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CHAPTER 1

Introduction

Additive divisor problems have a rich history in analytic number theory. A clas-
sical example is the binary additive divisor problem, which asks for the asymptotic
evaluation of the sum

Daa(x,h):=> d(n)d(n+h), h>1,

n<lz

where d(n) is the usual divisor function. It is the presence of the shift parameter h,
which makes the problem rather difficult, since many standard methods from ana-
lytic number theory cannot be applied then. Nevertheless, a lot of effort has been
made to study the problem and it is well understood by now — for example, we
know that, for any ¢ > 0,

Dy o(z,h) = 2P p(logz) + (9(x§+5) for h< a3,

with P, a quadratic polynomial depending on h, a result we have cited from
Motohashi [36], where a detailed account of the history of this problem can be
found as well. A similar asymptotic formula holds in fact also for much larger h
(the best result in this respect is due to Meurman [33]).

One reason for the interest in this sum is its relation to the Riemann zeta
function ((s). As a way of studying the behaviour of {(s) in the critical strip, the

moments -
[k(T) ::/ C(;+’Lt>
1

have been subject to intense research. So far, asymptotic formulas have been estab-
lished only for the cases k = 1 and k = 2 (see e.g. [42 Chapter VII]). While the
asymptotic behaviour of the second moment [;(T") can be determined fairly easily,
the fourth moment I5(7") is much more complicated, and it is here that the shifted
convolution sums Dj o(z, h) come up and play an important role. For k£ > 3, the
problem of finding an asymptotic formula for I (T') — or even just getting non-trivial
upper bounds — essentially remains unsolved.

A natural generalization of the binary additive divisor problem is given by the
problem of determining the asymptotic behaviour of the sums

Dy o(x,h) : de Yde(n+h), h>1,

n<zx

2k
dt

where di(n) stands for the number of ways to write n as a product of k positive in-
tegers. In analogy to the case k = 2, the study of the shifted convolutions Dy, x(z, k)
might lead to a better understanding of the higher moments of the Riemann zeta
function (see [10} [22]). However, the evaluation of the sums Dy ¢(z, h) is by no
means an easy problem. In fact, as soon as k, ¢ > 3, the problems in estimating the
sums Dy, s(z, h) get overwhelmingly hard, and even for the easiest case

D33(E1 ng d3n+1)

n<x

no asymptotic formula is known.
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The situation changes, however, when k = 2 or ¢ = 2: The sums

Dif(z,h) ==Y dp(n)d(n+h) and Dj(x,h):= > de(n+h)d(n), h>1,
n<x n<lx
can indeed be treated by current methods, and they form the main topic of this
thesis. The best results for DQi(x,h) have been obtained by employing spectral
methods coming from the theory of automorphic forms. Here we want to show how
these methods can be applied to the sums Df (z,h) with k > 3 in a way that enables
us to obtain results considerably better than what has been achieved previously.
This will already become clear when we look at D3 (x, h). The first asymptotic
formula for this sum goes back to Hooley [21], who showed that, for h fixed,

D5 (z,h) = C3(h)xlog® x + O(a(log z loglog )?),

where C3(h) is some positive constant. We also want to mention Linnik [31] at this
point, who used the dispersion method to treat the sums D;f (z, h) for general k > 3,
and whose results were subsequently improved by other authors. We will have to
say more about this later — for the moment, however, we want to focus on D3 (z, h),
for which approaches specific to this case soon allowed to get considerably better
results.

The first result with a power saving in the error term seems to be given by
Deshouillers [11], who used spectral methods to attack a smoothed version of this
problem, much in the spirit of his earlier joint work with Iwaniec [12] on the binary
additive divisor problem. Naturally, Deshouillers’ result can also be used to treat
sums like D3i(x, h) with sharp cut-off, although he did not work out the details. As
Friedlander and Iwaniec [18] pointed out, a different approach was possible as a con-
sequence on their work on the ternary divisor function in arithmetic progressions.
Heath-Brown [20] improved their result, and showed that, for any € > 0,

D~ (z,1) = 2Ps 1 (log ) + o(x*+) (1.1)

where Pj 7 is a polynomial of degree 3. The methods used in [18] and [20] depend
ultimately on very deep results coming from algebraic geometry, and make no use
of spectral theory.

Later, Bykovskil and Vinogradov [8] returned to the spectral approach of
Deshouillers [11] based on the Kuznetsov formula and stated with an ex-
ponent % in the error term. Unfortunately, not more than a few brief hints were
given to support this claim, and our first result is a detailed proof of the following
asymptotic formula, which yields in addition a substantial range of uniformity in
the shift parameter h.

THEOREM 1.1. We have, for h < x5,
DF (x;h) = xPs ,(log ) + (’)(a:%“),

where P, is a cubic polynomial depending on h, and where the implied constants
depend only on €.

We also want to state the analogous result for the sum weighted by a smooth
function.

THEOREM 1.2. Let w: [1/2,1] — R be smooth and compactly supported. Then
we have, for h < :cg,

zn:w(z>d3(n)d(ni h) = 2P j, ,(log z) + C’)(x%+§+s)7

where Ps}, 4 15 a cubic polynomial depending on h and w, and where the implied
constants depend only on w and €.
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By 6 we denote here and in the following the bound in the Ramanman—Petersson

conjecture (see Sectlonlln Chapterlfor a precise definition). In any case, § = @ is

admissible and with this value we get in Theorem an error term which is < % ,
thus improving the result of Deshouillers [11].

Before going on to discuss the sums Dif (x,h) with k > 4, we want to state a
few related results which can be proven using the same methods as for the results
above. Let ¢ be a holomorphic cusp form of weight « for the modular group SLy(Z).
Let a(n) be its normalized Fourier coefficients, so that ¢(z) has the Fourier expan-
sion

Z n)n e (nz). (1.2)

The divisor function and the Fourier coefficients a(n) share a lot of similarities in
their behaviour, so one might expect to get analogous results as in Theorems
and [I.2] for the sums

A (z,h) =) ds(n)a(n+h) and Ay = ds(n+h)a(n), h>1,

n<zx n<z

and their smooth counterparts, with the difference that we cannot expect a main
term to appear anymore. Indeed Pitt [39] and Munshi [38] already obtained results
of this sort. Using our method, we will be able to partially improve their results by
showing the following theorem.

THEOREM 1.3. We have, for h < x5,
AE(z;h) < xg+5,
where the implied constants depend only on ¢ and €.
Not surprisingly, the analogous result for the smoothed sum holds as well.

THEOREM 1.4. Let w : [1/2,1] = R be smooth and compactly supported. Then
we have, for h < z3,

Zw(%)dg( n)a(n + h) < < gotste

where the implied constants depend only on w, ¢ and €.

Another interesting problem is the following sum, which can be seen as a dual
version to Dy (z,h),

N-—-1
N):= Y ds(n)d(N —n).

In contrast to the analogous sum with two binary divisor functions (see [36, The-
orem 2]), the main term in our case is a little bit more complicated. Our result is
the following theorem.

THEOREM 1.5. We have
Ds(N) = My(N) + O(N%+8),
where the main term M3(N) has the form

Ms(N)=N Y ¢ jueF"7%9(0,0,0,0),

0<4i,5,k,£<3
itjHk+e<3
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with certain constants ¢; ;e and

F(a, B,7,0) N“ZX1 > xe )X3<d>

d|N cld

where the arithmetic functions x1, x2 and x3 are defined by

1
xi(n) = H(l T p31=B _plovts _plo 1>’

pln

xa2(n) == H<1+ 2,3—5_1p—5_1>’ X3(n):]-_-[<1pl_17_6>'

pln pln

(1.3)

The implied constant depends only on €.

In particular, we have as leading term
D3(N) = (1 + 0(1))CoC(N)Nlog® N,

where the constant Cj is given by

WQH( p+1)>

and where C(N) is a multiplicative function defined on prime powers by
1\2p2+2p—1 l 1
c(p') 1—1+<1—>p T
) pP=2p+1 pt(p*+p-1)

Of course, we can also look at the same problem with the divisor function d(n)
replaced by the Fourier coefficients a(n),

N-1
)= Z dz(n)a(N —n),

and it should not come as a surprise that an analogue of Theorem [1.5 holds in this
situation as well.

THEOREM 1.6. We have
Ag(N) < N1te,
where the implied constant depends only on .

As indicated above, many of the methods used to treat D3jE (z, h) — in particular
those leading to power savings in the error term — do not extend to the sums
Dif (z, h) with k > 4. We already mentioned the work of Linnik [31], who established
an asymptotic formula for the first time by showing that, for & > 3,

Dif(z,1) = C(1)x log" = + O(az(log z)*"1(loglog x)k4),

where C(1) is some positive constant. This result was improved subsequently by
other authors, in particular by Motohashi [35], who gave an asymptotic formula
including all lower-order terms. Specifically, he proved that, for each k > 3, there
exists a constant ¢ such that

Dif(z,1) = 2Py 1 (logz) + O(z(logz) ! (loglog z)*),

where Py 1 is a polynomial of degree k. Fouvry and Tenenbaum [17] were able to
improve on this result and show that, for each k > 4, there exists a J; > 0 such
that

D (z,1) = 2P, 1(logz) + O(ace_‘s"' \ 10g$>. (1.4)
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In a recent preprint, Drappeau [14] refined their approach and used spectral meth-
ods to get a power saving in the error term. His result states that there exists
a 0 > 0, such that

D} (z,h) = 2Py j(log ) + (’)(ml_%) for h <’ (1.5)

where Py, j, is a polynomial of order k£ depending on h.

We also need to mention again the work of Bykovskil and Vinogradov [8], where
they state a result which is considerably better than . Unfortunately, their
proposed proof is incomplete and does not seem to yield the error terms claimed in
their papelﬂ Nevertheless, their initial approach turned out to be useful and led us,
together with new crucial ingredients, to a proof of the following theorem, which

improves on (|1.4]) and (1.5]).

THEOREM 1.7. We have, for k >4 and h < 218,
D (w,h) = wPyp(log ) + O (o =T+ 4 g 849),

where Py, is a polynomial of degree k depending on h, and where the implied
constants depend only on k and .

The analogous result for the sum weighted by a smooth function is as follows.

THEOREM 1.8. Let w : [1/2,1] = R be smooth and compactly supported. Then
15
we have, for k>4 and h < x19,

Z w(%)dk(n)d(n +h) =xPypw(logz) + O(mlfﬁ“ + x%+1%+5),

where Py p. @5 a polynomial of degree k depending on w and h, and where the
implied constants depend only on w, k and €.

At this point, we want to describe in broad terms the main ideas used to prove
these results. The most direct way to handle shifted convolutions like D,f(x, h) is
to open one of the divisor functions, and then try to evaluate the arising divisor
sums over arithmetic progressions in some way. This was the strategy followed
in many of the works mentioned above, for example in [18], 20] on D;)t(ac7 h), and
in [14} 17, 31}, 35] on D (z, h), and in all these works the choice was to open d(n).
In contrast to this, we have chosen to open di(n) — although this approach is more
difficult from a combinatorial point of view as we have to deal with more variables,
the main advantage is that it is much easier to handle the divisor functions d(n) over
arithmetic progressions than the generalized divisor functions di(n) with k > 3.

This way we arrive at sums of the form

> d(ay---ax +h), (1.6)

a1,...,ak
a;<A;

where we can assume that the variables a1,...,a; are supported in dyadic inter-
vals a; < A;. As long as some of the variables are supported in large intervals, we
can average over one of them by use of the Voronoi summation formula, and then
use the Kuznetsov formula to handle the sums of Kloosterman sums that appear at
this point. If k£ = 3, this strategy goes through and eventually leads to the asymp-
totic formula for DF (, h) stated in Theorem The results concerning A (z, h),
D3(N) and A3(N) are proven the same way and differ only in technical details.

"n particular, the step from (5.6) to (5.7) is not correct unless ny1 and no are coprime, and it is
unclear how their proposed treatment of S(ni,n2) should work for general ni and na. See also
the comments after Lemma@ for another problematic issue.
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However, if k > 4, this is not enough. The problem is that it can happen that
all the intervals A; are so small, that we cannot average over any of the variables a;
(for example, when all A; are of the size A; =< z#). In this case, we follow an idea
of Bykovskif and Vinogradov [8], and insert the expected main term ®q(b) for the
sum

manually into (1.6, so that the latter can be written as

Z Do(ag---ag) — Z (Polasg -~ ag) — Plaz -+ - ag)).
az,...,0k az;...,0k
aiXAi aiXAi
While the first sum will be part of the eventual main term, we need to find an
upper bound for the second sum. To do so, we use the Cauchy-Schwarz inequality
to bound it by

1
2 2
(3 wawr) (3 awm-omr)
b<Aqg--- Ay b<Ag--- Ay
which has the important effect that the variables as,...,a; are now merged into
one large variable b. After opening the square in the right factor, we are faced with
three different sums, the most difficult of them being

Yoo = > Z d(ab+ h)d(ab + h).

b<As---Ap ay,a1 <A1 bx<As--
The evaluation of the inner sum on the rlght hand side, a variation of the binary

additive divisor problem with linear factors in the arguments, lies at the heart of
our method. In a slightly more general form, we can state it as

D(xy,x2,71,72) 1= Zwl (M>w2 (M)d(rln + f1)d(ran + f2),

- 1 T2

where wy,ws : [1/2,1] — R are smooth and compactly supported weight functions,
where 71 and 79 are positive integers, and where f; and f5 are integers such that
r1fo —raf1 # 0.

The case r1 = rg = 1is of course nothing else than a smooth version of D2jE (z,h),
which has been studied extensively. A few results are also available when 71 and ro
are assumed to be coprime: Besides the implicit treatment in [5], there is the work
of Duke, Friedlander and Iwaniec [15], who showed that

D(x1,22,71,72) = (main term) + O((Tgl‘l + 7“1.732)%(7"17‘21‘1562)%+6). (1.7)

As they did not make use of spectral theory, the size of the error term is inferior
compared to what can be achieved for Dzi(ac7 h). More importantly, the range in
r1 and o where this formula is non-trivial is comparatively small and would not be
sufficient for our purposes. For the sake of completeness, we want to mention that
this result has been improved in the case 7, = 1 in a preprint by Aryan [1].
Correlations of a more general type have been investigated by Matthiesen [32],
but the methods used there do not apply to our case and do not give power savings
in the error term. Similar problems, where the divisor functions are replaced by
Fourier coefficients of automorphic forms, have been studied as well (see e.g. [2]).
In particular, Pitt [40, Theorem 1.4] was able to prove an asymptotic estimate for
an analogue of D(x1,xo,71,72) for r1, ro squarefree and f; = fo = —1, where the
divisor functions are replaced by Fourier coefficients of holomorphic cusp forms.
Unfortunately, his method relies on Jutila’s variant of the circle method, which
becomes ineffective when a main term is present, as is the case in our problem.
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We could not find any results in the literature covering the sum D(z1, 22,71, r2)
for general r1 and 79, and the following result seems to be new.

THEOREM 1.9. Set
ro == min{(ry,72>), (r2,71>)} and h:=rifa—rafi.
Then we have, for fi < x1'7%, fo < 2'7¢ and h # 0,

D(Z‘l, 1‘2,7‘1,7’2) = M(xla x2, TlaTQ) + O(TQ(T2$1)%+0+E>’

where the main term is given by

M(z1,x9,71,72) := /wl (ﬁfx-i- fl)w2 (ngm—q- f1>
1 2
- Py(log(r& + f1),log(r2€ + f2)) d€,

where Py(£1,&2) is a quadratic polynomial depending on 71, r2, f1 and fo. The
implied constants depend only on wi, we and on €.

We also want to state the following result for an analogue of D(r1, 72, 22, 22)
with sharp cut-off.

THEOREM 1.10. Let ro and h # 0 be defined as above. Assume that

1

fi < (ma)™5 fo < (rox)' ™ and (rorire, h)h < 7"0%(7“17“2)%1‘5_6.
Then we have

Z d(rin + fi)d(ran + f2) = vPy(logx) + 0((7”07"17’2, h)ero%w(rlm)%ﬂ?%H),

F<nlz

where Py(€) is a quadratic polynomial depending on 1, ro, fi and fo, and where
the implied constants depend only on €.

It seems likely that the dependance on ry in these results is not optimal, al-
though it is not immediately clear how an improvement might be achieved. Com-
pared to our result has a better error term, and more importantly, it is non-
trivial for much larger 1 and rg, which will be crucial when applying it to the
sums D,f(m, h). In the case ro = 1, our result is the same as [1, Theorem 0.3].

The proof of Theorems [I.9] and follows standard lines: We split one of the
divisor functions and use the Voronoi summation formula to deal with the divisor
sums in arithmetic progressions. The main difficulty lies in the handling of the sums
of Kloosterman sums entering the stage at this point. In a simplified form, we are
faced with sums roughly of the shape

Z S(1—ri7a,1;710) Flr10),
- ric
(c,r2)=1
where F' is some weight function, and where 73 is understood to be mod ¢. We could
bound the Kloosterman sums individually using Weil’'s bound, and the resulting
error terms in our theorems would be of a size comparable to . However, as we
already mentioned, this would not be sufficient for our purposes, and — once again
— our aim is to use spectral methods to get results beyond that.

If 1 and r5 are coprime, we can use the Kuznetsov formula with an appropriate
choice of cusps. Otherwise, it is not directly clear how the Kuznetsov formula might
be put into use here. We solve the problem by splitting the variable vy = tv into a
factor ¢, which is coprime to ry, and a factor v, which contains only the same prime
factors as 9. By twisted multiplicativity of Kloosterman sums, we have

S(1 -7, 1;mc) St te;v) S(ry — ry, v2ra; te)
ric o v tc

)
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where now all the inverses are understood to be modulo the respective modulus of
the Kloosterman sum. Following an idea of Blomer and Milicevi¢ [7], we separate
the variable ¢ occuring in the first factor by exploiting the orthogonality of Dirchlet
characters as follows,
S(tc,vtC,U) _ (p(lv) 3 x(te)S,(x) with Sy(x) = > X(y)—""—,
x mod v y (v)
(yv)=1
where the left sum runs over all Dirichlet characters mod v. This way we are led to
sums of Kloosterman sums twisted by Dirichlet characters, which we can treat by
spectral methods.

This thesis is organized as follows. In Chapter [2] we collect the tools needed in
the subsequent chapters and fix the necessary notation. The treatment of Dét (z,h)
and Agf (z,h) is carried out in Chapter [3| and afterwards, in Chapter |4 we deal
with D3(N) and A3(N). In Chapter we look at D,f(x, h) for k > 4. We have put
the treatment of D(x1,x2,71,72) in a separate chapter, Chapter @

Last but not least, we want to mention that the contents of Chapters [3] and []
have been published in [44], that the content of Chapter |[5| has been made available
online in [45], and that the content of Chapter [6] has been made available online
in [43].

Acknowledgements. 1T would like to express my gratitude to my supervisor
Prof. Valentin Blomer, who was always available when I needed his advice and
whose continuous support and scientific guidance have been of tremendous help
while preparing this thesis. My thanks also go to Prof. Jérg Briidern, who accom-
panied me as co-supervisor. Furthermore, I would like to thank the Volkswagen
Foundation for the financial support.




CHAPTER 2

Preliminaries

In this chapter, we want to go through the main tools needed to prove our
results and fix the necessary notation.

In the following, £ always stands for some positive real number, which can be
chosen arbitrarily small. However, it need not be the same on every occurrence,
even if it appears in the same equation. The letter p is reserved for prime numbers.
When we write A < B, this means A < B < A. Given a function f : R — C, we
will occasionally write

suppf =< X
to mean that there exist constants ¢1,ce > 0, such that supp f C [¢1 X, co X]. The
expression (a,b) denotes the greatest common divisor of @ and b. The summation

D)= >0 ()
a(c) a mod ¢

means that the variable a runs over some residue system mod c¢. Analogously, we
will frequently write n = h (c) instead of n = h mod c. As usual, e(q) := €2™% and

S(mynie) =y e(ma:”“> and ¢ (n) = Y e(m)

a(c) a@ 1
(a,0)=1 (axg)=1

which are the usual notations for Kloosterman sums and Ramanujan sums (here
@ indicates a solution to aa = 1 mod c).
1. The Voronoi summation formula and Bessel functions

Using the well-known Voronoi formula for the divisor function (see [24, Chap-
ter 4.5] or [25] Theorem 1.6]) and the identity

Z Z Z bh Z bn
n=h (c) dle b(d)
(b,d)=1

it is not hard to show the following summation formula for the divisor function in
arithmetic progressions:

THEOREM 2.1. Let h and ¢ > 1 be integers. Let f : (0,00) — R be smooth and
compactly supported. Then

> dn /Ahc

n=h (c)

25> dw B [y (V) pi

de n=1
+ ;Zld S0 o (45 ) 6 de



10 2. PRELIMINARIES
with

Ane(€) =) chTh)(logf + 2y — 2logd). (2.1)

d|c

If we define the differential operator

As(§) = <log§ + 2y + 28>

we can rewrite Ap o(£) as

Mel€) = 256 Y0 A,

d|c

~—

Writing Aj,_.(§) this way can be particularly useful when doing explicit calculations,
as the expression on the right hand side is now multiplicative in c.

An analogue of Theorem [2.1]for the Fourier coefficients a(n) defined in can
be obtained in the same way as above by using the corresponding Voronoi formula
(see [25], Theorem 1.6]):

THEOREM 2.2. Let h and ¢ > 1 be integers. Let f : (0,00) — R be smooth and
compactly supported. Then

5 2T > S(h,n;d) [ Vné
Y almfn) = (0FE S S an T [T () re de
n=h (c) dlc n=1
At this point, we also want to recall the bounds
din) <« n® and a(n) K< n®,

the latter following from the Ramanujan-Petersson conjecture proven by Deligne.

We want to sum up some well-known facts concerning the Bessel functions
J (), Y, (&), v € Z, and Ky(§) (see e.g. [23, Appendix B.4]). Regarding Ky (&), it
is known that, for £ > 1,

1
K§(e) < EVE for p >0,

and that, for £ < 1,

1
Ky(§) < |logg&| and Ké“)(f) < & for p>1.

Regarding the other two Bessel functions, we know that, for £ > 1,

1
T, Y(€) <« — for v>0, >0,
Ve

For £ < 1, we can bound J,(§) and its derivatives by
JW () <& H for v >0, pu>0,
while we have the following bounds for Y, (),

1
Yo(6) < |log€| and Y3 (€) Sg for pzl,

and the following for Y, (),

v (¢) < for v>1,p>0.

g

From the recurrence relations

(&B,(€)) =€'By—1(§) and B,_1(£) — By11(€) = 2B,(€), (2.3)



2. THE HECKE CONGRUENCE SUBGROUP AND KLOOSTERMAN SUMS 11

which are true for B, () = J,(§) and B, (&) =Y, (§), we get
h 720 v v h
[ao(m ) s0ae= () [erm (V) @ae e
c 47t/ h ¢
This identity is particularly useful when estimating the Bessel transforms occurring

in Theorems 2.1)and 2.2] Furthermore, the Bessel functions J, (€) and Y, (€) oscillate
for large values, and to make use of this behaviour we have the following lemma.

LEMMA 2.3. For any v > 0, there are smooth functions vy,vy : (0,00) = C

such that
ey =2me(o £)(£). -

i =2me(e(£)or(£)). »

where the implied constants depend on v and p.

PrOOF. We start with the integral representations

o) 2 0o 9
JO(E) = l/ Sin(m + 7T§> %75 and YQ(E) = —%/ COS(:I: + 71'5) dj7
0 0

xT

which can be found in [19] 3.871]. Here we will only look at Y, (), as the proof
for J,(§) is almost identical. As in [12], Lemma 4], we use a substitution

2
y=\2/f—25/57 x=ﬁg<y+\/y2+i> ,

so that we can write the integral above as

Yo(g):f%[ cos<2ﬂ'<y2+2€r>)<y2+i>_2dy.

Now writing the cosine function out as a sum of exponential functions, we get (2.6))
for Yy with

2 [ e(y?
wi=-2 [ L ay
TJo Vyr+E
The estimate (2.7)) can be shown by splitting the integral at 1 and repeatedly using
partial integration on the part which goes to co. The statements for Y, (§) follow

from (2.3). d

2. The Hecke congruence subgroup and Kloosterman sums

Here and in the following sections we will go through some results from the
theory of automorphic forms. For a general description of the spectral theory of au-
tomorphic forms, we refer to [23] and [24] Chapters 14-16]. A very nice introduction
to Maaf} forms of higher weight with arbitrary nebentypus can be found in [16].
We also want to cite [5] as a reference, where we borrow parts of the notation.

Let ¢ be some positive integer, let k € {0,1}, and let x be a Dirichlet character
mod qo, with go | ¢, such that

X(-1) = (-1~
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Let T' := Tg(q) be the Hecke congruence subgroup of level g. The character x
naturally extends to I' by setting

x(7) := x(d) for (CCL Z)GF-

Every cusp a of I is equivalent to some % with (u,w) = 1 and w | ¢. It is called

singular if
x(v)=1 forallyeTly,

where I', is the stabilizer of a.
For any cusp a of T', we can choose o4 € SLy(R) such that

gaoo=a and 04 T304 = lee.
Given two singular cusps a, b, we define, for n,m € Z, the Kloosterman sum
«@ 1)
sutmon= X (oa(? ool 402)
s v 0 7Y
mod YZ

where the sum runs over all § mod vZ, for which there exist «, 8 such that

(: g) €04 Top.

Note that this definition depends on the chosen scaling matrices o, and op.
As an example, for a = b = co and the choice oo, = 1, the sum is non-empty
exactly when ¢ | ¢ and in this case it reduces to the usual twisted Kloosterman sum

ma + na
Sococ(m,n;c) = Sy(m,n;c) = Z X(a)e<c).
a(c)
(a,c)=1
A well-known result by Weil says that, for any prime p, this sum can be bound by
Sy (m,n;p) < 2(m,n,p)p?,

which, in case x is the principal character, leads to the bound

1
c2.

Nl

S(m,n;c) <d(c)(m,n,c)

However, for general y we have to account for its conductor as well, and in this
case the following bound holds (see [28], Theorem 9.2]),
b,

SX(man;C) < (man7c)%qoéc

Another important example is given for ¢ having the form ¢ = rs with (r,s) =1
and ¢qg | 7. Consider the two singular cusps co and %, together with the choices

() e ()

Now the sum S_,1(m,n; ) is non-empty exactly when v may be written as
v=+rsc, with ceZ\{0}, (c,r)=1,

and in this case we have

S m1i7) = (0 RS (. 5.
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3. Automorphic forms and their Fourier expansions

By Sk(q,x) we denote the finite-dimensional Hilbert space of holomorphic
cusp forms of weight ¥ = k mod 2 with respect to I'g(¢) and with nebentypus x.
Let 0x(q, x) be its dimension. For each k, we choose an orthonormal Hecke eigen-
basis fjr, 1 < j < 0k(q,x). Then the Fourier expansion of f; around a singular
cusp a (with associated scaling matrix o) is given by

i(0a,2) T fx(0az) = Y Wsk(n, a)(dmn) Fe(nz),

n=1

where we have set
. a b
i(y,2) :==cz+d for ~= (c d>'

Next, let £2(q, x) be the Hilbert space of Maafl forms of weight x with respect
to I'g(g) and with nebentypus x, and let £2(q, x) C £2(g, x) be its subspace of Maaf
cusp forms. Let u;, j > 1, run over an orthonormal Hecke eigenbasis of L3(q, x) with

corresponding real eigenvalues A; < A2 < ...; we can assume each u; to be either
even or odd. We set t;% = \; — i, where we choose the sign of ¢; so that it; > 0

if \j < %, and t; > 0if A\; > %. Then the Fourier expansions of these functions

around a singular cusp a is given by

300 2) " us(002) = 3 0y (m @)W 5 (dlnly)e(na),

n#0
where
i( z)'*icZer for _ (b
]77 7|CZ+d| ,‘Y* c d

The Selberg eigenvalue conjecture says that A\; > i, which would imply that all ¢;
are real and non-negative. While for x = 1 this is known to be true, it is still an
open question for £ = 0. The eigenvalues with 0 < A\; < i, together with the corre-
sponding values ¢;, are called exceptional, and lower bounds for the exceptional A;
imply upper bounds for the corresponding it;. Let 6 € [0, 00) be such that it; < 6
for all exceptional ¢; uniformly for all levels ¢ and any nebentypus; by the work of
Kim and Sarnak [27], we know that we can choose

_ 7
C 64
The orthogonal complement to £3(q,x) in £%(q,x) is the Eisenstein spec-

trum &(q, x), plus possibly the space of constant functions if x is trivial. It can
be described explicitly by means of the Eisenstein series

E.(z;8) := Z XMi(oe "y, 2) " Im (o y2)°,
yel AT

0 (2.8)

where ¢ is a singular cusp. Although these series converge only for Re(s) > 1, the
functions E.(z;s) can be continued meromorphically to the whole complex plane.
For s on the line Re(s) = %, their Fourier expansions around a singular cusp a are
given by

1 . .
5(0a:2) " Eq <0a2; 2" “) = cea (YT + cea(t)y?
+ Z Pet(n, )W = i (4rnfy)e(nz),

n#0
where ¢t € R.
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Note that by the choice of our basis, we have that
1ps(~n,00)] = [t;[¥ps(n,00)| for n > 1.

Furthermore, since all Eisenstein series are even, the same is true for their Fourier
coefficients, namely

et (=1, 00)| = [t]"|pee(n, 00)|  for n>1.

4. The Kuznetsov formula

With the whole notation set up, we can now formulate the famous Kuznetsov
formula, which in our case reads as follows.

THEOREM 2.4. Let f : (0,00) — C be smooth and compactly supported, let a, b
be singular cusps, and let m, n be positive integers. Then

Solmoniy) (VR S
» e (1" )—;pj<m,a>pj<n,b)coshwj)f@j)

£ Y o [ wmtm et G o

¢ sing.

+ Y (k= 1)1 k(m, )t k(n, b)v/mnf (k),
k=k (2), k>k
1<5<0x(q,x)

and

Su m,—n; mn > . mn «
32 Sy (4 ) = Sty () S )

1 = mn N
p> ELWW(m’ per(=n, b)cosh\/;t)f(t) dt,

¢ sing.

where v runs over all positive real numbers for which Sqp(m,n;7y) is non-empty,
and where the Bessel transforms are defined by

sy 2mit” e kg dg
F) = sy | G2© = (COM sl
F(t) = 8" cosh(m " K &
ft) =8 h( t)/o Kainl€)F6)

a8
e
PrOOF. For a = b = oo, the first formula was proven in [41], the second

formula in [3, Proposition 2]. The extension to our situation with general cusps is
straightforward. O

F(k) = 4t /0 T I (©F©)

For a = b = oo, the sum of Kloosterman sums in the theorem above is just

Zsmm,im)f@ﬂ;m): > Sx(m,in;c)f<4ﬂ.\/7;%)7 (2.9)

Y v c=0(q) ¢
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while in the case ¢ = rs with (r,s) =1 and ¢o | » mentioned above, we have

:e<i:8> Z X(C)S(m,\/:;:z;sc)f<4ﬂ\\/fz). (2.10)
(e,r)=1

To get some first estimates for the Bessel transforms appearing above, we refer
to [6l Lemma 2.1], where the case k = 0 is covered. The proofs carry over to the
case k = 1 with minimal changes.

LEMMA 2.5. Let f : (0,00) — C be a smooth and compactly supported function
such that

1
suppf =X and fO(¢) < v for v >0,
for positive X and Y with X > Y. Then

f(it), f(it) < %Y;t for 0<t< i, (2.11)
fey o 1+ |logY]|
(1 n t)” R f(t), f(t) < 1_’_7}/ fOT’ t>0, (212)
F o X\? X
(1f_|(_tz)n ) f(t)v flt) < (Y) (tlg + t‘3> for t> max(X, 1)' (2'13)

For certain oscillating functions, we can do better. Assume w : (0,00) — C to
be a smooth and compactly supported function such that

1
suppw =< X and w®(¢) < v for v >0,

and define, for a > 0,

7€) = e (g5 )w(©).

Then the following two lemmas give bounds for the Bessel transforms of f depending
on the sizes of X and a.

LEMMA 2.6. Assume that

X<l and aX > 1.
Then, for any v,u >0,

f(it), f(it) <« X2 (Xu + (aX)”) for 0<t< i, (2.14)
(1‘]:(_2)5 ) f(ﬂ) f(t) < C(j.; <at)(> fO’f’ t> 0. (215)

PRrOOF. We will only look at the case k = 0, since the proofs in the case Kk = 1
can be done very similarly.

We begin with . Using the Taylor series of the J,-Bessel function we can
write the Bessel transform f (it) as

o S DL B Q o
=2 32 G [ ey Jotetmme s 1o
with

A = ~ <r<m S (g) R @)
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For 0 <t < %, one can check that we have the bound
oY X72t7u
—_— t —_—.
agyg(& ;m) K m—1)!

By splitting the sum in (2.16) at m = £, and using partial integration for the finite
part while estimating trivially the rest, we get that

- 1
it) < X2 X+ .
flt) <« ( +(o¢X)V>
The estimate for f(it) follows in exactly the same way by using the corresponding
Taylor series for Ko;; ().
For the proof of (2.15)), we follow |26, Lemma 3]. We begin with the following
identity (see [19) 8.411.11]),

Jair(n) = J2t(n) = 3 /OO cos(n cosh ¢) cos(2t() d¢, (2.17)

sinh(7rt) T J oo

which gives

f) = [ [eostneoshic)cos(2ipsio) “Lac = ~(1+ +17),

I* = /_O; /e (n(o‘i;fhg» w;") cos(2¢¢) dnd.

To bound I* we use partial integration u times on the integral over n and get

with

&€

It .
< (aX)

The treatment of I~ is a little trickier, since the factor

v(¢) :== a — cosh ¢

occuring in the exponent may vanish, so that we have to treat the integral differently
depending on whether «(() is near 0 or not. Out of technical reasons, it is easier to
use smooth weight functions to split the integral. Set

1
7y = arcosh(aw — A) and Zs :=arcosh(a+ A), with A:= <

Let u; : R — [0,00), ¢ = 1,2, be suitable weight functions such that

1
up(§) =1 for [§ < §Z1 and suppuy C [-Z1, Z1],
uz(€) =1 for |&| > 227, and supp ug C [—00, —Z3] U [Z3, 0],
and define

uz(€) =1 —u1(§) — u2(§).
Note that for all i = 1,2, 3,

ugy) ¢ <«1l for v>0.

Then we have to consider the integrals

— = [ [uw(Oe(n T2 ) cos(26¢) dndc, 2.18
1= [ e ) 0 coscanc (2.18)

and using partial integration p times over 1 we get

)

o «—2 @
Lor2 a(XA)H  (aX)w’



4. THE KUZNETSOV FORMULA 17
whereas bounding I3 directly gives
A
I, < —.
@

This already proves for v = 0. The result for v > 1 can be shown the
same way by partially integrating v times over { before estimating the integrals
absolutely.

The estimate for f (t) can be shown analogously by using the integral represen-

tation -
ﬁ/{) cos(n sinh ¢) cos(2t¢) d¢

Kaun(n) = cosh

(see [19] 8.432.4]). Finally, the proof for f(k) also goes along the same lines — in
this case we use the identity

1 [ .
Tl =+ [ cos(i¢ ~ msin€) dc
0
which can be found, for instance, in [19] 8.411.1]. O
LEMMA 2.7. Assume that

€

X
X>1 and |Ja-1|< —.

X
Then, for any v > 0,
fit), f(it) < 1 for 0<t< i, (2.19)
O xe (x3\"
mﬁ(t) < X3 ( . ) for t>0, (2.20)
fit) < § (f)y for t>0. (2.21)

PRrROOF. We will again only look at the case x = 0, since the proofs in the
case k = 1 can be done along the same lines.

The first bound follows directly from . The proof of the other
bounds follows the same path as in Lemma [2.6] so we only want to point out some
differences. In the case of f (t), we again use the identity . For I'™ we get here

the bound .

+ _—

I < X

It is again necessary to split I, and in order to do so, we choose a suitable weight
function wu;(€) which satisfies

w(@) =1 for [¢[>22, w(&)=0 for [¢<Z

and ) )

(6 < 7 =1z for v >0,
where

XE
A= X and Z :=arcosh(24 + «).
Set uz(€) :=1—uq(§). Then
I =1 +1I;

in the same way as in (2.18)), and we get

3 1 Xxc X©

I <

— <« 2 and I; < A: .
(XA)N+XM<<X% and I AT <
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This gives (2.20) for v = 0. By partially integrating over (, we get the result for
higher v. Finally, the results for f(¢) and f(k) can be deduced similarly by using
the appropriate integral representations for the occuring Bessel functions. O

5. The large sieve inequalities and estimates for Fourier coefficients

Another important tool are the large sieve inequalities for Fourier coefficients of
cusp forms and Eisenstein series, which were proven by Deshouillers and Iwaniec [13]
with respect to Hecke congruence subgroups. Their results can be extended to the
more general setting needed here, the details of which have luckily been worked out
by Drappeau [14].

Let a be singular cusp of I' written in the form a = 2 with (u,w) = 1. For a
sequence a, of complex numbers we set

1+ t;)*F3s
sy = CEBDE S o,

\/cosh(mt;) N<n<2N

1+ |th*2
( |h‘ Z anpet(En, a)vn,
\/cos mf N<n<2N

SEOWN) =Ek-11 Y antjn(n,a)vn.

N<n<2N

N\

=% L(N) =

Then the following bounds are known as the large sieve inequalities.

THEOREM 2.8. LetT > 1, N > %, and a as above. Let a, be a sequence of

complex numbers. Then

2 N1+s
> \Efi(N)] < <T2 a0t (w, L) ) >l
\t'\<T w q N<n<2N
@) 2, (. G\ N 2
Z th:l: dt<< T +q02< 75) q Z |an| )
¢ sing. N<n<2N
N1+5
) \ES,’J-(N)\ <(Prat(d)TE) X bl
k<T, k=x (2) q N<n<2N

1<5 <0k (g,x)

where the implied constants depend only on €.

Proor. With the appropriate changes, these bounds can be deduced essen-
tially in the same way as it is done in [13] Section 5]. We refer to [14] for details. O

When there is no averaging over n, the following lemma gives useful bounds,
especially when ¢ or T is large.

LEMMA 2.9. LetT > 1, n > 1, and a as above. Then

¢ sing.

L Jt])* c P g\ n2

S UL o ) < 72 4 (g (.o (. )™

=T (mt;) w/ g
1+|t‘ iK 2 2 11 q nz
tn,q)*ndt < T T)(q, 22(,f)f,

Z /T cosh(mt) |c.e(£n, a)["ndt < + (gnT)*(q,1)? qo> (w w/ q
ns

q

>o k=Dl a)f*n < 72+ (@) (g,m) oo (w, )
E<T, k=k (2) w
1<5<0k(g,x)

where the implied constants depend only on €.
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PROOF. For the full modular group and trivial nebentypus, a proof for the first
two bounds can be found for example in [37, Lemma 2.4]. Using an appropriate
formula as starting point (e.g. [16l, Proposition 5.2]), the proof carries over easily
to our case. Except for the same kind of modifications, the proof of the last bound
is a simpler variant of [13] Proposition 4]. O

For n large, the following bounds are often better.

LEMMA 2.10. LetT >1 and n > 1. Then

Z A+ )™ £~ |p;(£n, 00)|?n < (qnT)*T*n? (2.22)
S cosh(rt;) "7 ’ '
1+ t :l:IQ -
> / . h' Lt [pea(n, 00)Pndt < (qnT)°T, (2.23)
¢ sing.
> (k= Dlhn(n, 00)*n < (qnT)°T?, (2.24)
kE<T, k=k (2)

1<5<0x(q,x)
where the implied constants depend only on €.

PROOF. The bounds (2.22) and (2.24]) can be proven along the lines of [34
Proposition 2.3]. For (2.23)) we refer to [7, Lemma 1]. O

Finally, in order to handle the exceptional eigenvalues, which occur in the
case k = 0, the following result will turn out to be useful.

LEMMA 2.11. Let X > 1, n > 1, and a as above. Assume that

X > Xo with Xo:=

(4,m)%qo0
Then

N|=

> mx% < (gnX)* (£>4a<1+(% Wil (o Z))”qz>

t; exc

where the implied constants only depend on €.

PRrROOF. We have that

(£n,a X \* (£n, a)*n it
Z |p; ( )|) X4t (XO) Z p;( )l (1+X0)4 tj
. t; exc.

e cosh(mt; cosh(mt;)

Now we use the fact that, for Y > 1,

lpj (En, @) P gy, L oagq\nfY
WA 0 77 Tyt 1 Y)¢ , ( , f) ,
Y Py Y @) @ aot (w1

t; exc.

which can be shown the same way as in [24] chapter 16.5], and the result follows. O






CHAPTER 3

Proof of Theorems [1.1], 1.2}, [1.3]| and

In this chapter we will look at the sums Di(x,h) and AE(x,h), and prove
Theorems [1.1] . . n 1.3|and |1.4] - Since our method applies to Di(aj h) and A3 (z,h)
in the same way, it will pose no further difficulty to treat both cases s1multaneously
With this in mind, we let a(n) be a placeholder for d(n) or a(n).

Let w : [1/2,1] — R be a smooth and compactly supported function which
satisfies

1
w) (&) <« G for v>0, and /{w ]dé < 55

for some 2 < 1. We will then look at the sum

U= Zw(%)dg(n)a(n +h), heZ\{o},

Q ;d§ for v >1,

and, assuming that h is of the size
h < Q*x'~e, (3.1)
we will prove the following asymptotic formula for .

LEMMA 3.1. The sum ¥ can be written asymptotically as

qu+o<x2+s<x3+Qll>< |h| ))

where M is the possible main term, which vanishes if a(n) = a(n) and otherwise
has the form

M = xPs o (log x),
with a cubic polynomial Ps p, 4.
Recall that § was defined in (2.8)). The choice 2 = 1 gives Theoremsand

while the choice Q = x_é, together with suitable weight functions, gives Theo-

rems [[.1] and

1. A decomposition of the ternary divisor function

We need a smooth decomposition of the ternary divisor function, for which we
want to use a similar construction as the one used by Meurman [33] (which origi-
nally goes back to Heath-Brown). Let ug : R — [0, 00) be a smooth and compactly
supported function such that

up(§) =1 for |¢] <1, and wup(§)=0 for |¢|>2,

u1(§) = uo (ai)’ uz(§) = ug <\/%>

If abe < z, then obviously
(ui(a) = 1)(ur(d) — 1)(u1(c) —1) =0 and (u2(b) —1)(u2(c) —1) =0,

21

and define
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and hence

d(g) = > uz(b)(2 - ua(c)),

bc:%
as well as

d3 (n) =

abec=n

> (ur(a)ur (b)us(c) —

abc=n

Y (wi(@)ur (bus(e) -
= Z h(a,b,c),

abc=n

where we have set

h(a,b,c) = ui(a)us (b)us(c) — 3uy(a)uy(b) + 3us (a)uz(b)(2 — ua(c)).

Note that this function is non-zero only when a,b < c.

Moreover, we will use a partition of unity on (0,00) constructed as follows.
Let ux : (0,00) — R be smooth and compactly supported functions such that

X v
suppuy C [Q,QX} and ug()(f) <
and such that

v for v >0,

D ux(€) =1 for &€ (0,00),
X
where the last sum runs over powers of 2. Then we set

and

hapce(a,b,c) == h(a,b,c)ua(a)up(b)uc(c)

Voo = Z w(abc

a,b,c
so that

>hABC(a, b, c)a(abec + h),

U= > WUupc,

A,B,C
where again A, B and C run over powers of 2.

(3.4)

In the following, we will evaluate ¥ 4 g asymptotically and show that

1
VYapc = Mapc + @<$g+€ <Ql + wg) <1 +

Bk
: e )) (3.5)
2 T
where M4 pc vanishes if a(n) = a(n) and otherwise is given by

Mapc = aZb: % /)\hm,b(f + h)w<i>hABC <a, b, fb) dg,

with Ay qp(§ + h) defined as in (2.1)). In view of (3.4)), this proves Lemma after
evaluating the possible main term, which we will do in Section [0}

o=

(3.2)
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2. Use of the Voronoi summation formula

In it will be sufficient to look at the sums running over the variables
b and c alone, since this is where the saving in the error term actually will come
from. We will do the evaluation of this sum in a slightly more general form than
actually needed here, since we will need these results in Chapter [5|again. With this
in mind, we define

Dya) =3 w <“b0)v(a, b, c)a(abe + h), (3.6)

T
b,c

where v : R? — R is a smooth and compactly supported function, such that
suppv <X A x B x C,

and
ovitratys 1

dan e U\ ) < Guguaces

In the coming sections, we will prove the following lemma, which gives an asymptotic
formula for ®,(a).

for wvq,v9,v3 > 0.

LEMMA 3.2. Let A < 22 and h < Q2z'~¢. Then D, (a) can be written asymp-
totically as

®,(a) = My(a) + Ry(a),

where the main term M,(a) vanishes if a(n) = a(n) and otherwise has the form

My(a) = 12 5 [rnantemo( £ )o(an 5 ) ae (3.7)

and where the error term R, (a) is bounded by

i 1 z? Bz h|t
zé+E<Q§+AQG> <1+C;><1+ |A|% ) (3.8)

Choosing v = hapc, and recalling that

Nl

R,(a) < (a,h)

A, B« C and A<<x%,

this result then immediately leads to (3.5)).
In order to prove Lemma [3.2] we write the sum ®,(a) as

HOEDIEDY a(mﬁ”(m;h)”(a’b’w>

b m=h (ab)
=3 3 a(m)f(mia,b),
b m=h (ab)
where we have set
) . E—h E—h
f(&a,b) .—w< v a,b, 5 )
Note that
florab) =z and 2 f(eab) <« — fo >0
S . = nd ——f(&; —_— r v,V .
supp ;a, x 3§VlabV2 ;a, ((EQ)VI Br2 1,2 —
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Here we use Theorem in case a(n) = d(n),

2u(0) =+ 35 (M@ ab)dg
b

25 LS gy S (4 ) e e

a b,c m=1 ¢ ¢
(‘l;lb
+ 4 Zl Z d(m)M/ K, (47rvm£>f(€;a’ b) d,
a4 bm:1 c 0 c
clab

The possible main term of ®,(a) is given by
1 1
M@= 35 [nanl©f€ab)de
b

which is identical to (3.7). It remains to evaluate the remaining terms and show
that they satisfy the bound (3.8]).
We restate the outer sum as follows,

D= 60=>> (. (3.9)
d

b,c b,c,d
clab ab=cd

and set

with
BF (&) = Yo($), B7(§) = Ko(§),  ifa(n)=d(n),
BY(&) = Js-1(§),  B7(§) =0, if a(n) = a(n),

so that the sums we have to deal with can be written in the form

Rch = Z é Za(m) Z S(h, £m; c) FE(e,m).
d m

Cc

(3.10)

wale

Note that we have now ¢ < ATB.

The function F* (¢, m) can be bounded by

F(e,m) < x't¢

AB’
however, when m > %, we can use (2.4)) to get the better bounds
1 3 e
Ft(e,m) < and F~(c,m) € —
( ) ,7;%7%(2”—1 m%Jr% ( ) xff% m%Jri

We set
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and a standard exercise then shows that we can cut the sum over m in Ri BC
at M, so that it is sufficient to look at the sums

S(h,xtm;c
Ripc(M) = Z a(m) Z %Fi(c,my (3.11)
M<m<2M e

where we have divided the range of summation over m into dyadic intervals [M, 2M|

+
. M, e
with M = S, where k runs over positive integers.

3. Auxiliary estimates

We want to treat the inner sum in (3.11) with the Kuznetsov formula in the
form (2.9) with ¢ = ﬁ and trivial nebentypus x. To bring the functions F* (¢, m)
into the right shape, we define

et o ¢ g kS ) \/\h|mfj
F*(¢,m) .h(m)4ﬂ_\/W/0 B (c |h|>f<§,a,47r . a)df,

where h(m) is a smooth and compactly supported bump function, such that

1
supph =M and h"(m) < a for v>0,

and
h(m)=1 for m € [M,2M].

Then we have

- VAl
Fi(c,m)Fi<47r ||m,m> for m e [M,2M).

C

In order to seperate the variable m we use Fourier inversion. First define

_d 11
GO(}\) = x1+ mln(M, )\,W),

which is just a normalization factor. We have

FE(c,m) = /Go()\)Gf(c)e()\m) d\,  Gi(e):= Gol()\) /ﬁvi(q m)e(—Am) dm,
so that
RiBC(M):/GO(’\) > alme(xm) Y MG? <4w\/|ﬁm> dA.
M<m<2M e

(a.d)

Before going on, we need some good estimates for the Bessel transforms occuring
in the Kuznetsov formula. For convenience set

d d
= M—— Z = M—
W = /I|h| 1B and va 1B
and note that W < 1, which follows from the assumption in (3.1]).
LEMMA 3.3. If M < My, we have

3 . 1
G (it), G5 (it) <« W2 for 0<t< o, (3.12)

1.8

GE@t),GEt), G (1) < -
A (1), G (1), GY (1) e
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If Mj < M < M, we have, for any v >0,

G (it), GE(it) < x7 for 0<t< i, (3.14)
GE(t),GEW), GE() < % (f) for t>o0. (3.15)

PROOF. Since all occurring integrals can be interchanged, we can look directly
at the Bessel transforms of F¥(c,m) and its first two partial derivatives in m.
We will confine ourselves with the treatment of F% (¢, m), since the corresponding
estimates for the derivatives can be shown the same way.

First we want to use Lemma to prove the first two bounds. Again we can
look directly at the function inside the integral over £, given by

H(c) := ¢B* (c f)f(f;a,47r Y |lczm;i>7

A

for which we have the bounds

15

supp H; < W and Hf'/) (¢) < IEW(;CV> for v>0.

Hence, by the mentioned lemma,
. . 1
H, (it), Hy (it) < W2 for 0<t< 2,
=W

5

14tz

from which we get (3.12)) and (3.13]).
When M > M, , oscillation effects come into play. By using Lemma and
partially integrating once over &, we get

7 _ o hm) a7 T e
Fem) =~ (/0 (zwﬁ) <>d§>,
e (5[ o Y,

Note that suppw =< W, and that we have the bounds

w(u>(£)<<WZI3VC(5) for v>0, with C(¢) ;—1+‘w/<£—h)"

2 xr

Hy(t), Hy(t), Hi () < for t>0,

with

It is now enough to look at

Hy(c) = e<;7T |€h|>u~)(c).

We use Lemma with a = ‘/I% and X = W, which is possible since

€ [|h 1
W<<£ u<<7 and oW =< Z > x°,
QV z x€

and so we get

ﬂ-g(lt),ﬁQ(lt) < Y for 0§t< i,
~ . . Z\"
Hs(t), Ha(t), Ho(t) < st(g)% (t) for t>0,
2

which then give (3.14]) and (3.15]). O



4. USE OF THE KUZNETSOV FORMULA 27

4. Use of the Kuznetsov formula

Now we are ready to apply the Kuznetsov formula. We will only look at the
sum R o (M), and we will assume that h > 1, since all other cases can be treated

in very similar ways. As indicated, we use the Kuznetsov formula in the form (2.9)
on the inner sum,

cosh(rt;)

wale =1

1 [>°__ vhm <
+ Z Ir /_Oo@c,t(haoo)%,t(ma oo)mGj(t) dt

+ > (k = 1)!4; 1 (h, 00)1); 1 (m, 00)Vhm G, (k — 1),
k=0(2)

1< <0x( 5 x0)

so that we can then write R} (M) as

Ripo(M) = [ GoO) Eoxe (M) + 21 (M) + Z2(01) + E4() d,

where
- — S @ty P oVR ) e
Hexc.(M> T t].%c,G;\r(t])< COSh(Wtj)>zj (M)7
21(M) =) GY(t) (’W) =i (),
250 cosh(mt;)
S L[ e (FE VA (o
Ea (M) '*ZM Ofv‘i(ﬂ( cosh(nl) )Ec,t (M) dt,
0= Y GL- (V- Dk VR SR (M),
k=0 (2)
1<5<0k( 5% x0)
and

= \/COS;W Z a(m)e(Am)p;j(m, co)y/m,

M<m<2M

=0 (1) 1= % S alm)e(am)p;(m, co)vim,

M<m<2M
SOM) = ——— a(m)e(Am)pe (m, 00) /i,
’ cosh(rt;) M<meaM
SOM) = VE=D S alm)e(am)ii(m, oo)v/im.
M<m<2M

The sum Ex.. (M) needs a special treatment, which we will do in the following
section. First, we want to look at the other sums, and here we will restrict ourselves
to E1(M), since the treatment of Z3(M) and Z3(M) can be done along the same
lines.

First assume M < M . We divide Z; (M) into two parts:

1(M) = Z()JF Z() =: E1a(M) + E1p(M).

t; <1 1<t;

[1]
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For Z1,(M) we get using , Cauchy-Schwarz, Theorem [2.8| E and Lemma
= NG |pj(h,00)[Vh )[Vh
E.(M) < Or<nta><<1|G Z

1) ‘
< +/cosh( 7rt ’ M)

e
xEAB< B%>< hi>
1 1+ 1 1+7 )
d Tz Cz
so that
RE

[amEaon i< @nia d);x;+s<

B i
1y B ) (1 L ) |
Cz2 A2
We split up the remainig sums into dyadic segments
E1 (M7 T) :

~ p;(h h

> G Pl )
T<t,<oT cosh(mt;)

and in the same way as above, we get

a,h)i(a,d 5 2 AB B3
= (M, T) ( ) (a,d)z <
which then gives

) (1 22 ),
r3T3 cz=T A2T

M)d\ < (a,h)%(a,d)2 23 te (1 +
parts

Bi\(, b
VoL + T
The case M > M, is handled the same way: We again divide =; (M) into two

1(M)

17 <Z Z<tj
and this time we have to use the bound (3.15)), which eventually leads to
Jeo=:

1 1 2+€
)21 (M) dX\ < (a,h)%(a, cl)§ <1+

B3 %
1+ .
Oz C3 Az
The same bounds can be proven very similarly for Z5(M) and Z3(M), so that
we end up with

R-iA_BC(M) = /GO(A)EGXC.(M) dA

+ O((a, h)i (a, d)

1. 1 1
) B2 hi

1 1+—1]|. (3.16
0F < +C%>< +A;>> (3.16)
5. Treatment of the exceptional eigenvalues

For M > My > the exceptional eigenvalues pose no problem at all, since the

S+ (),

l\?\»—t

Bessel transforms G (t;) are very small, as can be seen from (3.14]). Hence, in ,
the contribution of Zcx.. (M) certainly does not lead to a larger error term

For M <« M, , this is a totally different story. If we would bound Zcy.. (M) the
same way as in the section above using (|3 7 we would end up with
(M2

AN B3 i
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With the currently best value for 6, this would weaken our result considerably.
However, we can reduce the effect of the exceptional eigenvalues by exploiting the
fact that these eigenvalues appear infrequently. Cauchy-Schwarz and (3.12]) give

1 1
2 2
Eexe. (M) < | 32 WU g (h00)Ph | | S0 [z ()
t; exc. t; exc.

The second factor can be treated with the large sieve inequalities. Because of
1
x2 a
Wh>"o>»-———+
hz (a,d)hz

we can use Lemma [2.11] to bound the first factor. So,

,d eAl—ZQB Bl h;
Eexc.(M)<<(a>h)%(a )x;i 1+ 1+ =),
d 1'2_‘9 A2

and hence
_ 1 I%+9+5 B% h%
/Go(/\):exc_(M) d\ < (a,h)z (a,d)w (1 + ) (1 + A§> )

which is a substantial improvement to (3.17]).
Eventually we get

1 1 1 x9 B% hi
+ 5 5+e
Rl (M) < (0. (@t (i + s ) (” ct > (1 " A)

which as a consequence gives (3.8]). This completes the proof of Lemma

6. The main term

Here we will evaluate the main term of ¥, which appears only when a(n) = d(n),
and arises in this case after summing over all the main terms Mapc. It is given by

My = ;‘ % /Ah’ab(g + h)w(i)h(a,b, fb> d¢

_ x/w(g) ) Wh(a,b, xé) dé + O(2°h),

ab
a,b

so that effectively we only need to look at

(&) = 30 ) 1),

a
a,b

)

where

H,(a,b;¢) := h(a, b, Zf})

Using Mellin inversion this sum can be written as

1 1 N = /\h,ab(xf)
M, (&) = 5 E :E ( )Ha(a,s;f) E it ds, o>0,
a 7 b=1

where the Mellin transform of H,(a,b; &) is given by

H,(a,s;¢) = /OOOHa(a,b; b tdb, Re(s) > 0.
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A routine calculation then shows that, for Re(s) > 0,

X Aab (2€) 2. cq(h)(log(z€) + 2y — 2logd)(a,d)'**
Z plts ¢(1+3) Z J2+s )
b=1 d=1
so that it is sufficient to look at
1 (a,d) . (a,d)®
M, = — H. ; 1 . 1
W= 5 T [ A c e s (19

Here we want to use the residue theorem. ﬁa(a, $;&) can be continued mero-
morphically to the whole complex plane with a simple pole at s = 0, and its Laurent
series is given by

Ao(a,5:6) = 3v1(a)§ + 301 (a) (1og %5 + C(a)> +0(s),

where
e 1 [ x€ x€
Cla) := /0 v1(b) logbdb + 3 /0 v (b)vr <ab> log 7 db.

We also have that

~ 1 1
H,(a,s;¢) < ———— g3 Re(s),
(@58 < Q]

Now we shift the line of integration in (3.18) to Re(s) = —1 + &, and the residue
theorem gives

M€, d) = 3M,(d) + 3Mq(€.d) + O ( T )

where

)= 32 D iog @D ), aaage,ay = 3 9D yga ),
and

H.(a) :=vi(a), Ha(a;&):=v1(a) <10g % +v+ Cl(a)>.

The evaluation of these two sums can be done the same way as above using
Mellin inversion and the residue theorem. The appearing Dirichlet series can be
continued meromorphically via

a,d a,d
Zizus)bg( p ) :Zd

a Yol L sl (4)

a rld

), (4) €)= G0+ o og
ro C\r ds ’

which are identites for Re(s) > 0. The Mellin transforms H.(s) and Hq(s;€) too
have a meromorphic continuation to the whole complex plane, both with a simple
pole at s = 0, and with Laurent series of the form

A

1
H.(s) = B + Pic(logz) + sPy.(logx) + (9(52),

N 1
Hq(s) = ;Pld(log z,log &) + Pag(log z,log &) + O(s),

where Py, and P4 are linear polynomials, and P, and Pag quadratic ones (which
may depend on d and vy). We also have the bounds

N N 1 1
H.(s),Hq(s;€) <« ———— g3 Re(s)+e,
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Applying the residue theorem the same way as before, we get

1—e
My(&,d) = P, 4(log x,log &) + (9( dl ),

3¢

where P, 4 is a quadratic polynomial depending only on d, which as a consequence
shows that the main term is of the form as stated in Lemma [3.11






CHAPTER 4

Proof of Theorems [1.5 and 1.6

In this chapter we will look at D3(N) and As(N), and prove Theorems
and As before, we can consider both sums simultaneously, so that we will stick
to the convention that a(n) is a placeholder for d(n) or a(n).

1. Construction of a smooth partition of unity

We first construct a smooth decomposition of the unit interval in a form suiting
our needs. There exist functions w; : R — [0,00), 7 > 1, which are smooth and
compactly supported and which satisfy

11 @) G+1)w
supp w; C [W’Qﬂ} and  w; (&) < 2Y for v>0,

and
> wi(§)=1 for £e(0,1/4].
j=1

For j > 1 we then define
w_;(§) =w;(1 —§) and wo(§) :==1—wi(§) —w-1(§),

so that by construction
ij(f) =1 for £€(0,1).
JEZ

‘We can write our sum now as

jg ds(n)a(N —n) = Z 3w, (an)dg(n)a(N “n),

hence it is enough to look at

U = ij<Nn_1)d3(n)a(N—n). (4.1)

n

The evaluation of these sums follows the same path as in Chapter [3] and we will
therefore use in large parts the same notation and omit many details.

For the sake of easier notation, we will leave out the j-subscript from now on,
so that, for example, w(&) := w;(§). Note that the variable n in is supported
in

ne[gﬂz] for 7>0, and nG[Nfle:r,Nflfg} for 5 <0,

where
_N-1
A first trivial bound for ¥ := W¥; is now given by
U <« N°z.

33
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The decomposition we use for d3(n) is the same as in (3.2)), but with a different
normalization, namely

u1(§) :_u0<(]\f—§1)§> and  uz(§) = uo ~— |

and as in Chapter [3] we then need to evaluate the sums

abc
\I/ABC = Z w<N — 1>hABc(a,b,C)Oz(N — abc).

a,b,c

Our result will be the following asymptotic formula.

LEMMA 4.1. We have

N3+e
YaBc MABchO<Ng + 31 >,

xr2

where Mapc vanishes if a(n) = a(n), and otherwise is given by

Mypc = z; % /)\N,ab(ﬁ)hABC (av b, W)TU(]J\\;:.?) dg,

with An,qb(€) defined as in (2.1).

We use Lemma when z > N %, and otherwise just bound trivially. Af-
ter evaluating the possible main term, which we will do in Section [d] this proves
Theorems L5 and

2. Use of the Voronoi summation formula

The saving in the error term comes again primarily from averaging over the
variables b and ¢, and it is hence sufficient to look at

Bancl@) = 3w ( 525 hancla:b. ha( — abo)

N -1
b,c
=3 Y amf(miab),

b m=N/(ab)

where N Noe
F€a.t) = ane (a0 S Ju (R
Note that
supp f(#70,6) © [N =1-20,N —1- 2] for j=0,

and

supp f(e;a,b) C [2,21} for j <0,

and that the derivatives of f(;a,b) are bounded by

oLV
Furthermore, we have that
ABC <z for j>0, and ABC <N for j<O.

After using the Voronoi formula, we get as a possible main term for ® 4pc(a),

Maso(@ =3 Y [Awan@1(€ade,
b

1
f(&a,b) < - for v >0.
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and as error terms we have to deal with

Ragpc(a Z Z M/Bi (47r\/ZT§)f(§;a,b) dg,
m=1

b,c
c|ab

where B¥(¢) are defined as in ([3.10). We rearrange the variables in the same way
as in (3.9)), so that

Rapc(a Zé Z Z MFi(c,m),

wale

where F*(c,m) is defined as
P = 1 [55(1) (6a 2 Yae

It is not hard to see that we can cut the sum over m in Rapc(a) at Moi7 where

N'te (AB\? N¢ (AB\?
. i - (22 P>
My x2<d>7MO'N(d> for 7>0,
and
Ne (AB\?
MO+ = M(; :x(d> fOr j<07
so that we eventually have to look at
S(N,+tm;c)
RipeM)= 3 atm) 3 TR em),
M<m<2M < |c

(a,d)

3. Use of the Kuznetsov formula

We bring again everything into the right shape for the use of the Kuznetsov
formula by setting

FE(e,m) = F* (47r Nm m),

Cc

and using Poisson inversion to separate the variable m, so that

RitpolM / Gold atmye(m) 3 ZE 6 <4/]Z7m> ax,
M<m<2M arle
where
1 -
+ - +
Gy (c) = Go(N) /F (¢, m)e(—Am)dm
with

We also set
d
=VNM-—.
w AB

When bounding the Bessel transforms of Gf(c), we have to distinguish between
the cases j > 0 and 5 < 0.
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3.1. The case j > 0. In this case, we have the following bounds if M <« M,

. . 1
G (it), GF (it) < N°W =2 for 0<t<,
. . - N¢
GE(t),GE(t),GE(t) < = for ¢ >0,
14t2
and if My < M < MJ, we have, for any v > 0,
. . Ne¢ 1
G (it), G (it) < T for 0<t<,
. N Ne (wi\
+ +
G5 (1), G (1) < W( ; ) for t>0,
¥ Ne (WY\"
GE(t) < I (t> for t>0.

All these bounds can be derived the same way as in Lemma [3.3] There are two
slight differences, though: Applying partial integration once over £ is useless here,
and instead of Lemma 2.6] we need to use Lemma 2.7

Now applying the Kuznetsov formula and the large sieve inequalities, we get
the bounds

N§+€
Ripo(M) < (a.N)} (0. )} =, (42)
2
NE+e AN
Ripo(M) < (a, N) (o) = <1+ ) (43)
2 €x2

In contrast to Chapter [3] the exceptional eigenvalues cause no problems at all.

3.2. The case j < 0. Here the following bounds hold if M < &= (%)2,

N
N v 1
GE(it), GE(it) <« N°W 2 for 0<t<,
_ €
GE(1),GE(t),Gx(t) < - for t>0,
1+t¢2
and if NWE(%)Q < M < M, we have that
A “ Ne¢ 1
+ /. + /.
Gy (it), G (it) < W for O§t<i’
A “ ~ N¢
GE@),GE(t),GE(t) < Ta for ¢ >0,
A “ ~ N* w
GE(t),GE(1),G5(t) < t5(1+tl> for > W.
2 2
The use of the Kuznetsov formula this time gives
Ni+e

REpe(M) < (a,N)%(a,d)?

T
As before, the exceptional eigenvalues do not lead to any difficulties.
This bound, together with the other bounds (4.2)) and (4.3]), then leads to

L, A Nite AiN%
<I>ABC(a)MABc(a)+(9<(a,N)4(a,d)2 e <1+ T )),
2 x€Tr2

and together with the fact that
A< B<C and A< N3,
we get Lemma,
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4. The main term

To finish the proof of Theorem we have to evaluate the main term, which
occurs in case a(n) = d(n) and is then given by

1 N-1 é-
o= g [ awaon (e V55 ) d

_ ' Aan(N(1=9)) wp N 1) c
_N/OQZ; = h(,b, — )d§+O(N).

This, too, can be done in the same way as in Chapter [3 so we will just state a few
intermediate results. It is enough to look at

(6= Y O, VDY g

ab
a,b

and this sum can be evaluated by using Mellin inversion and the residue theorem,
so that we get

3§:0d )(log(N (1 5))+27*21°gd)(Mc(d)+Md(§,d))

d=1 a?
+0( e )
with
M) = 3 D o (2 Y0
Ma(e )= 3 P (a) (g ) #7010
and

Cla) = /mv;(b) logbdb+:1))/oov’1(b)v1((]\]abl)g> log<(Nab21)§) db.

0 0

The evaluation of M. (d) and Mq(&,d) follows the usual pattern, and as result
we get

dlfs
M. (d) + My(&,d) = Z’u ZnglogNlogdlogrlogm)JrO(W)a

m\;‘f

where P ¢ is a quadratic polynomial depending on £. From this, we see that the
main term of D3(N) has the form

M = NZCd Zu ZP1ogNlogd1ogr10gm)—|—(9(N3+e)
r|d m| &

with a cubic polynomial Ps.
We want to reshape this result a little bit. Set

= d
Glangun0) = N 30 ) S 10y (1),

d=1 r|d

so that the main term can be stated in terms of the partial derivatives of G up
to third order evaluated at (0,0,0,0). A lengthy but elementary calculation shows
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that

o d 1—v+4d 2 d
CISCEED B WGP i g

dIN c|d (r,d)=1 (s,br)=1
ble (d,rs)=1
o\~ X1 d
= C’(ﬁ’% 5)N Z di(_ﬂ) ZXQ <C>X3(C)7

d|N cld
with

= g T |
0= g T oty
and X1, X2, and x3 as defined in (1.3). This finally proves Theorem



CHAPTER 5

Proof of Theorems and [1.8

In this chapter we will look at the sums D (x,h) with k& > 4, and prove
Theorems [L.7] and [[.8
Let w: [1/2,1] — [0, 00) be a smooth and compactly supported function satis-

fying
1
w)(¢) < N for v»>0, and /|w(”)(§)
for some ) < 1. We will look at the sum

U= Zw(g)dk(n)d(m h), heZ\{0},

for v>1,

and, assuming that h is of the size
h < Qe
we will prove the following lemma, which gives an asymptotic formula for W.
LEMMA 5.1. We have the asymptotic formula
v =M+R,

where the main term M 1is given by

M= fu ( )thlogxlogglog@w))da

with a polynomial Py of degree k, and where we have the following estimate for
the error term R,

$1_3k1*2+5 37 1 |h|
R« —G—v— +xss+f(l+xw> 1+< ) : (5.1)
QitiG— 0z 1o

Remember that the constant 6, which appears in the estimate for R, was defined

in
Theorem [1.§ follows dlrectly from Lemma [5.1] with the choice Q = 1. Moreover,
with the choice ) = 2757 we get

R< o w1 4 g f 7+E<1+ ( |h|) )
€T 19

while the choice Q = 2~ =5 leads to

1
16
R < x1_15$—9+5 + x%+5 (1‘1513—9 +x%> <1 —+ < |h‘ > ' )
xlg

We use the former bound for k < 15 and the latter bound for k£ > 16, so that

R < zl-miote 4 g8t <1+ ( |h|> >
19

After choosing appropriate weight functions, this proves Theorem

39
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1. Opening the divisor function dj(n)

In order to prove Lemma we will open dy(n) and then dyadically split
the supports of the appearing variables. This will be carried out rigorously in the
following section — for the moment, just assume that we have a sum of the form

al DY ak
Uy, = Z w<T>v1 (a1) - vp(ag)d(ay - - - ap + h), (5.2)
ay,...,qk
where v1, ..., v are smooth and compactly supported functions satisfying

suppv; < A; and vgu) (&) < for v>0.

1
A
Our main results are three asymptotic estimates for ¥,,,
gether in the following lemma.

..,u, Which we state to-

LEMMA 5.2. We have the asymptotic formula
Voroo, = Mo, + Ry,
where M, is the main term given by

My = fof8) 3o ekl (S ernd 53

az,...,ak
djas-ag

with A, a(§+h) defined as in (2.1), and where we have the following bounds for the
error term R,,,

E
T2
va < 3 1> (54)
12342
3+te 26 i 144
T2 1 (A A2 22 1 A2 A7
R, — | = h|f ————— |, 5.5
< (gr ! ( é><+| - (5.5)
1+e & h|ts 1
R’U1<< xl +A18x8+6 + x36+ | |3 x30 . (56)
159 Q Al Aj76 A1
The implied constants depend only on k, the involved functions w,v1,...,v; and €.

When A; is so large that it makes sense to average over a; alone, we get the first
bound (5.4)), which is proven in Section 3| The proof essentially boils down to the
evaluation of the following sums over arithmetic progressions modulo b = as - - - ag,

Z w <a;b> vy (a1)d(a1b+ h),
ay

for which we can get a non-trivial asymptotic formula as long as b <« 237¢. Conse-
quently, also the bound is non-trivial only for 4; > PR

A further gain in the error term can be achieved here if we average over an-
other variable ay as we did very similarly in Chapter [3] The main ingredient is the
Kuznetsov formula that enables us to exploit the cancellation between the Kloost-
erman sums that arise when the Voronoi summation formula is used to evaluate
the sums above. We will work this out in Section {4 l and the resulting bound ( .
is useful when A; Ay > x3+¢.

The most difficult case occurs when none of the A; is particularly large. It is
handled in Section [5} and the path we follow there is in some sense dual to the
proof of the first bound: Instead of averaging over a;, we use the Cauchy-Schwarz
inequality to merge the variables as, ..., ax to one large variable b, so that we can
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then evaluate the sum over this new variable asymptotically. As mentioned in the
introduction, the main difficulty lies in the treatment of the sums

Zw(alb>w(a1b)d(a1b + h)d(ab + h),
- x x
where a; and a; are of the size aj,a; =< Aj. In Chapter [6] we will prove an
asymptotic formula for these sums, which has (at best) a non-trivial error term
as long as ay, a1 < x%_e, and thus the resulting bound is also non-trivial only
if A, < z37°. Note that this bound is furthermore useful only if Ay > x°.

Of course, the statement of Lemma [5.2] is symmetric in all the variables. For
given Aq, ..., Ax, the optimal strategy would be to pick the A; which is the largest,
and which is always at least as large as x%, and then apply either or with
respect to this A;. This is essentially the path that Bykovskil and Vinogradov [§]
wanted to take. Unfortunately, this strategy does not go through, as there is a gap
at A; = 23 where both methods fail to give a non-trivial result — in fact, in the
worst case, if for example A; = Ay = A3z < 23 and Ay =...= Ay <1, there is no
way to get a non-trivial result from these two bounds alone.

However, we still have another bound at our disposal. In case there exist
two A;,, A;, > x*, at least one of the estimates or will always be
sufficiently good to get a power saving at the end. If there is only one A4; > x%, we
can bridge the gap at A; < z3 by using the bound with respect to one of the
other A;. More specifically, set

k
X = %, Xy = 21 and X3 = (x) o = xﬁﬂm
Q@ X1
If one of the A; is large enough so that A; > X, we use to get the estimate

1
xl_ 3E—3 ¢

R'Ul << 1 1 N
QitiEe=y

If there are two A;,, A;, satisfying A;,, A;, > X5, we make use of (5.5) and get

1 AL\
R, <<x§§+5<1+x199) <1+(|ll) )
Q2 €19

Otherwise, there has to be at least one A; such that X3 < A; < X5, which means
that we can use (5.6)), hence getting the bound

1
glmzte giite 3Ty 0 4. |hl \ ™
va < — 1 + T txsE’ 1+ 15 .
QZ+4(3k—2) 9 T 19

All in all, this leads to the estimate (5.1]).

2. The main term

We first want to describe how to split up the k-th divisor function so that we
can conveniently evaluate the main term at the end. Let ug : (0,00) — [0,00) be a
smooth and compactly supported function such that

supp ug C B,Q] and Zu0<2§z) =1 for ¢ €(0,00).

LEL

ug(§) = uo (;)

We set
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and
he(€) = ue (i) for £>1, and ho(§) := ZW ()i),
and define the sums
) .— ay---ag h h d L
=2 M(T) gi(a1) - hy (ag)d(ay - - - a + h),

where j = (j1,...,Jk) is a k-tuple with elements in N ={0,1,2,3,...}, so that our
main sum can be split up as
v= > 9,

jENF
3#(0,...,0)

Given a k-tuple j, there is at least one coordinate j; > 0, so that we can use
Lemma [5.2] with respect to the corresponding variable a;. As it turns out, it does
not matter which one we choose — but for the moment we will assume that we can
take j1 to avoid notational complications. We dyadically split all the occurring h(&)
in ¥ apply Lemma and then sum everything up again, so that

v = Mm@ 4 RO,
where RU) is bounded by (5.1), and where

M) :/w(i>z d(2h))\hd£+h Z M(J)
d

jENF
J#(0,...0)
with
=a Y & < >hj2(a2)"'hjk(ak)
.ag ag - - Qg ’
ag,...,ak
dlag-ay
We use Mellin inversion to write this sum as
) 1 N d?
M) — | by d) ds, 0
DO =55 | b ©g2sdds <0

with

~

o0 . PR .
hj, () 1:/0 hj (nn®dn and  Z(s,d) :=d'~* hjs(a2) - - i, (ax)

az,...,ak (a2"'ak)1is
dlas--ay

For integers ds, . .., d; such that ds - - - di = d, we define
d d d
cy 1= d—z, c3 = %, ceny Cp—1 = m, ck =1,
so that we can rewrite the sum appearing in Z(s,d) in the following way,

dold= 3 D > e k)

A2;.--,0k da---di=d (az,d)=d2 (a3,c2)=d3 (ak—1,ck—2)=dr_1 di|ag
d|a2~~ak

and as a consequence we can express Z(s,d) as

Z(s,d) =
do-- dk dz 2 ((z('Z
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The sums running over a can be evaluated in the usual way using Mellin inver-
sion and the residue theorem, leading to

hj (dia) _ vo(ei) di'~®
Z Jal—s - dis qu‘,(s) +0 (WS)I_E) )

(a,ci)=1

where the functions H,(s) are defined as

o ,s¢*5(ci) o X5° 2 / s
Ho(s) = 1= )20 - [ an,

and, for j; > 1,

2
Hj,(s) :== (2”X3)5[ vo(n)n® " dn,

2

and where

Because of

we can write Méj)(g) as

k 1—e S
MO (€)= ﬁ Z wO(CQ)"'¢O(Ck)/ H(Hji(S) +(’)<(2jl;(3)1_5>> %

dg---dp=d 9)i=1

Note that this expression is independent of the variable chosen with respect to
Lemma
At this point, we sum together all the functions Hj,(s) with j;, > 1, so that

U) () ) d'~c
S M@= Y M <5>+0(X315),

jENF j€{0,1}*
J#(0,...,0) j#(0,...,0)
where
, 1 1 (L
MP©) = o= > wolea) - doler) / 55<HGM8>> ds,
dy-+d=d (o) i=1
with

s 2
Gi(s) ;:XSP’ /lvé(n)nsdn and  Go(s) := Ho(s).

Next, we move the line of integration to o = 1 —¢, and use the residue theorem
to extract a main term from the pole at s = 0. Because of

X3Re(s)

] for v>0, and C((e+it) < |t|2Te,
Sl/

Gl(S) <

we get that

xl—s

j . X. k—1
Mtgj)(f) = Py_1 p,a(logz,logé) + Rl()ﬂ)(g) + @( 3 >7
where Py,_1 p,q is a polynomial of degree k — 1, and where

RY© = (0T S e (e [

do--dp=d (1-e) &
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However, because of the fact that
X5F
T

<

)

N

and because we can move the line of integration to the right as far as we want, we

have at least
RO Gl
F(6) < =

All in all, the main term of ¥ is given by

. 1+4+e€
Z M@ — /w<£)Pk7h(log:c, log &, log(& + h)) d€ + O(xX
jEN* v °
5#(0,...,0)

+ stSkl) ,

where Py 5, is a polynomial of degree k. Since the error term here is smaller than
in (5.1)), this proves the asymptotic evaluation claimed in Lemma

3. Proof of (5.4)

‘We write as
\I’vl,m,vk = Z ’Uz(ag) cee vk(ak)q)(a2 . ak),
where
o)=Y d(m)f(m) =Y _d(rb+h)f(rb+h), (5.7)
m=h (b) T
with
7€) = w(ih)m(f - h)_
Note that
suppf =z and fO(¢) < ) for v >0,
and
W) _ 1
Jr@)as < g tor vz

This divisor sum over an arithmetic progression can be treated with Lemma|2.1
and we get

o) = 7 [Bs()5(0) T B de

dlb

A5 3 gy S d) [ K (47r\/275)f<f) de,

where As(€) is defined in (2.2). From (5.8]), it follows easily using Weil’s bound for
Kloosterman sums and the recurrence relations for Bessel functions, that

B(b) = % /w (i)“l <§)A§(§ +h) > Zﬁ? dé+ 0 (m é ) (5.9)
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(we refer to [4] Section 2] for a more detailed treatment). This formula holds uni-
formly in b, and eventually leads to

with M,, given as in (5.3).

4. Proof of (5.5)

Now we write (5.2]) as

\Ilvh,,,,yk - Z U3(a3)"'vk(ak)@Q(a3"'ak)7

a3z,...,0k

where

T

Bo(b) = Y w(a1a2b>vl(al)vg(ag)d(alagb+ h).

ap,az

Let v : R — [0,00) be a smooth and compactly supported function such that

xT

A1 Ay

supp vg < and v (&) < < > for v >0,

T
A1 A,
and

x x
= be | —,——|.
vo(b) =1 for {2 A A J

We insert this function into ®2(b), and write it as

basa
HOEDY w( ; 1)v(b,a2,a1)d(ba2a1 +h),
with
v(b, az,a1) := vo(b)va(az)vi(a).
This sum is just a special case of with
A:=A3---A;, B:=A; and C:= Ay,
so that, by Lemma we have
Dy (b) = Ma(b) + Ra(b),

where the main term has the form
1 1 ¢ ¢ ca(h)
My(b) = b g; @ /A5(5 + h)w<x>vl (@b)w(@) Z Jqi+o dg,
and where R (b) is bounded by

2 3 1 3
Ry(b) < (b, h)ixﬁs(ﬂll W) > <1 + ’jf > (1 1yt Aad2)? )
2 €2

xf

This immediately leads to (5.5)).
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5. Proof of (5.6
We write

Vor,oon = D 0(0)2(b),
b
where ®(b) is defined as in (5.7)), and where
(S(b) = Z ’02((12)-'"[)]@(@}6).

az,...,ak
ag”-ak:b

Furthermore, set
x
B:=Ay- - Ay < —.
2 k A
If B is too large, it does not make sense to evaluate the divisor sum over arith-

metic progressions as in the sections before. Instead, we just insert the main term

from (|5.8)), namely
) — A h
o(b) : [1)/ 5(£+h)w(i>”1<§>zcdd1(+5) d¢,

dlb

manually in our sum,
Wiy, = Y 0(0)@0(0) = Y 6(b)(Ro(b) — (b)).
b
The main term of ¥, . ., is then given by the left-most sum. In fact,
> 6(b)o(b) = M, ,
b

with M,, defined as in (5.3)).
It remains to show that the remainder

Ry, =Y 8(b)(®o(b) — ®(b))
b

is small, and as a first step we use Cauchy-Schwarz,

R, < <Z 6<b>|2> (D%(b)—@(b)ﬁ)
b=<B b

While the first factor can be estimated trivially,

1
2

x1+5
A’

SO <a*B <
b=xB
the other factor needs more work. We write
> @0 (b) — D(b)[* = By — 25, + s,
b
with

D= 0o(b)?, Np:=) Po(b)(b) and Tz:=» B(b)>.
b b b

In what follows, we will evaluate these sums and show that
21 = MQ + O(I€A12), (510)

.l-l—eA 2
Yo =My + 0<m1+5 + 333911> (5.11)
3

Sy = My + 0 T 4 ayhatee( L o L 5.12
= 4 4 PR .
3 o+ al + A%z gﬁ+ %9+A1%A1%9 ; (5.12)
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where My is defined below in (5.15)). Hence

1+e 1 g hi £
P I S (S SE L |
/1159Z Qs Alz
thus proving (5.6)).

5.1. Evaluation of ;. We have

= / As, (€1 + W)As, (2 + h)w (51) (52>21a<51,52>d51d52,

where

fl Cd, (h)Cd (h’)
Y1a(61,62) Z Z FRE= T3
dy,da|b 1 2
with

We use Mellin inversion to evaluate the sum over b, so that we can write

Y1a(é1,€2) = / fi(8)Zy(s)ds, o> —1, (5.13)
where
= s— cdy (h)ca, (h)
s) :/ fr(mn*~hdn and - Za(s b2+s > PREIpNET
0 dy,da|b 1 2

The Dirichlet series Z;(s) converges absolutely for Re(s) > —1, but it is not hard
to find an analytic continuation up to Re(s) > —2, namely

Zi(s) = 2 +5) Y Calen (), da)*te

5 5
i d13+ 1+Sd23+ 2+s
We move the line of integration in (5.13)) to ¢ = —2 + ¢, and use the residue
theorem to extract a main term. The function Z;(s) has a pole at s = —1 with
residue

cd, (h)ca,(h)(d1,ds)
Res Z1(s) = Y @ Wi®b) _ o, .
5= dy,da dl d2

Furthermore, we have the bound
Zi(=2+ ¢+ it) < 2°|t|2 T,

which also holds for the derivatives with respect to §; and d2, and the following
estimate for f1,

R BRe(s)

fi(s) < e

It follows that

Z1a(&1, &) = Coy,,(h) /flﬁ(zn) dn + O(JZZ)

One can check that Cs, s5,(h) can be written as

051 102 (h) = 051752751752 (h>7

where we have set

Cs1,8, = Csy,5,(1), (5.14)
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and where 75, 5, (h) is a multiplicative function defined on prime powers by

4 -1 i

1 1 1
0\ .
V61,02 (p ) T Z pitidi+ids Z Z(p(z+1)+Jél+(z+1)6z + p(z+1)+(z+1)61+g62>
=0 =0 j=0
-1 i
p—1 1 1
o p3+51+52 _ p1+51 _ 1+52 +1 ;JZ()( i+jo1+id2 + pi+i51+j52 )
Hence
Y1 =My + O($€A12),
where

Mo = / / Doy (&1 + D) Asy (€0 + 1)C5, 5,750,55(N (1, E0.m) drdadn  (5.15)

with
N ORON G S

5.2. Evaluation of 5. We have

1+e
22 /A51 51 +h) (i) Z ;T;S_}gz EQa(fl;dl)dfl"’_O('r D1A1)7

d1<Dy

where we have cut the sum over d; at D1, and where we have set

Sea(Cridi) =dr» v Y fa(m—h,r)d(m),

r m=h(rdy)

fol€aim) = “gj) (€> (ngf;)

We can again use Lemma to treat the inner sum, and we get, similarly to (5.9)),

with

Ega(gl;dl) = /A52(€2 + h)ZQb(fg;dl) dfg + O({)SE dlfA;i )7

)2

with

PINSHUDE Zfz (&2,7) > Sdi(fg.
2

da|rdy

We can now evaluate the sum over r using Mellin inversion in the same way as
in the section before. We have

Yon(€25d1) = / fo(&,8)Za(s)ds, o> 1,

where
fa(€a,9) /f2§277 *~Lan,

and

Cay ( cdy (h)(d1, d2)*
Z Z 21+52 - )Z 2d 1+s+62 ’
r d2|rd1 do 2

After moving the line of integration to 0 = ¢ and using the residue theorem, we get

EQb(€1,§2;d1):ZCd2(dg#/f2£ n d77+0( )

da
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which then leads to

Y9a(€1;d1) = / As, (&2 +h) fa(&a,m) Y cd: (;)Q(f;; d2) dndés
da 2

3 5
di2 A2
+ 0 (:f 4t )
We complete the sum over d; again, and eventually get

2
1+5A
22M0+0<I1+€+x 1

1 5
+ z° T
D, v 03 )
The optimal value for D; is
Dl = ng%v
Ay
which gives (5.11)).
5.3. Evaluation of X5. We have
Y3 = Z v1(r1)vi(r2)Xsa(re, r2),
71,72
with

Yaa(r1,m2) = Z w (?)w(zb) d(r1b + h)d(rab + h).
b
as

For r1 # ro, this sum is a special case of D(x1,x2,71,72), which we will study in
detail in Chapter@ As stated in Lemma we can write X3, (71, r2) asymptotically

main term has the form

Y3a(r1,r2) = M3a(r1,72) + Raa(r1,72),
with a main term Ms,(r1,72) and an error term Rs,(ri,72). More precisely, the

(5.17)
r r
M, (r1,79) == /w(%)w(%ﬁ)Agl (rin 4+ h)As, (ron + h)Csa(r1,re, h) dn,
where

%01, %02 * *
uy U ru rou
N B) = }: 1 "2 181 242
C3a(r1,72, h) S (Tl,h)él(r27h)62 ¢61<(T1’h) Vs, (rg,h)
uy|(re,
ub(ra h)

Z 1

Tlh — Tgh
q2roire;
riufroul
(d’ (r1 ,hl)(rz ,2)1) ) =1
with the arithmetic function ¢, (n) defined as

(Tl ) h) (TQ ) h)

oo =TI )

Concerning the error term, we know from ([6.3)),
11
Raa(r1,m2) < (r1,r2)* Ay 2azte

140 1
1 To — T atl g0 e
= h 1 5.18
<Q+< o) am(tar)) e
where

= min{(ry,72°), (r2,71°)}

(r1,m2)"
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Of course, there is also the trivial bound
Rsa(r1,m2) < 2°B. (5.19)

The contribution of the diagonal elements r; = ro is negligible, so that we
can bound the respective sums trivially. Otherwise, we use the asymptotic for-
mula (5.17)), so that we can write X3 asymptotically as

Y3 = M3 + Rs,
where we have a main term of the form

My = Z v1(r1)v1(r2) M3a(r1,72),

r1#£T2
and where R3 is bounded by

Rs| < > [Saalrr)[+ > |Rsalrim)l+ D [Raa(rim)l,

<Ay r1,72 XA, T1£T2 r1,r2 XA, T1#£T2
(T17""2)*>R0 (T1,T2)*§R0

with Ry <« A; some constant to be determined at the end. For the first sum, we
get

Z [Zsa(r,r)] < zite

T’XAl

For the second sum, we use the trivial bound ([5.19)),

LA
> |Rsa(ri,m2)| < 2B Y 1< B Z =L << =L
Ry
r1,r2 XA, T1#£T2 r1,r2XAq TD>RO
(r1,m72)*>Ro (r1,72)>Ro

Finally, for the third sum, we use (5.18)). Note hereby, that

St Yoo Y, 1< > g Y 1< RoAL?,

r1,r2 XA ro<Ro r1,r2XAq ro<Ro  7T1,r2XA1
* oo
(r1,72)*<Ro (r1,r2%)=r0 Tolr

and, moreover, that

1

1
1y
To —T1 4 ToT1 2
r1,72)" | 7172, B < T rrr,)
E (r1,72) ( 172 (7"1,7"2)) E 0 E (0 172 (ror1.72)

T‘l,TQXAl T0<R0 ’r‘o’l‘l/\AAl
T1#T2 T2 XA
( V<R, roT1FT2
T1,72) Siio

1 1
9 roT1 2 (rorire 2
<2 2 (t’<r2_(7“o t)>h) <(7“0 t)’h)
ro<Ro <A (nrg)v ALy ’ ’
0 ;

Troh 772
(Gastyor)=1
< Z Z 708 Z (st, (rg — ror1)h)(rorire, h)
s<Ro TOSE

t< Ay TOT1#T2
(To ,t)zl

<L ...,

=

AL
’r‘l’l"o,\?,\’r‘g
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51

and after dividing the ranges of the variables s and ¢ dyadically into ranges s < .S
and t < T,

LK ZS Z o Z (rorire, h)% Z(st, (ro —ror1)h)
ST

r0<<% rlrox;—%xm f’;S
ror1#£T2
1 1 1
<<|h\EA1€§ S*T E 7o(ro, h)2 E (r1,h)2 E (r2,h)?
ST el S e

< |h|FRoAL*TE.
Hence

E R 5 1 0 hld

| 3a(r1,T2)‘ < RoAlgx%J"s — + o 1 | |3 )
= 2 A
r1,r2 XA, T1#£T Q

(r1,72)*<Ro
We set

1
1 1 -2
z7 [ 1 ? |h|7
Ry = min< A — 1
o = min 1,A1% <Q$+A136< +A13>> )
which leads to

) 1 x% h% x%
Y3=M3+0O $1+E+A1%x%+€ — + 39 + | |§ 39 :
Q1 A12 A]S A12

It remains to evaluate the main term Ms3.

5.4. The main term of ¥3. The main term of Y3 is given by

1 %01 %0
M3 = /A‘Sl(l)A‘SZ(l)m Z U151U262U1 1U2 2

’U.l,’U,Q‘h
ufl e, ug|

Mgb(d) A1.731+5
) Frotes MO
d<D

(dsujuz)=1

where we have cut the sum over d at D < A;, and where

Mgp(d):= Y fan (Zﬁl)f&z (]:;2)1/)61 (r1ui)¥s, (r2u3)ca(riug — raus),

(T1 ,u1l d):1
(T2 ,u2 d):1

)

with

f3.4(6) = (&n+ h)?vl(f)w(?)'

We open the Ramanujan sum, so that

o= % B (52)

do
y(d) (ri,uid)=1
(y,d)=1

3 f3,2<’$)w51<r2u;>e<y“hl),

(r2,u2d)=1 dl
where we have set
diom 0 = and dy= = gy
(d7u1)7 (d,ul)

(d, 'LLQ), ’ (d, 'LLQ)'
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In order to evaluate these sums, we encode the additive twists by means of Dirichlet

characters,
e(yr1h2> - Z Xz (yrih2)7(x2),
da ¢(d2)

x2 mod da
so that we can write M3y, (d) as
d
Mas(d) =~ S RO W Wi
X1 mod dy
x2 mod da

x2=Xx1 mod d
where
hr e
Wijo= > fai o ) Y rui )i (r).
(ryuid)=1 g

Now we use Mellin inversion to write these sums as follows,

1 o
Wi = m/(,,;;ﬁf&i“)z?’(s) ds, o>1,
where
fg,i(s) = /f37i(§)§s_1 d¢ and Z3(s) := Z w

(ri2)=1

The Dirichlet series Z3(s) converges absolutely for Re(s) > 1, but it is easy to check
that an analytic continuation is given by

) e X; -1 L(s,x;
Z3(s) = s, (u}) [ <1 - Xp(f)> 11 (1 - p>1<+£2)513> L(1 +(s féz,xj)'

pluid plusuid

We move the line of integration to ¢ = ¢, and the only pole we need to take care
of lies at s = 1 and appears only when Y, is the principal character, in which case

L s, (] )ho(uid)
C(2+05) Vi, (uiuid)

Furthermore we have the following bound for f3ﬂ'(8),

R_els Zs3(s) =

~ 1 1
J(s) < AR mind 1, — ——— 4
Joalo) < S 5Tl + 1]
which also holds for its derivative with respect to d;, and the following bounds for
the involved L-functions,

l1—0o

C(s) < [t 5% and  L(s,x5) < (|t|d;) =+

(see [29] (3)] for the latter). This way, we get the following asymptotic formula
for W; ; when ; is principal,

Fai(1) wi s, (u7)tho(uid) $E>
C(2+0:) b Prys, (wivid) +O< 7

1
while otherwise we get the following upper bound,

WL‘J‘ = 03

1

d;?
Wi,j <<:C€QJ1 .

2
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Eventually, this leads to
My = [[[ 85,6+ D856 + WFE €2 mCah) dndtadsa d

+O ZH_E N A1$1+8 N l‘1+sD
03 D AQ )7

with F'(£1,&2,n) as defined in (5.16)), and with

1 h151h252ulu2 (hl) (hg)
Cs(h) = o e il “1 2
3(h) C(2+461)C(2 + 82) hl%h pareis, Vo " s, s
uy|h1, uzlhs

3 1 “(ﬁW(ﬁ) Yo (d)to (urd)ho (uszd)
(5T ) v o )

@)

One can easily check that C5(1) = Cs, 5,, with Cj, 5, as defined in (5.14)), and that
the arithmetic function

(d,uz2)

Cs(1)
is multiplicative in h. A much more tedious calculation then shows that v3(h)
and s, 5, () indeed agree on prime powers, and hence must be the same function.
As a consequence, our main term has the form

1.1+a A11'1+6 £E1+ED>

Ms = M,
3 O+O<Q§ + D + 1.0

Clearly, the optimal value for D is
D= A0,
and we finally get (5.12]).






CHAPTER 6

Proof of Theorems [1.9] and [I.10

In this chapter we will work out an asymptotic formula for D(z1,z9,71,72),

and prove Theorems [I.9] and

Let wy,ws : [1/2,1] — R be smooth and compactly supported functions satis-
fying

Qu
for some ) < 1. We will look at the sum

_— Zw1<“n+fl)wg(rzn+f2>d(r1n+f1)d(7"2n+f2),

I €2

v 1 v 1
wg)(£)<<— for >0, and /‘wi )(5)‘d£<<ﬁ for v>1,

n

and, assuming that
Lz, fo< '™ and h < rox 702, (6.1)
our aim is to prove the following asymptotic formula for U.
LEMMA 6.1. The sum ¥ can be written asymptotically as
v =M+R,

where M denotes the main term, which has the form

M= fun (P Y (2R ) bty 4 o) logtrae + )

€2

with a quadratic polynomial Ps(&1,&2) depending on 11, 12, f1 and fa, and where
the error term R can be bounded by

1 h|®
R < To(T2$1)2+E(|Q|

T+ (7"2551)0) (6.2)

0 1 1
1 1 4 4
R« ro(r2x1)§+a < ((7“07"17“27 h)x1> (1 4 (rorire, h)i|h| >>’ (6.3)

1 1
Q2 71272 Tot(r1m2)

6 1 1
1 h)7|h|2
R < 7"0(7’21(11)é+5 - + 21 1+ (TOTII% )4|l I ) (64)
Q2 |h| roi(rire)?

Recall that we had set

1
2

7o := min{(r1,72%), (r2,11>)},

and that 6 was defined in (2.8)). Note that Lemma gives a non-trivial result only
when

2.2
ro riTre L oy,

which we will implicitly assume from now on. Furthermore, from the first two
bounds in (6.1)) and the size of the supports of w; and wa, it follows that

Tox1 X T129.

55
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Theorem [1.9|follows immediately from Lemmaby using the first bound (6.2))
for the error term and choosing 2 = 1. In order to prove Theorem from

Lemma [6.1] we choose
2 2 1
r0§7’1§r2§
= 1
Xr13
and use the second bound (6.3)) to show that
2 1 (X %+E
R« (rorlrg,h)9r03+‘9(r1r2)3(g) R (65)
for h satisfying

4 2 40
3 3 2,. 2
(7“07‘17“2, h)h < (7"17‘21) (171> <TO & T2>

03 T1 T

Unfortunately, due to the presence of 6, the possible range for h is weakened consid-
erably in its size, even if we take the currently best value for this constant. We can
improve this slightly, however, by making use of the third bound in Lemma
to show that the bound also holds in the range

(7“17“2)% T % T‘02T‘12’f‘2 46 1 4 5 1
1<> () < (T()’I“l’/'g,h)h<<T0§7“1§T2§.’1?1§_6.
o3 T1 X1

Theorem follows by setting x1 = r1x, x2 = rox and using suitable weight
functions.

1. A decomposition of the divisor function

Before diving into the proof of Lemma [6.1] we want to describe first the de-
composition we will use for the divisor function. Let ug : R — [0, 00) be a smooth
and compactly supported function such that

up(§) =1 for |£] <1, and wue(§) =0 for |£>2,
and set

u1(€) := ug (\/%) and  h(a,b) := uy(a)(2 —uy(b)).

(u1(a) = 1)(ua(b) — 1) =0,

so that we can write d(n), for n < xs, as

d(n) = Z ui(a)(2 —uy (b)) = Z h(a,b).

ab=n ab=n

For ab < x5, we have

This construction was used already by Meurman [33] to treat the binary additive
divisor problem (and originally goes back to Heath-Brown).

It will furthermore be helpful to dyadically divide the supports of the two
involved variables a and b. In order to do so, we choose smooth and compactly
supported functions ux : (0,00) — [0,00) such that

X v 1
suppuXC[2,2X} and ug()(f) <<F for v >0,

and

Zux(f) =1 for &€ (0,00),
X

where the last sum runs over powers of 2. Then we set

hagp(a,b) :== h(a,b)us(a)up(d).
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Back to our sum — we split the second divisor function and use the dyadic
decomposition described above, so that

U=> Uyup,
A,B
where
\I/AB = Z’w1<r1nx—: fl)w2<7"2nx‘2|' fz)d(rer—fl) Z hAB(a,b)
" ab:fz)fLJer
- Y b (1(ab f2) + fl)
abz(};b(ﬁ)
and
JE(@’ b) := wy <T2(ab_h)+fl>w2 (ab>hAB(a, b).
I T2

Note that the variables A and B, which run over powers of 2, satisfy
AB =<1y, A< B and AK 1'2%.

In the following, we have to pay a lot of attention to possible common divisors
between the different parameters, and it will be helpful to define, for i = 1, 2,
T fi h

wi = (14, fi), si:=—, gi:=—, and h:=7rifo— firs, ho:= .
U Us; Uiu2

Now, since the product ab in the above sum must be divisible by us, we can write

EDIEDD Z <au2b>d(2(abgz)+f1>.

U, (U2
£l (a52u2) Lab= 92(52)

Choose a and 59 such that
ad + s289 =1,
so that b in the above sum has the form
b=ags+ son with ne€Z,

and hence

_ s u2 U3 ~ )
Vas = Z f <u§ “ uza(w((m ~ g282) + f2)> d(ri(an — ga82) + f1)
uzle
(a,s2ul)=1
= > > dm)f(ma),
uzluz  m=f1—gari15z (r1a)

a/*
(a,s2u3)=1

with

2 _ + *
f(&a) = wl(i)“& (W)hAB<Zza ;L;Q (r (= f1)+f2>)

Note that the modular inverse 53, which occurs in the congruence condition, is
understood to be mod a. Also note that the support of f(&;a) is given by

supp f(e;a) < r1 and supp f(&;e) =< ;zA’



58 6. PROOF OF THEOREMS AND

and that its derivatives can be bounded by

ovitve 1 Ug
agVl@,,zf(i,a) < o <u;A

while also satisfying

aVlJFVQ 1 Vo
/‘ f(& )’d§<< W(Ug) for 11 >1,v9>0.
1 1

§V1 av2 u§ A

va
> for wvy,19 >0,

2. Use of the Voronoi summation formula

We use Theorem to treat the divisor sums in arithmetic progressions ap-
pearing in ¥ 4. This way we are led to

Uap = Map — 275} 5 + 45 5,
where

Map = 7‘1 Z Z //\fl 92T1527T1a(§)f(£;a) df,

ujluz (a, 82u2) 1

with Af,—gori55,ma(€) defined as in (2.1)), and where
+ — gar152, £m; c)
Bpes Y Y YS Z d(m 2

u2|u2 (a,s2u})= 1c|r1a
[ (12 ) g as

BY (&) :=Yo(§) and B7(€) = Ko(&).
The main term will be extracted from M 4p, but we will postpone this until the
end, and first take care of EﬁB.
We reshape these sums a little bit,

+ 1
= % 2 (=52 2 2 ()
uQ\ug ul|us d ) a,c
c|7‘1a 5| (d,r1)=r} dc:ila
(a,s2u3)=1 1 (a,s2u3)=1

*ZZZ

us|uz

with

rilr (dr132u2) 1(052u2) 1

where we have to replace ¢ by rjc and a by dc, so that

"
ul |uz
rilry (driszuz)=1

with

S(f1 *927’1527im ric) .
Ry X 3 am S b g
(cbguz) ™

FE(;0,m) := L /Bi <47T\/ZT§>f(€;a) d¢.

nri
As a reminder, the modular inverse 53 occuring in the Kloosterman sum is now
understood to be mod dec.

and
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Let

x1° x1° us riA

My = A M= A and A* =

X1 1?192 U d

Regarding F*(rfc;dc,n), we have the bounds

1
)z A* YTz
FT(rid;de,m) < (1 1)2 ( ) )
mz vmax1)
1 y—1
_ 12 A* 2
F~(ridide,m) <« — | —— )
which can be proven using (2.4). With the help of these bounds, it is not hard to
see that the sum over m in Rz can be cut at Moi. After dyadically dividing the
remaining sum, we are left with

_ 5. +m:r*
RipOn:= Y 3 dm U EIRE ),
M<m<2M 1

(6,8253):1
3. Treatment of the Kloosterman sums

Not surprisingly, we would like to treat the sum of Kloosterman sums occuring
in Rﬁ (M) with the Kuznetsov formula. However, in our situation this does not
seem to be possible directly. To deal with this difficulty, we factor out the part of
the variable r; which has the same prime factors as squ3,

* * r*
vi=(r], (s2u3)™), t1:= ;17
and use the twisted multiplicativity of Kloosterman sums,

S(f1 — gor15z, £m;ric) S(fla, :I:ma;v) S(houl,:lzmiQE; ct1)
ric - v ctq ’

Here, all the modular inverses are finally understood to be modulo the respective
modulus of the Kloosterman sum. Obviously, the first factor still depends on ¢, but
here we follow an idea of Blomer and Mili¢evi¢ [7] and use Dirichlet characters to
separate this variable. We define
Soem) = Y xip JBETY)
y(v)
(y,v)=1

where x is a Dirichlet character modulo v, so that by the orthogonality relations of
Dirichlet characters it follows that

S(fich, tmetize) 1

v ¢(v)

> X(et)Su(xm),

x mod v

where the sum runs over all Dirichlet characters modulo v. Hence

REL(M) = —— 3 X(t)RE5(M; ),

pv) 2,
with
Rig(M;x):= Y d(m)S,(x;m) K s(x;m),
M<m<2M
and

S(houlué, tmsqubv?; tlc>
KXB(m; X) = Z

c
(c,s2u3)=1

Y(C)FjE (rie;de,m).

tlc
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Of course it is important to have good bounds for S’U(X;m). Directly using
Weil’s bound for Kloosterman sums, we get

S"U(X7 m) < (f17 m, U)%U%+E7
but this can be improved with a little bit of effort, and the remainder of this section
will be concerned with proving the following improved bound,

PN

Su(x;m) < (fl,m, convd(x)>”8’ (6.6)

where cond(x) is the conducter of x. The sum actually vanishes in a lot of cases, in
particular when f;, m and v have certain common factors, but this result will be
sufficient for our purposes. At this point, we also want to mention that

1 v v 1 v

_ - 1< d(v) < v, 6.7

0 2 ) e P ) (67)
cond(x)=v*

which will be useful later.

In order to prove , note first that Sv(x; m) is quasi-multiplicative in the
sense that, if v = v1v9 with coprime v; and vo, and x = x1 )2 with the corresponding
Dirichlet characters x; (mod v1) and x2 (mod vy), then

Su(x;m) = x1(v2)x2(v1) Sy, (x13m) Sy (x25M).
It is therefore enough to look at the case where v is a prime power v = p’.
Assume first that y = xo is the principal character. For v = p, we have

A 1 y(fix £ mZT P P
SP(X;m):f Z e( ( ! )>_(p( ): § 1_&<<(f17m7p)3
p p p p

z,y (p) z (p)

(z,p)=1 fiztmz=0 (p)

and, for prime powers v = p’, £ > 2, we have

S‘pe(x;m)=l% > e(M)_i Z“)e<y(f1xeilmx))

z,y (p*) p P = (p)y (p b
(z,p)=1 (z,p)=1
1
=#{z ()| frztmzT=0(p")} - 5#{37 )| frztmz=00p""")}
< (flamvpg)'

In the following, we can now assume that x is non-principal. For v = p prime,
this means that x is primitive and hence

S0em =1 Y e H0EEND)

z,y (p) P
(zy,p)=1

_ ;1) Z() X(y)x(flximx)e<zy9>_ll’ 2()) Y

fiztmzT#0 (p) fiztmz=0 (p)

=T(;) > X(fiz+mz)

z (p)
(z,p)=1

<1,

where we have used the fact that both the Gaufl sum 7(x) and the character sum
on the right are bounded by (9(\/13), which is well-known for the former and follows
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from Weil’s work for the latter (see e.g. |24, Theorem 11.23] or [30, Chapter 6,
Theorem 3)).

It remains to look at the case of x having modulus v = p%, ¢ > 2, which
is slightly more complicated. Let x be induced by the primitive character x* of
modulus v* = p*", and set v° := p*~¢". In our sum

Suem =5 3 3 xtwe( M),

w(p) y (p%) P

(’P)l

we parametrize y by

y=1y1 +v*ys, with y; modv* and %o mod v°.

Then
& y1(fix &£ m7) yo(fix £ m7)
Sutam) =1 30 X e HAEED) 57 o(lheS
z(v) w1 (v*) yz2 (v°)
(z,v)=1
-y oy (flximw)>
oot v
= (v) y1 (v*)
(z,v)=1
frztmz=0 (v°)
_ T(X*) — flx +mz
S (UO .
z (v)
(z,v)=1
fiztmz=0 (v°)
We set
0° 1= 7}70 v =v*0° fi o= # and m = L
(flam7vo)’ . ’ b (flamﬁvo) ' (flvrnvvo)7

and the sum becomes

A o TX" — fiz +mz
Spr(sm) = (f1,m,0°) (v*) > X <1 — )
 (9)
frz+mz=0 (3°)

If 9° = 1, we have square-root cancellation for the character sum on the right (see
e.g. [46], Theorem 2]), so that Spe(x;m) < (fr,m,v°).

Otherwise note that both f; and 7 have to be coprime with p, as otherwise
the sum is empty. We parametrize x by

x=uz1(140°2), with 21 mod?°, (z1,9°)=1 and x5 modv*.
In this case we can write T mod ¢ in the following way
T = xT(l —0%xa (1 + 17%2)) mod 7,
and after putting this in our sum, we have
5 T(X") =
S,e(x;m) = (f1,m,v°) e Z Z X*(P(z

z1 (9°) z2 (v*)
fiz1£mET=0 (8°)

where P(X) is the rational function

f1x1v°X2 + 2f1$1X + m

P(X) =
(X) 7°X +1
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If p > 3, we can use |9, Theorem 1.1] to get the bound
> XF(P(x2)) < 1.
z2 (v*)
If p=2 and ©° > 8, we rewrite this sum
v _ o T2\\ _ by x2
> e = 3 v (P(F)) =2 X ¥ (r(3))
za (v*) 2 (2v*) z2 (v*)

so that we can again apply [9, Theorem 1.1] and show that this sum is O(1). Finally,
for the remaining cases 9° = 2 and ©° = 4, we can use [9, Theorem 2.1] to show
square-root cancellation. This concludes the proof of .

4. Auxiliary estimates
We want to use the Kuznetsov formula in the form (2.10) with
q:= t152u§v2, 7= SQU;’UQ, S:=11 §o:=v, m:=houius, 0 :=m.

However, before we can do so, some technical arrangements have to be made. Set

e 7’ \/% n 2 \F |h|
F*(¢;m) :== h(m ri N |h/B< |h>f &4m o\ de,

where h is a smooth and compactly supported bump function such that

1
supph =M and h"(m) < a for v >0,
and
h(m)=1 for m e [M,2M].
We have defined F+(c;m) in such a way that
1 =y [ 4mwy/|mn|
FE(rie;de,m) = —=F* [ —Y——

- ;m) for m e [M,2M).
¢

Note that

1 M|h - x
T r|2 | and Fi(c;m) <<U\/82U;ATTIT‘1$11+E.

We furthermore need to separate the variable m to be able to use the large
sieve inequalities later, and to this end we make use of Fourier inversion,

- 1 -
FE(e;m) = / Go(NGE(c)e(Am)d), Gi(c) := Gl / F*(¢;m)e(—Am) dm,

where

supp F£(e;m) < C :=

3 1
G()()\) = UVy/ SQU%ATTlrlell-i_E min (M, W) .
Eventually, our sum of Kloosterman sums looks like

_S(m, £iiF; 5c) ~ ||
AB X7 /GQ Z X(C)T\/EGf <47T = dA

(c,v*c)=1

Next, we need to find good estimates for the Bessel transforms occuring in the
Kuznetsov formula. For convenience set

_ L [|hM L =
W.fﬁ s and Z.fﬁ x1 M.

Note that due to the assumptions made in (6.1)), it holds that W <« 1.
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LEMMA 6.2. If M < M, , we have

G (it), GE(it) < W2 for 0<t< i,
(?i(:))ﬁ,éf(t),éf(t) < ;ilt for t>0
IfMy < M« MJ, we have, for any v > 0,
G (it), GE(it) < &7 for 0<t< %,
SO ato.cro <2 (2) for 120

PROOF. Except for obvious modifications, these bounds can be proven the
same way as Lemma [3.3] O

5. Use of the Kuznetsov formula

Here we will only look at K} ;(x;m) and we will assume that h > 0, since all
other cases can be treated in essentially the same way.
We use the Kuznetsov formula as explained above and get

Ry, (M:x) = / Go(N)(E1 (M) + Ex(M) + Z5(M)) dA,

where
= Gt [ a+lyhE —\ o)
= p m,oo \/E 2 M )
;(1+|tj|)’”“ cosh(wtj) i ) il )
< Gl 1+t @)
(1, 00V | S (M) dr,
c;gél / (1+ [t~ ( cosh(m")spc’( ) or (M)
2= > G (V= DIk, c0)Vim ) SEUM),
k=K (2), k>k
1<5<0k(q,x)
with

00 = G S e (- ) (m )

) (4t S (v m)e m,mg m 1 m
S0 = s 3 dmE e =2 )z (.1 ) v

SO0 = VE-DT Y dmi e (- m? )i (m ) v

M<m<2M

Assume first that M < M . We divide Z1(M) into three parts:

(M) = )+ D )+ D0 () = Era(M) + B (M) + S (M).

tjgl tj>1 t; exc.
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We use Cauchy-Schwarz on E1, (M), and then make use of Lemma Theorem
and Lemma [2.10] to bound the different factors, so that we get

B (& Snorn) (o)

S

M
KL xim (1—1—~2 q) M*v® Z (f1,m,v°)?

M<m<2M

A* A*
< Iz thf (xlé + ) ,
T v

1 (risaup)®

ENE

where we have set
v

~ cond(X)’
We split up =11, (M) into dyadic segments

STy = Y ) (“*'”Dg m(rh,ooN%)zg”(M),

2o (L IED7\ V/eosh(rt;)

o

and in the same way as above we can show that

1 A* A*
Elb(M, T) < ’Uoél‘lshg .1312 + = . 1]
37, v4(r152u2)5

which leads to the same bound for Z1,(M) as for Z1,(M). Finally, for Z1.(M), we
get

1 A* A*
Elc(M)<<Uoé$16(T2$1)0* $1%+ﬁ )
e vi(risau3)?
and all in all, we end up with
/Go M)d\ < v 211(7“21‘1) sH0+e, (6.8)

In exactly the same manner, but using Lemma instead of Lemma [2.10] we
can also get the bounds

1 A* A* * h lhl
E1a(M), Erp(M) < 072 21" (1515 + ) (1 ’ W)’
€T v * * *

1

0 A* A* " T
Z1e00) < ooyt () A (g AT ) (g (iren AT )
h * >'<)§ ( *
so that

0 ih1
/Go 121 (M) d) < v 211(7‘23:1) 3te (7‘2131> <1+(r17‘2v,h)h> (6.9)

Furthermore, since
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we can make use of Lemma here, which means that concerning =;.(M) we also

have the bound
|pj<m,oo>|2m( ) : =
= (M) < | Y P 2% \
1c(M) (tjzg; cosh(rt;) t;<1
* 0 Ax * * % 1
ore (riran, ITAT Ly AT N () (e TRE Y
(ri7rov)? o1 v (risyus)? (rirz)2vs
and hence
0 1,1
! h h)ih
/GO( = (M)dmvow(%);ﬁ(m(m‘;%)) g (2o, WTRT Y
r1°TroU (7'11"2)51;2
(6.10)
Next, assume My < M < M. We split Z;(M) into three parts as follows,

Ei(M) =D () D )+ D).

t;<Z ti>7Z t;j exc.

Nl

1
< ’()021'1

The sum over the exceptional eigenvalues causes no problems in this case, as the
respective Bessel transforms are very small. The rest can be treated in the same
way as above, and we get the bounds

1 v, hY
/GO(A)El(M) d\ < UOQU(r2x1)5+E§, (6.11)
1 1 1 1 % %
/GO(A)El(M)d/\<<v°§v(r23:1)5+5—1 RSy SGLECNO LT PP
Q2 (rire)zvi

The same reasoning applies similarly to Z3(M) and E3(M), the main difference
being that we do not have to worry about exceptional eigenvalues at all. In the end

we get from and ,
hO

Rin(:20 < o hotrsan) < (1 4 ),
2
from and (6.12),
: L m\’ )ik
ey (rirg)zv
and from and (6.12)),
3 1 0 h int
R (M) <€ v° Fo(rym) $2 (1 + (TQ;I) (1 + (7’17“2“)414>>

0z (ri79) 207

With the help of (6.7)), these bounds eventually lead to (6.2)), (6.3) and (6.4]).

6. The main term

N

2

The only thing left to do in order to prove Lemma [6.1] is the evaluation of the
main term. After summing over all A and B, it has the form

S UD DR YR CYCRE:

Us |U
22 (4 spug)=1

/w1<7’1§g;f1>w2(7"2§+f2> 3 M6 u3) | de, (6.13)

*|u2
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with

My(&uz) = > Afl7““’252’“"(“5+fl)h(“2a 522 (r25+f2>)

— a u
(a,s2u3)=1

Using Mellin inversion, we can write the last sum as
1 «
M, (&, u3) = —/ h(s;€)Z(s;€)ds, o >0, (6.14)
2mi (o)
where h(s; ) is the Mellin transform

h(s;€) = /0 mh(“” ;L;a(rszrfz)) *“Lda, Re(s) >0,

u3

and where the function Z(s;¢) is defined as the Dirichlet series

A 719252 ra(rlg'i_fl)
Z(s:) =y ~hone pRERe Re(s) > 0.
(a,s2u3)=1
Our plan is to move the line of integration in (6.14) to 0 = —1 4 ¢, so that we

can use the residue theorem to extract a main term. Using partial integration, a
meromorphic continuation of iL(S; £) can easily be found, but for Z(s; ) the situation
is not quite as obvious.

We write

¢ — 719252
Mi—rgrsmma(Tié+ f1) = As(ré+ f1) Y %,
d|7‘1a

with As(ri€ + f1) as defined in (2.2). Now we separate the part of r; which shares
common factors with squj from the rest by setting

. r
vi=(ry, (s2u3)™), tp:= ;1,
so that
c 005 ca(fr) ca(hous)
3 el nem) (D) (2 ),
d\’rla dl’U d\tla
and hence

ca(f1) . "
Z(s;€) = As(ri€ + f1) (Z ;1+2> Z a11+5 Z dc(lfll?&-él)'

d\tla

a
(a,s2u3)=1
The two right-most sums can be transformed to

1 Cd(houl) cd(h0u1)(d,t1)~ .
Z a1+sz d1+o = Z TZ(s,d),

@, dltia d
(a,s2u3)=1 ! (d,sau3)=1

with

— (d,t1)* 1
Z(sd) = C(1 4 )" pg[u;(l p1+5>~

This is a meromorphic function, defined on the whole complex plane, which means
that the desired meromorphic continuation for Z(s;&) can be given by

g calhour)(d tr) 5
Z(Séf)=A6(ﬁf+f1)< ;lff?) Y s s
(

dlv d,souy)=1
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Hence
ca(f1) calhou)(d; 1) 7
M (8, u3) = As(ri& + f1) (Z Zlﬁs) zd: d2+9 (g, d) ,
d|v (d,s2u3)=1
with X
1°(¢,d) = 5 ()h(s;f)Z(s;d)ds.

The Mellin transform fL( ;€) has, at s = 0, the Taylor expansion
h(s;€) == +log(7"2€+f2) + QIOg* +O(s),

while that of Z(s;d) is given by

Z(s;d) = (i ot ;p) ’pzo L (1 - pip) +0(s).

plsaug

All in all, the residue of their product at s = 0 is

Res (h(ss6)2(s5) = By + 1) (12) T (1- 1),

plsauj
We now move the line of integration to o = —1 + ¢,
0 (d,t1)P 1 dr—¢
I (f,d) (T2§+f2)(u2> dr H <1_p1+p +0 :1:2%_5 )
plsauj

which leads to

M, (&, u5) = As(ri& + f1)Ap(r2€ + fo) My (€, u3) + O(;2T>7
22

M6, u) : ( ) (Z Cddlff;)

with

Il (1 - p11+”>

plsaul

g clhon)(d )

d2+d+p
(d,s2uj3)=1

An elementary but quite tedious calculation shows that this product can be trans-
formed in such a way that we can write

Z My (&, u3) = Cs p(r1, 72, f1, f2),

u;|u2
where
ur g uk P
Coplrira fiof2) = 3 (;) (uz) s (510 (5208154 p (5103 5203),
uy |uq
u%luz
with (ho)
1 Cqalho
Ya(n) = H(l — pl+a> and Y, (n) = Z 2ro

pln (d,n)=1
After a look back at (6.13)), we finally see that My has the form

3+e
M0:M+(9<I22 )
T2
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with
M= / " (“’5; f 1)11)2 (’"25 -/ 2)P2(10g<nf + 1), log(raé + f2)) de,

T2

where P5(&1,&2) is the quadratic polynomial defined by

Ps(log &1,10g&2) == As(€1)A,(§2)Cs,p(11, 72, f1, f2).
This concludes the proof of Lemma [6.1]
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