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Summary 

 

Tomato plants host multiple microbes able to colonize plant tissues endophytically without 

causing symptoms of infections. Whether these microorganisms living inside the plants co-exist 

completely undetected by the plant metabolism remains to be explored in detail. A more 

detailed understanding of these interactions may help in developing new strategies for plant 

nutrition and crop protection programs.   

This research contributes to the understanding of the multitrophic interaction among tomato 

plants, fungal endophytes and the insect herbivores. We focused on three main topics (i) 

whether the studied fungi are able to colonize endophytically tomato tissues, (ii) which 

parameters are influenced by an endophytic colonization of the plants and (iii) whether 

endophytes are able to modulate the behavior of the insect herbivores on endophyte treated 

plants. We hypothesize that i) endophytic fungi manipulate plant metabolism affecting different 

plant attributes such as plant volatile organic compounds profiles, plant temperature, leaf 

chlorophyll content or biomass allocation, ii) insect herbivores can discriminate between 

endophytically colonized plants and endophyte-free plants and iii) that differences in plant 

attributes may influence insect attraction and also the oviposition preference. 

The model evaluated here was composed by the three fungal endophytes Beauveria bassiana, 

Trichoderma koningiopsis and Metarhizium brunneum, the tomato plant Solanum lycopersicon 

(Mill.) as the host and  two different insect herbivores, the aphid Myzus persicae  and the 

polyphagous moth Helicoverpa armigera.  

I. Detection of fungal endophytic colonization by real-time polymerase chain reaction 

Our aim was to evaluate the potential of three fungal species, B. bassiana, T. koningiopsis and 

M. brunneum to colonize endophytically plant tissues. In our research we successfully achieved 

the establishment of the fungal entomopathogens B. bassiana and M. brunneum as well as the 

biocontrol agent T. koningiopsis in tomato plants with two different inoculation methods, seed 

and root inoculation.   
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 The colonization of plant parts by B. bassiana when root inoculated was found to be 

higher in the leaves than in the stems, and almost no positive records were found in the 

roots. While seed inoculated plants, showed a higher colonization frequency in the roots 

than in leaves and stems. (Chapter 1)  

 The colonization frequency observed in the plants treated with T. koningiopsis, was 

higher in the roots, than in the stems and leaves. (Chapter 1) 

 M. brunneum was successful in colonizing root tissues, but the colonization of 

aboveground plant organs stem and leaves was achieved only in few samples. (Chapter 

3) 

II. Effects of plant-fungal interaction on plant attributes 

The effect of colonization with fungal endophytes on plant attributes was evaluated by i) by 

comparing the headspace volatiles emitted by tomato plants (Solanum lycopersicon Mill) 

colonized with the endophytic fungi B. bassiana and T. koningiopsis  with those from non-

treated plants, and those from plants with a dual application of an endophytic fungus and an 

insect attack caused by the aphid M. persicae, ii) by comparing the plant biomass, temperature 

and leaf chlorophyll content from tomato plants inoculated with B. bassiana, T.koningiopsis or 

M. brunneum compared to non-treated plants. 

 On the basis of the tentative identifications and semi-quantitative assessments of 

compound amounts by the relative peak-area of the Total Ion Current (TIC), preliminary 

assignments of indicator compounds are suggested. For endophyte-free plant volatile 

profiles, one of the indicator compounds is the p-cymene. Endophytically inoculated 

tomato plant volatile profile is characterized by the release of α-pinene as the major 

indicator compound and the volatile profile of plants treated with endophyte and aphid 

attack is characterized by compounds such as β- caryophyllene, ascaridole and α-

thujone.  

 We observed that the Total Ion Current (TIC) peak area ratios of several sesquiterpenes, 

changed according to the treatment applied.  

 The total plant biomass was significantly higher in those plants inoculated with T. 

koningiopsis while the total plant biomass of B. bassiana treated plants remains similar 

to control plants. 
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 The compounds p-cymene and α-pinene significantly reduced their TIC peak area when 

the plant was inoculated by the entomopathogenic fungi Beauveria bassiana  

 Thermal imaging captured with a heat-sensing camera revealed no significant 

differences in temperature profiles of leaves among treatments compared to the control 

plants.  

 The leaf chlorophyll content measured in SPAD units showed that plants treated with 

B. bassiana had significant less chlorophyll content compared to non-treated plants and 

those treated with T. koningiopsis or M. brunneum.  

III. Behavioral experiments to determine endophyte modulation of  plant – insect 

interactions  

To determine if there is an endophyte modulation of plant-insect interactions, we evaluated i) 

the attraction of the aphid M. persicae towards tomato plants treated with the endophytes B. 

bassiana and T. koningiopsis compared to non-treated plants and, ii) the oviposition preference 

of the polyphagous moth H. armigera when offered tomato plants inoculated with B. bassiana, 

T. koningiopsis or M. brunneum simultaneously.  

 With the aphid M. persicae, the host plant selection was tested in multiple choice 

experiments under laboratory and greenhouse conditions, using five different odor 

sources (i.e. B. bassiana strains EAB 04/01 Tip (Bb1), Bv 061 (Bb2) and Bb1022 (Bb3); 

T. koningiopsis strain Th003 and non-treated plants) simultaneously. 

 We observed that winged aphids can discriminate between treated and non-treated 

tomato plants with more specimens attracted to blends emitted by tomato plants treated 

with the entomopathogenic endophytic fungi B. bassiana Bb1 compared to the untreated 

plants under laboratory and greenhouse conditions.  

 In a multiple choice set up, we offered one plant from each of the six different treatments 

(i.e., B. bassiana Bb1, Bb2 and Bb3; T. koningiopsis Th003, M. brunneum and untreated 

plants) to one female of H. armigera for oviposition preference, and the number of eggs 

laid on the plant surface was registered after 24 hours.  

 

 We observed that H. armigera had less preference to oviposit on those plants treated 

with Bb1. While no significant differences were found in the other treatments compared 

with the control.  
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General Introduction  

Aragón, S.1,2* 

1 Colombian Corporation for Agricultural Research. Biological Control Laboratory. Mosquera, 

Colombia. 

2University of Göttingen. Department of Crop Sciences, Göttingen, Germany 

 

Endophytic microbes cause inconspicuous infections that are symptomless and occur inside the 

plant tissue (Stone et al., 2000). Fungal endophytes can be distinguished from mycorrhizae by 

the absence of fungal structures such as external hyphae or mantels (Saikkonen et al., 1998).  A 

fungal endophyte is able to exploit different nutrition resources (Ownley et al., 2010). For 

instance, a survey of entomopathogenic fungal endophytes made in coffee plants showed that 

Beauveria bassiana and Clonostachys rosea were able to exploit two different nutritional 

sources. Despite being isolated from plant tissues, these endophytes were also able to be 

pathogenic against the coffee borer Hypothenemus hampei (Vega et al., 2008).  

The entomopathogenic fungi Beauveria bassiana has so far been reported to successfully 

colonize plant tissues from leaves, roots and stems of bean plants Phaseolus vulgaris artificially 

infected by spraying the leaves or soil drenching (Parsa et al., 2013), in the stem of coffee 

seedlings (Posada et al., 2007); in opium poppy Papaver somniferum cv. nigrum (Quesada-

Moraga et al., 2006) and also in the in vitro culture of banana Musa spp. with an additional 

detrimental effect on larval survivorship of the banana weevil Cosmopolites sordidus (Akello 

et al., 2008) while in tomato and cotton seedlings, Beauveria bassiana conferred protection 

against the plant pathogens Rhizoctonia solani and Pyhtium myriotylum (Ownley et al., 2008).     

The soil-inhabiting insect pathogenic fungi Metarhizium brunneum Petch (Ascomycota: 

Hypocreales: Clavicipitaceae) has so far been found to be endophytic in wheat (Triticum 

aestivum), switchgrass (Panicum vigratum) soybean (Glycine max) and haricot bean (Phaseolus 

vulgaris) (Behie and Bidochka, 2014). Seed inoculations with Metarhizium spp. enhanced plant 

protection against the pathogen Fusarium culmorum and the endophyte was able to move 

towards the roots and maintain its pathogenicity against Tenebrio molitor larvae (Keyser et al., 

2014, 2015). Additional evidence with regard to the ability of  Metarhizium sp. to colonize 

endophytically plant tissues has been reported for  Phaseolus vulgaris plants that in benefit 

from the endophytic association also exhibited a faster root growth (Sasan and Bidochka, 2012).  
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The plant pathogen biocontrol agent, Trichoderma koningiopsis has been tested against 

Fusarium oxysporum in tomato plants, resulting in an induced systemic resistance against this 

pathogen and also showed to up-regulate genes involved in jasmonic acid and ethylene 

transduction pathways (Jaimes et al., 2009)  

Endophytic colonization is thought to enhance resistance against insect herbivores, may be due 

to a modulation of plant defense responses that accompany the colonization process (Dicke et 

al., 2009; Pieterse et al., 2013; Poelman et al., 2012) or by a change in the nutritional quality of 

the plant (Thakur et al., 2013).  

Indirect effects of endophytes on plant parameters such as plant volatile profiles, temperature, 

leaf chlorophyll content or plant growth among others may influence the host acceptability by 

insects as well. Endophytes are among the ecological interactions that affect the plant volatile 

bouquet above and belowground (Clavijo McCormick et al., 2012; Dicke et al., 2009; Dicke 

and Baldwin, 2010; Heil, 2008; Pineda et al., 2010) and some plant volatiles act as chemical 

cues for associated insect species (Bruce et al., 2005; Mann et al., 2012; Metcalf and Metcalf, 

1991; Sasso et al., 2009; van Dam et al., 2010). Nevertheless, plant volatiles are dynamic and 

plants can change their chemical composition  in response to different biotic stress (Dicke et 

al., 2009). 

Some endophytic fungal infections may promote plant growth, stress tolerance and also 

resistance to plant pathogens and herbivory (Jaber and Vidal, 2010). Horizontally transmitted 

endophytes which are able to colonize roots, stems, and leaves and are also known to increase 

the host shoot and/or root biomass (Rodriguez et al., 2009). 

Leaf chlorophyll content, for instance, is an indicator parameter that provides information about 

the general health conditions of the plants, since it is an indirect sign of chloroplasts 

development and their photosynthetic capacity as well as the nitrogen content. The amount of 

chlorophyll in leaf tissue can be influenced by different abiotic factors such as nutrient 

availability or environmental stresses caused by salinity, temperatures or water supply (Palta, 

1990). Nevertheless, biotic factors are also important in the chlorophyll content of plants. For 

instance, plant - endophyte interactions have demonstrated to be in detriment of the plant 

photosynthetic capacity in some cases, mainly related to fungal endophytes that confer 

protection against plant pathogens. Such is the case of the impact caused by Colletotrichum 

musae and Fusarium moniliforme that affects the photosynthetic activity of banana and maize 

plants, respectively (Costa Pinto et al., 2000), being maize plants reduced in the chlorophyll 
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content and in consequence in their photosynthetic activity closely related to the endophytic 

infection.  

The model evaluated here was composed by the three fungal endophytes Beauveria bassiana, 

Trichoderma koningiopsis and Metarhizium brunneum, the tomato plant Solanum lycopersicon 

(Mill.) as the host and  two different insect herbivores, the aphid Myzus persicae  and the 

polyphagous moth Helicoverpa armigera.  

 Chapter 1. PCR based method for fungal endophytes detection in tomato plant tissues  

The aim of this study was (i) to determine if the fungal species Beauveria bassiana and 

Trichoderma koningiopsis are able to colonize endophytically tomato plants Solanum 

lycopersicon with different inoculation methods i.e. root inoculation and seed soaking; (ii) to 

determine whether the fungal endophytic colonization of tomato plant tissues moves along 

within the plant from, starting from the initial inoculation site, and (iii) whether the inoculation 

and growth of the fungi in the  plants changes their biomass compared to non-inoculated plants. 

We hypothesize that i) the fungal endophytic colonization of plant tissues will differ among 

fungal strains depending on whether the isolate is a soil living microorganism or from an 

entomopathogen origin, thus, we expect that entomopathogenic fungi colonizes aboveground 

plant tissues in a higher proportion than the plant pathogen biocontrol agent Trichoderma 

koningiopsis, and iii) plants differ in their response towards different isolates and this would 

translate into differences in biomass allocations. 

Chapter 2. Fungal endophytic colonization influences tomato plant volatile emissions and 

aphid behavior  

The present research evaluated the effect of three different strains of Beauveria bassiana and 

Trichoderma koningiopsis in tomato plant (Solanum lycopersicon Mill.) volatile organic 

compound profiles and its consequent manipulation of plant-insect interactions, compared to 

changes induced by a endophytic plant pathogen biocontrol agent (Trichoderma koningiopsis 

Th003). Simultaneously, we analyzed the headspace of tomato plants that were induced first 

with the mentioned fungal inoculations and followed by the stimuli of a sap soaking insect 

attack, the aphid Myzus persicae. Our hypotheses were i) that endophytic fungi manipulate plant 

metabolism unique to each fungal isolate, ii) that insect herbivores are able to discriminate 

between endophytically colonized plants and endophyte-free plants and iii) that plant 

parameters changes may be to the detriment of the herbivores.  
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Chapter 3: Endophyte mediated host plant selection by Helicoverpa armigera 

Here we addressed two questions concerning the response of tomato plants Solanum 

lycopersicon to fungal endophytic inoculations and behavioral response of Helicoverpa 

armigera adults on tomato plants treated with different endophytes. First, we evaluated to what 

extent a fungal endophytic colonization of tomato plants influences plant traits such as leaf 

chlorophyll content, plant temperature, and plant biomass. Second, we investigated whether 

oviposition by Helicoverpa armigera adult females differs on entomopathogenic endophyte 

inoculated tomato plants compared to non-inoculated plants.  

Based on our previous results about the colonization pattern of B. bassiana and T. koningiopsis 

presented in chapter 1, we hypothesize that i) endophytic colonization of soil born fungi might 

be higher in belowground than in aboveground plant tissues and this pattern may be the opposite 

for the fungi of entomopathogenic origin ii) tomato plant traits remain unaffected by fungal 

endophytic infection confirming its symptomless presence in the plant and iii) 

entomopathogenic fungal infection of tomato plant tissues may have repellent effect of the 

insect herbivore by reducing the preference of adult females to lay eggs on infected plants 

compared to plants infected with non-entomopathogenic fungi. 
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Abstract 

Traditional methods to detect fungal endophytes in plant tissues are successful to determine 

the presence of fungal structures when they are cultured in appropriate medium. 

Nevertheless, when the aim of the research deals with the correlation of the amount of 

fungal DNA and the modulation of metabolic attributes of their plant hosts, the knowledge 

of appropriate methods that allow the detection of the fungi internally in a rapid and 

accurate way regardless the reproductive stage of the fungus, became valuable to determine 

quantitative differences among treatments. The aim of this study was to establish 

endophytically the fungi Beauveria bassiana and Trichoderma koningiopsis in tomato 

plant tissues Solanum lycopersicon Mill. and determine the ability of those fungi to migrate 

from the inoculation site along the plant tissues. Two different methods for fungal 

inoculation were tested, first the seed inoculation by soaking the surface sterilized seeds 

into the spores suspension and second the root inoculation made directly by immersing the 

clean root system in the spores suspension. The growing of the fungi inside the plant was 

determined four weeks post inoculation by fugal re-isolation in selective medium for each 

species and the colonization frequency was determined. Treated plants were also tested for 

fungal endophytic growing by molecular detection of fungal DNA with real time 

polymerase chain reaction with specific primers. The migration ability of tested fungal 

endophytes will be discussed.  

 

Keywords: Real-time PCR, Fungal endophytes, Solanum lycopersicon, 

Trichoderma koningiopsis, Beauveria bassiana.  
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1 Introduction  

Plants are colonized by different endophytic microorganisms that cause no disease symptoms (Schulz 

and Boyle, 2006). Nevertheless the use of fungal endophytes with potential to be applied in the 

management of plant pathogens or insect herbivores has been only recently addressed. For instance, 

Ownley et al. (2010), reviewed the potential of the entomopathogenic endophytic fungi Beauveria 

bassiana to control pest and pathogens in different crop systems as well as the biocontrol agent 

Trichoderma koningiopsis in the control of plant pathogens such as Botrytis spp and Plasmotara spp. 

The detection of fungal endophytes in plant tissues has been done in general by re isolation methods as 

proposed by Parsa et al. (2013) for the artificial establishment of  B. bassiana in bean plants Phaseolus 

vulgaris towards and application in the biological control of insect pest, obtaining higher colonization 

percentage when the conidia were sprayed in the leaves.  

In other studies, Quesada-Moraga et al. (2006) found that Beauveria bassiana strains isolated from 

Timapsis papaveris (Hymenoptera:Cynipidae) had also the ability to colonize endophytically poppy 

plants where the determination of endophytic colonization was done with microbiological, molecular 

and electron microscopy techniques. In addition to confer plant protection against insects and pathogens, 

fungal endophytes are also known to promote plant growth as reported by Lopez and Sword (2015), 

who found that Beauveria bassiana was enhanced cotton growth as well as confers protection against 

Helicoverpa zea.  

The aim of this study was first to determine if the fungal species Beauveria bassiana and Trichoderma 

koningiopsis are able to colonize endophytically tomato plants Solanum lycopersicon with different 

inoculation methods i.e. root inoculation and seed soaking. Second, to determine to what extent does 

fungal endophytic colonization of tomato plants moves along the plant from the initial inoculation site, 

and third, to determine if inoculated plants are affected in their biomass compared to non-inoculated 

plants.  

2 Materials and methods  

2.1 Plant material  

Establishment of fungal endophytes was tested on tomato plants Solanum lycopersicon Mill. var Ruthje 

(Rein Saat ®, Austria ). Before use, seeds were surface sterilized by submerging them in 2% sodium 

hypochlorite for 3min followed by 2min immersion in ethanol 75% and three consecutive rinses in 

autoclaved water. Treated seeds were allowed to dry in the clean bench for 20minutes and then 

transferred to growing containers filled with an autoclaved mixture 3:1 soil (Fruhstorfer Erde Typ 25, 

Hawita Gruppe GmbH, peat fine structure with volcanic clay, pH: 5.7-6.3, Fertilization of 200-300mg 

N) and one part of 0.3mm sand. The plants were maintained in the greenhouse conditions (21 ±2°C, 70-

80% RH and 12h photoperiod) up to the development of the second true leaf. Plantlets were then 

removed from the substrate and their roots were carefully washed with tap water for root inoculation 
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with the corresponding fungal endophyte, transplanted into an autoclaved soil mixture mentioned above 

and maintained in greenhouse for three weeks. Plants were fertilized once a week with Hakaphos 2g/L 

(15% N, 11% P2O5, 15% K2O, 1% Mg, 0.1%Fe, 0.1%Mn, 0.04%Cu, 0.025%B and 0.005% Mo). 

2.2 Fungal material   

Two different fungal endophytes were tested, one entomopathogenic fungi Beauveria bassiana strain 

Bv 061 provided by the germplasm bank of the Biological Control Laboratory at Colombian Corporation 

of Agricultural Research –Corpoica - in Colombia, Beauveria bassiana strain Bb1022 and EABb 04/01 

-Tip come from the fungal collection of the Agricultural Entomology Laboratory at the University of 

Göttingen, Germany and the plant pathogen biocontrol agent Trichoderma koningiopsis strain Th003, 

kindly delivered by the company Prophyta (Biologischer Pflanzenschutz GmbH, Germany), the origin 

of the isolates is detailed in Table 1. The isolates were grown in potato dextrose agar (PDA) at 24 ±2°C 

in dark conditions during two weeks to obtain enough spores for the suspension.  

Petri dishes with the corresponding fungal growth were placed in sterile bench and 3ml of 0.01% Tween 

20 were added to a single plate to re-suspend the spores. The growing media surface was scratched with 

a Drigalski spatula and the spores were finally suspended in 97ml of sterile deionized water. Spores 

concentration was determined with a counting chamber Thoma (Marienfeld, Germany) and adjusted to 

1x106conidia /ml.  

Table 1.  Fungal strains used for inoculation of tomato plants Solanum lycopersicon Mill. 

Endophytic fungi  isolate screened for insect attraction and oviposition behavior 

Fungi  Strain Geographic 

origin 

Insect host  Plant host  Pathogen  

Biocontrol  

Reference  

Beauveria 

bassiana 

EABb 

04/01 -Tip 

Spain Stem- borer 

Timaspis 

papaveris 

(Kieffer)  

Opium 

puppy 

Papaver 

somniferum 

L.  

 (Quesada-

Moraga et 

al., 2009) 

Beauveria 

bassiana 

Bv 061 Colombia  Sweetpotato 

whitefly 

Bemisia tabaci 

(Gennadius) 

Cotton 

Gossypium 

hirsutum L. 

 (Espinel et 

al., 2008) 

Beauveria 

bassiana 

Bb1022 Canada  Pine shoots 

moth 

Rhyacionia 

buliana (Schiff.) 

   

Trichoderma 

koningiopsis 

Th003 Colombia Agricultural soil Tomato 

Solanum 

lycipersicon 

Mill.  

Fusarium 

oxysporum f. 

sp. 

lycopersici 

(Jaimes et 

al., 2009) 
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2.2.1 Root inoculations  

Two weeks after transplant, tomato seedlings were removed from the soil substrate and the roots were 

carefully washed with tap water. Clean roots were immersed in the final conidial suspension for 20min 

and then transferred to plastic pots of L11 x W11 x H12 cm filled with the soil mixture described in 

plant material section 2.1 and placed in greenhouse conditions.  

2.2.2 Seed inoculation 

Following the procedure explained in section 2.1, a total of 60 seeds were surface sterilized and 

immersed in the corresponding conidial suspension for 20min.  Control seeds were treated only with 

0.01% tween 20 and then transferred separately to plastic pots of L11 x W11 x H12 cm filled with the 

soil mixture described in plant material section and placed in greenhouse conditions.  

2.3 Determination of endophytic colonization of tomato plant tissues via re-isolation in 

selective medium 

For the plants inoculated in the roots, the colonization frequency obtained from B. bassiana and T. 

koningiopsis was evaluated 20 days post inoculation (dpi). Seedlings were carefully removed from the 

substrate and the roots were gently washed with tap water. The samples were placed in a sterile bench 

where each plant was sectioned into three different groups: Leaves, stems and roots. To determine the 

migration of the fungi along the plant tissues, samples of each tissue were taken from the different levels 

of the plant as detailed in Table 2.  

Table 2. Sampling of tomato tissues for the re-isolation of fungal endophytes. The stem was divided 

into three sections a, b and c from the bottom to the top of the plant. The leaves were sampled complete, 

and the leaf discs were obtained at random avoiding the veins. 

Distance from the soil* Stem Leaf** 

0-10 cm A 1st 

11 – 20 cm B 3rd 

21-30 cm  C 5th 

 

*The distance from the soil is approximate. Each stem section was surface 

sterilized separately, and the fragments used for the re-isolation were located in 

the middle of the stem section, to avoid the use of dead tissue due to the surface 

sterilization. **The first leaf was located closest to the soil, and numbers were 

assigned in the same order as they were present in the stem from the bottom to 

the top of the plant.   
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A surface sterilization of the collected material with sodium hypochlorite 0.2% for twomin followed by 

a two minutes immersion in 70% ethanol and finished by three rinses with sterile distilled water. The 

samples were placed in autoclaved filter paper and allowed to dry. Five leaf disks of 6mm Ø, five stem 

segments of 5mm length and five roots sections were placed into Petri dishes with the corresponding 

selective medium for Beauveria bassiana used by Quesada-Moraga et al. (2006) and for T. koningiopsis 

we used the selective media proposed by Elad and Chet (1983). Positive or negative fungal growth was 

recorded after 10 days of incubation at 25°C in darkness. A total of ten plants per treatment were 

evaluated. The colonization is presented as frequencies:  

𝐶𝑜𝑙𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑙𝑎𝑛𝑡𝑠 𝑐𝑜𝑙𝑜𝑛𝑖𝑧𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑙𝑎𝑛𝑡 𝑝𝑖𝑒𝑐𝑒𝑠
 × 100 

2.4 Determination of endophytic fungal colonization of tomato plant tissues via real 

time PCR 

2.4.1 DNA extractions from pure cultures 

Endophytic colonization was confirmed by real-time polymerase chain reaction (RT-PCR). The positive 

PCR amplification was achieved from genomic DNA of each fungal strain obtained from actively 

growing mycelium in Potato Dextrose Broth (PDB) cultures incubated for five days at 25ºC in the dark 

with a constant shake. The medium was filtered with a vacuum pump, and the filtrated mycelium was 

collected and lyophilized. The dry material was grinded, homogenized and stored at -20ºC until used.  

The DNA quality was observed by electrophoresis in 0,8% agarose gel (w/v) prepared in TAE buffer 

(40mM Tris, 1mM EDTA, pH set to 8.5 with acetic acid), with 4V/cm for 60mins and ethidium bromide 

was used to stain the double stranded DNA with a final rinse with distilled water for 30min A digital 

imagen of the gel was used to quantify the fungal DNA and the final quantity was compared by 

densitometry with the values of diluted Lambda DNA (methylated, from Escherichia coli host strain 

W3110). Densitometry analysis was made with a Multi Analist Software (Bio Rad, Hercules, CA, USA).  

2.4.2 DNA extractions from inoculated plant material 

Four weeks after inoculation, the plant samples from root or seed inoculated treatments were collected 

and kept under -83ºC until lyophylization procedure. The plant material was packed into plastic ziplock 

bags separately, leafs, stems and roots. For fungal and plant DNA extraction we used the cetyl 

trimethylammonium bromide (CTAB) method, where a mixture of 1ml of CTAB buffer, 2μl 

mercaptoethanol and 1μl of Proteinase K was added to 50mg of fine powder, mixed thoroughly and 

incubated for 10min at 42ºC, then increased the temperature to 65ºC and incubated for 10min more. 

After adding 800μl of chloroform/isoamylalcohol and incubation on ice for 10min, the extract was 

centrifuged at 8000 rp for 10min. The supernatant was transferred to a new tube and added with 

100μl5M NaCl and 200μl of 30% PEG, and incubated for 5min at room temperature, followed by a 
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spinning at 14000rpm for 15min. The supernatant was discarded and the pellet was washed two times 

with 500 μl of 75% ethanol, then dried in Speed Vac and re-suspended in 100μl 1X TE buffer.  

2.4.3 Real time PCR conditions 

 

Following the protocol proposed by Brandfass and Karlovsky (2008), for each fungal DNA extracted in 

numeral 2.4.1 one standard curve was needed. A dilution series (1.23pg, 3.70pg, 11.1pg, 33.3pg and 

100 pg) of Beauveria bassiana and Trichoderma koningiopsis DNA was prepared separately. In order 

to quantify the unknown fungal DNA amount in the plant samples, each RT-PCR plate set up must 

contain the standards, a negative template control (NTC, ddH2O) and a positive template control of plant 

samples containing the fungal DNA to be quantified.  A 1:10 dilution of the DNA samples was used for 

the PCR. Two replicates were used per each standard and NTC, PTC and unknowns. Ten biological 

replicates were analyzed simultaneously.  

2.4.3.1 Beauveria bassiana  

Using the primers Bsn1-2 forward 5’-3’ GCGTCAAGGTGCTCGAAGACAG” and reverse 3’-5’ 

TCTGGGCGGCATCCCTATTGT for Beauveria bassiana  with a product size of 231bp and melting 

temperature of 55ºC with increments of 0.5ºC for 5s. The qPCR amplifications were performed in a total 

volume of 10µl using the iCycler System (CFX384 Real time system, Bio-Rad, Hercules, CA, USA). 

The reaction mixtures contained a final concentration of 2µl 5x Buffer (Bioline, Luckenwalde, 

Germany), 1µl of 25mM MgCl2 (Bioline, Luckenwalde, Germany), 0.4µl of 2.5mM dNTP (Bioline, 

Luckenwalde, Germany), 0.3µl of 10µM each primers (Invitrogen, Karlsruhe, Germany), 0.1µl of 

SybrGreen Mol Probes 1:1000 (Invitrogen, Karlsruhe, Germany), 0.25µl of 40mg/mL BSA and 0.06µl 

of 5U/µl Hot Start Taq Polymerase (Bioline, Luckenwalde, Germany), 4.59µl of sterile water and 1µl 

of sample DNA. Thermal cycling conditions for amplification (iCycler System CFX Real time system, 

Bio-Rad, Hercules, CA, USA): started with an initial denaturation steps for 3min at 94°C, followed by 

36 cycles each consisting of a denaturation step for 30s at 94°C, annealing for 20s at 60°C, extension 

for 30s at 72°C and a plate read at the end of each cycle. This was followed by a final extension for 5min 

at 72ºC and a final melting curve from 55°C to 95°C in 0.5°C increments held for 5s at each temperature 

and a plate read at each temperature, which was used to determine the purity of the reaction products. 

2.4.3.2 Trichoderma koningiopsis 

Specific primers (forward: 5'-TACAACTCCCAAACCCAATGTGA-3', reverse: 5'-

CCGTTGTTGAAAGTTTTGATTCATTT-3') for Trichoderma spp. designed by (López-Mondéjar et 

al., 2010) were used for the quantification. The qPCR amplifications were performed in a total volume 

of 10µl using the iCycler System (CFX384 Real time system, Bio-Rad, Hercules, CA, USA). The 

reaction mixtures followed the same proportions as those reported for B. bassiana. The thermal cycling 
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conditions used for amplification:  started with an initial denaturation steps for 3min at 95°C, followed 

by 35 cycles each consisting of a denaturation step for 5s at 95°C, annealing for 15s at 64°C, extension 

for 15s at 72°C and a plate read at the end of each cycle. This was followed by a final extension for 5min 

at 72ºC and a melting curve from 55°C to 95°C in 0.5°C increments held for 5s at each temperature and 

a plate read at each temperature, which was used to determine the purity of the reaction products. 

2.5 Effect of fungal endophytic colonization in plant length 

Before the evaluations of fungal colonization frequencies, the length of the stems of each treated plant 

was measured in situ from the basal part of the plant at the level of the soil, until the top of the stem 

where the new leaves were developing.  

2.6 Statistical analysis  

All data sets were analyzed with the statistical program SigmaPlot v. 11.0 (Systat Software Inc., 2016) 

using one-way ANOVA after checking the assumptions for normality and the homogeneity of variance 

via Kolmogorov-Smirnov test. No transformation was needed. A post hoc test was then performed using 

Tukey’s Honestly Significant Difference (HSD) to identify which differences were significant and to 

determine the groups. 

3 Results 

3.1 Determination of endophytic colonization of tomato plant tissues via re-isolation in 

selective medium 

The first aim of this experiment was to confirm the endophytic development of Beauveria bassiana and 

Trichoderma koningiopsis into tomato plant tissues. The fungal colonization of tomato plant tissues was 

studied in the selective medium corresponding to each species, for Beauveria bassiana, positive 

recordings of mycelial growth were registered when the white hyphae emerged from the edge of the 

tissue sample. In the figure 1, the endophytic colonization frequencies of treated plants are shown. 

Positive growth of fungal endophytes from leaf samples was achieved for all the treatments, it is also 

evident that the colonization frequency is higher for the basal leaves that for the new developed leaves. 

Plant samples treated with Beauveria bassiana Bb2 showed the highest frequencies of endophytic 

colonization along the three levels. In contrast, strains Bb1 and Bb3 did not succeed in colonizing new 

developed leaves. In addition, Trichoderma koningiopsis was also found colonizing leaf samples in all 

the levels. 
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Figure 1. Colonization frequencies of the fungal endophytes in leaf 

tissues. A one-way analysis of variances ANOVA was developed per 

each level of leaf L1, L3, and L5. Significant differences were observed 

in all levels, for Leaf 1 (White bars) Error between MS=1.5889, df=24, 

Leaf 3 (light grey bars) the error between MS =0.51944, df=24 and for 

the Leaf 5 (dark grey bars) error between MS = 1,222, df=24. Beauveria 

bassiana Bb2 and Trichoderma koningiopsis are the endophytes that can 

approach leaves at each level of the plant indicating the ability of those 

fungi to move systemically. 

 

The colonization frequencies achieved in the different stem sections (a, b, and c) is shown in Figure 2. 

For stem samples, no significant differences were obtained after the analysis of variances. Nevertheless, 

positive growth was registered for all treatments.  
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Figure 2. Colonization frequencies of the fungal endophytes in the 

stem. A one-way analysis of variances ANOVA was developed per 

each level a, b and c. We observed that the endophytes colonized the 

stem tissue, even in the higher sections of the stem with no significant 

differences among the levels or treatments.  
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Finally, we observed the colonization frequencies of the root samples and only the roots from plants 

treated with Trichoderma koningiopsis showed positive growth in the selective medium (Figure 3).  
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Figure 3. Colonization frequencies of the fungal endophytes in the 

roots. We observed that the fungi Trichoderma koningiopsis was re-

isolated from 100% of the samples and almost no sample resulted 

positive for Beauveria bassiana in the roots.  

 

 

3.2 Molecular detection of fungal DNA  

The amount of endophyte found in the samples ranged from 0 to 0.1 pg/μl of DNA sample according to 

the extrapolated quantification values obtained with the program CFX Manager. Since our standard 

curves were established from 1.3 to 100pg/ μl of DNA for all the species, no appropriate measurement 

of the fungal DNA amount was achieved in this section. As it is observed in the Figures 4 and 5 the 

fungal DNA recovered from the samples is not among the quantitative standard. Nevertheless, the 

observations are still useful to determine presence or absence of the endophyte in the samples.  



Chapter 1                                                         Molecular detection of fungal endophytes 

22 
 

0

1

2

3

4

F
u

n
g

a
l 

D
N

A
 (

p
g

/ 
l)

 *
1

0
^

1
1

Bb
1

Bb2 Bb3 TkControl

*

 

Figure 4. Endophytic fungal DNA quantified from root inoculated tomato plant samples. 

White bars show the amount quantified from leaves; gray bars show the results of stem 

samples and black bars are the root samples. The Raw data passed the normality test 

Kolmogorov-Smirnov (P=0,614) as well as the equality of variances (P=0,386). The 

ANOVA test performed per organ leaf, stem or root comparing among treatments showed 

significant differences between treatments (P<0.001; F=6.818; DF=4). An All Pairwise 

Multiple Comparison Tukey Test was developed to determine the groups.  
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Figure 5. Endophytic fungal DNA quantified from seed inoculated tomato plant samples. 

White bars show the amount quantified from leaves; gray bars show the results of stem 

samples and black bars are the root samples.  One way analysis of variance for seed 

inoculated samples. Raw data passed the normality test Kolmogorov-Smirnov (P=0,247) 

as well as the equality of variances (P=0,171). The ANOVA showed differences between 

the treatments (P=0.003, F=4.668, DF=4), the test was performed per organ, leaf, stem or 

root comparing among treatments. The groups were determined based on a multiple 

comparisons of means Tukey contrast.  
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3.3 Effect of fungal endophytic colonization in plant length 

A comparison of the stem length of tomato plants infected via root and seed inoculation methods is 

showed in Figure 6. Plants that were root inoculated with Trichoderma koningiopsis showed 

significantly higher stem length than other treatments. Seed inoculated plants showed significant 

differences only from plants treated with Beauveria bassiana Bb2, which were smaller than plants from 

other treatments.  

 

 

Figure 6. Effect of fungal endophytic colonization on the stem length of tomato plants. White bars 

are the seed inoculated plants, that showed a significant difference among treatments (ANOVA, 

DF=4, F=4.668, P=0.003). Seed inoculated samples demonstrate a strain-specific effect of the 

endophytic fungi Beauveria bassiana, where Bb2 delays the growth rate of tomato seedlings 

compared to other treatments. Grey bars are the root inoculated plants, that presented significant 

differences among treatments (ANOVA, DF=4, F=6.818, P < 0.001) and showed the plant growth 

promotion effect of Trichoderma koningiopsis and no significant effect of Beauveria bassiana 

treated plants. The groups were determined based on a multiple comparison of means Tukey 

contrast. 

 

4 Discussion  

 In our research we successfully achieved the establishment of the fungal entomopathogen Beauveria 

bassiana and the biocontrol agent Trichoderma koningiopsis in tomato plants with two different 

inoculation methods, seed and root inoculation. The monitoring of the fungal growth in the different 

plant organs as well as along the plant tissues via selective medium re-isolation or via real time PCR 

was also successfully achieved. Unfortunately, no quantification was successfully achieved for the 
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studied samples, but the molecular protocol allows us to determine the presence or absence of fungal 

DNA in the sample. The colonization of plant parts by Beauveria bassiana was found to be higher in 

the leaves than in the stems, and almost no positive records of B. bassiana were found in the roots when 

evaluated with selective medium re-isolation neither with RT-PCR technique. Likewise, Biswas et al. 

(2012) reported a higher endophytic colonization of jute plants with B. bassiana in the leaves and stems 

but they could not detect endophytic colonization in roots neither with selective medium method nor 

with the PCR technique. 

Despite the colonization method, Beauveria bassiana has been reported in different plant systems 

colonizing endophytically stems and leaves(Greenfield et al., 2016; Landa et al., 2013; Posada et al., 

2007; Quesada-Moraga et al., 2014). For instance, Parsa et al. (2013) reported the ability of this fungal 

entomopathogen to colonize Phaseolus vulgaris tissues and reported a lower colonization rate in the 

root system of this plant. Nevertheless, they suggest that higher colonization might be obtained if the 

samples were analyzed with molecular techniques such as PCR. In contrast, we found that the results 

observed with the re-isolation method were confirmed by PCR techniques and did not resulted in 

additional positive traces of the fungi in plant sections that showed negative results with the selective 

medium technique. Beauveria bassiana has been artificially induced to colonize endophytically 

sorghum plants by Tefera and Vidal (2009) resulting as well in a positive growth in leaves and stem, but 

no positive infections were obtained in roots.  

The results obtained with the seed soaking inoculation method, showed that the fungal DNA was present 

in a higher frequency in the root tissues probably due to a contact of the root primordia with the external 

cover of the seed that probably contained viable spores. Interestingly, there was no significant difference 

among the fungal strains of B. bassiana indicating that all the strains were equally able to survive in the 

plant while the germination process occur despite the different origin.  

For Trichoderma koningiopsis, we observed that the colonization in the roots was strong in but very 

weak to approach different plant organs far from the inoculation site, which is in concordance with the 

nature of this soil microorganism. In our experiments, we found Trichoderma koningiopsis colonizing 

stems of tomato plants , similar to the observations reported by Samuels et al. (2006) when isolated 

Trichoderma koningiopsis from freshly exposed, living sap-wood of trunks of Theobroma cacao plants 

in Brazil, Ecuador and Peru but failed to obtain it from apical meristems. However, to our knowledge, 

no reports are available about Trichoderma koningiopsis isolated as endophyte from Solanaceae plant 

family, which indicates that our findings might be considered as one of the first reports of this species 

colonizing endophytically tomato plant tissues. Furthermore, our finding may contribute to the potential 

use of this endophyte to protect plants against insect herbivores and plant pathogens in integrated pest 

management strategies.  
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The amount of the detected fungal DNA in the sampled material is highly variable, indicating that there 

is no direct correlation between the initial spores concentration used for the infection and the final 

amount quantified by PCR.  The protocol tested in our study for the molecular detection of endophytic 

fungal DNA was successful to determine the presence or absence of the endophyte in the samples. 

Nevertheless, to use this method for fungal DNA quantification, more detailed improvements are 

needed. We suggest obtaining standard curves with lower limit of quantification of the pure fungal DNA 

than the ones obtained in this research.  

Finally, in our study we also wanted to observe to what extend may the fungal inoculation method 

influence the plant growth? As we expected, Trichoderma koningiopsis inoculated plants were 

positively affected by the presence of the endophyte, despite the inoculation method, the stem length 

was significantly higher when inoculated with this endophyte. In contrast, plants that were infected with 

the entomopathogenic fungi Beauveria bassiana showed no significant differences among the strains 

neither compared to the control plants. It was even observed that when the plants were seed inoculated 

with the strain Bb2 there was a delay in the growth compared to non-treated plants. 
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Abstract 

Tomato plants release a bouquet of volatiles that is involved in different biotic interactions 

potentially applicable in biological control of crop pests. Additionally, tomato plants host 

multiple microbes colonizing plant tissues endophytically without causing symptoms of 

infection. Here we studied the ability of horizontally transmitted fungal endophytes to 

modulate plant volatile organic compounds emitted by tomato plants (Solanum lycopersicon 

Mill) aboveground. Specifically, we analyzed the effect of an endophytic colonization by 

three different strains of the entomopathogenic endophytic fungi Beauveria bassiana: Bv 

061, EABb 04/01- Tip and Bb1022 on the emissions of volatile organic compounds. These 

bouquets were compared with those of plants inoculated with the biocontrol agent 

Trichoderma koningiopsis Th003 used to protect plants from fungal infections. The tomato 

headspace bouquet was also analyzed following a combined infection by an endophytic 

fungus and an infestation by the aphid Myzus persicae. We hypothesize that fungal 

inoculations of tomato plants can lead to an endophytic colonization of plant tissues that 

alters the volatile organic compounds bouquet emitted by tomato plants and that those 

changes might be recognized by aphids modulating the insect herbivore attraction to 

inoculated plants. Based on analytical, molecular and behavioral methods we demonstrate i) 

that all fungal isolates successfully colonized tomato plant tissues endophytically; ii) that the 

headspace of tomato plants can be grouped into three distinct groups, i.e. non-treated plants, 

endophytically colonized plants, and plants treated simultaneously with aphids and 

endophytic fungi and iii) that Myzus persicae was able to discriminate between treated and 

non-treated tomato plants with more specimens attracted to blends emitted by tomato plants 

treated with the entomopathogenic endophytic fungi compared to the non-treated plants. Our 

findings contribute to a better understanding of plant-insect chemical communication 

mediated by endophytic fungi, which might potentially be used in the development of pest 

control strategies by introducing microorganisms traditionally applied to protect different 

crops in biological control strategies, using for example “lure and kill management”. 

Nevertheless, in this paper, we focus on the interaction cascade from the endophytic 

infection until the insect attraction. Further studies are necessary to clarify if the higher 

attraction to plants inoculated with entomopathogenic fungi can cause pathogenicity in the 

attracted insects and potentially be used to manage crop pests. 

Keywords: Volatile Organic Compounds, Fungal endophyte, Beauveria bassiana, 

Trichoderma koningiopsis, Insect attraction 
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1 Introduction 

Tomato plants (Solanum lycopersicon Mill) release a complex blend of volatile organic 

compounds (Proffit et al., 2011), which can be used as chemical clues in the detection of plant 

infection with pathogens of economic impact (Schütz et al. 1999, Hussaini et al., 2011; Jansen 

et al., 2009). In addition, plant volatiles can act as chemical attractants for associated insects. 

For instance Jallow et al. (2008) observed that variations in the amount of some compounds 

emitted by tomato plants consistently influences the decision made by a polyphagous moth 

Helicoverpa armigera (Hübner). A similar behavior was observed by Proffit et al. (2011), who 

observed that tomato plants release different volatile organic compounds depending on the 

cultivar and that those differences even of minor compounds can be detected by Tuta absoluta 

when choosing the host plant. Bruce and Pickett, (2011) reviewed the highly sensitive olfactory 

system that allows the insects to locate suitable host plants, and how the compound ratio in 

volatile blends can influence in the host selection.  

Nevertheless, plant volatiles is dynamic and can be modulated in response to different biotic 

stress, affecting, in consequence, some inter-species interactions (Dicke et al., 2009). Many 

reviews summarize interactions that affect the plant volatile bouquet above and belowground 

(Clavijo McCormick et al., 2012; Dicke et al., 2009; Dicke and Baldwin, 2010; Heil, 2008; 

Pineda et al., 2010). Among the interactions that can influence the plant volatile bouquet are 

the ones caused by endophytes, commonly defined as microorganisms able to live for all or part 

of their life cycle inside tissues of living plants without causing any apparent symptom of 

disease or negative effect in the host plant (Rodriguez et al., 2009; Saikkonen et al., 1998; 

Schulz and Boyle, 2006).  

Most of the studies involving the effect of fungal endophytes on multitrophic interactions have 

been conducted with grass endophytes (Li et al., 2014; Saikkonen et al., 2013) and, horizontally 

transmitted endophytes remain poorly explored (Rodriguez et al., 2009). Nevertheless, Jallow 

et al., (2008) report the ability of the root-colonizing microorganism Beauveria bassiana to 

induce changes in the volatile organic compounds profile of tomato plant species. According to 

Schausberger et al., (2012) the fungal endophyte Beauveria bassiana, was also able to modify 

the compound profile of cabbage plants depending on the fungal density. Similarly, it has been 

reported that tomato plants inoculated with the root endophyte Trichoderma longibrachiatum 

showed significant differences in the quantity of some volatile organic compounds. 
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In order to contribute to a better understanding of plant-insect chemical communication 

mediated by endophytic fungi, we addressed the hypothesis that fungal inoculations of tomato 

plants can lead to an endophytic colonization of plant tissues that alters the volatile organic 

compounds bouquet emitted by tomato plants that subsequently might be detected by aphids, 

modulating the insect herbivore attraction to inoculated plants.  

The present research evaluated the effect of three different strains of Beauveria bassiana and 

Trichoderma koningiopsis in tomato plant (Solanum lycopersicon Mill.) on volatile organic 

compound profiles and resulting manipulation of plant-insect interaction. Additionally, this 

effect was compared with the changes when the endophyte was a plant pathogen biocontrol 

agent Trichoderma koningiopsis Th003. Simultaneously, we analyzed the headspace of tomato 

plants induced firstly by the mentioned fungal inoculations and followed by the stimulus of a 

sap-sucking insect attack, the aphid Myzus persicae.  We demonstrate that i) all fungal isolates 

of this model successfully colonize tomato plant tissues endophytically; ii) the headspace of 

tomato plants can be grouped into three distinct groups, i.e. non-treated plants, endophytically 

colonized plants, and plants treated simultaneously with aphids and endophytic fungi and iii) 

the aphid Myzus persicae is able to discriminate between treated and non-treated tomato plants 

with more specimens attracted to blends emitted by tomato plants treated with the 

entomopathogenic endophytic fungi compared to the non-treated plants.  

Nevertheless, in this paper, we focus on the interaction cascade from the endophytic infection 

until the insect attraction, and further studies are necessary to clarify if the higher attraction to 

plants inoculated with entomopathogenic fungi can cause pathogenicity in the attracted insects 

and can potentially be used to manage crop pests. 

2 Materials and Methods 

2.1 Plant material  

Seeds of Solanum lycopersicon var. Ruthje (Rein Saat ® ) were sown in an autoclaved mixture 

of 3:1 soil (Fruhstorfer Erde Typ 25, Hawita Gruppe GmbH, peat fine structure with volcanic 

clay, pH: 5.7-6.3, fertilization of 200-300mg N) and one part of 0.3mm sand. After 10 days of 

germination, seedlings were transplanted into 11 cm pots and placed in the greenhouse of the 

Department of Crop Sciences at the University of Göttingen, Germany. The temperature was 

in a range of 18-25°C and light in a photoperiod of 18L:6D. Plants were fertilized once a week 
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with Hakaphos 2g/L (15% N, 11% P2O5, 15% K2O, 1%Mg, 0.1%Fe, 0.1%Mn, 0.04%Cu, 

0.025%B and 0.005% Mo). 

2.2 Insect rearing 

Myzus persicae aphids were collected from greenhouse plant material and reared on Brassica 

oleracea plants under laboratory conditions 23±2°C and a 16L:8D photoperiod and 60% R.H. 

The individuals used for behavior experiments were maintained in L60 x W60 x H60 cm insect 

rearing tents (BugDorm-2120, Bug Dorm Store, Taiwan) with two side panels made of 

polyester netting mesh size 680 μm opening. Only winged aphids were taken from the rearing 

cage with an aspirator to be released in the experimental cages for behavior experiments.  

2.3 Fungal material   

Beauveria bassiana strains Bb 1022 and Bb EABb 04/01- Tip were supplied by the microbial 

collection of the Entomology laboratory at Göttingen University, while the strain Bv 061 was 

obtained from the germplasm bank of the Biological Control Laboratory at Corpoica, Colombia. 

Trichoderma koningiopsis Th003 was delivered by the company Prophyta (Biologischer 

Pflanzenschutz GmbH, Germany).  

The fungal material was grown on Potato Dextrose Agar at 25°C ±2 for a period of three weeks 

until they developed an abundant amount of spores. Then a spore suspension was prepared by 

adding 3ml of 0.01% Tween 20 in the Petri dish and spores were removed with a Drigalski 

spatula and re-suspended in 97ml of distilled autoclaved water. The suspension was filtered and 

the concentration was determined and adjusted to 1 x 107 conidia/ml.  

2.4 Root inoculation  

Four weeks old seedlings were root cleaned with tap water until the substrate was completely 

removed. Clean roots were immersed into the corresponding fungal treatment: Bb1, Bb2, Bb3 or 

Tk and the control group (C) were immersed in a mixture of autoclaved distilled water + 0.01% 

Tween 20. After 20min in the suspension, the seedlings were transplanted into plastic pots filled 

with autoclaved soil and placed into a climatic room at 25°C ± 2, 70% R.H. and a photoperiod 

of 18L:6D. Each treatment was evaluated with 10 plants for inoculation success and 6 plants 

for volatile profiles, half treated only with endophytes and the other half treated with a 

combination of a fungal inoculation followed by the aphid induction three weeks after the root 

treatment.  
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2.5 Test for endophytic colonization  

2.5.1 Re-isolation of endophytes from plant tissue 

Plant material was evaluated after three weeks post inoculation. Six plants per treatment were 

screened by carefully washing each of them with tap water until the roots were completely free 

of soil. Leaves, roots, and stems were collected and surface sterilized by soaking the samples 

in 70% Ethanol for two minutes, followed by a two minutes immersion in sodium hypochlorite 

0.2% and finished with three rinses with sterile distilled water. The samples were dried in the 

extraction hood. After that, five leaf disks of 6mm Ø, five stem segments of 5mm length and 

five roots sections were placed into Petri dishes with the corresponding selective medium for 

Beauveria bassiana (Quesada-Moraga et al., 2006) and for T. koningiopsis (Elad and Chet, 

1983). Fungal growth was recorded after 10 days of incubation at 25°C in darkness. Endophytic 

colonization (presence/absence) was confirmed by real-time polymerase chain reaction (RT-

PCR) to avoid false positives following the protocols described in chapter 1 (Data not shown).  

2.6 Treatments and experimental design 

The experimental design included an endophyte-free control (C), an aphid infested control (A) 

and four endophyte treatments (E): Beauveria bassiana cv. EABb 04/01 -Tip (Bb1), B. bassiana 

cv. Bv 061 (Bb2), B. bassiana Bb1022 (Bb3), Trichoderma koningiopsis cv. Th 003 (Tk) as well 

as the combination of (E) and (A): (Bb1+A), (Bb2+A), (Bb3+A) and (Tk+A). In a randomized 

complete block design, two separate benches were assigned as blocks. Fifteen replicate plants 

per treatment were grown in each bench for a total of 150 plants. We tested two hypotheses: (i) 

Endophytic inoculations with B. bassiana alter differentially the aboveground headspace 

volatile profile of tomato plants in comparison with the plant pathogen biocontrol agent 

Trichoderma koningiopsis and Myzus persicae attack; (ii) Inoculation with B. bassiana might 

decrease the attraction of winged aphids of the species M. persicae to tomato plants more than 

those inoculated with T. koningiopsis. 

2.7 Experiment I: Plant volatile profiles in response to fungal endophytic inoculation 

2.7.1 Sampling of volatile organic compounds 

The objective of this experiment was to test the hypothesis that endophytic colonization of 

tomato plants Solanum lycopersicon with fungal endophytes alters the plant volatile organic 

compounds bouquet differentially depending on the fungal species. Therefore, samples of 

volatile organic compounds emitted by tomato plants of each treatment mentioned in detail in 
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section 2.6 were taken in the greenhouse four weeks after root inoculation. Using a dynamic 

headspace collection system modified of “Push- pull” headspace collection described in Tholl 

et al. (2006), the plant sample was enclosed in a volatile free polyester foil (Toppits ®. Minden, 

Germany) and with a miniature pump (Faulhaber Miniature Device Systems, series 2233T012S, 

Germany) the air was forced to move out of the bag through the TDS tube (Thermal Desorption 

System, Gerstel) filled with a porous polymer based on 2.6-diphenyleneoxide (Tenax ® TA). 

Samples were collected during 25min with a flow rate of 0.18 l/min. The TDS tubes were 

processed immediately in the GC-MS.  

2.7.2 Chemical Analysis  

Samples were analyzed using a Gas Chromatograph directly coupled to a quadrupole mass 

selective detector (GC-MS Hewlett Packard HP6890N and 5973, Agilent Technologies, Santa 

Clara, USA ) with a non-polar column (30m length, 0.2µm ID,  0.25µm film thickness, HP-

5MS, Agilent Technologies, UK). The samples on TDS traps were thermodesorbed in a TDS 

A2 thermodesorption autosampler system (Gerstel, Mülheim, Germany) with an initial 

temperature of 20°C held for 30s and increased by 60°Cmin-1 up to 280°C for 3min. Over a 

helium flow (purity 99.999%), volatiles were carried from the TDS tube to a cold injection 

system where volatiles was cryo-focussed in a cold injection system CIS 4 (Gerstel) at -75°C. 

After 90s the split was opened and no volatiles could reach the cold injection system. Volatiles 

were heated with 12°C s-1 to 260°C and transferred by a He-flow into the column. Oven 

temperature started at 40°C for 3min, then programmed at 7,5°Cmin-1 to 200°C and the final 

temperature was held for 5min. Temperature program lasted 29,33min.   

The GC-MS chromatograms were analyzed using MSD ChemStation data analysis software 

(Agilent Technologies, 2011), and the automated mass spectral deconvolution and 

identification system AMDIS. The compounds reported are limited only to those compounds 

that fit with the following parameters: i) that were present during retention times after 6min and 

no later than 24min.; ii) that the quality of the mass spectra identification match was higher than 

70% and iii) that were present in all the replicates of at least one treatment. The final matrix 

with candidate compounds was processed by a non-metric multidimensional scaling (NMDS) 

analysis in order to detect similarities among samples (using the peak area of Total Ion Current). 

Tentative peak identification of the compounds was based i) matching of the mass spectra with 

those of the mass spectral library of the National Institute of Standards and Trade (NIST 98 MS 

library, Gaithersburg, USA), ii) comparing the calculated Linear Retention Index (LRI) with 
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data provided in the literature. The confirmation of the identity of the compounds by co-elution 

with authentic standards as well as the comparison of the LRI with the literature is still in 

progress. 

Table 1.  Standard n-alkanes (C8 –C19) applied in the calculation of the linear retention index (LRI) of the 

interesting compounds. The standards were analysed using a gas chromatograph directly coupled to a quadrupole 

mass selective detector (GC-MS Hewlett Packard HP6890N and 5973, Agilent Technologies, Santa Clara, USA ) 

with a non-polar column (30m length, 0.2µm ID,  0.25µm film thickness, HP-5MS, Agilent Technologies, UK). 

𝒛 n-alkane 𝒕𝑹𝒛
𝑻  

7 Heptane 5.37 

8 Octane  7.38 

9 Nonane 9.72 

10 Decane  12.03 

11 Undecane 14.20 

12 Dodecane 16.23 

13 Tridecane 18.13 

14 Tetradecane 19.91 

15 Pentadecane 21.59 

16 Hexadecane 23.18 

17 Heptadecane 24.69 

18 Octadecane 26.38 

19 Nonadecane 28.53 

   

The linear retention indices (LRI) were determined for all constituents by using homologous 

series of n-alkanes C8-C20 shown in Table 1 based on the equation proposed from van den 

Dool and Kratz (1963): 

𝑰𝑻 = 𝟏𝟎𝟎 [𝒛 + (
𝒕𝑹𝒊

𝑻 − 𝒕𝑹𝒛
𝑻

𝒕𝑹(𝒛+𝟏)
𝑻 − 𝒕𝑹𝒛

𝑻
)] 

Where 𝑡𝑅𝑖
𝑇  the retention time of the interesting is compound; 𝑡𝑅𝑧

𝑇   and 𝑡𝑅(𝑧+1)
𝑇  are the retention 

times (in minutes) of the two standard n-alkanes containing 𝑧 and (𝑧 + 1) carbon numbers, 

respectively (See Table 2).  
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Table 2.  Linear retention index (LRI ) calculated for the tentative identified compounds. Where 𝑡𝑅𝑖
𝑇  is the 

retention time of the interesting compound; 𝑡𝑅𝑧
𝑇   and 𝑡𝑅(𝑧+1)

𝑇  are the retention times (in minutes) of the two 

standard n-alkanes containing 𝑧 and (𝑧 + 1) carbon numbers.   

Nº Compound  

name  
𝒕𝑹𝒊

𝑻
 𝒛 𝒕𝑹𝒛

𝑻  𝒕𝑹(𝒛+𝟏)
𝑻

 𝑰𝑻 Literature 10 Largest 

peaks 

1 α-pinene 6,25 7 5,37 7,38 743,62 922 93-91-119-92-77-

18-79-28-134-
121 

2 hexanal 7,34 7 5,37 7,38 798,08 769 28-44-56-18-41-
43-57-32-29-39 

3 p-cymene 8,59 8 7,38 9,72 851,63 1011 119-117-91-134-

132-28-115-120-
77 

4 trans-isolimonene 9,16 8 7,38 9,72 875,87 974 28-79-93-91-107-

136-121-77-18-

67 

5 o-cymene 9,47 8 7,38 9,72 889,40 1076 28-119-18-32-91-

117-44-134-252-

132 

6 m-cymene  9,49 8 7,38 9,72 890,17 1013 119-91-134-114-

121-93-77-115-

120-136 

7 β-phellandrene 11,25 9 9,72 12,03 966,06 1030 93-91-77-136-68-

79-67-94-92-121 

8 α-terpinene 11,50 10 12,03 14,2 975,58 1008 119-121-93-91-

136-134-77-79-
105-117 

9 α-phellandrene 11,50 9 9,72 12,03 977,20 997 93-91-77-119-

136-28-79-94-

105-92 

10 trans-isolimonene 11,81 9 9,72 12,03 990,62 974 79-107-93-121-
139-68-67-58-41-

55 

11 γ-terpinene 12,18 10 12,03 14,2 1007,05 1047 121-93-119-91-

136-77-79-105-

134-117 

12 2-carene 12,34 10 12,03 14,2 1014,33 996 132-93-117-91-

121-136-115-77-
79-92 

13 α-terpinolene 12,35 10 12,03 14,2 1014,94 1078 119-121-93-91-

136-134-77-79-

105-117 

14 sabinene 12,79 10 12,03 14,2 1035,01 964 93-91-77-136-79-

94-92-68-121-67 

15 1,3,8-p-menthatriene 14,54 11 14,2 16,23 1116,95 1085 28-91-132-93-

117-119-32-18-

115-77 

16 eucarvone 15,42 11 14,2 16,23 1160,16 1287 28-32-18-121-91-
135-77-119-93-

107 

17 p-cumenol  16,76 12 16,23 18,13  1227,90  -  - 

18 cumaldehyde 17,16 12 16,23 18,13 1249,07 1214 133-148-28-105-

77-119-91-79-

103-32 

19 2-methyl-3-phenyl-

propanal 

17,16 12 16,23 18,13 1249,08 1244 133-148-28-105-

77-119-91-79-
103-32 
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20 ascaridol 19,04 13 18,13 19,91 1351,12 1273 28-32-18-135-91-

55-41-252-70-44 

21 piperitone 17,33 12 16,23 18,13 1266,11 1228 28-82-110-32-95-

18-135-137-109-

41 

22 carvacrol 17,99 12 16,23 18,13 1292,82 1278 28-235-150-32-

91-18-115-107-
77-105 

23 cuminol 18,03 12 16,23 18,13 1294,90 1271 28-135-119-32-

91-18-150-105-

77-79 

24 caryophyllene 20,47 14 19,91 21,59 1433,54 1424 93-133-91-28-79-

69-105-41-161-

107 

25 α-humulene 21,11 14 19,91 21,59 1471,62 1456 93-28-80-121-91-

147-79-77-107-

105 

 

For each sample, the peak area was calculated by integrating the peaks and the given results are 

based on the percentage of a compound according to the total peak area. The representative 

total ion chromatogram (TIC) of the tomato plants headspace is shown in Figure 1.  

 

2.8 Experiment II: Effect of endophytic fungal inoculations on Myzus persicae attraction  

The objective of this experiment was to determine whether winged aphids Myzus persicae are 

able to detect differences in volatile organic compound blends emitted by tomato plants treated 

with fungal endophytes when offered simultaneously with non-inoculated tomato plants. In the 

laboratory conditions 23±2°C and a 16L:8D photoperiod and 60% R.H., five wood cages (50 x 

30 x 35 cm), with sidewalls of nylon tissue (mesh size <1mm) were placed. In each cage, the 

five different odor sources i.e. one plant per (E) treatment and one control plant (C) were 

randomly distributed, resulting in a total of five plants per cage.  
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Figure 1. Representative total ion current (TIC) chromatograms showing abundance expressed as counts of ions 

present in a volatile organic compounds profile extracted from Solanum lycopersicon plants. On the left side, are 

the endophyte-free plants (Control), the inoculated with Beauveria bassiana (Bb) and Trichoderma koningiopsis 

(Tk). Right-up are the aphid attacked plants (Aphid) followed by B. bassiana inoculated plants with aphid attack 

(Bb+A) and T. koningiopsis with aphid attack (Tk+A).  

 

In the center of each cage, a group of 100 winged aphids was released and allowed tointeract 

with the plants for 24 hours. Then the host preference of insects registered as the number of 

recaptured individuals per treatment (n=100, 5 replicates). Additional observations were made 

under greenhouse conditions, during spring season 2014 a new group of four plants per 

treatment was randomly distributed in four benches in the greenhouse and the attracted insects 

were registered after 24 hours.  

2.9 Statistical Analysis  
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The headspace composition among treatments was compared by multivariate analysis using the 

vegan package in R version 3.2.2 (R Core team, 2015), a non-metric multidimensional scaling 

(NMDS) analysis (Proffit et al., 2011) was done to detect similarities between the treatments. 

No transformations were applied to the relative amounts of the total peak area of each 

compound in each total ion chromatogram.  

 

The effect of endophytic inoculation on tomato plants regarding the host plant selection by 

Myzus persicae was analyzed by means of a linear mixed effects model (r-package “lme4” and 

“lme”, R version 3.2.2). The amount of aphids recovered from the plants (x) constituted the 

dependent variable (n=100), the fixed effects were the different treatments, whereas each cage 

where the plants were grouped was considered as a block and represented the random effect in 

the model.  

 

We plotted the residuals and observed a normal distribution of the data. The homogeneity of 

variances of the residues was confirmed with Shapiro –Wilk normality test for the greenhouse 

experiment (P = 0.1542). For the laboratory assay the model showed a P value of 0.03839, 

indicating the presence of significant differences, and the normality test of the residuals 

(Shapiro-Wilk) confirmed the assumption of normal distributed data (P=0.3876). The groups 

were determined based on multiple comparisons of means: Tukey contrast. 

3 Results  

3.1 Endophytic colonization of tomato plant tissues 

Endophytic colonization of treated plants (E) was confirmed for all the strains in different 

organs of the plant: leaf, stem and root. Positive growth of fungal endophytes from leave 

samples was achieved in 100% of the sampled plants inoculated with Bb2 (n= 5) and Tk (n=6), 

followed by a lower inoculation rate of 83% and 67% for Bb1 (n=6) and Bb3 (n=6) respectively. 

Stems were less successfully colonized by endophytes with a 96% of the Bb2 sampled plants, 

80% of Bb1 and in the last place Bb3 and Tk with successful re-isolations of 57% and 53%. For 

Tk treatment, 100% of selected tomato plants were positive for fungal colonization in roots, 

while only the treatment Bb2 showed presence of the endophyte in 8% of the sampled plants. 

Strains Bb1 and Bb3 were not found in root samples. 

3.2 Effect of inoculation by fungal endophytes on the volatile profile of tomato plants  



Chapter 2                                                         Endophyte-induced cues attract aphids 

41 
 

In order to determine the effects of fungal inoculations on the volatile organic profile of tomato 

plants, a total of 34 headspace samples were analyzed. The treatments Control, Bb1, Bb2, and 

Tk had a replicate number of four and Bb3, Aphid and all (E + Aphid) combinations had three 

biological replicates.  

 

Figure 2. Non –metric multidimensional scaling (NMDS) plot visualizing the compounds of the  tomato plants 

headspace based on similarity (Bray-Curtis distance), rotated by principal component, (stress =0.068). Compounds 

are grouped according to the treatment.  

The polygons arranged the compounds into three major groups according to the treatments 

(Figure 2): Endophyte-free (C), endophytically inoculated (E) and in a third group showing 

almost no differences are the aphid infested plants (A) and the dual combination of aphid attack 

and endophyte (A+E). On the basis of the tentative identifications and semi-quantitative 

assessments of compound amounts by the relative peak area of the Total Ion Current, 

preliminary assignments of indicator compounds are suggested. For the first group, we could 

observe that one of the indicator compounds in the overall headspace composition of tomato 

plants (C) is p-cymene. The second group that was obtained based on similarities is the group 

of endophytically inoculated tomato plants (E) which is characterized by the release of α-pinene 

as the major indicator compound and trans-isolimonene. Finally, the third group (A+E) is 

characterized by compounds such as β- caryophyllene, ascaridole, and α-thujone.  

3.3 Effect of fungal inoculations on host plant selection by the herbivorous insect Myzus 

persicae  
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Figure 3. Host plant selection (mean ± SE) of winged aphids Myzus persicae in a multiple 

choice experiment, where five different treatments C, Bb1 Bb2 Bb3 and Tk were evaluated 

for 24 hours. In laboratory conditions (gray bars), five tomato plants were introduced in 

each cage (one per treatment) and 100 aphids were placed in the center of the cage in a 

small petri dish and allowed to select the host plant during 24hours. The amount of aphids 

per plant was registered. Greenhouse host selection (white bars) where 4 plants per 

treatment were randomly distributed in four benches and the number of aphids that landed 

on each plant was registered. Bars with different letters indicate significant differences 

among treatments based linear mixed effect model with Tukey contrast P<0.05.  
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Table 3. Volatile organic compounds detected in the headspace of tomato plants from a dual treatment 

endophyte and aphid attack (E+A). The values represent relative TIC peak area ± SE. The table contains 

only those compounds that were present in all replicates of at least one treatment. The retention time 

(RT*) is an average of the retention times in which the compound was present in all the chromatograms.  

                                      

    Control Aphid  Bb1+A Bb2+A Bb3+A Tk+A 

RT* 
Compound 

name  
Mean   SD Mean   SD Mean   SD Mean   SD Mean   SD Mean   SD 

6,25 α-pinene 2,46 ± 1,98 4,30 ± 1,00 2,66 ± 3,05 2,91 ± 1,93 0,70 ± 0,45 3,37 ± 1,18 

7,34 Hexanal 0,20 ± 0,14 0,28 ± 0,25 0,10 ± 0,05 0,04 ± 0,00 0,22 ± 0,02 0,17 ± 0,05 

8,59 p-cymene 0,20 ± 0,16 0,07 ± 0,00 - ± - 0,68 ± 0,00 - ± - - ± - 

9,16 

(1R)-(+)-

Trans-

isolimonene 

0,25 ± 0,09 0,22 ± 0,00 - ± - - ± - 0,15 ± 0,00 - ± - 

9,47 o-cymene 1,31 ± 0,96 - ± - - ± - 0,39 ± 0,03 0,11 ± 0,00 - ± - 

9,49 m-cymene  2,75 ± 2,03 5,05 ± 1,94 3,38 ± 3,64 2,58 ± 1,97 1,78 ± 1,18 4,94 ± 1,93 

11,25 β-phellandrene 12,84 ± 13,82 7,41 ± 12,10 7,61 ± 11,18 11,51 ± 15,01 0,96 ± 1,98 11,61 ± 15,16 

11,30 α-terpinene 9,82 ± 10,29 8,32 ± 7,49 8,24 ± 5,74 4,55 ± 6,74 9,26 ± 12,02 10,40 ± 8,18 

11,50 α-phellandrene 3,40 ± 1,25 2,87 ± 0,00 - ± - 3,90 ± 0,22 0,04 ± 0,00 4,39 ± 0,57 

11,81 
Trans-

isolimonene 
0,05 ± 0,00 0,24 ± 0,00 0,04 ± 0,01 - ± - - ± - 0,16 ± 0,12 

12,18 γ-terpinene 0,26 ± 0,26 5,69 ± 15,77 0,86 ± 1,91 0,44 ± 0,32 7,31 ± 13,98 1,11 ± 1,92 

12,34 2-carene 0,09 ± 0,00 0,27 ± 0,19 6,22 ± 8,44 0,10 ± 0,00 0,13 ± 0,00 0,78 ± 0,64 

12,35 α-terpinolene 0,52 ± 0,29 0,59 ± 0,44 0,53 ± 0,45 0,51 ± 0,31 0,42 ± 0,50 0,48 ± 0,38 

12,79 Sabinene 2,71 ± 0,66 4,80 ± 1,31 8,02 ± 6,54 3,56 ± 3,12 2,01 ± 0,00 2,63 ± 0,00 

14,54 
1,3,8-p-

menthatriene 
0,06 ± 0,02 0,06 ± 0,02 0,08 ± 0,01 - ± - 0,11 ± 0,00 0,07 ± 0,01 

15,42 Eucarvone 0,05 ± 0,00 0,03 ± 0,00 0,05 ± 0,00 0,04 ± 0,00 - ± - - ± - 

16,76 p-cumenol  0,06 ± 0,01 0,04 ± 0,00 0,05 ± 0,01 0,04 ± 0,00 0,05 ± 0,00 0,04 ± 0,00 

17,16 Cumaldehyde 0,10 ± 0,00 0,13 ± 0,00 - ± - - ± - 0,08 ± 0,05 0,09 ± 0,00 

17,16 

Propanal, 2-

methyl-3-

phenyl- 

0,07 ± 0,01 0,07 ± 0,01 0,07 ± 0,01 0,06 ± 0,01 - ± - 0,07 ± 0,00 

17,32 Ascaridol 0,03 ± 0,00 0,09 ± 0,02 0,17 ± 0,09 0,04 ± 0,01 0,19 ± 0,08 0,08 ± 0,03 

17,33 Piperitone 0,06 ± 0,02 0,06 ± 0,00 0,09 ± 0,06 0,04 ± 0,00 0,11 ± 0,00 0,04 ± 0,01 

17,99 Carvacrol 0,08 ± 0,03 0,07 ± 0,02 0,09 ± 0,03 0,06 ± 0,02 0,11 ± 0,03 0,06 ± 0,01 

18,03 Cuminol 0,05 ± 0,01 0,05 ± 0,03 0,06 ± 0,00 - ± - - ± - - ± - 

20,47 Caryophyllene 1,08 ± 1,28 1,45 ± 0,54 0,77 ± 0,90 0,53 ± 0,67 0,62 ± 0,60 1,16 ± 1,06 

21,11 α-humulene 0,23 ± 0,13 0,18 ± 0,08 0,22 ± 0,13 - ± - - ± - 0,42 ± 0,00 
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Table 4. Volatile organic compounds detected in the headspace of tomato plants from endophyte 

treatments (E). The values represent relative TIC peak area ± SE. The table contains only those 

compounds that were present in all replicates of at least one treatment. The retention time (RT*) is an 

average of the retention times in which the compound was present in all the chromatograms.  

    Control Bb1 Bb2 Bb3 Tk 

RT* Compound name  Mean   SD Mean   SD Mean   SD Mean   SD Mean   SD 

6,25 α-pinene 2,46 ± 1,98 4,97 ± 1,55 1,93 ± 1,43 2,02 ± 1,30 0,65 ± 0,84 

7,34 hexanal 0,20 ± 0,14 0,17 ± 0,08 0,07 ± 0,03 0,06 ± 0,01 0,10 ± 0,09 

8,59 p-cymene 0,20 ± 0,16 0,09 ± 0,03 0,06 ± 0,03 - ± - 0,23 ± 0,07 

9,16 trans-isolimonene 0,25 ± 0,09 - ± - 0,10 ± 0,07 0,19 ± 0,00 - ± - 

9,47 o-cymene 1,31 ± 0,96 0,09 ± 0,00 0,04 ± 0,01 0,05 ± 0,00 - ± - 

9,49 m-cymene  2,75 ± 2,03 3,60 ± 3,77 1,72 ± 2,22 3,40 ± 0,05 2,18 ± 0,69 

11,25 β-phellandrene 12,84 ± 13,82 9,30 ± 13,77 10,35 ± 12,06 18,61 ± 17,01 7,47 ± 11,16 

11,30 α-terpinene 9,82 ± 10,29 11,75 ± 10,62 5,13 ± 7,66 0,50 ± 0,28 7,95 ± 10,11 

11,50 α-phellandrene 3,40 ± 1,25 2,84 ± 0,99 2,07 ± 0,75 2,28 ± 0,00 2,74 ± 0,43 

11,81 trans-isolimonene 0,05 ± 0,00 0,14 ± 0,00 0,04 ± 0,00 0,03 ± 0,00 0,04 ± 0,00 

12,18 γ-terpinene 0,26 ± 0,26 0,33 ± 0,26 0,28 ± 0,31 0,25 ± 0,26 0,24 ± 0,24 

12,34 2-carene 0,09 ± 0,00 0,19 ± 0,01 - ± - 32,13 ± 0,00 - ± - 

12,35 α-terpinolene 0,52 ± 0,29 0,40 ± 0,31 0,22 ± 0,25 0,41 ± 0,36 0,22 ± 0,23 

12,79 sabinene 2,71 ± 0,66 0,28 ± 0,37 0,11 ± 0,08 14,74 ± 14,61 0,77 ± 0,75 

14,54 1,3,8-p-menthatriene 0,06 ± 0,02 0,05 ± 0,01 0,04 ± 0,01 - ± - 0,06 ± 0,00 

15,42 eucarvone 0,05 ± 0,00 0,08 ± 0,03 0,05 ± 0,01 0,06 ± 0,02 0,13 ± 0,00 

16,76 p-cumenol  0,06 ± 0,01 0,06 ± 0,01 0,05 ± 0,00 0,09 ± 0,00 0,10 ± 0,00 

17,16 cumaldehyde 0,10 ± 0,00 - ± - - ± - 0,06 ± 0,00 - ± - 

17,16 
2-methyl-3-phenyl-

propanal 
0,07 ± 0,01 0,11 ± 0,04 0,05 ± 0,01 0,13 ± 0,00 0,06 ± 0,05 

17,32 ascaridol 0,03 ± 0,00 0,04 ± 0,00 0,06 ± 0,00 0,05 ± 0,02 - ± - 

17,33 piperitone 0,06 ± 0,02 0,05 ± 0,00 0,04 ± 0,00 0,08 ± 0,00 - ± - 

17,99 carvacrol 0,08 ± 0,03 0,10 ± 0,04 0,08 ± 0,03 0,09 ± 0,04 0,13 ± 0,11 

18,03 cuminol 0,05 ± 0,01 - ± - 0,02 ± 0,00 0,13 ± 0,00 - ± - 

20,47 caryophyllene 1,08 ± 1,28 1,25 ± 1,39 1,18 ± 0,82 1,69 ± 0,31 1,36 ± 0,57 

21,11 α-humulene 0,23 ± 0,13 0,06 ± 0,01 0,25 ± 0,06 - ± - 0,20 ± 0,02 

 

Fungal treatment (E) had a significant effect on the host plant selection by winged aphids Myzus 

persicae under laboratory and greenhouse conditions (P<0.05). In the laboratory experiment, 

winged aphids selected significantly more of those plants that were treated with Bb1 than the 

endophyte free plants; no significant differences were observed between the other treatments 

and the control. The strain Bb3 displayed the least attraction to the aphids. In the greenhouse 

trial aphids were more attracted to plants inoculated with Bb1 and Tk. Plants inoculated with 

the strain Bb3 showed fewer attracted aphids even though this is not statistically different 

(Figure3). 
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4 Discussion  

Endophytic colonization is thought to enhance resistance against insect herbivores and some 

pathogens as well as to attract beneficial insects that can contribute to the biological control of 

several crop problems (Dicke et al., 2009; Pieterse et al., 2013; Poelman et al., 2012). This 

enhancement may be due to a modulation of plant defense responses that accompany the 

colonization process, which consequently can cause plant priming that may protect the plant 

against any subsequent attack by insect herbivores. Other authors suggest that the resistance to 

insect herbivory conferred by the endophytic colonization is mainly a result of the production 

of various alkaloid based defensive compounds in the plant tissues or even by affecting the 

nutritional quality of the plant (Li et al., 2014; Thakur et al., 2013).  Some examples of positive 

results of fungal endophytic colonization against insect pests have been achieved mainly for 

grass endophytes (Ahlholm et al., 2002; Li et al., 2014; Saikkonen et al., 1998, 2013). With the 

endophytic entomopathogenic fungi Beauveria bassiana promising results in the management 

of plant-insect interaction are available for insect pests such as Cosmopolites spp., Aphis 

gossypii and Iraella luteipes (Akello et al., 2008; Gurulingappa et al., 2010, 2011; Quesada-

Moraga et al., 2009). 

 Nevertheless, not all the endophytes result in a positive response of the plant against insect 

pests, but the opposite, they contribute to the attraction of insect herbivores such as Helicoverpa 

armigera (Jallow et al., 2008), which in turn can support the idea that changes in volatile 

profiles claim not only for plant protection or enhance plant defense but also “inform” other 

herbivorous insects about the suitability of the emitter of those chemical signals, becoming 

more apparent for herbivory (Halitschke et al., 2008).  
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In our research, we found that aphids were more attracted to plants showing reduced emissions 

of p-cymene and α-pinene, apparently as a response to the endophytic colonization with B. 

bassiana and T. koningiopsis. The ecological consequences of this plant - fungi interaction for 

the plant and other organisms is still far from being clarified. Nevertheless, it is known that 

greenhouse tomato Solanum lycopersicon Mill. releases volatile organic compounds such as β-

phellandrene, 2-carene, α-pinene and p-cymene that may contribute to the bumble bee 

pollination failure in some tomato greenhouses, since the insects apparently avoid plants that 

release mentioned compounds in higher amounts (Morse et al., 2012). The toxicity of p-cymene 

and its activity as an insect repellent has been addressed not only for tomato crops but also in 

other systems where this compound may contribute to the repellence against insect vectors of 

human viruses (Abdel-Sattar et al., 2010; Choi et al., 2002; Pitarokili et al., 2011) 

The volatile profile of tomato plants Solanum lycopersicon cv. Ruthje showed that the highest 

TIC-peak areas in tomato headspace of non-treated plants are β-phellandrene, followed by α-

terpinene, α-phellandrene, α-pinene and p-cymene. These compounds are in concordance with 

the results reported by Jallow et al. (2008), Morse et al. (2012)  and Proffit et al. (2011). 

Once compared the headspace composition of treated plants against the control profiles, we 

observed that the TIC peak area ratios of several compounds, mostly sesquiterpenes, changed 

according to the treatment applied. Meanwhile, some other compounds such as p-cymene and 

α-pinene significantly reduced their TIC peak area when the plant was inoculated with 

entomopathogenic fungi. p-cymene, which is naturally present in solanaceous plants, may play 

an important role in the protection against insect attack as reported by Bleeker et al. (2009) who 

observed that plants with lower amounts of p-cymene were more attacked by whiteflies. p-

cymene is an essential oil that has been reported to be toxic against western flower thrips 

Frankliniella occidentalis (Janmaat et al., 2002) . 

Tomato volatile organic compounds headspace is composed of more than 400 compounds 

(Quayyum, 2010). Among the most common compounds reported for tomato plants are: 3-

methylbutanal, hexanal, (Z)-3-hexenal, (E)-2-hexenal, 3-methyl-1-butanol, 1-hexanol, (Z)-3-

hexen-1-ol, 1-penten-3-one, 6-methyl-5-hepten-2-one, 2-phenylethanol, methyl salicylate, p-

cymen-8-ol, (Quayyum, 2010; Tikunov et al., 2005). MeSA (Methyl Salicylate) in the control 

plants profile is expressed constitutively and induced systemically (Scutareanu et al., 2003) 

which mean that this is a constitutive compound, and is released in Lycopersicon spp. from the 

stored compound and not produced de novo (Tikunov et al., 2005) . 
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Nevertheless, MeSA is known to be an induced defense volatile upon herbivory, which means 

that if the plant suffer from an insect attack (chewing insect) the emissions of MeSA will be 

upregulated (Ament et al., 2010) but there is no upregulation of MeSA in the profiles, in 

contrast, what we can see is a down-regulation of this compound when the plants are treated 

with fungal endophytes. The downregulation could suggest that the fungal endophytes are not 

undetectable by the plant metabolism and the Salicylic Acid (SA) pathway is upregulated, 

recognizing the endophytes as pathogens and due to the crosstalk between both pathways, the 

JA pathway is downregulated resulting in a reduction of MeSA until undetectable amounts. 

The changes in the VOCs profiles migth interfere with the insect behavior since the theory says 

that the lower the MeSA, the higher the aphid attraction and the higher MeSA, the lower aphid 

attraction and higher natural enemies attracted. This is also evidenced in our results where the 

control tomato plants with higher levels of MeSA were less attractant for aphids than endophyte 

treated plants where the MeSA levels are lower. That does not mean that the endophytes are 

"stress reducers" that only explains the specific case of tomato plants and the interaction with 

aphid.  

Our findings show that host plants inoculated with fungal endophytes used for biological 

control of plant pathogens or insect herbivores can influence the host selection. This may be 

advantageous for the fungi but in detriment to the plant and the insect.  

Additional to the statistical differences we could observe a tendency in the attraction of the 

insect herbivores Myzus persicae to treated plants with different endophytes species. The strain 

that showed the highest attraction pattern was Bb1 for experiments in greenhouse and 

laboratory. The least attractive treatment were the plants inoculated with the strain Bb3 which 

highlights the strain- specificity of the responses in a multitrophic interaction.   

In conclusion, our study has shown that fungal endophytes Beauveria bassiana and 

Trichoderma koningiopsis may modulate volatile organic compound profiles of tomato plants, 

and such responses can be strain dependent. Additionally, these results may contribute to 

understanding further implications of the use of fungal endophytes in integrated pest 

management.  

Our results describe how fungal endophytically inoculated plants exhibit a profile of volatile 

organic compounds different from endophyte free plants, resulting in an increased attraction of 
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insect herbivores. These results highlight the need to describe the ecological effect of 

entomopathogenic fungi when its life cycle is developed as an endophyte. Are the insects 

attracted with the final purpose of changing the fungi lifestyle from endophytic to an 

entomopathogenic style? However, in our system, it remains to be described which of the 

compounds released in the aboveground headspace of the plant are behaviorally active and 

whether their emission is caused by fungal colonization as endophyte or by the fungal 

mycelium. 
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Abstract  

Recent studies have been published about the ability of some fungal endophytes to 

protect crop plants against insect herbivory and plant pathogens. Nevertheless, the 

potential of fungal endophyte to modify plant parameters involved in plant – insect 

interactions remains poorly understood. Our aim was to evaluate the potential of 

three different species of fungal endophytes Beauveria bassiana, Metarhizium 

bruneum and Trichoderma koningiopsis to i) colonize endophytically tomato plant 

tissues, ii) affect plant attributes such as temperature, chlorophyll content and 

biomass iii) modulate host plant selection of Helicoverpa armigera for oviposition. 

Tomato seedlings were root inoculated to test the ability of the different fungal 

species to colonize tomato tissues and the establishment of the microorganism along 

the plant. We observed that all the isolates successfully colonized the root tissue of 

treated plants. Stem and leaf tissues were colonized in a lower proportion for all the 

isolated except Metarhizium brunneum. Plant temperature showed no significant 

differences between the treatments. In contrast, plants inoculated with Beauveria 

bassiana showed significant differences in leaf chlorophyll content. In a multiple 

choice experiment, we offered five different plants inoculated with fungal 

endophytes and one endophyte free plant to Helicoverpa armigera adults for 

oviposition preference and the resulting behavior was compared to the one obtained 

in a no-choice experiment. These results support our hypothesis that i) endophytic 

colonization might be higher belowground than in aboveground plant tissues and it 

is specific to each fungal isolate, ii) tomato plant traits remain unaffected by fungal 

endophytic infection confirming its symptomless presence in the plant and iii) 

entomopathogenic fungal infection of tomato plant tissues reduce the preference to 

lay eggs on infected plants compared to plants infected with non-entomopathogenic 

fungi. 

Keywords: Multiple choice, Solanum lycopersicon, Oviposition preference, qPCR-

based endophyte detection, Chlorophyll content, Plant growth, Near Infrared 

Spectroscopy (NIRS), Plant biomass.  
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1.  Introduction  

The mechanisms that regulate the interaction between insect herbivores and host plants are 

mostly regulated by the chemical cues emitted by plants such as volatile organic compounds 

(VOCs) or secondary metabolites (Bruce and Pickett, 2011). For instance, Jallow et al. (2008) 

suggest that among other physiological attributes of tomato plants, quantitative variations in the 

emission of some VOCs influence the host selection made by the polyphagous moth 

Helicoverpa armigera (Hiibner)  (Lepidoptera:Noctuidae) for oviposition. Nevertheless, host 

plant selection is also regulated by other plant physiological attributes closely related to the 

nutritional state of the plant, plant temperature range and phenological stage (Ramaswamy, 

1988; Renwick, 1994). These parameters confer short distance cues to the insect that are 

complementary to the chemical cues followed from a long distance to find a suitable host for 

oviposition or mating (Renwick, 1994).   

Biological interactions between fungal endophytes and plants have been reported to be 

symptomless (Schulz and Boyle, 2006). However, it is documented that these microbial 

associations with host plants might modulate the interaction between insect herbivores and plant 

hosts by conferring some fitness benefits and ecological adaptations to the colonized plant 

(Rodriguez et al., 2009). According to Rodriguez et al. (2009), the enhancement of plant 

biomass is one of the plant attributes that is most commonly reported to be acquired by the 

plants after a colonization with an ascomycota or basidiomycota endophyte normally found to 

infect roots, stems or leaves of their host. In turn, the endophyte may obtain nutrition for growth 

and reproduction. In addition to growth promotion, endophytes can confer other benefits to the 

host plant in terms of stress tolerance and resistance against plant pathogens and herbivory 

(Jaber and Vidal, 2010).  

Here we addressed two questions concerning the response of tomato plants Solanum 

lycopersicon to endophytic fungi inoculations and the behavioral response of H. armigera 

adults to tomato plants treated with different endophytes. First, to what extent does endophytic 

fungi colonization of tomato plants influence traits such as leaf chlorophyll content, plant 

temperature, and plant biomass? Second, is there a reduction in oviposition on 

entomopathogenic endophyte-inoculated tomato plants by H. armigera adults compared to non-

inoculated plants?  
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2. Materials and methods  

2.1 Plant material  

Tomato seeds Solanum lycopersicon Mill. var Ruthje (Rein Saat ®, Austria) were grown in a 

nursery in a 3:1 soil mixture: sand (soil: Fruhstorfer Erde Typ 25, Hawita Gruppe GmbH, peat 

fine structure with volcanic clay, pH: 5.7-6.3, Fertilization of 200-300mg N. Sand: 0.3mm grain 

Ø) and maintained under greenhouse conditions for two weeks with an average temperature of 

24 ±2°C, a relative humidity between 75-80% and 12L:12D photoperiod. When the seedlings 

developed the second true leaf, they were removed from the substrate and the roots were 

carefully washed with tap water and kept in a beaker with water in a laminar flow chamber to 

avoid dehydration until the root inoculation procedure. Once inoculated, plants were 

individually transplanted into 11x11x12 cm pots filled with the soil mixture mentioned above, 

moved to the greenhouse, watered regularly and fertilized once a week with Hakaphos 2g/L 

(15% N, 11% P2O5, 15% K2O, 1%Mg, 0.1%Fe, 0.1%Mn, 0.04%Cu, 0.025%B and 0.005% Mo) 

until four weeks post inoculation.  

2.2 Fungal inoculates 

Beauveria bassiana strain Bv 061 was provided by the germplasm bank of the Biological 

Control Laboratory at Colombian Corporation of Agricultural Research – Corpoica - in 

Colombia; B. bassiana strain Bb1022 and EABb 04/01 -Tip come from the fungal collection of 

the Agricultural Entomology Laboratory at the University of Göttingen, Germany. Metarhizium 

brunneum (Metschnikoff) Sorokin strain ART 2825 was provided by Fytovita spol. s.r.o. 

(Ostrozska Lhota, Czech Republic), originally isolated from A. obscurus in Switzerland 

(Kölliker et al., 2011). The plant pathogen biocontrol agent Trichoderma koningiopsis 

(formerly known as Trichoderma koningii) strain Th003 was delivered by the company 

Prophyta (Biologischer Pflanzenschutz GmbH, Germany).  

The treatments included an endophyte-free control (C), five endophyte treatments (E): B. 

bassiana cv. EABb 04/01 -Tip (Bb1), B. bassiana cv. Bv 061 (Bb2), B. bassiana Bb1022 (Bb3), 

M. brunneum cv. ART 2825 (Mb) and Trichoderma koningiopsis cv. Th 003 (Tk)  

The isolates were grown in Potato Dextrose Agar (PDA) at 24 ±2°C in dark conditions during 

two weeks to obtain enough spores for the suspension. The spore suspension was prepared by 

adding 3ml of 0.01% Tween 20 on the growing media and the spores were removed with a 
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Drigalski spatula and re-suspended in 97ml of distilled autoclaved water. The suspension was 

filtered and the concentration was determined with a Thoma counting chamber (0.10mm depth) 

and adjusted to 1 x 107 conidia/ml. Washed roots were soaked into the corresponding spore 

suspension for 20min. Roots from control plants were immersed in a solution of 0.01% tween 

20 + sterile deionized water during the same period. All treated plants were transplanted and 

maintained randomly distributed under greenhouse conditions for four weeks. 

2.3 Insect rearing  

Eggs from a laboratory rearing of Helicoverpa armigera were provided by Bayer Crop Science, 

Monheim, Germany, and kept in a climatic chamber at 23±2°C, 60% RH and 16L:8D 

photoperiod until they hatched. Larvae were transferred to an artificial diet (Cunningham et al., 

1998) and maintained there up to the development of the third larval instar. Then they were 

individualized in 35mm Ø Petri dishes filled with the diet until pupation to prevent cannibalism. 

Pupae were sexed according to Rincón and López-Ávila (2004) and maintained in groups of 

10♀:10♂ in plastic insect rearing cages of 30 cm3 until adult emergence. Adults were fed ad 

libitum with a 10% honey solution provided on dental cotton rolls saturated with the solution 

and inserted into a 2ml Eppendorf tube filled with the mixture.  

2.4 Detection of fungal endophytic colonization by real-time polymerase chain reaction  

Endophytic colonization (presence / absence) was confirmed by real-time polymerase chain 

reaction (RT-PCR). The positive PCR amplification was achieved from genomic DNA of each 

fungal strain obtained from actively growing mycelium in Potato Dextrose Broth (PDB) 

cultures incubated for five days at 25ºC in the dark with a constant shake. The medium was 

filtered with a vacuum pump, and the filtrated mycelium was collected and lyophilized. The 

dry material was ground, homogenized and stored at -20ºC until used. The plant samples were 

conserved at -80ºC until lyophilization, and the dry material was ground and stored in -20ºC 

until the DNA extraction. For fungal and plant DNA extraction we used the 

cetyltrimethylammonium bromide (CTAB) method, where a mixture of 1ml of CTAB buffer, 

2μl mercaptoethanol, and 1μl of Proteinase K was added to 50mg of fine powdered samples, 

mixed thoroughly and incubated for 10min at 42ºC, then the temperature was increased to 65ºC 

and incubated for 10min more. After adding 800μl of chloroform/isoamyl alcohol and 

incubation on ice for 10min, the extract was centrifuged at 8000rpm for 10min. The supernatant 

was transferred to a new tube and 100μl5M NaCl and 200μl of 30% of Polyethilene glycol 
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(PEG) were added, and incubated for 5min at room temperature, followed by a centrifugation 

at 14000rpm for 15min. The supernatant was discarded and the pellet was washed two times 

with 500 μl of 75% ethanol, then dried in Speed Vac and re-suspended in 100 μl 1X Tris EDTA 

(TE) buffer.  

2.4.1  Beauveria bassiana   

The qPCR amplifications were performed using the primers designed by Zhang (2014) Bsn1-2 

forward 5’-3’ GCGTCAAGGTGCTCGAAGACAG” and reverse 3’-5’ 

TCTGGGCGGCATCCCTATTGT for Beauveria bassiana  with a product size of 231bp. The 

qPCR amplifications were performed in a total volume of 10µl using the iCycler System 

(CFX384 Real time system, Bio-Rad, Hercules, CA, USA). The reaction mixtures contained a 

final concentration of 2µl 5x reaction buffer (Bioline, Luckenwalde, Germany), 1µl of 25mM 

MgCl2 (Bioline, Luckenwalde, Germany), 0.4µl of 2.5mM Deoxynucleoside 

triphosphates (dNTP) (Bioline, Luckenwalde, Germany), 0.3µl of 10µM each primer 

(Invitrogen, Karlsruhe, Germany), 0.1µl of SybrGreen Mol Probes 1:1000 (Invitrogen, 

Karlsruhe, Germany), 0.25µl of 40mg/mL Bovine Serum Albumin (BSA) and 0.06µl of 5U/µl 

Hot Start Taq Polymerase (Bioline, Luckenwalde, Germany), 4.59µl of sterile water and 1µl of 

sample DNA. Thermal cycling conditions for amplification: started with an initial denaturation 

step for 3min at 94°C, followed by 36 cycles, each consisting of a 30s denaturation at 94°C, 

annealing for 20s at 60°C, extension for 30s at  72°C and a plate read at the end of each cycle. 

This was followed by a final extension for 5min at 72ºC and a final melting curve from 55°C 

to 95°C in 0.5°C increments held for 5s at each temperature and a plate read at each temperature, 

which was used to determine the purity of the reaction products. 

2.4.2 Trichoderma koningiopsis 

Specific primers (forward: 5'-TACAACTCCCAAACCCAATGTGA-3', reverse: 5'-

CCGTTGTTGAAAGTTTTGATTCATTT-3') for Trichoderma spp. (López-Mondéjar et al., 

2010) were used for the quantification. The qPCR amplifications were performed in a total 

volume of 10µl using the iCycler System (CFX384 Real time system, Bio-Rad, Hercules, CA, 

USA). The reaction mixture followed the same proportions as those reported for B. bassiana. 

The thermal cycling conditions used for amplification:  started with an initial denaturation step 

for 3min at 95°C, followed by 35 cycles, each consisting of a denaturation step for 5s at 95°C, 

annealing for 15s at 64°C, extension for 15s  at 72°C and a plate read at the end of each cycle. 
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This was followed by a final extension for 5min at 72ºC and a melting curve from 55°C to 95°C 

in 0.5°C increments held for 5s at each temperature and a plate read at each temperature, which 

was used to determine the purity of the reaction products. 

2.4.3 Metarhizium brunneum  

Specific primers (Ma 1763: 5'-CCAACTCCCAACCCCTGTGAAT -3' and Ma 2079: 5'-

AAAACCAGCCTCGCCGAT-3') for Metarhizium spp. (Schneider et al., 2012) were used for 

the quantification. The qPCR amplifications were performed in a total volume of 10µl using 

the iCycler System (CFX384 Real time system, Bio-Rad, Hercules, CA, USA). The reaction 

mixtures contained a final concentration of 1µl 10x reaction buffer (Bioline, Luckenwalde, 

Germany), 0.2µl of 25mM MgCl2 (Bioline, Luckenwalde, Germany), 0.4µl of 2.5mM dNTP 

(Bioline, Luckenwalde, Germany), 0.3µl of 10µM each primers (Invitrogen, Karlsruhe, 

Germany), 0.1µl of SybrGreen Mol Probes 1:1000 (Invitrogen, Karlsruhe, Germany), 0.25µl of 

40mg/mL BSA and 0.06µl of 5U/µl BIOTaq DNA Polymerase (Bioline, Luckenwalde, 

Germany), 6.39µl of sterile water and  1µl of sample DNA. The thermal cycling conditions 

used for amplification:  started with an initial denaturation step at 94°C for 2min, followed by 

39 cycles each consisting of a denaturation step for 40s at 94°C, annealing for 40s at 65°C, 

extension for 45s at 72°C and a plate read at the end of each cycle. This was followed by a final 

extension for 5min at 72ºC and a melting curve from 55°C to 95°C in 0.5°C increments held 

for 5s at each temperature and a plate read at each temperature, which was used to determine 

the purity of the reaction products. 

2.5 Effects of plant-fungal interaction on plant attributes 

Four weeks after fungal inoculation, the plants were moved to laboratory conditions 

(Temperature 20ºC ±2, RH 70%, 16:8 light /dark conditions) where they were distributed 

according to the corresponding treatment into mesh cages. Plant parameters: temperature, 

length and chlorophyll content were measured as soon as the 24 hours of interaction between 

Helicoverpa armigera and the plants ended. 

2.5.1 Plant temperature measurements  

Each plant was removed from the mesh cage and placed on a thermally isolated surface. 

Thermal images were obtained using a heat sensing camera (FLIR T6xx systems, Danderyd, 
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Sweden) that generates thermal infrared imaging with a sensitivity of 0.08°C and accuracy of 

±2°C. Simultaneously, visible images were obtained with the digital image of the FLIR camera.  

2.5.2 Foliar chlorophyll content 

Fully expanded leaves per plant were used for chlorophyll measurements in planta. Five 

readings per plant using SPAD (SPAD 502 plus, Leaf Chlorophyll Meter, Minolta) were taken 

around the midpoint near the midrib of each leaf sample and averaged. A total of 360 

measurements were taken.  

2.5.3 Near infrared spectroscopy 

Plant material was carefully transported to the Spectroscopy laboratory at the Division of Plant 

Breeding, at the University of Göttingen where the Near Infrared Spectroscopy (NIRS) (NIRS 

System 6500) scanning was performed at controlled temperature and humidity conditions. 

From each treatment, a leaf disc was obtained with a standard 20mm Ø mold and packed 

manually in a sample capsule with a quartz glass cover. Each sample was scanned once. The 

spectral data were recorded as log 1/R (where R is reflectance) and the first and second 

derivatives of log 1/R, one sample per plant was taken with 12 biological replicates per 

treatment. 

2.5.4 Plant biomass 

Plants were removed from the soil and washed off with tap water. Aboveground, and 

belowground parts were separated and gently blotted with paper towels to absorb any free 

surface moisture. Shoot length (SL) and root length (RL) were measured separately. For root 

length measurements, the fresh root system was expanded over a flat surface and kindly 

separated to measure the length of the longest root. The samples were then lyophilized and the 

dry weight of shoots (DWS) and the dry weight of roots (DWR) were recorded. The plant root 

– shoot ratio was calculated: 

𝑅𝑜𝑜𝑡 − 𝑆ℎ𝑜𝑜𝑡 𝑟𝑎𝑡𝑖𝑜 =
𝐷𝑊𝑅 

𝐷𝑊𝑆
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2.6 Helicoverpa armigera oviposition preference 

2.6.1 No- choice bioassay 

One five days old female and one male moth were released in a mesh cage of 20 x 20 x 40 cm, 

which contains one tomato plant treated with the corresponding endophyte or control plants. 

The insects interacted with the plants for 24 hours and were used only once for experiments. 

Laid eggs were counted and removed to avoid over counting. The experiment was replicated 

twice, under laboratory conditions with a temperature of 23±2°C and a 16L:8D photoperiod, 

one plant per cage and eight plants per treatment were tested.  

2.6.2 Multiple choice bioassay 

 For this experimental setup, five tomato plants (one per treatment) were distributed into a mesh 

house and in the center of the cage one five days old female and one male moth were released. 

After 24 hours the laid eggs were counted. This experiment was developed under laboratory 

conditions with a temperature of 23±2°C and a 16:8 LD photoperiod, one plant per treatment / 

cage and twelve replicates were tested.  

2.7 Statistical analysis  

A Pearson product moment correlation was made using Sigma Plot version 11.0 (Systat 

Software Inc., 2016) for each treatment to determine the relationship between the amounts of 

endophytic fungal DNA found in the plant tissues and the oviposition of H. armigera, plant 

temperature, leaf chlorophyll content and stem length.  

2.7.1 Detection of fungal endophytic colonization by real-time polymerase chain 

reaction  

The response of the endophyte in terms of fungal DNA found in the different tissues of the 

plant, roots, stems, and leaves was analyzed by means of linear mixed-effects model r-package 

“lme4” (Bates et al., 2015), R version 3.2.2. (R Core team, 2015) (The amount of fungal DNA 

recover from the different plant tissues after the RT-PCR was named according to the name of 

the organ where it was recovered: “Stem”, “Root” or “Leaf” and constituted the dependent 

variable (n=12).  Each cage where the plants were grouped was considered as a block named 

“block” in the model (n=12) and considered as a random effect. The following formula was 

applied.   
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𝐸𝑛𝑑𝑜𝑝ℎ𝑦𝑡𝑖𝑐 𝑐𝑜𝑙𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 𝑙𝑚𝑒(𝑎~𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡, 𝑟𝑎𝑛𝑑𝑜𝑚 = ~1|𝐵𝑙𝑜𝑐𝑘) 

Where a, is the corresponding fungal DNA amount found in the organ analyzed: Stem, root or 

leaf. A normality test of the residuals (Shapiro-Wilk) was used to test the assumption of 

normally distributed data, and the groups were determined with Tukey multiple comparisons 

of means. 

2.7.2 Effects of plant-fungal interaction on plant attributes 

Fungal endophytic fungi effect on stem length of tomato plants. Data are shown in average 

length (cm) ± SE.  One way analysis of variance (P<0.001), Normality test Kolmogorov-

Smirnov, passed with a P=0.316, equal variance test passed (P=0.240). Tukey HSD test for the 

group definition. 

2.7.3 H. armigera oviposition preference 

The multiple choice oviposition data were not normal distributed; therefore, a generalized linear 

model (GLM) was used with a negative binomial distribution of errors with r-package “MASS” 

(Venables and Ripley, 2002), R version 3.2.2 (R Core team, 2015). The model formula used 

was: 

𝑚𝑜𝑑𝑒𝑙. 𝑛𝑏 = 𝑔𝑙𝑚. 𝑛𝑏 (𝑒𝑔𝑔𝑠~𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡) 

A Chi-square goodness of fit (GOF) test was applied 

For the no-choice oviposition data, a one way analysis of variance ANOVA was used. 

3.  Results  

A Pearson product moment correlation analysis showed no correlation between the measured 

parameters in the plants treated with the entomopathogenic fungi M. brunneum. For plants 

treated with T. koningiopsis, a positive correlation between the amount of fungal DNA in the 

stem and the number of laid eggs (r=0.787, P≤ 0.00236) was found. Similarly, among the leaf 

chlorophyll content and the plant length (r=0.733, P≤0.00668). B. bassiana treated plants 

showed specific correlations according to the strain. For Bb1 treated plants, the number of laid 

eggs was positively correlated with the fungal DNA quantified from leaf tissues (r=0.847, 

P≤0.000511), while the plant length was positively correlated with two parameters fungal DNA 

in root tissue and the chlorophyll content (r=0.598, P≤0.0399 and r=0.711, P≤0.00949 
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respectively). For the Bb2 treated plants, the chlorophyll content also positively correlates with 

the plant length (r=0.706, P≤0.0103). Finally, the Bb3 treated plants showed a negative 

correlation between the amount of fungal DNA in the leaves and plant temperature (r=-0.685, 

P< 0.0416).  

3.1 Detection of fungal endophytic colonization by real-time polymerase chain reaction  

The fungal establishment success of each fungus in plant tissues is shown in figure 1. The 

colonization was higher in the roots for all the treatments with significant differences observed 

in the model (F= 5.419 on 5 and 64 df, P< 0.000345) when compared to the control. The amount 

of fungal DNA observed in tomato stem tissues of plants treated with T. koningiopsis Tk 

(P<0.0033) and Beauveria bassiana Bb3 were significantly higher than the other strains studied 

(P<0.0023). In the leaves, the amount of fungal DNA recovered was significantly different to 

the control plant in the samples from Beauveria bassiana Bb1 (P<0.0033), and Beauveria 

bassiana Bb3 (P<0.035).  

3.2 Effects of plant-fungal interaction on plant growth parameters 

3.2.1 Plant temperature 

The plant temperature measured with FLIR thermal imaging registered in the multiple choice 

experiments was analyzed with a generalized linear model and showed no significant 

differences between the treatments (P=0.9001) (Figure 2a, 2b ). 
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Figure 1. Fungal DNA detected with the qPCR technique in plant samples. 
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Figure 2. a) Thermal images captured by the FLIR T6xx series. In the right side treatments 

distributions are presented. b) Plant temperature measured with FLIR thermal imaging 

registered in plants used for multiple choice experiments. Generalized linear model of the 

temperature showed no significant differences between the treatments (P = 0.9001) 

3.2.2 Foliar chlorophyll content 

The foliar chlorophyll content data showed a normal distribution according to the normality test 

Kolmogorov - Smirnov (P= 0.317) and passed the homogeneity of variances assumption 

(P=0.331). A one-way analysis of variance showed significant differences among treatments 

(P<0.001, F=12.420, df =5). All pairwise comparison Tukey test showed that Beauveria 
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bassiana Bb1, Bb2 and Bb3 were significantly different compared to the control plants and no 

significant difference between T. koningiopsis and M. brunneum treated plants with the control 

were observed (Figure 3).  
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Figure 3. Chlorophyll content of tomato plants registered from 

five randomly selected leaves per plant (Average ± SE).  

 

3.2.3 Near-infrared spectroscopy (NIRS) 

The near infrared spectroscopy (NIRS) analysis showed no differences among the treatments 

in terms of absorbance. 

3.2.4 Plant biomass  

Plants treated with Tk endophyte, showed the higher total biomass, stem length and shoot 

biomass compared with all the treatments and control. No further variation was explained by 

other treatment. While the root biomass and the root:shoot ratio was not significantly different 

between the treatments (Figure 4). 

 

 

* 
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Figure 4. Effect of endophytic fungal colonization on tomato plant biomass. No significant 

differences were found in the root biomass between the treatments.  

3.3 Helicoverpa armigera oviposition preference  

3.3.1 No- choice experiment 

The oviposition preference of H. armigera in a no-choice experimental setup showed no 

significant differences among treatments (ANOVA P=0.427, DF=5, F=1.022).  

3.3.2 Multiple choice experiment 

Data from the H. armigera oviposition preference in a multiple choice experiment fitted to a 

negative binomial distribution (Model information: P=0.315, Link function: Log, df=71, 

Akaike’s information criterion (AIC)= 379.62, Initial theta=0.3057, SE=0.0640, n=12). A 

significantly less preference to oviposit on those plants treated with Bb1 (P= 0.014) was 

observed. No further differences were observed.   
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4. Discussion  

In accordance with our hypothesis, we found that all tested fungal endophytes successfully 

colonized plant roots with no significant differences between the treatments. When observed 

the colonization of aboveground plant tissues, T. koningiopsis and B. bassiana Bb3 showed the 

highest levels of colonization in the stem, and finally only B. bassiana Bb3 showed significant 

differences in the colonization of leaves. Since our inoculation method involves only root 

treatment with the fungal suspension, finding traces of the fungal endophyte DNA in 

aboveground plant tissues indicate that B. bassiana strain Bb3 and Tk are able to mobilize 

systemically from the roots to the newly developed tissues and remain in the plant for at least 

four weeks after application. These results are in accordance with those reported by Quesada-

Moraga et al. (2006) and Behie et al., (2015). The Bb3 was more efficient in approaching plant 

tissues far from the initial inoculation site. The mechanisms that allow this fungus to spread 

trroughout the plant tissues are not yet described, and future studies are needed to understand 

its ecological implications and potential applications in the biological control of tomato pests.  

Similarly, T. koningiopsis was able to colonize stems of tomato plants in addition to its growing 

in roots. This observation is similar to that obtained by Samuels et al. (2006) who isolated T. 

koningiopsis from freshly exposed, living sapwood of trunks of Theobroma cacao plants in 

Brazil, Ecuador, and Peru but failed to obtain it from apical meristems. However, to our 

knowledge, no reports are available about T. koningiopsis being isolated as an endophyte in the 

Solanaceae plant family. As such, our finding may contribute to the potential use of this 

endophyte to protect plants against insect herbivores and plant pathogens in integrated crop 

management strategies.  

In the case of M. brunneum, we found positive traces of this fungal DNA only in root tissues, 

indicating that this endophyte cannot spread throughout the plant and stays in the root system 

as observed by Greenfield et al. (2016) for Metarhizium anisopliae  and Behie et al. (2015) who 

found that Metarhizium brunneum growth was restricted to the roots while B. bassiana was 

found along the plant.  

We observed that tomato plants infected with fungal endophytes did not exhibit any significant 

difference among treatments in terms of plant temperature but, the leaf chlorophyll content and 

plant biomass were significantly affected by the endophytic treatment with B. bassiana and T. 

koningiopsis respectively. Similarly, Moreno et al. (2009) observed that T. koningiopsis Th003 
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contributes to obtaining higher plants when inoculating tomato seedlings after a seed priming 

with the fungal suspension. Tomato shoot dry weight of T. koningiopsis treated plants was also 

significantly different compared to the control and other treatments. These results can be 

attributed to the ability of Trichoderma spp. to promote plant growth mainly reported for T. 

harzianum  (Oskiera et al., 2015; Ownley et al., 2010) but also reported by Moreno et al. (2009) 

for T. koningiopsis Th003 in tomato plants.  

Another plant response associated with endophyte treatment was observed for 

entomopathogenic endophyte B. bassiana, which significantly reduced the amount of leaf 

chlorophyll content registered for infected plants compared to the control and the fungal 

endophytes T.koningiopsis and M. brunneum. The lowest content of chlorophyll was observed 

in B. bassiana Bb1 treated plants. This trait is positively correlated with the oviposition of H. 

armigera, and with the stem length. The more chlorophyll, the longer the stem of tomato plants 

treated with Bb1, Bb2, and Tk.  

Leaf chlorophyll content of plants is a parameter that provides information about the general 

health conditions of plants since it is an indirect sign of chloroplasts development and their 

photosynthetic ability as well as of nitrogen content (Palta, 1990). The amount of chlorophyll 

in leaf tissue can be influenced by different abiotic factors such as nutrient availability or 

environmental stress caused by salinity, temperatures or water supply (Palta, 1990). 

Nevertheless, biotic factors are also important in the modulation of the chlorophyll content of 

plants. For instance, plant - endophyte interactions have been shown to be in detriment of the 

plant’s photosynthetic capacity in some cases, mainly related to fungal endophytes that confer 

protection against plant pathogens (Azevedo et al., 2000; Singh et al., 2011). Such is the case 

of the impact caused by Colletotrichum musae and Fusarium moniliforme that has an effect on 

the photosynthetic activity of banana and maize plants respectively (Costa Pinto et al., 2000). 

In our study, we found that, instead of the plant pathogen biocontrol agent Trichoderma 

koningiopsis, the main effect on chlorophyll content was observed in plants treated with the 

entomopathogenic fungi Beauveria bassiana.  

Once we observed that the endophytic fungi affect some parameters in the plant odor (see 

chapter 2), plant chlorophyll content and biomass, the following step was to observe if there is 

a relation between those parameter of the plant and the insect behavior, specifically with the 

host plant selection of gravid females of Helicoverpa armigera. In that sense it has been 
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reported that for many insect herbivores, olfactory cues play decisive roles when females search 

for a proper host plant for oviposition (Reisenman and Riffell, 2015). Nevertheless, not only 

the plant volatiles are involved in the plant selection for oviposition, once the plant is located 

by the chemical cues, the moths uses the chemical and visual cues given by the plant surface. 

For lepidopteran, the information perceived through antenna, tarsi and ovipositor are crucial for 

acceptance of a plant for oviposition (Juma et al.).  We observed in our experiments, the higher 

eggs laid by H. armigera was observed in plants treated with Mb and Bb3, which are the same 

treatments that showed no effects in the chlorophyll content compared to the control.  

It can be inferred from those results that, inoculations with entomopathogenic fungi B. bassiana 

and T. koningiopsis may contribute to the management of the population growth by decreasing 

the suitability of tomato leaves for potential offspring of H. armigera. Further studies are 

necessary to confirm if the chlorophyll content of tomato plants is a decision factor for selecting 

a proper oviposition site for gravid Helicoverpa armigera. 

Some studies demonstrate that the specialist moth Euphydryas aurinia (Lepidoptera: 

Nymphalinae: Melitaeini) select the greenest leaves for oviposition, searching for a guaranty of 

suitable leaves for the new hatched larvae (Stefanescu et al., 2006).  

We can conclude that under our study conditions the endophytic fungi Beauveria bassiana and 

Trichoderma koningiopsis are able to modulate plant traits of the tomato plant Solanum 

lycopersicon that positively affects the insect-plant interaction with the polyphagous moth 

Helicoverpa armigera. 
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