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1. General Introduction 

Global Climate Change 

Human activities are changing the planet and one of the consequences is climate change, 

which can be defined as changes in climatic global conditions that involve changes in 

temperature, precipitation and frequency of extreme events such as floods and droughts 

(Franks & Hoffmann 2012).   

During the last century, economic and population growth were the most important 

causes of an increment in carbon dioxide (CO2) emissions, mainly due to fossil fuel 

combustion (IPCC 2014). Furthermore, the concentration of other green house gases such as 

nitrous oxide (N2O), methane (CH4), hydrofluorocarbons and perfluorocarbons, has increased 

considerably in the atmosphere, especially during the last century (Hartmann et al. 2013). It 

is considered that these green house gases are the main cause of the observed warming in the 

20
th

 century, leaving little doubt that human activities are altering the climate (IPCC 2014).  

Since the late 19
th

 century, global mean temperature has been increasing, being the first 

decade of the 21
st
 century the warmest. This trend towards warming has been observed in 

both the atmosphere and the ocean, and an increment in the temperature of 0.85ºC over the 

period between 1880-2012 has been estimated (Hartmann et al. 2013). Related to this, it has 

been observed on a global scale that the number of warm days has increased while the 

number of cold days has decreased (IPCC 2014). Also, rising temperatures have caused a 

reduction in the amount of ice cover and spring snow cover in the Northern hemisphere, as 

well as a reduction in the permafrost (Dore 2005; IPCC 2014). Furthermore, an increment in 

sea level has been observed (IPCC 2014).  

The hydrological cycle has also been affected by increasing temperatures, leading to 

changes in precipitation. First of all, the probability of precipitation falling as rain rather than 

snow increases, something that has been observed principally in spring and autumn in the 

Northern hemisphere. As a result, snow pack area is reduced, and since it constitutes an 

important source of freshwater in spring and summer as snow melts, less water is available 

during those seasons (Trenberth 2011). Second, changes in the distribution of precipitation 

were also observed during the 20
th

 century, and even though they exhibit high spatial and 

temporal variability, some tendencies were observed: precipitation increased in North 

America, Eurasia and Argentina, while a reduction was observed in southern Europe, the 

Mediterranean, Africa and the tropics (Dore 2005; Trenberth 2011).  
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However, the most notorious effect of a warmer climate is the occurrence of more 

extreme events that increment the risk of floods and droughts. Increasing temperatures result 

in more water vapor, and thus, more moisture accumulated in the atmosphere, favoring the 

occurrence of heavy rain. During the last century, more heavy precipitation events and 

consequently flood incidents were observed (Trenberth 2011), and in some regions of the 

world, the increment in precipitation was caused by more heavy precipitation (Dore 2005). 

On the other hand, warming temperatures also increased drought occurrence and severity, 

since drying of land surface is enhanced as moisture evaporation is accelerated. During the 

last century, more droughts were caused by increased evapotranspiration due to higher 

temperatures and changes in precipitation distribution, being Africa, the tropics and 

subtropics the most affected regions (Trenberth 2011). In general, the global trend indicates 

that wet areas are becoming wetter and dry areas are becoming drier (Dore 2005). 

The rising temperatures, changing patterns in precipitation and extreme events that 

occurred during the last century are the signatures of global climate change. The emission of 

green house gases is the principal responsible for the warming of the planet, and different 

emission scenarios were evaluated by the Intergovernmental Panel on Climate Change 

(IPCC) for the 21
st
 century: one stringent mitigation scenario (RCP2.6), two intermediate 

scenarios (RCP4.5 and RCP6.0) and one scenario with very high emissions of green house 

gases (RCP8.5). Even though the magnitude of the projected climate change depends on the 

scenario considered, under all of them surface temperature is projected to rise over the 21
st
 

century, and this increment shows a strong relationship with emissions of CO2. This will 

leave ecosystems and human systems more vulnerable to heat waves, droughts, floods, 

cyclones, wildfires, ocean acidification and rising of sea level (IPCC 2014) 

 

Climate change in Europe 
 

Temperature in Europe has been increasing, showing an increment of 1.3ºC in the first 

decade of the 21
st
 century compared to the last half of the 19

th
 century. However, the 

observed warming has been different over the continent both spatially and temporally: 

Northern Europe is getting warmer particularly in winter, whereas Southern Europe is getting 

warmer mainly in summer, and climate projections under all emission scenarios predict that 

this trend will continue. Likewise, since 1950, hot days, tropical nights and heat waves have 
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increased in frequency, whereas cold spells and frost days have been reduced. This tendency 

will continue during this century (Kovats et al. 2014) 

During the 20
th

 century, annual precipitation showed an increment in the north and a 

decrease in the south of Europe (Dore 2005), and it is projected that this trend will continue 

during this century (Kovats et al. 2014). Also, a result of warming, precipitation in winter 

will be more likely rain rather than snow, especially in mountainous areas (Kovats et al. 

2014). Furthermore, extremes events will be intensified: flood events resulting from heavy 

precipitation will be more likely to occur in the north and northeast of the continent; and 

droughts will be more likely to occur in Central and Southern Europe and the Mediterranean 

(Lehner et al. 2006; Kovats et al. 2014). Even in regions where it is expected an increase of 

summer precipitation, soil moisture can be lost due to increased evapotranspiration as a result 

of warmer temperatures, and this may lead to more severe hydrological droughts (Kovats et 

al. 2014). 

 

Climate change in Switzerland  
 

In the last century, an increment in temperature of 1.2 °C has been observed in Switzerland, 

and also warmer and drier summers have become more common since the 1970s (Beniston & 

Goyette 2007). By the end of the 21
st
 century, it is predicted not only an increment of 4°C in 

minimum and maximum temperatures, but also an increment in the frequency of intense and 

longer lasting summer warm periods and heat waves (Beniston & Goyette 2007; CH2011 

2011). Additionally, since 1990s it has been observed that the persistence of cold events such 

as cold winter days and nights has been decreasing, a tendency that is expected to continue 

through the 21
st
 century (Beniston & Goyette 2007; CH2011 2011). Correspondingly, a shift 

in precipitation from snow to rain is expected during winter, while in summer the amount of 

rain is projected to decrease, affecting mainly the Alpine region and making dry conditions 

more likely to occur (CH2011 2011).  

 

Effects of climate change on biodiversity 
  

Climate change is affecting biodiversity in complex ways. Changes in the distribution, 

abundance, phenology, and migration patterns of different species have been observed. Also, 

interactions among species have been affected, e.g. plant pests and diseases, disease vectors 
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and hosts (IPCC 2014; Kovats et al. 2014). Likewise, some negative effects have been 

observed on crop health and productivity, due to altered disease epidemiology and host 

resistance (Chakraborty et al. 2000). For the 21
st
 century, it is projected that crops such as 

wheat, rice and maize will be affected because of climate change, having an impact on food 

security (IPCC 2014). 

 Forest trees are being affected by climate change in several ways.  First, rising 

temperatures are causing changes in phenology. The beginning of growth in spring occurs 

when a determined chilling sum is met in winter, followed by a determined heat sum in 

spring; therefore, climate change may delay the satisfaction of chilling requirements in winter 

or accelerate the satisfaction of heat sum requirements in spring (Aitken et al. 2008). Indeed, 

it has been observed that phenological traits such as flowering are beginning earlier, 

increasing the risk of frost floral damage and generating mismatches between plants and their 

pollinators (Schröder et al. 2006; Anderson et al. 2011; DeLucia et al. 2012), which could 

affect the reproductive synchronicity among populations and long distance gene flow via 

pollen (Aitken et al. 2008).  

Second, changes in precipitation patterns that increase the likelihood of extreme events 

such as floods and droughts, will likely affect forests survival. Even in regions of Europe 

where is projected an increment in summer precipitation, soil moisture can be lost due to 

increasing evapotranspiration rates as a result of warmer temperatures, leading to more severe 

hydrological droughts (Kovats et al. 2014). During the growing period of forest trees, water 

supply has an important influence on the vitality, growth and organic matter production of the 

forest. Water deficiency during warm months combined with high evapotranspiration can 

restrict forest growth and survival (Führer et al. 2011). For example, in the Iberian Peninsula 

an increment in defoliation and tree mortality in the last two decades as a consequence of 

drought has been observed (Carnicer et al. 2011).  

Third, the interaction between forest trees and other species is being altered. Besides 

the mismatches observed in the interaction between plants and their pollinators (Schröder et 

al. 2006; Anderson et al. 2011; DeLucia et al. 2012), interactions between forest trees and 

ecto-micorrizal fungi and insects is being affected, causing changes their diversity and 

abundance (Swaty et al. 2004; Trotter et al. 2008; Stone et al. 2010). Thus, climate change 

will very likely affect forest structure, composition, distribution and productivity, which in 

turn will affect other species that depend on forests to survive (Allen et al. 2010; Zhao & 

Running 2010; Crookston et al. 2010; Chmura et al. 2011). 
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Biology and distribution of European beech 
 

European beech (Fagus sylvatica L.) is one of the most important forest trees in Europe. It is 

a deciduous and monoecious tree that usually reaches 30-40 m tall and has a typical life span 

of 150-300 years (Houston Durrant et al. 2016), reaching sexual maturity at approximately 40 

years of age (Packham et al. 2012) and maintaining a high growth rate until late maturity 

(von Wuehlisch 2008). Pollen dispersion occurs by wind, while seed dispersion occurs 

primarily by gravity and secondary by animals such as rodents and birds (Jensen 1985; 

Nilsson 1985; Perea et al. 2011; Packham et al. 2012). At sites with favorable environmental 

conditions, European beech is the dominant species due to its high competitive ability given 

by its efficient use of light and shade tolerance, forming a dense canopy under which beech 

seedlings are more likely to outcompete seedlings of other species (Jahn 1991; von 

Wuehlisch 2008)   

F. sylvatica is broadly distributed over Europe (Fig. 1-1), extending from southern 

Scandinavia in the north to Sicily in the south, and from Spain in the west to northwest 

Turkey and eastern Poland in the east (Packham et al. 2012; Houston Durrant et al. 2016). Its 

distribution is more concentrated in Central Europe, where more favorable environmental 

conditions exist (Bolte et al. 2007) In Switzerland, F. sylvatica is the second most important 

tree species, covering a wide range of the forested area and being predominant in the sub-

montane and lower montane range (Weber et al. 2010).  

  

               

Fig. 1-1 Distribution map of F. sylvatica (blue shaded) in Europe. EUFORGEN 2009, 
www.euforgen.org 

As for other species of beech, the distribution of F. sylvatica depends mainly on 

temperature and moisture availability (Fang & Lechowicz 2006), avoiding extreme 
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conditions of temperature and precipitation (Jahn 1991). The average annual temperature at 

the southern and northern limit of beech distribution is 13.5 ºC and 6.6 ºC, respectively; 

whereas annual precipitation has an average of 906 and 1272 mm at the southern and 

northern limit of distribution, respectively (Fang & Lechowicz 2006). Low temperatures at 

the northern and eastern limits of distribution, as well as in high altitudes, are the limiting 

factor for the growth of beech, because it is susceptible to extreme winter conditions and to 

spring and autumnal frosts (Jahn 1991; Packham et al. 2012). On the other hand, at the 

southern limit of distribution and in low altitudes water deficit is the limiting factor (Jahn 

1991). The combination of low precipitation and high temperatures creating dry conditions 

can limit the growth of beech, unless the low precipitation is compensated for by high soil 

moisture or frequent fogs (Jahn 1991).  

European beech has low soil nutrient requirements (Jahn 1991). Its optimal growth is 

reached in humid soils located on calcareous or volcanic rocks; however, it can grow on 

many types of soil with a pH between 3.5 and 8.5, avoiding soils with deficit or excess of 

water and too rocky sites or very dense soils where the roots cannot penetrate easily (Jahn 

1991; Houston Durrant et al. 2016). In general, the more favorable the climate is for 

European beech, the less is its soil specificity (Jahn 1991). 

 

Impact of climate change on European beech 
 

As a consequence of warming temperatures, changes in the phenology of this species have 

been observed, registering an advancement of spring bud burst parallel with the global 

climatic trend (Badeck et al. 2004). This increases the probability of late frost damage, 

affecting especially the survival of seedlings and saplings (Packham et al. 2012). Besides, the 

performance of F. sylvatica is significantly influenced by temperature and moisture 

availability, growing more vigorously where summer temperatures and water stress are lower 

(Packham et al. 2012). Thus, the predicted increment in frequency and duration of summer 

droughts under climate change will also likely have an effect on the survival and distribution 

of this species (Gärtner et al. 2008; Kramer et al. 2010).  

Severe drought periods may be harmful for European beech. The root system of this 

species tends to be shallow, making it susceptible to drought when compared to coniferous 

stands (Packham et al. 2012). Compared to other European forest tree species, it has been 

found that F. sylvatica is very sensitive to drought (Köcher et al. 2009), reducing 
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significantly its growth with increasing drought stress conditions (Scharnweber et al. 2011). 

Furthermore, important physiological functions such as leaf conductance, photosynthetic 

activity, stem hydraulic conductivity, fine root vitality and nutrient uptake are sensitive to 

drought in beech (Leuschner et al. 2001; Geßler et al. 2007; Milad et al. 2011). Thus, under a 

climate change scenario with more frequent droughts, F. sylvatica could be overcompeted by 

more drought-tolerant trees such as Quercus petraea and Pinus sylvestris (Geßler et al. 2007; 

Friedrichs et al. 2009), leading to a reduction in its abundance and changes in its distribution. 

Simulation studies project that F. sylvatica could lose nearly 29% of its habitat under climate 

change, with a population reduction in the south and expansion in the north, and a shift in 

distribution towards higher elevations (Kramer et al. 2010; CH2014-Impacts 2014).  

Despite its susceptibility to drought, it has been suggested that populations of European 

beech from dry sites could be more drought-tolerant than populations from wet sites. For 

example, Peuke et al. (2002) studied the response to drought treatment of seedlings from 

populations with different amount of precipitation. They found that the water potential and 

transpiration rates of seedlings from dry habitats were less affected by drought; furthermore, 

a low concentration of osmoprotectans such as proline and of the hormone ABA was found in 

these seedlings (Peuke et al. 2002). Additionally, studies on marginal populations from the 

southern and north-eastern limits of distribution, considered to represent dry conditions, have 

shown that seedlings from those sites have higher root/shoot ratio under drought conditions, 

which may facilitate access to soil water (Rose et al. 2009); also, their growth is less affected 

by drought (Thiel et al. 2014). Similar results have also been found on adult trees. In the 

typically xeric Mediterranean environment occurring in Greece, beech trees did not show 

signs of drought stress in physiological parameters such as leaf water potential and carbon 

isotopic composition during a three year period including the year 2003, one of the driest and 

hottest years registered for Europe that affected beech in central Europe (Fotelli et al. 2009). 

Furthermore, dendroecological data also indicate that populations from the dry distribution 

limit are better able to cope with dry conditions, since they exhibit higher tree-ring growth 

and are less sensitive to drought than populations at mesic sites (Weber et al. 2013).  
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Genetic variation and differentiation  
 

Genetic studies on beech using different genetic markers such as isoenzymes, RAPDs, 

AFLPs, microsatellites and SNPs, have found that this forest tree species is characterized by 

high genetic variability (Sander et al. 2000; Emiliani et al. 2004; Jump & Peñuelas 2007; 

Kraj & Sztorc 2009; Pluess & Weber 2012; Müller et al. 2015a). As for other forest trees, 

this high genetic variability is explained by a combination of ecological and life history traits, 

such as long life, outcrossing breeding system, wide pollen dispersal and large geographic 

range of distribution (Hamrick et al. 1992).  

Low to moderate genetic differentiation among populations is another characteristic of 

F. sylvatica. This has been found in different studies across Germany (Sander et al. 2000; 

Rajendra et al. 2014; Müller et al. 2015a), Italy (Paffetti et al. 2012), France (Csilléry et al. 

2014) and other parts of Europe (Buiteveld et al. 2007). Since F. sylvatica is mainly an 

outcrossing tree species, this low differentiation can be explained by high gene flow among 

populations through pollen dispersal. Indeed, pollen immigration rate has been estimated to 

be about 75% (Oddou-Muratorio et al. 2011; Piotti et al. 2012), and pollen dispersal can 

cover thousands of kilometers, from Germany and North Italy to Catalonia in Spain 

(Belmonte et al. 2008). Even though seed dispersal can cover shorter distances than pollen 

dispersal, gene flow through seeds can also contribute to low genetic differentiation. A 

immigration rate of about 20% has been found for seeds (Oddou-Muratorio et al. 2011), and 

seed dispersal of 1400 and 3000 m has been reported (Kunstler et al. 2007). Although 

primarily seed dispersal occurs by gravity, accounting for dispersion few meters away from 

the mother tree (Millerón et al. 2013), longer distances can occur by birds such as nuthatches 

(Sitta europaea), great tits (Parus major) and jays (Garrulus glandarius) (Nilsson 1985; 

Perea et al. 2011).  

The investigation of local spatial genetic structure in beech has shown that exists strong 

family structure up to distances of 20-110 m (Vornam et al. 2004; Jump & Peñuelas 2007; 

Chybicki et al. 2009; Piotti et al. 2013), meaning that closer individuals are more genetically 

related. This is attributed to the gravity dispersal nature of beech seeds, which are released 

under the canopy of the mother tree. Using genetic markers for parentage analysis, it has been 

possible to determine that within stands the range of seed dispersal is between 40-50 m 

(Millerón et al. 2013; Bontemps et al. 2013), with a mean of 11m (Oddou-Muratorio et al. 

2011).  
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Since F. sylvatica is one of the most important species in Europe, and morphological 

and physiological data indicates that that beech populations in dry areas cope better with 

drought, there has been a great interest in the identification of genetic variation underlying 

adaptation to changing environmental conditions. Using AFLPs, genetic differences have 

been found between beech populations growing in sites with different water availability 

(Pluess & Weber 2012). Recently, the development of SNP markers in climate-related 

candidate genes has been reported (Seifert et al. 2012; Lalagüe et al. 2014; Müller et al. 

2015b), and associations between those SNPs and important climate related traits, such as 

bud burst (Müller et al. 2015a), elevation (Csilléry et al. 2014), temperature, precipitation 

and drought, have been detected (Pluess et al. 2016). However, much remains to be known 

about the genetic adaptive variation in F. sylvatica and its implications for the adaptation of 

this important species to climate change.  

 

Neutral and adaptive genetic variation 

Neutral Genetic variation 
 

Neutral genetic variation is genetic variation that does not have an effect on fitness, and thus, 

is selectively neutral, being influenced by mutation, gene flow and genetic drift. Neutral 

genetic variation is used to study processes like gene flow, migration and dispersal 

(Holderegger et al. 2006), and also for identification of species and management units in 

conservation (Hedrick 2001). However, it provides little insight into local adaptation and 

evolutionary potential (Kirk & Freeland 2011). Among the existent molecular markers, 

microsatellites are the most commonly used for the study of neutral genetic variation 

(Holderegger et al. 2006; Kirk & Freeland 2011) 

Microsatellites, also known as simple sequence repeats (SSRs) or short tandem repeats 

(STRs), are sequences of 1-6 nucleotides repeated in tandem (Haasl & Payseur 2013). SSRs 

are very polymorphic, presenting multiple alleles mainly as a result of variability in length 

i.e., variability in the number of repetitions, rather than variation in sequence (Ellegren 2004). 

This high genetic variability is due to very high mutation rates when compared to point 

nucleotide mutations in coding regions (Bhargava & Fuentes 2010). SSRs are widespread in 

both prokaryotes and eukaryotic genomes (Bhargava & Fuentes 2010). They are mainly 

located in non-coding regions, and thus, assumed to be neutral and referred to as genomic 

SSRs (Ellegren 2004; Holderegger et al. 2006). However, SSRs can also be found in coding 



 10 

regions, and thus, could be subject to selection (Ellis & Burke 2007). In plants, SSRs are 

found only in a low percentage of genes (Varshney et al. 2005), and they are mainly obtained 

from expressed sequence tag databases (EST-SSRs).  

 

Adaptive genetic variation 
 

Adaptive genetic variation is the genetic variation that has an effect on fitness and thus, is 

subject to natural selection. Like neutral genetic variation, adaptive genetic variation is also 

affected by neutral processes such as mutation, genetic drift and gene flow; however, the 

effect of selection is stronger and overpasses the effect of neutral processes (Holderegger et 

al. 2006). The study of genetic adaptive variation is important for conservation purposes, 

because it is directly involved in the response to environmental changes (Hedrick 2001; 

Hoffmann & Willi 2008).  

Single nucleotide polymorphisms, or SNPs, are valuable markers for the study of 

genetic adaptive variation in plants (Gailing et al. 2009). A SNP is a single base pair change 

that is variable across the population and whose frequency is at least 1% (Foulkes 2009). 

Even though SNPs are usually biallelic mainly because of low mutation rate, and thus, have 

low polymorphism, this is compensated for by their high frequency in the genome: in 

humans, it has been determined that there is a SNP every 1331 bp. In coding regions, SNPs 

are the most common polymorphism and the most likely responsible for phenotypic variation 

(Vignal et al. 2002). Indeed, several SNPs within a gene are considered in studies using a 

candidate gene approach for the detection of adaptive genetic variation.  

 

Approaches to detect adaptive variation 
 

A locus can be considered adaptive if it has an effect on a trait with functional importance 

that is known or suspected to be under selection, or if it shows signatures of historical 

selection (Barrett & Hoekstra 2011). Different approaches can be used to detect genetic 

adaptive variation. On the one hand, the bottom-up approaches aim at identifying loci 

showing signatures of selection in populations from different environments. Loci showing 

signatures of selection are identified by high levels of genetic differentiation compared to 

neutral expectations, i.e., outlier loci, or by their association with environmental variation 

(Barrett & Hoekstra 2011; Rellstab et al. 2015). On the other hand, top-down approaches take 
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traits that are known to be different between environments and aim at detecting the genetic 

variability underlying those traits. Genome wide association studies (GWAS) and 

quantitative trait locus (QTL) are top down approaches (Barrett & Hoekstra 2011).  

For the detection of adaptive genetic variation, it is recommended to combine several 

approaches since they complement and support each other. Thus, if a locus is detected by 

several approaches, then the locus is very likely to be under selection and consequently, the 

rate of false positives is also reduced (Rellstab et al. 2015). 

 

Outlier approaches 

 

Population genetic structure is defined as differences in genetic variation among populations 

(Hedrick 2005). FST is the most common index to estimate population differentiation, and can 

be defined as the probability that two genes within a population share a common ancestor 

within that population (Beaumont 2005). 

Genetic differentiation can arise due to neutral processes as genetic drift, gene flow and 

mutation (Rellstab et al. 2015). However, natural selection is also expected to change allele 

frequencies among populations, and thus, influence the amount of genetic differentiation. 

Lewontin & Krakauer (1973) were the first in propose a test to distinguish loci showing 

signatures of selection based on FST. They reasoned that the expected amount of 

differentiation at different loci should be the same because of the shared demographic history 

experienced by those loci. Thus, loci in which different alleles are selectively favored in 

different populations should exhibit larger allele frequency differences than do loci with 

purely neutral alleles. In contrast, loci that are subject to balancing selection should have a 

lower level of genetic differentiation than neutral loci (Beaumont 2005). Loci showing 

significantly higher or lower genetic differentiation than expected under neutrality are called 

outlier loci, and are candidates to be under selection (Antao et al. 2008).  

Nowadays, there are several approaches based on Lewontin and Krakauer’s test; all of 

them are based on the idea that demographic factors affect the genome in a similar fashion 

while selection effects are locus-specific. However, one of the drawbacks of outlier 

approaches is that they can produce false positives, since demographic effects can be 

confounded with selection (Schoville et al. 2012; Vitti et al. 2013). To overcome this 

problem, outlier tests incorporate specific assumptions about demographic history (Antao et 

al. 2008; Foll & Gaggiotti 2008; Excoffier et al. 2009). Additionally, to avoid skews in the 
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estimation of FST that could lead to false positives or false negatives, it is convenient to use a 

large number of markers (Nielsen 2005; Beaumont 2005).  

Other drawback of outlier tests is that they have little power to detect subtle differences 

in allele frequencies, as occurs in the presence of high gene flow counteracting selection or in 

the case of polygenic additive effects (Rellstab et al. 2015). Besides, even though outlier tests 

identify loci that could be under selection or linked to loci under selection, they do not 

provide insight into the environmental factors that cause selection (Schoville et al. 2012; 

Rellstab et al. 2015)  

 

Phenotypic Association Analysis 

 

According to Barrett & Hoekstra (2011), an adaptive allele is an allele that has an effect on a 

phenotypic trait and produces an increment in fitness. Phenotypic association studies test for 

associations between phenotypic traits and allelic variation at many loci (Anderson et al. 

2011); they consider the genotype as the predictor variable and the phenotypic trait as the 

dependent variable (Foulkes 2009).  

Depending on the approach used, association analysis can be classified into two types: 

on the one hand, genome wide association studies (GWAS) seek to identify causal variants 

throughout the genome, analyzing hundreds of thousands of SNPs. On the other hand, 

candidate gene approaches use SNPs within a candidate gene whose function is known or 

suspected to affect the trait of interest (Balding 2006). One of the advantages of a candidate 

gene approach is that they provide a direct link to particular candidate genes, and thus, they 

are less demanding in terms of the number of markers required (Ingvarsson & Street 2011; 

Franks & Hoffmann 2012). However, this also makes it a limited approach, because it is 

restricted to genes thought to be involved in the trait of interest and may ignore other genes 

that could be of relevance or nonidentified candidate genes (Ingvarsson & Street 2011). 

The power of phenotypic association analysis to detect an association between a SNP 

and a trait depends on the phenotypic variance explained by the SNP. The phenotypic 

variance is determined by how strongly the two alleles differ in their phenotypic effect i.e., 

their effect size. Some traits are controlled by a small number of loci with large effect sizes. 

Other traits are controlled by many rare alleles, each having a large effect on the phenotype, 

or by many common alleles with a small phenotypic effect (Korte & Farlow 2013). One of 

the limitations of association analysis is their lack of power to detect loci with small effect 
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size or with low allele frequency; to overcome this problem, large sample sizes are 

recommended. In humans, most analyses require several thousands of individuals to detect 

associations, since a large number of small effect loci are found (Pearson & Manolio 2008; 

Korte & Farlow 2013). 

Since association approaches are population based, they need to control for population 

structure: false positives may occur when phenotypic variation for the trait of interest 

overlaps with patterns of population structure (Anderson et al. 2011; Brachi et al. 2011). 

Therefore, even loci that are unrelated to the trait will show association because of the 

confounding effects of population structure (Ingvarsson & Street 2011). Relatedness among 

individuals is another confounding factor that could lead to false associations. This is because 

related individuals share alleles, causing a higher correlation of the phenotypic trait among 

individuals from the same family (Foulkes 2009). Currently, there are mixed models that 

account for both population structure and genetic relatedness to avoid false positives in 

association analysis (Korte & Farlow 2013). 

 

Environmental Association Analysis 

 

The basic assumption of environmental association analysis (EAA) is that natural selection 

along an environmental gradient generates changes in allele frequencies (Schoville et al. 

2012). Only loci under selection show changes in allele frequency, whereas neutral loci do 

not show any change because they are not affected by natural selection (Holderegger et al. 

2010). Thus, the goal of EAA is to identify associations between allele frequencies and 

environmental variables (Rellstab et al. 2015). An advantage of EAA is that they are more 

sensitive to detect subtle changes in allele frequencies caused by weak selection, as in the 

case of polygenic traits or under high gene flow (Stephan 2016). Besides, EAA incorporate 

directly the environmental variables assumed to be responsible for selection (Schoville et al. 

2012). However, a limitation is the coarse spatial resolution of current climate data sources 

and their integration only over a certain period of time, ignoring small scale heterogeneity 

and leading to spatial and temporal interpolations (Rellstab et al. 2015) 

Like outlier and phenotypic association approaches, false positives may occur in EAA 

when there is population structure or isolation by distance. This is because covariation of 

geographic distances and environmental gradients usually occurs, and due to restricted gene 

flow and genetic drift, allele frequencies at neutral loci will randomly change with the 
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distance and thus, will change indirectly with the environmental gradient (Holderegger et al. 

2010). Therefore, it is important to correct for neutral genetic structure or spatial 

autocorrelation, because correcting for both of them could be very conservative and lead to 

false negatives (Schoville et al. 2012; Rellstab et al. 2015). Among the existing methods to 

detect EAA, the mixed effects models are powerful because they control for the effects of 

neutral genetic structure treating allele frequencies as response variables, environmental 

factors as fixed factors and neutral genetic structure as a random factor (Rellstab et al. 2015) 
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Objectives 
 

The present study aims to investigate the genetic basis of adaptation of European beech to 

different environmental conditions using a candidate gene approach. For this purpose, beech 

populations along precipitation gradients in Switzerland were selected. Samples of adult trees 

and saplings were collected, and the saplings were additionally subjected to a controlled 

drought stress experiment.  

 

The main objectives of the present study are: 

 

 to assess genetic diversity and population structure at potentially neutral markers i.e., 

microsatellites, 

 to assess genetic diversity and population structure at potentially adaptive markers 

i.e., SNPs in climate-related candidate genes, 

 to identify genetic markers potentially under selection by conducting outlier analyses,  

 to assess the response of saplings to drought conditions by evaluating morphological 

and physiological traits, 

  to detect potentially adaptive genetic markers by conducting phenotypic association 

analyses between SNPs and morphological and physiological traits assessed in the 

drought experiment conducted on the saplings,  

 to find potentially adaptive genetic markers by conducting environmental association 

analyses between SNPs and environmental variables. 
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2. Genetic diversity and population structure 

Introduction 
 

Climate change scenarios predict not only an increment in annual temperatures, but also 

changes in the patterns of precipitation, increasing the risk of extreme events such as floods 

and droughts (Trenberth 2011). For Central Europe, it has been observed an increment in the 

temperature of 1.3°C during the first decade of the 21
st
 century compared to the last half of 

the 19
th

 century; additionally, an increment in the duration and intensity of droughts has also 

been observed (Kovats et al. 2014). These changes in climate will very likely affect the 

survival of forest trees (Allen et al. 2010), altering the composition and distribution of forests 

(Crookston et al. 2010; Chmura et al. 2011). 

Fagus sylvatica, or European beech, is one of the most important forest tree species in 

Europe (von Wuehlisch 2008). It is broadly distributed in the continent, covering an area 

spanning from the North of Sicily in Italy to Southern Norway and Sweden, and from the 

Cantabrian Mountains in Spain to the Carpathians and Balkan Mountains in Ukraine, 

Romania and Bulgaria. Its distribution is denser in Central Europe, where moderate 

conditions in soil moisture and temperature occur (Bolte et al. 2007). In Switzerland, beech 

covers a wide range of the forested area, being dominant in the sub-montane and lower 

montane range (Weber et al. 2010). 

However, the extent of the effect of climate change on F. sylvatica is still uncertain. 

Some studies have reported that drought periods may be harmful, affecting nutrient uptake 

and reducing growth (Geßler et al. 2007; Piovesan et al. 2008; Scharnweber et al. 2011). 

Furthermore, under a climate change scenario, beech could lose its habitat and be 

overcompeted by more drought tolerant trees such as Quercus petraea and Pinus sylvestris 

(Geßler et al. 2007; Friedrichs et al. 2009). However, morphological and physiological data 

indicate that European beech provenances from dry sites could be more drought tolerant than 

provenances from wet sites (Peuke et al. 2002; Dittmar et al. 2003; Rose et al. 2009; Thiel et 

al. 2014). Additionally, there is genetic evidence suggesting that populations growing in 

environments with different water availability are under divergent selection (Pluess & Weber 

2012). 

Genetic studies on beech using isozymes, RAPDs, AFLPs and microsatellites (SSRs) as 

genetic markers have found that this forest tree species is characterized by high genetic 
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variability, high gene flow and low population structure (e.g., Sander et al. 2000; Emiliani et 

al. 2004; Jump & Peñuelas 2007; Kraj & Sztorc 2009; Pluess & Weber 2012). However, 

those markers have limited potential for the study of adaptation. In particular, SSR markers 

are mainly located in non-coding regions (genomic SSRs) and thus, considered to represent 

neutral genetic variation, i.e., not being under selection (Holderegger et al. 2006). However, 

some SSRs located in coding regions (EST-SSRs) could be under selection (Ellis & Burke 

2007). Instead, single nucleotide polymorphisms (SNPs) are the most common 

polymorphism in genes, and thus, they are considered to be a suitable approach to study 

adaptive genetic variation because they are directly linked to coding sequences that can be 

subject to selection (Morin et al. 2004). Recently, the development of SNP markers in 

climate-related candidate genes for F. sylvatica has been reported (Seifert et al. 2012; 

Lalagüe et al. 2014; Müller et al. 2015b), but so far, only few studies have exploited these 

data to detect genetic adaptive variation on beech (Csilléry et al. 2014; Müller et al. 2015a; 

Pluess et al. 2016). 

The FST outlier tests are among the most commonly used methods to detect adaptive 

genetic variation. These tests rely on the assumption that non-selective processes have the 

same effect on all the loci of the genome, while selection will affect only certain loci 

(Lewontin & Krakauer 1973). Thus, loci with genetic differentiation (measured by the FST 

parameter) higher or lower than expected under neutrality are considered to be under positive 

or balancing selection, respectively (Vitti et al. 2013). However, one of the disadvantages of 

outlier detection tests is that they can produce false outliers due to population structure and 

other confounding effects such as migrations, demographic expansions and bottlenecks 

(Schoville et al. 2012; Vitti et al. 2013). Different approaches are advised to address this 

problem (see, for instance, Schoville et al. 2012). Signatures of adaptive processes are not 

always distinguishable from the genomic background. To find thresholds for selectively 

neutral variation it is recommended to carefully select selectively neutral markers using 

genome-wide multiple markers and to compare multiple loci. The selectively neutral markers 

will capture the genome-wide effect of demography on the genetic variation, and loci 

departing from that pattern will indicate regions under selection (Nielsen 2005; Li et al. 

2012). A second alternative is to combine different methods, each one with its own 

demographic assumptions (Li et al. 2012). Loci appearing as outliers when considering 

different demographic scenarios will be more likely to be real candidate loci under selection. 

In this study, by using SSR and SNP markers, the patterns of genetic variability and 

genetic structure among populations of F. sylvatica occurring in two precipitation gradients 
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were addressed. Furthermore, different approaches were used for the detection of outlier loci 

that could be related to the different environmental conditions in which the populations 

occur. 

Materials and methods 

Plant material 
 

Twelve populations of F. sylvatica located in the Rhone and Rhine valleys in Switzerland 

were used in this study (Table 2-1). The populations were located at similar elevations (from 

550 to 850 m above sea level), with a mean annual temperature between 8.9 and 9.2 °C. The 

mean annual precipitation ranged between 849 and 1334 mm in the Rhine valley, and 

between 603 and 1012 mm in the Rhone valley (Table 2-1). In a first stage, 16-31 adult trees 

about 50 m apart from each other were selected per population, and 2-4 saplings with a size 

of ∼20 cm underneath them were sampled. In a second stage, 25 adult trees about 50 m apart 

from each other were sampled per population. In total, leaves from 300 adult trees and from 

755 saplings were collected. 

 

Table 2-1 Environmental characteristics of the selected populations 

Valley Population 
N 

Adults 

N  

Saplings 
Position 

Elevation, 

m.a.s.l 

Mean annual 

temperature, 

°C 

precipitation, 

mm 

Rhine 

Felsberg 25 62 46°51'N, 9°28'E 650-800 10.0 849 

Chur 25 63 46°52'N, 9°32'E 700-800 10.0 849 

Malans 25 64 46°59'N, 9°34'E 600-700 10.1 1114 

Mastrils 25 62 46°58'N, 9°32'E 550-650 10.1 1114 

Sargans 25 63 47°3'N, 9°26'E 650-750 10.1 1334 

Mels 25 60 47°3'N, 9°24'E 650-750 10.1 1334 

Rhone 

Ardon 25 63 46°13'N, 7°14'E 750-850 10.1 603 

Chamoson 25 64 46°12'N, 7°12'E 750-850 10.1 603 

Saxon 25 64 46°8'N, 7°11'E 700-800 10.1 603 

Martigny 25 64 46°6'N, 7°6'E 500-700 10.1 855 

Collombey 25 63 46°16'N, 6°56'E 550-650 9.8 1012 

Ollon 25 63 46°18'N, 6°59'E 600-700 9.8 1012 

N - number of individuals sampled. Climate data were taken from nearby METEO SWISS stations 

(distance ≤ 10km) for the 1981-2010 period. 

DNA isolation 
 

DNA was isolated from dry leaves using the DNeasy
TM

 96 Plant Kit (Qiagen, Hilden, 

Germany). The amount and quality of the DNA were examined using electrophoresis in 

agarose gel at 1% and 1X TAE as running buffer. DNA was stained with Roti
®
-Safe GelStain 



 19 

(Roth, Karlsruhe, Germany), visualized by UV illumination, and compared with a Lambda 

DNA size ladder (Roche, Mannheim, Germany). 

 

SSR amplification and genotyping 
 

Individuals were genotyped at 13 SSR loci. Ten of them are supposedly selectively neutral 

random genomic SSRs representing noncoding regions. Six of them were originally 

developed for F. sylvatica: FS3-04 (Pastorelli et al. 2003), msf11 (Vornam et al. 2004), 

csolfagus_06, csolfagus_19 (Lefèvre et al. 2012), Fagsyl_002929 and Fagsyl_003994 

(Pluess & Määttänen 2013). Four markers - sfc0018, sfc0161, sfc1063 and sfc1143 - were 

originally developed for F. crenata (Asuka et al. 2004). The other three SSR loci - GOT066, 

FIR065 and FIR004 - are EST-linked (EST-SSRs). They were originally developed for 

Quercus robur (Durand et al. 2010), and successfully used for F. sylvatica in this study.  

The PCR amplifications were performed using fluorescent dye labeled primers as 

follows: 6-carboxyfluorescein (FAM) dye for mfs11, sfc0161, sfc1063, csolfagus_06, 

csolfagus_19, Fagsyl_003994 and FIR004; and 6-hexachlorofluorescein (HEX) dye for 

sfc0018, sfc1143, Fagsyl_002929, GOT066, FIR065 and FS3-04. This allowed us to 

assemble four different PCR amplification multiplexes. The 1
st
 multiplex was composed of 

the FS3-04 and msf11 markers, the 2
nd

 multiplex - all four sfc markers, the 3
rd

 - the csolfagus 

and Fagsyl markers, and the 4
th

 - all three EST markers. The PCR amplifications were 

performed in a total volume of 15 μL containing 2 μL of genomic DNA (about 10 ng), 1X 

reaction buffer (0.8 M Tris-HCl pH 9.0, 0.2 M (NH4)2SO4, 0.2% w/v Tween-20; Solis 

BioDyne, Tartu, Estonia), 2.5 mM MgCl2, 0.2 mM of each dNTP, 0.3 μM of each forward 

and reverse primer and 1 unit of Taq DNA polymerase (HOT FIREPol
®

 DNA Polymerase, 

Solis BioDyne, Tartu, Estonia). The amplification conditions were as follows: an initial 

denaturation step at 95 °C for 15 min, followed by 30 cycles consisting of a denaturing step 

at 94 °C for 1 min, an annealing step at 55 °C (first, second and third multiplexes) or at 47 °C 

(EST multiplex) for 30 s and an extension step at 72 °C for 1 min. After 30 cycles, a final 

extension step at 72 °C for 20 min was included. The PCR fragments were separated and 

sized on an ABI PRISM
®
 3100 Genetic Analyzer (Applied Biosystems, Foster City, USA). 

The GS 500 ROX
TM

 (Applied Biosystems, Foster City, USA) was used as an internal size 

standard. The genotyping was done using the GeneMapper 4.1
®
 software (Applied 

Biosystems, Foster City, USA). 
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Candidate genes and SNPs 
 

SNPs in candidate genes involved in phenology and drought stress tolerance from previously 

published studies for F. sylvatica were selected (Seifert et al. 2012; Lalagüe et al. 2014; 

Müller et al. 2015b). For the candidate genes that contained several SNPs, linkage 

disequilibrium (LD) blocks were identified by using the software htSNPer 1.0 (Ding et al. 

2005) and a subset of SNPs representing the majority of haplotypes (haplotype tag SNPs) 

were selected for further genotyping. In addition, SNPs showing signatures of natural 

selection in previous studies (Csilléry et al. 2014; Müller et al. 2015a) were also selected. 

Finally, 24 genes and 76 SNPs (21 non-synonymous, 27 synonymous and 28 non-coding 

SNPs) were selected for genotyping (Table 2-2). Nucleotide sequences neighboring selected 

SNPs were sent to LGC Genomics Ltd. for primer design and SNP genotyping using the 

PCR-based KASP
TM

 genotyping assay (Hoddesdon, UK). 

Table 2-2 Candidate genes and characteristics of the selected SNPs 

Gene SNP name Type Reference 

Aldehyde dehydrogenase ALDH_1 Non-coding Seifert et al. 2012 

ALDH_2 Non-Synonymous  

ALDH_3 Non-Synonymous  

ALDH_4 Synonymous  

Isocitrate dehydrogenase IDH_1 Synonymous  

IDH_3 Non-coding  

IDH_4 Synonymous  

Ascorbate peroxidase APX1_1 Synonymous  

APX1_2 Non-coding  

APX4_1 Non-coding  

APX4_2 Non-Synonymous  

Early responsive to dehydration ERD Non-coding  

Dehydrin Dhn_1 Non-Synonymous  

Dhn_2 Non-Synonymous  

Glutathione peroxidase GPX Non-Synonymous  

Phytochrome B PhyB Synonymous  

Cysteine proteinase CysPro_118 Synonymous Müller et al. 2015 

CysPro_202 Synonymous  

CysPro_728 Non-coding  

CysPro_783 Non-coding  

Chloroplast Chaperonin like CP10_65 Synonymous  

CP10_67 Non-Synonymous  

CP10_377 Non-coding  

CP10_442 Non-coding  

CP10_503 Synonymous  

CP10_749 Synonymous  

CP10_1317 Non-coding  

CP10_1428 Non-Synonymous  
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Gene SNP name Type Reference 

Dof zinc finger protein DAG_81 Non-coding  

DAG_289 Non-coding  

DAG_1059 Synonymous  

Histone 3 His3C1_292 Non-coding  

His3C2_104 Synonymous  

His3C2_186 Non-coding  

His3C2_260 Synonymous  

NAC transcription factor NAC_854 Non-Synonymous  

NAC_962 Synonymous  

NAC_1300 Non-coding  

Protein phosphatase 2C PP2C_315 Non-Synonymous  

PP2C_391 Synonymous  

PP2C_791 Non-Synonymous  

PP2C_941 Non-coding  

 
PP2C_1200 Synonymous  

Xyloglucan endotransglucosylase/hydrolase 

23 

7_258 Non-coding Lalagüe et al. 2014 

7_520 Non-coding  

Short chain alcohol dehydrogenase 17_880 Non-coding  

17_1081 Non-coding  

Potassium transporter 2 39_256 Synonymous  

39_282 Non-Synonymous  

CRT/DRE binding factor 50_39 Non-Synonymous  

50_232 Synonymous  

50_320 Non-coding  

s-adenosyl-l-homocysteine hydrolase 52_1_235 Non-Synonymous  

52_1_249 Non-Synonymous  

52_1_368 Synonymous  

Glyceraldehyde 3-phosphate dehydrogenase 68_277 Non-Synonymous  

68_313 Non-coding  

Light-harvesting complex II protein 88_1_450 Non-coding  

88_1_727 Synonymous  

88_1_803 Non-Synonymous  

Catalase 91_2_57 Synonymous  

91_2_141 Synonymous  

91_2_231 Synonymous  

91_2_448 Non-coding  

91_2_479 Non-coding  

91_2_504 Non-coding  

1-aminocyclopropane-1-carboxylate 

oxidase 

92_166 Non-coding  

92_352 Non-Synonymous  

92_630 Non-coding  

Cytosolic class I small heat-shock protein 110_1_111 Non-Synonymous  

110_1_293 Synonymous  

110_1_423 Non-Synonymous  

110_1_450 Non-Synonymous  

Pectin methylesterase 154_2_137 Synonymous  

154_2_371 Synonymous  

154_2_617 Synonymous  
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Data analysis 

Genetic variability and linkage disequilibrium (LD) 

 

Population diversity parameters such as observed heterozygosity (Ho), expected 

heterozygosity (He) and the fixation index (FIS), as well as deviation from Hardy-Weinberg 

equilibrium, were calculated for both SSRs and SNPs using the GenAlEx 6.5 software 

(Peakall & Smouse 2006, 2012). Allelic richness was calculated for SSRs accounting for 

differences in sample size with the HP-Rare program (Kalinowski 2005) using a sample size 

of 50 individuals. In addition, the MICRO-CHECKER software (Van Oosterhout et al. 2004) 

was used to identify genotyping errors, such as null alleles, in SSR data. Differences in 

genetic diversity parameters between adults and saplings and between regions were tested for 

significance using the FSTAT 2.9.3.2 software (Goudet 1995). The GENEPOP 4.2 program 

(Raymond & Rousset 1995; Rousset 2008) was used to test for LD between pairs of the SSR 

loci and between pairs of the SNP loci using 10000 dememorizations, 1000 batches and 

10000 iterations per batch for Markov chain parameters. 

 

Population genetic structure and differentiation  

 

To assess genetic differentiation, Hedrick’s standardized G’’ST (Meirmans & Hedrick 2011) 

based on SSRs and SNPs was calculated for pairs of populations and for all the populations 

with the GenAlEx 6.5 software (Peakall & Smouse 2006, 2012) using 999 permutations. 

Since negative values of G’’ST can occur when heterozygosity is high, they were interpreted 

as zero as recommended by Meirmans & Hedrick (2011). Additionally, using the same 

software, an analysis of molecular variance AMOVA was done with 999 permutations. 

Population structure was inferred with SSRs and SNPs using the Bayesian approach 

implemented in the STRUCTURE 2.3.4 software (Pritchard et al. 2000). The admixture 

model with correlated allele frequencies was used. We used 100000 iterations for both the 

MCMC (Markov chain Monte Carlo) burn-in period and the following MCMC. We tested 

from 1 to 20 possible populations or clusters (K), using 20 iterations for each of them. The 

most likely number of clusters was determined considering K with the highest value of mean 

posterior probability of the data (LnP (D)) as the highest likelihood number of clusters, and 

also according to the ΔK method proposed by Evanno et al. (2005), which is implemented in 

the STRUCTURE HARVESTER 0.6.94 software (Earl & vonHoldt 2012). The CLUMPAK 
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software (Kopelman et al. 2015) was used for summation and graphical representation of the 

results obtained by STRUCTURE. 

Dendrograms based on the (δμ)
2
 genetic distance (Goldstein et al. 1995) for SSRs, and 

Nei’s standard genetic distance (Nei 1972) for SNPs, were constructed using the neighbor 

joining clustering method and the Populations 1.2.31 software (Langella, 1999). Bootstrap 

values across loci were based on 1000 permutations. The dendrograms were visualized using 

the FigTree 1.4.1 software (Rambaut, 2014). 

 

Outlier analysis 

 

For detection of the outlier SSR and SNP loci that could be under selection in saplings and 

adults, three different approaches with different demographic assumptions were used, and 

their results were compared. The first approach was developed by Beaumont & Nichols 

(1996) and implemented in the LOSITAN software (Antao et al. 2008). This approach 

determines the expected distribution of FST vs. HE under an island model of migration 

assuming neutrality of the loci. The analysis was done using 200,000 simulations, a 

confidence interval of 95% and a FDR of 0.1. Both the stepwise mutation model and the 

infinite allele model were used with SSR data, whereas the infinite allele model was used 

with SNP data. To run LOSITAN we used a procedure typically used in the similar studies 

(e.g., Krutovsky et al. 2009). LOSITAN was run first using all loci to estimate the mean 

neutral FST. After the first run, all loci outside the 95% confidence interval were removed, 

and using only putatively neutral loci that were not removed, LOSITAN was run again to 

estimate a second mean neutral FST.  Finally, a third run was done using all loci and the 

second mean neutral FST. This procedure lowers the bias when estimating the mean neutral 

FST by removing, at the end of the first run, the most extreme loci from the estimation (Antao 

et al. 2008). LOSITAN analysis was done taking into account the entire set of populations, 

and also for each region (Rhine or Rhone) separately. 

The second approach is implemented in the Arlequin 3.5 software (Excoffier & Lischer 

2010) and is similar to the one implemented in LOSITAN, but considers a hierarchical island 

model, in which populations exchange more migrants within groups than between groups 

(Excoffier et al. 2009). To use this approach populations of saplings and adults were grouped 

hierarchically according to the region; furthermore, populations of saplings were also 

grouped according to the groups revealed by STRUCTURE (see results). Then, 50000 
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simulations were carried out, using 10 groups of 100 demes as running conditions. 

Adjustment of P values for a false discovery rate of FDR = 0.1 was done using the Benjamini 

& Hochberg (1995) method implemented in the R script “p.adjust” (R Core Team 2016). 

The third approach is implemented in the BayeScan 2.1 software (Foll & Gaggiotti 

2008). It assumes that populations diverged from an ancestral gene pool, and their allele 

frequencies show different degrees of differentiation from it. To identify outlier loci, 

BayeScan evaluates the difference in allele frequencies between each subpopulation and the 

ancestral gene pool by measuring a subpopulation specific FST coefficient. Each FST is 

decomposed into a population-specific (beta) component and a locus-specific component 

(alpha). If alpha mainly explains the observed differentiation, then departure from neutrality 

(selection) is assumed. Running conditions used in BayeScan were as follows: a burn-in 

period with 50000 iterations, a thinning interval of 10, a sample size of 5000 and 20 pilot 

runs with 5000 iterations each, for a total of 100000 iterations. A locus was considered outlier 

if its q value was less than FDR < 0.05 or 0.1. BayeScan analysis was done taking into 

account the entire set of populations, and also for each region separately. 

The outlier loci identified by two or more approaches were considered as true outliers 

under selection. The outlier loci detected by only one of the approaches were considered to 

be likely false. 

 

Results 

SSRs 

Genetic diversity and linkage disequilibrium (LD) 

 

Genetic diversity levels were mostly high, but different among SSR loci. In both saplings and 

adults, loci FS3-04 and GOT066 had the lowest number of alleles, whereas loci Sfc0161 and 

csolfagus_19 the highest (Table 2-3). Similarly, GOT066 had the lowest observed (Ho) and 

expected heterozygosity (He), while loci csolfagus_06 and csolfagus_19 had the highest, in 

both saplings and adults. No loci showed evidence of null alleles; the fixation indices (FIS) 

were close to zero and no significant deviations from Hardy-Weinberg equilibrium were 

found, except for locus Fagsyl_003994 that presented a significant excess of heterozygous in 

the saplings, and loci Sfc0018 and FIR004 that also presented a significant excess of 

heterozygous in adults. In general, EST-SSRs demonstrated lower genetic diversity than 

genomic SSRs (Table 2-3). 
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Table 2-3 Diversity parameters for 13 SSR loci genotyped in saplings and adults 

Locus 
Saplings Adults 

Na Ho He FIS Na Ho He FIS 

Genomic SSRs         

FS3-04 3.333 0.509 0.502 -0.014 2.417 0.447 0.471 0.052 

msf11 7.667 0.626 0.638 0.019 6.500 0.627 0.631 0.006 

Sfc0018 8.917 0.649 0.664 0.020 6.833 0.637 0.658 0.033* 

Sfc0161 11.000 0.767 0.786 0.024 9.250 0.763 0.782 0.025 

Sfc1063 8.417 0.795 0.798 0.003 7.667 0.787 0.799 0.015 

Sfc1143 8.833 0.732 0.736 0.007 7.833 0.763 0.765 0.003 

Fagsyl_002929 7.750 0.691 0.677 -0.021 5.833 0.640 0.663 0.035 

Fagsyl_003994 8.500 0.703 0.725 0.031* 7.500 0.713 0.723 0.014 

csolfagus_06 9.417 0.835 0.832 -0.004 8.417 0.823 0.842 0.023 

csolfagus_19 10.417 0.843 0.830 -0.016 9.583 0.823 0.833 0.012 

Mean 8.417 0.715 0.718 0.002 7.183 0.702 0.717 0.020 

EST-SSRs 
        

FIR004 6.250 0.476 0.482 0.013 4.917 0.400 0.463 0.138*** 

FIR065 4.167 0.692 0.666 -0.039 4.000 0.743 0.680 -0.096 

GOT066 2.333 0.107 0.099 -0.078 2.000 0.080 0.076 -0.052 

Mean 4.250 0.425 0.416 -0.035 3.639 0.408 0.406 -0.074 

Grand mean 7.455 0.648 0.649 -0.004 6.365 0.634 0.645 0.016 

Na – mean number of alleles, Ho – observed heterozygosity, He – expected heterozygosity, FIS – 

fixation index, *P<0.05, **P<0.01, ***P<0.001 

 

Analysis of genetic diversity revealed no significant differences between saplings and 

adults (A = 6.36 vs. 6.37, P = 0.9; He = 0.649 vs. 0.645, P = 0.6; Table 2-4). Likewise, there 

were no significant differences between the two regions neither in the saplings (A = 6.49 vs. 

6.23, P = 0.3; He = 0.653 vs. 0645, P = 0.1; Table 2-4) nor the adults (A = 6.59 vs. 6.14, 

P = 0.1; He = 0.646 vs. 0.644, P = 0.8; Table 2-4). Slight differences were observed between 

populations (Table 2-4). In the saplings, the allelic richness ranged between 5.5 and 6.61, 

while in the adults it was slightly higher and ranged between 5.77 and 6.92 (Table 2-4). In 

both adults and saplings, Chamoson and Mels were the populations with the lowest and the 

highest allelic richness, respectively. In the saplings, the lowest observed and expected 

heterozygosity were found in Mastrils (Ho = 0.628; He = 0.638), and the highest in Mels 

(Ho = 0.683; He = 0.671) (Table 2-4). In the adults, the lowest observed heterozygosity was 

found in Chur (Ho = 0.591) and the lowest expected heterozygosity in Ollon (He = 0.614), 

although Chur had the second lowest He (Table 2-4). Both observed and expected 

heterozygosity were the highest in Sargans (Ho = 0.658; He = 0.672) (Table 2-4). The FIS 

indices were close to zero, and no significant deviations from Hardy-Weinberg equilibrium 

were found, except for the adult trees in the Saxon population. 
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Table 2-4 Diversity parameters for sapling and adult populations based on 13 SSR loci 

Population 
Saplings Adults 

A Ho He FIS A Ho He FIS 

Rhine 
        

Felsberg 6.49 0.646 0.652 0.008 6.69 0.646 0.665 0.029 

Chur 6.52 0.639 0.645 0.010 6.15 0.591 0.615 0.040 

Malans 6.49 0.653 0.657 0.006 6.85 0.646 0.649 0.004 

Mastrils 6.28 0.628 0.638 0.016 6.08 0.634 0.623 -0.018 

Sargans 6.56 0.667 0.654 -0.019 6.85 0.658 0.672 0.020 

Mels 6.61 0.683 0.671 -0.020 6.92 0.646 0.655 0.014 

Mean 6.49 0.653 0.653 0.000 6.59 0.637 0.646 0.015 

Rhone 
        

Ardon 6.45 0.644 0.641 -0.004 6.23 0.637 0.655 0.029 

Chamoson 5.50 0.650 0.641 -0.015 5.77 0.637 0.632 -0.008 

Saxon 6.23 0.640 0.645 0.006 6.08 0.628 0.657 0.046* 

Martigny 6.39 0.651 0.646 -0.007 6.08 0.625 0.641 0.025 

Collombey 6.38 0.628 0.644 0.026 6.54 0.658 0.664 0.008 

Ollon 6.44 0.646 0.650 0.007 6.15 0.606 0.614 0.012 

Mean 6.23 0.643 0.645 0.002 6.14 0.632 0.644 0.013 

Grand mean 6.36 0.648 0.649 -0.004 6.37 0.634 0.645 0.016 

N – sample size, A – allelic richness, Ho – observed heterozygosity, He – expected heterozygosity, FIS 

– fixation index, *P<0.05 

 

In the saplings, significant LD was observed for 19,2% (15 pairs) of all the possible 

pairs of SSR loci (Fig. 2-1). In contrast, for populations of adults, only the Sfc0018-FIR065 

pair (0.013%) showed significant LD. This pair demonstrated LD also in the saplings. There 

are no linkage mapping data for the studied loci, therefore, it is impossible to see if observed 

LD is due to the close linkage. 

 

Fig. 2-1 Pairs of SSR loci in linkage disequilibrium (LD) in the saplings 
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Genetic differentiation and population structure 

 

Genetic differentiation was low but significant for populations of both saplings 

(G’’ST = 0.029; P < 0.001) and adults (G’’ST = 0.027; P < 0.001). The AMOVA analysis 

revealed that 99% of the variation was within populations, and only 1% between them 

(Table 2-5). Pairwise population differentiation was also low, ranging between 0.005 and 

0.054 for the saplings and between 0 and 0.092 for the adults (Fig. 2-2). Martigny (saplings) 

and Chamoson (adults) were the most differentiated populations, while Sargans (saplings) 

and Mels (adults) were the least differentiated. Most of the pairwise G’’ST were significant for 

the saplings (Fig. 2-2). 

 
Table 2-5 AMOVA based on 13 SSR loci for saplings and adults 

Source of Variation d.f. SS EV PV 

Saplings 
    

Among Regions 1 15.73 0.01 0% 

Among Populations 10 92 0.04 1% 

Within Populations 1498 6321 4.22 99% 

Total 1509 6428.73 4.27 100% 

Adults 
    

Among Regions 1 5.44 0 0% 

Among Populations 10 63.95 0.04 1% 

Within Populations 588 2465.28 4.19 99% 

Total 599 2534.67 4.24 100% 

d.f. – degrees of freedom, SS – sum of squares, EV- estimated variance, PV – percentage of variation 

 

 
Fig. 2-2 Pairwise genetic differentiation with all 13 SSRs in A, saplings and B, adults. G’’ST values 
are shown below the diagonal, and P values above the diagonal. Fel - Felsberg; Chu - Chur; Mal - 
Malans; Mas - Mastrils; Sar - Sargans; Mel - Mels; Ard - Ardon; Cha - Chamoson; Sax - Saxon; Mar - 
Martigny; Col - Collombey; Oll - Ollon 

 

A
Fels Chu Mal Mas Sar Mel Ard Cha Sax Mar Col Oll

Fels 0. 001 0.001 0. 001 0.0 02 0.001 0.001 0.00 1 0. 001 0.001 0. 001 0.001

Chu 0.027 0.134 0. 002 0.0 06 0.004 0.001 0.00 1 0. 001 0.001 0. 001 0.002

Mal 0.025 0. 005 0. 001 0.0 05 0.067 0.001 0.00 1 0. 001 0.001 0. 006 0.019

Mas 0.039 0. 022 0.024 0.1 76 0.001 0.003 0.00 1 0. 001 0.001 0. 002 0.001

Sar 0.024 0. 016 0.017 0. 005 0.044 0.001 0.00 1 0. 005 0.001 0. 001 0.002

Mel 0.029 0. 016 0.009 0. 024 0.0 10 0.001 0.00 1 0. 001 0.001 0. 001 0.002

Ard 0.051 0. 033 0.030 0. 019 0.0 38 0.047 0.00 1 0. 001 0.001 0. 007 0.001

Cha 0.036 0. 039 0.033 0. 038 0.0 32 0.035 0.027 0. 001 0.001 0. 001 0.001

Sax 0.041 0. 033 0.036 0. 028 0.0 17 0.032 0.042 0.03 6 0.001 0. 001 0.001

Mar 0.053 0. 040 0.028 0. 054 0.0 33 0.042 0.046 0.04 9 0. 043 0. 001 0.001

Col 0.037 0. 027 0.015 0. 023 0.0 25 0.040 0.017 0.04 1 0. 033 0.039 0.022

Oll 0.026 0. 023 0.014 0. 023 0.0 18 0.022 0.019 0.02 4 0. 036 0.032 0. 012

0 0.004 0.008 0.012 0.0 16 0.02 0.024 0. 02 8 0.032 0. 036 0.041

Rhine Rhone
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B
Fels Chu Mal Mas Sar Mel Ard Cha Sax Mar Col Oll

Fels 0. 001 0.259 0.033 0.012 0. 035 0 . 002 0 .111 0.1 43 0 .045 0. 004 0. 011

Chu 0. 058 0. 004 0.115 0.064 0.631 0 . 351 0 . 001 0.0 52 0 .017 0. 513 0. 686

Mal 0. 007 0. 0 49 0.080 0.003 0. 099 0 . 001 0 .005 0.0 15 0 .043 0. 018 0. 043

Mas 0. 028 0. 0 15 0.017 0.002 0. 121 0 . 005 0 .022 0.0 05 0 .003 0. 119 0. 319

Sar 0. 036 0. 0 20 0.046 0.046 0.795 0 . 084 0 . 001 0.0 92 0 .134 0. 126 0. 108

Mel 0. 026 0. 0 00 0.016 0.014 0.000 0 . 184 0 . 006 0.1 19 0 .136 0. 350 0. 675

Ard 0. 062 0. 0 04 0.058 0.050 0.020 0. 012 0 . 001 0.0 68 0 .001 0. 047 0. 022

Cha 0. 016 0. 0 67 0.041 0.031 0.061 0. 046 0 . 092 0.0 17 0 .001 0. 001 0. 034

Sax 0. 016 0. 0 24 0.036 0.038 0.021 0. 016 0 . 022 0 .033 0 .110 0. 145 0. 134

Mar 0. 023 0. 0 28 0.023 0.039 0.015 0. 014 0 . 057 0 .056 0.0 17 0. 024 0. 251

Col 0. 045 0. 0 00 0.033 0.015 0.015 0. 005 0 . 027 0 .052 0.0 16 0 .031 0. 404

Oll 0. 034 0. 0 00 0.026 0.005 0.017 0. 000 0 . 028 0 .025 0.0 15 0 .009 0. 002

0 0.0 04 0.008 0.012 0. 016 0 .02 0 .024 0 .028 0.0 32 0. 036 0 . 041

Rhine Rhone
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P <0.05

P <0.01

P <0.001

P <0.05

P <0.01

P <0.001

0.005 0.054 0 0.092
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Analysis of population structure revealed that there are most likely two clusters in the 

saplings, identifying Chamoson as a genetically different population (Fig. 2-3A). This 

number of K=2 was supported by both the ΔK method and the highest log probability of the 

data (Fig. 2-3B). In contrast, in the adults, the structure analysis did not reveal any significant 

population structure (Fig. 2-4). 

 

 

Fig. 2-3 Structure analysis of sapling populations based on the SSR data. A, Bar plot indicating the 
assignment probability of each individual to the two different clusters; B, Log probability and ΔK for 
K=1 to K=20 clusters. Fel - Felsberg; Chu - Chur; Mal - Malans; Mas - Mastrils; Sar - Sargans; Mel - 
Mels; Ard - Ardon; Cha - Chamoson; Sax - Saxon; Mar - Martigny; Col - Collombey; Oll - Ollon 
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Fig. 2-4 Structure analysis of adult populations based on the SSR data. A, Bar plot indicating the 
assignment probability of each individual to the two different clusters; B, Log probability and ΔK for 
K=1 to K=20 clusters. Fel - Felsberg; Chu - Chur; Mal - Malans; Mas - Mastrils; Sar - Sargans; Mel - 
Mels; Ard - Ardon; Cha - Chamoson; Sax - Saxon; Mar - Martigny; Col - Collombey; Oll - Ollon. 

 

The dendrograms based on the (δμ)
2
 genetic distance for the SSR data revealed no 

significant clustering neither for saplings nor for adults. Tree topology reflected a tendency 

for populations from the same valley to group together, although the clusters were not 

strongly supported by the bootstrap values that were mostly very low and less than 60% (Fig. 

2-5). 
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Fig. 2-5 The dendrograms for A, saplings and B, adults, constructed using the (δμ)
2
 genetic distance 

based on SSR data and the neighbor joining clustering method 

 

Outlier analysis 

 

In the saplings, no outlier SSRs were detected by LOSITAN. With Arlequin, one SSR fell 

outside the 95% confidence interval (GOT066) (Fig. 2-6); however, it did not remain 

significant after the FDR correction. In contrast, a considerable number of outlier SSR loci 

were detected by BayeScan: 12 (92%) SSR loci were detected as outliers when doing the 

analysis with all populations; 11 SSR loci (85%) were detected as outliers in the Rhine 

valley, and 4 (31%) in the Rhone valley (Fig. 2-7). All outliers detected by BayeScan are 

possibly under balancing selection. 
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Fig. 2-6 Detection of the outlier SSR loci in the saplings under the hierarchical island model 
implemented in Arlequin. The red lines represent the 95% confidence interval; the locus falling 
outside that interval is labeled and potentially under positive selection.  

 

 
Fig. 2-7 Detection of the outlier SSR loci in the saplings using BayeScan in A, all populations; B, 
populations from the Rhine valley; and C, populations from the Rhone valley. The vertical line 
represents the critical q value (0.05) used for identifying outlier markers. The labeled markers on the 
right side are candidates for being under balancing selection 
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In the adults, the SSR loci detected as outliers by LOSITAN were the same under the 

stepwise mutation model and the infinite allele model. However, even though the loci FS3-

04, FIR065 and csolfagus_06 fell outside the 95% confidence interval when analyzing all 

populations and populations from each region separately (Fig. 2-8), only the loci FIR065 and 

csolfagus_06 remained significant after FDR correction in the analysis using all populations. 

These two loci (15%) are likely under balancing selection - they have low FST, but high He 

values (Fig. 2-8). Arlequin identified the FS3-04 locus as an outlier as well (Fig. 2-9); 

however, it did not remain significant after FDR correction. BayeScan identified 12 (92%) 

outlier SSR loci when doing the analysis with all populations, 7 (54%) in the analysis with 

populations from the Rhine valley, and 4 (31%) in the analysis with populations from the 

Rhone valley (Fig. 2-10). All outliers detected by BayeScan are likely under balancing 

selection. 

 

Fig. 2-8 Outlier SSR loci detected in adults using LOSITAN under an island model. Results show the 
distribution of observed FST values for each SSR marker along their mean within population 
heterozygosities (He) in A, all populations; B, populations from the Rhine valley; and C, populations 
from the Rhone valley. The gray area represents the 95% confidence interval; loci falling outside that 
interval are labeled and could be potentially under selection. 

 



 33 

 
Fig. 2-9 Detection of the outlier SSR loci in the adults under a hierarchical island model implemented 
in Arlequin. The red lines delineate the 95% confidence interval; the locus falling outside that interval 
is labeled and potentially under positive selection. 

 

 

Fig. 2-10 Detection of the outlier SSR loci in the adults using BayeScan across A, all populations; B, 
populations from the Rhine valley; and C, populations from the Rhone valley. The vertical line 
represents the critical q value (0.05) used for identifying outlier markers. The labeled markers on the 
right side are likely under balancing selection 
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Among the outlier SSR loci detected in adult populations, the FS3-04, csolfagus_06 

and FIR065 loci are very likely under selection, because they were detected by at least two of 

the outlier methods (Table 2-6). The rest of the outliers in adults and saplings could be false. 

 
Table 2-6 List of the SSR loci detected as outliers by at least one of the three methods in saplings and 
adults 

Saplings Adults 

LOSITAN ARLEQUIN BAYESCAN Selection LOSITAN ARLEQUIN BAYESCAN Selection 

None 

  FS3-04* Balancing FS3-04 FS3-04 FS3-04* Positive 

 
msf11* Balancing 

  
msf11* Balancing 

 
Sfc0018* Balancing 

  
Sfc0018* Balancing 

 
Sfc0161* Balancing 

  
Sfc0161* Balancing 

 
Sfc1063* Balancing 

  
Sfc1063* Balancing 

 
Sfc1143* Balancing 

  
Sfc1143* Balancing 

 
Fagsyl_002929* Balancing 

  
Fagsyl_002929* Balancing 

 
Fagsyl_003994* Balancing 

  
Fagsyl_003994* Balancing 

 
csolfagus_06* Balancing csolfagus_06* 

 
csolfagus_06* Balancing 

 
csolfagus_19* Balancing 

  
csolfagus_19* Balancing 

 
FIR004* Balancing 

  
FIR004* Balancing 

 
FIR065* Balancing FIR065* 

 
FIR065* Balancing 

GOT066 
 

Positive     

* Loci that remained significant after correcting for FDR. Loci highlighted by bold font were detected 

by two or all three methods 

 

The allele 201 in the FS3-04 locus was under positive selection and had a higher 

frequency in some of the adult populations with low and intermediate level of precipitation in 

both valleys compared to populations with high level of precipitation (Fig. 2-11A). The 

outlier locus csolfagus_06 was likely under balancing selection, which is in consensus with 

an excess of heterozygosity observed in some populations, especially in Chamoson (Fig. 2-

11B). Likewise, at the FIR065 locus, also under balancing selection, an excess of observed 

heterozygosity was observed in most of the populations, especially in Malans, Chamoson and 

Collombey, located in different valleys and having different levels of precipitation (Fig.2- 

11C). 
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Fig. 2-11 Allele and heterozygosity frequency distribution in adults for the loci under A, positive 

selection; B and C, balancing selection. Ho - observed heterozygosity; He - expected heterozygosity 
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were the lowest for the SNP ALDH_4 in both saplings (Ho = 0.016, He = 0.018) and adults 
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saplings (Ho = 0.519), but the SNP 17_1081 in the adults (Ho = 0.808), while the highest 
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of heterozygotes, respectively, in the adults (Table 2-7). Analysis of genetic diversity 

revealed no significant differences between adults and saplings. 

 

Table 2-7 Diversity parameters and fixation index for SNP loci over all populations of saplings and 
adults 

Locus 
Saplings Adults 

Ho He FIS Ho He FIS 

ALDH_1 0.283 0.297 0.037 0.323 0.308 -0.071 

ALDH_2 0.306 0.318 0.031 0.363 0.336 -0.104 

ALDH_3 0.033 0.035 0.048 0.05 0.048 -0.058 

ALDH_4 0.016 0.018 0.127 0.017 0.016 -0.037 

IDH_1 0.481 0.49 0.01 0.483 0.478 -0.031 

IDH_3 0.291 0.32 0.083 0.286 0.297 0.018 

IDH_4 0.482 0.491 0.01 0.475 0.478 -0.014 

APX1_1 0.227 0.227 -0.004 0.291 0.277 -0.071 

APX4_1 0.225 0.228 0.007 0.211 0.216 0.006 

APX4_2 0.495 0.491 -0.016 0.49 0.483 -0.034 

ERD 0.463 0.476 0.021 0.457 0.49 0.049 

Dhn_1 0.41 0.422 0.022 0.5 0.451 -0.13 

Dhn_2 0.174 0.179 0.022 0.193 0.188 -0.045 

GPX 0.13 0.126 -0.04 0.113 0.112 -0.029 

CP10_65 0.318 0.313 -0.023 0.327 0.291 -0.144 

CP10_67 0.075 0.077 0.018 0.063 0.062 -0.05 

CP10_377 0.519 0.495 -0.057 0.525 0.5 -0.073 

CP10_442 0.406 0.393 -0.044 0.441 0.4 -0.124 

CP10_503 0.143 0.131 -0.101 0.111 0.106 -0.07 

CP10_749 0.297 0.325 0.080* 0.3 0.307 0.003 

CP10_1317 0.261 0.265 0.006 0.287 0.256 -0.144 

CP10_1428 0.408 0.393 -0.047 0.444 0.396 -0.145 

CysPro_118 0.292 0.311 0.051 0.294 0.318 0.054 

CysPro_202 0.037 0.035 -0.053 0.03 0.035 0.112 

CysPro_728 0.205 0.211 0.022 0.199 0.2 -0.012 

CysPro_783 0.294 0.312 0.051 0.295 0.318 0.055 

DAG_81 0.186 0.179 -0.043 0.2 0.193 -0.055 

DAG_289 0.184 0.179 -0.039 0.201 0.194 -0.054 

DAG_1059 0.136 0.15 0.081 0.148 0.136 -0.115 

His3C1_292 0.382 0.391 0.015 0.424 0.439 0.016 

His3C2_104 0.053 0.054 0.014 0.047 0.046 -0.042 

His3C2_186 0.189 0.184 -0.033 0.167 0.168 -0.017 

His3C2_260 0.113 0.111 -0.031 0.094 0.096 0 

NAC_854 0.295 0.311 0.042 0.316 0.318 -0.016 

NAC_962 0.161 0.163 0.002 0.203 0.191 -0.083 

NAC_1300 0.44 0.458 0.032 0.448 0.444 -0.029 

PP2C_315 0.035 0.036 0.027 0.023 0.023 -0.026 

PP2C_391 0.477 0.476 -0.009 0.44 0.484 0.073 

PP2C_791 0.061 0.062 0.001 0.05 0.048 -0.073 
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Locus 
Saplings Adults 

Ho He FIS Ho He FIS 

PP2C_941 0.494 0.492 -0.012 0.47 0.501 0.042 

PP2C_1200 0.494 0.493 -0.011 0.47 0.502 0.044 

7_258 0.151 0.152 -0.006 0.156 0.155 -0.03 

7_520 0.073 0.072 -0.024 0.05 0.048 -0.055 

17_880 0.046 0.052 0.107 0.067 0.077 0.111 

17_1081 0.461 0.491 0.053 0.808 0.488 -0.689*** 

39_256 0.473 0.489 0.025 0.436 0.488 0.088 

39_282 0.472 0.49 0.03 0.465 0.493 0.038 

50_39 0.285 0.295 0.028 0.295 0.31 0.032 

50_232 0.475 0.482 0.007* 0.49 0.498 -0.004 

52_1_235 0.386 0.382 -0.019 0.364 0.386 0.038 

52_1_368 0.39 0.385 -0.022 0.363 0.388 0.044 

68_277 0.489 0.454 -0.086 0.465 0.461 -0.028 

68_313 0.478 0.45 -0.071 0.455 0.457 -0.016 

88_1_450 0.044 0.048 0.072 0.037 0.036 -0.032 

88_1_727 0.299 0.294 -0.026 0.308 0.294 -0.067 

88_1_803 0.273 0.277 0.006 0.284 0.277 -0.045 

91_2_57 0.394 0.396 -0.002 0.428 0.407 -0.074 

91_2_141 0.4 0.428 0.056 0.435 0.423 -0.052 

91_2_231 0.411 0.424 0.022 0.44 0.425 -0.057 

91_2_448 0.413 0.425 0.021 0.441 0.426 -0.056 

91_2_479 0.384 0.417 0.071* 0.418 0.418 -0.021 

91_2_504 0.412 0.425 0.024 0.44 0.426 -0.054 

92_352 0.173 0.172 -0.013 0.188 0.18 -0.065 

92_630 0.287 0.498 0.419*** 0.242 0.499 0.504*** 

110_1_293 0.433 0.472 0.074 0.413 0.459 0.081 

110_1_423 0.465 0.479 0.021 0.484 0.475 -0.039 

110_1_450 0.468 0.479 0.014 0.478 0.475 -0.026 

154_2_137 0.484 0.476 -0.024 0.476 0.49 0.008 

154_2_371 0.394 0.394 -0.008 0.405 0.442 0.065 

154_2_617 0.192 0.183 -0.058 0.185 0.167 -0.129 

Mean 0.301 0.309 0.013 0.311 0.310 -0.026 

Ho – observed heterozygosity, He – expected heterozygosity, FIS – fixation index, *P<0.05, **P<0.01, 

***P<0.001 

 

Only slight differences in heterozygosity were observed between populations (Table 2-

8). Expected heterozygosity ranged between 0.298 (Ardon) and 0.325 (Mastrils) in the 

saplings, and between 0.288 (Ardon) and 0.335 (Sargans) in the adults (Table 2-8). In 

general, no significant deviations from Hardy-Weinberg equilibrium were found, except for 

the Mastrils, Sargans and Ollon populations in the saplings, and the population Mastrils in the 

adults. Likewise, there were no significant differences between the two regions, neither in the 

saplings nor the adults.  
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Table 2-8 Diversity parameters at SNP loci for saplings and adult populations 

Population 
Saplings Adults 

Ho He FIS Ho He FIS 

Rhine 
      

Felsberg 0.314 0.317 0.025 0.296 0.301 -0.006 

Chur 0.308 0.313 0.015 0.325 0.315 -0.061 

Malans 0.296 0.308 0.023 0.308 0.317 -0.010 

Mastrils 0.294 0.325 0.064* 0.337 0.323  -0.055* 

Sargans 0.318 0.314  -0.024* 0.343 0.335 -0.032 

Mels 0.286 0.306 0.043 0.332 0.307 -0.090 

Mean 0.303 0.314 0.027 0.324 0.316 -0.044 

Rhone 
      

Ardon 0.307 0.298 -0.037 0.314 0.288 -0.095 

Chamoson 0.304 0.311 0.024 0.319 0.319 -0.024 

Saxon 0.282 0.299 0.036 0.293 0.313 0.017 

Martigny 0.292 0.301 0.015 0.313 0.320 0.002 

Collombey 0.302 0.306 -0.002 0.291 0.298 -0.011 

Ollon 0.309 0.306  -0.019* 0.263 0.288 0.061 

Mean 0.299 0.304 0.007 0.299 0.304 -0.002 

Grand mean 0.301 0.309 0.013 0.311 0.310 -0.026 

N – sample size, Ho – observed heterozygosity, He – expected heterozygosity, FIS – fixation index, 

*P<0.05 

 

In both saplings and adults, LD was mainly found between SNPs belonging to the same 

gene (Figs. 2-12 and 2-13). In the saplings, significant LD was observed for 134 pairs (5.5%) 

of all the possible pair combinations of SNPs (2415), and 68 of them were found between 

SNPs from the same gene (Fig. 2-12). Similarly, for populations of adults, 107 pairs (4.4%) 

of all the possible pairs showed significant LD, and 59 of them were found between SNPs 

from the same gene (Fig. 2-13). 
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Fig. 2-12 Linkage disequilibrium (LD) plot between pairs of SNPs over all populations of saplings 

 

 
Fig. 2-13 Linkage disequilibrium (LD) plot between pairs of SNPs over all populations of adults 
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68_277
68_313 * **

88_1_450
88_1_727 * * * *

88_1_803 * * * * **

91_2_57 * * *

91_2_141 * * * ***

91_2_231 * *** ***

91_2_448 * *** *** ***

91_2_479 * *** *** *** ***

91_2_504 * *** *** *** *** * **

92_352
92_630 * * * * *

110_1_293 * *

110_1_423 * ***

110_1_450 *** ** *

154_2_137
154_2_371 ***

154_2_617 *

P <0.05

P <0.01

P <0.001
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Genetic differentiation and population structure 

 

Genetic differentiation was low but significant for populations of both saplings 

(G’’ST = 0.020; P < 0.001) and adults (G’’ST = 0.016; P < 0.001). AMOVA analysis revealed 

that 98-99% of the variation was within populations, and only 1-2% among them (Table 2-9). 

Pairwise population differentiation was also low, ranging between 0 and 0.044 for the 

saplings and between 0 and 0.062 for the adults (Fig. 2-14). Chamoson was the population 

with the highest pairwise differentiation in the saplings, while Sargans and Malans had the 

lowest differentiation. In the adults, Chamoson was also the population with the highest 

pairwise differentiation, followed by Ardon; while Martigny and Collombey were the least 

differentiated (Fig. 2-14). 

 

Table 2-9 AMOVA based on SNPs for saplings and adults 

Source of Variation d.f. SS EV PV 

Saplings         

Among Regions 1 67.39 0.05 0% 

Among Populations 10 275.29 0.13 2% 

Within Populations 1498 16644.39 11.11 98% 

Total 1509 16987.06 11.29 100% 

Adults 
    

Among Regions 1 31.24 0.05 0% 

Among Populations 10 159.49 0.10 1% 

Within Populations 588 6553.16 11.14 99% 

Total 599 6743.90 11.29 100% 

d.f. – degrees of freedom, SS – sum of squares, EV- estimated variance, PV – percentage of variation 

 

 
Fig. 2-14  Pairwise genetic differentiation estimated with all SNPs in A, saplings; and B, adults. G’’ST 
values are shown below the diagonal, and P values above the diagonal. Fel - Felsberg; Chu - Chur; 
Mal - Malans; Mas - Mastrils; Sar - Sargans; Mel - Mels; Ard - Ardon; Cha - Chamoson; Sax - Saxon; 
Mar - Martigny; Col - Collombey; Oll - Ollon. 
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Analysis of population structure using SNP markers revealed that there is a weak 

population structure in both saplings and adults (Figs. 2-15 and 2-16). Although, based on the 

ΔK method there could be two clusters (K = 2), the bar plots do not support it much. 

 

 

 

Fig. 2-15  Population structure of populations of saplings based on SNP data. A, Bar plot indicating 
the assignment probability of each individual to the two possible clusters; B, Log probability and ΔK 
for K = 1 to K = 20 clusters. Fel - Felsberg; Chu - Chur; Mal - Malans; Mas - Mastrils; Sar - Sargans; 
Mel - Mels; Ard - Ardon; Cha - Chamoson; Sax - Saxon; Mar - Martigny; Col - Collombey; Oll - 
Ollon. 

 

 

 

Fel Chu Mal Mas Sar Mel Ard Cha Sax Mar Col Oll

A

Fel Chu Mal Mas Sar Mel Ard Cha Sax Mar Col Oll

A

K=2

K=2

B

B

Rhine Rhone

Rhine Rhone

0 

100 

200 

300 

400 

500 

600 

-50400 

-49200 

-48000 

-46800 

-45600 

-44400 

-43200 

-42000 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

D
e
lt

a
 K

 

L
o

g
 P

ro
b

a
b

il
it

y
 o

f 
th

e
 D

a
ta

 

Number of clusters (K ) 

Ln P(D) 

Delta K 

0 

100 

200 

300 

400 

500 

-20700 

-19800 

-18900 

-18000 

-17100 

-16200 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

D
el

ta
 K

 

L
o

g
 P

ro
b

a
b

il
it

y
 o

f 
th

e 
D

a
ta

 

Number of clusters (K ) 

Ln P(D)  

Delta K 



 42 

 

Fig. 2-16 Population structure of populations of adults based on SNP data. A, Bar plot indicating the 
assignment probability of each individual to the two possible clusters; B, Log probability and ΔK for 
K = 1 to K = 20 clusters. Fel - Felsberg; Chu - Chur; Mal - Malans; Mas - Mastrils; Sar - Sargans; Mel 
- Mels; Ard - Ardon; Cha - Chamoson; Sax - Saxon; Mar - Martigny; Col - Collombey; Oll - Ollon 

 

Although neighbor joining trees based on the Nei’s standard genetic distance (1972) 

revealed a tendency of the populations from the same valley to cluster together; however, the 

clusters were not well supported by the bootstrap values that were mostly very low and less 

than 60% (Fig. 2-17). Two pairs of sapling populations, Sargans and Chur and Felsberg and 

Mels (Fig. 2-17A) had high bootstrap support, but they were not from the neighboring 

locations and occurred in different environments. 
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Fig. 2-17 Neighbor joining dendrograms using Nei’s standard genetic distance (1972) based on SNP 
data for A, saplings; and B, adults. 

 

Outlier Analysis 

 

In the saplings, the outlier SNP ALDH_4 was detected by LOSITAN as being under 

balancing selection in populations from the Rhone valley (Fig. 2-18). This locus remained 

significant after correction for multiple testing. No outliers were identified by LOSITAN 

when doing the analysis with all populations together and with populations from the Rhine 

valley. Arlequin identified the SNPs ERD, CysPro_202 and NAC_962 as outliers that are 

likely under positive selection (Fig. 2-19). However, none of them remained significant after 

the FDR correction. No outlier SNP loci were identified by BayeScan. 
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Fig. 2-18 Outlier SNPs detected in saplings from the Rhone valley with LOSITAN, under an island 
model. Results show the distribution of observed FST values for each SNP along their mean within 
population heterozygosities (He). The gray area represents the 95% confidence interval; loci falling 
outside that interval are labeled and could be potentially under selection. 

 

 

Fig. 2-19 Detection of outlier SNP loci in the saplings using the hierarchical island model 
implemented in Arlequin. The red lines delineate the 95% confidence interval; loci falling outside that 
interval are labeled and could be potentially under positive selection. 

 

Compared to the saplings, more outlier SNPs were identified in the adults. In the 

LOSITAN analysis, 15 SNPs fell outside the 95% confidence interval when analyzing all 

populations and populations from each region separately (Fig. 2-20). However, only the 

SNPs NAC_854 and NAC _962 (2.8% of all SNPs) remained significant after the FDR 

correction. These two SNPs are likely under positive selection. In the Arlequin analysis, five 

SNPs fell outside the 95% interval (Fig. 2-21). Even though they did not remain significant 

after FDR correction, three of them (CysPro_202, NAC_962 and 92_352) were also 

identified by LOSITAN (Table 2-10). Similar to the saplings, no significant outliers were 

detected by BayeScan for the adults. 
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Fig. 2-20 Outlier SNPs detected in adults with LOSITAN under an island model. The plots show the 
distribution of the estimated FST values for each SNP along their mean heterozygosities (He) in A, all 
populations; B, populations from the Rhine valley; C, populations from the Rhone valley. The gray 
area represents the 95% confidence interval; SNPs falling outside that interval are labeled and could 
be potentially under selection. 

 

 

Fig. 2-21 ARLEQUIN results showing the distribution of the estimated FST values for each SNP along 
their mean standardized heterozygosities (He /(1-FST)) in populations of adults. The loci falling 
outside the 95% interval were labeled and could be potentially under selection. 
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Among the detected outliers, the SNP 92_352 is likely a true one, because it was 

detected by both LOSITAN and Arlequin methods in the adults (Table 2-10). In addition, the 

SNPs CysPro_202 and NAC_962 were detected by LOSITAN and Arlequin not only in 

adults, but also by Arlequin in saplings, which makes them likely true outliers under selection 

(Table 2-10). The rest of the outliers could be false. 

 

Table 2-10 List of the SNPs detected as outliers by one or two methods in saplings and adults. 

Saplings Adults 

LOSITAN ARLEQUIN Selection LOSITAN ARLEQUIN Selection 

ALDH_4* 
 

Balancing 

 

  

 
ERD Positive 

 

  

    IDH_1 Positive 

    IDH_4 Positive 

 
  Dhn_1 

 

Balancing 

 
  CP10_503 

 

Balancing 

 
CysPro_202 Positive CysPro_202 CysPro_202 Positive 

   
CysPro_728 

 

Balancing 

   
DAG_1059 

 

Positive 

   
NAC_854* 

 
Positive 

 
NAC_962 Positive NAC_962* NAC_962 Positive 

 
 

 
NAC_1300 

 

Positive 

 
 

 
17_1081 

 
Balancing 

 
 

 
50_232 

 
Balancing 

 
 

 
91_2_57 

 
Positive 

 
 

 
91_2_141 

 
Positive 

   

91_2_231 
 

Positive 

   

91_2_479 
 

Positive 

   
92_352 92_352 Positive 

      92_630   Balancing 

* The loci that remained significant after multiple testing correction. The loci highlighted by the bold 

font were detected by both methods. BayeScan did not detect any outliers. 

 

In the SNP CysPro_202, representing a synonymous substitution, allele A has a 

frequency close to zero in almost all populations, but its frequency is higher in Chamoson in 

both adult and sapling populations (Figs. 2-22 A and B). A similar and even stronger 

tendency is also observed in the synonymous SNP NAC_962, where allele A has a higher 

frequency in Chamoson (Figs. 2-22 C and D) in both adults and saplings. In contrast, 92_352, 

a non-synonymous SNP, showed a difference in allele frequencies between the two valleys: 

in adult populations, allele A has an average frequency of 0.83 in the Rhine valley, and an 
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average frequency of 0.96 in the Rhone valley (Fig. 2-22E; Fisher exact two-tailed P < 

0.001). 

 

Fig. 2-22 The allele frequency distribution for the outlier SNPs under positive selection. A, C, and E, 
adults; B and D, saplings. 
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Discussion 

Genetic variability and linkage disequilibrium (LD) 
 

Results demonstrate that the studied populations of F. sylvatica have high genetic variability 

found in both SSR and SNP markers (Tables 2-4 and 2-8). No significant differences in 

genetic variability between saplings and adults were found, suggesting that the saplings 

represent the genetic variability of the adult populations. Similar levels of genetic variability 

have been found in other studies based on similar sets of SSR loci (Seifert 2012; Bontemps et 

al. 2013; Müller 2014; Rajendra et al. 2014), and slightly lower when compared to the 

studies based on other SSR loci (Buiteveld et al. 2007; Kraj & Sztorc 2009; Chybicki et al. 

2009; Bilela et al. 2012). Among SSRs, EST-SSRs presented lower variability than genomic 

SSRs (Table 2-3). Similar results have been reported in other studies (Seifert 2012; Müller 

2014) and can be attributed to the location of EST-SSRs in coding regions, making them 

more conserved and thus, less polymorphic (Varshney et al. 2005; Ellis & Burke 2007).  SNP 

markers also revealed high genetic variability for the studied populations of European beech, 

comparable to the genetic variability found with other studies (Seifert et al. 2012; Müller et 

al. 2015b). It is known that this high genetic variability, characteristic of woody plants, is due 

to their large geographic ranges, long lives, outcrossing breeding systems and wide pollen 

dispersal (Hamrick et al. 1992). 

Null alleles are alleles that fail to amplify due to mutations in the primer binding site, 

causing a bias in the estimation of allele frequencies and a reduction in observed 

heterozygosity (Ellis & Burke 2007). Additionally, they are more likely to occur when SSR 

loci are transferred from other species. Although 7 SSR loci used in this study were 

transferred from F. crenata and Q. robur, no loci showed evidence of null alleles, which is 

supported by the fixation indices (FIS) close to zero (Table 2-3). Likewise, only few loci 

showed significant deviations from Hardy-Weinberg equilibrium, and this was due to an 

excess of heterozygous. These results confirm the observations from other studies indicating 

that the transferability of SSR loci among species of the genus Fagus is relatively high 

(Pastorelli et al. 2003; Lefèvre et al. 2012) and that transferability of EST-SSR can be 

successful even in species from different genus but the same family (Ellis & Burke 2007), as 

was the case for the EST-SSR transferred from Q. robur.    
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LD between SSR loci was found for 19.2% of all the possible pairs in the saplings. In 

contrast, 0.013% of all the possible pair combinations were found in LD for the adults, which 

is comparable to the low percentage found in other study (Lefèvre et al. 2012). The higher 

percentage of SSR loci in LD in the saplings could be an effect of relatedness, since groups 

of 2-4 saplings were collected underneath the same adult tree. In fact, those saplings had 

higher pairwise relatedness coefficient than saplings collected under different trees (see 

chapter 5). As for SNPs, 5.5% and 4.4% of all the possible pairs were found to be in LD in 

the saplings adults, respectively. These values are comparable to the percentage (5.01%) 

reported by (Pluess et al. 2016), and considerably lower than the percentages reported in 

other studies. For example, Müller et al. (2015a) observed LD for 18.45% of all possible SNP 

pairs. In general, low LD can be expected for a highly outcrossing, wind-pollinated tree 

species such as European beech (Jump et al. 2006; Aitken et al. 2008).  

 

Genetic differentiation and population structure 
 

The low G’’ST values and the inferred population structure demonstrated that there is weak 

population differentiation in the studied populations of F. sylvatica (Figs. 2-3, 2-4, 2-15 

and 2-16). The AMOVA analysis also showed that only 1-2% of the genetic variability was 

among populations (Tables 2-5 and 2-9). Low genetic differentiation is also reflected in the 

low bootstrap values observed in the NJ trees based on the SSR or SNP markers (Figs. 2-

5 and 2-17). In general, the clustering based on the SSR or SNP markers reflected neither the 

geographic distances between populations nor the environmental conditions in which they 

occur, although there was a tendency for populations from the same valley to cluster together. 

These findings are in consensus with other studies in beech that also reported low genetic 

differentiation in Germany (Sander et al. 2000; Rajendra et al. 2014; Müller et al. 2015a), 

Italy (Paffetti et al. 2012), France (Csilléry et al. 2014) and other parts of Europe (Buiteveld 

et al. 2007). High gene flow may explain the low differentiation, since F. sylvatica is an 

outcrossing wind-pollinated tree species with high rates of pollen flow among populations 

(Oddou-Muratorio et al. 2011; Piotti et al. 2012). In fact, beech pollen can travel for 

thousands of kilometers, from Germany and North Italy to Catalonia in Spain (Belmonte et 

al. 2008). This high pollen dispersal capability can explain the low genetic differentiation, 

even between populations from the two different valleys. 

However, despite the low genetic differentiation in general, both sapling and adult xeric 

populations in the Rhone valley were more genetically differentiated. Among the saplings, 
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Martigny and Chamoson were the populations with the highest pairwise genetic 

differentiation based on SSRs (Fig. 2-2), and Chamoson based on SNP markers (Fig. 2-14). 

Likewise, STRUCTURE analysis with SSRs identified Chamoson as a genetically distinct 

population (Fig. 2-3). Interestingly, Chamoson was also the most differentiated population 

based on both SSR and SNP markers in the adults (Figs. 2-2 and 2-14).  

 

Outlier analysis 
 

The three different outlier detection methods detected different sets of outlier loci (Tables 2-6 

and 2-10), although there were a few loci that were detected by more than one method. 

Discrepancies between different outlier detection methods are common and have been 

reported also in other studies (e.g., Russello et al. 2012; Tsumura et al. 2014; Konijnendijk et 

al. 2015). It can be attributed, on the one hand, to the different demographic assumptions 

underlying each method, and, on the other hand, to the different rates of type I (false 

positives) and type II (false negatives) errors (Narum & Hess 2011). 

Additionally, different outlier loci were detected between saplings and adults (Tables 2-

6 and 2-10). Not only can the environment exert different selection pressures at different life 

stages (Petit & Hampe 2006), but also different sets of genes are involved in the same trait at 

different stages (Prunier et al. 2013). Therefore, SNPs under selection are likely to differ 

between different ages. Besides, due to high competition and mortality, only a small fraction 

of seeds survive until the adult stage (Petit & Hampe 2006), which means that adult trees 

have passed different selection pressures through their life, and this could be evident in the 

higher number of outlier loci observed.  

Interestingly, BayeScan detected as many outliers under balancing selection as almost a 

total number of SSR loci studied (92.3%) (Table 2-6), while no SNPs were identified as 

outliers (Table 2-10). Foll & Gaggiotti (2008) assumed that SSRs are a better choice to detect 

balancing selection, due to their higher polymorphism. However, SSRs have a high mutation 

rate and often underestimate FST, which could be inaccurately interpreted as a signature of 

balancing selection (Excoffier et al. 2009). Furthermore, the most of type I errors occur for 

balancing selection (Narum & Hess 2011). Thus, the results obtained with BayeScan must be 

interpreted carefully, since they are very likely to be false positives. 

We used 10 SSRs that are located in non-coding regions (genomic SSRs) and 3 SSRs 

located in coding regions (EST-SSRs). Those located in non-coding regions are often 

considered selectively neutral (Holderegger et al. 2006). Nevertheless, they could be in LD 
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with closely linked locus or loci under selection. In this study, 3 SSR loci (23%) were 

identified as outliers by at least two methods in the adults (Table 2-6). Two of them, FS3-04 

and csolfagus_06, are genomic SSRs, and thus, were very likely linked with a locus under 

selection. Particularly, FS3-04 has also shown evidence of positive selection in populations 

of beech occurring in different conditions of humidity and temperature (Bilela et al. 2012), 

strongly suggesting that this locus could be linked with a locus associated with local 

adaptation to these conditions. In this study, one of the alleles of FS3-04 (Fig. 2-11A) had a 

high frequency in some of the populations with low and intermediate amount of precipitation. 

Since this tendency was not necessarily observed in geographically close populations, this 

suggests that similar environmental conditions, including precipitation, may be responsible 

for this pattern. Unlike csolfagus_06 and FS3-04, FIR065 is an EST-SSR, but according to 

BLAST search the function of the sequence is unknown.  

Unlike SSRs, SNPs in candidate genes are considered the best choice to detect 

signatures of selection, since they are directly located in coding regions. Different results 

were obtained with the three outlier methods, and BayeScan did not detect any outliers (Table 

2-10); BayeScan is considered more conservative in identifying outlier SNPs than other 

methods (Narum & Hess 2011).  In total, 3 SNPs (4.3%) were detected as outliers under 

positive selection by at least two methods in the adults; two of them were also detected in the 

saplings. The small proportion of outlier loci detected is in line with other studies carried out 

in forest trees such as Cryptomeria japonica (Tsumura et al. 2014) and Quercus petraea 

(Alberto et al. 2013). However, outlier methods have a limited sensitivity to identify markers 

under weak selection (Narum & Hess 2011). Furthermore, if there are subtle changes in allele 

frequencies, such as in the case of polygenic traits, in which adaptation involves subtle 

changes in allele frequencies at the loci controlling the polygenic trait (Stephan 2016), or 

when there is a high gene flow counteracting selection signatures (Rellstab et al. 2015), it can 

be difficult to detect outliers. 

Two of the outlier SNPs detected in this study were synonymous: CysPro_202 and 

NAC_962. Nevertheless, these loci were likely under positive selection. Positive selection 

occurs when an allele is beneficial, and its frequency increases in a population (Nielsen 2005; 

Vitti et al. 2013). In both SNPs, allele A has a higher frequency in Chamoson while allele G 

is almost fixed (with a frequency close to 1) in the rest of populations (Figs. 2-22 

A, B, C, and D). This may indicate positive selection in favor of A alleles in Chamoson. 

However, these two SNPs did not show significant association with the environmental 

variables (see chapter 4). Additionally, this population was also found to be genetically 
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distinct based on SSRs and SNPs; thus, it cannot be ruled out that factors other than selection 

could be could be responsible for the differentiation of this population at these two SNPs. 

In contrast, 92_352, a non-synonymous SNP, showed a difference in allele frequencies 

between the two valleys in the adults: allele A has an average frequency of 0.83 in the Rhine 

valley, and an average frequency of 0.96 in the Rhone valley (Fig. 2-22E). This SNP also 

showed significant association with environmental variables (see chapter 4); however, 

populations from the same valley had similar allele frequencies regardless the contrasting 

environmental conditions where they occur. Since the Rhine valley is at the east and the 

Rhone valley at the west of Switzerland, distinct colonization sources could explain the 

differences in the two valleys observed at SNP 92_352. Beech from the Slovenian and 

eastern Alps are considered as the main source areas for the colonization of central and 

northern Europe during the postglacial period (Magri et al. 2006), while beech from the 

western Alps might be responsible for the colonization of southern France up the Rhone 

(Delhon & Thiébault 2005; Magri 2008). If migration history explained differences in the 

two valleys, this should be observed also in other loci; however, this is not the case. This 

might suggest that particular environmental conditions in each valley that were not 

considered may be responsible for the differences at this locus.  

Among the likely true SNP outliers observed in this study, none of them has shown 

evidence of selection in other studies. Interestingly, some of the SNPs that were considered 

could be false outliers have been found to be associated with important climate-related traits. 

That is the case of the SNPs CP10_503, CysPro_728, DAG_1059, NAC_854 and 

NAC_1300, which have been associated with bud burst in beech (Müller et al. 2015a). 

Similarly, SNP 92_630 has been found to be associated with climatic variables (Pluess et al. 

2016), and SNPs 91_2_141, 91_2_231 and 91_2_479 have shown evidence of epistatic 

selection (Csilléry et al. 2014). Thus, further study of these SNPs involving other approaches 

such as polygenic and epistatic selection (Fu & Akey 2013) will help determine their 

participation in adaptation to different environmental conditions.  
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3. Phenotypic Association analysis 

Introduction 
 

Rising temperatures and changes in precipitation patterns as a consequence of climate change 

are predicted to affect forest ecosystems (Milad et al. 2011). For central Europe, climate 

change scenarios predict an increase in duration and intensity of droughts (Kovats et al. 

2014). These factors likely will affect survival of forest trees (Allen et al. 2010), and thus, 

alter the structure, composition and distribution of forests (Crookston et al. 2010; Chmura et 

al. 2011). 

European beech (Fagus sylvatica) is one of the most common species in Europe, and its 

distribution could be affected as a consequence of climate change (Kramer et al. 2010). 

Changes in the phenology of this species have been observed, registering an advancement of 

spring bud burst parallel with the global climatic trend (Badeck et al. 2004). This increases 

the probability of late frost damage, affecting especially the survival of seedlings and 

saplings (Packham et al. 2012). Besides, the predicted increment in frequency and duration of 

summer droughts will likely affect European beech distribution, since severe drought periods 

may be harmful for this species (Milad et al. 2011), and it could be overcompeted by more 

drought-tolerant trees such as Quercus petraea and Pinus sylvestris  (Geßler et al. 2007; 

Friedrichs et al. 2009).  

Despite its susceptibility to drought, morphological and physiological data indicate that 

European beech populations from dry sites could be more drought tolerant than populations 

from wet sites (Peuke et al. 2002; Rose et al. 2009; Arend et al. 2016b). Likewise, genetic 

differences between beech populations growing in environments with different water 

availability have been found (Pluess & Weber 2012). Recently, associations between SNPs in 

candidate genes and important climate related traits, such as bud burst, have been found 

(Müller et al. 2015a), and associations between SNPs and different environmental variables 

such as elevation (Csilléry et al. 2014), temperature, precipitation and drought, have been 

detected (Pluess et al. 2016) demonstrating standing genetic variation very much needed for 

local adaptation. 

Given that precipitation gradients may reflect differences in water availability and thus, 

promote local adaptation to drought, the aim of this study is to assess the response of saplings 

from beech populations occurring along steep precipitation gradients to simulated summer 

drought conditions on two different types of soil. The phenotypic traits bud burst, chlorophyll 

fluorescence and stem growth were assessed, and the association between traits and SNPs in 
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genes that supposedly may control these adaptive traits (so called candidate genes) was 

tested. 

Materials and Methods 

Plant material 
 

Twelve European beech populations growing along precipitation gradients in two inner 

alpine valleys in Switzerland were selected (Table 3-1). In spring 2011, 16-31 adult trees per 

population about 50 m apart from each other were selected, and 2-4 saplings underneath them 

with a size of ∼20 cm were excavated.  In total, 755 saplings were collected and transplanted 

to the model ecosystem facility MODOEK of the Swiss Federal Institute for Forest, Snow 

and Landscape Research WSL. 

 

Table 3-1 Environmental characteristics of the selected populations. Climate data were taken from 
nearby METEO SWISS stations (distance ≤ 10km) for the 1981-2010 period. 

Valley Population N Position 
Elevation,  

m.a.s.l 

Mean annual 

temperature, °C precipitation, mm 

Rhine 

Felsberg 62 46°51'N, 9°28'E 650-800 10.0 849 

Chur 63 46°52'N, 9°32'E 700-800 10.0 849 

Malans 64 46°59'N, 9°34'E 600-700 10.1 1114 

Mastrils 62 46°58'N, 9°32'E 550-650 10.1 1114 

Sargans 63 47°3'N, 9°26'E 650-750 10.1 1334 

Mels 60 47°3'N, 9°24'E 650-750 10.1 1334 

Rhone 

Ardon 63 46°13'N, 7°14'E 750-850 10.1 603 

Chamoson 64 46°12'N, 7°12'E 750-850 10.1 603 

Saxon 64 46°8'N, 7°11'E 700-800 10.1 603 

Martigny 64 46°6'N, 7°6'E 500-700 10.1 855 

Collombey 63 46°16'N, 6°56'E 550-650 9.8 1012 

Ollon 63 46°18'N, 6°59'E 600-700 9.8 1012 

N - Number of individuals sampled 

Experimental design 
 

The drought experiment described in the following section was carried out by Dr. Matthias 

Arend, from the Swiss Federal Institute for Forest, Snow and Landscape Research WSL. The 

MODOEK facility of the WSL consists of 16 chambers equipped with a sliding roof and an 

automated irrigation system for controlling water supply. Each chamber is split below ground 

in two lysimeters containing acidic or calcareous forest soil with a pH of 4.0 and 6.9, 

respectively, and comparable texture. In each chamber, two saplings from each population 

were transplanted on each type of soil. Saplings were acclimatized during two growing 
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seasons (2011 and 2012) to overcome the transplantation shock and to regenerate their root 

system. The sliding roofs were closed from May to October to exclude natural precipitation, 

and the saplings were irrigated every second or third day with deionized water enriched with 

nutrients simulating the average composition of ambient rainfall (Kuster et al. 2013). During 

hot periods, the intensity and frequency of irrigation was increased to hold soil moisture and 

counterbalance high rates of evapotranspiration. 

In 2013 and 2014, the drought experiment was carried out. Drought conditions were 

imposed in half of the chambers by omitting water irrigation from May to August. During hot 

days, short irrigation pulses were applied to avoid too intense soil drying and, irreversible 

damage of the saplings due to water loss by high evapotranspiration. The other half of the 

chambers were used as control, maintaining irrigation as described above. A summary of the 

number of saplings under the different conditions of soil and treatment is found in Table 3-2.  

 

Table 3-2 Summary of the number of saplings under different conditions 

 

Control Drought Total 

Acidic soil 188 193 381 

Calcareous soil 187 187 374 

Total 375 380 755 

 

Phenotypic data 
 

The following phenotypic traits measured in the saplings were evaluated and provided by Dr. 

Matthias Arend from the Swiss Federal Institute for Forest, Snow and Landscape Research 

WSL. 

Spring bud burst was assessed daily in 2012, 2013 and 2014. A sapling was considered to be 

bursting when the first bud had broken out and the green leaf was visible. Date of bud burst 

was recorded and transformed into day of year. Bud burst was assessed before the onset of 

the drought experiment on May (Arend et al. 2016a). 

To assess the physiological responses of the saplings to the drought experiment, 

chlorophyll fluorescence was evaluated in 2014 on the saplings growing on acidic soil. Fast 

fluorescence kinetics was analyzed once per sapling between 11:00 and 12:00 on dark-

adapted leaves using a portable plant efficiency analyzer (Pocket PEA, Hansatech 

Instruments Ltd., Norfolk, UK). After a saturating light pulse of 3500 μmol quanta m
2
/s of 

red light (650 nm), increase in fluorescence was registered. Based on fluorescence kinetics, 
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three parameters were calculated: The maximum quantum efficiency of PSII (FV/FM), the 

performance index of PSII on absorption basis (PIabs), and the total performance index of 

PSII (PItot) (Arend et al. 2016b). 

Additionally, radial stem growth (SG) 0.5 cm above ground was evaluated in all 

saplings as a morphological response to the experiment. For that purpose, diameter of the 

stems was measured in March 2013, October 2013 and September 2014, and the increment in 

diameter was calculated as the difference between March-October 2013 (SG 2013), October 

2013-September 2014 (SG 2014) and March 2013-Septermber 2014 (SG 2013-2014). 

 

Statistical analysis of phenotypic data 
 

Since non-normal distribution of the phenotypic data was revealed by the Kolmogorov-

Smirnov test, the non-parametric Kruskall-Wallis test was used to test for significant 

differences on phenotypic traits between drought and control treatments and acidic and 

calcareous soil. Furthermore, statistical differences between the most mesic (Sargans and 

Mels) and most xeric populations (Ardon, Chamoson and Saxon) under drought conditions 

were also tested. Statistical analyses were performed with R 3.3.1 (R Core Team 2016). 

 

SNPs and candidate genes 
 

Some of the SNPs in candidate genes involved in phenology and drought stress tolerance 

from previously published studies for F. sylvatica (Seifert et al. 2012; Lalagüe et al. 2014; 

Müller et al. 2015b) were selected as follows: for each gene, linkage disequilibrium (LD) 

blocks were identified by using the software htSNPer 1.0 (Ding et al. 2005). Then, a subset 

of SNPs representing the majority of haplotypes (haplotype tag SNPs) was selected for 

further genotyping. In addition, SNPs showing signatures of natural selection in the previous 

studies (Csilléry et al. 2014; Müller et al. 2015a) were also selected, for a total of 24 genes 

and 76 SNPs (21 non-synonymous, 27 synonymous and 28 in non-coding regions) selected 

for genotyping (Table 3-3). Nucleotide sequences neighboring selected SNPs were sent to 

LGC Genomics Ltd. for primer design and SNP genotyping using the PCR-based KASP
TM

 

genotyping assay (Hoddesdon, UK). 
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Table 3-3 Candidate genes and characteristics of the selected SNPs 

Gene SNP name Type Reference 

Aldehyde dehydrogenase ALDH_1 Non-coding Seifert et al. 2012 

ALDH_2 Non-Synonymous  

ALDH_3 Non-Synonymous  

ALDH_4 Synonymous  

Isocitrate dehydrogenase IDH_1 Synonymous  

IDH_3 Non-coding  

IDH_4 Synonymous  

Ascorbate peroxidase APX1_1 Synonymous  

APX1_2 Non-coding  

APX4_1 Non-coding  

APX4_2 Non-Synonymous  

Early responsive to dehydration ERD Non-coding  

Dehydrin Dhn_1 Non-Synonymous  

Dhn_2 Non-Synonymous  

Glutathione peroxidase GPX Non-Synonymous  

Phytochrome B PhyB Synonymous  

Cysteine proteinase CysPro_118 Synonymous Müller et al. 2015 

CysPro_202 Synonymous  

CysPro_728 Non-coding  

CysPro_783 Non-coding  

Chloroplast Chaperonin like CP10_65 Synonymous  

CP10_67 Non-Synonymous  

CP10_377 Non-coding  

CP10_442 Non-coding  

CP10_503 Synonymous  

CP10_749 Synonymous  

CP10_1317 Non-coding  

CP10_1428 Non-Synonymous  

Dof zinc finger protein DAG_81 Non-coding  

DAG_289 Non-coding  

DAG_1059 Synonymous  

Histone 3 His3C1_292 Non-coding  

His3C2_104 Synonymous  

His3C2_186 Non-coding  

His3C2_260 Synonymous  

NAC transcription factor NAC_854 Non-Synonymous  

NAC_962 Synonymous  

NAC_1300 Non-coding  

Protein phosphatase 2C PP2C_315 Non-Synonymous Müller et al. 2015 

PP2C_391 Synonymous  

PP2C_791 Non-Synonymous  

PP2C_941 Non-coding  

 
PP2C_1200 Synonymous  

Xyloglucan endotransglucosylase/hydrolase 

23 

7_258 Non-coding Lalagüe et al. 2014 

7_520 Non-coding  

Short chain alcohol dehydrogenase 17_880 Non-coding  
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Gene SNP name Type Reference 

17_1081 Non-coding  

Potassium transporter 2 39_256 Synonymous  

39_282 Non-Synonymous  

CRT/DRE binding factor 50_39 Non-Synonymous  

50_232 Synonymous  

50_320 Non-coding  

s-adenosyl-l-homocysteine hydrolase 52_1_235 Non-Synonymous  

52_1_249 Non-Synonymous  

52_1_368 Synonymous  

Glyceraldehyde 3-phosphate dehydrogenase 68_277 Non-Synonymous  

68_313 Non-coding  

Light-harvesting complex II protein 88_1_450 Non-coding  

88_1_727 Synonymous  

88_1_803 Non-Synonymous  

Catalase 91_2_57 Synonymous  

91_2_141 Synonymous  

91_2_231 Synonymous  

91_2_448 Non-coding  

91_2_479 Non-coding  

91_2_504 Non-coding  

1-aminocyclopropane-1-carboxylate 

oxidase 

92_166 Non-coding  

92_352 Non-Synonymous  

92_630 Non-coding  

Cytosolic class I small heat-shock protein 110_1_111 Non-Synonymous  

110_1_293 Synonymous  

110_1_423 Non-Synonymous  

110_1_450 Non-Synonymous  

Pectin methylesterase 154_2_137 Synonymous  

154_2_371 Synonymous  

154_2_617 Synonymous  

 

Association analysis 
 

The software TASSEL 5.0 (Bradbury et al. 2007) was used to test for association between 

SNPs and the following phenotypic traits: day of bud burst, FV/FM, PIabs,  PItot and SG. 

Association analyses were done by grouping individuals according to the experimental 

conditions: treatment, soil and treatment/soil. In addition, an analysis by grouping all saplings 

regardless of experimental conditions was also done; in that case, to account for the 

variability due to the different experimental conditions, normalization was applied by 

dividing the data by the mean of each experimental condition. Association analyses were 

performed using the general linear model (GLM) considering the population structure (Q) 

obtained from microsatellite data as a confounding factor using the software STRUCTURE 
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2.3.4 (Pritchard et al. 2000). Additionally, the mixed linear model (MLM) considering both 

Q and kinship (K) as confounding factors was also used. Pairwise K-matrix was estimated 

using relatedness coefficients according to Queller & Goodnight (1989) using the software 

GenAlEx 6.5 (Peakall & Smouse 2006, 2012), and negative values were set as zero. 

Correction for multiple testing was done by two different methods: Bonferroni correction (P 

≤ 0.00143) and adjustment of P values for a false discovery rate FDR < 0.1 using the 

Benjamini & Hochberg (1995) method implemented in the R function “p.adjust” (R Core 

Team 2016). 

 

Results 

Phenotypic data 

Day of Bud Burst 

 

Timing of bud burst was highly variable among individuals from the same population and 

among populations. Significant differences were found among populations in 2012, 2013 and 

2014, being 2014 the year with the earliest bud burst for all populations (Fig. 3-1). Likewise, 

statistically significant differences were found between saplings growing on acidic and 

calcareous soil (Fig. 3-2), with a tendency for saplings on acidic soil to flush earlier in 2013 

and 2014. No significant differences in day of bud burst were found between the most mesic 

(Sargans and Mels) and most xeric populations (Ardon, Chamoson and Saxon). 

 

Chlorophyll Fluorescence 

 

Physiological responses to the treatment measured by chlorophyll fluorescence were very 

variable among individuals, especially for the parameter PIabs, which varied from 0.07 to 

11.39 in control saplings, and from 0.17 to 7.21 in saplings under drought (Fig. 3-3B). In 

contrast, the parameter FV/FM varied from 0.48 to 0.85 and from 0.55 to 0.83 in saplings 

under control and drought treatment, respectively (Fig. 3-3A). No significant differences 

were found among populations for the different parameters (Fig. 3-3); however, differences 

were almost significant between mesic and xeric populations under drought treatment for the 

parameter PItot, with xeric populations performing better (P=0.06, Fig. 3-4). On the other 

hand, significant differences were found between control and drought treatments only with 
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the indices PIabs and PItot (Fig. 3-5); on average, control plants performed 1.2 and 1.3 times 

better according to PIabs and PItot indices, respectively. 

 

 

Fig. 3-1 Day of bud burst of the single populations growing on acidic and calcareous soil, in different 
years. A, 2012; B, 2013; C, 2014. Box plots include median, upper and lower quartiles; whiskers 
show minimum and maximum values. Fel - Felsberg; Chu - Chur; Mal - Malans; Mas - Mastrils; Sar - 
Sargans; Mel - Mels; Ard - Ardon; Cha - Chamoson; Sax - Saxon; Mar - Martigny; Col - Collombey; 
Oll - Ollon. 
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Fig. 3-2 Day of bud burst over all populations by type of soil in different years. *** P < 0.001. Acid.  
- acidic soil; Calc. - calcareous soil. Box plots include median and upper and lower quartiles; whiskers 
show minimum and maximum values. 

 

Fig. 3-3 Physiological responses of the single populations to control and drought treatments measured 
by chlorophyll fluorescence parameters. A, FV/FM; B, PIabs; C, PItot. Box plots include median, upper 
and lower quartiles; whiskers show minimum and maximum values. Fel - Felsberg; Chu - Chur; Mal - 
Malans; Mas - Mastrils; Sar - Sargans; Mel - Mels; Ard - Ardon; Cha - Chamoson; Sax - Saxon; Mar - 
Martigny; Col - Collombey; Oll - Ollon. 
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Fig. 3-4 Responses of mesic and xeric populations to the drought treatment, measured by the 
parameter PItot. Differences were almost significant (P=0.06). Box plots include median, upper and 
lower quartiles; whiskers show minimum and maximum values. 

 

 

Fig. 3-5 Responses over all populations to control and drought treatments measured by A, PIabs and B, 
PItot. **P<0.01. Box plots include median, upper and lower quartiles; whiskers show minimum and 
maximum values. 

 

Stem Growth 

 

There was a high variability on stem growth as a response to the treatment and type of soil 

(Figs. 3-6 and 3-7). Differences in the response among populations were significant in 

control/calcareous, drought/acidic and drought/calcareous conditions (Figs. 3-6 and 3-7). Soil 

had a significant effect on plants under control and drought conditions in 2014 (Fig. 3-8B), 

and also on plants under drought conditions in the overall stem growth 2013-2014 (Fig. 3-

8C); saplings on calcareous soil had the highest stem growth (Figs. 3-8B and 3-8C). 

Treatment had a significant effect on SG in 2013, 2014 and 2013-2014 (Fig. 3-8); control 

plants had higher stem growth. Mesic and xeric populations demonstrated significant 

differences in stem growth under drought conditions in both acidic and calcareous soil (Fig. 

3-9). In all cases, xeric populations demonstrated higher values of stem growth. 
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Fig. 3-6 Morphological responses of the single populations to treatment and type of soil, measured as 
stem growth (SG) in 2013 and 2014. Box plots include median, upper and lower quartiles; whiskers 
show minimum and maximum values. Fel - Felsberg; Chu - Chur; Mal - Malans; Mas - Mastrils; Sar - 
Sargans; Mel - Mels; Ard - Ardon; Cha - Chamoson; Sax - Saxon; Mar - Martigny; Col - Collombey; 
Oll - Ollon. 
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Fig. 3-7 Morphological responses of the single populations to treatment and type of soil, measured as 
overall stem growth (SG) 2013 - 2014. Box plots include median, upper and lower quartiles; whiskers 
show minimum and maximum values. Fel - Felsberg; Chu - Chur; Mal - Malans; Mas - Mastrils; Sar - 
Sargans; Mel - Mels; Ard - Ardon; Cha - Chamoson; Sax - Saxon; Mar - Martigny; Col - Collombey; 
Oll - Ollon. 

 

 

Fig. 3-8  Effect of treatment and type of soil on stem growth over all populations in A, 2013; B, 2014; 
C, 2013-2014. Different letters indicate significant differences, P<0.05. Box plots include median, 
upper and lower quartiles; whiskers show minimum and maximum values. 

 

0 

6 

12 

18 
S
G

 2
0
1
3
-2

0
1
4
 (

cm
) 

Fel Chu Mal Mas Sar Mel Ard Cha Sax Mar Col Oll

Control, Pop P=0.14

Drought, Pop P<0.001A Acidic soil

0 

6 

12 

18 

S
G

 2
0
1
3
-2

0
1
4
 (

cm
) 

Fel Chu Mal Mas Sar Mel Ard Cha Sax Mar Col Oll

Control, Pop P<0.01

Drought, Pop P<0.01

B Calcareous soil

0 

3 

6 

9 

12 

15 

Control Drought Control Drought 

S
G

 2
0
1
3
 (

cm
) 

Acidic

Calcareous

a

b

a
b

Calcareous

0 

3 

6 

9 

Control Drought Control Drought 

S
G

 2
0
1
4
 (

cm
) 

a

b
d

c

0 

5 

10 

15 

20 

Control Drought Control Drought 

S
G

 2
0
1
3
-2

0
1
4
 (

cm
) 

a

b d

a

A B C
Acidic

Calcareous

Acidic

Calcareous



 65 

 

Fig. 3-9 Differences in the responses of mesic and xeric populations to the drought treatment 
measured by stem growth (SG) in A, 2013; B, 2014; C, 2013-2014. *P<0.05; **P<0.01; ***P<0.001. 
Box plots include median, upper and lower quartiles; whiskers show minimum and maximum values. 

 

Phenotypic Association analysis 
 

From the 76 selected SNPs for genotyping, 6 were monomorphic (APX1_2, PhyB, 50_320, 

52_1_249, 92_166, 110_1_111); thus, the remaining 70 were used for the association 

analysis. Comparison between the GLM and MLM methods revealed that they yielded 

similar results and had very similar performance, as shown by the close distribution between 

the observed and expected P values in the quantile-quantile plots (Appendix 3-1). Therefore, 

only the results corresponding to the MLM model are presented. 

In total, 5 out of 70 SNPs analyzed showed significant association with the phenotypic 

traits PIabs, PItot and SG; and 2 SNPs showed close to significance association with FV/FM 

(Table 3-4). None of the SNPs showed significant association with bud burst. Three of the 

significant SNPs showed association with more than one trait (50_39, IDH_1 and IDH_4). 

Only one of the SNPs showing association is located in non-coding regions; the rest of the 

SNPs are located in coding regions, two of them representing non-synonymous substitutions 

(PP2C_315 and 50_39), and four of them synonymous substitutions (110_1_293, IDH_1, 

IDH_4 and 50_232). The genotypic variation explained by the SNPs was relatively high (4.1 

≤ R
2
 ≤ 13.4) (Table 3-4). 

Homozygous plants CC for the SNP PP2C_315 showed higher FV/FM values (on 

average, 0.05 higher) than heterozygous (Figs. 3-10A and 3-11A). On the other hand, 

homozygous TT for the SNP 7_520 showed slightly lower values, on average 0.003 less, than 

heterozygous (Fig. 3-10B). 

0 

3 

6 

9 

12 

Mesic Xeric Mesic Xeric 

S
G

 2
0
1
3
 (

cm
) 

*

*

0 

2 

4 

6 

8 

Mesic Xeric Mesic Xeric 

S
G

 2
0
1
4
 (

cm
) 

***

**

0 

4 

8 

12 

16 

Mesic Xeric Mesic Xeric 

S
G

 2
0
1
3
-2

0
1
4
 (

cm
) ***

**
A B C

Acidic

Calcareous
Acidic

Calcareous
Acidic

Calcareous



 66 

 

Table 3-4 Results of the association analysis under a MLM model for the pooled individuals (All saplings) and individuals under Drought/Acidic soil, 
Drought/Calcareous soil, and Control/Acidic soil conditions. Only SNPs showing significant or close to significant association with a phenotypic trait are 
presented 

Trait Gene SNP SNP type 
All saplings 

 
Drought/Acidic 

 
Drought/Calcareous 

 
Control/Acidic 

R
2
 P P* 

 
R

2
 P P* 

 
R

2
 P P* 

 
R

2
 P P* 

FV/FM Protein phosphatase 2C PP2C_315 Non-synonymous 4.1 0.002+ 0.118+  5.1 0.002+ 0.149+  ND ND ND  2.9 0.143 0.940 

Xyloglucan 

endotransglucosylase 

hydrolase 23 

7_520 Non-coding 4.1 0.002+ 0.118+  7.3 0.003 0.188  ND ND ND  0.0 0.890 1.000 

PIabs Cytosolic class I small 

heat-shock protein 

110_1_293 Synonymous 5.8 0.000 0.025  3.8 0.066 0.789  ND ND ND  13.4 0.000 0.020 

PItot CTR/DRE binding factor 50_39 Non-synonymous 2.4 0.031 0.780  10.6 0.000 0.110+  ND ND ND  1.3 0.502 1.000 

SG 

2013 

CTR/DRE binding factor 50_39 Non-synonymous 0.3 0.471 0.995  8.5 0.001 0.138+  0.0 0.960 0.985  3.6 0.091 0.911 

SG 

2014 

Isocitrate dehydrogenase IDH_1 Synonymous 1.4 0.014 0.723  0.4 0.851 0.990  10.2 0.000 0.069  0.4 0.853 1.000 

IDH_4 Synonymous 1.5 0.011 0.723  1.3 0.488 0.990  10.8 0.000 0.069  1.6 0.400 1.000 

SG 

2013-

2014 

Isocitrate dehydrogenase IDH_1 Synonymous 1.1 0.045 0.869  0.0 0.998 0.999  8.8 0.001 0.111+  0.0 0.999 1.000 

IDH_4 Synonymous 1.1 0.036 0.869  1.0 0.586 0.990  9.7 0.001 0.069  1.4 0.458 1.000 

CTR/DRE binding factor 50_39 Non-synonymous 0.1 0.882 1.000  8.2 0.002+ 0.138+  0.1 0.918 0.983  0.3 0.900 1.000 

50_232 Synonymous 0.0 0.975 1.000  8.4 0.001 0.138+  0.2 0.856 0.983  0.8 0.696 1.000 

R
2
 - phenotypic variation explained by the SNP (%). ND - no determined. P* - adjusted P. In bold, significantly associated after applying Bonferroni 

correction (P≤0.0014) or after adjusting P values for a FDR<0.1. 
+ 

- close to significance
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Fig. 3-10  SNPs showing association in the analysis using all saplings, and their effects on normalized 
chlorophyll fluorescence parameters. *P<0.05. Homozygous GG in A and B are not shown due to low 
sample size (N=1). Box plots include median, upper and lower quartiles; whiskers show minimum 
and maximum values. 

 

 

Fig. 3-11 SNPs showing association in saplings under drought/acidic soil conditions, and their effects 
on the phenotypic traits. Different letters indicate significant differences, P<0.05. Homozygous GG in 
A are not shown due to low sample size (N=1). Box plots include median, upper and lower quartiles; 
whiskers show minimum and maximum values. 
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Homozygous individuals AA for SNP 110_1_293 showed higher normalized PIabs: on 

average, 0.12 higher than heterozygous and 0.06 higher than homozygous TT (Fig. 3-10C). 

In contrast, in saplings on control/acidic soil conditions, homozygous TT showed higher 

PIabs: on average 0.17 higher than heterozygous and 0.26 higher than homozygous AA (Fig. 

3-12). 

 

 

Fig. 3-12 SNP showing significant association in saplings under control/acidic soil conditions, and its 
effect on PIabs. Box plots include median, upper and lower quartiles; whiskers show minimum and 
maximum values.  
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respectively. However, differences between GA and GG genotypes were not significant 

(Figs. 3-13 B and D). 

 

 
Fig. 3-13 SNPs showing significant association in saplings under drought/calcareous soil conditions, 
and their effects on stem growth. Different letters indicate significant differences, P<0.05. Box plots 
include median, upper and lower quartiles; whiskers show minimum and maximum values. 
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Day of Bud burst 
 

Bud burst is an important phenological trait regulated by the interaction among chilling, 

forcing temperatures and photoperiod (Caffarra & Donnelly 2011; Basler & Körner 2014), 

and is one of the traits that has been affected the most by global warming (Schröder et al. 

2006).  In this study, timing of bud burst was highly variable among populations in all the 

three years in which it was assessed (Fig. 3-1). It is known that while western and northern 

populations show a clear trend towards late flushing, populations of beech in Central Europe 

show variability in the time of flushing (Jazbec et al. 2007). Furthermore, a clear earlier onset 

of bud burst was observed in 2014 (Fig. 3-2), which could be explained by the higher spring 

temperature during that year, a trend that has been already observed in beech with the rising 

temperatures (Badeck et al. 2004; Fu et al. 2012). Additionally, bud burst was also earlier in 

the saplings growing in acidic soil. Soil characteristics also influence timing of bud burst 

(Arend et al. 2016a). For example, high soil moisture favors early bud burst in birch, whereas 

high pH seems to delay it (Wielgolaski 2001).  

 

Chlorophyll fluorescence 
 

Chlorophyll fluorescence has been usually used to evaluate the state of photosystem II, and 

thus, the overall rate of photosynthesis, giving insights into plant responses to different 

stresses (Maxwell & Johnson 2000). Among the different chlorophyll fluorescence based 

parameters calculated to evaluate the performance of PSII, FV/FM was the least variable, and 

no significant differences among populations and control vs. drought treated saplings were 

found with this parameter (Fig. 3-3). This is in line with other studies reporting low 

variability and responsiveness of FV/FM to drought stress (Gallé & Feller 2007; Robson et al. 

2009; Arend et al. 2016b; Cocozza et al. 2016).  

In contrast, PIabs and PItot were better indicators of drought stress sensitivity. Saplings 

under drought stress had lower values of PIabs and PItot, indicating a negative effect on 

photosynthesis caused by water shortage (Fig. 3-5). Other studies have also shown a 

reduction in photosynthesis in beech saplings exposed to drought, due to reduced stomatal 

conductance and consequently reduced assimilation rate of CO2 (Gallé & Feller 2007; 

Priwitzer et al. 2014). Additionally, the index PItot showed that saplings from xeric 

population were less affected by the drought treatment than saplings from mesic populations 

(Fig. 3-4), and there is evidence indicating that xeric populations recover faster after drought 
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(Arend et al. 2016b). By measuring parameters such as carbon isotropic composition, 

transpiration rate and water potential in leaves, shoots and roots, other studies have also 

demonstrated that beech trees from dry habitats are less affected by drought (Peuke et al. 

2002; Fotelli et al. 2009).  

 

Stem Growth 
 

Stem growth is an important phenotypic trait for the evaluation of sensitivity to 

environmental stresses such as drought. In this study, high variability in SG was found 

among populations under the same treatment and soil conditions (Figs. 3-6 and 3-7). Large 

phenotypic variation has been reported for growth traits such as stem height, diameter and 

volume (Gauzere et al. 2016). Additionally, SG was clearly reduced by the drought treatment 

(Fig. 3-8), indicating a negative effect caused by water shortage. This is consistent with other 

studies showing that under drought conditions, beech saplings show a reduction not only in 

diameter increment but also in height (Thiel et al. 2014). Furthermore, ring widths have been 

seen to be negatively affected by soil water deficit (Bouriaud et al. 2004; Lebourgeois et al. 

2005). Reduction in stem growth under drought conditions is explained by a shift on carbon 

allocation priorities, leading to an increment in the root/shoot ratio to facilitate access to soil 

water (Leuschner et al. 2001; Rose et al. 2009). Interestingly, the reduction in SG by the 

drought treatment was more pronounced in 2014. This could be an effect of the delayed 

growth response of European beech to drought, resulting in a more pronounced reduction in 

growth the year after the drought occurs (Bolte et al. 2007).  

Even tough European beech is able to grow on many types of soils, its optimal growth 

is reached in humid calcareous soils (Jahn 1991). In this study, saplings growing on 

calcareous soil presented higher SG than saplings on acidic soil, especially in 2014 and also 

in the overall SG 2013-2014 (Fig. 3-8). It is known that soil characteristics influence the 

amount of water available for plants (Piedallu et al. 2013), which in turn affects nutrient 

uptake (Geßler et al. 2007). Therefore, the response and sensitivity of plants to drought 

conditions will depend on the type of soil. Indeed, the effect of soil on SG was more 

noticeable under the drought treatment (Figs. 3-8 B and C). Similar results were found by 

Thiel et al. (2014), who found that a sandy soil with lower water storage capacity and lower 

nutrient availability resulted in a more severe negative impact on the performance of beech 

under drought conditions compared to loamy soil.  
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Despite the negative effect of drought on SG, plants from xeric populations showed 

higher stem growth than plants from mesic populations, indicating that they were less 

affected by drought (Fig. 3-9). In fact, other studies investigating growth parameters have 

also found that populations of beech from mesic sites are more sensitive to drought (Weber et 

al. 2013; Thiel et al. 2014), indicating that individuals from xeric populations are better able 

to cope with the environment they grow in.   

 

Association analysis 
 

One approach for the detection of genetic adaptive variation is to find associations between 

phenotypic traits and allelic variation. However, population structure and relatedness are 

confounding factors that can lead to false associations. In this study, saplings collected 

underneath the same adult tree were more related genetically (see chapter 5); thus, it was 

necessary to account for relatedness for the phenotypic association analysis. The inclusion of 

relatedness and population structure and reduced effectively the inflation of association 

signals, as revealed by the quantile-quantile plots (Appendix 3-1). This suggests that the 

SNPs deviating significantly from the expected P values show true associations with the 

studied phenotypic traits.    

No significant associations were found between the studied SNPs and day of bud burst. 

It is known that altitude plays an important role in time of bud burst in European beech: 

populations from high elevations flush earlier than populations from low elevations (Vitasse 

et al. 2009), and genetic differences among them have been found (Kraj & Sztorc 2009). 

Likewise, SNPs significantly associated with bud burst have been detected in populations in 

elevation gradients (Müller et al. 2015a).  However, since the populations selected in this 

study are located at similar altitudes, selection acting on bud burst could be unlikely or too 

weak to be detected by the phenotypic association analysis. 

In contrast, the phenotypic traits PIabs, PItot and SG showed significant associations with 

5 SNPs, while FV/FM showed close to significant associations with 2 SNPs (Table 3-4). The 

phenotypic variation explained by the SNPs was relatively high (4.1 ≤ R
2
 ≤ 13.4) compared 

to other studies reporting R
2 

values between 2.1-6.9 (Hao et al. 2012; Porth et al. 2013; 

Müller et al. 2015a). Interestingly, the SNP 50_39 in the gene CTR/DRE transcription factor 

was associated with both chlorophyll fluorescence and growth traits. Heterozygous 

individuals at this SNP showed a better performance under drought/acidic conditions (Figs. 

3-11 B, C and D), indicating overdominance. Other SNP at the same gene, the SNP 50_232, 
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showed also association with SG 2013-2014 and it seems to have a dominant mode of action, 

with the allele A conferring higher SG under drought/acidic conditions (Fig. 3-11E). 

Similarly, the synonymous SNPs IDH_1 and IDH_4 in the gene Isocitrate dehydrogenase 

were significantly associated with SG, and both seem to have a dominant mode of action 

(Fig. 3-13) with allele C from IDH_1 and allele G from IDH_4 conferring higher SG under 

drought/calcareous conditions.  

The SNP 110_1_293 in the gene Cytosolic class I small heat-shock protein showed 

significant association with PIabs under control/acidic conditions (Table 3-4). However, it 

seems that the two alleles at this SNP have low differences in their phenotypic effect (Fig. 3-

12). Indeed, in forest trees many genes with small phenotypic effect control complex traits 

(Aitken et al. 2008), and to detect their effect large sample sizes are required (Hong & Park 

2012; Korte & Farlow 2013). Even though the sample size increased when the association 

analysis was carried out including all saplings, this was not enough to observe a strong effect 

of the genotype at SNP 110_1_293 on PIabs (Fig. 3-10C). Similarly, the SNP 7_520 showed 

close to significant association with FV/FM in the analysis including all saplings (Table 3-4), 

but the two alleles at this SNP show low differences in their phenotypic effect (Fig. 3-10B). 

Thus, a further exploration of the significant association of these SNPs and their effect on 

PIabs and FV/FM will require larger sample sizes. 

SNP PP2C_315 also showed close to significant association with FV/FM, and 

individuals with the genotype CC showed better performance than heterozygous (Figs. 3-10A 

and 3-11A). However, since only one homozygous GG was found, it is not possible to 

determine the allelic mode of action for this SNP. Further exploration with larger sample size 

could help get insight into the validity of this association and the likely mode of action for 

this SNP.  

The majority of the SNPs showing association are located in coding regions, 

representing both non-synonymous and synonymous substitutions (Table 3-4).  Traditionally, 

SNPs in coding regions, and particularly non-synonymous SNPs, are thought to be the main 

target of natural selection because they cause a change in the aminoacid and thus, can cause a 

change in the phenotype. Nevertheless, some studies indicate that synonymous substitutions 

are also important, since they affect mRNA splicing, stability, translation kinetics and 

ultimately, the production of the protein (Pagani et al. 2005; Chamary et al. 2006; Komar 

2007). Likewise, non-coding regions of the genome are very important because they are 

responsible for temporal and spatial regulation of gene expression (Barrett et al. 2012). 
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Therefore, synonymous SNPs and non-coding SNPs could also represent genetic variability 

underlying phenotypic traits.  

In conclusion, since populations from xeric sites showed a better performance under the 

drought treatment as demonstrated by PItot and SG, this could indicate that those populations 

are already adapted to dry environments. This is further supported by the SNPs showing 

significant association with the phenotypic traits, and clearly some genotypes were able to 

perform better under drought conditions. This provides strong evidence indicating that 

selection processes leading to adaptation to drought conditions are occurring. 
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Appendix 3-1  
Quantile-quantile plots of estimated –Log10P for the different phenotypic traits showing association 

under different experimental conditions. A and B - analysis including all seedlings; C, D, E, and F - 

analysis including seedlings on drought/acidic soil conditions; G and H - analysis including seedlings 

on drought/calcareous soil; I - analysis including seedlings on control/acidic soil conditions. 
 

  

Expected GLM MLM 

0.0 

1.0 

2.0 

3.0 

0.0 0.5 1.0 1.5 2.0 

-L
o
g

1
0
 (

o
b

se
r
v
e
d

 P
 v

a
lu

e
) 

-Log10 (expected P value) 

Normalized FV/FM 

0.0 

1.0 

2.0 

3.0 

0.0 0.5 1.0 1.5 2.0 

-L
o
g

1
0
 (

o
b
se

r
v
e
d

 P
 v

a
lu

e
) 

-Log10 (expected P value) 

FV/FM 

0.0 

1.0 

2.0 

3.0 

4.0 

0.0 0.5 1.0 1.5 2.0 

-L
o
g

1
0
 (

o
b

se
r
v
e
d

 P
 v

a
lu

e
) 

-Log10 (expected P value) 

Normalized PIabs 

0.0 

1.0 

2.0 

3.0 

4.0 

0.0 0.5 1.0 1.5 2.0 

-L
o
g

1
0
 (

o
b
se

r
v
e
d

 P
 v

a
lu

e
) 

-Log10 (expected P value) 

PI tot 

0.0 

0.7 

1.4 

2.1 

2.8 

3.5 

0.0 0.5 1.0 1.5 2.0 

-L
o
g

1
0
 (

o
b

se
r
v
e
d

 P
 v

a
lu

e
) 

-Log10 (expected P value) 

SG 2013 

0.0 

1.0 

2.0 

3.0 

0.0 0.5 1.0 1.5 2.0 

-L
o
g

1
0
 (

o
b

se
r
v
e
d

 P
 v

a
lu

e
) 

-Log10 (expected P value) 

SG 2013-2014 

0.0 

1.0 

2.0 

3.0 

4.0 

0.0 0.5 1.0 1.5 2.0 

-L
o
g

1
0
 (

o
b
se

r
v
e
d

 P
 v

a
lu

e
) 

-Log10 (expected P value) 

SG 2014 

0.0 

0.7 

1.4 

2.1 

2.8 

3.5 

0.0 0.5 1.0 1.5 2.0 

-L
o
g

1
0
 (

o
b
se

r
v
e
d
 P

 v
a
lu

e
) 

-Log10 (expected P value) 

SG 2013-2014 

0.0 

1.0 

2.0 

3.0 

4.0 

5.0 

0.0 0.5 1.0 1.5 2.0 

-L
o
g

1
0
 (

o
b

se
r
v
e
d
 P

 v
a
lu

e
) 

-Log10 (expected P value) 

PI abs 

A B

C D

E F

G H

I



 76 

4. Association of genetic variation with environment 

Introduction 

European beech (F. sylvatica) is one of the most important and broadly distributed forest tree 

species in Europe (Bolte et al. 2007). In Switzerland, F. sylvatica is the second most 

important tree species, being predominant in the sub-montane and lower montane range 

(Weber et al. 2010). Similar to other beech species, the distribution of European beech 

depends mainly on temperature, followed by moisture availability (Fang & Lechowicz 2006). 

The average annual temperature at the southern limits of its distribution is 13.5 ºC, and at the 

northern limits is 6.6 ºC. Annual precipitation has an average of 906 mm at the southern 

limits of distribution, and an average of 1272 mm at the northern limits (Fang & Lechowicz 

2006). 

The distribution of F. sylvatica could be affected by climate change (Kramer et al. 2010). In 

Europe, an increment of 1.3º C in the temperature has been already observed since the last 

half of the 19
th

 century (Kovats et al. 2014). Similarly, the frequency of hot days, tropical 

nights and heat waves has increased since the last half of the 20
th

 century, whereas cold 

periods and frost days have been reduced (Kovats et al. 2014). Additionally, changes in 

patterns of precipitation have been observed, leading to the occurrence of more extreme 

events, such as floods and droughts (Lehner et al. 2006; Trenberth 2011). In Switzerland, 

warmer and drier summers have become more common since the 1970s (Beniston & Goyette 

2007). By the end of the 21
st
 century, an increment in minimum and maximum temperatures 

is predicted, as well as more frequent, intense and longer lasting summer warm periods and 

heat waves, while the number of cold winter days and nights is projected to decrease 

(Beniston & Goyette 2007; CH2011 2011). Also, precipitation is expected to decrease in 

summer, affecting mainly the Alpine region, where dry conditions will likely occur (CH2011 

2011). Thus, under climate change, the distribution of beech is expected to be affected, with a 

population reduction in the south and expansion in the north, and a shift in distribution 

towards higher elevations (Kramer et al. 2010; CH2014-Impacts 2014). 

The environment is one of the major forces behind natural selection (Rellstab et al. 

2015). Thus, the most efficient approaches to detect adaptive genetic variation are based on 

the identification of associations between allele frequencies and environmental variables 

(Rellstab et al. 2015; Stephan 2016). This is the goal of environmental association analyses 

(EAA), which expect that alleles in a locus under selection and affected by a particular 

environmental factor might demonstrate a change in allele frequency following 
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environmental change, for instance, following an environmental gradient (Holderegger et al. 

2010). An advantage of EAA over other approaches to detect selection, such as outliers tests, 

is the direct incorporation of environmental variables assumed to be responsible for selection 

(Schoville et al. 2012). Furthermore, EAA are more sensitive to detect subtle changes in 

allele frequencies caused by weak selection, as in the case of polygenic traits or under high 

gene flow (Stephan 2016). 

Water availability and temperature are among the most important environmental factors 

affecting plants’ survival, and thus, adaptation. By using EAA, it has been possible to detect 

genetic variability associated with temperature and precipitation in different species, such as 

Quercus lobata (Sork et al. 2010), Arabis alpina (Poncet et al. 2010; Manel et al. 2010), 

Pinus taeda (Eckert et al. 2010b; a), P. pinaster and P. halepensis (Grivet et al. 2011). 

Likewise, in F. sylvatica, genetic variability at AFLP markers has been associated with 

temperature (Jump et al. 2006) and water availability (Pluess & Weber 2012). More recently, 

SNPs in candidate genes that might be under climate induced selection have been found 

(Lalagüe et al. 2014; Csilléry et al. 2014), and their association with environmental variables 

such as temperature, precipitation and drought has been determined (Pluess et al. 2016). 

However, the genetic variability underlying adaptation to different environmental conditions 

in F. sylvatica remains insufficiently studied. 

A significant increase in the frequency and intensity of summer droughts is predicted 

under a future climate change scenario. Therefore, the identification of adaptive genetic 

variability underlying drought tolerance in F. sylvatica is of great interest. Thus, the objective 

of this section is to identify associations between SNPs in climate-related candidate genes 

supposedly involved in drought tolerance and affected by environmental variables, such as 

temperature, precipitation and humidity, in populations of F. sylvatica occurring in 

precipitation gradients. 

 

Materials and methods 

Plant material 
 

Populations of F. sylvatica occurring at two precipitation gradients in Switzerland were 

selected. Six populations were selected in the Rhine valley with an annual precipitation 849-

1334 mm, and six populations were also selected in the Rhone valley with an annual 

precipitation 603-1012 mm. Leaves from 25 adult trees and 64 saplings per population were 
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collected, resulting in a total of 300 adult trees and 755 saplings. Leaves were dehydrated 

with silica gel and stored at room temperature. 

 

DNA isolation 
 

Extraction of DNA from dry leaves was done using the DNeasyTM 96 Plant Kit (Qiagen, 

Hilden, Germany). Electrophoresis in agarose gel at 1% and 1X TAE as running buffer was 

carried out to determine the amount and quality of DNA. Before visualization with UV, DNA 

was stained with Roti
®
-Safe GelStain (Roth, Karlsruhe, Germany), and compared with a 

Lambda DNA size ladder (Roche, Mannheim, Germany). 

 

Candidate genes and SNPs 
 

SNPs in candidate genes involved in phenology and stress response have been reported for F. 

sylvatica (Seifert et al. 2012; Lalagüe et al. 2014; Müller et al. 2015b). From those studies, 

24 candidate genes were selected, and linkage disequilibrium blocks were identified within 

each gene using the software htSNPer 1.0 (Ding et al. 2005) with the aim of selecting the 

smallest subset of SNPs characterizing the variability of the gene (Tag SNPs) for posterior 

genotyping. SNPs also showing signatures of natural selection in previous studies (Csilléry et 

al. 2014; Müller et al. 2015a) were also selected. Twenty-one non-synonymous SNPs, 27 

synonymous SNPs and 28 non-coding SNPs, for a total of 76 SNPs in 24 genes, were 

selected for genotyping (Table 4-1). Sequences surrounding the selected SNPs were sent to 

LGC Genomics Ltd. for primer design and SNP genotyping using the PCR-based KASP
TM

 

genotyping assay (Hoddesdon, UK).  

 

Environmental data 
 

Information on climatic variables collected from meteorological stations located near the 

populations was downloaded from the website of the Federal Office of Meteorology and 

Climatology MeteoSwiss. Climate normals for the reference period 1961-1990 were used as a 

proxy for the climate that imposed selection pressure on the early life stages of adult trees, 

whereas climate normals for the reference period 1981-2010 were used for the saplings. The 

environmental variables included data on annual and growing season (May-September) 

temperature and precipitation, as well as heat and summer days (Table 4-2). 
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Table 4-1 Candidate genes and characteristics of the selected SNPs 

Gene SNP name Type Reference 

Aldehyde dehydrogenase ALDH_1 Non-coding Seifert et al. 2012 

ALDH_2 Non-Synonymous  

ALDH_3 Non-Synonymous  

ALDH_4 Synonymous  

Isocitrate dehydrogenase IDH_1 Synonymous  

IDH_3 Non-coding  

IDH_4 Synonymous  

Ascorbate peroxidase APX1_1 Synonymous  

APX1_2 Non-coding  

APX4_1 Non-coding  

APX4_2 Non-Synonymous  

Early responsive to dehydration ERD Non-coding  

Dehydrin Dhn_1 Non-Synonymous  

Dhn_2 Non-Synonymous  

Glutathione peroxidase GPX Non-Synonymous  

Phytochrome B PhyB Synonymous  

Cysteine proteinase CysPro_118 Synonymous Müller et al. 2015 

CysPro_202 Synonymous  

CysPro_728 Non-coding  

CysPro_783 Non-coding  

Chloroplast Chaperonin like CP10_65 Synonymous  

CP10_67 Non-Synonymous  

CP10_377 Non-coding  

CP10_442 Non-coding  

CP10_503 Synonymous  

CP10_749 Synonymous  

CP10_1317 Non-coding  

CP10_1428 Non-Synonymous  

Dof zinc finger protein DAG_81 Non-coding  

DAG_289 Non-coding  

DAG_1059 Synonymous  

Histone 3 His3C1_292 Non-coding  

His3C2_104 Synonymous  

His3C2_186 Non-coding  

His3C2_260 Synonymous  

NAC transcription factor NAC_854 Non-Synonymous  

NAC_962 Synonymous  

NAC_1300 Non-coding  

Protein phosphatase 2C PP2C_315 Non-Synonymous  

PP2C_391 Synonymous  

PP2C_791 Non-Synonymous  

PP2C_941 Non-coding  

 
PP2C_1200 Synonymous  

Xyloglucan endotransglucosylase/hydrolase 

23 

7_258 Non-coding Lalagüe et al. 2014 

7_520 Non-coding  
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Gene SNP name Type Reference 

Short chain alcohol dehydrogenase 17_880 Non-coding  

17_1081 Non-coding  

Potassium transporter 2 39_256 Synonymous  

39_282 Non-Synonymous  

CRT/DRE binding factor 50_39 Non-Synonymous  

50_232 Synonymous  

50_320 Non-coding  

s-adenosyl-l-homocysteine hydrolase 52_1_235 Non-Synonymous  

52_1_249 Non-Synonymous  

52_1_368 Synonymous  

Glyceraldehyde 3-phosphate dehydrogenase 68_277 Non-Synonymous  

68_313 Non-coding  

Light-harvesting complex II protein 88_1_450 Non-coding  

88_1_727 Synonymous  

88_1_803 Non-Synonymous  

Catalase 91_2_57 Synonymous  

91_2_141 Synonymous  

91_2_231 Synonymous  

91_2_448 Non-coding  

91_2_479 Non-coding  

91_2_504 Non-coding  

1-aminocyclopropane-1-carboxylate 

oxidase 

92_166 Non-coding  

92_352 Non-Synonymous  

92_630 Non-coding  

Cytosolic class I small heat-shock protein 110_1_111 Non-Synonymous  

110_1_293 Synonymous  

110_1_423 Non-Synonymous  

110_1_450 Non-Synonymous  

Pectin methylesterase 154_2_137 Synonymous  

154_2_371 Synonymous  

154_2_617 Synonymous  

 

Three derived climatic variables were additionally calculated: potential annual direct 

incident solar radiation (ASR), the Thornthwaite’s moisture index (Im) (Thornthwaite 1948) 

and the Ellenberg’s climatic quotient (EQ) (Jahn 1991) (Table 4-2). ASR was calculated 

using data of latitude, slope and aspect according to McCune & Keon (2002). To calculate Im, 

first, monthly potential evapotranspiration (PET) according to Thornthwaite (1948) was 

calculated using the R package SPEI 1.6 (R Core Team 2016). Then, Im was calculated 

according to the formula            

 
 , where s is the sum of surplus water for the months 

when precipitation exceeds PET, d is the sum of water deficiency for the months when PET 

exceeds precipitation, and n is water need (annual PET) (Thornthwaite 1948; Maliva & 

Missimer 2012). According to Thornthwaite (1948), moist climates have positive values of 

Im, and dry climates have negative values. The Ellenberg’s climatic quotient (EQ), which is 



 81 

widely used to describe habitats suitable for the genus Fagus, was calculated as    

                       

                         
       , (Jahn 1991; Fang & Lechowicz 2006). According to Jahn 

(1991), regions with values of EQ below 20 represent a pure beech climate, while the beech 

competitiveness slowly decreases in regions with EQ values between 20-30 and disappears in 

regions with EQ > 30. 

 

Table 4-2 Abbreviation and description of the geographical and environmental variables 

Abbreviation Description 

Lat Latitude (DD) 

Long Longitude (DD) 

MeanAT Mean Annual Temperature (°C) 

MaxAT Maximum Annual Temperature (°C) 

MinAT Minimum Annual Temperature (°C) 

MeanGST Mean Growing Season
1
 Temperature (°C)  

MaxGST Maximum Growing Season
1
 Temperature (°C) 

MinGST Minimum Growing Season
1
 Temperature (°C) 

SD Summer days
2
 

HD Heat days
3
 

AP Annual Precipitation (mm) 

GSP Growing Season
1
 Precipitation (mm) 

ADP Annual Days with Precipitation
4
 

GSDP Growing Season
1
 Days with Precipitation

4
 

Im Thornwaite moisture index 

EQ Ellenmerg's climate quotient (°C/mm) 

ASR Annual Solar Radiation (MJ/cm
2

yr) 
1
From May to September 

2
Number of days with maximum temperature equal to or above 25 °C 

3
Number of days with maximum temperature equal to or above 30 °C 

4
Number of days with precipitation equal or above 1 mm 

 

Information about the environmental variables per population and for the reference 

periods 1961-1990 and 1981-2010 are presented in Appendix 4-2. 

Spearman’s rank correlation coefficients among all pairs of environmental variables 

were calculated. Principal component analysis (PCA) was used to reduce dimensionality of 

the environmental variables; variables were standardized to a mean of 0 and standard 

deviation of 1 before PCA analysis. Principal components (PCs) with eigenvalues greater 

than 1 were kept for the environmental association analysis. All analyses were conducted 

using the software Statistica 12 (Dell Inc 2015). Climatic PCs were used for further analysis 

of association with SNP data. 
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Environmental association analysis 
 

Associations between allelic frequencies and climatic PCs were tested using the R package 

LEA (Frichot & François 2015). This package tests for associations based on the latent factor 

mixed models (LFMM), in which associations are tested while estimating the effects of 

hidden factors, such as population structure and spatial autocorrelation (Frichot et al. 2013). 

After correction for confounding effects, significant association between allele frequencies at 

a particular locus and environmental variables can be interpreted as evidence for selection 

(Frichot & François 2015). 

A burning period of 5000 and a total number of 10000 cycles were used. Based on the 

results of the STRUCTURE analysis using the SSR markers (see chapter 2), the number of 

latent factors K was set to 2 in the saplings and 1 in the adults. Five runs were performed; the 

z-scores obtained from the different runs were combined using a robust variant of the 

Stouffer method (Whitlock 2005), and the genomic inflation factor λ (Devlin & Roeder 1999) 

was computed. P-values from the combined z-scores calibrated by λ were obtained as 

described in the manual of LEA. To ensure that the distribution of P-values was suitable for 

the application of the FDR algorithms, histograms of the P-values were obtained, and, if 

necessary, P-values were calibrated by trying different values of λ (François et al. 2016). 

When the histograms showed that the p-values were uniformly distributed (Appendix 4-1) 

(François et al. 2016), the Benjamini-Hochberg procedure (Benjamini & Hochberg 1995) 

with an expected FDR equalled to 10% was used to correct the P-values for multiple testing. 

 

Results 

Environmental data 
 

Latitude was strongly positively correlated with longitude, minimum temperatures, 

precipitation variables and the moisture index Im, and moderately negatively correlated with 

maximum temperatures, SD, HD and EQ. Longitude had either no correlation or weak 

positive correlations with most of the variables, most of which were not significant. 

Maximum temperatures were strongly and positively correlated with SD and HD, while 

negatively correlated with minimum temperatures and precipitation variables. The 

Thornthwaite’s moisture index Im was strongly negatively correlated with maximum 

temperatures and SD and HD, and strongly positively correlated with precipitation. In 

contrast, the EQ index was positively correlated with maximum temperatures and SD and 
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HD, and negatively correlated with minimum temperatures and precipitation. ASR had either 

weak or no correlation with all the environmental variables (Fig. 4-1). 

 

 

Fig. 4-1 The Spearman’s rank correlation coefficients matrix between environmental variables for the 
reference period A, 1961-1990 and B, 1981-2010. 

The PCA showed that the top three PCs captured the most of the overall variance of 

geographical and environmental variables for both reference periods: 95.54% for 1961-1990, 

and 95.99% for 1981-2010 (Table 4-3). These PCs had eigenvalues higher than 1, and they 

will be referred to as climatic PCs in the rest of the chapter. 

 

Table 4-3 Eigenvalue and variance explained (VE, %) for the first three climatic principal 
components (PCs) for the reference periods 1961-1990 and 1981-2010 

1961-1990 
 

1981-2010 

PC Eigenvalue VE, % 

 

PC Eigenvalue VE, % 

1 12.310 72.411 

 

1 12.302 72.364 

2 2.626 15.446 

 

2 2.793 16.430 

3 1.306 7.683 

 

3 1.224 7.203 

 

For both reference periods, the first climatic PC was strongly and positively correlated 

with latitude, minimum temperatures, precipitation variables and the moisture index Im, 

whereas negatively correlated to maximum temperatures, SD, HD and the index EQ (Table 4-

4). The second climatic PC was strongly correlated only with mean annual temperature, and 

the third climatic PC was strongly and positively correlated with solar radiation (Table 4-4). 
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Table 4-4 Correlation coefficients between the environmental variables and PCs with eigenvalues > 1 
for the reference periods 1961-1990 and 1981-2010. 

1961-1990 

 

1981-2010 

Variable PC1 PC2 PC3  Variable PC1 PC2 PC3 

Lat 0.801 0.485 0.314 
 

Lat 0.814 -0.462 0.305 

Long 0.659 0.580 0.391 
 

Long 0.680 -0.543 0.383 

MeanAT 0.066 0.992 0.102 
 

MeanAT -0.258 -0.961 0.054 

MaxAT -0.950 0.285 -0.001 
 

MaxAT -0.967 -0.225 -0.010 

MinAT 0.970 -0.177 -0.042 
 

MinAT 0.980 0.061 0.127 

MeanGST -0.698 0.645 -0.210 
 

MeanGST -0.849 -0.477 -0.137 

MaxGST -0.943 0.250 -0.159 
 

MaxGST -0.957 -0.253 -0.080 

MinGST 0.826 0.487 -0.118 
 

MinGST 0.823 -0.534 0.022 

SD -0.954 0.237 -0.125 
 

SD -0.882 -0.458 -0.045 

HD -0.939 0.318 -0.060 
 

HD -0.819 -0.557 0.078 

AP 0.937 0.092 -0.252 
 

AP 0.932 -0.184 -0.224 

GSP 0.992 0.105 -0.062 
 

GSP 0.984 -0.156 -0.063 

ADP 0.971 0.046 -0.178 
 

ADP 0.953 -0.149 -0.189 

GSDP 0.986 0.154 -0.027 
 

GSDP 0.977 -0.189 -0.069 

Im 0.908 0.092 -0.301 
 

Im 0.902 -0.215 -0.261 

EQ -0.961 0.039 0.173 
 

EQ -0.961 0.029 0.176 

ASR 0.101 -0.169 0.848 
 

ASR 0.127 0.217 0.859 

Note. Correlation coefficients > |0.8| are highlighted by the bold font. See Table 4-2 for 

abbreviations. 

 

Population values for the first climatic PC showed that Ardon, Chamoson, Saxon and 

Martigny have negative values for this climatic PC (Table 4-5), indicating that these 

populations are characterized by low values in minimum temperatures, low precipitation 

related variables and low moisture index Im, whereas they have higher values in maximum 

temperatures, SD and HD and EQ values, i.e., drier conditions (Appendix 4-2). Population 

values for climatic PC2 were negative for Felsberg, Chur, Collombey and Ollon in 

populations of adults, while positive in populations of saplings (Table 4-5); however, in both 

cases, this indicates that these populations are characterized by low mean annual 

temperatures, especially Collombey and Ollon (Appendix 4-2). Population values for climatic 

PC3 showed that Mastrils, Mels, Saxon, Martigny and Collombey have negative values, 

indicating that these populations received less solar radiation, when compared to other 

populations (Table 4-5, Appendix 4-2). 
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Table 4-5 Population values for the first three climatic principal components (PCs) in a principal 
component analysis (PCA) of 17 geographical and environmental variables. 

Adults PC1 PC2 PC3   Saplings PC1 PC2 PC3 

Rhine 

    

Rhine 

   Felsberg 0.155 -0.156 2.078 
 

Felsberg 0.658 0.436 1.868 

Chur 0.141 -0.028 1.362 
 

Chur 0.637 0.285 1.119 

Malans 2.994 1.122 0.616 
 

Malans 2.817 -1.091 0.725 

Mastrils 2.927 1.299 -0.806 
 

Mastrils 2.735 -1.318 -0.762 

Sargans 4.040 1.274 0.291 
 

Sargans 3.937 -1.456 0.403 

Mels 3.978 1.461 -1.136 
 

Mels 3.859 -1.689 -1.093 

Rhone 

    

Rhone 

   Ardon -4.707 0.268 0.832 
 

Ardon -4.788 -0.205 1.003 

Chamoson -4.734 0.317 0.358 
 

Chamoson -4.823 -0.269 0.505 

Saxon -4.825 0.441 -0.977 
 

Saxon -4.928 -0.440 -0.891 

Martigny -3.437 0.554 -1.688 
 

Martigny -3.516 -0.819 -1.615 

Collombey 1.698 -3.215 -1.071 
 

Collombey 1.664 3.199 -1.266 

Ollon 1.771 -3.338 0.142   Ollon 1.748 3.367 0.002 

 

Environmental association analysis 
 

From the 76 selected SNPs for genotyping, 6 were monomorphic (APX1_2, PhyB, 50_320, 

52_1_249, 92_166, 110_1_111); thus, the remaining 70 were used for the association 

analysis. In total, 24 SNPs (34.3%) showed significant association with at least one of 

climatic PCs: 6 SNPs in the saplings (8.6%) and 22 SNPs in the adults (31.4%) with 4 of 

them being common in both saplings and adults - ALDH_1, ALDH_2, 7_258 and 154_2_137 

(Table 4-6). Nine of the significantly associated SNPs were non-synonymous (37.5%), 6 

synonymous (25%) and 9 non-coding (37.5%). Three SNPs (IDH_3, NAC-854 and 92_630) 

were associated with more than one of climatic PCs. Overall, SNPs in 17 genes (70.8%) 

showed significant association, 3 of them in both saplings and adults (ALDH, XTH and 

PME). 

Eight of the SNPs showing association with climatic PCs were also significant in the 

association analysis with phenotypic traits and/or in the outlier analysis (Table 4-6). Some of 

these SNPs showed strong differences in allele frequencies, such as IDH_1 and IDH_4. 

These SNPs are located in the same gene and were also in LD. The frequency of the minor 

allele (MAF) at these SNPs was lower in populations with negative values of PC1 (mean 

MAF equalled 0.320 for IDH_1 and 0.318 for IDH_4) when compared to populations with 

the highest positive values of PC1 (mean MAF equalled 0.505 for IDH_1 and 0.510 for 

IDH_4) (Figs. 4-2 A and B). 
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Table 4-6 List of SNPs that significantly correlated with climatic PCs 

Gene SNP SNP type 
Saplings  Adults 

PC1 PC2 PC3  PC1 PC2 PC3 

ALDH ALDH_1 Non-coding  **    **  

ALDH_2 Non-Synonymous  **    ***  

IDH IDH_1 Synonymous     ***   

IDH_3 Non-coding     ** ***  

IDH_4 Synonymous     ***   

APX APX4_2 Non-Synonymous     **   

ERD ERD Non-coding       ** 

CP10 CP10_1317 Non-coding       *** 

CP10_1428 Non-Synonymous      ***  

CysPro CysPro_783 Non-coding      **  

DAG DAG_1059 Synonymous      ***  

His3 His3C2_186 Non-coding      **  

NAC NAC_854 Non-Synonymous ***  ***     

XTH 7_258 Non-coding   **  ***   

KT2 39_282 Non-Synonymous     **   

SAHH 52_1_235 Non-Synonymous     ***   

52_1_368 Synonymous     ***   

GAPDH 68_277 Non-Synonymous       ** 

CAT 91_2_141 Synonymous     **   

91_2_448 Non-coding      **  

ACC-oxidase 92_352 Non-Synonymous     *** **  

92_630 Non-coding   **     

sHsps 110_1_423 Non-Synonymous     *   

PME 154_2_137 Synonymous **           ** 

Note. SNPs in bold were also significant in the association analysis with phenotypic traits 

and/or in the outlier analysis. *P<0.05, **P<0.01, ***P<0.001. 

 

Likewise, the mean MAF for SNP 92_352 was lower at negative values of the climatic 

PC1 (MAF = 0.035) and PC2 (MAF = 0.040), and increased in populations with the highest 

positive values of both climatic PCs (MAF = 0.162) (Figs. 4-2E and 4-3B). On the other 

hand, the mean MAF for SNP ERD was higher at negative values of the climatic PC3 

(MAF = 0.519), and decreased at the highest positive values (MAF = 0.420) (Fig. 4-4A). 

For the rest of the SNPs that also showed association with the phenotypic traits and/or 

were identified as outliers, changes in MAF were subtler. Mean MAF for NAC_854 was 

0.207 at the negative values of the climatic PC1, and 0.212 at the highest positive values (Fig. 

4-2C); likewise, mean MAF for this SNP was 0.166 at the negative values of the climatic 

PC3, and increased slightly to 0.195 at the positive values (Fig. 4-4B). Similarly, mean MAF 

for 91_2_141 decreased slightly from 0.351 to 0.328 when comparing the most contrasting 

values of the climatic PC1 (Fig. 4-2D), while mean MAF for DAG_1059 increased slightly 

from 0.084 to 0.1 between contrasting values of the climatic PC2 (Fig. 4-3A). Mean MAF at 
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the negative values of the climatic PC3 for 92_630 was 0.486 and slightly decreased to 0.457 

in the highest values of this climatic PC (Fig. 4-3C). 

 

 

Fig. 4-2 Relationship between climatic variation at the PC1 and minor allele frequencies (MAF) for 
SNPs that were also identified as outliers. Minor allele is embraced in parenthesis; colors denote 
regions (green for Rhine and blue for Rhone populations). 
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Fig. 4-3 Relationship between climatic variation at the PC2 and minor allele frequencies (MAF) for 
SNPs that were also identified as outliers. Minor allele is embraced in parenthesis; colors denote 
regions (green for Rhine and blue for Rhone populations). 

 

 

 

Fig. 4-4 Relationship between climatic variation at the PC3 and minor allele frequencies (MAF) for 
SNPs that were also identified as outliers. Minor allele is embraced in parenthesis; colors denote 
regions (green for Rhine and blue for Rhone populations). 
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candidate genes used in this study showed significant association with climatic PCs (Table 4-

6). Not all SNPs in the same gene showed significant association with climatic PCs. The 

genes included a wide range of cellular functions, including oxidoreductases, hydrolases, 

oxidases, transferases, transporters, chaperones and transcription factors.  

However, approaches to detect genetic adaptive variation are usually prone to false 

positives, if there is a hidden population structure or spatial autocorrelation (Rellstab et al. 

2015). Although the LFMM method used in this study incorporates the effect of neutral 

genetic structure (Frichot et al. 2013; Frichot & François 2015), it is recommended to 

compare results from different approaches, such as EAA and outlier analysis. In this study, 8 

(11.43%) out of the 70 studied SNPs were identified by both approaches in 6 (25%) of the 

studied genes, making them very likely to be involved in local adaptation. This percentages 

are similar to the ones reported by other studies on beech: Pluess et al. (2016) found that 11% 

of the SNPs in 20% of the genes showed association with environmental predictors. 

Not only non-synonymous SNPs were found to be associated with the climatic PCs, but 

also synonymous SNPs and non-coding SNPs. Since non-synonymous SNPs represent amino 

acid replacements and thus, a change in protein sequence, they have been traditionally 

thought to be the main target of natural selection. However, some studies indicate that 

synonymous substitutions may affect mRNA splicing, stability and translation kinetics 

(Chamary et al. 2006; Komar 2007), and thus, affect the production of the final protein 

(Pagani et al. 2005). Similarly, SNPs in non-coding regions may also be involved in control 

of gene expression (Barrett et al. 2012). Therefore, synonymous and non-coding SNPs can 

also be subjected to natural selection directly, and not only due to a tight linkage with 

selective loci. 

Some of the SNPs showed strong differences in allele frequencies in contrasting 

environments. For example, both SNPs in the IDH gene, IDH_1 and IDH_4, showed strong 

differences in allele frequencies in contrasting environments (Figs. 4-2 A and B). In both 

SNPs, MAF was lower in populations with negative values for climatic PC1, i.e., drier 

conditions, high maximum temperatures, high number of SD and HD, low precipitation and 

low humidity. It means that the alternate alleles (C for IDH_1 and G for IDH_4) had a higher 

frequency under such environmental conditions. The significant association of these two 

SNPs with stem growth in the drought experiment (see chapter 3 Fig. 3-13) suggested that 

alleles C and G provide better performance under drought conditions. This is a strong 

evidence for the involvement of genetic variability at gene IDH in the local adaptation of the 
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studied populations of beech. IDH participates in the response to the nitro-oxidative stress, 

and its expression is induced by salt and drought stress (Liu et al. 2010; Leterrier et al. 2012). 

The 92_352 SNP also showed strong differences in allele frequencies across different 

environments. MAF at this SNP was also lower at drier conditions and higher mean annual 

temperatures, demonstrated by negative values in the climatic PC1 and PC2 (Figs. 4-2E and 

4-3B). The differences in allele frequencies at this SNP also followed a regional pattern: 

populations from the Rhine valley have a higher frequency of this allele, than populations 

from the Rhone valley (Figs. 4-2E and 4-3B), which could be explained by particular 

environmental conditions in each valley that were not accounted for. Another SNP at the 

same gene, 92_630, was found significantly associated with the climatic PC3, and showed a 

slight reduction at populations with high ASR. This SNP has also shown association with 

temperature, precipitation and drought in populations of beech occurring in Switzerland in a 

recently published independent study (Pluess et al. 2016). Both SNPs belong to the gene 

ACC-oxidase, a oxidoreductase, whose expression is down-regulated by salt, drought, 

oxidative stress and ABA (Chen et al. 2014). 

The minor allele at the ERD SNP decreased in frequency in populations with positive 

values at the PC3, representing increased amount in solar radiation. ERD is a gene induced 

by dehydration, and contains cis-elements for the binding of the NAC transcription factors 

(Shinozaki & Yamaguchi-Shinozaki 2007). The NAC_854 SNP in the NAC gene showed 

significant association with the PC1 and PC3. However, changes in allele frequencies 

between populations from contrasting environments were subtle, with MAF increasing 

slightly in more humid conditions and higher ASR (Figs. 4-2C and 4-4B). This SNP has been 

associated with bud burst (Müller et al. 2015a), a phenological trait that is expected to be 

affected by rising temperatures under climate change (Schröder et al. 2006). Additionally, 

SNPs in the NAC genes from white spruce (Namroud et al. 2008) and boreal black spruce 

(Prunier et al. 2011) have also shown evidence of local adaptation in populations located at 

different environments. NAC is a transcription factor, whose expression is induced by 

drought, salinity and ABA (Shinozaki & Yamaguchi-Shinozaki 2007). Other transcription 

factor in our study is the DAG gene that plays an important role not only in plant 

development, but also in the biotic and abiotic stress responses (Noguero et al. 2013). The 

DAG_1059 SNP in this gene showed significant association with the climatic PC2, with 

mean MAF of DAG_1059 increasing slightly in populations with higher annual mean 

temperatures (Figs. 4-3A). 
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The CAT gene codes for the enzyme catalase involved in removing the excess of 

reactive oxygen species produced under stress conditions, and its activity is increased in 

plants under stress (Sofo et al. 2015). The 91_2_141 SNP in this gene showed significant 

association with the climatic PC1, although differences in MAF between populations from 

contrasting environments were small. This SNP has also shown evidence of epistatic 

selection in populations of beech in France occurring in different environments in a recently 

published independent study (Csilléry et al. 2014). 

It is possible that other environmental factors that were not accounted for could also 

explain the differences in allele frequencies observed among populations.  In this study, 

climate data were taken from stations less than 10 km away from the actual populations. 

However, the Alps have high variability in topography, and climatic factors such as 

temperature and precipitation can vary over short distances (Baruck et al. 2016). Therefore, 

small-scale heterogeneity and microclimatic conditions particular to each population that 

were not accounted for, could explain some of the differences in allele frequencies. 

Furthermore, although precipitation and temperature are the main climatic factors influencing 

plants’ distribution, which is supported by several studies that showed their association with 

potential adaptive genetic variation in the Alps (Poncet et al. 2010; Manel et al. 2012; Pluess 

et al. 2016), soil properties might also affect plants’ distribution because water availability 

depends on the interaction between climatic variables and soil characteristics (Piedallu et al. 

2013). For example, Gärtner et al. (2008) found that lower humidity can be compensated for 

by greater available soil water storage capacity (ASWSC), and thus, allow the grow of beech. 

Low soil water availability affects survival and competitive interactions between beech and 

other species (Fotelli et al. 2002, 2004) and determines the transition from beech to Quercus 

pubescens, a more drought tolerant tree species (Gärtner et al. 2008). In the Alps, soil 

properties affect not only the present distribution of plants, but also determined the migration 

pathways during the post-glacial recolonization (Alvarez et al. 2009). Furthermore, as the 

results from the drought experiment carried out in this study suggest, sensitivity to drought 

depends on soil characteristics (see Chapter 3). Thus, the identification of adaptive genetic 

variation might be improved by including not only climatic variables but also soil 

characteristics and microclimatic conditions. However, characteristics of alpine soils vary 

considerably over short spatial ranges, and soil information is still limited (Baruck et al. 

2016).  

In conclusion, by combining genetic variation in SNPs in candidate genes and climatic 

environmental data, it was possible to identify loci showing adaptive responses. This opens 
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new perspectives for understanding the genetic basis of adaptation of F. sylvatica to different 

environmental conditions.  

  



 93 

Appendix 4-1 
Histograms of adjusted P-values after calibration using the genomic inflation factor λ for 

saplings (A, B and C) and adults (D, E and F). K – number of subpopulations based on the 

STRUCTURE results. 
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Appendix 4-2 
Appendix 4-2A Data for the environmental variables corresponding to the reference period 1961-1990 

Population Latitude Longitude MeanAT, °C MaxAT, °C MinAT, °C MeanGST, °C MaxGST, °C MinGST, °C SD, days 

Felsberg 46.854 9.487 9.2 14.2 4.6 15.8 21.3 10.5 40.0 

Chur 46.863 9.548 9.2 14.2 4.6 15.8 21.3 10.5 40.0 

Malans 46.986 9.570 9.3 13.7 4.9 16.0 21.1 11.1 36.6 

Mastrils 46.970 9.543 9.3 13.7 4.9 16.0 21.1 11.1 36.6 

Sargans 47.056 9.444 9.3 13.7 4.9 16.0 21.1 11.1 36.6 

Mels 47.053 9.411 9.3 13.7 4.9 16.0 21.1 11.1 36.6 

Ardon 46.220 7.246 9.2 15.0 4.3 16.5 23.1 10.4 55.3 

Chamoson 46.212 7.214 9.2 15.0 4.3 16.5 23.1 10.4 55.3 

Saxon 46.146 7.191 9.2 15.0 4.3 16.5 23.1 10.4 55.3 

Martigny 46.104 7.108 9.2 15.0 4.3 16.5 23.1 10.4 55.3 

Collombey 46.272 6.933 8.9 13.5 4.9 15.5 20.9 10.5 35.1 

Ollon 46.303 6.997 8.9 13.5 4.9 15.5 20.9 10.5 35.1 

          
Population HD, days AP, mm GSP, mm ADP, days GSDP, days Im EQ, °C/mm 

ASR,  

MJ/cm
2
yr  

Felsberg 5.4 798.0 430.0 105.2 52.1 34.0 22.6 0.9 

 Chur 5.4 798.0 430.0 105.2 52.1 34.0 22.6 0.7 
 

Malans 3.5 1095.0 583.0 127.5 61.6 77.8 16.6 0.8 
 

Mastrils 3.5 1095.0 583.0 127.5 61.6 77.9 16.6 0.4 
 

Sargans 3.5 1318.0 647.0 142.2 66.3 114.1 13.8 0.9 
 

Mels 3.5 1318.0 647.0 142.2 66.3 114.1 13.8 0.5 
 

Ardon 10.8 598.0 233.0 82.6 36.2 14.2 31.9 0.9 
 

Chamoson 10.8 598.0 233.0 82.6 36.2 14.2 31.9 0.7 
 

Saxon 10.8 598.0 233.0 82.6 36.2 14.2 31.9 0.4 
 

Martigny 10.8 843.0 319.0 101.2 43.4 47.2 22.7 0.4 
 

Collombey 2.0 1032.0 492.0 122.3 53.6 72.6 17.4 0.5 
 

Ollon 2.0 1032.0 492.0 122.3 53.6 72.6 17.4 0.9 
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Appendix 4-2B Data for the environmental variables corresponding to the reference period 1981-2010 

Population Latitude Longitude MeanAT, °C MaxAT, °C MinAT, °C MeanGST, °C MaxGST, °C MinGST, °C SD, days 

Felsberg 46.854 9.487 10.0 15.0 5.6 16.8 22.3 11.7 50.8 

Chur 46.863 9.548 10.0 15.0 5.6 16.8 22.3 11.7 50.8 

Malans 46.986 9.570 10.1 14.6 5.7 16.9 22.1 12.1 50.3 

Mastrils 46.970 9.543 10.1 14.6 5.7 16.9 22.1 12.1 50.3 

Sargans 47.056 9.444 10.1 14.6 5.7 16.9 22.1 12.1 50.3 

Mels 47.053 9.411 10.1 14.6 5.7 16.9 22.1 12.1 50.3 

Ardon 46.220 7.246 10.1 16.0 5.1 17.5 24.1 11.5 68.8 

Chamoson 46.212 7.214 10.1 16.0 5.1 17.5 24.1 11.5 68.8 

Saxon 46.146 7.191 10.1 16.0 5.1 17.5 24.1 11.5 68.8 

Martigny 46.104 7.108 10.1 16.0 5.1 17.5 24.1 11.5 68.8 

Collombey 46.272 6.933 9.8 14.5 5.6 16.6 21.9 11.6 41.4 

Ollon 46.303 6.997 9.8 14.5 5.6 16.6 21.9 11.6 41.4 

          
Population HD, days AP, mm GSP, mm ADP, days GSDP, days Im EQ, °C/mm 

ASR, ASR, 

MJ/cm
2
yr   

Felsberg 10.3 849.0 466.0 104.6 51.7 35.3 22.5 0.9 
 

Chur 10.3 849.0 466.0 104.6 51.7 35.3 22.5 0.7 
 

Malans 8.7 1114.0 593.0 125.7 60.5 73.4 17.2 0.8 
 

Mastrils 8.7 1114.0 593.0 125.7 60.5 73.4 17.2 0.4 
 

Sargans 8.7 1334.0 672.0 142.5 66.0 107.9 14.4 0.9 
 

Mels 8.7 1334.0 672.0 142.5 66.0 107.9 14.4 0.5 
 

Ardon 16.0 603.0 262.0 82.1 36.9 9.7 33.3 0.9 
 

Chamoson 16.0 603.0 262.0 82.1 36.9 9.7 33.3 0.7 
 

Saxon 16.0 603.0 262.0 82.1 36.9 9.7 33.3 0.4 
 

Martigny 16.0 855.0 343.0 100.1 44.2 42.6 23.5 0.4 
 

Collombey 3.1 1012.0 501.0 117.8 53.1 60.6 18.9 0.5 
 

Ollon 3.1 1012.0 501.0 117.8 53.1 60.6 18.9 0.9 
 

Max – maximum, Min – Minimum, AT- Annual Temperature, GST – Growing Season Temperature, SD – Summer Days (equal to or above 25 °C), HD – Heat 
Days (equal to or above 30 °C), AP – Annual Precipitation, GSP – Growing Season Precipitation, ADP – Annual Days with Precipitation, GSDP - Growing 
Season Days with Precipitation, Im Thornthwaite’s moisture index, EQ – Ellenberg’s Quotient, ASR - annual direct incident solar radiatio
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5. Spatial genetic structure, relatedness and parental 

assignment  

Introduction 

Spatial genetic structure describes spatial distribution of genotypes. At a local or fine spatial 

scale neighboring individuals could be more related and, respectively, more similar 

genetically (Vekemans & Hardy 2004). In plants, this is mainly caused by limited dispersal 

of pollen and seeds (Vekemans & Hardy 2004). 

Fagus sylvatica is a dominant forest tree species in Europe. It is a monoecious tree, 

mainly outcrossing and wind pollinated (von Wuehlisch 2008). Within stands, pollen 

dispersal distance has been estimated between 37 m (Wang 2004) and 57 m (Oddou-

Muratorio et al. 2011); however, it has been found that pollen can travel for much longer 

distances, for hundreds or even thousands of kilometers (Belmonte et al. 2008), which is 

supported by the high pollen migration rates observed in this species (Oddou-Muratorio et al. 

2011; Piotti et al. 2012). 

The seeds of F. sylvatica are mainly dispersed by gravity, being released under the 

canopy of the mother tree. A mean seed dispersal distance of 11 m has been estimated 

(Oddou-Muratorio et al. 2011), although there are reports of seed dispersal distances within 

the range of 4-50 m (Millerón et al. 2013; Bontemps et al. 2013). While primary dispersal 

occurs by gravity, the beech nuts are an important food source for several small animals 

including rodents, nuthatches, great tits and jays, which may also play an important role in 

seed dispersal by hiding the seeds and failing to retrieve all of them, contributing to dispersal 

far away from the mother tree (Jensen 1985; Nilsson 1985; Perea et al. 2011; Packham et al. 

2012). 

Investigation of local spatial genetic structure in beech stands from Germany has 

revealed that they form a strong family structure up to 30 m (Vornam et al. 2004). Similarly, 

studies on beech populations in Poland (Chybicki et al. 2009) and other European countries 

(Piotti et al. 2013) has revealed significant spatial genetic structure up to 40 and 20 m, 

respectively. 

Relatedness can be defined as the fraction of alleles among individuals that are 

identical by descent (Blouin 2003). In genomic association analysis, relatedness is considered 

a confounding factor that could lead to false associations (Sillanpää 2011). This is because 

related individuals are more likely to be more genetically similar, causing a higher correlation 
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of the phenotypic trait among individuals from the same family (Foulkes 2009). To overcome 

this problem, relatedness between pairs of individuals should be estimated and accounted for 

in phenotypic association analysis (Foulkes 2009; Sillanpää 2011). 

In this study, 2-4 saplings under the crown of the same adult tree were collected from 

16 adult trees per population; thus, due to the strong spatial genetic structure in F. sylvatica, it 

is very likely that the collected saplings are related. The objective of this chapter is to 

establish the degree of relatedness between pairs of saplings collected under the same adult 

tree. Furthermore, since adult trees were also sampled and genotyped, a maternal assignment 

analysis was performed. 

 

Materials and methods 

Plant material 
 

Saplings and adults from 12 populations of F. sylvatica located in the Rhone and Rhine 

valleys in Switzerland were used in this study. In a first stage, 16-31 adult trees about 50 m 

apart to each other were selected, and 2-4 saplings underneath them with a height of ~20 cm 

were excavated and transferred in spring 2011 to the WSL institute in Switzerland for a 

drought experiment. During this stage the leaves from these adult trees were not collected for 

genotyping. In a second stage, in 2014, using maps and GIS tracking, we searched for the 

adult trees underneath which the saplings were collected in a first stage. However, since these 

adult trees were not labeled and some populations had a high density of beech trees, their 

accurate identification was difficult. Thus, leaves from 25 adult trees about 50 m apart to 

each other were sampled in each population; some of these trees could correspond to the 

adult trees where saplings were collected. In total, leaves from the 755 saplings selected in 

the first stage and from the 300 adult trees selected in the second stage were sampled, 

dehydrated with silica gel and stored at room temperature until DNA isolation. 

DNA isolation and microsatellite loci genotyping 
 

DNA was isolated from dry leaves using the DNeasyTM 96 Plant Kit (Qiagen, Hilden, 

Germany). The amount and quality of the DNA were examined using electrophoresis in 

agarose gel at 1% and 1x TAE as running buffer. DNA was stained with Roti
®
-Safe GelStain 

(Roth, Karlsruhe, Germany), visualized by UV illumination, and compared with a Lambda 

DNA size ladder (Roche, Mannheim, Germany). 
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Individuals were genotyped at 13 microsatellite loci. Ten of them are genomic 

microsatellites (gSSRs) - six markers were originally developed for F. sylvatica: FS3-04 

(Pastorelli et al. 2003), msf11 (Vornam et al. 2004), csolfagus_06, csolfagus_19 (Lefèvre et 

al. 2012), Fagsyl_002929 and Fagsyl_003994 (Pluess & Määttänen 2013), and four markers 

sfc0018, sfc0161, sfc1063 and sfc1143 were originally developed for F. crenata (Asuka et al. 

2004). Other three microsatellite loci GOT066, FIR065 and FIR004 are EST-linked (EST-

SSRs) and were originally developed for Quercus robur (Durand et al. 2010) and 

successfully used for F. sylvatica. 

The polymerase chain reaction (PCR) amplifications were performed using fluorescent 

dye labeled primers as follows: 6-carboxyfluorescein dye (FAM) for mfs11, sfc0161, sfc1063, 

csolfagus_06, csolfagus_19, Fagsyl_003994 and FIR004; and 6-hexachlorofluorescein dye 

(HEX) for sfc0018, sfc1143, Fagsyl_002929, GOT066, FIR065 and FS3-04. This allowed us 

to assemble four different PCR amplification multiplexes. The first multiplex contained the 

FS3-04 and msf11 markers. The second multiplex contained all four sfc markers. The third 

multiplex contained the csolfagus and Fagsyl markers. The fourth multiplex contained the 

EST markers. The PCR amplifications were performed in a total volume of 15 μL containing 

2 μL of genomic DNA (about 10 ng), 1x reaction buffer (0.8 M Tris-HCl pH 9.0, 0.2 M 

(NH4)2SO4, 0.2% w/v Tween-20; Solis BioDyne, Tartu, Estonia), 2.5 mM MgCl2, 0.2 mM of 

each dNTP, 0.3 μM of each forward and reverse primer and 1 unit of Taq DNA polymerase 

(HOT FIREPol
®
 DNA Polymerase, Solis BioDyne, Tartu, Estonia). The amplification 

conditions were as follows: an initial denaturation step at 95 °C for 15 min, followed by 30 

cycles consisting of a denaturing step at 94 °C for 1 min, an annealing step at 55 °C (first, 

second and third multiplexes) or at 47 °C (EST multiplex) for 30 s and an extension step at 

72 °C for 1 min. After 30 cycles, a final extension step at 72 °C for 20 min was executed. The 

PCR fragments were separated on an ABI PRISM
®
 3100 Genetic Analyzer (Applied 

Biosystems, Foster City, USA). The GS 500 ROX
TM

 (Applied Biosystems, Foster City, 

USA) was used as an internal size standard. Genotyping was done using the GeneMapper 

4.1
®
 software (Applied Biosystems, Foster City, USA). 

Relatedness and spatial genetic structure analysis 
 

Based on microsatellite genotypes Queller & Goodnight (1989) relatedness coefficient rQG 

was calculated between pairs of saplings within the same population using the GenAlex 6.5 

software (Peakall & Smouse 2012). Unrelated individuals are expected to have a rQG = 0, 

half-sibs a rQG = 0.25, and full-sibs a rQG = 0.5. To test whether rQG coefficients for saplings 
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collected at the same site (underneath the same adult tree) were significantly different from 

coefficients for saplings collected in different sites (underneath different adult trees), a Mann-

Whitney U test was conducted using the Statistica 12 software (Dell Inc 2015). 

In addition, a spatial autocorrelation analysis was performed using the method 

described in Smouse & Peakall (1999) and implemented in the GenAlex 6.5 software 

(Peakall & Smouse 2012). To define the upper and lower limits of the 95% confidence 

interval, 999 permutations were performed. Since from a statistical point of view it is 

recommendable to keep the number of pairs of individuals compared approximately constant 

within each distance class (Diniz-Filho et al. 2013), analyses were carried out using the 

option “even sample classes” that distributes as equal number of pairs of individuals per 

distance class as possible.  

Parentage assignment 
 

Based on microsatellite genotypes, a categorical parentage assignment was carried out with 

the CERVUS software (Marshall et al. 1998). Saplings were assigned to a single tentative 

parent using the maternity analysis option. Running conditions accepted incomplete sampling 

of candidate mothers and a genotyping error of 1%. A level of confidence of 80% was used, 

and the critical value of Δ above which parentage is assigned was determined using 100000 

offspring simulated. 

 

Results 

Relatedness and spatial genetic structure 
 

The mean pairwise values of the relatedness coefficients rQG per population were 

significantly different between saplings collected at the same site and saplings collected at 

different sites (Table 5-1). Mean rQG values were very close to zero in saplings collected at 

different sites (Table 5-1), while higher relatedness values were observed for saplings 

collected at the same site, between 0.129 (Mastrils and Sargans) and 0.221 (Collombey) 

(Table 5-1). For all populations, the rQG coefficients close to zero were the most frequent 

class in saplings collected at both different and the same site, but number of coefficients close 

to zero was much higher in sapling pairs collected from different sites (Fig. 5-1). Spatial 

autocorrelation analyses detected significant spatial genetic structure in the first distance class 

for all populations, extending from 38 m (Felsberg) to 130 m (Saxon) (Fig. 5-2). 
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Table 5-1 Mean values per population of the relatedness coefficient rQG for pairs of saplings collected 
at the same site (underneath the same adult tree) and at different sites (underneath different adult 
trees) 

Population The same site Different sites 

Felsberg 0.197 0.055 

Chur 0.191 0.058 

Malans 0.156 0.057 

Mastrils 0.129 0.062 

Sargans 0.129 0.062 

Mels 0.147 0.059 

Ardon 0.179 0.062 

Chamoson 0.205 0.061 

Saxon 0.194 0.059 

Martigny 0.145 0.059 

Collombey 0.221 0.06 

Ollon 0.161 0.057 

Mean 0.171 0.059 

Note. Mann-Whitney U test was significant for all populations at P < 0.001 

 

 

 

 

Fig. 5-1 Distribution of pairwise rQG coefficients in saplings collected at different sites (underneath 
different adult trees) and at the same site (underneath the same adult tree) for all populations. 
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Fig. 5-2 Correlograms showing the correlation coefficient r as a function of geographic distance, 
using even sample size in each class. Red dotted lines represent the 95% confidence interval under a 
null hypothesis of no spatial structure. Blue solid lines represent the correlation coefficient r, and the 
95% error bars around mean r values generated by bootstrapping are shown. 
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Parentage assignment 
 

A tentative parent was identified for 44.4% of the saplings. Mastrils was the population with 

the lowest proportion of successfully assigned saplings (33.9 %), while Chamoson had the 

highest (62.5 %, Table 5-2). However, if no mismatches in the genotype are allowed in the 

assignment, the proportion of saplings with a tentative parent assigned was almost twice as 

less (Table 5-2). 

 
Table 5-2 Percentage of saplings for which a tentative parent was assigned considering no 
mismatches or 1-2 mismatches in the genotype. 

Population No mismatches 1-2 mismatches Total 

Felsberg 27.4 22.6 50.0 

Chur 34.9 7.9 42.8 

Malans 31.3 15.6 46.9 

Mastrils 9.7 24.2 33.9 

Sargans 17.5 20.6 38.1 

Mels 20.0 25.0 45.0 

Ardon 17.5 20.6 38.1 

Chamoson 28.1 34.4 62.5 

Saxon 28.1 12.5 40.6 

Martigny 25.0 14.1 39.1 

Collombey 42.9 15.8 58.7 

Ollon 14.3 22.2 36.5 

Mean 24.7 19.6 44.4 

 

As it could be expected, saplings collected at the same site were usually assigned to the 

same tentative parent, which is most likely their seed parent, i.e., mother tree. This was 

observed in most populations, especially in Collombey (Appendix 5-1K). However, in some 

cases, saplings collected at the same site were assigned to different tentative parents, for 

example, in the case of saplings W1-33 to W1-36 (Appendix 5-1G) and saplings W2-10 to 

W2-12 (Appendix 5-1H). Similarly, in other cases, it was possible to assign a tentative parent 

tree to only one sapling among those collected at the same site, such as in the case of sapling 

G1-06 (Appendix 5-1A) and sapling G2-55 (Appendix 5-1B). Interestingly, in almost all 

populations there were adult trees that were tentative parents for saplings collected at 

different sites, for example adult trees G1-A1 and G1-A9 (Appendix 5-1A) and G2-A16 and 

G2-A24 (Appendix 5-1B). 
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Discussion 
 

Significant spatial genetic structure was found in the saplings within 38-130 m distance (Fig 

5-2). This is in line with other studies that have also reported significant spatial 

autocorrelation up to distances of 20-40 m (Vornam et al. 2004; Chybicki et al. 2009; Piotti 

et al. 2013) or 110 m (Jump & Peñuelas 2007). The main characteristic of the spatial genetic 

structure found was a decrease in relatedness with increasing distance among individuals. 

Higher relatedness measured by the rQG coefficient was detected between pairs of saplings 

collected at the same site, i.e., under the same adult tree (Table 5-1). This is expected taking 

into account that in beech, seeds are mostly gravitationally dispersed and distributed around 

the mother tree (Millerón et al. 2013), making it more likely that the saplings collected at the 

same site had been produced by the same mother tree and thus, more likely to be related. In 

fact, the relatedness coefficient rQG values for the saplings collected underneath the same 

adult tree were close to 0.2 (Table 5-1), only slightly lower than 0.25, which is the 

relatedness coefficient expected for half-sibs (Queller & Goodnight 1989). However, it may 

be incorrect to assume that saplings growing underneath of an adult tree are growing 

underneath their mother (Ashley 2010). Indeed, about half of the pairs of saplings collected 

underneath the same mother tree had relatedness coefficients close to zero (Fig. 5-1), 

indicating no relatedness (Queller & Goodnight 1989; Hedrick 2005). Furthermore, the 

parentage analysis showed that, in some cases, the assignment of a tentative parent was 

possible only for one or some of the saplings collected at the same site. Moreover, some of 

the adult trees were assigned as tentative parents of saplings collected at different sites 

(Appendix 5-1). Both results may imply the dispersion of some saplings away from their seed 

parent, i.e., mother tree. This is consistent with several studies demonstrating that beech 

saplings are found at longer distances from their mother trees than seeds (Millerón et al. 

2013; Bontemps et al. 2013). For example, Millerón et al. (2013) found that while mean seed 

dispersal distance ranged from 13.1 to 20.1 m, dispersal distances for saplings ranged from 

156.2 to 401.2 m. Seed dispersal in beech occurs primarily by gravity, and at sites with 

significant inclination, it can contribute to dispersion downslope away from the mother tree 

(Bontemps et al. 2013). Besides, secondary dispersal by animals can also occur, particularly 

by rodents (Jensen 1985) and birds (Nilsson 1985; Perea et al. 2011) that can disperse seeds 

for tens and hundreds of meters. Thus, differences in dispersal distances between seeds and 

saplings are usually attributed to the combined affect of primary and secondary dispersal 

(Millerón et al. 2013; Bontemps et al. 2013). Additionally, it is worth to mention that in this 
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study the adult trees that were assigned as tentative parents of saplings collected at different 

sites cannot be ruled out as pollen parents, rather than seed parents. 

Dispersed seeds, seedlings and saplings represent a challenge for parentage assignment, 

because neither parent is really known (Ashley 2010). This challenge is heightened by the 

longer dispersion of beech saplings away from the mother tree (Millerón et al. 2013; 

Bontemps et al. 2013), which makes less likely to find a sapling underneath its mother tree 

and thus, makes seed parent assignment more difficult. Even if saplings are not dispersed far 

away, and mother tree identification is possible, as occurred for most of the saplings from 

Collombey (Appendix 5-1K), in this study the tracking of the adult trees under which 

saplings were collected in the first stage was challenging, because those adult trees were not 

labeled, and some populations had a high density of beech. Despite these circumstances, the 

percentage of saplings successfully assigned, allowing for mismatches, was 44.4%. In other 

studies with exhaustive sampling of candidate parents, the percentage of saplings 

successfully assigned ranged between 31 % and 94 % (Millerón et al. 2013; Bontemps et al. 

2013). The differences were attributed to different rates in pollen and seed immigration. 

Microsatellite loci are usually the markers of choice for parentage and relatedness 

analysis. Due to their high polymorphism, the probability that two individuals share an allele 

by chance is very low (Weir et al. 2006). Normally, by using several microsatellite markers, 

the probability of exclusion is sufficiently high (97-99%) for their use in parentage analysis 

(Ashley 2010). However, microsatellites have several limitations. Null alleles, allele dropout 

and mutations may occur, causing mismatches in the genotypes of related individuals and 

thus, leading to false exclusions (Jones et al. 2010; Ashley 2010) They can present null 

alleles, that are alleles that do not amplify during PCR due to mutations in the primer-

annealing site (Varshney et al. 2005). Among the microsatellite loci used in this study, seven 

were transferred from other species of the same family Fagus crenata and Quercus robur. 

Microsatellite transference could increase the probability of null alleles due to differences in 

the sequence of the binding site of the primer, leading to failure in amplification. Although 

these loci did not show evidence of null alleles (see Chapter 2), miss-genotyping due to null 

alleles cannot be ruled out. 

To conclude, although the sampling design used here was originally aimed neither at 

studying the spatial distribution of the genetic variation within populations (see, for example, 

Vornam et al. 2004; Piotti et al. 2013) nor for parentage analysis (see, for example, Millerón 

et al. 2013; Bontemps et al. 2013), some general trends in line with findings in other studies 

were observed. Firstly, significant local spatial genetic structure was found in the saplings, 
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meaning that the closer the individuals are located, the more they are related genetically. 

Thus, it was important to take this information into account for the phenotypic association 

analysis (see Chapter 3) to avoid false positives (Foulkes 2009; Sillanpää 2011). Secondly, 

parentage analysis showed that saplings collected underneath the same tree do not necessarily 

represent progeny of this tree due to seed dispersion by both gravity and animals. Indeed, 

long distance seed dispersal is important because it allows plant species to colonize suitable 

habitats, and thus, has a significant impact on survival in a changing environment (Cain et al. 

2000; Johnson et al. 2017). Additionally, gene flow by seed dispersal has the potential of 

increasing genetic variation, and thus, enhance local adaptation (Kremer et al. 2012).  
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Appendix 5-1 
Appendix 5-1A. Parent assignment for saplings from Felsberg. Candidate parent – adult tree 

that for geographical position could be the tree underneath which saplings where collected, 

Assigned Parent –Adult tree assigned as tentative parent by Cervus, nd – not determined, na - 

not assigned. Saplings with the same letter as superscript were assigned to the same tentative 

parent.  

Sapling 

ID 

Candidate 

parent ID 

Assigned 

Parent 

ID 

Number loci 

mismatching 
  

Sapling 

ID 

Candidate 

parent ID 

Assigned 

Parent 

ID 

Number loci 

mismatching 

G1-01 
G1-A2 

na -   G1-33
f
 

G1-A5 

G1-A5 0 

G1-02 na - 

 

G1-34 na - 

G1-03 

G1-A15 

na - 

 

G1-35 na - 

G1-05 na - 

 

G1-36
f
 G1-A5 0 

G1-06
a
 G1-A1 0 

 

G1-37 

nd 

G1-A14 2 

G1-07 nd na - 

 

G1-38 na - 

G1-09 

G1-A3 

G1-A3 0 

 

G1-39 na - 

G1-10 na - 

 

G1-40 na - 

G1-45
b
 G1-A17 1 

 

G1-41 

G1-A20 

na - 

G1-11 

G1-A17 

G1-A16 2 

 

G1-42 na - 

G1-12
h
 G1-A9 0 

 

G1-43
g
 G1-A6 1 

G1-13 na - 

 

G1-44 na - 

G1-14 na - 

 

G1-47
h
 

G1-A21 

G1-A9 0 

G1-15 
nd 

na - 

 

G1-48
d
 G1-A21 0 

G1-16 na - 

 

G1-49
d
 G1-A21 0 

G1-17
c
 

nd 

G1-A2 0 

 

G1-50
d
 G1-A21 0 

G1-18 na - 

 

G1-51 

G1-A8 

G1-A13 1 

G1-19 na - 

 

G1-52
b
 G1-A17 1 

G1-20
c
 G1-A2 1 

 

G1-53 na - 

G1-21
e
 

G1-A6 

G1-A4 2 

 

G1-54 na - 

G1-22
g
 G1-A6 0 

 

G1-55 

nd 

na - 

G1-23
g
 G1-A6 0 

 

G1-56 na - 

G1-24
g
 G1-A6 0 

 

G1-57 na - 

G1-25
a
 

G1-A18 

G1-A1 0 

 

G1-58 na - 

G1-26 G1-A20 1 

 

G1-59 

nd 

na - 

G1-27 G1-A7 1 

 

G1-60 G1-A14 2 

G1-28 na - 

 

G1-61 G1-A14 2 

G1-29
e
 

G1-A7 

G1-A4 0 

 

G1-62
b
 G1-A17 1 

G1-31 na - 

 

G1-63 

nd 

G1-A25 2 

G1-32 G1-A22 0 

 

G1-64 G1-A13 0 

     

G1-65 na - 

          G1-66 na - 
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Appendix 5-1B. Parent assignment for saplings from Chur. Candidate parent – adult tree 

that for geographical position could be the tree underneath which saplings where collected, 

Assigned Parent –Adult tree assigned as tentative parent by Cervus, nd – not determined, na - 

not assigned. Saplings with the same letter as superscript were assigned to the same tentative 

parent.  

 

Sapling 

ID 

Candidate 

parent ID 

Assigned 

Parent 

ID 

Number loci 

mismatching 
  

Sapling 

ID 

Candidate 

parent ID 

Assigned 

Parent 

ID 

Number loci 

mismatching 

G2-01 

nd 

na -   G2-33 

nd 

G2-A10 2 

G2-02 na - 

 

G2-34 na - 

G2-03 na - 

 

G2-35
b
 G2-A16 0 

G2-04 na - 

 

G2-36 na - 

G2-05
a
 

G2-A1 

G2-A1 0 

 

G2-37 

G2-A19 

na - 

G2-06
a
 G2-A1 0 

 

G2-38
e
 G2-A19 0 

G2-07
a
 G2-A1 0 

 

G2-39
e
 G2-A19 0 

G2-08
a
 G2-A1 0 

 

G2-40
e
 G2-A19 1 

G2-09 

nd 

na - 

 

G2-41 

nd 

na - 

G2-10 na - 

 

G2-42 na - 

G2-11 na - 

 

G2-43 na - 

G2-12 na - 

 

G2-44 na - 

G2-13 

nd 

na - 

 

G2-45 

nd 

na - 

G2-14 na - 

 

G2-46
g
 G2-A5 1 

G2-15 na - 

 

G2-47 G2-A4 0 

G2-16 na - 

 

G2-48 na - 

G2-17 

G2-A8 

na - 

 

G2-49 

G2-25 

na - 

G2-18
g
 G2-A5 0 

 

G2-51 na - 

G2-19 na - 

 

G2-52 na - 

G2-20
f
 G2-A24 0 

 

G2-53 

nd 

na - 

G2-21 

G2-A5 

na - 

 

G2-54 na - 

G2-22
b
 G2-A16 0 

 

G2-55 G2-A22 0 

G2-23 G2-A21 1 

 

G2-56 na - 

G2-24 na - 

 

G2-57
f
 

G2-A24 

G2-A24 0 

G2-25
c
 

G2-A17 

G2-A17 0 

 

G2-58 G2-A23 0 

G2-26
c
 G2-A17 0 

 

G2-59 na - 

G2-27
c
 G2-A17 0 

 

G2-60 na - 

G2-28
c
 G2-A17 0 

 

G2-61 

nd 

na - 

G2-29
d
 

G2-A18 

G2-A18 0 

 

G2-62 na - 

G2-30
d
 G2-A18 0 

 

G2-63 na - 

G2-31
d
 G2-A18 0 

 

G2-64 G2-A20 1 

G2-32
d
 G2-A18 0           
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Appendix 5-1C. Parent assignment for saplings from Malans. Candidate parent – adult tree 

that for geographical position could be the tree underneath which saplings where collected, 

Assigned Parent –Adult tree assigned as tentative parent by Cervus, nd – not determined, na - 

not assigned. Saplings with the same letter as superscript were assigned to the same tentative 

parent.  

 

Sapling 

ID 

Candidate 

parent ID 

Assigned 

Parent 

ID 

Number loci 

mismatching 
  

Sapling ID 
Candidate 

parent ID 

Assigned 

Parent 

ID 

Number loci 

mismatching 

G3-01 

G3-A1 

na -   G3-33 

nd 

na - 

G3-02 na - 

 

G3-34
f
 G3-A8 1 

G3-03 na - 

 

G3-35
b
 G3-A7 1 

G3-04 na - 

 

G3-36 na - 

G3-05
a
 

G3-A14 

G3-A14 0 

 

G3-37 

nd 

na - 

G3-06
a
 G3-A14 0 

 

G3-38 na - 

G3-07
a
 G3-A14 0 

 

G3-39 na - 

G3-08
a
 G3-A14 0 

 

G3-40 G3-A5 1 

G3-09
b
 

nd 

G3-A7 0 

 

G3-41 

G3-A19 

na - 

G3-10
c
 G3-A15 0 

 

G3-42 na - 

G3-11
d
 G3-A12 2 

 

G3-43 na - 

G3-12 na - 

 

G3-44 na - 

G3-13
e
 

G3-A2 

G3-A2 0 

 

G3-45
c
 

G3-A20 

G3-A15 0 

G3-14
e
 G3-A2 0 

 

G3-46 na - 

G3-15 na - 

 

G3-47 G3-A18 0 

G3-16 G3-A23 1 

 

G3-48
c
 G3-A15 0 

G3-17 

G3-A16 

na - 

 

G3-49 

G3-A21 

G3-A21 0 

G3-18 na - 

 

G3-50 G3-A21 0 

G3-19 na - 

 

G3-51 G3-A21 0 

G3-20 G3-A19 1 

 

G3-52 na - 

G3-21 

nd 

na - 

 

G3-53 

G3-A23 

na - 

G3-22 na - 

 

G3-54 G3-A4 2 

G3-23 na - 

 

G3-55
c
 G3-A15 0 

G3-24 na - 

 

G3-56 na - 

G3-25 

G3-A17 

na - 

 

G3-57 

G3-A12 

na - 

G3-26
c
 G3-A15 0 

 

G3-58 G3-A4 1 

G3-27 na - 

 

G3-59 G3-A17 1 

G3-28 na - 

 

G3-60
d
 G3-A12 0 

G3-29 

nd 

G3-A9 1 

 

G3-61 

G3-A24 

na - 

G3-30 na - 

 

G3-62
f
 G3-A8 0 

G3-31
c
 G3-A15 0 

 

G3-63 G3-A24 0 

G3-32 na -   G3-64 na - 
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Appendix 5-1D. Parent assignment for saplings from Mastrils. Candidate parent – adult tree 

that for geographical position could be the tree underneath which saplings where collected, 

Assigned Parent –Adult tree assigned as tentative parent by Cervus, nd – not determined, na - 

not assigned. Saplings with the same letter as superscript were assigned to the same tentative 

parent.  

 

Sapling 

ID 

Candidate 

parent ID 

Assigned 

Parent 

ID 

Number loci 

mismatching 
  

Sapling ID 
Candidate 

parent ID 

Assigned 

Parent 

ID 

Number loci 

mismatching 

G4-01 

nd 

na -   G4-33 

G4-A11 

na - 

G4-02 na - 

 

G4-34 na - 

G4-03
a
 G4-A1 2 

 

G4-35 na - 

G4-04 na - 

 

G4-36 G4-A14 1 

G4-05 

nd 

G4-A5 0 

 

G4-37 

nd 

G4-A16 0 

G4-07 na - 

 

G4-38 na - 

G4-08 na - 

 

G4-39 na - 

G4-09
b
 

nd 

G4-A24 1 

 

G4-40
d
 G4-A25 1 

G4-10 na - 

 

G4-41
a
 

nd 

G4-A1 1 

G4-11 na - 

 

G4-42 G4-A13 0 

G4-12 na - 

 

G4-43 na - 

G4-13 

G4-A3 

na - 

 

G4-44 na - 

G4-14 na - 

 

G4-45 

G4-A12 

na - 

G4-15 na - 

 

G4-46 na - 

G4-16 na - 

 

G4-47 na - 

G4-17
c
 

G4-A5 

G4-A18 0 

 

G4-48 na - 

G4-18
c
 G4-A18 0 

 

G4-49 

nd 

na - 

G4-19 na - 

 

G4-50 na - 

G4-20 na - 

 

G4-51
f
 G4-A15 1 

G4-21 

G4-A6 

G4-A10 1 

 

G4-53 

G4-A14 

G4-A3 1 

G4-22 G4-A9 1 

 

G4-54 na - 

G4-23 na - 

 

G4-55 na - 

G4-24 na - 

 

G4-56 G4-A21 1 

G4-25
d
 

G4-A7 

G4-A25 1 

 

G4-57
b
 

nd 

G4-A24 1 

G4-26 na - 

 

G4-58 na - 

G4-27 na - 

 

G4-59
f
 G4-A15 0 

G4-28
e
 G4-A12 1 

 

G4-60 na - 

G4-29 

G4-A8 

G4-A17 1 

 

G4-61 

nd 

na - 

G4-30 na - 

 

G4-62 na - 

G4-31 na - 

 

G4-63 na - 

G4-32
e
 G4-A12 1   G4-64 na - 
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Appendix 5-1E. Parent assignment for saplings from Sargans. Candidate parent – adult tree 

that for geographical position could be the tree underneath which saplings where collected, 

Assigned Parent –Adult tree assigned as tentative parent by Cervus, nd – not determined, na - 

not assigned. Saplings with the same letter as superscript were assigned to the same tentative 

parent.  

 

Sapling 

ID 

Candidate 

parent ID 

Assigned 

Parent 

ID 

Number loci 

mismatching 
  

Sapling 

ID 

Candidate 

parent ID 

Assigned 

Parent 

ID 

Number loci 

mismatching 

G5-01
a
 

G5-A2 

G5-A2 0   G5-33 

nd 

na - 

G5-02
a
 G5-A2 0 

 

G5-34 na - 

G5-03
a
 G5-A2 0 

 

G5-35 na - 

G5-04
a
 G5-A2 0 

 

G5-36 na - 

G5-05
b
 

G5-A14 

G5-A17 1 

 

G5-37 

G5-A18 

na - 

G5-06 na - 

 

G5-38 na - 

G5-07 G5-A14 0 

 

G5-39 G5-A6 1 

G5-08 na - 

 

G5-40 na - 

G5-09 

G5-A16 

G5-A12 1 

 

G5-41 

nd 

na - 

G5-11 na - 

 

G5-42
c
 G5-A19 1 

G5-12 G5-A15 0 

 

G5-43 na - 

G5-13 

G5-A3 

na - 

 

G5-44 na - 

G5-14 na - 

 

G5-45 

nd 

na - 

G5-15
c
 G5-A19 0 

 

G5-46
b
 G5-A17 1 

G5-16 G5-A18 1 

 

G5-47
c
 G5-A19 1 

G5-17 

nd 

na - 

 

G5-48 na - 

G5-18 na - 

 

G5-49 

G5-A19 

na - 

G5-19 na - 

 

G5-50 G5-A16 0 

G5-20 na - 

 

G5-51 na - 

G5-21 

G5-A15 

na - 

 

G5-52
a
 G5-A2 1 

G5-22 G5-A24 1 

 

G5-53 

G5-A7 

na - 

G5-23 G5-A25 1 

 

G5-54 na - 

G5-24 na - 

 

G5-55 G5-A13 1 

G5-25
d
 

G5-A5 

G5-A23 0 

 

G5-56 G5-A21 1 

G5-26
d
 G5-A23 0 

 

G5-57 

G5-A20 

na - 

G5-27 na - 

 

G5-58 na - 

G5-28 na - 

 

G5-59 na - 

G5-29 

nd 

na - 

 

G5-60 na - 

G5-30 G5-A11 1 

 

G5-61 

G5-A9 

na - 

G5-31 na - 

 

G5-62
b
 G5-A17 0 

G5-32 na - 

 

G5-63 na - 

          G5-64 na - 

 

 

  



 111 

Appendix 5-1F. Parent assignment for saplings from Mels. Candidate parent – adult tree that 

for geographical position could be the tree underneath which saplings where collected, 

Assigned Parent –Adult tree assigned as tentative parent by Cervus, nd – not determined, na - 

not assigned. Saplings with the same letter as superscript were assigned to the same tentative 

parent.  

 

Sapling 

ID 

Candidate 

parent ID 

Assigned 

Parent 

ID 

Number loci 

mismatching 
  

Sapling 

ID 

Candidate 

parent ID 

Assigned 

Parent 

ID 

Number loci 

mismatching 

G6-01 

nd 

G6-A6 1   G6-33 

nd 

na - 

G6-02 na - 

 

G6-34
b
 G6-A8 0 

G6-03
a
 G6-A17 1 

 

G6-35 na - 

G6-05
b
 

nd 

G6-A8 0 

 

G6-36 na - 

G6-06 na - 

 

G6-37 

G6-A10 

na - 

G6-07 na - 

 

G6-38 na - 

G6-08 na - 

 

G6-39
e
 G6-A4 1 

G6-09 

nd 

na - 

 

G6-40
f
 G6-A2 2 

G6-10 na - 

 

G6-41
f
 

G6-A11 

G6-A2 1 

G6-11 na - 

 

G6-43 G6-A11 0 

G6-12 na - 

 

G6-44 na - 

G6-13 

nd 

G6-A15 0 

 

G6-46
d
 

G6-A23 

G6-A23 0 

G6-14
a
 G6-A17 1 

 

G6-47 na - 

G6-15 na - 

 

G6-48
d
 G6-A23 0 

G6-17
c
 

nd 

G6-A13 1 

 

G6-49
c
 

G6-A12 

G6-A13 0 

G6-18
d
 G6-A23 0 

 

G6-50 na - 

G6-19 na - 

 

G6-51 na - 

G6-20 na - 

 

G6-52 na - 

G6-21
d
 

nd 

G6-A23 1 

 

G6-53
d
 

G6-A8 

G6-A23 1 

G6-22 na - 

 

G6-54 na - 

G6-23 na - 

 

G6-55 na - 

G6-24 na - 

 

G6-56 na - 

G6-25 

G6-A9 

G6-A9 2 

 

G6-57 

nd 

na - 

G6-26 na - 

 

G6-58 na - 

G6-27
a
 G6-A17 1 

 

G6-59
e
 G6-A4 1 

G6-28 G6-A22 1 

 

G6-60
a
 G6-A17 0 

G6-29 

nd 

na - 

 

G6-61 

nd 

G6-A5 0 

G6-30 na - 

 

G6-62 na - 

G6-31 G6-A18 0 

 

G6-63 G6-A16 1 

G6-32
d
 G6-A23 0   G6-64 G6-A25 1 
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Appendix 5-1G. Parent assignment for saplings from Ardon. Candidate parent – adult tree 

that for geographical position could be the tree underneath which saplings where collected, 

Assigned Parent –Adult tree assigned as tentative parent by Cervus, nd – not determined, na - 

not assigned. Saplings with the same letter as superscript were assigned to the same tentative 

parent.  

 

Sapling 

ID 

Candidate 

parent ID 

Assigned 

Parent 

ID 

Number loci 

mismatching 
  

Sapling 

ID 

Candidate 

parent ID 

Assigned 

Parent 

ID 

Number loci 

mismatching 

W1-01
a
 

W1-A4 

W1-A6 1   W1-33
d
 

nd 

W1-A17 0 

W1-02 na - 

 

W1-34 W1-A23 0 

W1-03
b
 W1-A14 0 

 

W1-35
f
 W1-A25 0 

W1-04 W1-A20 1 

 

W1-36
f
 W1-A25 0 

W1-05 

W1-A5 

W1-A16 1 

 

W1-37 

nd 

na - 

W1-06 na - 

 

W1-38 na - 

W1-07 na - 

 

W1-40 na - 

W1-08 W1-A3 1 

 

W1-41 

nd 

na - 

W1-09 

nd 

na - 

 

W1-43a
d
 W1-A17 1 

W1-10 na - 

 

W1-43b na - 

W1-11 na - 

 

W1-44 na - 

W1-12 na - 

 

W1-45 

nd 

na - 

W1-13 

W1-A19 

na - 

 

W1-46 na - 

W1-14 na - 

 

W1-47 na - 

W1-15 na - 

 

W1-48
e
 W1-A15 0 

W1-16 na - 

 

W1-49 

nd 

na - 

W1-17
c
 

W1-A7 

W1-A7 0 

 

W1-50 na - 

W1-18
c
 W1-A7 0 

 

W1-51
c
 W1-A7 1 

W1-19
c
 W1-A7 0 

 

W1-52
b
 W1-A14 1 

W1-20 na - 

 

W1-53
c
 

W1-A22 

W1-A7 1 

W1-21 

W1-A9 

na - 

 

W1-54
c
 W1-A7 0 

W1-22
d
 W1-A17 1 

 

W1-55 na - 

W1-23 na - 

 

W1-56 na - 

W1-24 na - 

 

W1-57 

W1-A3 

W1-A22 1 

W1-25 

W1-A7 

na - 

 

W1-58
a
 W1-A6 1 

W1-26 W1-A13 1 

 

W1-59 na - 

W1-27 W1-A11 1 

 

W1-60 na - 

W1-28 na - 

 

W1-61 

W1-A1 

na - 

W1-29 

W1-A12 

na - 

 

W1-62 na - 

W1-30 na - 

 

W1-63 na - 

W1-31 na - 

 

W1-64 na - 

W1-32
e
 W1-A15 0           
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Appendix 5-1H. Parent assignment for saplings from Chamoson. Candidate parent – adult 

tree that for geographical position could be the tree underneath which saplings where 

collected, Assigned Parent –Adult tree assigned as tentative parent by Cervus, nd – not 

determined, na - not assigned. Saplings with the same letter as superscript were assigned to 

the same tentative parent.  

 

Sapling 

ID 

Candidate 

parent ID 

Assigned 

Parent 

ID 

Number loci 

mismatching 
  

Sapling 

ID 

Candidate 

parent ID 

Assigned 

Parent 

ID 

Number loci 

mismatching 

W2-01
a
 

W2-A12 

W2-A13 0   W2-33 

nd 

W2-A15 1 

W2-02
b
 W2-A25 0 

 

W2-34 na - 

W2-03 na - 

 

W2-35
i
 W2-A7 1 

W2-04 na - 

 

W2-36 na - 

W2-05 

W2-A13 

W2-A23 1 

 

W2-37 

nd 

na - 

W2-06
c
 W2-A12 0 

 

W2-38 W2-A6 1 

W2-07
c
 W2-A12 0 

 

W2-39
g
 W2-A24 1 

W2-08
b
 W2-A25 0 

 

W2-40 na - 

W2-09 

W2-A25 

na - 

 

W2-41 

W2-A17 

na - 

W2-10 W2-A20 0 

 

W2-42
j
 W2-A8 1 

W2-11
c
 W2-A12 0 

 

W2-43
j
 W2-A8 0 

W2-12
d
 W2-A21 0 

 

W2-44
j
 W2-A8 1 

W2-13
e
 

nd 

W2-A16 1 

 

W2-45
k
 

nd 

W2-A3 1 

W2-14
f
 W2-A2 0 

 

W2-46 W2-A11 1 

W2-15 na - 

 

W2-47
d
 W2-A21 1 

W2-16
f
 W2-A2 1 

 

W2-48
k
 W2-A3 0 

W2-17
a
 

nd 

W2-A13 0 

 

W2-49
h
 

W2-A6 

W2-A22 0 

W2-18
g
 W2-A24 0 

 

W2-50 na - 

W2-19
h
 W2-A22 1 

 

W2-51
h
 W2-A22 0 

W2-20 na - 

 

W2-52
k
 W2-A3 1 

W2-21 

W2-A16 

na - 

 

W2-53 

W2-A11 

W2-A17 1 

W2-22
g
 W2-A24 0 

 

W2-54 na - 

W2-23
e
 W2-A16 1 

 

W2-55 na - 

W2-24
e
 W2-A16 1 

 

W2-56 W2-A18 0 

W2-25 

W2-A3 

na - 

 

W2-57 

W2-A2 

na - 

W2-26 na - 

 

W2-58 na - 

W2-27
c
 W2-A12 1 

 

W2-59 na - 

W2-28 W2-A1 1 

 

W2-60 na - 

W2-29 

nd 

na - 

 

W2-61 

nd 

na - 

W2-30 na - 

 

W2-62 na - 

W2-31 W2-A20 1 

 

W2-63 W2-A5 0 

W2-32
g
 W2-A24 2   W2-64

i
 W2-A7 1 
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Appendix 5-1I. Parent assignment for saplings from Saxon. Candidate parent – adult tree 

that for geographical position could be the tree underneath which saplings where collected, 

Assigned Parent –Adult tree assigned as tentative parent by Cervus, nd – not determined, na - 

not assigned. Saplings with the same letter as superscript were assigned to the same tentative 

parent.  

 

Sapling ID 
Candidate 

parent ID 

Assigned 

Parent 

ID 

Number loci 

mismatching 
  Sapling ID 

Candidate 

parent ID 

Assigned 

Parent 

ID 

Number loci 

mismatching 

W3-01 
nd 

na - 
 

W3-35 
nd 

na - 

W3-02 na - 
 

W3-36 W3-A13 1 

W3-03 
W3-A13 

na - 
 

W3-37 
nd 

na - 

W3-04 na - 
 

W3-38
c
 W3-A18 0 

W3-05 
W3-A12 

na - 
 

W3-39 
nd 

na - 

W3-06 na - 
 

W3-40 na - 

W3-07 
nd 

na - 
 

W3-41 
nd 

na - 

W3-08 na - 
 

W3-42
e
 W3-A1 1 

W3-09
a
 

W3-A9 
W3-A9 0 

 
W3-43 

W3-A22 
W3-A22 0 

W3-10
a
 W3-A9 0 

 
W3-44 W3-A17 1 

W3-11
a
 

nd 
W3-A9 1 

 
W3-45 

W3-A23 
na - 

W3-12 na - 
 

W3-46
f
 W3-A3 0 

W3-13 
W3-A21 

na - 
 

W3-47
f
 

nd 
W3-A3 0 

W3-14 na - 
 

W3-48 na - 

W3-15 
W3-A18 

na - 
 

W3-49
e
 

nd 
W3-A1 0 

W3-16 na - 
 

W3-50 na - 

W3-17 
nd 

na - 
 

W3-53 
nd 

na - 

W3-18 W3-A11 0 
 

W3-54
g
 W3-A23 0 

W3-19 
W3-A19 

W3-A19 0 
 

W3-55
h
 

nd 
W3-A24 0 

W3-20 na - 
 

W3-56
h
 W3-A24 0 

W3-21 
W3-A20 

na - 
 

W3-57
g
 

nd 
W3-A23 1 

W3-22
a
 W3-A9 1 

 
W3-58 na - 

W3-25
b
 

W3-A4 
W3-A4 0 

 
W3-51 

nd 

na - 

W3-26
b
 W3-A4 0 

 
W3-52 na - 

W3-27 
W3-A1 

na - 
 

W3-59 W3-A15 0 

W3-28 W3-A14 1 
 

W3-60 na - 

W3-29
c
 

nd 
W3-A18 0 

 
W3-61 

nd 
na - 

W3-30 na - 
 

W3-62 W3-A16 1 

W3-31
d
 

W3-A7 
W3-A7 0 

 
W3-63 

nd 
na - 

W3-32
d
 W3-A7 0 

 
W3-64 na - 

W3-33 
W3-A8 

na - 
 

W3-65 W3-A16 na - 

W3-34 na -   W3-66 W3-A16 na - 
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Appendix 5-1J. Parent assignment for saplings from Martigny. Candidate parent – adult tree 

that for geographical position could be the tree underneath which saplings where collected, 

Assigned Parent –Adult tree assigned as tentative parent by Cervus, nd – not determined, na - 

not assigned. Saplings with the same letter as superscript were assigned to the same tentative 

parent.  

 

Sapling ID 
Candidate 

parent ID 

Assigned 

Parent 

ID 

Number loci 

mismatching 
  

Sapling ID 
Candidate 

parent ID 

Assigned 

Parent 

ID 

Number loci 

mismatching 

W4-01 
nd 

na - 

 

W4-33
c
 

W4-A7 

W4-A2 0 

W4-02 na - 

 

W4-34
b
 W4-A12 1 

W4-03 

W4-A3 

W4-A3 0 

 

W4-35 W4-A7 0 

W4-04 W4-A20 1 

 

W4-36 na - 

W4-05 na - 

 

W4-37
c
 

W4-A1 

W4-A2 0 

W4-06
a
 W4-A14 0 

 

W4-38
c
 W4-A2 0 

W4-07 

W4-A10 

na - 

 

W4-39 na - 

W4-08 na - 

 

W4-40 na - 

W4-09 na - 

 

W4-41 

W4-A17 

na - 

W4-10 na - 

 

W4-42 na - 

W4-11 

nd 

na - 

 

W4-43 na - 

W4-12 na - 

 

W4-44 na - 

W4-13 na - 

 

W4-45 

nd 

na - 

W4-14 na - 

 

W4-46 na - 

W4-15 

W4-A12 

W4-A4 0 

 

W4-47 na - 

W4-16
b
 W4-A12 1 

 

W4-48 na - 

W4-17
b
 W4-A12 0 

 

W4-49 

W4-A17 

na - 

W4-18 W4-A11 2 

 

W4-50 na - 

W4-19
a
 

W4-A14 

W4-A14 0 

 

W4-51 na - 

W4-20
a
 W4-A14 0 

 

W4-52 na - 

W4-21 na - 

 

W4-53 

W4-A18 

na - 

W4-22
c
 W4-A2 1 

 

W4-54 W4-A19 0 

W4-23 

nd 

na - 

 

W4-55 W4-A24 1 

W4-24
d
 W4-A18 1 

 

W4-56
d
 W4-A18 0 

W4-25 na - 

 

W4-57 

W4-A19 

na - 

W4-26 W4-A17 0 

 

W4-58 na - 

W4-27 
nd 

W4-A9 0 

 

W4-59 W4-A1 0 

W4-28 na - 

 

W4-60 na - 

W4-29 

W4-A9 

na - 

 

W4-61
c
 

nd 

W4-A2 1 

W4-30 na - 

 

W4-62 W4-A8 1 

W4-31 na - 

 

W4-63 na - 

W4-32 W4-A13 0   W4-64 na - 
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Appendix 5-1K. Parent assignment for saplings from Collombey. Candidate parent – adult 

tree that for geographical position could be the tree underneath which saplings where 

collected, Assigned Parent –Adult tree assigned as tentative parent by Cervus, nd – not 

determined, na - not assigned. Saplings with the same letter as superscript were assigned to 

the same tentative parent.  

Sapling ID 
Candidate 

parent ID 

Assigned 

Parent 

ID 

Number loci 

mismatching 
  

Sapling ID 
Candidate 

parent ID 

Assigned 

Parent 

ID 

Number loci 

mismatching 

W5-01
a
 

W5-A1 

W5-A1 0 

 

W5-33
c
 

W5-A10 

W5-A10 0 

W5-02
a
 W5-A1 0 

 

W5-34
c
 W5-A10 0 

W5-03
a
 W5-A1 0 

 

W5-35
c
 W5-A10 0 

W5-04
a
 W5-A1 0 

 

W5-36
c
 W5-A10 0 

W5-05
b
 

W5-A2 

W5-A2 0 

 

W5-37
a
 

W5-A11 

W5-A1 1 

W5-06
b
 W5-A2 0 

 

W5-38 W5-A11 0 

W5-07
b
 W5-A2 0 

 

W5-39
e
 W5-A5 1 

W5-08
b
 W5-A2 0 

 

W5-40 na - 

W5-09
c
 

W5-A3 

W5-A10 0 

 

W5-41
d
 

W5-A12 

W5-A17 1 

W5-10 na - 

 

W5-42
b
 W5-A2 1 

W5-11 na - 

 

W5-43 na - 

W5-12
c
 W5-A10 1 

 

W5-44 na - 

W5-13 

W5-A4 

na - 

 

W5-45 

nd 

na - 

W5-14
d
 W5-A17 1 

 

W5-46 na - 

W5-15
b
 W5-A2 1 

 

W5-47 na - 

W5-16 W5-A15 1 

 

W5-48 na - 

W5-17 

nd 

na - 

 

W5-49
d
 

W5-A14 

W5-A17 0 

W5-18 na - 

 

W5-50 W5-A7 0 

W5-19 W5-A12 1 

 

W5-51 na - 

W5-20 na - 

 

W5-53
a
 

W5-A18 

W5-A1 0 

W5-21
e
 

W5-A5 

W5-A5 0 

 

W5-54 na - 

W5-22
e
 W5-A5 0 

 

W5-55 W5-A18 0 

W5-23
e
 W5-A5 0 

 

W5-56 na - 

W5-24
e
 W5-A5 0 

 

W5-57 

W5-A19 

na - 

W5-25
f
 

W5-A6 

W5-A6 0 

 

W5-58 na - 

W5-26
f
 W5-A6 0 

 

W5-59 na - 

W5-27
f
 W5-A6 0 

 

W5-60 na - 

W5-28
f
 W5-A6 0 

 

W5-61 

W5-A20 

na - 

W5-29
b
 

W5-A9 

W5-A2 1 

 

W5-62 na - 

W5-30 na - 

 

W5-63 na - 

W5-31 na - 

 

W5-64 na - 

W5-32 W5-A16 0           
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Appendix 5-1L. Parent assignment for saplings from Ollon. Candidate parent – adult tree 

that for geographical position could be the tree underneath which saplings where collected, 

Assigned Parent –Adult tree assigned as tentative parent by Cervus, nd – not determined, na - 

not assigned. Saplings with the same letter as superscript were assigned to the same tentative 

parent.  

Sapling ID 
Candidate 

parent ID 

Assigned 

Parent 

ID 

Number loci 

mismatching 
  

Sapling ID 
Candidate 

parent ID 

Assigned 

Parent 

ID 

Number loci 

mismatching 

W6-01 

nd 

na - 

 

W6-33
c
 

nd 

W6-A5 0 

W6-02 W6-A9 1 

 

W6-34 W6-A8 1 

W6-03
a
 W6-A11 0 

 

W6-35 na - 

W6-04
b
 W6-A16 0 

 

W6-36 na - 

W6-05 

nd 

na - 

 

W6-37
e
 

W6-A12 

W6-A7 2 

W6-06 na - 

 

W6-38 na - 

W6-07 na - 

 

W6-39 na - 

W6-08 na - 

 

W6-40 na - 

W6-09
b
 

W6-A3 

W6-A16 0 

 

W6-41 

W6-A10 

W6-A18 1 

W6-10
c
 W6-A5 1 

 

W6-42 na - 

W6-11
a
 W6-A11 1 

 

W6-43 na - 

W6-12 na - 

 

W6-44 na - 

W6-13 

W6-A4 

na - 

 

W6-45 

W6-A11 

na - 

W6-14 na - 

 

W6-46 na - 

W6-15 na - 

 

W6-47 na - 

W6-16
d
 W6-A4 1 

 

W6-48 na - 

W6-17 

W6-A5 

na - 

 

W6-49 

W6-A25 

na - 

W6-18
d
 W6-A4 1 

 

W6-50 na - 

W6-19 W6-A12 0 

 

W6-51 na - 

W6-20 na - 

 

W6-52 na - 

W6-21
d
 

nd 

W6-A4 1 

 

W6-53 

W6-A24 

na - 

W6-23
c
 W6-A5 1 

 

W6-54
e
 W6-A7 1 

W6-24 na - 

 

W6-55
d
 W6-A4 1 

W6-25 

W6-A6 

na - 

 

W6-56 na - 

W6-26 na - 

 

W6-57 

W6-A23 

na - 

W6-27 na - 

 

W6-58
c
 W6-A5 0 

W6-28 na - 

 

W6-59
a
 W6-A11 1 

W6-29
a
 

W6-A8 

W6-A11 0 

 

W6-60 na - 

W6-30
e
 W6-A7 0 

 

W6-61 

W6-A22 

na - 

W6-31 na - 

 
W6-62 W6-A13 1 

W6-32 na - 

 

W6-63 W6-A24 0 

          W6-64 na - 
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6. Synthesis 

General results and discussion 

The studied populations of F. sylvatica presented high genetic variability, as has been 

reported for other studies for both SSRs (Seifert 2012; Bontemps et al. 2013; Rajendra et al. 

2014) and SNPs (Seifert et al. 2012; Müller et al. 2015a). The AMOVA analysis showed that 

98-99% of the genetic variation is found within populations, while 1-2% is found among 

populations. Indeed, G’’ST values revealed low population differentiation, which was 

supported by the weak population structure revealed by STRUCTURE. Likewise, although 

there is a tendency for populations from the same valley to group together in NJ trees, the 

clusters were weakly supported by the bootstrap values, confirming the weak population 

differentiation and structure. These findings are in consensus with other studies also reporting 

low genetic differentiation for populations of beech (e.g., Buiteveld et al. 2007; Paffetti et al. 

2012; Müller et al. 2015a). High genetic variability within populations and weak 

differentiation are explained by the outcrossing breeding system of this species and the high 

rates of pollen flow among populations (Oddou-Muratorio et al. 2011; Piotti et al. 2012). 

Interestingly, despite the low genetic differentiation, Chamoson, a population with low 

precipitation, seems to be more distinct, as revealed by both SSRs and SNPs in both saplings 

and adults. Some past management cannot be ruled out as a reason for this pattern. 

A low percentage of loci in LD between pairs of SSR loci and SNPs loci was found. In 

forest trees, LD is low due to large population size and high outcrossing rates (Aitken et al. 

2008). However, a higher percentage of pairs of SSR in LD was found in the saplings, which 

could be an effect of relatedness. Indeed, it was found that saplings collected underneath the 

same adult tree had higher pairwise relatedness coefficient. This is expected taking into 

account that in beech, seeds are primarily gravity dispersed and released around the mother 

tree (Millerón et al. 2013); thus, it is more likely that saplings collected at the same site had 

been produced by the same mother tree and consequently, more likely to be related.  

Important climate related traits such as day of bud burst and drought tolerance were 

evaluated in the saplings. The day of bud burst was highly variable among populations, and it 

was influenced by the type of soil on which the saplings were growing: saplings on acidic 

soil flushed earlier. Drought tolerance was evaluated by, on the one hand, the indices FV/FM, 

PIabs, PItot, which are based on chlorophyll fluorescence; and on the other hand by growth 

traits, specifically the increment in stem diameter (SG). Results show that the drought 

treatment affected negatively the performance of saplings, which was evident in the lower 
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values of PIabs, PItot and SG. However, despite the negative effect of drought, populations 

from xeric environments performed better than populations from mesic environments. This is 

consistent with other studies reporting that beech trees from dry habitats are less affected by 

drought (Peuke et al. 2002; Fotelli et al. 2009; Weber et al. 2013; Thiel et al. 2014). 

Furthermore, it was found that the type of soil influences the response of the saplings. 

Saplings on acidic soil had earlier bud burst and also had lower SG, especially in the drought 

treatment. Soil characteristics influence not only the amount of water available for plants, but 

also the nutrients available for them (Geßler et al. 2007; Piedallu et al. 2013). Thus, soil 

characteristics affect the performance and sensitivity of plants under different environmental 

conditions.  

Since populations from xeric environments were less sensitive to drought conditions, 

this might indicate that selective processes are acting on these populations. With the aim of 

identifying genetic adaptive variation in SNPs in candidate genes, three approaches were 

used: outlier analysis, phenotypic association analysis and environmental association 

analysis. These approaches are complementary because they exploit different sources of 

information, and although they generally yield different results concerning which loci should 

be considered under selection, it is considered that they are more likely to agree regarding 

true positives (De Mita et al. 2013; de Villemereuil et al. 2014) In this study, from the 76 

SNPs genotyped, 6 were monomorphic (APX1_2, PhyB, 50_320, 52_1_249, 92_166, 

110_1_111) and not included in the analyses. Then, from the remaining 70 SNPs, 40 SNPs 

(57.1%) were detected by any of the three approaches: 17 (24.3%) in the saplings and 35 in 

the adults (50%), and 13 SNPs (18.6%) were detected in both saplings and adults (Table 6-1). 

Loci under selection are likely to differ between different ages, because the environment can 

exert different selection pressures at different life stages (Petit & Hampe 2006), and also 

different sets of genes are involved in the same trait at different stages (Prunier et al. 2013). 

Besides, due to high competition and mortality, only a small fraction of seeds survive until 

the adult stage (Petit & Hampe 2006); thus, adult trees have passed different selection 

pressures through their life, and this could be evident in the higher number of SNPs likely to 

be under selection that were observed.  

Nine SNPs (12.8%) were consistently identified by at least two approaches (Table 6-1); 

these SNPs are the most likely under selection in the studied populations. Most of the SNPs 

associated with environmental variables were found to be under positive selection according 

to the outlier analysis; in fact, for those SNPs, differences in allele frequencies were found in 

populations from contrasting environments.  
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Table 6-1 List of SNPs that show signatures of selection 

   
SAPLINGS   ADULTS 

Gene SNP  SNP type OA PAA EAA 

 

OA EAA 

ALDH 

ALDH_1
b
 Non-coding 

  
T 

  
T 

ALDH_2
b
 Non-Synonymous 

  
T 

  
T 

ALDH_4  Synonymous Balancing 
     

IDH 

IDH_1
a,b

 Synonymous 
 

SG 
  

Positive T, P, H 

IDH_3  Non-coding 
     

T, P, H 

IDH_4
a,b

  Synonymous 
 

SG 
  

Positive T, P, H 

APX APX4_2  Non-Synonymous 
     

T, P, H 

ERD ERD
a,b

  Non-coding Positive 
    

SR 

Dhn  Dhn_1  Non-Synonymous 
    

Balancing 
 

CP10 

CP10_503 Synonymous 
    

Balancing 
 

CP10_1317 Non-coding 
     

SR 

CP10_1428 Non-Synonymous 
     

T 

CysPro 

CysPro_202
b
 Synonymous Positive 

   
Positive 

 
CysPro_728 Non-coding 

    
Balancing 

 
CysPro_783 Non-coding 

     
T 

DAG DAG_1059
a
 Synonymous 

    
Positive T 

Histone3 His3C2_186 Non-coding 
     

T 

NAC 

NAC_854
a,b

 Non-Synonymous 
  

T, P, H, SR 
 

Positive 
 

NAC_962
b
 Synonymous Positive 

   
Positive 

 
NAC_1300 Non-coding 

    
Positive 

 
PP2C PP2C_315 Non-Synonymous 

 
FV/FM 

    

XTH 
7_258

b
 Non-coding 

  
SR 

  
T, P, H 

7_520 Non-coding 
 

FV/FM 
    

SDR 17_1081 Non-coding 
    

Balancing 
 

KT2 39_282 Non-Synonymous 
     

T, P, H 

DREB 
50_39 Non-Synonymous 

 
SG, PItot     

50_232
a,b

 Synonymous 
 

SG 
  

Balancing 
 

SAHH 
52_1_235 Non-Synonymous 

     
T, P, H 

52_1_368 Synonymous 
     

T, P, H 

GAPDH 68_277 Non-Synonymous 
     

SR 

CAT 

91_2_57 Synonymous 
    

Positive 
 

91_2_141
a
 Synonymous 

    
Positive T, P, H 

91_2_231 Synonymous 
    

Positive 
 

91_2_448 Non-coding 
     

T 

91_2_479 Non-coding 
    

Positive 
 

ACC-oxidase 
92_352

a
 Non-Synonymous 

    
Positive T, P, H 

92_630
a,b

 Non-coding 
  

SR 
 

Balancing 
 

sHsps 
110_1_293 Synonymous 

 
PIabs     

110_1_423 Non-Synonymous 
     

T, P, H 

PME 154_2_137
b
 Synonymous     T, P, H     SR 

OA – Outlier Analysis, PAA – Phenotypic Association Analysis, EAA – Environmental Association Analysis, 
SG - Stem Growth, FV/FM - maximum quantum efficiency of PSII, PIabs - performance index of PSII, PItot - total 
performance index of PSII, T - Temperature, P – Precipitation, H – Humidity, SR – Solar Radiation. 

a
 SNPs 

detected by at least two different methods; 
b
 SNPs detected in both saplings and adults.  
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Only two SNPs were identified by all the three approaches: IDH_1 and IDH_4 from the 

gene Isocitrate Dehydrogenase (IDH). The expression of this gene is induced by salt and 

drought stress (Liu et al. 2010; Leterrier et al. 2012), and high differentiation at this two 

SNPs has been detected in populations with different amount of precipitation in Germany 

(Seifert 2012). According to the outlier analysis, IDH_1 and IDH_4 are under positive 

selection and showed strong differences in allele frequencies in contrasting environments: 

allele C for IDH_1 and allele G for IDH_4 were more frequent in populations with drier 

conditions, higher maximum temperatures and higher number of summer and heat days. 

Additionally, for the phenotypic trait SG, those alleles conferred better performance to 

saplings under drought/calcareous conditions. This provides strong evidence for the 

involvement of genetic variability at gene isocitrate dehydrogenase in local adaptation of the 

studied populations of beech.  

Non-synonymous SNPs cause a change in the aminoacid and thus, a change in the 

protein sequence, causing a direct effect on the phenotype. Therefore, they are considered the 

most likely target of natural selection. In this study, not only non-synonymous SNPs showed 

evidence of being under selection, but also synonymous SNPs as well as SNPs in non-coding 

regions were also identified (Table 6-1). Synonymous SNPs affect mRNA splicing, stability 

and translation kinetics (Pagani et al. 2005; Chamary et al. 2006; Komar 2007), and SNPs in 

non-coding regions are responsible for temporal and spatial regulation of gene expression 

(Barrett et al. 2012). Consequently, synonymous SNPs and non-coding SNPs could also 

represent adaptive genetic variation.  

Genes with SNPs showing evidence of selection included a wide range of cellular 

functions, including oxidoreductases, hydrolases, oxidases, transferases, transporters, 

chaperones and transcription factors. This is expected since many traits in plants are 

polygenic, involving complex interactions among several genes (Ingvarsson & Street 2011). 

Besides, several SNPs at the same gene were identified by at least one of the approaches, and 

should not be disregarded for further investigation by using, for example, haplotypes, which 

can have a substantial advantage over single SNP analysis for the detection of adaptive 

genetic variation (Balding 2006).  
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Conclusions and perspectives 

By using three different approaches, this study provided insights into the genetic adaptation 

potential of European beech to climate change as well as the genetic basis of climate change 

related traits. 

The evaluation of phenotypic traits in the drought experiment carried out on the 

saplings showed that populations from xeric environments where less sensitive to drought. 

SNPs in candidate genes were found to be associated with the traits evaluated, and clearly 

some genotypes performed better than others. Additionally, SNPs associated with 

environmental variables were detected, and the allele frequencies at those SNPs differed 

between populations from contrasting environments. The outlier analysis indicated that most 

of those SNPs are under positive selection. 

Among the SNPs detected, strong evidence indicated that the IDH_1 and IDH_4 SNPs 

from the Isocitrate Dehydrogenase gene are very likely subjected to selection, since alleles at 

this SNPs had higher frequency in populations in dry environments and conferred better 

performance to saplings in the drought treatment. However, since many traits in plants 

involve the interaction among several genes (Ingvarsson & Street 2011), SNPs in other genes 

should not be disregarded, as further research in different populations or using different 

analyses incorporating haplotypes or epistatic interactions (e.g., Csilléry et al. 2014) could 

prove their participation in adaptation to climate change conditions.  

In this study, a candidate gene approach was used to investigate adaptive genetic 

variation in beech. The advantages of this approach is that it provides a direct link to 

particular genes, and thus, they are less demanding in terms of the number of markers 

required (Franks & Hoffmann 2012). Nevertheless, they are limited to the genes selected, 

overlooking important genetic variation at other genes that could be of relevance or 

unidentified genes. On the other hand, GWAS allow the identification of adaptive variation 

throughout the genome regardless of whether the function of the genes is previously known; 

however, they have lower statistical power (Korte & Farlow 2013). Besides, GWAS are only 

possible for species with reference genome available, something that is difficult to find for 

forest trees. This study demonstrated that candidate gene approaches are suitable for the 

study of genetic adaptive variability in forest trees, and provided insights into the genetic 

basis of adaptation to climate change in F. sylvatica.  
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Summary 
 

European beech (Fagus sylvatica) is one of the most important forest tree species in Europe 

and could be affected by climate change. Climate change scenarios for Switzerland predict 

less precipitation, higher annual mean temperatures and more frequent droughts during 

summer that could affect beech survival. Additionally, increasing temperatures could 

promote earlier flushing in spring and later bud set in autumn, potentially increasing the risk 

of frost damage. Consequently, the genetic adaptation potential of European beech to climate 

change is of great interest. 

The main objective of this study was to investigate the genetic basis of adaptation of 

European beech to climate change using a candidate gene approach. For this purpose, beech 

populations along precipitation gradients in Switzerland were selected. Samples of adult trees 

and saplings were collected, and the saplings were additionally subjected to a controlled 

drought stress experiment. Results of the drought stress experiment revealed that important 

climate related traits such as bud burst, chlorophyll fluorescence and stem growth of the 

saplings were negatively affected by drought conditions. However, saplings from xeric 

populations were less sensitive to drought conditions. 

All individuals were genotyped for 13 microsatellite (SSR) markers and 76 SNPs in 24 

climate-related candidate genes. Analyses of microsatellite and SNP markers demonstrated 

that the investigated populations have high genetic variability and low but significant 

population differentiation. Additionally, no significant differences in genetic variability were 

detected between saplings and adults. High genetic variability is important for a species to be 

able to adapt to environmental changes. Thus, to evaluate the adaptive genetic variability of 

European beech, three different approaches were used. First, outlier analysis revealed three 

outlier SSRs and three outlier SNPs that are potentially under positive or balancing selection. 

Second, a phenotypic association analysis revealed seven SNPs significantly associated with 

chlorophyll fluorescence and stem growth traits. The phenotypic variation explained by the 

significant associated SNPs was relatively high (4.1 ≤ R
2
 ≤ 13.4) compared to other studies. 

Third, an environmental association analysis revealed 24 SNPs significantly associated with 

environmental variables such as precipitation, temperature and aridity. In total, 9 potentially 

adaptive SNPs in seven candidate genes were simultaneously identified by two or three of the 

approaches used; these SNPs might have the highest probability of being involved in 

adaptation to drought conditions. Two of the identified SNPs are non-synonymous, four are 
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synonymous and two are non-coding SNPs. Although synonymous and non-coding SNPs are 

traditionally thought to be neutral, they are involved in the regulation of gene expression and 

thus, can represent adaptive genetic variation.  

Candidate gene approaches are limited by the selected genes and may ignore other 

genes that could be of relevance. However, for organisms for which there is no reference 

genome as is the case of European beech, candidate gene approaches are an excellent 

alternative for the study of genetic adaptive variation. The results obtained in this study 

contribute to a better understanding of the genetic adaptive potential of European beech to 

climate change and may improve the development of scientific guidelines for the sustainable 

management and the conservation of this important species. 

 

  



 125 

Zusammenfassung 
 

Die Rotbuche (Fagus sylvatica) ist eine der wichtigsten Laubbaumarten in Europa. 

Klimawandelmodelle sagen für die Schweiz geringere Niederschläge, eine höhere mittlere 

Jahrestemperatur und häufigere Trockenheitsereignisse während des Sommers voraus. 

Weiterhin können steigende Temperaturen zu einem früheren Blattaustrieb im Frühling und 

zu einer späteren Knospenbildung im Herbst führen, was zu einem erhöhten Risiko von 

Frostschäden führt. Diese veränderten Umweltfaktoren können das Wachstum und das 

Überleben der Rotbuche negativ beeinflussen. Daraus folgend, ist das genetische 

Adaptationspotential der Rotbuche in Bezug auf den Klimawandel von höchstem Interesse. 

In dieser Studie wurde hauptsächlich die genetische Basis der Adaptation der Rotbuche 

an den Klimawandel mithilfe von Kandidatengenen untersucht. Dazu wurden 

Rotbuchenpopulationen entlang eines Niederschlagsgradienten in der Schweiz ausgesucht. In 

diesen Populationen wurde Blattmaterial von ausgewachsenen Bäume und von Keimlingen 

gesammelt. Die Keimlinge wurden zusätzlich für ein kontrolliertes Trockenstressexperiment 

genutzt. Die Ergebnisse des Trockenstressexperiments zeigten, dass wichtige klimarelevante 

Merkmale wie Knospensprung, Chlorophyllfluoreszenz und Stammwachstum der Keimlinge 

durch trockene Bedingungen negativ beeinflusst werden. Obwohl die Keimlinge von 

trockenen Populationen weniger sensitiv zu trockenen Bedingungen waren. 

Alle Individuen wurden mit 13 Mikrosatellitenmarkern (SSR) und 76 SNPs in 24 

klimaassoziierten Genen genotypisiert. Die Ergebnisse der Mikrosatelliten und SNP-

Analysen zeigten eine hohe genetische Variabilität innerhalb, und eine geringe signifikante 

Differenzierung zwischen den untersuchten Populationen. Signifikante Unterschiede 

zwischen den ausgewachsenen Bäumen und Keimlingen konnte nicht gefunden werden. 

Hohe genetische Variabilität ist für eine Art wichtig um sich an Umweltveränderungen 

anpassen zu können. Daher wurden in dieser Studie drei Ansätze genutzt um die adaptive 

genetische Variabilität der Rotbuche zu untersuchen. Erstens, die Analyse von Ausreißern 

zeigte jeweils drei Ausreißer mit SSR-Markern und mit SNP-Markern, die potentiell unter 

positiver oder balancierter Selektion sind. Zweitens, bei einer Phänotyp-Assoziationsanalyse 

wurden sieben SNPs gefunden, die signifikant mit Chlorophyllfluoreszenz- und 

Stammzuwachs-Merkmalen assoziiert sind. Die phänotypische Variation, die durch die 

signifikant assoziierten SNPs erklärt wurde, war im Vergleich zu anderen Studien hoch (4.1 ≤ 

R
2
 ≤ 13.4). Drittens, die Umweltassoziationsanalyse fand 24 SNPs, die signifikant mit 

Umweltfaktoren wie Niederschlag, Temperatur und Trockenheit assoziiert sind. Insgesamt 
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wurden neun potentiell adaptive SNPs in sieben Kandidatengenen gleichzeitig bei zwei oder 

drei der durchgeführten Ansätze identifiziert. Die Wahrscheinlichkeit bei der Adaptation an 

trockene Bedingungen involviert zu sein, ist für diese acht SNPs am höchsten. Zwei der neun 

identifizierten SNPs sind nicht-synonym, vier sind synonym und zwei sind nicht nicht-

codierend. Obwohl synonyme und nicht-codierende SNPs traditionell als neutral angesehen 

werden, können sie in der Regulation von Genexpression involviert sein und daher adaptive 

genetische Variation repräsentieren. 

Limitierend bei der Untersuchung von Kandidatengenen, ist die begrenzte Anzahl der 

selektierten und analysierten Gene und dabei das Ignorieren von anderen möglicherweise 

relevanter Gene. Jedoch bei Organismen, wie die Rotbuche, ohne verfügbares 

Referenzgenom, ist der Ansatz der Kandidatengenanalyse eine exzellente Alternative für die 

Untersuchung von genetischer adaptiver Variation. Die Ergebnisse dieser Studie können eine 

Hilfestellung sein, das genetische adaptive Potential der Rotbuche in Bezug auf den 

Klimawandel besser zu verstehen. Weiterhin können die erlangten Erkenntnisse zur 

Verbesserung von wissenschaftlichen Richtlinien zur nachhaltigen Bewirtschaftung und zum 

Schutz dieser wichtigen Baumart beitragen.  
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