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Einleitung 

Die zwei im Rahmen dieser Dissertation eingereichten Schriften befassen sich mit 

sozialen Lernprozessen im Gruppenkontext sowie in Ratschlagssituationen bei quantitativen 

Schätzaufgaben. Es handelt sich hierbei nicht um eine publikationsbasierte Dissertation, ist 

aber einer solchem im Aufbau nachempfunden. Im Fokus beider Arbeiten steht die Frage, ob 

Individuen in der Lage sind, durch die Interaktion mit anderen Personen aufgabenrelevante 

Fertigkeiten zu erlernen, welche ihre individuelle Leistung verbessern. Die Manuskripte leisten 

einerseits eine systematische, kritische Analyse und Bewertung aktueller empirischer Befunde 

zu sozialen Lernprozessen und andererseits eine laborexperimentelle Überprüfung daraus 

hervorgehender Hypothesen. 

 

Stern, A., Schultze, T & Schulz-Hardt, S. (2017a). How much group is necessary? Group-

to-individual transfer in estimation tasks. Unpublished manuscript. 

 

Stern, A., Schultze, T & Schulz-Hardt, S. (2017b). Social learning in the judge-advisor-

system: A neglected advantage of advice-taking. Under review at: Journal of 

Personality and Social Psychology. 

 

Bei besonders wichtig erscheinenden Aufgaben sichern sich Menschen gerne sozial ab. 

So werden vor allem folgenreiche Entscheidungen in Politik und Wirtschaft häufig von 

Gremien getroffen, Finanz- oder Klimaprognosen von Expertinnen- und Expertengruppen 

erstellt und beim Treffen einer wichtigen Investitionsentscheidung Ratschläge eingeholt. Ein 

naheliegender Grund hierfür könnte sein, dass mehreren Menschen auch mehr intellektuelle 

Ressourcen zur Verfügung stehen, was sie in die Lage versetzt, besonders gute Urteile 

abzugeben oder Entscheidungen zu fällen (vgl. Schulz-Hardt, Greitemeyer, Brodbeck & Frey, 

2002). Des Weiteren könnte diese soziale Absicherung erfolgen, um die Verantwortung für das 

eigene Urteil zu teilen (vgl. Harvey & Fischer, 1997). Neben diesen Motiven für das Arbeiten 

in Gruppen oder das Einholen von Ratschlägen können Menschen allerdings auch noch auf 

einer weiteren Ebene von diesen sozialen Interaktionen profitieren. Die Zusammenarbeit kann 

dazu führen, dass aufgabenrelevante Fertigkeiten vermittelt werden, von denen das Individuum 

bei zukünftiger Aufgabenausführung profitieren kann. Im Folgenden sollen solche 

Lerngewinne im Rahmen von Gruppenarbeit und Ratschlagssituationen diskutiert und 

laborexperimentell untersucht werden. Dazu wird mit diskretionären Aufgaben (Steiner, 1972) 
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ein – in der Gruppenforschung – bisher eher wenig beforschter Aufgabentyp verwendet. 

Beispiele für diesen Aufgabentyp sind quantitative Schätz- und Prognoseaufgaben. 

Diskretionäre Aufgaben zeichnen sich dadurch aus, dass es im Ermessen der 

Gruppenmitglieder liegt, wie sie die individuellen Beiträge ihrer Mitglieder zu einem 

Gruppenprodukt kombinieren. So kann eine Gruppe, die die zukünftige Entwicklung des 

Bruttosozialprodukts vorhersagen soll, zum Beispiel den Mittelwert aller individuellen 

Prognosen bilden, die Vorhersage eines einzelnen Gruppenmitglieds wählen oder die 

Einzelbeiträge in Abhängigkeit der subjektiven Expertise der Gruppenmitglieder 

unterschiedlich stark für das Gruppenurteil gewichten. Dieser Aufgabentyp eignet sich genau 

deshalb für die Untersuchung von Lerneffekten, weil bei diskretionären Aufgaben zum einen 

die Qualität eines Urteils nicht in jedem Fall gut demonstrierbar ist und zum anderen 

Veränderungen in der individuellen Leistung graduell bestimmt werden können. Ziel solcher 

quantitativer Schätzaufgaben ist dementsprechend nicht eine distinkte Unterscheidung 

zwischen richtig und falsch, sondern vielmehr, mit einer Schätzung dem wahren Wert 

möglichst nahe zu kommen. Im Folgenden wird zunächst dargelegt, unter welchen Umständen 

es zu Lernprozessen in Gruppen kommen kann und wie diese Prozesse neben den individuellen 

Ressourcen der Gruppenmitglieder auch die Koordination innerhalb der Gruppe fördern 

können. Anschließend werden die daraus abgeleiteten Hypothesen laborexperimentell 

überprüft. Im zweiten Teil des Forschungsprogramms wird die Möglichkeit von vergleichbaren 

Lerngewinnen als Folge von Ratschlägen diskutiert und ebenfalls empirisch untersucht. In 

anderen Worten soll überprüft werden, ob es auch durch den reinen Austausch numerischer 

Informationen zu individuellen Leistungsverbesserungen kommen kann und inwiefern diese 

von der Ratschlagsqualität abhängen. Abschließend werden die Ergebnisse beider 

Forschungsbereiche zusammenfassend bewertet und diskutiert. 

 

Forschungsprogramm Teil I 

Bei kollektiven quantitativen Schätzaufgaben gelingt es Gruppen häufig, 

Vergleichsindividuen zu übertreffen (vgl. Bonner & Baumann, 2012; Bonner, Sillito & 

Baumann, 2007; Laughlin, Bonner, Miner & Carnevale, 1999) oder sogar die Leistung ihres 

besten Gruppenmitglieds zu erreichen (vgl. Einhorn, Hogarth & Klempner, 1977; Laughlin, 

Gonzalez & Sommer, 2003). Gruppen können also eine höhere Leistung erreichen, als es die 

reine Ausmittelung individueller Fehler ihrer Gruppenmitglieder vermuten lässt. Nach 

Brodbeck und Greitemeyer (2000) können diese Leistungsverbesserungen in zwei Kategorien 
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des Gruppenlernens unterteilt werden. Einerseits können die Gruppenmitglieder im Laufe der 

Zeit lernen, besser in einer Gruppe zu kooperieren (learning to collaborate, Brodbeck & 

Greitemeyer, 2000), andererseits können Gruppenmitglieder durch die Interaktion mit anderen 

Handlungsstrategien erlernen, welche ihre individuellen Leistungen verbessern (learning to 

perform the task). Diese Steigerung der individuellen Ressourcen wird in der 

Gruppenleistungsforschung als group-to-individual Transfer (G-I Transfer, vgl. Laughlin & 

Barth, 1981; Laughlin & Sweeney, 1977) bezeichnet und kann sich wiederum positiv auf die 

Gruppenleistung auswirken. In anderen Worten tritt G-I Transfer dann auf wenn 

Gruppeninteraktionen dazu führen, dass die Produktivität oder Effizienz ihrer 

Gruppenmitglieder bei anschließenden Aufgaben steigen. In diesem Zusammenhang ist es 

wichtig, zwei Arten von G-I Transfer zu unterscheiden: zum einen spezifischer Transfer bei 

dem der positive Effekt der Gruppeninteraktion auf dieselbe Aufgabe beschränkt ist, und zum 

anderen genereller Transfer von einer Aufgabe zu einer anderen Aufgabe der gleichen Art 

(Stasson, Kameda, Parks, Zimmerman & Davis, 1991). 

Während die meiste Forschung zu G-I Transfer bei Problemlöseaufgaben wie 

mathematischen Problemen durchgeführt worden ist und dabei sowohl Evidenz für 

spezifischen G-I Transfer (z.B. Laughlin & Ellis, 1986) als auch generellen Transfer (z.B. 

Laughlin, Carey & Kerr, 2008; Stasson et al., 1991) gefunden werden konnte, ist die 

wissenschaftliche Evidenz bei quantitativen Schätzaufgaben eher spärlich. Dem Autor ist nur 

eine Studie bekannt, die solche Aufgaben mit einem Design verbindet, welches die 

Überprüfung von individuellen Lerneffekten als Folge vorheriger Gruppeninteraktion zulässt. 

Schultze, Mojzisch und Schulz-Hardt (2012) konnten dabei nachweisen, dass sich die 

individuelle Leistung schlechterer Gruppenmitglieder bereits nach der ersten 

Gruppeninteraktion stark verbessert, was als Nachweis für einen generellen G-I Transfer 

gesehen werden kann, da die Autoren mit unterschiedlichen Aufgaben der gleichen Art 

arbeiteten. Darüber hinaus zeigte sich, dass die Gruppenmitglieder von weiteren 

Gruppeninteraktionen nicht zusätzlich profitieren, was darauf hindeutet, dass bei der 

verwendeten Schätzaufgabe eine einmalige Gruppeninteraktion für das Auftreten eines G-I 

Transfers ausreicht. 

Obwohl die Befunde von Schultze, Mojzisch und Schulz-Hardt (2012) als erster 

sauberer Nachweis eines generellen G-I Transfers bei quantitativen Schätzaufgaben gesehen 

werden können, lassen die Ergebnisse zwei wichtige Fragen unbeantwortet. Erstens bleibt 

unklar, was Gruppenmitglieder durch die Interaktion miteinander lernen. Aufbauend auf der 

Argumentation von Brown und Siegler (1993) kann das Wissen bei quantitativen 
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Schätzaufgaben in zwei Komponenten unterteilt werden. Zum einen spiegelt das sogenannte 

metric knowledge ein grundsätzliches Verständnis für die Skalierung der Aufgabe wider. In 

anderen Worten gibt das metric knowledge an, ob die betreffende Person eine genaue 

Vorstellung davon hat, welcher Schätzbereich plausibel ist. Zum anderen bestimmt das 

mapping knowledge, ob Menschen Verständnis für die Rangordnung verschiedener zu 

schätzender Objekte haben. Mapping knowledge erlaubt also, verschiedene Schätzwerte in die 

richtige Reihenfolge zu bringen (z.B. die Entfernung zwischen London und Rom ist größer als 

die Entfernung zwischen London und Paris). Zweitens sollte geklärt werden, ob die 

nachgewiesenen individuellen Leistungsverbesserungen auch stabil sind, wenn die Gruppe 

nach einmaliger Interaktion wieder aufgelöst wird. Somit sollte überprüft werden, ob es zur 

Aufrechterhaltung dieses Wissenstransfers der Gruppe bedarf, oder ob die volle 

Leistungsverbesserung auch ohne weitere Gruppenunterstützung erhalten bleibt. Über diese 

beiden zentralen Fragestellungen hinaus sollte explorativ überprüft werden, ob es zusätzlich zu 

differenziellen Gewichtungsstrategien, also einer stärkeren Gewichtung von kompetenteren 

Gruppenmitgliedern bei den Gruppenurteilen, kommt. In anderen Worten sollte zwischen einer 

Steigerung der individuellen Leistung (G-I Transfer) und einer besseren Kooperationsfähigkeit 

der Gruppenmitglieder unterschieden werden, die stärkere Gewichtung leistungsstärkerer 

Mitglieder bzw. akkuraterer Schätzungen zulässt. Auch wenn der Nachweis solcher 

Gewichtungsstrategien unter Kontrolle von individuellen Lerneffekten bisher fehlgeschlagen 

ist (vgl. Schultze et al., 2012), kann dieser Befund nicht zwingend generalisiert werden, da er 

nur bei einem Aufgabentyp erfolgt ist. Das Ziel der empirischen Studien des ersten Teils des 

Forschungsprogramms bestand darin, diese offenen Fragen zu klären. 

 

Eine laborexperimentelle Überprüfung von Gruppenlernprozessen bei quantitativen 

Schätzaufgaben 

Methode 

In zwei Laborexperimenten wurde die Anzahl der Gruppeninteraktionen manipuliert, 

um gezielt die Stabilität des G-I Transfers zu überprüfen. Zu diesem Zweck arbeiteten die 

Gruppen entweder fortwährend oder nur einmalig miteinander und wurden einer nicht 

interagierenden Nominalgruppenbedingung gegenübergestellt. Im ersten Experiment sollten 

die Versuchspersonen die Luftlinienentfernung zwischen verschiedenen europäischen 

Hauptstädten schätzen und im zweiten das Gewicht verschiedener Gegenstände. Als wichtigste 

abhängige Variable wurde jeweils die gemittelte absolute prozentuale Abweichung vom 
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wahren Wert jedes Trials erfasst. Dieser sogenannte MAPE ist ein gängiges Leistungsmaß in 

der Gruppenurteilsforschung (vgl. Sniezek & Henry, 1989, 1990). 

Im ersten Experiment wurden 183 und im zweiten Experiment 252 Versuchspersonen 

randomisiert drei Versuchsbedingungen zugeteilt. Nach einer individuellen Übungsphase von 

10 Aufgaben, die als Baselinemessung für spätere Leistungsversänderungen diente, arbeiteten 

die Versuchspersonen in Abhängigkeit der Experimentalbedingung entweder an 10 weiteren 

Aufgaben als Dreiergruppe, oder an nur einer Aufgabe als Dreiergruppe und bei den 

verbleibenden 9 Aufgaben wieder individuell, oder analog zur Übungsphase ohne 

Gruppeninteraktion. Der Ablauf der einzelnen Gruppeninteraktionen sah vor, dass die 

einzelnen Gruppenmitglieder zunächst individuelle Schätzungen abgeben sollten, danach ihre 

Individualschätzungen diskutieren und abschließend zu einem gemeinsamen Gruppenergebnis 

kommen sollten. Auf diese Weise war es möglich, individuelle Fertigkeitsgewinne im Laufe 

der Zeit zu bestimmen und von zusätzlichen Leistungsverbesserungen durch differenzielle 

Gewichtungsstrategien, also z.B. einer stärkeren Gewichtung besserer Gruppenmitglieder, 

abzugrenzen. 

 

Ergebnisse 

In beiden Experimenten trat eine starke Leistungsverbesserung schwächerer 

Gruppenmitglieder bereits nach der ersten Gruppeninteraktion auf, womit die generellen 

Befunde von Schultze et al. (2012) hinsichtlich individueller Fertigkeitsverbesserungen 

repliziert werden konnten. Ein Vergleich von Mitgliedern fortwährend interagierender 

Gruppen mit Mitgliedern einmalig interagierenden Gruppen zeigte, dass die individuelle 

Schätzgenauigkeit in gleichem Maße zunahm und diese gesteigerte individuelle Leistung auf 

diesem hohen Niveau blieb, auch wenn die Gruppe nach nur einer Interaktion aufgelöst wurde 

und die Versuchspersonen wieder individuell weiterarbeiteten. Diese Leistungsveränderung 

war ausschließlich auf verringerte metric errors zurückzuführen, während sich die mapping 

errors der Versuchspersonen nicht systematisch in Abhängigkeit der Versuchsbedingung 

veränderten. In der Nominalgruppenbedingung veränderte sich die Leistung der 

Versuchspersonen im Laufe der Zeit nicht. Diese Befunde traten unabhängig vom Aufgabentyp 

auf. 

Bezüglich differenzieller Gewichtungsstrategien unterschieden sich die Ergebnisse 

zwischen den Experimenten 1 und 2. Während im ersten Experiment die Versuchspersonen 

ihre (z.T. verbesserten) individuellen Urteile im Durchschnitt relativ gleichmäßig gewichteten, 

um auf ein Gruppenurteil zu kommen, ergab sich im zweiten Experiment ein anderes Bild. Hier 
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gelang der Nachweis einer differenziellen Gewichtung der Einzelbeiträge, also einer stärkeren 

Gewichtung leistungsstärkerer Mitglieder bzw. akkuraterer Schätzungen. Die Gruppenurteile 

waren akkurater als es eine reine Mittelung der verbesserten individuellen Schätzungen 

vorhersagen würde. 

 

Fazit 

Im ersten Teil des Forschungsprogramms testeten wir zum einen die zeitliche Stabilität 

von G-I Transfers und zum anderen, was Gruppenmitglieder durch die Interaktion miteinander 

lernen. Der in beiden Experimenten nachgewiesene Befund, dass sich die individuelle 

Urteilsgenauigkeit der Versuchspersonen bereits nach einmaliger Gruppeninteraktion 

verbessert und danach auf diesem hohen Niveau verbleibt, selbst wenn die Gruppe danach 

aufgelöst wird, kann vor dem Hintergrund von fehlenden individuellen 

Leistungsverbesserungen in der Nominalgruppenbedingung tatsächlich als Vermittlung von 

Handlungsstrategien im Sinne eines generellen G-I Transfers interpretiert werden. Die 

Tatsache, dass die Anzahl der Gruppeninteraktionen keinen Einfluss auf die 

Fertigkeitsgewinne hatte, spricht darüber hinaus für die Einfachheit dieses Transfers. Die 

wahrscheinlichste Erklärung für dieses Phänomen ist, dass Gruppenmitglieder während der 

ersten Gruppeninteraktion Referenzwerte austauschen (z.B. Deutschland von Nord nach Süd 

ist 900 Kilometer lang), was sich auch in dem Ergebnis widerspiegelt, dass 

Gruppeninteraktionen ausschließlich zu einer Reduzierung des metric error führt, ohne den 

mapping error systematisch zu verändern. Vorangegangene Befunde haben bereits die 

Wichtigkeit von Referenzwerten für die Verbesserung der Schätzgenauigkeit nachgewiesen 

(z.B. Bonner & Baumann, 2008; Bonner et al., 2007; Laughlin et al., 1999; Laughlin et al., 

2003). Solche Referenzwerte sollten einfach zu kommunizieren sein und Informationen 

enthalten, welche den metric error und dadurch auch die Schätzgenauigkeit nachhaltig 

verbessern können. Anders ausgedrückt kann ein guter Maßstab den individuellen Schätzfehler 

reduzieren, was insbesondere bei schwächeren Gruppenmitgliedern zu einer sprunghaften 

Leistungsverbesserung führt. Da das Datenmuster bezüglich individueller Fertigkeitsgewinne 

und einer Reduzierung des metric error bei beiden Aufgabentypen gleich ausfiel, kann davon 

ausgegangen werden, dass diese Befunde auf andere Schätzaufgaben von ähnlichem 

Schwierigkeitsgrad generalisierbar sind. 

Im Gegensatz dazu konnten nur im zweiten Experiment differenzielle 

Gewichtungsstrategien nachgewiesen werden. Vermutlich ist dieser Befund auf Unterschiede 

im Aufgabentyp zurückzuführen. Beim ersten Experiment wurden Aufgaben ohne 
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populationsstereotypen Bias verwendet, d.h. die Versuchspersonen haben die wahren Werte 

nicht systematisch über- oder unterschätzt, sondern unsystematische Zufallsfehler produziert. 

Diese Situation könnte den Nachweis von differenziellen Gewichtungsstrategien dadurch 

erschweren, dass bei einer Aufgabe ohne Bias der Durchschnitt der individuellen Schätzungen 

der Gruppenmitglieder („average“-model) durch die Ausmittelung individueller Fehler bereits 

eine hohe Genauigkeit aufweist und der potenzielle Leistungszuwachs, der aus differenzieller 

Gewichtung resultieren könnte, deutlich eingeschränkt ist. Es könnten also theoretisch 

durchaus, auch bei einer Aufgabe ohne Bias, differenzielle Gewichtungsstrategien auftreten. 

Sie wären nur schwerer nachweisbar. Die Tatsache, dass in Experiment 1 die Genauigkeit des 

Gruppenurteils dem Durchschnitt der individuellen Schätzungen der Gruppenmitglieder aber 

sogar deskriptiv leicht unterlegen war, spricht zumindest dafür, dass falls eine differenzielle 

Gewichtung stattgefunden haben sollte, diese zumindest nicht funktional war. Bei Aufgaben 

mit Populationsbias können Gruppen hingegen stärker von differenziellen 

Gewichtungsstrategien profitieren, da in einem solchen Fall die besten Einzelschätzungen 

systematisch näher am wahren Wert liegen als das Mittelwertsmodell (vgl. Davis-Stober, 

Budescu, Dana & Bromwell, 2014; Einhorn et al., 1977). Folglich sollte eine größere 

Gewichtung besserer Einzelurteile das Gruppenergebnis stärker verbessern als bei einer 

Aufgabe ohne einen solchen Bias. Da die Aufgabe, mit der in Experiment 2 gearbeitet wurde, 

durch einen solchen Populationsbias charakterisiert war, könnte dies das Auftreten von 

funktionalen differenziellen Gewichtungsstrategien begünstigt haben. Zusammenfassend 

konnte gezeigt werden, dass Gruppenmitglieder durch die Interaktion mit Anderen 

Informationen austauschen, die ihren metric error reduzieren und damit ihre Schätzgenauigkeit 

sprunghaft und stabil nach nur einmaliger Gruppeninteraktion verbessern. Des Weiteren 

konnte nachgewiesen werden, dass Gruppen unter bestimmten Umständen funktionale, 

differenzielle Gewichtungsstrategien anwenden, die dazu führen, dass die Gruppenurteile 

besser sind als die einfache Mittelung der verbesserten individuellen Schätzungen. 

 

Forschungsprogramm Teil II 

Neben Gruppenarbeit spielt auch das Einholen von Ratschlägen eine wichtige Rolle in 

vielen Urteils- und Entscheidungsprozessen. Das Hauptmotiv dieser Suche nach Ratschlägen 

ist die Verbesserung der Urteilsqualität, weswegen Entscheidungsträger_innen auch am 

meisten Interesse an Ratschlägen von Expertinnen und Experten haben (vgl. Van Swol & 

Sniezek, 2005). Ratschlagssituation werden in der sozialpsychologischen Forschung häufig im 
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Rahmen des sogenannten „Judge Advisor System“ untersucht (JAS; Sniezek & Buckley, 1995; 

Sniezek & Van Swol, 2001), wobei zwischen einer Ratgeberin oder einem Ratgeber (Advisor), 

die oder der Ratschläge abgibt, und einer Entscheidungsträgerin oder einem 

Entscheidungsträger (Judge), die oder der die Verantwortung für ein Urteil hat, unterschieden 

wird. Der klassische Ablauf eines solchen JAS sieht vor, dass der Judge ein erstes Initialurteil 

abgibt, anschließend einen Ratschlag erhält, und abschließend ein finales, möglicherweise 

revidiertes Urteil fällt (z.B. Yaniv, 2004b; Sniezek, Schrah & Dalal, 2004). Dabei liegt der 

Fokus der Judge Advisor Forschung auf der Genauigkeit des finalen Urteils und der 

Ratschlagsgewichtung (als Überblick siehe Bonaccio & Dalal, 2006). Hierbei konnte zum 

einen nachgewiesen werden, dass Ratschläge die Genauigkeit der Finalurteile erhöhen können 

(z.B. Gardner & Berry, 1995; Sniezek et al., 2004; Yaniv, 2004a), was wiederum, wenig 

überraschend, mit der Qualität der Ratschläge zusammenhängt (Harvey & Fischer, 1997; 

Sniezek et al., 2004). Zum anderen kommt es zu egozentrischer Ratschlagsnutzung, also einer 

stärkeren Gewichtung des eigenen Initialurteils im Vergleich zum Ratschlag (z.B. Yaniv, 

2004b; Yaniv & Kleinberger, 2000). Die Stärke der Ratschlagsgewichtung hängt dabei 

entscheidend von der wahrgenommenen Expertise der Ratgeber_innen (z.B. Harvey & Fischer, 

1997; Sniezek et al., 2004) und der Qualität der Ratschläge ab (z.B. Gardner & Berry, 1995; 

Yaniv & Kleinberger, 2000). In anderen Worten können Ratschläge zwar zu besseren 

Finalurteilen führen, ihr Nutzen wird aber nicht vollständig ausgeschöpft, weil das eigene 

Initialurteil zu hoch gewichtet wird. 

Mit dem Fokus auf die Ratschlagsgewichtung und die Akkuratheit von auf einen 

Ratschlag folgenden Finalurteilen ist allerdings eine entscheidende Frage bisher vollständig 

unbeachtet geblieben: Können Entscheidungsträger_innen, analog zu den 

Fertigkeitsverbesserungen im Gruppenkontext, auch von Ratschlägen lernen, bei 

anschließenden Aufgaben des gleichen Typs ihre Schätzgenauigkeit zu erhöhen? Zwar hat sich 

die vorangegangene Forschung bereits mit der Frage von sozialem Lernen in 

Ratschlagssituationen auseinandergesetzt (z.B. Biele, Rieskamp & Gonzalez, 2009; Çelen, 

Kariv & Schotter, 2010; Chaudhuri, Graziano & Maitra, 2006; Kocher, Sutter & Wakolbinger, 

2014); die untersuchten Leistungsverbesserungen bezogen sich hierbei aber stets auf 

Finalurteile, die auf einen konkreten Ratschlag folgten. In anderen Worten wurde überprüft, ob 

ein Ratschlag die darauffolgende Leistung bei derselben Aufgabe verbessert. Die Befunde von 

Biele et al. (2009) zeigen zum Beispiel, dass ein einzelner Ratschlag, der vor dem ersten von 

mehreren Durchgängen einer Entscheidungsaufgabe gegeben wird, die anschließende Leistung 

erhöhen kann. Diese Leistungsveränderungen können also ausschließlich als spezifischer 
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Transfer innerhalb einer konkreten Aufgabe interpretiert werden. Mit diesen Befunden 

übereinstimmend kann also die Ratschlagsgewichtung in JAS Experimenten, die die 

Genauigkeit der Finalurteile erhöhen kann (z.B. Sniezek et al., 2004), ebenfalls als spezifischer 

Transfer interpretiert werden. Über diese Leistungsverbesserungen der Finalurteile hinaus 

könnten Ratschläge aber einen weiteren positiven Effekt haben. Ratschläge könnten auch die 

Akkuratheit folgender unbeeinflusster Initialurteile positiv beeinflussen, was im zweiten Teil 

des Forschungsprogramms überprüft werden sollte. In anderen Worten bestand die 

Forschungsfrage darin, ob ein einfacher Austausch numerischer Informationen in 

Ratschlagssituationen, analog zum ersten Teil des Forschungsprogramms, zu einem generellen 

Transfer von einer Aufgabe zu einer anderen Aufgabe der gleichen Art führen kann. 

Die Befunde aus dem ersten Teil des Forschungsprogramms sowie vorangegangener 

Studien zu Schätzaufgaben (Schultze et al., 2012) implizieren, dass eine einmalige 

Gruppeninteraktion bereits ausreicht, um einen stabilen Lerngewinn zu erzielen. Aber was ist 

es, was diesen Lerngewinn auslöst? Basierend auf den Befunden des ersten Teils des 

Forschungsprogramms, dass der simple Austausch von numerischen Informationen bei nur 

einmaliger Gruppeninteraktion als Referenzwert ausreicht, um folgende Urteile zu verbessern, 

könnte eine solche Verbesserung der Schätzgenauigkeit auch durch einen einfachen Ratschlag 

erfolgen. Auch ohne zusätzliche Erläuterung sollten Entscheidungsträger_innen in der Lage 

sein, Unterschiede zwischen ihren eigenen Schätzungen und den Ratschlägen, insbesondere im 

metric error, zu erkennen und potenziell zu reduzieren. Wenn Entscheidungsträger_innen zum 

Beispiel die Entfernungen zwischen europäischen Hauptstädten stets größer als 20.000 

Kilometer schätzen und in der Folge Ratschläge erhalten, die 3.000 Kilometer niemals 

überschreiten, sollte diese systematische Diskrepanz relativ leicht zu erkennen sein und 

folglich versucht werden, diese zu reduzieren. Auch hier sollte, analog zu den Lerneffekten im 

Gruppenkontext, der mapping error unberührt bleiben. 

Es ist naheliegend, dass die beschriebenen Veränderungen der Schätzgenauigkeit eng 

mit der Qualität des Ratschlags zusammenhängen sollten. Zum einen ist es zielführender, sich 

einem guten Ratschlag anzupassen, als eine ungenaue Ratschlagstendenz zu übernehmen. Zum 

anderen sollten Handlungsweisen, mit denen Andere Erfolg haben, eher nachgeahmt werden 

als solche, die sich nicht bewährt haben (vgl. Bandura, 1986). Entscheidungsträger_innen 

sollten sich in ihren Initialurteilen also insbesondere an gute Ratschläge anpassen. Da 

Entscheidungsträger_innen in der JAS Forschung in der Regel die Gedankengänge ihrer 

Ratgeber_innen nicht nachvollziehen können (vgl. Bonaccio & Dalal, 2006), ist es mitunter 

schwierig, die Ratschlagsakkuratheit zu erkennen. Aus diesem Grund sollten mögliche 
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Lerneffekte insbesondere dann auftreten, wenn die Entscheidungsträger_innen Feedback über 

die Ratschlagsqualität erhalten. Nichtsdestotrotz sollte es auch ohne zusätzliche Rückmeldung 

über die Qualität des Ratschlags zu Verbesserungen der Schätzgenauigkeit der Initialurteile 

kommen, da Entscheidungsträger_innen, bis zu einem gewissen Grad, dennoch für deren 

Qualität sensitiv sein sollten (Biele et al., 2009; Yaniv & Kleinberger, 2000). 

Zusammenfassend sollte im zweiten Teil des Forschungsprogramms überprüft werden, 

ob gute Ratschläge den metric error reduzieren und dadurch die Akkuratheit von 

nachfolgenden Initialurteilen verbessern, sowie welche Rolle die Salienz der 

Ratschlagsqualität dabei spielt. Darüber hinaus sollte explorativ analysiert werden, wie stark 

mögliche soziale Lerneffekte zu dem Befund von verbesserten Finalurteilen nach Erhalt von 

Ratschlägen (z.B. Soll & Larrick, 2009; Sniezek et al., 2004) beitragen. In anderen Worten 

sollte zwischen zwei Quellen der Ratschlagsadjustierung unterschieden werden: zum einen 

Akkuratheitsgewinne der Initialurteile als Folge von sozialem Lernen, und zum anderen 

Ratschlagsgewichtung im Sinne einer Anpassung des Finalurteils an einen konkreten Ratschlag. 

 

Eine laborexperimentelle Überprüfung von sozialen Lernprozessen in 

Ratschlagssituationen 

Methode 

Die Fragen des zweiten Teils des Arbeitsprogramms wurden in drei Laborexperimenten 

überprüft. Im ersten Experiment sollten die Versuchspersonen (N = 197) verschiedene 

Luftlinie-Distanzen zwischen europäischen Hauptstädten so genau wie möglich schätzen und 

erhielten dabei Ratschläge von immer derselben zufälligen Ratgeberin oder demselben 

zufälligen Ratgeber, unterschiedlichen zufälligen Ratgeberinnen und Ratgebern oder keine 

Ratschläge. Das Experiment bestand dabei aus zwei Phasen. In der ersten Phase von 10 

Aufgaben erhielten alle Versuchspersonen keinen Ratschlag. Diese Übungsphase diente als 

Leistungsbaseline, um Veränderungen in der Schätzgenauigkeit nach den ersten Ratschlägen 

bestimmen zu können. Die zweite Phase von 20 Aufgaben folgte in den beiden 

Ratschlagsbedingungen dem klassischen JAS Ablauf, mit Initialurteil, Ratschlag und 

Finalurteil. Die Ratschläge wurden dabei zufällig von 76 Vortest-Versuchspersonen gezogen. 

In der Kontrollbedingung wurden auch in der zweiten Phase keine Ratschläge gewährt. 

Wichtigste abhängige Variable war (in allen Experimenten) die Akkuratheit der 

unbeeinflussten Initialschätzungen, die analog zum ersten Teil des Forschungsprogramms 

durch den MAPE erfasst wurde. 
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Das zweite Experiment arbeitete neben einem anderen Schätzaufgabentyp (Gewicht 

verschiedener Gegenstände) auch mit einem veränderten Design. Anstatt die Ratgeber_innen 

zufällig zu ziehen, wurde im zweiten Experiment die Ratschlagsqualität manipuliert. Diese 

Ratschläge waren entweder die Schätzung der besten, mittleren oder schlechtesten 

Versuchsperson aus einem Vortest mit 61 Teilnehmern. Des Weiteren erhielten die 

Versuchspersonen (N = 132) am Anfang des Experiments Informationen darüber, welchen 

Rangplatz ihr_e Ratgeber_in im Vortest erzielt hatte. Auf diese Weise sollte die Salienz der 

Qualität der Ratschläge erhöht werden, um ein möglichst optimales Umfeld für Lerngewinne 

zu schaffen. Den drei Ratschlagsbedingungen wurde wiederum eine Kontrollbedingung ohne 

Ratschläge gegenübergestellt. Darüber hinaus fand im zweiten Experiment keine individuelle 

Übungsphase statt, weil im ersten Experiment keine Leistungsveränderungen ohne Ratschlag 

festgestellt werden konnten, sodass die Kontrollbedingung ausreicht, um Unterschiede der 

Initialurteile in Abhängigkeit der Ratschlagsqualität überprüfen zu können. 

Experiment 3 war darauf ausgerichtet, die grundlegenden Befunde des zweiten 

Experiments mit einigen Veränderungen zu replizieren. Zunächst sollten die Versuchspersonen 

(N = 164), analog zu Experiment 1, Luftlinie-Distanzen zwischen europäischen Hauptstädten 

schätzen. Des Weiteren wurden im dritten Experiment, basierend auf den Ergebnissen des 

zweiten Experiments, nur noch die extremen Bedingungen gute_r (beste von 76 Vortest-

Versuchspersonen) und schlechte_r (schlechteste von 76 Vortest-Versuchspersonen) 

Ratgeber_in miteinander verglichen. Weiterhin wurde manipuliert, ob die Versuchspersonen 

Feedback über den Rangplatz ihrer Ratgeberin oder ihres Ratgebers aus dem Vortest erhielten. 

Auf diese Weise sollte überprüft werden, ob die Versuchspersonen auch ohne solche 

Informationen in der Lage sind, von Ratschlägen zu lernen, und inwiefern mögliche 

Lerngewinne mit Feedback stärker ausfallen als ohne. Schließlich wurde, wie bei Experiment 

1, eine individuelle Übungsphase von 10 Aufgaben ergänzt. Dies erlaubt es, 

Leistungsveränderungen als Folge von Ratschlägen zu überprüfen und nicht nur 

Leistungsunterschiede, wie beim zweiten Experiment. Darüber hinaus konnte durch diese 

Übungsphase die Kontrollbedingung ohne Ratschläge eingespart werden, weil während dieser 

Phase überprüft werden konnte, ob sich die Urteile der Versuchspersonen ohne den Erhalt von 

Ratschlägen verändern. 

 

Ergebnisse 

In Übereinstimmung mit den Hypothesen zeigte sich deutliche Evidenz, dass 

Ratschläge von mittlerer bis hoher Qualität die Akkuratheit von nachfolgenden Initialurteilen 
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verbesserten. Schlechte Ratschläge hingegen beeinträchtigten die Initialurteile nicht signifikant. 

Des Weiteren wiesen die Ergebnisse darauf hin, dass gute Ratschläge in erster Linie den metric 

error der Entscheidungsträger_innen verringerten, während sich keine Veränderungen beim 

mapping error nachweisen ließen. Darüber hinaus zeigte sich überraschenderweise kein 

signifikanter Effekt der Salienz der Ratschlagsqualität auf das generelle Befundmuster. Auch 

ohne Feedback über die Ratschlagsqualität waren die Versuchspersonen in der Lage, diese 

grundlegend zu erkennen (die Akkuratheit der guten Ratgeberin oder des guten Ratgebers 

wurde höher eingeschätzt als die der schlechten Ratgeberin oder des schlechten Ratgebers), 

sodass die Entscheidungsträger_innen bei guten Ratschlägen ihre Initialurteile verbesserten 

und bei schlechten Ratschlägen ihre Initialurteile nicht veränderten. Abschließend konnte in 

zusätzlichen explorativen Analysen zwischen zwei unterschiedlichen positiven Effekten von 

qualitativ hochwertigen Ratschlägen unterschieden werden. Zum einen traten die bereits 

beschriebenen Lerneffekte auf, die die Akkuratheit der auf den Ratschlag folgenden 

Initialurteile verbesserten, zum anderen kam es zu zusätzlichen Verbesserungen durch die 

Integrierung der Ratschläge in die jeweiligen Finalurteile. Die Ergebnisse lieferten jedoch klare 

Evidenz, dass die in der vorangegangenen Forschung nicht berücksichtigte 

Leistungsverbesserungen der Initialurteile den größten Anteil der gesamten 

Leistungsverbesserungen ausmachen. 

 

Fazit 

Im zweiten Teil des Forschungsprogramms wurde überprüft, ob individuelle 

Lerngewinne auch in Ratschlagssituationen ohne direkte Interaktion auftreten können. Die 

Befunde der drei Experimente zeigen, dass Ratschläge tatsächlich zu Verbesserungen 

folgender Initialurteile führen können, diese aber stark von der Qualität der Ratschläge 

abhängen. In anderen Worten haben Ratschläge nicht nur einen positiven Effekt bei einer 

bestimmten Aufgabe, wie es bereits mehrfach gezeigt worden ist (z.B. Biele et al., 2009; Çelen 

et al., 2010; Chaudhuri et al., 2006; Kocher et al., 2014; Soll & Larrick, 2009; Sniezek et al., 

2004), sondern auch auf andere Aufgaben der gleichen Art. Die vorliegenden Befunde stellen 

also den ersten Nachweis von generellem sozialen Lernen durch Ratschläge dar. Die Tatsache, 

dass es auch in solchen Ratschlagssituation, nach Erhalt eines guten Ratschlags, ausschließlich 

zu Verbesserungen der metric errors ohne systematische Veränderungen der mapping errors 

kommt, spricht wiederum für die Zentralität von Referenzwerten (z.B. Bonner & Baumann, 

2008; Bonner et al., 2007; Laughlin et al., 1999; Laughlin et al., 2003). Nur wenn 

Versuchspersonen einen guten Referenzwert von der Ratgeberin oder dem Ratgeber erhalten, 
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können sie davon bei zukünftigen unbeeinflussten Initialurteilen profitieren. Darüber hinaus 

scheinen die Entscheidungsträger_innen empfindsam für die Ratschlagsqualität zu sein, da die 

Ergebnisse darauf hindeuten, dass der Lernprozess völlig losgelöst vom Erhalt zusätzlicher 

Informationen über die Ratschlagsqualität ist. Eine mögliche Erklärung für diesen Befund ist, 

dass Entscheidungsträger_innen besonders schlechte Ratschläge als unplausibel identifizieren, 

auch wenn sie selbst nicht in der Lage sind, eine gute Schätzung abzugeben (Yaniv & 

Kleinberger, 2000). Es sollte zum Beispiel schwierig sein, zu entscheiden, ob zwischen London 

und Rom eher 1.500 oder 2.000 Kilometer liegen. Wenn der Ratschlag dann allerdings bei 

30.000 Kilometer liegt, besteht eine hohe Wahrscheinlichkeit, dass Entscheidungsträger_innen 

erkennen, dass es sich vermutlich um eine schlechte Ratgeberin oder einen schlechten Ratgeber 

handelt. Dies sollte wiederum dazu führen, dass dieser schlechte Referenzwert eher nicht ins 

eigene Urteil eingebunden wird, selbst wenn man keine explizite Rückmeldung über die 

Qualität des Ratschlags erhält. 

Zusammenfassend deuten die vorliegenden Ergebnisse darauf hin, dass Ratschläge auf 

zwei Arten die Schätzgenauigkeit verbessern können. Zum einen führen soziale Lernprozesse 

dazu, dass sich die Initialurteile von Entscheidungsträgerinnen und Entscheidungsträgern 

verbessern, insbesondere, wenn sie gute Ratschläge erhalten. Zum anderen adjustieren 

Entscheidungsträger_innen ihre Schätzungen in Richtung der Ratschläge, wenn sie zu einem 

Finalurteil kommen. Der Großteil an Leistungsverbesserungen, die durch Ratschläge 

ermöglicht werden, kommt allerdings durch den als erstes beschriebenen generellen Lerneffekt 

zustande. Aus diesem Grund sollte die zukünftige JAS Forschung diese bisher unerforschten 

sozialen Lerneffekte stärker berücksichtigen, um den vollen Nutzen von Ratschlägen besser 

abschätzen zu können. 

 

Bewertung des Forschungsprogramms und Diskussion 

Im Rahmen der vorliegenden Dissertation wurde das Auftreten von sozial vermittelten 

Lernprozessen im Gruppenkontext sowie in Ratschlagssituation bei quantitativen 

Schätzaufgaben untersucht. Dazu wurde in beiden Teilen des Forschungsprogramms der Fokus 

darauf gerichtet, auf welche Weise die Schätzgenauigkeit der Gruppenmitglieder oder 

Entscheidungsträger_innen steigt. 

 

Integrative Zusammenfassung der beiden Teile des Forschungsprogramms 
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Die Herangehensweise erfolgte aus zwei – bezüglich des Ausmaßes der sozialen 

Interaktion – unterschiedlichen Perspektiven: Zunächst wurde mit tatsächlich interagierenden 

Gruppen Rahmenbedingungen geschaffen, die sozial vermittelten Lernprozessen zuträglich 

sein sollten. Gruppenmitglieder haben hierbei nicht nur die Möglichkeit, ihre individuellen 

Schätzungen auszutauschen, sondern diese auch zu erläutern und somit leichter ihre Qualität 

salient zu machen. Im Gegensatz hierzu wurden im zweiten Teil des Arbeitsprogramms 

Ratschlagssituationen mit Hilfe des JAS (Sniezek & Buckley, 1995; Sniezek & Van Swol, 

2001) untersucht. Hierbei erhält die Entscheidungsträgerin oder der Entscheidungsträger 

üblicherweise einen Ratschlag in Form eines numerischen Werts ohne weitere Erklärungen, 

warum die Ratgeberin oder der Ratgeber gerade diesen Ratschlag abgibt. Dies sollte eine 

ungleich schwerere Situation für das Auftreten von Lernprozessen darstellen, da kein Wissen 

über den reinen numerischen Ratschlag hinaus vermittelt werden kann und es für 

Entscheidungsträger_innen eine größere Herausforderung sein sollte, gute von schlechten 

Ratschlägen zu unterscheiden, als für Mitglieder von interagierenden Gruppen. Über den Inhalt 

der separaten Forschungsprogramme hinaus, bietet das Arbeitsprogramm als Ganzes 

entsprechend die Möglichkeit, herauszufinden, ob die Lernprozesse in beiden Situationen 

ähnlich verlaufen oder sich grundlegend voneinander unterscheiden. 

 

Soziale Lernprozesse bei quantitativen Schätzaufgaben 

Wie bereits beschrieben, zeigen vorangegangene Forschungsbefunde, dass bei 

quantitativen Schätzaufgaben Gruppenarbeit die Leistung ihrer Mitglieder verbessern kann 

(Schultze et al., 2012) und Ratschläge die Genauigkeit der finalen, auf einen Ratschlag 

folgenden Schätzungen erhöhen können (Soll & Larrick, 2009; Sniezek et al., 2004). Das 

vorliegende Arbeitsprogramm leistet darüber hinaus einen Beitrag dazu, aufzuzeigen, wie 

einfach solche Leistungsverbesserungen von statten gehen können und welche Prozesse ihnen 

zugrunde liegen. Der erste Teil des Forschungsprogramms macht deutlich, dass bereits eine 

einfache Gruppeninteraktion ausreicht, um den vollen Nutzen der Gruppenzusammenarbeit 

auszuschöpfen, wobei die realisierten Leistungsverbesserungen zeitlich stabil sind. Der zweite 

Teil des Forschungsprogramms zeigt, dass Ratschläge nicht nur die Finalurteile von 

Entscheidungsträgerinnen und Entscheidungsträgern verbessern können, sondern darüber 

hinaus auch die Schätzgenauigkeit folgender Initialurteile positiv beeinflussen. Dies gelingt 

sogar dann, wenn die Qualität des Ratschlags nicht zusätzlich in Form von Feedback salient 

gemacht wird. Es scheint demnach für das Auftreten individueller Lerngewinne bei 

quantitativen Schätzaufgaben nicht nötig zu sein, mit anderen Personen zu kommunizieren. 
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Die einfache Darbietung eines guten Ratschlags kann dementsprechend ebenso individuelle 

Leistungsverbesserungen hervorbringen wie eine tatsächliche Gruppeninteraktion. 

Entscheidend scheint bei diesem Prozess, genauso wie bei Lernprozessen in interagierenden 

Gruppen, der Austausch von numerischen Referenzwerten zu sein (z.B. Bonner & Baumann, 

2008; Bonner et al., 2007; Laughlin et al., 1999; Laughlin et al., 2003). Diese Annahme wird 

vom gemeinsamen Befund verminderter metric errors aus allen im Arbeitsprogramm 

enthaltenen Experimenten unterstützt. Sowohl Gruppenmitglieder als auch 

Entscheidungsträger_innen im JAS erfahren durch die Gruppeninteraktion oder den Ratschlag 

numerische Schätzungen anderer Personen. Wenn diese Schätzungen als hilfreich 

wahrgenommen werden, kann die eigene Meinung in Richtung der anderen Gruppenmitglieder 

oder des Ratschlags angepasst werden. In anderen Worten wird die eigene Metrik adjustiert 

und das unabhängig davon, ob man in einer Gruppe arbeitet und mit Anderen interagiert oder 

einen numerischen Referenzwert in Form eines Ratschlags erhält. Zusammenfassend zeigt sich 

also, dass es bei den verwendeten Schätzaufgaben sehr einfach zu sozialen Lernprozessen 

kommen kann und die Lernprozesse sowohl in Gruppen als auch in Ratschlagssituationen nach 

demselben Muster ablaufen. 

Allerdings kann man dieses Ergebnis, auch wenn es bei zwei unterschiedlichen 

quantitativen Schätzaufgaben nachgewiesen werden konnte, sicherlich nicht ohne weiteres auf 

alle solchen Aufgabentypen generalisieren. Zum Beispiel sollte eine komplexere Aufgabe die 

Geschwindigkeit des Lernens beeinflussen oder könnte sogar sozial vermitteltem Lernen in 

einer Ratschlagssituation im Wege stehen. Der einfache Austausch von numerischen 

Referenzwerten könnte bei solchen Aufgaben nicht ausreichen, um die Schätzgenauigkeit zu 

erhöhen. Darüber hinaus könnten andere Schätzaufgaben auch die Reduzierung von mapping 

errors ermöglichen. Die im Arbeitsprogramm verwendeten Aufgaben zeichneten sich dadurch 

aus, dass Versuchspersonen dazu neigten, relativ große metric errors zu haben. Im Gegensatz 

dazu könnten die mapping errors der Versuchspersonen bei den untersuchten Aufgabentypen 

weniger ausgeprägt gewesen sein. Vermutlich hatten die meisten Versuchspersonen eine grobe 

Vorstellung von der geographischen Lage verschiedener europäischer Länder, was es ihnen 

ermöglichte, längere von kürzeren Distanzen zu unterscheiden. Darüber hinaus sollten die 

Versuchspersonen ebenso dazu in der Lage gewesen sein abzuschätzen, dass ein Kamm 

weniger wiegt als ein Hammer. In anderen Worten boten die verwendeten Aufgaben ein großes 

Potenzial für Verbesserungen im metric, aber nicht im mapping error. Dieses Spezifikum gilt 

aber mit Sicherheit nicht für alle Arten von Schätzaufgaben. Zum Beispiel sollten 

Finanzprognosen wie Aktienkurse in erster Linie durch mapping errors charakterisiert sein. 
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Der aktuelle Aktienkurs stellt einen guten Referenzwert dar, der den metric error von 

vornherein minimieren sollte. Im Gegensatz dazu sollte Wissen über generelle 

Marktentwicklungen sowie den Erfolg und zukünftige Pläne eines Unternehmens die 

Prognosen eines Aktienkurses zu verschiedenen Zeitpunkten verbessern. In anderen Worten 

sollte solches Wissen also in erster Linie den mapping error reduzieren und dadurch die 

Akkuratheit der Prognosen verbessern. Es bedarf also weiterer Forschung mit quantitativen 

Schätzaufgaben unterschiedlicher Charakteristika, um ein vollständigeres Bild davon zu 

erhalten, wie sozial vermittelte Lernprozesse bei solchen Aufgaben ablaufen können. 

 

Schlussbemerkung 

Sozial vermittelte Lernprozesse spielen eine wichtige Rolle bei quantitativen 

Schätzaufgaben. Das im Rahmen dieser Promotion durchgeführte Forschungsprogramm 

erweitert die empirische Forschung zu diesem Thema um die Frage, was bei typischen, in der 

Forschung verwendeten Aufgaben gelernt wird und ob ein genereller Transfer – von einer 

Aufgabe zu einer anderen Aufgabe der gleichen Art – auch bei JAS Experimenten ohne direkte 

Interaktion zwischen Entscheidungsträger_in und Ratgeber_in stattfindet. Die Ergebnisse 

zeigen zum einen die Wichtigkeit von numerischen Referenzwerten, was durch die starke 

Reduktion der metric errors, sowohl durch Gruppeninteraktion als auch durch Ratschläge, 

verdeutlicht wurde. Zum anderen gelang der erste Nachweis von generellem Lernen in 

Ratschlagssituation. Die Ergebnisse deuten darüber hinaus sogar an, dass dieser Lernprozess 

stärker ist als der bereits aus der Forschung bekannte positive Effekt der reinen 

Ratschlagsgewichtung auf die Qualität von Finalurteilen. 
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Abstract 

G-I transfer denotes an increase in individual performance due to group interaction, 

for example, because of acquiring certain skills or knowledge from the other group members. 

Whereas such G-I transfer has been successfully shown for problem-solving tasks, evidence 

for G-I transfer on quantitative estimation tasks is scarce. We address this research gap with a 

focus on how often a group has to interact in order to fully exploit the benefit of this learning 

effect. Results from two experiments support the idea that a single group interaction is 

sufficient to induce a stable G-I transfer, which reduces group members’ metric error. In 

contrast to nominal groups, both members of continuously interacting groups and members of 

groups with only one initial interaction exhibited stable G-I transfer, and the size of this 

transfer did not significantly differ between the latter two conditions. Furthermore, we found 

evidence for differential weighting of group members’ individual contributions that goes 

beyond sheer individual capability gains under certain circumstances, namely in tasks with a 

population bias. 

 

Keywords: group judgment; group performance; group-to-individual transfer; quantitative 

estimates; group learning; differential weighting  
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How much group is necessary? 

Group-to-individual transfer in estimation tasks 

Estimation tasks like forecasting prospective profits for a company, or estimating the 

expected increase in global temperature, lie at the heart of many far-reaching financial or 

political decisions. Important quantitative judgments are often made in groups, because 

groups are considered to be superior to a comparable number of individuals with regard to 

performance. For example, there is evidence that groups outperform comparison individuals 

(e.g., Bonner & Baumann, 2012; Bonner, Sillito, & Baumann, 2007; Laughlin, Bonner, 

Miner, & Carnevale, 1999) or even perform on the level of very challenging baselines like 

the most accurate group member’s estimates (e.g., Einhorn, Hogarth, & Klempner, 1977; 

Laughlin, Gonzalez, & Sommer, 2003). 

Beyond that, and independent of the actual group performance, group interaction 

might have another beneficial effect: individuals who interact in groups are assumed to 

exhibit particular social learning effects and thereby solve subsequent similar tasks more 

accurately than individuals who have no prior group experience. This possible individual 

capability gain as a consequence of prior collective task performance in a group is called 

group-to-individual transfer (G-I transfer, e.g., Laughlin & Barth, 1981; Laughlin & 

Sweeney, 1977). Despite the fact that there is robust evidence for such group learning 

processes in problem-solving tasks (e.g., Laughlin, Carey, & Kerr, 2008; Laughlin & Ellis, 

1986; Stasson, Kameda, Parks, Zimmerman, & Davis, 1991), this phenomenon has been 

mostly neglected in research on quantitative group estimations. To our knowledge, the only 

exception is a study by Schultze, Mojzisch, and Schulz-Hardt (2012), which found strong 

individual performance improvements in quantitative estimations after group interaction. 

However, it is yet unclear what people learn and whether they need ongoing social interaction 

to maintain this improved performance. Therefore, in the present research we try to find out 
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which knowledge is transferred when interacting with others. Furthermore, we focus on the 

repetitions of group interaction in order to accomplish stable individual performance 

enhancements. In other words, we investigate if one group interaction is sufficient to produce 

a significant increase in individual accuracy and, most importantly, whether it persists after 

group members leave the group. 

Group-to-individual transfer 

Building on the dynamic model of group performance by Brodbeck and Greitemeyer 

(2000a), we understand group learning as a function of two sources of change in individual 

resources that can improve groups in a complementary way. On the one hand, group 

members can improve their capabilities to work efficiently with each other (learning to 

collaborate). For example, group members might develop a shared mental model of the task, 

or they could acquire knowledge about the expertise of the other group members. On the 

other hand, and this is what we focus on in this paper, group members can improve their 

individual task-related skills as a consequence of group interaction, independent of purely 

individual practice effects (learning to perform the task). As already mentioned, this socially 

induced individual learning is known as G-I transfer. In other words, collectively performing 

tasks together can enhance group members’ individual resources to perform the task on their 

own. Examples of such learning processes are vicarious learning, or exchange of basic 

principles and strategies for effective task performance (e.g., Laughlin & Jaccard, 1975; 

Brodbeck & Greitemeyer, 2000a, 2000b). 

So far, most research on G-I transfer has been conducted in the domain of problem-

solving tasks, with ample empirical evidence for its existence. For example, participants who 

had worked on mathematical problems in a group later solved the same or other, logically 

related problems better than individuals working alone (e.g., Laughlin & Ellis, 1986; Stasson 

et al., 1991). Similarly, participants with prior group interaction exhibited better individual 
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performance in rule induction tasks compared to participants without such group interaction 

(e.g., Brodbeck and Greitemeyer, 2000b). By using multiple training sessions, Laughlin et al. 

(2008) addressed the necessary repetitions of group interaction in order to achieve G-I 

transfer, the major result of which was that one group interaction was sufficient for the 

occurrence of a stable G-I transfer. In other words, multiple group interactions did not affect 

the strength of the individual performance enhancements. However, all of these studies 

worked with tasks that are very likely characterized by high levels of demonstrability, which 

is considered to be a prerequisite for the occurrence of G-I transfer (Brodbeck & 

Greitemeyer, 2000a). According to Laughlin and Ellis (1986), one of the core conditions of 

demonstrability is that the member with the correct answer must have the ability, motivation, 

and time to demonstrate the correct solution to the other group members. On mathematical 

problems, this should usually be the case. When the task complexity is moderate, the member 

with the right solution should be able to explain its correctness. In contrast, on quantitative 

estimation tasks, it might be difficult for the best group member to demonstrate the high quality 

of his or her estimate, and for inferior group members to understand its quality. This lack of 

demonstrability might have some consequences on the occurrence of G-I-transfer. For 

example, it is more difficult to justify an estimation of New York City having around 8.4 

million inhabitants than explaining that 5 times 7 equals 35. Nevertheless, as long as people 

do not simply guess their estimations on world knowledge tasks, it is generally possible to 

explain why certain estimations are better than others. This should be especially true when it 

comes to rather poor estimations. For example, one might explain quite easily why the 

population of New York City cannot be 200 million when taking into account that the whole 

United States of America has around 320 million citizens. On the other hand, it should be 

more difficult to judge whether the city has either 6 or 7 million inhabitants. Therefore, G-I 

transfer might have somewhat higher hurdles in estimation tasks as compared to problem-
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solving tasks. 

Beyond that, differences in task demonstrability should have another important 

consequence. When tasks are characterized by a high demonstrability, as we often find it on 

problem-solving tasks like arithmetic problems (e.g. Laughlin & Ellis, 1986; Stasson et al., 

1991), the most capable member often determines the group outcome. In other words, one 

capable group member can be sufficient for solving the task. On this basis, group-level 

performance often does not benefit from individual capability gains because, even if the less 

capable group members become more capable over time, it is unlikely that their contributions 

will add anything beyond that of the most capable member. In addition, it is also unlikely that 

this most capable member will improve his or her performance in the absence of superior 

models to learn from. In contrast, on tasks with a somewhat lower demonstrability, like 

estimation tasks, the accuracy of group estimations usually benefits from taking all group 

members’ opinions into account (e.g., in the form of weighted or unweighted averages), 

because this can help to eliminate or, at least, reduce idiosyncratic errors. In other words, 

exclusively relying on the most capable member is usually not the best strategy in 

quantitative estimation tasks (Bednarik & Schultze, 2015; Soll & Larrick, 2009). 

Consequently, the group as a whole might benefit from improved individual performances of 

inferior group members. This fact makes the field of quantitative estimation tasks particularly 

interesting, because here individual capability gains could actually lead to a performance 

enhancement on the level of the entire group. 

To the best of our knowledge, there is only one study combining estimation tasks with 

a design that allows to detect increases in individual accuracy as a consequence of prior 

group interaction. Typically, studies in this field use a so-called I-G design (individual-group 

design, e.g., Bonner et al., 2007; Henry, 1993, 1995; Henry, Strickland, Yorges, & Ladd, 

1996; Sniezek & Henry, 1989, 1990), meaning that participants first complete a series of 
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quantitative estimation tasks individually (I) and then work on the same series of tasks as 

groups (G). Unfortunately, this design cannot account for G-I transfer, because individual 

performance is not measured after one or more group interactions have taken place. To 

address this limitation, Schultze et al. (2012) used an improved aI-G design (alternating-

individual-group design). Their experiments were separated into two sections: (a) an 

individual practice phase and (b) a group phase consisting of alternating individual and group 

estimates of distances between different European capital cities. Consequently, changes in 

participants’ individual accuracy due to the group interaction could be measured on their 

subsequent individual estimates. With this modified design, the authors found evidence for 

strong increases in individual accuracy after the first within-group interaction. In other words, 

group members already improved their individual performance after the first group 

discussion. In line with the idea of G-I transfer, inferior group members improved in 

accuracy while the groups’ best members’ accuracy remained stable. Furthermore, the 

improved estimation accuracy was relatively constant after this first major performance 

enhancement. Hence, it seemed that participants did not substantially benefit from further 

group interaction. These results are in line with the above-mentioned evidence from group 

problem-solving research, showing that one group interaction can be sufficient for the 

occurrence of a stable G-I transfer (Laughlin et al., 2008) in this type of task. 

However, the findings of Schultze et al. (2012) leave two important question 

unanswered. The first one is what do people learn when interacting with others? To answer 

this question, it is useful to differentiate two types of estimation error. As outlined by Brown 

and Siegler (1993; see also Brown, 2002), one’s knowledge in a judgment domain can be 

decomposed into two components: metric knowledge and mapping knowledge. Metric 

knowledge is a general understanding of the appropriate scaling, that is, whether people have 

an accurate representation of the correct upper and lower boundaries, or what range of values 
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is plausible. For example, knowing that Germany has a length of approx. 900 kilometers, and 

that the equator has a length of roughly 40,000 kilometers, helps when estimating distances, 

and prevents us from making judgments that are completely implausible. In contrast to that, 

mapping knowledge is an accurate representation of the relative magnitude of possible target 

values. In other words, mapping knowledge allows us to put different target values of the 

same kind in the correct order. Most people know that the distance between London and Paris 

is shorter than the distance between London and New York, without necessarily having a 

good guess about the actual distances. 

Interacting with others when working on estimation tasks should affect these two 

sources of estimation error differently, and to a different extent. Previous studies imply that 

providing people with frames of reference can strongly increase their estimation accuracy 

(e.g., Bonner & Baumann, 2008; Bonner et al., 2007; Laughlin et al., 1999; Laughlin et al., 

2003). Collaborating with others during quantitative estimations could have exactly this 

effect: During their task-related communication, group members provide the reasoning for 

their individual estimates and illustrate the validity of certain benchmarks (Schultze et al., 

2012). With regard to the two above-mentioned sources of error, such reference values 

should mainly improve metric knowledge quite rapidly and thereby diminish particularly 

implausible estimates. In contrast, reducing one’s mapping error during social interaction 

should be more difficult than understanding differences in group members’ metric error. 

When estimating distances between European cities one can only recognize that another 

group member has a different mapping error, for example, when realizing that he or she 

always overestimates distances between southern European cities and always underestimates 

distances between northern European cities. In other words, one need to precisely remember 

multiple estimates of other group members in order to recognize such differences. 

Consequently, the process of reducing one’s mapping error should be very slow and only 
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possible after a long period of cooperation. 

The second open question has to do with the stability of the learning process. 

Specifically, we do not yet know whether the G-I transfer is stable even if the group is 

completely disbanded, or whether continuous social interaction is needed for its maintenance. 

In other words, it is crucial to find out how the individual performance develops after the last 

group interaction. In the experiments of Schultze et al. (2012), participants continuously 

alternated between working on the estimation tasks individually and in groups, that is, they 

remained in a group context until the end of the experiment. Hence, so far there is no research 

about the temporal stability of G-I transfer in quantitative estimation tasks after members 

have left the group, and whether, under these conditions, one single group interaction leads to 

an equally strong individual performance enhancement compared to continuous group 

interaction. 

Answering this question is not only relevant to gain a more conclusive theoretical 

understanding of the mechanisms that underlie G-I transfer. Rather, it is also a crucial 

question for practical purposes: The results of the Schultze et al. (2012) study suggest that it 

might be sufficient to have just one group interaction to fully exploit the benefits of having 

groups work on quantitative estimation tasks. As bringing group members together and 

having them discuss and decide on an issue costs more effort than just collecting and 

averaging individual judgments, truncating group interaction right after the first group 

judgment would, obviously, save a lot of resources. However, this would only pay off if the 

benefits of this interaction (i.e., the G-I transfer) do not fade away relatively soon after this 

first interaction. As Schultze et al. (2012) do not provide an empirical test for a sustainable 

beneficial G-I transfer after one single group interaction, we want to address this research gap 

in the current study. 

Therefore, it is crucial to (a) replicate the finding of a strong increase in individual 
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accuracy after just one group interaction, (b) analyze if group members increase their metric 

knowledge after interacting with others and (c) check whether their individual performance 

enhancement remains stable even if the first group interaction is also the last, that is, if all 

subsequent individual trials take place without any further group interactions in between. In 

other words, our study investigates what people actually learn during a group interaction and 

whether a single group interaction is sufficient to achieve a stable improvement in individual 

performance, or whether a robust transfer requires ongoing group interaction. We present two 

experiments exploring these issues. In each, we report all measures and manipulations. 

Furthermore, no participants were excluded from analyses. 

Hypotheses 

Schultze et al. (2012) found evidence that one group interaction might be sufficient 

for a strong increase in individual accuracy in quantitative estimation tasks. Our first aim is to 

test whether this effect is replicable by comparing two experimental group conditions 

(differing in the number of group interactions) to a control condition with nominal groups, 

that is, an equivalent number of non-interacting individuals. We predict that one group 

interaction is sufficient to achieve a significant increase in individual accuracy (G-I transfer): 

Hypothesis 1: Group members’ individual accuracy will increase after the first group 

interaction. Both members of continuously interacting groups as well as members of groups 

with only a single group interaction will manifest these performance enhancements, whereas 

individual accuracy in the nominal groups will not improve at all. 

More importantly, we aim to answer the question of whether the stability of the G-I 

transfer requires ongoing group interaction. One single group interaction might be sufficient 

to achieve a stable performance enhancement. However, it is still possible that permanent 

group interaction is crucial for the stability of the increased individual estimation accuracy. In 

other words, the individual performance could deteriorate when the group is disbanded. As a 
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consequence, we formulate two competing hypotheses regarding this research question: 

Hypothesis 2a: The increase in individual accuracy after the first group interaction is 

stable even when the group is disbanded. 

Hypothesis 2b: The increase in individual accuracy after the first group interaction 

deteriorates after the group is disbanded. 

Furthermore, we are interested in whether there are differences between the two 

experimental conditions. Once again, there are two different possibilities, both of which we 

consider to be plausible. On the one hand, if the individual estimation accuracy is similarly 

stable after one as compared to many group interactions, the individual estimation accuracy 

should be (more or less) equally strong in both conditions. On the other hand, the increase in 

individual accuracy might deteriorate after the group is disbanded, or continuous group 

interaction could additionally foster the G-I transfer. This, in turn, should lead to stronger 

performance enhancements for members of continuously interacting groups. Accordingly, we 

also formulate two competing hypotheses for this issue: 

Hypothesis 3a: The increase in individual accuracy over the course of the individual 

trials is equally strong for members of single-interaction groups and continuous-interaction 

groups. 

Hypothesis 3b: Members of continuous-interaction groups will manifest a stronger 

increase in individual accuracy than members of single-interaction groups. 

Finally, we aim to test what group members learn when interacting with others. We 

do not expect transfer of mapping knowledge since the process of reducing one’s mapping 

error should be very slow and only possible after a long period of cooperation. In contrast, if 

the exchange of reference values underlies individual performance enhancements, group 

members should mainly reduce their metric error. Hence, we hypothesize: 
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Hypothesis 4: Interacting with others will reduce group members’ metric error. Both 

members of continuously interacting groups as well as members of groups with only a single 

group interaction will manifest this transfer of metric knowledge, whereas non-interacting 

individuals will not improve their metric error. 

Although the focus of our study is on individual performance after group interaction, 

for exploratory purposes we will also investigate group performance in comparison to 

individual performance. As hypothesized, group members might benefit individually from 

group interaction, which, in turn, could make groups better than an equivalent number of 

individuals. Hence, we will conduct an exploratory test of whether such surplus at the group 

level occurs in our study. Furthermore, we will also look at the possible occurrence of 

differential weighting strategies, that is, groups weighting more competent members more 

strongly. In addition to G-I transfer, such weighting strategies might also contribute to the 

quality of group judgments complementarily. So far, the only study that controlled for 

individual performance enhancements did not find any evidence for differential weighting 

(Schultze et al., 2012). Nevertheless, this latter finding need not necessarily be generalizable, 

because Schultze et al. only used one specific type of task. Consequently, we want to analyze 

if groups engage in differential weighting strategies on different quantitative estimation tasks. 

However, since individual capability gains are the focus of our study, we refrain from 

formulating hypotheses and, instead, analyze these two questions in an exploratory manner. 

Experiment 1 

In Experiment 1, we aimed to investigate whether the previously found individual 

performance enhancements due to group interaction (Schultze et al., 2012) are replicable, and 

whether or not this increase in accuracy requires ongoing group interaction. In other words, 

we wanted to find out whether a single group interaction has the same beneficial effect as 

multiple interactions. For this purpose, we compared continuously interacting groups with 
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groups that were disbanded after their first within-group interaction, and with nominal 

groups. Members of both continuous-interaction and single-interaction groups should provide 

more accurate judgments individually due to the G-I-transfer. Furthermore, the experimental 

design allows us to examine whether G-I-transfer is equally strong after multiple group 

interactions in comparison to just one, which could then be interpreted as evidence for its 

stability beyond the group context. 

Method 

Participants, design and task 

One hundred eighty-three German or German-speaking students (112 women, 70 

men, one participant did not report his or her gender) with an average age of 21.43 (SD = 

3.28) years participated in the experiment, with three persons each forming a real or nominal 

group. The sample size was based on a previous relevant study (Schultze et al., 2012). 

Experiment 1 used a mixed design with group type (continuous-interaction, single-

interaction, no interaction) as a between subjects variable and task trial (or, for some 

analyses, trial block) as a within subjects variable. 

The participants worked on a set of distance estimations between different European 

capital cities. This is the same task that has been used by Schultze et al. (2012). It was chosen 

based on two pretests (N = 40 and N = 38) revealing that there were stable differences in 

participants’ individual performance (mean Spearman’s Rho = .28, p < .001 and mean 

Spearman’s Rho = .35, p < .001, respectively), which is a prerequisite for learning processes 

(Schultze et al., 2012). We measured the estimation accuracy with the mean absolute percent 

error (MAPE). In group judgment research, the MAPE score is a common measure of 

accuracy (e.g., Sniezek & Henry, 1989, 1990) and indicates the average relative deviation of 

the participant’s estimates from the true values. The average MAPE scores in the two pretests 

of Experiment 1 indicated that pretest participants’ deviated roughly 60 and 50 percent from 
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the true value (M = 62.22, SD = 63.55 and M = 48.31, SD = 21.14). Furthermore, we checked 

whether participants’ estimates were evenly distributed around the true values or whether the 

task contains a systematic population bias, that is, they tended to over or underestimate the 

true value. For this purpose, we calculated participants’ mean percent deviation from the true 

values (thereby allowing overestimations and underestimations to cancel out each other). 

Corresponding t-tests against zero revealed no significant differences (M = 16.31, SD = 

79.72), t(39) = 1.29, p = .203, d = 0.29, and (M = -2.59, SD = 38.94), t(37) = -.41, p = .685, d 

= 0.09, respectively, indicating that this task contained no substantial population bias. 

Procedure 

In each experimental session, six to nine participants were invited and randomly 

guided to one of three lab rooms, where they were placed at separate tables. Participants were 

informed about the task and the procedure of the experiment. They were instructed that the 

experiment consisted of two phases with ten distance estimates each: an individual practice 

phase and a group phase. Hence, participants knew from the beginning that they were going 

to interact unless the number of participants showing up was not divisible by three. In this 

case, excess participants were assigned to the individual control condition. The specific 

distances that the participants should estimate were not identical between the two phases but 

were, as the pretests indicated, on average, of similar difficulty.1 In the practice phase, 

participants were asked to work on ten trials individually, and they were told that the goal was 

to estimate the airline distances between cities in kilometers as accurately as possible. 

Furthermore, the experimenter asked them not to communicate or to exchange notes. There 

was no time limit, but participants usually took between ten and fifteen minutes to finish this 

                                                             
1 Furthermore, participants were asked to rate their estimation confidence on a six-point Likert scale 
after every judgment. However, because this confidence measure revealed no relevant effects for our 

research question we refrain from reporting any analyses regarding this measure. Nevertheless, we 

will be glad to publish our data for further analyses. 
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phase. Once they were done, the experimenter collected the data and computed the MAPE for 

each participant. Afterwards, the participants were assigned to three-person-groups. 

Whenever possible, we aimed for some heterogeneity in group members’ skill level, as a 

certain amount of heterogeneity is necessary for individual capability gains and differential 

weighting strategies. To this end, groups were composed so that MAPE scores of the most 

capable and medium group member differed by at least ten percentage points and of the 

medium and least capable group member by another ten percentage points. Hence, 

participants’ practice phase MAPE influenced the assignment to the three conditions.2 

The second phase of the experiment differed depending on the experimental condition. 

In the continuous-interaction and the single-interaction condition, three participants each 

formed a group and were asked to take a seat at a shared table. The groups received four 

questionnaires containing the estimation tasks, one for each group member to write down his 

or her individual estimates, and one for the group estimates. The difference between the two 

group conditions was the number of group interactions. In continuous-interaction groups, the 

group members first worked on a specific distance estimate individually and then discussed 

their individual estimates in order to come up with a consensus estimate. Afterwards, they 

proceeded with the next trial of the group phase in the same fashion. Participants were told 

that they were neither allowed to inspect their estimates of trials they had already worked on, 

nor to revise these previous estimates. Furthermore, they were reminded not to communicate 

or exchange notes when working on their individual estimates. The single-interaction groups 

only interacted on the first trial of the second phase. Again, before interacting as a group, 

each group member had to come to an individual estimation. After discussion of the first task 

                                                             
2 The assignment to the three conditions did not affect accuracy differences between the conditions, 

F(2, 58) = 0.05, p = .953, ηp
2 < .01, that is, the average MAPE-scores of the individual training phase 

(prior to the experimental manipulation) were almost identical for the three conditions. Beyond that, 

there was no evidence for average group member accuracy variance differences between conditions, 

F(2, 58) = 0.73, p = .487, ηp
2 = .02. 
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and making a group judgment, the single-interaction groups were disbanded, and their 

members were placed at separate tables where they worked on the remaining nine trials 

independently and without further discussion. The individual judgments of the nine trials on 

which participants in the single-interaction condition worked on their own were later 

averaged to form hypothetical group judgments. In the nominal group condition, participants 

worked on all ten estimates of the second phase individually, that is, they worked at separate 

tables and were not allowed to communicate or exchange information. Subsequently, the 

judgments of the three nominal group members were averaged to create the nominal group 

judgments. Participants had no guidelines regarding how to work on a particular task and, 

again, there was no time limit. 

In each condition, the experimenter explained that the accuracy of the estimates 

during the second phase would determine the amount of money the participants would receive 

for participating in the experiment. In addition to a show-up fee of 5 Euro, there was an 

accuracy-based bonus payment ranging from 0 to 5 Euros.3 After completing phase 2, 

participants were asked to fill in a final questionnaire containing a suspicion check. In the 

meantime, the experimenter calculated the MAPE score of the second phase to determine the 

bonus payment. Before the participants were dismissed, they were thanked for their 

participation and debriefed. 

 

 

                                                             
3 For the continuous-interaction groups, this bonus was based on the accuracy of the group judgments. 
For single-interaction groups, it was based on the group judgment of the first trial in the second phase 

and the average of their individual estimates for the remaining nine trials. For nominal group 

members, the bonus depended solely on their individual accuracy during the second phase. However, 

participants were only aware of a general performance bonus and were not informed about the details of 
how this bonus was computed in each of the experimental conditions (to prevent that individual task 

motivation might differ between the experimental conditions as a consequence of differences in bonus 

computation). 
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Results and discussion 

Group-to-individual transfer 

In order to test for individual performance enhancement in terms of G-I transfer, we 

analyzed whether group interaction led to improved subsequent individual estimations. For 

reasons of simplification, we compared the differences in individual MAPE scores between the 

individual practice phase and the group phase in the three experimental conditions and did not add 

the two phases as a within-subjects factor. The trial right before the first group interaction was 

treated as the last trial of the individual practice phase, since this trial still took place before any 

effects of group interaction could have occurred.4 Positive values of the accuracy difference 

measure represent an increase in accuracy from phase one to phase two. We conducted a 3 (group 

type: continuous-interaction vs. single-interaction vs. no interaction) × 3 (group member: most 

capable vs. medium vs. least capable) ANOVA with experimental condition as between-subjects 

factor and group member as within-subjects factor. The analysis revealed a significant main effect 

of group type, F(2, 58) = 4.84, p = .011, ηp
2 = .14. LSD post hoc comparisons showed that the 

performance enhancements where roughly similar in the continuous-interaction and the 

single-interaction condition (M = 19.28, SD = 20.68 vs. M = 16.13, SD = 17.09), p = .611.5 

However, participants increased their performance significantly more in both the continuous-

interaction groups and the single-interaction groups than in the non-interacting nominal 

groups (M = 19.28, SD = 20.68 vs. M = 1.77, SD = 20.12), p = .005, and (M = 16.13, SD = 

17.09 vs. M = 1.77, SD = 20.12), p = .023, respectively. Furthermore, separate post hoc t-tests 

                                                             
4 We calculated a paired-samples t-tests between participants’ average individual accuracy on the ten 

trials of the practice phase and the first trial of the second phase for the two group conditions, to rule 

out any motivational effects because participants’ anticipation of group interaction might increase the 
accountability they feel for their estimate. However, this analysis revealed no differences at all (M = 

48.44, SD = 17.02 vs. M = 47.18, SD = 33.32), t(39) = 0.30, p = .762, d = 0.05. 
5 We used LSD post hoc comparisons because we aimed for the highest possible statistical power 

when comparing the two interacting group conditions. More conservative post hoc comparisons might 
have disguised significant differences. As a consequence of the higher statistical power, the absence 

of significant differences between the two interacting group conditions is an even more informative 

finding. 
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against zero revealed a significant performance enhancement in the continuous-interaction 

condition, t(20) = 4.27, p < .001, d = 0.94, as well as in the single-interaction condition, t(18) 

= 4.11, p = .001, d = 0.95. The nominal group condition, in contrast, showed no significant 

changes in the individual MAPE scores from the first to the second phase, t(20) = 0.40, p = 

.692, d = 0.09. Because participants in the nominal group condition did not improve their 

performance between the two phases, we can assume that there are no substantial individual 

practice effects in the task we used, which mirrors the findings of Schultze et al. (2012). 

Accordingly, in line with Hypothesis 1, the increase in judgment accuracy in the two group 

conditions should be the result of G-I transfer, supporting the idea that one group interaction 

is sufficient to increase individual estimation accuracy. The results further indicate that, in 

general, the performance enhancements were equally strong after one as after multiple 

interactions. In other words, groups working on the distance estimates were able to exchange all 

information necessary to induce the full amount of increase in individual accuracy already during 

their first group discussion, supporting Hypothesis 3a.6 

The ANOVA further revealed a main effect of group member, F(2, 57) = 26.14, p < 

.001, ηp
2 = .31, which was qualified by an interaction of group member and group type, F(4, 

116) = 4.51, p = .002, ηp
2 = .13, in line with the idea that differences in G-I transfer can only 

be observed in the two group conditions and not in the non-interacting control condition. 

Separate post hoc paired-samples t-tests for the continuous-interaction and the single-

interaction condition indicated that the accuracy improvements differed between all levels of 

group members’ judgment accuracy, all ts(20) > 3.58, all ps < .002, all ds > 0.78, for the 

                                                             
6 Beyond that, participants’ gender did not significantly affect the dependent variable, t(180) = 1.90, p 

= .059, d = 0.29, although, descriptively, performance changes were somewhat more pronounced for 

women than for men. However, there was no association between the condition and participant’s 
gender, χ² (2) = 0.33, p = .859. In other words, female and male participants were roughly equally 

distributed across conditions. Moreover, there was also no significant relationship between 

participants’ age and the dependent variable, r < .01, p = .990. 
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continuous-interaction condition and, all ts(18) > 3.12, all ps < .006, all ds > 0.71, for the 

single-interaction condition (for an overview of all individual performances changes, see 

Table 1). In contrast, and as expected, there were no significant differences in performance 

changes as a function of the particular group member’s capability in the nominal-group 

condition, all ts(20) < 1.27, all ps > .222, all ds < 0.28. Additionally, post hoc t-tests against 

zero revealed that in both continuous-interaction and single-interaction groups only the 

medium and the least capable members improved their estimation accuracy from phase one to 

phase two, all ts(20) > 3.44, all ps < .003, all ds > 0.75, and all ts(18) > 2.95, all ps < .009, all 

ds > 0.67, respectively. In contrast, the most capable group members’ performance remained, 

more or less, stable in both conditions, t(20) = 0.18, p = .863, d = 0.04, and t(18) = 0.89, p = 

.384, d = 0.20, respectively. These differences in increased accuracy depending on group 

members’ judgment accuracy indicate that group members understand from whom to learn or 

at least whom to ignore. Apparently, this understanding already occurs during the very first 

within-group interaction. Superior group member seems to share task relevant knowledge 

that can and should be learned. Consequently, only inferior group members can benefit from 

G-I transfer. In contrast to this improved estimation accuracy, in the nominal-group 

condition, none of the group members significantly changed their performance between the 

two phases, all ts(20) < 1.68, all ps > .108, all ds < 0.37. Hence, the interaction effect of 

group member and condition is the result of stronger performance enhancements of inferior 

group members after interacting with superior group members. This finding further supports 

the idea of G-I transfer and indicates that the most capable group members were the source of the 

learning process. In contrast, the medium and least capable group members seemed to benefit 

from the most capable members, leading them to approximate their levels of individual accuracy. 

In addition, we conducted a more detailed temporal analysis of the observed individual 

performance enhancements in the two interacting group conditions to determine when the major 
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increase in individual accuracy occurs. For this purpose, we compared group members’ averaged 

individual accuracy of the trials before the first group interaction (trial 1-11) with the trial 

immediately after the first group interaction (trial 12), and then the averaged individual accuracy 

of the remaining 8 trials (trial 13-20). Doing so allowed us to analyze whether the performance 

enhancement after the first group interaction is relatively stable over time. Accordingly, we 

conducted a 2 (group type: continuous-interaction vs. single-interaction) × 3 (trial block: 

practice phase vs. trial after first group interaction vs. remaining 8 trials) repeated measures 

ANOVA. This analysis revealed a main effect of trial block, F(2, 37) = 35.57, p < .001, ηp
2 = 

.48, and no main effect of group type, F(1, 38) = 0.32, p = .574, ηp
2 < .01, or interaction of 

group type and trial block, F(2, 37) = 0.33, p = .724, ηp
2 < .01. Post hoc paired-samples t-tests 

showed that in the continuous-interaction condition the average individual accuracy 

discontinuously increased after the first group interaction (M = 48.63, SD = 19.97 vs. M = 

26.30, SD = 14.17), t(20) = 6.58, p < .001, d = 1.44, and remained (more or less) stable 

afterwards (M = 26.30, SD = 14.17 vs. M = 29.73, SD = 7.01), t(20) = -1.01, p = .324, d = 

0.22. Moreover, the same was true for the single-interaction condition (M = 47.99, SD = 

15.01 vs. M = 29.69, SD = 11.66), t(18) = 5.05, p < .001, d = 1.16, and (M = 29.69, SD = 

11.66 vs. M = 32.13, SD = 8.29), t(18) = -1.13, p = .274, d = 0.26, respectively (see also 

Figure 1). This result suggests that a single group interaction is sufficient to ensure the 

stability of the observed G-I transfer, in line with Hypothesis 2a.7 

 

                                                             
7 Additionally, we split the 20 trials in four blocks (trial 1-6, 7-11, 12-16, 17-20) to analyze more 

evenly sized blocks of trials. Corresponding post hoc paired-samples t-tests only revealed significant 

changes in group members’ individual accuracy right after the first group interaction in both the 
continuous-interaction condition (M = 49.86, SD = 22.39 vs. M = 31.13, SD = 9.92), t(20) = 3.84, p = 

.001, d = 0.88, and the single-interaction condition (M = 50.67, SD = 18.37 vs. M = 31.18, SD = 8.88), 

t(18) = 4.65, p < .001, d = 1.09 (all other ts < 1.58; all other ps > .130). Furthermore, there was no 

significant linear trend towards an individual accuracy decrease or improvement after the first group 
interaction for the continuous-interaction nor the single-interaction condition (all Fs < 1.48, all ps > 

.240). These analyses further support the assumption of immediate performance enhancements right 

after the first group interaction with no additional improvements on subsequent trials. 
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Changes in metric and mapping error 

Beyond that, we were interested in what members of interacting groups actually learn. 

To this end, we calculated the mean overall deviation (MOD) (Brown & Siegler, 1993), 

which is a measure of metric property defined as the absolute difference between the median 

estimate across all items and the true overall median and is therefore less susceptible for 

outlier than the arithmetic mean. Accordingly, lower values indicate a lower metric error.  

However, the magnitude of participants’ judgment errors covaried strongly with the 

respective true values. Hence, we worked with the percentage error instead of the absolute 

deviation from the true values. Nevertheless, the pattern of results remains unchanged when 

working with the median absolute error instead of the median absolute percentage error in 

both experiments. Similar to the analyses of group members’ MAPE scores, we compared the 

differences of individual MOD scores between the individual practice phase and the group phase 

in the three experimental conditions. Thus, positive values indicate decreasing metric errors. 

Again, the trial right before the first group interaction was treated as the last trial of the individual 

practice phase and we averaged across group members for reasons of simplicity.8 We calculated 

an ANOVA with group type (continuous-interaction vs. single-interaction vs. no interaction) 

as between-subjects factor, which showed significant differences, F(2, 58) = 9.50, p < .001, ηp
2 = 

.25. Whereas participants in the continuous-interaction condition and in the single-interaction 

condition decreased their metric errors (M = 24.38, SD = 23.95, and M = 15.38, SD = 22.83), 

this error even increased for participants in the nominal group condition (M = -3.52; SD = 

15.91). The differences between the two interacting groups condition and the nominal group 

condition were significant, p < .001 and p = .007. In contrast, the difference between 

continuously interacting groups and single interaction groups fell short of significance (p = 

                                                             
8 The pattern of results when adding group member as a within-subjects factor mirrors the general finding 

of stronger performance enhancements of inferior group members, such that metric error reductions were 

stronger for inferior group members as well in both experiments. 
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.184) although, descriptively, the metric error reduction was more pronounced among the 

former than among the latter. In sum, we found evidence that interacting with others reduces 

group members’ metric error, which is line with Hypothesis 4.  

Besides the metric error, we were also interested in possible changes in mapping 

errors, i.e. whether participants were able to put different target values in the correct order. 

Therefore, we computed rank-order correlations, which represent the correlation between the 

ranks of estimates with the ranks of true values (Brown & Siegler, 1993), and calculated the 

difference between group members’ Fisher z-transformed averaged rank-order correlation 

coefficients (Spearman’s rho) during the group phase and the individual practice phase. 

Accordingly, positive values indicate decreasing mapping errors. Similar to the metric error 

analysis, we calculated an ANOVA with group type (continuous-interaction vs. single-

interaction vs. no interaction) as between-subjects factor, which revealed no significant 

differences, F(2, 54) = 1.71, p = .191, ηp
2 = .06. Hence, whether participants interacted with 

others or not had no effect on their mapping error. 

Exploratory analyses: Group-level data 

In an exploratory fashion, we investigated whether interacting groups outperformed 

nominal groups. For this purpose, we calculated the MAPE score for the 10 trials of the 

group phase. In the continuous-interaction condition, these MAPE scores were based on the 

groups’ consensus estimates, whereas in the nominal-group condition these scores were 

calculated as the average of the three nominal-group members’ individual estimates. In the 

single-interaction condition, the groups’ average MAPE score was a composite measure of 

the group estimate in the first trial of the second phase and the averaged individual estimates 

in the remaining nine trials. Based on these calculations, our first analysis was an ANOVA 

with group type (continuous-interaction vs. single-interaction vs. no interaction) as a 

between-subjects factor. This analysis showed no significant effect of group type, F(2, 58) = 
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1.56, p = .219, ηp
2 = .05. Descriptively, the results indicate that both the continuous-

interaction groups (M = 25.97, SD = 9.80) and the single-interaction groups (M = 25.49, SD = 

11.07) performed somewhat better than the nominal groups (M = 32.05, SD = 17.46). 

However, due to the relatively high variances within the conditions, the superiority of 

interacting over non-interacting groups fell short of significance. 

Furthermore, we tested whether the performance of continuously interacting groups 

exceeded the average model that was calculated on the basis of their members’ individual 

estimates right before each of the group trials (i.e., the estimates that already benefitted from 

G-I transfer). If this were the case, it would indicate that groups differentially weight the 

proposals of superior members more strongly than the proposals of weaker members. We 

excluded the first trial of the second phase in order not to artificially penalize the average 

model and averaged across the remaining trials.9 The corresponding paired samples t-tests 

showed that the actual group performance was slightly (but not significantly) inferior to the 

average model (M = 25.09, SD = 9.51 vs. M = 23.42, SD = 8.25), t(20) = 1.11, p = .282, d = 

0.24. In general, our results indicate that groups in Experiment 1 were not able to outperform 

the average model. 

However, we cannot yet rule out that the results of Experiment 1 might be task specific, 

because we used the same task as Schultze et al. (2012). For example, our participants might 

have had a more or less accurate representation of the map of Europe, which, in turn, could 

have facilitated learning processes when receiving an accurate point of reference. Beyond that, 

the task was characterized such that participants were as likely to underestimate as to 

overestimate the true values. Consequently, group members could have accomplished 

                                                             
9 Individuals cannot yet benefit from G-I transfer on the first trial of the second phase. The group 
judgments, however, can, lead to an “unfair” advantage over the averaged previous individual 

judgments, which, in turn, would distort the results regarding whether or not groups engage in 

differential weighting strategies. 
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individual performance enhancements similar to G-I transfer, by simply centering their 

individual estimates. Therefore, the question is whether our findings would still hold if the task 

were more difficult and if participants would tend to over- or underestimate the true value. 

Furthermore, the sequence of trials in Experiment 1 – and also in both experiments by Schultze 

et al. (2012) – was in a fixed order. Therefore, we cannot rule out that differences in the 

difficulty of the different trials had an influence on the magnitude of the observed G-I transfer 

or changes in metric and mapping error. Hence, to validate our findings in terms of replicability 

and generalizability, we conducted a second experiment with a different task type and a 

randomized trial order. 

Experiment 2 

To generalize our findings, we conducted a second experiment with the same design 

but a different task type, namely estimating the weights of different objects. The task was 

considerably more difficult and characterized by a strong population bias (see section task 

and procedure). In spite of these differences, we expected to replicate the results of 

Experiment 1 with respect to individual performance enhancements. Particularly when taking 

into account that evidence on G-I transfer in quantitative estimation tasks is extremely scarce 

so far, we consider a replication of our results as being indispensable. 

Method 

Participants and design 

A total of 252 German or German-speaking students (152 women, 100 men) with an 

average age of 23.25 (SD = 4.53) years participated in the experiment, with three persons 

each forming a (real or nominal) group. Experiment 2 used the same mixed factorial design 

as in Experiment 1, with the group type (continuous-interaction, single-interaction, no 

interaction) as a between subjects variable and task trial (or trial block) as a within subjects 

variable. 



HOW MUCH GROUP IS NECESSARY? 
 

25 

Task and procedure 

The procedure of Experiment 2 was identical to Experiment 1, with the following 

exceptions: First, participants were asked to estimate the weight of different small items (e.g., 

hammer, dustpan, or umbrella) that were present in the room, without being allowed to touch 

or lift them. We chose this task based on two pretests (N = 30 and N = 29) revealing that 

there were stable differences in participants’ individual performance (mean Spearman’s Rho 

= .39, p = .031 and mean Spearman’s Rho = .49, p = .008, respectively). Furthermore, this 

task was evidently more difficult than the task of Experiment 1: The average MAPE scores in 

the two pretests of Experiment 2 were markedly above the corresponding scores in the two 

pretests of Experiment 1 (M = 293.02, SD = 234.63 and M = 398.71, SD = 261.07 vs. M = 

62.22, SD = 63.55 and M = 48.31, SD = 21.14). Beyond that, in contrast to the pretests of 

Experiment 1, participants had a strong tendency to overestimate the true values. When 

calculating participants’ mean percent deviation from the true values, these average 

deviations were significantly greater than zero (M = 281.36, SD = 241.84), t(29) = 6.37, p < 

.001, d = 1.16, and (M = 395.80, SD = 263.79), t(29) = 8.08, p < .001, d = 1.50, respectively, 

indicating a large population bias. The second change was that we aimed to rule out that the 

results obtained in Experiment 1 were in any way due to the fixed order of trials. To this end, 

we randomly created four different trial orders in Experiment 2 by splitting the 20 trials into 

two task blocks of 10 trials each. Half of the participants worked on the first block in the 

individual practice phase and on the second block in the group phase, whereas this order was 

reversed for the other half. In each sequence, we additionally reversed the order of trials 

within the two blocks for half of the participants. 
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Results and Discussion 

Group-to-individual transfer 

Similar to Experiment 1, we started by testing for increased accuracy of group 

members’ individual estimates consistent with G-I transfer. For this purpose, we again 

calculated individual performance enhancements by subtracting the individual MAPE scores 

of the group phase from those of the individual practice phase. Again, the first trial of the group 

phase (i.e., the trial right before the first group interaction) was counted as the last trial of the 

individual practice phase, since this trial could not, by definition, be affected by any group 

interaction. With the MAPE scores as dependent variable, we conducted a 3 (group type: 

continuous-interaction vs. single-interaction vs. no interaction) × 3 (group member: most 

capable vs. medium vs. least capable) ANOVA with group type as between-subjects factor and 

group member as within subjects factor.10 This analysis revealed a main effect of group type, F(2, 

81) = 8.39, p < .001, ηp
2 = .17. LSD post hoc comparisons showed that the performance 

enhancements in the continuous-interaction condition were somewhat stronger than those in 

the single-interaction condition, but the comparison did not reach conventional levels of 

significance (M = 87.33, SD = 62.90 vs. M = 49.24, SD = 100.60), p = .077. As the more 

detailed temporal analysis reported below will clarify, this descriptive difference is indeed 

most likely due to random variation. As in Experiment 1, participants in both the continuous-

interaction groups as well as in the single-interaction groups increased their performance 

significantly more than participants in the nominal groups (M = 87.33, SD = 62.90 vs. M = 

0.79, SD = 70.48), p < .001, and (M = 49.24, SD = 100.60 vs. M = 0.79, SD = 70.48), p = 

.026, respectively. Furthermore, post hoc t-tests against zero showed a significant increase in 

                                                             
10 We conducted the same ANOVA with the four randomly created trial orders as an additional 

between-subjects factor. This analysis revealed no significant interaction of trial order and group type, 
F(6, 72) = 0.46, p = .838, ηp

2 = .04, indicating that differences between the three conditions cannot be 

attributed to differences in the order of trials. Therefore, we dropped the order of trials as a between-

subjects factor in all analyses. 
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individual accuracy in the continuous-interaction condition, t(27) = 7.35, p < .001, d = 1.39, 

as well as in the single-interaction condition, t(27) = 2.59, p = .015, d = 0.49. 11 The nominal-

group condition, in contrast, showed virtually no change in MAPE scores from the first to the 

second phase, t(27) = 0.06, p = .953, d = 0.01, indicating that, similar to Experiment 1, 

participants in the nominal-group condition did not improve their performance in terms of 

practice effects. Hence, the increases in individual accuracy in the other two conditions are 

the result of G-I transfer, in line with Hypothesis 1. Furthermore, participants did not 

manifest a significantly stronger G-I transfer after multiple group interactions as compared to 

a single group interaction, which supports Hypothesis 3a over Hypothesis 3b.12 

Beyond that, the ANOVA revealed a main effect of group member, F(2, 80) = 40.00, p 

< .001, ηp
2 = .31, and an interaction of group member and group type, F(4, 162) = 4.72, p = 

.001, ηp
2 = .10. Separate post hoc paired-samples t-tests for the continuous-interaction and the 

single-interaction conditions showed that the accuracy improvements differed between all 

levels of group member expertise for the continuous-interaction condition, all ts(27) > 4.87, 

                                                             
11 As a closer inspection of the data showed that a substantial part of the descriptive difference 

between performance enhancements in the continuous-interaction and the single-interaction condition 
derives from one participant in the latter condition whose performance dramatically decreased by 670 

percentage points. When excluding this participant’s group, the difference between the two group 

conditions decreases markedly (M = 87.33, SD = 62.90 vs. M = 60.12, SD = 84.08), p = .170, 
although some moderate difference remains. Furthermore, the effect size of the post hoc t-tests against 

zero in the single-interaction condition increases, t(27) = 3.72, p < .001, d = 0.71. 
12 Again, participants’ gender didn’t significantly affect the individual performance change from 
phase one to two, t(250) = 0.75, p = .456, d = 0.01. Furthermore, there was also no significant 

relationship between participants’ age and the dependent variable, r = .11, p = .073, although, 

descriptively, younger participants increased their performance somewhat more strongly than older 

participants. Furthermore, the results revealed differences in participants’ age between the conditions 
that fell short of significance, F(2, 249) = 2.29, p = .057, ηp

2 = .02. However, LSD post hoc 

comparisons showed that the participants were significantly older in the single-interaction condition 

than in the nominal-group condition, p = .017, whereas there were no differences between the 
continuous-group condition and the other two (all ps > .205). Accordingly, participants’ age should, if 

at all, lead to somewhat smaller performance enhancements in the single-interaction condition than in 

the nominal-group condition and, thereby, work against our hypothesis. Hence, the weak relationship 

between performance changes and participants’ age should not interfere with our results. Finally, 
there was no evidence for baseline accuracy differences between the conditions, F(2, 81) = 0.29, p = 

.751, ηp
2 < .01, or for average group member accuracy variance differences between condition, F(2, 

81) = 0.42, p = .658, ηp
2 = .01. 
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all ps < .001, all ds > 0.92, and for the single-interaction condition, all ts(27) > 2.44, all ps < 

.022, all ds > 0.46. Again, post hoc t-tests against zero revealed significant performance 

increases for the medium and the least capable members in both interacting group conditions, 

all ts(27) > 2.22, all ps < .035, all ds > 0.41 (for an overview of all individual performance 

changes, see Table 2). In contrast, there was a tendency for the most capable group members’ 

performance to slightly deteriorate in the continuous-interaction condition, t(27) = -1.87, p = 

.073, d = 0.35, and even more profoundly in the single-interaction condition, t(27) = -3.13, p 

= .004, d = 0.59. A similar analysis of the non-interacting nominal groups unexpectedly 

revealed a significant difference in performance changes between the most capable and the 

least capable group members, t(27) = 2.90, p = .007, d = 0.55, as well as marginal differences 

between the medium and least capable group members, t(27) = 2.03, p = .052, d = 0.38. 

However, these differences are unlikely to stem from systematic learning effects; instead, 

they are likely the result of regression to the mean. Specifically, the least capable group 

members significantly increased their performance between the two phases, t(27) = 2.30, p = 

.029, d = 0.44, whereas there were no significant performance changes for the most capable 

and medium group members, all ts(27) < 1.05, all ps > .307, all ds < 0.20. This finding also 

suggests that not all performance changes in the interacting group conditions can be 

necessarily attributed to social learning processes. At least a small part might also be ascribed 

to statistical regression. However, post hoc t-tests revealed that the medium and least capable 

group members in both the continuous-interaction and the single-interaction condition 

increased their estimation accuracy more strongly than the medium and least capable 

members of the nominal groups, all ts(54) > 2.08, all ps < .043, all ds > 0.55. Hence, the 

interaction effect of group member and condition mainly derives from stronger performance 

enhancements of inferior group members after interacting with others. 

Similar to Experiment 1, we were interested in a temporal analysis of the individual 
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performance enhancements in the two interacting group conditions. Therefore, we again 

compared individual accuracy (averaged across group members) before any group interaction had 

taken place (trial 1-11) with the trial after the first group interaction (trial 12), and with the 

averaged individual accuracy of the remaining 8 trials (trial 13-20). The 2 (group type: 

continuous-interaction vs. single-interaction) × 3 (trial block: practice phase vs. trial after first 

group interaction vs. remaining 8 trials) repeated measures ANOVA showed a main effect of trial 

block, F(2, 53) = 21.28, p < .001, ηp
2 = .28, and no main effect of group type, F(1, 54) = 0.63, 

p = .432, ηp
2 = .01, or interaction of group type and trial block, F(2, 53) = 1.69, p = .190, ηp

2 

= .03. Post hoc paired samples t-tests revealed that the average individual accuracy in the 

continuous-interaction condition discontinuously increased after the first group interaction (M 

= 237.04, SD = 81.49 vs. M = 148.29, SD = 110.84), t(27) = 5.29, p < .001, d = 1.00, and 

remained (more or less) stable afterwards (M = 148.29, SD = 110.84 vs. M = 149.89, SD = 

85.76), t(27) = -0.09, p = .932, d = 0.02. The same was true for the single-interaction 

condition, with a major performance enhancement directly after the single group interaction 

(M = 229.48, SD = 98.59 vs. M = 180.04, SD = 111.37), t(27) = 2.33, p = .027, d = 0.44, and 

virtually no further changes in individual estimation accuracy (M = 180.04, SD = 111.37 vs. 

M = 180.26, SD = 112.08), t(27) = -0.02, p = .987, d < 0.01. This result, illustrated in Figure 

2, once more suggests that a single group interaction is sufficient to induce stable G-I 

transfer, which supports Hypothesis 2a.13 

Figure 2 also indicates stronger individual performance enhancements in the 

                                                             
13 Again, we split the 20 trials in four blocks (trial 1-6, 7-11, 12-16, 17-20) to analyze more evenly 

sized blocks of trials. Post hoc paired-samples t-tests revealed significant changes in group members’ 
individual accuracy right after the first group interaction in both the continuous-interaction condition 

(M = 249.91, SD = 110.13 vs. M = 153.24, SD = 90.39), t(27) = 7.13, p < .001, d = 1.35, and the 

single-interaction condition (M = 237.55, SD = 125.16 vs. M = 179.27, SD = 103.94), t(27) = 3.31, p 

= .003, d = 0.63 (all other ts < 1.32, all other ps > .198). Beyond that, neither the continuous-
interaction nor the single-interaction condition showed a significant linear trend towards an individual 

accuracy decrease or improvement after the first group interaction (all Fs < 1.53, all ps > .227), which 

further supports the idea of a stable G-I transfer. 
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continuous-interaction condition as compared to the single-interaction condition. However, as 

this analysis shows, it is highly unlikely that this difference is due to the sustained group 

interaction in the former condition, because the full difference is already present after the first 

group trial – in other words, at a point in the experiment where the procedure has yet been 

identical for both conditions – and it remains stable afterwards. Hence, by chance, 

participants in the former condition seem to have reacted somewhat more strongly to the first 

group interaction than participants in the latter condition. 

Changes in metric and mapping error 

Similar to Experiment 1, we were interested in what participants learn when 

interacting with others. To this end, we calculated an ANOVA with group type (continuous-

interaction vs. single-interaction vs. no interaction) as between-subjects factor and differences 

between the averaged group members’ individual median percentage error between the individual 

practice phase and the group phase as dependent variable. This analysis revealed a significant 

main effect of group type, F(2, 81) = 10.40, p < .001, ηp
2 = .20. Additional LSD post hoc 

comparisons showed no significant differences in metric error reduction between the 

continuous-interaction and the single-interaction condition (M = 68.47, SD = 60.50 vs. M = 

41.43, SD = 82.25), p = .176. In contrast, participants’ reductions in metric error were 

significantly stronger in both the continuous-interaction groups and the single-interaction 

groups than in the non-interacting nominal groups (M = 68.47, SD = 60.50 vs. M = -19.77, 

SD = 74.68), p < .001, and (M = 41.43, SD = 82.25 vs. M = -19.77, SD = 74.68), p = .003, 

respectively. Hence, interacting with others reduced group members’ metric error, which 

supports Hypothesis 4. 

Furthermore, we analyzed changes in participants’ mapping errors averaged across 

group members. To this end, we calculated an ANOVA with group type (continuous-

interaction vs. single-interaction vs. no interaction) as between-subjects factor and the 
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difference between participants’ Fisher z-transformed rank-order correlation coefficients 

(Spearman’s rho) during the group phase and the individual practice phase as dependent 

variable. This analysis revealed no significant differences between the group types, F(2, 81) = 

1.12, p = .307, ηp
2 = .03. Hence, there were no systematic difference in participants’ mapping 

error changes. 

Exploratory analyses: Group-level data 

Similar to Experiment 1, we also analyzed group performance for exploratory 

purposes and checked whether interacting groups’ judgments were more accurate than those 

of nominal groups. Accordingly, we calculated the groups’ average MAPE score for the 10 

trials of the group phase in the same way as in Experiment 1. Hence, in the single-interaction 

condition, the groups’ average MAPE score was a composite measure of the group estimate 

of the first trial of the second phase and the averaged individual estimates of the remaining 

nine trials. Afterwards, we ran an ANOVA with the group type (continuous-interaction vs. 

single-interaction vs. no interaction) as a between-subjects factor and (nominal or real) group 

performance as the dependent variable. This analysis revealed a significant effect of group 

type, F(2, 81) = 4.02, p = .022, ηp
2 = .09. LSD post hoc comparisons showed that the 

accuracy of both the continuous-interaction groups and the single-interaction groups were 

superior to the nominal groups (M = 142.30, SD = 82.06 vs. M = 220.21, SD = 110.29), p = 

.006, and (M = 175.08, SD = 114.42 vs. M = 220.21, SD = 110.29), p = .106, respectively, 

even though the latter comparison did not reach conventional levels of significance. Beyond 

that, continuous-interaction and single-interaction groups did not differ significantly with 

regard to accuracy (M = 142.30, SD = 82.06 vs. M = 175.08, SD = 114.42), p = .238. 

Finally, we were interested in the possible occurrence of functional differential 

weighting strategies. To this end, and similar to Experiment 1, we tested whether interacting 

groups outperformed the average of their members’ individual estimates after controlling for 
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G-I transfer. A paired samples t-tests showed that, on average, group estimates were 

significantly more accurate than the average model; the difference in accuracy was about 11 

percentage points (M = 133.99, SD = 80.86 vs. M = 144.07, SD = 87.09) t(27) = -3.37, p = 

.002, d = 0.64. Hence, continuously interacting groups were apparently willing and able to 

assign different weights to their members’ individual estimates, and they did so in an 

effective manner, allowing them to outperform the average of their members’ estimates. 

Hence, Experiment 2 constitutes, to our knowledge, the first evidence for functional 

differential weighting after controlling for G-I transfer. 

These findings raise an interesting question: Why did we find evidence for group 

members weighting their individual contributions differentially in Experiment 2, but not in 

Experiment 1, and also not in the study by Schultze et al. (2012)? Of course, at this point we 

can only speculate about this, but we find it, at least, plausible that parts or all of this 

divergence could be due to differences between the tasks that were used in these experiments: 

Whereas in Experiment 1 we used the same distance estimation task that had been used by 

Schultze et al. (2012), and with similar results (no differential weighting), in Experiment 2 

we introduced a new weight estimation task. As already stated, this task was characterized by 

a large population bias, whereas the distance estimation task of Experiment 1 contained no 

such bias. Now, the presence vs. absence of a population bias should have consequences for 

whether or not the group members’ individual values can be expected to bracket the true 

value: If there is no population bias, that is, if over- and underestimations cancel out on 

average, the group members’ individual estimates should often bracket the true value. In 

contrast, if all group members systematically overestimate (or underestimate) the true value, 

bracketing is less likely to occur. In line with this, we found that the percentage of overall 

cases where the individual estimates bracketed the true value in Experiment 1 was far above 

the bracketing rate in Experiment 2 (M = 64.05, SD = 14.37 vs. M = 32.32, SD = 21.54). 
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Because more bracketing means that averaging more often leads to accurate results, 

differential weighting had better chances to pay off in Experiment 2 as compared to 

Experiment 1. 

General discussion 

In the present study, we tested whether group members cooperatively working on 

estimation tasks benefit from G-I transfer. Based on previous findings (Laughlin et al., 2008; 

Schultze et al., 2012), we expected individual performance enhancements due to group 

discussion. More specifically, we postulated a stable increase in group members’ individual 

accuracy that persists even when the group is disbanded. Furthermore, we aimed to clarify 

whether a single group interaction is sufficient to produce G-I transfer, and whether further 

within-group interaction induces additional performance enhancements. Beyond that, we also 

wanted to shed some light on what exactly group members learn when interacting with 

others. We expected a transfer of metric knowledge that should lead to a better calibration of 

group members’ estimates, but also tested the possibility that interaction improves group 

members’ mapping knowledge. In an exploratory manner, we checked for the superiority of 

groups over an equivalent number of individuals, and for the occurrence of possible 

differential weighting strategies that improve the group judgments beyond the level of 

individual capability gains. 

In line with our assumptions, the results of our experiments provide evidence for 

socially induced learning processes as a consequence of group interaction on quantitative 

estimation tasks. The estimates of superior group members served as a benchmark towards 

which the inferior group members adjusted their subsequent individual estimates. More 

precisely, group members reduced their metric but not their mapping error. Importantly, the 

individual increases in accuracy remained stable even if we disbanded groups after their first 

group discussion. Since participants in the nominal group condition were not able to enhance 
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their performance over time, the aforementioned result can be interpreted as unequivocal 

evidence for G-I transfer. Furthermore, additional group interactions did not lead to further 

increases in individual accuracy, suggesting that groups were able to exchange all 

information necessary to induce this G-I transfer during their first group discussion. Beyond 

that, we found first evidence that after group members benefitted from G-I transfer groups are 

indeed able to assign more weight to more accurate judgments under certain circumstances. 

We will get back to this finding after having discussed our central results regarding G-I 

transfer. 

Group-to-individual transfer 

Our main aim was to test for the relevance of group interaction for the subsequent 

estimation accuracy of the individual group members. Our results allow us to draw several 

conclusions: First, one group interaction is sufficient to induce a stable G-I transfer, since in 

both experiments the performance remained on the improved level even after the group was 

disbanded. These results are in line with the assumptions of Schultze et al. (2012) and, to the 

best of our knowledge, constitute the first unambiguous evidence for the stability of this 

performance enhancement on estimation tasks, thereby mirroring similar findings from the 

field of problem-solving tasks (Laughlin et al., 2008). This finding also rules out an 

alternative explanation for the performance changes. The performance enhancement cannot 

be reduced to changes in group members’ motivation because discussing their estimates 

increases the accountability they feel for their judgment. Otherwise, the individual 

performance should have dropped after the group was disbanded. Second, the replicability of 

the G-I-transfer with a different task speaks to the generalizability of this phenomenon at 

least when tasks have similar characteristics as the ones we used. 

Third, the fact that we found strong metric error reductions, and that the performance 

enhancement already occurred after one group interaction on two different task types allows 
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some speculations regarding what people learn when interacting with others on estimation 

tasks, and what information has to be exchanged in order to produce the observed G-I-

transfer. In our opinion, the most likely explanation for the strong reduction of group 

members’ metric error and the rapid increase in estimation accuracy is the exchange of 

reference values during the first group interaction. As we know from previous research, 

frames of reference play an important role when it comes to increases in estimation accuracy 

(e.g., Bonner & Baumann, 2008; Bonner et al., 2007; Laughlin et al., 1999; Laughlin et al., 

2003). Such reference values are relatively easy to communicate and to retain, and they 

should have a beneficial effect on all subsequent judgments in the same domain. As Schultze 

et al. (2012) discuss, points of reference might provide a basis for better calibration and could 

enable group members to reduce their individual estimation bias. With this additional 

information, individuals might be able to improve their individual accuracy, even without any 

further benchmarks, on subsequent trials. For example, group members might communicate 

the length of Germany from north to south (approx. 900 km) as a reference value, which 

might help them when estimating the distance between London and Rome and will prevent 

very inaccurate estimates. In other words, accurate benchmarks could also serve as a source 

of error checking. This assumption might also explain the lack of G-I-transfer in an earlier 

study that used an experimental design somewhat similar to ours. In one condition of this 

study, Sniezek and Henry (1990) asked participants to estimate the prices of different 

automobile models individually before and after interacting with others. During this 

interaction, group members were allowed to exchange all information relevant to the task 

with exception of numeric estimates. In other words, they could not provide reference values 

and, therefore, not reduce their metric error. Nevertheless, future research should 

systematically investigate the exact nature of the information required to induce G-I-transfer 

and identify what group interactions provide beyond the beneficial effect of receiving 
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accurate reference values. 

Superiority of group judgments and differential weighting 

Not only the individual group members but also the groups as a whole seem to benefit 

from G-I transfer. The results of our experiments generally support the idea that interacting 

groups outperform nominal groups in quantitative estimation tasks. Although the respective 

comparisons only reach conventional levels of significance for continuously interacting 

groups in Experiment 2, where groups were able to benefit from G-I transfer and differential 

weighting, descriptively groups were more accurate than nominal groups in both 

experiments. One reason why this comparison was not significant in Experiment 1 is the 

remarkably good estimation accuracy of the nominal groups in this experiment (M = 32.05, 

SD = 17.46). In contrast, the performance of nominal groups in the (in large parts similar) 

first experiment of Schultze et al. (2012), who found a significant superiority of interacting 

groups over nominal groups with the same task type, was notably lower (M = 39.54, SD = 

38.08). Presumably, by chance, nominal groups in our first experiment might have consisted 

of individuals whose idiosyncratic biases cancelled each other out more frequently than in the 

experiment of Schultze et al. (2012). 

The results regarding the occurrence of differential weighting differ between our two 

experiments. In Experiment 1, where simple averaging was a rather effective strategy due to 

the lack of a population bias and small remaining differences in individual accuracy, we 

replicated the results of Schultze et al. (2012) that groups do not outperform the average of 

their group members’ contributions. However, the fact that we found no evidence for 

differential weighting in Experiment 1 does not mean that group members necessarily 

weighted their individual contributions equally. The lack of bias in participants’ estimates 

only implies that differential weighting wouldn’t improve the group judgments as strong and, 

as a consequence, wouldn’t be detectable with a performance-based proxy assessment of 
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weighting. Nevertheless, as the actual group performance was even slightly inferior to the 

average model, differential weighting was not beneficial in Experiment 1. In contrast, groups 

engaged in functional differential weighting in Experiment 2, which employed a task 

favoring weighting by expertise or accuracy over averaging, due to a strong population bias 

(e.g., Davis-Stober, Budescu, Dana, & Broomell, 2014; Einhorn et al., 1977). This allowed 

interacting groups in Experiment 2 to outperform the simple average of their members’ 

individual estimates. Taken together, our results suggest that groups can – to some degree – 

engage in rather functional weighting strategies. Our findings, thus, provide an interesting 

basis for systematic research on the weighting strategies groups employ – for example, by 

investigating how various task and group characteristics relevant to the effectiveness of 

differential weighting influence the choice of the weighting strategy and its impact on group 

performance. 

Limitations and directions for future research 

Although our experiments provide evidence for stable G-I transfer in quantitative 

estimation tasks, we should also mention some limitations. Despite the fact that we used two 

different tasks with quite different characteristics that consistently produced G-I transfer, we 

still cannot exclude the possibility that other types of estimation tasks might yield different 

results. In the tasks we used, metric errors were rather common and – at times – extreme, as 

indicated by systematic idiosyncratic biases of group members in both experiments. This is 

particularly evident in Experiment 2, though, where participants systematically overestimated 

the weights of the small objects by an average factor of three. Mapping errors, on the other 

hand, might have been less pronounced, because most participants presumably had a rough 

recollection of the geographical location of the EU’s member countries (if not necessarily the 

location of the capital cities within the countries), allowing them to distinguish long distances 

from short ones. Likewise, they could tell that a small plastic comb weighed less than a small 
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metal hammer. Hence, the tasks we used had a great potential for metric error reductions 

whereas it impeded the occurrence of mapping error reductions as a consequence of 

interacting with others. Admittedly, this presumed combination of relatively low mapping 

and high metric errors might not generalize to all estimation tasks. For example, forecasting 

tasks, like predicting the return on a capital investment, are mainly characterized by mapping 

errors. In this case, the previous and current values of the variable that is to be predicted 

constitute rather reliable reference values that minimize the individual metric error. In 

contrast, there are several factors that should predominantly affect the mapping knowledge 

component. For example, when predicting the future market rate of a certain stock, one has to 

learn general market trends, as well as the previous prosperity and future plans of certain 

companies to reduce one’s mapping error. All of these knowledge components and cues 

might be transferable through group discussion, quite similar to the exchange of reference 

values. However, in this case, G-I transfer should take more time to emerge, and also more 

time to fully develop. Therefore, it is crucial to replicate our findings with different types of 

quantitative estimation tasks, preferably tasks with a high ecological validity like forecasting 

tasks, or even in a real world setting. In general, our findings should be replicated with tasks 

of different complexity and different estimation biases to form an overall picture regarding 

the strength of G-I transfer on the one hand, and functional differential weighting strategies 

on the other hand, under different circumstances. 

Furthermore, it remains an open question as to how groups manage to identify their 

group members’ expertise or the accuracy of their judgments in order to know whom to learn 

from. Previous evidence regarding ad hoc groups’ ability to recognize expertise is rather 

contradictory. On the one hand, some studies indicate that groups are capable of identifying 

their most capable members (e.g., Baumann & Bonner, 2004; Bonner et al., 2007; Henry et 

al., 1996; Libby, Trotman, & Zimmer, 1987). On the other hand, there is also evidence of 
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groups failing to recognize the specific expertise of their members (e.g., Littlepage, 

Robinson, & Reddington, 1997, studies 1 and 2; Littlepage, Schmidt, Whisler, & Frost, 1995; 

Trotman, Yetton, & Zimmer, 1983). The fact that, in our experiments, the most capable 

members’ performance remained largely stable, whereas the performance of the medium and 

least capable members considerably increased, speaks to the groups’ ability to assess their 

group members expertise or at least the quality of their judgments. One possible determinant 

for the ability to recognize expertise might be the plausibility of individual estimations. As 

Yaniv and Kleinberger (2000) discuss, individuals might identify particularly poor estimates 

as out of the bounds of plausibility, even if people cannot generate correct estimates 

themselves. In others words, group members might have been reasonably good in realizing 

whom to ignore. This could also explain why there was no negative individual learning in our 

experiments. Nevertheless, further research should address the question of which 

circumstances facilitate the recognition of expertise or the accuracy of certain estimates, and 

what cues are relevant for groups to determine the relative expertise of their members. 

Finally, we do not yet know whether group interaction is really indispensable to 

induce the phenomenon of G-I transfer. Since our results reveal strong learning effects after 

just one group interaction, this raises the question of whether similar processes might be 

possible even without any direct communication. As Farrell (2011) suggests, individual 

accuracy can be improved by knowing the estimates of other persons, without any form of 

group interaction (in terms of free information exchange). In other words, it is questionable 

whether discussing individual estimates with other people is crucial to individual learning, or 

whether the knowledge about others’ judgments might be sufficient to achieve the same or at 

least a similar beneficial effect, at least in some tasks. Hence, a promising line of future 

research is to identify which factors are indispensable for individual learning effects and by 

which means group interaction might additionally strengthen these processes. 



HOW MUCH GROUP IS NECESSARY? 
 

40 

Conclusion 

In accordance with the idea of G-I transfer, group members can learn relevant 

knowledge in quantitative estimation tasks by cooperatively working with others. One group 

interaction seems to be sufficient for an increase in metric knowledge that leads to more 

accurate individual judgments, whereas further group interaction does not foster additional 

capability gains. Furthermore, under certain circumstances, effective weighting strategies 

when combining those individual estimates with a group judgment might occur. Thus, we 

know now that a single group discussion can robustly improve group members’ individual 

judgment accuracy and can also lead to an improved collaboration, although the specific 

mechanisms underlying these improvements are still an open topic for future research.  
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Figure 1. Mean absolute percent error (MAPE) of individual estimates by group type during Experiment 1. Lower scores indicate greater accuracy.  
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Figure 2. Mean absolute percent error (MAPE) of individual estimates by group type during Experiment 2. Lower scores indicate greater accuracy. 
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Table 1. Group members' individual performance changes by group type in 

Experiment 1. 

 group member 

 most capable  medium  least capable 

group type M SD  M SD  M SD 

continuous-

interaction 
-0.43 11.18  11.40 15.16  46.87 48.56 

single-interaction 2.56 12.52  12.42 18.36  33.36 30.01 

no interaction -4.03 11.00  3.89 27.76  5.29 37.27 
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Table 2. Group members' individual performance changes by group type in Experiment 2. 

 group member 

 most capable  medium  least capable 

group type M SD  M SD  M SD 

continuous-

interaction 
-29.02 82.30  83.80 94.62  207.22 106.77 

single-

interaction 
-58.72 99.41  45.89 109.36  160.34 239.04 

no 

interaction 
-11.88 71.25  -33.21 168.91  46.25 106.30 
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Abstract 

Previous research in the judge-advisor paradigm has focused on how judges weight 

advice, and on the beneficial effect of receiving advice on judges’ post-advice final 

judgments. However, a completely different possibility of how judges might benefit from 

advice has been overlooked so far: Social learning processes could improve the accuracy of 

judges’ subsequent initial judgments as well. Hence, we test the assumption that advice can 

induce individual performance enhancements that differ as a function of the advisor’s 

judgment accuracy. The results of three experiments support our hypothesis and indicate 

positive social learning particularly when participants receive high quality advice, which 

leads to diminished metric errors. Furthermore, we show that external feedback about the 

advisor’s accuracy is not crucial for the occurrence of individual performance enhancements. 

In general, our results suggest that advice can have a positive effect on subsequent initial 

judgments in terms of social learning. 

 

Keywords: judgment; decision making; advice taking; social learning; estimation accuracy 
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Social learning in the judge-advisor-system: 

A neglected advantage of advice-taking 

In recent years, both social and organizational psychological research has increasingly 

dealt with the process of using advice from others (e.g., Soll & Larrick, 2009; Yaniv & 

Kleinberger, 2000; for reviews, see Bonaccio & Dalal, 2006; Yaniv, 2004a). This topic is 

predominantly investigated in the so-called judge advisor system (JAS; Sniezek & Buckley, 

1995). The JAS differentiates between an advisor, who provides information or 

recommendations, and a judge, who is responsible for the judgment. Usually, the judge first 

makes an initial estimate, receives a recommendation by the advisor, and then makes a final, 

possibly revised, estimate (e.g., Sniezek, Schrah, & Dalal, 2004; Yaniv, 2004b). In this final 

estimate, the judge combines his own initial judgment with the advice that he or she received 

– which, of course, can also mean that the judge fully sticks to his or her initial judgment, or 

completely takes the position advocated by the advisor. 

Although research within this paradigm has revealed a variety of interesting results, a 

major part of judge advisor research concentrates on advice weighting and judgment 

accuracy, with three particularly pronounced and very robust findings. The first is that judges 

are sensitive to various cues of advice quality, leading them to heed better advice more (e.g., 

Harvey & Fischer, 1997; Soll & Larrick, 2009; Yaniv & Kleinberger, 2000). The second 

robust finding is egocentric advice discounting. Judges usually overweight their own opinion 

compared to the recommendation of the advisor (e.g., Yaniv, 2004b; Yaniv & Kleinberger, 

2000). Finally, when the advisor provides an independent benevolent opinion, using advice 

leads to more accurate judgments and decisions compared to the uninfluenced initial 

judgments (e.g., Soll & Larrick, 2009; Sniezek et al., 2004). The reason is that aggregating 

independent opinions reduces unsystematic or even systematic errors (Soll & Larrick, 2009; 

Yaniv, 2004a). 
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However, even though the judge-advisor literature focuses on advice taking and the 

accuracy of post-advice judgments, there is also research concentrating on other effects of 

advice, like sharing the responsibility, minimizing the effort, or confirming the judge’s initial 

opinion (Bonaccio & Van Swol, 2014). In line with this tradition, we want to examine 

another possible function of advice that has received little attention so far, namely social 

learning. In contrast to previous research investigating improvements in judges’ final 

estimates, we aim to focus on changes in the accuracy of judges’ initial estimates (after 

having received advice on previous occasions). We argue that, beyond improved final 

judgments, judges’ ability to come up with accurate initial judgments might improve, too, 

due to social learning. In the following, we briefly review findings regarding social learning, 

and we then outline the possibility of performance enhancements of initial judgments in the 

JAS. Subsequently, we point out what exactly the judge can learn from the advisor in the 

standard JAS. Finally, we hypothesize about the potential moderating roles of advice quality 

and its salience. 

Social learning in the JAS 

Social learning theories deal with the influence of social information on people’s 

behavior. For example, Bandura (1977) assumed that humans learn by means of 

observational and cognitive modeling processes. According to social learning theory, 

observational learning is governed by four processes: (a) attentional processes determine 

what is selectively observed, (b) retention processes involve transforming and restructuring 

information for memory representation, (c) production processes translate symbolic 

conceptions into appropriate courses of action, and (d) motivational processes emphasize 

different types of incentive motivators, which determine whether the observer actually 

executes the observed behavior. In line with this theory, many learning processes from direct 

experience can also be achieved vicariously by observing people’s actions and their 
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consequences (Bandura, 1986, Rosenthal & Zimmerman, 1978). Importantly, observational 

learning does not require direct social interaction to be effective, as shown in many different 

contexts such as mathematics (e.g., Schunk & Hanson, 1985), argumentative writing 

(Braaksma, Rijlaarsdam, & Van den Bergh, 2002; Couzijn, 1999; Raedts, Rijlaarsdam, Van 

Waes, & Daems, 2007), creative tasks (Groenendijk, Janssen, Rijlaarsdam, & Van den Bergh, 

2013a, 2013b), and learning to collaborate (Rummel & Spada, 2005). 

Previous research has already related advice to particular social learning processes. 

There is ample evidence that advice can improve the quality of subsequent decisions about 

the same issue (e.g., Biele, Rieskamp, & Gonzalez, 2009; Çelen, Kariv, & Schotter, 2010; 

Chaudhuri, Graziano, & Maitra, 2006; Kocher, Sutter, & Wakolbinger, 2014). For example, 

Biele et al. (2009) showed that one-time advice can have a positive effect on the upcoming 

individual performance on multiple trials of the same task. Even though independent decision 

makers improved their performance in the course of time, they did not catch up with those 

who received advice. Hence, advice can convey information that eliminates misperceptions 

and, thus, can help to find the right solution more quickly on one specific task. In line with 

these findings, advice taking in JAS experiments can be interpreted as a form of social 

learning as well. The advice leads to a reconsideration of one’s initial judgment, which, in 

turn, can improve subsequent final judgments (e.g., Farrell, 2010; Soll & Larrick, 2009; 

Sniezek et al., 2004). Both processes can be seen as specific social learning, because the 

benefit from the (social) information is limited to the subsequent individual performance on 

the same task. Hence, when using JAS terminology, they represent the beneficial effect of 

advice weighting. However, there is good reason to believe that the beneficial effect of 

receiving advice could also initiate general social learning, in terms of a transfer from one 

task to a different task of the same class (for a similar definition of specific and general 

transfer, see Stasson, Kameda, Parks, Zimmerman, & Davis, 1991). In other words, advice 
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might not only affect judges’ post-advice final judgments, but also improve their subsequent 

pre-advice initial estimates on subsequent tasks from the same domain. 

But what exactly is the content of the learning process that allows judges to benefit on 

future related judgments? To answer this question, it is helpful to distinguish between two 

different sources of estimation error. In their framework about real-world quantitative 

estimations, Brown and Siegler (1993, see also Brown, 2002) argue that people depend on 

two types of information when generating such estimates: metric knowledge and mapping 

knowledge. Metric knowledge is a general understanding of the appropriate scaling; it 

represents one’s calibration of judgments. In other words, metric knowledge determines 

whether people have an accurate representation of the correct upper and lower boundaries of 

the quantity that they have to estimate, that is, the range of values that is plausible. For 

example, knowing that distances have a natural zero and that the length of the equator is 

approximately 40,000 km informs us about plausible numerical values when estimating 

airline distances between different cities. In contrast, mapping knowledge involves ordinal 

relations among individual estimations of the domain, that is, it allows us to put different 

target values of the same kind in the correct order. For example, one might know that London 

is closer to Rome than New York, without having a good guess about the actual distances. 

Previous research on quantitative judgments in groups suggests that frames of 

reference play an important role when it comes to increases in estimation accuracy (e.g., 

Bonner & Baumann, 2008; Bonner, Sillito, & Baumann, 2007; Laughlin, Bonner, Miner, & 

Carnevale, 1999; Laughlin, Gonzalez, & Sommer, 2003). For example, the knowledge about 

the length of Germany from north to south (approx. 900 kilometers) and from east to west 

(approx. 600 kilometers) should improve accuracy when estimating distances within 

Germany, and should prevent completely implausible judgments. Obviously, these 

benchmarks can be illustrated easily when people are allowed to communicate, and can 
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explain the reasons for a particular reference value. For example, there is evidence for group-

to-individual transfer (G-I transfer) on quantitative estimation tasks similar to those 

frequently used in the JAS (e.g., Schultze, Mojzisch, & Schulz-Hardt, 2012; Stern, Schultze, 

& Schulz-Hardt, 2017). G-I transfer denotes an increase of individual capabilities as a 

consequence of prior collaborative task experience and is, hence, a type of social learning 

(e.g., Laughlin & Barth, 1981; Laughlin & Sweeney, 1977). However, a simple piece of 

advice without further explanations, as is usually the case in JAS experiments, might also 

serve as a frame of reference and lead to similar increases in judgment accuracy. Even though 

the judge may attribute systematic differences in metrics to the advisor being biased, a 

phenomenon also referred to as naïve realism (e.g., Pronin, Gilovich, & Ross, 2004), we 

think there is good reason to believe in increases in initial judgment accuracy after receiving 

advice. The judge might recognize differences to the received advice, particularly in the 

metric error, and especially when the differences are very pronounced (i.e., poor judges 

receiving accurate advice). When the judge’s estimates are always markedly above the 

advice, a process of recalibration might be triggered that leads to lower subsequent 

judgments. For example, when the judge provides estimates of distances between European 

cities that are always above 20,000 km, and then receives advice that never exceeds 3,000 

km, he or she might recognize the own bias and adjust the own judgments towards the 

advice. This, in turn, should lead to more accurate judgments. 

In contrast, the process of reducing one’s mapping error should be much more 

difficult. It should be very hard to detect differences between the own and the advisor’s 

mapping error, because one needs multiple pieces of advice with a small mapping error, and 

also has to remember the specific advice values over a longer period. For example, when 

asked whether the distance between London and Rome is greater than the distance between 

London and Madrid, one single point of reference is hardly helpful, because it does not 
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facilitate putting different distances in the right order. It is only when the judge has multiple 

accurate benchmarks for different distances and precisely remembers them that mapping 

error improvements might be possible. Hence, the process of learning mapping knowledge 

should be very time-consuming and, if at all, only possible with detailed explanations or 

additional information about the advisor’s recommendation. Consequently, in the JAS, advice 

should predominantly increase the judge’s metric knowledge, while leaving his or her 

mapping knowledge largely unaffected. 

Quality of advice and its salience 

As learners mainly exhibit modeled behavior when they perceive that this behavior 

has a high functional value, the quality of advice should be an important determinant for the 

strength of learning. Those behaviors that seem to be effective for others are favored over 

those behaviors that produced negative outcomes (Bandura, 1986). In other words, observers 

should be more willing to adopt the behavior of a high performing, successful model (i.e., an 

accurate advisor) and not imitate the behavior of the model when they perceive it as useless 

(i.e., poor advice). Adopting the metric of a good advisor is more beneficial than adopting the 

metric of a poor advisor, because high quality advice provides more accurate reference 

values. Consequently, good advisors should enable stronger improvements in judges’ 

subsequent initial judgment accuracy than poor advisors, in particular when the judge 

recognizes the advice quality. 

Even though the judge usually has no access to the advisor’s reasoning in JAS 

research (Bonaccio & Dalal, 2006), previous research suggests that judges are, at least to 

some extent, sensitive to advice quality even in the absence of any kind of advisor 

performance feedback (Biele et al., 2009; Yaniv & Kleinberger, 2000). As Yaniv and 

Kleinberger (2000) discuss, judges could perform plausibility checks. Particularly poor 

estimates might be recognized as implausible, even if the judge cannot generate a correct 
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estimate on his own. Nevertheless, the learning effect should be stronger with feedback about 

the advisor’s accuracy, which is in line with Yaniv and Kleinberger (2000), who showed that 

judges were better at assessing the quality of advice when receiving feedback about it. In 

sum, based on social learning theory, there is good reason to believe that improvements of 

initial judgment accuracy will occur in judge advisor experiments, and that this happens 

particularly when the quality of advice is high and salient. 

In sum, we aim to examine the occurrence of socially induced learning from one task 

to a different task of the same class after receiving advice, and we want to analyze its 

connection to advice quality, and to the salience of the advisors’ accuracy. To demonstrate 

this transfer, we will use quantitative estimation tasks, which are suitable to account for 

gradual changes in judgment accuracy. 

Hypotheses and overview of the present research 

In three experiments, we investigate learning processes in a prototypical JAS, with the 

focus on socially induced individual learning and its relation to advisors’ judgment accuracy, 

as well as to the judges’ knowledge about this advice quality. In general, we expect that 

advice quality affects not just post-advice final judgments, as shown in many previous 

studies, but also the accuracy of subsequent initial (i.e., pre-advice) judgments. Hence, our 

first aim is to clarify whether receiving advice of different quality systematically changes the 

accuracy of judges’ initial estimations on subsequent trials. Because of the higher accuracy of 

better advisors and, potentially, a stronger willingness to learn from superior advisors, we 

postulate: 

Hypothesis 1: Judges’ initial judgment accuracy will improve dependent on advice 

quality. Judges’ estimation accuracy will increase more strongly when receiving high quality 

advice compared to low quality advice. 
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We further aim to show what judges learn as a consequence of receiving high quality 

advice. Building on the idea that reference values are crucial for increases in individual 

estimation accuracy, we postulate that there is a transfer of metric knowledge. High quality 

advice, in particular, should reduce the judge’s metric error, because differences in metrics 

should be recognized quite easily, and high quality advice should provide reference values 

with a relatively small metric error. In contrast, we do not expect transfer of mapping 

knowledge since simple advice without any additional explanations or information should be 

insufficient for such a learning process, even though high quality advice should be 

characterized by a small mapping error as well. 

Hypothesis 2a: The metric error of judges’ initial estimates after receiving advice 

differs as a function of advice quality. Judges’ metric error will be reduced more strongly 

after receiving high quality advice compared to low quality advice. 

Hypothesis 2b: There will be no changes in the mapping error of judges’ initial 

estimates as a consequence of receiving advice, independent of its quality. 

As we have stated before, feedback about the advisors’ estimation accuracy should 

influence the differentiation of advice quality and, thereby, the strength of learning. However, 

even in the absence of feedback, judges are supposed to be sensitive to advice quality or 

should, at least, benefit from better calibrated advisors, which should allow an increase in 

initial judgment accuracy as well. Hence, we hypothesize: 

Hypothesis 3: The accuracy of judges’ initial estimates after receiving advice differs 

as a function of advice quality with or without feedback. However, the effect of advice quality 

is stronger if feedback about advice quality is given. 

For exploratory purposes, we also address the question of how much the hypothesized 

social learning processes contribute to the finding of improved post-advice final estimates 

that we already know from the literature (e.g., Soll & Larrick, 2009; Sniezek et al., 2004). In 
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other words, we expect that improvements in the accuracy of final estimates after receiving 

advice partially stem from already more accurate initial judgments as long as the task type 

remains stable and advice is presented sequentially on every trial (e.g., Harvey & Fischer, 

1997). Hence, we want to differentiate between two beneficial effects of receiving advice: (a) 

increases in initial judgment accuracy as a consequence of social learning and (b) simple 

advice weighting that should improve judges’ final estimates and put them in relation to each 

other. 

Experiment 1 

In Experiment 1, we tested whether receiving advice improves subsequent initial 

estimates, and whether the advisor’s accuracy moderates the extent of these learning effects 

(Hypothesis 1). Furthermore, we aimed to investigate whether learning gains manifested as 

improved metric or mapping knowledge (Hypothesis 2a & 2b). To address these questions, 

participants worked on quantitative estimation tasks and received randomly drawn advice 

from a pool of 76 advisors of different expertise who had taken part in a pretest. Participants 

either received advice from one randomly drawn advisor throughout all trials, or from a 

different randomly drawn advisor on each trial. Previous judge advisor research used both 

constant advisors (e.g., Gino & Schweitzer, 2008; Soll & Mannes, 2011; Minson & Müller, 

2012) and varying advisors (e.g., Harvey & Fischer, 1997; Gino, 2008; Schultze, 

Rakotoarisoa, & Schulz-Hardt, 2015). We compared these two types of advice since they 

might have different impact on potential learning gains. On the one hand, receiving advice 

from the same advisor on all trials could facilitate learning, because judges can assess their 

advisor’s systematic deviations from their own estimates. On the other hand, being stuck with 

one advisor means that the potential for learning is limited by that advisor’s accuracy. If the 

advisor’s accuracy is low, there might even be the risk of negative learning if the judge 

adopts the advisor’s inferior metric or mapping. In the case of varying advisors, judges 
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cannot infer systematic discrepancies between their own estimates and those of a specific 

advisor. Instead, they need to integrate information over several advisors, for example, by 

inferring a consensus among their advisors, allowing them to adjust their own metric or 

mapping to this central tendency. However, varying advisors could also foster learning 

because this variation should diminish naïve realism. If a judge has only one advisor, the 

judge may attribute systematic differences in metrics to the advisor being biased. In contrast, 

when confronted with recommendations from a group of people that differ from one’s 

opinion while being similar to each other, it is more likely to attribute these discrepancies to 

oneself being subject to bias. Finally, we compared the two advice conditions with a control 

condition in which participants received no advice at all. This procedure allowed us to control 

for practice effects and, thus, to attribute stronger increases in initial accuracy in the two 

advice conditions unequivocally to social learning. 

Method 

Participants and design 

One hundred and ninety-seven German or German-speaking students (133 women, 61 

men, 3 participants did not report their gender), with an average age of 23.81 years (SD = 

5.53), participated in the experiment. Eight participants were excluded from all analyses: Six 

of them had already participated in a preceding study and, thus, were familiar with the 

estimation task, and two other participants were excluded because their initial estimates were 

unreasonably high (they overestimated the true values by more than 2,300 percent), raising 

doubts about whether they had taken the task seriously. Experiment 1 is based on a one-

factorial design with experimental condition (constant advisor, variable advisor, no advice) as 

a between-subjects factor. 
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Task and procedure 

In each experimental session, up to 12 participants were invited. Upon arrival in the 

laboratory, they were guided to a room with several computer workstations. They were seated 

at separate computers and were informed about the task and the procedure of the experiment. 

Participants had to estimate airline distances between different European capital cities, a task 

where prior studies could successfully show social learning in interacting groups (Schultze et 

al., 2012; Stern et al., 2017). The estimations of participants from a previous pretest (N = 76) 

served as advice in our first experiment. Participants were randomly assigned to one of the 

three conditions. The experiment consisted of two phases: an individual practice phase with 

10 distance estimates, and a subsequent test phase with 20 distance estimates. The individual 

practice phase was identical in all three conditions. Participants were given the opportunity to 

get used to the task without any advice, and the individual accuracy during this practice phase 

served as a performance baseline. The second phase differed between conditions. In the 

constant advisor condition, each participant received advice from one specific, randomly 

drawn participant of the pretest. In the variable advisor condition, participants also received 

advice from randomly determined participants of the pretest. However, in this condition a 

new advisor was randomly drawn for each trial. In both conditions, participants were fully 

informed about the drawing procedure at the beginning of the experiment, that is, they knew 

whether they were dealing with a constant advisor or with varying advisors. Finally, in the 

control condition participants received no advice at all, which allowed us to calculate an 

uninfluenced performance baseline, and to analyze whether participants’ judgments change in 

the course of time even without advice. 

In the two advice conditions, the second phase followed the classic JAS procedure, 

with the respondents taking the role of the judge. After giving an initial estimate, the 

participants received advice on the following screen, without additional information about 
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advice quality or advisor competence. Judges then made a final, and possibly revised, 

estimate. In order to hold the number of estimates constant between conditions, participants 

in the control condition also estimated each distance twice. Instead of receiving advice, they 

were instructed to think about their initial estimate and then estimate the same target again. If 

they did not want to change their estimate, they were asked to simply enter their initial 

estimate a second time. The sequence of distances was randomized by the computer. Finally, 

we asked participants to report whether they received advice and, if they did, whether it came 

from the same advisor or varying advisors. These questions served as an awareness check for 

the manipulation of the experimental condition. Upon completing the experiment, 

participants received their payment of €51, were thanked for their participation, and 

debriefed. 

Results and discussion 

Manipulation check and check for possible interfering effects 

Prior to the main analyses, we checked whether our advice manipulation was 

recognized as intended. In the no advice condition, all participants reported that they did not 

receive advice at the end of the experiment. In the constant advisor condition, 84.1 percent of 

participants reported that they had always received advice from the same advisor. Finally, in 

the variable advisor condition, 85.9 percent reported that they received advice from varying 

advisors. Accordingly, there was a significant association between the true and perceived 

experimental condition, χ2 (4) = 277.74, p < .001. Hence, most of the participants understood 

whether they received advice from a constant or from varying advisors. 

                                                        
1 Previous research on advice taking either rewarded their participants with a flat payment (e.g., Gino 

& Schweitzer, 2008), or with (additional) financial incentives for accurate estimates (e.g., Soll & 

Larrick, 2009). Usually, we reward our participants for accurate final estimates. In the current 

experiments, however, we refrained from doing so because financial incentives for accurate final 
estimates might have shifted participants’ concentration exclusively to those judgments, possibly 

placing less effort on the initial estimates that were the focus of our analyses. Hence, we decided to 

work with a flat payment. 
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As we outlined before, advice quality should be a crucial moderator for the effects of 

social learning. Hence, we calculated some preliminary analyses on this important 

determinant. Firstly, we checked whether judges’ initial accuracy was similar in all three 

conditions, to rule out baseline performance differences. To this end, we calculated the mean 

absolute percent error (MAPE) score as our main dependent variable. The MAPE is a 

common measure for estimation accuracy in quantitative judgment research (e.g., Sniezek & 

Henry, 1989, 1990). As the MAPE is a deviance score, lower MAPE values indicate a greater 

accuracy. An ANOVA with experimental condition (constant advisor vs. variable advisor vs. 

no advice) as between-subjects factor and participants’ MAPE during the practice phase as 

dependent variable showed no significant differences in baseline performance, F(2, 186) = 0.20, 

p = .815, ηp
2 < .01. Additionally, we analyzed whether judges’ initial estimates and the advice 

they received were, on average, equally accurate. A paired-sample t-test that compared the 

judges’ MAPE during the practice phase to the MAPE of advice in both advice conditions 

revealed that advisors were significantly more accurate than the judges’ baseline accuracy (M 

= 43.18, SD = 16.46 vs. M = 62.92, SD = 56.29), t(126) = -3.69, p < .001, d = 0.33. 

Furthermore, there was less variance among advisors than among judges. In total, the 

advisors were superior to the judges in 56 percent of all cases and outperformed them on 

average by 20 percentage points (SD = 60.29). However, there were no significant 
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differences in the MAPE of advice between the constant and the variable advisor condition 

(M = 43.04, SD = 21.89 vs. M = 43.32, SD = 8.40), t(125) = -0.09, p = .925, d = 0.02.2 

Judges’ accuracy of initial estimates 

Next, we investigated our main research question, namely whether socially induced 

individual learning occurs in a prototypical JAS, and how it is related to advisors’ judgment 

accuracy. To this end, we were interested in how the initial estimate accuracy changed from 

the first individual practice phase to the second experimental phase. We treated the initial 

estimate of the first trial of the second phase (trial 11) as part of the individual practice phase, 

since participants provided this estimate prior to receiving any advice and, thus, before any 

socially induced learning effects could have occurred. We ran a 3 (experimental condition: 

constant advisor vs. variable advisor vs. no advice) × 2 (trial block: practice phase vs. 

experimental phase) repeated measures ANOVA with participants’ initial accuracy during the 

two phases as dependent variable. This analysis revealed no main effect of experimental 

condition, F(2, 186) = 1.30, p = .274, ηp
2 = .01, but a significant main effect of trial block, 

F(2, 186) = 7.23, p = .008, ηp
2 = .04, that was qualified by an interaction of experimental 

condition and trial block, F(2, 186) = 5.06, p = .007, ηp
2 = .05. Additional simple effects 

analyses showed that there were no differences between the experimental conditions during 

the practice phase, F(2, 186) = 0.20, p = .815, ηp
2 < .01. In contrast, during the experimental 

phase there were significant differences between the experimental conditions, F(2, 186) = 

                                                        
2 We also analyzed the strength of advice taking (AT), which is defined as (initial estimate – final 
estimate) / (initial estimate – advice), and is a common measure of advice weighting (e.g., Harvey & 

Fischer, 1997; Sniezek et al., 2004; Bonaccio & Dalal, 2006). We conducted a t-test to compare the 

AT in the constant advisor and the variable advisor condition. This analysis revealed no significant 
differences between the two conditions (M = 26.91, SD = 19.16 vs. M = 29.86, SD = 22.01), t(125) = -

.81, p = .421, d = .14. In other words, judges weighted constant and variable advisors more or less 

equally. Furthermore, they only shifted between 26 and 30 percent towards the advice, which mirrors 

the usual amount of egocentric advice discounting reported in the literature (e.g., Bonaccio & Dalal, 
2006). Experiments 2 and 3 replicate this general pattern of results with stronger advice taking of high 

quality advisors. However, we refrain from reporting further results regarding advice taking because it 

is not central to our research question. 
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4.23, p = .016, ηp
2 = .04 (see Table 1). Pairwise comparisons revealed that participants in 

both the constant and variable advice condition were significantly more accurate than 

participants who received no advice, p = .020, and, p = .008, respectively. The two advice 

conditions were not significantly different from each other, p = .741. Beyond that, the simple 

effects of trial block showed no accuracy changes for the no advice condition between 

blocks, F(1, 186) = 0.75, p = .388, ηp
2 < .01. In contrast, both in the constant and the variable 

advice condition participants’ initial judgment accuracy increased after receiving advice, F(1, 

186) = 3.79, p = .053, ηp
2 = .02, and, F(1, 186) = 13.05, p < .001, ηp

2 = .07, respectively, even 

though the former comparison did not reach conventional levels of significance. Hence, 

participants’ average initial judgment accuracy only improved when they received advice. 

Figure 1 shows the distribution of gains and losses across participants and conditions. In the 

two advice conditions, participants’ accuracy increased in 64 percent of the cases (81 of 127) 

and decreased in 36 percent of the cases (46 of 127). In the no advice condition, increases (34 

of 62, or 55%) and decreases (28 of 62, or 45%) in participants’ accuracy more or less 

balanced each other out.  

Beyond that, we wanted to clarify the role of advice quality and judges’ baseline 

accuracy on the strength of learning. To this end, we predicted judges’ accuracy gains from 

the advisors’ MAPE (for the variable advice condition we averaged the advisors’ accuracy) 

and the judges’ MAPE during the practice phase in a multiple regression. We computed 

accuracy gains as the difference between judges’ MAPEs in the first and second phase of the 

experiment. Hence, positive values indicated a performance enhancement, and negative 

values a decrease in accuracy from the practice phase to the test phase. As the results of 

Experiment 1 revealed no significant differences between the constant and the variable 

advice condition at all, we collapsed across the two conditions. Therefore, we averaged the 

advisors’ accuracy throughout the trials for the variable advice condition (the pattern of 
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results remains unchanged when calculating two separate multiple regressions). The analysis 

revealed that the two predictors explained 79.3% of the variance, R2 = .79, F(2, 124) = 

237.91, p < .001. Judges’ accuracy during the training phase significantly predicted 

subsequent changes in initial estimate accuracy (β = .89, p <.001), whereas advice quality did 

not (β = -.02, p =.704). In other words, judges with a low estimation accuracy benefitted the 

most from receiving advice. In sum, judges’ initial accuracy increased after receiving advice, 

but instead of the quality of advice, only judges’ own baseline accuracy moderated the 

strength of learning. Hence, the results of Experiment 1 do not support Hypothesis 1 to its 

full extent, but clearly show that receiving advice can enable social learning processes that 

increase the accuracy on subsequent initial estimates. 

Changes in judges’ metric and mapping error 

In line with the assumption that advice offers a frame of reference that can reduce the 

individual metric error, and not the mapping error, we started by calculating the mean overall 

deviation (MOD) (Brown & Siegler, 1993). The MOD is a measure of metric property and 

represents the absolute discrepancy between, on the one hand, the subject’s median estimate 

across all items and, on the other hand, the true overall median, with lower values indicating 

a more central estimation tendency. However, since the magnitude of participants’ judgment 

errors covaried strongly with the respective true values, we worked with the percentage error 

instead of the absolute deviation from the true values.3 We calculated a 3 (experimental 

condition: constant advisor vs. variable advisor vs. no advice) × 2 (trial block: practice phase 

vs. experimental phase) repeated measures ANOVA with participants’ initial absolute median 

percentage error during the two phases as dependent variable. This analysis showed no main 

effect of experimental condition, F(2, 186) = 1.11, p = .322, ηp
2 = .01, but a significant main 

                                                        
3 The pretest data revealed a strong correlation between the target values and the corresponding 

absolute errors (r = .96). However, the pattern of results remains the same when working with the 

median absolute error instead of the median absolute percentage error in all three experiments. 
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effect of trial block, F(2, 186) = 7.49, p = .007, ηp
2 = .04, that was qualified by an interaction 

of experimental condition and trial block, F(2, 186) = 3.22, p = .042, ηp
2 = .03. Simple effects 

analyses revealed that there were no differences between the three experimental conditions 

during the practice phase, F(2, 186) = 0.03, p = .968, ηp
2 < .01, whereas there were 

significant differences during the experimental phase, F(2, 186) = 3.81, p = .024, ηp
2 = .04 

(see Table 1). Pairwise comparisons showed that participants in both the constant and 

variable advice condition had a significantly lower metric error than participants who 

received no advice during the experimental phase, p = .029, and, p = .012, respectively. In 

contrast, the two advice conditions were not different from each other, p = .735. Simple 

effects analyses comparing metric errors between the practice and the experimental phase 

revealed no changes in the control condition, F(1, 186) = 0.21, p = .649, ηp
2 < .01. However, 

in both the constant and the variable advice condition, metric errors decreased after receiving 

advice, F(1, 186) = 5.09, p = .025, ηp
2 = .03, and, F(1, 186) = 8.80, p = .003, ηp

2 = .05, 

respectively. Accordingly, receiving advice improved judges’ metric error on subsequent 

initial estimates. 

In contrast to metric errors, we did not expect systematic changes in mapping errors to 

occur. We operationalized mapping errors as rank-order correlations of participants’ 

estimates and the true values (Brown & Siegler, 1993). In order to compare mapping errors 

between phases and conditions, we subjected them to a Fisher z-transformation. Similar to the 

metric errors, we calculated a 3 (experimental condition: constant advisor vs. variable advisor 

vs. no advice) × 2 (trial block: practice phase vs. experimental phase) repeated measures 

ANOVA with participants’ Fisher z-transformed rank-order correlation coefficients during the 

two phases as dependent variable. The analysis revealed neither a main effect of experimental 

condition, F(2, 186) = 0.12, p = .887, ηp
2 < .01, nor main effect of trial block, F(2, 186) = 0.14, 

p = .906, ηp
2 < .01, nor interaction of experimental condition and trial block, F(2, 186) = 0.48, 
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p = .620, ηp
2 < .01 (see Table 1). In other words, there were no systematic changes in 

participants’ mapping error. 

In sum, receiving advice affected participants’ metric but not their mapping error.4 

This supports the idea that accurate frames of reference have a beneficial effect on judges’ 

initial estimates. However, it was the judge’s baseline accuracy that mainly predicted metric 

error reductions after receiving advice, and not the quality of advice. Accordingly, the results 

of Experiment 1 are not fully in line with Hypothesis 2a. Furthermore, as there were no 

systematic changes in participants’ mapping error, the results support Hypothesis 2b. 

Exploratory analyses 

Finally, to put the accuracy gains of initial judgments after receiving advice in 

perspective, we compared them to the accuracy gains resulting from advice taking when 

coming to the final judgment. To this end, we calculated whether participants’ final estimates 

in the second phase (trials 12-30) were more accurate after receiving advice (averaged over 

both advice conditions) compared to the no advice control condition. Again, we only report 

one analysis for both advice conditions. However, the pattern of results remains unchanged 

when comparing the no advice condition with the constant advice or variable advice 

condition separately. Judges in the two advice conditions outperformed participants who did 

not receive advice by 27 percentage points (M = 42.83, SD = 23.38 vs. M = 70.25, SD = 

80.86), t(187) = 3.54, p = .001, d = 0.46, thereby mirroring the finding of increased accuracy 

of judges’ final decisions after receiving advice (e.g., Gardner & Berry, 1995; Gino & 

Schweitzer, 2008; Sniezek et al., 2004). Furthermore, we ran the same analysis with 

                                                        
4 We found a significant relationship between advice quality and the advisor’s metric error, r(127) = 
.71, p < .001, as well as advice quality and advisor’s mapping error, r(127) = -.19, p = .029, indicating 

that high quality advice was characterized by a small metric and mapping error. Hence, the finding 

that superior advice only reduces judges’ metric error cannot stem from systematic differences 

between the metric and mapping error of high quality advice. Furthermore, participants’ Fisher z-
transformed rank-order correlation coefficients suggest that there was still space for reductions in 

their mapping error (r = .68). Hence, we can rule out that ceiling effects might have prevented 

changes in mapping error from occurring. 
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participants’ initial judgments in the second phase, to see how much of this performance 

advantage was due to transfer from one task to another. This t-test showed that judges’ initial 

estimates were more accurate with than without advice by about 23 percentage points (M = 

47.45, SD = 25.77 vs. M = 70.25, SD = 80.86), t(187) = 2.90, p = .004, d = 0.38. The 

accuracy gains due to adjusting the initial estimates towards the advice accounted for the 

remaining 4 percentage points. In other words, social learning accounted for 83 percent of the 

total beneficial effect of receiving advice, whereas advice weighting (i.e., the integration of 

advice into one’s already improved initial judgments) only accounted for 17 percent. 

Conclusions 

In Experiment 1, we found evidence for socially induced learning in a prototypical 

JAS. Receiving advice improved judges’ subsequent initial accuracy on estimation tasks, no 

matter whether it came from the same or varying advisors. The most likely explanation for 

this phenomenon is that judges adjusted their own metric towards that of the advisor(s), since 

advice affected participants’ subsequent metric error, but not their mapping error. This 

adjustment in metrics accounted for the major part of the total beneficial effect of receiving 

advice. Contrary to our expectations, the magnitude of the improvements in initial judgment 

accuracy was not systematically related to the quality of advice. This might have to do with 

characteristics of the pretest participants who served as advisors in Experiment 1. As we have 

shown in the preliminary analyses, the random advice judges received was, in general, 

relatively accurate and had less variance than the judges’ baseline accuracy. Hence, it might 

have been difficult to detect the moderating influence of advice quality. 

Experiment 2 

To substantiate the findings of social learning after receiving advice found in 

Experiment 1, it is crucial to manipulate the quality of advice. Therefore, we conducted a 

second experiment with some modifications, most importantly, an experimental manipulation 
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leading to a more pronounced variation of advice quality, which is quite common in JAS 

research (e.g., Yaniv & Kleinberger, 2000). Participants received advice of high quality, 

moderate quality, or low quality, or they received no advice at all. Additionally, we wanted to 

be sure that effects of advice quality would be detected if they existed. Therefore, participants 

received veridical feedback about their corresponding advisor’s accuracy. Beyond that, we 

worked with a different estimation task to improve the generalizability of our findings. 

Method 

Participants, design and task 

One hundred and thirty-two German or German-speaking students (87 women, 45 

men), with an average age of 23.59 (SD = 5.16) years, participated in the experiment. 

Experiment 2 used a one-factorial design with the experimental condition (high advice 

quality vs. moderate advice quality vs. low advice quality vs. no advice) as a between-

subjects variable. Participants estimated the weight of different physical items (e.g., hammer, 

dustpan, umbrella) that were present in the room, without being allowed to touch or lift them. 

Procedure 

The procedure of Experiment 2 was similar to that of Experiment 1, with the 

following exceptions. First, we manipulated whether judges received advice from a good, 

moderate, or poor advisor in Experiment 2 and compared them to a control condition without 

advice. Again, we used participants of a pretest (N = 61) as advisors. We selected the 

participant with the best average performance, the participant whose performance marked the 

median of the sample, and the participant with the worst performance (see Yaniv & 

Kleinberger, 2000, for a similar manipulation of advice quality). The advisors’ respective 

MAPE scores were 33 (high advice quality), 150 (moderate advice quality), and 523 (low 

advice quality). Beyond that, high quality advice was characterized by a smaller metric and 

mapping error than the medium quality advice and the low quality advice (metric error: 2.32 
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vs. 31.97 vs. 426.52; mapping error: .72 vs. .59 vs. .42). Second, participants received 

accurate feedback about their advisor’s performance rank during the pretest (1st vs. 31st vs. 

61st of 61). In the control condition, participants received no advice at all. Furthermore, we 

dropped the individual practice phase, because the control condition is sufficient to analyze 

changes in participants’ judgment accuracy without advice. Hence, comparisons with the no 

advice control condition are sufficient to examine social learning processes after receiving 

advice. Consequently, in contrast to Experiment 1, the number of trials was reduced to 20, 

which made the experiment shorter overall. Due to the reduced duration of the experiment, 

participants only received a compensation of €4. After estimating all distances, participants 

were asked to rate the accuracy of their corresponding advisor to see whether our feedback 

manipulation was successful. To this end, participants estimated their advisors’ MAPE. 

Results and discussion 

Manipulation checks and check for possible interfering effects 

We analyzed whether participants drew the correct conclusions about the quality of 

the advice they received. To this end, we calculated an ANOVA with the three advice 

conditions (high quality vs. moderate quality vs. low quality) as between-subjects factor and 

the judges’ estimation of the advisors’ MAPE as a dependent variable. This analysis revealed 

significant differences between the advice conditions, F(2, 96) = 8.79, p < .001, ηp
2 = .15. 

Additional Tukey post hoc tests showed that the high quality advice was not rated 

significantly more accurate than the moderate quality advice (M = 23.09, SD = 16.34 vs. M = 

43.78, SD = 43.38), p = .751, although the means were in the predicted direction. Beyond 

that, the high and moderate quality advice was rated significantly more accurate than the low 

quality advice (M = 23.09, SD = 16.34 vs. M = 134.12, SD = 191.57), p < .001, and (M = 

43.78, SD = 43.38 vs. M = 134.12, SD = 191.57), p = .006, respectively. Hence, participants 

were able to distinguish the low quality of the poor advice, but did not perceive the good 
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advisor to be significantly more accurate than the moderate advisor. As a consequence, we 

expect that the moderating effect of advice quality will be restricted to differences between 

low quality advice, on the one hand, and moderate and high quality advice, on the other hand. 

Judges’ accuracy of initial estimates 

We first conducted an ANOVA with experimental condition (high advice quality vs. 

moderate advice quality vs. low advice quality vs. no advice) as a between-subjects factor 

and the MAPE of initial estimates as a dependent variable. For this analysis, we eliminated 

the first trial from the calculations, because on that trial participants had not yet received any 

advice. This analysis is equivalent to analyzing initial accuracy in the second phase of 

Experiment 1. We found a significant effect of experimental condition, F(3, 128) = 11.44, p < 

.001, ηp
2 = .21. Tukey post hoc tests showed that the MAPE of initial estimates was not 

significantly different in the high and in the moderate advice quality condition, p = .630, 

although, descriptively, judges in the high quality advice condition were more accurate by 

about 35 percentage points (see Table 2). Initial estimates were more accurate in the high and 

moderate than in the low advice quality condition, p < .001, and, p = .001, respectively. Both, 

receiving advice from a highly accurate and from a moderately accurate source led to 

significantly more accurate initial estimates than receiving no advice at all, p = .001, and, p = 

.040, respectively. Finally, participants in the low advice quality condition were 

(descriptively) somewhat inferior to participants without advice, but this difference was not 

significant, p = .588. Figure 2 shows the accuracy distribution across participants and 

conditions, with a clear tendency in the high and moderate advice quality condition for more 

accurate estimates. In total, these results indicate that participants’ subsequent initial 

estimation accuracy increases as a function of advice quality, supporting Hypothesis 1. 

However, the fact that there were no differences between the high and moderate advice 
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quality condition supports the idea that judges can benefit from advice as long as it is not 

particularly poor. 

Changes in judges’ metric and mapping error 

To test for possible differences in participants’ metric errors, we conducted an 

ANOVA with experimental condition (high advice quality vs. moderate advice quality vs. 

low advice quality vs. no advice) as a between-subjects factor and the absolute median 

percentage error of initial estimates as a dependent variable. Again, we eliminated the first 

trial from these calculations. This analysis showed a significant effect of experimental 

condition, F(3, 128) = 13.29, p < .001, ηp
2 = .24. Tukey post hoc tests revealed that judges’ 

metric errors were not significantly different in the high and in the moderate advice quality 

condition, p = .713 (see Table 2). However, metric errors were significantly lower in the high 

and moderate than in the low advice quality condition, p < .001, and, p < .001, respectively. 

Judges’ metric errors in the high and moderate advice quality condition were also lower than 

in the no advice condition, p < .001, and, p = .018, respectively. Finally, there were no 

significant differences between the low advice quality and the no advice condition, p = .468. 

In sum, these analyses show that participants had a lower metric error after they received 

high or moderate quality advice compared to the low advice quality and the no advice 

condition, thereby mirroring the corresponding findings with regard to overall judgment 

accuracy. 

We tested for possible differences in participants’ mapping error in an ANOVA with 

experimental condition (high advice quality vs. moderate advice quality vs. low advice 

quality vs. no advice) as a between-subjects and the participants’ Fisher z-transformed rank-

order correlations (trials 2 to 20) as a dependent variable. This analysis revealed no 

significant differences between the conditions, F(3, 128) = 0.25, p = .864, ηp
2 = .06 (see 

Table 2). In sum, we found evidence for differences in judges’ metric errors as a function of 
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advice quality with no differences in judges’ mapping error, thereby supporting Hypothesis 

2a and 2b. 

Exploratory analyses 

Finally, in line with Experiment 1, we put the accuracy gains of initial judgments after 

receiving advice in perspective and compared them to the accuracy gains in participants’ final 

judgments, resulting from advice taking. To this end, we calculated an ANOVA with 

experimental condition (high advice quality vs. moderate advice quality vs. low advice 

quality vs. no advice) as a between-subjects factor and the MAPE of final estimates after the 

first advice (trials 2-20) as a dependent variable. This analysis revealed a significant effect of 

the experimental condition, F(3, 128) = 16.70, p < .001, ηp
2 = .28. Tukey post hoc tests 

showed that the MAPE of final estimates was significantly more accurate when receiving 

high quality advice or moderate quality advice as compared to no advice (M = 62.14, SD = 

45.16 vs. M = 201.11, SD = 174.94), p < .001, and (M = 114.64, SD = 47.47 vs. M = 201.11, 

SD = 174.94), p = .020, respectively. In the low advice quality condition, the final estimate 

accuracy was not significantly different from the control condition (M = 248.30, SD = 143.38 

vs. M = 201.11, SD = 174.94), p = .365. Hence, participants who received high and medium 

quality advice outperformed those without advice by 139 and 86 percentage point, whereas 

low quality advice led to a statistically insignificant inferiority of 47 percentage points. 

To see what part of the benefit of advice stemmed from social learning, we compared 

these results to the results of the same analysis with the initial judgment accuracy as 

dependent variable (see section Judges’ accuracy of initial estimates). This analysis revealed 

that judges who received high quality advice outperformed no advice control participants by 

114 percentage points, and judges who received moderate quality advice outperformed the 

control individuals by 79 percentage points. In contrast, participants in the low advice quality 

condition were somewhat (but not significantly) inferior to those in the control condition 
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(namely by 37 percentage points). Hence, in the high advice quality condition social learning 

accounted for 82 percent and in the moderate advice quality condition for even 92 percent of 

the total beneficial effect of receiving advice. Accordingly, these results indicate that the 

major part of differences between participants who received high or moderate quality advice 

and those who didn’t receive advice already manifested in their initial judgments (i.e., due to 

social learning processes), with minor subsequent changes as a consequence of advice 

weighting, thereby mirroring the findings of Experiment 1. 

Conclusion 

Summarizing Experiment 2, we replicated the findings of the first experiment that 

advice can affect the accuracy of judges’ subsequent initial estimates. Judges benefitted from 

high and moderate quality advice, which improved their initial judgment accuracy. The 

increase in estimation accuracy seems to be independent of whether participants have the 

opportunity to get used to the task during an individual practice phase, which further 

substantiates our findings and speaks to the generalizability of the phenomenon. Surprisingly, 

moderate quality and high quality advice had about the same effect. The differences between 

these two conditions were, albeit in the predicted direction, weak and statistically 

insignificant. Hence, as long as it is sufficiently reasonable, advice seems to have a positive 

effect on the judges’ initial estimate accuracy. However, one has to take into account that in 

our advice quality manipulation the high and moderate quality advice was much more similar 

than, for example, the moderate and the low quality advice. This, in turn, could also explain 

the insignificant difference when it comes to improvements in subsequent initial judgments 

between participants that received high compared to moderate quality advice. Low quality 

advice, in contrast, did not improve these judgments, but neither did it significantly harm 

judges initial estimate accuracy, supporting the idea that judges seem to be rather sensitive to 

the quality of advice, which prevents them from adjusting their subsequent initial judgments 
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towards the poor advice. Beyond that, high and moderate quality advice reduced participants’ 

metric error. Furthermore, the results support the idea of two beneficial effects of high quality 

advice, namely social learning processes that strongly improve the initial judgment accuracy 

and, in addition to it, adjustments towards the advice that further improve the accuracy of 

final judgments. Nevertheless, the major increase in accuracy seems to derive from the 

transfer from one task to another. 

Experiment 3 

Experiment 2 provided evidence that the advice quality moderates improvements in 

subsequent initial judgment accuracy. However, participants received veridical feedback 

about the quality of advice and, hence, were in a somewhat “ideal” situation of perfect advice 

quality salience. In real-world advice situations, this degree of salience is rather uncommon. 

Accordingly, in Experiment 3, we wanted to find out whether we could still find a 

moderating effect of advice quality without such feedback, and how strong it would be in 

comparison to a situation with feedback. For this reason, we implemented some differences 

compared to Experiment 2. First, we worked with the same task as in Experiment 1, in order 

to substantiate the general findings of Experiment 2 with a different estimation task. Second, 

as we found no significant differences in individual learning between judges who received 

high quality compared to moderate quality advice in Experiment 2, we dropped the latter 

condition in Experiment 3. Judges received advice from either a very accurate or an 

inaccurate advisor. Moreover, we were interested in how feedback about the advisors’ 

estimation accuracy influences the strength of learning. In everyday life, people often get no 

reliable information about their advisor’s competence, which raises the question of how 

judges react to the different quality of advice in the absence of this meta-knowledge. To 

address this issue, we compared judges without such information to judges who received 

veridical feedback about whether they received good or poor advice. 
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Method 

Participants and design 

One hundred and sixty-four German or German-speaking students (104 women, 59 

men, one participant did not report the gender), with an average age of 23.98 (SD = 4.23) 

years, participated in the experiment. Four participants were excluded because of 

unreasonably high estimates either during the practice phase or during the last trials of the 

experimental phase (overestimating the true values by more than 1,300 percent), indicating 

that these persons had not taken the experimental task seriously. Experiment 3 is based on a 2 

(advice quality: high vs. low) × 2 (feedback about advice quality: yes vs. no) factorial design. 

Task and procedure 

In general, the task and basic procedure was the same as in Experiments 1 and 2. 

Therefore, we focus on reporting the changes made compared to the previous experiments. 

First, we manipulated whether judges received advice from a good or poor advisor in 

Experiment 3. In the high advice quality condition, subjects received advice from the most 

capable of 76 participants of a pretest (the same pretest that we referred to in Experiment 1) 

with an average MAPE-score of 22. In the low advice quality condition, the advisor was the 

least accurate pretest participant, with a MAPE-score of 146. Furthermore, high quality 

advice was also characterized by a smaller metric and mapping error than the low quality 

advice (metric error: 11.98 vs. 121.60; mapping error: .72 vs. .50). Second, half of the 

participants received accurate feedback about their advisor’s performance rank during the 

pretest (1st vs. 76th), whereas the other half solely received the advice, without any additional 

information about its quality. Finally, we re-established the individual practice phase, 

comparing judges’ accuracy in the practice phase to that of the initial estimates in the test 

phase. Since Experiment 1 showed that there were no accuracy gains in the absence of 

advice, we can attribute all changes between the two phases as effects of receiving advice. 
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This allowed us to drop the no advice control condition, resulting in a straightforward two-

factorial design (instead of a design featuring a non-factorial control group). As in 

Experiment 1, participants received a compensation of €5. 

Results and discussion 

Manipulation checks and check for possible interfering effects 

We first checked whether there were systematic differences in judges’ baseline 

accuracy between the conditions. To this end, we calculated an ANOVA with advice quality 

(high vs. low) and feedback (yes vs. no) as between-subjects factors and participants’ MAPE-

scores during the practice phase as a dependent variable. This analysis revealed no significant 

main or interaction effect, all Fs < 0.68, all ps > .413. 

To analyze whether participants were able to assess the quality of advice, we 

calculated an ANOVA with advice quality (high vs. low) and feedback (yes vs. no) as 

between-subjects factors, and the judges’ estimation of the advisors’ MAPE as dependent 

variable. This analysis revealed a significant main effect of advice quality, F(1, 156) = 68.14, 

p < .001, ηp
2 = .30, that was qualified by an interaction of advice quality and feedback, F(1, 

156) = 16.43, p < .001, ηp
2 = .10. The main effect of feedback was not significant, F(1, 156) 

= 1.01, p = .318, ηp
2 = .01. Simple effects analyses revealed that high quality advice was 

rated as more accurate with than without feedback (M = 22.40, SD = 18.12 vs. M = 37.02, SD 

= 15.15), F(1, 156) = 12.94, p < .001, ηp
2 = .08, whereas the low quality advice was rated as 

less accurate if feedback was given (M = 58.00, SD = 21.44 vs. M = 49.18, SD = 18.07), F(1, 

156) = 4.60, p = .034, ηp
2 = .03. Consequently, our feedback manipulation was successful and 

led to a higher salience of advice quality. As expected, participants rated high quality advice 

as more accurate than low quality advice when they received veridical feedback, F(1, 156) = 

74.81, p < .001, ηp
2 = .32. However, even without such feedback, the high quality advice was 

rated as being more accurate than the low quality advice, F(1, 156) = 8.94, p = .003, ηp
2 = 
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.05, indicating that the judges were still sensitive to the quality of advice even when they 

received no information about the advisor’s accuracy. 

Judges’ accuracy of initial estimates 

First, we conducted a 2 (advice quality: high vs. low) × 2 (feedback: yes vs. no) × 2 

(trial block: practice phase vs. experimental phase) repeated measures ANOVA with participants’ 

initial accuracy as the dependent variable. This analysis showed a main effect of advice 

quality, F(1, 156) = 4.76, p = .031, ηp
2 = .02, and a main effect of trial block, F(1, 156) = 

6.22, p = .014, ηp
2 = .04. Both were qualified by an interaction of advice quality and trial 

block, F(1, 156) = 14.08, p < .001, ηp
2 = .08. Furthermore, there was no main effect of 

feedback nor interactions with feedback, all Fs < 1.59; all ps > .210.5 Simple effects analyses 

revealed that there were no differences between the advice quality conditions during the 

practice phase, F(1, 156) = 0.02, p = .880, ηp
2 < .01, whereas participants receiving high 

quality advice were significantly more accurate than those receiving low quality advice 

during the experimental phase, F(1, 156) = 30.46, p < .001, ηp
2 = .16 (see Table 3). 

Furthermore, participants receiving high quality advice significantly improved in accuracy 

from the practice to the experimental phase, F(1, 156) = 19.76, p < .001, ηp
2 = .11, whereas 

participants who received low quality advice showed no significant changes in accuracy, F(1, 

156) = 0.78, p = .378, ηp
2 < .01. Figure 3 shows the distribution of gains and losses across 

participants and conditions. In the high advice quality conditions 84 percent of participants 

                                                        
5 In addition, we tested whether the interaction of advice quality and trial block was significant even 
without feedback (i.e., to check whether advice quality affects accuracy changes even if the judge is 

not informed about the quality of the advice). Separate repeated measures ANOVAs for the two 

feedback conditions revealed that judges’ initial accuracy improved more strongly after receiving high 
compared to low quality advice, both with feedback, F(1, 77) = 5.82, p = .018, ηp

2 = .07, and without 

feedback, F(1, 79) = 12.33, p = .001, ηp
2 = .13. To analyze whether the increase in accuracy was 

stronger with feedback, we also calculated separate repeated measures ANOVAs for the two advice 

quality conditions. However, the interaction of feedback and trial block was insignificant, both with 
high quality advice, F(1, 79) = 1.03, p = .314, ηp

2 = .01, and with low quality advice, F(1, 77) = 0.76, 

p = .387, ηp
2 = .01. Accordingly, even when receiving high quality advice, feedback by itself had no 

significant additional effect on the strength of learning. 
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(68 of 81) showed increases and 16 percent (13 of 81) decreases in their accuracy. In 

contrast, in the low advice conditions the number of participants that showed increases (42 of 

79, or 53%) and decreases (37 of 79, or 47%) in their accuracy were more or less equal. In 

sum, judges’ initial estimation accuracy improved after receiving good advice, with the result 

that they outperformed judges receiving poor advice, in line with Hypothesis 1. High quality 

advice led to higher initial judgment accuracy even without feedback, in line with the first 

part of Hypothesis 3. However, in contrast to the second part of Hypothesis 3, this 

performance enhancement was not significantly stronger when participants received feedback 

about the quality of advice, as we found no interaction with feedback whatsoever. 

Changes in judges’ metric and mapping error 

Similar to Experiment 1, we analyzed changes in judges’ metric error. To this end, we 

conducted a 2 (advice quality: high vs. low) × 2 (feedback: yes vs. no) × 2 (trial block: practice 

phase vs. experimental phase) repeated measures ANOVA with participants’ absolute median 

percentage error of initial estimates as the dependent variable. This analysis revealed main 

effects of advice quality, F(1, 156) = 5.89, p = .016, ηp
2 = .04, and trial block, F(1, 156) = 

7.41, p = .007, ηp
2 = .05, that were qualified by an interaction of advice quality and trial 

block, F(1, 156) = 11.34, p < .001, ηp
2 < .07. Again, the main effect of feedback as well as all 

interactions with feedback were insignificant, all Fs < 2.56; all ps > .112. Simple effects 

analyses showed no differences between the advice quality conditions during the practice 

phase, F(1, 156) < 0.01, p = .943, ηp
2 < .01. However, during the experimental phase, high 

quality advice led to a significantly lower metric error, F(1, 156) = 37.16, p < .001, ηp
2 = .19 

(see Table 3). Beyond that, receiving high quality advice significantly reduced participants’ 

metric error, F(1, 156) = 18.78, p < .001, ηp
2 = .11, whereas there were no changes in 

participants’ metric error when they received low quality advice, F(1, 156) = 0.21, p = .651, 

ηp
2 < .01. 
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Furthermore, we also tested for possible changes in participants’ mapping errors. 

Therefore, we calculated a 2 (advice quality: high vs. low) × 2 (feedback: yes vs. no) × 2 (trial 

block: practice phase vs. experimental phase) repeated measures ANOVA with participants’ 

Fisher z-transformed rank-order correlations of initial estimates as the dependent variable. 

This analysis revealed neither main effects of advice quality, feedback or trial block, nor 

interaction effects of either advice quality or feedback and trial block, all Fs < 2.34; all ps > 

.128 (see Table 3).6 In summary, when judges received high quality advice, they were able to 

reduce their metric error, whereas there were no significant changes in judges’ metric error 

when they received low quality advice. Beyond that, there were no systematic changes in 

judges’ mapping errors at all. These results are in line with Hypothesis 2a and 2b. 

Exploratory analyses 

Similar to Experiment 1 and 2, we compared the accuracy gains of initial judgments 

after receiving advice to the accuracy gains resulting from advice taking when coming to the 

final judgment. Consequently, we calculated whether participants’ final estimates in the 

second phase (trials 12-30) were more accurate after receiving advice compared to the 

uninfluenced training phase (because we had no control condition in Experiment 3, we 

worked with the training phase as a performance baseline). The corresponding paired-sample 

t-test revealed that the post advice final judgments were significantly more accurate than the 

training phase estimates when receiving high quality advice (M = 26.09, SD = 14.70 vs. M = 

62.02, SD = 75.77), t(80) = -4.39, p < .001, d = 0.49, but not when receiving low quality 

advice (M = 65.76, SD = 44.35 vs. M = 60.54, SD = 49.02), t(78) = 1.53, p = .131, d = 0.17. 

                                                        
6 The analyses showed a non-significant interaction of advice quality, feedback and trial block, F(1, 
156) = 3.80, p = .053, ηp

2 = .02. However, separate paired sample t-tests for each condition only 

revealed significantly decreasing mapping errors when receiving advice of low quality with feedback, 

t(38) = 2.87, p = .007, d = 0.46, with no changes in the other three condition pairs, all ts < 1.02, all ps 

> .318. In our opinion, there is no theoretical basis as to why judges who receive particularly poor 
advice should increase their mapping knowledge, whereas judges receiving high quality advice should 

not. Hence, we think that this finding is a coincidence rather than a systematic interaction of advice 

quality, feedback, and trial block. 
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Furthermore, we compared participants’ initial judgment accuracy in the second phase with 

the training phase to see how much of the accuracy gain can be attributed to the transfer from 

one task to another. The paired sample t-test showed that the initial judgments were 

significantly more accurate after receiving high quality advice than during the training phase 

(M = 34.31, SD = 17.91 vs. M = 62.02, SD = 75.77), t(80) = -3.40, p = .001, d = 0.39, 

whereas, again, there were no significant differences when receiving low quality advice (M = 

66.17 SD = 48.44 vs. M = 60.54, SD = 49.02), t(78) = 1.67, p = .098, d = 0.19. Hence, 

receiving high quality advice increased subsequent initial judgments by almost 28 percentage 

points and post-advice final judgments by another 8 percentage points. Accordingly, social 

learning accounted for 77 percent of the total beneficial effect of receiving high quality 

advice, whereas adjustments toward the advice accounted for 23 percent. 

Conclusions 

The findings of Experiment 3 indicate that good advice leads to stronger 

improvements in subsequent initial judgments than poor advice, even when the advice quality 

is not made salient. High quality advice without feedback led to higher initial judgment 

accuracy and smaller metric errors, without significant additional performance enhancement 

when feedback about the advice quality was given. Interestingly, low quality advice did not 

lead to significant negative learning with or without feedback, which supports the idea that 

judges can identify low quality advice even without such feedback (Yaniv & Kleinberger, 

2000). But why did feedback not have an additional beneficial effect in the high quality 

advice condition? This seems odd given that participants rated the accuracy of the high-

quality advice as more accurate when receiving feedback about his or her competency. One 

explanation is that judges adjust their own metrics towards that of their advisor as long as 

they perceive the advice as sufficiently accurate, without substantial differences in the 

strength of this adjustment. This would be in line with the findings of Experiment 2. Finally, 
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when receiving high quality advice, judges’ post-advice final judgments were superior to the 

improved initial judgments. However, the major performance enhancement seems to derive 

from social learning and not advice taking, thereby mirroring the general findings of 

Experiment 1 and 2. 

General discussion 

In the present study, we tested for general social learning processes as a consequence 

of receiving advice, in terms of a transfer from one task to another. More precisely, we were 

interested in whether advice would affect not just the accuracy of post-advice final 

judgments, as shown in many previous studies (e.g., Gardner & Berry, 1995; Gino & 

Schweitzer, 2008; Sniezek et al., 2004), but also the accuracy of the judge’s subsequent 

initial judgments. In particular, we expected individual performance enhancements especially 

when receiving advice of high quality, because of the superior accuracy of better advisors. 

We expected high quality advice to provide an accurate point of reference that should mainly 

reduce judges’ metric error with no systematic changes in their mapping knowledge. Beyond 

that, we postulated that feedback about the advisors’ accuracy should influence the judges’ 

ability to infer advice quality and, thereby, the strength of social learning. However, even in 

the absence of feedback, we expected judges receiving high quality advice to outperform 

judges receiving low quality advice, because judges should be somewhat sensitive to advice 

quality or because they should, at least, benefit from the superior calibration of their advisors. 

In an exploratory manner, we also differentiated between the performance enhancements of 

initial judgments and the beneficial effect of combining the own initial estimate with the 

advice when coming to a final judgment. To this end, we compared the accuracy of post-

advice final judgments to the, assumedly improved, initial judgments. 

In line with our hypotheses, we found evidence that moderate or high quality advice 

led to social learning that manifested as improved accuracy of subsequent initial judgments in 
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two different estimation tasks. In contrast, if at all, poor advice only seemed to mildly harm 

judges’ subsequent initial judgments. In other words, the beneficial effect of receiving high 

quality advice markedly exceeded the possible detrimental effect of receiving low quality 

advice. Our results provide first evidence for social learning in terms of a generalized transfer 

in the JAS. As our results further indicate, high quality advice reduced judges’ individual 

metric errors, whereas no systematic changes occurred in their mapping knowledge. 

Surprisingly, feedback about the quality of advice had no significant additional positive 

impact on the strength of learning. Even without feedback, participants were sensitive to 

advice quality. Participants receiving high quality advice who received no feedback benefited 

equally to those who did. In the case of low quality advice, participants’ accuracy did not 

decrease substantially, and this was equally true in the absence and in the presence of 

feedback about the advisor’s accuracy. Furthermore, judges’ final estimates were still more 

accurate than their initial judgments when receiving recommendations from a good advisor, 

which supports the idea of two distinct beneficial effects of receiving high quality advice. On 

the one hand, social learning processes lead to improved subsequent initial judgments and, on 

the other hand, advice weighting (i.e., integrating the advice into one’s final judgment) 

improves the accuracy of final post-advice judgments – with the former process being more 

pronounced than the latter. In the following section, we discuss these results against the 

backdrop of previous research, point out limitations of our experiments, and illustrate 

directions for future research. 

Learning from advice 

Previous research already dealt with the question of whether advice enables some 

kind of social learning processes, with the robust result that advice helps to find the right 

solution more quickly when repeatedly working on one specific task in prototypical decision 

making experiments (e.g., Biele et al., 2009; Çelen et al., 2010; Chaudhuri et al., 2006; 
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Kocher et al., 2014). For example, Biele et al. (2009) found that a single piece of advice can 

improve the performance on a repeated choice task, such that the decision maker identifies 

the recommended correct option more quickly and, consequently, chooses this option more 

often over the course of the experiment. In other words, people seem to learn from specific 

advice, with the result of improved post advice decisions on the same task – which is also 

mirrored by classic judge advisor experiments showing that advice leads to improved final 

judgments (e.g., Soll & Larrick, 2009; Sniezek et al., 2004). Hence, one can conclude that 

there is ample evidence for specific social learning that improves the quality of post advice 

final judgments or decisions. Beyond this positive effect of receiving advice, we found strong 

evidence that advice can also have a more general beneficial effect on subsequent related 

tasks. In other words, advice does not only contain information that can increase one’s 

performance on the same task, but can also initiate a transfer to different tasks from the same 

domain. Altogether, these findings suggest that general social learning should be added to the 

list of positive effects of receiving advice, and should be addressed more often in future 

research. 

Furthermore, our study focused on the moderating effect of advice quality on the 

strength of learning, with the common result of stronger learning after receiving high quality 

advice. Judges seem to understand the quality of advice in particular when receiving low 

quality advice. Accordingly, in Experiment 2, we found differences in the strength of 

learning between the high and low advice quality conditions as well as the moderate and low 

advice quality conditions, whereas there were no significant differences between the high and 

moderate advice quality conditions where the advice was less divergent. Beyond that, in 

Experiment 3, feedback had no significant additional effect on the strength of performance 

changes. Hence, to a certain extent, judges are sensitive to the quality of advice even without 

any external cues, which is in line with previous research (Biele et al., 2009; Yaniv & 
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Kleinberger, 2000). As Yaniv & Kleinberger discuss, judges might recognize particularly 

poor estimates as out of bounds, even though the judge cannot generate a correct estimate on 

his or her own. For example, it should be rather difficult to determine whether the distance 

between London and Rome is rather 1,500 or 2,000 km. However, when the advice suggests 

that this distance is 30,000 km, the judge has a very good chance to understand its low quality 

and, hence, refrain from adjusting towards this poor point of reference, even without explicit 

feedback about the advice quality. However, in the study of Yaniv and Kleinberger, the 

judges had another cue for the advice quality. Along with the advice, judges received the 

advisors’ lower and upper boundaries in which the true value should be included with a 

probability of 0.95. This range might have been used as a predictor for accuracy in such a 

way that closer intervals, indicating higher advisor confidence, could hint at the high quality 

of the advice. The fact that such an indirect cue was missing in our experiments makes it 

even more astonishing that our participants were able to somehow recognize the advice 

quality. 

As our results further indicate, the individual performance enhancements mainly 

derive from diminished individual metric errors after receiving accurate advice, no matter 

whether its quality is made salient or not. As we know from previous research, frames of 

reference play an important role when it comes to increases in estimation accuracy (e.g., 

Bonner & Baumann, 2008; Bonner et al., 2007; Laughlin et al., 1999; Laughlin et al., 2003). 

One might have a correct representation of Europe or of weight proportions between different 

items, while lacking an adequate benchmark for accurate judgments. Even without fully 

trusting the advisor’s recommendation, this information can be obtained by high quality 

advice, and judges might improve their metric knowledge by receiving such well-calibrated 

points of reference. In our opinion, judges recognize systematic differences between their 

own and the advisor’s metric, and they seek to reconcile this discrepancy by adjusting their 
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metric towards that of the advisor. However, this only seems to be true in cases where the 

judge perceives the advice as being of high functional value. 

In general, our findings suggest two sources of using advice: (a) social learning 

processes that improve the initial judgment accuracy, in particular, when receiving high 

quality advice, and (b) advice weighting in terms of an adjustment towards the specific 

advice when coming to a final estimate. One interesting implication of the former, so far 

overlooked, learning process is that the true amount of advice use might have been 

underestimated in previous JAS research, at least when the task type remains stable and 

advice is presented sequentially on every trial (e.g., Harvey & Fischer, 1997). Our results 

imply that the major beneficial effect of receiving advice derives from social learning, with 

an additional minor but still significant effect of simple advice weighting. Hence, future 

research should always take into account these performance enhancements as a consequence 

of receiving advice to better assess the full benefit of receiving advice. 

Limitations and directions for future research 

There are some limitations of our current study that should be taken into account. 

Firstly, in Experiment 2 and 3, we employed a rather strong manipulation of advice quality. 

Hence, it is debatable how accurately people can judge their advisor’s competency when it is 

less evident, and how this affects the learning processes that we investigated. On the one 

hand, judges might also negatively learn from low quality advice as long as this advice 

contains a certain degree of plausibility. On the other hand, poor but plausible advice could 

even have a beneficial effect as long as the advisor’s and judge’s metric errors are on 

opposite sides of the target value, with the result that adjusting one’s judgment towards the 

advice leads to more accurate estimates. 

Secondly, we only used two different types of estimation tasks. Although we found 

structurally similar patterns with both types, our results should be replicated with additional 
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types of tasks. For example, a more complex task might, on the one hand, affect the amount 

of time needed until the learning process is completed, or might even eliminate the 

performance enhancements in initial estimates, because the exchange of well calibrated 

numeric information might not be sufficient to induce a general social learning process. On 

the other hand, on very difficult tasks, even negative learning might occur. When the task 

specific knowledge of the judge is low, it should be more difficult to assess the quality of 

advice. Consequently, even recommendations of weak advisors might be taken into account 

more strongly, which, in turn, should lead to a loss in estimation accuracy. 

Thirdly, the fact that we found no evidence for changes in participants’ mapping error 

might have to do with the JAS as an experimental paradigm. When people receive advice 

without any additional explanation, as is usually the case in the JAS, we think it is highly 

reasonable that judges only reduce their metric error, because reducing one’s mapping error 

should be more complex and should require additional information. However, in a real-world 

advice situation with communication, the advisor can explain his or her advice, and even 

correct the misconceptions of a judge. Hence, in our opinion there is good reason to believe 

that advice has the power to also reduce mapping errors, but only in a more interactive 

situation than provided by the classic JAS. 

Finally, we currently cannot say whether the learning process that we demonstrated in 

our experiments is stable over time. To be sure about this stability, future studies could 

provide the judges with only one or two advice trials and analyze how their judgment 

accuracy develops on subsequent trials without advice. In the somewhat related field of 

group-to-individual (G-I) transfer in group judgment research, there is evidence for stable 

socially-induced improvements of individual accuracy after the group is dissolved (Stern et 

al., 2017). Because of the high structural resemblance in the utilized tasks and experimental 

procedures between these group experiments and our current judge-advisor study, there is 
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good reason to expect that the learning process that we found in the present study will also 

turn out to be rather stable over time. 

Conclusion 

In three experiments, we have shown that advice of moderate to high quality affects 

accuracy on subsequent initial judgments. More precisely, judges’ individual metric errors 

decreased, most likely as a consequence of adjusting their own opinion towards the reference 

values provided by well-calibrated advisors. Furthermore, feedback about the advice quality 

had no additional beneficial effect. Even without advice quality salience, the accuracy of 

judges’ subsequent initial estimates increased after receiving high quality advice, and these 

increases in initial judgment accuracy accounted for the lion’s share of the beneficial effects 

of advice on final judgment accuracy that have been shown in numerous previous studies. 

Hence, general social learning in terms of a transfer from one task to another in the same 

domain should be added to the beneficial effects of advice.  
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Tables and Figures 

Figure 1. Distribution of gains and losses in initial estimate MAPEs across participants in Experiment 1. Each bar represents a 

participant’s gain or loss (sorted in descending order)
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Figure 2. Distribution of initial estimate MAPEs across participants in Experiment 2. Each bar represents a participant’s MAPE (sorted in 

ascending order) 
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Figure 3. Distribution of gains and losses in initial estimate MAPEs across participants in Experiment 3. Each bar represents a 

participant’s gain or loss (sorted in descending order) 
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Table 1. Judges’ estimation accuracy, metric error and mapping error by advice condition in Experiment 1 

 advice condition 

 constant advisor  variable advisor  no advice 

 phase 1 phase 2  phase 1 phase 2  phase 1 phase 2 

variable M (SD) M (SD)  M (SD) M (SD)  M (SD) M (SD) 

accuracy (MAPE) 59.83 (45.66) 48.95 (27.66)  65.97 (65.33) 45.96 (23.88)  65.38 (65.49) 70.25 (80.86) 

metric error 47.76 (46.57) 35.10 (24.99)  48.90 (53.99) 32.39 (26.40)  50.25 (62.99) 52.82 (69.34) 

mapping error .69 (.46) .65 (.34)  .69 (.47) .70 (.33)  .66 (.41) .70 (.28) 
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Table 2. Judges’ estimation accuracy, metric error and mapping error by advice condition in Experiment 2. 

 
 advice condition 

 high quality  moderate quality  low quality  no advice 

variable M (SD)  M (SD)  M (SD)  M (SD) 

accuracy (MAPE) 84.40 (56.64)a  119.64 (54.10)a  235.47 (140.82)b  198.80 (172.96)b 

metric error 44.48 (46.76)a  75.21 (49.61)a  202.88 (131.18)b  161.43 (179.10)b 

mapping error .60 (.21)  .61 (.16)  .61 (.24)  .64 (.20) 

Groups with different letters significantly differ on the corresponding dependent variable (Tukey post hoc tests) 
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Table 3. Judges’ estimation accuracy, metric error and mapping error by advice condition and feedback in 

Experiment 3 

  advice condition 

  high quality  low quality 

  phase 1 phase 2  phase 1 phase 2 

variable feedback M (SD) M (SD)  M (SD) M (SD) 

accuracy (MAPE) 
yes 68.03 (98.01) 31.95 (15.05)  62.96 (51.45) 65.63 (53.90) 

no 56.16 (45.22) 36.61 (20.24)  58.18 (47.06) 66.71 (43.14) 

metric error  
yes 57.53 (112.99) 16.29 (17.95)  55.32 (55.46) 54.05 (49.83) 

no 39.21 (37.61) 20.54 (25.13)  42.98 (43.71) 50.59 (39.50) 

mapping error 
yes .70 (.41) .71 (.45)  .65 (.41) .83 (.41) 

no .74 (.46) .78 (.36)  .72 (.43) .66 (.33) 
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