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Abstract

Materials with strongly correlated electrons show a multitude of unconventional phenom-
ena, such as superconductivity or magnetism, that cannot be explained in a single-particle
picture and necessitate to take many-body effects into account. A route to explain the
origin of these phenomena consists in constructing effective models for these materials
that are then solved, often using numerical techniques. Paradigmatic models for two dif-
ferent classes of strongly correlated electron systems are investigated in this thesis: The
Hubbard model is a paradigmatic model to describe the Mott metal-insulator transition
(MIT) and the Kondo lattice model describes the low-energy physics in heavy fermion
compounds. Both models are analyzed numerically using different variations of a quan-
tum cluster technique, the variational cluster approximation (VCA).

The first part focuses on the MIT, as it is investigated experimentally in quasi-two-
dimensional charge-transfer salts. Its nature and associated universality class are still
heavily discussed and both experiments and theoretical approaches come to different con-
clusions.
In this thesis, the Mott transition is investigated on an anisotropic two-dimensional Hub-
bard model at half-filling. By using a control parameter, which induces this anisotropy,
strong evidence for Mott quantum criticality is found in weakly coupled Hubbard chains.
The results at zero temperature show that the second-order critical end point Tc of
the interaction-driven metal-insulator transition can be tuned down to zero at strong
anisotropy. Further results for the antiferromagnetic phase suggest a similar picture and
motivate adding the anisotropy as a new axis in the phase diagram to account for a low-
temperature critical end point of the Mott transition.

The second part of this thesis focuses on unconventional phases that emerge in a paradig-
matic model for heavy fermion systems, the Kondo lattice model. Using the VCA, the
two-dimensional Kondo lattice model is investigated in the paramagnetic phase as well
as in phases with broken symmetry. An antiferromagnetic phase at weak coupling and
a phase with Kondo-singlet formation at strong coupling are analyzed. Within the anti-
ferromagnetically ordered region, two phases with different Fermi-surface topology, which
are separated by a discontinuous transition, are identified. The model is also tested for
s-wave superconductivity as found recently using dynamical mean-field theory, but no
indications for robust local pairing are seen within VCA. Instead, nodal d-wave super-
conductivity is found and analyzed in a large range of couplings and electron fillings, and
its interplay with antiferromagnetic order at weak coupling is discussed. This motivates
further studies on extended models that might allow for a close comparison with experi-
ments on heavy fermion systems.

Understanding the formation of unconventional phases in strongly correlated electron
systems is not only of fundamental interest, but it is also essential for designing new
functional materials. Although the results of approximate cluster techniques have to be
handled with care, the new aspects presented in this thesis pave the way for further
investigations in this direction.
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Introduction 1
Unconventional Phenomena in Strongly

Correlated Electron Systems 1.1

A multitude of physical properties in materials can nowadays be successfully described
by standard solid-state physics [AM76, Mah90, Kit96, KV04]. Especially materials like
simple metals, semiconductors, and insulators were understood quite early, as a descrip-
tion by non-interacting or weakly interacting electrons within band theory turned out to
be sufficient [IFT98]. However, materials where d- or f-electron bands are only partially
filled, for example in transition metal oxides, were not well described by these theories at
all.
The reason consists in the strong spatial confinement of electrons in these shells, which
results in a strong Coulomb repulsion between them. The strong interaction between the
electrons and the resulting strong electron-electron correlation has to be included in a the-
oretical description in order to explain the physical properties of these materials properly.
In these systems, the potential energy due to the Coulomb repulsion between the electrons
is at least of the order of their kinetic energy, which makes the use of efficient techniques
in the weak and strong interaction limit impossible. Even modern single-particle meth-
ods like density functional theory [JG89] or effective static mean-field treatments of the
correlations are not successful [IFT98, KV04]. Although the importance of interactions
between electrons was already recognized in 1937 and a lot of work has been done since,
see e.g. the review by Imada et al. [IFT98], strongly correlated electron systems still bear
open questions.

The electronic correlations lead to a plethora of exotic phases with unconventional order-
ing at low temperatures [KV04]. In the following, a few striking phenomena that emerge
due to these correlations are briefly mentioned; aspects of these phenomena will be inves-
tigated in this thesis.

Mott transition
The Mott metal-insulator transition, as it can be observed in transition metal oxides,
was one of the first phenomena that could be linked to strongly correlated electrons
[IFT98]. Nevertheless, a lot of questions about its nature remained open [IFT98] and the
interest in its universality class has raised again recently as experimental improvements
now allow the investigation of low-dimensional prototypical materials for this transition
[KMK05, KK11, AJKW+15].

Kondo effect
The Kondo effect [Kon64] and its lattice analog, the lattice Kondo effect [Col07], also
emerge due to strong interactions between electrons. Especially the latter is essential to
understand the physics of heavy fermion systems [Kon64, Hew93, Ste84, Col15a], where
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2 Chapter 1. Introduction

Kondo entanglement and its breakdown is the key to understanding the nature of quan-
tum critical points [GSS08, SS10].

Magnetism
Different kinds of magnetic ordering like antiferromagnetism are phenomena that are
known for long, but in order to explain their microscopic emergence a proper treat-
ment of electronic interactions is essential [Blu01]. Besides long-known magnetic phases
more exotic magnetic phases can emerge, especially if different magnetic orderings are
competing in the system, for example if geometrical frustration or disorder is present.
These competitions can lead to new phases of matter such as quantum spin liquids
[PBB+11, YHW11, FMI+15].

Superconductivity
Unconventional superconductivity also emerges due to strong electronic correlations in a
lot of materials such as heavy fermion systems [SAB+79, SS10, SSW+13, SW16], cuprate
superconductors [BM86, Sca95, Leg06], or organic charge-transfer salts [BW13]. In con-
trast to conventional superconductors, where pairing is mediated by phonons, the pairing
is in this case mediated through complicated many-body processes, which ask for expla-
nation. Also the interplay with other phenomena like magnetism or the Mott transition
is still being investigated heavily [NSW+10, SAF+11, GSGB15, SW16].

In this thesis, the Mott transition and antiferromagnetism are investigated within the
anisotropic Hubbard model. This is detailed in chapter 4. A class of materials, where
the nature of the Mott transition is still heavily discussed, are organic charge-transfer
salts. They will be introduced in section 1.2 to set the stage for the investigation of this
anisotropic Hubbard model later. The phenomena of Kondo singlet formation, antifer-
romagnetism, unconventional superconductivity, and their interplay are studied in the
Kondo lattice model in chapter 5. This is a paradigmatic model for heavy fermion mate-
rials, which are introduced in section 1.3. In an excursus using a less elaborate technique,
quantum magnetism is furthermore analyzed within effective spin models in section 3.1.4.

Interestingly, the phase diagrams of organic charge transfer salts and heavy fermion com-
pounds are quite similar. They do not only both contain most of the above mentioned
emergent phenomena, but are also both discussed in the context of quantum critical be-
havior. At a quantum critical point (QCP), a continuous phase transition is driven by
quantum fluctuations only, which is strictly speaking only possible at zero temperature
as thermal fluctuations are then absent [Voj03]. However, remnant quantum fluctuations
are expected to persist even at non-zero temperatures and are used as an indicator for a
QCP in experiment. Whereas the (seemingly) quantum critical behavior in the crossover
regime of organic charge transfer salts is still heavily discussed [FMT+15, AJKW+15],
different quantum critical points have been found in certain heavy fermion compounds
[GSS08, SS10, GSGB15, SW16]. In order to answer the question of quantum criticality
in the former case, the determination of the universality class of the phase transition is a
subject of current research.

Lots of the models that are nowadays investigated for these emergent phenomena are low-
dimensional. These also include the two-dimensional (2D) models that are investigated
in this thesis. Heavy fermion systems, cuprates, or certain organic charge-transfer salts
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are just a few prominent examples that can be described by quasi-2D models. In these
cases, the strongly interacting electrons are spatially confined, e.g. to a two-dimensional
plane. Due to this confinement and at low temperatures, quantum effects become strong
and dominate the emergent properties such as the phenomena listed before.
From an academic point of view, low-dimensional systems are interesting as in addition
to strong quantum fluctuations additional effects like geometrical frustration become im-
portant. Besides the aforementioned layered systems, there exists another prominent
experimental realization of such two-dimensional lattices: In so-called ultracold gases, de-
generate fermionic or bosonic quantum gases are trapped in optical traps and cooled down
to temperatures in the nanokelvin regime [Blo08, BDZ08, WHR15]. Thereby, strongly in-
teracting bosonic and fermionic systems can be designed and subsequently investigated
in experiment. In comparison to layered compounds, which also show quasi-2D physics,
the good experimental control over these systems allows for nearly one-to-one comparison
between theory and experiment.

Within this thesis the variational cluster approximation (VCA) is used to investigate the
anisotropic 2D Hubbard and the 2D Kondo lattice model. In case of the isotropic one-
and two-dimensional Hubbard model this technique has already been successfully used
and is quite well understood. As it is capable of treating both antiferromagnetism and
the Mott transition properly, it is an appropriate technique to study the dimensional
crossover between one and two dimensions. It is shown that VCA can also be used to
investigate the Kondo lattice model, where electrons interact locally with static magnetic
moments. Afterwards, the technique is used to study the aforementioned phases individ-
ually as well as their interplay. In an excursus, low-dimensional pure spin systems are
treated with an adaptation of cluster perturbation theory. The recurrence to this less
elaborate quantum cluster technique is necessary, as it was shown by Filor and Pruschke
that a modified variational cluster approach for spin systems has severe limitations [FP14].

In sections 1.2 and 1.3, the stage for the two main results of this thesis is set by introducing
systems that can be described by the effective models used later. Then, section 1.4 gives
an outline of this thesis.

Layered Organic Mott Systems 1.2

In this section, two different layered organic materials, known experimental results for
and theoretical approaches to the Mott transition in these materials, as well as some of
the open and heavily debated questions that remain in this field of research are introduced.

Before discussing some of the aspects of the Mott transition in organic conductors in
detail, a brief motivation for studying these systems even without focussing on the Mott
transition is given in the following.
The family of quasi-two-dimensional organic charge-transfer salts are for a number of rea-
sons an interesting field of research. Most intriguing is the plethora of different phases with
broken symmetries at low temperatures, including different superconducting, magnetic,
insulating, and metallic phases. Even some more exotic phases such as a Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) superconducting state [BW13] or possibly even a realization
of a quantum spin liquid ground state [YNO+08, YNK+09, YNS+10], just to name a few,
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have been found. The experimental control of the systems is good, which is why these
systems are not only used to determine transitions between these phases, but also to
closely investigate phenomena like BEC-BCS crossover in the superconducting phase or
spinon-holon separation in quasi-one-dimensional (quasi-1D) salts. Due to this variety of
different phases, organic salts are often compared with three-dimensional layered heavy
fermion materials or high-temperature cuprate superconductors, which surprisingly show
a similar phase diagram.
Compared to the cuprates, most of the energy scales are roughly of a magnitude smaller
and the systems can be well controlled experimentally. Specifically, it is possible to tune
the bandwidth of these salts by applying external pressure of a feasible size and to thereby
gain good control on the measurements. Nevertheless, some of the questions one likes to
address in these compounds remain challenging in experiments as precise measurements
at high pressures and low temperatures are required. In contrast to heavy fermion sys-
tems, where a quantum critical point (QCP) is found for a lot of compounds although it is
sometimes hidden [SS10], no such QCP has been found so far for organic charge-transfer
salts. Still, recent experimental works claim to have measured quantum critical behavior
at temperatures above the second-order end point Tc of a metal-insulator transition line
[KMK05], which triggered a lot of subsequent works and raised the question of the nature
of this transition.
Another interesting observation along this line concerns the critical end point Tc of sev-
eral materials that are expected to show a Mott transition. When comparing the critical
end point Tc ≈ 450K of Cr-doped V2O3, which is a three-dimensional crystal, with those
of two-dimensional organic salts such as κ−(BEDT-TTF)2X (Tc ≈ 40K), the question
arises, whether reducing the dimensionality of the system further might still lower Tc
[RA12].

Quasi-Two-Dimensional Charge-Transfer Salts 1.2.1

Although the organic charge-transfer salts differ in their effective crystal structure and
resulting phase diagrams, they all consist of two different parts, which build up a peri-
odic layered structure. In this section, two different types of salts are introduced, which
are the protagonists of the discussion about the universality class of the Mott transition
(see next paragraph). Nevertheless, by selecting the so-called (BEDT-TTF)2X salts and
Pd(dmit)2 compounds, one chooses not only Mott systems, but also material classes with
a rich phase diagram, which turned these materials into a playground for the investigation
of exotic phases.
Here, the focus will be on the Mott metal-insulator transition. First, one should ad-
dress the question, which conditions have to be fulfilled to obtain a molecular conduc-
tor. For both compounds, charge carriers have to be created and subsequently delo-
calized. The (BEDT-TTF)2X salts, where BEDT-TTF stands for bis(ethylenedithio)-
tetrathiafulvalene and X denotes some monovalent polymeric anion, fulfill these two con-
ditions. BEDT-TTF, which is shown in the left panel of figure 1.1 and often further
abbreviated by ET, is a charge donor and builds up conducting layers. On the other side
X is a monovalent charge acceptor and is insulating in itself. In EtxMe4−xZ[M(dmit)2]2
this is also the case: Here, dmit stands for 1, 3-dithiole-2-thione-4, 5-dithiolate and builds
together with a metallic atom M (in the following palladium) a molecule with a formal
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charge of−1/2. The second part of the compound consists of ethyl (C2H
−
5 , Et) and methyl

(CH−3 , Me) groups and Z stands for N, P, As, or Sb, so that it has an effective charge of
+1. These metal dithiolene complexes have been studied extensively [Kat04], but the dis-
cussion of the universality class of the Mott transition focussed on EtMe3Sb[Pd(dmit)2]2
[FMT+15] and EtMe3P[Pd(dmit)2]2 [AJKW+15]. In both quasi-2D organic compounds,
by joining both parts, charge carriers are created via oxidation and delocalized by the
stacking.

S
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Figure 1.1: Structural formula and sketch of BEDT-TTF (left panel) and a sketch of the
effective triangular lattice motivated by a lateral cut through the BEDT-TTF layer of an κ-
salt (middle panel). The right panel sketches a generic phase diagram of κ-salts, the position
of κ-(ET)2Cu[N(CN)2]Cl is indicated by a dashed blue line. Figures adapted from references
[KMK05, KK11].

Depending on the choice of X and Z, the lattice structure and electron filling of the
compounds change dramatically. One of the common structures is the so-called θ-phase,
where the (ET) molecules do not dimerize and the system is at quarter filling. Other
structures are for example the β- and β′-phases, where the electron filling of the system
is at three quarters [Kat04]. However, the discussion of the Mott transition focussed on
salts that are in the κ-phase, which is sketched in figure 1.1. This phase is obtained if two
of the (ET) molecules dimerize and can be mapped to an effectively half filled triangular
lattice, which is usually anisotropic [KK11].
Within some downfolding procedure based on density functional theory (DFT) or Hückel
molecular orbital calculations, one often maps these systems to Hubbard models, which
might even contain non-local interactions. Due to the variety of anions which can be
used, it is possible to realize effective Hubbard models with different hopping parameters
and Coulomb repulsions, especially when a second anion is used to dope the system
chemically.
Although the assumption of dimerization and the subsequent mapping to a triangular
lattice is widely used and well accepted, a recent DFT+RPA calculation has shown that
this simplification is not well justified for a number of compounds. At least for the
symmetry of the superconducting state at low temperatures, the treatment of the full,
not-dimerized system was shown to be crucial [GAJV16].

Tuning Across the Mott Transition

There are two different ways how Mott transitions can be triggered, namely filling-
controlled and bandwidth-controlled Mott transitions. In this section, the most common
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ways to achieve both of these transitions are briefly introduced. However, most of the
studies that investigate the universality class of the transition are done for the bandwidth-
controlled transition, which is also shown in the right panel of figure 1.1.
Although the integrated molecular functionality of realizing different lattice structures
offers quite some flexibility to tune the system chemically by molecular packing, one has
to bear in mind that additional structural changes can occur as function of temperature or
pressure. Besides structural transitions, the variation of pressure more generally changes
the bandwidth of the systems, which allows one to vary the ratio of Coulomb repulsion
U and bandwidth W of the effective Hamiltonian by tuning an external parameter. In
addition, it is possible to replace one or several of the hydrogen atoms of the ethylene
end-groups by deuterium, which acts like chemical pressure and can move the materials
towards Mott insulating behavior [KMK97]. It is precisely this comparably easy tune-
ability of the bandwidth that allows to investigate the phase diagram and in particular
the Mott transition. The aforementioned κ- and dithiolene-compounds can be chemically
tuned to be at ambient pressure and low temperatures close enough to the metal-insulator
transition that an additional increase of (external) hydrostatic pressure allows for moving
across the Mott transition.
Another possibility to tune across the Mott transition line is to change the Coulomb re-
pulsion U by adding additional carriers to the system and enhance the screening. This can
be achieved by using the principle of a field-effect transistor to electrostatically dope the
system [ABDV+06]. Recently, this technique has also attracted interest for application
on organic Mott insulators as it allows for nearly continuous tuning of the carrier density
and thereby of the resulting field-induced Mott transition [KYT+09, KSE+16].
Besides the bandwidth- and bandfilling-controlled Mott transition, there is a third way
of inducing a Mott transition that makes use of a glasslike structural ordering [HMS14].
When cooling the sample, one usually tries to use a small cooling rate, which allows the
ethylene end groups to order in a so-called eclipsed configuration. There exists a second,
so-called staggered configuration of the ethylene groups, which has slightly higher energy.
When cooling under the glass transition temperature Tg, a finite fraction of molecules
stays in the unfavorably staggered configuration and causes structural disorder. However,
raising the cooling rate changes the ratio of molecules in the two different configurations
and in the end results in an anisotropic change of the in-plane lattice parameters at Tg.
This amounts to a smaller bandwidth, which can be used to tune over the metal-insulator
transition line [SYS+05, HMS14].
The latter possibility of investigating the Mott transition has to be considered carefully
as it is closely related to the notion of disorder-driven or Anderson-Mott transitions. In-
stead of using the cooling rate of the sample to induce a glasslike ordering, a common
way of introducing disorder to the system consists in irradiating the sample with x-rays
[SOY+07].

Experimental Investigations of the Mott Transition 1.2.2

Before comparing the different experimental findings regarding the critical exponents and
thereby the universality class of the Mott transition, in this section, I give a brief overview
over the different experimental techniques that are used in these works. Not only the
experimental techniques, but also the measured materials and the investigated regions
of the phase diagram differ in most of the studies. In the end, the critical exponents
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also depend on the assumptions entering the scaling functions, which are used to extract
critical exponents. All this leads to different interpretations of the data and different
explanations of the nature of the Mott transition.

What to measure? Investigating the Mott transition experimentally can be done by
measuring different quantities. Obviously, measuring the conductivity as a function of
temperature and some additional parameter such as the pressure is the most evident to
determine a metal-insulator transition, see e.g. [KMK05, FMT+15, AJKW+15]. It is
even possible to obtain information from the resistance fluctuations (so-called fluctuation
spectroscopy), where, in addition to the resistance, the resistance noise power spectral
density is also investigated [HZP+15].
Another approach consists in using nuclear magnetic resonance (NMR) measurements to
investigate, e.g. κ-ET salts, where the two central carbon atoms in ET have been replaced
by 13C isotopes, as done by Kagawa et al. [KMK09]. To investigate the charge-carrier
dynamics near the Mott transition, especially their competition between itineracy and
localization, it is also possible to use optical conductivity measurements [DG02]. Besides
an analysis of the electronic properties of charge-transfer salts [MDD+08], it is also pos-
sible to explain effects of the vibrational lattice modes that are not covered by a purely
electronic model [DLacP+16].
The techniques mentioned so far "only" probe electronic quantities of the system. Ther-
modynamic quantities can also provide a route to determine the universality of the Mott
transition. de Souza et al. investigated the thermal expansion of a κ-(ET)2X organic
conductor and observed lattice anomalies near the Mott transition [dSBS+07]. Close to
the transition they extracted the critical exponent α, which is related to the specific heat
via C ∝ |t|−α. In a study by Abdel-Jawad et al. [AJKW+15], the thermoelectric power1
and the conductivity have been measured as a function of pressure and temperature. In
contrast to the previous conductivity study, which focused only on the metallic side of
the transition to extract critical exponents [KMK05], in [AJKW+15] both sides includ-
ing the insulating one were measured. However, one should note that thermal-expansion
measurements are capable of measuring lattice effects, which seem to become important
close to the Mott transition and which are not captured by a purely electronic model.
Hence, the choice of the scaling function is crucial, see section 1.2.3.

Where to measure? In low-dimensional systems, superconductivity and magnetically
ordered phases often appear, which do not help in understanding the nature of the Mott
transition. For this reason, one concentrates on temperatures close to the critical end
point Tc, where the metal-insulator transition is indeed of Mott type. This means that
one goes from a paramagnetic Mott insulator through a first-order transition into a param-
etallic metallic phase by increasing pressure [AJKW+15]. This is sketched for the case
of κ-(ET)2Cu[N(CN)2]Cl in the right panel of figure 1.1. In the temperature region be-
tween the second order critical end point and the onset of antiferromagnetic insulating
and superconducting phases at very low temperatures, the system shows a first order
Mott transition between paramagnetic insulator and paramagnetic metal.
Another possibility to obtain information about the transition is to investigate the crossover
regime, that is T > Tc, where signatures of quantum criticality have been found recently
[KMK05, FMT+15]. In this approach, the resistivity ρ is measured as a function of ex-
ternal pressure P and temperature T . The inflection point of the log ρ(P, T ) versus P

1Also known as Seebeck coefficient.
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curve is determined for different temperatures above Tc and forms the so-called Widom
line2. Using the Widom line to distinguish insulator from (bad) metal in the crossover re-
gion, one can investigate the scaling in both regimes and try to deduce critical exponents
[FMT+15].
It might seem odd not to investigate the (first-order) Mott transition close to the critical
point, but to measure in the crossover region instead. The reason for this is mostly the
inability to do high-precision measurements in the critical region [AJGH16]. In general, it
is experimentally challenging to control the very high pressures at low temperatures, es-
pecially when pressure sweeps have to be performed. Currently, most experimental setups
allow only for a controlled decrease in pressure, but not of a controlled increase, which
makes a direct measurement of hysteresis as a function of pressure impossible. Further
limitations are evoked by structural transitions of the compound at low temperatures. De-
spite these challenges, the main problem for the organic charge-transfer salts comes from
the coolant. The most precise measurements have been obtained by using liquid helium as
a cooling medium. However, at low temperatures and pressures of up to several hundred
MPa, helium undergoes a solidification transition. On the one hand, this transition leads
to a more or less uncontrolled change of pressure, which renders precise measurements
at the transition impossible. On the other hand, pressure measurements within the solid
phase of helium are also not precise enough to obtain a reliable and meaningful phase
transition line for the organic salts. Unfortunately, at the pressures needed to investigate
the critical end point of most of the organic salts, solidification of helium sets in already
at temperatures above Tc, such that measurements in the crossover region are the only
possibility left to obtain precise measurements.

Fate of the Fermi surface. Despite the high level of control in experiments, which is
a clear advantage of molecular quasi-2D Mott systems, there are also some peculiarities,
which restrict the experimental techniques that can be used. Especially for the investi-
gation of the Fermi surface of conducting molecular systems, one would like to resort to
angular-resolved photo-emission spectroscopy (ARPES), that had lead to valuable insights
in other fields like the one of heavy fermions within the last decades [KB06, LVY+12].
Unfortunately, it is difficult to grow large crystals and in practice impossible to cleave
the surface of such crystals, which renders ARPES an inappropriate technique for organic
molecular conductors.
However, if one is interested in closed regions of the Fermi surface, such as so-called elec-
tron and hole pockets, which are discussed in section 4.2, de Haas-van Alphen (dHvA) or
Shubnikov-de Haas measurements can provide insights (see e.g. [SSB+00]), although the
dHvA effect is not a unique indicator for the presence of a Fermi surface [KC15].

Universality Class of the Mott Transition Revisited by Experiments

Before turning to quasi two-dimensional materials, it is interesting to first of all revisit the
results of Limelette et al., who studied the Mott transition in Cr-doped V2O3 [LGJ+03],
which is a three-dimensional (3D) compound. They measured conductivity as a function of
pressure and temperature and found a first-order metal insulator transition with a critical
end point of Tc ≈ 450K. By scaling the conductivity with pressure and temperature along
different paths in the phase diagram, they were able to extract critical exponents. Away

2Going back to B. Widom [Wid72] and first used in the context of Mott insulators by Sordi et al.
[SSHT12].
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from the critical point, they found mean-field universality and in its immediate vicinity
3D Ising universality. In their paper, they back up these experimental findings by cal-
culations using dynamical mean-field theory (DMFT), which is assumed to be valid in 3D.

Although the use of DMFT and the small region very close to the transition that was used
to extract Ising exponents can be questioned, there are some more fundamental points
that may be criticized. For example, it may be questioned, why the scaling laws have
only been based on the conductivity measurements on the conducting side and not on the
data, which were obtained in the insulating phase3.
On the other side, it was assumed that eletronic degrees of freedom dominate the transi-
tion and therefore only the conductivity entered the scaling function. As also stated by
the authors, the effect of lattice degrees of freedom should be included in order to confirm
their finding of 3D Ising universality.

From considering this 3D compound, but also from more general considerations, which are
based on symmetry arguments for the half-filled single-band Hubbard model [CCFR79],
it was expected that the quasi-2D charge-transfer salts would also show Ising universality
[KLR00, ON03, GFC04].

This changed in 2005, when conductivity measurements on quasi-2D κ−ET salts in the
group of K. Kanoda revealed critical exponents that did not only contradict 2D Ising uni-
versality, but also did not match any known universality class [KMK05]. In their studies,
they used the same experimental setup as Limelette et al. to measure conductivity as a
function of pressure and temperature in κ−(BEDT-TTF)2Cu[N(CN)2]Cl (from here on
denoted by κ-Cl). κ-Cl is a Mott insulator at ambient pressure and undergoes a first-
order metal-insulator transition when pressure is applied. It is important to note that the
desired transition can only be observed within a narrow temperature region, as the first-
order transition ends at a critical temperature Tc ≈ 39.7K and as the insulator becomes
antiferromagnetic and the metal an unconventional superconductor if the temperature is
chosen too small.
As in the previous study by Limelette et al., they investigated the conductance behavior on
the metallic side of the phase diagram close to the transition and found power laws close
to the critical end point. From the slopes of logarithmic plots of conductance against
temperature pressure they determined the critical exponents to be (δ, β, γ) = (2, 1, 1).
They avoided the region in the immediate vicinity of the end point as there, the results
very much depend on the precise value of Tc and small errors in the determination of Tc
strongly affect the exponents.

Subsequent nuclear magnetic resonance (NMR) measurements of the same group on the
very same κ−Cl salt seemed to confirm these exponents [KMK09]. By identifying metallic
and insulating resonance peaks in NMR spectra and comparing their volume fractions as
a function of pressure, they were able to detect the metal-insulator transition. They also
measured the nuclear spin-lattice relaxation rate divided by temperature 1/T1T , which is
connected to the dynamical spin susceptibility. Thereby, they could investigate a quan-
tity that measures antiferromagnetic fluctuations and found logarithmic scaling of ∆ 1

T1T

with pressure P , which even allowed them to extract critical exponents. They assumed
that the criticality in transport and magnetism is identical and concluded that even the

3For such a study on a dithiolene-compound see [AJKW+15].
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magnetic Mott criticality might have the same nature.

Thermal-expansion measurements in the group of M. Lang lead to the observation of an
anomalous lattice response at the Mott transition [dSBS+07]. A subsequently proposed
scaling theory for this data suggests that the material instead belongs to 2D Ising univer-
sality class [BdSL10].

Recently, the group of K. Kanoda also claimed to have found quantum criticality of the
Mott transition for other organic salts (κ−(ET)2Cu2(CN)3, κ−(ET)2Cu[N(CN)2]Cl, and
EtMe3Sb[Pd(dmit)2]2) [FMT+15]. As these compounds have different low-temperature
phase diagrams, but show the same critical behavior for T > Tc, they concluded that
the Mott transition is independent of the broken symmetry states at zero temperature.
The unconventional Mott criticality should be a more general phenomenon instead. Fur-
thermore, the fact that the critical end point of the transition is relatively low suggests
quantum effects to become important. Instead of a physical picture building on classical
phase transitions [Ima05, MI07, IMY10], including quantum effects seems to be necessary.

Nearly at the same time, a combined study of conductance and thermo-power measure-
ments by Abdel-Jawad et al. showed instead that EtMe3P[Pd(dmit)2]2 falls into 2D Ising
universality class [AJKW+15]. In contrast to the compounds studied by Kagawa et al.,
the critical end point of EtMe3P[Pd(dmit)2]2 still falls within the compressible region of
helium such that the first-order metal-insulator transition up to the critical end point
can be investigated directly. One of their key points is that it is important to fit the
exponent only in the close vicinity of the transition. This is precisely the region that
Kagawa et al. spared out in their 2005 study due to ambiguity of the results. Another
important issue is that if the conductivity is assumed to depend on the inverse coherence
scale 1/ξ instead of the order parameter, even the results of Kagawa et al. [KMK05] give
exponents of νc ≈ 1/2 and ν ≈ 1. Thereby, they would support Ising universality class.
This conceptual difference is discussed in more detail in the following section 1.2.3.
Finally, Abdel-Jawad et al. show that there is some ambiguity for defining the metal-
insulator transition in the crossover region T > Tc, depending on whether conductivity,
Seebeck coefficient, or the pressure derivative of the conductivity is considered. There-
fore, using the crossover region to deduce critical scaling may lead to different results,
depending on which quantity is used to determine the transition.

To conclude, the question of the universality class of the Mott transition in charge-transfer
salts remains open. Investigations of several quantities that should allow a determination
of the universality class lead to different answers, see table 1.1. Even measuring the
same quantity allows for different interpretations. This is at least partially due to the
assumptions that enter the used scaling functions. A brief overview of scaling theories for
the Mott transition is given in the following subsection.
A survey of numerical approaches to the Mott transition in two-dimensional Hubbard
models will be given in subsection 3.3.1.
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Technique/ Measurement Critical exponents Ref.

Conductivity β = 1, γ = 1, δ = 2 [KMK05]
NMR δ = 2 [KMK09]
Conductivity zν = 0.49± 0.01, 0.62± 0.02, 0.68± 0.04 [FMT+15]
Thermal expansion α = 0.8± 0.15 [dSBS+07]
Thermal expansion (1− β)/(β + γ) = 7/15, 1/(β + γ) = 8/15 [BdSL10]
Conductivity & νmet

c = 0.52± 0.03, ν ins
c = 0.50± 0.03, [AJKW+15]

thermal expansion δβ = 15/8

Table 1.1: Summary of the critical exponents as they have been extracted in the experi-
mental studies mentioned in the text. The first three studies support unconventional criticality
with (α, β, γ, δ) = (−1, 1, 1, 2), the last two suggest 2D Ising universality with (α, β, γ, δ) =
(0, 0.125, 1.75, 15).

Scaling Theories for the Mott Transition 1.2.3

Critical exponents. In the following, the concept of criticality is briefly introduced,
based on references [KGH+67, Gol92, Voj03]; a thorough, more detailed treatment of crit-
ical phenomena can be found therein.
Phase transitions are often classified into first-order and continuous transitions4. In first-
order transitions, one finds a coexistence region of both phases around the transition
temperature, whereas in a continuous phase transition there is no coexistence. The point
where the system changes from one phase to the other is called critical point. In con-
tinuous phase transitions, at the critical point both spatial and temporal fluctuations
of the order parameter diverge in the disordered phase. The characteristic size of these
fluctuations is given by the correlation length ξ and the correlation time τ . As both ξ
and τ are infinite at the critical point, the system is scale-invariant and can be described
by measuring observables as a function of external parameters that can be tuned. The
critical exponents, which can be extracted from the resulting power laws then characterize
the system. Depending on the quantity that is measured it is possible to extract seven
critical exponents in total, four thermodynamic exponents, two exponents ν and η of the
correlation length and the correlation function, and the dynamic exponent z, which is
connected with the divergence of correlation time τ . In the end, it is assumed that all
those critical exponents characterize the phase transition and allow for a classification of
several phase transitions into universality classes. Systems within one universality class
show the same symmetry of the order parameter and space dimensionality.
Despite having a set of critical exponents, a lot of these exponents are connected via
scaling laws. For example, the thermodynamic exponents can be obtained from the free
energy, which usually only depends on two exponents [Voj03, Gol92, Wid65]. Hence, the
four thermodynamic critical exponents can be connected by two scaling laws, e.g. by
Rushbrooke’s scaling law [EF63, Rus63]

α + 2β + γ = 2,

4Despite the same naming, this should not be confused with the Ehrenfest classification scheme for
classical transitions, which is based on discontinuities of derivatives of the thermodynamic free energy.
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which connects the critical exponent of the specific heat (α) with those of the order
parameter (β) and of the susceptibility (γ) and by Widom’s scaling law

β(δ − 1) = γ.

The latter also involves the exponent of the critical isotherm δ. For the correlation function
exponents, there also exist two scaling laws, namely Josephson’s scaling laws

νd+ α = 2

and
γ/ν + η = 2.

In contrast to the Rushbrooke law, there are not only thermodynamic quantities involved,
but also the critical exponent of the correlation length (ν) and the one of the scaling
function (η). However, the dimension d explicitly enters the scaling law, which is a
drastic difference to the previously shown laws. These scaling laws involving d are called
hyperscaling relations. In contrast to these six critical exponents, the dynamical exponent
z is not connected to the other (static) exponents.

Transition driven by the order parameter. Although the universality class of quasi-
2D organic charge-transfer salts is currently one of the fields where the nature of the Mott
transition is discussed intensely, the starting point for the discussion were the studies on
3D systems, such as V2O3 [LGJ+03]. In this paper by Limelette et al. it was assumed
that the conductivity σ at the critical end point is proportional to the order parameter.
At constant critical temperature Tc, the conductivity σ as a function of pressure P should
therefore scale as σ(Tc, P ) − σc ∝ (P − Pc)1/δ, where all quantities at the second-order
critical end point are denoted by the index ’c’. Furthermore, the authors defined the
pressure limit of the spinodal insulating phase PI(T ) as the highest pressure, at which
insulating phase could be obtained when increasing the pressure. Using this quantity,
it was also possible to scale the conductivity with temperature via σ(T, PI(T )) − σc ∝
(Tc − T )β. Thereby, the critical exponents β and δ could be fitted from the data and
showed mean-field values of (δ, β) = (3, 0.5). As mentioned earlier, these exponents were
obtained by fitting the data on the metallic side only.
Kagawa et al. did the same measurement on κ-(ET)2Cu[N(CN)2]Cl and also extracted
critical exponents from the scaled data on the metallic side around the critical end point
[KMK05]. Their critical exponents of (δ, β) = (2, 1) did not match any known universality
class and could be obtained later even by NMRmeasurements of the same group [KMK09].
To conclude, this interpretation of the Mott transition assumes that the conductivity is
only proportional to the order parameter.

Considering the energy density in addition. A different interpretation of the data
was given later by Papanikolaou et al., who presented a phenomenological description of
the Mott transition, which does not only depend on the thermodynamic order parameter
m that is associated with the transition [PFF+08]. They assumed an Ising critical point
and showed that the conductivity should in addition also depend on the energy density,
such that ∆σ ∝ |m|θ, where the exponent is a combination of α and β, namely θ =
(1− α)/β. With the assumption that σ depends on two observables, they could identify
a regime where the coupling to the energy density dominates and where the critical
exponents (δ, β) = (15/8, 1) agree within the error bars with those of Kagawa et al..
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Furthermore, in their description weak disorder crucially influences the size of the critical
region: By adding weak disorder the first-order Mott transition gets broadened and the
conductance jump is rounded to a continuous transition.
Another scaling theory which aims to also account for results obtained with thermal
expansion measurements was given by Bartosch et al. [BdSL10]. Their goal was to
explain the divergence of the Grüneisen ratio Σp, which is the ratio of thermal expansivity
αp and specific heat cp, in vicinity of the critical point, which was observed earlier in an
experiment by de Souza et al. [dSBS+07]. They assumed a general scaling form which
includes temperature-like and pressure-like scaling variables and could fit the thermal
expansivity data to the prediction of their theory once they assumed critical exponents
of 2D Ising universality class.

Including lattice effects via crystal elasticity. In order to explain measurements
near the Mott critical point via thermal expansion measurements, it is also possible to
include lattice effects explicitly by introducing a coupling of electrons to crystal elasticity
in the scaling theory. Zacharias et al. used an effective field theory where they coupled the
elastic strain tensor to the Ising order parameter and found a region close to the critical
end-point, which is characterized by Landau mean-field behavior [ZBG12, ZRG15]. In
the context of ferroelectricity it was already shown that such an isostructural instability
can suppress microscopic fluctuations and thereby change the criticality of the end point
from Ising to Landau criticality [LS70, Vil70]. For this region, Zacharias et al. predicted
a breakdown of Hooke’s law of elasticity which results in mean-field exponents. Recently,
Gati et al. could verify this claim experimentally by measuring the thermal expansion of
κ−(ET)2[N(CN)2]Cl around the Mott critical end point [GGM+16].

The inverse coherence length as a scaling function. Turning back to conductivity
measurements on the organic charge-transfer salts, in recent work by Abdel-Jawad et al.
[AJKW+15] it was assumed, that the free energy and the correlation function can be
described by a single function of the reduced temperature t = (T − Tc)/Tc and of the
reduced pressure p = (P − Pc)/Pc, namely the coherence length (in the insulator rather
the localization length) denoted by ξ(t, p). According to scaling theory [KGH+67, Voj03]
they used scaling functions g±ξ for t ≷ 0 to express this function as ξ(t, p) = p−νcg±ξ (p/t∆),
where they used the gap exponent ∆ = δβ. As the temperature diverges at t = 0 along
the critical line where p = 0, the exponent ν = νc∆ was introduced. The conductivity has
been scaled both on the metallic and on the insulating side according to (σmet−σc) ∝ |p|νc
and

(
log(σc)− log(σins)

)
∝ |p|νc respectively. The critical isotherm on the metallic side

allowed to extract νc = 0.52 ≈ 8/15, but on the insulating side two regimes could be
identified: Close to the critical point the exponent was identical to the metallic one, but
farther off the critical point it was ν = 1.3. From the measured Seebeck coefficients SB
on the insulating and metallic side of the transition, as well as the conductivity σ on the
metallic side they could also obtain the gap exponent ∆ by plotting 1/(ξ(t, p)pνc) against
p/|t|∆. They showed, that a scaling with ∆ = 15/8 and νc = 0.5333 could be obtained
once they assumed that Smet

B −Scrit
B ∝ 1/ξ3/4, σmet ∝ 1/ξ and Sins

B −Scrit
B ∝ 1/ξ1/2. These

exponents are indeed the ones of 2D Ising universality as (δ, β)Ising = (15, 1/8).
The authors also mention, that assigning σmet ∝ 1/ξ and analyzing the data of Kagawa
et al. leads to critical exponents of νc = 1/2 and ν ≈ 1, which are the critical exponents
of 2D Ising universality. Doing the same scaling for the chromium-doped vanadium oxide
data of Limelette et al. results in critical exponents of mean-field theory. To conclude,
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by assuming the conductivity being proportional to the inverse coherence length ξ mea-
surements on the κ-Cl and EtMe3P[Pd(dmit)2]2 compounds could be reconciled with 2D
Ising universality class.

Marginal quantum criticality. Another possible explanation for unconventional quan-
tum criticality is promoted by M. Imada, who introduced the notion of marginal quan-
tum criticality to the Mott transition of organic charge-transfer salts [Ima04, Ima05, MI07,
IMY10]. He introduced a phenomenological theory to describe the Mott transition of elec-
tronic systems (i.e. without considering additional lattice effects) and shows that in his
type of quantum phase transition a smooth transition from Ising-like at finite-temperature
to unconventional quantum critical behavior at zero temperatures can be obtained.
Starting point is a parameter that controls quantum fluctuations and causes a topological
transition of the Fermi surface from a metal to an insulator at zero temperature. The key
idea entering his theory is the idea of multi-furcating or cascading quantum criticality,
meaning that the instability of the Mott transition triggers additional instabilities which
lead to additional charge, magnetic or superconducting transitions as long as the unstable
fixed point of the transition coexists with a quantum degeneracy [Ima04]. In this picture,
the critical end point Tc of the first-order transition is suppressed and a marginal critical
point exists at zero temperature instead, see figure 1.2. One of the results is the formation
of inhomogeneous structures on the Fermi surface.
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Figure 1.2: Left panel: Schematic phase diagram of the Ising model with a longitudinal (hl)
and a transversal (ht) magnetic field. The (up- and down-spin) phases are separated by a first-
order transition for T < Tc and ht < hct . At the quantum critical point hct the transition becomes
continuous at zero temperature. Right panel: Schematic metal-insulator transition as proposed
by Imada. Metal and insulator are separated by a first-order transition, which can be tuned by
some control parameter, e.g. U/W . Another parameter B, which tunes quantum fluctuations,
drives the critical temperature Tc to zero at a marginal quantum critical point. Larger values
of B lead to a quantum critical line, where a continuous topological transition happens at zero
temperature. Figures adapted from [Ima04, MI07, IMY10].

Hyperscaling at continuous metal-insulator transitions. In order to describe con-
tinuous metal-insulator transitions, the concept of hyperscaling has been introduced in
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the context of localization by disorder [AALR79], as a continuous metal-insulator transi-
tion at zero temperature can be obtained by introducing disorder. In general hyperscaling
can be thought of being the low-dimensional counterpart of mean-field theories such as
the Ginzburg-Landau-Wilson scheme, which are valid above some critical dimension dc.
This concept can be adopted to continuous metal-insulator transitions which are caused
by electron correlations [IFT98] such as the Mott transition. The key assumption behind
hyperscaling is that there is only one diverging length scale ξ and a corresponding fre-
quency scale Ω, which are characteristic for the system. Therefore, under the assumption
of hyperscaling and at zero temperature, the singular part of the free energy fs can be
expressed as

fs ∝ ξ−(d+z),

where d denotes the dimension of the system and z is the so-called dynamical exponent.
z is defined as the ratio ln ξt/ ln ξ when asymptotically approaching the critical point and
describes the quantum dynamics of the system. In the metallic phase, ξ is the correlation
length and can be defined as ξ = d

√∫
dr〈X(r, 0)X(0, 0)〉/〈X(0, 0)X(0, 0)〉, and the tem-

poral correlation length is given by ξt =
√∫

dt〈X(0, t)X(0, 0)〉/〈X(0, 0)X(0, 0)〉, whereas
in the insulating phase ξ denotes the localization length of carriers [MI07]. It can be
shown [MI07], that ξ is proportional to the inverse Fermi wave number k−1

F ∝ X−1/d for
a given carrier concentration X. As the gap goes to zero, the divergence of ξ and Ω can
be used to define the critical exponent of the correlation length ν via ξ ∝ |∆|ν and the
dynamical exponent via Ω ∝ |∆|zν [IFT98, Voj03]. In the end, the singular part of the
free energy can be expressed as fs(∆) ∝ ∆ν(d+z).

To summarize, experimental studies of the Mott transition on layered organic charge-
transfer salts lead to different conclusions with respect to the universality class of the
transition. The experiments not only differ in the measured quantities and used tech-
niques, but their measurements also allow for different results with respect to critical
exponents as various scaling theories have been motivated and used to derive them.
Their findings can be sorted into two groups. One is supporting a 2D Ising univer-
sality class [BdSL10, AJKW+15] and the other one unconventional critical exponents
[KMK05, KMK09, FMT+15], which are connected with quantum critical behavior.
The question of putative quantum critical behavior and the universality class of the tran-
sition will be discussed in chapter 4. There, quantum critical behavior is investigated in
a paradigmatic model for the Mott transition, the Hubbard model, and a new route to
account for low-temperature critical end points Tc is proposed.
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Heavy Fermion Systems 1.3

The following section addresses some of the known properties of heavy fermion systems
[Hew93, Ste14]. Lots of experimental findings for these systems are well described by
the paradigmatic Kondo lattice model (KLM), which is investigated in this thesis. The
Doniach diagram, which is based on an analysis of this model, is already introduced here.
However, more details on the weak and strong coupling limits of the KLM that enter the
Doniach diagram are discussed in context of the KLM in section 2.3.
This section is structured as follows. First, the characteristics of heavy fermion systems
are introduced and a possible definition of them is given. Afterwards it is briefly explained
how one can derive an effective model for these kind of systems. Finally, a focus is set
on superconductivity and different mechanisms that were proposed to account for its
emergence.
In subsection 1.3.1, conceptional differences between Kondo and Kondo lattice systems are
presented. Subsection 1.3.2 introduces the Doniach diagram which describes the interplay
of Kondo singlet formation and antiferromagnetism in heavy fermion systems. The topic
of quantum critical points (QCP) that are found in some of these systems and the notion
of the so-called Kondo breakdown are briefly discussed in this subsection. It will be
important for the interpretation of some of the results for the antiferromagnetic phase of
the KLM in section 5.2.

“Heavy” fermions. Certain intermetallic compounds that contain elements with par-
tially filled f-electron shells such as Ce, Y b, U , Pu and Np are called f-electron or heavy-
fermion systems [Ste14]. Especially those heavy-fermion systems which are based on
rare-earth elements will be discussed in the following as they can be described by the
Kondo lattice model and are therefore sometimes called dense Kondo systems or Kondo
lattices [Hew93].
As the name already suggests, heavy fermion metals have charge carriers with an ex-
tremely enlarged effective mass m∗, which can be hundreds or even over thousand times
larger than the bare electron mass. Often, the specific heat coefficients γ are used as a
criterion to classify a system as a heavy fermion compound: If the coefficient exceeds a
somewhat arbitrary threshold value of 400mJK/mol [Hew93], the compound is called a
heavy fermion system.
To give a few examples, the first known heavy fermion compound CeAl3 has a specific
heat coefficient of γ ∼ 1620mJK/mol [AGO75] and the first known superconducting com-
pound CeCu2Si2 a coefficient of γ ∼ 1000mJK/mol [SAB+79]. Both of them are based on
cerium, but also systems based on other rare-earth elements fulfill this criterion. This in-
cludes YbRh2Si2, a Kondo lattice system which posseses a quantum critical point involving
a Kondo breakdown (this will be discussed in section 1.3.2). Even some materials based
on actinides, such as UPt3 (γ ∼ 420mJK/mol to 450mJK/mol, [FFdBM83, SFWS84])
are heavy fermion materials.
This definition of heavy fermion compounds builds on measurements of the specific heat,
which would for an usual metal and for temperatures below TDebye/50 consist of electronic
and phononic terms and therefore follow the relation CV /T = γ + βT 2. For most heavy
fermion systems deviations of this behavior occur, especially for those that are supercon-
ducting at low temperature. Sometimes it is sufficient to include additional terms, e.g. a
spin-fluctuation term ∼ T 3 lnT for UPt3 [SFWS84], but often the systems show anomalies
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at small temperatures, e.g. CeCu2Si2 [Ste84]. Nevertheless, the intercept in a CV /T vs.
T 2 plot is used to determine the Sommerfeld coefficient γ from which a heavily enhanced
effective mass m∗ can be deduced.
Another quantity which is often used as a criterion is the so-called Wilson ratio of suscep-
tibility to Sommerfeld coefficient R ∝ χ/γ. For an ordinary Fermi liquid this ratio would
be one, but in the case of heavy fermions it usually lies between two and five [Ste84]. The
magnetic susceptibility that enters this expression usually follows the Curie-Weiss law
for high temperatures (T ∼ 100K to 300K), but deviations occur at lower temperature.
This is usually attributed to the quenching of the local moments at temperatures smaller
than some characteristic Kondo screening temperature T0 [Ste84], which is also known
as the Kondo effect [Kon64], which is explained in subsection 1.3.1. However, in other
heavy fermion compounds the low-temperature anomaly of the magnetic susceptibility
was argued to be a consequence of inter-configuration fluctuations between a magnetic
and a non-magnetic ground state with the same energy [SV76].

f-electrons and Kondo lattice mapping. In order to construct effective models for
these systems, it is important to first of all take a look at the f-shell configuration of
the compound. The focus is now set on rare-earth based heavy fermion systems such as
CeCu2Si2 and YbRh2Si2. CeCu2Si2 contains a Ce3+ atom which has the configuration
[Xe]4f15d16s2 [KYRa15]. Here, the 5d and 6s electrons form the conduction band and
in Ce3+ only one electron is left, namely the 4f shell electron which is strongly localized
at the core. To see which state the remaining f-electron is in, one has to consider the
multiplet that emerges due to Hund’s rule. The orbital angular momentum quantum
number for f-shells is L = 3 and the spin of the f-electron is S = 1/2, which leads to a
multiplet |1, 3, 1/2〉. However, spin-orbit coupling can split this multiplet into multiplets
|1, 3, 1/2, j〉 where the degeneracy of the new multiplets is given by Nj = 2j + 1, which is
in case of the primary multiplet j = |L− S| = 5/2 a multiplicity of N5/2 = 6.
In case of YbRh2Si2 the configuration of Ytterbium reads [Xe]4f146s2 [KYRa15], which
means that Yb3+ is left with 13 f-electrons - one less than the totally filled 4f-shell. That
means, that for Ce3+ and Yb3+ atoms there is only one electron or one hole in the f-shell.
As Hund’s rules state that for more than half-filled shells the level with highest value of
j is the lowest in energy, the eight-fold degenerate multiplet with j = 7/2 is realized.
Both compounds, CeCu2Si2 and YbRh2Si2, form a tetragonal crystal structure which
leads to additional Kramers splitting of the degenerate f-electron multiplet due to the
tetragonal crystal field. Sticking to the case of Ce, the ground state of the system at low
temperatures corresponds to the electron configuration where the lowest Kramers doublet
is filled with the one f-electron of Ce3+. In this case, the f-shell electron can be mapped
to a spin-1/2 moment coupled to a conduction band, which amounts to the Kondo lattice
model. As the f-shell electrons are very localized at the nucleus, they do not participate
much in the electronic transport of the conduction band electrons in the s-,p- and d-
shells. Their magnetic moment is still perceived by the conduction band electrons and
influences the ground state properties of the system at low temperatures tremendously.
At low energies and due to the strong Coulomb interactions between the f-electrons, they
can be mapped to immobile spins, which couple antiferromagnetically and locally to the
conduction electrons. The easiest model which captures these physics is called Kondo
lattice model and will be introduced in the following section.
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Superconductivity. In 1979, Steglich and co-workers discovered superconductivity for
temperatures below Tc ≈ 0.6K in the heavy fermion compound CeCu2Si2 [SAB+79]. This
was not only the first measurement of heavy fermion superconductivity, but came also as
a big surprise as its nature is very unconventional.
Until this discovery, the known superconducting materials were successfully described by
the theory of Bardeen, Cooper and Schrieffer (so-called BCS theory) [BCS57]. In those
materials it was observed that even small concentrations of magnetic impurities destroy
superconductivity, e.g. when doping Gd into (superconducting) LaAl2 a critical concen-
tration of only 0.59 atomic percent Gd is sufficient to destroy superconductivity [Map68].
The reduction of the critical temperature Tc with increasing impurity doping is well de-
scribed by a theoretical prediction of Gor’kov and Abrikosov, who investigated the effect
of spin-exchange scattering between the conduction electrons and the 4f-shell electrons of
the impurities on superconductivity [AG61]. It was thereby concluded that the magnetic
impurities destroy the BCS-like pairing of the conduction electrons.

Ce

Cu

Si

Yb

Rh

Si

YbRh2Si2 CeCu2Si2

The dependence of the resistivity ! on tem-
perature T in the normal state also exhibits a
distinct pressure dependence. Particularly
marked is the pronounced peak of the residual
resistivity !0 near "p # 4 GPa and the variation
of the steepness of the resistivity trace at low
temperature, "! # !(2K) – !0. Figure 2B shows
a precipitous decrease in "! in the narrow pres-
sure interval between 5.4 GPa and 5.9 GPa, a
region where both Tc and !0 are near their
maximum values (Fig. 3). Detailed scrutiny can
also be directed at the exponent $ of the power-
law variation of the resistivity in the normal
state, ! # !0 % AT $, where A is a fitted
prefactor. Over the range 0 ! "p ! 4.1 GPa,
the exponent $ remains well below the Fermi-
liquid value of 2, with a tendency, at any
given "p in the low-pressure superconducting
regime, for lower $ in samples with lower
Ge-content x. In the 10 atomic% substituted (x
# 0.1) samples, the exponent reaches two
minima (Fig. 3C) at pc1 ($ & 1.35) and near
"p & 3.7 GPa, close to the pressure at which
!(T) becomes essentially linear (Fig. 2B).

Around the magnetic critical point at pc1, the
narrow superconducting regime observed below
an anomalous, non–Fermi-liquid-like normal
state resembles the behavior of other heavy
fermion compounds, such as CePd2Si2 and
CeIn3 (1). In this region of the phase diagram,
the CeCu2(Si/Ge)2 system appears to be unsta-
ble toward magnetically mediated pairing,
suggesting a unified picture for heavy
fermion superconductivity on the threshold
of magnetism.

Far away from the threshold of magne-
tism, however, and close to the lattice density
at which a Ce-type volume collapse is ob-
served in pure CeCu2Ge2 by x-ray diffraction
at low temperature (12) (Fig. 3A, the vertical
line at "p # 4 GPa), we observe (i) the peak
Tc of the second superconducting dome, ac-
companied by (ii) a linear temperature depen-
dence of the resistivity, (iii) a pronounced
maximum of !0, and (iv) a steep drop of
electronic scattering "! with further increas-
ing pressure. These properties of the CeCu2(Si/
Ge)2 system point toward a second transition

line in this region of the phase diagram, as
alluded to in Fig. 1 and noted previously (7, 9,
17, 18). Our study exposes a separate supercon-
ducting dome linked to this volume-collapse,
high-pressure phase boundary and far removed
from the threshold of magnetism, suggesting an
unidentified unconventional pairing mecha-
nism. Although first-order phase transitions of
the type observed in elemental Ce would not
allow the electron/lattice system to grow suffi-
ciently soft to mediate a pair-forming quasipar-
ticle interaction, a more benign, weakly first-
order volume collapse with a sufficiently low-
lying critical end point could be accompanied
by extended and slow density fluctuations,
which may induce an attractive quasiparticle
interaction in analogy with the role of magnetic
fluctuations in the magnetic interaction picture
(19). Microscopically, fluctuations of both
charge (valence) and spin could induce pairing
in high-pressure CeCu2Si2. Both processes may
slow down in the cross-over region from the
heavy fermion to the intermediate valence state
(17, 18), in which two local electronic config-
urations (one f-electron plus n conduction elec-
trons, and zero f-electrons plus n % 1 conduc-
tion electrons) become nearly degenerate.
Microscopic theories for the high-pressure
superconducting state in CeCu2Si2, in par-
ticular those based on widespread and gen-
eral phenomena such as the transition from
heavy fermion to intermediate valence be-
havior, need to explain the scarcity of other
manifestations of this type of superconduc-
tivity, which follows naturally from the
requirement of the phenomenological pic-
ture that the density transition be only
weakly first order at low temperature.

The prototype heavy fermion supercon-
ductor CeCu2Si2 and its isoelectronic and
isostructural partner compound CeCu2Ge2

have long vexed proponents of a magnetic
interaction model of superconductivity in 4f
electron compounds, because they display an
unusually robust superconducting regime
with a peak Tc widely separated from the
magnetic quantum critical point. The evolu-
tion of superconductivity under precise con-
trol of both composition and lattice density
suggests that, in stoichiometric CeCu2Si2 and
CeCu2Ge2, two superconducting domes
merge into a single, wide superconducting
region. Whereas the low-pressure dome
straddles the antiferromagnetic quantum crit-
ical point in apparent agreement with a mag-
netic interaction model, the high-pressure su-
perconducting phase remains enigmatic. The
existence of a distinct superconducting state
connected to a volume collapse transition
should motivate a wider search in Ce-based
narrow-band metals and raises the possibility
that density fluctuations may have a more
general role to play in inducing superconduc-
tivity in correlated electron systems, includ-
ing the high-Tc cuprates.

Fig. 3. Pressure depen-
dence of key properties
of the CeCu2(Si1–xGex)2
system. (A) Experimental
phase diagram showing
antiferromagnetic (TN,
open symbols) and super-
conducting (Tc, closed
symbols) transition tem-
peratures versus relative
pressure "p # p – pc1,
which reflects the inverse
unit cell volume, and
against which the mag-
netic transition lines for x
# 0.1 (pc1 # 1.5 GPa, cir-
cles), x # 0.25 (pc1 # 2.4
GPa, squares), and x # 1
[pc1 # 11.5 GPa (7), Tc
shown by the continuous
line] coincide. Pure
CeCu2Si2 [(6), Tc shown
by the dotted line; (8), Tc
shown by the dashed-
dotted line] is assumed
here to have pc1 # 0.4
GPa. The approximate lo-
cation of the volume col-
lapse observed in (12) is
indicated by a vertical
dashed line at "p # 4
GPa. SC, superconducting;
AFM, antiferromagnetic.
(B) Residual resistivity !0
(right scale) and low-T
electronic scattering
"! # !(2K) – !0 (left
scale) versus relative
pressure "p. (C) Power-
law exponent $ versus
"p. We obtained residual resistivity !0 and the exponent $ by fitting the power-law form ! #
!0 % AT$ to the low-temperature, normal-state resistivity and checking for consistency against
the logarithmic derivative dln(! – !0)/dlnT. The power-law exponent $ shows a distinct
minimum near "p & 0 (inset) and a second minimum near "p & 3.7 GPa, where the exponent
approaches $ & 1 (Fig. 2B). In the intervening region, the exponent attains a local maximum
of $ & 1.5, that is, well below the Fermi-liquid value $ # 2.

R E P O R T S

19 DECEMBER 2003 VOL 302 SCIENCE www.sciencemag.org2106

Figure 1.3: Left panel: Tetragonal crystal structure of CeCu2Si2 and YbRh2Si2. Top right
panel: Phase diagram of 10at%-Ge-doped CeCu2Si2 as a function of temperature and pressure,
obtained from experiment. Two distinct superconducting domes (shown in green and red) suggest
that more than one pairing mechanism might operate. The broad continuous superconducting
region (shown in yellow) amounts to pure CeCu2Si2. From H. Q. Yuan et al., Science 302,
2104-2107 (2003). Reprinted with permission from AAAS.
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Superconductivity in a system, which contains not only a few atomic percent of magnetic
atoms, but shows a periodic lattice of magnetic Ce3+ atoms, was unexpected. In a sub-
sequent study it was shown that this very periodicity of magnetic atoms seems to be the
necessary prerequisite to show superconducting behavior: Even small doping of CeCu2Si2
with non-magnetic atoms or slightly changing the stoichiometry destroys the supercon-
ductivity [SRS83] and the isostructural analog with non-magnetic atoms LaCu2Si2 is not
superconducting at all [SAB+79].
The “unconventional” nature of superconductivity consists in the fact that the Cooper
pairs are formed by heavy fermion quasiparticles. As a consequence, standard BCS the-
ory for phonon-mediated superconductivity cannot explain this kind of superconductivity.
The reason lies in the fact that phonons have a typical frequency which is in the case of
CeCu2Si2 comparable with the fermions’ characteristic frequency [SAB+79]. Another
mechanism has to be used for explanation.
Antiferromagnetic spin-fluctuations were proposed theoretically to act as a glue between
the quasiparticles [MSRV86, SLH86] and neutron diffraction experiments suggested the
coupling between superconducting and magnetic order parameters in UPt3 [ABB+89].
Still, the microscopic origin of superconductivity in heavy fermion materials remained an
open question and in the meantime different alternative mechanisms have been proposed.
It turned out that more than one non-phononic mechanism is needed to discribe different
heavy fermion superconductors: In 2001 antiferromagnetic magnons were proposed to
lead to an effective interaction between the itinerant electrons and thereby induce super-
conductivity in UPd2Al3 [SAM+01] and in 2007 even ferromagnetic spin fluctuations were
suggested as a mediator in UCoGe [HGdN+07].
Other mechanisms include charge fluctuations, e.g., in case of the second superconduct-
ing phase at high pressure of the Ge-doped prototypical heavy fermion superconduc-
tor CeCu2Si2 [YGD+03], see right panel of figure 1.3. However, the undoped com-
pound CeCu2Si2 shows superconductivity that is driven by antiferromagnetic excitations
[SAF+11]. For the Pr3+ moments in PrOs4Sb12 even quadrupolar fluctuations have been
suggested [BFH+02].
Although there are some candidates for triplet superconductivity, e.g. the aforementioned
UPt3 [TKI+98], most of the heavy fermion superconductors show singlet superconductiv-
ity which often turns out to have d-wave symmetry [SW16].
In section 5.4.1, the Kondo lattice model, a paradigmatic model for heavy fermion ma-
terials, is probed for this kind of superconductivity by means of the variational cluster
approximation. With this technique antiferromagnetic fluctuations and even antiferro-
magnetic phases can be investigated such that it is even possible to investigate the in-
terplay between superconductivity and antiferromagnetism. The Kondo lattice model is
introduced in the chapter on models 2.3, the variational cluster approximation in the
chapter on the theoretical framework 3.2.2.

From Kondo to Kondo Lattice Physics 1.3.1

In this subsection the Kondo effect and the conceptional differences between the Kondo
and Kondo lattice model are briefly summarized. A detailed discussion of the history of
the Kondo problem and the physics of the Kondo and Kondo lattice model can be found
in references [Wil75, Hew93, Col07, Col15a].
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Historically, before interest in heavy fermion systems awakened, the resistance of metals
was studied in detail at low temperatures. In contrast to a drop to zero resistivity in some
pure metals, which could be successfully explained by BCS theory of superconductivity
[BCS57], a lot of metals showed a finite resistivity for T → 0. This residual resistivity
was soon attributed to electron scattering due to imperfections such as neutral impuri-
ties or lattice defects. Some of the metals which were investigated already in the early
1930s instead showed a minimum in resistivity at small temperatures (e.g. Tmin ∼ 4K for
gold) [MV30a, MV30b, dHdBvdB34]. The decrease in resistivity when cooling the system
could be understood by considering phonon scattering effects, but the increase of resistiv-
ity when approaching zero temperature was unexpected as Matthiessen’s rule [MV64] was
expected to hold. It states that the resistance is made up of the residual resistivity due
to scattering off (neutral) impurities and the ideal resistivity which includes the increase
due to phonons.

An explanation for this increase was given in 1964 by Kondo who investigated the scatter-
ing of electrons off magnetic impurities [Kon64]. In this paper he investigated the so-called
s-d model, which includes an exchange interaction between the spin of the magnetic impu-
rity and the conduction electrons. When considering models to describe this embedding
of a magnetic impurity such as the s-d model considered by Kondo, the scattering process
between d- or f- electrons of the magnetic impurity and conduction electrons is modeled
by an antiferromagnetic exchange term with strength J . As already mentioned in the pre-
vious section, it is assumed that the d- or f-electrons of the magnetic impurity are strongly
localized and only weakly hybridize with the conduction electrons of the metal. Instead,
the itinerant electrons only notice the spin of the localized impurity electrons and interact
via ’spin-flip’ scattering. These exchange interactions which allow for flipping both the
spin of the magnetic impurity and the spin of a conduction electron lead to a qualitatively
different behavior compared to non-magnetic impurities. Using third-order perturbation
theory in the exchange interaction, Kondo showed that this scattering processes lead to a
logarithmic correction to the resistivity in the limit T → 0. Together with the phononic
contribution this log(T ) divergence leads to a minimum in resistivity. Despite reproduc-
ing the resistance minimum, the perturbative treatment includes a logarithmic divergence
which contradicted experimental observations and remained to be a problem for a long
time.

Although progress was made in subsequent years it was not before 1974 that a non-
perturbative technique, so-called numerical renormalization group, was developed by Wil-
son, which allowed to solve the Kondo problem [Wil74, Wil75]. The qualitative picture
that emerged from solving the Kondo problem is the following. When inserting a magnetic
impurity into the sea of conduction electrons, due to the exchange interaction with con-
duction electrons a spin-singlet between impurity spin and conduction electrons develops.
The ground-state is thereby a many-particle state, where conduction electrons screen the
local moment of the impurity by forming the singlet. As thermal fluctuations destroy this
screening, the singlet forms only below a characteristic temperature, the Kondo tempera-
ture TK . Right at the Fermi energy the magnetic scattering processes cause a many-body
resonance in the spectral density ρ(ω), the so-called Abrikosov-Suhl or Kondo resonance.

When increasing the amount of magnetic impurities that are alloyed into the metal, one
arrives at a dense Kondo system, where at some point a periodic arrangement of mag-
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netic impurities leads to conceptionally different physics. This has to do with an additional
mechanism that competes with the Kondo singlet formation. Already when adding a sec-
ond impurity spin to the conduction electrons, it couples to the spin density around the
first impurity. As the first impurity already caused spatially decaying Friedel oscillations,
the addition of the second impurity leads to an effective long-range magnetic interaction,
so-called RKKY interaction, which will be discussed in more detail in subsection 2.3. As-
suming a dense Kondo lattice, where electrons scatter at each lattice site with a magnetic
impurity spin, leads to the Kondo lattice model. This model will be discussed in more
detail in subsection 2.3. Such a dense Kondo lattice was proposed by Doniach in 1977 to
describe heavy-electron metals [Don77]. In this case, a Kondo resonance is created in each
unit cell and electrons can scatter off this periodic lattice of resonances. Due to Bloch’s
theorem this leads to the formation of a heavy fermion band of width TK [Col07, Col15a].

The Doniach Diagram 1.3.2

There are two competing mechanisms in the system, namely Kondo spin singlet forma-
tion [Kon64] at strong coupling and antiferromagnetic ordering due to effective RKKY
interaction at weak coupling. This competition leads to the so-called Doniach diagram
[Don77] of the Kondo lattice model. As the emerging picture is often used for the in-
terpretation of experimental data, the Doniach diagram is introduced here. More details
about the effective RKKY interaction and the Kondo insulator are discussed in context
of the Kondo lattice model in the model section, see subsection 2.3.

In the following the discussion will focus on zero temperature, which is why energy scales
will be used instead of temperatures that are usually used when discussing experiments.
This is also the notation in which Doniach introduced the concept in 1977 [Don77]. How-
ever, the argumentation given below is still valid at low temperatures, i.e. temperatures
that are lower than a crossover temperature T0 at which incoherent local moments start
screening the conduction electrons (“Kondo screening”, T < T0), see figure 1.4. The
antiferromagnetic Néel and Fermi liquid phases that emerge then also have a certain tem-
perature TN and TFL respectively, up to which the argumentation that follows holds.

In the limit of strong coupling, the conduction electrons screen the local moments of the
f-electrons and form local Kondo singlets. For weak coupling the local moments induce
Friedel oscillations in the spin density of the surrounding conduction electrons. Thereby an
effective so-called RKKY interaction [RK54, Kas56, Yos57] is mediated by the conduction
electrons and the local moments of the f-electrons order antiferromagnetically. Between
the limits of extremely small and strong couplings the Kondo lattice model describes the
competition of the local Kondo screening and underscreened RKKY interaction.
In 1977 Doniach analyzed the one-dimensional Kondo lattice model and compared the
analytical dependencies of the energies of both limiting states with respect to the coupling
J [Don77]. The antiferromagnetically ordered ground state of RKKY-type has an energy
ERKKY ∝ NFJ

2, where NF denotes the electron density at the Fermi energy. For the other
state which consists mainly of Kondo singlets the energy goes as EK ∝ exp(−1/NFJ),
which means that both energy scales cross at some critical coupling strength Jc, see figure
1.4. In his paper, Doniach suggested from these binding energies that the system should
undergo a second-order transition from an antiferromagnetic (RKKY) ground state to a
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Figure 1.4: Sketch of the Doniach diagram following [Don77], which compares the binding
energy of a Kondo singlet EK ∼ exp−1/JNF with the energy of a RKKY antiferromagnetic state
ERKKY ∼ J2NF . At the crossing point, the system is predicted to change from a ground state
with RKKY antiferromagnetic ordering of the f-spins to a state with Kondo singlets between f-
spins and conduction electrons. The solid lines sketch the characteristic energies of the emerging
antiferromagnetically ordered and heavy Fermi liquid phases; when translated to temperatures,
they correspond to the Néel and Fermi liquid temperature, respectively.

Kondo singlet ground state at Jc. This is the ’Doniach diagram’. Furthermore, as the
exchange coupling J can be tuned in experiment by some non-thermal control parameter
like magnetic field or hydrostatic pressure, this transition could (theoretically) be realized
at zero temperature which renders the transition point a quantum critical point.

Although Doniach’s paper discussed the one-dimensional Kondo lattice model, the pro-
posed continuous phase transition from Kondo insulator to antiferromagnet has been
found in the mean-time also for higher dimensional Kondo lattice models. For example
Shi et al. used high-order series expansion in the coupling in d = 2 and d = 3 and
obtained a critical coupling of Jc ≈ 1.43 for the KLM on the square lattice [SSGW95].
Later in 1999, Assaad solved the half-filled two-dimensional KLM numerically with high
precision by using quantum Monte Carlo and confirmed the value of Jc = 1.45 ± 0.05
[Ass99]. A more detailed summary of the numerical techniques that have been used since
to investigate the KLM in two dimensions will follow in section 3.3.2.

Kondo breakdown. When comparing the limits of weak and strong coupling away
from half-filling, the magnetic order of the state is not the only difference - the Fermi
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surface volume differs strongly, too. In both cases the Luttinger sum rule [Lut60, LW60],
which states that the volume of the Fermi surface amounts to the density of electrons,
is satisfied. This is quite naturally the case for the small Fermi surface, which is made
up by conduction electrons only, but for the heavy Fermi liquid one has to keep in mind,
that the number of charge carriers is composed of the conduction electrons and of the
f-spins, hence N = Ne +Nf [Mar82, Osh00]. However, just because the two phases show
different Fermi surface sizes, this property does not have to be characteristic for them.
That means, that the energy scale E∗ at which the system changes between a completely
Kondo screened phase with a large Fermi surface and an underscreened phase with small
Fermi surface does not have to coincide with the transition between antiferromagnet and
(paramagnetic) Fermi liquid. This destruction of Kondo singlets at E∗ goes by the name
of Kondo breakdown and is an important criterion to further distinguish two scenarios
for quantum criticality that have been heavily discussed in recent years [GSS08, SS10].
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Figure 1.5: Sketch of the two different types of QCPs where E∗ denotes the Kondo breakdown
energy scale. Figure adapted from reference [GSS08].

Quantum critical points. If the breakup of entangled Kondo singlets happens at a
coupling strength J∗ < Jc the quantum critical point (QCP) does not coincide with the
Kondo breakdown and the QCP is called conventional. The antiferromagnetic phase is
thereby splitted into one part with a small Fermi surface and one with large Fermi surface.
This QCP has a spin density wave (SDW) form, which means that the antiferromagnetic
phase close to the QCP can be described by a spin density wave of heavy quasiparticles
in the paramagnetic phase [Ove59, GSS08].
In the other case, the so-called unconventional QCP, the Kondo breakdown coincides
with the transition to the antiferromagnetic phase. From conductivity measurements on
YbRh2Si2, ∆ρ(T ) = |ρ(T )− ρ0| ∼ T ε, the exponent ε is extracted and shows a magnetic
field-induced quantum phase transition [CGW+03, GSS08, SS10]. At weak coupling, the
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local moments order antiferromagnetically and do not form singlets with the conduction
band electrons. As the f electrons are localized and not form Kondo resonances, they do
not screen the electrons statically and the Fermi surface is small throughout the entire
antiferromagnetic phase. Right at the quantum critical point the Fermi surface volume
shows an abrupt jump, as for couplings J > Jc the charge carriers immediately include
f-moments [SRIS01, CPSR01]. This situation, which is sometimes also referred to as local
criticality [SRIS01, GSS08], is, e.g. realized in CeCu2Si2. In YbRh2Si2 it has been shown,
that applying chemical pressure to the system results in moving the Kondo breakdown
into either the antiferromagnetic or paramagnetic phase [FWB+09]. Both scenarios are
sketched in Figure 1.5.
However, it should be mentioned that recent numerical studies found no Kondo breakdown
at any finite coupling strength J , although the Fermi surface changed in the antiferromag-
netic phase from an electron- to a hole-Fermi surface. This will be discussed in section
3.3.2.

A paradigmatic model for heavy fermion systems, the Kondo lattice model, is investigated
in chapter 5 and questions raised in this introductory section are addressed. In particular,
the quantum critical point between a metallic phase of heavy charge carriers and an
antiferromagnetically ordered phase, as well as the question, whether it coincides with a
Kondo breakdown, are discussed. Moreover, the emergence of superconductivity and its
interplay with antiferromagnetism is studied and compared to results of other numerical
studies on this model; a survey of other numerical approaches to this model follows in
section 3.3.2. Finally, the relevance of these findings on the Kondo lattice model for future
studies that can be connected closer to experiments are discussed.
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Outline of the Thesis 1.4

Chapter 2: Models
The models that are treated within this thesis are introduced and some of their properties
are discussed. A focus is set on results obtained by other numerical methods.

Chapter 3: Theoretical Framework
Different Green functions and their numerical calculation are considered. A simple clus-
ter method, so-called cluster perturbation theory is introduced. In an excursus, a spin
formulation of this technique using superclusters is derived and its quality is tested.
Then, the self-energy functional theory is introduced. One of the approximations which
are based on it, the variational cluster approximation (VCA), is discussed and details of
the numerical evaluation are explained. Finally, it is shown how the variational cluster
approximation can be applied directly to the Kondo lattice model.

Chapter 4: Mott Quantum Criticality in Two Dimensions
The strongly anisotropic, frustrated two-dimensional Hubbard model is investigated by
means of different flavors of variational cluster approximation.
The Mott transition is investigated as a function of the interchain hopping, which acts
as a control parameter driving the transition. A detailed analysis and discussion of the
results using variational cluster approximation is complemented by a comparison with
finite-temperature results using cellular dynamical mean-field theory (CDMFT) obtained
by M. Raczkowski. In the discussion of a quantum critical line emerging in the model
the question of quantum criticality in Mott systems is approached. The question of the
transition’s universality class is addressed as far as possible within a technique that is
mean-field-like on large distances. Afterwards, the antiferromagnetic phase of the model
is investigated. The results are discussed and future research in the context of Imada’s
marginal quantum criticality is motivated.

Chapter 5: Unconventional Phases in the Kondo Lattice Model
The Kondo lattice model is investigated by variational cluster approximation.
First, the paramagnetic phase of the model is analyzed and the Kondo insulator at half-
filling and a metal with Kondo singlets off half-filling are discussed. Motivated by the
Doniach diagram, antiferromagnetic phases at weak coupling are analyzed via VCA in
section 5.2. A rough finite-size extrapolation is done at half-filling and two antiferromag-
netic metals with different Fermi surface topology are investigated in the doped system.
The questions of the existence of a Kondo breakdown and of the type of quantum critical
point will be touched upon briefly.
Motivated by the work of Bodensiek et al. the model is probed for s-wave superconduc-
tivity. Stationary points are initially identified in a large variational space using a small
plaquette and then analyzed with a larger cluster. d-wave superconductivity as it is found
experimentally in many Kondo lattice systems is studied afterwards. A stable supercon-
ducting phase is analyzed and its interplay with antiferromagnetism is discussed.

Chapter 6: Conclusions
Finally the results are summarized and perspectives for further studies are given.





Models 2
In the following the models that will be used in subsequent chapters are presented.
First, the one-band Hubbard model and its anisotropic frustrated two-dimensional version,
which is investigated in chapter 4, are introduced in subsection 2.1. Limits, in which the
model can be solved exactly, are discussed. In the limit of strong interaction, U/t� 1, the
half-filled Hubbard model is equivalent to the Heisenberg model; it is briefly introduced
in section 2.2.
Section 2.3 discusses the Kondo lattice model (KLM) and its limits of weak and strong
coupling are revisited.

Investigating the Mott Transition: The
Hubbard Model 2.1

One of the conceptionally simplest models that describes interacting electrons on a static
lattice is the Hubbard model [Hub63, Geb03]. It was introduced as a model for electrons
in narrow energy bands, such as d- and f -shell electrons [Hub63], and is still one of the
main models to study the Mott transition [IFT98]. Two key assumptions are made in
order to derive the Hubbard model, namely the assumption of a single band of electrons
and local electron-electron interactions [Hub63]. Although the Hubbard model has a
seemingly simple appearance, it is only exactly solvable in one [EFK+05] and in infinite
dimensions [Geb03]. For the two-dimensional model, which is studied in this thesis, only
limiting cases are known exactly and for most investigations approximate methods have
to be used.
Here, only some aspects of the Hubbard model are briefly mentioned and the focus is
set on the Mott transition. Detailed reviews can be found for example in references
[Geb03, IFT98].

The one-band Hubbard model is defined by the following Hamiltonian:

H =
∑
i,j

tij

(
c†icj + h.c.

)
+ U

∑
i

ni↑ni↓ − µ
∑
i

ni.

U denotes the strength of the local Coulomb repulsion term and µ is the chemical poten-
tial by which the filling is set in the grand canonical formulation. Throughout this thesis
the Hubbard model will be treated at half-filling (n = 1) only. niσ denotes the density
operator for electrons of spin σ ∈ {↑, ↓} at site i, ni = c†iσciσ.
The dimensionality and geometry of the lattice enters the model via the hopping matrix
tij and influences the bandwidth W of the non-interacting part of the model. In case of
the intensively studied isotropic Hubbard model on a square lattice, the hopping matrix
tij is build up from hopping terms of strength t between nearest neighbor sites, see figure
2.1. The Pauli principle forbids two electrons with the same spin σ to occupy the same
site, which is why each site can be maximally doubly occupied.
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Figure 2.1: Sketch of the isotropic 2D Hubbard model on a square lattice (left panel) and
the structure of the hopping terms that enter the anisotropic frustrated 2D Hubbard model
considered in chapter 4 (center panel). The right panel shows the Fermi surface of the anisotropic
model for U/t = 0 and t′ = −0.25t⊥ for different values of t⊥.

The model that is investigated in chapter 4 contains anisotropic hopping terms on the
square lattice: In x-direction the hopping strength is t (’intrachain hopping’), but in
y-direction it is t⊥ (’interchain hopping’). The values of the interchain hopping t⊥ will
range from 0 to t. In case of t⊥ = 0 the one-dimensional Hubbard model is recovered and
for t⊥/t = 1 the model amounts to the isotropic two-dimensional (2D) Hubbard model.
In addition the model contains next-nearest neighbor hopping with hopping strength t′,
which in a rectangular geometry amounts to diagonal hopping terms, see figure 2.1.

Limit U = 0. In the limit U = 0, only the kinetic term of the model remains and
the model is solved by Fourier transformation into momentum space. The dispersion
of the anisotropic frustrated model then reads ε(kx, ky) = −2 (t cos(kx) + t⊥ cos(ky)) −
4t′ cos(kx) cos(ky). In this limit, the model consists of free fermions on a lattice and there-
fore describes an ideal metal.

Limit t = 0. The limit t = 0 is also known as atomic limit. As no hopping and
hence no communication between the sites is allowed, the system consists of empty and
single occupied sites for n < 1 and of single and double occupied sites for n > 1. At
zero temperature the ground state is degenerate and has the minimal number of double
occupancies. Due to the absence of any mobility, the system is a (trivial) insulator.

Limit of large interaction. Adding a finite hopping strength to the model in the
atomic limit allows one to use perturbation theory in t, but even in the limit U/t →
∞ the model is only solvable in special situations. The ground state is still given by
states with lowest possible double occupancy and one can restrict the discussion to this
subspace as done, e.g. by the Gutzwiller projection technique [Geb03]. At half-filling
and zero temperature, each site is occupied with exactly one electron in the ground state.
Excitations of this ground state in form of adding or removing an electron cost energy -
the system is gapped and hence an insulator.
For large interaction strengths U/t� 1, one can apply second order perturbation theory
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in the subspace of no doubly occupied sites. Assuming half-filling, the model is thereby
found to be equivalent to the Heisenberg model with antiferromagnetic exchange coupling
[Geb03]. This model is introduced in subsection 2.2. Within this description the ground
state turns out to be an antiferromagnetic insulator.

Metal-Insulator Transition. In the limit U = 0, the system is metallic and in the limit
U/t � 1 it is insulating. For coupling strengths of the order of the bandwidth W of the
non-interacting system, the model is called strongly correlated. It describes competition
between itinerant electrons for small U and localization of electrons for large U . The
Hubbard model is therefore a prototypic model to study Mott metal-insulator transitions
(MIT). When considering a frustrated isotropic two-dimensional Hubbard model, the MIT
takes place at a finite value Uc/t [SGR+15]. However, two different insulating phases have
to be distinguished. In both cases, the insulator is a many-body effect - localized moments
emerge due to electron-electron interactions U .
An antiferromagnetic insulator is obtained in the U/t � 1 limit of the isotropic model,
where a gap arises due to long-range antiferromagnetic ordering of preformed moments.
In the case of an paramagnetic insulator the preformed moments do not show this long-
range order. To differentiate between these two insulators, they are sometimes called
Mott-Heisenberg and Mott-Hubbard insulator, respectively [Geb03]. Transitions to both
of these insulators are investigated in this thesis.
Other types of insulators that are based on a one-body picture such as Anderson, Band or
Peierls insulators as well as the Slater insulator, where the exchange part of the electron-
electron interaction is taken into account via a Hartree-Fock description, are not analyzed
here.
In order to distinguish metal and insulator at zero temperature, one often takes the
existence or absence of a Drude peak as the criterion. For an insulator, the static electrical
conductivity σαβ = limω→0 lim|k|→0 Re(σαβ(k, ω)) vanishes, whereas a metal is expected
to have finite Drude weight. Another quantity that can be considered is the charge
compressibility, κ = −∂n/∂µ. For an insulator the compressibility is zero, for a metal it
is finite. However, for finite temperatures, due to thermal broadening, a meaningful and
precise definition of insulator and metal is barely possible [Geb03].

Exact solutions in D = 1 and D =∞. In one and infinite dimensions, the Hubbard
model can be solved exactly.
For the one-dimensional model, the Bethe ansatz can be used and due to Umklapp scat-
tering processes the system is insulating for any finite Coulomb interaction strength U
[EFK+05]. Therefore, the metallic phase is limited to U = 0, which is a difference to the
two-dimensional case studied here. However, the anisotropic model, which is studied in
this thesis, has the one-dimensional model as a limiting case. The technique that will
be used to investigate the model is capable of reproducing this transition and also its
qualitative results compare well with the exact Bethe ansatz solution [BHP08].
In case of infinite dimensions, the Hubbard model can be solved numerically using the
dynamical mean-field theory [MV89]. As spatial fluctuations are negligible in infinite
dimensions, the self-energy becomes a local quantity and the model can be mapped to
the single-impurity Anderson model [JP93]. Within DMFT, the MIT is described by the
so-called preformed-gap scenario, where the transition happens at a finite critical inter-
action strength Uc: For very small U the density of states form a continuum with two
Hubbard bands and a quasi-particle (qp) resonance at the Fermi energy. When increasing
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the interaction strength, the lower and upper Hubbard band move apart, but the qp-peak
stays at the Fermi energy. Only its weight changes and vanishes at the critical point Uc.
At zero temperature, the transition is of first order. When increasing the temperature
the transition becomes continuous at a critical temperature Tc.

The effect of geometrical frustration. The diagonal hopping terms of the model
considered in this thesis induce frustration to the system. Without these terms, the
isotropic system (t⊥ = t) would otherwise order antiferromagnetically and form an an-
tiferromagnetic insulator [SGR+15]. They remove the antiferromagnetic perfect nesting
instability in the isotropic 2D case [HV98] which can be seen from the Fermi surface of
the tight-binding dispersion (U/t = 0) in figure 2.1.
Already a small value of t′/t leads to a warping of the Fermi surface and thereby de-
stroys the diamond shape which hosts the antiferromagnetic nesting vector Q = (π, π) for
t⊥ = t. In addition, it also removes the Van Hove singularities at the zone boundaries (at
(±π, 0) and (0,±π)) for t⊥/t = 1. However, for a smaller inter-chain hopping t∗⊥/t (see
t⊥/t = 2/3 in figure 2.1) one of the singularities still exists at (±π, 0).

The quasi-1D and quasi-2D regimes. The value of t∗⊥/t could be taken as the turning
point between a quasi-one dimensional system with a small Fermi surface and a quasi-two
dimensional system with a large Fermi surface: For small t⊥/t the Fermi surface resembles
the Fermi surface of the one dimensional system of decoupled chains. It gets warped for
increasing inter-chain hopping and as a consequence the Fermi surface grows. At t∗⊥ the
warped Fermi surface hits the Brillouin zone boundary at ky = 0 and for even stronger
inter-chain hopping it more and more resembles the one of the isotropic two dimensional
system.
Although this considerations for the non-interacting system seem to provide a clear cri-
terion for distinguishing quasi-1D from quasi-2D behavior, it is questionable whether
this picture can be transferred to interacting systems. At least for the isotropic sys-
tem (t⊥/t = 1) several numerical techniques, such as path-integral renormalization group
(PIRG) [MI06] and cellular DMFT [KT06], have shown that the antiferromagnetic in-
sulator can be suppressed with a sufficiently large diagonal hopping t′/t to move the
metal-insulator transition to finite U/t. Under the assumption that the system stays
metallic for small interaction strengths U/t for all inter-chain hoppings 0 ≤ t⊥/t ≤ 1 it
should be possible to investigate the Fermi surface and to look for Van Hove singularities.
As long as Fermi liquid theory can be applied, the Fermi surface could keep up the t∗⊥
criterion. Still, it is far from clear how t∗⊥ changes as a function of interaction strength
and how one should define t∗⊥ in the case of a partially gapped Fermi surface. Especially
close to the metal-insulator transition, it has to be expected that the interactions lead
to important changes of the Fermi surface, which might ask for a different indication for
distinguishing a quasi-1D from a quasi-2D regime.
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Studying Quantum Magnetism: The
Heisenberg Model 2.2

The 1D spin-1/2 Heisenberg model can be obtained in second order perturbation theory
from the U → ∞ limit of the half-filled Hubbard model [Geb03] and its Hamiltonian
reads:

H = −
∑
〈i,j〉

JijSi · Sj + h
∑
i

Szi .

A magnetic field in z-direction with field strength h has been added in the last term. In the
following, only positive values of Jij will be used which correspond to an antiferromagnetic
interaction. For convenience, the spin operator S = (Sx, Sy, Sz) is rewritten in terms of
S± = Sx ± iSy, which changes the first term of the Hamiltonian to

−
∑
〈i,j〉

Jij

(
1

2
(S+

i S
−
j + S−i S

+
j ) + Szi S

z
j

)
.

The commutation relations [Sxi , S
y
j ] = i~δijSzi and cyclic permutations lead to [S+

i , S
−
j ] =

2~δijSzi and [Szi , S
±
j ] = ±~δijS±i .

The isotropic case corresponds to Jij = Jδi,i+1. By introducing an anisotropy in the ex-
change interaction with respect to z-direction one arrives at the so-called XXZ Heisenberg
chain, defined by

HXXZ = −
∑
〈i,j〉

{
J

2

(
S+
i S
−
j + S−i S

+
j

)
+ ∆Szi S

z
j

}
+ h

∑
i

Szi .

Setting ∆ = J leads back to the isotropic model, which is also known as XXX Heisenberg
chain. In the following, ~ = 1 and everything will be expressed in units in which J = 1.

The lowest excitations at zero temperature are triplets with total spin S = 1 and des
Cloizeaux and Pearson derived the lower bound of these excitations to be ε1(k) = π

2
J | sin k|

for an infinite chain without applied magnetic field [dCP62]. For higher energies a two-
parameter continuum of spin-wave-type excitations emerges up to a higher bound of
ε2(k) = πJ | sin k/2| [MTBB81]. Müller et al. used the analytical Bethe ansatz to ex-
tend their calculations and provided analytical and numerical results for the isotropic
Heisenberg chain with and without external magnetic field [MTBB81]. In 2012 Caux et
al. derived an exact expression for the two-spinon form factor in the XXZ Heisenberg
chain [CKSW12], which makes up most of the form factor (in the isotropic case it was
shown by Klauser et al. that 4-spinon and higher excited states contribute only 6% to
the dynamical spin structure factor [KMCvdB11]). Therefore, it is possible to compare
the spectra obtained by approximate methods like SCPT with exact results both for the
isotropic and the anisotropic Heisenberg chain.

Before turning to the derivation of spin cluster perturbation theory in the next subsection,
it is briefly shown that the problems that occur for cluster techniques are at least in
parts due to non-local interactions. This can be shown by making a Jordan-Wigner
transformation

S+ → a†, S− → a, Sz → a†a− 1

2
,
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where a† and a denote the creation and annihilation operators of spinless fermions. One
is left with fermions with standard anti-commutation rules for which “usual” cluster tech-
niques for electrons should be in principle applicable. One obtains the following Hamil-
tonian:

H =
∑
i

{
J

2

(
a+
i ai+1 + aia

+
i+1

)
+ ∆(ni −

1

2
)(ni+1 −

1

2
)

}
+ h

∑
i

(ni −
1

2
),

with ni = a†iai. However, the second term poses a problem for cluster techniques, such as
CPT or VCA, as the interactions in the chain of spinless fermions are between neighbors
and hence still non-local.

Effective Description of Heavy Fermions: The
Kondo Lattice Model 2.3

The Hamiltonian of the Kondo lattice model [Kas56], which is one of the easiest models
to describe heavy fermion physics [Hew93], consists of three terms,

H = −t
∑
〈i,j〉σ

(
c†iσcjσ + h.c.

)
− µ

∑
j

nj + J
∑
j

Sj · sj.

The first two describe a spinfull tight binding band with nearest neighbor hopping terms t
and a chemical potential µ by which the filling can be set in a grand canonical formulation.
On each site of the lattice, there exists exactly one localized spin (motivated by the
localized f-electrons of heavy fermion systems) in addition to the electrons of the tight
binding band, see figure 2.2. Here, the Kondo lattice model is studied on a two-dimensional
square lattice. This can be motivated from heavy Fermion compounds like CeCu2Si2,
where the atoms responsible for the f-moments (here cerium) build two-dimensional layers
in the tetragonal lattice structure, see left panel of figure 1.3. The last term of the
Hamiltonian describes the antiferromagnetic spin-spin Heisenberg interaction between
these localized spins (also called f -spins in the following) and the electrons (also called
c-electrons in the following as they are motivated by the conduction band electrons of
heavy fermion systems). One can rewrite the last term using creation and annihilation
operators for the conduction electrons. This is done via sj = (sxj , s

y
j , s

z
j) = 1

2

(
c†jβσβαcjα

)
,

where σ is the vector of Pauli matrices. Using ladder operators S± = Sx ± iSy for the
localized spins Sj = (Sxj , S

y
j , S

z
j ) leads to:

J
∑
j

Sj · sj =
J

2

∑
j

(
Sxj (c†j↑cj↓ + c†j↓cj↑) + iSyj (c†j↓cj↑ − c†j↑cj↓) + Szj (ni↑ − ni↓)

)
=

J

2

∑
j

(
S+
j c
†
j↓cj↑ + S−j c

†
j↑cj↓ + Szj (ni↑ − ni↓)

)
.

One has to note, that an additional factor 1/2 is “hidden” in the z-component of the spin
operator that is acting on the localized spins:

S+| ⇓〉 = | ⇑〉, S−| ⇑〉 = | ⇓〉, Sz| ⇓〉 = −1

2
| ⇓〉, Sz| ⇑〉 =

1

2
| ⇑〉.

In this form, the Hamiltonian will be used later to calculate Green functions within the
formalism of the variational cluster approximation.

The limits of weak and strong interaction are now discussed in a bit more detail.
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Figure 2.2: The single-band Kondo lattice model on a two-dimensional square lattice.

The Kondo insulator. When considering the strong coupling limit J � t of the model,
the system consists of local Kondo singlets. The hopping t can then be considered as a
small parameter and Heisenberg physics dominates:

H J�t−−→ J
∑
j

Sj · sj +O(t).

Considering the half-filled case first, one has three triplet states with energy 1/4J and
a singlet state with energy −3/4J per site. Therefore, the ground state of the system
consists of singlets between local spins and conduction electrons. It is a Kondo insulator
with the ground state wave function |GS〉 =

∏
i 1/
√

2 (| ⇑↓〉i − | ⇓↑〉i). Flipping a spin
breaks one of these singlets and turns it into a triplet, which comes with an energy cost
of ∆E = E(|triplet〉) − E(|singlet〉) = J . Excitations of the ground state |exc±iσ〉 can be
obtained by removing or adding a conduction electron:
Removing a conduction electron destroys one of the singlets, each of which has an energy
of −3/4J , and leaves an unpaired local spin. Therefore, |exc+

i′σ〉 =
√

2cσi′ |GS〉 has an
energy of 3/4J .
The same holds for adding a conduction electron. It also destroys one of the singlets,
but this time an unpaired local spin and a doubly occupied site are left. The energy of
|exc−i′σ〉 =

√
2c†σi|GS〉 is therefore 3/4J , too.

Adding even an infinitesimally small hopping t delocalizes the vacant or doubly occupied
site, which can be seen by calculating 〈exc−iσ|H|exc−jσ〉 = −t/2 + 3/4J. Analogously, the
energy of the other excitation |exc+〉 is t/2+3/4J . To compare both quasiparticle disper-
sions, a particle-hole transformation has to be done on one of the excitations. Thereby
the dispersion of the first excitation changes to t2 − 3/4J . Afterwards, both dispersions
can be compared, such that one ends up with a gap of 3/2J . A more detailed discussion
of the Kondo insulator can be found in [Col15b].

Heavy Fermi liquid. When removing or adding an electron, the finite value of the
electron hopping parameter t leads to mobile charge carriers and one obtains a dispersion
relation for the doped case. Still, in the case of small doping and strong coupling J
instead of considering the movement of unpaired electrons one could also look at the
Kondo singlets and observe the mobility of these Kondo singlets. Taking this point of
view, the localized spins, although being immobile, participate in transport processes as
they form the singlets and are hence part of the charge carriers. They contribute to the
Fermi surface and thereby lead to a large Fermi surface, which corresponds to a heavy
Fermi liquid that is made out of Kondo singlets.
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RKKY interaction and magnetic long-range order. The considerations so far as-
sumed strong coupling. In the other limit of weak coupling J/t � 1, Ruderman, Kittel
[RK54], Kasuya [Kas56] and Yosida [Yos57] have shown that an effective interaction be-
tween neighboring f-spins leads to magnetic long-range ordering. This so-called RKKY
interaction is mediated by the conduction band electrons and results in an antiferromag-
netically ordered ground state.
To see this, one can first consider a single magnetic moment at site i. It induces Friedel
oscillations in the spin density of the conduction band electrons: 〈s(r)〉 = −Jχ(r−ri)〈Si〉.
Here, χ is the magnetic susceptibility of the conduction electrons. It can be shown [Col07],
that these oscillations decay as 〈s(r)〉 ∼ −Jρ cos(2kF r)/|kF r|3, where r denotes the dis-
tance from the magnetic moment and ρ is the density of states of conduction electrons.
When adding a second magnetic moment at a position rj it couples to the spin density
with energy J〈S(rj) · s(rj)〉. The effective RKKY interaction term between the magnetic
moments therefore reads

HRKKY = −J2χ(rj − ri)S(rj) · S(ri).

As a consequence the f-spins of the Kondo lattice model order antiferromagnetically at
weak coupling. The energy of this RKKY state is proportional to ERKKY ∼ J2ρ, which is
exactly the energy scale used in the construction of the Doniach diagram in section 1.3.
At half-filling the conduction electrons also form an antiferromagnetic insulator. Doping
the system leads to mobile charge carriers and it becomes metallic. In contrast to the
heavy Fermi liquid that was discussed before, the f-spins order and do not participate in
the transport process. Conduction band electrons make up the Fermi surface, which is
why it is called “small” compared to the large Fermi surface encountered before.

Setting the Stage for s-Wave Superconductivity

Still in the large J/t limit, looking also at second order processes in t leads to a possible
effective pairing, which was pointed out by Bodensiek et al. in Ref. [BŽV+13]. Consid-
ering an electron filling n < 1, the system consists of singlets and unpaired local spins,
which can be interpreted as spinful c-holes. In the configuration shown in figure 2.3 on
the left, the singlet can be broken by letting the conduction electron hop to the left, which
results in a triplet on a neighboring site. This virtual high energy triplet then decays into
a singlet on a neighboring site, which does not have to coincide with the site from the
first hopping process as long as the spin of the neighboring hole fits, too (fig. 2.3 right).
Therefore, this second order process, which leads to an energy gain of order t2/J , binds
two holes to a singlet. The pairing happens in the intermediate step at the virtual triplet
and is hence local. For this reason, the process gives a quite natural explanation for the
existence of s-wave superconductivity which was found in Ref. [BŽV+13].
Furthermore, in the supplemental material to their paper [BŽV+13], the authors showed
that a spin-fluctuation theory, which is based on Eliashberg theory, does not exclude
s-wave superconductivity for the Kondo lattice model. This theory includes several un-
controlled approximations, but shows that under very special conditions, which could be
met within heavy fermion systems, s-wave superconductivity found in their numerical
study can be supported. In the following, some of the key assumptions and approxima-
tions of this theory are laid out and checked for applicability to the study by variational
cluster approximation that is given in chapter 5.
The starting point for their theory is the Eliashberg gap equation in non-crossing approx-
imation; a derivation can be found in a book by Plakida [Pla10]. In his book, however,
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Figure 2.3: Possible second order hopping process leading to an effective local pairing. The
Kondo singlet is broken up by the first hopping process into an virtual triplet state. After
a second hopping process the Kondo singlet forms at another site. Figure adapted from Ref.
[BŽV+13].

Plakida uses standard Eliashberg theory for a Hamiltonian with phononic interactions
and with spin-fluctuations which couple in a general way to the conduction electrons. For
the discussion of the Kondo lattice model one skips the phononic part and specifies the
spin-fluctuations to the Kondo term. Even before applying the noncrossing approxima-
tion, an important approximation is made in order to obtain the self-energy of Eliashberg
theory in the general form using Nambu spinors: In order to arrive at the equation for the
self-energy, which serves them as a starting point, one already has to assume that mag-
netic order is absent. This means that the validity of their theory to the parameter regime
of weak and intermediate coupling strengths in the KLM close to half-filling has to be
questioned as the system shows antiferromagnetic order. Although the superconducting
and antiferromagnetic regions seem to be complementary within DMFT, there is a small
region where both phases overlap [BŽV+13]. Further approximations are the non-crossing
approximation, which consists of assuming that spin fluctuations and electrons propagate
independently, and the assumption of a local self-energy. The latter assumption is true in
infinite dimensions and depicts an approximation of DMFT, but in VCA the self-energy
is cluster-representable and usually non-local. In the end of their derivation, the super-
conducting gap can be related to the spin susceptibility χS, which is a quantity that is
accessible within DMFT calculations. By furthermore approximating the gap by a step
function, it was shown that Cooper pairing can occur if the energy scale of the hybridized
bands and the one of the spin-fluctuations are of the same scale [BŽV+13].





Theoretical Framework 3
In this chapter, the theoretical concepts and techniques are introduced that are used later
to investigate the Hubbard and Kondo lattice model in chapters 4 and 5.
The first section 3.1 introduces the Green function as it is used in many-body physics. It
is shown how to calculate it in Lehmann representation using the efficient Band Lanczos
algorithm. There, the notation of “Q matrices” is explained. In subsection 3.1.2 the
Gorkov-Green function is introduced which is used in chapter 5 to investigate supercon-
ductivity. The concept of tiling a lattice system into a superlattice of clusters is presented
in subsection 3.1.3 and a conceptional simple cluster method, so-called cluster perturba-
tion theory, is introduced. In subsection 3.1.4 this technique is extended to spin systems
and using supercluster construction it is benchmarked on a paradigmatic quantum spin
model.
The second section introduces the self-energy functional theory by Potthoff and a the
variational cluster approximation. In subsection 3.2 the self-energy functional theory is
revisited and standard variational cluster approximation is shown in subsection 3.2.2.
There, some technical details on the evaluation of the self-energy functional, the determi-
nation of the stationary point and details on the numerical approach are given. Finally
it is shown how VCA can be applied to the Kondo lattice model which also includes the
coupling of electrons to immobile spins.
In section 3.3 a survey is given on other numerical techniques that have been used to
investigate the Mott transition in two-dimensional Hubbard models and the Kondo lat-
tice model in two dimensions. The results of these techniques are used afterwards as a
reference for results obtained in this thesis using variational cluster approaches.

Green Functions and Cluster Perturbation
Theory 3.1

In this section the foundations are laid for the derivation of self-energy functional theory
and variational cluster approximation in the next section. To calculate the self-energy
functional which is essential for VCA, one needs the Green function of the cluster as a
main ingredient. Therefore, first the notion of Green functions is introduced in a way
they are used in modern many-body physics. There are two different ways of writing the
Green function, one via the Lehmann representation and the other one by representing
it as a continued fraction expansion. In the first subsection the retarded many-particle
Green function is revisited and Lehmann’s representation derived; most of this subsection
is based on references [Eco90, Mah90, FW03, Nol09].
Instead of using full diagonalization where all eigenenergies and eigenstates of the system
in a certain quantum sector are determined, more efficient algorithms based on the Krylov
subspace can be used. For the calculation of the Green function the so-called Band
Lanczos algorithm will be used and is explained in subsection 3.1.1.
Within VCA, phases with broken symmetries such as superconductivity can be treated.
In this case an anomalous Green function, the so-called Gorkov-Green function, is used.
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It is introduced in subsection 3.1.2; this subsection is in addition based on references
[Gor58, SDB11].
The concept of a cluster tiling of the lattice system into a superlattice of clusters is
explained in subsection 3.1.3. It is used later for VCA, but in this subsection a precursor
method, the cluster perturbation theory [GV93, SPPL00] is introduced.
As was shown by Filor and Pruschke [FP14] a generalization of VCA to spin systems
is possible but involves severe limitations such as a breakdown of the theory for small
temperatures. To fill the technical gap between a spin extension of CPT for a specific
well-behaved spin model and this spin VCA, spin CPT is investigated in subsection 3.1.4
and a supercluster construction is tested. As spin CPT turns out to lead to no significant
improvement over exact diagonalization, this route is not pursued in the remainder of this
thesis. Only a few characteristic results are shown; application of SCPT to more models
and additional results are given in the appendix B.
After this excursus to pure spin systems in subsection 3.1.4, the self-energy functional
theory and the variational cluster approximation are introduced in the next section for
purely electronic models. Afterwards the latter is also applied to a model containing local
interactions with spins.

Green Function within Lehmann Representation 3.1.1

In the following, the retarded two-times Green function is used. For two operators Â, B̂
it is defined as

GAB(t, t′) = 〈〈Â(t), B̂(t′)〉〉
= −iθ(t− t′)〈[Â(t), B̂(t′)]−s〉,

where 〈. . . 〉 denotes the thermal average and [Â, B̂]−s = ÂB̂ − s · B̂Â denotes the
(anti)commutator for s = (−)1. If both operators are of fermionic type s = −1, if
one or both operators are bosonic s = 1. Time dependence of the operators is included
in the Heisenberg picture:

Â(t) = eiK̂tÂe−iK̂t, K̂ = Ĥ − µN̂.
In order to do the thermal average, a trace over the set of eigenstates |n〉 of K̂ has to be
done:

GAB(t, t′) = −iθ(t− t′)eβΩ
∑
n

〈n|e−βK̂ [Â(t)B̂(t′)− s · B̂(t′)Â(t)]|n〉, β = 1/T

= −iθ(t− t′)eβΩ
∑
n,m,m′

e−βEn
[
ei(t−t

′)(En−Em)〈n|Â|m〉〈m|B̂|n〉

−s · e−i(t−t′)(En−Em′ )〈n|B̂|m′〉〈m′|Â|n〉
]
.

In the second line two complete sets 1 =
∑

m |m〉〈m| have been inserted and 〈n|Â(t)|m〉 =

eit(En−Em)〈n|Â|m〉 was used. A Laplace transformation into frequency space leads to:

GAB(ω) = −i
∫ ∞

0

dtei(ω+iδ)teβΩ
∑
n,m,m′

e−βEn
[
eit(En−Em) · · · − s · e−it(En−Em′ ) . . .

]
= eβΩ

∑
n,m,m′

e−βEn

[
〈n|Â|m〉〈m|B̂|n〉

ω + iδ − (Em − En)
− s · 〈n|Â|m

′〉〈m′|B̂|n〉
ω + iδ − (En − Em′)

]
,



Section 3.1. Green Functions and Cluster Perturbation Theory 39

where iδ was added to keep the poles off the real axis. At zero temperature only the
ground state |Ω〉 with energy E0 contributes to the set |n〉 and the Green function reads:

GAB(ω) =
∑
m,m′

[
〈Ω|Â|m〉〈m|B̂|Ω〉
ω + iδ − (Em − E0)

− s · 〈Ω|Â|m
′〉〈m′|B̂|Ω〉

ω + iδ − (E0 − Em′)

]
.

As the techniques that are discussed in the following will be carried out at zero tempera-
ture, the discussion in this section focusses now on the zero temperature Green function
for electrons. The operators Â and Â are therefore chosen to be fermionic creation and
annihilation operators ĉ(†)

µ . In this notation, the composite indices µ and ν contain site,
spin and orbital information.
There exist a number of sum rules and symmetry relations for Green functions, which
will be used in the following. One of the most important ones is the sum rule for the
frequency-dependent Green function:

1

π

∫ ∞
−∞

GAB(ω)dω = −i〈[A,B]s〉

It can be reformulated in terms of Q matrices to check for convergence of the underlying
(Band) Lanczos algorithm (see next paragraphs). Especially for the electron/hole Green
function where the operators A and B are fermionic creation and annihilation operators
for electrons A = ĉ†α, ĉβ and vice versa, the anticommutator simply amounts to δαβ.
Considering 2N values of α and β, e.g., electrons with two spin orientations on N lattice
sites in one orbital, the sum rule reads

Tr
1

π

∫ ∞
−∞

Gc(ω)dω = 2N.

Using Q-Matrices in the Lehmann Representation

For a finite system of N lattice sites, the Green function is written as

Gµν(ω) = 〈Ω|ĉµ
1

ω −H + E0

ĉ†ν |Ω〉+ 〈Ω|ĉ†ν
1

ω +H − E0

ĉµ|Ω〉.

The first term is sometimes called electron part as it contains excitations when adding an
electron. Removing an electron can be viewed as adding a hole, which is why the second
term is sometimes referred to as the hole part. The Lehman representation of the Green
function, which was introduced in the previous subsection reads:

Gµν(ω) =
∑
a

〈Ω|ĉµ|a〉
1

ω − Ea + E0

〈a|ĉ†ν |Ω〉+
∑
b

〈Ω|ĉ†ν |b〉
1

ω + Eb − E0

〈b|ĉµ|Ω〉.

The split-up into two different sums is reasonable as the introduced states |a〉 and |b〉
belong to different quantum sectors of the Hilbert space. In the first sum the states have
one additional electron, in the second some one electron less than the ground state. By
using the “Q-matrix” notation introduced by Zacher et al. [ZEAH02]:

Q
(e)
µ,a = 〈Ω|ĉµ|a〉, Q

(h)
ν,b = 〈Ω|ĉ†ν |b〉

ω
(e)
a = Ea − E0, ω

(h)
b = E0 − Eb
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one can write the Green function as a product of Q matrices. In order to simplify the
notation, the matrices Q(h) and Q(e) are concatenated into one matrix of size 2N ×
(L(e) + L(h)), denoted by Q = Q(h) ⊕ Q(e). L(e/h) is the number of states in |a/b〉 that
enter the respective Q(e/h) matrices, the factor of two in “2N ” stems from the two spin
configurations that have to be included in the operators c(†)

µ . After concatenating also
the excitation energies of the electron and hole part, the Green function can be written
compactly as

Gµν(ω) =
∑
m

Q
(e)
µmQ

(e)∗
νm

ω − ω(e)
n

+
∑
n

Q
(h)
µnQ

(h)∗
νn

ω − ω(h)
n

=
∑
n

QµnQ
∗
νn

ω − ωn
.

The final step to arrive at a pure matrix notation consists in writing the frequency part
into a diagonal matrix

gmn(ω) =
δmn

ω − ωn
=

1

ω −Λmn

.

The Green function in Lehmann representation reads now

G(ω) = Qg(ω)Q†.

Except for a digression to finite-temperatures in appendix E, the zero-temperature Green
function will be used in this thesis. However, it is possible to use the Q-matrix notation
also for the finite-temperature Green function [AAPH06b, ZEAH02].

The Lanczos and Band Lanczos Algorithms

For small clusters, the Hamiltonian matrix can be diagonalized via full diagonalization
to obtain all eigenenergies and eigenvalues. However, already for modest system sizes,
the matrices which have to be diagonalized become too large to do an exact evaluation.
An iterative way to determine the lowest eigenvalue of a matrix is the Lanczos algorithm
[Ruh00, Saa03]. In order to apply it, the lowest two eigenvalues of the matrix have to
be well separated, otherwise a variant of it, the Band Lanczos algorithm[Fre00, MP89]
should be used. The Lanczos algorithm is based on repeatedly applying the Hamiltonian
H on an trial state |φ0〉 to project out the lowest eigenstate. In contrast to the power
method, where a power of H is applied to an initial state, the Lanczos method works in
the so-called Krylov subspace. This space is spanned by the vectors Hj|φ0〉:

K = span
{
|φ0〉, H|φ0〉, H2|φ0〉, . . .

}
.

Starting with a random vector |φ0〉 the next vectors are constructed iteratively via a
recursion relation [Dag94] in which they are orthogonalized against the two previous
Lanczos vectors:

|φn+1〉 = H|φn〉 −
〈φn|H|φn〉
〈φn|φn〉︸ ︷︷ ︸

an

|φn〉 −
〈φn|φn〉
〈φn−1|φn−1〉︸ ︷︷ ︸

b2n

|φn−1〉, |φ−1〉 = 0, b0 = 0.

Therefore, the vectors φn−1, φn, φn+1 are mutually orthogonal by construction. However,
orthogonality can be lost after a large number of iterations as numerical errors sum up.
There are ways to cure the loss of orthogonality [Ruh00, Saa03], but in most cases the
lowest eigenvalue has converged before these losses of orthogonality show up.
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When using normalized Lanczos states, the Hamiltonian expressed in the Lanczos basis
has the tridiagonal form

H =



a0 b1 0 0 . . . 0

b1 a1 b2 0 . . . 0

0 b2 a2 b3 . . . 0
...

...
...

... . . . ...
0 0 0 0 . . . aN


,

which allows the use of fast routines to diagonalize this matrix.
A stop criterion for this iterative procedure is the convergence of the lowest eigenvalue
of H. The lowest eigenvalue Ẽ0 of the matrix in the Lanczos basis and its correspond-
ing eigenvector Ω̃ are then used as an approximation of E0 and |Ω〉. In practice, during
the Lanczos recursion only the coefficients {an} and {bn} as well as three basis states
φn−1, φn, φn+1 have to be stored to calculate Ẽ0. To calculate |Ω̃〉, one has to do a
second run with the same initial vector |φ0〉.

In order to use the semi-analytical method of calculating the self-energy functional in VCA
(see section 3.2.2), the Green function has to be written in the Lehmann representation.
When resorting to the Q-matrix notation the so-called Band Lanczos algorithm [Fre00,
MP89] can be used, where more than one initial vector is used to span the Krylov subspace:

H = span{|φ1〉, |φ2〉, . . . , |φp〉, H|φ1〉, H|φ2〉, . . . , H|φp〉, . . . , (H)K |φ1〉, . . . , (H)K |φp〉}.

Similar to the simple Lanczos algorithm, the algorithm starts with normalized states

|φµ〉 =
c†µ|Ω〉√
〈Ω|cµc†µ|Ω〉

.

A recursion relation is used to then produce the next candidate vectors, which are orthog-
onalized against previous Lanczos vectors. This includes two orthogonality conditions:
At each iteration j, the Lanczos vectors Φj = [|φ1〉 |φ2〉 . . . |φj〉] have to be orthogonal:

Φ∗jΦj′ = 1j.

Additionally, the candidate vectors |φ̃j+1〉, . . . , |φ̃j+pj〉 for the next iteration are con-
structed to be orthogonal to the already existing Lanczos vectors:

Φ∗j |φ̃k〉 = 0, ∀k = j + 1, . . . , j + pj.

Many vectors are converging in parallel during the recursion scheme. It is therefore
possible that after an iteration j the new created vector |φ̃k〉 is linear dependent to previous
Lanczos vectors. For the simple Lanczos algorithm the recursion would be stopped at this
point, as the Krylov space is already spanned by the previous vectors. In case of the Band
Lanczos method, this indicates that one of the vectors is converged, but the rest of the p
vectors can still be improved in the next iterations. Therefore, the current Lanczos vector
|φ̃k〉 has to be deflated and the algorithm continues with p− 1 vectors:

|φ1〉, . . . , |φp〉, . . . , (H)j|φ1〉, . . . , (H)j|φk−1〉, (H)j|φk+1〉, . . . , (H)j|φp〉,
(H)j+1|φ1〉, . . . , (H)j+1|φk−1〉, (H)j+1|φk+1〉, . . . , (H)j+1|φp〉, . . .
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This means, that any time a deflation has to be performed, the number of newly created
candidates pj at iteration j is reduced by one. In order to decide when to perform a
deflation, several criteria can be used. Here, the norm of the new Lanczos vector is used
as a deflation criterion. Instead of deleting the vector for any non-zero overlap (so-called
exact deflation), a threshold value dtol is used as a tolerance. Without deflation the pro-
jected Hamiltonian has a diagonal band. Each time a linear dependent candidate vector is
deleted, the bandwidth of the projected band matrix is reduced. As a consequence of this
non-exact deflation, at each deflation additional off-band elements occur in the projected
matrix.

The simple Lanczos algorithm is recovered from the Band Lanczos algorithm in the case
of only one start vector. In contrast to the simple Lanczos algorithm, the deflation rule
prevents artificial degeneracy due to numerical round-off errors (so-called ghost states). In
the Band Lanczos algorithm two Lanczos vectors which converge to the same eigenvalue,
correspond to a true degeneracy of this eigenvalue. It can be hence used to check for
energetic degeneracy of the ground state.
When comparing the calculation of the Green function with the Band Lanczos algorithm
to the calculation with the ordinary Lanczos method (see appendix A), the Band Lanczos
algorithm is faster. As the states |φµ〉 converge in parallel, only two runs (one for the
electron- and one for the hole-part of the Green function) of the Band Lanczos algorithm
with 2N start vectors are needed. With the simple Lanczos algorithm each matrix element
of the Green matrix has to be calculated separately, which leads to N ∗ (N + 1)/2 runs.
Thereby, using the Band Lanczos algorithm is roughly a factor N2 faster. The drawback
of the method lies in its larger memory requirements. Instead of three vectors in case of
the simple Lanczos algorithm, (2Nc + 1) vectors have to be stored during the iterations
of the Band Lanczos algorithm [Fre00, Sén08a].
In practice, some parameters such as the deflation tolerance or the convergence criterion
have to be adjusted properly to avoid orthogonality leaks and to ensure the convergence
of the algorithm. For most cases, a deflation tolerance of dtol = 10−9 and a check of
the convergence up to 5 ∗ 10−11 of the lowest eigenvalue were sufficient. The convergence
criterion is checked after the first p̃ = 4 · p iterations at each iteration. In addition,
a separate check for the resulting total weight of the Green matrix has been included.
Depending on the outcome of this check, the values of p̃ and dtol are then changed to
improve the result.

Calculating the Green function in Q-matrix notation

Compared to the simple Lanczos algorithm, one of the advantages of the Band Lanczos
algorithm is the possibility to calculate the Green function within the above mentioned
Q-matrix formalism. In this formalism, the excited states |n〉 and |m〉 are the same within
the Q matrix. Within the ordinary Lanczos algorithm every element of the Green matrix
is calculated with a different approximate set of vectors which does not lead to a common
set of poles for all matrix elements. Including all different sets of poles for the 2N Lanczos
runs would result in a huge Q-matrix. Its diagonalization would be barely possible for
larger clusters. Within the Band Lanczos algorithm all vectors φµ converge in parallel.
Hence a common set of poles is built up.
At the end of the Band Lanczos run, the cluster HamiltonianH ′ is projected on the Krylov
subspace spanned by R Lanczos vectors |k〉, leading to the matrix T. After diagonalizing
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this band-like matrix, eigenvalues θi and (normalized) eigenvectors zi are obtained, which
are then used to construct the Lanczos eigenstates

|m̃〉 =
∑
k

zm̃k|k〉.

Projecting the vectors |φµ〉 on the eigenstates of T leads to the Q(e/h) matrices. They can
be computed as

Qµm̃ = 〈φµ|m̃〉
=

∑
k

zm̃k〈k̄µ|k〉 =
∑
k

zm̃kTµk.

The corresponding eigenenergies amount to ωm = ±(θm − E0). As a non-zero deflation
tolerance is used, the sum cannot be restricted and has to be performed over all k.
For the calculation of Gµν,e/h(ω) one thereby uses an approximative set of eigenvectors |m̃〉
and hence introduces an error. States which converge fast are responsible for excitations
with large weight. As these are dominant in the calculation of the self-energy functional Ω
[AAPH06b, Pot03a, Pot03b], the error introduced by using the Band Lanczos technique
are small. The concatenated Q-matrix has now a smaller dimension (2Nc×R) with R <
(L(e) + L(h)). Nevertheless, as long as orthogonality of the Lanczos vectors is preserved,
the relation QQ† = 12Nc×2Nc is still valid as it amounts to the commutation relations
{cµ, c†ν} = δµν [Sén08a].

The Gorkov-Green Function and Nambu Formalism 3.1.2

In order to describe superconductivity one has to allow for the creation and annihila-
tion of pairs of electrons (Cooper pairs). The concept of Green functions has therefore
been extended by L.P. Gorkov [Gor58] and Y. Nambu [Nam60] to so-called anomalous or
Nambu-Gorkov-Green functions:

Fab(ω) =
∑
m

{ 〈Ω|ca↑|m〉〈m|cb↓|Ω〉
ω − (Em − E0) + iη

+
〈Ω|cb↓|m〉〈m|ca↑|Ω〉
ω + (Em − E0)− iη

}

F †ab(ω) =
∑
m

{
〈Ω|c†a↓|m〉〈m|c†b↑|Ω〉
ω − (Em − E0) + iη

+
〈Ω|c†b↑|m〉〈m|c†a↓|Ω〉
ω + (Em − E0)− iη

}
Here, it is important to note, that the states |m〉 are those with one additional electron
and one electron less than the ground state’s. Splitting the Green function up into two
with one spin species each:

G↑ab(ω) =
∑
m

{
〈Ω|ca↑|m〉〈m|c†b↑|Ω〉
ω − (Em − E0) + iη

+
〈Ω|c†b↑|m〉〈m|ca↑|Ω〉
ω + (Em − E0)− iη

}

G↓ab(ω) =
∑
m

{
〈Ω|c†a↓|m〉〈m|cb↓|Ω〉
ω − (Em − E0) + iη

+
〈Ω|c†b↓|m〉〈m|ca↓|Ω〉
ω + (Em − E0)− iη

}
leads the to the Nambu-Gorkov matrix

GGorkov =

[
G↑ F
F † G↓

]
.
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This can be rewritten with the operators A
(e)
a =

(
ca↑

c†a↓

)
, A

(h)
a =

(
c†a↑
ca↓

)
as:

GGorkov = 〈〈Â(e)
a (t)Â

(e)†
b (t′)〉〉+ 〈〈Â(h)∗

b (t′)Â(h)T
a (t)〉〉.

Adopting the „Q-matrix notation“ from 3.1.1 for the Nambu-Gorkov matrix leads to

Q(e,NG)
an =

(
〈Ω|ca↑|n〉
〈Ω|c†a↓|n〉

)
, Q(h,NG)

am =

(
〈Ω|c†a↑|m〉
〈Ω|ca↓|m〉

)
Indeed, carrying out this calculation gives

Q(e,NG)
a Q̂

(e,NG)†
b =

(
〈Ω|ca↑|n〉(〈Ω|cb↑|n〉)∗ 〈Ω|ca↑|n〉(〈Ω|c†b↓|n〉)∗
〈Ω|c†a↓|n〉(〈Ω|cb↑|n〉)∗ 〈Ω|c†a↓|n〉(〈Ω|c†b↓|n〉)∗

)

Q(h,NG)∗
a Q̂

(h,NG)T
b =

(
〈Ω|c†b↑|m〉(〈Ω|c†a↑|m〉)∗ 〈Ω|cb↓|m〉(〈Ω|c†a↑|m〉)∗
〈Ω|c†b↑|m〉(〈Ω|ca↓|m〉)∗ 〈Ω|cb↓|m〉(〈Ω|ca↓|m〉)∗

)

One should note that |n〉 are states in the quantum sectors (N e
tot + 1, Sztot + 1/2) and

(N e
tot − 1, Sztot + 1/2), whereas |m〉 are out of (N e

tot + 1, Sztot − 1/2) and (N e
tot − 1, Sztot − 1/2).

One therefore still can split the calculation up into two Band Lanczos runs.
Therefore:

QNambu =
(

Q(e,NG) Q(h,NG)∗
)
, ΛNambu =

(
ωn −ωm

)
, gNambu(ω) =

1

ω −ΛNambu

And finally:
GGorkov = QNgN(ω)Q†N.

One has to be careful with the down-spin part of the Green function as the block in
Nambu-Gorkov notation amounts to 〈〈c†a↓ca↓〉〉. Anticommuting these operators leads to
a change in sign and to additional terms for local operators in the Hamiltonian, which
can be accounted for in the V matrix. For example anticommutation of the operators in
G↓ leads in case of the chemical potential µ to a constant term L · (µ− µ′).

Particle-Hole Transformation to avoid Nambu Formulation

As long, as one is not interested in any non-local spin-flip terms or spin-flipping Weiss
fields, it is possible to avoid rewriting everything in Nambu’s formulation by using an
unitary transformation instead. Changing particle creation operators for one spin species,
say down spin electrons, into hole destruction operators

ĉi↑ → ĉi, ĉ†i↓ → d̂i,

changes a standard Hubbard model as follows

HHubbard =
∑
〈i,j〉

tij(c
†
icj − d†idj)− U

∑
i

ncin
d
i − µ

∑
i

(nci − ndi ) +
∑
i

(Unci − µ).

The interaction is now attractive and the one-particle terms changed; the constant terms
have to be taken care of when calculating expectation values or the self-energy functional.
So far the Hamiltonian has only been rewritten. The advantage of the transformation lies
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in writing additional superconducting Weiss fields now as hybridization terms between c
and d operators:

HWeiss,SC = D
∑
i,j

∆ij(c
†
idj + d†icj), HWeiss,AF = M

∑
i,j

eiQ·R(nci + ndi ).

Therefore the matrix of one-body terms changes:(
t↑ − µ+ eiQ·RM 0

0 t↓ − µ− eiQ·RM

)
−→

(
t↑ + U − µ+ eiQ·RM ∆

∆ µ− t↓ + eiQ·RM

)

In both cases, using the Gorkov-Green function and Nambu formulation or doing a
particle-hole transformation, the variational cluster approximation can be used to in-
vestigate superconductivity. Before turning to the self-energy functional theory in section
3.2 and finally to the variational cluster approximation in 3.2.2, in the following subsection
the cluster perturbation theory is introduced.

Cluster Perturbation Theory: Introducing the Cluster Green

Function 3.1.3

Cluster methods such as the variational cluster approximation discussed in section 3.2.2
use a tiling of the original lattice system into a superlattice of clusters. In this subsection,
which is based on reference [Sén08a], the concept of a cluster tiling and its consequences
for the (cluster) Green function are discussed. In principle, these clusters can differ, but
for the moment a tiling with identical clusters is considered, see figure 3.1.

r = r̃ + R

k = k̃ + K

(π, π)

(0, 0)

FT

Figure 3.1: A two-dimensional square lattice is tiled into a superlattice of identical 2 × 2
clusters. Each lattice vector r can be then decomposed into a superlattice vector r̃ and a cluster
vector R. After a Fourier transformation to momentum space each vector k can be similarly
decomposed into vectors K and k̃.

Therefore, new coordinates are introduced, which are made up of cluster vectors R̃ and
superlattice coordinates r̃. With this tiling of the lattice the overall translational symme-
try is broken, but there is still translational symmetry within the new superlattice. This
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symmetry is exploited by doing a partial Fourier transformation with respect to the su-
perlattice coordinate r̃ −→ k̃. If one would do a full Fourier transformation, the Brillouin
zone would be made up of reciprocal superlattice vectors k̃ and of vectors K which belong
both to the original and the superlattice Brillouin zone, see figure 3.1. When applying
the partial Fourier transformation both to the clustered and the original lattice system,
all one-body terms that differ between these two systems can be cast into a k̃-dependent
matrix V (k̃).

Within the so-called cluster perturbation theory (CPT) [GV93, SPPL00], a precursor of
the variational cluster approximation which will be discussed later, this matrix enters the
calculation of the Green function in first order perturbation theory as:

G−1
CPT (ω,k) = G′−1(ω)−V(k).

Here, G′ denotes the cluster Green function, which can be expressed by the Q-matrices
introduced before. The CPT Green function can then be written as [AAPH06a]:

GCPT (ω,k) =
1

(Qg(ω)Q†)−1 −V(k̃)
, g(ω) = (ω −Λ)−1

= Qg(ω)Q† + Qg(ω)Q†V(k)Qg(ω)Q† + . . .

= Q
(
g(ω) + g(ω)Q†V(k)Qg(ω) + . . .

)
Q†

= Q
1

g−1(ω) + Q†V(k)Q
Q†.

The eigenvalues of the matrix L = Λ + Q†V(k̃)Q in the denominator correspond to the
poles of the CPT Green function. It can be diagonalized using a hermitian matrix U:

M(k̃) = U(k̃)L(k̃)U(k̃)† ,Mmn = δmnω̄m.

Thereby the CPT Green function can be written in a form similar to Q matrix notation
of the cluster Green function:

GCPT(k̃, ω) = (QU(k̃))
1

ω −M(k̃)
(QU(k̃))†

= Q̄(k̃)
1

ω −M(k̃)
Q̄(k̃)†.

In order to obtain the spectral function of the lattice system, one first of all has to restore
translational invariance that is broken by the cluster tiling. Following the reperiodization
prescription of Sénéchal et al. [SPPL00], this can be done approximatively via

Grep.(k, ω) =
1

Lc

∑
R,R′

eik·(R−R
′)(GCPT)R,R′(k, ω)

= Q̂(k)
1

ω −M(k)
Q̂†(k).

The matrices Q̂(k) are the “periodized” Q̄ matrices:

Q̂l(k) = PT
m(k)Q̄ml(k), Pm(k) =

1√
Lc

eik·Rm ,
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where Lc denotes the number of lattice sites inside the cluster.
Together with the partial Fourier transformation with respect to the superlattice, the full
Fourier transformation should be obtained in order to fully restore translational symmetry,
that is

Gk,k′(ω) =
1

NcLc

∑
R′,R̃′

eik·(R
′−R̃′)GR′,R̃′(k

′, ω).

Here Nc denotes the number of clusters of the lattice tiling. The reperiodization prescrip-
tion amounts to taking only the diagonal part Grep.(k, ω) = δk,k′Gkk′(ω) and setting the
off-diagonal parts to zero. With this notation the spectral function reads

A(k, ω) = −2 lim
η→0

Im Grep.(k, ω + iη)

= −2 lim
η→0

Im

(∑
l

|Q̂l(k)|2
ω + iη − ω̂l

)

= 2 lim
η→0

∑
l

|Q̂l(k)|2η
(ω − ω̂l)2 + η2

.

Thereby, the spectral function is given by a sum of Lorentz peaks at positions ω̂l with
weights |Q̂l(k)|2. When plotting the spectral function, a finite broadening η ∼ 0.02− 0.1
is added to visualize the peaks.
In the next section, variational cluster approximation will be discussed. There, after a
variational principle is applied, an approximated lattice Green function is found, from
which the spectral function can be obtained according to the formulae that were shown in
this subsection. Although it is in principle possible to reperiodize the self-energy instead of
the Green function (both quantities are connected via the Dyson equation), it was shown
in reference [Sén08a], that a reperiodization of the self-energy leads to inferior results,
such as spectral weight in the Mott gap in case of the 1D Hubbard model. Before turning
to self-energy functional theory and the variational cluster approximation, it is shown in
the next subsection how cluster perturbation theory can be adapted to treat pure spin
systems. There, the concept of supercluster constructions is used, which is explained in
the following for standard CPT on the 1D Hubbard model.

Supercluster Construction within Cluster Perturbation Theory

In the following the 1D Hubbard model will be investigated with cluster perturbation
theory (CPT) using superclusters. This was done first by Sénéchal et al. in 2002 [SPP02]
and most of the notations are adopted here. Although CPT has been broadly applied
to a lot of different model systems of strongly correlated electrons, the supercluster con-
struction has not been used much since. Before the idea of using CPT with superclusters
is transferred to spin systems in the next subsection, the technique and some numerical
details are revisited here for the 1D Hubbard model.
Due to Umklapp scattering the 1D Hubbard model is gapped for all finite interaction
strengths U/t > 0 [EFK+05]. It can be solved exactly using the so-called Bethe ansatz
[LW68, EFK+05], which goes back to Bethe who applied this way of parametrizing the
eigenvectors to solve the one-dimensional Heisenberg model [Bet31].

One of the most important entities of this technique is the Green function G(k, ω) and
the spectral function A(k, ω) = −2 limη→0 ImG(k, ω + iη). Usually, one either uses a
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grand canonical formulation, where the chemical potential µ is already included in the
Hamiltonian, or one shifts the spectral function by µ. Here, the unshifted cluster Green
functions and their spectral functions are used to construct a supercluster and to deter-
mine an effective chemical potential for the supercluster afterwards. However, it should
be noted that compared to the variational cluster approximation, no variational scheme
is applied within CPT. The parameters of the original system and the clustered reference
system only differ in the inter-cluster hopping terms, which are treated in the first order
perturbation theory, see figure 3.2.

Figure 3.2: Tiling of the infinite 1D model (top) into identical clusters, which are then
combined into superclusters (bottom) or used as single clusters (middle) to approximate the
Green function via cluster perturbation theory. The arrows indicate inter-cluster hopping terms,
which are treated in first order perturbation theory. Blue arrows which connect (super-)clusters
lead after partial Fourier transformation to a k-dependence of G(k, ω).

To derive the density of states (DOS) from the Green function, one usually integrates
over k-space. After integrating the density of states from −∞ to the chemical potential
µ, the electron density n is obtained:

DOS(ω) =

∫ π

0

A(k, ω) dk

n =

∫ µ

−∞
DOS(ω) dω

In the following this relation is used to determine the chemical potential. Starting from
an arbitrary upper integration limit µ̃ one can define µ by demanding that

ñ(µ̃) =

∫ µ̃

−∞
DOS(ω) dω

!
= n, for µ̃ = µ.

Figure 3.4 shows spectral function, DOS and integrated DOS for a single 12-site cluster
at half-filling and U/t = 4.0. Within the gap of the spectral function, the integrated DOS
stays at ñ = 1, which means that two values µ− and µ+ characterize the region, where
ñ(µ) = n.
Returning to the electron density n, integration of the spectral function gives

n =

∫ π

0

dk

∫ µ

−∞
dωA(k, ω)

= 2

∫ π

0

dk
∑
l

|Q̂l(k)|2, ωl < µ.
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Figure 3.3: Spectral function A(k, ω), density of states (DOS) and integrated spectral weight
n for a 12-site cluster with U/t = 4.0 and cluster filling ncl = 1.0. The broadening for the
spectral function was set to η = 0.1.

In practice, one can replace the integral over k by a sum over k if one treats a limited
number of (super-)clusters. This translates into a finite resolution of the density of states
and after integration over ω finally to an approximated electron density n, as can be seen
in figure 3.4. For most calculations a number of Nk = 1000 k-points is enough to achieve a
sufficient precision of n. However, as the deviations from the exact Bethe ansatz solution
were found to be largest at intermediate interaction strength [SPP02], the figure shows
results for U/t = 4, where in case of the supercluster consisting of two and three clusters
a value of Nk = 1000 already leads to errors of ∆(µ̃/t) ≈ 0.005.
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Figure 3.4: Left panel: Integrated density of states ñ =
∫ µ̃
−∞DOS(ω)dω as a function of µ̃.

The chemical potential µ is determined via comparison of ñ with the known supercluster density
nsc = 0.4. Two calculations with 1000 and 10000 k-points are compared. Right panel: Electron
density n as a function of chemical potential µ for superclusters of Lc = 10 site clusters. The
data is compared to the Bethe ansatz solution, which is taken from reference [SPP02]1.

In addition to errors due to k-space discretization, finite-size effects might influence the
determination of n, especially if the value of µ is e.g. close to a sharp peak of the DOS
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or close to a gapped region of the spectral function.
One possible way of avoiding these imprecisions is to change the cluster size and thereby
the spectral function. Another possibility is the use of superclusters, as the supercluster
construction also leads to a different spectral function.

In order to arrive at a cluster with total spin Szc = 0, only clusters with an equal number
of up- and down-spin electrons were used. For a 10-site cluster this leads to 11 possible
electron densities. Due to particle-hole symmetry of the model, it is sufficient to investi-
gate only half of the n-vs.-µ curve.
The right panel of figure 3.4 shows the electron density n as a function of chemical po-
tential µ for different superclusters, which all consist of 10-site clusters but differ in the
number of clusters that make up the supercluster. Inside the supercluster, clusters with
different electron filling can be combined to allow for more electron densities inside the su-
percluster than the Nn,c densities that can be realized within one of the clusters. Thereby
it is possible to realize Nn,c · Nc electron densities within the supercluster. Still, differ-
ent combinations of cluster densities lead to the same supercluster density. The cluster
densities of the superclusters of figure 3.4 were chosen such, that only clusters with two
different electron densities constituted the supercluster. For example, for a supercluster
with electron density n = 0.25 consisting of Nc = 4 10-site clusters, three clusters with
electron density n = 0.2 and one cluster with the next higher electron density of n = 0.4
were combined into a supercluster.

Treating Spins: Cluster Perturbation Theory for Spin Models 3.1.4

A spin formulation of cluster perturbation theory was formulated in 2010 by Ovchinnikov
et al., who applied it to a dimerized Heisenberg chain [OBS10]. In this model the exchange
interaction Jij between nearest neighbor sites alternates. Even bonds have a strength of
J1, odd bonds a strength of J2 � J1. By choosing a tiling of the infinite system into
identical clusters such that inter-cluster interactions are always of strength J2, they could
motivate to treat these interaction terms within first-order perturbation theory and use
spin cluster perturbation theory (SCPT).

For ordinary (an)isotropic Heisenberg chains the treatment of inter-cluster interactions
by first order perturbation theory is not well justified, as intra- and inter-cluster interac-
tions have the same strength J . Introducing the cluster tiling of the infinite system and
using SCPT therefore leads to an error. However, as large cluster sizes can be treated
within this method by means of an exact diagonalization solver (cluster sizes of L > 20
can be used), the ratio of inter-cluster to intra-cluster bonds is small and the resulting
additional errors become managable. In contrast to the spin-version of variational cluster
approximation that was proposed by Filor and Pruschke [FP10, FP14], the spin cluster
perturbation theory considered here works directly at zero temperature.

The idea of SCPT is the same as for standard CPT, which is why it will be described
only briefly in the following. A more detailed discussion can be found in the original
publication by Ovchinnikov et al. [OBS10]. One splits the system into clusters with

1Bethe ansatz curve taken from reference [SPP02]. The calculation follows the derivation of Lieb and
Wu [LW68]; a detailed derivation can also be found in chapter 6 of the book by Essler et al. [EFK+05].
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Hamiltonian H0 and an inter-cluster part V , therefore H = H0 + V . In contrast to CPT,
V contains inter-cluster spin interactions V =

∑
i,j V

ij
abSiaSjb. Based on works by Vaks,

Larkin and Pikin, who used spin diagram techniques to derive a spin self-energy [VLP67],
an equation can be obtained which connects the Green function G with the cluster Green
function G0 [IS88]:

G−1 = G−1
0 − V.

This equation is known as Larkin equation. As the spin operator can be decomposed into
a longitudinal and a transversal part, the (cluster) Green function is also split into these
components:

G−+
ij (τ) = −1

2
〈〈S−i (τ)S+

j (0)〉〉, Gzz
ij (τ) = −〈〈Szi (τ)Szj (0)〉〉.

In this compact notation the time ordering and thermal average are included as 〈〈A(τ)B(0)〉〉 =
Tr {e−βH T̂A(τ)B(0)}/Tr {e−βH}. Similar to an electronic Green function these can also
be written in Lehmann representation at zero temperature:

G−+
ij (ω) =

∑
n

〈0|S−i |n〉〈n|S+
j |0〉

ω + iη − En + E0

Gzz
ij (ω) =

∑
n6=0

〈0|Szi |n〉〈n|Szj |0〉
ω + iη − En + E0

However, for Gzz it is important to get rid of the ground state contribution as one is only
interested in excitations. The remaining weights 〈0|Szi |n〉 can be calculated as follows:

〈0|Szi |n〉 =
∑

a,b〈0|a〉〈b|0〉〈a|Szi |b〉

=
∑

a,b f(a)〈0|a〉〈b|0〉δa,b, f(a)δa,b = ±1

2
〈a|b〉

=
∑

a f(a)〈0|a〉〈a|m〉.

Once the cluster Green function and the Fourier transformed V matrix Vab(Q) =
∑

R V
0R
ab e

iRQ

are set up, the approximated Green function is calculated via the Larkin equation. Using
the reperiodization prescription of reference [SPPL00], one periodizes the Green function
with respect to the superlattice and obtains

Gα
CPT (k, ω) =

1

L

L∑
i,j=1

Gα
ij(k, ω)e−ik(ri−rj), α ∈ {zz,−+}.

Spin Structure Factor and Magnetization Curves within Spin Cluster Perturbation
Theory

Similar to the evaluation of the spectral function A(k, ω) for electronic systems, the spin
structure factors Szz and S−+ are obtained from the longitudinal and transversal spin
Green function:

Sα(k, ω) = − 1

π
lim
η→0+

Im Gα
CPT (k, ω + iη), α ∈ {zz,−+} .
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In order to calculate the magnetization, one usually makes use of sum rules. This can be
seen directly in the case of a finite-size chain which can be treated within exact diagonal-
ization:
1

π

∫ ∞
0

dω
1

L

∑
k

S−+(k, ω) =
1

π

∫ ∞
0

dω
1

L2

∑
k

∑
l,m

eik(l−m)
∑
n

2πδ(ω − En + E0) ·

〈Ω|S−l |n〉〈n|S+
m|Ω〉

=
1

L

∑
l,m

δl,m
∑
n

〈Ω|S−l |n〉〈n|S+
m|Ω〉

=
1

L

∑
j

〈Ω|S−j S+
j |Ω〉, S−j S+

j = S2
x + S2

y − i~(SySx − SxSy)

=
1

2
− 〈Sz〉

Within spin cluster perturbation theory, instead of G0 one has to use the CPT-Green
function GCPT =

∑
l,m e

−ik(l−m) G0

1−V (k)G0
and it is far from clear whether the sum rules

are still fulfilled. Nevertheless, by taking this equation one can define the approximated
magnetization of SCPT as

〈Sz〉CPT =
1

2
− 1

π

∫ ∞
0

dω
1

L

∑
k

S−+
CPT(k, ω).

Using the Band Lanczos algorithm to determine the Green function via the Q-matrix
formulation, the last term can be evaluated as

1

π

∫ ∞
0

dω
1

L

∑
k

S−+
CPT(k, ω) =

1

π

∫ ∞
0

dω
1

L

∑
k

lim
η→0+

∑
r

1

π

|Q̃r(k)|2η
(ω − ω̃r(k))2 + η2

=
1

L

∑
k

∑
r

|Q̃r(k)|2

=
1

L

∫
dk|Q̃(k)|2,

where Q̃(k) = 1/
√
Le−ik·RQU(k) includes both the inter-cluster interactions via V(k)

in U(k) and the reperiodization factor 1/
√
Le−ik·R. As expected for every translation

symmetric one-particle expectation value [Sén08a], the obtained magnetization is identical
for ED and single-cluster SCPT, see figure 3.5.
Any finite cluster always leads to a discrete set of poles in S(ω), which is represented in
ω̃r. If one now takes the limit η → 0+ and performs the exact frequency integration, one
arrives at the last line of the equation shown above. Due to the finite size of the cluster
this treatment does not lead to a smooth magnetization curve, but instead to steps in
the function (shown in figure 3.5), which merge only in the limit Lc → ∞ to form a
continuum.
So far, single cluster SCPT has been described. In the following subsection, it is explained
how a supercluster construction can be used to obtain magnetization curves.

Magnetization Curves via Superclusters

The idea to access more magnetizations by using superclusters than via exact diagonal-
ization goes back to the construction by Sénéchal et al. [SPP02]. In the case of SCPT



Section 3.1. Green Functions and Cluster Perturbation Theory 53

Figure 3.5: Left panel: Comparison of the magnetization as a function of magnetic field
strength h of a one-cluster CPT of Lc = 10 sites (red dots) with ED (black dots) shows slight
improvement. Right panel: When determining h for each cluster magnetization, one notices that
compared to the steps of ED within CPT the steps are often cosine-shaped, what then leads to
a shift of h (red vs. black dots). Both panels show results for the isotropic Heisenberg chain
with a equidistant k-discretization with Nk = 200 points. The solid curve is the approximate
magnetization curve according to reference [MTBB81].

this is achieved by combining M clusters of L spins each, but with different magnetiza-
tions mi to one supercluster. The inter-cluster interaction is again treated in first order
perturbation theory — therefore one uses no additional approximation, but simply takes
advantage of the fact that the Green function is block diagonal. This supercluster is then
repeated periodically as before.

When using superclusters which consist of clusters of different magnetization, one also has
to think about how to take this into account when constructing the V matrix. Usually the
V = t−t′ contains all differences in one-body terms between original and clustered system.
When considering spin-spin interaction terms between clusters or superclusters, this is
not much different to the treatment without superclusters. In addition, the difference in
magnetization shows up in the diagonal terms, as they can be connected with an effective
magnetic field in the z direction.
The magnetization of each individual cluster is set at the beginning and would necessitate
a certain yet to be determined magnetic field h. This magnetic field is now rewritten in
terms of S− and S+ operators, which then enter in the V -matrices:

hSzi = −ih[Sxi , S
y
i ] = S+

i S
−
i − (Sxi )2 − (Syi )2

= h

(
S+
i S
−
i −

1

2

)
= h

(
1

2
− S−i S+

i

)
.
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This means, that ±h enters the V ±∓ matrix on the diagonal. In case of a 2-cluster
supercluster, the V matrix looks like this:

V −+ =



−h 0 . . . 0 0 . . . 0 Je−iLsck

0
. . . ...

... 0 0
... . . . 0 0 0

...
0 . . . 0 −h J 0 . . . 0

0 . . . 0 J −h 0 . . . 0
... 0 0

. . . ...

0 0
... . . . 0

JeiLsck 0 . . . 0 0 . . . 0 −h


.

For exact diagonalization the easiest way of obtaining the magnetization curve is to cal-
culate the energy as a function of external magnetic field and determine the crossings
between quantum sectors of different magnetization. However, here this is not easily pos-
sible as one works with an approximated Green function and not directly with ground
state energies, so one has to find another way to determine the dependence m(h).
Instead, h(m) is calculated, meaning that the supercluster magnetization

msupercluster =
1

M

M∑
i=1

mi
CPT

is fixed and the external magnetic field h that is consistent with this is determined. This
can be achieved by demanding

msupercluster
!

=
1

2
− 1

π

∫ ∞
h

dω
1

Nk

∑
k

S−+
supercluster(k, ω). (3.1)

In order to determine h for large superclusters, it can be useful to keep a small but fi-
nite η to broaden the steps in m. Instead of an exact frequency integration one then
turns to integrating the spin structure factor S−+

supercluster(k, ω) over k and ω numerically.
This seems strange since an exact analytical treatment should usually be preferred to
an approximate numerical treatment. Yet it turns out to have some advantages for the
computational calculation. To see this one has to keep in mind, that the Q̃ matrix is of
size N × R, where N = M · L and R =

∑M
i=1 Ri with Lanczos iteration numbers Ri of

typical size Ri ∼ 100 − 200. Hence, each sub-matrix Qi is not much of a problem, but
the resulting supercluster Q̃ matrix can become large and then leads to costly matrix
manipulations.
By using numerical frequency integration and a finite artificial broadening η, one can
calculate the Green function matrices Gij(ω) for each frequency in the integration and set
up the supercluster G(ω), which is now “only” a N ×N matrix. For the k-sum one is left
with matrix operations with this much smaller matrix size. Especially for superclusters
which consist of many clusters, this seems to be necessary in order to keep the numerical
cost manageable.

Another approach to combine clusters with different magnetization into one supercluster
consists in shifting the energies of the cluster Green functions “by hand”. As the individual
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cluster magnetization usually differs from the supercluster magnetization msc, the energy
difference through the applied magnetic field amounts to h · Lc · (msc − mc). When
taking this energy difference into account the magnetic field does not enter in the V
matrix and the lower integration threshold in equation (3.1) should be again equal to
zero. Still, the magnetic field strength h has to be chosen in such a way that the equation
is fulfilled. This second way of accounting for the inhomogeneous cluster magnetizations
within a supercluster is also tested in the following subsection. Both ways of constructing
a supercluster will lead to different results for the magnetization curve. This has to do
with the fact that the “full” spin operator is split into the transversal and longitudinal part.
Including a field in Sz direction in the calculation of the spin structure factor S−+(k, ω) is
therefore different from electronic CPT where a chemical potential µ enters the (cluster)
Green function directly.

Spin Structure Factor and Magnetization Curve of the Heisenberg Chain

Here, only some selected results for the spin structure factor and the magnetization curve
are shown for the isotropic Heisenberg chain. This prototypical quantum spin model can
be solved exactly using Bethe ansatz [Bet31]. Using this technique, magnetization curves
[MTBB81] and even spectral functions [KMCvdB11, CKSW12] are accessible, which make
it a good test case for SCPT.
For the plots of the spectral function the k-space has been discretized equidistantly with
N = 200 k-points and an artificial broadening of η = 0.02 is used. More results for the
spin structure factor, i.a. for the anisotropic Heisenberg chain and the J1-J2 Heisenberg
ladder, are shown in the appendix, see B.

SWC boundary 
(m=0)

SWC boundary 
(m=0.2)

Figure 3.6: Spin structure factor Szz(q, ω) using a 20-site cluster. The external magnetic field
h/J corresponds to magnetizations of m = 0 (left panel) and m = 0.20 . For comparison, the
limits of the spin wave continua contributing to Szz of an infinite Heisenberg chain are shown as
obtained in reference [MTBB81].

In reference [MTBB81], Müller et al. derived upper and lower boundaries of the two
spin wave continua (SWC) which they identified to contribute to the spin structure factor
Szz of an infinite Heisenberg chain 2. These limits are plotted for comparison in figure
3.6. As can be seen from the figure most of the weight of the spin structure factor stays
within the SWC boundaries in the case of zero magnetic field. The qualitative features
with respect to the relative positions of the poles of the spin structure factor and the

2More details on the spin wave continua of reference [MTBB81] are explained in the appendix, see B
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redistribution of weight for increasing magnetic field are well reproduced when comparing
to Bethe ansatz spectra from reference [CKSW12]. However, when plotting the spectra
logarithmically it is clearly visible that the structure factor shows small but finite weight
within the forbidden region ω/J < ε1L for h = 0 (and ω/J < ε2L for h 6= 0). This is due
to the reperiodization of the cluster spin Green function that is necessary within SCPT.
For larger clusters, the weight in this forbidden region becomes smaller, but still exists.
To make the contributions of the Lc different accessible k-points within the cluster visible,
the broadening has been chosen rather small (η = 0.02). When increasing the broadening,
the contributions smear out and form a more or less continuous spectrum.

For higher values of the magnetization m, deviations of the lowest excitations with con-
siderable weight and the lower boundary of SWC become apparent. The fact that the
lower boundary is not reached between 0 < q < q0 is a phenomenon which has been
encountered before in ED and is typical for finite-size chains [dCP62, MTBB81]. In fact,
as the first SWC with higher excitations is negligible in the limit Lc → ∞, one would
expect that the spectrum lies within the boundaries of the second SWC when the cluster
size becomes large.

When applying a magnetic field, an approximate formula for the magnetization curve was
derived in reference [MTBB81] based on Bethe ansatz calculations. For a given magnetic
field h, the magnetization m = Sztotal/L is then given approximatively as

m(h) =
1

π
arcsin

1

1− π/2 + π/h
, 0 ≤ h ≤ 2.
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Figure 3.7: Magnetization as a function of external magnetic field h/J . The data was obtained
by using superclusters consisting of Nc 10-site clusters. In the left panel, results from the first
supercluster construction described in the text are shown, the right panel shows data for the
second construction scheme. The solid curve is the approximate magnetization curve according
to reference [MTBB81].

Figure 3.7 shows the magnetization curve obtained by SCPT for both ways of constructing
a supercluster compared to the ED result. In contrast to standard cluster perturbation
theory, using a supercluster construction does not improve the results much.
In the left panel, the way of constructing a supercluster presented first in the previous
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section has been used. The number of viable supercluster magnetizations is enhanced by
a factor Nc compared to single-cluster SCPT. However, the magnetic fields that were de-
termined via equation (3.1) lead to only minor changes between the magnetizations that
can be realized within a single cluster. At large magnetic fields, where the magnetization
curve becomes quite steep, it is also difficult to achieve magnetic fields with reasonable
precision to resolve this slope.
When using the second proposed scheme for constructing a supercluster, the magnetiza-
tion curve seems to be much improved at first sight. The number of viable magnetizations
is of course unchanged, but the magnetic field strengths form a seemingly smooth curve
and do not lead to a step-like shape as expected from ED. Changing the number of clusters
inside the supercluster reveals the somewhat artificial nature of its construction. Between
magnetizations that can be realized on a single cluster, the supercluster construction leads
to a nearly linear interpolation only. This can be explained by the way it is generated —
the cluster Green functions are shifted with respect to the average supercluster magneti-
zation.
In this sense, no new information on the magnetization curve is gained from the super-
cluster construction, but it allows to access additional magnetization values via SCPT.

In the previous subsection a spin formulation of cluster perturbation theory has been
introduced and some characteristic results for the isotropic Heisenberg chain have been
presented. By investigating exactly solvable models like the isotropic and anisotropic (see
appendix B) Heisenberg chain, SCPT was shown to be a computationally efficient tool to
visualize the spin structure factor. Even the frustrated J1-J2-Heisenberg ladder has been
successfully treated within spin cluster perturbation theory, see appendix B.
However, compared to techniques like exact diagonalization which have comparable com-
putational cost, this (non-variational) cluster technique does not improve the results sig-
nificantly. Instead, SCPT could be considered to be a physically motivated interpolation
scheme between the available ED data points. Especially when adding an artificial broad-
ening η, smooth spin structure spectra can be obtained.
As the number of accessible magnetizations is limited to the number of cluster sites Lc+1,
a supercluster construction that proved to be useful in standard CPT was tested. The
supercluster construction in standard CPT was revisited and applied for the first time to
SCPT. Unfortunately, the supercluster construction lead only to minor improvements on
the magnetization curve compared to exact diagonalization.

Spin CPT can be considered to fill the gap between exact diagonalization and more
elaborate, but limited techniques like the spin VCA proposed in [FP14]. However, this
approach to treat spin systems will not be further pursued within this thesis. Instead, the
variational cluster approximation is introduced in the next section and afterwards used
for the investigation of the Hubbard and Kondo lattice model.
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Self-Energy Functional Theory and the
Variational Cluster Approximation 3.2

In the following section the self-energy functional theory (SFT) developed by Potthoff
[Pot03a, Pot03b] is introduced. Subsequently the variational cluster approximation is in-
troduced which is based on SFT. When including bath sites that are coupled to the cluster
sites, variational cluster approximation is sometimes called cluster dynamical impurity
approximation (CDIA) [Pot05] and the single-site version where the reference system
consists of one interacting site coupled to a non-interacting bath site is called dynamical
impurity approximation (DIA) [Pot03b]. Several conceptional and technical details of
the technique and its implementation are presented. The following subsections on the
self-energy functional and the variational cluster approximation are based on references
[Pot03a, Pot03b, Sén08a, Pot11, Pot14].

Self-Energy Functional Theory 3.2.1

For the derivation of Potthoff ’s self-energy functional theory (SFT), one assumes a system
with local interactions

H =
∑
α,β

tαβc
†
αcβ +

∑
α,β,γ,δ

Uαβγδc
†
αc
†
βcγcδ,

where α, β, γ, δ can be composite indices consisting of spin, orbital and local degrees of
freedom. Considering further more that the system is in thermal equilibrium, one can
describe it by looking at the elementary one-body excitations. The natural quantity for
this is the causal Green function at temperature T and chemical potential µ, which is
defined via

Gαβ(iω) = 〈〈cα; c†β〉〉,
with the fermionic Matsubara frequencies iω = i(2n+ 1)Tπ, n ∈ N. All effects of higher
order excitations, which can be obtained by repeatedly applying the equation of motion
to the Green function to arrive at an interleaved series of many-body Green functions,
are collected in the self-energy Σ. The self-energy thereby connects the non-interacting
Green function G0

−1 = [iω + µ − t] with the full one-body Green function G via the
Dyson equation

G = G0 + G0ΣG or Σ = G0
−1 −G−1.

At thermodynamic equilibrium, the system is described by a grand canonical ensemble
with the grand canonical potential Ω. Luttinger and Ward showed [LW60] that the
grand potential can be expressed by a functional that includes the Green function and a
summation of skeleton diagrams

ΩBK = ΦLW + Tr ln(−G)− Tr
(
(G0

−1 −G−1)G
)
.

It is referred to as Baym-Kadanoff functional following a paper by Baym and Kadanoff in
1961 [BK61], who approximated ΩBK with exactly known, but approximate functionals to
obtain so-called conserving approximations. The trace Tr of an observable O should be
read as Tr O = T

∑
α,ω Oαα(iω) and the first term of the equation denotes the so-called
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Luttinger-Ward functional ΦLW. This functional, which was introduced by Luttinger and
Ward already in 1960 [LW60], is the sum of all two-particle irreducible Feynman diagrams,
sometimes called skeleton diagrams, shown in figure 3.8. Two-particle irreducible means,
that each of the diagrams cannot be separated into two distinct parts by cutting two
fermionic lines. The first two diagrams are the Hartree diagrams.

ΦLW = + + . . .+

Figure 3.8: Definition of the Luttinger Ward functional ΦLW[G, U ] as the sum of all two-
particle irreducible Feynman diagrams. Double lines denote the interacting Green function G
and the dashed lines the interaction U .

However, Potthoff showed in 2006 that the Luttinger-Ward functional can be derived
within a functional-integral approach which does not rely on the skeleton-diagram expan-
sion and is not perturbative [Pot06a].
If one cuts one fermionic line in the Luttinger-Ward functional, which corresponds to
performing the functional derivative with respect to the Green function, one ends up with
the diagrammatic series for the self-energy, which means that

T−1 δΦ
LW[G, U ]

δG
= Σ[G].

Therefore, the Baym-Kadanoff functional can be used to derive the Green function G via
a variational principle as

δΩBK[G, U ]

δG
= T

(
Σ−G−1 −G0

−1
)

= 0.

At this point, it is necessary to do approximations as the Luttinger-Ward functional ΦLW

cannot be calculated exactly for non-trivial systems. One possibility is to replace the
Luttinger-Ward functional by an approximate functional that can be calculated, e.g. a
sub-set of diagrams. Approximations that are obtained in this way are called Φ-derivable,
conserving [BK61, Bay62], or type-II approximations [Pot05] respectively. Examples are
Hartree and Hartree-Fock approximations [BK61] and the fluctuation exchange (FLEX)
approximation [BSW89]. Other possibilities for approximations can be grouped into two
different categories [Pot05]. One category includes type-I approximations, where the Euler
equation δΩ[G]

δG
= Σ−G0

−1+G = 0 is approximated, e.g. by inserting the self-energy of the
atomic limit as done by Hubbard in 1963 [Hub63]. By approximating the Euler equation
one loses the connection to the conserving Φ-functional. Hence, type-I approximations
may lead to thermodynamical inconsistencies. The third category are so-called type-III
approximations, where the full functional is used but the variational space is drastically
reduced. This is the route that will be pursued in the next section within the variational
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cluster approximation.
However, the approximation is not applied to the Baym-Kadanoff functional directly,
but to its Legendre transformed version, the Potthoff or self-energy functional (SEF).
The reason is that the self-energy can be assumed to be more localized than the Green
function, which holds not only in infinite dimensions, where it is found to be local and can
be used to formulate DMFT [MV89, MH89], but also at finite dimensions [SC90, SC91].
In order to set up a functional based on the self-energy, one assumes that the relation
between Green function and self-energy can be inverted such that Σ = Σ[G]. This step
has been criticized recently by Kozik et al. who showed that the self-energy calculated
with diagrammatic Monte Carlo is not a single-valued functional of the Green function
and that additional unphysical solutions might be caused by choosing the wrong branch
of Σ [KFG15]. In a comment on this paper Eder pointed out, that by using the analytical
properties of the Green function and the self-energy one can show that there is a unique
relation between G and Σ [Ede14]. Nevertheless, computing the self-energy numerically
may lead to additional unphysical solutions. This is also the case for VCA, where artificial
unphysical solutions have been reported when too many parameters were varied [Ede15].
Assuming the local invertibility of the Green function, one Legendre transforms the Baym-
Kadanoff functional:

Ω[Σ] = ΦLW[G[Σ]] + Tr ln(−(G0
−1 −Σ)−1)− Tr (ΣG[Σ])

= F [Σ]− Tr ln(Σ−G0
−1),

where F [Σ] denotes the Legendre transformed Luttinger-Ward functional. Its derivative
with respect to Σ returns the Green function

T−1 δF [Σ]

δΣ
= T−1 δΦ[Σ]

δG

δG

δΣ
−G− Σ

δG

δΣ
= −G.

Therefore
δΩ[Σ]

δΣ
= T (−G− (Σ−G0

−1)−1 = 0.

Up to this point, it was always assumed that the exact/physical Green function and self-
energy are used. The idea is now to use the stationarity condition of the self-energy
functional to construct approximate self-energies Σ in order to approach the system.
Therefore, one chooses a reference system H′ = HU +Ht′ which has the same interaction
term HU as the original system and uses this reference system to provide trial self-energies
Σ′ for the original problem. First of all, one constructs the self-energy functional for the
reference system, denoted here by Ω′[Σ′] :

Ω′[Σ′] = F ′[Σ′]− Tr ln(Σ′ −G′0
−1

).

At this point it is worth taking a look at the functional dependencies of the Legendre
transformed Luttinger-Ward functional. It only depends on the interaction U and the
interacting Green function G and not explicitly on the one-body parameters (which could
have shown up in form of G0). Due to this universality of the Luttinger-Ward functional
one can rewrite it as ΦLW

U . As the reference system was chosen to have the same interaction
terms as the original system, its (Legendre transformed) Luttinger-Ward functional is
identical to the one of the original system when evaluated at the same self-energy:

Ω′[Σ′] + Tr ln(Σ′ −G′0−1
) = F ′[Σ′] = F [Σ′] = Ω[Σ′] + Tr ln(Σ′ −G−1

0 ).
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It is therefore possible to rewrite the self-energy functional with help of the reference
system:

Ω[Σ′] = Ω′[Σ′] + Tr ln(Σ′ −G−1
0 )− Tr ln(Σ′ −G′0−1

). (3.2)

The reference system differs from the original system in its one-body parameters t′ which
can be used to parametrize the self-energies of the reference system: Σ′ = Σ′(t′). To fulfill
the stationarity condition of the self-energy functional of the reference system one has to
vary these one-body parameters to find a stationary solution:

δΩ[Σ]

δt′
=
δΩ[Σ]

δΣ

δΣ

δt′
= 0.

So far, there have been no approximations and the theory is still exact. As briefly discussed
for the case of the Baym-Kadanoff functional, it is necessary to do approximations at this
point. This leads to the variational cluster approximation.

The Variational Cluster Approximation 3.2.2

If one would not restrict the space of self-energies and allow all possible reference systems,
this theory would be exact. At this point, a Hubbard-III approximation is done which
amounts to restricting the variational space to a subset of self-energies.
In case of the variational cluster approximation (VCA) the reference system is chosen
to be a clustered version of the original system, some examples are shown in figure 3.9.
By dividing the lattice into a superlattice consisting of small clusters, the reference sys-
tems lacks some of the hopping terms of the original system. These missing terms can
be formally collected into a matrix V = t − t′. Within this notation, the Hamiltonian
of the original system can be rewritten as H = H′ + V. When considering again the
self-energies of the reference system, this choice of a certain cluster geometry and cluster
size is already an approximation: The self-energies Σ′ have been restricted to those which
are representable on one of the small clusters. This sometimes goes by the name of t′-
representability [Pot03a].

Figure 3.9: Tiling of a square lattice (left panel) into identical 3 × 2 clusters (center panel)
and into 2 × 2 plaquette clusters with one additional (non-interacting) bath site per correlated
site (right panel). In both lattice tilings the (local) interaction terms of the tiled system are the
same as the ones of the original lattice system.

Hopping terms are just one possible choice for one-body terms in which original and refer-
ence system are allowed to differ. One of the big advantages of VCA is its ability to treat
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phases with broken symmetries by adding so-called Weiss fields to the reference system
[DAH+04]. Some specific choices of additional Weiss field terms will be discussed later.
Before, one should note that the space of t′-representable self-energies is still too large
and one has to do an additional approximation to drastically reduce the set of variational
parameters. In order to distinguish this sub-set of one-body parameters from the full
set of possible one-body terms t′ of the reference system, from now the set of variational
parameters will be denoted by ξ′. The prime (′) is simply added for consistency as these
are parameters of the reference system. One should, however, note that there are no
variational parameters in the original system.
At this point it is also interesting to draw a comparison to the cluster perturbation theory
discussed in subsection 3.1.3, which can be regarded as a precursor of VCA. It does not
involve a variational principle at all, but also contains the idea of partitioning the lattice
into clusters which provide an expansion for the self-energy.

In subsection 3.1.3 the CPT Green function was rewritten in compound indices of the
cluster and the superlattice. In this mixed representation it reads

G−1(k̃, ω) = G0
−1(ω)−V(k̃).

Comparing this with the definition of the self-energy Σ = G0
−1−G−1 leads to the equality

G0
−1 −Σ = G−1 −V.

This very equation can be used to write the expression of equation (3.2) even more com-
pact:

Ω[Σ′] = Ω′[Σ′] + Tr ln(Σ′ −G−10 )− Tr ln(−G′)

= Ω′[Σ′] + Tr ln(V −G′
−1

)− Tr ln(−G′)

= Ω′[Σ′]− Tr ln(1−VG′)

= Ω′[Σ′]− T
∑
ωn

∑
k̃

eiωn0+

ln det(1−V(k̃)G′(ω)). (3.3)

Here, the identity Tr ln = ln det has been used in the last step. The first term re-
duces simply to the ground-state energy E0 at zero temperature and the second term can
be evaluated purely numerically or semi-analytically, where the sum over Matsubara fre-
quencies is calculated analytically. Before discussing further calculations of the self-energy
functional, the V matrix is inspected and different Weiss fields are discussed.

Weiss Fields

One of the deficiencies of cluster techniques such as the cluster perturbation theory is their
incapability to treat phases with broken symmetries properly. Phases such as magnetically
long-range ordered or superconducting phases are simply not within reach. Inspired by
the mean-field treatment of ferromagnetism by Weiss [Wei07], the variational cluster
approximation allows for the study of these phases by using Weiss fields. Nevertheless,
the VCA treatment should not be confused with such a static mean-field theory.
Any additional one-body term can be added to the reference system, but in order to
ensure thermodynamical stability, its strength should be included in the set of variational
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parameters ξ′, see subsection 3.2.2. In case of magnetic ordering, the Weiss field can be
written generally as

HM = M
∑
i

eiri·Q(n̂i↑ − n̂i↓),

where n̂iσ is the density operator for electrons with spin σ on site i. The magnetic ordering
vector Q determines the kind of magnetic ordering: For example, Q = (π, π) amounts to
(Néel-type) antiferromagnetic and Q = (0, 0) to ferromagnetic order. Choosing Q = (π, 0)
would correspond to a staggered order in x-direction and ferromagnetic ordering in y-
direction which in the end amounts to a stripe geometry in x-direction. It is important
to note at this point, that M is determined via the variational principle and in general
different from the expectation value 〈m〉 of the corresponding magnetic ordering. This
is a major difference to static mean-field theory, where M denotes the strength of the
molecular magnetic field (mean-field) acting on site i and henceM = 〈m〉. Still, when one
considers length scales that exceed the cluster size, VCA could be viewed as a mean-field
approach and some typical artifacts of mean-field theory might become visible [DAH+04].
In order to identify and hopefully reduce such artifacts, increasing the cluster size is a
typical procedure.
Even superconductivity can be included within VCA by introducing a proper Weiss field.
The pairing field in general has the following form:

HD = D
∑
i,j

∆ij(ci↑cj↓ + c†j↓c
†
i↑),

where the ∆ matrix describes its symmetry. For local s-wave superconductivity it simply
becomes

∆ij = δij,

but for nodal superconductivity it involves more than one site at a time. In the case of
d-wave superconductivity there are two different symmetries, namely dx2−y2 symmetry,
where

∆ij =

{
1 , ri − rj = ±ex

−1 , ri − rj = ±ey

and dxy symmetry with

∆ij =

{
1 , ri − rj = ±(ex + ey)

−1 , ri − rj = ±(ex − ey)
.

It is also possible to treat non-local s-wave superconductivity with a suitably chosen Weiss
field.
As Weiss fields are intruduced to treat broken symmetry phases by using a finite size
cluster, the strength of the Weiss field should scale to zero if one increases the cluster size.

Bath Sites

Besides using one-body terms of the original cluster Hamiltonian and additional Weiss
fields in the variation, it is also possible to couple the cluster to additional bath sites.
These bath sites are non-interacting and therefore do not change the Luttinger Ward func-
tional - the clustered system stays a valid reference system for the self-energy functional
theory. The idea behind the introduction of bath sites is taken from other embedding
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theories such as (cellular) DMFT [KSPB01], where the full lattice problem is mapped to
an impurity or cluster that is embedded in a bath of non-interacting electrons.
In VCA, adding additional bath sites to the cluster leads not only an allowed reference
system, but also increases the number of degrees of freedom. In this case, at least the
hybridization between cluster and bath sites should be included in the set of variational
parameters. It turns out that it is necessary to include bath sites in order to be able
to detect first order (Mott) metal-insulator transitions in the Hubbard model [BKS+09].
Without bath sites or (e.g. magnetic) Weiss fields, the system is either metallic or insulat-
ing and can hence only show continuous metal-insulator transitions. This can be seen if
one considers a minimal set of variational parameters, namely only the chemical potential
of the cluster µ′, which is necessary to obtain thermodynamically stable values of the
electron density n [AAPH06a]. In the case of the two-dimensional Hubbard model with
nearest-neighbor hopping, the filling can be fixed to half-filling by choosing the chemical
potential µ = U/2. If the hopping on the cluster is then isotropically set to t′ = t = 1,
one finds a maximum of the self-energy functional with respect to the cluster chemical
potential. At large U/t the system is gapped and hence an insulator, but this gap shrinks
when U/t is reduced. It goes continuously to zero at a critical point Uc, where the system
turns into a metal (see e.g. section 4.1).
The situation is quite different if one adds non-interacting bath sites with chemical po-
tential µb = 0 which are coupled to the correlated bath sites via a hopping term V . This
hybridization V depicts an additional degree of freedom, which can lead to two stable
solutions and in the end allows for the coexistence of metal and insulator.

Evaluation of the Self-Energy Functional

The central quantity of VCA is the self-energy functional as given by equation (3.2).
It consists of three terms which can be further transformed in order to calculate the
functional in practice [Pot03a]. In the following, the semi-analytical calculation of the
functional is discribed. At the end of this subsection, a brief comparison with and com-
ment on the alternative evaluation of equation (3.2) in a purely numerical way is given.
The first term is the grand potential of the reference system, which is given by

Ω′[Σ′(t′)] = Ω′(t′) = −T ln tr′e−
H′−µN′

T ,

where N ′ denotes the total particle number operator. As the cluster should be chosen
such that its eigenenergies can be still computed exactly (using full diagonalization or
Lanczos techniques), it is possible to write the trace explicitely by using the eigenenergies
of the cluster:

Ω′(t′) = −T ln
∑
m

e−
E′m−µN′m

T .

Once H′ − µN ′ is fully diagonalized, the grand potential can be calculated for arbitrary
temperatures. If the focus is put at low temperatures T , the lowest eigenenergies con-
tribute the most and it is possible to calculate only a subset of eigenenergies, for example
using a finite-temperature Lanczos algorithm [ADEvdL03]. At zero temperature the grand
potential reduces to the ground state energy of the cluster E ′0 − µN ′0.
The second term of equation (3.2) is more complicated to calculate. Here, only the main
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steps to arrive at the final expression are outlined. A more detailed calculation which
includes some technical aspects is given in Appendix C. The term becomes:

Tr ln

( −1

ω + µ− t−Σ(ω)

)
= −2L

∑
k

∑
m

T ln
(
1 + e−ωm(k)/T

)
+ CΣ.

The frequencies ωm are the eigenenergies of the Green function (G0
−1 −Σ(ω))−1 and CΣ

is a term that depends on the self-energy and which cancels when the second and third
term of equation (3.2) are combined.
Similary, the last term can be rewritten as

Tr ln

( −1

ω + µ− t′ −Σ(ω)

)
= −2L

∑
m

T ln
(

1 + e−ω
′
m/T
)

+ CΣ.

This time, ω′m are the poles of the cluster Green function G′. As both the second and
the third term contain the cluster self-energy, the term CΣ is the same in both terms and
cancels when calculating the self-energy functional.
In the end, the self-energy functional can be rewritten as

Ω[Σ′] = −T ln
∑
m

e−(E′m−µN ′m)/T − 2L
∑
m

T ln
(
1 + e−ωm/T

)
+2L

∑
n

T ln
(

1 + e−ω
′
n/T
)
.

At zero temperature this equation simplifies drastically to

Ω[Σ′] = F ′0 − 2L
∑
k

∑
ωm(k)<0

ωm(k) + 2L
∑
ω′n<0

ω′n (3.4)

It is this very formula that will be used throughout the remainder of this thesis to evaluate
the self-energy functional.
However, this way of calculating the SEF requires precise knowledge of the poles ωm and
ω′n. Within a Band-Lanczos calculation of the cluster Green function this is not much of
a problem, but it turns into one when calculating the Green function within a continued
fraction representation, see Appendix A. It turns out, that for using the Q-matrix notation
of the Green function (see section 3.1.1) a common basis for the excitations of the system
is necessary. In contrast to the calculation of G′ with the Band-Lanczos algorithm, where
multiple starting vectors converge simultaneously, the continued fraction representation
of G′ via the Lanczos algorithm uses a different Lanczos basis for each component of the
cluster Green function. A second problem consists in the form of the continued fraction
representation itself - weights and poles of the cluster Green function cannot be obtained
easily. One would have to try to extract them from broadened data, which is a hard
problem on its own.
The second way of evaluating the SEF consists in calculating equation (3.3) by numerical
integration over frequencies ω and wave numbers k. In this case, the frequency sum is
not done analytically and it is sufficient to be able to calculate the Green function at
a given frequency ω. This can be done using a continued fraction representation of the
cluster Green function and for instance the Lanczos algorithm can be used. In reference
[Sén08a], Sénéchal compared both ways of calculating the SEF with respect to accuracy
and runtime. As the purely numerical calculation involves only linear-algebraic operations
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on the Green function, it is considerably faster than the semi-analytic calculation scheme
once large clusters are involved. However, for small clusters both schemes are comparable
with respect to speed of the calculation. In addition, a proper treatment of the numerical
frequency integration is essential to obtain precise values for the SEF, whereas the semi-
analytic calculation treats the frequency summation exactly. Furthermore, the explicit
knowledge of the poles within the semi-analytic scheme allows for a study of quantities
like the spectral function without any artificial broadening. This can become important
for instance when determining phase transitions precisely.

Evaluation of Expectation Values

After finding a stationary point of the self-energy functional, one is often interested in
expectation values of one-body terms at this stationary point. In the following, the
evaluation of expectation values by using the Green function at a stationary point is
summarized. A more detailed discussion can be found in references [Sén08a, Pot12].
In general, the one-body term can be written as

O =
∑
αβ

oαβc
†
αcβ,

where oαβ includes site, band and spin indices α = (i, l, σ) (β = (j,m, σ′)) and has to be
chosen accordingly for each one-body observable. As no multi-band models are treated
within this thesis, the band index will be skipped from here on. To give a few examples, the
electron density n =

∑
i,σ c

†
iσciσ would lead to oαβ = δijδlmδσσ′ . A magnetically long-range

ordered state with the magnetic ordering vector Q can be treated with a proper Weiss
field. The strength of the resulting staggered magnetization m = δijδlmδσσ′(−1)σeiQ·r can
be treated as well as the kinetic energy term Ekin =

∑
αβ tαβc

†
αcβ. When using Nambu’s

notation or a particle-hole transformation on down spin electrons instead, it is possible
to express superconducting Weiss field terms in a similar way and consequently calculate
superconducting expectation values.
In the end all these one-body terms have corresponding expectation values which can be
calculated as

〈O〉 =
1

N
oαβ〈c†αcβ〉

=
1

N
Tr (oG) =

T

N

∑
m

eiωm0+

tr (oG), iωm = π(2n+ 1).

The expectation value 〈c†αcβ〉 can be calculated by using a contour integration of the Green
function:

oαβ〈c†αcβ〉 = T

∮
C

dz

2πi
tr (oG)fFD(z).

Analogously to the calculation in the appendix, one inserts two unitary matrices UU† = 1
which diagonalize (oG)−1 and obtains its poles ξm and weights am. Due to the residue
theorem one then transforms the contour integration into a sum over the residues of
the integrand which coincide with the poles of G. In addition, one changes into the
previously mentioned mixed representation of cluster and superlattice indices and does a
Fourier transformation with respect to the superlattice. By doing this, the matrices o(k̃)
and G(k̃, z) are still matrices with respect to the cluster sites, but are now functions of
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superlattice momentum k̃. In the end, the integration thus amounts to a summation of
the product of the Fermi-Dirac distribution and the residues Rm(k̃) that are connected
with the poles ξm(k̃) over these poles:

〈O〉 =
T

N

∑
k̃

∑
m

Rm(k̃)fFD(ξm(k̃)).

At zero temperature the contour used previously reduces to a contour that surrounds the
poles of the Green function on the negative real axis counterclockwise. This is due to the
fact that only excitations from the ground state to states with higher energy are allowed
and hence energy differences and thereby excitation energies which correspond to poles of
G have to be negative. Another way to see this is to consider the zero temperature limit
of the Fermi-Dirac distribution:

lim
T→0

(
ez/T + 1

)−1
=

{
0 ,Re z > 0

1 ,Re z < 0
.

Similar to the calculation of the self-energy functional at zero temperature, the calculation
of one-body expectation values simplifies to

〈O〉 =
1

N

∑
k̃

∑
ωm(k̃)<0

Rm(k̃).

In the case of an L-site cluster with two spin species N = 2L and the residues Rm can
be expressed by the spectral weights of the Green function. Using the Qµn matrices of
section 3.1.1 the residues can be rewritten as

Rm(k̃) =
∑
αβ

(
oαβ(k̃)Q̄αm(k̃)Q̄∗βm(k̃)

)
= tr

(
Q̄oQ̄∗

)
(k̃).

As long as the „strength“ of the one-body term is part of the set of variational parameters,
the corresponding expectation value fulfills thermodynamic stability. This means that
evaluating the expectation value as a trace over the Green function or as a functional
derivative of the grand potential leads to the same result [AAPH06a]:

1

N
Tr (oG) = 〈O〉 =

∂Ω

∂o
.

Details of the Numerical Approach

In this subsection several numerical details for the implementation of VCA are discussed
that have been used to obtain the results shown in the following chapters. In the program
that I wrote to do the calculations, whose results are used and discussed in the following
chapters, a few libraries were used. Those for numerical integration and numerical opti-
mization are discussed below. In addition to that, the Eigen matrix library [GJ+10] in
combination with the intel Math Kernel Library (MKL) has been used for efficient and
parallelized matrix and vector operations. However, for matrix diagonalizations the LA-
PACK routines which are also included in MKL were used instead of the diagonalization
routines of Eigen.
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Legendre Transformation of the Grand Potential. For most of the calculations
that follow in the next chapters the electron density n of a model system should stay fixed
to a certain value nf . One possibilty of realizing this density would be to calculate the
stationary point of the SEF for different values of the chemical potential µ and determine
the value where the corresponding electron density n(µ) = nf . An easier method consists
in doing a Legendre transformation of the grand potential to the free energy F = Ω+µN ,
where N denotes the particle number inside the cluster, as shown in reference [BP10]. In
addition to the stationarity condition for the SEF ∂Ω/∂ξ′ = 0 the Legendre-transformed
functional also has to fulfill the condition ∂Ω/∂µ = 0 in order to have the correct particle
number 〈∑i ni〉 = N . In practice, it turns out that the SEF usually has a maximum with
respect to both the chemical potential of the cluster µ′, and the chemical potential µ.

Treatment of the Superlattice Moment k. After tiling the system into a superlat-
tice of identical clusters, one does a Fourier transformation on the superlattice coordinate
r̃, which is then denoted by k̃. For an infinite system one would arrive at a continuum
of k̃-values and after reperiodizing the cluster Green function any point in the Brillouin
zone can be realized, see figure 3.1 in subsection 3.1.3.

An approximation which is often used consists in considering a finite number of clus-
ters that make up the superlattice. For example taking N = (101)2 2 × 2 clusters that
form a two-dimensional square lattice would lead to a discretized Brillouin zone with
an equidistant grid of N points. It can be further improved by doing an interpolative
k summation instead, as proposed by Balzer and Potthoff [BP10]. This approximation
is justified for most situations if one is interested in calculating quantities like spectral
functions, but it can also be used to calculate the self-energy functional or expectation
values at the stationary point of the SEF. However, in some cases it is not sufficient to
include „only“ 10, 000 points inside the Brillouin zone in order to reach a certain precision
of the self-energy functional. The position of the stationary point would then still change
considerably when increasing the number of k-points. Therefore, it would be necessary
to check in every situation which number of k-points is necessary in order to achieve a
satisfactory precision for the calculation of the SEF.
For example, when studying the Mott metal-insulator transition in the next chapter the
curvature of the SEF changes when crossing the transition line - the SEF becomes very
flat with respect to some variational parameters like the chemical potential of the cluster.
This has first of all consequences for the convergence criteria that are applied for finding
stationary points in the SEF landscape and it also implies that it can be difficult to find
a number of k-points that is sufficient for calculating the SEF with reasonable precision
throughout a parameter scan. Determining this number of k-points by hand for „charac-
teristic“ parameter sets of the calculation is on the other hand not desirable.

An easier approach consists in directly demanding a certain precision of the value of the
SEF after the summation over k-values of the Brillouin zone. Therefore, the summation
over discrete k-points is replaced by the numerical integration over k in the Brillouin
zone. In practice the numerical integration is done in my program by using the so-called
CUHRE -routine of the CUBA library which was developed by Hahn [Hah05, Hah06].
This routine goes back to the (DC)UHRE algorithm by Berntsen, Espelid and Genz
[BEG91b, BEG91a] which uses cubature rules to refine the integration grid by globally
adaptive subdivision. Iteratively the region with the largest estimated error is bisected
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and the two new subregions are added to the set of regions which are considered for
the next iteration. Once the estimated error falls below a given threshold value or a
maximal iteration number is exceeded, the algorithm stops. Its advantage over most
other integration routines lies in its precise estimation of the error and its efficiency in
low dimensions. Furthermore, the integration routine is already parallelized which leads
to a significant speed up.
Usually it proved to be sufficient to require a relative error of less than 10−6 for the
calculation of the SEF. The number of k-points then turns out to be normally between
2000 and 150, 000 points. In some cases the relative error had to be lowered to 10−8, but
a maximal iteration number of 200, 000 k-points was rarely exceeded.
In this way, the precision of the calculation of the SEF can be controlled well. The
following subsection shows how the stationary point of the SEF landscape is determined.

Determination of Stationary Points of the Self-Energy Functional. Within the
variational principle of self-energy functional theory the one-body parameters that enter
the set of variational parameters have to be varied in order to identify stationary points
of the self-energy functional. In practice it turns out that stable stationary points are in
general saddle points with respect to the variational parameters, i.e., a maximum with
respect to a subset and and a minimum with respect to the rest of the parameters. The
search for stationary points can be done in different ways. Besides the choice of a spe-
cific (usually local, iterative) optimization algorithm, one has to decide whether to use a
multi-dimensional or nested one-dimensional optimization schemes.
After testing different optimization algorithms, the optimization for low-dimensional vari-
ational spaces was finally done by using the „constrained optimization by linear approxi-
mations“by Powell described in [Pow94] in the implementation of NLopt used [Joh]. Using
the Nelder -Mead simplex method described in [NM65] and the principal axis method of
Brent [Bre73] from the same library also lead to good results. However, these algorithms
for local optimization are gradient-free and only work well and efficiently if the starting
point is chosen close to the stationary point. After a stationary point is found one usually
does parameter scans, which explains why gradient-free optimization algorithms work so
well. If the new parameter set does not differ too much from the previous one, it can
be expected that the position of the stationary point also changes little. Hence taking
the values of the previous stationary point are already a good starting point for the new
configuration.
Using optimization algorithms which include the gradient such as (quasi-)Newton algo-
rithms, especially the BFGS algorithm [BGLS03], proved to be more efficient when the
position of the stationary point was not known. Especially combining quasi-Newton al-
gorithms with a principal axis transformation as proposed by Balzer and Potthoff [BP10]
should be more efficient in general. However, as an approximation of the gradient of the
SEF has to be calculated numerically which requires the calculation of the SEF at addi-
tional points, these algorithms are mostly useful for high-dimensional sets of variational
parameters. Especially when separating the variational parameters ξ′max which lead to a
maximum of the SEF and those ξ′min which lead to a minimum of the SEF the dimension
of the subsets is usually not large enough to render quasi-Newton algorithms efficient.
Usually the SEF shows a maximum with respect to the chemical potential of the cluster
µ′ and, if the functional is Legendre transformed, also with respect to the chemical po-
tential µ. With respect to other variational parameters it is often a minimum.
One possibility of judging the “quality” of the determination of the stationary point is
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to check for thermodynamical stability of expectation values that are connected with
the variational parameters, i.e. to check whether using the self-energy functional and the
Green function to evaluate the expectation value leads to the same result. In this way it
is also possible to find reasonable values for the convergence criteria of the optimization.
For most of the cases studied in the following chapters, it was sufficient to demand an
absolute precision of 10−5 for the chemical potential and an absolute precision of 10−3 for
other variational parameters to reach thermodynamical stability. The higher precision in
the determination of the chemical potential has to do with the flat SEF with respect to
µ′ and µ.
In order to achieve stability when using high-dimensional variational spaces, it further-
more proved to be important to do a nested optimization: In each step of the minimization
of the SEF with respect to ξ′min the SEF was first optimized with respect to µ′ (and µ).
Especially when treating superconductivity this was necessary to stabilize the electron
density n within the minimization procedure.

Calculation of Fermi Surfaces. Once the stationary point of the SEF has been found,
the approximate lattice Green function allows for the calculation of the spectral function
as discussed in section 3.1.3. For stationary points that amount to a metallic solution of
the system, it is possible to obtain the Fermi surface from the spectral function. Within
the definition used here, the Fermi energy corresponds to ω = 0. In a two-dimensional
Brillouin zone the Fermi surface then amounts to the intersection of the spectral function
with the ω = 0 plane, that is

k ∈ BZ, s.t. A(k, ω = 0) 6= 0.

Two aspects are important to determine the Fermi surface numerically. When using the
Q-matrix notation for the spectral function, the poles and weights are given explicitly
without any broadening. In practice the condition that the weight has to be non-zero
is hard to fulfill exactly as numerical errors might lead to small but finite artifacts. To
circumvent this problem the Fermi surface is either plotted color-coded or a threshold
value ε is introduced and the condition weakened to A(k, ω = 0) > ε, with ε ∼ 10−3.
The other aspect relates to the finite resolution when choosing a discretization in k, e.g.
with an equidistant grid. It is then nearly impossible to fulfill the condition that a pole
of the spectral function coincides with the Fermi energy. A possible way out consists in
introducing a small energy window with width ε̃ around the Fermi energy and to demand
that A(k, |ω| < ε̃) = ε. This in turn poses the problem that low-lying electron-/hole-
excitations are included. A too large ε̃ therefore results in the wrong shape of the “Fermi
surface”. To exclude this, a careful analysis of the emerging Fermi surface has to be done.
This is done in the following chapters by checking that reducing the width of the energy
window and increasing the number of k-points in the grid does not change the Fermi
surface qualitatively. For most cases a width of ε̃ = 10−1 was sufficient for an equidistant
grid of 40, 000 k-points.
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Treating Local Spin Interactions: Application of the

Variational Cluster Approximation to the Kondo Lattice

Model 3.2.3

In section 3.1.4, it was already shown that perturbative cluster approaches can be used
to describe pure spin systems, but the investigation of phases with broken symmetry is
not included in such a treatment. Although a derivation of a spin self-energy functional
and a spin-VCA based on this functional is in principle possible (see e.g. [FP14]), the
appearance of complex excitations leads to a breakdown of the theory at small tempera-
tures [FP14].
The approach to magnetism and superconductivity that will be pursued here is to use the
variational cluster approximation for the Kondo lattice model. Therefore, first of all one
has to revisit the foundations of self-energy functional theory to check whether VCA can
be applied to this model.

Self-energy functional theory is based on the Legendre-transformed Luttinger-Ward func-
tional. The Luttinger-Ward functional is defined for electronic Green functions, i.e. cor-
relators of the type 〈〈c†αcβ〉〉. Operators that act on the local spins of the Kondo lattice
model are therefore not covered. In contrast to the Hubbard model, not only creation and
annihilation of electrons, but also spin-flip operations of the f-spins should be considered
for the Kondo lattice model.

Figure 3.10: The cluster geometries that will be considered for investigating the Kondo lattice
model within VCA. As the lower clusters have sites with minimal coordination number, they are
somewhat pathological. In contrast, the upper clusters can be grouped together: They are all
L× x clusters and it is this set of clusters for which most of the results will be shown.

A pragmatic approach used in this thesis is to use standard variational cluster approx-
imation in terms of the Green function and the self-energy of the electronic degrees of
freedom only. Yet the “full” Kondo lattice Hamiltonian is included for the calculation of
quantities on the cluster. This means that the Green function still includes only correla-
tors for conduction electrons and no correlators between the f-spins or between electrons
and spins.
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When using the Lehman representation of the Green function, the eigenenergies Em of
the Hamiltonian as well as the eigenstates |m〉 enter the calculation, see section 3.1.1.
They are now calculated with the Hamiltonian of the Kondo lattice model. In order to
determine these eigenenergies a basis has to be used which also includes all possible con-
figurations of the f-spins on the cluster. The local basis for states of this Hamiltonian
has therefore size eight: On each site there are up to two electrons and (exactly) one spin
with two different configurations.

One way of thinking about this approach would be to consider the spin degrees of free-
dom to be integrated out such that only the electronic degrees of freedom remain in
thermodynamic quantities, which can be derived from the VCA Green function and/or
the approximated grand potential. Still, the interactions with the f-spins are included in
the cluster self-energy. It is only the spin-flip excitations that do not enter explicitly via
some spin self-energy. As the coupling to f-spins is local, the tiling of the two-dimensional
lattice into a superlattice of identical clusters still only “cuts” hopping terms between these
clusters. The coupling to the spins is the same in the original and the reference system.

However, as the Kondo coupling term between conduction electrons and f-spins is not
of the form of electron-electron interactions which were used in the derivation of the
Luttinger-Ward functional, the validity of the approximation would have to be checked
with a thorough derivation of a similar functional which includes the coupling term.
Although no Coulomb interaction is present in the model, the self-energy functional the-
ory cannot be automatically considered to be exact. This can be seen when considering
the Kondo lattice model as the limiting case of the periodic Anderson model.
The periodic Anderson model is made up of two electron bands, a conduction band with
’c’-electrons and a second band which models the f-shell and is therefore called ’f’-band.
Electrons can move inside and between the bands via suitably chosen hopping parameters.
A local Coulomb interaction term acts on the f-band only, whereas the electrons on the
’c’-band move freely. When sending the Coulomb repulsion to infinity and demanding
half-filling on the f-band, the Kondo lattice model can be derived as an effective model
via a Schrieffer-Wolff transformation [SW66, SN02].
As the periodic Anderson model includes interacting electrons for which the Luttinger-
Ward functional is well-defined, it could be assumed that the self-energy functional theory
is still valid in the limit U → ∞. Although the interaction which enters the Luttinger-
Ward functional acts on the f-band which after mapping corresponds to the spins of the
KLM, it also leads to the coupling term between these spins and conduction electrons.
Therefore part of the interaction is still present in the KLM albeit not connecting two
electronic propagators that take part in the Green function.
At this point it has to be noted, that within this thesis the Kondo lattice model and
not the periodic Anderson model is treated within the approximation described in the
previous paragraphs.

This motivates the choice of the variational cluster approximation for the electronic de-
grees of freedom of the model. In reverse, this means that only electronic degrees of
freedom can be described in a thermodynamically stable way. Other quantities like the
(staggered) magnetization of the f-spins can only be calculated on the cluster as the spin
operators do not enter the Green function. Still, the local correlator between electrons
and the f-spin on site i can be obtained as a derivative of the energy with respect to the
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coupling strength, 〈sciSfi 〉 = ∂E0/∂J .

For the electronic degrees of freedom standard VCA applies, including additional Weiss
fields that allow for the study of symmetry broken phases. Due to the increased Hilbert
space dimension only small clusters are treatable. Most of the clusters that will be used
for analyzing the Kondo lattice model are shown in figure 3.10. Especially the clusters
without „dangling“ sites such as the 2× 2 and 3× 2 cluster will be considered.

Survey of Other Numerical Approaches 3.3

Different numerical approaches have been used to study the two-dimensional Hubbard
and Kondo lattice model. Some of them are briefly discussed in the following. The results
of these techniques will be used afterwards as a reference for results obtained within this
thesis using variational cluster approaches.
The first subsection focuses on techniques that were used to particularly study the uni-
versality class of the Mott transition in two-dimensional Hubbard models. In the second
subsection a survey of numerical approaches to the two-dimensional KLM sets the stage
for the investigations on the KLM in chapter 5.

The Mott Transition in Two-Dimensional Hubbard Models 3.3.1

In order to understand the ground-phase diagram of the organic charge-transfer salts
and the Mott transition, a lot of numerical studies investigated the half-filled Hubbard
model on an anisotropic triangular or a frustrated square lattice. This includes mean-
field and Hartree Fock treatment [MYI06], U(1) gauge theory [LL05], fluctuation ex-
change (FLEX) approximation [KK98, KM99], variational Monte Carlo (VMC) stud-
ies [LST05, WYTI06], dynamical mean-field theory (DMFT) [KLR00], cellular DMFT
[KT06, SWGK11, ST12, SHT12, ARC+16], VCA and Dual Fermions [LTP+15], dynam-
ical cluster approximation [PBK04, DXC+15], exact diagonalization [KMF07] and path
integral renormalization group [KI01, MWI02].

Due to deficiencies of the techniques when it comes to critical exponents, there are only
very few numerical studies on lattice systems which make a statement on the universality
class of the Mott transition. One of the first of those studies is the work by Assaad and
Imada [AI96], who used determinantal Quantum Monte Carlo (QMC) to investigate the
Green function G(r, ω) of large lattices (up to 16×16) directly at zero temperature. They
extracted the localization length ξl from calculating the Green function at long distances
within the Hubbard gap, where G(r, µ) ∝ e−|r|/ξl . For the localization length they then
found critical behavior ξl ∝ |µ−µc|−ν with ν = 0.26± 0.05, which agrees with the expec-
tation from hyperscaling, namely ν = 1/4 and a dynamical exponent of z = 4.

In a subsequent QMC study together with Furukawa [FAI96] they accompanied their
results of the insulating side by calculations of the compressibility κ = ∂δ/∂µ in the
metallic phase, where δ stands for the doping and µ denotes the chemical potential. In
the metallic phase close to half-filling, the doping δ = 1 − n is given as the derivative of
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the singular part of the free energy fs with respect to the chemical potential µ. By assum-
ing hyperscaling, they were then able to connect the doping to the shift of the chemical
potential ∆ = µ− µc via δ ∝ |∆|νd. As the compressibility allows to determine this shift
via κ ∝ |∆|−1/2, they could determine the correlation length exponent in another way by
approaching the critical point from the metallic side and obtained ν = 0.21± 0.04.

Misawa and Imada investigated quantum criticality around the metal-insulator transition
within a frustrated extended Hubbard model on a square lattice with Hartree-Fock approx-
imation [MI07]. In their paper they studied the metal-insulator transition in symmetry-
broken phases, which are in the case of the extended Hubbard model a charge ordered
phase, when the nearest neighbor interaction V dominates over local Coulomb interaction
U , and a antiferromagnetic ordered phase for U > 4V . Within the mean-field approxi-
mation transitions from both insulating phases into the metallic phase should have the
same nature. Considering a free-energy expansion and numerically solving Hartree-Fock
self-consistency equations they then investigated critical exponents when approaching the
marginal quantum critical point along several trajectories. Both approaches led to the
same sets of critical exponents, which differed on the insulating and metallic side.
At high temperature, their calculations gave classical Ising exponents, but at zero tem-
perature the transition was found to be continuous. These two regions are separated
by a marginal quantum critical point which leads to different critical exponents. These
exponents on the metallic side, especially (β, γ, δ) = (1, 1, 2), match those of the "un-
conventional" criticality that was found experimentally in the group of Kanoda [KMK05,
KMK09, FMT+15]. At small temperatures they observed a crossover from Ising to un-
conventional critical exponents.
In the end the authors argue, that their assumption of a preexisting gap does not have
to be caused by symmetry breaking such as charge or antiferromagnetic ordering, but
could also be the correlation-induced gap of a Mott insulator at low dimensions (without
long-range order), which could not have been described within their mean-field treatment.
As a consequence they expect the critical exponents also to be found when investigating
the Mott transition beyond mean-field theory.

Using single-site dynamical mean-field theory for the Hubbard model, Kotliar et al.
[KLR00] assumed the existance of a finite temperature transition and derived a Lan-
dau functional to extract the critical exponent δ = 3 analytically. This result is not
surprising, as the critical exponent for Ising universality at infinite dimensions coincides
with the one of mean-field criticality, where it is known that δ = 3 [Gol92].
Nevertheless, there exist two papers which study spin and charge criticality for the 2D
Hubbard model using plaquette C-DMFT [SWGK11, ST12], a real-space cluster general-
ization of DMFT, but albeit using the same technique on the same model, they come to
different conclusions. In the work by Sentef et al. the extracted exponents close to the
second-order end point of the Mott transition seem to fit Ising universality [SWGK11].
Sémon and Tremblay investigated the importance of subleading corrections for the Mott
critical point using C-DMFT and found that fitting with a single exponent over a broad
region away from the critical point leads to a critical exponent of δ ≈ 2. When taking into
account subleading corrections to the Mott transition, δ = 3 gave much better agreement
with the data both for DMFT and C-DMFT [ST12]. However, as these techniques are
mean-field techniques, its value for the discussion of the universality class of the Mott
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transition is questionable.

In a detailed study, Sato et al. used cellular dynamical mean-field theory and included
vertex corrections inside the cluster [SHT12]. When investigating thermodynamic crit-
icality by looking at the double occupancy d at both the insulating and the metallic
side of the transition they found mean-field behavior near the critical end point, namely
(1/δ−, 1/δ+) = (0.32 ± 0.05, 0.30 ± 0.04). However, when studying electronic proporties
via the optical conductivity they tried to fit the Drude weight with a scaling function as
|D−Dc| ∝ |U −Uc|1/δ±c . Using the jackknife method for an error analysis to estimate the
critical exponent with the optical weight led to (1/δ−, 1/δ+) = (0.15± 0.04, 0.16± 0.03),
which is unconventional in the sense that it does not match mean-field or Ising exponents.
Even within the scaling theory of Papanikolaou et al. [PFF+08], where the conductiv-
ity scales with the energy density of the Ising universality class could not reproduce the
mean-field exponent that was extracted from the double occupancy data.

To conclude this survey, different numerical approaches have been applied to the two-
dimensional Hubbard model. Even within the same technical framework, different results
are obtained for the universality class of the Mott transition, see table 3.1. Besides differ-
ences in the techniques and their application, the discrepancy of these studies are also due
to the different approaches to extracting meaningful exponents. Based on the assump-
tions that enter the scaling function, different quantities that allow for scaling are used.

Technique/ Theory Critical exponents Ref.

QMC ν = 0.26± 0.05 [AI96]
QMC ν = 0.21± 0.04 [FAI96]
Hartree Fock (β, γ, δ) = (1, 1, 2) to (β, γ, δ =)(1/2, 1, 3) [MI07]
CDMFT δ = 1.64± 0.13, 1.72± 0.17, 2.08± 0.10 [SWGK11]
DMFT δ = 3 [KLR00]
CDMFT δ = 3 [ST12]
CDMFT 1/δ = 0.15± 0.04, 1/δ = 0.32± 0.05 [SHT12]

Table 3.1: Summary of the critical exponents of the theoretical studies mentioned in the text.
The two studies in the middle support unconventional criticality ((β, γ, δ) = (1, 1, 2)), the last
three find mean-field universality (β, γ, δ) = (1/2, 1, 3).

However, none of these numerical studies investigated the anisotropic two-dimensional
Hubbard model with frustration with respect to the Mott transition. The route that
is pursued in chapter 4 to account for quantum criticality is different as the interchain
hopping t⊥ is used as a control parameter. Nevertheless, the results will be compared to
some of the just mentioned numerical studies when possible, e.g. at the isotropic point of
the model (t⊥ = t).
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The Kondo Lattice Model 3.3.2

The Kondo lattice model has the already discussed limits of infinitely large coupling,
where local singlets between conduction electrons and f-spins form, and of weak interac-
tion, where effective RKKY interactions determine the physics. In between, the Doniach
diagram describes the competition of both processes and gives a rough picture, which
nevertheless is only based on comparing the energy scales of both limiting cases.
Due to the lack of (exact) analytical tools to tackle the full Kondo lattice problem, one has
to resort to approximate numerical techniques to piece together a consistent picture of the
region of intermediate coupling strengths. Nevertheless, before numerical tools became
powerful enough to approach the Kondo lattice model, analytical or semi-analytical ap-
proaches lead to valuable insights. Here, some of the results that have been obtained with
numerical techniques and which will prove important for comparisons in the subsequent
subsections are summarized. What follows is not a complete list but rather a selection
of studies which highlights the most important and reliable results out of a large set of
techniques.

One of the most important ideas that also inspired a lot of numerical techniques is the
large-N expansion [And81]. Motivated by the large magnetic spin degeneracy of f mo-
ments N = 2j + 1 in heavy fermion systems Anderson proposed to use 1/N expansions,
which was later used to construct various approximations, such as slave boson mean-field
theories. For the Anderson lattice (PAM) in the U → ∞ limit Lavagna et al. used such
a Kondo-boson 1/N expansion and found a d-wave superconducting instability [LML87].
This superconductivity was shown to emerge due to slave-boson exchange and not to be
associated with spin fluctuations.
One of the first approximations which has been applied to solve the Kondo lattice problem
is mean-field theory. Already in 1979 Lacroix and Cyrot found that for a three-dimensional
Kondo lattice at zero temperature three different phases emerge as a function of Kondo
coupling J and electron filling n [LC79]. Their phase diagram shows an antiferromagnetic
phase at small coupling strength down to a critical electron filling nc below which the
system orders ferromagnetically. This phase extends at small fillings even to quite high
coupling strengths. From a certain coupling strength on, the ground state of the system
turns out to be a Kondo singlet state.

In a thorough variational Monte Carlo study by Asadzadeh et al. the two-dimensional
Kondo lattice model was for comparison also revisited by means of mean-field theory
[ABF13]. There, the antiferromagnetic region for electron fillings n & 0.8 was found to
be split into a region with small Fermi surface (’AFs’) for small to intermediate coupling
strengths and a region with hole-like Fermi surface (’AFh’) close to the transition to the
paramagnet. The existence of the AFs phase is in agreement with previous mean-field
approaches, see e.g. references [ZY00, SVS04], where regions were identified in which the
antiferromagnetic metal also has a small Fermi surface and Kondo screening is absent. A
drawback of all these mean-field studies is the overestimation of antiferromagnetic order
(the critical value Jc differs by a factor of roughly two) [CA01] and at half-filling it is
problematic to fulfill the condition of having exactly one f-spin per site locally and not
only in average [WO07].



Section 3.3. Survey of Other Numerical Approaches 77

Already in 2007 Watanabe and Ogata investigated the KLM via variational Monte Carlo
(VMC) and studied the Kondo screening which shows in different Fermi surfaces of the
antiferromagnetic metal [WO07]. Within VMC one or several trial wave functions are
used in combination with a variational principle. The technique can be applied at zero
temperature, but in the end the results depend on the variational wave function that is
used. They are therefore usually biased towards one of the phases that is realized in the
system. In the VMC phase diagram, the paramagnetic and ’AFh’ phases are also found
and the qualitative picture is even similar to the mean-field one. A big difference to mean-
field theory is the existence of an antiferromagnetic metal with a small electronic Fermi
surface (’AFe’), which is in parts made up of the f-spins. That means that f-spins and
conduction electrons hybridize and in contrast to AFs Kondo screening is still present.
However, the absolute values differ roughly by a factor of two and close to half-filling even
the curvature of the transition lines is different [ABF13]. Within VMC the transition be-
tween AFh and the paramagnetic metal turn out to be of second order, but the transition
from AFh to AFe and below n ≈ 0.8 from paramagnetic metal directly to AFe were of
first order. At half-filling this continuous transition was first found by Wang et al. in 1994
[WLL94]. In the VMC study of Asadzadeh et al. d-wave superconductivity was found in
the paramagnetic, but not inside the antiferromagnetic phase [ABF13]. Later, the same
authors showed that superconductivity could enter in the transition region between para-
and antiferromagnet if magnetic frustration is introduced in the system [AFB14].

A technique which is conceptually similar to VCA, so-called dynamical cluster approxima-
tion (DCA) [HMJK00, MJPH05], was used by Martin et al. to investigate the evolution
of the Fermi surface when crossing the antiferromagnetic transition line [MA08, MBA10].
DCA can be considered as a cluster extension of DMFT. It is a cluster technique that
works directly in momentum space and coarse grains the Brillouin zone. Although DCA
still shows finite-size effects, the use of quantum Monte Carlo solvers at finite temperature
allows to use quite large clusters. The authors of [MA08, MBA10] found evidence for three
distinct regions in the phase diagram and showed that the Fermi surface topologies of the
two antiferromagnetic metal phases are continuously connected and correspond to those
that can be obtained by using a spin-density wave approximation. The transition from
para- to antiferromagnet is found to be continuous, and at all finite coupling strengths
no Kondo breakdown was observed. Later, Bercx and Assaad could show that instead of
a Kondo breakdown scenario, the Fermi surface topologies change according to a Lifshitz
transition [BA12].

Recently, Peters and Kawakami used a real-space formulation of dynamical mean-field
theory to investigate the evolution of the Fermi surface again [PK15]. They found metallic
spin-density wave (SDW) phases away from half-filling. Inside this SDW phase the Fermi
surface (FS) changed from small to large when increasing the coupling strength, similar
to the Fermi surface evolution in the antiferromagnetic case discussed before. However,
only the transition from the SDW phase with large FS to the paramagnetic metal is of
second order. At small electron filling the transition from the SDW phase with small FS
to the paramagnet is first order and a quantum critical point is avoided.

The density matrix renormalization group (DMRG) technique [Whi92], which is one of
the most powerful numerical tools for the study of one-dimensional systems and which has
been used in recent years also to investigate two-dimensional systems [YHW11, DMS12,
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SW12] has also been applied to Kondo ladders. In case of N-leg Kondo ladders at half-
filling Xavier calculated spin and charge gaps and found evidence for the presence of
a quantum critical point [Xav03]. However, close to half-filling the investigation of the
binding energy of two holes does not support superconductivity. In a follow-up study of
the KLM with additional antiferromagnetic coupling between localized spins Xavier and
Dagotto instead found indications for the existence of d-wave superconductivity close to
half-filling, which is mediated by antiferromagnetic fluctuations [XD08]. Unfortunately, a
careful two-dimensional finite size scaling in two dimensions was beyond their capabilities
as energies did not converge well. The precise determination of Jc was also not possible
[XD08].

In 2013, Bodensiek et al. used dynamical mean-field theory (DMFT) with a numerical
renormalization group (NRG) solver and unexpectedly found robust s-wave superconduc-
tivity, which is connected to the formation of heavy fermion bands and strong local spin
fluctuations [BŽV+13]. The anomalous expectation value of this superconducting phase
was found to be maximal at a coupling strength of J/t ≈ 2.4 and a filling of n ≈ 0.9.
For large J/t the authors motivated the pairing mechanism perturbatively and supported
their numerical study by a spin-fluctuation theory based on Eliashberg theory, which after
certain uncontrolled approximations allows for s-wave superconductivity [BŽV+13]. Al-
though in the mean-time the DMFT+NRG results could be verified with an independent
program [Pet14], no other numerical technique has found similar local s-wave supercon-
ductivity since.
Furthermore, it can be shown that in contrast to the case of d-wave superconductivity,
the equations of motion of the non-retarded gap equation for local s-wave superconduc-
tivity is zero [Gez16]. In the scenario put forward in reference [BŽV+13] to give a possible
explanation for the formation of s-wave superconductivity retardation effects are indeed
essential. Still, one might want to ask whether both retarded and non-retarded s-wave
superconductivity should not coincide in the thermodynamic limit.

The result which is closest to the unconventional local s-wave superconductivity is the
s-wave superconductivity that was found by Masuda and Yamamoto in 2015 [MY15]. In
their study they used VCA for the periodic Anderson model (PAM) and found s-wave
superconductivity between c- and f-electrons. However, as they studied the PAM at small
interaction strengths only and as their s-wave superconductor seems to be conceptionally
different, it is far from clear that it will survive in this form in the limit U → ∞. Be-
sides analyzing the difference of the s-wave superconductor of the PAM and the potential
s-wave superconductor of the KLM, checking whether other kinds of superconductivity
superpose the s-wave superconductor in case of the PAM remains an open question.

In 1995 Shi et al. used high order series expansions in t/J (up to 8th order) and found ev-
idence for a continuous phase transition from Kondo insulator to antiferromagnetic state
around Jc ∼ 1.43 for a square lattice [SSGW95]. At half-filling, numerically exact and
therefore most reliable results for the Kondo lattice model have been obtained by Assaad
in 1999 with an auxiliary-field quantum Monte Carlo method (QMC) [Ass99]. This work
at zero temperature was then extended to finite temperatures by Capponi and Assaad
using the same technique [CA01]. One of the main findings was the precise determination
of the critical coupling strength Jc/t = 1.45±0.05 at which the continuous transition from
an antiferromagnetic to spin-gapped insulator takes place. The finite-size extrapolated
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values of the quasiparticle gap are also considered to be exact and used as a reference
later in this chapter.

Considering the investigation of superconductivity in the Kondo lattice model one of
the most significant studies is the one by Otsuki [Ots15] who applied the dual-fermion
approach, which can be viewed as a diagrammatic extension of DMFT [RKL08, RKLG09].
Within this approach at finite temperatures, the critical value of the quantum critical
point between the antiferromagnetic and the paramagnetic phase could be improved a lot
with respect to DMFT. The extrapolation to zero temperature leads to a value of Jc/t =
1.35± 0.05 which agrees within error bars with the QMC result of Assaad. By measuring
the Fermi surface area down to the lowest accessible temperatures (T . 0.01), it was
furthermore possible to identify small and large Fermi surfaces as well as a crossover region
between them. The key point of this study is the comparison of the leading eigenvalues for
all possible superconducting pairing types. Otsuki finds d-wave superconductivity at weak
coupling and low temperatures, but at intermediate coupling strengths the ground state is
a p-wave spin-singlet superconductor. He concludes that in this region superconductivity
emerges from the incomplete quasiparticles of the crossover region between small to large
Fermi surface, which undergo critical antiferromagnetic fluctuations.





Mott Quantum Criticality in Two
Dimensions 4

In this chapter, the anisotropic frustrated two-dimensional Hubbard model (see eq. 2.1)
introduced in section 2.1 is investigated. The focus is set on the Mott metal-insulator
transition (MIT) and a different route is proposed to account for its low critical end point
Tc. Considering the fact that quantum fluctuations are enhanced in low-dimensional
systems with spatial anisotropy, the interchain hopping t⊥ is used as a tuning parameter.
The effect of this anisotropic hopping amplitude is investigated and the location of the
putative quantum critical point at T = 0 is estimated in the phase diagram.
Throughout this chapter, the next-nearest-neighbor hopping t′ is always chosen propor-
tional to the interchain hopping t⊥ in order to maintain a certain relative frustration when
tuning t⊥. Both the paramagnetic phase, where the transition happens between a metal
and a Mott-Hubbard insulator, and the antiferromagnetic phase, where the metal goes
over to a Mott-Heisenberg insulator, are discussed.

The outline of this chapter is as follows. In the first two sections (4.1, 4.2.5), the param-
agnetic phase of the model is investigated and the next-nearest-neighbor hopping is fixed
to t′ = −0.25t⊥.
The first section contains a preliminary study using standard variational cluster approxi-
mation to study the Mott transition. In this treatment, the reference system consists of
a cluster without Weiss fields or bath sites and phase diagrams for different cluster sizes
are calculated. Finally, the paramagnetic phase is studied within VCA using a 2× 2 pla-
quette with one bath site per correlated site in section 4.2. The metal-insulator transition
is found to be discontinuous for large t⊥, but for small interchain hopping it becomes
continuous. In both regions, the insulating and metallic phases are investigated and the
zero-temperature VCA data is compared to finite-temperature cellular dynamical mean-
field theory (CDMFT) results of M. Raczkowski. A consistent picture emerging from these
two techniques is presented and the connection of the results to measurements on layered
organic conductors is discussed. The extraction of critical exponents from VCA data is
shown for the sake of completeness in section 4.2.5 and its validity is commented on.
In section 4.3, the antiferromagnetic phase of the model is investigated for two different
relative frustration strengths t′/t⊥. There, the insulator is of Mott-Heisenberg type and
the position of the metal-insulator transition line is determined. Differences between the
phase diagram of the paramagnetic and antiferromagnetic case are discussed. Finally,
the findings are analyzed in context of putative marginal quantum criticality and further
studies are motivated.

Parts of this chapter, especially of section 4.2, were published as „Mott Quantum Critical-
ity in the Anisotropic 2D Hubbard Model“, Physical Review Letters 116, 086403 (2016)
in collaboration with Salvatore R. Manmana, Thomas Pruschke, Fakher F. Assaad and
Marcin Raczkowski. Section 4.2.5 was motivated by one of the referee reports for this
paper in which the referee explicitly asked for critical exponents at the MIT. The fig-
ures in this publication were prepared by me, nevertheless figures in this thesis that are
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taken unchanged from the publication are indicated as such. Since section 4.2 is based on
the publication, parts of it might resemble its manuscript. All calculations using varia-
tional cluster approximation were done by me using my own program code. The CDMFT
calculations at finite temperature were done by Marcin Raczkowski, who also initiated
the project. The manuscript was mainly written by me and Marcin Raczkowski, but all
authors were included in the scientific discussion and contributed to the manuscript.

First Steps Towards the Mott Transition 4.1

Before including bath sites in the reference cluster, in this section the anisotropic frus-
trated two-dimensional Hubbard model is investigated with different clusters that do not
include uncorrelated bath sites. The focus is set on the metal-insulator transition in the
paramagnetic phase. By choosing different clusters, the dependence of the phase diagram
on the cluster size can be analyzed. The clusters used in this section all have a rectangular
geometry and are shown in the left panel of figure 4.1.
However, before studying a metal-insulator transition, the criterion that allows to dis-
criminate both phases from each other is revisited.
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Figure 4.1: Left panel: Different clusters without additional bath sites: 2× 2 plaquette, 2× 4
cluster, 4×2 cluster, 6×2 cluster. Right panel: The electron density n as a function of chemical
potential µ at U/t = 2.0 for a 4× 2 cluster. Curves are shown for different values of interchain
coupling t⊥/t close to the metal-insulator transition. For small t⊥, there exists a distinct plateau
and the system is insulating, for large interchain hopping it is metallic.

As already mentioned in section 2.1, one of the quantities that are often used to dis-
tinguish metal from insulator is the compressibility κ = −∂n/∂µ, where n denotes the
electron filling and µ is the chemical potential. In case of an insulator, the compressibility
is zero; for a metal it is finite. When plotting the electron density as a function of chemical
potential, the insulator shows accordingly a plateau at half-filling (n = 1), whereas the
metal possesses a finite slope.
Another possibility consists in investigating the Drude weight. An investigation of the
spectral function and the density of states (DoS(ω)) is possible within VCA and has been
described in section 3.1.3. Checking whether the system has a gapped density of states
around ω = 0 at half-filling or whether DoS(ω = 0) 6= 0 without a gap is therefore a valid
alternative.
Here, the compressibility is used as a criterion, but it was checked that investigating the
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density of states leads to the same results.

In case of the isotropic unfrustrated two-dimensional Hubbard model, choosing µ = U/2
leads to half-filling. Here, the model contains different nearest- and next-nearest-neighbor
hopping terms and, as a consequence, the chemical potential µ, which corresponds to half-
filling, has to be determined. When scanning a parameter range for the correct chemical
potential, the n-vs.-µ curve is obtained as a side-product and can be used to determine
the compressibility.

The smallest set of variational parameters that are necessary to obtain a thermodynami-
cally stable solution within VCA consists in taking the chemical potential of the cluster
µ′ only [AAPH06a]. In the following, only µ′ is used as a variational parameter and the
electron density n is determined as a function of the chemical potential µ. The right
panel of figure 4.1 shows the electron density as a function of µ at half-filling for a 4× 2
cluster at U/t = 2.0 for different interchain hopping strengths t⊥/t. For small values of
t⊥/t, a pronounced plateau is visible, which shrinks in size when increasing the interchain
hopping. In this region, the compressibility is zero and the system is hence insulating.
Finally, at a certain value tc⊥/t the plateau is gone and the system is metallic.

Using the compressibility as a criterion, one can investigate the model as a function of
Coulomb repulsion U/t and interchain hopping t⊥. For the isotropic two-dimensional
model, it is expected that the system is metallic for small interaction strength. At some
critical value Uc/t, the system should then turn into a Mott-Hubbard insulator. In the
other limit of decoupled chains (t⊥/t = 0), the system is gapped for any finite interaction
strength U/t, and only at U = 0 metallic. As the model allows to continuously change
the parameter t⊥/t, it can be expected that the value of Uc/t smoothly becomes smaller
when reducing t⊥.
Figure 4.2 shows the phase diagrams for this model obtained by using 4 × 2 and 6 × 2
clusters.
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Figure 4.2: Phase diagram for a 4 × 2 cluster (left panel) and a 6 × 2 cluster (right panel).
Remarkably, there is a dip at intermediate interchain coupling strengths, which in the second
case is close to t⊥/t = 0.5. Lines are a guide to the eye only.

Focussing on the results using the 4 × 2 cluster first, the transition at small interchain
hopping strengths 0 < t⊥/t . 0.4 shows the expected behavior. The critical interaction
strength Uc/t increases smoothly when raising t⊥. Close to the transition, it turned out
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to be difficult to distinguish a plateau from a linear segment with small but finite slope.
In the region of large hopping strengths 0.8 . t⊥/t ≤ 1, the results also match the ex-
pectations. Uc/t decreases as the interchain hopping is reduced. The metal shows a large
slope in the n-vs.-µ curve around n = 1 and is quite easily distinguished from the insulator.
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Figure 4.3: Left panel: The charge gap ∆c and the energy Ω − µn as a function of inter-
chain hopping t⊥/t in the regime of the unexpected insulating region at fixed U/t = 2. Right
panel: Interchain mobility ∂(Ω− µn)/∂t⊥ in the same region; the charge gap is shown again for
comparison. Data for both panels were obtained with a 4× 2 cluster.

However, in the region of intermediate hopping strength 0.4 . t⊥/t . 0.8 the phase
diagram shows a dip at td⊥/t ≈ 0.62. This unexpected extend of the insulating region
down to an interaction strength of U/t = 1.75 is robust and can also be observed in other
quantities than only the compressibility. Figure 4.3 shows the energy and the electron mo-
bility in interchain direction ∂E/∂t⊥ for a sweep of t⊥ through the dip region at constant
interaction strength U/t = 2. The size of the plateau in the n-vs.-µ curve is identified as
the charge gap ∆c and is shown in the figure for comparison. In all three quantities, the
metal-insulator transitions can be identified. The plateau size is finite in the insulating
region from t−⊥ ≈ 0.61 to t+⊥ ≈ 0.67. Within this region, the energy increases linearly with
the interchain hopping, as can be seen in the constant interchain mobility 〈t⊥〉 = ∂E/∂t⊥.
This is in contrast to the metallic phases that connect to this phase both for larger and
smaller interchain hopping.

In order to clarify whether the metallic phases for small and large interchain hopping
differ, their Fermi surface is investigated. Figure 4.4 shows characteristic Fermi surfaces
for both metallic regions at U/t = 2. The value, for which the Fermi surface is shown in
the right panel of figure 4.4, is deep in the metallic phase. There, most of the weight of
the spectral function at ω = 0 closely follows the non-interacting dispersion. For large
interchain hopping strengths, the Fermi surface resembles the large Fermi surface of an
ordinary metal.
However, as a finite number Nc of 12-site clusters is used to calculate the spectral function,
an artifact of the approximate reperiodization of the cluster Green function (see section
3.1.3) is clearly visible in the plot. Due to the 12 sites inside the cluster, the Brillouin zone
is made up of 12 patches with Nc K-vectors. Hence, only when increasing the number
of clusters, the proximate region around the centers of these 12 patches (corresponding
to K = 0) can be investigated. As a consequence, the Fermi surface on the right side of
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figure 4.4 is split into several pieces. Nevertheless, the similarity to the non-interacting
dispersion and the big differences to the Fermi surface in the left panel are striking.
For small values of t⊥/t, the Fermi surface close to the transition shows closed patches,
so-called electron and hole pockets. In reference [ET05], Essler and Tsvelik describe
weakly coupled one-dimensional Hubbard chains and also find these kind of pockets.
They argue that adding interactions to the warped one-dimensional Fermi surface leads
to the formation of hole and electron Fermi pockets of a higher-dimensional compensated
metal [ET05]. In a previous analysis of the same model that is studied here, these
pocket structures were found at finite temperatures and interpreted as being remnant
1D signatures of Umklapp scattering [RA12]. There, the region of intermediate hopping
strengths was not investigated and the pockets were less pronounced. Simple tight-binding
calculations also show that dispersions with structures similar to the pockets rather stem
from one-dimensional than from two-dimensional order D.
Finding these pocket structures within VCA at zero temperature up to quite large hop-
ping strengths of t⊥/t ≈ 0.5 is quite remarkable. When adopting the interpretation of
being remnant 1D features, this would imply that one-dimensional fluctuations are still
the crucial factor at intermediate hopping strengths. The pocket structure of the metal
at small interchain coupling will be investigated more thoroughly in section 4.2.

Figure 4.4: Fermi surfaces at U/t = 2 to the left side of the dip (t⊥/t = 0.4, left figure) and
to the right side of the dip (t⊥/t = 0.7) using a 6× 2 cluster.

It was shown that the metals at U/t ≈ 2 for t⊥ < t−⊥ and t⊥ > t+⊥ differ in their Fermi
structure. However, at small interactions such as U/t = 1 they are not separated any-
more by an insulating region. A smooth change between the Fermi surfaces has to be
expected and might explain the dip in the transition line. It has to be noted that the
non-interacting Fermi surface changes qualitatively at t⊥/t = 2/3 (compare with figure
2.1). A Van Hove singularity appears at the point where the warping of the Fermi surface,
due to t⊥, leads to an intersection of the dispersion with the Brillouin-zone boundary at
kx = ±π. For larger interchain hopping, the Fermi surface extends over the full range of
kx and ky values - it changes its character from quasi-1D to quasi-2D. Such a Lifshitz-
like transition at finite interaction strength could be an explanation for the dip in the
phase diagram. As the pocket structure of the Fermi surface at small interchain coupling
only shows close to the transition, i.e. for large interaction strength, and also follows the
non-interacting dispersion closely for small interaction strength, a precise determination
of such a transition at intermediate interaction strength is difficult.



86 Chapter 4. Mott Quantum Criticality in Two Dimensions

When linking the existence of electron and hole pockets of the Fermi surface to the pres-
ence of remnant one-dimensional scattering, the large value of td⊥ is surprising. However,
most of the discussion was based on a 4 × 2 cluster only, but finite-size effects have to
be considered. Figure 4.2 shows phase diagrams for the two largest clusters with ladder
geometry that were investigated. Compared to the 4× 2 cluster, the shape of the transi-
tion line for the 6× 2 cluster is qualitatively the same, but the position of the dip in the
transition line is shifted to td⊥/t ≈ 0.5.
Also, the size of the dip seems to decrease when increasing the cluster size, but a true
finite-size extrapolation would necessitate larger clusters. A combination of VCA with
another cluster solver than Band Lanczos might allow for such an extrapolation in future
studies. In reference [RA12], Raczkowski and Assaad found less pronounced pockets at
finite temperature via cluster dynamical mean-field theory where they could use a quan-
tum Monte Carlo solver. They found the pockets using a 8× 2 and a 4× 4 cluster.
As the metallic region with Fermi-surface pockets is quite broad for the largest cluster
size used here, it is plausible that the region even exists for much larger clusters and is
not an artifact of small cluster size or the ladder geometry of the cluster.

To summarize the results shown in this subsection, the phase diagram of the model has
been determined in the paramagnetic phase; figure 4.2 shows examples for the two largest
clusters used. The system is metallic for small U/t and turns into a Mott-Hubbard insu-
lator at a critical interaction strength Uc(t⊥), which defines the transition line. For small
interchain hopping strength the metal was shown to have a Fermi surface with electron
and hole pockets. At large t⊥ the Fermi surface does not show these pockets, but forms
the common Fermi surface of a two-dimensional metal instead.

However, when investigating the order of the metal-insulator transition, it turns out that
it is continuous for all interchain hopping strengths t⊥. Unfortunately, this is not neces-
sarily rooted in the physical model, but can rather be an artifact of the method.
When using VCA without bath sites, the system turns out to be either metallic or in-
sulating. An adequate way for the determination of the transition point is to calculate
the compressibility. As this amounts to probing for a plateau in electron density n as
a function of chemical potential µ, and as n(µ) should be unique around half-filling, it
becomes clear that anything but a continuous vanishing of the plateau is not possible.
This changes when non-interacting bath sites and an hybridization between correlated
sites and bath sites are added to the cluster. In the following, this route is pursued to
investigate the order of the Mott transition. Results obtained for the simplest quantum
cluster technique, which contains the coupling to a bath site, so-called dynamical impurity
approximation (DIA), are shown in the appendix E. Remarkably, it is shown in E that
the finite-temperature picture of a first-order transition with a pronounced coexistence
region breaks down when zero temperature is approached. However, as DIA does not
include spatial fluctuations, a different variational cluster approach is used for further
studies. Section 4.2 addresses the problem with a cluster that includes bath sites and is
sufficiently large to allow for Umklapp scattering and antiferromagnetic fluctuations.
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Figure 4.5: Cluster tiling of the lattice system with the reference cluster used in this section.
In the 2 × 2 plaquette cluster, each correlated site is additionally coupled to a non-interacting
bath site (open circles) with hybridization strength V .

Mott Transition in the Paramagnetic Phase 4.2

In this section, the results of studying the paramagnetic phase are presented right at the
beginning in subsection 4.2.1. Starting from the phase diagram, the different quantities
that have been analyzed are discussed in subsection 4.2.2 and it is explained how they lead
to the transition line presented in 4.2.1. These include the ground state energy, the double
occupancy, and the V -dependence of the self-energy functional. In subsection 4.2.4, the
Fermi surface of the metallic phase is analyzed and discussed in the context of the or-
der of the Mott transition. Afterwards, the results are compared with finite-temperature
CDMFT results. Section 4.2.5 shows how insights into the critical exponents of the Mott
transition can be gained in principle and how far VCA can contribute to the discussion
of its universality class.

Throughout this section, the Mott transition of the model is investigated in its paramag-
netic phase using a 2×2 cluster with one additional bath site per correlated site, see figure
4.5. This cluster allows one to capture both the 1D Umklapp scattering process opening
a gap in the half-filled band [CCK+04] and short-range 2D AFM spin fluctuations, and
has to be considered as being the minimal unit cell that is suitable. It has been used
already within the variational cluster approximation to investigate the isotropic unfrus-
trated Hubbard model on the square lattice [BKS+09]. In this study the Mott transition
was found to be of first order. As the uncorrelated bath sites have to be included when
setting up the Hilbert space and diagonalizing the cluster Hamiltonian, it is an effective
eight-site cluster and also has an corresponding computational cost. Still, its moderate
size allows to scan a broad parameter space. This is even more important when includ-
ing an antiferromagnetic Weiss field in the next section, as the minimal necessary set of
variational parameters contains four parameters there.

Here, the hybridization V between correlated and bath sites, as well as chemical potentials
of the reference system µ′ and the lattice system µ, respectively, are chosen as variational
parameters. The influence of additionally varying the hopping terms on the cluster was
checked for different interchain hopping strengths. It did not lead to qualitative differ-
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ences of the results shown in the following compared to a variation of µ, µ′ and V only.
Therefore, the hopping terms were chosen to be equal to their lattice analogues and not
treated as additional variational parameters.

The VCA results at zero temperature are in the following compared to finite-temperature
results obtained by M. Raczkowski [LMP+16] with CDMFT [KSPB01]. Both techniques
can be described within the framework of self-energy functional theory and can be viewed
to be complementary. In CDMFT, a cluster of Nc interacting impurities is dynamically
coupled to an effective bath. Using a quantum Monte Carlo (QMC) solver, the impurity
problem can be solved and the coupling to the bath is determined self-consistently. The
drawback of using a QMC solver for this model is the fermionic sign problem, which ren-
ders large clusters and low temperatures not accessible.With the 2 × 2 plaquette cluster
and a Hirsch-Fye solver temperatures down to T = t/40 could be reached.

The Phase Diagram 4.2.1

The main results of this section are summarized in the ground-state phase diagram in
figure 4.6. It shows the estimate of the critical interaction strength Uc, at which the sys-
tem undergoes a transition between Mott-insulating and metallic phases, the transition
line, in the full range of t⊥/t between the 1D and 2D regimes. From reference [BHP08]
it is known that VCA yields the Mott phase for any finite interaction strength U > 0 in
the 1D limit. This is in agreement with the exact Bethe-ansatz solution [LW68] and the
bosonization approach [Gia97].
As shown in figure 4.6, this changes dramatically upon coupling the chains via t⊥/t > 0.
The single-particle hopping t⊥ shifts the critical interaction Uc towards a finite value and
enables the interaction-driven MIT. Initially, Uc increases steeply with t⊥, but then grows
nearly linearly, as it is expected for the MIT controlled by the ratio of Coulomb interac-
tion to kinetic-energy gain. For t⊥/t > tc⊥/t ≈ 0.2, the MIT line is found to be of first
order, consistent with former studies on the frustrated 2D Hubbard model [PBK04, KT06,
WYTI06, OMTK08, YKK09, LIM09, DXC+15]. In contrast, in the strongly anisotropic
case with t⊥/t ≤ 0.2, it marks a smooth metal-insulator crossover even at zero temper-
ature. The systematic reduction of the critical end point Tc identified within CDMFT
supports this scenario (see the inset of Fig. 4.6). All of these aspects consistently suggest
that t⊥ is a control parameter that tunes the nature of the Mott transition from strong
first order in the 2D limit to continuous at tc⊥/t ' 0.2.
The phase diagram is complemented by insets that show the Fermi-surface topology for
values of the interaction close to the transition U . Uc. It changes when tuning t⊥/t, and
three different regions can be identified. For small to intermediate t⊥ the 1D FS is warped
and due to the presence of interactions, electron and hole Fermi pockets of a higher-
dimensional compensated metal are formed [ET05]. In the region 0 < t⊥/t/t < tc⊥/t, the
area of the surface pockets vanishes smoothly when approaching the transition line, while
for values tc⊥/t < t⊥/t . 0.7, the area jumps abruptly to zero when tuning the interaction
strength over the critical value Uc/t. In the third region (t⊥/t & 0.7), the compensated
metal structure of the FS disappears and goes over to a conventional large FS, which
coincides with the topological Lifshitz transition of the noninteracting FS.
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Figure 4.6: Metal-insulator phase diagram of the half-filled Hubbard model as obtained by
the zero-temperature VCA and CDMFT at T = t/40. (Top inset) The combined VCA and
CDMFT estimate for the critical temperature Tc terminating the first-order MIT; Tc is driven
down to zero at tc⊥/t ' 0.2, thus providing evidence for the quantum critical nature of the MIT.
(Bottom insets) FS topology close to the critical interaction Uc in different regions of the phase
diagram indicated by arrows. CDMFT data obtained by M. Raczkowski. Figure published in
ref. [LMP+16].

Obtaining the Phase Diagram 4.2.2

Here, the numerical results that lead to the above phase diagram are described. Metal
and insulator are again identified by looking at the electron filling 〈n〉 as a function of
chemical potential µ. It shows a plateau at half-filling for large Coulomb repulsion U ,
which corresponds to a vanishing charge compressibility κ = −∂〈n〉

∂µ
and indicates an insu-

lator, whereas, for a metal, no plateau occurs.

Self-Energy Functional. Furthermore, VCA provides the possibility of identifying
and tracing competing phases by analyzing the self-energy functional Ω(µ, µ′, V ). Figure
4.7 shows the self-energy functional Ω as a function of hybridization V/t for two different
interchain hopping strength that correspond to the different regions of the phase diagram.
For all values of Ω(V ), the functional has already been optimized with respect to µ and µ′.
The stationary points of Ω(µ, µ′, V ) indicated by arrows are hence maxima with respect
to µ and µ′, but minima with respect to hybridization strength V . For small interchain
coupling t⊥/t = 0.2, one cannot resolve two disjoined SEF minima and the value of
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V is thus expected to change continuously across the critical interaction Uc; see thick
arrows in figure 4.7(a). In contrast, for t⊥/t & 0.3, the SEF has four saddle points, of
which two (indicated by arrows) correspond to stable phases close to the phase transition:
one corresponding to the metallic, the other to the insulating solution. The existence
of two distinct minima in the SEF landscape shown in figure 4.7(b) results in a jump
of hybridization V when tuning across Uc, and thus signals the first-order nature of the
MIT.
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Figure 4.8: Ground-state energy E0 as a function of interaction strength U/t for t⊥/t = 0.2
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Ground-State Energy E0. Next, the focus is set on the ground-state energy E0 at
the stationary point(s). Figure 4.8 shows E0 as a function of interaction strength U/t for
two different values of the interchain hopping strengths. In case of small t⊥/t = 0.2, the
system is insulating down to the critical interaction strength and metallic for U < Uc. The
ground-state energy seems to be a smooth curve without distinct kink at the transition,
which indicates a continuous transition. Specifically, no insulting (metallic) solution is
found for U < Uc (U > Uc), as can be seen in the self-energy functional (top panel of
figure 4.7).
In contrast, the quasi-2D region shows a clear kink in the ground-state energy E0, see
right panel of figure 4.9 for t⊥/t = 0.9. It arises from a level crossing of the insulating and
metallic solutions, which both exist in a finite interaction range Uc1 < U < Uc2 . Following
the solution of lowest energy across the transition leads to a kink in E0 and indicates a
discontinuous transition. Although a weak kink in E0 is also resolved for intermediate
values of t⊥, the coexistence region shrinks when reducing t⊥/t and finally vanishes at
tc⊥/t ' 0.2.

Double occupancy. Finally, the double occupancy d is investigated. It is obtained
as the derivative of the grand potential Ω with respect to Coulomb repulsion d = ∂Ω

∂U
.

The kink in energy E0 for large and intermediate t⊥/t gives rise to a jump in the double
occupancy d at Uc, as shown in Fig. 4.9. It also exhibits hysteresis in the region with two
solutions, as expected for a first-order transition. When reducing the interchain hopping,
both the size of the jump in double occupancy at Uc and the hysteresis region shrink. At
t⊥/t, it is already barely possible to identify a hysteresis region and at tc⊥/t, no jump is
visible anymore. For intermediate and large t⊥, the metallic and insulating solutions both
exist in close vicinity of the transition and the jump can be read off immediately, see top
right panel of figure 4.9 In the case of small t⊥, it is necessary to fit double occupancies
of the metallic and insulating solutions to read off the jump at the transition (see inset
in Fig. 4.9). Although an exponentially small jump for t⊥/t . 0.2 can still not be ruled
out in this way, a fit of the jump sizes for t⊥/t > 0.2 agrees with a vanishing jump size
for small t⊥.

The absence of a jump in double occupancy and a single minimum in the self-energy
functional yield strong evidence for the continuous nature of the metal-insulator transition
at small interchain hopping strengths t⊥ < tc⊥. For intermediate and large t⊥ the first
order transition is clearly visible.

Comparison to Cellular Dynamical Mean-Field Theory 4.2.3

The CDMFT results discussed here to compare with the VCA results at zero temperature
were obtained by M. Raczkowski. Within CDMFT with a QMC solver, the model system
can be analyzed at finite temperatures T . Before turning to the finite-temperature conse-
quences of the continuous transition seen at T = 0, the results of CDMFT at the lowest
reached temperature T = t/40 are compared with the VCA results. Figure 4.11 shows the
double occupancy d both for VCA (lines) and CDMFT (points) in the center panel. The
qualitative behavior is the same in both techniques: Within finite-temperature CDMFT,
the double occupancy d = 1

Nc

∑
iii〈niii↑niii↓〉 shows a jump in the quasi-2D regime, too, which

gradually decreases when reducing t⊥. Finally, it converts into a crossover at tc⊥/t = 0.2.
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However, the values of Uc and the height of the jump in d at the transition are similar but
do not coincide. The discrepancy in Uc can be explained by taking into account that both
techniques are biased into different directions when it comes to determining Uc: When
reducing the temperature within CDMFT, the value of Uc becomes smaller, as can be
seen from figure 4.10, where the double occupancy is shown as a function of interaction
U and temperature T . Therefore, the Uc value for zero temperature within CDMFT is
expected to be smaller than the one at T = t/40 shown in the plot. For VCA on the
other side, it is known that using only one bath site per correlated site slightly favors
the metallic region [BKS+09]. This bias towards the metallic phase results in a too large
critical interaction strength Uc.

The finite temperature within CDMFT also leads to a reduction of ∆d, which explains
the difference to zero-temperature VCA. However, the effect of these thermal fluctuations
becomes important even at T = t/40 when turning to small interchain hopping. As there
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is no jump in d within CDMFT for small interchain couplings t⊥/t . 0.2 down to the
lowest accessible temperature T = t/40, the VCA data at T = 0 is crucial to demonstrate
the existence of quantum criticality at small t⊥.

Within CDMFT, one can estimate the t⊥ dependence of the critical-endpoint temperature
Tc, where thermal fluctuations turn a discontinuous transition at T < Tc into a continuous
crossover at T > Tc. This estimate of Tc at a given t⊥ was obtained by monitoring d as
a function of U/t at fixed temperature T , as shown in figure 4.10. The low-T jump in d
signals the first-order MIT and remains up to Tc. For larger temperatures T > Tc it turns
into a smooth crossover. As shown in the left panel of figure 4.10, for small t⊥/t = 0.3 a
smooth behavior in d is already recovered at T = t/30. In contrast, for t⊥/t = 0.9, the
jump converts into a crossover at much higher temperature T = t/12. By repeating the
above analysis for intermediate values of t⊥, the t⊥ dependence of the critical temperature
Tc can be extracted (see the inset in Fig. 4.6).

The bottom panel of figure 4.11 shows the cluster spin susceptibility χs(qqq) at the AF
wave vector qqq = (π, π) and at the vector qqq = (π, 0) for the CDMFT data at T = t/40.
It is defined via χs(qqq) = 1

Nc

∫ β
0
dτ
∑

ijijij e
iqqq·(iii−jjj)〈SiSiSi(τ)SjSjSj(0)〉. At the AF wave vector, the

susceptibility shows a jump at the transition, which means that the level crossing in the
ground state is also reflected in the spin sector. For small interchain hopping t⊥/t = 0.2, no
clear distinction can be made between the response in χs(qqq) at qqq = (π, 0) and qqq = (π, π)
wave vectors. This indicates that, at small t⊥/t, remnant 1D effects indeed play an
important role.

Spectral Function and Fermi Surface Pockets 4.2.4

To gain further insights into the microscopic origin of the continuous Mott transition for
t⊥/t . 0.2, the single-particle spectral function A(kkk, ω) = − 1

π
ImG(kkk, ω) is investigated,
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where G(kkk, ω) denotes the lattice Green’s function.

In figure 4.12, the low-energy part of the spectral function is shown along a path in kx-
direction inside the first Brillouin zone around (π/2, 0). For small interchain hopping
t⊥/t = 0.2 (top panels in the figure), the spectral function intersects with the Fermi en-
ergy ω = 0 at two k-points, once with large, the other time with reduced weight. These
intersections define the Fermi surface in the first Brillouin zone. As a result, the intersec-
tions form elliptic electron and hole pockets around the kkk = (π/2, 0) and (π/2, π) points.
At t⊥/t = 0.2, the MIT happens at a critical interaction strength Uc/t = 3.24. The fig-
ure shows the spectral function in the metallic phase (left panel), close to the transition
(center panel) and in the insulating phase. While increasing the interaction strength,
the spectral function smoothly moves to higher energies and the pocket structures at the
Fermi surface only shrink first, then become very shallow and vanish at Uc.
In contrast, for larger t⊥/t = 0.5 (bottom panels), the volume reduction of the Fermi
surface pockets is cut off by a first-order transition at Uc = 4.50. Hence, the size of the
pockets jumps abruptly from a finite size (center panel) to zero in the insulator (right
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panel).

Figure 4.13 shows the evolution of A(kkk, ω) upon increasing the interaction strength U/t
at fixed t⊥/t = 0.2. At small interaction strengths, the FS still follows the tight bind-
ing dispersion closely. When increasing U , the destruction of the FS starts at momenta
kkk = (π/2,±π/2), where the interchain-hopping matrix elements vanish. This is in agree-
ment with random-phase approximation studies [ET02, RSP11]. However, in contrast to
a study on coupled spinless fermionic chains [BGBG06], which also showed pockets, a
striking feature of the pockets here is their symmetric form. This symmetry can be as-
cribed to quasiparticle scattering off short-range 1D spin fluctuations with qqq = (π, 0). At
intermediate interaction strengths, the main part of the FS carrying most of the quasipar-
ticle weight still follows closely the noninteracting FS. When approaching the transition
line, the pockets shrink and continuously vanish at Uc/t = 3.24. This continuous vanish-
ing of their volume implies the second-order nature of the MIT. It also offers a possibility
to study the critical behavior of the transition: Since the inverse width of the hole or
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electron pockets defines a characteristic length scale, ξ, one should be able to extract the
correlation length exponent, ν [IFT98]. A preliminary study on the critical behavior of
the volume of the pocket as one approaches Uc is shown in subsection 4.2.5.
Figure 4.14 shows the Fermi surface for different values of t⊥/t close to the critical value
Uc. When comparing to the tight-binding limit, the main effect of the interaction is
the formation of additional shadow-like bands, and the creation of gaps in the originally
continuous structure. Both effects form the compensated metal structure of the FS with
hole and electron pockets in the region t⊥/t < 0.7. However, the weight of the shadow-like
bands decreases for larger interchain hopping. This is consistent with the assumption of
the formation of shadow-like bands being a result of 1D fluctuations. For larger t⊥/t > 0.7,
the pocket structures disappear and a conventional large Fermi surface is formed. In the
case of a continuous transition for t⊥/t ≤ 0.2, the volume of the hole and electron Fermi
pockets shrinks to zero at the critical interaction strength Uc.
So far, all plots on the spectral function and the emerging Fermi surface pockets were
obtained from VCA results at zero temperature. Figure 4.15 shows a comparison between
VCA data (top panels) and CDMFT spectra at T = t/40 (bottom panels) for three
different interchain hopping strengths. For the latter stochastic analytic continuation
[Bea04] has been applied to the imaginary-time QMC data. It can be seen that both
techniques give the same qualitative picture: Shallow FS pockets with similar weight on
the main and the shadow-like band are found close to the transition for small t⊥/t = 0.2.
At t⊥/t = 0.3, the Fermi-surface pocket size is finite at the transition and both sides of
the pocket already show an appreciable asymmetry in the weights, which can be read off
as the peak heights of the two intersections of A(k, ω + iη) and ω = 0.
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Figure 4.15: Low-frequency part of the single-particle spectral function A(kkk, ω + iη) in the
metallic phase close to the critical interaction Uc for different t⊥ obtained within VCA at T = 0
(top) and CDMFT at T = t/40 (bottom): (a,d) t⊥/t = 0.2, (b,e) t⊥/t = 0.3, and (c,f) t⊥/t =
0.5. In VCA, small broadening η = 0.05 was used; stochastic analytic continuation [Bea04]
of the imaginary-time QMC data was applied within CDMFT. CDMFT data obtained by M.
Raczkowski. Figure published in supplemental material to ref. [LMP+16].
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Critical Exponents at the Mott Transition 4.2.5

Albeit all the advantages of VCA, the fate of mean-field-like techniques, to which up to
some extend one has to count the variational cluster approximation, too, is their incapabil-
ity to obtain the correct critical exponents of the physical system that is approximated.
For quantum cluster techniques like VCA or CDMFT the correlation length is exactly
taken into account only within the cluster. Beyond this length scale, the mean-field(-
like) construction leads to mean-field exponents. This limitation becomes important once
divergent correlation lengths, as for example in second-order phase transitions, are con-
sidered. Still, one can ask the question, whether one can learn something with respect to
criticality from quantum cluster methods like VCA.
Indeed, aspects of the data can already provide an understanding of the quantum crit-
ical behavior at T=0. In the following, two different quantities are analyzed in order
to gain insights into critical exponents. The first paragraph shows how the size of the
Fermi surface pockets can be used to make statements on the correlation length exponent
ν. Afterwards, hyperscaling is assumed and the double occupancy is used to extract the
dynamical exponent z by assuming a mean-field exponent of ν = 1/2.

Characteristic length scale of the pockets. To quantify the interaction-driven
renormalization of the FS warping for t⊥/t = 0.2, the left panel of figure 4.16 shows
the width of the electron pocket as a function of U/t. The change in the nature (second
vs. first order) of the MIT with increasing interchain coupling is also seen in the t⊥ de-
pendence of the pocket width as a kink at t⊥/t = 0.2. It marks the crossover between the
regime where the volume of hole and electron Fermi pockets vanishes continuously at the
second-order Mott transition and the region where the volume reduction of the pockets
is cut off by a first-order transition. For U � Uc, the main part of the FS carrying
most of the quasiparticle weight closely follows the tight-binding dispersion. Increasing
the interaction strength results in a measurable deviation from the tight-binding disper-
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Figure 4.16: (Figures published in supplemental material to ref. [LMP+16]) Left panel: Width
of the electron pocket as a function of t⊥/t at U = Uc − 0.01. The location of the kink agrees
with the change in the nature of the MIT. Right panel: Size of the electron pocket for t⊥/t = 0.2
as a function of U/t (top panel); the length of the pocket Ly has been divided by a factor of two.
The tight-binding limit U → 0 is indicated by the dashed lines.
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Figure 4.17: Width Lx (left) and lenght Ly (right) of the pockets for t⊥/t = 0.2 and Uc/t =
3.23. Close to Uc the data seems to agree with an exponent of 0.5, whereas an exponent of 0.25
fits well far off the transition. However, quality and number of accessible points is not sufficient
to make a definite statement.

sion. There, the continuous metal-to-insulator quantum phase transition corresponds to
the shrinkage of the volume of the Fermi pockets when approaching the critical point Uc.
Since the inverse width of the hole or electron pockets defines a characteristic length scale,
ξ, the correlation length exponent ν can be extracted [IFT98].
However, it is difficult to obtain a precise value of the electron- and hole-pocket sizes,
especially close to the phase transition, where the pockets vanish. As a consequence, only
few points are available to fit the data and to extract the exponent ν, see the right panel
of figure 4.17.
Far away from the transition, the available data both for the width and the length of the
pockets suggests an exponent of ν = 0.25, but close to Uc rather an exponent of ν = 0.5 is
possible. Larger critical exponents are not supported by the data, but a definite statement
on the precise value of ν can be barely made from this analysis.
One of the drawbacks of taking the size of the Fermi-surface pockets are the additional
errors that enter the calculation by reading off quantities from the broadened spectral
function, which is based on the reperiodized Green function and a discretization of the
Brillouin zone. A more direct way of accessing critical exponents consists in studying the
double occupancy d and is presented in the following paragraph. In order not to confuse
it with the dimension d = 2 of the system, the double occupancy is in the remainder of
this chapter denoted with a capital letter (D).

Hyperscaling and double occupancy. Under the assumption of hyperscaling, see,
e.g., M. Imada et al. [IFT98], the singular part of the free energy should scale as,

f ∝ |U − Uc|ν(d+z),

where d = 2 is the dimension. Since the double occupancy reads

D = ∂f/∂U,

it should scale as
D ∝ |U − Uc|ν(d+z)−1.

This relation provides an opportunity to extract the dynamical exponent z. If the tran-
sition point Uc and the corresponding double occupancy Dc is determined precisely, this
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Figure 4.18: Top panel: Double occupancy D as a function of U/t for t⊥/t = 0.1 using VCA
at T = 0. Bottom panel: The data of both the metal and the insulating solution are fitted with
the function f(x) = a · xη after substracting the constant Dc indicated by dashed lines in the
top panel for different Uc/t.

allows for a scaling of |D −Dc| with |U − Uc|, down to values close to the transition.

As the double occupancy changes continuously at Uc and as it is already obtained as a
numerical derivative of the self-energy functional Ω with respect to the Coulomb repulsion
U , a precise determination of Uc is challenging. As can be seen in figure 4.18, different
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values of Uc are conceivable and also lead to qualitatively similar double-logarithmic plots
of |U − Uc| against |D − Dc|. However, in all four cases shown in the figure, the data
collapses onto one line both for the insulating and the metallic side as it is expected from
hyperscaling theory. The analysis of the double occupancy at t⊥/t = 0.1 and close to Uc
hence yields the fitted exponent around 0.88. Considering that cluster methods neglect
critical spatial fluctuations [DAH+04], it is reasonable to assume a mean-field value of
ν = 1/2, which in turn allows one to extract the estimate of z ' 2 ∗ 0.88 = 1.76.
Thus, this preliminary study of the critical exponent indicates that the MIT might fall
into the universality class of the transition between the band insulator and a metal with
a small Fermi surface, i.e. ν = 1/2 and z = 2, such that D ∝ |U − Uc|, cf. [IFT98].
However, in order to make a definite statement, it is necessary to elaborate on this issue
along the whole quantum critical line below t⊥/t = 0.2. This as well as an investigation
of the influence of finite-size effects on the extraction of critical exponents is left for future
studies.
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Mott Transition into the Antiferromagnetic
Phase 4.3

In the previous section, the focus was set on the paramagnetic case. However, for the
isotropic frustrated Hubbard model on a square lattice small frustration still leads to
antiferromagnetic order at strong coupling. Only at comparably strong frustration, the
antiferromagnetic long-range order on the insulating side of the metal-insulator transition
is lost [NSST08, YSEO13].
In this section, first results are shown for the antiferromagnetic phase. The first sub-
section briefly discusses how antiferromagnetism is included in the investigation of the
Mott transition via VCA. For two different relative frustration strengths the emerging
phase diagram is shown and discussed in the subsequent subsections. It is shown that
a continuous Mott transition might even prevail for the antiferromagnetic case at small
interchain hopping. Although the data discussed in this section suggest such a scenario,
an exponential decay of the jump in double occupancy and staggered magnetization in
this region indicating a weak first-order transition cannot be excluded.

Preliminary Assessment of the Inclusion of Magnetism 4.3.1

Variational cluster approximation allows for the investigation of magnetism via suitably
chosen Weiss fields. A reference cluster, which includes additional non-interacting bath
sites, offers two different ways of applying such Weiss fields. Either a staggered magnetic
Weiss field is applied to the correlated cluster sites or it is applied on the bath sites only.
In this section, the latter is done, as it has been shown that applying the Weiss field to
the bath sites leads to better results in the large U/t-limit [Bal08]. Furthermore, this way
of including symmetry breaking allows for a more direct comparison with techniques like
CDMFT where the antiferromagnetism is also included via the bath.

In the following, two different relative next-nearest-neighbor hopping strengths t′ = −t⊥/4
and t′ = −t⊥/2 are investigated. Previous VCA studies on the isotropic frustrated Hub-
bard model on a square lattice indicate that a stronger frustration of t′ ≈ 0.8t would be
necessary to destroy antiferromagnetic order in the ground state [NSST08, YSEO13]. In

V
t

t⊥
t′

Mb
Mc

Figure 4.19: Reference cluster with additional Weiss fields on the correlated sites (field
strength Mc) and on the bath sites (field strength Mb).
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these studies, even larger frustration leads to a collinear order along the (π, 0) ordering
vector. Although there no bath sites were included and the position of the transition Uc
therefore differs in the case studied here, similar behavior with respect to the formation of
ordered phases can be expected. The left panel of figure 4.20 insinuates a similar behavior
within VCA with bath sites included at strong coupling when including Weiss fields both
on the cluster and on the bath. At t′/t ≈ 0.8 antiferromagnetic order is destroyed.
In the right panel, solutions corresponding to phases with collinear order are plotted in ad-
dition to the antiferromagnetic insulator and paramagnetic metal, which are discussed in
this section. The phase with (π, 0) order has been found in references [NSST08, YSEO13]
for strong frustration. As can be seen from the plot, even for the larger frustration of the
two values studied here, their energy is always higher than the one of the antiferromag-
netic insulator. Therefore, these phases are not realized at the two frustration strengths
t′/t⊥ used here and are not further investigated.

For both values of t′/t studied here, the solution at large interaction strengths corre-
sponds to the antiferromagnetic insulator. In the following, it is analyzed how anisotropy
influences the transition to a paramagnetic metal at smaller interaction. Therefore, the
interchain hopping t⊥/t is again used as a continuously tunable control parameter.

Phase Diagram 4.3.2

The main findings of the preliminary study shown in this section are summarized in fig-
ure 4.21. In the left panel, the transition lines between the paramagnetic metal and the
Mott-Heisenberg insulator are shown for both investigated frustration strengths. At large
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Figure 4.20: Left panel: Investigation of the isotropic Hubbard model t⊥/t = 1.0 as a func-
tion of next-nearest-neighbor hopping t′/t at strong interaction U/t = 8. Staggered magnetic
fields have been used both on the correlated sites (Mc) and on the bath sites. The staggered
magnetization indicates a vanishing of antiferromagnetism at t′/t ∼ 0.7. For t′/t ≥ 0.8, the
system is not ordered antiferromagnetically anymore. Right panel: Ground-state energy E0 as a
function of interaction strength at t⊥/t = 0.4, t′ = −t⊥/2. In addition to the paramagnetic and
antiferromagnetic phases discussed in this section, also phases with collinear-ordering vectors
(π, 0) and (0, π) are shown. Their energy is always higher than the one of the antiferromagnetic
insulator and they are hence not realized in this parameter regime of the model. Lines are fits
to the data, but do not reflect the extend of the corresponding phases.
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Figure 4.21: Critical interaction strength Uc of the Mott transition between paramagnetic
metal and Mott-Heisenberg insulator for two different frustration strengths. The right panel
shows the jump in double occupancy D and staggered magnetization m for t′ = −t⊥/4. Absence
of a jump in double occupancy suggests a continuous transition to be present at small inter-
chain hopping, but extraction of a jump in magnetization is challenging and does not exclude a
exponential decrease when approaching the decoupled case t⊥/t = 0.

and intermediate interchain hopping strengths t⊥/t the transition is of first order. This
shows in a crossing of the energies of the two solutions. Following the solution of lowest
energy results in a kink at the transition, which is accompanied by a jump in the dou-
ble occupancy D and in the staggered magnetization m. In the nearly isotropic regime
t⊥/t . 1, both solutions are found even at interaction strengths close to the transition
U . Uc.

The size of the jumps ∆D and ∆m at the transition reduces for smaller t⊥/t. At small
interchain hopping t⊥/t . 0.1, no distinct jump is visible in neither of the two quantities,
which suggests a continuous transition. For intermediate t⊥/t, the jump size increases
nearly linearly with the interchain hopping. However, when increasing the anisotropy, a
tail is visible and it is barely possible to exclude the possibility of an exponentially small
jump in D and m at small interchain hopping. Therefore, the regime of weakly coupled
chains has to be studied further before making a definite statement on possible quantum
critical behavior in this region.
The following subsection discusses some of the aspects that lead to the overall phase
diagram in more detail.

Obtaining the Phase Diagram 4.3.3

The phase diagram shown in the previous subsection is based mainly on three quanti-
ties. Comparing the energy of the metal and the antiferromagnetic insulator allows to
determine the crossing point Uc, which amounts to the critical interaction strength for the
Mott transition. The double occupancy can be evaluated as the numerical derivative of
the grand potential with respect to the interaction strength U and is one of two indicators
to determine whether the transition is discontinuous. In contrast to the previous section,
where both the insulator and the metal had no long-range magnetic order, the staggered
magnetization m has a finite value in the Mott-Heisenberg insulator. The behavior of
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Figure 4.22: Ground-state energy E0 as a function of interaction strength U at t⊥/t = 1.0,
t′ = −t⊥/4. At large interaction, the paramagnetic solution is insulating and changes for smaller
U to a paramagnetic metal at UPM

c , which is indicated by a dashed arrow. This transition has
been studied in the previous section. The antiferromagnetic insulator is lowest in energy for all
interactions U > Uc and therefore realized. At the critical point Uc indicated by a full arrow
shows the transition from this Mott-Heisenberg insulator to a paramagnetic metal.

m when approaching the transition therefore allows to distinguish a first-order transition
from a continuous one.

Ground-state energy. Figure 4.22 shows the ground-state energy E0 of three different
phases as a function of Coulomb repulsion U/t at the isotropic point t⊥/t = 1.0. The
transition from a paramagnetic insulator to a paramagnetic metal, which has been dis-
cussed in the previous section, is indicated by a dashed arrow for comparison. However,
by including the antiferromagnetic Weiss field on the bath sites, an additional solution
with even lower energy exists for large interaction strength. For all interaction strengths,
its energy is lower than the one of the paramagnetic insulator (data points connected by
a dashed line in the figure), which is not realized anymore in the phase diagram. The
new solution amounts to an antiferromagnetic insulator and reaches down to intermediate
coupling strengths such that its energy crosses with the one of the paramagnetic metal.
This transition indicated by an arrow in figure 4.22 is investigated in this section.

At large interchain coupling, the antiferromagnetic solution exists also for interaction
strengths U < Uc. This means that the self-energy functional shows two energetically
degenerate stationary points at the transition that differ considerably in the values of
the variational parameters. Therefore, considering only the energy already indicates the
discontinuous nature of the Mott transition at large t⊥/t.
However, when reducing t⊥, the region U < Uc, where two different stationary points
can be clearly identified, shrinks. At small interchain hopping strengths, no coexistence
region can be observed and the energy of the antiferromagnet seems to smoothly approach
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Figure 4.23: Jump in double occupancy D as a function of interaction strength U for frustra-
tion t′ = −t⊥/2. In the left panel t⊥/t = 0.5 and the double occupancy jumps at the transition
Uc. For interaction strengths U . Uc the antiferromagnetic insulator still exists. The right panel
shows t⊥/t = 0.05 where neither a jump in D, nor a coexistence region is visible.

the one of the paramagnetic metal so that a clear kink can not be identified at Uc. This
necessitates the investigation of double occupancy D and staggered magnetizationm close
to the transition.

Double occupancy. In case of the paramagnet, the double occupancy D = ∂Ω/∂U
allows to identify a discontinuous Mott transition via a jump at Uc and suggests to inves-
tigate the transition from antiferromagnetic insulator to paramagnetic metal, too. Com-
pared to the paramagnetic transition, the jump in double occupancy is much smaller at
the transition studied here. This can be seen in figure 4.22 when comparing the slopes of
the energies for the three phases close to the two different transitions. Figure 4.23 shows
the double occupancy in close vicinity of the transition for two different hopping strengths.

At intermediate t⊥/t = 0.5, a clear jump in double occupancy can be identified at Uc. In
the quasi-one-dimensional case t⊥/t = 0.05 (right panel), the double occupancy of both
solutions nearly coincides already for U > Uc, and right at the transition Uc the difference
of D is within the error bars of the calculation of D as a numerical derivative.
The results of this analysis are summarized in figure 4.24, which shows the jump in D at
the transition for the two different values of relative frustration used. In both cases, the
jump size seems to be proportional to t⊥/t for intermediate interchain coupling. However,
for small interchain hopping t⊥/t ∼ 0.4, the jump size decays much slower leading to an
extended tail region down to t⊥/t ∼ 0.2. For even smaller t⊥/t, the double occupancy
suggests a continuous Mott transition.

Staggered magnetization. In contrast to the double occupancy, which has to be cal-
culated as a numerical derivative of the grand potential, the staggered magnetization can
be accessed directly from the lattice Green function. As the metallic phase is paramag-
netic, the staggered magnetization of the antiferromagnetic insulator at the transition Uc
corresponds also to the jump in magnetization. In addition, the jump in double occupancy
turned out to be very small even at intermediate hopping strengths. It turns out that the
staggered magnetization has a comparably large value and is therefore better suited to
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Figure 4.24: Jump in double occupancy D at the transition Uc as a function of interchain
hopping t⊥. Results are shown for two different relative frustration strengths.

investigate a putative continuous transition at small t⊥/t.

Figure 4.25 shows the jump in magnetization at Uc for both frustration values. Just like
the jump in double occupancy, ∆m also shows a nearly linear increase with t⊥/t for in-
termediate interchain hopping. In contrast to ∆D, the magnetization allows to identify
a finite jump size even at t⊥/t = 0.2. The trend of a slower decay of the jump size at
small t⊥/t is also found in the staggered magnetization and asks for an investigation of
larger clusters to analyze the influence of finite-size effects on this region. Especially for
the smaller relative frustration of t′ = −t⊥/4, an exponential decay of ∆m in the limit
t⊥ → 0 is not excluded.

At first sight, it might seem odd that the jump size in m is larger for the stronger frus-
trated system, as frustration is found to suppress antiferromagnetic order at sufficiently
strong frustration. However, figure 4.25 shows the staggered magnetization of the antifer-
romagnetic insulator at the transition Uc. As can be seen in the left panel of figure 4.21,
the transition lines differ significantly for the two values of relative frustration, especially
at intermediate and large t⊥/t. The higher critical interaction strength for t′ = −t⊥/2 and
the first-order transition in this region causes a transition from a paramagnetic metal to
an insulator with pronounced antiferromagnetic order. When comparing with the much
smaller critical interaction strength Uc for the lower frustrated case, it is not too surprising
that the staggered magnetization is larger at the transition.
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Summary 4.4

The results of this chapter can be related to recent experiments on organic conductors with
a half-filled band, where putative quantum critical behavior in the crossover region is dis-
cussed [FMT+15, AJKW+15]. Both κ-(BEDT-TTF)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2
are thought to be layered systems, with Hückel parameters close to an equilateral triangu-
lar lattice [KK11]. For the latter compound, careful ab-initio calculations [NYI12] instead
show an appreciable 1D anisotropy with a ratio of interchain to intrachain transfer around
0.82.

This asymmetry is taken into consideration in the anisotropic Hubbard model investigated
in this thesis. The combination of VCA at T = 0 and CDMFT at finite T gives strong evi-
dence for Mott quantum criticality in coupled Hubbard chains at half-filling. By using the
interchain hopping t⊥ as a control parameter, the second-order critical end point Tc of the
interaction-driven MIT could be tuned down to zero in the presence of strong anisotropy.
Above a threshold value of tc⊥/t ' 0.2, the transition is found to be discontinuous, which
shows in a jump in the double occupancy and at large interchain coupling the self-energy
functional even has two distinct minima that indicate a pronounced coexistence region.
In the nearly isotropic case, the Fermi-surface topology is the one of a conventional metal,
but for t⊥/t . 0.7 it changes to a Fermi surface with electron and hole pockets. At in-
termediate t⊥, the volume of the pockets shrinks when approaching the MIT and is cut
off at Uc by the first-order transition. This is in contrast to the strongly anisotropic case
t⊥/t . 0.2. There, the volume of the Fermi pockets continuously vanishes at the transition
and neither a jump in the double occupancy nor a coexistence region in the SEF is visible.
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In the crossover region at high temperature T � Tc, the scaling behavior of resistivity
curves is usually attributed to hidden 2D Mott quantum criticality [TVTD11, VTRD15].
Future studies on the continuous Mott transition for t⊥/t . 0.2 at zero temperature could
help to gain further insights into this issue. As a similar breakup of the Fermi surface into
pockets was found in coupled spinless fermionic chains [BGBG06], another interesting
question is whether quantum critical behavior also emerges in a spinless system.

Both in the VCA and the CDMFT studies, a 2 × 2 plaquette cluster was used, which is
known to overestimate the singlet formation [MJPH05]. As former CDMFT studies on
the same model using larger clusters of up to 16 sites provided evidence for a continuous
dimensional-crossover-driven MIT down to the lowest accessible temperatures [RA12],
the quantum critical behavior for t⊥/t . 0.2 is expected to be robust nevertheless. When
reducing the range of antiferromagnetic spin fluctuations, this scenario should not be
restricted to quantum cluster descriptions of the system but also emerge in lattice sim-
ulations. This could be realized by geometrical frustration such as a stronger diagonal
hopping [KT06, NSST08, YSEO13] or by disorder [BHV09, FMI+15]. However, when
introducing frustration a severe sign problem renders lattice QMC simulations very ex-
pensive [RAP15]. In this respect, a promising route is offered by tensor network meth-
ods [Orú14] adapted recently to fermionic systems [CV09, CEVV10, Cor16].

A first step into this direction consists in comparing the VCA results at zero tempera-
ture to density-matrix renormalization group (DMRG) [Whi92, Sch05, Sch11] studies on
Hubbard ladders with the same hopping matrix as the model studied here. Albeit being
mainly used for the investigation of one-dimensional models, DMRG has been applied
successfully to two-dimensional models in recent years, too [YHW11, DMS12, SW12].
This route is pursued in collaboration with Georg Ehlers and Reinhard Noack, who de-
veloped an efficient hybrid k-space formulation of DMRG that allows the treatment of
comparably large lattice sizes [ESLN15].
Another way of approaching the problem with lattice simulations is to use variational
Monte Carlo techniques (VMC). In collaboration with Marcin Raczkowski, Fakher As-
saad and the group of Masatoshi Imada, VCA, CDMFT, and VMC are compared in order
to approach the question of putative Mott criticality in the antiferromagnetic phase. A
quantum critical line as observed in the paramagnetic case would allow for the study of a
marginal quantum critical point (MQCP) [Ima04]. As Hartree Fock calculations for such
a MQCP lead to unconventional exponents in agreement with those obtained from exper-
iments, an investigation of a MQCP with techniques beyond Hartree Fock is desirable.
In order to clarify the influence of finite-size effects on the behavior of the MIT in the
antiferromagnetic phase for small interchain hopping strengths, the investigation of larger
clusters within VCA is needed. This might even necessitate a combination of VCA with
other efficient cluster solvers that can be used at zero temperature, e.g. DMRG.

The results motivate adding the anisotropy t⊥ as a new axis in the phase diagram, along
which the critical end point Tc can be tuned to zero. It still has to be verified in future
studies whether the quantum critical behavior can explain the unconventional Mott criti-
cality that has been observed recently in layered organic conductors. The findings for the
paramagnetic case and the preliminary results for the antiferromagnetic phase encourage
future studies along this line.



Unconventional Phases in the Kondo
Lattice Model 5

In this chapter, different unconventional phases of the Kondo lattice model are investigated
by variational cluster approximation. A publication containing the VCA results of this
chapter in collaboration with Salvatore R. Manmana and Riccardo Gezzi, who provided
calculations on superconductivity using the equation of motion technique, is in preparation
and about to be finalized. The chapter is structured as follows.
First, section 5.1 shows results that are obtained within variational cluster approximation
for the paramagnetic phase. A focus is set on Kondo singlet formation at strong coupling.
In the second section (5.2) the antiferromagnetic solution at weak to intermediate coupling
strengths is investigated. The solution is analyzed with respect to its Fermi surface
topology and results are compared to those of other numerical methods.
Section 5.3 addresses the question of whether s-wave pairing is present in the Kondo
lattice model. A seemingly superconducting solution is identified to be a mean-field-like
artifact and no robust s-wave superconductivity is found.
Finally, in section 5.4 the model is probed for d-wave superconductivity. A stable solution
is identified over a broad parameter range and its interplay with antiferromagnetism at
small interaction strengths is analyzed.
Section 5.5 summarizes the results of this chapter.

The Paramagnetic Phase of the Kondo Lattice
Model 5.1

In this section, the paramagnetic phase of the Kondo lattice model is investigated using
the variational cluster approximation.
As VCA does not allow for phases with broken symmetries unless proper Weiss fields are
added, it is possible to investigate the paramagnetic solution at all coupling strengths ir-
respective of the “true” ground state of the system. That means that although the system
might be antiferromagnetic at weak coupling, without adding a Weiss field the stationary
point of the self-energy functional will always correspond to a paramagnetic solution.
As will be seen later, this phase is the correct/physical solution at large coupling close to
and at half-filling. However, even for other parameter regimes, where the next sections
will show that phases with broken symmetries are realized, the paramagnetic solution
serves as a starting point and always has to be considered as a reference. In the end, even
if additional solutions with broken symmetry such as antiferromagnetic or superconduct-
ing order are found, it has to be checked, whether their energy is lower than the “trivial”
solution without broken symmetry.

The section is structured as follows. In the first subsection the influence of including
different sets of intra-cluster hopping terms into the set of variational parameters on the
stationary point of the self-energy functional (SEF) is scrutinized. Especially for the 3×2
cluster that is excessively used in subsequent calculations investigating the effect of using
anisotropic hopping inside the cluster is important. The second subsection shows results
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for the Kondo insulator at half-filling. In the large coupling region where the solution
corresponding to this stationary point turns out to be the physical one, these results are
compared with other state-of-the-art numerical techniques. Finally, the paramagnetic
solution in the doped region is analyzed and sets the basis for the discussion of the Fermi
surface in section 5.2.2.

Influence of the Intra-Cluster Hopping 5.1.1

Especially for small clusters the influence of the variation of the intra-cluster hopping on
resulting observables has to be checked before adding symmetry breaking Weiss fields.
One would expect, that for small interactions J/t→ 0 the technique becomes exact with
the approximated self-energy going to zero. When investigating the SEF it turns out
that there is one stationary point where t′ minimizes Ω and one where it maximizes the
functional. For both solutions the energy is shown as a function of coupling strength
J/t in figure 5.1. The solution with t′ ≈ t in the large J limit is more intuitive than
the one with t′ = 0 as the cluster decoupling of the system only slightly changes the
intra-cluster hopping. Nevertheless, for small interactions J/t < J tc/t = 1.75 the hopping
increases rapidly, which can be explained with the fact, that the self-energy (and hence
the parameter of the reference system) does not influence the observables much. Still, it
is not plausible or intuitive, why such a huge intra-cluster hopping as t′ = 10t should be a
physically meaningful choice. Instead, one has to be careful as perhaps finite-size effects
dominate in this region.
In case of the 2 × 2 cluster an inflection point is found at a value J tc/t ≈ 1.75, which
could be taken as a naive lower limit from which on the approximation is justified. For
the larger clusters considered in figure 5.1 there is even a sharp kink in the intra-cluster
hopping when it comes to small couplings J tc/t . 0.84. Again, for larger J/t the small
deviation of t′ from t seems to be reasonable, but the steep increase for small J/t after
the kink has to be explained.
As will be shown in the next section, the quasiparticle gap vanishes for weak coupling
J < J tc and the paramagnetic system becomes metallic. This transition not only explains
the kink in the value of t′, but also the large values of t′ for small J could be explained
by considering a Fermi liquid picture, where electronic fluctuations inside the clusters are
enhanced. It is furthermore quite remarkable how close the free energies per site are for
3× 2 and 4× 2 clusters.
Looking at the corresponding energies of both solutions, one notes that the solution with
t′ ≈ 1 is always (slightly) lower and should therefore be preferred. For small interactions
the energies approach each other as expected: In the limit J/t � 1 VCA becomes exact
as the self-energy goes to zero. Both solutions should, in this limit, give the same result.
In the limit of large interactions the energies of the solutions are close to each other. This
makes sense, as one expects to see the singlet insulator, where the hopping is suppressed
and does not influence the resulting observables too much. Indeed, when calculating the
spin-spin correlation 〈scSf〉 = ∂F/∂J per site in the limit of large J/t, the value ap-
proaches 〈scSf〉 = −3/4, which is expected in the case of singlet formation.

Using clusters that are not as symmetric as the 2 × 2 plaquette also poses the question
of how to deal with this anisotropy when varying the intra-cluster hopping. Varying all
hopping parameters inside the cluster separately of course results in the same optimized
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Figure 5.1: In the top panel, the energy for both stationary points of the SEF are shown: The
SEF has a maximum with respect to the cluster hopping at t′↑ = 0 and a minimum at t′↓ 6= 0.
In the bottom panel the intra-cluster hopping for 2× 2, 3× 2 and 4× 2 clusters is plotted as a
function of J/t. Only the solution with t′↓ is shown.

hopping values for hopping terms that are connected with a space symmetry. Considering
the 3 × 2 cluster this means, that one is still left with three hopping parameters that in
principle should be varied separately, see Fig. 5.2.
The anomaly in the intra-cluster hoppings remains, especially the vertical hopping strength
inside the cluster changes drastically for small interaction strengths. In the end, one has
to check the behavior of the different t′ values for small interactions in the antiferromag-
netic solution to see whether this anomaly is due to the finite size of the cluster or due to
the (artificial and unphysical) choice of the paramagnet in this region. This will be done
in section 5.2.3, where the question of the influence of t′ on the quality of the results is
readdressed.

The Kondo Insulator at Half-Filling 5.1.2

In the Kondo lattice model the simplest kind of insulator is the (atomic) Kondo insulator
at half-filling that consists of local singlets between f-spins and conduction electrons.
Here, we continue the investigation of the paramagnetic solution (see section 5.1.1) by
doping the system away from half-filling to determine the spectral gap ∆µ = ∆qp/2. One
characteristic of an insulator is a vanishing electronic compressibility κ = −∂n

∂µ
, n being

the charge carrier density and µ the chemical potential. This corresponds to a plateau at
half-filling in a n-vs.-µ plot, which we investigate as a function of J/t and cluster size for
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the paramagnetic solution. Details of the calculations off half-filling are given in the next
subsection. Here, we focus only on the consequences for the system at half-filling such
as the just mentioned plateau. Based on the exact, finite-size extrapolated QMC results
of Assaad [Ass99] one expects to find a finite quasiparticle gap for all positive (that is
antiferromagnetic) values of J/t if considering the correct ground state for every J/t. This
is an important point as only for J > Jc we expect the paramagnetic solution to be the
ground state, below Jc the system orders antiferromagnetically and the paramagnet is not
the ground state solution at T = 0. The antiferromagnet will be discussed in the next
section.

Instead of calculating the electron filling as a function of the chemical potential, it is
possible to obtain the quasiparticle gap by doping the system a bit away from half-filling.
Using ∆qp = limε→0+ µ(n = 1 + ε) it is possible to extract the quasiparticle gap more
efficiently.
To do so, one Legendre transforms the self-energy functional with respect to the electron
density n and adds the chemical potential µ to the set of variational parameters. Thereby,
it is possible to set the electron filling to a certain value and determine the chemical
potential via the stationarity principle. In order to determine the quasiparticle gap one
then calculates the stationary points at n = 1 + ε as a function of J/t.
The choice of a finite ε leads to an error in ∆qp, but for fillings close to half-filling (e.g.
for n = 1.001) the system is metallic and the chemical potential nearly coincides with the
quasiparticle gap ∆qp at half-filling. For instance, in figure 5.3 the plateau in the n-vs.-µ
curve ends at µ = ±∆qp, but choosing µ(n = 1.001) results in an error of ∆(∆qp) < 0.01.
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Figure 5.4 shows the quasiparticle gap as a function of J/t for 2 × 2 and 3 × 2 cluster,
µ(n = 1.001)3×2 is shown for comparison. As expected the system is a paramagnetic
insulator for large interactions and down to intermediate J a finite gap is observed. The
gap depends only little on the cluster size for large and intermediate J , but one has
to note that the 2 × 2 cluster gives deviating results for interactions J/t . 1.8, which
is close to the minimum of t′ that we encountered already in section 5.1.1, figure 5.1.
Down to J/t ≈ 1.6 the gap of the 3 × 2 cluster can be fitted nicely with a second order
polynomial, but for smaller J it deviates, too. Comparing the quasiparticle gap to exact
quantum Monte Carlo (QMC) data of reference [Ass99], it shows good agreement down
to Jc/tQMC = 1.45, where the ground state becomes antiferromagnetic. However, as we
should see in the next subsection, the critical interaction strength Jc/t within VCA using
these clusters is larger than 1.45 and for a comparison one should consider the VCA gaps
of the antiferromagnetic solution for J < Jc. Due to the different - finite-size affected -
critical Jc values one would also have to extrapolate the VCA results in order to compare
the antiferromagnetic gaps.
In case of the 3× 2 cluster, the paramagnetic gap reduces for even smaller values of J/t
and finally vanishes at J/t ≈ 0.84. This value coincides with the anomaly in t′, which is
shown in figure 5.2. The transition from the paramagnetic insulator to a paramagnetic
metal for J/t < 0.84 quite naturally explains the kink in the cluster hopping and shows
that the proper treatment of antiferromagnetism is needed for small J . That means that
within VCA the minimal coupling strength JKI which is needed to form the (Kondo)
insulator is finite.
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Doping the Paramagnet 5.1.3

To dope the system away from half-filling (n 6= 1) one needs to include µ′ as a variational
parameter [AAPH06a]:

Hµ′ = µ′
∑
R

nR

Only then thermodynamical consistency for the estimate of the electron density n is
ensured, namely:

〈n〉 = −∂Ω

∂µ

µ′=µ′opt
=

1

N

∫
C<

dz

2πi
Tr [δRR′δσσ′GRσ,R′σ′(k, z)]

It was shown in the previous section that for strong coupling J the ground state of
the Kondo lattice model at half-filling is paramagnetic. To be more precise, it consists
of singlets between the local spins and the conduction band electrons. At large J all
electrons are bound into such singlets and the ground state is hence insulating.
This changes once the system is doped away from half-filling, as Kondo singlets are broken
up and electrons can again move through the system. The result is a metal which naturally
displays a Fermi surface, e.g. figure 5.5 shows the Fermi surface at J/t = 3.0 and an
electron filling of n = 0.90. Despite the low electron filling the Fermi surface is large and
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Figure 5.5: Left panel: Large Fermi surface deep in the paramagnetic phase (J/t = 3.5) away
from half-filling (n = 0.9). Right panel: Corresponding spectral function A(k, ω) along a certain
path in the Brillouin zone. Dashed lines only indicate the zeros; the data shown was obtained
with a 3× 2 cluster.

measuring its area gives a value of nFS ≈ 1.9. As already mentioned in section 1.3.2 not
only conduction electrons, but also f-spins participate in the charge transfer process for
strong coupling. The reason is that conduction electrons can move through the lattice
and form local Kondo singlets with the f-spins. Although only the electrons are mobile,
effectively this can be viewed as moving Kondo singlets. Hence, the Fermi surface is made
up of both electrons and f-spins, which means that nFS = nel + nf = n + 1. For J/t = 3
the value of nFS ≈ 1.9 suggests that one is already in the region of a (nearly perfect)
heavy Fermi liquid with a large Fermi surface.
In the strong coupling regime, two resonances in the density of states are identified, see
figure 5.6. For J/t = 8 and n = 0.95 they are separated by a value of 1.475J . This agrees
with the value of 3/2J which is expected in the limit J/t � 1 with minimal doping, see
the discussion of the Kondo insulator in section 2.3.
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Magnetic Phase Diagram of the Kondo Lattice
Model 5.2

The competition between Kondo singlet formation and RKKY interaction sets the stage
for Doniach’s phase diagram [Don77]. One possibility to study this competition is the
investigation of antiferromagnetic correlations, as RKKY interaction mediates an antifer-
romagnetic ordering of the f-spins and conduction electrons respectively. At half-filling,
these antiferromagnetic correlations are expected to be suppressed from a certain Jc/t
on, as at this point Kondo singlet formation is energetically favorable and removes free
electrons which could mediate the antiferromagnetic ordering.
When reducing the electron filling drastically, the model is expected to order ferromag-
netically [PP07]. However, in this thesis only fillings close to half-filling will be considered
such that this phase is not investigated.

To allow for the possibility of magnetic order on the cluster one has to add a fictitious
Weiss field to the cluster Hamiltonian which takes the following form:

HAF = M
∑
R

eiQ·R(nR↑ − nR↓).

In the case of Néel antiferromagnetism the wavevector is Q = (π, π). The strength M of
this field is then used as a variational parameter. Finally, the staggered magnetization of
c-electrons can be obtained at the stationary point as

mc =
1

L

∫
dz

2πi
Tr[eiQ·R(−1)σGRσ,Rσ(z)].

Unfortunately, the staggered magnetization of f-spins is only available on the cluster as the
Green function of the system does only contain excitations with respect to the conduction
electrons:

mf
cl =

1

L

∑
R

eiQ·R〈nfR,↑ − nfR,↓〉.

In the following, the antiferromagnetic solution of the Kondo lattice model is first of all
investigated at half-filling. As it is possible to limit the minimal set of variational pa-
rameters to the strength of the antiferromagnetic Weiss field and the isotropic hopping
strength of the cluster, even large clusters up to eight physical sites (4×2 cluster) are used.
Therefore, a rough finite-size extrapolation of the critical coupling strength Jc is evalu-
ated and compared with exact QMC results. In the subsequent paragraph the ground
state is further analyzed and a focus is set on the spin-spin correlator and the density
of states. It is argued that inside the antiferromagnetic phase two distinct phases can
be identified, which are separated roughly at the coupling which corresponds to maximal
staggered magnetization.
The next step is then to leave the half-filled case in subsection 5.2.2, where the antiferro-
magnetic metal and finally a full phase diagram down to fillings of n = 0.8 are investigated.
Off half-filling, it is possible to identify two antiferromagnetic metals which correspond
to the two regions that are found at half-filling. The evolution of the Fermi surface when
tuning through the two antiferromagnetic and the adjacent paramagnetic metal as well as
its implications to the Kondo singlet formation are discussed subsequently in paragraph
5.2.2.
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Finally, the study of section 5.1.1 is continued to the antiferromagnetic phase and the
effect of choosing anisotropic hopping on the reference cluster both at and off half-filling
is analyzed. Subsection 5.2.3 closes this chapter by showing that using an anisotropic
cluster does not change the qualitative picture obtained with isotropic clusters.

The Antiferromagnet at Half-Filling 5.2.1

In the previous section the paramagnet was analyzed at half-filling and showed discrepan-
cies from exact results for small and intermediate coupling strengths. This manifested in
form of deviating quasiparticle gaps at intermediate couplings and even lead to metallic
behavior for weak coupling in case of the 3× 2 cluster.
When including an antiferromagnetic Weiss field, an antiferromagnetic phase is found for
small coupling strengths. Here, the antiferromagnetic ordering and the perfect nesting of
the corresponding Fermi surface leads to an antiferromagnetic gap, even at very small J .
This insulator is therefore conceptually different from the paramagnetic insulator, which
is formed due to spin singlet formation.
At some critical coupling strength Jc the magnetization vanishes and the self-energy func-
tional shows only one stationary point, namely the “trivial” one corresponding to the afore
discussed paramagnetic insulator. For J < Jc the system is antiferromagnetically ordered
with a finite gap. Therefore, VCA correctly shows an insulator for all finite values of J .
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Figure 5.7: Left panel: Staggered magnetization of the conduction electrons mc, the f-spins
mf and the total staggered magnetization as a function of J/t at half-filling using a 4×2 cluster.
Right panel: Staggered magnetization m for different cluster sizes and geometries, shown in
figure 3.10. As a reference, values of Jc/t obtained with Dual Fermions [Ots15], Quantum Monte
Carlo [Ass99] and DMFT+NRG [Bod13] are shown.

Figure 5.7 shows in the left panel the staggered magnetization of the conduction band
electrons m and of the f-spins mf , as well as the total magnetization mtot = m + mf

using a 4 × 2 cluster. However, it has to be noted that the staggered magnetization of
the localized spins mf is calculated on the cluster only as the Green function contains
only information of the conduction electrons. For this reason, the discussion will from
here on focus on the staggered magnetization of the conduction band electrons m. In
order to show the antiferromagnetic ordering between conduction electrons and f-spins,
the staggered magnetization m is plotted with a negative sign. As the choice of sign is



120 Chapter 5. Unconventional Phases in the Kondo Lattice Model

somewhat arbitrary (the self-energy functional is symmetric with respect to the Weiss field
strength Mc) subsequent plots will use positive values of the staggered magnetization m.
The strength of m increases for small couplings with the coupling strength and reaches a
maximum at Jmax. For larger J it decreases rapidly and vanishes smoothly at the critical
coupling Jc, where the system stays insulating, but without magnetic order.
Compared to the DMFT results of reference [Bod13], where a NRG solver was used to
precisely capture the low energies inherent to Kondo (lattice) systems, the magnetization
curve has the same characteristics, but the absolute values differ. In particular the critical
coupling strength Jc is lowered. This can be understood by recalling that the electronic
fluctuations inside the 4 × 2 cluster are a natural antagonist of antiferromagnetic order.
By increasing the size of the cluster, the spatial extend of the fluctuations which enter the
reference self-energy grows and thereby changes the variational space for the determination
of stationary points. Systematically increasing the cluster size can allow to determine the
value of Jc after a finite-size extrapolation.
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Figure 5.8: Attempts to finite-size-extrapolate the critical Jc/t to the infinite-size cluster limit.
The scaling factor equals the number of intra-cluster links devided by twice the number of cluster
sites — a scaling factor of 1 amounts to the infinite-size-cluster limit. A fit to the Jc/t-values of
the ladder clusters N × 2 leads to a value Jc/t = 1.48± 0.28, which is close to the QMC result
by Assaad [Ass99] (shown in red).

In order to do a finite-size scaling, the best approach would be to use clusters with differ-
ent size which follow a systematic series, such as quadratic clusters. Unfortunately, the
accessible clusters are limited to small clusters and one has to resort to other geometries,
e.g. ladder geometries. In reference [Sen08b] Sénéchal compared different scaling factors
and tested the outcome of a finite-size extrapolation in case of the Hubbard model on
a two-dimensional square lattice, where larger clusters could be used due to the smaller
local basis. The most promising scaling factor of this comparison, which is also applied
in figure 5.8, consists in taking the number of links on the cluster and dividing it by twice
the number of cluster sites. It scales to one in the limit of infinite cluster size and takes
the ratio of boundary and bulk into account.
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Extrapolation by considering only the "ladder" clusters 2× 2, 3× 2 and 4× 2 (blue fit in
Fig. 5.8) results in an infinite-cluster size value of Jc/t = 1.48± 0.28. However, as quite
pathological clusters as 1 × 2 and CL4, which include dangling sites, have been used it
is not a surprise, that the critical Jc spread a lot depending on cluster geometry. In the
end, larger clusters are needed to confirm the result of the ladder cluster extrapolation
and improve this rough fit.
The critical value obtained by this rough fit is much improved compared to the one of
DMFT+NRG. However, the reference value of J/t = 1.45± 0.05 is the one obtained via
quantum Monte Carlo (QMC) by Assaad [Ass99], which is finite-size extrapolated and
can be considered to be exact. Although extrapolated with a rough fit, the value of VCA
agrees within error bars with this exact value. Recently, in a study by Otsuki the dual
fermion technique was applied to the Kondo lattice model [Ots15]. Its value of the critical
coupling strength also agrees with the QMC value and [Ots15] will be used as a reference
for superconductivity in section 5.4.1 later.

Ground State Analysis

At half-filling QMC finds an insulator or more precisely a non-zero quasiparticle gap for
all finite J/t [Ass99]. A quantity that will also be used later to compare putative super-
conducting ground states is the local spin-spin correlator between conduction electrons
and localized moments 〈Si · si〉. As will be shown in the following, this quantity is also
useful to gain valuable insight in the nature of the ground state when not allowing for
superconductivity.

Here, the ground state of a 4 × 2 cluster at various J/t is analyzed by looking at this
correlator, which is defined in F and shown in the left panel of figure 5.9. Due to the
higher computational cost for the 4 × 2 cluster only Mc has been used as a variational
parameter. In the next subsection the influence of including the cluster hopping t′ into
the set of variational parameters will be discussed.
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Figure 5.9: Staggered magnetization and expectation value of the Spin-spin correlator 〈S·s〉 =
∂Ω/∂J as a function of J/t for a 4× 2 (left) and a 3× 2 (right) cluster at half-filling. Black lines
are fits of the spin-spin correlator, blue lines denote their derivatives. They have been fitted with
second order polynomials in the antiferromagnetic and paramagnetic regions up to Jc/t± 0.05.
For the 4 × 2 cluster only Mc, for the 3 × 2 cluster both Mc and t′ were used as variational
parameters.
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As far as the staggered magnetization and the transition from paramagnetic to antiferro-
magnetic insulator is considered, the spin-spin correlator seems to be a good measure of
the transition point Jc: At Jc the gradient of 〈Si ·si〉 jumps and its curvature changes sign.
It is remarkable that the transition point Jc coincides with a value of −0.5 of the spin-spin
correlator. However, on the right side of figure 5.9 the same quantities are shown for a
3 × 2 cluster, this time also including the cluster hopping t′ into the set of variational
parameters. Figure 5.8 already showed that the Jc values of both clusters are only slightly
different. What is striking is the fact that also for the 3× 2 cluster the transition seems
to coincide with 〈S·s〉 = −0.5, where the curvature of the spin-spin correlator changes sign.

In the strong coupling limit the spin-spin correlator converges to a value of −3/4 per site
which is expected for Kondo singlets. When approaching zero coupling, the correlator
goes to zero as well, which means that electrons and f-spins are uncorrelated. In this
sense, the spin-spin correlator shows the expected behavior in the limits of J → 0 and
J → ∞. Away from this limits, the values differ from zero and −3/4. This is due to
the fact that electron hopping not only counteracts the Kondo singlet ordering tendencies
induced by the coupling term, but also mediates the effective RKKY interaction between
the f-spins that causes the antiferromagnetic order.

For perfect Néel order, the f-spins and conduction electrons order and a spin-spin corre-
lator of −1/4 per site would be expected as a staggered Weiss field breaks the local spin
symmetry. At the transition to antiferromagnetic ordering the correlator shows a kink,
but it is smooth below Jc without evident kinks. That is surprising as the investigation
of the paramagnet showed a breakdown of the insulator at J ≈ 0.8. Simply assuming
the paramagnetic contribution to be unchanged should naively result in a change of the
ground state at roughly this coupling strength. However, the inclusion of antiferromag-
netism allows for new many-body ground states, which means that the paramagnetic
results cannot be transferred one-to-one to this situation. On the one hand, the onset of
antiferromagnetism could destroy singlets and thereby cause a Kondo breakdown scenario
at even larger coupling strengths J & 0.8. On the other hand, it is not necessarily the
case that singlets have to be broken up as one is far from a full singlet ground state and
the magnetization never reaches saturation, ergo there would be enough “free” electrons
to form the antiferromagnet. It is even possible to think of a scenario where the mobile
electrons that counteracted the Kondo singlet formation in case of the paramagnetic study
are now frozen out in an antiferromagnetic Néel state. In this case the breakdown of the
paramagnetic insulator would be moved to weaker coupling or even avoided at all.
Assuming for 0 < J < Jc, that the ground state is a mixture of three different states,
corresponding to a state without correlation between electron and f-spin, an antiferro-
magnetically ordered Néel state and a Kondo singlet state, clarifies the situation close to
the transition: At least in the region with 〈S · s〉 < −0.25 a considerable admixture of
Kondo singlets has to be present in the ground state. Even for small coupling strengths
where the spin-spin correlator is larger than that, the absence of a kink for J < Jc casts
the occurrence of a sudden Kondo breakdown into doubt. However, considering only the
spin-spin correlator in principle still renders two scenarios possible: Either Kondo singlets
survive down to small coupling strengths within the whole antiferromagnetic phase or
they smoothly decay when reducing the coupling strength.
As a first attempt one could assume that the contribution of antiferromagnetic states to
the ground state is proportional to the staggered magnetization m. Without any further
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contributions, the spin-spin correlator should always stay non-positive when subtracting
the contribution of antiferromagnetically ordered states. It is from the form of the mag-
netization curve already obvious that it is not possible to obtain a vanishing correlator for
all coupling strengths up to some JK , where Kondo singlet formation would set in, when
subtracting the antiferromagnetic contribution in this form from the spin-spin correlator.
Of course this is far from a proof as the true contribution of the antiferromagnetic part
does not have to be proportional to the order parameter in this phase, but it at least
renders the scenario of persistent Kondo singlets more plausible.
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Figure 5.10: Left: Density of states (DoS) at J/t = 1.0 and half-filling comparing the antifer-
romagnetic and paramagnetic insulator. Right: Composition of the antiferromagnetic total local
DoS (dashed line) by up- and down-spin densities ρ̃↑ (red) and ρ̃↓ (blue), which are explained in
the text. The DoS has been obtained on a k-grid of 100× 100 points by using the 3× 2 cluster
and an artificial broadening of η = 0.05.

Another quantity which shows the difference between the antiferromagnetic (AF) ground
state and the paramagnetic alternative solution at half-filling for J < Jc is the density of
states (DoS). Although the paramagnetic (PM) solution is not realized at small coupling,
both the AF and PM solution are compared at the same coupling strength to show several
differences in the DoS that are characteristic for the AF and PM solution respectively.
In figure 5.10, the DoS is shown at J/t = 1.0 for both solutions. It has to be pointed
out, that the DoS is obtained by integrating the spectral function A(k, ω) over the Bril-
louin zone. Here, the integration has been replaced by a summation over k-points of an
equidistant two-dimensional grid of 10000 points that covers the Brillouin zone.

Furthermore, the Q-matrix formalism of VCA allows for the determination of the peak
positions and corresponding weights of the spectral function. In order to make the delta-
peaks visible, an additional artificial broadening of η = 0.05 has been used for the spectral
function and thereby also enters the DoS. As a consequence of the broadening, both so-
lutions seem to have a finite DoS at the Fermi energy ω = 0. However, when reducing
the broadening or analyzing the not broadened data both solutions show no states at the
Fermi energy, but a quasiparticle gap instead.

Getting back to the structure of the DoS, the analysis of the DoS will from here on
most of the times focus on the frequency window close to the Fermi energy, in this case
ω ∈ (−1.5, 1.5). Before turning to the peak structure in this region, it should be pointed
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out that due to the calculation of the Green function with the Band Lanczos method
small contributions to the spectrum are lost. This becomes noticeable in the form of small
asymmetries when comparing the electron- and hole-part of the spectrum. Half-filling is
the particle-hole symmetric point of the (unfrustrated) KLM, hence perfect symmetry of
the spectra would be expected. It also shows up in slight differences between the up- and
down-spin part of the densities, which should be identical in the paramagnetic spectrum.
Both of these discrepancies do not show up in the energy window close to the Fermi energy,
but at larger energies. The features of the DoS that will be discussed in the following are
therefore not affected.
Due to the particle-hole symmetry of the DoS at half-filling, the discussion will focus on
the electronic part only. In case of the antiferromagnet, the DoS is characterized by a
sharp resonance right at the border of the quasiparticle gap, followed by a side resonance
at larger frequency. The paramagnet has a smaller quasiparticle gap and three distinct
peaks can be identified. Compared to the antiferromagnet, where the main resonance was
separated from the side resonance by a dip, the three peaks of the paramagnet are quite
close to each other.

The paramagnetic DoS consists in equal parts of the DoS of electrons with up- and
down-spin. In contrast, the antiferromagnetic DoS has different contributions for up-
and down-electrons when focusing on one of the sublattices A and B as shown in the
right panel of figure 5.10. Due to the antiferromagnetic order the density of up-spin
electrons on the A-sublattice has to be equal to the density of down-spin electrons on
the B-sublattice. Therefore it makes sense to consider the staggered-average local DoS,
ρ̃σ := 1

Nc

∑
r e

ir·Qρσr, to investigate the change of the DoS when approaching the phase
transition J → Jc. Still, at half-filling the total DoS = ρ̃↑ + ρ̃↓ is symmetric with respect
to ω = 0, but the contributions ρ↑ and ρ↓ do not show this symmetry any more. In order
to fulfill the symmetry of the total DoS the relation ρA↑ (ω) = ρA↓ (−ω) holds at half-filling.
At small interaction strength two pronounced main resonances (MR) at the band edges
are visible, which are separated by the quasiparticle gap, and right next to them exist
small side resonances (SR), see e.g. J/t = 0.8 in figure 5.12. If one limits the discussion
to the filled part of the DoS for one of the sublattices, the main resonance is mainly made
up of the majority spin electrons and the side resonance predominantly of minority spin
electrons, although with a considerable admixture of majority spin electrons. Increasing
J affects the main and side resonance differently: The weight of the main resonance first
increases but then decreases again with a maximum at J ≈ 1.2, which coincides with the
maximal staggered magnetization. For J > 1.2, the main peak starts to split into two
peaks MR1,2, which have initially similar weight. When approaching the critical interac-
tion strength Jc the weight of the peaks diminishes and redistributes between MR1 and
MR2 such that the peak MR1 closer to the side resonance retains more weight. The side
resonance moves to larger frequencies when J is increased and gains weight.
In figure 5.12 the peak position devided by J is plotted against the coupling strength.
Following the resonance MR1 to lower coupling insinuates that the main contribution of
the joint peak for J/t . 1.5 stems from MR1 rather than from MR2.
Close to the transition the densities ρ̃↑ and ρ̃↓ converge to the same density DoS/2. At the
transition, the side resonance of the minority electrons and MR1 of the majority electrons
merge to one new side resonance and the resonance MR2 is made up equally from both
spin-up and spin-down electrons.
This reshuffling of weight when approaching the phase transition reflects the competition
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Figure 5.11: Density of states (DoS) at half-filling for several J/t in the antiferromagnetic
phase. The rest of the parameters are the same as in figure 5.10 and the scale of DoS(ω) is kept
the same for all panels. The total DoS ρ̃tot is made up by up- and down-spin densities ρ̃↑ (red)
and ρ̃↓ (blue).

between the two different mechanisms that are responsible for the formation of a quasi-
particle gap. In the antiferromagnetic region close to the transition there are already
strong precursors of the paramagnetic insulator visible in form of a notable contribution
of minority spin electrons to the peak at the gap edges.

Reconsidering the Kondo insulator at strong coupling which was briefly introduced in
section 1.3.2, one can try to identify the peak which is responsible for Kondo singlet de-
struction. As the singlets have an energy of −3/4J the destruction of such a singlet by
creating or annihilating a conduction electron comes with an energy cost of 3/4J and
should therefore show up in the density of states. Indeed, the energy of the merged reso-
nances MR1 and SR roughly agrees with this energy at stronger coupling (for example at
J/t = 3.0). When identifying the resonance with a Kondo singlet peak, it should thereby
be possible to trace the existence of Kondo singlets even back to the antiferromagnetic
phase.
As the antiferromagnetic order is far from perfect, there is no contradiction, but instead
the ground state in the antiferromagnetic region can be interpreted as still having a finite
amount of Kondo singlets. However, as the resonance splits up into two peaks close to
the transition, which for weaker coupling strengths J < Jc behave differently, it is not
possible to clearly identify the existence of Kondo singlets in the antiferromagnetic region
in this way. This will be discussed in more detail in subsection 5.2.2.
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Doping the Antiferromagnet 5.2.2

The situation in the half-filled Kondo lattice model is quite special: In the ground state,
every local moment can be screened in the large J limit with exactly one electron to form
a singlet at each site. As already mentioned in section 2.3, removing conduction electrons
from the half-filled system creates unpaired local moments which can be interpreted as
spinfull c-holes. In the paramagnetic case, Kondo singlets can still be formed for suffi-
ciently large Kondo coupling, although the electrons gain mobility due to vacancies in
the conduction band, see section 5.1.3. For smaller values of J doping the system is also
interesting as the number of electrons which mediate the antiferromagnetic order of the
local spins via RKKY interaction is then reduced. Naively, one would hence expect, that
the antiferromagnetic correlations diminish when the system gets doped.
From the previous subsections it is known that the ground state for a 3×2 cluster is anti-
ferromagnetically ordered in the half-filled case for J < Jc ≈ 1.95, see for instance figure
5.9. In this region, one expects that the antiferromagnetic ordering will be destroyed at a
sufficiently large doping as the conduction electrons, which function as mediators for the
RKKY interaction between the local moments are partly removed. The focus is set on an
intermediate Kondo coupling of J = 1.6t = 0.2W at which we can directly compare with
DMFT results of reference [BŽV+13].
The left panel of figure 5.13 compares the energy of the antiferromagnetic and paramag-
netic solutions as a function of electron filling. It can be seen that the antiferromagnetic
solution exists down to a critical electron filling of nc ≈ 0.915. When approaching this
filling from above, the staggered magnetization of the AF solution vanishes continuously
and the corresponding energy approaches the one of the PM solution. As its energy is
always lower than the one of the paramagnet, the antiferromagnetic metallic phase is
realized close to half-filling and continuously goes over to a paramagnetic phase when
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Figure 5.13: Left panel: Comparison of the normal/paramagnetic (PM) and the antifer-
romagnetic (AF) solution at J/t = 1.6 as a function of electron filling n. For n > 0.91 the
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c the staggered magnetization
mc is zero and the solution is therefore paramagnetic. The dashed line is a square root fit to
the staggered magnetization data. Right panel: Electron filling n at J/t = 1.6 as a function of
chemical potential µ as obtained with a 3 × 2 cluster. Two solutions are shown: One including
an antiferromagnetic Weiss field (’AF’), the other one showing the paramagnetic solution for
comparison. In the region µ < µc ≈ −0.74 only the paramagnetic solution is realized, but for
µ > µc the antiferromagnetic solution has lower energy. Lines are guides to the eye only.

approaching nc.
In a DMFT study by Otsuki et al. [OKK09] the critical electron density down to which
the antiferromagnetic ground state holds for a Kondo coupling of J = 0.2W was found
to be nc(J = 0.2W ) ≈ 0.9. As will be shown in section 5.2.3 including more than one
(isotropic) hopping parameter of the cluster into the set of variational parameters leads
to a slight change of nc, which is why the comparison with DMFT will be discussed there.
The right panel of figure 5.13 shows the electron density n as a function of chemical poten-
tial µ for both the antiferromagnetic and the paramagnetic solution and one immediately
notes the change in n-vs.-µ when including antiferromagnetism. The paramagnet shows a
plateau corresponding to zero compressibility which indicates an insulator and introduc-
ing an antiferromagnetic Weiss field correctly produces an antiferromagnetic insulator at
half-filling, which has a larger quasiparticle gap. In the paramagnetic case the quasiparti-
cle gap turned out to be too small in the region J < Jc when compared to QMC (see figure
5.4). Although the gap of the antiferromagnetic solution is larger, unfortunately the gap
depends stronger on the size of the cluster than the gap of the paramagnetic solution for
J > Jc which makes a comparison with the QMC data difficult. When considering only
the data of the 3× 2 cluster, the quasiparticle gap is too large and a finite-size scaling of
the gaps would be necessary, which in the half-filled case already showed indications for
reproducing the exact critical coupling strength Jc.

In figure 5.14 the staggered magnetization and the spin-spin correlator are shown at n =
0.95 as a function of coupling strength. The antiferromagnetic region (J/t < Jc/t ∼ 1.72)
is found to be split into two different phases at J/t = 1.24. Two stationary points exist
for J/t = 1.24 and the corresponding solutions differ in their staggered magnetization
indicating a discontinuous transition between two antiferromagnetic phases, in the follow-
ing denoted by AF1 and AF2, see figure 5.14. The discontinuous nature of the transition
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Figure 5.14: Staggered magnetization (top) and spin-spin correlator (bottom) of the antifer-
romagnetic (AF) solution as a function of coupling strength J/t at n = 0.95 using a 3×2 cluster
with variational parameters µ, µ′, t′ and Mc. As can be seen from the jump in staggered magne-
tization at J/t = 1.24 the system shows a first order transition between two antiferromagnetic
phases.

also shows in a jump of the spin-spin correlator. In the following it is shown that the two
phases differ in their Fermi surface topology.

To summarize the findings discussed so far, figure 5.15 shows the magnetic phase diagram
close to half-filling using a 3× 2 cluster. The grey regions denote paramagnetic solutions
and the antiferromagnetic region is shown in blue, where the staggered magnetization is
color coded. At half-filling, the data corresponds to the one already shown in figure 5.21
where only one cluster hopping parameter was varied. There, the chemical potentials of
the system and the cluster had not to be varied and µ = µ′ = 0.
Besides the magnetic properties of the system it is also interesting to investigate the
metal-insulator transition as a function of electron density n. In the half-filled case it
was shown in the previous subsection that the antiferromagnetic insulator goes over to
an Kondo insulator at Jc. When doping the paramagnetic (Kondo) insulator it was also
shown that the system turns metallic once the system is doped away from half-filling.
Here, the "new" transitions are the one from an antiferromagnetic insulator to an an-
tiferromagnetic metal for J < Jc at n = 1 → 1 − ε and from an antiferromagnetic to
a paramagnetic metal for J < Jc at nc,AF. The difference between these three phases
can be nicely seen when looking at the density of states (DoS) in figure 5.16. It shows
the DoS for J/t = 1.6 at three different electron densities that are indicated by red cir-
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cles in figure 5.22 and that correspond to the antiferromagnetic insulator (n = 1.0), the
antiferromagnetic metal (n = 0.95) and the paramagnetic metal (n = 0.90).
In order to make the difference between antiferromagnetic metal and paramagnetic metal
better visible, figure 5.16 shows the DoS at J/t = 1.6 for different electron densities n. In
contrast to figure 5.12, where the transition from AF to PM was studied at half-filling as
a function of coupling strengths, the spectrum is not particle-hole symmetric. Still, the
redistribution of the electron density between up- and down-electrons when approaching
the magnetic order-disorder transition is similar. The relative position of the three peaks
does not change much when reducing the electron filling, but their size changes from the
pronounced two main resonance structure known from the half-filled case to a roughly
equally sized three-peak structure close to the transition. Already at n = 0.99 the main
resonances are not entirely made up from the majority spins, but also carry little weight
from the minority spins.
Again, the third peak SR is a candidate for a Kondo singlet peak: The difference between
the peak position and the middle of the gap at positive frequencies is at n = 0.99 roughly
1.15 which is close to the value of 3/4J = 1.2. When doping further away from half-filling
the relative peak position changes and differs more and more from 3/4J . This is somewhat
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Figure 5.16: Density of states (DoS) for J/t = 1.6 using the 3×2 cluster with {µ, µ′, t′,Mc} as
variational parameters. The electron fillings 0.91 < n < 1 correspond to the antiferromagnetic
metal phase and the first three panels show fillings close to the antiferromagnetic insulator
(n = 0.99), close to the paramagnetic metal (n = 0.92) and right in the middle of the phase
(n = 0.95). In the last panel n = 0.85, which is deep in the paramagnetic metal phase. The DoS
has been obtained on a k-grid of 100 × 100 points and an artificial broadening of η = 0.05 has
been added.

expected as the value of 3/4J was obtained by assuming a perfect Kondo insulator. Once
electrons are removed even at strong coupling the singlets are mobile and the resulting
dispersion changes. Finally, in the paramagnetic region electrons of both spins contribute
at each energy equally to the density of states.

Figure 5.17 shows the position of the resonances in the DoS at fixed electron density to
n = 0.95 as a function of J/t. In order to compare the positions at different coupling
strengths their relative position with respect to the middle of the gap in the DoS has
been devided by the coupling strength. At a value of J/t = 1.24 the trend of all peak
positions changes. This is due to the first order transition into a different antiferromag-
netic phase that was shown already in figure 5.14. Compared to figure 5.12 where the
peak positions are shown at half-filling, the change in the side resonance SR is much
stronger. When extrapolating the trend of the position of the merged resonance ’MR2’
at small coupling to couplings J/t > 1.24 one ends up at the position of the resonance
’MR1’. In contrast to the half-filled case, the merging of the two resonances at J/ ≈ 1.25
seems to coincide with a first order phase transition. At half-filling the antiferromagnetic
insulator does not show any jump or kink in the staggered magnetization which indicates
the importance of a change in the Fermi surface for the first order transition off half-filling.
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The redistribution of weight inside the density of states is also reflected in the composition
of the Fermi surface, which is discussed in the following subsection.

Changing Fermi Surface Area

Once the system is doped away from half-filling it is metallic and hence possesses a
Fermi surface. Deep in the paramagnetic phase (strong coupling J) the Fermi surface
has been briefly discussed in subsection 5.1.3 and its large area was explained by taking
into account that both electrons and f-spins form the FS in form of mobile Kondo singlets.

J/t = 0.6 J/t = 1.6

KLM, 3x2, FS, n = 0.95, VarPar {µ, µ0, t0, Mc}
J/t = 3.0
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Figure 5.18: Characteristic Fermi surfaces (FS) for the three regimes that can be identified off
half-filling, here shown is an electron density of n = 0.95. At weak coupling the antiferromagnetic
metal has a small Fermi surface (left panel), at intermediate coupling the Fermi surface volume
jumps to a much higher value, but the system stays antiferromagnetic (center panel) and at
strong coupling the system is paramagnetic with a large Fermi surface (right panel).
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Figure 5.18 shows characteristic Fermi surfaces close to half-filling (n = 0.95) for three
different regimes. Besides the already described paramagnetic case, one can identify two
distinct phases by looking at the Fermi surface of the resulting metallic solutions. In the
antiferromagnetic phase the Brillouin zone doubles, which is in the figure indicated by a
dashed line. At small coupling strengths, when focusing on the inner sheet of the Fermi
surface it resembles the small closed Fermi surface that is found in the weak coupling
region within other numerical techniques such as Dual Fermions [Ots15], RDMFT [PK15]
or variational Monte Carlo [WO07, ABF13]. For larger coupling strengths close to the
transition to the paramagnet the Fermi surface topology is different (middle panel of fig-
ure 5.18). Small closed structures appear in the Fermi surface, but the doubling of the
Fermi surface that corresponds to antiferromagnetic long-range order still persists.
It is this very region close to the transition to the paramagnet where the spin-spin cor-
relator at half-filling clearly indicated a considerable admixture of Kondo singlets in the
ground state. At filling n = 0.95 this is still the case, but at J/t = 1.24 the correlator
jumps to a higher value that is only a bit smaller than −1/4, see figure 5.14. This indicates
that at least a small admixture of Kondo singlets is still present in the antiferromagnetic
phase AF1 close to the transition. As the spin-spin correlator is larger than −1/4 for
weak coupling strengths, other quantities have to be analyzed in addition to resolve the
question whether Kondo singlets exist even down to coupling strengths of the order of
J/t = 0.6, where a small Fermi surface is found.
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Figure 5.19: Density of states at n = 0.95 for different coupling strengths in the antiferro-
magnetic (J < 1.7) and the paramagnetic (J = 1.8) region. A change of the peak structure close
to the Fermi energy at ω = 0 happens at J/t & 1.2: The main peak splits and an additional side
resonance develops. Close to Jc the structure already resembles the three peak structure known
from the Kondo insulating region for J > Jc.

To further study whether the two regions in the antiferromagnetic metal amount to a
Kondo breakdown or whether Kondo singlets are still present in AF1, the density of
states within the AF metal is revisited with a focus on the evolution of the peak ’SR’. If
the Kondo breakdown picture applies, the small Fermi surface at weak coupling would be
made up entirely by electrons whereas Kondo singlets would not exist.
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Figure 5.19 shows part of the DoS close to the Fermi surface for different values inside
the AF phase at n = 0.95. At the largest shown coupling strength close to critical
coupling strength of Jc/t ≈ 1.75, three distinct peaks are visible which are similar to the
characteristic three peak structure of the paramagnet close to the transition (J > Jc).
When reducing J the two peaks closest to the Fermi energy approach each other and finally
seem to merge at J/t ≈ 1.2. However, the bipartite character of this main resonance can
be still seen in a shoulder at ω ≈ −0.18. Further decreasing the coupling strength results in
a more and more broadened shoulder which at small coupling strengths such as J/t = 0.6
can only be guessed to still exist.
More importantly, the leftmost peak which was motivated to be an indicator for Kondo
singlet formation at half-filling survives even down to small coupling strengths. The
peak height is reduced for decreasing coupling strength, but it is difficult to quantify
the peak height from the DoS. To obtain the weight of this peak, it is necessary to
remove the background which is a priori unknown. Defining the difference between the
absolute height of the peak and the dip in the DoS right next to it at higher frequency
has the disadvantage that it also depends on the position of the middle peak (’MR1’),
which changes noticeably between J/t = 1.6 and J/t = 1.2. This might be due to
the fact that the staggered magnetization is largest around J/t ≈ 1.2. Therefore, an
extrapolation of the (effective) peak height to even smaller coupling strengths is difficult.
Still, a distinctive peak is visible at J/t = 0.6, where the antiferromagnet shows the
characteristic small Fermi surface. When taking the side resonance as an indicator for
Kondo singlets, the DoS would suggest evidence for the existence of Kondo singlets at
small coupling strengths.
However, the paramagnet close to the transition to magnetic order shows two peaks with
nearly the same weight which merge for larger coupling strengths and are hence both
candidates for Kondo singlet resonances. Following the other resonance ’MR1’ when
decreasing the coupling strength leads to the afore mentioned merging with peak ’MR2’
at J/t ∼ 1.2, where the Fermi surface topology changes. Therefore, taking the resonance
’MR1’ as an indicator for Kondo singlets would rather suggest an absence of Kondo singlets
at weak coupling. A definite answer to the question of existence or absence of Kondo
singlets based on the peak structure of the DoS is therefore barely possible.

In figure 5.20 a close-up of the spectral function around the Fermi energy is shown at the
same filling for different coupling strengths. Although it shows only a certain path through
the Brillouin zone, the different regions of the Brillouin zone (BZ) that contribute to the
Fermi surface at zero frequency can be identified. Due to the symmetry with respect to x-
and y-direction, it is sufficient to only show this path of the BZ that for instance does not
include the point (0, π). Especially when changing from J/t = 0.6 to J/t = 1.2, where the
DoS already showed a shoulder next to the main resonance, the spectral function seems to
change continuously and the same features around ω = 0 are found. When approaching
the paramagnetic phase, the spectral weight on the path (π, 0) − (π/2, π/2) changes the
most. Only little weight is left close to ω = 0 at (π/2, π/2), instead weight is transferred
to (π, π/2). Finally, in the paramagnetic phase the Fermi surface centers around (π, π).

To conclude, it is difficult to fully exclude the Kondo breakdown scenario for very small
coupling strengths. The density of states, the spin-spin correlator and spectra clearly
indicate, that in the antiferromagnetic region close to Jc Kondo singlets make part of the
charge carriers. Based on this, a local quantum critical point, where Kondo breakdown
and onset of antiferromagnetic order coincide at Jc, would be ruled out. The topological
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Figure 5.20: Close-up of the spectral function around the Fermi energy at n = 0.95 for
different coupling strengths in the antiferromagnetic region. A change of the structure close to
the Fermi energy happens between J/t = 1.2 and J/t = 1.6.

differences between the Fermi surface in the weak coupling and intermediate coupling
regime are also evident. However, ruling out a Kondo breakdown at the discontinuous
transition between AF1 and AF2 is more difficult. At least close to the transition the
value of the spin-spin correlator in phase AF1 indicates the presence of Kondo singlets.
By using larger clusters it would be interesting to check, to what amount finite-size effects
enter in the FS structures that have been discussed here and how the peaks ’MR1’ and
’SR’ evolve as a function of cluster size. It also has to be noted that other techniques
which work directly in k-space, such as DCA [MA08, MBA10] or RDMFT [PK15], might
be able to investigate the Fermi surface evolution more precisely.
The fact that a first-order phase transition is found between the antiferromagnetic phases
with different Fermi topology agrees with variational Monte Carlo studies [WO07, ABF13].
Techniques that are based on dynamical mean-field theory find a (continuous) Lifshitz
transition instead [MA08, PK15].
However, it should be noted that these methods are conceptionally different as they
include temporal fluctuations to bath sites. Therefore, a study of the transition between
the antiferromagnetic phases AF1 and AF2 via VCA including bath sites seems promising
for future studies.

Variation of the Intra-Cluster Hopping t′ 5.2.3

As it proves important to include the intra-cluster hopping t′ into the set of variational
parameters when investigating superconductivity, its influence on antiferromagnetism is
also investigated. Indeed, when including t′, the minimum of the self-energy functional
with respect to the staggered Weiss field M changes a bit.
Starting off with the half-filled case and the 3 × 2 cluster, t′ stays close to t within
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the antiferromagnetic phase and hence the magnetization curves are not affected much.
For the 2× 2 cluster, at large J/t the intra-cluster hopping is close to t, but this changes
drastically when lowering J/t. This also affects the value ofM which is reduced compared
to the value when fixing t′ = t. Interestingly, the magnetization curves mc and mf are not
much affected. In the limit J/t→ 0 this can be understood as VCA becomes exact in the
non-interacting limit. The self-energy is there Σ(ω) = 0, which is why large intra-cluster
hopping does not change the outcome of the calculation much.
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Figure 5.21: Variation of the three different hopping parameters in the 3× 2 cluster leads to
larger deviations from t.

One might also ask for the influence of including more than one (isotropic) cluster hop-
ping parameter into the set of variational parameters. Figure 5.22 compares the staggered
magnetization mc of the antiferromagnetic solution in the case where one hopping param-
eter is used to the case where all three parameters t′1 − t′3 are used at J/t = 1.6 as a
function of electron density n. Off half-filling the solution with three parameters has a
somewhat lower magnetization and higher critical electron density nc. Still, comparing
the energies of the respective solutions, the larger variational space leads to a lower energy
at the saddle point and should be considered to be a better approximation of the system.
This can be understood by looking at the values of the three different hopping parameters
inside the reference cluster (see right side of figure 5.22). At first sight it might be
tempting to argue, that the strong increase of the hopping parameters t′2 and t′3 leads
to an increase of kinetic energy which counteracts the formation of antiferromagnetic
order. Looking closer, two other differences become obvious when comparing the half-
filled system with the one with reduced electron density: Firstly, the previous argument
ignores the distribution of the different hopping terms inside the reference system. When
averaging over the three hopping parameters t̄′ = (4t′1 + 2t′2 + t′3)/7 is comparable to the
value t′ when only varying one isotropic hopping parameter. Secondly, the spreading of
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Figure 5.22: Staggered magnetization of the antiferromagnetic (AF) solution at J/t = 1.6 as
a function of electron filling n. In this case, using only one isotropic hopping parameter t′ on
the cluster as a variational parameter in contrast to three hopping parameters t′1, t′2, t′3 leads to
a higher staggered magnetization mc. Although the values of the cluster hopping parameters
t′1, t

′
2, t
′
3 spread more for smaller density, the averaged hopping t̄′ is still comparable to t′.

the three hopping parameters is much larger for small n - the reference cluster simply
becomes more anisotropic. Considering the antiferromagnet to be the ground state of
the isotropic 2D Kondo lattice system, the latter point gives a better explanation for
the decrease of mc. As the anisotropy of the hopping parameters inside the reference
system increases for a smaller electron density, it is harder to form a regularly/isotropic
antiferromagnetically ordered state. In the end, the solution with three different cluster
hopping parameters has a lower energy and only a bit smaller magnetization, but the
qualitative results stay the same. Still, in the competition between the compensation for
the edge of the cluster by adjusting the hopping parameters in an anisotropic way and
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the stabilization of antiferromagnetic order by using an isotropic staggered Weiss field the
latter seems to be stronger.
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Local Superconductivity in the Kondo Lattice
Model 5.3

Starting point for the study of s-wave superconductivity in the framework of a quantum
cluster technique is the unexpected discovery of s-wave superconductivity by Bodensiek et
al. in Ref. [BŽV+13]. By using DMFT with a NRG solver they identified a broad region off
half-filling and for coupling strengths J/W & 0.1 where the anomalous expectation value
Φs had a very small but finite value. W denotes the bandwidth of the bare dispersion at
J = 0, which in the square lattice amounts to W = 8t. A maximum of the superconduct-
ing order parameter was found at a filling of n = 0.9 and a coupling strength of J/W = 0.3.

Before their study, local pairing was observed already in the Kondo lattice model by mean-
field approaches [HKS12, MY13], but the superconducting state found within DMFT is
conceptionally different as the pairing does not occur between c- and f-electrons. Instead
the superconductivity is only mediated by the antiferromagnetic spin fluctuations and
pairs are formed in the conduction band only. The responsible mechanism for this pairing
has already been described in section 2.3. After including temporal fluctuations within
DMFT the next natural step is to examine the existence of s-wave superconductivity
within a technique that includes spatial fluctuations, such as VCA.

For small clusters, VCA is known to prefer superconducting solutions even at half-filling
as seen in the Hubbard model. This happens especially if the system only has a small
gap as allowing for pairing to another quantum sector results in an energy gain which
may be sufficient to overcome this gap. Nevertheless, VCA allowed for a qualitative study
of superconductivity in the Hubbard model, which is used as a model system for high-
temperature superconductors such as the cuprates.

In this chapter, the Kondo lattice model is first checked for s-wave superconductivity. At
half-filling, subsection 5.3.1 shows that only using a superconducting Weiss field leads to
the emergence of substantial s-wave pairing. This counterintuitive finding is subsequently
shown to be an artifact of limiting the variational space too much. When including
the hopping on the cluster into the set of variational parameters, the seemingly super-
conducting solutions turn out to be mean-field-like solutions that correspond to isolated
superconducting sites. Skipping this unphysical solution, no s-wave superconductivity
is found at half-filling. Afterwards the system is doped away from half-filling and the
four-dimensional variational space is investigated for “new” stationary points. In sub-
section 5.3.2 several stationary points are discussed and it is argued that all besides the
normal conducting solutions either violate thermodynamical consistency or correspond to
the artificial atomic solution that was encountered at half-filling. For the 3 × 2 cluster
a parameter regime for the Weiss field strength is identified in which stationary points
could occur without ending up in those artificial solutions, but no s-wave superconducting
“true” stationary points of the self-energy functional are found.

The superconducting Weiss field that amounts to s-wave singlet pairing reads as follows:

HSCs = D
∑
i

(
ci↑ci↓ + c†i↑c

†
i↓

)
.
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As this Weiss field does not conserve the particle number, the Hilbert space is enlarged
compared to the one previously chosen, which was limited to a quantum sector with a
certain electron number. The violation of particle conservation drastically increases the
computational cost of the calculations which is why large 4×2 clusters are not considered
in the following.

Before showing VCA results for s-wave superconductivity, it is instructive to study the
effect of a superconducting Weiss field on an isolated Kondo site and on a 2 × 2 cluster.
Results for both calculations are shown in appendix F.

Probing for s-Wave Superconductivity at Half-Filling 5.3.1

For small coupling strengths (J/W . 0.15) Bodensiek et al. surprisingly found super-
conductivity even at half-filling. This region differs from the rest of the superconducting
phase, which is located away from half-filling and for coupling strengths J/W & 0.15.
However, it should be noted that the anomalous expectation value is very small in this re-
gion (Φs ≈ 0.002) and the DMFT calculations suffered from convergence problems which
made it difficult to stabilize the solution [Bod16]. Furthermore, this is the very region
where other DMFT studies without superconducting baths found an antiferromagnetic
insulator [PP07, OKK09], such that the interplay between superconductivity and antifer-
romagnetism should be investigated in detail.

Nevertheless, the existence of superconductivity at weak coupling within DMFT motivates
taking half-filling as a starting point for the investigation of s-wave superconductivity.
Figure 5.23 shows the structure of the SEF at half-filling for a 2 × 2 cluster. For large
values of J/t one finds a minimum with respect to the superconducting Weiss field strength
Ds, corresponding to a superconducting solution. In addition, the SEF possesses an
additional maximum for larger Ds and yet another minimum with a larger values of the
energy at weak coupling. This means, that according to Potthoff’s rules for the selection
of stationary points [Pot12] still the minimum with lower energy (indicated by a thick
arrow in the figure) should be considered as the correct stationary point.
In contrast to the superconducting phase that was found in reference [BŽV+13], the so-
lution at the stationary point shown in figure 5.23 exists for all coupling strengths. The
strength of the Weiss field at the stationary point is quite large and for coupling strengths
larger than the hopping strengths J/t & 1 it is even proportional to J . It is therefore
tempting to reason that this solution amounts to a mean-field solution similar to the
single-site case discussed in subsection F. This assumption is further supported by the
fact that the Weiss field strength is for strong coupling independent of cluster size as
shown in the right panel of figure 5.23. Extrapolating the value of D to small J leads to
a value of J0/t = 0.36 for 3 × 2 clusters (J0/t = 0.27 for 2 × 2 clusters) where the field
strength would be zero.

Compared to the atomic picture of subsection F the hopping term with strength t′ = t
enters the self-energy of the 2 × 2 and 3 × 2 clusters. As a consequence, the Weiss
field strength at strong coupling is still proportional to J but smaller than 3/4J . More
drastic changes happen at weak coupling, where the hopping term not only contributes
considerably to the ground state, but at some point changes the behavior qualitatively.
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Figure 5.23: Left panel: Form of the SEF as a function of s-wave Weiss field strength for
several J/t using a 2×2 cluster. To compare different coupling strengths the data is plotted as a
function of relative Weiss field strength, scaled by the value at the stationary point. Right panel:
The value of the superconducting Weiss field D and the corresponding anomalous expectation
value 〈D〉 from variation of D only using 2 × 2 and 3 × 2 clusters at half-filling. To show the
cluster-independence of the solution at strong coupling even three values for the expensive 4× 2
cluster are plotted. The dashed line is plotted for comparison to show the linear behavior in this
region.

At J/t . 1 the behavior changes for both cluster sizes, most notably for the 3× 2 cluster.
Although three non-trivial stationary points (i.e. Dc 6= 0) exist as a function of Dc at
weak coupling, even the stationary point with the smallest Dc exceeds the threshold of
3/4J for a 3× 2 cluster.
However, in the following section the condition t′ = t will be released by including the
hopping strength on the cluster into the set of variational parameters. By not fixing the
hopping strength, it will be shown that the stationary point indeed corresponds to the
“atomic” case considered before, even down to weak coupling.

Variation of the Cluster Hopping

The approximation within VCA is the reduction of the space of variational self-energies,
which is given by the cluster geometry of the reference system and the choice of a set of
one-body parameters. In most VCA studies so far, it turned out that variation of the
cluster hopping terms t′ did not change the results qualitatively and also did not improve
them quantitatively in a significant way. However, a recent VCA study on the triangu-
lar Hubbard model showed that this variation is necessary to guarantee the stability of
semi-metallic phases and that it increases the accuracy, especially for small values of U
[RLRT15]. It will be shown in the following that also in the case of s-wave superconduc-
tivity in the KLM, including the hopping on the cluster is crucial as it leads to qualitative
changes.

Using a 3×2 cluster and varying only the s-wave pairing strength D results in a seemingly
superconducting solution, even for large J/t, with an increasing anomalous expectation
value for J/t → ∞, see Fig. 5.23. This is a strange result as one expects Kondo singlets
to form in this limit and hence an insulator that is not superconducting. When varying
D,µ′ and t′ for large J/t (e.g. J/t = 10 in Fig. 5.24) and starting with the solution found
previously with a large value of the pairing field, one arrives at a stationary point where
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Figure 5.24: Calculation at half-filling using a 3× 2 cluster, this time with the set {D,µ′, t′}
of variational parameters. The hopping strength within the cluster is zero and the Weiss field
strength corresponds to the one of an isolated Kondo site, Dc = 3/4J .

the hopping on the cluster is zero. Nevertheless, the superconducting pairing D on the
cluster is finite and leads to a finite anomalous expectation value at the stationary point.
This corresponds to a cluster ground state with local “singlet-like” states of empty and
doubly occupied sites, where single electrons are localized. For all coupling strengths J
the value of the Weiss field strength is given by Dc = 3/4 · J .
At half-filling the only s-wave superconducting solution is therefore the somewhat ar-
tificial superconductor that consists of local Cooper pairs without any electron hopping
between the sites. A “true” superconductor comparable with the one proposed in reference
[BŽV+13] is not found at half-filling. Next, the situation off half-filling is investigated.

Choosing the Correct Stationary Point off Half-Filling 5.3.2

In the next two subsections the discussion focuses on the question which of the multiple
stationary points that are found off half-filling should be considered. First, the set of
variational parameters is three-dimensional. In the next subsection the cluster hopping
is also varied and stationary points have been determined in a four-dimensional varia-
tional space. Due to the large number of variational parameters, the 2× 2 cluster will be
used to find different stationary points and to discard unphysical solutions. Afterwards,
the 3×2 cluster is used in subsection 5.3.3 for calculations on the remaining solution only.

Away from half-filling, the chemical potential of the original system µ and of the reference
cluster µ′ are in general non-zero. When including an s-wave superconducting Weiss field
and following a stationary point, one often encounters situations where the self-energy
jumps or shows a kink as a function of one of the variational parameters. Due to the
presence of jumps and kinks in the self-energy functional, convergence to the correct
stationary point is not ensured anymore. Sometimes, when changing a loop parameter
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(e.g. the chemical potential µ) and starting off with the former stationary solution, one
may arrive in a different quantum sector. In the self-energy functional this manifests as
a jump. More generally, jumps in the self-energy functional can occur if the number of
frequencies ω′ < 0, which enter the calculation of the self-energy functional, is changed,
see formula 3.4. Changing some parameters that enter the calculation of the cluster Green
function can lead to this effect. Once jumps or kinks are encountered in the SEF, the
search for stationary points has to be restricted to the parameter region which causes a
smooth SEF. As a consequence stationary points can be lost once they move out of this
“well-behaved” region. In some of the following figures observables of the solution corre-
sponding to this stationary point are shown, see e.g. figure 5.26. Once the stationary point
is not any more in the “well-behaved” region, this amounts to a breakdown of the solution.

The task is now to choose the “correct” quantum space, which in practice amounts to
choosing one combination (of at least two possible ones) of chemical potentials µ and µ′ .
In general, one expects to be able to tune the filling by changing the chemical potential µ
around the “natural cluster fillings” ncl = Ne/L. In case of magnetic phases, the quantum
sectors with different cluster fillings are well separated and can be connected by adapting
µ. In addition, one can artificially stick to a certain cluster filling, say ncl = 1, and change
the filling smoothly only by varying µ. Here, the superconducting Weiss field couples
quantum sectors with different cluster fillings, which renders the latter option impossible.
In addition, even a quite weak Weiss field which couples two adjacent quantum sectors
(e.g. with Ne and Ne − 2) could lead to an energy gain which supersedes an energy gap
between these sectors. Especially for weakly gapped systems this could lead to artificial
superconducting solutions due to this overcompensation effect. Overall, the addition of
superconducting Weiss fields poses the problem of choosing the right stationary point,
which here means to also choose out of different quantum sectors.
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Figure 5.25: Self-energy functional as a function of µ′ for J/t = 1.5 using a 2× 2 cluster.

To illustrate this issue, a “smooth” example for the case of s-wave superconductivity us-
ing a 2 × 2 plaquette is discussed first. In figure 5.25 the SEF is shown as a function
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of the chemical potential of the cluster µ′ where the Weiss field strength is minimized
Ds = Dmin

s and µ is set to zero. The functional Ω(µ′)|µ=0,Dmin
s

is symmetric around the
minimum at µ′min = 0 and possesses two additional maxima at µ′max

± = ±0.525. So far
this does not pose any major problems, but it is important to note that the maxima in µ′
are close to a change in Dmin

s from a finite value to zero (for |µ′| > 0.6). At the minimum
the system is half-filled n(µ′ = 0) = 1, but for the maxima n(µ′ = −0.525) = 1.08 and
n(µ′ = 0.525) = 0.92. Interestingly, the anomalous expectation value Φs = 〈ci↑ci↓〉 is
non-zero for all three stationary points: Φs(µ

′max
± ) = 0.077 and Φs(µ

′min) = 0.111.

In the first instance all three stationary points are valid solutions and correspond to
approximations of the true grand potential (in potentially different phases). We now
trace these stationary points when slowly increasing or reducing the value of µ. Unless
jumps move too close to the stationary points, this procedure of “adiabatically doping”
the system should lead to stationary points of the system away from half-filling.
To choose the correct solution one should compare the energy at the stationary points.
Although the chemical potential µ might be the same, the number of electrons on the
cluster can differ from one solution to the other as the superconducting field admixes
quantum sectors with different electron numbers to the former ground state.
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Figure 5.26: Left panel: Energy F = Ω+µ ·n as a function of n for different stationary points
at J/t = 1.5 using a 2 × 2 cluster. Right panel: Anomalous expectation value Φs as a function
of n for different stationary points at J/t = 1.5 using a 2 × 2 cluster. The solutions for µ = 0
(see figure 5.25) are indicated via black dots and the two additional stationary points of figure
5.25 are denoted by D↑, µ′↑1,2.

Figure 5.26 shows in the left panel the energies of the solutions at each stationary point.
From looking only at this four stationary points, it seems that there are three different
superconducting phases, which could be realized around half-filling. For strong doping,
the stationary points cannot be traced any further, as jumps in the self-energy functional
come too close. However, this does not mean that there is no superconducting solution
available. It only shows that the superconducting solution at half-filling cannot be traced
to a filling too far away from n = 1.
The solution, which amounts to a maximum of the stationary point with respect to
both Dc and µ is the paramagnetic solution which was discussed previously as Dc = 0.
Comparing the other solutions, at least around half-filling the solution which amounts
to a minimum with respect to Dc and µ is the lowest in energy. Due to a discontinuity
in the self-energy functional it breaks down for fillings n . 0.82. For 0.7 . n . 0.82
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the solution which is a minimum with respect to the superconducting Weiss field and a
maximum with respect to µ (’D↓µ′↑1’) is still lower than the paramagnetic solution.
These two stationary points will be discussed in the next subsection, where the cluster
hopping will be varied in addition.

Additional Variation of t′

The key question remains how the different seemingly s-wave superconducting solutions
shown in figure 5.26 change if one additionally considers the intra-cluster hopping as a
variational parameter. Again, one first has to search and review all the possible station-
ary points and then decide which ones have to be considered. This also means that there
are for each solution two possible new solutions - one with t′ minimizing and one with t′
maximizing Ω, see table 5.1. Out of eight possible combinations for stationary points, the
search in the more restricted variational space of the previous subsection motivate a de-
tailed investigation of four of them, labeled for convenience with solution 5 to 8 according
to table 5.1.

No. D µ′ t′ Characteristics

5 ↓ ↑ ↑ Two solutions with t′ ≈ t, similar to figure 5.26,
6 ↓ ↑ ↓ Two solutions: One has t′ = 0, the other one is thermodynamically unstable
7 ↓ ↓ ↑ One solution with t′ ≈ t, but thermodynamical stability violated off half-filling
8 ↓ ↓ ↓ One solution with t′ = 0

Table 5.1: Different stationary points around half-filling at J/t = 1.5 when varying Ds, µ
′ and

t′. The arrows in columns 2-4 indicate whether Ω has a maximum or a minimum with respect
to the variational parameter.

When evaluating different stationary points three criteria are used to assess the solutions.
One criterion is the value of the cluster hopping parameter t′. “Atomic” solutions with
t′ = 0 amount to reference systems with decoupled cluster sites that locally form a super-
conducting singlet state. They are considered to be artificial mean-field solutions and not
to represent superconductivity due to many-body effects. One of the two solutions of type
6 and the one of type 8 are therefore excluded. The remaining two types of stationary
points lead to solutions with t′ ≈ t. In the region where a smooth self-energy functional
allows for the other solution of type 6, the cluster hopping is very large (1.4 . t′/t . 2.8).
Another important criterion is thermodynamical stability. At stationary points the self-
energy functional approximates the grand potential, which means that it is possible to
calculate the electron density n in two different ways. The filling can be obtained either
by calculating the derivative of the (approximated) grand potential or by calculating the
trace of the VCA Green function. In order to have thermodynamical stability, both ways
of calculating n should lead to the same value: −∂Ω/∂µ = Tr G. To fulfill this condi-
tion, it is usually sufficient to include the chemical potential of the cluster in the set of
variational parameters. However, when checking the remaining stationary point of type
6, both ways of calculating the electron density differ tremendously close to half-filling.
The functional derivative −∂Ω/∂µ does not lead to half-filling at all, such that this so-
lution is discarded because of thermodynamic instability, see figure 5.27. In the same
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Figure 5.27: Electron density n calculated as Tr G and as −∂Ω/∂µ for solutions with station-
ary points of type 5, 6 and 7 (from left to right) of table 5.1. In the middle panel the solution
with non-zero cluster hopping t′ is shown.

figure the solutions of type 5 are shown, which are thermodynamically stable. For the
remaining stationary point of type 7 Tr G and −∂Ω/∂µ coincide only at half-filling, but
differ for all other electron fillings. Especially when approaching the breakdown region at
n ∼ 0.85− 0.90 and n ∼ 1.10− 1.15 the discrepancies start to become very large.
Although this already reduces the number of solutions with t′ 6= 0 and thermodynamic
stability to the one solution of type 5, figure 5.28 shows solution 7 for comparison. Inter-
estingly, all solutions break down when doping the system more than ε ∼ 0.12 away from
half-filling. Most promising for further investigation away from half-filling is the solution
of type 5, that is a saddle point which is a maximum of the self-energy functional with
respect to µ′ and t′ and a minimum with respect to Dc. This is investigated in the next
subsection.
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Figure 5.28: Comparison of the energies (left) and the anomalous expectation value of solu-
tions 5 and 7.

So far half-filling has been the starting point for the search of stationary points. In the
DMFT phase diagram, superconductivity sets in for intermediate coupling strengths only
away from half-filling. Therefore, the position, where the s-wave superconductivity found
within DMFT was largest, is chosen as a starting point next.

Absence of Local Superconductivity with a 3× 2 Cluster 5.3.3

Since the 2×2 cluster shows anomalies in the hopping parameter t′ on the cluster already
for intermediate values of J/t, the 3 × 2 cluster is considered now to investigate s-wave
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superconductivity away from half-filling. To directly compare with figures 2 and 3 of ref-
erence [BŽV+13] the values of J1 = 1.6t = 0.2W and J2 = 2.4t = 0.3W are investigated
first. For the latter value, the authors of [BŽV+13] found the maximal anomalous expec-
tation value Φs = 〈ci↑ci↓〉 at a filling of n = 0.9. J1 amounts to the value shown in their
figure 3. From section 5.2.1 it is known, that within a 3× 2 cluster an antiferromagneti-
cally ordered phase is present at half-filling for J ≤ Jc = 1.95. Hence, we can set aside a
magnetic Weiss field for the study of J2. Doping the system results in strong suppression
of antiferromagnetism, but it has to be expected, that at least close to half-filling, still
both antiferromagnetic and superconducting Weiss field terms have to be considered.
One should also note, that within DMFT+NRG the antiferromagnetic phase at half-
filling sets in at a critical JDMFT

c = 0.28W = 2.24t [Bod13], which means that J1 falls
into the AF phase at half-filling, but J2 > Jc is not affected. In reference [OKK09] the
phase diagram of the KLM at n = 0.9 was investigated by using CT-QMC. There, the
antiferromagnetic phase was found at T = 0 for J < Jc ≈ 0.2W = 1.6t. To see antiferro-
magnetism for even smaller fillings one should therefore consider an even smaller J, say
J3 = 0.15W = 1.2t. Although a detailed study of the interplay of AF and SC was left
open in reference [BŽV+13], the interplay of both effects should influence the supercon-
ducting phase diagram considerably. In the low-filled case, there exist even ferromagnetic
(FM) phases, as shown e.g. within the framework of DMFT[BŽPP11]. However, these
FM phases appear for fillings n < nc ≈ 0.65 in the case of J = 0.2w = 1.6t [BŽPP11] and
are not considered in the present study.

All this considerations lead to a quite large set of variational parameters which renders the
analysis of s-wave superconductivity cumbersome. A restriction of the variational space to
relevant variational parameters only seems to be necessary. In the following, the hopping
parameters on the 3 × 2 cluster will (most of the time) not be varied independently, as
figure 5.21 showed no qualitative and only little quantitative differences between one and
three different cluster hopping parameters in the region 1.5 < J/t < Jc/t. The same holds
for the paramagnetic solution in the region Jc/t < J/t < 2.5, so that for the investigation
of J1 and J2 only one isotropic cluster hopping parameter in the set of variational param-
eters seems to be sufficient.
If one is interested in the small J region, where DMFT did not find any s-wave super-
conductivity, this simplification is at least questionable and one should consider three
hopping parameters t′1, t′2 and t′3: At J = 0.1W = 0.8t DMFT does not see any anoma-
lous correlations for fillings n < 0.97. In the same parameter region the deviations of the
hopping parameters from t are at least at half-filling very large with values up to t′3 = 1.8t
(compare with Fig. 5.21). However, in the antiferromagnetic phase one still does not
encounter an anomaly in the hopping terms as is the case for the paramagnetic solution
around J/t ≈ 0.9, see Fig. 5.2.

In contrast to the previous analysis, where no (clearly physical) s-wave solution was found,
we now take the converged parameters of the paramagnetic solution at a filling of n ≈ 0.95
as a starting point and add an s-wave superconducting Weiss field to the set of variational
parameters. Again, a saddlepoint comparable to solution 6 of 5.3.2 is found and discarded
for the same reason (t′opt = 0). Solution 5 of 5.3.2 provided the most promising saddle
point, which is why we again look for a stationary point of Ω, which is a maximum with
respect to µ′ and t′ and which is a minimum with respect to D.
In figure 5.29 the cluster hopping parameter t′ after optimization (solution 5) or mini-
mization (solution 6) is plotted as a function of the superconducting Weiss field strength
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Ds. The self-energy functional as a function of Ds is monotonically decreasing in the
plotted region and only shows one stationary point, namely the maximum at Ds = 0, see
figure 5.29.
When comparing the values of the cluster hopping parameter t′ of both solutions, one
notes a change between 0.3 < Ds < 0.4. For small Weiss field strengths the cluster hop-
ping parameter of SEF5 starts at t′ ≈ 0.9 and reduces when increasing Ds. At Ds = 0.4
it drops to zero and remains zero for larger values of Ds. This is the somewhat artificial
solution that leads at a much larger Weiss field strength to a stationary point of the SEF
and at half-filling it was already shown in figure 5.24. In case of the other solution, where
the value of t′ leads to a maximum of the SEF, the cluster hopping is zero for small values
of the Weiss field and starts to grow rapidly for Ds > 0.3. For Ds > 0.38, the cluster
hopping parameter diverges to huge values and no stable saddlepoint, which is still a
maximum with respect to t′, can be identified. Comparing the values of the SEF, this
amounts to the value of the Weiss field where both solutions meet, but the solution where
the SEF is maximized by t′ always has the lower value.
If one wants to exclude “unphysical” solutions, where the cluster consists of isolated sites
and a resulting local self-energy enters the calculation of the SEF, one can restrict the
search to small values of Ds. As can be seen from figure 5.29, no stationary point is found
in this region (Ds < 0.4) except the non-superconducting solution at Ds = 0.
The qualitative picture shown in figure 5.29 also holds at higher/lower fillings and smaller
coupling strengths. For small Ds a solution with reasonable intra-cluster hopping strength
t′ ∼ t is found, but already for comparably small values of Dc ∼ 0.4 − 0.5 the cluster
hopping drops to zero. At this point, the cluster hopping of the second solution, which
is zero for small Weiss field strengths, diverges. The solution breaks down and one is left
with the case of decoupled sites inside the reference cluster that was discussed before.
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As no superconducting solution has been found so far, a possible next step would be to
take additionally antiferromagnetism into consideration. Naturally, one might think of
antiferromagnetism and superconductivity as being two competing phases. Treating an-
tiferromagnetism and supercondictivity on the same footing would then not change the
results obtained until now.
However, in both mechanisms, which were put forward by the authors of [BŽV+13] and
which might explain their finding of s-wave superconductivity, spin fluctuations play an
important role. When using Eliashberg theory, one of the key quantities are spin fluctu-
ations between localized spins and conduction electrons. In subsection 5.2 it was shown
that the spin-spin correlator showed qualitatively different behavior in the antiferromag-
netic and in the paramagnetic phase. Although 〈Ss〉 should not be confused with the
spin susceptibility χzz that entered the Eliashberg equation, including antiferromagnetic
ordering seems to be reasonable. The other mechanism proposed in [BŽV+13] assumes
that a local singlet can be split into a virtual triplet state before recombining at another
site to a singlet again. In order to fulfill this scenario one should also assume at least a
short-range antiferromagnetically ordered configuration of neighboring sites. Long-range
antiferromagnetic order also renders this scenario possible.
A first indication of the effect that the addition of an antiferromagnetic to the supercon-
ducting Weiss field might have, can be gained from looking at the self-energy functional
as a function of Ds in both cases (see figure 5.30). Here, the solutions for the sets of varia-
tional parameters {µ, µ′, t′} and {µ, µ′, t′,Mc} are compared as a function of the strength
of an superconducting Weiss field. Due to the outcome of the discussion in the previous
paragraph, the considered Weiss field strengths are in the region of „sufficiently small“
Ds, such that t′ 6= 0.
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variational parameters. The staggered magnetization of the ’SC+AF’ solution diminishes for
intermediate values of Ds, hence the self-energy functional approaches the ’SC’ result.

The self-energy functional shows in both cases only one stationary point namely atDs = 0,
which are the paramagnetic and antiferromagnetic solutions that are already known from
5.2 - the antiferromagnetic solution has a smaller energy and is therefore realized in the
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system. When increasing the strength of the superconducting Weiss field Ds the value of
the antiferromagnetic Weiss field Mc decreases and finally goes to zero. This can be read
off from the staggered magnetization in figure 5.30. The question if a superconducting
solution can be realized can hence be reformulated to asking whether the change from the
AF to the PM solution can be found in some parameter regime to lead to an additional
stationary point.

Investigating the self-energy functional as a function of Ds for J = 1.6t =̂ 0.2W and J =
2.4t =̂ 0.3W for electron fillings down to n = 0.85 leads to results similar to those shown
in figure 5.29. This means, that even in the region where reference [BŽV+13] detected the
largest anomalous expectation value no s-wave superconducting solutions are found. At
least for these coupling strengths and close to half-filling no antiferromagnetism is found
for intermediate and strong superconducting Weiss fields, which means that the search
for stationary points amounts to the situation without an additional antiferromagnetic
Weiss field present.
Due to the large variational space and comparatively high computational cost of the 3×2
cluster the search for s-wave superconductivity has been restricted to the region of the
phase diagram which seemed to be the most promising. Based on this the existence of
s-wave superconductivity in the KLM within VCA is not excluded, but in the investigated
region the calculations do not show clear evidence for s-wave superconductivity.
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Nodal Superconductivity in the Kondo Lattice
Model 5.4

In this section, superconductivity with different symmetry of the pairing is investigated.
Especially d-wave superconductivity is often found experimentally in heavy fermion sys-
tems [SW16] and also numerical studies of the Kondo lattice model indicate the existence
of a d-wave superconducting phase [AFB14, Ots15]. Although in a recent study by Otsuki
a p-wave superconductor was found for coupling strengths around the critical point Jc
[Ots15], the focus of this section will be on superconductivity with dx2−y2 symmetry.
First, the paramagnetic solution will be taken as a starting point to investigate supercon-
ductivity by adding a Weiss field with d-wave symmetry. In subsection 5.4.2 antiferro-
magnetism will be treated on equal footing with superconductivity and the interplay of
both symmetry broken phases will be discussed.

d-Wave Superconductivity 5.4.1

In case of s-wave superconductivity the Cooper pairs form locally and clusters are affected
uniformly by the Weiss field. The geometry and size of the cluster enter the calculation
through the intra-cluster hopping and in case of antiferromagnetism through the medi-
ated effective RKKY interaction only. Considering extended pairing, such as the non-local
dx2−y2 superconductivity, this changes. Due to its geometry, the 2 × 2 cluster is for in-
stance known to favor d-wave pairing. For this reason the 2×2 cluster will only be briefly
discussed and mainly used as a reference to the 3×2 cluster, for which most of the results
will be shown.

As long as no antiferromagnetic Weiss field is used in addition to the superconducting
one, the paramagnetic phase diagram at half-filling has to be used as a starting point.
In contrast to the “full” phase diagram, which includes antiferromagnetism and leads to
an insulator at arbitrary coupling strength J/t at half-filling, the paramagnetic phase
diagram also shows a metallic phase. To be more precise, the system is metallic in
the weak coupling region and becomes insulating when the coupling exceeds some value
J > Jc,INS, where Kondo screening is big enough to form an insulator consisting of the
Kondo singlets.
When looking at the anomalous expectation value Φdx2−y2 which serves as the order pa-
rameter of a superconducting phase it is not surprising, that no superconductivity is found
in the insulating region, see figure 5.31. In contrast to the expectation that there should
not be any superconductivity at all at half-filling, one finds d-wave superconductivity for
weak coupling up to J/t ≈ 1.1. This is the region where the incomplete (paramagnetic)
treatment of the system showed an anomaly in the cluster hopping. For the 2× 2 cluster
the cluster hopping has a minimum at J/t ∼ 1.4 and starts to grow for smaller coupling;
in case of the 3 × 2 and 4 × 2 cluster t′ even showed a kink when plotted as a function
of J at J/t ∼ 0.8, which marked the phase transition to a metal for smaller coupling
strengths. As will be shown below, the onset of superconductivity for the 3× 2 cluster is
comparable to this coupling strength Jc,INS. Although this reveals the need of including
antiferromagnetism into the calculations, it still provides the correct starting point for the
strong coupling region, i.e. the paramagnetic region J > Jc,AF. There, leaving half-filling
should be valid as antiferromagnetism is not realized at or off half-filling as was shown in
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Figure 5.31: Anomalous expectation value Φdx2−y2 as a funciton of J/t at half-filling (left)
and as a function of n and J/t (right). Calculations have been done using a 2×2 cluster, ignoring
possible magnetic solutions.

section 5.2.

Leaving the study of the region with coupling J < Jc ≈ 2.05t to the next subsection
where antiferromagnetism is included in the investigation, it remains to discuss the region
with J > Jc. Still, it is interesting that the maximum of the anomalous expectation
value (J/t ∼ 2.1) amounts to the region where antiferromagnetic fluctuations lead to the
onset of AF long-range order if one permits this ordering. The corresponding electron
density at the maximum is roughly n ≈ 0.65. Close to half-filling the paramagnetic metal
persists at coupling stengths J > Jc and only doping of ε ∼ 0.1− 0.2 leads to a finite Φd.
When lowering the electron density further, the size of the anomalous expectation value
diminishes and finally goes to zero at small n.

Before including an antiferromagnetic Weiss field, d-wave superconductivity is investi-
gated in the region around Jc using a 3 × 2 cluster, see figure 5.32. For this cluster
Jc/t ≈ 1.95. The overall phase diagram compares qualitatively well to the one of the 2×2
cluster and it even gives quantitatively similar results.

Competition of Antiferromagnetism and Superconductivity 5.4.2

In the previous subsection we have seen, that away from half-filling superconducting
phases can manifest in the phase diagram of the Kondo lattice model. Especially for
small couplings J another symmetry breaking enters in the form of antiferromagnetic
ordering of the conduction electrons. The interplay of these two effects is known to be
important for d-wave superconductivity in the Hubbard model as possibly realized in
high-temperature superconductors. In principle there are three scenarios which are pos-
sible. The most improbable situation is the one where the two phases are independent
and hence, considering magnetism and superconductivity leads to the same magnetization
and anomalous expectation value as treating these effects separately. It is also possible
that both phases coexist and that they either compete, which means that the onset of
antiferromagnetism reduces superconductivity and vice versa, or that they cooperate. In
the latter case, the superconductivity would be enhanced due to the antiferromagnetic
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Figure 5.32: Anomalous expectation value ΦD using a 3× 2 cluster and variation parameters
µ′, t′ and D. For J ≤ JSCano ≈ 0.9 there is a superconducting solution even at half-filling, but one
has to be careful as this region coincides with an anomaly in t′. The interaction strength J where
the anomaly occurs is quite close to the one found in the paramagnetic solution (JPMano ≈ 0.84).

ordering.

However, considering the results of the previous section, approaching this question within
VCA might seem to be tricky as one encountered problems for weak coupling. Never-
theless, as this is the very region where at least in the normal phase antiferromagnetism
dominates one has to consider both broken symmetries together to properly address this
weak to intermediate coupling regime. As shown in chapter 5.2 antiferromagnetism al-
ready sets in for intermediate interaction strengths where the divergence of t′ does not
yet pose a problem, but one has to bear in mind that any doping of the system reduces
the antiferromagnetic correlations. Hence, doping the system sufficiently in order to ob-
serve superconductivity might already be too much doping to observe antiferromagnetism.
Especially for intermediate coupling strengths close to JAF

c this means, that one has to
investigate a very narrow µ window corresponding to small doping.
In figure 5.33 a 3× 2 cluster is used to revisit the half-filled system at J < JAF

c , this time
using both a d-wave superconducting and an antiferromagnetic Weiss field at the same
time. For all coupling strengths the solution coincides with the antiferromagnetic insula-
tor that was already found in section 5.2. Of course the stationary point with M = 0 still
exists, but a comparison of the corresponding energies shows that the antiferromagneti-
cally ordered phase is always lower in energy. Especially at weak coupling, allowing for
both, superconductivity and antiferromagnetism, results in an antiferromagnetic insulator
and no superconducting solution with lower energy is found at half-filling.
In case of the 3× 2 cluster the critical coupling strength Jc,AF ≈ 1.95, hence the value of
J/t = 1.8, which is used for figure 5.34, corresponds to the region of the antiferromagnetic
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Figure 5.34: Using a 3 × 2 cluster at J/t = 1.8, the system is doped away from half-filling.
The left panel shows the energy density and the right panel the staggered magnetization and
anomalous expectation value as a function of electron density n for the superconducting, the
antiferromagnetic and the coexisting SC+AF solutions.

metal with large Fermi surface down to nc, where it turns into a paramagnetic metal. The
other value shown in figure 5.35 is J/t = 1.2 and corresponds to the antiferromagnetic
metal with a small Fermi surface. This intermediate coupling strengths are chosen such
that one avoids the Lifshitz transition from large to small Fermi surface inside the anti-
ferromagnetic metal phase.

Figure 5.34 shows both the pure antiferromagnetic and the pure d-wave-superconducting
solutions as well as a solution with coexistence of superconductivity and antiferromag-
netism. Starting with the “pure” solutions at J/t = 1.8, for small doping the antiferro-
magnetic solution has a lower energy than the superconducting one, but their energies
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cross at n ≈ 0.98. From considering these two phases only, the system would be antifer-
romagnetic for 0.98 ≤ n ≤ 1 and d-wave superconducting for fillings smaller than 0.98.
However, compared to the “pure” phases, the solution with coexistence of AF and SC has
the lowest energy and should therefore be realized in the system.
In the coexistence region the anomalous expectation value does not change much com-
pared to the solely superconducting solution withMc = 0. At the same time the staggered
magnetization is enhanced compared to the AF solution. The coexistence region therefore
enlarges the superconducting region to a value close to half-filling and extends the antifer-
romagnetic region down to an electron density of n ≈ 0.955. In this sense, the interplay
of antiferromagnetism and d-wave superconductivity at J/t = 1.8 can be considered to be
cooperative. Outside of the coexistence region, no antiferromagnetic order is present and
the solution coincides with the one shown in figure 5.32 where d-wave superconductivity
without antiferromagnetism was considered.
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Figure 5.35: The same plots as in figure 5.34 showing the energy (left panel) and the order
parameters (right panel), this time for J/t = 1.2.

When reducing the coupling strength, the interplay between antiferromagnetism and
superconductivity changes. Figure 5.35 shows the same quantities for a coupling of
J/t = 1.2. Still, there exists a coexisting region which has the lowest energy and which
is therefore preferred as compared to the pure AF and SC solutions. Close to half-filling
(n & 0.98) the coexistent solution has comparable order parameters as the pure solu-
tions. For smaller electron density the staggered magnetization of this solution is reduced
compared to the pure antiferromagnetic phase, but the anomalous expectation value is
perceptibly larger than the one of the pure d-wave solution. When extrapolating the stag-
gered magnetization it becomes clear, that the antiferromagnetic region will be reduced
compared to the antiferromagnetic phase diagram shown in figure 5.15. At the electron
density nc where the antiferromagnetic order breaks down the pure superconducting so-
lution should be recovered. Until then (i.e. for nc < n < 0.98) the anomalous expectation
value is larger than in the pure d-wave solution.
The interplay of both symmetry-breaking mechanisms is therefore characterized by a
competition between superconductivity and antiferromagnetism at J/t = 1.2.
The results of the investigation of the interplay of antiferromagnetism and d-wave su-
perconductivity are summarized in figure 5.36. It shows the coexistence region of an
antiferromagnet and a superconductor. This region is limited to an electron density of
n = 1, where superconductivity breaks down, and by a critical coupling strength Jc(n)
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Figure 5.36: Anomalous expectation value (intensity color-coded in red) and staggered mag-
netization (in blue) using a 3× 2 cluster allowing for both superconductivity and antiferromag-
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(indicated by a dashed line in figure 5.36), which marks the breakdown of the antiferro-
magnet.
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Summary 5.5

In this chapter the variational cluster approximation was used to investigate the Kondo
lattice model directly at zero temperature. Exploiting the strength of VCA that phases
with broken symmetry can either be probed or actively avoided by choosing a suitable
variational space, the different phases of the KLM were analyzed separately. Afterwards
the interplay of these phases was investigated and finally combined to a phase diagram
that includes all different phases. As the half-filled KLM poses a special point in the
phase diagram, it has been analyzed separately from the doped model. In each part of
the analysis the quality of the VCA approximation has been checked by choosing different
technique-specific parameters such as the cluster size and the set of variational parame-
ters.
The examination of the Kondo lattice model progressed in three parts. First, the para-
magnetic phase of the model was treated and built the foundation for the inclusion of
symmetry-breaking mechanisms. In part two the antiferromagnet at small to intermedi-
ate coupling strengths was discussed and the last part focused on superconductivity of s-
and d-wave symmetry.

In section 5.1 the paramagnetic phase was studied first at and afterwards off half-filling.
Due to the absence of Weiss fields the set of variational parameters is comparatively small
such that it was possible to investigate cluster size effects and to identify a necessary
minimal set of variational parameters. In the process differences between the 2 × 2 and
the 3 × 2 and 4 × 2 clusters were found at small coupling and the influence of multi-
ple (anisotropic) hopping strengths for asymmetric clusters turned out not to change the
results qualitatively. At half-filling all clusters lead to a Kondo insulator with a nearly
cluster size independent quasiparticle gap at strong coupling. The asymmetric 3× 2 and
4 × 2 clusters showed an unexpected transition to a paramagnetic metal at J/t ≈ 0.8.
As one expects for this region long-range antiferromagnetic order due to effective RKKY
interaction, the metallic phase at half-filling has not been investigated in detail. Doping
the system away from half-filling at strong coupling resulted in a metallic phase with a
large Fermi surface. The Fermi surface area in this region amounts to the sum of elec-
tron density and f-spin density, which indicates the participation of f-spins in the charge
transfer process via mobile Kondo singlets.

Allowing for symmetry breaking in the spin-channel via a suitably chosen Weiss field in
section 5.2 made the investigation of an emerging antiferromagnetic phase below a critical
coupling strength Jc possible. At half-filling this value was determined for several cluster
sizes and geometries such that a rough finite-size extrapolation revealed an infinite-cluster-
size value of JVCA

c ≈ 1.48 ± 0.28. Although only three cluster sizes could be used, the
extrapolated value already nicely fits to the exact result of a QMC calculation by Assaad
[Ass99]. Here, improved cluster solvers, which make use of cluster symmetries, or even
solvers based on DMRG in an efficient implementation using matrix product states could
perhaps allow for larger cluster sizes and allow for a more precise finite-size extrapolation.
The transition from a paramagnetic to an antiferromagnetic insulator was analyzed in
detail and qualitative differences as well as characteristic features were identified in the
spin-spin correlator and the density of states. Off half-filling the antiferromagnetic so-
lution becomes metallic and the staggered magnetization is lowered when reducing the
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electron filling. At some critical electron filling nc(J) the magnetization vanishes smoothly
and the system continuously goes over to a paramagnetic metal.
A detailed study of the antiferromagnetic metal revealed two different regions. One region
at weak coupling with a small Fermi surface and another region at larger coupling with
closed pocket structures. By revisiting the spin-spin correlator and the structure of the
density of states (DoS) as a function of coupling strength at half-filling and analyzing
the evolution of the DoS as a function of electron density, the influence of Kondo sin-
glets in the antiferromagnetic phase was investigated. Although no definite proof could
be given, the analysis suggested the existence of Kondo singlets in the antiferromagnetic
phase down to weak coupling. This would contrast the Kondo breakdown scenario of
mean-field theory [ABF13]. However, a discontinuous transition between the two phases
with different Fermi surface topology away from half-filling was found. This is consistent
with results obtained with variational Monte Carlo [WO07, ABF13], but opposes the sce-
nario of a continuous Lifshitz transition, which is supported by RDMFT [PK15] and DCA
[MA08, MBA10].
As the variational cluster approximation used in this chapter is limited to the electronic
degrees of freedom and does not include excitations of the f-spins in the Green function,
the question of Kondo screening is difficult to answer. Including spin excitations in an
extension of standard VCA might allow for a detailed investigation of Kondo screening
so that the question of a possible Kondo breakdown could be readdressed.

Section 5.3 focused on the question whether s-wave superconductivity is realized in the
Kondo lattice model as found within DMFT+NRG [BŽV+13]. Already at half-filling
using the 2 × 2 cluster a seemingly superconducting solution could be traced back to
a solution of atomic mean-field nature. By extending the variational space, additional
stationary points of the self-energy functional were investigated and most of them were
discarded for two reasons. Some of the points corresponded to the artificial mean-field
solution of isolated superconducting sites, others violated thermodynamic stability. To
exclude artificial solutions, a parameter regime for the Weiss field strength was identified
and investigated for the most promising stationary points using the 3 × 2 cluster. In
this parameter regime of small Weiss fields the only stable solutions corresponded to a
paramagnetic metal and not to an s-wave superconductor. Also allowing for a possible
coexistence with antiferromagnetism did not lead to stable s-wave superconductivity ei-
ther.
Moving to superconductivity of d-wave symmetry, section 5.4.1 first showed the emergence
of stable d-wave superconducting solutions for weak coupling at half-filling. This region
could be related to the metallic region of the paramagnetic phase in case of the 3 × 2
cluster. Away from half-filling the paramagnetic metal at strong coupling continuously
develops d-wave pairing and turns into a superconductor.
Including antiferromagnetism in addition destroyed superconductivity at half-filling and
lead to a pure antiferromagnetic insulating phase instead. For coupling strengths J < Jc
a coexistence region was identified away from half-filling down to a critical density nc(J).
Inside this coexistence phase two regions were found, one displaying competition between
antiferromagnetism and superconductivity (small coupling) and one region where both
mechanisms act cooperatively (close to Jc).

The results motivate further studies on the Kondo lattice model. Two routes can be pur-
sued in future investigations.
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On the one hand, the VCA results considering the first-order transition in the antifer-
romagnetic phase and the absence of local superconductivity ask for further comparison
with other numerical methods. Besides improving the VCA results by treating larger
clusters, perhaps using other cluster solvers like DMRG, the clusters could be extended
by adding bath sites. Thereby, the changes due to the inclusion of temporal fluctuations
can be monitored. In this way, some of the discrepancies between techniques like VMC,
which treat finite lattices, and embedding techniques like DMFT-based methods might
be clarified.
On the other hand, the Kondo lattice model could be extended to connect closer to ex-
periments. Especially adding terms that compete with Kondo-singlet formation, such as
additional long-range hopping terms, to the Kondo lattice Hamiltonian is promising. In
this way the question of a (possibly) tunable Kondo breakdown might be approached via
VCA. The consequences of such additional terms on superconductivity are also interest-
ing. A route which is often pursued in this context consists in adding non-local Heisenberg
interactions between the f-spins. However, this would require further developments of the
variational cluster approximation to include such non-local spin interactions. First steps
in this direction have been done already by Filor and Pruschke [FP14].



Conclusions 6
In this thesis different aspects of unconventional phases in strongly correlated electron
systems were analyzed. Paradigmatic models for two specific classes of these systems
have been investigated numerically by using different variants of the variational cluster
approximation (VCA). On the one hand, the Hubbard model, which is a paradigmatic
model for the Mott metal-insulator transition (MIT), has been analyzed. On the other
hand, the phase diagram of the Kondo lattice model (KLM), which is an effective model
for heavy fermion systems, has been investigated.
In a digression a spin version of a precursor technique of VCA, spin cluster perturbation
theory (SCPT) has been benchmarked and an idea from standard cluster perturbation
theory transferred to SCPT. This bridges a gap between SCPT for strongly dimerized
chains [OBS10] and spin variational cluster approximation [FP10, FP14].

In both model systems studied in this thesis, quantum critical points were found. For the
anisotropic two-dimensional Hubbard model, the MIT was found to become continuous
at a critical anisotropy strength in the paramagnetic case. By further increasing this
anisotropy parameter into the quasi-one-dimensional region of the model, the transition
stayed continuous. Preliminary studies on the antiferromagnetic phase also gave indica-
tions for this quantum critical line. The universality class of the MIT and, especially in
experiments, putative Mott quantum criticality is heavily debated. For both problems the
finding of this quantum critical line opens new possibilities for future research. In con-
trast to this quantum critical line, the existence of a quantum critical point in the KLM
is well-established, but its nature is still discussed in context of a putative Kondo break-
down. Here, this issue is readdressed using the variational cluster approximation for the
first time directly on this model. The KLM on a two-dimensional square lattice showed
an antiferromagnetic phase at weak coupling up to a quantum critical point. Inside this
antiferromagnetic phase two regions were identified, which are separated by a first-order
transition and which differ in their Fermi-surface topology. The model was also probed
for s-wave superconductivity, but only non-local d-wave pairing was found to be robust.
Its interplay with the antiferromagnetism at weak coupling was investigated and different
qualitative behavior was observed. Both the first-order transition in the antiferromagnetic
metal and its interplay with d-wave superconductivity ask for further studies that allow
for better comparison with other numerical approaches and experimental studies.

Controlled numerical approaches to two-dimensional models for strongly correlated elec-
tron systems are rare or only applicable in a certain parameter regime [LAB+15]. Two
techniques that belong to the most accurate of these numerical methods are large-scale
cluster simulations via quantum Monte Carlo (QMC) [APMH94, Ass99, LAB+15] or via
tensor networks such as projected entangled-pair states (PEPS) [VC04, COBV10, Orú14,
Cor16]. However, they both suffer from problems which render these calculations compu-
tationally costly. In case of QMC this is the fermionic sign problem, in case of PEPS the
area law for entanglement.

159
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In VCA exact diagonalization is used as a cluster solver, which circumvents these prob-
lems, but limits the reference systems to small clusters. The VCA is a suitable tool to
study phases with broken symmetry in the Hubbard and Kondo lattice model in two di-
mensions. In some sense, the technique works directly in the thermodynamic limit, but
the finite size of the reference cluster influences the approximation. The quality of the
approximation is improved by increasing the size of the cluster, which allows to control
the technique. Besides the small cluster sizes, another drawback of VCA is its mean-field-
like character when it comes to correlations that exceed the cluster size. Nevertheless,
VCA has shown promising results for one- and two-dimensional model systems, see, e.g.,
[BHP08, BP10, DAH+04, BKS+09].
Hence, despite their limitations, by using variants of the variational cluster approximation,
important aspects could be added to the discussion of Mott quantum critical behavior
and to the discussion of the phase diagram of the KLM.

In the following two sections, perspectives and possible further investigations that emerge
from the results of chapters 4 and 5 are laid out. The results obtained therein are summa-
rized briefly, a more detailed summary can be found in sections 4.4 and 5.5, respectively.

Mott Criticality in the Anisotropic 2D Hubbard
Model 6.1

In case of organic charge-transfer salts, which show a Mott metal-insulator transition when
tuning the pressure experimentally, the nature of the endpoint of the metal-insulator tran-
sition line and the corresponding universality class are still heavily discussed [KMK05,
AJKW+15].

By studying the Mott metal-insulator transition (MIT) in an anisotropic two-dimensional
Hubbard model a quantum critical point at T = 0 is identified, which continues as a
quantum critical line to the quasi-one-dimensional regime of the model. In combination
with complementary cellular DMFT (CDMFT) calculations done by M. Raczkowski, a
consistent picture of the MIT at low to zero temperature could be obtained. Further
results for the antiferromagnetic phase suggest a similar picture and motivate to add an
anisotropy parameter as a new axis in the phase diagram. This adds a new route to ex-
plain the low temperature critical endpoint of systems like layered organic charge-transfer
salts, which can be modeled by anisotropic two-dimensional Hubbard models. Further-
more, the quantum critical line encountered in this thesis motivates to further study the
universality of the MIT as it might allow to explain some fingerprints of the unconven-
tional critical behavior in these compounds.

Introducing a new axis to the known phase diagram in form of a parameter that controls
the anisotropy of the system thereby offers the possibility to tune the critical temperature
to zero. Following up on this new way of tuning the critical temperature motivates further
studies of the Mott metal-insulator transition. The quantum critical behavior emerging
from the quantum critical point adds a new aspect to the discussion of universality of
the MIT and might allow to explain at least part of the unconventional critical behavior
in layered organic compounds in future studies. There are various possible routes which
could be pursued. In the following I will sketch three of them which seem very promising
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to me.

One route relates to the critical hopping strength tc⊥, where the MIT turns from a contin-
uous to a discontinuous transition. It is discussed whether this point could be a marginal
quantum critical point (MQCP), which was introduced in the context of metal-insulator
transitions by Imada, see [Ima04, Ima05]. In his works, the analysis of MQCPs leads to
different scaling laws depending on the phase from which the point was approached. Par-
ticularly, critical exponents were determined that fit within error bars to those of the un-
conventional universality class observed in experiments by the group of Kanoda [KMK05].
However, the analysis of the MQCP was limited to the frustrated two-dimensional Hub-
bard model on square and triangular lattices using Hartree-Fock theory. Studying the
putative MQCP with the methods used in this thesis that go beyond Hartree Fock is
therefore a promising approach and might lead to better understanding of the universal-
ity of the MIT.

The results of this thesis from VCA at zero temperature combined with finite-temperature
CDMFT results, as presented in reference [LMP+16], motivates further studies using
finite-temperature VCA. Within quantum Monte Carlo the fermionic sign problem ren-
ders smaller temperatures than those shown in [LMP+16] barely accessible. Using VCA
at extremely low temperatures 0 ≤ T ≤ 0.03 is therefore desirable to access this impor-
tant region of the phase diagram. It is possible to evaluate the self-energy functional
numerically at non-zero temperatures, but the calculation of the finite-temperature clus-
ter Green function needs to be efficient. Two promising candidates are advancements
on finite-temperature Lanczos methods [JP94, ADEvdL03] and using the density-matrix
renormalization group (DMRG) technique at finite temperatures, e.g. within an efficient
matrix product state formulation [TMPH14], to calculate the cluster Green function. By
using DMRG it might also be possible to treat larger clusters at zero temperature than
currently possible with the Band-Lanczos algorithm.

When connecting the new findings of this thesis to experiments on organic charge-transfer
salts, it should be noted that the κ-phase of organic charge-transfer salts is often described
with Hubbard models on triangular lattices. Although these models include an anisotropic
hopping, the geometry of the lattice prevents a clear separation of frustration and dimen-
sionality as it has been done in this thesis. However, it is also important to bare in mind
that the triangular geometries used in these models are the result of assuming dimer-
ization of neighboring molecules in a more general model. This simplification was often
simply taken for granted and is well justified for a lot of compounds. Still, in a recent
study using density functional theory in combination with random phase approximation
effective lattice models with four different hopping parameters were derived for selected
superconducting κ-(ET)2X materials [GAJV16]. It turned out that the assumption of
dimerization cannot be justified for these cases and a more complicated lattice has to
be considered to describe properties like the symmetry of the emerging superconducting
Cooper pairs correctly. Hence, extending the present study to a more general model, e.g.
using the derived model of reference [GAJV16] instead of the triangular lattice, seems
promising.
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Superconductivity and Antiferromagnetism in
the Kondo Lattice Model 6.2

For certain heavy fermion systems the low-energy physics is well described by the Kondo
lattice model [Don77, Col07]. In a recent study [BŽV+13], s-wave superconductivity was
reported for this model within a dynamical mean-field theory. In this thesis, the varia-
tional cluster approximation was for the first time applied directly to the Kondo lattice
model to check the system for s-wave superconductivity with a technique that incorpo-
rates non-local correlations. Although a VCA study found (different) s-wave pairing in the
periodic Anderson model [MY15], the type of superconductivity proposed in [BŽV+13]
was not found for the KLM in this thesis. Nevertheless, here other phases with broken
symmetries have been studied in the Kondo lattice model, too.

In the paramagnetic phase of the KLM, the Kondo insulator at half-filling and the metallic
phase with heavy charge carriers away from half-filling have been investigated. By includ-
ing an antiferromagnetic Weiss field, the antiferromagnetic phase was then analyzed. For
weak coupling up to a quantum critical point at coupling strength Jc, the system was found
to order antiferromagnetically. Two antiferromagnetic phases with different Fermi-surface
structure separated by a first-order transition were identified away from half-filling. This
finding agrees with variational Monte Carlo results [WO07, ABF13], but disagrees with
result of techniques based on DMFT [MA08, MBA10, HK13, PK15], where the transition
was found to be continuous. By using a suitable Weiss field, the Kondo lattice model
was probed for local s-wave superconductivity, which, as mentioned above, was reported
recently using DMFT with an NRG solver [BŽV+13]. After artificial superconducting
solutions at and away from half-filling were sorted out, no local superconductivity due
to correlation effects between the electrons was seen via VCA. Instead, robust d-wave
superconductivity was found for a large range of coupling strengths and electron fillings
away from half-filling. Its interplay with antiferromagnetism at weak coupling showed
qualitatively different behavior in the two different antiferromagnetic regions. Thereby a
full phase diagram of the Kondo lattice model was presented in this thesis via variational
cluster approximation including paramagnetic, antiferromagnetic and d-wave supercon-
ducting phases.

The VCA studies in this thesis have shown the capabilities of this quantum cluster method
to investigate phases with broken symmetry directly in the Kondo lattice model. This
opens different routes, which could be pursued in future studies. In the following I will
sketch three in my opinion promising continuations.

To follow up on the question of the nature of the local pairing mechanism identified in
[BŽV+13], future studies should include temporal fluctuations, too. Techniques like dy-
namical impurity approximation and variational cluster approximation with additional
bath sites are the next logical candidates that could help to bridge the gap from the per-
spective of quantum cluster techniques. In this way the present study could be compared
to a related technique which includes only temporal fluctuations (DIA), and one that
in addition to (short-range) spatial fluctuations also includes temporal fluctuations. As
a recent study using the dual fermion technique did not find local superconductivity in
the KLM [Ots15], it is also possible that the emergence of s-wave superconductivity in
DMFT+NRG is more due to the way superconductivity is included in the formalism pro-
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posed in [BŽV+13, Bod16]. Nevertheless, a systematic study of local superconductivity
with additional quantum cluster techniques might help to clarify this issue.

The antiferromagnetic phase off half-filling turned out to be divided into two regions with
different Fermi surfaces which are separated by a discontinuous transition. This discon-
tinuous transition was also obtained in studies using variational Monte Carlo techniques
[WO07, ABF13]. Numerical techniques, which include temporal fluctuations to bath sites
like dynamical cluster approximation [MA08, MBA10] or real space dynamical mean-field
theory [PK15] found a continuous Lifshitz transition between these two phases. To illu-
minate this discrepancy, it could be again useful to study the Kondo lattice model via
VCA with additional bath sites. However, coming back to superconductivity, within VMC
indications of d-wave superconducting correlations were found, too, but a stable supercon-
ducting phase only existed when spoiling antiferromagnetism, e.g. by adding frustration
[ABF13, AFB14]. In this thesis, the d-wave superconducting phase was robust and even
coexisted with antiferromagnetism at weak coupling. However, one has to keep in mind
that quantum cluster techniques like VCA often tend to overestimate d-wave supercon-
ductivity on the square lattice. Nevertheless, the discrepancy between both techniques
asks for further investigation. One possibility to clarify this would consist in doing a
proper finite-size scaling of the VCA data to see whether the d-wave superconductivity
survives this extrapolation or whether it is a finite-size effect. Unfortunately, due to the
large Hilbert space dimension and the kind of solver used to calculate the cluster Green
function the calculations are limited to small clusters. This renders a finite-size scaling
at the moment not possible. Calculating the Green function with other techniques like
DMRG as already proposed in subsection 6.1 could show a way out.

Finally, it should be pointed out that extensions of the Kondo lattice model might allow
to connect closer with experiments on heavy fermion systems. Especially if one wants to
address the question whether a local quantum critical point (involving a Kondo break-
down) can be found in the Kondo lattice model, this could be necessary. Adding terms
that lead to a destruction of Kondo singlets which then results in an (eventually) tunable
Kondo breakdown is at least one possibility to approach this question. Frustration in form
of additional long-range hopping terms is a promising route that has been used in the
past, see, e.g., [MBA10, AFB14]. Another approach, which is often done to investigate
d-wave superconductivity, consists in including additional (non-local) Heisenberg interac-
tions between the f-spins. This leads to variants of the so-called Heisenberg Kondo lattice
model; for numerical studies see, e.g., [XD08, AFB14, YGML14]. However, as these
non-local spin interactions are not easily compatible with standard variational cluster
approximation, as a cluster tiling cuts inter-cluster interaction terms, further develop-
ments on VCA, perhaps in the direction of spin VCA proposed by Filor and Pruschke
[FP10, FP14], would be necessary. Recently, Steglich and Wirth discussed the link be-
tween a Kondo-destroying (local) QCP and an orbital-selective Mott transition in the
heavy fermion system YbRh2Si2 [SW16]. Therefore, it might also be interesting to resort
to the periodic Anderson model and to compare with the results of the KLM. There,
the VCA was already successfully applied and s-wave superconductivity between c- and
f-electrons was found [MY15]. A comparison of this (different) type of superconductivity
with the superconductivity found in the KLM is also still an open issue.
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To conclude, there are many possible routes for future research directions using variational
cluster approaches. Both from a theoretical and an experimental point of view, the new
aspects that result from the investigation of unconventional phenomena in this thesis
motivate further investigations. Some of the presented perspectives involve an adaptation
of the model systems studied here, others require further technical developments. All of
them can build on the results of this thesis and represent possible exciting future studies.
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Calculation of the Green Function in
Continued Fraction Representation via

the Lanczos Algorithm A
Instead of using the Band Lanczos algorithm to evaluate the Green function G using
the Q-matrix notation, the standard Lanczos algorithm can be used to evaluate G in
a continued fraction representation. In the end one has to calculate the action of (ω +
H − E0)−1 on the excited state |φµ〉 = c†µ|Ω〉. The advantage of working in the Krylov
subspace can be seen when expanding the fraction in powers of H:

1

ω −H + E0

=
1

ω − E0

+
1

(ω − E0)2
H +

1

(ω − E0)3
H2 + . . . .

Applying this to a normalized starting vector |φ0〉 = |φµ〉/
√
〈φµ|φµ〉 thus gives vectors

of the Krylov space. Using the Lanczos algorithm with this starting vector leads to
coefficients {an}, {bn} and a tridiagonal representation of the Hamiltonian. After bn has
reached a value less than some threshold value εtol, the Lanczos recursion is stopped and
the Green function is calculated. To be more precise the diagonal element Gµµ(ω) =
〈φµ|φµ〉[(ω −H + E0)−1]00 is calculated as a continued fraction [Dag94]:

Gµµ(ω) =
b2

0

ω − a0 − b21

ω−a1−
b22

ω−a2−...

.

Off-diagonal entries of the Green function can be evaluated by constructing the combina-
tion of two creation/annihilation operators:

Gµν,e(ω) =
1

2

(
G+
µν,e(ω)−G′µµ,e(ω)−G′νν,e(ω)

)
,

with
G+
µν,e(ω) = 〈Ω|(cµ + cν)

1

ω −H + E0

(c†µ + c†ν)|Ω〉.

As long as small and intermediate clusters are considered, the computational cost for
calculating the Green function in the Lehmann representation within the Band Lanczos
algorithm is still acceptable. For large clusters the larger memory needs of the Band
Lanczos algorithm might be problematic and one might want to resort to the calculation
of G in a continued fraction representation via the Lanczos algorithm. In the latter case,
orthogonality leaks may show up in the spectral function and canceling these leaks by
brute-force Gram-Schmidt reorthogonalization or a selective reorthogonalization [Ruh00]
might become necessary. However, these reorthogonalization schemes also lead to larger
computation times, which is why orthogonality leaks, which are not too severe, are often
not corrected in practice [Sén12].
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Additional Spin Structure Factors for
Heisenberg Models B

First, additional results for the spin structure factor of the isotropic Heisenberg model are
shown using spin cluster perturbation theory. Then, the spectra for the anisotropic XXZ
chain are shown and briefly discussed. Afterwards the J1-J2 Heisenberg ladder is investi-
gated. The latter is interesting as on the one side it causes more inter-cluster interactions,
but on the other side the frustration in the model should reduce long-range correlations.

Isotropic Heisenberg chain B.1

In the following, additional results for the isotropic1D Heisenberg model are shown. For
the plots of the spectral function the k-space has been discretized equidistantly with
N = 200 k-points and a artificial broadening of η = 0.02 is used.

SWC boundary 
(m=0.05)

SWC boundary 
(m=0.1)

Figure B.1: Spin structure factor Szz(q, ω) using a 20-site cluster. The external magnetic field
h/J corresponds to magnetizations of m = 0.05 (left panel) and m = 0.1. For comparison, the
limits of the spin wave continua contributing to Szz of an infinite Heisenberg chain are shown as
obtained in reference [MTBB81].

Figure B.1 shows the spin structure factor Szz(q, ω) of the isotropic Heisenberg chain for
two different magnetizations.
The boundaries in figure B.1 follow the spin wave continua derived by Müller et al. in
reference [MTBB81]. For zero magnetic field only one spin wave continuum (SWC) exists
and is bounded by ε1L(q) = 2J sin q

2
cos
(
q
2
− πm

)
and ε1U(q) = 2J sin q

2
, where m denotes

the magnetization (here zero) and the wave numbers q have to fulfill 2πm ≤ q ≤ π.
The total spin of this excitations is S = Lcm + 1 and the z-component Sz = Lcm. At
zero magnetic field this is the dominant contribution to the spin structure factor, but
for finite magnetic field it becomes negligible in the limit Lc → ∞. For finite magnetic
field, a second spin wave continuum with total spin s = Lcm exists. It is limited by
ε2L(q) = 2J | sin q

2
cos
(
q
2

+ πm
)
| and ε2U(q) = ε1L(q) for 0 ≤ q ≤ π. When treating in-

creasingly larger spin chains, the contribution of the first spin wave continuum diminishes
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and it is the second spin wave continuum that dominates. These limits are shown for
comparison in figures B.1.

For higher values of the magnetization m deviations of the lowest excitations with consid-
erable weight and the lower boundary of SWC becomes apparent. The fact that the lower
boundary is not reached between 0 < q < q0 is a phenomenon which has been encountered
before in ED and is typical for finite-size chains [dCP62, MTBB81]. In fact as the first
SWC with higher excitations is negligible in the limit Lc → ∞, one would expect that
the spectrum lies with the boundaries of the second SWC when the cluster size becomes
large. For infinitely large clusters one expects the first SWC to become negligibly small.
Therefore the spectrum shifts towards the boundary of the second SWC when increasing
the cluster size.

XXZ Heisenberg Chain B.2

Adding an anisotropy in z-direction leads to the XXZ Heisenberg chain with ∆ 6= J .

= 0.99∆/J = 0.4∆/J

= 0.1∆/J = 0.01∆/J

Figure B.2: Spin structure factor Szz of the XXZ Heisenberg chain with different anisotropy
strengths (from top left to bottom right: ∆/J = 0.99, 0.4, 0.1, 0.01) using spin CPT with a
cluster of size Lc = 14.

Results for the spin structure factor Szz can be seen in figure B.2, where the XXZ Heisen-
berg chain with different anisotropies has been analyzed. Comparing these results with
the exact two-spinon spin structure factor of Caux et al. [CKSW12] it can be seen that the
qualitative features are again correctly reproduced. For small anisotropy, that is ∆ ≈ J ,
the spin structure factor is very similar to the one of the isotropic chain of the previous
subsection. In the other limit of ∆ ≈ 0 the so-called XY Heisenberg chain is obtained.
Considering both the reduction of the value of the highest excitations at q = π and the
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redistribution of weight when reducing ∆ is correctly reproduced. For small ∆ the weight
is located mostly at the higher branch, but it is redistributed to the lower branch for
larger anisotropy. In case of the nearly isotropic chain, most weight is found at the lower
branch around q = π. When increasing the cluster size it turns out that finite-size effects
are small and do not change the qualitative picture.
However, as for the isotropic Heisenberg chain the spin structure factors obtained with
spin CPT show some weight in the “forbidden” area with frequencies ω smaller than the
lower boundary of the spin-wave continua.

J1 − J2 Heisenberg Ladder B.3

Figure B.3 shows the spin structure factor Szz for the isotropic Heisenberg chain with
nearest (J1) and next-to-nearest (J2) spin-spin interactions. Thereby the interactions J1

and J2 compete with each other to induce magnetic order — the system is frustrated.
For the application of spin CPT two differences to the two model systems of the previous
subsections are important. First of all, when tiling the system into clusters at each end
two interaction lines are cut instead of one. The error that is introduced by treating these
interactions only within first order perturbation theory is therefore larger. On the other
side, frustration should reduce long-range correlations and the self-energy should be more
local. A cluster treatment should for this reason work better than before.

Recently, Levarélo and Roux analyzed the J1 − J2 chain using exact diagonalization and
variational calculations in the dimer basis [LR14]. The latter is motivated by the point
J2/J1 = 0.5, where the system is described by a fully dimerized ground state. This is the
so-called Majumdar-Ghosh point. In their study they derive the two spinon dispersion
relations and compare it with exact diagonalization (ED) results for finite chains. Figure
B.3 uses the same values J2/J1; therefore the spin structure factor of SCPT can be com-
pared to their results.

As in the previous subsections, the spin structure factor qualitatively reproduces the ED
results and allows for a smooth spin structure factor if the broadening is increased. In
the extreme cases of J2/J1 = 0 and J2/J1 = 4 spin CPT produces weight in the region
where the two spinon dispersion of [LR14] does not show any weight. However, close to
the Majumdar-Ghosh (MG) point where the system is described by a dimerized ground
state, the spin CPT with even cluster sizes shows good agreement with the results of
[LR14]. The weight in the “forbidden” region reduces when approaching this point.

Despite the deficiencies of SCPT for spin systems with weak frustration, the J1−J2 chain
can be treated well with SCPT around the MG point. An use of SCPT as a supplemental
tool for ED calculations in frustrated spin systems is promising. The analysis of spin
structure factors for two-dimensional frustrated spin systems with spin CPT are left for
future studies.
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J2/J1=0 J2/J1=0.25

J2/J1=0.5 J2/J1=0.529

J2/J1=0.6 J2/J1=4

Figure B.3: Spin structure factor Szz of the J1 − J2 chain for different interaction strengths
(from top left to bottom right: J2/J1 = 0.0, 0.25, 0.5, 0.529, 0.6, 4) using spin CPT with a cluster
of length L = 20.



Semi-Analytic Evaluation of the
Self-Energy Functional C

Here we show the contour deformations that are needed to calculate the sum over Matsub-
ara frequencies of the self-energy functional analytically. The reasoning and calculation
closely follows reference [Pot03a].
Starting point for the calculation is the second term of equation (3.2),

I = Tr ln

( −1

G0
−1(t)−Σ′

)
.

The non-interacting Green function is given by G0 = (ω + µ − t)−1 and the frequency
sum hence diverges as G(ω) ∝ 1/ω for large frequencies. In order to take care of this
divergence one has to introduce a factor eiω0+ , as∫

dω
eiω0+

ω
= ln(ω)eiω0+

+

∫
dωi0+ e

iω0+

ω2
.

Therefore

Tr ln

( −1

G0
−1(t)−Σ′

)
= T

∑
n

eiωn0+

tr ln

( −1

iωn + µ− t−Σ′(iωn)

)
,

where the trace Tr has been replaced by a sum over Matsubara frequencies iωn = Tπ(2n+
1) and a trace tr over quantum numbers such as spin, cluster and band indices. As the
trace is invariant under cyclic permutations one can use 1 = UU† to diagonalize t+Σ(ω):

t + Σ(ω) = U(ω)η(ω)U†(ω), η = diag(ηk).

Introducing the short-hand notation gk(ω) = (ω + µ− ηk(ω))−1 the expression reads

I = T
∑
k

∑
n

eiωn0+

tr ln(−gk(iωn)). (C.1)

In the following this sum will be rewritten as a contour integration in complex space.
The poles of the Green function G(ω) are located on the real axis whereas the Matsub-
ara frequencies lie on the imaginary axis, see figure C.1. Next, one uses the fact that
the Matsubara frequencies ωn are nothing but the poles of the Fermi-Dirac distribution
fFD(z) = (ez/T + 1)−1 and the residue theorem, which states that for a suitably chosen
function f(z) the contour integration of this function amounts to the sum of their residues:∮
C
f(z)dz = 2πi

∑
p Res(f(z, zp)). Instead of summing the expression in (C.1) over Mat-

subara frequencies one can just as well integrate over a function which possesses the suit-
able residues. Here, this amounts to choosing f(z) = −1/(2πi)fFD(z)tr ln(−gk(z))ez0

+

as

Res(f(z, ωn)) =
−1

2πi
lim
z→ωn

z − ωn
ez/T + 1

tr ln(−gk(z))ez0
+

, eωn/T = −1

=
−T
2πi

lim
z→ωn

(
ez0

+

ez/T
tr ln(−gk(z)) +

z − ωn
ez/T + 1

∂

∂z
ez0

+

tr ln(−gk(z))

)
=

T

2πi
tr ln(−gk(ωn))eωn0+

.
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From first to second line L’Hopital’s rule limx→x0 f(x)/g(x) = limx→x0 f
′/g(x) has been

used as both nominator and denominator go to zero as z → ωn. This means that equation
(C.1) can be cast in the form

I =
−1

2πi

∑
k

∮
dωeω0+

fFD(ω) ln(−gk(ω)), (C.2)

where the contour C1 includes the Matsubara frequencies as shown in figure C.1. In the
limit ω → ±∞ the factor eω0+ and the Fermi function fFD(ω) make the integral converge
as

eω0+

eω/T + 1
ln (−gk(ω))

ω→±∞−→ 0.

Im(z) Im(z)

Re(z) Re(z)

C1

C2

C3

Figure C.1: Contours C1 and C2 enclose all Matsubara frequencies ωn = iπT (2n+1) counter-
clockwise. As the integrand of equation (C.2) goes to zero as ω → ±∞ the contour can be further
deformed into C3. Poles of the Green function G(z) are drawn as squares on the real axis.

Using contour C3 the integral becomes

I = − 1

2πi
lim
δ→0

∑
k

{∫ ∞
−∞

dωe(ω+iδ)0+

fFD(ω + iδ) ln (−gk(ω + iδ))

+

∫ −∞
∞

dωe(ω−iδ)0+

fFD(ω − iδ) ln (−gk(ω − iδ))
}

= − 1

2πi

∑
k

∫ ∞
−∞

dωeω0+

fFD(ω)
[
ln
(
−gk(ω + i0+)

)
− ln

(
−gk(ω − i0+)

)]
= − 1

π

∑
k

∫ ∞
−∞

dωeω0+

fFD(ω)Im ln
(
−gk(ω + i0+)

)
= − 1

π

∑
k

∫ ∞
−∞

dωfFD(ω)Im ln
(
−gk(ω + i0+)

)
.

In the last step the convergence factor eω0+ has been dropped as the divergence of gk(ω)
encountered previously is no problem anymore.
Using −1/πIm (gk(ω + i0+)) ≥ 0, one can rewrite gk in a polar representation gk(ω +
i0+) = −r(ω)eiφ(ω), with φ(ω) ∈ (−π, π]. This is possible as gk has real poles at ωm and
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corresponding positive residues Rm gk(ω) =
∑

mRm/(ω − ωm) . The principal branch
of the logarithm then leads to Im ln (−gk(ω + i0+)) = φ(ω). As long as ω 6= ωm, i.e.
away from the poles of gk, it holds that Im (−gk(ω + i0+)) = 0+, which fixes the phase to
φ(ω) = π if −gk(ω) < 0 and to zero if gk(ω) > 0. Combined this leads to

Im ln
(
−gk(ω + i0+)

)
= πθ (gk(ω)) = πθ (1/gk(ω)) .

Right at the poles ωm the term Im (−gk(ω + i0+)) diverges, but the phase is still between
−π and π. This means that φ(ωm ± 0+) = ∓π/2 and the term remains finite. It can
be therefore ignored in the integration over real frequencies ω as the poles of gk(ω) are
isolated and I reads

−
∑
k

∫ ∞
−∞

dωfFD(ω)θ (ω + µ− ηk(ω)) .

The Fermi-Dirac distribution can be rewritten as fFD(ω) = d
dω

(
−T ln(e−ω/T + 1)

)
, hence

partial integration leads to

I = T
∑
k

ln(e−ω/T + 1)θ(ω + µ− ηk(ω))

∣∣∣∣∣
ω=∞

ω=−∞

−T
∑
k

∫ ∞
−∞

dω ln(e−ω/T + 1)
dθ(ω + µ− ηk(ω))

dω

= −T
∑
k

∫ ∞
−∞

dω ln(e−ω/T + 1)
dθ(ω + µ− ηk(ω))

dω
.

To evaluate the derivative of the theta-function one first of all notices that θ(ω + µ −
ηk(ω)) is constant between consecutive poles of gk(ω). Thus, dθ (gk(ω)) /dω is non-zero
only at zeros and poles of gk(ω). Rewriting the poles of gk as the zeros of 1/gk, this
expression can be evaluated as δ(gk(ω))g′k(ω) =

∑
z g
′
k(ωz)/|g′k(ωz)|δ(ω−ωz) for the zeros

and δ(1/gk(ω))(1/gk)
′(ω) =

∑
p(1/gk)

′(ωp)/|(1/gk)′(ω)|δ(ω − ωp) for the poles. Here,
the prime denotes the derivative with respect to ω and is not used to indicate cluster
quantities. Consequently it amounts to summing over zeros ωl and poles ωp

dθ(ω + µ− ηk(ω))

dω
=
∑
z

δ(ω − ωz)−
∑
p

δ(ω − ωp),

where it was used that zeros of gk are poles of G and hence have positive residues, whereas
poles of gk (and thus zeros of G) can be identified with the poles of the self-energy Σ and
have negative residues.
The diagonal elements of G have the same poles respectively zeros and accordingly the
sum over k can be replaced by a multiplication with the dimension of G, which in the
case of a L-site reference cluster with spin up and spin down electrons amounts to 2L:

I = −
∑
k,z

T ln
(
1 + eωz/T

)
+
∑
k,p

T ln
(
1 + e−ωp/T

)

= −2L


∑
z

T ln
(
1 + eωz/T

)
+
∑
p

T ln
(
1 + e−ωp/T

)
︸ ︷︷ ︸

PΣ

 . (C.3)
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The second term sums all poles of the self-energy and is abbreviated by PΣ. It should be
noted that the self-energy Σ was chosen to be t′-representable (a cluster self-energy). In the
first term the sum goes over zeros of gk which are the poles of G(ω) =

(
G0
−1 −Σ(ω)

)−1.
This reminds of the grand potential of a system which consists of quasi-particles with
energies given by exactly these poles but with unity weight.
Turning back to the self-energy functional as it is given in equation (3.2), the third term
still has to be transformed. As its structure is the same as the one of the second term,
the calculation proceeds identically and leads to

I3 = −2L
∑
z

T ln(1 + eω
′
z/T )− 2LPΣ.

Compared to (C.3) the first term includes a sum over ω′z, which in this case are the poles
of the cluster Green function G′(ω). PΣ is identical to the term derived for I as the
self-energy of the reference system is also used in the original system.
Putting all three terms together the self-energy functional reads

Ω[Σ(t′)] = −T ln
∑
m

e−(E′m−µN ′m)/T − 2L
∑
m

T ln
(
1 + e−ωm/T

)
+2L

∑
m

T ln
(

1 + e−ω
′
m/T
)
. (C.4)

When evaluating the self-energy functional at finite temperatures, one usually has to
express the energies with respect to the lowest cluster energy E ′0 in order to be able to
evaluate the exponentials. This resolves the problem of negative E ′m − µN ′m that would
lead to huge exponents. For example, the first term can be transformed as

−T
∑
m

e−(E′m−µN ′m)/T = E ′0 − T
∑
m

e−(E′m−µN ′m−E′0)/T

and
ln(1 + e−ω

′
m/T ) + ω′0/T = ln(eω

′
0/T + e−(ω′m−ω′0)/T ).

As ω′0 < 0 and eω′0/T � 1, if the temperature is sufficiently small, the self-energy functional
can be calculated numerically as

Ω[Σ(t′)] = E ′0 − T
∑
m

e−(E′m−µN ′m−E′0)/T − 2L
∑
m

T ln(eω
′
0/T + e−(ω′m−ω′0)/T )

+2L
∑
m

ln(eω
′
0/T + e−(ωm−ω′0)/T ).

At zero temperature this equation simplifies to

Ω = E ′0 − 2L
∑

m,ωm<0

ω′m + 2L
∑

m,ωm<0

ωm. (C.5)



Tight Binding Theory for Néel and
Collinear Order D

In order to understand the nature of the electron- and hole-pockets of the Fermi surface
at small inter-chain hopping t⊥ we will in the following consider simple tight binding
theory to investigate the effect of Néel and Stripe order. Although the Fermi surface
pockets are in our case supposed to be a result of many-body interactions, assuming one
of the possibly emerging orders as a starting point for tight binding calculations might
allow for deductions with respect to the scattering processes involved. Furthermore, at
least for doped two-dimensional Hubbard models, which are commonly used to model
cuprate superconductors, mean-field calculations are capable of showing closed regions of
the Fermi surface and reproducing electron- and hole-pockets [Ovc08].
Considering only the hopping terms of the model, one performs a Fourier transformation
and obtains the tight-binding dispersion

ε(k) = −2 (t cos(kx) + t⊥ cos(ky)) + t⊥ cos(kx) cos(ky).

As the formation of electron- and hole-pockets is an effect of Coulomb interaction U ,
which causes different types of scattering processes, we first of all consider two different
possible orders of the lattice: Néel-like order with a ordering vector of (π, π) and stripe
order with a vector (π, 0). For both orders the lattice is devided into two sublattices A
and B as shown in figure D.1.

A B A B

Figure D.1: Deviding the lattice into sublattices A and B for Néel-like (left) and stripe (right)
order.

The unit cell now contains two atoms, one of each sublattice and defines the tight binding
Hamiltonians HAF and Hstripe. To distinguish both sublattices, we call electron creation
and annihilation operators on sublattice A by a(†)

i and on B by b(†)
i .
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HAF =
∑
i

[
t
(
a†ibi + b†iai + a†ibi−2ex + b†iai+2ex

)
+t⊥

(
a†ibi−ex+ey + b†iai+ex+ey + a†ibi−ex−ey + b†iai+ex−ey

)
+
∑
c=a,b

t′
(
c†ici−ex+ey + c†ici−ex−ey + c†ici+ex+ey + c†ici+ex−ey

)]
.

One continues by performing a Fourier transformation to momentum space via

c
(†)
j =

1√
V

∑
k

e(−)irjkc
(†)
k

and using that 1
V

∑
j e

irj(k−q) = δ(k− q).

HAF =
∑
k

[
t
(
a†kbk[1 + e−2ikx ] + b†kak[1 + e2ikx ]

)
+t⊥

(
a†kbk[e−ikx+iky + e−ikx−iky ] + b†kak[eikx+iky + eikx−iky ]

)
+t′

∑
c=a,b

c†kck
(
e−ikx+iky + e−ikx−iky + eikx+iky + eikx−iky

)]

=

(
4 cos(kx) cos(ky)t

′ 2e−ikx(cos(kx)t+ cos(ky)t⊥)

2eikx(cos(kx)t+ cos(ky)t⊥) 4 cos(kx) cos(ky)t
′

)
.

Diagonalization of this tight binding Hamiltonian leads to the dispersion relation

E±(k) = 4 cos(kx) cos(ky)t
′ ± 2

√
(cos(kx)t+ cos(ky)t⊥)2 + 4(cos(kx) cos(ky)t′)2.

For the model used to model the crossover between one and two dimensions, the diago-
nal hopping is proportional to the hopping perpendicular to the one-dimensional chains.
Especially, for the lattice with small frustration t′ = −t⊥/4 this reduces the dispersion to

ε±(k) = − cos(kx) cos(ky)t⊥ ±
√

4(cos(kx)t+ cos(ky)t⊥)2 + (cos(kx) cos(ky)t⊥)2.

At zero energy the condition cos(kx)t = − cos(ky)t⊥ has to be fulfilled, which simply pro-
duces the non-interacting dispersion of the model, which was already shown in section 2.1.
In figure D.2, contour plots of ε±(k) away from zero energy show closed structures that
are located along the non-interacting dispersion of the original model. However, these
"pockets" have a different symmetry than those of the interacting Fermi surface close
to the metal insulator transition. The Fermi surface pockets showed a symmetry with
respect to kx = ±π/2, which is a main difference to the structures of the non-interacting
dispersion. As Néel order is obtained as a result of antiferromagnetic scattering processes,
it is not surprising that the splitting of the two branches of the dispersion happens at
points which are connected by the antiferromagnetic ordering vector (π, π). Due to the
frustration, which is added to the system by choosing t′ 6= 0, one is left with only four
points at (±π/2,±π/2) and (±π/2,∓π/2), which fulfill this condition. The fact that the



Section 179

Tight Binding dispersion, t? = 0.5, t0 = �t?/4, AF order

ky

✏ = 0
ky

✏� ✏+

�⇡ 0 ⇡
kx

�⇡

0

⇡

�⇡ 0 ⇡
kx

�⇡

0

⇡

Figure D.2: Contour plots of the tight binding dispersion of the Néel ordered lattice. The
line of zero energy is shown on the left, on the right equi-energy lines at -0.005,-0.01,0.1 and 0.2
show closed regions, which are reminiscent of the Fermi pockets of section 4.1.

symmetry of the Fermi surface pockets is not reproduced by assuming Néel order leads
to the proposal of collinear ordering, which might be caused by “one-dimensional” (e.g.
Umklapp) scattering with a (π, 0) order vector.

In this case the lattice is again split into two sublattices according to the right panel of
figure D.1 and one can use again different operators for each of the two sublattices. The
Hamiltonian reads now:

Hstripe =
∑
i

[
t
(
a†ibi + b†iai + a†ibi+2ex + b†iai−2ex

)
+t⊥

(
a†iai+ey + a†iai−ey + b†ibi+ey + b†ibi−ey

)
+t′
(
a†ibi+2ex+ey + a†ibi+2ex−ey + a†ibi+ey + a†ibi−ey

+ b†iai−2ex+ey + b†iai−2ex−ey + b†iai+ey + b†iai−ey

)]
.

Analogous to the previous calculation one Fourier transforms into momentum space and
obtains

Hstripe =
∑
k

[
t
(
a†kbk[1 + e2ikx ] + b†kak[1 + e−2ikx ]

)
+t⊥

(
a†kak[eiky + e−iky ] + b†kbk[eiky + e−iky ]

)
+t′
(
a†kbk{eiky + e−iky + e2ikx+iky + e2ikx−iky}

+b†kak{eiky + e−iky + e−2ikx+iky + e−2ikx−iky}
)]

=

(
2 cos(ky)t⊥ 2eikx + 4eikx cos(kx) cos(ky)t

′

2e−ikx + 4e−ikx cos(kx) cos(ky)t
′ 2 cos(ky)t⊥

)
.
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Finally, the two branches of the dispersion read:

E±(k) = 2 cos(ky)t⊥ ± 2
√

(cos2(kx)(t+ 2 cos(ky)t′)2 + cos2(ky)t⊥)2.

For the lattice with frustration t′ = −t⊥/4 this reduces to

ε±(k) = 2 cos(ky)t⊥ ± 2

√
cos2(kx)(t−

t⊥
2

cos(ky))2 + cos2(ky)t2⊥.

Tight Binding dispersion, t? = 0.5, t0 = �t?/4, stripe order

ky

✏ = 0
ky

✏� ✏+

�⇡ 0 ⇡
kx

�⇡

0

⇡

�⇡ 0 ⇡
kx

�⇡

0

⇡

Figure D.3: Contour plots of the tight binding dispersion of the stripe ordered lattice. The
line of zero energy is shown on the left, on the right equi-energy lines at -0.05,-0.1,0.05 and 0.1
show closed regions, which are symmetric around ±π/2.

In contrast to the Néel order, this time one obtains the one-dimensional dispersion at zero
energy. As shown in the contour plot in figure D.3, both branches of the dispersion form
structures away from zero energy, that have a mirror symmetry around kx = ±π/2 and
their geometry resembles the Fermi surface pockets close to the metal-insulator transition
for small inter-chain hoppings. Another difference to the "AF" dispersion consists in
the fact that both branches of the dispersion touch at zero energy, but ε+(k) ≥ 0 and
ε−(k) ≤ 0.



The Mott Transition within Dynamical
Impurity Approximation E

One of the easiest quantum cluster techniques that allow for the coexistence of metal
and insulator phases and therefore for a first order metal-insulator transition at finite
temperatures for the Hubbard model is the so-called dynamical impurity approximation
(DIA)[Pot03a]. It was introduced by Potthoff in 2003 and is also based on self-energy
functional theory. Actually, it can be viewed as variational cluster approximation with
a specific choice of the cluster: As the necessary reference system only has to have the
same interaction part as the original model, not only a tiling of the lattice into clusters,
but also coupling of the correlated sites to additional (non-interacting) bath sites is al-
lowed. The DIA now consists in choosing the minimal cluster that also contains bath
sites, namely one correlated site coupled to one bath site, and building up the lattice by
periodically repeating this cluster, see figure E.1. It can be shown [Pot11], that coupling
to infinitely many bath sites instead of only one the variational principle amounts to the
self-consistency condition of dynamical mean-field theory (DMFT). Although DMFT can
be formulated with a finite number of bath sites [CK94], too, it is not clear, that the
two techniques become the same. Nevertheless, the results obtained by Potthoff [Pot03a]
for the unfrustrated, isotropic Hubbard model are qualitatively comparable to those of
DMFT.

t
t⊥
t′

V

Figure E.1: Sketch of the lattice model (left panel) and the dynamical impurity approximation.
The reference clusters consist of a interacting cluster site and a non-interacting bath site that
are coupled with a hopping term of strength V .

Compared to a single-site cluster, which amounts to approximating the system with the
self-energy of the atomic problem, electrons on the correlated site can stay for a finite
time on the bath site and can hence avoid the payoff of U due to double occupancy on the
correlated site. Due to the hybridization strength V between correlated and bath sites,
which is treated as an additional variational parameter in the saddle point search, it is
now possible to achieve first order transitions.
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Strong fluctuations between correlated and bath site can lead to a certain double occu-
pancy on the correlated site. In contrast, at weak hybridization the electrons try to avoid
double occupancy due to the Coulomb repulsion on the correlated site. Around the criti-
cal interaction strength Uc it is possible to realize both solutions with different values of V .

The DIA is now used for the frustrated anisotropic Hubbard model to revisit the Mott
transition. Figure E.2 shows the self-energy functional as a function of hybridization
strength V . The chemical potential of the cluster µ′ is treated as a variational parameter
and the chemical potential µ is chosen such that half-filling is kept for each value of V .
For large values of U/t, there exists only one stationary point for V = 0 (a minimum with
respect to V ), but once one crosses the critical value Uc an additional solution at finite V
exists. Both solutions exist down to U = 0.
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Figure E.2: Left: Grand potential Ω per site as function of hybridization strength V for
different values of U around Uc at t⊥ = 0.2. Right: Hybridization strength V of the stationary
points as a function of U .

The n-vs.-µ curve shows a plateau for the solution with V = 0 which amounts to a
vanishing compressibility - the system is insulating. For the other solution V is finite and
it can be identified to be metallic since the electron density has a non-zero gradient as a
function of µ.
This can be further confirmed by calculating the (local) density of states (DOS) of the
correlated site via

DOS(ω) =
1

Nk

∑
k

A(k, ω)

for both solutions. The DOS of the insulating solution shows a gap both for U < Uc and
for U . Uc. Instead, for the metallic solution a finite density of states is found in the
middle of the two Hubbard bands around E = 0 for any U < Uc. For smaller U weight is
reshuffled from the outer bands into the region around E0. This picture of realizing the
Mott transition resembles the pre-formed gap scenario of dynamical mean-field theory.
There, the two Hubbard bands are already well separated close to the transition and the
weight of the quasiparticle peak at ω = 0 vanishes at Uc.

To know which solution is realized for U < Uc, the ground-state energy density E0 of
both solutions is calculated and compared. It turns out, that for all values of U the sta-
ble solution is the one with a minimum with respect to V , which means that there is a
transition from metal to insulator at Uc. Choosing the solution according to the hierarchy
of stationary points introduced by Potthoff in reference [Pot06b] also amounts to taking
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the metallic solution for U < Uc as the other stationary point is a trivial one and has to
be disregarded. As expected, in the limit U → 0 the energies of both solutions go to the
same non-interacting value, which amounts to the free electron gas.

Finally, the double occupancy d, which is often used like an order parameter to discrimi-
nate metal from insulator [RCK99, ON03], can be obtained as d = ∂Ω

∂U
, see figure E.3. At

the transition point, d of the metallic solution shows to be proportional to U and clearly
different from dINS, but in contrast to the expectation for a "typical" order parameter it is
not zero in the insulating phase. This behavior does not change qualitatively for different
values of inter-chain coupling t⊥.
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Figure E.3: Double occupancy d per site as function of U for both solutions: metal (V 6= 0)
and insulator (V = 0). However, the metallic solution is the one with lower E0 for U < Uc.

If one investigates the spectral function A(k, ω) of the metallic solution, the Fermi surface
(FS) is given by the energy cut at ω = 0. In reference [RA12] the formation of electron-
and hole-pockets in the metallic phase was attributed to emerge due to Umklapp scatter-
ing at small t⊥. The cluster used in DIA does not include any spatial fluctuations inside
the cluster that would allow such scattering processes. As a consequence no electron- and
hole-pockets are present in the Fermi surface. Only the use of clusters that have finite
spatial extend and which include a coupling to bath sites would enable a study of both
the order of the Mott transition and the Fermi surface topology inside the metallic phase.
This is done in sections 4.2 and 4.3.

When comparing to finite-temperature DIA studies on the Hubbard model [Pot03a, Poz04,
HEP16] a qualitative difference is visible at zero temperature. At finite temperatures, two
minima in the self-energy functional can be identified in a region Uc1 < U < Uc2 which
is then identified as a coexistence region of metal and insulator. This results in a phase
diagram comparable to the one known from dynamical mean-field theory.
However, the scenario presented here at zero temperature is different, as only one station-
ary point with V 6= 0 is obtained at U < Uc corresponding to the metallic solution. For
U > Uc the only stationary point exists at V = 0 and not at a non-zero value like at finite
temperatures. This solution corresponds to the insulator.
To illustrate this difference, figure E.4 shows the self-energy functional for the Hubbard
model at t⊥/t = 0.2 and an interaction strength U < Uc in the coexistence region at
temperatures 0 ≤ T < Tc. At finite temperature, three non-trivial stationary points are
found, which correspond to the insulating solution (Vmin,1), the metallic solution (Vmin,2)
and an unstable solution (Vmax). Extrapolating the position of the critical interaction
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strengths Uc1 , Uc, Uc2 of the finite-temperature results to zero temperature, a finite coex-
istence region between Uc1 and Uc = Uc2 is expected [Poz04, HEP16]. In contrast to this
expectation, at zero temperature only the trivial stationary point at V = 0 correspond-
ing to an insulating solution for all interaction strengths and one minimum at a finite
hybridization strength exist for U < Uc.
When investigating the self-energy functional for very small temperatures, the position
of the first minimum at Vmin,1 as well as the relative values Ω(V = 0) − Ω(Vmin,1) and
Ω(Vmax)−Ω(Vmin,1) can be plotted as a function of temperature, see right panel of figure
E.4. The extrapolation of the relative depth of the minimum of the SEF suggests that
the solution vanishes at zero temperature. Therefore only the metallic solution at Vmin,2

and the (trivial) insulating solution at V = 0 is left. As a consequence, no coexistence
region with two solutions with non-zero hybridization strengths can be found.
This qualitative difference of the structure of the self-energy functional at zero and at
finite temperature as well as its implications on the order of the Mott transition at zero
temperature needs further investigation, which is left for future studies.
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Figure E.4: Left panel: Self-energy functional as a function of hybridization strength for the
Hubbard model with t⊥/t = 0.2, U/t = 7.5 < Uc/t. The different non-trivial stationary points
are indicated with arrows. At zero temperature only one stable solution is left corresponding
to the metal. For T = 0.01 an insulating solution with small V 6= 0 exists in addition and for
T > Tc only the insulating solution remains. Right panel: Position of the minimum Vmin,1 and
relative value of the self-energy functional Ω(V = 0) − Ω(Vmin,1) and Ω(Vmax) − Ω(Vmin,1) as a
function of temperature. Extrapolation to zero temperature suggests an absence of the insulating
solution for T = 0.



Preliminary Studies of Local s-Wave
Pairing in the Kondo Lattice Model F

In this appendix some easy calculations at the single-site level are shown in order to better
understand the effect of adding a superconducting Weiss field. Then, a 2 × 2 cluster is
investigated with exact diagonalization to show the changes due to the inclusion of spatial
fluctuations.

An Isolated Kondo Site F.1

Looking at an isolated Kondo site, i.e. a single site coupled to an f-electron spin, the
Hilbert space has a size of 8. It contains the states

{| ⇑ 〉, | ⇑↓ 〉, | ⇑↑ 〉, | ⇑↑↓〉, | ⇓ 〉, | ⇓↓ 〉, | ⇓↑ 〉, | ⇓↑↓〉} ,

where the bold arrows denote the orientation of the f-spin and the thin arrows stand
for spin-up or spin-down electrons. As the kinetic term is gone, we are left with the
superconducting pair annihilation and creation operations and the Kondo exchange J
between electrons and localized spins:

HSK = J S · σ + ∆
(
c↑c↓ + c†↑c

†
↓

)
− µ (c†↑c↑ + c†↓c↓)

= J

(
1

2
(S+c†↓c↑ + S−c†↑c↓) + Sz(n↑ − n↓)

)
+ ∆

(
c↑c↓ + c†↓c

†
↑

)
− µ (n↑ + n↓)

Diagonalization of HSK now provides the ground state, which at µ = 0 = ∆ is the Kondo
singlet

|KS〉 =
1√
2

(| ⇓↑〉 − | ⇑↓〉) .

In the left panel of figure F.1 it can be seen that sufficiently strong ∆ leads to a change
in the ground state. The degenerate ground state amounts to an antisymmetrized com-
bination of an empty and a doubly occupied conduction site:

|GS∆1〉 =
1√
2

(| ⇑ 〉 − | ⇑↑↓〉)

|GS∆2〉 =
1√
2

(| ⇓ 〉 − | ⇓↑↓〉)

These ground states can be distinguished by looking at 〈S2〉. Within VCA it is difficult
to directly access 〈S〉, but 〈S · s〉 can be considered instead. In the case of the Kondo
singlet, where

〈S · s〉 = −3

4
,

this leads to
〈S2〉|KS〉 = 2〈S · s〉+ S2 + s2 = 2 ·

(
−3

4

)
+

3

4
+

3

4
= 0.
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For the degenerate ground states |GS∆1/2
〉 one gets

〈S · s〉|GS∆1/2
〉 = 0.

The necessary value ∆c to arrive at this degenerate ground state is plotted in the right
panel of figure F.1 as a function of chemical potential µ.
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, details see text.

This considerations are important for the Kondo lattice model in the atomic limit J/t ! 1,
where the physics is dominated by the local spin-spin coupling. For large J/t � 1 the hopping
can be regarded as a perturbation which means that we still expect a behavior of the system
similar to the situation in the previous subsection.

4.1.2 An isolated 2 ⇥ 2 cluster

The next step is to investigate the energy spectrum of a 2 ⇥ 2 cluster to include the e↵ect of
hopping and short-range correlations in the considerations of the previous subsection. Again, for
small values of the pairing field �, the system has a well defined ground state separated from
the rest of the spectrum (see figure ??). At � = 0 the second lowest eigenenergy E1 is 4-fold
degenerate and the third lowest energy level even 8-fold. This 8-fold degenerate level splits up
into two 4-fold degenerate levels if one turns on a small pairing �. To the lower of the split up
energy levels we refer as E2.
At half filling one expects to find a Kondo insulator, which means that all conduction electrons are
bound into singlets with the local magnetic moments. A superconducting ground state requires
free conduction electrons, which means that the amount of Kondo singlets has to be at least
reduced. Besides determination of the superconducting anomalous expectation value hc"c#i it is
hence essential to determine the expectation value of the Spin-spin correlator in order to gain
some insights into the ground state properties. Unfortunately within VCA one is quite limited in
the observables that are directly accessible, which are those whose correlator can be connected
to the electric Green function. This means that the spin-spin correlator between local moments
and conduction electrons is not directly accessible as the Green function does not include spin
operators of the local moments.
A way out exists nonetheless in the form of a functional derivative of the grand potential with

20

Figure F.1: Left panel: Energy spectrum of a single Kondo site as a function of pairing
strength ∆ for different chemical potentials µ. The Kondo exchange is set to J = 1. Right panel:
Critical pairing strength Dc at which the Kondo singlet |KS〉 is replaced by a degenerate ground
state |GS∆1/2

〉, details see text.

This considerations are important for the Kondo lattice model in the atomic limit J/t→
∞, where the physics is dominated by the local spin-spin coupling. For large J/t� 1 the
hopping can be regarded as a perturbation which means that we still expect a behavior
of the system similar to the situation in the previous subsection.
In any case, the trivial “superconductor” is only realized, if the pairing strength ∆ acquires
a sufficiently large value to replace the Kondo singlet as ground state, i.e. ∆ > 3J/4.

An Isolated 2× 2 Cluster F.2

The next step is to investigate the energy spectrum of a 2× 2 cluster to include the effect
of hopping and short-range correlations in the considerations of the previous subsection.
Again, for small values of the pairing field ∆, the system has a well defined ground state
separated from the rest of the spectrum (see figure F.2). At ∆ = 0 the second lowest
eigenenergy E1 is 4-fold degenerate and the third lowest energy level even 8-fold. This
8-fold degenerate level splits up into two 4-fold degenerate levels if one turns on a small
pairing ∆. The lower of the split up energy levels is referred to as E2.
At half-filling one expects to find a Kondo insulator, which means that all conduction
electrons are bound into singlets with the local magnetic moments. A superconducting
ground state requires free conduction electrons, which means that the amount of Kondo
singlets has to be at least reduced. Besides determination of the superconducting anoma-
lous expectation value 〈c↑c↓〉 it is hence essential to determine the expectation value of
the spin-spin correlator in order to gain some insights into the ground state properties.
Unfortunately, within VCA one is quite limited in the observables that are directly acces-
sible, which are those whose correlator can be connected to the electric Green function.
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This means that the spin-spin correlator between local moments and conduction electrons
is not directly accessible as the Green function does not include spin operators of the local
moments.
Nonetheless, a way out exists in the form of a functional derivative of the grand potential
with respect to the Kondo exchange J :

〈Si · si〉 =
∂Ω

∂J

This spin-spin correlator is calculated as a numerical derivative with step width ∆J =
0.01, see the lowest panel of figure F.2.
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Figure F.2: Lowest 15 energies (top), the superconducting expectation value (middle) and the
spin-spin correlator (bottom) of a 2× 2 cluster with open boundary conditions as a function of
pairing strength ∆ at J/t = 8.0. Most of the energies are degenerate. Due to multiple energy
level crossings, the derivatives are not shown for ∆ > 5.8 in the lower plot.

For small ∆ the system’s ground state is the Kondo singlet, which is characterized by a
spin-spin correlator of 〈S · σ〉 = −3/4 and zero superconducting expectation value.
However, compared to the single Kondo site case from section F the situation here is more
complicated as there are various energy level crossings. For example, at ∆/J = 2.97 the
levels E1 and E2 cross. In figure F.2 the lowest three energy levels are always labeled with
E0 − E2. A problem occurs at ∆/J ≈ 6 where many energy levels come down to cross
the former ground state energy E0. Therefore it is very difficult to follow the “Kondo
singlet” as one would need to include way more than 15 eigenstates in the Band Lanczos
algorithm in order to still follow the eigenstate for larger ∆. One of the side effects of this
problem shows up in a discontinuity in 〈∆〉 = ∂E0/∂∆ and 〈c↑c↓〉 = ∂E0/∂J as suddenly
another eigenstate has the lowest eigenenergy. Albeit this problem, the data is sufficient
to show that the former Kondo singlet eigenstate more and more deviates even before
being finally overtaken energetically by one of the “pure” superconducting eigenstates.
Looking at the conduction electron density n = ∂E0/∂µ reveals, that the Kondo singlet
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ground state is half-filled, whereas the superconducting eigenstates of E1 and E2 have
a density of n = 1.25 which means that they are from another quantum sector which
becomes energetically preferable at large ∆.
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