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Summary 

Vascular epiphytes are non-parasitic plants that germinate and grow on trees without contact to 

the soil. Their arboreal life style implies a strong dependence on forest structure and dynamics. 

Tree architectures change constantly during ontogeny, and large and old branches of the inner 

crowns are generally more suitable for epiphyte colonization and survival than small branches of 

the outer crowns. In addition, microclimatic conditions within canopies, such as light, temperature 

or humidity, are directly influenced by forest structure. While the influence of such gradients 

within trees and forests on the vertical distribution of epiphyte species is undisputed, our 

understanding of the relationship between epiphyte distribution and functional traits is limited. 

Moreover, a causal relationship between the dynamics of trees and forests and the dynamics of 

epiphyte assemblages is obvious, but our quantitative knowledge on this topic is strikingly scarce. 

In this thesis, I provide a detailed analysis of how forest structure and dynamics influence the 

structure and dynamics of epiphyte assemblages and their functional traits via both field studies 

(chapters 2 and 3) and modelling studies (chapters 4 and 5). 

In chapter 2, I analyzed vertical gradients of ten leaf traits based on leaf samples of > 1100 

individuals belonging to 83 epiphyte species in a Panamanian lowland forest. I found that 

community mean trait values of many leaf traits were significantly correlated with height above 

ground. Trait-height correlations were particularly strong for specific leaf area (SLA), leaf 

thickness, leaf chlorophyll concentration and carbon isotope ratio. Both linear and non-linear 

trends were observed, and while the leaf thickness, for instance, increased linearly, the SLA 

decreased non-linearly with height. Furthermore, intraspecific trait variability was pronounced 

and accounted for one-third of total observed trait variance. Intraspecific trait adjustments along 

the vertical gradient were common and seventy per cent of all species showed significant trait–

height relationships. In addition, intraspecific trait variability was positively correlated with the 

vertical range occupied by species; however, this correlation was rather weak. I also observed 

significant trait differences between major taxonomic groups (orchids, ferns, aroids, bromeliads) 

that were linked to their vertical distributions. Orchids, for instance, had on average the thickest 

leaves and lowest SLA values, while in ferns the leaf dry matter content was almost twofold 

higher than in the other taxonomic groups. My study represents the most comprehensive study on 

vertical trait gradients of vascular epiphytes to date and demonstrates that leaf trait syndromes 

and intraspecific trait variability play important roles in explaining the vertical zonation of 

vascular epiphyte species and taxonomic groups. 



Summary 

xii 
 

In chapter 3, I addressed the role of forest dynamics on community structure and mortality 

patterns of epiphyte assemblages by exploring the forest floor as source of information. To this 

end, I surveyed fallen branches and epiphytes in 96 transects in rainforests in Brazil and Panama. 

I found that trends in epiphyte abundance, richness and composition over branch diameter on the 

forest floor reflected trends in the forest canopy. This finding suggests that forest floor surveys 

provide useful demographic information, particularly on epiphytes occurring on the thinnest 

branches which are least accessible with the most common techniques to access the forest canopy. 

Furthermore, the density of epiphytes on the forest floor was high, and I estimated mortality rates 

of at least 4% per year at the community level, and of ~13% per year when considering epiphytes 

on branches < 10 cm in diameter. The results of this study highlight the importance of tree and 

forest dynamics for the demography of vascular epiphytes. 

In chapter 4, I developed a dynamic forest stand model in which trees are represented by their 

three-dimensional (3D) structure. In this model, tree species were characterized by a set of leaf 

traits under consideration of trade-offs and correlations among traits. Applying the principles of 

the pipe model theory, these leaf trait trade-offs were scaled to whole-tree growth. This approach 

reproduced fundamental life history variation between different functional tree groups with regard 

to their growth, survival, and light demand. For instance, species with high SLA values had high 

initial growth rates, but lower maximum heights and shorter life spans, i.e. characteristics 

associated with pioneer species. Tree growth patterns in my model were largely consistent with 

observations and support the notion that the growth-survival trade-off across tropical tree species 

is, at least partly, determined by leaf traits. Furthermore, I coupled the trait-based tree model with 

a forest stand model which simulates key demographic processes and integrates between-tree 

competition. This stand model successfully reproduced a number of important ecological patterns. 

A dynamic equilibrium state was reached after ~ 100 years, and in this equilibrium twelve 

important forest attributes (e.g. above-ground biomass, basal area, stem number, net-primary 

production or leaf area index) were within typical ranges of Neotropical lowland forests. 

Moreover, complex patterns like the vertical leaf area density or the diameter-height relationship 

closely matched observations, indicating that a structurally realistic forest can be simulated with 

my model. To my knowledge, the presented modelling approach allowing detailed 3D long-term 

simulations of forest dynamics is unique and paves the way for further model-based analyses of 

forest dynamics, or model-based studies of canopy-dwelling organisms requiring a detailed 

representation of forest structures and their dynamics. 

In chapter 5, I developed the first mechanistic model for epiphytes which explicitly simulates 

population dynamics while being coupled with a structurally-realistic forest model. This epiphyte 

model is three-dimensional, spatially-explicit, and trait- and individual-based. After the model 

was validated by comparing model results with field data, I used simulation experiments to assess 
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how differences in natural forest dynamics, logging strategies, and the size of forest patches 

influenced the long-term dynamics of epiphyte assemblages. Tree turnover rates in natural 

tropical rainforest typically vary between 1% and 3% per year, and such variations had a marked 

impact on epiphyte assemblages, i.e. forests with low tree turnover rates had considerably lower 

extinction rates and higher epiphyte abundances. It has been observed that even in mature forests 

with low tree turnover rates, epiphyte assemblages show no sign of saturation, and my simulations 

demonstrated that the saturation level was clearly influenced by forest dynamics. Furthermore, 

logging had the hypothesized negative effect on epiphyte diversity and abundance. Strikingly, a 

slight reduction in size of logged trees from 45 to 40 cm in diameter at breast height had a 

catastrophic effect on epiphyte assemblages and resulted in nearly complete extinction. In 

contrast, epiphyte extinction rates decreased with increasing forest patch sizes. The coupled 

epiphyte-forest model presented in this study provided valuable insights on how forests stand 

parameters influence epiphyte assemblages and has the potential to address pending question in 

the field of epiphyte ecology and conservation in future studies. 

In summary, the findings of my thesis represent a major advance towards a better understanding 

of the relationship between forest structure and dynamics and (trait) structure and dynamics of 

epiphyte communities. My thesis constitutes the most comprehensive study on the community 

trait structure of vascular epiphytes to date and introduced complex mechanistic models to the 

field of epiphyte ecology. The modelling approaches open new avenues for future studies of 

spatial and temporal dynamics of vascular epiphyte assemblages while integrating epiphyte 

research in a more theoretical context. 
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1 Introduction 

The epiphytic life style 

Vascular epiphytes are non-parasitic plants that germinate and grow on other plants without 

contact to the soil (Zotz 2013). Their arboreal life allows them to reach the well-illuminated upper 

strata of forests without substantial investments in plant structure (Benzing 1990). However, 

being isolated from terrestrial soils, epiphytes have to cope with a low and irregular supply of 

water and nutrients from atmospheric inputs, litter or canopy soils (Benzing 1990; Wania, Hietz 

& Wanek 2002). Particularly water availability is a key factor in epiphytic habitats, and diversity 

and abundance generally increases strongly with precipitation and humidity (Gentry & Dodson 

1987; Kreft et al. 2004; Ding et al. 2016). 

Epiphytes are a conspicuous and important component of rain forests in the tropics and subtropics 

(Schimper 1888; Gentry & Dodson 1987; Benzing 1990). In fact, in wet montane forests their 

species number can even exceed that of non-epiphytic species (Foster 2001; Kelly et al. 2004). In 

a Peruvian cloud forest, a single tree hosted the remarkable number of 190 epiphyte species 

(Catchpole & Kirkpatrick 2010). However, their distribution is not restricted to low-latitude 

regions, and some temperate forests in both the northern and southern hemisphere also harbor 

rich epiphyte floras (Zotz 2005; Burns & Dawson 2005). 

With more than 27,000 described species, vascular epiphytes represent ~9% of the world´s 

vascular plant diversity (Zotz 2013). This plant group is taxonomically diverse and 913 genera in 

73 families have epiphytic members (Zotz 2013). However, epiphyte species are not evenly 

distributed among taxa. Orchids are by far the largest group accounting for ~68% of all epiphytes, 

but ferns and fern allies (~10%) as well as bromeliads (~6%) are also important. These structurally 

dependent plants do not only contribute to local diversity, they can also have a positive effect on 

forest ecosystem processes by modifying micro-environmental conditions (Stanton et al. 2014). 

In addition, epiphyte associations with fauna are not uncommon. For example, the tanks of 

bromeliads can provide microhabitats for a number of invertebrates and amphibians (Stuntz et al. 

2002; Yanoviak, Nadkarni & Solano J. 2007). In spite of their importance, many aspects of 

epiphyte ecology are still not well studied, particularly when compared to other plant groups 

(Kitching 2006; Mendieta-Leiva & Zotz 2015). While there are numerous works on distribution 

and floristic composition of epiphytes, studies in the field of trait-based ecology are rare. Our 

knowledge on structure and dynamics of epiphyte populations and assemblages is similarly 

limited (Mendieta-Leiva & Zotz 2015).  
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Spatial structure of epiphyte assemblages 

The non-random spatial distribution of epiphyte species within forest stands and on individual 

trees is a striking characteristic of epiphyte assemblages, and usually a pronounced vertical 

stratification is observed (Schimper 1888; Zotz 2007; Zotz & Schultz 2008). Some filmy fern 

species are almost exclusively found at the lower trunk bases (Krömer & Kessler 2006), others 

such as tiny twig epiphytes predominantly occupy the outer crowns (Chase 1987), but the majority 

of species colonizes vertical ranges of different extension between these extremes (Krömer, 

Kessler & Gradstein 2007). Within-tree distribution of substrate and microclimatic conditions are 

considered as main reason for the spatial structure of epiphyte assemblages (Benzing 1990; Zotz 

2007). In fact, conditions vary widely from the humid and shady lower trunks, which are available 

for colonization over longer time periods, to the well-illuminated, drier and highly dynamic outer 

crowns. Such heterogeneity in conditions is reflected in the epiphyte assemblage by the presence 

of a large number of ecologically and functionally diverse species. 

Functional diversity can be assessed by investigating functional traits, which are characteristics 

of plants that affect their growth, reproduction and survival (Violle et al. 2007). Therefore, a 

correlation between functional traits and the vertical position of epiphytes can be assumed. Few 

studies addressed this topic and compared epiphytes from distinct pre-defined zones within trees 

(Andrade & Nobel 1997; Hietz & Briones 1998) or within the forest (Mantovani 1999; Stuntz & 

Zotz 2001). Stuntz & Zotz (2001), for instance, observed that epiphytes in the forest canopy had 

lower specific leaf areas (SLA) but higher photosynthetic capacities compared to understory 

epiphytes. Likewise, Hietz & Briones (2001) observed a correlation between the leaf nitrogen 

content and the position in the tree crown. These studies indicate that some traits are indeed related 

to their vertical position, however, Zotz (2007) pointed out that height above ground might be 

more suitable to approximate the environmental gradients within forests than pre-defined zones. 

Accordingly, not only trait differences between different zones but vertical trait gradients can be 

expected. To our knowledge, only a single study has analyzed the trait-height relationships for 

epiphytes so far, finding a significant linear decrease in SLA with height (Cavaleri et al. 2010). 

However, this correlation was weaker than that in other plant groups included in the same study. 

As this study focused on a single trait and did not include epiphytes from important taxonomic 

groups such as orchids or bromeliads, many aspects of the vertical trait distribution of epiphytes 

are thus still largely unexplored and unknown. Studies on soil-rooted plants, for instance, also 

highlighted the importance of intraspecific trait variability (Albert et al. 2010b, 2012; Bolnick et 

al. 2011). High intraspecific trait variability might be associated with a large ecological breadth 

or ecological generalism in plants (van Valen 1965; Sides et al. 2014). For epiphytes, high 

intraspecific trait variability may thus enable a high vertical range within forests, but this remains 
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to be adequately addressed. Hence, there are a number of open questions in the field of trait-based 

ecology of vascular epiphytes which warrant more attention. 

 

Influence of forest dynamics on epiphyte dynamics 

Forest structure and dynamics not only influence the spatial structure and trait distribution of 

epiphyte assemblages, but also their dynamics (Zotz, Bermejo & Dietz 1999). Each tree is a living 

organism whose architecture experiences substantial modification during ontogeny, as new 

structural biomass is continuously generated by growth processes, but also lost via branch 

shedding (Hallé, Oldeman & Tomlinson 1978; Barthélémy & Caraglio 2007). Small trees in the 

understory of tropical forests are usually characterized by slender trunks and few horizontal 

branches which are shed frequently (Millington & Chaney 1973; Addicott 1991; Alves & Santos 

2002). Such trees are poor phorophytes (i.e. host trees) and thus often free of epiphytes (Taylor 

& Burns 2015). Large trees, in contrast, provide greater substrate areas that are available for 

colonization for a longer period, and epiphyte richness and abundance thus generally increases 

with tree size (Laube & Zotz 2006; Taylor & Burns 2015). However, each branch and tree 

eventually falls (Meer et al. 1996), carrying their epiphytes with them to the forest floor. The 

survival of epiphytes on the forest floor is limited (Matelson, Nadkarni & Longino 1993) and 

successful reproduction is virtually impossible. Hence, these individual are lost from the 

community. In the studies by Hietz (1997) and by Zotz, Laube & Schmidt (2005), substrate failure 

was the single most common cause of epiphyte mortality, which emphasizes the importance of 

tree and forest dynamics for epiphyte dynamics. 

Quantitative studies on the dynamics of epiphyte assemblages are, however, rare. Apart from the 

study by Hietz (1997) who used repeated photographs to monitor epiphytes on branch sections, 

there are two studies that assessed temporal changes on certain host tree species (Socratea 

exorrhiza: Laube & Zotz 2006; Annona glabra: Zotz, Bermejo & Dietz, 1999), and two studies 

with repeated censuses at the plot scale (1 ha plot in Venezuela: Schmit-Neuerburg 2002; 0.4 ha 

plot in Panama: first census by Zotz & Schultz 2008; second census by G. Mendieta-Leiva, K. 

Wagner & G. Zotz, unpublished data). Interestingly, all these studies found increasing 

abundances, which suggests that epiphyte communities are unsaturated. However, Zotz & Schultz 

(2008) also reported that a single large tree hosted almost 15% of all epiphytes in their 0.4 ha plot; 

such trees disproportionately abundant with epiphytes will ultimately die and this leads to 

pronounced local losses of epiphytes. This suggests that tree turnover rates, which commonly 

vary between 1% and 3% per year in tropical rainforests when considering trees > 10 cm in DBH 

(Phillips 1996; Phillips et al. 2004b; Lewis et al. 2004b), should be important determinants of 

local epiphyte abundance and diversity in addition to water-related climatic variables (e.g. Kreft 
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et al. 2004; Ding et al. 2016). Moreover, an alarming increase in tree turnover rates in tropical 

forests over the last decades has been observed (Phillips 1996; Lewis et al. 2004b). Thus, there is 

an urgent need to improve our understanding of the influence of forest dynamics on epiphyte 

dynamics. Appropriate field studies, however, are tedious; forest canopy research requires labor-

intensive or costly techniques (e.g. rope-climbing, canopy cranes), which makes it difficult to 

gather information on community structure and dynamics. Therefore, complementary methods 

are urgently needed if we are to understand the dynamics of vascular epiphytes. 

 

Mechanistic models of epiphyte dynamics 

Mechanistic model approaches provide an opportunity to improve our knowledge on ecological 

systems in addition to field studies. They can help to disentangle complex interactions and to 

predict future changes (Wiegand et al. 2003; Purves & Pacala 2008). However, mechanistic 

models for epiphytes have not been developed so far, precluding any ecological modeling 

assessment for these important components of the world’s flora. Nevertheless, virtual forests, in 

which simulation experiments on epiphyte demography can be conducted, provide a promising 

starting point to include vascular epiphyte in the ecological modeling agenda.  

Among the available methods to generate virtual forests, functional-structural tree models 

(FSTMs) simulate the three-dimensional dynamics of plant structures and have attracted 

increasing attention in recent times (Barczi et al. 2008; DeJong et al. 2011). In these models, trees 

can be represented by a large number of individual branch segments, leaves or reproductive 

organs (Sterck et al. 2005; Barczi et al. 2008). By combining function and structure, FSTMs allow 

an integration of the main processes affecting tree growth, i.e. resource capture and within-tree 

allocation, at a high level of detail, for instance by simulating the interactions between leaf 

distribution and light conditions within individual trees (Sterck et al. 2005; Fourcaud et al. 2008). 

FSTMs have mainly been applied to simulate and analyze growth of individual trees (Perttunen, 

Sieva & Nikinmaa 1998; Sterck et al. 2005; Sterck & Schieving 2007), and only few attempts 

have been made to couple FSTMs with forest stand models (Feng et al. 2011; Guillemot et al. 

2014). In the latter cases, the forest models focused on even age-stands in single species systems 

over a limited time frame, but to our knowledge there is no long-term dynamic stand model based 

on FSTMs including all demographic processes. 

Three-dimensional dynamic stand models, which are able to reproduce detailed processes such as 

branch turnover or gap dynamics, could function as virtual laboratories for epiphytes 

communities. Simulation experiments going beyond the scope of field studies could be conducted, 

for instance by modelling epiphyte dynamics over several hundred years. Moreover, Mendieta-
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Leiva & Zotz (2015) mentioned that the study of the structure and dynamics of epiphyte 

assemblages lacks theory, and modelling studies have a great potential to advance this field of 

research. 

 

Study outline 

This thesis aims at improving our understanding of the trait-based ecology of vascular epiphytes 

and of how forest structure and dynamics influence the structure and dynamics of epiphyte 

assemblages. The specific objectives are to (1) analyze vertical trends of functional leaf traits of 

vascular epiphytes within forests and to assess the importance of intraspecific trait variability in 

epiphyte systems, (2) document epiphyte mortality as a function of branch or tree fall, (3) develop 

a detail three-dimensional forest model to simulate long-term forest dynamics, which can be 

coupled with a demographic epiphyte model to (4) assess how natural or human-induced 

differences in long-term forest dynamics affect the structure and dynamics of epiphyte 

assemblages. This thesis comprises field studies (chapters 2 and 3) and modelling studies 

(chapters 4 and 5). 

In chapter 2, I analyze trait-height relationships at the community and the species level for a 

number of leaf traits of vascular epiphytes. To this end, samples are collected along the vertical 

gradient in a Panamanian lowland forest using a canopy crane. I quantify the importance of 

intraspecific trait variability and investigate whether vertical ranges of species correlate with their 

trait variability. Moreover, I test if traits and trait syndromes differ among important taxonomic 

groups of epiphytes (bromeliads, orchids, aroids, ferns). 

In chapter 3, I address the role of the forest floor as source of information on epiphyte mortality 

and community structure. I compare patterns of fallen branches and epiphyte between two study 

sites and assess the impact of branch turnover on epiphyte mortality. 

In chapter 4, I develop a dynamic forest stand model in which each tree is represented by its three-

dimensional structure. This model is used to simulate the long-term forest dynamics (500-1000 

years) at the plot scale (~1 ha) at a high degree of detail. I characterize each tree by a set of leaf 

traits under consideration of between-trait trade-offs and correlations and hypothesize that this 

trait-based approach will reproduce life history variation between different functional groups with 

regard to their growth, survival, and light demand. I use multiple observed patterns at the tree and 

forest level to parameterize and validate the model. 
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In chapter 5, I couple the forest stand model with an individual-based model of vascular epiphytes 

and assess how (1) differences in natural forest dynamics, (2) selective logging and (3) the size 

of forest patches influence the long-term dynamics of epiphyte assemblages.  
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2.1 Summary 

1. Analyzing functional traits along environmental gradients can improve our understanding 

of the mechanisms structuring plant communities. Within forests, vertical gradients in 

light intensity, temperature and humidity are often pronounced. Vascular epiphytes are 

particularly suitable for studying the influence of these vertical gradients on functional 

traits because they lack contact with the soil and thus individual plants are entirely 

exposed to different environmental conditions, from the dark and humid understory to 

the sunny and dry outer canopy. 

2. In this study, we analyzed multiple aspects of the trait-based ecology of vascular 

epiphytes: shifts in trait values with height above ground (as a proxy for vertical 

environmental gradients) at community and species level, the importance of intra- vs. 

interspecific trait variability, and trait differences among taxonomic groups. We assessed 

ten leaf traits for 1,151 individuals belonging to 83 epiphyte species of all major 

taxonomic groups co-occurring in a Panamanian lowland forest. 

3. Community mean trait values of many leaf traits were strongly correlated with height and 

particularly specific leaf area and chlorophyll concentration showed non-linear, negative 

trends. 

4. Intraspecific trait variability was pronounced and accounted for one third of total 

observed trait variance. Intraspecific trait adjustments along the vertical gradient were 

common and seventy percent of all species showed significant trait-height relationships. 

In addition, intraspecific trait variability was positively correlated with the vertical range 

occupied by species. 

5. We observed significant trait differences between major taxonomic groups (orchids, 

ferns, aroids, bromeliads). In ferns, for instance, leaf dry matter content was almost 

twofold higher than in the other taxonomic groups. This indicates that some leaf traits are 

taxonomically conserved. 

6. Our study demonstrates that vertical environmental gradients strongly influence 

functional traits of vascular epiphytes. In order to understand community composition 

along such gradients, it is central to study several aspects of trait-based ecology, including 

both community and intraspecific trends of multiple traits.  
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2.2 Introduction 

Functional traits are measurable characteristics of individual plants impacting their growth, 

reproduction and survival (Violle et al. 2007). The analysis of functional traits along 

environmental gradients can help to unravel the mechanisms structuring plant communities 

(Wright et al. 2005b; Ackerly & Cornwell 2007). Significant shifts in community mean trait 

values, for instance, indicate trait-based environmental filtering (Díaz, Cabido & Casanoves 1998; 

Cornwell & Ackerly 2009). Interestingly, studies based on global trait datasets show that large-

scale changes in climatic conditions only explained a small proportion of observed variation in 

leaf traits, while trait variation among co-existing species within study plots was relatively high 

(Wright et al. 2004, 2005b). In fact, the environment at small scales can be very heterogeneous, 

promoting the occurrence of species with different traits and ecological strategies. Moreover, 

particularly in forests, environmental factors such as light intensity, temperature and humidity 

normally show marked vertical gradients. Such vertical gradients, in turn, have the potential to 

explain a substantial part of trait variations at plot scale, and it has been demonstrated that several 

leaf traits of trees change significantly along vertical light gradients (Rozendaal, Hurtado & 

Poorter 2006; Markesteijn, Poorter & Bongers 2007). 

Vascular holoepiphytes, plants growing non-parasitically on other plants without contact to the 

soil (Zotz 2013), are particularly suitable for studying the influence of vertical environmental 

gradients on functional traits, because individuals are entirely exposed to different environmental 

conditions from the dark and humid understory to the sunny and dry outer canopy. As the leaf 

weight ratio (leaf mass/total plant mass) is generally high in epiphytes (Zotz & Asshoff 2010), 

leaf traits should be pivotal to their performance. The frequently pronounced vertical stratification 

of epiphyte species has long been recognized (Schimper 1888; Krömer et al. 2007), but few 

studies have attempted to relate their vertical distribution to functional leaf traits. Most of these 

studies assessed differences between sun and shade plants (e.g. Mantovani 1999) or used 

predefined zones within forests or trees (e.g. Johansson zones; Johansson 1974) as surrogates for 

different environmental conditions (Andrade & Nobel 1997; Hietz & Briones 1998; Stuntz & 

Zotz 2001). Zotz (2007) pointed out that height above ground might be more suitable to 

approximate the environmental gradients within forests than predefined zones. To our knowledge, 

only a single study related height above ground to leaf traits of vascular epiphytes (Cavaleri et al. 

2010). However, as this study focused on leaf mass per area (LMA) and did not include epiphytes 

from important taxonomic groups like orchids or bromeliads, many aspects of the vertical leaf 

trait distribution of epiphytes are still largely unexplored. 

Along vertical environmental gradients, shifts in community mean trait values of functionally 

important leaf traits can be expected. An increase in specific leaf area (SLA=LMA-1), for instance, 

increases the light-capture efficiency, which is advantageous under low-light conditions in the 
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understory (Wright et al. 2004). In contrast, an increase in leaf thickness can prevent overheating 

and minimize transpiration losses, which is favorable under drier und sunnier conditions in the 

canopy (Cornelissen et al. 2003; Rozendaal et al. 2006). Such shifts in community trait means 

might be caused by replacement of species with unsuitable traits. However, recent studies have 

also highlighted that intraspecific trait variability can be quite substantial and that individuals 

within species can adjust their traits in response to the environment (Bolnick et al. 2011; de Bello 

et al. 2011; Kichenin et al. 2013). Additionally, high intraspecific trait variability might be 

associated with a large ecological breadth or ecological generalism, possibly increasing the 

vertical range of epiphytes within forests (van Valen 1965; Sides et al. 2014). 

Vascular epiphytes are a taxonomically diverse group. Orchids account for 68% of all epiphyte 

species, but ferns and lycophytes, bromeliads and aroids are also prominent taxa (Zotz 2013). It 

is generally assumed that traits are taxonomically conserved and, consequently, trait differences 

between taxonomic groups can be expected. Moreover, epiphyte taxa independently evolved a 

variety of different morphological and physiological characteristics (e.g. velamen radicum, 

phytotelmata, specialized trichomes) to cope with nutrient and water limitation (Benzing 1990). 

Such between-taxon differences might affect the response of leaf traits to environmental 

conditions. 

To analyze the multiple aspects of trait-based ecology along vertical environmental gradients, we 

studied ten leaf traits for 1,151 individuals of 83 epiphyte species of all major taxonomic groups 

co-occurring in a Panamanian lowland forest. We tested the following hypotheses: (H1) trait 

means and trait syndromes change with height at the community level; (H2) variations in trait-

height relationships among species influence community trait structure; (H3) vertical ranges of 

epiphyte species correlate with their intraspecific trait variability; (H4) trait means, trait 

syndromes and trait-height relationships differ among taxonomic groups.

 

2.3 Materials and methods 

Study site 

This study was conducted at the San Lorenzo Canopy Crane Site at the Atlantic coast of Panama 

(9°17' N, 79°58' W, 130 m a.s.l.; Wright et al. 2003). Mean annual precipitation in this old-growth 

lowland tropical rainforest is around 3,100 mm, with a pronounced dry season from January to 

March. Canopy height is variable and emergent trees reach maximum heights of ca. 45 m. The 

use of a gondola attached to a construction crane allowed access to all strata of the forest within 

an area of ca. 0.9 ha. A comprehensive census of the vascular epiphyte flora at the study site was 

conducted in 2010 - 2012 and yielded > 22,000 individuals of > 100 species  (Glenda Mendieta-

Leiva & Gerhard Zotz, unpublished data; see Zotz & Schultz 2008 for methodology).  
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Among vertical environmental gradients, the light gradient is considered as most influential on 

leaf traits (e.g. Poorter 1999; Markesteijn, Poorter & Bongers 2007). Changes in light intensity 

with height above ground were measured in situ with light intensity loggers (HOBO UA-002–64; 

Onset Computer Corporation, Cape Cod, USA; for more details see Fig. A.1 in Appendix). 

 

Leaf traits 

As we focused on multiple aspects of trait-based ecology (e.g. community and intraspecific 

trends), we applied a two-tiered sampling strategy. First, we randomly sampled epiphytes along 

the vertical gradient within the entire area accessible by crane to represent the epiphyte 

community. Second, for species which were quite frequent in the study area (based on the census), 

but underrepresented in our sample, we additionally increased the sample size to n=10, which we 

regarded as minimum to analyze intraspecific trends. However, this applied to only few species 

and thus should not bias community trends. 

We collected one leaf per epiphyte for 1,151 individuals belonging to 83 species (51 species ≥ 10 

samples) in 15 plant families (Table A.1). For each sampled individual, height above ground was 

recorded. We sampled adults and juveniles, but not seedlings. The juvenile phase can last several 

years in epiphytes, and by sampling these individuals, we were able to include more species in 

our analysis. However, we note that including juveniles can lead to increased intraspecific trait 

variability (~25% of all individuals were juveniles; ~60% of all species included juveniles). We 

aimed at sampling the youngest, fully expanded leaves, without signs of herbivory or infections. 

The taxonomic nomenclature used in the present paper follows The Plant List (2014; 

http://www.theplantlist.org/). 

For each sample, we determined specific leaf area (SLA = leaf area / dry weight; mm2 mg-1), leaf 

dry matter content (LDMC = dry weight / fresh weight; g g-1), leaf lamina thickness (Thickness; 

mm), leaf water content on an area basis (LWCarea = (fresh weight – dry weight) / leaf area; g 

H2O m-2), as well as leaf chlorophyll concentration on an area basis (Chlarea; μg cm-2) and on a 

mass basis (Chlmass; mg g-1). Chlorophyll concentration was estimated by measuring red/infrared 

absorbance in the field with a SPAD-502 chlorophyll meter (Spectrum Technologies, Plainfield, 

USA). SPAD measurements were converted into chlorophyll concentrations using the general 

relationship from Coste et al. (2010). Collected leaves were re-watered with deionized water for 

> 6h before taking additional measurements. Leaf thickness was measured with a caliper 

(precision: 0.05 mm). Each leaf was photographed and leaf area was determined in Adobe 

Photoshop 6.0 (Adobe Systems, San Jose, USA). Leaves were weighed to obtain fresh weight 

(balance: A&D GR-202; A&D Company, Tokyo, Japan; precision: 0.1 mg), oven dried at 70 °C 

for 48 h, and re-weighed to obtain dry weight. 
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Additionally, for a sub-sample (224 individuals of 61 species), leaf nitrogen concentration on both 

mass (Nmass; mg g-1) and area basis (Narea; g m-2), as well as nitrogen isotope (δ15N; ‰) and carbon 

isotope ratios (δ13C; ‰) were determined after homogenization of the dried samples in a ball mill 

by elemental analyzer-isotope ratio mass spectrometry (Delta PLUS; Thermo Electron, Bremen, 

Germany). As universal standards, atmospheric air was used for 15N and the Vienna Pee Dee 

Belemnite for 13C. In the following, we will refer to the traits of this sub-sample as nitrogen-

carbon (NC) traits. 

 

Data analyses 

Analyses were done in R 3.0.1 (R Development Core Team 2013). Analyses for each hypothesis 

are described separately in the following. 

 

H1 - Trait means and trait syndromes change with height at the community level 

We used simple linear models (LMs) to analyze the relationship between leaf traits and height. 

To test for non-linearity, simple LMs (trait ~ height) and LMs including a quadratic term (trait ~ 

height + height2) were fitted and compared using the Akaike Information Criterion (AIC). 

Choosing a conservative approach, we selected the non-linear model as minimal adequate model 

(MAM) if it received higher model support by ΔAIC>10 (Burnham & Anderson 2004). For each 

trait, LMs were applied to the entire dataset consisting of all sampled individuals, as well as to 

community trait means calculated for all 1-m height intervals. CAM species, defined by δ13C 

values > -20 ‰ (compare Zotz 2004), were excluded from analysis of vertical trends in δ13C. To 

check for potential sampling bias, we took advantage of a rare feature - the information about the 

vertical position and species identity of all >22,000 individuals in the epiphyte community 

(Glenda Mendieta-Leiva & Gerhard Zotz, unpublished data). We used this information in 

combination with intraspecific trait-height relationships (see H2) to additionally predict 

community trends when considering the entire community (for details see Fig. A.2). Qualitative 

comparisons with the community trends based on sampled individuals were used to detect 

sampling bias in observed trends. 

To assess how trait syndromes (i.e. combinations of multiple traits of individuals) are influenced 

by their vertical position, we first conducted a principal component analysis (PCA; R package 

‘vegan’) based on the normalized and centered trait data of the extensively sampled traits. Some 

leaf traits covaried strongly (pairwise correlations between all traits were assessed by Pearson’s 

correlation coefficient), and the PCA reduced correlated traits to independent components. 
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Subsequently, LMs using the PCA scores of the first two PCA axes as dependent variables and 

height as independent variable were applied.  

 

H2 - Variations in trait-height relationships among species influence community trait 

structure 

We analyzed the influence of variations in trait-height relationships among species on community 

trait structure by comparing LMs with different fixed effects (trait ~ fixed effects: height x species, 

height + species, height, species) based on AIC values. Simpler LMs with fewer fixed effects and 

no interactions were selected as MAM when ΔAIC≤10 (Burnham & Anderson 2004). When the 

MAM included the interaction of height and species, the community trait structure was 

significantly influenced by differences in mean trait values and differences in trait responses to 

height among species. If the MAM included species as fixed effect but no interaction, only 

differences in mean trait values among species were significant. 

Additionally, to assess the importance of intraspecific trait responses for each trait, we classified 

species based on the significance of their trait-height relationship (non-significant slopes, 

significant positive, or negative slopes; P<0.05). We only used species with ≥ 10 records per trait 

for these analyses (n=51), which excluded the NC traits.  

 

H3 - Vertical ranges of epiphyte species correlate with their intraspecific trait variability 

To assess the general importance of intraspecific trait variability, we first carried out variance 

component analyses (R package ‘varcomp’), which partition observed trait variability into within-

species (intraspecific) and between-species (interspecific) components (Messier, McGill & 

Lechowicz 2010). Subsequently, we calculated two measures of trait variability for each species: 

the coefficient of variation (CV) and the trait range (TR: absolute difference between maximum 

and minimum trait value divided by the maximum, given in %). The relationship between these 

measures of intraspecific trait variability and species’ vertical ranges was analyzed with LMs 

(vertical range ~ trait variability), whereby the vertical range for each species was estimated based 

on its maximum and minimum height observed in the census.  
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H4 - Trait means, trait syndromes and trait-height relationships differ among taxonomic 

groups  

Differences in trait means among the major taxonomic groups (aroids, bromeliads, orchids, ferns; 

Table 2.1), based on trait means of associated species, were compared using max-t tests for 

multiple comparisons that account for unbalanced group sizes, non-normality and 

heteroscedasticity (R packages ‘multcomp‘ and ‘sandwich‘; see Herberich, Sikorski & Hothorn 

2010). 

Differences in trait syndromes among the taxonomic groups were tested using a permutational 

multivariate analysis of variance (PERMANOVA, adonis from ‘vegan’ R package; Anderson 

2001). Additionally, we used the PCA results to visualize differences among taxonomic groups. 

Differences in trait-height relationships among the taxonomic groups were analyzed using 

generalized linear mixed models (see Fig. A.3 and Table A.2 for details). 

 

2.4 Results 

H1 - Trait means and trait syndromes change with height at the community level 

All leaf traits were significantly correlated with height (P<0.05, Fig. 2.1, Table A.3). The 

strongest correlations between community trait means (for 1-m height intervals) and height were 

observed for SLA (R2=0.89), Chlmass (R2=0.76), leaf thickness (R2=0.72), δ13C (R2=0.66) and 

LWCarea (R2=0.64). Trait-height correlations were generally much weaker when, instead of 

community means, traits of all sampled individuals were used as response variable: in this case 

only δ13C (R2=0.35), SLA (R2=0.30) and Chlmass (R2=0.16) were moderately correlated with 

height (Fig. 2.1). While SLA, Chlmass and Nmass showed decreasing, non-linear trends with height, 

leaf thickness, LWCarea and δ13C showed positive linear trends with height (Fig. 2.1). LDMC and 

δ15N showed slightly negative trends, but rather weak correlations. Observed community trends 

were largely consistent with those considering the entire censused community, indicating no 

substantial sampling bias (compare Figs. 2.1 and A.2, as well as Table A.3 and A.4). 

Many traits covaried significantly (Table A.5; P<0.05), for instance leaf thickness and LWCarea 

(r=0.84), Chlmass and Nmass (r=0.67), as well as SLA and Chlmass (r=0.64). The first two PCA axes 

explained 45% and 25%, respectively, of variation in leaf traits. Height explained 16% of 

variation along the first axis and 7% along the second axis (P<0.001).  
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Figure 2.1. Trait-height relationships of vascular epiphytes for ten leaf traits: (a) SLA: specific leaf area, (b) LDMC: 
leaf dry matter content, (c) Thickness: leaf thickness, (d) LWCarea: leaf water content per leaf area, (e) Chlmass: mass-
based chlorophyll concentration, (f) Chlarea: area-based chlorophyll concentration, (g) δ13C: carbon isotope ratio, (h) 
δ15N: nitrogen isotope ratio, (i) Nmass: mass-based nitrogen concentration, (j) Narea: area-based nitrogen concentration. 
Simple LMs (trait ~ height) and LMs including a quadratic term (trait ~ height + height2) were fitted and compared by 
AIC. Non-linear models were preferred when ΔAIC≤10 (Table S3 for summary statistics). R2M: amount of variance in 
community means explained by height. R2C: amount of variance in individuals’ trait values explained by height. 
Asterisks indicate significance levels of trait-height relationships (*** P<0.001, ** P<0.01, * P<0.05). Shaded areas 
indicate 95% CI. 

 

H2 - Variations in trait-height relationships among species influence community trait 

structure 

The MAM for SLA, LDMC, leaf thickness and Chlmass included the interaction between species 

and height, indicating that the community structure for these traits was best explained when 

considering that species differ in both their trait means and their trait responses to height (Table 

A.6. In contrast, for Chlarea and LWCarea only between-species differences in trait means were 

significant (Table A.6).  

Seventy percent of all species had at least one trait that was significantly correlated with height. 

Significant intraspecific trait-height relationships (P<0.05) were most common for SLA, for 

which 45% of all species revealed a significant relationship with height, followed by LDMC with 

33% (Table A.7; see Figs. A.4-A.9 for intraspecific trait-height relationships of all species). The 

directions of intraspecific trait-height relationships were largely consistent within traits. For 
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instance, for SLA and Chlmass, slopes were invariably negative (Table A.7). However, for LDMC 

and thickness, there were a few species showing opposing trends (Table A.7). 

 

H3 - Vertical ranges of epiphyte species correlate with their intraspecific trait variability 

Variance component analysis revealed that intraspecific variability, on average, accounted for 

31% of observed variance (Fig. A.10). The proportion of variance explained by intraspecific 

variability ranged from 16% (Thickness) to 51% (Chlarea).  

We observed significant positive correlations between both measures of multivariate intraspecific 

trait variability (mean CV, mean TR) and vertical ranges of species (Fig. A.11). The correlation 

was stronger for mean TR (R2=0.24, P<0.001) than for mean CV (R2=0.10, P=0.009).  

 

H4 - Trait means, trait syndromes and trait-height relationships differ among taxonomic 

groups 

We found significant differences between trait means of taxonomic groups for all traits except 

Narea, δ13C and δ15N (Table 2.1). Trait differences were, however, often only significant between 

individual taxonomic groups; there was no trait for which all pairwise differences were 

significant. The only case in which a group’s trait mean differed significantly from that of all 

other groups was LDMC, with almost two-fold higher values in ferns (Table 2.1). Orchids had, 

on average, the thickest leaves, the highest LWCarea and the smallest SLA, but differences in these 

traits were consistently significant only compared to ferns (Table 2.1). Bromeliads tended towards 

low nitrogen and chlorophyll concentrations, although differences were not always significant. In 

contrast, the highest nitrogen and chlorophyll concentrations were consistently found in aroids. 

Taxonomic groups also differed significantly in height distributions. The mean height of orchid 

species (21.0±6.4 m) was significantly higher (P<0.05, max-t test) than that of aroids (12.2±7.5 

m) and ferns (11.1±7.2 m), but did not differ significantly from that of bromeliads (14.7±7.4 m; 

Table 1). 

The PERMANOVA indicated significant differences in trait syndromes among all taxonomic 

groups (P<0.001). The dispersion of species in PCA trait space showed that several species of 

different taxa shared similar trait syndromes, but also that there were unique tendencies within 

taxonomic groups (compare, e.g., orchids and ferns; Fig. 2.2). 

The fixed-effect structure of the MAMs did not include the interaction between height and 

taxonomic group for any leaf trait, indicating that slopes of trait-height relationships did not differ 

significantly among taxonomic groups (Table A.2). No significant differences in slopes or 

intercepts were observed for SLA and all NC traits (Fig. A.3). 



2. Functional leaf traits of vascular epiphytes 
 

18 
 

Table 2.1. Mean leaf trait values ± SD of the major taxonomic groups of vascular epiphytes (aroids, bromeliads, 
orchids, ferns) in a Panamanian lowland forest. Species from all other taxa are summarized in ‘Others’. CAM species 
were excluded from δ13C analyses. Differences between taxonomic groups were analyzed using max-t tests for multiple 
comparisons of means, and significant differences in trait means (P<0.05) are indicated by different letters. Proportions 
of sampled individuals and species are given in parentheses. *For the NC traits, not all species were sampled, sample 
sizes were: Aroids: n=10, Bromeliads: n=5, Orchids: n=19-24, Ferns: n=17, Others: n=5. 

 Aroids Bromeliads Orchids Ferns Others 

Individuals 149 (12.9%) 62 (5.4%) 435 (37.8%) 379 (32.9%) 126 (10.9%) 
Species 13 (15.7%) 5 (6%) 32 (38.6%) 24 (28.9%) 9 (10.8%) 

Height (m) 12.2 ± 7.5A 14.7 ± 7.4AB 21.0 ± 6.4B 11.1 ± 7.2A 15.4 ± 3.0A 

SLA (mm2 mg-1) 22.1 ± 10.9AB 17.7 ± 7.5AB 14.0 ± 5.7A 24.2 ± 14.8B 27.6 ± 11.2B 

LDMC (g g-1) 0.17 ± 0.05A 0.18 ± 0.04A 0.20 ± 0.10A 0.34 ± 0.11B 0.08 ± 0.05C 

Thickness (mm) 0.38 ± 0.13A 0.59 ± 0.69AB 0.70 ± 0.52B 0.26 ± 0.12A 0.96 ± 0.59B 

LWCarea (g H2O m-2) 297 ± 102A 378 ± 278ABC 488 ± 344B 168 ± 128C 632 ± 325B 

Chlmass (mg g-1) 10.1 ± 2.9A 5.4 ± 3.2AB 6.3 ± 2.6B 7.5 ± 2.7AB 8.3 ± 3.9AB 

Chlarea (μg cm-2) 55.3 ± 16.4A 31.3 ± 9.1B 47.6 ± 15.3A 41.4 ± 19.1AB 32.3 ± 9.6B 

δ13C (‰)* -29.7 ± 2.7A -29.9 ± 0.7A -29.7 ± 2.1A -31.2 ± 1.6A -30.4 ± 2.0A 

δ15N (‰)* -1.8 ± 1.9AB -2.8 ± 1.0AB -2.3 ± 1.0AB -1.7 ± 1.1A -3.8 ± 1.1B 

Nmass (mg g-1)* 14.5 ± 6.4A 7.5 ± 2.1B 11.6 ± 5.5AB 12.0 ± 3.6A 11.8 ± 4.0AB 

Narea (g m-2)* 1.07 ± 0.29A 0.57 ± 0.36A 0.92 ± 0.33A 0.96 ± 0.38A 0.69 ± 0.29A 
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Figure 2.2. Dispersion of trait syndromes of epiphyte species in the PCA trait space based on six leaf traits of 1,151 
individuals. Trait syndromes of all species belonging to four major taxonomic groups (aroids, bromeliads, orchids, 
ferns) are shown as ellipsoids of inertia, which encompass 95% of individuals of each species. The position and the 
spread of the ellipsoids thus illustrate mean trait syndromes and trait variability of each species. Insets in the upper 
right part show kernel densities for each taxonomic group. A PERMANOVA indicated significant differences in trait 
syndromes between all taxonomic groups (P<0.001). 

 

2.5 Discussion 

H1 - Trait means and trait syndromes change with height at the community level 

Our results support the hypothesis that community trait means of vascular epiphytes are 

significantly correlated with height, but strength and direction of correlations varied considerably. 

The strongest correlations among the extensively sampled traits were found for SLA and Chlmass, 

whose negative trends from the forest floor to the upper canopy are consistent with differences 

between sun and shade leaves of tropical trees (Rozendaal et al. 2006; Markesteijn et al. 2007) 

and trends along tree height gradients (Rijkers, Pons & Bongers 2000). When considering that 

SLA and Chlmass covaried considerably and that Chlarea did not show a strong vertical trend, it 

seems likely that changes in Chlmass were mainly driven by changes in SLA (Chlmass = Chlarea 

SLA). In soil rooted plants, vertical gradients in SLA are commonly related to vertical light 

gradients (Poorter 1999; McMurtrie & Dewar 2011) but hydraulic constraints have also been 

discussed (Rijkers, Pons & Bongers 2000; Koch et al. 2004). A comparative study by Cavaleri et 

al. (2010) found that epiphytes were the only plant group for which light was most important in 

explaining vertical SLA profiles, which seems logical as epiphytes lack a hydraulic connection to 
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the ground. Because SLA relates the light-capturing leaf area to investment in dry mass, an 

increase in SLA increases the potential carbon gain per biomass investment. However, increased 

light-capture efficiency via high SLA tends to be associated with higher respiration rates and 

shorter leaf lifespans. Several such correlations between leaf traits capturing fundamental aspects 

of leaf economics have been observed (‘worldwide leaf economics spectrum’; Wright et al. 2004). 

Theoretical models have demonstrated that, when considering these between-trait correlations, 

the carbon gain over the leaf lifespan is maximized when SLA increases non-linearly with 

decreasing light (Sims, Gebauer & Pearcy 1994; McMurtrie & Dewar 2011). The non-linearly 

decreasing community means of SLA with height (Fig. 2.1a) agree with these expectations and 

corroborate the notion that light is the main driver of vertical SLA profiles in epiphytes. 

The observed increase in leaf thickness with height is consistent with within-individual, intra- and 

interspecific vertical trends found in trees (Rozendaal et al. 2006; Markesteijn et al. 2007). Apart 

from maximization of carbon gain, avoidance of damages and water loss minimization are also 

requirements of optimal leaf functioning: an increase in leaf thickness is regarded as adjustment 

to prevent overheating and to balance carbon gain and transpiration water-loss under drier and 

sunnier conditions (Cornelissen et al. 2003; Rozendaal et al. 2006). Without anatomical 

adjustments changing leaf tissue density, a decrease in SLA would induce an increase in leaf 

thickness, which partially explains their covariance (r=-0.48). Nevertheless, the linear increase in 

leaf thickness (Fig. 2.1c) in contrast to the non-linear decrease in SLA (Fig. 2.1a) suggests that 

the trend in leaf thickness is not only related to SLA, but also to independent morphological 

adjustments which are probably more influenced by the vertical gradient in potential 

evapotranspiration than by the vertical light gradient. 

In general, LDMC also tends to scale with SLA and is sometimes regarded as an alternative 

predictor of plant strategies (Wilson, Thompson & Hodgson 1999). Interestingly, the observed 

covariance between LDMC and SLA was rather low at community level (r=-0.16) and the LDMC-

height correlation was rather weak (Fig. 2.1b). This suggests that plant functioning captured by 

SLA is more relevant along vertical gradients within forests. 

It is well established that the proportion of epiphytes with CAM increases with height (e.g. Zotz 

2004). The positive trend in δ13C of C3 plants documented here (Fig. 2.1g) has arguably the same 

ecological background: more demanding water relations result in increasing stomatal limitations 

(Farquhar, Ehleringer & Hubick 1989). Tissue δ13C correlates with water-use efficiency, and δ13C 

is thus used as indicator of water-stress. However, along vertical gradients in forests, 

interpretation may be confounded as the atmospheric δ13C signature also shows a vertical trend 

(Quay, King & Wilbur 1989). Nevertheless, the strongest increase in atmospheric δ13C signature 

occurs within a few meters above the forest floor due to soil respiration, and above this zone, the 

gradient in δ13C is generally weak (Quay et al. 1989). In contrast, our model predicted a linear 
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trend with an average change of ~5.5 ‰ in δ13C from the trunk base to the upper canopy (Fig. 

2.1g), suggesting that a large part of the observed variance in tissue δ13C can be attributed to 

differences in water-use efficiency. These results agree with observations for leaves of tropical 

trees (Medina & Minchin 1980). In contrast, difference in δ13C signals of epiphytes between the 

upper and lower parts of a lowland rainforest were smaller (< 2 ‰; Wania et al. 2002), possibly 

due to a less pronounced gradient of water stress than in our system (precipitation at this site in 

Costa Rica is >6000 mm/year). Alternatively, the discrepancy may indicate that height above 

ground is a better predictor for water stress than the predefined Johansson zones used by Wania 

et al. (2002), which subdivide host trees according to their principal structure without considering 

absolute height. 

In line with Wania et al. (2002), we observed a negative trend in tissue δ15N with height (Fig. 

2.1h). The δ15N signatures of plants are mostly affected by their assimilatory pathway, but also 

by form (NO4
+, NH3

-, N2) and δ15N signature of the nitrogen source (Evans 2001). Epiphytes use 

a blend of different autochthonous (e.g. canopy soil, leachates) and allochthonous nitrogen 

sources (e.g. wet and dry deposition), which can vary substantially in δ15N signatures (Wania et 

al. 2002). The observed negative trend with height indicates an increasing contribution of 

atmospheric N to epiphyte N in the upper canopy. However, as we did not measure source δ15N 

signatures, caution is needed when interpreting tissue δ15N trends. 

In summary, we found only moderate to weak correlations between leaf traits/leaf trait syndromes 

and height when considering all individuals, but often strong correlations between community 

means and height. This also reflects that height is a suitable proxy of general vertical trends in 

environmental conditions, although it does not capture all relevant factors and small-scale 

environmental variability (Fig. A.1). 

 

H2 - Variations in trait-height relationships among species influence community trait 

structure 

For four out of six traits, the community trait structure could be best explained when including 

differences in intraspecific trait response to height, which supports our hypothesis for most traits. 

Intraspecific trait responses to height were particularly important for SLA, which was the trait 

with the highest frequency of significant trait-height relationships (45% of all species) and 

consistently showed only negative trends. SLA captures essentials of leaf economics (Wright et 

al. 2004) and is a suitable trait for intraspecific adjustments because it can be relatively easily 

adjusted by varying size, number and cell wall thickness of different leaf cell types (Shipley et al. 

2006; Kichenin et al. 2013). In general, although we cannot rule out genetic variation as source 

of intraspecific trait variability, we argue that, considering the spatial scale in our study, 
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phenotypic trait plasticity in response to the environment is probably more important (also see 

Grassein, Till-Bottraud & Lavorel 2010).  

Interestingly, the second most frequent significant intraspecific trait-height relationships were 

found for LDMC, which, in contrast, was rather weakly correlated with height at the community 

level. The high frequency might partly be explained by correlations between SLA and LDMC, 

which can be much stronger at the species level than at the community level (compare Figs. A.4 

and A.5). However, species-specific differences in strategies might also play a role (Wilson et al. 

1999). For instance, in Elaphoglossum doanense only LDMC was strongly correlated with height 

(R2=0.81) while there was no significant correlation for any of the other traits. 

Although intraspecific trait response to height was common in epiphytes, the absence of a 

significant intraspecific trait-height relationship was not always accompanied by limited trait 

variability. Most species that lacked a significant trait-height correlation had a pronounced 

intraspecific trait variability unrelated to height. Apart from the uncertainties associated with 

height as proxy for environmental gradients, plant size and age are additional sources of 

intraspecific trait variability (Zotz 2000; Wanek et al. 2002; Hietz & Wanek 2003), which might 

weaken trait-height relationships. It is therefore striking that height emerged as significant factor 

for intraspecific changes in leaf traits. 

In summary, our results corroborate the growing evidence that not only differences in trait means, 

but also differences in intraspecific trait response to environmental gradients among species are 

non-negligible aspects of community assembly (Bolnick et al. 2011; Kichenin et al. 2013). 

 

H3 - Vertical ranges of epiphyte species correlate with their intraspecific trait variability 

Intraspecific variability explained almost one third of the observed variance in our trait data, 

which is in the same range as observed for terrestrial plants (Hulshof & Swenson 2010; Albert et 

al. 2010b). This supports previous findings underlining the importance of considering trait 

variability not only between but also within species (Albert et al. 2010b). Such intraspecific 

variability seems to be important for species’ spatial distribution, as our results supported the 

hypothesis that species occupying larger vertical ranges tended towards higher leaf trait variability 

(Fig. A.11). The inherent ability of species to vary their leaf traits might increase their ability to 

tolerate a wider range of environmental conditions (van Valen 1965). In this context, it is not 

surprising that TR explained a larger amount of variation in species vertical ranges than CV (TR: 

R2=0.24, CV: R2=0.10). This is because TR is based on extreme trait values and is thus a better 

approximation of the theoretical maximal trait range of a species, whereas CV is affected by the 

trait frequency distribution. Sides et al. (2014) conducted a comparable study of 21 herbaceous 

perennials along an elevational gradient of ca. 700 m, using CV as measure of trait variability. 
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They observed a stronger correlation between intraspecific trait variability in SLA and elevational 

range (R2=0.51). The weaker correlation in our study might partly be explained by the 

uncertainties associated with the height gradient as approximation of environmental gradients. 

Furthermore, Sides et al. (2014) pointed out that intraspecific trait plasticity should be essential 

when strong trends in community mean trait values exist. Community mean trends were less 

pronounced in our study, indicating that height was a weaker filter than elevation. In summary, 

epiphyte species that can adjust their leaf traits to the environment can potentially occupy larger 

vertical ranges. However, the substantial amount of unexplained variance also emphasizes that 

unstudied characteristics (e.g. root traits, specific morphological and physiological 

characteristics) or other processes (e.g. germination, seedling survival) might be likewise 

important in explaining why some species are restricted to smaller vertical ranges than others. 

 

H4 - Trait means, trait syndromes and trait-height relationships differ among taxonomic 

groups 

For most traits, we found significant differences in trait means between taxonomic groups, which 

partially confirm our hypothesis. Trait differences were, however, often only significant between 

certain pairs of taxonomic groups. The frequent absence of pairwise differences was mainly due 

to the high trait variation between species within taxonomic groups, and less due to similarities 

in group trait means. The pronounced within-group trait variation and associated among-group 

trait overlap become apparent when comparing species’ trait syndromes in the multivariate trait 

space (Fig. 2.2). Nevertheless, the unique tendencies within taxonomic groups indicate that some 

leaf traits are taxonomically conserved (Fig. 2.2). 

The marked differences in morphological leaf traits between orchids and ferns were consistent 

with previous studies reporting orchids having thicker leaves and lower SLA (Stuntz & Zotz 2001; 

Cardelús & Mack 2010). Community means of leaf thickness and SLA were strongly correlated 

with height, which emphasizes their functional relevance along the vertical gradient. It is thus 

unsurprising that differences in these traits were reflected in different height distributions of these 

taxa (Table 2.1; also see Fig. 2.3). This pattern might be partly explained by environmental 

filtering of species with unsuitable traits, but intraspecific leaf trait adjustments, particularly for 

SLA, might also be important. Interestingly, SLA was the only extensively sampled trait without 

significant differences in slopes or intercepts among the taxonomic groups (Fig. A.3a). This 

suggests an optimal SLA value at a given height independent of taxonomic group and further 

indicates that environmental changes along the height gradient act as a particularly strong filter 

on SLA. 
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The most striking among-group differences were observed for LDMC, with LDMC of ferns being 

twofold higher, on average, than in all other groups. LDMC values have not been reported for 

many epiphyte species, but Woods (2013) also found high LDMC values in two Elaphoglossum 

species and low values in one Microgramma species. This agrees with our results and shows that 

the LDMC of fern species can differ substantially (Table A.1). However, the large number of fern 

species sampled in our study (n=24) suggests that high LDMC values are more common in ferns. 

Aroids had the highest leaf nitrogen and chlorophyll concentrations, whereas bromeliads 

consistently had the lowest. In fact, both traits were correlated (r=0.67; Table S5). Chlorophyll 

concentrations have not yet been compared among major epiphyte taxa, but our results agree with 

reported leaf nitrogen values. For example, Stuntz & Zotz (2001) also found the highest nitrogen 

concentrations in aroids. Lowest nitrogen concentrations, in turn, were consistently observed in 

bromeliads (Hietz, Wanek & Popp 1999; Stuntz & Zotz 2001; Cardelús & Mack 2010). An 

increase in leaf nitrogen content is usually associated with an increase in photosynthetic capacity 

(Stuntz & Zotz 2001; Wright et al. 2004). Interestingly, differences in photosynthetic nitrogen-

use efficiency (PNUE) were observed among epiphyte taxa, with aroids having the lowest PNUE, 

and bromeliads having the highest (Stuntz & Zotz 2001). Thus, for a given nitrogen concentration, 

the photosynthetic capacity was higher in bromeliads. This suggests that the observed among-

taxa differences in leaf nitrogen cannot be used to infer similar differences in photosynthetic 

capacity. 

We did not observe significant among-group differences in δ13C and δ15N values. Our results 

largely agree with observations along an elevational gradient in Costa Rica (Cardelús & Mack 

2010). In contrast, Hietz et al. (1999) observed significantly depleted δ15N values in bromeliads, 

but these were mainly of atmospheric habit. All these studies found high variability in isotope 

ratios of species within taxonomic groups, suggesting that the environmental conditions and 

species-specific characteristics are more important in determining isotope ratios in leaf tissue of 

individual epiphytes than their taxonomic affiliation. 

Compared to global trait means of non-epiphytic taxa (TRY; Kattge et al. 2011), both low 

nitrogen concentrations and thick leaves are particularly noticeable differences (Table A.1 for 

details). These trait differences can be regarded as adaptation of epiphytes to an environment in 

which water and nutrients are only intermittently available.  
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Figure 2.3. Schematic diagram illustrating main findings. Arrows on left side: Environmental factors commonly 
changing with height above ground within forests. In this study, only the vertical light gradient was measured (Fig. S1). 
Boxplots: Height distribution of the major taxonomic groups of epiphytes at the study site in Panama. Height 
distributions are based on either the height of each individual or the mean height of each species. Boxplots depict 
median heights (horizontal line), interquartile ranges (boxes), and approximate 95% confidence intervals (whiskers). 
Outliers are not shown. Arrows on right side: Significant vertical leaf trait gradients at the study site (trait abbreviations 
as in Fig. 1). Leaf traits showing pronounced changes in community trait means with height are marked by *. 

 

 

Conclusion 

Our findings indicate that analyzing multiple aspects of trait-based ecology (e.g. community and 

intraspecific trends, inter- and intraspecific variability, correlations among traits) is key to 

advance the understanding of mechanisms structuring plant communities. Leaf trait syndromes 

and intraspecific trait variability play an important role in explaining the vertical zonation of 

vascular epiphyte species and taxonomic groups (see Fig. 2.3 for a schematic representation of 

key findings). However, other adaptations of epiphytes, like water- and nutrient-storing 

pseudobulbs in orchids or phytotelmata in bromeliads, are probably likewise important. As height 

above ground as proxy of vertical environmental gradients explained substantial amounts of total 

trait variations, we propose to use height in addition to the more frequently used zonation scheme 

by Johansson in trait-based studies of epiphytes. 
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3.1 Abstract 

Local variation in abundance and richness of vascular epiphytes is often attributed to 

environmental (substrate and abiotic) characteristics. Less is known, however, about the impacts 

of tree and branch turnover on epiphyte communities. To address this issue, we surveyed branches 

and epiphytes found on the forest floor in a total of 96 transects in two forests (Atlantic rainforest 

in Brazil and Caribbean rainforest in Panama). In the Brazilian forest, we distinguished between 

edge and core. We quantified branch abundance, epiphyte abundance, richness and proportion of 

adults to investigate the trends of these variables over branch diameter. In the Panamanian forest, 

epiphytes had been previously inventoried, allowing an evaluation of our surveying method. 

Branches <2 cm in diameter comprised >90% of all branches on the forest floor. Abundance and 

richness of fallen epiphytes per transect were highest in the Brazilian core transects and lowest in 

the Panamanian transects. The majority of epiphytes on the floor (c. 65%) were still attached to 

their branches. At all three study sites (Brazilian core, Brazilian edge and Panamanian transects), 

branch abundance and branch diameter were negatively correlated, whereas epiphyte abundance 

and richness per branch and proportion of adults were positively correlated with branch diameter. 

The relationship between branch diameter and absolute epiphyte abundance and richness differed 

between study sites, which might be explained by differences in forest structure and dynamics. 

Individuals found on the forest floor corresponded to >12% of all individuals on branches <10 

cm in diameter (including crowns), with abundance, richness and composition trends on forest 

floor reflecting canopy trends. We argue that forest floor surveys provide useful floristic and, 

most notably, demographic information particularly on epiphytes occurring on thinnest branches, 

which are the least accessible. Here, branchfall acts as an important demographic filter structuring 

epiphyte communities. 

 

3.2 Introduction 

Vascular epiphytes are plants that grow on shrubs and trees, and thereby on a substrate distributed 

in three-dimensional space (Benzing 1990; Zotz 2007; Krömer et al. 2007). Microclimatic 

conditions change dramatically within this three dimensional space, with generally drier and 

sunnier conditions towards the outer crowns of the trees (e.g. Woods, Cardelús & Dewalt 2015). 

These conditions seem to cause higher drought-related mortality at early life stages compared to 

those in inner crowns and trunks (Wagner, Bogusch & Zotz 2013). Moreover, abiotic conditions 

vary within inner-crowns and between tree species (Cardelús et al. 2005; Cardelús 2007). These 

environmental gradients have been suggested to structure the distribution of epiphyte species 

(Freiberg 1996; Freiberg & Freiberg 2000; Zotz et al. 2005; Zotz 2007; Cardelús 2007; Woods et 

al. 2015). However, apart from the abiotic environmental conditions, the dynamics of the 
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substrate itself should also influence epiphyte communities. This is because trees are constantly 

growing, producing new and losing older branches, meaning that the substrate persists only for a 

limited period (Malhi 2012; Woods et al. 2015). For example, trees commonly abscise branches 

lacking photosynthetically active leaves, which are more likely to be thin branches (Millington & 

Chaney 1973; Addicott 1991). Moreover, thin branches stand less mechanical stress by epiphyte 

load, wind force, rainfall, or arboreal animals (Zotz et al. 2005). This might be particularly 

important in the outer crown of overstorey trees, but the crown of understory trees can also be 

disturbed by tree- and branchfall of large and emergent trees (Meer et al. 1996). Such a highly 

dynamic system should have profound consequences on the population and community dynamics 

of vascular epiphytes. In fact, because thin branches fall more often than thick branches, epiphytes 

growing on these thin branches are particularly susceptible to substrate failure (Hietz 1997). 

Correspondingly, only fast colonizing and maturing species are able to survive and reproduce on 

smaller branches (Chase 1987; Zotz 2007). Branchfall may thus profoundly influence distribution 

of epiphyte species within the canopy, contributing to niche partitioning in epiphyte communities.  

Despite the apparent effects of diameter-dependent branchfall on community and population 

dynamics of epiphytes, related studies are rare. Hietz (1997) was able to quantify mortality rates 

via branchfall by monitoring selected branches through tree climbing and repeated photography. 

However, this technique is costly, requires training and is time-consuming. These limitations are 

a general barrier to improve our understanding on epiphyte ecology, as the accessibility of the 

tree canopies poses technical and logistic challenges. Among the several techniques that are 

currently used to assess the epiphytes, the use of binoculars is the simplest  (Krömer et al. 2007; 

Werner & Gradstein 2009), whereas tree climbing (Cardelús et al. 2006; Wolf, Gradstein & 

Nadkarni 2009), tree climbing and photographs (e.g. Hietz 1997; Hietz, Ausserer & Schindler 

2002) and canopy cranes (Nieder et al. 2000; Zotz & Schultz 2008) demand considerable work 

and/or investment efforts. An alternative, inexpensive method to gather information on epiphyte 

demography is to sample the forest floor, particularly if combined with data on branchfall, a main 

cause of epiphyte mortality (Hietz 1997). In fact, epiphytes on the forest floor may also provide 

information on the community structure and composition of epiphytes in the tree crowns, but this 

data is also surprisingly scarce in the literature (Mondragón & Ticktin 2011). This is intriguing, 

given that epiphytes on the forest floor could be further assessed for sustainable economic 

activities, such as gathering of fallen individuals for horticulture (Mondragón & Ticktin 2011; 

Toledo-Aceves, García-Franco & López-Barrera 2014). Hence, despite the evident occurrence of 

epiphytes on the forest floor due to branchfall, this information source has been largely neglected. 

To assess the usefulness of forest floor-based sampling to study vascular epiphytes, this study 

aimed to quantify branchfall and vascular epiphytes on the forest floor. This information was used 

to assess the relationship of epiphyte fall with branch diameter. For this purpose, we surveyed 
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two Neotropical forests differing in epiphyte flora, elevation and climate (Atlantic submontane 

rainforest in northeastern Brazil and Caribbean lowland rainforest in Panama). We sampled edge 

and core forest habitats in the Brazilian forest. For each study site, we addressed three hypotheses 

for epiphytes on the forest floor: 1) epiphyte abundance, 2) epiphyte richness and 3) proportion 

of adult epiphytes are positively correlated with branch diameter (Fig. 3.1). In addition, we took 

advantage of data on exact three-dimensional positions of each individual epiphyte at the 

Panamanian site (Mendieta-Leiva, Wagner & Zotz, unpubl. data) to evaluate our sampling 

method and results by assessing how patterns on the forest floor relate to the canopies. For this 

purpose, we compared epiphyte abundance, richness and composition of both forest floor and 

canopies. Overall, our results supported the hypotheses and demonstrated that branchfall-induced 

mortality has a non-negligible effect on the epiphyte community, particularly in the thin branches 

of tree canopies.  

 

 

Figure 3.1. Schematic figure summarizing the expected trends with increasing branch diameter. We expect a decrease 

in water stress, mechanical disturbance and branch abundance with an increasing branch diameter. These drivers plus 

the increase in branch age should lead to higher epiphyte colonization and survival and an increase in epiphyte 

abundance, richness and proportion of adults per branch. 

 

3.3 Materials and methods 

Study sites 

We surveyed branches and vascular epiphytes on the forest floor at two Neotropical forests. The 

first forest was located within Usina Serra Grande, a large private sugar-cane landholding in the 

State of Alagoas, northeastern Brazil (8º58’50’’S, 35º 54’30’’W). It is part of the fragmented 

Brazilian Atlantic forest (da Silva & Tabarelli 2000) which retains c. 90 km2 of forest of the 

Pernambuco Centre of Endemism (Prance 1982), a unique biogeographic region within the 

Atlantic forest and a global biodiversity hotspot (Myers et al. 2000). We studied a forest fragment 

of c. 50 ha surrounded by a uniform matrix of sugar-cane monoculture. The forest fragment was 
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located at c. 550 m a.s.l. in a fairly flat hilltop terrain, lacking gorges and riverbeds. The area 

receives c. 2000 mm of rainfall per year with a 3-month dry season (<60 mm/month) from 

November to January and the wettest period is between April and August (Oliveira, Grillo & 

Tabarelli 2004). The forest can be classified as lower montane or submontane rainforest. The 

fragment harbors a rich epiphyte flora (11 species of bromeliads, 2 cacti, 31 orchids and 4 

peperomias; ferns and aroids have not been studied - (Siqueira Filho & Felix 2005; Siqueira Filho 

et al. 2006). The fragment has a relatively old and stable edge (> 80 years), whose effects can be 

detected up to 100 m from the forest borders (Oliveira et al. 2004). We sampled both forest core 

and edge habitat (see next section). These two habitats are referred to as Brazilian core and 

Brazilian edge study sites. 

The second forest and our third study site was the San Lorenzo Canopy Crane plot located near 

the Atlantic coast of the Republic of Panama (9º16'50’’N, 79º58’30’’W, [31]). The site is part of 

one of the largest undisturbed forest landscapes in Panama. It is at c. 130 m a.s.l. and receives c. 

3500 mm of rainfall per year, with a three-month dry season (<60 mm/month) between January 

and March. The epiphyte flora has already been described in detail (>90 species of holoepiphytes; 

Zotz & Schultz 2008). At the crane site, only core forest conditions could be sampled, due to land 

mines from the US-American period of military training in the area outside the field station. The 

crane site is located in a narrow valley (slopes partially measuring slightly over 45˚ of inclination), 

with a centrally-located and seasonally dry creek. The proximity to the Caribbean coast also 

exposes the area to frequent heavy storms and thus disturbances. The total area covered by the 

crane plot is c. 0.9 ha (more details of the study site in Zotz 2007b; Zotz & Schultz 2008). 

Field work in the Brazilian study sites was supported by the Federal University of Pernambuco, 

which has a research agreement with the landholding that owns the forest fragments. Field permit 

in the Panamanian study site was obtained from the Panamanian Environmental Agency (ANAM) 

via Smithsonian Tropical Research Institute (STRI). Field work was done in four weeks each in 

each country: July 2012 (Brazil) and in September/October 2012 (Panama). The surveyed period 

coincided with the second half of the rainy season in each forest, and thus we were able to sample 

branches freshly broken due to heavy storms. This was important, as fallen epiphytes may die 

within a few months after branchfall, but can live up to a year (Matelson et al. 1993). 

 

Branchfall 

Surveys of branches on the forest floor were conducted within randomly placed 5 x 0.5 m transects 

(60 in Brazil, 36 in Panama). In Brazil, 30 transects were placed at least 200 m from the forest 

edge (from now on called 'Brazilian core transects'); 30 transects were placed within 60 m of the 

forest edge ('Brazilian edge transects'). In each of the 96 transects, we screened the forest floor 
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for branches. We counted only branches with > 50% of their length within transects and that did 

not crumble due to advanced decomposition when handled. Branches were divided into four 

diameter classes based on the thickest internode (0.5-2, 2-4, 4-6, >6 cm). Number and size of side 

branches were ignored. Branches with < 0.5 cm diameter were surveyed in 1 x 0.5  m subplots 

nested and centrally located in each transect, and their number was extrapolated from the subplot 

to the 5 x 0.5 m branch transect.  

We follow the terminology presented by Moffett (2000) for the terms 'canopy' (aboveground 

parts, including tree crowns and trunks) and 'crown' (branches, excluding the trunk). We were not 

able to identify the origin of the branches found on the forest floor. Hence, although most thin 

branches can be assumed to have their origin in the outer crowns of overstorey trees, they could 

also be from understory trees and shrubs as well as from inner crowns. We did not count thin 

branches attached to thick ones, but it is reasonable to assume that at least some thin branches 

detach during descent or upon impact on the forest floor. This detachment of thin branches should 

thus increase their abundance on the forest floor. 

 

Epiphytes 

We extended the 96 branch transects longitudinally to 5 x 10 m and surveyed vascular 

holoepiphytes on the forest floor. For each individual, we recorded species identity, life stage 

(juvenile or adult), and diameter of host branch if present. Classification as adult was based on 

remains of inflorescence and/or size comparable to reproductive conspecifics. We sampled all 

epiphyte taxa in Panama, but excluded ferns and aroids at Brazilian transects due to difficulties 

with species identification. The full sampling in Panama allowed the comparison between forest 

floor and canopy besides addressing branchfall effects on epiphyte community, whereas Brazilian 

transects were mainly used for addressing branchfall effects. Excluding ferns and aroids from the 

Panamanian transects did not change the relationships of epiphyte community (abundance, 

richness and proportion of adults) with branch diameter (results not shown). This suggests that 

the absence of ferns and aroids in the Brazilian transects should not affect the analysis of 

branchfall effects. A list of observed vascular holoepiphyte species is given in Table B.1.  

Epiphytes species in the canopy were surveyed using a combination of ground-based observation 

with binoculars and tree climbing at the Brazilian sites (Table B.2). In Panama, the epiphytes 

occurring in the canopy had recently been surveyed in a comprehensive census from 2010-2012, 

in which the precise identity and the host branch diameter of every individual epiphyte was 

recorded (Mendieta-Leiva, Wagner & Zotz, unpubl. data; Table B.2). 
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As additional structural characteristic of each transect, we determined diameter at breast height 

(DBH), mean height at first branching (first ramification of the stem) and total tree height for all 

trees with DBH > 5 cm.  

 

Analyses 

First, we quantified mean values of key physiognomic variables of the forest per transect (number 

of trees, tree DBH, height at first branching, tree height), as well as of branch abundance, epiphyte 

abundance and epiphyte richness on the forest floor. We additionally quantified mean values of 

abundance and richness for epiphytes attached to branches, detached from branches and adult 

individuals. For epiphytes attached to branches, we further quantified mean values of epiphyte 

abundance and richness per branch in each transect. We accounted for the difference in area 

between epiphyte and branch transects (50 and 2.5 m2, respectively) by multiplying the number 

of branches found in the branch transects by 20. For all variables, we compared the three study 

sites (Brazilian core, Brazilian edge, Panamanian transects) with simultaneous max-t tests using 

Tukey contrasts that are robust under non-normality, heteroscedasticity and variable sample size 

(Herberich et al. 2010). For adequate comparisons, ferns and aroids were excluded from 

Panamanian transects.  

To investigate the effect of sampling effort on species numbers, we generated species 

accumulation curves per study site by randomizing 100 times the increase in species richness 

caused by adding one transect to the sample. Species accumulation curves tending to an 

asymptotic value (near the actual number of species) reveal appropriate sampling effort. 

With the branches on the forest floor, we addressed whether the assumption that branch 

abundance on the forest floor is negatively correlated with branch diameter. Due to possible non-

linear relationships with branch diameter (e.g. Hietz 1997), we used generalized additive mixed-

effects models (GAMMs) with the absolute number of branches per transect as response, branch 

diameter class as fixed effect and transect as random effect (Zuur et al. 2009). Transect was used 

as random effect because branch abundances varied between transects, probably reflecting 

variation in age, structure and abscission patterns of local tree species. We applied negative 

binomial GAMMs (with log link function) to account for possible overdispersion in count data 

(Barry & Welsh 2002; Zuur et al. 2009; O’Hara & Kotze 2010). Thereafter, we addressed the 

hypotheses that 1) epiphyte abundance, 2) epiphyte richness and 3) proportion of adult epiphytes 

are positively correlated with branch diameter (Fig. 3.1). Similarly to branch abundance, we 

performed GAMMs with the same fixed and random effects. As response variables, we firstly 

assessed trends of absolute values, using absolute number of individuals per transect (referred to 

as absolute epiphyte abundance) and absolute number of species per transect (i.e. absolute 
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epiphyte richness). In both cases, we applied negative binomial GAMMs. Secondly, to adequately 

test the hypotheses given potential differences in branch, we performed GAMMS controlling 

epiphyte abundance and richness for branch abundance per diameter class. To this end, we 

standardized both epiphyte abundance and richness by dividing them by branch abundance (from 

now on referred to as abundance per branch and richness per branch, respectively). These two 

variables were used as response in gamma family GAMMs with log link function (Zuur et al. 

2009). Finally, the proportion of adults was used as response variable for binomial GAMMs (Zuur 

et al. 2009).  

We further assessed whether epiphyte abundance and richness observed on the forest floor reflect 

the trends observed in the canopy (trunk and crowns). To address this question, we analyzed the 

epiphyte abundance and richness in branch diameter classes in the canopy directly above the 

Panamanian transects. For this purpose, we used the vascular epiphyte inventory of the crane plot 

(Zotz & Schultz 2008, Mendieta-Leiva, Wagner & Zotz, unpubl. data). From our 36 Panamanian 

transects, 29 had their canopy epiphytes inventoried. Similarly to the analyses of the forest floor, 

we applied negative binomial GAMMs (with log link function) with epiphyte abundance and 

richness as response variables, branch diameter class as fixed effect and transect as random effect 

(Zuur et al. 2009). Additionally, we used Spearman correlations to test whether abundance and 

richness on the forest floor were correlated with their canopy counterparts. For these correlations, 

two analyses were performed: i) per transect (all epiphytes found on the forest floor and 

inventoried in the canopy) and ii) per transect and per branch diameter class (only epiphytes found 

on the forest floor attached to branches and canopy epiphytes on substrate with the same thickness 

distribution as in the forest floor). Thereafter, we assessed the proportion of the epiphytes over 

branch diameter found on the forest floor in relation to the entire transect (floor and canopy). For 

this analysis, we applied binomial GAMMs with the proportion of individuals and species on the 

forest floor as response variables, branch diameter class as fixed effect and transect as random 

effect  (Zuur et al. 2009). 

The species composition found on the forest floor was compared with that from the inventoried 

canopy above Panamanian transects. We compared 1) all epiphytes and 2) epiphytes found only 

on branches < 10 cm in diameter. Initially, we built a species per transect matrix with abundances 

separately for ground and for canopy individuals. To avoid bias due to low richness in the forest 

floor per transect but still retain a reasonable number of transects, we included only transects with 

at least two species on the ground (n=18 considering all epiphytes, n=17 considering only 

epiphytes on branches < 10 cm in diameter). We performed a non-metric multidimensional 

scaling (NMDS) and plotted the resulting ordination showing separate convex hulls for ground 

and canopy. For this analysis, we estimated a dissimilarity matrix (Bray-Curtis index) between 

transects. Thereafter, we used this dissimilarity matrix to perform an analysis of similarities 
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(ANOSIM) between ground and canopy. We then assessed which species were responsible for 

significant differences between ground and canopy by performing a Dufrene-Legendre indicator 

species analysis (Dufrêne & Legendre 1997). Finally, we tested whether paired ground and 

canopy transects were more similar than expected by chance. For this analysis, we estimated the 

Bray-Curtis dissimilarity index for each transect pair and for random pairs (n=18 pairs 

considering all epiphytes, n=17 considering only epiphytes on branches < 10 cm in diameter). 

The dissimilarity of each random pair was an average of the dissimilarity between each ground 

sample and n random canopy samples other than its actual canopy sample. We then compared the 

mean dissimilarity between actual vs. random pairs with simultaneous max-t tests using Tukey 

contrasts (Herberich et al. 2010).   

All analyses were done in R (version 3.0.1). GAMMs were implemented using the R library 

‘mgcv’ version 1.7-24 (Wood 2011). Ordination, dissimilarity matrices and analysis of 

similarities were implemented using the R library 'vegan', whereas Dufrene-Legendre indicator 

species analysis used the library 'labdsv'. 

 

3.4 Results 

In total, we counted >24,000 branches at the two sites. Brazilian core transects had 325 ± 284 

(mean ± SD, n= 30) branches per transect, Brazilian edge transects had 224 (± 102, n = 30) 

branches per transect and the 36 Panamanian transects 220 (± 169) branches per 

transect (equivalent to an average of 130, 90 and 88 branches per m2, respectively). Although 

Brazilian core transects had, on average, the highest number of branches, branch abundance did 

not differ significantly between study sites (Table 3.1; see Table B.3 for an extended version of 

Table 3.1). At all three study sites, the abundance of the thinnest branches was significantly higher 

than those of thicker ones, with > 90% of all branches belonging to the first two diameter classes 

(<0.5 cm and 0.5-2 cm, Fig. 3.2; Table 3.1).  
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Figure 3.2. Branch abundances as a function of branch diameter. A) Brazilian core transects (n=30). B) Brazilian edge 
transects (n=30). C) Panamanian transects (n=36). Box-plots show the median as central line, the first and third 
quantiles as the bottom and top box limits, 1.5 interquantile range as whiskers, and outliers as circles. Solid lines show 
fits from GAMMs with 95% CI indicated by dashed lines. 
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Table 3.1. Comparisons between study sites. Several measures characterizing forest structure, branch abundance, 
epiphyte abundance and epiphyte richness.  Total numbers and means ± SD per study site are provided. Percentages of 
adults and epiphytes attached to branches to the study site totals are given in parentheses. Means were compared with 
simultaneous max-t tests using Tukey contrasts that are robust under non-normality, heteroscedasticity and variable 
sample size. Significantly different means are indicated by different letters representing pairwise differences. Note that 
for epiphytes, only mean values for Panamanian transects without ferns and aroids were used in the comparisons with 
Brazilian study sites. The symbol † indicates n=35 (excluding one transect without trees). 

Variable 
Brazilian core 

transects (n=30) 

Brazilian edge 

transects (n=30) 

Panamanian transects (n=36) 

 No ferns and 

aroids 
All species 

Trees Mean number per transect 5.1 ± 2.1 ab 6.4 ± 3.2 a 4.8 ± 2.1 b 

Mean DBH (m) 0.2 ± 0.1 a 0.18 ± 0.06 b 0.16 ± 0.06 

b† 

Mean height at 

first branching (m)  

8.2 ± 2.0 a 4.7 ± 2.0 b 8.0 ± 2.0 

a† 

Mean height (m) 15.4 ± 3.4 a 10.9 ± 2.7 b 13.2 ± 2.6 

c† 

Branch 

abundance 

Total 9759 6721 7939 

Mean per transect 325 ± 284 a 224 ± 102 a 220 ± 169 

a 

Mean per transect (< 0.5 cm 

diameter) 

215 ± 237 a 142 ± 85 a 135 ± 151 

a 

214 ± 168 

a 
Mean per transect (< 2 cm 

diameter) 

316 ± 283 a 219 ± 101 a 

Epiphyte 

abundance 

Total 546 349 164 232 

Total adults  211 (39%) 153 (44%) 86 (52%) 101 (44%) 

Total attached to branches 367 (67%) 260 (74%) 112 (68%) 164 (71%) 

Mean per transect 18.2 ± 20.5 a 11.6 ± 17.8 ab 4.6 ± 7.1 b 6.4 ± 9.8 

Mean attached to branches 

per transect 

12.2 ± 17.0 a 8.7 ± 16.8 ab 3.1 ± 5.1 b 4.6 ± 6.4 

Mean attached to branches 

per transect per branch 

2.8 10-3 ± 3.5 10-3 

a 
2.3 10-3 ± 4.5 10-3 a 

1.1 10-3 ± 2.0 

10-3 a 

1.8 10-3 ± 3.1 10-3 

Epiphyte 

richness 

Total 23 16 27 39 

Total adults 21 (91%) 14 (88%) 17 (63%) 24 (62%) 

Total attached to branches 17 (74%) 13 (81%) 18 (67%) 29 (74%) 

Mean per transect 5.1 ± 3.2 a 2.3 ± 1.9 b 1.9 ± 2.3 b 2.8 ± 3.6 

Mean attached to branches 

per transect 

3.3 ± 2.5 a 1.8 ± 1.8 b 1.4 ± 1.6 b 2.2 ± 2.3 

Mean attached to branches 

per transect per branch 

7.7 10-4 ± 7.1 10-4 

a 
5.2 10-4  ± 5.5 10-4 a 

5.3 10-4 ± 7.5 

10-4 a 

7.3 10-4 ± 7.9 10-4 

 

 

We found a total of 546 individuals of 23 epiphyte species in Brazilian core, 349 individuals of 

16 species in Brazilian edge, and 232 individuals of 39 species in Panamanian transects (Table 1; 

see Table B.1 for species lists). Overall, the transects captured a considerable proportion of the 

epiphyte species found in the forests of the respective study sites (36-52%, Fig. 3.3). When 
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considering only the species in transects' canopies, a larger proportion of epiphytes species was 

found on the forest floor (49-89%, Fig. 3.3). Excluding ferns and aroids of the Panamanian 

transects for comparisons between study sites, absolute epiphyte abundance was significantly 

higher in Brazilian core transects (ca. 18 individuals per transect) compared to Brazilian edge (12 

individuals per transect) and Panamanian (5 individuals per transect) transects (Table 3.1; 

equivalent to ca. 0.36, 0.23 and 0.11 individuals per m2, respectively). Similarly, the average 

absolute species richness per transect was significantly higher in Brazilian core transects (ca. 5 

species per transect) than in Brazilian edge (2.3 species per transect) and Panamanian (2 species 

per transect) transects (Table 3.1; equivalent to ca. 0.1, 0.05 and 0.04 species per m2, respectively). 

However, differences in epiphyte abundance and richness per branch were not significant (Table 

3.1).  

 

 

Figure 3.3. Species accumulation curves based on forest floor-based sampling of epiphytes. A) Brazilian core transects 
(n=30). B) Brazilian edge transects (n=30). C) Panamanian transects, excluding ferns and aroids (n=36). D) Panamanian 
transects, all species (n=36). Solid curves give the mean number of species based on 100 randomized samplings, dashed 
curves the estimated 95% CI. Horizontal lines indicate the number of species present in the canopy of the transects 
(thin lines), in the study site (thick lines, same estimate for both Brazilian study sites) and on substrate < 10 cm in 
diameter (dot line, in c and d). See Table B.1 for the list of species found in the transects and Table B.2 for species lists 
found in the study sites. Note that the Brazilian study sites showed curves leveling off, whereas the Panamanian site 
revealed a slightly steeper curve in agreement with the higher number of species.  

 

Most individuals fell attached to branches (>65%), particularly in the Brazilian edge transects 

(Table 3.1). Epiphytes detached from branches were often attached to bark pieces, canopy soil or 

moss mats. Between 39% and 52% of the individuals on the forest floor were adults Table 3.1). 

Adults were found for most of the species, particularly at the Brazilian core transects (91% of 

species; Table 3.1). Remarkably, the proportion of adults among those individuals detached from 

branches was much higher (56% in Brazilian core, 64% in Brazilian edge, and 72% in Panamanian 

transects) than among those attached to branches (30% in Brazilian core, 37% in Brazilian edge, 

and 36% in Panamanian transects; see Table B.3 for total numbers).   
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The relationship between absolute epiphyte abundance or richness and branch diameter differed 

in the three study sites (Fig. 3.4; see Table B.4 for summary statistics). Absolute epiphyte 

abundance showed a hump-shaped relationship with increasing branch diameter in Brazilian core 

transects (Fig. 3.4a), with no clear relationship in Brazilian edge transects (Fig. 3.4b) and a 

positive relationship in Panamanian transects (Fig. 3.4c). Absolute species richness showed a 

hump-shaped relationship with increasing branch diameter at both Brazilian study sites (Fig. 3.4d-

e) and a positive relationship in the Panamanian transects (Fig. 3.4f). In contrast to these trends, 

the abundance (Fig. 3.5a-c) and richness (Fig. 3.5d-f) per branch showed a positive relationship 

with branch diameter at all three study sites (Fig. 3.5, Table B.4). There was a positive relationship 

between proportion of adults and branch diameter at all three study sites (Fig. 3.6, Table B.4). 

 

 

Figure 3.4. Absolute epiphyte abundance (A-C) and richness (D-F) per transect as a function of branch diameter. 
Trends are shown for Brazilian core (A,D, n=30), Brazilian edge (B,E, n=30), and Panamanian (C,F, n=36) transects. 
Box-plots show the median as central line, 1.5 interquantile range as whiskers, and outliers as circles. Solid lines give 
the values predicted by the estimated GAMMs, dashed lines show 95% CI. Note that the number of epiphytes was 
generally hump-shaped along diameter classes in Brazilian transects, whereas it was positive in Panamanian transects.  
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Figure 3.5. Epiphyte abundance (A-C) and richness (D-F) per branch as a function of branch diameter. Trends are 
shown for Brazilian core (A,D, n=26), Brazilian edge (B,E, n=21), and Panamanian (C,F, n=25) transects. Box-plots 
show the median as central line, 1.5 interquantile range as whiskers, and outliers as circles. Solid lines give the values 
predicted by the estimated GAMMs. Dashed lines show the estimated 95% CI. 

 

 

Figure 3.6. Proportion of adults as a function of branch diameter. A) Brazilian core transects (n=30). B) Brazilian edge 
transects (n=30). C) Panamanian transects (n=36). Box-plots show the median as central line, 1.5 interquantile range 
as whiskers, and outliers as circles. Solid lines give the values predicted by the estimated GAMMs. Dashed lines show 
the estimated 95% CI. 
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The inventoried canopy above our Panamanian transects had 4386 epiphyte individuals 

(corresponding to 151 individuals per transect or ~3 individuals per m2) of 80 species. 

Considering only substrates with diameters comparable to those found on the forest floor (<10 

cm), the inventoried canopies above our transects hosted 866 epiphyte individuals (30 individuals 

per transect, 0.6 individuals per m2) belonging to 64 species (20% of all individuals and 80% of 

all species). Epiphyte abundance (P <0.001, dfeff = 1.98) and richness (P <0.001, dfeff= 1.97) 

above the Panamanian transects were positively related to increasing branch diameter (Fig. 3.7a-

b). There was no correlation between the number of individuals and species on the forest floor 

and in the canopy. Across Panamanian transects, epiphytes on the forest floor (either attached to 

or detached from branches) corresponded to c. 4% of total number of individuals and to 48% of 

the species found. Considering only individuals found attached to branches (< 10 cm in diameter), 

this proportion was of 13% for individuals and 40% for species, gradually decreasing with branch 

diameter for individuals (P <0.05, dfeff = 1.53) and species (P <0.001, dfeff = 1.00; Fig. 3.7c-d). 

Species composition differed significantly between ground and canopy for all epiphytes (P = 

0.001, ANOSIM statistic R = 0.37) and for epiphytes on substrate < 10 cm in diameter (P = 0.001, 

ANOSIM statistic R = 0.29). Species composition on the ground was more variable than in the 

canopy (Fig. 3.7e-f), particularly considering all epiphytes (Fig. 3.7e). Most indicator species of 

these compositional differences were aroids and ferns found only or mostly in the canopy (Table 

B.5). Mean species similarity between actual ground and canopy transect pairs was not 

significantly different from the mean species similarity between random ground and canopy pairs. 
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Figure 3.7. Epiphytes in the canopy and their relationship with forest floor trends. (A) Epiphyte abundance and (B) 
species richness in the canopy directly above the Panamanian transects (n=29) as a function of branch diameter. 
Proportion of individuals (C) and species (D) found on the forest floor compared to the transects' total abundance (forest 
floor and canopy). (E-F) Non-metric multidimensional scaling of transects based on species composition and 
abundance considering (E) all individuals found on the forest floor and canopy (n=18 forest floor and canopy pairs) 
and (F) only individuals on substrate < 10 cm in diameter (n=17). Forest floor and canopy pairs are indicated by the 
same numbers in E-F (legend in F). See S2 File for the number of individuals and species censed within the whole 
crane plot (ca. 0.9 ha). Solid lines give the values predicted by the estimated GAMMs, whereas dashed lines show the 
estimated 95% CI in A-D. Lines connecting numbers indicate convex hulls in D-F. We excluded the thinnest branch 
diameter class in C and D due to overall low abundances in the canopy (see A-B). Box-plots show the median as central 
line, 1.5 interquantile range as whiskers, and outliers as circles. 
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3.5 Discussion 

Surveying epiphytes on the forest floor 

A considerable proportion of the species above the transects was also found on the forest floor 

(Fig. 3.3 and Fig. 3.7c-d).  Single transects entailed random subsets of the epiphyte community 

in the canopy (Fig. 3.7e-f). Although this may be the main limitation of this method, at least some 

species typically restricted to stable substrates (i.e. tree trunks and inner crowns, Zotz 2007b; 

Woods et al. 2015) were found on the forest floor. In fact, most of the individuals found detached 

from branches were attached to substrate parts (e.g. bark pieces or canopy soil) and thus may have 

fallen from trunks and inner crowns. Most indicator species for the Panamanian canopy transects 

preferentially occur, however, on trunks and inner-crowns (e.g. Trichomanes spp., 

Campyloneurum spp., Anthurium spp., Dichaea panamensis; full list in Table B.5). Hence, to 

increase the effectiveness and completeness, forest floor-based surveys could target transects with 

fallen trees or near old trees, as old trees have been indicated to host a higher number of species 

and should always be included in epiphyte surveys (Shaw & Bergstrom 1997; Zotz & Bader 

2011). 

Sampling the forest floor might be particularly useful for investigating epiphytes occurring on 

branches < 10 cm in diameter. This is illustrated by the fact that there were considerably fewer 

canopy indicator species when limiting the comparison between canopy and forest floor to 

branches < 10 cm in diameter than when considering the entire canopy (Table B.5). This is also 

supported by the lower species number (Fig. 3.3c-d) and variation in composition (Fig. 3.7e-f) 

compared to similar analyses considering epiphytes of the entire canopy. Furthermore, an 

unexpected high proportion of epiphytes on branches < 10 cm in diameter were on the forest floor 

(>12% all individuals belonging to 40% of all species, see also Fig. 3.7c-d for averages over each 

diameter class). This is important because these thin branches, often located in the outer crowns, 

are the most difficult canopy habitats to access despite hosting a sizable portion of individuals 

and species (20% and 80%, respectively, for Panamanian transects).  

Besides floristic information, the forest floor proved to be an important source of information on 

epiphyte demography and community structure. The fact that the patterns of epiphyte abundance 

and richness over branch diameter found on the forest floor mirrored the community structure of 

the canopy (compare Figs. 3.4, 3.5 and 3.7) indicates the community structure on the canopy can 

be surveyed in the forest floor. Hence, demographical inferences can be attempted with a survey 

method that is faster, cheaper and safer than commonly applied techniques, such as tree climbing 

and research cranes (see also Mondragón & Ticktin 2011). This is valuable information, 

considering that even if floristic data from the forest floor might not be as complete as from tree 

climbing, the forest floor offers much needed demographic data. Furthermore, besides surveys 
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focusing on economic value of fallen epiphytes (Mondragón & Ticktin 2011; Toledo-Aceves et 

al. 2014), further studies incorporating forest floor information can focus on combining 

demography and community structure with substrate characteristics (see next section). 

 

Epiphyte fall and branch diameter  

We found a high density of epiphytes on the forest floor (1100-3600 individuals per hectare). The 

fact that most epiphytes on the forest floor were found attached to branches emphasizes the 

importance of branchfall as a cause of epiphyte mortality. Although we have not directly 

measured mortality rates via falling with or from branches (Nadkarni & Matelson 1992), indirect 

estimates are possible if epiphytes in the canopy have been inventoried, as in our Panamanian 

study site. In this case, the mortality rate caused by falling with or from branches would be at 

least 4% per year (percentage of individuals found on the forest floor), considering that the 

majority of epiphytes on the forest floor dies within less than one year (Matelson et al. 1993). Our 

estimate is lower the annual mortality rate reported for a humid montane forest via monitoring 

selected branches with photographs (16%, Hietz 1997). However, epiphyte abundances in the 

canopy of the Panamanian study site were generally low compared to montane cloud forests 

(Nadkarni & Matelson 1992; Freiberg & Freiberg 2000), which may contribute to branchfall (Zotz 

et al. 2005).  

When considering only epiphytes falling with branches, absolute epiphyte abundance and 

richness revealed site-specific types of relationships with branch diameter (Fig. 3.4). As such 

differences disappeared after accounting for branch abundance (Fig. 3.5), they likely reflect local 

differences in branch dynamics. The resulting epiphyte abundance and richness per branch 

supported the hypotheses of higher abundance and richness on thick branches (compare Figs. 3.1 

and 3.5). The main explanation for higher epiphyte abundance and richness on branches of larger 

diameter classes is lower epiphyte mortality via branchfall (also found by Hietz 1997) and more 

time for colonization. In fact, branchfall was identified as main cause of epiphyte fall (Table 3.1) 

and the assumption that thin branches are more abundant on the forest floor than thicker ones was 

confirmed (Fig. 3.2; Hallé, Oldeman & Tomlinson 1978; Addicott 1991; Rust & Roloff 2004; 

Zotz et al. 2005). Furthermore, thicker branches support a micro-environment that is more 

suitable for the epiphytic lifestyle, with lower mortality at the seedling stage due lower exposure 

to wind, high radiation and water stress (Wagner et al. 2013) and more suitable substrate 

properties, such as higher moss cover, humus volume and humus layer thickness (Freiberg 1996; 

Woods et al. 2015). As a consequence, epiphyte richness, cover and biomass are usually higher 

on the thicker branches of the inner crowns (Freiberg 1996; Hietz 1997; Zotz 2007). Accordingly, 

higher epiphyte abundance and richness on thicker rather than thin branches were also observed 
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in the canopy at the Panamanian site (compare Figs. 3.4, 3.5 and 3.7a-b). However, quantifying 

branch abundance, as done for the forest floor but not for the canopy, seems essential to account 

for the effects of site-specific branch dynamics on the gradients of epiphyte abundance and 

richness over branch (compare Figs. 3.4 and 3.5).  

Our hypothesis of a positive correlation between the proportion of adults and branch diameter 

was also supported (compare Figs. 3.1 and 3.6), indicating a strong role of branchfall on the spatial 

structuring of epiphyte populations. Consequently, most adults in the outer crowns are twig 

epiphytes with fast life-cycles (Chase 1986, 1987). In fact, most adults in the two thinnest 

diameter classes were from small species classifying as twig epiphytes: Campylocentrum 

crassyrhyzum, Rodriguezia bahiensis and Notylia lyrata in Brazilian transects as well as 

Campylocentrum micranthum in Panamanian transects. 

 

Study sites 

We found small site-related differences in total species richness (Table 3.1) and in species-

accumulation curves (Fig. 3.3). The lower total species richness of edge transects was associated 

with the fact that most species absent in the edge have long life cycles, requiring at least 10 or 

more years to reproduce (e.g. Maxillaria ochroleuca, Prosthechea fragrans - first author's 

observations based on pseudobulb and inflorescence skeletons), or are probably less tolerant to 

water-stress (e.g. Anathallis sclerophylla, Acianthera pernambucensis, which were observed only 

on moss-rich shaded substrate). Consequently, the lack of large, stable, old trees and dominance 

of fast-growing pioneer trees at the same studied edge compared to core site (Oliveira-Filho, de 

Mello & Scolforo 1997; Tabarelli, Mantovani & Peres 1999) may reduce the establishment and 

survival of late-maturing and moisture-demanding epiphytes due to greater substrate dynamics 

and drier microclimate (Einzmann et al. 2015). Such lower colonization would explain why our 

forest floor-based sampling detected almost all species present in the canopy of edge transects but 

not in that of core transects (Fig. 3.3). However, because we only have one edge and core pair, 

we cannot statistically compare edge vs. core due to pseudoreplication, and thus further studies 

incorporating more pairs are necessary to investigate to what extent edge conditions affect 

epiphyte community composition. 

The total observed epiphyte richness at the Panamanian study site in turn was slightly higher than 

at the Brazilian core (Table 3.1, Fig. 3.3). However, at the transect scale, Panamanian transects 

had fewer species than the Brazilian transects (Table 3.1). High total species richness but low 

richness at the transect scale indicates a high spatial turnover of epiphyte species in Panama. This 

high turnover might be associated with increasing turnover of aboveground biomass with 

decreasing elevation (Raich et al. 2006) . Considering single trees or branches as habitat patches, 
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local communities are colonized by species occurring in adjacent patches (higher recruitment near 

source areas - Leibold et al. 2004). Hence, an increase in turnover of such patches might preclude 

the accumulation of species. This idea is supported by the high number of fallen trees and gaps 

observed in and outside the crane plot, which suggests a high rate of patch turnover, effectively 

limiting species accumulation. Similarly to the edge vs. core comparison, the interpretation of the 

differences between Brazilian core and Panamanian transects is limited due to low number of 

study sites. Further studies including forests along environmental and productivity gradients are 

necessary for a better assessment of the relationship between aboveground biomass turnover of 

trees and epiphyte communities. Alternatively, studies could assess such relationship by 

incorporating age as an additional substrate characteristic, as substrates with similar diameter may 

differ in age and thus time available for colonization. While data on age of tropical trees are 

scarce, this topic has received increasing attention, with age estimation methods spanning from 

allometric relationships, over counting rings to isotope dating (Lieberman et al. 1985; Fichtler, 

Clark & Worbes 2003; Metcalf et al. 2009). While this much useful data is still not largely 

available, studies monitoring epiphytes information could extend their scope to monitor branches 

(with and without epiphytes). This branch monitoring would provide data on the time of 

occurrence of key events of substrate dynamics, such as formation, diameter growth and fall of 

branches. Hence, monitoring branches since their formation, and thus knowing their age, would 

give the time that these branches had been available for epiphyte colonization. If branches are 

also monitored on the forest floor, a complete appraisal of branch dynamics could provide further 

insights into the role of branch dynamics to epiphyte communities. 

 

Conclusion 

Sampling the forest floor for epiphytes constitutes a fast method that can provide, besides floristic 

data, useful information on epiphyte diversity, community composition and structure, as 

highlighted by the comparisons with canopy data as shown in our Panamanian transects. 

Furthermore, by requiring less work and training efforts as well as being cheaper and safer than 

climbing techniques and canopy cranes, this method can open new avenues for investigations of 

epiphyte demography. This is particularly valuable for the epiphyte community occurring in the 

least accessible, thinnest branches of the canopy.  In this sense, our results confirmed branchfall 

as a main cause of epiphyte fall. This effect poses demographic constraints on epiphyte 

populations by increasing mortality (see also Hietz 1997) and by reducing time for colonization 

and for sexual maturation. Consequently, branchfall acts as a strong demographical filter for 

epiphyte populations. Moreover, branch diameter is a key factor of this demographic filter 

because branchfall decreases with branch diameter. This is truly independent of local forest 

dynamics, making demographic filtering greatest in the thin branches of the canopy. In this highly 
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dynamic environment, only small, stress-tolerant and fast growing species are able to recruit, 

survive and reproduce. Therefore, branchfall seems to play a key role in structuring the spatial 

distribution of epiphytic communities.  
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4.1 Abstract 

In complex tropical forests many different tree species compete for resources in 3D space. To 

understand the processes driving tree growth and forest dynamics, we developed a long-term 

dynamic forest stand model simulating trees as detailed 3D functional-structural tree models 

(FSTMs). The accurate representation of tree structure in FSTMs allows detailed simulations of 

within-tree processes and interactions with the environment, making such models suitable tools 

to explore how 3D tree growth emerges from low-level processes. In addition, complex 

interactions between individual trees at the metamer level can be simulated when integrating 

FSTMs in forest models, which goes beyond modern forest stand models. 

High species numbers and diverse ecological strategies of tropical trees pose a particular 

challenge for dynamic forest models. We expected a correlation between leaf economic and life 

history traits. Important leaf economic traits (e.g. leaf life span, photosynthetic capacity) co-vary 

strongly and variation is largely explained by a single principle axis - the leaf economics spectrum 

(LES). Consequently, tree species in our model are characterized by a set of traits corresponding 

to a specific position on the LES. Applying the principles of the pipe model theory, light-driven 

carbon assimilation and within-tree carbon allocation are coupled, i.e. 3D tree growth is 

essentially driven by leaf scale processes. To investigate the suitability of this approach, we 

compared a large number of emergent patterns at the tree level as well as at the forest level in a 

pattern-oriented modeling framework.  

We found that a species’ set of economic leaf traits determined the maximum height and age of a 

tree, as well as its size-dependent growth rate and shade tolerance, indicating a fundamental 

impact of leaf traits on the life history growth patterns of trees. In addition, many ecological 

patterns at the forest level (e.g. above-ground biomass, basal area, stem number, net-primary 

production and leaf area index) were reproduced, further validating the model and indicating that 

our model adequately simulates structurally realistic forests. The modelling approach presented 

here paves the way for further model-based analyses of 3D forest dynamics, or model-based 

studies of canopy-dwelling organisms requiring a detailed representation of forest structures and 

their dynamics. 

 

4.2 Introduction 

Tropical forests provide valuable social, ecological and economical services to society and play 

an important role in the global carbon cycle (Malhi & Grace 2000; Hassan, Scholes & Ash 2005). 

They are the most species-rich ecosystems harboring more than half of the species on earth 

(Heywood & Watson 1995). In addition to the large number of tree species (ter Steege et al. 
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2013), there are even more plant and animal species that directly or indirectly depend on the 

structure, resources and shelter provided by complex forest canopies (Erwin 1988). Almost 9% 

of all vascular plant species, for instance, live as epiphytes on trees, predominantly in subtropical 

or tropical regions (Zotz 2013). Ongoing deforestation and potential adverse effects of climate 

change thus pose a threat to all species associated with tropical forest systems (Wright 2005). To 

assess the impact of a changing environment on tropical biodiversity, we thus need to understand 

how these forests function and respond to those changes, but also how associated species respond 

to changing forest dynamics. 

There are a number of dynamic forest models available to predict future changes of tropical forests 

and/or to analyze their ecosystem functions. These models differ substantially in the level of detail 

and temporal and spatial resolution. Among these models, dynamic global vegetation models 

focus on large-scale predictions of vegetation dynamics and carbon cycles, but commonly use 

very simplified representations of forest structure (e.g. Cramer et al. 2001; Purves & Pacala 2008). 

At small to medium scales (< 1 ha to > 100 km), forest gap models and forest landscape model 

are applied to simulate forest dynamics and tree species composition (reviewed in Bugmann 

2001). Such models represent forest structure in more detail by including stems and crowns of 

individual trees or cohorts, they consider within-canopy light attenuation and simulate growth of 

and competition among different species or functional types (Köhler & Huth 1998; Tietjen & 

Huth 2006). An even more detailed simulation of tree structure is given in functional-structural 

tree models (FSTMs), in which trees are represented in 3D space by interconnected structural and 

functional units, such as branch segments, leaves, or reproductive organs (Godin & Sinoquet 

2005; Sievänen et al. 2014). These ‘virtual tree’ models allow to model complex, mechanistic 

interactions between tree architecture and physiological processes, for instance the light-

dependent within-tree carbon acquisition and allocation at the meristem level in dynamically 

growing trees (Sterck et al. 2005; Fourcaud et al. 2008). FSTMs are thus suitable tools to explore 

and deepen our understanding of structural tree growth, and a natural next step would be the 

integration of FSTMs in forest stand models. In such models, interactions among trees, 

microclimatic changes and branch dynamics could be simulated in detail at the forest level. Such 

detailed simulations of forest structures and their dynamics would also be useful for model-based 

studies of canopy-dwelling plants and animals (Sarmento Cabral et al. 2015). However, only few 

attempts have been made to couple FSTMs with forest stand models, and these studies focused 

on growth of even-age monocultures over a limited time frame (Feng et al. 2011; Guillemot et al. 

2014). So far, there is no long-term fully-dynamic stand model based on FSTMs including 

demographic processes beyond vegetative growth. 

Developing a fully-dynamic 3D tropical stand model is computationally and conceptually 

challenging. On the one hand, FSTMs are computer intensive due to their complexity, and stand-
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scale FSTMs thus require efficient modelling techniques allowing detailed simulations while 

keeping the simulation time reasonably low. On the other hand, tropical forests pose particular 

challenges to dynamic forest models due to their large number of tree species (ter Steege et al. 

2013; Slik et al. 2015). In contrast to temperate forests, where the low number of well-studied 

tree species allow models to be parameterized at the species level, alternative approaches are 

required. In individual-based tropical forest models, distinct functional groups aggregating tree 

species with similar characteristics are thus usually used (e.g. Köhler & Huth 1998; Tietjen & 

Huth 2006). In the simplest case, only shade-intolerant pioneers and shade-tolerant climax species 

are distinguished (Swaine & Whitmore 1988), but a classification into more groups has also been 

proposed (Gourlet-Fleury et al. 2005; Chazdon et al. 2010). While functional group approaches 

are often useful, they still are a simplification of the continuum from fast growing, short-lived 

pioneer to slow growing, long-lived shade-tolerant species (Denslow 1987; Wright et al. 2003b). 

Similar trade-offs between growth and mortality have also been observed at the leaf scale by 

Wright et al. (2004), who found that many leaf traits co-vary strongly and that this variation is 

largely explained by a single principle axis - the leaf economics spectrum (LES). This spectrum 

runs from leaves with high photosynthetic capacities but low life spans at the one end to leaves 

with low photosynthetic capacities but long life spans at the other end. Hence, a relationship 

between the leaf traits and the whole-tree performance can be assumed, and significant 

relationships were indeed observed for many tropical tree species (Sterck, Poorter & Schieving 

2006; Poorter & Bongers 2006). A trait-based approach should thus be a promising way to 

integrate the different life history strategies of trees into a forest model, obliterating the use of a 

priori functional groups. However, we are not aware of any study in which 3D growth over a 

tree´s entire life span is modelled as an emergent property of the tree´s set of traits. 

In this study, we present a dynamic forest stand model in which each trees is represented as a 3D 

FSTM. This model was developed to simulate the long-term forest dynamics (500-1000 years) at 

the plot scale (~1 ha) with a high degree of detail. Branches are considered up to the second order 

and leaf biomass development is modelled at a resolution of 1 m3, which allows detailed 

simulations of competition for light and space. Tree species are characterized by a set of leaf traits 

under consideration of the between-traits trade-offs and correlations (LES; Wright et al. 2004). 

Using the principles of the pipe model theory (Shinozaki et al. 1964), the light-driven carbon 

assimilation and the within-tree carbon allocation are coupled, i.e. the leaf trade-offs are scaled 

to whole-tree growth. We hypothesize that this trait-based approach captures essential life history 

variations between different species/functional groups with regard to their growth, survival, and 

light demand. In addition, we assume that the long-term dynamics of natural tropical forests can 

be reproduced by coupling the FSTM with a forest stand model, in which the key demographic 

processes and between-tree competition are simulated in a simplistic manner (e.g. only 
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considering competition for light and space, neutral regeneration). Such a model can, on the one 

hand, improve our understanding of how low-level processes (leaf scale) influence pattern at 

higher hierarchical levels (tree and forest scale). On the other hand, by providing the 3D forest 

structure and dynamics, this model can form the basis for future modelling studies of canopy 

dwelling organisms, e.g. vascular epiphytes (see chapter 5). 

 

4.3 Materials and methods 

In this section, we provide the model description of the bottom-up functional-structural forest 

model (FSFM) and details on the parameterization and validation process. 

 

4.3.1 Model description 

The model description follows the ODD (Overview, Design concepts, Details) protocol, which 

was proposed as a standard protocol to communicate agent-based models or large, complex 

models (Grimm et al. 2006, 2010). 

 

4.3.1.1 Purpose 

The FSFM serves two main purposes. On the one hand, it was developed to study the relationship 

between leaf trait trade-offs and life-history variation in trees. Ontogenetic growth patterns, 

maximum height and life-span, as well as the light-dependent growth behavior in our model 

emerge from the tree´s traits, and the model thus allows to compare simulated structural tree 

growth with observations and theoretical expectations. On the other hand, it was developed to 

simulate the long-term dynamics of forest stands at a high level of detail. By combining the trait-

based tree growth model with a simple demographic model, the suitability of our approach can 

also be evaluated at the forest level. Our forest model increases the understanding of bottom-up 

mechanisms controlling forest dynamics, and in addition, it is useful for follow-up model studies 

on canopy-dwelling organisms, which require a detailed 3D representation of forest structure and 

dynamics. 

 

4.3.1.2 Entities, state variables and scales 

This FSFM simulates establishment, growth and mortality of virtual 3D trees at the plot level. 

The spatial and temporal scale of the model can by defined by the user. Here, we simulated forest 

stands between 0.25 and 1 hectare over 500 to 1000 years in annual time steps. The vertical 

extension of the model space is associated with typical maximum tree heights and usually ranges 
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between 50 and 60 m. The entire 3D model space is divided into a regular 3D grid consisting of 

cubic voxels with a side length of 1 m (Fig. 4.1a). This grid defines the spatial resolution of both 

light and leaf area/biomass distribution. Light is the main driver of tree growth and the light 

intensity is calculated for all voxels based on the 3D distribution of leaf area. 

This model comprises three hierarchical levels: tree components, individual trees, and the forest 

stand. Tree components are trunks, branches, apical meristems and leaf compartments (Fig. 4.1b). 

Each tree consists of one erect trunk described by length and diameter. Attached to the trunk are 

branches up to the second order. Branches are defined at two different scales. At the coarse scale, 

branches are described by their total length and diameter, while at the fine scale branches are 

described as a collection of topologically connected smaller branch segments (this multiscale 

approach was chosen to optimize both model speed and visual aspects; see section 4.3.1.7 for 

more details). Located at the end of each trunk or branch, apical meristems sense the local 

environment and are able to control primary growth. Leaf compartments are connected with 

second order branches and are conceptualized as aggregations of leaves within the cubic voxels. 

Besides leaf biomass and area, leaf compartments also comprise the active pipes, i.e. the sapwood, 

connecting the leaves with the roots to support leaf functioning. This means that leaf 

compartments form leaf-pipe elements in accordance with the pipe model theory (Shinozaki et al. 

1964; Fig 4.1b). Each tree component is characterized by a set of state variables including its 3D 

position (Table 4.1). In addition to the absolute 3D position, the topological position within the 

tree of each tree component is also tracked throughout the simulation. Based on this information, 

the 3D structure and internal organization of each tree can be deduced (Fig. 4.1c). Structural tree 

growth is thus the result of addition, removal, and changes in tree components. Aggregation over 

all trees in the community yields the 3D forest structure and dynamics. 

Structural tree growth is driven by the distribution of light and the functional and structural traits 

of trees, which can be understood as intrinsic properties (Table 4.1). While the functional traits 

regulate tree carbon balance depending on the light conditions, the structural traits can be regarded 

as inherent architectural model defining the tree´s structural organization. This includes, for 

instance, branching angles or average internode lengths (see submodel structural growth in 

section 4.3.1.7 for more details). Growth and performance of individual trees are thus closely 

associated with their combination of traits. Some functional trait combinations allow effective 

carbon assimilation under low-light conditions and thus to grow and survive in the dark 

understory, while other trait combinations might be more favorable under high-light conditions. 

Consequently, forest dynamics results from structural growth of individual trees with different 

traits interacting and competing for space and light, whose distribution, in turn, is influenced by 

the forest structure (Fig. 4.1d). 
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Figure 4.1. State variables, scales and visualization. (a) 3D model space. The extent of the model space can be defined 
by the user. The model space is a 3D grid that is subdivided into cubic voxels with a volume of 1 m3 containing the 
information about local leaf biomass and area, as well as, light intensity. (b) Overview of tree components (trunks, 
branches, apical meristems and leaf compartments). Trees consist of a trunk and branches up to the second order which 
are terminated by an apical meristem. Leaf compartments describe the leaf biomass and area within a voxel attached to 
a specific section of a second order branch, as well as the woody pipes connected to these leaves. The length of the 
pipe system depends on the within-tree position. One leaf compartment (green square) and its woody pipe (red line) 
are exemplified. (c) 3D tree visualization. Tree structures are visualized based on the state variables and topology of 
each tree. Several visualization options are integrated in this model (section 4.3.2). Here, the leaf biomass in the leaf 
compartments is displayed by spatial objects imitating ‘real’ leaves. (d) 3D forest visualization. The forest structure 
can be displayed in this model, which allows visual inspections and comparisons with real forests. 
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Table 4.1. State variables, functional and structural traits of the FSFM. Each tree component (trunk, branch, leaf 
compartment, apical meristem) is characterized by a set of state variables. The functional and structural traits describe 
the intrinsic properties of each tree species, and the value ranges of these traits can be defined by the user. These trait 
ranges are thus among the model parameters that are used to calibrate and validate the model. Empirical correlations 
between leaf traits (Wright et al. 2004) are considered in this model (Table 4.2). 

Symbol Description Unit Type 
AB Cross-sectional area of branch cm2 State variable 
AL Leaf area in leaf compartment cm2 State variable 
ALProd Total leaf area produced in leaf compartment cm2 State variable 
AS Cross-sectional area of branch segment cm2 State variable 
AT Cross-sectional area of trunk  cm2 State variable 
BL Leaf biomass in leaf compartment g State variable 
DB Diameter of branch cm State variable 
DS Diameter of branch segment cm State variable 
DT Diameter of trunk cm State variable 
IM Light conditions at apical meristem μmol m-2 s-1 State variable 
LB Length of branch cm State variable 
LP Pipe length of leaf compartment (corrected after apical control) cm State variable 
LPS Pipe length of leaf compartment  cm State variable 
LS Length of branch segment cm State variable 
LT Length of trunk cm State variable 
OB Branch order - State variable 
PBEnd

XYZ End position of branch (in X, Y and Z direction) cm State variable 
PBStart

XYZ Start position of branch (in X, Y and Z direction) cm State variable 
PLC

XYZ Position of leaf compartment (in X, Y and Z direction) cm State variable 
PM

XYZ Position of apical meristem (in X, Y and Z direction) cm State variable 
PSEnd

XYZ End position of branch segment (in X, Y and Z direction) cm State variable 
PSStart

XYZ Start position of branch segment (in X, Y and Z direction) cm State variable 
PT

XY Position of trunk (in X and Y direction) cm State variable 
Gmax Maximum gross photosynthetic rate  g g-1 d-1 Functional trait 
k Light intensity at which the gross photosynthetic rate is half maximal  μmol m-2 s-1 Functional trait 
LL Leaf lifespan d Functional trait 
Nmass Nitrogen concentration % Functional trait 
RL Leaf respiration rate g g-1d-1 Functional trait 
SLA Specific leaf area cm2 g-1 Functional trait 
ρW Wood density g cm-3 Functional trait 
ALProd Maximal leaf area production per leaf compartment cm2 Structural trait 
IT Light intensity threshold regulating apical dominance of SAM μmol m-2 s-1 Structural trait 
k int factor controlling the increase in internode length - Structural trait 
LDB Length-diameter ratio of branches m cm-1 Structural trait 
LDT Length-diameter ratio of trunks m cm-1 Structural trait 
L IBMax Maximal internode length of branches cm Structural trait 
L IBMin Minimal internode length of branches cm Structural trait 
L ITMax Maximal internode length of trunk cm Structural trait 
L ITMin Minimal internode length of trunk cm Structural trait 
PHFO Number of first order branches arranged in a 360° circle - Structural trait 
PRU Pipe-reuse factor - Structural trait 
SF Shortening factor - Structural trait 
STrop Strength of tropism  - Structural trait 
STTrop Stochasticity in tropism strength (STrop); only used if Stochasticity=1 % Structural trait 
STTw Stochasticity in branch growth; only used if Stochasticity=1 % Structural trait 
STαSFO Stochasticity in second  order angle (αSFO); only used if Stochasticity=1 % Structural trait 
STαTFO   Stochasticity in first order angle (αTFO); only used if Stochasticity=1 % Structural trait 
STαTSO Stochasticity in first order angle (αTSO); only used if Stochasticity=1 % Structural trait 
αSFO Angle between first order branches and trunk from side view ° Structural trait 
αTFO Angle between first order branches from top view ° Structural trait 
αTSO Angle between second  order branches and first order branches from top 

 

° Structural trait 
βD Maximum relative increase in height growth when the IM < IT - Structural trait 
βS Shape parameter regulating apical dominance of trunk apical meristem -  Structural trait 
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4.3.1.3 Process overview and scheduling 

At the beginning of each simulation, a species pool with a defined number of tree species is 

generated. Each species has a unique identifier and is characterized by a set of functional and 

structural traits (Table 4.1). We assume that the structural traits are uncorrelated, and these traits 

are randomly selected from user-defined ranges. In contrast, for functional leaf traits, we consider 

the strong between-trait correlations (Wright et al. 2004; Marino, Aqil & Shipley 2010; more 

details in section 4.3.1.5). After this initialization, light distribution, tree establishment, tree 

growth, and tree mortality are simulated successively in annual time steps (Fig. 4.2).  

The 3D distribution of light intensity is calculated via the Lambert-Beer light extinction law based 

on the distribution of leaf area. Subsequently, the establishment of tree seedlings is simulated as 

a neutral process, i.e. the forest floor is regarded as seed bank containing equal numbers of seeds 

of all tree species. Depending on an average area-based establishment rate, a certain number of 

new seedlings is initialized at random positions within the model area. Each seedling is randomly 

assigned to a species from the species pool. After this neutral germination, seedlings of species 

with unsuitable traits may die immediately within the current time step due to carbon starvation.  

Tree growth is simulated in three subsequent submodels: i) apical control/dominance, ii) carbon 

balance, iii) structural growth (Fig. 4.2): i) controlled by hormones, carbon allocation to apical 

meristem can either be inhibited (apical control) or intensified (apical dominance; Wilson 2000). 

These processes control how much of the carbon assimilated by photosynthesis is invested into 

primary growth of branches and the trunk. In this model, apical control is simulated for branches. 

Branches inhibit carbon allocation to primary growth when branch apical meristems are either 

deeply shaded, i.e. if the carbon balance under the given light conditions at the meristem is 

negative, or when branches from other trees grow in the immediate vicinity. By this, competition 

for light and space is simulated at the branch level. In contrast, apical dominance is simulated for 

trunks, i.e. carbon allocation to trunk apical meristems is intensified under shade as a mechanism 

to quickly reach higher, potentially less shaded zones (Poorter 1999; Poorter et al. 2011). 

Naturally, by influencing the within-tree carbon allocation, the processes of apical 

dominance/control affect local carbon balance, which is simulated in the second step. ii) Local 

carbon balance corresponds to the carbon balance at the level of leaf compartments. Apart from 

the carbon assimilated by leaf compartments and allocated to primary growth, leaf compartments 

act independently from each other and directly respond to the local light conditions. This means 

that no carbon flow is assumed between leaf compartments, and thus the assimilated carbon is 

locally reinvested into biomass of new leaves and connected pipes. Leaves are the 

photosynthetically active organs, but both leaves and pipes incur respiration costs. The annual 

leaf biomass production and the annual change in leaf biomass in each leaf compartment are thus 
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important results of the carbon balance submodel. Due to the leaf-pipe connection, these results 

are directly linked to secondary growth of branches and trunks. iii) Structural growth is an 

immediate result of the carbon balance submodel. It comprises secondary, but also primary 

growth, which, in turn, is calculated based on secondary growth using species-specific allometric 

relationships between height and diameter. Primary growth causes the establishment of new 

apical branch segments and often new lateral branch segments, which might be associated with 

new leaf compartments and apical meristems. In addition, trees may also shed branches, for 

instance after losing all photosynthetically active leaf compartments, and this is simulated in the 

final step of the structural growth submodel. 

At the end of each simulation step, tree mortality is simulated. Trees die due to carbon starvation 

when they have lost all leaf compartments. In addition, we integrated a biomass-dependent 

mortality rate according to metabolic theory of ecology (Brown et al. 2004). This rate accounts 

for processes which are not explicitly simulated (e.g. herbivory, pathogens) and assumes that the 

chance of survival increases non-linearly with total tree biomass. Gap dynamics are also an 

important mechanism in tropical forests (Brokaw 1985). Falling dead trees may kill surrounding 

trees and create gaps, and thus we also integrated the option to model this.  

After each of the processes illustrated in Fig. 4.2 the state variables of all trees components are 

updated synchronously.  

 

Figure 4.2. Flowchart of the forest model. After initialization, light distribution, tree establishment, growth and 
mortality are simulated consecutively in each annual time step. Tree growth is the most complex process and thus split 
into three submodels: apical control, carbon balance and structural growth. Details on all submodels are provided in 
section 4.3.1.7. 



4. Functional-structural forest model 

60 
 

4.3.1.4 Design concepts 

Basic principles 

Carbon assimilation and allocation are the key processes in functional-structural tree and forest 

models. In our model, these processes are simulated based on the principles of the leaf economics 

spectrum (Wright et al. 2004), the pipe model theory (Shinozaki et al. 1964), and the principles 

of module autonomy (Sprugel, Hinckley & Schaap 1991). The LES quantifies relationships 

between crucial leaf economic traits, such as SLA, leaf lifespan or mass-based photosynthetic 

capacity. These leaf traits co-vary strongly and, in multidimensional trait space, the vast majority 

of variation is explained by a single principle axis (Wright et al. 2004). This axis can be 

considered as spectrum, ranging from leaves with low SLA values, low photosynthetic capacities, 

and respiration rates, but long leaf lifespans, to leaves with high SLA values, high photosynthetic 

capacities and respiration rates, but short leaf lifespans. The position on this spectrum thus has a 

direct influence on potential carbon assimilation and re-allocation at the leaf level. Furthermore, 

Marino, Aqil & Shipley (2010) observed that not only photosynthetic capacity, but also entire 

photosynthetic light-response curves can be predicted from the leaf traits of the LES. With this 

information, the carbon balance at the leaf level under varying light conditions can thus be 

simulated based on the specific leaf trait combination described by the position at the LES. 

However, the carbon assimilated by the leaves may be allocated among different tree parts, i.e. it 

may be invested into new leaves or branches at different within-tree positions. In this model, the 

within-tree carbon allocation is based mainly on the principles of module autonomy (Sprugel et 

al. 1991) and the pipe model theory (Shinozaki et al. 1964). The principles of module autonomy 

state that different parts of the tree may be regarded as autonomous modules whose carbon 

balance is independent of that of other modules. In our model, leaf compartments are these 

autonomous modules, which assimilate carbon based on their leaf traits and the local light 

intensity, and re-invest assimilates locally (Only a small exception from this rule is allowed in 

our model, as a small part of the assimilates in each leaf compartment is allocated for primary 

growth of the corresponding branch. There is, however, no carbon flow among leaf 

compartments). Local re-investment means investments in leaf biomass within the leaf 

compartment which, however, are coupled with investments in connected woody pipes. In other 

words, for each new unit of leaf biomass an equivalent unit of pipes connecting leaves and roots 

has to be established, whereby the within-tree position of a leaf compartment determines the 

carbon costs for the pipes. New active pipes form the sapwood, which is equivalent to secondary 

or primary growth of branches and the trunk. By considering all leaf compartments of a tree, the 

whole-tree carbon balance and resulting structural growth can thus sufficiently be simulated based 

on the principles described above. 
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Emergence 

Each tree is characterized by a set of traits, and structural tree growth, i.e. development, addition 

and removal of tree components, is a direct result of the interplay between these traits and light 

conditions. Hence, tree growth and tree mortality emerge from the traits of a tree. Some trait 

combinations might be unsuitable under low-light conditions and thus lead to carbon-based 

starvation. However, even under optimal conditions, each tree in the model will inevitably die at 

some point in time because it has lost all its photosynthetically-active parts. This is because the 

maximum height of each tree also emerges from its traits. When a tree grows close to its maximum 

height it will enter senescence, which is characterized by the reduction of active meristems 

ultimately leading to the loss of all leaves (for more details see submodel structural growth in in 

section 4.3.1.7). Consequently, all crucial processes over the entire life cycle, as well as life 

expectancy itself, emerge directly from the functional and structural traits characterizing an 

individual tree.  

While forest structure is the result of the growth of interacting and competing trees with different 

traits, community dynamics emerges from the trait-based mechanism at the tree level, as well as 

from tree establishment and additional source of tree mortality. The establishment rate defines 

how many new recruits enter the community, and different tree mortality rates are integrated to 

account for additional sources of mortality not captured by the FSTM. 

 

Adaptation/Sensing 

In this model, the interplay between the invariable functional and structural traits of trees and the 

dynamic environment determines their growth, but trees cannot adapt their traits to the 

environment. In reality, trait adaptations in response to environmental conditions may be observed 

within individuals. For instance, traits of sun and shade leaves might differ (Rozendaal et al. 2006; 

Markesteijn et al. 2007). However, in this model approach, we were more interested in 

interspecific trait differences than in trait differences within individuals  

While adaptation and fitness-seeking of individual trees is not modelled explicitly at the trait 

level, we integrated two mechanisms controlling the primary growth of branches and trunks in 

dependence on the light conditions. The apical branch and trunk meristems sense their 

environment and, on this basis, either inhibit or intensify carbon allocation to the apical 

meristems. For branches, carbon allocation and thus primary growth is inhibited if the apical 

meristem senses insufficient light conditions or branches from neighboring trees in the immediate 

vicinity. This prevents carbon investments in tree parts with potentially low photosynthetic 

revenue. For trunks, primary growth is intensified under shade to reach higher, potentially less 
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shaded zones faster. These apical control mechanisms can be understood as adaptation to the 

environment which may improve the fitness of the individuals. 

 

Interaction 

Both indirect and direct interactions among individuals are simulated. As the 3D light distribution 

is determined by the 3D leaf distribution in the community, competition for light is modelled as 

indirect interaction among the individuals. In contrast, crown development is directly influenced 

by competition for space between neighboring trees, because if trees sense tree components from 

neighboring trees in their immediate vicinity, they stop carbon allocation to this area. In addition, 

we integrated an option to simulate a direct feedback of falling trees on the mortality of 

neighboring trees, i.e. gap formation. 

 

Stochasticity 

The species pool containing the trait information of all local tree species is randomly drawn from 

user-defined ranges or estimated based on established between-trait correlations according to the 

LES (Wright et al. 2004). Tree establishment and mortality are also stochastic. The number of 

new seedlings at each time step can either be defined as a fixed value or as a range, from which 

the actual number is randomly chosen. Each new seedling is randomly distributed over the model 

area and a random species identity is assigned to it. Apart from trait-based cause of mortality (e.g. 

carbon starvation), we additionally integrated stochastic mortality: based on its current biomass 

the mortality probability for each individual is estimated, and the decision whether to live or die 

is based on randomly drawn numbers. This additional mortality term covers sources of mortality 

which are not captured by the FSTM, such as infections by pathogens or excessive herbivory. 

Furthermore, if gap formation is simulated, trees die with a certain probability if large trees die 

nearby. 

While the carbon balance of each individual tree is deterministic, the user can define if structural 

growth should be deterministic or stochastic. Deterministic structural growth means that trees 

strictly follow their structural model defined by their traits, i.e. branching angles are invariable 

and branches grow straight. Alternatively, stochastic structural growth can be switched on. In this 

case, individuals may randomly deviate from their regular structural growth within defined ranges 

and, as a consequence, branches grow irregularly. Choosing the stochastic structural growth 

model generates trees with a more natural and realistic appearance. 
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Observation 

Emergent results can be monitored and saved at any hierarchical level (community, individuals, 

and tree components) at each time step from an omniscient perspective. Results at the community 

level include both stand variables and rates, such as the total above-ground biomass, the number 

of trees, total mortality rates or the net primary production. At the level of individual trees, 

aggregated variable such as the total tree height, crown width or height at first branching are 

recorded, while at the lowest hierarchical level, the state variables of all tree components are 

monitored (Table 4.1). As the amount of data at the low hierarchical levels can be enormous (a 1 

ha plot may consist of several million tree components), we integrated the opportunity to select 

the time intervals at which the different model results are saved. Additionally, the graphical 

display of the simulated forest can be saved at each time step. More details on model outputs and 

options for customization are provided after the model description. 

 

4.3.1.5 Initialization 

At the beginning of each simulation, a 3D grid space is initialized, whose spatial extent is defined 

by the parameters MaxX, MaxY, MaxZ and LCor. MaxX and MaxY define the core area in which 

trees can root, while LCor defines the width of the corridor surrounding the core area in which 

trees may expand their crowns (Fig. 4.3). Cubic voxels of the grid space have a side length of LV 

and are clustered as 3D matrix (Fig. 4.1a). As the model space is initially empty, the total leaf 

area in all voxels is zero and thus the light intensity is at the global maximum Imax. 

In addition, the species pool containing the trait information of nSpec species is initialized. For this 

purpose, the values of all structural traits for all species (Table 4.1) are randomly drawn from 

uniform distributions, whose minimum and maximum values are user-defined. In contrast, only 

two main functional traits characterizing the wood density (ρW) and the specific leaf area (SLA) 

are randomly drawn from uniform distributions with natural trait ranges. The additional functional 

traits are estimated based on correlations with these traits (Table 4.2) These correlations account 

for inevitable trade-offs and thus the sets of species-specific leaf traits represent natural trait 

combinations.  
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Figure 4.3. Top view on the model area. The core area in which trees can root is depicted in dark grey, the corridor in 
which trees may expand their crowns in light grey.  

 

Table 4.2. Correlations between functional traits. The wood density ρW and the specific leaf area SLA are the only 
traits which are freely chosen from defined ranges for each species. The leaf life span LL and foliar nitrogen 
concentration Nmass are determined based on correlations with SLA following Wright et al. (2004). RL, Gmax and k are 
parameters of a hyperbolic Michaelis-Menten function determining the light response. Marino et al. (2010) found that 
these parameters are significantly correlated with the SLA and Nmass.  

Trait Description Trait value Reference 

SLA Specific leaf area Randomly selected from defined ranges 
Wright et al. (2005); 

Patiño et al. (2012) 

ρW Wood density Randomly selected from defined ranges 
Patiño et al. (2009); 

Quesada et al. (2012) 

LL Leaf lifespan 𝐿𝐿𝐿𝐿 = 30 ∙ 10−1.294+1.108∙log�10000𝑆𝑆𝑆𝑆𝑆𝑆 � Wright et al. (2004) 

Nmass Foliar nitrogen concentration 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 101.415−0.590∙log�10000𝑆𝑆𝑆𝑆𝑆𝑆 � Wright et al. (2004) 

RL Leaf respiration rate 𝑅𝑅𝐿𝐿 = 103.06−1.01∙log�10000𝑆𝑆𝑆𝑆𝑆𝑆 � Marino et al. (2010) 

Gmax Maximum gross photosynthetic rate 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 = 103.71+0.47∙log(𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)−0.85∙log�10000𝑆𝑆𝑆𝑆𝑆𝑆 � Marino et al. (2010) 

k Light intensity at which the gross 
photosynthetic rate is half maximal 𝑘𝑘𝐿𝐿 = 101.61−0.32∙log�10000𝑆𝑆𝑆𝑆𝑆𝑆 � Marino et al. (2010) 

 

 

4.3.1.6 Input 

The model does not use input data to represent time-varying processes. 
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4.3.1.7 Submodels 

In this section all submodels (light distribution, tree establishment, tree growth, tree mortality; 

Fig. 4.2) are described in detail and chronologically. A list of all symbols, including explanations 

and units, is provided as Supplementary Table C.1. 

 

Light distribution 
The 3D light environment is calculated based on the 3D leaf distribution. At first, the total leaf 

area in each voxel ALTo t
XYZ is estimated based on the leaf area of leaf compartments within the 

particular voxel AL
XYZ. 

𝐴𝐴𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑋𝑋𝑋𝑋𝑋𝑋 = �𝐴𝐴𝐿𝐿𝑋𝑋𝑋𝑋𝑋𝑋 (4.1) 

 

Note that superscripts are used to indicate 3D positions. Second, based on the sum of ALTo t
XYZ in 

all voxels above the specified voxel, the leaf area index LAIXYZ for each voxel is calculated. 

𝐿𝐿𝐿𝐿𝐿𝐿𝑋𝑋𝑋𝑋𝑋𝑋 =
∑ 𝐴𝐴𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑋𝑋𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑧𝑧

𝐿𝐿𝑉𝑉2
 (4.2) 

 

where LV is the side length of a voxel. Assuming a Lambert-Beer extinction law, the single-

column light intensity ISC
XYZ

 is calculated based on LAIXYZ. 

𝐼𝐼𝑆𝑆𝑆𝑆𝑋𝑋𝑋𝑋𝑋𝑋 = 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 𝑒𝑒−(𝑘𝑘𝐿𝐿∙𝐿𝐿𝐿𝐿𝐿𝐿𝑋𝑋𝑋𝑋𝑋𝑋) (4.3) 
 

where Imax is the light intensity above the canopy and kL the light extinction coefficient. This 

method assumes that solar radiation only penetrates directly from above and disregards additional 

processes like light reflection. This is an oversimplification, particularly in such heterogeneous 

forests as simulated here. To get a more realistic estimation of the average, effective light intensity 

within a voxel IXYZ, the single column light intensity ISC
XYZ in the voxels surrounding the focal 

voxel in x and y direction are additionally taken into account. The number of surrounding voxels 

considered depends on the parameter LR which defines how many rectangular rings around the 

focal voxel are considered (Fig. 4.4). For each considered voxel, the relative contribution CXYZ is 

calculated, with ΣCXYZ=1. The parameter CXYZ thus defines how strong ISC
XYZ in each voxel 

contributes to IXYZ and three different methods to calculate CXYZ defined by the parameter LightC 

can be applied: either (1) all voxels or (2) all rings contribute equally, or (3) the contribution of 
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each voxel decays exponentially with distance from the focal voxel. On this basis, IXYZ is 

calculated as  

𝐼𝐼𝑋𝑋𝑋𝑋𝑋𝑋 = � � 𝐼𝐼𝑆𝑆𝑆𝑆𝑋𝑋𝑋𝑋𝑋𝑋
𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚

𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚

𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚

𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚

∙ 𝐶𝐶𝑋𝑋𝑋𝑋𝑋𝑋 (4.4) 

 

where Xmin=X-LR and Xmax=X+LR (likewise for Y; Fig. 4.4).  

 

 

Figure 4.4. Illustration of voxels considered in calculation of effective light intensity. The light range LR defines how 
many rectangular rings of voxels (colored in grey shades) around the focal voxel (black) are considered. For each voxel 
(including the focal voxel), the relative contribution of the single-column light intensity to the effective light intensity 
of the focal voxel is calculated based on LightC. This parameter specifies whether each voxel or each ring contributes 
equally, or whether the contribution of each ring decreases exponentially with distance from the focal voxel. Adjacent 
voxels are only considered in X and Y direction, and not in Z direction. 

 

As trees can only root in the core area but expand their crowns in the corridor, the total leaf area 

ALTot
XYZ decreases with distance from the forest edge, what increases the single-column light 

intensity ISC
XYZ at the corridor. Consequently, the effective light intensity IXYZ also increases in 

the corridor or in the core area near the corridor. Such a pattern would resemble the light 

distribution in small forest fragments, whose edges permit light penetration. Because we were 

interested in also simulating pure forest core conditions, we integrated the possibility to choose 

between two options: small forest fragment (EdgeC = 1) or forest core (EdgeC = 0). In the latter 

case, IXYZ would not be reasonably estimated in the vicinity of the edges of the model area and 

thus, periodic boundary conditions are applied. This means that the forest matrix surrounding the 

core area is similar to the forest in the core area and thus, before applying Eq. 4.4, the single-
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column light conditions ISC
XYZ calculated inside the core model are copied to the corridor in such 

a way that the conditions in the corridor resemble the conditions at the opposite side of the core 

area (Fig. 4.5). When the focal voxel for which IXYZ is to be calculated is located near the edge of 

the entire model area (e.g. see voxel X2 in Fig. 4.5), not all adjacent voxels within the distance 

defined by LR may exist. In this case, if periodic boundaries are specified, ISC
XYZ for these voxels 

can be obtained by strictly following the principles of periodic boundaries (Fig. 4.5). If real edge 

conditions are specified, ISC
XYZ for these voxels are obtained by mirroring ISC

XYZ at the outer 

border. 

 

 

Figure 4.5. Illustration of principles applied when a small forest fragment (EdgeC=1) or a forest stand within a larger 
forest matrix (EdgeC=0) is simulated. The graph on the left side illustrates typical single-column light conditions for 
one horizontal voxel layer (darker colors represent lower light intensities). As tree only germinate within the core area, 
the single-column light conditions within the core area are typically higher compared to the corridor. If a small forest 
fragment (EdgeC=1) is simulated, the higher light intensity values in the corridor are used to calculate the effective 
light intensity (bottom right panel). When, as it is the case for the voxel X2*, not all surrounding voxel within LR (see 
Fig. 4.4) exists, voxel from inside are mirrored at the outer border and considered in light calculations. If a forest stand 
within a larger forest (EdgeC=0) is simulated, the single-column light conditions of the core area are first copied to the 
corridor before the effective light intensity is calculated (indicated by the blue arrows in top right panel; periodic 
boundary conditions). 

 

Tree establishment 
Establishment is simulated as a neutral process, i.e. all species have the same probability of 

establishment. New seedlings are randomly distributed over the core model area (spatial 

resolution: 1 cm), whereby the total number of seedlings is controlled by the area-based 

establishment rate nSeed. This rate can either be defined as a constant, or as a range from which 
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the number of seedlings is randomly drawn at each time step. A randomly selected species ID 

from the species pool is assigned to each seedling, which is then initialized with the species-

specific functional and structural traits (Table 4.1). 

A seedling consists of a trunk with an apical meristem and an associated leaf compartment. Note 

that only at this seedling stage, leaf compartments are associated with the trunk. Thereafter leaf 

compartments are always associated with second order branches. The initial trunk diameter is 

given by Dini. Because species differ in their intrinsic height-diameter relationships, the initial 

height is calculated based on Dini according to Eq. 4.6. Due to the relationship between leaf area 

and cross-sectional area of active pipes (Shinozaki et al. 1964), the initial leaf area is coupled to 

D ini (Eq. 4.52). Consequently, all seedlings start with a leaf compartment with equal initial leaf 

area AL, but due to difference in SLA, the initial leaf biomass BL differs among species.  

 

Tree growth 

Simulating tree growth using carbon-based FSTMs involves calculating carbon assimilation and 

allocation. Whereas the process of carbon assimilation is well-understood, the process of carbon 

allocation among different tree organs/components is debated (Lacointe 2000; Franklin et al. 

2012). Several approaches to simulate carbon allocation have been proposed (Allen, 

Prusinkiewicz & DeJong 2005; Franklin et al. 2012; Mäkelä 2012). Here, we largely follow the 

principles of module autonomy, which state that plants are composed of repetitive modules which 

respond independently to their local environment (Sprugel et al. 1991; de Kroon et al. 2005). 

Hence, the assimilated carbon is reinvested locally into production of new leaves and branches 

(Sprugel et al. 1991). If light is unevenly distributed within canopies, module autonomy will 

create irregular tree crowns where the leaf biomass is mostly located in favorable, bright regions, 

which is a pattern often observed in nature. 

In this model, the leaf compartments are the independent modules. Leaf compartments represent 

leaf-pipe elements attached to second order branches. While simulating the development of leaf 

compartments, all crucial processes (i.e. carbon assimilation, respiration, re-investment of surplus 

carbon) for both leaves and attached pipes are considered. Consequently, secondary growth of 

branches and the trunk emerge from the development of all connected leaf compartments. While 

secondary growth up to most distal branch junctions can sufficiently be simulated applying 

module autonomy in this model, the costs for primary growth are not explicitly accounted for. To 

account for theses carbon costs, leaf compartments would have to allocate a certain amount to the 

apical meristems for primary growth instead of re-investing it locally. This, however, means that 

leaf compartments cannot act as perfectly autonomous modules. Instead, a set of rules regulating 
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carbon allocation among the different potential carbon sinks needs to be defined, which leads 

back to the initially stated problem concerning carbon allocation modelling methods. 

Apart from the uncertainty which method to choose, carbon allocation models are commonly 

complex and thus computationally costly (Franklin et al. 2012). As model speed is a major 

constraint in this model, we chose not to use complex methods (e.g. maximization or optimization 

methods), but rather to simulate the carbon allocation to primary growth using a simple 

approximation method which largely keeps the autonomy of the leaf compartments. This means 

that we approximated the costs for primary growth based on the growth during the previous year 

and distribute these costs among all connected leaf compartments. We regard this approximation 

method as suitable trade-off between complexity and model speed, but in some situations this 

might not be appropriate. For instance, primary growth of branches predicted based on previous 

year growth might be overestimated if a branch collides with the crown of an adjacent tree or if 

its apical meristem is heavily shaded. In such situation, the apical meristem would commonly 

send the signal to cease or reduce carbon allocation for primary growth of this branch (King 1991; 

Stoll & Schmid 1998; Wilson 2000).  

Thus, we integrated control mechanisms regulating primary growth based on the conditions of 

apical meristems (apical dominance/control). The carbon costs for primary growth according to 

these described approximation methods are estimated in the first submodel (apical control) in tree 

growth. For the sake of clarity, this step only approximates the costs that each leaf compartment 

contributes to primary growth, and not the actual primary growth, which is simulated thereafter. 

The relative costs for primary growth are usually small compared to the costs for new leaves and 

secondary growth and thus, approximating these costs seems sufficient. In the second submodel, 

the carbon balance of all leaf compartments is calculated. This includes carbon assimilation, 

maintenance, and re-investment into new leaf and woody biomass. The change in leaf 

area/biomass and the leaf area/biomass production results from these processes. Secondary 

growth resulting from the carbon balance of all connected leaf compartments, as well as primary 

growth of all branches and the trunk is simulated in the submodel structural growth. 

Apical control 

Each leaf compartment forms a leaf-pipe element whose pipe length LP S is calculated based on 

the relative position of the leaf compartment in the tree. 

𝐿𝐿𝑃𝑃𝑃𝑃 = 𝑃𝑃𝐿𝐿𝐿𝐿𝑍𝑍 + �(𝑃𝑃𝐿𝐿𝐿𝐿𝑋𝑋 − 𝑃𝑃𝑇𝑇𝑋𝑋)2 + (𝑃𝑃𝐿𝐿𝐿𝐿𝑌𝑌 − 𝑃𝑃𝑇𝑇𝑌𝑌)2 (4.5) 
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where PLC
X, PLC

Y and PLC
Z are the spatial coordinates (centroids) of the leaf compartment, and 

PT
X and PT

Y are the coordinates of the trunk (we selected this simple method to approximate LPS 

for reasons of efficiency; calculating LPS based on the tree topology requires graph queries in 

GroIMP, which are computationally demanding). By controlling the maintenance and 

construction cost of pipes, LPS influences the carbon balance of a leaf compartment. Now, we 

assume that not the entire carbon assimilated by a leaf compartment is locally re-invested, but 

that a certain proportion is allocated to the apical meristem of the connected first order branch 

and the trunk for primary growth. These additional costs for primary growth are taken into account 

by increasing the pipe length according to the predicted, potential length growth of the trunk and 

the first order branch. To predict the potential length growth in the current time step, we assume 

that the diameter increase equals the diameter increase in the previous year. On the basis of 

allometric relationships, the potential length increase can then be predicted: 

𝐿𝐿𝑇𝑇 = 100 ∙ 𝐿𝐿𝐿𝐿𝑇𝑇 ∙ 𝐷𝐷𝑇𝑇
2
3�  (4.6) 

𝐿𝐿𝐵𝐵 = 100 ∙ 𝐿𝐿𝐿𝐿𝐵𝐵 ∙ 𝑆𝑆𝐹𝐹𝑂𝑂𝐵𝐵 ∙ 𝐷𝐷𝐵𝐵
2
3�  (4.7) 

 

where LT, LB is the length and DT, DB is the diameter of trunks and branches, respectively. LDB 

and LDT are species-specific allometric shape parameter, with higher values representing more 

slender trunks or branches, and SF is a species-specific factor regulating the shortening of 

branches with their order OB (SF  < 1). The factor 100 converts m to cm as in such allometric 

relationships the diameter is generally given in cm and the length in m. These allometric 

relationships are based on McMahon (1971), who described that the critical length LCr for 

buckling is proportional to the diameter D raised to the 2/3 power. 

𝐿𝐿𝐶𝐶𝐶𝐶 = 100 ∙ 𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶 ∙ 𝐷𝐷
2
3� = 100 ∙ 4.39 ∙ 𝐷𝐷2 3�  (4.8) 

 

where LDCr is the critical allometric shape parameter. This parameter is influenced by the ratio 

between wood density and elastic modulus, which is fairly constant in green wood, with the 

estimated values of LDCr=4.39 being regarded as upper limit across many tree species (McMahon 

1971). Trees species commonly include stability safety factors, meaning that they grow below the 

critical length and hence LDB and LDT < LDCr. 

Based on Eqs. 4.6 and 4.7, the potential length increase can be predicted, but assuming that trunks 

and branches always grow according to allometric relationships might be too simplistic. 

Controlled by hormones, the allocation of carbon to apical meristems can either be inhibited 

(apical control; Wilson 2000) or intensified (apical dominance; Cline 1997), which modifies the 
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shape of branches/trunks substantially. For instance, trees often intensify carbon allocation to the 

trunk apical meristem when they are shaded, most likely to quickly reach higher zones with more 

light (Poorter 1999). This process leads to more slender trunks. In contrast, branches commonly 

inhibit primary growth when their apical meristem is shaded or when branches collide. To account 

for these processes, we integrated additional mechanisms controlling the potential length increase. 

For trunks, we assume that intensified carbon allocation to the trunk apical meristem is initiated 

when the light intensity at the apical meristem IM is below a species-specific threshold IT. The 

relative intensification in height growth Linc (compared to the regular allometric growth) is 

implemented as function of the light intensity. 

𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 = β𝐷𝐷 ∙ 𝑒𝑒
−�𝐼𝐼𝑀𝑀𝐼𝐼𝑇𝑇

�
β𝑆𝑆

 (4.9) 

 

where βS defines the shape of the function and βD is the maximum relative deviation. When 

considering Linc, the potential length increase of the trunk ΔLTPotRg is calculated as 

∆𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐿𝐿𝐿𝐿𝑇𝑇 ∙ ��2 ∙ 𝐷𝐷𝑇𝑇(𝑦𝑦0) − 𝐷𝐷𝑇𝑇(𝑦𝑦−1)�
2
3� − �𝐷𝐷𝑇𝑇(𝑦𝑦0)�

2
3� � ∙ (1 + 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖)  (4.10) 

 

where DT(y0) and DT(y-1) are the diameter at the beginning of the current time step and at the 

beginning of the previous time step, respectively. Continued apical dominance might lead to 

slender trunks which could potentially exceed the critical length (Eq. 4.8). Thus, the potential 

length increase up to the critical length ΔLTPotCr is additionally estimated.  

∆𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶 ∙ �2 ∙ 𝐷𝐷𝑇𝑇(𝑦𝑦0) − 𝐷𝐷𝑇𝑇(𝑦𝑦−1)�
2
3� − 𝐿𝐿𝑇𝑇(𝑦𝑦0)  (4.11) 

 

where LT(y0) is the length of the trunk at the beginning of the current time step. Each species has 

a maximum height LTMax resulting from its functional traits (Eqs. 4.42 and 4.43), which 

additionally limits the potential length increase. The potential length increase up to the maximum 

height ΔLTPotMax is calculated as  

∆𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 𝐿𝐿𝑇𝑇(𝑡𝑡)  (4.12) 
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Consequently, the effective potential length increase of the trunk ΔLTPot is the minimum of these 

three variables. 

∆𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = min (∆𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ,∆𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ,∆𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)  (4.13) 
 

For first order branches, we integrated two mechanisms regulating their potential length increase. 

First, branches stop to grow in length if the light intensity at the apical meristem is not sufficient 

to allow positive growth, i.e. if the photosynthetic rate GRPot<0 (see next section). Second, 

branches stop to grow in length if adjacent trees grow in the immediate surroundings, i.e. it is 

tested if there are any tree components from other trees in the same voxel as the apical meristem 

(this mechanism can be disabled by setting the global parameter BrCollide=0). In both cases, the 

potential length increase of branches is set to ΔLBPot=0. This means that branches may stop 

growing in length while continuing to grow in diameter, and thus they might deviate from their 

regular allometric relationship (Eq. 4.7). If, after a period of apical control, primary growth would 

be reactivated, for instance by more favorable light conditions, length increase would not be 

appropriately simulated based on Eq. 4.7, as branches could show an unrealistically huge increase 

in length in one time step. Thus, the potential length increase of branches ΔLBPot, when not limited 

by low light or adjacent trees, is calculated as 

∆𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝐿𝐿𝐿𝐿𝐵𝐵 ∙ 𝑆𝑆𝐹𝐹𝑂𝑂𝐵𝐵 ∙ ��2 ∙ 𝐷𝐷𝐵𝐵(𝑦𝑦0) − 𝐷𝐷𝐵𝐵(𝑦𝑦−1)�
2
3� − �𝐷𝐷𝐵𝐵(𝑦𝑦0)�

2
3� � 

 
(4.14) 

This assumes that the increase in length at a given diameter can be approximated by the length 

increase if the branch would strictly have grown according to its regular allometric growth routine.  

After the potential length increase of the first order branch and trunk associated with a leaf 

compartment has been calculated, the effective pipe length LP of each leaf compartment is updated 

accordingly 

𝐿𝐿𝑃𝑃 = 𝐿𝐿𝑃𝑃𝑃𝑃 + ∆𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇+∆𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (4.15) 
 

The effective pipe length LP thus includes the pipe length of the leaf compartment according to 

its position within the tree plus the potential length increase of its associated first order branch 

ΔLBPot and trunk ΔLTPot.  
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Carbon balance 

This submodel simulates the carbon balance of all leaf compartments, which includes carbon 

assimilation and respiration, as well as loss of and investment into new biomass. When carbon 

assimilation exceeds the respiration/maintenance cost for leaves and connected pipes, the surplus 

carbon is invested into new leaf and pipe biomass. The sum of all leaf compartments of a tree 

comprises its total leaf and sapwood biomass. 

To understand this submodel, we distinguish differences between voxels and leaf compartments. 

Voxels are not associated with any tree parts and contain aggregated information like the average 

light intensity (Eq. 4.4) or the total leaf area of all leaf compartments in the voxel (Eq. 4.1). If a 

new second order branch is generated within a voxel, a new leaf compartment is generated, which 

means that within the same voxel multiple leaf compartments may exit. Likewise, if a second 

order branch grows into a new voxel, a new leaf compartment is generated, which means that a 

leaf compartment is always associated with a specific part of a second order branch and 

consequently, each branch may have multiple leaf compartments. 

While the model proceeds in annual time steps, many processes take place at shorter time 

intervals. For instance, new leaves may be produced, which by increasing the photosynthetically 

active area positively influence the annual carbon balance. To better account for these effects, our 

model considers daily rates and simulates the development of the leaf compartments during one 

year. The annual rates are then estimated as the result of these simulations after tyear=360 days. 

An additional advantage of this approach is that seasonal forests can be simulated by reducing 

tyear. 

Each leaf compartment contains leaves whose leaf dry mass BL and leaf area AL can be mutually 

converted via the species-specific SLA. 

𝐴𝐴𝐿𝐿 = 𝐵𝐵𝐿𝐿 ∙ 𝑆𝑆𝑆𝑆𝑆𝑆 (4.16) 
 

Leaves are the photosynthetically active organs and the gross carbon assimilation rate per unit of 

leaf dry mass Cgross is calculated as hyperbolic Michaelis-Menten function. 

𝐶𝐶𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 =
𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 𝐼𝐼
𝑘𝑘 + 𝐼𝐼

∙ 𝑆𝑆𝑆𝑆 (4.17) 

 

where I is the light intensity at the leaf compartment (superscripts depicting spatial coordinates 

are not explicitly given here), and Gmax and k are species-specific traits (Table 4.1). The site index 

SI [0, 1] describes the relative environmental quality of the site and can be understood as 
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aggregated information on all extrinsic factors which are not explicitly simulated in our model, 

e.g. nutrient, water availability or temperature. A SI of 1 thus refers to optimum external factors 

and no resource limitation. 

Maintenance costs have to be paid for both the leaves (RL) and the sapwood, i.e. the pipes (RWTot). 

While RL is a species-specific trait, the maintenance rate for connected pipes per unit of leaf dry 

mass RWTot depend on the position of the leaf compartment within the tree and are calculated as 

follows. 

𝑅𝑅𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑅𝑅𝑤𝑤 ∙
𝐿𝐿𝑃𝑃

𝐿𝐿𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
∙ 𝜌𝜌𝑊𝑊 ∙ 𝑆𝑆𝑆𝑆𝑆𝑆 (4.18) 

 

where Rw are the general respiration costs per dry mass of pipes. Because we assume a fixed ratio 

between leaf area and cross-sectional area of connected pipes (LPratio), the total dry mass of pipes 

per unit of leaf dry mass can be calculated based on the length of the pipe system LP, the wood 

density ρW and the specific leaf area SLA. 

Subtraction of the maintenance rates from the gross carbon assimilation rate yields the net carbon 

assimilation rate per unit of leaf mass Cnet. 

𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐶𝐶𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑅𝑅𝐿𝐿 − 𝑅𝑅𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 (4.19) 
 

If Cnet is positive, the surplus carbon can be reinvested into new leaf biomass and associated pipes. 

The amount of leaf dry mass that can be produced per unit of assimilated carbon CB depends on 

the ratio of leaf dry mass to pipe dry mass and can be calculated as follows. 

𝐶𝐶𝐵𝐵 = ��𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 +
𝐿𝐿𝑃𝑃

𝐿𝐿𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
∙ 𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∙ 𝜌𝜌𝑊𝑊 ∙ 𝑆𝑆𝑆𝑆𝑆𝑆 ∙ 𝑃𝑃𝑅𝑅𝑅𝑅� ∙ 𝐶𝐶𝑂𝑂�

−1

 (4.20) 

 

While Cnet is expressed in g carbon, the leaf and woody biomass is expressed in dry mass. Thus, 

the C-mass to biomass ratio of wood CBWratio and of leaves CBLratio is considered here. In 

addition, we assume that a certain proportion of C invested into new leaf or woody biomass is 

lost as growth respiration CO. PRU [0, 1] is the pipe-reuse factor which specifies the ratio of new 

pipes to reused old pipes when new leaves are generated. When strictly following the pipe-model 

theory, new pipes are generated for each new leaf, while old pipes are converted from sapwood 

to heartwood when the leaves die (i.e. PRU=1). However, it is assumed that a certain proportion 

of old pipes can be reused (it is difficult to observe/measure this behavior, but see Mäkelä, 1986, 
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2002). We thus added the possibility to include this mechanism (PRU<1). For the sake of clarity, 

CB defines how much of the assimilated carbon is invested into leaf biomass considering the 

carbon costs for the pipes associated with the leaves. This means that, when calculating the total 

annual leaf biomass production based on Cnet and CB, both the maintenance costs and the 

construction costs for leaves and pipes are fully included. From this it also follows that, due to 

the fixed leaf area to pipe area ratio (LPratio), secondary growth is directly linked to the total annual 

leaf biomass production (next section). 

Multiplication of Cnet and CB yields the relative growth rate of leaf biomass. Without considering 

leaf losses, the change in leaf biomass BL over time in a leaf compartment could thus be described 

by the following ordinary differential equation. 

𝑑𝑑𝑑𝑑𝐿𝐿
𝑑𝑑𝑑𝑑

= 𝐶𝐶𝐵𝐵 ∙ 𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛 ∙ 𝐵𝐵𝐿𝐿 (4.21) 

 

It can be seen that, if Cnet is negative, leaf biomass is lost. In addition, as the average leaf lifespan 

LL is an additional species-specific trait, leaves are constantly lost at a rate of 1/LL. Thus, when 

considering both the (potential) production term (Cnet CB) and the loss term (1/LL), the change in 

leaf biomass BL over time is 

𝑑𝑑𝑑𝑑𝐿𝐿
𝑑𝑑𝑑𝑑

= 𝐶𝐶𝐵𝐵 ∙ 𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛 ∙ 𝐵𝐵𝐿𝐿 −
1
𝐿𝐿𝐿𝐿

∙ 𝐵𝐵𝐿𝐿 = �𝐶𝐶𝐵𝐵 ∙ 𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛 −
1
𝐿𝐿𝐿𝐿
� ∙ 𝐵𝐵𝐿𝐿 = 𝐺𝐺𝐺𝐺𝑝𝑝𝑝𝑝𝑝𝑝 ∙ 𝐵𝐵𝐿𝐿 (4.22) 

  
Positive growth of leaf biomass is possible only if the carbon production rate is higher than the 

carbon loss rate (i.e. GRpot>0). Solving this equation yields the leaf biomass as a general function 

of time. 

𝐵𝐵𝐿𝐿(𝑡𝑡) = 𝐵𝐵𝐿𝐿(𝑡𝑡0) ∙ 𝑒𝑒𝐺𝐺𝐺𝐺𝑝𝑝𝑝𝑝𝑝𝑝∙𝑡𝑡 (4.23) 
 

where BL(t0) is the initial leaf biomass. Eq. 4.23 describes the temporal dynamics of leaf biomass 

by an exponential function to the base e, implying that surplus carbon is directly reinvested into 

new leaf biomass, which immediately participates in photosynthesis. However, in reality, surplus 

carbon is first allocated to leaf primordia, which develop into photosynthetically active organs 

with a time lag (Hallé et al. 1978). To account for this, we use the base 2 instead of e in our 

simulations. 

𝐵𝐵𝐿𝐿(𝑡𝑡) = 𝐵𝐵𝐿𝐿(𝑡𝑡0) ∙ 2𝐺𝐺𝐺𝐺𝑝𝑝𝑝𝑝𝑝𝑝∙𝑡𝑡 (4.24) 
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As daily rates are used (Eqs. 4.17-4.19), the leaf biomass at the end of one year BL(y+1) can be 

calculated by inserting the number of suitable days tyear and the initial biomass at the beginning 

of the year BL(y0). 

𝐵𝐵𝐿𝐿(𝑦𝑦+1) = 𝐵𝐵𝐿𝐿(𝑦𝑦0) ∙ 2𝐺𝐺𝐺𝐺𝑝𝑝𝑝𝑝𝑝𝑝∙𝑡𝑡𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 (4.25) 
 

Eq. 4.26 constitutes the basic rule to simulate the leaf biomass dynamics. Under sustained 

favorable light conditions this equation would predict a potentially infinite accumulation of leaf 

biomass, which is not adequate as leaf compartments are limited by their discrete volumes (1 m3). 

To get a more realistic behavior of the leaf biomass dynamics, two modifications are 

implemented. First, a global upper maximum of the total leaf area per voxel (ALMa x) is applied. 

Plants tend to avoid self-shading through efficient arrangements of leaf areas (King et al. 1997), 

and thus a maximal leaf area instead of a maximal leaf biomass is defined. Second, a species-

specific maximum leaf production per leaf compartment (ALProdMax) is implemented. The 

production of new leaves and branch segments is regulated by the activity of meristems, which 

generally follow specific intrinsic architectural rules (Hallé et al. 1978). Existing parts of branches 

do not have the potential to produce an unlimited number of new meristems capable of 

differentiating into leaves. ALProdMax can thus be understood as the maximum amount of leaves, 

expressed as leaf area that can be produced within a leaf compartments associated with a specific 

section of a second order branch. As long as the total amount of leaves produced is lower than 

ALProdMax, new leaf biomass can be produced if the light conditions are suitable. In the following, 

the modifications of the basic Eq. 4.25 under consideration of ALMax and ALProdMax are described. 

At first, to prevent the total leaf area in a voxel ALTot (Eq. 4.1) to exceed the maximum ALMax, the 

theoretical maximal growth rate GRmax is calculated so that ALTot= ALMax when GRmax is applied 

in Eq. 4.25 instead of GRpot.  

𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑙𝑙𝑙𝑙𝑙𝑙2 �

𝐴𝐴𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
𝐴𝐴𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

�

𝑡𝑡𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
               (𝐴𝐴𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 , 𝑡𝑡𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 ≠ 0) (4.26) 

 

Note that the necessary conditions are always satisfied because naturally tyear>0 and, as leaf 

compartments without any leaf biomass are removed, for all existing leaf compartment AL>0 and 

thus ALTot>0. The effective growth rate GR is then calculated as follows. 

𝐺𝐺𝐺𝐺 = min (𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 ,𝐺𝐺𝐺𝐺𝑝𝑝𝑝𝑝𝑝𝑝) (4.27) 
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Integrating the effective growth rate GR in Eq. 4.25 ensures that the total leaf area of all leaf 

compartments in a voxel never exceeds ALMax. To ensure that the production maximum ALProdMax 

is never exceeded, it is essential to log the total leaf area production of a leaf compartment 

ALProdTot.  

𝐴𝐴𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑦𝑦+1) = 𝐴𝐴𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑦𝑦0) + 𝐴𝐴𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 (4.28) 
 

where ALProd is the annual leaf area production. Based on ALProdTot and ALProdMax, the theoretical 

maximal leaf area production in the current time step ALProdTheo can be estimated. 

𝐴𝐴𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑒𝑒𝑒𝑒 = 𝐴𝐴𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 − 𝐴𝐴𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 (4.29) 
 

Dividing ALProdTheo by the SLA yields the theoretical maximal leaf biomass production in the 

current time step BLProdTheo. 

𝐵𝐵𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑒𝑒𝑒𝑒 =
𝐴𝐴𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑒𝑒𝑒𝑒

𝑆𝑆𝑆𝑆𝑆𝑆
 (4.30) 

 

Consequently, it has to be verified whether the annual leaf biomass production, when applying 

the effective growth rate GR (Eq. 4.28), would exceed this maximum. Please note that the annual 

leaf biomass production is not the same as the annual change in leaf biomass (Eq. 4.25), which is 

the result of leaf biomass production minus leaf loss. Thus, these two processes have to be 

separated. Using the effective growth rate GR, the potential leaf biomass production BLProdPot can 

be calculated as follows. 

𝐵𝐵𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = �
�
𝐵𝐵𝐿𝐿(𝑦𝑦0)

𝐺𝐺𝐺𝐺
𝑒𝑒𝐺𝐺𝐺𝐺∙𝑡𝑡𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 −

𝐵𝐵𝐿𝐿(𝑦𝑦0)

𝐺𝐺𝐺𝐺
� ∙ �𝐺𝐺𝐺𝐺 +

1
𝐿𝐿𝐿𝐿
� 𝑖𝑖𝑖𝑖 𝐺𝐺𝐺𝐺 ≠ 0

𝐵𝐵𝐿𝐿(𝑦𝑦0) ∙
𝑡𝑡𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
𝐿𝐿𝐿𝐿

𝑖𝑖𝑖𝑖 𝐺𝐺𝐺𝐺 = 0
 (4.31) 

  
where BL(y0 ) initial leaf biomass of the leaf compartment. The case discrimination is necessary 

because the regular Eq. to calculate BLProdPot is not defined if GR=0 (the additional necessary 

condition LL≠0 is always satisfied, as the leaf lifespan naturally is larger than zero). If GR=0, the 

leaf production rate must equal the leaf loss rate and consequently BLProdPot can be calculated based 

on the leaf loss rate 1/LL, which is constant and species-specific rate. The effective leaf biomass 

production BLProd is simply calculated by applying the minimum function on BLProdTheo and 

BLProdPot. 
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𝐵𝐵𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = min (𝐵𝐵𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ,𝐵𝐵𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑒𝑒𝑒𝑒) (4.32) 
  

Recapitulating, the effective leaf biomass production BLProd is the total amount of leaf biomass 

produced by a leaf compartment under consideration of ALMax and ALProdmax. Now that the leaf 

biomass production for each leaf compartment is known, the change in leaf biomass equivalent 

to Eq. 4.25 has to be simulated. In Eq. 4.25 we assume that both the production rate and the loss 

rate are constant throughout the entire year. If the leaf production maximum ALProdMax would not 

be reached during a time step, which is the case if BLProdTheo>=BLProdPot, application of Eq. 4.25 

would properly estimate the change in leaf biomass. However, if ALProdMax would be reached, i.e. 

if BLProdTheo<BLProdPo t, Eq. 4.25 could not be applied. In this case, the production of new leaf 

biomass would stop during the year as soon as ALProdMax is reached. To account for this, we divide 

the year into two periods. In the first period, both leaf production and leaf loss are active and thus 

the leaf biomass dynamics can follow its regular mechanisms. In the second period, as soon as 

ALProdMax is reached, leaf production ceases and only leaf loss remains active. Based on the known 

leaf biomass production BLProd the length of the first period tp, i.e. the ‘productive time period’, 

can be calculated as follows. 

𝑡𝑡𝑝𝑝 =

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑙𝑙𝑙𝑙 � 𝐵𝐵𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ∙ 𝐺𝐺𝐺𝐺

𝐵𝐵𝐿𝐿(𝑦𝑦0) ∙ �𝐺𝐺𝐺𝐺 + 1
𝐿𝐿𝐿𝐿�

+ 1�

𝐺𝐺𝐺𝐺
𝑖𝑖𝑖𝑖 𝐺𝐺𝐺𝐺 ≠ 0

𝐵𝐵𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ∙ 𝐿𝐿𝐿𝐿
𝐵𝐵𝐿𝐿(𝑦𝑦0)

𝑖𝑖𝑖𝑖 𝐺𝐺𝐺𝐺 = 0

 (4.33) 

 

Under consideration of tp, the annual change in leaf biomass can be calculated as follows. 

𝐵𝐵𝐿𝐿(𝑦𝑦+1) = 𝐵𝐵𝐿𝐿(𝑦𝑦0) ∙ 2𝐺𝐺𝐺𝐺∙𝑡𝑡𝑝𝑝 ∙ 2−
(𝑡𝑡𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦−𝑡𝑡𝑝𝑝)

𝐿𝐿𝐿𝐿  (4.34) 

 

This equation thus replaces the basic Eq. 4.25 and constitutes the final equation based on which 

the annual change in leaf biomass for each leaf compartment is calculated. This equation covers 

all possible scenarios. First, if there is no limitation in annual biomass production imposed by 

ALProdMax, the productive time period becomes tP=tyear and thus Eq. 4.34 equals Eq. 4.25. Second, 

if ALProdMax is already reached at the beginning of the time step, i.e. if BLProd=0, the productive 

time period becomes tP=0. In this case, only leaf loss is considered in Eq. 4.34. Third, if ALProdMax 

is reached during the annual time step, the productive time period is estimated by Eq. 4.34 so that 

it exactly describes the time needed to reach ALProdMax.  

 



Materials and methods 

79 
 

Structural growth 

This submodel simulates the structural growth of trees and includes changes in the state variables 

of existing tree components, establishment of new tree components and removal of old ones. All 

of these processes result from the carbon balance. The secondary growth results from the leaf 

biomass production in all topologically connected leaf compartments. The primary growth, in 

turn, is related to secondary growth via allometric relationships. Secondary and primary growth 

involve both changes in the state variables of existing tree components and the establishment of 

new ones. As we assume that photosynthetically inactive, leafless branches are shed, the removal 

of tree components is also a direct outcome of the carbon balance. In the following, after an 

introduction to the modelling software GroIMP used here, we describe how the results of the 

preceding submodel are translated into structural growth. The structural traits are described in 

detail at the end of this section. 

This model is implemented using the open-source software GroIMP (Growth Grammar 

Interactive Modelling Platform; available under the GNU General Public License at 

www.grogra.de). GroIMP is a 3D modelling platform suited to simulate the structural growth of 

plants. Here we illustrate the main concepts essential for understanding the functioning of this 

submodel (refer to Kniemeyer (2008) for detailed information on GroIMP). In GroIMP, relational 

growth grammars are implemented by the programming language XL, which is a graph-based 

extension of the Lindenmeyer-Systems (L-Systems), a formal language for the description of 

plant structure (Lindenmayer 1968a; b). XL is built on top of the programming language Java and 

thus both the XL-specific set of rules tailored to model plant structures, as well as the general 

Java classes can be used. Graphs are the underlying data structure in XL defining the tree 

topology. They describe how the different tree components of a tree, which can be defined as 3D 

geometric objects, are interconnected and spatially arranged to one another. 

In our model, the trunk is defined as 3D cone, while the branch segments are defined as 3D 

cylinders. Taking into account the state variables of the tree components, the graph of each tree 

can thus be interpreted as 3D tree structure (Fig. 4.1a). XL contains a set of rules to modify the 

graph and thereby to induce structural growth. A rule consists of a graph query, an expressions 

used to select specific parts of the graph, and a statement which specifies how to modify the 

selected parts. For example, a query selects all second order branches not connected to any leaf 

compartments and a statement removes them. As another example, the rule to sum up the leaf 

biomass production over all leaf compartments topologically connected to a branch segment, and 

to change state variables of the branch segment accordingly, would, for each individual branch 

segment, traverse through the graph. Replacement rules are also common types of rules. Such 

rules select specific parts of a graph and replace them with other graph nodes, which, in this 

model, are the tree components. Meristems are the place of growth in trees and accordingly, apical 
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meristems are replaced by other tree components to simulate primary growth in this model. Using 

these rules, the results of the carbon balance submodel are translated into structural growth in 

XL. 

The first step in this submodel is to calculate the updated total diameter of branches DB(y+1) and 

the trunk DT(y+1) based on the sum of the annual leaf biomass production BLProd of all topologically 

connected leaf compartments (Eq. 4.33). As the maintenance and construction costs of the pipes 

associated with leaf compartments have already been considered, the updated diameter is 

estimated using the ratio LPratio. 

𝐷𝐷𝑇𝑇(𝑦𝑦+1) = 2 ∙
���

𝐷𝐷𝑇𝑇(𝑦𝑦0)
2 �

2
∙ 𝜋𝜋 + ∑𝐵𝐵𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

𝐿𝐿𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
∙ 𝑆𝑆𝑆𝑆𝑆𝑆 ∙ 𝑃𝑃𝑅𝑅𝑅𝑅�

𝜋𝜋
 

(4.35) 

 

𝐷𝐷𝐵𝐵(𝑦𝑦+1) = 2 ∙
���

𝐷𝐷𝐵𝐵(𝑦𝑦0)
2 �

2
∙ 𝜋𝜋 + ∑𝐵𝐵𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

𝐿𝐿𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
∙ 𝑆𝑆𝑆𝑆𝑆𝑆 ∙ 𝑃𝑃𝑅𝑅𝑅𝑅�

𝜋𝜋
 

(4.36) 

 

Based on the updated diameter, the updated length of the trunks and branches can be calculated 

via allometric relationships (Eqs. 4.6 and 4.7) under consideration of the mechanisms of apical 

control/dominance. For branches, the potential length increase was set to ΔLBPot=0 either if their 

apical meristems are heavily shaded or if they collide with other trees (see submodel apical 

control). On this basis, the updated branch length LB(y+1) is calculated as follows. 

𝐿𝐿𝐵𝐵(𝑦𝑦+1) = �𝐿𝐿𝐵𝐵(𝑦𝑦0) + 𝐿𝐿𝐿𝐿𝐵𝐵 ∙ 𝑆𝑆𝐹𝐹𝑂𝑂𝐵𝐵 ∙ ��𝐷𝐷𝐵𝐵(𝑦𝑦+1)�
2
3� − �𝐷𝐷𝐵𝐵(𝑦𝑦0)�

2
3� � ∆𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ≠ 0

𝐿𝐿𝐵𝐵(𝑦𝑦0) ∆𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 0
 (4.37) 

 

For trunks, no apical control mechanisms preventing length growth under unfavorable conditions 

are integrated. Rather, length growth can be intensified, and the relative intensification in height 

growth is expressed by L inc (Eq. 4.9; see submodel apical control for details). The regular and 

otherwise unrestricted updated length of a trunk LTRg can thus be estimated according to Eq. 4.10 

as follows. 

𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐿𝐿𝑇𝑇(𝑦𝑦0) + 𝐿𝐿𝐿𝐿𝑇𝑇 ∙ ��𝐷𝐷𝑇𝑇(𝑦𝑦+1)�
2

3� − �𝐷𝐷𝑇𝑇(𝑦𝑦0)�
2

3� � ∙ (1 + 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖) (4.38) 
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While the environmental conditions at the trunk apical meristem do not limit height growth, it 

can be limited by the critical height LTcr (Eq. 4.8) or the maximum trunk height LTMax. Thus, the 

effective updated height of the tree LT(y+1) is calculated as follows. 

𝐿𝐿𝑇𝑇(𝑦𝑦+1) = min (𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇, 𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇 , 𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)  (4.39) 
 

The critical length LTcr is estimated based on DT(y+1) (Eq. 4.8). The maximum trunk height LTMax 

is a species-specific variable emerging from the functional traits, which is described in the 

following. A positive carbon balance in a leaf compartment can only be maintained if the carbon 

gain exceeds the carbon cost, i.e. if GRPot>0 (Eq. 4.22). The carbon gain generally increases with 

increasing light intensity I (Eq. 4.17), while the carbon costs increase with the pipe length LP 

(Eqs. 4.18 and 4.20). At the theoretical maximal light intensity Imax, there is thus a maximum 

pipe length LPMax at which the carbon gain and the carbon costs are equal, i.e. at which GRPot=0.  

𝐺𝐺𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐶𝐶𝐵𝐵 ∙ 𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛 −
1
𝐿𝐿𝐿𝐿

= 0 (4.40) 

 

By substitution of Eqs. 4.17-4.20 into Eq. 4.40, and setting I = Imax and LP = LPMax, the maximum 

pipe length LPMax can be calculated. 

𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =

𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 𝑆𝑆𝑆𝑆
𝑘𝑘 + 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚

− 𝑅𝑅𝐿𝐿 −
𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∙ 𝐶𝐶𝑂𝑂

𝐿𝐿𝐿𝐿
𝑅𝑅𝑤𝑤 ∙ 𝜌𝜌𝑊𝑊 ∙ 𝑆𝑆𝑆𝑆𝑆𝑆

𝐿𝐿𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
+ 𝐶𝐶𝑂𝑂 ∙ 𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∙ 𝜌𝜌𝑊𝑊 ∙ 𝑆𝑆𝑆𝑆𝑆𝑆 ∙ 𝑃𝑃𝑅𝑅𝑅𝑅

𝐿𝐿𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∙ 𝐿𝐿𝐿𝐿
 (4.41) 

 

This equation contains only global constants and species-specific leaf and wood traits, making 

LPMax an emergent species-specific variable. LPMax thus represents the maximum pipe length under 

the given plot quality (i.e. site index SI), and the absolute maximum LPMaxAbs can be estimated by 

setting SI=1. 

As each tree is assumed to have only one trunk, the trunk length should never exceed LPMax. For 

branches, testing if the length of the pipe system exceeds LPMax is not necessary, as this is 

implicitly done in the apical control submodel: if the carbon balance at the apical meristem would 

be negative (GRPot<0), which is always the case if LP> LPMax, primary branch growth ceases (Eq. 

4.38). However, if the maximum trunk height is defined as LPMax and the apical control for 

branches is applied, the shape of trees can appear unrealistic. This is because LPMax describes the 

theoretical, maximum pipe length at maximum light intensity, while the apical control of the 

branches considers the actual light intensity in the voxels. Hence, particularly when a trunk is 
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close to LPMax, it might be that it continues to grow in length, while new lateral branches might 

not. In such a tree, it would appear as if the main trunk would grow through its own tree crown. 

To prevent this behavior, we introduce a safety factor for trunk growth ST (ST<1) that defines the 

ratio of the actual maximum trunk height to the theoretical maximum pipe length LPMax. The 

maximum trunk height is thus given as  

𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑆𝑆𝑆𝑆 ∙ 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (4.42) 
 

While a trunk stops to grow in height at LTMax (Eq. 4.40), lateral branches may grow above this 

point, by this creating realistic looking tree crowns (note that ST is defined as a global constant 

and thus LTMax remains a species-specific emergent trait). 

While trunks are simply updated based on the updated state variables, updating the visual 

representation of branches is more complicated because branches are described at two scales. At 

the coarse scale, a branch is described by its total length and diameter, what has been calculated 

above. At the fine scale, a branch is described by a set of topologically connected segments, which 

may further be connected to higher order segments. These branch segments at the fine scale are 

the tree components which are visually represented in GroIMP and thus, the state variables of the 

existing branch segments have to be updated and new branch segments have to be introduced 

according to the simulated total length and diameter growth. This means that in this model the 

total length growth of a branch is calculated first, resulting in establishment of a corresponding 

number of branch segments and not vice versa as in most FSTMs. We choose this two-scale 

approach as trade-off between computational costs and visual aspects. Treating the branch as an 

entity at the coarse scale reduced the computational cost by reducing the number of graph queries. 

If these coarse-scale branches would be visually displayed, the tree structure would appear 

unrealistic and consequently, we used smaller branch segments for visualization. This lends more 

realistic, irregular branch structures, including twisting of branches or effects of photo- or 

gravitropism (Fig. 4.6a). In the following, the essential information to calculate the fine-scale 

branch segments is provided. 

Second order branches are the simplest case because they cannot ramify into higher order 

branches. The apical meristem of each second order branch is thus replaced by a segment with a 

length LS corresponding to the total length increase.  

𝐿𝐿𝑆𝑆 = 𝐿𝐿𝐵𝐵(𝑦𝑦+1) − 𝐿𝐿𝐵𝐵(𝑦𝑦0) (4.43) 
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The diameter of this new and all existing second order branch segments DS are updated based on 

their distance to their branch base DIS (Fig. 4.6a).  

𝐷𝐷𝑆𝑆 = 𝐷𝐷𝐵𝐵(𝑦𝑦+1)
𝐿𝐿𝐵𝐵(𝑦𝑦+1) − 𝐷𝐷𝐷𝐷𝑆𝑆

𝐿𝐿𝐵𝐵(𝑦𝑦+1)
 (4.44) 

 

The situation is more complex for first order branches because their primary growth might induce 

the establishment of new lateral branches. Thus, the number of lateral branches, as well as the 

length/diameter of both internodes and lateral branches, needs to be estimated (Fig. 4.6b). At first, 

the internode length LIB which defines the distance between two branching points is calculated. 

In reality, the average internode length usually varies between species, but often also within 

individuals. A positive correlation between the total annual length growth and the internode length 

has been observed within individual trees (King 1997; Nicolini et al. 2003). On this basis, a 

flexible internode length LIB as function of total annual length growth (ΔLB=LB(y+1)-LB(y0)), which 

can vary between the species-specific minimum LIBMin and maximum internode length LIBMax, is 

used here. 

𝐿𝐿𝐼𝐼𝐼𝐼 = 𝐿𝐿𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 +
(𝐿𝐿𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 − 𝐿𝐿𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼)

1 + 𝑒𝑒(−𝑘𝑘Int∙( �𝐿𝐿𝐵𝐵(𝑦𝑦+1)−𝐿𝐿𝐵𝐵(𝑦𝑦0)+𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆� − 𝐿𝐿𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼∙2))
 (4.45) 

 

where LSLas t is the lengths of the last apical branch segment (Fig. 4.6b) and kInt is a global constant 

controlling the change of LIB  with total length growth. For clarity, LIB can differ between different 

branches of an individual tree, and obviously also from year to year, but for an individual branch 

we assume LIB to be invariable within one year. Based on LIB, the number of new lateral branches 

of a single branch nBLat can thus be calculated. 

𝑛𝑛𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(
�𝐿𝐿𝐵𝐵(𝑦𝑦+1) − 𝐿𝐿𝐵𝐵(𝑦𝑦0)+𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�

𝐿𝐿𝐼𝐼𝐼𝐼
) (4.46) 

 

Naturally, the number of new branch segments is nBSeg=nBLa t+1. Since the total length growth 

ΔLB is usually not an integer multiple of the internode length LIB, the first and the last segment 

may be smaller than LIB (Fig. 4.6b). The length of the first segment LSFirs t is estimated as follows.  

𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐿𝐿𝐼𝐼𝐼𝐼 − 𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (4.47) 
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where LSLas t refers to the last lateral segment of the previous year. The current LSLas t is estimated 

as 

𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐿𝐿𝐵𝐵(𝑦𝑦+1) − 𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − (𝑁𝑁𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 − 1) ∙ 𝐿𝐿𝐼𝐼𝐼𝐼 (4.48) 
 

This ensures that that the total length growth ΔLB equals the sum of the lengths of all new 

segments. To estimate the diameter of these branch segments DS, Eq. 4.44 can be applied.  

After the length and diameter of all new first order branch segments has been calculated, the 

length and diameter of all new lateral second order branches are estimated. For this, since the total 

length growth of the first order branch ΔLB is known, we first calculate the cross-sectional area 

ASe c of the branch section representing this growth (Fig. 4.6c). 

𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 = �
𝐷𝐷𝑇𝑇(𝑦𝑦+1)

2
∙
𝐿𝐿𝑇𝑇(𝑦𝑦+1) − 𝐿𝐿𝑇𝑇(𝑦𝑦0)

𝐿𝐿𝑇𝑇(𝑦𝑦+1)
 �
2

∙ 𝜋𝜋 (4.49) 

 

In compliance with the pipe model theory, the sum of the cross-sectional areas of all new lateral 

branches is assumed to equal ASec. ASec is thus equally divided between all new lateral branches. 

This also means that we assume that all new lateral branches have the same size, i.e. we do not 

explicitly consider effects such as acrotony or mesotony. With nBLat, the diameter of each new 

lateral branch DBLat is calculated as follows. 

𝐷𝐷𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 2 ∙ �
𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆

𝑛𝑛𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ∙ 𝜋𝜋
 (4.50) 

 

Finally, the length of each new lateral second order branch LB is calculated based on the species-

specific allometric diameter-length relationship (Eq. 4.7). We have to remember that branches are 

represented at two scales, and thus for each new branch, the total length and diameter as well as 

the segment lengths and diameters have to be calculated. As these new second order branches 

consist of a single segment, LS=LB and DS=DB= DBLat.  
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Figure 4.6. Illustration of structural variables. (a) Branches are represented at two different scales. At the coarse scale, 
branches are described by their total length LB and diameter DB, while at the fine scale they are described as a collection 
of topologically connected smaller branch segments (length LS, diameter DS), which are visually represented by 3D 
cylinders (here: 2D representation). The distance of each branch segment to the branch base DIS, which is exemplarily 
shown for the fourth branch segment, determines the diameter of the branch segment DS. The fine-scale representation 
of branches allows a more realistic irregular visualization (blue colored branch as example). (b) Branch development 
in two successive years (y0 and y+1). The upper panel shows a newly created 1st order branch with lateral second order 
branch segments. The variable internode length LIB defines the length of the first two branch segments and the 
branching points between first and second order branches. Since the total length growth ΔLB is not an integer multiple 
of the internode length LIB, the length of the last lateral segment LSLast differs from LIB. The lower panel shows the 
further development of this branch in the next time step. The internode length LIB in this time step may vary from that 
in the previous step, and because a shorter later lateral branch segment exists, and additional segment with a length of 
LSFirst is inserted so that distance between the branching points equals LIB. (c) Branch growth at the coarse scale. Based 
on the diameter and length growth in one time step, the cross-sectional area ASec of the branch section representing the 
current length growth ΔLB can be calculated. ASec is used to estimate the diameter of lateral branches. 

 

So far, we have demonstrated how to calculate the state variables of branches at both scales when 

branches grow in length. However, when trunks grow in length, new lateral first order branches 

may establish, which, in turn, may ramify into second order branches. Trunks are not divided into 

separate segments, but nonetheless the internode length between two branching points at the trunk 
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is an important information. The species-specific internode length of the trunk can be specified 

separately (minimum LITMin, maximum LITMax), and the method to calculate the variable internode 

length of trunks LIT corresponds to that for branches (Eq. 4.45). LIT thus defines the position at 

the trunk where to attach the new first order branch. When applying the methods describe above 

(Eqs. 4.43-4.50) in a recursive manner, all essential state variables of this first order branch and 

attached second order branches can be calculated. 

The last step remaining is to update the diameter of all branch segments that already existed, 

which is done by applying Eq. 4.44. Obviously, the length of existing branch segments does not 

change. 

After the structure of all woody tree components has been simulated, the remaining tree 

components, namely apical meristems and leaf compartments, need to be considered. Branches 

and trunks are always terminated by an apical meristem, and thus the structural growth 

simulations in GroIMP are carried out in a ways that this condition is true at all times. Each 

meristem is re-associated with the voxel in which it is located after the tree structure has been 

updated. 

As a result of structural growth, new second order branches may be generated, and/or existing 

second order branches may grow into adjacent voxels. In these cases, new leaf compartments are 

associated with these branches and the initial leaf biomass is specified. We assume that the newly 

generated branches or branch sections consist entirely of sapwood and consequently, following 

the pipe model theory, their cross-sectional area and the leaf area of the associated leaf 

compartments are correlated via the parameter LPratio. For new second order branches, the cross-

sectional area AB can thus be estimated from their known diameter, while for second order 

branches that increased in length, the cross-sectional area representing this growth ASec can be 

calculated based on Eq. 4.49. Based on the cross-sectional area (AB or ASec) and the specific leaf 

area SLA, the total leaf area ALSum associated with the branch/branch section can be estimated. 

𝐴𝐴𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =
𝐴𝐴𝐵𝐵 ∙ 𝐿𝐿𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑆𝑆𝑆𝑆𝑆𝑆
 (4.51) 

 

For simplicity, we assume that ALSum is evenly divided among all new leaf compartments. For 

this, all new voxels a branch is intersecting with are estimated and in each voxel a new leaf 

compartment with the initial leaf biomass BLInit is generated. 
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𝐵𝐵𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =
𝐴𝐴𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
𝑛𝑛𝑉𝑉

 (4.52) 

 

where nV is the number of new voxels a branch is intersecting with. 

Structural growth also includes the loss of existing tree components. Leaf compartments are lost 

if they no longer contain leaves (i.e. leaf biomass is zero). However, since the leaf biomass is 

simulated using an exponential function (Eq. 4.34), it would only converge to, but never reach 

zero, if the exponent is negative. Thus, we defined that leaf compartments are removed when the 

leaf biomass drops below a minimum threshold BLMin. This threshold can be understood as the 

biomass of one leaf; the last leaf is thus dropped if BL<BLMin. If a leaf compartment is removed, 

it cannot be reestablished. This means that such leafless parts of a branch do not contain resting 

meristems.  

Branches are shed if they lost all associated leaf compartments. This also implies that first order 

branches are shed when all connected second order branches are shed. Apart from this 

physiologically determined branch turnover, we also integrated the option to remove branches 

based on disturbances or mechanical stress. Branches may either be randomly removed 

(BrMortMethod=1) or based on their biomass (BrMortMethod=2). In the first case the branch 

mortality rate mBR defines the chance of a branch to be removed randomly at each time step, in 

the second case the branch mortality rate mB is calculated as follows. 

𝑚𝑚𝐵𝐵 =  𝑚𝑚𝐵𝐵𝐵𝐵 ∙ �
1
3
∙ 𝜋𝜋 ∙ 𝐷𝐷𝐵𝐵 ∙ 𝐿𝐿𝐵𝐵 ∙ 𝜌𝜌𝑊𝑊�

−𝑀𝑀𝐵𝐵𝐵𝐵

 (4.53) 

 

where mBB is the biomass-based branch mortality rate, and the product within brackets is the mass 

of the branch, which is calculated by its diameter DB, length LB and wood density ρW assuming 

that it is cone-shaped. MBS is a scaling factor describing the decrease in mortality rate with 

increasing biomass (negative exponent). According to the metabolic theory, this scaling factor is 

assumed to be close to ¼ regarding the mortality of entire trees (Brown et al. 2004; Muller-Landau 

et al. 2006b). However, the scaling factor for branches may be site-specific and thus we integrated 

it as freely definable variable. Nevertheless, the user can choose to simulate only physiologically-

determined branch fall (BrMortMethod=0). 

In the previous description of structural growth, the structural traits were mentioned only briefly. 

The structural traits define how the different tree segments are spatially arranged, and thus they 

are required for a sufficient representation of the visible 3D tree structure. It was our intention to 

specify a minimal set of structural traits capable of reproducing the most obvious differences in 



4. Functional-structural forest model 

88 
 

tree structure observed in nature (Table 4.1; Fig. 4.7). The main functional traits and concepts are 

described hereafter. 

The trunk is the orthotropic axis in each tree. First order branches are plagiotropic shoots that 

show a radial symmetry around the trunk. The angle between successive first order branches, seen 

from the bird’s eye view, is calculated based on PhFO which defines how many first order 

branches are arranged within a complete 360° circle (Fig. 4.7a). Thus, the angle between two 

successive first order branches αTFO is calculated as 

𝛼𝛼𝑇𝑇𝑇𝑇𝑇𝑇 =
360
𝑃𝑃ℎ𝐹𝐹𝐹𝐹

 (4.54) 

 

After a complete 360° circle, the successive first order branch is generated at an angle of ½ times 

αTFO after its predecessor. This ensures that the branches do not directly shade the branches below. 

The angle of first order branches seen from the side is defined by αSFO (Fig. 4.7b). In contrast to 

the first order branches, we assume that second order branches do not show a radial but rather a 

dorsiventral symmetry, i.e. they are arranged in the same plane as their mother branch. Their 

branching angle relative to the mother branch is defined by αTSO (Fig. 4.7c). For simplicity, second 

order branches are always arranged in an alternating manner. As mentioned, the model 

differentiates between the internode lengths of branches LIB and trunks LIT. The actual internode 

length at a given time step depends on the total growth of the specific branch or trunk and varies 

between the minimum (LIBMin, LITMin) and maximum internode lengths (LIBMax, LITMax), which are 

species-specific structural traits. Gravitropism or phototropism is often observed in trees: 

branches may bend downwards due to gravity and/or upwards to the sun. The strength of tropism 

STrop is an additional functional trait, whereby negative values represent phototropism and positive 

values represent gravitropism. 
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Figure 4.7. Illustration of the main structural traits. (a) Top view on tree showing the main trunk and first order 
branches. The angle between two consecutive first order branches is given by αTFO. (b) Side view on tree showing main 
trunk and first order branches. The trunk internode length L IT and the angle of the first order branch relative to the 
horizontal plane αSFO define the coarse structure of the tree (c) Top view on tree showing one first and three second 
order branches. The branch internode length L IB and the angle between first order branch and second order branch αTSO 
define the fine branching structure of the tree. 

 

Differences in the mentioned structural traits create a variety of different tree structures. However, 

if a tree grows according to its structural traits in a deterministic manner, the resulting tree 

becomes too symmetrical. Thus, our model allows activating stochastic variation of structural 

traits if more realistic structures are desired (Stochasticity=0: deterministic growth, 

Stochasticity=1: stochastic growth). If stochastic growth is chosen, trees can deviate from their 

intrinsic structural growth pattern, whereby the strength of the random deviation is defined by a 

set of additional structural traits defining the maximum deviation of a specific species. For 

instance, the maximum deviation from αTSO is given by StαTSO and, in this case, the branching 

angle may thus vary within αTSO± StαTSO. The ‘stochastic’ structural traits can be understood as 

additional characteristic of species defining their structural irregularity. Such traits can be defined 

for all angles (StαTSO, StαTFO, StαSFO) and the tropism strength (StTrop). In addition, StTW specifies 

the strength of branch twisting. This means that each time a new branch segment is generated, it 

may deviate from the direction of its predecessor by the three axis in space (head, left, up), 

whereby the maximal rotation along each axis is given by StTW. 

 

Tree mortality 
The metabolic theory of ecology generally predicts natural mortality rates to scale with biomass 

as the negative ¼ power (McCoy & Gillooly 2008). Muller-Landau et al. (2006) tested this scaling 

relationship based on data from 10 old-growth tropical forest. They found large differences in the 

scaling factors between forest sites, which were mostly inconsistent with metabolic theory. 

However, at all sites the mortality rates consistently decreased with size when considering small 

trees < 20 cm diameter. For the larger trees, this trend differed and sometimes even reversed, i.e. 
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the mortality rate of larger tree increased at some forest sites. Muller-Landau et al. (2006) argued 

that there are additional site-specific mechanisms not explicitly considered in the metabolic 

theory. 

In this model, there is only one explicit cause of mortality that directly emerges from the model 

approach, which is mortality due to carbon starvation. This happens when a tree has lost all its 

leaf compartments. The probability to lose a leaf compartment due to a negative carbon budget is 

higher in the dark understory compared to the upper forest zones. Therefore, the likelihood that a 

tree dies due to carbon starvation is higher for smaller trees and commonly decreases with size, 

which agrees with the pattern for small trees observed by Muller-Landau et al. (2006). However, 

large trees growing in the canopy can also die due to carbon starvation in this model. When a tree 

grows close to its maximum height, it enters a phase of senescence where it loses more leaf 

biomass than it can produce, which ultimately leads to the loss of all leaf compartments and thus 

to carbon-based mortality. Consequently, the mortality rate due to carbon starvation might  

increase also for larger trees, explaining the trends observed by Muller-Landau et al. (2006). 

Nevertheless, it is unlikely that mortality due to carbon starvation is sufficient to capture all 

mortality mechanisms. We thus additionally integrated a mass-dependent mortality rate to 

account for additional causes of tree mortality, such as infections by pathogens or severe physical 

damages, which should scale with size. Due to the observed uncertainties in the scaling factor 

(Muller-Landau et al. 2006b), we integrated it as a free parameter MTS. The biomass-dependent 

mortality rate mT is thus calculated as follows: 

𝑚𝑚𝑇𝑇 =  𝑚𝑚𝑇𝑇𝑇𝑇 ∙ �
1
3
∙ 𝜋𝜋 ∙ 𝐷𝐷𝑇𝑇 ∙ 𝐿𝐿𝑇𝑇 ∙ 𝜌𝜌𝑊𝑊�

−𝑀𝑀𝑇𝑇𝑇𝑇

 (4.55) 

 

where mTB is the biomass-based tree rate, and the product in the bracket is the mass of the tree 

trunk, which is calculated by its diameter DT, length LT and wood density ρW assuming that it is 

cone-shaped. This equation quantifies the probability of each tree to die, which decreases with 

biomass. 

We further integrated the option to simulate mortality due to extrinsic factors, such as disturbances 

or gap formation. If the user intends to simulate disturbance events (TrMortDist=1), the average 

number of years between two events FDist and the probability of the disturbance-mediated 

mortality mDist are defined. If a direct effect of falling trees on neighboring trees mimicking gap 

formation shall be simulated (TrMortNeigh=1), the parameters mNeigh and DNMin have to be 

defined. We assume that only larger trees cause surrounding trees to break and die, and the 

minimum diameter of falling trees to be considered is given by DNMin. The crown radius CRr of 
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the falling trees defines the gap size, i.e. all smaller trees within distance CRr to the falling trees 

may die with a probability of mNeigh. Tree mortality is the last submodel, thereafter the model 

proceeds with the next time step. 

 

External model control, export and visualization 
This model is designed to be flexible and controlled by the user via simple text files. This allows 

manipulation and customization for simulation experiments without source code changes. There 

are two different types of text files, the global and the pass files.  

The global file contains a set of parameters defining the basic set up of the model (Table C.2). 

This includes the general decision whether a forest stand or an individual tree shall be simulated, 

the spatial extent and resolution of the model space, the number of time steps and the number of 

replicates. Furthermore, the time intervals in which different types of model results are saved can 

be determined. The state variables of the tree components constitute the model results at the 

lowest hierarchical level, based on which higher level results are calculated. Users interested only 

in higher-level results can choose not to save the low-level results, or to save them in greater time 

intervals, by this reducing the required hard disk space (a 1 ha forest stand may consist of several 

millions branch segments). There are a total of six different types of result files: Shoots: state 

variable of tree components, Trees: tree level results, Forest: forest level results, Species: species 

pool, Voxels: leaf biomass and light in voxels, Mortality: number and causes of tree mortality. 

Which specific variable are saved in each of these files can be seen in Table C.3. A short overview 

on important results is given in Fig. 4.8. 
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Figure 4.8. Exportable model results at the three hierarchical scales: (a) tree components, (b) individual trees and (c) 
forest stands. This model allows saving model results as text files, and examples of important exportable variables are 
shown. A complete list of all variable is provided in Table C.3. 

 

Visual control of simulated trees or forests is an important additional method to evaluate the 

quality of the model. Therefore, a picture showing the tree/forest structure is saved to disk at each 

time step. The perspective from which the picture is taken can be configured in GroIMP. Two 

general methods how trees are visualized are implemented, and they can be specified in the global 

file. First, trees can be represented by their woody components only (VisualizationShader=0), 

whereby second order branches connected to leaf compartments can be colored according to the 

state of the leaf compartment (Fig. 4.9). Second, trees can be represented by woody components 

and leaves (VisualizationShader=1). In our model we are not simulating individual leaves, 

however, for aesthetic purposed we integrated a technique which allows visually representing leaf 

compartments by leaf shaders (this technique is used in Fig. 4.8). 
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Figure 4.9. Visual representation of trees. If a wireframe model is chosen (VisualizationShader=0), three different 
methods to represent the leaf compartments attached to second order branches can be specified: (a) Second order 
branches are colored in different shades of green depending on the associated leaf biomass (VisualizationMethod=0). 
(b) Second order branches are colored according to the light conditions at the leaf compartments, with red colors 
representing high light intensities (VisualizationMethod=1). (c) Second order branches are colored according to the net 
carbon assimilation in the leaf compartments, with red colors representing higher values (VisualizationMethod=2). If a 
rendered representation is chosen (VisualizationShader=1), leaves representing the leaf compartments are visualized 
(see Fig. 4.8) 

 

The pass files contain a set of parameters for each replicate, which means that the number of 

replicates specified in the global file and the number of pass files must be equal. Each pass file 

includes global parameters, ranges of functional and structural traits, but also parameters to switch 

on and off optional model mechanisms. An exhaustive list of all parameters in the pass file is 

available in the Supporting Information (Table C.4). 

 

4.3.2 Model parameterization and validation  

We used the key ideas of the pattern-oriented modeling (POM) framework to parameterize and 

validate our model (Grimm et al. 2005; Grimm & Railsback 2011). The rationale behind POM is 

to reduce the uncertainty in model structure and parameters by comparing model results with 

multiple biological/ecological patterns at different hierarchical levels and scales, leading to more 

comprehensive and rigorous bottom-up models (Grimm et al. 2005). As our model aimed to 

reproduce long-term tropical forest dynamics, as well as realistic 3D growth patterns of the 

different functional tree types during their entire life cycles, we included multiple patterns at the 

forest and the tree level. This set of patterns comprised both quantitative and rather qualitative 

patterns, which makes it difficult to aggregate all patterns in a single comprehensive criterion 

evaluating model performance. We thus applied a three-step POM evaluation strategy and 

consecutively evaluated the performance of our model in reproducing i) the general structure and 
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dynamics of tropical forests, ii) complex patterns at the forest level and iii) life-history growth 

patterns of different functional tree types. 

 

In a first step, we evaluated the performance of our model in reproducing the general structure 

and dynamics of tropical forests. Pantropical studies have shown substantial differences in forest 

characteristics between continents and regions (e.g. Feldpausch et al. 2011), and in this study we 

focused on the well-studied Neotropical lowland forests. While typical ranges of attributes of such 

mature lowland forests, such as the basal area or net primary production per hectare, are relatively 

well-known, long-term field data to which the model could be fitted are still scarce. Taking into 

account this limitation, we estimated ranges of 12 important attributes characterizing both forest 

structure and dynamics based on a literature review (see Table 4.3; Table C.5). We excluded data 

from rather extreme or recently disturbed sites; the estimated ranges should be representative for 

average lowland forests in dynamic equilibrium state. Model performance was assessed by 

simulating 0.25 ha forest plots starting from bare ground for 500 years, and calculating the model 

performance criterion aM that tests if the attributes of the simulated forest in dynamic equilibrium 

state are within the empirical ranges: 

𝛼𝛼𝑀𝑀 =
∑ �

∑ 𝛽𝛽𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�
𝑛𝑛
𝑖𝑖

𝑛𝑛
 (4.56) 

 

where tmin is the time after which an equilibrium state is expected (here, tmin=200 years), tmax is 

the total number of years simulated (here, tmax=500), n is the total number of forest attributes 

(here, n=12) and β i,t is a Boolean variable describing for each attribute at each time step if the 

attribute value is within the estimated range (β i,t=1) or not (β i,t=0). The optimal values of aM=1 

can be reached if all attributes of the simulated forest are within the estimated ranges continuously 

from tmin to tmax. This approach assumes that a sufficiently stable equilibrium state is modelled, 

and the time to reach this state when starting from bare ground is thus a secondary prediction we 

additionally considered as validation criterion. 

 

In a second step, we evaluated whether our model adequately reproduced more complex patterns 

at the forest level. This step mainly involved qualitative comparisons between simulations and 

observations based on visualized patterns. The following patterns were considered: (i) Crown 

architectures of trees in stands usually change markedly with tree height, and while the crown 

area usually shows a clear non-linear allometric relationship with height, crown width and 

branching height are commonly rather linearly correlated with height (Alves & Santos 2002; Iida 

et al. 2011). (ii) The vertical leaf area density in undisturbed forests within stands often peaks in 



Materials and methods 

95 
 

the canopy zone, sometimes with an additional peak in the understory (Stark et al. 2012; Taubert 

et al. 2015). (iii) The height-diameter relationship is a typical characteristic of forest and for the 

Neotropics, this relationship was best described using a three-parameter exponential equation 

with an asymptotic maximum height of 38.8 m (Banin et al. 2012). (iv) The frequency 

distributions of tree diameter, height and age is typically right-skewed when considering all trees 

in a stand (Campbell et al. 1986; Worbes et al. 2003). When considering only trees above 10 cm 

in diameter at breast height (DBH), a normal or slightly right-skewed distribution is commonly 

observed (Oliveira-Filho et al. 1994; Worbes et al. 2003). In addition, the metabolic theory of 

ecology predicts a linear decrease in stem diameter frequency on a log-log-scale, but observations 

revealed deviations from this predictions for larger tree diameters (Muller-Landau et al. 2006b). 

To visualize and compare the mentioned patterns, we used simulated data after reaching dynamic 

equilibrium state in intervals of 50 years to avoid temporal autocorrelation (More details are also 

provided in the figure captions in the Results section).  

 

In a third step, we evaluated simulated growth of individual trees under controlled conditions. 3D 

tree growth patterns in our model emerge from processes at lower-hierarchical levels, and a visual 

analysis of ontogenetic tree growth trajectories in combination with an analysis of the changes in 

height and diameter growth, biomass and productivity during tree ontogeny served as fist 

indicator for the structural realism of our tree growth model. Furthermore, we systematically 

analyzed how changes in species traits (SLA, wood density) and environmental conditions (light, 

SI) influence tree growth. To cover the natural trait and environmental space in tropical forests, 

we altered each of these factors within their natural ranges while keeping the other factors constant 

at medium levels. Due to the size and longevity of trees, controlled experiments on changes in 

growth rates and morphology over a tree´s lifespan are practically impossible, and consequently 

data equivalent to our simulation experiment is missing. Nevertheless, based on numerous field 

and theoretical studies, we have a fairly good understanding of some qualitative and quantitative 

patterns during tree ontogeny. For instance, while the height growth of undisturbed trees is 

expected to continue at decreasing rates until reaching maximum height, the diameter growth 

rates tend to peak at a certain height or age (Clark & Clark 1999). In addition, the ranges of 

diameter growth rates, maximum tree heights and partly also maximum ages in tropical forest are 

well-studied (e.g. Martı́nez-Ramos & Alvarez-Buylla 1998; Clark & Clark 2001; Chao et al. 

2008). Life-history variations among trees have furthermore been associated with different 

functional traits (Poorter & Bongers 2006; Iida et al. 2012). Based on such observations, we 

evaluated our tree growth model mostly qualitatively. 

To find an optimal parameter combination following the described three-step POM evaluation 

strategy, suitable parameter ranges were defined at first. Many parameters have natural ranges, 
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which were estimated based on literature values (Table C.6). The parameters can be categorized 

into 4 classes: parameters specifying the i) environmental conditions, ii) functional and iii) 

structural traits, and iv) global model parameters. For the traits, minima and maxima have to be 

defined. For most traits, suitable ranges can be defined from observations. For example, wood 

density and SLA are well-studied (e.g. Baker et al. 2004; Patiño et al. 2012), and consequently 

the observed range of these traits define the suitable ranges in the model. Likewise, most structural 

traits are easy-to-interpret characteristics of tree structure, such as branching angles, and their 

minima and maxima can be determined based on empirical knowledge. This means that most free 

parameters belong to the class of global model parameters (Table C.6). After suitable ranges were 

defined, the best parameter set was attained using a manual parameterization strategy as despite 

optimizations, model run times were too long for automatic parameterization. This means that 

model parameters were repeatedly adjusted and analyzed until yielding an appropriate set of 

parameter values. 
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Table 4.3. Typical ranges of forest attributes in Neotropical lowland forests derived from a review of the literature. We 
concentrated on reviews covering multiple forest plots or larger forest areas. More details are given in Table C.5.  

Forest attribute Unit Typical range References 

Stem density  (>10cm) ha-1 480-620 Feldpausch et al. (2011), Banin et al. 

(2012) 

Stem density ha-1 2500-5000 Girardin et al. (2013), Chave et al. (2003), 

DeWalt & Chave (2004) 

Basal area m2 ha-1 25-35 Feldpausch et al. (2011), Banin et al. 

(2012), Girardin et al. (2013), Malhi et al. 

(2006), Baker et al. (2004) 

Above-ground biomass Mg ha-1 250-350 Malhi et al. (2006), Feldpausch et al. 

(2012), Baker et al. (2004) 

Canopy height m 27-38 Feldpausch et al. (2011), Asner et al. 

(2013), Girardin et al. (2013) 

Mean DBH (>10cm) m 0.18-0.26 Lieberman et al. (1996), Banin et al. 

(2014), Sawada et al. (2015) 

Leaf area index m m-2 3.5-5.5 Myneni et al. (2007), Doughty & Goulden 

(2008), Caldararu, Palmer & Purves (2012) 

Total NPP Mg ha-1 a-1 10-20 Malhi, Doughty & Galbraith (2011), 

Aragão et al. (2009), Malhi et al. (2013) 

Canopy NPP Mg ha-1 a-1 5-10 Chave et al. (2010), Malhi et al. (2013), 

Aragão et al. (2009) 

Basal area growth m2 ha-1 a-1 0.5-1.0 Malhi et al. (2004), Lewis et al. (2004b), 

Banin et al. (2014) 

AGB residence time a 25-60 Malhi et al. (2011, 2015), Galbraith et al. 

(2014) 

Stem turnover (>10cm) a-1 1-4 Quesada et al. (2012), Lewis et al. (2004), 

Malhi et al. (2009)  
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4.4 Results 

Following the 3-step POM validation strategy we found a parameter combination that resulted in 

realistic model behavior at the forest and the tree level (see Table C.4 for the optimized parameter 

set). Starting from bare ground, the simulated forest increased in stem number, above-ground 

biomass, and basal area and reached a dynamic equilibrium state after ca. 80-100 years (Fig. 4.10). 

In this equilibrium state, all 12 monitored forest attributes were within the ranges typically 

observed for Neotropical forest for the rest of the simulated 500 years, i.e. the validation criterion 

attained its optimal values of αM=1 (see 1 ha stand result in Fig. 4.10). Fluctuations around the 

equilibrium increased with decreasing stand size as the relative effects of gap-creating mortality 

events were stronger at smaller scales (Fig. 4.10).  

Considering all stems, the frequency distributions of tree diameter, height, and age were right-

skewed (Fig. 4.11). When only considering stems >10 cm in DBH, the height and age distribution 

were rather normally distributed (Fig. 4.11a,c). On log-scale, tree numbers decreases almost 

linearly with diameter and age, with deviations from this pattern only at large size/age classes. In 

contrast, the tree height distribution showed a distinct hump between 25 and 35 m (Fig. 4.11b). 

On log-log-scale, tree height distribution was linear for small individuals but became curvilinear 

at larger diameters (Fig. 4.11d). Trees reached a maximum diameter of ~100 cm, a maximum 

height of ~50 m and a maximum age of ~250 years.  

Crown architectures within the forest stand changed significantly with tree height (Fig. 4.12). We 

found a positive linear relationship between tree height and crown width (Fig. 4.12b), and an 

exponential relationship between tree height and branching height (Fig. 4.12a), as well as between 

tree height and crown area (Fig. 4.12c). However, due to differences in functional and structural 

traits of the trees, as well as in their ontogenetic stages, there was substantial scatter around the 

average trends. 
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Figure 4.10. Simulated long-term forest dynamics. (a) Stem density of all stems with DBH  > 10 cm, (b) Stem density 
of all stems with DBH > 1 cm, (c) Basal area, (d) Above-ground biomass (ABG), (e) Canopy height (mean height of 
all trees > 40 cm in DBH), (f) Mean DBH of all stems > 10 cm in DBH, (g) Leaf area index (LAI), (h) Total above-
ground net primary production (NPP), (i) Canopy net primary production (NPP of leaves and second order branches), 
(j) Basal area (BA) growth, (k) Residence time of above-ground biomass, (l) Turnover of all stems > 10 cm in DBH. 
Black lines represent simulations at 0.25 ha scale, and blue line at 1 ha scale. The grey-shaded areas indicate typical 
ranges for each forest attribute in Neotropical forests (see Table 4.3) Boxplots show interquartile ranges (boxes) and 
approximate 95% confidence intervals (whiskers) of the forest attributes in dynamic equilibrium state, i.e. from years 
150-500, based on 5 replicates of the forest model.   
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Figure 4.11. Frequency distributions: (a) tree DBH, (b) tree height, and (c) tree age. Distributions are shown on normal 
(colored bars, left axes) and log-scale (black dots, right axes). The average frequency in each size class over the years 
150-500 (equilibrium state) is shown here. (d) Tree DBH distribution on log-log scale. Values in each size class were 
binned to the class width. 

 

 

 

Figure 4.12. Relationship between tree height and crown parameters: (a) branching height (height of lowest first order 
branch), (b) crown width and (c) crown area. Each dot represents a single tree in the simulated forest stand. To reduce 
the degree of temporal pseudoreplication, all trees in the forest stand were sampled in time intervals of 20 years in 
dynamic equilibrium state (150-500 years). Simple linear models and linear models including a quadratic term were 
fitted to the data and the minimal adequate model based on AIC values is shown here (ΔAIC>4).  

 

The height-diameter relationship deviated slightly from the average allometry observed for South 

America by Banin et al. (2012) and overestimated the asymptotic maximum height by ~3 m (Fig. 

4.13 for details). The average vertical leaf area density profile of the simulated forest showed a 

unimodal distribution, in which the leaf area density peaked in the mid-canopy zone between 15 

and 25 m (Fig. 4.13b).  
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Figure 4.13. Height-diameter relationship (a) and vertical leaf area density distribution (b). (a) Each dot represents a 
single tree in the simulated forest stand. To reduce the degree of temporal pseudoreplication, all trees in the forest stand 
were sampled in time intervals of 20 years in dynamic equilibrium state (150-500 years). The relationship between tree 
height and diameter was described by the three-parameter exponential equation 𝐿𝐿𝑇𝑇 = 𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑎𝑎 ∙ 𝑒𝑒(−𝑏𝑏∙𝐷𝐷𝑇𝑇 ), where LT 
and DT are the height and diameter of the tree, and HMax, a and b are curve parameters (HMax represents the asymptotic 
maximum height, a is the difference between maximum and minimum height, and b the shape of the curve). This 
equation was used by Banin et al. (2012), who estimated an asymptotic maximum height of HMax=35.8 (a=31.1, 
b=0.029) for Neotropical forests based on 49 forest plots (grey dotted line). Our model (blue line) predicted HMax=38.8, 
a=37.9 and b=0.045. (b) The vertical leaf area density profile was calculated based on the simulated total leaf area in 
each voxel ALTot. For each vertical 1 m layer, the mean ALTot was estimated. The sold black line shows the means over 
all time step in dynamic equilibrium state (years 150-500), and the dotted lines indicated the standard deviation. 

  

Visualizations of the simulated forest stand (Fig. 4.14) illustrate the level of detail and structural 

realisms of the model. 

 

 

Figure 4.14. Visual representation of the simulated forest. (a) Oblique top view on simulated forest stand (0.25 ha) at 
a representative time step in in dynamic equilibrium state. The rendered representation is shown here 
(VisualizationShader=1). (b) Side view on simulated forest stand (0.25 ha) at a representative time step in in dynamic 
equilibrium state. The wireframe representation is shown here, (VisualizationShader=0), where second order branches 
are colored according to the light conditions (VisualizationMethod=1). Colors represent the shift from high light 
intensities (red) to low light intensities (blue). 
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Tree-level simulations revealed that tree growth under constant environmental conditions can be 

divided into three successive life stages (Fig. 4.15). The early life stage is characterized by a quick 

increase in height and diameter and continuously increasing net primary production rates. In this 

stage, all major branches are foliated (Fig. 4.15a). Subsequently, the lower branches begin to shed 

leaves (Fig. 4.15a), accompanied with lower increments in height and diameter and reduced net 

primary production (Fig. 4.15b,d). This stage ends when the tree reaches its maximum height. In 

the subsequent senescence stage, height and diameter growth cease and net primary production 

decreases as a result of the loss of photosynthetically-active leaf biomass. The leaf loss continues 

until all leaves are shed and the tree ultimately dies from carbon starvation. 

 

Figure 4.15. Ontogenetic development of an individual tree. (a) Visualization of tree structure of a freestanding tree at 
different ages. (b) Changes in tree height and diameter, (c) above-ground biomass (AGB) of the trunk, branches, leaves 
and the entire tree, and (d) net primary production (NPP) of the trunk, branches, leaves and the entire tree over time 
(panels b-d correspond to the tree shown in a). This example shows how a long-lived emergent tree species 
characterized by a low SLA growth without competition with neighbors over 300 years. Growth can be roughly divided 
into 3 life stages which are indicated by the different shades of gray in panels b-d. The first stage is characterized by a 
quick increase in height and diameter and continuously increasing net primary production rates. In this example, it ends 
at an age of ~50 years. In the subsequent stage the NPP decreases and the tree sheds lower branches. The final senescent 
stage begins at ~150 years when the tree growth close to its maximum height. In this stage it successively loses all 
leaves and branches, ending with the death of the tree.  

 

All species generally followed the illustrated tree growth pattern over their life spans when grown 

under constant external conditions. However, tree traits and environmental conditions had a large 

influence on all aspects of growth (Fig. 4.16). Species with high SLA values showed high initial 

growth rates (Fig. 4.16c; bear in mind that the SLA values is representative for the position on 

the LES) and reached their maximum height rapidly. Consequently, they entered the senescence 

stage after a shorter time and died at a comparably young age (Fig. 4.16a-d). In contrast, species 

with low SLA values had a lower growth rate, but were able to maintain their growth rate for a 



Results 

103 
 

longer time. They reached larger maximum heights at a higher age and had a longer life span. 

Wood density also affected life history growth, mainly by influencing the maximum height (Fig. 

4.16e-h). Both external factors (light and site index) affected tree growth in a similar way (Fig. 

4.16k-o). Due to the trade-off between carbon gain and carbon costs, lower light and site index 

values also decreased the maximum height. Interestingly, in contrast to SLA, variations in 

external factors clearly influenced the maximum height, but the maximum life-span was only 

slightly affected. 

 

 

Figure 4.16. Tree dynamics in dependence of their traits and the environmental conditions. Development of height, 
diameter, diameter growth rates and leaf biomass of trees with otherwise identical functional and structural traits which 
only differ in their specific leaf area (SLA; a-d) or their wood density (e-h). The right-hand panels illustrate the effects 
of the site index (i-l) and the light intensity Imax (m-p) on growth of trees with an identical set of traits.  

 

An important aspect of this modelling approach is that the theoretical maximum height of tree 

species is an emergent property of their leaf traits. This is because the maintenance and 

construction costs for pipes connected to the leaves increase with increasing pipe length, and at a 

certain length these carbon cost exceed the amount of carbon assimilated by the leaves, i.e. the 

carbon budget is negative. This pipe length can be interpreted as maximum tree height, which 

increases with decreasing SLA (Fig. 4.17a). In a similar way, the maximum height is also 
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correlated with wood density (Fig. 4.17a). In addition to the species traits, the maximum height 

also depends on the external conditions, i.e. light intensity and site index (Fig. 4.17b). 

 

 

Figure 4.17. Maximum tree height as a function of (a) tree traits and (b) environmental conditions. The maximum 
height of a tree is directly related to the maximum pipe length LPMax, which is an emergent property of our model 
(4.41). The maximum height decreases with SLA and wood density (a), and increases with light intensity and site index 
(b).  

 

Light conditions in forest stands are unevenly distributed, and trees can be subjected to a wide 

range of light intensities throughout their ontogeny. The light compensation point is thus an 

important characteristic to assess the light demand and to evaluate the survival probability of a 

species. In this model, the light compensation point can be assessed at the level of leaf 

compartments and mainly depends on the leaf investment strategy (expressed by the SLA) and 

the pipe length of the leaf compartment (Fig. 4.18). In the understory, i.e. with short pipe lengths, 

species with high SLA values have a lower compensation point than those with low SLA values. 

However, the compensation point of high SLA species steeply increases with increasing height, 

while the increase is shallower for low SLA species (Fig. 4.18). Consequently, the latter ones 

have lower light compensation points in the outer canopy zone. 
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Figure 4.18. Light compensation point of a leaf compartment in dependence on SLA and the pipe length. Each leaf 
compartment of a tree forms a leaf-pipe element which acts as autonomous module. Consequently, the light 
compensation point, i.e. the light intensity at which the assimilation rate matches the respiration rate, can be assessed 
at this level. 

 

 

4.5 Discussion 

The main aim of our forest model was to simulate long-term tropical forest dynamics at the stand 

scale at a high level of structural detail. In comparison with other commonly used individual- or 

cohort-based forest models (e.g. Liu 1998; Köhler & Huth 1998; Huth & Ditzer 2000; Phillips et 

al. 2004a), there are two main differences. Firstly, each tree is simulated as a functional-structural 

tree model in which the 3D tree structure is represented in detail, including branch segments up 

to the second order and within-tree leaf distribution at 1 m3 resolution. This allows detailed 

simulations of crown competition and within-stand light regimes. Secondly, tree species are not 

a priori classified into distinct functional groups but drawn from the full trait space with 

continuously varying leaf and wood traits. As tropical forest are species rich (more than 300 tree 

species per hectare have been observed; Gentry 1988; ter Steege et al. 2013), functional groups 

aggregating tree species with similar growth characteristics are used in forest models for 

simplification, and parameters like growth rate or potential height are estimated for each group  

(e.g. Köhler & Huth 1998; Tietjen & Huth 2006). Here, as suggested by Wright et al. (2004), the 

leaf investment strategy of each species depends on the position on the continuous leaf economic 

spectrum, and scales up to the whole-tree level. It is important to note that growth, shade 

tolerance, and maximum height of each tree species emerge from the leaf investment strategy and 

are not defined a priori. To validate this model, we tested if ecological patterns at the forest level 
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can be reproduced and if observed life-history variations among tree species can be simulated by 

differences in their leaf investment strategy. 

 

Forest level 

As first indication for structural realism of our model a dynamic equilibrium was reached, and in 

this equilibrium 12 important forest attributes fell within the ranges of Neotropical lowland forests 

(Fig. 4.10). It is generally assumed that under constant environmental conditions, carbon gains 

and losses are relatively balanced in old-growth forests, resulting in fluctuations around an 

equilibrium biomass level which are largely driven by gap dynamics (Whitmore 1990; Galbraith 

et al. 2014). The time required to reach biomass values typical for mature forests depends on 

environmental conditions. A wide range of time spans have been reported ranging from 40 to 60 

years (Puerto Rico; Mitchell Aide et al. 2000; Marin-Spiotta, Ostertag & Silver 2007), ~75 years 

(Mexico; Hughes, Kauffman & Jaramillo 1999) ~100 years (Brazil; Fearnside & Guimarães 1996) 

up to ~190 years (Columbia and Venezuela; Saldarriaga et al. 1988). Such time spans have not 

been observed directly but estimated using linear or non-linear models and are thus subject to 

uncertainty. Nevertheless, the simulated time span of 80 to 100 years lies well within this reported 

range. 

Gap creation caused by falling trees is the main source of deviations from equilibrium, and single 

gap formation should be more significant at small stand sizes. The higher fluctuations at smaller 

plot sizes (Fig. 4.10) thus agree with expectations and are in line with simulations by Chambers 

et al. (2013). 

Some attributes like stem density, basal area and above-ground biomass are well-studied, while 

other attributes describing forest dynamics (net primary production, turnover rates) and structure 

(leaf area index, canopy height) are less frequently measured. We considered the variability of all 

attributes, but also the higher uncertainty in the less frequently reported attributes, in estimating 

value ranges. Nevertheless, as we did not use statistical analyses, estimated ranges involved 

subjective decisions and thus should be interpreted with caution. However, the large number of 

attributes which were in reasonable ranges nevertheless indicates that this forest model produces 

structurally realistic results and captures essential mechanisms. 

As an additional evaluation of model performance, we compared more complex patterns at the 

forest level. Crown width, crown area, and branching height are common measures of crown 

architecture, which, unsurprisingly, were positively correlated with tree height (Fig. 4.12). The 

linear increase in crown width with height is in accordance with linear or almost linear trends 

observed in many tropical tree species (King 1996; Alves & Santos 2002; Iida et al. 2011). 
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Interestingly, a bulge in the crown width-tree height relationship was observed for tall trees > 

30m (Fig. 4.12b), indicating a disproportionate increase in crown width when trees rise above the 

average canopy height. King (1996) made similar observations finding a much steeper slope in 

the crown width-tree height relationship for larger trees potentially growing above the canopy. 

Crown development of emergent trees is less constrained by competition for space, and our model 

is able to reproduce such plastic crown responses. With an average crown width of 10 m at a 

height of 20 m, our model slightly overestimates crown dimension compared to observation, 

which rather were around 7-9 m (King 1996; Alves & Santos 2002). On the one hand, differences 

in methods to estimate crown width might partly explain the deviation. The exact position of each 

branch segment is known in the model and the crown width thus represents the absolute maximum 

distance to the stem, which might lead to a slight overestimation compared to ground-based field 

observations. On the other hand, due to the relatively simple integration of space competition in 

this model, the area of overlap between two crowns might be larger than in nature, leading to 

wider crowns. Crown area is generally closely related to crown width and the non-linear increase 

agrees with observations (Alves & Santos 2002; Poorter, Bongers & Bongers 2006). While the 

average trend might also be slightly higher than expected, the simulated range is in line with the 

results of Poorter et al. (2006), who found large differences in crown area trends for 54 tropical 

tree species.  

Compared with the discussed crown measures, branching height was less strongly correlated with 

tree height (Fig. 4.12a). ). In our model, branches are generated following the architecture defined 

by species structural traits, and branch shedding results from physiological process, i.e. branches 

are shed when all leaves are lost. These processes lead to a distinct development of branching 

height during tree ontogeny (Fig. 4.15), which can be modified when trees compete for space in 

forest stands (Fig. C.1). In natural trees, branching architecture is a complex trait, and the 

processes of branch generation and branch shedding are likely related to within-tree optimization 

of carbon gain (Farnsworth & Niklas 1995). For example, the complex crowns of emergent trees 

often develops trough reiteration from dormant buds, and this process is influenced by the local 

light conditions (Hallé et al. 1978; Barthélémy & Caraglio 2007). Due to such additional 

optimization mechanisms, which are not implemented in this model, the correlation between 

branching height and tree height is probably stronger in natural forests. However, direct 

comparisons are difficult because such correlations have only been studied at the species level 

(Alves & Santos 2002; Iida et al. 2011) and analyses at the forest plot level are not available. 

Nevertheless, the average trend in our study largely agrees with the average trends in different 

tree species (Alves & Santos 2002; Iida et al. 2011). 

The simulated leaf area density peaked in the canopy zone around 20 m (Fig. 4.13b), which is in 

accordance with observations in lowland forests on Barro Colorado Island (Taubert et al. 2015) 
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or near Manaus (Stark et al. 2012). In the latter study, however, an additional increase in leaf area 

density near the forest floor was observed, probably due to herbaceous vegetation which is not 

included in our model. Although vertical leaf area profiles have not been as extensively studied 

as other forest attributes, a leaf area maximum in the canopy layer is generally expected for 

undisturbed old-growth forests and our simulations are in line with this expectation. Interestingly, 

in a lowland forest analyzed by Stark et al. (2012), the leaf area density peaked in the lower 

canopy around 10 m. These authors considered past disturbances and the resulting non-

equilibrium forest state as a possible cause of the deviating pattern. Analyzing the effect of 

disturbance regimes on the vertical leaf area distribution might thus be an interesting future 

application of this model. 

The asymptotic height of the diameter-height relationship observed here (38.8 m; Fig. 4.13a) is 

close to the observed mean for Neotropical forests (35.8 ± 6.0 m; Banin et al. 2012). However, 

the shape of the simulated relationship differed from the observed average trend, and the 

simulated height at smaller diameter classes was slightly overestimated (Fig. 4.13a). In our model, 

height scales with diameter to the power 2/3, controlled by species-specific shape parameters. 

Trees only deviate from their species-specific relationship under low light conditions (increased 

height growth) or at maximum height (cessation of height growth). A more advanced allometric 

scaling model might thus improve our model. For instance, it is known that trees show a plastic 

response to several environmental conditions (light, precipitation, stand density) that can alter the 

intraspecific allometric relationships (Feldpausch et al. 2011; Banin et al. 2012). Trees might, for 

instance, cease height growth when growing as emergents and rather extend their crown 

horizontally. 

Our model produced a right-skewed tree diameter distribution (Fig. 4.11a), which is consistent 

with observations from other tropical forest (Oliveira-Filho et al. 1994; Hector et al. 2011). In 

addition, the simulated normal or slightly skewed distributions for height and age of trees > 10 

cm in DBH (Fig. 4.11b,c) agrees with empirical studies (Campbell et al. 1986; Oliveira-Filho et 

al. 1994; Worbes et al. 2003; Adekunle, Olagoke & Akindele 2013). As diameter, height, and age 

are usually correlated, similar frequency distribution of these attributes can be expected when 

considering all trees. Interestingly, the height distribution deviated from the age distribution and 

showed a distinct hump between 25 and 35 m (Fig. 4.11b). We speculate that the crowns of these 

trees in the upper canopy are well illuminated and less exposed to between-crown competition 

for space. Consequently, the probability to die due to carbon starvation should be lower, which 

might explain why the negative trend is halted for these larger height classes.  

The metabolic theory of ecology predicts a linear decrease in stem diameter frequency on a log-

log scale. Muller-Landau et al. (2006) and Enquist, West & Brown (2009) confronted the 
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theoretical predictions with observations and found deviations particularly among the larger 

diameter classes, whose frequency was lower than predicted. Interestingly, our model shows 

similar deviations (Fig. 4.11d). Enquist, West & Brown (2009) speculated that other sources of 

mortality than competitive thinning are the reason for the predicted linear trend, for instance wind 

damages, herbivory or diseases, which are particularly severe in larger size classes. In our model, 

trees growing at their maximum height enter senescence which inevitably ends with death. This 

emergent model behavior thus reflects the increased mortality probability of very large trees, 

leading to model results which are close to observations. 

In summary, our model reproduce a variety of patterns at the forest level reasonably well. Despite 

the overall complexity of the model, it is based on relatively simple assumptions: A local species 

pool is generated by randomly selecting species traits, these species germinate at random positions 

within the model space, they compete for light and space, and their mortality rates generally 

decrease with size and light conditions. The forest dynamics emerges from these lower level 

processes, and the agreement between multiple forest patterns and the model results is thus an 

indication for the suitability of our model approach. 

 

Tree level 

As an additional test of model performance, we analyzed simulated growth patterns of individual 

trees (Fig. 4.16). We hypothesized that differences in leaf traits capture observed life-history 

variations among different tree species. Tree species are often divided into functional groups 

(Gourlet-Fleury et al. 2005; Chazdon et al. 2010) and the simplest concept distinguishes pioneer 

and shade-tolerant species (Swaine & Whitmore 1988). Pioneer species are generally fast-

growing, short-lived species not able to establish under shade. Shade tolerant or climax species, 

in contrast, can survive under low-light conditions in the understory; they grow slower but live 

longer, potentially enabling them to grow as emergent trees. While a classification into functional 

groups can often be useful, several studies indicate that the transition from fast growing, short-

lived pioneer to slow growing, long-lived shade-tolerant species is indeed rather continuous 

(Wright et al. 2003b; Poorter & Bongers 2006). In our model, variations in leaf trait, expressed 

by the SLA, resulted in such variations in life history patterns (Fig. 4.16a-d). As pioneers 

generally have a significantly higher SLA than shade-tolerant species (Kitajima 1994; Rijkers et 

al. 2000), our result are consistent with these observations (Wright et al. 2003b; Poorter & 

Bongers 2006). 

The leaf trait trade-offs integrated in this model (Wright et al. 2004) are linked to whole-tree 

performance and support the notion that the growth-survival trade-off of tropical tree species is, 
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at least partly, determined by their leaf traits (Sterck et al. 2006). With regard to their light 

requirements, it is, at first glance, rather counterintuitive that pioneer species with their high SLAs 

are unable to survive in the shade. A high SLA means a high photosynthetically-active leaf area 

per dry mass investment (Evans & Poorter 2001), which should be favorable under low light 

availability. Interestingly, under controlled conditions in an experimental setup, the growth rates 

of pioneer seedlings in shade were actually higher than those of shade-tolerent species (Kitajima 

1994). Futhermore, leaf traits within individual trees are usually not invariable but rather show a 

plastic response to shade (this issue is dicussed below in more detail), with shade leaves having 

higher SLA values than sun leaves (Rozendaal et al. 2006; Markesteijn et al. 2007). These 

examples indicate an increased efficiency of light capture with increased SLA. However, this 

comes at a cost: leaves with a high SLA are short-lived, and low leaf toughness makes them more 

susceptible to herbivory and physical damage (Coley 1983; Wright & Cannon 2001; Díaz et al. 

2004). The carbon loss associated with these negative effects of a high SLA seem to be 

particularly important in the understory and increases the mortality rate of such species (Kitajima 

1994). Consequently, a conservative ressource use associated with a low SLA (tougher leaves, 

higher longevity) thus generally favors survival in shade and explains why shade-tolerant species 

are characterised by low SLA. Interestingly, our model simulates a similar light-dependent growth 

which is related to resource use efficiency. When trees are small, a higher SLA is more efficient, 

resulting in a lower light compensation point (Fig. 4.18). However, the increased leaf turnover of 

high SLAs has an adverse effect with increasing tree height, resulting in higher leaf compensation 

points above a certain height compared to low SLA species. Consequently, under low light 

conditions species with low SLAs are able to maintain a positve carbon buget over a wider range 

of tree heights, favoring their survival in the lower canopy (Fig. 4.18).  

Differences in wood density influenced tree growth much less than leaf trait differences (Fig. 

4.16). The most obvious effect was an increase in maximum height (and diameter) with 

decreasing wood density. Observed relationship between maximum height and wood density are 

not consistent across studies, and while the trend observed for Iberian canopy tree species agrees 

with our simulation results (Poorter et al. 2012), other studies found no significant relationships 

(Wright et al. 2010) or even positive trends (Osunkoya et al. 2007). Our model is carbon-based 

and by decreasing the construction and maintenances costs per volume of wood, low wood 

densities are advantageous and allow trees to grow taller. However, low wood densities are 

usually associated with lower mechanical stability and increased vulnerability to hydraulic 

failures (Hacke et al. 2001; Anten & Schieving 2010). Such trade-offs among wood traits 

influence the tree architecture and might have adverse effects on the maximum attainable height 

(van Gelder, Poorter & Sterck 2006). Furthermore, correlations among wood traits are also 

regarded as a factor explaining why increasing mortality rates with decreasing wood density are 
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consistently reported (Chao et al. 2008; Wright et al. 2010; Visser et al. 2016) - a pattern we did 

not observe in our simulations (Fig. 4.16). Thus, considering only wood density in our carbon-

based model is not sufficient to reproduce all interspecific differences related to wood traits. Our 

model could be improved by integrating additional mechanisms in future studies, for instance by 

considering the mechanical stability or hydraulic properties of stems and branches, or by 

considering several wood traits and their correlations. However, in this study we focused on leaf 

traits rather than on wood traits. 

The site quality, characterized by the dimensionless site index, was positively correlated with tree 

growth rates and maximum tree heights (Fig. 4.16i-l). We are not explicitly simulating 

water/nutrient cycles or temperature dependencies in our model, and the site index thus represents 

the strength of factors limiting tree growth, such as low water availabilities, low temperatures or 

poor soil conditions. Such limiting factors are generally associated with decreasing productivity 

and lower tree/canopy heights (Girardin et al. 2010, 2013; Pan et al. 2013), and the simulated 

patterns are thus qualitatively in accordance with these observations. Changing light conditions 

had similar effects on tree growth pattern, and the simulated increasing growth rates with light 

intensity are consistent with observed light-dependent responses of most tropical species (Kobe 

1999; Rüger et al. 2011; Philipson et al. 2014).  

Irrespective of environmental conditions and functional traits, simulated growth was clearly size-

dependent and trees showed characteristic ontogenetic growth trajectories (Fig. 4.15-4.16). A 

significant effect of size on growth rates has also been observed for most tree species in field 

studies (e.g. Rüger et al. 2011; Iida et al. 2014). However, both increasing and decreasing growth 

rates with diameter (Rüger et al. 2012), as well as humped-shape responses are reported (Clark 

& Clark 1999; Davies 2001). These observed differences might be related to species-specific 

variations, or incomplete or unbalanced data sets; tree growth data from natural forests often do 

not cover the entire size ranges of the species or are skewed towards the more frequent smaller 

size classes. It is thus not straightforward to estimate solid ontogenetic growth patterns based on 

field data, and whole-life growth trajectories are thus still debated (Rüger et al. 2011; Bowman et 

al. 2013). However, Hérault et al. (2011), found that the growth trajectories of 50 rain forest 

species could well be predicted using hump-shaped size-dependent models, and several additional 

empirical and theoretical studies suggest similar trajectories (e.g. Clark & Clark 1999). Our 

simulations generally agree with such studies suggesting reduced growth rates at larger size, 

although the transition from increasing to decreasing growth rates is likely much smoother than 

in our model. In reality, trees exhibit a variety of mechanisms to optimize their carbon budget, 

and integrating such mechanisms could substantially improve the simulated tree growth 

trajectories (see limitations section below). Such detailed optimization mechanisms were, 

however, beyond the scope of this study. 
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In summary, our model was able to reproduce ontogenetic 3D growth pattern of trees under 

different environmental conditions quite well. The tree´s leaf traits had a particularly strong 

impacts on life history patterns and leaf trait variations reproduced important differences in 

ontogenetic growth trajectories and light requirements among functional tree types, ranging from 

fast-growing pioneers to shade-tolerant emergent species. Our models considers correlations 

among leaf traits according to the LES and the simulations results thus corroborate our hypothesis 

that life-history variations among tree species are largely driven by leaf trait trade-offs. 

 

Model limitations 

Model parameterization can be hampered by the relatively large number of free model parameters 

and the considerable computation time accompanying complex models such as ours. Recently 

proposed methods for model parameterization, such as Bayesian approaches for parameterization 

(e.g. Martínez et al. 2011; Matsushita et al. 2015), are data- and computationally-intensive and 

were thus not feasible in this study. Still, we were able to calibrate our model manually following 

pattern-oriented modelling (Grimm et al. 2005; Grimm & Railsback 2011). Using this method, 

however, parameter uncertainty or collinearities among parameters could not be explored in 

detail. Nevertheless, we performed a simple sensitivity analysis in which the effects of changes 

of important model parameters on the model results were recorded (Table C.7), which might be 

useful for further model applications. 

Data availability was an additional limitation. While long-term inventory data spanning years to 

decades for tropical forest are available for some plots (e.g. Condit 1995; Bradford et al. 2014), 

these inventories concentrate on few key forest attributes such as the stem number or the basal 

area. To our knowledge, long-term records for such a wide range of attributes as used in this study 

(e.g. LAI, canopy NPP, etc.) for the same forest plots are not available. Thus, we decided to use 

estimated ranges of multiple forest attributes in typical Neotropical instead of time-series data for 

a lower number of attributes from a specific location to validate our model. We believe that the 

chosen approach is appropriate for the purpose of this study; however, fitting a model to time-

series data would be highly informative because deficiencies in the model structure would become 

more obvious if multiple forest attributes could not be simultaneously reproduced. 

Apart from the mentioned general limitations in model parameterization and validation, some 

ecological patterns could not be perfectly reproduced by our model. For instance, in natural forests 

trees commonly show fast initial height growth rates, but when crowns are well-illuminated, they 

tend to cease height growth and continue to grow in diameter at high rates (e.g. Matsushita et al. 

2015). In this model, height and diameter growth tends to be coupled more tightly, and trees 
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showed decreasing diameter growth rates after they entered senescence. While such decreases at 

large diameters were sometimes also found in nature (Clark & Clark, 1999), the time frame over 

which large diameter growth rate could be maintained appear to be larger than in our simulation. 

This deviation might be explained to a large extent by the exclusion of intra-individual trait 

plasticity in our model. Each individual in this model is characterized by non-variable traits, while 

in nature plasticity in functional and structural traits is ubiquitous. For instance, adjustments of 

SLA in response to the light conditions are usually observed (Rozendaal et al. 2006; Markesteijn 

et al. 2007), and our model provides an adequate explanation why such adjustments are favorable 

(see Fig. 4.18). Futhermore, tree architecture can also be adjusted and trees tend to arrange their 

branches in such a way as to avoid self-shading and maximise carbon gain. In addition, reiteration 

from dormant buds is regarded as important additional branching mechanism in the canopy zone 

(Hallé et al. 1978; Sterck & Bongers 2001; Osada 2011). If such plastic responses were integrated, 

larger trees would likely be able to use the available ressources more efficienly and they could 

maintain higher growth rates over a longer period. This would also mean that they could reach 

larger diameters and ages. In this model, maximum diameters of ~100 cm and ages ~250 years 

were simulated, however, in real tropical forests, trees exceeding these limits are not uncommon. 

Despite the mentioned deviations, our model concentrating on between-species trait differences 

already reproduced many patterns. In the future, trait plasticity could be implemented in this 

model to further increase the number of adequately reproduced structural patterns.  

 

Conclusion and outlook 

This modelling study indicates a strong reationship between a tree´s leaf traits and life history 

traits. We found that the position on the LES, which defines a specific set of economic leaf traits, 

determined the maximum height and age of a tree, as well as it size-dependent growth rates and 

shade tolerance. The simulated transition from fast-growing short-lived pioneers to slow-growing  

long-lived emergent species along the LES was consitent with our expectation of functional tree 

types, and we regard these consistencies as clear indication for a fundamental role of leaf traits in 

determining the life history growth patterns of trees. Moreover, when integrated into a forest stand 

model, many forest level patterns emerging from lower-level processes could sucessfully be 

reproduced, which is an additional indication for the usefulness of our model approach. 

Bottom-up functional-structural tree and forest models have the potential to considerably increase 

our understanding of the mechanisms controlling tree and forest dynamics in the future. Due to 

the large and complex structures of trees and their long life spans, empirical studies on 3D tree 

growth are challenging. We are able to measure processes at lower organizational levels (e.g. 

photosynthesis at the leaf scale) or to track some tree variables over a limited time (e.g. diamter 
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growth of saplings), but it is virtually impossible to record 3D tree growth as a whole. In this 

situation, functional-structural tree models can be helpful tools accompanying empirical studies, 

because they allow to test and evaluate the consequences of low-level mechanisms on whole-tree 

growth patterns, which, in turn, can help to obtain a more complete picture of whole-tree growth. 

So far, FSTM have not received much attention and thus offer ample opportunities in future 

studies. For instance, the importance of within-individual trait plasticity on whole-tree carbon 

budget could be explore, or a water budget model could be integrated and the effects of wood and 

leaf hydraulic traits could be assessed. Such an approach can be useful to test hypotheses on the 

role of hydraulic failure and carbon starvation in tree mortality. A better mechanistic 

understanding of tree growth and mortality based on FSTMs can also facilitate the development 

of next-generation predicitve forest models in which tree performance emerges exclusively from 

functional traits. Futhermore, we strongly recomment to consider the forest level as additional 

hierachical level in functional-structural modelling studies. On the one hand, bottom-up 

mechanisms can be tested under more realistic conditions, in which trees and envrionmental 

conditions interact in a complex way. On the other hand, such detailed forest models have the 

potential to advance our understanding of forest dynamics, specifically over long time frames. 

For example, the long-term effect of frequent disturbances or varying environmental conditions 

on forest stability (dynamic equilibrium) and structure (e.g. the vertical leaf area distribution) 

could be assessed. Last but not least, we want to highlight the potential of FSFM for future model-

based studies of canopy-dwelling organisms. Tropical forest canopies harbor numerous arboreal 

animals and epiphytic plants, but due to logistical problems accessing their habitat studies are 

often cumbersome. FSFM provide detail information on the 3D forest dynamics (e.g. tree and 

branch dynamics) and microclimatic changes, and this data can form the basis for further 

theoretical studies. For instance, our knowledge on long-term dynamics of vascular epiphytes is 

still very scarce, and by coupling a FSFM with an epiphyte population model, the importance of 

(changes in) 3D forest dynamics on epiphyte communities can be tested. Such analyses are 

particularly timely as tropical forests are already changing in response to atmospheric changes, 

and more information on the response of canopy-dwelling organisms to such changes is urgently 

needed.  
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5.1 Abstract 

Forest dynamics undoubtedly influence the structure and dynamics of epiphyte assemblages, for 

example by varying local microhabitat conditions and the branch surface over time. However, 

quantitative field studies in the three-dimensional habitat of epiphytes are generally tedious and 

costly. Unsurprisingly, our knowledge on structure and dynamics of epiphyte assemblages is thus 

scarce. In this study, we present a complementary approach to epiphyte research by developing 

the first mechanistic model conceived to simulate vascular epiphyte dynamics. The model was 

designed to be coupled with detailed forest models providing the habitat dynamics. By first 

applying the model to average dynamics of Neotropical lowland forests, we validated the spatial 

distribution of epiphytes. Thereafter, we assessed how differences in natural forest dynamics, 

selective logging of large trees and the size of forest stands influence the long-term dynamics of 

epiphyte assemblages. To this end, we generated reasonable forest scenarios using a dynamics 

functional-structural forest model, and simulated the epiphyte dynamics on these forest stands 

over 500 years. Forests with low natural tree turnover rates had lower epiphyte extinction rates, 

higher abundances and were more ‘saturated’. Even in mature lowland forest, epiphyte 

assemblages commonly show no sign of saturation, and our simulations demonstrated that the 

saturation level was strongly influenced by the dynamics of the forest. Furthermore, an increased 

logging intensity or a decreased size of the forest stand had negative impacts on the epiphyte 

community and resulted in higher local extinction rates. Our results demonstrated that the average 

abundance and biomass of epiphytes are regulated by forest dynamics. Such influences of forest 

dynamics on epiphyte assemblages should thus be considered in epiphyte research in addition to 

the known influences of environmental factors such as water-availability. We conclude that 

mechanistic models can be valuable tools to increase our understanding of the dynamics of 

epiphyte communities and to provide useful feedbacks to both empirical studies and conservation 

policies. 

 

5.2 Introduction 

Vascular epiphytes are a taxonomically diverse group comprising ~9% of the world´s plant 

species (Zotz 2013). These non-parasitic plants germinate and grow on other plants, usually trees, 

without contact to the soil. Their arboreal life style allows epiphytes to reach well-illuminated 

zones in forest canopies without major investments in plant structure (Benzing 1990). Due to the 

often low plant densities, competition for space and light seems to be of minor importance in most 

epiphyte assemblages, which may be an additional advantage over terrestrial plants (Zotz & Hietz 

2001). However, as epiphytes are isolated from terrestrial soils, they have to cope with low and 
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irregular supply of water and nutrients from atmospheric inputs, litter or canopy soils (Benzing 

1990; Wania et al. 2002). To enhance resource uptake and retention, epiphytes have evolved a 

number of adaptations such as water-storing phytotelmata, pseudobulbs or the velamen radicum 

facilitating their survival in forest canopies (Benzing 1990). 

The explicit three-dimensional nature of the epiphyte habitat implies a strong dependence on 

forest structure and dynamics. The forest structure, i.e. the spatial distribution of trunks and 

branches, influences demographic processes of epiphytes directly by providing colonizable 

substrate, but also indirectly by controlling the spatial distribution of abiotic factors (Parker 1995). 

These direct and indirect effects are the main causes of the spatial structure of epiphyte 

assemblages within forests and within individual trees (Johansson 1974; Zotz 2007). Within 

forests, the typically observed vertical stratification of epiphyte species is commonly attributed 

to the pronounced vertical gradients in light and humidity (ter Steege & Cornelissen 1989; 

Benzing 1990). For instance, for species growing in the upper canopy, efficient transpiration 

control and leaf succulence is an advantage, while in the dark understory efficient light use via 

high specific leaf areas (SLA; the ratio between photosynthetically-active leaf area and dry mass) 

facilitates survival (Petter et al. 2016). 

Also within individual trees, epiphyte species are not evenly distributed, and Johansson (1974) 

proposed a zonation scheme based on the relative within-tree position, which is still widely used 

in epiphyte ecology. In addition to microclimatic gradients from the outer to the inner crowns 

similar to those at the forest level, the importance of the spatial distribution and temporal 

dynamics of substrate for epiphyte colonization and mortality becomes particularly evident at the 

tree level. Trees are dynamic systems in which new substrate is continuously generated by growth 

processes, but also lost via branch fall. As the frequency of branch fall is size-dependent (Cabral 

et al. 2015), the age and longevity of the substrate also shows pronounced within-tree gradients 

from stable trunks to highly dynamic outer crowns, and this gradient contributes to the spatial 

pattern of epiphytes within trees. 

Population and community dynamics of epiphyte assemblages are influenced by the outlined 

complex forest-epiphyte interactions at different spatial and temporal scales. As differences in 

climatic conditions influence both epiphytes and forests (Quesada et al. 2012), an indirect climate 

effect on epiphyte assemblages via variations in forest structure and dynamics can be assumed. 

So far, epiphyte studies mainly focused on direct effects of climate on epiphyte diversity, and 

water-related variables such as precipitation and humidity are considered as important 

determinants (Gentry & Dodson 1987; Kreft et al. 2004). However, a recent study by Ding et al. 

(2016) disentangled the direct effects of climate and soil on epiphyte diversity and abundance 

along an elevational gradient from the indirect effects via forest structure using structural equation 
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models. Interestingly, indirect effects explained a similar proportion of variations in abundance 

and species richness as humidity, which highlights the fundamental impact of the forest structure 

on epiphyte assemblages. 

Sampling and monitoring epiphyte in their three-dimensional habitat is logistically challenging 

as it requires climbing or technical equipment like canopy cranes, airships or canopy platforms. 

Consequently, studies on composition, structure and particularly dynamics of epiphyte 

populations and assemblages are rare compared to the numerous floristic works on epiphytes. 

Mondragón, Valverde & Hernández-Apolinar (2015) recently reviewed studies about the 

population ecology of epiphytic angiosperms and found population growth rates based on matrix 

analyses for only 30 epiphyte species of 2 families (bromeliads, orchids) - a very low number 

compared to the total diversity of epiphytes (>27.000 species and 73 families, respectively; Zotz 

2013). Regarding temporal dynamics of entire epiphyte assemblages, two repeated plot-scale 

censuses (1 ha plot in Venezuela: Schmit-Neuerburg 2002; 0.4 ha plot in Panama: first census by 

Zotz & Schultz 2008, second census by G. Mendieta-Leiva, K. Wagner & G. Zotz, unpublished 

data) and two studies assessing temporal changes on specific host tree species (Socratea 

exorrhiza: Laube & Zotz 2006; Annona glabra: Zotz, Bermejo & Dietz 1999) have been 

conducted so far. Compared to soil-rooted plants data availability is thus limited, and in 

combination with the lack of standardized methodology and terminology in epiphyte studies 

(Mendieta-Leiva & Zotz 2015), this makes it difficult to develop a general theory on structure 

and dynamics of epiphyte assemblages. 

Mechanistic models are valuable tools to increase theoretical knowledge in ecology, which in turn 

can inform field studies. Mechanistic models can help to disentangle the complex interactions 

between forests and epiphytes by simulating and evaluating the effects of different hypothesized 

mechanisms. In this study, we analyzed the effects of long-term forest dynamics on the structure 

and dynamics of epiphyte assemblages by coupling a functional-structural forest model (FSFM) 

with an individual-based epiphyte model. The FSFM simulates structural growth, establishment 

and mortality of virtual three-dimensional trees at the stand scale, and each tree is represented by 

a trunk and numerous branch segments up to the 2nd order. Tree growth includes growth of trunks 

and branches as well as establishment of new branches and branch fall. By coupling the FSFM 

with an epiphyte model, detailed processes such as the fall of epiphyte attached to branches can 

be simulated. We modelled different forest scenarios, which allow us to assess how (1) differences 

in natural forest dynamics, (2) selective logging and (3) the size of the forest fragment influence 

the long-term dynamics of epiphyte assemblages.  
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5.3 Materials and methods 

5.3.1 Model description 

The model description follows the ODD (Overview, Design concepts, Details) protocol which 

was proposed as standard protocol to communicate agent-based models (Grimm et al. 2006, 

2010). 

 

5.3.1.1 Purpose 

The main purpose of this model is to analyze the influence of long-term forest dynamics on the 

structure and dynamics of vascular epiphyte assemblages. Vascular epiphytes germinate and grow 

on trees. Thus, the fate of individuals is connected with the dynamics of their host trees, which 

grow and create new substrate, but which also shed branches and ultimately die and fall (Sarmento 

Cabral et al. 2015; Taylor & Burns 2015). Driven by natural environmental differences or by 

human interventions, the dynamics of different forests can differ substantially (Brown et al. 2004; 

Wright 2005; Quesada et al. 2012). In this study, the impact of such differences on epiphyte 

assemblages is studied by coupling a detailed three-dimensional forest model with an individual-

based epiphyte model. 

 

5.3.1.2 Entities, state variables and scales 

The model is three-dimensional and voxel-based, and its spatial extent depends on the spatial 

dimensions of the coupled forest model, which usually covers an area of 0.25 to 1 hectare at a 

height of ca. 50 m. The model space is subdivided into voxels of 1 m3, whose state variables 

characterize three key environmental conditions: i) light intensity, ii) total area of arboreal 

substrate, and iii) relative loss of substrate area (Table 5.1). The model proceeds in annual time 

steps, commonly covering a period of 500-1000 year. The state variables of the voxels are updated 

each year according to the result of the forest model (Fig. 5.1). Individual epiphytes are the actual 

entities whose growth, reproduction and mortality are simulated as a function of their traits and 

the environmental conditions in the voxels. The state variables and traits of epiphytes are 

summarized in Table 5.1. 
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Table 5.1. State variables and species-specific traits. The demographic processes of individual epiphytes in this model 
are influenced by the state variables of the voxels describing the environmental conditions, and by the specific traits of 
each species to which an individual epiphyte belongs to. 

Symbol Description Unit Type 

VX Position of voxel in model space in X direction m State variable (voxel) 

VY Position of voxel in model space in Y direction m State variable (voxel) 

VZ Position of voxel in model space in Z direction m State variable (voxel) 

I Light intensity μmol m-2 s-1 State variable (voxel) 

SB Total surface area of arboreal substrate  m2 State variable (voxel) 

SLoss Percentage annual surface loss % State variable (voxel) 

ID Ind Individual ID of epiphyte - State variable (epiphyte) 

IDSp Species ID of epiphyte - State variable (epiphyte) 

EX Position of epiphyte in model space in X direction m State variable (epiphyte) 

EY Position of epiphyte in model space in Y direction m State variable (epiphyte) 

EZ Position of epiphyte in model space in Z direction m State variable (epiphyte) 

M Mass of epiphyte g State variable (epiphyte) 

A Age of epiphyte years State variable (epiphyte) 

MMax Maximum mass g Species-specific trait 

MMat Mass at maturity g Species-specific trait 

K Growth rate (Bertalanffy growth) a-1 Species-specific trait 

D Dispersal ability (negative exponential dispersal) - Species-specific trait 

R Maximum number of recruits per individual # Species-specific trait 

IMin Minimum light intensity for survival μmol m-2 s-1 Species-specific trait 

IMax Maximum light intensity for survival μmol m-2 s-1 Species-specific trait 

IOpt Optimum light intensity μmol m-2 s-1 Species-specific trait 

IA Parameter A of parabolic light response curve - Species-specific trait 

IB Parameter B of parabolic light response curve - Species-specific trait 

IC Parameter C of parabolic light response curve - Species-specific trait 

 

 

 

Figure 5.1. Generation of microhabitat matrices based on the result of the forest model. The left hand side illustrates a 
forest stand simulated with the FSPM. The spatial distribution of leaf area, branches and trunks is saved in each annual 
time step and on this basis the light distribution, total substrate area and relative annual loss of substrate area is 
calculated for each 1 m3 voxel in the microhabitat matrix (right hand side), which forms the basis of the epiphyte model. 
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5.3.1.3 Process overview and scheduling 

The results of FSFMs at the stand scale (see chapter 4 for details) are used as input data for the 

epiphyte model. Based on these results, 3D microhabitat matrices containing the state variables 

of all voxel (Table 5.1) are calculated for each annual time step (Fig. 5.1). Using the initial 

microhabitat matrix, the initial distribution of individual epiphytes belonging to different species 

is generated (see section 5.3.1.5 for details). After initialization, the demographic processes 

recruitment, growth and mortality are simulated at each time step (Fig. 5.2). Each adult can 

reproduce at each time step, whereby the potential number of new recruits depends on the species-

specific fecundity (Table 5.1) and the body mass of the individual in relation to its species-specific 

maximum mass. For each species, based on the position and potential number of recruits of each 

adult, as well as the species-specific 3D dispersal kernel and the available substrate area in each 

voxel, a probability matrix for establishment of new recruits is calculated. This matrix describes 

how many new recruit of a species could potentially establish in each of the voxels of the 

microhabitat matrix. The actual number of new recruits is then estimated based on Poisson 

random values. After recruitment, growth of each individual is simulated as a function of its mass 

and the light conditions in the specific voxel. In a last step, the mortality risk is estimated. 

Individuals die if the light conditions are outside the species-specific light niche or if they are the 

only occupier of a voxel whose surface area is too small to support the individual. In this case, 

we assume that the individual falls off the branch/stem. If several individuals occupy one voxel 

and their total space requirements exceed the available surface, smaller individuals are 

outcompeted by larger ones. Furthermore, individuals may die due to branch or tree fall, whereby 

the relative surface loss in a voxel defines the probability of mortality. In addition, body mass-

dependent mortality probabilities, which follow the quarter-power law of the metabolic theory, 

are also used to account for causes of mortality not explicitly simulated. In the latter cases, random 

numbers between 0 and 1 are drawn to decide between death and survival. After this final step, 

the age of each surviving epiphyte is updated and the model proceeds with the next time step. 
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Figure 5.2. Flowchart of the coupled forest-epiphyte model. Based on the results of the FSFM, a microhabitat matrix 
characterizing the epiphytic habitat at each time step is generated. The initial spatial distribution of epiphytes and all 
demographic processes of individual epiphytes are influenced by the microhabitat matrices.  

 

5.3.1.4 Initialization 

The initial microhabitat matrix describes the light conditions and the distribution of substrate in 

each voxel and forms the basis of the initial epiphyte distribution. At first, a species pool 

containing traits of a defined number of epiphyte species (here: 100) is generated. Subsequently, 

the desired ratio of juvenile to mature plants in the initial assemblage is specified and, on this 

basis, an identical number of individuals per species is assigned to each group. Here, we used a 

total density of 400 individuals per species and hectare The maximum mass and the mass at 

maturity are species-specific traits, and based on these the initial mass of each juvenile and adult 

is randomly chosen from the range [0, mass at maturity] or [mass at maturity, maximum mass], 

respectively. Then, all individuals of all species are placed in the initial microhabitat matrix. 

Specifically, this means that for one individual after the other (to avoid biases, the sequence of 

individuals is randomized), all suitable voxels are estimated and one of these is randomly chosen 

as initial location. Suitable voxels have light conditions within the species-specific light niche 

(Table 5.1) and enough unoccupied surface area for the individual. The initial state of the model 

thus describes the location, state and species identity of each individual. This initial state is saved, 

which allows replications using identical initial conditions. 
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5.3.1.5 Input 

The result of FSFMs simulated with the software GroIMP are used as input data in this model. In 

theses FSFMs, growth, establishment and mortality of three-dimensional virtual trees is simulated 

at the stand scale, whereby each tree consist of one trunk and branches up to the 2nd order. Based 

on the 3D distribution and the dynamics of branches and trunks, the voxel-based distribution of 

substrate areas and their changes can be estimated. In addition, as the 3D distribution of leaf area 

is simulated at a resolution of 1m3, the 3D light environment can also be calculated. These input 

data thus represent the dynamic of forests at a high level of detail. 

 

5.3.1.6 Submodels 

Generation of microhabitat matrices 

A file containing the start position PSStart
XYZ and end position PSEnd

XYZ of each branch segment in 

3D space, as well its length LS and diameter DS, was saved at each time step in the FSFM (for 

details see chapter 4). Based on LS and DS, the surface area of each branch segment AS is 

calculated: 

𝐴𝐴𝑆𝑆 =
𝜋𝜋 ∙ 𝐿𝐿𝑆𝑆 ∙ 𝐷𝐷𝑆𝑆

2
 (5.1) 

 

We assume that only the upper branch parts can be colonized by epiphytes, and hence the total 

surface area of the branch segment is divided by 2. The maximum length of a branch segment is 

given by the maximum internode length used in the FSFM, which in this case was 0.5 m. As the 

side length of a voxel is 1 m, a branch segment may thus only intersect with a maximum of two 

voxels in X, Y and Z direction. The intersecting voxels in X direction VIntX are calculated as 

follows: 

𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 �ceiling�𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑋𝑋�, ceiling�𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑋𝑋�� (5.2) 

 

Analogously, the intersecting voxels in Y direction VIntY and Z direction VIntZ are estimated. 

Subsequently, the total number of intersecting voxel can be estimated as: 

𝑛𝑛𝐼𝐼𝐼𝐼𝐼𝐼 = length(𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) ∙ length(𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) ∙ length(𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) (5.3) 
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AS is evenly split among all intersection voxels, i.e. the total surface area in these voxels is updated 

as: 

𝐴𝐴𝐵𝐵 = 𝐴𝐴𝐵𝐵 +
𝐴𝐴𝑆𝑆
𝑛𝑛𝐼𝐼𝐼𝐼𝐼𝐼

 (5.4) 

 

In the vast majority of cases, branch segments are completely contained in a single voxel, or only 

intersect with two voxel, and thus we consider this simplified method as appropriate. 

The position of each trunk in X and Y direction PT
XY, as well as its length LT and diameter DT, 

are stored in a separate file. Trunks are not split into several segments in the FSTMs and their 

total surface areas thus have to be partitioned among intersecting voxel. To this end, we assume 

that each trunk has the form of a cone and only consider voxels directly above the voxel containing 

PT
XY. The highest voxel the trunk is intersecting with VZMax can easily be calculated based on LT: 

 𝑉𝑉𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 = ceiling(𝐿𝐿𝑇𝑇) (5.5) 
 

For this voxel, the length of the intersecting trunk part LTS is calculated as follows: 

𝐿𝐿𝑇𝑇𝑇𝑇 = 𝐿𝐿𝑇𝑇 − floor(𝐿𝐿𝑇𝑇) (5.6) 
 

As the radius in a cone linearly decreases with height, the radius at the intersection between the 

trunk part and the voxel rInt can be estimated as 

𝑟𝑟𝐼𝐼𝐼𝐼𝐼𝐼 =
𝐿𝐿𝑇𝑇𝑇𝑇 ∙ 𝐷𝐷𝑆𝑆
𝐿𝐿𝑆𝑆 ∙ 2

 (5.7) 

 

Based on rInt and LTS, the lateral surface of the cone in this voxel ABT representing the surface 

area can be calculated: 

𝐴𝐴𝐵𝐵𝐵𝐵 = 𝜋𝜋 ∙ 𝑟𝑟𝐼𝐼𝐼𝐼𝐼𝐼 ∙ �𝑟𝑟𝐼𝐼𝐼𝐼𝐼𝐼2 + 𝐿𝐿𝑇𝑇𝑇𝑇2 (5.8) 

 

Analogously, the total lateral surface of the cone spanning from the intersection between the next 

lower voxel to the maximum tree height can be estimated. To calculate the surface area only 

intersecting with the specific voxel, ABT has to be subtracted from this. Following this routine 

from the highest to the lowest voxel, the surface area in each voxel can be calculated. 
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Looping through the trunk and all branch segments, the total surface area in each voxel is 

calculated successively. To estimate the relative loss of surface at this time step, the list of all 

branch segments and trunks is compared with the list in the succeeding time step. As each of this 

tree parts has a unique identifier, it can easily be estimated if it got lost in this year. Following the 

same procedure as described above, the loss of surface area in each voxel is calculated, and by 

relating this loss to the total surface area, the percentage annual loss SLoss is estimated. 

The light intensity in each voxel is calculated based the total leaf area in each voxel which was 

saved at each time step in the FSFM. Based on the sum of ALTot
XYZ in all voxels above the 

specified voxel, the leaf area index LAIXYZ for each voxel is calculated. 

𝐿𝐿𝐿𝐿𝐿𝐿𝑋𝑋𝑋𝑋𝑋𝑋 =
∑ 𝐴𝐴𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑋𝑋𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑧𝑧

𝐿𝐿𝑉𝑉2
 (5.9) 

 

where LV is the side length of a voxel. Assuming a Lambert-Beer extinction law, the single-

column light intensity ISC
XYZ

 is calculated based on LAIXYZ. 

𝐼𝐼𝑆𝑆𝑆𝑆𝑋𝑋𝑋𝑋𝑋𝑋 = 𝐼𝐼𝐶𝐶 ∙ 𝑒𝑒−(𝑘𝑘𝐿𝐿∙𝐿𝐿𝐿𝐿𝐿𝐿𝑋𝑋𝑋𝑋𝑋𝑋) (5.10) 
 

where Imax is the light intensity above the canopy and kL the light extinction coefficient. This 

method assumes that solar radiation only penetrates directly from above and disregards additional 

processes like light reflection. This is an oversimplification, particularly in such heterogeneous 

forests as simulated here. To get a more realistic estimation of the average, effective light intensity 

within a voxel IXYZ, the single column light intensity ISC
XYZ in the voxels surrounding the focal 

voxel in x and y direction are additionally taken into account. The number of surrounding voxels 

considered depends on the parameter LR which defines how many rectangular rings around the 

focal voxel are considered. For each considered voxel, the relative contribution CR is calculated, 

with Σ CR =1. CR thus defines how strong ISC
XYZ in each voxel contributes to IXYZ and we assume 

that all rings contribute equally: 

𝐶𝐶𝑅𝑅 =
1

𝐿𝐿𝐿𝐿 + 1
∙

1
max (1,𝑅𝑅 ∙ 8)

 (5.11) 
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On this basis, IXYZ is calculated as  

𝐼𝐼𝑋𝑋𝑋𝑋𝑋𝑋 = � � 𝐼𝐼𝑆𝑆𝑆𝑆𝑋𝑋𝑋𝑋𝑋𝑋
𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚

𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚

𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚

𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚

∙ 𝐶𝐶𝑅𝑅 (5.12) 

 

where Xmin=X-LR and Xmax=X+LR (likewise for Y).  

 

Generation of initial species pool 

At the beginning of each simulation, the local species pool containing the trait information of nSp 

species is initialized. Each species has a unique identifier and is characterized by a set of traits 

(Table 5.1). Some traits are randomly chosen from defined ranges (Table 5.2), others are related 

to the body mass following the principles of the metabolic theory of ecology (MTE; Brown et al. 

2004).  

 

Table 5.2. Parameter ranges of the epiphyte model. 

Symbol/parameter Description Unit Range 

MMax Maximum mass of species g [2, 1000] 

MRel Relative mass in relation to maximum mass at which 

maturity is reaches 

μmol m-2 s-1 [0.5, 0.8] 

DK Factor b in negative exponential function - [0.1, 0.8] 

DKAs Dispersal kernel asymmetry - [0.5, 0.9] 

HMean Mean height relative to forest height - [0, 1] 

HRange Height range (relative)  [0.2, 0.8] 

nR Average number of recruits per mature plant  [5,10] 

 

 

First, the maximal body mass MMax of each species is specified based on the defined lower and 

upper limits MMax
L and MMax

U (the superscripts in this section always refer to the user-defined 

upper and lower limits of a specific parameter; see Table 5.2). We assume that smaller species 

are more frequent and thus chose MMax randomly from the uniform distribution after log 

transformation of MMax
L and MMax

U: 

  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 10unif(log(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝐿𝐿), log(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝑈𝑈)) (5.13) 
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We assume that the mass at maturity MMat scales with MMax: 

  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ∙ unif(𝑀𝑀𝑅𝑅𝑅𝑅𝑅𝑅
𝐿𝐿 ,𝑀𝑀𝑅𝑅𝑅𝑅𝑅𝑅

𝑈𝑈) (5.14) 
 

where MRel defines the ratio between MMat and MMax. The MTE predicts a positive quarter-power 

scaling of the age at maturity AMat with MMax (Brown et al. 2004; Duncan, Forsyth & Hone 2007), 

and accordingly AMat is calculated as follows: 

  𝐴𝐴𝑀𝑀𝑀𝑀𝑀𝑀 = �𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀 +  𝐴𝐴𝑀𝑀𝑀𝑀𝑀𝑀1/4� ∙ unif�𝐴𝐴𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐿𝐿 ,𝐴𝐴𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑈𝑈� (5.15) 
 

where kMat is the intercept of the AMat-MMax relationship. To add stochasticity, the relative 

deviation from the mean trend AMatDev is also considered. 

In this model, epiphytes grow according to the Bertalanffy growth law (see subsection growth), 

in which the growth rate (or curvature parameter) K is a species-specific parameter. This 

parameter can be calculated based on MMax, MMat and AMat as follows: 

   

𝐾𝐾 = −�
log(1) + log �1 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
�

𝐴𝐴𝑀𝑀𝑀𝑀𝑀𝑀
� 

 

 

(5.16) 

In natural epiphyte communities, a pronounced vertical stratification is usually observed (Krömer 

et al. 2007; Petter et al. 2016). The reasons why species occurrences are limited to specific vertical 

ranges are complex; however, in this model we assume that light defines the niche. In a forest 

canopy, the light intensity does not vary linearly from the upper strata to the forest floor, but rather 

non-linearly, commonly described by a light-attenuation law such as Lambert-Beer. Hence, the 

height niche and the light niche are not linearly related. As vertical niches of epiphyte species are 

better studied and more intuitive, we at first specify the vertical niche for each species in a 

standardized forest (Optimum height, minimum height and maximum height relative to the 

maximum height of the forest), and subsequently translate the vertical niche to the light niche. 

Thus, at first the relative mean height HMean is randomly chosen for each species: 

  𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = unif(0,1) (5.17) 
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HMean defines the mean height of the vertical niche relative to the maximum height of a 

standardized forest, and thus may vary between 0 and 1. The breadth of the vertical niche HRange 

is randomly chosen from the defined ranges HRange: 

  𝐻𝐻𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = unif(𝐻𝐻𝑅𝑅𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝐿𝐿 ,𝐻𝐻𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑈𝑈) (5.18) 
 

The lower and upper boundary of the vertical niche can be determined based on HMean and HRange 

as follows: 

  𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀 = max �0,𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 −
𝐻𝐻𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

2
� (5.19) 

  𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀 = min �1,𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝐻𝐻𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
2

� (5.20) 

 

HMin and HMax are thus truncated when exceeding the natural vertical limits of 0 and 1. Based on 

the upper and lower limits of the vertical niche, the limits of the light niche are estimated as 

follows: 

  𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐼𝐼𝐶𝐶 ∙ 𝑒𝑒−(𝑘𝑘𝐿𝐿∙𝐿𝐿𝐿𝐿𝐿𝐿∗(1−𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀)) (5.21) 

  𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐼𝐼𝐶𝐶 ∙ 𝑒𝑒−(𝑘𝑘𝐿𝐿∙𝐿𝐿𝐿𝐿𝐿𝐿∗(1−𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀)) (5.22) 
 

where IC is the average light intensity above the canopy and the LAI is the leaf area index in the 

hypothesized forest. We assume that the light optimum of each species lies midway between IMin 

and IMax: 

   𝐼𝐼𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀+𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀
2

 (5.23) 

 

IMin and IMax define the light intensities under which a species can survive. However, it would be 

too simplistic to assume that the growth of a species would be constant under all light conditions 

in the niche. Thus, we assumed that growth would be maximal under optimal light conditions IOpt, 

and is reduced when deviating from this optimum. We use a parabolic growth response to simulate 

this situation (see submodel growth), whereby the vertex of the parabola is given by IOpt and IMin 

and IMax define the points at which the growth response becomes zero.  

The parameters of this growth response function (a, b and c) are thus species-specific parameters 

that are calculated as follows: 
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  𝑎𝑎 = 𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀−𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀 
(𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀−𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀 )∙�𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀−𝐼𝐼𝑂𝑂𝑂𝑂𝑂𝑂 �∙�𝐼𝐼𝑂𝑂𝑂𝑂𝑂𝑂−𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀 �

 (5.24) 

  𝑏𝑏 = 𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀
2−𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀 

2

(𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀−𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀 )∙�𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀−𝐼𝐼𝑂𝑂𝑂𝑂𝑂𝑂 �∙�𝐼𝐼𝑂𝑂𝑂𝑂𝑂𝑂−𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀 �
 (5.25) 

   c= �𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀 
2∙𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀�−(𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀 ∙𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀

2)
(𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀−𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀 )∙�𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀−𝐼𝐼𝑂𝑂𝑂𝑂𝑂𝑂 �∙�𝐼𝐼𝑂𝑂𝑂𝑂𝑂𝑂−𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀 �

 (5.26) 

 

Now, the species-specific parameters related to dispersal and reproduction are defined. We use a 

negative exponential function to describe the dispersal kernel (see section establishment), and the 

species-specific parameter DK describing the shape of the kernel is randomly chosen from the 

uniform distribution on the interval [DK
L, DK

U]: 

   𝐷𝐷𝐾𝐾 = unif�𝐷𝐷𝐾𝐾𝐿𝐿 ,𝐷𝐷𝐾𝐾𝑈𝑈� (5.27) 
 

Dispersal kernels define the probability of dispersal as a function of distance from the source. 

They are mainly use in one- or two-dimensional space. A simple application of common kernels 

in three-dimensional space might not be adequate, as due to the effect of gravity downward 

dispersal is more probable than upward dispersal. To account for this effect, we additionally 

defined the species-specific trait dispersal kernel asymmetry DKAs, which is randomly chosen as 

follows: 

   𝐷𝐷𝐾𝐾𝐾𝐾𝐾𝐾 = unif�𝐷𝐷𝐾𝐾𝐾𝐾𝐾𝐾𝐿𝐿 ,𝐷𝐷𝐾𝐾𝐾𝐾𝐾𝐾𝑈𝑈� (5.28) 
 

This traits describes the probability that seeds are dispersed below the mother plant; hence 

DKA=0.5 describes a symmetric dispersal in all direction (for more details see section 

establishment). 

Finally, traits related to the fecundity of the species are defined, and the average number of 

recruits per mature plant nR is randomly chosen based on the defined ranges as follows: 

   𝑛𝑛𝑅𝑅 = unif(𝑛𝑛𝑅𝑅𝐿𝐿 ,𝑛𝑛𝑅𝑅𝑈𝑈) (5.29) 
 

This model does not separate the processes seed dispersal, germination and seedling 

establishment; nR can thus be understood as number of seedlings from a single mother plant that 

could establish in one year if substrate area of a sufficient size (1 m3 of substrate per voxel) would 

be available in the surroundings of the mother.  
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As the entire process of recruitment of epiphytes is complex and not well-studied, we did not 

integrate an effect of the body mass of the species on the number of recruits, i.e. both small and 

large plants can have similar nR in our model. However, Zotz (1998) observed that within a 

species, the number of fruits/seedlings increase with size of the epiphyte. To account for this, we 

integrate a species-specific trait nRInc that is randomly chosen as follows: 

   𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = unif(𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐿𝐿 ,𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑈𝑈) (5.30) 
 

This trait describes the ratio between the number of recruits at maximum mass and the number of 

recruits at the mass at maturity, i.e. an nRInc=2 means that a at maximum mass the number of 

recruits is twice as high as at mass at maturity. 

 

Generation of initial distribution 

Based on the local species pool, an initial spatial distribution of the epiphyte assemblage is 

generated. First, the number of individuals per species and ha (nHa) and the ratio of juvenile to 

mature plants (rMJ) are defined (here: nHa=400 ha-1
 and rMJ=0.5). Subsequently, a list containing 

all individuals in the assemblage is generated, and individuals of each species are divided into 

juveniles/adults according to rMJ. For each juvenile, the initial body mass M is randomly chosen 

as follows:  

  𝑀𝑀 = unif �𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
100

,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀� (5.31) 

 

The initial mass of each adult is estimated accordingly: 

  𝑀𝑀 = unif(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  ) (5.32) 
 

The positions in the list containing all individuals are randomly shuffled, and following this order 

each individual is distributed on the initial microhabitat matrix. Specifically, this means that, at 

first, all voxels having light conditions within the species-specific light niche (IMin, IMax) are 

selected as potential habitat. Subsequently, voxels whose unoccupied surface area is smaller than 

the space requirements of the individual are excluded. The space requirements are calculated as 

follows: 

  𝑆𝑆 = 𝑀𝑀2/3 ∙ 𝑔𝑔𝑆𝑆 (5.33) 
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where gS is a scaling parameter. This means, we assume that the space occupied by an individual 

scale with its mass to the power 2/3, and gS relates M2/3 to occupied surface area. Finally, after all 

potential voxels have been identified, a single one is randomly selected as initial location of the 

individual and the total occupied surface area in this voxel is updated accordingly. This procedure 

is repeated for all individuals. If there should be no suitable voxel for an individual, this is 

recorded and thus allows evaluating the adequacy of the initial distribution before starting the 

actual simulation. 

 

Recruitment 

Recruitment in each time step is based on 3D probability matrices. To calculate these matrices, 

3D distance matrices are calculated at first (dimension in X direction = (2 MaxX) +1; in Y and Z 

direction accordingly). The Euclidian distance to the center of the matrix is calculated for each 

voxel of these matrices. Based on the distances, the probability for dispersal in each voxel is 

calculated using the dispersal kernel which is described by a negative exponential function: 

  𝑃𝑃𝐷𝐷𝐷𝐷 = e−𝐷𝐷𝑉𝑉∙𝐷𝐷𝐾𝐾  (5.34) 
 

where DV is the distance to the central voxel and DK is the species-specific dispersal parameter. 

We assume that the dispersal kernel is not symmetric in Z direction, and the species-specific 

asymmetry is defined by DKA. The probabilities of dispersal in all voxel above the central voxel 

are thus modified as follows: 

  𝑃𝑃𝐷𝐷 = 𝑃𝑃𝐷𝐷𝐷𝐷 ∙ 2 ∙ (1 − 𝐷𝐷𝐾𝐾𝐾𝐾) (5.35) 
 

Accordingly, the probabilities of dispersal in all voxel below the central voxel are modified: 

  𝑃𝑃𝐷𝐷 = 𝑃𝑃𝐷𝐷𝐷𝐷 ∙ 2 ∙ 𝐷𝐷𝐾𝐾𝐾𝐾 (5.36) 
 

After PD for all voxels are calculated, the probabilities are normalized so that: ∑PD=1.  

Now, for each mature individual in the community, the potential number of recruits is calculated 

as follows: 

  𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑛𝑛𝑅𝑅 ∙ 𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ∙
𝑀𝑀−𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀−𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
 (5.37) 
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Subsequently, for each adult, the probability matrix is multiplied with nRPot and a sub-matrix of 

this probability matrix is generated. This sub-matrix has the same dimensions as the microhabitat 

matrix (MaxX, MaxY, MaxZ) and is selected in such a way that the 3D position of the individual 

epiphyte matches the central voxel of the probability matrix (This sub-setting step is the reason 

for the doubled dimensions of the probability matrix as this allows to generate an adequate subset 

at all possible position of epiphyte in the microhabitat matrix). This matrix is multiplied with the 

surface matrix and the niche matrix, which describes suitable voxel with a 1 and unsuitable ones 

with a 0. The resulting final matrix describes how many new recruit of a species could potentially 

establish in each of the voxels of the microhabitat matrix. The actual number of new recruits is 

then estimated based on Poisson random values. 

 

Growth 

Growth of each individual is simulated as follows: 

𝑀𝑀(𝑡𝑡+1) = 𝑀𝑀(𝑡𝑡0) + 𝑘𝑘 ∙ (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 −𝑀𝑀(𝑡𝑡0)) ∙ �𝑎𝑎 ∙ 𝐼𝐼𝑉𝑉2 + 𝑏𝑏 ∙ 𝐼𝐼𝑉𝑉 + 𝑐𝑐� 
 (5.38) 

This equation combines a Bertalanffy growth function, in which the growth rate declines with 

increasing body mass, and a parabolic light-response function. 

 

Mortality 

First, the mortality due to branch fall is simulated based on the relative loss of surface in the voxel 

of the individual. We assume that the probability that an individual falls attached to a branch 

equals the relative loss rate of surface area. This means, if 30% of the area in a voxel is lost due 

to branchfall, the mortality probability is mBF=0.3. For each individual, random numbers are 

drawn from the uniform distribution on the interval [0, 1] and, on this basis, mortality is 

determined.  

Second, individuals die when light conditions are outside their light niches.  

Third, we use a mortality rate following the MTE to account for cause of mortality not considered 

in this model. In this case, the mortality probability scales with the mass of an individual and is 

calculated as follows:  

𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑘𝑘𝑀𝑀 + 𝑀𝑀−1/4 
 (5.39) 
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where kM is the intercept of this scaling function. For each individual, random numbers are drawn 

from the uniform distribution on the interval [0, 1] and, on this basis, mortality is determined.  

Fourth, mortality due to competition for space is simulated. If the total surface area in a voxel is 

lower than the space required by all epiphytes in the voxel, the smallest individual is removed 

successively until the space requirements are fulfilled. This procedure is only applied to voxel 

with at least two individuals. 

Fifth, if a voxel contains a single individual whose space requirements cannot be fulfilled, we 

assume that this individual falls off the branch.  

All dead individuals are removed from the community, the age of all surviving ones are updated 

and the model proceeds with the next time step. 

 

5.3.2 Model validation and scenarios 

Model parameterization and validation 

The main objective in this study is to analyze how differences in forest dynamics affect the 

structure and dynamics of epiphyte assemblages based on different simulation experiments. In 

chapter 4, we simulated a structurally realistic Neotropical lowland forest, and this forest model 

constitutes our reference scenario. In order to compare epiphyte assemblage on this reference 

forest with other forest scenarios, a realistic epiphyte model that reproduces the dynamics and 

structure of natural epiphyte communities is required. 

Our knowledge on the long-term dynamics of epiphyte assemblages is very limited, i.e. data to 

which we could fit the model is not available. However, we can assume that an epiphyte 

community should be in a dynamic equilibrium state in the long term. In addition, Zotz et al. 

(1999) observed that most epiphyte assemblages show no signs of ‘saturation’; thus a non-

saturated assemblage in dynamic equilibrium state can be assumed. 

In contrast to the dynamics, the structure of epiphyte assemblages is better known. In this study 

we had access to two independent datasets from Panama and Ecuador, in which the 3D epiphyte 

distribution was observed (Panama: 0.4 ha, see Zotz & Schultz 2008 for details; Ecuador: 0.1 ha, 

unpublished data by H. Kreft and N. Köster). All individuals in these datasets were identified to 

the species level. For each dataset, we analyzed the vertical distribution of individuals, the vertical 

stratification of species, the size distribution and rank-abundance curves. These ecological 

patterns were used to parameterize and validate our model. 
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We began by generating a number of the different species pools which we simulated on the 

reference forest over 100 years. The average population growth rates for these species were 

estimated and used to assess their fitness; species with exploding populations or those which go 

extinct are not appropriate to be included in the final model. By assessing population growth rates 

and adjusting the parameters according, we were able to obtain species pools with many suitable 

species. However, as a few dominant species in a species pool with very high population growth 

rates can still have a strong effect on the dynamics of the assemblage, we only included species 

whose average population growth rates were between 1 and 1.01 in the pool of suitable species. 

On this basis, we generated ten local species pools containing 100 suitable species each, and 

simulated their dynamics over 600 years on five replicates of the reference forest. The suitability 

of these simulations was evaluated by comparing the resulting ecological patterns with those 

observed in the empirical datasets. 

 

Simulation experiments 

After we identified ten sets of species pools which simulated suitable epiphyte assemblages on 

the reference forest, we simulated these species pools on a number of different forest scenarios.  

In the first simulation experiment, we assess the effect of differences in natural forest dynamics 

on the dynamics of the epiphyte assemblages. We generated three forest scenarios in addition to 

the reference forest, which differed in their stem turnover rates. These scenarios are referred to as 

high-turnover scenario, low-turnover scenario and very-low-turnover scenario. The dynamics of 

twelve important forest attributes in these scenarios are illustrated in Fig. D.1. In addition, we 

generated a scenario in which the reference forest is stable and does not show any dynamics. In 

other words, the forest stays as it is in the initial time step and no branches or trees ever die. 

In the second simulation experiment, we assess the effect of selective logging on the dynamics of 

the epiphyte assemblages. We generated three different logging scenarios which differ in the 

diameter at which the trees are logged. These scenarios are referred to as logging40, logging45 

and logging50 scenario according the minimum diameter for logging (see Fig. D.2 to compare 

these scenarios with the reference forest) 

In the third simulation experiment, we assess the effect of fragment size on the dynamics of the 

epiphyte assemblages. We simulated the references forest at three different spatial scales (0.25, 

0.5 and 1 ha; see Fig. D.3). Epiphyte density was identical in all initial epiphyte assemblage, i.e. 

400 individuals per species and ha.  
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5.4 Results 

Model validation 

Long-term dynamics of 10 different initial epiphyte assemblages on five replicates of a typical 

lowland forest are shown in Fig. D.4, and the averaged dynamics in each forest replicate are 

presented in Fig. 5.3. The simulations indicate that the assemblages reached a dynamic 

equilibrium state, but fluctuations in abundance were pronounced (Fig. 5.3a). These fluctuations 

were more influenced by differences in forest dynamics among forest replicates than by 

differences in the initial epiphyte species pool (Fig. D.4a). Annual community growth rates 

ranged from ~0.9 to ~1.05 a-1 (see example in Fig. D.5a). Drastic short-term losses in abundance, 

caused by the fall of larger trees, were thus compensated by positive community growth rates in 

periods without substantial tree mortality events (Fig. D.5a). Overall, mean annual mortality rates 

of ~14% were observed (Table D.1). On average, 3.6% a-1 of all individuals fell to the ground 

attached to branches, and 2.4% a-1 fell off branches (Table D.1). Mortality due to competition 

(0.9% a-1) or due to changing environmental conditions following changes in forest structure 

(0.5% a-1) was less important. We also used a mass-dependent mortality rate following the 

principles of the metabolic theory to account for causes of mortality not explicitly simulated, and 

this mortality rate was approximately 6.9% a-1. All species survived the initial ~50-80 years, but 

subsequently some species went locally extinct (Fig. 5.3b).  

 

 

Figure 5.3. Simulated long-term dynamics of vascular epiphyte communities. Five replicates of a typical lowland forest 
stand (50 x 50 m) were simulated (see Fig. D.1 for forest attributes) and used as input data for the epiphyte model. On 
each of these forest replicates, the development of epiphyte communities, which initially consisted of 100 individual 
of 100 species, was simulated over 600 years. Ten different initial species pools were simulated on each forest replicate 
and means (bold lines) and standard deviations (shaded areas) of abundance (a) and species numbers (b) are shown. 

 



Results 

137 
 

Starting from an even initial distribution (100 individuals per species), our model simulated 

typical right-skewed rank-abundance distributions. However, deviations occurred at the tails of 

the distributions compared to the two reference epiphyte assemblages (Fig. 5.4a). This means that 

rare species represented by only few individuals (i.e. singletons) were underrepresented in 

comparison to the reference assemblages.  

In the dynamic equilibrium state, epiphytes were not evenly distributed along the vertical axis of 

the canopy. Rather, relative abundance peaked in the canopy zone between 20 and 30 m in later 

time periods (Fig. 5.4b). At the beginning of each simulation, species were randomly distributed 

on available substrate within their potential light niches (also see Fig. 5.5a) and the initial vertical 

distributions of epiphyte assemblage resembled the vertical distribution of available substrate in 

the forest (compare panels a, d and g with panel j in Fig. D.6). However, in almost all simulations, 

a clear shift in relative abundance with time towards higher zones of the canopy was observed 

(Fig. D.6c,f,i). The temporal changes in 3D distribution are additionally visualized in comparison 

to the reference assemblages in Fig. D.7. 

 

Figure 5.4. Rank-abundance curves and vertical distributions of epiphytes: (a) Relative abundances of species sorted 
by their abundance rank in descending order in one representative model run at several time steps in comparison to 
empirical data from rainforests in Panama and Ecuador. (b) Simulated vertical distribution of epiphytes in comparison 
to empirical data from Panama and Ecuador. 

 

The simulated vertical stratification of species resembled observed patterns in the reference 

assemblages (Fig. 5.5). However, the variability in height ranges was less pronounced and 

particularly such narrow height ranges of low trunk specialist, which were abundant in the 

Ecuadorian plot, were not simulated.  
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Figure 5.5. Vertical stratification (measured as height above ground) of species in our model (a) in comparison to data 
from Panama (b) and Ecuador (c). The simulated height distribution after 300 years in one representative model run is 
shown. 

 

The simulated assemblage was clearly size-structured and dominated by smaller individuals (Fig. 

5.6a). Averaged over all forest replicated and time steps, the epiphyte biomass was approximately 

350 kg per ha. 

 

Figure 5.6. Size-distributions in epiphyte communities: (a) Model, (b) Panama, (c) Ecuador. 
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Simulation experiments 

Differences in natural forest dynamics clearly influenced the abundance, diversity and ‘saturation 

level’ of the epiphyte community (Fig. 5.7a,b,c). The percentage of arboreal substrate occupied 

by epiphytes, which we used to characterize the saturation level of the epiphyte assemblage, 

reached relatively stable levels that were clearly distinguishable between the different forest 

scenarios (Fig. 5.7c). A stable, non-dynamic forest was used as reference, and in this scenario the 

epiphyte community occupied ~40% of total available substrate area. There are two main reasons 

why this level represents a “saturated” community. On the one hand, we assumed that epiphytes 

can only occupy the upper branch surface. On the other hand, we used a voxel-based approach in 

which individuals were removed from a voxel if their total space requirement exceeded the 

available surface area in a voxel (space competition), and thus the surface in voxel is normally 

not completely filled. The reference saturation level was almost reached in the forest scenario 

with very low tree turnover rates, but all other scenarios were below this level and their sequence 

matched tree turnover rates, with decreasing saturation levels with increasing turnover rates (Fig. 

5.7c). Epiphyte abundances showed similar patterns for the non-saturated forests, but in the 

saturated forest the abundance decreased over time (Fig. 5.7a). This decrease is due to the 

assumed size-asymmetric competition whose effects increased with saturation. The generally 

higher abundances in the scenario with very low tree turnover rates compared to the reference 

scenario can be explained by the larger arboreal surface areas, owing to a higher density of large 

trees (Fig. D.1). Rates of local species extinctions also differed among forest scenarios and the 

number of species surviving until the end of the simulation was clearly influenced by stem 

turnover (Fig. 5.7b). Interestingly, species numbers in the low and very low turnover scenarios 

were almost identical, although effects on abundance were consistent. 

Selective logging of larger trees resulted in lower abundances, species numbers and saturation 

levels (Fig. 5.7d,e,f). Interestingly, a reduction in minimum tree size for logging from 45 to 40 

cm had catastrophic effects on the epiphyte assemblage and resulted in a near-complete extinction 

of the epiphyte assemblage. 

The fragment size clearly influenced species extinction rates (Fig. 5.7h). Differences in 

abundance and saturation levels in turn were less pronounced and not consistent (Fig. 5.7g,i). The 

increased abundance at the 1 ha plot might, however, be related to the higher species numbers. 
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Figure 5.7. Effects of differences in forest dynamics, logging regimes and fragment sizes on abundances, species 
numbers and occupied substrate areas of epiphyte assemblages. Each panel shows the averaged temporal development 
of epiphyte assemblages over 600 years in forest stands with different forest dynamics, logging regimes and fragment 
size: (a-c) Forests differing in their natural dynamics (Fig. D.1), (d-f) forests differing in their logging intensity (Fig. 
D.2), and (g-i) forests differing in their fragment size (Fig. D.3). For each of these forest scenarios, five replicates were 
simulated and used as input data for the epiphyte model. In addition, ten different species pools of vascular epiphyte 
were generated and separately simulated for each forest replicate. Thus, for each forest scenarios a total of 50 epiphyte 
simulation were conducted, and mean values (bold lines) and standard deviations (shaded areas) are shown here.   

 

5.5 Discussion 

In this study, we coupled an individual-based epiphyte model with a functional-structural forest 

model to analyze how natural or human-induced differences in long-term forest dynamics affect 

the structure and dynamics of epiphyte assemblages. Before the simulation experiments were 

conducted, the model was validated with field data from two lowland sites in Panama and 

Ecuador. 
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Model validation 

Epiphyte assemblages simulated on typical lowland forests showed pronounced fluctuations in 

abundance in single model runs (Figs. 5.3 and D.4) but a comparably stable equilibrium when 

averaged over all model runs (Fig. 5.7a). Direct comparisons with observations are currently not 

possible as data on the community dynamics over such long periods are generally rare (e.g. 

Silvertown et al. 2006) and non-existent for epiphytes. Hence, validation of the dynamic model 

behavior can only be based on the few studies with repeated censuses covering shorter periods of 

time. In a lowland forest in Venezuela, an increase in abundance from 940 to 1516 individuals 

within four years was observed (1 ha plot; Schmidt-Neuerburg 2002) and a similar relative 

increase from ~11,500 to >17,000 individuals was found in a Panamanian forest (0.4 ha plot; first 

census: Zotz & Schultz 2008; second census: G. Mendieta-Leiva, K. Wagner & G. Zotz,  

unpublished data). In addition, Laube & Zotz (2006) monitored changes of epiphyte assemblages 

on a palm tree species, and the total number of individuals increased from 763 (1999) to 899 

(2002) and 957 (2004). These observed positive trends on the scale of individual trees and small 

study plots clearly hint to unsaturated epiphyte communities. We observe similar positive trends 

in community growth rates over even longer periods in our simulation models (Figs. D.4 and 

D.5). However, in our simulations such increasing trends were interrupted by pronounced tree 

fall events, which resulted in sharp decreases in abundances and prevented the epiphyte 

community from being saturated (compare dynamic and static lowland forest in Fig. 5.7c). Zotz 

& Schultz (2008) reported that a single large tree hosted almost 15% of all epiphytes in their 0.4 

ha plot; such trees disproportionately abundant with epiphytes will eventually die and this leads 

to pronounced local losses of epiphytes. The highly dynamic behavior of the simulated epiphyte 

assemblage at the local scale (simulated area: 0.25ha) thus seems to agree with observations, 

although the magnitude of fluctuations and the frequency of drastic reductions in abundance 

following large gap creating events cannot yet be verified by observations. 

Our knowledge on community-wide mortality rates of vascular epiphytes is limited. Epiphytes 

may die in situ, for instance, owing to herbivory or desiccation, or they may fall to the forest floor 

either off branches or attached to branches, where their longevity is generally very limited 

(Matelson et al. 1993). Whereas in our model we are able to trace the fate of each individual, this 

is complicated in the field due the difficult access to the canopy. Hietz (1997) used repeated 

photographs of branch sections in a montane forest in Mexico to monitor epiphyte assemblages, 

and reported average annual mortality rates of ~16%. Our simulated average mortality rate of 

~14% agrees surprisingly well with these observations. However, we want to emphasize that 

almost half of the deaths in our simulations were based on the size-dependent mortality rate we 

included to account for mechanism not explicitly simulated. Mortality rates of epiphytes 

commonly decline with size (Zotz & Schmidt 2006), increased vulnerability to drought in smaller 
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size-classes being considered the main cause (Winkler, Hülber & Hietz 2005; Zotz et al. 2005). 

The size-dependent mortality rate thus represents this ontogenetic shift in mortality which, 

however, does not emerge from model mechanisms and thus should be regarded as free model 

parameter. In contrast, the additional causes of mortality in our model result from epiphyte-forest 

and epiphyte-epiphyte interactions. Mortality due to competition was of minor importance (<1%), 

which is in line with observations in forests with low epiphyte densities (Zotz & Vollrath 2003). 

Mortality due to falling branches or trees (~3.6%) and due to the fall off branches (~2.4%) was 

more important. Sarmento Cabral et al. (2015) estimated annual mortality rate of 4% related to 

these two causes of mortality based on sampling of the forest floor for fallen epiphytes and 

comparisons with the known abundance in the canopy. However, they did not include fallen trees. 

In his study based on photographs, Hietz (1997) observed annual mortality rates related to 

branchfall of ~7%. A direct comparison with these studies is difficult, also because the mortality 

rates in our model varied substantially (Table D.1). However, the magnitude of the simulated 

mortality rates is within the range of direct observations. In addition, as the relative importance 

of the different causes of mortality generally agrees with expectation in epiphyte systems, the 

representation of mortality in our model seem to be plausible. 

Species numbers showed a general decline over time in all model runs. This is partly a result of 

the experimental design. We assume a closed forest system with no dispersal from outside and 

consequently, species that are lost due to local extinctions cannot recolonize. A similar situation 

is virtually impossible in natural systems, as even remote forest fragments are to some extent 

linked to epiphyte source areas via long-distance dispersal. Non-fragmented old-growth forests 

are usually characterized by rather stable species numbers, or even increasing species numbers 

following forest succession (Benavides, Wolf & Duivenvoorden 2006). While direct comparisons 

between simulated changes in species diversity and observations are thus not useful, comparisons 

between model runs can be valuable as they indicate differences in species loss rates driven by 

forest dynamics (see simulation experiments below). 

In contrast to our relatively meager quantitative data on community dynamics, we do have 

adequate knowledge of how epiphyte assemblages are structured. Species abundances typically 

show a right-skewed distribution with a few dominant species and rather rare species (Benavides 

et al. 2005, 2011; Laube & Zotz 2006). Our model reproduced a similar right-skewed distribution 

but the relative proportion of rare species was underestimated (Fig. 5.4a). This deviating pattern 

can be explained by the above-mentioned specific design of the simulation experiments, in which 

a small, closed system without dispersal and recolonization from outside is simulated. Under these 

conditions, rare species inevitably go extinct. Epiphyte species often show a patchy scattered 

distribution and even in larger areas many of them are locally rare (Küper et al. 2004). This 

indicates that large fragment sizes or sufficient connectivity to source areas are required to support 
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the many potentially rare species and our closed and small-scale system is simply not well-suited 

to reproduces this situation. However, as the contribution of rare species to total abundance is 

negligible, the pattern in abundance and the saturation level of the community should not be 

strongly biased by this limitation. 

The vertical stratification of epiphyte species and the vertical distribution of individuals in the 

assemblage is another remarkable feature of epiphyte communities (Zotz 2007; Krömer et al. 

2007; Petter et al. 2016). The vertical stratification of epiphyte species in our model was similar 

to field observations, although the variability in height ranges was less pronounced (Fig. 5.5). 

This general simulated pattern is not surprising as the light niche of each species is not an 

emerging model property but rather an adjustable trait itself that is randomly selected based on 

user-defined ranges. This niche-based approach should be appropriate to approximate potential 

niches of many species, but it may be too simplistic for species with complex niche requirements, 

for instance trunk specialist like many Hymenophyllaceae (Krömer et al. 2007), which often only 

inhabit the lower trunk parts, i.e. have a very narrow height range (Fig. 5.5c). 

In contrast to the vertical stratification of species, the vertical distribution of individuals in the 

epiphyte assemblage is more interesting because it is an emergent property of the modelled 

processes. Starting from an initial vertical distribution that largely resembled the surface area of 

arboreal substrate (Fig. D.6), accumulations of individuals in higher canopy zones consistent with 

observations in the reference assemblages were observed (Figs. D.6 and 5.3b). Such 

accumulations also agree with tree-based observations of abundance peaks in the inner crowns of 

large trees (Johansson 1974), which are often explained by favorable water and light conditions 

in this zones (ter Steege & Cornelissen 1989; Benzing 1990). However, Zotz & Schultz (2008) 

speculated that such pattern might, at least partly, reflect spatial differences in available substrate 

area, which, however, are almost impossible to measure in natural systems. Although we cannot 

know with certainty that the vertical distribution of substrate area in our forest models mirrors 

reality, it nevertheless is remarkable that an unequivocal effect of substrate area on epiphyte 

abundance was not simulated in later time periods. Although not explicitly analyzed, we assume 

that enhanced connectivity between suitable substrate areas in the canopy zone facilitates 

dispersal and establishment and thus might explain the simulated pattern. Based on the result of 

independent studies analyzing the spatial community structure of epiphytes, which indicated that 

effective dispersal and colonization is predominantly a very local process (Zotz et al. 1999; 

Trapnell, Hamrick & Nason 2004; Trapnell et al. 2013), we applied rather local dispersal kernels. 

Such local dispersal is more effective when available substrate is more homogenously distributed 

as in the canopy zone, and not as patchy as in the understory, where the distance between suitable 

stems is larger. As this local dispersal mechanism not only led to realistic vertical frequency 
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distributions, but also reproduced the delayed colonization of understory trees reasonably well 

(see example in Box 1), dispersal seems to be appropriately represented in our model. 

Natural plant communities are usually size-structured (Muller-Landau et al. 2006b; West, Enquist 

& Brown 2009) and the two reference epiphyte assemblages unequivocally showed the expected 

trend towards lower densities of larger size classes (Fig. 5.6). Although simulated correlations 

were weaker than in the reference systems, the general size structure was reasonably well-

reproduced by the model. Variations in population density with size within natural communities 

can largely be explained by how individuals use resources as a function of their size (Enquist, 

Brown & West 1998; Brown et al. 2004). In our model, mortality and age/size at maturity were 

defined as a function of size: mortality rates decrease with size while maturity ages increase. 

Space was the only resource the individuals competed for and, in addition, the maximum size of 

species in the initial species pool was randomly chosen on a log-normal scale. This means that 

smaller species were overrepresented in the species pool. Both the defined size-skewed species 

pool, as well as the size-dependent behavior of individuals emerging from our model approach 

thus contributed to the size pattern of the community. Our approach might omit many other size-

dependent processes in natural communities; however, for the purpose of this study it appears to 

be appropriate.  

In summary, despite the relatively simple demographic model describing growth, reproduction 

and mortality of individual epiphytes in a complex and dynamic 3D forest structure, composition 

and structure of the epiphyte assemblage was adequately simulated and the long-term dynamic 

model behavior seems to be reasonable. Thus, the level of detail of our model appears to be 

appropriate for addressing the main research questions with simulation experiments. 

 

Simulation experiments 

In the first simulation experiment, we assessed the influence of difference in natural forest 

dynamics (Fig. D.1) on the dynamics of epiphyte assemblages (Fig. 5.7a-c). Four forest systems 

with different stem turnover rates were coupled with the epiphyte model, whereby the stem 

turnover rates represented typically variations between 1% and 3% per year in tropical rainforest 

(Phillips 1996; Phillips et al. 2004b; Lewis et al. 2004b). However, it should be noted that due to 

the complex interaction in forests, such variations in turnover rates also affected additional 

attributes in our models such as the residence time of above-ground biomass or the total basal 

area (Fig. D.1). A striking result of this study is that the forest-epiphyte interactions generally not 

only prevented saturation of the epiphyte community, but also that the saturation level was 

controlled by the dynamic behavior of the forest (Fig. 5.7). When assessing these results one 
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should bear in mind that our approach allows us to separate the endogenous epiphyte dynamics 

(determined by the species traits) from exogenous effect of forest dynamics. In contrast, such 

clear separation is commonly not possible in natural systems as differences in climatic conditions 

simultaneously affect the epiphyte dynamics and the forest dynamics. Ding et al. (2016) 

investigated the relative importance of direct and indirect effects on epiphyte species diversity 

and abundance along an elevational gradient in a tropical rain forest in China. They found that 

the direct effect of increasing humidity with elevation and the indirect effect of differences in 

climatic conditions via forest structure were of similar importance in explaining a mid-elevation 

peak in epiphyte abundance. This is an interesting result as differences in abundance or epiphyte 

biomass are commonly attributed mainly to the effect of humidity (Gehrig-Downie et al. 2011). 

Not only forest structures (e.g. stem number, basal area, canopy height) commonly show 

significant changes with elevation (Girardin et al. 2010, 2013; Asner et al. 2013a), but also forest 

dynamics, and stem turnover rates tend to decrease with elevation (Stephenson & Van Mantgem 

2005; Galbraith et al. 2013). Thus, changes in forest dynamics, and not only in structure, with 

elevation might actually be important factors contributing to the commonly observed higher 

abundance and saturation levels at higher elevations.  

Species richness of epiphytes usually shows similar trends with elevation and mid-elevation peaks 

in epiphyte diversity have been reported (e.g. Küper et al. 2004; Krömer et al. 2005; Cardelus, 

Colwell & Watkins 2006). As discussed above, due to the design of the simulation experiments 

the effect of forest dynamics on species richness can be evaluated by comparing local extinction 

rates. Increasing tree turnover rates led to higher extinction rates (Fig. 5.7b), which is not 

surprising as a more dynamic system imposes an additional risk particularly to slow-developing 

species. Consequently, an additional indirect effect of lower tree turnover rates at higher 

elevations contributing to species richness seems possible. However, our model also indicated 

that species might go extinct due to competitive exclusion in systems with high epiphyte densities 

as in montane cloud forests. Nevertheless, whether competitive exclusion actually plays an 

important role in epiphyte systems is still under debate (Zotz et al. 1999; Benavides et al. 2005; 

Flores-Palacios & Garcia-Franco 2006).  

Our model demonstrated possible effects of changes in natural forest dynamics on abundance and 

species richness in epiphyte assemblages. In recent decades, an alarming increase in tree turnover 

rates in tropical forests has been observed, which might be linked to anthropogenic climate change 

or elevated CO2 concentrations (Phillips 1996; Phillips et al. 2004b; Lewis et al. 2004b). Our 

results thus suggest that not only the direct effects of climate changes, but also the indirect effects 

via their impacts on forest dynamics may significantly influence the structure and dynamics of 

epiphytes assemblages. 
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In the second experiment, we simulated the effect of selective logging on epiphyte assemblages. 

The removal of large trees above a certain diameter class had a negative impact on abundance 

and richness; this is in accordance with previous findings (Padmawathe 2004). The epiphyte 

assemblage even collapsed if the minimum tree size for logging was too small (in our model: 40 

cm in DBH; Fig. 5.7d-f). Our results thus emphasize the particular importance of large trees for 

epiphyte conservation. Large trees often host a large number of epiphytes individuals and species 

because they provide a relatively stable substrate over decades (Grubb et al. 1963; Zotz & Schultz 

2008; Hundera et al. 2013). It seems plausible that particularly susceptible epiphyte species with 

slow demographic rates require such stable habitats to reach maturity and maintain vital 

populations. Sustainable logging strategies are thus required in managed forest systems with 

regard to epiphyte diversity. Unfortunately, large trees are generally declining globally, not only 

due to direct removal, but also due to increased frequency of droughts, air pollution or as side-

effects of forest fragmentation (Laurance et al. 2000; Lindenmayer, Laurance & Franklin 2012). 

This trend might thus pose and additional threat to epiphyte diversity. 

In the last simulation experiment, we focused on implications of fragment size for epiphyte 

assemblages. Unsurprisingly, the rate of local species loss increased with decreasing fragment 

size, i.e. in larger fragments a more diverse epiphyte assemblage was maintained over a longer 

time span (Fig. 5.7h). This result agrees with observations of lower species richness of many 

organisms in smaller forest fragments (Turner 1996; Pardini et al. 2005; Martensen, Pimentel & 

Metzger 2008). Edge effects or limited immigration from outside are often discussed as probable 

reason for this pattern (Turner 1996). These effects, however, do not play a role in our model 

when comparing the different scenarios. Here, the disproportionate effect of local disturbance 

caused by larger gap-creating tree fall events in smaller fragments simply increases the chance of 

an entire population to become extinct. In addition to other negative effects associated with forest 

fragmentation such as isolation or changes in microclimate (Flores-Palacios & García-Franco 

2007; Cascante-Marín et al. 2009), this effect might also be of importance in natural epiphyte 

system, particularly when fragments are small. However, as many epiphyte species often show a 

patchy distribution and occur in low abundances, the minimum fragment size to exclude this effect 

is probably higher than the 1 ha fragment used in this modelling study. In line with previous 

studies our results thus emphasize the importance of intact large forests for epiphyte conservation 

(Flores-Palacios & García-Franco 2007; Hundera et al. 2013). 

 

Outlook 

Despite their ecological importance in tropical forest systems, the number of studies on vascular 

epiphytes is low compared to soil-rooted plants and the theoretical knowledge on structure and 
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dynamics of epiphyte assemblages is limited (Mendieta-Leiva & Zotz 2015). While the difficult 

access to the canopy and a lack of standardized field protocols are major obstacles in epiphyte 

ecology, Mendieta-Leiva & Zotz (2015) also highlighted the lack of a conceptual framework 

hampering theoretical advances in epiphyte ecology. Mechanistic modelling studies as presented 

here can be useful tools to increase our understanding of processes structuring epiphyte 

communities. Mechanistic model can help to disentangle cause and effect in the highly complex 

epiphyte system, which in the field is often complicated. In addition, they can cover time intervals 

which may be relavant for epiphyte dynamics, but are not realisable in field studies. 

In this model, we focused on analyzing the effect of natural and human-induced differences in 

forest dynamics on the dynamics of epiphyte assemblage, but our coupled model has the potential 

to addresss a variety of additional research questions. For instance, the effects of forest dynamics 

not only on abundance and diversity, but also on community structure (e.g. vertical distribution 

or size structure) or trait structure of the community could be tested. In additon, each tree in the 

forest plot can be regarded as independent entity and analyses may thus go beyond the community 

as a whole. Several forest plots may be linked via dispersal and questions related to 

metacommunities may be addressed. The role of host specificity in epiphyte communites is often 

discussed (see review by Wagner, Mendieta-Leiva & Zotz 2015), and the presented model can 

serve as a starting point to assess if difference in tree size, age or structure, as well as spatial 

autocorrelation in a forest, may lead to patterns which mistakenly may be interpreted as host 

specificity. A selection of the mentioned potential future model application is presented in more 

detail in Box 1.   
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Box 1 - Potential future model applications 

Example 1: Community trait composition 
It is generally assumed that the environmental conditions at a site 

drive optimal trait values. In an epiphyte system, structure and 

dynamics of the substrate can be regarded as important 

environmental factors. These factors may vary within forest stands 

(e.g. gradients in area and longevity of the substrate from lower 

trunks to outer branches) and among forest stands (e.g. differences 

in AGB and stem turnover rates). How trait distributions of 

epiphytes within stands are influenced by these factors, or how 

community-weighted trait means vary along forest dynamics 

gradients (see figure to the right) are thus interesting research topics 

and our trait-based model is well-suited for such studies. 

 

 

 

Example 2: Epiphyte communities on individual 

trees 
Many factors influence the dynamics of epiphyte communities on 

individual trees. The position of the host tree in relation to 

surrounding epiphyte-harboring trees, as well as the change in tree 

structure during ontogeny plays an important role. As in natural 

forests important factors such as the total surface area or the age of 

a tree are usually not known, it is virtually impossible to determine 

their relative importance for the epiphyte assemblage. For instance, 

observed differences in epiphyte abundance on similar-sized trees 

might result from differences in tree age, however, this cannot be 

verified under field conditions. In contrast, our omniscient 

perspective in the model allows tracing the spatio-temporal of trees 

and their epiphyte community over all time steps (see figure to the 

right showing how diversity and abundance develops on a randomly 

selected canopy tree over the entire tree life span of ~150 years). 

Future modelling studies assessing the relative importance of 

factors potentially influencing epiphyte demography on individual 

trees can thus add to our understanding of the structure and 

dynamics of epiphyte assemblages. 
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Conclusion 

Many epiphyte communities show no signs of saturation and this modelling study has 

demonstrated that the average abundance/biomass of epiphytes in a forest stand can be strongly 

influenced by forest dynamics. While climatic variables such as annual precipitation or 

temperature are commonly reported in epiphyte studies, variables describing the structure (e.g. 

AGB, basal area, canopy height) or dynamics of the forest (stem turnover rates, residence time) 

are rarely reported. According to the results of this study, such metadata can be valuable and thus 

we propose to include them if possible. 

Field data are essential to parameterize and validate ecological models. Long-term data of 

epiphyte assemblage are desirable, but we are fully aware that collecting such data is very labor-

intensive and time-consuming. Thus, we recommend that a particularly important aspect of 

community dynamics of epiphyte, i.e. the mortality due to branch, tree and forest dynamic, 

warrants more attention. Such studies can be conducted without climbing trees, for instance by 

systematic collections of fallen epiphytes on the forest floor.  
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6 Synopsis 

In chapter 2, I analyzed vertical gradients of ten leaf traits based on samples of >1100 individuals 

belonging to 83 epiphyte species. This study represents the most comprehensive study on vertical 

trait gradients of vascular epiphytes to date. As hypothesized, I observed that community mean 

trait values of many leaf traits were strongly correlated with height above ground. These results 

thus provide a more detailed picture of the community trait structure of epiphytes than previous 

studies focusing on comparing trait of epiphytes from pre-defined zones within trees (e.g. 

Andrade & Nobel 1997; Hietz & Briones 1998) or within the forest (e.g. Mantovani 1999; Stuntz 

& Zotz 2001). In addition, this suggests that height above ground is a suitable approximation of 

vertical environmental gradients and should be used in addition to frequently used zonation 

schemes in trait-based epiphyte studies. Both linear and non-linear trends were observed, and the 

non-linear decline in specific leaf area (SLA) indicates that light is probably the main driver of 

this trend (McMurtrie & Dewar 2011). In contrast, the linear trend in SLA commonly observed 

in trees is often related to both light and hydraulic constraints (Rijkers et al. 2000; Kenzo et al. 

2006). This example suggests ecophysiological differences between epiphyte and soil-rooted 

plant with regard to their trait response.  

I found that intraspecific trait variability was pronounced and accounted for one-third of total 

observed trait variance, which is in the same range as observed for soil-rooted plants (Hulshof & 

Swenson 2010; Albert et al. 2010a). Intraspecific trait adjustments along the vertical gradient 

were common and seventy per cent of all species showed significant trait–height relationships. 

Such trait adjustments were pronounced for some species, and individuals could have markedly 

different traits although separated by only few meters along the vertical gradient. Moreover, 

intraspecific trait variability was positively correlated with the vertical range occupied by species; 

however, this correlation was rather weak. This indicates that epiphyte species that can adjust 

their leaf traits to the environment can potentially occupy larger vertical ranges, but additional 

unexplored characteristics (e.g. root traits) may also play an important role and deserve attention 

in further studies. 

I observed differences in leaf trait syndromes among taxonomic groups (orchids, bromeliads, 

aroids, ferns). Orchids, for instance, had on average the thickest leaves and lowest SLA values, 

while ferns were characterized by high leaf dry matter contents. These results are in line with 

previous findings (Hietz et al. 1999; Stuntz & Zotz 2001; Cardelús & Mack 2010). However, trait 

variability of species within the taxonomic groups was often pronounced, and between-group trait 

differences were often not significant between all groups but rather only between two groups. In 

the multidimensional trait space, the trait space occupied by these groups overlapped 
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considerably. This shows that the epiphytic taxa do not form clearly distinguishable groups 

regarding their leaf traits, but the unique tendencies within taxonomic groups nevertheless 

indicate that some leaf traits are taxonomically conserved. I further demonstrated that leaf trait 

syndromes and the intraspecific trait variability play important roles in explaining the vertical 

zonation of vascular epiphyte species and taxonomic groups. However, other adaptations of 

epiphytes, such as water- and nutrient storing pseudobulbs in orchids or phytotelmata in 

bromeliads are probably likewise important. 

In chapter 3, I demonstrated that the forest floor can be a rich source of information that has 

largely been neglected in epiphyte ecology. I found a considerable proportion of the epiphyte 

species occupying the forest canopies on the forest floor, either still attached to branches or fallen 

off branches. At the Brazilian site, the density of fallen epiphyte was higher (~3600 ha-1) than at 

the Panamanian site (~1100 ha-1). I estimated a mortality rate of at least 4% per year when 

considering the entire known community in Panama, and a mortality rate of 13% when 

considering epiphyte on branches < 10 cm in DBH. These results agree with previous studies 

(Hietz 1997) and underline the particular importance of tree and forest dynamics for the 

demography of vascular epiphytes.  

Furthermore, trends in abundance, richness and composition over branch diameter reflected 

trends in the forest canopy. I argue that forest floor surveys provide useful floristic and, most 

notably, demographic information particularly on epiphytes occurring on the thinnest branches, 

which are least accessible with the most common techniques (e.g. rope-climbing, binoculars). 

Here, branchfall acts as an important demographic filter structuring epiphyte communities. My 

study thus indicates that, while epiphyte ecologists tend to look up, an occasional look down can 

also be worthwhile and may uncover unexplored source of ecological information about 

epiphytes.  

In chapter 4, I developed a long-term dynamic forest stand model in which trees are represented 

by their three-dimensional structure. In previous forest models, trees were either represented by  

much simpler crown structures (Huth, Ditzer & Bossel 1997; Liu 1998), or, when complex 3D 

structures were simulated, the forest models focused on even age-stands in single species systems 

over limited time frames (Feng et al. 2011; Guillemot et al. 2014). The novelty of my model is 

thus the combination of a high degree of detail with long-term demographic simulations. While 

rather complex at first sight, my model is based on relatively simple principles. Basically, light-

driven carbon assimilation and the within-tree carbon allocation are coupled using the principles 

of the pipe model theory (Shinozaki et al. 1964), whereby carbon assimilation is driven by leaf 

traits under consideration of between-trait trade-offs and correlations (Wright et al. 2004). In other 

words, leaf trait trade-offs were scaled to the whole-tree level, and this approach captured life 
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history variation between different functional groups. For instance, species with high SLA values 

showed high initial growth rates, but had lower maximum heights and shorter life spans, i.e. 

characteristics that are attributed to pioneer species. Trait-based tree growth in my model is thus 

consistent with observations and supports the notion that the growth-survival trade-off of tropical 

tree species is, at least partly, determined by their leaf traits (Sterck et al. 2006). As tropical forest 

are generally very species-rich (Gentry 1988; ter Steege et al. 2013), functional groups 

aggregating tree species with similar growth characteristics are usually used in forest models, and 

parameters like growth rate or potential height are estimated based on empirical data for each 

group (e.g. Köhler & Huth 1998; Tietjen & Huth 2006). In my model, such characteristics emerge 

from the leaf investment strategy and are not defined a priori; it thus helps to understand the 

bottom-up mechanisms regulating tree growth.  

In addition, between-tree competition and demographic processes (establishment, mortality) were 

integrated at the stand scale. The simulated forests reached dynamic equilibrium states in terms 

of above-ground biomass and stem number after 80-100 years, which lies well within the reported 

range (e.g. Fearnside & Guimarães 1996; Hughes, Kauffman & Jaramillo 1999). In this 

equilibrium important forest attributes were within observed ranges of typical Neotropical 

lowland forests (e.g. Malhi et al. 2006; Quesada et al. 2012). Moreover, detailed patterns such as 

the vertical leaf area density were also reproduced. This indicates that a structurally-realistic forest 

can be simulated with my model. As a consequence, the ability of my approach to describe 

multiple physiognomic and structural patterns as well as the dynamics of these patterns at multiple 

scales (from within-tree up to whole forest stand distribution of tree elements) provides multiple 

opportunities for model validation (Grimm et al. 2005). This is an important model property, as 

the model complexity is accompanied by a high number of emergent patterns which can be cross-

checked against real-world data. The general principles applied in my approach also provide 

generalizable results (Evans et al. 2013), while retaining the possibility to be calibrated to 

generate the patterns of specific systems, as exemplified in chapter 4 for Neotropical lowland 

forests. In this sense, the development and validation of the model was the main focus in this 

chapter, but considering future studies, it has the potential to address pending general questions 

in tree and forest ecology as well as questions that might be specific for particular systems. For 

instance, the effects of frequent disturbances, logging, or changing environmental conditions on 

forest stability (dynamics equilibrium) and structure could be analyzed in detail with my model. 

In chapter 5, I presented the first mechanistic model developed for vascular epiphytes. I coupled 

the forest stand model with an individual-based epiphyte model and assessed how differences in 

natural forest dynamics, selective logging and the size of the forest stand influenced the long-term 

dynamics of epiphyte assemblages. At first, emerging patterns were analyzed to validate the 

model. Starting from an even initial distribution (100 individuals per species), a right-skewed 
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rank-abundance distributions with a few dominant species and many rather rare species was 

simulated, which is consistent with observations in natural epiphytic and non-epiphytic plant 

communities (Benavides et al. 2005, 2011; Laube & Zotz 2006). In addition, the simulated 

assemblage was clearly size-structured and dominated by smaller individuals. This agrees with 

field observations of natural communities – an explanation being size-dependent resource use 

(Enquist, Brown & West 1998; Brown et al. 2004). When averaged over multiple simulated 

replicates, epiphyte abundance reached a relatively stable equilibrium, but in single model runs 

pronounced fluctuations were observed. This means that epiphyte abundance tended to increase 

over time. However, such increasing trends were interrupted by pronounced tree fall events, 

which resulted in sharp decreases in abundances and prevented the epiphyte community from 

becoming saturated. Therefore, the observed trends of increasing abundances in the available data 

for vascular epiphytes (Schmit-Neuerburg 2002; Zotz & Schultz 2008) could  be explained by the 

lack of tree fall or gap formation within the time frame and spatial extent of these studies. This 

indicated the importance of tree turnover for epiphyte communities, and in subsequent simulation 

experiments, the effects of differences in natural forest dynamics were analyzed. 

Tree turnover rates typically vary from 1% to 3% per year in tropical rainforest (Phillips 1996; 

Phillips et al. 2004b; Lewis et al. 2004b), and such variations had a marked impact on epiphyte 

diversity, abundance and ‘saturation level’ of epiphyte communities. Due to size-differences, 

abundance as such is ambiguous, and the percentage of arboreal substrate area occupied by 

epiphytes was thus used as an approximation of the saturation level of the epiphyte community. 

Even in mature lowland forests, epiphyte communities typically show no signs of saturation 

(Schmit-Neuerburg 2002; Laube & Zotz 2006), and my model demonstrated that the saturation 

level is related to forest dynamics. The advantage of my modelling approach is that it allows 

separating the endogenous epiphyte dynamics (determined by the species traits) from the 

exogenous effects of forest dynamics. In contrast, such clear separation is commonly not possible 

in natural systems as differences in climatic conditions simultaneously affect the epiphyte 

dynamics and the forest dynamics. However, a recent study by Ding et al. (2016) applied 

structural equation models to disentangle the direct effects of climate and soil on epiphyte 

diversity and abundance along an elevational gradient from the indirect effects via forest structure. 

Interestingly, indirect effects explained a similar proportion of variations in abundance and 

species richness as humidity. In line with this study, my modelling approach thus highlights the 

importance of forest dynamics for epiphyte dynamics. 

Furthermore, a decrease in tree size selected for exclusion, effectively mimicking an increased 

intensity of selective logging, as well as decreasing fragment sizes had the expected negative 

influences on epiphyte diversity. These observations thus additionally emphasize the particular 

values of undisturbed primary forests for biodiversity conservation (Barlow et al. 2007; Gibson 
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et al. 2011). In fact, all three simulation experiments presented in this chapter represented human 

impacts such as i) environmental change (e.g. intensified forest dynamics via global warming), 

ii) selective logging and iii) habitat fragmentation. Therefore, experiments such as these can 

provide important information for epiphyte conservation. For example, future studies with my 

model can identify which functional types of epiphytes first disappear with increasing dynamics, 

decreasing tree size for logging and decreasing forest fragment size. This information can help to 

prioritize conservation efforts, while also helping to develop mitigation strategies to reverse loss 

of functional diversity. Therefore, the results of chapter 5 demonstrate that mechanistic models 

can be valuable tools to increase our understanding of the dynamics of epiphyte communities and 

to provide useful feedbacks to both empirical studies and conservation policies. Here, the coupled 

forest-epiphyte model can be regarded as virtual laboratory allowing us to address many more 

research questions regarding vascular epiphytes in the future. 

In summary, the findings of my research improved our understanding of how the forest structure 

and dynamics affects the (trait) structure and dynamics of epiphyte communities. My thesis 

constitutes the most comprehensive study on the community trait structure of vascular epiphytes 

to date and, moreover, introduced mechanistic models to the field of epiphyte ecology. These 

modelling approaches open new avenues for future studies of spatial and temporal dynamics of 

vascular epiphyte assemblages while integrating epiphyte research in a more theoretical context. 
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Figure A.1. (a) Photograph of the study site (San Lorenzo Canopy Crane site) at the Atlantic coast of Panama. Canopy 
height in this undisturbed lowland rainforest is variable, with a few emergent trees reaching a maximum height of ca. 
45 m. A small gondola attached to a construction crane (height: 52 m; radial length: 54 m) allows access to all strata of 
the forest within an area of ca. 0.9 ha. (b) Vertical light intensity gradient at the study site. Light intensity was estimated 
using Hobo data loggers (HOBO UA-002–64; Onset Computer Corporation, Cape Cod, USA), which were mounted at 
different heights in three trees and above the canopy (the grey triangle at 45 m represents the maximum canopy height). 
Light intensity was logged every minute over 6-8 days in the late rainy season in 2012. Daily sums of light intensity 
were calculated and, on this basis, the within-canopy measurements were related to the measurement above the canopy. 
Non-linear and linear regression models were fitted and compared by AIC. The light intensity gradient (solid line) was 
best approximated by the Lambert-Beer light attenuation model I=I0*e-(k*LAI), with an attenuation coefficient of k=0.5 
and a leaf area index of LAI=7.5. Dashed lines indicate 95% confidence interval. 
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Figure A.2. Relationship between height above ground and six leaf trait: (a) specific leaf area (SLA), (b) leaf dry matter 
content (LDMC), (c) leaf thickness, (d) leaf water content (LWCarea), (e) leaf chlorophyll content on mass basis 
(Chlmass), (f) leaf chlorophyll content on area basis (Chlarea). Blue dots represent community mean trait values 
calculated for all 1-m height intervals, black dots represent (predicted) trait values of all individuals (see below). R2M: 
amount of variance in community mean trait values explained by height. R2C: amount of variance in individuals’ trait 
values explained by height. In contrast to the analyses in the main manuscript, these trait-height relationships are based 
on the height distribution and species identity of all individuals recorded in a comprehensive census at the study site 
(>22,000 individuals of >100 species; Glenda Mendieta-Leiva & Gerhard Zotz, unpublished data; see Zotz & Schultz 
2008 for methodology). To this end, we predicted trait values for each individual epiphyte recorded in the census based 
on its observed height and its intraspecific trait-height relationships (see Figs A.4-A.9). More specifically, trait values 
were randomly chosen from the 95% prediction intervals of the intraspecific trait-height relationship assuming normally 
distributed probability densities (Figs A.4-A.9). Community mean trait values for 1-m height intervals were then 
calculated by averaging predicted trait values over all individuals within each interval. The entire procedure was 
repeated 100 times to account for the stochasticity involved in choosing trait values from prediction intervals. As 
intraspecific trait-height relationships might be inaccurate if the number of samples is too small, we only considered 
species with ≥ 10 records per trait. This excluded the NC traits from analysis, but covered 86% of all individuals in the 
census for the extensively sampled traits as our sampling design included the most abundant species. While the 
uncertainty associated with the use of prediction intervals of intraspecific trait-height relationships is a weakness of this 
procedure, it is an advantage that the uneven distribution of the species and their true abundance are accounted for. 
Some species were much more abundant than others (e.g. Ananthacorus angustifolius with >2,300 individuals and 
Scaphyglottis longicaulis with >1,900 individuals) and due to our sampling strategy, it was not feasible to exactly 
represent their relative abundances in our sub-sample. Community trait means might be driven by few highly abundant 
species, and thus we regarded the procedure used here as indicator whether trait-height relationships analyzed based 
on the sub-sample (see main manuscript) might be biased due to our sampling strategy. This would be the case if trait-
height relationships differed substantially (compare this figure and Fig. 2.1, as well as Table A.3 and A.4). However, 
as there are only slight differences, we conclude that trait-height relationships were not substantially biased due to our 
sampling strategy. 
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Figure A.3. Trait-height relationships for four taxonomic groups of vascular epiphytes (aroids, bromeliads, orchids and 
ferns): (a) SLA: specific leaf area, (b) LDMC: leaf dry matter content, (c) Thickness: leaf thickness, (d) LWCarea: leaf 
water content per leaf area, (e) Chlmass: mass-based chlorophyll concentration, (f) Chlarea: area-based chlorophyll 
concentration, (g) δ13C: carbon isotope ratio, (h) δ15N: nitrogen isotope ratio, (i) Nmass: mass-based nitrogen 
concentration, (j) Narea: area-based nitrogen concentration. The minimal adequate models indicating between-group 
differences are shown. The colored shaded areas indicate 95% confidence intervals. Differences were analyzed using 
generalized linear mixed models (GLMMs; R package ‘nlme’; dependent variable: trait; fixed effects: height, height2, 
taxonomic group; random effect: species; see Table A.2for details). We fitted the GLMMs with full fixed effects and 
all possible combinations of random effects (Table A.2) to trait data to obtain the minimal adequate random structure 
using the REML estimation method (Zuur et al. 2009). Using the minimal adequate random structure for each trait, we 
compared GLMMs with all meaningful fixed-effect combinations (Table A.2) by applying the ML estimation method 
to obtain the MAM. Simpler models were preferred to more complex when ΔAIC≤10 (Burnham & Anderson 2004). 
When the fixed-effect structure of the MAM included the interaction between height and taxonomic groups, trait-height 
relationships significantly differed between taxonomic groups. We used GLMMs here because they control for 
difference in abundance among species, meaning that they indicate the average trend of species within their taxonomic 
groups. In contrast to the max-t test used to compare the trait means between taxonomic groups (Table 2.1 in main 
manuscript), the GLMMs are suitable to further indicate whether possible differences in traits means are still significant 
after controlling for the effect of height and whether trait responses, in general, differ between groups. Note that no 
differences in leaf trait responses to height among taxonomic groups were observed. This was striking, as we 
hypothesized that taxonomically conserved differences in morphological or physiological characteristics might also 
affect how leaf traits respond to environmental changes with height. For instance, the water- and nutrient-storing 
pseudobulbs in orchids might decrease the necessity of their leaves to adjust to drier conditions. In contrast, ferns 
depend to a larger degree on their leaves to control water balance, and thus we expected that ferns might be more 
dependent on adjustments of their leaves. However, the observed lack of differences in trait response might also be 
related to the fact that taxonomic groups can be quite heterogeneous, considering that, for example, orchid species can 
have deciduous leaves (e.g. Catasetinae orchids) as well as pseudobulbs of different sizes, or even none. Therefore, 
species-specific characteristics per se might be more important for the trait response of species than its broader 
taxonomic affiliation. Interestingly, SLA was the single extensively sampled trait for which no significant difference 
in slopes or intercepts were observed (a). This pattern suggests an optimal SLA value at a given height independent of 
taxonomic group, and furthermore indicates that the community trend is both influenced by the turnover of species 
differing in mean SLA values as well as their intraspecific response to height (Fig. A.4). The fact that no differences in 
slopes or intercepts were observed for NC traits (g-j) should not be over-interpreted. For these traits, the differences in 
AIC values between most models were below the chosen threshold (ΔAIC=10; Burnham & Anderson 2004), and 
therefore the simplest model using only height as fixed effect was preferred. This is likely due to lower sample sizes 
for NC traits, which needs to be increased for detailed interpretations. 
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Figure A.4. Intraspecific trait-height relationship between specific leaf area (SLA) and height above ground for all 
species with ≥ 10 individuals sampled. Blue regression lines indicate significant correlations (P<0.05), red dashed lines 
indicate 95% prediction intervals. Prediction intervals are shown only for the realized height distribution of the 
particular species as recorded in the comprehensive census. 
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Figure A.5. Intraspecific trait-height relationship between leaf dry mass content (LDMC) and height above ground for 
all species with ≥ 10 individuals sampled. Blue regression lines indicate significant correlations (P<0.05), red dashed 
lines indicate 95% prediction intervals. Prediction intervals are shown only for the realized height distribution of the 
particular species as recorded in the comprehensive census. 
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Figure A.6. Intraspecific trait-height relationship between leaf thickness and height above ground for all species with 
≥ 10 individuals sampled. Blue regression lines indicate significant correlations (P<0.05), red dashed lines indicate 
95% prediction intervals. Prediction intervals are shown only for the realized height distribution of the particular species 
as recorded in the comprehensive census.  
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Figure A.7. Intraspecific trait-height relationship between leaf water content (LWCarea) and height above ground for 
all species with ≥ 10 individuals sampled. Blue regression lines indicate significant correlations (P<0.05), red dashed 
lines indicate 95% prediction intervals. Prediction intervals are shown only for the realized height distribution of the 
particular species as recorded in the comprehensive census.  
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Figure A.8. Intraspecific trait-height relationship between leaf chlorophyll content per leaf dry mass (Chlmass) and 
height above ground for all species with ≥ 10 individuals sampled. Blue regression lines indicate significant correlations 
(P<0.05), red dashed lines indicate 95% prediction intervals. Prediction intervals are shown only for the realized height 
distribution of the particular species as recorded in the comprehensive census.   
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Figure A.9. Intraspecific trait-height relationship between leaf chlorophyll content per leaf area (Chlarea) and height 
above ground for all species with ≥ 10 individuals sampled. Blue regression lines indicate significant correlations 
(P<0.05), red dashed lines indicate 95% prediction intervals. Prediction intervals are shown only for the realized height 
distribution of the particular species as recorded in the comprehensive census. 
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Figure A.10. Partitioning of total trait variance into between-species (interspecific) variance and within-species 
(intraspecific) variance for six leaf traits (SLA: specific leaf area, LDMC: leaf dry matter content, Thickness: leaf 
thickness, LWCarea: leaf water content per leaf area, Chlmass: mass-based leaf chlorophyll concentration, Chlarea: area-
based leaf chlorophyll concentration). We only considered species with ≥ 10 records per trait here. 

 

 

Figure A.11. Relationship between intraspecific trait variability and vertical range of epiphyte species in a Panamanian 
lowland forest based on a linear model (vertical range ~ trait variability). The vertical range of each species was 
estimated based on its height distribution in the extensive census conducted in 2010-2012 (Glenda Mendieta-Leiva & 
Gerhard Zotz, unpublished data; see Zotz & Schultz 2008 for methodology). Two measures of trait variability for each 
species and trait were calculated: the coefficient of variation (CV) and the trait range (TR: absolute difference between 
maximum and minimum trait value divided by the maximum, given in %). The mean CV and mean TR over all traits 
were used as measures of multivariate intraspecific trait variability and are shown here. R2: amount of variance in 
vertical range explained by CV or TR. We only considered species with ≥ 10 records per trait. 
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Table A.1. Mean leaf trait values ±SD of 83 epiphyte species recorded in a Panamanian lowland forest. Height above the ground was measured for each individual plant. Some leaf 
traits (Thickness, SLA, LWCarea, LDMC, Chlarea, Chlmass) were sampled more extensively: n (field). For a subset, Nmass, Narea, δ13C and δ15N were determined in a laboratory: n (lab). 
Species names follow The Plant List (http://www.theplantlist.org). Photosynthetic pathway was derived from carbon isotope ratios δ13C, with values > -20 ‰ indicating CAM 
metabolism. All ferns are marked with (F). Mean CV: mean coefficient of variation over extensively sampled traits. Mean TR: mean trait range over extensively sampled traits. At 
the end of the table, mean trait values over all species, as well as reported global trait means of non-epiphytic taxa (TRY – a global database of plant traits; Kattge et al. 2011) are 
given. 

Species Family Phot. 
Pathway 

n 
(field) 

SLA                 
(mm2 mg-1) 

LDMC                     
(g g-1) 

Thickness 
(mm) 

LWCarea          
(g H2 O m-2) 

Chlmass               
(mg g-1) 

Chlarea                 
(μg cm-2) 

Mean CV 
(-) 

Mean TR 
(%) 

n 
(lab) 

δ13C                      
(‰) 

δ15N                     
(‰) 

N mass               
(mg g-1) 

Narea                    
(g m-2) 

Acianthera verecunda Orchidaceae CAM 7 15.7±5.9 0.07±0.02 1.04±0.28  993±354  4.8±2.7 29.6± 8.5 0.44 51.7 3 -13.2±1.2 -1.5±1.1 11.2±4.6 0.77±0.21 
Ananthacorus angustifolius Pteridaceae (F) C3 17 12.0±3.0 0.30±0.11 0.39±0.08  233±113  7.0±2.4 58.9±19.0 0.43 61.5 3 -31.9±0.5 -2.2±0.6 11.8±2.7 1.25±0.18 
Anetium citrifolium Pteridaceae (F) C3 13 26.3±8.4 0.14±0.03 0.35±0.08  250±68 12.7±3.1 51.0±15.1 0.37 52.2 2 -32.2±0.4 -0.9±0.2 19.1±4.3 0.77±0.09 
Anthurium acutangulum Araceae C3 13 16.2±3.6 0.17±0.09 0.41±0.05  362±112  7.7±1.9 50.2±16.6 0.39 50.2 2 -33.3±1.2 -2.1±0.7 10.9±1.1 0.66±0.31 
Anthurium brownii Araceae C3 10 13.3±4.8 0.29±0.04 0.30±0.06  141±98  7.5±3.7 56.7±20.7 0.46 58.9 3 -27.3±1.2 -4.4±1.9 10.0±0.6 1.08±0.22 
Anthurium clavigerum Araceae C3 11 35.5±15.0 0.12±0.03 0.20±0.05  231±36 12.5±4.6 38.1±13.8 0.41 55.2 3 -32.6±2.0 -0.8±1.1 25.3±14.6 0.93±0.43 
Anthurium durandii Araceae C3 10  8.0±2.7 0.22±0.03 0.62±0.14  490±97  6.3±2.9 90.9±38.5 0.40 48.8 2 -25.8±0.9 -3.7±0.8  7.7±0.4 1.40±0.67 
Anthurium friedrichsthalii Araceae C3 20 13.6±4.8 0.17±0.04 0.51±0.12  402±96  7.5±2.1 59.7±21.2 0.39 57.6 10 -30.4±2.5 -2.8±2.4  9.7±4.2 0.84±0.32 
Anthurium hacumense Araceae C3 12 16.1±5.2 0.12±0.03 0.51±0.05  366±237  9.8±2.2 63.1±12.8 0.40 49.3 6 -30.4±2.4 -2.0±1.3 12.4±3.3 0.77±0.28 
Anthurium scandens Araceae C3 12  9.7±1.7 0.21±0.02 0.48±0.07  394±41  7.1±1.6 75.3±15.1 0.28 35.6 3 -26.7±1.2 -3.6±0.9  8.5±1.3 1.03±0.05 
Anthurium sp. Araceae C3 2 44.1±20.9 0.10±0.02 0.28±0.03  235±72 12.4±8.6 26.5±7.0 0.43 31.4 0 - - - - 
Antrophyum lanceolatum Pteridaceae (F) C3 13 19.6±7.9 0.51±0.21 0.35±0.12   97±97  7.3±1.9 40.5±14.2 0.54 63.1 1 -32.1±0.0 -0.4±0.0 13.4±0.0 0.61±0.00 
Aspasia principissa Orchidaceae C3 13 17.8±11.3 0.18±0.03 0.37±0.19  386±253  7.3±4.8 42.4±7.6 0.54 62.3 3 -31.0±2.9 -2.1±0.4  9.1±2.3 0.61±0.27 
Asplenium juglandifolium Aspleniaceae (F) C3 10 22.2±6.2 0.45±0.24 0.24±0.11  100±80  6.9±1.0 33.0±9.2 0.50 59.0 2 -31.6±0.9 -1.0±1.6 13.8±1.6 0.66±0.27 
Asplenium serratum Aspleniaceae (F) C3 10 25.9±12.1 0.28±0.15 0.19±0.08  163±120  9.7±4.9 40.8±18.1 0.58 68.6 2 -31.8±0.7 -1.7±0.1 15.0±8.5 1.12±0.81 
Campylocentrum micranthum Orchidaceae CAM 3 14.7±2.0 0.12±0.01 0.59±0.02  485±4  5.9±1.2 40.3±7.8 0.24 16.2 3 -14.0±1.1 -1.1±1.9  9.0±1.3 0.61±0.04 
Campyloneurum aphanophlebium Polypodiaceae (F) C3 43 13.9±7.4 0.49±0.16 0.21±0.07  108±68 10.6±2.8 85.9±28.7 0.49 67.8 3 -29.3±2.2 -1.4±2.2 13.7±4.8 1.39±0.36 
Campyloneurum phyllitidis Polypodiaceae (F) C3 13 13.7±4.0 0.41±0.10 0.20±0.07  122±57  9.0±3.4 68.4±22.5 0.43 56.1 3 -30.2±2.4 -2.3±1.3 13.8±9.3 0.86±0.26 
Catasetum viridiflavum Orchidaceae C3 9 28.7±4.9 0.16±0.02 0.25±0.05  185±38 12.2±1.3 43.5±6.9 0.28 35.0 3 -29.7±1.7 -0.5±1.5 33.2±6.5 1.27±0.28 
Catopsis sessiliflora Bromeliaceae C3 10 25.1±6.7 0.14±0.03 0.29±0.04  275±62  9.7±2.6 40.5±13.1 0.35 48.0 3 -29.0±2.5 -3.2±0.8 10.3±1.5 0.40±0.03 
Caularthron bilamellatum Orchidaceae C3 1  8.9±0.0 0.15±0.00 0.94±0.00  626±0  3.3±0.0 36.9±0.0 - - 0 - - - - 
Christensonella uncata Orchidaceae C3 96  7.7±1.5 0.13±0.03 1.34±0.29  933±189  2.8±0.8 37.5±11.9 0.35 59.9 4 -30.7±2.0 -1.8±1.1  9.3±0.8 1.12±0.31 
Clusia cf. uvitana Clusiaceae C3 45 13.9±5.6 0.20±0.06 0.44±0.15  346±103  4.3±1.7 33.5±14.4 0.45 66.1 0 - - - - 
Codonanthe macradenia Gesneriaceae C3 26 15.6±7.7 0.06±0.02 1.75±0.59 1080±286  5.3±3.3 33.2±14.7 0.48 67.6 8 -27.2±4.6 -3.3±1.7  7.4±2.8 0.58±0.22 
Columnea billbergiana Gesneriaceae C3 3 28.1±7.4 0.05±0.01 1.12±0.38  691±205  8.5±4.0 29.5±7.7 0.39 35.1 2 -30.8±1.2 -2.7±0.6 12.0±4.0 0.48±0.05 
Cosmibuena grandiflora Rubiaceae C3 11 16.6±6.2 0.10±0.02 0.83±0.32  682±254  6.6±1.9 43.3±14.2 0.42 55.6 3 -31.2±0.8 -4.5±2.3  9.0±3.5 0.82±0.17 
Dichaea panamensis Orchidaceae C3 19 25.2±12.3 0.29±0.13 0.18±0.07  135±79  8.8±5.2 34.5±14.8 0.56 71.4 0 - - - - 
Dicranoglossum panamense Polypodiaceae (F) C3 14 16.3±5.8 0.45±0.19 0.18±0.06  101±64  5.4±2.0 32.8±5.2 0.47 60.6 7 -30.0±1.5 -3.0±0.3  8.9±1.9 0.66±0.20 
Dimerandra emarginata Orchidaceae C3 2  9.3±0.6 0.25±0.02 0.41±0.04  319±52  4.2±0.8 44.6±5.9 0.25 13.5 0 - - - - 
Elaphoglossum doanense Dryopteridaceae (F) C3 11 11.5±2.5 0.29±0.10 0.30±0.06  251±75  5.3±1.7 52.1±10.0 0.37 51.7 3 -31.5±2.3 -2.8±0.5  9.2±1.7 0.88±0.09 
Elaphoglossum herminieri Dryopteridaceae (F) C3 79  7.6±2.6 0.27±0.05 0.45±0.10  412±227  4.6±1.6 62.7±19.1 0.42 66.5 9 -31.3±1.7 -2.1±1.2  9.0±2.0 1.89±1.51 
Elaphoglossum sporadolepis Dryopteridaceae (F) C3 53  8.0±3.0 0.30±0.07 0.34±0.07  344±153  4.2±1.8 51.5±15.7 0.43 68.6 9 -30.2±1.4 -3.6±1.4  6.8±1.9 0.87±0.15 
Elleanthus longibracteatus Orchidaceae C3 5  9.1±1.4 0.38±0.03 0.23±0.02  184±17  4.9±1.1 53.4±7.3 0.26 22.8 3 -29.9±1.3 -3.1±1.0  8.4±0.6 0.96±0.14 
Epidendrum difforme Orchidaceae CAM 12  9.1±2.3 0.07±0.01 2.17±0.58 1496±323  2.5±0.9 27.7±8.7 0.36 47.4 3 -15.5±1.0 -3.4±1.4  7.1±1.5 0.81±0.09 
Epidendrum nocturnum Orchidaceae C3 11 12.7±5.2 0.14±0.03 0.77±0.25  532±144  5.4±1.6 48.0±19.3 0.41 53.2 3 -23.9±2.0 -3.0±0.4  8.8±0.7 0.89±0.50 
Epidendrum sp. Orchidaceae C3 3 17.0±12.4 0.20±0.13 0.69±0.49  381±272  5.5±0.9 41.0±18.2 0.63 54.2 0 - - - - 
Gongora quinquenervis Orchidaceae C3 3 25.9±10.1 0.14±0.05 0.26±0.02  268± 38  7.9±3.1 30.4±0.6 0.34 28.8 2 -32.5±3.1 -4.0±1.3 10.6±2.3 0.52±0.06 
Guzmania subcorymbosa Bromeliaceae C3 13 21.1±4.2 0.24±0.03 0.18±0.02  155±17  3.6±0.8 17.5±5.1 0.30 37.7 2 -30.6±0.5 -2.0±1.7  4.8±0.1 0.24±0.06 
Heterotaxis discolor Orchidaceae C3 1  4.4±0.0 0.17±0.00 1.44±0.00 1130±0  1.6±0.0 35.9±0.0 - - 0 - - - - 
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Heterotaxis sessilis Orchidaceae C3 1 10.8±0.0 0.35±0.00 0.28±0.00  171±0  7.9±0.0 73.0±0.0 - - 0 - - - - 
Lockhartia acuta Orchidaceae CAM 3 22.3±0.7 0.11±0.01 0.46±0.04  364±18 10.2±1.9 45.6±7.3 0.22 13.9 2 -22.0±1.8 -1.7±0.4 10.6±2.8 0.48±0.11 
Masdevallia livingstoneana Orchidaceae C3 6 18.0±2.7 0.06±0.01 1.77±0.37  851±56  7.9±2.6 44.2±16.0 0.33 34.0 0 - - - - 
Maxillariella acervata Orchidaceae C3 10 12.8±1.9 0.37±0.05 0.19±0.02  135±26  4.5±0.9 35.1±6.4 0.28 35.0 3 -31.0±1.4 -4.5±0.9 11.0±2.3 0.76±0.09 
Microgramma lycopodioides Polypodiaceae (F) C3 9 22.8±10.6 0.26±0.04 0.25±0.06  137±28  6.8±3.1 32.3±17.6 0.44 51.4 3 -28.1±0.7 -3.5±0.9  8.7±1.9 0.49±0.06 
Microgramma percussa Polypodiaceae (F) C3 9  9.1±2.0 0.36±0.04 0.26±0.07  200±36  4.9±0.6 56.7±16.9 0.31 38.2 2 -29.4±1.1 -1.5±0.0  7.8±0.3 0.90±0.23 
Microgramma reptans Polypodiaceae (F) C3 5 41.8±11.0 0.11±0.03 0.40±0.14  226±87 13.5±8.0 31.1±12.3 0.47 51.2 0 - - - - 
Niphidium crassifolium Polypodiaceae (F) C3 22 10.8±4.1 0.19±0.05 0.46±0.09  501±314  5.9±2.8 54.2±17.8 0.47 63.2 10 -30.2±0.7 -1.8±0.8  9.4±3.0 1.01±0.40 
Notylia albida Orchidaceae CAM 10 13.6±6.2 0.15±0.04 0.84±0.23  494±161  4.6±2.3 36.3±16.2 0.47 57.5 3 -12.3±0.7 -1.8±0.2  6.4±1.7 0.83±0.27 
Pecluma pectinata Polypodiaceae (F) C3 5 18.7±5.0 0.37±0.02 0.20±0.07   93±16 10.0±5.1 51.3±15.0 0.38 38.6 2 -34.1±0.6  0.0±0.2 14.7±3.5 0.71±0.06 
Peperomia cordulata Piperaceae C3 5 42.1±8.2 0.05±0.01 0.64±0.08  446±52 17.3±7.4 39.6±11.1 0.33 35.7 0 - - - - 
Peperomia ebingeri Piperaceae C3 1 32.8±0.0 0.06±0.00 0.97±0.00  518±0  9.1±0.0 27.8±0.0 - - 0 - - - - 
Peperomia obtusifolia Piperaceae C3 19 20.8±7.4 0.10±0.06 0.63±0.27  517±138  8.9±2.2 45.4±10.3 0.44 61.5 3 -32.5±1.3 -3.2±0.6 17.9±9.5 1.12±0.32 
Peperomia rotundifolia Piperaceae C3 7 39.7±19.9 0.02±0.01 1.99±0.78 1201±464  5.4±1.7 15.0±5.0 0.45 55.4 0 - - - - 
Philodendron fragrantissimum Araceae C3 22 24.9±9.7 0.16±0.05 0.27±0.02  218±75 11.6±3.5 49.0±11.0 0.38 56.2 2 -33.1±1.8  0.5±0.4 19.6±1.9 1.32±0.03 
Philodendron radiatum Araceae C3 10 29.4±20.4 0.18±0.07 0.23±0.03  209±51 11.1±4.4 46.4±19.5 0.46 59.1 3 -28.5±2.1  1.2±2.0 22.2±3.0 1.14±0.59 
Philodendron sagittifolium Araceae C3 10 17.7±7.2 0.16±0.07 0.39±0.08  287±210 10.6±2.9 64.6±23.9 0.49 60.7 2 -28.9±0.4 -0.8±3.6 19.0±6.6 1.56±0.76 
Polybotrya caudata Dryopteridaceae (F) C3 10 29.0±5.2 0.42±0.24 0.11±0.03   60±43 11.4±2.0 41.7±11.2 0.46 56.1 3 -34.5±0.6 -0.4±0.6 18.5±0.8 0.71±0.17 
Polystachya foliosa Orchidaceae C3 7 18.4±6.3 0.19±0.04 0.43±0.06  253±77 10.7±1.7 63.0±19.5 0.35 41.0 3 -26.2±0.4 -3.1±0.4 20.8±4.0 1.64±0.21 
Prosthechea sp. Orchidaceae C3 10  7.7±0.8 0.21±0.02 0.61±0.13  487±72  4.1±0.8 53.7±11.5 0.29 35.1 3 -27.2±0.5 -3.4±1.7 13.2±6.7 1.71±0.85 
Scaphyglottis behrii Orchidaceae C3 38 11.1±2.0 0.37±0.08 0.24±0.05  178±103  5.1±1.6 45.9±12.8 0.39 67.6 3 -27.9±2.7 -2.0±0.4  9.9±2.2 0.92±0.31 
Scaphyglottis longicaulis Orchidaceae C3 30 17.3±2.9 0.25±0.08 0.25±0.04  183±45  8.7±1.9 50.8±11.7 0.33 53.1 7 -30.5±0.9 -2.1±0.6 12.5±1.0 0.67±0.10 
Scaphyglottis prolifera Orchidaceae C3 15 11.2±2.1 0.34±0.08 0.31±0.04  182±32  6.5±2.7 57.7±21.4 0.36 53.8 1 -29.6±0.0 -3.2±0.0 13.0±0.0 1.20±0.00 
Serpocaulon wagneri Polypodiaceae (F) C3 4 17.3±4.9 0.34±0.06 0.31±0.05  120±29  5.3±1.6 32.1±13.4 0.37 39.6 0 - - - - 
Sobralia decora Orchidaceae C3 10 17.7±7.6 0.28±0.03 0.36±0.11  161±46  9.5±4.6 56.8±22.4 0.43 55.0 3 -29.8±3.0 -2.2±1.5 13.7±3.3 1.02±0.32 
Sobralia fragrans Orchidaceae C3 17 14.9±4.6 0.31±0.04 0.24±0.05  159±27  6.3±1.7 42.7±10.1 0.33 51.6 3 -31.7±0.8 -2.2±0.8 10.6±1.3 0.75±0.20 
Specklinia brighamii Orchidaceae C3 31 10.6±3.3 0.14±0.03 1.00±0.33  656±175  4.2±1.2 41.7±14.3 0.39 63.1 3 -29.2±1.4 -1.3±0.5  8.8±2.7 0.83±0.49 
Stelis crescentiicola Orchidaceae C3 10 13.1±3.0 0.10±0.01 1.09±0.40  771±214  5.9±1.4 46.5±11.4 0.36 48.0 2 -32.5±0.6 -2.1±1.4  8.8±0.4 0.71±0.09 
Stenospermation angustifolium Araceae C3 8 25.9±16.8 0.12±0.03 0.45±0.07  339±80  9.9±2.0 45.1±14.4 0.40 49.4 0 - - - - 
Syngonium podophyllum Araceae C3 9 32.4±4.8 0.17±0.08 0.25±0.03  190±103 16.8±2.8 53.0±11.4 0.38 47.5 0 - - - - 
Tillandsia anceps Bromeliaceae C3 12 14.6±5.3 0.18±0.04 0.37±0.08  376±210  3.8±1.2 27.7±9.1 0.43 59.9 9 -29.7±1.8 -2.8±1.0  6.9±2.5 0.57±0.33 
Tillandsia bulbosa Bromeliaceae CAM 11  6.1±1.2 0.17±0.02 1.82±0.32  856±156  2.0±0.6 34.0±10.2 0.33 44.4 3 -13.9±0.8 -4.1±1.7  6.8±0.9 1.17±0.21 
Topobea parasitica Melastomataceae C3 9 38.4±12.2 0.12±0.02 0.23±0.07  212±62  9.0±3.2 23.8±6.0 0.39 49.4 2 -30.6±0.8 -5.4±3.4 12.9±5.8 0.42±0.04 
Trichocentrum capistratum Orchidaceae C3 5 11.9±6.9 0.11±0.06 1.54±0.61  924±232  5.2±3.2 45.9±20.2 0.55 59.7 0 - - - - 
Trichomanes ekmanii Hymenophyllaceae (F) C3 3 62.8±3.4 0.29±0.01 0.12±0.01   39±3  5.5±2.4  8.7±3.3 0.30 22.5 0 - - - - 
Trichomanes kapplerianum Hymenophyllaceae (F) C3 9 42.0±9.1 0.41±0.14 0.06±0.01   40±15  4.8±1.5 11.6±3.4 0.39 49.8 0 - - - - 
Trichomanes nummularium Hymenophyllaceae (F) C3 6 46.7±5.0 0.40±0.04 0.00±0.00   32±5  6.9±1.2 15.0±3.0 - - 0 - - - - 
Trichomanes ovale Hymenophyllaceae (F) C3 1 45.5±0.0 0.32±0.00 0.07±0.00   46±0  9.5±0.0 20.9±0.0 - - 0 - - - - 
Trichomanes punctatum Hymenophyllaceae (F) C3 9 39.0±6.1 0.52±0.19 0.06±0.02   29±15  6.7±2.2 17.0±5.0 0.43 57.0 0 - - - - 
Trichopilia maculata Orchidaceae C3 10 12.1±1.5 0.14±0.01 0.68±0.06  518±84 10.4±3.2 85.8±21.1 0.29 32.5 3 -29.6±1.9 -1.3±0.7 15.1±2.0 1.41±0.19 
Trichosalpinx orbicularis Orchidaceae C3 21  8.3±2.4 0.14±0.05 1.19±0.18  796±152  7.4±1.6 98.4±38.4 0.36 54.1 3 -29.5±1.5 -0.9±0.9  9.0±0.9 1.02±0.26 
Trigonidium egertonianum Orchidaceae C3 16 11.3±3.1 0.25±0.02 0.29±0.07  276±63  5.9±2.0 53.2±13.0 0.34 47.6 3 -31.1±1.8 -3.0±1.9  9.3±4.0 0.70±0.14 
Vittaria lineata Pteridaceae (F) C3 11 17.0±10.6 0.24±0.08 0.38±0.27  336±335  6.9±4.2 43.8±13.7 0.66 69.5 3 -31.5±1.1  0.1±2.2 10.9±2.5 1.58±0.92 
Vriesea gladioliflora Bromeliaceae C3 16 21.8±6.9 0.18±0.03 0.30±0.06  229±37  7.7±2.5 37.0±7.2 0.34 47.1 10 -30.2±1.6 -1.6±0.6  8.8±1.8 0.45±0.06 
Means over all epiphyte species    19.9±11.5 0.22±0.12 0.55±0.47 375±301 7.4±3.1 44.4±17.2 0.41±0.08 52.9±10.6  -30.2±2.1 -2.2±1.3 11.9±5.0 0.91±0.35 
Global means of non-epiphytic taxa (TRY)   16.6 0.213 0.211 - - - - -  - - 17.4 1.59 
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Table A.2. AIC-based comparisons of generalized linear mixed models (GLMMs) analyzing the relationship between 
leaf traits (dependent variable; SLA: specific leaf area, LDMC: leaf dry matter content, Thickness: leaf thickness, 
LWCarea: leaf water content per leaf area, Chlmass: mass-based chlorophyll concentration, Chlarea: area-based 
chlorophyll concentration, Nmass: mass-based nitrogen concentration, Narea: area-based nitrogen concentration, δ13C: 
carbon isotope ratio, δ15N: nitrogen isotope ratio) and different fixed effects (height, height2, taxonomic group). Only 
epiphytes belonging to the four major taxonomic groups (aroids, bromeliads, orchids, ferns) were considered. At first, 
GLMMs with full fixed effects (model9) and all possible combinations of random effects (no random effect, random 
intercept, random intercept and variance, random intercept and slope, random intercept and slope and variance by 
species) were fitted to trait data (n: number of sampled individuals) to obtain the minimal adequate random structure 
using the REML estimation method (Zuur et al. 2009). The minimal adequate random structure for each trait is given 
as Random effect (I: random intercept; S: random slope; V: random variance). In a second step, using the minimal 
adequate random structure for each trait, we compared GLMMs with all meaningful fixed-effect combinations (see 
annotation below table) using the ML estimation method to obtain the minimal adequate model (MAM) based on AIC 
values (∆AIC = AICfocal_model – AICMAM). Simpler models were preferred to more complex models when ΔAIC≤10 
(Burnham & Anderson 2004). Note that the nine models are sorted by model complexity, with model9 being the most 
complex. The MAM is marked by grey color. 

Leaf trait n Random 
effect 

∆AIC 
mod1* 

∆AIC 
mod2* 

∆AIC 
mod3* 

∆AIC 
mod4* 

∆AIC 
mod5* 

∆AIC 
mod6* 

∆AIC 
mod7* 

∆AIC 
mod8* 

∆AIC 
mod9* 

SLA 1022 I+S+V 30.6 77.6 36.6 33.3 0.0 4.9 7.9 7.7 6.7 
LDMC 1021 I+S+V 34.7 17.6 0.0 4.9 36.2 0.8 5.8 5.9 11.5 
Thickness 1022 I+S+V 15.6 21.9 5.2 9.3 14.4 0.0 2.3 4.6 6.1 
LWCarea 1016 I+S+V 14.5 3.8 0.0 4.0 15.5 1.7 5.6 6.7 9.9 
Chlmass 1023 I+S+V 10.9 31.2 3.6 5.1 6.0 0.0 2.2 3.1 7.9 
Chlarea 1025 I+S+V 16.4 27.4 12.5 81.1 11.6 5.9 4.3 6.0 0.0 
Nmass 202 I+V 3.9 21.2 2.9 5.5 0.5 0.0 4.3 5.1 7.1 
Narea 200 I+V 2.8 3.6 0.0 5.0 4.8 2.0 6.9 6.2 7.5 
δ13C 184 I 3.7 67.8 4.0 6.5 1.0 0.0 4.6 5.1 9.1 
δ15N 202 I+V 0.0 7.9 3.5 8.5 0.9 4.4 9.5 9.9 8.2 

 

*Fixed effect structures: 
model1: Trait ~ Height 
model2: Trait ~ TaxGroup 
model3: Trait ~ Height + TaxGroup 
model4: Trait ~ Height x TaxGroup 
model5: Trait ~ Height + Height2 
model6: Trait ~ Height + Height2 + TaxGroup 
model7: Trait ~ Height x TaxGroup + Height2 
model8: Trait ~ Height + Height2 x TaxGroup 
model9: Trait ~ Height x TaxGroup + Height2 x TaxGroup 
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Table A.3. Summary statistics of linear models (LMs) testing trait-height relationships of vascular epiphytes for 10 
leaf traits (SLA: specific leaf area, LDMC: leaf dry matter content, Thickness: leaf thickness, LWCarea: leaf water 
content per leaf area, Chlmass: mass-based chlorophyll concentration, Chlarea: area-based chlorophyll concentration, 
Nmass: mass-based nitrogen concentration, Narea: area-based nitrogen concentration, δ13C: carbon isotope ratio, δ15N: 
nitrogen isotope ratio). Trait-height relationships were analyzed by comparing simple LMs (trait ~ height) and LMs 
including a quadratic term (trait ~ height ± height2) based on AIC values. We selected the non-linear LM as minimum 
adequate model (MAM) if it was superior by ΔAIC>10 (Burnham & Anderson 2004). For each trait, LMs were applied 
to the entire dataset consisting of all sampled individuals, as well as to the community mean trait values calculated for 
all 1-m height intervals. Int, a, b: model coefficients of the MAM (trait ~ Int ± a*height ± b*height2). P values are given 
separately for the linear term and the quadratic term. 

Leaf trait Data set MAM df R2 Int a b P (linear) P (quadratic) 

SLA Community means Non-linear 30 0.89 35.19 -2.11 0.05 <0.001 <0.001 

SLA All individuals Non-linear 1145 0.30 34.06 -2.02 0.04 <0.001 <0.001 

LDMC Community means Linear 31 0.30 0.28 0.00 - 0.001 - 

LDMC All individuals Linear 1144 0.01 0.26 0.00 - <0.001 - 

Thickness Community means Linear 31 0.72 0.24 0.02 - <0.001 - 

Thickness All individuals Linear 1142 0.11 0.22 0.02 - <0.001 - 

LWCarea Community means Linear 31 0.64 189.33 11.76 - <0.001 - 

LWCarea All individuals Linear 1139 0.11 185.38 13.76 - <0.001 - 

Chlmass Community means Non-linear 30 0.76 11.98 -0.55 0.01 <0.001 <0.001 

Chlmass All individuals Non-linear 1146 0.16 11.00 -0.44 0.01 <0.001 <0.001 

Chlarea Community means Linear 31 0.26 42.16 0.32 - 0.002 - 

Chlarea  All individuals Non-linear 1148 0.02 36.36 1.45 -0.04 <0.001 <0.001 

Nmass Community means Non-linear 30 0.39 19.09 -0.95 0.02 <0.001 0.001 

Nmass All individuals Non-linear 217 0.09 16.79 -0.70 0.02 <0.001 <0.001 

Narea Community means Linear 31 0.13 0.79 0.01 - 0.042 - 

Narea All individuals Linear 216 0.04 0.71 0.01 - 0.005 - 

δ13C Community means Linear 31 0.66 -33.46 0.19 - <0.001 - 

δ13C All individuals Linear 200 0.35 -32.93 0.18 - <0.001 - 

δ15N Community means Linear 31 0.23 -1.42 -0.04 - 0.004 - 

δ15N All individuals Linear 218 0.05 -1.59 -0.05 - <0.001 - 
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Table A.4. Summary statistics of linear models (LMs) testing trait-height relationships of vascular epiphytes for 6 leaf 
traits (SLA: specific leaf area, LDMC: leaf dry matter content, Thickness: leaf thickness, LWCarea: leaf water content 
per leaf area, Chlmass: mass-based chlorophyll concentration, Chlarea: area-based chlorophyll concentration). Trait-
height relationships were analyzed by comparing simple LMs (trait ~ height) and LMs including a quadratic term (trait 
~ height ± height2) based on AIC values. We selected the non-linear LM as minimum adequate model (MAM) if it was 
superior by ΔAIC>10 (Burnham & Anderson 2004). In contrast to Table A.3, the LMs were applied to the dataset 
consisting of the predicted trait values for all individuals recorded in the comprehensive census (see Fig. S2 for details), 
as well as to the community trait means based on these. The large numbers of degrees of freedom (df) result from the 
repetition of the prediction procedure for 100 times (Fig. A.2). Int, a, b: model coefficients of the MAM (trait ~ Int ± 
a*height ± b*height2). P values are given separately for the linear term and the quadratic term. 

Leaf trait Data set MAM df R2 Int a b P (linear) P (quadratic) 

SLA Community means Non-linear 3297 0.96 31.26 -1.54 0.03 <0.001 <0.001 

SLA All individuals Non-linear 2034797 0.28 31.58 -1.70 0.04 <0.001 <0.001 

LDMC Community means Non-linear 3297 0.38 0.22 0.01 0.00 <0.001 <0.001 

LDMC All individuals Non-linear 2034797 0.01 0.22 0.01 0.00 <0.001 <0.001 

Thickness Community means Non-linear 3297 0.76 0.35 0.01 0.00 <0.001 <0.001 

Thickness All individuals Non-linear 2028497 0.04 0.32 0.01 0.00 <0.001 <0.001 

LWCarea Community means Non-linear 3297 0.76 286.07 0.79 0.29 0.074 <0.001 

LWCarea All individuals Non-linear 2034797 0.04 260.90 6.09 0.08 <0.001 <0.001 

Chlmass Community means Non-linear 3297 0.92 11.23 -0.40 0.01 <0.001 <0.001 

Chlmass All individuals Non-linear 2034797 0.13 11.15 -0.41 0.01 <0.001 <0.001 

Chlarea Community means Non-linear 3297 0.72 38.33 1.25 -0.03 <0.001 <0.001 

Chlarea  All individuals Non-linear 2034797 0.04 37.42 1.57 -0.04 <0.001 <0.001 
 

 

Table A.5. Pairwise correlations between leaf traits of vascular epiphytes. Pearson’s correlation coefficient is reported 
for all significant correlations (P<0.05). Bold numbers indicate strong correlations (r>0.5). 

 SLA Chlarea Chlmass LWCarea Thickness LDMC δ15N δ13C Narea Nmass 

SLA  -0.42 0.64 -0.51 -0.48 -0.16 0.22 -0.24 -0.62 0.46 

Chlarea 
-0.42  0.42 0.09 - 0.21 0.10 -0.13 0.56 0.36 

Chlmass 
0.64 0.42  -0.44 -0.41 - 0.30 -0.31 -0.12 0.67 

LWCarea 
-0.51 0.09 -0.44  0.84 -0.72 -0.21 0.37 0.19 -0.35 

Thickness 
-0.48 - -0.41 0.84  -0.66 -0.15 0.48 0.13 -0.33 

LDMC 
-0.16 0.21 - -0.72 -0.66  - -0.28 0.17 0.41 

δ15N 
0.22 0.10 0.30 -0.21 -0.15 -  -0.15 0.13 0.41 

δ13C 
-0.24 -0.13 -0.31 0.37 0.48 -0.28 -0.15  - -0.26 

Narea 
-0.62 0.56 -0.12 0.19 0.13 0.17 0.13 -  0.14 

Nmass 
0.46 0.36 0.67 -0.35 -0.33 0.41 0.41 -0.26 0.14  
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Table A.6. AIC-based comparisons of linear models (LMs) analyzing the relationship between leaf traits (dependent 
variable; SLA: specific leaf area, LDMC: leaf dry matter content, Thickness: leaf thickness, LWCarea: leaf water content 
per leaf area, Chlmass: mass-based chlorophyll concentration, Chlarea: area-based chlorophyll concentration) and 
different fixed effects (height, species). The LMs with all meaningful fixed effect combinations are given as annotation 
below the table; note that these models are sorted by their complexity. To obtain the minimal adequate model (MAM), 
we compared the different LMs based on their AIC values (∆AIC = AICfocal_model – AICMAM). Simpler LMs were 
preferred to more complex models when ΔAIC≤10 (Burnham & Anderson 2004). The MAM is marked by grey color. 
Because we used species identity as fixed effect, we only considered species with ≥ 10 records per trait.  

Leaf trait n ∆AIC 
model1* 

∆AIC 
model2* 

∆AIC 
model3* 

∆AIC 
model4* 

∆AIC 
model5* 

SLA 988 988.0 737.7 327.6 184.3 0.0 

LDMC 986 1081.8 1077.6 87.7 78.5 0.0 

Thickness 991 1871.3 1720.2 67.1 40.8 0.0 

LWCarea 981 1422.5 1293.6 8.3 0.0 7.6 

Chlmass 989 850.6 649.9 113.2 46.5 0.0 

Chlarea 991 593.8 594.1 18.8 0.0 37.7 

 

 

Table A.7. Proportion of species with significant trait-height relationships for six leaf traits (SLA: specific leaf area, 
LDMC: leaf dry matter content, Thickness: leaf thickness, LWCarea: leaf water content per leaf area, Chlmass: mass-
based chlorophyll concentration, Chlarea: area-based chlorophyll concentration). For each trait, the number of species 
with significant trait-height relationships (P<0.05) was divided by the total number of species (n=51). Furthermore, 
significant trait-height relationships were subdivided into positive and negative relationships. See Figs. A.4-A.9 for 
more details on intraspecific trait-height relationships. 

Leaf trait % significant 
slopes 

% significant slopes 
(positive) 

% significant slopes 
(negative) 

SLA 45.1 0.0 45.1 
LDMC 33.3 27.5 5.9 
Thickness 25.5 21.6 3.9 
LWCarea 15.7 11.8 3.9 
Chlmass 19.6 0.0 19.6 
Chlarea 17.6 17.6 0.0 
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B Supplementary information to chapter 3 

Table B.1. List of vascular holoepiphytes found on the forest floor per study site. We did not surveyed ferns and aroids 
at the Brazilian sites. Species names follow the The Plant List (http://www.theplantlist.org/). Species found attached to 
branches are in bold. Vouchers of Brazilian species were deposited in the herbarium of the Federal University of 
Pernambuco and in the herbarium of the Federal University of Paraiba. Vouchers of the Panamanian species were 
deposited in the herbarium of the Smithsonian Tropical Research Institute, Panama. 

Brazil core Brazil edge Panama 
Family Species Family Species Family Species 
Bromeliaceae Aechmea cf. stelligera Bromeliaceae Aechmea cf. 

stelligera 
Araceae Anthurium acutangulum 

Bromeliaceae Tillandsia bulbosa Bromeliaceae Tillandsia bulbosa Araceae Anthurium 
friedrichsthallii 

Bromeliaceae Tillandsia juncea Bromeliaceae Tillandsia juncea Araceae Anthurium hacumense 
Bromeliaceae Tillandsia tenuifolia Bromeliaceae Tillandsia tenuifolia Araceae Anthurium scandens 
Bromeliaceae Tillandsia usneoides Bromeliaceae Tillandsia usneoides Araceae Stenospermation 

angustifolium 
Cactaceae Rhypsalis baccifera Orchidaceae Campylocentrum 

crassyrhyzum 
Aspleniaceae Asplenium serratum 

Orchidaceae Anathallis sclerophylla Orchidaceae Cattleya labiata Bromeliaceae Catopsis sessiliflora 
Orchidaceae Campylocentrum 

crassyrhyzum 
Orchidaceae Dichaea 

panamensis 
Bromeliaceae Guzmania subcorymbosa 

Orchidaceae Cattleya labiata Orchidaceae Dimerandra 
emarginata 

Bromeliaceae Tillandsia anceps 

Orchidaceae Dichaea panamensis Orchidaceae Epidendrum 
difforme 

Bromeliaceae Tillandsia bulbosa 

Orchidaceae Dimerandra 
emarginata 

Orchidaceae Epidendrum 
nocturnum 

Cactaceae Epiphyllum phyllanthus 

Orchidaceae Epidendrum difforme Orchidaceae Gomesa barbata Gesneriaceae Codonanthe macradenia 
Orchidaceae Epidendrum riggidum Orchidaceae Polystachya 

concreta 
Orchidaceae Campylocentrum 

micranthum 
Orchidaceae Gomesa barbata  Orchidaceae Rodrighezia 

bahiensis 
Orchidaceae Catasetum viridiflavum 

Orchidaceae Maxillaria ochroleuca Orchidaceae Scaphyglottis 
fusiformis 

Orchidaceae Christensonella uncata 

Orchidaceae Notylia lyrata Orchidaceae Scaphyglottis sickii Orchidaceae Dichaea panamensis 
Orchidaceae Polystachya concreta   Orchidaceae Epidendrum difforme 
Orchidaceae Prosthechea 

alagoensis 
  Orchidaceae Epidendrum nocturnum 

Orchidaceae Prosthechea fragrans   Orchidaceae Heterotaxis sessilis 
Orchidaceae Rodrighezia bahiensis   Orchidaceae Masdevallia 

livingstoneana 
Orchidaceae Scaphyglottis 

fusiformis 
  Orchidaceae Mormodes powellii 

Orchidaceae Scaphyglottis sickii   Orchidaceae Polystachya foliosa 
Orchidaceae Trigonidium 

acuminatum 
  Orchidaceae Prosthechea aemula 

    Orchidaceae Scaphyglottis behrii 
    Orchidaceae Scaphyglottis longicaulis 
    Orchidaceae Sobralia fenzliana 
    Orchidaceae Sobralia fragans 
    Orchidaceae Trichocentrum 

capistratum 
    Orchidaceae Trichopilia maculata 
    Orchidaceae Trichosalpinx orbicularis 
    Orchidaceae Trigonidium 

egertonianum 
    Piperaceae Peperomia cordulata 
     Peperomia rotundifolia 
    Polypodiaceae Dicranoglossum 

panamense 
    Polypodiaceae Microgramma 

lycopodioides 
    Polypodiaceae Microgramma percussa 
    Polypodiaceae Niphidium crassifolium 
    Vittariaceae Ananthacorus 

angustifolius 
    Vittariaceae Vittaria lineata 
Total 23  16  27 

 

 

 



Appendix 

198 
 

Table B.2. List of vascular holoepiphytes found in the canopy per forest. Species names follow the Plant List 
(http://www.theplantlist.org/). Species found in the canopy above Brazilian core and Panamanian transects are indicated 
in bold, whereas species found in the Brazilian edge transects are indicated with asterisks. For Panamanian transect 
canopies, species occurring on substrate <10 cm in diameter are indicated with a † symbol. Transect canopy information 
was based on own observations in the Brazilian sites (see main text) and on inventoried data in the Panamanian site 
(Glenda Mendieta-Leiva & Gerhard Zotz, unpublished data). Vouchers of Brazilian species were deposited in the 
herbarium of the Federal University of Pernambuco and in the herbarium of the Federal University of Paraiba.Vouchers 
of the Panamanian species were deposited in the herbarium of the Smithsonian Tropical Research Institute, Panama. 

Brazil  Panama 
Family Species Family Species 
Bromeliaceae Aechmea stelligera* Araceae Anthurium acutangulum† 
Bromeliaceae Aechmea fulgens Araceae Anthurium bakeri 
Bromeliaceae Bilbergia morelii Araceae Anthurium brownii† 
Bromeliaceae Canistrum alagoanum Araceae Anthurium clavigerum† 
Bromeliaceae Guzmania lingulata Araceae Anthurium durandii† 
Bromeliaceae Lymania smithii Araceae Anthurium friedrichsthalii† 
Bromeliaceae Tillandsia bulbosa Araceae Anthurium hacumense† 
Bromeliaceae Tillandsia juncea* Araceae Anthurium scandens† 
Bromeliaceae Tillandsia stricta Araceae Philodendron radiatum† 
Bromeliaceae Tillandsia tenuifolia* Araceae Philodendron sagittifolium† 
Bromeliaceae Tillandsia usneoides* Araceae Stenospermation angustifolium 
Cactaceae Rhypsalis baccifera Aspleniaceae Asplenium juglandifolium 
Cactaceae Epiphyllum phyllanthus Aspleniaceae Asplenium serratum† 
Orchidaceae Acianthera pernambucensis  Bromeliaceae Aechmea tillandsioides† 
Orchidaceae Anathallis brevipes Bromeliaceae Catopsis sessiliflora† 
Orchidaceae Anathallis sclerophylla Bromeliaceae Guzmania musaica 
Orchidaceae Campylocentrum amazonicum Bromeliaceae Guzmania subcorymbosa† 
Orchidaceae Campylocentrum crassyrhyzum* Bromeliaceae Tillandsia anceps† 
Orchidaceae Catasetum macrocarpum Bromeliaceae Tillandsia bulbosa† 
Orchidaceae Cattleya granulosa Bromeliaceae Vriesea gladioliflora† 
Orchidaceae Cattleya labiata* Bromeliaceae Vriesea sanguinolenta 
Orchidaceae Dichaea panamensis* Cactaceae Epiphyllum phyllanthus† 
Orchidaceae Dimerandra emarginata* Cactaceae Hylocereus monacanthus† 
Orchidaceae Encyclia longifolia Cactaceae Weberocereus tunilla† 
Orchidaceae Epidendrum difforme* Gesneriaceae Codonanthe macradenia† 
Orchidaceae Epidendrum nocturnum* Gesneriaceae Columnea billbergiana 
Orchidaceae Epidendrum ramosum* Gesneriaceae Drymonia serrulata 
Orchidaceae Epidendrum riggidum Hymenophyllaceae Hymenophyllum brevifrons 
Orchidaceae Heterotaxis discolor Hymenophyllaceae Trichomanes anadromum† 
Orchidaceae Jacquiniella globosa Hymenophyllaceae Trichomanes angustifrons† 
Orchidaceae Maxillaria ochroleuca Hymenophyllaceae Trichomanes godmanii† 
Orchidaceae Notylia lyrata Hymenophyllaceae Trichomanes nummularium† 
Orchidaceae Gomesa barbata* Hymenophyllaceae Trichomanes ovale† 
Orchidaceae Polystachya concreta* Hymenophyllaceae Trichomanes punctatum† 
Orchidaceae Prosthechea alagoensis Lomariopsidaceae Elaphoglossum herminieri 
Orchidaceae Prosthechea fragrans Lomariopsidaceae Elaphoglossum sporadolepis† 
Orchidaceae Rodrighezia bahiensis* Orchidaceae Acianthera verecunda† 
Orchidaceae Scaphyglottis emarginata Orchidaceae Aspasia principissa 
Orchidaceae Scaphyglottis fusiformis* Orchidaceae Camaridium sp. 
Orchidaceae Scaphyglottis sickii* Orchidaceae Campylocentrum micranthum† 
Orchidaceae Stellis clorantha  Orchidaceae Catasetum viridiflavum† 
Orchidaceae Stellis filiformis Orchidaceae Caularthron bilamellatum† 
Orchidaceae Trichocentrum fuscum* Orchidaceae Christensonella uncata† 
Orchidaceae Trigonidium acuminatum Orchidaceae Cochleanthes lipscombiae 
Piperaceae Peperomia aff. circinata Orchidaceae Cryptarrhena guatemalensis 
Piperaceae Peperomia macrostachya Orchidaceae Dichaea panamensis† 
Piperaceae Peperomia pellucida Orchidaceae Dimerandra emarginata† 
Piperaceae Peperomia sp. Orchidaceae Elleanthus longibracteatus 
  Orchidaceae Epidendrum coronatum 
  Orchidaceae Epidendrum difforme† 
  Orchidaceae Epidendrum imatophyllum 
  Orchidaceae Epidendrum nocturnum† 
  Orchidaceae Epidendrum rousseauae 
  Orchidaceae Epidendrum schlechterianum† 
  Orchidaceae Gongora quinquenervis† 
  Orchidaceae Heterotaxis discolor 
  Orchidaceae Heterotaxis sessilis 
  Orchidaceae Jacquiniella pedunculata† 
  Orchidaceae Jacquiniella sp. 
  Orchidaceae Kefersteinia sp. 
  Orchidaceae Lockhartia acuta† 
  Orchidaceae Lockhartia pittieri 
  Orchidaceae Macradenia brassavolae 
  Orchidaceae Masdevallia livingstoneana 
  Orchidaceae Maxillariella acervata 
  Orchidaceae Mormodes powellii 
  Orchidaceae Notylia albida† 
  Orchidaceae Oncidium lineoligerum 
  Orchidaceae Ornithocephalus sp. 
  Orchidaceae Polystachya foliosa† 
  Orchidaceae Specklinia brighamii† 
  Orchidaceae Specklinia grobyi† 
  Orchidaceae Prosthechea aemula 
  Orchidaceae Prosthechea chacaoensis 
  Orchidaceae Prosthechea chimborazoensis 
  Orchidaceae Rossioglossum ampliatum† 
  Orchidaceae Scaphyglottis behrii† 
  Orchidaceae Scaphyglottis longicaulis† 
  Orchidaceae Scaphyglottis prolifera† 
  Orchidaceae Sobralia fenzliana 
  Orchidaceae Sobralia fragans† 
  Orchidaceae Stelis crescentiicola† 
  Orchidaceae Trichocentrum capistratum† 
  Orchidaceae Trichopilia maculata† 
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  Orchidaceae Trichosalpinx orbicularis 
  Orchidaceae Trigonidium egertonianum 
  Piperaceae Peperomia cordulata† 
  Piperaceae Peperomia ebingeri 
  Piperaceae Peperomia macrostachya 
  Piperaceae Peperomia obtusifolia† 
  Piperaceae Peperomia rotundifolia† 
  Polypodiaceae Campyloneurum aphanophlebium† 
  Polypodiaceae Campyloneurum phylitidis† 
  Polypodiaceae Dicranoglossum panamense† 
  Polypodiaceae Microgramma lycopodioides† 
  Polypodiaceae Microgramma percussa† 
  Polypodiaceae Microgramma reptans 
  Polypodiaceae Niphidium crassifolium† 
  Polypodiaceae Pecluma pectinata 
  Polypodiaceae Serpocaulon triseriale 
  Polypodiaceae Serpocaulon wagneri 
  Selaginellaceae Huperzia dichotoma 
  Vittariaceae Ananthacorus angustifolius† 
  Vittariaceae Anetium citrifolium† 
  Vittariaceae Antrophyum lanceolatum† 
  Vittariaceae Hecistopteris pumila 
  Vittariaceae Vittaria lineata 
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Table B.3. Full transect data and comparisons between study sites. Several measures characterizing forest structure, 
branch abundance, as well as epiphyte abundance and richness were standardized per transect and their means were 
compared with simultaneous max-t tests using Tukey contrasts that are robust under non-normality, heteroscedasticity 
and variable sample size.. The standardized measures ± SD are given below. Significantly different means are followed 
by different letters representing pairwise differences. Additionally, total numbers per study site are provided. We show 
values with both transect and m2 as unit area. Note that for epiphytes, only mean values for Panamanian transects 
without ferns and aroids were used in the comparisons with Brazilian study sites. The symbol † indicates n=35 
(excluding one transect without trees). 

Variable Brazilian core 
transects 

(n=30) 

Brazilian 
edge 

transects 
(n=30) 

Panamanian transects (n=36) 
 No ferns and aroids All species 

Trees Total 184 154 171 
 Mean number per transect 5.1 ± 2.1 ab 6.4 ± 3.2 a 4.8 ± 2.1 b 

 Mean DBH (m) 0.2 ± 0.1 a 0.18 ± 0.06 b 0.16 ± 0.07 b† 

 Mean height at first branching (m)  8.2 ± 2.0 a 4.7 ± 2.0 b 7.8 ± 2.4 a† 

 Mean height (m) 15.4 ± 3.4 a 10.9 ± 2.7 b 12.7 ± 3.3 c† 

Branch abundance 
 

Total 9759 6721 7939 

Mean per transect 325 ± 284 224 ± 102 220 ± 169 

Mean per m2 130 ± 114 90 ± 41 88 ± 68 

Epiphyte abundance Total 546 349 164 232 
Mean per transect 18.2 ± 20.5 a 11.6 ± 17.8 ab 4.6 ± 7.1 b 6.4 ± 9.8 

Mean per m2 0.36 ± 0.41 a 0.23 ± 0.36 ab 0.11 ± 0.15 b 0.13 ± 0.20 

Total adults 211 153 86 101 
Mean adults per transect 7.0 ± 8.8 a 5.1 ± 11.8 ab 2.4 ± 4.1 b 2.8 ± 4.7 

Mean adults per m2 0.14 ± 0.18 a 0.10 ± 0.24 ab 0.05 ± 0.08 b 0.06 ± 0.09 

Epiphyte abundance 
(detached from branches) 

Total 179 89 52 68 
Mean per transect 6.0 ± 4.9 a 3.0 ± 7.2 ab 1.4 ± 4.3 b 1.9 ± 6.0 

Mean per m2 0.12 ± 0.10 a 0.06 ± 0.14 ab 0.03 ± 0.09 b 0.04 ± 0.12 

Total adults  100 57 35 42 
Mean adults per transect 3.3 ± 3.2 a 1.9 ± 6.2 ab 1.0 ± 3.1 b 1.2 ± 3.8 

Mean adults per m2 0.07 ± 0.06 a 0.04 ± 0.12 ab 0.02 ± 0.06 b 0.02 ± 0.08 

Epiphyte abundance 
(attached to branches) 

Total 367 260 112 164 
Mean per transect 12.2 ± 17.0 a 8.7 ± 16.8 ab 3.1 ± 5.1 b 4.6 ± 6.4 

Mean per m2 0.24 ± 0.34 a 0.17 ± 0.34 ab 0.06 ± 0.10 b 0.09 ± 0.13 

Mean per transect per branch 2.8 10-3 ± 3.5 10-3 2.2 10-3  ± 4.5 10-3 1.1 10-3 ± 2.0 10-3 1.8 10-3 ± 3.1 10-3 
Total adults  1111 96 51 59 
Mean adults per transect 3.7 ± 6.3 3.20± 10.3 1.4 ± 2.5 1.6 ± 2.5 

Mean adults per m2 0.07 ± 0.13 0.06 ± 0.20 0.03 ± 0.05 0.03 ± 0.05 

Mean adults per transect per branch 8.5 10-4 ± 1.5 10-3 8.8 10-4 ± 2.4 10-3 6.7 10-4 ± 1.3 10-3 7.5 10-4 ± 1.3 10-3 
Epiphyte richness (total) Total 23 16 27 39 

Mean per transect 5.1 ± 3.2 a 2.3 ± 1.9 b 1.9 ± 2.3 b 2.8 ± 3.6 

Mean per m2 0.10 ± 0.06 a 0.05 ± 0.04 b 0.04 ± 0.05 b 0.06 ± 0.07 

Total adults 21 14 17 24 
Mean adults per transect 3.3 ± 2.7 a 1.1 ± 1.3 b 1.1 ± 1.6 b 1.4 ± 2.0 

Mean adults per m2 0.07 ± 0.05 a 0.02 ± 0.02 b 0.02 ± 0.03 b 0.03 ± 0.04 

Epiphyte richness 
(detached from branches) 

Total 20 10 16 23 
Mean per transect 3.0 ± 2.4 a 0.7 ± 1.1 b 0.6 ± 1.4 b 0.9 ± 2.4 

Mean per m2 0.06 ± 0.05 a 0.015 ± 0.02 b 0.01 ± 0.03b 0.02 ± 0.05 

Total adults 18 9 10 13 
Mean adults per transect 2.3 ± 1.9 a 0.4 ± 0.7 b 0.4 ± 1.0 b 0.6 ± 1.5 

Mean adults per m2 0.05 ± 0.04 a 0.007 ± 0.014 b 0.008 ± 0.02 b 0.01 ± 0.03 

Epiphyte richness 
(attached to branches) 

Total 17 13 18 29 
Mean per transect 3.3 ± 2.5 a 1.8 ± 1.8 b 1.4 ± 1.6 b 2.2 ± 2.3 

Mean per m2 0.06 ± 0.05 a 0.38 ± 0.35 b 0.03 ± 0.03 b 0.04 ± 0.05 

Mean per transect per branch 7.7 10-4 ± 7.1 10-4 5.2 10-4 ± 5.5 10-4 5.3 10-4 ± 7.5 10-4 7.3 10-4 ± 7.9 10-4 
Total adults  16 11 12 18 
Mean adults per transect 1.57 ± 2.0 0.80 ± 1.14 0.72 ± 1.08 0.94 ± 1.24 

Mean adults per m2 0.03 ± 0.04 0.015 ± 0.02 0.014 ± 0.02 0.019 ± 0.02 

Mean adults per transect per branch 3.3 10-4 ± 4.6 10-4 1.9 10-4 ± 3.0 10-4 2.8 10-4 ± 4.5 10-4 3.2 10-4 ± 4.2 10-4 
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Table B.4. Generalized additive mixed-effects models (GAMMs) investigating the influence of branch diameter on 
different variables. The table provides the effective degrees of freedom (dfeff) for both fixed (diameter class) and 
random (transect) effects as well as the trend of the relationship over branch diameter. The dfeff reflect the ruggedness 
of the smoothing parameter. For absolute branch abundance (branches per transect), epiphyte abundance (individuals 
per transect), richness (species per transect) and proportion of adults, all transects were considered (n=30, 30 and 36 
for Brazilian core, Brazilian edge and Panamanian transects, respectively), whereas for epiphyte abundance and 
richness per branch, only transects with epiphytes were considered (n= 26, 21 and 25 for Brazilian core, Brazilian edge 
and Panamanian transects, respectively). Significant P-values (α= 5%) are indicated with asterisks. 

Study site Effect Branch 
abundanc

e 

Abs. epiphyte 
abundance 

Abs. 
epiphyte 
richness 

Epiphyte 
abundance/ 

branch 

Epiphyte 
richness/ 

branch 

Proportion 
of adults 

Brazil core Diameter 
class 

dfeff 1.00 1.98 1.96 1.00 1.00 1.00 
Trend negative*** unimodal*** unimodal*** positive*** positive*** positive *** 

Transect dfeff 0 25*** 23*** 9* 8 10*** 
Brazil edge Diameter 

class 
dfeff 1.89 1.00 1.94 1.00 1.00 1.00 
Trend negative*** none unimodal*** positive*** positive*** positive * 

Transect dfeff 0 26*** 19*** 5 6* 13*** 
Panama Diameter 

class 
dfeff 1.00  1.87 1.91 1.54 1.64 1.60 
Trend negative*** positive*** positive*** positive*** positive*** positive *** 

Transect dfeff 0.84*  28*** 22*** 8* 8* 4* 

 

 

Table B.5. Indicator species for the compositional difference between ground and canopy at Panamanian transects. We 
performed a Dufrene-Legendre indicator species analysis to assess the species that contributed to the significant 
difference in species composition between the epiphytes found on the forest floor and in the canopy. All listed species 
were indicatory of canopy composition in the analysis considering all epiphytes (including epiphytes found on the 
forest floor detached from branches and in the entire canopy). Indicator species resulting from the analysis considering 
only epiphytes on substrate < 10 cm in diameter are indicated in bold. 

Family Species 
Araceae Anthurium acutangulum 
 Anthurium clavigerum 
 Anthurium friedrichsthalii 
 Anthurium hacumense 
Bromeliaceae Vriesea gladioliflora 
Hymenophyllaceae Trichomanes angustifrons 
 Trichomanes nummularium 
 Trichomanes ovale 
 Trichomanes punctatum 
Lomariopsidaceae Elaphoglossum sporadolepis 
Orchidaceae Dichaea panamensis 
 Polystachya foliosa 
 Scaphyglottis longicaulis 
Polypodiaceae Campyloneurum aphanophlebium 
 Campyloneurum phylitidis 
 Dicranoglossum panamense 
 Niphidium crassifolium 
Vittariaceae Ananthacorus angustifolius 
 Anetium citrifolium 
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C Supplementary information to chapter 4 

 

 

Figure C.1. Effects of competition on tree growth. Three trees with identical functional and structural traits were 
simulated (a) without competition, (b) with one-sided competition and (c) with competition from 8 surrounding trees. 
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Table C.1. List of abbreviations used in this study.  

Symbol Explanation Unit 
AB Cross-sectional area of branch cm2 
AL Leaf area in leaf compartment cm2 
ALMax Maximum leaf area in voxel cm2 
ALProd Leaf area produced in leaf compartment in one year cm2 
ALProdMax Absolute maximum leaf area production per leaf compartment cm2 

ALProdMaxMethod Parameter specifying whether an invariable (ALProdMaxMethod=0) or a variable 
ALProdMax is used (ALProdMaxMethod=1). - 

ALProdTheo Theoretical maximum annual leaf area production per leaf compartment cm2 
ALProdTot Total leaf area production in leaf compartment cm2 
ALSum Total leaf area associated with growing branch cm2 
ALTot Total leaf area in voxel (per m2) cm2

 m-2 
AS Cross-sectional area of branch segment cm2 
ASec Cross-sectional area of branch section cm2 
AT Cross-sectional area of trunk  cm2 
BL Leaf dry mass (in leaf compartment) g 
BLInit Initial leaf biomass of new leaf compartment g 
BLMin Minimum leaf biomass below which leaf compartment is removed g 
BLProd Effective leaf biomass production in leaf compartment g 
BLProdPot Potential leaf biomass production when using the effective growth rate GR g 
BLProdTheo Theoretical maximum annual leaf dry mass production per leaf compartment g 

BrCollide Parameter specifying whether branches stop to grow in length if the collide with 
surrounding trees (BrCollide =1) or not (BrCollide =0) - 

BrMortMethod 
Parameter specifying whether branches are removed only if the lost all leaf 
compartments (BrMortMethod=0), or if they are additionally removed randomly 
(BrMortMethod=1) or based on their biomass (BrMortMethod=2) 

- 

C Relative contribution of voxel in average light intensity calculations - 
C0 Carbon overhead costs - 
CB Amount of leaf dry mass that can be produced per unit of assimilated carbon g gC-1 
CBL ratio C-mass to biomass ratio of leaves gC g-1 
CBW ratio C-mass to biomass ratio of wood gC g-1 
Cgross Gross carbon assimilation rate per unit of leaf dry mass gC g-1 d-1 
Cnet Net carbon assimilation rate per unit of leaf dry mass gC g-1 d-1 
CRr Crown radius of tree cm 
DB Diameter of branch cm 
DBLat Diameter of lateral branch cm 
D ini Initial diameter of seedling (fixed value) cm 
DIS Distance of branch segment to its branch base cm 
DNMin Trees with a diameter > DNMin can create gaps (if TrMortNeight=1) cm 
DS Diameter of branch segment cm 
DSec Diameter of branch section cm 
DT Diameter of trunk cm 

EdgeC Parameter specifying whether a forest fragment with a real edge (EdgeC=1) or a forest 
patch within a forest matrix (EdgeC=0) is simulated - 

FDist Frequency of disturbances (average number of years between two events) a 
Gmax Maximum gross photosynthetic rate (g C per g dry mass per day) gC g-1 d-1 
GR Effective growth rate of leaf compartment d-1 
GRmax Maximum growth rate of leaf compartment (considering ALMax) d-1 
GRpot Potential growth rate of leaf compartment d-1 
hsun Assumed number of sun hours per day h 
I Effective light intensity in voxel μmol m-2 s-1 
IM Light intensity at apical meristem μmol m-2 s-1 
Imax Light intensity above canopy μmol m-2 s-1 
ISC Single column light intensity μmol m-2 s-1 
IT Light intensity threshold regulating apical dominance of trunk apical meristem μmol m-2 s-1 
k Light intensity at which the gross photosynthetic rate is half of its maximum μmol m-2 s-1 
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kint 
Factor controlling the relationship between internode length and total annual length 
growth - 

kL Light extinction coefficient (Lambert-Beer equation) - 
LAI Leaf area index - 
LB Length of branch cm 
LCor Width of corridor around core model area m 
LCr Critical length for buckling cm 
LDB Allometric parameter of length-diameter relationship of branches - 
LDCr Allometric parameter of length-diameter relationship (critical shape parameter) - 
LDT Allometric parameter of length-diameter relationship of trunks - 
LIB Branch internode length cm 
LIBMax Species-specific maximum branch internode length cm 
LIBMin Species-specific minimum branch internode length cm 
LightC Parameter specifying method to calculate average light intensity; LightC=[1,2,3] - 
L inc Relative intensification in height growth (apical dominance) - 
LIT Trunk internode length cm 
LITMax Species-specific maximum trunk internode length cm 
LITMin Species-specific minimum trunk internode length cm 
LL Leaf lifespan d 
LP Length of pipe connected with leaf compartment (corrected after apical control) cm 
LPMax Maximum pipe length (under given SI) cm 
LPMaxAbs Maximum pipe length (theoretical maximum when SI=1) cm 
LP ratio Ratio between leaf area an pipe cross-sectional area cm2 cm-2 
LPS Length of pipe connected with leaf compartment cm 
LR Maximal distance of surrounding voxels to be considered in light calculation m 
LS Length of branch segment cm 
LSFirst Length of the first branch segment in each year cm 
LSLast Length of the last branch segment in each year cm 
LT Length of trunk cm 
LTCr Critical trunk length cm 
LTMax Maximum trunk length under consideration of ST cm 
LTRg Trunk length following unrestricted regular growth mechanism cm 
LV Side length of voxels m 
MaxX Spatial extent of core model area (in X direction) m 
MaxY Spatial extent of core model area (in Y direction) m 
MaxZ Spatial extent of core model area (in Z direction) m 
mB Biomass-based branch mortality rate (if BrMortMethod=2) a-1 
mBB Parameter of biomass-based branch mortality rate (if BrMortMethod=2) g-1 a-1 
mBR Random branch mortality rate (if BrMortMethod=1) a-1 
MBS Scaling exponent in biomass-based branch mortality rate (if BrMortMethod=2) - 
mDist Average relative mortality rate in a disturbance event (if TrMortDist=1) a-1 
mNeigh Trees affected by falling trees die with a probability of mNeigh a-1 
mT Biomass-based tree mortality rate a-1 
mTB Parameter of biomass-based tree mortality rate g-1 a-1 
MTS Scaling exponent in biomass-based tree mortality rate - 
nBLat Number of new lateral branches of a single branch in one time step - 
nBSeg Number of new branch segments of a single branch in one time step - 
Nmass Nitrogen concentration % 
nSeed Number of seedlings dispersed at each time step - 
nSpec Number of species in species list - 
nV Number of new voxel a branch is intersecting with - 
OB Branch order - 
PBEnd

XYZ End position of branch (in X, Y and Z direction) cm 
PBStart

XYZ Start position of branch (in X, Y and Z direction) cm 
PhFO  Number of first order branches arranged in a 360° circle - 
PLC

XYZ Position of leaf compartment (in X, Y and Z direction) cm 
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PM
XYZ Position of apical meristem (in X, Y and Z direction) cm 

PRU Pipe-reuse factor - 
PSEnd

XYZ End position of branch segment (in X, Y and Z direction) cm 
PSStart

XYZ Start position of branch segment (in X, Y and Z direction) cm 
PT

XY Position of trunk (in X and Y direction) cm 
RL Respiration rate per gram of leaf dry mass gC g-1d-1 
Rw Respiration rate per gram of sapwood gC g-1 d-1 
RWTot Respiration rate of pipes per gram of leaf dry-mass gC g-1 d-1 
SF Factor regulating the shortening of branches with their order - 
SI Site index describing the relative quality of the forest patch - 
SLA Specific leaf area cm2 g-1 
ST Safety factor for trunk growth.  - 

Stochasticity Parameter specifying whether stochastic variations of structural traits are simulated 
(Stochasticity=1) or not (Stochasticity=0) - 

STrop Strength of tropism (negative values: phototropism; positive: gravitropism) - 
StTrop Maximum deviation from STrop (if Stochasticity=1) - 
StTw Maximal rotation along the main growth axis (if Stochasticity=1) ° 
StαSFO Maximum deviation from αSFO (if Stochasticity=1) ° 
StαTFO Maximum deviation from αTFO (if Stochasticity=1) ° 
StαTSO Maximum deviation from αTSO (if Stochasticity=1) ° 
tmax Number of simulated annual time steps a 
tp Productive time period of leaf compartment during one year d 
TrMortDist Parameter specifying if tree mortality due to disturbances is simulated (TrMortDist=1) - 

TrMortNeigh Parameter specifying if tree mortality due to falling neighboring trees is simulated 
(TrMortNeight=1) - 

tyear Number of days per year suitable for photosynthesis d 
αSFO Angle of first order branches from side view ° 
αTFO Angle between first order branches from top view ° 
αTSO Angle between second and first order branch from top view ° 
βD Maximum relative increase in height growth when IM < IT - 
βS Shape parameter regulating apical dominance of trunk apical meristem - 
ΔLBPot Potential length increase of branch cm a-1 
ΔLTPot Effective potential length increase of trunk cm a-1 
ΔLTPotCr Potential length increase of trunk up to the critical buckling length cm a-1 
ΔLTPotMax Potential length increase of trunk up to the maximum tree height cm a-1 
ΔLTPotRg Potential length increase of trunk when considering apical dominance cm a-1 
ρW Wood density  g cm-3 
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Table C.2. Parameters of the global file. The global file is a text file located in the main model folder and contains a 
set of parameters defining the basic set up of the model, such as the spatial extent of the number of time steps to be 
simulated.  

Parameter Explanation Unit Symbol 
Timesteps Number of simulated annual time steps a tmax 
Replicates Number of replicates to be simulated - - 
MaxX Spatial extent of core model area (in X direction) m MaxX 
MaxY Spatial extent of core model area (in Y direction) m MaxY 
MaxZ Spatial extent of core model area (in Z direction) m MaxZ 

WidthCorridor Width of corridor around core model area (only integer 
values allowed) m LCor 

VoxelSize Side length of voxels (only integer values allowed) m LV 
ReportForest Time interval in which forest variables are saved a - 
ReportLight Time interval in which light variables are saved a - 
ReportMortality Time interval in which mortality variables are saved a - 
ReportShoots Time interval in which shoot variables are saved a - 
ReportTrees Time interval in which trees variables are saved a - 
ReportVoxel Time interval in which voxel variables are saved a - 

SimulateForest Parameter specifying whether a forest (SimulateForest=1) 
or an individual tree (SimulateForest=0) is simulated  a - 

ThreadCount Number of threads that are used in parallel in light model - - 

VisualizationShader Parameter specifying whether rendered trees are shown 
(VisualizationShader =1) or not (VisualizationShader =0) - - 

VisualizationMethod Parameter specifying visualization method - - 
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Table C.3. Export parameters of the model. This table contains all parameters that are saved in each of the six different 
types of result files (Forest, Mortality, Shoots, Species, Trees and Voxels). The time interval at which each of this result 
files shall be saved to the hard disk can be defined by the user in the global file (Table C.2). 

Parameter Explanation Unit File 
year Year / time step a Forest 
numberTrees Number of trees ha-1 Forest 
basalArea Basal area m2 ha-1 Forest 
maxHeight Maximum tree height m Forest 
meanHeight Mean tree height m Forest 
maxDiameter Maximum tree diameter m Forest 
meanDiameter Mean tree diameter m Forest 
woodyBiomass Total biomass of all woody parts (trunks, branches) Mg ha-1 Forest 
trunkBiomass Total trunk biomass Mg ha-1 Forest 
branchBiomass1stOrder Total biomass of first order branches Mg ha-1 Forest 
branchBiomass2ndOrder Total biomass of second order branches Mg ha-1 Forest 
leafBiomass Total leaf biomass Mg ha-1 Forest 
trunkBiomassProduction Total trunk biomass produced in one year Mg ha-1 a-1 Forest 
branchBiomass1stOrderProduction Total biomass of first order branches produced in one year Mg ha-1 a-1 Forest 
branchBiomass2ndOrderProduction Total biomass of second order branches produced in one 

year 
Mg ha-1 a-1 Forest 

leafBiomassProduction Total leaf biomass produced in one year Mg ha-1 a-1 Forest 
branchBiomass1stOrderLoss Total biomass of first order branches lost in one year Mg ha-1 a-1 Forest 
branchBiomass2ndOrderLoss Total biomass of second order branches lost in one year Mg ha-1 a-1 Forest 
leafBiomassLoss Total leaf biomass lost in one year Mg ha-1 a-1 Forest 
treeID Tree ID - Mortality 
speciesID Species ID - Mortality 
height Tree height m Mortality 
diameter Tree diameter m Mortality 
basalarea Basal area of tree m Mortality 
x Position in core model area in X direction m Mortality 
y Position in core model area in Y direction m Mortality 
age Tree age a Mortality 
causeDeath Cause of death - Mortality 
shootID ID of branch segment - Shoots 
branchID ID of branch - Shoots 
treeID Tree ID - Shoots 
speciesID Species ID - Shoots 
length Length of branch segment m Shoots 
diameter Diameter of branch segment m Shoots 
order Branch order - Shoots 
xbegin Start position of branch segment (X direction) m Shoots 
ybegin Start position of branch segment (Y direction) m Shoots 
zbegin Start position of branch segment (Z direction) m Shoots 
xend End position of branch segment (X direction) m Shoots 
yend End position of branch segment (Y direction) m Shoots 
zend End position of branch segment (Z direction) m Shoots 
SpeciesID Species ID - Species 
SLA Specific leaf area cm2 g-1 Species 
rhoW Wood density g cm-3 Species 
LL Leaf lifespan d Species 
Nmass Nitrogen concentration % Species 
RL Respiration rate per gram of leaf dry mass gC g-1d-1 Species 
Gmax Maximum gross photosynthetic rate (g C per g dry mass 

per day) gC g-1 d-1 
Species 

k Light intensity at which the gross photosynthetic rate is 
half of its maximum μmol m-2 s-1 

Species 

FirstOrderPhyllotaxis Angle between first order branches from top view ° Species 
FirstOrderPhyllotaxisNum Number of first order branches arranged in a 360° circle - Species 
FirstOrderAngleSide Angle of first order branches from side view ° Species 
HigherOrderAngle Angle between second and first order branch from top 

view ° Species 
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InternodeLengthTrunkMin Species-specific minimum trunk internode length cm Species 
InternodeLengthTrunkMax Species-specific maximum trunk internode length cm Species 
InternodeLengthBranchMin Species-specific minimum branch internode length cm Species 
InternodeLengthBranchMax Species-specific maximum branch internode length cm Species 
kInt Factor controlling the relationship between internode 

length and total annual length growth 
- Species 

TropismStrength Strength of tropism (negative values: phototropism; 
positive: gravitropism) - 

Species 

LDRatioTrunk Length-diamter ration of trunk - Species 
ApicalDev Maximum relative increase in height growth when IM < IT  Species 
IApical Light intensity threshold regulating apical dominance of 

trunk apical meristem μmol m-2 s-1 Species 

ShorteningFactor Factor regulating the shortening of branches with their 
order 

- Species 

maxPipeLength Maximum pipe length of tree (emergent property) cm Species 
StochasticityTwisting Maximal rotation along the main growth axis (if 

Stochasticity=1) ° Species 

StochasticityBranchingAngle Maximum deviation from αTSO (if Stochasticity=1) ° Species 
StochasticityTropism Maximum deviation from STrop (if Stochasticity=1) - Species 
StochasticityAnglePlane Maximum deviation from αSFO (if Stochasticity=1) ° Species 
StochasticityPhyllo Maximum deviation from αTFO (if Stochasticity=1) ° Species 
ALProdMax Absolute maximum leaf area production per leaf 

compartment cm2 Species 

PipeReuseFactor Pipe-reuse factor - Species 
treeID Tree ID - Trees 
speciesID Species ID - Trees 
height Tree height m Trees 
diameter Tree diameter m Trees 
basalArea Basal area of tree m2 Trees 
x Position in core model area in X direction m Trees 
y Position in core model area in Y direction m Trees 
age Tree age a Trees 
heightDelta Height increase in one time step m Trees 
heightRGR Relative height increase in one time step % Trees 
diameterDelta Diameter increase in one time step m Trees 
diameterRGR Relative diameter increase in one time step % Trees 
basalareaDelta Basal area increase in one time step m Trees 
basalareaRGR Relative Basal area increase in one time step % Trees 
woodyBiomass Biomass of all woody tree parts (trunk and branches) Mg Trees 
trunkBiomass Biomass of trunk Mg Trees 
branchBiomass1stOrder Biomass of first order branches Mg Trees 
branchBiomass2ndOrder Biomass of second order branches Mg Trees 
leafBiomass Total leaf biomass of tree g Trees 
leafArea Total leaf area of tree g Trees 
trunkBiomassProduction Total trunk biomass produced in one year Mg ha-1 a-1 Trees 
branchBiomass1stOrderProduction Total biomass of first order branches produced in one year Mg ha-1 a-1 Trees 
branchBiomass2ndOrderProduction Total biomass of second order branches produced in one 

year 
Mg ha-1 a-1 Trees 

leafBiomassProduction Total leaf biomass produced in one year Mg ha-1 a-1 Trees 
branchBiomass1stOrderLoss Total biomass of first order branches lost in one year Mg ha-1 a-1 Trees 
branchBiomass2ndOrderLoss Total biomass of second order branches lost in one year Mg ha-1 a-1 Trees 
leafBiomassLoss Total leaf biomass lost in one year Mg ha-1 a-1 Trees 
apicalLight Light conditions at apical stem meristem μmol m-2 s-1 Trees 
crownArea Crown area of tree m-2 Trees 
crownWidth Crown width of tree m Trees 
crownDepth Crown depth of tree m Trees 
crownWidthRelative Crown width relative to tree height % Trees 
crownDepthRelative Crown depth relative to tree height % Trees 
heightFirstBranching Height of first branching m Trees 
x Position of Voxel (in X direction) m Voxels 
y Position of Voxel (in Y direction) m Voxels 
z Position of Voxel (in Z direction) m Voxels 
leafarea Leaf area in Voxel cm2 Voxels 



 

 
 

Table C.4. Parameters of the pass file. The pass file is a text file located in the main model folder and contains a set of parameters for each replicate. Each pass file includes global 
parameters, ranges of functional and structural traits, but also parameters to select a specific optional model mechanism. The parameter values shown in this table are the values of the 
model shown in the main manuscript. 

Parameter Explanation Unit Symbol Value  
LightC  Parameter specifying method to calculate average light intensity; LightC=[1,2,3] - LightC  1 
ALMax Maximum leaf area in voxel cm2 ALMax 15000 
ALProdMax (Min,Max) Absolute maximum leaf area production per leaf compartment cm2 ALProdMax 65000 
LDTreeDev Allometric parameter of length-diameter relationship of branches, LDT=LDB+LDRatioDev - LDT -0.8/0.8 
BetaD (Min/Max) Maximum relative increase in height growth when IM < IT  - βD 0.1/0.3 
LightThreshApical Light intensity threshold regulating apical dominance of trunk apical meristem μmol m-2 s-1 IT 30/100 
BetaS Shape parameter regulating apical dominance of trunk apical meristem - βS 3 
CarbonOverheadCosts Carbon overhead costs - C0 1.45 
CBLratio C-mass to biomass ratio of leaves gC g-1 CBL ratio 0.5 
CBWratio C-mass to biomass ratio of wood gC g-1 CBW ratio 0.5 
MortalityDisturbanceRate Average relative mortality rate in a disturbance event (if TrMortDist=1) a-1 mDist 0 
MortalityDisturbanceFrequency Frequency of disturbances (average number of years between two events) a FDist 0 
AngleFirstOrderSideView (Min/Max) Angle of first order branches from side view ° αSFO 0/40 
PhyllotaxisFirstOrder (Min/Max) Number of first order branches arranged in a 360° circle - PhFO  3/5 
AngleSecondOrderTopView  (Min/Max) Angle between second and first order branch from top view ° αTSO 20/60 
Imax Light intensity above canopy μmol m-2 s-1 Imax 900 
InitialDiamter Initial diameter of seedling (fixed value) m D ini 0.0005 
InternodeLengthBranchMin (Min/Max) Species-specific minimum branch internode length m LIBMin 0.3/0.4 
InternodeLengthBranchMax (Min/Max) Species-specific maximum branch internode length m LIBMax 0.4/0.6 
InternodeLengthTrunkMin (Min/Max) Species-specific minimum trunk internode length m LITMin 0.3/0.5 
InternodeLengthTrunkMax (Min/Max) Species-specific maximum trunk internode length m LITMax 0.5/0.7 
KInt (Min/Max) Factor controlling the relationship between internode length and total annual length growth - kint 0.01/0.02 
LightExtinctionCoeff Light extinction coefficient (Lambert-Beer equation) - kL 0.6 
LDBranch Allometric parameter of length-diameter relationship of branches - LDB 3 
LPratio Ratio between leaf area an pipe cross-sectional area cm2 cm-2 LP ratio 40000 
DistanceVoxelLightCal Maximal distance of surrounding voxels to be considered in light calculation m LR 4 
MinLeafBiomass Minimum leaf biomass below which leaf compartment is removed g BLMin 30 
MortalityBiomassRate Parameter of biomass-based tree mortality rate g-1 a-1 mTB 0.032 
MortalityBiomassScalingExponent Scaling exponent in biomass-based tree mortality rate - MTS 0.13 
MortalityNeighMinDiameter Trees with a diameter > DNMin can create gaps (if TrMortNeight=1) cm DNMin 0.15 
MortalityNeighRate Trees affected by falling trees die with a probability of mNeigh a-1 mNeigh 0.05 
RespirationRateWood Respiration rate per gram of sapwood gC g-1 d-1 Rw 0.0005 
NumberSeedlingPerHa (Min/Max) Number of seedlings dispersed at each time step (per hectare) ha-1 a-1 nSeed 500/500 
     209 



 

 

SiteIndex Site index describing the relative quality of the forest patch - SI 0.9 
SLA (Min/Max) Specific leaf area cm2 g-1 SLA 50/200 
NumberSpecies Number of species in species list - nSpec 1000 
Stochasticity Parameter specifying whether stochastic variations of structural traits are simulated 

(Stochasticity=1) or not (Stochasticity=0) 
- Stochasticity 1 

StochasticityTwisting (Min/Max) Maximal rotation along the main growth axis (if Stochasticity=1) ° StTw 2/7 
StochasticityAngleSecondOrderTopView (Min/Max) Maximum deviation from αTSO (if Stochasticity=1) ° StαTSO 0/10 
StochasticityTropismStrength (Min/Max) Maximum deviation from STrop (if Stochasticity=1) - StTrop 0/0.02 
StochasticityAngleFirstOrderSideView (Min/Max) Maximum deviation from αSFO (if Stochasticity=1) ° StαSFO 5/10 
StochasticityAngleFirstOrderTopView (Min/Max) Maximum deviation from αTFO (if Stochasticity=1) ° StαTFO 0/20 
StopCriterionBasalArea Model stops and continues with next replicate if the total basal area exceeds BAStop m2 ha-1 BAStop 80 
TropismStrength (Min/Max) Strength of tropism (negative values: phototropism; positive: gravitropism) - STrop -0.02/0.02 
WoodDensity (Min/Max) Wood density  g cm-3 ρW 0.5/0.7 
PipeReuseFactor (Min/Max) Pipe-reuse factor - PRU 0.6/0.6 
Tyear Number of days per year suitable for photosynthesis d tyear 270 
Hsun Assumed number of sun hours per day h hsun 8 
TreeCompetionNum Number of additional trees competing with tree (only if SimualteForest=0) - - 0 
TreeCompetionDist Distance of additional competing trees from tree (only if SimualteForest=0) - 0 
BranchMortMethod Parameter specifying whether branches are removed only if the lost all leaf compartments 

(BrMortMethod=0), or if they are additionally removed randomly (BrMortMethod=1) or based 
on their biomass (BrMortMethod=2) 

- BrMortMethod 0 

BranchMortRandomRate Random branch mortality rate (if BrMortMethod=1) a-1 mBR 0 
BranchMortMassRate Parameter of biomass-based branch mortality rate (if BrMortMethod=2) g-1 a-1 mBB 0.02 
BranchMortMassScalingExponent Scaling exponent in biomass-based branch mortality rate (if BrMortMethod=2) - MBS 0.2 
TreeMortNeigh Parameter specifying if tree mortality due to falling neighboring trees is simulated 

(TrMortNeight=1) or not (TrMortNeight=0) 
- TrMortNeigh 1 

     
TreeMortCarbon Parameter specifying if tree mortality due to carbon starvation is simulated (TrMortDist=1) or 

not (TrMortDist=0) 
- TrMortCarbon 1 

TreeMortDist Parameter specifying if tree mortality due to disturbances is simulated (TrMortDist=1) or not 
(TrMortDist=0) 

- TrMortDist 0 

PipeLengthMethod Parameter specifying whether pipe length is calculated based on within-tree position 
(PipeLengthMethod=1) or based on height only (PipeLengthMethod=0) 

- - 1 

FormFactorWood Form factor used to calculate trunk biomass - - 0.55 
SafetyFactorTrunk Safety factor for trunk growth.  - ST 0.3 
EdgeC Parameter specifying whether a forest fragment with a real edge (EdgeC=1) or a forest patch 

within a forest matrix (EdgeC=0) is simulated 
- EdgeC 0 

BrCollide Parameter specifying whether branches stop to grow in length if the collide with surrounding 
trees (BrCollide =1) or not (BrCollide =0) 

- BrCollide 1 
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Table C.5. Forest attributes in Neotropical forests based on a literature review. We concentrated on studies covering multiple forest plots or larger forest areas. When available, the 
number of 1 ha plots or the total study area is given in column ‘Extent’. If forest attributes were not estimated based on inventory data, this is mentioned in ‘Annotation’. Where 
available, means±sd are shown in column ‘Values’. Otherwise, means were estimated, for instance based on published maps. Values in brackets represent the range (min/max) of the 
forest attributes in the specific study, whereby extreme outliers were removed. 

Forest attribute Unit Value Extent Reference Annotations 

Above-ground biomass Mg ha-1 ~280 - (Mitchard et al. 2014) Amazonia, Remote sensing  

Above-ground biomass Mg ha-1 ~330 - Mitchard et al. 2014 Guiana Shield, Remote sensing 

Above-ground biomass Mg ha-1 ~270 - Mitchard et al. 2014 SW Amazonia, Remote sensing 

Above-ground biomass Mg ha-1 ~280 (200/400) n=82 Malhi et al. 2015 Amazonia 

Above-ground biomass Mg ha-1 253 n=28 Banin et al. 2014 Amazonia 

Above-ground biomass Mg ha-1 195 (108/308) n=35 Feldpausch et al. 2012 Brazilian Shield 

Above-ground biomass Mg ha-1 344 (237/510) n=44 Feldpausch et al. 2012 Eastern-Central Amazonia 

Above-ground biomass Mg ha-1 434 (291/728) n=45 Feldpausch et al. 2012 Guyana Shield 

Above-ground biomass Mg ha-1 252 (142/392) n=101 Feldpausch et al. 2012 Western Amazonia 

Above-ground biomass Mg ha-1 ~276 n=20 Baker et al. 2004 NW Amazonia 

Above-ground biomass Mg ha-1 ~340 n=17 Baker et al. 2004 Eastern-Central Amazonia 

Above-ground biomass Mg ha-1 ~246 n=19 Baker et al. 2004 SW Amazonia 

Above-ground biomass Mg ha-1 ~300 (250/350) n=227 Malhi et al. 2006 Amazon-wide interpolation  

Above-ground biomass Mg ha-1 287.8±105.0  n=33 Slik et al. 2013 Amazonia 

AGB residence time a ~40 (20/100) n=82 Malhi et al. 2015 Amazonia 

AGB residence time a ~50 n=127 Galbraith et al. 2013 Neotropics 

AGB residence time a ~50 - Malhi et al. 2011 Amazonia 

AGB residence time a ~52 - Malhi et al. 2013 W Amazonia 

AGB residence time a ~80 - Malhi et al. 2013 E Amazonia 

Basal area m2 ha-1 22.2±5.3 (7.1/32.4) n=35 Feldpausch et al. 2011 Brazilian Shield 

Basal area m2 ha-1 23.5±10.2 (1.7/47.7) n=44 Feldpausch et al. 2011 Eastern-Central Amazonia 

Basal area m2 ha-1 27.6±5.4 (16/37) n=45 Feldpausch et al. 2011 Guyana Shield 

Basal area m2 ha-1 27.8±2.9 (15.6/39) n=101 Feldpausch et al. 2011 Western Amazonia 

Basal area m2 ha-1 28.2 (21.7/36.8) n=50 Lewis et al. 2004a Amazonia 

Basal area m2 ha-1 ~26 (20/32) - Mitchard et al. 2014 Amazonia, Remote sensing 

Basal area m2 ha-1 28.1 n=28 Banin et al. 2014 Amazonia 

Basal area m2 ha-1 28.1±1.6 n=15 Chao et al. 2008 North-Western Amazonia 211 



 

 

Basal area m2 ha-1 31.3±4.8 n=9 Chao et al. 2008 North-Eastern Amazonia 

Basal area m2 ha-1 ~28 (27/30) n=20 Laurance et al. 2009 Central Amazonia 

Basal area m2 ha-1 29.9 n=12 Phillips et al. 1994 Amazonia 

Basal area m2 ha-1 ~27 (24/36) n=20 Baker et al. 2004 NW Amazonia 

Basal area m2 ha-1 ~29 (23/35) n=17 Baker et al. 2004 Eastern-Central Amazonia 

Basal area m2 ha-1 ~26 (20/30) n=19 Baker et al. 2004 SW Amazonia 

Basal area m2 ha-1 (25/31) n=227 Malhi et al. 2006 Amazon-wide interpolation  

Basal area growth m a-1 0.51 n=50 Lewis et al. 2004a Amazonia 

Basal area growth m ha-1 a-1 0.68 (0.2/1.2) n=28 Banin et al. 2014 Amazonia 

Basal area growth m ha-1 a-1 0.4/1.0 n=104 Malhi et al. 2004 Amazonia 

Canopy height m ~24 (15/37) n=35 Feldpausch et al. 2011 South American dry forests (annual precipitation <1.5 m), height trees >40cm  

Canopy height m ~31 (18/48) n=44 Feldpausch et al. 2011 South American moist forests (annual precipitation 1.5-3.5 m), height trees 

>40cm 

Canopy height m ~28 (18/38) n=45 Feldpausch et al. 2011 South American wet forests (annual precipitation >3.5 m), height trees >40cm 

Canopy height m 30.5±8.2  n=101 Helmer & Lefsky 2006 Amazon river basin, lidar measurement 

Canopy height m ~30 (25/40) - Simard et al. 2011 Lidar measurement, Values for Amazon basin taken from published map 

Canopy NPP Mg ha-1 a-1 ~9 (6/12) n=10 Malhi et al. 2015 Amazonia 

Canopy NPP Mg ha-1 a-1 ~10 n=1 Malhi et al. 2013 Peru 

Canopy NPP Mg ha-1 a-1 ~5 n=1 Doughty et al. 2014 Eastern Amazonia 

Canopy NPP Mg ha-1 a-1 5.5/11.2 n=10 Aragão et al. 2009 Amazonia 

Canopy NPP Mg ha-1 a-1 6.6 (3/12) n=33 Malhi et al. 2011 Neotropics 

Canopy NPP Mg ha-1 a-1 (6/13) n=9 Girardin et al. 2010 Amazonia Lowland 

Canopy NPP Mg ha-1 ~7.5 (6.6-9.6) n=3 Malhi et al. 2009 Amazonia 

Mean DBH (>10cm) cm 24.7 n=28 Banin et al. 2014 Amazonia 

Mean DBH (>10cm) cm 20-22 n=800 Sawada et al. 2015 Amazonia 

Mean DBH (>10cm) cm 20-22 n=14 Lieberman et al. 1996 Lowland Costa Rica 

Number of Stems (>10cm) ha-1 551±110 (236/828) n=35 Feldpausch et al. 2011 Brazilian Shield 

Number of Stems (>10cm) ha-1 595±170 (153/927) n=44 Feldpausch et al. 2011 Eastern-Central Amazonia 

Number of Stems (>10cm) ha-1 515±99 (297/992) n=45 Feldpausch et al. 2011 Guyana Shield 

Number of Stems (>10cm) ha-1 559±74 (278/814) n=101 Feldpausch et al. 2011 Western Amazonia 

Number of Stems (>10cm) ha-1 581 (470/724) n=50 Lewis et al. 2004a Amazonia 

Number of Stems (>10cm) ha-1 589 n=28 Banin et al. 2014 Amazonia 

212 



 

 
 

Number of Stems (>10cm) ha-1 595±23 n=15 Chao et al. 2008 North-Western Amazonia 

Number of Stems (>10cm) ha-1 560±35 n=9 Chao et al. 2008 North-Eastern Amazonia 

Number of Stems (>10cm) ha-1 645 (500/750) n=12 Phillips et al. 1994 Amazonia 

Number of Stems (>1cm) ha-1 2600/4700 50 ha Chave et al. 2003 Barro Colorado Island 

Number of Stems (>1cm) ha-1 2000/2300 n=8 DeWalt & Chave 2004 Neotropical lowland 

Number of Stems (>1cm) ha-1 ~4000 n=3 Muller-Landau et al. 2006b Neotropical lowland 

Stem turnover (>10cm) a-1 ~2 (0.5/4) n=97 Phillips et al. 2004b Pan-Amazon study  

Stem turnover (>10cm) a-1 1.5± (0.5/3.5) n=67 Phillips 1996 Amazonia, Mean tree turnover increased from ~1% to 2% from 1956-1991 

Stem turnover (>10cm) a-1 ~1.8 (1.2/3.1) n=50 Lewis et al. 2004a Amazonia 

Stem turnover (>10cm) a-1 2.34±0.31 n=15 Chao et al. 2008 North-Western Amazonia, mortality rate 

Stem turnover (>10cm) a-1 1.21±0.53 n=9 Chao et al. 2008 North-Eastern Amazonia, mortality rate 

Stem turnover (>10cm) a-1 (1/1.7) n=20 Laurance et al. 2009 Central Amazonia 

Stem turnover (>10cm) a-1 ~1.85 (1.5/2.5) n=12 Phillips et al. 1994 Amazonia 

Stem turnover (>10cm) a-1 (1/2) n=14 Lewis et al. 2011 Amazonia 

Stem turnover (>10cm) a-1 (1.5/2.5) 95%, (1-5)  n=50 Phillips et al. 2009 Amazonia 

Total ANPP Mg ha-1 a-1 ~16 2 ha Doughty et al. 2014 Terra preta 

Total ANPP Mg ha-1 a-1 ~14.5 n=3 Malhi et al. 2009 Amazonia 

Total ANPP Mg ha-1 a-1 10/22 n=10 Aragão et al. 2009 Amazonia 

Total ANPP Mg ha-1 a-1 10/20 n=9 Girardin et al. 2010 Amazonia Lowland 

Total ANPP Mg ha-1 a-1 ~12.9 21 ha Chambers et al. 2001 Amazonia Lowland 

Leaf area index m m-2 ~4.7 - Asner et al. 2004 Amazonia (mean) 

Leaf area index m m-2 ~4.8 - Caldararu et al. 2012 Central and Southern Amazonia; Satellite Observations 

Leaf area index m m-2 ~4.0 - Caldararu et al. 2012 Eastern Amazonia; Satellite Observations 

Leaf area index m m-2 ~4.7 - Myneni et al. 2007 Amazonia (mean) 
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Table C.6. Value ranges of model parameters. Many parameters used in the present model have natural ranges, which were estimated based on literature values.  

Symbol Unit Explanation Value (range) References 

ALMax cm2 Maximum leaf area in voxel 10000-20000 Model specific parameter, own estimates 
ALProdMax cm2 Absolute maximum leaf area production per leaf compartment 20000-40000 Model specific parameter, own estimates 
LDT - Allometric parameter of length-diameter relationship of branches, 

LDT=LDB+LDRatioDev 
-1-1 McMahon 1971; Bertram 1989; Niklas 1995; West, Brown & Enquist 1999; van 

Gelder, Poorter & Sterck 2006; Banin et al. 2012 
C0 - Carbon overhead costs (construction costs) 1.4-1.5 

 
Poorter & De Jong 1999; Cannell & Thornley 2000; Sterck et al. 2005; Pons & 
Poorter 2014 

CBL ratio gC g-1 C-mass to biomass ratio of leaves (carbon content) 0.45-0-5 Houghton et al. 2001; Elias & Potvin 2003; Martin & Thomas 2011 
CBW ratio gC g-1 C-mass to biomass ratio of wood (carbon content) 0.45-0.5 Houghton et al. 2001; Elias & Potvin 2003; Martin & Thomas 2011 
Imax μmol m-2 s-1 Light intensity above canopy 500-1200 Chazdon & Fetcher 1984; Berry, Varney & Flanagan 1997; Valladares, Allen & 

Pearcy 1997; Sterck et al. 2011; Seyoum et al. 2014 
kL - Light extinction coefficient (Lambert-Beer equation) 0.5-0.8 Huth & Ditzer 2000; Kitajima, Mulkey & Wright 2005b; Malhi et al. 2013 
LDB - Allometric parameter of length-diameter relationship of branches. 

Important: 1.2-3 for trunks 
1.2-3 McMahon 1971; Bertram 1989; Niklas 1995; West, Brown & Enquist 1999; van 

Gelder, Poorter & Sterck 2006; Banin et al. 2012 
LP ratio cm2 cm-2 Ratio between leaf area and pipe cross-sectional area. Important: 

PipeReuseFactor is important here 
3000-20000 Wright et al. 2006; Calvo-Alvarado, McDowell & Waring 2008; Patiño et al. 2012 

mTB g-1 a-1 Parameter of biomass-based tree mortality rate 0.01-0.05 Model specific parameter, own estimates 
MTS - Scaling exponent in biomass-based tree mortality rate, The metabolic 

theory predicts a scaling exponent of ¼, but significant deviations 
have been observed. 

0.1-0.4 Brown et al. 2004; Muller-Landau et al. 2006a; b 

DNMin cm Trees with a diameter > DNMin can create gaps (if TrMortNeight=1) 0.1-0.3 Model specific parameter, own estimates 
mNeigh a-1 Trees affected by falling trees die with a probability of mNeigh 0.05-0.3 Model specific parameter, own estimates 
Rw gC g-1 d-1 Respiration rate per gram of sapwood 10-4-10-6 Penning De Vries 1975; Ryan et al. 1994, 1995; Vose & Ryan 2002; Sterck et al. 

2005 
nSeed ha-1 a-1 Number of seedlings dispersed at each time step (per hectare) 100-500 Model specific parameter, own estimates 
SF - Factor regulating the shortening of branches with their order 0.7-0.9 Bertram 1989; Perttunen et al. 1996; Perttunen, Sieva & Nikinmaa 1998 
SI - Site index describing the relative quality of the forest patch 0.5-1 Model specific parameter, own estimates 
SLA cm2 g-1 Specific leaf area, mean value for Amazonia ~90-110 50-200 Poorter 1999; Rijkers et al. 2000; Kitajima, Mulkey & Wright 2005a; Wright et al. 

2005, 2010; Rozendaal et al. 2006; Markesteijn et al. 2007; Domingues, Martinelli 
& Ehleringer 2007; Poorter et al. 2009; Malhi et al. 2009; Patiño et al. 2012; 
Niinemets, Keenan & Halllik 2015 

ρW g cm-3 Wood density, mean value~0.63 for Amazonia 0.4-0.8 Baker et al. 2004; Patiño et al. 2009; Quesada et al. 2012; Iida et al. 2014 
PRU - Pipe-reuse factor 0.5-0.9 Mäkelä 1986, 2002; Perttunen et al. 1996; Sterck & Schieving 2007 
tyear d Number of days per year suitable for photosynthesis 180-360 Model specific parameter, own estimates 
hsun h Assumed number of sun hours per day 6-10 Model specific parameter, own estimates 
ST - Safety factor for trunk growth.  0.5-0.9 Sterck & Bongers 1998; van Gelder et al. 2006; Osunkoya et al. 2007 
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Table C.7. Results of sensitivity analysis, in which the effect of changes in important model parameters on the main forest attributes were recorded. The parameters of the best model 
(Table C.4) form the basis of this analysis, and single parameters were varied over the range shown in the column ‘Value range’. The arrow indicate whether increasing parameters 
values had a strong positive effect (↑), a slight positive effect (↗), no or an indifferent effect (→), strong negative effect (↓) or  a slight negative effect (↘) on the forest attributes. 

Symbol Unit Value range Stem 

density 

(>10cm) 

Stem 

density 

Basal 

area 

AGB Canopy 

height 

Mean 

DBH 

(>10cm) 

LAI Total 

ANPP 

Canopy 

NPP 

Basal 

area 

growth 

Residence 

time 

 AGB 

Stem 

Turnover 

(>10cm) 

ALMax cm2 10000-20000 → → → → → → → → → → → → 

ALProdMax cm2 20000-80000 ↘ ↓ ↗ ↑ ↘ ↑ ↗ ↗ ↗ ↗ ↗ → 

LDT - -0.5-0.5 ↘ → ↘ → ↗ → → → → → → → 

C0 - 1.4-1.6 → → → ↘ ↘ → → ↘ → → → → 

CBL ratio gC g-1 0.4-0.5 → → → → → → → → → → → → 

CBW ratio gC g-1 0.4-0.5 ↗ → ↘ ↘ ↘ ↘ → ↘ → → ↘ → 

Imax μmol m-2 s-1 300-1200 → ↘ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ → → 

kL - 0.5-0.9 ↓ ↘ ↓ ↓ → → ↓ ↓ ↓ ↓ → → 

LDB - 1.5-3.5 ↘ ↘ ↗ ↗ ↗ ↗ → ↗ → → → → 

LP ratio cm2 cm-2 10000-60000 ↓ ↓ ↓ ↑ ↑ ↑ ↗ → → ↓ ↑ ↓ 

mTB g-1 a-1 0.01-0.1 ↓ ↓ ↓ ↓ ↘ ↗ → → → → ↓ ↑ 

MTS - 0.05-0.3 ↑ ↓ ↑ ↑ → → → → → → ↑ ↓ 

DNMin cm 0.1-0.2 → → → → → → → → → → → → 

mNeigh a-1 0.01-0.1 ↓ ↘ ↘ ↘ → ↗ → → → → ↘ ↗ 

Rw gC g-1 d-1 10-5-10-4 → → → → → → → → → → → → 

nSeed ha-1 a-1 100-800 ↗ ↑ → → → ↘ → → → ↗ → → 

SF - 0.5-0.95 ↓ ↘ → → ↘ ↗ ↘ → ↗ → → → 

SI - 0.5-1 ↘ ↘ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↗ ↘ 

SLA cm2 g-1 50-300 ↑ ↑ ↗ ↘ ↓ ↓ ↗ ↑ ↑ ↑ ↓ ↑ 

ρW g cm-3 0.4-0.8 ↑ ↑ ↓ ↓ ↓ ↓ → → → ↘ ↘ → 

PRU - 0.3-0.9 ↑ ↑ ↗ ↘ ↓ ↓ → → → ↑ ↓ ↗ 

tyear d 120-360 ↑ ↘ ↑ ↑ → → → ↑ ↑ ↑ ↓ ↗ 

hsun h 6-12 ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↗ → 

ST - 0.1-0.5 → → → → → → → → → → → → 
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D Supplementary information to chapter 5 

 

 

Figure D.1. Long-term dynamics of the simulated forest stands differing in natural forest dynamics used as model 
scenarios in this study. (a) Stem density of all stems > 10 cm in DBH, (b) Stem density of all stems > 1 cm in DBH, 
(c) Basal area, (d) Above-ground biomass, (e) Canopy height (mean height of all trees > 40 cm in DBH), (f) Mean 
diameter of all stems > 10 cm in DBH, (g) Leaf area index, (h) Total above-ground net primary production, (i) Canopy 
net primary production (NPP of leaves and 2nd order branches), (j) Basal area growth, (k) Residence time of above-
ground biomass, (l) Turnover of all stems > 10 cm in DBH. 
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Figure D.2. Long-term dynamics of simulated forest stands differing in logging intensities (a) Stem density of all stems 
> 10 cm in DBH, (b) Stem density of all stems > 1 cm in DBH, (c) Basal area, (d) Above-ground biomass, (e) Canopy 
height (mean height of all trees > 40 cm in DBH), (f) Mean diameter of all stems > 10 cm in DBH, (g) Leaf area index, 
(h) Total above-ground net primary production, (i) Canopy net primary production (NPP of leaves and 2nd order 
branches), (j) Basal area growth, (k) Residence time of above-ground biomass, (l) Turnover of all stems > 10 cm in 
DBH. 
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Figure D.3. Long-term dynamics of simulated forest stands differing in fragment size. (a) Stem density of all stems > 
10 cm in DBH, (b) Stem density of all stems > 1 cm in DBH, (c) Basal area, (d) Above-ground biomass, (e) Canopy 
height (mean height of all trees > 40 cm in DBH), (f) Mean diameter of all stems > 10 cm in DBH, (g) Leaf area index, 
(h) Total above-ground net primary production, (i) Canopy net primary production (NPP of leaves and 2nd order 
branches), (j) Basal area growth, (k) Residence time of above-ground biomass, (l) Turnover of all stems > 10 cm in 
DBH. 
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Figure D.4. Simulated long-term dynamics of vascular epiphytes communities. Five replicates of a typical lowland 
forest stand (50 x 50 m) were simulated (see Fig. D.1 for forest attributes) and used as input data for the epiphyte model. 
On each of these forest replicates, the development of epiphyte communities which initially consisted of 100 individuals 
of 100 species was simulated over 600 years and the abundance (a) and species numbers (b) are shown here. Ten 
different initial species pools were simulated on each forest replicate and their development is shown here. 

 

 

 

Figure D.5. Community growth rates and partitioning of mortality rates.  
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Figure D.6. Vertical distribution of epiphytes. The panels a-i show the vertical distribution of 3 different epiphyte 
assemblages simulated on forest stands representing typical lowland forest at the beginning of the simulations (a,d,g), 
after 300 years (b,e,h) and after 600 years (c,f,i). The average vertical distribution of substrate area in theses forest 
stands is depicted in panel j. For comparisons: observed vertical distributions in Panama (k) and Ecuador (l).  

 



Supplementary information - chapter 5 

221 
 

 

Figure D.7. 3D structure of epiphyte assemblages. Panels a-d show the simulated epiphyte assemblage in comparison 
to field data from Panama (e) and Ecuador (f). 
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Table D.1. Simulated mortality rates. The mean, minimum and maximum mortality rates for different causes of 
mortality of epiphytes on a typical lowland forest are shown here.  

Cause of mortality Mean Min Max 
Fall attached to substrate 3.63 1.25 14.92 
Fall off substrate 2.44 1.34 7.22 
Changing environmental conditions 0.45 0.00 5.57 
Space competition 0.89 0.11 6.86 
Size-dependent mortality (metabolic theory) 6.89 5.34 8.55 
Total 14.29 10.07 25.17 

 

 



Acknowledgements 

223 
 

Acknowledgements 

First of all, I want to thank my supervisor, Prof. Dr. Holger Kreft, for his continuing 

encouragement and support. Thank you for your guidance and availability, for stimulating 

discussion and for creating such a friendly and motivating work environment. I really enjoyed 

working with you and learned a lot about how to do science.  

I also want to thank my co-supervisor, Prof. Dr. Gerhard Zotz, for sharing his knowledge on 

epiphytes with me. He was always available and his critical comments greatly improved my 

thesis. Thank you for sharing your trait data and that you made it possible to use the canopy crane 

in Panama. That was a great experience. 

My special thanks goes to Juliano Sarmento Cabral, who supervised and supported my work from 

the beginning to the end. He was my office mate for a long time and we had many fruitful 

discussions on epiphytes and modelling. Thank you for sharing you expert knowledge during field 

work, without you it would not have been possible. 

I am thankful to Katrin Wagner for her substantial contributions to the trait paper. I also want to 

thank all my additional co-authors, Wolfgang Wanek, Glende Mendieta-Leiva and Eduardo Javier 

Sánchez Delgado, for their valuable suggestions and tireless feedback. 

I thank Prof. Winfried Kurth for introducing me to functional-structural plant models and for 

developing GroIMP.  I also want to thank Yongzhi Ong for helping me programming my forest 

model.  

Many thanks to all my lab mates in the Macroecology, Biodiversity and Conservation 

Biogeography Group for lively lab-meeting and fruitful discussions. I always enjoyed coming to 

office. 

I thank the DFG (German Research Foundation) for funding my position at the University of 

Göttingen in the framework of the German Excellence Initiative. 

Finally, I am most grateful to my family and friends for their many ways of support.  

 

 





Erklärung 

225 
 

Erklärung 

Hiermit versichere ich, dass ich die vorliegende Dissertation selbständig angefertigt und die 

benutzten Quellen und Hilfsmittel vollständig angegeben habe. Die Dissertation wurde an keiner 

anderen Hochschule eingereicht und wurde, abgesehen von den unter „Author contributions“ 

angegebenen Teilpublikationen, noch nicht veröffentlicht. Außerdem erkläre ich, dass ich bisher 

noch keinen Promotionsversuch unternommen habe. 

 

 

 

Göttingen, im April 2016                      Gunnar Petter 
  

 


	List of tables
	List of figures
	Author contributions
	Summary
	1 Introduction
	2 Functional leaf traits of vascular epiphytes: vertical trends within the forest, intra- and interspecific trait variability, and taxonomic signals
	2.1 Summary
	2.2 Introduction
	2.3 Materials and methods
	2.4 Results
	2.5 Discussion

	3 Branchfall as a demographic filter for epiphyte communities: Lessons from forest floor-based sampling
	3.1 Abstract
	3.2 Introduction
	3.3 Materials and methods
	3.4 Results
	3.5 Discussion
	3.6

	4 Modelling the long-term dynamics of tropical forests using functional-structural tree models: Leaf trait trade-offs as predictor of whole-tree life history variations
	4.1 Abstract
	4.2 Introduction
	4.3 Materials and methods
	4.3.1 Model description
	4.3.1.1 Purpose
	4.3.1.2 Entities, state variables and scales
	4.3.1.3 Process overview and scheduling
	4.3.1.4 Design concepts
	Basic principles
	Emergence
	Adaptation/Sensing
	Interaction
	Stochasticity
	Observation

	4.3.1.5 Initialization
	4.3.1.6 Input
	4.3.1.7 Submodels
	Light distribution
	Tree establishment
	Apical control
	Carbon balance
	Structural growth

	Tree mortality
	External model control, export and visualization


	4.3.2 Model parameterization and validation

	4.4 Results
	4.5 Discussion

	5 Simulating the influence of forest dynamics on structure and dynamics of epiphyte assemblages based on a coupled forest-epiphyte model
	5.1 Abstract
	5.2 Introduction
	5.3 Materials and methods
	5.3.1 Model description
	5.3.1.1 Purpose
	5.3.1.2 Entities, state variables and scales
	5.3.1.3 Process overview and scheduling
	5.3.1.4 Initialization
	5.3.1.5 Input
	5.3.1.6 Submodels

	5.3.2 Model validation and scenarios

	5.4 Results
	5.5 Discussion

	6 Synopsis
	7 References
	Appendix
	A Supplementary information to chapter 2
	B Supplementary information to chapter 3
	C Supplementary information to chapter 4
	D Supplementary information to chapter 5
	Acknowledgements
	Erklärung


<<

  /ASCII85EncodePages false

  /AllowTransparency false

  /AutoPositionEPSFiles true

  /AutoRotatePages /None

  /Binding /Left

  /CalGrayProfile (Dot Gain 20%)

  /CalRGBProfile (sRGB IEC61966-2.1)

  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

  /sRGBProfile (sRGB IEC61966-2.1)

  /CannotEmbedFontPolicy /Error

  /CompatibilityLevel 1.5

  /CompressObjects /Tags

  /CompressPages true

  /ConvertImagesToIndexed true

  /PassThroughJPEGImages true

  /CreateJobTicket false

  /DefaultRenderingIntent /Default

  /DetectBlends true

  /DetectCurves 0.0000

  /ColorConversionStrategy /CMYK

  /DoThumbnails false

  /EmbedAllFonts true

  /EmbedOpenType false

  /ParseICCProfilesInComments true

  /EmbedJobOptions true

  /DSCReportingLevel 0

  /EmitDSCWarnings false

  /EndPage -1

  /ImageMemory 1048576

  /LockDistillerParams false

  /MaxSubsetPct 100

  /Optimize true

  /OPM 1

  /ParseDSCComments true

  /ParseDSCCommentsForDocInfo true

  /PreserveCopyPage true

  /PreserveDICMYKValues true

  /PreserveEPSInfo true

  /PreserveFlatness true

  /PreserveHalftoneInfo false

  /PreserveOPIComments true

  /PreserveOverprintSettings true

  /StartPage 1

  /SubsetFonts true

  /TransferFunctionInfo /Apply

  /UCRandBGInfo /Preserve

  /UsePrologue false

  /ColorSettingsFile ()

  /AlwaysEmbed [ true

  ]

  /NeverEmbed [ true

  ]

  /AntiAliasColorImages false

  /CropColorImages true

  /ColorImageMinResolution 300

  /ColorImageMinResolutionPolicy /OK

  /DownsampleColorImages true

  /ColorImageDownsampleType /Average

  /ColorImageResolution 600

  /ColorImageDepth -1

  /ColorImageMinDownsampleDepth 1

  /ColorImageDownsampleThreshold 1.50000

  /EncodeColorImages true

  /ColorImageFilter /DCTEncode

  /AutoFilterColorImages true

  /ColorImageAutoFilterStrategy /JPEG

  /ColorACSImageDict <<

    /QFactor 0.15

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /ColorImageDict <<

    /QFactor 0.15

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /JPEG2000ColorACSImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 30

  >>

  /JPEG2000ColorImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 30

  >>

  /AntiAliasGrayImages false

  /CropGrayImages true

  /GrayImageMinResolution 300

  /GrayImageMinResolutionPolicy /OK

  /DownsampleGrayImages true

  /GrayImageDownsampleType /Average

  /GrayImageResolution 600

  /GrayImageDepth -1

  /GrayImageMinDownsampleDepth 2

  /GrayImageDownsampleThreshold 1.50000

  /EncodeGrayImages true

  /GrayImageFilter /DCTEncode

  /AutoFilterGrayImages true

  /GrayImageAutoFilterStrategy /JPEG

  /GrayACSImageDict <<

    /QFactor 0.15

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /GrayImageDict <<

    /QFactor 0.15

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /JPEG2000GrayACSImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 30

  >>

  /JPEG2000GrayImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 30

  >>

  /AntiAliasMonoImages false

  /CropMonoImages true

  /MonoImageMinResolution 1200

  /MonoImageMinResolutionPolicy /OK

  /DownsampleMonoImages true

  /MonoImageDownsampleType /Average

  /MonoImageResolution 600

  /MonoImageDepth -1

  /MonoImageDownsampleThreshold 1.50000

  /EncodeMonoImages true

  /MonoImageFilter /CCITTFaxEncode

  /MonoImageDict <<

    /K -1

  >>

  /AllowPSXObjects false

  /CheckCompliance [

    /None

  ]

  /PDFX1aCheck false

  /PDFX3Check false

  /PDFXCompliantPDFOnly false

  /PDFXNoTrimBoxError true

  /PDFXTrimBoxToMediaBoxOffset [

    0.00000

    0.00000

    0.00000

    0.00000

  ]

  /PDFXSetBleedBoxToMediaBox true

  /PDFXBleedBoxToTrimBoxOffset [

    0.00000

    0.00000

    0.00000

    0.00000

  ]

  /PDFXOutputIntentProfile (None)

  /PDFXOutputConditionIdentifier ()

  /PDFXOutputCondition ()

  /PDFXRegistryName ()

  /PDFXTrapped /False



  /CreateJDFFile false

  /Description <<



    /BGR <>

    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

    /CZE <>

    /DAN <>

    /DEU <>

    /ESP <>

    /ETI <>

    /FRA <>

    /GRE <>



    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)

    /HUN <>

    /ITA <>

    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>

    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

    /LTH <>

    /LVI <>

    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)

    /NOR <>

    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>

    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

    /RUM <>

    /RUS <>

    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>

    /SLV <>

    /SUO <>

    /SVE <>

    /TUR <>

    /UKR <>

    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

  >>

  /Namespace [

    (Adobe)

    (Common)

    (1.0)

  ]

  /OtherNamespaces [

    <<

      /AsReaderSpreads false

      /CropImagesToFrames true

      /ErrorControl /WarnAndContinue

      /FlattenerIgnoreSpreadOverrides false

      /IncludeGuidesGrids false

      /IncludeNonPrinting false

      /IncludeSlug false

      /Namespace [

        (Adobe)

        (InDesign)

        (4.0)

      ]

      /OmitPlacedBitmaps false

      /OmitPlacedEPS false

      /OmitPlacedPDF false

      /SimulateOverprint /Legacy

    >>

    <<

      /AddBleedMarks false

      /AddColorBars false

      /AddCropMarks false

      /AddPageInfo false

      /AddRegMarks false

      /ConvertColors /ConvertToCMYK

      /DestinationProfileName ()

      /DestinationProfileSelector /DocumentCMYK

      /Downsample16BitImages true

      /FlattenerPreset <<

        /PresetSelector /MediumResolution

      >>

      /FormElements false

      /GenerateStructure false

      /IncludeBookmarks false

      /IncludeHyperlinks false

      /IncludeInteractive false

      /IncludeLayers false

      /IncludeProfiles false

      /MultimediaHandling /UseObjectSettings

      /Namespace [

        (Adobe)

        (CreativeSuite)

        (2.0)

      ]

      /PDFXOutputIntentProfileSelector /DocumentCMYK

      /PreserveEditing true

      /UntaggedCMYKHandling /LeaveUntagged

      /UntaggedRGBHandling /UseDocumentProfile

      /UseDocumentBleed false

    >>

  ]

>> setdistillerparams

<<

  /HWResolution [600 600]

  /PageSize [612.000 792.000]

>> setpagedevice



