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Abstract

The main goal of inverse problems is the reconstruction of unknown quantities, often
they are located in an inaccessible part of space. Data assimilation, which is the
integration of inverse problems techniques with dynamical systems with the task
of forecasting the evolution of some quantity, has evolved strongly, with important
applications in meteorology and atmospherical sciences.

Localization is an essential part of ensemble based assimilation schemes. The
size of an ensemble is always much smaller than the dimension of the state space for
real numerical predictions. It is necessary to ensure a su�ent number of degree's of
freedom when generating the analysis ensemble and, thus, increase the rank of the
set of analysis equations. Also, the small ensemble size gives an insu�cent estimate
of the background error correlations. Localization e�ectivly eliminates spurious
correlations in the background ensemble between distant state variables.

The choice of the localization radius needs to depend on the number of ensemble
members for the short-range forcasts used to calculate the background error for the
analysis step as well as on the number of observations and the observation error.
However, a challenge arises when the observation operator under consideration is
non-local (e.g. satellite radiance data), the localization which is applicable to the
problem can be severly limited, with strong e�ects on the quality of the assimilation
step.

We study a transformation approach to change non-local operators to local oper-
ators in transformed space, such that localization becomes applicable. We interpret
this approach as a generalized localization and study its general algebraic formula-
tion. Examples are provided for a compact integral operator and a non-local matrix
observation operator to demonstrate the feasibility of the approach and study the
quality of the assimilation by transformation.

In particular, we apply the approach to temperature pro�le reconstruction from
infrared measurements given by the IASI Infrared Sounder and show that the ap-
proach is feasible for this important data type in atmospheric analysis and forecast-
ing. We also believe that our derivations will work in a similar way for particle
�lters.
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If we do localization we have to adjust the localization radius to the scale of the
problem. In this respect choosing large radius mean the data we have is important
for large scale and vice versa. Thus localization is linked to the scale of the me-
teorological processes under consideration. Inherently when we choose localization,
we chose scale. This leads to the topic of scales, which usually comes under the
umbrella of multiscale methods.

The broad idea of a multiscale approach is to decompose your problem into
di�erent scales or levels and to use these decompositions either for constructing
appropriate approximations or to solve smaller problems on each of these levels,
leading to increased stability or increased e�ciency.

Our goal is to analyse the sequential multiscale approach applied to an inversion
or state estimation problem. We work in a generic setup given by a Hilbert space
environment. We work out the analysis both for an unregularized and a regularized
sequential multiscale inversion. In general the sequential multiscale approach is not
equivalent to a full solution, but we show that under appropriate assumptions we
obtain convergence of an iterative sequential multiscale version of the method. For
the regularized case we develop a strategy to appropriately adapt the regularization
when an iterative approach is taken.

We demonstrate the validity of the iterative sequential multiscale approach by
testing the method on an integral equation as it appears for atmospheric temperature
retrieval from infrared satellite radiances.



Chapter 1

Introduction

Data Assimilation (DA) for Numerical Weather Prediction (NWP) systems is the
collection of algorithms and techniques used to estimate the state of the atmosphere
at a given moment in time (referred to as the analysis), thus providing initial condi-
tions for NWP models. The strong nonlinear nature of atmospheric dynamics makes
DA critical in the pursue of accurate weather forecasting.

The goal of DA techniques in NWP is therefore to use the information coming
from the di�erent observation systems to infer the model state vector variables as
well as the uncertainty in its components and correlations between these. This is
normally achieved by sequentially updating a prior state estimate generated through
a short range forecast (�rst guess or background) using the NWP model (which
therefore contains information from past observations), with the newly available
observations since the last update. As model biases and DA can interact and give
rise to undesired feedback e�ects, it is important to assess any DA technique in a
cycling environment that simulates the periodic updating needed by any operational
forecasting system.

The Kalman Filter (KF) equations (introduced in [92]) provide explicit update
equations in terms of a Kalman gain matrix, which multiplied by the di�erence
between observations and the background in observation space, yields the increments
to be added to the �rst guess state vector to obtain the analysis. Its equations also
give expressions for the propagation of the estimate state and its covariance to the
next time step. It is the optimal (in the sense of minimum variance) solution to the
linearized DA problem under the assumptions of Gaussian error distributions and
observation operators (used to transform the model state into its observation space
equivalent).

The Extended Kalman Filter (EKF) uses the full nonlinear model and observa-
tion operators, while keeping the linearizations of both in computing background
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covariance and Kalman gain (see for example [90]). This technique is however com-
putationally very expensive and currently unfeasible in an operational context. Cur-
rent DA frameworks of operational NWP centers around the world are based almost
invariably in what are approximations or simpli�cations in one way or another of
these equations. Variational methods for example, give up (at least most of) the
uncertainty propagation, as the time iteration in the Kalman �lter is suppressed
(3D-VAR) or limited to the assimilation time window (4D-VAR).

Another approach to approximating the EKF equations is through the use of En-
semble Data Assimilation (EDA) techniques. The Ensemble Kalman Filter (EnKF)
introduced in [53] and [82] is a Monte Carlo approximation of the KF. The key idea
consists in choosing an ensemble of initial conditions which characterize not only
the analysis (given by a linear combination of the ensemble members), but also its
uncertainty (analysis error covariance). The full nonlinear model can be then used
to evolve each ensemble member. In doing so, the dimensionality of the problem is
reduced to that of the subspace spanned by the ensemble (which is less than the
number of ensemble members). While computationally very e�cient, this has the
drawback of only being able to describe uncertainty in this subspace.

On top of providing a �ow dependent characterization of the system's uncer-
tainty, ensemble data assimilation techniques provide a natural initialization for
ensemble prediction systems (EPS) (see [14, 62, 71, 108, 139]). Further more, it can
be used in combination with other algorithms to provide an evolving covariance for
the latter in what are known as hybrid methods (see for example [55, 94]). The Local
Ensemble Transform Kalman Filter (LETKF) introduces spatial localization in the
EnKF, and amounts to allowing for di�erent linear combinations of the ensemble
members for di�erent grid points. The global analysis is then no longer con�ned to
the ensemble space and spurious correlations between distant locations in the back-
ground covariance matrix due to the limited ensemble size are avoided. Di�erent
de�nitions and extensions have been proposed and studied in the last years, see for
example [15, 28, 56, 57, 136, 162, 171]. While focused in the context of limited area
DA, [114, 137, 173] is a good summary of the state of the art and recent advances
and challenges in the area. [87] describes a computationally e�cient implementation
of an LETKF.

Since the work of Evenssen 1994 [53], in meteorology ensemble �lters have been
under heavy development [15, 28, 56, 82, 171, 136]. Important centers in Numerical
Weather Prediction are now using ensemble �lters as their operational algorithms
for assimilation or are preparing such use, for example Canada, the US, Japan, UK,
Germany etc., e.g. [35, 36, 120, 157, 158, 172]. The further development of di�erent
versions of the ensemble Kalman �lter for either global or regional NWP is one of
the key tasks of current research in the data assimilation community, see for example
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[69, 84, 85, 86, 87, 112, 27, 144, 145, 177].
Ensemble �lters approximate the covariance of the assimilation system by a

stochastic estimator. They are local low-dimensional approximations to the Kalman
�lter which can be e�ciently used in large-scale systems. Here, we study the square
root �lter as described in [62], which is a di�erent way to write [87]. When a low
number of ensemble members is employed, localization is a key ingredient of the
ensemble �lter. It means that we carry out the analysis locally and then construct a
global solution from the local analysis ensembles. Localization increases the e�ective
number of degrees of freedom. Di�erent localization methods and their analysis can
be found for example in [16, 30, 34, 38, 87, 88, 99, 131, 144, 130, 177]. For this work,
we will think of localization as a method to restrict a problem de�ned on a set Ω to
a subset U ⊂ Ω. Any data outside of U is ignored, as well as any function de�ned
outside of U , see equation (3.4.22) for more details. Then, the problem is solved for
several subsets U covering the whole domain Ω, and the total solution is obtained
by a combination of the localized solutions. We show in (3.4.23) that this can be
understood as a projection method.

As the �rst main contribution of this thesis, in chapter 3 we suggest a general
algorithm which allows localization in the case of non-local observation operators.
The basic idea is to employ a transformation of the spaces under consideration, i.e.
the state space and the observations space, to make the observation operator more
local in the transformed space. Then, localization is used in the transformed space
and the solution is transformed back afterwards. The method is called transformed
or generalized localization.

We test the applicability of transformed localization by studying the e�ect of the
transformed localization when applied to a IASI retrieval problem [32, 148], which
with broad sensitivity functions over the large parts of each atmospheric column for
most of its channels is known to have a strong non-locality and is of high interest
to both the research community and operational centers of weather prediction.

The choice of the localization radius is an important and di�cult topic in data
assimilation. A large localization radius means that the observations are relevant
for the large scales of the dynamic problem under consideration. A small local-
ization radius means that the observation is important for local or high-resolution
phenomena. This leads to the topic of scales, which usually comes under the um-
brella of multiscale methods. The basic scienti�c question to explore here is how
the assimilation of data is in�uencing the di�erent scales of the dynamical system.
We understand localization as a special topic of the larger �eld of multiscale data
assimilation. This leads us to the second main topic of this thesis.

In chapter 4 we study a multiscale approach to data assimilation. Multiscale
approaches are very popular for e.g. partial di�erential equations and for many
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applied �elds. The idea of a multiscale approach is to decompose your problem into
di�erent scales or levels and to solve smaller problems on each of these levels. A
generic approach is the sequential multiscale approach to an inversion step where you
�rst solve the problem in a large-scale subspace and then successively move to �ner
scale spaces. Here, we restrict our analysis to one inversion or assimilation step. In
this case an example could be chosen by taking an integral equation of the �rst kind
(as the IASI retrieval problem above) for some inverse problem. It also applies to
one single data assimilation cycling step, where such covariances naturally appear
as a core ingredient of data assimilation algorithms. We will work in a generic setup
given by a Hilbert space environment. Our main goal is the understanding of the
properties of sequential multiscale inversion and the analysis of convergence when
the sequential multiscale approach is iterated.

We will study the sequential and iterative sequential approaches by an analysis
either in state space or observation space. Our analysis will study typical aliasing
problems which appear in a multiscale framework. It is shown that in general the
sequential multiscale approach is not equivalent to a full solution, but that under
appropriate assumptions we obtain convergence of an iterative sequential multi-
scale version of the method. We �rst study the unregularized case and then treat
the regularized problem. We provide a mathematical analysis of the situation and
demonstrate its validity by numerical examples.

The part on generalized localization of this thesis has been published in journel
Mathematical Methods in Applied Sciences [126] in 2016. The content of multiscale
is under review in Journal of Computational and Applied Mathematics [127].
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Abbreviations

DWD Deutscher Wetterdienst
DA Data Assimilation
NWP Numerical Weather Prediction
AIRS Atmospheric Infrared Sounder
IASI Infrared atmospheric sounding interferometer
AMSU Advanced Microwave Sounding Unit
RTTOV Radiative Transfer for TOVS
TOVS Television opertaional vertical sounder
HIRS High resolution infrared sounder
ATMS Advanced technology microwave sounder
ICON Icosahedral nonhydrostatic general circulation model
3D-VAR Three-dimensional variational data assimilation scheme
4D-VAR Four-dimensional variational data assimilation scheme
KF Kalman Filter
SRF Square Root Filter
EKF Extended Kalman Filte
EDA Ensemble Data Assimilation
EnKF Ensemble Kalman Filter
EPS Ensemble prediction systems
LETKF Local Ensemble Transform Kalman Filter
EKSRF Ensemble Kalman Square Root Filter
SVD Singular value decomposition



Chapter 2

Tools and Methods

2.1 Basic Theory

The study of many classical mathematical modelling problems is heavily dependent
on their boundary conditions and input data. These problems continuously exhibit
dependence on the input and approximation error decreases in numerical approxi-
mation with the increase of grid points.

However, often we do not observe such kind of regular behaviour in solving
the integral equations of �rst kind, or when we go to the inverse or reconstruction
problems. Often, the solutions do not continuously depend on data � such that noise
is ampli�ed. Also, often they show non-uniqueness.

The rule for numerical algorithms that more e�orts will lead to better results
does not hold for solving inverse or reconstruction problems. Increasing the number
of grid points for approximation often leads to more instability. Such solution inherit
more and more noise which is carried on from the measured data. We use the term
ill-posed to describe such kind of behaviour in inverse problems.

Many methods have been concocted and developed to deal with ill-posed prob-
lems. They make ill-posed problem more regular, that is they approximate them
by stable, bounded and continuous algorithms or operators. These approaches or
methods are called regularisation methods. For a selection from the large body of
literature see [9, 37, 44, 50, 62, 68, 70, 77, 78, 95, 100, 103, 129, 159, 170, 133, 69].

Keller [98] proposed very general de�nition of an inverse problem which is usually
used as standard in literature:

Definition 2.1.1 (Inverse Problem). We call two problems inverse of one another
if the formulation of each involves all or part of the solution of the other. Often,
for historical reasons, one of the two problems has been studied extensively for some
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time, while the other is newer and not so well understood. In such the cases, the
former problem is called the direct problem, while the later is called the inverse
problem.

Following Keller two problems are inverse to each other if the formation of each of
them needs the partial or full knowledge of the other. The problem which is studied
earlier and in more detail is usually called direct and the other is inverse problem.
However, there is another more important di�erence between these two problems.
It can be understand by the concept of well-posedness introduced by Hadamard. In
his lectures [70] he argued that the mathematical model of some physical problem
(he was thinking for boundary value problems for partial di�erential equation) has
to be properly posed or well-posed.

Hadamard in 1923 postulated three properties which needed to be satis�ed for
what he called a properly posed or well-posed problem.

Definition 2.1.2 (Well-posedness). A problem is called well-posed if we have

1. (existence) there exists a solution to the problem,

2. (uniqueness) there is at most one solution to the problem,

3. (stability) the solution depends continuously on the data.

So existence, uniqueness and stability makes problem well-posed. If any of the
postulates is violated then the problem is not well-posed. A problem which is not
well-posed is called ill-posed or improperly-posed. If the two problems are inverse
of each other then the one which is ill-posed is called inverse problem and other is
called direct problem or forward problem. Mostly, the direct problems are well-posed
problems.

As inverse problem is set in a way that it is inverse of a direct problem. Often,
the direct problem is to �nd some quantity f from some known causes and conditions
ϕ, under the physical or mathematical model H and described by the relation (or
operator equation)

H(ϕ) = f (2.1.1)

The operator H is generally nonlinear and describes the equations which connect
the model variables to observed data. Hence, solving the inverse problem we infer
knowledge from some known measurement f about the unknown quantity ϕ, which
may be a speci�c cause, condition, state or parameter of the mathematical model.
The solution of inverse problem is called the reconstruction or retrieval of ϕ from
data f . We study speci�c types of inverse problems which are to be solved in the
analysis step of data assimilation. They usually come with some dynamic aspect.
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The phrase to assimilate conjures up a variety of meanings depending on its use
in biological, social and physical sciences. With all of its uses and meanings the
word embraces the concept of incorporation. For our case we expand its meaning
by a�xing the words dynamic and data. Here, dynamic implies use of some law
or a set of equations, typically physical laws. Now, we have dynamic laws, we
have data and we assimilate. Hence, it is the incorporation of data into laws that
capture the meaning of dynamic data assimilation. So the aim of data assimilation
(and the inverse problem) is to blend di�erent information sources in order to get
the best possible estimate of the state. The sources generally rely on observations
of the system and, further, the physical laws describing its behaviour and, more
speci�cally, a particular numerical model.

We cannot take observations only, because often observations are too sparse
or partial in geophysics; so some additional information is needed to interpolate
the information in observations to uncover the function or quantity. We need the
numerical model to perform this task. Second, observations contain errors (they are
noisy). Combining (by means of the model) several noisy observations can be an
e�cient way to �lter out at least part of the noise and to provide a more accurate
estimate [7, 69, 108].

Environmental phenomena can be realistically described by mathematical and
numerical models of the system dynamics. These models have ability to predict the
future behaviour of the system, provided the initial state of the system is known.
As mentioned above, the availability of the data that describe complete states of
system at speci�c time is very rare. The inaccuracies in the models and in given prior
data along with random noise can drag the predicted states away from actual states
of the system. To overcome this case, observations are incorporated with model
equations over the time to obtain improved estimates along with the uncertainty in
the estimates.

The problem of state-estimation is an inverse problem and can be treated using
observers and/or �lters derived by feedback design techniques [24, 133], however sev-
eral traditional technique for state-estimation are not practicable for large non-linear
systems which arise in environmental science. So new data assimilation schemes have
been developed to carry out accurate state estimation. The purpose of these data as-
similation schemes is to take measured observations in combination with the model
dynamics in order to derive accurate estimation of present and future state of the
system, alone with estimation of uncertainty in estimated state.

The most important aspect of data assimilation problems is that we need to
deal with large non-linear models with a large number of state variables of order
O(107 − 109). The dynamics are multi-scale and often unstable and/or chaotic.
The observations are also very large of order O(105 − 107) over a speci�c time
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window. Usually, the distribution of data is not even in space or time, often
there are areas where measurements are missing. With all these side conditions,
the data assimilation problem is ill-posed in the sense of both non-uniqueness and
non-stability, i.e. the state estimate is sensitive to errors.

For this problem the literature describes two basic approaches. The �rst works
with 'dynamic observations', it is formulated as a sequential data assimilation scheme,
while the second uses 'direct observations' and formulates a four-dimensional data
assimilation scheme. In the �rst approach the observations are passed to the model
dynamically at each time these are available, they produce best estimate and are
utilized to predict future states. In the second a trajectory is found that best �ts
the observation over the time window. The state at the end of the window is used
to calculate the forecast. Both solve same optimal state estimation problem under
certain mathematical assumptions.

In operational systems it is di�cult to solve full optimization problems in real
time, therefore di�erent approximations are employed. Further tools such as co-
variance in�ation and covariance localization are important approximation methods
within modern ensemble data assimilation data assimilation schemes. Ensemble as-
similation schemes can be employed for many di�erent models. Next we describe the
mathematical formulation of data assimilation problem with techniques described
in [69, 133, 129].

We use the letters X and Y for the state and observation space. We assume that
X and Y are Hilbert spaces unless otherwise stated. Let ϕ ∈ X be the state vector
containing all the state variables and ϕk ∈ X be the state at time tk. Furthermore,
the model operator at time tk is denoted as Mk : X → X. It evolves the state from
time tk to tk+1, that is

ϕk+1 = Mk(ϕk).

The model evolution from time tl to tk is denotes as

Mk,` = Mk−1Mk−2 . . . , M`+1M`, k > ` ∈ N0 (2.1.2)

Let fk ∈ Yk is the observation vector containing all observation at time tk and
Hk : Xk → Yk be the observation operator which maps the state space to the
observation space at time tk. Then, the data assimilation problem is de�ned as

Definition 2.1.3 (Data assimilation problem). Given observations fk ∈ Yk at time
tk to determine the state ϕk ∈ X from the operator equations

Hk(ϕk) = fk, k = 0, 1, 2, . . . (2.1.3)

subject to model dynamics Mk : X → X given by ϕk+1 = Mk(ϕk), k = 0, 1, 2, . . . ,
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In NWP the model operator Mk involves the nonsteady solution of nonlinear
partial di�erential equation. The observation operator Hk changes at each time step,
but for simplicity here we consider the case where H is constant over time, i.e. Hk :=
H. The observation operator Hk and measurement fk are contaminated. The model
Mk does not represent true dynamic because of model errors also nonlinear models
are very chaotic. So in context of data assimilation we need extra information from
some known prior distributions (also known as �rst guess distributions or background
distributions) about the state variable ϕk ∈ X.

The operator equation (2.1.3) (also 2.1.1) is ill-posed in the sense that one or
more than one Hadamard conditions in De�nition 2.1.2 are not satis�ed. The above
De�nition 2.1.2 of well-posedness in the setting of mathematical notation for oper-
ator equations is as follows.

Definition 2.1.4. Let X and Y be normed spaces and H : X → Y a nonlinear
mapping. Then, the operator equation H(ϕ) = f is well-posed if the following holds

• Existence: For every f ∈ Y there exists at least one ϕ ∈ X such that H(ϕ) =
f , that is the operator H is surjective.

• Uniqueness: The solution ϕ from H(ϕ) = f is unique, that is the operator H
is injective.

• Stability: The solution ϕ depends continuously on the data f , that is, it is
stable with respect to perturbations in f .

Both the existence and uniqueness in the case of a general nonlinear operator
H need not be satis�ed. If the existence is violated, then the possibility is that
f ∈ R(H) (range of H) and perturbed data or noisy data f δ /∈ R(H). Then,
replacing the original equation by a minimisation problem will always lead to a
solution which is a best �t to the data, calculating the so-called analysis ϕ(a) by

ϕ(a) := arg minϕ||f −H(ϕ)||2Y (2.1.4)

for f ∈ R(H), where the norm ||.||Y is the standard norm of the space Y . The
second postulate in De�nition 2.1.4 is about the uniqueness of the solution, which
means that inverse operator H−1 : R(H) ⊆ Y → X with H−1(f) = ϕ exists.

If uniqueness is violated, then either additional data have to be observed or the
set of admissible solutions has to be restricted using a-priori information on the
solution. Uniqueness can be ensured by considering a minimum norm solution or
taking special solutions that are closest to a reference element ϕ∗ ∈ X. Hence,
uniqueness can be ensured by

||ϕuni − ϕ∗||X = min
ϕ∈X,H(ϕ)=f

(
||ϕ− ϕ∗||X

)
.
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The third condition in De�nition 2.1.4 states that the inverse operator H−1 :
R(H) ⊆ Y → X is continuous. A failure of this third one is most delicate to deal
with because a small contamination of the right hand side f ∈ Y leads to large
errors in the solution ϕ ∈ X. The problem needs some regularisation. We will look
at this in Section 2.1.2.

Thus from above we conclude that the operator equation (2.1.3) is well-posed
if the operator Hk is bijective and the well de�ned inverse H−1

K is continous. By
solving a minimization problem a least square solution can be obtained

arg min
ϕk∈X

(||fk −Hk(ϕk)||2Y ), k = 0, 1, 2, . . . (2.1.5)

Solving (2.1.5) for each time step k we solve a sequential data assimilation problem.
If we consider a nonlinear dynamic constraint ϕk+1 = Mk(ϕk) where Mk : X → X
for time steps tk, k = 0, . . . , K and acquire the sum in each time interval [t0, tK ],
the minimisation problem takes the form

min
ϕk∈X

K∑
k=0

(||fk −Hk(ϕk)||2Y ) = min
ϕ0∈X

( K∑
k=0

||fk −Hk(Mk,0(ϕ0))||2Y
)
. (2.1.6)

In the above equationMk,0 represents the model from time t0 to time tk. By using the
evolution of system dynamics (2.1.2) that is Mk,0 = Mk−1Mk−2 . . .M0 and Mk,k = I
now with an appropriate operator H both the data assimilation system that is
sequential as in (2.1.5) and consecutive (2.1.6) can take the form

min
ϕ∈X

(
||f −H(ϕ)||2

)
. (2.1.7)

If f ∈ R(H) then, (2.1.7) is equivalent to H(ϕ) = f (cf. (2.1.1)). For a sequential
data assimilation system (2.1.5) we choose H := Hk, f := fk and ϕ := ϕk at every
time step k = 0, 1, . . . . For the consecutive data assimilate system (2.1.6), the choice
needs to be ϕ := ϕ0

H :=


H0

H1M1,0

H2M2,0
...

HKMK,0

 , and f :=


f0

f1

f2
...
fK

 . (2.1.8)

Since both the observation operator Hk and model dynamics Mk are nonlinear, the
operator H is nonlinear. In case the equation H(ϕ) = f is well-posed, then H has
a well-de�ned continous inverse operator H

−1
and R(H) = Y .
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Now, if state space X and observation space Y are Banach spaces, it is well
known that the well-posedness can be established by the �rst two postulates of
De�nition 2.1.4, that is R(H) = Y and N (H) = {0} for the range R(H) and null
space N (H) of H.

In the case where H is linear over the �nite dimensional Hilbert space (par-
ticularly R(H) is of �nite dimension) then the stability in De�nition 2.1.4 holds
automatically, so the well-posedness can be obeyed by �rst two condition of de�-
nition. (The last condition follows from the compactness of the unit ball in �nite
dimensions [100]). The uniqueness N (H) = {0} is obviously satis�ed for a linear
�nite-dimensional operator H if the observation matrix H is full row rank. Then,
for this case from the system output the behaviour of the whole system can be
determined. In other words we can say system is observable.

Finally, we need to talk about the stability of the operator equationH(ϕ) = f (or
Hϕ = H(ϕ) = f , a notation we use further on) with a compact linear operator H :
X → Y in in�nite dimensions. As in in�nite dimension a compact linear operator
is always ill-posed (where R(H) is not closed), the solution needs regularisation.

The discretization of an in�nite dimensional unstable ill-posed problem leads to a
�nite dimensional well-posed problem, but the discretized problem is ill-posed in the
sense that small errors in the input data lead to large errors in the solution. Thus,
again some regularisation is necessary for this kind of �nite dimensional problem
arising from in�nite dimensional ill-posed operator equations.

Next, we consider the singular values decomposition for compact linear operators
between Hilbert spaces as in [100]).

Lemma 2.1.5 (Singular system of compact linear operators.). Let H : X → Y
be a compact linear operator. Then there exist sets of indices J = {1, . . . ,m} for
dim(R(H)) = m and J = N for dim(R(H)) = ∞ orthonormal system {uj}j∈J in X
and {vj}j∈J in Y and a sequence {σj}j∈J of positive real numbers with the following
properties:

{σj}j∈J is non-increasing and lim
j→∞

σj = 0 for J = N, (2.1.9)

Huj = σjvj, (j ∈ J ) and H∗vj = σjuj, (j ∈ J ). (2.1.10)

For all ϕ ∈ X there exits an element ϕ0 ∈ uj with

ϕ = ϕ0 +
∑
j∈j

〈ϕ, uj〉Xuj and Hϕ =
∑
j∈J

σj〈ϕ, uj〉Xvj (2.1.11)
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Furthermore
H∗f =

∑
j∈J

σj〈f, vj〉Y uj (2.1.12)

holds for all f ∈ Y . The countable set of triples {σj, uj, vj}j∈J is called singular
system, {σj}j∈J are called singular values, {uj}j∈J are right singular vectors and
form an orthonormal basis for N (H)⊥ and {vj}j∈J are left singular vectors and

form an orthonormal basis for R(H).

Proof. See [62], Lemma 1.3. �

We can extend the concept of ill-posedness to the nonlinear operators [50, 100] by
taking a linearization of the nonlinear problem, for example the Fréchet derivative of
the nonlinear operator. The Fréchet derivative of a compact linear operator is also
compact. This leads to the idea of locally ill-posed problems for nonlinear operator
equations.

Linearization is an essential ingredient for solving nonlinear problems computa-
tionally. Hence, for the iterative solutions of a nonlinear problem most of the results
from linear problems can be employed. We solve the nonlinear problem by solving
a linear problem in each iteration or data assimilation step.

2.1.1 Integral Operators

An integral equation is an equation which involves an unknown function ϕ under
the integral sign. Integral equations are very useful mathematical tool for both pure
and applied mathematics. With the development of science many physical laws and
principles have been discovered which, when restated in mathematical language,
often are di�erential equations. Many of these boundary and initial value problems
associated with partial (PDE) and ordinary (ODE) di�erential equations can be
transformed into integral equations.

A typical type of an integral equation in ϕ is of the form

ϕ(x) = f(x) + λ

∫ β(x)

α(x)

K(x, t)ϕ(t)dt (2.1.13)

where K(x, t) is called the kernel of the integral equation (2.1.13), α(x) and β(x) are
lower and upper limit of integration. Here both the kernel K(x, t) and the function
f(x) in equation (2.1.13) are given. The unknown function ϕ need to determined.
The variable λ is a constant parameter.

If the unknown function ϕ appears linearly then integral equation is called linear,
otherwise non-linear. If the unknown function ϕ appears only under the integral sign
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then it is called integral equation of �rst kind and if unknown function ϕ appears
both outside and inside then it is called integral equation of second kind. If ϕ = 0
is a solution of an integral equation the equation is called homogeneous integral
equation otherwise non-homogeneous.

The most commonly used integral equations fall under two major classes, namely
Volterra and Fredholm integral equations. If the limits of the integral are �xed, then
it is called a Fredholm integral equation otherwise it is known as a Volterra integral
equation. The equations ∫ x

a

K(x, t)ϕ(t)dt = f(x) (2.1.14)

and

ϕ(x)−
∫ x

a

K(x, t)ϕ(t)dt = f(x) (2.1.15)

are the typical examples of Volterra integral equations of �rst and second kind,
respectively. These integral equation arise in physics, biology, chemistry and en-
gineering problems. Many initial and boundary values problems associated with
ordinary and partial di�erential equations can be cast into integral equations of
Volterra and Fredholm types, respectively.

An integral equation with in�nite limit or when its kernel becomes in�nity at a
certain point of the integration interval is called singular integral equation. When
the unknown function ϕ appears as combination of its derivative and under the
integral sign, the resulting equation is called an Integro-di�erential equation.

The above integral equation of the �rst and second kind is often written in
operator notation

Aϕ = f (2.1.16)

and
ϕ− Aϕ = f. (2.1.17)

With the following de�nition and statement we follow Theorem 2.8 of Kress [103].

Definition 2.1.6 (Integral operator). The linear operator A : C(U) → C(U) de-
�ned by

(Aϕ)(x) :=

∫
U

K(x, y)ϕ(y)dy x ∈ U, (2.1.18)

is called integral operator with continuous kernel K : U × U → D, if U ⊂ Rm is
nonempty compact and Jordan measurable set that coincides with the closure of its
interior and if K is a continous function. It is a bounded operator with

||A||∞ = max
x∈U

∫
U

|K(x, y)|dy. (2.1.19)
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Example 2.1.7. Consider the integral operator

(Aϕ)(x) :=

∫ b

a

k(x, y)ϕ(y)dy, x ∈ [a, b] (2.1.20)

with some continous kernel kernel k : [a, b]× [a, b]→ R. Then we can estimate

| Aϕ(x) | = |
∫ b

a

k(x, y)ϕ(y)dy |

≤
∫ b

a

| k(x, y) | · | ϕ(y) | dy

≤
∫ b

a

| k(x, y) | · sup
y∈[a,b]

| ϕ(y) | dy

= C||ϕ||∞ (2.1.21)

with

C := sup
x∈[a,b]

∫ b

a

| k(x, y) | dy. (2.1.22)

This proves that the operator A : C([a, b]) → C([a, b]) is bounded when C[a, b] is
equipped with the maximum norm.

The study of existence and uniqueness of solutions to integral equations is very
important. There are two di�erent approaches for the existence and uniqueness
of solutions to integral equations of the second kind. First, for a bounded linear
operator A with su�ciently small norm (i.e., ||A|| < 1.) such that A is a contraction,
existence can be established by the Neumann series. The second approach is using
Riesz theory when A is compact.

Theorem 2.1.8. Consider a bounded linear operator A : X → X on a Banach
space X. If the norm of A satis�es ||A|| < 1, then the operator I −A has a bounded
inverse on X which is given by Neumann series

(I − A)−1 =
∞∑
k=0

Ak. (2.1.23)

It satis�es the estimates

||(I − A)−1|| = 1

1− ||A||
(2.1.24)



CHAPTER 2. TOOLS AND METHODS 25

In this case for each f ∈ X the integral equation of the second kind

(I − A)ϕ = f (2.1.25)

does have a unique solution ϕ ∈ X which in norm depends continuously on the
right-hand side f.

Proof. See [129], Theorem 2.3.12. �

The constructive calculation of solutions is possible by successive approximations
as follows.

Theorem 2.1.9. Consider a bounded linear operator A : X → X on a Banach
space X. If the norm of A satis�es ||A|| ≤ 1, then the sequence ϕn of successive
approximations

ϕn+1 := Aϕn + f, n = 0, 1, 2, . . . (2.1.26)

with starting value ϕ0 = 0 converges to the unique solution ϕ of (I − A)ϕ = f.

Proof. See [103], Theorem 2.10. �

Successive approximations and the Neumann series are very good tools used often
in mathematics. They also have drawbacks: �rstly, generally it cannot be summed
up in closed form and secondly, the theory is applicable only for ||A|| < 1. This
condition is not satis�ed in many integral equations which arise from applications.
That is why these have been considered as a very important problem until 1900,
when Hilbert, Fredholm and Riesz made signi�cant contribution to the treatment
of such integral equations. This leads us to the compact operators.

Definition 2.1.10 (Compact Operator). The linear operator A : X → Y between
norm space X and Y is compact, if it maps from bounded set in X to a relatively
compact set in Y .

This is a topological de�nition, which has the ability to provide a �exible and
deep analysis. For normed spaces we can de�ne compactness equivalently based on
sequences, which is often used in the framework of functional analysis as follows.

Theorem 2.1.11. A linear operator A : X → Y between normed spaces X and Y
is compact if and only if for each bounded sequence (ϕn) ⊂ X the image sequence
(Aϕn) contains a convergent subsequence in Y.

Proof. See [129], Theorem 2.3.15. �
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Theorem 2.1.12. The integral operator (2.1.6) with continuous kernel is a compact
operator on C(U).

Proof. See [103], Theorem 2.21. �

Theorem 2.1.13. Let X be a normed space and Y a Banach space. If a sequence
An : X → Y of compact linear operators is norm convergent towards an operator
A : X → Y , then A is compact.

Proof. See [129], Theorem 2.3.17. �

Theorem 2.1.14. A bounded operator A : X → Y with �nite dimensional range
A(X) is compact.

Proof. See [129], Theorem 2.3.18. �

Theorem 2.1.15. The identity operator A : X → X is compact if and only if X
has �nite dimension.

Proof. See [129], Theorem 2.3.20. �

In the light of above theorems the integral equations of �rst (2.1.16) and second
kind (2.1.25) employ compact operators A : X → X. The compactness of �nite
dimensional operators can be obtained through �nite dimensional approximations
[43, 103] or by Weierstrass approximation theorem [129]. The compact operator
A : X → Y is not boundedly invertible on an in�nite dimensional spaceX, otherwise
A−1 ◦ A = I would also be compact for an in�nite dimension. Hence, the integral
equations of �rst kind with continuous kernel are not boundedly invertible. This
means they inherit ill-posedness. We will discuss this later in more detail.

Second kind integral equations with a compact operator A appear in many appli-
cation from �uid dynamics, acoustics, electromagnetic waves, potential theory and
quantum mechanics. For the solution of such equations for a long period of 150
years there did not exist a solution theory � until Fredholm and Riesz came with
their contributions.

For the following results, we de�ne L = I − A, then an integral equation of the
second kind can be written as Lϕ = f .



CHAPTER 2. TOOLS AND METHODS 27

Theorem 2.1.16 (First Riesz Theorem). The null space of the operator L is a �nite
dimensional subspace of X.

Proof. See [129], Theorem 2.3.22. �

Theorem 2.1.17 (Second Riesz Theorem). The range L(X) of the operator L is a
closed linear subspace.

Proof. See [129], Theorem 2.3.23. �

Theorem 2.1.18 (Third Riesz Theorem). There exists a unique integer r ∈ N0,
such that

(i) {0} = N(L0) $ N(L1) $ N(Lr) = N(Lr+1) = . . .

(ii) X = L0(X) % L1(X) % Lr(X) = Lr+1(X) = . . . (2.1.27)

The integer r is called Riesz number of the operator A and it is important to know
that either (i) and (ii) can determine r. Furthermore, we have

X = N(Lr)⊕ Lr(X) (2.1.28)

Proof. See [129], Theorem 2.3.24. �

Riesz theory was an important break through for the solution of (2.1.25).

Theorem 2.1.19. Let X be the normed space and A : X → X is a compact linear
operator. Then the operator I−A is injective if and only if it is surjective. Also the
inverse operator (I − A)−1 : X → X is bounded provided that I − A is injective.

Proof. See [129], Theorem 2.3.25. �

Corollary 2.1.20. Let A : X → X be a compact linear operator on a normed
space X. If the homogeneous equation

ϕ− Aϕ = 0

only has the trivial solution ϕ = 0, then for each f ∈ X the corresponding inhomo-
geneous equation (2.1.25) has a unique solution ϕ ∈ X and this solution depends
continuously on f .

Proof. See [103], Theorem 3.5. �
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Theorem 2.1.21. Let X and Y be two normed spaces and let A : X → Y be a
compact linear operator . Then the integral equation of the �rst kind

Aϕ = f (2.1.29)

is ill-posed provided that the normed space X is in�nite dimensional

Proof. See [129], Theorem 3.1.3. Suppose that A−1 is bounded. Then the
product A−1A = I is compact. Thus I is compact on the in�nite dimensional space
X, which is a contradiction since by Theorem 2.1.15 the identity I is compact only
if X is of �nite dimension. So our supposition is wrong, hence A has no bounded
inverse. Thus an integral equation of the �rst kind with in�nite dimensional space
is ill-posed. �

From above we can conclude that integral equations of the �rst kind with contin-
uous kernel or with weak singularity exhibit ill-posed problems. Hadamards third
condition that a solution depends continuously on data is violated in case of �rst
kind integral equations due to the fact that �rst kind of integral operator (2.1.16) are
not boundedly invertible. So small changes in measurements lead to large changes
in solutions, i.e. solutions are unstable. The remedy against this instability is to �nd
a bounded stable approximation Rα depending on some parameter α. This leads us
to regularisation theory.

2.1.2 Regularisation Theory

Consider the problem Hϕ = f with a compact operator H, it is ill-posed in the
in�nite dimensional case. It has no bounded inverse that is ||H−1|| = ∞, so the
third condition in Hadamard's De�nition 2.1.4 is violated. Thus in order to solve
the equation Hϕ = f (or, the equivalent minimisation problem min ||Hϕ− f ||2 for
f /∈ R(H)), regularisation is required.

Consider an operator H : X → Y and its adjoint operator H∗ : Y → X and let
ϕ be the solution to the least squares minimisation problem min ||Hϕ− f ||2. Then,
the solution to the minimisation problem is equivalent to the solution of the normal
equations

H∗Hϕ = H∗f. (2.1.30)

If H is compact, then H∗H is compact, thus the normal equation (2.1.30) remain
ill-posed because of the ill-posedness of the operator H∗H. Now, if we replace the
normal equations by

(αI +H∗H)ϕα = (αϕα +H∗Hϕα) = H∗f. (2.1.31)
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for α > 0, the operator (αI+H∗H) is boundedly invertible. The the above equation
is solved approximately by

ϕα = (αI +H∗H)−1H∗f. (2.1.32)

This equation is called Tikhonov regularisation. The parameter α is called regular-
isation parameter [44, 103, 81, 132, 168, 165]

Theorem 2.1.22 (Tikhonov regularisation). Let H : X → Y be a compact linear
operator. Then, the operator (αI + H∗H) has a bounded inverse and the problem
(2.1.31) is well-posed for α > 0 and (αI + H∗H)−1H∗f is the Tikhonov approxi-
mation of a minimum-norm least square solution ϕ of (2.1.30). Furthermore, the
solution ϕα is equivalent to the unique solution of the minimisation problem

argmin
ϕ∈X

Jα(ϕ)

with
Jα(ϕ) := ||Hϕ− f ||2Y + α||ϕ||2X , (2.1.33)

the so-called Tikhonov functional.

Proof. See [173], Theorem 2.1. �

If we replace term ||ϕ||2X by ||ϕ− ϕb||2X , where ϕb is called back ground or prior
knowledge, then it is called generalized Tikhonov regularisation. We will discuss
generalized Tikhonov regularisation in our next section.

Now the general linear regularisation scheme is de�ned as

Definition 2.1.23 (Regularisation scheme). A family of bounded linear operators
{Rα}α>0, Rα : Y → X is a linear regularisation scheme for the compact bounded
linear injective operator H if

lim
α→0

RαHϕ = ϕ ∀ϕ ∈ X. (2.1.34)

In other word Rα is point wise convergent to H−1 that is

RαHϕ→ ϕ, α→ 0 ∀ϕ ∈ X. (2.1.35)

It can also be written as Rα
p−→ H−1, α → 0. The convergence of Rα

p−→ H−1 is
not norm convergence for ill-posed equations.
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Theorem 2.1.24. Consider normed spaces X, Y , dimX = ∞, a compact linear
operator H : X → Y and a regularization scheme Rα for H−1 . Then the family
Rα, α > 0 of bounded operators cannot be uniformly bounded with respect to α > 0
and the operators Rα cannot be norm convergent.

Proof. See [129], Theorem 3.1.5 �

By the above Theorem 2.1.24 applied to the family of approximate inverses
Rα = (αI +H∗H)−1 where the range R(H) is not closed, we obtain

lim
α→0
||Rα|| =∞. (2.1.36)

When this regularisation operator Rα is applied to noisy data f δ we get regularised
solutions

ϕδα = Rαf
δ, (2.1.37)

where we assume a noise level δ such that ||f δ − f || ≤ δ.

Using Lemma 2.1.5 on the singular system of a compact operator we can also
write the regularised solution of Tikhonov regularisation (2.1.33) in the form

ϕδα =
∑
j∈J

σj
σ2
j + α

〈f δ, vj〉Y uj. (2.1.38)

We can note that at α = 0 the solution ϕδα ampli�es the noise in data f δ where for
compact operators the singular vaues obey

lim
j→∞

σj = 0.

An approximate unique solution can be chosen to be given by ϕ = H†f , where
H† = (H∗H)−1H∗ is called generalized or Moore-Penrose inverse (c.f. [9]) and H† :
R(H) +R(H)⊥ → X is continous when R(H) is closed. The Moore-Penrose inverse
coincides with Tikhonov regularization for α = 0.

We can estimate the so-called total regularisation error of the solution ϕδα de�ned
by

ϕδα = Rαf
δ with ||f δ − f || ≤ δ (2.1.39)

as follows. We �rst calculate

ϕδα − ϕ = (αI +H∗H)−1H∗f δ

−(αI +H∗H)−1H∗f + (αI +H∗H)−1H∗f − ϕ
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The above leads to the equality and estimate

||ϕδα − ϕ|| = ||Rαf
δ −Rαf +Rαf − ϕ||

||ϕδα − ϕ|| ≤ ||Rα||δ + ||Rαf − ϕ||

and with the true solution ϕ and true data f = Hϕ

||ϕδα − ϕ|| ≤ ||Rα||δ + ||RαHϕ− ϕ||. (2.1.40)

It shows that the total regularisation error is a sum of the stability component
||Rα||δ and the approximation error ||RαHϕ−ϕ||X . As �rst term on the right hand
side the stability component describes the in�uence of data noise error of size δ. It is
ampli�ed by Rα, but due to boundedness of Rα for α > 0 it can be controlled. The
�rst term is also called data error of the reconstruction. The second term re�ects
the approximation error, it depends on the approximation of H by Rα. This error
of the second term comes from the approximation of operator H. The second term
is also called regularization error.

For small α the regularization error will be small by De�nition 2.1.23, but the
�rst term data error will be large (compare (2.1.36)), whereas for large α the stability
term or data error will be small but the approximation error be large. As shown in
Figure 2.1, the critical issue concerning Tikhonov and other regularisation methods
is the choice of a suitable value for regularisation parameter α. We have a trade-o�
between stability and accuracy. If α is too large, we get a poor approximation of
the exact solution even for exact data, and if α is too small, the reconstruction
becomes unstable. The optimal value of α depends both on the data noise level δ
and the exact solution ϕ. For estimating a suitable value of α plenty of methods
are available in the literature (see for example [9, 78, 77, 100, 50, 76]). Well-known
schemes are, for example, the L-curve method, generalized cross-validation and the
discrepancy principle.

A regularisation scheme is called convergent, if from the convergence of the data
error to zero, it follows that the regularised solution converges to the exact solution.

Definition 2.1.25. We call a function α = α(δ) a strategy for a regularization
scheme Rα if α(δ)→ 0 for δ → 0. Such a strategy is called regular, if

Rα(δ)f
δ → H−1f, δ → 0 (2.1.41)

for each f δ with ||f δ − f || ≤ δ.

The Tikhonov regularisation Rα = (αI + H∗H)−1H∗ : Y → X is convergent
when

α(δ)→ 0 and
δ2

α(δ)
→ 0 as δ → 0,
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(a)

Figure 2.1: The black dot is data error, blue dotted curve is regularization error and
red represent total error modeled by (2.1.40). With some regularization parameter
α > 0 we obtain minimum error for the reconstruction, where the sum of data error
contribution and regularization error has its minimum.

see [50]. So for Tikhonov regularization we can choose α = O(δ) (c.f. [9]).
There are many regularization schemes available for the solution of inverse prob-

lem. Well known regularisation schemes are truncated singular value decomposition
(TSVD) and the Landweber iteration (see [50, 75, 74]). Furthermore di�erent penalty
terms can be used to include the background knowledge about the solution ϕ with
di�erent norms like the L1-norm , see for example [9, 178, 9, 25, 39, 39]) and the
article by Burger et al. ([37]).

Next, following [62, 129] we present a coherent mathematical framework for data
assimilation techniques, which are used in practice, by using the result from inverse
problems and regularisation theory.
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2.1.3 Cycling, Tikhonov regularisation and 3D-VAR

The goal of data assimilation is to solve the dynamical inverse problem with mea-
surement data f1, f2, f3, . . . fk . . . at di�erent time t1 < t2 < t3 < · · · < tk < . . . .
For every time tk the inverse problem is given by (2.1.3). Usually the measured data
fk has some de�ciency of information due to which it is impossible to recover the
state ϕk at time tk completely. So it is crucial to include the dynamical evolution of
the state.

Suppose we have some solution ϕ(a)
k at time tk, then the �rst guess or background

ϕ
(b)
k+1 for time tk+1 can be calculated by model dynamic

ϕ
(b)
k+1 = Mk(ϕ

(a)
k ). (2.1.42)

Now, we assimilate the measurement fk+1, i.e. calculate a reconstruction ϕ
(a)
k+1, which

is called the analysis at time tk+1 in data assimilation. Then, by using (2.1.42) and
the analysis ϕ(a)

k+1, the background ϕ
(b)
k+2 at time tk+2 can be calculated by replacing

k to k+ 1. We continue this process, i.e. we again assimilate data to get to another
analysis (or reconstruction) at time tk+2. Then, we �nd the background at time tk+3

based on (2.1.42). This cycling process of calculating background and reconstruction
continues marching through time. This process is known as cycling of reconstruction
and dynamics.

Definition 2.1.26 (Cycling for data assimilation). Given an initial state ϕ(0) at
time t0 with observation fk, k = 0, 1, 2 . . . performing cycling steps:

(i) Propagation Step. Calculate the background ϕ(b)
k+1 at time tk+1 by using system

dynamic Mk by (2.1.42).

(ii) Analysis Step. Calculate reconstruction or analysis ϕ
(a)
k+1 based on the mea-

surement fk+1 at time tk+1.

Then by increasing index k to k + 1 go back to Step (i).

The main focal point of data assimilation system is the analysis step (ii). The
objective is to calculate reconstruction ϕ(a)

k from data fk using background ϕ(b)
k at

time step tk. So we need to develop or use such reconstruction methods that utilizes
or combines all the information optimally.

To perform the analysis we employ two approaches: ones comes from optimiza-
tion and optimal control theory, and other from stochastic and probability theory.
Here we �rst follow optimization approach.
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(a)

Figure 2.2: The measurements f and knowledge from previous steps, that is back-
ground or �rst guess ϕ(b), is used in data assimilation for generating the analysis at
each time step. This resulting analysis is then used as background for next assimila-
tion step transported by the model M of the underlying dynamical system. This is
called analysis cycle in data assimilation. In the �gure measurement f are shown by
black dots, analysis in red. The black curve is the truth and the model simulations
are shown as blue curves.

We can combine the given information, measurement fk ∈ Y and the background
ϕ

(b)
k ∈ X at step k, by minimizing the Tikhonov functional

Jk(ϕ) := ‖H(ϕ)− f‖2
Y + α‖ϕ− ϕ(b)‖2

X (2.1.43)

with norm ||.||X and ||.||Y in the state space X and the observation space Y , where
α > 0 controls the weight between data and prior knowledge. The minimizer of
(2.1.43) is called analysis denoted as ϕ(a)

k . If α is large then we are giving weight
to the background while for small α we are putting more weight on observations.
Using the transformation ϕ̃ := ϕ− ϕ(b) the above functional becomes

Jk(ϕ) = α||ϕ̃k||2X + ||(fk −Hϕ(b)
k )−Hϕ̃)||2Y , (2.1.44)
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which is the form of the Tikhonov functional in (2.1.33). By Theorem 2.1.22 we
obtain the minimizer

ϕ̃
(a)
k = (αI +H∗H)−1H∗(fk −Hϕ(b)

k ) (2.1.45)

leading to minimizer of (2.1.43)

ϕ
(a)
k = ϕ

(b)
k + (αI +H∗H)−1H∗(fk −Hϕ(b)

k ) (2.1.46)

By De�nition 2.1.26 the analysis (2.1.46) is called cycled Tikhonov regularisation.

Mostly, in data assimilation we deal with the Euclidean space X = Rn and
Y = Rm of dimension n and m, respectively, m,n ∈ N. The norms in the spaces
X and Y are standard L2-norms. Working with standard L2-norms in state space
X = Rn leads to crucial di�culties, re�ected by following example.

Example. Assume that X = Rn, Y = R1 and H = (1, 0, . . . , 0). This means
that we measure the �rst variable only. The variational scheme calculates the incre-
ment

δϕk = ϕ
(a)
k+1 − ϕ

(b)
k = H∗(αI +HH∗)−1(fk −Hϕ(b)

k ) (2.1.47)

with H∗ = HT . This means that only the �rst component is updated. The other
components remain unchanged. But it is highly unusual that the �rst variable will
not in�uence other variables in the same or neighboring points.

• Standard L2-norms do not take correlations into account between di�erent
variables and quantities in spatial neighborhood.

• Standard L2-norms lead to highly unphysical and unrealistic increments.

So we de�ne a weighted scalar product in state space X = Rn

〈ϕ, ψ〉B−1 := ϕTB−1ψ = 〈ϕ,B−1ψ〉 (2.1.48)

and in measurements space Y = Rm by

〈f, g〉R−1 := fTR−1g = 〈f, g〉R−1 (2.1.49)

where B ∈ Rn×n and R ∈ Rm×m are positive de�nite, self-adjoint or symmetric, and
invertible. These are the errors covariance matrices of respective spaces. We use
the notation ||.||B−1 and ||.||R−1 for the weighted scalar product in the state space
X and the measurement space Y respectively. The minimisation function (2.1.43)
with weighted norm is represented as

Jk(ϕ) := ‖H(ϕ)− f‖2
R−1 + α‖ϕ− ϕ(b)‖2

B−1 . (2.1.50)
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This functional with De�nition 2.1.26 of cycling is called three-dimensional Variation
data assimilation scheme (3D-VAR) [129, 108, 46, 173, 58, 69]. It assimilates the
measurement fk sequentially at each time step tk, that is why it is called variational
optimization in space. If we also take time dimension into account, then it is called
four dimensional or 4D-VAR.

We employ the notation H∗ for the adjoint operator with respect to the weighted
scalar product and H ′ for the adjoint under the standard `2 scalar product. The
relation between them is derived as

〈f,Hϕ〉R−1 = 〈f,R−1Hϕ〉L2

= 〈H ′R−1f, ϕ〉L2

= 〈H ′R−1f,BB−1ϕ〉L2

= 〈BH ′R−1f,B−1ϕ〉L2

= 〈BH ′R−1f, ϕ〉B−1

= 〈H∗f, ϕ〉B−1 . (2.1.51)

This leads to transformation formula H∗ = BH
′
R−1. Based on the weighted scalar

product (2.1.48) and (2.1.49) the minimizer (2.1.46) takes the form

ϕ
(a)
k = ϕ

(b)
k + (αI +H∗H)−1H∗(fk −Hϕ(b)

k )

= ϕ
(b)
k + (αI +BH

′
R−1H)−1BH

′
R−1(fk −Hϕ(b)

k ) (2.1.52)

In large data assimilated problems the dimension of the observation space Y is much
smaller than the dimension of the state space X. Here H∗H is a much larger matrix
than HH∗, so we transform the computation into observation space Y by using the
following measurement space inversion relation

(αI +H∗H)H∗ = (αH∗ +H∗HH∗) = H∗(αI +HH∗). (2.1.53)

For α > 0 the operator (αI + H∗H) is invertible in state space X and the same is
true for (αI +H∗H) on Y , since

(αI +H∗H)ϕ = 0 (2.1.54)

implies
α〈ϕ, ϕ〉+ 〈Hϕ,Hϕ〉︸ ︷︷ ︸

≥0

= 0, (2.1.55)

thus ϕ = 0 and (αI +H∗H) is injective and thus bijective on X. This leads to

(αI +H∗H)−1H∗ = H∗(αI +HH∗)−1. (2.1.56)
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Using (2.1.56) the update equation (2.1.52) take the form

ϕ
(a)
k = ϕ

(b)
k +H∗(αI +H∗H)−1(fk −Hϕ(b)

k )

= ϕ
(b)
k +BH

′
R−1(αI +HBH

′
R−1)−1(fk −Hϕ(b)

k ).

= ϕ
(b)
k +BH

′
(αR +HBH

′
)−1(fk −Hϕ(b)

k ), (2.1.57)

where the inverse (αR + HBH
′
)−1 is to be calculated in Y = Rm. The solution

is then projected into the state space by applying BH
′
. The solution (2.1.57) is

also called optimal interpolation (OI) when it is applied in state space only, i.e.
when the measurements are some variables of the state space. For the form (2.1.57)
often the name physical space statistical analysis system (PSAS) is used, compare
[45, 40, 65, 149].

Three dimensional variational data assimilation 3D-VAR is the application of
Tikhonov regularization in each assimilation step, thus it is stable at each step.

Theorem 2.1.27 (Equivalence of cycled Tikhonov regularisation and 3DVar). Three-
dimensional variational data assimilation (2.1.52) or (2.1.57) is equivalent to cycled
Tikhonov regularisation (2.1.46) when the norms are arising from the weighted inner
products (2.1.48) and (2.1.49).

Theorem 2.1.27 shows that 3D-VAR is merely a cycled Tikhonov regularisation
in an appropriately chosen norm.

2.1.4 Variational Assimilation 4D-VAR

Four dimensional variational data assimilation (4D-VAR) technique is the tempo-
ral extension of three dimensional variational data assimilation (3D-VAR), which
includes model integration as part of the observation operators. Instead of the static
analysis of 3D-VAR in 4D-VAR we measure the distance between the analyzed state
and distributed observations at the appropriate time. This needs the tangent linear
(TL) and adjoint (AD) of the forecast model.

Thus 4D-VAR is a generalization of 3D-VAR to deal with the observations which
are distributed in time. The cost functional is same but with a generalized observa-
tion operators to include the forecast model that allows comparison among obser-
vations and model state at appropriate time [69, 129, 108, 46, 133, 163]. The model
is considered as a strong constraint in the sense that the solution has to satisfy the
model equation. In this setup, 4D-VAR gives equal credibility to older as well as
newer observations.

The basic aim of 4D-VAR technique is to �nd the analysis ϕ(a) of the data
assimilation problem given in De�nition 2.1.3 by minimization over the time interval
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[tk, tk+K ] with a window of size 4t = tk+K − tk to calculate the analysis state at tk.
The corresponding cost functional is given by

Jk(ϕ) := α||ϕ− ϕ(b)||2X +
K∑
j=0

||fk+j,k −H(Mk+j,k(ϕ))||2Y . (2.1.58)

The model evolution Mk+j,k is provided in (2.1.2). The minimization of the func-
tional calculates the analysis ϕ(a)

k at time tk. At other points the analysis is accu-
mulated by forward model

ϕ
(a)
k+j = Mk+j,kϕ

(a)
k , j = 1, . . . , K, ϕ

(b)
k+K+1 = Mk+K+1,kϕ

(a)
k . (2.1.59)

The 4D-VAR scheme (2.1.58) and (2.1.59) compels the solution to satisfy the forward
model over the interval [tk, tk+K ]. The four dimensional variational data assimilation
puts the same weight to all data points to accumulate its analysis.

As there are always assumptions involved in the formation of models so no model
is perfect, but all are containing errors. It is a very important question for re-
searcher how to accumulate model errors in the computations. Many strategies and
techniques have been introduced to mitigate such limitation like weak-constraint
4D-VAR.

We can write the 4DVar functional (2.1.58) in the same form than the 3DVar
functional (2.1.43) by putting all the measurement fk, . . . , fk+K into one column and
disposing the sum based on the new (possibly nonlinear) operator Hk. This leads
to

Jk(ϕ) := α‖ϕ− ϕ(b)
k ‖

2
X + ‖fk −Hk(ϕ)‖2 (2.1.60)

with

f :=


fk
fk+1
...

fk+K

 and H :=


HMk,k

HMk+1,k
...

HMk+K,k

 . (2.1.61)

The minimizer of (2.1.58) seeks to catch the full dynamic trajectory of the state to
the given data fk+j, j = 0, . . . K, over the time window [tk, tk+K ]. As in Section
2.1.3 we can change the cost functional (2.1.58) into the form of a general Tikhonov
functional (2.1.33) (see [61, 45]).

Let ϕ(a) be the minimum of (2.1.58) and the background is obtain by (2.1.59).
The minimization of functional (2.1.58) is called four dimensional variation data
assimilation(4DVar). The repetition of minimizing (2.1.58) with the model propa-
gation (2.1.59) is called cycled 4DVar scheme. It is similar to the cycled Tikhonov
regularisation as describe previous Section 2.1.3.
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Usually, the minimisation of functional (2.1.58) is carried out by the gradient
method. We calculate the gradient 5ϕJ(ϕ)|ϕ(`) at the point ϕ(`) in state space, then
update by the relation

ϕ(`+1) := ϕ(`) − h5ϕ J(ϕ)|ϕ(`) (2.1.62)

with suitable step size h > 0 and initial condition ϕ(0) (usually ϕ(0) := ϕ(b)). For
simplicity we consider X = Rn and Y = Rm with `2 inner product. Let ej, j =
1, . . . , n are standard basis of Rn. Let

g(ϕ) := ||f −HMϕ||Y (2.1.63)

Where f ∈ Y and the model operator M : X → X. The the gradient of g(ϕ) is
given by

5ϕg(ϕ) = −2
(
M∗H∗(f −HMϕ)

)
(2.1.64)

In case M is nonlinear than nonlinear version of (2.1.64) is

5ϕg(ϕ) = −2
(

(
dM(ϕ)

dϕ
)∗H∗(f −HMϕ)

)
(2.1.65)

where dM(ϕ)
dϕ

is the Fréchet derivative of M(ϕ). The derivative

M(ϕ) :=
dM(ϕ)

dϕ
(2.1.66)

is known as tangent linear model [55, 105].
In the framework of dynamic inverse problems, the dynamic model is given by a

system of di�erential equation of the state ϕ(t)

·ϕ(t) = F (ϕ) : t ≥ 0 (2.1.67)

with initial condition
ϕ(0) = ϕ0. (2.1.68)

where ϕ0 ∈ X. The model dynamic is represented by

ϕ(t) = Mt,0(ϕ(0)) = Mt,0(ϕ0) (2.1.69)

Thus the (2.1.67) takes the form

F (ϕ(t)) =
dMt,0(ϕ0)

dt
, t ≥ 0. (2.1.70)
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The main task is the di�erentiation of ϕ(t) with respect to initial condition ϕ0

denoted as ϕ′(t) := dϕ(t)
dϕ0

. which is linear mapping from X into X. For X = Rn,
ϕ(t) ∈ Rn is a vector and ϕ′(t) is a n× n matrix

ϕ′(t) =


dϕ1

dϕ0,1
. . . dϕ1

dϕ0,n

...
...

...
dϕn
dϕ0,1

. . . dϕn
dϕ0,n

 . (2.1.71)

We assume ϕ(t) is continous and twice di�erentiable with respect to t and ϕ0, then
we can exchange the derivatives with respect to t and ϕ0. We get

dϕ′

dϕ0

=
d

dϕ0

dMt,0(ϕ0)

dt
=

d

dt

dMt,0(ϕ0)

dϕ0

=
dϕ′(t)

dt
(2.1.72)

thus we have using (2.1.70)

dϕ′(t)

dt
=
dF (ϕ(t))

dϕ0

= F ′(ϕ(t))
dϕ(t)

dϕ0

(2.1.73)

At t = 0 the initial condition takes the form

ϕ′(0) =
dϕ

dϕ0

|t=0 = I, (2.1.74)

is a idenity I ∈ X

Theorem 2.1.28. The tangent linear model, i.e. the Fréchet derivative of ϕ with
respect to the initial conditions ϕ0 of (2.1.67), is given by the solution to the system
of di�erential equations

dϕ′(t)

dt
= F ′(ϕ(t))

dϕ(t)

dϕ0

; t ≥ 0 (2.1.75)

with initial condition
ϕ′(0) = I (2.1.76)

where F ′ is Fréchet derivative of forcing term F (t) of (2.1.67) with respect to argu-
ment ϕ.

Proof. See [129], Theorem 5.3.1. �

Using (2.1.69) and ϕ(t) = Mt,0(ϕ(0)) = Mt,0(ϕ0) alone with (2.1.66) we obtain

ϕ
′
(t) =

dMt,0(ϕ(0))

dϕ0

=: Mt,0(ϕ0) (2.1.77)
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for the tangent linear model. We note that the tangent linear model adjoint is
square matrix of order n× n. This matrix is large, when n is large. Thus, we need
an e�cient method to calculate the gradient based on it. To evaluate the adjoint in
(2.1.64) we de�ne a function ψ(t) ∈ X over the interval [tk, tk+1] by

·ψ(t) = −F ′(ϕ(t))∗ψ(t) (2.1.78)

with �nal condition
ψ(tk+1) = H∗(fk+1 −HM(ϕk)). (2.1.79)

The gradient is now based on the following lemma.

Lemma 2.1.29. t ∈ [tk, tk + 1], the inner product

h(t) = 〈ϕ′(δϕ0), ψ(t)〉 (2.1.80)

is constant over time for any δϕ0 ∈ X.

Proof. See [129], Theorem 5.3.2. �

Theorem 2.1.30. Let ψ(t) ∈ X be solution of (2.1.78) and (2.1.79) on [tk, tk + 1].
Then, the gradient (2.1.64) of (2.1.63) is given by

5ϕg(ϕ) = −2ψ(tk) (2.1.81)

Proof. See [62], Lemma 6.1. It is shown in Theorem 2.1.30 that h(t) is constant,
hence

(5ϕg(ϕ))j = −2〈ϕ′(tk+1)ej, H
∗(fk+1 −HM(ϕk)〉

= −2〈ϕ′(tk+1)ej, ψ(tk+1)〉
= −2〈ϕ′(tk)ej, ψ(tk)〉
= −2〈ej, ψ(tk)〉 = −2ψj(tk) (2.1.82)

for j = 1 . . . n by using (2.1.74) and proof is complete. �

The function de�ned by (2.1.78) and (2.1.79) is called tangent linear adjoint model,
which is used for calculation of gradient of the 4D-VAR functional.

Consider X = Rn and Y = Rm with weighted scalar product (2.1.48) and
(2.1.49). Then, the gradient of the full cost function involving model dynamic
(2.1.58) is (c.f. [62])

5ϕJk(ϕ) := 2B−1(ϕ− ϕ(b)
k ) (2.1.83)

−2
K∑
j=1

(Mk+j,k(ϕ))∗H∗R−1(fk+j −HMk+j,k(ϕ)).
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A gradient method like (2.1.62) can be applied to minimize the functional Jk(ϕ)
(2.1.58). Alternatively, we can use a Gauÿ-Newton method [47] to �nd the minimum
of the functional (2.1.58). We solve 5ϕJk(ϕ) = 0 for �nding the minimizer of the
functional (2.1.58) by Newton's method, i.e.

ϕ(`+1) := ϕ(`) −
(
55ϕJ(ϕ)|ϕ(`)

)−1

5ϕ J(ϕ)|ϕ(`) , (2.1.84)

with starting guess ϕ(0) := ϕ
(b)
k , where 55ϕ J(ϕ)|ϕ(`) is called Hessian.

Usually we use an approximate Hessian instead of the full Hessian by neglecting
the terms involving the gradient of tangent linear model, then leading to a quasi-
Newton method. The gradient method converges linearly while the Gauÿ-Newton
method converges superlinearly in a neighborhood of the true solution for well-posed
problems. Newton and Gauÿ-Newton method are the same when the observation
operator and dynamical model are linear. In this case the local minimizer is also
global minimizer (see for example [67]).

2.2 Kalman Smoother and Kalman Filter

The Kalman Filter is a method similar to cycled Tikhonov regularisation, 3D-VAR
and 4D-VAR which is used to deal with the data assimilation problems introduced
in De�nition 2.1.3. It is di�erent from other methods in the sense that it not only
updates the analysis at each step, it also upgrades iteratively the state space norm
by using the information from former assimilation steps.

Here we describe the Kalman �lter in a deterministic way (following [129]) and
show equivalence with the Kalman smoother and four dimensional variational data
assimilation introduced in Section 2.1.4 for linear operators and models. Let us
study the assimilation of a measurement f1 ∈ Y by the Tikhonov functional

J1(ϕ) := α‖ϕ− ϕ(b)
0 ‖2

B−1 + ‖f1 − A(ϕ)‖2
R−1 , ϕ ∈ X, (2.2.1)

We assume that X and Y are some Hilbert spaces over R. The norms ||.|| are
weighted norms given by ||ϕ||2B−1 = 〈ϕ,B−1ϕ〉 and ||f ||2R−1 = 〈f,R−1f〉, where B
and R are positive de�nite symmetric and invertible operators or matrices. The
minimizer of functional (2.2.1) is ϕ̃(a).

Now we receive more data f2 ∈ Y . Then with the measurement f1 and f2 we
will proceed the same way and minimize with weighted norm we have

J2(ϕ) := α‖ϕ− ϕ(b)
0 ‖2

B−1 + ‖f1 − A(ϕ) ‖2
R−1 + ‖f2 − A(ϕ)‖2

R−1 ϕ ∈ X, (2.2.2)
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analogous to (2.2.1). It is very �exible scheme in the sense that either assimilate f1

�rst then f2 or vice versa or both at a time same as above (2.2.2). When the model
is not the identity, we need to incorporate the model propagation between di�erent
assimilation steps. For a linear model, this can be carried out by using

Ak = HkMk,0 (2.2.3)

and M0 = M1,0, M1 = M2,1. Then the above can take the form

J2(ϕ) := α‖ϕ−ϕ(b)
0 ‖2

B−1+‖f1−HM0(ϕ) ‖2
R−1+‖f2−M1M0(ϕ)‖2

R−1 ϕ ∈ X, (2.2.4)

Let us �rst assimilate f (1) using (2.2.1) with minimizer ϕ̃(a), then assimilate f (2) in
second step with changed or upgraded norm in X by including the information from
�rst assimilation f (1). First, we assimilate f (1) with minimization of the functional

J1(ϕ) := (α)‖ϕ− ϕ(b)
0 ‖2

B−1 + ‖f1 −HM0(ϕ)‖2
R−1 ϕ ∈ X, (2.2.5)

having minimizer ϕ̃(a) and then in second step we study the assimilation of f2 by
minimizing using previous information

J21(ϕ) := ‖ϕ− ϕ̃(a)
0 ‖2

B̃−1 + ‖f (2) −HM1M0(ϕ)‖2
R−1 , ϕ ∈ X, (2.2.6)

with updated weighted norm having new weight B̃. The problem here is how we
�nd the new weight B̃ such that the minimizer of J21 is equal to the minimizer of full
functional J2 in (2.2.4). This is the case if we can choose B̃ such that J21 = J2 + c
with some constant c, where in (2.2.6) J1 is used via ϕ̃(a). The problem is solved
if we can �nd ϕ̃(a) and B̃ such that � up to a constant � the �rst term of J21 is
identical to J1, that is

α‖ϕ− ϕ(b)
0 ‖2

B−1 + ‖f1 −HM0(ϕ)‖2
R−1 = ‖ϕ− ϕ̃(a)‖2

B̃−1 + c̃, (2.2.7)

where c̃ is some constant depending upon f1 and ϕ0. Now studying J1 we have

J1(ϕ) = α〈ϕ− ϕ(b)
0 , B−1(ϕ− ϕ(b)

0 )〉+ 〈f1 −HM0ϕ,R
−1(f1 −HM0ϕ)〉

= 〈ϕ, αB−1ϕ〉 − 2〈ϕ, αB−1ϕ
(b)
0 〉+ 〈ϕ(b)

0 , αB−1ϕ
(b)
0 〉+ 〈f1, R

−1f1〉
−2〈ϕ,M∗

0H
∗R−1f1〉+ 〈ϕ,M∗

0H
∗R−1HM0ϕ〉

= 〈ϕ, (αB−1 +M∗
0H
∗R−1HM0)ϕ− 2〈ϕ, (αB−1ϕ

(b)
0

+M∗
0H
∗R−1f1)〉+ 〈f1, R

−1f1〉︸ ︷︷ ︸
const

+ 〈ϕ(b)
0 , αB−1ϕ

(b)
0 〉︸ ︷︷ ︸

const

(2.2.8)

Let
G := αB−1 +M∗

0H
∗R−1HM0 (2.2.9)
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Then (2.2.8) takes the form

J1(ϕ) = 〈ϕ,Gϕ〉 − 2〈ϕ, αB−1ϕ
(b)
0 −M∗

0H
∗R−1f1〉+ 〈f1, R

−1f1〉︸ ︷︷ ︸
const

+ 〈ϕ(b)
0 , αB−1ϕ0〉︸ ︷︷ ︸

const

= 〈ϕ,Gϕ〉 − 2〈ϕ, αB−1ϕ
(b)
0 −M∗

0H
∗R−1f1〉+ c (2.2.10)

with some constant c. Similarly, the �rst term of J21

‖ϕ− ϕ̃(a)
0 ‖2

B̃−1 = 〈ϕ, B̃−1ϕ〉 − 2〈ϕ, B̃−1ϕ̃(a)〉+ c̃ (2.2.11)

where c and c̃ do not depend on ϕ. After comparing the equations (2.2.10) and
(2.2.11) we get

B̃−1 = G = (αB−1 +M∗
0H
∗R−1HM0) (2.2.12)

and
B̃−1ϕ̃(a) = (αB−1ϕ

(b)
0 +M∗

0H
∗R−1f1). (2.2.13)

From (2.2.13) we have

ϕ̃(a) = B̃(αB−1ϕ
(b)
0 −M∗

0H
∗R−1f1)

= (αB−1 +M∗
0H
∗R−1HM0)−1(αB−1ϕ

(b)
0 +M∗

0H
∗R−1f1)

= (αI +BM∗
0H
∗R−1HM0)−1(αϕ

(b)
0 +BM∗

0H
∗R−1f1)

After some calculation using

αI = (αI +BM∗
0H
∗R−1HM0)−BM∗

0H
∗R−1HM0 (2.2.14)

we get

ϕ̃(a) = ϕ
(b)
0 + (αI +BM∗

0H
∗R−1HM0)−1BM∗

0H
∗R−1(f1 −HM0ϕ

(b)
0 )

= ϕ
(b)
0 +BM∗

0H
∗(αR +HM0BM

∗
0H
∗)−1(f1 −HM0ϕ

(b)
0 ), (2.2.15)

using inversion relation (2.1.56), which is the minimizer of J1. It is the same as in
(2.1.52) and (2.1.57). Now, the above step can incorporate iteratively new measure-
ments f1, f2, f3 etc. This approach leads to the Kalman smoother, later on we prove
that the Kalman smoother and Kalman �lter are equivalent at �nal time. The basic
di�erence is that the Kalman �lter calculates at tk and the Kalman smoother at t0.



CHAPTER 2. TOOLS AND METHODS 45

Definition 2.2.1 (Kalman Smoother). Let Hk : X → Y and Mk : X → X,
k = 0, 1, 2, . . . given in De�nition 2.1.3 be linear and assume that measurements
f1, f2, f3, . . . at times t1, t2, . . . are given. Then, we calculate weight matrices

B̃−1
k = B̃−1

k−1 +M∗
k,0H

∗
kR
−1HkMk,0, k = 1, 2, 3, . . . (2.2.16)

with B̃0 := B,where Mk,0 is de�ned in (2.1.2) and the analysis states ϕ
(a)
k at time tk

de�ned by

ϕ̃
(a)
k = ϕ

(a)
k−1 + B̃k−1M

∗
k,0H

∗
k(R+HkMk,0B̃k−1M

∗
k,0H

∗
k)−1(fk −HkMk,0ϕ

(a)
k−1) (2.2.17)

for k = 1, 2, . . . , with ϕ̃
(a)
0 = ϕ

(b)
0 .

Now we are ready to relate the Kalman smoother and 4DVar

Theorem 2.2.2. Let Hk : X → Y and Mk : X → X, k = 0, 1, 2, . . . be lin-
ear operators and data f1, f2, f3, . . . be given. Then, 4DVar carried out with data
f1, f2, f3, . . . , fk is equivalent to the Kalman Smoother given in (2.2.1) in the sense

that the minimum of the 4DVar functional (2.1.58) is given by the analysis ϕ̃
(a)
k

de�ned in (2.2.17).

Proof. See [62], Theorem 7.2. �

By De�nition 2.2.1 the Kalman smoother works with states at t0 while the
Kalman �lter calculate states at time t1, t2, .... We need to propagate the states
ϕ̃

(a)
k from time t0 to t1 by

ϕ
(b)
k = Mk,0ϕ̃

(a)
k−1 and ϕ

(a)
k = Mk,0ϕ̃

(a)
k (2.2.18)

for k = 1, 2, . . . , which implies

ϕ
(b)
k = Mk−1ϕ

(a)
k−1 (2.2.19)

evolve the state from time t0 to tk also the weighted matrices B̃ propagate from t0
to tk by

B
(b)
k = Mk,0B̃k−1M

∗
k,0 and B

(a)
k = Mk,0B̃kM

∗
k,0 (2.2.20)

for k = 1, 2, . . . . Propagating the analysis matrix from time tk−1 to tk, the back-
ground matrix is

B
(b)
k = Mk−1B

(a)
k−1M

∗
k−1. (2.2.21)

Using the state propagation (2.2.19) and weighted matrices evolutions (2.2.21) the
iterative version of (2.2.17) is given by

ϕ
(a)
k = ϕ

(b)
k +B

(b)
k H∗k(R +HkB

(b)
k H∗k)−1(fk −Hkϕ

(b)
k ) (2.2.22)
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for k ∈ N. It can also be represented in the simple form

ϕak = ϕ
(b)
k +Kk(fk −Hkϕ

(b)
k ) (2.2.23)

where Kk is
Kk = B

(b)
k H∗k(R +HkB

(b)
k H∗k)−1, (2.2.24)

called Kalman gain matrix. It is basically the Tikhonov regularisation matrix
(2.1.57). The analysis matrix B(a)

k is obtained from the background matrix B(b)
k by

(B
(a)
k )−1 = (B

(b)
k )−1 +HkR

−1Hk (2.2.25)

for k ∈ N. The analysis matrix update formula is usually written as follows.

Lemma 2.2.3. For k ∈ N and B
(a)
k de�ned by (2.2.25) we have

B
(a)
k = (I −KkHk)B

(b)
k , (2.2.26)

where Kk is given by (2.2.24).

Proof. See [62], Lemma 7.3. �

Now we are ready to de�ne the Kalman Filter.

Definition 2.2.4 (Kalman Filter). Starting with an initial state ϕ
(b)
0 , and an ini-

tial weight matrix B
(a)
0 := B for k ∈ N, the Kalman Filter iteratively calculates an

analysis ϕ
(a)
k at time tk by

(i) propagate the state ϕ
(a)
k−1 from tk−1 to tk via (2.2.19):

ϕ
(b)
k = Mk−1ϕ

(a)
k−1 (2.2.27)

(ii) propagate the state B
(a)
k−1 from tk−1 to tk via (2.2.21):

B
(b)
k = Mk−1B

(a)
k−1M

∗
k−1 (2.2.28)

(iii) calculate the Kalman gain by (2.2.24):

Kk = B
(b)
k H∗k(R +HkB

(b)
k H∗k)−1 (2.2.29)

(iv) calculate an analysis state by (2.2.22):

ϕ
(a)
k = ϕ

(b)
k +B

(b)
k H∗k(R +HkB

(b)
k H∗k)−1(fk −Hkϕ

(b)
k ) (2.2.30)

(v) calculate an analysis weight by (2.2.22):

B
(a)
k = (I −KkHk)B

(b)
k (2.2.31)
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The above mathematical setup narrates that the Kalman �lter works in two
stages. The �rst stage is called predictor or forecast stage. In this stage using some
given initial condition or background state the forecast is calculated by propagating
the model through time. This background state has known error covariance. Which
is also evolved through time by the model to generate the forecast error covariance.

It is an important feature of the Kalman �lter that these errors are also evolved
through time with the model. So within the forecast stage state vectors and covari-
ance matrices are propagated through time with the model dynamics.

The second stage is the analysis stage. In this stage through the ratio of errors
of the background and the observations a weighting is introduced. The observations
are assimilated based on this weight, which helps to adjust the forecast estimate
as a best estimate to the true state. Finally, the state of the system and analysis
covariance error is computed according to this weight. So in this step the state of
the system and the covariance matrices are updated through new measurements and
a-priori information.

Let Mk be a known matrix of linear model dynamics of the system at time tk.
The state evolution through the model dynamics is

ϕtruek+1 = Mk(ϕ
true
k ) + ηk (2.2.32)

Let ϕ is a state vector containing the state parameters of the system having dimen-
sion n, ϕtruek is the true state of the system at time tk. Since our models are not
perfect real world models. Models have errors. In (2.2.32) ηk is the model error
at time tk which is assumed to be unbiased, that is its expectation value is zero,
written as E(ηk) = 0. Then, the error covariance of model is

Cov(ηk) = E(ηkη
T
k ).

It is generally unknown, but ensenble systems try to estimate it based on an ensemble
of model propagations. Now, let yk be the observation vector at time tk, satisfy
the relation

yk = H(ϕtruek ) + δk (2.2.33)

H is the observation operator which maps the state space to the observation space.
Since observations are contaminated by errors, let δk be the observation error which
is assumed to be unbiased, i.e. E(δ) = 0. The calculation of the covariance matrix
for the observations is an important problem of current research, since it is known
that measurement errors are correlated. The observation error covariance matrix is
denoted as R = E(δδt). It is assumed that the observation errors and model errors
are not correlated at any time.
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With the Kalman �lter in both stages of forecast and analysis we try to �nd an
unbiased forecast and an unbiased analysis, that is

E(ϕ(b) − ϕ(true)) = 0 and E(ϕ(a) − ϕ(true)) = 0.

The covariance error matrices of forecast and analysis measure the correlation be-
tween di�erent component of the state. They are of dimension n× n and given by

B(b) = E((ϕ(b) − ϕ(true))(ϕ(b) − ϕ(true))T ). (2.2.34)

and
B(a) = E((ϕ(a) − ϕ(true))(ϕ(a) − ϕ(true))T ). (2.2.35)

At the forecast stage the forecast Kalman �lter equations are given by (2.2.27) and
(2.2.28). These forecast equations evolve the previous model analysis state and
previous analysis error covariance through time with initial state ϕ(a)

0 and an initial
weight matrix B(a)

0 := B.
The update of both the analysis and the error covariance matrices at the analysis

step begin with calculation of Kalman gain (2.2.29). It calculates the weighting given
to the observations with respect to the ratio between forecast and observational error
covariances. The Kalman gain matrix can also be found using a minimum variance
estimate. This is obtained from a minimization of the functional (2.1.50). The
analysis state and the covariance matrix are updated by (2.2.30) and (2.2.31). For
Gaussian distributions and linear systems, the error covariances of the forecast and
the analysis are exact (c.f. [129]).

The Kalman gain (2.2.29) calculates the weighting given to the observations
with respect to the ratio between forecast and observational error covariances. The
Kalman gain matrix can also be found using a minimum variance estimate with cost
functional (2.1.50). Thus Kalman �lter is optimal.

Currently the Kalman Filter is not used for numerical weather prediction be-
cause it can be used with linear models only. Clearly, numerical weather prediction
models are nonlinear, which makes the Kalman �lter unsuitable to this application.
Furthermore due to large state space and covariance matrices it is very expensive. In
numerical weather prediction the typical problem size is around n = 108 unknowns
and could easily be larger when resolution is increased. The number of measure-
ments which are employed at each time tk are around m = 107. In the Kalman
Filter, this would lead to matrices B of the size 108 × 108, which has strong im-
pact on calculation times and storage. In the assimilation cycle O(107) observations
are assimilated. The Kalman gain involves inversion of large matrices which make
Kalman �ltering computationally expensive and ine�cient.
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There are many versions of the conventional Kalman �lter. Some versions take
the inverse of the covariance matrix, some take the square root of the covariance
matrix, and some consider the square root of the inverse of the covariance matrices.
All these variations have been developed for better performance of the Kalman �lter
when implemented on computers having memory storage problems and constraints
on word length. Also, the conventional Kalman �lter can be derived in continous
time or discrete time or in both. In the �rst case state covariance and state estimate
are in the form of time derivatives. They are continuously integrated at each instant
and do not have individual update steps, while in discrete form both state estimates
and state covariances are advanced discretely and have separate update steps when
ever data is processed [20, 26, 52, 96, 102, 104, 128, 166, 175].

Now we can show the equivalence of Kalman �lter smoother and 4DVar as follows.

Theorem 2.2.5 (Equivalence of 4DVar, Kalman Filter and Kalman Smoother). Let
Hk : X → Y for k ∈ N and Mk : X → X for k ∈ N0 be linear. Let ϕ

(a)
k be the

analysis of the Kalman Filter at time at tk, ϕ̃
(a)
k the analysis of the Kalman smoother

with data f1, f2, f3, . . . , fk at t0, ϕ̃
(a)
4DV ar,k the minimizer of the 4DVar functional

(2.1.4) at time t0 and de�ne

ϕ
(a)
4DV ar,k = Mk,0ϕ̃

(a)
4DV ar,k, for k = 1, 2, . . . (2.2.36)

Then, 4DVar is equivalent to the Kalman Filter and to the Kalman Smoother in the
sense that

ϕ
(a)
4DV ar,k = ϕ

(a)
k = Mk,0ϕ̃

(a)
4DV ar,k, (2.2.37)

if we start the iterations with the same initial background state ϕ
(b)
0 and the same

initial weight matrix B
(a)
0 := B.

Proof. See [62], Lemma 7.5. �

2.3 Ensemble Methods and Ensemble Kalman Fil-

ter

Above we studied many data assimilation techniques including Tikhonov data as-
similation, 3DVar, 4DVar, and the Kalman �lter. Going through all theses methods
we �nd that 3DVar or Tikhonov do not carry all dynamical information we get
from previous assimilation steps and they work with a �xed norm at each time
step. While 4DVar includes the full trajectory over a time window, it implicitely
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propagates all information, so usually this leads to better results than 3DVar. How-
ever, the Kalman �lter and Bayes data assimilation are equivalent to 4DVar for
linear systems. They employ updates of the covariance matrices and, thus, include
all information from previous assimilation steps and propagate them through time.
Generally, we expect them to lead to result comparable to 4DVAR.

For non-linear systems the Bayesian approach with non-Gaussian dynamical dis-
tribution should be better. For the Kalman �lter the covariance matrices B(a)

k and
B

(b)
k are the main challenge due to their size n× n. Their computation is infeasible

for large n in terms of computation time and storage, even when super comput-
ers are employed in operational centers. There is a need of algorithms or methods
which give a good approximation to the matrix B(b)

k along with (2.2.30) with small
computational costs. This leads to ensemble methods.

The key idea of ensemble methods is that, following the ideas of Monte-Carlo
methods, we use ensembles of the states for the estimation of dynamical information.
The Monte-Carlo method received a lot of attention from geophysical applications
in 1990's and has been employed in operational forecast centers since 2010.

The Ensemble Kalman Filter (EnKF) was introduced by Evensen in 1994 [53].
In the article [54] the further development and application of the EnKF to weather
prediction has been discussed. We can use nonlinear models in the Ensemble Kalman
Filter. In case of the Kalman �lter a formula is used for the B matrix update, while
in the EnKF the main idea is the ensemble and the statistical sample of states to be
used for the computation of the analysis state for each members. From the forecast
ensemble then mean and covariance are calculated. They are used in the analysis
step for the calculation of the Kalman gain, which is further used to assimilate
observations and calculate the analysis ensemble.

The Ensemble Kalman Filter does not require a derivation of a tangent linear
operator or adjoint equation and no back ground integration is needed. This simple
conceptual formulation and easy implication led to strong popularity in di�erent
communities [93, 94, 136, 162]. The statistical representation of the state estimation
improves the quality of predictions and calculates a good initial guess for ensemble
based prediction schemes.

The ensemble approach can be discussed in many ways, but here we will approach
it from an applied mathematics point of view.

Definition 2.3.1 (Ensemble). An ensemble of N members is any �nite set of vectors

ϕ
(`)
k for ` = 1, . . . , N .

We can propagate the ensemble through time by applying the model dynamic
M orMk, respectively. Starting with an initial ensemble ϕ(`)

0 , ` = 1, . . . , L this leads
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to ensemble members

ϕ
(`)
k = M [tk−1, tk]ϕ

(`)
k−1, k = 1, 2, 3, . . . (2.3.1)

For an arbitrary ensemble ϕ(1), . . . , ϕ(N) the mean µ is given by

µ =
1

N

N∑
`=1

ϕ(`) (2.3.2)

The ensemble error covariance matrix is

B =
1

N − 1

N∑
`=1

(ϕ(`) − µ)(ϕ(`) − µ)T (2.3.3)

Here, we divide by (N − 1) instead of (N). The reason is that this leads to an
unbiased estimator [23, 91, 109]. B has dimension n × n. We center the ensemble
members around the ensemble mean, de�ning the ensemble matrix Q by

Q :=
1√

N − 1
(ϕ(1) − µ, . . . , ϕ(N) − µ) (2.3.4)

The ensemble Kalman �lter now approximates the updates in the Kalman �lter in
the ensemble space UQ ⊂ X de�ned by

UQ := span{ϕ(1) − µ, . . . , ϕ(N) − µ}. (2.3.5)

The Q matrix (2.3.4) can be seen as some knid of square root of the covariance
matrix B in (2.3.3), if a square root Â of A is given by A = ÂÂT . This de�nition
is often used in the physical sciences. We note that Q is only a low-dimensional
approximation to the full square-root of B.

With the adjoint or transpose Q∗k of Qk we now write

B
(b)
k := QkQ

∗
k, k ∈ N. (2.3.6)

This leads to an update equation

ϕ
(a)
k = ϕ

(b)
k +K(f −Hϕ(b)

k ) (2.3.7)

with the Kalman matrix

K = Q
(b)
k (Q

(b)
k )∗H∗k(Rk +HkQ

(b)
k (Q

(b)
k )∗H∗k)−1 (2.3.8)

following (2.2.24). Clearly, by the form of B(b)
k the increments ϕ(a)

k − µ are in the
ensemble space UQ.
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Definition 2.3.2 (Ensemble Kalman Filter). 1. First, given an analysis ensem-

ble ϕ
(a,ξ)
(k−1), ξ = 1, . . . , N at tk−1 , as in (2.3.6) the model dynamics M is used

to propagate the ensemble members to time tk and calculate a �rst guess or
background ensemble ϕ

(b,ξ)
k , ξ = 1, . . . , N .

2. In an analysis step at time tk, the Ensemble Kalman Filter calculates an
estimate for the matrix B

(b)
k by (4.1.5) based on the background ensemble

ϕ(b,1), . . . , ϕ(b,N).

3. This is used to calculate an update of the ensemble mean following the Kalman
�lter (2.2.30). An important step is the generation of an analysis ensemble

ϕ(a,1), . . . , ϕ(a,N), which �ts to the analysis covariance matrix B
(a)
k as calculated

by the Kalman �lter.

The main task next is to describe how the analysis ensemble is generated. Many
approaches have been suggested for this. First, we will study the family of ensem-
bles generated by eigenvalues decomposition from self adjoint, positive de�nite and
weighted matrix B := B(b).

First, we note that B has a complete set of eigenvalues λ(1), . . . , λ(n) with λ(1) ≥
λ(2) ≥ · · · ≥ λ(n) and orthogonal eigenvectors ϑ(1), . . . , ϑ(n) such that

Bϑ(`) = λ(`)ϑ(`), ` = 1, . . . , n. (2.3.9)

Since the covariance matrix B is positive de�nite and symmetric, eigenvalues are
real and positive and eigenvectors are orthogonal. This leads to the diagonal matrix
Λ := {

√
λ(1), . . . ,

√
λ(n)} and the orthogonal matrix W = {ϑ(1), . . . , ϑ(n)}, such that

we obtain
B = WΛ2W ∗ = (WΛ)(WΛ)∗, (2.3.10)

where we also note that W ∗ = W−1. This correspond to the principle component
analysis of quadratic form de�ned by

F (ϕ, ϑ) := ϕTBϑ, ϕ, ϑ ∈ X. (2.3.11)

B de�nes a hyper-surface of second order with positive eigenvalues, which has level
curves which form a family of ellipses with dimension n − 1. The eigenvectors
ϑ(`), ` = 1, . . . , n are the principle axes of the ellipse. According to (2.3.10) the
application of B here is a combination of a projection of ϕ onto the principle axis
of ϑ(`) of B with the multiplication by λ(`). This decomposition can be taken as a
setup for the construction of a low-dimensional approximation of B.

First of all we have to de�ne the metric for the approximation of the B-matrix
and the construction of ensembles. As we have seen above the B matrices are core
parts of the update of (2.2.4), (2.2.4), (2.2.30) and (2.2.31).
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Lemma 2.3.3. We construct an ensemble of vectors by choosing the N − 1 maximal
eigenvalues of B and its corresponding eigenvectors ϑ(1), . . . , ϑ(N−1). We de�ne

Q := [
√
λ(1)ϑ(1), . . . ,

√
λ(N−1)ϑ(N−1)] (2.3.12)

Then, we have the error estimate

||B −QQ∗||2 = sup
j=N,...,n

|λ(j)| = |λ(N)| (2.3.13)

Proof. See [129], Lemma 5.5.3. �

Theorem 2.3.4. Let the eigenvalues λ(1) ≥ λ(2) ≥ · · · ≥ λ(N) of the self-adjoint
weight matrix B be ordered according to its size and let ϕ(1), . . . , ϕ(N) with N ∈ N
be an arbitrary ensemble of states in X. Then, the error for the approximation of
the weight matrix B by QQ∗ with Q de�ned in (4.1.5) is estimated by

||B −QQ∗||2 ≥ λ(N) (2.3.14)

Proof. See [129], Lemma 5.5.4. �

Lemma 2.3.5. Consider the approximation of Bk by an ensemble ϕ
(1)
k , . . . , ϕ

(N)
k with

ensemble matrix Qk. If the error satis�es

||B(a)
k −Q

(a)
k (Q

(a)
k )∗|| ≤ ε, (2.3.15)

for some ε > 0 then, the error estimate for the propagated ensemble at time tk+1 is
given by

||B(b)
k+1 −Q

(b)
k+1(Q

(b)
k+1)∗|| ≤ ||Mk||||M∗

k ||ε (2.3.16)

Proof. See [129], Lemma 5.5.5. �

We now come to the Square Root Filter (SRF). The question arises how we
update the ensemble matrix in ensemble Kalman �lter. As we know in the case
of the Kalman �lter the analysis weighted matrix B(a)

k is calculated via B(a)
k using

relation (2.2.31). In every step, an analysis ensemble Q
(a)
k needs to be constructed

which keeps the update equation (2.2.31) intact, i.e. we demand

Q
(a)
k (Q

(a)
k )∗ = (I −KkHk)Q

(b)
k (Q

(b)
k )∗, (2.3.17)

= Q
(b)
k

(
I − (Q

(b)
k )∗H∗k(Rk +HkQ

(b)
k (Q

(b)
k )∗H∗k)−1HkQ

(b)
k︸ ︷︷ ︸

=:T

)
(Q

(b)
k )∗.
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The operator in round brackets can be seen to be self-adjoint and positive, such
that a square root S exists with T = SS∗. Uniqueness can be settled by writing it
in the form WΛ2W ∗ with the orthonormal matrix W which collects the normalized
orthogonal eigenvectors of the matrix and where Λ2 is a diagonal matrix with the
eigenvalues of the operator on the diagonal. The eigenvalues can be ordered accord-
ing to its size and listed according to its multiplicity. Then Λ2 is unique, but W can
have di�erent realizations if eigenspaces of dimension larger than one exist. How-
ever, the operation of WΛ2W ∗ on each of the eigenspaces is uniquely determined.
We choose the square root given by

S := WΛW ∗, (2.3.18)

with the diagonal matrix Λ constructed by taking the positive square roots of the
positive diagonal entries of Λ2. Then, S is well-de�ned, since it is the same for
every orthogonal W constructed by projections onto the eigenspaces. The analysis
ensemble is then updated according to

Q
(a)
k = Q

(b)
k S, k ∈ N, (2.3.19)

where

S =
√
I − (Q(b))∗(H)∗(R +HQ(b)(Q(b))∗(H)∗)−1HQ(b). (2.3.20)

The updated formula (2.3.19) for the ensemble is called the Ensemble Kalman Square
Root Filter (EKSRF).

Filters that use randomly perturbed observation ensembles are called stochastic
�lters, while those which do not use contaminated observation ensembles are called
deterministic �lters like the square rot �lter (see [20, 26, 96, 102, 104, 128, 152,
166]). They do not use noisy observations, which introduce additional noise to the
problem specially when the ensemble size is small [171, 73, 94]. It is e�cient and
accurate computationally. We �nished calculating the error in the analysis B-matrix
in dependence on the background B-matrix for the square root Kalman �lter.

Lemma 2.3.6. Assume that ϕ(1)
k , . . . , ϕ

(N)
k is an ensemble which satis�es

||B(b)
k+1 −Q

(b)
k+1(Q

(b)
k )∗|| ≤ ε (2.3.21)

with some ε < ‖B(b)
k ‖. Then, for the analysis ensemble de�ned by (2.3.19) we have

||B(a)
k −Q

(a)
k (Q

(a)
k )∗|| ≤ Cε (2.3.22)

with some constant C not depending on Q
(b)
k
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Proof. See [129], Lemma 5.5.6. �

A major advantage of the EnKF is the conservation of the state ensemble, the
cost for maintaining the ensemble can be balanced by the the computational sav-
ing through the e�ciency of the scheme. Using the same covariance matrix for
the evolution and the Kalman gain for ensembles can help towards reducing the
computational cost. The ensemble size can also be chosen small for making the
method more cost e�ective, but we need to be careful with the selection of the
ensemble size. It should be chosen in a way that it is statistically representative
for the state distributions [54]. The �lter is suitable for parallelization, since each
ensemble member is evolved through time independently [82]. It approximates the
background covariance matrix �ow of the Kalman �lter.

There are many problems associated with the practical use of the EnKF. The
main problem is that the size of the ensemble is too small, such that it does not
re�ect the statistics of model. Then under-damping phenomena occur [14, 15], which
lead to other problems like inbreeding, �lter divergence and spurious correlations.
The same problems can appear when the square root �lter is used.



Chapter 3

Transformed and Generalized

Localization for Ensemble Methods

in Data Assimilation

The goal of this work is to suggest a general algorithm which allows localization
in the case of non-local observation operators. It is not restricted by the limit of
locality. To test it's applicability we study the e�ect of the transformed localization
when applied to a IASI retrieval problem [32, 148], which is known to have a strong
non-locality and is of high interest to both the research community and operational
centers of weather prediction.

First, we will carry out the localization in the case of non- local operators by
using a transformation of the state space X and the data space Y under consid-
eration which transforms the non-local operator into a local operator. Then, in
the transformed space classical localization is employed to enhance the degrees of
freedom of the data assimilation task. We interpret this transformed localization or
generalized localization as a projection method in a sequence of subspaces of the state
space X or observation space Y , respectively. An important complication here is
the role of the covariance matrix. It needs a corresponding transformation as well,
and we will discuss under which conditions the problem becomes localizable under
the transformation.

Second, we formulate an abstract model for localization, which no longer takes
place in the state space, but considers the more general algebraic model for local-
ization, which is based on general projection methods in inverse problems or �nite
elements. We will see that classical localization for the EnKF can be understood
as a special case of such a projection method, and that our transformation of the
operator corresponds to choosing a particular subspace for projection.

56
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Third, we study the reconstruction of an atmospheric temperature pro�le from
IASI radiance measurements [41, 111, 167, 148]. In principle, the observation op-
erator can be viewed as a discretized version of an integral equation of the form

f(s) =

∫
G

w(s, τ)ϕ(τ) dτ, s ∈M (3.0.1)

with w(s, τ) being the sensitivity of the IASI measurement in channel s with re-
spect to temperature variations at point τ in the atmospheric column G. For IASI
assimilation in each assimilation step and each atmospheric column (where data
is available) we explicitly or implicitly solve the integral equation of the �rst kind
(3.0.1). This is known to be an ill-posed inverse problem, and we show how trans-
formed localization can help to reduce the dimensionality of the problem as it is
carried out by the localization for the EnKF. Numerical examples are provided.

Before we come to our techniques in more detail, we �rst provide a survey about
the role of localization. We will discuss the implications of undersampling and the
role localization plays for creating a �lter which does full�l its purpose.

3.1 Issues Due to Small Number of Ensembles

The Ensemble Kalman �lter is subjected to certain limitations. To develop its full
potential we should carry out all computations with a large ensemble size. But then
it's powerful computational mechanics cannot not be easily implemented because
the cost is prohibitively large.

The cost depends on the ensemble size: when we reduce the number of ensembles,
this reduces the cost as well. However, care must be taken reducing the ensemble size
to ensure that it it is not too small, since then it looses the statistical representativity
and does no longer properly re�ect the characteristics of the system. It should be
statistically representative of the system as demanded by Kalnay [93]. We note that
the choice of a statistically representative ensemble also depends on the size of state
space.

A small ensemble causes problems of di�erent nature. Obtaining the correct
weight for the background error is always di�cult, Reinhard Furrer and Thomas
Bengtsson [63] show that this problem is exacerbated in the situation with a small
number of ensemble members. They show that the �lter is putting more trust to
the background state than it should. This means that the measurement data is
not really impact full when producing the analysis state. The �lter will lead to a
purposeful state estimate if the forecast state is the appropriate representation of
the true state, but if our background is weighted too strongly, this is no longer the
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case. The utilization of small ensembles also generates correlations between di�er-
ent components where there is no physical relation [69]. They are called spurious
correlations, they cause severe problems in the naive implementation of ensemble
�lters.

Thus, the ensemble size is a key component for a meaningful forecast based on
the ensemble Kalman �lter as experimented intensely for example [82, 147]. The
success of the ensemble Kalman �lter will depend on the ensemble should be statis-
tically representative but the ensemble must span the model subspace adequately
as described by Oke et al. [135].

Undersampling

We have argued that the size of the ensemble is a very critical issue for the Ensemble
Kalman Filter. If the size is very large, then the computational cost and memory
problems are severe. If it is very small, then the ensemble is not a proper statistical
representative of state uncertainty.

The necessary size of the ensemble depends on the size of the state space. Cur-
rently, the state space size of numerical weather prediction models is at least 108.
This is very large, so we need large ensembles for it to be statistically representative.

If sample size is insu�cient, then the problem is said to be under sampled. Under-
sampling leads to a reduced rank background error covariance matrix due to which
there is a tendency that variance and covariance are under estimated. A typical
consequence of �lter underestimation of covariances are long range correlations [69].

Inbreeding or Underestimation Of Covariance

The term inbreeding is used by Houtekamer and Mitchell [82, 146] to describe phe-
nomena with respect to the Ensemble Kalman Filter due to undersampling. Recall
that the background error covariance is evolved by model dynamics, thus known as
forecast error covariance. If the analysis error covariance is systematically underes-
timated at each assimilation cycle, this situation is denoted as inbreeding.

The analysis error covariance B(a) is always smaller than the forecast error co-
variance B(b). We already de�ned their relation by

B(a) = (I −KH)B(b) (3.1.1)

where B(b) = E[(ϕ(b) −ϕt)(ϕ(b) −ϕt)T ] is degree of uncertainty in the forecast state
of the the system. The Kalman gain is K := B(b)H∗(R +HB(b)H∗)−1.

Here the Kalman gain is based on the ratio of the background error covariance
and the error covariance of measurements, to compute the weight that should be
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given to background state and weight put on the observations. Then, by this ratio of
background and observation covariance matrices the Kalman gain is used to adjust
the background state estimate. Note that the adjustment of the forecast state will
be incorrect if any of the observation errors and background errors are incorrectly
speci�ed.

This phenomenon is noted by many authors: Small ensembles that do not span
an appropriate part of the model space give rise to inbreeding due to error in the
covariance estimate (Lorenc [11]). The smaller the ensemble is, the greater the
degree of undersampling that is present and the greater the chance of underestimated
forecast error covariances (Ehrendorfer [48]). The Ensemble Kalman Filter updates
the ensemble at analysis stage based on the observations and the Kalman gain, here
with large danger of underestimation by the �lter (Whitaker and Hamil [171]). In
the Ensemble Kalman Filters that use contaminated observations (such as Evensen
[55]) there occurs inbreeding problems due to error in the estimation of observation
covariances with additional sampling error. For the Square Root EnKF we do not
use noisy observation, which reduces the tendency of inbreeding. Inbreeding is a
cause of many problems of �lters like long rang correlation and �lter divergence
(Hamil et al. [72, 147, 69]).

Filter Divergence and Collapse

Filter divergence is a phenomenon which occurs in almost all kinds of �ltering tech-
niques. When the forecast error covariances are too large then there is uncertainty
in the forecast state and undue con�dence on observations. This means less weight
is given to the forecast state and more to the observations.

On the other hand, if the forecast error covariance is unrealistically small, then
there is undue con�dence placed on the forecast state, because due to Kalman
gain less weight is place on the observations and more on forecast state. As during
�ltering the covariance is progressively underestimated, it places undue con�dence on
the forecast state estimate and less weight on observations. As a result, observation
data is ignored, this is also called �lter divergence in the sense of a �lter collapse.
If the breadth of the ensemble distribution is less in the analysis state compared
to the forecast state, it implies that ensembles are converging. Inbreeding makes it
di�cult for a �lter to adjust the erroneous forecast state to the true state and �lter
collapse occurs [69].
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Spurious Correlations

In the literature, the term spurious correlation is coined by Karl Pearson [153, 12]
which is usually used for correlations of the ratio of absolute measurement rather
than the a correlation of actual measurements. Spurious correlations are correla-
tions that appear between state variables which are at signi�cant distance and are
not physically related to the true error covariance of the forecast states.

In ensemble �lters, observations made at one location have in�uence on state
variables which are physically remote from the observation by �lter equations, there
is a tendency of long rang correlation (Anderson [16]). Consequently physically
remote observation erroneously in�uence the state variables. With the decrease
in ensemble size and correlation between state components, the covariance error
increases (Hamil et al. [72]).

In the physical world the correlations between given observation points decrease
with distance. The error in the forecast error covariance matrix at grid points remote
from observations is expected to be increase as compare to true correlation at that
grid. Hamil et al. [72] argue that the analysis estimate of ensemble Kalman �lter is
less accurate as the error in the covariance estimate also known as noise is greater
then the true correlation, known as signal. Correlation is inversely proportion to
distance while relative error varies directly.

As correlations are expected to become smaller with distance while relative errors
increase, the state variables distant from observations are expected to inherit a large
noise to signal ratio. These are called long range spurious correlations and they
decrease the quality of the analysis estimate. Also Hamil argues in [72] that the
ratio of the covariance estimate error and the true correlation depends on ensemble
size. The larger the ensemble size, the smaller the noise. Thus, spurious correlations
are due to under sampling. Lorenc [11] investigates the case where we we have N
ensembles generated from some probability distribution. Then, the error in the
covariance estimate is proportional to 1

N
[69], the convergence order of the standard

stochastic covariance estimator.

3.2 Remedy for undersampling

There are many methods to deal with the issue of undersampling. Covariances in�a-
tion and covariance localization [15, 72, 82, 83, 88, 136, 171]) are already mentioned
in our previous Section 3.1. They are employed for the local ensemble transform
Kalman �lter [136, 162] and EnKF [82]. We will describe more details in the follow-
ing parts.
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3.2.1 Covariance In�ation

One of the common problems experienced after applying di�erent �ltering tech-
niques is the �lter divergence ([90]). As this happen when forecast error covariances
become too narrow and the observations progressively loose their impact, then the
analysis generated by the �lter drifts away from the true state. The Kalman �lter
underestimates the forecast error covariance due model errors, nonlinearities and the
e�ects described in our previous sections. Then, for stable �ltering it is necessary
to in�ate the forecast error covariance to give adequate weight to the observations.
This broadens the forecast error covariance and enhances the impact of observa-
tion. If the ensemble is not in�ated, then it ampli�es the errors and causes �lter
divergence [69].

The principle of covariance in�ation is simple: multiply the covariance matrix
B(a) or B(b) by some in�ation factor β > 0 in each assimilation cycle. This broadens
the covariance matrix and avoids �lter divergence. The calculation is

B(b) ← βB(b),

where the in�ation factor β is slightly greater than 1. Obviously, if β is very large
its means giving more weight to observation, so β must be chosen with care. The
speci�cation of an optimal in�ation depends on the size of the ensemble, on the
model dynamics and on the type of the ensemble �lter used. A popular method is
choosing β by experimentation. Hamil et al. (2001) by experiments conclude that
1% in�ation factor is optimal for a large range of numbers of ensembles members.
While Whitaker and Hamil (2002) found that an in�ation factor is optimal with 7%
for the ensemble Kalman �lter and 3% for the square root ensemble Kalman �lter
[72, 73, 166, 171].

Anderson and Anderson (1999) [18] call the above method multiplicative covari-
ance in�ation. A large in�ation may disturb the physical balance [15]. In�ation
does not settle the problem of spurious correlation but it overcomes the inbreeding
problem. For long range correlation more sophisticated methods are needed [69].

3.2.2 Localization

The Ensemble Kalman Filter (EnKF) is a good alternative to the Extended Kalman
�lter and 4DVAR for atmospheric and oceanic assimilation, due to which we do not
need to deal with tangent linear and adjoint models and we have to deal with
covariance matrices of rank O(106) only.

The main disadvantage of the EnKF is that the ensemble size and rank of the
covariance matrix are very small of O(102). This means that the EnKF has state
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covariance to be of excessively low rank. It leads to spurious long- range correlations
and the consequence in the analysis is a bad �t to the observations.

Further, the spurious long-range correlations cause an incorrect long-range re-
sponse to a single observation in both the ensemble mean and in the variance,
which is distributed globally when a single observation is assimilated. To achieve
feasible performance from an EnKF it is indispensable to �lter out these spurious
correlations; this step is known as localization. For localization there are di�er-
ent approaches like to Schur- multiply the ensemble-estimated covariance matrix by
a compactly- supported distance-dependent covariance function (Houtekamer and
Mitchell 2001 [83]). The function of Gaspari and Cohn (1999, equation (4.10), hence-
forth GC [64]) has been widely used, we explain more details below. This procedure
removes all long-range correlations and increases the rank of the covariance matrices
with an increase os the ability of the analysis to �t observation well.

The accuracy of background-error is a very hard issue for systems used to assimi-
late data. Ensemble based assimilation schemes depend on the number of ensembles
of forecasts for the calculation of background error. But the size of ensembles is
always smaller than the dimension of the systems state space for the real numeri-
cal predictions, so the imperfectly calculated estimate gives insu�cient background
error with the e�ect of poor performance.

A possible solution to perform a successful ensemble based assimilation when
only a small sized ensemble is feasible is the use of technique called localization.
Localization is a simple technique to localize the impact of an observation to a
subset of the model state variables. The subset is de�ned as a close region around the
observation. There are two advantages of localization. One is that its can eliminate
spurious correlations of the background ensemble between distant state variables
due to limited number of ensemble members. The other is that it increases the rank
of the system by use of an e�ective number of independent ensemble members. So
localization is a tool to enhance the number of degrees of freedom of the ensemble
and to cease the false correlations [10, 11, 141].

Today it is well-known that ensemble �lters need localization as a key tool to
enhance their number of degrees of freedom and to suppress spurious correlations,
compare [15, 62, 82, 83, 88, 144, 171].

Often, ensemble Kalman �lters are applied to large domains Ω (the whole globe
in atmospheric models) with limited ensemble sizes (L = 40, . . . , 200). Thus, the
space spanned by the ensemble is much smaller than the state space of the underlying
dynamical system and correlations between spatially well separated parameters may
be large due to the representation by the stochastic process. Assuming a Gaussian
distribution of errors, the expectation for the variance of the sample covariance
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coe�cients is
E((QQT )ij −Bij)

2 =
1

L− 1

[
BiiBjj + (Bij)

2
]

[109]. The expected error does not only depend on Bij but also on the diagonal
elements Bii and Bjj. The latter will always dominate the sampling error for those
coe�cients which actually correspond to small correlations.

Localization in state space

Localization can be employed in both state space and observation space. In order to
enhance the number of degrees of freedom of the ensemble and to suppress spurious
correlations, it has been proposed to use localization on the ensemble B(b) matrix,
[30], [73], by replacing B(b) with C ◦B(b), where C is the so called localization matrix
and ◦ is the Schur product, i.e. the element-wise product of the matrix elements
cij and bij evaluated at the grid- points (i, j) of the model. This method is called
localization on B or covariance localization.

A su�cient condition to ensure that C ◦ B(b) is a valid covariance matrix is
that C itself is a valid covariance matrix (positive de�nite matrix). This is ful�lled
if the cij are speci�c functions f(rij/lloc) of the spatial distance rij of the grid-
points in the model domain, given for instance by the Gaspari & Cohn functions
[64]. These functions, parameterized by the localization length scale lloc, are very
similar to a Gaussian with the respective standard deviation, but become exactly
zero for distances larger than approximately 3 times lloc. The optimal value of the
localization length scale depends on actual correlation length scales and ensemble
size.

In Covariance localization using C ◦ B(b) instead of B(b) prevents application of
the factorization of our upcoming equation (2.3.6) and instead of solving the low
dimensional update equations (2.3.7), (2.3.20), (2.3.19) in ensemble space we have
to handle a high dimensional problem in model state space. As problems of this size
cannot be solved explicitly, iterative variational methods are recommended [34].

Localization in observation space

An approach to solve the localized equations explicitly is to solve the equations in
observation space (2.3.7), (2.3.8) and to apply the Schur product in observation space
to HB(b)BH∗ and B(b)H∗ instead of B(b). This is equivalent for local observations
(there individual observation operators H depend on only one spatial grid-point
and the location of the observation is well de�ned) but is not strictly applicable
for non-local observations. This method will be called localization on HBH or
observation localization. Furthermore, in order to solve the equations e�ciently the



CHAPTER 3. TRANSFORMED AND GENERALIZED LOCALIZATION 64

equations have to be solved in patches [172] or sequentially [83, 171] making use of
the multistep analysis method.

Another method of e�cient spatial localization was proposed in [82]. Equations
(2.3.7), (2.3.20) are solved individually at every model grid-point i taking into ac-
count observations at j within a distance rij from the grid-point only. The in�uence
of the observations at the grid-point in general is weighted by applying a Schur
product to the inverse of the observation error covariance matrix C ◦ R−1, where
the localization function depends on the distance between the grid-point and the
observation. This localization method will be called localization on R−1 and it is
necessary for LETKF [87].

Let us now sum up the approaches in a notation suitable for application to our
ensemble Kalman �lter presented in the next Section 3.3.

Localization in its simplest version means that the analysis (2.2.23), see also
(2.3.7), of the mean and the ensemble update (2.3.19), see also (2.3.19), is not
carried out globally, but on some local set Ωx around a point x ∈ R3, where usually
the set Ωx is a subset of a ball Bρ(x) with center x and radius ρ. Often, weighting
functions on Bρ(x) are employed, to give observations close to x a full weight, those
closer to the boundary are given less in�uence. This approach can be calculated in
parallel on a grid of points xξ, ξ = 1, ..., N . Thus, for every set Ωxξ , ξ = 1, ..., N we
obtain an analysis ensemble, which are combined into a global analysis ensemble by
appropriate weighting functions. A recent deterministic error analysis for this type
of localization can be found in [144], we will call it non-coupled localization.

A popular alternative for localization is to de�ne a localization matrix C such
that C(x, y) = 0 for |x − y| > ρ with some localization radius ρ > 0. Then, we
replace the covariance matrix B in the EnKF by its Schur product B ·C, such that
the new covariance matrix is nonzero only if |x− y| < ρ. We remark that this type
of localization needs to solve a full system, but now with a sparse B-matrix where
spurious correlations have been removed. For a comparison of this localization with
the above approach we refer to [88]. We call this localization coupled localization.

3.3 The EnKF and Localization

The Ensemble Kalman Filter (EnKF) is an ensemble data assimilation technique,
which is based on a long history of works in di�erent communities, e.g. [20, 30, 53,
55, 96, 166], see also [87] and [62]. It employs an ensemble ϕ(1), . . . , ϕ(L) of states
ϕ(`) ∈ X on which the analysis is based. Assume that we are given data yk ∈ Y
at times t1, t2, t3, . . . , tk, . . . , for k ∈ N. Here, Y is the observation space, which we
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assume to be a Hilbert space, and X is the state space, which is a Hilbert space as
well. The EnKF is a cycled scheme, which at every time tk, k = 1, 2, 3, . . .

• propagates the ensemble from tk−1 to time tk by applying the model dynamics,
i.e.

ϕ
(`,b)
k = M(ϕ

(`,a)
k−1 ), ` = 1, . . . , L. (3.3.1)

• At time tk an analysis ensemble ϕ(`,a)
k is calculated from the background or

�rst guess ensemble, respectively, ϕ(`,b)
k , and the observations yk.

The analysis ensemble can be calculated following the approach of Evensen [53], or
by a square root �lter, compare the recent survey in [62]. Following [62], we employ
the notation

Q
(b)
k :=

1√
L− 1

(
ϕ

(1,b)
k − ϕ(b)

k , . . . , ϕ
(L,b)
k − ϕ(b)

k

)
, k ∈ N, (3.3.2)

where ϕ(b)
k is the mean of the background ensemble. This leads to the covariance

matrix B = Q(b)(Q(b))∗ when the standard stochastic estimator is applied. Then,
the Kalman gain matrix is given by

Kk = (Q
(b)
k )(Q

(b)
k )∗H∗(R +H(Q

(b)
k )(Q

(b)
k )∗H∗)−1, k ∈ N. (3.3.3)

First, the mean ϕ(a)
k of the analysis ensemble is calculated using the Kalman update

equation
ϕ

(a)
k = ϕ

(b)
k +Kk(yk −Hϕ(b)

k ). (3.3.4)

In the area of inverse problems, this is known as Tikhonov regularization operator.
Second, we write the operation which generates the analysis ensemble in the form

(ϕ
(1,a)
k , . . . , ϕ

(L,a)
k ) = F

(
(ϕ

(1,b)
k , . . . , ϕ

(L,b)
k

)
, k ∈ N, (3.3.5)

i.e. F maps the background ensemble into the analysis ensemble, it is the operator
of the �ltering step. As shown in [62], the square root �lter can be written as

Q
(a)
k = Q

(b)
k L (3.3.6)

where L is the square root (i.e. LL∗ = A) of the operators

Ak := I − (Q
(b)
k )∗H∗k

(
R +HkQ

(b)
k (Q

(b)
k )∗H∗k

)−1

HkQ
(b)
k , k ∈ N. (3.3.7)
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For the original Kalman �lter, an analysis covariance matrix B(a) is calculated by

B
(a)
k = (I −KkHk)B

(b)
k (3.3.8)

We note that this equation is compatible with the square root �lter in the sense that

(Q
(a)
k )(Q

(a)
k )∗ = (I −KkHk)(Q

(b)
k )(Q

(b)
k )∗, k ∈ N. (3.3.9)

An important observation here is that by (3.3.3) the increment of the ensemble mean
given by (3.3.4) is in the space spanned by the column of the matrix Q(b)

k de�ned
in (4.1.5). Also, we note that every ensemble member of the analysis ensemble Q(a)

k

de�ned in (3.3.6) is a linear combination of the ensemble members of Q(b)
k (with

coe�cients depending nonlinearly on the ensemble members). Since in general, the
number L of ensemble members is very small compared to the degree's of freedom
of our state space X, we obtain a very crude approximation to the truth if we do
not employ further measures to improve this approximation.

One key tool to achieve the above improved approximation within ensemble
�lters is localization. The basic idea of localization is to carry out the analysis given
by the equations (3.3.4) and (3.3.6) not globally for all observations, but locally for
observations around some point p ∈ R3 in space. Here, we study a version of B
localization to some subset U , which considers only those observations which are
located in U and which restricts all functions and operators under consideration to
U . Since we are in an L− 1 dimensional subspace, in this case each analysis can be
reduced to solving an (L−1)×(L−1) dimensional linear system. This is carried out
many times independently (with perfect parallelization properties), and in a �nal
step the global analysis ensemble is constructed from the local assimilation results.

To be more speci�c, let p ∈ R3 be a point and let ρ > 0 denote our localization
radius. We take all observations yp,ρ which are located in the ball Bρ(p) of radius ρ
around p. The corresponding observation operator is denoted by Hp,ρ.

We say that an observation yj for j ∈ N is local, if it belongs to one and only
one point p ∈ R3. For linear observation operators H and �nite dimensional spaces
X and Y this means that the matrix representing H has one non-zero entry in
its j−th row. Non-local measurements have more than one non-zero entry in its
corresponding row of the observation operator.

Of course, for the case of discrete grids and when interpolation is employed, even
observations which take place at one point in space only, lead to non-zero entries in
more than one place in the observation operator H. Then, locality of an observation
is linked to the particular realization of the observation operator. Later, we will
only need the condition that some observation is located in a ball Bρ(p) of radius ρ
around some point p in space. We call the observation to be located in Bρ(p) if the
matrix H is zero outside of Bρ(p).
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3.4 Transformed Localization

The basic idea of a transformed localization is to employ a transform of both the
state space X and the observation space Y such that the transformed observation
operator is either local or has better localization properties.

We consider the setup of a state ϕ ∈ X and observations f ∈ Y and a linear
observation operator H : X → Y . Then, let a transformation of X given by an
invertible operator T : X → X and let a transformation of Y be given by an
invertible operator S : Y → Y . We de�ne

ϕ̃ := Tx, f̃ := Sf (3.4.1)

and
H̃ := SHT−1. (3.4.2)

In this case, by multiplication with S the equation

Hϕ = f (3.4.3)

is transformed into
SH(T−1T )ϕ = Sf, (3.4.4)

which by (3.4.1) and (3.4.2) can be written as

H̃ϕ̃ = f̃ . (3.4.5)

We call (3.4.5) the transformed observation equation.

In a �rst step, we study in what way our transforms S and T will in�uence the
behaviour of the Ensemble Kalman Filter with square root analysis ensemble, in
particular in what way they in�uence the analysis mean and the analysis ensemble
when we do not employ localization. In this case the EnKF is robust under linear
transformation. The transform on the ensemble matrix Q de�ned by (4.1.5) is given
by

Q̃ = TQ, Q̃∗ = Q∗T ∗, (3.4.6)

which is the matrix of the transformed ensemble members. The transformed Kalman
gain matrix as given by (3.3.3) is then given by

K̃k = Q̃(b)(Q̃(b))∗H̃∗(R̃ + H̃Q̃(b)(Q̃(b))∗H̃∗)−1, k ∈ N, (3.4.7)

where R̃ is given by
R̃ = SRS∗. (3.4.8)



CHAPTER 3. TRANSFORMED AND GENERALIZED LOCALIZATION 68

We also note that
H̃∗ = (T−1)∗H∗S∗, (3.4.9)

such that

H̃Q̃(b) = SHT−1TQ(b) = SHQ(b),

(Q̃(b))∗H̃∗ = (Q(b))∗T ∗(T−1)∗H∗S∗ = (Q(b))∗H∗S∗. (3.4.10)

Lemma 3.4.1. The transformed analysis increment K̃k(f̃k− H̃ϕ̃(b)
k ) of the Ensemble

Kalman Filter de�ned by (3.3.4) and (3.3.6) for the transformed ensembles (3.4.6)
is given by

K̃k(f̃k − H̃ϕ̃(b)) = TK(fk −Hϕ(b)
k ). (3.4.11)

The analysis ensemble is given by

Q̃
(a)
k = Q̃

(b)
k L̃ (3.4.12)

with a matrix L̃ which is the same as the update matrix L from the non-transformed
case, i.e. we have

L̃ = L. (3.4.13)

Proof. We �rst calculate (in some places dropping the index k for brevity)

K̃ = Q̃(b)(Q̃(b))∗H̃∗(R̃ + H̃Q̃(b)(Q̃(b))∗H̃∗)−1

= TQ(b)(Q(b))∗H∗S∗(SRS∗ + SHQ(b)(Q(b))∗H∗S∗)−1

= TKS−1, (3.4.14)

which leads to

K̃k(f̃k − H̃ϕ̃(b)) = TKkS
−1(Syk − SHT−1Tx

(b)
k )

= TKk(fk −Hϕ(b)
k ), (3.4.15)

and we have shown (3.4.11). To investigate the analysis ensemble we calculate the
transformed version of I − A with A given by (4.1.33)

Ã = I − (Q̃(b))∗H̃∗(R̃ + H̃Q̃(b)(Q̃(b))∗H̃∗)−1H̃Q̃(b)

= I − (Q(b))∗H∗S∗(SRS∗ + SHQ(b)(Q(b))∗H∗S∗)−1SH∗T−1TQ(b)

= I − (Q(b))∗H∗(R +HQ(b)(Q(b))∗H∗H∗Q(b)

= A. (3.4.16)

Since L̃ is the square root of Ã, we obtain L̃ = L and the proof is complete. �
With an analogous proof it is possible to show that the above results hold for the
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Kalman Filter in general. We note that the transform of the B matrix is given by

B̃ = TBT ∗ (3.4.17)

and the transform of the R matrix by R̃ = SRS∗.

Theorem 3.4.2. For the transformed Kalman Filter we have

K̃ = TKS−1. (3.4.18)

For the analysis increment we obtain

ϕ̃(a) − ϕ̃(b) = K̃(f̃ − H̃ϕ̃(b))

= TKS−1(ỹ − H̃x̃(b)) (3.4.19)

= TK(f −Hϕ(b)).

Proof. We calculate

K̃ = B̃H̃∗(R̃ + H̃B̃H̃∗)−1

= TBT ∗(T−1)∗H∗S∗
(
SRS∗ + SHT−1TBT ∗(T−1)∗H∗S∗

)−1

= TBH∗(R +HBH∗)−1S−1, (3.4.20)

where we used (T−1)∗ = (T ∗)−1 and (S∗)−1 = (S∗)−1. This completes the proof. �
Finally, we note that for the transformed analysis matrix B̃(a) in the Kalman �lter
we obtain

B̃(a) = (I − K̃H̃)B̃(b)

= (I − TKS−1SHT−1)TB(b)T ∗

= T (I −KH)B(b)T ∗

= TB(a)T ∗. (3.4.21)

This means that the transform and equation (3.3.4) for the covariance matrices are
compatible.

3.4.1 Generalized localization concept

One typical understanding of localization is to solve equations on some local domain
Bρ(p) around some point p and with localization radius ρ, also using only data which
lives in this domain Bρ(p) as well. This means, we solve local linear systems

Hp,ρϕ = fp,ρ, (3.4.22)
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with the operator Hp,ρ which is obtained from the operator H by restricting it to
data de�ned on Bρ(p), with fp,ρ de�ned as the subset of data de�ned on Bρ(p),
and with background ϕ(b). It leads to a local analysis ϕ(a)

j and to a local analysis

ensemble ϕ(a,`)
j which is valid in a neighborhood Bρj(pj) of pj. We can write the

local equations (3.4.22) in the form

Pp,ρHϕ = Pp,ρf, (3.4.23)

where Pp,ρ is a projection operator restricting to the ball de�ned by p and ρ. In the
simplest �nite dimensional case it is a matrix

P =

 0 0 0
0 I 0
0 0 0

 , (3.4.24)

which is the identity in the region de�ned by p and ρ and zero in all other entries.
Given a partition of unity

1 =
J∑
j=1

χj, (3.4.25)

on our domain of de�nition, where usually χj is close to one at pj and close to zero
at all other points pi, i 6= j. Then, we de�ne the global analysis by

ϕ(a) :=
J∑
j=1

χj · ϕ(a)
j (3.4.26)

based on the analysis ϕ(a)
j at Bρj(pj). In a generalized localization concept we replace

the simple operator P from (3.4.24) by a general family Pj, j = 1, ..., J of projection
operators and solve equations

Hjϕ = fj (3.4.27)

where
Hj := PjH, yj := Pjf. (3.4.28)

Also, let us consider appropriate subspaces Xj, j = 1, ..., J in X. We assume that
the Xj satisfy

Xj ∩Xi = {0}, i 6= j, i, j = 1, ..., J. (3.4.29)

Now, we solve solutions to the equation

Hjϕ = yj ⇔ PjHϕ = Pjy (3.4.30)
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in the subspace Xj to calculate ϕ
(a)
j . Then, the full analysis is generated from these

partial analysis vectors by

ϕproj :=
J∑
j=1

ϕ
(a)
j (3.4.31)

Equivalence of the full and the combined partial analysis is valid under particular
conditions as given in the following lemma.

Lemma 3.4.3. Let H be a bijective operator between X and Y . Assume that Yj :=
PjY is a sequence of projection spaces in Y and Xj is a family of subspaces Xj ⊂ X
of X, such that

Y = Y1 ⊕ · · · ⊕ YJ , X = X1 ⊕ · · · ⊕XJ , (3.4.32)

and
Yj = HXj. (3.4.33)

Then, the solution xproj to the projection method given by (3.4.31) using the unreg-
ularized solution to (3.4.30) in Xj is equal to the unregularized solution x∗ to the
equation (3.4.3).

Proof. By the direct sum (3.4.32) in Y we have the unique decomposition

f =
J∑
j=1

fj, (3.4.34)

where fj = Pjf . We de�ne ϕj := H−1fj, which is in Xj by the space condition
(3.4.33). This leads to

ϕ∗ = H−1f = H−1

J∑
j=1

fj =
J∑
j=1

H−1fj =
J∑
j=1

ϕj = ϕproj, (3.4.35)

and the proof is complete. �

Remark. The above reconstruction by projection looks nicely, but we have to
note that calculating the decomposition (3.4.34) in general corresponds to solving a
system of the type

f =
m∑
ξ=1

f̃ξαξ, (3.4.36)
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where f̃ξ are the basis vectors of the spaces Yj. The calculation of the projection
involves solving the linear system (3.4.36), i.e. the inversion of the matrix

A :=
(
f̃1, . . . , f̃m

)
. (3.4.37)

In the case where Xj := span{ej}, j = 1, . . . , n, this means that A = H, and
the projection is already equivalent to solving the full matrix with the observation
operator, which might be an ill-posed problem, and it is not really what we want,
since then the purpose of projection (as generalized localization) to simplify the
problem is no longer reached. The big point here is to �nd the right projection
space XJ . We will see that X1, . . . , XJ can be chosen such that the spaces are
orthogonal. �
In general, we are of course interested in the case of regularized reconstructions. This
needs further conditions on the spaces and operators under consideration, since in
general we will not obtain equality of the full regularized solution with the localized
reconstructions. We �rst provide a positive results under additional assumptions
and then give a counter example in the general case for dimension n = 2.

For the next arguments we will follow the notation introduced in [62], i.e. we
employ the notation ∗ for the adjoint operator or matrix with respect to the scalar
product under consideration, and H ′ for the adjoint when the standard `2 scalar
product is used. We also note that when H is restricted to some subspace Xj with
image space H(Xj), we use (H|Xj)∗ to denote the adjoint with respect to the spaces
Xj and H(Xj) or to Xj and Yj if Yj with H(Xj) ⊂ Yj is given explicitly. For real
valued spaces H ′ and HT are identical. When we employ weighted scalar products
with weights B−1 and R−1 with the covariance matrices B and R on X and Y ,
respectively, we obtain H∗ = BH ′R−1 . In this case, we can write the Kalman gain
matrix in the form

Aα := (αI +H∗H)−1H∗ (3.4.38)

with some scaling parameter α where with α = 1 we obtain A1 = Kk. For the
following results we de�ne

Hj = PjH|Xj , j = 1, . . . , J, (3.4.39)

where Pj is the projection operator de�ned above (3.4.27).

Theorem 3.4.4 (Localized Regularized Inversion). Under the conditions of the pre-
vious Lemma 3.4.3 we de�ne

ϕα := Aαf, ϕj,α := Aα,jfj, j = 1, . . . , J, (3.4.40)
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where Aj,α is de�ned by (3.4.38) with H replaced by Hj. Then we have

ϕα = ϕproj,α with ϕproj,α :=
J∑
j=1

ϕj,α, (3.4.41)

i.e. the full regularized solution ϕα is equal to the sum of the regularized solutions
under generalized localization.

Remark. We note that for the adjoint (Hj)
∗ of the operator Hj : Xj → Yj we

have (Hj)
∗fj = H∗fj for fj ∈ Yj. �

Proof. We �rst remark that on Xj we have

(αI +H∗H)−1|Xj = (αI +H∗jHj)
−1. (3.4.42)

This yields

Aαyj = (αI +H∗H)−1H∗fj

= (αI + (Hj)
∗Hj)

−1(Hj)
∗fj

= Aj,αfj, (3.4.43)

for j = 1, . . . , J . With this, we calculate

Aαf = Aα

(
J∑
j=1

fj

)
=

J∑
j=1

Aαfj =
J∑
j=1

Aj,αfj =
J∑
j=1

ϕj,α (3.4.44)

and the proof for (3.4.41) is complete. �

Example. We now convince ourselves that in general the above equality (3.4.41)
does not hold. To this end, we choose the simple setup X = R2 and Y = R2 and
de�ne

H =

(
2 1
1 2

)
=: (h1,h2) (3.4.45)

with vectors h1 and h2. If we set X1 = span{e1} and X2 = span{e2}, we obtain

Y1 = span{h1} = span{
(

2
1

)
}, Y2 = span{h2} = span{

(
1
2

)
}

the projection operators onto Y1 and Y2 along the spaces Y2 and Y1, respectively, is
given by

P1 =
1

3

(
4 −2
2 −1

)
, P2 =

1

3

(
−1 2
−2 4

)
(3.4.46)
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In this case, for α = 0.1 the localized solution is given by

ϕproj,α =

(
0.65359 −0.32680
−0.32680 0.65359

)
f, (3.4.47)

where the full regularized inverse xα = Aαy is given by

ϕα =

(
0.61938 −0.28971
−0.28971 0.61938

)
f. (3.4.48)

The MATLAB numerical output illustrates the signi�cant di�erences which appear
in general. �

We next describe the role of localization for the full ensemble Kalman �lter as
described by (3.3.4) - (3.3.8). Let us �rst describe the main heuristics and then
present some exact results.

• In general, if the observation operatorH is non-local, then even if the B matrix
is local, the term HBH∗ is non-local and in (3.3.3) the inversion will need to
solve a full system. In this case, localization will lead to large errors.

• However, if we transform the state space X and the observation space Y in a
way such that H̃ is local and B̃ is local as well, then we can achieve locality of
the terms H̃B̃H̃∗, B̃H̃∗ and R̃, such that K̃ remains local. Then, localization
applied to the transformed version of the EnKF will yield small approximation
errors.

We will show in our examples that for practically important problems such as the
data assimilation of infrared radiances in numerical weather prediction, the above
situation can be achieved.

We will �rst derive an exact result for block-local matrices to clarify the situation
further. We call a matrix B block-local, if it is zero outside of some blocks connecting
variables located within a given number of domains. We can reorder the variables
such that we obtain a block-diagonal matrix, i.e.

B =


. . . 0 0 0
0 . . . 0 0
0 0 . . . 0
0 0 0 . . .

 , (3.4.49)

where the lines indicate blocks of variables of appropriate size.
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Theorem 3.4.5. Assume that the matrix B is block-diagonal, R is diagonal and that
H is a full matrix. Then, in general, the matrix R+HBHT is a full matrix and so
is BHT . Now, assume that we have a transformation T : X → X and S : Y → Y
with T T = T−1 and ST = S−1, such that B̃ = TBT T is block-diagonal and that
H̃ = SHT−1 is block diagonal and the location of the blocks coincide. Then, also
the Kalman update matrix K̃ is block-diagonal and we can fully localize the Kalman
update into these blocks without loss of precision.

Proof. We �rst remark that in the case where ST = S−1 and for R diagonal with
ST = (s1, . . . , sm) we have sTj sk = δjk for j, k = 1, . . . ,m, such that

SRST =

 sT1
...
sTm




r1 0 . . .
0 r2 0
...

. . . 0
. . . 0 rm

( s1, . . . , sm
)

=


r1s

T
1 s1 0 . . .
0 r2s

T
2 s2 0 . . .

. . . 0
. . . 0

. . . 0 rms
T
msm

 , (3.4.50)

such that SRST remains diagonal. In the block-diagonal case, a full matrix H and
the block-diagonal matrix H̃ can be written in the form

H =

(
. . . . . . . . . . . .
. . . . . . . . . . . .

)
, H̃ =

(
. . . . . . 0 0
0 0 . . . . . .

)
, (3.4.51)

where the dots indicate occupied blocks and 0 stands for blocks of zeros. In this
case, we readily verify the form

HBHT =

(
. . . . . . . . . . . .
. . . . . . . . . . . .

)
. . . 0 0 0
0 . . . 0 0
0 0 . . . 0
0 0 0 . . .




. . . . . .

. . . . . .

. . . . . .

. . . . . .


=

(
. . . . . .
. . . . . .

)
(3.4.52)



CHAPTER 3. TRANSFORMED AND GENERALIZED LOCALIZATION 76

and

H̃B̃H̃T =

(
. . . . . . 0 0
0 0 . . . . . .

)
. . . 0 0 0
0 . . . 0 0
0 0 . . . 0
0 0 0 . . .




. . . 0

. . . 0
0 . . .
0 . . .


=

(
. . . 0
0 . . .

)
(3.4.53)

An analogous calculation can be obtained for BHT and B̃H̃T , from which the �nal
statement of the theorem is obtained. �

The above situation and result can help us to understand in what sense trans-
formed localization helps to improve the EnKF. First, if we carry out the EnKF in
an n-dimensional space with more than n ensemble members, where the ensemble
B matrix has rank n, then there is no projection property of the EnKF, but it is
basically solving a least squares problem in the full space Rn. Still, the B matrix
is an approximation, of course, but there is no further algebraic approximation by
projecting on the ensemble subspace any more.

If we now start with a space whos dimension n is larger than the dimension L
of the ensemble space, in addition to having the approximation of the B matrix by
the ensemble estimator, we also have the projection of the EnKF analysis into the
low-dimensional ensemble space. However, if we can transform our equation into
the above block form with blocks of size smaller than L, we can then equivalently
solve the update equation in each of the blocks, which can be fully carried out by
using the ensemble. So with the transform we achieve an equivalent form which can
be carried out exacly by the EnKF with projection error.

In general, we cannot expect a transformation into block form. But in important
applications it is possible to de�ne a transform T which makes the transformed
covariance matrix B̃ to have o�-diagonal elements to be small far away from the
diagonal. Then, localization in transformed space provides a good approximation
to the original problem and can then be carried out e�ciently by the EnKF.

To summarize, the concept of transformed localization is as follows:

1. Input is our measurements in a space Y , the observation operator H from the
state space X into Y , and the ensemble Q(b) de�ned in X.

2. We �rst calculate a transformation T : X → X and S : Y → Y such that
B̃ = TBT ∗ and H̃ = SHT−1 are either diagonal or have small elements in
o�-diagonal matrix elements far away from the diagonal.
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3. Then, we solve the localized transformed equations in each area or block given
by the transformations T, S,

4. The solution in each area or block are composed into a global analysis ϕ̃(a) in
transformed space.

5. The transformed analysis ϕ̃(a) is mapped back into the original state space X,
i.e. we calculate ϕ(a).

If we denote the localized transformed matrix by B̃k,gl (where gl stands for general-
ized localization), this means we calculate

ϕ̃
(a)
gl := ϕ̃(b) + K̃k,gl(f̃k − H̃ϕ̃(b)

k ), (3.4.54)

with
K̃k,gl := B̃k,glH̃

∗(R̃ + H̃B̃k,glH̃
∗)−1 (3.4.55)

with R̃ given in (3.4.8). According to Theorem 3.4.2 and (3.4.17) it is equivalent to

ϕ
(a)
gl := ϕ(b) +Kk,gl(fk −Hϕ(b)

k ), (3.4.56)

with
Kk,gl = Bk,glH

∗(R +HBk,glH
∗)−1 (3.4.57)

for Bk,gl = T−1B̃k,gl(T
∗)−1 in the original space, transformed into each other by T

and S.

3.4.2 Transform based on Singular Value Decomposition

Singular value decomposition SVD is a widely spread for spectral analysis of matrix
and operator equations in numerical mathematics and applications. For the case of
a matrix H ∈ Rm,n, according to SVD we �nd orthonormal matrices V ∈ Rn,n and
U ∈ Rm,m and a diagonal matrix S ∈ Rm,n, such that

H = USV ∗. (3.4.58)

The singular value decomposition corresponds to an orthonormal basis of the state
space X, given by the columns of V , i.e.

V = (v1, . . . , vn), 〈vj, vk〉 = δjk, j, k = 1, . . . , n, (3.4.59)

and an orthonormal basis of the observation space Y , given by the columns of U ,
i.e.

U = (u1, . . . , um), 〈uj, uk〉 = δjk, j, k = 1, . . . ,m. (3.4.60)
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If we de�ne
Xj := span{vj} for j = 1, . . . , n (3.4.61)

and
Yj = span{uj} for j = 1, . . . ,m, (3.4.62)

we obtain (3.4.33).

Corollary 3.4.6. Singular value decomposition of the operator H : X → Y pro-
vides a transformation of both the state space X and the observation space Y such
that the resulting matrix equation (3.4.5) is diagonal and, thus, can be fully localized
in the spaces (X̃, Ỹ ).

Clearly, the corollary does not include the simultaneous transformation of B and
H. In general, the transformed matrix B̃ = TBT ∗ does not need to be local any
more - you an easily think of covariance matrices B and transformations T where
B̃ is non-local. But for important applications the singular value decomposition
provides the desired properties also for B̃. This leads us to our next section.

3.5 Transformed Localization for Atmospheric Ra-

diance Inversion

The assimilation of atmospheric radiances is very important for numerical weather
prediction, compare e.g. [154, 59, 140, 101, 110, 97, 42]. Depending on its tempera-
ture, each part of the atmosphere emits radiation in a wide range of frequencies. The
radiation is attenuated and scattered from other parts of the atmosphere. Modern
instruments such as IASI (c.f. [80, 111, 156]) or HIRS (c.f. [164, 161, 113, 106, 160]),
ATMS (c.f. [123, 124, 66]) or AMSU-A/B (c.f. [155, 79, 21, 179, 115]) record the
radiation with in a satellite orbit.

Operational centers and many academic groups have developed radiative transfer
code to simulate the radiation and attenuation of infrared as well as microwave and
near visible radiation, compare [33]. Here, we will abbreviate the operator which
maps an atmospheric state ϕ onto brightness temperatures f by H, i.e. f = H(ϕ).
In general H is non-linear, and standard codes also calculate the linearization H,
i.e. the sensitivities of the brightness temperatures f with respect to the atmosperic
variables ϕ. This leads to a linearized equation of the form

f = H(ϕ(b)) +H(ϕ(b))(ϕ− ϕ(b)). (3.5.1)

The operators H and H are highly non-local. We display the rows of H in an
atmospheric column in Figure 3.1, where di�erent colours are used for the di�erent
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Figure 3.1: We show the sensitivity functions of the temperature sensitive IASI
channels of the RTTOV operator H, i.e. the rows (Hj1, . . . , Hj,n) for j = 1, . . . ,m
are displayed.

rows of H. In the �gure, H is dimensionless, since it is de�ned as the change of the
brightness temperatur in Kelvin when the temperature (in Kelvin) in a location of
the atmospheric column is changed. The vertical coordinate is atmospheric pressure
in hPa.

The application of the operator H can be viewed as a discretized version of an
integral operator of the form

(Hx)(s) =

∫ a

0

w(s, τ)x(τ)dτ, s ∈ [s0, s1], (3.5.2)

where w(s, ·) is one of the nonlocal functions displayed in Figure 3.1. It is well-
known that such a problem is exponentially ill-posed, compare [44, 62], which is
veri�ed by the singular values which we display in Figure 3.2.
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Figure 3.2: The singular values of H are displayed in a semilogarithmic scale. This
shows that the singular values of the temperature sensitive IASI channels of the
RTTOV operator tend to zero exponentially, and the inversion of radiances in an
atmospheric column is an exponentially ill-posed inverse problem.

Assume that we have a localized background error correlation matrix B, as shown
for example in Figure 3.3 (a).

1. We construct B to be either a Gaussian matrix, i.e. we de�ne

B :=
(
e−σ|ϕj−ϕk|

2
)
jk=1,...,n

, (3.5.3)

where xj is the height of the level with index j, or B is the matrix as given in
(3.3.3) constructed from the LETKF, compare Figure 3.4 (a). Here, we have
used the experimental global LETKF as it is under development by DWD for
the new ICON model. The LETKF runs with 40 ensemble members and all
standard conventional and remote sensing data. We have added some Gaussian
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(a) (b)

(c) (d)

Figure 3.3: We display a local B-matrix in (a), which has been constructed accord-
ing to (3.5.3) as a Gaussian matrix in the column. The transformed matrix B̃ is
displayed in Figure (b). We localize the matrix B̃ by multiplication with the matrix
shown in (a), the result is displayed in (c). Figure (d) shows the matrix Bgl de�ned
as the backtransformed matrix from B̃gl.

model error term, to stabilize the system, since currently there is too much
spread in the upper part of the atmosphere (low level numbers).

2. We then transform B using the transformation T which is calculated from the
singular value decomposition of the RTTOV operator H. The transformed
matrix B̃ = TBT ∗ is shown in Figure 3.3 (b). It is quite remarkable that it
has large values only on the diagonal and an area very close to the diagonal.
We will discuss this at the end of this section. We found a similar phenomen
for the ICON-LETKF global system which is under development at DWD.

3. We have then localized the matrix B̃ in the transformed space Ỹ either by
multiplication with a Gaussian matrix as in Figure 3.3 (a) or by setting values
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(a) (b)

(c) (d)

Figure 3.4: We display a B-matrix constructed from the experimental global
LETKF of DWD in (a), which has been constructed by taking the standard stochas-
tic estimator as in (3.3.9) and adding a small constant times the Gaussian covariance
matrix displayed in Figure 3.3 (a). The transformed matrix B̃ is displayed in Figure
(b). We localize the matrix B̃ by multiplication with the matrix shown in Figure
3.3 (a), the result is displayed in (c). Figure (d) shows the matrix Bgl de�ned as the
backtransformed matrix from B̃gl.

to zero where they were smaller than a threshold ε > 0. The result B̃gl for the
Gaussian localization is displayed in Figure 3.3 (c).

4. Then, we transform B̃gl back into the state space X by

Bgl := T−1B̃gl(T
∗)−1, (3.5.4)

which we call the B-matrix under generalized localization.

We remark that Bgl is quite close to B due to the localized structure of B̃ in
transformed space X̃. We have carried out reconstructions using B and Bgl as
follows.



CHAPTER 3. TRANSFORMED AND GENERALIZED LOCALIZATION 83

Figure 3.5: The �gure shows the reconstruction of the di�erence between a back-
ground atmospheric temperature pro�le and some given temperature pro�le. The
true di�erence is shown in thick blue, the reconstruction using the Gaussian B-
matrix from Figure 3.3 (a) with regularization parameter α = 0.0001 is displayed in
red, the reconstruction with Bgl in black.

• The blue curve shows some di�erence of two atmospheric pro�les, some true
pro�le and a background state ϕ(b).

• Then, we have calculated the corresponding brightness temperatures f = H(ϕ)
and f (b) = H(ϕ(b)) using RTTOV, i.e. the nonlinear operator H de�ned above.
We obtain the di�erent δf := f − f (b).

• We now carry out a reconstruction to calculate δϕα by either full Tikhonov
regularization (3.3.4) or by the transformed localized equations (3.4.54).

The results of our calculations are displayed in Figure 3.5, with a reasonably good
approximation of the reconstruction by transformed localization (black) to the full
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Figure 3.6: The �gure shows the reconstruction of the di�erence between a back-
ground atmospheric temperature pro�le and some given temperature pro�le. The
true di�erence is shown in thick blue, the reconstruction using the LETKF B-matrix
displayed in Figure 3.4 with regularization parameter α = 0.0001 is displayed in red,
the reconstruction with the corresponding Bgl in black.

regularized reconstruction without localization (red). We have shown that it is
possible to transform the equation system into a form which is local both with
respect to the covariance matrix B̃ as well as the observation operator H̃.

3.6 Conclusions

We have developed a general concept of transformed localization and investigated
its e�ect on the Ensemble Kalman Filter (EnKF) in its version described in [62]. In
particular, as initial step we provide the mathematical analysis for an EnKF and
its transformed version and show equivalence of both the analysis mean and the
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analysis ensemble in Lemma 3.4.1 and Theorem 3.4.2.
Then, we have interpreted localization as a special case of a projection method

and investigate the decomposition of a reconstruction problem into a sequence of
projection subspaces in Lemma 3.4.3 and Theorem 3.4.4, where it is shown that the
unlocalized projection methods in its unregularized and regularized versions provide
equivalent solutions when the full space is decomposed by a sequence of subspaces
in which the projected equations are solved.

We apply the method to an example where the transformed operator and the
transformed covariance matrix B̃ has a block structure, such that transformation
e�ectively decomposes the problem into a sequence of subproblems with smaller di-
mension ñ. When this smaller dimension ñ is smaller than L with the number of
linearly independent ensemble members L in the EnKF, we obtain a full and equiv-
alent solution of the problem through localization, even if the full non-localized
problem has dimension n� ñ. Of course, in general we cannot expect block struc-
ture by transformation, but strongly reduce the number of o�-diagonal elements in
the covariance matrix B̃ and the transformed operator H̃, such that localization in
the transformed space provides a reasonable approximation to the original operator
and the EnKF achieves good analysis results in each analysis step.

In Section 3.5 we have applied the theory to a temperature retrieval problem
for infrared radiance measurements from the IASI instrument. We have calculated
the full regularized retrieval and the retrieval which comes from a transformed and
localized version of the problem in Figures 3.5 and 3.6, where the second �gure used
the experimental global LETKF ensemble data assimilation system of Deutscher
Wetterdienst DWD, which runs with 40 ensemble members. In this case, equivalent
localization in the vertical is really needed to obtain algebraic equivalence to the
full vertical reconstruction problem with 51 RTTOV-Levels in a vertical column.
Theorem 3.4.5 applies, and the example shows that the the full solution with 51
degrees of freedom and approximate solution based on the localized transformed
problem are quite comparable, with some stronger di�erences in selected locations.

Both theory and the selected example indicate that transformed localization is
of high potential to be employed in a more realistic and cycled setup of the EnKF,
which is beyond the scope of this more conceptional and analytical approach. To
this end, the approach needs further development steps in subsequent work.



Chapter 4

On Multiscale Data Assimilation

Multiscale methods are very popular for modeling natural phenomena, they have
attracted a lot of attention over recent years in the scienti�c literature, both for
direct and inverse problems, compare for example [1, 2, 3, 4, 5, 6, 8, 22, 125, 142, 143]
for multiscale methods in simulation and [13, 49, 51, 60, 134, 169] for their use in
inverse problems.

For solving an inverse problem, the singular value decomposition (see [50, 68, 100,
129]) provides a traditional approach to study the di�erent scales of the problem.
Classical regularization theory can be viewed as a damping of higher modes of the
inverse of the operator which maps the unknown states onto the observations.

In the area of data assimilation, di�erent versions of the multi-scale approach
has been tested over the past years, for example in [107, 114, 121, 122, 137, 138,
150, 151, 174, 176, 180]. For many systems in the geosciences, we have something
like a natural low-scale approach by models with some course resolution, which
are complemented by high-resolution models which can be run locally on nested
regions. Over the past 15 years, ensemble methods have been highly successful in
meteorological or geophysical data assimilation. Here, di�erent scales are implicitly
chosen by localization techniques, see for example [16, 17, 19, 29, 30, 31, 38, 89, 116,
117, 118, 119, 126, 145].

In this work, our goal is �rst a generic theoretical understanding of the role and
e�ects which appear in multiscale approaches to inverse and data assimilation meth-
ods. Second, our goal is to analyse and test iterative sequential multiscale, with a
numerical example from the �eld of integral equations as they appear in atmospheric
temperature retrieval from infrared radiances. We will restrict our attention to one
inversion or data assimilation step. In this case, the generic situation is described
by an equation of the form

Hϕ = f (4.0.1)

86
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where ϕ ∈ X is in some state space X and f ∈ Y is the observation vector in some
observation space Y . Here, we assume that X and Y are Hilbert spaces, usually
for simplicity we restrict our attention to �nite dimensional spaces, i.e. to the case
where X = Rn and Y = Rm with n,m ∈ N, where X and Y each are equipped with
some norm. Most of our arguments, though, will carry over to the general in�nite-
dimensional case. We assume that some covariance matrix B ∈ Rn×n describes the
knowledge about the relationships between the di�erent components ϕj, j = 1, ..., n
of ϕ ∈ X, i.e.

ϕ := E {ϕ} , B = E
{

(ϕ− ϕ)(ϕ− ϕ)T
}
. (4.0.2)

Let R ∈ Rm×m be the covariance matrix of the observation error on Rm.
We will study the situation where the multiscale approach obtains its input from

some given multiscale basis ofX, which might be orthogonal or non-orthogonal. This
includes classical multiscale basis sets which are obtained from generating radial ba-
sis functions, but it also includes a multiscale basis coming from two ensembles, one
covering the low scale, the other the �ner scale. We will study the generic approxi-
mation properties of such an approach, showing that a sequential multiscale decom-
position leads to typical approximation errors when the basis is non-orthogonal. We
then provide the analysis for the iteration of sequential multiscale, both for the case
where the reconstruction is regularized as well as for the unregularized case.

For the unregularized case and non-orthogonal case we will show that in gen-
eral the sequential multiscale approach cannot provide the same solution as if we
would solve on all scales simultaneously. The error is given by the successive pro-
jections of the solution on the spaces perpendicular to the multiscale spaces under
consideration. A generic two-dimensional example is given and visualized in Figure
4.1.

We then study iterated sequential multiscale, i.e. we repeat the sequential multi-
scale method starting with the result of each previous iteration. For the unregularized
case we show linear convergence of these iterations, where the convergence speed is
determined by cos(α) where α is the smallest angle between the subspaces under
consideration.

Inverse problems or data assimilation usually involves regularization, which causes
further complications to the above convergence analysis. Carrying out the analysis
several times � either for the sequential steps of the multiscale method or for the it-
eration of the sequence of multiscale steps � the role of the regularizing or background
term, respectively, needs to be taken carefully into account.

We �rst provide a generic example of iterated regularization which shows that
` steps of a sequential regularization with regularization parameter β are identical
to one-step regularization with regularization parameter α, when the regularization
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parameters satisfy the relationship√̀
(1− α) = 1− β. (4.0.3)

The general theory is worked out for the Kalman �lter, proving that the Kalman gain
matrix K̃ for the iterations and the Kalman gain matrix K = BH ′(R + HBH ′)−1

for the one-step analysis need to satisfy the equation

(I − K̃H)` = I −KH, (4.0.4)

whereH is our observation operatorH under consideration. The solvability of (4.0.4)
is shown by studying the operator in a particular weighted Hilbert space, where KH
becomes self-adjoint.

After describing our general setup in Section 4.1 we will start with the solution of
the inverse problem in a subspace and its reformulation into a basis transformation
of the covariance matrix and the states under consideration. This is carried out in
Section 4.1.1.

The multiscale transform for the observation space is our topic in Section 4.1.2.
The multiscale decomposition for the canonical transformed inverse equation based
on the covariances in state and observation space is described in Section 4.1.3.

We then study the question of sequential scale splitting in Section 4.2. We �rst
clarify that in general scale splitting does not lead to equivalence of the sequential
approach to the full problem when non-orthogonal spaces are employed. For orthog-
onal decompositions the problem can be equivalently split into multiscale spaces.
The problem of aliasing when data on di�erent scales is employed is discussed in
Section 4.2.2. Here, aliasing means that the high-frequency data may lead to large
errors when the inversion in a low-frequency space is carried out.

We provide a numerical example in our Section 4.3, which demonstrates the fea-
sibility of the multiscale inversion. We apply iterative sequential multiscale to an
integral equation which is often seen as a generic example for atmospheric temper-
ature or humidity retrieval from satellite radiances [129].

4.1 A Generic Multiscale Approach

The classical Tikhonov regularization for the solution of (4.0.1) is given by

ϕα := (αI +H∗H)−1H∗f, (4.1.1)

where α > 0 is known as regularization parameter. Here, in a functional analytic
framework, we will employ the letter ϕ to denote the states, the observations will
be denoted by f .
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Either starting with Tikhonov regularization inX equipped with a norm weighted
by B−1 or using a Bayesian approach, it is well known (see e.g. [37], [62] or [129]),
that the regularized solution of (4.0.1) can be obtained by a minimization of

J(ϕ) := ||ϕ− ϕ(b)||2B−1 + ||f −Hϕ||2R−1 , (4.1.2)

where the minimizer is given by

ϕ(a) := ϕ(b) +BHT (R +HBHT )−1(f −Hϕ(b)). (4.1.3)

For ensemble methods, often the covariance matrix B is given by the standard
covariance estimator

B = QQT (4.1.4)

with Q de�ned by

Q =
1√
L− 1

(ϕ(1) − µ, . . . , ϕ(L) − µ), (4.1.5)

where ϕ(ξ) denotes an ensemble of states under consideration and µ is its mean

µ :=
1

L

L∑
ξ=1

ϕ(ξ). (4.1.6)

A key idea of a multi-scale inversion method or data assimilation method is to carry
out an inversion on a lower scale �rst and then move to the next �ner scale. Let

U = Ũ1 ⊕ Ũ2 ⊕ Ũ3 ⊕ · · · ⊕ ŨM (4.1.7)

be a multi-scale decomposition of U into a hierarchy of spaces de�ned by

Uj :=

j⊕
ξ=1

Ũξ, j = 1, 2, . . . ,M. (4.1.8)

We assume that the spaces are mutual linearly independent. Instead of solving the
full minimization problem minimizing

J(ϕ) := ||f −Hϕ(b) −Hϕ||2R−1 , ϕ ∈ U, (4.1.9)

we solve problems with ϕ̃ ∈ Ũξ successively. In each step ξ = 1, 2, 3, . . . ,M we solve
the equation

Hϕ = f (ξ), ϕ ∈ Ũξ, (4.1.10)
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where we start with f (1) := f−Hϕ(b). Starting with ϕ(0) = ϕ(b) for ξ = 1, 2, 3, . . . ,M
we denote the minimizer of

Jξ(ϕ) := α||ϕ||2B−1 + ||Hϕ− f (ξ)||2R−1 . ϕ ∈ Ũξ, (4.1.11)

by ϕ̃(ξ), where
f (ξ) := f (ξ−1) −Hϕ̃(ξ−1) (4.1.12)

and α > 0 is our regularization parameter. We also allow α = 0, in this case the
problem is called unregularized. We carry out the loop of (4.1.11) - (4.1.12) for
ξ = 1, . . . ,M . This leads to successive elements ϕ̃(1), ϕ̃(2), . . . , ϕ̃(M) which are in
the spaces Ũ1, . . . , ŨM . The corresponding solutions up to level j are given by

ϕ(j) := ϕ(b) +

j∑
ξ=1

ϕ̃(ξ), j = 1, 2, 3, . . . ,M, (4.1.13)

which is an element of Uj de�ned in (4.1.8).

4.1.1 A Multiscale Step in State Space

Here, we study one reconstruction step of (4.1.11) - (4.1.12). Let the space under
consideration be denoted by U ⊂ X. We assume that a set of linearly indepen-
dent ensemble members or a multiscale basis ϕ(1), ..., ϕ(L) of U is given. We drop
unnecessary indices for simplicity.

Theorem 4.1.1. Let Φ = (ϕ(1), ..., ϕ(L)) be a basis of U ⊂ Rn for L ≤ n, i.e. it
is a matrix with columns being linearly independent vectors spanning U . Then, the
minimization of J(ϕ) given in (4.1.2) on the a�ne subspace ϕ(b) + U de�ned by

ϕ = ϕ(b) +
L∑
`=1

α`ϕ
(`) (4.1.14)

for α = (α1, ..., αL), is carried out by

α(a) = B̆H̆T (R + H̆B̆H̆T )−1f̆ , (4.1.15)

or alternatively by

α(a) = (αI + B̆H̆TR−1H̆)−1B̆H̆TR−1f̆ , (4.1.16)

and
ϕ(a) := ϕ(b) + Φα(a), (4.1.17)

using the abbreviations

f̆ = f −Hϕ(b), B̆−1 = ΦTB−1Φ and H̆ = HΦ. (4.1.18)
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Remark. We note that when the dimension of U is L and the dimension of Y
is m, the matrix B̆−1 is an L × L matrix and H̆ is an m × L matrix. Thus, the
inversion of (4.1.16) is taking place in the L-dimensional space only, where we might
have L� m. In the case where L > m we will prefer to use (4.1.15).

Proof. With ϕ = ϕ(b) + Φα for α ∈ RL we rewrite (4.1.2) into

J(α) := ‖Φα‖2
B−1 + ‖(f −Hϕ(b))−HΦα‖2

R−1 , α ∈ RL. (4.1.19)

We remark that if B is invertible and Φ is of maximal rank, then ΦTB−1Φ is invert-
ible in RL×L, since

ΦTB−1Φα = 0 ⇒
〈
Φα,B−1Φα

〉
= 0 ⇒ Φα = 0 ⇒ α = 0, (4.1.20)

such that ΦTB−1Φ is injective and thus surjective on RL. Then, with the de�nitions
of H̆, B̆ and f̆ from above we transform (4.1.19) into

J(α) := ‖α‖2
B̆−1 + ‖f̆ − H̆α‖2

R−1 , α ∈ RL. (4.1.21)

Minimization of (4.1.21) with respect to α leads to (4.1.15), such that α(a) is the
minimizer of (4.1.19) and (4.1.17) is a minimizer of (4.1.2) over ϕ(b) + U . For the
di�erent forms of the update operator we refer to the recent book [129], Chapter 5.
�

In the case where U is the whole space and Φ is linearly independent, we obtain

B̆ = Φ−1B(ΦT )−1 (4.1.22)

with the inverse Φ−1 of Φ and the inverse (ΦT )−1 of the transpose n× n-matrix Φ.
In the case where Φ is an orthonormal basis of X, the transform of the B matrix is
obtained by taking the inverse of B̆−1, which according to (4.1.18) leads to

B̆ = Φ−1B(ΦT )−1

= ΦTBΦ. (4.1.23)

In the orthonormal case and when B is given by the covariance estimator (4.1.4),
we obtain

B̆ = ΦTBΦ = ΦTQQTΦ = (ΦTQ)(ΦTQ)T , (4.1.24)

which is the estimated covariance for the multi-scale coe�cients. If we are in the
non-orthonormal case, we obtain

B̆ = Φ−1B(ΦT )−1 = (Φ−1Q)(Φ−1Q)T (4.1.25)
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based on (ΦT )−1 = (Φ−1)T , which holds for invertible matrices on Rn.
We need to extend our transformation to the case where Φ is a matrix of vectors

of dimension n×L and where B ∈ Rn×n is rank de�cient. Here, we can replace B−1

by its pseudo-inverse
B† := lim

α→0
(αI +BTB)−1BT , (4.1.26)

compare [129], Section 3.2. If span{Φ}∩N(B) = {0} the matrix ΦTB†Φ is invertible
and (4.1.18) with B−1 replaced by B† is well-de�ned and we obtain

B̆ =
(

ΦTB†Φ
)−1

= Φ†(B†)†(ΦT )† = Φ†B(ΦT )†. (4.1.27)

If we search for the solution in ensemble space, i.e. if U is the space de�ned by the
columns of Q de�ned in (4.1.5), then (4.1.25) leads to

B̆ = Q†QQT (QT )† = I. (4.1.28)

4.1.2 A Multiscale Step in Observation Space

Next, let us study the sequential multiscale approach based on a multiscale decom-
position of the observation space. Let ψ1, ..., ψm be a basis in observation space Y ,
i.e. we have ψj are linearly independent for j, ξ = 1, ...,m and span Y , and de�ne

Ψ := (ψ1, ..., ψm). (4.1.29)

Then, the coe�cients γ of a vector f ∈ Y with respect to ψ1, ..., ψm is given by
γ = Ψ−1f . We can now transform the equation (4.1.3) with respect to the basis
ψ1, ..., ψm. The solution of (4.1.3) is obtained by �rst solving

(R +HBHT )z = f −Hϕ(b), (4.1.30)

and then calculating the increments

ϕ(a) − ϕ(b) = BHT z (4.1.31)

in the second step, where the solution z in observation space is mapped back into
state space X. Equation (4.1.30) is multiplied by Ψ from the left and we insert
I = ΨΨ−1 on the left of the variable z to obtain(

Ψ−1(R +HBHT )Ψ
)

Ψ−1z = Ψ−1(f −Hϕ(b)) (4.1.32)

which with

A := Ψ−1(R +HBHT )Ψ (4.1.33)

= R + Ψ−1HBHTΨ,
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(where we used R = rI and Ψ−1Ψ = I) and γ = Ψ−1z and γo := Ψ−1(f − Hϕb)
takes the form

Aγ = γo. (4.1.34)

Here γo are the coordinates of the observation increment f −Hϕ(b) with respect to
the basis ψ1, ..., ψm and γ denotes the coe�cient vector of z = Ψγ with respect to
ψ1, ..., ψm. The full inversion now takes the form

ϕ(a) = ϕ(b) +BHTΨA−1Ψ−1(f −Hϕ(b))

= ϕ(b) +BH̃TA−1γo, (4.1.35)

where
H̃ := ΨTH (4.1.36)

is the operator H when evaluated in coordinates of ψ1, ..., ψm.
Now consider the case where ψ1, ..., ψm is a basis of a subspace W of Y . We

replace Ψ−1 by the pseudo-inverse Ψ† and obtain a projection of f −Hϕ(b) onto W
by

γo = Ψ†(f −Hϕ(b)). (4.1.37)

Equation (4.1.30) is transformed into a projected version of this equation with re-
spect to the coe�cients of Ψ inW . The solution is mapped back into the state space
by BHTψ.

We �rst note that if Ψ diagonalizes the self-adjoint matrix HBHT , then the
calculation step (4.1.32) completely decouples and becomes the solution of a diagonal
matrix equation (4.1.34), which is very fast.

If Ψ is a multiscale basis with scales ordered from low scales to high scales, we can
construct low-scale approximations to the solution of the data assimilation problem
by solving the problem in a subspace W of the �rst L coe�cients γoL of γo to obtain
low-scale approximation to A by calculating

AL := rIL + Ψ†LHBH
TΨL (4.1.38)

with the �rst L columns of Ψ collected into the matrix ΨL. Then, we can continue
with a sequential method as described in (4.1.11)-(4.1.12).

Further multiscale approximations to the solution of (4.1.32) or (4.1.34), respec-
tively, are given by any approximation Ã to A in (4.1.33). This could be setting
small elements of the transformed matrix

B̃ := Ψ−1HBHTΨ (4.1.39)

to zero or higher-mode o�-diagonal elements of B̃. Approximating B̃ by a simpler
matrix in coe�cient space can lead to a high speed-up of the calculation once the
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transformation is carried. Further, it can lead to a reduction of noise when the
B-matrix is estimated. In the case where B = QQT , we obtain

B̃ = ψ−1HQQTHTψ = (ψ−1HQ)(ψTHQ)T , (4.1.40)

In the case of an orthonormal matrix Ψ we have Ψ−1 = ΨT , i.e. we can calculate the
covariance in transformed observation space based on the coe�cients γQ := ψTQY

of the ensemble of observation equivalents QY := HQ. For general non-orthonormal
multiscale decompositions this is not the case.

4.1.3 The Role of SVD for the Transformed Equation

For completeness here we also review another well-known standard type of a multi-
scale decomposition of a transformed problem based on the standard transformation
of the inversion step. By using

H̃ = R−
1
2HB

1
2 , f̃ = R−

1
2f (4.1.41)

we can transform the increment

δϕ = ϕ(a) − ϕ(b) = BHT (R +HBHT )−1(y −Hϕ(b)) (4.1.42)

into
δϕ = B

1
2 H̃T (I + H̃H̃T )−1(f̃ −R−

1
2Hϕ(b)). (4.1.43)

Let H̃ = V1SV
T

2 with orthonormal matrices V1 and V2 be the singular value decom-
position of H̃. The diagonal matrix S contains the singular values µn of H̃. Then,
we obtain

δϕ = B
1
2V2SV

T
1 (I + V1S

2V T
1 )−1(f̃ −R−

1
2Hϕ(b))

= B
1
2V2S(I + S2)−1V T

1 (f̃ −R−
1
2Hϕ(b)) (4.1.44)

In the language of inverse problems, the term S(I + S2)−1 is nothing else than the
spectral version of the Tikhonov regularization as presented in [129], Theorem 3.1.8,
which with the singular values µn is s multiplication operator with spectral factors
given by µn/(α+µ2

n), here with α = 1. We obtain a special multiscale decomposition
of our analysis step by the basis given by V1, where then the scales are split and
after solving the problem for each scale separately we get back to a full solution by
the basis given by V2.

In general, the singular value decomposition of H̃ is not feasible for large prob-
lems. Also, taking the square root of B is a tough problem for very high-dimensional
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problems as they naturally appear in the geosciences. If B is approximated by an
ensemble approach as in (4.1.4), we can apply localization techniques to obtain an
e�cient localized calculation of the square root of B. There is a wide literature on
localization today, see for example some recent work [129, 145, 173]. Here, we will
restrict our attention to the analysis for a generic setup where some non-orthogonal
basis is considered as generic input.

4.2 Non-Equivalence and Iterations of the Sequen-

tial Multiscale Approach

In this part we �rst study the non-equivalence of sequential multiscale to the full
inversion step, for both the unregularized and the regularized case. We show that
an iteration of the sequential steps will converge under appropriate assumptions.
We will interpret our analysis as a type of aliasing in the framework of well-posed
or ill-posed inversion.

4.2.1 On the Equivalence and Non-Equivalence of Sequential

Multiscale

In general, the sequential multiscale approach does not lead to the correct solution
of the full inverse problem under consideration.

Theorem 4.2.1. Consider the sequential multiscale method de�ned in (4.1.11)-
(4.1.12). If the spaces Ũ1, ..., ŨM are not orthogonal to each other with respect to
〈·, ·〉H∗R−1H , then in general the sequential solution ϕ(M) de�ned in (4.1.13) will not
coincide with the solution to the full inverse problem given by (4.1.1).

Proof. Let us study the generic case M = 2 and �rst consider the unregularized
solution and an injective operator H �rst, such that

〈ϕ, ψ〉H∗R−1H :=
〈
Hϕ,R−1Hψ

〉
, ϕ, ψ ∈ X (4.2.1)

de�nes a scalar product on the state space X. For the case M = 2 we assume
that the subspaces Ũ1 and Ũ2 satisfy X = Ũ1 ⊕ Ũ2. In this case, if Ũ1 ⊥ Ũ2, then
Ũ1 = Ũ⊥2 and Ũ2 = Ũ⊥1 . Let P1 be the orthogonal projector of X onto Ũ1 and P2

the corresponding projector onto Ũ2. Then, I − P2 is the orthogonal projector onto
Ũ⊥2 = Ũ1 and I − P1 is the orthogonal projector onto Ũ⊥1 = Ũ2.
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Lemma 4.2.2. If Ũ1 and Ũ2 are not perpendicular with respect to 〈·, ·〉H∗R−1H , then
the projector (I − P2)(I − P1) is a non-zero mapping, i.e. there is z ∈ X such that

(I − P2)(I − P1)z 6= 0. (4.2.2)

Proof. We remark that if Ũ1 is not perpendicular to Ũ2, then we have Ũ⊥1 is not
perpendicular to Ũ⊥2 just since Ũ1 = Ũ⊥2 and Ũ2 = Ũ⊥1 . This means that there are
elements in Ũ⊥1 whose projection onto Ũ⊥2 is non-zero, which proves (4.2.2). �

We now study the di�erence between the full unregularized solution of the prob-
lem (4.1.2) and the sequential process given by (4.1.11)-(4.1.12). We note that if the
unregularized sequential solutions are not identical to the full unregularized solu-
tion, this cannot be the case for the regularized solutions, since for large covariance
matrices B the regularization term is very small and the regularized solution will be
close to the unregularized solutions.

For the case of true data we have f = Hϕ∗ we write the �rst step as

ϕ̃(1) = arg min
ϕ∈Ũ1

||ϕ− ϕ∗||2H∗R−1H , (4.2.3)

the second step as

ϕ̃(2) = arg min
ϕ∈Ũ2

||ϕ− (ϕ∗ − ϕ̃(1))||2H∗R−1H (4.2.4)

and the full solution as

ϕ(tot) = arg min
ϕ∈X
||ϕ− ϕ∗||2H∗R−1H (4.2.5)

The solutions can be understood as orthogonal projections, in particular we have

ϕ̃(1) = P1ϕ
∗, (4.2.6)

ϕ̃(2) = P2(ϕ∗ − ϕ̃(1))

= P2ϕ
∗ − P2P1ϕ

∗. (4.2.7)

This leads to
ϕ(2) = (P1 + P2 − P2P1)ϕ∗. (4.2.8)

The di�erence between the full solution and the sequential solution in the case of
injective H is given by

ϕ(tot) − ϕ(2) = ϕ∗ − (P1 + P2 − P2P1)ϕ∗

=
{
I − (P1 + P2 − P2P1)

}
ϕ∗. (4.2.9)
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Finally, we note that

I = P1 + (I − P1) (4.2.10)

= P1 + [P2 + (I − P2)](1− P1) (4.2.11)

= P1 + P2 − P2P1 + (I − P2)(I − P1), (4.2.12)

such that
ϕ(tot) − ϕ(2) = (I − P2)(I − P1)ϕ∗. (4.2.13)

By Lemma 4.2.2 the right-hand side of the above term is non-zero in general, and
thus we have shown that the sequential method does not coincide with the full
minimization procedure under the above conditions. We note that equation (4.2.13)
can also be used to estimate the error between the two methods.

In the case where H is not injective, the minimizer with minimal norm is the
pseudo-inverse with respect to the scalar product (4.2.1). In this case the above
arguments will still work when we replace Ũξ by Ũξ ∩N(H∗R−1H)⊥, on which the
operator is injective and all arguments apply.

Finally, the case with regularization has the same property that the sequential
solution and the full solution will not concincide in general. This is clear since for
small regularization parameters the regularized solution is close to the unregular-
ized solution (if it exists), and thus they must be di�erent in the two cases under
consideration. �

We demonstrate the situation by a two-dimensional unregularized example to
visualize the situation. For M = 2 and ϕ(b) = 0 we show that in general the
successive solution is not the same as a solution which is calculated in one big
step. Assume that R = I and H = I. In this case the solution of (4.1.10) in U1

corresponds to an orthogonal projection P (1)f of f onto U1. Then, f (2) = f (1)−P (1)f
is perpendicular to U (1). In the second step, the solution of (4.1.10) corresponds to
an orthogonal projection of f (2) onto U (2). We visualize this situation in Figure
4.1. In particular, the result for the full minimization would be the measured true
solution ϕ = f . But in the successive case, we end up with the gray solution ϕ(2) in
the second step.

The above result shows that in general we need to be careful with the successive
solution of the minimization problem (4.1.10). We will see next that when we
guarantee orthogonality of the subspaces, we are �ne.

We now come to a generic result which shows the validity and convergence of
the multi-scale minimization problem.
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U⊥1

U1

U2

f and ϕ

ϕ(2)

ϕ̃(1) = P1f

f (2) = f − P1f

ϕ̃(2)

Figure 4.1: The successive solution of the equations leads �rst to the point P1f
shown in blue. The reduced data for step two f (2) is shown as a brown dot. This is
projected onto U2 in step two, see the red dot visualizing ϕ̃(2), leading to the solution
ϕ(2) shown by the gray point. However, the true solution ϕ would be the point f
itself in this example. Thus, we see that in the general case the successive solution
of the minimization problem cannot lead to correct results.

Theorem 4.2.3. Assume that H is linear and injective on U and assume that the
spaces Ũ1, ..., ŨM are mutual orthogonal with respect to the scalar product de�ned by

〈ϕ, ψ〉HTR−1H :=
〈
ϕ,HTR−1Hψ

〉
, ϕ, ψ ∈ X. (4.2.14)

Then, for the unregularized approach the full minimizer ϕ of (4.1.9) and the iterative
minimizer ϕ(M) coincide.

Proof. We have worked out the error estimate for the unregularized approach
for the caseM = 2 in the equations (4.2.1) to (4.2.13). When we have orthogonality
of Ũ1 and Ũ2, we obtain (I − P2)(I − P1) = 0, such that the di�erence between
the full solution and the successive solution vanishes. This applies inductively to all
subspaces Ũ1, Ũ2, ..., such that we obtain full equivalence. �

We also not at this point that the regularized successive solutions will not be
identical even if we have orthogonality in the spaces. Di�erences come from the role
of the regularizing term, since in each regularization step the regularized solution is
between the background and the unregularized solution, but does not use the same
norm but a weight which involves the covariance matrix B.
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4.2.2 General Form of Aliasing Problems

One important phenomenon of signal processing is aliasing. It means that if you
sample a signal with high frequency components and you try to reconstruct its low
frequency parts from a low number of sampling points, the high frequency parts of
your signal will be transformed into spurious lower frequency signal. It is possible
to avoid aliasing either by using more sampling points even when you reconstruct
the low modes only, or you need to run a �lter on your signal before sampling and
then only sample the �ltered signal and transmit it.

The aliasing problem also appears when you try to solve multiscale inverse prob-
lems by using a reduced number of measurements coming from a signal which con-
tains higher modes. In general, the aliasing problem is a null-space phenomenon on
the signal or state reconstruction operator.

Let H : X → Y be our observation operator in the �nite dimensional case, i.e.
X = Rn, Y = Rm, and let Ĥ : X → Ŷ be a selection of the rows of H, i.e. Ŷ = Rm̂

with m̂ < m. Let us assume that m = n and H is injective. Then, Ĥ will not be
injective, and there is some nullspace U := N(Ĥ) of Ĥ in X. The solution of the
reduced data equation

Ĥϕ = f̂ , ϕ ∈ V, (4.2.15)

in some reduced subspace V ⊂ X does not need to coincide with the orthogonal or
any other particular projection Px0 of the true solution x0 of

Hϕ = f, ϕ ∈ X (4.2.16)

onto the space V . If the nullspace U of Ĥ does not coincide with V ⊥ or the space
along which P projects, there are many solutions ϕ0 + ∆ϕ of (4.2.15) which are
projected onto di�erent solutions ϕ ∈ V by P . If, however, we have U = V ⊥ or
more general U is the space along which P projects, then the projection of any
solution ϕ0 + ∆ϕ with ∆ϕ ∈ U will lead to the projection Pϕ = Pϕ0 in V , i.e. we
obtain the correct projection in the low-dimensional subspace V .

In the framework of (4.2.15) �ltering of the data corresponds to the transfor-
mation of f̂ into data which are in the image space of V under Ĥ, i.e. the �lter
needs to construct f̂ filter := Ĥ(Pϕ0) as data for which the correct state estimate
Pϕ0 ∈ V is obtained when a solution to (4.2.15) in V is calculated. As argued in
Lemma 4.2.2, the use of the data f̂ can lead to arbitrarily large errors when solving
the unregularized reduced equation.

4.2.3 Convergence for Iterated Sequential Multiscale

We now de�ne an iterated approach to sequential multiscale. The basic idea is to
carry out the multiscale approach several times to improve on the solution in the
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case where orthogonality of the spaces is not given.

Definition 4.2.4 (Iterative sequential multiscale). We carry out the sequential mul-
tiscale approach iteratively by the following steps.

1. We start with a �rst application of the sequential multiscale as given by equa-
tions (4.1.11) - (4.1.12). For ` = 1 we de�ne ϕ(ξ,`) := ϕ(ξ) and f (ξ,`) := f (ξ)

for ξ = 1, ...,M .

2. In each iteration step for ` = 1, 2, 3, ... we de�ne new data f (1,`+1) by

f (1,`+1) := f −Hϕ(M,`) (4.2.17)

and
ϕ(b,`+1) = ϕ(M,`). (4.2.18)

3. Then, the sequential multiscale method is iterated until some convergence cri-
terion is satis�ed or stopping rule �res.

The goal of the following paragraphs is to carry out the convergence analysis of
the iterative sequential multiscale algorithm for the unregularized case and to show
convergence when true data f = Hϕ∗ with an injective operator H are given. The
regularized case will be discussed in the following Section 4.2.4

Lemma 4.2.5. The error vector for the M-th iteration of the sequential multiscale
is given by

ϕ∗ − ϕ(M) = (I − PM)(I − PM−1) . . . (I − P1)ϕ∗. (4.2.19)

Proof. We carry out a proof by induction. Assume that we have already shown

ϕ∗ − ϕ(M−1) = (I − PM−1) . . . (I − P1)ϕ∗. (4.2.20)

Then, we obtain

ϕ∗ − ϕ(M) = ϕ∗ − (ϕ(M−1) + ϕ̃(M))

= ϕ∗ − ϕ(M−1) − ϕ̃(M)

= ϕ∗ − ϕ(M−1) − PM(ϕ∗ − ϕ(M−1))

= (I − PM)(ϕ∗ − ϕ(M−1))

= (I − PM)(I − PM−1) . . . (I − P1)ϕ∗ (4.2.21)

and the proof is complete. �

We can now estimate the error for the iterated sequential multiscale as follows.



CHAPTER 4. ON MULTISCALE DATA ASSIMILATION 101

Theorem 4.2.6. The error vector for the iterated sequential multiscale in the un-
regularized case can be calculated by

ϕ∗ − ϕ(M,`) =
[
(I − PM)(I − PM−1) . . . (I − P1)

]`
ϕ∗ (4.2.22)

for ` = 1, 2, 3, ....

Proof. For ` = 1 the result has been shown in Lemma 4.2.5. If we now carry out
the iterative procedure, by de�nition (4.2.17) we start with the di�erence between
the true data and the last outcome of the sequential multiscale, which is

f (1,`+1) = f −Hϕ(M,`)

= H
(
ϕ∗ − ϕ(M,`)

)
. (4.2.23)

This means that by applying Lemma 4.2.5 inductively, in each application of the
multiscale method we increase ` by one in the error estimate (4.2.22). �

In each step of the method, the error is reduced by a factor cos(α), where α is
the angle between the subspaces under consideration. This is linear convergence for
the iterative sequential multiscale method, as a consequence of its understanding as
a sequential projection method. We summarize this immediate consequence in the
following corollary.

Corollary 4.2.7 (Convergence Iterated Sequential Multiscale). The sequential
multiscale given by (4.2.17)-(4.2.18) in the unregularized case shows linear con-
vergence with factor c = cos(α) where α is a lower estimate for the angles between
the subspaces Ũξ, i.e. the error eξ,` = ||ϕξ,` − ϕ∗||H∗R−1H in the `-th iteration and
after step ξ of this iteration is estimated by

eξ,` ≤
(

cos(α)
)ξ+M(`−1)

||ϕ(b) − ϕ∗||H∗R−1H (4.2.24)

4.2.4 Regularized Sequential Multiscale

We have seen that we obtain convergence in the unregularized case when we iterate
the sequential multiscale, with a linear error estimate which is determined by the
angle between the multi-scale subspaces.

The regularized case is much more involved, since the background term of the
regularizer needs to be taken care of in a special way. To see the challenge let us
�rst study the generic but simpli�ed situation where we start some iteration with

γ0 := ϕ(b) (4.2.25)
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and then iterate by
γ` = γ`−1 + β(ϕ∗ − γ`−1) (4.2.26)

for ` = 1, 2, 3, ... with some parameter β ∈ (0, 1). This corresponds to the increment
(4.1.3) where perfect data ϕ∗ are given and where we have an observation operator
H = I and covariance matrices B = β

1−β I and R = I. It is the case where we do
not have di�erent multi-scale spaces, but carry out an iteration in one single space
only. In this case, the iterations can be calculated exactly as follows.

Lemma 4.2.8. The iteration (4.2.25)-(4.2.26) leads to

γ` = γ0 +
{∑̀

ξ=1

(
`

ξ

)
(−1)ξ+1βξ

}
(ϕ∗ − γ0) (4.2.27)

= γ0 +
{

1− (1− β)`
}

(ϕ∗ − γ0) (4.2.28)

= ϕ∗ − (1− β)`(ϕ∗ − γ0) (4.2.29)

for ` = 1, 2, 3, ....

Proof. We use induction for the proof. For ` = 1 it is

γ1 = γ0 +
{ 1∑

ξ=1

(
1

ξ

)
(−1)ξ+1βξ

}
(ϕ∗ − γ0)

= γ0 + β(ϕ∗ − γ0), (4.2.30)

which coincides with our claim. Suppose the formula is true for ` = n

γn = γ0 +
{ n∑

ξ=1

(
n

ξ

)
(−1)ξ+1βξ

}
(ϕ∗ − γ0) (4.2.31)

Then we obtain for ` = n+ 1

γn+1 = γn + β(ϕ∗ − γn)

= γ0 +
{ n∑

ξ=1

(
n

ξ

)
(−1)ξ+1βξ

}
(ϕ∗ − γ0)

+ β

(
ϕ∗ −

(
γ0 +

{ n∑
ξ=1

(
n

ξ

)
(−1)ξ+1βξ

}
(ϕ∗ − γ0)

))

= γ0 + β(ϕ∗ − γ0) +
{ n∑

ξ=1

(
n

ξ

)
(−1)ξ+1βξ

}
(ϕ∗ − γ0)
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− β
{ n∑

ξ=1

(
n

ξ

)
(−1)ξ+1βξ

}
(ϕ∗ − γ0)

= γ0 + β(ϕ∗ − γ0) +
{ n∑

ξ=1

(
n

ξ

)
(−1)ξ+1βξ

}
(ϕ∗ − γ0)

+
{ n∑

ξ=1

(
n

ξ

)
(−1)ξ+2βξ+1

}
(ϕ∗ − γ0)

= γ0 + β(ϕ∗ − γ0) +
{ n∑

ξ=1

(
n

ξ

)
(−1)ξ+1βξ

}
(ϕ∗ − γ0)

+
{ n+1∑

ξ=2

(
n

ξ − 1

)
(−1)ξ+1βξ

}
(ϕ∗ − γ0)

= γ0 +
{ n∑

ξ=1

(
n

ξ

)
(−1)ξ+1βξ

}
(ϕ∗ − γ0) + β(ϕ∗ − γ0)

+
{ n∑

ξ=2

(
n

ξ − 1

)
(−1)ξ+1βξ

}
(ϕ∗ − γ0) +

(
n

n

)
(−1)n+2βn+1(ϕ∗ − γ0)

= γ0 +
{ n∑

ξ=1

(
n

ξ

)
(−1)ξ+1βξ

}
(ϕ∗ − γ0)

+
{ n∑

ξ=1

(
n

ξ − 1

)
(−1)ξ+1βξ

}
(ϕ∗ − γ0) +

(
n

n

)
(−1)n+2βn+1(ϕ∗ − γ0)

= γ0 +
n∑
ξ=1

{(n
ξ

)
+

(
n

ξ − 1

)}
(−1)ξ+1βξ(ϕ∗ − γ0) +

(
n

n

)
(−1)n+2βn+1(ϕ∗ − γ0)

= γ0 +
n∑
ξ=1

{(n+ 1

ξ

)
(−1)ξ+1βξ

}
(ϕ∗ − γ0) +

(
n+ 1

n+ 1

)
(−1)n+2βn+1(ϕ∗ − γ0)

= γ0 +
n+1∑
ξ=1

{(n+ 1

ξ

)
(−1)ξ+1βξ

}
(ϕ∗ − γ0), (4.2.32)

such that the formula is true for ` = n+ 1. Hence, it is true for all n ∈ N. By using
the binomial expansion we have

(1−X)` =
{∑̀

ξ=0

(
`

ξ

)
(−1)ξ(X)ξ

}
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(1−X)` = 1 +
{∑̀

ξ=1

(
`

ξ

)
(−1)ξ(X)ξ

}
(4.2.33)

So the equation (4.2.31) becomes

γ` = γ0 +
{

1− (1− β)`
}

(ϕ∗ − γ0)

= ϕ∗ − (1− β)`(ϕ∗ − γ0)

(4.2.34)

for ` = 1, 2, 3, ... and the proof is complete. �

Let us compare the `-th iteration in the form (4.2.28) with the one-step regular-
ized increment given by

ϕ(a) = γ0 + α(ϕ∗ − γ0) (4.2.35)

with replacing β by the regularization parameter α. To achieve equivalence of a
`-step method with the one-step method, we need to choose

α = 1− (1− β)` ⇔
√̀

1− α = 1− β. (4.2.36)

In this simpli�ed case, when we use iterations for the regularized case, to achieve
an appropriate balance between the background and the data, we need to adapt the
relative weight using the `-th square root of the regularization parameter 1− α.

To complete our analysis, we now study the general but still complete-scale case,
where the iteration is given by

γ0 = ϕ(b) (4.2.37)

γ` = γ`−1 + K̃(Hϕ∗ −Hγ`−1) (4.2.38)

with some Kalman gain operator K̃ which we need to determine appropriately. With
the analysis given in the proof of Lemma 4.2.8 we now obtain the following result.

Theorem 4.2.9. The iterations (4.2.37)-(4.2.38) lead to

γ` = γ0 +
(

1− (1− K̃H)`
)

(ϕ∗ − γ0) (4.2.39)

for ` = 1, 2, 3, ...
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Figure 4.2: We show the basis functions used for the demonstration of the iterative
multiscale method on the interval [a, b] = [0, 10]. The functions are generated by
scaling and translating a Gaussian basis wavelet. All functions are scaled to have
the L2-norm ||ϕ||L2([a,b]) = 1, leading to some ampli�cation at the edges. In this
image, we display n = 27 = 128 basis functions.

Proof. We basically use a modi�cation of the proof of Lemma 4.2.8, which was
the simpli�ed case in which an observation operator H = I and covariance matrices
B = β

1−β I and R = I were studied. Here, we need to be careful with the operator

nature of K̃H. We have

(I − K̃H)` =
{∑̀

r=1

(
`

r

)
(−1)r(K̃H)r

}
(4.2.40)

since there is no di�culty with the commutative law of powers of an operator A =
K̃H. So, induction is carried out following the steps of Lemma 4.2.8 to obtain

γ` = γ0 +
n+1∑
ξ=1

{(n+ 1

ξ

)
(−1)ξ+1(K̃H)ξ

}
(ϕ∗ − γ0) (4.2.41)

Now again, by using the binomial theorem representation, we derive

γ` = γ0 +
{
I − (I − K̃H)`

}
(ϕ∗ − γ0) (4.2.42)
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= ϕ∗ − (1− K̃H)`(ϕ∗ − γ0) (4.2.43)

and the proof is complete. �

(a) (b)

Figure 4.3: Two reconstruction results of the multiscale method and the iterative
multiscale method after ` = 100 iterations is displayed here. The blue curve shows the
regularized reconstruction when the full basis is employed. The classical multiscale
method leads to the black curve. The red curve shows the �rst step of the iteration,
which is similar to the black one, but with a modi�ed regularization parameter for
the two steps. Then, iteration leads to the convergence as shown by the magenta
line, where we stopped after ` iterations, we chose α = 10−9. For a convergence
study see Figure 4.4.

To achieve equivalence of an `-step reconstruction with the one-step reconstruc-
tion

ϕ(a) = ϕ(b) +KH(ϕ∗ − ϕ(b)), (4.2.44)

we need to determine K̃ such that

(I − K̃H)` = I −KH (4.2.45)

as the counterpart of the postulate (4.2.36). It corresponds to taking the `-th root
of the operator I −KH = I −BH∗(R+HBH∗)−1H, with K de�ned by the second
term of (4.1.3). For symmetric positive operators, the square root is well-de�ned.
Here, we obtain this property by using the weighted scalar products

〈ϕ, ϕ̃〉B−1 :=
〈
ϕ,B−1ϕ̃

〉
L2 (4.2.46)

and 〈
ψ, ψ̃

〉
R−1

:=
〈
ψ,R−1ψ̃

〉
L2

(4.2.47)
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for functions ϕ, ϕ̃ ∈ X and ψ, ψ̃ ∈ Y . Using equation (5.2.11) as in (5.2.14) of [129]
with H∗,w being the adjoint with respect to the scalar products (4.2.46) and (4.2.47),
we see that we have BH∗R−1 = H∗,w and thus

I −KH = I −BH∗(R +HBH∗)−1H

= I −H∗,w(I +HH∗,w)−1H. (4.2.48)

Clearly, we have(
H∗,w(I +HH∗,w)−1H

)∗,w
= H∗,w(I +HH∗,w)−1H, (4.2.49)

i.e. we have a self-adjoint positive operator. Thus, the l-th square root of I −KH
exists and can be calculated using the singular value decomposition of the operator
in the space with weighted scalar product. We now collect the above results into
the following theorem.

Corollary 4.2.10. Assume that for ` ∈ N we determine K̃ such that (4.2.45)
is satis�ed. Then, after ` steps the iteration (4.2.37) - (4.2.38) is identical to the
regularized solution (4.2.44).

For practical applications of the sequential multiscale method taking the `-th root
of the operator K is not feasible. Usually, the reason why we consider multiscale is
the complexity of the task under consideration. We suggest to employ the solution
algorithms as they are available on each of the scales under consideration, adapt
the regularization parameter according to (4.2.36) and then iterate the multiscale
algorithms. Numerical tests con�rm the feasibility and convergence of this approach
in our �nal section.

4.3 Numerical Examples

This last section serves to test the above method of iterative sequential multiscale
for solving integral equations of the form

f(x) =

∫ b

a

k(x, y)ϕ(y) ds(y), x ∈ [a, b] (4.3.1)

where b ≥ a are real numbers, k is a continuous kernel

k : [a, b]× [a, b]→ R (4.3.2)
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Figure 4.4: The results of the multiscale method and the iterative multiscale method
after ` = 1, 2, 10, 100, 500, 1000 iterations is displayed here. The blue curve shows the
regularized reconstruction of the truth in a space with ` = 128 degrees of freedom,
when the basis with ` = 32 elements is employed. The classical multiscale method
with dimension ` = 16 of the course space and ` = 16 for the �ne space leads to the
black curve. The red curve shows the �rst step of the iteration, which is similar to
the black one, but with a modi�ed regularization parameter for the two steps. The
iterative multiscale solution converges to the blue solution, i.e. to the solution when
all its basis functions are used in one step.
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and we work in L2(a, b). For numerical testing we choose the example of a Gaussian
kernel

k(x, y) := e−σ|x−y|
2

, x, y ∈ [a, b], (4.3.3)

with σ = 3, which serves as a generic example of atmospheric temperature or hu-
midity retrieval from satellite radiances, compare [129, 126]. Here, we choose some
example densities

ϕ1(y) := sin(c6 · (y − y1)) · |y − y1| · (y < y1) + c7 · (y − y1)2 · (y > y1)(4.3.4)

ϕ2(y) := c5 · ((y − y0)c3 · sin(c4 ∗ y) · sin(y) · (b− y) · (b/2)−1/2 + 1) (4.3.5)

ϕ3(y) := yc1 · sin(y) · cos(y) · (b− y)c2 (4.3.6)

for y ∈ [a, b] with a = 0, b = 10, c1 = 1.5, c2 = 0.8, c3 = 1.9, c4 = 2.1, c5 = 2,
c6 = 2.4, c7 = −0.8, y0 = 5 and y1 = 7. The functions are not in the span of
the basis functions. Examples with ϕ1 and ϕ2 are shown in Figure 4.3 (a) and
(b), the reconstruction of ϕ3 is displayed in Figure 4.4. We calculate the simulated
measured data f(x) by numerical quadrature with trapezoidal or rectangular rule.
The observation operator H is given by the integral (4.3.1), i.e. we have

(Hϕ)(x) :=

∫ b

a

k(x, y)ϕ(y) ds(y), x ∈ [a, b] (4.3.7)

with kernel k given by (4.3.2) and (4.3.3). For the numerical simulation of H we
have used a collocation scheme with a regular grid on [a, b] with n points, de�ned
by

xk := a+ k · b− a
n− 1

, k = 0, ..., n− 1 (4.3.8)

Since we want to investigate convergence, we have used true data which were gener-
ated by numerical collocation. We remark that the problem is exponentially ill-posed
such that even when the dimension n of our space is just modestly high an algorithm
without regularization does not lead to any reasonable solution.

There are many possibilities to de�ne and test a multiscale basis on the interval
[a, b]. Here, we carry out tests with a Gaussian type radial basis function, i.e. for
N ∈ N and n = 2N we de�ne

ϕ`,k(x) := c`,ke
−ρ`|x−x`,k|2 , x ∈ [a, b] (4.3.9)

for ` = 1, ..., N and k = 1, ..., 2`−1 where

x`,k := a+
k

2`−1
(b− a), ρ` = 2`−1ρ0 (4.3.10)
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and ϕ0,0 ≡ c0,0. The normalized basis functions (4.3.9) are displayed in Figure 4.2.
For multiscale splitting we chose the lowest L modes for the space U1 = Ũ1 and

de�ned Ũ2 to be the space spanned by the basis functions L+1, ..., ñ, where ñ is the
maximal number of basis functions under consideration. For the iterations we show
two cases with ` = 100 in Figure 4.3. Figure 4.3 displays the results for n = 128,
L = 16, ñ = 32 and a regularization parameter α = 10−9. We show the truth in
black dots, the full reconstruction without any multiscale splitting in blue, the one-
step regularized multiscale in black, the �rst iteration of the iterative regularized
multiscale method in red and the result of the iterative multiscale method in pink.
As expected, the one-step multiscale has much larger errors than the full solution,
arising from the non-orthogonality of the multi-scale spaces. The convergence is
studied in a third example in Figure 4.4, where we display the result of iterations
with ` = 1, 2, 10, 100, 500, 1000. The iterative multiscale solution (pink line) con�rms
the convergence to the solution in the full subspace (blue line) according to Theorem
4.2.9 and Corollary 4.2.10.

4.4 Conclusions

The broad idea of a multiscale approach is to decompose your problem into di�erent
scales or levels and to use these decompositions either for constructing appropriate
approximations or to solve smaller problems on each of these levels, leading to
increased stability or increased e�ciency.

The idea of sequential multiscale as studied in our Section 4.1 is to �rst solve
the problem in a large-scale subspace and then successively move to �ner scale
spaces. The equivalence or non-equivalence of this approach to solving the full-
scale problem at once has been studied in Section 4.2.1. When the spaces under
consideration are orthogonal, we show equivalence for the unregularized problem.
For the regularized problems equivalence can only achieved when the regularization
parameters are modi�ed appropriately.

In general the sequential multiscale approach is not equivalent to a full solution,
but we have shown in Theorem 4.2.6 and Corollary 4.2.7 that under appropriate
assumptions we obtain convergence of an iterative sequential multiscale version of
the method.

For the regularized case we have developed a strategy to appropriately adapt the
regularization when an iterative approach is taken. We have �rst studied a simpli�ed
situation in Lemma 4.2.8, for which the calculation of the modi�ed regularization
parameter could be carried out explicitly. Then, the general operator-based case is
treated, with a core equivalence result in Theorem 4.2.9.
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Finally, we demonstrate the validity of the iterative sequential multiscale ap-
proach by testing the method on integral equations as they appears for atmospheric
temperature retrieval from infrared satellite radiances and for image denoising, here
for a simpli�ed case in one dimension. The examples show the practical validity of
the results and con�rm the non-equivalence and convergence theory.

The analysis and methods of this work provide basic insight into the convergence
behavior of multiscale approaches to inversion and data assimilation. Here, the static
case has been treated, where iteration takes place at one given point in time with
�xed measurements. For data assimilation, where iteration is carried out naturally
by cycled systems (compare [129]), we are interested in the extension to the case
where a dynamical model is applied between di�erent iteration steps. This is of high
interest to many researchers and practitioners, the use of multiscale approaches in
a cycled environment will be part of our future work.
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