative PID mirrors with their respective DNS
names or [P-addresses. This also allows adding and removing PID servers dynamically to
the network, in order to compensate load peak situations, planned system maintenance or
unplanned down times.

5.3 Approach

For releasing PIDs from its location-dependent network principles, a new concept is needed
that embraces all aspects of the Handle PID fundamentals and its realization. In this chapter,
we present our full-fledged approach of a complete PID system transformation into the
location-independent paradigm provided by NDN. For this, we first turn our attention to
the world model of PID that needs to be augmented to a model that does not rely on known
and trust-worthy network locations, but embraces PIDs as self-containing instances and
prototypes. As aresult, the architecture of the Handle system as a realization of a PID system
needs to be recomposed for location-independent operation, data access and maintenance,
as well as assuring the necessary trust in PID data. Furthermore, the layers that are closer
to the realization of PID use cases are extended. This is also the case for application
protocols used in the Handle PID system. In the end, we provide an interoperability model
for interaction with the existing location-based Handle world because the transition of the
network paradigm requires a full-operational link to billions of existing PIDs to provide the
paramount of backward compatibility and cross-world access.

75

Chapter 5 Location-Independent Persistent Identifiers

5.3.1 General Principles

In its foundations, the approach of operating a PID system in location-independent networks
based on NDN includes several fields of action. For this we will look at the following focus
points:

1. Namespace Convergence — Section 5.3.2
The Handle PID namespace and the NDN namespace are two distinct namespaces.
As identification is a core concept of PID and NDN, a convergence of namespaces is
crucial for realizing location-independent access through NDN towards PIDs.

2. Access Model — Section 5.3.3
By the replacement of location-based network structures, the PID data access model
will change. While location-based Handle PID systems only offer communication
between a client and a server, location-independent access models offer more
communication patterns and a two-tiered data access model depending on the
dimension PID instance and PID original.

3. Interoperability — Section 5.3.4
For interacting with the existing Handle PID world, an interoperability model is
needed that provides access to and from PIDs located in the different worlds.

5.3.2 PID NDN Namespace Convergence

Naming of entities in NDN location-independent services is one of the most crucial design
properties because it has direct impact on the transport and processing of data in the NDN
network. As a consequence, the transition of PID to NDN requires an accurate naming
scheme. This scheme has to follow four principles:

NDN Naming Restrictions

The NDN naming systems provides restrictions to creation of names [63]. In general, names
have to be unique to prevent naming collisions and thus the creation of unsolvable routing
decisions. The naming prefixes, which are the first components of NDN names, have to be
announced to route and naming announcement services. Thus, the NDN naming prefixes
have to be chosen in line with network naming authority mechanisms inherited by the NDN
root namespace. Furthermore, they have to be hierarchical to provide efficient look up data
structures [124].

Handle Naming Restrictions

The Handle system also provides, as any other PID infrastructure, restrictions concerning
the naming of PIDs. In order to comply with existing PIDs, as explained in the Section 1.2
on the motivation of the thesis, the naming scheme has to adhere to the given naming
principles. Thus, the naming scheme has to integrate a Handle prefix for dividing the
Handle namespace into local sub-namespaces and a suffix for naming PID entities in local

76

5.3 Approach

namespace (cf. Section 2.4). Hence, the naming of entities has to include the tuple of prefix
and suffix for every PID [37].

Global Accessibility

The ubiquitous accessibility of PIDs is of paramount importance. Thus, a hierarchical
selection of the NDN name based on organizational ownerships like countries or
network operators is not acceptable for PID, although it is stated in literature [98] [124].
Organizational structures are subject of constant change and thus NDN names that have
an one-to-one relation to organizations do not meet the requirements of long-term access.
Hence, the NDN data name that is chosen for the PID service has to be unique within the
NDN root namespace. Therefore, a mechanism has to be found that assures the uniqueness
of PID sub-namespaces in NDN. This implies that the root name of the PID system would
be similar to a Top Level Domain (TLD) in DNS like com or net. The owner of the
root NDN PID name is then not only responsible for assigning Handle prefixes but he
simultaneously assigns NDN sub-namespaces. Of course, a decentralized assignment of
sub-name spaces could be also possible. If an interconnection of PID infrastructures is
required, like the resolvability of DOIs within the Handle System, the same root namespace
can be used with a static name transformation rule.

Human Understandable

The location-independent PID access for NDN has to be intuitive for human beings. Thus, a
simple rule has to exist that allows a transformation of a given Handle PID into a valid NDN
name. In contrast to location-based PID systems, the user does need to know a currently
valid URL of a resolution service like dx.doi.org or hdl.handle.net.

By incorporating the naming constraints from above, we can now formulate the naming
convention for NDN-enabled PIDs. For lining out the details, we use Figure 5.2 and the
numbers in bold font for explanation. The upper part of the figure shows the elements of
the Handle PID naming system that are required for creating, resolving and maintaining
a PID. The lower part shows the elements of the NDN system to formulate a valid and
globally-routable data name. As a result, we show in the middle gray bar our suggested
naming convention that includes the constraints of both systems and transfers a PID into a
NDN name and vice versa. The PID names are enclosed as native NDN data names using
a starting “/” according to the NDN naming conventions [63]. Then, the separation of the
Handle Prefix, Handle Suffix and a conventional extension is also performed using a “/”.
Hence, the Handle Prefix and Suffix form hierarchical and thus routable NDN names.
This is possible, as both systems treat naming particles of entities as first class citizens
in their respective data models for entity naming [104]. The Handle Naming Authority @ is
propagated as name in the NDN root namespace. Therefore, it allows a global resolution
of PIDs from any given node of the NDN network and as a result, the Handle Prefix is a
globally routable NDN name at the same time @. The unique local Handle name, known
as suffix, is the distinct name of a PID in a sub-namespace ®. This name often reflects the
organizational naming of a PID related data and can it can exist multiple times in different

77

Chapter 5 Location-Independent Persistent Identifiers

sub-namespaces, while it has to be unique at its own namespace. Similar to NDN, it allows
a structuring of the sub-namespace to control the routing of Interests within NDN name @.
For the application in NDN, we suggest that @ follows the tradition of PID infrastructure
providers that either use an opaque naming scheme, e.g., random characters for naming, as
it is applied in EPIC [125], or a naming scheme that does not need further adjustment of
PID names, when organizational changes are necessary. For resolving a PID over NDN,
the information of prefix and suffix is sufficient. Users have to keep in mind that they have
to add a starting slash before the Handle PID to resolve it using NDN. For interacting
with PIDs for maintenance and to perform special queries using parameters and filters,
an optional extension of the NDN name is possible. These Handle PID messages and
query paramemter ® can be added to the NDN name done using the field for conventional
extension ®. However, the conventional extension field is also used for other purposes in
NDN (cf. Subsection 2.7.3 and Figure 2.13).

Handle PID | &P Handle PID | & Handle PID
Naming Authority Unique Local messages and
Name parameter

SUFFIX PREFIX CON-EXT

NDN globally NDN organisa- NDN conven-
routable name tional name tional extension

Figure 5.2: Naming Convention for NDN-enabled location-independent PIDs

5.3.3 Access Models

In classic location-based networks, PIDs stored as Handle records in the Handle system
can be obtained from either the original data source or from a data source that provides a
copy of the data sets (mirror). The GHR nominates the primary data source (LHS) that
is responsible for serving a particular Handle prefix by stating its network location and
sending the public key of the source in order to verify its genuineness. The GHR is also
announcing mirror servers holding copies of the PIDs (secondary LHS) source [38]. As
the Handle system uses a client-server paradigm, the connection is established between the
client and the server endpoint, so changes on PIDs are immediately communicated back as
success or fail [38]. Thus, for accessing PIDs for resolution and maintenance, the user can

78

5.3 Approach

be sure that in location-based networks PIDs are obtained from the original or an authorized
mirror data source. If the client communicates with the primary LHS, it can be assured that
changes are persistent to a PID. The changes are propagated from the primary LHS to the
secondary (backup) LHS for data safety in fixed intervals or using polling.

Beside the client-server communication, the Handle system is capable of relaying
connections between a client and a server through an intermediate Handle server. This
relaying works transparent for both sides and is indicated by the Authoritative bit (AT)
in the OpFlags of the Handle message header (cf. Figure 5.3) used in the native Handle
protocol. Thus, the Handle system adheres strict to the location-based client server paradigm
with optional intermediate relaying.

bit o 1..2.. 3 3
offset 50 1 2 3 4 5 6 7 8 9 ©0..0.. 0 1
opFlag = [AT [CT [ENC[REC|CA [CN [KC [PO [RD [[... reserved ...|

Figure 5.3: NDN Handle Message Header OpFlag [38]

In contrast to this, the location-independent access using PID spans an augmented access
model into the domain of PID. The classic client-server communication is still active and
needed to maintain the leading / original PID data set. But beside this, location-independent
access, controlled by the description of the data in the access information, offers access
to instances of PIDs that can exist as copies on different servers and network caches at
the same time. This means that a request towards a PID can be answered by different
(unknown) network entities. The primary LHS can answer the PID request for resolution
but also network-based caches, like Content Store (CS) in the NFDs and the secondary LHS
can fulfill requests. As a result, the requesters get their request fulfilled, not necessarily by
the original PID but rather by a copy of the data existing outside the original PID source.
The copies of the PID can also be of different ages and states. This instance-based access
provides a new set of possibilities but also needs additional measures for controlling, trust
and optimisation. We will investigate the potentials in Section 5.3.3.1 and 5.3.3.2.

5.3.3.1 Primary Source Access With NDN PID Push

Primary source access mimics the classic client-server communication within NDN for the
Handle System. We call our approach for end-to-end communication as primary source
access within the NDN space NDN PID push. It enables the communication to a specific
server in the NDN network using a distinct server name. Thus, we provide an approach
to fulfill the complete set of Handle communication between the client and the server.
This includes all operations that can be performed using the native location-bound Handle

79

Chapter 5 Location-Independent Persistent Identifiers

application protocol. By this, Handle servers can be fully administrated within through
NDN communication. Furthermore, it facilitates a cross-world communication that expects
a server peer or a client peer in the location-dependent network sphere and as a result,
PID administration and resolution can be done from a location-based network into the
NDN network using a gateway and vice versa. Figure 5.4 gives an insight into the basic
mechanism of NDN PID push. As we can see in the figure, the client wants to communicate
only with LHS Site 4 from a LHS server group responsible for serving a specific Handle
prefix. Although the NFDs provide multiple routes trough the NDN network and multiple
sites are able to fulfill the request, NDN PID push encapsulates the Handle application traffic
into a virtual network tunnel between the Handle client and LHS Site 4. The other peers
are not contacted and the traffic is routed through the NDN network using different NDN
techniques such as NLSR (cf. Section 2.7.6).

NFD (—| LHS
‘ Site 1
NFD N[ks
NFD Site 2
[——1\ NFD
Handle LHS
Client NFD | Site 3
NFD
LHS
Site 4

Figure 5.4: NDN PID Push Enables End-To-End NDN Communication

To perform arbitrary PID actions in NDN, the native Handle protocol originally
designed for location-dependent end-to-end communication can be recomposed into a
NDN protocol. This has not been covered in literature yet and will be part of our approach
for a location-independent PID system. In order to make NDN PID push work within the
NDN network, a number of prerequisites have to be fulfilled:

Distinct Server Names

In order to provide an end-to-end communication, each peer of the network needs a distinct
NDN network name that makes it reachable via NDN network. As NDN-enabled Handle
servers use their Handle prefix as NDN data name, a second data name for NDN PID
push communication needs to by registered at the NDN face to provide this dedicated
communication.

80

5.3 Approach

Re-enabled End-To-End Communication

NDN is a content-centric network design that is based on an interest-data retrieval cycles
(cf. Section 2.7.2). “It redefines the key primitives at the “waist of the network” to
include simple request-reply interactions and a publish-subscribe information distribution
paradigm, whichs enable features such as loop free forwarding, location independence and
flow balance. By casting away the explicit requirement for end-to-end communication and
by enabling caching en-route, it makes content readily available from different locations
and distances from the receiver” [111]. These design fundamentals are very beneficial for
distributing content within a NDN network but for the case of PID-specific communication
that adhere to end-to-end principles for secure PID creation and update propagation, the
NDN principles leads to challenges. Thus, the end-to-end principle needs to be re-enabled
within NDN, in order to make the PID usable within this network. This is necessary, as
the newest state of the PID stored at the primary LHS needs to be determined for PID
updates and non-cachable resolution requests. These primary PIDs have to be issued by a
primary LHS and thus end-to-end connection between a client and a server is needed. The
insights provided for the Handle PID system might be transferable to other domains like
voice conferencing over NDN, where end-to-end connections are also required [115].

Control of NDN Caching

For persistent creation, update or change in Handle PIDs and administrative data, the built-in
network caching mechanisms of NDN need to be controlled. This has to be done for
all intermediate NFDs that are used for the data transfer between the two Handle parties
(client-server or server-server) for primary source access using end-to-end communication
with NDN PID push. Although network cache controlling is a feature of NDN [114],
we present a new approach of transmitting data with a full-cache suppression using the
NDN design paradigms. By this, we assure that only up-to-date data reaches Handle PID
end-points and becomes part of the PID database at the primary LHS.

Intact Routing

Another perquisite that is needed for a successful end-to-end communication is an intact
routing between the Handle client and the Handle server. This is not in the focus of this
thesis but essential to guarantee a working data transmission through the NDN network.

With the measures in place, we can define our approach of NDN PID push:

Definition 5.1 (NDN PID Push) NDN PID push is defined as end-to-end communication
protocol between a NDN node representing the PID client and another NDN node
representing the PID server. It allows a cacheless end-to-end communication over NDN
using interest-based asynchronous communication with a reduced number of NDN round-
trips for communication. By using distinct NDN data names, end-points can invoke
PID-related communication between any PID system at any time. For realizing its
functionality, NDN PID push is located in the OSI-model at the bottom of the application
layer and provides an abstraction for the transport layer using location-independent NDN
connectivity [69].

81

Chapter 5 Location-Independent Persistent Identifiers

Next, we explain the principles of the NDN PID push protocol, by having a short look
at the native Handle application protocol that is used for PID-related communication in
location-based networks.

For placing the Handle relevant parts into NDN PID push, we first have a look at the
message format of a Handle request (cf. Figure 5.5). The native Handle application protocol
is designed as a message oriented binary protocol with a small data foot print. This means
that every section of Handle message and specific data fields are available at certain bit
offsets. The values are stored as binary-flags or (unsigned) integer values. Based on the
transport media functionality, Handle messages are broken down into transmission units
like TCP or UDP packets. It is used for different purposes and it serves for transporting
data and making RPC calls. To complete most use cases, like PID creation, multiple
Handle messages are needed for executing a specific function. To realize the use cases, the
Handle protocol implements a session mechanism for peer authentication (ctf. Section 2.8.3
and Section 2.8.4) and key-exchange for synchronous encryption of application traffic (cf.
Section 2.8.1). It is designed with the purpose to communicate over stateful and stateless
communication media. Therefore, the protocol features functionality that is implemented
in lower network layers redundantly to allow operation even on unreliable transmission
media, like simple serial data buses. E.g., it features a message sequence number on
application level, which is also implemented in the lower transport layer of TCP. The
message format consists of a Message Envelope, Message Header, Message Body and
a Message Credential part and is defined in the System Protocol Specification stated in
IETF RFC 3652 [38]. In the following, we will briefly look at the parts of Handle protocol
message, depicted in Figure 5.5.

o Message Envelope
e Message Header
e Message Body
e Message Credentials

Figure 5.5: Handle Message Format [38]

The Message Envelope (cf. Figure 5.5, number @) is an obligatory data structure that is
used in the Handle protocol to assign a message in its specific context. MajorVersion and
MinorVerion are fields indicating the version of the protocol. They are used to determining
the availability of cryptographic cipher suits and features available in the different Handle
versions. The message envelope contains more state information that assign a Handle
Message to a specific application context. This could be a session established between two
Handle communication parties using a SessionId and/or part of a request using multiple
messages joint by a RequestId. The SequenceNumber is used, if a Handle message is

82

5.3 Approach

fragmented into multiple transmission units. The field MessageLength depicts the size of
the message in bytes. A complete overview is provided in Figure 5.6. The message header’s
Operation Flags (OpFlags) are depicted as a gray box in Figure 5.3.

bit — © 1 2 3
offset = 91 234567890123456789012345678901
fields
lll MajorVersion MinorVersion MessageFlags
SessionId
RequestId
SequenceNumber
MessagelLength

Figure 5.6: Handle Message Envelope [38]

Message Headers (cf. Figure 5.5, number @) hold the relevant information of the request
and consist of operation codes, the requested operations, the associated operation options
and response codes.

bit - 0 1 2 3
3
offset = 91 234567890123456789012345678901

fields e
pCode
W
ResponseCode
OpFlag
SiteInfoSerialNumber RecursionCount
ExpirationTime
BodyLength

Figure 5.7: Handle Message Header [38]

The OpCode (cf. Figure5.7), is a four-byte unsigned integer, which specifies the
intended operation. With its defined set of operations, it forms the command set between
the client and the server in the Handle system. For the adaption in NDN, the OpCode
remains unchanged. However, the execution of the commands is done differently in the
location-independent setting of NDN. In Table 5.1, we provide a shortened overview of the
OpCodes.

83

Chapter 5 Location-Independent Persistent Identifiers

OpCode | Symbolic Name Remark
0 OC_RESERVED Reserved Command
1 OC_RESOLUTION * Handle Query
2 OC_GET_SITEINFO * | Get Handle Site configuration
100 OC_CREATE HANDLE | Create a new Handle
101 OC_DELETE_HANDLE Delete a Handle
102 0C_ADD_VALUE Add Handle values
103 OC_REMOVE_VALUE Remove Handle values
104 OC_MODIFY_VALUE Modify Handle values
105 OC_LIST_HANDLES * | List Handles
105 OC_LIST_NA * List sub-naming authorities

Table 5.1: Overview of the Handle Header OpCodes [38]

The message header shares the size with the ResponseCode (cf. Figure 5.7, number @)
that indicates the result of a service request. Both fields can remain identical for the NDN
transition. The ResponseCode is the answer from a Handle peer that is returned as answer to
a request. For better understanding, we provide an excerpt of the Handle ResponseCodes
in Table 5.2. The response code reflect the application logic of the Handle system but is
also used to return responses related to remote procedure calls and communication related

requests.
ResponseCode | Symbolic Name Remark
0 RC_RESERVED Reserved for request
1 RC_SUCCESS Success response
2 RC_ERROR Error response
3 RC_SERVER_BUSY Server too busy to respond
4 RC_PROTOCOL_ERROR Unrecognizable message
5 RC_OPERATION_DENIED Unsupported operation
100 RC_HANDLE_NOT_FOUND Handle not found
101 RC_HANDLE _ALREADY EXIST | Handle already exists
102 RC_INVALID_HANDLE Encoding or syntax Error
200 RC_VALUE_NOT_FOUND Value not found
201 RC_VALUE_ALREADY EXIST | Value already exists
202 RC_VALUE_INVALID Invalid Handle value
300 RC_EXPIRED_SITE_INFO SITE_INFO outdated
301 RC_SERVER _NOT_RESP Server not responsible

Table 5.2: Overview of the Handle Header ResponseCodes [38]

84

5.3 Approach

Message Body (cf. Figure 5.5, number @) is the subsequent part of the message header.
Its structure is not modified for the adaption of NDN but the transport mechanisms is
changed for NDN data transport. The message body can be empty for OpCodes that do not
require input data and change an internal state of the Handle server. For requests that require
data such as the addition or the modification of a PID, the message body contains bytes as
UTF-8 string representation consisting of key-value pairs (cf. Figure 2.5). The value section
allows besides single strings also an entire vector of strings. Cryptographic information is
exchanged in the message body, using the same content encoding for all non-content related
security.

The Message Credentials (cf. Figure 5.5, number @) contain information for end-point
authentication against a PID data source. For this, challenge-response messages are
exchanged to prove the ownership of a pre-shared key between the client and the server or
the possession of a cryptographic key. After the authentication, it is used to establish an
encrypted session using a derived session key. This session key is generated for every new
session. Message credentials are essential for conducting administrative tasks in the Handle
system and to access and update PIDs with restrictive access rights.

In the following, we describe our approach for transporting Handle protocol messages
with NDN. For this, we create a low-level communication adaption for the network API
and which is responsible for transporting application protocol messages from one NDN
network node to the other. In Figure 5.8, we provide a scheme of the design effort where
the narrow boxes depict the existing native Handle communication stack. The wider boxes
below the layers for communication transport over NDN depict our contributions. This
allows us to use the full functionality of the native Handle protocol over NDN, without a
major protocol redesign. It is particularly useful for all administrative and authenticated
command sequences and allows a true end-to-end communication.

Handle Protocol Handle Protocol
Handle Message Handle Message
Transmission Unit Transmission Unit
Low-Level Communication API Low-Level Communication API
NDN Interest Encoding NDN Interest Decoding
NDN Transport > NDN Transport
r\ T
1 1
e |
Legend <«— NDN Interest < -- NDN Data Packet

Figure 5.8: NDN PID Push Transport

85

Chapter 5 Location-Independent Persistent Identifiers

For interfacing with the low level communication, our approach provides a socket API
that is transparent to the native Handle protocol. The challenge for socket API adaptions
in location-independent networks that mimic the nature of location-based socket APIs is
that no complete implementation of location-based network transport protocols can be
formulated in NDN. Hence, as pointed out in Section 4.5.1, a direct replacement of TCP or
UDP is not possible with a standard conforming realization. Thus, to provide a socket stub
that is sufficient to transport and provide the necessary properties of the Handle transport,
we have to find shortcuts in the Handle protocol design that allow an adaption of a low-level
socket API in NDN. For realizing this, our approach utilizes all information from the native
Handle protocol and its design properties to create a functional socket API stub. For the
Handle protocol this is possible due to following properties of the working principle and
design:

1.) Low Level Information in the Application Protocol

Unlike other OSI layer 7 application protocols, the native Handle protocol features
low-level transport information in its application protocol. We see in Figure 5.6 this
kind of information such as the message length and the sequence number in the
Handle message envelope. Additionally, we observe in the Handle message header useful
information, as e.g. the Expiration Time (cf. Figure 5.7). This information is maintained
in the application protocol and provides a priori details on the data that needs to be
transported over NDN. This information is very important for our NDN API socket
approach, as we can use them lateron to compute the missing information for a Handle
message transport over NDN.

2.) Separate State Maintenance

The Handle protocol is able to store state information in Handle messages that are
incoming and outgoing. Thus, the Handle protocol implementations keep track on Handle
request states and assigns Handle messages to requests. It is also able to keep track of
application sessions states. As a result, the native Handle protocol can operate in highly
asynchronous network environments where the underlying network transport layer cannot
make guarantees on connection persistence and latency. Hence, the Handle protocol is able
to run using UDP and TCP that have different assumptions on the transport layer operation.
The Handle message envelope provides state information in each Handle message like
RequestId and SessionId. (cf. Figure 5.6). As a result, our transport socket adaption
requires no maintenance of complex states on established end-to-end connection as this is
done by the Handle implementation. This is very important, as NDN cannot provide those
state information due its design principles of omitting the need of end-to-end connections.

3.) Loop Detection

As a special design property of the native Handle application protocol, the detection
of network loops is part of the specifications. In classic location-based networks based
on IP, routings must be free of routes that route data packets in circle. Thus, most
application protocols running on top of IP do not feature a loop detection but rather rely

86

5.3 Approach

on the transport layer mechanisms like Time To Live (TTL) for IPv4 counters [126],
or Hop Limits for IPv6 [127]. As a result, if the underlying transport protocol does not
support TTL-like mechanisms with an identical semantic, as it is the case for NDN [11],
application protocol adaption is complex or even impossible for certain routing topologies.
The Handle protocol designers were also aware of this problem and thus, the Handle
protocol features RecursionCount in the Handle Message header (cf. Figure 5.7), which
is decremented for each intermediate station a Handle message passes. Hence, native
Handle protocol implementations are able to detect circular routings in networks that break
end-to-end communication. For this, the socket API adaption can observe and control the
RecursionCount in the Handle protocol header, in order to drop Handle messages that were
passed in an (unintended) NDN loop routing (cf. Section 2.7.5). Consequently, the socket
API adaption can determine if a NDN network face is suitable for NDN transport with
the Handle protocol by detecting inappropriate routing situations for a required end-to-end
communication.

To formulate a socket-like API approach, we focus on the mechanisms of UDP
communication sockets that are adapted for the native Handle protocol data transport.
The UDP socket is a stateless end-to-end communication API, which is able to send
and receive Handle protocol messages. It works with a fire-and-forget principle to send
transmission units to remote Handle peers. For a working transmission of UDP packets,
another peer has to listen to a UDP socket and a valid UDP routing has to exist within the
location-based network.

Now, we look at the adaption of existing NDN principles for realizing a UDP-like socket.
As we will see, the existing principles are not sufficient for doing this. By design, NDN
implements a request and response network principle, thus spontaneous data transmission
from one peer to another has some hurdles in NDN and can be archived with a mechanism
adhering to the original NDN design. The approach that can be found in the literature is a
regular polling from the receiving peer towards the sending data source, requesting potential
data using NDN interests. If new data is available, it is delivered from the data source to the
receiver using a NDN data packet. Although this approach works, it has the drawback of
using resources very inefficient due to frequent unsuccessful polls [68] [128]. This means
that additional NDN round-trips are required to initiate receiver-based polling from the
data source by invoking the polling process using a RPC command over NDN. Polling
has also the disadvantage of slower latency because data has to wait at the source until
the next polling interval is reached. Furthermore, it does not scale well, as only a limited
number of receivers can poll the data source due to limited network bandwidth and system
resources. As a consequence, different approaches have been developed for ad hoc data
transfer that does not rely on polling in NDN. Chen et al. have proposed Content Oriented
Publish/Subscribe System (COPSS) for more efficient distribution of data removing the
limitations of NDN polling [128]. Zhu and Afanasyev have proposed ChronoSync as an
alternative source to receiver ad hoc data transmission scheme [68]. We propose NDN PID
push which is an additional approach for ad hoc pushing data from a source to a receiver
that does not use NDN polling.

87

Chapter 5 Location-Independent Persistent Identifiers

The approach of NDN PID pull aims at embedding payload data into NDN interests.
As NDN interests do not have a data payload section by design, we use the NDN data
name section of the interest for embedding arbitrary data payloads. Figure 5.9 gives an
overview of the embedding procedure. The principle of embedding data into NDN interests
is not new at this stage and was proposed in [68] before. However, we evolve this principle
to a parallelized data streaming mechanisms, which incorporates additional low-level
information from the native Handle protocol. By this, we can transport Handle-related data
of arbitrary sizes over the NDN network. A three-tiered payload conversion process for
payload encoding is integrated to meet the requirements of optimal NDN interest sizes.
The payload encoding uses a binary-to-text method that encodes payloads into two byte
character sequences. This encoding brings the challenge that NDN data names also uses
two byte character sequences for the organization of the technical fields in the interest
name. As a result, an escaping of the encoded payload sequences is necessary, to avoid a
collision of the two byte payload octets and the reserved field markers. Two byte octets that
are responsible for collisions are the sequences 0xCO, 0xC1, and OxF5 to OxFF (shown as
hex values). When this is done, the encoded payload can be part of the interest NDN data
name without corrupting it [63] [104].

NDN Interest

/ ABDCE / FGHIJ / dGhpc21zYmluYXJeYq...
Gl(l)bal Spe'cific Text—Elncoded
Routable NDN prefix NDN Name Part Binary Payload

Figure 5.9: Payload Embedding in NDN Interest

For transporting Handle protocol messages in NDN interest, the payload needs to be
broken down into multiple interests. In this process, the size of the interests can be adjusted
as well, to assure an efficient handling of the interests within the NDN network. For this, we
construct a pipeline that features a one-way design, which is only able to breakdown, encode
and send at once. As a socket API semantic offers a two-way communication paradigm that
is able send and receiver data using a single socket instance, two pipelines are needed for
each communication direction. Now we describe the pipeline for sending data over NDN
and then, we describe the reversed pipeline location at the receiver side in the latter.

In Figure 5.10, the streaming pipeline at the sender side is depicted. It features a
parallel design to utilize multiple CPUs at once for encoding and data compression. The
generated interests are handed over to multiple threads at the NFD for a parallelized
transmission. At the first stage @, the Handle message is decomposed into transmission
units that are on the same conceptual stage like UDP packets. This step splits the Handle
messages into n chunks with a fixed size limit and transport relevant meta-information are
attached to the transmission unit. At the second stage @, the transmission units pass the

88

5.3 Approach

binary-to-text encoder. The transmission units can be encoded in parallel, as they contain all
transport-relevant information. After the encoding, the NDN interest are generated. At the
last stage @, the interests are sent out to the NFD. As text-encoding is increasing the size of
the data, an optional data compression can be applied on the payload in stage @ [129].

— Transmission = > Interest

Handle Message 0 - Unit 1 0 [© with data
Message Envelope — — NDN NDN

Decom- [— Transmission — m Interest

Message Header || . || Name || Trans- .

I poser Unit with data

Message Body Encoder port
Message Credentials
— Transmission = j:> Interest
— Unit u N with data

Figure 5.10: NDN PID Push Message Decomposition

For a better understanding of NDN PID push, we now describe our proposed scheme
of the transmission units using Figure 5.11. The transmission unit contains three different
fields. The first field Binary Payload contains a chunk of a Handle message. Payload
sizes are stored is the field Payload Size. The Chunk Nonce is an identifier that assigns
all transmission units to a Handle message. It is used to reconstruct the Handle Message at
the receiver side. The Sequence Number describes the binary offset of the wrapped Handle
message to reorder the transmission units on the receiver side. To attribute the transmission
unit to the sending NDN node, the NDN name of the sender is added in the field Sender NDN
Name. This is necessary because the Handle server and client can simultaneously operate
transmissions to different network end-points over one NDN face. On the receiver side,
queues for incoming transmission units can be maintained for each data sender to provide
an efficient reconstruction of the Handle messages.

1. Compress (optional)
2. Binary-to-text enc.

Transmission Unit \\v///

Binary Payload :> Interest with Data
Sender NDN Name Receiver NDN Name
Chunk Nonce with encoded
Sequence Number <j transmission unit

Payload Size //A\\\

1. Binary-to-text dec.
2. Uncompress (optional)

Figure 5.11: NDN PID Push Transmission Unit Encoding / Decoding

89

Chapter 5 Location-Independent Persistent Identifiers

For receiving Handle messages using NDN PID push, a reverse data processing
pipeline needs to be setup with a queueing/buffering system capable for handling parallel
transmissions. The reconstruction of Handle messages from transmission units produces
computational overhead. In Figure 5.12, we depict the data receiving and reconstruction
process in detail. The NDN transport stage @ receives all incoming interests. Then,
the Name Decoder stage @ separates the text-encoded payload from the NDN interest
and decodes them back into transmission units (cf. Figure 5.11). In the third stage ©,
the transmission units are buffered. Due to the parallel design of NDN PID pull and
the asynchronous communication principle of NDN, interests can take different routes
within the NDN network and arrive in a different order. Thus, the chunk nonce and the
sequence number are used for rebuilding the Handle message out of the transmission
units. Stage @ Composer is responsible for reconstructing the Handle messages. After
the reconstruction, the Handle implementation takes over the Handle message for further
high-level interactions, such as PID resolving.

Interest — — f‘>
withdata[| €@ H @ H © (4]

Handle Message

NDN NDN Trans- Message Envelope
Interest = 1 c M yame [7] Mission f‘> Compo-
with data [ort | | Decoder | | Unit ser Message Header
P Buffer Message Body
Message Credentials

Interest — — j>
with data [m 1

Figure 5.12: NDN PID Push Message Composition

The NDN network design aims at transporting payload data through data packets and not
through interest but as we break in NDN PID push with this design convention, we have to
investigate the impact of this decision. For this, we provide an insight into the transporting
sequences of a NDN network node, while running payload-enriched interests through it.
In Figure 5.13, a NFD is depicted with all relevant data structures involved in PID push.
In step @, the interest arrives at one face of the NFD and is forwarded to a face, which
is connected to the next NFD @. The forwarding of the interest is determined by the stored
routing information in the FIB. In parallel, a copy of the interest is stored in the PIT & until a
matching data packet is received by the NFD. This behavior is enforced by the NDN design.
However, this copying of interests is useful, because if new routing information is added to
the NFD, the pending interest can be retransmitted by the NFD using a different outgoing
face. When an interest has been received by the end-point, an empty data packet, we define
it as ACK packet, is emitted and flowing back the chain of all intermediate NFDs to the
data source. If an ACK data packet arrives @, the interest copy is deleted from the PIT @.
The ACK data packet is forwarded in parallel to the face, where the interest has arrived ®,
in order to pass it to the previous (intermediate) node or the NDN PID push socket node.

90

5.3 Approach

The usage of ACK packets has the advantage that it is possible to determine for each data
sending end-point if an interest has been arrived at the receiving network end-point. If no
ACK packet has been received at the sender side within a certain time window, a timeout can
be sent to the NDN PID socket in order to perform an error correction through an interest
retransmission.

NDN Packet Forwarding Engine
Pending Forward
Interest Information
Table (PIT) Base (FIB)
Interest — Interest
|: with data [— o 9 E:> with data
Face®@ Facel
ACK Data — ACK Data
¢ Packet [T G e Packet
’ Content Store (CS) ‘

Figure 5.13: NDN PID Push Interest Data Forwarding

In order to show that the approach of NDN PID push is feasible on NDN networks, a
clean room implementation is given in Section 5.4.3 and is evaluated in Section 5.5.3.

5.3.3.2 Instance Access With NDN PID Pull

In contrast to NDN PID push that is focused on Handle end-to-end communication, NDN
PID pull focuses on accessing different available copies of a PID (or a Handle record) within
a NDN network. Thus, we call this a PID instance access, as multiple PID instances
can exist simultaneously. To be precise, we use Handle values as an atomic data unit
of the Handle system that consist of a typed, indexed key-value pair (cf. Section 2.4 and
Figure 2.5). A PID consists of at least one Handle value and hence, Handle value and PID
are often used synonymously in the context of the Handle system. Figure 5.14 shows four
different scenarios, in which multiple PID instances exist to improve the PID resolution
and the retrieval of Handle values. In Scenario @, the PID request is served directly from
the primary LHS. This is the regular scenario for PID retrieval and can be compared to
the PID resolution using the native Handle protocol and our NDN PID push approach. In
addition, Scenario @ shows a benefit of NDN, where a broken network connectivity of the
primary LHS is circumvented by an automatic routing adaption towards the secondary LHS
serving the same PIDs. By this, failover mechanism, an instance of the PID is sent to the
Handle client, while the original PID is on the primary LHS, disconnected from the network.

91

Chapter 5 Location-Independent Persistent Identifiers

Scenarios ® and @ show that the NDN network is able to respond PID and Handle value
access requests from the Content Stores (CS) integrated in the NDN network. This can be a
remote CS, located within the depth of the NDN network or even the local CS that are near
to the Handle client. Serving requests from the CS allows a fast responding to frequently
requested PIDs without contacting the LHS. Thus, the LHS can cope better with high load
situations due to network cache-based demand offloading.

PID PID
L Jp{ weo | weo | iR |
[——1 [=—=]
Handle Secondar, Handle Secondar
Client NFD NFD sy Client s
PID PID
o PID Response from Primary LHS 9 Automatic Failover to Secondary LHS
Primary Primary
‘ ‘ NFD LHS _] LHS
[——=1 [=—=
Handle Secondary Handle Secondary
Client LHS Client LHS
e PID Response from remote NFD CS e PID Response from local NFD CS

Figure 5.14: PID Response Scenarios in NDN PID Pull

As we can see from the scenarios depicted in Figure 5.14, the network location and the
origin of the PID are not important, as long as a robust and fast PID resolution and access
to administrative and structural data of a Handle prefix and its associated infrastructure is
possible through the NDN nodes reachable by the Handle client. For this, NDN PID pull
exploits the design of NDN’s network design principles that imply following features:

Content Retrieval

The retrieval of Handle values and thus PID resolution targets is based on the standard NDN
data retrieval mechanisms. Each request is encoded as an interest and the Handle value is
returned as a NDN data packet Hence, the PID data is pulled from a data source out of the
NDN network.

Read-Only Access

NDN PID pull is able to access original Handle records and copies of the Handle record
on the NDN network. A distinction between copies and original Handle records cannot be
done, as the Handle records are by default delivered from the fastest available NDN data
source. As a result, NDN PID push can be used for durable writing operations on a LHS,
while NDN PID pull cannot provide direct access to a LHS. Hence, the NDN PID pull
approach is designed for read-only access to Handle records.

92

5.3 Approach

Content-based Verification

As instances of PIDs are accessed through NDN PID pull, the network location cannot be
used for assuring the integrity and origin of PIDs. Thus, a content-based verification has
to be integrated into the NDN PID pull approach that allows a verification of the content
within the NDN data packets.

Improved Resilience

As different instances of a PID can exist within a NDN network, network problems have
less impact on the resolution of PIDs and the access of Handle records. If the primary LHS
is not available, the requests can be served by the CS of an intermediate NDN network
node or routed to the secondary LHS (cf. Figure 5.14) By this, the PID resolution provides
an improved resilience against network outages. In the evaluation Section 5.5.4 we show,
that the transport of PID data is more resilient in fault network conditions that suffer under
packet loss.

After introducing the basic elements of our NDN PID pull approach, we define it for
further use in this thesis as follows:

Definition 5.2 (NDN PID Pull) NDN PID pull is defined as communication pattern
between a NDN node representing the Handle PID client and the PID-related data sources
in a NDN network. With NDN PID pull, instances of Handle values and thus PIDs can be
retrieved from the network. Hence, it is suitable for PID resolution and obtaining structural
and administrative information for a specific Handle prefix. For serving the data, different
data sources within the NDN network are used that are not selectable by the client and
may not be the original data source. Those data sources hold copies of Handle records
(instances) for fulfilling incoming retrieval requests autonomously. Hence, data needs to be
verified through its content and only guarantees its up-to-dateness for a limited time range.
As a consequence of instance access, NDN PID pull merely provides read-only capabilities
on Handle values and PID:s.

We now explain the principles behind NDN PID pull as a NDN-based application protocol
that is free of legacy assets and is able to exploit the benefits of NDN technology. It co-exists
with the NDN PID push stack. The client can select the protocol stacks based on the
semantics of the following actions. Actions that only require PID-related information and
do not rely on the latest update of the PID, NDN PID pull is a suitable choice. Actions that
require the current state of Handle value / PID from the primary LHS, have to use NDN PID
push. The same protocol choice is needed for performing changes to a LHS and its data.

93

Chapter 5 Location-Independent Persistent Identifiers

Requester Intermediate Responder Source Responder
Content Store e Handle Value
Handle Software REIE PREGIES L | Handle Software
Handle Value
NDN PID Pull Protocol : NDN PID Pull Protocol
Data Packet Decoder|Interest Creator ' Data Packet Encoder| Interest Parser
NDN Transport —»| NDN Transport |—> NDN Transport
T : l
] 1 1 1
e o o e e e e e e e e 1 | o e o e e e e e e e e e]
| Legend <«— NDN Interest <-- NDN Data Packet ----- Cache Hit |

Figure 5.15: NDN PID Pull Transport

In Figure 5.15, we give an overview of the NDN transport mechanism. For issuing a
Handle value request, a NDN interest is formulated by the Requester. Within the data name
of the interest, the full Handle identifier (prefix, suffix and an optional set of parameters) is
encoded. This is done by the Interest Creator. The interest is transferred over the NDN
network from one intermediate node to the other. If an intermediate node has already
processed the same request recently, it is able to fulfill the request using the data in its
CS @. It is then acting as an Intermediate Responder. Alternatively, if there is no cache hit
at the intermediate node, the NDN network forwards the interest to another potential data
source. This could be either the primary LHS or a mirror holding a copy of PIDs from a
specific prefix (Source Responder). When the interest reaches a valid data source running
a Handle software, the interest is parsed and the Handle values @ are retrieved from the
Handle software and encoded into a data packet by the Data packet Encoder. The responder
sends the requested Handle values back as NDN data packets. At the requester side, the data
packets are decoded and the Handle values are available for further processing.

For the NDN PID pull approach, it is important to wrap the requests into a NDN data
name that reflects the shortest routable name of the PID resources in the network (cf.
Section 5.3.1, Namespace Convergence). For NDN namespace convergence, the Handle
prefix has the function of a NDN naming prefix. By this, a PID and its associated Handle
values become a named resource in the NDN network. Then, the Handle prefix can become
part of the FIB and all interests containing NDN PID pull requests are forwarded to a Handle
server data source (cf. Figure 5.16, left gray FIB table). The availability of the Handle
prefix can be communicated into the NDN network with auxiliary techniques like NLSR
(cf. Section 2.7.6).

Beside the fundamental naming principles, optional query parameters indicated by a
question mark “?” can be attached to a NDN name. Query parameter allow selecting and
narrowing of Handle values scopes, e.g. selecting a specific value using an index or a set of
values selected by the Handle data type. The full data names including the query parameters
are stored in the PIT, as they describe the content of the response data (cf. Figure 5.16, right

94

5.3 Approach

white PIT table). PIT entries are used for routing pack data packets through the network.

Forward Information Base (FIB)

Pending Interest Table (PIT)

Name Face Name Face
/prefix_1] /prefix_1/suffix_a/?index=1 0
/other_prefix_1 1 /prefix_1/suffix_a/?type=URL (%]
/other_prefix_2 2 /prefix_1/suffix_c 0
/other_prefix_3 3 /prefix_1/suffix_d 0
Prefix 1
Suffix A Suffix B Suffix C Suffix D
Handle Handle Handle Handle Handle
Value 1 Value 2 Value 3 Value 1 Value 1

Figure 5.16: Storing NDN PID Pull Data Names in the NFD Data Structures

After determining the advantageous NDN naming schemes for Handle resources
and describing the announcement for resources in the NDN network following routing
constraints, we can formulate the request query scheme for the NDN PID pull interests. In
Figure 5.17, the interest scheme is depicted. Similar to our NDN PID push approach, the
entire request information is stored within the interest data name. However, no complex
request name encoding is needed, as requests for Handle values are formulated using the
Handle/NDN prefix (Global Routable NDN Prefix), the Handle suffix and an optional set of
parameters. To avoid clashes between the data name and NDN control commands, the data
names need to be URI encoded, according to the NDN naming conventions [63]. Parameters
for changing or narrowing the scope of selected Handle values returned by the query can
be stated as key-value pairs and concatenated using the parameter “&”. The evaluation of
the parameters and the execution of selection queries is in the responsibility of the Handle
implementation and hence not part of our approach description.

NDN Interest
/ 11858 / ABCDE / <PARAMS >

Global Specific Optional
Routable NDN prefix NDN Name Part NDN Name Parts
(Handle Prefix) (Handle Suffix) (Selection Parameters)

Figure 5.17: Handle Value Request Using NDN Interests

95

Chapter 5 Location-Independent Persistent Identifiers

As shown in Figure 5.18, the scheme of a NDN data packet is featured that carries a NDN
PID pull response data. The name area @ holds the complete data name including all query
parameters. This is needed for clearing the PITs of all intermediate NFDs that were involved
in the interest transport. For content verification, a signature can be added in the signature
area @. For checking the content signature, a link to the public key or the cryptographic
certificate might be added using the NDN data name in the signed info area ®. The responses
for NDN PID pull are transported in the data section @ of the NDN data packet. In this part,
the Handle values are transported as payload.

NDN Data Packet
% Data Name: / 11858 / ABCDE / <PARAMS>

Signature
E Signed Info
e Data: Handle Values
_l<index> i 3 i
| <index> 2 2 Lo
<index> 11 P
<type> : URL L
<data> : https://gwdg.de/... P
<TTL> : {Relative: 24 hours} Lo
<permission> : PUBLIC_READ, ADMIN WRITE i
<timestamp> : 927364617838

Figure 5.18: Handle Value Response using NDN Data Packets

For formulating a NDN PID pull request we propose a logic shown in Figure 5.19.
An Interest Creator @ wraps the request into an interest as described above. The NDN
Face @ is emitting the Interest ® into the NDN network. For receiving response data
packets, the logic on the lower part of the figure is used. Incoming Data Packets @ are
received by the NDN face and then transported to a Data Packet Decoder ®. The decoder
serves two purposes. First, it has to unpack the payload of the data packets and transform
them into Handle values. Secondly, if a response is exceeding the maximum payload size of
the NDN data packet and thus is fragmented in multiple packets, it has to collect all payloads
from further incoming packets related to a specific response. When the sets of collected
data packets is complete, they are transformed back into Handle values. For unpacking
fragmented packets, the NDN fragmentation principles can be applied, which are subject of
current NDN-related research [130] [131].

96

5.3 Approach

Handle Client | Network Forwarding |
| i Daemon 5
'| Request Interest . ;'> Interest |:
i Creator i i
i { | NDN i
! 5) . | Face !
! Data e !
{| Handle <: Packet ' Data
il value Decoder | Packet |!

Figure 5.19: NDN PID Pull Request Issuing

On the side of the Handle value data sources request processing logic is required as well.
This is described in Figure 5.20. For processing a request, the information on Handle value
access is received by the NDN Face @. Then, the Cache Manager @ of the NFD is looking
up the data name in the CS. If a cache hit occurs, a matching data packet containing a
response 1s sent back to the receiver. In case of a cache hit in the CS, the Handle server is not
involved in processing the response at all, as this is done automatically by the NDN software
stack outside the Handle server application context. If a cache miss occurs, the interest
is forwarded into the Handle server, where the Interest Parser ® is extracting the request
information from the interest. The standard Handle Library @ can be used for retrieving
the Handle value from the database. Handle values from the database are now encapsulated
into NDN data packets by the Packet Encoder ® and then sent to the requester via the NDN
Face. Retrieving Handle values from the database requires more computational effort than a
cache-based responding, but the chain of request parsing, data retrieval, response encoding
and transporting works linear and may be implemented parallelized for simultaneously
handling requests.

97

Chapter 5 Location-Independent Persistent Identifiers

__

Network Forwarding Daemon Handle Server

Database

i—_"k_ €€a1 i I ;e, t HEL i
H ache : nteres i
Interest : |: Manager\ ; Parser [> Libr‘al"y E

Content W, |
Store [=C _

Data : ,,1-”f;’: Packet
Packet . S : Encoder

Figure 5.20: NDN PID Pull Request Processing

NDN
Face

N s
<~ -xl¥

5.3.4 Interoperability Model

All location-independent efforts presented in this thesis do only provide advantages
if they are interoperable and anticipate the slow change momentum of research data
management. Thus, a location-independent approach for PID needs a connectivity between
the location-dependent classic network and the location-independent NDN-based approach
of this thesis. For this, we formulate the concept of dual-connectivity presented in our [IEEE
paper in 2015 [104]. The interoperability model assumes a two world scenario. The first
world is the classic location-dependent network world with our current state-of-the-art
technology. In this world all official current PID systems are running including all
LHS and all sites of the MPA GHR. In the second world the location-independent
NDN network proposed in this thesis is operating its experimental local Handle Systems.
Network nodes located in this scenario are differentiated into nodes with single connectivity
either featuring location-dependent or location-independent access and nodes with dual
connectivity featuring both connection types. For classic single connectivity, we assume
the possibility to send and receive UDP and TCP packets and to communicate using the
native Handle protocol or HTTP for data exchange. Within the classic connectivity, the
native Handle protocol is used for communication. This is necessary to access GHR and
LHS over the location-based WAN. Nodes with a single connectivity are connected to a
NDN network. Within the NDN network, the Handle nodes can use NDN PID push for a
full-featured Handle communication, similar to the native Handle protocol or NDN PID pull
for retrieving Handle values and resolving PIDs only. Nodes with dual connectivity have
access to both worlds with a location-dependent and -independent access. These nodes can
send and receive all three Handle access protocols. Figure 5.21 is depicting the two world
scenario as a simplified chart. In the upper part, the NDN network is depicted together with

98

5.3 Approach

native NDN clients and LHS. The lower part is showing the classic location-based network
containing a sample client, all GHR sites and two sample local Handle systems. A Handle
Gateway with dual connectivity is connecting both worlds.

' NDN Network

i NFD NFD NFD LHS :
: NDN-Site :
; NFD Handle Gateway PID ;
; { } (Dual Connectivity) DB ;
' NDN Handle [———\ ;

Client

Classic Network

Router

Router

Global Handle Registry (GHR)
: Classic
Handle Client !

Legend NDN Handle protocol — native Handle protocol

Figure 5.21: NDN Gateway Architecture for Handle Interoperability

5.3.4.1 Incoming Requests

We now have a look at requests coming from the location-dependent classic network going
to the NDN network (location-dependent to location-independent inbound traffic conversion).
A natural approach for forwarding incoming network traffic is to unpack the Handle
messages from UDP/TCP traffic and transport them using our NDN PID push approach. By
this, all types of requests can be transported from one network into the other. Although this
approach theoretically works, it comes with the drawback of higher latency and reduced
reaction time, as we show in Section 5.5.3, when only using NDN PID push as default
protocol. Hence, for only suitable Handle requests, the protocol for forwarding has to be
changed to NDN PID push, to exploit the benefits of NDN and to accelerate network traffic,
whenever it is possible. As a result, the challenge arises of selecting the suitable network

99

Chapter 5 Location-Independent Persistent Identifiers

protocol for each request that is either NDN PID pull or NDN PID push for an optimized
forwarding of traffic.

In the following, we discuss the protocol selection of the NDN transport. The traffic
transition function of the Handle Gateway aims at shifting the data transport from a
location-dependent protocol set to a location-independent protocol set. In this case, we
have full control over the transported application protocol payload on layer seven of the
OSI model for the location-based classic network connection part. Thus, we can inspect all
application payloads of the Handle messages on the incoming location-dependent site. As
stated in Section 5.3.3.1, the Handle protocol holds transport-specific meta-information in
the application protocol layer, mirroring meta-information of the transport protocol layer.
The meta-information stored in the Handle message envelope (cf. Figure 5.6) contains
information for a request classification needed for the protocol selection. Thus, a set of
rules for Handle message inspection can be generated that allow an appropriate protocol
selection using a Protocol State Machine (PSM) [132].

Figure 5.22 shows the PSM for selecting the appropriate protocol for Handle request
forwarding within the NDN network as an UML state machine. The state machine
represents the algorithm of forwarding protocol selection of incoming location-dependent
traffic. It does not contain any improvements for faster protocol selection based on partial
Handle message evaluation but rather presents the approach with full Handle message
evaluation in order to show the fundamental principle of our approach. The selection of
protocols is based on following assumptions:

1. Handle Message Evaluation
Decision Input for protocol selection is derived from the Handle Messages and its
data structures. Thus, relevant data structures in the Handle messages may be spread
over multiple location-based data packets and hence we need to reconstruct Handle
messages first.

2. Fast Forwarding
If a protocol selection has been done using the first Handle message of a request, all
Handle messages belonging to the same request context can use this decision. As a
result, a fast forwarding of Handle messages is possible. This is possible, as all Handle
messages that are related to a request, share the same request identifier (ReqId) in each
Handle message.

3. Handle Protocol State Awareness
For requests requiring end-to-end connection setups (e.g., PID creation or update),
NDN PID push is the only valid protocol selection in our approach, as determined
in Definition 5.1. Through observing the state flags in the Handle messages headers,
we can determine whether a Handle message belongs to a state aware end-to-end
connection setup. Interesting state flags are the SessionID indicating the context of
a client-server session or the EC message flag showing the context of an encrypted
end-to-end connection. If a specific set of these state flags is set in the Handle
message, the protocol selection can be done towards NDN PID push.

100

5.3 Approach

4. Envelope-to-Header Evaluation
Our approach presented for Handle message evaluation could perform an envelope-
to-header evaluation (cf. Handle message scheme, Figure 5.5). For this, we would
first evaluate the envelope of the incoming Handle message and afterwards its header.
In location-dependent networks, the envelope are sent first, as packet fragmentation
algorithms start with message sending at the lowest bit index. With a partial evaluation
approach, an improved version of the PSM could be implemented that takes decisions
using partial Handle messages, by evaluating the first bits of the Handle message
to make early decisions on the incoming Handle messages. However, we leave this
optimization for future work and just point out here that our approach offers this
possibility of optimization.

5. Parallel Processing
The approach of PSM allows the parallel processing of data flows based on the
connections. As an intermediate node, the Handle Gateway can process packets and
Handle messages for each client connection in parallel. This allows using parallel
processing capabilities of modern computer systems to increase the throughput.

After stating the assumptions on which selection approach is based, we explain the
decision process in detail. Figure 5.22 depicts the PSM that is used as foundation that
materializes the selection algorithm. For modeling the PSM, a UML state machine diagram
is used [133]. The decision flow is from top to bottom. In the initial state, data packets arrive
at the incoming location-dependent network interface of the Handle Gateway. The data
packets originating from a UDP or TCP connection are first collected in a buffer, in order
to reconstruct the Handle message. The reconstruction for location-based data packets is
depicted in the upper gray box @ (Message Reconstruction). After the Handle message has
been reconstructed, a look up at the decision state table is made using the request identifier
for the Handle message (ReqId). In the decision state table, former protocol decisions
for Handle messages in the same request context are stored. If an entry for the Handle
message’s request identifier is found in the table, the protocol decision is immediately
applied, as further evaluation would lead to the same decision result due to the inner protocol
state of the Handle protocols. Additionally, the Handle protocol features a fragmentation
mechanism, called truncation for Handle messages [38], in order to optimize packet flows
in the location-based network. If there is no match in the decision state table, further
evaluation of the Handle message is needed. For this, the fragmented Handle messages need
be reconstructed, in order to evaluate Handle messages on the application protocol layer.
This is depicted in the lower gray box @ (Reversing Message Truncation). After reversing
the message truncation, the message envelopes are checked using low-numbered index bits.
If the message is encrypted (EC bit set) or a session identifier is contained in the envelope,
the message is part of an end-to-end connection and requires NDN PID push as protocol for
transport. Finally, the message header is inspected. All requests that retrieve information
from Handle data sources and that do not imply a state change on the Handle data source
side or even the original LHS are suitable for NDN PID push. In Table 5.1, an overview of
Handle OpCodes is given. All OpCodes retrieving information from a Handle data source,

101

Chapter 5 Location-Independent Persistent Identifiers

without altering the internal state of the data source and thus suitable for NDN PID pull, are
marked with an asterisk (*) in the table. Following Table 5.1, we can see that the OpCodes
for Handle resolution (OC_RESOLUTION) and Handle enumeration (OC_LIST_HANDLES) are
included for NDN PID pull resolution. Handle resolution and Handle value listing form
the vast majority of requests that the Handle PID system is facing. Thus, most of the
Handle message forwarding protocol decisions are made for NDN PID pull and as we show
in Figure 5.42, message forwarding will be accelerated as much as possible in the NDN
space. As a result, forwarding incoming PID traffic from the location-dependent to the
location-independent space is fast, efficient and reduces overhead. All protocol decisions
are stored in the decision state table if the Handle message contains a request identifier with
an expiration time stamp for table clean up. The Handle message is then either forwarded
with NDN PID push or the request is rewritten into a NDN PID pull request that is sent to
the LHS via NDN.

102

5.3 Approach

1

Packet Arrived

o Message Reconstruction

Packet Buffered

Packet Buffer Created

entry/ checkBufferExists()
do / checkBufferContent(PacketBuffer)
exit / addPacketToBuffer(Packet)

entry/ allocateBufferMemory()
do / initialize(PacketBuffer)
exit / returnPacketBuffer()

rebuildHandleMessage(Buffer)

[Packet Missing]

wasPIDPushDecidedBefore(ReqID)

[Message Complete]

Handle Message
(Part) Constructed

isHandleRequestIDKnown(ReqID)

[Yes]

[No]

Undecided Handle
(Part) Message

[No]

isTruncationBitFlagSet
(MessageFlag)

e Reversing Message Truncation

Message Buffer Created

entry/ allocateBufferMemory()
do / Initialize(MessageBuffer)
exit / returnMessageBuffer()

Complete Handle

[Completete])\

[Incomplete]

Handle Message Buffered

rebuildHandleMessage
(MessageBuffer)

entry/ isBufferPresentForSequencelD(SeqID)
do / CheckBufferContent(MessageBuffer)
exit / addMessageToBuffer(HandleMessage)

Message Constructed

isEncryptionBitFlagSet(MessageFlag)

IsReadOnlyOpCodePresent

[Yes] [Yes] [No]
NDN PID Push Plaintext Handle
Selected Message Available
isSessionIDPresent
[No] (MessageEnvelope)
L_| NDNPIDPull [Yes]
Selected
[Noj
No End-To-End
Message
(MessageBody)
[Noj
[Yes]

Decision Saved For Request ID

entry/ isDecisionEntryExisting(Sender, Reqld)
do / saveDecision(Sender, Reqld, Decision)
exit / sendNDNMessage(HandleMessage)

Figure 5.22: UML State Machine for Protocol Selection of Incoming Gateway Traffic

103

Chapter 5 Location-Independent Persistent Identifiers

5.3.4.2 Outgoing Requests

Outgoing requests are sent from Handle clients within the NDN network to LHS and the
GHR in the location-dependent classic network. For this, the incoming requests wrapped
in different NDN PID protocols have to be repacked into the Handle application protocol.
To perform a correct routing between the inner peers located within the NDN network and
the outer Handle data sources in the classic network, the maintenance of a stateful routing is
needed. In contrast to incoming requests, where the protocol decision for forwarding is done
centrally at the Handle Gateway, the clients located in the NDN network individually decide
on the protocol usage based on the request they issue. Hence, only a static routing and
forwarding mechanism is needed for outgoing requests that allows applying an algorithm
with reduced complexity.

For outgoing requests, using NDN PID push, the Handle messages encoded in the
interests need to be transferred into the Handle messages transported by UDP or TCP. For
the client located inside the NDN network, the Handle Gateway remains hidden, when
using the combination of Handle prefix and suffix. In the case for all prefixes that are
registered for gateway-based routing, the requests are forwarded in the NDN network using
the Handle prefix as NDN prefix. For routing the information from the Handle Gateway to
the Handle data sources within the location-based network, the Handle prefix is resolved
into the IP-address of the data source using the resolution information from the GHR. As
the transmission unit of the NDN PID push protocol contains the data name of the sending
NDN client (cf. Figure 5.11), the routing information can be completed for Handle message
forwarding. In Figure 5.23, three different NDN naming scenarios are depicted for using
the Handle Gateway from the NDN network employing NDN PID push. In scenario @,
the Handle Gateway is used in the same way as any other LHS in NDN employing the
Handle/NDN prefix as globally routable name (cf. Figure 5.9). When using the NDN prefix
in this way, the Handle Gateway acts transparently for the NDN Handle client and serves
forwarded requests and responses in the same way as other LHS in the NDN space. In
scenario @, the Handle Gateway uses an explicit NDN name for forwarding requests. In this
case, the usage of the gateway is visible to the client by explicitly using the gateway_name
in front of the NDN PID push interest. Scenario ® shows the explicit selection of a Handle
server in the location-dependent network space, using an IP-address.

104

5.3 Approach

Prefix registered as ST .
¢globally-routable name’S' | / <prefix> I /_<DATA> |

@puicuay name s T/ Cgatenay_nanes | [/ <prefix> | / <oATA> |

gateway name and - -
IP-address usage for / <gateway_name> |/ <ip_address>| / <prefix> | / <DATA> |
distinct server access

Figure 5.23: NDN Naming Scenarios For Outbound Handle Gateway Usage With NDN PID
Push

After addressing the Handle Gateway in different scenarios, using different data names,
we continue with the forwarding process of NDN PID push data from the NDN space to
the location-dependent space. NDN PID push and the native location-dependent Handle
protocol are based on the paradigm of sending Handle messages as segmented payload in
transmission units (cf. Figure 5.11) or data packets. As a result, a full reconstruction of
Handle messages is not needed before forwarding the request. It is sufficient to determine
the location of the data source within the location-dependent network and then forward the
payload of the NDN PID push transmission unit in a TCP or UDP data packet. By this, the
Handle Gateway and the data source in the location-based network have established a native
Handle protocol connection and exchange data to the NDN client using NDN PID push.
With a direct forwarding of packet payloads, all requests and response information can be
streamed forward and backward between the network areas.

The payload forwarding from NDN PID push to location-based native Handle protocol is
depicted as a UML PSM in Figure 5.24. The core of the forwarding process boils down to
three major steps:

1. Determining Target Network Location
With the extracted Handle prefix from the NDN PID pull transmission unit data name
in the NDN interest, the network location of the LHS needs to be determined. For
this, the Handle Gateway queries the GHR to obtain the IP-address of the forwarding
target which could be a LHS, a LHS mirror or one of the GHR servers.

2. Manage Connections & Routing Information
After obtaining the network location of the forwarding Handle target, a connection has
to be setup using the native Handle protocol. Additionally, the routing information,
which consists of a triple of sender NDN name, receiver NDN name and the
[P-address, has to be stored in the Routing Info Table, to reuse forwarding target
location information of all incoming transmission units and data packets.

3. Forward Payloads
The payloads containing the Handle message fragments need to be encoded and
decoded into NDN interests, as described in the Section 5.3.3.1.

105

Chapter 5 Location-Independent Persistent Identifiers

?

Transmission Unit
Arrived

checkRoutingTable

(originName, receiverName)

[No]

directServer
ConnectionSelected()

[No] [Yes] [Yes]

lookupHandleSystemIP
(receiverName)

Handle System
IP-Address found

addRoutingInfoTable forwardPayload
(originName, (transmissionUnitPayload)
receiverName,
ipAddress)

Routing

Information Stored

forwardPayload
(transmissionUnitPayload)

Binary Payload
Forwarded

°

Figure 5.24: UML State Machine for Forwarding Outgoing Binary Payload Delivered
Through NDN PID Push To Location-Dependent Handle Systems

We have now a look at forwarding NDN PID push based requests from the NDN network
to a location-dependent classic network and the response back in the opposite direction. For
each NDN PID pull request, wrapped into a NDN interest, an outbound connection to a
Handle data source (LHS or GHR) is established and the data packets are forwarded using
the native Handle protocol. If a response is sent back over the established connection to the
Handle Gateway, it is wrapped into a NDN PID pull data packet (cf. Figure 5.18). Similar
to the previously proposed approach of NDN PID push forwarding, a determination of the
network location of the forwarding target in the location-dependent network is needed to
create a routing info table.

106

5.3 Approach

For using the Handle Gateway in conjunction with the NDN PID pull protocol, different
naming scenarios are available to the NDN client, depicted in Figure 5.25. In contrast to
the usage of the Handle Gateway through NDN PID push, it provides a slight modification
(annotated as gray boxes) concerning the last part of the data name, which contains the PID
suffix. It is needed, as NDN PID pull requires the full Handle PID including the prefix and
the suffix for a globally-routable NDN data access of a PID (cf. Figure 5.17).

Prefix registered as ’S """""""""""""""""""""""""

globally-routable name | : | / <prefix> | J SSUFFDD |

ﬁ / <gateway_name> | | / <prefix> | / <suffix> |

gateway name usage
for explicit use

gateway name and - - -
IP-address usage for / <gateway_name> |/ <1p_addr‘ess>| / <prefix> | / <suffix> |

distinct server access

Figure 5.25: NDN Naming Scenarios For Outbound Handle Gateway Usage With NDN PID
Pull

Figure 5.26 depicts a UML PSM for NDN PID pull request forwarding that is similar to
Figure 5.24. The acquisition and management of the forwarding information in the Routing
Info Table is identical. However, the request formulated in the NDN data name of the
interest needs to be forwarded as a native Handle message. For this, the interest has to
be reformulated as a Handle request. As a result, a streaming of request information into
Handle messages is not directly possible. The request information has to be stored and
forwarded as a complete request using the native location-dependent Handle protocol. On
the one hand, this degrades the Handle Gateway to a store-and-forward relay, with decreased
forwarding throughput, but on the other hand, NDN PID pull messages are very compact
due to their limitation for read-only information retrieval. Thus, only one interest and a
low number of data packets (e.g., one to five, cf. Section 5.42) is required for information
forwarding. Hence, a store-and-forward architecture provides almost no disadvantage for
NDN PID pull forwarding in comparison to a payload streaming approach.

107

Chapter 5 Location-Independent Persistent Identifiers

?

NDN PID Pull
Interest Arrived

[No]

checkRoutingTable
(originName, receiverName)

directServer

ConnectionSelected()

[No] [Yes]

[Yes]

lookupHandleSystemIP
(receiverName)

Handle System

IP-Address found

addRoutinginfoTable
(originName,
receiverName,
ipAddress)

Routing
Information Stored

createHandleRequest
(suffix, prefix, parameter)

createHandleRequest
(suffix, prefix, parameter)

Handle Request
Created

sendHandleRequest
(request, ipAddress)

Handle Request
Sent

Figure 5.26: UML State Machine for Forwarding Outgoing Binary Payload Delivered

®

Through NDN PID Pull To Location-Dependent Handle Systems

5.4 Implementation

In order to demonstrate the feasibility of a location-independent PID system that is based on
NDN, a proof-of-concept implementation is outlined in this section. The implementation
uses Java 1.7 for realizing and integrating all user land tools of the NDN and Handle
software stack. The NDN components of the network stack are realized in C++ by the NDN
research community and serve as a foundation for executing NDN network communication.
Major software components are derived from our software stack presented in the IEEE paper

108

5.4 Implementation

from 2015 [104]. In contrast to the paper, the software components have been updated to
more recent versions in order to anticipate the progress of the NDN research project and
also to incorporate new techniques in the Handle System. As a foundation, the source code
base of Handle Server Version 8.1.1 from CNRI [134] is used in conjunction with the Java
NDN application bindings jNDN 0.12 [135]. For operating the NDN network, unmodified
versions of the NDN network stack are used in conjunction with a NLSR daemon for NDN
data name prefix propagation. NFD in version 0.4.1 is realizing the NDN node with all
necessary structures like PIT, FIB, CS and application faces [136]. Name management and
name prefix propagation in our NDN network is done by NLSR in version 0.2.2 [137].

5.4.1 NDN-Enabled Handle Server

The Handle Server is responsible for storing and managing the persistent identifiers. It has
been designed by CNRI as a modular architecture with defined subsystems that are built
for fast and concurrent data access. The Handle Server incorporates the Handle Client
library that is responsible for interacting with any existing Handle System using TCP, UDP
or HTTP for communication [138]. Besides the client libraries, the Handle server features
subsystems for offering a HTTP-based Representational State Transfer (REST) interface
based on the Java web container Jetty, a subsystem for database access, and numerous small
components responsible for cryptography. To implement the NDN functionality into the
Handle server, software parts that are responsible for PID persistency in databases remain
untouched, as well as native Handle protocol parts. Hence, instead of changing the technical
architecture of Handle, the NDN part is implemented as an addition to the Handle system.
In order to provide a complete port of the Handle protocol to NDN and thus to allow all
operations to a PID server in NDN, even the complex ones for PID maintenance tasks, a split
approach is needed. This approach is split into the NDN PID push part and the NDN PID
pull part. All implementations are done to the Handle client library that existing software
can make use of NDN without major modification using NDN PID push communication.
However, to make advantage of NDN augmented PID resolution, an extension of the Handle
library is provided with NDN PID pull.

109

Chapter 5 Location-Independent Persistent Identifiers

Webbrowser/
HTTP-Client

Handle-related Software using
the HDL Library

REST API HTTP- Tce ubP | NDN @ & NDN
transp, | G S |
Interfaces
Siﬁtigt ... PID Content
; S HDL Resolver . . . ‘|| Publishing ‘.
contalner\ ..
HDL Library
: NDN
REST API Native Handle Communication i Publishing
Server Manager / Subsystem Wiring
Configuration B Database
StreamTable Provider Database Abstraction
DCT / JSON HDL Bootstrap Cryptographic Handle
Configuration Information Key Pair Database
Legend | Subsysten | Ummodified Classes | | Modified/New Classes | T et

Figure 5.27: Overview of the Handle Server Software Architecture with NDN Additions

We now give a brief explanation of the Handle Server software architecture. An overview
that only contains major subsystems and systems that are needed for an understanding of
the NDN integration into the Handle System is provided in Figure 5.27. The subsystem
for accessing the Handle system as a regular REST-enabled web service is depicted in @.
The REST-API is a recent development and allows interaction with Handle servers from
third-party software [138]. The REST subsystem contains an own Jetty servlet container
that allows executing the Handle service as a standalone web service. This subsystem
should not be mixed up with the Handle proxy server, which is a separate software
product using parts of the server code base. In contrast to the REST-API, the Handle
proxy server is only able to read PIDs and Handle values, while the REST-API allows

110

5.4 Implementation

full administrative and write access. Subsystem @ contains all parts for native Handle
protocol communication. It is responsible for serving incoming requests from Handle
clients and other Handle servers. It implements Handle’s native authentication, session
management, transport encryption and an own system of data queues for message flow
control. This subsystem is in most parts very similar to the software components that
can be found in Handle client software. The core component of this subsystem is the
HDL library for Java. All additions and modifications of the HDL library are explained
in Subsection 5.4.2. Subsystem @ features an own resolver service that is used to query
other servers and the Handle root infrastructure. As clients feature different kinds of
connectivity, the subsystem provides a very aggressive and redundant connectivity, in
order to serve request on the fastest connection available. The primary communication is
done through an interface abstraction that provides communication either through UDP or
TCP. Those interfaces connect to the operating system network interfaces through network
sockets provided by the Java Virtual Machine (VM). As a fall back communication,
the Handle subsystem can also to communicate via HTTP with other Handle servers.
This allows running a Handle server behind a restricted firewall through a HTTP-proxy
server. Subsystem @ is responsible for accessing Handle values and thus also to resolve
Handle PIDs using NDN. It implements the NDN PID pull functionality. Subsection 5.4.4
explains the subsystem in detail. The functionality for starting, stopping and initializing the
Handle server is provided in @. This subsystem is also responsible for daemon threads that
perform housekeeping tasks. The subsystem for configuration management ® provides all
configurations parameters for the other subsystems. These configuration items are stored in
key-value files encoded as DCT or JavaScript Object Notation (JSON). The configuration
contains the IP-addresses and ports for the UDP and TCP interfaces, the role that the
Handle server possesses (primary/secondary site), the database configuration and all homed
prefixes. The subsystem also provides access to the bootstrap information of the Handle
System and to the cryptographic key pair of the server. Subsystem ® provides database
access to read and write Handle values. It features a transaction management all operations
and provides an abstraction layer to use a Java Berkley Database or SQL-like databases like
MySQL or Postgres SQL.

5.4.2 Handle Library Modification for NDN Connectivity

In this subsection, we take a closer look at the native Handle communication subsystem,
in order to give an insight into the necessary extensions and changes that were made to the
Handle server. While Figure 5.27 gives a full software architecture overview, Figure 5.28
provides a detailed view of the native Handle communication subsystem. This subsystem
is responsible for all inbound and outbound network traffic of the Handle server and it is
capable of handling arbitrary Handle commands in the native Handle protocol specified in
RFC 3652 [38].

111

Chapter 5 Location-Independent Persistent Identifiers

-

i Handle-related Software using i

! the HDL Library i

Standard Network Stack
(TCP/UDP)

HTTP TCP Socket Pending Request E NDN NDN
" Trans- : : Net- i
Stack Management ' = :
...... port G Manager | gy
b T | E
TcpInter‘face Udenter‘FaceNdnInterface :|: wf:
H HTTP- TCP Request |b UDP Request |: NDN Request =
:‘ transp. Handler Handler L Handler &l
m M7 ~ MR i E Z :
2| S . S —— e S g

9 HDL Resolver (Request Handler) :

| Happy Eyeballs Resolver |

| Resolver |§

9 .. o —

Native Handle Communication
Server Manager / Subsystem Wiring
a Configuration Database

..

Figure 5.28: Details of the NDN-enabled Native Communication Subsystem

For a better understanding of the native Handle protocol port to NDN, we first explain
how UDP request handling in the Handle server is realized. As we will see in the following,
the handling of Handle protocol messages transported via UDP has shared principles with
NDN PID push that uses NDN interests for data transport. For incoming connections, the
Handle server acquires an UDP socket that listens per default on port 2641 @. The socket
receives all incoming UDP datagrams that contain binary Handle data. As the size of UDP
packets is limited and Handle messages may exceed the size limitation of a UDP datagram,
it can be split into several packets. Thus, the Handle server needs to keep track of incoming
packets and has to assign incoming packets to specific Handle messages and requests. This
is done by a pending request management @ using the request id of the Handle Message
and IP-addresses of incoming datagrams. It is also important that, in contrast to TCP, UDP

112

5.4 Implementation

datagrams are not available in a specific order to the application using the socket [139].
Thus, @ also needs to sort all incoming datagrams into a valid order such that it forms
a valid Handle request for the application. Moreover, the server may simultaneously have
contact to multiple clients and therefore, @ also has to attribute datagrams to specific clients.
This is done by handling the datagrams using the sender IP address encoded in the packet.
If the Handle request is fully reconstructed from a fragmented Handle message, the request
is forwarded by the HDLUdplnterface ® to the UDP Request Handler ®. The UDP request
Handler is now passing the request to the server logic of the Handle Server that is contained
in the HDL library @. It is also responsible for handling the generated Handle response. The
Handle response that contains the answer for the client is decomposed into UDP datagrams
and then sent back to the client using the IP-address and the request id. The UDP data
grams are sent back to the client using the UDP socket ©.

In the following, we have a look at the modifications and extensions that have been
made to the Handle server to provide a NDN-based connectivity. Afterwards, in the
next subsubsection, we describe the implementation of PID push that forms NDN
interface layer ®. The Goal of the NDN native protocol implementation is to provide
an additional connectivity method for the Handle System that is equal to the existing
location-based connection methods. By this, we enable a full dual connectivity of Handle
servers between location-based and location-independent networking. We realize this by
providing new NDN request handlers that are responsible for processing incoming client
requests and a NDN interface abstraction that provides data transport and client-server
connection negotiation and establishment. The first component that needs adaption is
the configuration subsystem @ that is extended to provide NDN-related configuration
items. These configuration items are NFD access data, the global NDN name of the
server and the possibility to configure the NDN interface. Next, the HDL library @ needs
a small modification to provide NDN network connectivity understanding. For this,
a new connection type HDL_SP_NDN is added to the HDL Resolver ®. The Interface
abstraction @ also needs an understanding of the newly integrated interface types. They
provide an instance of the NDN interface for all connections that require HDL_SP_NDN as
protocol for their connection. The effort for changing the Handle server up to now is very
minimalistic, as only the native communication subsystem has been extended so far. In
Appendix A.2.1, we provide the complete patch set of the existing Handle server code
base. It underlines our minimalistic changes to the existing code base that are necessary to
integrate the new NDN connectivity, which is described in Section 5.4.3.

5.4.3 Native Handle Protocol Transport With the NDNInterface

In this section, we describe the implementation of the NDN interface. Our NDN Handle
interface implementation is designed to build an end-to-end connection using the NDN PID
push principle, meaning that a Handle client can connect and access resources on a Handle

113

Chapter 5 Location-Independent Persistent Identifiers

server using a NDN-enabled library. Important for NDN PID push access is the fact that
a specific server is accessed independent from its location. In contrast to that PIDs can be
access independently from a specific server and a network location using NDN PID pull.

For realizing end-to-end connections in NDN, we have to take into account two facts.
First, we want to eliminate NDN round trips in the network transmission to provide fast
data transfer. Secondly, we want to use all available routes from the client to the server to
ensure optimal packet transport. For the first part, we use a single interest-data pair round
trip as minimal NDN node interaction. Thus, we transport data payload from the client to
the server in an interest, which is forwarded by all intermediate NDN nodes without further
processing or caching. This also allows us to directly initiate a connection from the client
to the server. To clear the PITs of intermediate nodes, a response data packet is sent from
the server back to the client. This response server packet has an empty body section as we
will see later on. For the second part, we have to anticipate the fact that interests and thus
also data packets may take different routes from the client to the server. Thus, data payloads
encoded in interests may arrive at the other peer in a different order as they were sent out.

Additionally, it is important that the Handle protocol and thus the Handle server
implementation heavily rely on IP addresses for managing their connection, attributing
incoming and outgoing Handle messages and managing Handle locations. Hence, in order
to use the code of the original Handle implementation, we have to find parts of the code
base that are able to handle random packet orders and attribute packets based on their
origins. The Handle UDP interface implementation is generally providing these features
and has an own pending request management. This is helpful, as NDN PID push and
UDP-based transport share these main properties. Thus, we follow the approaches from
literature that propose a light-weight adaption of TCP for NDN (cf. Subsection 4.5.1) but
provide a UDP-like adaption for NDN, in order to transport native Handle messages through
NDN. In contrast to literature [112] that is looking at stateful end-to-end connections with
TCP, we build a stateless connection in UDP manner for the Handle protocol. However,
implementing UDP over NDN is still very complex and to our knowledge, no publications
exist in this area. Luckily, a full implementation of UDP is not needed for Handle message
protocol over NDN, as the NDN integration for NDN PID push is done on application
level. Thus, we focus on the implementation of UDP-like Java API that uses NDN for
data transport and end-to-end connection management, in order to satisfy the needs of
the Handle library. As a result, we can offer NDN connectivity to the client and the
server. And as we have full insight into the Handle protocol specification and the Handle
library source code, we possess the necessary knowledge to manage a NDN connection.
By this, the implementation of UDP-like API for Handle is possible in contrast to a
universal UDP adaption that provides data transport of black box data packets. To start
with the implementation, we patch the Pending Request of the UDP Handle connectivity,
in order to manage incoming data packets on all Handle interfaces (cf. Figure 5.28, @ and
Appendix A.2.1). Then, a native NDN Interface is derived from the UDP interface code but
instead of Java UDP sockets, a custom NDN implementation is provided that features NDN

114

5.4 Implementation

data transport and management using NDN PID push (cf. Appendix A.2.2). In Figure 5.29,
the details of the HDLInterface for NDN PID push are lined out. The figure is used as
overview map for the following explanations and provides more details than Figure 5.28 in
terms of client-server Handle protocol communication over NDN.

| NDN Network Stack |

| NFD |
TFace VTable NFace
.'.'.'.'.'.'.".'.'.‘.'.'.'.'.'.‘.'.‘.‘.'.'.'.'.'.'.'I.'.'.‘.' .'.'.'.'.':'E ‘ i
NDN Trans- ;ﬁ:ns- h Name | Peer B a
....... e | R
| & I
I | I
| [
| B |
| HDLDatagram :: |Identity | :
] | Socket i | NON Name |
. = | i |vip i
Pending Request | |
Management | Cown
In: Datagrams : P Net-
Out: HandleRequest | : Manager :
|Z:ZIIZI.':Z:Z:ZZ:Z:.’:Z:Z:I'...'.'.'.'.'.‘.'.'.‘.'.'.'.'.'.‘."
| HDLNdnInterface]
| #otrequest | [HoLresponse | nNpN Request Handler
Other communication Layer (HDLResolver, Resolver,)
Native Handle Communication

<+——NDN Interest
Subsystem | Unmodified Classes I] Modified/New Classes : NDN Data Packet
Legend <«----API Call

.:):D Datagram Queue [D Data Processor

Figure 5.29: Details of the HDLNDNInterface

The Handle Library uses a Java 7 DatagramSocket for providing UDP connection [140].
In general, the method send(DatagramPacket p) is used for sending datagrams and
receive(DatagramPacket p) is used for receiving datagrams. To provide server
functionality, the DatagramSocket binds to UDP port 2641. The DatagramPacket
contains the IP-address which is set to the receiver IP-address before the datagram is sent
with send(DatagramPacket p). If a DatagramPacket is received, the IP-address
is set to the IP-address of the sender. These semantics allows attributing outgoing
and incoming packets to server connections and clients in the application logic. Thus,
DatagramSocket outlines the semantic that has to be implemented as a drop-in replacement

115

Chapter 5 Location-Independent Persistent Identifiers

for DatagramSocket with NDN. We call our drop-in replacement HdlDatagramSocket,
which is able to transport DatagramPacket-encoded Handle Messages, but no generic
UDP network payloads. To fit with the IP-address semantic, a mapping between a
(virtual) IP-addresses and NDN end-nodes is established called VTable. It contains
a HashMap which provides a mapping between the NDN name and a Virtual Internet
Protocol Address (VIP). The VIP is only used as an internal identifier by the Handle library
program logic for organizing the Datagram transport through NDN. By this, dualism of
NDN name and a virtual IP number, both semantics of IP and NDN can work together in a
closed and application specific system. The NDN Transport component (cf. Figure 5.29)
translates between the semantics using the VTable.

Q /11022/s0pl/netmgr/<VIPAnnouncement> Peer: /cl-172648
VIP: 1.1.1.1

Y

Client Server
NDN Name: /cl-172648 NDN Name: /11022/se@pl
VIP: 1.1.1.1 VIP: 110.22.0.1

4 Peer: /11022/s0pl
VIP: 110.22.0.1

Legend «—— NDN Interest NDN Data Packet

Figure 5.30: NDN PID Push Peer Announcement

The VTable semantic uses randomly generated IP addresses that are generated at each
instantiation of the Handle library in a software. They do not contain any semantic or
represent a real network location — they are just an opaque random identifier that is bound
to the NDN name of the server. To have a working translation between VIP and a NDN
name, the mapping has to be synchronized between the client and the server node before a
successful communication over NDN is possible and Datagrams can be attributed from VIP
to a NDN name. For this, a separate component called NDN NetManager (cf. Figure 5.29)
is implemented that synchronizes VTable entries between NDN nodes before a NDN PID
push communication is established. This component has an own NDN communication
called NFace, which is used for sending out VTable mappings called VIPAnnouncements.
As the communication of NFace is taking place on the transport face (TFace) outside the
NDN data transport, an out-of-band synchronization is implemented. Using Figure 5.30, we
explain the VTable synchronization. Before a client can establish a connection to a Handle
Server, the VIP of the server needs to be acquired. For this, the function addPeer (Name
ndn_server _name) is called using the NDN data name of the server. This name can be
derived from the site information and the Handle prefix using NDN PID pull. In this
example, the server sOpl managing the Handle prefix 11022 is contacted on the netmgr
NFace. The client sends a VIPAnnouncement with its own NDN name and its VIP to

116

5.4 Implementation

the server using an NDN interest @. For the transport of VIPAnnouncements in NDN
interests, the representing Java Object is base64-encoded and NDN URL are encoded as
part of the interest name. This is necessary, as the NDN interest packet has no data section
(cf. Subsection 2.7.4). The server receives the VIPAnnouncement and adds the entry to
its VTable. Then, the server returns a response with a NDN data packet to the client
containing its own NDN data name and VIP as VIPAnnouncement @. After the response
has been processed by the client and added to the client VTable, the synchronization is
finished — both VTables contain the same client-server VIP-NDN mapping. This means
that the communication between the client and the server can start using the VIPs, which
are mapped into NDN data names for interest generation and data packet transport.

@ /11022/s6p1/<HDLDatagram>

o !
Client Server

NDN Name: /cl-172648 NDN Name: /11022/s0pl
VipP: 1.1.1.1 o VIP: 110.22.0.1

e/cl—172648/<HDLDatagr‘am>

Legend «—NDN Interest NDN Data Packet <EncodedData>

Figure 5.31: HDLDatagram Transport with NDN PID Push

To transport Handle protocol data through the HdlDatagramSocket, a NDN transport
socket needs to be implemented. It uses NDN interest that are acknowledged through
empty NDN response packets for a synchronous communication. To achieve asynchronous
response handling in the client and the server, responses are sent back with NDN interests
that are directed to the opposite direction. To transport messages of the Handle protocol, the
Handle library decomposes Handle messages into a native packet format that is suitable
for the selected transport. For UDP, the decomposition is done UDP datagrams. Due
to the similarities of NDN PID push and UDP transport, we use the UDP decomposition
functionality of the Handle library to feed our NDN transportation pipeline that is part of
the native Handle communication subsystem. Figure 5.32 depicts the functionality of the
pipeline. The pipeline takes the UDP datagram and wraps its content into HDLDatagram
structures that contain the VIP, the binary payload and the payload size @. Afterwards, the
HDLDatagram is encoded into a NDN data name (® and ®) that is part of the interest
containing the payload data. By using the VTable, the receiver name is determined by the
VIP and then the interest is sent out by the NDN face responsible for transport (TFace @).

117

Chapter 5 Location-Independent Persistent Identifiers

NDN Transport

—>
~e}o} {0} {0 e} {e] e

Legend

a NDN Request Handler a Base64 Serializer
© HDLNdnInterface © N\DNName Encoder
© HDLDatagramSocket @ Trace

° HDLDatagramWrapper <— NDN Interest

< - API Call NDN Data Packet

Figure 5.32: NDN PID Push Pipeline for Decomposing, Encoding and Sending Handle
Messages Over NDN

For receiving Handle protocol messages with NDN PID push, a receiving pipeline is
necessary that is depicted in Figure 5.33. While the sending pipeline works synchronously,
where an API request triggers a series of NDN interests send outs, the receiving pipeline
works event-driven. Therefore, it features a consumer-producer architecture with a
BlockingQueue as buffer between the NDN data receiving, decoding and deserialization
parts (@ to @) and the request processing parts (& to ©) [141]. The data receiving works
in the opposite direction of the sending pipeline. When a NDN interest is received, then
payload is decoded and then deserialized back into a Handle message. To follow the
semantic of the UDP datagram socket, the HDLDatagramSocket replaces the VIP of the
incoming datagrams with the VIP of the sender using the VTable. By this, the Handle
application logic can attribute data to a specific client, although multiple client connections
take place at the same NDN face. The Pending Request Management ® joins together
the Datagrams into Handle protocol messages using the request id encoded in the Handle
protocol header. At the end of the receiving pipeline, the Handle Software is able to process
the message as if it would originate from any other interface. To clear the PITs of all
intermediate NDN nodes, an empty NDN data packet is sent back. This answering packet
is not processed by the sender but it cleans up the PITs in the network NDN network. If no
answering packet would be sent out, the PIT entries automatically expire in the NDN nodes.

118

5.4 Implementation

NDN Transport

—eo! -0 -6 0! ..))). 0~ 0k @k 1@

Legend

° TFace ° Pending Request Mgmt. <«——NDN Interest
9 NDNName Decoder G HDLDatagramSocket NDN Data Packet
9 Base64 Deserializer ﬂ HDLNdnInterface <---- APT Call

o HDLDatagramWrapper ° NDN Request Handler .:[D Datagram Queue

Figure 5.33: NDN PID Push Pipeline for Receiving, Decoding and Composing Handle
Messages Over NDN

5.4.4 PID Publishing Subsystem

The PID Publishing Subsystem realizes the NDN PID push functionality. It accompanies
the existing and new Handle subsystems that realize the native Handle protocol with an
own independent subsystem. By this, the server and the Java Handle library are extended
with new functionality that allows read-only access to Handle values through NDN. This
read-only access allows resolving Handles very fast and efficiently over NDN and it also
permits getting general information on the Handle prefix such as available servers or
authorization information. In Figure 5.34, we provide an overview of the integration of the
NDN publishing subsystem in the existing Handle server software stack. As NDN PID pull
uses interests for Handle information acquisition, it uses an own NDN face for receiving
interest @, which is independent from the faces used for NDN PID push communication.
The interest is forwarded to the InterestHandler, which decodes the data name of the
interest @. As PID pull and PID push may use the Handle prefix as their NDN name prefix
for running their NDN faces, the NDN PID push face checks the length of data name
in order to determine if the data packet is subject of a PID push communication. If the
interest data name does not contain encoded native Handle message protocol packages,
it is a PID pull interest, which needs to be processed by the NDN publishing subsystem.
Then, the Handle value is resolved using the HDLLibrary of the server in @ and a NDN
packet is generated that matches the interest and is later consumed the PIT in the NFD.
To ensure a long-living availability of the Handle Packets in the NDN network, the data
packets have to be compact. Thus, the PayloadEncoder encodes the complete Handle
value into a two-byte padded binary array forming a native NDN binary payload (cf.
Figure 5.35). The EventProcessor @ is responsible for dispatching interests from the NFD
to the InterestHandler and dispatches NDN data packets to the NFD.

119

Chapter 5 Location-Independent Persistent Identifiers

Handle-related Software using
NDN PID Pull Library

NDN Network Stack

NFD
/N
PARIEN
||
<
\V/ ...
e P Ub Liéhihq . .NDN. Face
___ P D
e InterestHandler
e -ftersdces Sy I R
... e;;.e
F == =2== S Payload :i Event §§
... EnCOder‘ Pr‘ocessor‘
NDN Publishing
Server Manager / Subsystem Wiring
Configuration Database
StreamTable Provider Database Abstraction
DCT / JSON HDL Bootstrap Cryptographic Handle
Configuration Information Key Pair Database
<«+—NDN Interest
Subsystem I Unmodified Classes | : Modified/New Classes : NDN Data Packet
Legeng B DR v
.:D Data Processor Native Handle Protocol <iL___[\/ REST-API
v

Figure 5.34: NDN Publishing Subsystem in Context of the Handle Server Architecture

In Figure 5.35, the realization of the NDN PID pull communication protocol is depicted.
For retrieving a Handle with all its associated Handle values, the client can use the NDN PID
pull Java library that mimics the API of the Handle library for Handle value retrieval and
has been created for this proof-of-concept implementation. By this, the client cannot only
retrieve Handles that store valid PID information such as target URLs but also administrative
information stored in the LHS. Therefore, the server has registered the Handle prefix as
NDN prefix at its local NFD, in order to receive all interests that have related hosted Handle

120

5.4 Implementation

prefixes. For retrieving a Handle value, the access library decomposes a Handle into its
prefix and suffix. The prefix is used as first part of the NDN data name for the interest.
The Handle suffix is used as second part of the data name in the interest. To avoid a
collision of Handle suffixes with NDN control directives, that are encoded as part of the
data name, the Handle suffix needs to be encoded or escaped before (cf. Figure 5.17).
In our proof-of-concept implementation, we use a base64-encoding that encapsulates the
Handle suffix. With the completion of the interest, the client sends the interest to the server
using the NDN network in step @. The interest is now passed from one intermediate NDN
node to the other and reaches the server. We assume that no CS hit has taken place in the
meantime at any intermediate NFD. The Handle is then resolved by the server. If a Handle
has been found in the local database and its access permissions are set to public read, a
NDN data packet is generated as an answer for the interest. The Handle and its public
values are written into the data packet payload as binary data using Java object serialization
for our proof-of-concept implementation. This allows storing Handle value information
very compactly in a documented format that does not need any additional, time-consuming
mapping. Hence, NDN PID pull data packets are very space efficient in order to satisfy
NDN data structures and CS network caches. To ensure the validity and origin of the data
packet, the private NFD key can be used for signing the data packet before submitting it
to the client in step ®. The data packet containing the Handle values is transported back
to the client by the routes created in the PIT by the intermediate NDN nodes. The clients
receive the data packet and deserializes the binary information into a Handle object suitable
for further processing by Handle-related software. This mechanism allows transporting
complete Handles from the server to the client with a simple binary-only mapping. As we
can see in the following evaluation section, this fast packet composition and data encoding is
very beneficial for the performance and stability of NDN-powered Handle networks relying
on NDN PID pull.

€ /11022/<HandleSuffix>

Y
Server

Client
NDN Name: /11022/

HandleValue
9 (binary encoded)

Legend «— NDN Interest NDN Data Packet

Figure 5.35: Handle Value Retrieval with NDN PID Pull

121

Chapter 5 Location-Independent Persistent Identifiers

5.5 Evaluation

In this section, we provide an evaluation for our approaches on location-independent
persistent identifiers. First, we describe the simulation environment used for the evaluation
in the subsequent section. Secondly, we provide an evaluation of NDN PID push in
Section 5.5.3. Finally, we provide an evaluation for NDN PID pull in Section 5.5.4.

5.5.1 Simulator Environment

For evaluating the approaches presented in the preceding sections, we use a dedicated
NDN network evaluation and simulation environment. Currently, two major simulation
environments are available. A simulation for low-level NDN network activities is
ndnSIM 2.0 [142], which is based on ns-3, a discrete-event network simulator for Internet
systems [143]. NdnSIM implements all basic operations of NDN and allows simulating
NDN networks with NFDs, network components, as well as generators for different data
request distributions. NdnSIM is implemented in C++ and simulates all NFD components
like PIT, FIB and Faces as modular components in the simulation. For this, ndnSIM contains
C++-APIs that are compatible with the native C++ NDN development libraries ndn-cxx
(NDN C++ library with eXperimental eXtensions) [144]. For using Python applications
in ndnSIM, pyNDN is available as C++-Python-Bindings for ndn-cxx [145]. By using
the ndnSIM simulation environment, C++ and Python applications can be used as native
application in simulated network environments. For this, the application make use of the
compatible simulator APIs, instead of the regular APIs provided by the NFD, which are
handling the communication to the NDN network in real deployments.

Although ndnSIM has a large impact on the research community, it limits researchers
to using C++ compatible applications, as compatible APIs are not available for other
programming languages. Furthermore, the simulation environment is simplified in
comparison to NDN deployments on real computers running an operating system as
intermediate layer between applications for providing hardware-abstraction. In ndnSIM,
there are no intermediate layers integrated that simulate inter-process communication
which is used to connect the NDN-applications to the NFD through a Unix domain
socket / Inter-Process Communication (IPC) socket. Hence, for assessing our NDN-enabled
Handle stack, we use a different simulator called Mini-NDN [146] that also has a large
impact on the NDN research community and focus on the simulation of networks on a
higher perspective using the virtualization abilities of the Linux operating systems. Mini-
NDN is based on Mininet [147] [148], which emulates an entire NDN network using all
NDN libraries and tools like NFD and NLSR on a single Linux system. For this, Mini-NDN
uses process-based and network namespace virtualization of the Linux kernel and provides
for each virtual host an own private network interface and virtual network switches based
on SDN technology using the reference implementation of Open vSwitch and OpenFlow.

122

5.5 Evaluation

Virtual hosts can be connected through a configurable network topology that includes
setups of connection speeds, packet loss percentages and transmission delays. By this,
entire NDN networks can be emulated that are running the Handle client and LHS on
different virtual hosts. This allows drawing conclusions on the expected performance of
the location-independent PID system and to provide an analysis of each layer (Handle
system, NDN stack, operating system overhead and residuals) and its performance impacts.
Additionally, this approach allows integrating NDN-enabled software that is using an
arbitrary NDN-library and programming languages. Hence, we can employ our NDN
Handle stack implemented in Java using jNDN [135] on Mini-NDN.

To eliminate the overhead of full virtualization, we use a physical computer to execute the
evaluation runs with Mini-NDN. As Mini-NDN uses Mininet as backend, we rely on Linux
operating system namespace virtualization, which is similar to Docker. It provides process
and network isolation on the kernel side without introducing significant overhead to simulate
multiple hosts and a virtual network [149]. For the evaluation, an Intel i5-2400 processor
with an Intel Q65 Express chipset is used with 16GB RAM running Ubuntu 14.04.1 64bit
with Linux Kernel 3.16.0-53-generic. The system is equipped with a Samsung EVO 850
Solid State Disk (SSD) drive that delivers 520MB/s read and S00MB/s write performance.
Mini-NDN in version 0.1.1. [146] was used in conjunction with NFD version 0.4.1 [136].

5.5.2 Evaluation Input Data Preparation

After selecting the simulation software, we have to make realistic assumptions on the
network topology. This is important for a comparison of our approaches with the classic
location-based Handle System. For a realistic Handle network topology, we want to
simulate an average network path between a Handle client and a primary LHS. As Handle
servers are located all over the world, we have to choose servers that are frequently used
by researchers. To get a real-world sample of PID resolutions, we employ anonymized
telemetric data from one of the official Handle HTTP-proxies operated by GWDG. The data
collection process that we accomplished in 2014 is depicted in Figure 5.36. The official
HTTP-Handle proxy operates on the domain http(s)://hdl.handle.net. To balance
the user load, a round-robin DNS, hosting the domain, is distributing each request to one
of three Handle HTTP-proxy servers with a probability of 33% @. One of these HTTP-
proxies performing PID resolutions is located at the GWDG data center ® and produces
telemetric data including the Handle prefix of the user request. The HTTP-proxy performs
the resolution in behalf of the HTTP-client (cf. Figure 2.8) ®. The telemetric data is strictly
anonymized in a way that a time stamp, the Handle prefix, the character count of the PID
target URL and a salted hash of the Handle suffix are stored @. In order to determine
the character count (URL length) of a PID target URL, a mining tool @ is used, which is
explained in detail in Section 6.5.1.1. The target URL of a PID is deleted after determining
its character count, as we are not interested in the URL and it may contain sensitive user

123

Chapter 5 Location-Independent Persistent Identifiers

data. The hashed version of the suffix is stored in the sample to offer the possibility to
count unique PID resolutions, while not exposing the full PID request for data analytics.
By this, we can draw a sample that is based on 33% of all Handle PID resolution requests
performed by hdl.handle.net. Furthermore, any identifying data like User-Agent String,
user [P-address or the full HTTP-request has been deleted in the anonymization process to
ensure confidentiality of user log data and to comply with German and EU data protection
regulations. Thus, we only use anonymized telemetric data as input and present aggregated
numbers that do not allow identification of users from hdl.handle.net. Our data sample
contains 22,757,503 PID resolution requests from hdl.handle.net in a time span of 100 days
(June 2014 - August 2014). We create a Python program for classifying all PID resolution
requests towards their Handle prefixes (cf. Appendix A.3.1). This aggregation was also
used for our analysis in the NAS 2015 paper [104].

GHR
e Global Handle
Registry
33% LHS
[\ [——\ 1 3
Webbrowser Handle HTTP-Proxy
servlet operated PID DB
0 by GWDG Local Handle
System
e Anonymization 9

[——

round-robin DNS
(hdl.handle.net)

Minera
Handle Miner

| time stamp, prefix, sizeof(targetURL), hash(suffix + salt) |

Figure 5.36: Acquisition of Data Samples for Real-World PID Resolution

5.5.2.1 Network Hop Calculation

For network hop count, we use the definition by [150], which donates that a hop is every
router a network packet (or in case of UDP a datagram) passes while travelling from its
origin to the source. We follow the extended definition of a network hop for NDN as
proposed by the NDN research community [11] [151] and add a NDN NFD as a counting
occurrence identically to a location-based network router. Thus, a hop count of two
means that a network packet has traveled through two routers in the location-based case

124

5.5 Evaluation

or through two NFDs in the NDN case. By this, extension, we provide a comparability
between location-based and NDN network scenarios. After the classification of the requests
according to their PID prefixes, we measure the network hops between a measurement
server, and all primary LHS associated to the respective Handle prefixes that we extracted
from the anonymized telemetric data from 2014. For this, we first need to extract the IP-
addresses of all primary Handle LHS by using the public REST API of the GHR. The script
for extracting the IP-addresses of the primary site is available in appendix A.3.2. Then, we
use another script for counting the hops between the primary LHS and our server located
at the same data center network segment at the GWDG as the official Handle HTTP-proxy
operated by GWDG. The script for calculating the hop count is available in appendix A.3.2.
We can estimate the hop count between the official Handle HTTP-proxy and the primary
LHS, which is serving Handles for a specific Handle prefix. Our measurement server
is located at the GWDG datacenter in the same network segment as the official Handle
HTTP-proxy operated by GWDG. With this setup in place, we have the identical network
topology for determining the network counts, as the official Handle installation uses for
their operative HTTP resolution services. Using the acquired network hop counts, we can
set up a network topology in the Mini-NDN simulator that is very close the real-world
topology concerning hop count and packet latency for average resolution cases. As we are
interested in the average performance, we have to condense the observed wide variety of
network hop counts to an average network hop count number. For calculating the average
hop count as parameter for our simulation, we use the weighted mean, which includes
the number of successful PID resolutions per prefix. Thus, we can determine the average
network path length with:

n
_ Li= WiXi

=
Z?:1Wi ’

where %, is the weighted arithmetic mean of hops and w; is the percentage divided by 100
of all collected measurements of successful PID resolutions. The collected measurements
are attributed to a Handle prefix with the rank i. The variable x; is the number of hops
between the primary LHS, hosting a Handle prefix and our measurements server.

125

Chapter 5 Location-Independent Persistent Identifiers

Rank | Prefix Hits | Percent Hops
(&) (wi) (xi)
1 Prefix-A 3,848,567 | 16.9112 10
2 Prefix-B 1,882,874 | 8.2736 12
3 Prefix-C 1,571,502 | 6.9054 0
corr. 14
4 Prefix-D 985,922 | 4.3323 10
5 Prefix-E 862,209 | 3.7887 13
6 Prefix-F 855,999 | 3.7614 9
7 Prefix-G 344,398 | 1.5133 15
8 Prefix-H 301,685 | 1.3257 21
9 Prefix-I 301,667 | 1.3256 12
10 | Prefix-J 264,584 | 1.1626 21
11 Prefix-K 256,810 | 1.1285 16
12 | Prefix-L 232,642 | 1.0223 27
13 | Prefix-M 230,000 | 1.0107 12

Table 5.3: Network Hop Calculation for the Top-10 Handle Prefixes

In Table 5.3, we see an excerpt of the first 13 ranks from the classification of Handle PID
resolution requests according to their Handle prefixes, based on the data that was collected as
depicted in Figure 5.36. After rank 13, the amount of PID resolutions attributed to a specific
Handle prefix drops below one percent (cf. Section 6.5.1.1 and Figure 6.12). The full data
is available in appendix A.3.3.

We observe for Prefix-C, located on rank three, a hop count of zero. The hop count of
zero is correct, as the GWDG operates own Handle prefixes in the same data center than the
official HTTP Handle proxy. Furthermore, our measurement server is located at the same
data center and in the same network segment. Thus, the traffic between the servers is not
routed between network segments and as a result, the hop count is zero. The observation that
a primary LHS is located in the same network segment as one of the official Handle HTTP
proxies is very unlikely if we take into consideration as over 12,000 Handle prefixes running
on LHS already exist in 2014 (cf. Table 2.1). Hence, we replace the hop length of the
occurrence of Prefix-C on rank three with the (unweighted) arithmetic mean x = 14.28 ~ 14
of all hop lengths.

Beside this observation, we can see in the data that the Prefix-A and Prefix-C, which are
operated by the GWDG, are located in the top ten although we would expect a different
distribution for round-robin DNS assignment that was deployed for the domain name
hdl.handle.net at the time of data collection. We assume that the organizations using both
prefixes for PID tagging did not use the domain name hdl.handle.net and thus a round-robin
assignment of the HTTP Handle proxies, but rather circumvent round-robin assignment by

126

5.5 Evaluation

directly using the [P-address of the GWDG PID-HTTP-proxy server. This observation is not
unusual, as data repository administrators use this strategy for reducing the response time
due to shorter data transmission paths. We can assume that at the time of data collection
in summer 2014, repository administrators located closer to the other official HTTP Handle
proxies (mainly beyond the Atlantic) applied these strategies as well.

As a result, we can compute the weighted mean of the hop counts X, = 12.8626 ~ 13.
Hence, x,, =13 is used as a standard network hop count in Mini-NDN simulation for
evaluating our approach.

5.5.3 Native Handle Communication Using NDN PID Push

In this section, we evaluate the native Handle protocol communication using NDN with
NDN PID push communication. For the evaluation, we setup a serial chain of network
hosts with a length of n nodes within the Mini-NDN. The complete setup is depicted in
Figure 5.37 and the source codes for setting up the evaluation environment are available
in Appendix A.3.4 and A.3.5. In the upper part of the figure, the NDN simulation scenario
is depicted, while the lower part shows the location-based simulation scenario using TCP
transport. By this, we simulate the transport network between a Handle HTTP proxy and
a LHS. Within the network, the native Handle application protocol is used, employing
TCP for the location-based scenarios or NDN PID push for the location-independent
scenarios. The chain starts with a client node that performs Handle typical operations
on a server which is connected to the end of the network chain. The client measures the
time between sending the first packet of the request and receiving the last packet from
the server completing the request. Each host in the chain runs an instance of a NFD for
the location-independent case or a TCP packet forwarder implemented in Java for TCP
communication in the location-dependent scenario. The source code of the TCP packet
forwarder is available in Appendix A.3.6. The usage of TCP user land packet forwarding
is necessary, as there are no kernel space implementations for NDN yet. By this, we
compare NDN- and TCP-based networks with implementations in the Linux user space
to provide a comparison on the same operating system level. Each chain host features
two network cards connected for the previous and successor node of the chain forming a
Classless Inter-Domain Routing (CIDR) /30 network. The simulation is executed for each
case with zero to 13 hops for NDN PID push, UDP and TCP transport of the native handle
protocols.

127

Chapter 5 Location-Independent Persistent Identifiers

e e e e ———

; Location-independent NDN Simulation Scenario

L 1

e
|

} Linux Linux Linux

} Client Intermediate Node N Server

i

: ‘ Benchmark Driver l

| Linux Handle Server

I User ‘ HDL Library l

| Space

|

| ‘ NFD l ‘ NFD l ‘ NFD

| 7
g (S
|

| Linux

: Kernel NIC1 NIC1 NIC2 NIC1

| L 1 I

:L UDP transport UDP transport
Rt
| Location-dependent TCP Simulation Scenario
e
|

! Linux Linux Linux

! Client Intermediate Node N Server

|

I Linux ‘ Benchmark Driver |

| user Handle Server

| Space ‘ HDL Library | ‘ TCP Forwarder |

|

|

|

. S SN O

|

|

: Linux

| Kernel

i ‘ NIC1 NIC1 ‘ ‘ NIC2 NIC1

i

|

|

TCP transport

Figure 5.37: NDN PID Push Evaluation Simulator Setups

For the evaluation, we have three major types of scenarios that we present in the
following. Together with the setups of NDN-based transport and native Handle transport
using TCP, we have in total six evaluations to perform (two for each scenario). We perform
each evaluation with zero to 13 nodes, so we have in total
2 types * 3 scenarios * 13 hop setups = 78 simulator runs, where each run performs at
least 10,000 requests. We describe the results of the following simulation runs and provide

an evaluation in Section 5.5.3.4:

e Create PIDs Authenticated over Encrypted Transport (cf. Section 5.5.3.1)
e Resolve PIDs Authenticated over Encrypted Transport (cf. Section 5.5.3.2)

e Resolve PIDs without Authentication over Plaintext Transport (cf. Section 5.5.3.3)

128

5.5 Evaluation

5.5.3.1 Create PIDs Authenticated over Encrypted Transport

In this scenario, the goal is to create a Handle PID with a target URL using client
authentication and transport encryption. First, the Handle client uses its private key to
authenticate against the Handle server. Secondly, after the successful authentication, an
encrypted Handle session is set up and a Handle value is created. In order to acquire target
URLs for the PID creation evaluation, a realistic set of target URL data is required, which
mimics the structure and length of the target URLs found in real-world PID populations.
In order to generate a target URL data set of 100,000 items with the required attributes,
we extracted randomly selected PIDs from the 2014 telemetric data set that belong to the
prefix 11858, which is owned by the GWDG. Then, the target URLs were extracted with
public APIs using the Minera target URL mining tool (cf. Section 6.5.1.1). To protect the
target URL data of GWDG PID customers, while preserving the length and the structure of
the target URL sample data, all alphabetic characters were permuted randomly with other
alphabetic letters for each target URL.

2 = le8 2:198

+ + + . bt
% 2.0} il) N Loy d i % 2.0} T !
s b b i i br bbbl C
s mosBsssaopanno) .
e N I T L i
4 - + o + ¥ *
8 * + 3 + + * *
2 1.0t g 1.0f + R + .
g g | o # z Dol : .
NIRRT e
Jos & osf o+ 10§ i i % E E
i FERPYIEIIE
L T T — e e oo 0.0
0 1 2 3 4 5 6 7 8 9 10 11 12 5 7 9 10 11 12
Number of Intermediate Nodes Number of Intermedlate Nodes
(a) NDN PID Push (b) Native Handle Protocol using TCP

Figure 5.38: Server Request Processing Time for Authenticated PID Creation

Figure 5.38 shows the processing time for an authenticated PID creation request measured
at the client node. On the left side, we see the result for NDN PID push and on the right side
using the native Handle protocol over TCP. As we can derive from the figure, the native
Handle protocol over TCP outperforms NDN PID push approximately by the factor of 15.
The overhead introduced by every additional node is almost identical in both scenarios,
while TCP has a large slope in comparison to the overhead created by NDN. Furthermore,
the variance on the TCP reference scenario is larger. Both effects of larger slopes and larger
variance can be explained by the connection’s persistent character of TCP that involves an
establishment of connections between nodes using a hand-shake procedure, while NDN

129

Chapter 5 Location-Independent Persistent Identifiers

relies on UDP traffic that does apply connection management and thus outperforms TCP in
the dimension of latency and thus application’s responsiveness.

5.5.3.2 Resolve PIDs Authenticated over Encrypted Transport

The goal of this scenario is to resolve an existing PID using an encrypted and authenticated
session. First, the Handle client uses its private key to authenticate against the Handle server.
Secondly, after the successful authentication, an encrypted Handle session is set up and a
Handle value is resolved against its target URL. The PID database is preloaded with 10,000
unique PIDs containing our generated sample target URLs.

=
1)
©

le8

2.5 2.5

g
<)
g
<)

-
%)
+
+
i
+

vt~ LT} - -+
- { T} -
ot — T} - et
- { T} - -
e - T} - 4+
ot — { T -+
1
. — { T} -+
{1+
v — { T} - i

Iy
o
Ly
=)

+

+
A HE

-H—
Server Request Processing Time (ns)
+ +
+ +
H+
+ o+
+

Server Request Processing Time (ns)
o
'w

o
¢
A+
+
+ + ++

N | FE————
Y| F———
| E—
| T—
i —

-
il i;;ifi
& =2
o 1 2 3 4 5 6 7 8 9 10 11 12 4 5 6

Number of Intermediate Nodes Number of Intermedlate Nodes

(a) NDN PID Push (b) Native Handle Protocol using TCP

+
+ +
[1 I
0.0— n n n n n n n n n L " n 0.0 i

Figure 5.39: Server Request Processing Time for Authenticated PID Resolution

Following Figure 5.39, we can see that the performance is almost identical to the case of
authenticated PID creation (cf. previous section). This is no surprise as the establishment
of an encrypted session after client authentication takes 38 round-trips in the case of TCP,
while the actual resolution request only uses 8 round trips between the client and the server.
This ratio is similar for the NDN PID push use case. Thus, ~75% of the resolution time is
spent for client authentication and setting up an encrypted communication channel, while
the minority of the response time is actually different from the previous scenario. As
we can see, PID resolution is faster than PID creation in the NDN PID push case. The
reason behind this is that the Handle server waits for the confirmation of a durable database
write/update before sending an acknowledgment to the client in the PID creation scenario
(cf. Figure 5.27, subsystem ®).

130

5.5 Evaluation

5.5.3.3 Resolve PIDs without Authentication over Plaintext Transport

The goal of this scenario is similar to the previous one. But in contrast, it does not use
authentication or encryption for the PID resolution. Resolving PIDs without authentication
over plaintext transport is applied in the average PID authentication that is performed mostly
between the Handle client and the Handle server and is employed in almost all public PID
resolutions. The PID database is again preloaded with sample PIDs as described in the
previous scenario.

5.51e8 5.5le8

N
[
N
=)

+ 4
+
+

-
[%]
+

+

o
- — { T} - -1
- T} -
o~ {] -
- — {] - e +
. - {] -
s -] -
vt — [T - v
o — [T} - e+
. — { T~ e
PRSI o B
{1+
o — { T — e

I
=)
—
=)

+

+
+

1

R
+ o+ i+

H++ +

+

L ikl

Server Request Processing Time (ns)
Server Request Processing Time (ns)

o
wn
o
8

| I—————
M%ﬂ ++
F I-D—himmm
L

Wl'”—_l} + #++ +H
J>|-|]—HI++++ ++

+
+
k4
¥

0 1 2 3 4 5 6 7 8 9 10 11 12 5 8 9 10 11 12

Number of Intermediate Nodes Number of Intermedlate Nodes

(a) NDN PID Push (b) Native Handle Protocol using TCP

Figure 5.40: Server Request Processing Time for Plain Text PID Resolution I

As we can see in Figure 5.40, unencrypted PID resolution provides a similar outcome in
comparison. In contrast to the two previous scenarios, the response times are faster, which
is due to the absence of authentication and encryption. The difference between the native
Handle protocol using location-based TCP and NDN PID push is persistent at a constant
factor.

5.5.3.4 Comparison of NDN PID Push and TCP-based Native Handle
Communication

In this subsection, we compare the results for NDN PID push and TCP-based native Handle
communication. In Figure 5.41, we provide a direct comparison between NDN PID push
on the left side and the native Handle protocol on the right side. Lower values imply a
better responsiveness for server requests and a higher performance regarding the number of
requests processed in a fixed time range. The figure shows the average processing times for
all three scenarios explained before as a summary. As we can derive from all evaluation

131

Chapter 5 Location-Independent Persistent Identifiers

figures above, NDN PID push is slower than the location-based TCP-based implementation
by an approximate factor of 15.

le8

—
[l
0

a—A TCP Native Create Auth
< TCP Native Resolve Auth
TCP Native Resolve Not Auth

H
(=2
ki
|
|
L
|
|
>
k
|
‘F
g
(=)

= ¥
ES
=
ES

o 4 [y =
o ® =) [N
°o o r w
o © =) [N)

o
IS
o
'S

a—a PID Push Create Auth

- PID Push Resolve Auth =

Ly A

e

Average Server Request Processing Time (ns)
Average Server Request Processing Time (ns)

o
N
e
N

A A A

PID Push Resolve Not Auth I ——— S
%1 5 35 4 5 6 7 & 6 10 11 12 13 0% T 5 5 4 5 6 7 8 9§ 10 11 12 13
Number of Intermediate Nodes Number of Intermediate Nodes
(a) NDN PID Push (b) Native Handle Protocol using TCP

Figure 5.41: Average Server Request Processing Times

This can be explained by the fact that NDN PID push is designed as a client-to-server
protocol that allows direct end-to-end communication without requiring previous knowledge
of the network location of a server. In contrast to our alternative NDN Handle
implementation of NDN PID pull, it does not involve any NDN network caching
capabilities. This is caused by the fact that NDN-based caching is only subject of NDN data
packets but not of NDN interests, the foundation of NDN PID push. Thus, NDN PID push
uses NFDs as a store-and-forward network to transmit native Handle protocol packets from
one NDN node to another. Additionally, it is important to mention that there is an overhead
caused by NDN which leads to a performance penalty and yields worse results in direct
comparison with location-based protocols like TCP or UDP for the NDN PID push case.

5.5.4 PID Publishing using NDN PID Pull

In this section, we evaluate the performance of the NDN PID pull approach. As NDN PID
pull is only capable to perform retrieve operations on Handles and, in contrast to NDN PID
push, cannot perform create, update or delete operations, we only consider PID resolutions
in the evaluation. For this, we start with the scenario presented in Section 5.5.3 and compare
NDN PID pull with an unauthenticated PID resolution using the TCP-based native Handle
protocol. The plots are provided in Figure 5.42.

132

5.5 Evaluation

2,58 2,58

g
o
N
=)

+ 4
+
+

-
5
-
o)

+

+

+
+

=
=)
g
o
+ +
"

+

t

i

;
kS
| %
P o miii - = <

Number of Intermediate Nodes Number of Intermedlate Nodes

R
+ o+

+

Server Request Processing Time (ns)
Server Request Processing Time (ns)

o
5
+
o
8

|-|]—-||-m4++4—++++
kl]—-ww#%# ++

F I-D—hummwr
e

0.0

wlﬂ-w + 4+
bFD—-IWM+#+ ++

ofr |-H+ +
e
N '-m+++++

(a) NDN PID Pull (b) Native Handle Protocol using TCP

Figure 5.42: Server Request Processing Time for Plain Text PID Resolution II

As we can see in Figure 5.42, NDN PID push is able to outperform the native Handle
protocol using location-based TCP when looking at the average resolution times for a serial
network path with variable length. The results are according to our approach, as NDN PID
push matches the semantic level of Handles with the semantic level of object granularity in
NDN. By this, the transition between the logic data structure and the NDN network structure
is very lean and efficient. In contrast, the native Handle protocol breaks down the Handle
request into protocol messages that are further decomposed into TCP data packets which
are sent over an established end-to-end network connection. The end-to-end connection
setup, the data decomposition at the server and the data composition at the client requires
more Central Processing Unit (CPU) time, data structures and states which in the end lead
to a slower response time. This observation highlights an advantage of NDN that offers a
high-level semantics of complex and named data structures in low-level network operations,
leading to faster reaction in cases where simple network semantics requires a more complex
data handling.

While the performance gap between a native Handle protocol stack using TCP and NDN
PID pull is rather small, it is more significant in network scenarios that suffer from unreliable
network connections with TCP packet loss. In order to simulate this, we use the packet
loss feature of Mininet that is behind Mini-NDN. This feature allows dropping a fixed
percentage of data packets in a network connection using netem. Netem is a framework
in the Linux kernel which is capable of simulating faulty network connections with variable
packet delay, loss, corruption and bandwidth impairments. While netem allows different
distribution patterns such as Bernoulli or Gilbert-Elliot, Mininet uses a random distribution
for packet loss. For our scenario, we assume a packet loss of five percent at a random link
between two TCP forwarders or NDN nodes. By this, the connection between the client and
the server is working faulty. Under these conditions, we repeat the experiment depicted in

133

Chapter 5 Location-Independent Persistent Identifiers

Figure 5.42 and perform a non-authorized PID resolving on 10,000 PIDs using NDN PID
pull and native Handle protocol with TCP connectivity.

1.8%€8

=
o
T
.

=
N
T
.

—— NDN PID Pull Resolve

—— NDN PID Pull Resolve (5% packet loss)

a—a TCP Native Resolve Not Auth

v—v TCP Native Resolve Not Auth (5% packet loss)

=
(=)
T
.

o
)
T
s

o
o
T
s

o
iN
T
.

Average Server Request Processing Time (ns)

\

o
o

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Number of Intermediate Nodes

Figure 5.43: Comparison of Average Server Request Processing Times in Packet Loss
Scenarios

In Figure 5.43, we find that NDN provides a significantly shorter response time for PID
resolution than native Handle PID resolution using TCP. This is caused by the better error
correction provided by NDN that is able to anticipate network errors between intermediate
NFDs in contrast to location-based networks that are only able to deliver error correction
on end-to-end base. If a packet loss or network error is detected, the intermediate NFDs
can request a retransmission of data packets from their neighbor node that is in closer
network distance than the data source. By this, the transmission distance of network control
parameters and retransmitted data is shorter and thus transmission is accelerated in networks
with packet loss. Benefiting from this advantage of NDN, NDN PID pull is able to achieve
significantly higher performance in faulty networks.

Another important aspect in the development of NDN is reduction of network load
through implementing network cache mechanisms. In this paragraph, we describe the
impact of the content store-based caching implemented in each NFD on the performance of
NDN PID pull and highlight its importance for parallel connection speed up. For assessing
the parallel connection capability of NDN PID push, we compare the PID resolution time
with the PID resolution using the native location-based Handle protocol over TCP. For the
evaluation of parallel connections, we use a pool of 100.000 PIDs generated with our sample
target URLs and draw a random sample of 10% for each client. Hence, some PIDs in the

134

5.5 Evaluation

samples for each client are overlapping at each other in a small percentage. This leads to
multiple resolutions of a small number of PIDs in the evaluation, which is needed to trigger
cache hits in the NDN network. Each client resolves its PID sample independently at the
server. The resolution of all PIDs is done in parallel and the number of clients resolving
their PID is increased in each experiment.

Following to the design of NDN PID pull, valid resolution results remain in the CS of the
intermediate NFD. If a PID resolution request is sent to the server and has been stated by a
parallel connection before, the resolution response is directly delivered by the intermediate
node from its CS. This design provides two benefits for handling parallel connections faster
in PID resolution. First, efficient network caching answers resolution requests very fast as
the number of network hops is reduced in comparison to a full direct-server connection.
Additionally, CS in NFDs are organized as key-value pair storage backed by memory
databases that retrieve data significantly faster than the databases used in the Handle server
(Berkeley DB, MySQL and Maria DB). Moreover, the caching capacity provided by all
intermediate NDN nodes exceeds the capacity of the built-in memory cache of the Handle
server, leading to a higher cache hit rate and a better coverage of resolution requests for
Last Recently Used (LRU) caching designs. Secondly, the PID resolution requests that are
satisfied through caching are not reaching the Handle server in the case of NDN PID pull, as
the NDN-friendly design is able to fully complete resolution requests from the vanilla NFDs
not running any PID-related software. Thus, as a second effect, the system load of the LHS
caused by the PID resolution requests is reduced and allows faster processing the resolution
requests. This accelerated resolution helps to feed the caches faster, which leads to a better
cache hit rate and faster resolution request processing. This effect is self-amplifying and
grows with the number of parallel connections. As a combination of cache-based PID
resolution responding and Handle server load-reducing side-effects, NDN PID pull delivers
significantly higher performance in parallel connection processing compared to TCP-based
native Handle resolution. Figure 5.44 depicts the accumulated time for all PID resolutions
measured at all involved clients using 10,000 PID for the resolution benchmarking out of
shared PID pool with a size of 100,000 on the Y-axis. For providing a comparison for
different numbers of parallel connections, additional benchmarks are stated on the X-axis
for an increased number of parallel connections. In Figure 5.44, we see that NDN PID pull is
able to fulfill parallel requests for all clients faster than the native not-authenticated Handle
protocol over TCP. Moreover, we observe that NDN-based Handle resolution scales better
than location-based native Handle connectivity with an increase of parallel connections.
This property of superior outscaling for content-consumation from single-instance sources
is a major NDN benefit that is provided by NDN PID pull. In contrast to NDN PID push,
no negative impact causes by an increased network hop count can be observed and the scale
out behaviour of NDN PID pull is similar to the native location-based Handle protocol.

135

Chapter 5 Location-Independent Persistent Identifiers

seconds

700

600

500

400

300

200

100

4JJJJ

parallel connections (90% confidence interval)

mNDN PID Pull

mNative Handle Protocol over TCP

Figure 5.44: Accumulated Resolution Time vs. Number of Clients for 10,000 PID

136

resolutions per Client

Chapter

Location-Independent Data Access using
Persistent Identifiers

While the last chapter provided a solution to make PIDs independent from network locations
through NDN, this chapter aims at accessing location-independent research data through
PIDs. As explained in Definition 2.8, PIDs are simple maintainable identifiers that refer to
digital objects. In their operational realization, PIDs contain metadata and a resolution target
that points to the current location of the digital object. Resolution targets are often stated
as URLs (cf. Figure 2.3) and frequently change over time. Thus, PIDs need continuous
maintenance and supervision. While the effort for every PID is comparatively small,
the effort will increase tremendously with the advancement of e-science and Internet of
Things (IoT), where the number of datasets is rising by magnitudes, as it is already the case
today, where hundreds billions of sensors and large research experiments are subject of PID
assignment. To create maintenance-free PIDs, we propose a new approach for accessing
research data through location-independent technology that is integrated into PIDs. By this,
we eliminate the need for resolution target adjustment by employing location-independent
network technologies such as content-centric and overlay network technology. To show
the validity of our approach, we use the Handle PID system in conjunction with Magnet
Link (cf. Section 2.5) scheme that we extend for the use in NDN. Furthermore, we
extend the Magnet Link scheme with the possibility of storing trust items to secure
location-independent access through cryptographic signatures and certificates. Inside the
Magnet Link, we encode access information for state-of-the-art location-independent access
technology using BitTorrent and NDN that is subject of current research. In contrast to
existing approaches in literature, our approach does not require major modifications of the
Handle PID system and does not suggest a green-field implementation of a next generation
PID system. Thus, our approach embraces the slow change momentum of research data
management and can be integrated into existing PID infrastructure for location-independent
research data dissemination.

Aspects of our approach were presented at the 2016 Federated Conference on Computer
Science and Information Systems (FedCSIS) [51]. In this thesis, we present an improved
and extended version of our approach.

Chapter 6 Location-Independent Data Access using Persistent Identifiers

6.1 Improvements and Benefits

Let us now have a look at the benefits and improvements of our approach for location-
independent data access using persistent identifiers:

1.) Maintenance-free PIDs is an improvement to a PID system that we describe in
this chapter. We create an approach for persistent PID resolution targets which is based
on the content that a PID is linking to and not on its network location. With persistent
content-based resolution targets, an adjustment of PID target URLs is not needed anymore.
This addresses the challenges named in Problem Statement 3 (cf. Chapter 3). Figure 6.1
visualizes the approach of location-independent persistent resolution targets. As we can
see, the prerequisites for accessing data after a successful PID resolution (cf. Figure 6.1, @)
are reduced to the fact that data has to be connected (online) to the Internet. The ephemeral
target URL is replaced by a persistent location-independent access information data set.

location-dependent location-independent
space (where) space (what)
Resolution PID ‘
Request Persistent

’J;\ Identifier
; PID
Service URL Resolution

Service

Fixed Access
Information

o Data g Data

online Access

Figure 6.1: PIDs with Location-Independent Resolution Targets

2.) Trusted data dissemination with PIDs is an additional benefit that we can provide
with the approaches we present in this chapter. For this, we add cryptographic verification
items to the location-independent access information of a PID that allows the verification
of datasets to which the PID is pointing to. This addresses Problem Statement 4. We
create a cryptographic-aided chain of trusted data access that consists of a signed PID
and verification information for PID-tagged downloaded data. This allows attributing PIDs
and disseminated data to trusted parties and disconnecting the authenticity of PIDs and
research data from their network location. Our approach for trusted data access is described
in Section 6.3.2.

138

6.2 Distribution of PID Maintenance Efforts

3.) Long-term access for resources accessible with location-independent networks is a
new benefit we add to the current state-of-the-art. The focus of location-independent data
access technologies, such as BitTorrent or NDN, is currently not on providing long-term data
access. Using the approaches we present in this chapter, data sets that are (only) reachable
through location-independent network technologies can be tagged with a PID. By this,
(large) datasets from the research community stored in next-generation data repositories
using BitTorrent or NDN for research data dissemination can be retrieved in conjunction
with Handle PID (cf. Section 4.6, Academic Torrents). This allows citing of research data
sets in publications applying this new dissemination technology.

6.2 Distribution of PID Maintenance Efforts

As described in Section 2.3, the PID durability and persistency is an effort of the
PID infrastructure operators which use advanced software systems, policies and social
ecosystems to achieve this goal. However, these efforts are only the minor part to have a
working PID functionality. The other part of the PID maintenance effort is on the side of
the data owners, as they have tagged research data with PIDs in the past. In contrast to
the PID infrastructure providers, they have the deep view on the research data. In the best
case, they know the content of the PID-tagged data and have expert knowledge on the data
and the associated metadata, but most important, they know the current location of the data
set in the network. Thus, the data owners or a succeeding organization are responsible for
keeping the PIDs up to date. Hence, the verification and adjustment of the target URL is
the most important part of the PID curation process. As a result, data owners have to accept
the burden of updating and checking the PID regularly. These are the resource consuming
parts of research data curation and dissemination using PIDs, as they are staff-intensive
and require individual processes for each organization. At this point, it is important to
mention that non-technical factors decide on the success of research data curation such as
sufficient founding, qualified staffing and well-designed infrastructure strategies [4]. Hence,
the PID curation efforts and the resources spent for PID checks and updates may become
the limiting factors in the future. Therefore, it is interesting to see whether the PID related
processes and infrastructures for research data management are scaling out sufficiently on
the side of the data owners.

In the following, we have a look at the user statistics for the DOI service in order to
estimate the current effort for PID maintenance and its future development. As an example
for the usage and growth of a real-world PID infrastructure, we consider the DOI system
and evaluate the statistics from DataCite, one of the largest PID infrastructure providers
for DOIs [152]. In Figure 6.2, the numbers of PID assignments and unique successful
resolutions for the DataCite infrastructure are visualized for the time span between 11/2011
and 11/2015. In the line chart of Figure 6.2, a massive increase of PID assignments can
be observed which follows a super-linear pattern. Thus, we can conclude that the usage

139

Chapter 6 Location-Independent Data Access using Persistent Identifiers

of PIDs is rapidly increasing and hence the effort for PID maintenance is growing, too.
With the digital transformation of science, the importance of persistent identification will
grow, leading to a stronger increase of PID assignment. For underlining our argument, we
added the aggregation of the successful DOI PID resolutions to Figure 6.2 [153] [154]. This
figure shows a massive increase in PID-tagged data sets that have been requested by users.
The increases indicate that the role of PIDs becomes more important and follows the trend
line of research data volume increase. Thus, efforts on PID maintenance will follow the
similar patterns and thus, the contributions of this thesis will become even more relevant to
practitioners who are looking for intelligent alternatives to error-prone target URLs.

6*10°
== Unique DOI Resolution Success
— Assigned PIDs
5*16°
4%10°
6
3*10

2¥10°

6
1*10

[L N I-l ----- lI--llII-II.IIIIIIII‘IIl III| |‘||

01/2012 05/2012 01/2013 05/2013 01/2014 05/2014 01/2015 05/2015
11/2011 11/2012 11/2013 11/2014 11/2015

Figure 6.2: PID assignment and unique successful resolution for the DataCite DOI
infrastructure between 11/2011 and 11/2015 [152] [153].

6.3 Approach

Our approach combines the very stable concept of Handle PID with the advantage of
location-independent data access by using a stable access information scheme. In this
way, we reduce the effort for PID maintenance for the data owners by taking advantage of
persistent resolution targets that do not require adjustment as they are independent from
the data locations. Hence, our approach reduces the effort for PID maintenance as regular
checks on the side of the data owners concerning data localization and availability become
obsolete. PIDs that are extended by location-independent access information remain valid
as long as data is online through a location-independent technology like BitTorrent or
NDN. Thus, physical data availability in the network (which is the foundation for data
access) is the only prerequisition for persistent data access and needs to be checked, while

140

6.3 Approach

the content of PID remains untouched. For data owners, checking the online availability
of data is a standard software for service monitoring and is part of a monitoring solution
that can be found in almost every (large) I'T-installation. For storing location-independent
access information in existing Handle PIDs without impairing existing PIDs and their
infrastructure, we extend the non-standardized approach of the Magnet Link scheme.
Magnet Links have already become very popular within the file sharing community, but
need further extension into the domain of research data dissemination and the NDN
domain [47]. To emphasize the advantage of our approach, we do not have to modify the
Handle PID system, which allows a practical integration into the existing Handle system,
but our approach only adds little overhead to PID resolution, as we show in Section 6.5.
Additionally, our approach also contains an extension of the Magnet Link scheme into
the domain of NDN. By this, we provide a novel transport container format for NDN
data access that does not only contain the NDN data name but also cryptographic access
information which supports the verification of data authenticity from arbitrary NDN data
sources like mirror servers or CS in NFDs. As a result, Magnet Links with NDN access
information can be used in other media like websites or E-Mails.

6.3.1 Magnet URI Scheme Extension for NDN

In Section 2.5, we already introduced the Magnet Link URI scheme as being capable
of handling peer-to-peer network technologies like BitTorrent for location-independent
access. In this subsection, we extend the Magnet URI scheme int the domain of NDN. In
contrast to the existing simple URI-based NDN name conventions [63], our contribution
to the Magnet URI scheme is not limited to the identity of digital objects in a NDN
network through a name but it is also able to store auxiliary content information such as
alternative data names, object size and content checksums. Due to missing standardization
and centralized development (e.g., through a technical board), it lacks in adoption from the
latest developments in URN. Hence, we treat the Magnet URI scheme as a variant of URN,
but not as a URN-compliant adaption.

By looking at Section 2.5, we recall that a Magnet URI has the following form:

magnet: 7xt=urn:<System>:<Access Information>,

where magnet: is the URI scheme for a Magnet Link and all subsequent keys after
the “?” contain information about the digital object in the form of a key-value dictionary
concatenated by the “&” character. These keys may contain location-based access URLs
or descriptive information that is needed to access a digital object independently from its
location.

For encoding location-independent access information using NDN, we provide a xt-key
extension that is announcing a Magnet Link URI against a scheme handler for retrieving

141

Chapter 6 Location-Independent Data Access using Persistent Identifiers

data over a NDN network. It provides NDN access information for the digital object within
the NDN space.
The access information xt-key extension we provide for NDN is

xt=urn:ndn:<DATANAME>,

where <DATANAME> is a NDN data name according to the NDN namespace conventions [63]
pointing to the digital object.

In Table 6.1, we provide an overview of different Magnet URI scheme xt-keys that are
assigned to different content exchange platforms. Our contributions for NDN data access
in row five is printed in bold fonts. In the following subsections, we will also in work with
the BitTorrent xt-keys (4) and provide more xt-key extensions for realizing a trusted data
dissemination through PID.

Nr. | System URN | Value
1 | Gnutella2 shal | file hash (SHA-1)
2 | Gnutella2 tiger | file hash (Tiger Tree Hash)
3 | Kazaa kzhash | file hash (proprietary)
4 | BitTorrent btih | unique file identifier (info hash)
5 | NDN Access ndn data name

Table 6.1: Magnet URI Scheme Extension (in bold letters) [51]

6.3.2 Magnet URI Scheme Extension for Trusted Data Access

For trusted access in location-independent networks such as BitTorrent and NDN, the
principle that trusted network locations serve trusted data does not hold any longer.
Hence, we have to add cryptographic data to the access information which allows a direct
verification of the data. For this, we propose an approach for a long-term data access trust

chain that uses PIDs. The PIDs are used in the trust chain for the following purposes:
1. Bootstrapping the trust chain by using the PKI of the Handle system that provides a

set of pre-installed certificates from trusted parties.

2. Transporting the access information of the actual research data.

3. Transporting the cryptographic signature of the research data.

4. Transporting the access information for obtaining the certificate for research data
signature verification.

142

6.3 Approach

Trusted Data Access Chain

° |

PID verify signed provide content verify LI
root A (research)
. s PID PID access certificate data

certificates ——— — — data

===

©
L5
7
Legend
@ bootstrapping: PID root certificates @ request data signature certificate
© request PID content (resolution) © obtain data signature certificate
[3) verify PID signature and obtain: ©® request (research) data

e PID signature

e data access information

e data signature

e data signature certificate
access information

@ obtain (research) data and verify it

Figure 6.3: Trusted Long-Term Location-Independent Access Through using PIDs

In Figure 6.3, the trusted access chain is depicted. It assures that data has been created or
published for dissemination only by (known) trusted parties. In the step @, the user obtains
a set of pre-installed certificates belonging to trusted PID infrastructure providers. This set
of trusted certificates can be included into the PID software package. In step @, the PID is
requested for resolution.

The result of the PID resolution process is returned in step ®. Now, the user obtains the
Magnet Link stored in the PID together with the PID signatures which has been created by
the PID creator. The certificate for verifying the PID signature can be obtained from the
LHS (e.g. through NDN PID pull) and is signed by one of the owners of the pre-installed
certificate set. With this information, the genuineness of the PID content can be verified.
The Magnet Link in the PID contains:

e data access information
e data signature
e data signature certificate access information

In step @, the certificate for verifying the data signature is requested from the
location-independent network using the access information in the Magnet Link. After
obtaining the certificate in step @, the validity of the certificate can be verified either using

143

Chapter 6 Location-Independent Data Access using Persistent Identifiers

the pre-installed Handle certificates or any other established Internet PKI. In step ®, the
user requests the (research) data from the location-independent network using the access
information in the Magnet Link. After obtaining the data in step @, it can be verified using
the signature stored in the Magnet Link and the data verification certificate obtained in
step @ and ©.

The Magnet Link data plays a significant role and hence, we provide an extension that
adds xt-keys to store the data signatures and the access information for obtaining the
certificate. Table 6.2 shows the extensions in bold fonts:

Nr. | System URN Value
1 | BitTorrent Access Information btih unique file identifier (info hash)
2 | NDN Access Information ndn data name
3 | Content Certificate NDN ndncert | data name

Access Information
4 | Content Certificate BitTorrent | btihcert | unique file identifier (info hash)
Access Informations

Table 6.2: Magnet URI Scheme Extension for Trusted Data Access

For trusted PID access, we need to encode the cryptographic signature into the
Magnet Link as well. For this, we propose a new key type cs (content signature).
Within this cs-key, a URL-encoded representation of a base64-encoded cryptographic
signature is stored. In Figure 6.4, we provide examples of Magnet Links that use
URL-encoded cryptographic signature computed with OpenSSL Link [155]. The signature
adds 256 bytes [75] with an overhead of estimated 15% for the base64- and URL-encoding
to the Magnet Link. Our experiments in Appendix A.5.4 show that we can expect a growth
of Magnet Link size by 741 characters for adding a signature (737 characters average
signature size and 4 characters for the “&cs=""type key preamble). We can also formulate a
Magnet Link for trusted BitTorrent access:

144

6.3 Approach

magnet:7xt=urn:btih:b415c913643e5ff49fe37d304bbb5e6e11ad5101\
&dn=Ubuntu+14.10+desktop++x64\
&xt=urn:btihcert:13d22ec551069369502a3100a99b991dd56389d4\
&cs=Xis90H1azSRObJSKiJpPdrMSINVQdVA4AQ5IxSnV2iTe088D3TgqlbMA\
SP5czqQDeQd%2ByLtP0tz4%0A150AvY,2BS8HLSopD7 INSHFTPyVONQZeabIGT\
IvNEIWQREicuAKA7tBZF72BTpcY8dWtUBVGAceM/,2FXPyZ47%0AdCJPehuHdC\
SyWMSesHLHfWsm5gGLGTVJ5zk jRcCVCpmnBxQ%2BOf bXLVYMVLw)%2BYNA8Jz\
NzIeA%2Bx9M1%0Abe4mF,2BFFUev’,2F01FxaqZCsA8bQHXrxaDgxrwC5W0JZ\
ggCbrOvLALR78bUOLpG2alp%2FYwTLziRBX12%,0AyrW/2BSGHmcSoWFy131L\
hNgZAULDGAnND1uvZXsvalAHGb0O70qXsObnBabSgLtYBv4dwa427,2BUHDmit\
%0A%2BJWz4Auu0b37,2F0u2qGnfhBHc5%2BKtn1R1N2%2FxyOPb0iFYSaYqWE\
GuHgA6zgGyP4k9vnylIZWnEDTnR}%,0A3kFuYik4bgoaPoptZQs0I%2FbZrgKp\
sbvb2viW/,2BBQwUcT49uQSPRkXEXOEKdXWpBmbr3QjObUosiwyzP%0ADWABBOz\
MuDy JnK8PMW7gDkkfdDFNconsWnbC2GmMDWDV?%2BnW14yc3plw6NM1qcmCVB\
viQk4ISqFfr’,0Avzqt4GdJcvY65nEhzEfiFY,2BG1ZZuZx8 JNAWEL gNNO7CBY\
G9uJcQCC7zKBWtWRgyHeAJ51%2FhsRHC8%3D

Figure 6.4: BitTorrent Magnet Link with Verification Information for Trusted Access

Furthermore, we can formulate a Magnet Link for trusted NDN access:

magnet: ?xt=urn:ndn:/com/ubuntu/current/Ubuntul4i0desktop.iso\
&xt=urn:ndncert:/com/ubuntu/certificates/isocert.pem\
&cs=Xis90H1azSRObJSKiJpPdrMSINVQdVA4AQ5IxSnV2iTe088D3TgqlbMA\
SP5czqQDeQd%2ByLtP0tz4%0A150AvY,2B8HLSopD7 INSHFTPyVONQZeabIGT\
IVvNEIWQREicuAKA7tBZF%2BTpcY8dWtUBVGAceM/,2FXPyZ470AdCIPehuHdC\
SyWMSesHLHfWsmbgGLGTVJI5zk jRcCVCpmnBxQ%2BOfbXLVYMVLWw/2BYNA8JZ\
NzIeA%2Bx9M1%,0Abe4mF},2BFFUev’,2F01FxaqZCsA8bQHXrxaDgxrwC5W0JZ\
ggC5rOvLALR78bUOLpG2alp%2FYuTLZziRBX1z%0AyrW%2BSGHMCSoWFy131L\
hNgZAULDGAnND1uvZXsvalAHGb070qXsObnBabSgLtYBv4dwa42%2BUHDmit\
%0A%2BJWz4Auu0b3%2F0u2qGnfhBHc5%2BKtn1R1N2Y,2FxyOPb0iFYSaYqWE\
GuHgA6zgGyP4k9vnylIZWnEDTnR),0A3kFuYik4bgoaPoptZQs0I%2FbZrqKp\
sbvb2vW),2BBQwUcT49uQSPkXEXOEKdXWpBmbr3QjObUosiwyzP%0ADWABBOZz\
MuDy JnK8PMW7gDkkfdDFNconsWnbC2GmMDWDVY,2BnW14yc3plw6NM1qcmCVB\
viQk4ISqFfri,0Avzqt4GdJcvY65nEhzEfiFY,2BG1ZZuZx8 JNAWEL gNNO7CBY\
G9uJcQCC7zKBWtWRgyHeAJ51%2FhsRHC8%3D

Figure 6.5: NDN Magnet Link with Verification Information for Trusted Access

145

Chapter 6 Location-Independent Data Access using Persistent Identifiers

6.3.3 Embedding Magnet Links into Handle PID

For storing location-independent access information in Handle PIDs, Magnet Links need
to be embedded with a maximum compatibility. This is necessary, as research data
dissemination has a very slow change momentum, owed to billions of existing PID-tagged
data sets. Therefore, we investigate the impact of embedding Magnet Links into the Handle
system. The Handle PID format stores data records hierarchically with indexed typed
key-value pairs (cf. Section 2.4 and Figure 2.5). As Magnet URI can be encoded into a
valid UTF-8 string, they can be placed into a Handle record without any conversion or
encoding [38]. The Handle System contains hard-coded (also known as “registered”) data
types starting with the prefix 0. TYPE/ like HS_SITE for the records containing LHS access
information. The full list of hard-coded data types is available in Appendix A.1.1. All
0.TYPE/ data types are needed to operate the Handle System or are data types that have a
strong impact on use cases of the Handle system like 0.TYPE/URL. The native support of
URLs as data type is a property that is in common with other PID systems like PURL [156].
For implementing the Magnet URI scheme, a possible hard-coded data type in the Handle
code base could be the data type O.TYPE/URN. But although CNRI claims support for
it [157], the current Handle Library 8.1.1 has removed native URN support from the code
base for unknown reasons (cf. Appendix A.1.1).

However, besides those hard-coded data types, user-defined data types can be assigned
at any Handle record. By this, the LHS can be extended to store more data types than the
hard-coded types. As Handle systems replicate on data record base and each record contains
its type, custom type definitions are spread within all LHS hosting PID data for a Handle
prefix. For embedding Magnet URIs using a Handle record field with the type MAGNET,
we can only stick to conventions in the LHS and employ a user-defined data type. The
application of user-defined data types and a machine-readable description may be improved
in the future, as PID data types are a current subject of research [158] [159]. As a result,
using Magnet Links as Handle record data type MAGNET has to follow the rule of convention
over configuration and we use the data type MAGNET for all resolution targets of a PID
containing a Magnet Link.

6.3.4 Data Access Service Chain

Before looking at the details of maintenance and resolution for PIDs with persistent
resolution targets, we first compare the data access service chains of our approach with
the classic data access service chain of PIDs using location-dependent resolution targets.
By this, we motivate the usage of Magnet Link encoded resolution targets and emphasize
the advantages of location-independent data access through PID. For PID resolution in the
data access service chains, we can either use the native Handle protocol or NDN PID push.
Magnet Link-enabled PID resolutions using location-based network connectivity will be

146

6.3 Approach

discussed in detail in the next section. For this section, we abstract from the PID resolution
details.

Data Access Service Chain Using a Data Access Service Chain Using a
Location-Dependent PID Resolution Target Location-Independent PID Resolution Target
PID: 10.1122/abcde PID: 10.1122/abcde
A _l A
e Y
Persistent Identifier Persistent Identifier
Infrastructure Infrastructure

'

Persistent Access
Information
(Magnet Link)

\4

Uniform Resource
Locator

e \4

Domain Name System

a \ 4
==
[& file

Data Repository

Content-Centric / Overlay Network

Figure 6.6: Comparison of PID Data Access Service Chains (based on [51])

In Figure 6.6, a comparison of the Data Access Service Chains is provided. On the
left side, the classic Data Access Chain of location-based PID systems is presented. In
this chain, a PID @ is sent from a Client to the Persistent Identifier Infrastructure, in
order to be resolved into a target URL @. Then, the Domain Name System ® is resolving
the Fully-Qualified Domain Name (FQDN) of the URL into the IP-address of the Data
Repository. By connecting to the Data Reposity, the Client can retrieve the file. This
location-based service chain features a double look up of PID to target URL and URL to
IP-address. As a result, the file can be downloaded from a single source if the PID has not
been equipped with multiple target URLs.

In contrast, the right side of Figure 6.6 depicts the data access service chain for our
approach of PIDs with persistent resolution targets. The data access initially works
identically for the Client, which sends an obtained PID to the Persistent Identifier

147

Chapter 6 Location-Independent Data Access using Persistent Identifiers

Infrastructure, in order to be resolved into a target URL @. Identically to @, the Persistent
Identifier Infrastructure ® queries the GHR to determine the LHS. Then, the PID is sent
to the responsible LHS for resolution. Now, in the case of this novel data access service
chain, the resolution process does not return a target URL, but rather a Magnet Link in the
Magnet URI format. With the access information acquired through the Magnet Link ®, the
localization and data access is now handled by the location-independent network part in @.
The process of PID resolution works as a single look-up from the PID to the Magnet Link,
which leads to a direct data localization and access after the resolution, instead of multiple
redirections in a chain of services administered and operated by different parties. As the
data access relies on peer-to-peer connections in the case of BitTorrent or on a multi-node
connection in the case of NDN, no centralized infrastructure is involved after the Persistent
Identifier Infrastructure, which is distributed in the case of the GHR and decentralized in
the case of the LHS systems. Hence, the data access chain could be reduced in length and
becomes more resilient, due to redundant decentralized infrastructure. As data access can
be simultaneously sourced from multiple peers or NDN nodes, the advantages of redundant
data access such as parallel downloading and failover are beneficial as well.

6.3.5 Creation and Maintenance of PIDs

Creating, maintaining and resolving PIDs that contain Magnet Links can be done like
any other PID-record in the Handle PID system using the native Handle protocol for
location-dependent access or NDN PID push for location-independent access. In these
cases, creating and updating Handle records in PIDs requires the explicit statement of the
data type for each Handle record [38]. Thus, there is no difference from the side of the
Handle system between a Handle record containing a hard-coded or registered data type
and a user-defined data type like MAGNET. To create and maintain the access information
in Magnet Links stored in the PID, an additional service is needed that is aware of the
location-independent access technology. This additional service works outside the Handle
system and manages the PIDs with their resolution targets inside the LHS. The service
consumes access information such as NDN data names, NDN data signatures or BitTorrent
metadata and transforms them into our extended Magnet Link scheme for PID embedding.
In the next two paragraphs, we explain the creation and update of Magnet Link-enabled
PIDs in detail.

In Figure 6.7, the publication workflow for NDN Magnet Links is explained. It starts
with the input research data and results in a Magnet Link-enabled PID, published data sets
and a certificate available through NDN. In input stage @, there are the Research Data sets,
the Private Signing Key and the Certificate, which contains the identifying data of the data
creator (or publisher depending on the scenario) and the public key for content verification.
In the next step, the workflow is then split into two stages @ and ©. Stage @ generates the
Verification Items, which allow verifying the integrity and origin of data obtained through

148

6.3 Approach

NDN. The operations Sign Research Data is 10- and compute intensive, as the whole
research data set has to pass cryptographic algorithms. Hence, the generation of Verification
Items 1s time and energy consuming, but only necessary if the research data is changed. As
research data dissemination focuses on statically derived data, changes of data sets are not
expected to happen regularly (cf. Definition 2.7). Stage ® makes all data available through
NDN. This includes making the research data and the certificate available through a distinct
NDN data name and reachable through an application protocol over NDN. It is comparable
to publishing data on a web server in a location-based network. Stage @ contains now all
items for the Magnet Link generation which are the cryptographic signature of the research
data and the NDN data names. In stage @, the access data from stage @ is aggregated
into the Magnet Link (cf. Figure 6.5). As a result, in the last stage ®, the NDN access
information can be included into a PID. Now, the research data and the certificate for
validation are available for persistent access through the PID (cf. Figure 6.6, right side).

anput Q Generate 0 Meta- and 9 Aggregation G Persistent
Verification Iltems Access Information Data Access
q Sign
Private — Research —>» Signature > Magnet Link = PID
Signing Key Data
tt
© Publish Data
Research Publish Research R h
Data —»| Research > Data > e;e:r‘c
Data NDN Name ata
. s | Publish Certificate | . s
Certificate > Certificate —| DN Name —» Certificate

Figure 6.7: PID Publication Workflow for Magnet Link-enabled PIDs using NDN

The publication workflow for the location-independent overlay network BitTorrent is
similar to the NDN workflow. For the details, we look closer at the publication workflow for
BitTorrent in Figure 6.8. The input stage @ is identical to the NDN workflow. In stage @, the
cryptographic Signature is computed over the Research Data using the Private Signing Key.
After the completion of the signature, stage ® publishes the data. For this, the Research
Data and the Certificate containing the public key and signed identity information of the
data owner is made available through a BitTorrent software participating in a DHT with
PEX. The access information of the research data set and signature are computed and
stored in the Bencoded Dictionary for Research Data and the Bencoded Dictionary for
Certificate Access (cf. Section 2.6.3) [48]. The dictionary information is published through
the BitTorrent software in the DHT, in order to give other clients the possibility to obtain
the access information using the DHT from other peers. In stage @, the info hashes of
bencoded dictionaries are computed. Afterwards, in stage @, the info hash of the research
data, the info hash of the certificate and the encoded signature are aggregated into a Magnet

149

Chapter 6 Location-Independent Data Access using Persistent Identifiers

Link, which is transferred into a PID. Data that needs to be online on the BitTorrent
overlay network is depicted in stage ®@. This is the case for research data, the certificate
and the bencoded dictionaries containing the access information for the research data and
the certificate. Furthermore, the PID needs to be available in the Handle network space.

OInput oGenerate Verification Iltems o Meta- and e Aggregation G Persistent
Access Information Data Access
> Research Data
q Sign
.Pr'%vate S receardn > Signature Magnet Link > PID
Signing Key
Data
© Publish Data Info Hash
- (Research Data) |_
—_— Publish Create & Bencoded
R > Research — Publish Dictionary
Data Dictionary > (Research Data)
Info Hash
Publish Create & (Certificate) | Bencoded
Certificate > ps — Publish Dictionary
Certificate s . P
Dictionary (Certificate)
> Certificate

Figure 6.8: PID Publication Workflow for Magnet Link-enabled PIDs using BitTorrent

6.3.6 Data Access from Location-Dependent Networks

The resolution of PIDs with location-independent resolution targets does not pose a
challenge when using the native Handle protocol or our suggested approaches based on
NDN PID push and NDN PID pull. However, when using web-based resolution with Handle
HTTP-proxies, new challenges arise for the resolution of PIDs with location-independent
resolution targets. An overview of the web-based PID resolution process is depicted
in Figure 2.8 and explained in Section 2.4. In this section, we provide an approach for
resolving this kind of PIDs using web technology in order to grant access to research data
from location-dependent networks.

By default, the Handle system and PID-related software rely on Handle data type
0.TYPE/URL for resolving PIDs using web-technology. For resolving a PID using a
HTTP client (e.g. a web browser), Handle’s HTTP-proxy takes a PID and resolves it at the
LHS [160]. Then, the Handle value with the lowest index and the data type 0.TYPE/URL
is chosen by the software as resolution target and returned to the web browser as a
HTTP-redirection response with the HTTP status code "303 - See other".

When using Magnet Links with the data type MAGNET in a PID without providing a
0.TYPE/URL field, the HTTP-proxy software shows the content of the PID as a raw data

150

6.3 Approach

structure or as a landing page. In this case, the HTTP client (or web browser) does not know
how to forward the Magnet Links to the application responsible for location-indepdent data
access. To solve this problem two steps have to be added:

1. Follow 0.TYPE/URL Handle values as a PID HTTP proxy software and return
the resolution target as a HTTP-redirection to the client using the HTTP status code
"303 - See other".

2. Parse the Magnet Link at the client side and invoke an application capable of
accessing the research data through a location-independent network. Optionally
coordinate the data verification using the signature and certificate information.

For solving the first problem, the PID HTTP-proxy software has to be extended to support
MAGNET-typed Handle records as a HTTP forwarding target to the web clients. This does
not require no modification to the core Handle system (LHS or GHR software).

For solving the second problem, we have to turn our attention to the client side. Web
browsers as most popular web clients also need to support certain properties to pass Magnet
Link information to BitTorrent or NDN client software. For this, the web browser must be
able to support different protocol handlers that determine the behavior of the web browser
when accessing different types of resources. These resources may even point outside the
sphere of resources available through HTTP. As an example, we look at the protocol handler
inside the browser that is responsible for handling E-Mail addresses embedded into websites
asmailto: resources. If amailto: URI resource is selected by the user, the information
in themailto: scheme is passed to the E-Mail protocol handler, which launches the E-Mail
application and is able to preset the E-Mail receivers, the subject and the mail body [161].
For other applications, further URI schemes and respective handlers can be added to the web
browser such as tel: for phone numbers [162]. As a result, a scheme handler for magnet :
URIs needs to be present in the web browser. If a system should only download data from
BitTorrent using the information in a Magnet Link, modern BitTorrent software offers a
scheme handler for magnet:. But if more than one access technology is used within the
Magnet Link, the magnet: scheme handler has to evaluate the Magnet Link content first
using the URN content and then decide what application should be invoked and fed with
the access information. After the magnet: scheme handler has passed the information to
the location-independent access program, the download of the research data is done through
location-independent network. The scheme handler can also invoke the download of the
certificate and coordinate the verification of the obtained data at the client system.

151

Chapter 6 Location-Independent Data Access using Persistent Identifiers

ece
Analyzing Magnet Link ...
System: BitTorrent

Info Hash: :b415c913643e5ff49fe37d304bbb5e6e11ad510
File Name: Ubuntu 14.10 desktop x64

Figure 6.9: Magnet Link Protocol Handler

After clarifying the necessary additions at the server and client side, we look at the details
of the data access to location-independent data using PIDs. In Figure 6.10, a simplified
example for resolving a Magnet Link-enabled PID with a web browser is depicted as a
sequence diagram.

Web HTTP PID Global Handle Local Handle Magnet Link NDN NDN
Browser Proxy Registry System Protocol Handler Client Network

o GET : : B
http://.../ : :

11858/ aefc021 Locate LHS: 11858 :

137.76.10.172

Resolve: éefc@Zl

303 Location ,_m_a_enet_:_?_XEfer_"_:Dérlf_/_d_eés_w_d_e_/re_eo_/}{~_~_~_U
le === == B &dn=file.tar

magnet: >xt=urn:ndn:/de/gwdg/repo/1/...&dn=file.tar

> /de/gwdg/repo/1/
<Interest
|, <dounload started>| [Segment 1>

<ddwnload started>

<Interest
Segment 2>

<Data Seg2>
- -

Figure 6.10: Web-based Data Access through PID using Magnet Links and NDN

The figure above depicts the invocation of a PID resolution from a click on a website link
that contains the URL to the HTTP-based resolution service and a PID. After the click,
following steps take place. First, PID is sent as part of a URL using a HTTP GET request
to the HTTP-Handle proxy software. After this, it is resolved by the proxy software using
the GHR and the LHS. This is done employing the native Handle, NDN PID push or NDN
PID pull protocols. The HTTP-Handle proxy software extracts the Magnet Link access
information from the PID and sends a HTTP-forwarding response "See Other" with the
status code 303 to the web browser. By the 303 status code response, the HTTP-Handle
proxy indicates to the web browser that the server does not own a (PID) target representation

152

6.4 Implementation

that can be transferred over HTTP, as the data is available in the location-independent
network space. Sending status code 303 is in line with the HTTP standard [163]. The
HTTP status response contains the Magnet Link as HTTP-header, which is processed by the
magnet: scheme handler which is invoked by the web browser. After analyzing the Magnet
Link content, the scheme handler launches the NDN application and passes the NDN access
information as NDN name for the digital object file.tar to the NDN client. The NDN
client starts downloading the segments of file.tar form the NDN network. If the Magnet
Link would contain ndncert: xt-keys pointing to a certificate, the NDN network can be
used for obtaining the certificate as well. For Magnet Links containing BitTorrent access
information, the data access as depicted in Figure 6.10 looks similar but the last stages of
obtaining research data and optional certificates for content verification are backed by the
BitTorrent system.

6.4 Implementation

In order to evaluate our approach of PIDs with persistent resolution targets, we implement
an entire stack of software that is able to realize our approach as a proof-of-concept. The
software stack is capable of the following tasks:

e Create and Update PIDs with NDN and BitTorrent access information
e Resolve Magnet Link-enabled PIDs using HTTP

In the following sections, we briefly describe the implementation for the main components.
The screenshots of the user interface can be found in Appendix A.5.1, as well as the source
code in Appendix A.5.2.

6.4.1 Server Side

First, we describe out the implementation on the server side that is necessary to realize our
approach of Magnet Link-enabled PIDs and afterwards, we outline the implementation and
prerequisites on the client side in the subsequent section.

1. Local Handle System: As pointed out in Section 6.3.3, the Handle PID system does
not require any changes to store Magnet Link-enabled PIDs. Hence, the LHS hosting the
Handle prefix and storing the PIDs does not need any modifications in its source code. By
this, it remains compatible to entire Handle stack. It is also compatible with legacy LHS
running an older version of the Handle software stack.

153

Chapter 6 Location-Independent Data Access using Persistent Identifiers

2. Web Service (PID-Burner): For creating, maintaining and resolving PIDs with
persistent resolution target, we implement a web service that provides a user interface
for human interaction employing a web browser. We refer this service as PID-Burner
in the following in order to have a distinct name for it. The full architecture is depicted
in Figure 6.11 and described in the following. The service is implemented from scratch
but incorporates third-party libraries (libtorrent Python bindings)) for BitTorrent access
information extraction from .torrent files [164]. With libtorrent, bencoded info dictionaries
can be extracted for creating Magnet Links, as well as file checksums and file names that
are helpful for creating a human-readable description of research data access information.
PID-Burner also features a Python library created by us to pack NDN access information
according to our approach (cf. Figure 6.7). We built a further Python library that allows
parsing and creating Magnet URIs according to our extension proposed in Section 6.3.1.
The PID-Burner web application is implemented in Python using the Bottle Framework
for realizing the web application [165]. For interacting with the Handle LHS, we make
use of the EPIC-API v2 web service from EPIC that exposes the Handle API as REST
interface [166].

SN VAN
< Y < -
\ AN
User Interface | | HTTP PID Resolution |

EPIC API Client LibTorrent :
| NDN Naming Library |
/:}A PID-Burner
I
— L
.............. \\//
© EPIC-API-v2 ; : Local Handle System (LHS)
Legend
Software [Implemented Livrary | | External Library
. TSUN
Native Handle Protocol -7 HTTP

Figure 6.11: PID-Burner Software Architecture

For updating and creating PIDs with BitTorrent access information, the user has to
generate a signature of the research data. This can be done with OpenSSL [155]. Then, two
torrent files with a BitTorrent software capable of exporting info dictionaries into torrent

154

6.4 Implementation

files have to be generated. One of these files belongs to the research data sets and a second
torrent file belongs to the certificate. A BitTorrent software that is suitable for publishings
file and export access information as torrent file is Transmission [167]. After exporting the
torrent files, the signature file and the torrent files can be uploaded using the web interface
of PID-Burner (cf. Figure A.1 in the Appendix). In Figure A.2, a screenshot of PID-Burner
is provided that shows the user interface for the PID management. Furthermore, Figure A.3
and Figure A.4 show PIDs with Magnet Links containing BitTorrent access information
(without trust information) in the official HTTP-Handle proxy running at http://hdl.handle
net and on the official DOI HTTP resolver at http://dx.doi.org.

For uploading NDN access information, the information can be added via a web form
in the user interface. In this web form, the NDN data name of the research data set, the
data name of the certificate and the signature file can be uploaded. While the generation of
BitTorrent access information does not require user interaction, the NDN data names have
to be determined by the user depending on the NDN topology information. The topology
information can be found out by the NFD running on the host that is responsible for serving
the research data and/or the certificate through NDN.

For the PID resolution using HTTP and a web browser, we add a HTTP resolution
interface to PID-Burner that is almost identical to the PID resolution capabilities of the
HTTP-Handle proxy by CNRI. It implements the approach described in Section 6.3.6
and resolves PID against the presence of a Handle record with the MAGNET data type.
For PIDs only containing *URL data types, the resolution is done against web-based
location-dependent resolution targets, in order to render full functionality for resolving
PIDs with (advanced) persistent and (classic) non-persistent resolution targets. The behavior
enables the important back-compatibility to existing Handle services.

6.4.2 Client Side

For using PID with persistent resolution targets, a software is needed that is able to invoke
PID resolution and to access the data employing a location-independent network technology.
A typical end-user environment on a desktop or mobile device can consist of a modern web
browser for browsing PID-containing media such as websites or PDF-documents containing
scientific publications, a BitTorrent and/or a NDN client software for accessing data sets.
For simulating a common end-user desktop environment, OSX version 10.11.6 running
on a MacBook Pro 12,1 (Intel i5-5287U CPU and 16GB RAM) is used in conjunction
with a Google Chrome 52.0.2743.116 web browser and Transmission 2.92 as BitTorrent
software [167]. For dispatching Magnet Links to suitable data access applications, a Magnet
Link Handler is implemented in Python that dispatches the download information either
to the BitTorrent software or to the NDN download client. It incorporates our proposed
Magnet URI scheme extension. A screenshot is provided in Figure 6.9. As a private NDN
network installation is not available yet, a public testbed is running at the GWDG consisting

155

Chapter 6 Location-Independent Data Access using Persistent Identifiers

of six nodes. For the NDN data hosting and downloading, the NDN Repo NG tool set is
used that consists of file server and client programs, which also define a NDN file transfer
protocol [168].

6.5 Evaluation

After describing the implementation, we evaluate our approach in this section. The
evaluation is done from two different view points, in order to provide a complete analysis
covering the interests of infrastructure operators, software designers and end-users.

The first evaluation aims at the assessment of the data access using a location-independent
PID resolution target. It is done from the view point of the infrastructure side and includes
the interests of individual Handle server operators, as well as the goals of the Handle
software designers. For this, we will have a closer look at the expected PID size for Magnet
Link-enabled Handle PIDs and its impact on the Handle PID infrastructure performance
(cf. Section 6.5.1).

The second part of the evaluation is focused on an assessment of expected data access
duration in the location-independent setting. For this, we take the view point of the Handle
PID system end-users, the researchers, in order to understand the impact on user experience
introduced by our solution. For this, we look at the PID resolution performance and evaluate
the impact of PID size increase (cf. Section 6.5.2).

The approach of Magnet Links as location-independent access information uses
(multiple) key-value pairs for storing all necessary access data. PIDs with Magnet Link
persistent resolution targets store more information than classic PIDs only containing URLs
as resolution targets and thus they differ in size. The Evaluation Questions (EQ) aim at the
assessment of difference between those two kinds of PID regarding their size characteristics
and the impact regarding PID resolution. = Hence, we formulate two questions for the
evaluation:

EQ 1: Is there a significant deviation between the size of PID resolution target URLs and
the size of real-world Magnet Link collections?

EQ 2: Do PIDs with an increased number of characters have an impact on the PID
resolution duration?

6.5.1 PID Size Increase

For answering EQ 1, we collect real-world data from Handle PID systems (LHS) and
perform a calculation on all target URLs focusing on the character counts. By this, we
can identify typical characteristics of large PID collections. We use again our evaluation

156

6.5 Evaluation

data set described in Section 5.5.2 and particularly look at the determination of the PID
target URLs for large PID populations. The extraction of the PID target URLSs is described
in the next section. For answering EQ 2, we perform load tests measuring the PID resolution
behavior on large PID populations with stepwise increased target URL sizes. By this, we
can estimate the impact of PID growth on the overall behavior of the Handle PID system.
The evaluation is provided in Section 6.5.2.

6.5.1.1 PID Target URL Determinitation

In Section 5.5.2, we described the data preparation of the input data for the evaluation. One
step, which was only discussed briefly, was the determination of the target URL size for
each recorded PID resolution (cf. Figure 5.36, ®). As we need the target URL size of
recorded PID populations for estimating the deviation between today’s PIDs and Magnet
Link-enabled PIDs, we have a closer look at this process. Figure 6.13 depicts the process of
target URL determination of a PID. In step @, we obtained the PID resolution log data from
the GWDG-operated Handle HTTP-proxy. While the log data contains the PID requested
by the user, it does not contain the target URL. The target URL is transported as part of
the HTTP payload and is therefore no part of the log data, which is only recording the
user interactions, but not the data obtained by the user. Hence, we have to re-enact the
PID resolution with a Handle Miner, which grabs the PID as input data (step @) and uses
the GHR and LHS for extracting the target URL (step & and @). After the PID has been
resolved by the Handle Miner, the length of the target URL is calculated and written into
the data sample.

In order gather a collection of meaningful PIDs, we first have to select a relevant PID
collection. Without filtering, the complete set of observed PID contains 22,757,503 resolution
requests. The complete re-enactment of all requests would take over 26 days if we assume a
PID resolution rate of ten PIDs/second. Hence, we first have a look at the relation between
the PID resolution requests and the associated Handle prefixes for selecting a PID collection.
In Figure 6.12, the Handle resolution requests are grouped by their Handle prefix and sorted
by the access number. The chart contains the top 200 prefixes and covers 86.76% of the
22,757,503 resolution requests. It follows a Zipf distribution similar to other content on the
Internet [169]. As we can see from the chart, 49.30% of all requests belong to the top ten
prefixes. For our further investigation concerning the determination of the target URL size,
we focus on the top ten PIDs.

157

Chapter 6 Location-Independent Data Access using Persistent Identifiers

resolution
requests
4m

3m

2m

im

V1% H|lu
0 ”"” "”I”I|l”||II|IlllIlIIIIIIIlluuuuuumm ...
Rang 1 50 100 150 200
<49.3% (Top 10)

Figure 6.12: Fragmentation of Handle PID Resolutions Grouped by Handle Prefix

For realizing the concept of PID resolution re-enactment, a specialized Handle Miner,
called Minera, has been created (cf. Appendix A.4.1). Minera allows a high speed gathering
of target PID URLs by employing a massive multi-threaded architecture. By this, up
to 20 PIDs per second can be resolved and checked for a valid PID resolution. However,
gathering the sizes of the target URLs from the top ten Handle prefixes presented in
Table 6.3 took 6.5 days to complete which shows that the PID verification for large PID
collection is not practical for billions of PIDs. Although this mining tool returns the full
target URL, we truncate the target URL data using the script in Appendix A.4.2 into the
target URL size by counting the characters. Afterwards, the target URL data is deleted and
the Handle suffix is replaced by a salted hash to protect the user data (cf. Section 5.5.2).

158

6.5 Evaluation

fe———

GHR

Global Handle
Registry

. O

LHS
[——\ [—— 1T
Webbrowser Handle HTTP-Proxy PID DB
o Logdata Local Handle
System
[T30
Anonymization
@ | a1 mi
e URL Handle Miner
size

Figure 6.13: Determination of PID Target URL Size with Mining Software

6.5.1.2 Magnet Link Collections

In order to compare the target URL length of the existing PID populations with real-world
samples of Magnet Link data, we a need large Magnet Link population created by humans.

Collection I — The Pirate Bay

As Magnet Links have their origins in the file sharing community, we take the Magnet Link
population from the largest BitTorrent file sharing website, called “The Pirate Bay” that
is publicly available on the Internet. From February 2012, a full dump of the Pirate Bay
Magnet Link collection has been released on the Internet which contains 1,643,194 Magnet
Links created by the users of this file sharing website [170]. For the analysis of the Pirate
Bay data, we remove the tracker information from the Magnet Links, in order to have clean
and comparable Magnet Links populations. Furthermore, the tracker informations are not
needed, when using DHT for accessing files in BitTorrent.

Collection II — Academic Torrents

Another data source for comparison is provided by the website “Academic Torrents” which
runs a distributed research data repository (cf. Section 4.1) [96] [97]. From this website,
we have extracted all Torrent files using the publicly available REST API and converted
them into Magnet Links with the same structure used for the Pirate Bay collection (cf.
Appendix A.4.3). Potential tracker information has been removed from the Magnet Links in
order to have identical structures. Thus, the Magnet Link structure for our comparison is as
follows:

magnet:?xt=urn:btih:<INFOHASH>&dn=<URL_ENCODED_FILENAME>

159

Chapter 6 Location-Independent Data Access using Persistent Identifiers

Collection III - Synthetic Collections based on our Magnet Scheme Extensions

From the novel Magnet Link structures we proposed in this thesis, we can set up a collection
of minimal examples that shows potential impact on PID resolution. From the Magnet
Link structure above, we can conclude that the size of a Magnet Link only containing
untrusted information is determined by the content of the dn key (cf. Table 2.3), as the
info hashes have a fixed size of 40 characters (160bit hex representation). Additionally,
the requirements of URL encoding for every special character in the dn key extends the
size, too. The Magnet Link preamble has a fixed size of 20 characters. Hence, we can
build a minimal Magnet Link structure for BitTorrent access information using DHT, which
consists of 20 + 40 = 60 characters:

magnet:?xt=urn:btih:<INFOHASH>

A Magnet Link containing untrusted BitTorrent access information has the following
minimal structure:

magnet:?xt=urn:btih:<INFOHASH>&xt=urn:btihcert:<INFOHASH>&cs=<SIGNATURE>

The character count of this minimal example is
20 + 60 + 17 + 60 + 4 + 737 = 898

As we can see from Table 6.3, the mean character counter of the target URLSs is in the
range between 51.02 and 102.55. From the target URL collections, we can compute a
mean character count 78.21. For Magnet Links with NDN access information, we expect
a similar character count as we can see at the normal location-dependent URLs. This is
caused by the fact that the future NDN name space will have a hierarchical structure and
contain human-readable data names. As a result, we take the average character count
of |78.21| =78 of the PID top ten target URLSs as an estimation for the NDN data name
size. Hence, the structure of an untrusted NDN Magnet Link is:

magnet : ?7xt=<NDN_DATA_NAME>

The character count of this minimal example is
10 + 78 = 88

For a Magnet Link with trusted NDN access information, we have the following structure:

magnet : ?7xt=<NDN_DATA_NAME>&xt=urn:ndncert : <NDN_CERT_NAME>&cs=<SIGNATURE>

The character count of this minimal example is
10 + 78 + 16 + 78 + 4 + 737 = 923

160

6.5 Evaluation

6.5.1.3 Comparisons of PID Target URLs and Magnet Link Collections

After the aggregation of the data, we now estimate the impact on the PID system using
Magnet Links within PIDs. For this, we answer the first evaluation question (EQ 1) and
check if there is a significant deviation between the size of state-of-the-art PIDs with target
URLs and real-world Magnet Link collections. In Table 6.3, the median, mean and variance
target URL sizes is calculated of the PIDs from the top ten prefixes. We can see from the
table that the median and mean for target URLSs is below 100 characters in most cases. When
looking at the variance, we can conclude that some PID owners use almost identical target
URL structures for their PIDs leading to a very small variance. This is mainly caused by
URLSs that have a fixed structure with an alternating key pointing to IDs of research data sets
or publications. For prefixes with a large variance in their target URL length, the structure
differs. A reason for this may be a high amount of user generated URL parts like file names
or the fact that the Handle prefix is used for different services at the same time operated
under the responsibility of a single organization.

Percentage med. target mean target var. target

Rank | Prefix in Samp%e Ulg{L URL sizeg % URL sizeg c
1 Prefix-A 16.91% 102 102.55 180.32
2 Prefix-B 8.27% 56 57.45 44.15
3 Prefix-C 6.91% 81 80.41 17.89
4 Prefix-D 4.33% 85 84.85 34.73
5 Prefix-E 3.79% 66 66.25 2.21
6 Prefix-F 3.76% 68 67.21 39.30
7 Prefix-G 1.51% 51 51.02 0.03
8 Prefix-H 1.33% 87 87.45 4493
9 Prefix-I 1.33% 75 86.94 619.28
10 Prefix-J 1.16% 92 96.61 35.46

Table 6.3: Target URL Length of the Top Ten Handle Prefixes

We now look at the size of the Magnet Links as alternative PID resolution targets.
In Table 6.4, the sizes of the Magnet Link collection are presented together with their
calculated median, mean and variance. By looking at the median and mean, we realize that
Magnet Links converted to our normalized structure of info hash and dn key are significantly
larger than target URLs. When comparing the Academic Torrent Magnet Link collection,
with the Handle top ten prefixes, the Magnet Links exceed the median by 183.49% and
exceed the mean by 183.40%. When looking at the Pirate Bay Magnet Link collection the
Magnet Links exceed the median by 125.82% and the mean by 123.25%. Moreover, the
variance of Magnet Link collections is larger, which is caused by the user-dominated dn
key containing user content such as file names or descriptions. Hence, we can conclude that

161

Chapter 6 Location-Independent Data Access using Persistent Identifiers

Magnet Links exceed the target URL size by a factor 1.2 to 1.8 for BitTorrent Magnet Links
containing an info hash and a human-readable identifier encoded into a dn key.

Source med. Magnet | mean Magnet var. Magnet
Link size Link size x; Link size o

Academic Torrents 140 143.18 1324.62
The Pirate Bay 96 96.22 217.06

Table 6.4: Magnet Link Length of Academic Torrents and The Pirate Bay

In the next Table 6.5, the estimated Magnet Link sizes for the synthetic Magnet Link
collections are depicted.

Estimated mean
Magnet Link size x/
Minimal BitTorrent Magnet Link 60
Minimal BitTorrent Magnet Link with Signature and

) i 898
Certificate Access Information
Minimal NDN Magnet Link 88
Minimal NDN Magnet Link with Signature and

. . 923
Certificate Access Information

Collection

Table 6.5: Estimated Magnet Link Length of Synthetic Collections

To provide a direct comparison between the existing collections of PID target URLs,
existing Magnet Link collections and the synthetic Magnet Links collections that follow our
contributions on NDN and secure content access, we show character counts in Figure 6.14.
Estimated values are marked with an asterisk (*). As we can see from the figure, Magnet
Links without access verification information (minimal BT and minimal NDN) show similar
size as the original PID target URLs. Furthermore, real-world Magnet Links collection
(The Pirate Bay and Academic Torrents) provide an increase of the character count by 20%
respectively 70%. The inclusion of content security measures with digital signatures and
access information (minimal secure BT and minimal secure NDN) increases the character
count by a factor of over nine. Despite this increase, we will see in the following that this
has no impact on the PID resolution.

162

6.5 Evaluation

PID target URLs
The Pirate Bay
Academic Torrents
minimal BT
minimal NDN*

minimal secure NDN*

character
0 100 200 300 400 500 600 700 800 900 count

Figure 6.14: Comparison of Character Counts For PID Target URLs and Magnet Link
Collections

In order to depict the distribution of the gathered datasets, we provide box plots in
Figure 6.15. The figure shows the size of the equally structured Magnet Links and target
URLSs on the x-axis. The median for each data set is provided as a gray bar.

minimal BT

minimal secure BT
minimal NDN

minimal secure NDN
Academic Torrents
The Pirate Bay
target URLs Prefix-A
target URLs Prefix-B
target URLs Prefix-C
target URLs Prefix-D
target URLs Prefix-E
target URLs Prefix-F
target URLs Prefix-G
target URLs Prefix-H
target URLs Prefix-I

target URLs Prefix-J fH------ +--{14 ; ; ; ; ; s ;
(] 100 200 300 40 500 600 700 800 900 character
count

Figure 6.15: Distribution of Magnet Links and PID Target URLs Character Counts

163

Chapter 6 Location-Independent Data Access using Persistent Identifiers

6.5.2 Data Access Duration

Since we now know the expected size increase for PIDs with location-independent access
information, we are able to investigate the impact on the Handle PID system. For this, we
perform a sensitivity analysis to improve the understanding of the relationships between the
PID size and the PID resolution performance in the Handle system. This allows us to answer
the second evaluation question (EQ 2), which deals with the impact of increased PID sizes
on the PID resolution duration.

For the evaluation, we use the LHS located at the GWDG data center that is responsible
for serving PIDs which are located under the Handle prefix 11022. It is important for the
evaluation to ensure that no data from fast caches is used, as this provides very short PID
resolution times that are not expectable for average PID resolutions. For this, we have to
assure that potential cached data in the Handle resolution stack is not employed for PID
resolution. Hence, we explicitly suppress caches in the evaluation PID resolution requests
by using an authoritative PID query type. Now, we can formulate the evaluation steps as
follows:

1. Creation of 10,000 PIDs with a target URL of n random characters.

2. Record the time for the resolution of the PIDs created in step one by using one selected
official Handle HTTP resolution proxy. For the resolution request, authoritative
request types are selected, where the HTTP proxy has to resolve the PID using the
LHS and is not allowed to use cached versions of the PID record.

3. Repeat the steps for a new PID set with an increased target URL size of 2"+

160
target URLs

140 . Minimal Magnet L1nks

12
10
8
6
4
2
0
21

22 23 24 25 26 27 8 29 210 211 212 213 214 215
Handle PID sizes (character count)

secur‘e Magnet Links

avg. PID resolution (ms)
[(] () () (]

()

Figure 6.16: Average Resolution Time of Handle PIDs With Different Target URL
Lengths [51]

164

6.5 Evaluation

The complete source code for the evaluation can be found in Appendix A.5.3. In
Figure 6.16, we see the averages of the PID resolution times for various Handle PID sizes.
The measurements were conducted for each PID resolution sequentially using a server at
the GWDG data center for executing the measurement script. The selected official Handle
HTTP-proxy PID resolver was located at the Amazon EU cloud center in Ireland (Amazon
Web Services Region eu-west-1), while the LHS is located at the GWDG data center. The
x-axis shows the PID target URL sizes used for the evaluation with a maximum of 32,768
random characters. The y-axis shows the average resolution time for the PID using a HTTP
PID resolution service. In the figure, we highlighted the bars for the mean PID target URL
size and the minimal Magnet Link examples in light grey (2°-bar and 27-bar). Furthermore,
we highlighted the 2!°-bar that represents the character count of secure Magnet Links with
digital signatures and certificate access information. For PIDs with an extreme target URL
size of 212 characters, we increase the PID resolution time in comparison to a short target
URL of one character by only 5.5ms. Moreover, the figure shows that for some target URL
lengths, the PID resolution time even decreases. This is caused by the reaction time of
the database of the LHS and also by the underlying infrastructure of the LHS software,
where we can expect an impact of the Java Runtime Environment and the operating system
schedulers. Hence, if we summarize all results depicted in Figure 6.16, we can draw the
conclusion that the PID size has no significant impact on the PID resolution. The effort for
retrieving a PID value from the database in order to get the target URL is almost identical
for different value sizes. This is clear as the data organization of the PID model is not
changed, but only the amount data that needs to be transferred from the database to the
Handle client is increased. Hence, we can conclude that the changes that we propose to
PID for integrating complex access information do not have a significant impact on the PID
resolution time. The difference of 10 ms seconds is not perceivable for end-users when
resolving a PID. Hence, the answer the second evaluation question (EQ 2) is that PIDs
with an increased size of the factor 1.2 to 1.8 has no perceivable impact for PID resolution.
Hence, the integration of Magnet Links can be considered as a stable concept for referring
to research data and publication stored location-independent networks.

165

Chapter

Discussion

In this section, we discuss the novel approaches proposed in this thesis. First, we discuss the
results of the first approach on location-independent PID infrastructure using the evaluations
conducted in Chapter 5. Afterwards, we discuss the results of our second approach on
accessing location-independent research data access through PIDs using the evaluations
of Chapter 6. In Section 7.1 and 7.3, we answer the research questions introduced at the
beginning of this thesis. We conclude with the limitations of our approach in two separate
Sections 7.2 and 7.4.

7.1 Answers to Research Questions Concerning
Location-Independent Persistent Identifiers

In Section 1.2, we introduced the first research question (RQ 1) together with three
subquestions. The answers are based on the results of proceeding chapters. RQ 1 queries
if persistent identifier systems benefit in performance and resilience from integrating
location-independent data access. = We answered this question by re-enacting PID
creation, maintenance and resolution operations in a simulated NDN test bed employing
real-world data from EPIC and by comparing the results with the current state-of-the-art
location-dependent equivalent applying a Handle infrastructure in the same simulation
testbed. By comparing our NDN PID push approach with the native location-based Handle
protocol, we learned first that a general operation of PID infrastructure is possible on top
of NDN. From the evaluation of location-independent PID realization, we can draw the
following conclusion regarding RQ 1. All Handle PID-related activities including the full
Handle server administration can be performed with a location-independent NDN-based
protocol. For a complete support of the native Handle protocol over NDN, a full adaption of
the underlying application protocol layer is provided through our NDN PID push approach.
While it has the advantage of connecting Handle servers and clients without having an a
priori knowledge of their network location, it comes with the disadvantage of providing

Chapter 7 Discussion

less performance than the native location-based Handle protocol. However, it shifts the
Handle PID system to a real identifier system without predetermined location for certain
servers or vital parts of the infrastructure. When only focusing on location-independent
PID resolution, the situation for performance and resilience is different. Our approach
of NDN PID pull is able to provide location-independent plaint-text PID resolution and
PID information retrieval that makes full advantages of the NDN design. In the domain
of PID resolution and PID information retrieval, the strength of NDN provides superior
performance, over the native Handle protocol. This is the case for intact networks with
error-free connection, where the PID resolution and access times decrease only slightly,
but especially for faulty network connections with random packet loss. For faulty network
connections, the performance of NDN PID pull is much better than the native Handle
protocol. For parallel PID resolution and access, the performance is further increased, as
parallel PID resolutions are executed faster with a decreased load on the Handle server
due to the network caching capabilities of the NDN, when compared to the native Handle
protocols. Additionally, NDN PID pull provides a better outscaling behavior with an
increased size of parallel connections. Thus, we can answer RQ 1 with yes, as NDN PID
pull is able to deliver better performance in faulty network conditions. Limitations only
arise in cases where PIDs have to be created, updated or maintained over NDN and thus are
related to maintenance use cases. Here, the native location-based Handle protocol performs
better. But, as the vast majority of the PID traffic between clients and server is related to
PID resolution and PID information access requests, our contributions do not only release
the Handle system from its location-based application design but also provide a significant
performance increase with a better network error resilience. Thus, the Handle system could
be improved for its most-prominent use cases of PID resolution and PID information access
which cause almost all traffic on public Handle systems.

The subsequent research question RQ 1.1 focuses on the requirements for extending a PID
system towards location-independent data access and operation. Concerning this research
question, we found that a namespace convergence between the PID and the NDN space is
necessary, in order to make PID and its attached data directly accessible through NDN as a
global data name without a priori knowledge on the user side. Then, a Handle PID request
can be directly routed to a server within the NDN network by only using the combination
of Handle prefix and suffix. In order to make the conversion possible, restrictions for the
naming of entities in NDN and Handle have to be considered. Additionally, the PIDs built
on the application of this principle have to be human understandable for a convenient usage.

Research question RQ 1.2 considers the necessary end-to-end connection principle
required by PID systems within NDN. We proposed a new end-to-end communication
approach that employs NDN interests for data transport. Thus, we are able to connect
arbitrary NDN endpoints by a data push mechanism and exchange data without a prior
NDN connection establishment or using resource-consuming polling patterns. Using this
approach, we are able to connect Handle peers directly through NDN, in order to perform
synchronous communication that is important for maintenance operations, where changes

168

7.2 Limitations Of Location-Independent Persistent Identifiers

on PIDs and infrastructure topologies have to be immediately published to all responsible
LHS servers.

Research question RQ 1.3 is related to the problem of providing operational and semantic
interoperability between the location-dependent as-is PID infrastructure and our new
approaches for location-independent PID infrastructure using NDN. To answer this research
question, we provided an interoperability model that forwards PID-related information
exchange between both worlds using a gateway. The gateway approach employs different
mechanisms for selecting a forwarding protocol (NDN PID push or pull) for incoming and
outgoing Handle requests. The protocol selection uses state machines for decisions and
takes Handle-specific metadata from the application layer as decision input. Employing the
conversion of the namespaces presented in this thesis, PID requests can be mapped to NDN
resources and vice versa applying simple conversion rules.

7.2 Limitations Of Location-Independent Persistent
Identifiers

The approaches for location-independent persistent identifiers presented in this thesis have
limitations that are subject of future work. Some of them are caused by the design principles
of the Handle PID system and the NDN technology. Hence, these limitations also occur for
NDN adaption in various areas, as presented in the related work section (cf. Section 4.5). In
the following, we discuss the limitations in detail.

1.) Namespace Convergence between the PID and NDN namespace is essential for the
approaches presented in this thesis (cf. Section 5.3.2). Currently, no global NDN network
exists besides larger test bed installations and as a result, no global namespace exists yet.
This means that we can only formulate recommendations on a global NDN namespace that
contains a PID system with its specific namespace. Therefore, we look at two scenarios.

In the first scenario, all Handle prefixes become NDN root names in the global NDN
space (/<HANDLE PREFIX/). In this case, the access of PIDs through NDN is easy and
straight forward (cf. Section 5.3.2).

In the second scenario, PID prefixes are not part of the NDN root namespace. This
case is not creating a problem either if we stick to the principles of PID-friendly NDN
namespace design as formulated in this thesis and find an alternative root namespace
(example: /handle/<HANDLE PREFIX/) that includes all Handle prefixes (unified NDN
PID namespace). If the Handle system operators are not able to agree on a unified NDN
namespace, it is comparable to the present day situation, where end-users have to memorize
different URLs (or NDN namespace prefixes in this case) to resolve a PID maintained by
different PID infrastructure operators. As we perform a direct resolution and maintenance
of Handle PIDs using NDN, a non-unified NDN namespace for the Handle PID system
may result in a fragmented PID system. From this point, we can confirm our assumption
that operating and evolving a PID system is not only a technological challenge, but also an
organizational one.

169

Chapter 7 Discussion

2.) Lower data throughput for the NDN PID push protocol adaption can be observed
in direct comparison to the native location-dependent Handle protocol (cf. Section 5.5.3).
This is the case for PID creation (cf. Figure 5.38 and Figure 5.40), where NDN PID push
is outperformed by the native Handle protocol. It is also the case for PID resolution, when
comparing NDN PID push to the native Handle protocol (cf. Figure 5.41).

However, when looking at the approach of NDN PID push, we see that this protocol
adaption for NDN does not make extensive use of the NDN features such as network caching
and multi-sourcing. Thus, the overhead introduced by NDN is not compensated by the NDN
advantages. But when considering the literature provided in the related work section 4.5.2,
we see that this outcome is not surprising with regard to the current realization of NDN
network technologies. A similar outcome can be observed for HTTP NDN adaptions, where
the performance was behind location-dependent original implementations (cf. Table 4.1).
We can also confirm with our approaches NDN PID pull and push that the impact of the
overhead caused by NDN network technology is larger for small data portions transported
over the NDN network. Thus, NDN PID pull that transports complete Handle values at
once is outperforming NDN PID push that is transporting multiple smaller Handle message
fragment. We expect better performance concerning network throughput and latency for
future generations of NDN implementations. They might leave the domain of user land
tools (cf. Figure 5.37) and will instead run as optimized kernel modules or as a native
network component using a SDN approach.

3.) Real-world PID resolution patterns show the limitations to the advantageous feature
of NDN’s network caching capabilities. As we can see in Figure 6.12, a large fragmentation
of the PID resolution requests grouped by Handle prefixes exists at the official Handle PID
resolution HTTP proxies operated by GWDG. This pattern follows a Zipf distribution [169],
which can also be assumed for other linked resources on the Internet, such as websites,
downloads or PDF documents. This means that a small amount of Handle LHS that is
responsible for all PIDs under a specific Handle prefix gets the majority of PID resolution
requests. In contrast to this, the long-tail of LHS with all other PIDs related to less popular
prefixes, have to perform very few PID resolutions. Consequently, a small percentage of
PIDs is frequently requested, while a long-tail of PIDs is rarely or never resolved. If we
assume such an access pattern is used for resolving PIDs employing NDN PID pull, we can
conclude that a large percentage of PID resolution requests is not completed by a network
cache hit, due to its low resolution frequency. As a result, the majority of PIDs cannot
take advantage of NDN network caching. This affects all PIDs whose expected meantime
of resolution requests by clients is higher than the longest cache expiration limit on the
network path between the client and the LHS. Thus, we can assume that PIDs that are
resolved less than once a month do not benefit from NDN network caching at all, as the
NFD will remove the cached NDN PID pull resolution responses from its CS, before the
PID is resolved again by another client. However, this observation for NDN is transferable
to all NDN applications which are used to distribute content that is rarely accessed. It is
definitively a disadvantage of NDN that needs better attention in the NDN community and
is highlighted now by our approaches in the PID area.

170

7.3 Answers to Research Questions Concerning Location-Independent Data Access Using
Persistent Identifiers

7.3 Answers to Research Questions Concerning
Location-Independent Data Access Using Persistent
Identifiers

In the second part of this thesis, we looked in Chapter 6 at the integration of location-
independent access information into PIDs. For this, we formulated the second major
research question (RQ 2) of the thesis (cf. Section 1.2). Concerning the possible
improvements of research data dissemination through location-independent networks,
we can give following answers.

1.) Maintenance Free PIDs can be created using the approaches for PID improvement,
we proposed in Chapter 6. As the PIDs do not point to changing data locations but rather
describe the data that should be accessed through a smart connectivity, checking and
adjusting the PIDs is not necessary anymore.

2.) Location-Independent Research Data and Publication Citation is enabled by
our approach using existing Handle-based PID systems such as DOIL. Even today, large
research data sets from the National Aeronautics and Space Administration (NASA) and
from high-energy physics community are distributed in next-generation research data
repositories that use location-independent network technologies. With projects such as
Academic Torrents, platforms for this kind of research data dissemination already exist
and thus, our contributions add the missing piece for providing an approach to persistent
citation of the shared research data. Additionally, this point answers the first subquestion
(RQ 2.1) that asked whether a construction of a PID target scheme is possible that can
coexist with the existing target URLs. In Section 6.3.3, we provided an extension of the
Handle PID type system that allows a parallel installation of location-independent access
information together with target URLs in PIDs. However, this extension of the Handle type
system requires a modified PID resolution procedure that resolves PID against Magnet Link
data type (cf. Section 6.3.6). Hence, we can answer RQ 2.1 with yes, it is possible with
restrictions concerning the modified PID resolution process.

3.) Portable Trustworthy NDN Data Names are provided by our approach which
extends the Magnet Link scheme into the domain of NDN. By this, we enable the
transport of NDN data names together with its content-verification information in form of
a cryptographic signature in a structured container format. This allows the embedding of
NDN access information into media types such as websites and E-Mails. Furthermore, the
concept of Magnet Link protocol handlers improves the software integration at the user
side, as it enabled passing access information to suitable location-independent download
applications. As a result, our contribution to the NDN Magnet Link extension makes a
standardized handling of NDN data access information possible and exceeds the possibilities
provided by the current URL-like NDN naming scheme. This creates the foundation for
NDN-based (research) data dissemination.

171

Chapter 7 Discussion

4.) No major changes to the existing PID Infrastructure are necessary for the
approaches we provide for the integration of location-independent data access into the
Handle PID system. By this, we comply with the restrictions formulated in the introductory
section (cf. Section 1.2), where we stated that PID systems have a very slow change
momentum, meaning that existing principles and infrastructures can only be renewed over
time, due to billions of existing PID-tagged data sets. With the evaluations in Section 6.5.2,
we showed that no major impairment of existing PID infrastructure is expected for our
approaches. Thus, we can answer research question RQ 2.2 by yes, we do not expect an
impairment of PID infrastructures, at least for PID systems based on Handle.

5.) Safeguarding Data Access in Location-Independent Networks through PIDs was
subject of research question RQ 2.3. The question was whether PIDs can help to support
trusted data access in location-independent networks. We can answer this research question
by yes, PID can support trusted data access in location-independent networks using our
approaches to integrate verification information into the data access information. But in
order to realize this, three prerequisites have to be in fulfilled. First, the datasets that are
available for dissemination have to be cryptographically signed by the data issuer using
a PKI. Secondly, the signatures have to be integrated in the PID access information (cf.
Section 6.3.2). Thirdly, the PID needs to be signed as well, to assure the origin of the access
information. With these three prerequisites in place, the data access follows a chain of
cryptographic signed pointers that lead to a verifiable data set. The trusted data access in the
location-independent network is then performed in the following steps. First, the PID origin
and its data is verified. Next, the PID is resolved into the access information which contain
the data verification information. As last step, after accessing the data, this verification
information stored in the PID is used for verifying the dataset. By this, a fabrication of the
data is inhibited and the trustworthiness is not bound to the data location, but only to a chain
of trusted data descriptors and pointers bootstrapped through PID access.

To summarize, we can answer the second research question by yes, we provide
improvements for the research data dissemination using location-independent technology
on the side of the PIDs and on the side of the dissemination of research data with PIDs.

7.4 Limitations Of Location-Independent Data Access
Using Persistent Identifiers

Although we have shown in this thesis that long-term location-independent data access
information can be embedded into PIDs using an extended Magnet Link format, there
are several limitations. These limitations can be overcome by future work that is not
only subject of the Handle PID community but also subject of the communities advancing
BitTorrent, NDN and the Internet standards (e.g. IETF, W3C). Hence, we identified the
following limitations for our second approach presented in Chapter 6.

172

7.4 Limitations Of Location-Independent Data Access Using Persistent Identifiers

1.) Missing PID type standardization is currently a problem when integrating new data
types like Magnet Links into a PID system. In the current as-is situation, an implementation
of a new data type into a PID system is only possible if the PID system has an expandable
type system. Additionally, with a missing standardization it is also not clear which data
types are prospectively supported by the PID systems and where future development of a
PID is directed to. Although this fact seems to be a technical problem first, it has two further
implications. The first one is that the missing standardization is inhibiting the integration
of services responsible for long-term access. As shown in Section 6.3.6, high-level service
for PID resolution software like Handle HTTP-proxies use specific data types to determine
their resolution behavior. If there is no agreement on alternative resolution data types, the
interoperability between the high-level PID resolver and the PID software stack is defective.
These integration problems hold also true for all types of high-level services using a PID
system such as a data repository software or data catalogs that rely on a consistent PID type
set. The second implication is that approaches to integrate new data types for PID resolution
cannot be shared between different PID systems. This further implicates that advances in
the long-term data dissemination cannot by offered by all PID systems. For data repository
operators using multiple PID systems for data tagging, new dissemination techniques are
only available if they are supported by all their PID systems.

Fortunately, the problem of a missing PID type standardization has been recognized
by the research community. Currently, the international Research Data Alliance (RDA)
is working on the PID type standardization in an official PID Information Types Working
Group [171] [172]. The goal of the working group is to facilitate PID typing and enabling
interoperability across PID systems. For this, the working group has created an API
proposal, called PID Info Types API that contains a common minimal set of types which
should be present in every PID system. Furthermore, it contains a software architecture for
describing, querying and requesting data types using a data type registry. This data type
registry manages, stores and contains type descriptions independently from the PID system
families. By this, new data types can be attached to type registry-enabled PID systems and
automatically requested by high-level services. Hence, the integration of new data types in
different PID systems is doable in a controlled way and thus a cross-system integration
of new access information schemes is possible, as well. Until the results of this RDA
working group will be largely adopted by the different PID system communities, we have
the limitation that the embedding of location-independent access information is possible for
the Handle PID system but cannot be assured for all other existing PID systems.

173

Chapter 7 Discussion

2.) Missing Magnet Link standardization has been described in Section 2.5. However,
we focus on the limitations when employing the non-standardized Magnet Links in
location-independent research data dissemination in conjunction with persistent identifiers.
On the side of the Handle PID system, the impact of an unstable Magnet Link format is not
severe at the first sight. As pointed out in this thesis, Handle PIDs are self-contained and
store their data in indexed isolated Handle values (cf. Section 2.4 and Figure 2.5). Thus, a
change in the Magnet Link format specification has no immediate impact on existing PIDs
stored in the PID system. Additionally, the PID resolution is not inhibited, as the resolution
process returns the Handle value in return of a PID access. However, the data quality of
the PID system is degraded by different formatted Handle value content, as the clients
consuming the result of the PID resolution expect the data to be formatted in a specific
way. Furthermore, a conversion of the existing Magnet Link-formatted Handle values may
be necessary to provide a uniformly structured PID collection. This points to the largest
problems of the missing standardization of Magnet Links. On the first hand, the adaption
of the Magnet Link scheme in data dissemination systems, such as repository software
may be throttled, as the uncertainty will make software developers, founders and managers
anxious regarding the future support of Magnet Links and thus the integration into data
dissemination infrastructure. On the other hand, new emerging research data repositories
already adapt Magnet Links [96] for data dissemination if they are supporting BitTorrent
technology, due to the wide adaption of Magnet Links in numerous end-user tools [167].
Hence, it may be necessary to restart the standardization of Magnet Links at the Internet
standardization organizations for promoting the use of them in the PID domain and research
data dissemination.

3.) Adaption of enhanced NDN access information is needed to provide a trustful data
dissemination through NDN. This means that the NDN community has to provide a way to
distribute NDN data names together with information for data verification. Currently, the
content verification information is provided in the data packet responding a data interest.
However, it is not distinguishable for the user if a data packet with a valid signature
originates from the party that is authorized to issue the data set without additional access
information to a cryptographic certificate proving the identity of the data issuer and the
association of the signature. Hence, arbitrary parties can answer interests with incorrect
data that contains their valid signature, but does not contain the data the client was looking
for. To fix this problem, the data verification needs to be bootstrapped already at the stage
of data access information sharing. By this, incorrect answers from unauthorized parties
can be neglected using the verification information that has been provided by the enhanced
NDN access information. Our approach presented in Section 6.3.1 closes this gap. On the
other side, until this effort has not been adapted by the NDN community, a trusted data
access to NDN resources using a PID can only be done employing our method of extended
Magnet Links for providing trust-augmented access information. But this has the limitation
that the standard NDN tools and libraries cannot process the Magnet Link encoded access
information that is containing the content verification information. As a result, encoding
and sharing NDN access information needs to be extended and promoted within the NDN
research community to improve long-term research data dissemination through NDN.

174

Chapter

Conclusion

We give a short summary of this thesis and provide an outlook on potential work that is open
for future research.

8.1 Summary

This thesis is divided into two parts that are located in the intersection between persistent
identifiers and location-independent network technology. For the PID part, we focused
on the Handle-based PID systems and for the location-independent network technology
part, we concentrated on state-of-the-art overlay networks using BitTorrent and ICN-based
Named Data Networking as current topics of research.

In the first part of the thesis, we proposed novel approaches for shifting the foundation
of the Handle PID system from its location-dependent as-is principle to a new location-
independent principle. After identifying the benefits of this transition, we provided a
deep dive into the internals of this PID system and presented the impact of this shift
to the location-independent network domain of NDN. We have realized this without
breaking the interoperability to the existing PID infrastructure, knowing that research data
dissemination has a slow change momentum. We introduced a model for the conversion
of PID and NDN namespaces and transformed the communication and resource models
of the Handle PID system into NDN-driven models. For this, we formulated two major
communication models that we partially inspired by the original Handle system design
and its infrastructure architecture. The first proposed communication model, called NDN
PID push, extended the state-of-the-art NDN communication principles by a push-based
approach that allows data transport within NDN interests. It enables a spontaneous
network interaction between NDN nodes with a reduced number of network round trips
and an asynchronous one-way communication with parallelized payload transport. With
the proposal of our second communication model, called NDN PID pull, we provided
an approach to PID resolution and administrative data access that is independent of the

Chapter 8 Conclusion

LHS network location. Besides this, NDN PID pull takes advantages of NDN network
technologies and provides a robust PID resolution in faulty network environments as well
as a better scale-out behavior for frequently resolved PIDs based on NDN’s distributed
network cache design. We implemented both NDN Handle protocol communication modes
and carried out an evaluation using a simulated Handle testbed in Mini-NDN. For having
realistic input data and PID access distributions in our simulation, we employed real-world
PID resolution data from EPIC that we carefully anonymized in order to protect the users.
To provide an interaction between the NDN-enabled and the current PID infrastructure,
we proposed a gateway architecture. Our architecture features a Handle protocol analyzer
based on a state machine to select the suitable communication protocol (NDN PID push
or pull) for inbound communication forwarding. For this, the header and flags of the
Handle message are analyzed. As the Handle protocol is designed as a stateful protocol,
we optimized protocol decisions based on the Handle message state tables. By this, a
shortcut in the decision process is possible that leads to a fast message forwarding strategy.
For outbound communication, all requests are rewritten into the native Handle protocol
messages and the PID requests received from NDN PID pull are matched against incoming
Handle response messages using a fixed set of rules.

In the second part of the thesis, we proposed an approach to persistent identifiers that
include location-independent access information. First, we pointed out the distributed
maintenance efforts for PIDs that are needed to adjust the target URL of the linked data
set to the currently valid network location. To solve this problem, we then introduced
our approach on creating maintenance-free PIDs which use Magnet Link-encoded access
information that describes the content of the linked data sets instead of pointing to an
adjustable network address. For this, we transferred the existing non-standardized Magnet
URI scheme from the domain of the file sharing community into the domain of PID. As
the Magnet URI format was only capable of storing location-independent for BitTorrent
as well as other (legacy) systems, we proposed an extension for embedding NDN access
information into the Magnet Links. By this, we can use Magnet Links as a container
format in NDN that holds the full access information consisting of a NDN data name and
cryptographic information that is needed to verify the data sets obtained from the NDN
network. Furthermore, we propose to integrating data verification information into the
Magnet Link-encoded access information of PID which allows solving the problem that
data genuineness cannot be inferred from the data location in BitTorrent and NDN networks
but only by using cryptographic signatures attributing data sets to specific data producers.
Our contribution enables the NDN community to exchange trustworthy access information
in a fixed format — a contribution that has not been made to the NDN community yet.
We implemented our approach in order to verify it employing the Handle system. By
this, we can show that the existing Handle system is able to store and resolve PIDs with
Magnet Links applying new tools able to create and resolve Magnet Link-enabled PIDs.
For evaluating our approach, we use structural PID data derived from real-world EPIC
PID resolution data extracted with our high speed Handle PID mining tool, called Minera.
Again, the resolution data has been carefully anonymized and the obtained target URLs
have been deleted after extracting their structure to protect the users’ interests.

176

8.2 Outlook

8.2 Outlook

The results presented in this thesis show that the introduction of location-independent
network techniques is advantageous for the concept of PIDs. This will especially important,
when the demand for PID-tagging is increasing with the rise of e-science. However, there
are several fields for conducting further research.

We investigated the usage for location-independent PIDs in conjunction with NDN.
However, more state-of-the-art concepts for location-independent networks exist that could
be employed in the domain of PID as well and generate new research questions. As
foundations for this, overlay networks based on DHT can serve as a starting point for further
investigation, as DHT has been understood very well and numerous DHT-based efforts exist
for creating decentralized systems such as social networks or file sharing systems. The
results on DHT usage in PID systems may help to harden the Handle PID system and to
decentralize its critical infrastructure.

Furthermore, this thesis concentrates on the Handle PID system for verifying its concepts.
Although the Handle PID system, which possesses the largest user base of all other PID
systems, is a valid choice for PID system research, the approaches of this thesis might be
transferable to other PID system, such as ARK or PURL. Thus, future research questions
could be directed towards the integration of persistent PID resolution targets in other PID
systems. We expect that this transfer is easy to realize for any PID system that allows the
integration of resolution targets using extensible data types. Within the RDA, the work is
already going in this direction in order to have a common standardized data type system
for different PID systems. With the success of this work, the integration of Magnet Links
should be possible for any PID system which is adapting the RDA-initiated type system and
may generate more research questions in order to improve these PID systems.

The result of the NDN PID pull and push evaluation already indicated that the realization
of well-performing NDN network stacks is necessary to provide results that are able to
compete with classic network software. We hope that future research efforts will help to
improve the performance of the NFD software implementation and also will provide better
simulation environments. The future potential of the data push approach formulated in
NDN PID push might be very interesting for NDN researchers. While it currently provides
a relatively low data throughput in our test bed, it can be used for solving various problems
in NDN networks where instant data transmission is needed. This might be tasks such as
call signaling in Voice over IP (VOIP) software stacks using NDN or the sending of small
data packets in distributed sensor clusters in [oT environments. Furthermore, we expect that
this approach can also be used for resource discovery in NDN networks with a very low
network foot print.

Hence, by looking at this thesis, we see that location-independent network technology
and persistent identifiers form interesting research fields that have not reached their peaks
yet.

177

Bibliography

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

G. Bell, T. Hey, and A. Szalay, “Beyond the Data Deluge”, Science, vol. 323, no.
5919, pp. 1297-1298, Mar. 2009.

S. Lawrence, D. Pennock, G. Flake, R. Krovetz, F. Coetzee, E. Glover, F. Nielsen,
A. Kruger, and C. Giles, “Persistence of Web references in scientific research”,
Computer, vol. 34, no. 3, pp. 26-31, Mar. 2001.

C. Lynch, “Big data: How do your data grow?”, Nature, vol. 455, no. 7209,
pp- 28-29, Sep. 2008.

P. Lord, A. Macdonald, L. Lyon, and D. Giaretta, “From Data Deluge to Data
Curation”, in In Proceedings of the 3th UK e-Science All Hands Meeting,
Nottingham, UK, Aug. 2004, pp. 371-375.

Deutsche Forschungsgemeinschaft, Ed., Vorschlige zur Sicherung guter wissenschaft-
licher Praxis: DENKSCHRIFT ; Empfehlungen der Kommission ”Selbstkontrolle
in der Wissenschaft”, Erg. Aufl. Weinheim: Wiley-VCH, 2013.

R. Kahn and R. Wilensky, “A framework for distributed digital object services”,
International Journal on Digital Libraries, vol. 6, no. 2, pp. 115-123, Apr. 2006.

R. E. Duerr, R. R. Downs, C. Tilmes, B. Barkstrom, W. C. Lenhardt, J. Glassy, L. E.
Bermudez, and P. Slaughter, “On the utility of identification schemes for digital earth
science data: An assessment and recommendations”, Earth Science Informatics, vol.
4, no. 3, pp. 139-160, Sep. 2011.

L. Cinquini, D. Crichton, C. Mattmann, J. Harney, G. Shipman, F. Wang, R.
Ananthakrishnan, N. Miller, S. Denvil, M. Morgan, Z. Pobre, G. M. Bell, C.
Doutriaux, R. Drach, D. Williams, P. Kershaw, S. Pascoe, E. Gonzalez, S. Fiore,
and R. Schweitzer, “The Earth System Grid Federation: An open infrastructure for
access to distributed geospatial data”, Future Generation Computer Systems, vol.
36, pp. 400417, Jul. 2014.

V. Cerf, “Avoiding Bit Rot: Long-Term Preservation of Digital Information”,
Proceedings of the IEEE, vol. 99, no. 6, pp. 915-916, Jun. 2011.

A. Blazic, “Long Term Trusted Archive Services”, in Proceedings of the Ist
International Conference on Digital Society (ICDS) 2007, Guadeloupe, French
Caribbean, Jan. 2007, pp. 29-29.

Bibliography

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

180

V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and R. L.
Braynard, “Networking named content”, in Proceedings of the 5th international

conference on Emerging networking experiments and technologies, Rome, Italy,
Dec. 2009, pp. 1-12.

M. Pathan, R. Buyya, and A. Vakali, “Content Delivery Networks: State of the
Art, Insights, and Imperatives”, in Content Delivery Networks, ser. Lecture Notes
Electrical Engineering, R. Buyya, M. Pathan, and A. Vakali, Eds., vol. 9, Berlin,
Heidelberg: Springer, 2008, pp. 3-32.

A. Vakali and G. Pallis, “Content delivery networks: Status and trends”, IEEE
Internet Computing, vol. 7, no. 6, pp. 68—74, Nov. 2003.

C. Dannewitz, M. Herlich, and H. Karl, “OpenNetInf - prototyping an information-
centric Network Architecture”, in Proceedings of the 37th IEEE Conference
on Local Computer Networks Workshops 2012, Clearwater, USA, Oct. 2012,
pp- 1061-1069.

W. Allcock, I. Foster, S. Tuecke, A. Chervenak, and C. Kesselman, “Protocols
and services for distributed data-intensive science”, in Proceedings of Advanced
Computing and Analysis Techniques in Physics Research, Batavia, USA, Oct. 2000,
pp. 161-163.

B. Cohen, BitTorrent - a new P2p app, Jul. 2001. [Online]. Available: https :

/ / groups . yahoo . com/neo / groups /decentralization/ conversations/
topics/3160 (visited on 02/29/2016).

S. Shannigrahi, C. Papadopoulos, E. Yeh, H. Newman, A. J. Barczyk, R. Liu, A.
Sim, A. Mughal, I. Monga, J.-R. Vlimant, and J. Wu, “Named Data Networking in
Climate Research and HEP Applications”, Journal of Physics: Conference Series,
vol. 664, no. 5, Dec. 2015.

C. Olschanowsky, S. Shannigrahi, and C. Papadopoulos, “Supporting climate
research using named data networking”, in Proceedings of the 20th IEEE
International Workshop on Local & Metropolitan Area Networks (LANMAN)
2014, Reno, USA, May 2014, pp. 1-6.

P. Mockapetris, RFC 1034 - Domain Name concepts and facilities, 1987. [Online].
Available: https://tools.ietf.org/html/rfc1034 (visited on 10/10/2015).

E. Tonkin, “Persistent identifiers: Considering the options”, Ariadne, Web Magazine
for Information Professionals, no. 56, 2008. [Online]. Available: http: //www .
ariadne.ac.uk/issue56/tonkin (visited on 10/13/2015).

F. Berman, “Got data? A guide to data preservation in the information age”,
Communications of the ACM, vol. 51, no. 12, pp. 50-56, Dec. 2008.

Boston University Libraries, Research Data Management, 2013. [Online]. Available:
http://www.bu.edu/datamanagement/background/whatisdata/ (visited on
03/22/2016).

https://groups.yahoo.com/neo/groups/decentralization/conversations/topics/3160
https://groups.yahoo.com/neo/groups/decentralization/conversations/topics/3160
https://groups.yahoo.com/neo/groups/decentralization/conversations/topics/3160
https://tools.ietf.org/html/rfc1034
http://www.ariadne.ac.uk/issue56/tonkin
http://www.ariadne.ac.uk/issue56/tonkin
http://www.bu.edu/datamanagement/background/whatisdata/

Bibliography

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

J. Diederich and J. Milton, “Creating domain specific metadata for scientific data
and knowledge bases”, IEEE Transactions on Knowledge and Data Engineering,
vol. 3, no. 4, pp. 421-434, Dec. 1991.

J. Greenberg, H. C. White, S. Carrier, and R. Scherle, “A Metadata Best Practice
for a Scientific Data Repository”, Journal of Library Metadata, vol. 9, no. 3-4,
pp- 194-212, Nov. 2009.

A. Shoshani and H. Wong, “Statistical and Scientific Database Issues”, IEEE
Transactions on Software Engineering, vol. SE-11, no. 10, pp. 1040-1047, Oct.
1985.

J. C. French, “What is Metadata?”, in Proceedings of the SDM ’92 Workshop:
SCIENTIFIC Data Management Workshop, Salt Lake City, USA, Nov. 1992,

pp- 3-8.
M. S. Mayernik, G. S. Choudhury, T. DiLauro, E. Metsger, B. Pralle, M. Rippin,

and R. Duerr, “The Data Conservancy Instance: Infrastructure and Organizational
Services for Research Data Curation”, D-Lib Magazine, vol. 18, no. 9/10, Sep. 2012.

R. Heery and S. Anderson, Digital Repositories Review, Feb. 2005. [Online].
Available: http://www.ukoln.ac.uk/repositories/publications/review-
200502/digital-repositories-review—-2005.pdf (visited on 10/05/2015).

Re3data.org Team, Over 1,000 research data repositories indexed in re3data.org —
re3data.org, Nov. 2014. [Online]. Available: http://www.re3data.org/2014/
11/over-1000-research-data-repositories-indexed-in-re3data-org/
(visited on 10/05/2015).

Corporation for National Research Initiatives, HDL®) Identifier and Resolution
Services, Oct. 2015. [Online]. Available: http://www.handle.net/factsheet.
html (visited on 02/07/2016).

International DOI Foundation, DOI News - September 2014, Sep. 2014. [Online].
Available: http: //www . doi . org/news/DOI _News _Sepl4 . pdf (visited on
02/07/2016).

N. Paskin, “Digital Object Identifiers for scientific data”, Data Science Journal, vol.
4, pp. 12-20, 2005.

——, “Digital Object Identifier (DOI) System”, in Encyclopedia of Library
and Information Sciences, 3rd ed, Boca Raton, FL: CRC Press, Sep. 2011,
pp. 1586-1592.

European Persistent Identifier Consortium, European Persistent Identifier Consortium,
Mar. 2016. [Online]. Available: http: //www . pidconsortium . eu/ (visited on
04/18/2016).

181

http://www.ukoln.ac.uk/repositories/publications/review-200502/digital-repositories-review-2005.pdf
http://www.ukoln.ac.uk/repositories/publications/review-200502/digital-repositories-review-2005.pdf
http://www.re3data.org/2014/11/over-1000-research-data-repositories-indexed-in-re3data-org/
http://www.re3data.org/2014/11/over-1000-research-data-repositories-indexed-in-re3data-org/
http://www.handle.net/factsheet.html
http://www.handle.net/factsheet.html
http://www.doi.org/news/DOI_News_Sep14.pdf
http://www.pidconsortium.eu/

Bibliography

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

182

A. Karakannas and Z. Zhao, Information Centric Networking for Delivering
Big Data with Persistent Identifiers. Amsterdam, Netherlands: University of
Amsterdam, 2014. [Online]. Available: https://www.o0s3.nl/_media/2013-
2014/courses/rp2/p63_report.pdf (visited on 03/04/2016).

S. X. Sun, S. Reilly, and B. Boesch, RFC 3650 - Handle System Overview, 2003.
[Online]. Available: https : //tools . ietf . org/html / rfc3650 (visited on
02/07/2016).

S. X. Sun, S. Reilly, and L. Lannom, RFC 3651 - Handle System Namespace and
Service Definition, 2003. [Online]. Available: https://tools.ietf.org/html/
rfc3651 (visited on 02/07/2016).

S. X. Sun, S. Reilly, L. Lannom, and J. Petrone, RFC 3652 - Handle System Protocol
(ver 2.1) Specification, 2003. [Online]. Available: https://tools.ietf . org/
html/rfc3652.

Corporation for National Research Initiatives, System Fundamentals, Jun. 2012.
[Online]. Available: http : / / www . handle . net / overviews / system _
fundamentals.html (visited on 02/07/2016).

International Organization for Standardization (ISO), “Information and documenta-
tion — Digital object identifier system”, Geneva, Switzerland, ISO 26324:2012,
2012.

Digital Object Numbering Authority, Multi-Primary Administrators, Jan. 2016.
[Online]. Available: https://www.dona.net/mpa/ (visited on 04/05/2016).

V. Boehlke, T. Compart, and T. Eckart, “Building up a CLARIN resource
center—Step 1: Providing metadata”, in Proceedings of LREC Workshop on
Describing LRs with Metadata: TOWARDS Flexibility and Interoperability in
the Documentation of LR, Instanbul, Turkey, May 2012, pp. 21-29.

R. Fielding and J. Reschke, RFC 7230 - Hypertext Transfer Protocol (HTTP/1.1):
Message Syntax and Routing, Jun. 2014. [Online]. Available: https://tools.
ietf.org/html/rfc7230 (visited on 12/07/2015).

Deutsche Nationalbibliothek, Systembeispiele, Jan. 2008. [Online]. Available:
http://www . persistent - identifier . de /ueberblick/Beispiele . php
(visited on 10/14/2015).

G. Mohr, Magnet URI - Draft Tech Overview/Spec, Jun. 2002. [Online]. Available:
http://magnet - uri . sourceforge . net /magnet - draft - overview . txt

(visited on 02/07/2016).

J. Chapweske, HTTP Extensions for a Content-Addressable Web, Nov. 2001.
[Online]. Available: http : / / 1lists . w3 . org / Archives / Public / www —
talk/2001NovDec/0090.html (visited on 02/07/2016).

https://www.os3.nl/_media/2013-2014/courses/rp2/p63_report.pdf
https://www.os3.nl/_media/2013-2014/courses/rp2/p63_report.pdf
https://tools.ietf.org/html/rfc3650
https://tools.ietf.org/html/rfc3651
https://tools.ietf.org/html/rfc3651
https://tools.ietf.org/html/rfc3652
https://tools.ietf.org/html/rfc3652
http://www.handle.net/overviews/system_fundamentals.html
http://www.handle.net/overviews/system_fundamentals.html
https://www.dona.net/mpa/
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7230
http://www.persistent-identifier.de/ueberblick/Beispiele.php
http://magnet-uri.sourceforge.net/magnet-draft-overview.txt
http://lists.w3.org/Archives/Public/www-talk/2001NovDec/0090.html
http://lists.w3.org/Archives/Public/www-talk/2001NovDec/0090.html

Bibliography

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

E. Van der Sar, The Pirate Bay Tracker Shuts Down for Good, Nov. 2009. [Online].
Available: https://torrentfreak.com/the-pirate-bay-tracker-shuts-
down-for-good-091117/ (visited on 02/07/2016).

B. Cohen, The BitTorrent Protocol Specification - BEP 3, Oct. 2013. [Online].
Available: http://www.bittorrent . org/beps/bep_0003. html (visited on
02/07/2016).

A. Loewenstern and A. Norberg, DHT Protocol - BEP 5, Jan. 2008. [Online].
Available: http://www.bittorrent . org/beps/bep_0005. html (visited on
02/07/2016).

P. Maymounkov and D. Mazieres, “Kademlia: A Peer-to-Peer Information System
Based on the XOR Metric”, in Peer-to-Peer Systems, vol. 2429, Berlin, Heidelberg:
Springer, 2002, pp. 53-65.

O. Wannenwetsch and T. Majchrzak, “On Constructing Persistent Identifiers

with Persistent Resolution Targets”, in Proceedings of the Federated Conference on
Computer Science and Information Systems (FedCSIS) 2016, Gdansk, Poland, Sep.
2016, pp. 1031-1040.

J. Hoffmann, HTTP Seeding - BEP 17, Feb. 2008. [Online]. Available: http://
bittorrent.org/beps/bep_0017.html (visited on 02/29/2016).

M. Burford, WebSeed - HTTP/FTP Seeding (GetRight style) - BEP 19, Feb. 2008.
[Online]. Available: http://bittorrent.org/beps/bep_0017.html (visited on
02/29/2016).

A. Grunthal, Peer Exchange (PEX) - BEP 11, Oct. 2015. [Online]. Available: http:
//www.bittorrent.org/beps/bep_0011.html (visited on 02/07/2016).

A. Legout, G. Urvoy-Keller, and P. Michiardi, “Rarest first and choke algorithms
are enough”, in Proceedings of the 6th ACM SIGCOMM conference on Internet

measurement, Rio de Janeiro, Brazil, 2006, p. 203.

Decentralized Systems and Network Services Research Group, Available Bootstrap
Peers, Jun. 2014. [Online]. Available: http://dsn.tm.kit.edu/english/2936.
php#block3173 (visited on 03/01/2016).

G. Hazel and A. Norberg, Extension for Peers to Send Metadata Files - BEP 9, Nov.
2014. [Online]. Available: http://www.bittorrent.org/beps/bep_0009.html
(visited on 03/01/2016).

Named Data Networking Project, NDN Frequently Asked Questions (FAQ) - Named
Data Networking (NDN), Jun. 2014. [Online]. Available: http: //named-data.
net/project/faq/ (visited on 10/12/2015).

Palo Alto Research Center, Inc., Content-Centric Networking, May 2015. [Online].
Available: https://www.parc.com/work/focus-area/content-centric-
networking/ (visited on 10/12/2015).

183

https://torrentfreak.com/the-pirate-bay-tracker-shuts-down-for-good-091117/
https://torrentfreak.com/the-pirate-bay-tracker-shuts-down-for-good-091117/
http://www.bittorrent.org/beps/bep_0003.html
http://www.bittorrent.org/beps/bep_0005.html
http://bittorrent.org/beps/bep_0017.html
http://bittorrent.org/beps/bep_0017.html
http://bittorrent.org/beps/bep_0017.html
http://www.bittorrent.org/beps/bep_0011.html
http://www.bittorrent.org/beps/bep_0011.html
http://dsn.tm.kit.edu/english/2936.php#block3173
http://dsn.tm.kit.edu/english/2936.php#block3173
http://www.bittorrent.org/beps/bep_0009.html
http://named-data.net/project/faq/
http://named-data.net/project/faq/
https://www.parc.com/work/focus-area/content-centric-networking/
https://www.parc.com/work/focus-area/content-centric-networking/

Bibliography

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

184

The National Science Foundation, NSF Award Search: Award#1345318 - FIA-NP:
Collaborative Research: Named Data Networking Next Phase (NDN-NP), May
2014. [Online]. Available: http: //www .nsf . gov/awardsearch/showAward?
AWD_ID=1345318 (visited on 10/12/2015).

B. Cohen, “Incentives build robustness in BitTorrent”, in Proceedings of the First
Workshop on the Economics of Peer-to-Peer Systems, vol. 6, Berkley, USA, 2003,
pp. 68-72.

M. Mosko, IETF Internet-Drafts: Labeled Content Information — draft-mosko-
icnrg-ccnxlabeledcontent-00, 2015. [Online]. Available: http://tools . ietf .
org / html / draft - mosko - icnrg - ccnxlabeledcontent - 00 (visited on
10/10/2015).

Y. Yu, A. Afanasyev, Z. Zhu, and L. Zhang, “NDN Technical Memo: Naming
Conventions - NDN, Technical Report NDN-0023, Revision 17, Jul. 2014. [Online].
Available: http://named-data.net/wp-content/uploads/2014/08/ndn-tr-
22-ndn-memo-naming-conventions.pdf (visited on 02/07/2016).

P. Mahadevan, E. Uzun, S. Sevilla, and J. Garcia-Luna-Aceves, “CCN-KRS: A
key resolution service for CCN”, in Proceedings of the 1st ACM conference on
Information-centric Networking (ICN) 2014, Paris, France, Sep. 2014, pp. 97-106.

L. Sun, F. Song, D. Yang, and Y. Qin, “DHR-CCN, Distributed hierarchical routing
for content centric network”, Journal of Internet Services and Information Security

(JISIS), vol. 3, no. 1/2, pp. 71-82, 2013.

A. K. M. M. Hoque, S. O. Amin, A. Alyyan, B. Zhang, L. Zhang, and L. Wang,
“Nlsr: Named-data Link State Routing Protocol”, in Proceedings of the 3rd ACM
SIGCOMM Workshop on Information-centric Networking, ser. ICN *13, New York,
USA, 2013, pp. 15-20.

V. Lehman, A. K. M. M. Hoque, Y. Yu, L. Wang, B. Zhang, and L. Zhang, “A Secure
Link State Routing Protocol for NDN”, Jan. 2016. [Online]. Available: http://
named-data.net/wp-content/uploads/2016/01/ndn-0037-1-nlsr . pdf
(visited on 05/30/2016).

Z. Zhu and A. Afanasyev, “Let’s ChronoSync: Decentralized dataset state
synchronization in Named Data Networking”, in Proceedings of the 21st IEEE
International Conference on Network Protocols (ICNP) 2013, Gottingen, Germany,
Oct. 2013, pp. 1-10.

H. Zimmermann, “OSI Reference Model-The ISO Model of Architecture for Open
Systems Interconnection”, IEEE Transactions on Communications, vol. 28, no. 4,
pp- 425-432, Apr. 1980.

X. N. Nguyen, D. Saucez, and Turletti, Thierry, “Providing CCN functionalities
over OpenFlow switches”, Tech. Rep., Aug. 2013. [Online]. Available: https://
hal.inria.fr/hal-00920554 (visited on 03/08/2016).

http://www.nsf.gov/awardsearch/showAward?AWD_ID=1345318
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1345318
http://tools.ietf.org/html/draft-mosko-icnrg-ccnxlabeledcontent-00
http://tools.ietf.org/html/draft-mosko-icnrg-ccnxlabeledcontent-00
http://named-data.net/wp-content/uploads/2014/08/ndn-tr-22-ndn-memo-naming-conventions.pdf
http://named-data.net/wp-content/uploads/2014/08/ndn-tr-22-ndn-memo-naming-conventions.pdf
http://named-data.net/wp-content/uploads/2016/01/ndn-0037-1-nlsr.pdf
http://named-data.net/wp-content/uploads/2016/01/ndn-0037-1-nlsr.pdf
https://hal.inria.fr/hal-00920554
https://hal.inria.fr/hal-00920554

Bibliography

[71]

[72]

[73]

[74]

[75]

[76]
[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

S. Salsano, N. Blefari-Melazzi, A. Detti, G. Morabito, and L. Veltri, “Information
Centric Networking over SDN and OpenFlow: Architectural Aspects and Experi-
ments on the OFELIA Testbed”, Computer Networks, vol. 57, no. 16, pp. 3207-3221,
Nov. 2013.

J. Lee and D. Kim, “Proxy-assisted content sharing using content centric networking
(CCN) for resource-limited mobile consumer devices”, IEEE Transactions on
Consumer Electronics, vol. 57, no. 2, pp. 477-483, May 2011.

V. Jacobson, “Congestion avoidance and control”, ACM SIGCOMM Computer
Communication Review, vol. 18, no. 4, pp. 314-329, Aug. 1988.

C. A. Wood and E. Uzun, “Flexible end-to-end content security in CCN”, in
Proceedings of the 11th Annual IEEE Consumer Communications & Networking
Conference (CCNC) 2014, Las Vegas, USA, Jan. 2014, pp. 858-865.

A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of applied
cryptography, ser. CRC Press series on discrete mathematics and its applications.
Boca Raton: CRC Press, 1997.

D. E. Robling Denning, Cryptography and data security. Reading, Mass, 1982.

W. Diffie and M. Hellman, “New directions in cryptography”, en, IEEE Transactions
on Information Theory, vol. 22, no. 6, pp. 644—654, Nov. 1976.

B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, and N. Ferguson, The
Twofish Encryption Algorithm: A 128-bit Block Cipher. New York, USA: John
Wiley & Sons, Inc., 1999.

J. Daemen and V. Rijmen, The design of Rijndael: AES — the Advanced Encryption
Standard. Berlin, Heidelberg: Springer, 2002.

R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures
and public-key cryptosystems”, Communications of the ACM, vol. 21, no. 2,
pp- 120-126, Feb. 1978. (visited on 05/09/2016).

V. S. Miller, “Use of Elliptic Curves in Cryptography”, in Advances in Cryptology
— CRYPTO 85 Proceedings, H. C. Williams, Ed., vol. 218, Berlin, Heidelberg:
Springer, 1986, pp. 417-426.

N. Koblitz, “Elliptic Curve Cryptosystems”’, Mathematics of Computation, vol. 48,
no. 177, p. 203, Jan. 1987.

L. Nuaymi, WiMAX: Technology for broadband wireless access. Chichester,
England: John Wiley, 2007.

S. X. Sun, “Internationalization of the Handle System - A Persistent Global Name
Service”, in Proceeding of 12th International Unicode Conference, Tokyo, Japan,
1998.

M. J. Bates and M. N. Maack, Eds., Encyclopedia of library and information
sciences, 3rd ed. Boca Raton, FL: CRC Press, 2010.

185

Bibliography

[86] K. Shafer, S. Weibel, E. Jul, and J. Fausey, “Introduction to persistent uniform
resource locators”, in Proceeding of the 6th Annual Conference of the Internet
Society, ser. INET *96, Montreal, Canada, 1996.

[87] IEEE, IEEE Xplore, Oct. 2015. [Online]. Available: http://ieeexplore. ieee.
org (visited on 10/05/2015).

[88] S. Rozenfeld, RFC 3044 - Using International Serials Number as URN, Jan. 2001.
[Online]. Available: https : //tools . ietf . org/html / rfc3044 (visited on
10/14/2015).

[89] U. Ackermann, C. Berner, N. Elbert, J. Klett, K. K. Koger, N. von der Hude, and
M. Wiegand, Policy fiir die Vergabe von URNs im Namensraum urn:nbn:de Version
1.0. Leipzig, Frankfurt am Main: Deutsche Nationalbibliothek, Nov. 2012. [Online].
Available: http://d-nb.info/1029114455/34 (visited on 10/14/2015).

[90] J. Mirkovic, S. Diederich, D. Dittrich, and P. Reiher, Internet denial of service:
Attack and defense mechanisms, ser. The Radia Perlman series in computer
networking and security. Upper Saddle River, USA: Prentice Hall Professional
Technical Reference, 2005.

[91] H.-W. Hilse and J. Kothe, Implementing persistent identifiers: Overview of concepts,
guidelines and recommendations. London: Consortium of European Research
Libraries, 2006.

[92] 1. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid: Enabling
Scalable Virtual Organizations”, International Journal of High Performance
Computing Applications, vol. 15, no. 3, pp. 200-222, Aug. 2001.

[93] G. Khanna, U. Catalyurek, T. Kurc, R. Kettimuthu, P. Sadayappan, 1. Foster,
and J. Saltz, “Using Overlays for Efficient Data Transfer over Shared Wide-area
Networks”, in Proceedings of the 2008 ACM/IEEE Conference on Supercomputing,
ser. SC 08, Austin, Texas, Nov. 2008, 47:1-47:12.

[94] L. Ramakrishnan, C. Guok, K. Jackson, E. Kissel, D. M. Swany, and D. Agarwal,
“On-demand Overlay Networks for Large Scientific Data Transfers”, in Proceeding
of the 10th IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing (CCGrid) 2010, Melbourne, Australia, May 2010, pp. 359-367.

[95] D. Steer, D. Boyd, B. Cregan, S. Gray, S. Price, V. Knight, and C. Gardiner,
“Data.bris Research Data Repository Framework™, in Proccedings of Digital
Research 2012, Oxford, United Kingdom, Sep. 2012.

[96] J. P. Cohen and H. Z. Lo, “Academic Torrents: A Community-Maintained
Distributed Repository”, in Proceedings of the 2014 Annual Conference on Extreme
Science and Engineering Discovery Environment (XSEDE), Atlanta, USA, Jul.
2014, 2:1-2:2.

[97] ——, Academic Torrents, Oct. 2016. [Online]. Available: http://academictorrents.
com/ (visited on 10/08/2016).

186

http://ieeexplore.ieee.org
http://ieeexplore.ieee.org
https://tools.ietf.org/html/rfc3044
http://d-nb.info/1029114455/34
http://academictorrents.com/
http://academictorrents.com/

Bibliography

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

C. Fan, S. Shannigrahi, S. DiBenedetto, C. Olschanowsky, C. Papadopoulos,
and H. Newman, “Managing Scientific Data with Named Data Networking”,
in Proceedings of the Fifth International Workshop on Network-Aware Data
Management, Austin, USA, Nov. 2015, 1:1-1:7.

A. Dorigo, P. Elmer, F. Furano, and A. Hanushevsky, “XROOTD - A Highly scalable
architecture for data access”, WSEAS Transactions on Computers, vol. 1, no. 4.3,
2005.

A. Afanasyev, J. Shi, B. Zhang, L. Zhang, 1. Moiseenko, Y. Yu, W. Shang, L.
Yanbiao, S. Mastorakis, Y. Huang, J. P. Abraham, S. DiBenedetto, F. Chengyu,
C. Papadopoulos, D. Pesavento, G. Grassi, G. Pau, H. Zhang, T. Song, H. Yuan,
H. B. Abraham, P. Crowley, S. O. Amin, V. Lehman, and L. Wang, “NDN Technical
Report: NFD Developer’s Guide - NDN, Technical Report NDN-0021,Revision
57, Oct. 2015. [Online]. Available: http : //named - data . net/wp- content/
uploads /2015/10/ndn-0021-5-nfd- developer - guide . pdf (visited on
03/07/2016).

K. Sollins, “Pervasive persistent identification for Information centric networking”,
in Proceedings of the Second Edition of the ICN Workshop on Information-centric
Networking, Helsinki, Finland, Aug. 2012, pp. 1-6.

A. Ghodsi, T. Koponen, J. Rajahalme, P. Sarolahti, and S. Shenker, “Naming in
content-oriented architectures”, in Proceedings of the ACM SIGCOMM workshop
on Information-centric networking ICN ’11, Toronto, Canada, 2011, pp. 1-6.

B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman, “A survey of
information-centric networking”, IEEE Communications Magazine, vol. 50, no. 7,
pp- 26-36, Jul. 2012.

O. Schmitt, T. Majchrzak, and S. Bingert, “Experimental realization of a Persistent
Identifier Infrastructure stack for Named Data Networking”, in Proceedings of
the 10th International IEEE Conference on Networking, Architecture, and Storage
(NAS) 2015, Boston, USA, Aug. 2015, pp. 33-38.

L. Daigle, D.-W. van Gulik, R. lannella, and P. Filtstrom, RFC 3406 - URN
Namespace Definition Mechanisms, Oct. 2002. [Online]. Available: https :
//tools.ietf.org/html/rfc3406 (visited on 10/14/2015).

M. Mealling and R. Daniel, RFC 2483 - URI Resolution Services Necessary for
URN Resolution, Jan. 1999. [Online]. Available: https://tools . ietf . org/
html/rfc2483 (visited on 10/14/2015).

A. Karakannas and Z. Zhao, Information Centric Networking for Delivering Big
Data with Persistent ldentifiers (Presentation Slides). Amsterdam, Netherlands:
University of Amsterdam, 2014. [Online]. Available: https://www . 0s3.nl/
_media /2013 - 2014 / courses / rp2 / p63 _ presentation . pdf (visited on
03/11/2016).

187

http://named-data.net/wp-content/uploads/2015/10/ndn-0021-5-nfd-developer-guide.pdf
http://named-data.net/wp-content/uploads/2015/10/ndn-0021-5-nfd-developer-guide.pdf
https://tools.ietf.org/html/rfc3406
https://tools.ietf.org/html/rfc3406
https://tools.ietf.org/html/rfc2483
https://tools.ietf.org/html/rfc2483
https://www.os3.nl/_media/2013-2014/courses/rp2/p63_presentation.pdf
https://www.os3.nl/_media/2013-2014/courses/rp2/p63_presentation.pdf

Bibliography

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

188

C. Dannewitz, J. Golic, B. Ohlman, and B. Ahlgren, “Secure Naming for a Network
of Information”, in Proceedings of IEEE Conference on Computer Communications
INFOCOM, San Diego, USA, Mar. 2010, pp. 1-6.

S. Haun and A. Niirnberger, “Towards Persistent Identification of Resources in
Personal Information Management”, in Proceedings of the 3rd International
Workshop on Semantic Digital Archives (SDA 2013), vol. 1091, Valetta, Malta,
Sep. 2013, pp. 73-80.

H. Dai, B. Liu, Y. Chen, and Y. Wang, “On pending interest table in named data
networking”, in Proceedings of the eighth ACM/IEEE symposium on Architectures
for networking and communications systems, Austin, USA, 2012, pp. 211-222.

S. Braun, M. Monti, M. Sifalakis, and C. Tschudin, “CCN & TCP co-existence in
the future Internet: Should CCN be compatible to TCP?”, Ghent, Belgium, May
2013, pp. 1109-1115.

C. Xia, M. Xu, and Y. Wang, “A loss-based TCP design in ICN”, in Proceedings
of the 22nd Wireless and Optical Communication Conference (WOCC) 2013,
Chongqing, China, May 2013, pp. 449—-454.

M. Allmann, V. Paxson, and E. Blanton, RFC 5681 - TCP Congestion Control, Sep.
2009. [Online]. Available: https://tools.ietf.org/html/rfc5681 (visited on
04/13/2016).

Named Data Networking Project, NDN Packet Format Specification, Jul. 2015.
[Online]. Available: http : / /named - data . net /doc /ndn - tlv/ (visited on
03/13/2016).

Z.Zhu, S. Wang, X. Yang, V. Jacobson, and L. Zhang, “Act: Audio conference tool
over named data networking”, in Proceedings of the ACM SIGCOMM workshop on
Information-centric networking ICN 11, Toronto, Canada, 2011, p. 68.

W. Shang, J. Thompson, M. Cherkaoui, J. Burkey, and L. Zhang, “NDN.JS: A
javascript client library for named data networking”, in Proceedings of 2013 IEEE
Conference on Computer Communications Workshops INFOCOM WKSHPS, Turin,
Italy, Apr. 2013, pp. 399—-404. (visited on 07/25/2016).

H. Yuan and P. Crowley, “Experimental evaluation of content distribution with
NDN and HTTP”, in Proceedings of the 32nd IEEE International Conference
on Computer Communications (INFOCOM) 2013, Turin, Italy, Mar. 2013,
pp. 240-244.

J. Kneschke, Lighttpd, 2016. [Online]. Available: https://www.lighttpd.net/
(visited on 07/27/2016).

D. Wessels, H. Nordstrom, A. Jeffries, A. Russkov, F. Chemolli, R. Collins, and
G. Serassio, Squid : Optimising Web Delivery, 2016. [Online]. Available: http :
//www.squid-cache.org/ (visited on 07/27/2016).

https://tools.ietf.org/html/rfc5681
http://named-data.net/doc/ndn-tlv/
https://www.lighttpd.net/
http://www.squid-cache.org/
http://www.squid-cache.org/

Bibliography

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

Y. Wang and X. Qiao, “Design and implementation of web browser for named data
networking in Windows”, in Proceedings of the 2nd International Conference on
Systems and Informatics (ICSAI) 2014, Shanghai, China, Nov. 2014, pp. 607-612.

G. Nan, X. Qiao, Y. Tu, W. Tan, L. Guo, and J. Chen, “Design and Implementation:
The Native Web Browser and Server for Content-Centric Networking”, ACM
SIGCOMM Computer Communication Review, vol. 45, no. 5, pp. 609-610, Aug.
2015.

X. Qiao, G. Nan, W. Tan, L. Guo, J. Chen, W. Quan, and Y. Tu, “Ccnxtomcat: An
extended web server for Content-Centric Networking”, Computer Networks, vol. 75,
pp- 276296, Dec. 2014.

Y. Tu, X. Qiao, G. Nan, J. Chen, and S. Li, “A Priority-Based Dynamic Web
Requests Scheduling for Web Servers over Content-Centric Networking”, in
Proceedings of the Third IEEE Workshop on Hot Topics in Web Systems and
Technologies (HotWeb) 2015, Washington DC, USA, Nov. 2015, pp. 43-48.

N. L. van Adrichem and F. A. Kuipers, “Globally accessible names in named
data networking”, in Proceedings of the 2013 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), Turin, Italy, Apr. 2013,
pp. 345-350.

European Persistent Identifier Consortium, Documentation - PID generation, Dec.
2014. [Online]. Available: http : //doc . pidconsortium . eu/guides / api -
generation/ (visited on 04/20/2016).

J. Postel, RFC 791 - Internet Protocol, 1981. [Online]. Available: https://tools.
ietf.org/html/rfc791 (visited on 09/11/2016).

S. Deering and R. Hinden, RFC 2640 - Internet Protocol, Version 6 (IPv6)
Specification, 1998. [Online]. Available: https : // tools . ietf . org/html /
rfc2640 (visited on 09/11/2016).

J. Chen, M. Arumaithurai, L. Jiao, X. Fu, and K. Ramakrishnan, “Copss: An
Efficient Content Oriented Publish/Subscribe System”, in Proceedings of the 7th
ACM/IEEE Symposium on Architectures for Networking and Communications
Systems, ANCS 11, New York, USA, Oct. 2011, pp. 99-110.

Z.Liu, L. Liu, R. Hill, and Y. Zhan, “Base62x: An alternative approach to Base64 for
non-alphanumeric characters”, in Proceedings of the 8th International Conference
on Fuzzy Systems and Knowledge Discovery (FSKD) 2011, Shanghai, China, Jul.
2011, pp. 2667-2670.

C. Ghali, A. Narayanan, D. Oran, G. Tsudik, and C. A. Wood, “Secure Fragmentation
for Content-Centric Networks”, in Proceedings of the 14th IEEE International
Symposium on Network Computing and Applications, Cambridge, USA, Sep. 2015,
pp. 47-56.

189

http://doc.pidconsortium.eu/guides/api-generation/
http://doc.pidconsortium.eu/guides/api-generation/
https://tools.ietf.org/html/rfc791
https://tools.ietf.org/html/rfc791
https://tools.ietf.org/html/rfc2640
https://tools.ietf.org/html/rfc2640

Bibliography

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]
[140]

[141]

[142]

190

A. Afanasyev, J. Shi, L. Wang, B. Zhang, and L. Zhang, “NDN Technical Memo:
Naming Conventions - NDN, Technical Report NDN-0023, Revision 17, May 2015.
[Online]. Available: https://named-data.net/wp-content/uploads/2015/
05/ndn-0032-1-ndn-memo-fragmentation.pdf (visited on 02/07/2016).

F. Risso, M. Baldi, O. Morandi, A. Baldini, and P. Monclus, “Lightweight, Payload-
Based Traffic Classification: An Experimental Evaluation”, in Proceedings of the
2008 IEEE Conference on Communication ICC °08, May 2008, pp. 5869-5875.

Object Management Group, OMG Unified Modeling Language (OMG UML). Mar.
2015. [Online]. Available: http://www.omg.org/spec/UML/2.5/PDF (visited on
07/11/2016).

Corporation for National Research Initiatives, “Handle.Net Version 8.1.1 Software
Release Notes”, in, Apr. 2016. [Online]. Available: http://www.handle.net/HN_
v8.1.1_ReleaseNotes.pdf (visited on 05/30/2015).

J. Thompson and A. Brown, Jndn: A Named Data Networking client library for
Java, May 2016. [Online]. Available: https://github.com/named-data/jndn/
releases/tag/v0.12 (visited on 05/30/2016).

A. Afanasyev, J. Shi, D. Pesavento, V. Lehman, F. Chengyu, S. O. Amin, E.
Newberry, W. Shang, Y. Tu, H. Yuan, and Y. Yingdi, NFD - Named Data Networking
Forwarding Daemon, Mar. 2016. [Online]. Available: https : //github . com/
named-data/NFD/releases/tag/NFD-0.4.1 (visited on 05/30/2016).

A. K. M. M. Hoque, V. Lehman, S. O. Amin, A. Afanasyev, Y. Yingdi, A. Alyyan,
and J. Shi, NLSR - Named Data Link State Routing Protocol, Jan. 2016. [Online].
Available: https://github.com/named-data/NLSR/releases/tag/NLSR-
0.2.2 (visited on 05/30/2016).

Corporation for National Research Initiatives, HDL.NET® Software Client
Libraries, Apr. 2016. [Online]. Available: https://www.handle.net/client _
download.html (visited on 06/20/2016).

E. R. Harold, Java network programming, 4th edition. Beijing: O’Reilly, 2014.

Oracle Corporation, DatagramSocket (Java Platform SE 7), Jan. 2016. [Online].
Available: http: //docs . oracle . com/ javase /7 /docs/api/ java/net/
DatagramSocket.html (visited on 06/27/2016).

M. Grand, Patterns in Java: A Catalog of Reusable Design Patterns Illlustrated with
UML, 2nd. New York, USA: John Wiley & Sons, Inc., 2002.

S. Mastorakis, A. Afanasyev, I. Moiseenko, and L. Zhang, “ndnSIM 2.0: A
new version of the NDN simulator for NS-3 - NDN, Technical Report NDN-
0028,Revision 17, Jan. 2015. [Online]. Available: http://www.named-data.net/
techreport/ndn-0028-1-ndnsim-v2.pdf (visited on 03/07/2016).

https://named-data.net/wp-content/uploads/2015/05/ndn-0032-1-ndn-memo-fragmentation.pdf
https://named-data.net/wp-content/uploads/2015/05/ndn-0032-1-ndn-memo-fragmentation.pdf
http://www.omg.org/spec/UML/2.5/PDF
http://www.handle.net/HN_v8.1.1_ReleaseNotes.pdf
http://www.handle.net/HN_v8.1.1_ReleaseNotes.pdf
https://github.com/named-data/jndn/releases/tag/v0.12
https://github.com/named-data/jndn/releases/tag/v0.12
https://github.com/named-data/NFD/releases/tag/NFD-0.4.1
https://github.com/named-data/NFD/releases/tag/NFD-0.4.1
https://github.com/named-data/NLSR/releases/tag/NLSR-0.2.2
https://github.com/named-data/NLSR/releases/tag/NLSR-0.2.2
https://www.handle.net/client_download.html
https://www.handle.net/client_download.html
http://docs.oracle.com/javase/7/docs/api/java/net/DatagramSocket.html
http://docs.oracle.com/javase/7/docs/api/java/net/DatagramSocket.html
http://www.named-data.net/techreport/ndn-0028-1-ndnsim-v2.pdf
http://www.named-data.net/techreport/ndn-0028-1-ndnsim-v2.pdf

Bibliography

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

G. F Riley and T. R. Henderson, “The ns-3 Network Simulator”, in Modeling and
Tools for Network Simulation, K. Wehrle, M. Giines, and J. Gross, Eds., Berlin,
Heidelberg: Springer, 2010, pp. 15-34.

A. Afanasyev, Y. Yingdi, J. Shi, D. Pesavento, E. Newberry, J. Pereira, S.
Mastorakis, W. Shang, M. Sweatt, V. Lehman, J. Thompson, T. Jiewam, J.
Quevedo, 1. Moiseenko, S. Chen, X. Jiang, and M. Juszkiewicz, Ndn-cxx: NDN
C++ library with eXperimental eXtensions, Jul. 2016. [Online]. Available: https:
//github.com/named-data/ndn-cxx (visited on 07/04/2016).

D. Kulinski, A. Afanasyev, W. Shang, and Y. Yingdi, PyNDN - NDN bindings for
Python, May 2016. [Online]. Available: https: //github . com/ cawka/PyNDN
(visited on 07/04/2016).

A. Gawande, V. Lehman, L. Wang, J. Shi, B. Zhang, and A. Afanasyev, Mini-NDN,
Jun. 2016. [Online]. Available: https://github. com/named-data/mini-ndn
(visited on 07/04/2016).

B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid prototyping for
software-defined networks”, in Proceedings of the 9th ACM SIGCOMM Workshop
on Hot Topics in Networks (Hotnets-1X), Monterey, USA, 2010, pp. 1-6.

N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown, “Reproducible
network experiments using container-based emulation”, in Proceedings of the 8th

international conference on Emerging networking experiments and technologies
(CoNEXT ’12), Nice, France, 2012, pp. 253-264.

W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated performance
comparison of virtual machines and Linux containers”, in Proceedings of the 2015
IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS), Philadelphia, USA, Mar. 2015, pp. 171-172.

D. Comer, Internetworking with TCP/IP, 4th. Upper Saddle River, USA: John Wiley
& Sons, Inc., 2000.

C. Yi, J. Abraham, A. Afanasyev, L. Wang, B. Zhang, and L. Zhang, “On the role
of routing in named data networking”, in Proceedings of the 1st ACM conference on
Information-centric Networking (ICN) 2014, Paris, France, Sep. 2015, pp. 27-36.

T. Cruse, General Assembly 2016, moving DataCite forward, website, Mar. 2016.
[Online]. Available: https://blog.datacite.org/general-assembly-2016/
(visited on 04/11/2016).

DataCite, Metadata Stats, Apr. 2016. [Online]. Available: http : / / stats .
datacite.org/ (visited on 04/11/2016).

M. Fenner, Digging into Metadata using R, website, Aug. 2015. [Online]. Available:
https://blog.datacite.org/digging-into-data-using-r/ (visited on
04/11/2016).

191

https://github.com/named-data/ndn-cxx
https://github.com/named-data/ndn-cxx
https://github.com/cawka/PyNDN
https://github.com/named-data/mini-ndn
https://blog.datacite.org/general-assembly-2016/
http://stats.datacite.org/
http://stats.datacite.org/
https://blog.datacite.org/digging-into-data-using-r/

Bibliography

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

192

OpenSSL Software Foundation, OpenSSL - Cryptography and SSL/TLS Toolkit,
2016. [Online]. Available: https://www.openssl.org/docs/manmaster/apps/
openssl.html (visited on 08/31/2016).

OCLC Online Computer Library Center, Inc., PURL Help, 2015. [Online].
Available: https://purl.org/docs/help.html (visited on 10/19/2015).

Corporation for National Research Initiatives, “4.9 Handle Value Line Format”, in
HANDLE.NET (version 8.1) Technical Manual, Nov. 2015, pp. 28-29. [Online].
Available: https://hdl.handle.net/20.1000/105.

T. Weigel, S. Kindermann, and M. Lautenschlager, “Actionable Persistent Identifier
Collections”, Data Science Journal, vol. 12, pp. 191-206, 2014.

D. Broeder and L. Lannom, “Data Type Registries: A Research Data Alliance
Working Group”, D-Lib Magazine, vol. 20, no. 1/2, Jan. 2014.

Corporation for National Research Initiatives, HDL.NET®R) Proxy Server System,
2015. [Online]. Available: https://www.handle.net/proxy_servlet.html
(visited on 02/07/2016).

M. Diirst, L. Masinter, and J. Zawinski, RFC 6068 - The mailto URI Scheme, Oct.
2010. [Online]. Available: https://tools.ietf.org/html/rfc6068 (visited on
08/16/2016).

H. Schulzrinne, RFC 3966 - The tel URI for Telephone Numbers, Dec. 2004.
[Online]. Available: https : //tools . ietf . org/html / rfc3966 (visited on
08/16/2016).

R. Fielding and J. Reschke, RFC 7231 - Hypertext Transfer Protocol (HTTP/1.1):
Semantics and Content, Jun. 2014. [Online]. Available: http://tools.ietf.org/
html/rfc7231#section-6.4.4 (visited on 02/07/2016).

A. Norberg, Libtorrent python binding, 2015. [Online]. Available: http: //www .
rasterbar . com/products/libtorrent /python_binding . html (visited on
08/30/2016).

M. Hellkamp, Bottle: Python Web Framework, Feb. 2016. [Online]. Available:
http://bottlepy.org/docs/0.12/ (visited on 08/30/2016).

European Persistent Identifier Consortium, Pidconsortium/EPIC-API-v2, Mar.
2016. [Online]. Available: https://github. com/pidconsortium/EPIC-API-
v2 (visited on 04/13/2016).

Transmission Project, Transmission, Mar. 2016. [Online]. Available: https://www.
transmissionbt.com/ (visited on 07/20/2016).

A. Afanasyev, S. Chen, W. Shang, and J. Shi, Repo-ng: Next generation of NDN
repository, Nov. 2015. [Online]. Available: https://github.com/named-data/
repo-ng (visited on 04/14/2016).

https://www.openssl.org/docs/manmaster/apps/openssl.html
https://www.openssl.org/docs/manmaster/apps/openssl.html
https://purl.org/docs/help.html
https://hdl.handle.net/20.1000/105
https://www.handle.net/proxy_servlet.html
https://tools.ietf.org/html/rfc6068
https://tools.ietf.org/html/rfc3966
http://tools.ietf.org/html/rfc7231#section-6.4.4
http://tools.ietf.org/html/rfc7231#section-6.4.4
http://www.rasterbar.com/products/libtorrent/python_binding.html
http://www.rasterbar.com/products/libtorrent/python_binding.html
http://bottlepy.org/docs/0.12/
https://github.com/pidconsortium/EPIC-API-v2
https://github.com/pidconsortium/EPIC-API-v2
https://www.transmissionbt.com/
https://www.transmissionbt.com/
https://github.com/named-data/repo-ng
https://github.com/named-data/repo-ng

Bibliography

[169]

[170]

[171]

[172]

[173]

[174]
[175]

V. Almeida, A. Bestavros, M. Crovella, and A. de Oliveira, “Characterizing
reference locality in the WWW?”_in Proceedings of the 4th International Conference
on Parallel and Distributed Information Systems, Miami Beach, USA, Dec. 1996,
pp- 92-103.

E. Van der Sar, Download a Copy of The Pirate Bay, It’s Only 90 MB, Feb. 2012.
[Online]. Available: https://torrentfreak.com/download-a-copy-of-the-
pirate-bay-its-only-90-mb-120209/ (visited on 02/07/2016).

T. Weigel and T. DiLauro, PID Information Types RDA Working Group, Aug.
2013. [Online]. Available: https: //www.rd-alliance . org/groups/pid-
information-types-wg.html (visited on 07/02/2016).

T. Weigel, T. DiLauro, and T. Zastrow, RDA PID Information Types WG: Final
Report, Aug. 2015. [Online]. Available: https://b2share. eudat.eu/record/
245/files/PID%20Information’20Types%20Final20Report . pdf (visited on
07/10/2016).

Corporation for National Research Initiatives, “Tools”, in HANDLE.NET (version
8.1.1) Software Release Notes, Feb. 2016, p. 4. [Online]. Available: https://www.
handle.net/HN_v8.1.1_ReleaseNotes.pdf (visited on 05/15/2016).

S. Nakov, Internet programming with Java. Faber, 2004.

——, TCPForwardServer.java - Internet programming with Java, 2004. [Online].
Available: http://www.nakov. com/books/inetjava/source-code-html/
Chapter - 1-Sockets/1.4-TCP-Sockets/TCPForwardServer . java . html
(visited on 07/20/2016).

193

https://torrentfreak.com/download-a-copy-of-the-pirate-bay-its-only-90-mb-120209/
https://torrentfreak.com/download-a-copy-of-the-pirate-bay-its-only-90-mb-120209/
https://www.rd-alliance.org/groups/pid-information-types-wg.html
https://www.rd-alliance.org/groups/pid-information-types-wg.html
https://b2share.eudat.eu/record/245/files/PID%20Information%20Types%20Final%20Report.pdf
https://b2share.eudat.eu/record/245/files/PID%20Information%20Types%20Final%20Report.pdf
https://www.handle.net/HN_v8.1.1_ReleaseNotes.pdf
https://www.handle.net/HN_v8.1.1_ReleaseNotes.pdf
http://www.nakov.com/books/inetjava/source-code-html/Chapter-1-Sockets/1.4-TCP-Sockets/TCPForwardServer.java.html
http://www.nakov.com/books/inetjava/source-code-html/Chapter-1-Sockets/1.4-TCP-Sockets/TCPForwardServer.java.html

List of Acronyms

ACK
AES
API
ARK
ASCII
CCN
CDN
CHC
CIDR
CNRI
COPSS
CPU
CS
DFG
DHT
DI
DNS
DOI
DONA
ECC

Acknowledgement

Advanced Encryption Standard

Application Interface

Archival Resource Key

American Standard Code for Information Interchange
Content Centric Network

Content Distribution Network

Chinese Handle Coalition

Classless Inter-Domain Routing

Corporation for National Research Initiatives
Content Oriented Publish/Subscribe System
Central Processing Unit

Content Store

Deutsche Forschungsgemeinschaft
Distributed Hash Table

Directory Indicator

Domain Name System

Document Object Identifier

Data Oriented Network Architecture

Elliptic Curve Cryptography

List of Acronyms

EPIC
EQ
ESGF
ESNet
FIB
FQDN
FTP
FUSE
GHR
GWDG
HEP
HMAC
HTML
HTTP
ICANN
ICN
IDF
IETF
IoT

IP

IPC
ISBN
ISSN
ITU
JSON

196

European Persistent Identifier Consortium
Evaluation Question

Earth System Grid Federation

Energy Science Network

Forward Information Base
Fully-Qualified Domain Name

File Transfer Protocol

Filesystem in Userspace

Global Handle Registry

Gesellschaft fiir wissenschaftliche Datenverarbeitung
High Energy Particle Physics

Hash-based Message Authentication Code
Hypertext Markup Language

Hypertext Transfer Protocol

Internet Corporation for Assigned Names and Numbers
Information Centric Network
International DOI Foundation

Internet Engineering Task Force

Internet of Things

Internet Protocol

Inter-Process Communication
International Standard Book Number
International Standard Serial Number
International Telecommunication Union

JavaScript Object Notation

LHC
LHS
LRU
LSA
MAC
MPA
NA
NASA
NDN
NETINF
NFD
NLSR
OSI
pP2P
PARC
PDF
PEX
PID
PIM
PIT
PKI
PPINS
PPOID
PSM
PURL

Large Hadron Collider

Local Handle System

Last Recently Used

Link State Advertisement

Message Authentication Code

Multi Primary Administrator

Naming Authority

National Aeronautics and Space Administration
Named Data Networking

Network of Information

Network Forwarding Daemon

Named Data Link State Routing Protocol
Open Systems Interconnection Model
Peer-to-Peer

Xerox Palo Alto Research Center
Portable Document Format

Peer Exchange

Persistent Identifier

Personal Information Manager

Pending Interest Table

Public Key Infrastructure

Pervasive Persistent Identification System
Pervasive Persistent Object Id

Protocol State Machine

Persistent URL

197

List of Acronyms

PURSUIT Publish-Subscribe Architecture
QoS Quality of Service
RDA Research Data Alliance

REST Representational State Transfer

RFC Request for Comments

RPC Remote Procedure Call

RSA Rivest, Shamir and Adleman
SDN Software Defined Networking
SSD Solid State Disk

SWORD?2 Simple Web-service Offering Repository Deposit 2.0

TCP Transmission Control Protocol
TLD Top Level Domain

TTL Time To Live

UDP User Datagram Protocol

UML Unified Modeling Language

URI Uniform Resource Identifier
URL Uniform Resource Locator

URN Uniform Resource Name

VCS Voice Conference System

VIP Virtual Internet Protocol Address
VM Virtual Machine

VOIP Voice over [P
VPN Virtual Private Network
W3C World Wide Web Consortium

WAN Wide Area Network

198

WORM Wrote Once Read Multiple

XHR XMLHttpRequest

199

List of Symbols

a message authentication code

C cipher text — output of an encryption operation

Kp decryption key — the private key used for decryption in asymmetric encryption
Kg encryption key — the public key used for encryption in asymmetric encryption
K key — the secret key used in encryption operations

m plaintext message

P plain text — the source message of an encryption operation

i Handle prefix with the a rank

x; number of hops between the measurement server and the official Handle HTTP-proxy
s digital signature

w; weight in percent of all collected measurements

X, weighted average

List of Definitions

2.1
2.2
23
24
2.5
2.6
2.7
2.8

5.1
5.2

Research Data Management 11
Curation e 12
Archiving 12
Preservation 12
Metadata e 13
Meta-Metadata e 13
Research Data Curation 13
Persistent Identifier (PID) 16
NDNPIDPush 81

NDNPIDPull oo 93

List of Figures

2.1
2.2
23
24
2.5
2.6
2.7

2.8

29

2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
222

3.1
3.2

4.1

4.2
4.3
4.4

Levels of Digital Data Curation
Indexed research data repositories by re3data.org
Working Principle of PID systems
Handle Naming Scheme
Handle With Its Associated Values
Handle System Architecture with Client Interaction
Handle System Architecture with Client Interaction Using a Handle HTTP-
Proxy e
HTTP-based Location-Dependent Resolution And Data Access Using
Handle PID
Augmented Handle Naming Scheme
Structure of a BitTorrent Network using a Tracker
Structure of a BitTorrent network using a Distributed Hash Table
Peer-to-peer data distribution and peer exchange in BitTorrent
NDN Data Name Example
NDN packet types o v i e
Overview of NDN Node Details
NDN Packet Forwarding Engine
Simple NDN/CCN Routing,
Link State Advertisement Packet Format
Principle of Symmetric Encryption
Principle of Asymmetric Encryption
RSA Digital Signature System
Symmetric Message Authentication

Pervasive Persistent Identification System (PPINS) concept proposed by
Sollins
Proposed meta-PID service architecture by Karakannas and Zhao
Evaluation of Content Distribution with NDN and TCP-based HTTP
API-based NDN Integration into Legacy Applications

List of Figures

206

4.5 Proxy-based Architecture for Running Legacy Network Protocols Using a
NDN Network o

5.1 Location-IndependentPIDs,
5.2 Naming Convention for NDN-enabled location-independent PIDs
5.3 NDN Handle Message Header OpFlag
5.4 NDN PID Push Enables End-To-End NDN Communication
5.5 Handle Message Format
5.6 Handle Message Envelope
5.7 Handle Message Header
5.8 NDNPID Push Transport
5.9 Payload Embedding in NDN Interest
5.10 NDN PID Push Message Decomposition
5.11 NDN PID Push Transmission Unit Encoding / Decoding
5.12 NDN PID Push Message Composition
5.13 NDN PID Push Interest Data Forwarding
5.14 PID Response Scenarios in NDNPIDPull
5.15 NDN PID Pull Transport
5.16 Storing NDN PID Pull Data Names in the NFD Data Structures
5.17 Handle Value Request Using NDN Interests
5.18 Handle Value Response using NDN Data Packets
5.19 NDN PID Pull Request Issuing
5.20 NDN PID Pull Request Processing
5.21 NDN Gateway Architecture for Handle Interoperability
5.22 UML State Machine for Protocol Selection of Incoming Gateway Traffic . .
5.23 NDN Naming Scenarios For Outbound Handle Gateway Usage With NDN

PIDPush
5.24 UML State Machine for Forwarding Outgoing Binary Payload Delivered

Through NDN PID Push To Location-Dependent Handle Systems
5.25 NDN Naming Scenarios For Outbound Handle Gateway Usage With NDN

PIDPull e
5.26 UML State Machine for Forwarding Outgoing Binary Payload Delivered

Through NDN PID Pull To Location-Dependent Handle Systems
5.27 Overview of the Handle Server Software Architecture with NDN Additions
5.28 Details of the NDN-enabled Native Communication Subsystem
5.29 Details of the HDLNDNInterface
5.30 NDN PID Push Peer Announcement
5.31 HDLDatagram Transport with NDN PIDPush
5.32 NDN PID Push Pipeline for Decomposing, Encoding and Sending Handle

Messages Over NDN
5.33 NDN PID Push Pipeline for Receiving, Decoding and Composing Handle

Messages Over NDN o
5.34 NDN Publishing Subsystem in Context of the Handle Server Architecture .

List of Figures

5.35
5.36
5.37
5.38
5.39
5.40
541
542
543

5.44

6.1
6.2

6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14

6.15
6.16

A.l
A2
A3
A4

Handle Value Retrieval with NDNPID Pull 121
Collection of Data Samples for Real-World PID Resolution 124
NDN PID Push Evaluation Simulator Setups 128
Server Request Processing Time for Authenticated PID Creation 129
Server Request Processing Time for Authenticated PID Resolution 130
Server Request Processing Time for Plain Text PID ResolutionI 131
Average Server Request Processing Times 132
Server Request Processing Time for Plain Text PID ResolutionII 133
Comparison of Average Server Request Processing Times in Packet Loss

Scenarios Ll e e 134
Accumulated Resolution Time vs. Number of Clients for 10,000 PID

resolutions per Client, 136
PIDs with Location-Independent Resolution Targets 138
PID assignment and unique successful resolution for the DataCite DOI

infrastructure between 11/2011 and 11/2015 140
Trusted Long-Term Location-Independent Access Through using PIDs . . . 143
BitTorrent Magnet Link with Verification Information for Trusted Access . 145
NDN Magnet Link with Verification Information for Trusted Access 145
Comparison of PID Data Access Service Chains 147
PID Publication Workflow for Magnet Link-enabled PIDs using NDN . . . 149
PID Publication Workflow for Magnet Link-enabled PIDs using BitTorrent 150
Magnet Link Protocol Handler 152
Web-based Data Access through PID using Magnet Links and NDN 152
PID-Burner Software Architecture 154
Fragmentation of Handle PID Resolutions Grouped by Handle Prefix 158
Determination of PID Target URL Size with Mining Software 159
Comparison of Mean and Estimated Character Counts For PID Target URLs

and Magnet Link Collections 163
Distribution of Magnet Links and PID Target URLs Character Counts . . . 163
Average Resolution Time of Handle PIDs With Different Target URL Lengths 164
Creating a Magnet Link-enabled PID in PID-Burner 298
PID Management Interface in PID-Burner 299
PID with BitTorrent Access Data on hdl.handle.net 299
PID with BitTorrent Access Data on dx.doi.org 300

207

List of Listings

A.1 Removal of the Native URN Data Type Supportin HDLLib 213
A.2 Patch 1 for Handle Java API integration of NDN-enabled native communication
using NDN PIDpush 215
A.3 Patch 2 for Handle Java API integration of NDN-enabled native communication
using NDNPIDpush 216
A.4 Patch 3 for Handle HDLLib integration of NDN-enabled native communication
using NDN PID push (Configuration Subsystem) 216
A.5 Patch 4 for Handle HDLLib integration of NDN-enabled native communication
using NDN PID push (Native Handle Communication Subsystem) 217
A.6 Patch 5 for Handle HDLLib integration of NDN-enabled native communication
using NDN PID push (Native Handle Communication Subsystem) 230
A.7 Patch 5 for Handle Server integration of NDN-enabled native communication
using NDN PID push (Native Handle Communication Subsystem) 231
A.8 Patch 6 for Handle Server integration of NDN-enabled native communication
using NDN PID push (Native Handle Communication Subsystem) 232
A.9 Addition 1 for Handle HDLLib integration of NDN-enabled native
communication using NDN PIDpush 233
A.10 Addition 2 for Handle Server integration of NDN-enabled native communication
using NDN PIDpush 234
A.11 Addition 3 for Handle Server integration of NDN-enabled native communication
using NDNPIDpush 238
A.12 Patch 7 for PID Publishing subsystem integration using NDN PID pull . . . 244
A.13 Addition 4 for Handle Server integration of NDN PID pull (Starter) 245
A.14 Addition 5 for Handle Server integration of NDN PID pull (NFD Event
Handling) 246

A.15 Addition 6 for Handle Server integration of NDN PID pull (Interest Handler) 248
A.16 Addition 7 for Handle Server integration of NDN PID pull (Database Layer) 250
A.17 Addition 8 for Handle Server integration of NDN PID pull (Transport Layer) 251
A.18 Addition 10 for HDLLib integration of NDN PID pull (API Layer) 253
A.19 Addition 11 for HDLLIib integration of NDN PID pull (Transport Layer) . . 256
A.20 Classification of PID Resolution Requets according to their Handle Prefixes

from Anonymized LogData 258
A.21 Collection of IP-addresses from Primary Handle Sites 260

List of Listings

210

A.22 Calculation of Hop Counts between a fixed server and Primary Site of a

Handle LHS 261
A.23 Mini-NDN Experiment NDN Environment Setup Program 267
A.24 Mini-NDN NDN Sample Topology Configuration File Connecting Client to

Server with one Intermediate Node 270
A.25 Mini-NDN NDN Experiment Launcher 270
A.26 Mini-NDN Experiment TCP Environment Setup Program 273
A.27 TCP User Space Forwarder ServerPart. 275
A.28 TCP User Space Forwarder Forward Thread 276
A.29 TCP User Space Forwarder Client Thread 277
A.30 Interactive Mining Control Console 279
A.31 Mining Process Control 280
A32 Input File Processor 284
A.33 Mining Worker Thread 287
A34 HandleResolver 290
A.35 Script for Assembling Target URL and Magnet Link Collection Data 292
A.36 Script for Visualization of Data (Figure 6.15) 295
A.37 Crawler Script For Downloading all Torrent Files From Academic Torrents

using the Official APT 296
A.38 Script For Access Data Into Standardized Magnet Links 297
A.39 Interaction with the EPIC PID Rest Interface for creating and maintaining

PIDs 301
A.40 Extraction of BitTorrent Access Information 306
A.41 Script for Measuring PID Resolution Times With Various target URL Sizes 308
A.42 Script for Measuring URL-encoded Content Signatures 311

List of Tables

2.1
2.2
23

4.1

5.1
5.2
5.3

6.1
6.2
6.3
6.4
6.5

Al
A2
A3

Properties of the Handle System 19
Magnet URI Scheme Usage for Different Data Distribution Systems 25
Magnet URI Schema 25
Throughput Comparison of HTTP using NDN- and TCP-transport 63
Overview of the Handle Header OpCodes 84
Overview of the Handle Header ResponseCodes 84
Network Hop Calculation for the Top-10 Handle Prefixes 126
Magnet URI Scheme Extension. 142
Magnet URI Scheme Extension for Trusted Data Access 144
Target URL Length of the Top Ten Handle Prefixes 161
Magnet Link Length of Academic Torrents and The Pirate Bay 162
Estimated Magnet Link Length of Synthetic Collections 162
Network Hop Calculations For Classified Handle Prefixes 266
Summary of Network Hops 266
Character Count Increase Caused By Content Signatures 311

11

Appendix

A.1 Handle Source Code Remarks

In this section, we highlight properties and features of the Handle Server and the Handle
library (HDLLib) source code base from Handle Server 8.1.1 [173].

A.1.1 Removal of URN Data Type Support

The support for the URN data type 0.TYPE/URN has been commented out of the Handle
Server 8.1.1 code base [134] for unknown reasons. Thus, URN-support not part of the
default Handle Server and client 8.1.1 functionality, as the changes are part of the common
HDLLIb that is share between the client and server code base. As a consequence, storing
URNSs in Handle values as a native data type in only possible, if a URN data type has been
registered at each LHS individually.

Listing A.1: Removal of the Native URN Data Type Support in HDLLib

// File: /net/handle/hdllib/Common. java

/] ——=—===- Line Start: 120 - End: 128 ---------

public static final byte STD_TYPE_URL[] = Util.encodeString("URL");

public static final byte STD_TYPE_EMAIL[] = Util.encodeString("EMAIL"
)

public static final byte STD_TYPE_HSALIAS[] = Util.encodeString("
HS_ALIAS");

public static final byte STD_TYPE_HSSITE([] = Util.encodeString("
HS_SITE");

public static final byte STD_TYPE_HSSITE6 []
HS_SITE.6");

public static final byte STD_TYPE_HSADMIN []
HS_ADMIN");

public static final byte STD_TYPE_HSSERV[] = Util.encodeString("
HS_SERV");

// public static final byte STD_TYPE_HOSTNAME[] = Util.encodeString
("INET_HOST");

// public static final byte STD_TYPE_URN[] = Util.encodeString ("URN
")

Util.encodeString ("

Util.encodeString ("

13

15

17

19

21

23

25

27

A.1 Handle Source Code Remarks

/] ———————- Line Start: 134 - End: 146
public static final byte STD_TYPES[]I[]

//
//
};

= { STD_TYPE_URL,

STD_TYPE_EMAIL,
STD_TYPE_HSADMIN,
STD_TYPE_HSALIAS,
STD_TYPE_HSSITE,
STD_TYPE_HSSITEG6,
STD_TYPE_HSSERV,
STD_TYPE_HSSECKEY,
STD_TYPE_HSPUBKEY,
STD_TYPE_HSVALLIST,
STD_TYPE_HOSTNAME ,
STD_TYPE_URN,,

214

11

13

15

17

19

21

23

A.2 Handle Source Code Patches and Additions

A.2 Handle Source Code Patches and Additions

In this section, all modifications on the Handle Server and the Handle library (HDLLIib)
source code base are documented in the ANSI patch format. Additions to the code base that
extend the native functionality are added as full source code files.

A.2.1 Patches for NDN-enabled Native Handle Communication Using
NDN PID Push

Following changes and have been applied to the Handle Server 8.1.1 code base [134], in
order to realize native Handle protocol communication over a NDN network using NDN
PID push. These changes affect eleven files of the code base.

Listing A.2: Patch 1 for Handle Java API integration of NDN-enabled native communication
using NDN PID push

--- /hsj-8.1.1/src/net/handle/api/GenericHSAdapter. java
+++ /ndnhandle/src/net/handle/api/GenericHSAdapter. java
@@ -347,6 +347,23 @0
public void setUseUDP(boolean useUDP) {
if (useUDP) {
resolver.getResolver () .setPreferredProtocols (new int[] {
Interface.SP_HDL_UDP,
Interface.SP_HDL_TCP,
Interface.SP_HDL_HTTP });
} else {
resolver.getResolver () .setPreferredProtocols (new int[] {
Interface.SP_HDL_TCP,
Interface.SP_HDL_HTTP });
}
}

public void setUseNDN(boolean useNDN) {
if (useNDN) A
resolver.getResolver () .setPreferredProtocols(new int[] {
Interface.SP_HDL_NDN,
Interface.SP_HDL_UDP,
Interface.SP_HDL_TCP,
Interface.SP_HDL_HTTP });

+ 4+ + + + + + o+ + o+

215

11

13

15

11

A.2 Handle Source Code Patches and Additions

Listing A.3: Patch 2 for Handle Java API integration of NDN-enabled native communication
using NDN PID push

--- /hsj-8.1.1/src/net/handle/api/HSAdapter. java
+++ /ndnhandle/src/net/handle/api/HSAdapter. java
@@ -164,6 +164,12 @@

public void setUseUDP(boolean useUDP);

/ * %
* Adds and prioritizes NDN for communication with the Handle
server
* Q@param useNDN
*/
public void setUseNDN(boolean useNDN);

+

+ o+ o+ o+ o+

VEX:

* Updates the specified data handle values. </br> Note:
* <1li>Make sure that the index value is specified in the array of
* handle values or else this method will not work well.</1li>

Listing A.4: Patch 3 for Handle HDLLib integration of NDN-enabled native communication
using NDN PID push (Configuration Subsystem)

--- /hsj-8.1.1/src/net/handle/hdllib/GsonUtility. java
+++ /ndnhandle/src/net/handle/hdllib/GsonUtility. java
@@ -597,6 +597,7 @@
String protocol = obj.get("protocol").getAsString();
if ("UDP".equals (protocol)) intf.protocol = Interface.SP_HDL_UDP;
else if ("TCP".equals (protocol)) intf.protocol = Interface.
SP_HDL_TCP;
+ else if ("NDN".equals(protocol)) intf.protocol = Interface.
SP_HDL_NDN;
else if ("HTTP".equals (protocol)) intf.protocol =
Interface.SP_HDL_HTTP;
else if ("HTTPS".equals(protocol)) intf.protocol =
Interface.SP_HDL_HTTPS;
else intf.protocol = obj.get("protocol").getAsByte();

216

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

A.2 Handle Source Code Patches and Additions

Listing A.5: Patch 4 for Handle HDLLib integration of NDN-enabled native communication
using NDN PID push (Native Handle Communication Subsystem)

--- /hsj-8.1.1/src/net/handle/hdllib/HandleResolver. java
+++ /ndnhandle/src/net/handle/hdllib/HandleResolver. java
e -11,6 +11,7 Q@

import java.net.*;

import java.nio.channels.SocketChannel;
+import java.nio.charset.StandardCharsets;

import java.io.x*;

import java.util.x*;

import java.util.concurrent.CancellationException;
ee -27,9 +28,11 @@

import javax.net.ssl.SSLContext;

import javax.net.ssl.SSLSocket;

+import de.gwdg.ndn.hdldatagram.transport.HdlDatagramSocket;
import net.cnri.util.StringUtils;
import net.handle.security.*;
import net.handle.util.LRUCacheTable;

+import net.named_data. jndn.Name;

@@ -52,7 +55,7 Q@

boolean uselPv6FastFallback = true;

{ Interface.SP_HDL_UDP,

{ Interface.SP_HDL_NDN,
Interface.SP_HDL_TCP,
Interface.SP_HDL_HTTP,
Interface.SP_HDL_HTTPS };

- int preferredProtocols[]
+ int preferredProtocols[]

@@ -2286,11 +2289,13 @@
case Interface.SP_HDL_TCP:
response = sendHdlTcpRequest (req, addr, port, callback);

break;
+ case Interface.SP_HDL_NDN:
+ response = sendHdlNdnRequest (req, addr, port, callback);

case Interface.SP_HDL_HTTP:
if (req.hasEqualOrGreaterVersion (2, 8) &&
expectStreamingResponse (req) && !isDsaPublicKey(req.
serverPubKeyBytes)) {
response = sendHttpsRequest(req, addr, port, callback);

} else {

- response = sendHttpRequest(req, addr, port, callback);

+ //response = sendHttpRequest(req, addr, port, callback);
X
break;

case Interface.SP_HDL_HTTPS:
@@ -2312,144 +2317,9 @@
return response;

3

217

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80

82

84

86

A2

Handle Source Code Patches and Additions

218

private boolean expectStreamingResponse(AbstractRequest req) {
return req.opCode == AbstractMessage.OC_RETRIEVE_TXN_LOG ||
req.opCode == AbstractMessage.OC_DUMP_HANDLES
[l (req instanceof ChallengeAnswerRequest &&
expectStreamingResponse (((ChallengeAnswerRequest)req).
originalRequest)) ;

}

/*x*

* Verify response message with the pre-established session key.
*/

private final boolean verifyResponseWithSessionKey(AbstractRequest
req, AbstractResponse response)
throws HandleException

{
boolean veriPass = false;
if (req == null || respomnse == null) return false;
try {
veriPass = response.verifyMessage(req.sessionInfo.

getSessionKey ());
} catch (HandleException e) {
throw e;
} catch (Exception e){
throw new HandleException (
HandleException.MISSING_OR_INVALID_SIGNATURE,
"Error verifying MAC code",e);
3
if (veriPass) {
req.sessionInfo.addSessionCounter (response.sessionCounter,
true) ;
3

return veriPass;

/** This function verifies the integrity of a response given the
request
that it is for. The public key of the server is attached to
the
request so that this can verify the signature of the response.
This
function also checks the digest of the request that was
included
(if requested) in the response. */
private static final void verifyResponseWithServerPublicKey (
AbstractRequest req, AbstractResponse response)
throws HandleException

{

88

90

92

94

96

98

100

102

104

106

108

110

112

114

116

118

120

122

124

A.2 Handle Source Code Patches and Additions

if (req.serverPubKeyBytes==null) {
throw new HandleException(HandleException.SECURITY_ALERT,
"Unable to verify certified message:
no pubkey associated with request");

}

// the request was certified so we should verify the signature
here
PublicKey pubKey;
try {
pubKey = Util.getPublicKeyFromBytes (req.serverPubKeyBytes,
0);
} catch (Exception e) {
throw new HandleException(HandleException.INVALID_VALUE,
"Unable to extract public key",e);
b

try {
if (response.signature==null || response.signature.length<=0) {
throw new HandleException(HandleException.
MISSING_OR_INVALID_SIGNATURE,
"Verification failed, missing signature.");
}
if (!response.verifyMessage (pubKey)) {
throw new HandleException(HandleException.
MISSING_OR_INVALID_SIGNATURE,
"Verification failed.");
}
} catch (Exception e) {
// e.printStackTrace();
throw new HandleException(HandleException.
MISSING_OR_INVALID_SIGNATURE,
"Unable to verify signature for

message: "+response,e);

}

if (req.sessionInfo != null) req.sessionInfo.addSessionCounter (
response.sessionCounter, true) ;
¥

private static void verifyRequestDigestIfNeeded (AbstractRequest
req, AbstractResponse response) throws HandleException {

// Make sure that the server is responding to the request as
we sent it.

// This is because our request could have been modified on its
way to

// the server since requests aren’t signed. We get around
that by having

// the server include a digest of the original request with
its response.

if (req.returnRequestDigest) {

219

126

128

130

132

134

136

138

140

142

144

146

148

150

152

154

156

158

160

162

164

166

A2

Handle Source Code Patches and Additions

220

byte requestDigest[] =
Util.doDigest (response.rdHashType, req.
getEncodedMessageBody ()) ;
if (1Util.equals(requestDigest, response.requestDigest)) {
throw new HandleException(HandleException.
SECURITY_ALERT,
"Message came back with invalid request digest

‘ll);

}

/% 5k 5k %k %k % K 5k 5k %k % % K 5k 5k 3k K 5 5k 5 3k 3k 3% %K 5k 5k 3k 3k 5K K 5% 3k % 3% % %k 5k 3k 3 K % %k 5k % % % K 5k >k 3k % K K % * % % K % *k *k * X
* Shortcut to sendHdlUdpRequest (req, addr, port, null);
5k % ok % ok % ok K 5k ok ok 3 ok 3 ok 3 ok K 3k K ok 5 ok 5 ok 3k ok %k 3k K ok % ok % ok 3k ok %k 5k %k k ok K ok K ok Kok Kk kK k Kk Kk Kk k /
public AbstractResponse sendHdlUdpRequest (AbstractRequest req,
InetAddress addr,
int port)
throws HandleException
{
return sendHdlUdpRequest (req, addr, port, null);

}

private static void
waitIfSiblingConnectedAndThrowHandleExceptionIfFinished(
AbstractRequest req) throws HandleException {
if (req.multithread) {
try {

waitIfSiblingConnectedAndThrowInterruptedExceptionIfFinished(req);

X

catch(InterruptedException e) {

throw new HandleException(HandleException.
OTHER_CONNECTION_ESTABLISHED,
HandleException.

OTHER_CONNECTION_ESTABLISHED_STRING) ;

I

¥

private static void
waitIfSiblingConnectedAndThrowInterruptedExceptionIfFinished(
AbstractRequest req) throws InterruptedException {
if (req.multithread) {
if (req.completed.get()) throw new InterruptedException();
if (!req.connectionLock.tryLock()) {
req.connectionLock.lockInterruptibly () ;

}

req.connectionLock.unlock () ;

if (req.completed.get()) throw new InterruptedException();

168

170

172

174

176

178

180

182

184

186

188

190

192

194

196

198

200

202

204

206

A.2 Handle Source Code Patches and Additions

private static void
lockConnectionAndThrowHandleExceptionIfFinished (AbstractRequest
req) throws HandleException {
if (req.multithread) {
if (req.completed.get()) throw new HandleException (
HandleException.OTHER_CONNECTION_ESTABLISHED, HandleException.
OTHER_CONNECTION_ESTABLISHED_STRING) ;
try {
req.connectionLock.lockInterruptibly ();
X
catch(InterruptedException e) {
throw new HandleException(HandleException.
OTHER_CONNECTION_ESTABLISHED,
HandleException.
OTHER_CONNECTION_ESTABLISHED_STRING) ;
}
if (req.completed.get ()) {
req.connectionLock.unlock () ;
throw new HandleException(HandleException.
OTHER_CONNECTION_ESTABLISHED , HandleException.
OTHER_CONNECTION_ESTABLISHED_STRING) ;
3
}
b

public AbstractResponse sendHdlUdpRequest (AbstractRequest req,

+public AbstractResponse sendHdlNdnRequest (AbstractRequest req,

@@

InetAddress addr,
int port,
ResponseMessageCallback
callback)
-2457,14 +2327,15 @@
{
config.startAutoUpdate (this);
addr = config.mapLocalAddress (addr);
DatagramSocket socket = null;
HdlDatagramSocket socket = null;
DatagramPacket [] packets = null;
Exception lastException = null;

// create the socket, set the timeout value
try {
try {
socket new DatagramSocket () ;
socket HdlDatagramSocket.getInstance (NDNClientName.
getInstance () .getClientName ());
socket .addremotePeer (new Name("1234"));
} catch (Exception e) {

221

208

210

212

214

216

218

220

222

224

226

228

230

232

234

236

238

240

242

244

246

248

250

252

A.2 Handle Source Code Patches and Additions

try { socket.close(); } catch (Exception e2){}
throw new HandleException(HandleException.INTERNAL_ERROR,
e);
@@ -2493,6 +2364,304 @@

// send out each request packet
try {

+ //socket.setSoTimeout (udpRetryScheme [attempt]) ;

+ for(int packet = 0; packet < packets.length; packet++) {

+ socket .send(packets [packet]);

+ ¥

+ whenToTimeout = System.currentTimeMillis () +
udpRetryScheme [attempt];

+ } catch (Exception e) {

+ throw new HandleException(HandleException.INTERNAL_ERROR,

+ String.valueOf (e)+" sending NDN
request to "+

+ Util.rfcIpRepr (addr));

+ }

+

+ // loop, waiting for packets until the timeout is reached or

+ // we have all of the packets, whichever comes first.

+ byte returnMessage[] = null;

+ boolean packetsReceived[] = null;

+ boolean haveAllPackets = false;

+ while (thaveAllPackets && System.currentTimeMillis() <=
whenToTimeout) {

+ DatagramPacket rspnsPkt = null;

+

+ waitIfSiblingConnectedAndThrowHandleExceptionIfFinished(
req) ;

+

+ try {

+ rspnsPkt = socket.receive();

+ if (rspnsPkt.getlLength () <=0) continue;

+

+ // need to decode the envelop data...

+ byte rspnsPktDatal[] = rspnsPkt.getData();

+ int rspnsPktDatalen = rspnsPkt.getLength();

+

+ Encoder.decodeEnvelope (rspnsPktData, rcvEnvelope);

+

+ // if we got someone else’s packet, ignore it.

+ if (rcvEnvelope.requestId != req.requestId) continue;

+

+ if (packetsReceived==null) {

+ int numPkts =

+ rcvEnvelope.messagelLength / maxUDPDataSize;

+ if ((rcvEnvelope.messagelength) maxUDPDataSize) != 0)

+ numPkts++;

+ packetsReceived = new boolean[numPkts];

222

254

256

258

260

262

264

266

268

270

272

274

276

278

280

282

284

286

288

290

292

294

A.2 Handle Source Code Patches and Additions

+ + + 4+ + + +

+ 4+ +

+ + + + + + + + + + o+

+ +

+ + + + +

+

+ + + + + + +

for (int pr=0; pr<packetsReceived.length; pr++)

packetsReceived [pr] = false;
returnMessage = new byte[rcvEnvelope.messagelengthl];
}
packetsReceived [rcvEnvelope .messageld] = true;

System.arraycopy (rspnsPktData, Common.
MESSAGE_ENVELOPE_SIZE,
returnMessage,
rcvEnvelope.messageld*maxUDPDataSize,
rspnsPktDatalen-Common.
MESSAGE_ENVELOPE_SIZE) ;
haveAllPackets = true;
for(int pr=0; pr<packetsReceived.length; pr++) {
if (! packetsReceived[pr]) {
haveAllPackets = false;
pr = packetsReceived.length;
3
}

if (haveAllPackets) {

if (req.multithread) req.connectionLock.
lockInterruptibly () ;

// decrypt the message using pre-established session
information
if (rcvEnvelope.encrypted) {
// try session key decryption first
ClientSideSessionInfo sessionInfo = req.sessionInfo;
if (sessionInfo==null)
throw new HandleException(HandleException.
INCOMPLETE_SESSIONSETUP,
"Cannot decrypt message
without a session");

if (traceMessages)
System.err.println("Decrypting UDP message: "+
rcvEnvelope) ;

returnMessage = sessionInfo.decryptBuffer (
returnMessage, 0, returnMessage.length);

rcvEnvelope.encrypted = false;

rcvEnvelope .messagelength = returnMessage.length;

}

// parse the message
AbstractResponse response =
(AbstractResponse)Encoder.decodeMessage (
returnMessage, O, rcvEnvelope) ;

223

296

298

300

302

304

306

308

310

312

314

316

318

320

322

324

326

328

330

332

334

336

A.2 Handle Source Code Patches and Additions

+ o+ o+ o+ o+ o+ o+ o+ + +

+

+ o+ o+ A+ A+ A+ A+ o+ A+ A+ A+ A+ A+ A+ A+ +

+ o+

+
+
+

if (traceMessages)

System.err.println (" received HDL-UDP response:

+response) ;
checkSignatureIfNeeded(req, response);

if (callback!=null) {
callback.handleResponse (response) ;
}
return response;
}
} catch(InterruptedException e) {
throw new HandleException(HandleException.
OTHER_CONNECTION_ESTABLISHED,
HandleException.
OTHER_CONNECTION_ESTABLISHED_STRING) ;
} catch (Exception e) {
lastException = e;
}
}
}
} finally {
if (socket!=null) {
try { socket.close(); } catch (Exception e){}
}
}

if (lastException!=null) {
if (lastException instanceof HandleException)
throw (HandleException)lastException;
else
throw new HandleException(HandleException.
CANNOT_CONNECT_TO_SERVER,

n

addr+": "+lastException.toString()

)

X

throw new HandleException(HandleException.
CANNOT_CONNECT_TO_SERVER,

"Unable to connect to server:

}

"+addr) ;

+private boolean expectStreamingResponse (AbstractRequest req) {
return req.opCode == AbstractMessage.OC_RETRIEVE_TXN_LOG ||

+

+ o+ o+ 4

224

req.opCode == AbstractMessage.OC_DUMP_HANDLES

|| (req instanceof ChallengeAnswerRequest &&
expectStreamingResponse (((ChallengeAnswerRequest)req) .
originalRequest)) ;

}

VEX:

* Verify response message with the pre-established session key.

338

340

342

344

346

348

350

352

354

356

358

360

362

364

366

368

370

372

374

376

378

A.2 Handle Source Code Patches and Additions

+

+ 4+ + + + + + + + + 4+ + + + + o+

+ + + + + +

+ + + + + + + +

+

+

*/

private final boolean verifyResponseWithSessionKey (AbstractRequest
req, AbstractResponse response)
throws HandleException

{
boolean veriPass = false;
if (req == null || respomse == null) return false;
try {
veriPass = response.verifyMessage(req.sessionInfo.

getSessionKey ());
} catch (HandleException e) {
throw e;
} catch (Exception e){
throw new HandleException/(
HandleException.MISSING_OR_INVALID_SIGNATURE,
"Error verifying MAC code",e);
X
if (veriPass) {
req.sessionInfo.addSessionCounter (response.sessionCounter,
true) ;
¥

return veriPass;

}

/** This function verifies the integrity of a response given the
request
that it is for. The public key of the server is attached to
the
request so that this can verify the signature of the response.
This
function also checks the digest of the request that was
included
(if requested) in the response. */
private static final void verifyResponseWithServerPublicKey (
AbstractRequest req, AbstractResponse response)
throws HandleException

{

if (req.serverPubKeyBytes==null) {
throw new HandleException(HandleException.SECURITY_ALERT,
"Unable to verify certified message:
no pubkey associated with request");

}

// the request was certified so we should verify the signature
here
PublicKey pubKey;
try {
pubKey = Util.getPublicKeyFromBytes (req.serverPubKeyBytes,

225

380

382

384

386

388

390

392

394

396

398

400

402

404

406

408

410

412

414

A.2 Handle Source Code Patches and Additions

0);

+ } catch (Exception e) {

+ throw new HandleException(HandleException.INVALID_VALUE,

+ "Unable to extract public key",e);

+ }

+

+ try {

+ if (response.signature==null || response.signature.length<=0) {

+ throw new HandleException(HandleException.
MISSING_OR_INVALID_SIGNATURE,

+ "Verification failed, missing signature.");

+ X

+ if (!response.verifyMessage (pubKey)) {

+ throw new HandleException(HandleException.
MISSING_OR_INVALID_SIGNATURE,

+ "Verification failed.");

+ X

+ } catch (Exception e) {

+ // e.printStackTrace();

+ throw new HandleException(HandleException.
MISSING_OR_INVALID_SIGNATURE,

+ "Unable to verify signature for
message: "+response,e);

+ b

+

+ if (req.sessionInfo != null) req.sessionInfo.addSessionCounter (
response.sessionCounter, true);

+

+

+ private static void verifyRequestDigestIfNeeded(AbstractRequest
req, AbstractResponse response) throws HandleException {

+ // Make sure that the server is responding to the request as
we sent it.

+ // This is because our request could have been modified on its

way to

+ // the server since requests aren’t signed. We get around
that by having

+ // the server include a digest of the original request with
its response.

+ if (req.returnRequestDigest) {

+ byte requestDigest[] =

+ Util.doDigest (response.rdHashType, req.
getEncodedMessageBody ());

+ if (1Util.equals (requestDigest, response.requestDigest)) {

+ throw new HandleException(HandleException.
SECURITY_ALERT,

+ "Message came back with invalid request digest
")

+ 3

+ X

+ }

226

416

418

420

422

424

426

428

430

432

434

436

438

440

442

444

446

448

450

452

454

A.2 Handle Source Code Patches and Additions

+ + + + + + + + + + + + + ++ o+ o+ o+

+ 4+ + + + + + + + + o+

+

/% 5 %k %k % 5k 5k 5k %k %k % K 5k 3k % 3% %K K 5k 3k 3k 3K K 5k 5k 3k % 3K 5k 5k > % 3% 5 5k 5k 3k % % % %k 5k % % K %k 5k 5k * % % K % % % % K % *k *k % % ¥
* Shortcut to sendHdlUdpRequest(req, addr, port, null);
ok ok sk sk sk ok ok ok ok ok ok ok sk sk ok ok ok ok ok ok ok ok ok ok sk sk sk sk sk sk ok ok ok ok sk sk sk sk ok ok ok ok ok ok ok ok sk sk sk sk sk ok ok ok ok ok ok ok ok ok ok ok k /
public AbstractResponse sendHdlUdpRequest (AbstractRequest req,
InetAddress addr,
int port)
throws HandleException
{
return sendHdlUdpRequest(req, addr, port, null);
}

private static void
waitIfSiblingConnectedAndThrowHandleExceptionIfFinished (
AbstractRequest req) throws HandleException {
if (req.multithread) {
try {

waitIfSiblingConnectedAndThrowInterruptedExceptionIfFinished (req);

b

catch(InterruptedException e) {

throw new HandleException(HandleException.
OTHER_CONNECTION_ESTABLISHED,
HandleException.

OTHER_CONNECTION_ESTABLISHED_STRING) ;

b

}

private static void
waitIfSiblingConnectedAndThrowInterruptedExceptionIfFinished(
AbstractRequest req) throws InterruptedException {
if (req.multithread) {
if (req.completed.get()) throw new InterruptedException();
if ('req.connectionLock.tryLock ()) {
req.connectionLock.lockInterruptibly () ;

}

req.connectionLock.unlock();

if (req.completed.get()) throw new InterruptedException();

private static void
lockConnectionAndThrowHandleExceptionIfFinished (AbstractRequest
req) throws HandleException {
if (req.multithread) {

if (req.completed.get()) throw new HandleException(
HandleException.OTHER_CONNECTION_ESTABLISHED, HandleException.
OTHER_CONNECTION_ESTABLISHED_STRING) ;

try {

req.connectionlLock.lockInterruptibly () ;

227

456

458

460

462

464

466

468

470

472

474

476

478

480

482

484

486

488

490

492

494

496

498

A2

Handle Source Code Patches and Additions

+

+ 4+ 4+ +

+ o+ + + + + + o+

+ 4+ + + + + o+ + A+ A+ o+ +

+ 4+ o+ + 4+

+ 4+ 4+ o+ o+

228

¥
catch(InterruptedException e) {
throw new HandleException(HandleException.
OTHER_CONNECTION_ESTABLISHED,
HandleException.
OTHER_CONNECTION_ESTABLISHED_STRING) ;
b
if (req.completed.get ()) {
req.connectionLock.unlock ();
throw new HandleException(HandleException.
OTHER_CONNECTION_ESTABLISHED, HandleException.
OTHER_CONNECTION_ESTABLISHED_STRING) ;
¥
X
}

public AbstractResponse sendHdlUdpRequest (AbstractRequest req,
InetAddress addr,
int port,
ResponseMessageCallback

callback)
throws HandleException
{
config.startAutoUpdate (this);
addr = config.mapLocalAddress (addr);
DatagramSocket socket = null;
DatagramPacket [] packets = null;
Exception lastException = null;
// create the socket, set the timeout value
try {
try {
socket = new DatagramSocket () ;
} catch (Exception e) {
try { socket.close(); } catch (Exception e2){}
throw new HandleException(HandleException.INTERNAL_ERROR,
e);
X
MessageEnvelope rcvEnvelope = new MessageEnvelope();
long whenToTimeout;
for(int attempt=0; attempt < udpRetryScheme.length; attempt++)
{

if (packets==null) {
packets = getUdpPacketsForRequest (req,addr,port);
} else {
// if sending UDP requests in a session, resign each
attempt to avoid duplicate session counters
if (req.sessionInfo!=null && req.authInfo!=null && req.

500

502

504

506

508

510

512

514

A.2 Handle Source Code Patches and Additions

+ 4+ 4+ + +

+ 4+ +

+ + + + +

hasEqualOrGreaterVersion(2,5)) {
req.signMessageForSession();
packets = getUdpPacketsForRequest (req,addr,port);
}
}
waitIfSiblingConnectedAndThrowHandleExceptionIfFinished (req)

if (traceMessages) A
System.err.println(" sending HDL-UDP request ("+req+") to
|l+
Util.rfcIpPortRepr (addr,port));
}

// send out each request packet
try {
socket.setSoTimeout (udpRetryScheme [attempt]) ;
for(int packet = 0; packet < packets.length; packet++) {
socket.send (packets [packet]);

229

A.2 Handle Source Code Patches and Additions

Listing A.6: Patch 5 for Handle HDLLib integration of NDN-enabled native communication
using NDN PID push (Native Handle Communication Subsystem)

--- /hsj-8.1.1/src/net/handle/hdllib/Interface. java
+++ /ndnhandle/src/net/handle/hdllib/Interface. java
@@ -21,6 +21,7 @@
public static final byte SP_HDL_TCP = 1;
public static final byte SP_HDL_HTTP = 2;
public static final byte SP_HDL_HTTPS = 3;
+ public static final byte SP_HDL_NDN = 4;
public byte type; // OUT_OF_SERVICE, ADMIN, QUERY,
ADMIN_AND_QUERY
public int port; // usually 2641
e -88,6 +89,8 @@
return "TCP";
case SP_HDL_UDP:
return "UDP";

+ case SP_HDL_NDN:
+ return "NDN";
default:
return "UNKNOWN";
}

230

11

13

15

17

19

21

23

25

27

29

31

33

A.2 Handle Source Code Patches and Additions

Listing A.7: Patch 5 for Handle Server integration of NDN-enabled native communication
using NDN PID push (Native Handle Communication Subsystem)

--- /hsj-8.1.1/src/net/handle/server/Hd1UdpPendingRequest. java
+++ /ndnhandle/src/net/handle/server/HdlUdpPendingRequest. java
e -17,8 +17,8 Q@
-class HdlUdpPendingRequest {
- String idString;
+public class HdlUdpPendingRequest {
+ public String idString;
boolean gotPacket[] = null;
byte message[];

@@ -26,11 +26,11 @@
- static final String getRequestId(InetAddress addr, int requestId)
{
+ public static final String getRequestId(InetAddress addr, int
requestId) {
return String.valueOf (requestId)+’0’+Util.rfcIpRepr (addr);
X

- HdlUdpPendingRequest (String idString,
+ public Hd1lUdpPendingRequest (String idString,
MessageEnvelope firstEnv,
DatagramPacket firstPkt)
{
@@ -50,7 +50,7 @@
- Dboolean isComplete() {
+ public boolean isComplete() {
for(int i=0; i<gotPacket.length; i++)
if (tgotPacket[i]) return false;
return true;
e -61,7 +61,7 Q@
- wvoid addPacket (MessageEnvelope env, DatagramPacket pkt) {
+ public void addPacket (MessageEnvelope env, DatagramPacket pkt) {
gotPacket [env.messageId] = true;

if (message==null) message = new byte[env.messagelengthl];

231

11

13

15

17

19

A.2 Handle Source Code Patches and Additions

Listing A.8: Patch 6 for Handle Server integration of NDN-enabled native communication
using NDN PID push (Native Handle Communication Subsystem)

--- /hsj-8.1.1/src/net/handle/server/NetworkInterface. java
+++ /ndnhandle/src/net/handle/server/NetworkInterface. java
@@ -36,6 +36,7 Q@

public static final String INTFC_HDLTCP = "hdl_tcp";
public static final String INTFC_HDLUDP = "hdl_udp";
public static final String INTFC_HDLHTTP = "hdl_http";
+ public static final String INTFC_NDN = "hdl_ndn";
public static final String INTFC_DNSUDP = "dns_udp";
public static final String INTFC_DNSTCP = "dns_tcp";

@@ -49,6 +50,8 Q@
return new HdlUdpInterface(main, (StreamTable)configTable.get (
frontEndLabel+" _config"));
} else if (frontEndLabel.startsWith(INTFC_HDLTCP)) {
return new HdlTcpInterface(main, (StreamTable)configTable.get (
frontEndLabel+" _config"));
+ } else if(frontEndLabel.startsWith(INTFC_NDN)) {
+ return new HAd1NDNInterface(main, (StreamTable)configTable.get(
frontEndLabel+" _config"));
} else if(frontEndLabel.startsWith (INTFC_HDLHTTP)) {
// dealt with elsewhere
return null;
if (message==null) message = new byte[env.messagelengthl];

232

10

12

14

16

18

20

22

24

26

28

A.2 Handle Source Code Patches and Additions

A.2.2 Additions for NDN-enabled Native Handle Communication
Using NDN PID Push

Following additions have been added to the Handle Server 8.1.1 code base [134], in order to
realize native Handle protocol communication over a NDN network using NDN PID push.
These additions extend the Handle code base by three files.

Listing A.9: Addition 1 for Handle HDLLib integration of NDN-enabled native
communication using NDN PID push

// File /ndnhandle/src/net/handle/hdllib/NNDNClientName. java
package net.handle.hdllib;

import java.math.Biglnteger;
import java.security.SecureRandom;

import net.named_data.jndn.Name;

public final class NDNClientName {
private static NDNClientName instance;

private Name clientname;
private final SecureRandom random = new SecureRandom() ;

public static synchronized NDNClientName getInstance () {
if (NDNClientName.instance == null) {
NDNClientName.instance = new NDNClientName () ;
}
return NDNClientName.instance;

3

private NDNClientName () {
this.clientname = new Name("cl-" + new BigInteger (130, random).
toString (32));
}

public Name getClientName () {
return this.clientname;

}

233

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

A.2 Handle Source Code Patches and Additions

Listing A.10: Addition 2 for Handle Server integration of NDN-enabled native
communication using NDN PID push

// File /ndnhandle/src/net/handle/server/Hd1NDNInterface. java

// This implementation uses methods and code from the
// the file net.handle.server.HdlUdpInterface

package net.handle.server;

import net.cnri.util.GrowBeforeQueueThreadPoolExecutor;
import net.cnri.util.StreamTable;

import net.handle.hdllib.x*;

import net.named_data. jndn.Name;

import java.net.*;

import java.util.concurrent.ConcurrentHashMap;

import java.util.concurrent.ConcurrentMap;

import java.util.concurrent.LinkedBlockingQueue;

import java.util.concurrent.TimeUnit;

import de.gwdg.ndn.hdldatagram.transport.HdlDatagramSocket;

public class Hd1NDNInterface extends NetworkInterface {
private InetAddress bindAddress;
private int threadLife = 500;
private int bindPort = 2641;
private int numThreads = 10;
private int maxHandlers = 200;
private boolean logAccesses=false;
private boolean trackThreads=false;
private HdlDatagramSocket dsocket = null;
private boolean keepServing = true;

private ConcurrentMap<String ,HdlUdpPendingRequest> pendingRequests;

public Hd1NDNInterface(Main main, StreamTable config) throws
Exception {
super (main) ;
pendingRequests = new ConcurrentHashMap<String,
HdlUdpPendingRequest >() ;
init(config);

}

public byte getProtocol() { return Interface.SP_HDL_NDN; }
public int getPort() { return bindPort; }

private void init(StreamTable config) throws Exception {

try { // get the number of thread (default is 10);
numThreads = Integer.parselnt ((String)config.get("num_threads")
)
} catch (Exception e) {
main.logError (ServerLog.ERRLOG_LEVEL_NORMAL, "unspecified

234

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

7

79

81

83

85

87

89

91

A.2 Handle Source Code Patches and Additions

thread count, using default: " + numThreads) ;

3

try { // get the max backlog size...
if (config.containsKey("max_handlers")) {
maxHandlers = Integer.parselnt((String)config.get ("
max_handlers"));
}
} catch (Exception e) {
main.logError (ServerLog.ERRLOG_LEVEL_NORMAL, "unspecified
max_handlers count, using default: " + maxHandlers) ;

3

try { // get the maximum thread life (default is 500)

if (config.containsKey ("thread_life")) {

threadlLife = Integer.parselnt((String)config.get("thread_life
"))

}
} catch (Exception e) {

main.logError (ServerLog.ERRLOG_LEVEL_NORMAL, "Invalid thread

life, using default: " + threadLife);

}
trackThreads = config.getBoolean("track_threads");
// check if we should log accesses or not...
logAccesses = config.getBoolean("log_accesses");
super.initialize () ;

/3% 3k 3k ok ok ok sk ok ok sk ok ok ok ok sk sk ok sk ok ok ok ok ok sk sk ok sk ok ok ok ok ok sk ok ok sk ok ok ok ok sk sk ok sk ok ok ok ok ok sk sk ok ok ok ok ok ok ok ok sk ok ok ok K
* Tells the interface to finish up the current operation and

* stop listening for new connections.
***/
protected void stopService() {

keepServing = false;

try {

dsocket.close () ;

} catch (Exception e) {}

b

/% oK K ok ok ok ok ok ok ok ok K ok ok K ok ok K ok ok K oK ok K ok ok K oK 3K oK oK 3K K oK K oK oK 3K oK oK K oK oK K oK ok K oK ok K oK ok K ok ok K ok ok K ok ok K K ok
* Tells the interface to listen for incoming requests until

* stopService () is called.

sk ok K ok ok oK oK ok oK oK K oK oK oK oK K oK oK K K oK K oK oK K oK oK K oK ok K oK ok K oK ok K ok ok K ok ok oK ok ok oK oK ok oK oK KK oK K K K KKk Kk K/
public void serveRequests() {

keepServing = true;

try {

dsocket = HdlDatagramSocket.getInstance (new Name("1234"),
InetAddress.getByName("0.0.0.0"));
} catch (Exception e) {

235

A.2 Handle Source Code Patches and Additions

main.logError (ServerLog.ERRLOG_LEVEL_FATAL, String.valueOf (this

.getClass()) + ": Error setting up server socket: " + e);
93 return;
}
95
97 handlerPool = new GrowBeforeQueueThreadPoolExecutor (numThreads,
maxHandlers, 1, TimeUnit.MINUTES, new LinkedBlockingQueue<
Runnable>());
// handlerPool.setHandlerLife (threadLife) ;
99 System.out.println("Starting NDN request handlers...");

try { System.out.flush(); } catch (Exception e) {}
101 long reqCount = 0;

long recvTime = O0;
103 while (keepServing) {
try {
105 DatagramPacket dPacket = dsocket.receive();
recvTime = System.currentTimeMillis () ;
107 handlerPool.execute(new Hd1NDNRequestHandler (main, dsocket,

this, logAccesses, dPacket, recvTime));
} catch (Exception e) {

109 if (keepServing) {
main.logError (ServerLog.ERRLOG_LEVEL_REALBAD, "" + this.
getClass() + ": Error handling request: " + e);

111 e.printStackTrace (System.err) ;

}
113 by

¥
115 try {
dsocket.close () ;
117 } catch (Exception e) { }
}

119

// Multipacket Listener is shared with the original

121 // UDP Interface Implementation of the Handle server

HdlUdpPendingRequest addMultiPacketListener (MessageEnvelope env,
DatagramPacket pkt, InetAddress addr) {

123 String id = HdlUdpPendingRequest.getRequestId(addr, env.requestId
)

HdlUdpPendingRequest req = null;
125

// check the 1list of pending requests to see if someone else is
127 // already listening for this request

Hd1lUdpPendingRequest existingReq = pendingRequests.get(id);
129 if (existingReq==null) {

req = new HdlUdpPendingRequest (id, env, pkt);

131 existingReq = pendingRequests.putIfAbsent(id, req);

}
133 if (existingReq!=null) { // the request is already pending... and

already has a handler.
// so we will add this packet to the request and go away

236

A.2 Handle Source Code Patches and Additions

135 existingReq.addPacket (env, pkt);
if (existingReq.isComplete ()) {
137 // mnotify the handler that the request is complete
synchronized (existingReq) {
139 existingReq.notifyAll () ; // could just be a notify() call
shouldn’t matter
}
141 }
return null;
143 }
145 // this is the first packet received for a new request
// go to sleep until the rest of the request comes in...
147 // at which time, someone will wake us up. Or just
// timeout after a certain period.
149 synchronized(req) {
// wait for a maximum of 5 seconds
151 try{ req.wait (5000); } catch (Exception e) {}
// remove the request since we are handling (or ignoring) it
153 pendingRequests.remove (req.idString) ;
}
155 // if the request is complete, return it. Otherwise, throw it
out.
if ('req.isComplete()) return null;
157 return req;
}
159 |}

237

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

A.2 Handle Source Code Patches and Additions

Listing A.11: Addition 3 for Handle Server integration of NDN-enabled native
communication using NDN PID push

// File /ndnhandle/src/net/handle/server/Hd1NDNRequestHandler. java

// This implementation uses methods and code from the
// the file net.handle.server.HdlUdpRequestHandler

package net.handle.server;

import net.handle.hdllib.*;

import net.named_data. jndn.Name;

import java.net.x*;

import de.gwdg.ndn.hdldatagram.transport.HdlDatagramSocket;

/% 3k 3k ok sk ok ok ok sk ok ok ok ok sk ok ok ok sk ok ok ok ok sk sk ok ok ok ok ok ok ok sk sk ok ok sk sk ok ok sk sk sk ok sk sk sk ok ok sk sk ok ok sk ok ok ok ok ok ok ok ok ok ok K K
* An HA1NDNRequestHandler object will handle requests submitted
using
* the NDN handle protocol. The request will be processed using the
* server object and a response will be returned using the NDN handle
* protocol.
sk sk sk ok ok sk ok ok ok ok sk sk ok ok ok ok ok ok ok sk sk ok sk sk ok ok ok ok sk sk ok sk sk ok ok ok sk sk ok ok sk ok ok ok ok sk sk sk ok ok ok ok ok ok ok skok ok ok ok ok ok ok ok ok /

public class Hd1NDNRequestHandler implements Runnable,
ResponseMessageCallback {
private DatagramPacket packet;
private HdlDatagramSocket dsocket;
private AbstractServer server;
private Main main;
private HA1NDNInterface listener;

private boolean logAccesses = false;
private MessageEnvelope envelope = new MessageEnvelope();

private AbstractRequest currentRequest;
private long recvTime;

public static final String ACCESS_TYPE = "NDN:HDL";
public static final byte MSG_INVALID_MSG_SIZE[] = Util.
encodeString("Invalid message length");
private static final byte[] MSG_CANNOT_STREAM_NDN = Util.

encodeString ("Cannot stream NDD messages");

public Hd1NDNRequestHandler (Main main, HdlDatagramSocket dsock,

Hd1NDNInterface listener, boolean logAccesses, DatagramPacket
packet, long recvTime) {

this.main = main;

this.server = main.getServer ();

this.dsocket = dsock;

this.logAccesses = logAccesses;

this.listener = listener;

this.packet = packet;

238

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

7

79

81

83

85

87

A.2 Handle Source Code Patches and Additions

this.recvTime = recvTime;

}

public void run() {
boolean multiPartRequest = false;
byte pkt[] = null;
int pktLen 0;
int offset Common . MESSAGE_ENVELOPE_SIZE;
try {
pktLen = packet.getlLength();
pkt = packet.getData();
Encoder.decodeEnvelope (pkt, envelope);
if (envelope.messagelength > Common.MAX_MESSAGE_LENGTH ||
envelope.messagelength < 0) {
handleResponse (new ErrorResponse (AbstractMessage.0OC_RESERVED,
AbstractMessage.RC_PROTOCOL_ERROR,
MSG_INVALID_MSG_SIZE));
return;

}

if (envelope.truncated) {
HdlUdpPendingRequest req = listener.addMultiPacketListener(
envelope, packet, packet.getAddress());
if (req==null) return;
pkt = req.getMessage ();
offset = 0;
}

//decrypt incoming request if it says so
if (envelope.encrypted) {
if (envelope.sessionId > 0) {
ServerSideSessionInfo sssinfo = null;
if (server instanceof HandleServer) {
sssinfo = ((HandleServer)server).getSession(envelope.
sessionId) ;
if (sssinfo != null) {
try {
pkt = sssinfo.decryptBuffer (pkt,offset,envelope.
messagelength) ;
envelope.encrypted = false;
envelope.messagelength = pkt.length;
offset = 0;
}
catch (Exception e) {
main.logError (ServerLog.ERRLOG_LEVEL_REALBAD, "
Exception decrypting request: " + e);
e.printStackTrace () ;
System.err.println("Exception decrypting request with
session key: " + e.getMessage());
handleResponse (new ErrorResponse(AbstractMessage.
OC_RESERVED,

239

89

91

93

95

97

99

101

103

105

107

109

111

113

115

117

119

121

A.2 Handle Source Code Patches and Additions

240

AbstractMessage .RC_SESSION_FAILED,
Util.encodeString("Exception decrypting request

with session key " + e)));
return;
b
} else {
// sssinfo == null, maybe time out!

main.logError (ServerLog.ERRLOG_LEVEL_REALBAD, "Session
information not available or time out. Unable to
decrypt request message");
System.err.println("Session information not available
or time out. Unable to decrypt request message.");
handleResponse (new ErrorResponse (AbstractMessage.
OC_RESERVED,
AbstractMessage . RC_SESSION_TIMEOUT,
Util.encodeString("Session information not
available or time out. Unable to decrypt request
message.")));
return;
X
} else {
// serverSessionMan == null
main.logError (ServerLog.ERRLOG_LEVEL_REALBAD, "Session
manager not available. Unable to decrypt request
message.");
System.err.println("Session manager not available.
Request message not decrypted.");
handleResponse (new ErrorResponse(AbstractMessage.
OC_RESERVED,
AbstractMessage .RC_SESSION_FAILED,
Util.encodeString("Session manager not available.
Unable to decrypt request message.")));
return;
b
} else {
main.logError (ServerLog.ERRLOG_LEVEL_REALBAD, "Invalid
session id. Request message not decrypted.");
System.err.println("Invalid session id. Request message not
decrypted.");
handleResponse (new ErrorResponse (AbstractMessage.
OC_RESERVED,
AbstractMessage .RC_SESSION_FAILED,
Util.encodeString("Invalid session id. Unable to
decrypt request message.")));
return;

}

if (envelope.messagelength < 24) {
handleResponse (new ErrorResponse (AbstractMessage.
OC_RESERVED, AbstractMessage.RC_PROTOCOL_ERROR,

123

125

127

129

131

133

135

137

139

141

143

145

147

149

151

153

1565

157

159

161

163

A.2 Handle Source Code Patches and Additions

MSG_INVALID_MSG_SIZE));
return;

int opCode = Encoder.readOpCode (pkt, offset);
if (opCode == 0) {
handleResponse (new ErrorResponse (AbstractMessage.
OC_RESERVED,
AbstractMessage.RC_PROTOCOL_ERROR,

Util.encodeString ("Unknown opCode in message: " +
opCode)));
return;
}
currentRequest = (AbstractRequest)Encoder.decodeMessage (pkt,
offset, envelope);
String errMsg = listener.canProcessMsg(currentRequest) ;
if (errMsg != null) {
main.logError (ServerLog.ERRLOG_LEVEL_REALBAD, errMsg);
handleResponse (new ErrorResponse(currentRequest.opCode,
AbstractMessage .RC_PROTOCOL_ERROR,
Util.encodeString (errMsg)));
return;
}

server .processRequest (currentRequest, this);
} catch (Throwable e) {
handleResponse (new ErrorResponse (AbstractMessage.OC_RESERVED,
AbstractMessage .RC_ERROR ,Util.encodeString("Server error
processing request, see server logs")));
main.logError (ServerLog.ERRLOG_LEVEL_REALBAD, String.valueOf (
this.getClass()) + ": Exception processing request: " + e);
e.printStackTrace (System.err) ;
}
3

/% 3 ok ok ok ok ok ok ok oK ok ok oK ok ok K oK ok K oK oK oK oK oK K oK oK K oK K K oK K K oK K oK oK K oK oK K K oK K oK oK K oK oK K oK ok K oK ok K ok ok K ok ok K ok ok K K ok
* Handle (log) any messages that are reported by the upstream
message

* provider.
stk sk ok sk sk ok ok ok sk ok ok ok sk ok ok ok ok sk sk sk ok sk ok ok ok ok sk sk ok ok ok ok ok ok ok sk sk ok sk sk ok ok ok ok sk sk ok sk sk ok ok ok ok sk sk ok sk ok ok ok ok ok ok ok ok k /

public void handleResponseError (String error) {
main.logError (ServerLog.ERRLOG_LEVEL_NORMAL, String.valueOf (this.
getClass()) + ": Server error: " + error);

3

/***

* Encode and send the response
K oK K oK 3K ok 3K oK oK oK ok ok ok ok ok ok ok K K K K K K K oK ok ok ok oK oK oK ok ok ok ok ok ok kK K K K K K K oK ok ok oK oK oK oK oK ok ok ok ok K K Kk ok ok k /

public void handleResponse (AbstractResponse response) {
try {
byte msg[] = response.getEncodedMessage();

241

165

167

169

171

173

175

177

179

181

183

185

187

189

191

193

195

197

199

201

203

A.2 Handle Source Code Patches and Additions

242

//when to encrypt? right before sending it out! after the
credential portion is formed!

//encrypt response here if the request asks for encryption

//and set the flag in envelop if successfull

boolean encrypted = false;
if (response.sessionId > 0 && (response.encrypt || response.
shouldEncrypt (0)){
ServerSideSessionInfo sssinfo = null;
if (server instanceof HandleServer) {
sssinfo = ((HandleServer)server).getSession(response.
sessionId) ;
if (sssinfo != null) {
try {
msg = sssinfo.encryptBuffer (msg, 0, msg.length);
encrypted = true;

} catch (Exception e) {
main.logError (ServerLog.ERRLOG_LEVEL_NORMAL, "Exception

encrypting response: " + e);
System.err.println("Exception encrypting message with
session key: " + e.getMessage());
encrypted = false;
X
} // sssinfo != null
} else {
// serverSessionMan == null

main.logError (ServerLog.ERRLOG_LEVEL_NORMAL, "Session
manager not available. Message not encrypted.");

System.err.println("Session manager not available. Message
not encrypted.");

encrypted = false;

}

//set the envelop flag for encryption

envelope.encrypted = encrypted;

envelope .messagelength = msg.length; //get the length after
encryption

envelope.messageld = 0;

envelope.requestld = response.requestld;

envelope.sessionld = response.sessionld;

envelope.protocolMajorVersion = response.majorProtocolVersion;

envelope.protocolMinorVersion = response.minorProtocolVersion;
envelope.suggestMajorProtocolVersion = response.

suggestMajorProtocolVersion;

envelope.suggestMinorProtocolVersion = response.

suggestMinorProtocolVersion;
if (msg.length > Common.MAX_UDP_DATA_SIZE) {
// split the response into multiple pieces and send it
int bytesRemaining = msg.length;
while (bytesRemaining>0) {
byte buf [];

205

207

209

211

213

215

217

219

221

223

225

227

229

231

233

235

237

239

241

243

245

A.2 Handle Source Code Patches and Additions

}

3

if (bytesRemaining <=Common .MAX_UDP_DATA_SIZE) {

buf = new byte[bytesRemaining+Common.
MESSAGE_ENVELOPE_SIZE];

System.arraycopy (msg, msg.length - bytesRemaining,
buf, Common.MESSAGE_ENVELOPE_SIZE,
bytesRemaining) ;

} else {

buf = new byte[Common.MAX_UDP_DATA_SIZE+Common.
MESSAGE_ENVELOPE_SIZE];

System.arraycopy (msg, msg.length - bytesRemaining,
buf, Common.MESSAGE_ENVELOPE_SIZE,

Common .MAX_UDP_DATA_SIZE);
¥
Encoder.encodeEnvelope (envelope , buf) ;
dsocket.send(new DatagramPacket (buf, buf.length,
packet.getAddress (),
packet.getPort ()));
bytesRemaining -=Common . MAX_UDP_DATA_SIZE;
envelope.messageld++;
by
} else {
// all of the response fits in one packet, so let’s send it..
byte buf[] = new byte[msg.length + Common.
MESSAGE_ENVELOPE_SIZE];
Encoder.encodeEnvelope (envelope, buf);
System.arraycopy (msg,0,buf ,Common. MESSAGE_ENVELOPE_SIZE ,msg.
length);
dsocket.send (new DatagramPacket (buf, buf.length,
packet .getAddress (),
packet.getPort ()));
b
catch (Exception e) {

String clientString = "";

try {
clientString = " to " + Util.rfcIpRepr(dsocket.getVip

(new Name("1234")));

} catch (Exception ex) {

// ignore

}

main.logError (ServerLog.ERRLOG_LEVEL_REALBAD, String.
valueOf (this.getClass()) + ": Exception sending
response" + clientString + ": " + e);

e.printStackTrace (System.err);

if (logAccesses){

if (currentRequest != null) {
long time = System.currentTimeMillis() - recvTime;
main.logAccess (ACCESS_TYPE + " (" + currentRequest.
suggestMajorProtocolVersion + "." + currentRequest.
suggestMinorProtocolVersion + ")",
packet .getAddress (),

243

247

249

251

253

11

13

15

17

19

21

A.2 Handle Source Code Patches and Additions

currentRequest.opCode,

(response != null 7 response.responseCode
AbstractMessage.RC_ERROR),

Util.getAccessLogString (currentRequest), time);

A.2.3 Patches for PID Publishing Using NDN PID Pull

Following patches have been applied to the Handle Server 8.1.1 code base [134], in order
to realize the PID publishing subsystem that leverages NDN PID pull for communication.
These patches extend the Handle code base in one file.

Listing A.12: Patch 7 for PID Publishing subsystem integration using NDN PID pull

--- /hsj-8.1.1/src/net/handle/hdllib/HandleValue. java
+++ /ndnhandle/src/net/handle/hdllib/HandleValue. java
@@ -8,13 +8,16 Q@
N3 s ok ok ok ok ok ok ok oK ok K ok K oK K K K K K K K K K K KK ok K oK K K K K K K K K K K K K KK KK K K K K KK KK KK Kk Rk /

package net.handle.hdllib;
+import java.io.Serializable;
import java.util.x*;

import net.cnri.util.FastDateFormat;

/** Represents a single handle value */

-public class HandleValue {

+public class HandleValue implements Serializable {

+

+

+ private static final long serialVersionUID = 1570689295099260332
L;
public static final byte SUBTYPE_SEPARATOR = (byte)’.’;
public static final byte TTL_TYPE_RELATIVE = O;
public static final byte TTL_TYPE_ABSOLUTE = 1;

244

11

13

15

17

19

21

23

25

A.2 Handle Source Code Patches and Additions

A.2.4 Additions for PID Publishing Using NDN PID Pull (Server)

Following additions have been added to the Handle Server 8.1.1 code base [134], in order
to realize the PID publishing subsystem on the server side that leverages NDN PID pull for
communication.

Listing A.13: Addition 4 for Handle Server integration of NDN PID pull (Starter)

package de.

import
import
import

public

net.
net.
net.

gwdg .ndn.hdlpull.server;

cnri.util.StreamTable;
handle.hdllib.x*;
handle.server. *;

class Main {

public static void main(String argv[])

if (argv null ||
System.err.println("usage:

argv.length < 1)

java de

throws Exception {

{
.gwdg .ndn.hdlpull.server <

server-directory>");
return;

}

java.io.File serverDir = new java.io.File(argv[0]);

StreamTable serverInfo = new StreamTable();

serverInfo.readFromFile (new java.io.File(serverDir,
)5

serverInfo = (StreamTable) serverInfo.get("server_config");

HandleStorage storage = HandleStorageFactory.getStorage (serverDir
, serverInfo, true, true);

Boolean caseSensitive = serverInfo.getBoolean("case_sensitive");

DBHelper dbhelper = new DBHelper (storage, caseSensitive);

new MainThread (dbhelper) .start () ;

System.out.println("NDN PID Pull

"config.dct")

Server is running");

245

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

A.2 Handle Source Code Patches and Additions

Listing A.14: Addition 5 for Handle Server integration of NDN PID pull (NFD Event
Handling)

package de.gwdg.ndn.hdlpull.server;
import java.io.IOException;

import de.gwdg.ndn.hdldatagram.transport.ProcessorThread;
import net.named_data. jndn.Face;

import net.named_data. jndn.Name;

import net.named_data. jndn.security.SecurityException;

public class MainThread extends Thread {

private Face transportface;

private final Name NODENAME = new Name ("/1234");
private ProcessorThread processorthread;

private Thread procthread;

private DBHelper dbhelper;

public MainThread (DBHelper dbhelper) throws Exceptionf{
this.dbhelper = dbhelper;

// Start up the NDN transport interfaces
this.transportface = TransportFace.getInstance (NODENAME) .

getFace () ;
this.processorthread = new ProcessorThread(this.transportface);
procthread = new Thread(processorthread);

procthread.setName ("NDNPIDPull - Processing Thread");
procthread.start () ;

// Register the prefix Handler
this.registerPrefix (NODENAME, this.transportface);
}
public void run() {
System.out.println("NDN PID Pull :: Thread running");
while (true){
try {
Thread.sleep (30000) ;
} catch (InterruptedException e) {
e.printStackTrace () ;
}

}

private void registerPrefix(Name myNodeName, Face transportface) {
InterestHandler interesthandler = new InterestHandler (this.
dbhelper) ;
try {
transportface.registerPrefix(new Name(myNodeName.toUri()),
interesthandler, interesthandler);
} catch (IOException | SecurityException e) {

246

48

50

52

A.2 Handle Source Code Patches and Additions

}

System.out.println("NDNTransp
myNodeName . toUri ());
e.printStackTrace () ;

Cannot register prefix

"y

247

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

A.2 Handle Source Code Patches and Additions

Listing A.15: Addition 6 for Handle Server integration of NDN PID pull (Interest Handler)

package de.gwdg.ndn.hdlpull.server;

import java.io.ByteArrayOutputStream;
import java.io.IOException;

import java.io.ObjectOutput;

import java.io.0ObjectOutputStream;

import org.apache.commons.codec.binary.Base64;

import net.handle.hdllib.HandleException;
import net.handle.hdllib.HandleValue;

import net.named_data. jndn.Data;

import net.named_data. jndn.Interest;

import net.named_data. jndn.Name;

import net.named_data.jndn.OnInterest;

import net.named_data.jndn.OnRegisterFailed;
import net.named_data. jndn.transport.Transport;
import net.named_data.jndn.util.Blob;

public class InterestHandler implements OnInterest, OnRegisterFailed

{

private static final Blob HANDLE_NOT_FOUND_PLD = new Blob ("
NOT_FOUND") ;
private DBHelper dbhelper;

public InterestHandler (DBHelper dbhelper) {
this.dbhelper = dbhelper;

}
@0verride
public void onRegisterFailed(Name prefix) {
System.out.println ("NDNPIDPullTransp :: cannot register prefix "
+ prefix.toUri() + ". Exiting.");
System.exit (-1);
3
@0verride

public void onInterest(Name prefix, Interest interest, Transport
transport, long registeredPrefixId) {
// System.out.println("INT :: " + interest.getName ().toUri());
Data data = new Data(interest.getName());
HandleValue [] handleValue;
// Resolve the Handle
try {
try {
handleValue = dbhelper.resolve(prefix.toUri().substring(1l) +
"/" + getHandleSuffix(interest));
// Handle found -> encode target Handlevalues as NDN data
payload

248

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

A.2 Handle Source Code Patches and Additions

data.setContent (new Blob(serializeHandleValueToNDNBytePayload
(handleValue)));
} catch (HandleException e) {
// Handle not found -> encode "Not found" message
data.setContent (HANDLE_NOT_FOUND_PLD) ;
}
// set back via transport
Blob encodedData = data.wireEncode () ;
transport.send(encodedData.buf ());
} catch (IOException e) {
System.out.println ("NDNPIDPullTransp :: IOException! Data
packet data could not be encoded");
e.printStackTrace () ;
}
}

private static final String getHandleSuffix(Interest interest) {

int numberOfNameParts = interest.getName().size();

Name handleSuffix = interest.getName () .getSubName (
numberOfNameParts - 1);

String encodedSuffix = handleSuffix.toUri().substring(1l);

byte [] valueDecoded = Base64.decodeBase64(encodedSuffix.getBytes
ODN

return new String(valueDecoded);

}

private static final byte[] serializeHandleValueToNDNBytePayload(
HandleValue [] handleValue) {
ByteArrayOutputStream bos = new ByteArrayOutputStream() ;
ObjectOutput out = null;
byte [] ndnPayload = null;
try {
out = new ObjectOutputStream(bos);
out.writeObject (handleValue) ;
ndnPayload = bos.toByteArray();
} catch (IOException e) {
System.out.println("NDNPIDPullTransp :: IOException! Could not
Serialize Handle Data to NDN ByteArray.");
e.printStackTrace () ;
} finally {
try {
if (out != null)
out.close();
} catch (IOException e) {
System.out.println("NDNPIDPullTransp :: IOException! Could
not close Bytestream for NDN ByteArray serialization");
e.printStackTrace () ;
}
try {
bos.close();
} catch (IOException e) {

249

90

92

94

96

10

12

14

16

18

20

22

24

26

28

A.2 Handle Source Code Patches and Additions

System.out.println ("NDNPIDPullTransp

I0Exception! Could

not close ObjectOutput for NDN ByteArray serialization");

e.printStackTrace () ;
}
}

return ndnPayload;

Listing A.16

: Addition 7 for Handle Server integration of NDN PID pull (Database Layer)

package de.gwdg.ndn.hdlpull.server;

import net.handle.hdllib.Encoder;

import net.handle.hdllib.HandleException;
import net.handle.hdllib.HandleStorage;
import net.handle.hdllib.HandleValue;
import mnet.handle.hdllib.Util;

public class DBHelper {
private HandleStorage storage;
private boolean caseSensitive;
public DBHelper (HandleStorage storage, boolean caseSensitive) {

this.storage = storage;
this.caseSensitive = caseSensitive;

public HandleValue[] resolve(String handle)

throws HandleException

{
byte [J[] rawValues = this.storage.getRawHandleValues/(
caseSensitive 7 Util.encodeString(handle) : Util.upperCase/(
Util.encodeString (handle)), null, null);
if (rawValues == null)
return null;
HandleValue values[] = new HandleValue[rawValues.lengthl];
for (int i = 0; i < values.length; i++) {

values [i] = new HandleValue();
Encoder.decodeHandleValue (rawValues[i],
}

return values;

0, values[il);

250

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

A.2 Handle Source Code Patches and Additions

Listing A.17: Addition 8 for Handle Server integration of NDN PID pull (Transport Layer)

package de.gwdg.ndn.hdlpull.server;

import
import
import
import
import
import
import
import
import
import
import
import

public

de.gwdg.ndn.hdldatagram.netmanager .KeyStore;
de.gwdg.ndn.hdldatagram.transport.ProcessorThread;
net.named_data. jndn.Face;

net.named_data. jndn.Name;

net.named_data. jndn.security.KeyChain;

net.named_data. jndn.security.KeyType;

net.named_data. jndn.security.SecurityException;
net.named_data. jndn.security.identity.IdentityManager;
net.named_data. jndn.security.identity.MemoryIdentityStorage;
net.named_data. jndn.security.identity.MemoryPrivateKeyStorage;
net.named_data. jndn.security.policy.SelfVerifyPolicyManager;
net.named_data.jndn.util.Blob;

class TransportFace {

private static TransportFace instance;
private Name mynodename;

private Face face = null;

private Thread processfacethread;

private TransportFace(Name myNodeName) {
this.mynodename = myNodeName;

3

public static synchronized TransportFace getInstance (Name
myNodeName) {

if

3

TransportFace.instance

(TransportFace.instance == null) {
= new TransportFace(myNodeName);

return TransportFace.instance;

}

public Face getFace() {

//
if

Return existing faces
(this.face != null)

return this.face;

// No face has been created yet. Create a new one

this.face = new Face();

Name keyname = new Name("/" + this.mynodename + "/pubkey");

Name certificateName = keyname.getSubName (0, keyname.size() - 1).

append ("KEY") . append (keyname .get (-1))
.append ("ID-CERT") .append ("0");

MemoryIdentityStorage identityStorage = new MemoryIdentityStorage

O

MemoryPrivateKeyStorage privateKeyStorage = new

MemoryPrivateKeyStorage () ;

KeyChain keyChain = new KeyChain(new IdentityManager (

identityStorage, privateKeyStorage),

251

a7

49

51

53

55

57

59

61

63

A.2 Handle Source Code Patches and Additions

new SelfVerifyPolicyManager (identityStorage));
keyChain.setFace (face);
face.setCommandSigningInfo (keyChain, certificateName) ;

this.processfacethread = new Thread(new ProcessorThread(this.face
D)

this.processfacethread.setName ("NDNTransp - FaceEventProcessor");

this.processfacethread.start ();

try {

identityStorage.addKey (keyname, KeyType.RSA, new Blob(KeyStore.
DEFAULT_RSA_PUBLIC_KEY_DER, false));
privateKeyStorage.setKeyPairForKeyName (keyname, KeyType.RSA,
KeyStore .DEFAULT_RSA_PUBLIC_KEY_DER,
KeyStore .DEFAULT_RSA_PRIVATE_KEY_DER);
} catch (SecurityException e) {
// TODO Auto-generated catch block
e.printStackTrace () ;
¥

return face;

252

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

A.2 Handle Source Code Patches and Additions

A.2.5 Additions for PID Publishing Using NDN PID Pull (Client)

Following additions have been added to the Handle Client Library 8.1.1 code base, in order
to let clients resolve Handle PIDs using the NDN PID push mechanism.

Listing A.18: Addition 10 for HDLLib integration of NDN PID pull (API Layer)

package de.gwdg.ndn.hdlpull.client;

import java.io.ByteArrayInputStream;
import java.io.IOException;

import java.io.ObjectInput;

import java.io.ObjectInputStream;
import java.nio.ByteBuffer;

import java.util.Random;

import org.apache.commons.codec.binary.Base64;

import net.handle.hdllib.HandleValue;
import net.named_data. jndn.Data;
import net.named_data. jndn.Face;
import net.named_data. jndn.Interest;
import net.named_data. jndn.Name;
import net.named_data. jndn.0OnData;
import net.named_data.jndn.OnTimeout;

public class PidPullClient {

private Face face;
public HandleValue[] retval;

public PidPullClient () {
Name nodename = new Name("cl" + getSaltString());
face = TransportFace.getInstance (nodename) .getFace();

class DataHandler implements OnData, OnTimeout {
private PidPullClient pc;
public int cbCounter = 0;

public DataHandler (PidPullClient pc) {
this.pc = pc;
}

public void onData(Interest interest, Data data) {
pc.retval = null;
++cbCounter;
ByteBuffer payload = data.getContent ().buf ();
pc.retval = this.unserializeNDNPayload (payload);
}

253

45

a7

49

51

53

55

57

59

61

63

65

67

69

71

73

75

7

79

81

83

85

87

89

A.2 Handle Source Code Patches and Additions

public void onTimeout(Interest interest) {
++cbCounter;
System.out.println("Time out for interest
O .toUri O);

n

+ interest.getName
X

private HandleValue[] unserializeNDNPayload (ByteBuffer payload) {
byte[] data = new byte[payload.remaining()];
payload.get (data) ;
ByteArrayInputStream bis = new ByteArrayInputStream(data);
ObjectInput in = null;
HandleValue [] handleValue = null;
try {
in = new ObjectInputStream(bis);
handleValue = (HandleValue[]) in.readObject ();
} catch (IOException e) {
System.out.println("NDN PID Pull Client :: Could not read NDN
packet payload");
e.printStackTrace () ;
} catch (ClassNotFoundException e) {
System.out.println("NDN PID Pull Client :: Could not
unserialize NDN packet payload");
e.printStackTrace () ;
} finally {
try {
bis.close () ;
} catch (IOException e) {
System.out.println("NDN PID Pull Client :: Could not close
byte input stream for NDN packet unserialization");
e.printStackTrace () ;

}
try {
if (in '= null) {
in.close();
}
} catch (IOException e) {
System.out.println("NDN PID Pull Client :: Could not close

inout stream for NDN packet unserialization");
e.printStackTrace () ;

}
}
return handleValue;
3
3
public HandleValue[] resolveHandle(String handle) {
try {
DataHandler datahdl = new DataHandler (this);
Name dataname = getDataNameForHandle (handle) ;

face.expressInterest (dataname, datahdl, datahdl);

254

91

93

95

97

99

101

103

105

107

109

111

113

115

117

119

121

123

125

A.2 Handle Source Code Patches and Additions

while (datahdl.cbCounter < 3) {
face.processEvents () ;
Thread.sleep (5) ;

if (this.retval != null && this.retval.length > 0)
break;
}
} catch (Exception e) {
// System.out.println("exception: " + e.getMessage());
System.out.println("NDN PID Pull Client :: Resolving problem at
" 4+ handle);

e.printStackTrace () ;
}

return this.retval;

}

private static final Name getDataNameForHandle (String handle) {
String[] handleSplit = handle.split("/"); // prefix is on O,
suffix is
// on 1
// Encode the suffix part on pos 1
byte[] bytesEncoded = Base64.encodeBase64(handleSplit[1].getBytes
0);
// create the name: suffix / enc(prefix)
return new Name (handleSplit[0] + "/" + new String(bytesEncoded));
}

private static final String getSaltString() {

String SALTCHARS = "ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890";

StringBuilder salt = new StringBuilder ();

Random rnd = new Random() ;

while (salt.length() < 18) {
int index = (int) (rnd.nextFloat () * SALTCHARS.length());
salt.append (SALTCHARS . charAt (index));

}

String saltStr = salt.toString();

return saltStr;

255

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

A.2 Handle Source Code Patches and Additions

Listing A.19: Addition 11 for HDLLib integration of NDN PID pull (Transport Layer)

package de.gwdg.ndn.hdlpull.client;

import de.gwdg.ndn.hdldatagram.netmanager.KeyStore;

import de.gwdg.ndn.hdldatagram.transport.ProcessorThread;

import net.named_data. jndn.Face;

import net.named_data. jndn.Name;

import net.named_data. jndn.security.KeyChain;

import net.named_data. jndn.security.KeyType;

import net.named_data.jndn.security.SecurityException;

import net.named_data. jndn.security.identity.IdentityManager;
import net.named_data. jndn.security.identity.MemoryIdentityStorage;
import net.named_data. jndn.security.identity.MemoryPrivateKeyStorage;
import net.named_data. jndn.security.policy.SelfVerifyPolicyManager;
import net.named_data. jndn.util.Blob;

public class TransportFace {

private static TransportFace instance;
private Name mynodename;

private Face face = null;

private Thread processfacethread;

private TransportFace(Name myNodeName) {
this.mynodename = myNodeName;

3

public static synchronized TransportFace getInstance (Name
myNodeName) {
if (TransportFace.instance == null) {
TransportFace.instance = new TransportFace(myNodeName) ;

3

return TransportFace.instance;

}

public Face getFace() {
// Return existing faces
if (this.face != null)
return this.face;
// No face has been created yet. Create a new one

this.face = new Face();
Name keyname = new Name("/" + this.mynodename + "/pubkey");
Name certificateName = keyname.getSubName (0, keyname.size() - 1).

append ("KEY") . append (keyname .get (-1))
.append ("ID-CERT") .append ("0");

MemoryIdentityStorage identityStorage = new MemoryldentityStorage
O3

MemoryPrivateKeyStorage privateKeyStorage = new
MemoryPrivateKeyStorage () ;

KeyChain keyChain = new KeyChain(new IdentityManager (
identityStorage, privateKeyStorage),

256

46

48

50

52

54

56

58

60

62

A.2 Handle Source Code Patches and Additions

new SelfVerifyPolicyManager (identityStorage));
keyChain.setFace (face);
face.setCommandSigningInfo (keyChain, certificateName);

this.processfacethread = new Thread(new ProcessorThread(this.face
D)5

this.processfacethread.setName ("NDNTransp - FaceEventProcessor");

this.processfacethread.start ();

try {

identityStorage.addKey (keyname, KeyType.RSA, new Blob(KeyStore.
DEFAULT_RSA_PUBLIC_KEY_DER, false));
privateKeyStorage.setKeyPairForKeyName (keyname, KeyType.RSA,
KeyStore .DEFAULT_RSA_PUBLIC_KEY_DER,
KeyStore .DEFAULT_RSA_PRIVATE_KEY_DER);
} catch (SecurityException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}

return face;

257

11

13

15

17

19

21

23

25

27

29

31

33

A.3 Simulation Environment

A.3 Simulation Environment

For the evaluation scenarios used in this thesis, we provide the scripts for data collection
in the Handle ecosystem, the Mini-NDN simulator control scripts and the source codes for
generating the evaluation scenarios. Furthermore, we include the source code of reference
implementations we use for comparing unmodified Handle protocols against the NDN-
enabled implementations using NDN PID push and pull communication modes.

A.3.1 PID Resolution Request Classification By Handle Prefixes

Listing A.20: Classification of PID Resolution Requets according to their Handle Prefixes
from Anonymized Log Data

__author__ = ’owannen’
import glob
import os

import collections
class PrefixClassification:

def init__(self):

pass

def getNumberOfInputFiles(self):
return len(self.__getFilePathNamesInputdir ())

def __getFilePathNamesInputdir (self):
return glob.glob(self.__getRootPath() + "../workdata/*.txt")

def __getRootPath(self):
return str(os.path.dirname(os.path.realpath(__file__)) + "/")

def getTopXnumbers (self, number_of_ranks):

prefixes = []
return_val = []
hitcounter = 0

Iterate over all files
for logfile in self.__getFilePathNamesInputdir ():
input_filepointer = open(logfile, "r"
get all prefixes in the file
print "Processing :: " + str(logfile)
for currentline in input_filepointer:
prefix = currentline.split(",")[1].rstrip().1lstrip().
lower ()
prefixes.append(prefix)
hitcounter += 1
input_filepointer.close ()
print ""

258

35

37

39

41

43

A.3 Simulation Environment

def

print "Total number of hits %s" % hitcounter
print ""
Calculate the sums
for prefix_str, count in collections.Counter (prefixes).
most_common (number_of_ranks):
percentage = float(count) / float(float(hitcounter) /
100.0)
return_val.append ((prefix_str, count, percentage))
return return_val

run_analysis(self, number_of_ranks):
return self.getTopXnumbers (number_of_ranks)

259

10

12

14

16

18

A.3 Simulation Environment

A.3.2 Collecting Primary Handle Site Data

Listing A.21: Collection of IP-addresses from Primary Handle Sites

import json
import urllib2

Collection of top-200 Handle prefixes
prefixes = [...]

Get the IP of the Primary Handle LHS via the public REST API
def resolve(prefix):
return [site[’data’][’value’][’servers’][0][’address’] for site in
[x for x in json.load(urllib2.urlopen(’http://hdl.handle.net/

api/handles/’ + prefix))[’values’] if x[’type’] == ’HS_SITE’]
if site[’data’][’value’][’primarySite’] == True]
ips = [resolve(prefix) for prefix in prefixes]

Print the result:

print ’\n\n=== RESULTS ==’

index_prefixes = 0

for ip in ips:
print prefixes[index_prefixes] + "," + str(ip)
index_prefixes = index_prefixes + 1

260

10

12

14

16

18

20

22

A.3 Simulation Environment

Listing A.22: Calculation of Hop Counts between a fixed server and Primary Site of a
Handle LHS

from scapy.all import =
results = {}

IP-Addresses pf all primary Handle LHS Sites matched with Handle
prefix

sites = {...}

Perform a traceroute on all IP-address using UDP
def count_hops(ip_address):
target = [ip_address]
result, unans = traceroute(target,14=UDP(sport=RandShort ())/DNS(qd=
DNSQR (gname="www.google.com")))
return len(result)

Process all IP-addresses of available Primary Handle Sites
for key, value in sites.iteritems():
results [key] = count_hops(value)

Print the result:

print ’\n\n=== RESULTS ==’
for key, value in results.iteritems():
print str(key) + ’,’ + str(value)

A.3.3 Network Hop Calculations For Classified Handle Prefixes

Rank | Prefix Hits Percent Hops
1 Prefix-A 3,848,567 | 16.911201% 10
2 Prefix-B 1,882,874 | 8.273641% 12
3 Prefix-C 1,571,502 | 6.905424% 0

corr. 14
4 Prefix-D 085,922 | 4.332294% 10
5 Prefix-E 862,209 | 3.788680% 13
6 Prefix-F 855,999 | 3.761392% 9
7 Prefix-H 344,398 | 1.513338% 15
8 Prefix-I 301,685 | 1.325651% 21
9 Prefix-J 301,667 | 1.325572% 12
10 | Prefix-K 264,584 | 1.162623% 21
11 Prefix-L 256,810 | 1.128463% 16
12 | Prefix-M 232,642 | 1.022265% 27

261

A.3 Simulation Environment

Rank | Prefix Hits Percent Hops
13 | Prefix-N 230,000 | 1.010656% 12
14 | Prefix-O 186,273 | 0.818512% 12
15 | Prefix-P 185,579 | 0.815463% 15
16 | Prefix-Q 153,435 | 0.674217% 8
17 | Prefix-R 137,262 | 0.603151% 13
18 | Prefix-S 134,799 | 0.592328% 13
19 | Prefix-T 129,922 | 0.570897% 12
20 | Prefix-U 124,152 | 0.545543% 12
21 | Prefix-V 119,870 | 0.526727% 12
22 | Prefix-W 115,798 | 0.508834% 15
23 | Prefix-X 114,083 | 0.501298% 18
24 | Prefix-Y 106,764 | 0.469138% 11
25 | Prefix-Z 106,684 | 0.468786% 11
26 | Prefix-AA 92,701 | 0.407343% 13
27 | Prefix-AB 92,415 | 0.406086% 8
28 | Prefix-AC 92,181 | 0.405058% 16
29 | Prefix-AD 87,837 | 0.385969% 16
30 | Prefix-AE 86,572 | 0.380411% 12
31 | Prefix-AF 85,184 | 0.374312% 13
32 | Prefix-AG 82,061 | 0.360589% 10
33 | Prefix-AH 80,751 | 0.354832% 11
34 | Prefix-Al 79,933 | 0.351238% 16
35 | Prefix-Al 79,808 | 0.350689% 21
36 | Prefix-AK 79,171 | 0.347890% 12
37 | Prefix-AL 74,666 | 0.328094% 19
38 | Prefix-AM 74,230 | 0.326178% 12
39 | Prefix-AN 73,519 | 0.323054% 17
40 | Prefix-AO 72,679 | 0.319363% 14
41 | Prefix-AP 70,940 | 0.311721% 15
42 | Prefix-AQ 66,407 | 0.291803% 10
43 | Prefix-AR 63,308 | 0.278185% 12
44 | Prefix-AS 60,358 | 0.265222% 22
45 | Prefix-AT 59,552 | 0.261681% 14
46 | Prefix-AU 59,197 | 0.260121% 22
47 | Prefix-AV 58,105 | 0.255322% 11
48 | Prefix-AW 57,800 | 0.253982% 9
49 | Prefix-AX 56,250 | 0.247171% 16
50 | Prefix-AY 54,126 | 0.237838% 13
51 | Prefix-AZ 53,675 | 0.235856% 24
52 | Prefix-BA 53,386 | 0.234586% 11

262

A.3 Simulation Environment

Rank | Prefix Hits Percent Hops
53 | Prefix-BB 53,078 | 0.233233% 10
54 | Prefix-BC 51,273 | 0.225302% 12
55 | Prefix-BD 50,357 | 0.221276% 11
56 | Prefix-BE 50,258 | 0.220841% 13
57 | Prefix-BF 50,251 | 0.220811% 11
58 | Prefix-BG 49,554 | 0.217748% 20
59 | Prefix-BH 49,231 | 0.216329% 14
60 | Prefix-BI 48,983 | 0.215239% 10
61 | Prefix-BJ 48,420 | 0.212765% 10
62 | Prefix-BK 48,132 | 0.211499% 18
63 | Prefix-BL 47,797 | 0.210027% 13
64 | Prefix-BM 47,517 | 0.208797% 13
65 | Prefix-BN 46,960 | 0.206350% 13
66 | Prefix-BO 46,146 | 0.202773% 13
67 | Prefix-BP 44,923 | 0.197399% 14
68 | Prefix-BQ 44815 | 0.196924% 23
69 | Prefix-BR 44,542 | 0.195724% 11
70 | Prefix-BS 44,038 | 0.193510% 11
71 | Prefix-BT 43,901 | 0.192908% 12
72 | Prefix-BU 42,958 | 0.188764% 22
73 | Prefix-BV 42,924 | 0.188615% 15
74 | Prefix-BW 41,781 | 0.183592% 13
75 | Prefix-BX 41,431 | 0.182054% 13
76 | Prefix-BY 41,153 | 0.180833% 11
77 | Prefix-BZ 40,151 | 0.176430% 22
78 | Prefix-CA 39,650 | 0.174228% 14
79 | Prefix-CB 39,221 | 0.172343% 17
80 | Prefix-CC 38,068 | 0.167277% 19
81 | Prefix-CD 37,986 | 0.166916% 13
82 | Prefix-CE 37,892 | 0.166503% 10
83 | Prefix-CF 37,590 | 0.165176% 10
84 | Prefix-CG 36,831 | 0.161841% 16
85 | Prefix-CH 36,384 | 0.159877% 11
86 | Prefix-CI 35,816 | 0.157381% 13
87 | Prefix-CJ 35,459 | 0.155812% 11
88 | Prefix-CK 35,119 | 0.154318% 19
89 | Prefix-CL 34,159 | 0.150100% 14
90 | Prefix-CM 34,112 | 0.149893% 14
91 | Prefix-CN 33,318 | 0.146404% 12
92 | Prefix-CO 33,266 | 0.146176% 21

263

A.3 Simulation Environment

Rank | Prefix Hits Percent Hops
93 | Prefix-CP 32,956 | 0.144814% 18
94 | Prefix-CQ 32,341 | 0.142111% 13
95 | Prefix-CR 32,304 | 0.141949% 11
96 | Prefix-CS 32,014 | 0.140674% 13
97 | Prefix-CT 31,707 | 0.139325% 28
98 | Prefix-CU 31,533 | 0.138561% 8
99 | Prefix-CV 31,371 | 0.137849% 13
100 | Prefix-CW 30,978 | 0.136122% 18
101 | Prefix-CX 30,825 | 0.135450% 15
102 | Prefix-CY 30,273 | 0.133024% 23
103 | Prefix-CZ 29,190 | 0.128265% 13
104 | Prefix-DA 29,005 | 0.127452% 11
105 | Prefix-DB 28,429 | 0.124921% 11
106 | Prefix-DC 28,385 | 0.124728% 10
107 | Prefix-DD 27,700 | 0.121718% 17
108 | Prefix-DE 27,588 | 0.121226% 14
109 | Prefix-DF 27,335 | 0.120114% 15
110 | Prefix-DG 27,194 | 0.119495% 13
111 | Prefix-DH 27,075 | 0.118972% 13
112 | Prefix-DI 27,031 | 0.118778% 16
113 | Prefix-DJ 27,027 | 0.118761% 20
114 | Prefix-DK 26,811 | 0.117812% 24
115 | Prefix-DL 26,795 | 0.117741% 10
116 | Prefix-DM 26,636 | 0.117043% 14
117 | Prefix-DN 26,437 | 0.116168% 16
118 | Prefix-DO 26,205 | 0.115149% 9
119 | Prefix-DP 26,092 | 0.114652% 13
120 | Prefix-DQ 26,023 | 0.114349% 15
121 | Prefix-DR 25,819 | 0.113453% 9
122 | Prefix-DS 25,819 | 0.113453% 9
123 | Prefix-DT 25,633 | 0.112635% 13
124 | Prefix-DU 25,492 | 0.112016% 14
125 | Prefix-DV 25,390 | 0.111568% 12
126 | Prefix-DW 25,344 | 0.111365% 15
127 | Prefix-DX 25,280 | 0.111084% 17
128 | Prefix-DY 25,128 | 0.110416% 20
129 | Prefix-DZ 24,537 | 0.107819% 14
130 | Prefix-EA 24,478 | 0.107560% 14
131 | Prefix-EB 23,890 | 0.104976% 14
132 | Prefix-EC 23,823 | 0.104682% 13

264

A.3 Simulation Environment

Rank | Prefix Hits Percent Hops
133 | Prefix-ED 23,692 | 0.104106% 14
134 | Prefix-EE 23,427 | 0.102942% 10
135 | Prefix-EF 23,359 | 0.102643% 21
136 | Prefix-EG 23,233 | 0.102089% 22
137 | Prefix-EH 23,130 | 0.101637% 7
138 | Prefix-EI 23,026 | 0.101180% 14
139 | Prefix-EJ 22,820 | 0.100275% 7
140 | Prefix-EK 22,643 | 0.099497% 16
141 | Prefix-EL 22,611 | 0.099356% 10
142 | Prefix-EM 22,458 | 0.098684% 11
143 | Prefix-EN 21,484 | 0.094404% 12
144 | Prefix-EO 21,256 | 0.093402% 13
145 | Prefix-EP 21,140 | 0.092892% 16
146 | Prefix-EQ 21,055 | 0.092519% 22
147 | Prefix-ER 21,053 | 0.092510% 11
148 | Prefix-ES 21,030 | 0.092409% 21
149 | Prefix-ET 20,910 | 0.091882% 14
150 | Prefix-EU 20,592 | 0.090484% 15
151 | Prefix-EV 20,306 | 0.089228% 11
152 | Prefix-EW 20,305 | 0.089223% 16
153 | Prefix-EX 20,137 | 0.088485% 11
154 | Prefix-EY 20,076 | 0.088217% 8
155 | Prefix-EZ 20,061 | 0.088151% 11
156 | Prefix-FA 19,967 | 0.087738% 10
157 | Prefix-FB 19,831 | 0.087140% 15
158 | Prefix-FC 19,625 | 0.086235% 12
159 | Prefix-FD 19,550 | 0.085906% 21
160 | Prefix-FE 19,493 | 0.085655% 14
161 | Prefix-FF 19,431 | 0.085383% 16
162 | Prefix-FG 19,425 | 0.085356% 13
163 | Prefix-FH 19,421 | 0.085339% 18
164 | Prefix-FI 19,367 | 0.085102% 12
165 | Prefix-FJ 19,367 | 0.085102% 14
166 | Prefix-FK 19,124 | 0.084034% 14
167 | Prefix-FL 19,120 | 0.084016% 12
168 | Prefix-FM 19,038 | 0.083656% 15
169 | Prefix-FN 18,754 | 0.082408% 23
170 | Prefix-FO 18,692 | 0.082136% 18
171 | Prefix-FP 18,537 | 0.081454% 24
172 | Prefix-FQ 18,471 | 0.081164% 13

265

A.3 Simulation Environment

Rank | Prefix Hits Percent Hops
173 | Prefix-FR 18,317 | 0.080488% 9
174 | Prefix-FS 18,019 | 0.079178% 16
175 | Prefix-FT 17,987 | 0.079038% 20
176 | Prefix-FU 17,566 | 0.077188% 10
177 | Prefix-FV 17,462 | 0.076731% 13
178 | Prefix-FW 17,455 | 0.076700% 17
179 | Prefix-FX 17,329 | 0.076146% 13
180 | Prefix-FY 16,972 | 0.074578% 16
181 | Prefix-FZ 16,895 | 0.074239% 14
182 | Prefix-GA 16,845 | 0.074020% 15
183 | Prefix-GB 16,677 | 0.073281% 14
184 | Prefix-GC 16,668 | 0.073242% 13
185 | Prefix-GD 16,603 | 0.072956% 14
186 | Prefix-GE 16,527 | 0.072622% 15
187 | Prefix-GF 16,321 | 0.071717% 14
188 | Prefix-GG 16,009 | 0.070346% 16
189 | Prefix-GH 15,995 | 0.070285% 10
190 | Prefix-GI 15,974 | 0.070192% 13
191 | Prefix-GJ 15,857 | 0.069678% 16
192 | Prefix-GK 15,744 | 0.069182% 25
193 | Prefix-GL 15,682 | 0.068909% 13
194 | Prefix-GM 15,566 | 0.068399% 14

Table A.1: Network Hop Calculations For Classified Handle Prefixes

Average 14.28
Variance (population) 16.06
Standard deviation (population) | 4.01
Variance (sample) 16.14
Standard deviation (sample) 4.02

Table A.2: Summary of Network Hops

266

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

A.3 Simulation Environment

A.3.4 NDN PID Push Evaluation Testbed with Mini-NDN

Listing A.23: Mini-NDN Experiment NDN Environment Setup Program

#!/usr/bin/python

from ndn.experiments.experiment import Experiment
import time

import sys

import os

class CurrentExperiment (Experiment) :
def __init__(self, args):
self .hosts = {}
Experiment.__init__(self, args)
def setup(self):
self.checkNetworkSanity ()

def run(self):
self.setup_host_name_map ()

self.__runExperiment ()

def checkNetworkSanity(self):

waittime = 10; # 25 Sekunden is minimal waiting time.
print "Waiting " + str(waittime) + " seconds for sanity...

time.sleep(waittime)
for host in self.net.hosts:

host.cmd(’ndnpingserver /ndn/de/gwdg/’ + host.name +

If you

n

) &7)

statusPing = host.cmd("nfd-status -b | grep /ndn/de/gwdg/" +

host .name)
host.cmd("nfd-status > nfd-status.txt")
if "/ndn/de/gwdg/" + host.name not in statusPing:

print " failed. Host %s is not sane!" ¥ (host.name)

sys.exit (1)
print " done!"

def setup_host_name_map (self):
for host in self.net.hosts:

self .hosts[str (host.name)] = host
Register name for the given host id
node_name = Name of the node you want to contact for announcement
name_to_announce = What do you have to offer
ip_of_host_running_service = what ip address does the offering
node have
def __setup_ndn_route(self, node_name, name_to_announce,
ip_of_host_running_service):
result = str(self.hosts[node_name].cmd(’nfdc register °’> +
name_to_announce + ’ udp4://’ + ip_of_host_running_service))
print ’==== Routed added ===’

267

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

7

79

81

83

85

A.3 Simulation Environment

print ’Node: %s Service: %s Service-IP: %s’ % (node_name,
name_to_announce, ip_of_host_running_service)
print result
if len(result) < 5:
print ’Route adding failed.’
#sys.exit (1)

else:
print result
print ’====================="
print ’
def __forward_announcement (self, name_to_announce):
ipcounter = 1
i =20
while i < len(self.net.hosts):
if i + 1 == len(self.net.hosts):
return
self.__setup_ndn_route(self.net.hosts[i + 1].name,
name_to_announce, ’1.0.0.° + str(ipcounter))
ipcounter += 4
i += 1
def __backward_announcement (self, name_to_announce):

highest_octet = int(str(self.net.hosts[-1].IP()).split(’.’)[-1])
i = len(self.net.hosts) - 1
while 1 > O:

self.__setup_ndn_route(self.net.hosts[i - 1].name,
name_to_announce, ’1.0.0.° + str(highest_octet))
highest_octet -= 4
i-=1
def __runExperiment (self):

print "Running the experiment
Copy in the binaries
os.system(’cp /home/oliver/workspace/ndn-handle/
benchmark_environment/binaries/*.* /tmp/client’)
os.system(’cp /home/oliver/workspace/ndn-handle/
benchmark_environment/binaries/*.* /tmp/server’)

Copy the Handle Server Config
os.system(’cp /home/oliver/workspace/ndn-handle/mini_net/
simulation_data/ndn_hdl-server-config_empty.tar.gz /tmp/server

7)
os.system(’cd /tmp/server && tar xzf ndn_hdl-server-config_empty.
tar.gz’)

Install a prefilled database if required by the benchmark
if os.path.isfile(’/tmp/prefill.bin’):

268

87

89

91

93

95

97

99

101

103

105

107

A.3 Simulation Environment

os.system(’cp /home/oliver/workspace/ndn-handle/mini_net/
simulation_data/100
k_PID_preoloaded_berkeydb_with_target_urls_from_11858.tar.gz
/tmp/server’)

os.system(’cd /tmp/server && tar xzf 100
k_PID_preoloaded_berkeydb_with_target_urls_from_11858.tar.gz
)

os.system(’rm -rf /tmp/server/hdl-server-config/bdbje && mv /
tmp/server/bdbje /tmp/server/hdl-server-config/bdbje’)

print "== Prefilled Handle Database with 100k PIDs installed ==

Start the Handle Server

self .hosts["server"].cmd(’cd /tmp/server && java -jar /tmp/server
/pid_push_benchmarks_handle_server_git_cc42515.jar /tmp/server
/hdl-server-config > /tmp/server/log/hdl-server.log 2>&1 &’)

Setup routes according to node selections

forward announcement

self.__forward_announcement (’/ndn/de/gwdg/client/ping’)
self.__forward_announcement (’/hdlclient’)
self.__forward_announcement (’/hdlclient/netmgr’)

Backward announcement

self.__backward_announcement (’/ndn/de/gwdg/server/ping’)
self.__backward_announcement (’/1234°)
self.__backward_announcement (’/1234/netmgr’)

time.sleep(2)
print "Start the interactive shell to execute experiments"

Experiment.register ("current-experiment", CurrentExperiment)

269

10

12

14

16

18

20

22

24

26

A.3 Simulation Environment

Listing A.24: Mini-NDN NDN Sample Topology Configuration File Connecting Client to
Server with one Intermediate Node

[nodes]

client: _ hyperbolic-state=off radius=0.0 angle=0.0 network=/ndn
router=/%Cl.Router/cs/host site=/edu/site nlsr-log-level=INFO max-
faces-per-prefix=0 nfd-log-level=INFO

interl: _ hyperbolic-state=off radius=0.0 angle=0.0 network=/ndn
router=/%C1.Router/cs/host site=/edu/site nlsr-log-level=INF0 max-
faces-per-prefix=0 nfd-log-level=INFO

server: _ hyperbolic-state=off radius=0.0 angle=0.0 network=/ndn
router=/%Cl.Router/cs/host site=/edu/site nlsr-log-level=INFO max-
faces-per-prefix=0 nfd-log-level=INFO

[switches]

[links]

client:interl bw=1000

interl:server bw=1000

Listing A.25: Mini-NDN NDN Experiment Launcher

#!/bin/bash

if ["$EUID" -ne 0O]
then echo "Please run as root"
exit

fi

echo "How many intermediate nodes should be deployed?"
PS3="Please enter your choice: ’
options=("One Intermediate Node" "Two Intermediate Nodes" "Three
Intermediate Nodes" "Four Intermediate Nodes" "Five Intermediate
Nodes" "Six Intermediate Nodes" "Seven Intermediate Nodes" "Eight
Intermediate Nodes" "Nine Intermediate Nodes" "Ten Intermediate
Nodes" "Eleven Intermediate Nodes" "Twelve Intermediate Nodes" "
Thirteen Intermediate Nodes" "Direct Connect" "Quit")
topology_file=""
select opt in "${optiomns[@]}"
do
case $opt in
"One Intermediate Node")
echo "Running one intermediate mnode"
topology_file=’one_node.conf’
break
HH
"Two Intermediate Nodes")
echo "Running two intermediate nodes"
topology_file=’two_nodes.conf’
break
"Three Intermediate Nodes")
echo "Running three intermediate nodes"
topology_file=’three_nodes.conf’
break

270

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

A.3 Simulation Environment

ERE

"Four Intermediate Nodes")

echo "Running four intermediate nodes"

topology_file=’four_nodes.conf’
break
"Five Intermediate Nodes")
echo "Running five intermediate mnodes
topology_file=’five_nodes.conf’
break

"Six Intermediate Nodes")
echo "Running six intermediate nodes"
topology_file=’six_nodes.conf’
break

"Seven Intermediate Nodes")
echo "Running seven intermediate nodes"
topology_file=’seven_nodes.conf’
break

"Eight Intermediate Nodes")
echo "Running eight intermediate nodes"
topology_file=’eight_nodes.conf’
break

"Nine Intermediate Nodes")
echo "Running nine intermediate nodes"
topology_file=’nine_nodes.conf’
break

"Ten Intermediate Nodes")
echo "Running ten intermediate nodes"
topology_file=’ten_nodes.conf’
break

"Eleven Intermediate Nodes")

echo "Running eleven intermediate nodes"

topology_file=’eleven_nodes.conf’
break
Y

"Twelve Intermediate Nodes")

echo "Running twelve intermediate nodes"

topology_file=’twelve_nodes.conf’
break
H

"Thirteen Intermediate Nodes")

echo "Running thirteen intermediate nodes"

topology_file=’thirteen_nodes.conf’
break

LR

271

80

82

84

86

88

90

92

94

96

98

100

102

104

A.3 Simulation Environment

"Direct Connect")
echo "Running direct connect"
topology_file=’direct_connect.conf’
break
55

"Quit")
exit -1;
I

*) echo invalid option;;

esac
done

export LC_ALL="en_US.UTF-8"

SCRIPT=‘realpath $0°

SCRIPTPATH=‘dirname $SCRIPT ¢

rm /usr/local/lib/python2.7/dist-packages/Mini NDN-0.1.1-py2.7.egg/
ndn/experiments/current_experiment.py > /dev/null 2>&1

rm /usr/local/lib/python2.7/dist-packages/Mini NDN-0.1.1-py2.7.egg/
ndn/experiments/current_experiment.pyc > /dev/null 2>&1

ln -s $SCRIPTPATH/current_experiment.py /usr/local/lib/python2.7/dist
-packages/Mini _NDN-0.1.1-py2.7.egg/ndn/experiments/
current_experiment.py > /dev/null 2>&1

minindn --experiment current-experiment $SCRIPTPATH/$topology_file

rm /usr/local/lib/python2.7/dist-packages/Mini NDN-0.1.1-py2.7.egg/
ndn/experiments/current_experiment.py > /dev/null 2>&1

rm /usr/local/lib/python2.7/dist-packages/Mini NDN-0.1.1-py2.7.egg/
ndn/experiments/current_experiment.pyc > /dev/null 2>&1

Clean up

mn -c

rm -rf /tmp/client
rm -rf /tmp/server
rm -rf /tmp/interx*

272

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

A.3 Simulation Environment

A.3.5 TCP Evaluation Reference Testbed with Mini-NDN

Listing A.26: Mini-NDN Experiment TCP Environment Setup Program

#!/usr/bin/python

from ndn.experiments.experiment import Experiment
import time

import sys

import os

class CurrentExperiment (Experiment) :
def __init__(self, args):
self .hosts = {}
Experiment.__init__(self, args)
def setup(self):
self.checkNetworkSanity ()

def run(self):
self.setup_host_name_map ()
self.__runExperiment ()

def checkNetworkSanity(self):

waittime = 10; # 25 Sekunden is minimal waiting time. If you
print "Waiting " + str(waittime) + " seconds for stabilising"
time.sleep(waittime)

print " done!"

def setup_host_name_map(self):
for host in self.net.hosts:

self .hosts[str(host.name)] = host
def __setup_forwarder (self, host, target_ip):
hostname = host.name

host.cmd(’cd /tmp/’ + hostname +’ && java -Djava.net.
preferIPv4Stack=true -jar /tmp/’ + hostname + ’/
tcp_userland_forwarder_81a36205.jar 2641 ’ + target_ip + ’
2641 2>&1 > /dev/null &)

print "Added TCP forwarder for " + hostmname + " to IP: " +
target_ip
def __forward_announcement (self):

highest_octet = int(str(self.net.hosts[-1].IP()).split(’.’)[-1])
i = len(self.net.hosts) - 1
while i > O:
self.__setup_forwarder (self.net.hosts[i - 1], 21.0.0.7 + str(
highest_octet))
highest_octet -= 4
i -=1

def __runExperiment (self):

273

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

A.3 Simulation Environment

print "Running the experiment
Copy in the binaries
for host in self.net.hosts:
os.system(’cp /home/oliver/workspace/ndn-handle/
benchmark_environment/binaries/*.* /tmp/’ + host.name)

Copy the Handle Server Config

os.system(’cp /home/oliver/workspace/ndn-handle/mini_net/
simulation_data/ndn_hdl-server-config_empty.tar.gz /tmp/server
7)

os.system(’cd /tmp/server && tar xzf ndn_hdl-server-config_empty.
tar.gz’)

Patch the Handle Server Config to use TCP instead of NDN
os.system(’cat /home/oliver/workspace/ndn-handle/mini_net/
simulation_data/tcp_config.dct > /tmp/server/hdl-server-config
/config.dct’)
print "== Handle Server configured for TCP only support =="
Install a prefilled database if required by the benchmark
if os.path.isfile(’/tmp/prefill.bin’):
os.system(’cp /home/oliver/workspace/ndn-handle/mini_net/
simulation_data/100
k_PID_preoloaded_berkeydb_with_target_urls_from_11858.tar.gz
/tmp/server’)
os.system(’cd /tmp/server && tar xzf 100
k_PID_preoloaded_berkeydb_with_target_urls_from_11858.tar.gz
)
os.system(’rm -rf /tmp/server/hdl-server-config/bdbje && mv /
tmp/server/bdbje /tmp/server/hdl-server-config/bdbje’)
print "== Prefilled Handle Database with 100k PIDs installed ==

Start the Handle Server

self .hosts["server"].cmd(’cd /tmp/server && java -Djava.net.
preferIPv4Stack=true -jar /tmp/server/
pid_push_benchmarks_handle_server_git_cc42515.jar /tmp/server/
hdl-server-config > /tmp/server/log/hdl-server.log 2>&1 &’)

Setup routes according to node selection
self.__forward_announcement ()

time.sleep (2)

print "Start the interactive shell to execute experiments"

Experiment.register ("current -experiment", CurrentExperiment)

274

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

A.3 Simulation Environment

A.3.6 TCP User Space Forwarder

The source codes in this section A.3.6 is realizing the TCP user space forwarder and has
been implemented in Java by S. Nakov [174] [175] and was extended by the author of the
thesis to support the Mini-NDN simulation environment. It is used as a reference benchmark
implementation for a location-based network.

Listing A.27: TCP User Space Forwarder Server Part

package de.gwdg.usforwarder;

import java.io.x*;
import java.net.*;

/

*

TCPForwardServer is a simple TCP bridging software that allows

a TCP port on some host to be transparently forwarded to some
other TCP port on some other host. TCPForwardServer continuously
accepts client connections on the listening TCP port

(source port) and starts a thread (ClientThread) that

connects to the destination host and starts forwarding

the data between the client socket and destination socket.

¥ X X X X X X X X X

~

public class TCPForwardServer {
public static int SOURCE_PORT = O0;
public static String DESTINATION_HOST = "127.0.0.1";
public static int DESTINATION_PORT = O0;
private static ServerSocket serverSocket;

public static void main(String[] args) throws IOException {

if (args == null || args.length < 3) {

System.err.println("usage: SOURCE_PORT DESTINATION_HOST
DESTINATION_PORT");

return;

X

SOURCE_PORT = Integer.parselnt (args[0]);

DESTINATION_HOST = args[1];

DESTINATION_PORT = Integer.parselnt (args([2]);

serverSocket = new ServerSocket (SOURCE_PORT) ;

while (true) {
Socket clientSocket = serverSocket.accept();
ClientThread clientThread = new ClientThread(clientSocket) ;
clientThread.start () ;

}

275

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

A.3 Simulation Environment

Listing A.28: TCP User Space Forwarder Forward Thread

package de.gwdg.usforwarder;

import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;

class ForwardThread extends Thread {

private static final int BUFFER_SIZE = 8192;
InputStream mInputStream;

OutputStream mOutputStream;

ClientThread mParent;

/ * %
* Creates a new traffic redirection thread specifying
* its parent, input stream and output stream.
*/
public ForwardThread(ClientThread aParent, InputStream
alnputStream, OutputStream aOutputStream) {

mParent = aParent;
mInputStream = alnputStream;
mOutputStream = aOutputStream;
}
/ * %

* Runs the thread. Continuously reads the input stream and
* writes the read data to the output stream. If reading or
* writing fail, exits the thread and notifies the parent
* about the failure.
*/
public void run() {
byte[] buffer = new byte [BUFFER_SIZE];
try {
while (true) {
int bytesRead = mInputStream.read(buffer);
if (bytesRead == -1)
break; // End of stream is reached --> exit
mOutputStream.write (buffer, 0, bytesRead);
mOutputStream.flush () ;
}
} catch (IOException e) {
// Read/write failed --> connection is broken
}
// Notify parent thread that the connection is broken
mParent.connectionBroken () ;

276

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

A.3 Simulation Environment

Listing A.29: TCP User Space Forwarder Client Thread

package de.gwdg.usforwarder;

import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.net.Socket;

/

*

ClientThread is responsible for starting forwarding between
the client and the server. It keeps track of the client

and servers sockets that are both closed on input/output
error during the forwarding. The forwarding is bidirectional
and is performed by two ForwardThread instances.

* X X X X X *

*
*/
class ClientThread extends Thread {
private Socket mClientSocket;
private Socket mServerSocket;
private boolean mForwardingActive = false;
public ClientThread(Socket aClientSocket) {
mClientSocket = aClientSocket;
X

/ * %
* Establishes connection to the destination server and starts
* bidirectional forwarding ot data between the client
* and the server.
*/
public void run() {
InputStream clientIn;
OutputStream clientOut;
InputStream serverlIn;
OutputStream serverOut;
try {
// Connect to the destination server
mServerSocket = new Socket (TCPForwardServer .DESTINATION_HOST,
TCPForwardServer .DESTINATION_PORT) ;
// Turn on keep-alive for both the sockets
mServerSocket.setKeepAlive (true);
mClientSocket.setKeepAlive (true);
// Obtain client & server input & output streams
clientIn = mClientSocket.getInputStream() ;
clientOut = mClientSocket.getOutputStream() ;
serverIn = mServerSocket.getInputStream();
serverOut = mServerSocket.getOutputStream() ;
} catch (IOException ioe) {
System.err.println("Can not connect to
DESTINATION_HOST + ":"
+ TCPForwardServer .DESTINATION_PORT) ;

" + TCPForwardServer.

277

49

51

53

55

57

59

61

63

65

67

69

71

73

75

7

79

81

83

85

87

89

A.3 Simulation Environment

connectionBroken () ;

return;
}
// Start forwarding data between server and client
mForwardingActive = true;
ForwardThread clientForward = new ForwardThread(this, clientIn,

serverQOut) ;

clientForward.start () ;

ForwardThread serverForward = new ForwardThread(this, serverIn,
clientOut) ;

serverForward.start () ;

System.out.println("TCP Forwarding " + mClientSocket.
getInetAddress () .getHostAddress () + ":"
+ mClientSocket.getPort() + " <--> " + mServerSocket.

getInetAddress () .getHostAddress () + ":"

+ mServerSocket.getPort() + " started.");

*

Called by some of the forwarding threads to indicate

that its socket connection is brokean and both client

and server sockets should be closed. Closing the client

and server sockets causes all threads blocked on reading

or writing to these sockets to get an exception and to finish
their execution.

* X X X X X X *

~

public synchronized void connectionBroken () {
try {
mServerSocket.close () ;
} catch (Exception e) {

}

try {
mClientSocket.close();

}

catch (Exception e) {

}

if (mForwardingActive) {
System.out.println("TCP Forwarding " + mClientSocket.
getInetAddress () .getHostAddress () + ":"
+ mClientSocket.getPort() + " <--> " + mServerSocket.
getInetAddress () .getHostAddress () + ":"
+ mServerSocket.getPort() + " stopped.");
mForwardingActive = false;

}

278

11

13

15

17

19

21

23

A.4 Comparison of Magnet Link Collections to PID Target URLs

A.4 Comparison of Magnet Link Collections to PID Target
URLs

For evaluating the approach of PIDs with persistent resolution targets, we provide a
comparison of Magnet Link collections against the target URLs of existing PID collections.

A.4.1 Minera Handle Miner

In this section, we provide excerpts of the Minera Handle Miner source code, which focus
on the PID resolution process.

Listing A.30: Interactive Mining Control Console

LN/ (D)

N /7 1 - __ o - - -

[Y e o 2 W A

e I 2 I e o

1 O I I W I I
Massively Parallel Handle Mining
Detected CPUs: 4

JVM version: 1.8.0_102

JVM vendor: Oracle Corporation
Operating System: Linux 4.7.7-100.£fc23.x86_64
System architecture: amd64

Available Memory: 3557 MB

Please initialize the system with init <jobfile> or leave with exit
>> init Prefix-A/job

Andt s r %k okokok sk %k ok ok ok sk %k ok ok 5k sk %k %k 5k 5k k %k % 5k 5k 5k %k %k %k 5k k k % % K %
init :: loading jobfile: Prefix-A/job

init :: Inputfile invalid.

ANAt 1 % kokokook sk ook sk ok %k ok ok k ok ok 3 ok % k ok ok 3 ok %k ok K K K k ok % k % k

Please initialize the system with init <jobfile> or leave with exit
>>

279

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

A.4 Comparison of Magnet Link Collections to PID Target URLs

Listing A.31: Mining Process Control

package de.gwdg.minera.cmd;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.HashMap;

import java.util.Vector;

import de.gwdg.minera.cmd.cmdlets.*;

import de.gwdg.minera.threads.ProgramControl;
import de.gwdg.minera.threads.ProgramControlAction;
import de.gwdg.minera.threads.ThreadMonitor;

public class RunEvalPrintLoop {

private Vector<ICliCommand> commands;

private HashMap<String, String> environmentVariables;
private ProgramControl programcontrol;

private ThreadMonitor threadmonitor;

private Thread threadmonitorHandle;

public RunEvalPrintLoop() throws IOException {

// Initialize command set
this.commands = new Vector<ICliCommand>() ;

this.commands.add(new Banner ());
this.commands.add(new Boost());
this.commands.add (new Down());
this.commands.add(new Exit ());
this.commands.add (new Help());
this.commands.add (new Init());
this.commands.add(new Pause());
this.commands.add(new Run());
this.commands.add (new State());
this.commands.add(new Up());
this.setBackReferences ();

// Initialize environment variables
this.initEnvironmentVariables () ;

// Print the Banner
new Banner () .execute(null);

// Start interactive initialization
this.forceSystemInitThroughUser () ;
}

private void initEnvironmentVariables () {
this.environmentVariables = new HashMap<String, String>();

280

51

53

55

57

59

61

63

65

67

69

71

73

75

7

79

81

83

85

87

89

91

93

95

97

A.4 Comparison of Magnet Link Collections to PID Target URLs

this.environmentVariables.put("prompt", ">>");

}

private void setBackReferences () {
for (ICliCommand command : this.commands) {
command . setREPLBackReference (this) ;
}
}

public void setEnvironmentVariable(String key, String value) {
this.environmentVariables.put(key, value);

3

public String getEnvironmentVariable(String key) {
return this.environmentVariables.get (key);

3

public Vector<ICliCommand> getCommandSet (){
return this.commands;

}

public ProgramControl getProgramControl () {
return this.programcontrol;

}

public void enterRunEvalPrintLoop () {
BufferedReader br = new BufferedReader (new InputStreamReader (
System.in)) ;
String currentUserInput null;
String[] tokenizedInput null;
boolean commandNotExisting = true;

while (true) {
commandNotExisting = true;
try {
System.out.print(this.environmentVariables.get("prompt") + "
")
currentUserInput = br.readLine();
if (currentUserInput.length() < 1)
continue;
tokenizedInput = currentUserInput.split(" ");
} catch (IOException ioe) {
System.out.println("I0 error trying to read user input");
System.exit (1);
}
for (ICliCommand command : this.commands) {
if (command.getCommandKeyword () .equals (tokenizedInput [0].
toLowerCase (D)) {
command . execute (tokenizedInput) ;
commandNotExisting = false;

}

281

99

101

103

105

107

109

111

113

115

117

119

121

123

125

127

129

131

133

135

137

A.4 Comparison of Magnet Link Collections to PID Target URLs

}
if (commandNotExisting)
System.out.println(tokenizedInput [0] + " :: command not found
DN

}

private void forceSystemInitThroughUser () {
System.out.println("Please initialize the system with init <
jobfile> or leave with exit");

BufferedReader br = new BufferedReader (new InputStreamReader (
System.in));
String currentUserInput = null;

String[] tokenizedInput = null;
while (true) {

try {
System.out.print(this.environmentVariables.get ("prompt") + "
II).
currentUserInput = br.readLine () ;

if (currentUserInput.length() < 1)
continue;
tokenizedInput = currentUserInput.split(" ");
} catch (IOException ioe) {
System.out.println("I0 error trying to read user input");
System.exit (1) ;
}
// Allow leaving the program
if (tokenizedInput [0].equals("exit"))
System.exit (0);
// Continue initialization
Init initcommand = new Init();
initcommand.setREPLBackReference (this);
initcommand.execute (tokenizedInput) ;

if (this.getEnvironmentVariable("inputfile") != null && this.
getEnvironmentVariable("tafiledirectory") != null
&& this.getEnvironmentVariable ("outputdirectory") != null)
{
this.programcontrol = ProgramControl.getInstance();
this.threadmonitor = new ThreadMonitor (this.

getEnvironmentVariable ("inputfile"),
this.getEnvironmentVariable("tafiledirectory"), this.
getEnvironmentVariable ("outputdirectory"), this.
programcontrol) ;
this.programcontrol.changeExecution(ProgramControlAction.IDLE

)
this.threadmonitorHandle = new Thread(this.threadmonitor);
this.threadmonitorHandle.start () ;
return;
} else

System.out.println("Please initialize the system with init <
jobfile> or leave with exit");

282

A.4 Comparison of Magnet Link Collections to PID Target URLs

139 }

141 }

283

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

A.4 Comparison of Magnet Link Collections to PID Target URLs

Listing A.32: Input File Processor

package de.gwdg.minera.io;
import de.gwdg.minera.pojo.Cent;

import java.io.BufferedReader;

import java.io.FileNotFoundException;
import java.io.FileReader;

import java.io.IOException;

import java.util.ArraylList;

import java.util.Iterator;

import java.util.Vector;

import au.com.bytecode.opencsv.CSVReader;
public class FileInput {

private static FileInput instance = null;
private Vector<Cent> content;

private int pointer = O0;

private int batchsize = 20;

public static FilelInput getInstance(String filepath, String
taDirectory) {
if (instance == null) {
instance = new FileInput(filepath, taDirectory);
b

return instance;

}

public FileInput(String filepath, String taDirectory) {
this.content = new Vector<Cent>();
Cent currentcent = null;
CSVReader reader = null;
Iterator<String[]> csviterator = null;
String[] record = null;

ArrayList<String> transactionlog = this.readTransactionlog(

filepath, taDirectory);

try {
reader = new CSVReader (new FileReader (filepath), ’,’);
csviterator = reader.readAll().iterator ();

} catch (FileNotFoundException e) {

System.out.println("SEVERE :: " + filepath + " not found.

Exiting.");
System.exit (-1);
} catch (IOException e) {

System.out.println("SEVERE :: " + filepath + " not parsable

CSV-file. Exiting.");
System.exit (-1);

284

as

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

90

92

A.4 Comparison of Magnet Link Collections to PID Target URLs

// Skip first line
record = csviterator.next();

while (csviterator.hasNext ()) {
record = csviterator.next () ;
// If the uuid has been processed skip it
if (transactionlog.contains(record[0]))

continue;

currentcent = new Cent () ;
currentcent.setSerialnumber (record [0]) ;
currentcent .setPrefix(record[3]);
currentcent.setSuffix(record[4]) ;
this.content.addElement (currentcent) ;

}

private ArraylList<String> readTransactionlog(String filepath,
String taDirectory) {

FileReader filereader = null;
String line = null;
String transactionLogFilePath = CommonIO.getTransactionFilePath/(

filepath, taDirectory);
ArraylList<String> output = new ArrayList<String>();
try {
filereader = new FileReader (transactionLogFilePath);
BufferedReader bufferedreader = new BufferedReader(filereader);
while ((line = bufferedreader.readLine()) != null) {
output.add(line) ;
}
bufferedreader.close () ;
} catch (FileNotFoundException e) {

System.out.println("WARNING :: Transaction log " +
transactionLogFilePath + " not found");
} catch (IOException e) {
System.out.println ("WARNING :: Transaction log " +
transactionLogFilePath + " not readable. Exiting");
System.exit (-1);
X
return output;

}

public synchronized void setBatchsize(int batchsize) {
this.batchsize = batchsize;

}

public synchronized Vector<Cent> getBatch() {
Vector<Cent> output = new Vector<Cent>();
int batchcounter = 0;

while ((batchcounter < this.batchsize) && ((this.content.size() -
1) >= this.pointer)) {
output.add(this.content.get(this.pointer));

285

94

96

98

A.4 Comparison of Magnet Link Collections to PID Target URLs

batchcounter++;
this.pointer++;
X
return output;
b
3

286

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

A.4 Comparison of Magnet Link Collections to PID Target URLs

Listing A.33: Mining Worker Thread

package de.gwdg.minera.threads;

import de.gwdg.minara.exceptions.ContentNotProebableException;
import de.gwdg.minara.exceptions.HandleNotResolvableException;
import de.gwdg.minera.contentprobe.ContentProber;

import de.gwdg.minera.handle.HandleResolver;

import de.gwdg.minera.io.CoinPersistence;

import de.gwdg.minera.io.Filelnput;

import de.gwdg.minera.pojo.Cent;

import de.gwdg.minera.pojo.Probe;

import de.gwdg.minera.pojo.ResolutionResult;

import java.util.Vector;
public class Worker implements Runnable {

private FileInput fileinput;

private CoinPersistence coinpersistence;
private HandleResolver handleresolver;
private ContentProber contentprober;
private ProgramControl main;

String inputfilepath;

private String taDirectory;

private String coinOutputDirectory;

public Worker (String inputfilepath, String taDirectory, String
coinOutputDirectory, ProgramControl main) {
this.handleresolver = new HandleResolver ();
this.contentprober = new ContentProber () ;
this.fileinput = FileInput.getInstance (inputfilepath, taDirectory
)
this.coinpersistence = CoinPersistence.getInstance();
this.main = main;
this.inputfilepath = inputfilepath;
this.taDirectory = taDirectory;
this.coinOutputDirectory = coinOutputDirectory;

@0verride
public void run() {
Vector<Cent> centbatch = new Vector<Cent>();
this.main.reportNumberOfRunningThreads (ThreadCounterAction.
INCREMENT) ;
// System.out.println("INFO :: Thread " + this.hashCode () +
// " has started up.");
while (true) {
// If idle was selected then exit loop
if (this.main.changeExecution(ProgramControlAction.INF0O) ==
ProgramControlAction.IDLE)
break;

287

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

A.4 Comparison of Magnet Link Collections to PID Target URLs

// Work on new batch
centbatch = fileinput.getBatch();
if (centbatch.size() == 0)
break;
else {
try {
this.processCentbatch(centbatch, taDirectory,
coinOutputDirectory) ;
} catch (Exception e) {
System.out.println("SEVERE :: Thread " + this.hashCode() +
" died. Cause:");
e.printStackTrace () ;
break;
}
}
+
if (centbatch.size() == 0)
this.main.changeExecution(ProgramControlAction.SHUTDOWN) ;
this.main.reportNumberOfRunningThreads (ThreadCounterAction.
DECREMENT) ;
}

private void processCentbatch(Vector<Cent> centbatch, String
taDirectory, String coinOutputDirectory) {

Vector<Cent> processedcentbatch = new Vector<Cent>();
Cent processedcent;
for (Cent currentcent : centbatch) {
if (isCentSain(currentcent) == false) {
System.out.println("INFO :: Malforemed input data caused
skipping cent: " + currentcent.getSerialnumber () + " in
thread: "

+ this.hashCode ());
continue;
X
try {
processedcent = this.processCent (currentcent) ;
processedcentbatch.add (processedcent) ;
} catch (Exception e) {
System.out.println("INFO :: Exeception caused skipping cent:
" + currentcent.getSerialnumber () + in thread:
+ this.hashCode ());
continue;

3
¥
this.coinpersistence.persistBatchToCoins (processedcentbatch, this
.inputfilepath, taDirectory, coinOutputDirectory) ;
b

private Cent processCent (Cent currentcent) throws
HandleNotResolvableException, ContentNotProebableException {
Cent workingcent = currentcent;

288

90

92

94

96

98

100

102

104

106

108

110

112

114

A.4 Comparison of Magnet Link Collections to PID Target URLs

// Handle resolution

ResolutionResult result = this.handleresolver.
resolveHandleUrltoIP (workingcent.getPrefix (), workingcent.
getSuffix ());

workingcent.setTargetHostname (result.getHostname ());

workingcent.setTargetIp(result.getIp());

workingcent.setTargetUrl (result.getUrl());

// Content probing

Probe probe = this.contentprober.probeContent (workingcent.
getTargetUrl ());

workingcent .setTargetMime (probe.getMime ());

workingcent .setTargetProbeMd5Sum (probe.getMd5Checksum()) ;

workingcent.setTargetSize("" + probe.getSize());

return workingcent;

}

private boolean isCentSain(Cent currentcent) {

if (currentcent.getSerialnumber ().length() < 30)
return false;

if (currentcent.getSuffix().length() < 1)
return false;

if (currentcent.getPrefix().length() < 1)
return false;

return true;

289

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

A.4 Comparison of Magnet Link Collections to PID Target URLs

Listing A.34: Handle Resolver

package de.gwdg.minera.handle;

import java.io.IOException;

import java.net.HttpURLConnection;
import java.net.MalformedURLException;
import java.net.URL;

import java.net.UnknownHostException;

import de.gwdg.minara.exceptions.HandleNotResolvableException;
import de.gwdg.minera.pojo.ResolutionResult;

public class HandleResolver {

public HandleResolver () {
System.setProperty("http.agent", "Minera");
}

private String getRandomHandleServer (){
//Alternative code - random handle server assignment
String[] server = {"38.100.138.165"%};
return server [new java.util.Random() .nextInt(server.length)];

}

private String resolveHandleUrltoUrl(String prefix, String suffix)
throws HandleNotResolvableException {
String resolvedUrl = "";
HttpURLConnection httpconnection = null;
try {
URL urlToResolve = new URL("http://" + this.
getRandomHandleServer () + "/" + prefix + "/" + suffix);
httpconnection = (HttpURLConnection) urlToResolve.
openConnection () ;
httpconnection.setInstanceFollowRedirects (false);

httpconnection.setRequestProperty ("User-Agent", "Minera");
httpconnection.connect () ;
if (httpconnection.getResponseCode () != HttpURLConnection.

HTTP_SEE_OTHER)
throw new HandleNotResolvableException(prefix, suffix);

resolvedUrl = httpconnection.getHeaderField("Location");

httpconnection.disconnect () ;
} catch (MalformedURLException e) {

httpconnection.disconnect ();

throw new HandleNotResolvableException(prefix, suffix);
} catch (IOException e) {

httpconnection.disconnect ();

throw new HandleNotResolvableException(prefix, suffix);
3
if (resolvedUrl == null){

httpconnection.disconnect () ;

throw new HandleNotResolvableException(prefix, suffix);

290

48

50

52

54

56

58

60

62

64

A.4 Comparison of Magnet Link Collections to PID Target URLs

3

return resolvedUrl;

}

public ResolutionResult resolveHandleUrltoIP(String prefix, String

suffix) throws HandleNotResolvableException {

ResolutionResult resolutionresult;

String handleTargetUrl = this.resolveHandleUrltoUrl (prefix,

suffix) ;

try {

resolutionresult = new ResolutionResult (new URL(handleTargetUrl
DN

} catch (MalformedURLException e) {
throw new HandleNotResolvableException(prefix, suffix);

} catch (UnknownHostException e) {
e.printStackTrace();
throw new HandleNotResolvableException(prefix, suffix);

}

return resolutionresult;

291

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

A.4 Comparison of Magnet Link Collections to PID Target URLs

A.4.2 PID Target URL Collection

For aggregating the PID target URL collections from the Minera Handle Miner (cf.
Figure 6.13 and Appendix A.4.1), following data aggregation scrips have been used. They
deliver the data for Table 6.4 and Figure 6.15.

Listing A.35: Script for Assembling Target URL and Magnet Link Collection Data

#!/usr/bin/python

import os
import operator
import pickle
import gzip

def get_csv_files():
files = []
for file in os.listdir(’/mnt/data/output/’):
if file.endswith(’.csv.gz’):
files.append(file)
return files

def get_csv_file_names_ordered_size_desc():
files = get_csv_files ()
file_size_dict = {}
for file in files:

num_lines = sum(l for line in gzip.open(’/mnt/data/output/’ + str
(file)))
file_size_dict[str(file)] = num_lines

return sorted(file_size_dict.items(), key=operator.itemgetter (1),
reverse=True)

def get_url_lengths_from_csv(file):
output = []
with gzip.open(’/mnt/data/output/’ + str(file)) as f:
for line in f:
url = line.split(’,’) [15]
output.append(len(url))
return output

def get_url_length_with_files():
output ={}

files = get_csv_file_names_ordered_size_desc ()
for item_pair in files:
output [item_pair [0]] = get_url_lengths_from_csv(item_pair [0])

return output

def analyze_pirate_bay_file():
sizes = []
with gzip.open(’/mnt/data/output/piratebay/complete.csv.gz’) as f:
for line in f:

292

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

A.4 Comparison of Magnet Link Collections to PID Target URLs

chunks = line.split(’|’)
filename = chunks[1]
btih = chunks [5]
magnet_link = ’magnet:7xt=’ + str(btih) + ’&dn=’ + str(filename
)
sizes.append(len(magnet_link))
return (’piratebay’, sizes)

def analyze_academic_torrents_file():

sizes = []

with gzip.open(’/mnt/data/output/acacemic_torrents/20160902
_academic_torrents_magnet_links_dump.txt.gz’) as f:

for line in f:

magnet_link = line.replace(’\n’,’’)
sizes.append(len(magnet_link))

return (’acadmic_torrents’, sizes)

raw_data = get_url_length_with_files ()

captions (]

data = []

magnetlink_data = analyze_pirate_bay_file ()

at_data = analyze_academic_torrents_file ()

ml_minimal_example = [len(’magnet:?xt=urn:btih:411576
c7e80787e4b40452360f5f24acba9b5159°), len(’ magnet:?xt=urn:btih:
fcOb958e0d8b958145d52e2eb641ee83a4d32ade ’)]

This was Top-Prefix 10 - Prefix-J
captions.append (’#10 - Prefix-J’)
data.append(raw_data[’Prefix-J_minera_fusioned_output.csv.gz’])

This was Top-Prefix 9 - Prefix-I
captions.append (’#9 - Prefix-I’)
data.append(raw_data[’Prefix-I_minera_fusioned_output.csv.gz’])

This was Top-Prefix 8 - Prefix-H
captions.append (’#8 - Prefix-H’)
data.append(raw_data[’Prefix-H_minera_fusioned_output.csv.gz’])

This was Top-Prefix 7 - Prefix-G
captions.append (’#7 - Prefix-G’)
data.append(raw_data[’Prefix-G_minera_fusioned_output.csv.gz’])

This was Top-Prefix 6 - Prefix-F

captions.append (’#6 - Prefix-F’)
data.append(raw_data[’Prefix-F_minera_fusioned_output.csv.gz’])
This was Top-Prefix 5 - Prefix-E

captions.append(’#5 - Prefix-E’)

data.append(raw_data[’Prefix-E_minera_fusioned_output.csv.gz’])

This was Top-Prefix 4 - Prefix-D

293

90

92

94

96

98

100

102

104

106

108

110

112

114

116

118

120

122

124

A.4 Comparison of Magnet Link Collections to PID Target URLs

captions.append (’#4 - Prefix-D’)

data.append(raw_data[’Prefix-D_minera_fusioned_output.

This was Top-Prefix 3 - Prefix-C - data present
captions.append (’#3 - Prefix-C’)

data.append(raw_data[’Prefix-C_minera_fusioned_output.

This was Top-Prefix 2 - Prefix-B - data present
captions.append (’#2 - Prefix-B’)

data.append(raw_data[’Prefix-B_minera_fusioned_output.

This was Top-Prefix 1 - Prefix-A - data present
captions.append (’#1 - Prefix-A’)

data.append(raw_data[’Prefix-A_minera_fusioned_output.

Pirate Bay Data
captions.append (’ML Pirate Bay’)
data.append(magnetlink_data[1])

Academic Torrents
captions.append (’ML Academic Torrents’)
data.append(at_datal[1])

Minimal Magnet Link Example
captions.append (’ML Minimal Example’)
data.append (ml_minimal_example)

export_path_data = ’/tmp/data.bin’
export_path_captions = ’/tmp/captions.bin’

with open(export_path_data, ’wb’) as datafile:
pickle.dump(data, datafile)

CSVv.

CsSVv.

cCsvVv.

CSVv

gz’1)

gz’1)

gz’1)

.gz’1)

print "Data dumped with", os.stat(export_path_data).st_size, "bytes
n
with open(export_path_captions, ’wb’) as captionfile:
pickle.dump(captions, captionfile)
print "Captions dumped with", os.stat(export_path_captions).st_size

s "bytes"

294

11

13

15

17

19

21

23

25

27

29

31

33

35

A.4 Comparison of Magnet Link Collections to PID Target URLs

Listing A.36: Script for Visualization of Data (Figure 6.15)

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

from matplotlib.backends.backend_pdf import PdfPages
import pickle

export_path_data = ’/tmp/data.bin’
export_path_captions = ’/tmp/captions.bin’
export_pdf_path = ’/tmp/chart.pdf’

data = ’’

captions = 7’

with open(export_path_data, "rb") as datafile:
print "Reading", export_path_data
data = pickle.load(datafile)

with open(export_path_captions, "rb") as captionfile:
print "Reading", export_path_captions
captions = pickle.load(captionfile)

print "rendering graphics .

with PdfPages (export_pdf_path) as pdf:
fig = plt.figure()
df = pd.DataFrame (data, index=captions)
plt.xlabel (’number of characters’)
plt.x1im (0, 500)
bp = df .T.boxplot(vert=False, sym=’+’, return_type=’dict’)
plt.setp(bp[’boxes’], color=’black’)
plt.setp(bp[’whiskers’], color=’black’)
plt.subplots_adjust(left=0.43, bottom=0.43)
fig.savefig(export_pdf_path + ’.png’, format=’png’, dpi=500)
pdf .savefig(fig)
print "pdf saved as", export_pdf_path
print "finished."

295

10

12

14

16

18

20

22

24

26

28

A.4 Comparison of Magnet Link Collections to PID Target URLs

A.4.3 Academic Torrent Magnet Link Collection

For gathering the complete Magnet Link collection of Academic Torrents [97] a crawler
script and a conversion script has been used. In the following, we provide both scripts that
deliver the data for Table 6.4 and Figure 6.15.

Listing A.37: Crawler Script For Downloading all Torrent Files From Academic Torrents
using the Official API

#!/usr/bin/env python
import requests, urlib, json

torrent_url = "http://academictorrents.com/download/"
api_url="http://academictorrents.com/apiv2/"

Dowload all the research data
r = requests.get(api_url+"entries?cat=6&1imit=100000&uid=
USERID_REMOVED&pass=PASSWORD_REMOVED")
print ("I found "+str(len(r.json()))+" datasets");
for dataset in r.json():
dataset[’name’] = urllib.quote(dataset[’name’].encode(’utf8’))
with open("datasets/"+dataset[’infohash’]+".json","w") as fd:
fd.write(json.dumps (dataset))

t_dl = requests.get(torrent_url+dataset[’infohash’]+".torrent",
stream=True)
with open("datasets/"+dataset[’infohash’]+".torrent",’w’) as fd:

for chunk in t_dl.iter_content (1024):
fd.write (chunk)

Download all the papers
r = requests.get(api_url+"entries?cat=5&1imit=100000&uid=
USERID_REMOVED&pass=PASSWORD_REMOVED")
print ("I found "+str(len(r.json()))+" papers");
for dataset in r.json():
dataset[’name’] = urllib.quote(dataset[’name’].encode(’utf8’))
with open("papers/"+dataset[’infohash’]+".json","w") as fd:
fd.write(json.dumps (dataset))

t_dl = requests.get(torrent_url+dataset[’infohash’]+".torrent",
stream=True)
with open("papers/"+dataset[’infohash’]+".torrent",’w’) as fd:

for chunk in t_dl.iter_content (1024):
fd.write (chunk)

296

11

13

15

17

19

21

A.4 Comparison of Magnet Link Collections to PID Target URLs

Listing A.38: Script For Access Data Into Standardized Magnet Links

#!/usr/bin/env python

import os;
import json;
import urllib;

for f in os.listdir("datasets/"):
if f.endswith(".json"):
with open("datasets/"+f,"r") as fd:
j = json.loads(fd.read())
m = ’magnet:?xt=urn:btih:’+j[’infohash’]+’&dn="+j[’name’]
with open(’datasets/’+j[’infohash’]+’ _magnet-link.txt’,’w’) as
wi:
wf.write (m)

for f in os.listdir("papers/"):
if f.endswith(".json"):
with open("papers/"+f,"r") as fd:
j = json.loads(fd.read())
m = ’magnet:?xt=urn:btih:’+j[’infohash’]+’&dn="+j[’name’]
with open(’papers/’+j[’infohash’]+’ _magnet-link.txt’,’w’) as wf:
wf.write (m)

297

A.5 PIDs with Persistent Resolution Targets

A.5 PIDs with Persistent Resolution Targets

For evaluation the approach of PIDs with persistent resolution targets a full software stack
has been implemented. In this section, we provide the screen shots of the user interface and
source codes of the proof-of-concept software named PID-Burner.

A.5.1 User Interface

In this section screenshots of the proof-of-concept implementation of the web-service
PID-Burner are included. All screenshots are showing the web application and were made
on OSX Version 10.11.6 using Google Chrome 52.0.2743.116.

® O ® /[y pip-Burner x i
<« C | @ https://cdstar-prod04.gwdg.de/pidburner/create 7| O :
$ PID-Burner
© Help create a location-independent PID
i= Overview Dataset Torrent File Upload Choose File | NO fil...hosen browse
(required)
% Create new PID
or
G Logout
Dataset NDN Data Name
© Imprint (required)

Signature File Upload
(PEM-file - optional)

Choose File | No fil...hosen browse

Certificate Torrent File Upload Choose File | NO fil...hosen browse
(optional)

or

Certificate NDN Data Name
(optional)

cancel

Figure A.1: Creating a Magnet Link-enabled PID in PID-Burner

298

A.5 PIDs with Persistent Resolution Targets

ece / [PID-Burner x

& C | @ https://cdstar-prod04.gwdg.de/pidburnerjoverview

© Holp Dashboard

Download
* Create new PID # PID Description Infohash Size Action
C» Logout 1 1114B/0000- ubuntu- SIWVUWMYRWTJSWUB2RA4LPFLBUMPKEGO 1504051200 [Pl ooy Vs
0011-2D49- 16.04-
@ Imprint A desktop- -
i386.is0 Wl View on dol.org

Update PID
% Delete PID

Public URL for Magnet Link PID resolver: https://cdstar-prod04.gwdg.de/pidburner/11148/0000-0011-2D49-A

2 11148/0000- mdim_color AWPNEVKYWRMHCQE3MNSMHSUUX25VPWEN 0 A Resolve PID Into Magnet Link

0011-2D96-
2 I View on handie.net
Wl View on dol.org

/# Update PID

< Delete PID

Public URL for Magnet Link PID resolver: hitps://cdstar-prod04.gwdg.de/pidburner/11148/0000-0011-2D96-2

-
Figure A.2: PID Management Interface in PID-Burner

e0ce® "‘hp Handle Proxy b

C | @ https://hdl.handle.net/11148/0000-0011-2D96-27auth

Handle.Net®

Handle Values for: 11148/0000-0011-2D96-2

Index Type Timestamp Data
1 MAGNET 2016-08-29 17:46:19Z magnet: 7xt=urn:bti: AWPNEVKYWRMHCOQ63MNSMHSUUX25VPWEN&dn=mdim color&xI=0
2 INST 2016-08-29 17:46:19Z DEMO1

100 HS ADMIN 2016-08-29 17:46:19Z handle=0.NA/11022; index=3; [create hdl delete hdl,read val,modify valdel val,add val,modify admin del admin,add admin]

Handle Proxy Server Documentation
Handle.net Web Site

Please contact hdladmin@ cnri .reston.va.us for your handle questions and comments.

B}
Figure A.3: PID with BitTorrent Access Data on hdl.handle.net

A.5 PIDs with Persistent Resolution Targets

® © ® | d| poiName 11148/0000-0017 X

C | & https://dx.doi.org/11148/0000-0011-2D49-A?auth

®

HOME HANDBOOK

FACTSHEETS FAQs RESOURCES USERS

NEWS MEMBERS AREA

DOl Name Values

DOI: 11148/0000-0011-2D49-A
DOI Values for: 11148/0000-0011-2D49-A
Index Type Timestamp Data

1 MAGNET 2016-05-02 12:45:35Z magnet:2xt=urn:btih: 5IWVUWMYRWT.3WUB2RA4L PFL3UMPK6GO& dn=ubuntu-16.04-desktop-i386.isoftxl=1504051200
2 INST 2016-05-02 12:45:35Z DEMO1

100 HS_ADMIN 2016-05-02 12:45:35Z handle=0.NA/11022; index=3; [create hdl,delete hdl,read val,modify val,del val,add val,modify admin,del admin,add admin]

DO| System Proxy Server Documentation

d- 2, 0012, p01.0RG, and shortDOI® are trademarks of the International DOI Foundation.

Figure A.4: PID with BitTorrent Access Data on dx.doi.org

11

13

15

17

19

21

23

25

27

29

31

33

35

37

A.5 PIDs with Persistent Resolution Targets

A.5.2 Source Code

In the following, we provide excerpts of the source code from the web application PID
Burner. The excerpts depict the management of Magnet Links in conjunction with the
Handle system using the EPIC REST interface.

Listing A.39: Interaction with the EPIC PID Rest Interface for creating and maintaining
PIDs

import httplib2

import os

import json

import base64

import logging

from pprint import pprint

WEBROOT = os.path.abspath(os.path.dirname(__file__))
logging .basicConfig(filename=WEBROOT + ’/log/log.txt’, format=logging
.BASIC_FORMAT)

class epicclient(object):
def __init__(self):
userdetails = self.read_users_details ()
self .username = userdetails[’username’]
self .password = userdetails[’password’]
self.host = userdetails[’host’]

self .prefix = userdetails[’prefix’]

def create_pid(self, magnet_link):

self.__error50xworkaround ()
h = httplib2.Http ()
auth = base64.encodestring(self.username + ’:’ + self.

password)
uploaddata = self.create_upload_body(magnet_link)
response, content = h.request(
self .host + ’/handles/’ + self.prefix + ’/’,
>POST’,
headers={’Authorization’: ’Basic ’ + auth, ’User-Agent’:
"curl/7.43.0", ’Accept’: "application/json",
>Content -Type’: "application/json"},
body=uploaddata
)
if respomnse[’status’] == ’201°’:
parse_content = json.loads(content)
parse_content = parse_content[’epic-pid’]
suffix = parse_content.split(’/’) [1]
logging.info (" [CREATE MAGNET LINK] 201 PID Created -
suffix: " + suffix + " magnet-link: " + magnet_link)
return suffix
if responsel[’status’][0] == ’57:

301

39

41

43

45

a7

49

51

53

55

57

59

61

63

65

67

69

71

73

75

7

A.5 PIDs with Persistent Resolution Targets

logging.info(

"[CREATE MAGNET LINK] Server failed - status: " +
response [’status’] + " magnet-link: " +
magnet_link)

raise SystemError (’ [CREATE MAGNET LINK] EPIC Server Error

5xx7)
logging.info(
"[CREATE MAGNET LINK] Unknown error - status: " +
response[’status’] + " magnet-link: " + magnet_link)

raise KeyError (’ [CREATE MAGNET LINK] unknown error’)

@staticmethod

def create_upload_body(magnet_link):
type: (object) -> str
body = []
body.append(dict (type="MAGNET", parsed_data=magnet_link))
body.append(dict (type="INST", parsed_data="DEMO1"))
return json.dumps (body)

def update_pid(self, suffix, magnet_link):

self.__error50xworkaround ()
h = httplib2.Http ()
auth = base64.encodestring(self.username + ’:’ + self.

password)
uploaddata = self.create_upload_body(magnet_link)
response, content = h.request(
self .host + ’/handles/’ + self.prefix + ’/’ + suffix,
»PUT” ,
headers={’Authorization’: ’Basic ’ + auth, ’User-Agent’:
"curl/7.43.0", ’Accept’: "application/json",
>Content -Type’: "application/json"},
body=uploaddata
)
EPIC developers? 204 is WRONG - What about using 2007!
if response[’status’] == ’204’:
logging.info (" [UPDATE MAGNET LINK] 204 PID updated -
suffix: " + suffix + " magnet-link: " + magnet_link)
return suffix
if response[’status’] == ’404’:
logging.info (" [UPDATE MAGNET LINK] 404 Not found - suffix
" + suffix + " magnet-link: " + magnet_link)
raise KeyError (’ [UPDATE MAGNET LINK] PID not found?’)
if response[’status’][0] == ’57:
logging.info(

"[UPDATE MAGNET LINK] Server failed - status: " +
response [’status’] + " magnet-link: " +
magnet_link)

raise SystemError (’ [UPDATE MAGNET LINK] EPIC Server Error
5xx7)
logging.info(
"[UPDATE MAGNET LINK] Unknown error - status: " +

302

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

115

117

A.5 PIDs with Persistent Resolution Targets

response[’status’] + " magnet-link: " + magnet_link)
raise KeyError (’ [UPDATE MAGNET LINK] unknown error’)

def delete_pid(self, suffix):

self.__error50xworkaround ()
h = httplib2.Http ()
auth = base64.encodestring(self.username + ’:’ + self.
password)
response, content = h.request(
self .host + ’/handles/’ + self.prefix + ’/’ + suffix,
’DELETE’,
headers={’Authorization’: ’Basic ’ + auth, ’User-Agent’:
"curl/7.43.0", ’Accept’: "application/json"}
if response[’status’] == ’204’:
logging.info (" [DELETE PID] 204 PID deleted - suffix: " +
suffix)
return ’0K’
if response[’status’] == ’404°:
logging.info (" [DELETE PID] 404 Not found - suffix: " +
suffix)
raise KeyError (’ [DELETE PID] PID not found’)
if response[’status’][0] == ’57:
logging.info (" [DELETE PID] Server failed - status: " +
response[’status’] + " - suffix: " + suffix)
raise SystemError (’ [DELETE PID] EPIC Server Error 5xx’)
logging.info (" [DELETE PID] Unknown error - status: " +
response [’status’] + " - suffix: " + suffix)

raise KeyError (’ [DELETE PID] unknown error’)

def get_magnet_link_ from_pid(self, suffix):

self.__error50xworkaround ()
h = httplib2.Http ()
auth = base64.encodestring(self.username + ’:’ + self.
password)
response, content = h.request(
self .host + ’/handles/’ + self.prefix + ’/’ + suffix,
»GET’,
headers={’Authorization’: ’Basic ’ + auth, ’User-Agent’:
"curl/7.43.0", ’Accept’: "application/json"}
)
if respomnse[’status’] == ’200’:
data = json.loads(content)
for field in data:
if field[’type’] == ’MAGNET’:

return field[’parsed_data’]
logging.info ("GET MAGNET LINK] PID does not contain a
Magnet Link - suffix: " + suffix)
raise KeyError (’ [GET MAGNET LINK] PID does not contain a
Magnet Link?’)
if response[’status’] == ’404°:

303

119

121

123

125

127

129

131

133

135

137

139

141

143

145

147

149

151

153

155

A.5 PIDs with Persistent Resolution Targets

def

def

304

logging.info (" [GET MAGNET LINK] 404 Not found - suffix: "
+ suffix)
raise KeyError (’ [GET MAGNET LINK] PID not found’)

if responsel[’status’][0] == ’5’:
logging.info (" [GET MAGNET LINK] Server failed - status: "
+ response[’status’] + " suffix: " + suffix)
raise SystemError (’ [GET MAGNET LINK] EPIC Server Error 5
xx7)
logging.info (" [GET MAGNET LINK] Unknown error - status: " +
response[’status’] + " - suffix: " + suffix)

raise KeyError (’ [GET MAGNET LINK] unknown error’)

get_pid_target_from_handle(self, prefix, suffix):
h = httplib2.Http ()
response, content = h.request(
’https://hdl.handle.net/api/handles/’ + prefix + ’/° +
suffix + ’7auth=true’,

YGET
headers={’User-Agent’: "curl/7.43.0", ’Accept’: "
application/json"}
)
if response[’status’] == ’200’:
data = json.loads(content)
for field in datal[’values’]:
if field[’type’] == ’MAGNET’ or field[’type’] == ’URL
7.
return field[’data’][’value’]
logging.info ("GET MAGNET LINK] PID does not contain a
Magnet Link - suffix: " + suffix)
raise KeyError (’ [GET PID FROM HANDLE_NET] PID does not
contain a Magnet Link?’)
if response[’status’] == ’404°:
logging.info (" [GET PID FROM HANDLE_NET] 404 Not found -
suffix: " + suffix)
raise KeyError (’ [GET PID FROM HANDLE_NET] PID not found’)
if response[’status’][0] == ’5°:
logging.info (" [GET MAGNET LINK] Server failed - status: "
+ response[’status’] + " suffix: " + suffix)

raise SystemError (’[GET PID FROM HANDLE_NET] EPIC Server
Error 5xx’)
logging.info (" [GET PID FROM HANDLE_NET] Unknown error -
status: " + responsel[’status’] + " - suffix: " + suffix)
raise KeyError (’ [GET PID FROM HANDLE_NET] unknown error’)

__error50xworkaround (self):

def __exec_workaround():
attempts = 0
while not __is_workaround_working():

if attempts > 3:
logging.info (" [60x EPIC WORKAROUND] four attempts

157

159

161

163

165

167

169

171

173

175

177

179

181

183

185

187

A.5 PIDs with Persistent Resolution Targets

def

failed.
return
attempts += 1
def __is_workaround_working():
try:
h = httplib2.Http ()

auth = base64.encodestring(self.username + ’:’

.password)
uploaddata =
response,

self.host + ’/handles/’

0000-0011-2C12-8",
»PUT’ ,

headers={’Authorization’:
"curl/7.43.0",
"application/json",
>Content -Type’:

Agent ’:
>Accept’:

body=uploaddata

)

if responsel[’status’][0] ==
logging.info (" [50x EPIC

Giving up.")

+ self

self .create_upload_body(’testmagnet’)
content = h.request(

+ self.prefix + °/° + 7

’Basic ’ + auth, ’User-

"application/json"},

35):

WORKAROUND] saved request

from being scrapped")

return False
else:
return True
except:
return False
_exec_workaround ()

read_users_details(self):

webroot = os.path.abspath(os.path.dirname(__file__))

filepath = os.path.join(webroot,
with open(filepath) as data_file:
return json.load(data_file)

>config’,

’epic_login. json’)

305

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

a7

A.5 PIDs with Persistent Resolution Targets

Listing A.40: Extraction of BitTorrent Access Information

from epicclient import epicclient
from storage import storage
import bencode

import hashlib

import base64

import time

import urllib

class pidObject ():
def __init__(self):
expires = time.time ()

self .timestamp = time.strftime("%a, %d-%b-%Y %T GMT", time.
gmtime (expires))
class torrentObject (object):
def __init__(self, name, length, infohash):
self .name = name
self.length = length
self.infohash = infohash
def get_name (self):
return self.name
def get_length(self):
return self.length
def get_infohash(self):
return self.infohash
class pidstorage (object):
def __init__(self, webroot):
self.eclient = epicclient ()
self.storage = storage(webroot)
def create_pid_with_torrent_file(self, filepath):
storage_data = pid0Object ()
magnet_link = self.convert_torrent_file_to_magnet_link(
filepath)
suffix = self.eclient.create_pid(magnet_link)

self.storage.write_object_data_to_disk(suffix, storage_data)

self .storage.archive_torrent_file(suffix, filepath)
return suffix

def get_pid_target_from_handle(self, prefix, suffix):

return self.eclient.get_pid_target_from_handle (prefix,

)

306

suffix

49

51

53

55

57

59

61

63

65

67

69

71

73

75

7

79

81

83

85

87

89

A.5 PIDs with Persistent Resolution Targets

def

def

def

def

def

update_pid_with_torrent_file(self, suffix, filepath):

if not self.storage.is_object_existing(suffix):
raise KeyError (’ [PID STORAGE] Only PIDs managed by PID-

Burner can be updated.’)

magnet_link = self.convert_torrent_file_to_magnet_link(
filepath)

retval = self.eclient.update_pid(suffix, magnet_link)

self .storage.write_object_data_to_disk(suffix, pidObject())

self .storage.archive_torrent_file(suffix, filepath)

return retval

delete_pid(self, suffix):
if not self.storage.is_object_existing(suffix):
raise KeyError (’ [PID STORAGE] Only PIDs managed by PID-
Burner can be deleted.’)
self.eclient.delete_pid(suffix)
self .storage.delete_object_from_disk (suffix)
self .storage.delete_torrent_file_safe(suffix)

convert_torrent_file_to_magnet_link(self, filepath):
torrent_properties = self.
extract_properties_from_torrent_file(filepath)

xt_param = ’xt=urn:btih:%s’ J torrent_properties.get_infohash
O

dn_param = urllib.urlencode({’dn’: torrent_properties.
get_name () })

xl_param = urllib.urlencode({’x1l’: torrent_properties.
get_length (O })

magneturi = ’magnet:?’ + xt_param + ’&’ + dn_param + ‘&’ +

x1l_param
return magneturi

is_suffix_in_database(self, suffix):
return self.storage.is_object_existing(suffix)

extract_properties_from_torrent_file(self, filepath):
torrent = open(filepath, ’r’).read()

metadata = bencode.bdecode(torrent)

hashcontents = bencode.bencode (metadata[’info’])
digest = hashlib.shal(hashcontents).digest ()

infohash = base64.b32encode(digest)

try:

name = metadatal[’info’][’name’]
except:

name = ’name not set’
try:

length = metadatal’info’][’length’]
except:

length = 0

return torrentObject(name, length, infohash)

307

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

A.5 PIDs with Persistent Resolution Targets

A.5.3 PID Resolution Measurements For Various PID Sizes

Listing A.41: Script for Measuring PID Resolution Times With Various target URL Sizes

import urllib2

import base64

from pprint import pprint
import os

import time

import random

import string

import sys

def updateGWDGPid (username, password, prefix, suffix, targeturl):
opener = urllib2.build_opener (urllib2.HTTPHandler)

request = urllib2.Request(’http://pid.gwdg.de/handles/’ + prefix

+ 7/ + suffix, data=’[{"type":"URL","parsed_data":"’ +
targeturl +’"}]?)

request.add_header (’User-Agent’, ’*EPIC PID Reservation Tool -
powered by GWDG (c) 2015°)

request.add_header (’Content -Type’, ’application/json’)

base64string = base64.encodestring(’%s:%s’ % (username, password)
) .replace(’\n’, ’7)

request.add_header ("Authorization", "Basic %s" % base64string)

request.get_method = lambda: ’PUT’

response = opener.open(request)

etag = response.info().getheader (’Etag’).replace(’"’,’7)

return etag, prefix, suffix, ’https://hdl.handle.net/’ + prefix +

»/? + suffix, targeturl

def measureTimeForPIDResolving(prefix, suffix):
Prepare the request
host = ’ec2-XXX-XXX-XXX-XXX.eu-west-1.compute.amazonaws.com’
opener = urllib2.build_opener (urllib2.HTTPHandler)
Set 7auth parameter to turn off caching completely in the
resolution chain

request_address = ’http://’ + host + ’/api/handles/’ + prefix +
/? + suffix + ’7auth’

request = urllib2.Request(request_address)

request.add_header (’User-Agent’, ’Handle Benchmark Tool’)

request.add_header (’Content -Type’, ’application/json’)

request.get_method = lambda: ’GET’

Do the measurement

starttime = time.time ()
response = opener.open(request)
endtime = time.time ()

Check if everthing went well, if not return -1 for the

measurement
statuscode = str(response.getcode())
if statuscode != "200":

308

J

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

7

79

81

83

A.5 PIDs with Persistent Resolution Targets

def

def

if

print "Resolving problem - Host: %s Statuscode: Y%s " % (
request_address, statuscode)
return -1
else:
return (endtime - starttime)

getRandomString (length) :
return ’’.join(random.choice(string.ascii_lowercase) for _ in
xrange (0, length))

measurePID (username, password, prefix, suffix):
we test target URL length from 1 to 65536
sys.stdout.write(" [Measurement] " + prefix + ’/’ + suffix + ’ 7)
results = []
for exp in xrange (0, 16): # 2715 max chars.
target_url_length = 2 *x exp
random_string = getRandomString(target_url_length)
try:
update the PID
updateGWDGPid (username, password, prefix, suffix,
random_string)
measure
measured_time = measureTimeForPIDResolving(prefix, suffix
)
results.append(measured_time)
sys.stdout.write(’..’ + str(2 *x exp))
sys.stdout.flush()
Clean the PID up after using
updateGWDGPid (username , password, prefix, suffix, ’http
2/ /www . gudg.de’)
except Exception, e:
print " "
print "[Measurement PROBLEM] Ys/%s - STL: Y%s " % (prefix,
suffix, str(target_url_length))

print e
Clean the PID up after using
updateGWDGPid (username , password, prefix, suffix, ’http

1/ /www. gwdg.de’)
continue
sys.stdout.write(’..DONE\n’)
sys.stdout.flush ()
return results

__name == 7 main 7

username = os.environ.get (’PID_TOOL_USERNAME’)
password os.environ.get (’PID_TOOL_PASSWORD’)
if username is None or password is None:
print "Cannot extract username and password from ENV

variables. Exiting ..."
exit (-1)
with open(’/tmp/measurement.csv’,’a’) as outputpointer:

309

85

87

89

91

93

95

97

99

A.5 PIDs with Persistent Resolution Targets

output = 7’
write header of file
outputpointer.write (’"Numer",6 ’)

for exp in xrange (0, 16):
outputpointer.write(’"STL-’
outputpointer.write(’\n’)
do the measurements
for counter in xrange (1,
results =
testpid-’ + str(counter))
output += str(counter) + ’,’
for value in results:
output += str(value) + ~’
output = output[: len(output
outputpointer.write (output +
outputpointer.flush ()
output = 7’

10000) :

measurePID (username,

+ str(2 ** exp) +

password, 110227,

J
H

) - 2]
’\1’17)

Jll’))

)

310

11

13

A.5 PIDs with Persistent Resolution Targets

A.5.4 Magnet Link Size Growth Caused By Content Signatures

Listing A.42: Script for Measuring URL-encoded Content Signatures

#!/bin/bash

for ((i=1;i<=10000;i++));

do

openssl req -nodes -x509 -sha256 -newkey rsa:4096 -keyout "$(whoami)s
Sign Key.key" -out "$(whoami)s Sign Key.crt" -days 365 -subj "/C=
DE/ST=Lower Saxony/L=Goettingen/0=GWDG/0U=AG E/CN=$(whoami)s Sign
Key"

LENGTH=‘shuf -i1-10000000 -n1°

echo $LENGTH

NEW_UUID=$(cat /dev/urandom | tr -dc ’a-zA-Z0-9’ | fold -w $LENGTH |
head -n 1)

echo $NEW_UUID > sign.txt

openssl dgst -sha256 -sign "$(whoami)s Sign Key.key" -out sign.txt.
sha2b56 sign.txt

base64 sign.txt.sha256 > sign.txt.sha2b6.txt

cat sign.txt.sha256.txt|perl -MURI::Escape -1lne ’print uri_escape($_)
’lwc -m >> counter.txt

done

After drawing 10.000 samples, following character counts can be observed for a size
increase of Magnet Links caused by SHA256 asymmetric content signatures:

Average 736.92
Variance (population) 83.90
Standard deviation (population) | 9.16
Variance (sample) 83.98
Standard deviation (sample) 9.16

Table A.3: Character Count Increase Caused By Content Signatures

311

Curriculum Vitae

	Introduction
	Motivation
	Scope of Thesis
	Goals and Contributions
	Impact
	Structure of Thesis

	Foundations
	Research Data Management
	Digital Data Repositories
	Persistent Identifiers
	Handle System
	Magnet Links
	Overlay Networks with BitTorrent
	General Principles
	Network Organization
	Data Organization

	Information Centric Networks with Named Data Networking
	Differentiation between CCN and NDN
	General Principles
	Naming Data
	Packet Types
	Node Design
	Routing
	Data Transport and Flow Control
	Content Validation and Content Protection

	Cryptography
	Symmetric Encryption
	Asymmetric Encryption
	Digital Signatures
	Symmetric Authentication

	Problem Statements
	Related Work
	Research Data Dissemination With Overlay Networks
	Research Data Dissemination With Named Data Networking
	Persistent Identifier in Named Data Networking
	Naming Schemes for Archive Data Access
	Running Legacy Network Applications in NDN
	Location-based Network Protocols over NDN
	Application Protocol Adaption for NDN
	Communication Application Interfaces Adaption
	Transparent Proxies

	Summary and Research Delta

	Location-Independent Persistent Identifiers
	Persistent Identifier in Location-Independent Networks
	Improvements and Benefits
	Approach
	General Principles
	PID NDN Namespace Convergence
	Access Models
	Interoperability Model

	Implementation
	NDN-Enabled Handle Server
	Handle Library Modification for NDN Connectivity
	Native Handle Protocol Transport With the NDNInterface
	PID Publishing Subsystem

	Evaluation
	Simulator Environment
	Evaluation Input Data Preparation
	Native Handle Communication Using NDN PID Push
	PID Publishing using NDN PID Pull

	Location-Independent Data Access using Persistent Identifiers
	Improvements and Benefits
	Distribution of PID Maintenance Efforts
	Approach
	Magnet URI Scheme Extension for NDN
	Magnet URI Scheme Extension for Trusted Data Access
	Embedding Magnet Links into Handle PID
	Data Access Service Chain
	Creation and Maintenance of PIDs
	Data Access from Location-Dependent Networks

	Implementation
	Server Side
	Client Side

	Evaluation
	PID Size Increase
	Data Access Duration

	Discussion
	Answers to Research Questions Concerning Location-Independent Persistent Identifiers
	Limitations Of Location-Independent Persistent Identifiers
	Answers to Research Questions Concerning Location-Independent Data Access Using Persistent Identifiers
	Limitations Of Location-Independent Data Access Using Persistent Identifiers

	Conclusion
	Summary
	Outlook

	Bibliography
	List of Acronyms
	List of Symbols
	List of Definitions
	List of Figures
	List of Listings
	List of Tables
	Appendix
	Handle Source Code Remarks
	Removal of URN Data Type Support

	Handle Source Code Patches and Additions
	Patches for NDN-enabled Native Handle Communication Using NDN PID Push
	Additions for NDN-enabled Native Handle Communication Using NDN PID Push
	Patches for PID Publishing Using NDN PID Pull
	Additions for PID Publishing Using NDN PID Pull (Server)
	Additions for PID Publishing Using NDN PID Pull (Client)

	Simulation Environment
	PID Resolution Request Classification By Handle Prefixes
	Collecting Primary Handle Site Data
	Network Hop Calculations For Classified Handle Prefixes
	NDN PID Push Evaluation Testbed with Mini-NDN
	TCP Evaluation Reference Testbed with Mini-NDN
	TCP User Space Forwarder

	Comparison of Magnet Link Collections to PID Target URLs
	Minera Handle Miner
	PID Target URL Collection
	Academic Torrent Magnet Link Collection

	PIDs with Persistent Resolution Targets
	User Interface
	Source Code
	PID Resolution Measurements For Various PID Sizes
	Magnet Link Size Growth Caused By Content Signatures

	Curriculum Vitae

